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EFFECT OF CONCRETE SHRINKAGE 
ON THE STABILITY 

OF REINFORCED CONCRETE SHELLS

E. Dulácska*

[Received: 15 July, 1983]

The effect of concrete shrinkage on the stability of reinforced concrete shells, and the 
possibility of how to reckon with this effect has been investigated. Geometry alteration due to 
shrinkage was found to be significant for very shallow shells, while the increase of imperfection due to 
shrinkage may generally be omitted in stability analyses of reinforced concrete shells.

1. introduction

Deviation of the shell form from the designed one is known to impair the stability 
behaviour of shells [1], and to significantly reduce the critical load. Shrinkage of 
concrete in reinforced concrete structures is an effect likely to affect the critical load by 
deforming the shell. Shrinkage will be seen to involve two possibilities of affecting 
stability characteristics of reinforced concrete shells: partly by modifying the shell form, 
and partly, by increasing the initial imperfection amplitude of the shell. In the 
following, effects of these phenomena will be considered.

2. Alteration of the shell form

The shrinkage effect will be analysed on a bar cut by two parallel planes of the 
shell. The originally straight bar of symmetric reinforcement is shortened by shrinkage 
but it remains straight. Shortening decreases if counteracted by increasing reinforce
ment percentage. (For slighter reinforcement percentages usual in shells, this effect may 
be neglected, on the safety side.)

The effect of shrinkage on the curved bar depends on boundary conditions.
Fora shell edge with sidesway (exempt from lateral pressure) shrinkage produces 

no bending moment but the bar keeps its fortn, though at a reduced curvature radius, 
due to shortening.

This is the characteristic behaviour of free-edge shells, shells supported on shear 
diaphragms, and closed annular shell strips. Decrease of the curvature radius increases 
the critical force by less than 1%. Thus, in this case, shrinkage somewhat increases the
safety.

• Dr. E. Dulácska, H-1022 Budapest, Kitaibel Pál u. 12, Hungary
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6 d u lAcsk a . к.

If curved bar ends are restrained from displacement, a constraint force arises, 
causing a bending moment to develop, keeping, in turn, bar ends in place. In this 
process the curvature changes, with an increase of the curvature radius, as can be seen 
in Fig. 1.

Fiy. I. Curvature radius variation due to shrinkage

Let both the original and the deformed bar shapes be shallow second-order 
parabolae. Assume the length change due to shrinkage to be fully equalized by 
curvature change, neglecting the bar elongation or compression due to shrinkage 
constraint (a neglect on the safety side).

With symbols in Fig. 1, the original bar arc length is fairly approximated by:

( 1 )

and the reduced arc length of the bar, due to specific shrinkage

S =

Expressing quotient f / f 0 after simplification and arrangement:

( 2)

Substituting the usual specific concrete shrinkage coefficient esh = 0.0003 into (3), 
it yields for some f 0/L ratios in the range of validity of the theory of shallow shells:

fo /L 0.05 0.10 0.15 0.20 0.25

f / f o 0.977 0.994 0.997 0.998 0.999

R/Ro 1.024 1.006 1.003 1.002 1.001

The Table shows the maximum increase of curvature radius, 2.4%, to result for 
ratio/ 0/L  = 0.05, the lower limit of shallow shells with fixed edges, reducing the critical 
shell load by about 4.6%.

Acta Technica Academiae Scientiarum Hungaricae 97, 1984



EFFECT OF C ONCRETE SHRINKAGE 7

This reduction being rather slight, it is considered to be negligible. For very 
shallow shells it is advisable to calculate curvature radii with regard to shrinkage 
effects, and to calculate the critical loads with increased curvature radii.

3. Increase of initial imperfections

Deflection of the originally straight r.c. bar in bending is increased by shrinkage. 
To our knowledge there being no research result on shell structures available, as to 
indicate the imperfection increment due to shrinkage, its assessment will start from the 
deflection increment of the straight bar.

Approximate deflection increment of the cracked r.c. bar in bending due to 
shrinkage [2]:

wsh ~ ^  . ŝh /2
T ö ' T (4)

where h is the shell thickness.
Concerning length /, let imperfection wavelength equal the wavelength of the 

linear critical load. As an unfavourable case, let us consider a spherical shell with two- 
way identical wavelengths lx = ly = l. In this case [1]:

/ = 2.38 y/hR  . (5)

According to [2], К is obtained from

K = 1 , 3 ^ 4 1 - y / r t ) .  (6)

where (pc is a creep factor, and ц' the compressed reinforcement to concrete cross 
section ratio. The worst value //  = 0 occurs in plain concrete shells and in shells with a 
single mesh of reinforcement in the middle of the cross section. In the case ц' = 0, for 
(pc = 2, К = 0.87, and for <pc = 3, К = 1.08. Practically, (pc< 3, hence K =  1 is a good 
approximation.

Substituting the mean concrete shrinkage esh =  0.0003 into (4):

1 0.0003 • 2.382 • hR R R 
Wsh “  TÖ h ~  5884 *  6000

Shells, however, differ from straight bars. For instance, shrinkage deformation 
produces membrane forces, moderating, in turn, shrinkage curvature.

Derivation of the critical load for linear elastic shells is known to show the linear 
critical load to result where the load is evenly shared between bending stiffnesses and 
membrane rigidities [1]. In other words, in the case of deflection corresponding to the 
buckling curve the shell undergoes half the bending deformation of that in the bar. 
Applying this analogy on shrinkage deformation, the w,h value may be multiplied by
0.5.

Acta Technica Academiae Scientiarum Hungaricae 97, 1984
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Besides as a rule, the shell cross section is subject to eccentric compression rather 
than to pure bending. Shrinkage curvature of the r.c. cross section under eccentric 
compression is, however, less than that of the flexural one, since it has to pass into an 
axially compressed cross section without a shrinkage curvature. Besides, in a part of the 
imperfection wavelengths, both cross section edges are compressed, with no shrinkage 
curvature.

I n conformity with previous research results [3], cross-sectional rigidities of shell 
plates under eccentric compression approximate those in bending for e0/h > 0.5. 
Accordingly the full shrinkage curvature may be assumed to arise for e0/h = 0.50. 
Reckoning with this value, transition from the state of no shrinkage curvature and axial 
compression without eccentricity in range e jh  <0.5 is approximated by

£*h £<Л iO\
' • ■ Г г ! ' - “ ' » ) '  ,81

where x >s the shrinkage curvature (Fig. 2.).

Fig. 2. Variation of shrinkage curvature with eccentricity

Neglecting longitudinal variation of shrinkage curvature, on the safety side, and 
applying values of the cross section with a maximum ordinate, shrinkage imperfection 
w0 sh becomes, also taking shell effect factor 0.5 into consideration:

(9)

Obtained R/w0 sh values rounded out have been compiled as:

•'O.sh ' : 0.5
R 1

6000 2
- l l — cos n

e0/h = 0 0.1 0.2 0.3 0.4 0.5

K/wo.,h 00 490000 125000 58 200 34 700 24000

Initial imperfection w0 is about Л/3000 [3]. Hence, for the usual eo/h<0.3 values, 
shrinkage imperfection increment is at most one twentieth of the accidental imper-

Acta Technica Academiae Scientiarum Hungaricae 97, 1984
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fcction. Since also the random imperfection values has been assumed by assessment, 
shrinkage imperfection increment is deemed to be negligible in practical cases.
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RELATION BETWEEN THE INITIAL IMPERFECTION 
AND THE ECCENTRICITY OF NORMAL FORCES 

OF SHELL STRUCTURES

E. D u l a c s k a *

[Received: 27 September 1983]

For the dimensioning of the cross section and stability analysis of shell structures the 
knowledge of the eccentricity of the normal forces of the shell is necessary. Eccentricity may also be 
caused by a random imperfection but its value and the value of the amplitude of imperfection are not 
the same. The purpose of this paper is to evaluate the eccentricity mentioned above. The evaluation is 
presented for cases of shell structures of different types of surfaces, supports and loadings, and 
eventually also suggests an approximate assumption of the eccentricity.

I. Introduction

It is known that the critical load of shell structures decreases by the increase of 
the random imperfection amplitude [1].

It is also known that the values of the stiffness and load carrying capacity of the 
cross section made of non-elastic materials or reinforced concrete structures decrease 
by the increase of the eccentricity of cross sectional forces [2], [3].

The decrease of the values of the characteristics mentioned above is connected 
with the preliminary effect whereby an accentuated reduction of the critical loading 
takes place. That is why the value of the eccentricity of the cross sectional force is to be 
known for the dimensioning of the shell structure. The eccentricity originated from the 
calculated loading is obtained by the analysis carried out by making use of the theory of 
bending. However, no procedure of analysis exists for the evaluation of the eccentricity 
associated with an imperfection of random character. This paper is intended to analyse 
this problem.

2. Basic relations

In connection with the following calculations it is assumed that the theory of 
bending of shallow shells might be applied to the shell structure analysed. The problem 
is to find the initial eccentricity, so it can be assumed that the deformations are of low 
value, and the shell structure may be considered elastic. The loading applied to the shell

* E. Dulácska, H-1022 Budapest, Kitaibel P. u. 12, Hungary

Acta Technica Academiae Scientiarum Hungaricae 97, 1984 
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12 DULÂCSKA. E.

Coordinates

structure, the forces on the cross section and its deformations are considered positive in 
the case represented in Fig. 1. In the calculation the derivation with respect to x and y is 
designated with a prime and overpoint respectively.

The equations of equilibrium of the shells are as follows:

п'х + Пух = 0 ,  (la)

ny + n'xy = q . (lb)

Making use of nxy = nyx,

z ny + 2z' nxy + z"nx + qx + qy + p = 0 , (lc)

m'x + myx + qx = 0 , (Id)

my + m'xy + qy =  0 , (le)

z"mxy — z'mx + zl my — z m yx = 0. (If)

A d a  Technica Academiae Scientiarum Hungaricae 97, 19H4



INITIAL IMPERFECTION AND ECCENTRICITY 13

Neglecting the cross contraction, the equations of deformation of the shell assume the 
form:

nx = D(ul + w'z'), (2a)

ny= D(v +w z ) , (2b)

D
— (u +v + w z +  w z ) , (2c)

mx= — Bw" , (2d)

my = — Bw , (2e)

mxy— — Bw' . (20

In the above equations, besides the notation used in Fig. 1, В means the bending 
or torsional stiffness, while D designates the strain or compression stiffness.

Let us introduce the stress function F. The relationship between F and the 
normal forces is expressed as follows:

nx = F , (3a)

ny= F ", (3b)

nxy= - F '  . (3c)

Taking Eqs (3) into account, it can be seen that Eqs (la) and (lb) are satisfied. By 
replacing (Id) and (le) into Eq. (lc) and by taking into consideration Eqs (3), we arrive 
at

z F" — 2z' F1 + z"F ' + mx + 2m'xy + mÿ + p = 0. (4)

As is customary, in applying the theory of shallow shells neglects Eq. (If) and 
makes use of the approximation mxy = myx.

Substituting Eqs (2d), (2e) and (20 into Eq. (4) we obtain

-B (w ty + 2 w "+ w ::) + z F " - 2 z l F, + z " F + p = 0 .  (5)

Hereafter let us differentiate twice Eq. (2a) with respect to y and Eq. (2b) with 
respect to x  and extract from the sum of them the double value of Eq. (2c) differentiated 
only once with respect to both x and y. Carrying out the above operations we arrive at 
the compatibility equation of the shell:

FIV + 2F" + F ::= -D (w  z,l- 2 w l zl +w"z-) (6)

In Eqs (4) and (6) z designates the deformed surface, i.e.,

z ~  Zq -f- w0 -t- w . (7)

we assume that expressions

z" > w" > w" (8a)

A da Technua Academiae Scientlarum Hunguricae 97, I9H4



14 DULÁCSKA. E.

and

and

hold.

zö>*vö> w

F = F0 + Ф

(8b)

(9)

Here z0 is the designed perfect surface, w0 the amplitude of the imperfection, w 
the vertical deformation component to the surface, F0 the stress function of the 
membrane state of the perfect shell, and Ф is the stress function associated with the 
deformation w.

Introducing the relationships (7) and (9) into Eq. (5), we find the equilibrium 
equation of the shell

B(w,v + 2w"" + w::) + Fjjz0

+ Ф'\г0 +  w0 + w■') — 2FqZo

- 2Ф1 (Zq +  wj) + w1 ) + F 0Zo

+ Ф (zJJ +  w|J + w") ГТp =  0

+  Fg(wö + W) +

— 2Fo(wl0 + w1') —

+ f { ! K + w")+

( 10)

In the above equation the terms in rectangles are the equations of the membrane 
equilibrium. Provided a membrane solution exists in the case in question, these terms 
express automatically equilibrium, therefore they can be omitted, and the residual 
terms also should express equilibrium.

Thus we arrive at the following equation:

-  ß( w'v +  2w" +  w::) + F[J(w0' + w") +  Ф"(г0 + w0 + w") -

-  2Fq(wq +  w1) -  2Ф'(го + w'0 + w1) + F0(w'o + w") +

+ Ф (zU +  wU +  w") =  0. (11)

In consequence of the assumption expressed by inequality (8) the second derivatives of 
w may be neglected besides the second derivatives w", likewise the second derivatives 
w0 and w besides the second derivatives of z0.

Carrying out the neglects in Eq. (11) and concentrating the analyses on the case 
Zq = 0 and Fo = 0, we obtain

-  ß(w1 v + 2w" + w::) + F[J w0 + Ф %  + F0 w’ó + Ф z" = 0 . (12)

In the following let us have z" =  a; z0 =  ß; F0 = nx0 and F" =  ny0. Using this notation, Eq. 
(12) takes the form

-  ß(wlv + 2w" + w: ) + аФ + ßФ" + nxо w" + ny0w0 = 0. (13) 

The analysis will be continued by making use of Eq. (13).

Acta Tcchmca Acudemiae Seien liar urn Hungarieae 97, 1984



INITIAL IMPERFECTION AND ECCENTRICITY 15

3. Relationship between the imperfection of the shell surface 
and the eccentricity of the force acting on the cross section 

of that surface

For evaluating the eccentricity e of a cross-sectional force associated with a given 
imperfection w0, a deformation w should be applied to the shell, and the eccentricity is 
obtained as the ratio of the bending moment incited by the deformation and the sum of 
the membrane force augmented by the primary cross-sectional force. The analyses are 
concentrated on shells wherewith Zq = 0, while z" and z0 are constant. Besides, it is 
assumed that the shape and extent of the imperfection is conform with the waves of 
buckling, because, in general, the critical load is in this case the lowest. Under such 
circumstances the solution may be found in the form of sine function product while the 
variable part of the function disappears from the equations.

As with what was said above, the compatibility equation can be written in the 
following form:

<P0a4 + 2<P0a2b2 + Ф064 = D(b2 a + a2ß) W. (14)
Herein

a2 = n2/ll, h2 = n2/l2, a = \/R x, ß = \/R t ,
W„ and tV = amplitude of imperfection and buckling deformation, respectively,
D =  strain or compressive stiffness,
<P„ = constant of the stress function
and
lx and ly = wave-length of buckling in directions x and y, respectively 
Rx and Rr = radius of curvature projected to planes x, z and y, z, respectively.

From equation (14)
„ab2 + ßa 

(a2 + b2)2
(15)

can be expressed.
Dropping the sine members and making use of Eq. (15), the equilibrium Eq. (13) 

of the shell takes the form

-B W (a*  + 2a2b2 + b*)+DW
ctb2 + ßa2 
(a2 + b2)2

(<xb2 + ßa2) =

In the above equation

(16)

H = bending stiffness,
nl0. nyо = membrane forces in directions x and у respectively (prior to deformation).

The value of amplitude of IFcan be expressed from Eq. (16):

W= W0
5a2 + ny0h2

Bia. + b y + D ( ^ ± f J -
(17)

Ada Technica Acadcmiui' Scientiarum Hungaricue V7. I9H4



16 DULÁCSKA, E

The values of ex and ey i.e. the eccentricities defined on planes x, z and y, z, 
respectively are as follows:

eX
Bw"

nxo + F '
Bw

n°y +F" ' (18), (19)

And for the sine deformation we have

w"=Wa2, 

w = Wb2 , 

F =Ф0Ь2, 

Е" = Ф0а2.

Let us introduce the notations:
, 2  / 2a ‘

P = b2 =  t '

M = 4 + p,

= 2 *  k =
«xO

N = k + p.

R,
ß V

p = l + p .

( 20)

( 21)

( 22)

(23)

(24)

Using the above abbreviations in Eq. (15) yields:

Ф0Ь2
DW N 
R ^  P2 '

(25)

and in Eq. (17):
M

W=W0nx0b2-------------(26)

B b4p2+ R f ^
Substituting the values of (25) and (26) into the relationships (18) and (19) and using 
expressions (20) to (23) we obtain

er —

, ,  , M

Bp И/°"х0^ Bb*P2 + DN2/R 2P2
DW0nx0b2

R .

NM
Bb*P* + DN2/R

(27)

The value of ey may similarly be calculated. Let us introduce R — Ry , B = Eh3/\2  and D 
=  Eh, wherein E is the modulus of elasticity and h is the thickness of the shell. By using 
also the designation y = b2Rh, we obtain the following simpler forms:

pM
ex P2 + \ 2N 2/y2P2

~ T ”  W« (  N M  \  ' 
h \P *y/\2  + N 2/y)

(2 8 )

Acta Technic a A cademiue Scient iarum Hungaricae 97, 1984



INITIAL IMPERFECTION AND ECCENTRICITY 17

M
ey 1 P 2 +  \ 2 N 2/y 2P 2 

W Ô ~ Î ' . PW0 (  NM  У  
r,h \P 4y/12 +  N2/yJ

Knowing both of these expressions, the relative eccentricity c = e/W  can be 
evaluated for each type of shells.

4. Examples to initial eccentricity

In the following, the relative eccentricity will be evaluated for several types of 
shells as well as for different loadings and shapes of buckling. In the case of a square
shaped buckling form, the mean value of the bidirectional eccentricity, in the case of a 
buckling of oblong shape, the eccentricity coinciding with the shorter wave-length of 
the buckling may be considered critical. The results are presented in tables, without the 
detailed calculations. We have to take the values in the thick rectangles to the analysis 
into account.

hit). 2. Waviness of imperfections for the evaluation of eccentricity caused by the imperfection

2 Ada Tcclwica Acadvmiuc Scicnliarum Hungaricae 97. IM4
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4.1. Axially compressed cylinder, ring buckling (Fig. 2a)

/>-*•00 , g = k = 0,
1.69 V

a2 = (n/l)2 = n2/ 1,692 Rh .

WJh eJW a

0 0.5 0
0.1 0.5 0
0.25 0.5 0
0.50 0.5 0

4.2. Axially compressed cylinder

IJly = 1, buckling of reticulated pattern (Fig. 2b)

/>= 1, к = 0 ,

>/-*oo ,

У = 2
= 0.87.

WJh eJW0 e J W 0
2 ^ 0

0 0.125 00 00

0.1 0.124 2.900 1.512
0.25 0.113 1.155 0.634
0.50 0.103 0.577 0.340

4.3. Cylinder subjected to radial pressure (Fig. 2c)

L/R = 6, number of waves of waves along the ring direction 

n = 4 , R/h = 200, p =  0.017 , >/=10000,

k = 0 , «  =  1, ly = 0.785, =0.080.
" V

WJh eJW 0 ey/W0

0 00 0.642
0.1 0.685 0.642
0.25 0.028 0.637
0.50 0.014 0.633

/4c/û Technica Academiae Scientiarum Hungaricae 97, 1984
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4.4. Sphere subjected to radial pressure (Fig. 2d)

P = 11 h =  1 » к =  1 , y = УЗ 

n jn y =1.0.

WJh eJW0 e , /K
ex + ey
2W0

0 0.25 0.25 0.25
0.1 0.23 0.23 0.23
0.25 0.21 0.21 0.21
0.50 0.174 0.174 0.174

4.5a. Sphere with поп-symmetrical stress pattern ( Fig. 2e) 
(for example, dome shells)

ly/lx =  2 , njny =  2,

p = 4 , 7 = 0.5, /с = 1.00, у = 2.77.

WJh eJW a ey/W0

0 0.678 0.339
0.1 0.668 0.303
0.25 0.654 0.262
0.50 0.631 0.213

4.5b. Sphere with the same buckling pattern like in the case above
( Fig. 2e)

but nx/ny= 1 0 , 7 = 0.1.

WJh eJW 0 ey!Wa

0 0.617 1.543
0.1 0.609 1.006
0.25 0.597 0.660
0.50 0.579 0.420

2* Лс/а Technica Academiae Scientiarum Hungaricae 97, 1984
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4.5c. Sphere with the same buckling pattern as under the above points
( Fig. 2e)

but n jn y= 1.0 /7= 1.0 .

w jh eJW0 e,/W 0

0 0.753 0.188
0.1 0.741 0.177
0.25 0.723 0.162
0.50 0.696 0.142

4.6. Hypar shell over a rectangular ground plan supported along 
its generatrices (Fig. 2 f)
(data of an actual shell)

// =  66, // = ! ,  k= — 1, 7 =  0.053

W jh eJW0 eJW n

0 0.504 0
0.01 0.503 0
0.10 0.501 0
0.25 0.498 0

4.7a. Flyperboloid shell of revolution (Fig. 2g) 
subjected to axial pressure with a ring buckling

p—► 00 , /7 =  0.2 , к = —0.2, y = n2/l.692p

W jh eJW0 ey/W 0

0 0.50 0.002
0.1 0.50 0.001
0.25 0.50 0.001
0.50 0.50 0
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4.7b. The same hyperboloid of revolution ( Fig. 2y) as above, 
however with a buckling of reticulated pattern (Tip. 2h)

l j l y = 1 , />=1, g = 0.2, k = - 0.2, y*0.87.

WJh eJW„ eyIWn
e, + ey
2Щ,

0 0.184 0.918 0.551
0.1 0.175 0.732 0.454
0.25 0.163 0.562 0.363
0.50 0.146 0.405 0.276

4.7c. The same hyperboloid of revolution as above, however, 
subjected to radial pressure (Fig. 2k)

p =  0.052, r] = 10000, * = - -0 .2 , y = 0.350

WJh eJK eJWu

0 170 0.328
0.01 — 1.14 0.329
0.10 -0.113 0.331
0.25 -0.045 0.335
0.50 -0.023 0.342

4.H. Hyperboloid o f revolution subjected to axial pressure
( data of an actual shell)

35.0 m , h = 0.19 m, number of waves along x-axis: n = l .

ly =  13.7 m , / =  60 m , p = 0.052, rj = 0.2,

35 0.19 • я 2
fc = -0 .2 .

13.72
= 0.350

W0lh eJW0 e,!W„

0 0.004 0.413
0.1 0.004 0.418
0.25 0.005 0.424
0.50 0.005 0.435
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22 DULÁCSKA. к.

4.9. Approximate upper bounds

On the basis of what was said above, within the limiting values 0.167 < Иу/г 
<0.5, the following values of relative eccentricity c = e0/W0 might be suggested for 
good approximate upper bounds:

Type of shell Suggested value 
of c

Cylinder 1.00
Sphere 0.25
Dome-shell 0.67
Saddle-shaped shell 0.50
Hyperboloid of revolution 0.50

With safety to all types of shell 1.00
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ON THE TORSION OF THIN-WALLED BARS 
WITH AN ANNULUS CROSS-SECTION 

OF VARIABLE SIZE

I. EcsKiJi*

[Received: 29 March 1983]

The paper deals with the torsion of thin-walled elastic bars with an annulus cross-section of 
variable size. The intensity of the continuous load acting on the surface of the bar elastically 
supported along its entire length is proportional to the displacement of the points of the surface. The 
boundary value problem of torsion and also inequalities for the torsional rigidity of the bar are 
presented. The demonstration of these inequalities is based on Schwarz's inequality. Numerical 
examples show the practical application of the inequalities.

Symbols

r, </>, z 
er. e„, e. 
u = i'(r, z)e„
,9
/
i/' = t/'(r,z)
T

,':T= i)T, U PT2 U cT, U i)TA
Pi = Piev P4 — P4 e<p
G
к
R3 = R,(z) (Ogz/)
R4 = R4(z) (Ogzgf)
S/cn

h = R t ( z ) - R  3(z)

R = R(z) (O gzg/) 
t = /rer + t2e.
s
”гф. r , Т,ф, ТИ(р
M
m = m(z)
/= /(z )  (OgzSO 
S
b = b(z) = [h,(z), ft2(2)]

polar co-ordinates,
unit vectors in the polar co-ordinate system, 
displacement vector,
the angle of rotation of the cross-section defined by z = I. 
the length of the bar, 
auxiliary function,
the planar domain xy  defined by the meridian section of the bar 
(Fig. 2),
the boundary of domain T(Fig. 2), 
surface load,
shearing rigidity of the bar, 
constant characterizing the elastic support, 
the equation of curve (77], 
the equation of curve (37],
the sign of derivation in the direction of the external normal to 
curve PT,
the thickness of the bar measured in the direction of the radius of
the cross-section,
the equation of curve у (Fig. 3),
the unit vector of the tangent to curve у (Fig. 3),
arc co-ordinate measured along curve у (Fig. 3),
shearing stresses,
torque acting on the cross-section defined by z = /,
torque acting on the cross-section defined by z,
auxiliary function,
torsional rigidity,
two dimensional vector.

* I. Ecsedi, H-3524 Miskolc, Hungary, Klapka Gy. u. 36, IX/2
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24 K'SliDI. I

с =  c(r) =  [с , (z), r 2(-)] two dimensional vector,
q = q(z) =  [</,(;),í/2(-)] two dimensional vector,
</ = </(z), b = b(z), F = F(z) (O gzg /) auxiliary functions

and

■4(z)=RJ(z)/il+[«'(-i]2i.
ö(z)=K-,(z)4/r+ [R '(  z)]2.

Further symbols and variables are defined in the text.

1. Introduction, basic relations

Figure I shows a bar with an annulus cross-section of variable size. The volume 
of the bar and its cross-section defined by z = 0 are unloaded. The displacement vector 
of the points of the cross-section defined by z = l is prescribed as

и2 = Уге„, z = 1. (1.1)

The bar is subjected to distributed loads of intensity

Рз —Рз(г> z)ev; p4 = p4(r,z)e„

both in its internal and external surfaces. The loads acting on the internal and external 
surfaces and on the cross-section defined by z = l are in equilibrium.

The usual assumptions of elasticity are applied, i.e.:
—  deformations and displacements are small,
— no initial stresses and deformation exist,

Fig. 1. Bar with an annulus cross-section of variable size
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TORSION OF THIN-WALLED BARS 25

— the effect of heat is negligible,
— the material of the bar is homogeneous, isotropic and linearly elastic,
— the problem is a quasistatic one, etc.
The general solution to the problem of torsion of bars with an annulus cross- 

section of variable size was presented by I. H. Michell [1], A. Föppl [2], Fr. Willers [3] 
and A. Timpe [4]. According to their results, the scalar co-ordinates of the stress tensor, 
not identically equal to zero, can be presented as

дф дф
Xrv=Gr Tz*=G  (1'2)’ (L3)

and the displacement vector field u can be obtained from

u =  u(r, (p, z) = v(r, z)e„ =  гф(г, z)e„ . (1.4)

The function of two variables ф = ф(г,г) in the above formulas satisfies the partial 
differential equation

д2ф 3 дф д2ф 
dr2 + r dr ^ dz2

(r, z) e T. (1.5)

/■if/- -■ Meridian section of a bar with an annulus cross-section of variable size

The load of the bar and the kinematic restriction related to the cross-section defined by 
z = / are given by the following boundary conditions (Fig. 2):

r  # (r, z )e d T 3 , (1.6)

r  дф(jr—  = p 4, 
(In (r, z) e T4 , (1.7)
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ci)
 1 C

l)

II о (r, z) e T ,, (1.8)

ip = 9 (r, z )e T 2 . (1.9)

In the case of a bar subjected to continuous elastic supports, the load on the external 
surface of the bar is proportional to the displacement of the points of the surface, i.e. we 
have

p3— —k v = —krip, (r,z)edT3, (1.10)

p4 =  — kv = — krip, (г ,г)ед Т л . (1.11)

2. Approximate solution for thin-walled bars

Figure 3 shows the meridional section of a thin-walled bar. We shall only deal 
with the case where the wall thickness is constant:

h= R^(z) — R3(z) = constant, (O ^z^ /). (2.1)

Let us consider curve у defined by the equation

R =  R(z) = 0.5(R3(z)+ R Jz)). (2.2)

Denoting the unit vector of the tangent to у by t and the arc co-ordinate measured 
along у by s, we have

t
d R

trer + tze2= —  e ,+ (2.3)

The shearing stress tsip parallel to the tangent to curve у is obtained from the following 
formula [5]:

zstp fr T  t2<p î z G R
dip d R dip dz\ ^  dip
dr ds dz ds ) ds

(2.4)

Domain T and its boundary

dT=dTi UdT2 UdT3 UdT4

are represented in Fig. 2.
We assume that formulas

u(r, (p, г) = К|/ф)е„,

^stp  ^S ip 1 l') .

L,* =  0

(2.5)

(2.6) 

(2.7)
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TORSION OF THIN-WALLED BARS 27

hifi. 4. Bar element for the derivation of the equilibrium equations

hold (Fig. 3) and, for the derivation of the equilibrium equations, we shall apply the 
following approximation:

K3 = K -0 .0 5 /tsK , (2.8)

R4 = «+ 0 .5 /i £ R . (2.9)

A da Tcchnicu Acadcmiae Scientiarurn Hun^uricuc 97,
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The equilibrium condition of the bar element limited by z and z + dz (Fig. 4) is expressed 
by

^ 7  + 2л(р3 + р4)К2^  = 0 , (2.10)

where we have
Pi = P* = —kRip, (2.11)

cos a = —= L _ , (2.12)
y i+ (K '(z ))2

^ = V T  + (K'(z))2 , (2.13)

and

' - = C T S ' “ d7di = G
R(z) dt/i

y i + i ^ z ))2 dz
(2.14)

m(z) = 2nR2h t s<p cos a

is the torque acting on the cross-section defined by z. 
We should point out that the relation

t-.v =  cos a = G
K(z) di/>

Ï T ( « W d b

also holds.
Combining Eqs (2.10). . .(2.15), we arrive at

/  R3 di/Л
VT+IR7)2 d^J

- 2 k R 3s/ \  + (R')2ip=0, 0 < z < l .

(2.15)

(2.16)

(2.17)

The cross-section defined by z = 0 is unloaded, i.e.

R dip
t:„(0) = G

1 +(R')2 dz
= 0 , (2.18)

so that condition

= 0 (2.19)
2-0

must hold.
Since the displacement of the points of the cross-section z = / is prescribed, i.e. v2 

= !)R, the boundary condition for z = l emerges as

<А(/) = У. (2.20)

dip
dz
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TORSION OF THIN-WALLED BARS 29

Let function /b e  taken as

(2.21)

Making use of Eqs (2.17), (2.19) and (2.20), the torsional problem of an elastic bar with a 
thin-walled annulus section of variable size, subjected to an elastic support along its 
entire length, is characterized by the following boundary value problem:

Gh^ ( A T^ \  - 2fcB/=0,dz V dz

y
dz

=  0

In Eq. (2.22) the notation

A(z) =

/ =  1,

(K(z))3

0 < z < / ,

z = 0 , 

z = / .

( 2.22)

(2.23)

(2.24)

(2.25)

(2.26)

l+(K'(z))2 ’

B(z) =  (R (z))V l+ (R '(z))2 

was introduced. Functions A(z) and B(z) fulfil the conditions 

/l(z)>0, ß(z)>0. (0<z<[).

Knowing function /  = /(z), the shearing stresses xsv = zsv(z) and x.v = x,v(z) can be 
determined from

X JLz) = G9
R d f

V 1 + {R')2 dz ’ 

R d f
^ г)- с \dz-

The cross-section defined by z — l is subjected to the torque

(2.27)

(2.28)

x,M) = 9<:M = 2nGhR2x:0(l) = Ц  2nGh

= !)2nGhA(l)

R'  d f  
Г+ R'2 dz

df_
dz

(2.29)

Defining the torsional rigidity of the thin-walled elastic bar with an annulus cross- 
section of variable size subjected to an elastic support as

(2.30)
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formulas (2.29) and (2.30) result in

S = 2nGhA(l) df_
dz

(2.31)

for the torsional rigidity S.
In the following, two more formulas will be derived for the calculation of the 

torsional rigidity. Integrating Eq. (2.22), we obtain

Gh

l

I d ^ A ^ \ z - 2 k \  В f d z  =
dz V dz

= GhA(l) d f
dz

- GhA(0)
dz z  — l

2k j  B f  dz .

M aking use of Eqs. (2.23), (2.32) and formula (2.31), we arrive at

S = 4nk

Integrating the equation

G h f d f
dz V " dz

j B f d z .

2kB/ 2 =  0

by parts, we find

Gh Í / “  ( A ) dz — 2k f B f 2dz =  Gh
6 dz V dz / 6 z  = l

- Gh dz — 2k j  B / 2dz = 0 . 
о

The combination of Eqs (2.23), (2.24), (2.35) and formula (2.31) yields

(2.32)

(2.33)

(2.34)

(2.35)

S = 2n^Gh f A ^ ^  ^ dz + 2k } B / 2dzJ . (2.36)

Formula (2.36) and Eqs (2.22), (2.23), (2.24) show that torsional rigidity S is always a 
positive quantity, i.e. S > 0.

The exact value of the torsional rigidity S defined by Eq. (2.30) could be obtained 
by solving the ordinary second order differential equation of variable coefficients (2.22) 
taking into consideration the boundary conditions (2.23), (2.24). In several cases, 
however, this problem has no solution closed form. This fact shows the importance of 
the inequalities with which lower and upper bounds can be given for the calculation of 
the torsional rigidity, without' knowing the solution function of the boundary value 
problem defined by Eqs (2.22), (2.23), (2.24).
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Inequality

3. Bounds for the torsional rigidity

3.1 Theorem

, Ghl A { î )  “z + l k l l>,l‘d2
ь ~ 2ж--------------- ш Г

(3.1)

holds for any function of one variable g =  g(z) which is continuous in the closed interval 
0 ̂  z ̂  / and is continuously differentiable in sections in the open interval 0 <  z <  / and 
which fulfils the condition

0(0 * 0 .

Demonstration

Introducing the auxiliary quantities

L d f  da '
a(J\g)=Gh\ A —  ~ d z  + 2k\_ B f g d z ,  

a(JJ )  =  Gh J А ( У -  Y dz + 2k j  B f 2 d z ,

a(g, g) = Gh j A ^ ^  ^ dz + 2k j  Bg2 dz

and making use of Schwarz’s inequality, we obtain

\a(f ,g)\2<a(f,f)a(g, g). 

Quantity a(f, g) can also be written in another form:

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

I H / r\/j l
a(f, g) = Gh f A —— dz + 2k f B f  gáz = Gh 

о dz dz 6
d /
dz

Gh Лд
d f
dz _ 2 = 0

= Ghg(l)A(l) Ш ., (3.7)

In deriving formula (3.7), we carried out integration in parts and used Eqs (2.22), 
(2.23), (2.24) related to function /  =  f(z). By making use offormulas (2.31) and (3.7), we 
find

o(/, ff)= 2^ 0(0 - (3.8)
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It goes without saying that

<*(/,/)= |~ -  (3.9)2 n

The combination of formulas (3.4), (3.8), (3.9) and inequality (3.6) directly yields 
inequality (3.1) which had to be proved.

3.2 Theorem

The inequality

S>2nGh 1 Ik 1
i  Aq\ dz + —  j  Bq\ dz 
о Ол о

(3.10)

holds, where the function of one variable ql =q,(z) is continuously differentiable, at 
least once, in the closed interval O ^ z ^ / and the function of one variable q2 = q2(z) is 
continuous in the open interval 0 < z< /. Neither function is identically equal to zero 
and both functions fulfil the following conditions:

Gh — (Aq,)~ 2kBq2 = 0 0 < z < / ,  (3.11)
dz

<?,(0) = 0 . (3.12)

Demonstration

Let us consider the Euclidean space characterized by the two dimensional 
vectors

b =  b(z) =  [61(z),h2(z)], (0 < z < /) ,

c =  c(z) =  [c,(z),c2(z)] . (0 < z <  /) .

Vector sum and multiplication by a scalar are defined in the usual way, by using the 
corresponding coordinates, i.e. the equation

ЯЬ +  //с = [лЬ1 +/rCj, l b 2 +  /rc2] (3.13)

holds for the arbitrary scalars Я and ц. The scalar product of vectors b = b(z) and c =  c(z) 
is defined according to the following formula:

dz + 2/c j Bb2c2 dz . (3.14)

On the basis of the above definitions, it can easily be seen that the relations

{b, c} = {c, b},

{ЯЬ,с} = {Ь,Яс} = Я{Ь,с},

{b, c} =  Gh J AbyCi
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{b + c,d} =  {b ,d}+ c ,d} , (3.17)

{b,c + d} = {b,c} + {b,d}, (3.18)

{b,b}2:0 (3.19)

hold in every case, while the formula

{b,b} = 0 (3.20)

holds only if the condition
J (/>î + bl ) dz =  0 (3.21)

is fulfilled.
Applying Schwarz’s inequality, we obtain

|'!b,c}|2^{b,b} {c,c}. (3.22)

In this relation let vectors b  and c assume the form

(3.23)

c =  q  =  [ < / i , (3.24)

where vector q fulfils the conditions

Gh^-(Aq l) — 2k.Bq2=0  0 < z< /, 
dz

(3.25)

q , (  0)= o . (3.26)

The scalar product (b ,  c} can be transformed as follows:

i d  f  1Jb, c} = Gh I A q, dz + 2k j  Вf q 2 dz  —

= G h ^ ~ ( A f q l) d z - G h ^ f ~ ( A q {)dz + 2 k ^ Bf q 2dz =

= Gh A(l)JV) 4ÁD- GhA(0)f(0) q , (0) -  J /  ̂  (Aq, ) dz -

- 2 k \ B q 2f d z  = GhA(l)ql([). (3.27)

In deriving Eq. (3.27), integrations by parts were carried out involving Eqs (2.2), (3.25) 
and (3.26). By making use of formulas (3.36), (3.14) and (3.23), we arrive at

(3.28)

Finally, the combination of formulas (3.27), (3.28) and inequality (3.22) yields inequality 
(3.10) which had to be proved.
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3.3. Theorem

The inequality

S>2nGh
[А([)Ь(Г)У

Г , Gh f  1 Гс1 1
\ A b  d Z + 2 k \  В

- г - М й )d z

(3.29)

holds, where b = h(z) is a function of one variable, not identically equal to zero, which 
fulfils the homogeneous boundary condition

h( 0) = 0 (3.30)

and which is continuous in the interval 0 % z ^ l  and continuously differentiable in the 
interval 0 <z<l.

Demonstration

Let the functions of one variable qi and q2 take the form

4\ =b(z), (3.31)

Gh 1 d
2 0 d z (^ ’

(3.32)

where function b — b(z), in addition to what was said in connection with the necessary 
conditions of derivation, fulfils the homogeneous boundary condition

b( 0) = 0. (3.33)

An elementary calculation shows that the vector

4 =
, Gh 1 d ,
h-2kBd~: iAb)

(334 )

fulfils the necessary conditions.
The combination of formulas (3.31), (3.32) and inequality (3.10) finally results in 

inequality (3.29) which had to be proved.

4. Remarks

4.1 A short discussion on inequality (3.1) shows that the sign of equality holds 
only if

g(z) = 2f(z), (4.1)

where /  is a real, arbitrary constant which is different from zero.
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4.2 A short discussion on inequality (3.10) shows that the sign of equality holds 
only if

(4.2)

Ч2 =  4Л (4.3)

where Я is a real, arbitrary constant not equal to zero.
4.3 Let us consider the solution functions F = F(z) and f=f(z)  of the system of 

differential equations

F — df
d z '

0 < z < l , (4.4)

5 Î E ^ - / . 0 < z < l . (4.5)

By eliminating F(z), a simple calculation shows that function/(z) satisfies the ordinary 
differential equation (2.22).

On the other hand, by eliminating functionf=f(z),  it can be proved that function 
F =F(z) is a solution to the ordinary second order differential equation:

G / i ^ ( ^ ( / l F ) ) - 2 / c F = ° ,  0 < z < /. (4.6)

The boundary conditions to function F =  F(z) are obtained by taking into account Eqs 
(2.23), (2.24), (4.4) and (4.5):

F(0) =  0 , (4.7)

Gh
d
dz (AF) = 2k B(l).

_ z — I
(4.8)

Substituting Eq (4.4) into Eq. (2.31), we find

S = 2nGh A(l) F(l). (4.9)

The same formula is obtained if we substitute Eq. (4.5) into formula (2.33). The 
combination of Eqs (4.3), (4.4) and formula (2.36) now yields

I i

A F j d z .  (4.10)
о 0

S — 2n G/i
Gh Г 1 /  d 

AF2 dz+  —— I — ( — 
2 к  J В  \ d z

With some supplement to the above formulas, a short discussion on inequality (3.29) 
shows that the sign of equality holds only if

b(z) = XF(z), (4.11)

where Я is a real, arbitrary, non-zero constant.
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5. Numerical examples

Example /.

Figure 5 shows a thin-walled bar with an annulus cross-section of variable size, 
limited by truncated conical surfaces.

The basic data are as follows:

R(0) =  40mm, K(/) =  80mm,
/~  100 mm, h = 10mm,
G =  105 N • mm 2, /c=106 N mm' 3

With
K(z) = 40 + 0.4z [mm ],
R'(z) = constant = 0.4,

the application of inequality (3.1) to the function

g(z)= l + 2 - 104 ^ V

yields the upper, bound to the torsional rigidity

S<2.82■ 1012 N ■ mm,

while inequality (3.29) applied to the function

gives

as the lower bound.

b(z) =
z
7

3

S>2.76• 1012 N mm

Fig. 5. Bar limited by truncated conical surfaces
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Example 2.

Figure 6 shows the meridian section of a bar with an annulus cross-section, 
limited by circular cylindrical surfaces. In the case we have R = R0 =constant and it can 
easily be seen that the relation

A(z) = B(z) = Rq = constant 

holds. Let us introduce the notation

With function y{z) assuming the form

0(z) = cosh [Iz

in inequality (3.4), we obtain

S<2n GhR^ß tanh ßl

for the upper bound to the torsional rigidity. On the other hand, with function

b(z) =  sinh ßz

in inequality (3.29), we find

S>2n GhR^ß tanh ßl

as the lower bound to the torsional rigidity.
The formulas for the lower and upper bounds result in

S = 2n GhRlß tanh ßl

as the exact formula for the calculation of the torsional rigidity of bars with an annulus 
cross-section.

Fig. 6. Bar limited by circular cylindrical surfaces
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6. Supplementary remarks

6.1 The exact solution to torsion characterized by Eqs. ( 1.2), ( 1.3), ( 1.4), ( 1.5), ( 1.6),
(1.7), (1.8), (1.9) based on Eqs. (1.10) and (1.11), i.e. abandoning the approximations 
given by Eqs. (2.1 ), (2.5), (2.6), (2.7), (2.8), (2.9), leads to a boundary value problem related 
to an elliptic, partial differential equation [6].

6.2 In this paper, the solution of the torsion of thin-walled bars is traced back to 
the integration of an ordinary, linear, second order differential equation of variable 
coefficients.

6.3 The analysis of a similar problem, where the approximate assumption that 
the bar has a thin-walled cross-section is not used, is presented in [6]. That paper deals 
with the case when the cross-section of the bar defined by z =  0 is a built-in one. In this 
paper, the displacement of the cross-section defined by z =  0 is not restricted, i.e. it is a 
free cross-section.
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LOWER AND UPPER BOUNDS 
TO THE STRAIN ENERGY OF BENT PLATES

I. Ecsedi*

[Received: 21 June 1983]

The exact value of the strain energy of elastic, bent plates with built-in edges can be given only 
if the solution to the governing partial differential equation of the problem is known. This paper 
derives inequalities which make it possible to present lower and upper bounds to the strain energy 
without relying on the exact solution to the problem. The demonstration of the inequalities is based 
on Schwarz’s inequality and Green’s formula.

Examples show the application possibilities of the inequalities for the lower and upper 
bounds to the strain energy.

Symbols

a. y , :
О
fc
V
h
W=W(.X, >')
p = p ( x ,  y) 
7
(IT

P/cn

U
r = s/x2 + y2

уip = arctan
X

and

rectangular co-ordinates, 
the flexural rigidity of the plate.
Young’s modulus of the material of the plate,
Poisson's ratio of the material of the plate, 
the thickness of the plate,
the perpendicular displacement of the points of the middle surface of the plate, 
surface load,
domain in plane x y  defined by the middle surface of the plate, 
the boundary of domain T,

Laplace differential operator

the sign of derivation carried out along the external normal to the boundary curve vT, 
arc co-ordinate measured along curve PT, 
the strain energy,

polar co-ordinates

Eurther symbols and variables are defined in the text.

* I. Ecsedi, H-3524 Miskolc, Klapka Gy. u. 36. IX/2, Hungary
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1. Introduction

Let function w = w(x, y) denote the displacements of the middle surface of the 
plate shown in Fig. 1. The middle surface of the thin, homogeneous, isotropic, linearly 
elastic plate is defined by plane xy  with equation z — 0. Knowing the displacements of 
the plate with its flexural rigidity assuming the form

Eh
12(1 —V2) ’

the strain energy is obtained from the following equation [ 1]:

I  '(dw)2 dT+

+ 2(1 — v)

r

d2w d2w 
dx2 dy2

( 1.2)

The function of two variables w = w{x, y) in Eq. ( 1.2) has to satisfy the partial differential 
equation

d d w = | ,  (x ,y )eT  (1.3)

and the boundary conditions expressing the restraints along the supports. For a plate 
with built-in edges along the boundary clTof domain T, these conditions are as follows:

w =  0, (x, y) e T, (1.4)

dw
~dn = 0, (x, y)edT. (1.5)
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The boundary value problem given by Eqs ( 1.3), ( 1.4), (1.5) constitutes a unique system 
for function w = w(x, y). According to formula (62) on p. 169 in [2], if function w 
=  vv(x, y) fulfils the homogeneous, kinematic boundary conditions (1.4), (1.5) along 
curve dT, the formula

d2w d2w 
dx2 dy2

dT=0 (16)

holds, i.e. the strain energy of the plate with a built-in boundary can be expressed with
w = w(x, y) as

(Aw)2 dT.

T

(1.7)

The aim of this paper is to derive inequalities making it possible to construct 
lower and upper bounds for the strain energy of plates with a built-in boundary.

The importance of such bounds is shown by the fact that for the exact value of the 
strain energy U, the solution to the boundary value problem (1.3), (1.4), (1.5) would be 
needed. A closed form solution or a solution relying on an infinite series, however, 
except for some special cases, cannot be produced.

Let us consider the functions of two variables a = a(x, y) and b — b(x, y) which are 
continuously differentiable, at least once, in the closed domain T+dT, and, at least 
twice, in the open domain T.

By applying Green’s formula to the above functions, we obtain

With the notation

(aAb — bAa) dT= d.v.

r <vr

a = A w, b = w

(1.8)

(1.9), (1.10)

and by combining Eqs (1.3), (1.4), (1.5), (1.9), (1.10) and formula (1.8), we arrive at

ЯpwdT— (Aw)2 dT.

Introducing (1.11) into (1.7) yields

U = 2
pw dT.

d l l )

(1.1 2 )
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2.1 Theorem

2. Upper bound

Let the function of two variables/ =f (x,  y) be continuously differentiable, at least 
twice, in the closed domain T + d T and satisfing the partial differential equation

The inequality

holds.

\Af\2 d T

( 2 . 1)

( 2. 2)

Demonstration

The demonstration is carried out on the basis of Schwarz’s inequality:

j (Aw)2 dT j (4/ ) 2 dT>
г  T

w A f d T
2

It can easily be seen that formula

Г 2 U
(Aw)2 dT= —

T
holds. With

a = w b = Af

in formula (1.8), we find

w A A fdT - A w A fdT w-^i (Af) d s - A f d w  A 
á / * d s -

(2.3)

(2.4) 

(2.5) (2.6)

(2.7)

Since function f= f ( x ,  y) satisfies the partial differential equation (2.1), using the 
conditions

л

w =  0, - j-  =0  ( x , y ) e d T
on

we have

AwAf  dT= wAAf dT= - '  A T  2 U  wpdT= (2.8)

Combining inequality (2.3) and formulas (2.4), (2.8) yields inequality (2.2) which had to 
be proved.
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2.2 Comments on the practical application

It is expedient to consider the solution to the partial differential equation (2.1) as 
the sum of two terms:

f= fo  + k ,  (2.9)

where function f 0 = J0(x, y) is an arbitrary particular solution to Eq. (2.1 ), i.e. equation

AAf0= ^ ,  (x , y ) e T  (2.10)

holds, and k = k(x,y) is a biharmonic function, i.e. equation

AAk = 0, ( x , y ) e T  (2.11)
holds.

Using the harmonic functions H0 = H0(x, y) and / / ,  =W,(x, y), the biharmonic 
function k = k(x,y) can be constructed in the following ways:

k = (xHl + H 0), k = y H l + H 0 ,

k = (x2+ y2)H1 + H0

When applying inequality (2.2), we do not find the harmonic function H0 =  H0(x, y) in 
the expressions of the lower and upper bounds for the strain energy, since, by virtue of

d(xH, + //„ ) = A(xHt),

A(yHl + H 0)=A(yHl),

Al(x2+ y 2)Hi + Hq] = A[_(x2+ y 2)H{-\ 

they drop out of the formulas.

3. Lower bound

3.1 Theorem

Let the function of two variables g = g(x,y), not identically equal to zero, be 
continuously differentiable, at least once, in the closed domain T+dT  and, at least 
twice, in the open domain T  and satisfying the homogeneous, kinematic boundary 
conditions

9 = 0, (x, y )edT , (3.1)

дд
£ = 0'

(x, y)edT . (3.2)
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The inequality

f i  РУ d r ]
ü >  — ------- 1—

2D J (Ag)2 d T
T

holds.

Demonstration

The demonstration is based on Schwarz’s inequality:

With

j (Aw)2 dT j (Ay)2 dT> 
г г

2

a = A w, b =  g

(3.3)

(3.4) 

(3.5) (3.6)

Green’s formula (1.8) assumes the form 

AwAgd T— gA Awd T= А д д  HAw —  ds - g — Aw d s . 
on

(3.7)

Taking the boundary conditions (3.1), (3.2) into consideration, Eq. (3.7) yields

^ A w A g d T = ^ p g d T .  (3.8)

T T

By the combination of Eqs (2.4), (3.8) and inequality (3.4), we directly obtain inequality
(3.3) which had to be proved.

3.2 Remark

It is obvious that inequality (3.3) cannot be interpreted if g = g(x, y) is a harmonic 
function, i.e.

Ag = 0, ( x , y ) e T .  (3.9)

F unction g = g(x, y) fulfils the homogeneous, kinematic boundary conditions (3.1 ), (3.2) 
and consequently, if it is even a harmonic function, it is identically equal to zero in the 
closed domain T+dT.

3.3 A comment for the practical application

Let the implicit equation of the boundary curve dT  be

F(x,y) = 0 . (3.10)
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It can be easily seen that function g = g(x,y) in the form

g(x,y)=(F(x,y))2, (3.11)

and
g(x, y) = cos [F(x, y)] -  1 (3.12)

fulfils all the conditions set as for g(x, y) and consequently inequality (3.3) is applicable.

4. General remarks

4.1 Inequalities (2.2) and (3.3) derived for the upper and lower bounds to the 
strain energy are valid for both simply and multiply connected domains. In the case of a 
multiply connected domain T, the homogeneous, kinematic boundary conditions 
(1.14), (1.5) are also prescribed for the “internal” boundary curves 3T,, dT2 . .. (Fig. 2).

4.2 A short discussion shows that the sign of equality in inequality (2.2) holds 
only if

J= w + H , (4.1)

where H = H(x,y) is an arbitrary harmonic function.
4.2 A discussion on inequality (3.3) shows that the sign of equality holds only if

g = cw (4.2)

where c is a real, arbitrary but non-zero constant.
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5. Applications

5. ! By introducing Eq. (3.12) into inequality (3.3), we obtain the following lower 
bound to the strain energy:

U>
8D j  (F2(AF)2 + \VF\* + 2FAF\VF\2)dT

T

(5.1)

5.2 Let the surface load assume the value

p(x , y) = Po = constant. 

It can easily be proved that the function

f ( x ,  y) =
Po(x2 + y2)2

~ 64 D

(5.2)

(5.3)

satisfies the partial differential equation (2.1). By introducing this function into 
inequality (2.2), we obtain the following upper bound to the strain energy:

U< Po 
32 D

(x2 + y2)dT. (5.4)

5 J  Let the equation of the boundary curve <1Tof the simply connected domain T 
in the polar coordinate system rep take the form

r = R(<p), 0<ep<2n. (5.5)

It should be pointed out that the origin 0  of the polar co-ordinate system rep lies inside 
domain Fand that any straight line with an origin О only intersects the boundary curve 
d T at one point, i.e. R(ep) is a unique function of variable ep.

Let us have
p =  p0 = constant

again. Let us apply inequality (2.2) to the function

where

With the notation

РоЛ Ч  i r V  T  
64D [  l / t j  ’

(5.6)

A = max R(ep). (5.7)

. R(4>)oe = tx(ep)= —— 
A

(5.8)
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and making use of inequality (2.2), a long but elementary calculation yields the 
following upper bound to the strain energy:

In Eq. (5.9) we have

PoA6 (  2 , , 1 \
1280 (.3 /h 4 + 2 2) ' (5.9)

2 л
/ 2= J [a(</>)]2 d<P , (5.10)

0
In

/4= J [a((/>)]4 dip, (5.11)

2 n
'b= Í 1> Ы ]6 dip . (5.12)

5.4 In order to derive a lower bound to the strain energy of the plate discussed in 
the previous section, let us apply inequality (3.3) to the function

c,(r.(p) = A4[oi((p)Y- (5.13)

It can easily be shown that the conditions

0 = 0. (г, <p)e дT, (5.14)

? = 0, (r, <p)e <1T (5.15)
( n

are fulfilled and that the equation

Ay = A2
, , , d a \ 2 d2a

16p2 —8a2—4( — J  - 4 a ^  +

holds, where

„ a2 / da V  a d 2a
+ 1v w  + V * v

r

(5.16)

(5.17)

A simple calculation results in

j yp d T= p0
Ab
6

/
V (5.18)

By combining Eqs(5.16), (5.18) and inequality (3.3), we finally arrive at the lower bound 
to the strain energy

4 bl 2
U > ^ p 20-  7 2 0« ' 0

(5.19)
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where

B = 10.666ah + 64a4
da 
d ip

+ 65a: d2a
d(p2 +8<X2̂ J  + 16a’ d(/)J d(p2

■32
d a V  d2a
d<p/  dcp2

a2-3 2 6a4
d a \
dip) +

, / d a \ 4 3 / d a \ 2 d 2a
+ 3a2 ( —— I + 3a31 —— ) — г +

dip J

+ 2a5

+ a4

d 2a
-fa

dip2 

d2a ^ 2
dip2

dip) dip2

da\ 2 d2a 
dip) dip2 +

In a> dip. (5.20)

5.5 In the case of a circular plate with radius A we have

a(</>)= 1, 0<ip<2n.  (5.21)

Introducing Eq. (5.21) into inequality (5.9) through Eqs (5.10), (5.11), (5.12), we obtain 
the upper bound

U<
A6n 2 

384D Po’
(5.22)

Similarly, introducing Eq. (5.21) into inequality (5.19) through Eq. (5.12), we arrive at 
the lower bound

U>
A6n 2 

384D Po '
(5.23)

By comparing inequalities (5.22) and (5.23), we find that the strain energy of the circular 
plate with a built-in boundary, subjected to uniformly distributed load, assumes the 
value

U =
A6n 2 

384D Po’
(5.24)

i.e. in the inequalities (5.9) and (5.19) for circular plates the sign of equality holds.
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INEQUALITIES FOR THE STRAIN ENERGY 
OF POLYGON-SHAPED BENT PLATES

1. Ec s e d i*

Received: 6 August, 1983

The paper presents inequalities for the strain energy of elastic, bent plates of polygon shape 
with simply supported edges. The derivation of the inequalities is based on some well-known 
theorems of mathematical-physics and the results of KirchhofTs plate theory.

