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BOUNDS FOR THE BUCKLING LOAD OF A BAR 
WITH ONE FIXED END

J. B a r t a *

[Received 29 March, 1983]

The paper deals with establishing lower and upper bounds for the buckling load of a slender 
elastic bar whose one end is fixed. For this purpose, two theorems are presented. For sake of 
generality, variable flexural rigidity, variable sectional force and elastic fixing will be considered. The 
elaboration of an example shows the details of computation.

Several authors have dealt with computing the buckling load of the compressed 
bar whose one end is fixed. Recently, this theme was discussed by P. Csonka [1]. Much 
has been written on finding upper bounds for buckling load but comparatively little on 
finding lower bounds. From the point of view of structural safety, the lower bounds are 
more important than the upper ones. Both lower ana upper bounds will be established 
in the following treatment and for the sake of generality, variable flexural rigidity, 
variable sectional force and elastic fixing will be considered.

Description of the bar and of its load

The elastic bar is sketched in Fig. 1. It is elastically fixed at its lower end and free 
at its upper end. The cross section of the bar varies or its constant. / is the length of the 
bar and E(x) is the modulus of elasticity. 7  (x) is the moment of inertia of the cross 
section. Let R(x) be determined by formula

R(x) =  £(x)/(x). (1)

R(x) is called the flexural rigidity of the bar. It is to be understood in the following sense: 
between curvature y"(x) and bending moment M(x), the relation

R(x)/'(x) =  M(x) (2)

exists. К is the rotational rigidity of the fixing. It is to be understood in the following 
sense: between rotational angle /(0) and fixing moment Ai(0), the relation

К у Щ  = М(0) (3)

exists. The particular case К = + oo means that the fixing is perfectly rigid, (Fig. 4).

* Prof. Dr. J. Barta, József körút 35, H-1085 Budapest, Hungary
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4 BARTA. J.

X

P

i ' q ( x )

Fig. I. Loads P and q(x) are given. The stability of this straight equilibrium form is to be investigated

Ac r q(x>

У

Fig. 2. Straight equilibrium form of the bar for the critical load

Two kinds of active forces act upon the bar. One acts on the upper end of the bar 
and has the magnitude P. The other one acts along the length of the bar and has the 
intensity q(x). Both P and q(x) are directed vertically downwards. F is a given constant 
and q(x) is a given function. Let function S(x) be defined by formula

/
S(x) = P+ j  q(x) d.x . (4)

X

It can be seen that S(x) is the sectional force.

A da Technica A cade mine Scient iurum Hungaricae 95. I9H2



BUCKLING LOAD OF A BAR 5

Fig. 3. Bent equilibrium form of the bar for the critical load

Fig. 4. Bent equilibrium form of the bar for the critical load if the fixing is perfectly rigid

In theorems I and II, R(x) and S(x) are to be considered as given functions, К as 
given positive constant.

In this paper, [ . .  . ]mln and [. . . ]max denotes the smallest and the greatest value of
[ . . . ]  for O ^ x ^ /, respectively.

Ada Technic a Aciulemiac Seien liar urn Hungaricue 95, 1982



6 BARTA. J.

Stability problem

The structure and its loading forces

P and q(x)

are given in Fig. 1. We wish to investigate whether this straight equilibrium form is 
stable. For this purpose we shall scrutinise the equilibrium state under the action of 
loading forces

AP and Aq{x).

Here, Я is a parameter. Let лсг denote the critical value of A, i.e. the smallest value of A at 
which not only a straight equilibrium form (Fig. 2) but also a bent equilibrium form 
(Fig. 3) is possible. The load consisting of loading forces

ACTP and Acrq(x)

is called the buckling load of the bar. For estimating Acr, one can employ either of the 
two following theorems.

Theorem I

«  If U(x) is a twice differentiable non-negative real function in interval 0:£x ^  / 
and satisfies the boundary conditions

then the relation

щ о)  = m
U'(0) К ’ U'(l) = 0

(RU'Yl
<  A <

(RU'Yl
s u =  л сг =

min SU

(5), (6)

(7)

holds in interval O ^ x ^ l .  If the fixing is perfectly rigid (K = + oo), Eq. (5) assumes the 

f° rm U(0) = 0. »  (8)

Theorem II

«  If F(x) is a differentiable real function in interval O ^ x ^ l ,  and satisfies the 
boundary conditions

К (0)= Щ ’ K(0=O (9)’ (10)

Acta Technica Academiae Scientiarum Hungaricae 95, 1982



BUCKLING LOAD OF A BAR 7

then the relation

j~K T + K ( r - K 2 ) j  < - V + R ( V ' - V 2)
( 1 1 )

holds in interval O g x ^ /. If the fixing is perfectly rigid (K= + со), Eq. (9) assumes the 
form

K(0)= — oo. » ( 12)

Units

If the unit of length is cm and the unit of force is kp, the units of quantities 
emerging in this paper are as follows:

X, /, y(x) cm P, S(x) kp
£(x) kp cm 2 Ф ) kp cm 1
/(x) cm4 U(x) arbitrary unit
R(x) kp cm2 V(x) cm 1
K, M(x) kp cm

У(х), А, Acr are abstract numbers.

Proof of the theorems

Let y(x) denote the lateral deflection which belongs to Acr. For y(x), according to 
(2), equation

/ W '( x )  =  [>(0 ~y(x)]AcrP +
c = l
Íc=*

0 (0 - > ’(*)]/ cr</(0 dC (13)

holds. The right-hand side of (13) expresses the bending moment. By differentiating 
with respect to x on both sides of (13), equation

[R(x)y"(x)]'= — Acr/(x )
I

P+  J q(x) dx
X

(14)

arises. Using notation (4), symbols R = R(x), S — S(x) and introducing the notation У 
= У(х) =  /(x), we obtain

(RY')'= — Acr Y S . (15)

У(х) is the rotational angle belonging to Acr. Thus У(х) satisfies the differential equation 
(15). Eq. (2) yields

Л(0)У"(0)=М(0). (16)

A d a  Technica Academiac Scienliurum Hungaricae 95. /9Я2



8 BARTA. J

From (3) and (16) we obtain the relation

КУ(0) = К(0)Г(0).
Equation

У'(/) = 0

(17)

(18)

expresses the fact that the upper end of the bar is free. (18) follows from (13) already. 
Thus, У(х) satisfies not only the differential equation (15), but also the boundary 
conditions (17) and (18).

Making use of Eq. (15), we arrive at

-

(RYJ
SY

(19)

Instead of (19),

(RU')’ [R(U’Y - U Y ' ) J  
SU + SUY

( 20)

can be written because after carrying out the differentiations, both (19) and (20) assume 
the same form.

Let us consider the last fraction of (20). We are interested in the values which this 
fraction assumes for O ^ x ^ /. To prove theorem I, it is sufficient to demonstrate that 
among the values of the fraction there are both non-positive and non-negative ones. 
This demonstration can be performed in the following manner. The denominator does 
not change its sign for 0 ̂  x ^  f, (see the Appendix). Among the values of the numerator, 
the zero occurs because

[R ( t/ 'y - t /y ') ] 'd x  = [R (íy 'y - t/y ') ] í) = 0. (21)

In (21), the boundary conditions (5), (6), (17), (18) were taken into account. With this, 
theorem I is proved.

The particular case K = + cc does not claim an extra proof, since the above proof 
refers also to this case.

In order to prove theorem II, we use theorem I. Let K(x) be a differentiable 
function in interval O ^ x ^ /, satisfying the boundary conditions (9) and (10). 
Consequently, a function U(x) which is defined by formula

U (x) =  exp J K(x)dx ,
0

( 22)

fulfils the premise of theorem I. Hence, (22) can be substituted to (7). In this way, (11) 
arises. In a similar way, also formula (12) presents itself. With this, theorem II is proved.

A da Technica Academiac Scienliurum Hungarian’ 95. 19H2



BUCKLING LOAD OF A BAR 9

Example

A bar sketched in Fig. 1 has the form shown in Fig. 5. It is a slender truncated 
wedge, / is the length of the bar. The modulus E is constant. In the sense offormulas(l), 
(2), (3) and (4),

( l - 0 . 7 y ) / ? o

S = ( l - 0 . 2 j J s o (23)

are given.
Let us establish lower and upper bounds for Ясг. In order to perform this task, 

theorems I and II will be used.

Fig. 5. In the example, the form of the bar is a slender truncated wedge

Ada Tcchnica Avademiue Scient iur urn Hungaricac V.5. !VH2



10 BARTA. J.

Using theorem I and data (23), relation (7) becomes

^ - U ' -  ( 1 —0.7 V I U"

1 —0.2 y  ) U

Ro
So

( 24)

Here, function U(x) must be chosen. Firstly, let U (x) be assumed at random, say

U = 2l2 + 2lx — x 2. (25)

This function is non-negative for 0 | x g l  and satisfies conditions (5) and (6). 
Substituting (25) to (24), relation

3 .4 -2 .8  у

1-0 .2 :
2 + 2 T -  7

«О
l2S0

</ < = '“er = (26)

arises. After performing the computation, from (26), the relation

R0
l2 So **""=* ‘

Ro
I2s0

(27)

follows. Thus, assumption (25) has led to bounding (27). This bounding is too loose. 
The reason for this is that function (25) has been assumed at random only. By attempt, 
the assumption

U — 4/4 + 4/3x —x4

has been found. This assumption leads to

0 . 7 0 ^  S A rS . O l ^ .

Using theorem II and data (23), relation (11) becomes

(28)

(29)

-  “Г  K+ ( 1 — 0 .7ÿ  )(V'—Vl

1 -0 .2

The very simple assumption

Ro
So

- A
Í2 /

á Acr ̂ (30)

leads to

0.46 A
l2Sr

< /  <1.06 Ro
l2s0-

(31)

(32)

Acta Technica Academiaè Scientiarum Hungaricae 95, 1982



BUCKLING LOAD OF A BAR II

Assumption

(33)

has been found by attempt. It leads to

(34)

From (29) and (34), the bounding

(35)

follows. One concludes from bounding (35) that the mean value

(36)

differs from the rigorous value of Acr by less than twelve per cent. By further attempts, 
the accuracy of the result would be increased. Meanwhile, the rigorous value of Acr is 
remained unknown.

First of all, U(x) and V(x) must be real and satisfy the stipulations prescribed in 
theorems I and II, namely

equations (5), (6), the twofold differentiability and the non-negativity for U(x),
equations (9), (10) and the differentiability for K(x).
After having fulfilled these stipulations, one can choose U (x) and V(x) arbitrarily 

because theorems I and II remain always valid. Of course, when formula (7) or (11) will 
be used, one endeavours to get narrow bounds, that is, great minimum and small 
maximum. In the above example, suitable U(x) and K(x) have been chosen by attempt, 
although a systematic procedure (i.e. the method of iteration, [2]) is well known for the 
same purpose, it seemed to be not quick enough in the above example.

The basic idea of this paper originates from the fact that both the greatest 
minimum and the smallest maximum equal to the rigorous value of Acr. The notions 
“the greatest minimum” and “the smallest maximum” occur not only in the stability 
problem just discussed but also in other problems [3].

An advantage of the bounding procedure presented in this paper is expressed by 
the following two statements:

1. By a suitable choice of U(x), the bounding (7) becomes reasonably narrow.
2. By a suitable choice of K(x), the bounding (11) becomes reasonably narrow.
The proof of these two statements will be performed in the following. У(х) is

defined as the first eigenfunction of the eigenvalue problem (15), ( 17), ( 18). If У(х) were

Remarks on functions U(x) and F(x)

Acta Technica Academiae Scientiarum Hungaricae 95, !9H2



12 BARTA. J.

chosen for U(x) and У'(х)/У(х) were chosen for K(x), both (7) and (11) would become

that is

(RY'Y (R Y')’
SY  -  cr~ SY

(RY'Y ,
SY  ‘cr

(37)

(38)

which is nothing else but equation (15).

Appendix

S(x) V  (x) У(х) is a denominator in equation (20). We have to demonstrate that this denominator does 
not change its sign for 0 g  x g  /. The sectional force S(x) is compression and therefore we measure its 
magnitude by a positive number. According to premise of theorem 1, U (x) does not change its sign for 0 g x 
g /. Thus we have to prove that У(х) does not change its sign for O g x g f. We perform the proof as follows.

У(х) is the rotational angle belonging to Я„. У(х) and Я„ are determined by equations (15), (17), (18) 
and by the stipulation that Ясг is the smallest of the possible values Я. Equations

(ЛФ')' =  — À<i>S for 0 g x g / ,

КФ( 0)=Я(0)Ф'(0), (39)

Ф'(/) =  0

expresses an eigenvalue problem. Ф(х) is called the eigenfunction, Я is called the eigenvalue. Comparing ( 15). 
(17), (18) with (39), it can be seen that Ф— У(х) is the first eigenfunction of the eigenvalue problem (39). 
Eigenvalue Theory [4,5,6] demonstrates that in the case in question, the first eigenfunction does not change 
its sign for O g x g /.
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A COMMENT ON THE TORSION 
OF BARS HAVING A CIRCULAR CROSS-SECTION 

OF VARIABLE DIAMETER

I. E c s e d i*

[Redeved: I March, I983J

The paper deals with the torsion of elastic bars having a circular cross-section of variable 
diameter. It is proved that—considering statically equivalent loads—the minimum strain energy 
belongs to the surface load which develops the rotation of the end-section of the bar as a rigid body.

Symbols

r, <p. z 
e , ,  e „ ,  e ,
P =  P(r)e«,
M  =  M,e,
T

vT~cTx +гт2+гт3+гт4
R = R(z) (O g zS l) 
u = v(r, z)ev

i) il
V  =  — e ,  +  —  e .

or rz ‘

polar co-ordinates (Fig. 1), 
unit vectors (Fig. 1), 
intensity of the surface load, 
torque,
meridian section in plane rz of the bar with a circular section 

of diameter variable (Fig 2), 
boundary of range T, 
equation of 0Tt , 
displacement vector, 
shearing stresses,

Hamilton differential operator,

sign of the scalar product of two vectors.

sign of the derivative calculated in the direction of normal n of 
curve <’7'(Fig. 2),

U
G
Я

arc co-ordinate along cT(Fig. 2) 
strain energy,
shearing modulus of elasticity, 
Lagrange's multiplicator

Further symbols and quantities are defined in the text.

Basic relations

Let us consider the elastic bar having a circular cross-section of variable diameter 
(Fig. 1). It has a built-in end at z =  0 preventing any displacement of cross-section A, 
while the other end at z = l is free and is subjected to a distributed load of intensity p 
= p(r)ev in plane B. Both the surface and the inside of the bar is unloaded.

* Dr. Ecsedi I., Klapka Gy. u 36, H-3524 Miskolc Hungary
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14 ECSEDI, I.

The distributed load acting on the plane of section В is statically equivalent to the 
torque defined by the vector

M = М,е. (11)
where

R (l)
М, = 2п 1 r2p(r)dr (1.2)

The torsion of the bar having a circular cross-section ot variable diameter is 
characterized by the following boundary value problem [1, 2]:

д2ф 3 дф д2ф
Y T  +  “ 1 — (r, z) e T,or r or dz (1.3)

Ф = 0, (r,z)edTx , (1.4)

= 0 , (r, z) 6 dTA, 
on

(1.5)

dip
Gr = p , (r , z )edT3 , 

on
(1.6)

where ф is a finite quantity at r= 0 . (1.7)
Figure 2 shows range T  and its boundary defined by дТ=дТх+дТ2 + дТг + дТА. 
Making use of the function of two variables ф =  ф (r, z) in Eqs ( 1.3), ( 1.4), ( 1.5), ( 1.6), (1.7),

Acta Technica Academiae Scientiurum Hungáriáié 95, 1982
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TORSION OF BARS OF CIRCULAR CROSS-SECTION 15

the scalar co-ordinates of the displacement vector and those of the stress tensor, not 
being identically equal to zero, can be given in the following form:

a =  И(г, </»)e„ = n/r(r,z)e„, (1.8)

дф дф
x'«=Grlï7' T - ' * = G r Í r  ( 1 . 9 ) ,  ( í . i o )

The strain energy of the bar can be obtained from

( t,2„ + T ) d V= G n j  r31 V i/r I3 d T. (1.11)
V r

Region V limited by the bar having a circular section of variable diameter is 
represented in Fig. 1. An elementary calculation proves that the relation

d2F 3 (IF d2F 1 „
T T  + “ —  + T T  = - J  V (r3V f ) cr r or cz r

holds. Combining Eqs (1.3 and (1.12) we arrive at

V • (r3Vi/r) = 0 , (r, z )eT .

( 1. 12)

(1.13)

Let us consider the function of two variables L=L(r, z), determined by the following 
equations:

V • (r3VL) = 0 , (r, z) e T, (1.14)

L = 0 , (r,z)eOT l , (1.15)

ÔL n
— = o , (r,z)ei1T4 , (1.16)on

Ada Terhnica Acuilemiae Scienliarum Hun^aru ae 95, I9H2
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16 ECSEDI, I.

G r—  = K(r), (r ,z)edTl  (1.17)
cn

where L{r,z) is a finite function at r = 0. (1-18)
In Eq. ( \M)K = K(r) is a continuous function in the closed interval 0 ^ r ^ R ( l )  but 
otherwise is an arbitrary function of one variable. Let the function of two variable H 
=  H(r, z) be derivable continuously in the closed region T+ dT, at least once, and satisfy
the condition

H(r, 0) = 0 , O ^r^K (O ).

According to the product-function’s derivation rule and the Gauss’ theorem of the 
transformation of integrals—making use of Eqs (1.14), (1.15), (1.16), (1.17), (1.18)—, we 
obtain

0 =  -V  (r3VL)d7= J V (r3H V L )dT -
T T

r2VH -VLdT= r3H ^ d s -

r V t f  • VLdT=
1

f r 3K H d s -  J»r3VH • VLdT (1.19)

T ?Т Л г
After some algebraic manipulation, Eq. (1.19) yields

J r2KH ds = G \r3V H  VLdT. (1.20)
ГТз T

This equation will play an important role later on. Substituting H = L= ф and К = p to
Eq. (1.20) and making use of Eq. (1.11), we find

U = 7t J r2ippds. (1.21)
i'T.\

A theorem on the strain energy

Theorem. Let us consider the distributed surface loads p = p(r)e„ (0 îïr5 i /?(/)), 
which are statically equivalent. The minimum strain energy of bar U belongs to the 
surface load p = p(r)eip which develops the rotation of the plane of cross-section В as a 
rigid body.

Demonstration. If the shape and the material of the bar do not vary, the strain 
energy U depends only on the surface load p = p(r),i.e. U can be considered a functional 
depending on p = p(r):

U = U[p(r)-]. (2.1)
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TORSION OF BARS OF CIRCULAR CROSS-SECTION 17

We shall now examine how functional U varies if the surface load is modified by an 
increment dp(r). Function ф belonging to the surface load p(r) is denoted by ф(г, z, p), 
function ф belonging to the surface load p + ôp is denoted by ф(г,г;р + 3р). Let the 
increment of function ф be

6ф = ф(г,г;р + 0р)-ф(г,г;р)  (2.2)

The analysis of Eqs (1.13), (1.4), (1.5), (1.6), (1.7) shows that functions ф = ф(г, z; p + dp) 
and дф are solutions of the following boundary value problems:

V • (r3V$) = 0 (r, z)e T, (2.3)

ф = 0 (r, z) 6 дТх, (2.4)

^ = 0
дп

(r, z) e Т4 , (2.5)

дф
G T - ^ = p  + öp (г, z) e дТъ, (2.6)

where ф is a limited function at r =  0, (2.7)

V • (r3V 0ф)~= 0 (r, z) e T, (2.8)

0ф= 0 (r, z) e dTx, (2.9)

i
(r, z)edT4 , (2.10)

Gr ~ (0 ф )  = 6р (г, z) 6 дТъ, (2.11)

where дф is a limited function at r =  0. (2.12)

From formula (1.21) it follows that

U[p + ôp] = nG J г2(р + 0р)[ф(г, z■,p) + öф~\ds =
ВТ)

=  7tG j г2рф(г, z;p)ds + nG J г2дрф(г, z;p)ds +
BT) ВТ)

+ nG J r2pő ф ds + nG J r2ôp 0ф ds =
ВТ) ВТ)

= U [p] +  7tC J г26рф (r, z; p) ds +
BT,

+ jiG f  r2p 0ф ds + nG j  r2öpôфds.  (2.13)
BT) BT)
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18 ECSEDI, I.

Substituting

K=p(r),  L=\j/(r,z\ p) , (2.14), (2.15)

H = iЦ

to formula (1.20), we find

(2.16)

J r2pő>l/ds= f r3Vt/>- VöipdT.
ВТз т

Similarly, substituting

(2.17)

K = ôp(r), L=óil/ (2.18), (2.19)

H — ф (г, z; p)

to formula (1.20), we obtain

(2.20)

I r2ô рф ds = J r3V  0ф ■ Vi/f d T
вт3 г

arid, finally, substituting

(2.21)

K = ôp, Н = Ь=0ф

to formula (1.20), we arrive at

(2.22), (2.23)

j  r2öp 0ф ds= j r3 i VôiJ/ 1 2 dT.
ar3 T

Combining the above expressions with Eq. (2.13), we have

U[p + àp~\ — L'[p] = nG V j  r2ij/6pds +
ВТз

(2.24)

+ nG J V |V < ^ |2 dT.
T

(2.25)

The first variant of the strain energy, a functional depending on p = 
from Eq. (2.25):

= p(r), is obtained

ÖU = nG j r2\jj őp ds .
ВТз

Since

(2.26)

M, = 2n j  r2p ds = constant (of fixed value),
ВТз

we find

(2.27)

J r2ip Sep ds = 0 .
ВТз

(2.28)
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TORSION OF BARS OF CIRCULAR CROSS-SECTION 19

Let function p — p(r) satisfying condition (2.27) denote the surface load which minimizes 
the strain energy. Making use of the well-known results of variational calculus and 
applying Lagrange’s multiplication method to Eqs (2.26), (2.28), it can be proved that 
function t/r = tp(r,z; p) belonging to the surface load p = p(r) and minimizing the strain 
energy, satisfies the following equation [3]:

j r2(t/r — A)<5pds =  0 . (2.29)
a r3

Constant Я in Eq. (2.29) is the Lagrange’s multiplicator. Applying the basic lemma of 
variational calculus to Eq. (2.29), we obtain

ip(r,z;p)=X = const. (r, z)edT3 . (2.30)

Rearranging Eq. (2.29), we find

j  г2ф ôp ds = À J r2ápds = 0 , (2.31)
атз ет,

while Eq. (2.25) results in

U[p + ôp ] - U[p ]  =

= яС j г3 I Vöip 12 d 7 ^ 0 . (2.32)
r

Equation (2.31) and inequality (2.32) show that strain energy U is minimum if condition 
(2.30) is satisfied. It follows from Eq. (2.30) that the displacement of cross-section В 
defined by co-ordinate z =  l caused by the surface load minimizing the strain energy can 
be characterized by the vector

U(r, (p,z)= L(r, z)e4, =  Âre„ (r,z)edT3 . (2.33)

According to Eq. (2.33), it can be stated, that the plane of cross-section В rotates around 
axis z by the angle of Я as a rigid body.
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BOUNDS FOR THE HEAT TRANSFER COEFFICIENT

I. E c s e d i*

[Received: 28 December 1982]

The primary purpose of the paper is to deduce inequality relations by the application of 
which lower and upper bounds can be formed for the numerical value of the heat transfer coefficient.

S y m b o ls

The symbols of major significance used in this paper are as follows.

orthogonal coordinates, 
unit vectors, 
position vector,
within each section even closed surface,
within each section even closed surface,
bounded space region defined by interior of A , ,
not bounded space region defined by exterior of A2 ,
space region bounded by separate closed surfaces A , and A2
heat conducted within unit of time,
temperature,
overall heat transfer rate, 
temperature field,
“interior" thermal conductivity,
“exterior” thermal conductivity,

Hamilton differential operator,

sign of scalar product of two vectors,

Uiplacian differential operator

symbol of derivative calculated in direction n, 
normal unit vector of surface A, directed outwards 
from region V at point P,(f= 1,2) (Fig. 1), 
functions of three variables, 
three dimensional vector field, 
sphere radii.

Other quantities and variables are defined by the text.

1. The heat transfer coefficient

The region K, filled by a medium of temperature T, and the region V2 filled by a 
medium of temperature T2 are separated by a solid bounded by two separate closed 
surfaces A t and A2 (Fig. 1). Through region V from the medium of higher temperature

* Dr. 1. Ecsedi, Klapka Gy. u. 36, H-3524 Miskolc, Hungary
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22 ECSEDI, I.

to that of the lower temperature heat is flowing. This process is characterized by the 
heat transfer coefficient к:

<2 =  /c(T, - T 2), (T, >  T2) . (1.1)

To express more exactly, к means the heat quantity transferred in steady state through 
the bounding structure, i.e., the solid filling the region V, under the effect of the unit 
temperature difference between the spaces separated by the bounding structure ([2], 
[3], [4]).

For convenience Tl > T2 , further, T) and T2 are, constant in time.
The field of the temperature

t — f (r) reV U A 1 UA2

of the solid lying in region Fand associated with the steady state may be brought into 
relation with the following boundary-value problem, by making use of the Fourier- 
theory of heat transfer in the case where the thermal parameters a , , a2 have a 
constant value ([1], [3], [5]):

At = 0 r e V ,  (1.2)

2 “  + a 1(t-T i)  = 0 r e A j  
cn

(1.3)

Л-J- +  a2( t - T 2) = 0 r e A 2 
on

(1.4)

In writing the boundary conditions (1.3), (1.3), the Newtonian law of cooling has been 
applied ([1], [5]).

Acta Technica Academiae Scientiarum Hungaricae 95, 1982
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BOUNDS FOR THE HEAT TRANSFER COEFFICIENT 23

From the solid F, of temperature T, in the unit time heat of a quantity

e , = A | ^ d / i  (1.5)
J  dn
A1

passes over the surface section A ! to the solid of volume V This amount of heat arrives 
to the surface section A 2 by “internal” thermal conduction, wherefrom it flows to the 
medium of temperature T2 by “external” heat transfer. The numerical value of the 
amount of heat leaving may be determined by making use of the formula

Ql=*
Őt

dA

a 2
With the aid of Eq. (1.2) it may readily be pointed out that

Q\ + 02= 0 .

( 1.6)

in agreement with the principle of the conservation of energy. This may be proved as 
follows:

0 = A At dV=À
őt_
дп

d A +  A
dt
— dA =Qi +Q2 ■ 
őn

A 2

( 1 .8 )

In the following, new formulae will be deduced for the calculaion of the quantity 
of heat Q =  Q, in order to obtain the explicit expression of the heat transfer coefficient k. 

From the equation

fdt + (df)2 =  V-(rVr) (1.9)

by integration and by the application of the Gaussian theorem of integral 
transformation one obtains Eq. (1.10) also taking Eq. (1.2) into consideration:

J(V t)2dF=
[ ő t őt

t —  dA + t —
J  Sn J őn
A j Аг

( 1. 10)

Eq. (1.10) may again be transformed by making use of the boundary conditions (1.3), 
(1.4):

A f | Ví 12dK= -  —
J

d/4+A (T ,-T2) \ т й А - d H) J  Sn
V A i  A i  Л\

In writing down Eq. (1.11) we also made use of the relationship (1.8). By the 
combination of formula (1.5) and Eq. (1.11) one obtains the formula (1.12):
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e= 1

Т х - Т г

À.2
I Vf I 2dV+ — 

«1
y Ai

d/4+-
*■2 *• V

Ai

( 1. 12)

It may easily be pointed out that the formula (1.12) can also be written in the following 
form, by making use of the boundary conditions (1.3) and (1.4):

e = ^ y A j | V t | 2 dK+ai  J ( i - 7 \ ) 2 d>t +  a2 j ( t - 7 2)2d / l j .  (1.13)

A i

It the following, it will be proved that the value of the heat transfer coefficient к 
does not depend on the difference of temperatures Tl — T2 , the value of к is the function 
of the thermal parameters A, a , , oc2 and the “shape” of region V.

Let us consider the function of three variables

(p = q>(r), r e  VUA1 U A 2 

unequivocally by the following prescriptions:

A(p = 0 r e  К (1.14)

d(p
A -^  +ai(<p — l) = 0, r e A , , (1.15)

, d<p
я —  + а 2<р = 0 , г е Л 2 . (116)

By elementary calculation it may be pointed out that with knowledge of the 
solution to the boundary-value problem defined by Eqs (1.2), (1.3), (1.4) may be 
produced in the following way:

t(r) =  (T1 — T2)</>(r)+ T2 r e V U A l UA2 . (1.17)

By the combination of formulae (1.12) and (1.17) one obtains the formula (1.18):

V
a, \ cn  a , (S' dA>(Tl — T2).

AI
(1.18)

From the formula (1.18), by comparing it with Eq. 1.1 it may be read that

fc = A (1.19)

O n the basis of the above formula it can readily be seen that the value of к is 
indeed the only function of the thermal parameters a, A ,, X2 and the shape of the region
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V. By the combination of formula (1.19) and the boundary conditions (1.15), (1.16) one 
arrives to the following formula for к:

k = A. 11 V<p )2 dK+a,  J (<p— l)2 dA + a2 j  (p2 dA . (1-20)
V a ,

From the above relationships it ensues that к is always positive, k>0.
The primary purpose of this paper is to derive such inequality relations by the 

application of which lower and upper bounds may be performed for k. The exact (strict) 
value of the heat transfer coefficient might be given only with the knowledge of the 
solution to the boundary-value problem defined by Eqs (1.14), (1.15), (1.16). The 
solution of the explicit form of the boundary-value problem defined by Eqs (1.14), 
(1.15), (1.16) is known only with regions Кof very simple shapes [5], wherefore such 
principles and methods are of great significance with the application of which lower 
and upper bounds may be produced to the numerical value of the heat transfer 
coefficient k.

2. Upper bound

Proposition 2.1. Be f=f(r)  continuous in region VUAn UA2 , and in region Vat 
least once continuously derivable, otherwise an arbitrary function of three variables. 
The inequality relation

J I V/l 2 dK+a,  f i f - l)2 dA +  a2 $ f 2 dA (2.1)
у л, Аг

is valid.
Demonstration. Consider the function of three variables defined by the

prescription

/i(r)=/(r)-(/>(r), r e  ELM, UA2 . (2.2)

By a lengthy but elementary calculation the following relationship may be 
deduced:

A J (V/)2dK +a, J i f -  l)2 d /H -a 2 J f 1 dA =
V AI Ai

= AjVq> | 2dF+ a ,  J (</>— l)2 d A + x 2 J <p2dA +
A\  Л 2

+ 2Я J V/i • V(p • dK-t-a, j  h(q>— \ )dA + 2a2 j  hip dA + / J | V/i | 2 dV+<xt J h2 dA +
V AI Ai V AI

+ a 2 J h2 dA =k + /  j  | V/i | 2 dK+a,  j  h2 dA + a2 j  h2 dA . (2.3)
A  2 V Л\  A 2
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26 ECSEDI, I

By deducing Eq. (2.3) the following relationship has been used

Я J" V/i • Vcp dK+a,  j  h(cp— 1) dA +  a2 j /i</>d/4 =
E a, a2

= / j V • (hVep) dK— Я J hA(p dK+a,  j  h(ep — 1) dA + a2 j hep dA =
У У А,  А г

.et
'Tn

l)]h dA + , d<p h dA — Я M<pdK=0.  (2.4)

In proving Eq. (2.4), Eqs ( 1.14), ( 1.15), ( 1.16) being in connection with the function 
<p = (p(r) have been applied.

