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A SPECIAL MIXING-TYPE PULVERIZED COAL BURNER

K. Reményi*
[Received 27 September 1983J

For the purpose of starting with coal dust the boilers fired with pulverized coal and for the 
partly open circuit firings a special pulverized coal mixing burner had been developed in the 
Villamosenergiaipari Kutató Intézet (Institute for Electrical Power Research). The pulverized coal 
burner designed by taking into consideration the effects of various factors in the fundamental 
equations of burning and flow, ensures the separation of the coal dust being ground in the pulverizing 
mill and dried by the drying inert gases, as well as the efficient mixing before starting the burning with 
primary air of any proportion and temperature. By means of that burner it can be achieved that the 
inert gases do not enter into the combustion chamber, the combustion temperature is high, owing to 
the high temperature the primary air ignition is stable, there is no risk of coal dust explosion, and so 
the firing scheme is simple.

Notations

p — Time-mean density
I — time
V —  time-mean velocity
V — vector differential operator
F — body force per unit volume
P — time-mean pressure
T  — turbulent stress tensor
h — average enthalpy
Jh ; j — turbulent (lux vector

— time-mean chemical species' mass fraction
— mass rate of creation per unit volume
— universal gas constant
— molecular weight
— temperature

cp — specific heat
Hj — combustion heat
Ej — activation energy
p — turbulent viscosity
d — mean flow rate of deformation tensor 
Г — turbulent exchange coofficient
u — relative combustible content during burning of the coal particle 
e„ — instantaneous combustible content
e0 — ignition combustible content
w, tangential velocity in the cyclone
w, — radial velocity in the cyclone

* K. Reményi, H-1014 Budapest, Uri u. 38, Hungary

I» Ada Tevhniiu Acudcmiut' Stivnliurum Hungaricue. 96 1963 
Akadémiai Kiadd. Hudapvsl



4 REMÉNYI, К

d
С

г
т

radius
— exponent
— diameter of limit particle
— constant

1. Introduction, definition of the task

Because of the heavy rise in oil prices possibilities had to be found in fuel 
engineering that facilitate the reduction of power oil consumption. In power 
engineering significant oil consumption is required for starting the boilers and 
stabilizing the firing. This is a particular problem in countries like Hungary where the 
power engineering fuels are of very low quality because of the considerable ash and 
moisture content. Above all in the course of starting cold boilers a large quantity of oil 
has to be used until the pulverizing, firing system and the boiler plant are warmed up to 
a temperature where the pulverized coal burners can be put into operation. It is 
obvious that firing should take place by means of pulverized coal during the entire 
course of starting or at least as soon as possible. For that purpose a coal dust system 
independent Of the boilers coal preparation system has to be presented. In that case a 
large quantity of pulverized coal has to be stored. In case of less explosive hard coals 
this can be solved, but with younger brown coals, lignition problems arise. The dried 
coal dust is explosive, it can only be transported from the warehouse to the boiler by 
means of inert materials, e.g. steam, which in turn impairs the conditions of ignition. 
Taking into consideration the fundamental equations of combustion theory and 
flowing, a burner design had been realized that creates favourable conditions for the 
ignition and burning of pulverized coal, furthermore the condition required for 
operation with power engineering facilities is available. The system can be used in case 
of central storage—with transport by means of inert gases—and of other external 
sources of pulverized coal. A plant had been implemented for a lignite fired boiler 
having an output of 620 t/h. The operative implementation had been preceded by 
model tests in 1:10 scale.

Then designing the burner the effects of the factors in the fundamental equations 
of combustion and fluid flow had been analyzed, that may be influenced by means of 
design and operation. As realization was planned for lignite fired boilers, also the 
concrete tests and calculations for Hungarian lignites were carried out.

2. Theoretical basis

Acta Technic a Academiae Scient iarum Hungaricae, 96 1983



PULVERIZED COAL BURNLR 5

3. Firing considerations

The equations of conservation of mass, pulse, energy and chemical elements 
served by taking into account the firing considerations. These fundamental equations 
[1-7] are:

Dp
+ p(P  ч?) =  0 . (1)

Dh
p —  =/>F - V p +  Ft , (2)

Dh
p - —  = - V J k-p(Vv)+Vb:T (3)

p - ö f  = - r j j + Rj (4)

It is known from thermodynamics

43 II

§1
 л (5)

h=cpT+E(H/rij), (6)

R j = - F j c x p ( - E j / R T ) (7)

from fluid mechanics

T = 2 p d , (8)

j „ = - r hvh, (9)

Jj= — ГjVmj, (10)

and for a given chemical component

Imj= 1 . (П)

Equations ( 1 ) and (2) chiefly characterize the flow conditions of the materials departing 
from the burner. Good mixing conditions may be achieved by means of swirl burners. 
Therefore, when developing the design we aimed at achieving a turbulent flow.

In equations (3) and (4) the physical-chemical characteristics of the fuel as well as 
the conditions of burning, play an important role. The physico-chemical circumstances 
formed after leaving the burner determine ignition and combustion. According to 
equations (6) and (7) the most significant part is played by the quality, reactivity of the 
fuel, the temperature and in the combustible mixture the concentration of the fuel and 
the reacting material. During firing obviously the individual factors are in close 
interaction. However, the role played will be analyzed for the point of view of designing 
the heating plant.

A da Technica Academiae Scientiarum / / unguricae, 96 /9KJ
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Fíl/. I. Change of adiabatic combustion temperature in case of changing combustion environment, for coals 
with different calorific power (on the horizontal axis the extent of drying gas removal, in per cent)

Burning up of fuels of different qualities, particularly of lignites with high 
humidity content by means of drying gas, drawn from the combustion chamber after 
drying and grinding in the mill, takes place by direct injection into the chamber. In that 
case a significant quantity of inert gas gets into the combustion chamber, reducing 
oxygen concentration, pulverized coal concentration and combustion temperature. 
Below an oxygen concentration depending on the fuel no ignition can take place. The 
effect of injecting the drying gas into the combustion chamber is shown in Fig. 1. The 
curves of the figure indicate the change in the adiabatic combustion temperature of the 
lignites having different calorific powers if the raw coal is burned up in oxygen, in 
ambient air or by removing the drying combustion gas by some method (parameters of 
the average quality of the given coal are: 6060 KJ/kg, humidity 44%, ash content 25%. 
Even 50 per cent removal of the drying results as an important rise of the combustion 
temperature. This is particularly significant for the stability of firing, and also to the

A da Technica Academiae Scientiarum Hungaricae. 96 I9N3



PULVERIZED COAL BURNER 7

starting period of the boiler when it is needed to bring about pulverized coal firing in a 
cold combustion chamber, as soon as possible. The essential difference between firing 
with the theoretical combustion air and the 100 per cent separation of the drying, as is 
given by the fact, that while with the first one the humidity content of the coal reduces 
the temperature of combustion, with the second one an important part of the humidity 
is removed by means of the drying gas. An important parameter in the process of 
combustion is the concentration of combustible matter. The role of concentration in 
the course of burning up the pulverized coal—air mixture in a “detonating bomb” is 
evaluated on the basis of pressure change rates. The detonating bomb is a 
pirotechnically fired vessel of 70 dm3 volume. The experimental results for lignites of

Fin. 2. (a) Explosion pressure change curves for lignite from “Gyöngyös", with different coal dust
concentrations.

Acta Technica Academiae Scientiarum Hunguricue, 96 I9N3
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Gyöngyös and Bükkábrány (mines in Hungary) are indicated in figure series 2 and 3. 
From Figs 2 and 3 the average pressure change rate (dPmax/dr) and the maximum 
pressure change rate (d<P/di)max are shown by Fig. 4. In the examined concentration 
range it can be established that with low concentrations the pressure change decreases 
essentially, that is to say, the velocity of combustion, and in the case of lignite from 
Bükkábrány with 300 g/m3 concentration at a very low value burning is greatly 
protracted.

The effect of oxygen concentration was studied in a laboratory-type combustion 
chamber of 2100 mm length and 57 mm internal diameter, being vertical, and suitable 
for carrying out reaction kinetical examinations. The section of the combustion 
chamber is shown in Fig. 5. As an example for measurements carried out in the

Acta Technica Academiae Scienliarum Hungaricae, 96 1983



PULVERIZED COAL BURNER 9

Piti- i- Maximum explosion pressure values for different coal dust concentrations: I lignite from 
“Gyöngyös", 2 lignite from "Bükkábrány”

experimental plant Fig. 6 shows the combustion velocity tests accomplished with the
0.6 -г- 0.8 mm fraction of the lignite from Gyöngyös. On the horizontal axis of the figure 
there is the combustion time, on the vertical one the relative combustible content “u”, 
calculated on the basis of the following formula, in the knowledge of the ex combustible 
content measured in some instant of the reaction and of the initial e0 combustible 
content:

The curves numerically show that with rising oxygen content the velocity of 
combustion is essentially higher.

In addition to the effect on the velocity of combustion the oxygen concentration 
influences the ignition temperature of the pulverized coal as well. The ignition 
temperatures were measured with the method of Goldbert-Greenwald. When carrying 
out measurements with 21% and 10.5%, oxygen concentration it was experienced that 
with Hungarian lignites that the extent of change in oxygen concentration resulted in 
155-=-165 "C change in the temperature of ignition in case of lower oxygen 
concentrations.

Thus, on the basis of the theoretical fundamental equations of combustion and of 
the experiments being carried out, the requirements concerning the burner can be 
defined

Acta Tcchnicu Acadcmiae Scientiarum Hungaricae, 96 !9H3



10 R I  M F N Y I .  К

tiff. 4. (/1 Pma»,VO) average and (Ap,At)mát maximum pressure change values with different coal dust 
concentrations: 1 lignite from "Gyöngyös", 2 lignite from "Bükkábrány”

— high combustion temperature,
pulverized coal with humidity content as low as possible,

— small quantity of inert gas in the combustion zone,
— oxygen concentration as high as possible,
— favourable ignition and combustion conditions, 

good mixing conditions,
adequate pulverized coal concentration, 
safe operation

should be ensured for the burner.
In the case of the usual, open circuit firings with intermediate coal dust storage 

the task can be solved in principle, however, with younger brown coals the storage and 
the transport of the coal dust by means of air bears there might be the risk of explosion. 
But in that case the harmful, coal dust drying inert gas does not go into the firing 
process. Thus, the burner should be designed so as to separate the drying inert gas and

A d a  Techniea Academiae Scientiarum Hungáriáié. 96 19X3
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Fiy. 5. The section of the equipment serving for reaction kinetical examinations

the vapour, and to ensure possibly favourable mixing before ignition, excluding the risk 
of explosion. Such a solution can be implemented by means of a specially designed 
cyclone burner. For the right design of the burner one has to go back to the analysis of 
flow taking place in the cyclones. In the dust separating cyclone the centrifugal field of 
force separates the dust from the gas stream; the flow pattern being indicated in Fig. 7. 
On the turbulent flow the effect of gas on the offtake pipe is superimposed as a vortex 
sink. For describing the turbulent flow the equation

W,rm = COnSt

serves, being valid for potential turbulent flow. Fig. 8 shows the change in velocity of 
the turbulent flow for the theoretical m = 1 and for the real value m < 1. If on the vortex

A da Technica Acudemiue Scienliarum Hungaricae, У6 IVH3
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о 700* С 8 “/. 0 2

Fig. 6. Changing in the relative combustible content of the lignite from "Gyöngyös" in the course of burn-out 
time, at different temperatures and oxygen concentrations

Fig. 7. Section of a dust separating cyclone, showing the characteristic velocity and pressure circumstances
[ 10]

A d a  Technica Academiae Scienliarum Hungaricue, 96 1983
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also a sink is superimposed, a radial secondary motion also takes place. The flow 
pattern of the vortex sink is a logarithmic spiral, i.e.

rwr = const.

As resultant of both motions the dust particle carries out the motion seen in Fig. 9. In 
such a flow pattern to the radii r, in case of pg, pp, r]p gas, dust material and shape 
characterises the limit particle that already does not carry out radial motion

Thus, by means of the design solution the quantity of the departing dust can be 
controlled. In this case that coal dust also means a loss if it does not get into the

Иц. <Y. Velocity variation of the turbulent flow [I IJ

I il/. V. I low lines of the vortex sink, and motion of the coal dust particle in a turbulent flow: 
I vortex line. 2 flow line of the vortex sink

Aria Ti'chnicu Aituírnuar Scienliarum Hungaricae, W> /WO
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combustion chamber. With the usual dust collecting cyclones the entire gas quantity 
leaves through the exhaust pipe. If a small quantity of transport gas with the cyclone, 
used as burner, is led together with the pulverized coal into the combustion chamber, 
the loss of coal dust can be significantly reduced. If the pulverized coal burner is used 
for starting up, then coal loss can be reduced too, however, it is not significant as 
compared with the high oil price.

If the burner is used for partly open circuit firing, then after the pre-separating 
burner as a secondary current, it can be used for the separation of pulverized coal from 
a gas stream having such low coal dust concentration that incidentally presents only 5 
per cent of the entire quantity burnt up, thus the pulverized coal loss is a low value even 
with a not very high efficiency of separation. The reduction of the losses in the departing 
flue gas is essentially higher than the said loss.

For designing the cyclone burner one can depart from the flow pattern of Fig. 7. 
By removing the dust collecting lock tank the possibility of pulverized coal outflow has 
been created. Inlet of the combustion air can be achieved by means of the pipe coaxially 
placed into the cyclone. By examining the flow pattern it can be established that in the 
axis of the cyclone at the outlet pipe also a secondary current can be created, being in 
the core opposite to the direction of the outflowing gas. If that flowing current is filled 
up with the inlet channel of the primary air, also the flow conditions of the cyclone will 
be improved.

A d a  Techniva Aciulcmiue Scienliarum Hungaricae. 96 IVX.1
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Fig. II. Mixing-type burner with 30 MW heat output

Based on the previous theoretical combustion and flow considerations a 
pulverized coal igniting burner has been designed and mounted for starting a lignite 
fired steam boiler of 62 0 t/h steam output (590 MW heat output). The pulverized coal 
necessary for ignition was ensured from one of the mills of a boiler operating, beside the 
boiler to be started, in order to avoid storage. The scheme of the principle for the 
ignition system is indicated in Fig. 10. Main characteristics of the system are:

— boiler output 590 MW
— quantity of the gas transporting the pulverized

coal to the cyclone burners 120000 m}/h
— dust concentration 177 g/m ’
— calorific power of the pulverized coal 12040 KJ/kg
— final humidity of the pulverized coal 12 per cent
— individual heat output of the two cyclones 30 MW
— at the starter the primary air makes out of the

theoretically required combustion air 50 per cent
— temperature of the primary air 150 C

The section of the cyclone-type burner of 30 MW heat output is shown Fig. 11.
Prior to the operative implementation measurements carried out on a warm 

model of 1:10 scale in order to get acquainted with the flow, separation and 
combustion circumstances were obtained. The photo of the experimental burner can be 
seen in Fig. 12. Based on the experimental results the operative implementation has 
been carried out. The experiments permitted optimum determination of the most 
important dimensions (cyclone dimensions, layout of gas outlet pipe and primary air 
conduit, etc.) decisively influencing the operation of the burner. The most important 
means for the operative control of the burner is the intensity of exhaustion of the 
separated transport gas. With it also the extent of separation and the position of the 
flame can be well set. Thus, the burner ensures that the dried dust coal is separated from 
the transporting gases, then mixed with the combustion air into a pulverized coal—air 
mixture suitable for firing.

Acta Technica Academiae Seien liar um Hungaricue. 96 /9Л.?
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Fig. 12. Photo of the experimental burner

Summarizing: the special burner solution described possesses advantages that
cannot be offered by any of the burners made thus far, in particular:
—  the inert gases serving for the purpose of drying are separated from the pulverized 

coal, and do not impair the ignition and combustion circumstances,
— if necessary, the entire combustion air demand and the pulverized coal can be 

introduced into the combustion chamber this being well mixed,
— the temperature of the combustion air may even achieve the ignition temperature, 

creating favourable conditions for igniting,
—  with the favourable ignition and combustion conditions there is no risk of coal dust 

explosion,
—  the burner permits the creation of a simple firing system.

Acta Technica Academiae Scientiarum Hungaricae. 96 19X3
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INCREMENTAL VARIATIONAL PRINCIPLES 
IN CONTACT PROBLEMS

I. PÁCZF.LT*

(Received 14 May I983J

The finite element incremental variational principles examined by T. H. H. Pian have been 
generalized for cases where there is a discontinuity in part of the interface between elements 
concerning both the displacement and the stress fields. By modifying the arising principles, 
variational principles have been established for the analysis of frictionless contact problems of 
unilateral connection, followed by the analysis of the solution process of the contact problem of 
elasto-plastic solids by the incremental variational principle relying on modified complementary and 
potential energy.

I. Introduction

As it is known, for the solution of materially and/or geometrically nonlinear 
boundary problems combined (iterations an loading increasing) linearised methods are 
generally applied. An essential feature of this solution process is that it is generally 
incorrect at the beginning of the load increment, satisfying neither the equilibrium 
equation nor the compatibility conditions.

The building up of various finite element incremental methods on the variational 
principle has been concerned with by T. H. H. Pian [I]. The principles, however, do not 
take into consideration discontinuities of an effectively given value in part of clement 
interfaces in the fields of displacements and of stresses. These arc the cases c.g. of solids 
joining with overlapping, as well as of thin-walled plate, shell, diaphragm problems 
where the stress (internal force) discontinuity is due to a linearly distributed external 
load. Neither is the case of contact conditions with unilateral connection considered in 
[ 1 ].

To simplify the discussion, the variational principles have been formulated for 
three-dimensional solids but the obtained results arc valid for two- and one
dimensional problems as well.

Assumptions made in establishing variational principles involve:

1. mutual independence of the examined fields clement by clement, or for some 
principles, inside the clement;

2. и priori fulfilment of boundary conditions, field equations and fitting conditions 
depending on the selected principle;

* I. Pác/elt. H-3531 Miskolc, Győri kapu u. 37 III 3. Hungary

A d a  Tcrhnica Aeademiae Seien liar urn Hun^arieae. Vrt /y<y.t 
Akadémiai Kiadó. Huda/WM



20 PÁCZELT. I

3. symmetry of stress and strain tensors;
4. small displacements and strains due to load increments, hence validity of the 

linearized theory;
5. negligible dynamic (inertia) effects;
6. the examined system to be in isothermal condition.

A field satisfying the proper field equation FE, boundary condition BC and 
fitting condition FC is called fixed  from these aspects, otherwise it is free.

For the sake of conciseness, field equations, boundary and fitting conditions 
other than a priori satisfied will be called free equations.

2. Stating the boundary value problem

Let the magnitude at the beginning of the load increment be marked with ( )0 , its 
icrement with A( ), and its value specified at the boundary of the given system with ( ).

Let us take a structure of N elements (Fig. 1). Element e of volume V  is bounded 
by surface Se. Volume Ve is acted upon throughout by distributed load of density q*";

Fig. 1. Elastic structure of N elements. Interpretation of discontinuities t in the stress field between the
elements, and h in the displacement field

surface Sep by surface load of given density p; and surface SI is subject to known 
displacement ü. In the remaining part S* of surface Se, element e contacts adjacent 
elements.

Be T and A the stress and the strain tensor resp., u the field of displacement, C the 
fourth-order tensor of material constants, n‘ the outer normal to surface Sr, h and t 
specified discontinuities in the displacement and the stress field, resp. Symbols “ ..  ” and 

signify double and simple scalar multiplication, resp., V is the Hamiltonian 
differential operator.

Now, for the element surface V\
1. the equilibrium equation:

F • (To + /1T) + qo + /1q = 0 (2.1)

Acta Technica Academiae Scientiarum Hungaricae, 96 I9H3



2. the geometry equation:

A0 + /1A=y(P(Uo + /hi) +  (u0 + /lu)l') (2.2)

3. the material equation between stress and strain increments:

/ IT=D.. / IA;  A = C. . / IT;  D = C 1 (2.3a-c)

4. the boundary condition of stress on surface Sep :

n ( T 0 + dT) = p + /1p (2.4)

5. the boundary condition of geometry on surface Seu :

u() + /1u = ü0 + /1ü (2.5)

INCREMENTAL VARIATIONAL PRINCIPLES 21

and at last, the dynamic and kinematic fitting conditions between elements j  adjacent to 
element e. In writing the fitting conditions, parts S< j and SJce of surfaces S'  and SJC of 
adjacent elements e and j, resp., are assumed to be about similar in form when 
unloaded, points on element surfaces Secj and S{e form pairs of points. (The pair of points 
is composed of a surface point of coordinate x  of one solid, and the crossing point of the 
normal at that point with the other solid.)

Formula for FC will make a distinction between the following cases:

2.1 Bilateral connection

ne

on surface S"J , hence

• (T0 + AT Y + nJ • (T0 + /IT V -  (t0 + AtYJ = 0 (2.6)
(u0 +  AuY -  (u0 + /tu)' + (h0 + /IЫ  = 0 (2.7)

n" T “ + nJ T J -  trj = 0 I j (2.6)'
H^-H' + h ^ -O  | x 6 i c - (2.7)'

2.2 Bilateral connection without friction

In this case, for teJ • t  = 0, the shear stress in the tangential plane of surface Sc has 
to vanish, that is:

T' =  nr • T '- t '- O ;  tj = nJ ■ T J • t J = 0 (2.8)

where t  is the unit vector along the surface, furthermore, taking n*'= — nJ into 
consideration, and defining normal stresses

cr* = n1-• T '■ iT ; — nJ ■ • if

Acta Technic a A cadent iae Scient iarum Hungaricae. Vrt



22 PÂO/.tLT. I

displacements in direction n1' of matched points on surfaces S'J and S{e, their initial 
gaps and loads:

Uy = n‘" • u‘ ; uJy = iT uJ ; hrj = n1' • h‘J ; tjÿ = tej ■ n‘ 

permits to write fitting conditions:
= (2.9)

ujs — Uy + = 0 . (2.10)

2.3 Unilateral connection

In a bilateral connection, clement e contacts adjacent elements throughout its 
surface part S‘‘. In unilateral connection, normal component of the contact stress 
points inside the solid, but it cannot be stated a priori to be non-zero at all points of 
range S‘‘ . At points of zero normal stress, the solids are in no interaction, so they are 
separated from each other.

Assumptions allow contact at any point of range Sj’, to be called thus potential 
contact range. Points in surface parts S''j and S{e of adjacent elements e and j  being 
congruent, to simplify notations, these surfaces will be denoted by Qej.

After deformation, elements e and j  will be spaced in direction n1’ at:

y  =f uJy -  u'y + h‘ J X e Qei (2.11)

There is a contact for geometry condition

y = 0 x e iT j  (2.12)

and there is a gap for
y> 0  x e Q tf .  (2.13)

A priori unknown contact and gap ranges and satisfy condition QeJ = и  . 
Contact stress interpreted on element e is in the gap range:

p(.x) = 0 X e ÍT0J (2.14)

while at contact:

p(x)= - p X  + Pr x e iT j  (2.15)

where pty^O is the contact pressure, pr is tangential component of vector p.
For

pr = 0 ,x e Q‘j (2.16)

the problem is that of frictionless (normal) contact.
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3. Analysis of a system of a single element (solid)

In conformity with the assumptions, the state before the load increment is known 
and the system behaviour is considered to be linear during minor load increments. 
Thus, in writing incremental variational principles, those of linear elasticity may be 
started from.

For a structure of a single element, computed on the basis of free, independent 
fields T and u, stationarity of the Reissner functional

Il h = //«(T, u)= J [T . . A(u) -  Й(Т)- q u] d У

-  J p u d S — f n T (u —Q)dS (3.1)
•S /> s u

is known to be a necessary and sufficient condition of the establishment and truth of the 
corresponding free equations (2.1) through (2.5).

Here B -   ̂ T. .С. T is the specific complementary strain energy, that is:

Substituting linearized relationships T = T0 + /IT, u = u„ + /1u into (3.1), and 
omitting invariable, subsequently useless magnitudes, we arrive at the functional

И k =  //«MT, /lu)

= f[(T0 + /IT).. 2 (F(/1u) + (/lu)F)

+ /IT. .(A„(u0) -A 0(T0))

— |  AT. .C . . /IT -(q0+ /lq)- /lu] dF

— f (Po + /1p)' /ludS
Sr

— f [n ■ AT (u0 + Au - (u„ + /1й)) + n • T() • ,1u] dS , (3.2)
S u

where
A0(T0) is the initial strain tensor field,

B = AT. A0(T0)+ ' AT C AT

the specific complementary strain energy increment, interpreted according to

A = t'B/rAT = A0(T„) + C . . AT

del J
A„(u0) " 7 (Fu0 + u„F).
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Transforming the first integral in the obtained functional and the integral 

J zIT. . AoiuoJdK according to the Gauss-Ostrogradsky theorem, we can write
V
n R in another form:

tf£ =  /7£(dT,du)

=  J { - i d T . . C . . d T - d T . . A o ( T 0) - F ( d T ) u 0}dK 

-  J[F (T < , + dT) + (q0 +  dq)]-dudK  

+ J  {[n (T0 + d T )-(p 0 + dp)] ■ du + n • dT • u0} dS

+  J  n • dT • (ü0 + dû) dS (3.3a)

or, transforming integral j  (F ■ T 0) • /ludFin the obtained functional, we arrive at 

n'R = n'R(AT, Aw)

= J <; - - A T .  C A T - A T  .A0(T0) - T 0. .dA(du)

V ■ (AT) ■ u0 — q0 • du > d К

-  £ [ P ( d T)  + dq] • du dK 

+  J {[n • d T -d p ]  ■ du + n dT  • u0- p 0 • du} dS 

+  J  }n • dT • (ü0 + dû) — n • T 0 • du} dS (3.3b)

Requiring T in ПR to satisfy equilibrium equation (2.1) and dynamic BC (2.4), 
variational stipulations <5(dT) | Sp = 0, <5(P • dT) | K = 0 may lead to the “complete” 
complementary energy

П% =>П' =  П ' ( Л Т )

- A T .  .C. .dT  + d T . .A0(T0» d K

J  n dT (ü0 + du) dS (3.4)
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Satisfying only the incremental parts in the equilibrium equation and in the 
dynamic BC

F( dT)  + dq = 0 x e V  
n d T  = dp .x e S

n'R would yield the “incomplete” complementary energy:

ni=>l7; =  n '(Æ M u )

(3.5a, b)

■Я dT. .C. .dT + dT. ■ A0(T0) —T„. . dA(du) + q0 du > d F

+ j  p0 • dii dS+ j  {n • AT • (u0 + du) - n  ■T0 •du}dS (3.6)

The incremental potential energy is obtained by requiring (3.2) to contain 
relationship dT = C 1. . dA(du) and to a priori satisfy the kinematic BC. 

Introducing notation D = C we find

П p = П JAu)

■Ifÿ d A .  D . .ЛА + Т0. , A \ (q,, + dq) - du dF

— ^  (PoTdp)- dudS. (3.7)

4. Analysis of a system of several elements and bilateral connection

The considered boundary value problem is the system of partial differential 
equations (2.1H2.7). At first, the variational principles will be formulated so as to 
satisfy a priori the FC (2.6) to (2.7) between elements.

4.1. The discontinuity potential

For the approximation of fields T and u taken for separate elements having 
derivatives at least once continuous, it is often hard to require the a priori fulfilment of 
the dynamic and kinematic fitting conditions.

Kinematic FC may be taken into consideration by applying a Lagrangian 
multiplier. Thus, for adjacent elements e and j , vector X, =(k0 + d ).)1 in integral

П?=  j  X, •(u/ —u*4h")dS  (4.1)
s;J

Acta Technica Academiae Scientiarum Hungáriáié, 96 I9H3



26 P Á C ' / . Ü L T .  I

is the Lagrangian factor, while concerning all the system,

/ / , =  Y  Í I I ? = 1 H V  (4.2)
e -  1 j> e  e ,j

will be the term containing the kinematic FC.
Here and in the following, complete value of any mechanical magnitude will be 

understood as sum of values at the beginning of load increment, and that of the 
increment, e.g. u = u„ + du, h = h0 + Ah, etc.

Summation in (4.2) is understood as taking integral H\J for elements j > e  
adjacent to element e of the smaller subscript.

Thereby a single integration at the element interface is sufficient, along the 
contact surface between elements of the lower and the higher subscript. Subsequently, 
double summing in (4.2) will be replaced by a simplified notation.

Stress discontinuity of a given value at the contact range Sc of the elements is due 
to load t applied at that point (Fig. 1).

Assuming load teJ to be distributed according to load factor y between arbitrary 
adjacent elements e and j , interface load potential for the entire system becomes:

/ / „ = - £  Í t‘J (uJ + (l — v)u*jdS. (4.3a)
S?J

For zero initial gap h*"J along S'J, y may assume any value in interval (0, 1).
For Ь^ = 0, y = 0 or 7= 1, depending on whether the load acts on element e or j. 

For 7=0.5, the load is exactly halved between elements.
Depending on the у value, let us interpret potentials

4,2 = / / „(7=U;  4,2 = 11,Ay = 0), //,4 = //,.(7  = 0.5). (4.3b)

Discontinuity potential is understood as:

J , = / / , + / / „ .  (4.4)

4.2 Variational principle type I

4.2.1 Principle involving a complementary stress multiplier

The variation principle involving free fields T and /tu, taking discontinuities into 
consideration, may rely on functional

LK,= X //* H T ,,^u ') + J ,M u ;/« lI)
e

= IIK(AT, /tu) + J,(/tu, AX, ) = stationary, (4.5)

sum of Reissner’s functional (3.2) written for N elements of the system, and of 
discontinuity potential (4.4).
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It is easy to demonstrate that variational equation S n LHl= 0 obtained from 
stationarity condition 0LRl = 0  yields

/IA(/IT)=fC . . /IT = /IA(/lu)

Ao(T0)=fC. .T0 = A0(u0) Xe V
and the kinematic BC

u0 + /lu = ü() + /lü v e S u,

equation = 0  yields equilibrium equation (2.1), stress boundary condition (2.4),
and dynamic FC

n< '(T 0 + /IT)‘ —(X0 + /1X.)| — (t0 + /lt)‘,J(l — y) = 0
• (T0 + л т у +(X0 + /IX), - ( i 0 + / i tn -= o  ' a’ 1

for surface S‘4, while equation LKl =0 leads to kinematic FC (2.7), in conformity 
with the mutual independence and arbitrariness of field variations. Here Öx denotes first 
variation with respect to variable x. Letting у take different values, (4.6) lends different
physical purports to multiplier X,, namely:

for 7=1. stress X, = n‘ ■ (T0 + AT)''

for 7 = 0, stress X, = - п М Т 0 + /ЛУ (4.7a -c)

for 7 = 0.5, stress X, = \  [n‘'-(T 0 + /IT)‘' - n J (T0 + /IT)']

4.2.2 Use of multipliers deduced from stress tensor fields

Eqs (4.7a c) directly involve the possibility to assume as Lagrangian factors their 
real physical purports, i.c. stresses

X2 = X2(T‘) = V T

X., = X ,(T W -n 'T >

X4 = X4(T \ T') = * (n‘- ■ T* -  nJ • T )

e=  I......../V I; (4.8a ̂ c)

Now, replacing vectors X, by X,(/ = 2, 3, 4) in (4.5), we arrive at functionals
containing only fields AT and Ли. Now, free equations arising from the stationarity of
functional . , ,LKi= LRi(AT,Au)

= l l K(AT,Au) + J iIAu,AT) (4.9)

correspond to Fqs (2.1) to (2.7), where

J, =  //, + //„ («' =  2,3,4) (4.10)
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4.2.3 Application of stress multipliers and additional displacements

An attempt to solve boundary value problem (2.1) to (2.7) may be realized where 
stress multiplier X, (i = 1,2,3) is complemented by a field of displacements satisfying the 
kinematic boundary condition interpreted at element interfaces. Additional fields ù 
and ü will be assumed to belong to elements of lower and higher subscripts e and j , 
respectively, at the element interface (inner) S*J, while additional fields at boundaries Su 
and Sp will be ù and Û, respectively. Three main cases will be distinguished, involving 
respective fields й, и, and both, respectively boundaries S'J.