1. Symbols

V ,  y , :  
e , , e , , e.

V = e, + e.,
I X  I V

A = V V  = ,  , +ex iy

rectangular co-ordinates, 
unit vectors,

Hamilton's dilTerential operator, 

the sign of scalar product, 

Laplace differential operator,

T
i' T
P/cn
s
№ = w(x, >’)
P
E
V
h

simply connected domain in plane xy, 
boundary of domain T,
the sign of derivation carried out along the external normal to curve i'T, 
arc co-ordinate measured along curve i'T, 
displacement of the middle surface of the plate, 
surface load.
Young’s modulus,
Poisson’s ratio,
the thickness of the plate (Й = constant).

fc'/t3
D = — --------  flexural rigidity of the plate,

12(1 - V 2 )

r = v(x,y)
Ф = Ф(х, у)
S
à î, / 2
Г = Г(х,у,  С, p) 
f= f (x ,y )
U ш/(*1 y)

auxiliary function,
Prandtl’s stress function, 
torsional rigidity, 
eigenvalues.
Green’s function belonging to the Laplace differential operator, 
auxiliary function, 
auxiliary function,

Further symbols and variables are defined in the text.
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2. Basic relations

2.1 Figure 1 shows a polygon-shaped, bent plate of constant thickness with 
simply supported edges. The material of the plate is homogeneous, isotropic and 
linearly elastic. It follows from KirchhofFs plate theory that the strain energy U of bent 
plates with simply supported edges is obtained from the following formula [1]:

( A w ) 2 d T . ( 2 . 1)

T

The function of two variables w = w(x, y) in formula (2.1) satisfies the following 
boundary value problem [1], [2]:

AAw=  —, 
D

(x ,y )eT , (2.2)

w = 0 , (x, y) e dT, (2.3)

Aw = 0 , (x, y) e dT. (2.4)

2.2 Let us consider the functions of two variables a = a(x, y) and b = b(x, y) which 
are differentiable, at least once, in the closed domain T и  dT, and at least twice, in the 
open domain T.

On the basis of Green’s theorem on the transformation of integrals, we obtain

. tela Tevhniva Acudcmiac Scicntiurum Hungurii ue 97, /9<У4
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By applying formula (2.5) to the functions

a = w , 

b = Aw
we arrive at

J(/lw)2 d T= — J pw dT.

Introducing expression (2.8) into formula (2.1), we find

1
U = pw dT

( 2. 6)

(2.7)

( 2. 8)

(2.9)

a formula which can also be directly derived from the virtual work principles in 
structural mechanics.

2.3 The boundary value problem given by Eqs (2.2), (2.3), (2.4) equivalent to 
Dirichlet’s boundary value problem related to Poisson’s equation taining two 
unknown functions as follows:

(x, y) e T, (2.10)

c = 0 , (x, y)edT ;  (2.11)

Aw = —v, ( x ,y ) e T ,  (2.12)

w = 0 , (x, y) e (IT. (2.13)

First, the boundary value problem defined by Eqs (2.10), (2.11) shall be solved then, by 
solving the boundary value problem characterized by Eqs (2.12), (2.13), the 
displacement w = w(x, y) of the polygon-shaped plate will be obtained.

It goes without saying that the formula

holds.

U =
D

V2 d T (2.14)

3. Inequalities

3.1 Theorem

Let be the smallest eigenvalue of the eigenvalue problem determined by the 
following equations:

Aác—Á*c=0, ( x ,y )e T , (3.1)
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(x, y)e  дТ, 

(x, y )edT .

(3.2)

(3.3)
The inequality

holds.

Demonstration

It is known that eigenvalue /* can also be produced as the solution to the 
following minimization problem [4]:

f {Лк)2 d T
}.\=  min ------------,

ш.у) j* к 2 d T
T

(3.5)

k =  0 ( x , y ) e P T .  

By taking Eqs (3.5), (3.6) into consideration, we find

(3.6)

À'f J w2 d í <  1 ( Aw)2 dT.
г  T

(3.7)

The application of Schwarz’s inequality to formula (2.9) yields 

U2 = j  ( j  pw  dT)2 <  1  j p 2 d T  j h -2 dT.
T  T

Introducing inequality (3.7) into inequality (3.8), we obtain

(3.8)

(У2< 4- 4 p2 d T ^ ( A w )2 d T .

T  T

(3.9)

All that is to be done now is to combine inequalities (3.9) and (2.1 ) and finally we arrive 
at inequality (3.4) which had to be proved.

c = 0 , 

Ac=0,

U <
2D/*

p2d T (3.4)

3.2 Theorem

Let /-2 
equations

be the smallest eigenvalue of the eigenvalue problem defined by the

Лк А- /*2к = 0.

k = 0,

At in Technica Acadcmiac Scienliurum Hungarian- 97 , I()H4

(X, у) e T , 

(x, y) e  vT.

(3.10)

(3.11)
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The inequality

í p 2dT
U< '-----T-_  2 Dk\

holds.

(3.12)

Demonstration

It is known that eigenvalue A2 can also be produced as the solution to the 
following minimization problem [4]:

[ \ V k \ 2dT
A2 = min ------------- ,

k j k 2dT
(3.13)

k = 0 (x, y)eOT. (3.14)

By taking Eq. (3.13) into consideration, we find

Â  jV d T <  £| Vv I 2 d7\ (3.15)

According to the product-functions’s derivation rule and Gauss’ theorem on the 
transformation of integrals, using Eqs (2.10) and (2.11), we obtain

\p3àT=
T

vAvd T= V ■ (vVv)dT— I  P f  I  2 d T =

T T r

Г  dv г  ,  r
v - d s - 1 V v \ 2 à T = -

J  dn J
The application of Schwarz’s inequality to Eq. (3.16) yields

T  T  T

Introducing inequality (3.15) into inequality (3.17), we obtain

T  T  T

(3.16)

(3.17)

(3.18)

Finally, making use of inequality (3.18) and formula (2.31 ), we arrive at inequality (3.12) 
which had to be proved.
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3.3 Theorem

Let function Ф = Ф(х, y) be the solution to the boundary value problem

Л Ф = -  2 , (x ,y)eT , (3.19)

Ф = 0 , (x, y ) e d T
and let formulas

(3.20)

S = 2 Jtf>dT
T

(3.21)

and
p(x, y) = p0 = constant

hold.
The inequality to be proved is

(3.22)

V > Pos2 
-  32Dt

(3.23)

where t represents the cross-sectional area of domain T:

t=  j dx dy . (3.24)

Demonstration

If the equation
p(x, y) = Po = constant

holds, it goes without saying that formula

г(х ,у ) = - ^ Ф (х,у) (3.25)

also holds. Eq. (3.25) relates to a prismatic bar whose cross-section is a domain T and 
whose torsional rigidity S is obtained from the formula

S = 2 f ФdT (3.26)

knowing Prandtl’s stress function Ф = Ф(х,у).
It follows that inequality (3.23) to be proved, establishes a relationship among 

different physical quantities. Introducing Eq. (3.25) into Eq. (2.14), we obtain

Ф2йТ.
T

(3.27)
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The application of Schwarz’s inequality leads to the inequality

Ф2 dT 
J  «
T  T

l 2d7> Ф- 1 dT  =
S2
4 (3.28)

from which, incorporating Eq. (3.27), we obtain inequality (3.23) we have been looking 
for.

3.4 Theorem

Let the function of two variables g = g(x,y), not identically equal to zero in 
domain T, be continuously differentiable, at least once, in the closed domain T u  őTand 
at least twice, in the open domain T. The function also fulfils the homogeneous 
boundary condition

The inequality

holds.

g(x, y) = 0 (x,y)edT .

( Í РУ dT )2
U >  — ----------------------------------

2 D j | ^ | 2dT

(3.29)

(3.30)

Demonstration

Let functions a and h in formula (2.5) assume the form

a = v,  (3.31)

b=g.  (3.32)

Introducing these functions into formula (2.5) and taking Eqs (2.10), (2.11) into 
consideration, we obtain

vAg d T= — 
* D

pgdT. (3.33)

Schwarz’s inequality now results in

(j^vAg dT)2<, |V d T £ (d ÿ )2 dT. (3.34)

By combining Eqs (2.14), (3.33) and inequality (3.34), we finally arrive at inequality 
(3.30) which had to be proved.
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A short discussion on inequality (3.30) shows that the sign of equality in (3.30) 
holds only if

g(x,y) = ßw(x,y) (3.35)

where ß is a real, arbitrary constant which is different from zero.
Inequality (3.30) holds in every case when g = g(x, y) is not a harmonic function,

i.e. when it does not fulfil the condition

Лд = 0 (.X, y) e T (3.36)

in domain T. If function g(x, y) fulfils conditions (3.29), (3.36), it must be identically zero 
in domain T.

3.5 Theorem

Let f=f(x.  y) be a function of two variables which is continuous in the closed 
domain T u  rTand continuously differentiable, at least twice, in the open domain T 
and which fulfils the conditions

F(x, y) = -  Af> 0 , (.X, y) e T,

/ =  0 ,  (.X, y) e  cT.

Let function p comply with the condition

The two inequalities

hold, where we have

and

p(x,y)> 0 , (x ,y )eT .

2Q \ f 2^ y ) d T < R l axU

1
2D

Rmai=  max
(х.у)етидт (p{x, у)

f 2(x , y )dT>R2minU

T(.x, y) 
P(-x, y)

F(x, y)
Rmi„= min

(х.у)ЕТидт (p(x, y)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Demonstration

Let us consider Green’s function Г = Г(х, y; Ç, g) related to the Laplace operator. 
It follows from the characteristics of Green’s function that the expressions

f (x ,  y) =  I  T(£, p)Г(x, y; tj) d T, (3.44)
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К(х, у) = -  v(x, у) = -  J p(ç, ц) Г(x, y; ç, ц) dT
I J  /

(3.45)

hold. The fact that function Г = Г(х, у; £, г;) is not negative [3] results in the following 
inequalities:

/(x , у) > 0 , (x, у) e T, (3.46)

T(x,y)>0, (x,у)e T.

It goes without saying that the formula

J  f  ,
U= ,  У2 d T

- I ! '

(3.47)

(3.48)

holds.
The validity of formulas (3.40), (3.41) can be demonstrated by the following 

inequalities:

, , ,  , r , . ,  , n F&  n) p(c. Dh (c, /7) Г (x, y; £,,*}) = D Г (x, y; ç, 4) <

<OR„

Pit, П) D

Р(Ь 4)
D

T(x, y; ç,rç), (3.49)

F(í, Ч)Г(х, y; t, П) = D Г(х, у; П)>
р(с, ч) D

>DRmin^ - r ( x , y ^ , r , ) . (3.50)

Since the quantities in the above inequalities are not negative, carrying out the 
integration of (3.49), (3.50), we obtain

/(x , y) < DRmax V (x, y ), (3.51)

/(x ,y )> D R minT(x,y). (3.52)

We have /  (x, y) ̂  0 and K(x, y) > 0 at every point of domain T and therefore we arrive at

f 2(x,y)<D2R2maxV2(x,y),  (3.53)

f 4 x , y ) > D 2R2minV2(x,y).  (3.54)

Taking into account formula (3.48), the integration of inequalities (3.53) and (3.54) 
yields inequalities (3.40) and (3.41) which had to be proved.
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4.1 Let function p assume a constant value, i.e.

p == p(x, y) — Po — constant. (4.1)

4. Applications

By applying inequality (3.30) to the function

an elementary calculation yields

g = Ф(х, у)

U> P2qS
32tD

(4.2)

(4.3)

This formula and formula (3.23) are obviously the same.
4.2 Let us consider the plate shown in Fig. 2. For the sake of simplicity, the units 

of the quantities in this numerical example shall not be presented. The lower and upper 
bounds to the strain energy of the triangle-shaped plate subjected to a distributed load 
of intensity

p = p(x, y) = 3.x — (4.4)

are obtained from inequalities (3.40) and (3.41). It can be easily proved that inequality

p(x,y)> 0 (4.5)

holds if the independent variable fulfds the condition

0  <  .X <  1 .
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The function of two variables f —f(x,y)  fulfilling the conditions (3.37), (3.38) is now 
taken on as

A simple calculation yields

— y2) ( 1 — x) =  X2 — y2 — X 3 + xy2. (4.6)

F(x, y ) = - A f =  3x, (4.7)

R ( x , y ) = -----
l - ^ x 2

20

(4.8)

(4.9)

RL> = U 0 8 . (4.10)

Introducing Eqs(4.6), (4.7), (4.8), (4.9), (4.10) into inequalities (3.40), (3.41), we obtain the 
lower and upper bounds:

t/£)< 1.1125 x 10-2 , (4.11)

UD> 1.00406 X 10“2 . (4.12)

4.3 In this section a comparative theorem of simple structure will be derived, 
using inequalities (3.40), (3.41). Let the functions

Pi=Pi(x,y)  and p 2 = p 2( x , y )

denote two different surface loads acting on the plate shown in Fig. 1.
With the formulas

ílQ1II (x ,y )e7 \ (4.13)

F ,=  0 , (x, y)er1T; (4.14)

(x , y ) e T , (4.15)

оII ( x , y ) edT (4.16)

« ' - f l
1 V \d T , (4.17)

T

-----Jf4
Cj |<NIIгч 1* K2dT. (4.18)
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Let the inequalities
P i ( x , y ) >  0 X, y) e  T , (4.19)

p2(x, y)>0 ( x ,  y) e  T (4.20)

hold. As a consequence of inequalities (4.19), (4.20), the inequalities

K . ( x , y ) > 0 , ( x , y ) e T (4.21)

v2( x , y ) >  o , (x, y) e 7 (4.22)
also hold.

Introducing the functions
f ( x , y ) = V l (X, y ) , (4.23)

V ( x , y ) = V 2(X, y) (4.24)

into inequalities (3.40), (3.41), the inequalities

Ui < p L xU 2 , (4.25)

и ^ р 2т ,а и 2 (4.26)

can be derived, where we have

P m a x =  max
(x ,y )eTu  dT

P i(x, y)~ 
p 2(x,  y)

(4-27)

and

P m i n =  min
( x , y ) e T u d T

> i(x , y)~  

_Pi(x,  y ) _
(4.28)

Inequalities (4.25) and (4.26) constitute a comparative theorem for the strain energy of 
plates having the same size and support system, but whose surface loads are different.

4.4 Let the functions

Pi=Pi(x,y)  and p2- p 2(x,y)

denote two different surface loads acting on the plate shown in Fig. 1.
Let us introduce the following relations:

AAwl = ’ (x, y)e  T, (4.29)

w, = 0 , (x, y) e dT, (4.30)

OIIjT3̂ (x, y ) e d T \ (4.31)

A Aw2 = — , 2 D
(x, y) e T, (4.32)

OII<N£ (x, y ) e ë T , (4.33)

dw2 = 0, (x, y) e d T . (4.34)
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With the above relations we have

(4.35)
r

(4.36)
T

Inequality (3.36) now yields

( j>i*v2d7)2
(4.37)

2D J (z)w'2)2dT

from which we arrive at

(4.38)

The importance of inequality (4.38) is shown by the fact that, knowing function 
w2 = w2(x, y), a lower bound can be created for the strain energy U , .
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IDENTIFICATION OF THE SOURCE 
OF POLLUTION ALONG THE RIVER BED

К. V. E g o r o v , G. D. K u p a y n *

[Received: 9 April 1984]

The acute problems of water resource protection requires using the methods of the 
contemporary theory of control and system analysis. There appears a task of getting the quantitative 
characteristics of pollution interrelations which are defined by the corresponding mathematical 
models. A method for developing such a model and the procedure of its study using a computer 
technique is suggested. The data obtained can be used to preserve the purity of water resources.

Studies in river pollution processes have led to the necessity of obtaining the 
quantitative characteristics of pollution, interrelationships of which are described by 
respective mathematical equations. To investigate mathematical models, the methods 
pertaining to the up-to-date theory of control and system analysis are applied.

This paper deals with the processes of a non-conservative pollution, i.e. that with 
organic substances which undergo transformation in the flow (decomposition, 
oxidation, sedimentation). Definition of the function of pollution may be presented as 
a problem for determining parameters of the mathematical models for the above 
process. The problem can be solved by the method of the sliding modulating functions
[ 1].

The quality of water may be characterized by the concentration of dissolved 
oxygen (DO) and the biochemical consumption of oxygen (BCO). Here BCO is an 
index of the organic water pollution. The mathematical model of the pollution process 
is expressed by the modified Streeter-Phelps Eq. [2]

SL(x, i) n д2Цх,  t) 
dt ~ L dx2

Q 9Цх, t) 
A ôx

— К Цх,  í)+ /(x , t ) ( 1 )

X 6 [a, b], t 6 [0, T]

where Цх, t)— BCO value dependent on time t and distance x along the river-bed; Q— 
water-flow through A-cross-section; К-decomposition coefficient equal to summed up 
co-efficients of self-purification and sedimentation; /(x , i)—the source of pollution 
reduced to the BCO.

* К. V. Egorov, G. D Kupayn, MEI, E 250 Moscow, USSR
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The problem of identification of equation (1) is formulated as follows: one knows 
the structure of the mathematical model as expressed by equation ( 1 ) and the numerical 
values of empiric co-efficients Q, DL, A, and K, it is required to identify the function of 
the pollution source f (x,  t) by measuring the function of state L(x, t).

In general, it is impossible to determine the arbitrary function f(x,  t), therefore, 
the problem is simplified assuming that

f (x , t )  = w(x)v(t) (2)

This, assumption means that the temporal distribution of BCO—1>(£) is known 
and uniform along the river-bed. The unknown function w(x) contains information on 
the location and intensity of the pollution source.

Furthermore, assuming that L(x, t) is a generalized function of order 2 and de
termined according to the space of the principal functions

K2(G) = I (p(x,t):cp e E2(G)
V(x, f) e 0G[<p(x, f) = 0] I 
V(x, t) e 0G[<p(x, f)#0] j (3)

where G=(a, b) x (0, T) is an open area of Euclid’s two-dimensional space E2 with the 
border-line 0G; <p(x, t) principal function derived from K 2(G) or the modulating one. 

According to the rule of differentiating the generalized functions

<Dky , (p > = ( - \ ) k(y,Dk(py q> e K{G) (4)

and taking into account the linearity of the scalar product, Eq. (1) takes the following 
form:

- (  Ц х Л
3q>(x, f)

— Dl { L ( x , f),
32(p(x, t)

0 Í  /  0 X 2

-  /C<L(.x, t), <p(x, f)> + <f(x, r), cp(x, f)> .

, Q /  , ,  3<p(x, t)
+ а \ Ц х - ,)- ^ ~

(5)

Taking down the last term of expression (5) and considering the assumption (2)

<f (*, t), cp(x, r)> = <w(x), v(t), <p(x, t)> (6)

To reduce the problem of determining function w(x) for the identification of 
parameters, one reduces w(x) to a piece-constant function. To do this we divide the 
interval [a, b] into n sections Ax  long and assume that in each section w(x) =  const. 
Then expression (6) for every i-th section may be represented by

<f(x, t), (p(x, t)) = wi(xi)(v(t), (Pi(x‘, t)>

i = l ; . . . n  x‘e [x; — Ax, x j  . (7)

In this case Eq. (5) is considered in n areas of the kind of

G, =  (x‘ — Ax, x‘) x (0, T) (8)
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and in n spaces of generalized functions K 2(Gi) with the carriers

sup <р,(х‘, t) = (x‘— Ax, х ‘) X (0, T) (9)

Let us regroup the terms of Eq. (5) so as to elucidate the function of spatial 
distribution of the pollution source.

/  02<p.(x‘, t)
W,(x‘)<t)(i), <л(х\ f)> = -  D, ( L(x‘, t), J x2 

-  ^  / ц х ‘, + К(Цх' ,  f), t)> —

д(0:(х‘, i) 
L(x, f), '

of ( 10)

The mean value of the function w,(x‘) is presented by the n-dimensional vector

w = col [(w, (x1), w2(x2)-----wn(x")]

A diagonal matrix is introduced

Z = diag [<c(f), <Pi(xl, f)> . . .  <u(f),<p„(x",f)>], 

and n-vector h with the components

8V ,(x ,,r)\ Q /  , ЗфДх'л)

(И)

( 12)

h; = - D , (  L(x,, f).
0x 2 А \ ЦХ‘ 1)' 0x +

+ К <L(x\ f), </>,(x\f)>-  ( L(x',f), (13)

Bearing in mind indices (11), (12) and (13) we can put down equation (10) in the 
form of a matrix

w = Z ‘h. (14)

The components of the obtained parameter vector are the successive segments of 
the spatial distribution function of the pollution source and its intensity, considered in 
the sections and averaged in each of them.

The above used linear mathematical model of the pollution process ( 1 ) is rather a 
simplified description of the real processes. On the one hand, the photosynthesis and 
pollution by inorganic sources are not taken into consideration. On the other hand, the 
real processes are not linear due to the scale-eduction of oxygen in bubbles, that, in its 
turn depends on the temperature and other écologie factors. However, more 
complicated pollution models would require the knowledge of additional empiric co
efficients, and the consideration of non-linearity impedes the use of such models in 
connection with computing difficulties.
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RELATIONSHIPS AND APPLICATION 
POSSIBILITIES OF THE THEORIES 

OF MICROELASTIC CONTINUA

J. Füzy,* J. Vas**

[Received: 1 September 1982]

In the recent decades, several theories of higher degrees of freedom have been developed, 
under the collective name “microelastic continuum theories”. An analysis is given in this paper for the 
derivation of the best known such theories from the theory of a continuum of 12 degrees of freedom 
that of the deformable directors. In knowledge of the rule of derivation, several microelastic continua, 
not examined up to now, will be shown to be interpretable. One of them will be discussed in detail, 
together with physical application possibilities.

Symbols

i,j, k. I. p. 4 — subscripts, with possible values of I, 2, 3;
7 symbol of partial differentiation;
a- ■ —divergence of vector ut (under validity of Einstein’s summarizing convention);
и , gradient of scalar u;
77 — Laplacian operator;
I/, displacement vector;
íIjj — micro deformation tensor;
l),j — macro deformation tensor;
•/,■ relative deformation tensor;
KiJk - tensor of hyperdeformations;
Sy macro stress tensor;
«Ту tensor of relative stresses;
fiiJt — hyper stress tensor;
Jk — rotation vector;
e function of intrinsic volume change;
Pi — density vector of body force;
0y - density tensor of double (or hyper) stresses distributed across the volume (analogous to

body forces);
0y Kronecker-delta, of value 1 for i=j, else 0;
Суп — Levi-Cività tensor, of values +1, — 1, 0,

depending on whether its subscripts are different and even permutations ( + 1), odd 
permutations ( — 1), or they include identical ones (0); 

dy deviator part of tensor dy.

* Füzy, J., H-1012, Budapest, Márvány u. l/b, Hungary 
** Vas, J„ H-2000, Szentendre, Vasvári P. u. 43. Hungary
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2. Introduction

Since the establishment of the equations of classic continuum mechanics a great 
number of solutions have been developed for a wide range of problems.

Initially almost exclusively linear elastic material laws were applied. The 
modification of the material equations permitted the researchers to model the 
behaviours of materials with visco-elastic, plastic, visco-plastic, etc. properties.

These modifications, refinements do not exceed, however, the model’s funda
mental hypotheses on the material particle motion.

A modification of Duhem’s theory ([6], 1893) was developed by Cosserat 
Brothers ([7], 1909). They added further three degrees of freedom to the original three 
ones of the motion of a material point—assumed in the classic theory of continua,— 
introducing, in addition to the displacement, the kinematically independent rotation of 
the material point. Under these fundamental conditions the stress tensor is symmetric 
no more (invalidating the Boltzmann axiom) and equilibrium of the elementary 
parallelepiped required to introduce moment stresses.

Originally, Duhem suggested a body to be regarded as a collection not only of 
points, but also of directions associated with the points. These vectors to be called 
directors are able to independently vary their direction and magnitude.

This approach to theories of higher degrees of freedom—such as that by 
Cosserat—makes it possible to describe effects which cannot be taken into 
consideration in the classic model.

The Cosserat theory gained application not sooner than 50 years after its 
discovery ([14], 1958 Günther); ([13], 1960 Grioli); ([24, 25, 26], 1958-1967 Schaefer).

Nearly simultaneously to the rediscovery, but without the knowledge of this 
theory— as complement to the classic theory—the so-called pseudo-Cosserat model 
arose, where the rotation of the material point was defined as a kinematic constrained 
connection due to the asymmetry of the deformation tensors [1, 2, 29, 30, 31].

Similarly to the classic theory, this theory also involves three degrees of freedom 
but here the deformed condition is described by the tensor derived from the 
displacement vector, that is, the antimetric part describes the rotation of the material 
point. Now, the rotation vector is not an independent kinematic variable any more but 
the rotation of the displacement vector.

In the recent 25 years several new, interesting theories of elasticity have arisen, 
featured by certain distinction between “micro” and “macro” material structures. One 
of them is the theory of deformable directors [18], by another denomination the theory 
of multipolar continua [12] where—in conformity with Duhem’s theory—directors 
are assigned to the material points, and the director tip displacements are further 
degrees of freedom. Directors may be of an arbitrarily high number.

The theory by Mindlin [18] limits the number of directors to three 
corresponding to the threedimensional Euclidean space, lending 12 degrees of freedom 
to the material point. Each material particle is assumed to have an inherent micro
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volume. This unit cell may also be interpreted as a molecule, a crystallite or a grain of 
the given material. Accordingly, the continuum can be conceived as a collection of 
these material points where in each of them in addition to the material point 
displacement—an intrinsic micro deformational state independent of the displacement 
is interpreted, expressing the displacement of the apexes of the triad of directors. 
Accordingly, the continuum is composed of unit or micro cells with deformations 
yielding nine degrees of freedom of the theory, further three arising from the 
displacement of a preferential point (e.g. centroid) of the unit cell [9,18]. There is a wide 
variety of symbols, denominations in fundamentally similar theories by different 
authors. Current denominations are: microelastic, multipolar, dipolar, generalized 
Cosserat . .. etc. theories. Theories are referred to as those by Mindlin, Toupin, 
Eringen, Suhubi, Ericksen-Truesdell, Green-Rivlin, etc.

It should be pointed out that most of these denominations refer to the 
generalized continuum model or a special case of it, relying essentially on the same 
assumptions.

In the following, we will refer to the general theory as the Mindlin theory, using 
his symbols [18] and concept denominations. Starting out from Mindlin’s general 
theory, special cases will be derived by reducing the kinematic degrees of freedom of the 
material point. No kinematic effects will be considered. The effect of deformational 
geometry changes will be ignored.

Exclusively linear elastic solids will be examined, assuming slow deformations, 
and irrelevance of displacement to the final condition.

3. The Mindlin theory

According to the Mindlin theory of microelastic continua [18], “inside” the 
elementary point—essentially an elementary volume of finite size—a micro de
formation tensor is interpreted, as an independent kinematic variable. This tensor dtj is 
homogeneous inside the elementary point (microcell), but is not in the macro space, 
this, it has a gradient according to a macro variable.

Its symmetric part is the micro strain tensor d(ij), and its antimetric part dlij] is a 
micro rotation tensor. In the theory of the so-called deformable directors, a director 
triad is assigned the elementary point, kinematically independently varying size and 
direction in course of the deformation of the medium. In this case the director apexes 
will have displacement components exactly corresponding to the elements of tensor dy.

We mention here that, obviously, the components of micro rotation tensor dltJ] 
are the components of rigid rotation of the so-called Cosserat “trièdre” [3].

Let us define the usual—this time macro—strain tensor:

*>(«,-y  +  Ü)
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and the so-called relative deformation tensor which is the difference of the gradient of 
the macro displacement vector and the micro deformation tensor:

Уц=1] i . i-dij  (2)

as well as the macro gradient of the micro deformation tensor which is a third-order 
tensor of the hyper deformations:

îjk djk j. (3)

Let the fundamental kinematic variables be macro displacement vector {/,• and 
micro deformation tensor du, unique functions of the macro space coordinates. 
Equations (1), (2) and (3) are the set of geometric equations of the microelastic 
continuum theory. Of the compatibility equations equivalent to them, the macro 
deformation tensor satisfies the equation

emike„,jDkUj = 0. (4)

Further equations are obtained by taking the integral of (2) and (3) with respect 
to an arbitrary closed curve C in the continuum:

§ y .jd x i =  $ V j j d x i -  § d / jdx i ,  (5)
<c ) (C) (C)

§ к.д<Ьс,= § djkJdx,. (6)
(C) (C)

Assuming, however, the compatibility of the displacement and deformation 
fields, we have

§ Uj.iДх, = 0, § d j k  i d X j  = 0 (7)
(C) (C)

and the compatibility equations for tensors of relative and hyper deformations will be 
obtained from (5) and (6), applying Stokes’ theorem, in the form:

e mijKjkl,i =  0 ,

y i j , k e kii +  K k i j e ku = 0 .  ( 8)

The body in question is assumed to be of constant temperature and to be exempt 
from stresses and strains at this temperatlire, insisting on the examination of small 
deformations alone.

Accordingly, the strain energy density function can be defined in the function of 
the deformation tensors introduced above as

W=W(DiJ,yij, KiJk).

W can be applied to define the symmetric macro stress tensor

_  dW 
W) 5Di} ’

(9)

(10)

Acta Technica Academiae Scientiarum Hungaricae 97, 1984



O N  I HI I H l i O R I h S  O H  M l '  K O I  I A S  I IC C O N T I N U A 7.1

the tensor of relative stresses:
cW

1 I и
and the tensor of hyper or double stresses:

dW

(ID

( 12 )

The deformation energy density funetion is homogeneous quadratic function of 
the deformation tensors, a positive definite one. In the case of centrosymmetrie, 
isotropic material model applied also by Mindlin, the density function W of 
deformation energy becomes:

I I , 1 ,
IT= 2 /£>,, Djj+ nDjjDfj + у  />,УиУл + у  b2yiJyij +

+  y  b 3 y i J y j i  +  y l y i i D j j  +  y 2 ( y ij  +  y j i ) D ij  +

I
+  a IKiikKkjj + a2KikkKjkj+ у  a i KiikKjjk +

1 I
+  y  ^4^ijj^jkk T  ^S^ijj^kik T  ~2 a »KijiKkjk +

! . .  i
T  у  ^  1 O ^ i j k  ^ i j k  T  it 1 1 K i j k  K j k i  4" у  « | 3 Kij»Kilkj +

+  y  U1 4Kijk Kjik +  у  u l5K‘ijkKkji- (13)

The variation equations of motion directly yield the twelve equilibrium 
equations [18]:

(S(U) + °ij)i + Pj = 0' a )

Hijk.l + aJk + <Pjk =  Q- Ь) (14)

4. Deduction of various known micro-elastic continuum theories

There are several publications interpreting the known continuum theories as 
special cases of the general theory. Also Eringen [9] and Mindlin [18] interpret the 
Cosserat and the pseudo-Cosserat models in this way. Most of the authors concerned 
with the Cosserat and the pseudo-Cosserat models present the classic continuum 
theory as a special case of them [20]. The subsequent method will be applied to 
interpret possible special cases of the micro-elastic theory with 12 degrees of freedom.
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A unified approach can be applied to the special theories if we distinguish them 
according to the degrees of freedom of the material point. Special cases will be 
presented deductively from the general theory applying restrictions on the twelve 
degrees of freedom, examining the properties and the role of the components of the 
microdeformation tensor via the deduced cases.

This procedure involves also the classification of the theories taking local 
deformations into consideration.

The unified discussion is advantageous by making it possible to involve the 
known theories (classic, Cosserat, pseudo-Cosserat) in a general theory, helping to 
detect their deeper correlations.

Beyond that, models can be generated that can perhaps include a means to 
describe certain physical phenomena. This deductive discussion provides for the 
completeness of the interpreted theories.

Restriction of the degrees of freedom will be seen to be insufficient itself to the 
unique selection of a special theory, further stipulations on the material constant are 
needed.

Thereby special cases of the general theory are assigned to multi-model groups 
with identical degrees of freedom of the material point.

Starting from the definition (2) of the relative deformation tensor, let us 
decompose it to symmetric and skew symmetric parts:

In the following, ( ) and [ ] in tensor subscripts will refer to symmetry, and to 
skew symmetry, respectively; except for the macro strain and stress tensors stated above 
to be symmetric.

Degrees of freedom of the material point are reduced to 6 under the following 
conditions:

The remaining kinematic variables are the three components of the macro and 
the three components of the micro deformation tensor. Established with the rotation 
vector (as invariant vector), this latter becomes:

4.1 Derivation of the Cosserat continuum theory

Уij Dij+ 2 №j,i Ui.ji и» t̂ij'i- (15)

(16)

dvj]-eijkfk-

The rigid-body rotation of the micro-cell is, from (17):

(17)

f k  -  ~2 d t f j \e ijk- (18)
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Taking (17) and (16) into consideration, the relative deformation tensor becomes

a)л; — Г)
y«j) ~  u ‘i

7|.j| 2 № j.i i j k J k  • b) (19)

Forming the invariant vector of ytJ, i.e. multiplying (19) by \/2eijq, taking into 
consideration

eijkeijq = 2Skfl (20)
yields

I I
2Уч 2 У'1е,>ч о ^ i.‘e>i4 -К' (21)

With the aid of the fundamental equations of the general theory, the hyper deformation 
tensor is obtained as:

K ijk = ̂ \ j k \ .  i = f ,  i e j k l  ■ (22)

The hyper deformation tensor is seen from its subscripts j, к in (22) to be skew 
symmetric, so that according to (17), it can be produced by means of a tensor by one 
order lower:

Kijk = e jklKil- (23)

Now, Kijk has 9 independent components—in contrast the 27 in the general case.
The equilibrium equation (14b) decomposed to symmetric and skew symmetric 

parts is written as
MiUH. i + аиЦ + ^Uk] =  0 a)

Hiijk). i +  ̂ u*) +  ̂ (Jk) — 0- b) (24)

Introducing—arbitrarily for the time being—the simplifications and conditions:

M.u*> = 0 a)

b)

f̂ i[jk ] PjklH-il (25)

yields, in conformity with (14):

Ф<Д)_ 0

Mil. i + 2 PQÍ T ^jk^jkl 0, (26)

— O' (27)

this latter being a stipulation on the material constants. Making use of (10), (11) and 
(12), (13) yields the material constants:

0i + b i = O  a)

g2 + b2 + b3 = 0. b) (28)
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Eq. (13) also yields:
Si; =  ( /  +  yi)Dkköij +  2(y +  g2)Di

мог -(b2 — Ь3)у|,,|.

a)

b) (29)

Su is a symmetric and avn is a skew symmetric tensor so it is expedient to 
comprise them in a general stress tensor:

Sij — Sij + (30)

(31)

(32)

(33)

Since the symmetric part of the relative deformation tensor and the macro strain 
tensor are the same, tensor

7ij= —

can be considered as the deformation tensor.
Now, making use of (30), the stress tensor becomes:

Sij = (>- +  У 1 )Укк öij + 2{ß + g 2 ) y (ij )  + {b2 -  bibuj],

or, introducing new constants:

$ij~  2C2y,0') + Ciykkőij +
where

C2 = y + g 2, a)

Cl =/. + g l , b)

v4 = b2- b 3. c) (34)

The stress tensor equilibrium equation becomes

S,j., + Pj = 0. (35)

Also relationships between hyper-stresses and -deformations are obtained from 
the general theory [18]. Taking restrictions (25) and (23) into consideration we obtain

where:
Hij =  vlK(ü) + V2Klij] + V3S i j K kk 

Vj = a l0 — a l3—al l + a 15

v2 = a 10 — a 13 — 2 (ű 2 — « з )  —(fl l l  — f l is )

v, = i i , , —a,*

and
KU = fi.i

For restriction (25a) the conditions
Ű 1 = S 5

(36)

a)

b)

c) (37) 

(38)

a)
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«3 = «» b)

a 14 =  a l 5 c) (39)

have to be satisfied between material constants.
In publications, constants in (36) are usually produced as:

2 C2l3 
V‘ —” 12 a)

2 C2L2p, 
Vi 12 b)

_  2C2l}p2 
Vj 12 c) (40)

where L is length, and /r, and p2 are nondimensional quantities. This way of 
formulation is of importance since the physical meaning of material characteristic L is 
easy to define, and it can be seen that it is a magnitude close to that of the mean cell size. 
For certain materials, it can be determined in bending tests [25]. C2 in (29) was formed 
of the modulus of elasticity E and Poisson’s ratio v as:

C2 =
E

2(1+v) '
(41)

Equilibrium Eqs (26) and (35), material equations (32) and (36) as well as 
geometry Eqs (31) and (38) make up the fundamental equation system of the Cosserat 
continuum.

4.2 Theory of the micropolar (pseudo-Cosserat ) continuum

Let us restrict the general theory as:

d(ij) ~  0 a)

b > <4 2 >

Restriction (42b) means that the rotation vector of the material point is defined by the 
kinematic constraint connection

Á = j V j , i e tjk (43)

and the degrees of freedom of the material point decrease to 3.
Taking (42) into consideration, the relative deformation tensor becomes:

У uj) = Dij a)

Укл = °  b) (44)

Acta Technica Academiae Scientiarum Hungaricae 97, 1984



78 F Ü Z Y . J  VAS. i.

and the hyper deformation tensor assumes the form
Ki'L/’Ic) =  ^1jk). i =  e jklJl.  i

KHjk) ~  0

Substituting (43) into (45a), we arrive at

hence

I
K H J k ] -  y  e jkle lq p U p .q i ’ 

1
Kkl y  &lqpUP'qk-

a)

b) (45)

(46)

(47)

Applying the same simplifications (25) as in the Cosserat theory, the material 
equation (36) becomes

f*ij = V1 K(ij) + v2 Кил> (48)
since

Kkk =  0 (49)
holds.

In conformity with condition (44b), the skew symmetric part of the relative 
deformation tensor is zero, hence stress tensor (29b) is non-zero only if:

(b2—b3)->cc. (50)

Equilibrium equation (26) now becomes the defining equation of <тил:

у  аилейк + Ьгк. i + у  Фцецк =  0 (51)

and the other equilibrium equation is identical to (35), where

S i j  =  C i D kkô ij + 2 C 2D ij  + a li j ] . (52)

Material equations (52) and (44), geometry equations

Du = {  ( V u + V j J  (53)

and (47), as well as equilibrium equations (35) and (51) are fundamental equations of the 
pseudo-Cosserat theory [20, 25].

If (50) is not prescribed then, in conformity with (44), the skew symmetric part of 
the stress tensor will be zero, hence (51) will be identically satisfied if conditions

/*,*=0 a)

= 0 b) (54)
hold.

These conditions also yield the fundamental equations of the classic continuum 
theory, again with 3 degrees of freedom.
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4.3 Derivation of the classic continuum theory

A certain derivation of the classic theory starting from the pseudo-Cosserat
model has been referred to in Section 4.2.

Using restrictions
7ц = 0 (55)

and
Hijk = 0 a)
Фц = 0 b)
Ц\ = .92 = ° c) (56)

the general theory yields the fundamental equations of the classic continuum theory:

S,-j.t + Pj —  0 a)

D , j = j ( U t'j+Uj.d b)

Sij =  / . 0 i j D k k  + 2pDij c) (57)

4.4 Micro-elastic continua without micro rotation

With
du = d(ij) (58)

the relative deformation tensor assumes the form

7<o)= Dij ~  dUj) a)

7 [.71= y  b) (59)

or, decomposing dUj) to deviator and isotropic parts,

7 u = ^ . | - y A - - < ) -  (60)

The first scalar invariant of the relative deformation tensor is

7 kk=zUk.k~dkk (61)

showing the affinity between the isotropic part of the micro deformation tensor and an 
independent volumetric deformation (dilatation). In this model, dilatation (spherical 
strain), a phenomenon in granular media, may also occur for shear strain (the first 
scalar invariant of the macro strain tensor is zero).
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Further developing the theory, symmetry of the micro deformation tensor yields

K U j k )  —  “ (Д). i  

К‘ЦЦ ~  ̂

a)

b) (62)

that is, the hyper deformation tensor has now 18 independent elements.
Introducing simplifications (58) and (62) into (13), the function of the 

deformation energy density becomes:

w =  S i j D i j  +  a {ij)y Uj) +  а ш УцЛ +  Hnjk)K«jk) (6 3 )

where
S i j  = Âô.j D k k  + 2/rD,v +  y  ! ô if /a  + д 2 ( У ц  + у п )  а)

аШ] = (Ь2~Ь3УуШ1 Ь)

Ощ) = É/AA* + 2^2Dij +  b , 0иукк + (b2 + b3) (Уц + yß) с) (64)

where À and ц are Lamé constants known from the classic theory of elasticity and the 
other constants are defined by (13).

The construction of the density function (63) of the deformation energy shows 
that the term

/Lühk'ü*i (65)

is omitted since is zero. Thus, from energetical aspects, two hyper stress tensor

fields Hijk—Hijk are equivalent if 
1 2

^ijk = ßijk + ̂ iUk\ (66>2 1

where a)iuk] is an arbitrary function which is skew symmetric concerning subscripts j, k.
Let e.g.

=  0 a)

Ah[j k ]  -  И - i U k ]  -  0- 1 2
b) (67)

The equilibrium equations of the theory are obtained from (14) after 
simplifications:

( S l j  +  a ij ) . i  +  p j  = 0 a)

ИщкП + 0Цк) + Фик) = ® Ь) (68)

or, excluding the skew symmetric parts of the double stresses distributed across the 
volume: 0W] = 0, the skew symmetric part of the equilibrium equation ( 14b), taking (67) 
into consideration, yields

°r[iji = 0 (69)
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that is, in conformity with (64b), relation

h2 = h,. (70)

must hold.
Thereby the deformation energy density function is transformed from (63) to:

W -  Si7D,7+ t J + Hnjk)KiM)' (7 I )

Restrictions (67) on the material constants arc equivalent to:

« , = a 5 a)

aH = a3 b)

«i4 = «i5 c) (72)

hence the missing material equation becomes:

/W> = [2« , Кц„ + a*Kpii]Ö4r + [(u2 + a3)Kiir +

+  a  1 Kr , i ] ^ p 4 +  [ ( « 2  +  a 3 )K iiq  +  a  1 X q i i V r '  +

+ (flIO + а ч ) Крчг + (W 1 I +  a i4-) K4pJ (73)

In this interpretation of the model, the micro-cell deformation is pure dilatation and 
distorsion.

Further simplifying the model by excluding the micro-cell distorsion, hence

äm  = eSu (74)

transforms the relative deformation tensor, using (59), to:

yuj) = Di j ~ eSu a)

V w i = y  b) (75)

The physical purport of the scalar function “e” introduced above is to be some 
“intrinsic volume change”; the fundamental relationships of continua with this feature 
have been previously presented by the Authors [32, 33].

5. Conclusions

Mindlin’s theory on micro-deformational continua has been shown to make it 
possible to derive several known microelastic continuum theories, restricting the 
degrees of freedom rather than the material constants. In this conception it is obvious 
that several continuum theories—not discussed so far—can be generated in a similar 
way. Obviously, not all the resulting theories will have a real physical reason but there
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must be some which are applicable to simulate some physical phenomenon. Thus the 
continuum with “intrinsic volume change” presented in the last Section is likely to suit 
simulation of the behaviour of granular materials. Shear deformation of these materials 
is known to be accompanied by volume change, they are compressed or expanded 
depending on their material constants. Efforts have been made to simulate behaviour 
of such media by a continuum, introducing a new—independent—scalar function: the 
voids ratio [5]. In this approximation, the analogy with the theory deduced from the 
Mindlin theory is obvious.
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RELATIONSHIP BETWEEN FILLING BREAKAGE, 
TURNS OF TWIST AND MOISTURE CONTENT

B. G r h g a *,

[Received: 30 August 1983]

The effect of turns of twist and the moisture content of cotton weft yarns on the number of 
filling breakages is examined in order to determine the optimum turns of twist and moisture content 
leading to the lowest possible number of filling breakages.

Frequency of filling breakages in weaving mills during manufacture is influenced 
by several weaving parameters such as:

(a) turns of twist;
(b) moisture content;
(c) elementary fibre length;
(d) tearing strength of weft;
(e) friction along elementary fibres, etc.
Among the listed weaving parameters, the influence of turns of twist and of 

moisture percentage in the yarn, on the frequency of filling breakages, will be examined.
Fitting numbers will be shown to be sufficient to determine the optimum number 

of filling breakages from two-variable functions of filling breakage vs. turns of twist or 
filling breakage vs. moisture percentage rather than from a three-variable function. 
Test have been made on five pure cotton yarns of different counts, every time leading to 
similar results.

Our tests referred to a pure cotton yarn of count Nm 40. The tested yarn was 
made of 58.5% of Sovietic, 21% of USA, and 20.5% of Nicaraguan cotton. Elementary 
fibres averaged 29 mm, production mean temperature was 25.5 °C. Measured points 
are the most illustrative if plotted in a spatial Cartesian coordinate system. Value triad 
points in a spatial Cartesian coordinate system appear to be located along an elliptic 
paraboloid correlation surface of the form:

V = f(s , r) = a + bls + b2r + his2 + b+r2

where v is the number of filling breakages per 10.000 shoots, s the twist, and r the 
moisture percentage of the tested yarn.

* Dr. Grega, B., H-1126 Budapest, Németvölgyi út 22, Hungary
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For easier understanding, let

* = X t , 

r = X 2 ,

■v2 = * 3 . 

r2 = Х4 ,
then

V=a + blX i + b 2X 3 + b3X 3 + bAX A. (1)

Normal equation system of the correlation function above is

na + hiX( X l) + b2X( X2) + b3X( X3) + bAX(X^) = X(V),  

aX(X ,) + />,X{X2) + b2X( X2X ,) + h3X( X3X ,) + ЬЛЦ Х 4Х ,) = X( V X ,) , 

aZ(X 2) + b{X(X xX  2) + b2X(X\)  + b3X(X 3X  2) + b4X(X ЛХ 2) = X(VX 2) , 

аХ( Х3) + ЬхХ( ХхХ 3) + Ь2Х( Х2Х 3) + Ь3Х(Х23) + Ь4Х(Х4Х 3) = Х( УХ3), 

aX( XJ  + hiX( X lX A) + b2X( X2X 4) + b3X( X3X^) + b^X(X2) = X( VX4). 

Variables and their means differ by

X2- X 2=.x2 ,

* 3 ~ * 3 = * 3 .

X4 X4 —= X4 ,

v - V = v t
transforming the normal equation system of the correlation function to:

biX(x21) + b2X(x2x l) + b3X(x3x 1) + bAX(x^xi) = X{vlx l), 

blX(xlx 2) + b2X(xj) + b3Z(x3x 2) + bAX(xAx 2) = X(vxx 2) , 

b1X(x1x 3) + b2X(x2x  3 )  + b3X(x23) + b4X(x^x3) = X(vxx 3), 

b 1 X(x , x4) + b2 X (x2x4) + b3£(x3x4) +  b4Z (x^) = X(v, x4) 

and its constant value from (1):

_  X(V) L X ( X J  L X(X2) L X( X3) L X(Xt)
Cl ----  t) ] U J 1) -> П A —

n n П n n

= V - b lX l - b 2X 2- b 3X 3- b t X t .

Unknown coefficients of the correlation function will be obtained from the 
tabulated values below (Tables I and II)
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Table I

Measure
ment No.

ni

Filling break 
10 000 shoots

»,

Turns of 
twist/m
X 11 ~  si

Moisture
%

X 2l = r,
X  3 ,  = * f X ti = rf 1*II 1*II* 1XII xA — X A — X 4 r, = V - V

1 3.79 1076 3.9 1 157 776 15.21 -65.5 -0 .66 -1 4 6  733.5 -5.78 1.86
2 2.94 1097 4.1 1 203 409 16.81 -44.5 -0.46 -101 100.5 -4.18 1.01
3 2.61 1107 4.2 1 225 449 17.64 -34.5 -0.36 -7 9  060.5 -3.35 0.68
4 1.63 1121 4.2 1 256 641 17.64 -20.5 -0.36 -4 7  868.5 -3.35 -0 .30
5 1.12 1140 4.4 1 299 600 19.36 -1 .5 -0.16 -4909.5 -1.63 -0.81
6 0.93 1156 4.7 1 336 336 22.09 14.5 0.14 31 826.5 1.10 -1 .00
7 1.02 1162 4.9 1 350 244 24.01 20.5 0.34 45 734.5 3.02 -0.91
8 0.91 1170 4.8 1 368 900 23.04 28.5 0.24 64 390.5 2.05 -  1.02
9 1.29 1182 5.1 1 397 124 26.01 40.5 0.54 92614.5 5.02 -0.64

10 3.06 1204 5.3 1 449 616 28.09 62.5 0.74 145 106.5 7.10 1.13

19.30 11 415 45.6 13045 095 209.9
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Table II

2
* 1 *1*2 *1*3 *1*4

7*2 *2*3 *2*4 *5

4290.25 43.23 9 611 044.20 378.590 0.4356 96 844.11 3.8148 21 530 720022.25
1980.25 20.47 4 498 972.20 186.010 0.2116 46 506.23 1.9228 10 221 311 100.25
1190.25 12.42 2 727 587.20 115.575 0.1296 28 461.78 1.2060 6 250 562 660.25
420.25 7.38 981 304.25 68.675 0.1296 17 232.66 1.2060 2 291 393 292.25

2.25 0.24 7 364.25 2.446 0.0256 785.52 0.2608 24 103 190.25
210.25 2.0.3 461 484.25 15.950 0.0196 4 455.71 0.1540 1 012 926 102.25
420.25 6.97 937 557.25 61.910 0.1156 15 549.73 1.0268 2 091 644 490.25
812.25 6.84 1 835 129.20 581425 0.0576 15 463.72 0.4920 4 146 136 490.25

1640.25 21.87 3 750 887.20 203.310 0.2916 50 011.83 2.7108 8 577 445 610.25
3906.25 46.25 9 069 156.20 443.750 0.5476 107 378.81 5.2540 21 055 896 342.25

14 872.5 167.7 33 880 486.2 1534.64 1.964 382 680.1 18.048 77 202 139 300.25

Based on the tabulated values, unknown coefficients are obtained from the 
equation system:

14 872.5/), + 167.7h2 + 33 880 486.2/)3 + 1534.64b4 =

= -200.39,

167.7/), + 1,964h2 + 382 680.1 b3 +  18.048h4 =

= -1 .903 ,

33 880 486.26, +  382 680.1/)2 +77 202 139 300.5b 3 +

+ 3 504 242.6b4 = -  444 885.85 ,

1534.646, + 18.04862 + 3 504 242.6b3 + 166.12664 =

= -16.0543

having roots:
6 , =  -0.688 051 5,

62= -  23.578 939, 

b3= 0.000 298,

64 = 2.535 087 7,

the function constant being:

a ~  V—biX 1 —b2X 2 — b3X 3 — bAX ^ K  1.93 +  0.688 0515 • 1141.5 +

+ 23.578 939 ■ 4.56-0.000 298 • 1 304 509.5-2.535 087 7 • 20.99 =

= 452.9054.

Acta Technica Academiae Scientiarum Hungaricae 97, 1984
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*4 ч,.х2 I’l-Xj r,.v4

848 ] 19.63 33.4084 -  121.830 -  1.2276 -2 7 2  924.31 -10.7508 3.4596
422 600.09 17.4724 44.945 -  0.4646 102 111.50 -4.2218 1.0201
264 852.67 11.2225 -  23.460 -0.2448 -5 3  761.14 -2.278 0.4624
160 359.47 11.2225 6.150 0.10X0 14 360.55 1.0050 0.0900

8 002.485 2.6569 1.215 0.1296 3 976.695 1.3203 0.6561
35 009.15 1.2100 14.5(H) -0.14(H) -3 1  826.50 1.1000 l.(HHH)

138 118.19 9.1204 -  18.655 -0.3094 -4 1  618.395 -2.7482 0.8281
132 000.52 4.2025 -  29.070 -0.2448 -6 5  678.31 2.0910 1.0404
464 924.79 25.2004 -  25.920 -0.3456 -  59 273.28 -  3.2128 0.4096

1 030 256.10 50.4100 70.625 0.8362 163 970.34 8.0230 1.2769

3 504 242.6 166.126 -200.39 -  1.903 -  444 885.85 -16.0543 10.2132

Thus, the wanted elliptic paraboloid correlation function has the equation: 

v = f  (s, r) = 452.9054-0.688 051 5s-23.578 939r +

+ 0.000 298s2 + 2.535 087 l r 2 .

Now let us determine the extremal value of the function. The function may have 
an extremal value where its first partial deri\atives with respect to the inde lenden, 
variables are zero, that is, where:

dr
— =  -0.688 051 5 + 0.000 596 s =  0 ,
ds

ÿ  =  -  23.578 939 + 5.070 175 4r = 0.

Hence:
s=  1154.4488% 1155 twists/m , 

r = 4.650 517 4 a; 4.7%.

The pertaining function value, hence the filling breakage is:

{l>}s= 1154.4488 =0.918 14%0.92 .
( ’ r = 4.6505174

The second partial derivatives being

d2v 
ds2
d2v

, =0.000 596 > 0 ,p*

dr

d2 V 

dsdr

2 =5.070 175 4 > 0 ,

= 0 ,

Acta Technica Academiae Sciemiur Hungaricae 97. 1984
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the resulting Hesse’s function determinant is:

<12 V P2 V
Г .s'2 r s r r

, l 2v r 2 v

c r c s Pr

0.000 596 0
= 0.003 021 8 > 0  .