From formula (2.3) the correctness of the proposition may directly be read and it 
is even evident that in the inequality relation (2.1) the sign of equality is only valid if

h = 0 r e V U A l UA2 ,
that is if

f =  ер г e VUA { V A 2

Proposition 2.2. Let us have /= /(r) continuous in a closed region VUAl UA2 , 
and in an open region Fat least once continuously derivable function of one variable, 
non-identically equal to zero. The inequality relation

k ^ a tA
h W dA

Я| I V /I2 dK+a,  j  f 2 dA + a 2 j f 2 dA
У A\ A 2

(2.5)

is valid.
Demonstration. Applying the inequality relation (2.1) to the function/(r) =  p/(r), 
wherein p is an arbitrary real parameter, yields the following relationship

wherein

k < p 2D0- -IpD^ +  D2 , (2.6)

J l  V/I 2 dK+a, j  f 2 dA + a 2 J  / 2 dA , (2.7)
V A\  A 2

D,=a , 1 J / d A , (2.8)
A ,

D2=txl A l ,

■
a

'—
‘г

II (2.9)

The inequality relation (2.6) is valid to any value of the real parameter p. By an 
appropriate selection of p the right-hand side of (2.6) might be reduced to the minimum
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and, on the basis of the minimum obtained, one arrives directly to the proof of the 
proposition 2.2.

It can easily be pointed out that in relation (2.5) the sign of equality is only valid if

/=«</>, (2.10)

wherein a is an arbitrary real constant differing from zero.

L o w e r  b o u n d

Proposition 3.1. In the closed region VUAl UA2 the continuous vector field b 

=  b(r)  differing from the identically zero vector should satisfy the differential equation

V b  =  0  r c K .  ( 3 . 1 )

The following inequality relation is valid:

b2 dK+ — I (b n)2 dA + ( b  n ) 2 d A

Al

Demonstration. Let us have

(3.2)

( c  n)  ( d  n )  dA + ■ n ) ( d  ■ n ) d / l , (3.3)

wherein:
c  =  c ( r )  and d  =  d ( r )

defined in the closed region VUA,UA2 are two arbitrary continuous vector fields. On 
the basis of the Schwarz-inequality it may be written that

E ( c ,  c ) £ ( d .  d ) ^ | ( c ,  d ) | 2 ( 3 . 4 )

In the inequality relation (3.4) let us use the following notation:

c ( r )  = V<p,  d(r )  =  b ( r )  (3.5). (3.6)

wherein the vector field b =  b(r)  satisfied the differential equation (3.1 ). It can easily be 
understood that

k = E(Vip,4(p). (3.7)
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The relationship

E(Vq>, Ь) = Я j  V(p b d K +  —
V a i

’ dip 
dn

( b  ■ n )  dA +
a2 J dn

n )  à A =

Л2

I V • (tpb) dK—Я
* ?2 Г 
<pV-bdK+ —

J J
V >

a t J

dip
dn

( b  • n)  dA +

f ^ ( b n ) c U = / l  
J dn

Ax

( b  • n)  dA +

+  Я J ^<p+ n ) d / 4  =  A J ( b -  n ) dA (3.8)

>42 >41
further, the inequality (3.4) and formulae (3.5), (3.6), (3.7) by their combination directly 
yield the inequality relation (3.2) to be proved. In deriving the relationship (3.8) the rule 
of differentation of the product function as well as the Gaussian integration theorem, 
the equations (1.15), (1.16) and (3.1) have been applied.

By some discussion it may be pointed out that in relation (3.2) the sign of equality 
is valid only in the case where

b  = aV<p (3.9)

differs from zero, however, otherwise being an arbitrary real constant.
Proposition 3.2. The three-variable, non-identically constant in the closed region 

VU A,U A2 continuous function y=g(r) should satisfy the partial differential equation

The inequality relation
Ag = 0 r e V (3.10)

A±

1
I \Vg\2 d V + j -  J ^ J d A  +

(3.11)

is valid.
Demonstration. The correctness of the inequality relation (3.11) ensues directly 

from the inequality relation (3.2) in case where the replacement

b = Vg (3.12)
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is applied. It is evident that vector b of the above form satisfies the differential equation 
(3.1) in case where g is harmonic in region V. It can easily be proved that the sign of 
equality in the relation (3.1) is only valid if

y = acp + b (3-13)

wherein a and b are arbitrary real constants excepting the restriction a^O.

Examples

4.1. Let us have in the inequality relation (2.1)/=0.
By an elementary calculation one obtains the result

k ^ t x i A l (4.1)

which can also directly be read from the inequality relation (2.5).
4.2. Let us have in the inequality relation (2.1)/=  1.
By calculating with this function one obtains the result

k ^ a 2A2 (4.2)

4.3. The three-variable function F = F(r) continuously differentiable in sections, 
in the closed region V U A ^A j, should satisfy the following boundary conditions:

F (r)= l, r e A lt  (4.3)

F(r)=0, re  A2 . (4.4)

Replacement of the function F = F(r) defined by the above prescriptions into the 
inequality relation 2.1 yields the following upper bound:

l c ^ | |V F |2dK. (4.5)
V

From Dirichlet’s minimum-principle it ensues that the upper bound of the form (4.5) is 
the sharpest if the function F =  F(r) is harmonic in region V.

4.4. In the inequality relation (2.5) be

/ = c  =  constant, (c /O ). (4.6)

With the help of the elementary calculation the following upper bound of very 
simple structure might be deducted to the heat transfer coefficient k:

k ^
1

п  г
a ,/! , z2A2

(4.7)

4.5. In the inequality relation (2.5) b e /= F  wherein F = F(r) denotes the three- 
variable function entering in the formula (4.5). With the help of a short calculation one
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obtains to the numerical value of the coefficient к the following upper bound:

к 11 1
( 4 . 8 )

<,/f, A j |V F |2dF

Obviously, the upper bound of type (4.8) is the sharpest in case where F = F(r) is 
harmonic in region V.

4.6. Consider the hollow region of spherical form represented by Fig. 2.
Let us have in the inequality relation (2.5) for /(r) the following expression

f(r)= n2̂ -  + À - a z R2 , (г = |г| = л/х 2+у2+г2).

By a lengthy, however, by an elementary calculation, one obtains the result

An

+
1 / 1 1

(4.9)

( 4 . 1 0 )

+
oqRi АДЯ, R 2 J  * 2 ^ 2

4.7. Into the inequality relation (3.11) the harmonic function

1
0 (r) = ( r  =  v / x 2 +  y 2 + z 2 ( 4 . 1 1 )

is replaced. By this replacement one arrives to the following lower bound:
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Г n

AL
1_

«1
f ( r n ) 2 J  1 f d v  1 r

—  4- - - - - -
J  r  4 J r «2 J

(r-n)2
dA

A, Ai

(4.12)

In connection with the formula deduced, it should be noted that the origin of the 
system of coordinates xyz is within the closed surface A x in the region Vx.

4.8. Let us apply the formula (4.12) to the spherical hollow region V. The 
following result will be obtained:

k>
An

~  Г Л  f \  T ~
olxR21 + / . \ R 1 R 2J + a2R22

( 4 . 1 3 )

4.9. Comparing formulae (4.10) and (4.13) yields the exact value of the heat 
transfer coefficient of the spherical hollow solid, in agreement with the data of the 
literature on the subject ([2], [3]), is as follows:

k =
An

~  Г 7 1  f \  Г
«1Я | + Д л 1 R2)  + x2R\

( 4 . 1 4 )
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SOME COMMENTS ON THE TORSION 
OF BARS HAVING AN ANNULUS CROSS-SECTION 
OF VARIABLE SIZE SUPPORTED ELASTICALLY 

ALONG ITS ENTIRE LENGTH

I. E c s e d i*

[Received: 3 May, 1983]

The paper deals with the torsion of elastic bars with a continuous elastic support. The section 
of the bars is an annulus of variable size. Due to the elastic support, the intensity of the continuous 
load on the surface of the bars is proportional to the displacement of the points of the surface of the 
bars. The boundary value problem of torsion as well as the formula of the torsional rigidity are 
presented. Making use of inequalities, lower and upper bounds are given for the torsional rigidity. 
Approximate values are obtained in this way for the torsional rigidity without using—even 
knowing the solution of the boundary value problem of torsion.
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Symbols
polar co-ordinates, 
unit vectors, 
displacement vector, 
angle of rotation.

Hamilton differential operator,

sign of the scalar product of two vectors, 
sign of the vectorial product of two vectors, 
co-ordinates denoting the end sections of the bar. 
planar range defined by the meridian section of the bar. 
boundary of range T,
unit vector belonging to the “outer" normal 
of boundary curve rT,
unit vector belonging to the tangent of boundary curve t'T,
arc co-ordinate along boundary curve rT,
equation of curve
equation of curve сТл.
shear rigidity of elasticity of the bar.
constant characterizing the elastic support (k>0),
torque,
sign of the derivative in the direction of n. 
sign of the derivative in the direction of <*.

auxiliary functions, 
planar vector field, 
auxiliary functions, 
torsional rigidity.

Further symbols and variables are defined in the text.
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34 ECSEDI, I.

2. Introduction, basic relations

Let us consider the elastic bar having an annulus cross-section of variable size 
shown in Fig. 1. The bar is subjected to distributed loads of intensity

p3 =  p3(r, z)ev , p4= p 4(r, z)ev

both on its inner and outer surfaces. It has a built-in end at z = a preventing any 
displacement of that cross-section, while the displacement of the other end at z =  b is 
defined by

u б = Уге„

The volume of the bar is unloaded. The usual assumption of elasticity are valid, i.e.:
—  displacements are small,
— the problem is a quasistatic one,
— the effect of heat, initial stresses and imperfections is negligible,
— the material of the bar is homogeneous, isotropic and linearly elastic.
The torsion of the elastic bar shown in Fig. 1 is characterized by the following

boundary value problem [1 ,2 , 3]:

V -( r3Vi/0 = 0 (r, z) e T, (2.1)

Gr^ =p>
(r, z )edT3 , (2.2)

r  дф 
Gr^ =P*

(r, z) e dTA (2.3)

ф=0 (r, z )edT{ (2.4)

1If = 9 (r, z) e cT2 (2.5)

RangeTand its boundary defined by d T are represented in Fig. 2.
Making use of the function of two variables ф = ф(г, z), the displacement vector u 

=  u(r, (p, z) can be given in the following form:

u=r(r,z)e„ =  r^(r,z)e„ (2.6)

The scalar co-ordinates of the stress tensor, not being identically equal to zero, are 
obtained from relations

дф
Tro> =  Gr , (2.7)

( 2.8)

If the bar has continuous elastic supports, the load functions are as follows:

p3 = -kv ( r , z )=  - кгф(r, z) (r, z)edT3 (2.9)

Acta Technica Academiae Scientiarurn Hungaricae 95. 1982



TORSION OF BARS OF ANNULUS CROSS-SECTION 35

p4 =  — kv(r, z) =  — knp(r, z) (r, z) e 0T4 . (2.10)

Let us introduce the notation

,  4 <P(r,z)f= f( r ,z )= — —  (2.11)

Making use of Eqs (2.1), (2.2), (2.3), (2.4), (2.5), (2.9), (2.10), (2.11), the torsional problem 
of the bar having an annulus cross-section of variable size supported elastically along

3* Ada Technicu Academiae Scientiurum Hungaricae 95, 1982

Fig. 1. Bar with an annulus of variable section

Fig. 2. Meridian section of the bar



36 ECSEDI, I.

its entire length can now be presented. Taking into account the fact that the bar has a 
built-in end at z = a preventing any displacement there, while the displacement vector 
at z — b is ah = &rev , the following boundary value problem can be set up:

V -(r3V/') = 0 (r , z ) e T ,

G % +kf=  0 (r, z) e дТ3идТ4 ,

( 2. 12)

(2.13)

/ =  0 (r,z)edTt ,

f =  1 (r,z)edT2 .

(2.14)

(2.15)

Making use of function/=J(r, z), the displacement vector и and the shearing stresses т 
and TZ(p assume the form

u = i>(r,z)e„ = 9r/(r, z)e„,

i ril>= G ; b ~ ,
dr

. „  = G 9 r f
02

The cross-section of the bar at z = b is subjected to the torque [1]: 

M = 2n I r2Tin. ás = »92JiG
rr 2

3 dfr — d s . 
an

(2.16)

(2.17)

(2.18)

(2.19)

The torsinál rigidity S of the bar having an annulus cross-section of variable size 
elastically supported is defined by the formula

M
S =

,9 '
( 2. 20)

Some relations concerning the torsional rigidity S will now be introduced. 
According to the product-function’s derivation rule and the Gauss’ theorem of the 
transformation of integrals—making use of Eqs (2.12), (2.13), (2.14), (2.15)—, we obtain

/V  • (r’V /) dT= V -(r3V /)d T - r3 1 V/'| 2 dT= r3J y  ds — (In
T T T дТ

r Г r f Г ni С /*
r3 | V /'i2dT= r3 / d s  + гъг4-  ä s ­ r3 | V / j2dT=

J (In en «

,3 vr3 — ds -

r-TtuPT, PTi

r3 I V /l 2dT-
G

Г I d . ( 2. 21)

PT.\vflT 4
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TORSION OF BARS OF ANNULUS C ROSS-SECTION 37

Combining Eqs (2.19), (2.20), (2.21), we have

S = 2nG

*т2

( 2. 22)

S = 2rtG^ r31 V/ ' |2 dT+ < f d.v

/ РТзиРГ,
Substituting Eq. (2.13) in to Eq. (2.23), we arrive at

(2.23)

S = 2nG J r31 V / l2 dT+ 2лк j r3J 2ds. (2.24)
Г IITnuBT*

Formulas (2.23), (2.24) and equations (2.12), (2.13), (2.14), (2.15) show that the torsional 
rigidity S is always a positive quantity, i.e. S>0.

The application of the Gauss' theorem of the transformation of integrals to Eq.
(2.12) leads to

V ( r 'V /)d T =
% ? f  

r V  ds + r3--7 ds +
J « (П (П

Making use of Eqs (2.2) and (2.25), we find

(2.25)

S = (2.26)

Finally, introducing Eq. (2.13) to Eq. (2.26), the formula for the torsional rigidity turns
out to be

S =  -  2kG'
cY

r3 ~  ds + 2nk 
on

r3/ d s . (2.27)

<T I iITsuPTa

The primary aim of this paper is to derive inequalities enabling us to establish 
lower and upper bounds for the torsional rigidity S defined by formula (2.20) belonging 
to bars having an annulus cross-section of variable size. The exact value of the torsional 
rigidity could be obtained by solving the boundary value problem defined by Eqs 
(2.12), (2.13), (2.14), (2.15). In several cases, however, the exact solution of this problem is 
not known and, therefore, we abandon the idea of trying to find the exact value for the 
torsional rigidity. Instead, we will show how the value of the torsional rigidity can be set 
between lower and upper bounds.

г . ':a
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38 ECSEDI, I.

3. Upper bound

3.1 Theorem. Let the function of two variables H = H(r,z) be continuous in the 
closed region TudTand be continuously derivable in the open region T at least once 
and satisfying the conditions

H(r,z) = 0 (r, z) g 8 T 1 (3.1)

H(r, z)=  H 2 = constant (r,z)edT2 (3.2)

It should be proved that the inequality

2ttG r3 1 V  • H 1 2 dT+ 2nk r3H2 ds

C ̂  T дТзидТл^  ft 2
holds.
Demonstration.To prove inequality (3.3), we rely on the Schwarz inequality

(3.3)

where
D(f,J)D(H, H)> \D{f ,H)\2 (3.4)

DifJ) = 2nG j  r3 1 V/l 2 dT+ 2nk j  r3/ 2 d s ,
T дТзидТл

(3.5)

D(H, H) = 2kG J r 3(V# ) 2 dT+2nk } r3H 2ds,
T дТъ̂ дТл

(3.6)

D(f,H) = 2nG $ r3V f - V H  dT+2nk J r3f H d s . (3.7)
T дТзиГТз

According to the product-function’s derivation rule and the Gauss’ theorem of the 
transformation of integrals—making use of Eqs (2.12), (2.13), (2.24), (3.1), (3.2)—, we 
obtain

2nG J r3V/- VH dT+2nk  J r3f H d s  = 2 n G $ V ( r 3H V f ) d T -
T дТзиОТ4 T

- 2 n G $  HV-(r3V f ) d T + 2 n k  j  r3Hfds = 2nG \ r3H ^ d s  +
T дТъидТл J  Vn

дТ I

Í 3/+ 2nGH2 I r3 -^-ds-\-2n 
on

CT 2 дТзидТз

Combining the evident formula

Hr3\ 4 + v ]
% dn

ds = tf,S . (3.8)

S = D[ f ,n

with equation (3.8) and inequality (3.4), we arrive directly at inequality (3.3).

(3.9)
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TORSION OF BARS OF ANNULUS CROSS-SECTION 39

4. Lower bound

4.1. Theorem. Let the vector

c =  c (r, z) =  cr(r, z)er + c2(r, z)e2

be different from zero in the vector field rz and satisfying the partial differential 
equation

V ■ (r3c) = 0 (r, z) 6 T. (4.1)

It should be proved that inequality

S^2 n G гт2
n ds

r3 • b2 dT+ ~  J  r3(b • n)2 ds

T е Т ги В Т л

holds.
Demonstration. The basis of the demonstration is the Schwarz inequality

(4.2)

where

E [V/, V/] E [c, c] [V/, c])2

г 2 f
£[V/, V/] = 2лС J r3 | V / | 2 dT+27t —  r3(V/ n)2d

t  *  J
BTivDTt

(4.3)

( 44 )

£[c, c] =  27tG r3c2dT+2rc
Í '

r3(c ■ n)2 ds,

дТзиВТ*

(4.5)

Í '
£ [ V / , c ]  = 2tiG r3V /-cdT +2jr Í r3(V/- n)(c • n )d s . (4.6)

ПТзидТ4

It goes without saying that

S =  E [V /,V /]. (4.7)

Applying the product-function’s derivation rule and the Gauss’ theorem of the 
transformation of integrals and making use of Eqs (2.12), (2.14), (4.1 ), quantity E \ 4 f  c] 
can be transfered into the following form:
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40 ECSEDI, I.

I'£ [У /,с] = 2яС r3V / - c d r + 2rc I r3(V/- n) (c • n) ds=

0TsvOTa

= 2 nG V ■ (r3c/) dT—2яО /V  • (r3c) dT+P
r3/ c n d s  + 2)rG r3/ c n d s  +' 2 я Г  í r3?f-(c n)ds = 2nG Í к J dn J

OT^kjOTa 0 T  J  0 T 2

-2nG J r3(c n) /+^JPjds =  2rtG J e nds. (4.8)

f>T 20Т3̂ ет4
The combination of inequality (4.3) and equations (4.7), (4.8) directly results in 
inequality (4.2) which had to be proved.

4.2 Theorem. Let the function of two variables h = h(r,z) be continuously 
derivable, at least twice, and not identically equal to a constant in the closed region 
TudT.  The inequality to be proved is

S ^ 2 n G
(hA- h 3)

(4.9)
Г1 v *l2 ,T G

- T 3 - d T + T M s ) ' *

where
T дТзийТл

h3 = h(R3(b), b), 

hA = h{R4(b), b).

Demonstration. Making use of the substitution

c=  -rV iix e ,,

(4.10)

(4.П)

(4.12)

inequality (4.2) yields the verification of (4.9). It is obvious that vector c =  c(r, z) 
of the above form satisfies partial differential equation (4.1). After some algebraic 
manipulation, we have

r3(c • n)2 ds =
1

[(Vfi X ev) ■ n]2 ds =

OTíuOTa

1
[V Ji(e „ x n )]2ds =

ИТзирТ*

1
(Vfi • e)2 ds =

OTsvOTa OTsvPTa PT $ k j P T  a (4.13)
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TORSION OF BARS OF ANNULUS C ROSS SECTION 41

Í rJ(c n) d.v = J (V/i x ev) • n ds =
fT,

V/j • (ev X n)d.v= j* Vli e d s=  J* (— ds = ht — h3 .

<rri <'Ti

Eqs (4.13), (4.14) show that inequality (4.9) holds.

(4.14)

5. Supplementary remarks

5.1 A short discussion on inequalities (3.3) and (4.2) shows that the sign of 
equality in (3.3), (4.2) holds only if

//(r, r) = a/(r, z), (5.1)

c(r,r) = aV / (5.2)

w h e r e  a  is  a  r e a l ,  a r b i t r a r y  c o n s t a n t  w h i c h  is  d i f f e r e n t  f r o m  7.ero.

5.2 Let consider the function of two variables F = F(r, z) which, apart from a real 
additive constant, is unambiguously defined by

V f = r ’(e ,x V /)  (5.3)

Making use of Eq. (5.3), it is easy to see that function F = F(r, :) satisfies the following 
elliptic partial differential equation

V ( r7 V f )  = °  ( r .z ) e T  (5.4)

Combining Eqs (2.22) and 5.3), we have

S = 2nG(F4 — F3) (5.5)
since

j" r3y -d s =  j* r3V / nds =

i l l  ÎT :

= j VF ■ (n X ev)d s=  J V F eds =  F4- F j
<’ T 2 O Ti

where
F3= F (R 3(b), b),

F4 = F(R4(b), b).

A derivation involving formula (2.26) yields the same result.

(5.6)

(5.7)

(5.8)
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42 ECSEDI, T.

Finally, making use of formulas

I VF 12 = r6 I V/l 2,

which we obtained from Eq. (5.3), we arrive at

(5.9)

(5.10)

S = 2nG (5.11)
T дТгидТл

In addition to the above results, a short discussion can be carried out concerning 
inequality (4.9). The discussion shows that the sign of equality in (4.9) is valid only if

h(r,z) = a.F(r,z) + ß (5.12)

where oc and ß are arbitrary, real constants excluding the case a = 0.

6. Applications

6.1 Let function H(r, z) in inequality (3.1) assume the form

H(r,z)=P(z).

Let the function of one variable P-P(z)  satisfy the boundary conditions

P(a) = 0 ,

P(b)= 1.

A simple calculation yields

J r 3| V P |2 dT= J A(z) (P'{z)2 dz ,

where

J r3P2d r=  jß(z)(P(z)2 dz
еТъ^дТл a

A (z )= - l (R t ( z ) )* - (R 3(z))47i,

B(:) = 2I[(R 3(z))3y i ï ( W  + (k4(Z))3V ^ ( f ] i i

( 6. 1)

(6.2)

(6.3)

(6.4)

(6.5)

( 6.6) 

(6.7)

The above expressions together with inequality (3.3) result in the following upper 
bound

\2^ и р 2п я , (6.8)j [A (P f  + BP2] dz.
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TORSION OF BARS OF ANNULUS CROSS-SECTION 43

6.2. Let quantities a, b, P in inequality (6.8) assume the following values

a =  0, b = l and P — y (6.9)

Substituting expressions (6.9) into inequality (6.8), we arrive at an upper bound for the 
torsional rigidity: (

^ |[ /4 ( z )  + z2B(z)]dz. (6.10)
о

6.3 Let functional /  take the form

/ [^ (z)] = J [Л (P')2 + BP2] dz . (6.11)
a

Making use of the elementary results of variational calculus, it can be shown that, 
concerning functions P = P(z) satisfying conditions (6.2), (6.3), functional I is minimum 
at a function P = P(z) which is a solution of the boundary value problem

— f A(z)^— J + B(z)P = 0 a<z<b  (6.12)
dz \  dz y

P(u) =  0 , (6.13)

P(b) = 1. (6.14)

For functions P=P(z) satisfying conditions (6.12), (6.13), (6.14), inequality

/[P (z )K /[P (z )]  (6.15)
holds.
On the basis of relation

/[P(z)] =  |[ /1 (P ')2 + BP2] dz =
a

= ](AP'P)' dz+  j  [( —/lP')' + BP] dz = [AP'P]ha= A{b)P'(b) (6.16)
a a

and inequalities (6.10), (6.15), we obtain

S^A(b)P'(b) (6.17)

The above results show that, considering upper bounds in the form of (6.8), the best 
approximation for the torsional rigidity emerges if P(z) = P(z).

6.4 Let us apply inequality (4.9) to function

h = h{r,z) = r*p(z) (6.18)

A long but elementary calculation results in

2nG
iD>(*)]

(6.19)
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44 ECSEDI, I.

w h e r e

' [ p ( z ) ]  =  J  [ / 1 2 (Р ' ) 2 +  2 / 1 1р 'р  +  Л 0 р 2]  d z ,

л (Rt(z))6- ( R 3(z))b , G
r \  2  —  7  " г  ~

( R 4 (2 ) )5 +  ( K 3 (z))2

k l j \+ (R ' t ( z ) )2 V l+ (R '3(z))2

(K4(z))X (z) + (R3(z))2K'3(z)q —4 — /4 l_ 4 fc

^ 0 = 4[(Л4(г))4 —(K3(z))4 + 4

V i + ( « i t f  y r + ( ^ 3(z))2

G / (R3(z))3(R'3(z))2

H / l + W 2

( 6.20)

(6.21)

( 6.22)

+
( K 4 ( z ) ) 3 ( R 4 ( z ) ) ;

(6.23)
V T + № F  À  ‘

The function of one variable p =  p(z) in formula (6.20) satisfies the boundary condition

p{b)-
(K4(b))4- ( R 3<6))4 '

6.5 Let function p(z) in inequality (6.19) be constant in the form

I

(6.24)

p ( z )  = = constan t.
(R4(h))4 - ( Я # ) )

After a short calculation, the lower bound for the torsional rigidity emerges as

(6.25)

(6.26)

that

J A0(z) dz
a

6.6 Making use of the elementary results of variational calculus, it can be shown

mini[p(z)] = i[p(z)] (6.27)
p(-)

where function p = p(z) is the solution of the following boundary value problem

— (А2р'У + (Ao — A\)p = 0 a < z < b , (6.28)

A 2(a)p\a) + A l(a)p(a) = 0 (6.29)

1
Pip)= (R4(h))4- ( R 3(h))4

(6.30)

Applying the above results to functions h = h(r, z) defined by Eq. (6.18), it can be proved 
that the best lower bound belongs to

h(r, z) = r*p(z) (6.31)
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TORSION OF BARS OF ANNULUS CROSS-SECTION 45

The application of function h = h{r,z) in the form of (6.31) results in

2nG 
'IP(z)] '

(6.32)

We will now transform the right-hand side of the lower bound (6.32) into a more 
explicit form:

'[p(z)]= J lA 2(p')2 + 2AiPp' + A0pz] d z =  \ ( A 2p'p)' d z -
a a

-  Í [( -  A2P)'p + (A , p2)' + /40p2] dz = [A2p p f a + Í [( -  A2p')' + (A l p2)' -
a a

-  A\p2 + A op2] dz = [A 2 pp + A , p2]* + J p[( -  A 2p')' + (A 0 -  A\)p] dz =

= lA2(b)p'(b)+ Ах(Ь)р(ЬШЬ) =
=  A2( fe )  [(R4(b))*-(R3(b))̂ p'(b)+ A,(h) 

(RAb))*-(R3m*

The formula of the torsional rigidity (6.32) can now be written as

2яС[(К4(Ь))4 - (К з(Ь)П2 634.
"  i ( R , m 4- ( R 3Cb))*]A2(b)p\b) + A , (ft)

6.7 The exact value of the torsional rigidity is not known even in the special case
when

R j =  R 3 (z) =  constant, (6.35)

R^ = R^(z) = constant. (6.36)

In this case the quantities necessary for the calculation of the upper bound (6.17) are as 
follows: ç

A = - - (Rt~  Кз)л = constant, (6.37)

В = 2kn(Rl + Rl) = constant. (6.38)

Introducing the notation

2 4 k(Rl + Rl)
“ G ( R t - R i ) '

(6.39)

differential equation (6.12) turns into

P " - a 2P = 0 (6.40)

The solution satisfying this differential equation and boundary conditions (6.13), (6.14) 
runs accordingly

Aria Technica Acudemiac Scientiarum Hungurií ue 45. !lJH2



46 ECSEDI, I.

P ( Z )  =

sh az 
sh a/

(6.41)

Substituting the above function to (6.17) and making use of formula (6.39), we arrive at 

Gn
c ,h 2

IК  R‘ iC R Ï - R Î G
(6.42)

6.8 The lower bound for a bar limited by circular cylinders can be obtained from 
inequality (6.34). The quantities necessary for the calculation in the case of a =  0, 6 =  0 
are the following:

1 G
A 2 = — (Ä4 — Яз)+ — (Rl + R 5) =  constant, 

6 к

A x= 0 ,

A0 = 4(R4 — R*) = constant.

Introducing the notation

4( R t - R i )
r =

^ ( R l - R ^ + ^ R l  + Rl)

the differential equation (6.28) turns into

P " - ß 2P = 0 .

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

The solution satisfying this equation as well as boundary conditions (6.29), (6.30) at 
a — 0 and b = / reads as

1 ch ßz
p(z) = (6.48)

R4- R 3 ch ßl '

Making use of (6.34), (6.46), (6.48), the lower bound for the torsional rigidity becomes

2 n G ( R t - R t f
S ^

- i(K 2- ^ ) + ^ ( K l  + «!)]
(6.49)

ß th ß l

6.9 Figure 3 shows the meridian cross-section of a bar limited by cones. The basic 
data are as follows:

y4= l  y3 = 0 ,8, k = 2 -106 N -m n T 3,

G = 1 0 5N m m ~ 2, 1 = 90 mm,

a = 10mm, h = 100mm

Ä3(z) = y3z = 0.8 z [m m ],

R4(z) = y4z = z [m m ].
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TORSION OF BARS OF ANNULUS CROSS-SECTION 47

Q = 1 0 m m

Fig. 3. Meridian section of the bar limited by cones

Making use of inequalities (6.10), (6.26), the lower and upper bounds for the torsional 
rigidity emerge as

10.8 X 10“  N m m < S <  12.9 x 10“  Nmm.

References

1. Aruljujan, N. H,—Abramjan, B. L.: Krucsenie uprugih tel. Izd. Lit. Fiz.—Mat. Moskva 1963, 506—516
2. Timpe, A.: Die Torsion von Umdrehungskörpern. Math. Ann. Leipzig. 71 (1911), 480—509
3. Willers, Fr.: Die Torsion eines Rotationskörpers um seine Achse. Zeitschr. f. Math und Phys. 55 (1907), 

225—263

A cla Technica Academiue Scientiurum HungarUue 95, 1982





Acta Technica Academiae Scientiarum Hungaricae, 95 ( l — 4), pp. 49-53 < !9H2)

PROPOSED CONTINUUM MODEL FOR SIMULATING 
THE BEHAVIOUR OF GRANULAR MATERIALS

J. F ü z y *— J. V a s**

[Received: I September, 1982]

The paper presents a possible way to simulate the very special behaviour of granular 
materials. Applying the well-known micro-elastic continuum theory for the problem a continuum 
theory with intrinsic volume-change was elaborated. The basic equations include the following 
unknown kinematic functions: the displacement vector and the intrinsic volume-change as a scalar 
function. The consitutive equation consists of six new elastic material constants, to evaluate them 
requires further investigations

Introduction

The theories proposed for the calculation of the inner stress distribution and 
deformation of a considerable part of shell structures, such as the shells of revolution, 
are so accurate that even the special behaviour of the material used for construction can 
modify in no considerable degree the statics of storage tanks or silos [ 1].