Functionals for the quoted cases are:

к ,, kJ, are independent of each other, kj = n‘ • T*-; k{ =  — T' are fields computed from 
stress tensors.

Integrals in functionals L Ri(i = 5, . . . ,  10) involve full field values for the sake of 
conciseness. Of course, in computations based on the variational principle, the 
computations of integrals which can be considered constants from the point of view of 
variation can be omitted.1

1 Multipliers in the above functionals may be recognized from Fig. 2. Stress and displacement Helds 
have been traced in thick, and in dashed line, resp. Those at element boundaries arise from the original Held T, 
while fields between elements are additional ones.

LRll = n Rk 4 + X  Í [ K - 4 - ( û - u e + hei) - t ej ù -
e.j s?j

- K  4 • (û — uJ)] dS (k= 5,6 

LRi = n RJ 6+ X Í К  6 -(uJ- u  + hl' j ) - t ‘'-' u +

(4.11a)

+ K  6 ■ (u —iT)] dS (/=7,8 (4.11b)

' m  -  8
e + kJm 8) • (Ù — и + hl'J) — t*’-' • (Ü + u)]

(4.11c)

where

e 2
AT. C. .AT — q du + T. ,/IA(/1u) +

+  A T . .(A0(u0)— A0(T0)) d F -  

— J [p- du — Ц (ù — u)] dS +

( 4 . 12)
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Fiy. 2. Combinations of stress multipliers \ iy n' • T*\ - n 1 ■ TJ in functionals LKi and of additionaly fields û, ù
assumed at element boundaries

4.2.4. C-lype transformation o f functionals LRi

The transformation of integral j  [T. ./IA(/lu) + /lT. . A0(u0)] dK in LKl(/=  I,
V

. . 10) permits us to write L„, as:

Lrí^LSrí = — П(с + 11\ + J\ (i = 1........4) (4.13)

where for —/7f see (3.4)

Пе = Пеу + 1lis  (4.14a)

ПсЕу = -  j  [(F ■ T + q) ■ Au -  V • MT) • u„] d V (4.14b)
V

n<ks= i  [(" Т -p) Ли + n ЛТ u„]dS (4.14c)
sp
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furthermore

^  j (n T /lu + п /IT u0)dS
<• s;:

or, in detail:
/ ,  = X  Í h1' + (3., + nJ ■ TJ'-  r jy) ■ /luJ +

••■J SjrJ

+ (n‘, -T‘- -3 i1 -(1 - у )И  • /lu‘ +
+ (n‘' • /IT*'-/IX, -  (I — v)/lt‘J) • u|',+
+ (nJ • .IT' + /IX, — /lt‘Jy) • U,,! d S ,

/ ,  = £  J ! n1' • T‘ • h‘ J + (n*' • T* + nJ • T' -  Г ) • A»1
«'•J s\y

+ (nJ • /ITJ + n‘ ■ AV -  At'J) ■ uf, ! dS
etc.

For additional discplacement fields:

к 4 T + / 1\л + //'„S + J Г A T 

16ni S Lw J

X = 5,6; / = 7,8; w = 9,IO

where:

/IT. C. ./IT -/IT . . A0(T0) d V+

+ j [Xv (Ù u) + n T Au + n • AT ■ u()] d.V
v

(.' = 1. 2)

(4.15)

(4.17)

//<,= !  J [X, (ù u) + n T /1u + n /IT u„- p  /1ü]dS

(.4= 1.2) (4.18)

A  = X  Í 4 ' h, ' + (n<' • T‘ X], 4) / lu ‘ +
«*.7 .s;v

+ (n' • T' + Xjj 4)-,1u' + (X! 4 Xj[ 4 t, J) ■ ù +

+ (n‘'-/IT‘' /1X1' 4) ■ u'0 + (n' ■ ATJ + Ak{ 4)u /,|d S

[k = 5. 6) (4.19)
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4.2.У I-type transformation of functionals l.Kl

The transformation of integral f AT. .(A(u„ + /lu))dKin l.Ri yields functional
г

LKi equivalent to (/ = I, . . . .  10):

LKI~ L ,Kl = l l ,K + Jl+  I f  n /IT u dS
•* .V;*

Kor sub-cascs /' = 1........ 4:

L'Ri= -  //Í + //Í. + J\ 0 = 1 ........4) (4.20)

where for II' see (3.6),

/ / ' = / / ' , + / / ' ,  (4.21a)

/ / ; ,  = -  J ![l/ -(/IT)]-u„ + [H-(/IT) + /lq]-/luJ dV  (4.21b)
I

ll'h.s= J |n AT u„ + (n AT -  Ap) /lu J dS (4.21c)
sr

furthermore:

I  Í п Я  iidS (4.22)
«* s;:

or, in detail:

J\ = £  j J(/IX, + n'-/IT '-/1twy)-^  + /IX-h4'J4
/ X;<

+ (n4* • AT* — /IX, - (  I -  у)Atci) и4' +

+ X, „ (/luJ -  /lu4'+ /lh4'J) +

+ In (Tu' y + /1iT ( I y ) j d.V,

J\ = J \ (X, = n4' • T4. y = 1 )

= X J !(n‘ -/1T" + n' /1TJ' A t'1) ■ uJ + n4' • /IT4' • IT' +
i x; j

+ n4' • Tj, ■ (.iuf iu‘ + ih4') t;;j ■ /iuj! d.v.

Involving complementary displacement fields, we arrive at functionals

l-s I
/

- nt

‘■'к = ll! + //Í, + /7 ' + j t

к = 5,6; / = 7.8; ;n = 9, 10
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where

- t f í , =  - L
e

— Т0 . . JA(du) + q0 • Ju

ÿ  JT . .С. .J T  + J T . . А0(Т0)-

dV

etc.

+ j [Xs • (ù — u) + n • JT  ■ u] dS

(*= 1, 2)

/ ? í= £  Í IX ' (ù — u) + n • JT  • u — p • Jù] dS
e sp

JL= Z  J {ue ■ (ЛТе ■ пе-ЛХек 4) + й ■ (K - 4- K  4~ teJ)
ej s;J

+ uJ ■ (JTJ • nj + Л\{ 4) + K  4 о • Ju J 

- K  4 .0 - W  + K  4 'h 'l d S

(* = 5,6)

(4.24)

(4.25)

(4.26)

4.3. Variational principle type II

The obtained functionals LcRi, L'Ki permit easy deduction of other principles 
depending on stipulations for tensor T. Two sub-cases will be distinguished. 
Stipulations concerning the equilibrium equation and the dynamical boundary 
condition will be made either for the full field T or for the increment field JT  alone. 
These stipulations together with the functionals assignable to variational principles 
have been compiled in Table II. For example, in the first case, Ц, may be obtained from 
L*j, taking into consideration that II£ may be considered as constant from the aspect of 
variation.

Consideration of J f, / / (r  v and /7^s shows field u to be needed only at element 
surfaces, thus a field u approximated independently of T may be considered as a 
Lagrangian multiplier. Thus, obviously, in cases i = 5, . . . ,  10, fields Ü, ù assumed 
independently of T and ù are irrelevant, needless to apply. This is why case 1 comprise i 
=  1, . . ., 4 sub-classes.

Cases 2 and 3 in Table II permit us to omit / / ‘0 , case 4 l lchs and case 5 in 
view of stipulations on field T.

Similar considerations may lead to functionals from L'Ki for further variational 
principles in Table II.
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4.4. Variational principle type III

In this variational principle, field u is required to satisfy the kinematic BC, and 
relationship dT =  D. ./IA(/1u) is assumed to hold, permitting us to formulate the 
principle of stationarity of modified potential energy, relying on functional

L ,= I l p{Au) + J t- (/= 1 ........4)

[■f'E-n]
к = 5,6; / = 7,8; m = 9,IO

where
X Í V ,(ù  —U)d S
e S ' + S '

derived from LKi [(4.5), (4.9)] with respect to (3.7).

(4.27a)

(4.27b)

(4.28)

4.5. Variational principles for a continuous displacement field

If there are no prescribed discontinuities at the element boundaries, then the 
displacement field is continuous.

Since no mention has been made concerning the sizes of the elements the case 
may be realized where the elastic system is mentally decomposed to elementary parts, 
finite elements, approximating the stress tensor field, displacement field in the solid by 
element-wise interpreted functions. There is a possibility to locally approximate the 
fields needed, hence, the described principles involve variational principles of the finite 
element method.

Also for functionals obtained by substituting h = 0, kinematic and dynamic FC 
not a priori satisfied—arise as part of free equations at clement boundaries. Now, 
multipliers continue to provide for satisfying—in the integral sense not a priori 
satisfied dynamic or kinematic FC. (Of course, a way may be chosen where some FC is 
a priori satisfied by the assumed fields.)

In conformity with considerations in Appendix 1, because of h = 0, multiplier 
terms involving kinematic FC may be written in a simpler form. For instance, in 
conformity with (A. 1.2), I f  in (4.4) becomes:

f/ , = -  X Í M ’li'dS (4.29a)
*' s;

Exemptness of discontinuity in components u' in approximating displacement 
field u permits us to replace (4.29a) by summation

/ / ', '= - X  Í К  dS (4.29b)
<* s *

affecting only components with a discontinuity in field u by scalar multiplication.
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Element models related to variational principles involving also fields beyond 
those in the original boundary value problem are termed hybrid models. Those 
involving both fields T and u are termed mixed field models.

After these introductory ideas let us take in order the most important principles 
from the point of view of practical applications.

4.5.1. Modified Hellinyer Reissner principles

4.5.1.1. Mixed field model

The substitution of k2 =  n‘ T*' for X, in (4.29) permits us, for h = 0, to derive 
functional IIMM in Table I from functional LR2 in (4.9). Now, at interfaces only 
components u" are discontinuous, though, with continuous stress fields. Thereby in 
load potential 11,2 = 11,} load t causing discontinuity of stress field may only be non
zero for continuous displacement components u'.

For a safe continuity of field u, integral for S' vanishes, to yield the functional for 
the Reissner variational principle suiting analysis of the structural problem.

4.5.1.2. Model of hybrid mixed fields

Taking h = 0 in LK(t(/c =  5,6) and making simple transformations, we find 
functional IIhmm in Table I. This functional contains unknown fields ЛТ, Ли, /Ik, , Ли

Table 1. Modified Reissner variational principles for discontinuous fields

Stipulation
Functional

h*ü h =0

l - H . U f . l f )  i

if kin. is met 
L K = IIK + II„ 
if dyn. is met

l‘k = //; + // ; +

= 1........4

I  Í к  h‘JdS
r.i s;>

= J n T u"dS +
e Sf

+ //,j(u')
</ = 2)

к = 5.6 1 ! h m m  — 2Т. .ЛА(/1и)- АТ. С

U , U f .  i f ) /=7,8 V

m = 9,l<)
AT + A T . .[Au(uu) - A 0(T0)J — 

- q  /luj-dF— J p /lùdS —//,(ù) +

+ X Í К  4 -< ü-ur)dS (Л = 5.6)*
<• s.

* Here and in the following //,(û)= — Y. Í t'^ ùdS
v.J S?J
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for к = 5 and AT, Au, dû for к = 6. û satisfies kinematic ВС. Functionals obtained from 
LR((/ = 7,8) for h =  0 equal those for к = 5,6. Finally, for m = 9,10, 4 in Table I has to
be replaced by (1/2) (>4 „ + X.Í, K), and û II, by (ù + u)/2.

T a b le  II. Principles of stalionarity of modified complementary energy 
in the case of discontinuous fields

Case
Functional

h / 0 h = 0, t = 0

1 У T + q = 0 II н , = - l l[AAD+  X  f u

x e  V 
n T = p

r e S„

( i= l ........4)
(Tr n‘ -x ,)< fs=  - / / ; < / i t )+

+ X Í n' r  ui/S (i = 2)
p .4?

2 F T + q = 0 Г, = -  //; + ll lh;s+J't

л e V (1=1........4)

3 V T + q 0
x e V

Let ! \ k  k + Jk+ll 'is
(*. = 5.6)

»H 2 = l {  /1 Т ..С ../1Т  +

ù ^ u
X e Su

+ ,4T.. A0(T„) jd У+ J n '  ■ T  ù dS -  

s»

j p /lùdS> (A: = 6) 
>

4 n T p
x e S p

'ù í /í + / / í , + j {

( i= l ........4)

5 n T p
■ e Sn

4k ri'.k 4 + // ',;  + л / /‘„s ,i= X | -  AT C A T +

ù u
X e Su

*. 6

+ ,1T..A„(T„)JdF | [ ( F T  + q)

1u V • (/IT) u0J d И-f- J n‘ T‘ 
s-

ù d.V j p • A ù dS 1
Sr

6 F (/IT) + /Iq 0
x e  У

n /IT = /Ip
x e S p

continuity of u 
between 

the elements

//, = -  // , '+ d ' 

(i = l........4)

H'hs , = - / / . '+  X  Í
•* 4 Г

■ (.1T' n1' /!>.,)dS (1 = 1 )

- - / / , ' + X Í n' A T  u dS
s>

(/ = 2)
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Table II eonl.

Case Stipulation
Functional

hvM) h = 0, t = 0

7 V ■ (dT) + dq = 0
x e  У

Uci= -ii! + iHs+J! "'HS 2= - I AT. C. .AT +

0 = 1........4) + AT. .A„(T0) + q0 ' Au

- Т у . .dA(du) dV— f n • AT  u dS +

+ J p d u d S  (i = 2)
S  p

u = ù X 6 S„
continuity of u between the elements

8 y-{AT) + Aq = 0 Цк=-П'сЛ t+n^+Jl II'hs 3- - I Í
Г 1AT. C. AT-

x e  У •• и

u = u
X e S„ — T,,. . dA(du) + q„ • Au + AT. .

■A„(T„) dV+ J p ■d û dS

(* = 5,6)
-  I [n AT ù + n T„ - (dû -  du)] dS

L 'c i = //,' + I I + I 'KV ' J  i

0 = 1, ... .4)

к
l

+  l K : v + J ‘ к1

A = 5,6; / = 7,8; m  =  9,10

n (dT) = Ap 
xeS.

10 n (d T )  = dp [I
xeS„ 
ù = ü
X e S„

4.5.2. Stationarity princ iples o f modified complementary energy

Functionals of principles on condition h =  t =  0 are seen in Table II, taking 
integral transformations according to Appendix 1 into consideration.

Principles relying on functionals / /(/ls , , //J,s 2 and Uns з correspond to the 
generalizations of hybrid stress models applied in the theory of linear elasticity by S. 
Atluri [2], T. H. H. Pian [3] and S. P. Wolf [4].

Among variational principles involving stipulations on stress increments ll'„s 2, 
n'ns 3 suggested by T. H. H. Pian excel. Il'us 2 is obtained by assuming continuity of 
field u between elements, and kinematic BC to be satisfied, while ll'lls , relies on the 
identity of ü between elements.
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Table III. Principles of stationarity of modified potential energy in the case of discontinuous fields

Functional
Stipulation

h*0 h = 0

ь.

-  |гч
II
<•4

3
+
3b.

-  |<N
II
О

u —u LPI H h d - i  — Пр— Y, J к, ■ и" dS + /7(3(u')
xeS. Lri (/ = 2...... 4) ' s?

if —u*+ h®̂=0
lhenLr = П p + ill2 n NCD = n p + n i3(u')+ £  J п' T' (u'-uTdS (i = 2)

t .i  s;i

û = ü Ln
xeSu

(k = 5,6) k l  HD- 2 
k l  HD— 3

= klp+n,(ù)+ £  J X, (u-u')ds (It = 5)
e 5.

= /7, + /7,(ii)+£Jn' T  (ù-u')dS (fc = 6)
*  S *

ù = u LPI (/ = 7,8) 
xeS u LFm (m = 9,10)

4.5.3. Stationarity principles oj modified potential energy

Substituting h = 0, variational principles under 4.4 simple yield functionals of 
Table III

5. Analysis of non-frictional contact problems with 
unilateral connection

For the sake of simplicity, boundary value problem under 2 will be considered for 
e —1,2. The contact range will be assumed to be exempt from outside load, to have a 
potential /7,, = 0.

With notations in (2.6) to (2.16), fitting conditions are: Solids 1 and 2 may contact 
in range Sf2 = Sf l = ß . Solidscannot interpenetrate in preferential direction n1 (Fig. 3), 
that is:

y =f ujj — ulN + h^.O x e  (2 (5.1)

while the normal stress is:

o'N =f n1 • T1 • n1 = — pN^ 0  xe Sf

<x£=f — n1 • T2 n2 = — x e S 2 (5.2a-c)

erji, = (Ty x e i2
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and the shear stress beeausc of cxemptness of friction assumes the form

T‘'=  IPr I =  |T '' n,' + (T‘Nn1 I = 0  e = j*  (5.3)

(Subsequently, contact pressure pN will be denoted by p.)

Fig. 3. Geometrical condition of contact. For >=fu^ — u!, + A = 0 there is a contact, for y>0 , there is a gap, 
where u'y =  u' • n1 is the projection along normal n 1 of the pair of points Q ,, Q2; Q, Q2 =fi  — initial gap

At eontaet, at an arbitrary point of range Q we have 

y (x )> 0, p(x)>0 x e  Qp (5.4)
with a gap:

y (x )^0, p(x) > 0  X E Í20 (5.5)
that is:

yp = 0 X e Í2 (5.6)
Or else, for

y(.x)<0. p{x)Z 0 xeQ 'p (5.7)

there is a contact range, and for

M *)>0, p(x) = 0 xei2 '0 (5.8)
there is a gap range.

Relationships Q = Í20u í2p, Í2 = Í2’,,ui2p hold, where (20 and Qp , as well as Í2'0 and
Í2'p are still unknown.

5.1. Discont inuity potentials for taking 
the unilateral connection into consideration

Obviously, in ease of a non-frictional, bilateral connection along n 1, X.,(u2 —u 1 
+  h) may be replaced by

(/.n1) ■ (u2 - u 1 + h) = /. (i4 -  u'N + h) = /.- y
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hence, in conformity with the discontinuity potential providing for kinematic FC:

(5.9)

normal stress A = n‘ T 1 n1.
For a unilateral connection, A can only be a compressive stress, hence:

A= — p^O (X, =  —pn1).

Thus, in a frictionless contact problem, the discontinuity potential becomes: 

J X=>J>=-j^pydS рШО x e ß .  (5.10)

First variation of (5.9) under condition p^O:

- j ^ S p y d S ^ O  (5.11)

namely in range Q0 , <5p  ̂0, while in range Qp , öp is arbitrary (under condition p + ôp
Ш

Another interpretation may be made of the discontinuity potential. Namely, let 
us approximate gap function y by a special field ÿ.

Since ÿ^O, X e Í2, in the contact range, because of áy^O, — J  köy dS^O, and in

the gap range, because of the arbitrary value of Ôÿ (under condition ÿ +  àySïO),

J  A<5ydS = 0, that is:

- j^À S ÿd S Z O , уШО x e ß .  (5.13)

Now, let us consider every variational principle in turn. Functionals involved in 
the principles are easy to produce by assigning bilateral connection functionals to 
discontinuity functionals (5.10) or (5.12).

5.2. Modified Reissner's variational principles for solving 
non-frictional contact problems

5.2.1. First principle:

In conformity with the variational principle relying on functional

L i = n R(AT,du)~ li Py(u)dS = n R+J> (5.14)

obtained from LRl by replacing J t according to (5.10), all fields AT, Au and p meeting 
variational equation—inequality

<5dTL 5= 0 , 0ЛлЦ  = 0 , 0рЦ й О  (5.15a-c)
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for p 0, correspond to real fields. Functionals equivalent to LPR may be produced by C- 
and /-type transformations of LRi.

Since in frictionless unilateral connections we have

X, = — pn1, p^O, X e Í2 (5.16)

substituting 1̂  = 0 into Lri in (4.13) for e —l, j  = 2 and reminding (4.15) where 
J i = J p, the new functional becomes

LíRl=>LlR" = - n [ : + I I Í  + J', + YJ Í (n ■ T ■ du + n /IT - u0)dS =
e s .

= - H e + U Le~  Í {рЬ+(р + (т2н)Ли2„-(О н + р)Ли'„
(2

+(p + A(j2N)u2N 0 - { p  + Ao'n)u'n,o} dS

+ Z  Í (n<' • T1' ■ /lUj + n1’ ■ ATe ■ Uj 0) dS (5.17a)
e 5«

where decomposition u*' =  n^n1 + и, of the displacement field has also been used.
Introducing notation n‘' • T*" • u|! = (work density of shear stress т along 

tangential displacement normal to n 1) and adding a term to be considered as constant 
for variation, the obtained functional may be written more concisely:

Lc/ = - / 7 fc + / / fE+ X  Í t X d S -  
»■ s*

-  J {ph + (p + o2„)u2N- (p  + a lN)ulN} dS (5.17b)
n

showing fields ueN to act as Lagrangian factors to satisfy condition p= —aeN.
Transformations similar to that for functional L‘Ki lead—omitting details to 

the form:
L'Ri = > /^ =  - / / '  + //';+  £  J n /IT ■udS + J '’ (5.18)

«• s;:
Variational equations—inequalities assignable to functionals LRP, LlJ  are the same as 
for Lpr .

Solution of variational equation (5.15b) being —p = a'N, —р = а„, replacement 
of — p by a'N or o2n permits us to formulate the following principle, also derivable from 
L r2 ■
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5.2.2. Second principle:

Fields satisfying variational equation inequality öaL"K = 0, ô ,TL"K^ 0  obtained 
from functional

J  t f . v V  d S
LK2 =>L"k = IIц(Л I, /lu) +

under condition
j o2Ny dS

o lN^ 0  or <t£ ^ 0  X e Í2

(5.19)

(5.20a, b)

correspond to real fields.
Just like for the first principle, functionals belonging to C- or /-type 

transformations are of the form:
c 1
(*2U l5 Í* = -//‘:+ /Í Í '+ ^  j (n T Ju + n /IT u„)dS +
К З J  t' S *

J o'Ny dS]

vtd.V°нУ

= — П' +  n \: +
' n ^ + ( f f v - ^ ) “v]d.S’ 

|[<T ^ + (< T Í-^ )u i]d S

+ £  í  x' u* dS -I- const 5.21

L'R2 
I I LK3

+

Lj," = - / / , '  + //{,+ X  Í n /IT udS
«’ s*

= -  //i + / / ;  +
j  frÿy dS 

J <x£y dS

J [/1<т̂ /| + <т̂  0(м  ̂— мД, -(-/?) + M̂ (/I«T̂  — /IfT )̂] d,V
ti

£ [_/lo2Nh 4- <Tv.o(uJ -  u'N + h) + u'n(A<j 'n -  /1<т£)] d,S’

+ X Í TX  dS ( 5.22

+
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Correct results arc preconditioned by the « priori satisfying of conditions oÿ ^  0, 
and in cases a), and b), respectively.

5.2.3. Third principle:

Obviously, if conddition af, = <rj = aN x e i 2  holds, functional i f f  (5.21) yields 
functional

L1/ '  = -  C/‘ (/IT) + lTt: + £  } Teuer dS + J aNh dS
2

I<■ I si и

In conformity with the variational principle, equation—inequality

*л.1£ ' = 0, ».„ЦГ'йО

holds only, alongside with condition <tn:£0 ve Ü if the fields are real ones.

(5.23)

5.2.4. Fourth principle.

Above, positivity of stresses p or — creN provided for contact— gap conditions 
inside range Q. Provided fulfilment of condition y = u„ — uĵ  + h^O x e Q is required, it 
is sufficient to take variation of functional //„(/IT, /lu) according to:

('),T/ / K=0, Ő J I K^ 0, > ^ 0 , x e f í  (5.25a, b)

(5.25) being satisfied by the real fields.

5.2.5. Fifth principle.

In addition to the first principle, further hybrid variational principles may be set 
up, namely, by assuming one or two fields missing from the original boundary value 
problem. Let the positivity of one of the fields a priori provided, the other be a simple 
Lagrangian factor. Let the former be gap y arising in deformation, the other the normal 
stress in range Ü. The new functional to be varied becomes:

LyK=  //„(/IT, /lu)+ J / - ( mJv — u lN + h — y)dS (5.26)
it

yielding all free equations according to the variational equation inequality:

f* iT. 1и.л = 9
i)vL ÿ ^ 0, ÿSïO x  e ü  (5.27a, b)
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Upon ( ’- and /-type transformations, functionals equivalent to LyR become:

l ‘Ry i  =  _  //<  +  , / c  +  J  ;  ( j. _  jp) d s  +

+ X Í (n T / l u  + n /IT u 0)dS (5.28)
•• s*

L 'j1 = -  //,' + //{.+ j / ( у -  Я dS +
It

+ X Í n /IT U d,V (5.29)
«' .VJ*

In conformity with the variational principle, real fields satisfy (5.27).

5.2.6. Sixth principle

This principle results from the former one by substituting a'N(e = 1, 2) for A. 
Functionals to be varied are:

l^ = TlR(AT,A\i) +
j  a'N(U"-u'N + h - y ) d S  
«

Í ffJ(uJ-u^, + /i-y )dS
ii

LŸ  = L‘K>*(/ = e fo  UR> = L'JV- = (5.31 a, b)

Fields satisfying variational equation—inequality

= 0; i j L Î ’ -Z0, y^O  x e í i  (5.32a, b)

correspond to real fields. (A =  C, /).

5.2.7. Some comments

5.2.7.1. According to the variational principles above, a non-negativity condition is 
prescribed for full-valued contact pressure or gap in range S', although values marked 
( )0 in the state before load increment are known. One point of importance is that 
contact and gap conditions refer to the full value rather than to the increments (see (5.4) 
to (5.8)).

Provided with increasing load the contact range extends:

J py dS = j  (p0 + Ap) (y0 + Ay) dS = J Apy dS (5.32)
« » «

since poyo = 0 x e ÍI, poAy = 0 x e (ß 0)0 thus, Ap = p in range (2p- ( i i p)0 = AQp (see Fig. 
4).
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Thus, for an extending contact range, Ap~è.0 may be assumed, hence it is 
sufficient to take the contact pressure increment.

On the other hand, non-negativity of fields y and y  in principle 4 to 6 cannot be 
replaced by inequalities A y^.0  and dyS;0; they unfortunately do not hold for 
extending Qp.

Fig. 4. Illustration of an “extending" contact range

5.2.7.2. In practical computations, approximation of contact pressure safeguard
ing its non-negativity is simplest made according to the first principle by finite element 
approximation of field p, and according to the fourth principle, by checking condition y 
^ 0  in a finite number of points.

5.3. Stationary principles of modified complementary energy 
for the analysis of frictionless contact problems

Functionals belonging to the respective variational principles are easy to derive 
from functionals LR and L'r under item 5.2, taking stipulations on tensor fields T and 
AT  into consideration. Stipulations and their consequences have been compiled in 
Table IV.

T able  IV

Field Stipulation Consequence

V T ' + q ' = 0 i e I " / /< : ,=o

T' n ' T ' = p x e S - p н Ь = о
r ' = 0 x e S ec J dS = 0

a

F ( d T ')  + dq ' = 0 x e V " i r  = 0

JT ' n ' d T ' = dp X e S' П Ь -  о

■V II О X 6 S ' Í r 'u 'd S  = 0
it
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Now, no difficulties arise in producing functionals Lf and Ц  from functionals LlR and 
L‘r , respectively. For instance, T meets stipulations in Table IV for functional

LCKP=>Ü;P= - H cc -  J [ph + (p + <j2N)u2N- (p  + o'N)u'N'\dS (5.33)
n

Writing of the other functionals will be dispensed with.

5.4. Stationary principles o f the modified potential energy 
for the analysis offrictionless contact problems

Requiring field u to satisfy the kinematic boundary condition, and considering 
relationship between T and A to hold through Hooke’s law, simple transformations of 
the modified Reissner principles yield the following functionals.

5.4.1. First principle

Fields meeting the variational equation-inequality

= 0, ôpLpP^ 0, p Z 0 x e ß

assigned to functional
LJ=>Lf = / / p(d u )-  j  pydS  

и
are real fields.

(5.34a, b) 

(5.35)

5.4.2. Second principle

Provided condition y^O  x e ß  is satisfied, all fields iT meeting variational 
inequality 0Ля11р^.О correspond to real fields.

5.4.3. Third principle

In conformity with the principle based on functional

U / = n p(à u )-  jA (y -ÿ )d S  (5.36)
ti

derived from functional Lÿ, variational equations-inequalities

< 5 a . .^  = 0, SyL’/ ^ O ,  y^O  x e ß  (5.37a, b)

hold for real fields.
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5.4.4. Fourth principle

For functional
L), =  //„(/lu)— J arN{u‘) l y - y ) d S  

и
obtained from the former one by substituting Я =  <7*(iF), we have 

(5lBL£ = 0, ôfLfèO,  y ^ O  x e Q .

5.4.5. Remark.
5.2.7.1 and 5.2.7.2 are valid for the above in principle.

(5.37) 

(5.38a, c)

6. Solution of the contact problem of a system of elasto-plastic 
solids by the method of initial stresses

Examination of incremental variational principles in preceding chapters aimed 
at the analysis of a system of elasto-plastic solids.

In the finite element method applied for solving non-linear problems, the 
incremental procedure (step-wise load applications) is known to be applied by 
determining(l) tangential rigidities,(2) initial deformations, or (3) initial stresses. In the 
first case, rigidity matrix of the system is modified in conformity with the elastoplastic 
condition developing in the load increment, while in both latter cases, only the 
complementary, fictitious load corresponding to the developing plastic range has to be 
determined, without modifying the rigidity matrix for the elastic system. Zienkiewicz,
O. C. et al. [5] were the first who suggested the method of incremental initial stresses in 
analyses relying on the principle of virtual work. Computation based on modified 
complementary energy has been presented by Spilker, R. L. and Pian, T. H. H. [6], and 
by Spilker, R. L. and Munir, N. I. [7], with favourable computational findings.

Non-linear stress-strain function a — t: for a one-dimensional case is seen in Fig. 5. 
Point P representing the stress state would proceed along a straight line of slope E 
starting from point К at load step (i — 1 ) if the system could be considered as elastic. 
Since, in fact, an elasto-plastic condition develops, stress at P differs from that of Q 
belonging to increment At:. Hence a fictitious stress of  between them has to be reckoned 
with, namely'the real stress increment corresponds to stress increment Aoep in the 
elasto-plastic condition. Thereby, generalizing the one-dimensional case in the figure, 
by the end of load increment, the stress tensor becomes:

T = T0-M T  — T f

that is, for functionals belonging to subsequent variational principles,

T0=>T0- T  f  

AT=>AT
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Hfl. 5. Description of the inilial slress method in a linear ease. ( ), is ihe value determined in load increment i

have to be substituted, because in variational principles the increment effect has been 
considered linear. Substitutions also imply T0 and J f  to be considered as given within 
the load increment, and only A T  to be subject to variation.