0 5.070 175 4

Therefore there exists an extremal value; and since all the second-order pure partial 
derivatives are positive, the function has a minimum at:

Popl( 1154.4488; 4.650 517 4; 0.918 14).

Accordingly, in the tested yarn of count Nm =40, of 1155/m turns of twist and 
4.7% of moisture, the expected optimum filling breakage per 10 000 shoots is 0.92.

Let us now consider the fitting of the correlation surface in the measured value 
range. Among the three variables, the total correlation coefficient determinant for the 
fitting is:

b i Z ( v l . x i ) +  b 2L ( v i x 2 ) +  b 3 Z ( v l x i ) + b 4 Z ( v l x 4.) _  Í A

I ( v i )  ~  V  в

where
A =  -  0.688 051 5 • ( — 200.39) -  23.578 939 ( — 1.903) + 0.000 298 ( — 444 885) +

+ 2.535 087 7 ■( -  16.054 3)

В = 10.2132 .

A = v/0.927 655 3 =0.963 148 6 ,

Simultaneously the partial correlation coefficient between filling breakage and 
turns of twist can be reckoned by

r, =0.955 946 6 ,

and between the filling breakage and the moisture percentage by

r2 = 0.952 746.

Thus, the established function v = f ( s ,  r )  serves to predict, for a yarn of the tested 
count the number of filling breakages per 10 000 shoots for specified turns of twist and 
moisture percentage, and/or how to adjust the turns of twist and the moisture 
percentage for an optimum filling breakage number. Every test performed with any 
possible yarn count showed a correlation to exist between turns of twist, yarn moisture 
and expected number of filling breakages. Thus, in any case, a function can be 
determined with a minimum where filling breakage is optimum.

The result is

A d a  Technica Academiae Scientiarum Hungaricae 97, 1984
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As a conclusion it can be stated that the effect of turns of twist of the yarn and the 
moisture content on the filling breakage must not be neglected. To now, yarn turns of 
twist, and moisture percentages have been empirically specified from factory 
observations.

The presented method lends itself to increase the accuracy of specifying both 
weaving parameters. Experiments showed with increasing turns of twist the number of 
filling breakages to decrease to a while, to have a minimum (optimum from production 
aspects), then, further increasing the turns of twist, the number of filling breakages rises 
again. The statements above lead to the conclusion that from the aspect of factory 
production, in weft yarns the optimum turns of twist have to be maintained.

The effect of turns of twist on the filling breakage may be interpreted as the 
possibility, for lower turns of twist of elementary fibres, to slide along each other in the 
yarn, increasing the risk of filling breakage. Beyond the optimum turns of twist, a 
higher number would produce an increased pressure normal to the yarn midline, 
causing elementary fibres to slip out of the cross section that, in turn, decreases, the 
yarn becomes thinner, and the filling breakage more frequent. This effect is still 
worsened by possible yarn looping. With the increase of moisture content, the other 
weaving parameter, adhesive force between yarn and vapour, initially increase the 
friction between the elementary fibres. At the optimum of the moisture content, filling 
breakage is the minimum. Further increasing the yarn moisture, friction between 
elementary fibres decreases, raising the expected number of filling breakages.
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FILLING BREAKAGE AS STOCHASTIC FUNCTION 
OF ELEMENTARY FIBRE LENGTH 

AND TURNS OF TWIST AS VARIABLES

B. G r k g a *

[Received: 30 August 1983]

The effect of elementary fibre length and the applied turns of twist on the number of filling 
yarn breakage is examined. For any count, the optimum elementary fibre length and turns of twist 
with the possible least inherent filling breakage number may be predetermined.

Beside strength, length is the topmost quality factor of cotton fibres. Fibres being 
relatively short, any millimeter of length difference is of a great importance. According 
to practical experience, under otherwise identical conditions, the turns of twist to be 
applied in spinning depend essentially on the elementary fibre length.

Only practical observations are available on the effect of yarn moisture, tensile 
strength, turns of twist and of elementary fibre length on the filling breakage, as 
formulae for their exact correlation are missing.

It is possible to determine the optimum elementary fibre length and the 
pertaining turns of twist where the expected number of filling breakages of the 
processed yarn is the lowest. Four pure cotton yarns of different counts were tested, in 
each case leading to similar results. In the following, results stochastically determined 
from pure cotton yarn of count BD 20 will be presented. The tested medium fibre length 
cotton types were the following:

(a) Sovietic 1A,
(b) Sovietic 2A,
(c) USA SM — 1/4,
(d) Turkish M,
(e) Nicaraguan SM.
While taking the measurements, workshop temperature was 26 °C, at 40.3% r.h.
Points corresponding to triads of measured elementary staple length, applied 

turns of twist, and number of filling breakages lie at some correlation surface. Be the 
equation of the surface wanted

v=f(s,l) = a + b{s + b2l + b3sl-\-b̂ s2+b5l2
* Dr. Grega, B„ H-l 126 Budapest, Németvölgyi út 22, Hungary
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where v is the number of filling breakages per 10.000 shoots, s the applied turns of twist, 
and / the mixed staple length. For the sake of simplicity, let:

s = * i ,

l = X 2,

sl = X 3,

s2 = X4,

l2 = X s,

Then
r =  u + 6 ,2 f, - -̂b2X 2-^b3X 3-\-64X 4 + h5X g .

Transformation

v — r = U1

yields the normal equation system:

6, Z(x2i) + b2Z(xl x 2) + b3Z (x1x 3) + b4Z(x1x4) + b5Z(x l x 5) = Z(vl x l) , 

b l Z(x2x i) + b2Z(x22) + b3Z(x2x 3) + b4Z(x2x4) + b5Z(x2x 5) = Z(vl x 2), 

b l Z(x3x l) + b2Z(x3x 2) + b3Z(xl) + b4Z(x3x4) + b5Z(x3x 5) = Z(vl x 3), 

b l Z(x4x l) + b2Z(x4x 2) + b3Z(x4x 3) + b4Z(xl) + b5Z(x4x 5) = Z(vi x 4) , 

b l Z(x5x 1) + b2Z(x5x 2) + b3Z(x5x 3) + b4Z(x5x4) + b5Z(x2s) = Z(vl x 5)

for determining the unknown coefficients 6,, b2, b3, b4 and 65.
Values of the unknown coefficients will be calculated from measurement values 

tabulated below (Tables I-IV).
Percentage standard deviations of independent variable values (turns of twist 

and elementary fibre length) are s, =4.21%, s2 = 1.41%.
Equation system for determining the unknown coefficients is

94466, + 82.9962 + 13 833 13463 + 359 406.20664 +  5248.95036, =

=  -60.58,

Acta Technica Academiae Scientiarum Hungaricae 97, 1984
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Table I

Measurement
No
n,

Filling 
breakages 

10000 shoots
V,

Turns of 
twist/m
* U  = *I

Elementary 
staple length 

(mm)
XIi = /i

\ 2 = x Sl M i“ * « /?  =  * » . II * 1 *
1 Xl = X 2~ X 2

1 0.94 738 31.92 544644 23 556.96 1018.8864 1 0 0.186
2 1.03 724 32.16 524 176 23 283.84 1034.2656 - 4 0.426
3 1.14 756 31.70 571 536 23 965.20 1004.8900 28 0.034
4 1.21 716 32.33 512656 23 148.28 1045.2289 -  12 0.596
5 1.28 772 31.64 595 984 24426.08 1001.0896 44 0.094
6 1.32 713 31.56 508 369 22 502.28 996.0336 -  15 0.174
7 1.43 708 31.43 501 264 22 252.44 987.8449 - 2 0 -0.304
8 1.46 778 32.41 605.284 25 214.98 1050.4081 50 0.676
9 1.76 693 31.17 480 249 21 600.81 971.5689 -3 5 -0.564

10 2.23 682 31.02 465 124 21 155.64 962.2404 -4 6 -0.714

13.8 7280 317.34 5 309 286 231 106.51 10072.456
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Table1 II

1

*IIr*lк 1*IIX 1*IIу vt = v—v V 2 x  1 * 1 * 2 * i * j * 1  * 4
7

‘4 * 1 * 5

13715.4 446.309 11.6408 -0.44 UK) 1.860 137154.0 446.3.090 0.1936 116.4080
-6752.6 173.189 27.0200 -0.35 16 -1.704 27010.4 692.756 0.1225 108.0800
40607.4 854.549 -2.3556 -0.24 784 -0.952 1 137007.2 23927.372 0.0576 65.9568

-1 8  272.6 37.629 37.9833 -0.17 144 -7.152 219271.2 -  451.548 0.0289 455.7996
65055.4 1315.429 -6.1560 - 0 . 1 0 1936 -4.136 2 862437.6 57 878.876 0.0100 -  270.8640

-2 2  559.6 -608.371 -  1 1 . 2 1 2 0 -0.06 225 2.610 338 394.0 9 125.565 0.0036 168.1800
-2 9  664.6 -858.211 -19.4007 0.05 4СЮ 6.080 593 292.0 17 164.220 0.0025 388.0140

74 355.4 2104.329 43.1625 0.08 2500 33.800 3 717 770.0 105 216.450 0.Ш64 2158.1250
-50679.6 -  1509.841 -35.6767 0.38 1225 19.740 1 773 786.0 52 844.435 0.1444 1248.6845
-6 5  804.6 -1955.011 -45.0052 0.85 2116 32.844 3027011.6 89 930.506 0.7225 2070.2392

9446 82.99 13 833 134 359 406.206 1.292 5248.9503
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Table III

* 1 * 2 * 3 * 2 * 4 * 2 * 3 *S * 3 * 4 * 3 * 5

0.034 596 2551.0644 83.013474 2.165 1888 188 112 197.16 6 121 306.4 159 658.22
0.181476 - 2  876.6076 73.778 514 11.510 520 45 597 606.76 -  1 169476.0 -  182455.25
0.001 156 - 1  380.6516 -29.054666 0.0800904 1648960934.76 34 701013 95654.791
0.355216 -10890.4690 22.426884 22.638 046 333 887910.76 -687 579.66 -694053.64
0.008836 -6115.2076 -  123.65032 0.5786640 4 232 205 069.16 85 575 759 400481.04
0.030276 3925.3704 105.85655 1.9508880 508 935 552.16 1.3 724606 252998.23
0.092416 9018.0384 260.896 140 5.8978128 879 988 493.16 25458 486 575 514.00
0.456976 50264.2500 1422.526400 29.177 850 5 528 725 509.16 156468 224.5266 3 209 364.90
0.318096 28 583.2940 851.550320 20.121658 2 568 421 856.16 76518 137 1 808 080.80
0.509796 46984.4840 1395.877800 32.133 712 4330245 381.16 128 648 716.8506 2961 549.10

1.988 84 12006.3.565 4063.221 126.25443 20 265 080 510.4 525.355 192.1766 7 594460.00
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Table IV

V 2л 4 * 4 * 5 *^ " i * i « 1 * 2 « 1 * 3 « 1 * 4 « 1 * 5

199 191.720 5 195.3938 135.508 22 - 4.4 -0.081 84 -6034.776 -  196.375 96 5.121 952
29 994.429 4679.5667 730.0804 1.4 -0.149 1 2 363.41 -60.616 15 9.457

730253.990 -2012.9756 5.548 851 3 -6.72 0.008 16 - 9  745.776 -205.091 76 0.565 344
1415.9416 1 429.2735 1442.731 0 2.04 -0.101 32 3 106,342 6.39693 - 6.457 161

1 730 353.4 -8097.7809 37.896 336 -4 .4 0.009 4 - 6  505.54 -131.5429 0.615 6
370115.27 6821.0556 125.708 94 0.9 0.01044 1 353.576 36.501 26 0.67272
736 526.12 16649.894 376.387 16 -1 .0 -0.0152 - 1 483.23 -42.910 55 -  0.970035

4428 200.5 90828.100 1863.0014 4.0 0.05408 5948.432 168.346 32 3.453
2279619.8 53866.144 1272.8269 -13.3 -0.21432 -  19258.248 -  573.73958 -  13.557 146
3 822068.0 87985.661 2025.468 -39.1 -0.606 9 -55933.91 -1661.7593 -38.25442

14327 739 257 344.324 8015.1572 - 60.58 -1.0866 - 86 189.72 -  2673.584 52 -68.51 1 05

V
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8299/7, + 1.988 84b2 + 120 063.565/7 3 + 4063.22164 +126.254 436, =

= -1.0866.

13 833 134/7, + 120 063.565/72 + 20 265 080 510.46, + 525 359 192.77666* + 

+ 7 594460.66,= -8 6  189.72.

359 406.206/7, + 4063.221 62 + 525 359 192.776663 + 143277396* +

+ 257 344.324/7, = -  2673.584 52.

5248.9503/7, + 126.254 4362 + 7 594 460.663 + 257 344.3246* +

+ 8015.15726,= -68.511 05.

Roots of this equation system

6, = -0.505 424 3,

62= -4.058 029,

63 = 0.000 343 9 ,

64= -0.000128,

6, = 0.064 624 9

and the function constants:

a = v — bl X t — 62X2 —63X3 — 64X4 —6 ,X, = 253.3844 .

Thus, the wanted correlation functions:

V =f(sD =  253.3844 -  0.505 424 3s -  4.058 029/ + 0.000 343 9s2 -  

-  0.000 128s/ + 0.064 624 9/2 

The function may have an extremal value where 

dv
ÔI

= -  0.505 423 4 + 0.000 687 8s -  0.000 128/ = 0.

dv
dl

= -  4.058 029 -  0.000 128s + 0.129 249 8/ = 0.

Roots of the equation system:

3980.017
S°p' 5.372 447 2

= 740.820 14 s/m % 741 s/m.

/opl =  32.130 425 mm «  32.13 mm

7* Acta Technica AcaJemiae Scientiarum Hungáriáié 97, I9N4



100 GRhUA. В

Pure partial derivatives of second order being

d2v
=0.000687 8 > 0 ,

the Hesse’s function determinant is

d2v d2v
0.000687 8 -  0.000128

H =
3s2 3s 3/ 

32u d2v
-0.000128 0.129 2498

3/ 3s 312

=  8888.1616-1 0 '8> 0

Thus, an extremal value exists, and since all the pure second-order partial derivatives are 
positive, stochastic function v = f(s, l) has a minimum. Extremal value (minimum) 
point of the function is

Accordingly, for the tested yarn of count 20 of 741 turns of twist per m, and 32.13 mm 
staple length, the expected minimum filling breakage per 10000 shoots is 0.97.

Let us now consider the fitting of the correlation surface in the range of 
measurement points. Total correlation coefficient between filling breakage, turns of 
twist and staple length, characteristic of fitting, is with

Thus, the determined correlation function is nearly analytic.
In addition, it is essential to know partial correlation coefficient of the 

relationship between the number of filling breakages and the staple length:

Popt(741; 32.13; 0.97)

A = bl X(vl x l) + b2Z(v1 x 2) + b3Z(v1x 3) + b4Z(v1x 4) + b5Z(vl x 5)

B = Z(v2)

r
b2Z(vl x2) + b5Z(v1x s) 

Z(v2)
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Utilizing measurement values

11.229965 3 
1.292

= 0.975 697 4,

is a rather fair value.
Utilizing the determined stochastic function v=f(s, l) for the tested yarn count, 

the expected number of filling breakages per 10000 shoots for the specified turns of 
twist and staple length can be predicted, and the turns of twist and staple length can be 
determined, so as to produce the lowest number of filling breakages. Tests for the 
complete range of yarn counts show a strict stochastic correlation between turns of 
twist, staple length and expected number of filling breakages. Thus, in every case the 
stochastic function is a minimum where the number of filling breakages is the lowest, 
and so can be determined.

As a conclusion, proper selection of the turns of twist of the yarn and of the staple 
length is decisive for the productivity of weaving mills by optimizing the expected filling 
breakage number.

Until recently, turns of twist pertaining to staple lengths of elementary fibres in 
weft yarns to be processed have been empirically determined, based on factory 
observations.

The actual method permits, however, to require a much higher accuracy in 
selecting these two important weaving parameters. Investigations showed for a 
constant staple length with increasing turns of twist the filling breakage number to 
decrease for a while, then, after a minimum, with a further increase of the turns of twist, 
to increase again. Manufacturing aspects are imposed to provide for optimum turns of 
twist and staple lengths for weft yarns to be utilized. For turns of twist lower than 
optimum, elementary fibres in the complete yarn may slip along each other, total 
friction between elementary fibres is lower than the yarn’s tensile strength, increasing 
the risk of breakage. For higher than optimum turns of twist, the increased pressure 
acting on the yarn midline may cause some elementary fibres to slip out of the yarn 
cross section, reducing it, increasing thereby the number of expected filling breakages. 
F or higher turns of twist, the number of filling breakages is further increased by the risk 
of yarn looping.

For the same turns of twist, and short fibre lengths, if the total friction due to 
compacting forces is below the yarn tensile strength, the fibre is likely to slip out of the 
yarn. With increasing elementary fibre lengths, there is a lesser risk of yarn breakage, 
that has a minimum at a given fibre length, but with a further increase of elementary 
fibre lengths, the filling breakage tends somewhat to rise, since tensile stresses in outer 
fibres of the yarn reduce its tensile strength.

Acta Technica Academiae Scienliarum Hungaricae 97, 1984



102 CîKfcGA. В

References

1. Bukaev, P. T.: Causes of filling breakage in automatic looms. (In Russian). Textilnaya Promishlennost, 
Ivanovo, April 1964, p. 27-28.

2. Bidadorov, R. V.: Testing the stress of weft yarns in looms. (In Russian). Textilnaya Promishlennost, 
Ivanovo, September 1968, p. 32-35.

3. Mourot, A.: La régulation servo-éleclrique de la tension au métier à filer. L'Industrie Textile, Paris, Avril 
1952, 192-194.

4. Walter, H.: Der Einfluß der Spannung auf den Ausfall des Gewebes. Textil Praxis, Stuttgart. Januar 1969.
5. Zilahi, M.: Raw Material for the Textile Industry (ln Hungarian). Tankönyvkiadó, Budapest 1933.
6. Grega, В.: Correlation Calculus and its Uses in the Textile Industry, (in Hungarian). Institute of 

Postgraduate Engineering Education, G.38. Budapest 1964.

Acta Technica Academiae Scientiarum Hungaricae 97, 1984



Acta Technica Academiae Scientiarum Hungaricae, 97 ( / — 4)% pp. /03— 110 f 1984)

STRESS FUNCTION OF SINGFE-LAYFR 
RETICULATED SHELLS AND ITS RELATION TO THAT 

OF CONTINUOUS MEMBRANE SHELLS

I. H e g e d ű s*

[Received: 14 February. 1984]

The paper shows that the stress state of a single-layer reticulated shell of general triangular 
network can be described by a stress function which is perfectly analogous to Pucher’s stress function 
of membrane shells. The stress function can be interpreted as the equation of a polyhedron having a 
ground plan network identical with that of the reticulated shell. It is also shown that the bar force 
system of the reticulated shell can be considered as a strongly degenerated membrane force system of 
a specially shaped and loaded membrane shell.

Pucher’s differential equation is generally used in determining stress states of 
membrane shells. If the external load of the shell consists of distributed forces normal to 
the ground plan, the problem of determining its membrane forces can be stated as a 
boundary value problem of a second order linear partial differential equation of 
variable coefficients. Using Cartesian co-ordinates x, y and denoting the shape function 
by z(x, y) and the function of the external load by p(x,y)z , the differential equation

<l2z d2F d2z d2F d2z d2F _
dx2 ду2 дхду dxdy + dy2 dx2 ^ ( 1 )

of the stress function F expresses the equilibrium condition of the vertical component of 
internal and external forces acting on an infinitesimal element cut out of the shell. 
Equilibrium conditions of horizontal components are automatically fulfilled, the 
membrane forces being derived from the stress function as follows:

N.=
d2F
dy* ( 2)

The sufficient condition of using the stress function is that the derivatives of z in Eqs ( 1 ) 
and (2) have to be finite over the ground plan of the shell, i.e. its surface must not contain 
points of discontinuity in the Oth and 1st derivatives or points with tangent planes 
normal to the x, y co-ordinate plane, and all the second derivatives in Eq. (1) must not 
vanish at the same point, i.e. the surface must not contain points of zero curvatures 
(plane points).
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There is an alternative way to express the equilibrium conditions of the external 
and internal forces acting on the shell. If a shell element has a circular boundary in the 
ground plan, the following equation holds:

abs [Nrn + N rip t]

dz
rdq>

rd(p +

2n r 
Г Г

PzP dp d<p = 0
J  %0 0

(3a)

where ./Vr and Nr<p are the normal and tangential membrane forces along the boundary 
and n and t denote the unit vectors of their directions. Using the relations between the 
membrane forces and the stress function F, the above condition can be written as

2 n 2 n r
d2F 1 d F \ d z  id  dF

r2dq>2 + r dr J  dr rd<p 
0 0 0

dz
rd(p

r d(p + p.p dp d(p = 0 (3b)

The first integrals in both equations represent the resultant of the membrane forces 
acting along the boundary, and the second ones give the resultant of the loads. 
Integrating by parts, Eq. (3b) can be transformed in such a way that functions F and z 
formally exchange their roles:

2 n

0

1 (9z\ dF 
r dr )  dr

'd_ dz \  dF 
dr rd(p J rdcp

rd<p +

2 n r

J  JpzPdpd<P = 0. 
0 0

(3c)

The similarity between the static behaviour of membrane shells and that of single layer 
reticulated shells suggests the idea of searching a stress function of bar forces of 
reticulated shells which describes the stress state of reticulated shells analogously to 
that of membrane shells described by F in Eqs (1H3).

The research carried out by Dean and al. [1] and, independently of them, by the 
author [2] shows that it is possible to obtain such functions. If the projections of the 
joints of a network form a translationally symmetric point system in ground plan, 
properly chosen combinations (differences) of the actual values of a function at these 
points can be interpreted at each point as horizontal components of the bar forces 
acting in the bars attached by hinges to the point in question. If these horizontal 
components form a system of equilibrium at each joint, the arbitrarily chosen function 
determines a set of vertical nodal forces which can be considered as the external load. 
Its elements can be calculated by formulating the missing third equilibrium condition 
for each joint. These equations expressing the equilibrium of vertical components are 
analogous to Eq. (1). The translational symmetry of the projected network permits us 
to write down the system of equations as a single difference equation. This equation 
may show some similarities to Eq. (1), but in general, i.e. if the projected network is a
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general triangular network having no symmetries, the differences in the equation 
cannot be interpreted.

In the following analyses we will show that a stress function of single layer space 
grids, analogous to that of continuous membrane shells, can be defined in the case of 
general triangular projected network, and, moreover, that this function is a solution of 
a singular differential equation of the stress function of a polyhedron shaped 
“membrane shell”, loaded by concentrated forces at its summits.

Let z and F be two polyhedrons with identical projected network in the 
horizontal X ,  y plane. (Letters z and F refer to the analogy with the shape and stress 
functions used in Eqs ( 1 )—(3).) To avoid degenerated cases, let us assume that each face 
of z and F has a normal with a positive component in vertical direction (Figs 1 a. and b.). 
Let radii be drown from the origin to a fixed horizontal plane H in such a way that the /- 
th radius is perpendicular to the i-th face of the polyhedron F, and let the point of 
intersection of the i-th radius on the plane be denoted by P ,. If the i-th and y'-th faces are 
adjacent ones, let P, and Pj be connected by a straight line (Fig. 2). Having connected all 
pairs of points belonging to the adjacent faces, we obtain a polygonal plane network. 
This network can be considered as a dual of the common projected network of z and F, 
with the following correspondences:
— Each node in the dual network corresponds to a triangle in the primal network; the 

corresponding triangle is the projection of a face-triangle of F.
— Each dual line corresponds to a primal line so that the dual line connecting Pt and Pj 

corresponds to the projection of the edge lying on the intersection of the adjacent i- 
th and y'-th faces of F; the corresponding primal and dual lines are normal to each 
other.

— Each node in the primal network corresponds to a polygon in the dual network; the 
polygon which corresponds to the projection of the k-th summit of F is bordered by 
lines corresponding to the projections of edges intersecting each other at the k-th 
summit.

Acta Technica Ai aJcmiae Scientiarum Hungaricae 97, I9H4
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Fig. 2

The /с-th polygon of the dual network can be interpreted as the closed projection vector 
polygon of forces acting along the edges of z which intersect each other at the k-th 
summit, if we rotate the polygon by an angle equal to n/2. Since this interpretation 
holds for each summit of z, the dual network can be considered as a rotated combined 
vector diagram of forces which satisfy the horizontal equilibrium conditions at each 
primal node, or as that of projected bar forces of a single-layer reticulated shell with 
hinged joints which has a network identical with that of the polyhedron z. The external 
forces acting at the summits or joints can be calculated by using the equilibrium 
conditions of the vertical components of the forces. Since the horizontal projection 
vector diagrams are closed polygons, the external forces must not have horizontal 
components.

To sum up, we can state that the polyhedrons z and F of common projection 
network determine a system of vertical nodal forces acting on z in a way as presented.

To derive algebraic relations between the functions z and F and the external 
forces, let us assume the distance of the plane of the dual network and the co-ordinate 
plane X ,  y  as unity.

The position vector of the dual node which belongs to the projection of the face 
triangle ABC of F is (Fig. 3)

‘ a e c  = (^  + k  • F ^ — г й  — к  • FB) x ( r B + к  • FB — r c  — к  • FC)/TABC =

rA xk
_ TABc

(FB- F C) + rflxk
T A b c

(Fc- F a) +
r c  X к

"Fa b c
(F A - F в) +  к

where i, j, к are the unit vectors in the x, у and z directions resp. and rA + kF^ , rB + kFB, 
rc +  kFc are the vectors of the summits А, В, C of F,

TABC =  k ( r A XTB + TBxr c + rc x r A)
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is the double area of the projection of the triangle ABC. Determining the vector of the 
dual node belonging to the adjacent face triangle CDA and subtracting the two 
vectors, we obtain the vector of the dual of the edge AC\

*AC —  * ABC ~  t CDA

The length of tAC is equal to the projection N AC of the force N AC acting along the edge 
AC:

N AC —
+  ( Г д - Г с Н Г с - r J

TcDA

( rA - T p ) ( r c - T A)
T f D A

1ABC
+ FD(rc ~  ra)2)

Fc d A J (4)

Taking into account that

Tabc = AC ■ AB ■ sin (BAC) = CA CB sin (ACB) , 

Fcda= ^ C -  AD ' sin (CAD) = ~CÄ CD sin (DCB) , 

(rB -  rc) (rc -  тл ) / 1 rc -  rA I =  -  CB ■ cos (ACB) ,

(Го-Гс)(гс-Гл)/|гс - 1\4 | = - C D  cos (DCA), 

( г а - т в ) ( т с - г а ) / \ т с - г а  I = —AB cos(BAC), 

(rA- T D)(Tc - r A)/\rc - r A \ = - A D  cos(CAD),
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we obtain:

CB • sin (ACB)

ctg(BAC) ctg(CAD)
CA CA AD - sin (CAD)

(5)

Eq. (5) permits us to present another geometric interpretation of N AC, idependently of 
the dual network. That is, N AC is equal to the change of slope of a broken line which is 
the line of intersection of F and a vertical plane normal to the projection of the 
intersected edge AC (Fig. 3). The elements of the load are determined by computing the 
original (not projected) values of the edge forces and producing the sum of their vertical 
components at each summit. The resulting vertical forces can be directly determined by 
producing at each primal node the sum of the products of the projected forces and the 
slopes of the corresponding edges of z.

An interesting feature of Pucher’s differential equation is that the formal 
exchange of the role of F and z does not affect the function of the external load (see also 
Eqs ( 1 )—(3)). The above derivation can be extended to show that this interchangeability 
in our case also holds. Namely, we obtain the same results as obtained before, if we 
produce the sum of the products of the change of slope of broken lines lying on z and the 
slopes of the edges of F. Another feature of Pucher’s differential equation is that by 
adding the equation of an arbitrary chosen plane to F or z we do not affect the external 
load. We can easily prove the same invariancy in our case too.

Let us investigate what assumptions have to be used for directly deriving our 
results from Pucher’s differential equation. Let us consider a membrane shell which fits 
a triangular network of a reticulated shell. This “membrane shell” is far from being a 
usual one, because it may have edges and it has to have summits. Despite of these 
unusual properties we assume that a stress function exists which describes the state of 
stress of the structure subjected to vertical loads acting at the summits. Let the equation 
of the surface be

where z0 is the equation of the polyhedron. The other part of z is not determined by the 
assumption that the network of z0 fits the surface z, but őz must vanish along the lines of 
fitting. Since Pucher’s differential equation contains only linear differential operators, 
we can decompose this equation, written in a concise form as F£(z, F) = p , as follows:

Let us assume that z0 and F perfectly determine the state of stress of the reticulated shell 
with hinged joints having the same network as the polyhedron z0 . If this assumption is 
correct, then F£(ôz, F) has to vanish at every point of the surface. Since óz is not 
determined by the network, F£{őz, F) can only vanish everywhere if the second 
derivatives of F vanish inside each triangular domain bordered by the projections of

z = z0 + ôz

X(z,  F) =  <e(z0 +  ôz, F) = Sf(z0 , F) + &(ôz, F) .
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the netlines. This condition does not concern the points lying on the projection lines, 
because here—denoting by t the co-ordinate parallel to the projection line and by n the 
co-ordinate normal to it—d2(ôz)/dt2=0 is ensured by Sz = 0, hence (d2z/dt2)(d2F/dn2) 
=  0 can also hold when d2F/dn2 ^  0. A surface having nonzero curvatures only above 
the netlines of a triangular network has to be a polyhedron having a projected network 
coinciding with that in question, hence the stress function which satisfies our previous 
assumption has to be the equation of such a polyhedron. Since Eqs (2) cannot be 
interpreted along the edge lines of the polyhedron, we have to render the relation 
between the internal forces and the stress function more exact. Let A be a small line 
section of direction n in the xy  plane, perpendicularly bisected by the projection of an 
edge line. The resultant of the projected membrane normal forces acting on this section 
can be formally obtained as follows:

N(A) =

+ 4/2

Í
-4/2

d2F
dn2

Though the integrand inside the domain of integration becomes infinite, the integral 
itself is finite. If we fix the lower or upper limit of integration and let A to tend to zero, 
the integral vanishes, because the same value of dF/dn belongs to both end points of A. 
However, if we let A tend to zero in such a way that the end points of A remain at 
different sides of the bisecting line, the integral tends to a nonzero value:

lim N(A)= N .
4 - 0

This integral represents the projection of a force. In our case the corresponding edge 
lines of the polyhedrons z and F have common ground plan projections, hence the 
forces belonging to the edges of F represent forces acting along the edges of z. The fact 
that the integral vanishes at the regular points shows that the internal part of the 
triangles bordered by the edges is in a state free of stresses, thus the external loads at the 
summits are balanced only by the edge forces, analogously to the single-layer space 
grids with hinged joints.

Using Gauss’s theorem, we can prove that this generalized interpretation of 
membrane forces does not hurt our fundamental assumptions, since horizontal 
equilibrium conditions are satisfied everywhere.

The external forces defined by the polyhedron functions can be determined using 
Eqs (3b) or (3c). If the domain of integration does not contain any nodes, the value of the 
first integral is zero, hence the second integral also vanishes. If the integration is 
performed for a small circular domain around a node, Eqs (3b) and (3c) express the 
equilibrium of two forces: one is the resultant of the edge forces intersecting each other 
at the summit, and the other is the external nodal force.

Summing up the results of our analysis we can state that the states of stress of a 
membrane polyhedron and a single-layer space grid with hinged joints which have
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identical triangular networks and are loaded by the same system of vertical forces 
acting at the summits or joints respectively, can be considered as identical and both can 
be described by the same stress function. Hence this function can be considered as the 
stress function of the single-layer space grid, too.

The value of our results is shown by the fact that they make it possible to extend 
the use of various methods based on the analogies between membrane shells and space 
grids which have been used so far only in the cases of regular networks.
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BÜCKLING OF SANDWICH COLUMNS
WITH THIN FACES UNDER DISTRIBUTED 

NORMAL LOADS

I. H e g f d ű s *, L .  P .  K o l l á r * *

[Received: 17 January 1984]

The paper derives the differential equation of buckling of thin-faced sandwich beams (i.e. 
beams developing flexural and shear deformations as well) and presents two methods for the 
calculation of the critical load and the buckled shape of such columns, provided the distribution of 
the normal forces is given as a power series.

Some examples are presented to illustrate the applications of the methods. The results are 
shown on diagrams, and are compared with approximate results obtained by the application of 
Föppl’s theorem.

1. Introduction

The stability analysis and design of bent and compressed structures usually 
neglects the influence of shear strains on deflections, on stresses and on the value of the 
critical load. However, the error caused by this approximation may exceed the 
allowable inaccuracy in several cases, e.g., sandwich structures, coupled shear walls and 
built-up columns.

This paper deals with such cases and presents an analysis on the calculation of 
the critical load of columns with shear deformations, subjected to arbitrarily 
distributed axial loads.

The solution of the problem for the case of a uniformly distributed compressive 
load can be found in [2].

In our paper we solve the problem for forces given by a power function or power 
series, and moreover, we generalize and refine some statements made in [2].

2. The differential equation of buckling

Let us consider a column built-in at the bottom and free at the top, subjected to a 
distributed axial load of intensity q(:). The height of the column is H (Fig. 1).

T e bending stiffness is denoted by

B=EI ,

* Hegedűs. I. H-20K3 Solymár. Váci Mihály u. 10. Hungary 
** Kollár. L. P. H-1122 Budapest, Karap u. 9. Hungary
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Fiy. I. The cantilever with the co-ordinate system

and the shear stiffness is
S = AG/n.

Let us write the formulas for the internal forces and moments, N(z), Q(z) and M(z) 
of the cantilever with the aid of the horizontal displacement y(z). The positive signs are 
shown in Fig. 2.

The vertical force (equal to the normal force in the case of small displacements) is:

N ( z ) = U  Odf. (2.1)

The shearing force becomes:

Q(z) = N(z) ~ .
dz

(2.2)

The bending moment is:
M(z)= f Ш - А О Ш Ж - (2.3)

The relationships between the bending and shear deflections [3, 4] and the 
internal forces are the following.

The "bending curvature” from the “bending displacement” (yM) is:

d2yM = _
dz2 В

(2.4)

(2.5)

and the “shear distortion” from the “shear displacement” (ys) becomes:

dys = Q
dz S '

The total displacement of the cantilever consists of the sum of bending and shear 
displacements: У — Ум + Уз- (2.6)

Let us differentiate Eq. (2.3) with respect to z. We thus obtain

dM
^lz ~  J Ы * ) - Ж ) М Ж =

àyjz)
dz

с
4(0dC =

dy{z)
dz

N(z).
0

(2.7)
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N(z) N(z)

z

Fig. 2. The forces acting on the cross section "z"

Let us differentiate Eq. (2.6) three times and let us substitute the appropriate 
derivatives of (2.4) and (2.5) into it.

Making use of (2.7) and (2.2) we obtain

In the case of N = pz, Eq. (2.8) becomes identical with the differential equation of 
buckling presented in [2], thus Eq. (2.8) can be considered a generalization of that 
equation.

To simplify the discussion, let us introduce a new variable

and let us denote the differentiations with respect to C by commas. Hence Eq. (2.8) 
becomes:

= -  -5- ЯУ + i  [ N  V  + 2N Y  + Ny'"]. (2.9)D S

We can reduce (2.9) to a second order differential equation by introducing the 
tangent of the deformed axis as a new variable instead of y.

If we write the equilibrium equation of buckling with the bending displacement 
yM instead of the complete displacement y, we again obtain a homogeneous differential 
equation of the third order. This equation can also be reduced to a second order one by 
introducing the rotation of the normal of the cross section as a new variable (which is 
different from the previous tangent due to the influence of shear strain y).

у'м can be expressed with the aid of ÿ  in the following way. Let us differentiate Eq. 
(2.6) once with respect to z, and introduce expressions (2.5) and (2.2) into it. We thus 
obtain д,

У' = Ум+ j ÿ ,
hence we arrive at

( 2. 8)

S - N
(2.10)
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Let us denote the “bending rotation” by ip:

<P — Ум ■

Using (2.9) and (2.10) or using expressions having been used in the derivation of 
Eq. (2.9), we obtain a comparatively simple differential equation of buckling

<P” = n ( i ;<P”- (2-11)

which, in our case, simplifies the boundary conditions too.

3. The boundary conditions

Firstly, we will give the boundary conditions for (2.9). 
a) At the top of the bar the horizontal displacement is equal to zero, because we have 

fixed the origin of the coordinate system at the end of the cantilever:

У<0) =  0. (3.1)

h) The bending moment is also equal to zero at the top, hence using (2.4) we have

.Ум(О) = 0. (3.2)

Using (2.5) and (2.6), the same condition written in the terms of у is as follows:

/ ( 0 )
N(0)

~ ^ N ’(0)y'(  0 )  =  0 . (3.3)

■) At the built-in lower end the “bending rotation” is equal to zero:

Ум ( 1 ) =  0. (3.4)

Using (2.5) and (2.6), the same condition expressed by у assumes the form

m i/ о ) =  0. (3.5)

This boundary condition is satisfied if /(1 )  =  0, that is if у'лД 1 ) +  yV( 1 ) =  0. 
According to (2.2), the shearing force also vanishes, hence both yr(l) a°d >m(1) have to 
vanish, and moreover, the following expression must hold (see (2,7) and (2,4)):

УлИ 1 ) — 0 . (3.6)

On the other hand, the boundary condition can also be fulfilled if 1 — [N(l)/S] 
=  0, that is if N(\) = S. In this case the value of / 0 )  can be arbitrary. Solutions 
belonging to y ( l ) = 0 o r  N(\) = S exclude each other except if we have y'( 1 ) =  0 and the 
normal force, caused by the critical load at the lower end, is equal to S.
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Equation (2.11) needs only two boundary conditions. At the free upper end the 
bending moment has to be equal to zero, hence:

(P'(0) = 0 (3.7)

and at the built-in lower end the “bending rotation” must be zero:

</>(!) =  0. (3.8)

It seems that in this case we have avoided the problem caused by the ambiguity of the 
boundary condition (3.5).

Actually, in the case of N = S, the relation between ÿ  and <p expressed by Eq. 
(2.10) becomes indetermined.

4. Solution of the differential equation by means 
of a power series

In the case of uniformly distributed load the differential equation (2.9) has been 
solved using a power series in [2].

In this section we will generalize the results of [2] applying the same method and 
we will solve the equation (2.9) for a more general case.

Let the function of the normal force be:

(4.1)N(z) = N e[ -  ) =/V„£"

wherein n is an arbitrary positive integer, Nn is a parameter depending on the load, 
whose value is positive if N(z) means compression.

Substituting (4.1) into (2.9), we obtain

у"'-Я[п(п-l)Ç”~ V  + 2/tC" 1 y"+ CY" ] + ;./)("/ = 0

where

/.= К
S ’

(4.2)

(4.3)

ß =
H 2S

В
(4.4)

([2] denotes by ß the value of (4.4) multiplied by 7.84.)
Let us attempt to find the solution of the incomplete third order differential 

equation in the form of the power series:

У= Z (4.5)
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wherein a0, . . ak, . . .  are unknown coefficients. The first three derivatives of (4.5) are 
as follows:

У'= t  kakC ~ l , (4.6)
k = 1

/ =  X k (k - \ )akCk 2, (4.7)
k = 2

Г -  t  k ( k - l ) ( k - 2 ) a k? - 3. (4.8)

Let us substitute these derivatives into the differential equation (4.2). The 
solution function (4.5) has to satisfy the differential equation for any value of £, so that 
the coefficient of each power of £ must equal zero.

Hence a formula can be generated for the successive determination of the 
unknown coefficients:

ak = 0 if 2 <k<n,  (4.9)

“ k =  ' - “ k Л

k[(k — 1 ) (k — 2) + 2n(/c -  1 ) + n(n — 1 ) 
~ k ( k ~ \ ) ( k - 2 )

if n<k<n + 2, (4.10)

uk = . . —гг {ак .п(к -п -2 ) [ _ (к -п - \ ) ( к  + п-2)  + п (п - \ у \ -k ( k - \ ) ( k - 2)

- a k„„-2ß ( k - n - 2 ) } ,  if n + 2<k.  (4.11)

Expression (4.5) has to satisfy not only the differential equation but also the boundary 
conditions.

From condition (3.1) we obtain

«o = 0. (4.12)

From equation (3.3) and (4.1) we find that this boundary condition can be
satisfied, if

у"(0)-л/(0) = 0, if /1=1 (4.13)
and

y"(0) = 0, if n>  1. (4.14)

Hence we have
/

«2=т«1 .  » /1=1, (4.15)

a 2 = 0, if n>  1. (4.16)
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Finally, the solution function has to satisfy the boundary condition (3.5). This can be 
achieved in two ways. Either

I  kak = 0, (4.17)
к = 1

or
/ =1 .  (4.18)

must hold.
Let the second case be temporarily excluded from the discussion.
The buckling shape (4.5) belonging to the indifferent state of equilibrium is 

indefinite because of an indetermined constant factor, so that we can give any (nonzero) 
value to a, (which appears in the expressions of all other coefficients).

For the sake of simplicity let this value be:

a, =  l. (4.19)

Eq. (4.9) to (4.12) and (4.15) or (4.16) are recursion formulas for the coefficients of the 
power series (4.5), in which all coefficients depend on a , .

We have to determine the series of the coefficients in such a way that it satisfies 
Eq. (4.17) too. Choosing suitable values for /f, we can construct an arbitrary number of 
such series. The solution to the problem requires to determine the series which belongs 
to the smallest value of A.

The smallest value of A can easily be determined using a step-by-step 
approximation, but this procedure needs a computer.

The recursion formulas of the coefficients obviously show that in the case of л = 1 
the power series is divergent, while in the case of A < 1 it is convergent, independently of 
the value of ß. However, it is not sure that we can satisfy Eq. (4.17) in the case of any 
value of ß.

Actually, the results of the computer analysis have shown that there is a 
monotonously increasing sequence of numbers

ßo = 0 < ß l <ß2< . . . < ß n< . . .

that represent lower limits of ß for any value of n.
The value of л is equal to 1, and Eq. (4.17) cannot be satisfied, if ß is below the 

limiting ßn value. If ß >ßn, then the coefficients can satisfy Eq. (4.17) and the calculation 
yields a value / <1 .

We found that /3, does not differ from n in the first three decimals but this 
coincidence may be accidental. So far we could not find a direct way for deriving exact 
values of the numbers /)„.

Some other values of ß„ can be found in the diagram presented in Fig. 3.
The surprising result that A does not depend on В and on H if ß<ß„  can be 

explained by clarifying the role of S in buckling.
In the case of “slender” beams (i.e. if ß> ß„) the possibility of shear deformation 

reduces the critical load in such a way that rising deformation due to a given loss of
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Fiy. 3. Parameter A as a function of the ratio of rigidities in the case of different normal loads whose 
distributions are described by power functions of the n-th degree

potential energy of the loads is hindered by less internal resistance than that in the case 
of no shear deformation. On the other hand, in the case of ß < ß„, when the beam is “not 
slender”, the normal force can reach, in a certain cross section, the value of the shear 
stiffness before “global” buckling, and the beam gets into an indifferent state of 
equilibrium because the shear strain becomes indefinite here, independently of the 
“global” state of deformation of the beam.

4.1 Results of numerical analyses

Values of X are plotted against ß with full lines due to load distributions 
characterized by different values of n in Fig. 3.

The curves determined with (4.17) intersect the line À = 1 (4.18) at the values of ßn. 
If ß is not far from ß„, then the coefficients ak of the power series decrease very slowly, so 
that the sequence of partial sums badly converges to the solution. However, the speed 
of calculation can be improved also in this case using asymptotic expressions for 
coefficients ak belonging to higher powers of Ç. We used this trick for obtaining 
approximate values of ßn too.

It is not easy to see in Fig. 3 that if ß -юо (i.e. if the shear deformation tends to 
zero), we get results in agreement with the elementary buckling theory of beams [1] 
(Table I).
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Table 1

n 1 2 3 4 5 6

m  — lim //( 7.84 16.10 27.26 41.30 58.24 78.07fi -  or,

N„ -■ m
В

tT2 (4.20)

The "exact” results can be compared with the approximate ones in Fig. 3. Values 
plotted with dotted lines were calculated by using a formula based on Föppl’s theorem
[2].

To use the theorem we need the “pure” critical loads. The critical load for "pure 
shear” is equal to S.

The critical load for “pure bending”, N cro can be calculated by using Eq. (4.20) 
and Table I (for n<6).

According to the theorem we have

N„7> (4.21)

wherein Ncr is the “exact” critical load, taking both bending and shear deformation into 
account.

If the sandwich beam has a low shear stiffness, the approximate value (4.21 ) of the 
critical load can be 30 — 40% less then the exact value.

The comparison also shows that shifting the dotted lines to the left byß„ results in 
an approximate fitting of the corresponding full and dotted lines.

Hence

can be used as a very good approximation of the critical load.

5. Solution of the differential equation by using 
a successive approximation

where

Let the function of the normal force be a polynomial of the и-th order

N ( Q  =  N 0 - a ( Q

a( 0 = a o + a iC+ • • • +<*„£"•

(5.1)

(5.2)
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For the sake of uniqueness of a((), let the expression a(()< 1 hold in the interval 
0 < C <  1, with the equality valid at least at one point of the interval.

Introducing (5.1) into (2.11), we obtain

where

and

<p" = #(p" -  ß<pMQ (5.3)

2 =
Nо
S

ß =
SH2
I T  '

We carry out the approximation as follows.
Let us take a simple function (p0 that satisfies the boundary conditions (3.7) and

(3.8) e.g. ,  .
c P o = l - ^ 2+ j C 3. (5.4)

The following recursion formula will be used:

<p;+ i = ( < p ' ; - ß q > M i ) -  (5.5)

Performing two integrations we obtain for q>i + l :

<pi + ! =  C l +  C2C + а‘2+ Ч 2 + u-3+ lC3 + • - - + a‘m+ Km, (5-6)

where C, and C2 are integration constants. (The upper indices of the coefficients a‘k+1 
are not powers of exponentiation.) cpi+l has to fulfil the boundary conditions (3.7) and
(3.8), hence we have

C2 = 0

and

C i—  Ê 4 +1.
i= 2

In this way the boundary conditions stated for (p are fulfilled in each step of the 
recursion, while it generates approximate polynomials for <p of higher and higher 
degrees m.

If the method is convergent, namely if

lim (r-(pi + i -q>i) = 0, 0< C< 1
i-* CO

holds, then, in the case of Я =  r, <p, satisfies the boundary conditions and, in addition, 
also the differential equation.

To avoid loss of accuracy caused by using too great or too small numbers in the 
calculation, it is useful to normalize <Pi in each step e.g. in such a way that we divide each 
coefficient by Cl . In this case Ct has to tend to Я.
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We found that the method is convergent for arbitrary functions a(Ç). It produces 
the critical A value even if it is independent of B.

5.1 Numerical example showing the application of successive 
approximation

The importance of successive approximation is shown by the fact that we can use 
it for arbitrary distribution of normal forces.

Let the distribution of the normal force be e.g. a second order parabola:

a(C) = 2C-C2.

Using successive approximation for different values of ß, we can plot the critical 
parameters belonging to them as shown with full line in Fig. 4.

Let us compare these results with those obtained by Föppl’s theorem.
In the case of infinite shear stiffness the critical load of the cantilever is [5]:

"c r„  = 5 . 1 ^ ,

and in the case of infinite bending rigidity it is equal to S.
Figure 4 also shows the approximate values of Я, depicted the above “pure” 

critical loads, with dotted line. As can be seen, the maximum relative error of the 
approximate formula exceeds 20%.
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BUCKLING OF SANDWICH COLUMNS 
WITH THICK FACES SUBJECTED 

TO AXIAL LOADS 
OF ARBITRARY DISTRIBUTION

I. H e g e d ű s * — L .  P .  K o l l á r * *

[Received: 17 January 1984]

The paper presents the differential equations of buckling of sandwich columns with thick 
faces and a method based upon successive approximation to determine the critical load and buckling 
shape of columns subjected to an axial load distributed according to a polynomial function. The 
paper also presents a table for the calculation of the critical load of sandwich columns with various 
ratios of rigidities and subjected to uniformly distributed axial loads.

1. Introduction

The elementary theory of sandwich beams neglects the bending rigidity of the 
sandwich faces, or simply considers it as a small component of the total bending 
rigidity. This assumption usually does not cause any essential inaccuracy in the 
calculations. However, there are some engineering problems in which the elementary 
theory of sandwich beams proves deficient because of the above mentioned 
simplification.

Buckling of not slender sandwich beams can be considered as a typical example 
of such problems. The elementary theory of sandwich beams yields S (the shearing 
rigidity) for the upper limit of the critical load of not slender sandwich beams. However, 
many observations have shown that in several cases, due to “local rigidities”, the 
critical load can significantly exceed this limit.

The aim of this paper is to deal with this problem and to develop a method which 
can be used in the case of almost arbitrarily loaded sandwich cantilever beams for 
calculating a more accurate value of the critical load than those presented so far.
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** L. P. Kollár, H-1122 Budapest Karap u. 9. Hungary
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2. The differential equation of buckling of sandwich 
columns with thick faces

The principal difference between the thin- and thick-faced sandwich beams is 
that in the case of the latter the bending rigidity of the entire column is to be considered 
as if it consisted of two parts:

B = B0 + Bl (1)

Here ВI is the “local” bending rigidity, namely the sum of the bending rigidities of the 
two faces, referred to their own centroidal axes, and ß 0 is the “global” bending rigidity 
of the sandwich beam with thick faces, obviously this is the part of В that belongs to the 
Steiner terms of moment of inertia of the composed cross-section.

The curvature of the axis of the deformed sandwich column consists of two parts 
(as it was also assumed in the elementary theory [4]):

d2y
dz2 j ~ ( < p + y ) ( 2)

where cp is the rotation of the normal of the cross section, and у is the shear strain 
(angular distortion) of the cross section (Fig. 1). According to the two parts of the 
bending rigidity, the bending moment belonging to the change of curvature consists of 
two parts too:

d to d d(p dy
M = - b o d f - ß 'd z ^ + ^ - B d 7 - ß 'd ? (3)

The main difference between the thin- and thick-faced sandwich beams is that with the 
former ones the change in curvature caused by the shear strain can develop without any 
resistance, while with the latter ones it causes bending moments in the faces. This is the 
reason of having a second term ( — B,dy/dz) in Eq. (3).

The total shearing force of the cross section consists of two parts too:

Q = - B 0
d2<P

dz2 B,-^2(<P + y)= ~ B
d 2(p
dz2

R d2y 
~ B‘d.?■ (4)

It is only a part of the shearing force (B0 d2<p/dz2) which gives rise to shear stresses in 
the core of the cross section, so that it is only this part that causes shear strain:

od 2<P 
S dz2

Introducing (5) into the expression of the shearing force (4), we obtain a differential 
equation which contains only one of the unknown deformation parts. Disregarding 
irrelevant rigid-body displacements, the buckling shape of a sandwich cantilever beam 
under distributed normal forces can be described by using the function of rotation <p(z).
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Fiy. I. Positive deformations and forces of the sandwich column

Hence, if we can express the differential equation of equilibrium and its boundary 
conditions in terms of cp(z), there is no need of determining y(z).

Let us set the cross sectional shearing force equal to the component of the load 
that is normal to the axis of the deformed beam. Assuming small displacements we 
obtain

d2<p d2v
- ß ~  ~ Bid_2 =N(z)cr(<p + y). (6)

Let us write the normal force as follows:

N(z)= Not(z) ,

and denote the critical value of N by N„. Introducing the appropriate derivatives of (5) 
into Eq. (6), we arrive at

BoB, d V
~ S dz4 -(В о  + Я/)

d 2<p 
dz2

+ N crcc(z) (  B0 d 2<p 
\  S dz2

=  0 . (7)

Fixing the origin at the upper end of the cantilever (Fig. 1), the boundary conditions of 
the differential equation are as follows:

at z = H (p = 0 (built-in end),

at z = 0 d<p/dz = 0 (M0 = 0),

at z = H d2cp/dz2 = 0 (clamped faces),

at z = 0 d3(p/dz3 = 0 (M ,= 0).

(8a to d)
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Since the mathematical formulation of buckling is an eigenvalue problem of a linear 
differential equation and its boundary conditions, we have to determine the smallest 
eigenvalue belonging to an eigenfunction, which satisfies the (7) differential equation 
and fulfils its boundary conditions (8a to d).

3. Sandwich cantilever subjected to constant compression

In the case of a(z)= 1, namely if the load is a concentrated force at the top of the 
cantilever, we can easily solve the problem. Due to the regularity in the signs of the even 
derivatives of the differential equation, the solution can be constructed of trig
onometric functions. The functions

, , (k) C2 k -l)n z
V (z)k =  <Pw  cos— — — , к  = 1 ,2 . . .

also fulfil the boundary conditions. Introducing these functions into Eq. (7), we obtain 
the formula for the critical load:

Nlk) =
( 2 k - \ ) 2n2B0 

" (2H)2
+  s -

( 2 к - \ ) 2к2В, 
(2 Я)2

(9a)

We obtain the smallest critical force by substituting k=  1 into (9a). We can also give a 
physical interpretation of the terms in Eq. (9a). The inverse of the first term in the square 
bracket and the last term of the expression are critical loads (NkE0 and N EI) of Euler 
beams with flexural rigidities B0 and В, respectively. S is the critical load of a sandwich

Table I. The value of N crH 2/B in the case of uniformly distributed axial load

BJB
S H 2/B

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0. 0. 0.392 0.784 1.567 2.351 3.135 3.918 4.702 5.486 6.269 7.053 7.837
0.2 0.200 0.904 1.314 2.102 2.882 3.658 4.432 5.021 5.957 6.698 7.385 7.837
0.5 0.500 1.465 1.917 2.717 3.486 4.238 5.025 5.691 6.378 7.015 7.552 7.837
1.0 1.000 2.142 2.642 3.449 4.185 4.887 5.551 6.179 6.757 7.265 7.658 7.837
2.0 2.000 3.094 3.589 4.366 5.026 5.618 6.178 6.679 7.111 7.473 7.729 7.837
n 3.141 3.869 4.313 5.000 5.583 6.098 6.556 6.960 7.303 7.575 7.629 7.837

5.0 4.211 4.709 5.057 5.637 6.117 6.532 6.892 7.202 7.458 7.655 7.787 7.837
10.0 5.597 5.861 6.080 6.457 6.773 7.052 7.279 7.466 7.620 7.736 7.810 7.837
20.0 6.570 6.706 6.828 7.045 7.230 7.388 7.522 7.632 7.719 7.783 7.823 7.837
50.0 7.287 7.344 7.395 7.571 7.574 7.641 7.700 7.749 7.787 7.815 7.832 7.837

100.0 7.554 7.583 7.609 7.657 7.700 7.736 7.767 7.792 7.812 7.826 7.834 7.837
OO 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837
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beam with thin faces and with infinite bending rigidity. This latter critical load is 
independent of the buckling shape. Introducing the above critical forces into (9a), we 
obtain

K \' = [(N% )-l + S - ' y l + N%. (9b)

This equation is identical with the formula derived on the basis of Föppl's theorem for 
the estimation of NCT of a sandwich beam with thick faces, subjected to an arbitrarily 
distributed normal load. Thus in the case of the boundary conditions used above and of 
a single concentrated force at the top of the column this approximate formula proves to 
be exact.