In view of this fact it seems highly superfluous to improve the accuracy of these 
theories any further as long as the functions and distribution of the outer load do not 
attain an approximately similar accuracy. The materials most frequently stored in such 
types of tanks or silos are granular materials, grain, gravel, etc. The accuracy of 
computing the pressure exerted on the inner surface of the shell by the statics and 
dynamics of the stored material leaves in these cases much to be desired.

To promote the solution of this topical design problem in this particular field of 
engineering we try to show in this paper a possibility of simulating the behaviour of 
granular materials by a continuum mechanical model.

Summary of the general equations of linear microelasticity

As is well known, in classical linear elasticity there occurs only one kinematic 
variable as the basic unknown function, namely the displacement vector field. In micro­
elasticity the kinematic freedom of the elementary point of continuum was extended by 
a tensor field, which means an intrinsic micro-deformation tensor of the elementary

* Dr. J. Fiizy, Scientific Adviser, Hungarian Institute for Building Science, ÉTI, David F. u. 6, 
H-l 113 Budapest, Hungary

** J. Vas, Senior Researcher, Hungarian Institute for Building Science, ÉTI, Dávid F\ u. 6, H-l 113 
Budapest, Hungary
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point as a new independent kinematic variable besides the displacement vector field
[2].

It is not necessary to clarify the full physical background and reality of such 
continua, all the more because the literature on that particular branch of science leaves 
no doubt in this respect [3, 5, 6], especially in the case of the so-called Cosserat 
continua which are a degenerate type of the theory [4].

The micro-deformation tensor di} is taken to be homogeneous at the elementary 
point which is a finite micro-volume, and non-homogeneous in the macro-medium. 
The symmetric part of dtj is the micro-strain: d(ij) and the antisymmetric part is the 
micro-rotation: dlin.

An alternative interpretation is that the quantities di} are proportional to the 
components of the displacement of the tips of the deformable directors [7], in that case 
d[Ui are the components of the displacement of the tips of the Cosserat “trièdre”.

We define the usual strain (now the macro-strain):

Duj)= j t f i U j  + djUi) (1)

and also the so-called relative deformation which is the difference between the macro­
displacement gradient and the micro-deformation:

yij = diuj - d ij (2)

and the micro-deformation gradient (the macro-gradient of the micro-deformation):

ciijk — didjk (3)

The basic kinematic unknown functions и, and di} are assumed to be single 
valued functions of the coordinates of the macro-space, leading to the compatibility 
equations:

emiken,jdidjDkl = 0, a.)

e^ijSiKjU=0, b.)

Si(DUk) + Dljk] -  yjk) =  K iJk c.) (4)
where DW] is the macro-rotation and eiJk is the alternating tensor.

In view of the variation of potential energy W, we define the Cauchy stress tensor:

the relative stress tensor:

S(ij) -
cW

а>«л
= SU‘)

and the double stress tensor:

Hijk =
aw
ÔKijk

(5)

(6) 

(7)
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From the variational equation of motion, there follow immediately the twelve 
equations of motion [2]:

di(S(ij) + oij )+fj=püj ,  a.)

SiHijk + ffjk + Vjk =  -  y  P'Lfjdik >b-) (8)

T hus/ is the body force per unit volume, (pJk is to be interpreted as a double force 
per unit volume, p is the mass density of the material per unit macro-volume, p‘ is the 
mass density of micro-material and the dot means differentiation with respect to time. 
The expression Lfj represents a kind of inertia tensor depending on the measures of the 
unit cell (micro-volume) [2].

3. Proposed continuum model for simulating the behaviour 
of granular materials

One of the most interesting and significant features of the behaviour of granular 
materials is that the continuum may change in volume without isotropic pressure. This 
means for instance, that a unit volume of granular material under shear deformation 
will be compacted if the initial state of the pattern was loose, and it will relax if it was 
originally compact. This phenomenon definitely influences the dynamics of granular 
materials and so we want to focus our analysis on that.

In our opinion the theory of micro-elasticity expounded above should be 
remarkably suitable for that purpose. It is only necessary to take the isotropic part of 
the micro-deformation tensor as an intrinsic volume change into account, which means 
a scalar function “e” as an independent variable besides the displacement vector:

dun — °  and d(iJ)=eÔtJ ; (9)

In that case the relative deformation will take the following form:

yu = uJ . i - eôij , (10)

using the conventional abbreviation djU,=  и(>у and ôu designating the Kronecker 
symbol.

Based on this assumption the micro-deformation gradient will reduce to a vector:

*, =  <?., (11)

and as a consequence, the double-stress tensor reduces to a vector p t also.
We try to find the constitutive equation in the following linearized form:

S(tj) — c j D{ij> + c2 DkkSij+ c3eôjj, a.)

Gij — c4 D(ij) + c5 Dkk^ij + cb ű[,j] +  c7 eSy, b.)

Pi=c»eA c.) (12)
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■>• The constants о, and c2 do not represent new constitutive constants, they are 
linear combinations of the Lame’s constitutive moduli, but c3 — c8 are new ones. 

Introducing a new general stress tensor by the following definition:

S i j  =  S< ij) +  cri j  a ’)
« >■

$ij =  ( c' i  +  c 4  )D(ij) +  ( c'2  +  c s)Dkk  +  c 6 D\ij) +  ( с ' з  +  Cj)ëô ij b.) (  1 3 )

the first equation of motion (8/a) will take the form of the classical continuum:

Sij , i+fj=püj  (14)

The second equation of motion (8/b) can be simplified by using Eqs (12/b) and 
(12/c) and finally we get the following form:

s g e. a +  (c4 + 3c5K  f + 3c7 e = p —  ë (15)

having taken into account that D(iJ)Sij = ui i. In the equation the double force per unit 
volume is neglected and the global-mass p and the micro-mass p' are assumed to be 
identical. The micro-volume (unit-cell) is regarded to be cubic and so it has only one 
significant dimension: “L” and, as a consequence, the inertia tensor reduces to a 
constant as is the case in the Cosserat theory. The meaning of “L” in our case must be 
the smallest possible volume that still contains a sufficient number of grains for the 
phenomenon to take place.

4. Conclusion

The geometric equation Dij = uj i and the constitutive equation (13/b) together 
with the two equations of motion ( 14) and ( 15) form the basic system of equations of the 
proposed continuum model. These equations include a new variable: “e”, which means 
the intrinsic volume change superposed on the dilatation u„ of the medium. For the 
new variable which is a scalar function we have a new equation ( 15), the other equations 
are very similar to the ones of the classical elastic continua, they differ only in the 
isotropic term on the right side of the constitutive equation (14).

A problem to be invesigated in the future follows from the undefined new 
constitutive constants: c3—c8. The main purpose of working out such continuum 
models should be to elaborate the algorithm of the system—by finite elements for 
instance—and obtain in this way a very effective scientific tool to investigate the 
behaviour of granular materials.

In that case there is a possibility to change the values of the new constants 
systematically—especially in connection of c8—and so to determine their actual values 
for different materials.
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It will be possible to follow the tracks of the whole process using this method by 
displaying the numerical solutions of the system of equations at equidistant time lags.

In this way we could improve our knowledge of the behaviour of granular media, 
for instance in the course of the discharge of silos, etc.
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STABILITY OF VISCOELASTIC STRUCTURES

G y . Ijja s *

[Received: 12 July 1983]

The critical state of a viscoelastic structure—i.e. when the velocity of the deformation of the 
structure is infinite—can be characterized by the singularity of a Hesse matrix. This Hesse matrix 
contains the second derivatives of the difference of the free energy of the structure and the work of the 
loads with respect to the outer parameters. In the case of viscoelastic structures the Hesse matrix 
usually is the function of the initial imperfections, the loads and the inner parameters (creep).

1. Introduction

Reports on creep stability problems have been published from the end of the 
forties. But until 1978 solutions of single problems were only presented. Some of them 
are excellent, but others are only acceptable.

Hayman [2], [3] gave the first general discussion of the creep stability problems 
on the base of the bifurcation theory and cleared up some false ideas.

The most important thesises of his articles are as follows.
Let us leave the creep of the structure out of consideration, that is be the structure 

elastic. The modulus of elasticity of the structure is the same as that of the short time 
modulus of the original structure. If the structure has no unstable equilibrium state at a 
prescribed load level, the velocity of the deformation of the original (viscoelastic) 
structure will not be infinite at that load level. Naturally the load of the structure has 
to be less than the lowest critical load of the elastic structure. It follows, that the 
structure has no finite critical time at that load level. Hayman showed it in the case of 
statically determinate structures.

If the elastic structure has at least one unstable equilibrium state at a prescribed 
load level, then there is the possibility of infinitely large velocity of deformation at finite 
deformation. It follows that the structure may have finite critical time.

There is the hypothetical possibility, that a structure originally has a stable 
equilibrium path and this stable equilibrium path is becoming unstable during creep. 
However, we have not met any research activity presenting this kind of structure.

Hayman’s papers [2], [3] are excellent, but they give only a phenomenological 
description, without rigorous mathematical base. So his results are not of general 
nature.

* Ijjas György, öv  u. 165, H-1147-Budapest, Hungary
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The aim of this paper is to present the criterion of the loss of stability of 
viscoelastic structures on a rigorous mathematical base. We will examine structures 
with finite degree of freedom only with finite critical time. We will not take into account 
the aging and plastic deformations. We will prove that at the critical time the 
determinant of the Hesse matrix of the structure vanishes. This is the generalization of 
the energy criterion of the elastic stability.

2. The demonstration of the general criterion of viscoelastic stability

The Lagrange equation of the small vibration of dissipative structures was 
probably set up at the end of the thirties [4], [5]. If we do not take into account the 
kinetic energy, the remaining part of the equation is the static equilibrium equation of 
dissipative structures. Biot [6] was the first who derived this equation from 
thermodynamic principles for the case of linear viscoelasticity. This equation reads

dV dD n
T T7 P‘ ,

î>4i oqt
where V is the free energy of the structure,

D is the dissipation function,
q, are the generalized coordinates (components of displacement), 
<j, are the velocity components of displacement,
P, are the components of the generalized force vector.

(1)

If we have conservative loads, then making use of equation Q =  V— 
their works is W, Eq. (1) takes the form:

W.; where

M - o .dqt d qt (2)

One of our basic assumption is that the displacement of the structure is always 
the sum of the elastic and the creep displacement. We will name the sum of these 
displacements external parameters, and the creep displacements internal parameters.

Since Q depends on the displacements only, and D depends on the velocity of the 
internal parameters, the system of equations (2) can be divided into two parts:

| ^ = 0 ,  (t =  l ,  . . . , m )
<q,

(3a)

dQ dD n
-r—  '•+ — = 0 ,  (j =  m +  1, . .  . ,m  +  n)
dqj dqj

(3b)

where m is the number of the independent external parameters, n is the number of the 
independent internal parameters. Equations (3a) will be called external equilibrium 
equations, and equations (3b) will be called internal equilibrium equations (ITis the 
function of the external parameters only, so Eqs (3a) contain the loads).
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We will postulate that the velocity of the internal parameters tends to infinity 
only in the case of infinite forces. This statement seems plausible, if we examine the 
equation of Newton, Bailey, Ludwik or Nadai viscous flow [7].

So we have to examine only the velocity of external parameters. Let’s 
differentiate Eqs (3a) with respect to time. (In the following the double indexes indicate 
summation convention):

d2Q
—- q ,  =  0 . ( /=1........m + n).sin.dqidq.

0 = 1 , . . . , m )

(4)

Let us divide the equations of the system of equations (4) into two parts. The first 
part contains the velocity of the external parameters as multipliers, the second part 
contains the velocity of internal parameters as multipliers. The system of equations (3) 
thus assumes the form

d2Q . d2Q . 
dqfiq, dqfiqj 0 ,

(IQ (ID
<4 + dqj

= 0 ,

( i = l ........m)

(/= 1, .. .,m)

(j = m+ 1, .. , ,m + n)

(5a)

(5b)

where q, is the velocity of the externa) parameters. However, the system of equations 
(5a) is linear for the velocity of the external parameters q, . Since we have postulated 
that (jj is infinite only in the case of infinite forces, formula

02Q
dq,?q,

=  0 ( 6)

represents the necessary condition for at least one of the velocities: q ,=  oo. {Q is a 
continuous function and its derivatives are continuous too).

In other words, the velocity of at least one of the external parameters (the velocity 
of full displacements) is infinite, if the determinant of the Hesse matrix of the function of 
the difference of the free energy and the work of external forces vanishes. (The Hesse 
matrix contains only derivatives with respect to the external parameters!). This Hesse 
matrix is the matrix of the coefficients of the system of equations (5a). This criterion is 
the generalization of the energy criterion of the stability of elastic structures (In the case 
of elasticity we have no internal parameters.)

The above derivation was based on the Lagrange equation of linearly 
viscoelastic system. This results, however, can easily be extended to the case of 
nonlinear creep.

Namely, the external equilibrium equations (3a) can be derived from the elastic 
potential (the free energy) of the structure and from the work of external forces. It
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follows that they express the equilibrium of external forces and the internal (elastic) 
forces (stresses). The internal parameters are only parameters in these equations. So 
these equations do not give any information about the type of creep (linear or 
nonlinear). This information can only be obtained from the internal equilibrium 
equations. It can easily be seen that in the case of nonlinear creep (i.e. the system of 
equations (3b) are nonlinear) the earlier derivations hold.

The derivation in this form holds only in the case of constant loads. If the loads 
are not constant, Eqs (4) and (5) contain an element which is the function of the velocity 
of loading. Since we examine only statically loaded structures, the velocity of loading is 
not infinite, so the conditions of the earlier deduction do not change.

If the system of equations (3) has a solution, this solution is the system of 
displacements of the structure (the external and internal parameters) in the function of 
time. Introducing this system of parameters into (6), we obtain an equation for time. If 
Eq. (6) has positive real solutions, then the smallest one is the critical time.

Let us analyse some simple examples to illustrate the previous derivation and to 
show some important new relations.

A statically indeterminate structure is shown in Fig. 1. The rigidity of the bar of 
length L is infinite. K x and K 2 are linear springs and can deform without restriction. 
The constitutive equations of the springs are

where A0 = L sin 6>0 represents the initial stress-free state. (If A0 relates to the structural 
imperfections, then condition d o =  0—i.e. the bar is vertical—means the structure

3. Illustrative examples

F = K2( A - A 0),

М = К 1{ в - в  о ) .

(7a)

(7b)

Fig.  I.
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without initial imperfection). The equilibrium condition of the structure is that the 
moment at point 0 is zero. Taking into consideration equation (7), this condition results 
in

PL sin 0  — K 2L2( sin 0 —sin 0 o)cos 0  — K ,(0  — 0 o) =  O, (8)

The structure is in critical state when дР/дв — 0. (This is equivalent to the 
singularity of the Hesse matrix of the potential energy.) Expressing P from (8) and 
differentiating with respect to 0 , we obtain a fraction. The left-hand side of Eq.

K2L2(sin 0 O —sin3 0 ) + K,[sin 0  —(0  —0 o)cos 0 ]= O  (9)

is the numerator of this fraction. Condition dP/dQ — 0 is equivalent to Eq. (9). Equation
(9) yields the critical deformation in the function of initial imperfect state.

Let us analyse the structure shown in Fig. 2. The condition of equilibrium in this 
case reads

PL sin 0  — FL cos 0  — M = 0  (10)
where

F = K 2( A - <40) =  K 2(Lsin 0  — A0). (11)

The constitutive equation of the spring-dashpot model on Fig. 2. reads

K xbt Ô = K l M n + bl M (12)

where n is a constant. This is the Norton law. Making use of ( 11 ) and expressing M from
(10) , Eq. (12) becomes

^  K ,[PL  sin 0  — K2(L sin 0 — d 0)Lcos 0 ]"  + b, P sin 0  
К I + K 2LAq sin 0  + K 2L 2 cos 20  — PL cos 0

If we use
K l bi Ô = K l M + b l M (14)

instead of(12) which is the constitutive equation of the Maxwell modell, then we obtain 
again a fraction form for Ô. Its denominator and the denominator of Eq. (13) are the 
same.

Let us define the change of energy of the system in Fig. 2. as

Q =  j  К , (0  -  0 d-  0 O)2 + I  К 2 (A -  A0)2 -  РЦcos 0 O -  cos 0 ) .  (15)

In this equation 0 d means the displacement of the piston in the ft, dashpot. (0 rf is 
the internal parameter). If we differentiate (15) with respect to 0  twices (regarding 0,,as 
an independent variable), we arrive at

d20 = K, + K2zl0L sin 0  + K2L2 cos 2 0 -P L c o s  0  . (16)
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P(») P(t)
Д Д

Fie). 2.

This expression is exactly the same as the denominator of Eq. (13). Consequently, if 
c 2Q/v&2 is equal to zero, then Ô is infinite. If we want to obtain the critical time, we 
have to solve (13) for 0(i). Then we have to introduce the solution into condition 
d2Q/d©2 = 0 [This is Eq. (16)]. If it has a solution for r, then it is the critical time.

Let us define the change of the potential energy of the structure in Fig. 3. as

Here Ad is the displacement of the piston in the b2 dashpot. Differentiating (17) again 
twice with respect to 0 , we obtain

Comparing ( 18) to (9), we can see that in the case of elastic structures the Hesse matrix 
depends on the initial imperfection, while in the case of viscoelastic structures it 
generally depends on creep (internal parameters) and the loading too. That is why the 
critical time of a viscoelastic structure can not be defined usually from the critical 
deformation of the equivalent elastic structure. (The structure in Fig. 1 is the equivalent 
elastic structure of the structures in Figs 2 and 3). The analysis of circular cylindrical 
and spherical shells in the papers of Obrecht [8] and Xirouchakis and Jones [9], [10] 
also shows this fact.

Hayman has shown that in the case of statically determinate structures the Hesse 
matrix of a viscoelastic structure and that of the equivalent structure become singular 
at the same deformation. In some cases the Hesse matrix of statically indeterminate 
structures with finite degree of freedom formally can be independent of the internal 
parameters if the independent variables are chosen skilfully. In the case of the structure 
in Fig. 2, if A is chosen as an independent parameter instead of 0 , and (18) is 
differentiated with respect to it, instead of (16) we obtain an expression which depends 
on &d.

Q= y  X , (0  -  0 ,  -  6>o)2 + — К 2(Л — Ad — A0)2 — PL( cos 0 O -  cos 0 ) . 17)

(18)
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ELASTIC STRESSES IN CRACKED 
PRESTRESSED PRETENSIONED CONCRETE 

COMPOSITE BEAMS WITH BONDED TENDONS

L. J a n k ó *

[Received 3 January, 1982]

Computation methods have long been known for the design of precast, prestressed beams 
with bonded tendons, interacting with monolithic r.c. slabs, either under service conditions (no 
tensile stress) or in ultimate condition. This time, the beam stress state after crackiny will be analyzed. 
The presented method yields extreme fibre stresses of the cracked composite beam (slab + beam), the 
steel stress increment, the crack width, and the elastic limit load.

Symbols 

Roman letters

ideal cross-sectional areas of uncracked beam and slab, resp.
(<p = 0);
tendon cross-sectional area (area of prestressed 
reinforcement);
distance between ideal centroids (tp = 0) of uncracked slab S(J|
and uncracked beam Slb;
upper and lower flange widths, respectively;
web thickness;
upper and lower flange thicknesses, respectively; 
distance measured from extreme compressed fiber of beam to
centroid of tendons (effective depth of beam section); 
monolithic (in-situ) slab thickness:
dead load components (O, : dead load of beam, 0 2: one of slab,
Dy. one of waterproofing, paving (finishing) etc.);
initial moduli of the elasticity of slab and beam concrete, resp.
(<*> = 0);
tendon modulus of elasticity (Young’s, modulus); 
distance between compressive force N  and centroid Sib of
uncracked beam;
distance of compressive force N from neutral axis x„ of a
cracked beam;
prestressing force eccentricity referred to Slb, 
overall thickness of beam (without slab), 
tendon moment of inertia about their centroid; 
so-called “curvature moment of inertia" of beam; 
moment of inertia about centroid (Slb or S,3() of uncracked 
beam or slab (</> = 0);
so-called “stress moment of inertia” about neutral axis xM of 
cracked beam;

• Dr. L. Jankó, Lajos u. 142, H-1036 Budapest, Hungary
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M ( ............ )
A M *b,A N * b 
AM* .„A N *,,
AM*,, AN*.

М;=М|1.2,л(,)

-V/..д M'h + M (3, p) + A N*,en,

N.,
Nex = N + N„

external moment (with load subscripts in parentheses); 
resultants of stresses from accessory effects (subscript c, 6: neat 
concrete cross-section of the beam, deducing tendon cross- 
sections; si. slab cross-section; p s : tendon); accessory effects: 
creep and shrinkage;
moment acting at Slh from dead loads of beam D, and of slab 
D2, as well as from initial prestressing tendon force PK, 
external moment sum of total load (dead loads, prestressing 
force, live load, accessory stresses) acting at Slh (neglecting
AM*,);
share of moment from total load on cracked slab;
share of compressive force from total load on cracked beam 
(resultant of beam concrete stresses and of tension increment 
AT  due to external load); 
as for Msl but normal force;
external compressive force on the total composite cross- 
section after cracking (effective initial prestressing force 
deducing losses; N cx = PK — AN*,);

ratio of initial moduli of elasticity of slab to beam concrete
(<P = 0);

n E,
ratio of moduli elasticity of tendons to beam concrete (</> = 0);

PK = P ,-AP,(rel.,A t)

P

A T

X IS

VI I

initial prestressing force deducing effects of steel relaxation
and of temperature difference at beam préfabrication (so- 
called effective initial prestressing force); 
live load;
centroids of ideal cross-sectional areas (<p = 0) of uncracked 
beam and slab, respectively;
resultant tension increment (due to external loads) in tendons, 
distance of the overall beam concrete cross-section centroid 
Srb (including tendon cross-sections) from the compressed 
extreme fibre;
distance between the ideal cross-sectional centroid Sib and the 
compressed extreme fibre of the uncracked beam (q> = 0); 
depth to the neutral axis of the beam section (effective depth of 
the cracked beam section);

Greek letter

t’s h .h ’  t 'sh .s l

geometry constant; 

geometry constant;

final values of shrinkage coefficients of beam and slab, 
respectively;
compressive strain of the beam top (compressed) fibre 
(subscripts I and II refer to uncracked and cracked state,
respectively, load subscripts are in parentheses; without 
subscript < it comprises inherent compression due to creep 
and shrinkage);
specific strain of the extreme tensile fibre of the beam;
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specific compressions of bollom ami lop fibres of the slab (see 
comments on <:“ ,,);

. hl
к 1, geometry constant:n

X
*/ = - curvature parameter;

■7 = f> — <o eccentricity parameter;

h - J ,
K'=------

(/
geometry constant;

KM- K’hll curvatures of uncracked and cracked beam, respectively (the 
uncracked beam is only subject to permanent loads dead 
load + prestressing force + accessory effects);

Kv/h Ks/ll
V  

,i= Ы,

the same as before but for the slab; 

ratio of prestressed reinforcement (tendons);

. x"
4=  J

relative effective depth of the cracked beam under eccentric 
axial load:

*1*
" = tl

constant for the centroid position Slh of the beam in uncracked 
stale:

stress in the beam top fibre (with load subscripts in 
parentheses);
stresses in bottom and top fibres of the slab (with load 
subscripts in parentheses);

•1",, tendon stress variation (compared to prestress deducing 
losses. 17 1(7,,. ,-tpJ

лоГ:Г
Aa'-t,

/„
t = ^ "

stress due to creep and shrinkage in the beam top fibre; 
the same for the slab bottom fibre;

parameter;

</>л • </\í
\h

* = 7/

final values of creep coefficients of beam and slab, respectively:

constant for the centroid position Sih of the complete beam 
concrete cross-section (comprising tendon cross-sectional
areas);

h
* m é

geometry constant;

C
di­

ll relative eccentricity referred to centroid

5 .■Ida lechnini Aaidcmiac Scieniiarunt Hungarian' 95. 19H2



66 JANKÓ, L.

S u b s c r ip t s , s u p e r sc r ip ts

II
Ч>

uncracked;
cracked;
superscript for accessory stresses due to creep and shrinkage;

ex
p s
si

b
c
com

u

beam (without slab); 
concrete;
composite beam (beam + slab);
lower (bottom) fiber;
external (moment, force, load);
prestressed (prestressed reinforcement (tendons));
slab;
upper (top) fiber;

1,2,3 
0, 1, oo

parts of dead load;
subscripts for times t0 (prestress), t, (casting the monolithic 
slab and waterproofing, paving (finishing), etc.) and l „ (final 
state: completion of accessory effects).

1. Introduction

Bridge construction practice prefers gridwork made of a monolithic slab and 
precast, prestressed beams. Single beams may be qualified according to methods, 
relying on the service condition and the ultimate condition at failure. The Hungarian 
Building Code for Road Bridges requires exemptness from tensile stresses for the so- 
called service moment calculated from the dead load and a given percentage of the full 
live load (about 35% of the full live load "A”*).

Analysis of stress pattern in the primary beam without monolithic slab (precast 
beams) after cracking may follow research work by Tassi and Klatsmányi [1], [6], [7] 
indicating both the exact solution of the problem, and an approximate method 
describing essentials of the involved phenomena by simple, easy means for the 
structural engineering practice.

In engineering practice, the beam is considered to cope with the nominal load 
(dead load + full live load) if the stress in the top fibre of the beam cross-section, 
considered to be uncracked, is lower than permissible (and if the steel stress increment 
can be absorbed by the reserve in the tendon or by the ordinary reinforcement). In the 
positive case the quoted approximate method predicts closure of beam cracks after 
removal of loads in excess of the service load.

Exemptness from excessive residual deformations is safeguarded in certain 
building codes by imposing the quoted stress limit.

Demonstrating criteria of exemptness from tensions and of limited residual 
deformations on a beam assumed to be uncracked, the approximate method is seen to 
be correct only for beams without a slab [6], [7]. Correctness of the approximate

* Symbol in the Code.
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method as a function of various parameters can be shown [ 1 ], [6], [7] to depend on the 
prestress rate: the error to the detriment of safety in extreme fibre stresses of an 
uncracked beam does not exceed 20% if the mean concrete stress arising from prestress 
considered as centric is not less than half the basic concrete strength value.

Further analyses concerning composite beams will be presented below.
It is attempted to develop a method for determining stress conditions in the 

cracked beam, the tendon stress increment, crack opening, and the ultimate elastic load.
Chapter 2 will be concerned with the stress and strain condition of cracked I- 

beams, relying on references.
Recapitulating particulars, Chapter 3 gives an account of the devised method, 

numerically illustrated in Chapter 4, deducing practical conclusions from numerical 
results.

2 .  C r o s s - s e c t i o n a l  c h a r a c t e r i s t i c s  o f  c r a c k e d  b e a m s  

u n d e r  e c c e n t r i c  c o m p r e s s i o n

Most of what in stated below is known from references [1], [2], [4], [7] but the 
discussion in Chapter 3 is more easily followed by referring to Chapter 2 than to the 
special literature.

First, let us consider the geometry conditions of a beam without monolithic slab 
vs. eccentricity e.

In any cross-section of a cracked r.c. beam under eccentric compression the 
following equilibrium conditions have to be met [9] (compressive force being affected 
by a positive, and compressive stress by a negative sign):

Hence:

2 dA = -<rc,b

Ne = z2 dA =

*ii

-<r“c,b

41

( 2 . 1)

( 2.2)

(2.3)

_u . Nx„ Nx„
° С , Ь  c  I  e * l l  -

' jcii
(2.4)

In conformity with Fig. 1, relative effective depth (£), curvature кЫ1, specific 
strains of extreme fibres ( e "  fc, e‘c b) and stress in the top fibre auc b are related by:

n =
X
V

tan у„ =  кЫ1 = =  - 1
Ф < ь
X Ec.bh

(2.5)

(2.6-7)
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'cu= ежп1хП

Fig. 1. Basic data, notations. Curvature moment of inertia of the cracked cross-section

(2.8)

Further on, moment of inertia about neutral axis —to be called “stress” moment of
intertia—will be needed (involved in (2.4) for the stress in the compressed extreme fibre):

bx^
I xu = ~  + nAps( d - x n)2+(bu-b ) . I dA 2 , d" 

d^ X" ~  2 + i2

+ -  j  -  [*n ~ { h -  d,)13 + nlp!, , (2.9)
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lx,,= 7^~{4<’3+ ~ ^ 2+{P ~ !)

+ 4(C—1)(£- *)3+ I 2 tJ

The corresponding static moment is:

Sxu= - nAp,(d- x„) + (bu- b) ■ -  y j b) 2

.-{Ç- n t i ( l - Q  + {ß - l ) [  c t ( - y )  + y (i-D U -ic )3

( 2. 10)

( 2 . 11 )

( 2 . 12)

Introducing notations

ex„ = x„ -  (*,„ -  e) = [£ -  (ff -  oj)]d = (£ -  9)d (2.13)

Eqs (2.3), (2.10), (2.12) yield knowing the eccentricity e — a characteristic equation 
for relative effective depth ç:

a3ç3 + a2ç2+ a,ç + a o =  0. (2.14)

For a neutral axis intersecting the lower flange,coefficients become (d> x„^(h — d,)->
С /  l ) :

«з = C,
a2= -  3Ç3,

a, = 6n/r( 1 -  3) + 3oe(0- 1 ) (a -  23) -  3*(í -  1 ) (jc -  23),

u0= -Ь пц(\ —3) —a2(/f — 1)(2а-33) + к-2(С- 1)(2a - 3 3 ) - 6 t , (2.15a —</)

For a neutral axis intersecting the web (x„^(/i — á,)) substitution £ = 1 may yield the 
corresponding coefficients.