Two of the discussed variational principles will be examined in detail for 
practical applications.

6.1. Frictionless contact problem solved by a computation method 
based on modified complementary energy

Let us start from functional L'KP in (5.18) substituting(6.1 ) and (6.2) into (5.18) and 
satisfying equilibrium equation

M /IT)+/1q = 0 ve V (6.3)

and taking the field u which fulfils the kinematic boundary condition, we arrive at

Í ( i - r r . . C . . A T  + T í . . ^ ) d P
Ve

+ J A T . - [A0(u0) — A0(T„)] dT

+ { n • A T  ■ Au dS — J /Ip Au dS
•S ' S '

+ j  [T0. ./1A(/1u)-q(l • /1u] d T -  j p(l /ludS
vr sr

-  í  P ■ (u2n -  Ul„ + h) dS (6.4)
ti
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Since according to the variational principle, load increment

A\(Au) = C . .A T

at the beginning of load increment i,

A0(u0)i =  A0(u0)i„, + A A (du),
=  A0(T0)j_, + (C .. AT)i =  A0(T0), <=1,2, . . .

Ao(uo)i = o =  Ao(To)i = o = 0 ,

that is, A0(u0); and A0(T0), are identical, causing integral underlined in dash line to 
vanish. The obtained functional without an integral over range is denoted as íl„c in [ 1 ], 
and considered, according to computational observations confronting accuracies and 
running times, as superior to results obtained either with a model for

A T - T f  = AT
satisfying equilibrium equation

F (d T )  + dq = 0 x e V

or by the finite element model applying compatible elements.

6.1.1. Stating the problem of finite dimensions

Local approximation by applying the finite element method is convenient for 
fields arising in a system of two solids.

Assuming a spatial problem, vector w type (6, 1) comprising stress tensor T in 
solid a is approximated as:

T‘^<r*(x) = g  S‘(x)s°=S‘(x) s ' (6.5)
i= 1 <6.n„) (n„. 1)

where S“(x)—approximation matrix, and s'1—vector of constants. The adopted 
approximation has to satisfy equilibrium equation (6.3). Approximation (6.5) is 
composed of approximations separately interpreted of each of the Ea elements making 
up solid a. An element ae may be approximated as:

<x*-(x) = Sa"(x)s“'. (6.6)

Element surface stresses are approximated as:

n“'  • T ,*=>R“*(x)s*'. (6.7)

The remaining fields in the event of a displacement field are approximated as:

u*(x) =  X  U?(x)<= U*(x) u° + ^ и „ (х )и л (6.8a)
i= 1 (3, ma) (m„, 1 )

or for element txe:
ii'-fx) = Ua*(x)ua'  + и а*'(х)и* (6.8b)
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its value at the boundary of finite element e being:

u®'(x) = L«e(x)ue + ő'y L “R'(x)uR (6.9)

and normal displacement imposed on range Í2:

"n = UnM  = ^*(x)u* + Ö] Nr(x)uk (6.10)

<5® being the Kronecker symbol (a = l ,  <5} = 1; a =  2, <52 = 0).
Vector e(x) type (6, 1) composed of the strain tensor field belonging to the 

displacement field is:
A®=> e“(x) =D,u®(x) = DtU“(x)u®= B(x) uJ (6.11)

(6, 1 ) (6, ma (m*. 1 )

The contact pressure is approximated as:
t

p = p(x) =  P*(x)p x e ß

In conformity with assumptions, solid 2 cannot, but solid 1 can do rigid-body 
motion. Skew symmetrical parts of field û*(x) =  и ‘(х)и' and of the pertaining derivate 
tensor field (Pû^x)) in (6.8) have to be zero at an arbitrary point x =  x0 of the solid, at 
the same time displacement and angular rotation at x0 correspond to elements of 
vector uK in term Ui(x)u„ describing rigid-body motion. Now, the number of 
coordinates describing displacement of solid 1 is т,+й,  where d , is the degree of 
freedom of the rigid-body motion of solid 1.

Fictitious stresses Tf  and T0 are replaced by (6, l)-type vectors af  and <r0, 
respectively; while fourth-order tensor of material constants C is interpreted as a 
matrix type (6, 6).

Making use of matrices and vectors (t sign of transpose) 

fi®'= J S'CSdF, 1,= 1........£ ,; 2 ,=  1, . . . ,  E2 ,
Vя»

G î'=  j  R'LdS, Gi*= J R'L„ dS = 0
S«.  S ' -

FJ*= f B'a0d V, Vy — J B'af dV
Vя» Vя»

= j L'dpdS, dQjj'== f L'jjdpdS
s;. sp

Q r'o=  j  L‘Rp0 dS-|- J U'„q0dF 
sj,. /•.

N = [N 2, —N 1], h=  j P/idS, ^  = [11" , u2'] 
n

N®= J PfidS , Gr = J Pl^iidS,
n «is;i
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we arrive at

L\r=>Lx =  2 j -  j  A%e ,Ÿ\'Ase- A a e ,Fef  +

+ d se ,GÍ du ' + /4uf-'(FS - d Q c-Q á )

— p'[Nu — G RuR + h] — £  duR(dQ R + Q R „Г (6.13)
e = 1

In conformity with equation 0JT L'cp = 0, substituting derivative with respect to 
element-wise independent Ase :

^ ^ ( f l T 'G ^ u *  (6.14)

into (6.13) we find

Lx = 4' l  1 I t  Aue ' K W  + du- ' i F o - Q o - F ^ d Q r
e= l

— p'[Nu —G RuR + h] — duR £  (''IQr + Q r.оГ (615)
t> = 1

where K‘, = (G'1H 'G ,)1" is rigidity matrix of element e\ dQ  is the load increment on the 
element; dQ R, QR 0 are vectors composed of the pair of vectors of external load 
increment, and of the initial value of load increment reduced to point x0 ; R0 = Q0 — F0 
is (residual) load to correct disequilibrium. Connecting elements in the usual way— 
field u(x) is continuous throughout the solid—results in the function of the form:

L, = j  du' K du -du '(R 0 + F/  + dQ)

-  p'(Nu — G rur + h)— du'R(dQR + Q r ,0) (6.16)

where К is rigidity matrix of the composed system. The two solids being independent, К 
=  < K \K 2> is a quasi-diagonal matrix.

In conformity with variational equation—inequality (5.15b, c) referring to 
functional TRp=>Li'’ (5.18)=>(6.4) we have

<11.. (1L.
L [P =  0=»á(du)' — !- = 0 ^  — - = 0 

ddu ddu
(6.17a)

PL. <1L.
d(duR)'— - = 0=* — - = 0  

(1Aur cAur
(6.17b)

K d u -(R o + F/  + d Q )-N 'p  = 0 (6.18)

G'Rp - (d Q R + Q RO) = 0 (6.19)

Acta Technica Acailcmiac Scientiarum Hungaricae. 96 I9H3



I N (  K l  M l  M A I  V A R I A  I K Í N A I  l ' K I N t  UM I S 51

hence:
du = K '(R0 + dQ + Fy) +  К ' 1 N'p 

In conformity with variational inequality

(6.20)

( 6.21)

for p^O, tip is arbitrary, thus y = 0, while for p = 0, £pg:0, that is, y^O, hence p'y =  0,

is an influence matrix.
The solution of inequality system (6.19) and (6.23) under condition p'y =  0 

resulting from the contact-gap condition yields solution of the contact problem for the 
i-th load increment.

In the solution setup, quantities ( )0 are loads at the end of the precedent load 
increment, and of  is the value computed under the plasticity condition assigned to the 
problem.

To inequality system (6.19) and (6.23) the following quadratic programming may 
be assigned:

у = Nu0+ Ndu —GR(uR о + /1ик) + Ь ^0  

Substituting (6.20) into (6.22), we arrive at inequality

( 6.22)

У= - G RuR + Hp + [Nu0- G RuK .0 + h + 

+ NK '(R 0 + /iQ + F7)]^o (6.23)

where
H = NK ‘N

min max |
du. Лик p > 0

[L, = f /-p '(N u  + h - G RuK)j (6.24)

hence, minimizing

/ /=  — /lu'Kdu —du'(R0 + dQ +F^) —/Iu'K(QR 0 + /IQR) (6.25)

while maximizing with respect to p:

min {// I — (Nu —GKu„-t-h)^0}

In conformity with relationship

L, = L, (u, p ^ 0) + <5L, +02L t 

function L I is subject to inequality relationship

L, (u, p * ^ 0)^T ,(u , p ^ 0)^ L ,(u * .p ^ 0) 

where p*, u* are possible values, u and p are exact solutions.

(6.26)

(6.27)
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Both necessary and sufficient condition of the min—max. characteristics of L, 
according to (6.27) is to fulfil the Kuhn-Tucker local conditions [8], actually

dL, 
du

= 0 ,
dL,
dp

=£0 , =  0 (6.28a-c)

identical to relationships (6.17), (6.21) established on the “physical” side of the contact 
problem.

6.1.2. The law of elasto-plastic materials

Determination of initial stresses af  requires knowledge of the real elastic-plastic 
stress increment ATep̂ >Aaep . In knowledge of the material law,

^ ep = DepAt (6.29)

where Dep is matrix of material constants obeying the elasto-plastic law.
According to the theory of plastic yield, Dip is obtained from surface F (a, k) = 0 

and the associated law as [9]:

Dcp= D  —D (6.30)

where D is the matrix of elasticity (<r = Dc), £f is tangent to the equivalent stress-strain 
function. Dep is a symmetric, positive definite matrix, valid also for elastic-ideally 
plastic materials (Ef =  0).

Dep being dependent on the current stress state, hence on the load history, it has 
to be determined again and again in each load increment.

Under the Huber-Mises Hencky yield condition we have

and

F (а, к) = -j=  [(<tx -  о /  + (ox -  <rz)2 + (oy -  o f 1 + 

+ 6 (t2 + r2z +  T2 )]1 ̂12 -  aF = 0 (6.31)

'  1 -0 .5 -0 .5
-0 .5 1 -0 .5

dF 1 -0 .5 -0 .5 1
da oF

(6.32)

where oF is the yield point.
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6.1.3. Steps of solving problem (6.24) under yield conditions

Vectors Ff  and F0 arising from af  and <r0 , resp., may be determined by numerical 
integration. Namely, integrand values are determined in the Gaussian points of 
integration, then multiplied by the Gaussian weight factors W" of integration and 
summed.

Assume to be at load increment i. o 0 .i -  i by the end of increment (i — 1) will be 
considered as o0 , while <sf  will be determined by iteration from du, [6].

In the following, subscript i will refer to values determined in load increment i.
Computation involves the following iteration:

1. In knowledge of (Fy)* 1, contact problem described by inequality system

У= - G X ^ '  + Hpf + lNuo.,'-, +h) +

+ NK 1 (R0.i- i +dQ,) + NK (6.33a)

G'Rp‘ - [ ( Q R.0), ,+ d Q K.,.] =  0 (6.33b)

p*^0, y'pf = 0 (6.34a, b)

is solved, taking a value (Fr )f = 0.
2. (du)f is expressed from (6.20):

(du)Í =  K - 1(R0.1_1+ d Q i + (F/ )‘ ‘) - K  ‘N'p? (6.35)

3. then, knowing the displacement field, the (Fy)* value is determined by steps 
indicated for the hybrid stress model in Fig. 6.

4. In possession of (Fy)f, return to step 1 (k = k+  1) if

I P Í I - l p M l á *  (6.36)

where <5 is a low number, else computation of load increment / = / + 1 begins wan 
increasing the load if i^ lS T E P  where I STEP is the number of load increments. 
Computation ends at full load value.

6.2. Computation method of modified potential energy 
for solving frictionless contact problems

The computation is based on the variational principle involving functional
(5.34).

Again, a contact between two solids is examined. Solids are decomposed into 
£ j (a = l ,  2) finite elements with compatible displacement fields. Displacement fields, 
strain tensor fields and contact pressure are invariably approximated by (6.8) to (6.12). 
The elasto-plastic material law is assumed in the form (6.29) to (6.32).
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Fin- 6. Algorithm for determining nodal force (F f t, from initial stresses, and residual load (R0)t- in case of a 
hybrid stress and compatible displacement model. To simplify notation, element subscript e and symbol of 

k-th iteration have been omitted. Gaussian points of numerical integration number N

Making use of potential energy Пр (3.7) and taking substitution (6.1H6.2) into 
consideration:

Ц  = I  J A A . . D .. A A + (T0 -  T f ) .. A A

i l d K -  j  (p0-
J Si

- (q 0 + dq)- /lu , + /lp)- dudS  —

j p ■ (u2n -  u lN +  h) dS (6.37)
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Applying symbols under 6.1.1, the function for problems of finite dimensions is: 

L£=>L2= | | d u p ,K<'/lu- + d u - '(F 0- F / ) - -

- d u - '( Q 0 + d Q )-J -  ^  ^«'r(Qr.o + /IQ rY 

+ p'(GRuJi- N u - h )  (6.38)

where

K-= J B'DBdK (6.39a)
V

e

dQ “-=  J L'dpdS + j  U'/lq d V (6.39b)
s-. V.

AQ'Re= { LR/lp dS + J Ll'/lq d V (6.39c)
SJ,. V ' .

other magnitudes being those in (6.13).
The connection of the elements leads to a function of the form (6.16):

L2 = y  /lu'K /1u-/lu'(Q0 — F0+ F /  + /IQ )-

— du'K(QK o + /1Q)-P'(1Nu —G RuR + h)

Making use of (6.18) and (6.19), variational equation—inequality (5.35) may lead 
to inequality (6.23) replacing (6.22), defining again a quadratic programming problem 
of the form (6.24). Steps of solving the elasto-plastic contact problem set up are the same 
as those under 6.1.3. In determining the fictitious load, iteration has to be made like that 
for the compatible displacement model in Fig. 6.

7. Variational principles for linear systems of elements 
in bilateral or unilateral connection

Variational principles for linear systems with bilateral and unilateral con
nections may be derived from those under items 4 and 5, respectively, with zero initial 
values ( )o = 0, and replacing the variation by the full value A( ) = ( )

e.g. To = 0, /1T = T etc.

Writing of functionals and variational equations—inequalities will here be 
omitted. Obviously, distinction between C- and /-type transformations would be 
meaningless. The involved principles, as well as the variational principles applying field 
T meeting the basic equation for the stress tensor, see in [10].
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APPENDIX 1

Transformation o f integrals relating to discontinuous fields

A.1.1. For zero initial gap, discontinuity in the displacement field on an element 
surface Sef  hence, the kinematic fitting condition can be handled by involving a term:

J k V - u ^ d S
s;J

On the surface Sc of a structure of N elements, integral

Л,= Х J k V - u - ) d S  (A.1.1)
e . j  s; j

holds. Multiplier к as a stress has to belong to some normal to the surface. In the 
following, in writing integrals containing X, X is assumed to belong to the element of the 
lower subscript.

Integral (A. 1.1) transformed to involve element e joined by those e — 1,) and j+  1 
becomes:

/ „ = . . . +  j  Xе 1 (ue —ue *)dS+ J Xе ■ (iF -  u*") dS +
S. - 1, « S ej

+ Í r V + , - u e) d S + . . .  =  . . . -  Í X' u ' dS . . .
S*’j  + I

У

=  -  Z Í ^  (A.1.2)
* = * s;

namely
S* = Sec- l e KjSec jv S ec-J+1 

Xr i  = -  Xe

in range S‘ ~l e .
A .1.2. In some of the variational principles, the technique of multipliers is applied 

to make the stress field continuous, giving rise to integral

/ ,=  £  J u (F + f ) d S  (A. 1.3)
e . j  S-l

where ù—displacement multiplier; tc, i ‘—stress vectors belonging to external normals 
of elements e and j, respectively. Again, assuming element e to be joined by those e — 1J ,

j+  ' / ,=  . . . +  J u -(t* -, +!*)dS +  J ű (tJ'+ te)dS +
Sf  ' -  s ; J

+ j ű- ( t J + , + t e) d S + . . .  =  . . . +  j  u - f d S + . . . =
S’ J+> s;

= X J ű t"dS (A.1.4)
»=1 S’
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A.1.3. In cases with discontinuity only in terms u" of displacement field u, /„ may 
be replaced by integral

/ : = £  J X (uJ" - u p" ) d S = - X  J b u '"dS (A. 1.5)
e . j  s;J e S ;

imposing, for a real discontinuity in the stress field, to compute integral

/ ; = £  Í M tJ' + r )d S =  £  J ü • t"dS (A.1.6)
e . j  s;J e s ;

where t' is the stress vector part involving discontinuity.
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EXISTENCE AND UNIQUENESS CRITERIA 
OF THE MEMBRANE STATE OF SHELLS

III. ELLIPTIC SHELLS

T. T a r n a i*

[Received I June 1977]

In this paper the problem is analysed what kind of support is needed or is allowed in order to 
ensure that the shell be in a statically determinate membrane state. Previous two parts of this paper 
have been concerned with criteria of existence and uniqueness of the solution of the membrane shell 
equation in connection with hyperbolic and parabolic shells. This Part III presents the analysis of 
elliptic shells.
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1. Introduction

The equilibrium of membrane shells is described in the orthogonal coordinate 
system xyz as:

02z 02F 2  d2z 02F 02z 02F
dy2 dx2 dx dy Ox Oy + (lx2 dy2 ( 1 )

where z = z(x,y) is the equation of the middle surface of the shell,

(12Z (l2 2 d2z 02 d2z d2
dy2 (lx2 Ox Oy Ox Oy + Ox2 Oy2

is the Pucher operator, y — y(x, y) is the intensity function of an external load parallel to 
the z-axis (vertical), and F(x, y) is the unknown stress function yielding the reduced 
internal forces as follows:

02F
nx = — j-, nxy = nyx =

02F _  02F
Ox Oy ' Пу Ox2

The first and second parts [22], [23] of this paper examined the existence and 
uniqueness criteria of the solution of Eq. (1) of membrane shells hyperbolic and 
parabolic, resp., at all points of the domain of definition, and subjected to vertical loads. 
This part will be concerned with the criteria of existence of a unique solution of Eq. (1) 
for a shell elliptic at any point of its floor plan configuration, that is, if discriminant

is positive everywhere in the domain.

* T. Tarnai, H-1037, Budapest, Kolostor u. 17, Hungary
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Features of elliptic equations are rather different from those of hyperbolic and 
parabolic ones, especially the two ones below:

1. Initial-value problem of hyperbolic and parabolic equations is a properly 
posed problem. It has a unique solution continuously depending on initial values, and 
the domain of solution may be exactly delimited by means of the characteristics. In 
contrast, the initial-value problem is not always correct for elliptic equations. It may 
have no solution, and if it has one, it is not always continuously depending on initial 
values. Furthermore, if there exists a solution of the problem, the domain where the 
solution is determined cannot in general be predicted.

2. Boundary-value problems for hyperbolic equations have a unique solution for 
an open boundary curve. For a closed boundary curve, problems are usually 
overdeterminate, and so insoluble. Also boundary-value problems of parabolic 
equations have unique solutions primarily for open boundary curves but often can also 
be—uniquely—solved for closed boundary curves [23]. Boundary-value problems of 
elliptic equations cannot have a unique solution else but for closed boundaries. Open 
boundary curves make the problem indeterminate, the solution non-unique.

Boundary will be understood below as groundplan projection of the real shell 
edge on plane xy. The real shell edge line will be denoted by S, its ground-plan 
projection by S. 2

2. Initial-value problem in an elliptic case (Cauchy problem)

The Cauchy problem for elliptic equations has much less been considered in 
mathematic publications than different boundary-value problems. Namely, partly the 
Cauchy problem of elliptic equations—as mentioned is not a properly posed 
problem, and partly there is a restricted range of physical problems leading to the 
Cauchy problem for elliptic equations. Among membrane shells, however, there is an 
important group of free-edged apse-like formed shells, internal stress patterns of which 
are known to be determinable by solving a Cauchy type problem. This is why existence, 
uniqueness, and continuous dependence on initial conditions of the Cauchy problem 
have to be closer looked at.

Let us first define the term of analytic functions. Two-variable function u(x, y) is 
called analytic with respect to x, y at a point (x0, y0) of some domain if in the 
neighbourhood of (x0, y0) can be expanded into a power series according to (x —x0), 
(y —y0)- Function u(x, y) is analytic in a domain if it is analytic in every point of the 
domain. As a consequence of this definition, u(x, y) can be infinite times differentiated at 
the point where it is analytic. The term of analytic functions may be similarly defined 
also in the single-variable case.

Let us consider now the generalized Cauchy problem for the elliptic partial 
differential equation (1).
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Let a direction i (unit vector) be given at any point of boundary curve S in the 
plane xy  (Fig. 1). Also, let value ip of stress function F be given on boundary S, and value 
ф of the directional derivative of function F in direction i.

Fin. I. The domain of solutions of the initial-value problem

Let the following conditions be satisfied:

(a) boundary curve S lies in the domain of definition of Eq. (2a);
(b) boundary curve S is “smooth enough” so that its transformation mapping curve S 

to straight line £0 = 0, and direction i to the normal of straight line £0 = 0, yields the 
original variables as analytic functions of the new variables; that is, curve S is an 
analytic one (p.43 in [18]);

(c) direction i varies “smoothly enough” along curve S so that transformation under 
(b) exists, that is, direction function i is an analytic one (p. 43 in [18]);

(d) direction i assigned to a given point of curve S is not tangential to curve S at that 
point;

(e) g(x, y) is analytic;
(f) both ip and ф are analytic;
(g) z(x, y) is analytic.

Now, in conformity with the Cauchy-Kovalevskaya theorem, initial-value
problem

£ F F = - g ,  (2a)

= Ф (2b)
s

has a unique analytic solution in some neighbourhood of curve S (Fig. 1 ) (p. 44 in [ 18]).
No size of this neighbourhood is defined by the theorem.

We should mention that if functions in problem (2a, b) are not required to be
analytic, the existence of a solution for problem (2a, b) generally fails, but its unicity

„I «F
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prevails for a rather wide class of functions. If the problem has a solution so that the 
middle surface function z(x, y) is twice differentiable, and the second partial derivatives 
are Lipschitz-continuous, as well as boundary curve S is differentiable and the 
derivative is Lipschitz-continuous, then the solution is unique (Theorem II, p. 19 in 
[16]). A two-variable function u(x,y) is called Lipschitz-continuous in a domain if 
there is a constant c such that inequality

| u ( x 1, y 1) - u ( x 2 , y 2) l ^ t ' [ U l - ^ 2 ) 2 +  ( > ' l - y 2 ) 2] ,/2

is satisfied for any pair of points (x,, У[), (x2, y2) of the domain. The Lipschitz 
continuity may be similarly defined also in the single-variable case.

Let the normal (unit vector) of curve S in plane xy  be denoted by n. Be i =  n, and
let

F \ s  =  0 , dF
dn

=  0

hold in condition (2b).
This is to specify edge S to be free. Thus, elliptic shells may be provided with a free 

boundary curve by specifying the shell middle surface, the load function and the 
boundary curve to be analytic. For an open curve S, neither the right nor the left bank

fr e e  e d g e

of the curve is preferential, thus, the solution is defined both to the right and to the left of 
curve S. If S is a straight line, apse-like formed shells both to the right and to the left of 
the vertical plane containing S are known to be in membrane state ([5], p. 98 in [19], p. 
207 in [21 ]). Such an application of the generalized Cauchy problem for problem (2a, b) 
permits to extend the range of apse-like formed shells in membrene state. Apse-like 
formed shells may be in unique membrane state not only if the free edge is a curve of 
vertical plane in the middle surface (Fig. 2) but also if the real edge of the shell is an 
arbitrary spatial surface curve, with analytic projection on plane xy. Such a generalized 
apse-like formed shell is illustrated in Fig. 3.

We mention here that for a rectilinear curve S, also normal and shear force values 
may be specified along S [22]. Of course, also these need to be analytic functions.
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The edge section physically closing the shell ground plan joining S has to lie in 
the domain of solution of the problem. No condition may be specified here but edge 
beams must bear any internal force arising at the edge.

Thus, if the elliptic shell has already a free edge section, no condition may be 
specified for the other shell edge sections, as seen from an analysis independent of the 
mathematical theory. An elliptic shell will be seen below to be in membrane state if the

n,=0

n,=0

a)

n„ = 0 n, = 0 n„=0

titf. 4. Ground plan and boundary conditions of elliptic shells (a) all four sides are exempt from lateral 
pressure; (b) one side is free, two sides are exempt from lateral pressure, one side is fully supported

stress function value is specified all around its boundary, e.g. to be continuous and 
linearly varying boundary section-wise. For straight boundary sections this is known 
to mean exemptness from lateral thrust. Thus, in the case seen in Fig. 4a, an elliptic 
paraboloid shell over a rectangular ground plan is always in membrane state. For any 
side of the rectangle, one condition has been specified. Beles and Soare [2] examined 
the case of transferring the condition from one side to the other, without changing the 
total number of conditions. Exemptness of lateral thrust having been specified for the 
opposite side, to compensate for the similar condition here, also exemptness of shear 
force will be specified for the opposite edge, making the edge to be free (Fig. 4a). In final 
account, for one side of the rectangle, conditions F = 0, 0F/dn = dF/dy = 0 have been 
specified, and condition F =  0 for the two joining sides, while no condition has been 
specified for the side opposite to the free edge. A hyperbolic paraboloid shell of e.g. 
saddle shape is known [22] to be in unique memberane state under these conditions. In
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this problem, the authors found the shell not to be in membrane state. The infinite series 
used for the analysis were divergent.

In conformity with the condition of analycity of functions in (2a, b), if a section of 
boundary curve S is straight, boundary S has to be straight all along, and if functions <p 
and Ip vanish in a section of boundary S, that is, this section of boundary S is free, then 
values of functions <p and ф have to be zero all along boundary S. Opposite to 
hyperbolic and parabolic shells, boundary S of elliptic shells cannot consist of 
alternating boundary sections with zero and non-zero edge forces.

If the full shell edge is a single, non-self-intersecting curve, then it seems that the 
share of free edge in the full edge length is not restricted. Beyond of needing to be an 
open curve, the extension of the free edge is restricted solely by strength aspects. 
Namely, theoretically, the fully supported edge section of the shell may be infinitesimal, 
and the shell equilibrium to be provided by infinite forces acting at this infinitesimal 
length. In a similar case for hyperbolic and parabolic shells the ratio of free to total edge 
length cannot be arbitrarily great. The extension of the free edge is restricted by 
characteristics [22, 23].

If conditions (a) to (g) are satisfied, the Chauchy problem (2a, b) has a unique 
solution in the neighbourhood of boundary S if it is a non-self-intersecting closed curve 
[17]. Let ß  be a bounded domain limited by boundary S. The neighbourhood of 
boundary S where the solution exists has two parts, one outside, and the other inside 
domain ß. The part of the neighbourhood inside domain ß  cannot embrace the full 
dom ain ß.

The problem has generally no solution in the full domain ß  since there it is 
overdeterminate. Namely for the existence and uniqueness of a solution of (2a) in the 
full domain ß, it is sufficient to specify a single condition on boundary S, e.g. the value 
of stress function F, or of the directional derivative PF/Pi. It follows that an elliptic shell 
with a free edge all around, over a bounded, simply connected domain, cannot in 
general be in membrane state even if, as a rigid body, it would be in equilibrium. 
However, it can be in membrane state over an unbounded domain outside curve S. In 
compliance with the physicality of the problem, in the latter case only a finite part of the 
unbounded domain is taken into consideration.

Applying cylindrical coordinates r, ,'L Tolotti [25] proved the existence of a 
solution of the Cauchy problem

for the case whereJ\ and J2 are periodic analytic functions with a period 2 я, and A is the 
Laplacian operator

AF(r, ÍJ) = 0 (3a)

(3b)

_  P2 I I1 1 F2
^ Pr2 + r Pr + r2 P'A2
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The proof referred to polyharmonic functions, of a more general form. Initial 
value problem (3a, b) refers to a homogeneous equation, with inhomogeneous initial 
conditions. The counterpart of this problem refers to an inhomogeneous equation with 
homogeneous initial conditions:

d F ( r ,3 )= -ÿ ( r ,ô ) ,  (4a)

= 0 , (4b)
r=R

where g(r, 9) is a periodic analytic function with period 2л. No mathematical 
publication concerned with this problem in itself has been found. In compliance with 
the analyticity of the functions, the Cauchy-Kovalevskaya theorem provides for the

л 8F
- = 0 ’ 77

existence and uniqueness of the solution of problem (4a, b). Solution of the initial-value 
problem (4a, b) describes membrane state of a shell of paraboloid of revolution with a 
central circular opening of free edge. The case where the superior edge of smaller radius 
R is free, and the lower edge of greater radius R , is fully supported, is seen in Fig. 5. The 
opposite case with a fully supported edge of smaller radius R and free edge of greater 
radius R { is also possible, where R has to be replaced by R, in (4b).

Load function g needs not be circular symmetric. Thereby problem (4a, b) is more 
general than the known one where also load function g is circular symmetric [6]. The 
free-edged opening may be anywhere on the shell surface. For instance, Eibl [11] 
developed an example of the case of eccentric circular free-edged opening on a spherical 
shell.
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A shell with two or more free-edged openings cannot, in general, be in membrane 
state. Namely, there is no analytic one-to-one transformation such as to map two or 
more closed curves with no point in common to a single straight line.

We mention here that if the free edge of the shell is a closed curve, then the other 
edge physically closing the shell has to be a non-self-intersecting closed curve lying in 
the domain of solution and not crossing the free edge line. The two edge lines together 
have to delimit a bounded, doubly connected domain.

Let us consider now the problem of the continuous dependence of the solution on 
the initial values. Only cases where functions in the Cauchy problem are analytic, 
hinting to the existence and uniqueness of solution, will be considered. If, in addition, 
the solution is a continuous function of the initial values, then the Cauchy problem is a 
properly posed one. Introductorily, however, the possibility of the Cauchy problem for 
elliptic partial differential equations to be ill-posed was mentioned.

In the actual case of the existence of a unique solution, improper setting of the 
problem appears by the discontinuous dependence of the solution on the initial values. 
This occurrence will be demonstrated on an example due to Hadamard (p. 40 in [13]), 
referred to by several authors (e.g. [1]; p. 84 in [18]).