4. Solution to the problem in the case of arbitrary 
distributed axial forces

If the function a(z) in Eq. (7) is not constant, then the solution of the problem 
becomes more difficult. We can use FöppFs theorem (9b) and by so doing we obtain a 
lower limit for the value of the critical load. To use this method we should know the 
critical forces NE0 and N E, belonging to the given distribution of the normal load. 
These values, however, can be found only for some special cases in reference books and 
manuals [1], [5]. In many cases Rayleigh's quotient or some analogous expressions 
[1], [7] may yield a close upper limit in the following way.

Firstly, we have to take an arbitrary simple function that fulfils the boundary 
conditions. Let us denote it by t/г. Let us substitute it into Eq. (7) and multiply the 
equation by (ip -  B0/S ■ if2t/r/dz2). Integrating from 0 to H, we can express the coefficient 
to be found in place of Ncr. Let us denote this coefficient by R(i/r). With integration by 
parts and by taking the boundary conditions into account we obtain the following 
quotient, analogous to Rayleigh's one:

(ß0 + В,}
B0(BQ + 2В,) f d 2*py _ В2 В, f d ^ 2 

" 1 dz2 / + S2 Id z 3'4  dz
« (« = ■ H

Í
( 10)

a(z) Ф-
B0 d2i/r~ 
S dz2

dr

As Rayleigh's quotient, R(i/r)also shows the ratio of internal to external works. If i/т is an 
exact buckling shape, R(t/r) becomes equal to the exact critical load.

In the case of usual types of loads and usual ratios of rigidities, the interval 
between the limits yielded by Föppl's theorem and by a Rayleigh-type quotient is rather 
large. Hence, in order to obtain a more exact result we need a more accurate 
calculation.

Results of such an improved calculation are presented in Table 1. for the case of a 
uniformly distributed normal load. The method we developed for taking into account

Aria Technica Academiae Scientiarum Hungaricae 97, 19Я4



128 HEGEDŰS. I. KOLLÁR. L. P

practically any distribution of load takes advantage of the good efficiency of the 
Rayleigh-type quotients in approximating the critical load. It is a step-by-step 
procedure which uses approximate polynomials of higher and higher degree, and 
makes it possible to carry out a monotonous partial minimization of the Rayleigh-type 
quotient shown in Eq. (10).

Let us take first the two simplest polynomials of different degrees which fulfil the 
boundary conditions

+ ± l .5 \H

Ф н = 1 -

and take their linear combination

10 1
+ 9

(11a, b)

<Р о - / 'о < / '| +  (1 -Цо)Фи (12)
which minimizes the value of R((p0). The numerical analyses showed that this 
approximate value is in most cases already sufficiently accurate for practical purposes. 
If we need a better approximation, we may determine a new approximate polynomial, 
using the expression:

d4j/q
dz4 R ( ( p i ) c c + (Ä0+ ß () dV i

dz2
S

B0B, (13)

where R(<p,) is the minimum value of the Rayleigh-type quotient determined in the 
previous step with the aid of (12). Integrating four times, we can determine the i/q 
polynomial which satisfies all boundary conditions. This polynomial can be used for 
getting a refined approximate polynomial cpi +, by determining the coefficients of the 
linear combination in (14)

<P;+i =/9<Pí + ( 1 - aO</'í (14)

which minimize the value of /?((/>,• +,). Further refinement can be achieved by repeating 
the two steps of the iteration resulting in polynomials of higher and higher degree.

The amount of calculation using the above method is rather great, but the 
convergence is excellent. At most the fourth iteration step yields a value for the critical 
force which can be regarded as exact, even in the case of any distribution of the load.

5. Numerical example

Let us determine the critical load of the coupled shear-wall shown in Fig. 2. The 
total height is 30 m. Let the wall be subjected to a uniformly distributed axial load:
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hirst. we have to determine the rigidities H(), H, and S of the replacement sandwich beam with thick faces, as 
follows.

ß<> = 2 x £ x 0.1 X 1.2 x 2.42= 1.3824 x £ [ k N x m 2]

ö
*

Fiy. 2. The shear-wall analysed in the numerical example

where £ denotes the modulus of elasticity in kN/mJ units.

F X 0 1 1 X 23
B,= 3 - ---- —------ =0.0432 X £ [kN x m 2]

As the formula shows, in this case В, consists of the bending rigidities of the three vertical wall-strips, with 
respect to their own centroidal axis.

In determining the shearing rigidity S, we only take into account the deformation possibilities of the 
parts of the wall not shaded in Fig. 3. Using the notations in Fig. 3, we obtain

S =
( V  Г \

\3  B2 + S2)

h(2ot+ 1)

+ (2o+l) b2â b2â2 
a2 S. 4 В .a 2 « - l +  — (2Я-И) 

За
b2â(a-â)(2a— I) '

4aF,
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where
P fi h2i3

ЗВ3 + S, + Щ
P f> Pú 

Jb2 + T2 + a7

Fii). 3. The substituting model of a shear-wall section

and

B, =  / ,  E is the bending rigidity of the horizontal wall-strips; in our case it is equal to B, =0.001 042 
ж E [kNm2];

B2 =  / 2£ is the bending rigidity of the outside vertical wall-strips;
B3 =  / , £  is the bending rigidity of the middle vertical wall-strip; in our case B2 = B3 = 0.0144 x E [kNm2]; 
S, =  A I G/n is the shear rigidity of the horizontal wall-strips, A , is the area of its cross-section, G is the 

modulus of shear and n is a numerical factor depending on the shape of the cross section; in our 
case Л, =0.05 m2, G =  £/2.5 and rt = 1.2, hence S, =0.016 67 x £ [kN];

5 2 = A 2G/n is the shearing rigidity of the outside vertical wall-strips;
5 3 =  A 3G/n is the shearing rigidity of the middle vertical wall-strip; in our case A2 = A3 = 0.12 m2, so that S2

= S3 =0.04 x £  [kN],

Substituting the numerical values in the expressions of S and a, we obtain

and

a = 0.5143

S = 0.01356 x £  [kN] .

Knowing B0. B, and SH2, we can determine the value of the critical load with the aid of a computer program 
(or with the aid of Table 1). We obtain

Bo+B,
=  5.461 ,

hence
N„ = 0.00865 x i [ k N ] ,

Let us consider the shear-wall as a sandwich cantilever with thin faces. The shearing rigidity is the same as in 
the previous case, and the bending rigidity is

B = B0 + B, = 1.4256 x £  [kN m 2] .

The ratio of the rigidities is:

—  =8.559, В
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hence, using I he diagram of [2] or [6 J. we obtain

N„ = 0.0083 X E [kN ] •

This value is not too far from the "exact" one.
If we change the total length of the shear-wall from // = 30m to II -  18 m, we obtain the value of the critical 
load of the sandwich beam with thick faces as

N„ = 0.0157 xE  [kN ].

Lei us now consider the shear-wall as a sandwich cantilever with thin faces. The ratio of the rigidities is:

Sll2
= 3.081 <3.14,

В

therefore the value of the critical load depends only on the shearing rigidity. Hence we obtain

N„ = 5 = 0.01356 x £ [ k N ] ,

This is only 86% of the “exact” critical load, so that this approximation is not accurate enough.
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INITIAL POSTBUCKLING BEHAVIOUR 
OF SHALLOW SADDLE-SHAPED HYPAR SHELLS 

SUPPORTED BY SHEAR DIAPHRAGMS, 
UNDER UNIFORM LOAD

L. Jankó*

[Received: 3 January 1983]

This paper is one of a series on the stability of hypar shells. — Relying on the analysis of 
bifurcation phenomena in hypar shells starting from a state assumed as undeformed, and of 
symmetric nonlinear structural behaviour, the initial post-buckling behaviour will now be 
considered. Based on earlier research of the Author, the slope of the tanyent at the beyinniny of the 
post-buckling (decreasing or increasing) load capacity diagram may fairly be approximated but this 
paper will suggest a method for constructing a diagram valid in i/icran^e of deflections much (though 
by less than an order) exceeding the shell thickness. With the aid of this method, the effect of 
prebuckling (pre-bifurcational deformations) on the buckling load can also be taken into 
consideration. The accuracy of the method in this case is fairly good. The initial post-buckliny 
behaviour and the type of the bifurcation points can also be characterized.

Symbols

^O, Bo, • • • Î 
Aoo, B00, . . . J 
A, Й, . .. J

Eh3B = ------- r
12(1 - p 2)

in
Cjj= COS —  X ■ c o s  

2 a

£> =
£
F

Eh
I-P 1

. , f2

F Fhjo '  и.

coefficients in function p — tv of the asymmetric equilibrium path;

specific bending stiffness;

— specific extensional stillness;

— modulus of elasticity (Young’s modulus);
— stress function of middle surface forces (F" = NX, F"= — N xy, F’ = Ny; 

in a bifurcation phenomenon: F = F0 + F\
generally: F = H F , j0, actually F = F, + F 2);

— stress function of the prebuckling state (actually F0 = F ,);
— first variation of function F0 (actually F = F2);
— symmetric and antimetric components (Т/,;,0 = и  and Filj]0 = F2) resp., 

of stress function F;
— amplitudes of symmetric and antimetric (F, and F2, resp.) stress function 

components (F, = F ,,Jl • S(|J|, F1 = FilJl ■ ShJl),

* Dr. L. Jankó, H -1113 Budapest Dávid F. u. 5, Hungary
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'O’ ■'о

I , . J I

Mx, Mr. Mxy = Mtx 
N .. N I f = N „ , N ,
Q.' Q>

R =
- b2
Ж

'  h2
I a2/)2

4/.Л
Г

4l2'/22

— numbers of terms in buckling eigenfunction (w=LZwijSij) for the 
undeflected prebuckling state, f=  1 , . . j  = 1 , . . J0;

— as for J0 but referring to the deflection function of the nonlinearly 
deformed middle surface;

— specific bending moments and twisting moments in the shell;
— specific values of middle surface forces;
— specific values of transverse shear forces;

— curvature radius of shallow arches in direction x (convex from above);

— curvature radius of shallow arches in direction у (concave from below);

— dimensionless magnitude in the formula of load parameter c;

17Г . jn
Su = sin x ■ sin - у, 

,J 2a 2b ■

a,. a2. a3

a l 1 ' 0 |2 ' • - -U4 5

4 . J .  
2a, 2b

— coefficients in function p — w describing the symmetric equilibrium path 
by a single-term deflection function w;
coefficients in the general nonlinear differential equation system of the 
equilibrium path;

— short notations, see in Table II;

— lengths of boundary projections along x and y, resp.;

p R , \R ,I P P*
E h2 E 4 /2у27.

-  load parameter;

la. fb
h
i-j

h .J i

‘l.Ji

P

Par"

Par

Pcr.a

U ,  V
z(x, y); z(x, ÿ) 
w

— as for c but referring to buckling loads pj'rn, p'"d (bifurcation);
— as for c but referring to the snap-buckling load pcr\
— vault rise along x and y, resp.;
— shell thickness;
— buckling half-wave numbers in directions x and y, resp. (i=  1,. . ., / 0; 

j=  1,. . . ,  J0 for bifurcation from undeflected prebuckling state; /=  1,. . ., 
/ , . j=  1,. . J ,  for the deflection function w of a non-linear equilibrium 
path);

— half-wave numbers of the symmetric component of deflection function w 
(for both axes x and ÿ);

— half-wave numbers of the antimetric component of deflection function w 
(for the x- and/or ÿ-axis);

— intensity of the uniformly distributed, symmetric surface load acting in 
direction of the z-axis per unit ground plan projection;

— buckling load of bifurcation from prebuckling state considered un
d e fle c te d  (wo = 0; linear buckling theory);

— snap-buckling load (critical load of buckling by equilibrium limitation; 
non-linear buckling theory);

— buckling load of bifurcation from the linear critical load of bifurcation from 
symmetrically de flec ted  prebuckling state (и>0#0; linear buckling theory);

— displacements along surface tangents in x- or y-direction;
— ordinates of the middle surface of the shell;
— normal displacement (deflection) of points of the middle-surface (in a 

bifurcational phenomenon w = w0 -t- w; in general: w = IZ w ij0, actually: w 
= w, +w 2),
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л' =  Ли,и 
tv ,. w 2

“Vu,. «■’.)))

f

fu n c tio n  o f n o rm a l d is p la c e m e n t (deflection) o f  p o in ts  o f  th e  m id d le - 
su rface  in th e  p re b u ck lin g  s ta te  (a c tu a lly : w0 =  w ,); a t  th e  shell c e n tre  (x
= u, y =  h ) w 0 = w i l j ,\

—  n o rm a l d isp lacem en t (d e fle c tio n ) v a ria tio n  in b ifu rca tio n  p h e n o m e n a ; 
sym m etric  and  an tim e tric  c o m p o n e n ts  (wji;i0 =  tv, an d  wWll =  w 2) resp ., o f 
deflec tion  func tion  w;
am p litu d e s  o f sym m etric  (w ,) a n d  a n tim e tr ic  (w2) c o m p o n e n ts , resp ., o f  
“ i » l =  W„2, ■ S ,,;,, Wj =  W t l J i  ■ S h J l ) ,

la
a  =

и
—  v au lt rise ra tio ;

a

li=h shell p a ram eter;

и

b
side  ra tio ;

d —  sy m b o l o f v a ria tio n  fo r m a t io n  (s h o r t n o ta tio n  for S w 0 =  w ) ;

.  h  H e
^ h  = 7 —  shell p a ram eter;

1 — c o o rd in a te  in a  p lan e  f it tin g  th e  2-axis, p o in tin g  to  th e  sec o n d  sy stem  o f 
s tra ig h t su rface g e n e ra to rs ;

и —  eigenvalue;

И
i

—  tra n sv e rse  c o n tra c tio n  co effic ien t (0.2);
—  c o o rd in a te  in a p lan e  f it tin g  th e  2-axis, p o in tin g  to  the  firs t sy s tem  o f 

s tra ig h t su rface g e n e ra to rs ;

J b
“ = h

shell p a ram e ter;

4)
А Л {  ) =  ( )lv +  2( )"" +  <

— h a lf o f th e  ang le  s u b te n d e d  b e tw ee n  th e  d ire c to r p lanes; 
) ;; b ih a rm o n ic  d ifferen tia l o p e ra to r ;

L p ( J \ , /2 ) — 

=  2 / I' Г г '  +  Г г 7 S P u c h e r 's  d ifferen tial o p e ra to r .

1. Introduction

First, we discussed the phenomenon of bifurcation in the case of saddle-shaped 
hypar shells supported by shear diaphragms from an assumed undeflected prebuckling 
state (w0 = 0) in [9], then we analysed some peculiarities of the symmetric equilibrium 
path for large deformations in [10].

Relying on methods in [1], [3], [18] for examining the equilibrium path, we have 
developed an approximate method for taking the effect of prebuckling deflections (w0) 
modifying the buckling load into consideration (Pcrn_>Pcr"<i)-

According to our numerical results, the prebuckling deflections may either 
increase or reduce the buckling load pj‘rn. Although no special method was developed in
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Fiy. I. Geometry data. Internal forces and displacements

[ 10] for the numerical analysis of the postcritical state after bifurcation, it was pointed 
out that the mentioned method for determining buckling loads p'c'"d could show 
whether the branch of diagram p — w directly after bifurcation is of an increasing or 
decreasing nature.

Of course, definition of the full stability behaviour still requires further research 
on e.g. the effect of geometrical imperfections, the possibility of local buckling, etc.

Before solving these perspective problems, it seems imperative to develop a 
method which takes into consideration the prebuckling deflections w0 modifying the 
buckling loads and which describes the initial postbuckling behaviour more accurately 
than the one presented in [10]. This method will be given in the following.

2. Basic assumptions, approximations, fundamentals, definitions

Boundary arches are assumed to be supported by shear diaphragms: they are 
rigid in the vertical plane, soft laterally and torsionally.

The effect of a uniform shell load along the z-axis, symmetric to both planes xz 
and ÿz, referred to unit ground plan projection, is considered.
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The shell is assumed to be geometrically perfect, shallow and of a linear elastic 
material.

Buckling modes extending to all the surface are considered.
Geometrical nonlinearity is reckoned with by means of Donnell’s equations. 

Their two main peculiarities [12] are as follows. They assume that the shell is shallow 
(at least within a buckling half-wave) and they include at most quadratic terms (w'2 etc.) 
of the power series of the derivatives of displacement w, justifying the denomination 
“theory of limited large deformations”.

Fiy. 2. The spatial equilibrium path (a — c: S —A,p) 
Bifurcation point types (d — e)
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It is to be noted that the deformed prebuckling state of the hypar shell will be 
called deflected prebuckling state (deflection: w0 #0).

For the sake of representation in three dimensional space, the postbuckling 
deflection mode in Fig. 2 consists of a constant symmetric (ĥ ) and a variable 
antimetric (w2) component. As antimetric component, the dominant term (i2 =  2, j 2 — 1 
or i2 =  3, j 2 — 1 or h  =  4j 2 =  2) of the buckling mode corresponding to the buckling load 
according to the linear buckling theory has been taken. The load-bearing process starts 
according to the heavy-line branch of diagram S in Fig. 2. Until bifurcation point Bd, 
the deflection mode has only symmetric components [10].

Postbuckling behaviour after bifurcation is described by space curve A,p. This 
space curve is obtained as a section along plane curve L of a surface described by the 
twovariable function p= p(vvi,Ji> wi2./2)- Equation of plane curve L determines the ratio 
of amplitude wiljl to whj2. It is obvious (but it is also proved in Section 5) that for the 
saddle-shaped hypar shell both this load-bearing surface and the space curve Asp are 
symmetrical about plane wiy-2 =  0, namely the structure shows an identical behaviour 
upon formation of either a positive or a negative antimetric component.

Projecting space curve Asp onto plane whJl — 0 yields plane curve A. The meaning 
of this curve becomes clearer from representing the load to be equilibrated as a function 
of symmetric and antimetric components (wt and w2) of the deflection of typical shell 
points (Fig. 2c).

Post-bifurcational equilibrium paths of any middle surface point but the shell 
centre C (Fig. 1) and of the shell centre C in a special position are described by space 
curve A sp and by plane curve A, respectively. Namely, the shell centre has no antimetric 
deflection, hence plane curve A after bifurcation is a degenerating special case of space 
curve Asp. The space curve equation system is presented in Section 5, analysis results 
are, however, represented in plane in Figs 2c and 3, as complete equilibrium path A — S.

Doing so is permitted, since the presentation of bifurcation points according to 
Fig. 2d (pp. 65, 91, 122 in [2]; p. 384 in [6]; pp. 50-55 in [17]) is equivalent to that 
according to Fig. 2e (Section 1.2 in [12]). Namely, projections of space curve Asp on 
plane w, =0, and on w2 = 0 have been plotted in Figs 2d, and 2e, respectively. Stable 
symmetry or unstable symmetry of the bifurcation points in Fig. 2d can be described 
from another aspect by terms increasing or decreasing according to Fig. 2e.

The following definitions will also be used in this paper:
a] If the load is equilibrated along the whole loading process by internal forces 

corresponding to deflection mode w symmetrical about both planes xz and 
ÿz, this process (or, for the sake of simplicity, the relevant p — w diagram) is 
called symmetrical equilibrium path.

The construction of these diagrams was presented in [10], featured by deflection 
w =  0 belonging to load p = 0, then, with increasing load, by either a “shell-type” load 
capacity diagram (S in Figs 2 and 3), or a monotonous increasing one typical of 
ordinary flat plates. The term “shell-type” refers to middle surface forces bearing most 
of the loads.
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Fig. 3. In-plane representation of symmetric and asymmetric equilibrium paths S and A, resp.

The monotonous increasing character is irrelevant to the bifurcation phenom
enon [10], mentioned purely for the sake of completeness.

b) Load can be equilibrated (p — w) also by the following means (Fig. 2c, and S 
— A diagram in Fig. 3):

The symmetrically deformed shell surface buckles at a certain deflection value w0 
of the shell centre, to act thereafter in a deflection mode composed of symmetric and 
antimetric components.

The load-bearing process represented, for the sake of simplicity, by its p — w 
diagram mainly featured by an asymmetric deflection function w involving both 
symmetric and antimetric deflection components corresponding to the load symmetric 
about planes xz and ÿz, is called asymmetric equilibrium path A.

Deflection function w belonging to the asymmetric equilibrium path differs from 
that for a symmetric equilibrium path by involving also the antimetric buckling mode 
of the bifurcation corresponding to the so-called undeflected prebuckling state (or 
more precisely, as much of it as is allowed by the actual computational facilities).

Disregarding deformations w0 in the undeflected prebuckling state, the start of 
equilibrium path A would be at buckling load p"" [9] (B0 in Fig. 2a).

By virtue of assumption wo =  0 it involves no symmetric deflection component.
The asymmetric equilibrium path can only be interpreted after bifurcation point 

Bd, namely because of deformation w0 in the undeflected prebuckling state, range w, 
=  0-^wo involves no antimetric deflection component (expounded in Section 5). By 
definition, the deflection mode belonging to curve S at Bd has no antimetric component. 
Similarly, the buckling mode corresponding to A has no finite antimetric component 
here either, namely Bd is a bifurcation point, where the amplitude of the antimetric 
component is of an infinitesimal undefined magnitude.

Algorithm given in Section 5 defining curve A yields bifurcation point Bd, as well 
as w0 and p'c'r"d. The bifurcation point and the subsequent initial postbuckling diagram 
are determined by a mixed analytical-graphical method. Plane curve A obtained from
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the algorithm is shifted parallel to itself to Bd, or more precisely, is started from there, 
then intersected by curve S. Buckling load p‘c'r"d is at the “intersection” of the two curves.

Gioncu’s approach (p. 468 in [6]) to the analysis of the buckling of a spherical 
shell is in accordance with the foregoing. It should be stressed that diagram A is not 
interpreted in range Оч-и>0, and in fact, curve A does not intersect, but starts from S. 
The graphic operation of “intersecting” is a mere technical trick to simplify the 
practical implementation and to increase the accuracy of determining points Bd 
involving known exact p['r" (B0) values ([9], and Appendix). For more information see 
Section 5.

Essentially, instead of directly solving the basic equations [4], [19] of bifurcation 
in buckling form w,

BA A w -  Lp(F, w0 + z) -  L„(F0, w) =  0, (2.1 )

A A F +  D( 1 -  p2) [L,(vv, z) + L p(w, w0)] =  0, (2.2)

from undeflected prebuckling state deformed to w0, we look for the eigenvalue as the 
coincidence of the symmetric (first) and asymmetric (second) states of equilibrium.

Besides of being much less cumbersome and more accurate in a sense, this 
method is also advantageous by directly producing the initial postbuckling diagram. 
Higher accuracy means that such an exact solution of Eqs (2.1H2.2) (containing 
nonlinear relationship p — w0) as that for p\'" (wo =  0) in [9] cannot generally be 
expected from the usual mixed analytic-numerical methods.

The curve section after bifurcation point Bd is a part of the asymmetric path of 
equilibrium; it is called the postcritical load-bearing diagram. Accordingly, the 
antimetric component of the postbuckling diagram has been assumed to be identical 
with the dominant term of the bifurcation buckling mode. This assumption is 
reasonable if only the initial postbuckling diagram is wanted. In structural engineering 
no deflections by an order of magnitude greater than the shell thickess are allowed thus 
analysis of this range will be abandoned.

This range would perhaps necessitate to modify the buckling mode and to 
increase the exactness of the nonlinear buckling theory itself.

As many terms of the antimetric components of the asymmetric equilibrium path 
(thus, of the buckling eigenfunction in [9]) and of its symmetric components are taken 
into consideration as permitted by computational facilities; in the actual case one of 
each (wt and w2): the dominant term of buckling eigenfunctions in [9] (2.1H2.2): w-»w2 
(see also Section 3) and the first term of the buckling mode in [10] (wo-nvj).

These approximations have little effect. On the one hand, [9] showed that the 
buckling eigenfunction has a term which, even in the worst case, over 70 to 85% of the 
buckling load p'ff belongs to, thus that is the dominant term. Computing with this 
dominant term alone leads to generally much less error than with one term for p'c 
Namely now the error is referred to the exact p'ff value, the dominant load component 
in some ordinate p (e.g. p'c'rnd) in Fig. 3.
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On the other hand, calculating with single-term or double-term symmetric 
deflection modes, values of the critical snap-buckling load p„ generally differ by less 
than 10%. Bifurcation Bd generally takes place in the initial section of diagram p — w, 
and therefore, results of calculating with a single-term and a many-term symmetric 
function w are still nearer to each other.

3. Bifurcation from a prebuckling state considered 
undeflected (w„ = 0)

Statements made in the detailed discussion of this scope [9] and which will be 
referred to later are summarized here first.

Buckling loads are obtained by solving the eigenvalue equation

where
= Aw (3-l)

E
Pit"

(3.2)

is the eigenvalue wanted, and
/ О  J o  /  О  J o

wus ij =  Ç  X *u (з-3)

is the eigenfunction for the solution by the Galerkin method. Since this is a finite series, 
vv is theoretically the approximation of the exact eigenfunction.

Matrix A may be written with the aid of the real, positive definite diagonal matrix 
D and the real symmetric matrix B:

A = D 1 В ,
( N o  x  N o )  ( N o  x  N o )  ( N o  x  N o )

D =  (^1 1 > ^22' ■ • ■> d k l i < -  ■ •» (3-4)

Nq = 0̂ ' ^0-

Because of the general orthogonality about the weight function, matrix В is a 
hypermatrix with a “chessboard-like” arrangement of nonzero blocks and of their 
elements.

By adequately permuting rows and columns (exchange of subscripts), matrix В 
can be transformed to a hyperdiagonal form of four blocks: B. Now the original 
eigenvalue problem reduces to four smaller eigenvalue problems.

This hyperdiagonal form is seen in Fig. 4. (Waveline overdash refers to the fact 
that В is obtained from В by permutation.) Each block represents a typical buckling 
mode. The numbers in the block elements indicate the buckling half-wave numbers (i,j) 
of each term of eigenfunction vv. Blocks underlying the calculations are simpler in form
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than those in Fig. 4 since, as stated in [9], as a special case of the Cholesky 
decomposition, each of the four blocks can be symmetrized.

Let now Ët denote blocks k = I, II, III, IV.
1 1

C * =  (3.5)

(Ct -AE*)x = 0. (3.6)

The eigenvalues needed are obtained as the minimum of the eigenvalues of the 
four symmetric blocks C*.

Each of the four possible types of the buckling mode in Fig. 4 are described by 
the respective dominant buckling mode. The types consist of four combinations of 
symmetry (S) and antimetry (A).

It should be noted that mode I (doubly-symmetric) is of mainly theoretical 
significance, namely such a bifurcation occurs only in the surrounding of a seminormal 
shell (a =  1) bearing loads mainly by bending forces, plate-like, thus, the corresponding 
buckling load is a fictitious one, not to be concerned with further.

We mention here that load parameter values

-1Í4 _
'- 'Г Г

p ? r "  R x \ R y \

E h2
(3.7)
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for loads p^n are graphically compiled in Appendix by means of the method in [9] 
outlined above. Computations refer to the domain of geometry parameters typical of 
reinforced concrete shells, in some respect (Ç) deviating from the domain of reference in
[9].

Let us make some comments confirming conclusions deduced from diagrams in 
[9]. Namely in the meantime Dulácska has published the stability analysis of a saddle- 
shaped hypar shell acting like an arch, seen in Figs 5 and 6 [5], under the following

10 Acta Technica Academiae Scientiarum Hungaricae 97, 1984
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boundary conditions: edges x = 0 ,2a are hinged (и =  0), edges y=0,2b are supported by 
shear diaphragms. The diaphragms are rigid in the vertical plane, but soft laterally and 
torsionally. Displacement w is zero along the whole boundary, known to prevent 
inextensional deformation [13].

The table presented in [5] has been applied to produce the garland curve in top 
of Fig. 5. The garland curve in the bottom has been obtained by the method in [9]. The 
comparison of the diagrams seems to confirm the correctness of the methods in [5] and
[9].

Obviously, the buckling load of the saddle-shaped hypar shell supported by 
shear diaphragms has to be much lower than that of one acting like an arch (with two 
fixed edges). Still more conclusions could be drawn by answering the question why 
deviations are the greatest for ratios a =4 and 2.25?

Let us start from the statement in [9] that the upper limit of the buckling load of a 
saddle-shaped hypar shell supported by shear diaphragms is the buckling load of a 
shell buckling in the same mode, in so-called homogeneous stress state described by the 
middle surface forces N x — const., Ny = Nxy=0. By definition also this latter shell acts 
like an arch in direction x but membrane deformations are only restricted under 
boundary condition w =  0. (Opposite to [5], horizontal displacement is everywhere 
possible.) This way of supporting is known to permit inextensional deformation [13]. 
According to [9], for normal shells (a = 4) and three-quarter normal-type shells (a 
=  2.25) this upper limit is rather close to the buckling load of shells supported by shear 
diaphragms (last paragraph in Section 4.2 in [9]), that is, from the aspect of buckling, 
saddle shaped shells in homogeneous stress state or supported by shear diaphragms 
can be considered as about equivalent. Now, since ways of supporting of shells acting 
like an arch in [5] and in [9] (and supported by shear diaphragms in [9]) differ by 
inextensional deformation allowed in [9] and inhibited in [5]. The two kinds of 
buckling loads exhibit maximum difference between a =  4, and a =  2.25 since shells 
supported by shear diaphragms are able to inextensional buckling at a relatively low 
wave number exactly for these geometrical ratios, where the minima of the garland 
curves in [9] are expected to be.

Calculations perfectly followed this train of thought [9]: the buckling 
eigenfunction corresponded to block III for a =  4, and to block IV for a =  9/4 in 
Fig. 4. The dominant terms of eigenfunctions (III : i = 2,j = 1; IVi=3,j=2) are exactly 
the deflection modes permitting inextensional deformation defined in [8].

Solutions in [5] and [9] are compared in Fig. 6 with Reissner’s result for hypar 
shells limited by straight generators [15] free from lateral thrust.

Also the hypar shell limited by straight generators is free from lateral thrust but 
along the characteristic lines and not along the principal curvature arches, and the 
boundary condition w =  0 along characteristic lines excludes inextensional deformation 
[13]. The hypar shell limited by straight generators buckling with a high wave number 
along the compressed principal curvature arch is seen to be much less sensitive to
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instability than are saddle shells supported along the principal curvature arches, 
buckling with relatively low wave numbers.

Buckling of both saddle-shaped shells features a relatively low buckling wave 
number but ways of supporting according to [5] and to [9] produce rather different 
buckling loads, namely in certain cases (a =  2.25,4), buckling of the saddle-shape shell 
in [9] does not involve extension of the middle surface, but if it does, its load capacity is 
lower than that of a shell of hinged support in one direction.

Purely for the sake of interest, buckling loads of a two-hinged arch with geometry 
data of the shell disregarding shell-arch effect, etc.) where plotted in dotted line.

The upper and lower curves in dotted line show results without reckoning, and 
reckoning, with horizontal displacement effects, respectively (after [11] and [14]).

Symmetric load bearing diagrams calculated according to the non-linear theory 
of second order (p — w) can be produced by the method in [ 10]. Solution relying on the 
two-term deflection mode w and the two-term stress function F was discussed in [10].

Well, since bifurcation from a deformed prebuckling state usually affects the 
lower section of diagram p—w based on symmetric w (see later in Section 6) it is often 
sufficient to reckon with the deflection mode

In this case the relationships to produce the symmetric load bearing diagram p 
— w (or c — w/h) are as follows:

4. On the symmetric equilibrium path

(4.1)

j3 P * « !* ,!  f 
1 ~ E h2 (4.2)

> (4.4)

,2,-242 • (4.5)
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5. The equation of the asymmetric equilibrium path

5.1 Basic equations

The nonlinear equilibrium and compatibility differential equation system for 
shallow shells undergoing “limited” large deformations (Section 2) can be written as 
([4]. [15], [22]):

ВАЛw-  LJF , z)-  LJF , w) — p = 0 ,

AAF + D { \ - n 2) M w’ z)+  ^ Lp K  w) =  0 .

(5.1)

(5.2)

5.2 Deflection and stress function

The Galerkin’s method is known to be applicable also by assuming both 
deflection mode w and stress function F as sums of linear independent terms [22] (cf. 
e.g. [10]).

Each term of function w has to satisfy the following geometrical and statical 
boundary conditions of the problem:

wu ol*=o =°>
' x  = 2 a

w"o|* = o =0,
1 * = 2  a

Each term of stress function F has to satisfy the statical boundary conditions of 
being supported by shear diaphragms (that is the edge members are free from lateral 
thrust):

F 5o |,_o  = 0’ F 'ijo I x = o =0. (5.4a-b)
1 y = 2b 1 X — 2a

Accordingly, the two functions are assumed in general as function series

w = H w i j -  S i j  = a  w i j o , (5.5)
* j  » j

i=  1,2,3, 

j=  1,2,3, . .  . ,J i

r - Î Î F u - S u - Î Î F v  (5.6)
■ j ‘ j

i= 1,2,3, . . . , I 2 

j =  1,2,3, . . . , J 2

y = 0 
1 y — 2b

WijO I y  =  o  = 0 .  
1 y=2b

(5.3a-d)
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In conformity with Section 2, actual computational facilities admit series w and F 
to consist of two terms each. The expected error has been discussed in Section 2, while it 
will be seen below that reckoning with more terms would result in a very cumbersome 
procedure.

Thus, approximate functions w and F are:

W = w, +w2, (5.7)

W1 =  Wi|JiO = wiih * Sliji* w 2 = * i 2j 2o = vvi2J2 .  S , 2h (5.8a-b)

F  ~ F  i F  2 , (5.9)

— îOiO — Filh * SitJl, ^ 2 F i2j 2o F Í2j 2 * Si2j 2 (5.10a-b)

Among the approximate functions (“Ansatz” functions) above, w, and F, are 
symmetric about both axes xz and ÿz.

Terms w2 and F 2 are, however, antimetric about planes xz and/or ÿz. (For details 
see conclusion of Section 2, and discussion of four buckling types in Section 3.)

5.3 Solution by the Galerkin's method

Equations defining in general this variation of the Galerkin’s method are [22]:

J" J  XSfj.  d x d y = 0 , (5.11)

/'= 1 ,2 , 3,

/  =  1,2,3........ J j

J J  YSrr dx d y = 0 . (5.12)

i =  1,2, 3, 12

j  = 1,2,3, . . J 2

In our case, the error function X  in Eq. (5.11) is the left-hand side of the 
equilibrium equation (5.1) obtained by substituting Eqs (5.7) in to (5.10):

X  = B A A w -L p(F ,z ) -L p(F ,w )-p .  (5.13)

By analogy, error function Tin (5.12) is the left-hand side ot tne compatibility 
equation (5.2) obtained by substituting Eqs (5.7) in to (5.10):

Y=AAF + D ( l - p 2)[Lp(w,z) + yL ,(w ,w )]. (5.14)
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Performing operations in Eqs (5.11) and (5.12) yields the non-linear algebraic 
equation system:

'и  ' + a 12  '

W i l j l  F j l j l

h E
+ a WÍ2Í2 F Í2j2

13 h E +űl4_ h E
W‘ij\ FÍ2J2

+ ûi
W‘2j2 F,tJt Filh

'21 +  a 22

+ a25 '

h E

Fhh
h E

Whi2 Fiji

+ a. ----- + ûn  --
E 11E

= 0 ,

+ a23
h i 2 vh i ,  F iiiji

h E +û24 h E +

h E + a26 —TT +°2T

(5.15a-d)

= 0 ,

f j “ °-+ a 42

which, of course, is formally identical to equation system (3.21 a-d) derived in [ 10], so in 
the following, many of relevant relationships in [10] can be adopted.

Namely, because of antimetry, some of the coefficients an  , al 2 , . . . ,  a44, a45 are 
zero (general orthogonality) and the others equal Eqs (3.22a-z) in [10].

To ease recognition of zeroed terms, we present Tables la and lb compiled from 
the details of the Galerkin’s orthogonalization procedure for (5.11) and (5.12). These 
tables are momentarily irrespective of whether the basic equations of the symmetric 
equilibrium path in [10] or those of the actual asymmetric one are to be derived. 
Operations prescribed in Table I lead to the integral expressions:

2 a

Í
2 b

Í ‘3 Í2 Í2 dx dy = 0, и =  1,3.

2 a 2 b

l Í Ч21S i  2Í2 dx dy = 0,

2 a 2 b

Í Í Ciliiс Ы1ßhji dx d y = 0 ,

2  a 2 b

Í Í c U S i2 Í 2 dxdy = 0,

2  a 2 b

Í Í c U S i2 Í 2 dx dy = 0.

if either i2 

or j 2 is even
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With the above integral expressions we obtain the following coefficients assuming zero 
in (5.15a-d):

a l4  =  a l5 — a 2 2 = a 2 3 ~ a 2 7 = a 34 =  a 4 3 ~ a 45 = 0 • (5.16a~g)

Finally, the complete system of coefficients is compiled in Table II. Nonzero 
terms are identical to coefficients in (3.22a-z) [10].

Now, let us express FitJJE  from row c and Fhj2/E  from row d of (5.15a-d) 
(making use of (5.16a-g). Substituting them into rows a) and b) leads to two equations 
where wilJl and wilj2 are unknown if p is known:

The coefficients in the above equations assume the form:

A 0  —  ~  ~  [ a l l a 31 ~ a 16a 32] >a ,7a17“31

- 1
~  ~  [ а 1 2 ° Э 2  +  а 16а Зз] >^17^31

C n =
- 1

а 1 2 а 3 3  »
a n a 31

_ 1 [̂ <*12<*33 +
<*1 3 <*3 1 <*4 4 l

<*i7<*3 i <*41 J
- 1 I[\б<*Э5 +

а 1 3 а 3 1 а4 2 П
<*17<*31 1 <*41 J

<*26<*42 
21 > 

« 4 1

<*24<*42 <*25<*32 <*26<*44J00 -

Con-----

Doo — ~

aA>41 a 31 Ű41

a 14 a 4 4  a 2 S° 3 3

<*41

<*23<»33

<*31

<31

(5.18a-e)

(5.19a-d)

The analysis o f Eqs (5.17a-b) leads to the following conclusions:
(a) Two-variable function (5.17a) of amplitudes w,tJi and wl2jj can be represented as a 

surface where plane sections wllJl =  const, are second-degree parabolae with a
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Table la
la 2b
í  Í 9kS,,j,dxdy =
0 0 Ik

к 9k Ik

1 BAAw a
a , ‘ h

2 — L / F 1, W|) „ w‘<i, Fi,j, 
12 h E

3 ~ L ^ F 2, w2) WI2Jl Fikj,
13 A £

4 ~ L p(F2, w,) „ w>,h Fhj,
14 h E

5 - L ^ F „ w2) „  W‘Ak F i , J ,
15 h E

6 -LJ .F .Z) a ^

7 - P P
° 17 £

8 AAF a
31 £

9 Of1 - P 2)C^w, z)

10 bp!* ,,» ,)

11 0(1 - p 2)L^wt ,w 2)

12 Of1 - / J 2) y  L ^ w2, w2)

horizontal tangent at wiUl = 0 , symmetric about plane wh h =0 (curves G in Fig. 
2b). These parabolae fit plane curve S defined by Eq. (5.17a) for the case wI2J-2 =  0. 
Irrespective of a proportionality factor, the equation obtained in this way is 
identical to Eq. (4.2) for the symmetric equilibrium path involving a single-term 
deflection component. We need not use the surface itself, since the ratio of 
amplitudes wiljt to whj2 is defined by Eq. (5.17b), thus, Eqs (5.17a-b) define space 
curve A,p in Fig. 2, describing the postbuckling equilibrium path. Equation (5.17b) is 
illustrated by plane curve L in Fig. 2b, arising from starting point w0 of bifurcation, 
and having another zero point along axis wilJt (this bifurcation possibility for very 
large deflections whjl is omitted from the diagram).

(b) wilj2 =  0 is also a solution of Eq. (5.17b) leading to curve S mentioned under a 
(which can be obtained also according to Section 4). We point out that curve S 
presented in Section 6 was determined not by algorithm (Eq. (4.2)) based on the 
above-mentioned single-term symmetric deflection component but by the more 
exact one with two terms introduced in Г10].
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Table lb

f Í  y*s „ j A ‘iy=  0 0 u

к Hk E

1 B AAw Whj2
fl2' - T

2 -LjlF t'W ,) a F ,*
22 h E

3 - L J F 2, w2) - W‘U, FhJ,
23 h E

4 — L JF 2, w>|) wi,j, Fhji
2 h E

5 - L J F , , w2) „ FI.J, 
25 И E

6 - L / F , z ) a
26 £

7 - P P
“ 27£

8 AAF e **b. 
41 E

9 D (l-^ )L ^ w ,z ) a * *  
°42 h

10
- ( * ) ■

11 Ű(1 - Р г)Ц™\,*>2) „ "1.;. "w . 
44 h h

12 ° 0 - Я 2) у  FJíw2, w2) - f r ) *

(c) It follows from the statements on curve L that whj2 is a complex number in range 
wtlJl =0-^ w0, that is, whj2 is not interpreted here. The heavy-line part of curve S in 
Fig. 2 is valid here. Solving the expression in square brackets of Eq. (5.17b) for wilj2 
and substituting the obtained relationship into (5.17a) yields equation for plane 
curve A in Fig. 2b:

A + B wил + C

where

B<=A0 —
A00D0 + B00E0

Doo (5.21a-d)
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C = B 0-

D = C0 —

B00Do +  C00E0
Doo

C00Do
Doo

Equation (5.20) is the equation of the projection of space curve Asp on plane wilh 
=0, describing the projection of the initial postbuckling diagram called 
asymmetric equilibrium path.

Constant A in (5.20) is obtained from

. £o^oo 
A  = ----- —---- .

Doo

This constant belongs to whJl = 0, thus, it is the buckling load p'cln (with a negative 
sign) of the bifurcation assumed undeformed (wo* 0 , [9]). Since it was exactly 
determined in [9] and in the Appendix to this paper, relationship A =  —p'™/E (5.21a) 
will be applied in the following. Thereby the projection of space curve Asp defined by 
Eqs (5.17a-b) does not start from the approximate point Bd obtained from the equation 
system but is shifted “parallel” to itself to start from point B0 for the buckling load р'|".

Shifting is done by interpreting Eq. (5.20) temporarily also in range Он- w0, and 
calculating constant A as stated above.

Postbuckling diagrams in Section 6 are produced by graphically plotting Eq. 
(5.20), but plane curve A is only interpreted in range wiijt > w0 following its intersection 
with curve S (curve A in heavy-line in Fig. 2c).

The projection of the intersection is point w0 mentioned under (a) involving 
buckling load p)!rnd of bifurcation from the deflected prebuckling state (Bd in Fig. 2). 
Thus w0 is obtained graphically, rather than from (5.17b). By definition, deflection 
mode at Bd belonging to curve S has no antimetric component (wilj2 =  0). As stated 
under (a), curve A has no antimetric component of a finite magnitude either, since Bd is 
the starting point of the bifurcation where the amplitude of the antimetric component is 
an infinitesimal, undefined magnitude. In final account, the graphic method is needed 
from practical rather than theoretical aspects. Namely, Eq. (5.20) yields the projection 
of the postbuckling diagram in range wilJt > w0, also point w0 and its equivalent point 
B fp ^ J  can be analytically determined by this method although not at the required 
accuracy. Its causes are the following:
— diagram S is only described by a single-term deflection mode (inducing to apply the 

more accurate curves S of [10]);
— it yields constant A ( p w0=0) at a poorer accuracy than in [9] or in the Appendix 

to this paper.
According to the graphic method (Section 6), the slight first error is significantly 

reduced by using the more accurate curves S in [10] (or the corresponding algorithm). 
See the final statements in Section 2 (one term, two terms) in this connection.
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The second error is eliminated by applying the buckling load parameters given in 
the Appendix.

For the error of the method describing the asymmetric equilibrium path (A) by a 
single term see Section 2.

Let us consider Fig. A2 in the Appendix presenting buckling load parameters cj'rn 
for geometric ratio ( = f j h  =  20 relying on the method in [9] (wo = 0).

Substituting magnitudes c '1" into Eq. (5.21a), the load capacity diagrams (5.20) 
(or their counterparts biased by ratio Rx\Ry\/h2) were determined: these are the 
asymmetric equilibrium paths A in Figs 7 to 15. The symmetric component of the 
asymmetric buckling mode is characterized by the half-wave numbers i, =  l , J t =  l:

The antimetric component—as stated in Section 2—is the dominant term of the 
buckling eigenfunction of bifurcation assumed to be undeflected:

Half-wave numbers i2 and j 2 (indicated in parentheses at each asymmetric mode 
curve in Figs 7 to 15) can be determined by confronting Figs A2 and 4.

Each curve section in Fig. A2 is marked by the Roman number in Fig. 4 
identifying the relevant block (see also instructions in the Appendix).

The symmetric equilibrium path was determined by the method in [10] (see also 
in Section 4).

In Figs 7 to 15, the intersections of the symmetric and asymmetric equilibrium 
paths are indicated by small circles: these are the buckling loads pJ'^Wo /  0) of 
bifurcation from a deflected prebuckling state. The direct neighbourhood of the 
bifurcation points, including part of the initial postbuckling range, are drawn in heavy 
line, to help recognizing the type of bifurcation points defined in Fig. 3.

Bifurcation points in domain a ~  2.3 -4- 3.3 appear to be of the unstable symmetric 
type: the postbuckling load capacity decreases.

Bifurcation points in ranges а~З.Зн-(<4) and a~1.75-^2.2 are of the stable 
symmetric type: the postbuckling load capacity increases.

Let us make some comments on the foregoing:
— no analyses have been made on ratios near the seminormal shells (a = 1) since those 

cases are characterized either by snap-through or by plate-like increase [9], [10];
— hypar shells defined in Section 5 have no unstable asymmetric bifurcation point;
—  for ratios a ~  3 -r 3.5, reckoning with deformations w0 in prebuckling state, a critical 

buckling mode different from that for the assumption wo = 0 may emerge. For

6. Numerical results

Bifurcation from deformed prebuckling state, 
initial postbuckling (load-bearing) behaviour

( 6. 1)

( 6.2)
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F i g .  15 . S y m m etr ic  a n d  a sy m m etric  e q u ilib r iu m  p a th s

instance, in Fig. 11, buckling mode (i2 =  4 J 2 = 2) corresponding to block II in Fig. 4 
for a/b = 2, w0 = 0 is the critical one (yielding the least p[‘") but taking w0 into 
consideration, buckling mode for block IV becomes risky because of the decreasing 
postbuckling behaviour with increasing w(i2 =  3, j2 =  2).

Special consideration is due to shells buckling mostly inextensionally a =  2.25 
and a =  4 (Section 3). Their bifurcation points are of the stable symmetric type due to 
plate-like buckling. This method is obviously the most exact for these shells (a =  4) 
prevailing in practice where w„ has little effect.

The above will be physically explained in Section 8.
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7. Numerical analysis

Effect of deformations (deflections) in the prebuckling state 
on the buckling load (w0 ф 0, p'™d)

Plotting intersections (bifurcation points c'c'fd, wo#0) marked with small circles 
in Figs 7 to 15 offers a possibility of comparison with garland curves in Fig. A2: Figs 16, 
17, 18.

In view of deformations in the prebuckling state, buckling loads may either

decrease (a~ 2.2ч- 3.2), 
or

increase (a ~  3.2 — 4).
As before, buckling half-wave numbers of the dominant term of the correspond

ing buckling mode of the bifurcation assumed to be undeformed are written in 
parentheses at the curves. According to Section 2, each is an antimetric component of 
the asymmetric buckling mode.

With increasing side ratio a/b, the effect of deflections w0 increases.
It should be pointed out that near the ratio a ~  3.25 the three curves of buckling 

modes II, III, IV have almost a common intersection. Particular attention should be

(4.2)
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Fig. 17. Effect of prebuckling deflection w0 on the buckling load

11» Fig. 18. E f f e c t  o f  p r e b u c k l i n g  d e f l e c t i o n  t v 0  o n  t h e  b u c k l i n g  l o a d
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paid to this fact when the geometrical imperfections (initial eccentricities) are taken into 
account since under certain circumstances the closeness of the buckling loads of two, 
otherwise stable symmetric bifurcation points can result in a structure very sensitive to 
geometrical imperfections (Chapter 10 in [17]).

In the actual case the bifurcation point corresponding to the buckling mode of 
blocks II (( = 4,7 =  2) and III  (/=2 ,7  = 1) in Fig. 12 is stable symmetric with a 
postbuckling load capacity increasing with increasing w. Bifurcation point assigned to 
block IV(i = 3,7 = 2) is unstable symmetric with a postcritical load capacity decreasing 
with increasing w.

All these facts lead to the conclusion that, properly reckoning with geometrical 
imperfections, the peak of the garland curve of buckling loads (a~3) flattens 
considerably. We intend to carry out research in this field in the future.

8. Comparative analysis

Let us compare first Hutchinson’s [7] results on toroidal shells with our research 
on saddle-shaped hypar shells. Then we will present the approximate solution 
determining the character of the initial postbuckling behaviour given in [10].

Hutchinson’s shell and solution method are entirely different from our ones but 
the results on the basis of way of looking can be compared. An element can be cut out of 
the toroidal shell (Fig. 19), corresponding by shape and by supporting conditions to the 
hypar shell in homogeneous stress state discussed in Section 3 and in [9], the same 
places where also the relationship between this latter and the effectively supported 
hypar shell was analyzed.

Accordingly, similarity of behaviours between the hypar shell in homogeneous 
stress state and the toroidal shell leads to the conclusion that certain similarities exist 
between the buckling or postbuckling behaviour of the hypar shells supported by shear 
diaphragms and of the toroidal shell. Figure 19 was adopted from Hutchinson [7] with 
some alteration of symbols. It is obvious from Fig. 19c that the initial postbuckling 
behaviour can be plate-like (horizontal tangent), decreasing or increasing. Thus, also 
the postbuckling behaviour of the toroidal shell features a variety like that of the 
saddle-shape hypar shell as seen in Fig. 3. By modifying geometric parameters e.g. 
increase can change to decrease etc.

Essentials of our approximate solution presented in [10] are seen in Fig. 20. 
Bushnell [1], Dulácska [3] and Wedellsborg [18] determined the upper critical load p“r 
of imperfect spherical shells and cylindrical shells—because of the excessive computing 
labour demand—by fair approximation based on a physical approach. The 
approximation consisted essentially in modifying the shell geometry by imperfection wk 
(Fig. 20a, Dulácska’s approximate solution [3]) and obtaining the approximate upper 
critical loads p", by solving the eigenvalue problem of the deformed (deflected) shells 
(the original curvature radius R becomes Rk as a function of wk). Dulácska [3]
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@

Hg. 19. Initial postbuckling behaviour of toroidal shells after Hutchinson

demonstrated that the decrease of the critical load (i.e. p''rn_>P“r) *s mainly caused by 
imperfection and geometrical non-linearity is only o f slight effect.

These are the fundamentals of the determination of the buckling load (p\'fd in Fig. 
20d) for the bifurcation phenomenon of saddle-shaped hypar shells from a deformed 
prebuckling state according to [10]. In our case there is no imperfection but there is 
deformation (deflection) w0 in the prebuckling state. The slight effect of geometrical 
non-linearity is seen from diagram S.

Geometry parameters changed by prebuckling deformations w0 are indicated by 
asterisks. Subscript a in symbol w0a refers to average deflection of the entire structure as 
distinct from deflection of the shell centre at ordinate p]c'f .

Let e.g. a buckling load marked 1 belong to parameter a, then 2 will belong to the 
smaller a*.

Parameter Ç always increases, associated with increased load capacity. The arch 
in direction x  becomes softer, the one in direction y becomes stiffer, with a decrease of
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Fig. 20. Approximate construction of the initial postbuckling load capacity diagram

load capacity (2) as resultant of these two opposite effects. The same procedure at 
points w0a + A rather close to w0a would yield the dash-line curve section in the bottom 
part of the figure. Its intersection with non-linear load bearing diagram S is an 
approximation of the buckling load p'c'rnä. The assumed exact solution is plotted in 
heavy line.

According to [10], this method indicates at the same time the type of load bearing 
diagrams for small postbuckling deformations. They were found in [10] to be 
increasing for about a = 3 -i- 4, and decreasing for about a =  2 -=- 3, in conformity with 
Section 6.
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It should be pointed out that the approximation presented in [10] was applied to 
produce the postbuckling diagrams in Section 6 where buckling loads p'c'"ä most differed 
from those obtained under condition w0 = 0 (see Section 7). Ordinates of diagrams and 
loads pi'",, obtained by the method in [10] were found to differ by less than 10% from 
those in Section 6 in the examined range of parameters.

The actual treatment of this problem, more detailed than justified by [10], is 
motivated by the fact that, although these more exact analyses confirm the correctness 
of the approximate method in [10], but the physical purport is better illustrated by the 
approximate solution. In fact, the form of the garland curves of the initial postbuckling 
loads permits to conclude on the increase or decrease of the initial postbuckling 
diagram. Garland curve forms were physically explained in [9] and in Section 3 in this 
paper.

Prebuckling deformations change the curvature conditions of the original shell 
form. (The arch in direction x softens, that in direction y stiffens.) Accordingly, not only 
the membrane load capacity ratio in direction x to y is altered but the ratio of load 
bearing shares of membrane to plate effect, and even the measure of the load capacity 
mobilized by the resultant of both effects. To follow this complex process by 
computation is half not so difficult in possession of the garland curves, in the narrow 
surrounding of deflection w0a assigned to of symmetric p-w diagram S 
(Fig. 20b).

Last but not least, there is no contradiction in solving a non-linear problem 
(postbuckling diagram) in the range of deflections sufficiently close to the bifurcation 
point approximately by linear buckling theory (eigenvalue retrieval). Namely, in 
conformity with the mentioned statement by Dulácska [3], the effect of geometrical 
non-linearity is much less than that of the shell middle surface deformation (deflection) 
w0. Within a narrow domain about the bifurcation point, the geometrical non-linearity 
only slightly affects the value of the ordinates of the postbuckling diagram. Thus, the 
non-linear terms of this slight effect can be omitted from the algorithm of this non-linear 
problem. Since in the meantime the shell form must also be modified it becomes the 
eigenvalue problem of a shell with modified geometry compared to the original one. 
These considerations are confirmed by favourable findings made in numerically 
comparing the method in [10] and the one presented above (the difference is less then 
1 0 % ).