For a neutral axis intersecting the upper flange (xH<du) substitution { = /? = 1
(rectangle) is imposed.

The above yield cross-sectional stresses and compressions (strains) for any 
eccentricity e.

Let us now consider the curvature conditions.
Eccentricity e of the normal force N acting on the cracked beam is referred to the 

centroidal axis of the uncracked ideal cross-section (S,*) yielding for the curvature in 
general (Fig. 1):

~ Km~ E 1 ’* ^ c . h *  c m

(2.16)

M = N e . (2.17)
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To determine the “curvature” moment of inertia Icu, let us express the curvature 
according to the strain diagram (Fig. 1):

Kfcll —
*n

c, b

Ес.ьх п
N e x„

E c . b l x  I I

Eqs (2.16) to (2.18) yield for Icu :

(2.18)

Ic u = ~ I x , ^ T ^ l x „ .  (2.19)
e x„  <5 <x

It should be noted that for an eccentricity ec of force N referred to centroid Scb of the 
uncracked complete concrete cross-section, Eq. (2.18) is replaced by

Ner
Kb„ = F I^ c ,  b1 cu,c

(2.20)

d  C U .C  7 ^  f e u )  •

The concept of “curvature moment of inertia” has been introduced by Dulúcska [2] in 
his stability analyses. At present, this cross-sectional characteristic will facilitate 
writing of conditions of compatibility between the monolithic slab and the precast beam. 
Further analyses will rely on

A t = ^ 3-6n/r(l - t )  + ( ß -  l)a2( 3 £ - 2 a ) - ( ( -  1)k2(3 £ -2 k) - 6 t , (2.21)

A 2 = + Щ 2 - 6 n / i ( l - e ) - ( f l -  1 )3a(a -  2 «  + ( Í -  1)3k(k -  2f ) , (2.22)

0 = р - ш = — . (2.23)
A 2

(according to Eqs (2.13) to (2.15)), permitting to determine eccentricity e for a given 
effective depth xn .

These geometry characteristics for a precast beam have been illustrated in Fig. 2.
The real form of the beam cross-section is not exactly /; 

the listed dimensions bu,b , ,d u, d, belong to a /-section with uncracked characteristics 
x tb, A lb, identical to those of the real beam. Moments of inertia lcu, Ixn are equal if 
neutral axis x„ of the cracked cross-section in eccentric compression is coincident with 
the ideal centroidal axis xI() of the uncracked cross-section. Of course, equality also 
subsists for e-»oo (pure bending, cracked state). It is interesting to see how fast the 
“curvature moment of inertia” for a given structure decreases after cracking (ecr 
=  cracking eccentricity; ek = kernel radius for the bottom fibre). Accordingly, also the 
“curvature moment of inertia” markedly increases with eccentricity.

Occurrence of a compressive force causes the curvature to increase less abruptly

than in pure bending ^ /Пь~ ^  f h j  ■

After cracking, none of functions кЫ| and auc b in Fig. 2 is linearly dependent on 
eccentricity e (while in the tested range they are nearly rectilinear). For e-+oo both
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[ 1] [1]
Fig. 2. Cross-sectional characteristics of cracked beams under eccentric compression

Acta Technica Academiae Scientiarum Hungaricae 95. 19H2



72 JANKÓ, L.

functions tend to infinity (the N  value being fixed). For e-»oo and Ne-*const, both 
functions have a limit value (uncracked stress state, pure bending). For a given e, of 
course, extreme fibre stresses and curvature are linear functions of external 
compression N. The elastic linearity is valid in this form.

3. Analysis of the beam in interaction with a monolithic r.c. slab

3.1 Basic assumptions, approximations, neglects

1. Tendons and concrete are of a linear-elastic material.
2. Cross-sections are assumed to remain in plane (Bernoulli-Navier hypothesis).
3. The effect of ordinary beam reinforcement is neglected.
4. The beam is either a priori made with bonded tendon or grouted.
5. The effect of the cracked tensile concrete zone to reduce the tendon strain (the 

stiffness increase due to “growth” of modulus Es) is not directly reckoned with. It can be 
approximated e.g. by standard methods, where Es is understood to be the increased 
modulus.

6. Internal equilibrium stresses due to creep and shrinkage are reckoned with as in 
the uncracked beam. This equilibrium stress system alters the eccentricity of forces on 
cracked beam elements, hence also “curvature” moment of inertia lcu. Accordingly, 
accessory effects cannot be simply superposed.

7. Steel relaxation is complete soon after prestressing.
8. A monolithic r.c. slab is rectangular and of symmetric reinforcement.
9. Moment of inertia of the cracked beam involves the moments of inertia Ips of 

tendons about their centroid but the share AM ts on tendons due to creep and 
shrinkage—by orders less than the others—is omitted from equilibrium equations.

Also there are load effects to be reckoned with (dead load, working (live) load, 
prestress, creep, shrinkage) will be discussed below, not directly involving the external 
moments from accessory effects in hyperstatic beams, but the latter may be comprised 
among dead load moments to that sense.

Internal equilibrium inherent stresses due to creep and shrinkage in the cross- 
sections need to be predetermined by some convenient method for applying the 
presented method (accordingly, ideal cross-sectional characteristics have to be 
calculated with (p = 0). In the numerical example in Chapter 4, Frey's method relying on 
Trost’s material model has been applied [3].

Acta Technica Academiue Scientiarum Hungaricae 95. !9H2



CRACKED PRESTRESSED CONCRETE BEAMS 73

3.2 Description of the method

In the uncracked beam, stress resultants M'b, Nb (Fig. 3) arise from a beam dead 
load D ,, slab weight D2 and initial prestressing force PSo.

Moment M(3,p) in the composite cross-section of a beam, assumed to remain 
uncracked under further loads, could be decomposed according to e.g. [1] to moments 
and forces Mbl, N bl and Msll, Nsil in the beam and in the slab, respectively. Accessory 
stresses due to creep and shrinkage in slab and beam may be superposed on the former 
ones.

G„ub(U s0)
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For a cracked beam, the starting condition will be that where all constant loads 
are already acting, and also stress excesses Aav(oo, 0) from accessory effects (shrinkage, 
creep, [3], time i =  iQ0) subsist. Initial prestressing force has been considered as that 
reduced by the effects of steel relaxation and temperature difference At0 (Hoyer 
prestressing system):

Ps0— Ps —APs(rel., At0) . (3.1)

After cracking, the slab is subject to Mpl, Ns, , and the beam to compressive force N  of 
eccentricity e. According to Fig. 4c, resultants of slab and beam accessory stresses are 
AM ft , ANft and AM? h, AN? b respectively, forces balanced in uncracked condition by 
steel moments and forces AM?S, AN?S seen in dashed lines in Fig. 4c. Since accessory 
effects alter the eccentricity of forces on structures (beam, slab)—affecting in turn, the 
beam “curvature moment of inertia” (Fig. 2)—accessory stresses cannot be superposed 
on final stresses due to loads. After accessory stresses have developed, prestressing force 
PSo decreases by AN?S but the decrease in this form cannot be taken otherwise into 
consideration than in the equilibrium equations. Compatibility equations have to 
involve compressions (strains) and curvatures due to moments and forces AM? ,AN?,, 
AM? h, AN?_b in Fig. 4c, permitting exact determination of the stress jump along the 
joint line between slab and beam, and curvature of the structural members, in 
compliance with the impossibility to exactly account for accessory stresses by simply 
reducing the prestress. With external stress resultants N ex and Mex arising after 
accessory effects, equilibrium equations for the cracked condition (Fig. 4) become 
(neglecting AMvps):

N ex = P,0-A ÏÏ% , (3.2)

Nex — N  + Nsi , (3.3)

M ex = M( 1,2,3, s0,p) + AN*seps, (3.4)

M ex = Ne + Msl -I- Nsla . (3.5)

Here AN'ps gets an overdash, it being somewhat different from AN?S:

ANl=AN«ps + nApsAo%',

where Ao? b , is concrete stress in tendons centroid due to accessory effects (upper, 
framed part in Fig. 5).

Namely, AN?S belongs to the condition following cross-sectional deformations 
due to accessory stresses (do-''’). Thus, according to the present mode of discussion, this 
force has to be increased as mentioned above to result in the force (P,0 — AN??)— 
considered to be external—belonging to the undeformed cross-section. By the way, this 
method involves the effect of prestressing force variation AT  due to external loads 
(negative, i.e. tensile force, indicated in Fig. 4a) and resultant compression N b of beam 
concrete stresses sum up to force N.
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Diagram of strain due to total permanent load is seen in the right side part of Fig. 
4c. Compatibility of this system means the identity between the increments of 
compression along the hardened slab joint line i.e. the curvature, and of the curvature 
of the beam top fibre. Shaded area shows compressions arising from stresses 
<x(l,2,3,s0 ,tp), the rest being composed of shrinkage and of compressions pro­
portional to creep.

Unshaded compressions are, in detail (where p =  0.8, concrete ageing coefficient 
[3], and ф® = creep coefficients belonging to loads applied at prestress (t0) and after 
slab concreting (r,), respectively):

Accessory stresses are joined by subscripts of time t0 , t, , tx  in brackets. Subsequently, 
these terms in brackets will be omitted, any accessory stress corresponds to complete 
increment during interval t0 — txi. Compressions KFSl and Kut b are considered 
invariable after cracking, not to be detailed further. The quoted system of inherent 
deformations will be omitted in the analyses, they can be used only in determining 
external displacements. The respective curvatures, involving K“ sl and K[<b written by 
analogy to the former, become:

K Sl ~  J

isl Ku(P_ IKr.,b~ 74 E./)
Kb — Г

(3.8)

(3.9)

The total dead load combined with the prestress to produce the total accessory 
stress system (A M fb, AN*h, AM*,, AN*,, AM*S, AN*t)~to be called starting 
condition—causes a strain in the bottom fibre of the slab. The live load causes the beam 
to be cracked, changing the e[, , value to 4, „ :

-ИЗ) , л а 1.<р
A —Fl + I ytfcs / . l  — fcc . s l ,M  p  "T r v e s | ,

sl

J —f1 4-к 1 — I ^ st A 4-K ‘Ei l , l l  — л e.s l —  ~  p  J  Г  .  a s l - f  A t ,s i  •
Is/ “ c . s l h s l

The compression increment (in a slab of symmetric reinforcement):

Af‘ - f‘ —f1 — —I
A iji 21 ы

ïL.I  rr,<3>  /I n1*a sl °c ,s l  / , a c.sl I •
Ы J

(3.10)

(3.11)

(3.12)
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Fig. 4. Equilibrium of internal stresses in cracked composite cross sections 

Elements of deformation (strains and curvatures)
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Beam top fibre compression in the starting condition and after cracking, respectively 
(2.4):

ru _ ru . r- <*(1.2,3, So)+ d<-ri>l ĉ,b, I ' c,b— ----------- ^---------------- Г KCth ,
£ c, /»

Compression increment:

A p“ —p“ _o“ _— ®wi еы —
NeXux„

- < „ ( 1 .2 ,  3,s0) - d < ;?

(3.13)

(3.14)

(3.15)

Expressing M,, and Ns, from equilibrium equations (3.2) to (3.5) and substituting into 
(3.12), compatibility condition

(3.16)

yields for force N acting on the beam:

* II

'ГЪ

(3.17)

Notations mean (e“>b(3)= e' s,(3)):

a* = < „ (  1,2, s0) + - ,nc
(3.18)

n = ^ L  
‘ K b  '

(3.19)

i -  M „ - N e3A i (3.20)

e.,,Xi| /  a — e 1 \  1 в ю = ^ н - п + +  _
xh \  2f ы -4 isi J nc

(3.21)

Force N obtained from (3.17) is other than the true one N*, the curvature compatibility 
being still missing.

In the starting condition, and after beam cracking, the respective slab curvatures 
are (tan y,„, tan yj(ll in Fig. 4).

r  , A W  | г »
Ksii r » ' F l ^ Ksl' (3.22)

Ms,
KsM =  F . + Ksl ■ 

*̂ c, b' 1 com
(3.23)

A da Technica Aauiemiae Scient iur um Hungáriáié V5. !VH2



78 JANKÓ, L.

Curvature increment:

A  Ksi — Ks l l l ~  Ksll —
M g - A Mît

^ c ,s l^  Isl

M(3)
£ c ,  d I cor

(3.24)

Beam curvature in starting condition, and after cracking, resp. (tan yM, tan yM, 
in Fig. 4):

K Mi, Щ  3) AM %
Kbl — г  r  +  г  J ^  F  Ж ^ Kb l ’

c,b*\b *^с,Ь* I com  ^ с ,Ь ‘ с,Ь

Nex
К mi —

£, J
+  K h l •

c.b1 Jtii

Curvature increment:

Акь = кьи- к и =
К ь

Nexn M'„ M( 3) AM*b
L Л, Л с о т  Ic,b

(3.25)

(3.26)

(3.27)

Expressing moment Msl from equilibrium equations (3.2) to (3.5) and substituting into 
(3.24), compatibility condition

Акз1 = Акь (3.28)

yields for N:

Notations mean:

N*
D(0

c  M ex- N exa -A M Z  | M'b | AM*b 
Ilsl^c  l\b  Ic,b

(3.29)

(3.30)

+ 1 <3-31)

Under actual conditions, in addition to the equilibrium conditions, both compatibility 
conditions are satisfied:

n *= n **= n  .

Rather than by further reductions, the solution is advisably found by computer 
iteration. Assuming a convenient starting £ value, eccentricity e(a>, 3) results from (2.21 ) 
to (2.23). Depth exu below force N is obtained from (2.13). Now, substituting £ into 
(2.10) yields “stress” moment of inertia lXll.

Available parameters are applied to calculate N* from (3.17) and N** from 
(3.29). For the procedure is iterated, increasing or decreasing the £ value
until equality N* = N** = N (within a specified error limit).

N  being known, equilibrium equations (3.2) to (3.5) yield moment and force Msl, 
N sl, resp. acting on the slab. Steel stress increment (Aops) needed for determining the 
crack width is obtained from Fig. 1 as usual.
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4. Compressed flange stresses as a function of the load process

Top fibre stresses auc h, <r“ si of precast beam and monolithic slab with cross- 
sectional characteristics according to Fig. 2 are seen in Fig. 5. The beam meets the 
fundamental requirement of the introductorily outlined approximate method: the 
stress in the top fibre of the beam due to combined dead and full live loads (the so-called 
nominal load Mnom = M( 1, 2, 3, p)—assuming no crack—is lower than the permissible 
lfc% = 18 MNm~2).

The Hungarian Code of Road Bridges requires exemptness from tensile stresses 
of the bottom fibre under so-called service moment (Mser).

The service moment is composed from the dead load moment iW( 1,2, 3) and the 
reduced (ar) fundamental (unfactored) values of the full live traffic moment: Mser =  M( 1, 
2, 3) +  arM(p). The full live load of the bridge consists of concentrated loads (4 x 0.18 
= 0.72 MN) and an uniform load of 0.004 MNm~2 intensity.

Mser = 1.4637 +  0.35 x 1.2562= 1.9069 MNm in the case of Fig. 5.
Mcr in the diagram is the cracking moment.
Accessory stresses (creep, shrinkage) have been determined according to [3].
The obtained results successively pass into those to be calculated, assuming 

uncrackedness achieved at moment M0 for stress cr' fc =  0 (eK in Fig. 2), where also 
tangents coincide and stress functions of both extreme fibres are ascending, but later 
the beam function will be concave from below. The functions are nonlinear, namely 
both force N and eccentricity e vary continuously. While beam stresses differ little from 
those for an assumed uncrackedness, those for the slab are much poorer. The slab 
behaves elastically up to about 90% of the nominal load: M\(m s0 .9  Mnom 
= 2.460 MNm. Permissible stress:/£* ,=  11 MNm 2. Plastic behaviour starts at about 
79% of the total live moment M(p)(M(p) = 1.2562 MNm).

Transition to the ultimate condition at failure is seen in a dash-dot line. The 
ultimate condition arises from the so-called maximum external moment (design value of 
the external moment) according to the code applying divided safety factors: Aimax — yg 
M{\,  2, 31 + y, M(p) =  2.9711 MNm (where yg = 1 and yq= 1.2 is a safety factor for the 
live load). Numbers at horizontal tangents to a —e diagrams framed in the right-hand- 
side margin of Fig. 5 are ultimate (failure) stresses involving safety factor for concrete yc 
= 1.5 ( — 21 and -  13 M Nm -2).

The extremal value of moment A/max being in excess of the nominal moment 
Afnom by as little as about 9%, thé results agree with our observation: such a high 
nominal moment cannot be the beam in the elastic range. Stress distributions due to 
nominal load in an uncracked (dash line) and a cracked (full line) beam are seen in the 
upper right hand corner of the figure. Plastic behaviour upon Mmax moment is seen in 
the dash-dot line. Confrontation of these two diagrams points to the fitness of the 
presented method to correctly describe stress conditions after cracking.

Approximate crack width analysis specified in the Building Code for Road 
Bridges showed the crack width at the beginning of the plastic range to be correct. It is
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CRACKED PRESTRESSED CONCRETE BEAMS »I

interesting to observe the agreement between beam top fibre stresses obtained with the 
introductorily outlined approximate method, and those presented in this paper. Top 
fibre of the beam designed according to the approximate method develops elastic 
stresses under the full nominal load, but the slab gets into the plastic range at about 
90% of the nominal load, limit of the elastic load capacity M‘[m of the tested beam. 
Moments in excess shift the neutral axis upwards, widening the cracks. A higher than 
ultimate elastic moment causes plastic deformations in the beam, unloading would not 
entrain recovery.

Summary

A method has been developed for the stress-strain analysis of cracked precast 
composite beams, i.e. those interacting with monolithic r.c. slabs.

First, eccentricity-dependent variations of the cracked beam cross-sectional 
characteristics, in particular, “stress” and “curvature” moments of inertia have been 
determined. Before cracking, the “curvature” moment of inertia is identical to the 
moment of inertia of the ideal cross-section in an uncracked state, while after cracking, 
with increasing eccentricity, it gradually passes into pure bending moment of inertia in 
a cracked state. Considering the prestressing force as an external force were written out 
as the equilibrium equations.

With the aid of the mentioned moments of inertia the compatibility equations 
were deduced regarding both the identical changes o f strains (along the joint line 
between the slab and the beam) and the identical change of curvatures.

The method is suited for determining the full elastic behaviour and the ultimate 
elastic load of the cracked composite beam.

The presented exact treatment may yield the tendon stress increment in the 
cracked beam, permitting to predict crack width.

It was numerical investigation the stresses of a composite beam dimensioned for 
the nominal load on the basis of an uncrackedness approach. Calculating beam stresses 
from prestressing up to the application of the nominal load (dead load-(-full live load) 
showed the beam to behave elastically up to about 90% of the nominal load, hence 79% 
of the full live load.

Crack widths remain permissible until the ultimate elastic load.
Thereafter the slab starts plastic behaviour (elastic stress peaks flatten), with 

increasing crack widths that only partly close after unloading (plastic remaining own 
strains).
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SOME RECENT EXPERIMENTS 
ON SOIL STABILIZATION 

IN AGRICULTURAL ROAD CONSTRUCTION

À. KÉZDI and E. Biczók*

[Received 5 April, 1983]

The aim of this experimental work was to decide which stabilization method could be applied 
most successfully and most economically in some areas that could be taken as typical in Hungary. 
Two regions were chosen: a loess area and a clay area in the mountains. In these areas we tried 
cement, fly ash and chemical stabilizations were tried applying different technologies: local materials 
mixed in situ, transported materials mixed in situ and premixed materials. In the present study the 
experiences obtained in planning and in construction are presented.

1. Introduction

The question of transport rentability in the Hungarian agriculture is coming 
even more into prominence since large-scale farming and increased mechanization has 
generally become spread. Further progress necessitates the improvement of agricul­
tural road network. In order to work properly at all times, the surface of roads must 
have a correct bearing capacity and their material must be stable. These tasks can only 
be accomplished by soil stabilization. Although these requirements can undoubtedly 
be better satisfied by Macadam roads or by high-quality asphalt or concrete roads, the 
limit in supply of available raw materials, namely in stone, cement and bitumen and the 
high costs of the traditional building methods make impossible the construction of 
roads this way. Therefore, the question is never raised whether we construct Macadam 
or a stabilized earth road, but, whether we are able to construct stabilized roads or 
nothing.

Recognizing all this, the Ministry of Agriculture and Food took the case of 
stabilization of main agricultural roads into the technical development programme. 
Co-ordination of the some five year research work was made by the Plant Protection 
and Agrochemical Centre of the Ministry of Agriculture and Food. The research 
programme, the laboratory investigations and the experimental technologies were 
elaborated by the Geotechnical Department of the Budapest Technical University.

The Road Research Institute and the Energy Economy Institute also co­
operated, as consultants.

* Dr. E. Biczók, Research engineer, Dept, for Geotechnique, Technical University of Budapest, 
Hungary
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Investigation of this problem has long traditions in our department. Yet in the 
thirties Prof. József Jáky urged the introduction of that method, but the condition in 
agriculture at that time did not make it possible. In the fifties, an intensive development 
directed by the senior author of this article, started, when, the most important physical 
and technological problems of the soil stabilization were made clear by large scale 
laboratory investigations and by building test roads. The experiences of this work were 
presented in the book “Stabilized earth-roads” (Kezdi, 1967.).

2. The aim of the research work

The direct aim of the research work was to decide which stabilization method 
could be applied most successfully and most economically in some areas that could be 
taken as typical in Hungary. Two regions were chosen: a loess area close to Szekszárd 
(Zomba) and a clay area in the mountains (Nógrád County, Szécsény).

In these two areas three kinds of stabilization methods were applied:
— cement
— fly ash and lime

chemical stabilization, the latter one was made with the chemical agents 
trademark RRP and CBV.

All the technologies available in Hungary were tested:
in the case if the soil in the crown of the road was suitable for stabilization, the 

technology of in-situ mixing was applied,
if the soil in the crown of the road was not stabilizable, material from a 

neighbouring gravel or stone pit was transported onto the crown of the road and 
stabilized by using the technology of in-situ mixing.

— the pre-mixed technology was also tested. Ready made mixture from a 
neighbouring mixing plant of a Directorate of Public Roads was transported onto the 
prepared surface.

The length of the test sections varied between 150—500 metres. On the same test 
site these sections were subjected to equal traffic, to equal loads, to equal weather 
conditions, therefore the methods are comparable and this made the choice of the right 
procedure possible.

3. Experimental soil stabilization at Zomba

For experimental purposes one of the main inner roads of the co-operative farm 
“Egyesült Erővel” was chosen. The earthwork of the road was made by the co­
operative farm. In the crown of the road two kinds of soil could be found: yellow loess 
and yellow-brown lean clay. Physical characteristics of these soils are given in Table I.
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T able I . Physical characteristics of soils at Zomba

Soil U' °О V ’o P T ' g/cnP PH CaCO ,

y e l l o w
loess 30.2 18.3 11.9 1.71 7.7 12.4
brown clay 34.2 19.2 15.0 1.65 7.3 2.2

3.1. Planning the stabilization

The purpose of planning was to determine the required quantity of each 
stabilizing material. For that purpose cylindrical specimens were prepared which 
consisted of a mixture of soil and different quantities of stabilizing material. The 
samples were stored in wet surroundings, then strength, durability and freezing 
resistance tests were performed. The samples of proper composition had to meet the 
relations of the Standard “Road 5-72” of the Ministry of Traffic and Posts.

Stabilization with cement means to mix the soil and the cement at the proper rate 
and to moisten and compact them. Yet in the laboratory experiments we took into 
consideration that fly ash-portland cement would be used in the construction. Setting 
of this kind of cement is slow, and therefore the unconfined compression strength 
values were determined after 14, 28 and 56 days, the durability tests were started after 
the 14th day and the freezing tests after the 28th day were started (see Figure 1). The

Fig. I. Compression strength of soil cement cylinders
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strength requirements of the standard were applied to these dates. The necessary 
cement quantity was increased by about 10 per cent because of the uncertainties of the 
in-situ mixing. Both values are presented in Table 2.

In the case of stabilization with fly ash and lime the hydraulic binder was lime and 
fly ash from Pécs mixed at the rate 1:4. Because of the very slow binding process of 
lime—and fly ash—additive stabilization compression tests were performed after 30,60 
and 90 days, and the durability and freezing tests were started after 60 days. As an 
example the results of the investigations performed in loess is presented in Figure 2.

With fly ash and lime many fine grains are added to the soil so the compacting 
characteristics will be changed. Figure 3 shows an example compacting curves of loess 
and fly ash—lime mixtures at different rates are presented. Prescriptions for the 
construction are shown in Table 3.

Table 2. Characteristics of soil cement road construction

Soil c% e, kg/trr c', kg/m2 „95% J
P d g/cm3 «'„„Sl,c,>

loess 7 18 20 1.76 9 13
clay 10 25 25 1.67 10-14

h'iq. 2. Compression strength of fly ash and lime stabilized cylinders
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Table 3. Characteristics of soil fly ash road construction

Soil
Lime + fly 

P%

ash addition 
p' kg/m2

Lime
kg/m2

Fly ash 
kg/m2

95%
Pj g/cm3

loess 20 45 9 36 1.71 9
clay 25 55 II 44 1.65 11

In the case of chemical stabilization we aid not performed the tests mentioned 
above, because we did not Want the treated soils to behave as a pavement, therefore in 
the following we do not speak of stabilization but of chemical treatment.

The most important purpose of this method is to change the soil-water 
interaction in a favourable direction by surface reactions. For this reason the method is 
mostly applicable in case of cohesive soils. In the experiments two chemicals were used: 

Reynolds Road Packer 235 (RRP) and Chemische Boden Verbesserung (CB V). As 
to recommendations of the manufacturers “on the treated soils much higher bearing 
capacity can be reached than on non-treated ones”. It was particularly investigated 
how the chemicals changed the physical characteristics of soils: the plasticity index of 
soils decreased and both the values of the optimal water content and the maximum 
density in the compaction test increased by only a little, using each chemical. As a 
control we made the manufacturer investigated the soils, according to their statement 
the soil was conditionally suitable to chemical stabilization. Addition of chemicals was 
in each case 6 litres per 100 square metres.

Acta Tech nicu A cudem iae Seien liar urn Hungáriáié 95. !9H2

Fiy. 3. Compaction test of soil and fly ash and lime



8 8 KEZDI, Á. BICZÓK, E.

3.2. Construction works

The construction was m ade from May to July 1981.
The cement and the fly  ash -lime stabilization means performing much the same 

operations. Thickness of stabilized layer was 15 centimetres.
Before the operations the compactness of the soil in the crown was checked in 

order to determine the necessary cutting depth. After loosening the surface by 
ploughing the next stage was the pulverization to a prescribed depth. The aim of the 
operation is to disintegrate the clods to the degree demanded by stabilization. This was 
not easy at all in cohesive soils. Figure 4 illustrates how the quantity of clods bigger 
than 5 millimetres changed after each run of the pulverizer-mixer. It can be seen in the 
requirement, that the quantity of clods bigger than 5 millimetres should not exceed 10 
per cent, was not reached.

The next task was to spread the stabilizer and to admix it with the soil. The dry 
mixing was performed by a rotary scraper again. Then, water was added to the mixture 
to reach the optimum water content for compaction. The last operation was the 
compaction. Figure 5 illustrates the connection between the number of runs and 
compactness in the stabilization of lean clay with fly ash and lime. It can be seen that the 
values of compactness determined by isotope measurements are somewhat less than 
that of the direct sampling. Probably this resulted from that, that the radiometric 
m ethod did not take the grains of lime and fly ash into account.

Chemical stabilization began by loosening the soil, too, then pulverisation was 
made by a rotary scraper. Addition of the chemicals was performed in several runs,

Fig. 4. Connection between pulverizing and number of runs
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diluted as prescribed. Hereupon came the period of rest, sprinkling at intervals and 
three weeks later the surface of the road was compacted.

Each stabilized section got a coating surface definitely necessary to prevent 
freezing in winter.

3.3. Evaluation of the experiment

Completion of the road construction was followed by a one year long period of 
observations. The traffic on the road was continuously recorded. On the basis of 
analysing the traffic data the planning traffic value is 12 500 pieces of 100 к N unit axles 
in a year i.e., ehe road falls within the very light (A) load category, thus the value of the 
admissible deflection is 1.5 millimeter. Bearing capacity of the road was measured by 
deflection measurements and by plate loading tests three times: two months after 
finishing, after the spring period and at the end of the one year observation.

The results of the measurements are to be seen on Figure 6. Besides, the damage 
of the road surface were visually observed. Based upon all these we can say that, though 
the cement stabilized sections had a deflection exceeding by little the prescribed value of 
1.5 millimeter, the experiment proved to be successful. The method can be offered for 
stabilization of loess and silt in a thickness of 20 centimetres.

The fly ash and lime stabilization was definitely successful, because deflections 
were less than 1.5 millimeter, thus the method can be applied in loess and silt to a 
thickness of 15 centimetres, in lean clay (/p<20%) to a thickness of 20 centimetres.

Ada Technica Academiae Scieniiarum Hungaricae 95. 1982

Fig. 5. Connection between number of runs and compactness



A
cta Tcchnica A cade m

ine Scientiarum
 H

ungaricae 95. 19H2

8

AB 12 Asphalt 4 cm

Fig. 6. Measured deflections and bearing capacity of test road at Zomba

K
Ê

Z
D

I, Л
 

B
IC

ZÓ
K

,



SOIL STABILIZATION 91

The chemical treatment had no success. The chemical RRP gave an especially bad 
result. The pavement laid upon loess and lean clay treated with RRP crumbled entirely 
already some months later. The deflections of the section treated with the chemical 
CBV are somewhat less, but in loess the pavement totally crumbled and in lean clay the 
first signs of damage could be observed.

Figure 7 allows some interesting comparisons, analysing the per unit costs. The 
costs of materials, transportation and machine operations are separately shown. 
Dotted line shows the extrapolated costs of stabilizations certainly reaching the 
required technical characteristics, proved by experiments.

4. Experimental soil stabilization at Szécsény

For experimental purposes one of the main road of the co-operative farm “II. 
Rákóczi Ferenc” was chosen. In the crown of the road there were medium and highly 
cohesive clay soils. Therefore, it was intended to stabilize by transported spoil from a 
neighbouring gravel pit by cement, by fly ash and lime, respectively, and great hopes 
were attached to the chemical treatment, too.

4.1. Planning the stabilizations

To reach the purposes mentioned above, detailed laboratory investigations 
were made. In case of cement stabilization we determined the quantity of cement 
necessary for the successful stabilization of the spoil from the gravel pit, later the 
technology was elaborated based upon these.

The fly ash stabilization was planned to perform with the spoil from the gravel pit 
and with the mixture of lime and fly ash from Kazincbarcika.

