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BOUNDS FOR THE BUCKLING LOAD OF A BAR
WITH ONE FIXED END

J. Barta*

[Received 29 March, 1983]

The paper deals with establishing lower and upper bounds for the buckling load of a slender
elastic bar whose one end is fixed. For this purpose, two theorems are presented. For sake of
generality, variable flexural rigidity, variable sectional force and elastic fixing will be considered. The
elaboration of an example shows the details of computation.

Several authors have dealt with computing the buckling load of the compressed
bar whose one end is fixed. Recently, this theme was discussed by P. Csonka [1]. Much
has been written on finding upper bounds for buckling load but comparatively little on
finding lower bounds. From the point of view of structural safety, the lower bounds are
more important than the upper ones. Both lower ana upper bounds will be established
in the following treatment and for the sake of generality, variable flexural rigidity,
variable sectional force and elastic fixing will be considered.

Description of the bar and of its load

The elastic bar is sketched in Fig. 1 It is elastically fixed at its lower end and free
at its upper end. The cross section of the bar varies or its constant. /is the length of the
bar and E(x) is the modulus of elasticity. 7 (x) is the moment of inertia of the cross
section. Let R(x) be determined by formula

R(X) = £(x)/(x). @)

R(x) is called the flexural rigidity ofthe bar. It isto be understood in the following sense:
between curvature y"'(x) and bending moment M(x), the relation

R()/'(x) = M(x) @

exists. K is the rotational rigidity of the fixing. It is to be understood in the following
sense: between rotational angle /(0) and fixing moment Ai(0), the relation

Ky, = M(0) ©)

exists. The particular case K = + 00 means that the fixing is perfectly rigid, (Fig. 4).
* Prof. Dr. J. Barta, Jozsef korat 35, H-1085 Budapest, Hungary
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BARTA. J.

Fig. 1. Loads P and q(x) are given. The stability of this straight equilibrium form is to be investigated

Acrg(x>

Yy

Fig. 2. Straight equilibrium form of the bar for the critical load

Two kinds of active forces act upon the bar. One acts on the upper end of the bar
and has the magnitude P. The other one acts along the length of the bar and has the
intensity q(x). Both P and q(x) are directed vertically downwards. F is a given constant
and q(x) is a given function. Let function S(x) be defined by formula

/
S(xX)=P+ jqgx) dx. @

It can be seen that S(x) is the sectional force.

Ada Technica Academine Scientiurum Hungaricae 95. 19H2



BUCKLING LOAD OF A BAR 5

Fig. 3. Bent equilibrium form of the bar for the critical load

Fig. 4. Bent equilibrium form of the bar for the critical load if the fixing is perfectly rigid

In theorems land II, R(x) and S(x) are to be considered as given functions, K as
given positive constant.

In this paper, [.. .]Jmnand [. . .]naxdenotes the smallest and the greatest value of
[...] for O~x”"/, respectively.

Ada Technica Aciulemiac Seienliarurn Hungaricue 95, 1982



6 BARTA. J.
Stability problem

The structure and its loading forces
P and q(x)

are given in Fig. 1 We wish to investigate whether this straight equilibrium form is
stable. For this purpose we shall scrutinise the equilibrium state under the action of
loading forces

AP and Ag{x).

Here, fis a parameter. Let na denote the critical value of A i.e. the smallest value of Aat
which not only a straight equilibrium form (Fig. 2) but also a bent equilibrium form
(Fig. 3) is possible. The load consisting of loading forces

ACIP and Acrg(x)

is called the buckling load of the bar. For estimating Acr, one can employ either of the
two following theorems.

Theorem |

« If U(x) is a twice differentiable non-negative real function in interval 0:£x "~ /
and satisfies the boundary conditions

wo) = m 0=
oo Kk Um=0 © ©

then the relation

(RU"YI - (RU"YI
su min:ﬁ”: SU ()

holds in interval O~x"1. If the fixing is perfectly rigid (K = + 00), Eq. (5) assumes the

form u(0)=0. » )

Theorem I

« If F(x) is a differentiable real function in interval O*x”"l, and satisfies the
boundary conditions

K(O)=Ww * K(0=0 ©) (10)

Acta Technica Academiae Scientiarum Hungaricae 95, 1982



BUCKLING LOAD OF A BAR 7

then the relation

K T+ K (r-K2)j <- V+R(V'-V2
(1l

holds in interval O gx”/. If the fixing is perfectly rigid (K= + co), Eq. (9) assumes the

form
K(0)= —o00. » (12)

Units

If the unit of length is cm and the unit of force is kp, the units of quantities
emerging in this paper are as follows:

X Ly(x) cm P, S(X) kp

£(x) kpem 2 ®) kpem 1

/(x) cm4 U(x) arbitrary unit
R(x) kp cm2 V(x) cm 1

K, M(x) kp cm

Y(x), A Acr are abstract numbers.

Proof of the theorems

Let y(x) denote the lateral deflection which belongs to Acr. For y(x), according to
(2), equation |
c=

/W '(x) = [>(0~y(x)]AcrP + 0(0->"(™))/ a</(0dC (13)

ci*
holds. The right-hand side of (13) expresses the bending moment. By differentiating
with respect to x on both sides of (13), equation

I
[R(X)Y"(x)]'= —Ler/(x) P+ Jq(x) dx (14)

arises. Using notation (4), symbols R= R(x), S—S(x) and introducing the notation ¥
= ¥Y(x) =/(x), we obtain

(RY')'= —AxVYS. (15)
Y(x) is the rotational angle belonging to Acr. Thus Y(x) satisfies the differential equation

(15). Eq. (2) yields
N0)y"(0)=M(0). (16)

Ada Technica Academiac Scienliurum Hungaricae 95. /942



8 BARTA. J

From (3) and (16) we obtain the relation

KY(0) = K(0)I (0). (17
Equation
Y({h=0 (18)

expresses the fact that the upper end of the bar is free. (18) follows from (13) already.
Thus, Y(x) satisfies not only the differential equation (15), but also the boundary
conditions (17) and (18).

Making use of Eg. (15), we arrive at

(RYJ
SY (19)
Instead of (19),
(RU)”  [R(UY-UY"HJ 20,

SU + SUY

can be written because after carrying out the differentiations, both (19) and (20) assume
the same form.

Let us consider the last fraction of (20). We are interested in the values which this
fraction assumes for O *x”/. To prove theorem 1, it is sufficient to demonstrate that
among the values of the fraction there are both non-positive and non-negative ones.
This demonstration can be performed in the following manner. The denominator does
not change its sign for 0~ x * f, (see the Appendix). Among the values ofthe numerator,
the zero occurs because

[R(t/'y-t/y")]'dx = [R(iy'y-t/y")]i)=0. (21)

In (21), the boundary conditions (5), (6), (17), (18) were taken into account. With this,
theorem 1 is proved.

The particular case K = + cc does not claim an extra proof, since the above proof
refers also to this case.

In order to prove theorem II, we use theorem 1. Let K(x) be a differentiable
function in interval O~x”"/, satisfying the boundary conditions (9) and (10).
Consequently, a function U(x) which is defined by formula

U(X) = exp 8)K(x)dx , (22

fulfils the premise of theorem 1. Hence, (22) can be substituted to (7). In this way, (11)
arises. In a similar way, also formula (12) presents itself. With this, theorem 11 is proved.

Ada Technica Academiac Scienliurum Hungarian’ 95. 19H2



BUCKLING LOAD OF A BAR 9

Example
A bar sketched in Fig. 1 has the form shown in Fig. 5. It is a slender truncated
wedge, / is the length ofthe bar. The modulus E is constant. In the sense offormulas(l),

(), @) and (4),

(1-0.7y)/?0

S=(1-0.2jJso 23)

are given.
Let us establish lower and upper bounds for $tr. In order to perform this task,
theorems | and Il will be used.

Fig. 5. In the example, the form of the bar is a slender truncated wedge

Ada Tcchnica Avademiue Scientiururn Hungaricac V5 'VH2



10 BARTA. J.
Using theorem 1 and data (23), relation (7) becomes

A-U'- (10T7VIUT
Ro

(24
So

102y ) U
Here, function U(x) must be chosen. Firstly, let U(x) be assumed at random, say
U=2I2+2Ix—x2 (25)

This function is non-negative for O|x g | and satisfies conditions (5) and (6).
Substituting (25) to (24), relation

3.4-2.8y o
«
< |t
Iso == (25)
1-0.2:
2+2T- 7
arises. After performing the computation, from (26), the relation
RO Ro
2
[290 **m—k ¢ IZSO ( 7)

follows. Thus, assumption (25) has led to bounding (27). This bounding is too loose.
The reason for this is that function (25) has been assumed at random only. By attempt,
the assumption

U—4/4+ 4/3 —x4 (29)

has been found. This assumption leads to
0.70"~ SArS. O I~ (29
Using theorem Il and data (23), relation (11) becomes

- [ K (1079 )(V'—V

RO 4 (30)
1-0.2 So
The very simple assumption
- A
i2 1/ (31)
leads to
Ro
046 A </ <1.06
12Sr I2s0- (32)

Acta Technica Academiaé Scientiarum Hungaricae 95, 1982



BUCKLING LOAD OF A BAR 1l

Assumption

(33
has been found by attempt. It leads to

(34)

From (29) and (34), the bounding

(35
follows. One concludes from bounding (35) that the mean value

(30)

differs from the rigorous value of Ax by less than twelve per cent. By further attempts,
the accuracy of the result would be increased. Meanwhile, the rigorous value of Ax is
remained unknown.