9. Conclusions

As a continuation of our earlier research, a method has been presented for 
determining the buckling load of saddle-shaped hypar shells supported by shear 
diaphragms, deformed under symmetric, uniform loads.

The buckling load is obtained as the intersection of the symmetric and 
asymmetric load bearing diagrams. The asymmetric diagram corresponds to a 
deflection function which has an antimetric component too.

Ada Technica Academiae Scientiarum Hungaricae, 97, 1984



168 JANKÓ, L.

The analysis of the pöstbuckling section of the asymmetric load bearing diagram 
(equilibrium path) valid for pöstbuckling, initial so-called “limited” large deformations 
showed the bifurcation points to be, depending on geometry proportions, either:

a) of stable symmetric type

<x~1.75-h2.2 and a~3.3-^4

shells with increasing pöstbuckling load capacities or
b) of unstable symmetric type

а~2.3ч-3.3

a geometry domain with decreasing pöstbuckling load capacities.
No unstable asymmetric bifurcation point was found; this possibility can be 

excluded in hypar shells.
This method confirms the approximate method given in [10] but now, of course, 

the present method is suggested for application.
The garland curves for the buckling loads for the bifurcation from an undeflected 

assumed prebuckling state (wo =  0) are given in the Appendix.

APPENDIX

In [9] an algorithm was suggested for determining the buckling loads for the 
bifurcation assumed to be undeformed (wo = 0) (see also in Section 3), then it was 
applied to construct garland curves and finally some conclusions were drawn on the 
nature of the phenomenon.

These garland curves yield l/E  times the buckling loads (plc‘rn/E) as a function of 
four parameters (a, ß, у, p).

From certain aspects, the representation in the form

p“n RX\R,\ _  p “ ° ß4 
Ccr E h 2 E 4CV «

is more convenient, partly by facilitating comparison of the results with those for dome 
shells [12] and partly by involving a distorting transformation bringing counterparts 
cii" of load parameters p]c'ß/E — differing by an order of magnitude for certain geometry 
proportions—significantly nearer to each other. As for the first argument, magnitude 
h2 was shown to result from BD, facilitating the application of the method by 
Dulácska [12] for taking reinforced concrete properties into consideration.

The tables and diagrams in the Appendix were compiled with the aid of the 
m ethod presented in [9].

Now, three parameters are directly involved:
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Fig. A l. Buckling load on hypar shells (tvo = 0)

Fig. A 2. Buckling load on hypar shells (wo = 0)
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Fig. /45. Buckling load on hypar shells (wo = 0)

In conformity with the formula above, parameter ß is needed only for 
determining the real value of the buckling load.

It should be pointed out that this practical representation involves a distorting 
transformation to the dependence of the real buckling load values on parameters у and 
£, namely:
— in reality, buckling loads for y =  3 much exceed those for у = 1;
— with increasing parameter (, the buckling load increases in any case (at a difference 

from c^n in Figs A5 to A8). The position of the curves in Figs A1 to A4 for the four 
buckling modes in Fig. 4 is as follows:
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— Block I: the corresponding buckling mode is symmetrical about two axes (x, ÿ), it
may be critical for a ratio a ~  1 1.75.

— Block II: sited between buckling modes corresponding to blocks III and IV  near 
ratio a~ 3 , it obliquely cuts the intersection of the mentioned two blocks. Its 
dominant term is i = 4, j  =  2.

— Block I I I : it is always critical near the normal shell (a=4), it generally covers the 
range at ~  4-^-3. Its dominant term is i = 3,7=1.

— Block IV: it is always critical near the shell of three-quarter normal type (a =  2.25), it 
generally covers the range а~1.5-нЗ. Its dominant term is i—3,j=2.
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It is interesting that the critical buckling mode may vary not only with parameter 
a (Figs A1 to A4) but also with ( near ratio oc ~  3 (see e.g. the garland curve for a =  3 in 
Fig. A5: it starts at block III, to change to block I V at Ç ~  15 -s- 20, and ends by the mode 
corresponding to block II). Inclusion of block / is of theoretical significance: a buckling 
eigenfunction symmetrical about two axes cannot be critical but near the seminormal 
shell involving bending forces (a~  1 -*•1.75, Fig. Al).

The diagrams presented in this paper can be considered as those in [9], improved 
partly to cover a much wider range of geometry parameters, and partly to involve 
numerical analyses for block II.
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Most of the diagrams in [9] refer to geometry parameters where the buckling 
mode corresponding to block II  is not critical (£ =  3.33, 5, 6.66, 7.5, 10 ,...) a 
corresponding curve being mainly missed near ratio a ~ 3  in Figs 10, 12, and 13 of 
[9].

These are, however, irrelevant to the correctness of the theoretical statements and 
conclusions in [9] (places of minima and maxima; inextensional cases; the shell which is 
the most sensitive to geometrical imperfections is near ratio the a ~  3, etc.).

We point out that the complete assumed buckling mode had now generally 16 
-=-20 terms, and in conformity with Section 3, this extended eigenvalue problem
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decomposed to four eigenvalue problems, of 4 or 5 terms each Fig. 4, blocks (/, II, III, 
IV, see also [9]).

Accordingly, it is recommended to use this Appendix, the more so, since the 
involved data cover much wider geometric ranges than did the previous ones.
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A mathematical model for different construction processes is proposed in the article. The 
model uses the stochastic simulation method for the calculation because it enables the valuation of the 
construction process including random influences (e.g. weather conditions, failures of machinery, 
people, etc.). First, the basic principles of mass operation processes (queuing processes) are briefly 
described and reasons for the choice of the stochastic simulation method for the model are given. In 
the further part technological, technical and economic points of view for the optimization and 
judgement of different variants of the simulated construction process are stated. The principles of the 
proposed multipurpose model which is capable of the simulation of different construction processes 
(e.g. earthmoving and concrete laying works, panel house erections, transport processes etc.) are then 
described. An example of the simulation of concrete laying works is given and some facts about the 
practical use for optimization of loading and transport of gravel at the Gabcikovo— Nagymaros 
waterworks are stated.

1. Introduction

On building sites situations it very often occurs that one equipment (e.g. 
excavator) attends another equipment (e.g. dumptrucks) and creates a mass operation 
process. It is intuitively clear that the design of both equipments has to be in harmony, 
that overdimensioning and then a little utilization of the serving equipment would be 
connected with high costs and output losses in the operation of such a system. Similar 
processes can be described as queuing processes that can be characterized as flowing 
processes, influenced by random interference. Because of this interference, sometimes 
queues may occur in front of the channels of service (e.g. excavators), sometimes 
channels of service may not work, because no units (e.g. dumptrucks) are available. 
Usually there are more stages (phases) of service in such a process sometimes in one 
phase several parallel channels of service are used. A circular (closed) system 
representing earthmoving works with 4 phases of service in line (first phase—two 
parallel excavators, second phase—road, third phase—two parallel places of dumping, 
fourth phase—road back) is illustrated in Fig. 1, the same system but on open one is in 
Fig. 2. According to the survey [5] worked out at the Faculty of Civil Engineering of 
the Czech Technical University of Prague the best method for evaluation and 
judgement of similar systems composed of more phases of service in line with the 
possibility of parallel channels of service in different phases, is the stochastic simulation 
using the Monte Carlo method.
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input phased -  road
T

phase 1 phase 2 p hase 3 phase it

Fig. 2

However, some very simple systems can be calculated by the queuing theory, see 
[3], [13], especially those consisting of only one phase of service with some parallel 
channels, but for more difficult systems with more phases of service in line the direct 
calculation using the queuing theory is not possible in practice, since the differential 
equations obtained in this case is impossible to solve. Utility of the use of stochastic 
methods for the construction process, simulation has been discussed for a long time 
and the advantage of these against the deterministic calculation is known now. One of 
many reasons is that the construction process is influenced by so many factors 
(weather, terrain and water conditions, failures of machinery, people, etc.) that it is very 
difficult or even impossible to state precisely as to the conditions for a deterministic 
calculation and judgement of a construction process (see also [5], [7] and [12]).

The aim of the author’s work was to create a multipurpose mathematical model 
connected with a computer program which would enable the simulation and then the 
analysis of different mechanized construction processes consisting of several phases of 
service in line, together with the possibility of several parallel channels of service in 
some (or every) phases, using the stochastic method of the simulation. The task was 
solved in [7]. Some parts of the solution have been published in [6], [8] and [9].
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2. Description of the method of simulation of the process 
and the following analysis

2.1 Fundamental conditions o f calculation

The mathematical model of a construction process simulates a circular (Fig. 1 ) or 
an open (Fig. 2) system with which the process can be described. The multiple use of the 
model enables the simulation of several difficult systems (e.g. concrete laying or panel 
house erections see Fig. 3), having a combination of a circular and an open subsystem. 
The main part of the model is the time synthesis and the following analysis of the 
process. The random quantity is the actual service time in the channel (e.g. filling of a 
dumptruck by an excavator, time of driving through a road, etc.), which is generated by 
a random number generator. The distribution function used for generating the values 
of time depends on the input data that are available for different processes. The exact 
distribution of service time in the channel should be obtained by site monitoring. For 
some kinds of processes it is already known [12], [14]. The used generator enables the 
producing of random numbers for rectangular, exponential, Poisson’s, Erlang’s and a 
normal distribution and for the distribution experimentally obtained by time 
monitoring on site. It was created originally with the help of [1].

The simulated circular system works from the time of arrival of the first unit into 
the first phase of service in the first round (usually in time 0.0) to the time of departure of 
the last unit from the last phase of service in the last round (including possible failures of 
units and times of repairs). After generating the times of arrivals of a certain number of 
units into the system and synthetizing the work in the first phase in the first round, the 
time of departure from the calculated phase equals the time of arrival into the following 
phase of service. That means that the time of departure from the last phase of service in

1 Concrete plant 5
2 Road 6
3 Concrete pump 7
U Road

F ig .  3

Gang of concrete layers 
Input of units (mixers) 
Queue possibility
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the previous round equals the time of arrival into the first phase in the next round of
service.

The simulated open system assumes the acceptance of a certain number of units 
in the first round, while times of arrivals of them are generated. After passing the last 
phase of service the units leave the system. In the following round new times of arrivals 
of the same number of units into the first phase are generated as in the first round, the 
generated random time interval between the arrivals of two units into the system being 
added to the time of arrival of the last unit into the system in the previous round, and 
this value means the arrival of the first unit into the system in the following round. The 
total time of operation of an open system is measured in the same way as for the circular 
system.

Priority in service is applied for all units in one round, which means that units in 
the queue in the previous round block the channels of service for units doing the next 
round, except those being repaired. If the channel of service is being repaired it cannot 
be used for accompanying the units, it is therefore blocked, units have to wait or use the 
other parallel channel if it exists. Repair of the unit does not block any channel of 
service. The time of repair is another random quantity used in the model with its own 
distribution function and is therefore generated by the random number generator.

Two sorts of phases are considered. The first kind are actual machines (e.g. 
excavators, concrete plants etc.) which are capable of serving only one unit during a 
certain time period. The other kinds are roads where several units can be “served” 
during a certain time period.

2.2 Brief description of the principles of the model

The mathematical model is generally illustrated in the flow chart in Fig. 4.
First of all, the essential input data which consist of the general characteristics of 

the site, data concerning the system (e.g. number of phases of service, number of rounds, 
number of units, number of parallel channels of service in every phase, etc.), data about 
arrivals into the system, data about the channels of service (the kind of distribution 
function for generating of times of service and its characteristics, average time of 
service, theoretical output, chance of a failure, average time of repair, costs for 
operation and non operation per time unit, energy consumption per time unit, etc.) and 
similar data about units (including the capacity of a unit) are read. The main data are 
controlled. Then the model generates the times of arrivals of the units into the system 
and proceeds to the main simulation of the process in case of the circular system, in the 
case of an open system it goes directly to the main work simulation, because the times of 
arrivals of the units into the system are generated directly during the simulation of the 
work.

The actual work of the process is simulated in the main part of the model. During 
this simulation all instants of the times of arrivals of the units in all phases of service, of
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the beginning of work in the channels and departures of the units from the phases and 
the times of repair of the machinery, if any, in all rounds of moving the units have to be 
calculated, according to the number of the phases. Therefore, according to first the 
number of the rounds and the character of the system (circular or open) the times of 
arrivals into phases j  of unit i, in the h-th round TINP(h, i,j) are calculated. Then all 
units are controlled against failure, see par. 3.1. If a failure occurs the time of the repair 
of the unit TRU(h, i,j) is generated. Further the queue sequence of the units according 
to their times of arrivals TIN P(h,i,j) and the times of repairs TRU(h,i,j) is stated. 
Then the model tries to put unit i into a channel of service к for operation (attendance).

If the channel is a road no queue is created and the unit is immediately 
“attended” and proceeds to the next phase of service. If the channel is an actual machine 
the channel failure control proceeds in a similar manner as for the units, the channel 
being blocked during the time of repair. The model then decides whether the channels 
of service is engaged or not. This decision consists of several conditions which are 
described in a more particular manner in par. 3.2. If the channel к is free, unit i is 
attended without waiting, the waiting time of the unit i in phase j  in the round h 
TW P(h, i,j) = 0. If the channel к is engaged the model tries the next available parallel 
channel in the phase. If all parallel channels in the phase are engaged, the model finds 
the channel which will be free first and puts the unit into it. The model remembers the 
number of the channel к that will accompany unit i and the waiting time of unit i 
TW P(h, i,j) is calculated. Then the actual time of operation TOP, which means the 
time of attending the unit i by the channel к (see par. 2), is generated by the random 
number generator according to the characteristics of the channel read in the input data 
file. The channel with actual machines (excluding roads) is blocked for the period of 
attending a unit. Next the time of departure from phase j  of unit i in the round h 
TOUTP(h, i,j) is evaluated according to formula (1). Thus, the simulation

TOUTP(h, i,j) = TINP(h, i,j)+ TW P (h, i,j)+TOP  (1)

of work (attendance) in phase j  continues for all units. The results of this time synthesis 
of the process in this phase are printed. The simulation of the process continues for all 
phases of service in one round in a similar way and the model then calculates the results 
of the time synthesis, costs and energy consumption and utilization of machinery in the 
simulated round. Afterwards, the work of the process for all rounds required is 
modelled in the same way.

After this synthesis (simulation) the part having different characteristics of the 
work of all parts of the system and of the whole system are calculated. The model 
analyses the total value, average value and percentage for time of work, time of non 
work, time of waiting, time of repairs, machine time; total costs, costs for repairs and 
work, energy consumption, amount of work done, output of the system, productivity of 
labour and utilization of the machinery—for units, channels of service (excluding 
roads) and for all machinery in the system.
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The next part of the model does a statistical analysis of the different quantities if 
this is required. The statistical analysis enables obtaining the results of the simulation 
in the same form of probability distribution as e.g. queuing theory methods. The 
average values, the dispersion variance and the distribution function of the queuing 
time of one unit in different phases of service, of the time of standing of one unit in 
different phases of service, of the total waiting time of one unit in a round and for a 
circular system in the system and of the time of standing of one unit in a round, in the 
system, can be calculated. This part of the model also evaluates the absolute number of 
cases occurring at certain time intervals, the relative number of those and the cumulative 
probability of a certain time period, which means the probability of waiting or standing 
of one unit for less or equal the time period being evaluated; and the reverse cumulative 
probability of a certain time period, which means the probability of waiting or standing 
of one unit for longer than the time period being evaluated. Similar statistical analysis 
of the number of units queuing or standing in different phases during certain time 
periods, or for an open system the number of units standing in the system during these 
time periods, including the calculation of the probability characteristics can be done, as 
well. Thus, the simulation and analysis of 1 variant of the process is finished.

The model then calculates further variants of the system required. After all 
variants are evaluated (the highest number is 20), the last part of the model chooses the 
three best variants from different points of view (e.g. time, costs, energy consumption, 
utilization of machinery, etc.). The points of view that formulate the quality 
requirements in the course of the process are described in a particular manner in par.
2 .3 .

The program based on the described model was created in two different versions. 
One version enables to evaluate different variants of the system, including the use of 
different machinery in the same phase of service, in different variants, but requires new 
input data for every variant. The other version evaluates different variants of the system 
by using the same data, viz. the same system of phases and channels of service, it only 
decreases the number of the units in the system (dumptrucks, etc.) for a certain number.

A smaller version of both programs evaluates a maximum of 5 rounds, 4 phases of 
service in the round, 5 parallel channels of service in every phase with 20 units working 
in a circular system, that means 100 units for an open system and requires about 125 kB 
of the computer memory. The calculation of 1 variant including the statistical analysis 
lasts about 10 sec. This version simulates approximately one or two days work of the 
system (depending on distances and average times of service in different phases).

The large version of both programs calculates a maximum of 20 rounds, 8 phases 
of service in the round, 5 parallel channels of service in every phase, with 25 units 
working in a circular system, that means 500 units for an open system. This version 
requires about 500 kB of the computer memory and about 1-2 weeks operation of the 
system can be simulated. Naturally, even bigger versions of the program could be 
created by only changing the dimensions of the used arrays.
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2.3 Choice o f the best variant of the simulated process

If more than one variant of the process were evaluated the last part of the model 
enables the choice of the three best variants of the process from different points of view. 
The used points of view that express the quality requirements in the course of 
construction process are not only economical, but most of all technological. They were 
stated according to the survey [5] and to the experience obtained at the Dept, of 
Mechanization and Processing of Structures of the Faculty of Civil Engineering of 
Czech Technical University of Prague in [7]. The points of view are as follows:

— total time of work of the system,
— output per time unit,
— utilization of machinery,
— total machinetime,
— total cost,
— cost per measure unit of the product,
— total energy consumption
— energy consumption per measure unit of the product.

According to these requirements first the whole system, second the units and third the 
separate phases of service are graded and the optimum is chosen. In this model no 
complex utility function was stated as it is often used in construction economics 
because in the construction process design and research there is usually only one 
overriding point of view (e.g. depending on the contractor’s possibilities and resources).

3. Particular description of some important parts of the model

3.1. Failure control and simulation o f the time of repair

The previously described model simulates random failures of machinery (units 
and channels of service). The likelihood of failure of the probability of a failure EPS is 
read by the program in the data file for every machine (e.g. 0.02). In the failure control 
section of the model (Fig. 4, block 12) a random number XI with the rectangular 
distribution in the (0; 1) interval is generated. If the condition (2) is fulfilled a failure of 
machinery occurs and the time

EPS ̂  XI (2)

of repair is then generated, using the exponential probability distribution. The average 
time of repair is obtained from the data file. The machine is blocked for use during its 
repair time. For units, the time of repair TRU(h, i j )  is added to the time of arrival of the 
unit i into the phase j  TINP(h, i,j) and the unit that was being repaired is marked (by 
ANS(i) = 1). Other units have the value of ANS(i) = 0. In case of the channel of service 
repairs, the time of repair TR  is added to the value TOUT\(j, к) which means the time 
when the channel к in the phase j  will be free and prepared to attend the next unit. By 
this addition the channel is blocked for the time TR, as well.
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3.2. Channel engagement control

Channel engagement control described in Fig. 4, bl. 20 consists of several 
conditions. In a round, the channel can be occupied during a certain time by units 
which have not been repaired and have the value of ANS(i) = 0; the highest time limit of 
those marked T O U T \ ( j ,  k) for the phase j  and channel к , as described in Fig. 5, and 
from the time T I N 2 ( j , k ) to T O U T 2 ( j , k )  by units which have been repaired (ANS(i)= 1).

channel к in phase j

engaged free engaged free , ime

0.0 tout 1(j.k) tin2(j,k) tout2(j,k)
Fig. 5

from  BL 18 8. 19 , Fíg. U

to BL. 16, Fig U
Fig. ft
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This means that in the next round the channel is free during the time period of 
TOUT\(j ,k) lo TIN2(j, к) and from T0UT2(j , k) later on. All these conditions must be 
controlled in the bl. 20 in Fig. 4 as is illustrated in particular in Fig. 6. In case of the 
channel repair the value TOUT\(j , k) may be greater than TOUT2(j, k), then the 
TOUT2(j,k)  value is made equal to TOUT\(j,k) because of the channel being blocked.

According to the chosen channel for attending the unit, the condition of unit 
having been repaired or not, and the time of service, new values for TOUTUj, k), 
TIN2(j,  k) and TOUT2(j, k) are stated in block 25 in Fig. 4 in order to be prepared for 
evaluation of the next unit of that round or for the next round.

4. Possibilities for the use of the model

The proposed mathematical model of mechanized building processes can be 
used for simulating different variants of similar processes as illustrated in Figs 1,2 and 
3. It is possible to design bigger and smaller variants of these systems. By using the 
proposed model such processes as e.g. earthmoving works (excavation, loading, 
scraper use, etc.), concrete laying works, assembling processes of panel houses, various 
transport processes etc. can be simulated. The proposed model is multipurpose in 
contrast to stochastic simulation models described e.g. in [1], [4] and [12], where an 
extra model with an extra program for simulating of every single process was used. A 
further advantage of the proposed model is that it calculates and simulates the process 
at the time intervals which are not equal, as in the models in [1], [2], [12], but they 
depend on arrivals or departures of units into or from the phases of service. According 
to the possibility of evaluation of more variants of the system and the following choice 
of the three best variants, the most suitable variant of a building process can be 
designed according to the demands or possibilities of the contractor.

The program simulates the performance of the system not only in the stochastic 
but in the deterministic way, too, if this is required. This enables a particular theoretical 
research and critical evaluation of the methods so far being used for the design and 
output calculation of similar processes. The proposed model helps to obtain the same 
probabilistic characteristics for more difficult systems, as a direct calculation by using 
the queuing theory incase of some simple systems [13], [14]. It is capable of accepting 
all necessary information e.g. weather influence, terrain influence, influence of the 
material handled, etc. in stating the input data, e.g. the average time of service in a 
phase. It also considers the influences which are very difficult or impossible to state in 
advance, e.g. traffic density, because of using the random number generator in 
generating the actual time of operation of a service channel in a phase.

The disadvantage in using the model is that not too much time for monitoring 
the evaluation of the essential input data has been made so far. Once these data are 
available, the significance and accuracy of the results obtained by the proposed and 
similar further developed models will certainly increase.
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5. Theoretical example-simulation of concrete laying works

The process of concrete laying works which was simulated by the small version of 
the program is described in Fig. 3. The process consists of one circular (closed) 
subsystem which has 4 phases of service, in which the first phase (concrete plant) and 
the third one belong to the first kind (with the possibility of queue) and the 3rd phase 
has 2 parallel channels of service (2 concrete pumps), 2nd and 4th phase representing 
roads belong to the second kind. The following parts of the process are simulated by 
two open subsystems, modeling the exits from the concrete pumps, pipes for the 
transport of concrete and 4 gangs of concrete layers (two in each subsystem).

In the modeling of the concrete laying works, first the circular subsystem was 
simulated—the part of the process representing the transport of the concrete from the 
concrete plant to the building site. In this part of the calculation the terms of the 
departures of the units (concrete mixers) from the 3rd phase were stated, that means the 
terms of the finishing of the pouring of the concrete into the concrete pumps (first or 
second channel of service in this phase). Those time instants were read as the inputs of 
the units (in this part of the calculation one unit means 2.5 m3 of concrete) into the open 
subsystems representing the laying of concrete. The average of the digital character
istics of all aspects for the choice of the best variant of the whole system was calculated 
after all runs of the program. 8 variants of the process were simulated with equal 
parameters of the channels of service, while the number of units requiring for the service 
in the circular subsystem was 20, in the first variant and in next ones this number was 
decreased by 2. The units in the circular subsystem are the concrete mixers AM 8 with 
the capacity of 2.5 m3 of concrete, measured cost for work 1.20 Kcs/min, average time 
of repair 90 mins and measured costs for repair 2 Kcs/min. In the open subsystems the 
units are created by 2.5 m3 of concrete. The input data about the phases of service for 
the stochastic versions of calculation are in Table I. For the deterministic versions of 
the simulation only the probability distribution of the time of service is modified, as 
constant. Four versions of the process were simulated—2 stochastic (the first with the 
likelihood of failure of machines 0.0, the 2nd 0.01) and 2 deterministic with the same 
values of the likelihood of failure.

A part of the results of the simulation of this process is described in Tabs II-V 
where one can compare the values of the utilization of the machinery in the system, the 
actual labour consumption per measure unit of the product, costs per measure unit of 
the product and the output of the system. The results are drawn up in Figs 7 and 8. It is 
to be seen that the most advantageous variant has 8 concrete mixers and 1 concrete 
pump which is enough for concrete laying, because of the small capacity of the concrete 
plant. The differences of the results obtained by the deterministic and stochastic 
simulation are described in these figures as well.
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Table I

P h ase T h e o re tic a l
o u tp u t

(m /m in )

M ea su re  co sts  for 
(K cs/m in )

A verage 
tim e o f 

serv icing  
th e  u n it 

(m in)

P ro b ab il ity  d is tr ib u tio n  
o f  tim e o f  service 
a n d  its  p a ra m e te r

A verage 
tim e o f 
re p a ir  
(M in)

M easu red  
co sts  fo r 

re p a ir  

(K cs/m in )N u m b e r Sort W o rk
N o n 

w o rk in g

- - In p u t o f u n its - - - 1.5 ex p o n en t. - -

C irc u la r  su b sy stem

1 1 C o n c re te  p la n t C l FA 0.5 2.50 2.00 5.0 E lan g ’s K R  =  5 120 2.00
2 2 R o ad - - - 20.0 n o rm a l a — 10 — —
3 1 2 c o n c re te  p u m p s 0.4 1.50 1.00 4.0 E rla n g ’s K R  =  5 60 1.50
4 2 R o ad — - - 15.0 n o rm a l a  =  5 - -

O p e n  su b sy stem s

1 1 C o n c re te  p u m p 0.4 1.50 1.00 5.0 E rla n g ’s K R  =  10 60 1.50
2 2 P ipe line - - - 1.5 konst. — —

3 1 2 g an g s o f  concr. layers 0.17 1.50 1.50 15.0 E rla n g ’s K R  =  10 - -
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Table II . Concrete layiny works —  see  F ig . 3 
S to c h a s tic  m o d e l— w ith o u t fa ilu res

N o . o f 
v a r ia n t

N o. o f 
un its

U tiliz a tio n  
o f  m ach in es

( - )

A c tu a l la b o u r  
c o n su m p tio n  
(.MTU/MU)

C o s t o f  MU 
(K cs/MU)

O u tp u t  
(M U /T V )

1 20 0.58 41.70 52.60 0 .50
2 18 0.58 40.30 50.90 0.48
3 16 0.61 36.90 46.90 0 .47
4 14 0.63 35.52 45.40 0.44
5 12 0.71 27.50 35.40 0.48
6 10 0.71 30.00 39.00 0.41
7 8 0.69 27.37 35.60 0 .37
8 6 0.65 30.00 39.20 0 .29

Table II I . Concrete layiny works— see F ig . 3 
S to c h a s tic  m o d e l— like lihood  o f  fa ilu re  o f  m a c h in e s  0.01

N o . o f 
v a r ia n t

N o. o f 
un its

U tiliz a tio n  
o f  m ach in es

( - )

A c tu a l la b o u r  
c o n su m p tio n  
(MTU/MU )

C o st of MV  
(K cs /MV)

O u tp u t  
(.M V / T V )

1 20 0.59 41.60 52.61 0 .50
2 18 0.63 38.14 49.09 0 .50
3 16 0.59 38.54 49.52 0.45
4 14 0.59 38.12 49.63 0.41
5 12 0.64 32.60 42.78 0.41
6 10 0.71 28.03 36.36 0.42
7 8 0.49 40.30 55.00 0 .18
8 6 0.67 28.37 37.04 0 .30

Table IV . Concrete layiny works— see F ig . 3 
D e te rm in is tic  m odel— w ith o u t fa ilu res

N o . o f  
v a r ia n t

N o. o f 
u n its

U tiliz a tio n  
o f  m ach in es

( - )

A c tu a l la b o u r  
c o n su m p tio n  
(MTV/MV)

C o s t of MV  
(K cs /MV)

O u tp u t
(MU/TV)

1 20 0.56 44.65 56.24 0 .46
2 18 0.58 41.11 52.00 0 .46
3 16 0.60 37.58 47.77 0 .46
4 14 0.64 34.07 43.58 0.45
5 12 0.68 30.60 39.42 0 .44
6 10 0.74 27.18 35.34 0.43
7 8 0.76 25.60 33.54 0 .39
8 6 0.71 27.40 35.99 0.31
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ТаЫе V. Concrete laying works—see Fig. 3 
Deterministic model—likelihood of failure of machines 0.Ш

No. of 
variant

No. of 
units

Utilization 
of machines

( - )

Actual labour 
consumption 
(MTU /MU )

Cost of MU 
(Kcs/MlO

Output
(MU/TU)

1 20 0.54 43.65 56.08 0.42
2 18 0.60 38.84 50.13 0.47
3 16 0.58 36.33 47.37 0.38
4 14 0.60 36.43 46.83 0.43
5 12 0.53 38.17 49.91 0.33
6 10 0.73 27.53 36.07 0.43
7 8 0.61 32.03 43.25 0.26
8 6 0.61 32.43 43.91 0.23

Sort of the model :
------- stochastic with failures
------- stochastic without failures
-------deterministic with failures
------- deterministic without failures

number of units

g.4A 
3  A2 

8  AO
; 38
I

3 6

ЗА

3 2

3 0

2 8

2 6

2A

3z

A 6  8  10 12 1A 16 18 20
number of units

Fig. ^
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Sort of the model :
-------  stochastic with failures
------- stochastic without failures
-------deterministic with failures
------- deterministic without failures

number of units number of units

Fiy. 8

6. Practical example—optimization of loading and transport 
of gravel at Gabcikovo— Nagymaros

The model was recently used for the optimization of loading and transport of 
gravel for the embankments of the waterworks Gabcikovo—Nagymaros on the river 
Danube. The scheme of this process responds to Fig. 1 with the exception of the 3rd 
phase, where no queue was created. The scheme of the situation of the building site is on 
Fig. 9. There were 3 different resources of gravel on site (A, B, C) and 17 places of 
consumption—17 sections of the embankments having the length of 1 km each. Many 
different variants of the process were simulated on the computer using different kinds 
and number of machines, see report [10]. The optimum according to the costs and fuel 
consumption was to use the UNC-200 loaders and Tatra T148 SI dumptrucks, in 
certain numbers, for different sections, quoted in Table VI. In this table the basic 
characteristics (cost and fuel consumption per measure unit m3 of gravel) of the process 
are compared in case of a case-free course of the process, and in the course of the 
process with random failures of machinery. The likelihood of failure for the loaders was
0.01, for dumptrucks 0.02. The average quantities were calculated according to the 
amount of gravel to be transported from the resources to the sections of the waterwork.

It is to be seen that the influence of failures of the machines on the quality 
parameters of the process is surprisingly high, the costs being increased by 66% and the
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Т аЫ е VI

Machinery used Case smooth course Course with failures
No. of loaders 
No. of trucks

costs
Kcs/m3

fuel consumption 
1/m3

costs
Kcs/m3

fuel consumption 
1/m3

1 1
10 3.46 0.80 10.44 1.72

4 1
6 2.28 0.45 2.26 0.44

6 1
8 2.95 0.64 3.82 0.64

7 2
8 2.25 0.39 2.91 0.41

'  9 2
16 3.17 0.69 5.54 0.86

11 2
30 4.15 1.0 6.72 1.52

12 2
42 5.33 1.35 8.54 1.98

15 2
28 3.80 0.90 4.95 1.04

17 2
14 2.61 0.53 6.09 0.49

Average 3.40 0.77 5.64 1.00

Increase % 65.88 29.87

energy consumption by 30%. It is to be considered from this fact that it is worth to have 
at least one dumptruck on the site more which can be used in case of failure of a 
machine. Thus, a smooth course of the process can be ensured with a minimum increase 
of cost and fuel consumption.

7. Conclusions

Mathematical stochastic models have gained more and more significance in the 
building-process research, recently. The proposed model aims at bringing even more 
utilization of these methods in this specialization.

From the results which have been obtained so far it is to be seen that this model is 
suitable for the simulation of many types of construction processes. The results 
obtained by the proposed model provides a much better approach of the reality of the 
process than if calculated by using the traditional deterministic way or the queuing 
theory. The model is useful for the calculation of quality parameters having different 
variai^; of the process to gain the optimum. Those parameters should be judged at an 
extra of the quality parameters of the resulting product. It is capable of searching for the 
influence of different factors, on the quality indicators of the course of the process (e.g.

13* Acta Technica Academiae Scientiarum Hunguricae, 97. !9H4



196 JARSKY, С.

failures of machinery, number of means of production, etc.). The model contributes to 
more economic design of mechanized building processes and, therefore, for lowering 
the cost and energy consumption of those on site and to better utilizing the machinery 
to be used.

Further research in this field will be directed to obtaining more reliable statistical 
data for the input for the model (likelihood of failure of the machinery, time monitoring 
of the behaviour of similar systems, etc.) and the model itself is planned to be improved 
by competency of simulating construction processes which consist of more than one 
circular subsystem with certain points of contact among them.
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PERCOLATION AROUND DAMS

J. Juhász

[Received: 4 October 1983]

A simple procedure easy to treat is presented for determining with adequate accuracy the 
plane percolation under, and spatial percolation around dams which is to be applied also to pocket 
calculators. The boundary conditions might be largely diversified. By using it, a single or several 
layers, projects with surface or subsurface foundation and different confining beds at different 
sections might be taken into account.

In the author’s papers published earlier [1], [2], [3] a simple and easily treatable 
procedure has been presented for the evaluation with proper exactitude of the 
discharge of the plane percolation under a dam built on the surface, the pressures 
applied on the footing, the entrance and exit gradients, for the case of a system 
consisting of two and three water-bearing strata covered with a thick confining bed.

The problem may be continued to develop by laying the footing of the dam below 
the soil surface or by building a sheet wall (cutoff wall) under the dam. Also the case of a 
system of permeable strata of number n, of different thicknesses and coefficients of 
permeability as well as instances designed with sheet walls are arranged under the 
project.

Eventually, a relationship of close approximation is established which also 
describes the spatial percolation.

A percolation discharge along the unit width under the project built into a thick 
water-bearing formation might be determined (Fig. 1) by making use of the method of 
angled stream tube worked out by the author, as follows.

In a stream tube, the discharge of the water percolating through the confining 
bed, is given by the equation

d e = л
f -2  1̂
-----Tt— a/  dw ( 1 )

with

a/  = I I
M,
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H---- Ta =<*a M, ----►!

and

dß  =
t- **a — 2 2
Àa_2 Ma- 2

<xa dm (2)

hi — part of total loss A H falling to the section investigated, is so far unknown;
— values of anisotropy at rock sections as designated.

At the vertical creep sections, in the waterbearing stratum up to the level of the 
lower edge of the project:

(3>
and

d ß  = k, 7~ Т Г ^~ аа dm (4)
A, M a _ !

The discharge at the vertical percolation along the section of the water-bearing 
stratum under the foundation is as follows:

and

dß  = -2- - ”1.2 a dm (5)
Aj m

dß = ^i/|u22 dm. (6)
A, m

Along the horizontal section of the water-bearing stratum:

from (1)

dß  = fc1A H — ( h l + h 2 +  hv l l  +  hv21 +  hv l 2 + h v22) л
----------------;-------- ;------;------------------dm(ay + aJm  + Lo

M / - 2A.f- 2 dß  
ayky_2 dm ’

(7)

( 8)
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from (2) 

from (3) 

from (4) 

from (5) 

from (6)

L M , - 2 ^ - 2 <3Q
2 * Л - 2 dm ’

Я.М, .dQ
dm ’

*,M„- , dQ
fc, <xa dm ’

L _  A,m dQ
" v l 2  I «__  5k xctf dm

Aj m dQ 
122 /qa^dm

(9)

( 10)

( 11)

( 12)

(13)

Substitution of Eqs (8) to (13) into (7) yields

<*A-2

or after rearrangement

^ -[ (a y  +  aJ m  +  L o l ^  =  A H -  \ M f  2 +
k { dm |_ a.fkf-2

L(Zi* + !bzi) + i f l  + iV 1
V <*« у /с, Va/ a„/ J

_l_ -  2  Яд -  2 dQ 
dm ’

dQ _  k t AH 
dm Y ’

where
y _  ^  fci M / - 2 ^ / - 2  & I M a - 2  л а - 2  + д  /  M j - t  ^  M a - 1  \

1V «/ “a /а/ к / - 2 a„/c„_a^a - 2

+ +  £ ) m .

Notation

B{ — L0 + k t ( M f -2^1-1 Ma - 2 Яа _ 2
Ч 2 а я/с„_.

c'= í i ( í ; + s; ) + “' + а„.

Therefore

dQ = —— ——  dm .
B +  C,m

Integration between the limits 0 and m gives

k . A H , ß .+ C ^ m

(14)

(15)

(16)
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The discharge percolating through the whole thickness of the stratum is

kl AH
= “ c T  — в ,—

( 17)

L. Újfaludi [4] confirmed by tests carried out on models of electric analogy that, 
compared with a sheet piling located at the middle of the project, a sheet piling 
arranged at the downstream or upstream end of the project at the same depth as that 
above, yields the same discharge with an approximation within 11 per cent. Therefore, 
also in case of the application of a sheet piling deepened to the depth of the footing of 
the project, to be seen in the figure, a comparable percolation discharge is yielded.

By using the data given, the calculation method consists in defining the 
maximum value of Q with the aid of Eq. (17) by varying the values of a.f  and aa. The 
values 3c/o p t and ocaop, multiplied with M l  give the influent and the effluent percolation 
widths Tf  opl and Taopt where the phenomenon takes place. The successive approxi
mation might be carried out with the use of a simple pocket calculator.

Should the percolation discharge be drained by a drainage channel, so the 
calculation should be accomplished in two stages. First, the discharge of the 
percolation is to be evaluated by using the relationship (17) but, with the assumption 
that in the equation (14) the values M0^2> ka_2 and К - г  are equal to zero, i.e., the 
confining bed under the project no longer affects the flow. The equation a/  opt ' W i =  7} 
gives the width of the influent percolation yielded by successive approximation at the 
storage side, and aûopt ■ M 1 = Ta the width of the effluent percolation at the protected 
side. With the channel the discharge in this width of the percolation should be collected 
and drained according to Fig. 2. The depression S0 related to the water table developed 
(or permitted) at the downstream face might be found with the aid of the familiar 
relationship

о 2ß><P| n T* 
So= M ^ l n D

(18)
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In case of drainage by a fully-penetrating well (i.e., ideal well) F.q. (14) takes the 
following form

Bx - L 0 + /c, 2 À f  2 

Zfkj -2
(19)

and

C = — + <xr . (20)

The discharge arriving in a well of r0 radius in a series of wells located at a 
distance 2p, is Qk = 2pQi . The depression S0 = H — h0 may be calculated from the 
relationship (Fig. 3):

H2 — ho — PQ l , P In
M  r0

( 19/a)

In case of several water-bearing strata to be found under the footing of the 
project, the discharge of the percolation might be evaluated by making use of the 
familiar assumption in accordance with which the possible movement may be 
separated no matter along which streamline, and the remaining part of the flow pattern 
remains unchanged. It is also evident that the maximum of the percolation discharge 
will develop by all means.

In view of the above assumptions, with respective application of the deduction 
presented in the foregoing, in accordance with Fig. 4, in case of a project with its footing 
laid on the bottom plane of the upper confining bed or above it, under the footing n

top view upstream face

Г
A

Ц)
downstream face —

о  о  о  о
h—  2р ----- И А

cross section А- А
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_v

M,

x .

Mi

Mn

Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Л
F i y .  4

permeable strata having been developed, in whichever /the layer, the discharge of 
percolation may be calculated as follows

Q, = AHkhl
C ,

In
с ‘ум,  + в( сг±м(+вт

1
B; c? In

B* (21)

wherein

C.=
1 1--- _j------

a/i «„■
/,■ +  a/; + aai, ( 22)

Bi — T0 + M_ A )  A  +
k/

(23)

with product

Cf
\л  -1

Л,- +  <Xfi + aai

B? = L0 + ki
kf  / . “/■• 1

(24)

(25)

characterizing an upper confining bed at upstream side of the project along section 
where water percolating through /-th layer passes through the confining bed.

Thus, with the above calculation method several kinds of confining beds could be 
considered, both at the upstream and downstream sides.
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Fig. 5

Should the project be constructed with a deep foundation, as is to be seen, in Fig. 
5 so the percolation discharge in the f'-th layer as well as the values C, and Cf satisfy the 
relationships (21), (22) and (24), however,

+ 2,-, ( M f  i . M. - i+
*/i

+

+ /c,

and

y  ^  ^  1 /  y  Mai,/.a
J X - f i  \ e =  2  k j - e  J i  0Ca j  2  k u e

Bf = Lo + -  +  —  1 +
a / i  I I

(26)

+ ki 1  /  y  M f e l f e \  +  J  /  у  М „ Л а

У - п \ е ~ -  2 k f „  /, а„Ле/^2 К ,
(27)

It is desirable to know the distribution pattern of the percolation discharge 
within each of the layers, so the thicknesses M, of the layers should be replaced by the 
variable value M, >  m.

A significant objective of the analyses is the determination of the exit gradient at 
the downstream face of the dam as well as the values of the pressures developing under 
the dam.

In the instance of the existence of an upper confining bed, the exit gradient is 
given by the formula

h
/* = M

(28)
I“

A d a  I n  finira Arademiue Scienliurum Hungaricae, 97, I9H4



204 JUHÁSZ, J,

In the case represented in Fig, 4, the pressure loss occurring at the downstream 
face of the project, immediately at its edge, might be obtained by using the equation

wherein

wherefore

K =
M f a

а „кf a
dm

d e .
dm

k lhAH
B.

k lt,AH ' h =  M fak lhAH 
kfaa-aB\ ’ “ k fa!xaB l

(29)

(30)

The value of Bt can be taken from the relationship (26), i.e., for the first layer from 
the relationship (14). With a project built without sheet piling or deep foundation, the 
value of b is equal to zero.

In evaluating the water discharge the streamlines are approximated by angular 
ones. Therefore, for making the value of the water discharge more exact, one uses a 
coefficient of correction.

In determining the coefficient of correction one should start from the fact that the 
rectilinear streamline assumed is actually an ellipse (Fig. 6). Should—with a certain 
safety—only the extreme streamlines be transformed into ellipses, and the reduction so 
obtained applied, one can obtain the following value for the coefficient of correction:

4.64 (M ,+L g)

LS + 4 ^ M ? +  —

Good approximate values are indicated as the function of LJ in Table 1. This 
coefficient of correction is, at the same time, the difference between the exact and 
approximate method suggested. It is to be seen that actually the difference hardly 
exceeds 1 or 2 per cent, even in case where there is no upper confining bed.

■ f

2 L 0* 

— 1-0
M o

к  7. >  I_ "T I
M ' ' 4 M, I 4

I VI
L;  ;  /  г г ;  / r r r r r 7”/ / / / / / / / /

• * — H
Fig. 6

Lo’
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Table I

0.01 0.02 0.05 0.1 0.2 0.3 0.5 1.0
Ц + t i T i a  + Tif) 1

,9 1.005 1.01 1.02 1.05 1.09 1.13 1.18 1.27

The coefficient of correction can be applied to each of the water-bearing stratum 
by making use of the equation

4.64 1[ ç  Mi + L $ + p T i f +Tia)j

L*o+ i (T i f +Tia) + 4 ^1 \ ^ L $ + p T i f +Tia) T

Thus, the corrected value of the water discharge is

Qj=9Q.  (33)

The phenomena of percolation do not take place, in general, in the plane but in 
the space. Therefore, the analysis of the percolation is very important. The analysis of 
the spatial percolation is not so easy to perform, as that of the plane. Therefore, certain 
cases which can be resolved are presented and, on the basis of these approximate 
generalization will be concluded.

The analyses are carried out in several ways of approximation. In certain cases 
the confining beds are taken into account while in others, are not.

In case of percolation in space the distribution shown in Fig. 7 might be used as a 
good approximation. The percolation down below in its one-third part in the middle 
(region I) might be regarded as planar. Then follows the percolation in space in region
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II, and that along the side below in region III while at the upper half side again a kind of 
percolation which also may be considered to be planar (region IV).

The discharge of the plane percolation down below and at the side (regions I and 
IV) can be evaluated by making use of Eq. (17) after practical transformation:

wherein

with

_ M H / j ,  ß .+ Q M .- h )  
Q\ = — -— inC, B.

„ , 2kxMf  2 kb
B' =  L o + - ^  + V ^

C,= — +2a,
a

k l AHl5 ß |V + ClvX 1 
Q ív =  — - — -inC, B„

R - ,  , 2k^ f  ,2b 'öiv — ь0 H— -----H----- ,k rat ocr

2Я ,  
C.v = ----- l-2a

(34)

(35)

(36)

(37)

First, Q is calculated in the known way. Thus, its values are obtained for region I. 
Thereafter, with the knowledge of X y the values of clx will be evaluated for region IV, 
trying to find the maximum value of g IV for the X  direction. In general oc/ax. The 
values of a„ and ocm needed for the calculation of the other parts of space may be found 
from the values a and <xx as follows:

a* - a ,
“ ’ - " +

whence OC5 + OC
2

and
a5 + ax

аш — 2 •

With these quantities known, water discharges of space parts II and III may be 
obtained without further using the method of successive approximation.

Should the area not be determined horizontally, i.e., the value of X  is not known, 
so its maximum empirical value to be considered is

v  _ Ta+Tf + L0 
X -  -  ,

l í —X i + X j  + l i . (38)
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In Fig. 7 the cross section of the headrace canal in front of the project is depicted 
from which water is percolating outwards. (The cross section of the downstream 
channel as that in Fig. 7. By way of information also the natural confining bed is 
indicated in the figure, however, it has no significance in the case of the present 
investigation.)

For the evaluation of the percolation round the corner, this is to be divided into 
two parts, i.e., a vertical section of height /5 (region III) and a horizontal one of width /, 
(region II), and the evaluation is to be accomplished separately.

Along the lower section of width /, (region II), due to the change of the space of 
percolation in the vertical direction, the water discharge can be obtained by two 
consecutive integrations as follows.

The discharge percolating vertically through the confining bed is

wherein

with

whence

therefore,

dC- l ' s ;

X f  = ll + amf ,

/3- / .a = ---------- ,
М + М /

dh.
dQ = kf ~ - ( l l +ams)dy,

a e  I
dy kf  /, +amf

(39)

(40)

After integration, the replacement of the limits yields

K  =
d Ç _ l_  l i + a Mj- 
dy kf a /,

(41)

with designations to be seen in Fig. 7.
Should the confining bed at the downstream side be the same as that at the 

upstream side, so
h2 = h t (42)

In the water-bearing stratum, if the impervious curtain wall of depth b sinks into 
the water-bearing stratum, the discharge of the vertical percolation is as follows:

d e = ^ ^ (,1+am)d*’
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whence, by integration between the limits and 0 one obtains

—
li+am

d 7 ^ ln”
(43)

Considering that “confining” beds of the very same resistance are assumed both 
at the downstream and upstream faces in agreement with the practice, at the 
downstream face the resistance of the water arising in the water-bearing stratum is 
given by the equation (43), i.e.,

K f  =  K a -  (44)

The discharge percolating horizontally in the water bearing stratum is

dQ = k,
AH  — (hj +h2 + hvf + hva)

2 y + L0
(/t +am)dm (45)

because of y = am and dy = <x dm, replacement of (41), (42), (43) and (44) into Eq. (45) 
after rearrangement yields

dQ 2ocm + L0 2 , l i+aMr 2-VÄ ll +am 
dm [_ic1(/1 +am) actkf  ctaki

= A H ,

whence

dQ =
1c, AH dm

2ctm + L 0 2/cj I t +aMf  2 lt +am
---------- - +  —p -ln - i- j----L +  -У— In-2------

l i+ am  aoikj- li act

(46)

(47)

after rearrangement, carrying out the division expressed by the first term of the 
denominator and introducing the designation ll + am = x  from which dx = a dm, am = 
X — / , ,  the equation appears in the form:

d  Q
0.5 kiAH

dx
aL0

a(X /l)+  2 ki  , / ,+ aM , J I ,  „  , J l .+ —~~ In ——;----L -  :*— \n{ll)+ ^— \n(li+am)
xkf  L

(48)
By introducing the designations

0ÍK j  — 2 11 ®
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o f - - "

D- Дa

Equation (48) may be written in the form

d Q dx
0.5 /с, AH C

A H------ t-D ln X
X

(49)

In the course of the investigations, the value of x changes between two and 10. 
Along this section the logarithmic function can well be approximated by the function

' х - Л 2
In x ci 2.8

Therewith, one obtains
dß dx

0.5 kyAH
A + -  + 2.

X

(50)

Performing the squaring and the rearrangement of the denominator in accordance 
with x then, multiplying both the numerator and the denominator with x2, the 
equation reads as follows

dß x 2 dx
0.5 kAH (A + 2.8 D)x2 + (C -  5.6 D)x + 2.8 D 

By using the designations
A + 2.8 D = p ,

C —5.6 D = r ,

2.8D =  t)
one obtains

dß x2 dx
0.5 ki AH px2+rx + v

Performing the division of the numerator with the denominator results

dß
0.5 le, AH

Г 1 r 1 í r 2 V \  1 r3 1 /  rs r2V t)2\  1 ~\
= L7 ■ 7 x + Vf  ■ 7) ?  " 7  x*+ V 7  ~ V  + 7) ?  J

(51)

(52)

(53)

(54)

(55)

(56)
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By the integration of each term separately, and using the following limiting values 

if m —M  — b, so x = ll +a(M — b) and

if m = 0, so x = ll t

yields the discharge

0  = 0.5 kahAH  

r — pv /  1

a(M — b) r lya{M — b)
2 In -

p p h

ll +a(Ml - b )  / J  +  2p4
1

ll +a(M —by (h)2]

r* — pr2v + p2 V2 1
-  1 11

3p5 /j + a(M — b)3 (M3Jj

wherein

i = ^ l n i l +aM i _ V j i n г ч Д
<xkf  lx a a

aL0 5.6^/J.
r =  —-  - a r / ! ------— ,

2 a

+ a ,

u =
2.8n/ I

/ з - / ,  J V  +  X /

M + M j  M + M  f

(57)

(58)

(59)

(60) 

(61)

According to the experiences obtained, it is sufficient practically to consider only 
the first two terms of the equation which results in the following relationship

Qn = 0 .5k t AH
[
a(M — b) 

P
+ a(M — b)~\

h  I
(62)

Under such geological conditions the maximum of the function (62) should be 
sought by changing the values of a and a.

Should the geological structure be as shown in Fig. 7, so the component of the 
percolation around the corner directed downwards is to be calculted by making use of 
the relationship (62).

The water discharge in region III can be evaluated with the aid of the relationship
(62) transformed in accordance with the notation to be seen in Fig. 7.

Q ^ O . S k ^ H
á(X-b ')  r1 ls + d(X — b'j

F ---- 7T In,'2 *]•
(63)
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wherein

In '’ -1- " ' -
*5

у Д .  , , 2.8^1 (64)
<*x

ÚLо
r ---- ; -----«д

. 5.6V/ I
:*5 " » (65)

2 «X

/4 — /5 M + M f  1
(66)x  + x f X  + X f  ~  a '

Thus, the total of the percolation discharge around the project is given by the 
following summation of the values of discharges found by using the relationships (62),
(63), (64) and (65)

Q = Qi + 2Qn + 2Qm + 2Qlv. (67)

In case of a narrow project where the value of 3/, is lower or only a little higher 
than that of 2Z5, the region I of the lower percolation should be omitted whereby, the 
regions II of both sides join with each other, i.e., /, means the half width of the project; 
should the value of 2/5 be lower than that of lt , so, by omitting region IV, the value of /5 
will mean the total height. Also in the case of this calculation the value of aopt should be 
evaluated from the maximum value of Qs, or g lv is to be omitted but the values of a„ 
and oc,n should be calculated from the values of aopt.

Obviously, if no such surfaces occur in the channel which would significantly 
reduce the rate of percolation (for example, covering or colmated layer) then Mf  = 0, 
X f  =  0 and the equations will be somewhat simpler.

The pressures applied to the elements of the boundary surfaces (sides, underside) 
at certain preferred points can be evaluated with the use of relations (41) and (43); at the 
underside of the colmated layer and at any point of the water bearing stratum at a

+*-1, -** 
F ig . 8

14* Acta Technica Academiae Scientiarum Hungaricae, 97, 1984



212 JUHÁSZ, J.

depth designated with m. Owing to the assumed symmetry of the stratification the 
values at the upstream and the downstream sides are symmetrical. At the upstream side 
hy, i.e., hvl is to be subtracted, whereas at the downstream side h2, i.e., is to be added to
H.

In case where the geological structure corresponds to that depicted in Fig. 8, the 
percolation rate at the side of the project has no significance. The percolation discharge 
below the underside slab might be calculated as follows.

First, by assuming the discharge percolating vertically under the project to be 
plane percolation in the middle 3rd of the underside, one evaluates the discharge by 
using Eq. (34). At the same time, besides Q, mai also the optimum value of a is obtained.

In the second part of space, the calculation of the percolation discharge is to be 
performed in the following way.

The loss in discharge percolating through the upper confining bed agrees with 
that expressed by the relationship (41).

h i =

with

d Q  1 I t + d j M f
dУ a ,k ,  " /,

l2~ l  ia r =
M,

(68)

(69)

The height of loss in discharge of the vertical percolation through the water-bearing 
stratum is given by the equation

dQ к /2 + a,m
"i>f— ~r~ I mdy al k l l2

with
a , = /3- /2

(70)

(71)

The discharge percolating horizontally through water bearing stratum may be found 
by the relationship

A H —2hy—2Hul
àQ = kh -(l2 + al m) dm.

2 y + L0

Substitution of Eqs (68) and (70) into Eq. (72) and factoring out dQ, yields

(72)

d Q =
k yAH dm

2a.m + L0 2k, , l ,+ a rM r 2k , l2-\-axm
----------- H---- p — In /  J + ------In
l2+aym af k j  a q axa l2

(73)

By determining the value of Q on the analogy with the relationships (47) to (72) one 
obtains

Q„ = 0.5 ky AH
l2+dy My ^

I2 J ’
(74)
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wherein

«/*/

li+Qj-Mr Я 2.8 Я
ln 1 /  f ---- In /2------ - f a ,

/j a a
(75)

о a i^o , 5.6 A
' -  2 « •

(76)

The maximum discharge may be found by varying the value of l2 in Eq. (74) while 
one assumes the value of l3

to be constant.
The total of the percolation discharge is

ö  =  ß i  +  2 ß n  •

Should the value of the coefficient of percolation not be lower by an order of 
magnitude than that of the lower layer, so by considering the side percolation to Be of 
plane character, also the discharge of region IV might be determined. However, this 
might be, in general, omitted.