For chemical treatment the chemical agents trade mark RRP and CBV were used 
here, too. The essential physical characteristics of the soils are illustrated in 7able 4.

According to the laboratory investigations the chemicals decreased the values of 
the plasticity index and improved the compactibility of soils a little. The manufacturer 
of the chemicals also investigated the soils: the brown clay was not, but the red brown 
and the yellow clay was suitable for chemical stabilization. The quantity of chemical to 
be used was given: for both soils 6 litres per 100 square metres.

4.2. Construction works

The construction began in 1980. Chemical treatment in the three soils were 
performed according to the technology reported above. It did not fulfil expectations. 
The rains in the autumn, but even more in the winter and in the spring almost totally
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Ft/m2

Fiq. 7. Distribution of costs of construction at Zomba
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T able 4 . Physical characteristics of soils at Szccseny

Soil wL°/o *V,°/o V /o CaCOj
Organic
cont.%

brown clay 38.8 17.1 21.7 0.4 4.8
brown clay 51.0 19.5 31.5 0.4 5.3
yellow clay 46.1 16.6 29.5 0.3 4.8

damaged the road, except of a short section. In the springtime the road was in a worse 
condition than other roads of the co-operative farm not treated by chemicals. Then it 
was decided to stop further experiments, except the section holding out some hope 
mentioned before.

Cement stabilization was performed on a section of about 400 metres long, but in 
a very bad quality. For this reason and for several other problems the construction firm 
had to be exempted from further operation.

The further construction was performed by the Salgótarján Directorate of Public 
Roads from May to July 1981.

The fly ash stabilization was made applying several methods, the local 
possibilities maximally taken into consideration. The fly ash was in every case wet fly 
ash from the nearby thermal power station of Visonta, transported on plateau trucks. 
As activating material in addition to the calcium hydrate, the byproduct of calcium 
hydrate from Dorog was used, too. The raw material was the spoil from the gravel pit of 
the co-operative farm, transported to the road crown, in other cases it was the soil of a 
neighbouring gravel pit. In these two cases stabilization was made by in-situ mixing. 
On a third section pre-mixed stabilization was made. In this case the mixture of s o i l -  
calcium hydrate—fly ash made at the mixing plant of the Directorate of Public Roads 
was ready made and transported by plateau trucks to the road crown and after 
spreading, was compacted.

4.3. Evaluation of the experiment

After finishing the road came a year long observation period, while traffic was 
permanently recorded. The analysis showed the value of the planning traffic was 10000 
pieces of 100 kN unit axles, i.e. the road fell is within the very light (A) load category, 
thus the value of the admissible deflection was 1.5 millimeter. Bearing capacity of the 
road was also checked three times: after finishing the road, after wintertime and at the 
end of the observation period. Deflection measurements and plate loading tests were 
performed. The results of the tests are shown in Fiqure 8.

The cement stabilization of the gravel and sand did not succeeded here, but it was 
due to the bad quality of construction, the method is further recommended.

All of the fly ash stabilizations gave good results. Taking into consideration the 
technical parameters, the best was the pre-mixed soil of a stone pit with fly ash, the next
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one is the in-situ mixing of the spoil of a stone pit and the last one is the in-situ mixing of 
the gravel spoil.

The chemical treatment did not fulfil the expectations here either. As was 
mentioned, after the first winter the road sections treated with chemicals were in worse 
condition than the other roads of the co-operative farm that were untreated. The some 
150 metres long section made with RRP that needed a continuous maintenance and 
because of the repeated puddling would slowly take on the character of a mechanical 
stabilization. The chemicals remained were spreed on another area of Szécsény, on 
another clay. The section treated with RRP is already completely damaged, the part 
treated with CBV is still in good condition.

Figure 9 illustrates the per unit costs of the stabilizations. Dotted lines show the 
extrapolated costs of stabilizations fulfilling the technical requirements. Attention 
should be paid to the fact that the costs of the cement stabilization should not be 
compared to the cost of other stabilizations, because it was performed by another 
construction firm a year earlier.

Summary

In our experiments, on the one hand, well-known stabilization methods were 
investigated in order to expand their field of application, on the other hand new 
materials and methods were tested.

Summarizing the experiences the following conclusion can be drawn:
Application field of the cement stabilization is found in regulations. The thickness 

of stabilizations made from loess and silty soils shall be 20 centimetres.
The fly ash stabilization may be economical near to thermal power stations 

within a distance of 100 km. Instead of calcium hydrate which is difficult to obtain, the 
by-product of calcium hydrate also suits as activating material. In the absence of local 
materials (spoil of gravel or stone pit) premixed stabilization can also be applied, if a 
mixing plant can be found within 100 kilometres.

In connection with the chemical treatments we gained bad experiences. The 
chemical RRP did not prove to be fit on any experimental section, and the treatment 
with the CBV also proved unsuccessful, except in one case.

Finishing the experimental period we express our hope that the stabilization 
methods, which proved succesful would soon be used to a great extent and would help 
to solve the transport problems in agriculture.

Finally we wish to express our thanks to associate professor Mr. István Lazányi, 
who elaborated the basic conception of this experimental programme.
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LATERAL BUCKLING OF ARCHES WITH FORK-LIKE 
SUPPORTS, ELASTICALLY RESTRAINED 

ALONG THEIR ENTIRE LENGTHS AGAINST 
LATERAL DISPLACEMENT AND ROTATION

L. K.OLLÁR*—I. BÓDI**

[Received 3 May, 1983]

The arches of a tent structure are supported against lateral buckling, on the one hand, by the 
tensile stillness, on the other hand, by the shear rigidity of the fabric. The tensile stiffness acts as a row 
of springs, and the shear rigidity acts in the form of distributed elastic bending moments on the arch. 
The paper takes these two effects into account, and determines the critical compressive force of the 
arch with “fork-like” supports.

1. Introduction

Lateral-torsional buckling of centrally compressed arches, elastically supported 
against lateral displacement, is dealt with in [2]. This lateral restraint is in most cases 
provided by the fabric roofing stretched onto the arches. Detailed investigations of the 
static properties of the fabric [3] showed that it exerts, besides hindering lateral 
displacement, also another restraint: the shear rigidity of the fabric hinders the rotation 
in lateral direction of the arch as well. This elastic restraint comes about in the form of 
distributed horizontal forces, which act, as a rule, at a point G different from the shear 
centre T  of the arch, so that they also exert twisting moments on the arch [3].

In this paper we shall consider this restraining effect, in addition to that against 
lateral displacement treated in [2]. The assumptions and approximations to be used 
are identical with those of [2].

2. Notations

The notations showed in Fig. 3 of [2] are to be supplemented by the following 
(see also Fig. 1):

G — point of application of the lateral shear restraint; 
vG — у-directed displacement of point G; 
tg — distance between shear centre T  and G;

* L. Kollár, Катар u. 9. H-1122, Budapest, Hungary
** I. Bódi, Budapesti Műszaki Egyetem, Vasbetontanszék, Műegyetem rkp. 3, H - l l l l  Budapest, 

Hungary
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Fig. I. The cross-section of the arch supported by the fabric

g — modulus of shear restraint [/V] (referred to unit arc length), with whose aid the 
horizontal force qyg can be computed by the formula

( 1 )

see in [3]. Here prime denotes differentiation with respect to the arc length.

3. Differential equations of lateral buckling

According to [4] the differential equation system of an arch in the state of 
bifurcation of equilibrium is:

where M and Tare the internal forces developing during buckling, and m and qy denote 
the loading terms which come about due to buckling, referred to unit arc length.

Due to the shear rigidity of the fabric, these loading terms have to be completed, 
with respect to those defined by Eqs (6a) and (6b) in [2], by the following terms marked 
by the subscript g:

Чув =  (Jv'ii = Фт  -  f9 <P"), (3a)

- 9(tg-e)v'b= -g ( tg-e)(v'i—tg(p"). (3b)

Hence, we finally obtain for the loading terms:

qy = -N v"r + Necp" - c ( v T- t c(p) + g(v'r~tgcp"),
»

m. = N
R <P~(i2x+ iy ) (P "~  J2<P + c(tc- e ) ( v T- t c(p)-

(4a)

-g ( tg- e ) ( v 'r - t e(p"),

mx = 0.

A da Technica Academiae Scientiarum Hungaricae 95, !9H2
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Expressing the internal forces by the displacements of the shear centre T, we 
obtain the following expressions:

After performing the necessary derivations, we introduce the expressions (5) into 
Eqs (2a) and (2c). Eq. (2a) thus becomes:

If we differentiate Eq. (2c) once with respect to s, and substitute for T'y according 
to (2b), we arrive at the second differential equation:

Eqs (I) and (II), containing the unknown displacement functions vT and q>, 
constitute the differential equation system of lateral buckling of the arch investigated. 
The critical compressive force (Vcr, causing buckling, can always be computed from 
these equations, taking into account the boundary conditions corresponding to the 
supports of the arch.

It should be kept in mind that Eqs (I) and (II) have been developed with the 
assumption that R and N are constant all along the arc length. The equations are thus 
valid, strictly speaking, for circular arches acted upon by a constant radial load q only. 
For arches of other shapes, however, the result can be used as an approximation.

N = qR = const.. (5a)

Ty=N(v'T-eip') + c j  (vT -  tcq>) ds -  g(v'T- t eq>'), (5b)

(5c)

<5d)

-  (i* + iy)N(p" + ctc(vr - 1, ip) - qte(v'r-  1Яtp") = 0. ( I )

+ N {ey" -  v'r)—c(vT — f,.q>) + q(v'r - t llq>") = 0. ( H )

Acta Technic a Aeademiae Seien liar urn Hungaricae 95, !9H2
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4 .  S o l u t i o n  f o r  “ f o r k - l i k e ”  s u p p o r t s

In the case of “fork-like” supports, when the end cross-sections of the arch are 
prevented from displacing laterally, but can freely rotate, and they cannot turn about 
the arch axis, but can freely warp, the following boundary conditions hold:

s =  0:
s = l: } V'j' —  0

</>
R

1 <2 II О

(6a)

(6b)

cp = 0 ;

<P"+j v 'ï  = 0.

(6c)

(6d)

This special kind of support allows to assume the unknown displacement 
functions in the form:

<P= Z  4>k s in (/ks),
fc= 1. 2 .  3 . . .

(7a)

rT= Z  vksin (A*s),
k = 1 . 2 .  3 . . .

(7b)

where /.k and сpk and vk are constant coefficients.

Since every term satisfies the boundary conditions (6a) to (6d) and the differential 
equation system (I) and (II), the linear equation system for the coefficients decomposes 
and can be written in the form:

flu a\2 (Pk "O'
_«21 a22_ _vk_ 0 ( 8)

The coefficient matrix is symmetric (ci, 2 = a21), and its elements are the following:

an  = ->Z[_G1T + t i E l ^ - N i e 2 + il + i2y) + gt2g\ +  -
1 ( i l \ El ~
R

N[
r e - i ) ~ ~R

- c t 2,

Ne + (GIT + / 2kEIm+EIx) ^  - g t e + ctc,

a 22 —  Á k N - ( G I t + / 2EI„wl ^ 2  ^1 6T X
- ]

- c .

(9a)

(9b)

(9c)

The value of the critical compressive force N =  Ncr can be obtained from the 
condition

det A = au  a22 — a h —G,
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( 10)

which yields an equation of the second degree for Ncr:

к 2ы2„ + к , ы„ + к 0= 0.

Performing the multiplications and dividing by A*, we arrive at the following 
expressions for the coefficients:

;2

Hence we obtained a closed formula for the critical compressive force of the arch 
with fork-like support.

S. Numerical example

Let us determine the critical compressive force of the timber arch shown in Fig. 2, 
supported against lateral displacement and rotation. It corresponds to one of the 
arches of the tent structure investigated in Sect. 6.2 of [3].

The geometric data of the structure not given in Fig. 2 are as follows:

/ = 2aR =  2 71(9.30) = 24.48 m,

A* = fcy =0.1283* (fc=l,2 ,3 , . . . ) ,

£ = W 7kN/m2,

Gs;0.4£ = 4(l0',)kN /m 2,

A d a  Ttchnica Academiue Scientiarurn HunRuricac 95 . IVN2
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Fig. 2. The timber arch investigated numerically, a — elevation; b — cross-section

70.60(0.16)3 /•:/, 10 — -— - =  2048 kN m 2,

G/, = 4(106)
0.60(0.16)J 

3 6055
=  2726.5 kNm2,

e =  0 (since S and T coincide), 

t = te = t4 = 0,30 m 

ij» 0,
, 0.602

iy — ------ =0.030 m2* 12
The characteristics of the elastic support are (see in [3]):

cefr = 4.54kN/m2,
</ = 216 kN .

Introducing the above data into Eqs (1 la, b, c), the quadratic equation (10) for 
N cr assumes the following form:

(1 2 )

A d a  Technica Academiae Scientiarum Hungaricae 95. !9H2
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Let us solve Eq. (12), assuming half wave numbers k = 1,2, 3,4, 5, for four 
different cases: taking both tensile and shear stiffnesses of the fabric into account, 
neglecting the shear stiffness, neglecting the tensile stiffness, and for the case of the 
unsupported arch.

The values of N„ (in kN) are compiled in Table 1:
T ab le  1

<■ = 4.54 kN/m2 
</ = 2 l6kN

<■ = 4.54 kN/m2
.4 = 0

<■ = 0
</ = 21okN Il 

II 
о

 о

k = 1 4XX.5 276.4 217.4 1.9

к = 2 371.3 150.7 1Ж 71 79.9

k = 3 496.7 273.7 465J 241.9

k = 4 717.3 49.3.3 699.6 475.3

k = 5 1013.5 789.0 1002.1 777.4

The values of the table show that if elastic support is present, buckling in more 
than one half waves is the most onerous.

According to the reasoning given in [3], the stiffness cof the elastic support of the 
fabric should be taken equal to zero in the cases к ̂ 2 . Thus, for к =  1, N„ =  488.5 kN, 
computed with c = 4.54kN/m2 and i/ = 216kN, is valid, while for k^.2  the critical 
forces computed with c = 0 and y = 216 kN have to be considered. These values have 
been printed in italics in the table. Among them, the value 301.2 kN, corresponding to 
к = 2, is the smallest, so that it represents the critical compressive force of the arch 
supported by the fabric. This is 158 times the critical force 1.9 kN of the unsupported 
arch. (It should be remarked that this exceptionally low value of the critical force of 
the unsupported arch can be explained by the fact that the central angle 2a =  150.82° 
of our arch is quite close to 2a =  180°, in which case N „ = 0, since the arch will tilt 
laterally like a rigid body, due to the assumed fork-like support.)

The results of Table 1 show the following interesting feature. If we denote the 
critical compressive force of the unsupported arch with N“rnsupp, the critical force N„ of 
the elastically supported arch can approximately be given by the following formula:

wcr̂ r pp+ c i + i / .  (13)к к

This relation can be rendered likely in the following way. In [5] we find Eq. (2-37) 
which shows that the critical force of a bar on an elastic foundation can be obtained by 
summing up the critical force of the unsupported bar and the expression cl2/(n2k2); and 
[1] proves that the critical force of a bar elastically restrained against rotation along its 
entire length is also given by the sum of the critical force of the unsupported bar and of 
the modulus of elastic restraint y. In our case the phenomenon is somewhat more 
complicated because of the possibility of twisting deformation and of the varying 
position of the point of attachement C (and G) of the fabric. This is the reason why we 
put an “approximately equal” sign in Eq. (13). In the cases к ̂ 2  the term containing c 
has to be omitted from Eq. (13).

Acta Technica Academiae Scientiarum Hungaricae 95, 1982
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BEITRAG ZU DEN METHODEN DER ÄQUIVALENTEN 
LINEARISIERUNG FÜR SCHWINGUNGSSYSTEME

TEIL II

G y. Patkó*

[Eingegangen: 22 Juli, 1981]

Im ersten Teil der Arbeit wurde eine Verallgemeinerung der direkten Linearisierungsmetho­
de von Panovko vorgestellt, und es wurde die Methode der Linearisierung über der Phasenkurve 
eingeführt. Auf Grund der letzten Methode wurde eine Definition des Maßes der Nichtlinearität 
vorgeschlagen. Im zweiten Teil der Arbeit wird die Bedeutung der Transformation der unabhängigen 
Variablen bei der Linearisierung über der Phasenkurve untersucht. Es wird gezeigt, daß mehrere zur 
Untersuchung der nichtlinearen Schwingungssysteme angewandten Methoden eine anschauliche 
geometrische Deutung haben.

5. Der Einfluß der Transformation der unabhängigen 
Variablen bei der Linearisierung über der Phasenkurve

5.1. Vor der Annäherung der Kennfläche J(x,x)  wurde die dimensionlose Zeit

r = ß r ,  bzw. т = а t (5.1)

in den Punkten 4.1. und 4.2. eingeführt. Dadurch kann das Bogenelement auf der 
Phasenebene interpretiert werden. Mit der Transformation (5.1) wird die Phasenkurve 
auf der Phasenebene x — x' ein Kreis, womit die Rechnungen bedeutend vereinfacht 
werden. Die Wahl der Transformationen ist aber willkürlich. Man könnte auch andere 
Transformationen benutzen.

5.2. In den Bewegungsgleichungen (3.1) und (3.2) wird die dimensionlose Zeit

t =  vf

eingeführt, wobei v eine vorläufig unbekannte Konstante ist. So können die 
Gleichungen (3.1) und (3.2) in der Form

, Q
mv2x"+f(x ,vx ')—F cos —г, (5.2)

v

mv2x" + bvx'+ cx + d - F cos — x (5.3)
v

geschrieben werden. Mit Strich ist wieder die Ableitung nach т bezeichnet. Die

* Patkó Gyula, Középszer u. 60. IV/3. H-3529 Miskolc, Ungarn
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stationären Schwingungen von (5.3) werden durch

x =  a0 + a 1 cos (5.4)

beschrieben, wobei die Konstanten a0 , a, ,  .9, bei Kenntnis von b, c und d aus den 
Formeln (3.4)—(3.6) berechnet werden können. Aus (5.4) ergibt sich

ß
X  =  — ü J — sin

V
(5.5)

Die zu (5.4) und (5.5) gehörende Phasenkurve auf der Phasenebene x — x' ist eine Ellipse 
der Form

Der auf der Phasenkurve stehende elliptische Zylinder schneidet die Kennfläche 
/ (x, vx') in einer Raumkurve und die Ebene bvx' + cx + d in einer Ellipse. Die Größen b, 
c und d werden jetzt so bestimmt, daß die zwischen den zwei Kurven liegende Fläche 
des Mantels des elliptischen Zylinders minimal wird. Deshalb wird vorgeschrieben, 
daß das Quadratintegral

J 2= I  [/(x, vx') — (hvx' +  cx +  d)]2 ds (5.6)
(S)

minimal sei. Es wird die Bezeichnung

ß
ф = — T —

V

eingeführt, mit der das Bogenelement der Phasenkurve nach (5.4) und (5.5) in der Form

ds =  а !
ß
V

ß 2- v 2
ß 2

sin2 ф Аф (5.7)

geschrieben werden kann. Weil man bei der Minimierung des Integrals (5.6) zu 
elliptischen Integralen gelangt, ist es zweckmäßig, die Fälle v < ß  und v > ß  zu trennen. 
Mit den Bezeichnungen

k2= \ ~ (5.8)

kann (5.7) in der Form

ß
ds = a, — ^ / l  — k2 sin2 ф Аф, bei v<(2
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oder
ß

ds = a, —у/ l  +p2 sin2 ф dtp , bei v > ß

geschrieben werden. Auf Grund der Bedingungen

dJ,
= 0,

dJ,
db de

erhält man bei v < ß  die Formeln

3 к2

= 0,
ÔJj
(Id

=  0

/> = -
4ßa, (1 —k2)F(k) — (\ —2k2)E(k)

i n

J f ( o o +  üi cos ф ,  — a, ß  sin ф )  у/ l  — k 2  sin2 ф  sin ф  dij t ,

c =
4a, (1 + k2)E(k) — (\ —k2)F(k)

________  .
' Í f (ao +  a i cos Ф< — «i ß  sin ф) y j \  — k 2 sin2 ф cos ф 6ф , 

J = - c a 0 ,

und weiterhin zwischen a0 und a, die Beziehung
2* __________
f / ( a 0 + a, cos ф, - a ,  ß  sin i/i) 1 — к2 sin2 ф di/r = 0.

Mit F(/c) und £(k) sind die vollständigen elliptischen Integrale erster und 
Gattung vom Modul к bezeichnet.

Bei v > ß  ergeben sich aus den Bedingungen (5.9) die Formeln

b =  —

2 я  ___________________

•  ̂/ ( a 0 + a, cos ф, — a, ß  sin 1 + p 2 sin2 ф sin ф dф ,

c =
4a P

s / l + P 2
2 n

■ I / ( a 0 + a i cos i/i, — a, ß  sin ф) ^/1 + p 2 sin2 |Д cos ф dtjj . 

d = — ca0 ,

(5.9)

(5.10)

(5.11)

(5.12)

(5.13) 

zweiter

(5.14)

(5.15)

(5.16)
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und zwischen «0und a, die Beziehung

о

Bei gegebenem Wert von v können die Funktionen a0 = a0(a1 , ß), b = b{a^, ß), 
c = c(a1 , ß) aus (5.10)—(5.17) berechnet werden, mit deren Hilfe die Annäherung des 
Amplitude-Frequenzganges und des Phasen-Frequenzganges des nichtlinearen Sy­
stems erfolgen kann.

Bei autonomen Systemen steht a anstatt ß  in den obigen Beziehungen. Stabile 
Grenzzykel können ähnlich zu den im Punkt 4.2. beschriebenen gesucht werden.

5.3. Der Wert von v wurde in den obigen Rechnungen als ein freier Parameter 
angesehen. Für ihn können weitere Vorschriften gemacht werden. Mit der 
Veränderung von v bei festen a { und ß  verändern sich der linearisierte Dämpfungswert 
b(ax , ß), Federwert c fa ,, ß) und die Funktion a0 = a0(a, ß). Wenn der Wert von v 
richtig gewählt wird, können die obigen Ergebnisse genauer als die des Punktes 4. sein 
(vgl.: Punkt 5.4.). Damit ist der Einfluß von v zu dem der in Punkt 2. und 3. erwähnten 
Gewichtsfunktionen ähnlich.

Die obigen Ergebnisse können offensichtlich auch durch Gewichtsfunktionen 
modifiziert werden. In diesem Falle werden die gewichteten Abweichungen über der 
Phasenkurve s minimiert, das heißt die Größen b, c und d werden aus der Bedingung

Die Ergebnisse des Punktes 5.2. können dem Gedankengang des Punktes 4.1. 
folgend erhalten werden, wenn dort die mit der Gewichtsfunktion

gewichteten Abweichungen über dem Kreis mit dem Radius a{ und dem Mittelpunkt 
(a0 ,0) minimiert werden. Zur Frage, wie der Wert von v richtig gewählt werden muß, 
geben die obigen Darlegungen keine Antwort. Die im Punkt 4. gewählten Werte v = ß  
und v =  a haben die Rechnungen bedeutend vereinfacht. Diese einfache 
Durchführbarkeit der Rechnungen kann einer der Gesichtspunkte sein.

5.4. Als Beispiel wird die Lösung der Bewegungsgleichung

J -  § {[/'(*, VX') — (bvx' +  e x  + d)]K (x , x ') } 2 dsiM inim um

berechnet.

(5.18)

(5.19)

(5.20)
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Hier ist /(x , x) = oto* + ex3, das heißt sie hängt von x nicht ab. ao =  0 ist eine 
Lösung von (5.13) und (5.17), und das bedeutet, daß die maximalen Auslenkungen zum 
Koordinatenursprung symmetrisch sind und d = 0.

Im Falle b = 0  ist die allgemeine Lösung von (5.20)

x = a, cos(af — .9,) (5.21)

wobei x =  yjc  ist und a , , У, die von den Anfangsbedingungen abhängigen Konstanten 
sind. Es wird die dimensionlose Zeit t =  vi eingeführt und die Ableitung nach r wieder 
mit Strich bezeichnet. So können die Differentialgleichungen in der Form

V2x" + 0(oX +  £X3 =  0 , (5.22)

v2x" + bvx'+cx = 0 (5.23)

geschrieben werden. (5.21) hat die Form

x = a, cosl -T  — ), (5-24)
/

aus der man
, OL . ÍX \  x = —a, -  sin -  г —У,

V V V 7 (5.25)

erhält. Es werden wiederum die Abkürzungen

l I - ' - ( î ) '  ' ’ ' • ( s / “ 1 ( 5 -2 6 )

eingeführt. Weil hier autonome Systeme untersucht werden, tritt in (5.10)—(5.17) x an 
die Stelle von Q und die Phasenkurve s ist durch (5.24), (5.25) bestimmt. Nach (5.10) und 
(5.14) erhält man b = 0, was ein offensichtliches Ergebnis ist, weil durch (5.19) ein 
konservatives System beschrieben wird. Man erhält nach [19] bei v<a aus (5.11)

, , 2( 1 -  k2) ( 1 -  3k2)F(k) + (3k4 + l k 2 -  2)E(k)
C =  0lo +  Ш 1 -----------------------------------------------------------------------------------5/c2[(l + k2)E(k) — (\ —k2)F(k)~\

und bei v > a  aus (5.15)

(5.27)

2(1 +  3p2)F

c = <Xo + I'M] >/* +/
+ (3p4 - 7 p 2-2 )E

у/ l  +P2

5 P- [f(: - (1  ~ P 2)E
^ \ + p2J ' ' ' V y i+ p V .

Wenn man letzte Formeln zusammenfaßt, dann kann

а.2 = яЪ + ш\Н

(5.28)

( 5.29)
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für die Näherung des Quadrates der Eigenkreisfrequenz oc geschrieben werden. Die 
Bedeutung von H(v/a) is aus (5.26)—(5.29) ersichtlich. Die Funktion H(v/oc) ist im 
Bild 7. dargestellt. Weil der Wert von v nicht festgelegt wurde, kann man für ihn weitere 
Vorschriften machen. Er kann beispielsweise so gewählt werden, daß die beste 
Annäherung für die Eigenkreisfrequenz a durch (5.29) erhalten wird.

Zum Beispiel ergibt sich

aus (5.29) im Falle cto = 0und bei der Wahl v/a =  1. Die Bewegungsgleichung (5.19) kann 
auch exakt gelöst werden, wobei man bei ao =  0, den Wert

erhält (vgl.: [2], S. 85.). Falls die obige Näherung angewandt wird, so ergibt sich das 
Ergebnis (5.30) bei der Wahl (v/a)= 1,5629.

Es ist ersichtlich, daß die Rechnungen durch die Transformationen (5.1) der 
unabhängigen Variable wesentlich vereinfacht werden. Auf Grund von Punkt 5.2. 
kann man mit erhöhtem Aufwand genauere Ergebnisse erhalten, aber zur richtigen 
W ahl von v ist entsprechende Erfahrung nötig.

5.5. Die in Punkt 5.4. behandelte Aufgabe kann auch mit Hilfe der Gewichtsfunk­
tion

a2 =0,75 caf

a2 = 0,7178 t'.a\ (5.30)

H

Q5------- -}—

0.4

аз4

Bild 7
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die einfacher als (5.18) ist, dem Gedankengang von 4.2. folgend, gelöst werden. So erhält 
man nach einfachen Rechnungen

Die Beziehung (5.30), die für a0= 0 als genau angenommen werden kann, ergibt sich 
hier bei der Wahl v/a= 1,2619.

6.1. Im Laufe der Zeit wurden qualitative Methoden entwickelt, die — oder 
deren Varianten — im Wesentlichen gleichwertige Ergebnisse liefern. Sie können in 
zwei Gruppen aufgeteilt werden.

Zu einer dieser Gruppen gehören die Methoden, die von einer dierekten 
Linearisierung ausgehen. Der Zweck ist, die nichtlineare Differentialgleichung 
irgendwie durch eine lineare zu ersetzten. Solche Methoden sind die direkte 
Linearisierungsmethode von Panovko [15], die Methode der harmonischen Lineari­
sierung [18], die äquivalente bzw. optimale Linearisierung [4—6] usw. Zu dieser 
Gruppe gehört auch die Methode der Linearisierung über der Phasenkurve.

Die zu der anderen Gruppe gehörenden analytischen Methoden haben zum Ziel, 
Näherungen höherer Ordnung herzustellen. Solche Methoden sind die Methode von 
Bubnow—Galerkin, die Methode der harmonischen Balance [16]. die Methode der 
Störungsrechnung von Poincaré [11], die asymptotische Methode von Krylow 
Bogoljubow [20] usw. Der erste Schritt dieser Methoden kann — wie es in der 
Literatur üblich ist — so konstruiert werden, daß die durch sie erhaltenen Ergebnisse 
mit den der zur ersten Gruppe gehörenden Methoden identisch oder näherungsweise 
gleich sind. Die Operationen dieser ersten Schritte sind, wie es von Fall zu Fall 
überprüft werden kann (vgl.: Punkt 6.4.), mit einer Linearisierung äquivalent.

Auf Grund des obigen besteht die Bedeutung der Linearisierung über der 
Phasenkurve darin, daß

— sie mehreren zur ersten Gruppe der obigen Einteilung gehörenden Methoden 
eine anschauliche geometrische Deutung gibt,

— durch sie eine anschauliche geometrische Deutung für den ersten Schritt der 
zur zweiten Gruppe gehörenden Methoden gegeben werden kann.

In den Punkten 6.2. und 6.4. wird beispielsweise je eine Methode beider Gruppen 
der obigen Einteilung mit der Linearisierung über der Phasenkurve gegenübergestellt.

6.2. Die Methode der harmonischen Linearisierung wird zur Lösung von 
zahlreichen Aufgaben mit Erfolg angewandt (vgl.: z. B. [18]). Sie ist ein Sonderfall der

8 A da 7'echnica Aeademiae Seien liar um H Ungar icac У5. IM2
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Methode der harmonischen Balance, und daraus kann sie folgenderweise abgeleitet 
werden.

Durch die harmonische Balance wird die periodische Lösung z. B. der 
Bewegungsgleichung

m x+/(x, x) =  F cos Ш (6.1)
in der Form

00

x = A0+ ]T (An cos nüt + B„ sin nüt) (6.2)
П = 1

gesucht. Die Beziehung (6.2) wird in (6.1) eingesetzt. Die Funktion f(x ,  x) wird in eine 
Fourier-Reihe entwickelt, und in (6.1) wird die Gleichheit der Koeffizienten der 
einzelnen harmonischen Glieder vorgeschrieben. So erhält man zur Bestimmung der 
Koeffizienten A0, A„, B„ (n = 1,2, . . . )  ein nichtlineares algebraisches Gleichungssy­
stem, dessen Lösung bei unendlich vielen Unbekannten unmöglich ist. In der Praxis 
wird deswegen nur ein Abschnitt der Reihe (6.2) angewandt.