Let us consider an apse-like formed paraboloid shell of revolution with no 
surface load (Fig. 6) where the middle surface of the shell results from cutting surface

by plane y = 0. Let the cutting line be the free edge of the shell. The state of stress in the 
shell may be determined by solving the Cauchy problem (2a, b), actually of the form:

Fig. 6. Apse-like formed paraboloid shell of revolution

z = j ( x 2 +  y 2)

(5b)

(5a)
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Due to the Cauchy-Kovalevskaya theorem, problem (5a, b) has a unique 
solution, i.e.: F(x, y) = 0. Hence, the reduced normal forces are

d2F
n- = W = 0 '

cl2 F л (l2 F n

obviously, namely unloaded shells do not develop internal forces.
Now, let us approximate the first condition in (5b) by an expression of the form;

F(x, 0)= —  sin m x , 
ma ( 6 )

where a 2; 2 is constant, and m > 0 is an integer. For m -» oo, (6) uniformly tends to F(x, 0) 
=  0. Thus, for an arbitrarily small e>0, there is a number M so that for m> M 
inequality

I sin tnx I < E (7)
ÏÏI

holds.
Let us fix the value of e and choose a number m so that (7) is satisfied. Now, let us 

find the solution of Laplace’s equation (5a) under conditions

1 dF(x, 0)
F(x, 0 ) = — sinm x, — ------= 0 . (8)

ma (iy

Due to the Cauchy-Kovalevskaya theorem, a unique solution exists:

F(x, y) =  —- sin mx ■ cosh m y . (9)
m

Stress function (9) yields the reduced normal forces:

02F 1
nx = —— = ——г sin mx ■ cosh m y , 

cy m

ô 2F 1 .
n.„= — „ T cos mx • sinh my ,

y dxdy m 2

d2F I
nv = —T = ------гт sin mx ■ cosh m y.

dx ma

Although initial conditions (8) slightly differ from (5b) (less than by e), solution (9) 
and the resulting reduced normal forces are seen to differ significantly from zero in any 
arbitrary small neighbourhood of the x-axis. Thus, somewhat changing the initial 
values in problem (5a, b), the solution will significantly change. Thus, the problem is ill- 
posed.

This example is little conclusive since no stress analysis of unloaded, free-edged 
apse-like formed shells occurs in practice. The example becomes conclusive from the
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possibility to demonstrate the improper setting of the Cauchy problem by the same 
considerations for an apse-like formed shell subjected to surface loads, or for an apse
like formed shell with no surface load, with an edge subjected to normal and shear 
forces of given values. Let us consider the latter case first. For the sake of uniqueness of 
the solution of the problem, the distribution functions of the boundary forces are 
stipulated to be analytic. Stress function yielding internal shell forces is obtained by 
solving the Cauchy problem

P2 F P2F
+ (ly1 =  0 . (10a)

F(.v, 0) = ф(.х),
PF(x, 0) 

Py = Ф(х). (10b)

where <p(x) and ф(х) are double, and single integrated with respect to x , of the reduced 
normal, and shear force functions, resp., along the edge. Let function F0(x, y) be the 
solution. Now, solution of (10a) under initial conditions

will be function

_ 1 PF(x, 0)
r  (x, 0) =  </>(x)-l-----sin m x , — =Ф(х)ma cy

F 1 (x, >’) = F0(x, >j + - sin mx • cosh m y.

( П )

( 12)

A slight change of initial functions <p(x) and ф(х) in (10b) resulting from addition of 
functions (8) to functions cp(x) and ф(х) may produce a significant change of solution 
(12) in an arbitrary small neighbourhood of boundary line у = 0.

This is also true for a non-zero, analytic surface load </(x, >j of the shell. Namely, 
let the initial-value problem

P2 F P2F
'S 2 - 2 ’ Px Py

(13a)

PF(x, 0)
! = </>(x), =Ф(х) (13b)

have a solution F2(x,y). (Functions <p(x) and ф{\) may be zero, then the shell edge 
corresponding to у = 0 is a free one.)

It is easy to see that the solution of the initial-value problem

will be function

P2 F P2F
T T  + T  2 = “ ff . (14a)
Px O’

F(x.0) = (p(x)+ *
PF(x, 0)

(14b)sin mx , ——-----=Ф(х)
m Py

Ы С .У И  J 2 sin mx • cosh my
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which can assume rather high values in an arbitrary small neighbourhood of boundary 
y =  0, as before.

The above are of importance primarily from computational aspects. Namely, in 
computation, initial conditions may not be completely satisfied, forcing one to 
approximation. Approximation of arbitrary accuracy of initial conditions does not 
result in an approximation of the solution to the same degree.

3. Boundary-value problems in the elliptic case

Let us define first some terms.
1. Be ß  a bounded domain in plane xy, with boundary S. Now, function u(x, y) 

defined above domain (2 is called / - Holder-continuous in Q if there is a constant c with 
which inequality

l “(*i ,.У |)-«(*2 , Уг)1 ^ { p [ ( x , , у ,) , (x2 ,y 2)]}\ 0 < / g l

holds for every pair of different points (x , , y,), (x2 , y2) in Ü. In the above expression 
p [(x , ,y,), (x2 ,y 2)] denotes the distance between points (x, ,y,), (x2 , y2) (p. 1 in [16]). 
The Я-Hölder continuity may be similarly defined for single-variable functions. For /  
=  1, the Holder-continuous function becomes Lipschitz-continuous. Hôlder continu
ity is more than ordinary continuity but less than differentiability.

2. Curve S in plane xy is called a Liapunov curve (p. 350 in [24]) if
(a) curve S has a definite normal (tangent) at any point;
(b) there is a positive number d such that straight lines parallel to the normal at 

any point P of curve S intersect part Sj. of curve S inside the circle of centre P, radius d\
(c) for angle y(P, P') = (np , nP) subtended between normals nP, nP at points P, P' 

inequality

y(P, P')< Apx

holds, where p is the distance between points P and P', A is a constant, and 0 < / ^  1.
For an interpretation of closed curves of this type in a different form see e g. p. 3 

in [16] or p. 13 in [4]. The Liapunov property of curve S is more than to be once 
continuously differentiable but less than to be twice continuously differentiable.

3. Let a direction i (unit vector) assigned to every point of boundary curve S 
delimiting bounded domain Q pointing outward from Q. Now, direction i is called 
conormal of curve S and denoted by v if after canonic transformation of ( I ) it passes into 
normal n of the boundary curve. A more general definition of the conormal valid e.g. in 
the case where the above-mentioned canonic transformation does not exist is presented 
on p. 17 in [4].

In the general case, boundary value problems will be interpreted as follows. Let 
us have a bounded, connected domain (2 in plane xy, with boundary S. Be a direction i 
given at any point of boundary curve S,such that it is not tangent to edge curve S at that
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point, pointing outward from domain Q. Also, let functions a, ß(a.2 + ß2> 0), and ip be 
given on boundary S. Now, let us find a solution of (1) in domain ß  which satisfies 
condition

<x— +ßF = (p (15)
di

on boundary S, where OF/di is the directional derivative of function F in direction i.
The following will be concerned with four special cases of the boundary-value 

problem under general boundary condition (15).
The first boundary-value problem or Dirichlet problem is that where a =  0, ß s  1 in 

(15), that is, value of stress function F on the boundary is given.
The second boundary-value problem is where o t= l,/J = Oin(l 5), that is, value of 

directional derivative of stress function F in direction i on the boundary is given. For i 
=  V, i.e. direction i coincides with conormal v, there is a Neumann problem.

The third boundary-value problem is the one defined by condition (15) itself.
A mixed boundary-value problem emerges if in ( 15) either a or ß disappears in each 

section of boundary S without identically zeroing a or ß all along the boundary.
We should mention that publications do not apply uniform denominations for 

the problems. For instance, the problem called here third boundary-value problem is 
termed by Miranda [16]—for i=v—a Neumann problem, by Schiffer [3] a Robin 
problem, and by Bitsadze [4]—without condition i =  v—a Poincaré problem.

3.1. The first boundary-value problem (Dirichlet problem)

Let ß  be a bounded domain in plane xy, with boundary S. Let stress function F 
assume values given by function ip along boundary S. Now, the Dirichlet problem

T£F — —g , (16a)
F \ s = q> (16b)

has a unique solution in domain ß  provided conditions
(a) domain ß  with boundary S are in the domain of definition of Eq. (16a);
(b) ß  is a simply connected domain;
(c) edge S is a Liapunov closed curve;
(d) g(x, y) is continuous in ß  and S, and A-FIölder-continuous in ß;
(e) (p is continuous in S;
(f) z(x, y) is three times differentiable in ß  and in S, and its third partial derivatives are 

A-Hölder-continuous
are satisfied (Theorem 1, p. 21 in [16]).

It should be noted that condition (c) is always satisfied if S is twice continuously 
differentiable, condition (d), if y(x, y) is continuously differentiable in ß, and (f) if z(x, y) 
is four times continuously differentiable in ß  and on S.
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Provided these conditions are satisfied, the solution may be produced by means 
of integral operators (in potential form). If the Dirichlet problem (16a, b) has a solution 
without satisfying the above conditions, this is a unique one (Theorem I, p. 5 in [16]).

Unique membrane state of a shell vertically supported all around on a closed 
(annular) edge beam is provided by boundary condition F | s = 0. This condition is 
always specifiable and the edge line becomes the funicular curve of arising forces.

Existence of potentials producing the solution is known not to require finiteness 
of the curvature of boundary curve S at any point of S (p. 350 in [24]). Accordingly, the 
Dirichlet problem may have a solution even if condition (c) is not fulfilled, that is, 
boundary S is not a single Liapunov closed curve but it is a union of a finite multitude of 
Liapunov curve sections joining with knee points. In this case, however, the solution 
may be singular at the knee points, with infinite normal force values. Singularity 
occurring at the corners of an elliptic paraboloid shell over a rectangular ground plan, 
vertically supported along its edge, is common knowlege(seee.g. p. 142 in [14]). In this 
problem, condition (c) may be met by rounding off the corners with any small (but non
zero) radius, to cease singularity.

For boundary S of straight sections, normal force values may be specified for 
each section (item 2.2 in [22]). For instance, an elliptic shell over a rectangular ground 
plan, with no surface load (Fig. 7a) will always be in membrane state if one edge is 
subjected to normal forces of some distribution /(x), and the shell has to be kept in 
equilibrium to develop only shear forces all around its edge (Fig. 7b). (The edges are

/•'/</. 7. (a) Elliptic shell, (b) Shell ground plan and boundary conditions

supported both vertically and against displacements in the edge beam planes.) This 
problem always has a solution, however, not unique in the general case, thus, the 
problem h> statically indeterminate. Namely in the general case, values of stress 
function F assumed at the edge fit a spatial tetragon, except side Aß (Figs 7b and 8). By 
adding linear and constant terms, however, only two sides of this spatial tetragon can 
be zeroed, e g. those above sections CD and DA. Now, the value of the stress function 
above corner В may still be arbitrarily specified. Since the Dirichlet problem has a 
unique solution for any value of F at point ß, the original problem has an infinity of 
solutions. The solution needs a further condition to be unique. The problem has a 
unique solution if e.g. the middle surface of the shell, the edges and function /(x ) are
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symmetric to the corresponding coordinate planes, thus also the solution is required to 
be symmetric. The above problem stated for an elliptic shell over an arbitrary 
triangular ground plan (Fig. 9) has a unique solution. For a polygonal ground plan 
with more than four sides—just as for a tetragonal ground plan—there is a solution but 
not a unique one.

У

A

Hy. S. Boundary curve of stress surface h

a)

n„=0

n„=f(x)

b)

H<i- У (a) Elliptic shell over triangular ground plan, (b) The triangular domain and the boundary conditions

Statements similar to the above can be made if all edge sections of the elliptic shell 
over a polygonal ground plan, loaded on the surface, are exempt from lateral thrust [7], 
or the normal force value is specified all around the edge.

Special mention is due to shells of translation over a rectangular domain, because 
of their practical importance. The specification of the reduced normal force value all 
along the edge of these shells uniquely determines the reduced normal force values nx , 
ny inside the shell. The value of the reduced shear force nxy is, however, uinque only if an 
additive constant is set apart. The shell is in membrane state in such a way that the 
shear force can have an inifinity of distributions within it. Nämely, now stress function 
F may be completed, in addition to linear and constant terms, by a term .ту, and so the 
differential equation and the boundary conditions are still satisfied.

Namely, be z = r,(.T) + z2(y) the equation of the middle surface and be the 
rectangle sides parallel to axes v and y, so Eq. (I) has the form:

d2z 2 P2F d2z t P2F _ 
dy2 Px2 + dx2 Py2 ^ ( 16c)

Let the rectangular domain be bounded by straight lines with the equations v = 
+ «, and у =  ±b. For the sake of simplicity, let the shell be exempt of lateral pressure, a
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requirement expressed by boundary conditions

d2F 
dy2

d2F

n = = 0, on straight lines x = ± a ,

dx2
= 0, on straight lines x = ± b . <16d)

These boundary conditions may be formulated also in an integrated form, so that the F 
values produce a spatial tetragon above the boundary. It is easy to demonstrate that if 
F satisfies Eq. (16c) and conditions ( 16d) then so does function F, = F + C, +  C2x + C3y 
+  C4xy, where C , , C2 , C3, C4 are arbitrary constants. Also the reduced shear forces 
nxy obtained from F and F, differ from each other by constant C4 . Arbitrary constants 
C , , G2 , C3, C4 permit to zero F all around the boundary. Irrespective of that, the 
reduced shear force nxy is not uniquely determined else but ignoring an additive 
constant. The same is true for the reduced normal force value if specified all around the 
edge to be non-zero.

This polyvaluedness of the reduced shear force is similar to the case of vault shells 
over a rectangular domain if one side is parallel to the characteristics, and the value of 
the reduced normal force is given along the sides normal to the characteristics [23].

Dirichlet problem (16a, b) has a unique solution even if domain (2 is multiply

connected. Let edge S consist of m + 1 closed disjoint sections, i.e. let S =  Sj where

Sj(j = 0, 1, 2 , . . m) is twice continuously differentiable, and let the bounded domain 
limited by curve S0 contain the other m curves Sj (Fig. 10a). Let the value of stress

a) b)
Fig. 10. (a) Multiply connected domain, (b) Elliptic shell over a multiply connected domain

function F be given on curves S, as <Pj(j = 0,1,2,. . ,,m). If discontinuous, then problem 
(16a, b) has a unique solution. Mikhlin (p. 167 in [15]) presents the solution process for 
the case where Eq. (16a) is of canonic form and homogeneous.

Let every edge of the elliptic shell over a multiply connected domain be bordered 
by an edge beam resisting only tension and compression (Fig. 10b). Let us specify the 
values of the stress function above every closed boundary Sj to form there a closed
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plane curve (in a different plane for every boundary). Under this condition the shell is in 
membrane state and the edge beam can be made to develop only tension and 
compression, that is, edge curves will be funicular curves of the arising forces. Then, 
however, the edge beams have to be exposed to vertical external forces of the proper 
distribution to safeguard the equilibrium of the shell and its edge beams as well as the 
“funicularity” of the edge beam axes also in space. For specified edge planes of the stress 
surface, the state of stress of the shell, hence the distribution and the value of the vertical 
forces to be applied on the edges, can be determined. Specifying as the only boundary 
condition that vertical external forces act on the edge beams (edge curves be funicular 
curves of the arising forces), the shell is in membrane state, but not in a unique one, since 
the boundary forces of the stress surface may lie in arbitrary planes. (A shell subjected 
to a fixed surface load may be in membrane state under a variety of edge loads. 
Accordingly, the state of stress of the shell will be different.) Under such a boundary 
condition, the shell is statically indeterminate and the mean value of e.g. the vertical 
edge load acting on the inner shell edges can also be specified. The distribution function 
of the edge load cannot, however, be arbitrarily specified, since it is correlated with the 
membrane forces acting on the edge beam. ([9] presents this relationship for e.g. a 
circular skylight opening in a paraboloidal shell of revolution.) This type of shell with a 
doubly connected domain was analyzed by e.g. Csonka [8]. A similar problem under 
somewhat different conditions was studied e.g. in [10, 11].

Vekua [26, 27] also dealt with membrane shells over multiply connected 
domains. His examinations, however, do not rely on the Pucher equation but on 
complex analysis. He found the existence and uniqueness of the solution of the 
problem, and the type of boundary values to be also related to the so-called index 
number of the problem which is not be considered here. His results will be outlined in 
Chapter 4.

3.2. The second boundary-value problem

Be ß  a bounded domain with boundary S in plane xy. Let a direction / (unit 
vector) pointing outward from Q be assigned to every point of edge curve S(Fig. 11 ) and 
let the directional derivative of the stress function F in direction / on edge S be given by 
a function (p. Now, let us consider the second boundary value problem:

3 T F = -g ,  (17a)

= (p. (17b)

The second boundary value problem ( 17a, b) has a solution that is unique except 
for an additive constant if conditions are satisfied:
(a) domain ß  with boundary S is in the domain of definition of F.q. (17a);
(b) Q is a simply connected domain;
(c) edge S is a Liapunov closed curve;

ÍF
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(d) direction i is not tangent to curve S at the point where direction / is indicated;
(e) direction i /-Hölder-continuously varies along curve S;
(f) y) is continuous on Q and S, and /-Holder-continuous on ß;
(g) ip is continuous on S;
(h) z(x, y) is twice differentiable on ß  and S, and its second partial derivatives are /-  

Holder-continuous;
(i) compatibility condition

-  П  0(x, У) dx d y -  j <p(s) ds = 0 (18)
Я s

(where s is arc length of curve S) is satisfied.

/•’if/. / / .  Simply connected hounded domain

If these conditions are satisfied, the solution can be produced by means of 
integral operators (in potential form).

It should be mentioned that conditions (e), (0 and (h) are always satisfied if they 
are assumed to be continuously differentiable rather than to be /-Holder-continuous.

Let n be the normal (unit vector) pointing outward from ß  at an arbitrary point P 
of edge S, and t the direction (unit vector) of the tangent of edge S at point P (Fig. 12). 
Let i = n.

Let us consider an elliptic shell over a polygonal ground plan, subjected to a 
vertical surface load of arbitrary distribution (Fig. 13a). Let the polygon have m sides, of 
lengths űf, a2, . . . ,  am (Fig. 13b). Be the shell supported so that its boundary sections

S,(j=  1,2, .. ,,m);S= ” S. are exempt from shear all around. Exemptness from shear
}= 1

of a straight boundary section is known to be provided by the condition dF/dn 
=  constant [22]. Thus, actually, the boundary condition becomes:

= bj, by = constant ( j=  1 ,2 ,. .  ,,m ). (19)
Sj

Í F
Pfl
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A term of the form Ax + By, where A and В are constant can be added to stress 
function F without affecting the state of stress of the shell. Suitably choosing A and В, 
two of constants bj can be zeroed. Be e.g. />, = b 2 =  0. Now, (19) is replaced by:

(IF 
dn

Function (p in condition (17b) becomes now a step function, with jumps at the 
knee points of boundary S. Thus, neither condition (c) nor (g) are satisfied at the knee 
points of boundary S. Corners are therefore rounded off by circles of radii r. small 
enough, and discontinuities of function cp are eliminated by connecting function values 
b j  and bj+ , at the end points of the circular arc by means of a section linearly varying 
along the arc. Thereby conditions (a) to (h) can be satisfied. (Solution of the original 
problem will be defined as limit transition <; —► 0.) But also compatibility condition (18) 
awaits to be satisfied, becoming

= bj.
bj = 0 if 7 = 1 ,2
bj = const, if 7 =  3 ,4 . . ,m.

( 20)

-  Í  J i d X j j d x d y -  £  ctj b j =  0 .  
a j  - 3

( 2 1 )

у П

X

Fief. 12. Normal and tangential unit vectors of the boundary line at a point

° 7
i

Hy. 13. (a) Elliptic shell over polygonal ground plan, with edges normally supported, (b) The polygonal
domain
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From m> 3,condition (21) is seen to be satisfiable in infinitely many ways, namely all bj 
values but one are arbitrary. Any system of constants bj satisfying (21) determines a 
given condition (17b) under that the boundary-value problem (17a, b) has a solution, 
unique except for an additive constant. Since constants bj have an infinity of systems 
satisfying (21), also this problem has an infinity of solutions. For m = 3, constant bj is 
uniquely defined by condition (21), hence also condition (17b) is a unique one, 
accordingly, the problem has a unique solution except for an additive constant. The 
additive constant is, however, known not to affect the state of stress of the shell.

In final account, the above permit the statement that an elliptic shell over a 
polygonal ground plan will always be in membrane state if its edge is exempt from shear 
forces all around. For a triangular ground plan, the problem is a statically determinate 
one, and the shell cannot be but in one kind of membrane state. For a tetragonal or 
polygonal ground plane, however, the problem is a statically indeterminate one, letting 
the shell to be in a variety of membrane states.

The case where the value of the reduced shear force n„, is specified all along the 
shell edge is quite analogous to the above.

Our results relying on a mathematical theory can also be achieved by structural 
considerations. Let us consider the ground plan of the shell treated above with edges 
exempt from shear (Fig. 13b). Be point P the projection on the ground plan of the

Fig. 14. Influence lines of side-wise partial resultants of reduced normal forces along the boundary

application point of the resultant of surface forces g(x, y) loading the shell (Fig. 14). P 
needs not to be inside the polygon. Since each edge section is acted upon only by 
normal forces, the resultant of these normal forces is section-wise normal to the given 
polygon side. At the same time, the shell as a rigid body may be in equilibrium if e.g. 
influence lines of the resultants of the normal forces acting on the edge sections intersect 
at one point on the influence line of the external load resultant. On the ground plan all 
the influence lines of the partial resultants cross point P (Fig. 14). The possibility for the 
partial resultants to intersect also in space at one point is provided by the fact that the 
vertical plane section of an elliptic surface is never straight and so a normal force system

Acta Technic a Academiue Scientiarum Hungaricae. 96 I9S3
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can always be defined on the section curve, with a resultant crossing at a desired height 
z the section plane forming the curve. Since for spatial forces with a common point of 
intersection, a force can be balanced uniquely by forces of given influence lines only if 
there are three influence lines, only the elliptic shell with a no-shear edge, over a 
triangular ground plan, can be in unique membrane state.

3.3. The third boundary-value problem

Be ß  a bounded domain with boundary S in plane xy. Let a direction i (unit 
vector) be assigned to every point of the boundary curve S (Fig. 11), and let functions a, 
ß  and (p be given on boundary S so that a >0 hold at any point of boundary S. Now, let 
us consider the third boundary-value problem

(22a)

= </>• (22b)
s

Let conditions

(a) domain ß  with boundary S is within the domain of definition of Eq. (22a);
(b) ß  is a simply connected domain;
(c) edge S is a Liapunov closed curve;
(d) direction i is not tangent to curve S at the point where it is given;
(e) direction cosines of i differentiably vary along S, so that derivatives are Я-Hölder- 

continuous;
(0 g(x, y) is continuous on ß  and S, and /-Hôlder continuous on ß;
(g) ß  is continuous on S;
(h) <p is continuous on S;
(i) z(x,  y) is three times differentiable on ß  and S, and its third partial derivatives are 

Л-Hölder-continuous
be fulfilled.

Now,—the Pucher operator being self-adjoint (p. 12 in [16])—the third 
boundary-value problem (22a, b) has the following alternatives (Theorems 22, I; 22, 
III; 23, I; 23, II; 23, VII in [16]):

Homogeneous problem

J^F = 0 , (23a)

= 0 (23b)
s

associated to problem (22a, b) has either a unique solution F = 0, then problem (22a, b) 
has one and only one solution for arbitrary functions g and <p (producible by means of
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integral operators); or the homogeneous problem (23a, b) has p linearly independent 
solutions F , , F 2, ■ ■ ■ Fp, and in this case problem (22a, b) can only be solved iffor every 
Fj(j= 1, 2, . . . ,  p) the compatibility condition

-  í Í dix, y)Fj(x, y) dx dy -  J <p{s) ■ Fj(s) ds = 0, (24)
n s

where s is arc length parameter of curve S, is satisfied. If condition (24) is satisfied for 
every Fj(j= 1,2, . . . ,  p) problem (22a, b) has an infinity of solutions, and if F0 is one of 
them, then all the others are of the form F0 + ZcjFj where Cj is an arbitrary constant. 
For ß>0, problem (22a, b) has one and only one solution.

The physical meaning of the third boundary value is known for a circular 
domain. Be i = n, where n is the outer normal to circular line S. Be R the radius of the 
circle. The specification of the value of the reduced shear force n„, all around the 
boundary by a function y leads to the condition [22]:

\ е - дТп = { * d s + °- <25)

where s is the arc length parameter of the circular arc, and a is a constant. Exemptness 
from shear forces of the edge is expressed by

R
dF
dn

= a . (26)

The possibility for an elliptic shell over a circular ground plan to be in membrane state 
or not under boundary condition (25) or (26), and in the positive case, whether these 
boundary conditions uniquely determine the internal forces of the shell or not, can be 
ascertained according to the alternative theorem above.

Let us consider a simple example. Let us take a shell of paraboloid of revolution 
subjected to vertical surface loads. Let the equation of the middle surface be

z=  y ( x 2 + y2).

Be the shell edge with the equation x 2+ y2 = R 2 exempt from shear forces. Now, the 
shell balances external loads solely by normal forces in its edge (Fig. 15). Now, the 
boundary condition is (26). Let this equation be multiplied by — 1 to statisfy condition 
a> 0 . In this way we arrive at the boundary value problem:

d2F d2F
(27a)

(27b)

where a is a constant. In condition (27a), a s  \ ,ß =  — \/R. Load function g is required to 
satisfy condition (0- Thereby every precondition of the alternative theorem is satisfied.
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Fig. 15. Paraboloid shell of revolution with normally supported edges

Fig. 16. The shell ground plan and the coordinate systems

Let us examine where this shell is in membrane state. For ß > 0, problem (27a, b) would 
have a unique solution. In the actual case, however, ß<0, and so the alternative 
theorem has to be applied.

Let us turn to polar coordinates by transformation

x = r cos 9, y = r- sin S (28)

(Fig. 16). Thereby problem (27a, b) becomes:

d2F 1 dF 1 d2F _ 
dr2 +  r í r  + r2 dB2 ^ '

(29a)

(29b)
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Let us consider now the homogeneous problem

d2F 1 dF 1 ()2F
+ r Tv +  Г2 (1Ö2

(30a)

(dF 1 \

u - * F)
= 0

r -  R
(30b)

associated to problem (29a, b). A substitution easily demonstrates that the boundary 
condition (30b) is satisfied by every function of the form F = r f(9). Substituting F into 
(30a) yields the ordinary differential equation

d2/
cm2 + /=  о (31)

with the linearly independent solutions/ ,  = sin ,9 an d /2 = cos .9. Thus, problem (30a, b) 
will have the following two, linearly independent solutions:

F { = r ■ sin .9, F2 = r cos .9 . (32)

Let us see now whether the compatibility condition (24) is satisfied for functions (32) or 
not. Since in this case cp = —a (a is a constant), substituting /•', and F2 into (24) and 
taking (28) into consideration we obtain

J \ g  ■ y d x  dy =  0 , J J<y • x dx dy = 0 (33)
Í1 a
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expressing the moment of surface load g about both axes x and y to be zero. Thus, 
resultant G of the surface loads has to cross the origin of the coordinate system, i.e. the 
centre of the basic circle, the common intersection point of influence lines of reduced 
normal forces along the edge. Now the shell is in membrane state but the internal forces 
are not uniquely determined. The problem in this case is a statically indeterminate one.

If the load function g fails to satisfy Eqs (33), that is, the resultant of load g does 
not cross the centre of the basic circle, then the shell cannot be in membrane state.

As a matter of fact, compatibility equations (33) are equilibrium conditions of the 
shell as a rigid body. The shell concerned can only be in equilibrium if the influence line 
of resultant G of the surface load g crosses the common intersection point of the 
influence lines of the normal forces along the edge (Fig. 17). If the resultant of the 
surface load does not cross the common intersection point (this position of the 
resultant is shown by vector G' in Fig. 17) the shell cannot be in equilibrium, hence 
neither in membrane state.

It should be pointed out that similar statements can be made for cones supported 
in the direction of the generatrices [23].

A number of cases of the mode of supporting discussed above were also analysed 
by Gol’denveiser (pp. 186 and 202 in [12]; [12a]).

3.4 The mixed boundary-value problem

As we have introductorily mentioned in Chapter 3, by a mixed boundary-value 
problem referring to Eq. (1) we understand the one where in the boundary condition:

dF
a —  +ßF = <p (34)

ci

a or ß vanishes in a section of boundary S without being identically zero all along the 
complete boundary.

For a simply connected bounded domain Q, and for ß = 0 in some sections of 
boundary S, the possibility of solving this mixed problem can be ascertained according 
to the alternative theorem in Section 3.3.

The problem is much more difficult where the bounded domain Í2 is simply 
connected, and in some sections of boundary S, a =  0. [ 16] offers some references on the 
possibility of solving mixed boundary-value problems of this type (see pp. 233 to 235 in 
[16]).

If £2 is a doubly connected bounded domain limited by boundaries S, and S2 with 
no common part (S = S t и  S2, S, n S 2 = 0 ), and the function F we are looking for is 
given on boundary S l, while function (34) on edge S2 (provided i = v), F may be written 
in potential form, permitting to consider the existence of a solution for the problem 
(p. 233 in [16]).
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edge beam resisting
only tension and compression

Fig. !H. (a) Doubly connected domain, (b) elliptic shell with a skylight opening over triangular ground plan

Thus e.g. Eq. (1) of canonic form has always a solution in the domain seen in 
Fig. 18a if values F and dF/dn are specified for boundaries S, and S2, respectively [20]. 
Accordingly, a shell of paraboloid of revolution with a sky-light opening over a 
polygonal ground plan may always be in membrane state if the opening is bounded by 
an edge beam resisting only tension and compression, and the outer edge of the shell is 
exempt from shear forces. Obviously, the edge of the sky-light opening has to be acted 
upon by a suitable vertical edge load. Such a shell over a triangular ground plan is seen 
in Fig. 18b.

4. Boundary conditions for the system of the equilibrium 
equations of elliptic membrane shells

Discussions above relied on the Pucher differential equation of membrane shells. 
At last—even if as a reference—let us talk about another way of discussion.

Another way of discussing membrane shells is by applying a system of differential 
equations written for the internal forces (p. 106 in [12]). In these equations the internal 
forces are unknown, permitting boundary conditions to be given directly with the 
expressions of the internal forces. Let us consider the tangent plane of an elliptic shell at 
a point P of the shell edge S. Let us define directions in the tangent plane, normal to, and 
tangent to the edge curve at the tangential point. Be N„ the normal force, N nl the shear 
force in tangential direction. Let us give a direction i in the tangent plane at the 
tangential point, with an angle o(x) between the normal and i (Fig. 19). Now, in the 
general case, the following boundary condition can be specified for the edge curve (p. 
201 in [12], p. 81 in [26]):

N„cosa(x)+ Nnl sin <7(r) =  y(r), x e S .  (35)

This condition includes two important cases:

1. for <t(t) = 0, N„ = y(r),

2. for <t(t)= Nnl=y(x).
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Thus, for у(т) = 0, the shell edge may be required to be exempt from lateral pressure or 
from shear force.