Remarks on functions U(x) and F(x)

First ofall, U(x) and V(x) must be real and satisfy the stipulations prescribed in
theorems | and Il, namely

equations (5), (6), the twofold differentiability and the non-negativity for U(x),

equations (9), (10) and the differentiability for K(x).

After having fulfilled these stipulations, one can choose U (x) and V(x) arbitrarily
because theorems I and Il remain always valid. Of course, when formula (7) or (11) will
be used, one endeavours to get narrow bounds, that is, great minimum and small
maximum. In the above example, suitable U(x) and K(x) have been chosen by attempt,
although a systematic procedure (i.e. the method of iteration, [2]) is well known for the
same purpose, it seemed to be not quick enough in the above example.

The basic idea of this paper originates from the fact that both the greatest
minimum and the smallest maximum equal to the rigorous value of Acr. The notions
“the greatest minimum” and “the smallest maximum” occur not only in the stability
problem just discussed but also in other problems [3].

An advantage of the bounding procedure presented in this paper is expressed by
the following two statements:

1 By a suitable choice of U(x), the bounding (7) becomes reasonably narrow.

2. By a suitable choice of K(x), the bounding (11) becomes reasonably narrow.

The proof of these two statements will be performed in the following. Y(x) is
defined as the first eigenfunction of the eigenvalue problem (15), (17), (18). If ¥(x) were

Acta Technica Academiae Scientiarum Hungaricae 95, !'9H2



12 BARTA. J.

chosen for U(x) and ¥Y'(x)/Y(x) were chosen for K(x), both (7) and (11) would become

(RY'Y (RYY)
SY - c¢r~ SY 37)

that is
(RY'Y

which is nothing else but equation (15).

Appendix

S(X) V (X) ¥(x) isa denominator in equation (20). We have to demonstrate that this denominator does
not change its sign for 0g xg /. The sectional force S(x) is compression and therefore we measure its
magnitude by a positive number. According to premise of theorem 1, U (x) does not change its sign for 0 Qg x
g/. Thus we have to prove that ¥(x) does not change its sign for O gxgf. We perform the proof as follows.

Y(x) is the rotational angle belonging to f,,. ¥(x) and 4,, are determined by equations (15), (17), (18)
and by the stipulation that $ris the smallest of the possible values {1 Equations

(Noy = —Adis  for 0gxgl/,
K®(0)=5(0)®'(0), 39)
@ ()=0

expresses an eigenvalue problem. ®(x) is called the eigenfunction, fis called the eigenvalue. Comparing (15).
(17), (18) with (39), it can be seen that ®—Y(x) is the first eigenfunction of the eigenvalue problem (39).
Eigenvalue Theory [4,5,6] demonstrates that in the case in question, the first eigenfunction does not change
its sign for Ogxg/.
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A COMMENT ON THE TORSION
OF BARS HAVING A CIRCULAR CROSS-SECTION
OF VARIABLE DIAMETER

|l. Ecsedi*
[Redeved: | March, 1983J
The paper deals with the torsion of elastic bars having a circular cross-section of variable

diameter. It is proved that—considering statically equivalent loads—the minimum strain energy
belongs to the surface load which develops the rotation of the end-section of the bar as a rigid body.

Symbols
I, Pz polar co-ordinates (Fig. 1),
e, €y € unit vectors (Fig. 1),
P = P(nec, intensity of the surface load,
M = Mg, torque,
T meridian section in plane rz of the bar with a circular section
of diameter variable (Fig 2),
VT~CTXHT2HT3HTES boundary of range T,
R=R(z) (0OgzSl) equation of 0Tt ,
u=v(r, z)ev displacement vector,
shearing stresses,
ol ) . :
V= o_re' e, Hamilton differential operator,
sign of the scalar product of two vectors.
sign of the derivative calculated in the direction of normal nof
curve <7'(Fig. 2),
arc co-ordinate along cT(Fig. 2)
U strain energy,
G shearing modulus of elasticity,
A Lagrange's multiplicator

Further symbols and quantities are defined in the text.

Basic relations

Let us consider the elastic bar having a circular cross-section of variable diameter
(Fig. 1. It has a built-in end at z=0 preventing any displacement of cross-section A,
while the other end at z =1 is free and is subjected to a distributed load of intensity p
=p(r)ev in plane B. Both the surface and the inside of the bar is unloaded.

* Dr. Ecsedi I, Klapka Gy. u 36, H-3524 Miskolc Hungary

Ada Technica Academiae Scientiarum Hungaricae 95. !9H2



14 ECSEDI, 1.

Fly l. Bar with a circular section of variable diameter

The distributed load acting on the plane ofsection Bis statically equivalent to the
torque defined by the vector

M= M,e. (11)
where

M, =2n Rf) r2p(r)dr 12

The torsion of the bar having a circular cross-section ot variable diameter is
characterized by the following boundary value problem [1, 2]:

%Zf ¥ f f(l)cf— ff*’ t,2)eT, (13)
®=0, (r,z)edTx, (149)
on =0, (r,2) 6 dTA, (15
Gr dip =p, (r,z)edT3, (1.6)
on
where ¢ is a finite quantity at r=0. x7

Figure 2 shows range T and its boundary defined by aT=pgTx+aT2+aTr + aTA.
Making use ofthe function of two variables b= t(r, z) in Eqgs (13), (1.4), (15), (1.6), (1.7),

Acta Technica Academiae Scientiurum Hungariaié 95, 1982



TORSION OF BARS OF CIRCULAR CROSS-SECTION 15

Fiy. 2. Meridian section of the bar

the scalar co-ordinates of the displacement vector and those of the stress tensor, not
being identically equal to zero, can be given in the following form:

a= WUr, <e,=n/r(r,2)e,,, (1.8)

ap b
X«=Gr|% To*= G orir (1.9), (i.io)

The strain energy of the bar can be obtained from

(€,+T )dV=Gnj r31V if13dT. (1.11)
\ r
Region V limited by the bar having a circular section of variable diameter is
represented in Fig. 1 An elementary calculation proves that the relation

d2F §(IF d2F 1, 112
o v R 7 VRV (29

holds. Combining Egs (1.3 and (1.12) we arrive at
V (r3Vin =0, (r,z)eT. (1.13)

Let us consider the function of two variables L=L(r, z), determined by the following
equations:

V «(r3vL) =0, (rneT, (1.14)

L=0, (r,z2)eOTI, (1.15)
OL n .

o =0 (r,z)eilT4, (1.16)

Ada Terhnica Acuilemiae Scienliarum Hun”aru ae 95, 19H2



16 ECSEDI, I.

Gra] = K(n), (r,z)edTl (1.17)

where L{r,z) is a finite function at r=0. (1-18)
In Eq. (\M)K =K(r) is a continuous function in the closed interval 0*r”*R (I) but
otherwise is an arbitrary function of one variable. Let the function of two variable H
= H(r, z) be derivable continuously in the closed region T+ dT, at least once, and satisfy
the condition

H(r,00=0, OAr*K(O).

According to the product-function’s derivation rule and the Gauss’ theorem of the
transformation of integrals—making use of Egs (1.14), (1.15), (1.16), (1.17), (1.18)—, we
obtain

0= _ -V (ravL)d7= ]V (r3HVL)dT-

r2vVH -vLdT= r3H *ds-

1
rvtf «vVLdT= fr3K Hds- J¥3VH «VLdT (L.19)
T 7N r
After some algebraic manipulation, Eg. (1.19) yields

J r2KH ds=G\r3vH VLdT. (1.20)
s T
This equation will play an important role later on. Substituting H=L=dand K=pto
Eg. (1.20) and making use of Eq. (1.11), we find

U="7J r2ippds. (1.22)
iT\

A theorem on the strain energy

Theorem. Let us consider the distributed surface loads p=p(r)e,, (011r5i/?(/)),
which are statically equivalent. The minimum strain energy of bar U belongs to the
surface load p=p(r)eipwhich develops the rotation of the plane of cross-section B as a
rigid body.

Demonstration. If the shape and the material of the bar do not vary, the strain

energy U depends only on the surface load p=p(r),i.e. U can be considered a functional
depending on p=p(r).

U= U[p(n)-]. @1

Acta Technica Acudcmiue Scientiarum Hun”aricae 95. M2



TORSION OF BARS OF CIRCULAR CROSS-SECTION

17

We shall now examine how functional U varies if the surface load is modified by an
increment dp(r). Function ¢ belonging to the surface load p(r) is denoted by o(r, z, p),
function ¢ belonging to the surface load p+ 6p is denoted by d(r,r;p + 3p). Let the

increment of function ¢ be

6h = dp(r,r;p +0p)-p(r,r;p)

2.2)

The analysis of Egs (1.13), (1.4), (1.5), (1.6), (1.7) shows that functions ¢=dx(r, z; p + dp)

and ad are solutions of the following boundary value problems:
V (r3vs$)=0 (r,2)e T,
G=0  (r2)6aTx,

N=0 ,z2)e T4,
e (r,2)

G'Ip'-(p‘=p+('jp (r,2) e oTs,

where ¢ is a limited function at r =0,
V «(r3V 0p)~=0 (r,2)eT,
0p=0 (r, 2) e dTx,

(r,z)edT4,

Gr~(0d) =6p (r,264Ts,

where ag is a limited function at r=0.

From formula (1.21) it follows that

U[p +0p] =nG J r2(p+0p)[ch(r, zmp) + och~\ds =
BT)

=G j r2pd(r, z;p)ds +nG J r2opd(r, z;p)ds +
BT)

BT)

+nG J r2p6 dpds+nG J rHp O0hds =
BT) BT)

=U[p] + C J rBpd(r,z p)ds+
BT,

+jiG f rp0pds+nG j rHpoddds.
BT) BT)

23)
24)

(29)

(2.6)

@.7)
(2.9)
.9)

(2.10)

(2.12)

(2.12)

(2.13)
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18 ECSEDI, 1.