Eine Näherung der Lösung von (6.1) wird in der Form
x = A 0 + A { cosßf + fi, sin Qt (6.3)

gesucht. Es ist zweckmäßig (6.3) in die Form
x  = a0 + a ! cos ф (6.4)

zu schreiben, wobei die trigonometrischen Funktionen zu einer Schwingung 
umgeformt wurden und die früher angewandte Abkürzung = — und a0 = A0
eingeführt ist. Die Näherung (6.4) wird in (6.1 ) eingesetzt und die Funktion/ (x, x) in die 
Fourier-Reihe

f (a 0 + üi cos ф, —at i2 sin ф )-с 0 + с1 cos ф + bt sin ф + . . .  

entwickelt, deren Koeffizienten aus den Formeln
2n

1
Co_ 2n

/(űo +  öÍ! cos ф, — a t i2 sin ф) Аф ,
о

2 n

■ i = ^ |  / K  + «i
0
2я

=  f ( a 0 + ai

cos ф, —a j ß  sin ф) cos ф dt/*,

cos ф, — ax Q sin ф) sin ф dip ,

(6.5)

(6.6)

(6.7)

(6.8)

berechnet werden können. Analog zu (6.3) bzw. (6.4) werden hier nur Glieder bis zur 
zweiten Harmonischen der Fourier-Reihe mitgenommen. So ergibt sich aus (6.1)

— mQ2a , cos ф +  c0 +  c, cos ф + Ь ^ т ф  = F cos (t/f + 9 ,) . (6.9)
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Die Größen a0)ü ,,9 , können aus (6.9) auf Grund der Gleichheit der einzelnen 
Harmonischen berechnet werden. Mit den Bezeichnungen

hat (6.9) die Form

d - c 0- c a 0

— m ü 2aí cos Ip +c(a0 + a l cos ip) — bal (2 sin ip + d = F cos (ip +  9 ,),

(6. 10)

( 6 . 11)

aus der sich die Formeln (3.4)—(3.6) für die Größen a0, au  9, ergeben. Es ist leicht
einzusehen, daß man auch dann zur Gleichung (6.11) gelangt, falls die periodische 
Lösung der Form (6.4) der linearen Differentialgleichung

mx + bx + cx + d = F cos Qt (6. 12)

anstatt der von (6.1) gesucht wird, wobei die Größen b, c, d in (6.12) durch (6.10) und
(6.6)—(6.8) definiert sind.

Jeder nichtlinearen Differentialgleichung der Form von (6.1) kann eine lineare 
Differentialgleichung der Form von (6.12) so zugeordnet werden, daß ihre in der Form 
(6.4) gesuchten Lösungen übereinstimmen. (6.12) wird als die zu (6.1) gehörende 
harmonisch linearisierte Differentialgleichung bezeichnet. Die Methode, mit Hilfe 
deren man von (6.1) ausgehend zu (6.12) gelangt, heißt die Methode der harmonischen 
Linearisierung.

Die durch die Beziehungen (6.10) und (6.6)—(6.8) definierten Größen b, c und d 
stimmen mit den Ergebnissen (4.5)—(4.7) überein. Die durch die obige harmonische 
Linearisierung erhaltenen Ergebnisse sind mit denen durch Linearisierung über die 
Phasenkurve in Punkt 4.1. erhaltenen identisch. Im Zusammenhang mit dem in Punkt
6.1. gesagten kann also diese Variante der Methode der Linearisierung über der 
Phasenkurve, die im Punkt 4.1. beschrieben ist, auch als eine geometrische Deutung 
der oben beschriebenen Methode der harmonischen Linearisierung aufgefaßt werden.

6.3. Auf ähnliche Weise kann gezeigt werden, daß die Methoden der optimalen 
Linearisierung [4], bzw. der äquivalenten Linearisierung [5], [6] auch anschauliche 
geometrische Deutungen haben.

6.4. Im folgenden wird die erste Näherung der asymptotischen Methode von 
Krylow—Bogoljubow [20] untersucht.

6.4.1. Bei dieser Methode wird angenommen, daß die Funktion f ( x ,  x) schwach 
nichtlinear ist, das heißt sie in der Form

f (x ,x )  = kx + eg(x,x) (6.13)

geschrieben werden kann, wobei k >  0 und e ein kleiner Parameter ist. Im autonomen 
Falle kann also

mx + kx + eg(x, x) =  0 (6.14)

anstatt (4.9) geschrieben werden. Mit den Bezeichnungen
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und ä(x, x)
m = /l  (*, X) (6.15)

hat (6.14) die Form
X +  w2x  + eJ \  (x , x ) =  0 . (6.16)

Aus (6.16) ist ersichtlich, daß w die Eigenkreisfrequenz des bei c =  0 erhaltenen linearen 
Systems ist.

In erster Näherung wird die Lösung von (6.16) in der Form

x = a cos ф

gesucht, wobei u und ip aus den Differentialgleichungen

du
df

F.

2nw

2 n

j* f i  (u cos ф, — uw sin ф) sin ф 0ф ,
о

й ф  F.
—— =  ш + ------dr 2nau)

fi  (a cos ф, — аш sin ф) cos ф di//

berechnet werden können (vgl.: [20], S. 51.).
Im weiteren werden nur die stationären Schwingungen untersucht. Dabei 

bestehen die Gleichungen da/df =  0 bzw. di/ /̂dr =  a und es können die Schwingungsam­
plitude aus 2n

0 =  j* /,(acos)/^, — ao) sin ф) sin ф 0ф (6.17)
о

sowie die Eigenkreisfrequenz der Schwingungen aus

а = аН-
2naoj

f i  (« cos ф, — atу sin ф) cos ф 0ф

berechnet werden. Mit Vernachlässigung von r.2 ergibt sich aus (6.18)

а2 = ш2 +

27Г

— Í /.(«na J
cos ф, —aw sin ф) cos ф йф .

Mit Rücksicht auf (6.13) und (6.15) können (6.17) und (6.19) in der Form
n

0 =  j / («  cos i/̂ , — uw sin i//) sin di/i,

2n

mr = Í лnu J
f (a  cos ф. — uw sin ф) cos ф 0ф
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geschrieben werden. Die Gleichungen (6.20) und (6.21 ) sind ähnlich zu den in Punkt 4.2. 
erhaltenen Ergebnissen. Falls (4.25) für die Funktion/(x, x) gültig ist, das heißt ao = 0, 
dann können (4.24) und (4.23) aus (6.20) und (6.21 ) so erhalten werden, daß man in den 
rechten Seiten der letzten Gleichungen u, anstatt a und a anstatt со schreibt.

6.4.2. In [20] (S. 109.) wird gezeigt, daß die Ergebnisse der ersten Näherung auch 
so erhalten werden können, daß die äquivalente lineare Differentialgleichung

тх + Ле(а)х + ке{а)х = 0 (6.22)

anstatt (6.14) gelöst wird, wobei die Größen АДа) und ke{a) aus den Formeln
2n

Àe(a) = -----—  y(a cos ф, — aw sin ф) sin ф dip ,
nato J 

о
2 n

Г. f
ke(a) = k + -— g(a cosi/c — aco sin ф) cos ф dil/

na J 
о

berechnet werden können. Letztere können mit (6.13) in der Form
I n

/Д а)=  -
1

naw
f(a  cos t/c — aco sin ф) sin ф 0ф

kr(a)=
na

f(a  cos ф, — aco sin ф) cos ф 0ф

(6.23)

(6.24)

geschrieben werden. Bei ao = 0 unterscheiden sich die linearisierten Feder- und 
Dämpfungswerte (6.23) und (6.24) von den aus (4.19) und (4.20) berechneten dadurch, 
daß in den letzten die Eigenkreisfrequenz io des zu c = 0 gehörenden linearen Systems 
anstatt der Eigenkreisfrequenz a des nichtlinearen Systems und a anstatt a, stehen.

6.4.3. Die obigen Ergebnisse der asymptotischen Methode können, dem 
Gedankengang des Punktes 4.2. folgend, auch durch geometrische Überlegungen 
erhalten werden. In den Differentialgleichungen (6.14) und (6.22) wird die dimensionlo­
se Zeit т = ая eingeführt, wobei cu =  v/k/m. So können (6.14) und (6.22) in der Form

mo)2x" + kx + e í / ( x ,  wx') = 0, (6.25)

тш2х" + Af wx' + kex= 0  (6.26)

geschrieben werden (mit Strich ist wieder die Ableitung nach т bezeichet). Im Falle e =  0 
hat die Lösung (6.25) die Form

x = ucos(r —19,) (6.27)
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wobei a und 9, die von den Anfangswerten abhängigen Konstanten sind. Aus (6.27) 
folgt

x' = — asin(t — $ ,). (6.28)

Auf der Phasenebene (x, x') ist die zu (6.27) und (6.28) gehörende Phasenkurve s ein 
Kreis mit dem Radius a. Der auf der Phasenkurve stehende Kreiszylinder schneidet die 
Fläche f (x ,wx')  = kx + Eg(x, cox') in einer Raumkurve und die Ebene kecox' + kex in 
einer Ellipse. Die Größen ke und ke werden so gewählt, daß die zwischen den zwei 
Kurven liegende Fläche des Mantels des Zylinders klein ist. Auf Grund der Bedingung

I [ /(x , eux') — (Aea)x' + kcx)]2ds=  Minimum
(S)

erhält man für die Größen ke und ke die Beziehungen (6.23) und (6.24).
Diese Überlegungen geben der asymptotischen Methode von Krylow— 

Bogoljubow eine anschauliche geometrische Deutung.
Der Vergleich des obigen mit dem Punkt 4.2. macht klar, daß grundsätzliche 

Unterschiede zwischen der ersten Näherung der asymptotischen Methode von 
Krylow—Bogoljubow und der im Punkt 4.2. beschriebenen Methode der Linearisie­
rung über der Phasenkurve (und der Methoden, die damit äquivalente Ergebnisse 
liefern) bestehen. Sie gründen sich darauf, daß die Transformation von r = af in einem 
Falle und die von x = cot im anderen Falle angewandt wird, und dementsprechend die 
Schwingungen mit der Kreisfrequenz ш in einem Falle und mit der Kreisfrequenz a im 
anderen Falle zur Bestimmung der äquivalenten Ausgleichsebene zugrunde gelegt 
werden.

Auch bei den höheren Näherungen der asymptotischen Methode von Krylow— 
Bogoljubow werden die Werte der nichtlinearen Funktion und ihrer Ableitungen 
berücksichtigt, die auf einer Phasenkurve der Form von (6.27), (6.28) lokalisiert sind. 
Diese Phasenkurve ist auch bei den höheren Näherungen ein Kreis mit einem Radius a.

In der Praxis kommt es vor, daß die Funktion/ (x, x) in der Form von (6.13) nicht 
aufgespaltet werden kann, weil der Wert von к nicht eindeutig bestimmbar ist. In 
diesem Falle schlagen mehrere Verfasser vor (vgl.: z. B. [18], S. 142.), die Grundgedan­
ken der asymptotischen Methoden bei der Wahl а> = а anzuwenden. Es ist leicht 
einzusehen, daß die durch die erste Näherung der Methode von Krylow—Bogoljubow 
erhaltenen Ergebnisse im Falle ao=0 mit den Ergebnissen des Punktes 4.2. 
übereinstimmen.

Hier sei es nur erwähnt, daß die Gegenüberstellung der Ergebnissen des Punktes 
4.1. und der Methode von Krylow—Bogoljubow bei harmonisch erregten Schwingun­
gen zu den obigen ähnlichen Schlußfolgerungen führen.

6,5. Es ist noch bemerkenswert, daß die Methode von Poincaré und die Methode 
der harmonischen Linearisierung (vgl.: [9], S. 102.) sowie die Methode von Poincaré 
und die Methode von Krylow— Bogoljubow (vgl.: [24]) in speziellen Fällen gleiche 
Ergebnisse liefern. So kann eine anschauliche geometrische Deutung, ähnlich wie es in
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den Punkten 6.2. und 6.4. gemacht wurde, auch für den ersten Schritt der Methode von 
Poincaré gegeben werden.

6.6. Oben wurde gezeigt, daß verschiedene Näherungsmethoden existieren, die 
mit der Methode der Linearisierung über der Phasenkurve gleichwertige Ergebnisse 
liefern. Mann kann erwarten, daß durch diese Näherungen umso bessere Ergebnisse 
erhalten werden können, je genauer die Raumkurve, die aus der Kennfläche /(x , x) 
durch einen Zylinder ausgeschnitten wird, durch eine Ellipse approximiert werden 
kann (vgl.: Bilder 3 und 5). Üblicherweise wird angenommen, daß diese Bedingung bei 
kleinem Wert von e im allgemeinen erfüllt wird. Auf Grund der obigen geometrischen 
Überlegungen scheint es naheliegend zu sein, daß man sich in Abhängigkeit von der 
Form der Kennfläche nicht auf kleine Werte von e beschränken muß. Es kann 
Vorkommen, daß die Methoden, bei denen angenommen wird, daß die nichtlineare 
Funktion einen kleinen Parameter enthält, in erster Näherung bei großem Wert des 
kleinen Parameters gute Annäherungen liefern.

7. Schlußfolgerungen

7.1. Der Grundgedanke der direkten Linearisierungsmethode von Panovko 
kann bei allgemeiner Nichtlinearität von der Form /(x , x) angewandt werden. Dabei 
wird die Kennfläche/(x, x) durch eine Ebene bx + cx + d über irgendeinem Gebiet der 
Phasenebene (x, x) angenähert. Dieses Gebiet kann auf verschiedene Weise gewählt 
werden. Bei geeigneter Wahl des Gebietes und der Gewichtsfunktion können die von 
Panovko gewonnenen Ergebnisse als Spezialfälle erhalten werden.

7.2. Äquivalent lineare Schwingungssysteme können einem anderen Gedanken­
gang folgend, der sich von den bisher angewandten, unterscheidet, erhalten werden. 
Auch in diesem Falle wird eine lineare Bewegungsgleichung der nichtlinearen 
zugeordnet. Ihre Koeffizienten werden aber so bestimmt, daß die Abweichungen 
zwischen der nichtlinearen Funktion und der Näherungsebene über der Phasenkurve 
der Näherungslösung minimal sind. Die Minimierung der Abweichungen über der 
Phasenkurve kann auf verschiedene Weise erfolgen. Eine mögliche Variante wird in 
den Punkten 4. und 5. eingehend dargestellt. Hier wird das Quadratintegral der 
Abweichungen über der Phasenkurve minimiert. Zur Interpretation des Bogenele­
ments wird eine Transformation in der Phasenebene benötigt. Diese Transformation 
kann auf verschiedene Weise gewählt werden.

7.3. Nach der Linearisierung über der Phasenkurve kann der relative Fehler des 
quadratischen Integralmittelwertes berechnet werden. Die Größe des relativen Fehlers 
ist für das Maß der Nichtlinearität kennzeichnend. Die Definition dieses Maßes der 
Nichtlinearität (4.30) ist allgemeiner anwendbar als die bisher aus der Literatur 
bekannten.
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7.4. Auf Grund der Linearisierung über der Phasenkurve kann eine anschauliche 
geometrische Deutung für mehrere in der Untersuchung der nichtlinearen Systeme 
häufig angewandten Methoden gegeben werden.
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The author aimed at finding a correlation between the movement of the tower and the 
geohydrological characteristics of its environment. He has been trusted with it by the jury for the 
tender to save the tower, as a relationship of this kind could be supposed to exist.

1. Arrangement of the available data

The calculations were based on time series comprising:
— the inclination of the tower (in s),
— the piezometric level of the deep groundwater,
— the monthly precipitations,

in the years 1967 to 1975 (later to 1977).
The results of the measurements were made available by the “Commissione per il 

consolidamento della tőrre di Pisa" in diagrammatic form.
First, the data deviating greatly from neighboring values had to be eliminated. 

These were found to be the following: among the inclination values January 23, 1971 
and August 19, 1971; among the piezometric levels August 7 and 20, 1971. This 
correction was needed because these values would distort the mathematical 
relationships although they have no technical importance. In the series of the 
piezometric levels, in addition, twelve missing linear interpolation.

For the purpose of the numerical calculations tables have been worked out which 
contained the respective values for the days 1., 3., . . . ,  29. of the calendar months. The 
monthly mean values and the monthly precipitation are given in Tables 1-3. (Here and 
in what follows, the inclination values have the dimension of 0.1 s, the piezometric 
levels are given in cm, the precipitation in mm.)

The calculated statistical characteristics are presented in the following table.

Denomination Symbol Dimension Mean value Standard 
deviation <r

Inclination a 0.1 s 3705.3 256.6

Piezometric level w cm 366.1 142.0

Monthly
precipitation Pm mm 872 52.6

* Dr. L. R é t h á t i , Ráday u. 43., H-1092, Budapest, Hungary
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Table 1. Monthly averages of inclination and of piezometric levels. Inclination (<xm, 0.1 s)

Month 1967 1968 1969 1970 1971 1972 1973 1974 1975 Mean

1. 3376 3440 3500 3556 3604 3715 3803 4015 4130 3682.0
II. 3371 3439 3507 3551 3592 3718 3806 4022 4131 3681.9

III. 3364 3427 3504 3546 3602 3707 3804 4016 4129 3677.7
IV. 3366 3417 3496 3539 3605 3709 3818 4028 4133 3679.1
V. 3372 3438 3500 3545 3614 3722 3831 4049 4131 3689.1

VI. 3386 3449 3513 3556 3638 3734 3854 4058 4148 3703.9
VII. 3389 3465 3510 3566 3632 3741 3884 4066 4146 3710.9

VIII. 3386 3465 3515 3557 3627 3742 3889 4054 4154 3709.7
IX. 3393 3463 3501 3548 3637 3750 3909 4057 4152 3712.1
X. 3384 3454 3478 3541 3629 3746 3945 4094 4153 3713.7

XI. 3404 3482 3522 3574 3663 3773 3967 4112 4173 3741.3
XII. 3424 3492 3547 3589 3694 3796 4001 4123 4191 3761.9

Mean 3385 3452 3508 3556 3628 3738 3876 4058 4146 3705.3
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Table 2. Piezometric level (Wm, cm)

Month 1967 1968 1969 1970 1971 1972 1973 1974 1975 Mean

I. 196 229 203 147 284 447 435 494 346 308.9
II. 174 224 184 189 293 435 443 512 314 307.9

III. 177 231 194 215 282 431 490 505 299 313.7
IV. 195 214 198 223 293 412 513 520 297 318.5
V. 208 231 204 246 310 486 516 507 305 334.9

VI. 219 256 228 264 311 514 559 552 344 360.8
VII. 303 338 280 310 379 549 687 631 415 431.3

VIII. 320 357 309 354 484 569 673 645 431 460.3
IX. 271 305 266 345 505 561 708 608 358 436.2
X. 238 281 225 325 491 535 642 575 327 404.4

XI. 240 260 190 310 470 486 595 520 293 373.7
XII. 240 236 155 291 467 461 526 428 283 343.1

Mean 232 263 220 268 381 491 566 541 334 366.1
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T able 3. Precipitation (P„, mm)

Month 1967 1968 1969 1970 1971 1972 1973 1974 1975 Mean

I. 33 60 119 193 81 96 45 56 68 83.4
II. 60 221 116 81 60 87 52 85 41 89.2

III. 69 30 110 123 70 63 17 85 105 74.7
IV. 25 56 31 27 44 88 50 79 76 52.9
V. 57 91 61 37 160 38 24 61 67 66.2

VI. 100 38 32 60 76 37 58 25 94 57.8
VII. 0 5 17 25 20 29 15 11 13 15.0

VIII. 26 100 26 100 5 28 46 76 158 62.8
IX. 291 54 104 0 45 74 254 55 70 105.2
X. 68 75 10 27 50 79 127 90 108 70.4

XI. 121 120 251 75 162 73 66 77 160 122.8
XII. 120 86 86 78 38 53 40 18 124 71.4

L = 970 936 963 826 811 745 794 718 1084 872
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n  n
0______ 50 Ю0 __150 0 _  W 100_____ 150

33Ä9 3519 3689 3859 4029 ~4204(oO

F ig . 1.

The original tables contain each 1620 values of a and W. Hystograms and 
empirical distribution diagrams, presented on Fig. 1, served to investigate the statistical 
character of the time series.

2. Analysis of the curves of averages

Figure 2 shows the curves of the yearly averages of W, a and P. The points on the 
first two diagrams furnish the mean values of the data for January, 1,3 . . .  December 
27, 29 for nine years, (1967 to 1975) the third diagram gives the mean monthly 
precipitations for the same years. The curves can be valued as follows.
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The piezometric level reaches on February 19 the highest and on August 5, the 
lowest level. The difference between them {A =477 — 300= 177 cm) is relatively large. 
The curve is somewhat different from the time series of regular, undisturbed 
groundwater levels, it practically stagnates in the first three months of the year, the 
approximately linear section for the preceding five months joins the horizontal section 
without transition. The curves also reveal that for any construction work beneath the 
surface, July and August represent the most favourable period.

The curve of the inclinations is much less regular. Its most conspicuous 
characteristics is that the average values for the end of the year are considerably higher 
than those for the beginning of the year. The calendar year can be divided into four 
periods: the rate of inclination stagnates or slightly decreases from January until the 
end of March (middle of April), then it increases: from the end of July it stagnates again 
and, from October 11, it starts to increase rapidly.

The distribution of the precipitation is unimodal, having a November maximum 
and a strikingly low July minimum. This character of the precipitation points toward 
the effect of the sea.

Using the curves of averages we are able to investigate whether there exists a 
correlation va = / (9 W) between the rate of inclination (va) and the rate of change of the 
piezometric level (9 J ,  and, if so, what is the time lag if any in the process.
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This investigation can be accomplished only, if the abscissa axis of the а-curve is 
previously modified. This is needed because — in contrast with the fF-curve — this 
curve does not close in itself. The values at the beginning of the year are always higher 
than those at the end. This increasing inclination of the tower amounts in average to
8.02 0.1 s/month which means that the а-values have to be reduced by 0.2673 0.1 s for 
every calendar day. The new curve (Fig. 3) gives rise to the following statements.

(a) The modified curve is bimodal: it has two minima, and two maxima.
(b) The IF-curve being unimodal (which is usually characterizing groundwater 

time-curves), curve W and curve a. are not conform. So for example, the piezometric 
level rises rapidly from the beginning of August, however, the inclination which has 
been “liberated” from the trend increases to half time only and decreases onwards.

In order to prove the non-accidental character of this phenomenon (i.e. it’s not 
being the effect of anomalies in one or two years), the modified а-curves have been 
constructed for each calendar year. The right procedure will be to determine best fitting 
straight lines for the а-values of respective year and to plot continuously, according to 
their signs, the a' ordinate — differences between the measured values and the said line. 
The a' curves thus obtained are given on Fig. 4. Here, trends for each calendar year and 
the time series of average a'-values for the years 1967 to 1975 are presented. It can be 
seen that the character of the curves is for each year identical.

Based on the curves on Figs 3 and 4, it can be stated that the velocity of the 
inclination is independent of the velocity of the variation of the water level.
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3. Analysis of curves averaged over many years

3.1 Piezometric level

The curve constructed from the monthly averages for the years 1967 to 1975 is 
given on Fig. 5. The following statements can be made.

(a) The piezometric level was high between 1967 and 197Ö (1T=246 cm), then it 
started to fall, reaching in 1973 and 1974 the deepest point (1T=566, 541 cm,
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respectively). The mean value for 1975 is again near the values measured in 1967 to 
1970.

(b) The seasonal fluctuation in each year is clearly visible; the nine curves are 
rather conform.

(c) The inclination of the best fitting straight line is significant: a = 3.077 
cm/month which corresponds to 3.32 cm in 9 years. To fit the curve, not a single 
straight line, but a polygon consisting of three linear sections is suited best.

The influence of the precipitation on the curve of the piezometric levels can be 
evaluated as follows.

The first question is, whether the difference between two successive maxima or 
minima of the groundwater levels is determined by the precipitations in this period. 
The limit values and their differences were the following:

1967 1968 1969 1970 1971 1972 1973 1974 1975

Maximum 145 200 165 130 260 380 415 480 285

-55 35 35 - 130 - 120 --35 --65 195

Minimum 345 390 335 370 515 595 730 685 480

-45 55 -35 - 145 -80 - 135 45 205

Correlating the AEM values with the precipitation sum for the months II., III., 
. . ., I., and the AEm values with those for the months VIII., IX., .. . VII., the following 
relationships are obtained:

zlEM=0.3150£ P — 321
a.

and
VII.

d £ m = 0.2476 X P -  265.
VIII.

The correlation coefficients: 0.677 and 0.588, respectively (the latter is smaller, most 
likely because the minimum is governed also by temperature which was disregarded 
here).

In determining the relationship the difference of the data for the years 1974 and 
1975 has not been considered.

According to the pairs of point of Fig. 6a and Fig. 6b, the water level in 1975 was 
2.80 m higher than would be justified by the amount of precipitation.

The equations may be used also to determine that amount of yearly precipitation 
which would ensure a dynamic equilibrium:

P r r  =
321

0.3150
= 1019, P ,,=

265
0.2476

1070 mm.
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a)

с)

Although, the other factors of the water household are not known, it seems that 
the amount of the critical amount of precipitation is higher than the usual one.

Another check which has to be performed: comparison of the curve of the 
piezometric levels for many years with the integral curve of the precipitation anomalies. 
The latter is obtained by forming then summing the differences between the monthly 
effective precipitation and the calculated average values. Based on Table 3., the 
measured value in January 1967 was 33 mm, the average of 9 years 83 mm, thus the 
anomaly 3 3 -8 3 =  -50 . For February 1967:60 — 89= —29; the sum: —50 — 29= -79 . 
The final result and the fF-curve — copied from Fig. 5 — is given on Fig. 6c. The 
comparison of these time series leads to the following conclusions:

(a) The curves between 1968 and 1974 run similarly;

Acta Technica Academiae Scient iarum H un gar i cue 95. 1982
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(b) Based on the precipitation anomalies in 1967 one would expect a higher 
ground water level in 1968;

(c) There was a significant shortage of precipitation between November 1973 
and February 1975, notwithstanding, the piezometric level kept rising (cf. with the 
statements in connection with Figs 6a and 6b).

3.2 Inclination of the tower

The time series formed by the monthly averages of the а-values are given on 
Fig. 5.

The best fitting straight line for all points (n — 9.12= 108) has the equation:

« =  8.0192 n + 3268

wherein n is the serial number of the month (January 1967 s  1); its coefficient has a 
dimension of 0.1 s/month; the constant 0.1 s.

As can be seen on the figure, this trend line represents a crude approximation 
only. Based on the relative position of the points, the nine years can be divided into 
three characteristic periods. These are:

I.: January 1, 1967 to August 31, 1971
II.: September 1, 1971 to December 31, 1974

III.: January 1, 1975 to December 31, 1975.
The constants of the best fitting straight lines for the three periods are (of  is the 

residual standard deviation):

__________________  *
r af

I. 4.769 0.984 13.94
II. 12.768 0.986 24.56

III. 4.822 0.907 7.73

The increment of the inclination is thus made up of three parts (see the diagram in 
the left corner of Fig. 5): in the first 4.7 years and in the last year occurred 39 per cent of 
the movement, in the 3.3 years in between 61 per cent. In the period II., the velocity of 
the movement is 1.7 times greater than in the two others.

3.3 Autoregression investigations

In order to investigate the periodicity which is hidden in the data, autoregression 
(autocorrelation) functions were prepared. These are given in Fig. 7. There were 9 x12  
= 108 data, the width of the interval i = 1 month. The p- values which are written on the
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curves, were calculated from Anderson’s formula:

C [ _  - \ ± t p ^ n  + \ - i
n — i

wherein CL is the critical correlation coefficient, tp the functional value, calculated from 
the normal distribution to the probability p,n — the number of data (here n = 108), i — 
the serial number of the month (here 1 to 72). The dashed line connects the CL-valucs 
which belong to the probability p = 95 per cent (rp=  1.645).

The autocorrelograms can be evaluated as follows.
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The autocorrelogram of the groundwater is quite regular, its shape coincides 
with the regular. The location of the negative minimum points out that the length of the 
period is 10 years.

The autocorrelation function of the precipitation is much more irregular, the r,- 
values are much smaller, consequently, the reliability p = 95 per cent is passed in a few 
months only.

The first diagram related to the inclination values was prepared by making use of 
the rough а-values (monthly averages); the great trend value in the time series distorts 
the autocorrelogram. The r,-values are exceedingly great and the periodicity becomes 
blurred. This difficulty can be overcome if the best fitting straight line of the а-values is 
calculated for each calendar year and the deviations from these (a') are taken as a basis 
of the autoregression investigation. The lowest curve on Fig. 7 proves that thus the 
periods become distinct: there is a stronger 12 months-period and a weaker 6 months- 
period. The confidency-levels of the local peaks — with one exception — are all greater 
than 95 per cent.

The curse of the autocorrelograms in one calendar year can be studied best by 
calculating the mean of the r,-values which pertain to 12k+ 1, l2k + 2, . . . ,  12(/c+ 1) 
(Fig. 8).

Although, according to Figs 7 and 8 the autocorrelograms of the groundwater 
level and of the inclination are both very regular; there are two very substantial 
differences:

(a) curve IT has a single peak in one year, whereas curve a' has two;
(b) the r,-values of the peaks in the IT-curve are functions of i, those pertaining to 

the peaks of the curve a' are approximately identical. This means that W  varies 
periodically, a' cyclically.

4. Calculation of the critical piezometric level

4.1 Determination of the empirical functions

The empirical distributions of the a and W-values (Fig. 1) and the curves of the 
averages (Fig. 5) point toward the conclusion that the rate of inclination of the tower 
depends on the depth of the piezometric level, i.e.

vx = f(W )

wherein PTis the mean water level of the period concerned.
Now, the year has to be divided into periods, within which the function f(W )  is 

unequivocal and relatively tight. For this purpose, every month is divided into three 
parts and the arithmetic mean of a for every decade calculated. Determining now and 
plotting the mean values for 1967 to 1970 and for 1971 to 1974 respectively, a very 
interesting picture is obtained which reveals the behaviour of the Tower. (The upper 
two lines on Fig. 9.)
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(a) In the years with a high water level, the tower is found on October 25 in the 
same position as it was at the beginning of the year;

(b) in the years with a low water level the successive inclination starts at the 
beginning of April.

(c) Based on the trend-values exhibited on the first curve, the total calendar year 
can be divided into four periods (a to d).