In case of the type of geological environment represented in Fig. 9 which 
frequently occurs in river valleys, as a first step of the calculation, the side percolation in 
region IV is to be determined. Should the maximum discharge be developed at a width 
larger than the distance X,  so the discharge percolating through region IV should be 
evaluated by calculating with the actual X  distance. As a matter of course, also the 
geometrical assumptions of regions II and III will be fitted into this condition.

The flow space represented in Fig. 8 will present itself also in that case where the 
sheet walls are introduced into the slopes of the valley. In such cases, the water 
discharge in the middle third (region I) should be evaluated in accordance with the
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notation used for the profile and the cross section shown in Fig. 1 and Fig. 8 
respectively, by making use of Eq. (34). The water discharge in region II is expressed by 
the formula

Qu = 0.5khAH
/2 +  a t (M ! —b)

l2

where the values of p° and r° can be taken from the relationships (75) and (76) 
respectively.
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CHARACTERIZATION OF ELLIPTICALLY 
POLARIZED ANTENNA 

BY COMPLEX EFFECTIVE LENGTH

J. K a p o r *

[Received: 19 April 1983]

In this paper the interaction of elliptically polarized electromagnetic field and generalized 
receiving antenna is described by means of complex effective lengths. In the analysis the effective 
ellipse, similar to the polarization ellipse, is introduced, which gives physical interpretation of 
complex effective length. The complex effective length— having close relation to the polarization of 
the antenna—is used for describing the characteristics of elliptically polarised antennas. Based on 
this analysis it can be stated that the complex effective length is a universal characteristic of antennas 
and from it all the important antenna parameters can be derived. The complex effective length gives a 
suitable description of the receiving features of the antenna.

Introduction

The antenna is a transducer which radiates with high efficiency the power 
conducted on the waveguide or receives electromagnetic waves from the ambient space 
and converts it into conducted waves. The antenna may be considered as a passive, 
reciprocal four-pole which is terminated by the waveguide and the specific impedance 
of free space on the connecting points. In modern technology the antennas frequently 
contain preamplifier, capacitance diodes or ferrite devices, etc., to meet special 
requirements, thus creating the active, nonreciprocal class of antennas for which the 
theory of reciprocity is no longer applicable.

In our case it is assumed, that the antenna does not contain active or 
nonreciprocal elements and the incident plane wave at the point of reception is 
originated from a monochromatic source and the monochromatic feature is 
maintained through the propagation.

The antenna as a four-pole may be characterized by transfer parameters 
(effective length, effective area), input (input impedance) and output (radiating) 
parameters. In this paper our attention is focused on the effective area and complex 
effective length with the aid of which all the important antenna parameters may be 
expressed.
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Complex effective length of an elliptically polarized antenna

Looking from the waveguide, the receiving antenna may be considered as an 
active two-pole (Fig. 1) where the electromotive force of generator Vem{ and maximally 
available power Pmai can be given with the aid of effective length and effective area, 
respectively. This clear equivalent circuit, which enables the use of simple and effective 
mathematical description, is valid till the physical processes in the near field of antenna 
are independent of the incident field strength amplitude.

The effective length (ht(f) of a linear, straight receiving antenna according to the 
equivalent circuit of Fig. 1 is:

K u = ^  (1)

where:
Vtm, is the source voltage of unloaded antenna
E0 is the field strength vector component of incident wave parallel to the antenna.

The effective length may be calculated based on the reciprocity theory, as well [1], from 
the current distribution of transmitting antenna:

I 0 is the amplitude of current
I(z) is the current distribution of antenna placed along the z axis 
/ is the geometric length of antenna.

In the case of linear, straight antenna the field strength produced by the excitation at an 
“r” displacement is proportional to this effective length [2]:

о
(2)

where:

(3)

®
Fig. I
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where
hc„ is a scalar value 
X is the wave length
/ is the amplitude of the excitation current
cu is the frequency
t is the time

Z 0 = 120 n Ohm
r; 9; <p are polar coordinates.

The receiving properties of a general antenna for an elliptically polarized wave with an 
optional direction of incident, similar to the linear straight antenna, may be 
characterized by the effective length. Here the general antenna means an optional kind 
of elliptically polarized antenna and consequently its effective length will have a 
complex value. In this case the effective length is not as plausible as with a linear 
straight antenna, but the unumbiguous relation of incident field strength vector to 
source voltage of antenna is maintained. Similar to (1), the expression for the general 
antenna is:

where
E,о is the amplitude vector of incident field strength 
ft, is the complex effective length of receiving antenna.

Based on the reciprocity theory this effective length may be expressed from the 
radiation parameters in a form similar to (3):

Using the same antenna for transmission and reception, naturally the complex effective 
length is the same. This is proved also by the empirical fact, that changing the receiving 
and transmitting function of an antenna, its polarization remains unchanged. As will be 
shown later, the effective length of an antenna is proportional to the polarization.

The complex effective length, as well as the polarization, is related to the current 
distribution along the antenna. The current distribution is determined by the input 
excitation and the ambient electromagnetic field in the case of transmitting and 
receiving antenna, respectively. However, we have a clear relation between the 
geometric features and effective length only in the case of linear straight antennas, as is 
shown by (2).

In general, the complex effective length (R) is a function of the polar coordinates

ß
2 n
T

(4)

(5)

h(9; (p) = <p)ê9 +  <p)e9
where й9 and fi9 are complex amplitudes independent of time.

(6)
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where
<53 and Sv are optional phases
ës; êv orthogonal unity vectors in the plane of polarization (perpendicular to the vector of 

propagation)

Relation of effective length and polarization

Comparing the two sides of equation (5), it is evident, that:

E,0(8',<p)=c k,(9;<p) (7)

where c is constant.
Considering an elliptically polarized wave, propagating forward in a (3; <p) 

direction and generated by a general antenna, it may be concluded that the ratio of £ 0 
amplitude vector and complex effective length of antenna is constant.

Further it means that the polarization properties of a generated field are related 
(or determined by) the complex effective length, too. Similar to the polarization ellipse, 
which describes the polarization properties of plane waves, we may define the effective 
ellipse to describe the complex effective length of source (Fig. 2).

The effective ellipse can be introduced as follows: Using the complex effective 
length of the antenna, the E,0 amplitude at an optional (3'; <p') point of space in a plane 
perpendicular to the propagation, may be written as follows (based on equation (7)):

Ê,o(3'; q>') = c { \ |ei>e'êx + \dp.\eJi*'ëy},

Ёл.=с\Йа. \ ^ = \ Ё у \ ^  (8)

In the plane of the antenna (z =  0), taking into account the time dependence and 
omitting the c constant, the component expressions are:

/ix= |/v |c o s  (wí + á3.), ^

/iy= |/j„.|cos (cot +  <5,.).
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Eliminating the time variable from (9), an equation similar to the polar 
can be derived:

V  h 2y

lV~l2 + ï C ï 1
T M y  a ■ 2 s— 2 г? , cos о =  sin Ö.
IVIIVI

S = ő9. - ő v-.

‘ion ellipse

( 10)

The angle between the great axis of ellipse and the ex unit vector is:

T =
1

y  arctg
2 |V | I V l  cos 5
iV i2- iV i2 ( 11)

For the sake of comparison the equation describing the polarization ellipse of Et0 
vector [3] is

\EV \:
+

£ 2 - 2 EÆ
|£ S’I I V

Í— cos 0 = sin2 £ ( 12)

and the т angle is:
1

T = — arctg 2| V l  IV'I cos Ô
2 i V l 2- l V i 2 ‘

(13)

Consequently, we have proved that the polarization of the antenna can be 
characterized by the effective length and their use are equivalent.

The physical interpretation of complex effective length

The elliptically polarized antenna may be substituted by two orthogonally 
placed straight antennas of different length in order to give a clear description of the 
complex effective length. The dipols are considered here to have a geometric length 
varying with time between | V  and “0” and | V l and “0”, respectively. In general, the 
length variation of two antennas have a Ô phase offset. Based on this model, in the case 
of reception, the Kmf source voltage may be characterized by the sum of the voltages of 
two orthogonally placed antennas:

V'ml= V ’ +  V’ =  Êl09fi9+ Ê i0 „ - V  (14)

The maximum of source voltage is obtained, when the polarization ot the incident wave 
is elliptical, the effective ellipses for the receiving antenna are similar, at the same time 
the great and small axes have the same direction and the describing vectors of the 
ellipses rotate in the opposite direction. There is no output power from the antenna, if 
the great axes of polarization and effective ellipses (which are similar) are orthogonal, 
and the rotating direction of the ellipses are the same. The rotating direction of the 
ellipses is determined as if looked at from the back of the receiving antenna from the 
side of the incident wave.
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Connection of complex effective length and antenna characteristics

It has been shown that the polarization properties of the antenna at any direction 
are unambiguously determined by the complex effective length. Now we will prove that 
the complex effective length, being the transfer parameter of the passive and reciprocal 
equivalent four-pole of antenna, is suitable for the description of all the important 
parameters of the antenna.

The most important parameters of antenna (their definitions and basic equations 
are known [4], [5]):

— D(9; (p) directivity.

The directivity of the antenna at a certain (9; <p) direction:

where

D(9; <p) = S(9; <p) 
Sa

S

4  it

S(3;ç>) =
E,0(9; </>)£,*0(3; </>) 

240я

(15)

(16)

is the pointing vector induced by the antenna at a (3; <p) direction. 
Sa. is the average of pointing vector on a sphere of radius r; and

dfí = sin Sd3d<p

In an other form of definition (15) may be obtained by £ t0(9; (p) — c ■ R,(9\ q>) 
substitution:

D — ИЯ* (17)

4 n
H ■ ü*dß

In the equation (17) there are no indices, since as it has been previously shown the 
complex effective length of the antenna is the same in both transmitting and receiving.

— g(9; (p) and /(3; <p) power and voltage antenna patterns, respectively.

The right side of equation (17) is multiplied by

' *max ffmax _j

^ m » i  ' ^ m i i

where denotes the complex effective length in the direction of maximum reception. 
By rearranging the equation, we obtain

D = D„
• f i*max ’'m*

(18)
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By comparing Eq. (18) and the well-known expression

0 = 0 ^ - # ;  </>),

one can obtain the power antenna pattern:

Я - *  \b\2
<p) — г  r* I r  12 •”max ”max I ̂ шах I

According to this, the voltage antenna pattern is:

/ №  <p) =  y/g(9; <p)= r i^ -r
I «max I
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(19)

( 20)

( 21)

-  R, radiating resistance.

The maximum of power obtained from a matched antenna is:

p =
8 R.

From the relation of Pmai and effective area (Ae) of antenna:

Pm„ =  Ae S = - D  S. 

From Eqs (22) and (23) one can obtain:

r cmf r  e m f

r 2Я2 S D '

Substituting (4), (16) and (17) into (24) the radiating resistance is:

30л
R,= Я  ■ Æ * d  ß .

( 22)

(23)

(24)

(25)

Another form of (25) may be obtained by substituting the double integral from the 
expression of directivity (Eq. 17):

(26)

In the case of an antenna loss without this equals the real part of its input impedance. 

— Тл n o ise  te m p e ra tu re .

A receiving antenna placed in the free space inherently receives— besides 
the waves of a wanted source— the fields of different noise sources. The effect
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of noise sources can be taken into account by the TA noise temperature of 
antenna:

TA= ~  ф D(9; <p)T(9\ q>)dQ (27)

where T(3; ip) is the noise temperature distribution in the ambiente of the antenna. 

The definition of TA by using the complex effective length:

Ti   1 ^max
A  —  1  ‘\Hm

HR*-  TdQ.
4л

(28)

Effective area of elliptically polarized antenna

The most important antenna parameters have been previously determined based 
on the complex effective length of antenna, however the effective area, the other transfer 
parameter, is equally suitable for this purpose. In the description of the interaction of 
the antenna and electromagnetic field both parameters give simple and clear 
expressions. In the followings the effective area of elliptically polarized antenna is given. 
In the derivation the matching conditions of antenna and load as well as polarization of 
incident wave is taken into account:

The definition of effective area (Ae) of antenna is:

A =
So

Kn.'Vta« 
8 R,S

(29)

where Pmax is the maximum output power obtained from the matched antenna

S0 is the power density in the direction of main lobe of antenna.

The relation of effective area and gain is well known:

^ e= 4^ ^ mtI =  4^ ^ mtx У*

where and £>m„  are the gain and directivity toward the main lobe 

tjK is a coefficient describing the dissipative loss.

In the case of an antenna without loss:

G - D  and Ае = Аетя1.
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Equation (30) refers to a hypothetic, perfectly matched antenna receiving a plane wave 
in the direction of a main lobe, providing that the complex effective length is matched to 
the polarization of the incoming signal. In real life conditions—in general—these 
assumptions are not valid and the effective area is a function of—besides (3; q>) 

coordinates—the matching to the load and to the polarization of incident wave.
These factors may be taken into account in a generalised version of Eq. (30), [6],

[7]:
X1

A Á $ <P)=4- ° П яПгПр, (31)

or by using the complex effective length of receiving antenna Eq. ( 17):

A e  =  * Пя Чг Пг -----------

i * ' *
— t]P coefficient.

Assuming that the impedance of antenna and load are Z A = RA + jX A and Z L = RL 
+ jX L. respectively, the rj, coefficient—describing the matching properties of 
antenna—is:

П г  ( R a  +  R l ) 2 + ( X a  +  X l ) 2 '  {  ]

We may introduce the Г reflexion coefficient:

7 г = 1 - 1 Л 2
where

r z A- z t
Z a + Z l

The extreme values of rir refer to the matched antenna (ZA =  ZJ; t]r =  1) and to extreme 
loads (ZL = 0 or Z L=ao; r\r = 0).

— t]r  coefficient

The rip, coefficient characterizes the matching between the polarization of 
incident wave and complex effective length of antenna. Assuming an antenna without 
loss and a matched load, the effective area is:

a _ emi ’ emt

*“  8R ,  S  '

Equation (33) may be simplified by using (4), (16) and (26)

„ \E,o-K\2
A‘ 4 n U |£ i0|2 | ^ | 2 -

(33)

(34)
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The rjP coefficient is:
|£ ю Л 1 2

r,P~  |£iol2 l^fl2 ’
(35)

The t]P coefficient can be obtained by using the complex effective length of transmitting 
and receiving antenna (Я, and Rr) and substituting Ei0 by c ■ K,:

\ h , K \ 2
' ' ' ■ т ы 2 '

(36)

Eq. (36) clearly shows that using one of the two identical elliptically polarized antennas 
for reception and the other for transmission, the polarization matching in the 
transmission route is not optimal. The maximum of matching polarization can be 
achieved if the antennas of complex conjugated effective lengths are used. In this case 
the corresponding effective ellipses are images of each other or there is a certain 
coefficient by the help of which they become images of each other. This is shown in Fig. 
3, where the effective ellipses are drawn in the same plane. The axes of ellipses are 
complex conjugate of each other and the direction of rotation of Я, and Я, vectors are 
the same.

In reality, a polarized wave originated from a monochromatic source propagates 
through a non-ideal, noisy environment. The statistically independent, randomly 
varying noise field which generally originates from the dispersion of waves and the 
thermic noise of environment, superimposes onto the wanted field and results in a 
partially polarized wave [7]. In order to take into account this side effect of 
polarization which becomes a stochastic time variable, Eq. (31) should be generalized 
[8]. At the same time the effective area, as defined by Eq. (31) and starting assumptions, 
has a general validity.

Conclusions

In this paper the interaction of elliptically polarized field and a general receiving 
antenna has been examined according to the model of the antenna shown in Fig. 1. The 
effective ellipse, which is similar to the polarization ellipse, has been introduced and it
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gave a clear interpretation of complex effective length. The use of complex effective
length has been generalized for the description of elliptically polarized antennas.
According to the analysis given earlier, we can conclude:
— the effective length is characteristic and provides full description;
— with the help of the effective length and according to the given preconditions, a 

unified way of description can be obtained;
— the calculated (or measured) results obtained in conventional ways and by using the 

complex effective length show a good correspondance. The complex effective length 
can be used even for sophisticated situations;

— it is advisable to use the complex effective length in descriptions based on the 
effective area, as well.
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EFFECT OF REAL ROAD PROFILE SPECTRA 
DISTORTED BY TRAVEL SPEED PROCESSES 
ON DYNAMIC STRESSES OF TOWN BUSES

M ic h e l b e r g e r , P .*, K e r e s z t e s , A ., P éter , T.
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Our tests showed vehicles in urban traffic to be excited by road profile processes of spectral 
densities but differing from spectra known from publications but steady-state of second order. In the 
dynamic design of the high number of urban vehicles the spectrum distorsion should not be 
neglected. Road profile spectra recorded for fixed trapezoidal run curves exhibit important 
fluctuations.—Distorted road profile spectra computed from a high number of—even identical— 
trapezoidal run curves do not, however, fluctuate any longer. For short-distance (LS400 m) run 
curves individually examined, input and output statistics cease to be Gaussian but for stop spacings 
L й  800 m or under long-time observed urban traffic conditions, linearized vehicle vibrating systems 
may be expected to undergo Gaussian input-output processes.—Thus, under urban traffic 
conditions, road profile spectra may be handled as second-order steady-state and Gaussian 
processes. Real excitational spectra needed for vehicle dynamic design may be produced by the 
method presented in this paper.

Introduction

Autobuses operating in towns, under normal traffic conditions, travel between 
two stops accelerating to some 14 to 30 sec then 20 to 40 sec at about constant speed, 
and 7 to 14 sec slowing down. Bus run curves recorded under real conditions are to be 
seen in [1].

Neglecting minor speed fluctuations and stop times, the recorded speed-time run 
curves may be closely approximated by a series of idealized, so-called trapezoidal run 
curves, where acceleration ah constant speed maxima Km„ (, decelerations b, and stop 
distances are random variables (i= 1, 2, . . . ,  n).

The high number of vehicles traveling in this mode of operation, describable by 
idealized run curves, justifies the examination of this special stochastic dynamic stress. 
The vehicle is examined as a vibrating system. In connection with dynamic stresses in 
the car body and the carriage, the following questions arise:
1. How real road profile excitation spectra at constant travel speed are distorted by the 

urban mode of operation?
2. According to measurements at constant travel speeds and statistical analyses, 

stochastic road profile excitations may be considered as Gaussian processes. Does

•  P rof. D r. P . M ich e lb e rg e r, H - l l l l  B u d ap es t, E g ry  J ó z s e f  u. 19-21 , H u n g a ry
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l, = 27A.3 (cm ) ; l2=265.7( cm )

S, =3740(N/cm); S2=8700(N/cm) ; S3=28000(N/cm), S4 = 56000(N/cm)

K =128 5(N/cm/s) ; K =128.5 (N/cm/s); K =35(N/cm/s) ; K=70(N/cm/s)

Fig. 1

the special urban mode of operation significantly distort the normality of the 
process?

3. Can standard deviations of processes at vibrating system outputs in urban mode of 
operation be delimited by standard deviations obtained from the mean speed and 
the maximum speed of the run curve?

Computations involved parameters of a town bus type IKARUS. Suspension 
characteristics of the examined bus have been linearized [2]. The vibrating system has 
been described by a plane model of four degrees of freedom, considering the car body as 
a rigid mass (Fig. 1).

To examine the vibration phenomena in the time domain, digital simulation has 
been applied [2], [3], [4]. Exciting road profile functions have been produced 
according to [2] and [3], in the knowledge of spectral density functions in [5] and of 
the variable travel speed. The road profile has been considered as of average quality, 
and its standard deviation as Dg — 1 cm.

1. Theory of road profile spectrum distorsions

Theoretical analysis of road profile spectra suitable for the simulation of urban 
traffic conditions has been concerned with in [6]. Nodding vibrations due to 
accelerations and decelerations will not be considered here [8].

The processes of road profile excitation g(s) depending on road length s, and 
time r-dependent travel speed u(t) are assumed to be independent of steady-state 
processes.
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Considering the urban traffic process in a time interval [0, T], at an instant t the 
vehicle is at

s(t)= |u(u)d« (1)

where s(f) is a stochastic process having a steady increment.
Not, at an instant t, a given wheel of the vehicle is acted upon by excitation

</(t) = 0{s(f)}=3{ ju(u)du}. (2)

Distorted road profile excitation g(t) is demonstrated in [6] to be of steady-state, 
and an integral transformation method is given to produce autocorrelation function 

t) and spectral density function S ^ w )  of this process.
Be Rgg(l) the autocorrelation function of process </(s) depending on road length /, 

where:
RJO  = M[g(s)g(s + l)], (3)

and Sgg(i2) the spectral density function of g(s) where:

S„(ß)= J  R J l ) e - ia,dl. (4)
— 00

Now, autocorrelation function of distorted process g(t) becomes:

M[g(t) ■ g(t + t)] = M[g{s(t)} -g{s{t + t)}] =

= M [M [3{s(í)}-0{s(í +  T)}|s(t), s(t +  T)]]. (5)

If s(t)=r and s(i + t) =  r +  / then (5) becomes:

M{M[g(r)-g(r + [)\r, r + /]} = M[Kíff(r +  /-r)] = M[Ríg(0]- (6)

Thus, the complex process g(t) is in fact a steady-state one.
Let continuous distribution function F(t, /) yield the probability of a vehicle 

travel shorter than / for a running time i recorded anywhere according to the run curve
t>(i):

Т(т,/) = Р№  + т) -5 (0 < /) . (7)

Now, according to (5), (6) and (7), the distorted road profile excitation process is a 
autocorrelation function of Rggir):

Rfiir) = M W )  ?(f +  T)] = |  R J D  • F(T, d l) =

= jK „ (0 /(T ,0 d /,  (8)

where / ( t, l) is a density function for condition t.
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Distorted spectral density function Sgg((o) is simply:

S f »  =  j  Rffgir) • e - “"'dr =  2Re J R?s{ф  ~ ‘"'dr.
— oo 0

Utilizing (8):

Sgg(ca) =  2Re j  ] Rgg(l)f(t, /) ■ e~imdldz, 

taking inverse transform of (4):

R- (L)= 2 ^
SJQ )einidQ

yields the distorted spectrum:
j  0 0  oo 00

Sf i (a>)= -  R e f í  J SJQ)e“11 • / (  t, 1) ■ e~‘“'dGdldz =
71 О 0 — oo
00

= i  J  Re I I  ein,~im • / (  T, Od/dr Sw(ß)di2.

( 10)

( П )

( 9)

( 12)

The inner kernel function is independent of spectrum Sgg(Q) hence for further 
simplifications it is advisably produced separately:

P ( Q ,  co)=Re j  j  é m - <0t)7(T, Od/dr. (13)

Finally, the distorted spectrum is obtained in a simpler form by using kernel 
function F(i2, со):

00

=  X-  j  P(Q, со) • Sgg{Q)dQ- (14)
— 00

The kernel function has been deduced in (7) for a special case, assuming the 
vehicle to travel only at either of the two speeds r , and v2, neglecting changeover 
processes.

Furthermore, the times spent under either of the speed conditions are assumed to 
be independent of random variables but of identical exponential distribution.

In this case the kernel function is a rational fractional function of frequencies.

2. Distorsions of some real road profile spectra

Let us now consider distorsions of some real road profile spectra. Asphalt road 
profile spectra are seen in Fig. 2. Spectra traced in heavy line belong to constant travel 
speeds. Line Fm„  refers to a spectrum at maximum speed of 60 km/h, while Va to a 
spectrum at 34 km/h mean velocity for a single trapezoidal run curve.
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Concrete
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The spectrum curve for a single trapezoidal run curve is seen to be rather 
fluctuating because of the short record. But even then, the spectral density function is 
seen to increase for low frequencies. A similar examination of the spectrum of a real 
concrete road profile, again for a single trapezoidal run curve, is seen in Fig. 3.

The subsequent Fig. 4 presents real distorted road profile spectra obtained by 
integral transformation (14), for a theoretically infinite number of quite identical 
trapezoidal run curves.

Distorsions of concrete, and of asphalt, road profile spectra are seen in Figs 4a 
and b, respectively. Distorted spectrum curves have been traced in dash lines, and those 
for fixed speeds Vmax =  50 km/h in unbroken lines.

Empirical distribution functions F(t, /) have been produced by a digital 
computer for each At = 0.02 sec, at interval r e [0,8]. Now, fluctuations of the distorted 
spectrum are smoothed out. The rate of shifting to lower frequency ranges of road 
profile frequency components exciting the vehicle for a single trapezoidal run curve set 
is clearly visible.

Distorted asphalt and concrete road profile spectra for a random trapezoidal run 
curve set corresponding to normal urban traffic statistics, are calculated according to 
[1] are seen in Fig. 5. Increase of low frequency components has to increase vehicle 
vibration amplitudes compared to travel at normal urban traffic mean velocity. In this 
frequency range the signal-energy increase is negligible from the aspect of dynamic 
stresses, while the worsening of subjective vibrational stresses is manifest.

Asphalt
Concrete

10 oo ( rad/s)
Fig- 5
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In the urban traffic speed range also the spread of asphalt road profile spectra 
across the 4 to 8 rad/sec circular frequency range may be observed.

Again, under urban traffic conditions, more of higher frequency components can 
be stated to be contained in asphalt than in concrete road profile excitation.

3. Examination of the Gaussian character of input 
and output processes

Now, computer runs involved trapezoidal run curve accelerations fixed at 1 
m/sec2, and decelerations at 2 m/sec2. Stop spacings ranged from L = 400 to 1600 m 
with dL = 200 m increments.

Tests concerned with bus runs on an asphalt road.
A rapid approximate method of normality analysis is the graphic method, 

actually applied for preliminary tests. Empirical distribution function of road 
excitation was plotted in a Gaussian grid (Fig. 6). Distribution function of expected 
value N(m, a) and standard deviation a for arbitrary m and a is known to be rectilinear 
on Gaussian paper. Distribution function (in unbroken line) of road excitation sampled 
at 0.02 sec intervals at a constant travel speed V= 50 km/h is nearly rectilinear.

— —  v=50(km/h)

Fig. 6
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Distribution function in the dashed line refers to road excitation samples 
recorded at 0.02 sec intervals with the shortest, single theoretical run curve. It is 
perspicuously non-rectilinear.

In this case the sampling spot spacings vary with speed variation along the road 
length. Road excitation samplings have been taken densely at the start of the vehicle, 
then increasingly farther, at last, at a constant speed, at even spacings. At braking— 
near stops—sampling spaces get condensed.

In case of a fixed, single trapezoidal speed-time run curve, this phenomenon 
distorts input statistics. There is no normality any longer if starts and stops are too 
close together. Distribution function computed from real urban traffic statistics has 
been plotted in dash-dot lines. This empirical distribution function plotted in Gaussian 
grid is, however, again rectilinear.

Actually, in addition to the road profile excitation, the vehicle is caused to vibrate 
also by speed variation along the path, a phenomenon superimposing so-called 
nodding vibrations on road excitational vibrations. Also this phenomenon argues for 
the examination of output normality.

The preliminary normality test for vibrational acceleration of the car body, 
plotted on Gaussian paper, is seen in Fig. 7. 2 ,  and Z 2 are vertical vibrational 
accelerations above the front, and the rear axle, respectively. Vibrational acceleration
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functions in an unbroken line refer to constant speed V= 50 km/h, and in a dashed line 
to the shortest single theoretical trapezoidal run curve.

These preliminary examinations unambiguously showed the hypothesis of 
output normality to be acceptable for uniform speeds, while for short (some hundred 
m) stop spacings it has to be rejected.

Normality has also been checked by the x2 test. Input and output samples 
belonging to trapezoidal run curves for different stop spacing lengths L have been 
taken and relevant x2 values needed for normality tests calculated.

Percentages of probabilities p determined from the x2 table compiling 
computation results have been plotted in ordinate. Conform to expectations, the 
probability of normality increases with increasing stop spacing lengths.

Sample elements always numbered more than 800, and the degrees of freedom 
30. In view of the high element number, the hypothesis has been accepted above p 
=  70%.

Curve g belongs to the input (road excitation) normality testing.
Z , — Z 3 and Z 2 — Z 4 indicate x2 test results for relative displacements of car body 

and front and rear axle, respectively, of importance for the calculation of suspension 
spring stresses.

Probabilities of different output terminal signal normalities are seen to increase 
differently with increasing stop lengths.

On the other hand, for a single fixed trapezoidal run curve and less than 400 m 
stop spacing, input and output processes are not Gaussian any longer.

From 400 to 800 m, certain outputs may be considered as Gaussian, while for 
more than 800 m stop spacings, practically all inputs and outputs may be handled as 
Gaussian processes.
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4. Standard deviations of vibrating system output signals

Making use of the trapezoidal run curves described above, standard deviations 
of output signals of the urban bus model for different stop spacings L have been 
calculated and plotted in Figs 9, 10, 11 and 12.

Standard deviation values for trapezoidal run curves have been plotted in 
unbroken line. Standard deviations obtained from mean speeds of various trapezoidal 
run curves are in a dashed line, while standard deviations for speed Fmax = 50 km/h are 
in a dash-and-dot line. Standard deviations of mass point displacements are indicated 
by small circles, those of velocities by small squares, and of accelerations by small 
triangles.

Diagrams show standard deviations of mass point displacements for trapezoidal 
run curves to exceed those for speed Fmax, standard deviation of any other output signal 
for trapezoidal run curves is less than that for speed Kmax. This phenomenon is fully 
confirmed by the road profile spectrum distorsion discussed in Chapter 2.

With increasing stop lengths, standard deviations for trapezoidal run curves 
approximate those for speed Fmax. This convergence is, however, rather slow, 
prohibiting neglect of differences for real urban stop lengths.

Fig. 9

F i g .  1 0
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Fig. 11

Fig. 12

Standard deviations for trapezoidal run curve mean speeds are, however, less for 
any output than the corresponding standard deviations for the trapezoidal run curve. 
Irrespective of displacement standard deviations, lower bound of standard deviations 
DT(Z) of trapezoidal run curves is that DVa(Z) obtained for mean speed Va, and upper 
bound £Vm„(Z) obtained with maximum speed Kmax:

Dya(Z) < Dj{Z) < DKm>i(Z).

Finally, since road profile processes distorted in urban traffic are steady-state 
processes in conformity with self-intended assumptions in Chapter 1, and since 
according to our investigations, in the case of a prolonged urban traffic, also features of 
a Gaussian process prevail, the Rice formula applied in fatigue design of materials may 
be written also under urban traffic conditions:

N(Z)=N0e - £ ~ ,
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w here
N ( Z ) —  n u m b e r o f  in te rs e c tio n s  o f  s ig n a l level Z  in u n it tim e;
2 ( t )  —  re a liz a tio n  o f  so m e  o u tp u t  p ro c e ss  fo r th e  d is to r te d  spec trum ;
D ï  —  s ta n d a rd  d e v ia tio n  o f  th e  re a liz a tio n  ab o v e;
D J  —  s ta n d a rd  d e v ia tio n  o f  th e  d e riv e d  p ro ce ss  2 ( t ) .

For linear time-invariant systems the standard deviations above are easy to 
calculate in the knowledge of the distorted road profile spectrum, spectrum of the 
derived process of the travel speed, and their cross spectra.

Cross spectra may be produced according to statements in Chapters 1 and 2, but 
here they are not concerned with.
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CHANGE OF VIBRATION CHARACTERISTICS 
OF A SIMPLIFIED VEHICLE MODEL 

AS A FUNCTION OF EXTERNAL PARAMETERS

M ic h e l b e r g e r , P.,* S z ő k e , D.

[Received: 20 June 1984]

The stochastic vibration characteristics (such as ride comfort, road holding capacity, 
dynamic stresses) of a vehicle are determined by a combination of parameters varying continually or 
as discrete values. A plane rigid-body model of a city bus was used to investigate the quality 
characteristics as a function of speed of advance, condition of load of the vehicle, and type of road. In 
the knowledge of output informations, conclusions can be drawn to the predominant stresses acting 
upon dynamic models of high degree of freedom in first approach, and by comparison with the output 
informations of elastic-chassis models better simulating the practical conditions but not discussed in 
this paper, the changes resulting from the elastic chassis can be filtered out.

1. Introduction

The dynamic dimensioning of the chassis of vehicles (autobus) is a complex 
problem requiring considerable computer time. Recently, the finite element method 
has usually been used for static dimensioning while a suitably reduced model of less 
degree of freedom for determination of the dynamic stresses. By retransformation, the 
stresses in any arbitrary point of the chassis can be relatively simply calculated.

In general, the reduced model is a suitably linearized model (of a degree of 
freedom of 15 -f- 30) where the variance of vibration acceleration of the different points 
of the body is determined for given stochastic road excitation. Practical calculations 
showed that computation of the reduced model was laboursome, as well. Therefore, a 
still more simplified model shall reasonably be investigated in the course of preliminary 
design.

In first approach, the dynamic behaviour of the body is fundamentally 
determined by motion as a rigid body on which the vibration of the body (‘elastic 
beam’) is superimposed.

The vibration characteristics of a vehicle (such as ride comfort, road-holding 
capacity, dynamic stresses) are determined by a combination of parameters varying 
continuously or as discrete values in case of a simple model.

The model of a city bus is used to investigate the quality characteristics as a 
function of speed of advance and load condition of the vehicle, and of type or road as 
parameters.

* Prof. Dr. P. Michelberger H - l l l l  Budapest, Egry József u. 19-21, Hungary
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The rigid body model supplies useful information on the expectable behaviour of 
the vehicle, and, on the other hand, changes brought about by the elastic chassis can be 
filtered out from the information obtained on stresses acting upon dynamic models of 
high degree of freedom in the knowledge of output informations.

In this work, dynamic studies are limited to some vibration characteristics of a 
linear plane model set up of the simple rigid body and of mass points characteristic of 
running gears, the behaviour of the elastic body as well as the differences between both 
models being discussed in another study to be presented later.

2. Model and dynamic description of the vehicle

Vibration of the plane vehicle linear model illustrated in Fig. 1 is described by 
equation (1).

M x + Kx + Sx = G(z, z, v) ( 1 )

where
M mass matrix
К damping matrix
S stiffness matrix
x l , x 2 vertical deflection of front and rear axle, respectively
xy( 0 < y < L H) vertical deflection along length of the body
z, z deflection and/or derivative of road profile in the appropriate axial

points at time i(0 <  t < T)
Gfz, z, v) forces calculated from road excitation
L wheel base
v speed of advance of the vehicle.
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The deflection of the points of the body modelled as a rigid body can be simply 
calculated as xy is a linear combination of centre-of-mass motion xc and rocking (pc 
(assuming small deflections):

x,=X'+<pc y, ye[_0:L„l  (2)

Assuming that both the fore wheel and rear wheel run on the same road profile, transfer 
functions Wx(i<o) of the two-input system can be calculated on the basis of (3):

K(io>) = K J ™ ) + e - • Wxei, (3)
where

i2 = — 1
Wxgi(ia)) and Wxg2(i(o) complex transfer functions of deflection of point x for 
excitation gx and g2, respectively.

In the knowledge of power density spectrum Sz(co) of the stochastic road profile, in case 
of

M{z(i)}=0, (4)

the variance of deflection of point xk is given by the following integral:
00

l ^ ( M I 2 SI(cu)dcu. (5)
о

(In calculating for relative displacement, speed, and variance of acceleration, the 
appropriate transfer function shall be substituted in [5]).

Spectra Sz((o) for different road types are determined by measurement where e.g. 
rational fraction functions are a good approach [1]:

where

wave number 
L
Dz variance of road profile
A, B, C ,, C2, y empirical characteristic parameters obtained by measurements.

Should the vehicle advance at speed v, then frequency cu[rad/s] of road excitation will 
be obtained as

eu =  i> • 2 я • -
Li

(7)
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and thus the w-dependent spectrum

SzM ~ r S 20  (8)

will be of a type similar to (6) over the range of v e [0 : r mai] .
As is well known, the change of vibration characteristic as a function of length of 

body is given in the knowledge of the vibration characteristics (variance) by

Dx(y) =  y/'Ay2 + By + C, y  e [0: LH], (9)
where
A, B, C constants depending on place and variance of the measured values.

By the use of (9), the average quality characteristics (variance) of the body can be simply 
determined:

Lh

Щ < .)  =  J  Bld,,  i y ï  + ^  + c  (10)
0

The maximum value of dynamically distributed load superimposed on static load in an 
arbitrary point of the body can be calculated on the basis of (9) [2] (Fig. 2):

f (y )  = m*(y)Dt{y)dy (11)
where
m*(y) specific mass [kg/m]
D*{y) maximum value of acceleration varying linearly due to rigid-body motion, 

calculated from the characteristic of end cross section.
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From (11), the bending stress due to dynamic load can be determined as effective stress 
for the point of the body above the shaft by double integration, and approximate 
dimensions for the body can be calculated. In dimensioning, the sum of static bending 
moment and triple dispersion of dynamic bending moment shall be taken as a basis, 
assuming a stochastic process of normal distribution.

3. Parameter test

Spectrum analysis was used to determine the following quality characteristics 
(variances) of vehicle vibration:

Dsrv acceleration of point of body above fore-axle
Di u acceleration of centre of gravity of body
DÍB„ acceleration of point of body above rear axle
M{<r|,} average acceleration of body on the basis of (10)
О;, acceleration of point L o t body on the basis of (9)
StabilityFy relative displacement of fore-axle and ground as compared with static indentation (high 

numerical values expressing inferior quality characteristics i.e. road holding capacity) 
StabilityBy stability index calculated for rear axle
Pf y , Pbv energy dissipated per unit time on front and rear damper, respectively 
M fv maximum bending stress in body cross section above fore-axle
M By maximum bending stress in body cross section above rear axle

The dynamic characteristics have been calculated for a normalized road profile of an 
expected value of £>* =  1, M{z(i)}=0. A threefold value has been taken into 
consideration for the stability index as in case of a road profile that can be characterized 
by normal distribution, the road holding capacity (braking, cornering) can be 
estimated with a probability of p — 99.1%. The energy converted into heat on the 
dampers has been determined from the variance of relative speed because

P(f) =  F(t) ■ xr = К ■ х гг -  Ai {P(f )} =  К ■ D l . (12)

The quality characteristics specified above have been calculated as a function of speed 
at increments of

A v -  1 km/h over the range of v e  [10: 50] km/h,

A v - 2  km/h over the range of ve  [50:130] km/h

for two road types such as

A—bituminous road 
В—concrete road,

and for three different conditions of load such as

1— empty vehicle
2— half-loaded vehicle
3— vehicle with rated load.
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D ata of the city bus model investigated:

=2000 N/m/s; K 2 = 4000 N/m/s ;

K3 = 20000 N/m/s; K4 = 40000N/m/s;

S, =  2 800 000 N/m ; S2 =  5 600 000 N/m ;

ml =  870 kg ; m2 = 1550 kg ;

LH = 9.10 m ; L= 5.40 m ; le = 1.00 m

Conditions of load: 1 2 3

S3 (N/m) 260 000 300 000 375 000
S4( N/m) 300 000 500000 750000
m(kg) 6580 10080 13 580
J(kg m2) 60419 86 060 110 930
/1 (m) 2.74 3.02 3.16
l2( m) 2.65 2.38 2.24

A computer of type ODRA 1204 was used for calculations where the machine time 
amounted to ~2  minutes for each parameter triad (road, speed, load).

4. Test results

4.1 General experience

Predominant in the quality characteristics of the tested model of a degree of 
freedom of four are the known properties of a model of a degree of freedom of two (the 
condition for simple disintegration into real partial models of a degree of freedom of 2 
each being realized with a relative error for the three conditions of load:

J = m l, ■ l2

Ahre]( % ) = l - m l l l2/J (13)

Ahx = -2 0 .6 ; Ah2 — — 15.8 ; Ah3 = 13.3)

The variance of vibration acceleration in the points of the body and the stability indices 
increase at given speed with the reduction of mass and moment of inertia of the body 
while the energy converted into heat on the dampers (that is the relative speed of axle 
and corresponding point of the body) remains unaffected due to the fact that, in case of 
given mass ratio, the movement of the axle is hindered or braked by the body only 
insignificantly as shown by the signal flow diagram of the model of a degree of freedom 
of two (Fig. 3).
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z,(t) Xl(t) x2(t)

Fig. 3. Signal flow diagram of vehicle model of a degree of freedom of two

W2 and W2 are the transfer functions of independent subsystems of a degree of freedom 
of one

S‘ +  Pk‘
p2mi + pki + si

1=1,2 (14)

C2l feedback term
C21 ™2P2

p2ml + pk1 +$! (15)

On the basis of relationships (5) and (8), the quality characteristics—as if the two-input 
excitation resulting from wheel base shift were of one input—vary as a function of speed 
in accordance with a square root function or on the basis of (12) lineary.

What has been said above applies to concrete roads only. In case of bituminous 
roads, the second term in relationship (6) is non-zero with ‘disturbances’ occurring over 
the range of v e [30—60] [km/h]. At given speed v, the values of quality characteristics 
calculated for bituminous roads are always higher then the value of indices calculated 
for concrete roads.

4.2 Detailed discussion

Illustrated as a function of speed, type of road, and condition of load (a— 
bituminous road, c—concrete road, и—empty, h—half-loaded, l—rated load) in Figs 4, 
5,6, and 7 are the variance of vibration acceleration for centre of gravity, point above 
fore-axle, and point above rear axle, of the body and the average variance of vibration 
acceleration for the body, respectively.

xcv as a function of t; changes fundamentally in accordance with 4.1 on which a 
harmonic oscillation prolonged as a function of v is superimposed with increasing 
amplitude. This is brought about by the second excitation shifted to a different extent in 
time. Time lag

results in a secondary excitation of frequency

. v
f - 1  (П1

with a resonance complying with, or counteracting, the inherent frequency of the 
model.
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Fig. 4. Variance of vibration acceleration of centre of gravity 

of body as a function of speed
Fig. 5. Variance of vibration acceleration of point of body 

above fore-axle as a function of speed
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Fig. 6. Variance of vibration acceleration of point of body 
above rear axle as a function of speed

Fig. 7. Average variance of vibration acceleration of body as 
a function of speed
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If the empty vehicle runs on a concrete road, local maxima of function xc„ will 
occur at

respectively.
Since the inherent frequencies of the body resting on the mainsprings fall within 

the range of

a secondary periodic signal of frequency X higher than oq 2 will occur in the 
acceleration transfer functions, that is spectrum

is superimposed on the one-input spectrum. In case of other conditions of load, 
inherent frequencies oq 2 slightly increase and thus also the maxima of xc„ are shifted 
towards higher speeds. On the basis of (8) and (9), the amplitude of the signal 
superimposed on ‘base’ x cv changes as a function of v according to a square root 
function.

The inherent frequency of rocking around the centre of gravity also falls within 
the range of [1.0 —1.2] [Hz] and thus variance xL of the points of body are modified by 
the secondary excitation resulting from time lag т in a different way as a function of 
place (2). It can be seen from Figs 4 and 6 that a secondary excitation of approximately 
opposite phase is brought about by rocking, independently of the change of the 
condition of load (and thus, of the change of and l2) because the curves ‘flatten’.

What has been said above applies to concrete roads as well. However, 
disturbances of different level take place over different speed ranges in the xc curve 
depending on the condition of load. Because of the known maximum of the spectrum of

tq = 125 [km/h]

v2= 90 

v3~  65 

»4= 48

with associated frequency and ratio of

/t= 6 .43  Hz

f 2 = 4.63 A, =  1.38

/з  = 3.34 A2=  1.38

/ 4 = 2.47 A3=  1.35

Ъ = Г ~  (i= l,2 ,3)
Ji + 1

(18)

oq.2 =  [1.0,1.2] [H z ],

(19)
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the bituminous road, also the output spectrum of rocking becomes distorted and as a 
result, x Fу is modified over the range of v € [30 — 65] km/h] while xBy over the range of 
V e [40 — 75] [km/h] to an extent decreasing with the reduction of load.

The centre-of-gravity motion is still more modified by rocking at both ends (2) of 
the vehicle, an explanation for the phenomenon that the values of variance are higher 
e.g. at the front of the vehicle when loaded (the stresses increasing still more) then in case 
of an empty vehicle.

The distortions found for bituminous road result from the resonance interaction 
taking place between inherent frequencies of [1.0— 1.4] [Hz] of the body, as well as the 
input spectrum maximum associated with advance of a speed of tie [30 —60] [km/h]

and the secondary excitation brought about by
v

It can be seen from Fig. 7 that the average variance of the body calculated on the 
basis of ( 10) is fundamentally determined by xBV and thus the statements relating to x BV 
are true.

Figs. 8 and 9 contain the stability indices. As suggested by the quality 
characteristics calculated on the basis of threefold variance, the fore-wheel practically 
never parts from the road over the speed range investigated while the rear wheel may 
become detached from the road when advancing at a constant speed of v =  45 — 50 
[km/h] in empty condition and of и = 105 [km/h] in half-loaded condition. 
Considering road holding capacity, excitation and/or secondary excitation shifted in 
time is not appreciable to the vehicle, and also the interfering effect of bituminous road 
is minimum.

stability^ %

F i g .  8 .  S ta b ility  index  o f  fo re-ax le  a s  a  fu n c tio n  o f speed

Acta Technica Academiae Scieniiarum Hungaricae, 97, 1984



2 5 2 MICHELBERGER. P.. SZŐKE. D.

stability %
ÍV

P  kW

Fig. 10. Energy dissipated on built-in dampers per unit time as a function of speed
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F i y .  I I .  B end ing  s tre ss  a c t in g  u p o n  b o d y  in th e  c ro ss  sec tio n  a b o v e  fo re-ax le  a s  a  fu n c tio n  o f  speed

The performance figures calculated on the basis of relationship ( 12) are given in 
Fig. 10. The minor disturbance of the bituminous road occurs in different speed ranges 
at the front and rear damper.

Figures 11 and 12 illustrate the sum of variance of static and threefold dynamic 
bending stress in the cross section of the body above the fore-axle and rear axle. What 
has been said in par. 4.1 is true here again, a difference being observable only in case of 
running on bituminous road, especially in the moment associated with the cross section 
above the fore-axle, over different speed ranges. This similarly to energy dissipation can 
be attributed to the fact that these quality characteristics are practically independent of 
excitation due to time lag (Figs 5 and 6) that is the vibration characteristics are 
determined by the corresponding characteristics of models simply disintegrating, 
having a degree of freedom of 2 each. In case of bituminous road, the output spectrum
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F i g .  1 2 .  B end ing  stress  a c tin g  u p o n  th e  b o d y  in the  c ross s e c tio n  a b o v e  r e a r  ax le  as  a  fu n c tio n  o f  speed

and thus the value of variance is modified as a function of speed because of the known 
maximum of the input spectrum, depending on the condition of load (Fig. 3). On the 
basis of (2), this distortion occurs in different speed ranges in the quality characteristics 
associated with the fore-axle and rear axle as a result of the two-input excitation.

It can be seen from Fig. 12 that the dynamic stress acting upon the empty vehicle 
may exceed the static value even at speeds of u =  80 [ ~  100] [km/h], a qualitative 
change in respect of dynamic stress (pulsating stress is taking place).

Figures 13 through 18 show the area of acceleration variance as a function of 
speed—length of body (u — L H) for given road type and load condition.
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Fig. 13. Area of variance of acceleration as a function of length of body and speed for given type of road and
condition of load

F i g .  ! 4 .  A re a  o f  v a rian ce  o f  a c c e le ra tio n  a s  a  fu n c tio n  o f  len g th  o f  b o d y  a n d  speed  fo r g iven  ty p e  o f  ro a d  a n d
c o n d itio n  o f  lo a d
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Dx* m /s *

Fig. 15. Area of variance of acceleration as a function of length of body and speed for given type of road and
condition of load

F i g .  1 6 .  A re a  o f  v a rian ce  o f  a c c e le ra tio n  a s  a  fu n c tio n  o f  le n g th  o f  b o d y  a n d  sp eed  fo r g iven  ty p e  o f  ro a d  a n d
c o n d itio n  o f  lo a d
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Fig. 17. Area of variance of acceleration as a function of length of body and speed for given type of road and
condition of load

F i g .  1 8 . A rea  o f  v a r ia n c e  o f a c c e le ra tio n  a s  a  fu n c tio n  o f  len g th  o f  b o d y  a n d  speed  for given ty p e  o f  r o a d  a n d
c o n d itio n  o f  lo a d
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Summing up

In case of large buses (of a length of 9 — 11 m), the wheel base varies in the range 
of Le [5 — 6.5] [m]. The parameters and/or relative parameters of a vehicle model of a 
degree of freedom of four differ only slightly from the parameters of the model 
investigated. That means that predominant in the vibration characteristics of vehicle 
models are the properties of structures of a degree of freedom of two and/or the 
statements in par. 4. However, a heuristic disintegration of a model of a degree of 
freedom of four into models of a 2 degree of freedom of two each is not advisable 
because considerable disturbances may occur in the speed range of r e  [30 —60] 
[km /h] due to shifted excitation (t = L/v), depending on the type of road, and city buses 
are typically driven at speeds falling within the above range, and on bituminous or 
macadam roads.
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A MATHEMACIAL MODEL 
FOR THE INVESTIGATION 

OF AGING PROCESSES
WITH THE TWO-FLOW TURBOFAN JET-PLANTS
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The author determined the improvement of the parameters of two-flow turbofan jet-plants as 
a result of cleaning of flow-space boundary surfaces of jet-plants. It was found that cleaning affected 
the economy of the jet-plant favourably in every case. To determine the rate of improvement, a 
calculation method based on directly measurable parameters has been elaborated by the author to 
find that an improvement of around 1% of the basic parameters (thrust, fuel comsumption, etc.) of the 
jet-plant can be achieved under favourable cleaning conditions. Based on approximate economical 
considerations, the optimum number of cleanings between two general overhauls, and the optimum 
intervals at which cleaning shall be made within the service period of the jet-plant, has been 
determined, considering that the costs of cleaning are not negligible as the number of cleanings 
increase. According to the investigations, 2-3 cleanings shall be made in the period between two 
general overhauls.

1. Introduction

The main concern of the civil transport aviation companies lies in increasing the 
economy of passenger and freight transport. The considerable ratio of the operating 
costs can be ascribed to the fuel consumption, thus a reduction in these costs is of 
general importance.

Due to the roughening and fouling of the flow-space boundary surfaces of the jet- 
plants, the thrust (power) of jet-plants keeps decreasing with their fuel comsumption 
increasing. This reduction in thrust due to increasing flow-losses of jet-plants can be 
offset at least for some time by increasing the peak temperature of the working process 
(the temperature after the combustion chamber) to the limit specified for safe operation 
of turbine blades. Of course, this also involves increasing fuel consumption. In case the 
peak temperature of the work process cannot be increased any more, the thrust will 
certainly reduce as the flow-losses continue increasing.

The dust particles (grains of quartz) hitting against the flow-space boundary 
surfaces of the jet-plants in an air-flow of very high velocity (in this respect, the

* E. P á s z to r ,  H -1221 B u d ap est, H o n fo g la lá s  u. 48 /b . H u n g a ry .
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compressor blade surfaces are especially sensitive) have a dual effect on the surfaces. On 
the one hand, the flow-space boundary surfaces of the jet-plants become worn and 
roughened, and on the other hand, the airborne dust particles adhere to the flow-space 
boundary surfaces. These effects give rise to increase in flow-losses, which in turn result 
in poor thermal-flow characteristics of jet-plants.

Due to cleaning of the flow-space boundary surfaces of jet-plants, their flow- 
resistance decreases and their thermal-flow characteristics improve. However, 
roughening of the flow-space boundary surfaces cannot be eliminated by cleaning and 
thus the original values of the thermal flow characteristics of jet-plants can be restored 
only partially. Nevertheless, cleaning of the flow-space boundary surfaces results in a 
remarkable improvement of the thermal flow characteristics and economy of jet-plants 
and therefore this method is widely used by the aviation transport companies [6].

2. Fouling process and cleaning possibilities of jet-plants

Air containing dust of different quality and in different quantities enters the jet- 
plants of aircrafts during their operation. The pollution of air is considerable, especially 
near the ground above cities. Air pollution is determined first of all by dust (grains of 
quartz), industrial smoke, as well as vanadium-oxide, sulphur and salt grains.

Airborne pollutants are deposited first of all on the compressor vanes, on the 
flow-space boundary surfaces of outer and inner circuits (two-flow jet-plants) and on 
the entry port of the jet-plants (in diffusor), especially if the flow-space boundary 
surfaces are stained also by gasoil-vapour leaking through the labyrinth-seal. In most 
cases, this can be removed by cleaning. However, coke formed as a result of dirt burned 
on the hot surfaces of the combustion chambers and turbines as well as on the nozzle of 
the inner circuit cannot be removed even by most thorough cleaning.

Two methods of cleaning of the flow-space boundary surfaces of jet-plants have 
been developed so far, (this paper investigating the methods of cleaning the jet-plants 
without disassembly). In the first method, coarsely ground rice or nutshell is added to 
inlet air of the jet-plant for a short time. Due to the abrasive effect of solid materials, 
fouling of the surfaces is reduced in most cases. The advantage of this method lies in the 
short time required for cleaning, but it is difficult to control the cleaning process so that 
also the protective coating of the surfaces may be damaged. In the second method, 
wash-liquid of different composition is injected at different intervals into the air 
entering the jet-plants. Essentially, this wash-liquid is similar to that used in household 
and industry. In this case, the jet-plant must be disassembled—although to the slightest 
possible extent—the pipes of some auxiliaries must be disconnected from the jet-plant 
as operational troubles may occur if the wash-liquid flowed to the wrong place.

In this paper, the liquid cleaning process developed for two-flow jet-plants NK- 
8-2U at the aviation transport company MALÉV is dealt with. Also, the author has 
developed a calculation method to determine the reduction in fuel consumption
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attainable with the help of this process. The author is especially grateful to the 
management of MALÉV for making available the power characteristics of the jet- 
plants measured before and after cleaning, thus enabling and promoting the 
elaboration of the calculation method [3].

3. The process of improvement of thermal flow characteristics during 
cleaning of the jet-plant investigated

During cleaning of the jet-plant (the Schematic Drawing and the symbols used 
are shown in Fig. 1) the flow-resistance of the jet-plant reduces due to removal of the 
fouling from the flow-space boundary surfaces, first of all where air (not combustion 
products) is still flowing. The efficiency of ventilator (r), low-pressure compressor (/c,) 
and—to some extent—high-pressure compressor (k2) stages improve, and the pressure 
reduction of the diffusor (d) and in duct of the outer circuit (ca) slightly reduce. 
According to the investigations, the increase in the efficiency of ventilator and low- 
pressure compressor is most significant; thus only these effects will be taken into 
account in the following.

The power input of the ventilator and low-pressure compressor rotating on the 
low-pressure shaft reduces due to improvement of the efficiency. Owing to the still 
unchanged power output of the low-pressure turbine (r,), the new thermal-mechanical 
balance will occur at higher speeds (n,) of the low-pressure shaft, and as a result, the 
speed of the hig-pressure shaft (n2) increases accordingly.

Due to the control system and constructional features of this jet-plant, speed n2 
of the high-pressure shaft is constant, or it shall be controlled so as to rotate at speed n2 
=  const, after cleaning. Speed n2 of the shaft can be reduced only by reducing 
temperature T5 after the combustion chamber, that is the mass of the fuel burned in the 
combustion chamber reduces. With given jet-plant, reduction in temperature T5 can be 
observed as the reduction in temperature T7 indicated by the thermometers after the 
turbine.