Substituting
K=p(r), L=\j/(r,2\ p),
H=il,
to formula (1.20), we find

J r2p6=>l/ds= f r3vi/>- VoipdT.
BT3 T

Similarly, substituting

K =0op(r), L=6il/

H—(r. z p)
to formula (1.20), we obtain
| r20 pdods= Jr3v O svi/fdT
BT3 r

arid, finally, substituting

K =0dp, H=b=0¢
to formula (1.20), we arrive at

j r20pOpds= j r3iVéiJ 12dT.
ar3 T

Combining the above expressions with Eqg. (2.13), we have

U[p+aA—L'[p]=nGV | r2ij/6pds +

BT3

+nGJV |V <A|2dT.
T

(2.14), (2.15)
(2.16)

(2.17)

(2.18), (2.19)
(2.20)

(2.21)

(2.22), (2.23)

(2.24)

(2.25)

The first variant of the strain energy, a functional depending on p=p(r), is obtained

from Eq. (2.25):

OU=nG j r2j6pds.

BT3
Since
M, =2n j r2pds=-constant (of fixed value),
BT3
we find
J r2ipSepds=0.
BT3
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Let function p—p(r) satisfying condition (2.27) denote the surface load which minimizes
the strain energy. Making use of the well-known results of variational calculus and
applying Lagrange’s multiplication method to Eqgs (2.26), (2.28), it can be proved that
function th= 1p(r,z; p) belonging to the surface load p =p(r) and minimizing the strain
energy, satisfies the following equation [3]:

j r2(tr—A)<btpds= 0. (2.29)
ar3
Constant fAin Eq. (2.29) is the Lagrange’s multiplicator. Applying the basic lemma of
variational calculus to Eq. (2.29), we obtain
ip(r,z;p)=X =const. (r,z)edT3. (2.30)
Rearranging Eg. (2.29), we find

j rapopds=A J r2apds =0, (2.31)

aT3 eT,

while Eq. (2.25) results in
Ulp+06p]-U[p] =

=qC j r31Vsip 12d 710. 2.32)
r

Equation (2.31) and inequality (2.32) show that strain energy U is minimum ifcondition
(2.30) is satisfied. It follows from Eg. (2.30) that the displacement of cross-section B
defined by co-ordinate z = I caused by the surface load minimizing the strain energy can
be characterized by the vector

u(r, (p.2)= L(r, 2)e4= Are,  (r,z)edT3. (2.33)

According to Eqg. (2.33), it can be stated, that the plane of cross-section B rotates around
axis z by the angle of A as a rigid body.
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BOUNDS FOR THE HEAT TRANSFER COEFFICIENT

l. Ecsedi*

[Received: 28 December 1982]

The primary purpose of the paper is to deduce inequality relations by the application of
which lower and upper bounds can be formed for the numerical value ofthe heat transfer coefficient.

Symbols
The symbols of major significance used in this paper are as follows.

orthogonal coordinates,

unit vectors,

position vector,

within each section even closed surface,

within each section even closed surface,

bounded space region defined by interior of A, ,

not bounded space region defined by exterior of A2,
space region bounded by separate closed surfaces A, and A2
heat conducted within unit of time,

temperature,

overall heat transfer rate,

temperature field,

“interior" thermal conductivity,

“exterior” thermal conductivity,

Hamilton differential operator,
sign of scalar product of two vectors,
Uiplacian differential operator

symbol of derivative calculated in direction n,
normal unit vector of surface A, directed outwards
from region Vat point P,(f= 1,2) (Fig. 1),
functions of three variables,

three dimensional vector field,

sphere radii.

Other quantities and variables are defined by the text.

1 The heat transfer coefficient

The region K filled by a medium of temperature T, and the region V2filled by a
medium of temperature T2 are separated by a solid bounded by two separate closed
surfaces At and A2(Fig. 1. Through region V from the medium of higher temperature

* Dr. 1 Ecsedi, Klapka Gy. u. 36, H-3524 Miskolc, Hungary
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22 ECSEDI, I.

Fig. I. Region Abounded by the closed surfaces A, and A2

to that of the lower temperature heat is flowing. This process is characterized by the
heat transfer coefficient k:

Q= I(T, -T2, (T,>T2). (L1)

To express more exactly, K means the heat quantity transferred in steady state through
the bounding structure, i.e., the solid filling the region V, under the effect of the unit
temperature difference between the spaces separated by the bounding structure ([2],
[31, [4)).

For convenience TI>T2, further, T) and T2 are, constant in time.

The field of the temperature

t—f(r) reVUALIUA?2

of the solid lying in region Fand associated with the steady state may be brought into
relation with the following boundary-value problem, by making use of the Fourier-
theory of heat transfer in the case where the thermal parameters a,, a2 have a
constant value ([1], [3], [5]):

At=0  reV, (12)
20 +al(t-T=0  reA] (13)
NJ-+a2(t-T2=0  reA2 (1.4)

In writing the boundary conditions (1.3), (1.3), the Newtonian law of cooling has been
applied ([1], [5]).

Acta Technica Academiae Scientiarum Hungaricae 95, 1982



BOUNDS FOR THE HEAT TRANSFER COEFFICIENT 23

From the solid F, of temperature T, in the unit time heat of a quantity

e, =A |rd/i (15
J dn
Al

passes over the surface section A!to the solid of volume V This amount of heat arrives
to the surface section A2 by “internal” thermal conduction, wherefrom it flows to the
medium of temperature T2 by “external” heat transfer. The numerical value of the
amount of heat leaving may be determined by making use of the formula

&
Q|:* dA (16
a2
With the aid of Eqg. (1.2) it may readily be pointed out that

Q\ +02=0.
in agreement with the principle of the conservation of energy. This may be proved as
follows:
N dt .
0=A Atdv=A —dA+A —dA=Qi +Q2m (18)
an én
A2
In the following, new formulae will be deduced for the calculaion of the quantity

ofheat Q= Q, in order to obtain the explicit expression of the heat transfer coefficient k.
From the equation

fdt + (df)2= V-(rVr) (L9)

by integration and by the application of the Gaussian theorem of integral
transformation one obtains Eq. (1.10) also taking Eg. (1.2) into consideration:

6t

tT
7 on
Aj Ar

[

.
J(VH2dF= LP= dA + (110,
] Sn

Eqg. (1.10) may again be transformed by making use of the boundary conditions (1.3),
(1.4):

AJf| Vi 12dK= - — dI4+A(T-TD \ ¢+ jia-d H)
\% Ai Ai 1\

In writing down Eg. (1.11) we also made use of the relationship (1.8). By the
combination of formula (1.5) and Eg. (1.11) one obtains the formula (1.12):
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24 ECSEDI, 1.

A2
e= IVF 12dv+ 22 d/4+- (112
Tx-Tr «1 R v
y Ai Ai

It may easily be pointed out that the formula (1.12) can also be written in the following
form, by making use of the boundary conditions (1.3) and (1.4):

e="y A j|V t]|2dK+ai J(i-7\)2d>t+a2j(t-722d/lj. (1.13)
Ai
It the following, it will be proved that the value of the heat transfer coefficient k
does not depend on the difference of temperatures Tl —T2, the value of k is the function

of the thermal parameters A a,, a2 and the “shape” of region V.
Let us consider the function of three variables

(P=F(r), re VUATUA2

unequivocally by the following prescriptions:

A(p=0 re K (1.14)

dp .
A-N +ai(<p—)=0, reA,, (1.15)
ﬁd—<p +a29=0, refl2. (116)

By elementary calculation it may be pointed out that with knowledge of the
solution to the boundary-value problem defined by Egs (1.2), (1.3), (1.4) may be
produced in the following way:

t(r) = (T1—T2)</>(n)+ T2 reVUAI UA2. (1.17)
By the combination of formulae (1.12) and (1.17) one obtains the formula (1.18):

a,  \cn N (S'dA>(T|—T2). (118)
v Al

From the formula (1.18), by comparing it with Eq. 11 it may be read that

t=A (1.19)

On the basis of the above formula it can readily be seen that the value of K is
indeed the only function of the thermal parameters a, A ,, X2and the shape of the region
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BOUNDS FOR THE HEAT TRANSFER COEFFICIENT 25

V. By the combination of formula (1.19) and the boundary conditions (1.15), (1.16) one
arrives to the following formula for k:

k=A1lVep)2dK+a, J (@—1)2dA +a2j (p2dA . (1-20)
\% a,

From the above relationships it ensues that k is always positive, k>0.

The primary purpose of this paper is to derive such inequality relations by the
application of which lower and upper bounds may be performed for k. The exact (strict)
value of the heat transfer coefficient might be given only with the knowledge of the
solution to the boundary-value problem defined by Egs (1.14), (1.15), (1.16). The
solution of the explicit form of the boundary-value problem defined by Eqgs (1.14),
(1.15), (1.16) is known only with regions Kof very simple shapes [5], wherefore such
principles and methods are of great significance with the application of which lower
and upper bounds may be produced to the numerical value of the heat transfer
coefficient k.