The boundary-value problem of membrane shells is also interpreted for simply 
and multiply connected domains, and so is of course the mixed problem. Let us have 
e.g. a doubly connected shell. Let edge S consist of two curves with no common part: S 
= S I u S 2. Now, /V„ = 7’|(t) on S (, and N„, = y 2(t) on S2 may be specified.

hiy. /У Preferential directions belonging to the edge curve in a tangent plane of the shell

Vekua [26,27] gives an analysis of the existence of a solution for these problems, 
by means of functions of complex variable. Special consideration was made for the case 
of specifying the distribution of the normal force N„ along the shell edge. According to 
his analyses, under such a boundary condition, an elliptic shell over a simply connected 
domain can only be in membrane state if certain integral conditions of form (18) are 
satisfied. The same statement holds for doubly connected domains. The shell over three 
or more times connected domain is always in membrane state, but this is not a unique 
one since if the domain is m+  1 times connected, then the expression for the internal 
forces includes 3m —3 real constants of arbitrary value.
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ON THE CYCLIC LOADING BEHAVIOUR OF SAND

W. F. Van Impf*
[Received: 28 February 1984]

The problem of liquefaction of watersaturated sand samples subjected to vertical cyclic 
loading in undrained conditions has been investigated in many types of laboratory tests. In simple 
shear and conventional triaxial test equipment, cyclic loading leads to very important compliance 
due to membrane penetration and end-bearing plates, resulting in unconservative deviations of the 
measured pore-pressures during these tests. At the laboratory of Soil Mechanics of the Ghent State 
University, the author developed a model test for cyclic vertical loading of large scale samples 
without any membrane supply. In this paper, results of a lot of large scale vertical cyclic loading tests 
and the interpretation of it with respect to the state-of-the art at the moment will be shown.

I. Introduction

It is well known that the dilatation and/or compaction phenomena in a non- 
cohesive and saturated soil are responsible for internal pore pressure development 
during very quick loading such as some types of cyclic loading.

Of course the draining conditions around and the permeability of the sand itself 
must be influencing such pore pressure development. One can feel that they moreover 
do influence in a very determinate way the deformation characteristics of the soil 
skeleton.

2. Cyclic triaxial loading tests

(a) A lot of research work has been done over the last two decades in the field of 
cyclic loading of saturated sand, mainly in consolidated and undrained cyclic triaxial 
loading conditions. One can refer to the work of Seed and Lee and a lot of other 
scientists.

One can resume, all of the mentioned research work ends up by describing, after a 
few loading cycles, a phenomenon called liquefaction of the triaxial sand sample, 
whatever its relative density.

Indeed, even for dense sand, a few loading cycles at a given stress level can be 
sufficient to make at a given moment the pore water pressure (Au) rising up to the initial 
consolidation stress (oc), (Fig. 1).

* Prof. Dr. ir. W. F. VAN IMPE, Laboratorium voor Grondmechanica, B-9710 Zwijnaarde, 
Grotesteenweg-Noord 2, Belgium
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Fig. I

Be aware although that for dense saturated sand samples:
1. the Au =  crc-condition is only very temporary and is produced at low deviatoric stress
2. at higher deviatoric stress du is diminishing again
3. axial deformation of the sand sample is developing only relatively slow, even after 

reaching Au = ac conditions
4. pore pressures are measured at the top of a completely enclosed small saturated 

sample.

Moreover, from this test results it became clear the number of loading cycles 
needed to obtain the first condition of zero effective stress Au = ac at given conditions of 
relative density and of deviatoric stress level, is rising with increasing mean effective 
stress. In literature one at the beginning so suggested that due to cyclic loading on a 
saturated sand at given relative density, the liquefaction potential is decreasing with 
increasing mean effective stress.

Such conclusion is opposite to our common knowledge and is contradicted by all 
practical cases.

(b) The contradictions do find their origin in the word “liquefaction” misused for 
the description of the phenomena seen in the cyclic triaxial loading.

In the case of a monotonie increasing deviatoric stress (Fig. 2) the term 
“liquefaction potential of a sand mass” is dedicated to the value of the hydraulic 
gradient developed at a given density of the sand mass by such deviatoric stress, (value
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General relation between the spherical stress 
6,1, and the critical relative density

Fig. 2

of M 0 — M , ). Of course such liquefaction potential rises as the effective spherical stress 
at stat o'm is increasing.

In the case of cyclic deviatoric loading on the contrary the term “liquefaction 
potential” only is indicating: the chance to bring up pore-water pressure at a given 
moment and place, to the effective spherical stress value at that point. It is clear that this 
chance is diminishing if such effective spherical stress at the start of the test is increased. 
Thus one needs the more loading cycles, the higher the spherical effective stress.

The expression “liquefaction” so only should be used for the collapse of a non- 
cohesive very loose non-cohesive soil skeleton due to increasing deviatoric stress and 
satisfying two conditions (Fig. 3):
1. the collapse is developing at very high deformation speed
2. the deformation speed ends up at a rather high level as long as the external loading 
on the sand mass keeps constant.

It seems that this happens for sands below or at critical density and at constant 
external loading.

Therefore in the cases 4 and 5 of Fig. 3 there is no liquefaction to be mentioned
Deformation speeds such as shown in curve 5 are the characteristic results from 

cyclic triaxial tests on dense sand samples. Some authors therefore now prefer speaking 
about “cyclic mobility” of dense saturated sand rather than to use the liquefaction- 
term.

(c) Although, even if the contradictions in terminology can be clarified, one still 
has to state that the cyclic triaxial results indicate (locally and temporarely) very high 
pore water pressures Ли even in very dense sand masses. The main researchwork of the 
past five years in the Soil Mechanics Laboratory of Ghent State University turned
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© ® tru e  liquefaction

®  © lim ited deform ation potential

Fig. 3

Fig. 4
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R elative d en sity  Dr -----

--------Porosity n in •/. -------*•
The variation of ips with the m ean spherical stress

(after De Beer 1967)

about the differences in saturated sand of pore pressure development and deformation 
behaviour during cyclic loading, depending on the way of testing itself [15, 16, 19].

Starting this research a lot of consolidated undrained cyclic triaxial tests were 
carried out on saturated samples of Molsand, a tertiary sand with well-known 
characteristics (Figs 4 and 5).

From these test results, some findings are made leading to some criticism on the 
classical way of interpretation and use of the cyclic triaxial test results, [18]. The 
interpretation of such triaxial cyclic loading tests is normally based on the idea of 
constant stress level s, = aAtJ2ac and constant relative density of the sand throughout 
the whole cyclic loading test and over the full height of the sample (Fig. 6).

1. One of the findings, that can also be made from a review of the test results in 
literature, contains the lowering of the cyclic vertical load as soon as axial deformation
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■°dev.
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Fig. 6

Eax of the sample becomes more important. The loading piston in the triaxial equipment 
no longer follows the sample deformation.

The numerical value of lowering of the axial loads depends on the type of 
hydraulic system, on the type of bushings of the triaxial cell and on the frequency of the 
applied cyclic loading. In the interpretation of test results (Fig. 7) the 5% or 10% axial 
strain level often is used putting the number of cycles needed for this axial strain eax 
versus stress level s, , supposed to be constant all over the test.

Nevertheless, it should be taken into consideration that such axial strain eax in 
most of the test results appears while the loading piston on the sample ceases to strictly 
follow the vertical deformations of the sample. As the recorded axial strain always is a 
measure of the displacements of the loading piston, the expression of the stress level s, at
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the start of the test needed to obtain a given axial strain of the sample mostly only can 
be a rough assumption.

2. Another finding is that the axial strain level, represented in the conventional 
diagrams, is put in without a sign. As evident from the test results (Fig. 6), a 
considerable number of samples however show an axial lengthening during the vertical 
cyclic loading; such lengthening, more or less pronounced, was found in cyclic triaxial

Fig. 7

loading tests on samples of Molsand of relative density Dr^70%. At Dr ^40% , on the 
other hand there always exists a positive double strain amplitude (shortening). It 
therefore, can be expected that there are “critical” combinations of ac and Dr above 
which vertical cyclic loading in triaxial tests leads to lengthening and necking of the 
sample which does not at all appear in nature. As a cause of the lengthening effect of 
very dense sand samples in cyclic triaxial tests, one can assume the extreme non
uniformity of the stress distribution leading to the redistribution of pore water in the 
sample, oversaturating the upper part of it.

(d) Mainly due to the boundary conditions of the sample, the mentioned non- 
uniform stress distribution is introduced causing non-uniform changes in relative 
density. Unfortunately, the test results are always interpreted without taking this into 
account. Triaxial test results under a monotonously rising deviatoric stress are not so 
much affected by the boundary conditions; moreover they are normally expressed in 
terms of ultimate stress. In such conditions non-uniform stress distribution has a much 
more limited influence. In cyclic triaxial tests, on the contrary, the boundary conditions 
(membrane, and bearing plates) seem to affect the test results in a much more important 
way.

Ada Technic a Acudemiae Scientiurum Hungaricae, 96 !9H3



94 VON IMPE. W. F.

3. Model tests of vertical cyclic loading on a footing

(a) Instead of making an attempt to perform cyclic triaxial tests in uniform stress 
conditions, which must be rather impossible, one could try to make cyclic loading 
model tests; for example with model footings on large sand samples, in which the stress 
distribution is very similar to that under cyclically and vertically loaded footings. In 
this way the cyclic loading tests create a heterogeneous stress field, in which, stressed 
and pore pressures can be measured as they arise at selected locations. From such 
model tests it is possible, with due consideration of scale effects, to draw better 
qualitative conclusions concerning the studied cyclic loading problem in nature.

(b) Starting from the mentioned point of view a research program was set up, to 
study the behaviour of a saturated sand mass of about 0.6 m3 in well defined drainage 
conditions, under a vertical cyclic loading transmitted through a stiff circular plate of 
120 mm of diameter in the center of the top of the sample (1.06 m x 1.06 m x 0.55 m of 
height) (Fig. 8). The sample has a well-defined uniform density and is fully consolidated 
under a given consolidation stress pc throught a rubber bag filled with pressurized 
water. The set up of the testing equipment, the way of preparing the sample and the 
running of the cyclic loading tests have been discussed before [15, 16].

scale

Large scale testing device
Fig. H
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The dynamic loading tests (at 3Hz) have been performed both on saturated (S) 
and on dry (D) sand samples. The vertical overburden consolidating pressure pc on the 
sample surface, the effective unit weight (y) of the sample after consolidation, the value 
of the static starting unit load q, on the circular model footing and the value of the half
amplitude of cyclic loading a* are chosen in each of the tests. From these initial test 
conditions of the Molsand, the unit ultimate bearing capacity of the footing qr was 
calculated from earlier research work [1].

The vertical unit cyclic load with amplitude +a* is superimposed on the 
permanent static unit load <j, on the footing. So the maximum unit load on the footing is

2) A
Pfnax Pc
Ï  » ~ t *
4r_
Ï*

Pc
r*

Ю0 (in •/•)

П». V

qt + a* = qmax, the minimum load is q{ — a*\ (a* < qt). The test results are proposed to be 
analysed using two dynamic parameters: a*/qt and A, where A is given by the 
expression:

4 m ix  Pc

A = — ----^ 1 0 0  (in %)
J r ________

у - ф  у - ф

(ф represents the footing diameter).
The measured values represent the vertical deformation of the footing As, the 

developing pore water pressures Au at different locations and the vertical loading 
pressures Aavcrl, (Fig. 9).

From earlier research work [1], the settlements sr at rupture loading qr for 
different types of footings in Molsand, depending on the bearing capacity parameters of 
the sand, are known (Fig. 10).

The values of these parameters for the large scale tests performed, are 
summarized in Table I.
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(c) In the case of saturated sand samples, pore water pressures cells are placed 
inside the sand mass-(Fig. 11).

Alternative drainage conditions were obtained by changing the boundary 
conditions around the steel ring or the water pressure cell itself.

The test tank with saturated sand with the rubber bag under water pressure pc 
and surrounding water at the footing, is entirely closed (undrained condition). In the

Y «
0.1 0.3 1 3 10 30 100 300

formation of type (A) (Fig. 11), the water around and above the steel ring is in free 
contact with the pore water of the sand; in the case of type (B) the drainage of the free 
water around the loading steel footing is prevented. In the type (C) test, there is no free 
water volume around the loading plate.

The pore pressure cells also can be put in, in three different ways (Fig. 11).
The first solution (a) consists in introducing bare cells in the saturated sand mass; 

in the second set-up (b) the water pressure cells are covered by membrane strips of 
about 300 mm of diameter at some interval. Finally in some tests one or even several 
pressure cells totally are enclosed in a rubber bag (type c) containing also a saturated 
sand sample at the same relative density as the surrounding sand mass. As the 
dimensions of the pore pressure cells cannot be neglected, the measured pore water 
pressure are to be interpreted as relative numerical values. The compressibility of both 
the surrounding sand mass and the pressure cell usually is too divergent. To minimize 
the effect of the differences in compressibility, the cells are wrapped up in smooth strip 
adapted to the compressibility of the sand sample. Special saturation techniques were 
developed to assure a minimum degree of saturation of 97% after consolidation of the 
sample at chosen vertical stresses of and pc on the scale-footing and on the 
surrounding surface of the sample.
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Tabic I

Test
No.

Sand 
cond. 

D от S

a*

4i
4r

kN/m2
A
%

P,
y-R

Sr
0
%

N
N,=
10%
0

N ,~
50%

Sr

s.
0
%

N .

A1 S 0.60 477 49.12 9.9 12 _ 1250 680 10.0 1300
A2 S 0.60 559 82.08 16.5 14 8 5 3 47.5 1100
A3 S 0.60 4804 1.00 327.7 >35 — — — 0.1 500
A4 S 0.60 1438 30.01 98.5 23 — - — 4.2 900
A5 S 0.60 414 53.86 6.6 12 — 400 — 2.5 500
A6 S 0.60 534 71.39 9.8 12 110 38 3 15.0 300
A7 S 0.60 729 44.44 33.0 17 — - — 1.7 800
A8 S 0.60 197 70.04 1.3 8 85 150 12 15.0 800
B1 S 0.60 354 33.20 35.0 24 — — — 0.7 590
B2 D 0.60 566 54.46 43.6 26 — 245 373 13.4 500
B3 D 0.61 756 32.95 65.4 28 — - — 4.0 1000
B4 S 0.60 569 64.81 69.8 22 790 95 570 35.0 1000
B ll* S 0.60 353 65.47 35.1 23 — 28 110 11.7 130
Cl S 0.60 394 26.83 72.6 >35 — - — 1.7 600
C2 D 0.60 237 51.29 22.8 >30 - 300 — 13.4 1700
A9 S 0.80 120 93.37 0.7 7 2 3 1.2 70.0 500
A10 S 0.80 669 38.89 16.4 14 — - — 0.4 400
A ll D 0.80 913 38.77 20.4 15 — 630 580 10.0 1100
A12 D 0.80 913 41.90 20.4 15 — 180 160 10.0 700
A13 D 0.80 880 37.40 20.4 15 — - 840 8.0 1000
A14 S 0.80 750 18.97 33.0 17 — - - 2.0 700
A15 D 0.80 713 44.77 10.2 13 — - — 1.0 600
A16 S 0.80 845 40.71 49.1 19 — 500 900 12.5 1000
B5 s 0.80 232 38.02 17.5 20 — — — 2.2 600
B6 s 0.80 353 28.86 35.0 23 — - — 6.2 1300
B7 s 0.81 232 68.85 17.5 20 10 4 3 27.5 220
B8 D 0.81 462 38.27 32.8 23 — 130 — 11.7 700
B9 s 0.80 538 35.24 70.2 27 — 520 — 10.3 550
C3 s 0.80 382 56.56 72.9 >35 15 7 10 38.3 60
C4 D 0.80 237 35.24 22.8 >30 - - - 50.0 900
C5 s 0.81 529 47.31 98.3 >40 — 150 - 12.5 500
C6 s 0.80 549 48.00 108.9 >40 — 70 460 27.0 1000
A17 D 0.42 835 59.29 20.4 15 — — — 2.7 1000
A18 S 0.40 435 72.49 6.6 12 — 450 — 10.0 500
A19 D 0.40 267 68.58 0.8 8 550 590 330 16.7 900
A20 D 0.40 735 23.06 10.2 13 — - — 2.0 900
A21 S 0.40 754 33.58 32.8 17 — - — 1.0 500
A22 S 0.40 687 69.88 16.4 14 — 610 380 11.7 1000
BIO D 0.40 555 63.04 43.7 18 — - - 6.7 700
B12 D 0.40 381 98.83 21.7 21 — 1.3 2 17.5 165
B13 D 0.40 783 65.76 65.1 27 — 370 740 20.0 2100
B14 S 0.40 290 65.97 27.9 22 — 290 420 11.2 450
C7 D 0.40 237 91.06 22.8 >35 — 2 - 14.2 400
C8 S 0.40 549 59.63 108.9 >40 — - - 1.4 500
C9 D 0.40 237 72.60 22.8 >30 — 24 — 11.7 800
CIO D 0.40 253 62.22 22.6 >30 - - - 2.0 600
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Hifi. II

All tests were performed on samples with relative density above the critical 
density (Fig. 12).

(d) Analysing the results of the pore pressure measurements, the main 
conclusions, discussed in detail before [17], can be summarised as:

1. In the mentioned testing procedure and in the case of a set-up of type ( A) with 
bare cells (Fig. 13) no considerable residual pore pressure could be measured, 
irrespective of the values of the dynamic parameters and A0 . Continuously 
recorded pore pressures in different points of the sample indicated that there exist pore 
pressure gradients towards the vibrating footing on the sand surface.

2. In the case of type ( A ) and pore pressure cells covered partially by membranes, 
the results are showing very small residual pore pressures Au. The building up of Au at 
partially covered pressure cells remains at a rather small level after a sufficient number 
of loadings. The pore water pressures under this cyclic loading seem to be compensated 
at some level by the existing drainage conditions.

A typical example of such cyclic loading test is given in Fig. 13 for a saturated 
sand sample of about Dr = 25% relative density after consolidation.
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(hydrostatic:
120 mm water) =0

(hydrostatic: 
180mm water) =0

(hydrostatic: 
180mm water) =0
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As can be seen in this figure, in the case of a pore pressure cell totally enveloped in 
a rubber bag filled with saturated sand of the same density as in the rest of the sample, 
rather high pore pressure were measured. Conditions of cyclic mobility of the sand 
inside the rubber bag occurred while almost no pore pressure existed in the 
surrounding saturated sand in the type (a) setup of the cyclic loading tests. This 
condition of cyclic mobility inside the closed rubber bags is very similar to the well- 
known phenomenon of “liquefaction” observed in cyclic triaxial test results on dense 
saturated sand.

3. In the case of limited drainage conditions around the loading plate of the type 
(B) or (C), even for bare pore pressure cells some build-up of pore pressure could be 
measured in the sand mass nearby the loading plate (Fig. 14). At a certain level, 
equilibrium is reached and no more build-up could be recorded.

MOLSAND 

Test NO C11

saturated; Dr = 22% -, f = 3 Hz 

q =508.57kN/m2 , ^ = 0 .4  ; A= 72.73%
Ml

Type(B) drainage conditions
■‘unit load

a =108kN/m— I =0 i

(q:=270kN/m2)
time

12;
O'

settlement of 
footing (mm) no rupture

time

pore pressure cell A4
'üufkN /m 2) (bare cell)

X = 0mm 
z =120 mm

time*

(hydrostatic: 
120mm water)=0

pore pressure cell A3 
(enclosed cell) 

x = 70mmf issu ring of 
the rubber 

* I bag____
z = 60mm

time
Van Impe 1979

Fig. 14
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The remaining pore pressure was even more important in the case ot covered 
cells. Pressure cells enclosed with a rubber bag were always showing the same cyclic 
mobility phenomenae.

A typical result of a cyclic loading test in the type (B) or (C) set-up is given in Fig. 
14. The sudden drop of the pore pressure Au, measured with the enveloped cell A3, 
down to a much lower level of remaining pore pressure, was due to an observed rupture 
of the rubber bag at the connection of the bag to the cell.

(e) Concerning the measured pore pressures in the saturated sand mass under 
vertical cyclic loading in the center and at the top of the sample, it can be concluded that 
each way of drainage of the pore pressure gradients is predominant. In the relatively big 
and fully saturated sand mass of constant total volume, each individual unit volume 
can change in volume as long as all volume changes compensate each other. So an 
“internal” way of drainage and the redistribution of the relative density reduce the 
building up of the pore pressures. Due to the excessive boundary conditions in small 
triaxial test samples such “internal” drainage cannot occur, leading to unexpected high 
values of the pore pressures even in very dense sand samples.

(f) Analysis of the measured settlements of the cyclically loaded circular footing. 
As mentioned before, the settlement s, (depending on the values of Eq, qc, y and 
diameter 0  of the footing) for Molsand was given in an earlier research program on the 
rupture-settlements for a variety of model footings (Fig. 10).

In the large scale cyclic tests, three rupture criteria were used for comparing the 
results due to cyclic loading (Table I) : ( 1 ) footing settlament equal to s,; (2) a settlement s 
=  50% sr and (3) the criterion of s = 10% 0 .  Large-scale dynamic loading tests are made 
on saturated or on dry sand mass as indicated in Table I. The values given in columns 8, 
9, 10 in Table I show the number of loading cycles needed to satisfy a corresponding 
rupture criterion.
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1 3 10 30 100 300 1000

Fig. 17

During settlements due to consolidation or cyclic loading, underneath the 
rubber bag or underneath the footing, a constant water pressure pc in the rubber bag, 
and a constant loading on the footing </, were maintained throughout.

From all results it is apparent that cyclic loading tests at a given value of can 
be fitted by a simple curve (Figs 15-17). In this technique of dynamic loading there is no 
substantial difference in the settlement behaviour between test results obtained in dry 
or in fully saturated samples; the results are conditioned only be the mentioned 
dynamic loading parameters. For given sample conditions:

(i) the value of A needed to reach the selected rupture criterion in terms of loading 
cycles increases as a*/qt decreases.
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For CRITERION s = s r

30 50 100 300 500 Ю00
— Nu ---------►

Fig. 18

(ii) for the same a*/qr xa\ue, the number of loading cycles needed to reach rupture 
increases as A decreases.

(iii) for the s — sr criterion, there exists a lower boundary of /4-values for which no 
rupture can be achieved, at least within a few thousands of loading repetitions.

The final remaining settlement su observed after a few thousands in all the tests 
are recorded (Table I).

The mentioned lower boundary of A(Amin) underneath which settlements under 
repeated loading are stabilized seemed to be about 35% in the case of this cyclic loading 
condition of Molsand.

Analyzing these final remaining settlements su of the footings in tests showing 
only elastic deformation behaviour after a number of cycles Nu [2] one can expect there 
should exist a relationship between such an ultimate plastic settlement s„ reached after 
Nu cycles and the parameters A*, a*/^, and 0 .  For all the tests in which rupture was not 
reached, it is obvious interest to express the possible relation between these “final” 
settlement, the dynamic test parameters A, and the dimension 0  of the footing. 
Such a relationship could be found for the test conditions here mentioned at values of A 
< 35%, for which pore water pressures were insignificant.

For the test results on Molsand obtained, this can be represented in the 
analytical way as:

s„=/i(a)-<p-logm
ív.

in which: 10Л (« )’
or

a =  — .
<?•

/ , ( « ) = -0.6+1.65 a , 
/ 2(a)= +450 + 405 In a .
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4. Conclusions

From the c—u-cyclic triaxial tests on Molsand, it was found the stress level, 
initially applied to the sample, strictly does not remain constant during the test. Axial 
lengthening of the triaxial sand samples appears above some combination of ac and Dr, 
making the interpretation of such type of cyclic test results rather useless with respect to 
behaviour in nature.

From results of a large scale model test and concerning the pore pressure 
building up, it seems the boundary drainage conditions at the loading plate and for the 
pore pressure cell itself are predominant.

In the case of this testing procedure on Molsand and with relative densities larger 
than the well known critical density at given values of consolidation stress, there is no 
difference in the deformation behaviour of dry or saturated sand. Two dynamic loading 
parameters A and a*!q{ are defined, with which it was found that the settlements of the 
dynamic loaded footing can be plotted in a best fitting curve with respect to this loading 
parameters and the logarithm of number of cycles, for different rupture criteria.

As the loading parameter A is limited for Molsand up to about A <35%, there 
exists a rather simple relationship between the final plastic settlement and the number 
of loading cycles.
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EFFICIENT SECURIZATION OF TRANSMISSION
NETWORKS

G. Sa l l a i*
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The paper presents planning methods to find efficient combinations of various securization 
techniques for protecting the telecommunications transmission networks against component failures 
taking the extra cost and the benefits into account. The efficient number of disjoint routes, the 
optimal degree of the overdimensioning of the multi-routed subgroups, and the optimal application 
of a rearrangeable standby network are derived for each pair of nodes under various securization 
conditions and requirements. A computer-aided procedure is also presented for the global 
transmission network securization problem and design charts and consequences are drawn.

1. Introduction

Expanding and digitalizing telecommunication networks, the protection of the 
service against traffic overloads and network component failures, is more intensively 
required. To derive benefits from the new transmission technologies, traffic should 
concentrate on transmission routes having larger capacity. However, the larger, more 
efficient circuit groups are far more sensitive to overloads and failures. For securizing 
the network preventive and curative approaches are distinguished, they may be used in 
both transmission and switching networks. The optimal combination of various 
securization techniques are extensively investigated, e.g. [1-6]. The paper presents 
optimization methods to find an efficient solution for the securization of a transmission 
network taking the extra cost and the benefits into account.

A transmission network is modelled by a graph, representing each line section by 
an edge, each transmission node by a graph node. The vulnerability of a transmission 
network, the component failures are represented by deleting the concerned edges and 
nodes from }he graph.

To secure a transmission network against component failures the multi-routing 
of circuits (preventive method) and the establishment of a rearrangeable standby 
network (curative method) are combined. The multi-routing of the circuits implies the 
division of a circuit group into subgroups having geographically disjoint transmission 
routes between the concerned pair of nodes. Forming edge-disjoint routes on the 
graph, the connectivity survives under any line section breakdown, constituting node-
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disjoint routes, protection is provided against any node or line section breakdown. By 
overdimensioning the disjoint subgroups the protection may be improved. A standby 
protection network is established from reserve systems and link permuters, which are 
available to form emergency connections when a cable or a microwave link is cut. The 
standby network is usually planned to provide the specified security level to the circuit 
groups for which multi-routing would be too expensive.

W ith an appropriate qualification index including the protection provided under 
worst-case single breakdown and extra costs required by multi-routing of circuits and 
use of standby network, the efficient number of disjoint routes and the efficient degree 
of the use of the standy network can be derived for each pair of nodes. Criteria and 
charts developed can contribute to finding an optimum combination of techniques for 
securizing a transmission network. Criteria are extended to take into account impact of 
the overdimensioning of the multi-routed subgroups and the capacity limits of the 
standby network as well as the desired security level. Principles for designing efficient 
standby network are also presented. Finally a computer-aided procedure is shown, 
which is available to provide both a cost-efficient solution and a specified security-level 
solution to the global transmission network securization problem

108

2. Efficiency of multi-routing

The efficiency of multi-routing depends on the topology of the concerned 
networks and is influenced by the cost of the standby network. The efficient number of 
disjoint routes is calculated separately for each pair of nodes.

Let R be the number of the possible disjoint routes between a pair of nodes, and 
denote by r ^ R  the concerned number of disjoint routes, and c!г, (i =  1, 2, . . .  r) the 
unitary cost on route i, and let cf* g  c(2r ) ^  c‘r). Dividing the demand (given in a

certain unit of circuits) into r portions in the ratios of Ц\.ц2: H r Z  M, = 1V = l /
and routing portion i over the route i, it may be assumed, that ^ / i2. ■ ■ = Rr- Let 
a portion Ц, be protected by the standby network with a unitary cost c,. 
Then assuming the worst-case single breakdown, security level is calculated as

S =  1 — max Hi + n,= 1 - / i i  + jrs, where цу ^  1/r; the index to qualify the efficiency of the
Í

multi-routing securization is defined as

f и  s  l-^ i+ A * . m
Q M f * . ! ) - c -  , г  -, О)

where C is the total cost in relation to c t , the unitary cost on a one-path route. We shall 
consider two extreme cases. In case A let /rs = /q , i.e. we provide full protection under
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single breakdown with the aid of a standby network; in case В let /i, = 0, i.e. only multi
routing securization is available.

Assuming a uniform division of the circuit group, the Busacker’s minimum cost 
flow algorithm [7] can be used for finding minimum cost (node or edge) disjoint routes 
on the representing graph. The r-th step of the algorithm provides minimum cost r 
disjoint routes with a cost of

1
r i =  1

where is the increment of the sum of the unitary costs in the i-th step.
Obviously Acx = c(,1) = c1. Substituting цх = 1/r into (1), the qualification index is given 
as

Q(r; {l/r}) =
с, (r— 1 +<5) 

X  Act + S c ,
( 2)

where <5= 1 in case A, 0 = 0 in case B. Henceforth Q(r; {1/r}) is abbreviated by Qr.
Finding the maximum of Q with respect to r and {/if}, it may be shown by 

analyzing the dérivâtes of Q, that if
'о - •
X  Асх + 0с,

Ac. < — — -— -— and Ac. + , > 
r° r0- 2  + 0 r°+ l -

X Aci + Scs
i = 1

r0- l  +Ô
(3)

then the optimum distribution of circuits is /i, = /r2 =  . .  ./тго= l/r0 , /гГ( +1=  . . .  = цк 
=0, and max Q = QTo, i.e. the uniform distribution of circuits, splitting the circuit group 
into r0(rA or r„, respectively) subgroups optimum. Since cx^ A c 2^ A c 3 . .  ^therefore, 
one and only one maximum exists, where Qro- x < 6 r0^ 6 r 0+i . Note, that in case of 
non-uniform splitting of circuits the maximum of Q is generally given at r, not less than 
'о [4].

Analyzing the two cases we obtain that if cx/cs<Q[B) at any r, then cx/c,< Q {r'J* 
<QlBJ , rA^ r B^ 2, i.e. the use of standby network is not efficient. If cx/c,> Q {rB), then 
ci/c3 >Qi*)>QlBB . 1 = гл = гв< i-e- c, is cheap enough to provide full protection. It can be 
seen, that the cost-efficient protection method out of A and В is, that which has the 
smaller efficient number of disjoint routes.

In case of c}r, = c{r~11, i.e. the establishment of a new route does not modify the 
previous ones, we have Acx = c}0 (i =  2 ,3 . . .  r), and denoting c-0 by c, (3) is written as

cr <
О (4)

Under such conditions a universal decision diagram may be given which 
indicates the efficient protection combinations versus c jc x and c2/c, (Fig. 1). The 
decision marked with a query depends on c3, c4 , etc. When c3 +c2, then rA = r„
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Fig. I. Universal diagram of efficient protection combinations

=  2 (the route 3 is inefficient) and the use of the standby network is efficient in its 
entirety of the marked domain. Figure 2 gives the efficient combinations of r and Ó, if 
сл < с 1+ с2 assuming that Я =  3.

If c,=Ci -t)1-1, i=  1 ,2 .. .5 is a geometric series with parameter q — c2/ci ^  1, then 
the decision diagram indicating the efficient combinations of r and <5 is shown on Fig. 3.
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Fig. J. Efficient protection combinations, if ci+ i/ci=c1/c l , R -5 .

3. Overdimensioning of multi-routed subgroups

The efficient security level is always 1 in case A, and S=  1 — l/rB̂ 0.5, in case B, 
which latter may be less than a desired minimum security level S„.