Hence, the efficiency of cleaning of the flow-space boundary surfaces of the jet- 
plant investigated can be checked through the change of two directly measurable 
characteristics, that is through the increase of speed nl of the low-pressure shaft and

F i g .  1 . S c h e m a tic  D ra w in g  o f  th e  je t-p la n t,  n o ta t io n  system
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decrease of temperature T7 after the turbines. According to our theoretical 
investigations and measurement results, a change in both characteristics must occur as 
a result of cleaning except for cases when some part of the jet-plant, e.g. the outlet cross- 
section (A g) of the nozzle has been modified.

In addition to the reduction in temperature T7 , an advantage not negligible 
indeed, the exploiter expects the cleaning to result also in increased thrust and reduced 
fuel comsumption. According to investigations carried out so far, the change of the 
latter two characteristics lies within 1% even in case of most thorough cleaning, so that 
their change cannot be determined by means of direct measurements. The inaccuraces 
of even most precise instruments suited for measurements lies usually above 1% and 
therefore the change of these characteristics can be determined by means of calculation, 
only. The calculation method developed for this purpose is described below.

4. Calculation method for the determination of increase in thrust 
and reduction in fuel comsumption as a result of cleaning

4.1 Principle o f calculation, development o f the mathematical model 
of the jet-plant tested

The calculation method has been elaborated on the assumption that the cleaning 
process results in a reduction of losses, and improvement of the efficiency, of ventilator 
V and low-pressure compressor кг only. Of course, we are free to assume that the 
efficiency of diffusor d, duct ca and high-pressure compressor k2 improves as well. 
However, investigations suggested that changes in the latter case were so small (0.5 
-=-0.7%) that they would only complicate the calculation if taken into consideration 
with the results remaining essentially unchanged.

Starting from the above assumption, the calculation procedure can be split in 
two main parts. In the first part, we determine the changes in the efficiency of the 
ventilator and low-pressure compressure and in measurable characteristics after 
cleaning while in the second part, the parameters of the jet-plant after cleaning are 
determined on the basis of improved efficiency. This paper deals first of all with the first 
part of the calculation procedure, since the second part is built up of elements already 
known.

For the calculations, we need the mathematical model of the jet-plant in the 
operating conditions investigated.

This model represents an etalon jet-plant, the thermal-flow characteritics of 
which comply with the pre-cleaning characteristics of the jet-plant investigated. The 
percentual changes in the post-cleaning characteristics are then investigated in 
comparison with this etalon jet-plant. The jet-plant model presented below has been set 
up on the basis of results of our activities in this field so far, [1].

There we have no space to describe how the model was elaborated. The most 
important thermal-flow characteristics of the jet-plant in start condition are given below.
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Coefficients of pressure loss:
<rd= pl/Po=0.995; oc = p J Pi = Q.91 ; oca = p7/p2 =  0.99 ; om =  p8/p7 = 0.99

Isentropic efficiency:
tluv=0.86 ; ^„*i =0.855 ; j/ijt2 =  0.845; rjisl2=0M; ^ ,= 0 .8 6 5 ;

1ы, =  0.95

Efficiency of combustion chamber:
r\c = 0.975

Two-flow coefficient of the jet-plant:
M =m cJmkl =  1

Thermal-flow characteristics of the preferred cross-sections shown in Fig. 1 in an impact- 
type system:

p0 =  0.104 M P a; T0 =  288 K ; л„ =  р2/р, =2.0515 ; лк1 = p 3/p2 = 1.7548 ; 

л*2=Р4/Рз =  3; Г5 =  1274.85 К ; Т7 =  9 0 3 К ; Г8 =  649.501 К ;  

р7 =  0.2054 М Ра; р8 =  0.2034 М Ра ; р9 =  р0 =  0.104 М Ра

The principal characteristics of the total jet-plant:
F = 103.714 K.N: thrust of the jet-plant
mca = mkl = 108.816 kg/s: air mass flowing through the outer and inner circuits 
В = 6292.52 kg/h: fuel consumption of the jet-plant per hour 
6 =  0.06109 kg/Nh: specific fuel consumption of the jet-plant

With the knowledge of the basic model of the jet-plant, calculations to determine 
the improvement of the jet-plant due to cleaning can be made.

4.2 Correction of measurement results
Before actual calculations, the data measured immediately before and after 

cleaning have to be related to exactly identical ambient conditions because any 
significant otherwise normal change in the ambient conditions during the period of 
cleaning may change the jet-plant characteristics more than the cleaning of the flow- 
space boundary surfaces [2].

Shown in Table I as an example are the measurable pre- and post-cleaning 
characteristics of the jet-plant involved, related to the identical ambient conditions 
(standard, po = 0.104 MPa; T0 = 288 K), for the case of start power.
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Table I

Before
cleaning 96.5 98.2 890

After
cleaning 96.6 98.0 883

In case of maximum power n1=n2= 100% .
As shown by the data, cleaning was successful because the value of T7 reduced by 

7°C and n, increased by 0.1% in spite of the fact that at the time of post-cleaning 
control, the value of n2 was not exactly the same before and after cleaning.

Now we came to the second, similarly important step of correction of the 
measurement results. With a view to determine the post-cleaning improvement of the 
jet-plant characteristics accurately by calculations, it is a basic requirement that n2 be 
exactly the same before and after cleaning. If this requirement is not met, the inaccuracy 
of control may result in major changes n2 before cleaning /  n2 after cleaning) in the jet- 
plant characteristics as compared with changes due to cleaning.

Since a mathematically accurate identity of the values of speed (n2) before and 
after cleaning by means of control action, corrective relationships have been set up by 
means of the test-bench characteristics curves of the jet-plant. These relationships 
permit the pre- and post-cleaning operating conditions of the jet-plant to be compared 
at exactly the same speed n2 .

As an example, the corrective relationships applying to the condition of start are 
shown here.

f7co, = f7 -("2-95 .5 )- 13.333, (1)

"icor = " i - ( « 2 - 9 5 . 5 )  1.6. (2)

In relationships (1) and (2) the values of temperatures i7 and icor should be 
substituted in C° while the speed in percentage. The constant of a value of 95.5 is the 
percentage of speed n2 specified for the condition of start.

Table II

«1 "2 Ъ
°// о °//О К

Before
cleaning 92.18 95.5 854

After
cleaning 92.6 95.5 849
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In Table II, the corrected values of Table I are shown. (The index “cor” has not 
been used here because only the corrected values will be taken into account in further 
calculations.)

As seen from the tabulated data (and as can be followed on the basis of thermal- 
flow considerations), the corrected values differ from the non-corrected ones, indicating 
that correction was indispensable indeed.

4.3 Description of the calculation method

After the corrective calculations have been accomplished, we have got the 
measured data, accurate in every respect, that can be taken as a basis for our 
calculations.

a. Considering that speed n2 of the high-pressure shaft has not changed after 
cleaning, n2 = n* (in the following the post-cleaning characteristics will be marked with 
asterisk:*), thus лк2 = лк2 to a good approximation. The post-cleaning characteristics 
change by max. 1% as compared with those before cleaning. No calculable work-point 
shift is brought about in the compressor characteristics by this minimum change, and 
thus the error caused by the above approximation is negligible. According to our 
calculations, the mass of air flowing through the jet-plant has increased by about 0.5% 
due to cleaning, resulting in a reduction of about 1 %, in the value of nk2 for n2 = const., a 
change rightly neglected.

b. Speed n, of the low-pressure shaft has increased as shown by the results in 
Table II, thus n*> nv and nkx > л к, . Considering the extremely small changes (0.8 to 
1%), the percentage increase in pressure can be calculated as follows.

As follows from the Euler impulse-moment equation:

(3)

where A T* and A T : the actual increase in the compressor temperature before and after 
cleaning, respectively.

A relation between actual temperature rise and pressure ratio is established by 
the Poisson’s equation describing a polytropic change of state.

, лг*\+ ------
^7

T 7Г*

, + %  Iг
n

where T. temperature before the compressor investigated.

(4)
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By the use of equations (3) and (4):

n -
n

( 5)

where: n x  1.45 -r- 1.5: polytropic exponent of the actual change of state (losses). Its value 
can be exactly determined by means of the thermal-flow data contained in the 
mathematical model of the jet-plant in accordance with the following relationship 
applying equally to ventilator and low-pressure compressor:

where: k x  1.4—1.405 is the isentropic coefficient of air.
c. The static pressure of the media (outer and inner circuits) entering the mixing 

chamber m should be identical to a good approximation as otherwise either of the 
media would undergo a throttle-type change of state at the inlet. The velocities of the 
media entering the mixing chamber should not differ considerably either as otherwise 
the losses resulting from impulse exchange during mixing would increase. It follows 
from what has been said above that the impact pressures (static +  dynamic = total 
pressure) of the media entering the mixing chamber are also identical. It should be 
noted that this thesis was used when setting up the mathematical model of the jet-plant.

By means of conditions in (7a) and (7b), the total pressure-ratio of the turbines 
after cleaning (n*ï —n*2n*i) can be determined as follows.

Using the mathematical model:

к — 1

n — 1
П " — 1

(6)

P i  ^ c a  =  P * 0 = P l  ■

P i  ' a c a ~ P l O  —  P i (7a)

(7b)

P i  —  P o <Jd 7lv n k l n k l a c > 

P2=P0<Vtf .

(8)

(9)

By means of equations (7b) and (9):

P i  —  P o a i n v a ca ( 10)

The total pressure-ratio of the turbines by means of equations (8); (10):

D *  rc frf ttV c
( И )
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In the case investigated:

n* = 2.0659; <  = 1.7671; n{2 = nk2 = 3; < *  = 5.1942.

d. According to our assumption, only the efficiency of the ventilator and low- 
pressure compressor stage improves after cleaning, the characteristics of the other units 
remaining unchanged:

( 4 * v > 4 i , v ' ,  < 1  >7,3ki)-

Considering that the units rotating on the low- and high-pressure shafts continue 
operating in the state of power equilibrium also after cleaning, this condition permits 
determining a post-cleaning efficiency of the ventilator and low-pressure compressor 
«  ; rj*kl) which complies with the characteristics measured after cleaning and 
corrected in the way described in this paper.

Post-cleaning efficiency t\fsv and rj*kl can be determined by means of a linear 
iterative method. The use of linear iteration is justified here because of the extremely 
small (max. 1%) changes involved. In this method, different values are assumed for <  
and in the neighbourhood of the expected values of r]*v and rj*kl and the value of 

associated with them is determined.
For the values of rj*'v and rjfskl where n , i.e. the post-cleaning conditions 

have been satisfied, there q*'v = rj*v, and ч*'к, =  r/*t , i.e. the required post-cleaning 
efficiency has been determined.

In the second course of our calculations, the values of <  and were varied 
proportionally to each other <,=/(*7*^) since both of them were expected to improve. 
The functional relationship is shown in Fig. 2. Plotted in the Figure are the final 
efficiency values both before and after cleaning.
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Fig. 2. Change in efficiency rj?'v of the ventilator as a function of efficiency r\J(, of the low-pressure 
compressor. A = efficiency before cleaning, В =  efficiency after cleaning

The basic relationships of the iterative calculations are as follows:

PÏ + PX = PTi ,  (12)

kPÎ2 = P*Ti (13)
where:

P =  power of compressors and turbines
к =  constant expressing the power-input of the auxiliary equipment.
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With equations (12) and (13) developed, and taking into consideration the fact 
that the mass of air flowing through the ventilator is double, it can be written:

2 Щ1 cpl 7j [(я?'Г“*"" -  1 ] -^7 + cplmk, T, [(я?,' )“  -  1 ] =
r\T,v VTski

The expressions still unknown in relationships ( 12a) and ( 13a) can be determined 
as follows, considering that is already known from the results of the post-cleaning 
measurements:

7 T  =
T*

4 isT  i

(14)

On similar consideration T f  :

4isT2

(15)

Temperature T%' still unknown can be determined so as to start from the 
ventilator, considering that T0= T l \

т г  =  т0[ 1 + « У
K|- 1

ri'v

ki - 1
. K| - 1 

Ч *’к 1
(16)

where: к, and кд isentropic exponents of air and combustion products, respectively.
Cpl and Cpg specific heat [J/kgK] of air and combustion products at a constant 

pressure, respectively.
mg mass of combustion product (kg/s) flowing through the inner circuit of the jet- 

plant per unit time.
By means of equations (12a), (13a), (14), (15), (16), the values of n*'2 and n*\ for 

each pair of values if&=/(»/&i) previously assumed, i.e. the total pressure-ratio of the 
turbines 71^=яг2я?1 can be determined.

The results of calculations are shown in Fig. 3 where linear interpolation was 
used to satisfy basic equation 71*̂  = 71*̂  = 5.1942 and to determine the values for final
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Fig. 3. Determination of the exact post-cleaning characteristics of the jet-plant by means of interpolation. 
------------ (/J) = exact values of post-cleaning parameters

post-cleaning efficiency r]fsv and . The values of temperature for preferred section 
have also been plotted in Fig. 3 so that also temperatures are known by means of 
interpolation.

e. Then any post-cleaning characteristic of the jet-plant can be exactly 
determined on the basis of the thermal calculation method developed when the 
mathematical model of the jet-plant has been set up. (Essentially, no new elements are 
included in this method and therefore it is not presented here in detail.)

4.4 Numerical results of calculation

From Fig. 3 the values of increased post-cleaning efficiency rj?v = 0.866;
= 0.861 can be read from equation я ^  =  л ^  =  5.1942 in Fig. 3. Both efficiencies have 
improved more than a half % as a result of cleaning of the jet-plant. As shown in Fig. 3, 
the value of T^ = 898 К used for the calculation was obtained by subtracting 
temperature drop dT7 =  5 К observed during cleaning from temperature T7 =  903 К 
associated with the start power of the model jet-plant. In the maximum temperature 
before the turbines a reduction of dT5 = T5 —T? =  3.7 К was observed. This had a 
favourable effect in that the fuel consumption decreased, and the service-life of the jet- 
plant increased.
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Tabulated in Table III are the calculated values of the post-cleaning 
characteristics of the jet-plant.

Table III

After Before Absolute Percentual
cleaning cleaning improvement improvement

F=  103 714 N 103 005 N zlF = 709N 0.688%

B = 6282 kg/h 6292.5 kg/h AB = 10.5 kg/h 0.167%

mca = mk ! =  109.47 kg/s 108.82 kg/s Amca = Amk, =0.65 kg/s 0.597%

6 =  0.060 57 kg/Nh 0.061 09 kg/Nh Ab =0.000 52 kg/Nh 0.851%

From among the improved jet-plant parameters it is the specific fuel 
consumption which deserves special attention: as the reduction of nearly 1% in fuel 
consumption fundamentally determines the economical advantages of cleaning of the 
flow-space boundary surfaces. If pre-cleaning thrust F has to be restored after cleaning, 
fuel consumption В will continue reducing due to reduction in the jet-plant load to 
reach a value of approximately dB = 53-í-54 kg/h.

Fig. 4. Comprehensive presentation of the post-cleaning state characteristics of the jet-plant

The generalized results of the calculation are shown in Fig. 4 where the 
percentual improvement attainable for the different parameters is plotted versus 
temperature reduction AT-, =  T7 -r- T? measured after the turbines. In compliance with 
our previous considerations, function Ant = f(AT7) can also be seen in Fig. 4. This 
relationship is valid only approximately as it has been obtained from measurement 
results.
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5. Economical considerations associated with frequency of cleaning

On the basis of what has been said above, it can be stated that cleaning of the 
flow-space boundary surfaces of jet-plants is advantageous in every respect. In case of 
especially dirty jet-plants after an operation of about 5000 hours without cleaning, the 
reduction in temperature T7 was as high as 8 — 10 °C while speed n, increased by nearly 
1%. Due to the reduction in temperature T7, the control reserve of the jet-plant 
increases, and increase in the service-time between two overhauls may reach 500 hours.

However, the jet-plant to be cleaned has to be put out of service at least for 6 h- 8 
hours, and at least four persons are required for the cleaning job, a fact to be taken into 
consideration in economic evaluation of the cleaning process. Moreover, the fuel 
consumption of the running test after cleaning amounts to about 500 kg.

The question arises how often should cleaning be performed between two 
overhauls of the jet-plant to obtain economically optimum results?

Increase В in fuel consumption due to fouling of the jet-plant in given duty can be 
written as a function of duty hours as follows [4], [5]:

where:

АВ = ДВmax (17)

Л Втях — total increase between two overhauls
T= total duty hours of the jet-plant between two overhauls 
T = time lapsed since the beginning of the period investigated (ттах = 7) 

m =constant depending on operation, construction, dust-content of air, quality 
of fouling.

The change of (d ß /d ß max) in equation (17) as a function of (t/Т) is shown in 
interval 0-M of exponent m in Fig. 5. According to observations, fouling takes place 
first rapidly but slows down later because new dust particles are easily swept away from 
the layer of dust deposited on surfaces. Accordingly, m =  0.8-i-0.5 approximately.

Fig. 5. Increase in fuel consumption of the jet-plant due to fouling between two overhauls.
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Fig. 6. Percentual value of maximum savings in fuel consumption attainable by cleaning of the jet-plant as a 
function of the number of cleanings in case of optimum cleaning intervals

The further economic considerations take m = 1 into consideration. It should be 
noted, however, that the situation will be essentially the same if m =  0.8 0.5. Assume (m 
= 1) that pre-cleaning fuel consumption has been restored as a result of cleaning of the 

jet-plant. In this case, fuel savings over period Tare proportional to area A — В — C — D 
— A. It is easy to prove that maximum savings in fuel will be achieved if cleaning is 
made at uniform intervals i.e. if (t/T) = 0.5 per cleaning.

This theorem is of general validity: even in case of more cleanings, maximum fuel 
consumption can be achieved if cleaning is made at uniform intervals.

Now the question arises: how often shall the cleaning process reasonably by 
repeated between two overhauls considering that the costs of cleaning cannot be 
neglected in evaluating the economy of the process. Information on this problem is 
given in Fig. 6 where the percentual value (C) of maximum attainable fuel savings is 
plotted against the number of cleanings. Obviously, in case N > 8 ч- 9, the increase in the 
value of C is practically negligible, and maximum savings in fuel consumption at С = 1 
will be achieved if N = oo.

Consequently, 2 ч- 3 cleanings are recommended during the period between two 
overhauls, since the savings in fuel continuously reduce as the number of cleanings 
increases so that the savongs are no longer commensurate with the increase of 
operating cost rising linearly with the number of cleanings.
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APPLICATION OF HOLOGRAPHY TO THE STUDY 
OF COMBUSTION PROCESSES

K. R e m é n y i,* F . H o r v á t h

[Received: 27 September 1983]

Holography has created new possibilities for the investigation of combustion processes. The 
authors of the present paper utilized holography for gaining a new understandings of the processes 
taking place in the nearest environment of coal particles during combustion. Similar experiments, as 
well as investigations with hydrocarbon flames have also been reported on by other authors. The 
facilities used were of different types, but the pictures obtained clearly verified the similarity of these 
processes. The authors of the present paper for their experiments employed 5-10 MW ruby-laser with 
a double flash. The time interval between the two 20 nanosec pulses was 150-200 psec. The 
photographs taken of the burning coal particles showed sphere symmetrical interference bands 
around the investigated particle. On the basis of the photographs and theoretical background, a 
conclusion has been reached, whereby in the course of combustion, in the environment of fiat flames 
and particles, physico-chemical waves are developing.

Symbols

к —  rate constant of the reaction; [I/s] 
T  — length of period; [s]
V — wavefrequency; [1/s] 
w — angular frequency of wave; [1/s]
A — amplitude of wave 
tp — phase of wave 
r — radial-coordinate 
c, — velocity of wave 
к — wavelength 
k, — wavenumber 
c — changing concentration 
l — time; [s]

Introduction

Several articles deal with the applicability of holography to the investigation of 
combustion processes of gaseous, fluid and solid fuels; from these publications those 
referred to under numbers [1], [2], [3], [4] can be mentioned as the most significant 
ones. At the Institute for Electrical Power Research (VEIKI), we performed our 
investigations on the combustion of coal particles, roughly at the same time, when the 
results of reference [2] were demonstrated. In the following we report on the facilities
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Fig. I. Experimental apparatus

used, the conditions under which test series were performed, as well as on the results of 
combustion theory which may be generalized on the results obtained so far.

Before dealing with the application of holography, we will roughly outline our 
experimental fall-tube facility which is applicable to the investigation of combustion 
processes of coal particles (Fig. 1). The equipment is a proper tool for the versatile 
examination of combustion processes in time and space, at the same time readily 
applicable to the investigation of the individual coal particles during thermal 
decomposition, by means of holography.

In an electrically heated vertical tube (fall-tube) gas of predetermined 
composition flows downwards. Along the tube the temperature of the wall is practically 
constant, which is partly due to the fact, that the gas mixture is preheated to tube- 
temperature.
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The average distance of the particles from each other is roughly 30 times the size 
of the particle diameter. Owing to this fact, the interactive effects of coal particles were 
disregarded in the course of the combustion.

In order to gain a valuable insight into the processes of pulverized coal 
combustion, during our fall-tube experiments holography was applied.

From this new technique, a better structural understanding of the thermal 
boundary layer surrounding the particle has been expected.

The holograms were made by the staff of the Holographic Laboratory of the 
Research Institute for Technical Chemistry of the Hungarian Academy of Sciences 
(MTA MÜK.K.I).

For the experiments various fractions of coal from Oroszlány and Balinka were 
employed. (Fractions 6 3 < d < 8 0 g  and 125< d< 160p from Oroszlány; fractions 63 
<d <80 p from Balinka coal.) The temperatures of fall-tube were 1000 °C and 750 “C, 
respectively, during the experiments.

The holographic recording were taken in such a manner, that the laser beam was 
led through the opposite slots of the fall-tube and reference beam was bypassed around 
the apparatus.

The holographic method applied stems from the concept, that the burning 
particles while passing in front of the testing aperture, are transilluminated by the giant 
doublepulsed ruby laser of 5-10 MW, with flashing time of 20 nanoseconds, and then 
the particles are depicted on a highresolution film. At the instant of flash, the film is 
simultaneously exposed to a so-called “reference beam” bypassed from the laser light, 
and the former without touching the particles enters the emulsion and interferes with 
the “object wave” arriving from the particles. This interference scheme is called 
hologram.

It is characteristic of the hologram, that it includes all the necessary optical 
information on the object, thus the phase of illuminating waves and their intensity 
alike. Owing to this unique feature, the “object” can be reconstructed in three 
dimensions, if it is subjected to a permanently radiating gas laser.

The double-pulse phenomenon (time-delay of 150-200 nsec) simultaneously 
fixes two conditions on the same hologram, i.e. two states are superposed on each other. 
If the superposed conditions are completely identical, then after reconstruction the 
“object” will appear, as if the holographic recording had been taken only once, with a 
laser pulse at double length of time.

If either in the burning particle or in its environment some modification occurs 
between two pulses, it results in interference appearing on the surface of the object, or in 
its environment.

Taking into account all this possibilities, it was assumed that additional 
information could be gained from the holograms concerning the structure of the 
thermal boundary layer surrounding the particle.

The series of photographs (Fig. 2) presented as illustration were made after 
having reconstructed the holograms taken of coarse coal from Oroszlány at
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Fiy. 2. Laser-holographic recordings of the burning cool particles from Oroszlány

temperature of 750 °C. The first picture of the series shows the pulverized coal injected 
directly into the opening provided for test purposes. The particles are not yet burning.

The coal particle illustrated in the second photo is burning now; a sphere can be 
seen around it. The photo was taken of the particle in the stage of volatile burning. Two 
diagonal bands shown in front of the particle examined are attributed to the effect of 
other particles. The sphere can be regarded as the zone or flame of volatile combustion.
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Fig. 3. Laser-holographic recordings of the burning cool particles from Balinka

In the third of the pictures the particle seems to be surrounded by a series of 
interference rings. The particle has reached the stage of coke combustion.

The same phenomenon can be observed in the second series of photographs (Fig. 
3) which illustrates the boundary layer around the particles in case of pulverized coal 
combustion of Balinka.

The presented photographs taken of the holograms clearly prove, that by using 
this technique, a testing procedure can be attained applicable to calculations too, thus 
providing a new method in revealing the structure of the thermal boundary layer 
surrounding the particle.
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The wave phenomena pertaining to the burning coal particle 
and the flame elements

The laser-holographic pictures taken of the coal particle, or of the flames of other 
combustibles clearly demonstrate, that out of the particle or from the flame elements, 
more or less uniform or slightly distorted spherewaves propagate ahead. For the sake 
of simplicity and for defining the numerical results, in the following we present our own 
photos to demonstrate the conception, on the other hand not excluding this its general 
applicability. The existence of this phenomenon is proved by the photos made by us, as 
well as by those presented in literature. This is fairly well proved by the fact, that in the 
photos taken in the precombustion stage, interference rings cannot be observed at all, 
while following the combustion they quickly appear. The interference rings also refer to 
the fact, that the application of diffusion equation for determining the circumstances of 
combustion is hardly appropriate, because the steady-state environment of the burning 
particle would not show any alteration between two laser pulses. According to the 
photographs taken of the burning particle, spherical interference bands are shaping 
around the particle, which provide a good reason to assume the occurrence of 
spherical-waves accompanying the combustion process. During combustion, the 
periodic feature of the chemical and thermal process can be attributed to the influence 
of combustion in time and space. In the environment of the particle, the motion of 
activated fuel fragments and the oxygen is of opposite direction. In the first semi-period 
combustible mixture fills up the space of reaction. After ignition and burn-out, the 
reaction product leaves the space of reaction in the second semi-period. Naturally the 
real process cannot be divided into sharply separable parts, but in the given part of the 
period the one or the other is dominating, and causes the periodic feature of 
combustion. Moreover, it was also taken into account, that in the space of reaction 
highly active intermedials are present and according to the measurements performed 
directly in the flames it was found, that in the space of reaction no equilibrium position 
was reached. The deviation from the state of equilibrium, the proceedings of 
combustion both in time and space, consequently the reaction itself brings about the 
excitation of physico-chemical wave-phenomenon in the combustion chamber and in 
its environment, which include the material transfer and the change of physical 
parameters, too. Owing to the rapid progression of chemical processes, the state of the 
system cannot be described by equilibrium-equations and the time-dependent 
character of the reactions and other processes must be allowed for.

The combustion of fuel can be outlined by the following process, when 
distinction is not made, whether solid material or flat burning flame element is dealt 
with.

The micro-element preliminarly heated up to the temperature of ignition and the 
oxidating substance are in direct contact with each other. Following the ignition, the 
highly rapid chemical reaction consumes the oxidating substance. Its continuous 
feeding (diffusion) despite the decreased concentration is hindered by the fact, that in
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the space of reaction a large amount of high-temperature combustion product piled up, 
with an intense rise in temperature, and the intensity of reaction somewhat decreased. 
However, after a while the flow of oxidating substance commences in the direction of 
burning element and—the combustion product and the oxidant mostly exchanged— 
the process with less intense than the first blow-like start periodically recurred. The 
periodicity of cycles is first of all determined by the rate of reaction, i.e. the duration of 
reaction. The concept of periodic nature of combustion process described by us had 
already been dealt with for cold flames by Kondratiev, V. N. who cited different authors 
when defining the periodic recurrence of chemical processes [5]. This book also refers 
to the observations of Gervart and Frank-Kamenickij, according to which, under 
proper conditions the cold flames can be produced even as a sustained periodic process. 
In this case the periodicity is explained by the difference between the rate-constants of 
reactions of intermedials, i.e. attributed to the reaction mechanism. Since with 
previously performed experiments, the conclusions had to be drawn on the basis of 
pulsation of pressure, relatively slower processes could be observed. The laser 
holography is appropriate technique for the analysis of the rapid processes of the very 
small flame elements.

In course of the cited experiments, even the phenomenon was observed, that on 
the transition from cold into warm flame the interruption of cold flame ensues. The 
deceleration of the reaction at the end of the cold flame, and its prompt acceleration 
resulting in the warm flame, led to the theory of the so-called two-phase explosion, 
which denotes combustion, changing with time. As a result of experiments conducted 
with pulverized coal, Reményi [6] also described the theory of twofold and manifold 
ignition.

Summarizing the results of the literature concerning the laser holographic 
technique, it was found that for the evaluation of recordings performed by such a 
method, two ways were available. The first one is practically summarized, whereby 
assuming the combustion process in time and space, the periodicity is calculated by 
taking into account an average rate constant of the reaction.

The other way of assessment can be reckoned on the basis of assumed simple 
forms of reaction mechanism. According to this, the combustion takes place with the 
participation of intermedials. Following the ignition, after the appearence of C 0 2 
which is the first ultimate combustion product, the heterogeneous reaction

C +  C 0 2->2C 0
and the homogeneous reaction

CO + y  o 2-> co

take place. In this case the periodic feature is determined by the harmonic oscillator 
brought about by the difference between the first 1c, and the second k2 reaction rates.

In both cases the excitation of wave could be successfully accounted for the 
reactions taking place during the combustion, whereby its waveform nature could be
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established and so the combustion could be dealt with by wave equations. In the 
periodic process the quantities characteristic of the process itself are assigned to values 
recurring at regular intervals. The characteristic length of time of the wave is the period 
of wave (T), during which a complete wave is recorded. The frequency of wave (v) is the 
number of total oscillations allotted to the unit of time

v =
1
T '

The angular frequency of wave is

The significant value of the wavelength variation at t instant

x  = A sin(a>- t + (p0),

where A is the maximum value of x which is called amplitude and (p0 is the phase of 
wave at the initial (t = 0) instant. By simplifying the examinations, considering 
longitudinal spherical-waves during combustion, for which the wave-equation is

1 d  (  2 d q > \  1 d 2 <p

r 2 d r  \  d r  )  c 2 d t 2

the general solution of which

< p = (c t-r ) - f l +(ct + r ) - f 2 , 
r r

where/i and f 2 are arbitrary functions, (ct—r)/1(/r is the potential of waves starting out 
from the centre, while (ct + r)f2/r denotes the potential arrival into the centre.

Let us consider the longitudinal wave as sinusoidal (harmonic), then we obtain

<p = a(x, y, z) sin [cut — a(x, y, z)] .

The harmonic waves can also be characterized by the A wavelength, i.e. by the spacing 
between the points with 2n phase-difference. If the c velocity of wave propagation is 
known, then the (к) wavenumber and the wavelength can be calculated on the basis of

The discussion of experiments

Assuming a simple first-order reaction for combustion, the rate of reaction

dc iw =  — — = kc
dt
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and the change of the concentration with time is
-  kt

If conclusions are to be drawn concerning the lifetime of molecules involved in the 
reaction, then an average lifetime can be a useful tool. Characterizing the quantity of 
molecules by the concentration at a “f” instant, during df time interval, dc 
concentration-change would occur, and the amount of lifetimes of molecules 
characterized by dc concentration-change is tdc. Integrating this value, from c = c0 to 
c = 0, and eliminating the details, we obtain c0/k value for all of the molecules involved. 
If the average lifetime of molecules characterized by the co0 concentration is denoted by 
T, then the amount of the lifetime-sum comes to c0T. From the equalities of the two 
values

C 0  T  ■ rr  ^

j ’ cT- T= i
is obtained.

In our case, however, the average lifetime of molecules informs us about the 
length of time of their staying in the combustion chamber, i.e. the duration is provided. 
Since the frequency of wave is the reciprocal of the period, thus

i.e., equals to the reaction-kinetical rate constant, with dimension of 1/s.
On measuring the wavelength from the laser-holographic recordings obtained 

for the Oroszlány coal-particle, a value of 50 pm is given. Together with the calculated 
and measured data all qualities are available for the application of wavefunction.

With the second method of evaluation, by applying the theorem of periodicity of 
chemical processes, proper conclusions can be drawn concerning the wave phenomena 
of combustion. In this case, by simplifying reality, for the deviation from the stationary 
values of the products involved in the reaction (C, CO, C 0 2, 0 2, etc.) the equation of 
harmonic oscillator is obtained [5] in case of which, taking into account only two 
reactions, we receive for the frequency

Knowing the frequency and the A wavelength obtained from the recordings, the 
wave equations are supposed to be adequate for the descriptions of combustion 
processes.

1. Palócz, M.: Holografikus interferometria és fényképezés alkalmazása a tüzeléstechnikai kutatásban. (The 
application of the holographic interferometry and photography in the combustion technics). ETE (1977) 
Freiberg, GDR.

References

Acta Technica Academiae Scientiarum Hungaricae, 97, 1984



2 8 2 REMÉNYI. К. HORVÁTH. F.

2. Trolinger, I. D. -Heap, M. Р.: Coal particle combustion studied by halography. Applied Optics (1979), 1 
June.

3. Reményi, К., Horváth, F.: Impulzusholográfia alkalmazása barna kőszénszemcsék égésfolyamatainak 
vizsgálatánál. (The application of pulse-holography for the examination of combustion processes of 
brown-coal particles). Energiagazdálkodás (1979), július.

4. Schönbücher, A.: Wärme-, Stoff- und Impulstransportvorgänge unter Berücksichtigung kohärenter 
Strukturen in Tankflammen organischer Flüssigkeiten. Brennstoff-Wärme-Kraft (1981), No. 9.

5. Kondratiev, V. N.: Kinetika himicheskih gazovih reaktsii. Izd. Akademii Nauk SSSR, Moskva 1958.
6. Reményi, К.: Combustion Stability. Akadémiai Kiadó, Budapest 1980.

Acta Technica Academiae Scientiarum Hungaricae, 97, 1984



FINITE ELEMENT METHOD 
FOR SOLVING ELASTO-PLASTIC 

AND ELASTO-VISCOPLASTIC PROBLEMS
L. S z a b ó *

[Received: 10 January 1983]

Acta Technica Academiae Scientiarum Hungaricae, 97 ( I — 4), pp. 283— 313 (1984)

Finite element solution of elasto-plastic and elasto-viscoplastic problems is discussed. After a 
concise review of relevant publications, the elasto-plastic material matrix is presented according to 
the Prandtl-Reuss theory, in the case of anisotropic-kinematic hardening. Elasto-plastic 
deformations are described according to the Perzyna theory. Finite element equations and iterative 
computation methods are briefly outlined. Application of the elaborated computer program is 
illustrated on three problems.

1. Introduction

Design and stress analysis of shell structures and pressure vessels are increasingly 
ruled by the inelastic behaviour of materials.

Analyses starting from purely elastic material characteristics are generally 
inadequate, since often service loads may produce plastic deformations and creep 
processes. Load capacity design likely to lead to material saving constructions is only 
possible by plastic analysis. But calculations based on elasto-plastic material models 
are too complex to be analytically feasible in other than in quite simple cases, imposing 
a recourse to numerical methods.

Such an efficient computation method is that of finite elements permitting 
efficient plastic solution of complex structural design and load problems. This method 
offers simultaneous analysis of material and geometrical nonlinearities, and combined 
consideration of temperature and time factor, under arbitrary mechanical and thermal 
loads.

The finite element method started booming by the mid-’60s, and became 
generalized with the spreading of computers.

Earlier publications [1,2] gave detailed accounts of the finite element solution of 
elasto-plastic problems with the validity of the Prandtl-Reuss theory, in case of 
isotropic hardening materials, assuming small deformations.

Here, hardening will be described by means of an anisotropic hardening model. 
Beside elasto-plastic deformations, finite element solution of elasto-viscoplastic 
problems [4] will be presented.

* L. S zab ó , H - 1015 B u d ap e s t, C sa lo g án y  u. 6 -1 0 , V I. 228, H u n g a ry
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In what follows, after reviewing the literature on the finite element solution of 
material and geometrical nonlinearity problems, finite element equations and 
computation procedure of elasto-plastic and elasto-viscoplastic problems will be 
detailed, and illustrated.

2. Review of publications

In the recent two decades, the finite element method has undergone important 
development, mainly attributable to the wide range of applicability of the method and 
to the development of computer technique.

Actually, the finite element method is a rather efficient, generalized method for 
solving different mechanical problems. Since the early’70s, in developed industrial 
countries high-capacity finite element program systems have been developed for the 
solution of a wide range of problems.

The finite element method had been applied by the early ’60-s for solving material 
nonlinear problems. Several authors such as Gallagher [5], Swedlow [6], Argyris [8], 
Marcal [10, 12] Marcal-Pilgrim [11] Marcal-King [13] Argyris [30], Khojasteh- 
Bakht [28], Akyuz-Merwin [29], Yamada [21] were concerned with the finite element 
solution of elasto-plastic problems. Essentials of the theory have been developed, 
elasto-plastic material matrix relating stress increments and deformation increments 
have been written, solving simpler problems. These works are somewhat exceptionable 
from the point of view of correctness and theoretical supports, though they may be 
considered as significant achievements by including fundamentals and methods 
underlying subsequent research.

Later, computation methods were improved and new procedure developed, such 
as the method of initial stresses by Zienkiewicz & al. [15], the method of initial strain 
and tangential stiffness by Argyris and Scharpf [31].

Since the early ’70-s, several publications were concerned with the finite element 
solution of plastic problems: Nayak-Zienkiewicz [17, 18], Richard-Blacklock [24], 
Yamada [22], Armen and al. [52], Landau and al. [41], Harkegard-Larsson [54], 
Popov and al. [25], Zudans [26], Khojasteh-Bakht-Popov [27]. Among theories of 
plastic deformation and yield, this latter has been preferred. Most of the authors made 
use of the Prandtl-Reuss theory, the Mises plastic conditions and isotropic strain 
hardening.

Recent publications make use, however, of the Hencky deformation theory, such 
as those by Tang [43], deLorenzi-Shih [44], Kim [45], Yamada and al. [23].

Also the applied numerical procedure has greatly developed. Nayak [16] 
published isoparametric finite element solution of elasto-plastic problems permitting 
the determination of the elasto-plastic zone inside the unit.

Besides refining computation methods, solutions for several problems have been 
described such as: the elasto-plactic analysis of shells by Backlung-Wennerström [23],
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Landau and al. [41], cracks by Harkegard-Larsson [54], solution of three- 
dimensional problems by Owen-Salonen [19], Levy and al. [40].

Besides simpler material models, also more complex models have been applied. 
For instance, kinematic hardening was applied by Kalev Gluck [33], Zak-Craddock 
[48]; combined isotropic-kinematic hardening by Axelsson-Samuelsson [108], 
Haisler [127], Allen [136], Hunsaker [139].

Besides the finite element solution of time-independent elasto-plastic problems, 
several authors were concerned with time and temperature factors in plastic 
deformations, e.g. thermoplastic problems by Haug and al. [86], Basombrio- 
Sarmiento [109], Allen [110], Hsu-Too [111], Snyder-Bathe [140], Allen-Haisler 
[158], Hsu [160], Cry-Teter [87], Mcknight-Sobel [137], elasto-viscoplastic and 
creep problems by Sanders-Haisler [106, 161], Haisler-Sanders [107], Patterson 
[112], Levy-Pifko [134], Kawahara [120], Levy [85], Cormeau [144], Zienkiewicz- 
Cormeau [146], Greenbaum Rubinstein [157].

In addition to elasto-plastic problems, much interest was spent on geometrical 
nonlinearity, already by the early ’60-s. Finite element solution of geometrical 
nonlinear problems were first concerned with by Turner and al. [7], Argyris [8], 
Wilson and al. [9]. Initially, the application technique was rather intuitive. Later, 
significant development appeared in the field of geometrical nonlinearity. The 
incremental method was developed, applying loading step by step, in small increments, 
and several iterative procedures were suggested e.g. by Bergan [117], Kao [133], 
Zienkiewicz [131], Besseling [118]. By developing the increment technique, the 
nonlinear problem was reduced to linear problems by Yagmai [130], Horrigmoe- 
Bergan [129].

Besides the total Lagrangian discussion (Marcal [14], Hibbit-Marcal-Rice 
[129], Oden [60]) the updated Lagrangian way of description has been developed by 
Soreide [102], Gadala and al. [104], Horrigmoe and Bergan [129], Bathe O den- 
Wunderlich [59]. Argyris [90] soon pointed out the possibility of combined handling 
of material and geometrical nonlinearities, but significant results had not been 
achieved before the early ’70-s.

Several research workers were successful in solving combined nonlinearities by 
the finite element method: Hofmeister and al. [114], Stricklin and al. [121], Dupuis and 
al. [122],Gunasekara-Alexander [103], Haisler [89], Key [113], Balmer [126], Hibbit 
and al. [123], with the detailed elaboration of various procedures, solving several 
problems of application.

Combined treatment of geometrical and material nonlinearities underwent 
abrupt development mainly in recent years: Argyris and al. [92-96], [115], Bathe and 
al. [97-100], McMeeking-Rice [124], Dodds and al. [132], Chen [141], Gortemaker- 
DePater [142], Nagtegal-De Jong [143], Yamada-Sakurai [34]. Various iterative 
methods were compared by Yamada [36], William [39], Mondkar-Powel [35], 
Crisfield [56], Powel-Simon [101], Mathies-Strang [128], Kao [133]. Important 
achievements in the last 15 years, various theories and numerical experiences were
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published in comprehensive studies by Armen [49], Hodge [50], Snyder-Bathe [140], 
and in books by Zienkiewicz [57], Bathe-Wilson [58], Bathe and al. [59], Wunderlich 
and al. [61], Hinton-Owen [62-64], Irons [66], Whiteman [65], Seegerlind [80], 
Desai-Abel [81], Donea [83], Bathe [119].

Actually, an active research is going on concerning a finite element solution of 
geometrical and material nonlinear problems as seen from the multitude of 
publications: Nayak [20], Tracey-Freese [46], Zhang-Owen [47], Cheng and al. [53], 
Allen [88], Kleiber [138], Argyris [159] etc. and from recurrent congresses [163 to 
167].

Applying the Lagrangian discussion for describing the continuum displacement 
state, the strain and stress state is referred to the initial (non-load) condition.

With notations in Fig. 1 where C0 is the initial (non-load) state of the continuum 
at instant t = 0, and C2 being states at instants t and t + At, locus coordinates of 
continuum point P for states and C2 are:

3. Recapitulation of the theory

3.1 Fundamental equations

( 1 )

( 2)

C,t

Fig. 1. Conditions C0, C, and C2 of the continuum
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Introducing notation

u i.J  =
^ 4

d°Xj '

Lagrangian strain tensor for state C , may be written as:

Ч7 = y  (4 ,7 + 4 .<+ 4 ,  ,'Wfc.y)

and its increment

^.•7 =  Y  (^ui,7+ÁUjj +  'ukJAukJ + Aukj'ukj+AukilAukj)

(3)

(4)

Applying the principle of virtual work on state C2, in conformity with [119, 162]— 
omitting deductions—we obtain:

j ,+MouS,*MeiJdV=S,+*W (5)
V

where
, + л,Оц — second Piola KirchhofT stress tensoi,
0 ,+A,W —virtual work of external forces,

interpreted as:
0 ,+A,W= \ , + A,tkŐAuk dS + \ , + Af k 6Auk dV. (6)

S У

Stresses and strains at time t + At may be expressed in terms of values at time t 
and their increments:

1+4,ffi7 =  4 j +  А (Т ц  , (7)

l+AleIJ=leiJ+Aeij. (8)

In conformity with material law, stress increment Aa^ may be expressed by the strain 
increment:

dey = Dtjkl A e k, . t9)

Concerning displacement increments, strain increment Ae^ may be decomposed 
to a linear and a nonlinear part:

Aelj = AeiJ + Aritj, (10)

Леч= j i M j A -  Aujj + 'ukiAukJ + AukJ‘ukJ), (11)

Atiij=Auk'lAukJ. (12)

Substituting (7), (8), (9) and (10) into (5) and making use of:

0,+А,е„=0Аеи (13)
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yields:

í ÎD^^Ae^ôAeij + 'a^ôArjij] d V=Ő, + * 'W -  J áV. (14)
V V

Decomposing magnitude ô t + àtW \o  two parts:

ó , + á,W = ö‘W+ÖAW

where á'VKis negligible, since at time t the full load work of the solid in virtual 
displacement increments SAuk is nearly zero.

Differential equation system (14) leads to the finite element algebraic equation 
system by introducing the known approximation for the field of displacements:

where Au\ is /с-the component of displacement increment of node a of a finite element of 
N  nodes.

Discretizing ( 15) yields strain increments

N

M= Zn — 1
(15)

(16)

(17)

where

N

Using these equations, (14) becomes:

(18)

where

<0,кгг= Í Du u B fë » B fà » d V ,
V

V

(a)K%= \  ,oiJB $ g ö pm d v ,
V
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{2)к ^ =  i оуы[2в:^едй-+едв1'ГйГ1 dv,
V

{3)k %7»= i  2оуые д а д ^ г “ с1к,
к

, + á,R^ = J> + ̂ ( -»^aCiS+  J ' +'7 '" lM K ,
S E

T " =  J V ^ Í - d K .
E

Equation (18) is nonlinear in displacement increments, and it may be solved e.g. 
by the perturbation method [84].

But for engineering practice, linearized form of (18) obtained by neglecting 
second- and third-order terms is sufficient:

where (19)
/1Rm = ( + a,Rm_r/?»,, 

im_t rrm t nmJ6 — ? 6 ~  Kfi

The usual denominations of previously defined matrices and vectors are:

m KpJ  — elasto-plastic stiffness matrix;
, u ) — initial displacement stiffness matrix;
(а)Кр” — initial stress stiffness matrix;
AR" — nodal load increment vector;
J™ — initial load vector.

Equation (19) may be solved by either of several iteration procedures (Newton- 
Raphson, modified Newton-Raphson, etc.).

The subsequent two chapters will present constitutive tangential stiffness matrix 
Dijkl for elasto-plastic and elasto-viscoplastic deformations.

3.2 Elasto-plastic deformations

There are a great many publications on time-independent elasto-plastic 
deformations. Actually, several papers were concerned with the development of 
computational algorithms [46, 51, 53] and the finite element solution of various 
theories of plasticity [23, 43, 109]. For instance, a complete program for the finite 
element solution of two-dimensional and axisymmetric elasto-plastic problems is given 
by Owen-Hinton [64]. This program is, however, erroneous for the plane stress state, 
and the convergence of the iteration algorithm is insufficient.

A more precise and acceptable part of a program is that given by Dodds and al. 
[132] for determining elasto-plastic stress increments.
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In what follows, fundamental relationships of the finite element program [1,2] 
developed for solving two- and three-dimensional elasto-plastic problems will be 
presented, restricted to describe the stress increment strain increment relationship. 

The complete strain increment tensor is divided into an elastic and a plastic part:

d£;j = defj + defj (20)

Rearranging (20) and using Hooke’s law, the stress increment is:

d<Tij = Deijkl(dEkl-d E pkl) (21)
where

Dljki= 2G • Tijkl + K L ijkl,

T"ljkl =  l i j k l  J  L i j k t  ,

l i j k l =  ^  (̂ ik̂ jl + (hl ĵk) >

L i j k t  =  d i j ^ k l  ’

2(1 + v ) ’

K E ■
3(1 — 2v) ’

E  — modulus of elasticity;
V — Poisson’s ratio.

Plastic strain increment defj may be written according to the yield law:

d e f j= d 2 ^ -  =dAa, (22)
dau

where
d2 — proportional scalar factor;
F  — function for formulating the plasticity condition.

For a new anisotropic strain hardening model [3], function F is given in the
form:

F  =  ( д  K i j u s d  ̂  -  о  у (Í dfip) = 0 (23)

where
N ijkl ~  l i jk l T (̂®p) ^ i j k l  ’

M i j k l  tfji'kl >
S i j=  T ijki<7kl ,

&kl — a U ~  °Lkl >
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strain;

As initial plasticity condition, yield function (23) delivers the Mises plasticity 
condition. In subsequent plastic deformations there is a hardening model where the 
loaded surface expands (or shrinks) in the stress space, performs translational motion 
and becomes distorted, as sketched in Fig. 2 in the two-dimensional principal stress 
space.

Translation motion—kinematic hardening—is described by translation tensor 
<Xy(eP). According to both classic kinematic hardening theories by Prager [116] and by 
Ziegler [135], the translation tensor increment is equally

Parameter — 1 < ß < 1 decomposes the plastic strain increment to an isotropic 
and a kinematic part (d£$° and defj*1, respectively).

Definitions of p and tu in (24) according to Prager’s theory:

Fig. 2. Illustration of the anisotropic hardening model

d«y=dA(l —ß)ptlJ. (24)

(25)

(26)
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and to Ziegler’s theory:
1/2

(27)

(28)

<ту(£р) and А(ер) in function F (23) are material characteristic functions interpreting 
magnitudes:

da,,

H  l ' 2
— —  (Хайн
О \ 3 lJ lJ

h i ~  ° i j  •

H = Î Td£p
and

y —
dA
d£„

dA is determined by the complete differential of function F:

Jr, dF J dF dF J „ OF
à F = ^ d<’" + â Z d“« + « , d£S+ â T d£'

(29)

(30)

(31)

Confrontation of (31) and of (21), (22) and (24) yields for dA:

dA = ---------------------------
2 Y /2DemnP4- am„aP4 +  ( 1 -  ß)ptpqapq -  bpqapq + ( ß H - y h )  ( y  apqapq I

where:
dF 3 ra = =  —  N sРЯ
d<7ij

p q m n ^ m n

dF ЗА _  n _

h P4 =
иьря

=  --------  S' pP S'2^  m n  l'm n  ^  p q

h -
3

------- M  ç  ç

4a p q  m n  p q  m n  ■

Utilizing dA in (32), (21) and (22) yields: 

where:

Dijki — Щ}ы

dffjj — D ijk i  deki

j mn Qmn ® pqP pqkl

(32)

(33)

D 'r s w “  r , a , v  + ( 1 -  ß)ptria„ -  b„ars + (ßH
( 2  y /2

- 7 ^ ) ( y a „ a rs 1

Adequately selecting H, ß and A, the equation above serves for computations 
based on different hardening model types. These cases are described in [3] and [55].
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3.3 Elasto-viscoplastic deformations

Computation of elasto-viscoplastic deformations relies on Perzyna’s theory 
[168, 169]. Finite element analyses, according to this theory, were made by e.g. 
Cormeau [144, 145, 155], Zienkiewicz [150], Owen-Hinton [64], Zienkiewicz [148], 
Zienkiewicz-Norris-Naylor [153], Nagarjan-Popov [170], Owen-Praksh- 
Zienkiewicz [147], Owen-Zienkiewicz-Cormeau [151], Pian-Lee [156], Nagarjan- 
Popov [170], Hughes-Taylor [171].

These publications give detailed finite element equations according to this 
theory. Several computational algorithms (explicit, explicit/implicit, implicit), are 
compared for different examples of application. A complete finite element program for 
two-dimensional elasto-viscoplastic problems was presented by Owen-Hinton [64].

Perzyna’s elasto-viscoplastic equation combines creep and plastic strain, at the 
same time it permits the analysis of the pure creep phenomena.

In the program elaborated for solving elasto-viscoplastic problems, algorithms 
and programs developed by the mentioned authors have been made use of. Program in
[64] has been developed for reckoning with geometrical nonlinearity.

In the following, relationships for stress increment determination will be 
outlined.

Stress increment during time At is obtained from:

AfflJ=D'ijkl(Aekl-A e ir) . (34)

Utilizing the time integration scheme, relying on the method of finite differences 
for determining the viscoplastic strain increment Ae-f:

Az4f=At[(\ -a)'£7/ +  a '+4,é[/] (35)

where 1 is the weighting factor.
Viscoplastic strain rate in (35) becomes in the Perzyna theory:

л IT
ё?/ =  У < Ф (Г /< 7 ,)>  —  (36)

where у is a fluidity parameter, Ф the yield function and F the plasticity condition, while 
brackets < )  are interpreted as:

<Ф(Т/<7,)> =
0
Ф(Г/сJ,)

if F^O  
if F >  0

In the developed program, F is given in terms of the Mises plasticity condition:

/ 3  Y /2
F =  ( y  s,jStj )  - ery(f dcp) =  0 . (37)
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Magnitude ,+à,ê"f in (35) is obtained by the Taylor series expansion of 
viscoplastic strain rate è\f till the first term:

'/Яда\
, + л йУ =  * ^ +  ( ^ 4  Aokl = 'è\J + H°iJkl Aak (38)

Utilizing (34), (35) and (38):

^ t T tj  = 0 iJk,(Aek,- A t% f)  (39)
where

Dijki=  [D\fki l +<xA tH?jkl]

In case of a pure explicit time integration, (oc = 0)Dijkl simplifies to Deijkl. But for a. 
> 0 , in producing Dijkl in the computations, inversion is needed. For reducing running 
time, in producing Dijkl, inversion may be analytically made with the method in [82]. 

Omitting deductions, Dijkl becomes:

where:

n _ 2G
D i j k l — .  j  : 'Dijkl +  D L i j kl1+3 С/ф3

9G2(ips ~il/)sijSkl 
cT2(i/j + 3G)(iPs + 3G)

'i's =
1

(xAt уФ/а ’

(40)

1
d Ф ‘ 

*A ty dF

4. The computation method

The incremental finite element basic equation (19) deduced under 3.1 will be 
applied for solving elasto-plastic and elasto-viscoplastic problems. In solving the 
nonlinear equation system, two cases have been distinguished.

The first case (a) refers to the solution of elasto-plastic problems and to a group of 
elasto-viscoplastic problems where the steady state for a timely constant external load 
is wanted.

The second case (b) involves solutions of elasto-viscoplastic problems for 
different loading rates. Time increments will be denoted as:

where At{ is the time interval a t step i.
Computation steps for either of the two cases (a, b) are the following: 
a) External load R is applied in к steps. Steps involve external load increments

AkR = ARk
each.
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Iteration steps of the equilibrium solution for external load increment ARk are:
1. Solution of

KÍ Au‘ = AR‘k- J ‘ (41)
where

KL =
— in the modified 

K‘ — in the original
Newton-Raphson procedure

AR‘k =
for i = 1 
for i > 1

U k for i = 1
j  Fi- R k- V i- J k for i > 1

where J k is the residual load vector for the preceding external load increment, and

and

V' =

^k — ^ k i  +ARk

0 — in elasto-plastic problems

j Br 6  ÈL’pAt d V ~  ' n e*asto' v'scoP*ast'c problems.

2. Forming magnitudes

3. Producing magnitudes
Ji+>

ui+ l=ui + Au‘, 

el + l =e‘ + Ae\ 

о‘+1=о‘ + Ао‘

and К

4. The iteration is examined for convergence. Within the specific error criterion, 
the next external load increment is applied. Else, computation is started again from i-»i 
+ 1 and 1.

b) In the second case, elasto-viscoplastic deformations for the given load rate к  is 
determined. In this case the computation involves:

1. Solution of

where
К ‘Аи‘ = АЯ‘- Г

AR‘ = Atik and
fO if i = 0
( F - R ' - F '  if i> 0

(42)

2. Utilizing Au‘ from (42), determination of magnitudes 

ui+ i=u‘ + Au‘,

R i + i = R ‘ +  A R ‘,
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Vi+ l= j  B/!MDi + 1£(’J 1zlti+1 dV,
V

Fi+1= j  tí[+lai+l dV,
V

K‘ +1 = j В(Т+10 |+ ] Bi +, dV .