The functional relationship will be obtained by calculating for the periods a to d 
of each calendar year (now including 1975 too) the average trend of the inclination (e„) 
and by plotting these vs. the average water level during these periods (Fig. 10). Then, 
correlating these sets of data the constants a and b in the equation

va = aW+b
can be determined.
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months

The results of the calculations are given in Table 4, displaying values of the 
correlation coefficient r, the standard deviation rjv<x of the r„-s and the sf  standard 
deviation around the best fitting straight line. According to this (see also Fig. 10), the 
interdependence of va and W in the period d is practically zero, afterwards it increases 
successively. Between August 1 and October 15 a variation of 1 m in IT means 
approximately 1 s/month in the velocity of the inclination. Table 4 shows clearly that 
the period a can be described with the slightest residual standard deviation (<Ty = 2.70), 
period d has a much higher value (of  = 7.73).

Another possibility for the investigation consists in calculating for each calendar 
months (i.e. for 108 months) the velocity of the inclination and in determining the mean
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T ab le  4 . The relationships t>„ =  /(W) 
a) For four periods o f the year

Period a b Г <fm °f
a 0.010747 -5.55 0.429 2.99 2.70
a 0.022302 3.57 0.656 4.42 3.34
c 0.092463 -41.17 0.908 14.66 6.15
d -0.002117 25.77 -0 .036 7.74 7.73

Mean: 0.507 7.45 4.98

b) For calendar months

Month a b Г tva

I. 4.920 -1 .32 0.614 0.95 0.75
II. -6 .712 -1 .84 0.613 1.32 1.04

III. 1.359 -0 .93 0.127 1.30 1.29
IV. 7.660 -2 .37 0.593 1.60 1.29
V. -1.721 1.10 -0.383 0.56 0.51

VI. 4.042 -0 .69 0.661 0.82 0.61
VII. 4.183 -1 .48 0.539 1.12 0.94

VIII. -0.188 -0.21 -0.023 1.08 1.08
IX. 8.350 -3.37 0.747 1.71 1.14
X. 1.666 0.17 0.309 0.80 0.76

XI. 3.060 0.84 0.337 1.24 1.17
XII. 0.679 0.94 0.087 0.95 0.95

Mean: 0.419 1.12 . 0.85

c) For the whole year

a b r °v. ° f

0.031106 -4 .75 0.838 4.74 2.59

values for the months I., II., III., .. ., XII., separately for the periods 1967 to 1970 and 
for 1971 to 1974, respectively. The two curves in the lower part of Fig. 9 show the 
continuous sums of the so obtained t>a-values; the difference between the two curves is 
similar to that of the curves obtained for the periods a — d.

In the possession of the monthly trend-values new better differentiated 
relationships can be found between and iF(including again the year 1975). Results of 
the regression calculations are summarized in Table 2. It can be concluded that:

(a) excluding three months, the velocity of the inclination increases with 
increasing depth of the groundwater level, most sensitively in September and January;

(b) the slightest error occurs in the description for the months May and June, the 
greatest in March and April.

It is possible to determine a correlation between the yearly average values of va 
and l^fsee Table 4 and Fig. 10). The approximation of this correlation is a function

«> .= f m
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where W  is the water level observed on any one day of the year; expediently at the 
beginning of it. (The search for this correlation is encouraged by the similarity of the 
yearly water level variations.) The results of the calculations:

Date a b r al

I. 1. 0.02724 -2.01 0.685 3.45
II. 1. 0.02912 -2.40 0.766 3.04

III. I. 0.03068 -3.09 0.744 3.16
IV. I. 0.02834 -2.36 0.801 2.83

With decreasing time scores the tightness of the correlation increases. Starting 
with the April 1 water level a similar accuracy can be achieved in the prognosis (af  
=  2.83 ~  2.59 0.1 s/month) which is rather surprising, since the water level on April 1, 
“does not know” the meteorological data to occur in April to December.
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4.2 Checking the empirical functions

The above described empirical relationships are suitable to describe the 
movement of the Tower based on the knowledge of the piezometric levels.

The increments da, calculated by the equations determined for the periods a to d 
for the years 1967 to 1975 are given in Table 5. The second column contains the average 
water level for the period in consideration, the third column its product with the a-

Tatrfe 5. Calculation of the polygon describing inclination by using the relationships for the periods a to d

Av. „ . а / Values at years end
water level Measured Calculated Difference

67 182 1.956 -3 .59 -10.8
231 5.152 8.72 34.9
284 26.259 —14.91 -37.3
240 -0.508 25.26 63.2 50.0 3433 3426 7

68 228 2.450 -3 .10 -9 .3
257 5.732 9.30 37.2
319 29.496 -11.67 -29.2
256 -0.542 25.23 63.1 61.8 3506 3488 18

69 194 2.085 -3 .47 -10.4
235 5.241 8.81 35.2
276 25.520 -15.65 -39.1
182 -0.385 25.38 63.5 49.2 3554 3537 17

70 184 1.977 -3 .57 -10.7
261 5.821 9.39 37.6
345 31.900 -9 .27 -23.2
304 -0.644 25.13 62.8 66.5 3595 3604 - 9

71 286 3.074 -2 .48 -7 .4
323 7.204 10.77 43.1
496 45.862 4.69 11.7
471 -0.997 24.77 61.9 109.3 3710 3713 - 3

72 438 4.707 -0 .84 -2 .5
490 10.928 14.50 58.0
563 52.057 10.89 27.2
482 -1.020 24.75 61.9 144.6 3810 3857 -4 7

73 456 4.900 -0.65 -1 .9
569 12.690 16.26 65.0
681 62.967 21.80 54.5
576 -1.219 24.55 61.4 179.0 4016 4036 -  20

74 504 5.416 -0 .13 -0 .4
553 12.333 15.90 63.6
619 57.235 16.06 40.2
491 -  1.039 24.73 61.8 165.2 4125 4202 -7 7

75 320 3.439 -2.11 -6 .3
340 7.583 11.15 44.6
384 35.506 -5 .66 -14.2
292 -0.618 25.15 62.9 87.0 4190 4289 -9 9

Г = 912.6
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value given in Table 4b. Adding to this the constant b vx is obtained. Multiplying this 
with the length of the time intervals a to d (3,4,2.5,2.5 months, respectively), Aat results. 
Since the difference between the a values for the date December 31,1975 and January 1, 
1967, amounts to 4190 — 3376 =  814 0.1 s, and the calculated value is

Zdaj = 912.6 0.1s,
it can be concluded that by using the four empirical functions it is possible to give a 
prognosis for nine years with an accuracy of 12 per cent.

The calculations of the polygon by making use of the monthly trend is shown in 
Table 6. Here

Table 6. Calculation of the polygon describing inclination by using the relationships for the calendar months

12 12 12
Year W A «i

1
Year W Acii Year W A a t

1

67 196 -5.3 70 147 -9.0 73 435 12.3
174 -10.0 189 8.5 443 -17.0
177 -10.4 215 -9.6 490 -4.0
195 -13.1 223 -9.9 513 23.4
208 11.2 246 10.2 516 3.2
219 2.9 264 5.7 559 23.6
303 -3.2 310 -2.7 687 20.9
320 -4.0 354 -4.1 673 -5.0
271 -16.6 345 -7.4 708 38.1
238 8.5 325 10.6 642 18.6
240 23.6 310 26.8 595 39.9
240 16.6 20.2 291 17.1 36.2 526 19.5 173.5

68 229 -2.9 71 284 1.2 74 494 16.7
224 5.0 293 -1.9 512 -24.0
231 -9.3 282 -8.2 505 -3.7
214 -10.9 293 -1.9 520 24.2
231 10.6 310 8.5 507 3.5
256 5.2 311 8.5 552 23.1
328 -1.6 379 1.6 631 17.4
357 -4.1 484 -4.5 645 -4.9
305 -12.4 505 12.7 608 25.6
281 9.5 491 14.8 575 16.9
260 24.5 470 34.2 520 36.4
236 16.6 30.2 467 18.9 83.9 428 18.5 149.7

69 203 -4.8 72 447 13.2 75 346 5.7
184 9.0 435 -16.2 314 -4.1
194 -10.0 431 -5.2 299 -7.9
198 -12.8 412 11.8 297 -1.4
204 11.3 486 4.0 305 8.7
228 3.5 514 20.8 344 10.5
280 -4.6 549 12.3 415 3.9
309 -4.0 569 -4.7 431 -4.3
266 -17.2 561 19.7 358 -5.7
225 8.1 535 15.9 327 10.7
190 21.3 486 34.9 293 26.0
155 15.7 15.5 461 18.9 125.4 283 17.0 59.1
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365.22
I'd« = 693.7 ——  = 704 0.1s,

365

the accuracy of the prognosis is then 14.8 per cent. From the connection between the 
yearly average values of W  and vx we obtain

£da = 717 0.1s;

the accuracy is 11.9 per cent.
Calculations using the water levels on April 1 furnish

l 'd a  = 711 0.1s;

with an accuracy of 12.7%.
The comparison of the measured and calculated date is given on Fig. 11. 
Computed from the piezometric levels on January 1, and on February 1, 1976, 

the position of the Tower for December 31, 1976 will be

a = 4190+(0.02724 • 260-2.01)12 = 4251 
a =  4190+ (0.02912-250 -  2.40) 12 = 4249 resp.

in 0.1 s. According to the calculations related to the period 1967 to 1975, the average 
difference between the measured and the computed values is 26 per cent, and thus the 
forecast for the inclination can be given as

a = 425" ±2.2"

4.3 Calculation of the critical water level

About half of the values of the constant b in equation v„ = f(W ) is negative (see 
Table 4). It can be hoped rightly that there exists a Wetit > 0  piezometric level to which 
da =  0 belongs. This critical level can be determined by putting

T i =  Z ( « i W cni +  b l)T i =  0 .

i is the serial number of the interval, T( is their length. According to Table 4, using the 
time intervals a to d:

(0.010747 • Wct — 5.55)3 + (0.022302 • Wcr +  3.57)4 +

+(0.092463- fFcr —41.47)2.5 + (—0.002117 • lFcr + 25.77)2.5=0,

wherefrom

W„ = 41.62
0.347314

= 120 cm.

With similar considerations, using monthly intervals one gets
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from the means of W  and v„

5.4748
WCT= ■ ;■■ ■ =201 cm,

cr 0.027295

4.75
W„ = _______=  153 cm.

0.031106

Starting from the variations at the beginning of the year:

from January 

February

2.01
W- ~  002724 ’  74 Cm’ 

2.40
W„ =  - - - - - - -  =  82 cm,

cr 0.02912
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March
3.09

Wcr~  0.03068 - 101cm’

April
" '" -  0.02834 -  83cm-

their arithmetic mean W,.r—85 cm.

Although the final values of the 9 year-prognosis are rather similar (see Fig. 11), but the 
polygons which belong to the water levels at the beginning of the year are more 
irregular than the others, therefore it is justified to use a factor of 0.5. Thus

120 + 201 + 153 +  0.5-85 I>£)
rvcr = -------------— -------------- =  148 cm.

Keeping the piezometric level at 148, the inclination of the tower will not change in 
a period of one calendar year, the levels at the beginning and at the end of the year will 
be identical.

4.4 Other effects

The original shape of the series of the а-values shows a rather irregular polygon.
One of the reasons for the irregularities is likely the limited accuracy of the 

measurements. It can be, however, easily proved, that other effects are also interfering. 
By calculating the monthly trends of the inclination the standard deviations Oj- around 
the best fitting straight lines were also obtained. Their monthly mean values for the 
period 1967 to 1975 are shown on Fig. 12a. According to this, there are also cyclical 
elements in the time series of a. It could be ascertained, by analyzing several 
relationships, that the values a, r and of , which characterize the function va= f(W ) 
change continuously during the year; one of the consequencies of this is the bimodality 
of curve a'.

The autoregression investigations have proven that there is a sharper 12 month- 
period and a weaker 6-month period in the series of the а-values in contrast to the W- 
curve having a single period. An interesting result is obtained if the differences of the 
ordinates of curves a! and W  are plotted: the line is a rather regular sinusoidal curve 
(Fig. 12b).

Comparing the phenomena which were described above, the conclusion can be 
brought that these are due to the yearly rhythm of the temperature changes. This has a 
double effect: it induces stresses and deformations in the superstructure and causes 
changes in the moisture content of the subsoil. It is very likely that the former effect is 
here stronger and causes that the southern side of the Tower, due to the insolation, 
expands more than the northern side and, since the Tower leans toward the South, the 
recorded inclination will be smaller in summer. The effects on both the structure and 
the subsoil could be separated if not only the inclination but also the differential 
settlements of the foundation had been measured.
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Months

It could also be suggested that there is an effect of the precipitations. This forms a 
considerable amount of surface water, there may be some leakage from the drainage 
system which may change the moisture content of the soil etc. This effect is in all 
probability not significant since the measurements did not show anomalies in months 
with high precipitations. However, it must not be disregarded as is proven by the 
following.

After calculating the value a to be expected at the end of each time interval 
(March 31, July 31 etc.) by using the coefficients obtained for the time intervals a to d, 
the differences between these and the time values will be formed. Then, for each inter­
val, a relationship

^ m e a s u r e d  ^ c a lc u l a te d  f
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can be found, where ЛР is the difference between the effective and mean sum of 
precipitation in the respective time interval. The tightness of the relationship is different 
for the intervals; it amounts to

for interval a r =  -0.232
b r=  -0.287
c r =  +0.416
d r =  +0.141

According to this the effect of the precipitations is strongest between August 1 
and October 15; the positive sign means that the inclination of the T ower will be greater 
than expected with increasing amount at precipitation (positive P-anomaly). The 
calculation with yearly data results in a similar figure (r=  +0.31).

The effect of wind must not be excluded either. It was observed in Hungary that 
the majority of chimney stacks tilts toward S— SE; this can be explained partly by the 
main wind direction (N—NW) and partly by the residual deformation of the building 
materials, due to the elevated insolation.

In order to demonstrate the consequencies of secondary effects and to prove the 
results obtained so far and to clarify further the causes of the movement, following 
investigations seem useful:

— comparison of the movements of the Dome with the leaning of the Tower and 
with the geohydrological characteristics;

— comparative analysis of the leaning and of the settlement differences 
measured on the base;

— comparison of the fluctuations of the upper and lower ground water levels;
— investigation of the interaction between leaning, settlement differences and 

insolation;
— analysis of water pumping elsewhere in the town;
— study of both the direction and intensity of wind.

5. Conclusions

It could be proven unequivocally that the velocity of the inclination is in 
correlation with the position of the groundwater level and not with the velocity of its 
fluctuation. Through the arrangement of available data the conclusion could be 
brought about, that in the period 1967 to 1970 (having high piezometric level) the 
Tower was in the same position about October 25 as at the beginning of January; on the 
other hand, in the period 1971 to 1974 (having low piezometric level) the inclination 
increased rapidly from the beginning of April.

The relationship t?(ot) = /(Й0, determined for different periods, and the 
relationships vx = f(W ), determined for four water levels at the beginning of the year, 
served to calculate a critical piezometric level, at which the increment of the inclination
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becomes zero. This level is given by

WQ!= 148 cm.

If we keep this level constant, the further increase of the tilting will stop.
The introduction of data for the years 1976 and 1977 has not considerably 

changed the results obtained earlier, indicating thus the persistence of discovered 
regularities.
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NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 
WITH EIGENVALUE PARAMETER 
IN THE BOUNDARY CONDITIONS

T. T arnai*—M. Ku rutz**—G. Popper***

There are linear problems in the theory of vibration and stability of continuous structures 
which can be described by differential equations having eigenvalue parameter in the boundary 
conditions. Applying the finite difference method for solving the problem, an algebraic eigenvalue 
problem of a lambda-matrix of the same degree as in the original problem is obtained. However, the 
finitization under the same conditions by a method of Ritz—Galerkin type may increase the degree of 
the lambda-matrix. A comparison between the mentioned finitizing methods is given by the example 
of the lateral buckling of a beam hung at both ends.

1. Introduction

It is well-known that for linear problems, under certain restrictions, the finite 
difference method and the Galerkin method with finite elements are, in general, 
perfectly equivalent [6]. The Galerkin method with finite elements gives results which 
are identical to those obtained by the finite difference method.

However, there are linear problems leading to eigenvalue problems with 
eigenvalue parameter in the boundary conditions for which this statement does not 
hold. Applying the finite difference method and the Galerkin method with finite 
elements under the same restrictions for solving these problems, in general, different 
algebraic eigenvalue problems are obtained.

In the theory of vibration and stability of continuous structures there are 
problems known for a long time where the boundary conditions are functions of the 
eigenvalue parameter. In his book Collatz [2] has collected some of such problems.

Although, recently many papers have been published in the topic [4, 7, 10, 12], 
the theory of differential operators with eigenvalue parameter in the boundary 
conditions is not worked out so well as that of differential operators whose boundary 
conditions are independent of the eigenvalue parameter. There are known problems in 
which the eigenvalues can also be complex numbers. If we want to embed the problem 
into the theory of Hilbert space then a question is how the selfadjointness is to be

* Dr. T. Tarnai, Hungarian Institute for Building Science, Dávid Ferenc u. 6., H-l 113 Budapest,
Hungary

** Dr. M. Kurutz, Technical University of Budapest, Dept, of Civil Engineering Mechanics, 
Műegyetem rkp. 3„ H-l 111 Hungary

*** Dr. G. Popper, Technical University of Budapest, Dept, of Civil Engineering Mechanics, 
Műegyetem rkp. 3., H-1111 Budapest, Hungary
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defined in order that the spectrum be contained in the reals. Another question is how to 
give matrix representations of these operators, independent of the eigenvalue 
parameter, namely, due to the classical theory, all the base functions have to satisfy all 
the boundary conditions [1]. These mathematical questions have only been partly 
answered and they have many consequences in the numerical computations.

In this paper, a comparison between the main finitizing techniques, the finite 
difference method and the finite element method joined with the Galerkin method, is 
made by the example of the lateral buckhng of a beam hung at both ends. This 
engineering problem can mathematically be written as the eigenvalue problem A0f) 
— 2 А 1в — л 2А 2в = 0 of differential operators A0, A x, A 2 with boundary conditions 
linearly containing the eigenvalue parameter ?..

2 . L a t e r a l  buckling of beams hung at both ends

2.1 Equation of the problem

The ditferential equation of equilibrium of a laterally buckled thin-walled beam 
with open constant mono-symmetric cross-section, where the displacements are small.
is as follows [11]:

M2
EJJ)""-G J,0" + (r -2 t)(M x0 ') ' - ( v - t ) p 0 - - f  0 = 0 (1)

t j y

under the boundary conditions
0"(O) =  O, (2a)

0"(L) = 0, (2b)

E 6T(0) -  GJ, вЩ  + (fo -  t)M'x(G )m  = 0, (2c)

EJoiB"'(L) -  CJ,e'(E) +  (A  -  t)M'x(L)0(L) = 0 (2d)

with the notation

X, y, z rectangular coordinates (see Fig. 1),
0 angle of rotation of the cross-section in the x - y  plane,
1 distance from the centroid to the shear centre,
V distance from the centroid to the point of application of the load,
L span of the beam.
f 0, f ,  distances from the centroid to the point of attachment of the rope at the end cross-sections z = 0 and z 

= L, respectively,

r cross-sectional radius: r = Jx 1 j  ytx1 + y2)<//' ,
t

Jx, J y moments of inertia of the cross-section with respect to the x and y axes.
F , area of the cross-section,
J, torsional constant of the cross-section.

Acta Technica AcatJemiae Scientiarum Hunxuricue 95. !9H2



SOLUTION OF EIGENVALUE PROBLEMS 151

J u warping constant of the cross-section,
E modulus of elasticity,
G modulus of elasticity in shear,
p transverse load, considered positive in the negative direction of y,
M x bending moment in the beam in the y — z plane, considered positive if tensional stresses are in the 

bottom fibre,
( . )' — didz symbol of differentiation with respect to variable z.

The boundary conditions (2a, b) express that the end cross sections are warping 
free and the boundary conditions (2c, d) express the equilibrium of inner and outer 
twisting moments in the end cross-sections.

Let /  denote the load parameter. Let p0 and M x0 denote the basic values of the 
load and the bending moment functions, respectively. By introducing notations

a = r — 2f, /f =  p — f,

У о ~ ) о ~  L y i . - J i . ~ f  

(1) and (2a <1) assume the following form:

M 1
E JJ"" -  GJ, 0" - л [ -  х( Mxо в')' + ßp0 O'] — Â2 0 = 0 (3)

EJ у
tí"( 0) = 0, (4a)

tí"(L)=0, (4b)

F .J J -Щ -  GJ, 0Щ  + лу0 M'x0m m  =  o, (4c)

EJÍ0 0"\L)—GJ, 0'( L) + ÁyI M'xO(L)0{L) = 0. (4d)

It can be seen that boundary conditions (4c, d) are functions of the parameter Д. Let us 
introduce the following notations:

Ao0= E JJ)""~G J,0", (5)

A l0 = -* { M xO0')' + ßpl)(h (6)
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A 2e = ^ f e .  (7)
L J  y

The differential expressions A0, A t , A2 with the boundary conditions (4a-d) denote 
linear differential operators. Then equation (3) with the boundary conditions (4a-d) 
may be written as

(A0-À A t - À 2A 2)e = 0. (8)

Equation (8) seems to be a quadratic eigenvalue problem where operators A0, A t , A 2 
are symmetric and the operator A2 is positive as well.

Let the scalar product of complex functions f  g be defined as

i f  0> = I f{z)g(z)dz.

Forming the scalar product of the left hand side of equation (8) and the element в, 
considering the boundary conditions (4a-d) and the fact that MxO(0) = Mx0(L) = 0, we 
obtain

j £ J J t f " |2dz+  J GJ, 10'12dz — A 
о о

a J M x0\6'\2dz + 
0

+ ß j  p01 в I ■2dz -  y0 A#;o(0) I ö(0) I ■2 + yL M'x0(L) \0(L)\2 
о

— A
EJ,

|fl|2dz =  0. (9)

If Â is an eigenvalue and 0 is the corresponding eigenfunction then equation (9) is 
satisfied. Let us denote the coefficients of Я1 (i = 0, 1, 2) in (9) by a, b, c, respectively. 
Relationship (9) can be considered as a quadratic equation

a — Àb — A2c = 0. (10)

Since numbers a, b, c are real and a^O, c^O as well, it follows that the discriminant of 
equation (10) is non-negative: b2 +4acjS0, consequently the eigenvalue Â is real. Thus 
the problem (3, 4a-d) can have only real eigenvalues.

2.2 The finite difference method

At writing the difference equations we use the order of succession as follows: (4a), 
(4c), (3), (4d), (4b).

So we obtain a quadratic eigenvalue problem of square matrices:

(A0 —ÂA,—A2A2)6 =  0. (11)

The elements in the first and last rows of matrix A, and in the first two and last two 
rows of matrix A2 will be zeros. Let us use equidistant subdivision of the interval [0, L] 
and differences approximating the differentials with error of the same order of
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magnitude. In spite of the fact that we apply central difference expressions for equation 
(3), because of the boundary conditions, the matrices will not be symmetric except 
matrix A2 which is diagonal. We mention here, that if the order of magnitude of the 
errors of the various difference expressions is not required to be the same then matrix 
A0 can also be symmetric.

It can be seen that the finite difference method has a quadratic eigenvalue 
problem of matrices (11) corresponding to the original quadratic eigenvalue problem of 
differential operators (8). Dependence of the boundary conditions on Я appears mainly 
in matrix A,.

2.3 The finite element Galerkin method

Let us denote the quadratic pencil A0- Я/4, — À2A 2 shortly by A. Elements of 
domain of definition DA of operator A are functions belonging to class C4(0, L) and 
satisfying boundary conditions (4a-d).

Let N be a fixed integer. Let us look for the approximation of the exact solution 
in the /V-dimensional subspace DA of the infinite dimensional space DA in the form of 
the linear combination

0N= i  а,ф„ 4>i e Dna (12)
i — 1

where {ф,}fL, is the system of base functions and {a,}fL i are the unknown coefficients.
In accordance with the Galerkin principle the error vector 0 —0N has to be 

orthogonal to the /V-dimensional subspace spanned by the base vectors ф{, 
ф2i . . . ,  фц- This condition leads to a system of linear equations as follows:

t  а^Аф 1чф ^= 0  7= 1 ,2 ....... N (13)
i — 1

where real scalar product is defined:
L

<Афцф]'>= ^Аф,ф;dz, </>,-, ф]в Da.

Let us use the equidistant subdivision of the interval [0, L]:

zo =  0 < z , < z2< . . .  <zn< zn+i = L  (14)

and search the approximate solution function 6N{z) in a piecewise polynomial form

0N(z) = fli'(z), z e [z t _ |,  zkl  к = 1 ,2 , . . . ,  n + 1.

The degree number and the coefficients of the polynomial with respect to section 
(element) [z*_,, zt] can be determined from the continuity conditions for the function 
eN(z). Firstly, let us choose functions satisfying the continuity conditions but not 
necessarily the boundary conditions. Such a system of functions (not yet base functions) 
{<?*> $*}k = o belonging to boundary and inner dividing points {zk}21Ô can be
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^ (z -z * _ ,)2-  ^ ( z - z * . , ) 4, z e [ z k 1 ’ z j

<??(z)= 1 -  ^ ( z - z t )2+  ^ (z -z * )3-  ^ ( z - z j 4, z e  [zfc. Zfc + 1 ]

0 1 ■> Zfc -H 1 ]

-  ,)2-  p - (z -z t , ) \ z e [z k 1 7 Z(J

<fri(z) = (z -  Z*) -  ~ (z -  zk)2 +  p  (z -  zt)3, ze[z* Zfc + 1 ]

0 z£  [zk i'Z*+i] (15)

where 1 = L/(n + 1). These functions are shown in Fig. 2. It is easy to see that functions 
(15) belonging to points {z*}£l 2 automatically satisfy all the boundary conditions since 
their value on the first and last elements is zero. In the case of the functions belonging to 
points z, and z„, respectively, we have to take care of satisfying the boundary 
conditions, which can modify also the other functions.

Let us satisfy the boundary conditions with the help of functions (15). For this 
reason let us write the function (^(z) on the first and last elements of the interval, and in 
order to distinguish it from its final form, let us mark it by a superscript tilde:

öN(z)=c0$^ + b0$ l0 + ci $°i + bl $\, Z6[Zo,Z,], (16a)

SN(z)= c , ^  +  f > i i + q + i f i + i+ f ',+  1f t t i ze [z„ ,z ,+ il- (16b)

Substituting expressions (lóa, b) in boundary conditions (4a-d) we obtain a system of 
linear equations from which we can express the coefficients belonging to the boundary 
points by the adjacent coefficients. Thus we have

(17)
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CL= -  —^  + 2ÂyL M'x0(L),

D0— — A"/o/MxO(0),

DL = XyLlM'x0(L),

24 EJ
h o= —j2 “ +  4GJ, +  2XyolM'xO(0),

24 EJ
F i.= + 4 G J - 2 2 y lJM'x0(L).

Replacing c0, c„+1, b0, b„+l in (16a, b) by expressions (17) we have 

1

(18)

Since Fq and F, contain parameter /, they cannot be in the denominator. Multiplying 
(19) by F0Fl , we obtain the approximate function on the first and last elements, 
respectively, in the form:

0%А(г) = с 1ф°1+Ь1ф\,

е?,п+1(2)=спф0п+ ьпф'п (20)

where 0%A(z) = F0F,J!% {(z) and 0"n+l(z) = F0FLS%n + l(z), and ф°и ф\ and ф°, ф'я are 
the base functions belonging to points z, and z„, respectively, satisfying the continuity 
conditions and the boundary conditions:

Ф°\ = Fl(A0$ q + C0 + F0 $°),

Ada Technica Academiac Seien liar urn Hungaricue 95, I9H2



156 TÁRNÁI, T. KURUTZ, M. POPPER, G.

<I>\-Fl(Bo$ o + Do$ o + Fo$\)'

Фп =  F0(A ,M +. + CL$ ln+, +  Ft <??),

Ф1, = F0(B, $°+, +£),,<^+, +  F, (f>\). (21)

These special base functions are shown in Fig. 3. It is important to see that not only the 
functions belonging to points z, and z„ are modified by satisfying the boundary 
conditions but all the other functions фк, ф1к, too.

Thus the solution is obtained in the form

0N(z) = У  M ?  + ъ}ф)), ф], ф) в Dna (22)
j= 1

where N — 2n and the base functions contain the second power of parameter Я.
The Galerkin principle with these base functions leads to the homogeneous set of 

linear equations as follows:

(23)

Considering the fact that both operator pencil A and the base functions ф°, ф] contain 
Я2, after forming the scalar product, we arrive at a sixth degree eigenvalue problem of 
square matrices of order 2n:

(Ао-ЯА, - Я 2А2-Я 3А3-Я 4А4- Я 5А5- Я 6А6)0 = О. (24)

In the special case, where the load p is constant and the distances between the centroid 
and the point of attachment of the rope at both end cross-sections are the same (f 0 =  f L) 
and thus F0 = FL, the sixth degree eigenvalue problem (24) is reduced to a fourth degree 
one.

It can be seen that the Galerkin method, where the base functions satisfy all the 
boundary conditions, has a sixth (fourth) degree eigenvalue problem of matrices (24)
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F ig . 3 .

corresponding to the original quadratic eigenvalue problem of differential operators
( 8).

It should be noted that in the case of a similar problem the Rayleigh—Ritz 
method with base functions satisfying all the boundary conditions leads to an 
eigenvalue problem higher degree than the original one. This fact was discovered by 
Falk [5] and was applied e.g. by Zimmermann [14] and Kelkel [8].

2.4 The extended Galerkin method

In the eigenvalue problem (3, 4a d), (4a) and (4b) are the essential boundary 
conditions but (4c) and (4d) are the natural boundary conditions. If we use base 
functions satisfying the essential boundary conditions and not necessarily the natural 
boundary conditions then the quadratic pencil of linear operators in (3) can be 
modified by the natural boundary conditions (4c, d). The extended Galerkin statement 
[3] can be written for functions 0 and и satisfying the essential boundary conditions:
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M 2 1
EJ J " "  -  GJ,0" -  / [  -  a (MxO0')' + ßp0 0] - л2 0 j  и dz -

- { E J j r ( L )  -  GJ,0'(L) + /.yl M'xO(L)U(L)}u(L) +

+ {E J j r m  -  GJ, 0Щ  + Ay0 М;о(0)(У(0)} u(0) =  0. (25)

Integrating the first term by parts, we obtain
i. I, I.
Jj EJ„0"u"áz + j  GJ, O'u'dz -  / [a  j  MxO0'u'dz +

+ ß J Pc0u dz +  yLM'xO(L)0(L)u(L)- y0 M ;o(0)0(0)W(0)] -  
о

-Л2
EJy

Ou dz = 0. (26)

If we consider the interval (0, L) as single element then base functions can be e.g.: = Î,
ф2=И— L/2,(^i+2 = sin inz/L(i=  1 ,2 ,...). When the technique of finite elements is used 
then the spline functions can be of an order lower than in the previous Section (third 
degree instead of fourth degree). Thus we arrive at a problem

(Ao- / . A , - / 2A2)0 = O. (27)

It may be seen that the extended Galerkin method has a quadratic eigenvalue 
problem of symmetric square matrices (27) corresponding to the original quadratic 
eigenvalue problem of symmetric differential operators (8). Dependence of the 
boundary conditions on 7. appears mainly in matrix At. 3

3. Numerical solution of the algebraic eigenvalue problems

The algebraic eigenvalue problems (24) and (27) are special cases of the 
generalized eigenvalue problem of lambda-matrix of order n and degree m

(A0 + A +  A27.2 + . . .  + Am _ ,7. " - 1 +  A„,7.m)0 = 0 (28)

where A0, A , , . .. ,  Am are real square matrices all of order n and either A0 or Am is 
supposed to be nonsingular [9].