Therefore, we consider the case C, where an addition to the multi-routing of 
circuits (case B), a “fixed standby network” is established by overdimensioning the r- 
path routed subgroups. If S< S„, then a portion

Bf — Sm S —Sm — (5)

should be available, when any route is cut out of r routes. Thus,

Q< C )_
Г

Substituting (5) into (6) we obtain

Qlc>=(C) _  C l ' ( r  _  Q ( B )

Í  ACii= l

( 6)

i.e. the efficiency of the case C is independent of Sm, and equal to the efficiency of the 
original r-path routing (case В). Consequently rc — rB, and the relations recognized, 
between the cases A and В, are valid between the cases A and C. The universal decision
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diagram shown on Fig. 1 is completed by the overdimensioning technique if and only if 
exclusively multi-routing protection is proposed and the security level provided by the 
multirouting is unsatisfactory.

In case A, we assumed full protection using the rearrangeable standby network 
with a unitary cost cs in a degree ц„ = ц 1. Now we generalize this model in two steps. 
Firstly we consider the case D, when the standby network has a capacity limit ц0 
between the examined pair of nodes and the desired maximum security level SM <  1, e.g. 
SM =  0.8. Thus, the possible values of ц„ are:

the choice of /us = 0 is efficient, case D goes into case B(rD = rB). Otherwise, as high as 
possible use of the standby network is efficient. It means that when case A—assuming 
maximal ns—is more favourable than case B, then case D with any value of ц„ > 0 is also, 
and so is rD — rA. However, if

the use of the standby network is not required, and rD= min(rB, RM). As a 
consequence on Fig. 1 that if the network topology does not preclude (8), i.e. R ^ .R M the 
standby network is queried in both intermediate domains, and the decision is also 
dependent on SM. Specially, if SM£j0.5, then the standby network is deleted in the 
entirety of the concerned domains. Figure 4 shows the universal decision diagram to 
the solution of optimum protection combination taking into account Sm and SM , the 
parameters of the desired security level and R, the number of possible disjoint routes 
(assuming that n0^.SM).

In general, the unitary cost cs is a function of ц,. Assuming a monotonous 
increasing step-wise function with cost parameters c,, < cJ2 < . . .  cSL < . . .  in the form of

with fi0,o = 0 (case £), the qualification index for an r uniform path routing is denoted

4. Efficiency of the application of a standby network

OÜBsü min(/i0 ; .

Derivating (1) with respect to ц5 we obtain, that if

i — 1 i — 1Z X ACi
1— Hi r —1 (7)

Î
f l i=l / r

( 8)

CÁB,) = C,L if Bo.L-l<B,ÜBo.L

by <21Е)Ш
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Fig. 4. Universal diagram of optimum protection combinations with an (S„, SM) security level

Finding maximum of QlB) (/tj with respect to r and ц, , we can state that:
(a) instead of ц, we may consider L, the number of steps (conclusion of case D); 

consequently it is sufficient to find the maximum of

V r l  = C ,
1 -  ~  + H 0 . L

-  Z A c , +  Z o.j-t) c
r i=1 ]m 1

with respect to r and L.
(b) a step Lis to be taken into account only if

c, . l <  > where QrV = max Q \E)0 ;

(c) an efficient number of disjoint routes r£^ r B; specially rE = rB if

Г В

c j .  1 > r e  A c ,  в  —  Z A c iÍ = 1

(d) if max L is given at L , , and r2 < r , , then max QlB) L is given at L2 ^  L. .
L L

A simple procedure based on these statements to find the optimum combination of r 
and L, additional features, supplements and case studies are shown in [8].
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5. Planning efficient standby routes

For estimating cs , the unitary cost of the use of the rearrangeable standby 
network, a standby network model is used, which also provides design principles.

We assume, that the permissible topology of the standby network is identical to 
the topology of the transmission network to be protected and the unitary cost of a 
standby circuit is proportional to the unitary cost of a normal circuit between the same 
pair of nodes by a factor a > 1 as well as a standby circuit is used by n(//s) relations as an 
average.

To minimize standby network cost the standby requirement ns = SM — 1 + 1/r is 
to be divided among many routes, thus denoting by r,(r ̂ r s^R )  the number of standby 
routes the total cost in relation to c, can be written, as

where

Z Aci
C =

Г»
Z»=1Z Vs.A(r.)

Г * C, n ( n , ) - C i  (B s ~ V s. i ) IV s

if r> 1

Z Vs,  i V s  » Vs,  1 =  Vs, 2 =  • • * =  Vs,  ra >i= 1

and we have taken into account that in case of the breakdown of a normal route, the 
corresponding standby route is also cut.

Minimization problem of C with respect to rs and {/**,,} is, it is recognized, 
identical with the minimization problem of Case В discussed in Sect. 2. Accordingly, 
we obtain that the optimum solution is to divide ц, into rB uniform portions, i.e. the 
optimum number of standby routes is equal to the efficient number of disjoint routes in 
case B, and Bs,i~Vs.i -  • ■ ■ —Vs,rB — vJrB- Introducing w(ns) = a/n(ns), we can then 
write: r

Z Aci Z Aci
C = — -----+ n,w (n ,)- - r 1 ------ , f o r r > l .  (9a)

r c  1 (гя - 1 ) с  1

If r =  1, the routes 2, 3 .. ,rB are assumed to be standby routes, thus
rB
Z Aci

C=1 + SM W(SM) ^  - ,  for r= 1 . (9b)
VB~ l ) c \

For general cases can be identified from equations (9). To obtain an 
estimation for c, , we unify (9), simplifying the function w(ns) on the basis of decreasing 
attribute of п(ц3) as follows:

* ( V s )  =

w if г >  1

if r =  1

. Ы
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Mu№routing.Overdimensioning to level S„, 

Multirouting ♦
standby network to level S„ P = -

10 15 20 2 5 3 0  3.5 4.0 q/C ,

Fig. 5. Optimum protection combinations versus W  and c2/c,

where W is an appropriate approximating constant. Thus, the estimation for c, is:

C‘={V~ T -  00)гв 1

Comparing c, to the inequality (7), we have that if W< 1, then the use of standby 
network is proven to be efficient. Substituting (10) into (3), in case of W-*0 we obtain 
rA-* 1; in case of W-* 1, then rA-*rB.

Figure 5 shows a transformed form of the decision diagram on Fig. 4, also taking 
into account the condition Act =  c, and the lower and upper limits of ( 10) in the form of

w ( ^ + c 2^ c . Z W ( Cl+c2).

The equation of the bounds of the shaded domain is given as

w  ( * - ! ) •  (P -1 ) 
l + x ( p - l )

where x = c2/ c , , p = 2 for the lower bound, p ^ r B for the upper bound. We can state 
from Fig. 5 that if the security level is generally higher, then n can enhance and the 
establishment and use of a standby network is preferred.

6. Computer-aided planning of transmission networks 
under security constraints

Usually the transmission networks are planned to provide a security level 
S„( = Sm = SM) specified for each relation so that the multi-routing of circuits is applied 
with a permitted cost Ac, (A> 1) and the standby network is planned to satisfy the
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residual security requirements [1, 2, 6]. To find a sub-optimal planning compromise, 
various sets of S„ and Я should be tested.

Using the above efficiency principles and criteria a favourable planning 
procedure may be constructed which directly provides an optimal combination of the 
various protection techniques. The flow chart of the proposed procedure is outlined on 
Fig 6. The procedure is available to provide (a) cost-efficient solution by an internal

S0 -SECURITY LEVEL 
SOLUTION

Fig. 6. Computerized procedure for optimal security planning of transmission networks
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iteration and (b) specified security-level solution applying supplementary steps. The 
procedure is presently incorporated into the computer-program system developed by 
the Research Institute of Hungarian PTT for planning metropolitan and long-distance 
telephone networks.

7. Conclusions

The paper presented criteria and a computerized procedure for finding the 
optimal combination of the securization techniques 01 the transmission networks: 
multi-path routing of circuits, overdimensioning of disjoint subgroups, use of 
rearrangeable standby network. The efficient multi-routing has no more than re 
uniform disjoint routes, where rB is a topological attribute of the graph of the network, 
the efficient number of disjoint routes without standby network in the concerned 
relation. It is found, that the overdimensioning is not included in cost-efficient 
solutions, but it may be favourable for reaching a specified security level. The 
application of a standby network is efficient if the standby routes serve many relations 
and it is optimal if rB uniform standby routes are used. Under higher security 
requirements the use of the standby network is preferred.
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FLUID MECHANICAL ANALYSIS OF THE EXHAUST 
TURBINE OF THE TURBOSUPERCHARGER 
UNDER NON-STEADY FLOW CONDITIONS

E. P á s z t o r * a n d  Y. D ib 

[Recieved: 15 March 1983]

The experimental and theoretical evaluation of the efficiency of the exhaust turoine of 
pulsating (non-steady) flow, i.e. the establishment of the difference between efficiencies of the turbines 
of steady and non-steady flow is dealt with. The authors constructed a test equipment in which the 
frequency and the amplitude of the pulsation could be varied within the actual limits existing in a 
Diesel-engine. The theoretical and experimental investigations ascertained that because of the shock 
and separation losses taking place in the impeller, under the effect on the pulsation, the efficiency of 
the turbine of pulsating (non-steady) flow is always lower than that working at the same mode of 
operation but under steady conditions. It is demonstrated how the different parameters which define 
the non-steady flow, influence the efficiency of the turbine of non-steady flow.

1. Introduction

The small radial exhaust turbines serving for turbosupercharging the auto
mobile engines has aroused great interest in recent years. Several researchers studied 
the characteristics relating to the efficiency and performance of the turbines at non
steady (pulsating) flow conditions.

The working conditions of the exhaust turbines of the turbosupercharged 
internal combustion engines are strongly characterized by non-steady processes. The 
investigation of this circumstance is significant, among others, from the point of view of 
the development of the change of the charge, however, it is of crucial importance in 
connection with the cooperation of condenser and the turbine of the turbosuperchar
ger because at the non-steady flow working; the variation of the efficiencies of both 
units cannot be neglected.

This paper is intended to contribute to the investigation of this problem or, more 
exactly, to the analysis of the reduction of the efficiency of the exhaust turbosuperchar
ger taking place at the non-steady (pulsating) flow working mode, as well as to find out 
how to prevent the diminishing of the efficiency.

* E. Pásztor, H— 1221 Budapest, Honfoglalás u. 48/b, Hungary
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2. Setting-up and definition of the problem

By investigating in every possible way the performance and efficiency of the 
exhaust gas turbine of the turbosupercharger the non-steady (pulsating) working 
conditions should be considered.

Under the effect of the pulsation (Fig.l) the exhaust gas flows out from the 
stationary vane ring of the turbine with an absolute velocity c, of variable value but

Fig. /. Flow conditions in the runner of a turbine of radial vane system: c, = absolute velocity, w, =  relative 
velocity, u , =  peripheral velocity, pm„, =  maximum pressure, pmi„ =  minimum pressure, p' = average pressure, 

a, = entrance angle of absolute velocity, ß , = entrance angle of relative velocity

having nearly the same direction (a, ~  constant). Accordingly, not only the value of 
the relative velocity tv, but also the direction (/J,) ofthe gas entering in the runner varies 
because the peripheral velocity ut of the runner, due to he rather high value of the 
moment of inertia, remains constant.

As is to be seen in Fig. 1 the variable angle /?, induces shock (separation, 
turbulence, throttle, etc.) losses at the suction edge of the runner and practically in the 
whole runner. This shock loss reduces the available capacity and, consequently, also 
the efficiency of the turbine. From that said above it follows that for the purpose of an 
exact evaluation of the performance and efficiency of the turbine, it is the non-steady 
working state which is to be taken into account.

In such a case the flow characteristics cannot be considered to be constant or of 
mean value because the neglect of the periodic variation under the pulsation could lead 
to a non-permissible error in the evaluation of the characteristics or the working 
conditions of the exhaust turbine. A further consideration which permits to construct 
such a non-steady (pulsating) test as well as to develop the theoretical (mathematical) 
model is that the variation of the absolute velocity c, at the outflow of the stationary 
radial vane ring, induced by the pulsation, results in the reduction in efficiency of the 
exhaust gas turbine. The purpose was to evaluate the reduction of the efficiency caused 
by the pulsation and how this reduction could be minimized.

Acta Technica Academiçe Scienliarum Hungaricae, 96 1983



A N A L Y S I S  O F  E X H A U S T  T U R B I N E S 121

For varying the absolute velocity , that is, to produce pulsation, a rotary valve, 
turned by an electric engine (Fig.2, designed by No 12) has been arranged in front of the 
exhaust turbine of the automatic turbosupercharger. In that way the non-steady 
working state has been established which resulted in reducing the efficiency in the

Fig. 2. Working scheme of the test equipment: I. Condenser, 2. turbine, 3. throttle valve, 4. combustion 
chamber, S. starting fuel pump, 6. starting fuel tank, 7. equipment producing ignition spark, 8. head fuel 
pump, 9. driving motor of fuel pump, 10. fuel tank, 11. driving motor of rotary valve, 12. rotary valve, 13. 
piezoelectric sensor (signaller), 14. pressure signal recorder 15. injection nozzle, 16. measuring orifice, X. 

measuring points of pressure and temperature

turbine. From the test results also the reduction of the efficiency of the turbine could be 
evaluated.

The program of the theoretical investigation and the calculation were built up in 
a way that at the same time also the variation of the absolute velocity c, at the entrance 
of the runner as well as that of the variation of the value of the relative velocity w ,, the 
flow direction (/?,) and the gas flowing in the runner have been taken into account.

The theoretical calculation is built up on the basic values found from the test 
results, thus simulating these latter ones.

Acta Technica Academiae Scientiarum Hungáriáié, 96 1983



122 P Á S Z T O R ,  E .— Y . D I B

3. Test set up and method applied 
at the present investigation, test results

3.1. Test set up

The tests had been performed by making use of a turbosupercharger type JAFII 
which was made into a run automatic (so becoming an idle running gas turbine). The 
turbine of the turbosupercharger contained a radial-flow impeller, a total inflow 
stationary vane ring and an inflow volute chamber.

The special equipment serving for this purpose (Fig. 2) had been built by the 
Institute for Vehicle Engineering of the Technical University Budapest. The 
construction of the equations may readily be followed on the diagramatical layout of 
Fig. 2, therefore, no detailed description of it is given here. During the test procedure 
particularly great care was taken to make an exact measurement of the thermal char
acteristics of the turbine, since the reduction of the efficiency of the turbine had been 
established from the performance equilibrium of the condenser and the turbine. At 
each measuring point two or three thermoelements had been arranged (at spacing from

Fig. 3. Photograph of electric engine in a mounted state
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180° to 120°, and produced the average of the measurement values. The entrance and 
outflow pressures of the condenser and the turbine had also been measured at two or 
three operating points, and the pressure gauges were also placed to spacings 180° to 
120°. For the measurements of the pressures mercury and water pressure gauges were 
used. The inlet air was taken from the surroundings within the laboratory, the 
temperature of which was sensibly constant. The r.p.m. of the turbosupercharger was 
measured with the aid of an electric tachometer.

The working ratio of the turbosupercharger had been investigated by r.p.m. 
between 30000 and 55000. The steady working states of different loadings served as 
basis for the measurements (in such cases the rotary valve did not work or cause 
throttling) had been produced by an appropriate position of the throttle valve (Fig. 2, 
No. 3) arranged behind the condenser, while the non-steady (pulsating) working state 
was produced by inserting a rotary valve (Fig. 2, No. 12 and Fig. 4) revolved by an 
electric engine (Fig. 2, No. 11 and Fig. 3) of variable r.p.m. arranged before the turbine. 
The supply tube fitted in front of the turbine in which the rotary valve had been 
arranged (Fig. 4) had a diameter 120 mm; the diameters of the rotary valves were by

Fig. 4. The demounted rotary valve with its electric engine and cutout serving for the encasement of the 
rotary valve in the conduit before the turbine
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order of succession 110,113,115,118 and 119 mm in order to produce the pulsations of 
different amplitudes. The frequency of the flow pulsation of the gas produced by the 
rotary valve of variable r.p.m. was 25, 40, 60 Hz, respectively.

The pulsating pressure before the turbine varying with time was measured with 
the aid of a piezoelectric pressure intensifier ( 13). The electric signals was recorded on a 
special tape-recorder (14).

3.2. Measurement procedure, test program

(a) Steady flow (non-pulsating) operation

After re-examining all units of the test equipment, in order to obtain exact 
measurement results, the characteristics of the automatic turbosupercharger at the 
three positions (0, 1, 2) of the throttle valve (Fig. 2, No. 3) and with standstill of the 
rotary valve (12) was established. The measurement had been initiated with an open (0) 
rotary valve. The rotary valve in position (2) produced the greatest possible throttle at 
which the system could still be operated.

By raising the r.p.m. of the turbosupercharger between 30000 and 55 000 
gradually by 5 000 r.p.m. of all these r.p.m., all measurable thermal hydrodynamical 
characteristics were measured.

(b) Non-steady flow (pulsating) operation

For the purpose of checking, first the characteristics of the turbocharger was 
measured from the zero position of the throttle valve being at standstill, a't a given r.p.m 
of the turbocharger. Then, the electric engine was switched on which controlled a 
rotary valve of given diameter and produced succesively the pulsations 25, 40 and 60 
Herz. Hereafter, the same characteristics were again measured at higher r.p.m. by 
raising it by 5000 successively, until the highest value, that is, 55000 r.p.m. was 
attained. Then, a rotary valve of larger diameter was arranged before the turbine, and 
the entire measurement procedure was repeated by varying meanwhile the r.p.m. of the 
turbine and the frequency of the pulsation.

3.3. Processing and evaluation of test results 

(a) Procedure and basic results of the steady state evaluation

The thermal-flow characteristics of the test set up was measured in a steady state 
m anner except the frequency and amplitude of the pulsation frequency, therefore, the 
procedure of the basic evaluation practically was the same both in the steady and non
steady cases.
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The basic relationship used lor the evaluation may be found in refence [1].
The rotary valve having been arranged immediately in front of the turbine to a 

sufficient distance from the condenser (Fig. 2), no such high pulsation was noticed in the 
course of the measurements and their evaluation which would have resulted in the 
worsening of the measurable value. The characteristics, i.e., characteristic curve of co
working of the condenser of the turbosupercharger is depicted in Fig. 5 for different 
static throttlings and for different diameters of the rotary valve. On the variation of the 
amplitude and frequency of the pulsation no measurable change of the characteristic 
curve could be observed due to the circumstances mentioned above, wherefore, in this

Fig. 5. Characteristic curve of the condenser of the turbosupercharger: x  = 0 throttling, 0 = I throttling, A = 2 
throttling, 0 = valve 0  110 mm, + =valve 0  113 mm, T =valve 0  115 mm, l= v a lv e  0  118 mm,

■  = valve 0  l ív mm
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figure the steady and the pulsating flowe are represented together. In the figure also the 
values of efficiency (riisk) of each operating point are given which are equally valid both 
for the steady and the non-steady flows.

In Fig. 6 the characteristic curves of the turbine of the turbosupercharger and 
their co-working curves are to be seen for the case of different throttlings and rotary 
valve diameters. The values of the efficiency at several points of operation are also 
indicated here. As a matter of course, these efficiency values were related only to steady 
working. The variation of the frequency of the pulsation affected the turbine 
characteristic curve to such a slight extent, the efficiency excepted, that to avoid the 
overcrowding of the figure the pulsation frequency is not indicated here.

Fig. 6. Characteristic curve of the turbine of turbosupercharger (Notation applied is the same as that in Fig. 5)
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(b) Evaluation of the turbine o f non-steady flow and its basic results

The procedure of the evaluation of the non-steady (pulsating) test results was as 
follows (in the figures the values of the test results are designated with the subscript
“exp.”):

Every operating point of pulsating flow actually measured was identified and, at 
the steady-flow working, searched for that one at which, from the point of view of 
throttling, was identical with that of the non-steady flow (Fig. 6). Then the value of the 
isentropic turbine efficiency (r/jjr) of each operating point was evaluated. From the 
value (r/j,r ) the value of the non-steady (pulsating) isentropic turbine efficiency (>iinsl T) 
was subtracted, the difference having been denoted with (Atj); that is, Arj = rjlsT—tfixsir. 
Making use of this method, the ratio At]/r\ilt was calculated, that is, the deviation

Fig. 7. Shapes of the pressure waves immediately before the turbine, a =  filtered waves; b = non-filtered waves
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F iff. 8. Variation of(/lt;/rçhl)c,p versus A p/pj according to the tests within a given region of frequency in case of 
different peripheral velocities u, measured.

(decrement) of the efficiency caused by the pulsation. The pressure waves recorded on 
the special tape (Fig. 7) was played back. After filtering out the external disturbing 
signals, the frequency (Hz) and amplitude (dp =  pmai —pmin) as well as the ratio dp/pg 
was determined wherein

*  P m ax P m in
P o — 2 ’

i.e., braked (measured) entrance pressure in turbine.
Thus, the values dp/pg and Ar\/r]isT associated with the very same operating point 

have been determined and the connected functions p/pg = /[drçisT] plotted for different 
r.p.m. and frequencies. According to the measurements the variation of the frequency 
hardly affected the efficiency of the turbine, therefore, as a final result, the variation of 
Ati/r)isT is represented as a function of dp/pg in Fig. 8 for different peripheral speeds. The 
measurement values are valid between the limits of frequencies 30 Hz and 50 Hz.

4. Theory of development of the shock loss taking place 
in the impeller and its determination

4.1. Shock losses on a plane vane system

Consider first an incompressible working fluid which, in the simplest case, flows 
through a plane vane system. The flow enters into the plane vane system, which is 
composed of straight vanes, at an angle (Fig. 9) and separates on the inlet edge of the
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vanes. Under the effect of the internal friction the flow direction becomes identical with 
that of the vane system at a given point, that is, the flow will be equalized.

The shock loss caused by the impact of the incompressible working fluid through 
the vane system, can be calculated as follows.

Let the outline abed (Fig. 9) considered as a checking surface. Let us assume that 
in the cross-section cd (which has been assigned in an arbitrary distance to the inflow

Fig. 9. Flow scheme in plane vane system

90 70 50 30 20 fl, 0
Fig. 10. Shock losses £,h in the plane vane system plotted versus angle /i,

profile ab) the disturbance induced by the vane system has been fully equalized, and its 
direction coincided with that of the vane system. With the aid of the continuity 
equation related to the outline abed and the pulse equation the loss coefficient [1]; [2]

c= p*-p*
1 2

y p w  1
= cos2 ß !

wherein p = density
P*- P* = braked pressure of inflow and outflow gas, respectively.

From the above equation it is clear that if the gas flows into the runner at an angle 
/1, =90° (Fig. 10) then no shock loss occurs, while the shock loss linearly increases with 
the increase or decrease of the entrance angle of the gas (in the figure only the half of the 
symmetrical curve is depicted).
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4.2. Development o f the shock loss on a vane ring

One extends the simplest conclusions deducted in the preceding paragraph to the 
(circular) vane ring, so significant difficulties arise which are associated with the pulse 
equation related to the relative velocity as well as with the Coriolis and centrifugal 
forces (Fig. 11). The most significant ideas for the solution are dealt with on the basis of

Fig. 11. Flow scheme of vane ring: A t =velocity triangle at point Л , , /t2 = velocity triangle at point A 2

reference [1]. For the evaluation of the coefficient of the shock loss in the vane ring, the 
relative radius of the equalization (r) has to be known which can be calculated with the 
following relationship

sin ßx ■ COS ßi ■ Ő=  ( l - r 2) [ '
(sin ßi+ U - őr 

4 г2

2
- u sin ß

■']
wherein ô =  2n/z, pitch of vane ring,

й — u1/w1, dimensionless peripheral velocity, 
r — r2lr ,, relative radius of equalization.

In case of ß>90°, the above relationship may be written in the following form

sin ß\ ■ cos ß\ ■ S =  (1 — r2)
(sin ß'i + u- Ö- r2)2 

4 r2
+ и sin ß\ ■ Ô

with ß\  — \ S0°—ß l
In Fig. 12 the variation of r is plotted versus and oq.
Here 0 = 2n/z = 2n /\\, since in this case the number of the blades of the runner 

was 11.
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Г

Fig. 12. Variation of the relative compensation radius (r) as a function of angles /i, and a,

Eventually, the value of the coefficient of the shock loss £sh is given by the 
following equation:

C,h= ^(1 - 2  sin2 /?,)+ -  l—f ( s i n ß { + û ô r 2)2 +

“Га/ о  -w, -л, (sin ß {+U-Ô-Г2)2 (  1 -Г 3\
- z \4(cos/>1+ H ) ( l - f ) ± L- - i 1. ■ я ( 1 —Г----- -— I —r L г2 • ö ■ sin /?, \  3 J

— 4й

The minus sign is used in the case of ß t <90°.
In Fig. 13 the values of the coefficient of the shock loss £sh are indicated according 

to the calculations with angles a, = 20°; 22°; 25°.
In the case of the turbine investigated the value of the angle a, was 22° and that of 

<5=0.5712.
9* Ada Technica Academiae Scientiarum Hungaricae, 96 1983
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5. Calculation of the efficiency of the turbine 
of non-steady flow, calculation results

5.1. Calculation o f the efficiency of the turbine of non-steady flow

On the basis of the coefficients of gas dynamics and the test results obtained, the 
angle ßi of the gas entering in to the runner and, consequently, from Fig. 13, also the 
value of C5h have been evaluated.

The value of the pressure loss caused by the shock was:

A p v =  y i s h  p w 2i

Let us now examine how to fit the pressure loss brought about by the pulsation 
(Fig. 14) into the process investigated.

Fin- 14. Expansion process of the turbine and the shock loss caused by the impact

Two méthodes have been worked out in the course of this investigation:
— The actual pressure at the outflow edge of the runner (p2v) may be evaluated by 

adding the pressure difference (Apv) brought about by the pulsation to the pressure 
p* measured after the turbine (Fig. 14a):

P2v = Pl+Apv

— Considering that the pressure loss caused by the shock is practically brought about 
at the entrance of the runner of the turbine (puf  the calculation may be carried out 
by subtracting the pressure difference Apv caused by the pulsation from the entrance 
pressure p* (Fig. 14) which yields

Pi v  =  P * ~ A p v .

By examining both cases, the difference between the results of both methods is
insignificant.
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With the calculation program the first of the above methods has been considered 
(assuming that the shock pressure loss takes place at the outflow of the runner) because 
the calculation theory and the computer program itself also become simpler and easier 
to survey.

After evaluation of the pressure loss caused by the pulsation the calculation 
should be repeated by considering p2v in lieu of p j in evaluating the pressure ratio of the 
turbine.

5.2. The main results of the calculation

The results of the calculation of the efficiency of the turbine was obtained with the 
aid of a computer specially developed for this purpose at the centre of computation of 
the Technical University, Budapest. The results are detailed by the work referred to 
under [1].

In the course of the experiment the pressure waves recorded on the magnetic tape 
was played back and after filtering out the external disturbances (Fig. 7) each of the 
pressure waves had been distributed into twenty sections in this way obtaining twenty 
efficiencies to a wave length. The average of twenty efficiencies obtained along a wave

Fig. 15. Variation of the values (An/rifXtc), as a function of Ap/p* calculated in a given range of frequency for
different peripheral velocities
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has been denoted with (t]insl T) and the efficiency obtained at the mean value of the wave 
with (rjisr).

After that the values Arj = r]iM—rçilM(T and Ar]/rii3l as well as dp/pg were 
established by following the procedure applied at the experiment.

The functions dp/pg =/(drç/rçijT) associated in this way have been determined in 
a given range of frequency for different peripheral velocities. The results are indicated in 
Fig. 15. In the figures the calculation results are designated with the subscript rech.

6. Correlation of the experimental and theoretical 
(calculation) results

In order of the correlation of the results obtained at the experiment and with the 
aid of the theoretical calculation, the final results obtained by making use of both 
methods have been plotted in a diagram (Fig. 16).

From the figure it is to be seen that the calculation resulted in a larger reduction 
of the efficiency, mainly in case of lower peripheral velocities. This reduction in the 
efficiency was much smaller in the case of higher peripheral velocities. By evaluating

Fig. 16. Variation of the values measured and calculated (drç/i/,„T) plotted versus dp/p* for different peripheral 
velocities within a defined region of frequency;------calculated;-------- measured
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these results it is to be taken into account that the pulsation occurred immediately at 
the pipe stub of the turbine and, according to the calculation method used the pulsation 
was not damped in the parts of the turbine. The value of the coefficient of the shock loss 
has been defined by using quasi-stationary method, the loss caused by the separation 
between the rotor blades and by the shock is practically of less value than that defined 
by the quasi-stationary procedure.

Let us now examine the the differences between the experimental and calculation 
results. For this purpose the ratio of the reduction of the efficiencies obtained by the 
experiments (d»//r/lsT)exp and by the calculations (drç/i;jsr)rech which has been 
designated with D:

(Л  ri/riu r ) „ p

У Ч / Ч и т )  rech
In Fig. 17 the pairs of the values ut and dp/pg associated with the same D values 

at the f r e q u e n c ie s 30 to 50 may be seen. In the figure, above the parameter D= \ the 
curves of parameter D> 1, and below those of parameter D< 1 are to be found. Since 
actually with the increase of the loading of the Diesel-engine supercharged not only the 
value of u, but also that of dp/pg increases, in varying the working stage of the Diesel- 
engine the value of D is by close approximation considered constant.

The connected values u , , A p/pg of the existing, actually operating Diesel-engines 
are grouped in the immediate vicinity of the curve of D a  1 parameter, it might be stated 
with a rather good approximation that in the actual working stages the calculated and 
measured values approximate each other well.

Fig. 17. Variation of the values of ratio D as function of the peripheral velocity and dp/pj in a defined region
of pulsation frequency
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At actual working stages near the maximum, the dp/pg — value before the 
exhaust turbine seldom exceeds 0.5, its average lies between 0.4 and 0.5 [3]; [4]; [5]. In 
such cases, the peripheral velocity of the turbine of the turbosupercharger under actual 
working conditions is 330 to 360 m/s, consequently, the actual working conditions 
could well be realized with the test equipment.

In the following the issues obtained by the work of the authors are outlined 
briefly.

1. A test equipment was set up with the aid of which a pulsation which 
approached the actual one before the turbine, therefore, the test equipment was 
suitable for the investigation of the working of the pulsating turbine.

2. According to measurements performed of the pulsation before the turbine, it 
did not bring about measurable change in the values of compressor characteristics. 
There, the pulsation presented itself only in the form of throttling. This has been 
attained by arranging a large damping tank between the turbine and the condenser.

3. According to the measurements and calculations performed, the efficiency of 
the pulsating gas flow turbine was always worse than that of the steady flow turbine. 
According to the tests, in the entire investigation range the reduction of the efficiency 
measured was 1 to 4%, according to the calculations, on an average, it was 0.5 to 11%.

4. At a given peripheral velocity and at a given frequency of pulsation the 
efficiency of the turbine of non-steady flow was unequivocally worsening with the 
increase of the ratio dp/pg , while in case of dp /pg«  0.5 at the maximum peripheral 
velocity (u ,s300m /s) which could be obtained, the experimental reduction of the 
efficiency was about 3.5%, and the calculated one 6% or so.

5. The efficiency of the non-steady turbine had been influenced by the pulsation 
frequency only in a negligible way according to both the tests and the calculations.

6. According to the tests the increase of the peripheral velocity at a constant ratio 
dp/pg and constant frequency unequivocally decreased the values (drç/r/jst)exp, i.e. the 
turbine became relatively more and more favourable. In case of the value to be 
produced within the whole range of the periphieral velocity (dp/pg) % 0.2 the average 
change of the value (dr//rçisl)exp was about 2.3 to 2.5 per cent, and according to the 
calculations about 9.5 to 10.5 per cent.