2. Upper bound

Proposition 2.1. Bef=f(r) continuous in region VUANUAZ2, and in region Vat
least once continuously derivable, otherwise an arbitrary function of three variables.
The inequality relation

JIV/I 2dK+a, fif-1)2dA +a2 $f 2dA (2.2)
y n, Ar

is valid.
Demonstration. Consider the function of three variables defined by the
prescription

[i(r)=/(r)-(/>(r), re ELM, UA2. (2.2)

By a lengthy but elementary calculation the following relationship may be
deduced:

AJ(VN)2dK+a, Jif- 1)2d/H-a2 Jf 1dA =
Vv Al Al
= AjVg> | 2dF+a, J (@—1)2dA+x2] 92dA +
A\ n2

+ 29 ) V/i «V(p *dK-t-a, j h{g>—\)dA +2a2j hipdA + /J|V/i|2dV+<xt J h2dA +
Y (¢ /&| (>\) Ai p VI | A

+a2J h2dA=k +/ j |V/i|2dK+a, j h2dA +a2j h2dA . 2.3)
\% m A2

A2
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26 ECSEDI, 1
By deducing Eg. (2.3) the following relationship has been used

AJV/i eVepdK+a, j h(cp—DdA +a2j fic>dd=
E a, a2
=/ j V ¢(hVep) dK—AJhA(pdK+a, j hlep—1) dA+a2j hepdA =
Yy Yy A, Ar

et , d<p

. )]h dA + hdA—A M<pdK=0. (24)

In proving Eg. (2.4), Egs (1.14), (1.15), (1.16) being in connection with the function
<= (p(r) have been applied.

From formula (2.3) the correctness of the proposition may directly be read and it
is even evident that in the inequality relation (2.1) the sign of equality is only valid if

h=0 reVUAI UA2,
that is if

f=e reVUA{VA2

Proposition 2.2. Let us have/=/(r) continuous in a closed region VUAI UA2,
and in an open region Fat least once continuously derivable function of one variable,
non-identically equal to zero. The inequality relation

h W dA
k" atA (2.5)

Al IV /12dK+a, jf 2dA+a2jf2dA
Yy A\

A2
is valid.
Demonstration. Applying the inequality relation (2.1) to the function/(r) = p/(r),
wherein p is an arbitrary real parameter, yields the following relationship

k<p2DO--1pD" + D2, (2.6)
wherein
1 VI 2dK+a, jr2dA+a2./ 2dA, 2.7
% A\ Az
D,=a,137da, (2.8)
A,
D2=txI Al, =-[* (29

The inequality relation (2.6) is valid to any value of the real parameter p. By an
appropriate selection of p the right-hand side of (2.6) might be reduced to the minimum
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and, on the basis of the minimum obtained, one arrives directly to the proof of the
proposition 2.2.
It can easily be pointed out that in relation (2.5) the sign ofequality is only valid if

[=«</>, (2.10)

wherein a is an arbitrary real constant differing from zero.

Lower bound

Proposition 3.1. In the closed region VUAIUA?2 the continuous vector field o
= p(r) differing from the identically zero vector should satisfy the differential equation

V b =0 rckK. (3.1)

The following inequality relation is valid:

(3.2)

b2dK+ — 1 (b n)2dA + (b n2dA
Al

Demonstration. Let us have

(c ny(d n)dA + mn)(d mn)d/I, (3-3)

wherein:
c=c(r) and d=d(r)

defined in the closed region VUA,UA2are two arbitrary continuous vector fields. On
the basis of the Schwarz-inequality it may be written that

E(c, c)E(d. d)~|(c, d)|2 (3.4)
In the inequality relation (3.4) let us use the following notation:
¢(r)=Vv<p,  d(r)= b(r) (3.5). (3.6)

wherein the vector field b = b(r) satisfied the differential equation (3.1). It can easily be
understood that

k=E(Vip,4(p). (3.7
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The relationship

. "dip
E(Vg>, b)= Aj V . ) dA + A =
(Vo=>, b) {/(p bdK " an 2ldq M
Jp

* ?2 Idip
<pV-bdK+ —

] atJ dan
>

1V «(tpb) dK—A (b +n) dA +

fA(bn)cU =/1 (b +n) dA +
J dn

+ Hu A<p+ nyd/4a = Ag(b- n)dA (3.8)
P A
further, the inequality (3.4) and formulae (3.5), (3.6), (3.7) by their combination directly
yield the inequality relation (3.2) to be proved. In deriving the relationship (3.8) the rule
of differentation of the product function as well as the Gaussian integration theorem,
the equations (1.15), (1.16) and (3.1) have been applied.

By some discussion it may be pointed out that in relation (3.2) the sign ofequality
is valid only in the case where

b =aV<p (3.9)

differs from zero, however, otherwise being an arbitrary real constant.
Proposition 3.2. The three-variable, non-identically constant in the closed region
VUA,UA2continuous function y=g(r) should satisfy the partial differential equation

Ag=0 rev (3.10)
The inequality relation

At (3.11)
1
| \WWg\2dV+j-JrJd A +
is valid.

Demonstration. The correctness of the inequality relation (3.11) ensues directly
from the inequality relation (3.2) in case where the replacement

b=Vg (3.12)
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isapplied. It isevident that vector b of the above form satisfies the differential equation
(3.1) in case where g is harmonic in region V. It can easily be proved that the sign of
equality in the relation (3.1) is only valid if

y=ap+b (3-13)

wherein a and b are arbitrary real constants excepting the restriction a*O.
Examples
4.1. Let us have in the inequality relation (2.1)/=0.
By an elementary calculation one obtains the result
k" txiAl 4.2

which can also directly be read from the inequality relation (2.5).
4.2. Let us have in the inequality relation (2.1)/= 1
By calculating with this function one obtains the result

k"a2A2 4.2)

4.3. The three-variable function F = F(r) continuously differentiable in sections,
in the closed region VU A”Aj, should satisfy the following boundary conditions:

F(n=lI, reAlt (4.3)

F(r)=0, re A2. (4.4
Replacement of the function F = F(r) defined by the above prescriptions into the
inequality relation 2.1 yields the following upper bound:

lcA ||V F|2dK. (4.5)
\%

From Dirichlet’s minimum-principle it ensues that the upper bound of the form (4.5) is
the sharpest if the function F = F(r) is harmonic in region V.
4.4. In the inequality relation (2.5) be

/=c = constant, (c/0). (4.6)

With the help of the elementary calculation the following upper bound of very
simple structure might be deducted to the heat transfer coefficient k:

1

A 4.7
K n r @1
a,/!l, z2A2
4.5. In the inequality relation (2.5) be/=F wherein F = F(r) denotes the three-

variable function entering in the formula (4.5). With the help ofa short calculation one
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Fiy. 2. Spherical hollow region

obtains to the numerical value of the coefficient k the following upper bound:

K 11 1 (4.8)

</f,  Aj|VF|2dF
Obviously, the upper bound of type (4.8) is the sharpest in case where F=F(r) is
harmonic in region \.
4.6. Consider the hollow region of spherical form represented by Fig. 2.
Let us have in the inequality relation (2.5) for/(r) the following expression

f(r)= n22- +A-azR2, (r=|rf=/Ax2+y2+r2). 4.9)

By a lengthy, however, by an elementary calculation, one obtains the result

An
(4.10)
N 1/ 1 1 N
ogRi ~ Agg, R " *2M
4.7. Into the inequality relation (3.11) the harmonic function
1
O(r): (r=v/ix2+y2+1z2 (4.11)

is replaced. By this replacement one arrives to the following lower bound:
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I n
AL 4.12)
1 f(rn)2 1fd_v4____1_r(r-n)2dA
dy 41 r «@ .
A Al

In connection with the formula deduced, it should be noted that the origin of the
system of coordinates xyz is within the closed surface Ax in the region Vx.
4.8. Let us apply the formula (4.12) to the spherical hollow region V. The
following result will be obtained:
An
k> (4.13)
~ ro f\ T~
daxR2 + /.\R1 R2J + a2R2

4.9. Comparing formulae (4.10) and (4.13) yields the exact value of the heat
transfer coefficient of the spherical hollow solid, in agreement with the data of the
literature on the subject ([2], [3]), is as follows:

K= An
- rze f\ r (@14

«19 |+ 40l R2) +x2R\
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SOME COMMENTS ON THE TORSION
OF BARS HAVING AN ANNULUS CROSS-SECTION
OF VARIABLE SIZE SUPPORTED ELASTICALLY
ALONG ITS ENTIRE LENGTH

l. Ecsedi*

[Received: 3 May, 1983]

The paper deals with the torsion of elastic bars with a continuous elastic support. The section
of the bars is an annulus of variable size. Due to the elastic support, the intensity of the continuous
load on the surface of the bars is proportional to the displacement of the points of the surface of the
bars. The boundary value problem of torsion as well as the formula of the torsional rigidity are
presented. Making use of inequalities, lower and upper bounds are given for the torsional rigidity.
Approximate values are obtained in this way for the torsional rigidity without using—even

knowing the solution of the boundary value problem of torsion.

r.ip.:
V e-
u=r(r, 2)e,

\Y4 ¢ er+C
T < &

“X

a.h

T
<T=TurT2<t"TbIlMn

n

Symbols

polar co-ordinates,
unit vectors,
displacement vector,
angle of rotation.

Hamilton differential operator,

sign of the scalar product of two vectors,

sign of the vectorial product of two vectors,
co-ordinates denoting the end sections of the bar.
planar range defined by the meridian section of the bar.
boundary of range T,

unit vector belonging to the “outer" normal

of boundary curve rT,

e unit vector belonging to the tangent of boundary curve t'T,
S arc co-ordinate along boundary curve rT,
R, =«,(> <t8rSh equation of curve
equation of curve cTn.
(i shear rigidity of elasticity of the bar.
K constant characterizing the elastic support (k>0),
M torque,
t'/cn sign of the derivative in the direction of n.
< sign of the derivative in the direction of <
=t//(M),/=1(r .-,

n=1(r,  h=1(r:)

c=c(r.:)=c,(r.;)e, +c.(r.;)e.

g:p(z), A=M), P52. H= )

auxiliary functions,
planar vector field,
auxiliary functions,
torsional rigidity.