3. Application of external load increment for the next time interval:

ARi+l = Ati+1R

and repeating the computation from 1 for i-*i+  1, until the predefined load level.

5. Examples of application

In addition to theoretical works, quoted authors present solutions of several 
problems, either by programs developed by themselves or by means of extended 
program systems. An important part of a great many problems may be considered as 
basic problems, with solutions suited for the testing of the developed program. Most of 
these problems may be solved analytically, or relevant measurements are available. 
Subsequently some of these kinds of problems will be presented.

Several authors determined elasto-plastic deformation of a plate weakened by a 
circular hole and exposed to tensile load:

For small elasto-plastic deformations: [10], [12], [45], [147], [109], [42], [54].
For elasto-viscoplastic deformations: [146], [142], [145], [148].
For large elasto-plastic deformations: [142].
Theokaris-Marketos [68] examined this problem by measurement. Elasto- 

plastic deformation of a plate weakened by a F notch exposed to a tensile load was 
examined in: [21], [18], [13], [57], [114].

The most frequent problems include elasto-plastic ([18], [64], [87]), elasto- 
viscoplastic ([154], [64], [146]), and creep deformations [14] of thick-walled tubes.

The most large elasto-plastic deformations of a clamped-edge shallowcap under 
concentrated load have many solutions: [122], [35], [39], [105], [138], [115], [78], 
[16], [64], [75], [133].

There are several elasto-plastic analyses of the cylinder to sphere connection, 
tested by measurement by Dino-Gill [67]: [151], [132], [122].

[11], [26], [27], and [25] describe elasto-plastic, [150] and [170] elasto- 
viscoplastic, [123], [122], [170], large elasto-plastic deformations of a torispherical 
pressure vessel. Elasto-plastic deformations combined with geometrical nonlinearity of 
shell structures and plates of different geometries were analyzed in [14], [16], [34], 
[93], [94], [97], [114], [115], [117], [121-125], [75], [78], [150].

In the following, application of the finite element program [4] developed on the 
theoretical fundamentals described above will be illustrated in some problems.
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5.1 Elasto-plastic deformation of thick-walled tubes

Mathematical model of a thick-walled tube subject to internal pressure is seen in 
Fig. 3. The problem is treated as that of symmetry of revolution and solved by means of 
8-node isoparameter elements, for a 3 x 3 Gaussian integration.

t*
i

Fig. 3. Mathematical model and finite element division of the thick-walled tube

Fig. 4. Radial displacement of point A of the thickwalled tube vs. internal pressure
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Fig. 5. Distribution of stresses a,, a, and аг across 
the wall thickness at pressure p=  160 MPa

Fig. 6. Distribution of residual stresses across 

the wall thickness after unloading
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Computation data:

E =2.1 I05 MPa
у =0.3
af„ =240 MPa
II =0.0 elastic-perfectly plastic material model) 
rb = 100 mm 
rk = 200 mm 
h -  50 mm.

Computation results have been plotted in Figs 4, 5, 6. Figure 4 shows 
displacement of tube inner surface vs. internal pressure. Tangential {a,), radial (стг) and 
axial (o.) stress distributions along the wall thickness for a pressure p = 160 M Pa can be 
seen in Fig. 5. At this pressure the tube got to the plastic range up to radius rc — 166 mm. 
The tube is unloaded from a pressure p=160 MPa elastically, the residual stress 
distributions are seen in Fig. 6.

5.2 Creep of a pressure vessel with a spherical end closure

Next, creep of a pressure vessel with a spherical end closure lid was examined. 
The problem was solved by means of the elastic-viscoplastic program. Geometry and 
finite element division can be seen in Fig. 7. The problem was solved by means of 8-

Fig. 7. Geometrical dimensions and finite element division of the cylinder with a lid
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lg t hour
Fig. 8. Development of equivalent stresses inside and outside the lid to a cylinder connection

1=0 t=3h
Fig. 9. Some equivalent stress contour lines at times t = 0 and ( = 3 h

node, isoparametric elements of symmetry of revolution. The bin was exposed to 
pressure p = 445 Pa. Computation data:

E =20 105 Pa
V =0.3
<HF/<r,) ={F/ot)361 
о y = 1 (creep)
y =21.146 10“ 16
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Figure 8 shows equivalent stress relaxation at the outer and inner side of the 
cylinder-end closure junction. The steady state was found to be established after about 
3 hours. Contour lines of some values of the equivalent stress at instants t = 0 and t = 3 h 
can be seen in Fig. 9.

5.3 Rectangular plate under a uniform load

The problem of a rectangular plate under a uniform load will be examined in 
accordance with two different geometric boundary conditions. In the first case, the 
plate is clamped, and in the second case supported along fhe edge. Both cases amply 
occur in publications. The problem was solved by Ang-Lopez [76] and Lin-Ho [77] 
with the method of finite differences. The lower and upper limits of load capacity was 
examined by Hodge-Belytschko [70], [79].

The problem was solved by Hodge-McMahon [72], Belytschko-Velebit [73], 
Backlund-Wennerström [32], Barnar-Sharman [71], Spilker-Munir [69] and 
Martins-Owen [125] with the finite element method. The problem will be solved under 
both boundary conditions, also taking large deformations into consideration, applying 
a linear elastic material model.

This plate problem was examined from the aspect of geometrical nonlinearity by 
Brebbia-Connor [74], Hughes-Liu [78], Martins-Owen [125], Javaherian and al. 
[75].

The finite element analysis applied to thick shell elements, applying 6-point 
Gaussian integration along the thickness. Because of symmetry, it is sufficient to 
examine one quarter of the plate. Finite element division is seen in Fig. 10(16 elements, 
65 nodes).

Fig. 10. Finite element division of the quarter plate
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Fiy. / /. Plate centre deflection vs. pressure (clamped edge)

Further computation data:

L = 500 mm 
h =20 mm
E = 2.1 105 MPa 
<Tyit = 300 M Pa 
у =0.3
H =0.0 (elastic-perfectly plastic material model).

5.3.1 Clamped edge

Plate centre deflection vs. pressure is seen in Fig. 11. Dimensionless magnitudes 
plotted on axes are:

P =
p a

6 • M 0

where:

W=
W D

4 ■ M 0 ■ 1}

= -  avJi 2

12(1- V 2 )

Also lower and upper limits of load capacity are to be seen in the figure [70,79]. Plastic 
zones for different load increments can be seen in Fig. 12.
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Fig. 12. Development of the plastic zone in the quarter plate with a clamped edge

The ctamped-edge plate has also been solved as a problem of geometrical 
nonlinearity. In this case the plate material is linear elastic. Plate centre deflection vs. 
pressure is to be seen in Fig. 13.

In this case, non-dimensional parameters on axes are:

V =
P - £
D h

W* =
Wc
h
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Fig. 13. Deflection of the plate centre vs. pressure in the case of geometrical nonlinearity (clamped edge)
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Fig. 14. Deflection of the plate centre vs. pressure (supported edge)
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Fig. 15. Development of the plastic zone in the quarter plate with a supported edge

5.3.2 Supported edge

Deflection of the centre of a plate supported along its edge vs. pressure is to be 
seen in Fig. 14, also indicating lower and upper limits of load capacity. Development of 
the plastic zone can be seen in Fig. 15. Development of the plastic zone along the plate 
diagonal across the wall thickness under both boundary conditions has been plotted in 
Fig. 17.

Centre deflection of a supported-edge plate computed by reckoning with 
geometrical nonlinearity is to be seen in Fig. 16.

Definition of parameter A:
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Fig. 16. Plate centre deflection vs. pressure in the case of geometrical nonlinearity (supported edge)

Fig. 17. Development of the plastic zone along the plate half diagonally across the wall thickness, 
a) clamped edge b) supported edge
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[Received: 9 May 1984]

The theory of anisotropic hardening discussed in this paper can be applied in the 
determination of elastic-plastic deformations under non-proportional loads. However, the numerical 
example presented in the paper cannot be regarded as a correct solution, because a function is to be 
determined by trial-and-error and not by measurements. The elaboration of a measurement 
procedure and the comparison of computed and experimental results for different load paths require 
further studies and investigations.

Introduction

In recent years many authors discussed the combined isotropic-kinematic 
hardening [1, 2, 3, 5].

This law of hardening describes in a relatively adequate manner the behaviour of 
the material under cyclic loads, which is confirmed by a number of finite element 
applications [1,3, 6], as well.

The model will be further refined by taking the anisotropic hardening 
phenomena also into account. Zyczkowsky [7] gives a very good summary of the 
various theories of anisotropic hardening. Beside the large number of theoretical 
works, relatively few papers discuss the numerical application of the theory.

This paper describes a theory of anisotropic hardening elaborated on the basis of 
works by Axelsson [2] and Tanaka et al. [4]. The basic relationships are presented in 
matrix form, which facilitates the direct finite element applications. The numerical 
application of the theory discussed is presented in the example of a non-proportional 
loading of a thin-wall tube.

2. Basic equations

The yield function may be given as follows:

F = Q-<xT 7 N 7 ay /2 —<7,(Jde„) =  0 , (1)

* S zab ó , L. H -1015 , B u d a p e s t,  C sa lo g á n y  u. 6 -1 0 , VI. 248, H u n g a ry
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where

a = a  — ос

<rT =  [ ö ' l l > 0' 2 2 ’ <T3 3 ' T 1 2 > T2 3 ’ T3 l ]

(the stress vector)

а г =  [<Хц , ос2 2  > И3 3  , a 12 , a23 > a3i]

(the translation vector of the centre point of the yield surface)

1 T 
T= '« -  3 “

/ 6 = 6 X 6 unit matrix

i r  =  [ l > 1 , 1 , 0 , 0 , 0 ]

N  =  G  +  A ( e p) M

/ 3 = 3x3  unit matrix 

M = epEpl

epT = \_epl l ,ep22,ep33,yp12,y p23,yp3l'] (the plastic strain vector)

'2 \ 1/2d£p =  i j d e pTLd£p ) (the equivalent plastic strain increment)

L = /3 0

0 2 .

The yield function represented by equation (1) differs from the one proposed by 
Axelsson [2] only in parameter A. In this paper A is regarded as a function of ep, while 
by Axelsson it has a constant value. The yield function is given by Tanaka et al [4] in a 
similar form. By Tanaka parameter A is similarly interpreted as the function of ep , but 
matrix M  has a different interpretation.

To give the relationship between the increments in stress and strain, by applying 
the conventional deduction, the plastic deformation as a whole may be divided into an 
elastic and a plastic component:

d£ = d£e + d£p . (2)

Equation (2) can be further re-formed according to Hooke’s law:

dff = D(d£-d£p). (3)
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The plastic strain increment can be resolved into an isotropic and a kinematic 
component:

d8p<i) = ß dep, (4a)

dep<*,= (l —ß) d£p (4b)

where — 1 < ß ̂  1 is a parameter depending on the material.
Furthermore, based on the normality condition the increment in plastic strain 

may be given as follows:
dF

dep =  dA
da (5)

with special condition, as follows

if F =  0 and dF = 0 then d A /0

if F ^O  and d F < 0  then dA = 0

The total differential of the yield function (1)

ÔF J dF , dF dF
d F =  —  d<r +  ^ - d a +  —  dsp+ —  df: = 0

da dix dep de.
(6)

is to be solved for dA. Based on Prager’s and Ziegler’s theory, the kinematic hardening 
can be uniformly discussed because

da = dA(l —ß)pt (7)

where in case of Prager’s theory

P = 3 H ’

t = L
dF
da ’ 

d<T„

(7a)

H = Ade„

and, in the case of Ziegler’s theory

a y \

2 dF^
y 43 da d a )

t = a . (7b)

Using equations (3), (4), (5), (6), (7) dA may be given as

aTD de
dA =

aTDa+(  1 — ß)ptTa — eTa+(ßH - « ( к -
\ 1/2

La)
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where:
ÔF 3

a= —  = — N T â , 
да 2ay

dF 2 A
e=  — - = -— и TepTa ,

dep 2(T„

h - ----aTTMTa ,
4 ay

d A
У— ~i ■ de.

By use of equations (3), (5) and (8), the relationship between the increments in stress and 
strain is given by

da = Dep de (9)
where:

ddT
Dep=D

and

/2  V /2
dTa +  ( 1 — ß)ptTa — eTa + (ßH —yh)i— aTLa \

d = Da.

Equation (9) can be incorporated conveniently into the computer program published 
by Owen-Hinton [8]. In this way, the program can be used for computing combined 
isotropic-kinematic and anisotropic hardening.

3. Numerical application

The theory of anisotropic hardening discussed above is applied to the non- 
proportional tension and torsion of a thin-wall tube. The results of the computation are 
compared with Liu’s9 experimental results.

The finite element computation is based on the assumption of a plane stress state, 
applying an 8-node isoparametric rectangular element and 3 x 3  Gaussian integration 
(Fig. 1). The computation was made for two load paths shown in Fig. 2.. The load 
coordinates are contained in Table I.

Table I. Coordinates of load paths D x and C3.

D, (MPa) c 3 (MPa)

<*11 *12 <*n *12

A 151.2 93.08 133.34 79.77
В 257.2 33.09 166.3 62.53
C 259.3 0. 166.3 0.
D - — 69.49 41.36
E - - 108.25 62.53
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f  if). / . Finite element model for the analysis of the thin-walled tube

Parameters of the tube material are:

<ту= 181.0 MPa 
£= 19 .5- 104 MPa 
v =  0.3

H = 0.194 93- 104 MPa (bilinear stress-strain curve)

The experimental results compared with those of the computation are shown in Figs 3, 
4, 5 and 6.

For load path D j Figs 3 and 4 show the axial stress-strain curves and the shear 
stress vs. strain, respectively. The results of the computation obtained for anisotropic- 
kinematic hardening are represented by circles. Function A is expressed by

A = 16000exp(-674.59 •£ „ )-220 for D ,,

Acta Technica Academiae Scientiarum Hungaricae, 97, 1984
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Fig. 3. Axial stress-strain curve for D,
-------experiment

OFEM

Shear strain 6,2 (°/o)

Fig. 4. Torsional stress-strain curve for D,
-------- experiment

OFEM
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Fig. 5. Axial stress-strain curve for C3
---------experiment

OFEM

Fig. 6. Torsional stress-strain curve for C3
---------experiment

OFEM

and
/4 = 16 000 exp (-380.258 •£,) +350 for C3. 

For load path C3 the results are shown in Figs 5 and 6.
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4. Conclusions

The theory of anisotropic hardening discussed in this paper can be applied for 
the determination of elastic-plastic deformations under non-proportional loads. 
However, the numerical example presented cannot be regarded as a correct solution, 
because function A was determined by trial-and-error and not by measurements.

The elaboration of a measurement procedure for the determination of function 
A, and the comparison of computed and experimental results for other load paths 
require further studies and investigations.
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FOR THE DYNAMICAL MODEL OF THE NOSE-GEAR

Dr. Á. S. V a n c s a

[Received: 31 January 1984]

These results show that stability investigations of the linearized dynamical system are not 
enough for technical designing of such structures. Nonlinearities must be taken into consideration, 
too. — The method of Hopf bifurcation theory proved that unstable periodic solutions may occur 
around the stable equilibrium position of the draw-bar in comparison with the moving coordinate 
system of speed (later on, for the sake of terminological simplicity, it will be called the equilibrium 
position of the system). This situation is very dangerous from the technical point of view. — On the 
other hand it is very useful to know the size of the radius of the stable periodic orbits around an 
unstable equilibrium position when one is in the unstable region. And what may be more important 
than this, occurring stable vibrations warn us that the equilibrium position of the system has lost its 
stability and has become unstable, so we have to change the parameters of the system to restabilize 
the equilibrium position.

1. Introduction

It is very important to investigate the behaviour of wheels of drawn axes. This is 
interesting because with certain masses and speed these wheels begin to dance i.e. they 
lose their stability. That is why a designer has to know what kind of vibration occurs in 
the case of the first wheel of an aeroplane or in the case of jointed buses or trucks with 
trailers. *

* Mrs. Ágnes S. Vancsa, H-1131 Budapest Vőlegény u. 2., Hungary

21*
Acta Technica Academiae Scienliarum Hungaricae, 97, 1984 

Akadémiai Kiadó. Budapest



32 4 VANCSA. Á. S.

This phenomenon can be dealt with by the application of modern bifurcation 
theory [1].

A simple mechanical model of the wheel of drawn axis is shown in Fig. 1 [2]. 
The motion of this system can be described by the Appell equations. 
Notations:

body mass moment of inertia

1 M, 0

2 M 2 eS;= - f 2 - e 2

-Гг Вг
_ - E2 - d2

3 Мъ — ®Sj ~ ^3 0
0 B3
0 0

R  — the radius of the wheel,
V — the speed of drawing,

yt, 2 ,), R 2: (x2, y2, z2), R } '- (x3, y3, z3)-coordinate systems, 
S |, S2, Sj-centers of gravity, 
a, I — lengths, 
к — stiffness of the spring.

The chosen general coordinates are q, 9, q>.
There is a kinematical constraint because we assume that the wheel rolls without 

slipping. This gives us two scalar equations:

vp3 = V +19 sin 9 — Rep cos 9 

q —19 cos 9 — Rep sin 9 

0

=  0 ( 1 )

From the first equation we have
v + 19 sin 9 

^  R cos 9

This can be substituted into the second one so that:

4 = cos 9
(d sin 9 + 19).

Let us denote the quasi-speed of the system of one degree of freedom by s — 9. 
The Appell equation is

dS
¥ =7Cs- (2)

Where S{s, s, 9, q) means the so-called acceleration energy, n, is the quasi-force.
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Equation (2) in its details is as follows:

2a/) + M3/2 tan29 + C2 + /43 + ß
I2 í  l2

M J----—  + M j ( a2 +
1 cos2 «9 cos2.9 3F tar,2s]

+ s
/ /2 sin 9

M ‘ " S ? s + s i 5 ? T  W s cos2 9 a )
„ tan 9

+ sl2— +cos2 9

+ M J  tan 9 V
tan 9 si
cos 9 cos2 9

_ /sin 9 .
+ B jR W S ,'S +  1’S" ,S)] ■

= - k q
cos .9

The whole system of differential equations is:

9 = s

S= H ' (3)

q = v tan .9h-------- S,
cos 9

where

G =  - Mi cos2 9 + ^ 2V Vcos2 9 l
sin2 9

TT ~ 7 ) + M *v ^ , 2  о + B i~5i
V sin2 9

cos2 9 3 R2 cos2 9
s + kq +

+ M ,+ M 2 + M3 + B3\  sin29 Л  
R2 J cos2 9 ' J ’

/ / a 2 /
H = M l ------ + M2 — cos 9 H-------- -  2a cos

cos 9 \  l cos 9

. , _ . cos 9 „ / sin2 9
+  М з +  С2) —  + B 3 ^ .  — .

9 j  +  M 3
,sin2 9
— <T “*■ cos 9

2. Investigation of the linearized system

If one wants to determine the critical values of the system, where it loses its 
stability, one has to investigate the linearized system. The linearized system is:

9 " = ' o  1 o ' '  9 "

s 0 - à 22/N - k / N s

Я V l 0 Я

+ 0(92+ s2 + <72), (4)
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where

à 22 =  f^ M i 4- M 2 

Л/ = М ,/+ М 2

( - ? ) ) •
(l-а)2 , Аъ + С2

The characteristic equation is

D ( / )  = 1 0

0 — a22/N—/. — k/N
V l —À

~ < í ! + « í + £ ) -
ь
N =  0,

ù22 kl . kv
(5)

The condition of stability is given by the Routh-Hurwitz criterion, 
1. all coefficients are positive as a<l (see Fig. 1), so

^22 
N2. the determinant 1

kv Id 
~N N

has to be positive.

That is . kl kv n
Ü22n ~2 ~~n >0'

ä22l> Nv.
Thus, the condition of stability is

l —a
/ M, +  M 2

/
> M i l + M l < k ^  + h ± £ ±

Introducing the notation в = А3 + С2 we put the inequality into the form

M2(l—a)a>6. (6)

Now we have the critical value of M2 which is

M2cri,= ^ T ^ r

If the inequality (6) is satisfied, then all eigenvalues of (4) have negative real parts i.e. the 
equilibrium point of the linearized system is asymptotically stable.
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We may assume that M 2 consists of two parts, namely

M 2  = Af 2S + M 20-

M ls is in the centre of gravity of body 2, thus it produces no moment of inertia. M 20 is 
that part of M 2 which brings about the moment of inertia

C2 = M 20p2,

where p is the radius of inertia with respect to the gravity center S2. According to this 
assumption the moment of inertia C2 can be considered to be independent of the mass 
M 2S. Introducing the notation b = l —a>0  we can arrange expression (6) into the form

(M2s + M 20)ab > A3 + M 20p1,

or

M 2S> — (A3 — M 20(ab — p2))= ^  p2 + ~ M 20. (7)

This expression (7) serves as basis for the demonstration of the so-called stability charts.
If the parameters a, b and A 3 are considered to be constants we can determine the 

regions of stability (denoted by S), and regions of instability (denoted by U in the 
figures).

There are three varying parameters in this interpretation 

M 2 g, p and M 2 Q.

It seems reasonable to separate two basic cases and three special ones.

i. M i o < ~à-

In this case, the system would be unstable if there were no mass M 2S but with a properly 
chosen M2S it becomes stable. The regions of stability and instability can be seen in Fig. 
2/a. The equation of the dividing line is

ч  M 20 _2 . ^3 „
M l s ~ ~ a b ~ P  + r i ~  2 ° ’

i. M i o > ~à-

In this case the stability region grows considerably. See Fig. 2/b. The equation of the 
dividing line is

M 2S — ï h £ . p 2 + à ± _ M
ab ab го-

And now the special cases:

3. M20= 0.
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a) M < A1 b) M > A r20 ab 10 ab

This means that the mass of drawing body 2 is much smaller than the mass of body 1 or 
the wheel. The equation of the dividing line is

The regions can be seen in Fig. 2/c.

4. М го — ab

In fact, this value of M20 is between the values of the general cases 1 and 2. The 
equation of the dividing line is

M ls — ^3
a2b2

The stability chart is to be found in Fig. 2/d. 

5. M 20 =  oo.

Contrary to case 3, the mass of drawing body 2 is much bigger than that of the others. In 
this case, the critical value v/o b  of the radius of inertia p separates the stability and 
instability regions. The equation of the dividing line is

lim
Af 20~* 00

s
M 2o

lim
Af 20“* oo

^3
M 20ab
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0 = 4  - 1, i.e. ab

P = sfäb

This stability chart is to be found in Fig. 2/e.
If Я1 2 =  ±  iw are the roots of the characteristic equation (5) then tu is the frequency of 

the periodic solution of the linear system. Clearly, a> is the common root of the 
following equations at the critical point.

Re (D(iw)) = -  ^fU>2+ =0=>oi2 = ~
N N a22

kal

— Im (D(ico)) = — co2 + — =0 ш N >co2 = W
N

m, .h. M i a i + e ’

kal
Macrtt M tal + 0

Thus, we can say that the frequency of the periodic solution of the linear system is

( 8)
kal

a» =
M xal + 6

Let us consider M 2 the varying bifurcation parameter. According to Hopfs theorem 
[3, 5] bifurcation occurs if

Re
d /

d M, A  =  i c o  
A#2 = A#2crit

# 0 .

Now we have to calculate this derivative at the critical point. If we differentiate the 
characteristic equation (5) we get the following:

ЗЯ

where

2 Ы  _|_ ä22N — ä22N   ̂ 2,\^22
d M N

dû,
a22 = d M,

dЯ
N d M,

and

klN' kl dЯ 
Ж  + N d M ~7

kvN'
~N*~ =0>

N' =
dN

dM~2'

dЯ le/
d M 2

At the critical point

ЗЯ2 +  2Я —
N ■ N+ -  I =  j p ( ( ä 22N ' - ä ' 22N)l2 + k(v + tt)N').

ä22= ^ ( M ial + 6) = ^ ,
al со

Af =
M ,ű/ + 0 /с/

tu2 »

(9)
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I —a
a22 — v-

I '

N ' - M Î .

Substituting these values into (9):

dk
dM ,

, /  l —a kl kv (l — a)2\
-0> I V— ------J -----j --- ï---\  l (O w I J

k ( l - a )2
H------ 1 (/ico + V)

A =  i w
M l ~  A#2cril k2/2 /  ,  2 » Л—5- 1 — 3ru2 + 2ico y + w2 1

cu4[ u / ( /  — a ) + ( /  — a )2/icu ] I to 2 +  icu
■0

2kl3a>2hí)
Re

dA
dM , A  =  i c oМ2 = M  2crit

vw*a(l — a) 
2kl(œ2l2 + v2)

<0. ( 10)

Thus, there are bifurcating periodic orbits.
Further on we should like to find out whether the occurring periodic solutions are 

stable or unstable according to the supercritical or subcritical cases when Af 2 ^  Af 2(;ri„ 
respectively.

3. Higher order terms in the system of differential equations

For this investigation, we have to calculate the nonlinearities up to the third 
order. Omitting the quotation of all the tiresome calculations, we just wish to show the 
end-result.

" 9 ‘ = ’ 0 1 0 V + 0

s 0 - v / l — C O 2 / / s k i 292s + k l392q + k2i9s2

4 V l 0 q /u 93 +  /1292s

( П )

where the coefficients are as follows:

k l2— —
V

21'

to* f  2B ,
к" = 2к Л М ' + 2 М з +  Rr + 0 af(/

l + a \  
1(1- a ) ) '
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■ - * (
м , + м ,+ в

а(1 — а) + м
R 2) '

/, I —
V

3 ’

/12
/
2 '

Note that there is no term of second order.

4. Poincaré normal form

The next step is to calculate the Poincaré normal form of this system (11). For 
this, we determine the right and left hand side eigenvectors of the coefficient matrix A of 
the linearized system.

The right hand side eigenvectors of A belonging to the eigenvalue A = ico satisfy 
the following algebraic equations

where

A = 0 1 0 E = 1 0 0

0 - v / l — OJ2/l 0 1 0

V l 0 0 0 1

s,, s2 are the right hand side eigenvectors.
In this system of linear equations, we have two free variables. Solving this system, 

we get the eigenvectors:

OJ2l
. s2 =

(J)V

V2+(l)2l2 v2+co2l2

w2v (l)3l
V2 + U)2l2 V2 + (02l2

1 0

The left hand side eigenvectors of A satisfy the equations:

[ Ar
—ojE Ж ] = 0,

Acta Technica Academiae Scientiarum Hungaricae. 97, 1984



332 V A N C S A , Á S.

where the superscript T denotes “transpose”, i.e.

Аг = 0 0 u

1 -v/l I 
О - œ 2/l О

n ,, n2 are the left hand side eigenvectors of A.
By solving the equations, we get the two eigenvectors:

n, = " o" , "2 = — v/w

0 — l/w

1 0

With the help of n, and n2 one can produce s3 which is orthogonal to the plane
determined by n, and n2:

S 3 =  n !  X n2 = l/w 

— v/w 

0

Now, we have the transformation matrix T:

T = [ s , ,s 2, s 3] =
ш21 wv l

v2+w2l2 v2 + l2w 2 w

w2v w3l V

v2+w2l2 v2 + l2a>2 cj

1 0 0

det T =  — 1.
The inverse of T is

T ‘ = 0 0 1

v/w l/w 0

w 3l wv w3
_ V2 + l2W2 v2 + l2w2 V2 +  l2W2

( 12)
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If we denote

then equation (11) will be

ÿ = Ay +  f(y), (13)

where f(y) contains the nonlinearities of order three. If one introduces the new vector 
variables

X = X , , X = *1

*2 *2

*3 *3

one can say that
y =  Tx i.e. x =  T _1y, 

and the transformation of equation (11) is the following:

x =  T “ 'ATx + T ‘ 1f(Tx)

where the matrix of the linear part has the Poincaré form:

T ‘AT = О a i

— со 0 

0 0

0

0
=  P =  ÍPijl

- v / l  J

(14)

. . .  VFrom this matrix one can learn that the third eigenvalue of A is A3 = — -  which is a 
negative real number.

5. Restriction to the center manifold

Before transforming the nonlinearities in each of the three equations we can 
prove that it is not necessary to do this with the third one because there are no terms of 
second order so we are now on the center manifold.

Lemma: Let the investigated system be like (11) in which there are no terms of 
second order. If it is so, then the equation of the center manifold is

x3=h(x1,x2)
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where
Mxlf x2) = 0 ((x?+ xl)3'2),

i.e. it does not contain second order terms either.
Proof: We should like to have the equation of the center manifold in the following 

form j
*3 = y  (h 1rX1 +  2h, 2-X 1*2 + *22*2) +  0((xj + x^)3/2).

Because of the invariance of the center manifold,

X 3( f )  =  Ä (X i( t) ,  x 2( f ) ) ,

where the solution x,(t), x2(i), x3(t) is on the manifold, and hl t , hl2, h22 are the 
coefficients of the second order terms in h(xlt x 2).

If we use the differential equation (14) we obtain

*3= (йцХ1 + h l2x 2)x1 +(h12x l + h22x 2)x2 + 0 ((x2l +x22)3/2) 
i.e.

x3 = cox2(/i11x 1 + h l2x 2)-a>xl(h12x l + h22x 2) + 0 ((xj + xj)3/2).

And of course, we have the third equation of (14)

x 3 =  Рзз*з + 0((x? + x^ +  x |)3/2), as well.

To get the unknown coefficients hu , h12, h22 one has to solve the equation 

— (ox1(hl 2x 1 +h22x 2)+ œ x2(hl ,Xj +hl2x 2) =

= уРзз(ЛцХ? + 2/112Х1Х2 +  й22х1).

As the corresponding coefficients are equal, we will have a homogeneous system of 
linear equations

у Р з з  о) 0

—  С О  P 3 3  C O

О -со у Р зз

This system of linear equations has only the trivial solution if and only if the 
determinant of its coefficient matrix is not equal to zero.

1
у Р з з  u> 0

—  С О  P 3 3  C O

о - О }  у Р зз

= у Р з з ( у Р з з +  2" 2)  <0.
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and not equal to zero, so the required coefficients hn  =  /i 12 = /i 22 = 0, and the equation 
of the center manifold is

x3 = 0((x2 + x2)3/2). (15)

Thus, we have to transform only the first two equations of (11). If we do this we get a 
form which is suitable for the stability investigation of bifurcating orbits.

X =

1--------

О3о
1 ____ * 1

* 2

оо31

* 2

_ *3  . 1 о 0 1

1_
__

- * 3 -

+ fe30 * l  +  6 2 l * î * 2  +  6 1 2 * 1 * 2  +  6o3*2 +0(|хП

^ 3 0 * 1  +  ^ 2 1 * 1 * 2 + ^ 1 2 * 1 * 2 + ^ 0 3 * 2  

. . . x j  +  . . . X 1X 2 +  • . . X , X 2 +  . . . X 3

(16)

where the coefficients are as follows:

63О =  * 13* *ll(*ll(ll +*21 ̂ 12)’

6 2 1  —  * 13**1 i ( 3 * 11^12^11 +  (2 * 1 2 * 2 1  +  *1 i f 22)^12)»

6 l 2 ==f l 3 1i l 2 ( 3 f l l f l 2 ^ 1 1  + ( * 1 2 * 2 1  +  2 * 1 1^ 2 2 )^ 12 )*

6 0 3  =  * 13**1 г (* 1 2^i 1 +  *22^12)»

^ 3 0  =  *22**1 l(* 2 1 ^ 2 1  +  *1 1 * 2 1 ^ 1 2  + * 1 1*3 1^1 з ) ’

^21 “  *22* [*2 l(2* 1 1*22 +*12*2l)^21 + *1 l(2*12*21 + *1 1*22)̂ 12 +
+  2*11*12*31^1 зЗ>

^ 1 2  =  *22* C* 2 г(* 11*22 +  2*  1 2*2 1 ) ^ 2  1 +  * 1 г(*1 2*21 +  2 * 1 1 * 2 2 )^ 1 2  +

+  * 12 *31 ^ 1з ] ’

d o 3 —  *22* *1 г (* 2 2 ^ 2  1 +  * 1 2 * 2 2 ^ 1 2 )’

and tf3 , t22l and ti}, i,j = 1, 2, 3 are the elements of matrices T “ 1 and T respectively.

6. Stability investigation of bifurcating periodic solutions

If we apply the Lemma, system (16) reduced onto the center manifold thus will 
consist of the first two equations of (16) on account of equation (15) of the center 
manifold. According to the 8th step of the algorithm published in [1, 90 pp.] the
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question of stability may be decided with the help of the sign of

<5 = (ЗЬ30 + Ь12 + ̂ 21 + 3d03) ( 17)

as it is proved in that book.
Now it is easy to see that there is no need to calculate each of the eight coefficients 

of equation (16) just the four in (17).

We know from [1, 3, 4, 5] that according to Hopfs theorem the periodic solutions 
occur for M 2ctii — e < M 2< M 2cri, with some sufficiently small £>0 are orbitally 
asymptotically stable with asymptotic phase if <5<0 but those occurring for M 2 
> M 2crit are unstable if <5>0.

The cases are called

d;.
1. <5<0 and Re—  > 0  and u > u cri„

d/r
d /

2. (5<0 and Re—  < 0  and u<uCTi.
d/i
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supercritical and the cases 

d /
3. (5>0 and Re — > 0  and u<u„..,

dn
dÂ

4. (5>0 and Re — < 0  and ц>
du

subcritical, where /i denotes the bifurcation parameter. 
In our system

is at the critical point. Our ö in ( 18) is interesting because it can, in fact, assume negative 
and positive values, thus, there are parameter constellations which imply supercritical 
(orbitally asymptotically stable) vibrations and there are such that imply subcritical 
(unstable) ones.

First we are interested in the supercritical case, i.e.

dn

(19)

By using (18) and knowing that

kal
M tal + 0 ’ 

6= A3 4- C j ,

A3= - M 3R 2, ( 20)

C2 — M 20 p 2 y

B3= - M 3R 2,

we get the following:

1 l R2
2 4 1(1- a) 1(1- a)

C2
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We can use the notation b = l — a again and we get

( 2 1 )

and

with expressions (20)

A 3 (  6abl - 1  - 2
M , abl

( 22)
M 20\ R 2(l + b) M 20 l + b '

This inequality is trivially fulfilled if the term noted by К is less than or equal to zero

In this case all the periodic solutions near the equilibrium occur for 
M2cri, — e c McMj cr i t  are orbitally asymptotically stable. Note that this is a 
geometrical condition for the supercritical bifurcation.

If К >  0 and we assume that the mass of body 1 is small i.e. M { «  0 then condition 
(22) becomes:

Conversely, if p < p0 then Ô > 0 i.e. subcritical bifurcation occurs.
Figure 3 shows the stability regions and the strips of the stable and unstable 

periodic orbits for different values of M 2o aad 0 < К < 1. The figures are very similar to 
those which we get if K iï 1.

The amplitudes of the periodic orbits can be computed according to [1]:

(23)

i

va>*ab 8(ti2 + l2a>2)2 М 2-в/аЬ
2kl{v2 + l2œ2) M*vl a>2/k(i/2M 3 — 0/lb) — 2

У4(v2 M lal + v26 + kal3) (M 2ab — в) 
kl2(3/2M3al -  ва/Ь -  2M t al -  20)
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Thus,

r ~  2 ^/(v2Xi +X2)X3’ (24)

X l = M l a l + ^ M 3 R 2 +  M 2Op 2 > 0 ,

X 2 = kal3> 0,

= ________ 1/4 M 3R 2 + M 20(p2- a b ) - M 2Sab_________
Хз kl2(M3(3 /2a l - \ /4R2(l + b) /b)-M20p2(l + b ) / b - 2 M ial)> '

Note that the speed v has neither a role in the stability investigation nor in the 
bifurcation. But (25) shows that the amplitude of the vibration strongly depends on v. 
The correspondence between r and v is hyperbolic. (See Figs 4, 5.)

This result responds to our technical common sense.
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B O O K  R E V IE W S

M iklós H erpy J ean-C laude Berka : Aktive RC- 
Filter. Ein Lehrbuch für aktive Filterschaltunyen zu 
entwerfen. Akadémiai Kiadó, Budapest 1984, 326 
pages

Dr Ing. M. Herpy, author of the successful 
book “Analog Integrated Circuits” has now under
taken to sum up the design of active filter networks 
with a co-author. Using their ten year industrial and 
educational experiences they had written a book 
that is useful for both the students in higher 
education and practical experts.

The book begins with a summary of network 
theory (1. Introduction, 2. Description of filternet- 
works). It is followed by a survey of the approxi
mation of amplitude characteristics and group- 
delay characteristics (3. Approximation). The active 
RC filter networks are discussed comprehensively in 
the 4th chapter (4. Synthesis of active RC filters). The 
5th chapter discusses sensitivity and tolerances in 
detail. The most useful circuits of the vast family of 
biquadratic sections are evaluated on a common 
basis in the 6th chapter. A summary of the steps of 
the design procedure, with a view to the most 
important practical issues, such as dynamic range, 
measurements and tuning, follows. Actual filter 
design is demonstrated by 6 carefully worked out 
examples. Design formulas for 16 different second 
order sections and 2 different third order sections 
are discussed in a separate chapter. Diagrams and 
tables offer easy access to the most important 
catalogue data of filter design. The book ends with a 
rich bibliography and subject index.

The present edition is a revised version of a book 
originally published in Hungarian, in 1981. This 
explains some strong references to results obtained 
in Hungary.

In short, the book “Active RC Filters” discusses 
the cascade synthesis of RC filters in a remarkably 
concise and systematic way. It can warmly be 
recommended as a very good reference book to a 
wide circle of research, design and production 
specialists.

K. Geher

L. K ollá r-E . D ulácska: Buckling of Shells for 
Engineers. Akadémiai Kiadó, Budapest-John 
Wiley, Chichester-New York, etc., 1984, 303 pages

This book is an essentially enlarged version of 
the Hungarian “Héjak horpadása” (Buckling of 
Shells), or of the German version “Schalenbeulung” 
by the same authors. Its aim is to present a clear 
explanation of the rather intricate buckling process 
in shells, offering simple methods for deciding over 
the adequate safety against buckling of shell 
structures.

Detailed discussion is presented on inherent 
buckling conditions of various shell types, in 
particular, on stability problems of cylindrical and 
conical shells under loads of radial and of generatrix 
directions, as well as of cylindrical shells under 
hydrostatic loads or in torsion. The effects of various 
factors on the critical load and on post-critical 
phenomena are shown in several diagrams. A 
thorough analysis is made on the buckling of 
spherical shells, and in general, on spherical caps, 
including problems of post-critical behaviour. 
Many figures illustrate the effect of factors influenc
ing buckling. Also the buckling phenomena of 
spherical caps under point loads, and in general, of 
elliptic shells are considered, including the possi
bility of snap-through. Much attention is paid to the 
rather popular various hyperbolic shell types and 
also to cases of uniformly loaded hypar shells, 
saddle-shaped shells and shells of hyperboloid of 
revolution. These latter are discussed from the 
aspect of different possibilities of buckling. Interest
ing statements are made on the behaviour of 
different types of free-edged shells, arch shells and 
orthotropic shells. Separate treatment is given to 
stability problems of sandwich shells, rib-stiffened 
shells and reticulated shells. The effect of plasticity 
and creep of the shell material on the critical force, 
and peculiarities in the behaviour of shells made of 
different materials are examined. Special con
sideration is due to the practical application of 
achievements of the theory of stability, in particular, 
to effects of factors affecting shell buckling. In 
conclusion, two numerical examples are given for
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the sake of illustration, concerning the stability 
analysis of a  cylindrical lattice rpade of steel, and of a 
reinforced concrete spherical cap.

This publication is to supply im portant con
tribution to  engineering practice. Although buck
ling of shells has been concerned with in many 
international publications, it is quite difficult for 
practicing engineers to cover the problem partly 
because of the complexity of the applied mathemat
ical methods. Another difficulty is that studies 
concerned with the problem of shell buckling 
generally affect certain particular problems, without 
directly helping practicing engineers.' Moreover, 
experimental results are regionally scattered, and 
experimental or empirical critical values are much 
lower than  those expected from theoretical analyses.

In conformity with general views, the authors 
attribute the deviations to an irrealistic, idealized 
assumption of the shell shape and supporting 
conditions. Even if inevitable initial imperfections 
are accounted for in the theory by. an other than 
regular shape, deviations are assumed to be of 
regular arrangement. Another error is due to 
reckoning with only a limited number of possibilities 
from among the infinity of buckling forms re
alizable, and to applying different neglects in 
computations. Deviations can also result from the 
idealized assumption of the material properties of 
shells and from the omission in theoretical analyses 
of chemical, physical and dynamical effects on the 
shell during its service life.

All these deviations may lead to  eccentric 
stresses in the shell wall, responsible for shells 
buckling at much lower than theoretically cal
culated critical loads. In this book, each possible 
initial imperfection is taken into account separately, 
with the resulting, and otherwise arisen eccentric 
stresses in the shell wall, special material properties 
of the shell wall, and all these are simultaneously 
pondered in making a suggestion for the reasonable 
assumption of the safety factor.

The discussion is interwoven with the concept of 
linear critical load, a value obtained—rather than 
by lengthy deductions—in a quite ingenious 
manner, relying on the theory of shallow shells. This 
ideation is based on the experimental observation 
that the buckling of shells involves a wave (or waves) 
generally affecting a small area, and within the wave 
range, the shell can be considered to be shallow. This 
simplification yields the same value for the linear 
critical load as the more exact theory by the ulterior 
omission of nonlinear terms.

As a general statement, this book meets the 
intention of its authors to give a comprehensive, 
clear-cut explanation of the complex phenomenon 
of the buckling of shells. A detailed presentation is

given of results in publications on the buckling of 
shells, including several valuable studies by the 
authors themselves. The list of over 300 references is 
a helpful tool for further research.

This book is an interesting treatise on shell 
stability problems for professionals, and an in
dispensable assistance to those concerned with the 
design and construction of shell structures.

P. Csonka

G. F ra n z  (Editor): Beton-Kalender 1984. Ta
schenbuch für Beton, Stahlbeton und Spannbeton, 
sowie die verwandten Fächer. W. Ernst u. Sohn 
Verlag für Architektur und technische Wissenschaf
ten, Berlin, Vol. 73. Part I: p. 974; Part II: p. 1095.

The first part of this book is concerned with 
concrete and mortar material properties, reinforce
ment types, structural engineering problems and 
designing rules of reinforced concrete structural 
members, including those of prestressed concrete.

The second part comprehensively discusses 
standard specifications for the design of reinforced 
concrete structures, theoretical and practical know
ledge on shell structures, stress pattem in silos, rules 
of constructing reinforced concrete structures, 
knowledge on insulating and dampproofing of 
constructions, and limit design theory of reinforced 
concrete structures.

This work has been edited by Dr ing., Dr.-Ing. 
E. h. Gotthard Franz Professor Emeritus of the 
University of Karlsruhe, a world renown scientist. 
Chapters have been written by authorities in 
reinforced concrete, elaborating their respective 
subjects with deepgoing competency. A special 
attention should be called to the fact that among 
the authors a foreigner—the Hungarian Lajos 
Kollár,—author of the chapter on shell structures is 
also to be found. This chapter is a concise, clear-cut 
recapitulation of knowledge on design, computation 
and construction of shell structures, relying in part 
on the theoretical and practical achievements of its 
authors. It is concluded by a profuse list of references 
of nearly 150 items.

As an overall statement, this Volume 73 of 
Beton-Kalender follows the age-old tradition to be a 
valuable, indispensable manual comprising the wide 
scope of reinforced concrete construction. It offers 
useful knowledge to those interested in theoretical 
and practical problems of reinforced concrete 
construction, desirous of designing and constructing 
their structures reasonably and economically, utiliz
ing the latest achievements of recent knowledge.

The valuable contents of this work make it 
worth reading and it is of universal interest not only
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in German-speaking countries but also beyond, 
since the contained knowledge matter is of universal 
use throughout the domain of reinforced concrete 
construction.

P. Csonka

J.  S z a b ó  L . K o l l á r : Structural design of cable- 
suspended roofs. Akadémiai Kiadó, Budapest and 
Ellis Horwood Limited, Chichester 1984,243 pages

This book is published in the “Ellis Horwood 
Series in Engineering Science”. It presents a compre
hensive account of the general analysis of cable- 
suspended roofs in a form suitable for practical use.

The first chapter gives a general discussion of 
suspended roofs, showing the types of same, the 
most important concepts and effects, and it gives a 
brief survey of the calculation methods.

The second chapter is an illustrative example for 
the approximative calculations of suspended roofs. 
It is shown how to calculate the effects of dead 
weight, pretensioning, the different types of the wind 
load, the snow load, the temperature change. Also 
the effect of the deformation of the edge ring is 
considered.

To check the accuracy of the approximate 
method a comparative numerical example is shown 
in the third chapter.

Cable-net systems are often kinematically inde
terminate (statically overdeterminate) ones, so it can 
be a serious task to determine an equilibrium 
position of a prestressed net. In the fourth chapter 
the equilibrium equations are analysed both in the 
general and special (parallel forces, rectangular 
cable net) cases. Detailed algorithms are given for 
the calculation of the net shape at different edge 
conditions (mast, arbitrary rigid edge, flexible edge 
cable) and for the construction of the net of the 
principal curvatures or of the geodetic net.

The fifth chapter gives algorithms for the exact 
calculation of the state change (the change of the 
form and the tensile forces) of the net both in the case 
of rigid edges and in that when the net is connected 
to an elastic bar structure. Some method of limited 
accuracy are shown, too.

The sixth chapter deals with particular prob
lems: buckling of the edge ring, the optimum shape, 
the local flutter and vibration of cable net.

In the appendix there is a brief survay of matrix 
algebra, and the equilibrium and displacement 
equations of a bar with space curved axis are given.

The work presents valuable information to 
structural designers and engineers, and it could also 
be excellently used as a text book for university and 
post-graduate students.

Zs. Gáspár

M . M a j o r : Építészettörténeti és építészeteiméiti 
értelmező szótár. (Explanatory Dictionary for 
History and Theory of Architecture). Akadémiai 
Kiadó, Budapest 1983,431 pages

A pioneering feat has been to compile—under 
the guidance and with the active specialist con
tribution of Máté Major, academician—this expla
natory dictionary coping with manyfold functions. 
It unambiguously defines concepts in its scope, often 
misused—according to the Preface by the Editor— 
even by specialists. Explanations of difficult wording 
are assisted by appropriate architectural sketches.

This is at the same time a technical dictionary 
in six languages; all concepts are given also in 
English, French, German, Italian and Russian. By 
the end of the volume, indices for all the six 
languages refer to page numbers where technical 
terms may be retrieved for translation into the 
other languages. In the matter of explanations, the 
dictionary is intended for Hungarian readers, but 
as a dictionary in five world-wide languages, it has 
an—also geographically—much wider domain of 
application.

Delimitation of concepts in history and theory of 
architecture from those in other fields of archi
tecture might have been difficult. For instance, as 
concerns building structures, purlin is an entry, 
stirrup is not. Garden architecture is one, landscape 
architecture is not. Understandably, purlins had 
been applied in historical architecture, and gardens 
belong to buildings more than does landscape. 
These two examples illustrate timely and spatial 
delimitations, at the same time point to the urgence 
of processing the overall technical language of 
architecture.

Value of this exemplary initiative is enhanced by 
both its being the first in this scope, and its 
ampleness. In fact, two thousand terms are a wealth, 
exceeding the full vocabulary of ancient, simple 
people. Fourteen contributors from the Institute of 
History and Theory of Architecture, Technical 
University, Budapest, did comprehensive work, 
offering wide-range information to both specialists 
and public, and a valuable assistance to technical 
translators.

M. Kubinszky

F. C sáki, K. G a nszky , I. Ipsits, S. M a r ti: Power 
Electronics. Akadémiai Kiadó, Budapest 1983, 708 
pages

This is the second, revised edition of the well- 
known university textbook. Since the advent of 
semiconductor electronics, power electronics under
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went enormous change and development; this new 
aspect is already reflected in this book.

After the introduction, convertor circuits, their 
calculation for different practical applications, and 
their components have been comprehensively dealt 
with, and so have been DC and AC choppers, as well 
as different single- and multiphase inverters. A 
chapter each is spent on principal tools of power 
electronics: magnetic components, vacuum valves, 
gas-filled elements—of rather historical interest— 
and of course, an extensive one with a special accent, 
on semiconductor units. A special chapter discusses 
design and construction of equipment containing 
semiconductor devices. Finally, unique equipment 
descriptions are offered. The list of references 
enumerates relevant books and papers published 
until recently, in addition to references pertaining to 
each heading.

I. P. Valkó

Zement-Taschenbuch (Cement pocket-book) 
Bauverlag GmbH, Wiesbaden-Berlin (FRG), 48th 
Edition (1984)

One of the world-renowned, internationally 
wide spread and used German technical handbook 
series is the Zement-Taschenbuch (Cement Pocket- 
book). It is regularly published since 1911. It 
appeared in the first period yearly as Zementka
lender (Cement Calendar). Since the year 1950 the 
handbook has been published more rarely, in 
intervals of several years as Zement-Taschenbuch.

According to the increasing interest in this 
handbook, it grew up to a volume of several hundred 
pages dealing with the continuous development of 
cement production and concrete technology, also 
with the achieved new—up-to-date—experimental 
and practical results of public utility in these fields.

The, in 1984 published—until now the last— 
volume is already the 48. edition. The previous one 
appeared in 1980.

The 1984 volume contains in the same arrange
ment as the former editions all necessary knowl
edges, the newest theoretical and practical achieve
ments on cement and concrete for experts working 
in building industry especially with cement and 
concrete. Separate chapters discuss the cement 
production technologies inclusive those of hetero
geneous cements, also dealing with hydraulic ad
mixtures; cement chemistry and hydration process 
of cement; the structure and properties of cement 
stone; the cement’s main technical features impor

tant for the building industry, the aggregates and 
required characteristics of them also treating light
weight aggregates; many kinds of chemical ad
mixtures; up-to-date concrete mixing technologies, 
the hardening process of concrete and the factors of 
influence, the technical features of concrete. The 
content of the volume and the manner of handling 
the subjects serve principally the practice.

Each new edition of the Zement-Taschenbuch 
contains since 1964. a chapter, which gives more 
detailed informations on some, selected, special 
part-problems about using cement for special pur
poses and preparing special concretes. These in
formations are based on results of the latest 
development. The volume 48. contains three such 
themes, as follows:

Increasing the long-term durability of open air 
concrete building-objects exposed to weather 
effects. It discusses the factors causing deteriora
tions, general directions to prevent deterioration, 
gives directives to chose the proper materials, to 
design the building, to apply the corresponding 
concrete technology by which the durability might 
be raised.

Impregnation, coating and painting of free 
concrete surfaces. Gives informations about possi
bilities, methods to do it and the acquireable 
efficiency of protection.

Making heavily stressed, high load bearing 
wearing-layers of concrete roads of hydraulic bind
ing agent and highstrength aggregate. Deals with 
the special technical features of the concrete secur
ing the requirements, the mix design of concrete and 
its quality control.

The following chapter contains the list of the 
titles of special themes discussed in former volumes 
with the ordinal number of edition in which the 
detailed information is to be found.

The last chapter enumerates the most important, 
respective German standards and regulations.

Finally, there is a list in the volume of the cement 
works in operation in the Federal Republic of 
Germany.

The Zement-Taschenbuch as a handbook deal
ing with the up-to-date state of cement and concrete 
techniques, and which gives very useful instructions, 
directives for the building practice is very precious 
for those working in the building industry. The book 
is applicable entirely in the Hungarian building 
practice, because the principals and the technologies 
contained in the book also correspond to the 
Hungarian prescriptions.

T. Gyengö
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H. N eumann-K . Stecker: Temperaturmessuny. 
(Thermometry) Akademie-Verlag, Berlin, 1983. 160 
pages

This book deals with thermometry. According 
to the international system of weights and measures 
(absolute) temperature is a fundamental magnitude, 
of unit I K. The problem lies in the fact that 
temperature, sensorially more or less perceptible, is 
a directly non-measurable, intensive state character
istic. Countless empirical temperature scales can be 
made on the basis of measurable characteristics 
varying with the thermal condition of materials (e.g. 
volume, electric resistance, etc.). There are several 
possibilities to define the absolute temperature scale, 
e.g. as ratio of heat introduced to, or leaving, a 
Carnot cycle, or as integrating factor of the quantity 
of heat, or, on the basis of the fact that absolute 
temperature is proportional to the product of 
pressure by molar volume if pressure tends to zero.

After definition of the temperature scale, gas 
thermometers, instruments relying on thermal 
expansion, vapour pressure measurement, temper
ature dependence of electric resistance, thermal 
stresses and radiation are presented in detail while 
thermometers on other bases (e.g. sound propa
gation velocity or capacitance variation) only in 
general. Finally, allusion is made on the correlation 
between heat transfer and thermometry.

This book has been intended for physicists and 
engineers. For each instrument type, operational 
fundamentals, construction types in use, and sources 
of error in application are presented.

A more exact definition of the temperature scale 
and determination of fixed points of the practically 
applied temperature scale would be desirable, since 
the basis of statements in the book thermometry as a 
whole seems somewhat unfounded.

Again, a more precise description of knowledge 
in measurement would be welcome. Namely, for 
instance, the way of introducing virial equations in 
discussing gas thermometers can hardly be followed. 
Also, it would have been preferable to start from 
equation w = (ilP/dp)l12 and virial equations in 
giving relationships for evaluation of the measure
ment results instead of presenting a relationship 
valid in case of ideal gases alone, then, irrespective of 
that, a relationship containing acoustic virial coeffi
cients. In the same place, the statement that the 
adiabatic exponent for ideal gases is 5/3 is quite 
erroneous; it applies to monatomic gases only (p. 
130).

In discussing the fundamentals of thermometers 
based on volume change, it is rather unusual to 
indicate mean cubic expansion coefficient for inter
val (T0, T,) in the form of у(Т, —T0), and then to 
include it in an equation containing multiplier (T, 
— T0) as well (p. 35). Although “stem correction” is 
mentioned in the book (p. 39), no method for 
estimating mean stem temperature is presented.

In the chapter on the effect of heat transfer, the 
thermal conductivity equation should have been 
reasonably written as a partial differential equation 
as usual. On the basis of what has been said here, the 
differential equation seems as if it could be solved 
without boundary conditions!

On the basis of these examples selected at 
random, the book seems to be of little use in its 
present form. However, it still gives a survey of 
problems and roughly outlines the solution to these 
problems, and the references given in the book are a 
valuable source of solutions to the problems 
discussed.

Thus, although the book is by far not ranging 
among the bests in the recensionist’s opinion, it was 
perhaps not quite unnecessary to write it.

I. Szabó
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