7. By a final summary of the measurement results a good approximate 
relationship was established for determining the reduction of the efficiency of the non
steady working turbine:

7. The results obtained

with n, mni =  highest peripheral velocity in the course of the tests.
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The limiting values of validity of the relationship are as follows:

Лр/р* ~ 0  to 0.5; u,%150 to 300m/s.

The tests were performed with full inflow (i.e. not partial inflow) turbine, further, only 
the pressure of the entering medium but not its pulsation, therefore, the validity of the 
above relationship is strictly restricted to the case treated.

8. For the significant part of the actual working stages the calculation and test 
results are in close agreement; this particularly holds true to the working stages 
approaching that of full loading. During the studies, authors established a factor D 
which showed to what degree the calculation and measurement results agree with each 
other in the different ranges of loading.

9. The coefficient of the shock loss £sh increases with the decrease of /i, between 
the angles 90° and 30° and grows to the value 2.5, however, in case of ß {>90° it 
increases slower with the decrease of ß {, hardly exceeds 0.5, and with ß t = 90° the value 
of Csh is zero.

10. The shock loss factor (£sh) is also the function of the entrance angle a , , in case 
of /Í, <90° decreases with the increase of a , , whereas in case of ß t >90° increases at a 
negligibly slow pace. However, the reduction (sh taking place in the range ß t > 90° does 
not compensate the increment of the outlet loss caused by the growth of a , , thus, in 
such instances efficiency of the turbine is worsening both at the steady flow and non
steady flow cases.

11. In order to increase the efficiency of the turbine at a non-steady flow working 
state it is convenient to select the average value of the angle /?, under the pulsation 
between 90° and 120° because within such range of angle the coefficient of the shock 
loss is, at an average, of minimum value.
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FUNDAMENTAL RELATIONSHIPS BETWEEN 
GRINDING PARAMETERS

I. K a l á s z i*

[Received: 4 January 1983]

The author extends the application of the parameters of grinding ability suggested by Lurje 
and supplies proof of their importance higher than expected. Beside comparison they may also be 
integrated mathematically for the grinding time and the values thus obtained simultaneously 
represent also the volume of the metal ground during this time. These values offer the pssibility to 
determine the parameters with iteration using the metal volume ground as measured at two points of 
time, without the need of measuring radial force. By the method described the parameters are suitable 
for production planning as well. Namely, by the help of the wheel life constant introduced, the metal 
volume ground by the grinding wheel during the wheel life may be determined. The calculation 
accuracy exceeds that required for the practice as proved by the author experimentally.

1. Introduction

The parameters which could be measured on grinding are limited to the 
following:

A r„  = radial change in size of grinding wheel [mm]
W„ — wheel volume worn [m m3]
Gf  =  metal removal [mm3]
F, = tangential force [N]
Fr — radial component of cutting force [N]
К =  grinding ratio
n, = revolution per minute of the workpiece [1/min] 
n„ =  revolution per minute of the grinding wheel [1/min]
R. =  roughness of the ground surface [pm]

These have to be used to form further parameters for the comparison of various 
grinding processes under different conditions.

The first parameter which is also applied in the practice of our days:

Gj_ f mm3l  
Wsz [m m 3J

This parameter is, however, not reliable, because at the grinding time t  =  t kr it 
reaches its definite value and as a ratio it might give the same values for wheels with

• I. Kalászi, H-1118 Budapest, Villányi u. 83—85, Hungary
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different diameters in spite of the differences between the metal removal outputs. The 
ratio Fr:F„ depending on the time t, is often used for evaluation.

Neither К nor F,:F, is adequate in technological designs.
Hahn [1], recognizing these anomalies, introduced the Л chip removal 

parameter [mm2/kp] by which it may be written:

B v  s
Fr= - j í ( \ - e ~ B At) [kp]

where В

S
t

the width of wheel, [mm]

radial infeed speed

stiffness of the system [kp] 
grinding time [min]

The member in brackets on the right side of the function, continuously increases 
the value of В ■ ve/Л from 0 to some seconds. Л refers to the efficiency of chip removal, 
the equation is selective, can be applied for comparison but not suitable for 
technological design.

In Hungary, the method suggested by Lurje was tried out. Lurje [2] proposed to 
use the grinding parameter K f2 [mm3/min, kp] and the exponent Я for the comparison 
of the grinding abilities of various wheels. The author and his research team tested the 
efficiency of a number of grinding lubricants with the help of these parameters [3]. The 
relationship between the parameters by Lurje is expressed by the equation

K}2 =  K/2 ' ( 1 )

where Kj-2 is the complex parameter for grinding ability to be calculated for the time t 
=  0; thus, at least two measurings are required for the determination. It is evident from 
the dimension that the metal removal, the time and radial force have to be measured. 
Assumably, this apparent difficulty might be the reason why no further reports have 
been published on new trials made in Hungary. This paper, also summarizing the 
measuring data in other publications, is intended to stimulate the researches to be 
continued. It points out the possibility of the extended application of parameters; 
explains the integral of equation (1) comparing it with practical experiences and 
suggests a method for the calculation of wheel life as the metal removal between two 
truings of wheel. Last of all, for the determination of Я and Kf2 a new iteration process 
is suggested which is based on the metal removals measured at two points of time.

The paper applies the symbols accepted in the Journal of Technology [4] and the 
values expressed earlier in K f2 [mm3/min, kp] converts to Kf2 [mm3/min, N], The 
desk calculators are adequate for rapidly processing the data obtained by measuring. 
The author used for his calculations the Type HP-97 with programs previously set up 
by himself.
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2. Theoretical considerations

2.1. Definition of К f2

The Journal o f Technology defines К f l  as follows [4]: “Complex grinding ability 
parameter by Lurje. It expresses the metal volume pro minute in mm3 which can be 
removed by IN radial grinding force with 1 mm length of the width of wheel, measured 
just after the truing of wheel. It offers the advantage that the change of grinding ability 
characteristic of the grinding process might be written in form of a logarithmical 
equations in function of time; the exponent Я represents the selective measure of the 
change. The applications of К /2 has been extending for some years. For grinding of 
steel its value varies between 10 and 45 [mm3/min, N] depending on the grinding tools 
and the method of grinding.”

In the paper already referred to [2] Lurje reports on experiments on a large scale. 
Their main result was the conclusion that Kf2 to be calculated under given conditions 
changed, depending on time subject to the function Я. Different values of K f2 will be 
obtained at various radial forces, hardness of wheel or feeds pro revolution per minute.

Я is also dependent on conditions. As measured by Lurje, it may be Я = 0.08-0.16 
for internal grinding and Я = 0.05-0.15 for external grinding. The way of wheel truing, 
the grinding characteristics, the sizes and characteristics of wheel etc. also influence Я. 
The extent of change is assimptotic to the axle x and more rapid by for higher values of 
Я. The lower this value, the more favourable are the properties of the wheel. The 
dependence of Я on the grinding lubricants has been studied by the Institute of 
Production Engineering of the Technical University Budapest [3].

The values Я and Кf2 are to be calculated from two measured points. Namely, 
from equation (1) it may be written:

1. Kf2t= -  In —^
Я К',í  2

( 2)

Using K'f2 = K , measured for t, and K’f2 = K 2 for t2 the following relationship will be 
obtained:

(3)

Knowing the values Я and К f2 and usingequation(l) the points of the curve describing 
the change may be calculated, i.e. the curve may be plotted against the grinding time t. 
Figure 2 gives some examples.
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2.2. Metal removal as integral of the area below the curve 
(suggestion of the author)

The slope of the curve of equation (1) in function of time is dependent on the 
exponent —At of the natural logarithm e. This equation may easily be integrate 
according to t. Thus, we shall have the function:

Q = $K'f 2 dt = l (K f2e ll)dt  (4)

The definite integral of equation (4) in the interval 0 —f gives the total metal volume Q, 
[mm3/N ] which is removed under the given conditions with 1 mm width of the wheel, 
unit of radial force and during the time t. The definite integral of equation (4):

Q , =  = (5)
о

Thus, if the constants of equation (1) are known, the metal volume which is 
removed from the unit width of the workpiece with the unit of radial force can be 
calculated for any period of time. The radial force Fr, as being dependent on the 
working parameters, has to be known for the given case. Frspcc, referred to 1 mm width, 
is generally lower than 1.

Its decrease is combined with a lower value of Kf l . Lurje, on basis of the 
graphical analyses of his curves, stated that Kf2 = Ck(F„pcc) ° 16. For example, for 
wheals of moderate hardness and moderate graining Ck =  24. If Frspec = 5 [N/mm], 
then K f2 = 24.5° 16 = 31 [mm3/min, N], Using the relationship the value correspond
ing to the given wheel and the working conditions to be set up may be substituted into 
equation (5). In this way the integral will give the real metal removal. By calculating the 
total metal removal it becomes possible to determine the number of workpieces to be 
produced between two wheel truings.

2.3. CT ■ Kf2 and the belonging T as criteria of wheel life

As explained, the complex grinding ability parameter decreases in function of 
time. In certain cases this decrease might reach even 1/3 of the original value (to be 
discussed in Section 3). It would be unreasonable to use wheels which have already 
suffered such a considerable loss of grinding ability. It is suggested to introduce the 
wheel life criterion belonging to the grinding time

1К/2]тахй С тК / 2 . (6)

The wheel life constant is in the range Cr  = 0.6-0.9 and thus in accordance with 
equation (2) wheel life may be expressed by

T= К/2
CTK-fi

( 7)
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For example, one of the measurings carried out by Korcsak [5] (see Table 1 and curve 1 
in Figure 2), gave the results K f2 = 28 and A=0.07. If Cr  = 0.5 is chosen (column 5 in 
Table 1), then it will be

T= ÔS? ' " ^ * 991 [ml"]

That means that the grinding ability parameter after 9.91 minutes is: K f 2 = 14 
[mm3/min/N]. The integrated total metal volume removed at the unit length during 
this time amounts to: ß, =  200 [mm3/N], provided that the radial force is Fr = 1 N. 
Korcsak applied the value F ,spcc = 6 [N/mm] for his measurings, thus the metal 
volume actually removed—taking into consideration the calculation technics used for 
measuring—is described by the function

öv.i =  Frspec • Q, = 6 • 200 = 1200 [mm3] .

The number of the workpieces to be ground during the wheel life is given by the 
quotient of the real value of “ß v>l” and the metal volume to be removed on basis of the 
stock allowance (Qmdt,), i.e.

(?tal
Q m d b

( 8)

2.4. Iteration to determine X and К f2 (as suggested by the author)

If the total metal volume is known which is removed from the unit width of the 
workpiece with the unit force at two points of time during one single grinding process, X 
and К f2 might be calculated. Assuming that the total metal removal at the time t , is QM 
and at t2 it is Ql2, then using equation (5) the result will be:

Ö M - í p O - « " * )  and Q,2 = ^ f (  l - « - *). (9)

As quotient it may be written:

Q m ]  0 - * " * ' )

e d  (1 - е - * * у
( 10)

In equation (10) A is the only unknown value. If X' is continuously increased from a low 
value properly chosen, the two sides will be equal at a given value of X'. In this case A will 
be equal the value to be obtained. By substituting this value in either form of equation 
(9) К f2 will be calculable. When using a desk calculator, each step of iteration takes 
some seconds and 5 or 6 steps are sufficient to come to result provided that the increase 
of X' is not chosen to be too low. Increase by 0.005 or 0.01 is reasonable. Proof is 
supplied by the data obtained by the author and his colleagues with conventional 
methods of A and К f2 determinations (3).
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3. Measuring results

Measuring can be carried out in different ways:
— Force components at every time interval and the metal removal are measured; the 

research group of the Institute for Production Engineering applied this method [3].
— The radial force Fr is set, the slide holding the workpieces is pressed to the grinding 

wheel with weights to be put on and the measuring is limited to the time and metal 
removal. The measurings of Korcsak [5] were made in this way (Fig. 1).

Fig. 1. Experimental device of Lurje

—  The values of and Q2 are measured only, while Frspec is calculated by the 
functions explained (suggested by the author).

The evaluation of the measurings suggested by the author is discussed subsections 3.1,
3.2, 3.3 and 3.4.

3.1. Evaluation o f the measurings performed by the research 
group of the Institute for Production Engineering [3]

One of the results of the measurings reported in [3] is that when using unalloyed 
carbon steel (HB = 200± 10) and wheel KA 32 I 11 KE as well as ISO basic fluid for 
plane grinding, Kf l  = 4A.\ and 2 = 0.007 (see Table 2 of the paper [3] published].

According to equation (5) the integral of the area below the curve by Lurje, if t 
=  10 minutes, the result will be

e ,= Я v ’ 0.007 ,°|= 4 4 0 [ ~ ] .

As found at the measurings the mean radial force at 10 mm width of the workpiece 
amounts to 69.5 N. I.e. the real metal volume removed from 1 mm width of the
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workpiece may be expressed by the function:

Ö v . ,  = F„ptc Q, = 6.95 •440 = 3060
mm3
mm

The value measured is 2980. Deviation between the value measured and the 
value calculated: 3%. The measured force Fr is supervized by a known empirical 
relationship. The first step is to calculate value F,, because formulas are available for 
this only; by multiplying these values with the quotient Fr.F, the radial force is 
obtained. The quotients of the radial forces Fr and those of the tangential forces F, are 
indicated in Table I (measured by the author in [3]).

Table I

'(mmi F 'F , Mean

1 1.68
2 1.74
3 1.66
4 1.65
5 1.64
6 1.68
7 1.69
8 1.68
9 1.72

10 1.73
11 1.75

£ 18.62

Thus, the mean value Fr:F ,^  1.7 is to be seen from Table I. Lurje suggests for this 
value the quotient 1.8->2.5 [6]. In Hungary, force values were measured by Tóth [7] 
and Tutsek [8]. For usual grinding, the quotients of the forces measured by them are 
within the range suggested by Lurje. In this case, let we chose the value 1.7.

It is to be discussed to which extent the empirical formula by Masslov [9] may be 
used for the determination of F,. If v, = 10 m/min, s =  10 mm and /=0.03 mm/double 
stroke, the formula by Masslow will lead to the following function:

(*)F, = 21u°-7s° 7/ 0 6 = 67.4[N] (measured: 41.1).

The deviation between the measured and calculated values was obtained with an 
accuracy of 64%. Consequently, if for any Kf2 and À given in literature the value of Fr is 
unknown, it will be possible to calculate it with sufficient approximation by applying 
this empirical formula as the product of F, and the constant 1.7. Explanation is given by 
a sample in the next item.

* Note: s [mm/rev] s  table speed/work piece revolution; H K F = grinding fluid
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3.2. Evaluation of the measurings by Iliász

Iliász [10] has been engaged in comparing the effects of the binding materials of 
grinding wheels. He used the conventional wheal marked “20”, carbon steel C =  0.6% 
(HB 260 — 280) for internal cylindrical grinding under the test conditions: v5Z =  28 m/s, 
V, = 39 m/min, s = 8 mm/rev,/  =  0.004 mm/Kl, HKF*: 2.5% emulsion. Now, using the 
relationship by Lurje, as referred to by Iliász, the integrated and real value of Q, as well 
as the life—chosing the life constant Cr =0.5—is to be determined by the method 
suggested by the author. Iliász gave for the wheel “20” the values 2=0.12 and K f2 
=  24.2.

As to equation (5), choosing the life constant Cr  =  0.5, the wheel life will be

T4 ln Í - á l 2 lnö!5 - 5-77[ml" í

rounded 6 minutes. Accordingly, Q, is calculated by:

1 - e  x,)= ^ ( 1  —e —°-12-6)=  102.8
mm3l

Л П '
To calculate Qval the force Fr spec must be known. This is, however, not indicated 

by Iliász. Using the Masslov equation for the calculation of F, we shall have:

F, =  Cwv ° V  V  6 = 44.6 [N] .

If Fr : F,= 1.7 is chosen, the radial force will be

Fr= 1.7 F,= 1.7 44.6 =  75.9 [N] .

The radial force is operative at 8 mm, thus

Q ^  = FrSP'cQ, = 9.5- 102.8 =  976.6 [mm3]

During a grinding time of t = 6 minutes the author of the paper [10] measured 
Qva, =  2190 mm3, i.e. the deviation from the calculated value amounted to 55%. At the 
same time, Figure 7 by Iliász [10] shows starting intensity of the wheel wear between t 
=  6 and r = 8 minutes, thus redressing is really advisable at t = 6 minutes as has already 
been calculated above. As to the deviation of 55% it was assumed that for taking up the 
curves t — Q ancl K’f 2 = f ( K f 2 ) not the same data should have been used. For our 
studies the iteration process was applied (with [mm3/min, Kp] dimension), to be to 
good comparison).

The results obtained by iteration were 2 =  0.1 and K/2 = 71.1 [mm3/min, kp],
thus

for  t — 4
Q,= ( l - e x,)=

71.14
0.1 (1—e~° ‘ “ ) =  234.6
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and
б,.. =  Q, Fr ipic =  0.95 • 234.7 =  223.02 [mm3] 

measured: 213 [mm3] 
deviation: + ip.02; AH = 4.5%

for t=8
-0.1 8') = 391.3

and
Ö,.i =  Q, Fr spcc = 0.95 391.3 = 371.7 [mm3] 

measured: 363 [mm3] 
deviation: —8.7; AH = 2.4%

It is thus proved that the two curves were taken up with different data (assumed 
failure of Iliász).

Korcsak [5] tested 19 various kinds of steel and in Table 15 of his paper [5] the 
values ofX>2 are given. These are the only values indicated, but for all the kinds of steel, 
for the grinding times f = 5 and i=  15 minutes. In this way it was possible to calculate 
the constants by Luije. Korcsak used for infeed grinding a cylindrical grinding machine 
specially modified where 1 cm width of wheel was exposed to 8 N radial force. The 
conditions of the grinding process were: t>„ =  35 m/s and r, = 20 m/min, width of the 
workpiece 36 mm. The chip removal occurred by itself because of the constant value Fr 
and varied between 0.036 and 0.009 mm. For the calculation the value of Fr spec is 
needed. F, is calculated for the average /=0 .02  mm/rev. according to the method as 
explained above:

The wheel used by Korcsak for grinding was of moderate graining and moderate 
hardness (PP350 x 40 x 127,3924 C1K, according to GOSZT). A part of his measurings 
was evaluated with the method suggested by the author. From two points Я and K f l  
values were calculated and used for plotting in diagram some data of measurings 
obtained for each characteristic group of metals (see: Table II and Fig. 2). Table II also 
shows the integrated values of Q, for t = 5, t =  10 and t =  15 minutes. The values of Tand 
QT belonging to the life criterion 0.5 • Kf2 are also given. Table II clearly indicates that

3.3. Evaluation of the measurings by Korcsak

I0‘ Acta Technica Academiae Scientiarum Hungaricae, 96 1983
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Table II. Conversion of the data obtained by Korcsak as suggested by the author

No.
t = 5

K,2 

t=  15
X Kf2

T
CT = 0.5 

[min]

K/2
X

Q t
[mm3/N]

Г m m 3]

em
t =  5

Г mm3]

eb d
1=10

Г m m 3]

' k J
t=  15

Remark

1 2 3 4 5 6 7 8 9 10 11

1 19.6 9.6 0.070 28.0 9.9 400 200.0 120 200.0 260.0 C = 0.3% steel, sorbite structure
2 15.4 9.1 0.052 20.0 13.33 384 192.3 188 157.6 207.6 C = 0.22% chromium-vanadium 

steel, magnesite structure
3 12.5 7.8 0.047 15.8 14.75 336 168.0 70 124.3 171.6 C = 0.5% nickel-chromium steel, 

sorbite structure
4 10.8 6.0 0.050 14.4 13.86 288 144.0 63 112.3 152.7 C=0.67% carbon steel, troostite 

structure
5 7.7 4.2 0.060 10.4 11.55 173 86.2 45 77.9 102.2 C=0.12% austenite steel, austenite, 

carbide structure
6 4.3 2.0 0.77 6.3 9.12 82.8 41.4 26 43.9 51.3 W = 16% high-speed steel, 

martensite structure

(a) Column 2: Measuring data given by Korcsak; columns 3-10: values calculated by the method as suggested by the author; column 6: constant of Q 
= j  K'{2 di; columns 7-10: integrated values of Q, at various points of time; column 11: characteristic of the metal processed as given by Korcsak

(b) Characteristics of grinding Wheel PP350x40x 127, 3925C1K (GOSZT), i>„ =  35 m/sec, v, = 20 m/min, a,vtr, st =  0.02 mm/'rev, Dmdb = 36mm
(c) Curves: see Fig. 2.
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after reaching the value 0.5 Kf2 it would not be reasonable to continue grinding. For 
example, in the case indicated in the first line the metal removal is 120 [mm3/N ] in the 
first five minutes, while in the 5.1. minute after Tlife time it is not more than 60 
[mm3/N]. This fact supplies a proof of the rapid decrease of the grinding ability of the 
wheel and emphasises the necessity of redressing after f = 9.9 minutes.

The test run marked 1 gives information about the grinding of standard carbon 
steel. If T= 9.9 min and the grinding conditions are the same as at the experiments made 
by Korcsak, then the real value ß val will be the product of ß r  = 200 [mm3/N ] and 
F, »pcc=  9.9 [N/mm], i.e.

б« . =  Fr sptc • QT =  9.9 • 200 = 1980 [mm3] .

Acta Technica Academiae Scientiarum Hungaricae, 96 /983

Fig. 2. Measurings by Korcsak evaluated according to Lurje (see Table II)
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It is assumed that from the cylinder of a workpiece produced from this steel an 
allowance of0.5 mm has to be ground off to 01 0 0  mm. In this case the metal volume to 
be removed from 1 mm width of the workpiece is

ß mdb =  Dn ■ 1 • 0.5 =  157 [mm3] .

The number of workpieces which might be produced between two truings:

n — Q y  al
ö m d b

1980
757 =  12 .

The other data in Table II., connected with various kinds of metal, are also 
suitable for similar use.

4. A new conception for evaluating the test results

The use of the values K f2 and Я has been limited so far, although with successful 
results, but for comparison only. But it is evident from Section 3 that by applying the 
relationship introduced by Lurje essential technological parameters can be calculated. 
The tests discussed in Chapter 3 point to the physical importance of this function. In the 
knowledge of the constants it is possible to calculate the metal volume to be removed from 
the unit length of the workpiece during the grinding time t. Knowing this value and using 
the metal removal given in the drawing the number of the workpieces which can be 
ground during the wheel life might be calculated, similar to the method described in the 
Manual of the Fortuna Works [11] (See Table III).

Regarding the fact that Я depends on the conditions and Kf2 on the wheel and 
metal, it would be advisable to determine both values for each grinding wheel, grinding 
method and all kinds of metal to be ground; Korcsak carried out such determinations 
with the same wheel, measuring the values Kf2  at 19 materials at two points of time 
each.

Concerning the ratio Fr : F, our knowledge is also rather limited, although the 
calculations would require extended knowledge. For F, more than one empirical 
formulas are known which, as has already been explained, offer successful use. The 
more exact knowledge of this ratio might help to determine the radial force Fr with 
higher accuracy and from this the value Fr spec ; this modifies the metal removal Q, 
[m m 3/N] belonging to F rspcc = l [N/mm] which can be calculated from the 
relationship by Lurje.

5. Conclusions

The importance of the parameters by Lurje Я and Kf2 is higher than was believed 
to be so far. For comparisons both parameters have already been proved successful 
earlier. Lurje himself has also examined the effects of several changes of properties by
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Table III. Determination of /  and Кf2 by means of Q, and Q2 measured at two points of time, with iteration process. 

(For comparison the values are given in [mm3/min, kp])

Symbol
6 i

[ t ]

e 2

[min]
h

[min]
K/2

X
K/2 Remark

for Qt for Q2 mean at t, at t2 (researcher)

1 760 1260 5 20 208.6 187.6 198.1 0.14 98.3 12.05 Korcsak
2 664 1176 5 20 200.4 198.6 199.3 0.16 89.6 8.12 Korcsak
3 403 1050 5 20 107.4 112 109.7 0.08 73.5 22.15 Korcsak
4 294 672 5 20 81.6 80.96 81.3 0.10 49.3 11.0 Korcsak
5 213.3 363 4 8 71.1 71.18 71.14 0.10 47.7 32 Iliász, », =  39m/min
6 216.7 396.94 4 8 60.19 60.11 60.15 0.05 49.25 40.3 Iliász, »,=56m/min
7 213.5 371.7 4 8 62.27 60.51 61.00 0.07 46.10 34.0 Iliász, »,=78 m/min

(a) 1, 2, 3, 4, Qlt Q2 by Korcsak: Obrabatyvaemosty stalej pri shlifovanii krugom raznoj kharakteristiki. Veszt. Mashinostroenie (1962), No. 2. 62-66 
Grinding conditions: wheel EB 36 SZT1K, »„ = 50m/s, »,= 10m/min, e = f  (Fr=  12 kp). Workpiece: 1: steel 45; 2: steel 50 G; 3: 20 x N3A; 4: 33 x CA (GOSZT) 
External grinding.

(b) 5, 6, 7, Q, and Q2 by Iliász [4]. Grinding conditions: see in the text. Internal grinding.
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these constants. The author of this paper has come to the conclusion that the integral of 
this relationship presents a practical value and ofTers the possibility of calculating a new 
life criterion: the metal volume to be removed between two dressings. This provides an 
essential contribution to the technological design. Some relationships Fr/F, need 
further research to clarify and to achieve higher accuracy in the calculations, but the 
relationships already known help to achieve an accuracy of 3 -h 50% in design.

1. Hahn, R. S.: On the mechanics of the grinding process under plunge cut conditions. Trans, of ASME No. 
65 Prod. 7 (19651

2. Lurje, G. B.: Kriterii otsenki rabotospasobnosty shlifovalnyh krugov. Vestnik Mashinostroenia 4 (1967)
3. Kalászi, I ,  Iliász, D., Tóth, I.: Performance and evaluation of grinding fluids. SME MR 72-213 Technical 

paper, 1972 Chicago
4. Review of grinding in Hungary, 60/1, 65-66
5. Korcsak, S. N.: Proizvoditelnosty protsessa slivovaniya stalnih detalej. Masinostroenie, Moscow 1974
6. Lurje, G. B., Komiszarzsevszkaja, V. N.: Slifovalnüe sztanki i naladka. Vüszsaja Skola, Moscow, 1976, p. 

188
7. Tóth, I.: Wear of grinding wheel. Gép, (1973), No. 2. (in Hungarian).
8. Tutsèk, J.: Einfluß der Bindungscharakteristik auf die Schnittkräfte bei Schleifscheiben verschiedener 

Fabrikate. Schleifen und Trennen Folge 55, (1970), 9-15, Kundenschrift der Tirolit Werke
9. Masslow, E. N.: Grundlagen der Theorie des Metallschleifens. Vlg. Technik, Berlin 1952

10. Iliász, D.: Effect of ceramic binding material on the characteristics of grinding. Review of Grinding in 
Hungary. 1970/71, 27-35 (in Hungarian)

11. Fortuna Works AG: Cylindrical Grinding. Műszaki Könyvkiadó, Budapest 1967, p. 75. (in Hungarian)

(A ) General considerations

When determining the values K f l  and Я the accuracy to be achieved depends on the test conditions. 
Determinations are generally made by measuring the metal volume F which is removed from the unit width 
of the workpiece during the time At, thus the value

will be obtained, where Q,t is the specific value referred to the point of time f , . When measuring the specific 
radial component of grinding force, Fr jpec, at the point of time i , , the parameter by Lurje at this point of time 
will be

Qu can be determined with high accuracy. At cylindrical grinding by using a micrometer the diameter of the 
workpiece d, can be measured with an accuracy of ±0.005 mm. That means that in accordance with the 
relationship (d,±0.005)a • l= d ,±0.015 an accuracy of ±0.015 mm3 can be achieved on determining the 
metal volume F which, if d=  100 mm, will present a deviation of ±0.004%.

References

APPENDIX

Accuracy on the determination of the constants by Lurje

A da Technica Academiae Scienliarum Hungaricae, 96 1983



R E L A T I O N S H I P S  B E T W E E N  G R I N D I N G  P A R A M E T E R S 153

As to the determination of force, the deviations might depend on the conditions. Assuming a 
measuring system of average quality the error amounts to ±5%. In general, when taking a force 
F, tpcc =  10 N/mm and an average real value Q, = 200 [mm3/mm, min] the extremes of the measured value 
might be

[ ^ / 2],-10 = 200/9.5 = 21.05
and

[ ^ / 2] . - i o  = 200/10.5= 19.05,

thus AH = 2.2 and/or 1.7, i.e. the deviation varies between + 11% and —9%.
If on measuring force the deviation exceeds ±  5%, it will be reasonable to determine the constants Я 

and K f  2 from the coherent “i” pair of points. In such cases the value i = 4 — Л provides an accuracy sufficient 
for the practice. By applying the known process of the Gaussian method the exact values can be obtained 
from the “f  pair of points.

(B ) Determination of the constants by lurje from “n” pair of points

The relationship [K/2 ], = Kf2e M is transformed to the next form:

log [ K /2].=  log K /2-( lo g  e)Xt

where K f2  and Я are the unknown values.
Introducing the following symbols from equation (1)

l°g[K/2),= y,
logK /2 = B,
4(loge)=A ,

we shall have
? = B+ At

where the relationship obtained by the Gaussian method:

b .Y . - n t ,? ,
A = —-------------

£ t? - n t?

and
B= ? , - A t .

In knowledge of A and В the values to be obtained are:

К /2 = num logß.

loge'
Я

The overlinings refer to mean values such as: Ÿ = ---- , etc.
n

( 1 )

( 2)

(3)

(4)
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FLUCTUATION OF PHYSICAL CHARACTERISTICS 
IN THE FLAME OF LOW CAPACITY OIL BURNERS

K. R e m é n y i*

[Received: 27 September 1983]

The analysis of the fluctuation of the physical characteristics of flames is highly assisting in the 
better understanding of the combustion process and the operation of the firing equipment. By means 
of up-to-date instruments the spectrum of the fluctuation in pressure, temperature and electric 
conductivity can readily be measured and is suitable for frequency analysis. The analysis offers useful 
information on the turbulent mixing and the reactions in the flame.

Notation

p — density of flowing medium
u — axial flow velocity
V — velocity perpendicular to axis
X, y — axial and radial coordinates
c  — concentration
m  — component in unit volume
cp — specific heat at constant pressure
I — temperature
l ' — mean temperature pulsation
ft — specific enthalpy
r  — radius perpendicular to axis of flow
a — degree of burnout
H — enthalpy
В  — fuel flow
D  — diameter of burner outlet
T , — degree of turbulence
e' — mean pulsation of velocity
e  — electric conductivity
e ' — mean pulsation of electric conductivity
p — pressure
p' — mean pulsation of pressure

1. Introduction

Because of the complexity of the physics-chemical processes in industrial firing 
equipment, the knowledge of flame characteristics, that feature the quality of firing and 
can be simply determined by up-to-date measuring methods, is of great significance. A

* K. Reményi, H-1014 Budapest, Uri u. 38, Hungary
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lot of information about the quality of firing is given by the fluctuation of different 
physical characteristics, for which the most frequent frequency of the fluctuation 
detected in the wave length range observed is usually called “flame frequency”. Flame 
parameters that can be subjected to frequency analysis are brightness, pressure, 
temperature and electric conductivity of the flame, the composition of different 
components, etc. Direct correlations can be found between the individual physical 
characteristics and certain characteristics of the flame, e.g. pressure fluctuation results 
in the “noisiness” of the flame and, with an increase in fluctuation the firing equipment 
may become unstable, etc.