Further symbols and variables are defined in the text.
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34 ECSEDI, I.
2. Introduction, basic relations

Let us consider the elastic bar having an annulus cross-section of variable size
shown in Fig. 1 The bar is subjected to distributed loads of intensity

p3=p3(r, z)ev, p4=pA4(r, z)ev

both on its inner and outer surfaces. It has a built-in end at z=a preventing any
displacement of that cross-section, while the displacement of the other end at z= b is
defined by U6= Ve,
The volume of the bar is unloaded. The usual assumption of elasticity are valid, i.e.:

— displacements are small,

— the problem is a quasistatic one,

— the effect of heat, initial stresses and imperfections is negligible,

— the material of the bar is homogeneous, isotropic and linearly elastic.

The torsion of the elastic bar shown in Fig. 1 is characterized by the following
boundary value problem [1,2, 3]:

V-(r3vi/0=0 (rrgeT, 2.7
Grr =p> (r,z)edT3, (2.2)
roag
Grh =px (r,2) e dTA (2.3)
=0 (r,z)edT{ (2.4
=9 (r,2)ecT2 (2.5

RangeTand its boundary defined by d T are represented in Fig. 2.
Making use ofthe function oftwo variables o= dx(r, z), the displacement vector u
= u(r, (p, 2) can be given in the following form:

u=r(r,z)e, =r~(r,z)e,, (2.6)

The scalar co-ordinates of the stress tensor, not being identically equal to zero, are
obtained from relations

To= 6™ @D
(2.8

If the bar has continuous elastic supports, the load functions are as follows:
p3=-kv(r,z)= - krai(r, 2) (r,2)edT3 (2.9)
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Fig. 1L Bar with an annulus of variable section

Fig. 2. Meridian section of the bar

p4= —kv(r, z) = —knp(r, z) (r,2)e 0T4. (2.20)
Let us introduce the notation

=)

f=f(r,2}= (2.12)

Making use of Egs (2.1), (2.2), (2.3), (2.4), (2.5), (2.9), (2.10), (2.12), the torsional problem
of the bar having an annulus cross-section of variable size supported elastically along
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36 ECSEDI, I.

its entire length can now be presented. Taking into account the fact that the bar has a
built-in end at z=a preventing any displacement there, while the displacement vector
at z—b is ah= &rev, the following boundary value problem can be set up:

V-(r3avih=0 (r,z)eT, 2.12

G % +kf=0 (r,z)epT3ngT4, (2.13)
/=0 (r,z)edTt, (2.14)

f=1 (r,z)edT2. (2.15)

Making use of function/=J(r, z), the displacement vector nand the shearing stresses T
and T4p assume the form

u=i>(r,2e,=9r/(r, z)e,, (2.16)
iib=G;b~, 2.17
ink=gG; i (2.17)
=G 9rf (2.18)

02

The cross-section of the bar at z=Db is subjected to the torque [1]:

M=2n | r2lin & = »2JiG rS% ds. (2.19)

re2

The torsindl rigidity S of the bar having an annulus cross-section of variable size
elastically supported is defined by the formula
M
=g
Some relations concerning the torsional rigidity S will now be introduced.
According to the product-function’ derivation rule and the Gauss’ theorem of the
transformation of integrals—making use of Egs (2.12), (2.13), (2.14), (2.15)—, we obtain

S (2.20,

IV (V) dT= V-(rvdT- 31V/] 2dT= 3y ds—

T T T aT
. C P
r r rf r ni ]
| r3|V/'i2dT= r3/(|(rj] s + nrd-as-  r3|V/j2dT= r3\ ds -
r-TtuP, PTi
G
r31V/1 2dT- rd. 2.21,
PT.\VfITa
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Combining Egs (2.19), (2.20), (2.21), we have

S=2nG (222,
*12

S=2rGM r31v/'|2dT+ <t dv (2.23)
/ PT3uPT,
Substituting Eq. (2.13) in to Eq. (2.23), we arrive at

S=2nGJr31V/I2dT+2nk j r3J 2ds. (2.24)
r IITnuBT*
Formulas (2.23), (2.24) and equations (2.12), (2.13), (2.14), (2.15) show that the torsional
rigidity S is always a positive quantity, i.e. S>0.
The application of the Gauss' theorem of the transformation of integrals to Eq.
(2.12) leads to

% X
rv._ds+ r3--7ds+ (2.25)

JV(r'V/)dT: R (

Making use of Egs (2.2) and (2.25), we find
S= (2.26)

Finally, introducing Eqg. (2.13) to Eq. (2.26), the formula for the torsional rigidity turns
out to be

Y
= . 2G r3§n ds + 2nk r3ds. 2.27)
<l i TsuPTa

The primary aim of this paper is to derive inequalities enabling us to establish
lower and upper bounds for the torsional rigidity S defined by formula (2.20) belonging
to bars having an annulus cross-section of variable size. The exact value of the torsional
rigidity could be obtained by solving the boundary value problem defined by Egs
(2.12),(2.13), (2.14), (2.15). In several cases, however, the exact solution of this problem is
not known and, therefore, we abandon the idea of trying to find the exact value for the
torsional rigidity. Instead, we will show how the value of the torsional rigidity can be set
between lower and upper bounds.
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3. Upper bound

3.1 Theorem. Let the function of two variables H =H(r,z) be continuous in the
closed region TudTand be continuously derivable in the open region T at least once
and satisfying the conditions

H(r,z)=0 (r,z)g8T1 (3.1
H(r, z)= H 2= constant (r,z)edT2 (3.2
It should be proved that the inequality

2uG r31V H 12dT+ 2nk r3H2ds
Cr T f12 ATavaTn (3.3)
holds.
Demonstration.To prove inequality (3.3), we rely on the Schwarz inequality
D(f,J)D(H, H)> \D{f,H)\2 (34
where
DifJ) =2nG j r31V/l 2dT+2nk j r3 2ds, (35)
T aTaugTn
D(H, H)=2kG J r3(V#)2dT+2nk } r3H2ds, (3.6)
T ATEhaTh
D(f,H)=2nG $r3vf-VH dT+2nk J r3Hds. 37
T AT3nl T3

According to the product-function’s derivation rule and the Gauss’ theorem of the
transformation of integrals—making use of Eqgs (2.12), (2.13), (2.24), (3.1), (3.2 —, we
obtain

2nGJr3v/-VH dT+2nk J r3Hds=2nG$V(r3HVf)dT-
T AT3n0T4 T

-2nG$ HV-(r3vf)dT+2nk j r3Hfds=2nG \ r3H"ds +
T

ATwnaTn ] vn
arl
v
+2nGH2 I r3-*.ds-\-2n Hr3\4  + v]ds=tf,S. (3.8)
on % dn
CT2 AT3nATS
Combining the evident formula
S=D[f,n (3.9

with equation (3.8) and inequality (3.4), we arrive directly at inequality (3.3).
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4. Lower bound

4.1. Theorem. Let the vector
c=c(r,2)=cr(r, z)er+ c2(r, z)e2

be different from zero in the vector field rz and satisfying the partial differential
equation

V urx)=0 (r,2)6T. (4.1)

It should be proved that inequality

nds
SA2nG 2 4.2)
r3eb2dT+ ~ J r3(ben)2ds
T eTruBTn

holds.
Demonstration. The basis of the demonstration is the Schwarz inequality

E[V/,V/E]c,c] [V/, c])2 4.3)
where

rz f

E[V/,V/1=2nC JIr3|V /|2dT+27t— r3(V/ n)2d 44,
‘ BTIVDTt

£[c, c]=21tG _r32dT+2rc r3(c m)2ds, (4.5)

| [LT3vBT*
£V ], c] = 26G I,Ir3V/-ch+2jr I r3(V/- n)(c +n)ds. (4.6)

MNT3ngT4

It goes without saying that
S=E[V/,V/]. 4.7)

Applying the product-function’s derivation rule and the Gauss’ theorem of the
transformation of integrals and making use of Egs (2.12), (2.14), (4.1), quantity E\4f c]
can be transfered into the following form:
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£[Y/,c]=2aC I!SV/-cdr+2rc I r3(V/- n)(cen)ds=
0TsvOTa

=2nG V x(r&x/) dT—2q0 |zy «(rx) dT+

7

25l J r3gf(c n)ds=2nGJ| rdcnds +2G  r3cnds +

OT"kjOTa 0T 0T2

-2nG J 3 n) /+NMJPjds=2nG Je nds. (4.8)
0T3eT14 T2
The combination of inequality (4.3) and equations (4.7), (4.8) directly results in
inequality (4.2) which had to be proved.
4.2 Theorem. Let the function of two variables h=h(r,z) be continuously

derivable, at least twice, and not identically equal to a constant in the closed region
TudT. The inequality to be proved is

SA2nG (hA-h 3 4.9)
Nv*12,T G
-T3-dT+T M s)'*
T AT3niATn
where
h3= h(R3(b), b), (4.10)
hA= h{R4(b), b). (4.

Demonstration. Making use of the substitution
= -rViixe,, (4.12)
inequality (4.2) yields the verification of (4.9). It is obvious that vector c=c(r, 2)

of the above form satisfies partial differential equation (4.1). After some algebraic
manipulation, we have

1 .
r3(c en)2ds= [(Vfi Xev) m]2ds=
OliuQla WTanpT*

1. .
1 [VJi(e,xn)]2ds= (Vfiee)2ds =
OlsvOla OlsvPTa PTsiipTa (4.13)
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i ric ndv= f'f' (V/i xev)ends=

Vij e(ev Xn)d.v= j* Vli eds= J*{ ds=ht—h3. (4.14)

w1 <Ti

Egs (4.13), (4.14) show that inequality (4.9) holds.