If Am is non-singular, the generalized eigenvalue problem (28) can be reduced to 
the special eigenvalue problem of the hypermatrix
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i.e. of the matrix of order m x n with constant elements. If A0 is non-singular, a 
hypermatrix of similar form to (29) can be obtained after introducing a new variable к
= 1/A.

The hypermatrix (29) is, in general, very badly balanced that is, the 
corresponding rows and columns have very different norms. Hence before calculating 
its eigenvalues and eigenvectors it is very important to balance it.

The solution of the standard eigenvalue problem of matrix (29) has been 
accomplished by a program composed of procedures balance, elmhes, elmtrans, hqr2, 
and balbak published in Wilkinson—Reinsch [13].

4. Numerical example

Let us consider the steel 1 beam which has been analysed in [11]. The beam (Fig. 
4) is hung at both ends by vertical ropes attached to the upper flange of the beam and is 
loaded by uniformly distributed forces acting along the centroidal axis of the beam. The 
data of the beam are the following:

J y =  3.576 x 103 cm4,

J,= 1.48 x 102 cm4,

./,„ =  7.364 x I06 cm6, 

t =  19.44 cm, 

r =  — 5.22 cm,

L= 1.25 x 103 cm.

The case will be examined where the models have three degrees of freedom. This 
means that in the case of the finite difference method three internal grid points are taken 
into account and in the case of the (extended) Galerkin method three terms of the series 
of the displacement function are taken into account.

V = 0  cm,

fo  =  Î l = 48-16 cm,

£ = 2.05947 x 107 N/cm2, 

G = 7.94367 x 106 N/cm2, 

p0 = 9.807 x 103 N/cm.
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Fig. 4.

4.1. The finite difference method

Using three internal grid points and the four boundary points corresponding to 
the four boundary conditions, we obtain a quadratic eigenvalue problem of square 
matrices of order 7. The eigenvalues of this problem are found to be

At =0.00000000,

A2 = +1.295 38825 x 10"2,

A3= -6 .459  504 84 x 10 " 3,

A4 = +  1.948 56769 x 1 0 " \

As = -3.23682731 x lO "2,

A6 = +5.731 911 57 x 10~2,

A,= — 1.08871581 x 10~\

A8=  -1.87891473,

A 9  =  A i o  =  A 1 i  = A j 2  =  C C ,

A13=  — 7.037 x 10” 1 + i 7.105 x 10"*,

Aj4=  — 7.037 x 10" 1 -  j 7.105 x 10"*.
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Analysing these results, we have found that the eigenvalues A, to A6 are correct 
approximations of the eigenvalues of the original problem. However, the eigenvalues 
A7 to A, 4 are false results, they are not approximations of the eigenvalues of the original 
problem, their existence is a consequence of the method.

4.2. The Galerkin method

Using either finite elements or the whole interval (0, L) as single element, the 
Galerkin method results in many false eigenvalues, for example complex numbers not 
having any physical meaning. Similarly to the finite difference method, the appearance 
of the false solutions is due to the method itself.

The fact, that in this example the Galerkin method gives also false eigenvalues, 
was numerically illustrated earlier in [ 11] and therefore numerical details are omitted 
here. We only mention that, in the case of three degrees of freedom by the Galerkin 
method, we obtain 18 eigenvalues from which 6 ones are correct approximations and 
12 ones are false.

4.3. The extended Galerkin method

Considering the interval (0, L) as single element and using base functions фх =  1, 
ф2 = г — L/2, ф3 =  sin (nz/L), we have obtained the following eigenvalues:

A, =0.00000000,

A2= +1.428711 88 x К Г 2,

A3= -5.881 827 12 x lO -3,

A4= + 1.348 12600 X K T \

A,= -2.272 187 58 x 10 2,

A6= +4.19592702 x 10_1.

It can be seen that al! the eigenvalues are real in agreement with the statement in 
Section 2.1.

5. Conclusions

When one solves a complete eigenvalue problem, and has a lot of solutions, many 
numbers, it is important to know what are the correct and what are the false values. In 
the case of the buckling problem treated here, the extended Galerkin method seems to 
be the only one among the examined methods, in which every eigenvalue is an 
approximation of the eigenvalues of the original problem and thus this method does 
not result in false solution.
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In this paper some of the theoretical possibilities of the numerical solution of 
eigenvalue problems with eigenvalue parameter in the boundary conditions were 
mainly treated. A detailed numerical analysis of the problem will be published 
elsewhere.
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BOOK REVIEWS

M ó r  K o r a c h - E r i k a  K l i m e n t : Chemical Engineer­
ing as a Science. Redaction and postscript by Pál 
Juhász Nagy, Akadémiai Kiadó, Budapest 1982.170
pp.

Nearing the end of his career. Academician Mór 
Korach with his co-worker undertook to compile 
this comprehensive work based on his widely 
extended experience and chemical engineering 
studies. He meant to speak to all those interested in 
scientific work, in scientific mentality, and even in 
regularities of the social medium inducing and 
surrounding science. Once a professor in Bologna, 
then in Budapest, director of an industrial research 
laboratory in Faenza, and of a research institute in 
Budapest, director of the Chemical Engineering 
Research Institute of the Hungarian Academy of 
Sciences, he has solved several industrial problems, 
elaborated inventions, his work is intended as an 
orientation from the observation tower of chemis­
try, rather than being concerned with certain 
branches of chemical technology. This work reflects 
systems approaching a scientific approach, relevant 
to still actual questions of “Science of Sciences".

Rather than to present new principles or 
methods, Mór Korach considered it as a goal of his 
book to recapitulate engineering experience of a life, 
hoping “to have outlined of some regularities to 
unfold, beyond the rather chaotic literature of 
chemical engineering, in the chemical industry 
itself’. He does not only look back to the past and 
transmit his generalizable experience, the recapitu­
lated regularities of chemical technology, but he has 
confidence in future, as written in the preface:

“Looking forward to a future in the evening of 
my life, I realize the to-be représentants of complex 
sciences as members of a well-attuned, excellent 
orchestra who are able to play variations even 
without a conductor, or to create new music, since 
each musician has a command of his instrument. 
They would always play something different. They

could improvise like Indian orchestras. Namely I 
am convinced in our scientific circulation a higher- 
order human community will develop.”

The book comprises seven chapters, with pre­
face, postscript, and references. Chapter 1 is con­
cerned with the terminology of chemical engineer­
ing: with concepts of technique and technology; 
fields, development and subregions of chemical 
engineering. Chapter 2 presents epistemology back­
ground of chemical engineering, discussing, among 
others, the metrological significance of material 
reality, solid state and invariants. The next chapter 
is spent on the theoretical fundamentals of chemical 
engineering. It is followed by the chapter on 
fundamental and evolutional laws of chemical 
engineering, then by that on relationships and 
controversies between chemical engineering and 
other sciences. A separate part is devoted to the 
application of theoretical and natural sciences in 
chemical engineering. The chapter on the method­
ology of chemical engineering is of special interest.

Part of the theoretical chemical engineering 
works have already been incorporated into univer­
sity education as subject matter, and are a guideline 
in chemical research. In both fields his activity has 
been of pioneering importance, updating chemical 
technology and setting out new ways for its develop­
ment. We as his former co-workers find a special 
delight in the appearance of this book with the 
contribution of Mrs. Erika Kliment-Kisdalnoki, as 
an overall synthesis of Korach’s activities. Thanks 
are due to Mr. Pál Juhász Nagy for his efforts in 
editing the book.

I hope the confidence of Korach in the future of 
chemical engineering is right, and this book will be 
read with interest not only by those concerned with 
teaching and research in chemical engineering, but 
also by those active in other fields of science, 
enjoying the irradiated practical philosophy, the 
colourful expressions and métaphores.

K. Polinszky
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Proceedings o f an International Symposium on 
Absorbed specific energy and/or strain energy density 
criterion in memory of the late Professor László 
G i l l e m o t

The Publishing House of the Hungarian 
Academy of Sciences, in common with the Martinus 
NijhofT Publishers Co,, has published the lectures at 
the international symposium in commemoration of 
the late László Gillemot, Academician, in his special 
scientific fields of activity, specific contraction work 
and strain energy density criterion, organized upon 
the initiative of Professor G. C. Sih, at Lehigh 
University (Betlehem, Pennsylvania, U.S.A.) by 
Section VI of Technical Sciences of the Hungarian 
Academy of Sciences.

Lectures were classified into seven groups.
The first group comprises lectures on conditions 

of crack propagation, of the start of crack 
propagation.

The second group was concerned with metal 
fracture phenomena, presenting some interesting 
tests to illustrate details of this much debated field, 
far from being reassuringly known.

The third group recapitulates lectures on the 
fracture of materials recently getting into the 
foreground of interest, such as plastics, concrete, and 
rubber-like materials.

The only lecture in the fourth group on photo­
elasticity has been spent on applying a photoelastic 
coat of lacquer on the surroundings of a crack in a 
thin metal sheet to measure displacements con­
trolling the strain energy, and comparing the results 
to those obtained by the finite element method.

Short lectures in the fifth group discuss fracture 
as a consequence of energy density as a controlling 
criterion.

In the sixth group, short lectures on fatigue 
failure are found.

The seventh, last group presents some concise 
reports on experimental and analytic work.

The thirty-three professional lectures in this 
volume are seen to embrace a wide scope of fracture 
mechanisms and of the eliciting loading conditions. 
Lecturers, that is, authors are eminent specialists of 
these problems, among them G. C. Sih (Lehigh 
University, U.S.A.), T. Yakobori (Tohoku Univer­
sity, Japan), P. S. Theokaris (Athens National 
Technical University, Greece), H. P. Stiiwe (Erich- 
Schmid Institut für Festkörperphysik, Austria).

The lively interest raised by the lectures at the 
Symposium, and the success of the published 
volume show that it was worth-while organizing this 
Symposium in Budapest, attended by the inter­
nationally most outstanding specialists, giving

Hungarian specialists an opportunity both to 
present their achievements, and to personally meet 
leading authorities of this profession, to discuss, 
exchange ideas with those setting the trend of 
development. Lectures by Hungarian specialists 
testify it as being reasonable to investigate this 
subject also in this country, giving rise to inter­
nationally appreciable achievements.

Last but not least, this successful meeting held 
upon an initiative from abroad in memory of the late 
Prof. László Gillemot added both to his esteem and 
to the acknowledgement of Hungarian engineering 
science.

J. Prohászka

A t t i l a  J. Roos: Elektrotechnik anschaulich:
Resultierende, 1982 Roos, Germering BRD, 128 
Seiten

Das Buch behandelt die anschaulichen graphi­
schen Verfahren der Elektrotechnik. Die Größen, 
die sich zeitlich sinusförmig ändern, können mit den 
Resultierenden niedergeschrieben werden. Die 
Zeigerdiagramme sind wichtige Bestandteile der 
Grundlagen der Elektrotechnik.

Das Buch behandelt mehr als 100 Probleme. Die 
farbigen Bilder, die viele Testfragen und Antworten 
machen das Buch sehr gut angepaßt für das 
selbstständige Studium. Für das Verständnis sind 
elementare algebraische, geometrische und physi­
kalische Kenntnisse genügend.

Dieser Leitfaden kann man für Studenten der 
Ingenieurschulen und elektrotechnischen Hoch­
schulen empfehlen.

K. Geher

H a n s  N e u m a n n - K l a u s  S c h ä f e r :  Elektrische und 
elektronische Meßtechnik. Akademie-Verlag Berlin 
1982, 194 pages

Disregarding simple measurements, the 
electronic and electrical methods have obtained a 
leading role in almost every field of the measuring 
technics. The elements of a typical measuring system 
are: some kind of sensor, electrical measuring 
instrument and display or data processing device.

Beside the very comprehensive encyclopedic 
works made for experts or the monographs discuss­
ing certain questions of detail there can hardly be 
found any such shorter survey, which brings the 
whole topic to the younger student nearer or to the 
not professional inquirer without submerging
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excessively into the details. The little book, which 
appeared in the series entitled “Wissenschaftliche 
Taschenbücher” of the publisher, tries to retrieve 
this lack.

After discussing the idea of measuring and 
electrical basic instruments, the presentation of the 
principles of the bridges and compensators follows. 
The second half of the book surveys the electronic 
measuring technology with the same compactness.

The extremely limited volume gives no possi­
bility for much more than to disclose the treasure of 
the knowledge of the technically educated man. 
However, this is accomplished on a high, modern 
level, and it is especially pleasing, that a relatively 
great part of the last chapter is devoted to the digital 
technology.

1. P. Valkó

András Ambrózy: Electronic Noise. Publishing 
House of the Hungarian Academy of Sciences, 
Budapest and McGraw-Hill Inc., New York 1982, 
28 pages

Many books have been published on electronic 
noises, but they have not generally been engaged in 
the whole field. They are either excessively immersed 
in the mathematical formalism, or they treat noise as 
a primary physical phenomenon from the point of 
wiev of the natural scientist, or by heuristically 
treating the problem of noise reduction, they mainly 
contain solutions in electric circuits.

The present book of András Ambrózy is free 
from these onesidednesses. It supplies adequate 
spaces for the mathematical apparatus as well, as for 
the physical background and for the practical 
standpoints of the electronic engineer. Thus, in spite 
of the high level of the treatment of this topic, it is not 
necessary to have profound preliminary studies: the 
older specialist already remembering with difficulty 
his studies at the university and the student, who has 
not finished it yet can equally make use of it.

The first chapter gives the explanation of the 
basic ideas, the second one discusses the most 
important distribution types and relating math­
ematical expressions, and in the third one the time 
and frequency domain characteristics of stochastic 
signals can be found.

The next chapter contains the physical causes of 
the origin of noise.

The fifth chapter reviews the noise parameters of 
linear networks, the sixth chapter treats the noise of 
bipolar and field effect transistors, also keeping in 
mind the special circumstances of the integrated

circuit. The next chapter discusses the modifications 
of noise caused by nonlinear transfer mechanisms. 
The last chapter is dedicated to the methods for 
measuring the noise. One or two completely 
elaborated practical examples are attached to each 
chapter as well as an abundant literature. The style 
of the book is clear, the structure of it is logical, 
therefore, the study of it is not exhausting, although 
it sticks to scientific exactness.

The original work appeared some years ago in 
Hungarian (and was sold out very quickly). The 
author—who have incorporated the results of his 
own research into the material—has revised the 
English edition and has brought it up to date.

The book can equally be recommended to 
electric engineers, in general, and also to those, who 
want to have a guideline in this field for a more 
profound investigation.

I. P. Valkó

E d e l m a n n  C h r i s t i a n :  Druckmessung und Drucker­
zeugung. Wissenschaftliche Taschenbücher. (Aka­
demie-Verlag. Berlin 1982) 181 pages. Size 11 x 19
cm.

The booklet describes the methods available for 
generation and measurement of pressure, especially 
of very low pressures (high vacuum). A summary of 
physics and physical chemistry of gases and vapors 
covering 35 pages serves as an introduction, needed 
for the explanation of the very different physical 
principles of pressure measurement instrumenta­
tion.

Measurement of low pressures covers 60 pages. 
Besides mechanical manometer instruments based 
on heat conduction and friction, radiometer- and 
ionization manometers arê presented, following by 
mass-spectrometers for the measurement of partial 
pressure. Generation of low pressures and its 
instrumentation covers 45 pages. Beside the de­
scription of different types of vacuum pumps, 
combinations of these are discussed, and Some 
problems of pipe-connections and the detecting of 
leakages are mentioned. The generation and 
measurement of high pressures is dealt with far 
shorter. (15 pages). Thus the reader has the im­
pression that this field is outside of the authors range 
of interest. No mention is made about the safety 
devices necessary in operating high pressure 
apparatus.

The booklet is a useful summary of the physical 
basis of measuring and generating pressure but is 
greatly limited in dealing with practical con­
struction and maintenance of pressurizing and
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pressure measurement apparatus. The figures are 
extremely simplified, no pictures of actual instru­
ments are shown at all. So the booklet may be a 
guide for making up a concept for an experimental 
procedure but none for the assembly of a measuring 
device and its maintenance.

Fr. Thamm

A t t i l a  J. R o o s : Operations in Electrical Engineering 
I. Resultants; 1982 by ROOS, D-8034 Germering, 
64 pages

A series of manuals will be published under the 
title “Operations in Electrical Engineering". The 
title of the first volume is: “Resultants” and it gives a

detailed discussion of the graphical representation 
of sine functions for students of electrical engineer­
ing colleges. The clear understanding of rotating 
phasors is very important in basic electrical en­
gineering. The book presents a systematic intro­
duction into the subject for almost a hundred 
problems. Test questions, answers and applications, 
coloured figures and text help the students in the 
learning procedure. In order to understand the 
book, elementary algebra, geometry and physics are 
sufficient.

K. Géher
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ABSTRACTS

Jankó , L.: S tr e s s e s  d u e  to  s lo w  d e fo r m a tio n  a n d  
s h r in k a g e  o f  p r e s tr e s se d  c o n c r e te  c o m p o s ite  g ird ­
e r s  h a v in g  a d h e s iv e  in s e r t  (M élyép íté stu d om á­
n yi Szem le, V o l 32, 1982, p. 14.)
T h e m o st popu lar procedures concern ing  the  
d eterm in ation  o f  a d d ition a l stresses resu lting  
from  slow  deform ation  an d  shrinkage o f  pre­
stressed  con crete  c o m p o site  girders hav in g  
ad h esive  insert are d escribed  and com pared .

Lám er, G .: D y n a m ic  a c tio n  o f  th e  tr a v e llin g  lo a d  on  
c o n tin u o u s  g ir d e r  (M élyép ítéstu d om án y i S zem ­
le, V ol. 32, 1982, p. 24.)
U n d er  the influence o f  a force travelling  w ith  
uniform  speed a lon g  a tw o  su p p ort beam , th is  
o n e  perform s b end ing  v ibrations. D yn am ic  test 
o f  a  c o n tin u o u s girder h a v in g  a concentrated  
load  perform ing a stead y  m o tio n  is described. 
T h e  deve lop m en t o f  th e critical speed  as well as 
the n ecessity  o f  testin g  d yn am ic  stab ility  o f  
bridges constructed  w ith 10 sp an s are show n on  
appropriate  exam ples.

M árkus, G y.: A n t im e tr ic a l ly  lo a d e d  c irc u la r  p la te s  
h a v in g  s p r in g  m o u n tin g  (M élyép ítéstu d om án yi 
Szem le, V ol. 32. 1982, p. 49.)
An analytica l so lu tio n  is  p rov ided  by the paper  
for ca lcu la tin g  round  p la tes  h a v in g  spring  
m ou n tin g , loaded  antim etrically . T h is m ethod  
o f  procedure affords possib ility  o f  e con om iz in g  
bu ild in g  m aterials in ca se  o f  su b so ils  having  
great load  bearing capacity .

Jan k ó , L.: E la s t ic  lo a d -c a p a c ity  r e s p o n se  o f  c ra c k e d ,  
r e in fo r c e d  c o n c r e te  b e a m  g ir d e r s  (M élyép ítéstu ­
d o m á n y i Szem le, V ol. 32. 1982, p. 106.)
T h e procedure described  in th is  paper provides a 
m eth od  for com p u tin g  stress and  d eform ation  
c o n d itio n s  after crack ing  o f  prefabricated beam

gird ers co -op erative  together w ith  reinforced  
c o n c r e te  m on o lith ic  slabs. T he m e th o d  o f  c o m ­
p u ta tio n  is exposed  in detail, a s  w ell as the  
stresses o f  the com pression flange a s  fu n ctio n  o f  
th e  lo a d in g  process.

M isté th , E.: S y s te m  te c h n ica l e v a lu a tio n  o f  n e tw o r k s  
a n d  e s ta b l is h m e n ts  m a d e  b y  b u ild in g  e n g in e e r  
(M élyép ítéstu d om án y i Szem le, V ol. 32 , 1982, p. 
123.)
T h e  o p tim iza tio n  should be carried  o u t  a c c o rd ­
in g  to  several points o f  view , w h en  d esig n in g  
in s ta lla tio n s  and qualifying a w o rk . T h e  m ost  
im p o rta n t com plex  m ethods o f  e v a lu a tio n  and  
th e  m o d e  o f  their appreciation are d iscu sse d  in 
th e paper.

D u lá c sk a , E.: Test o f  th e  s ta b i l i t y  o f  r e in fo r c e d  
c o n c r e te  s h e lls  o f  h y p erb o lo id  o f  r e v o lu t io n  f o r  
c o o l in g  to w e rs  (M élyép itéstu d om án yi Szem le, 
V o l. 32, 1982, p. 281)
T h is  p aper deals with the special re la tio n sh ip s  o f  
th e  test o f  stability o f  reinforced c o n c r e te  shells. 
A ll th e p ossib le  forms o f  buckles o f  h y p erb o lo id  
sh e lls  o f  revolution  are d iscu ssed , to g e th e r  with  
in itia l errors to  be considered a n d  w ith  the 
n ecessary  safety factor. The c o u rse  o f  th e  test is 
illu stra ted  by an exam ple o f  actu a l s iz e  an d  real 
ratio .

B ogn ár, L.: D y n a m ic  te s t o f  flo o r  d is c s  (M é ly é p íté s tu ­
d o m á n y i Szem le, Vol. 32, 1982, p. 312)
T h is  paper presents relationsh ips a llo w in g  exact 
d e sc r ip tio n  o f  stresses arising in th e  e n v iro n ­
m en t o f  the junction  o f floor  d isc s  an d  the  
b r a c in g  w alls. Starting from th e d isc  form u la  it 
g iv es  th e so lu tion  for three practica l cases. 
F u rth er  so lu tion s m ay be o b ta in ed  by u sin g  o f  
th e three basic cases.
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G á b o r , P.: C o n s tr u c t io n  o f  r e in fo r c e d  c o n c r e te  
h ig h w a y  b r id g es , ta k in g  in to  a c c o u n t  c o n s id e ra ­
t io n s  f o r  p r o b a b il i ty  c a lc u la t io n  (M élyép ítéstu -  
d o m á n y i Szem le, V ol. 32 , 1982, p. 368)
T h e  m o st  im portant p o in ts  o f  v iew  o f  construct­
in g  u p -to -d a te , e c o n o m ic  a n d  safe bridges are 
su rveyed . T he paper d e a ls  w ith  th e  durability, 
th e  traffic arrangem ents, a s  w ell as w ith som e  
p r o b le m s o f  the design  w o r k , th e  execu tion  and  
m ain ten an ce .

V arga , L.: E ffe c ts  o f  l in e  lo a d  w o r k in g  in s ide  an  
e n d le s s ,  c y l in d r ic a l h o le  (M élyép ítéstu d om án y i 
S zem le , V ol. 32, 1982, p. 399)
A  sym m etrica lly  s itu a ted , lin ea r  radial load  
w o r k s  u p o n  the in side su rface  o f  an  endless hole  
h a v in g  straight axis a n d  c ircu lar  cross-section . 
T h e  in fluences o f  variou s lo a d  c a se s  are analysed  
an d  th e n on -d im en sion a l m u ltip lica tors  o f  the  
requ ired  quantities are p r o v id e d  o n  a diagram .

. a ssn é , S zü cs  R.: M e m b r a n e  c o n e - s h a p e d  sh e lls  
h a v in g  l in e a r ly  a lte r n a tin g  th ickn ess (M élyép ítés­
tu d o m á n y i Szem le, V ol. 32 , 1982, p. 409)

C o n e-sh a p e d  shells h a v in g  lin ear ly  alternating  
th ick n ess  often occu r  in  en g in eer in g  practice, 
fo rm u la e  w orked o u t for  th e ir  ca lcu la tion , 
h o w ev er , are none. T h is a r tic le  renders help for 
p rec ise  reck on in g o f  th e stru ctu re , in order to  
sim p lify  shuttering w ork , a n d  p ro v id es  form ulae  
o f  ca lc u la tio n  for th e c o m m o n e s t  load  cases in 
m em b ra n e  stress state.

B en ed ek , A.: C o m p u ta t io n  o f  a n c h o r e d  d ia p h ra g m  
w a lls  (M ély ép ítéstu d o m á n y i S zem le , Vol. 32, 
1982 , p. 500)
S u p p o r tin g  w ork ing p its  o f  D u n ak iliti river 
b arrage  is p lanned m a k in g  u se  o f  anchored  
rein forced  concrete d ia p h ra g m  w alls. Various 
s o lu tio n s  for ca lcu la tion  are a n a ly sed  with the  
co n s id er a tio n  o f  the p r o b le m s o f  grouting.

S z ilv á g y i, L.: T h e s t  o f  a n n u la r  fo u n d a t io n  b o d y  
h a v in g  e c c e n tr ic  lo a d  (M ély é p íté s tu d o m á n y i  
S zem le , V ol. 32, 1982, p. 515)
A n n u la r  so lu tion  is used for  th e  fou n d ation s o f  
to w e r -lik e  build ings w ith  h ig h  cen tre  o f  gravity. 
T h e  artic le  deals w ith  th e  p la n n in g  o f  annular  
fo u n d a tio n  bod ies, as w ell a s  th e general g eo ­
tech n ica l ca lcu la tion s n ecessa ry  to  d im en­
sio n in g .

C za p , Z.: E x a m in a t io n  o f  a  b e a m  r e s t in g  u p o n  
c o m b in e d  h a lf-sp a ce  (M ély ép itéstu d o m á n y i  
S zem le , V o l. 32, p. 532)
T h e  p a p er  d ea ls  with the influence e x erted  b y  th e  
d im e n s io n s , location  and build ing t e c h n o lo g y  o f  
U n d e r g r o u n d  R ailway tunnels o n  th e  s u b ­
s id en ce  o f  surface, on  the basis o f  a serie s  o f  
f in ite -e lem en t testing. A p proxim ate v a lu e s  are 
g iv en  for  th e probable m agn itu d e o f  th e su b ­
s id en ce s  an d  for the form  o f  the s in k in g  trou gh .

K o llá r , L.: A  p a r a d o x ic a l p h e n o m e n o n  o f  t h e  s h e l l  
b u c k l e  (M élyép ítéstud om ányi S zem le , V o l. 32 , p. 
558)
In th e  p a p er  the buckle o f  the sh ells  o f  r e v o lu tio n  
u n d er  th e  influence o f  internal ov erp ressu re  is  
d iscu sse d , as well as the b eh a v io u r  b e y o n d  
c r itica l stress o f  shells o f revo lu tion  a n d  th e  u se  
o f  a ir  ten t in the m eantim e.

H o lló , E.:— S ik lóssy , P.: N u c le a r  p o w e r  p la n t  d ia g ­
n o s t ic s  (V E IK I K özlem ények 1982, p. 29)
O u r  In stitu te  is the designer, partial su p p lier  an d  
e x e c u to r  o f  th e  vibration d iagn ostica l sy s te m  for  
b lo c k  1 in th e  Paks N uclear P ow er  P la n t. In the  
trea tise  th e  m ajor characteristics o f  th e  p rim ary-  
c ircu it part, the experience ga ined  d u r in g  the  
tim e  o f  design in g , location  and c o m m iss io n in g , 
s o m e  resu lts  o f  the m easurem ents c o n d u c te d  
d u r in g  th e  h o t trial run o f  b lock  1 a s  w ell a s  the  
fu tu re  g o a l settin g  o f  research and d e v e lo p m e n t  
are su m m arized .

H o rv á th , G á b o r  L.: P o ss ib ilitie s  o f  a c t i v i t y  r e d u c t io n  
in  n u c le a r  p o w e r  p la n ts  (V EIK I K ö z le m é n y e k  
1982 , p. 51)
F o r  th e  c a lcu la tion  o f  the am ount o f  ra d io a ctiv e  
w a ste s  in  n u clear pow er plants as w ell a s  o f  the  
a c tiv ity  o f  th e corrosion products a c tiv a ted  on  
th e  tech n o lo g ic a l system  surfaces o u ts id e  th e  
a c tiv e  z o n e  th e program m e system  R A D S Y S -  
R A D T R A N  has been develop ed . In th e  p h y si­
c o c h e m ic a l theory, on  which th e a c tiv a tio n  
c a lc u la t io n  is based, we have c o n sid ered  th e  
tra n sp o rt o f  m aterial both in so lved  a n d  p artic le  
form . T h e  above-m ention ed  th eory  p resen ts  
e x p la n a tio n  to  the differences b e tw e e n  th e  
e x is t in g  m od els. The co n ta m in a tio n  can  be  
red u ced  b y  using a particle filter o p e r a tin g  at 
p r im ary -circu it w orking tem peratures. A c c o r d ­
in g  to  o u r  ca lcu la tion  results, w ith o u t th is  filter  
th e  co n ta m in a tio n  o f  the system  surfaces by
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c orrosion  products is  m o st ly  in fluenced  by the  
p H . T h e second part o f  th e  program m e ca l­
cu la tes the dynam ics o f  th e  a r isin g  o f  radioactive  
w astes and  offers the p o ss ib ility  o f  d etectin g  the 
factors m ostly  in fluencing th e  arisin g  w astes.

P am m er, Z .— Szabó, L.: S o lu t io n  o f  e la s t ic  I  p la s tic  
s tr e n g th  ta s k s  w ith  th e  f i n i t e - e le m e n ts  m e th o d  
(V E IK I K özlem ények  1982, p. 191)
T h e  u p -to -d ate  strength c a lc u la tio n  processes  
require the con sid eration  o f  th e  n on -e lastic  
m ateria l properties. A s a  resu lt, in design ing

m a ch in e  e le m e n ts  m ore  e c o n o m ic  m ateria l 
u tiliza tio n  can  be realized , B eside th is  a  m ore  
precise  d e term in ation  o f  the stress an d  exp ec­
tab le , life o f  th e  m echan ism s is ach ievab le  w ith  
th e c o n seq u en ce  that the safety o f  th e nuclear  
p ow er  p lan t eq u ip m en t can be increased . In this 
p aper th e fin ite-e lem ents program m e system  
su itab le  for so lv in g  e la stic /p la stic  problem s, 
d ev e lo p ed  for th e ab o v e  purposes, is described . 
A brief su rvey  o f  th e theoretica l fundam entals  
a sso c ia ted  w ith  the program m e is  g iven  and on  
tw o  rather sim p le  exam p les th e ap p lica tion  
p o ssib ilitie s  illustrated .
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