The hydrocarbon flames of industrial firing equipment are generally of turbulent 
diffuse nature. Since the fuel oil and the combustion air are introduced into the burner 
outlet separately, to a great extent combustion will depend on the process which 
determines the creation of the combustible mixture. Mass-, pulse-, and heat transport, 
furthermore the chemical reactions take place simultaneously in the flame. The balance 
equations (1) of the time mean values of the variable for axisymmetrical turbulent jet 
are as follows:

(a) Momentum equation (pressure distribution and buoyant force are neglected)

дри2 1 dypuv
+  = 0 .дх у су

(b) Mass conservation equation for the individual components

dpuCi
dx

1 dypvc:
+ у dy

= mi

(c) Energy equation (adiabatic conditions are assumed)

ox y ex

These correlations give no information about the turbulent nature of the flame. 
The balance equations represent an ordering principle, but the “turbulent diffusivity” 
parameters are unknown, so the system of equations cannot be solved. The isothermal 
turbulent jet model of Reichardt [2] and the mathematical models for turbulent flame 
[3,4, 5]—representing the developed version of the Reichardt model—assume that in 
the flame the velocity, concentration and temperature distributions in the individual 
axial sections are universal and of the Gauss type. The diffusivity factors are 
determined from the distribution of the time mean values of the individual variables.

The diffusivity factor of the momentum exchange is:

vëv/dx 
Ej 2 ô2v/dr2
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The mass exchange factor is:

vdc/dx 
Em= 2 d2c/dr2

This mathematical model can be used in general with swirl-free flow and gas 
firing [6].

For turbulent diffuse natural gas flames Lenze and Günther [7] elaborated a 
testing method meeting the practical demands, with a burner of simple construction, 
where fuel leaves the burner outlet through a round section while 0 2 oxidizer leaves 
through an annular section.

They assumed for flames burning both in open space and in closed space that the 
flame front was the surface determined by the time mean value of the stoichiometric 
concentration.

They determined the burnout of the fuel in the individual axial sections by 
measuring the fuel concentration.

The degree of burnout is:

For the description of variation of the burnout along the axis they adopted 
Heiligenstaedt’s correlation [8] which says:

a(x) = 1 -  exp [ -  ai-x/Do)*]

and where a and b are constants determined by experiments. It could be assumed that 
concentration profiles in the flame were alike. Using this assumption they could define 
not only the local values but the mean values of the reaction density (energy developed 
in a unit volume) for the axial sections as well. In this way reaction density and its 
fluctuation can be determined along the flame axis which, in turn, characterize the 
accelarating and decaying phases of the reaction very well.

2. Experiments with oil flames

Based on what has been said above it can be stated that for the flame type of our 
experiment the diffusivity factors characterizing the turbulent momentum, mass and 
heat exchange cannot be determined from the time mean values. In the state of 
turbulency the value of state characteristics changes as a function of place and time. 
Turbulency is characterized by two fundamental facts. First, the movement has 
numerous different, but simultaneously existing variants. Second, there is a constant 
exchange of energy among the different variants. The theory of turbulance should 
establish correlations describing the simultaneously existing variants and the energy
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exchange among them. In flames the mechanism of turbulence is even more 
complicated since the generation of turbulence has many ways, e.g. thermal instability. 
(Thermal instability was observed for example with oxygen poor burning of oil drops.)

The swirls generated by turbulence receive energy at a constant rate and pass it 
on to smaller and smaller swirls and in stationary state energy dissipates in the system. 
In stationary state the rate of energy dissipation is equal to that of the energy input 
generating the big swirls.

Turbulence in flames is usually examined on the basis of Taylor’s “free path 
length” theory. The degree of turbulence, Tu is determined from velocity fluctuation 
measurements using the following formula:

or is directly measured by an instrument. The macro- and micro-scales characteristic of 
the size of the big and small swirls are determined by frequency analysis.

With the measuring equipment developed for these experiments we could 
measure the fluctuation of static pressure, temperature and electric conductivity, 
furthermore the “turbulence factors” T, of temperature and Te of conductivity. T, and Te 
are defined in a way analogous to T„ [9].

3. Introduction of the experimental apparatus

The schematic drawing of the experimental apparatus is shown in Fig. 1. For the 
examination of the impeller type burners generally used for lower heat requirements we 
used a Priofect block oil burner, with the following specification;

E, E-
Fig. 1. Schematic diagram of the experimental apparatus. 1. burner; 2. oil; 3. air; 4. flue gas; 5. conductivity 
sensor; 6. combined probe; 7. pressure sensor; 8. C 0 2 measuring instrument; 9. electric circuitry; 10. 

oscillator; 11. compensograph; 12. oscillograph
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burner outlet diameter: 
impeller outer diameter: 
impeller inner diameter: 
impeller blade angle: 
atomizing pressure: 
flow rate 
cone angle

90 mm 
70 mm 
30 mm
45°
686.5 kPa 
8 — 6.3 kg/h 
80° -60°

of the Danfoss nozzles used.

Burner capacity was set 94.5 kW and 74.5 kW (340 MJ/h and 268 MJ/h) for the 
first series, 58 kW and 70 kW for the second one. The fuel used was a kind household 
fuel oil marked TH 20/50.

Before commencing the measurements the burner was adjusted is such a way 
that the soot and carbon monoxide content of the flue gases comply with the technical 
regulations currently in force. Air flow in the burner was slightly swirly. Under 
isothermal conditions the swirl factor Sx (the moment of momentum and the 
momentum multiplied by the burner outlet diameter) has the value of 0.2 at the axial 
section x/D = 0.5 and this value decreases to its half by the axial value x/D = 4.

For the burner experiments a watercooled cylindrical furnace of 400 mm inner 
diameter was used. Measurements could be carried out in the whole flame cross 
section.

Temperature was measured by PtRh10— Pt thermocouples. They were used 
without protective tubes, the combustion catalyzing effect of platinum was eliminated 
by an appr. 10 ц thick aluminium-chloride layer chrystallized on it. The probe parts 
used for the evaluation of the static and total pressure and for taking gas samples were 
made of 1.6/0.8 mm diameter ceramic tubes. A Schiltknecht made pressure transducer 
with a measuring range of 0-10 and 0-500 Pa was connected to the probe.

Gas analysis was performed by a Siemens-Ultramat C 0 2 and S 0 2 analyzer. The 
electric conductivity of the flame was measured by a sensor and electric circuitry 
developed at our Institute [10]. The measurements were carried out spot by spot in the 
axial cross section of the flame and the time mean value of the variables was determined 
from signals registered by an oscillograph.

For pressure pulsation measurements a DIS A Pu 2a type capacitive pressure 
sensor with 220 mm channel length and 01 mm thick steel membrane was used.

A device connected to the pressure sensor ensured frequency modulation, 
demodulation and amplification. The probe was suitable for measuring the static and 
dynamic pressure of gases. The boundary of the reaction zone, the “edge of the flame” 
was determined form the signal of the electric conductivity (e-*0).
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4. Evaluation of the experimental results

For studying the progress of combustion process we determined the mean values 
of the individual parameters [11]. The change in the degree of burnout of the fuel gives 
information on the combustible content and the change in the electric conductivity on 
the intensity of the reaction in the flame and on the completion of the combustion. The 
temperature conditions characterize the degree of heat dissipation and heat 
development. These parameters are summarized in Fig. 2, which we used here 
exclusively for the determination of the flame dimensions and reaction conditions, 
adopting the results of [11].

For a flame with 94.5 kW capacity Fig. 2 presents an empirical function 
describing the change of the degree of burnout along the axis, by the following function;

where the value of parameter X was found 0.86. Whether or not this type of function is 
generally applicable or what the range is within which the parameter varies must be 
determined from further measurements. The evaluation of the research work [11] will 
be presented by the author.

As the first step in the evaluation of the pulsations generated in the flame, the 
pulsations of the pressure of the air jet leaving the burner outlet were measured along 
the axis. This is shown in Fig. 3. The change due to combustion is illustrated in Fig. 4. 
From  the figures it can be stated that due to the turbulent flow in the case of isothermal 
jets at the value of x/D = 1.1 a vigorous pulsation exists, but for x/D = 6.6 this pulsation

о

1.0

05

------------- ------------ -p“-------- —►
2 U 6 8 o'

Fig. 2. Variation of the degree of burnout, F(x/D) (--------- ) electric conductivity, e'/e„„ (------ ) and
temperature, l/im„  ( x x x ) as a function of the distance x/D  along the axis [1]. Burner capacity: 94.5 kW
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Fig. 4. Pressure fluctuation at three points of the axis of the oil with 94.5 kW capacity. 1. film speed: 1.5 m/s

ceases. In the case of combustion, even at the distance of x/D = 6.6, meaning practically 
the flame effect a significant pressure pulsation arises.

For the characterization of the pulsating values, the mean value y and the 
standard deviation referring to the time period t are commonly used, as shown in Fig. 5. 
The value of the standard deviation was determined on the basis of photos with area 
equalization, i.e. it was characterized by | ÿ ' |. For values y >  1 somewhat lower standard 
deviation values are obtained. The mean pulsation values in the cross section were 
plotted against the average of the mean values as percentage values. In the flame with 
94.5 kW capacity the combustion zone shifts to the edge of the flame as the distance 
from the burner outlet increases along the axis and, consequently, greater fluctuation is
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observed here. Comparing flames of 74.5 kW capacity with 1.04 to 1.2 excess air factor 
it can be stated that with higher excess air—in compliance with the greater burnout— 
the relative fluctuations are higher at the beginning of the flame and lower in its second 
half. Combustion will be more intensive at the edge of the flame. This character was 
also demonstrated by the concentration distribution.

F ig . 5 . Auxiliary diagram for evaluating the pulzation of the flame characteristics [1]

F ig .  6 . Static pressure pressure pulzation p'y (------) and amplitude maximum of pulzation (----------) p')m tx
in different x / D  axial sections in isothermal air jet [1]

As a rule we can state that the mean value and the pulsation jointly characterize 
the combustion process as follows:

— uniform, intense combustion is characterized by high mean values of 
conductivity and low relative fluctuation.

— if the combustion takes place in those regions of the flame, where it is in 
contact with reaction products, (in the boundary region of the external or 
internal recirculation zone), due to the intense turbulent transport processes, 
fluctuation of great amplitude and high mean value occurs, mostly at an 
extremely low mean value (value of é  is high).

We carried out pressure fluctuation measurements in various axial cross sections 
of the flames, in directions perpendicular to the axis. The fluctuation distributions
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F ig . 7. Static pressure pressure pulsation p'y (------ ) and amplitude maximum of pulsation p'y ---------)
in different axial sections x /D .  Burner capacity: 94.5 kW. Cone angle of atomization: 80°

F ig . 8 . Static pressure pressure pulsation j?f  (------) and amplitude maximum of pulsation p'ymmx (---------)
in different axial sections x/D  [1]. Bumer capacity: 74.5 kW. Cone angle of atomization: 60°

measured in the isothermal jet and the flame were compared in order to establish the 
extent of role which the turbulence of flow vs the combustion play in generating the 
pressure fluctuation observed in the flame. In Fig. 6. the values of the static pressure P„ 
the amplitude of the medium and maximum fluctuation (p'y and p'ymtx, resp.) measured 
in various axial sections of the isothermal jet are shown. (p'y was similarly determined as 
e'.) For values x/D > 5 all three values show uniform distribution, and also the velocity 
and the static pressure can be considered uniform.

Figures 7 and 8 show the distribution of p„, p'y and p'ymax flames with higher or 
lower capacity. The figures show that damping of the fluctuations takes place after the 
first 25% of the flame length for the flame with higher capacity and already after 15% of 
the flame length for the lower capacity flame. The velocity and pressure fluctuation 
decay at the end of the flame, at a value x/D > 8. In the flame the magnitude of the 
fluctuations as well as their distirbution in space differ considerably in character from 
those experienced in the isothermal jet. Fluctuation characteristics in the flame also
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depend— through the spatial distirbution of the fuel—on the spatial intensity 
distribution of the combustion.

We have come to the conclusion that combustion, i.e. the chemical reactions, is in 
interaction with the turbulent flow structure of the flame. Fig. 9 shows the variation of 
the mean aplitude of the pressure fluctuation along the axis, indicating the jet region 
with nearly uniform fluctuation. In this region, for burners of similar nature it is 
sufficient to examine the pressure fluctuation in one spot only to determine its

F ig .  9 . Variation of the mean amplitude of pressure pulsation as a function of x /D  [1]. 1.---------region of
uniform fluctuation; 2. isothermal jet; 3. 74.5 kW burner capacity; 4. 94.5 kW burner capacity

character with satisfactory approximation. On the basis of our measurements we have 
concluded that a change of a multiple of 10 Pa in the combustion chamber pressure 
resulted only in a negligible influence on the fluctuation values.

Analysing the frequency distribution of the pressure fluctuations we found that 
higher chamber pressures brake the high frequencies and the great-amplitude low- 
frequency pressure fluctuation leads to unstable combustion. (The flame does not ignite 
at the given chamber pressure, or pressure waves are generated.) Figure 12 gives a good 
illustration of the effect of the combustion on the distribution of the pressure 
fluctuation. At a distance of 1-2 burner diameter from the burner outlet presumably 
the flow and mixing processes are determinant, the curves converge, though with 
higher burner capacities the retroaction of the combustion extends up the burner 
outlet. At the end of the flame, at a distance of 6-8 burner outlet diameter, on the surface 
of the flame there is considerable difference between the conditions of the isothermal 
flow and the flame. With an increase in the burner capacity—as a result of 
combustion—fluctuation will ever increase at a given constant distance from the 
burner outlet.

The further experiments conducted at 58 and 70 kW burner capacities aim at 
comparing the fluctuations in temperature, electric conductivity and pressure. The 
distribution curves of the temperature and conductivity fluctuations are shown in Figs
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10 and 11. Inside the flame the fluctuation of the conductivity is high, and gives 
information on the chemical reaction. At the edge of the flame temperature fluctuation 
increases. This indicates the end of the combustion process since the combustible 
volume parts igniting occasionally on the edge lead to a highly inhomogeneous zone.

JL 2 J  
t  ' e

F ig . 10. Variation in temperature t ' / t  (----- ) and electric conductivity e /e ' (---------) fluctuation as a function of
the distance x / D  along the axis [1]. Burner capacity: 58 kW. Excess air factor: m= 1.1.1. Boundary zone of

chemical reactions

F ig . I I .  Variation in temperature t ' / t  (------) and electric conductivity e ' / e  (-------- ) fluctuation as a function of
the distance x /D  along the axis [1]. Bumer capacity: 70 kW. Excess air factor: m= 1.05.1. Boundary zone of

chemical reactions
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W ith increasing distance from the edge of the flame the rate of fluctuation decreases to 
the rate of the fluctuation caused by the flow. Of course no temperature fluctuation can 
be observed in isothermal flow where pressure fluctuation is characteristic of the flow. 
The relative temperature fluctuations t'/t are consistently greater in the outer zone of 
the flame. At the edge of the flame temperature and the time mean value of the electric

Fig. 12. Variation in the average temperature fluctuation, t'/t (------ ), electric conductivity fluctuation;
e'/e (--------- ) and pressure fluctuation p'y in the oil flames examined [ 1 ]. a — burner capacity: 70 kW; b —

burner capacity: 58 kW

conductivity depending on the reaction intensity decreases. The higher fluctuations are 
a result of the mass and momentum exchange of the flame and the recirculation zone.

The fluctuations e'/e of the electric conductivity correspond to the reaction 
intensity. The fluctuations of static pressure, p' occur in the recirculation zone at the 
axis.

In Fig. 12 the average fluctuation values of p', e'/e and t'/t are indicated for flames 
with 58 and 70 kW capacity. The average level was determined from the distributions 
in the individual sections. After the first part of the flame the temperature and pressure 
fluctuation values are nearly constant, the fluctuations in conductivity depend 
considerably on the mixing of the fuel and the air. Better flue gas characteristics were 
experienced with the flame in which conductivity fluctuation dropped suddenly from a 
nearly constant value in the flame to zero at the edge of the flame.

For the flame with 70 к W capacity the Fourier analysis of the fluctuation signals 
t and e recorded at two points (x/D = 0.01, R = 0 and x/D =  0.44, R = Q) indicate that the 
load level of the pulzation continuously decreases with increasing frequency.
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DEFLECTION OF PARTIALLY PRESTRESSED 
REINFORCED CONCRETE 

BEAMS UNDER SHORT TIME LOADS

L. G a r a y * and S. D. J abou

[Received: 15 March 1983]

The short time flexural rigidity of partially prestressed reinforced concrete beams is 
influenced by the average crack distance in the tension flange. Formulae available for the calculation 
of the maximum crack distance cannot be applied directly for the calculation of the average one. 
Considering, that (i) the crack distribution is the result of the loading process, and (if) cracking can be 
initiated by chance in each embedding concrete area of each bar or tendon, it is assumed, that the 
cracking process follows stochastic rules, governed by the number of the bars. So the average crack 
distance can be derived from the maximum one according to the rule of the “Drunkard's Walk”. Test 
results support this assumption.

A large mass ( ~  1 million per year) of prestressed reinforced concrete beams is 
used in Hungary. To control the serviceability limit state their deflections must be 
calculated. The manufacturing technology of the beams significantly influences the 
measure of deflections, and the different codes prescribe various models for calculation, 
so the experimental control appears to be reasonable.

We investigated the bigger type of the mass produced beams. For control of the 
calculation model we also used some specially reinforced beams produced on the same 
manufacturing line as the typical ones.

1. Subject

2. Tests and results

The constant parameters of test beams were:

crossection
height
span
cube strength (200 x 200 x 200 mm3)

32 500 (±1%) mm2 
290 (±1%) mm 

4 200 ( ± 5%) mm
54.5 (±2.5)N m m  2

L. Garay, H-1115 Budapest, Tétényi u. 34/a, Hungary
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cube strength: 52 г 57 N /mm2 

REINFORCEMENT 
♦7 mm idented wire 
tensile strenght: 1555 -=-1617 N/mm2
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♦ 14mm deformed bar
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Fig. I. Test specimens and arrangement of loading

The beams represented 3 levels of load carrying capacity with 9 types of 
reinforcements. The reinforcement ratio varied between p = 0.24 and p = 4.5%. The 
diameter of indented high-tensile wires was 7 mm and the tensile strength were between 
1555 and 1617 N mm-2. The diameter of the deformed bars was 14 mm and the 
nominal yield/tensile strength was 400/600N m m '2. Fig. 1. shows

— the measures of the crossection;
— the various arrangements of the reinforcement in the cross-section;
— the symbols of the types and
— the arrangement of loading.
Four specimen beams were manufactured of types with 2 and with 9 reinforcing 

members each and 3 specimen beams were manufactured of types with 5 reinforcing 
member each. Thus altogether 42 beams were tested.

The beams were first loaded till their service moment. In case of prestressed 
beams this moment was above their cracking moment. After deloading the beams were 
loaded up to the same level. The results of this second loading were evaluated. We 
measured:

— the deflections of the middle and the loaded cross-sections,
— the strain of the tensile and compression fibre with deformeters of 254 mm 

basis length on the 1400 mm long middle portion of the beams,
— the maximum crack width
— the number of cracks and their distribution at the design load level.

The load reached its maximum value roughly in two hours.
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The stress/strain diagrams of reinforcing members were linear in the region of 
interest. The variance of the concrete strength did not show a difference at 5% 
significance level, according to the Bartlet’s test. The effective prestressing force was 
calculated from the secondary cracking moment. These calculations were made on the 
basis of the moment/deflection and moment/tensile strain diagrams. The evaluation 
shows, that the moment/deflection diagrams announce retardatively the appearence of 
the first crack. So the decompression moment must be verified from the data of the 
moment/tensile strain diagrams. These values were used for the calculation of the 
deflection.

The differences in the values and in the variances of the prestressing force were 
higher than was expected. According to data of the 28 prestressed beams the average 
prestressing force was 72% of the calculated one and the normalized range of scatter 
was between 0.34-1.39. The beams prestressed with two wires show higher variances 
than the beams prestressed with five or more wires. In the group of beams prestressed 
with 2 wires the average value of the prestressing force was 61% of the calculated one, 
and the normalized scatter was between 0.34-1.39. The same issue appeared in the 
group of 18 beams with five of more prestressed wires, was 79% and 0.58-1.11, 
respectively. This shows that the uncertainties are higher in case of a small prestressing 
force. The reason of this is that the prestressing device is designed for 10 wires, and the 
relative deviation in case of two wires is higher than in case of 5-10 wires. This problem 
is not as important in the practice as the numbers show, namely, the beams prestressed 
with two wires were made only for the test programme and the low value of effective 
prestressing force did not reduce the ultimate load carrying capacity of the beams.

Figures 2 and 3 show the measured and the calculated deflections of the beams 
with two point loading. The darkened fields represent the regions of measured 
deflections. All diagrams show the possible extremities of deflections. These are 
calculated from the rigidity of the homogeneous (stage I) and of the cracked (stage II) 
crossection, respectively. The diagrams show that the deflections calculated according 
to various fomulae and on the basis of the measured effective prestressing force are 
higher than the measured ones.

The differences in the calculated and measured deflections are considerably less 
in case of non-prestressed beams than in case of prestressed ones. The values of the 
formers practically do not differ, but in case of prestressed beams the differences 
considerably depend on the prescriptions. The values calculated according to the CEB- 
FIP  recommendations are the closest to the measured ones.

Figure 4 represents the deflections of the one point loaded beams, and for 
comparison in the same scale the deflections are given of similar beams loaded with two 
forces. The evaluation of the diagrams shows that the difference of the calculated and 
measured values is higher in case of one point loading. The reason of this is that the 
used formulae are based on the rigidity of the cracked cross-section and on the moment 
diagram of equally distributed load. Thus, the model of calculation and of test differs 
more in case of a one point loading.
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To investigate the average rigidity of the sectionally cracked beam first the 
reliance of the average strain in the tension fibre was evaluated. The CEB-FIP 
recommandations contain such data. Figure 5 shows the results. The data of this 
evaluation can be divided into two groups. The first group includes data of beams 
reinforced only with prestressing wires (marked with x).—The second group includes 
data of beams where the reinforcement contains deformed bars independently of 
whether these bars were combined with prestressing wires or not. The deviations in the 
first group are considerably higher than in the second one. The values of the second 
group are very similar to the range of the CEB-FIP recommendations. The reason for 
this is that the surface of deformed bars and an indented wire differs considerably. In 
the presence of deformed bars, the distribution of the cracks is more equal.

In the second step we compared the measured average crack distance depending 
on the ratio of the average tensile strain to the calculated maximum steel strain. (All

NP 20 ПО—  

£= 098  102

----- from extreme values of the rigidity
bilinear approximation(Hungarian code) 
recXxed rigidity approximation 

(ACI code)
from real curvature diagramm 

(CEB-FIP model code)

W
2 A 6 8 10 12 К  16 18 20 22 2A 26 28 mm

Fig. 2. Comparison of the measured and calculated deflection
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----  from extreme wilues of
the rigidity

.......Hungarian code
------ACI code
-----CEB -FIP code

Fig. 3. Measured and calculated deflection

values correspond to the maximum working moment and to the middle part of the 
beam loaded with constant bending moment.) Figure 6 gives the result of this 
comparision. The linear interdependence is a good approximation. It is remarkable 
that the regression line does not intersect the ê Je, m<> axis at the unity. The reason of 
this can be that at the edges of the cracks slips or movements occur between concrete 
and the embedded reinforcement. The slip length is 52 mm. That means, that if the 
crack distance does not exceed 52 mm, the concrete block between the cracks does not
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Fig. 4. Comparison of the measured and calculated deflection by one and two point loading

Fig. 5. Relationship of coefficient of variation in measured tension strain and reinforcement ratio

increase the rigidity of the beam, consequently in such cases the rigidity calculated from 
the cracked cross-section rules the phenomena of the deflection.

In the third step we investigated the possibility of calculating the average crack 
distance. The CEB-FIP recommendations assume a knowledge of the average crack 
distance. The littérature seldom deals with the calculation of the average crack 
distance, but it deals for more with the maximum distance for the calculation of the
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Fig. 6. Relationship of average crack distance and steel strain ratio

maximum crack width. The question was whether the formula of the maximum crack 
distance can be adapted for the calculation of the average crack distance. For this 
reason we reduced the measured average crack distances of the beams with the 
quotient of the reinforcement ratio to the average diameter of the reinforcement. The 
basis of this reduction was the well-known formula of the maximum crack distance in 
the tensioned reinforced concrete bar which was established by Saliger. This reduction 
did not bring the expected result. As the upper diagram of Fig. 7. shows, the scatter of 
these values was very large. The evaluation of the results shows that the reduced values 
form groups according to the number of the reinforcing members, and the average 
values of these groups decrease with the increasing number of the reinforcing members. 
The decrease is not linear.— Looking for physical reasons of this findingAve came to the 
conclusion that the cracking should be handled as a stochastic process. In case of a 
tension bar reinforced with one single member the cracks will develop, probably at 
about the possible maximum distance. Increasing the number of the reinforcing 
members, each member can initiate cracks by chance, and the probability of a 
coincidence in the cracks is small. The cracks are going through the embedding 
concrete, so it is evident that the more reinforcing members are embedded in the

Acta Technica Academiae Scientiarum Hungaricae, 96 1983



176 G A R A Y .  I .

Fig. 7. Statistical analysis of the reduced crack distances (each point represents the mean crack distance
measured on one type of specimens)

tensioned bar, the closer will the cracks in the bar occur. Consequently the average 
crack distance will depend on the number of the reinforcing members. According to this 
consideration it was obvious that with good probability the well-known rule for the 
average quadratic distance can be used for the demonstration of the average crack 
distance. Accordingly, we reduced the formerely mentioned values with the square root 
of the number of the reinforcing members. The result of this reduction was, that all data 
gathered around one average value within an acceptable scatter (characteristic for 
concrete). The lower diagram of Fig. 7. shows the result.

Only this one experiment cannot satisfactorily support the generalization of the 
explained assumption, but this is a good opportunity to turn the attention to the 
stochastic character of the process of the cracking. The described model can be used for 
the evaluation of other experiments. This mentality gives new aspects for the 
calculation of the maximum crack width, namely, instead of the possible maximum 
crack width the width occuring with a prescribed small probability can be the basic 
assumption for the crack-width analysis.
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3. Conclusion

The experiments show that:
3.1. The technological circumstances determine the scatter of the effective 

prestressing force.
3.2. The value of the effective prestressing force also depends on the technological 

circumstances. In our case this was about 80% of the calculated one, so the losses are 
higher than was calculated.

3.3. The lower value of the prestressing force did not influence the ultimate 
strength of the beams, but it considerably influenced the calculation of deflection and 
crack width.

3.4. The investigated formulae err in favour of safety (see Figs 2 and 3), if the real 
prestressing force is taken into account. The magnitude of the error depends on the 
shape of the moment diagram, too (see Fig. 4). Exception is the CEB-FIP 
recommendation, which does not give formulae but prescribes a correct model for the 
calculation. The reliance of this calculation depends on the scatter caused by the 
technological circumstances and on the accuracy in the estimation of the average crack 
distance.

3.5. In case of indented wire reinforcement the coefficient of variation which 
characterize the uncertainity of the calculation, in our case was considerably higher, 
than given in the CEB-FIP recommendations (Fig. 5).

3.6. On the calculation of the average strain of the tension fibre—even in case of a 
short time loading—one has to calculate with the slip (movement) of one part of the 
embedded reinforcement. According to our experiment this was independent of the 
diameter and surface property of the reinforcement. Thus, probably this is determined 
only by the strain increase of the reinforcement which occurs because of the loading 
(Fig. 6).

3.7. The average crack distance in the tension fibre depends on the reinforcement 
ratio, on the average diameter of the reinforcement, and in addition on the number of 
the reinforcing members, too. The average crack distance decreases proportionally 
with the square root of the number of the reinforcing members following the rules of 
stochastic processes.
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L. Imre: Hőátvitel összetett szerkezetekben (Heat 
Transfer in Composite Devices) Akadémiai Kiadó, 
Budapest 1983. pp. 689.

In the monograph written in Hungarian the 
author deals with the physico-mathematical model
ling of the thermal processes taking place in 
combined constructions, as in machines and equip
ment assembled of different parts, as well as with the 
methods for solving mathematical problems, in 
connection with the subject in question. In a part of 
complex constructions, as a condition or a result of 
their operation, sources of heat arise. The external 
or internal heat sources might have the most 
different origins (internal heating, losses trans
formed into heat in the course of different processes, 
heat introduced with streaming fluids, etc.). The heat 
streams of heat sources bring about, either directly 
or indirectly, caléfaction of parts in the construction. 
The structural units are in thermal interaction both 
wi|h each other and with the surrounding of the 
construction. The knowledge of the temperature 
field developed, is in most cases significant from the 
point of view of two circumstances: either the 
unfavourable heating should be circumvented or, 
precisely the distribution of the temperature needed 
to produce favourable working conditions should 
be realized. Earlier, the evaluation by calculation of 
the temperature fields developed in the complex 
constructions could only be carried out, mainly with 
the help of empirical relationships, applying rough 
neglects, resulting in heavy uncertainties. Although 
the analytic solution of the differential equation of 
the heat conduction to homogeneous solids, in 
linear cases and under well defined boundary 
conditions has been known for a long time, never
theless, the structural units of the combined con
structions are in most cases of irregular form, 
frequently non-linear couplings occur; the tempera
ture dependence of the structural parts cannot

always be neglected, nor the boundary conditions 
developed as a result of the thermal interaction of 
the structural parts can in advance be clarified. 
Therefore, due to the thermal interaction of the 
structural elements the determination of the tem
perature fields of the structural parts with appro
priate exactness, their separation from each other and 
detachment from their thermal connections is, so to 
say, hardly realizable.

It seems to be particularly difficult to resolve 
problems in connection with which the thermal 
conditions of the construction are determined by 
several transport processes being in close interac
tion with each other and, therefore, the simulta
neous consideration of all these processes is neces
sary. Complex constructions should be simulated 
and described as thermal systems.

The monography helps research and designing 
engineers engaged in studying complex heat engi
neering problems, in constructing physical and 
mathematical models, as well as in university and 
high-school education of engineers by presenting 
new, effective procedures. Starting from the basic 
knowledge acquired by university studies, the author 
treats the theory of heat transfer, the theoret
ical bases of the heat flow network modelling 
methods, the methods of finite differences and finite 
element analysis, by presenting simple examples of 
application, and reviews the basic mathematical 
knowledge needed for practical applications.

Since the computerization of the established 
mathematical model may be realized in several 
ways, the book does not deal with these details 
because of its restricted size, however, it gives several 
references to the professional literature to be used in 
connection with the subject matter treated in this 
book.

With this comprehensive monograph the reader 
engaged in resolving intricate thermal problems, 
receives an excellent aid to his work.
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