5. Supplementary remarks
5.1 A short discussion on inequalities (3.3) and (4.2) shows that the sign of
equality in (3.3), (4.2) holds only if
/(r, r)=al(r, 2), (5.0
c(r,r)=aVv/ (5.2

where a is a real, arbitrary constant which is different from 7.ero.
5.2 Let consider the function of two variables F = F(r, z) which, apart from a real

additive constant, is unambiguously defined by

Vi=r’(exVl/) (5.3)

Making use of Eqg. (5.3), it is easy to see that function F = F(r, :) satisfies the following
elliptic partial differential equation

V (r7vf)="° (r.z)eT (54

Combining Egs (2.22) and 5.3), we have

S=2nG(F4—F3) (5.5)
since
j" r3y-ds= j*r3v/ nds=
il iT:
= j VFunXev)ds= J VF eds=F4-Fj (5.6)
2T 2 OTi
where
F3=F(R3(b), b), (5.7)
F4=F(R4(b), b). (5.8)

A derivation involving formula (2.26) yields the same result.
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Finally, making use of formulas

IVF 12=r61V/I 2, (5.9
(5.10)

which we obtained from Eq. (5.3), we arrive at
S=2nG (5.12)

T ATrngTn

In addition to the above results, a short discussion can be carried out concerning
inequality (4.9). The discussion shows that the sign of equality in (4.9) is valid only if

h(r,z) =a.F(r,z) + 3 (5.12)

where @and B are arbitrary, real constants excluding the case a=0.

6. Applications

6.1 Let function H(r, z) in inequality (3.1) assume the form

H(r,z2)=P(2). 6.1
Let the function of one variable P-P(z) satisfy the boundary conditions
P(@)=0, 6.2
P(b)= 1. (6.3)
A simple calculation yields
Jr3VP2dT= JA@z) (P{z)2dz, (6.4)
J  r3P2dr= jR(z)(P(z)2dz (6.5)
eTv’\gTn a
where
A(z)=-1(Rt(z))*-(R3(2))47i, (6.6)
B()=2I[(R3@)3y iT (W +(k4@)3V ~ (f]ii (6.7)

The above expressions together with inequality (3.3) result in the following upper
bound

i[A (P BPAz. (6.8)
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6.2. Let quantities a, b, P in inequality (6.8) assume the following values
a=0, b=1 and P—y (6.9)

Substituting expressions (6.9) into inequality (6.8), we arrive at an upper bound for the
torsional rigidity: (
N4 (z) +z2B(z)]dz. (6.10)
0]
6.3 Let functional / take the form

[[M2)]=J[N(P)2+BP2 dz. (6.11)
a
Making use of the elementary results of variational calculus, it can be shown that,

concerning functions P = P(z) satisfying conditions (6.2), (6.3), functional I is minimum
at a function P=P(z) which is a solution of the boundary value problem

~dz {A(Z)Ad?yJ +B(z)P=0 a<z<b (6.12)
P(u)=0, (6.13)
P(b)=1. (6.14)
For functions P=P(z) satisfying conditions (6.12), (6.13), (6.14), inequality
I[P (z)K/[P(2)] (6.15)

holds.
On the basis of relation

I[P(z)] = |[/1(P")2+ BP2] dz=

= J(AP'P)' dz+ j [(—/IP")' + BP] dz = [AP'P]a= A{b)P'(b) (6.16)

and inequalities (6.10), (6.15), we obtain
SMA(b)P'(b) (6.17)

The above results show that, considering upper bounds in the form of (6.8), the best
approximation for the torsional rigidity emerges if P(z) = P(2).
6.4 Let us apply inequality (4.9) to function

h=h{r,z) =r*p(z) (6.18)
A long but elementary calculation results in

2nG
iD>(*)]
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where

[p(z)] = J [/12(P")2+ 2/11p'p + N0p2] dz, (6.20)

n (Rt(2))6- (R 3(2))b , G (R4(2)5  + (K3(2))2
r2 — 7 "

A (6.21)
KIPN+(R'(2))2 VI+(R'3Q)2
_ (KA@)X(2) + (RID)2KIQ) 622
94EA“‘3Vi+(«itf yr+ (2 3@)2 i
7 0= a[(na(r)4—(Ka+ 4 © | RIAIRID)2
H /1+ W 2
(K 4(2))3(R 4(2)); (623)

VT+N F A *

The function of one variable p = p(z) in formula (6.20) satisfies the boundary condition

P kama- (R 368 (629

6.5 Let function p(z) in inequality (6.19) be constant in the form

I -
p(z) = (RA(M)A-(A#)) = constant. (6.25)

After a short calculation, the lower bound for the torsional rigidity emerges as

(6.26)
JAO(z) dz
a
6.6 Making use of the elementary results of variational calculus, it can be shown
that
m(i)ni[p(Z)] =i[p(2)] (6.27)
o(-
where function p=p(z) is the solution of the following boundary value problem
—(A2p'Y+ (Ao—A\)p=0 a<z<b, (6.28)
A2(a)p\a) +Al(a)p(a) =0 (6.29)
1

PIP)= (Ram)4- (R 3(n)s (630

Applying the above results to functions h=h(r, z) defined by Eq. (6.18), it can be proved
that the best lower bound belongs to

h(r, 2) =r*p(2) (6.32)
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The application of function h="h{r,z) in the form of (6.31) results in
2nG
"P@)]"

We will now transform the right-hand side of the lower bound (6.32) into a more
explicit form:

(6.32)

Ip(2)]1= JI1A2(p")2+ 2AiPp' + AOpz]dz= \(A2p'p)'dz-
- 1[(- A2P)p+(A,p2)' + /40p2] dz=[A2ppfa+ I [(- A2p) + (Alp2) -

- A\p2+ Aop2] dz=[A2pp +A,pZ*+ Jp[(- A2p) +(A0- A\)p] dz =

=lA()p'(0+ AB)p(bLLB) =
- Ao [(R(D)*~(Re(D)) W' (D) +A(N)
(RAD))*(Rem*
The formula of the torsional rigidity (6.32) can now be written as

2aC[(K4(B)4 - (K 3(b)M2 634.
* i (R, m 4- (R 3Ch))*]A2(b)p\b) + A, (f})

6.7 The exact value of the torsional rigidity is not known even in the special case
when
Rj = R3(2) = constant, (6.35)

R" =RM(z) =constant. (6.36)

In this case the quantities necessary for the calculation of the upper bound (6.17) are as
follows: c

A= --(Rt~ K3)n=constant, (6.37)
B =2kn(RI + RI) =constant. (6.38)
Introducing the notation
+
2 4k(RI R_I) (6.39)
“ G(Rt-Ri)'

differential equation (6.12) turns into

P"-a2P=0 (6.40)
The solution satisfying this differential equation and boundary conditions (6.13), (6.14)
runs accordingly
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shaz

6.41
sh a/ (641)

P(z) =

Substituting the above function to (6.17) and making use of formula (6.39), we arrive at

Gn
TN 6.42
K ricS"? Ri-RIG (642)
6.8 The lower bound for a bar limited by circular cylinders can be obtained from
inequality (6.34). The quantities necessary for the calculation in the case ofa=0,6=0
are the following:

1 . G
A2= E(A4_ﬂ3)+K_(RI +RD5) = constant, (6.43)
Ax=0, (6.44)
AO=4(R4—R*) = constant. (6.45)

Introducing the notation

- ARt-Ri) (6.46)

A(RI-RA+ AR +RI)

the differential equation (6.28) turns into

P"-R2P=0. (6.47)

The solution satisfying this equation as well as boundary conditions (6.29), (6.30) at

a—0 and b=/ reads as
1 chRz

R4-R 3ch Bl (6.48)

p(z) =

Making use of (6.34), (6.46), (6.48), the lower bound for the torsional rigidity becomes
g 2nG (Rt-Rtf (6.49)
S-i(K2-M)+ M (K T+ «N] BthRl

6.9 Figure 3shows the meridian cross-section ofa bar limited by cones. The basic
data are as follows:
ya=1 y3=0,8, k=2-106N-mnT3
G=105Nmm-~2 1=90 mm,
a=10mm, h=100mm
A3()=y3z=08z [mm],
R4(z2)=ydz=z2 [mm].
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Q=10mm

Fig. 3. Meridian section of the bar limited by cones

Making use of inequalities (6.10), (6.26), the lower and upper bounds for the torsional
rigidity emerge as

108 X10* Nmm<S< 129 x 10“ Nmm.
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PROPOSED CONTINUUM MODEL FOR SIMULATING
THE BEHAVIOUR OF GRANULAR MATERIALS
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The paper presents a possible way to simulate the very special behaviour of granular
materials. Applying the well-known micro-elastic continuum theory for the problem a continuum
theory with intrinsic volume-change was elaborated. The basic equations include the following
unknown kinematic functions: the displacement vector and the intrinsic volume-change as a scalar
function. The consitutive equation consists of six new elastic material constants, to evaluate them
requires further investigations

Introduction

The theories proposed for the calculation of the inner stress distribution and
deformation of a considerable part of shell structures, such as the shells of revolution,
are so accurate that even the special behaviour of the material used for construction can
modify in no considerable degree the statics of storage tanks or silos [ 1].

In view of this fact it seems highly superfluous to improve the accuracy of these
theories any further as long as the functions and distribution of the outer load do not
attain an approximately similar accuracy. The materials most frequently stored in such
types of tanks or silos are granular materials, grain, gravel, etc. The accuracy of
computing the pressure exerted on the inner surface of the shell by the statics and
dynamics of the stored material leaves in these cases much to be desired.

To promote the solution of this topical design problem in this particular field of
engineering we try to show in this paper a possibility of simulating the behaviour of
granular materials by a continuum mechanical model.

Summary of the general equations of linear microelasticity

As is well known, in classical linear elasticity there occurs only one kinematic
variable as the basic unknown function, namely the displacement vector field. In micro-
elasticity the kinematic freedom of the elementary point of continuum was extended by
a tensor field, which means an intrinsic micro-deformation tensor of the elementary

* Dr. J. Fiizy, Scientific Adviser, Hungarian Institute for Building Science, ETI, David F. u. 6,
H-1 113 Budapest, Hungary
** ], Vas, Senior Researcher, Hungarian Institute for Building Science, ETI, David F\ u. 6, H-1 113
Budapest, Hungary
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point as a new independent kinematic variable besides the displacement vector field

2].

2 It is not necessary to clarify the full physical background and reality of such
continua, all the more because the literature on that particular branch of science leaves
no doubt in this respect [3, 5, 6], especially in the case of the so-called Cosserat
continua which are a degenerate type of the theory [4].

The micro-deformation tensor di}is taken to be homogeneous at the elementary
point which is a finite micro-volume, and non-homogeneous in the macro-medium.
The symmetric part of dtj is the micro-strain: d(ij) and the antisymmetric part is the
micro-rotation: dlin.

An alternative interpretation is that the quantities di} are proportional to the
components of the displacement of the tips of the deformable directors [7], in that case
d[u are the components of the displacement of the tips of the Cosserat “triedre”.

We define the usual strain (now the macro-strain):

Duj)= jtfiUj + djui) (1)

and also the so-called relative deformation which is the difference between the macro-
displacement gradient and the micro-deformation:

yij =diuj - d ij @
and the micro-deformation gradient (the macro-gradient of the micro-deformation):
cijk—didjk €)]

The basic kinematic unknown functions u, and di} are assumed to be single
valued functions of the coordinates of the macro-space, leading to the compatibility
equations:

emiken,jdidjDK =0, a)
eMijSiKju=0, b.)
Si(DW) + DIK] - yjK) = kisk c) @

where DW is the macro-rotation and eik is the alternating tensor.
In view of the variation of potential energy W, we define the Cauchy stress tensor:

- =Sy ®
a>«
the relative stress tensor:
6
and the double stress tensor:
aw
K= Ak U
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From the variational equation of motion, there follow immediately the twelve
equations of motion [2]:

di(S(ij) + oij) +fj=puj, a)
SiHijk + fijk+ Vjk= - y P'Lfjdik >) ®)

Thus/ is the body force per unit volume, (pXkis to be interpreted as a double force
per unit volume, p is the mass density of the material per unit macro-volume, p“is the
mass density of micro-material and the dot means differentiation with respect to time.
The expression Lfj represents a kind of inertia tensor depending on the measures of the
unit cell (micro-volume) [2].

3. Proposed continuum model for simulating the behaviour
of granular materials

One of the most interesting and significant features of the behaviour of granular
materials is that the continuum may change in volume without isotropic pressure. This
means for instance, that a unit volume of granular material under shear deformation
will be compacted if the initial state of the pattern was loose, and it will relax if it was
originally compact. This phenomenon definitely influences the dynamics of granular
materials and so we want to focus our analysis on that.

In our opinion the theory of micro-elasticity expounded above should be
remarkably suitable for that purpose. It is only necessary to take the isotropic part of
the micro-deformation tensor as an intrinsic volume change into account, which means
a scalar function “e” as an independent variable besides the displacement vector:

dun—  and  d(i)=eOt ; ©)
In that case the relative deformation will take the following form:

yu=uJ.i-edij , (10

using the conventional abbreviation djU,= n¢y and 6u designating the Kronecker
symbol.
Based on this assumption the micro-deformation gradient will reduce to a vector:

* =, (11)

and as a consequence, the double-stress tensor reduces to a vector pt also.
We try to find the constitutive equation in the following linearized form:

S(tj) —¢ j Dfj>+ c2DKiSij+ c3edjj, a)
Gij —cAD(ij) + c5DKK"j + cbd[j] + c7eSy,  b)
Pi=c»eA c) (12
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® The constants o, and c2 do not represent new constitutive constants, they are
linear combinations of the Lame’s constitutive moduli, but ¢c3—c8 are new ones.
Introducing a new general stress tensor by the following definition:

Sij= s<ij) + crij a’)
$ij= (i + c4)D(ij) + (c2+ cs)Dkk+ c6 Dij)+ (cs + Cj)EDij b) (13
the first equation of motion (8/a) will take the form of the classical continuum:
Sij,i+fj=pij (14)
The second equation of motion (8/b) can be simplified by using Eqs (12/b) and
(12/c) and finally we get the following form:

s ge.a+ (c4+3coK f+3c7Te=p— & (15)

having taken into account that D(iJ)Sij=ui i. In the equation the double force per unit
volume is neglected and the global-mass p and the micro-mass p' are assumed to be
identical. The micro-volume (unit-cell) is regarded to be cubic and so it has only one
significant dimension: “L” and, as a consequence, the inertia tensor reduces to a
constant as is the case in the Cosserat theory. The meaning of “L” in our case must be
the smallest possible volume that still contains a sufficient number of grains for the
phenomenon to take place.

4. Conclusion

The geometric equation Dij=uj iand the constitutive equation (13/b) together
with the two equations of motion (14) and (15) form the basic system of equations of the
proposed continuum model. These equations include a new variable: “e”, which means
the intrinsic volume change superposed on the dilatation u,, of the medium. For the
new variable which isa scalar function we have a new equation (15), the other equations
are very similar to the ones of the classical elastic continua, they differ only in the
isotropic term on the right side of the constitutive equation (14).

A problem to be invesigated in the future follows from the undefined new
constitutive constants: c3—c8. The main purpose of working out such continuum
models should be to elaborate the algorithm of the system—Dby finite elements for
instance—and obtain in this way a very effective scientific tool to investigate the
behaviour of granular materials.

In that case there is a possibility to change the values of the new constants
systematically—especially in connection of c8—and so to determine their actual values
for different materials.
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It will be possible to follow the tracks of the whole process using this method by
displaying the numerical solutions of the system of equations at equidistant time lags.

In this way we could improve our knowledge ofthe behaviour of granular media,
for instance in the course of the discharge of silos, etc.
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STABILITY OF VISCOELASTIC STRUCTURES

Gy. ljjas*

[Received: 12 July 1983]

The critical state of a viscoelastic structure—i.e. when the velocity of the deformation of the
structure is infinite—can be characterized by the singularity of a Hesse matrix. This Hesse matrix
contains the second derivatives of the difference ofthe free energy ofthe structure and the work of the
loads with respect to the outer parameters. In the case of viscoelastic structures the Hesse matrix
usually is the function of the initial imperfections, the loads and the inner parameters (creep).

1. Introduction

Reports on creep stability problems have been published from the end of the
forties. But until 1978 solutions of single problems were only presented. Some of them
are excellent, but others are only acceptable.

Hayman [2], [3] gave the first general discussion of the creep stability problems
on the base of the bifurcation theory and cleared up some false ideas.

The most important thesises of his articles are as follows.

Let us leave the creep of the structure out ofconsideration, that is be the structure
elastic. The modulus of elasticity of the structure is the same as that of the short time
modulus ofthe original structure. Ifthe structure has no unstable equilibrium state at a
prescribed load level, the velocity of the deformation of the original (viscoelastic)
structure will not be infinite at that load level. Naturally the load of the structure has
to be less than the lowest critical load of the elastic structure. It follows, that the
structure has no finite critical time at that load level. Hayman showed it in the case of
statically determinate structures.

If the elastic structure has at least one unstable equilibrium state at a prescribed
load level, then there is the possibility of infinitely large velocity of deformation at finite
deformation. It follows that the structure may have finite critical time.

There is the hypothetical possibility, that a structure originally has a stable
equilibrium path and this stable equilibrium path is becoming unstable during creep.
However, we have not met any research activity presenting this kind of structure.

Hayman’s papers [2], [3] are excellent, but they give only a phenomenological
description, without rigorous mathematical base. So his results are not of general
nature.

* ljjas Gyorgy, v u. 165, H-1147-Budapest, Hungary
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The aim of this paper is to present the criterion of the loss of stability of
viscoelastic structures on a rigorous mathematical base. We will examine structures
with finite degree of freedom only with finite critical time. We will not take into account
the aging and plastic deformations. We will prove that at the critical time the
determinant of the Hesse matrix of the structure vanishes. This is the generalization of
the energy criterion of the elastic stability.

2. The demonstration of the general criterion of viscoelastic stability

The Lagrange equation of the small vibration of dissipative structures was
probably set up at the end of the thirties [4], [5]. If we do not take into account the
kinetic energy, the remaining part of the equation is the static equilibrium equation of
dissipative structures. Biot [6] was the first who derived this equation from
thermodynamic principles for the case of linear viscoelasticity. This equation reads

o
> oqt ’ <)

where Vis the free energy of the structure,
D is the dissipation function,
0, are the generalized coordinates (components of displacement),
4, are the velocity components of displacement,
P, are the components of the generalized force vector.

If we have conservative loads, then making use of equation Q= V—W; where
their works is W, Eq. (1) takes the form:

%t df @)

One of our basic assumption is that the displacement of the structure is always
the sum of the elastic and the creep displacement. We will name the sum of these
displacements external parameters, and the creep displacements internal parameters.

Since Qdepends on the displacements only, and D depends on the velocity of the
internal parameters, the system of equations (2) can be divided into two parts:

[~=0, t=1, ...,m) (3a)
dQ dD n
I—'e+ — =0 G=m+ 1 ...,m+n) 3b
dgj  dqj (%)

where m is the number of the independent external parameters, n is the number of the
independent internal parameters. Equations (3a) will be called external equilibrium
equations, and equations (3b) will be called internal equilibrium equations (ITis the
function of the external parameters only, so Eqs (3a) contain the loads).
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We will postulate that the velocity of the internal parameters tends to infinity
only in the case of infinite forces. This statement seems plausible, if we examine the
equation of Newton, Bailey, Ludwik or Nadai viscous flow [7].

So we have to examine only the velocity of external parameters. Let’s
differentiate Eqgs (3a) with respect to time. (In the following the double indexes indicate
summation convention):

d2Q

dq@.-q , = (/1=1........ m+n) @

0=1,...,m)

Let us divide the equations of the system ofequations (4) into two parts. The first
part contains the velocity of the external parameters as multipliers, the second part
contains the velocity of internal parameters as multipliers. The system of equations (3)
thus assumes the form

20 . d2 .

dqfia, dqfig (i=l....... m) (52)
(/=1 .. .,m

(Q (b G=m+1 .. ,,m+n) (5b)

<4 + dqgj

where g, is the velocity of the externa) parameters. However, the system of equations
(5a) is linear for the velocity of the external parameters g,. Since we have postulated
that (jj is infinite only in the case of infinite forces, formula

02Q
dql?qﬁ

represents the necessary condition for at least one of the velocities: q,= oo. {Q is a
continuous function and its derivatives are continuous too).

In other words, the velocity ofat least one of the external parameters (the velocity
of full displacements) is infinite, ifthe determinant of the Hesse matrix of the function of
the difference of the free energy and the work of external forces vanishes. (The Hesse
matrix contains only derivatives with respect to the external parameters!). This Hesse
matrix is the matrix of the coefficients of the system of equations (5a). This criterion is
the generalization of the energy criterion of the stability ofelastic structures (In the case
of elasticity we have no internal parameters.)

The above derivation was based on the Lagrange equation of linearly
viscoelastic system. This results, however, can easily be extended to the case of
nonlinear creep.

Namely, the external equilibrium equations (3a) can be derived from the elastic
potential (the free energy) of the structure and from the work of external forces. It

=0 6
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follows that they express the equilibrium of external forces and the internal (elastic)
forces (stresses). The internal parameters are only parameters in these equations. So
these equations do not give any information about the type of creep (linear or
nonlinear). This information can only be obtained from the internal equilibrium
equations. It can easily be seen that in the case of nonlinear creep (i.e. the system of
equations (3b) are nonlinear) the earlier derivations hold.

The derivation in this form holds only in the case of constant loads. If the loads
are not constant, Eqgs (4) and (5) contain an element which is the function of the velocity
of loading. Since we examine only statically loaded structures, the velocity of loading is
not infinite, so the conditions of the earlier deduction do not change.

If the system of equations (3) has a solution, this solution is the system of
displacements of the structure (the external and internal parameters) in the function of
time. Introducing this system of parameters into (6), we obtain an equation for time. If
Eq. (6) has positive real solutions, then the smallest one is the critical time.

3. Illustrative examples

Let us analyse some simple examples to illustrate the previous derivation and to
show some important new relations.

A statically indeterminate structure is shown in Fig. 1 The rigidity of the bar of
length L is infinite. Kxand K2 are linear springs and can deform without restriction.
The constitutive equations of the springs are

F=K2(A-A0), (7a)
M=KYB-Bo). (7b)

where AO=L sin 60represents the initial stress-free state. (If AOrelates to the structural
imperfections, then condition d o= 0—i.e. the bar is vertical—means the structure

Fig. 1.
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without initial imperfection). The equilibrium condition of the structure is that the
moment at point 0 is zero. Taking into consideration equation (7), this condition results
in
PL sin 0 —K2L2(sin 0 —sin 0 o)cos 0 —K,(0 —0 0)= 0O, )
The structure is in critical state when gP/gs —0. (This is equivalent to the
singularity of the Hesse matrix of the potential energy.) Expressing P from (8) and
differentiating with respect to 0, we obtain a fraction. The left-hand side of Eq.

K2L2(sin 0 0O—sin30) + K,[sin 0 0 —0 0)cos 0]=0 ©)]

is the numerator ofthis fraction. Condition dP/dQ —O isequivalent to Eq. (9). Equation
(9) yields the critical deformation in the function of initial imperfect state.
Let us analyse the structure shown in Fig. 2. The condition ofequilibrium in this
case reads
PLsin0 —FL cos 0 —M =0 (10
where
F=K2(A -<)= K2(Lsin 0 —A0). (11)

The constitutive equation of the spring-dashpot model on Fig. 2. reads
KxbtO =K IMn+blM (12)

where nisaconstant. This is the Norton law. Making use of (11)and expressing M from
(10) , Eg. (12) becomes

N K,[PL sin 0 —K2(Lsin 0 —d0O)Lcos 0]" + b, Psin0
KI1+ K2LAgsin 0 + K2L 2cos 20 —PL cos 0

If we use
KIbiO=KIM+hbIM (14)

instead of(12) which is the constitutive equation of the Maxwell modell, then we obtain
again a fraction form for O. Its denominator and the denominator of Eq. (13) are the
same.

Let us define the change of energy of the system in Fig. 2. as

Q=j K,(0-0d- 002+ | K2(A- A0)2- PLicos 0O cos0). (15)

In this equation 0 dmeans the displacement of the piston in the ft, dashpot. (0 ffis
the internal parameter). Ifwe differentiate (15) with respect to O twices (regarding 0,,as
an independent variable), we arrive at

a0 _ K, + K2zI0Lsin 0 + K2L2cos20-PLcos O . (16)
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P(t
P() 1 (t)

Fie). 2.

This expression is exactly the same as the denominator of Eq. (13). Consequently, if
c2Q/v&2is equal to zero, then O is infinite. If we want to obtain the critical time, we
have to solve (13) for 0(i). Then we have to introduce the solution into condition
d2Q/d©2=0 [This is Eq. (16)]. If it has a solution for r, then it is the critical time.
Let us define the change of the potential energy of the structure in Fig. 3. as

Q=y X,(0- 0,- 6502+ — K2(J—Ad—A0)2—PL(cos 0 G- cos 0). 17)

Here Adis the displacement of the piston in the b2 dashpot. Differentiating (17) again
twice with respect to 0, we obtain

(18)

Comparing (18) to (9), we can see that in the case of elastic structures the Hesse matrix
depends on the initial imperfection, while in the case of viscoelastic structures it
generally depends on creep (internal parameters) and the loading too. That is why the
critical time of a viscoelastic structure can not be defined usually from the critical
deformation ofthe equivalent elastic structure. (The structure in Fig. listhe equivalent
elastic structure of the structures in Figs 2 and 3). The analysis of circular cylindrical
and spherical shells in the papers of Obrecht [8] and Xirouchakis and Jones [9], [10]
also shows this fact.

Hayman has shown that in the case of statically determinate structures the Hesse
matrix of a viscoelastic structure and that of the equivalent structure become singular
at the same deformation. In some cases the Hesse matrix of statically indeterminate
structures with finite degree of freedom formally can be independent of the internal
parameters ifthe independent variables are chosen skilfully. In the case of the structure
in Fig. 2, if A is chosen as an independent parameter instead of 0, and (18) is
differentiated with respect to it, instead of (16) we obtain an expression which depends
on &d.
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ELASTIC STRESSES IN CRACKED
PRESTRESSED PRETENSIONED CONCRETE
COMPOSITE BEAMS WITH BONDED TENDONS

L. Janko™*

[Received 3 January, 1982]

Computation methods have long been known for the design of precast, prestressed beams
with bonded tendons, interacting with monolithic r.c. slabs, either under service conditions (no
tensile stress) or in ultimate condition. This time, the beam stress state after crackiny will be analyzed.
The presented method yields extreme fibre stresses of the cracked composite beam (slab + beam), the
steel stress increment, the crack width, and the elastic limit load.

Symbols
Roman letters

ideal cross-sectional areas of uncracked beam and slab, resp.
=0);

tendon cross-sectional area (area of prestressed
reinforcement);

distance between ideal centroids (fp=0) of uncracked slab S(J
and uncracked beam Slb;

upper and lower flange widths, respectively;

web thickness;

upper and lower flange thicknesses, respectively;

distance measured from extreme compressed fiber of beam to
centroid of tendons (effective depth of beam section);
monolithic (in-situ) slab thickness:

dead load components (O, :dead load of beam, 0 2: one ofslab,
Dy. one of waterproofing, paving (finishing) etc.);

initial moduli of the elasticity ofslab and beam concrete, resp.
ﬁ(()?] modulus of elasticity (Young’s, modulus);

distance between compressive force N and centroid Sib of
uncracked beam;

distance of compressive force N from neutral axis x,, of a
cracked beam;

prestressing force eccentricity referred to Sih,

overall thickness of beam (without slab),

tendon moment of inertia about their centroid;

so-called “curvature moment of inertia" of beam;

moment of inertia about centroid (Slb or S,3) of uncracked
beam or slab = 0);

so-called “stress moment of inertia” about neutral axis x Mbf
cracked beam;

e Dr. L. Janké, Lajos u. 142, H-1036 Budapest, Hungary
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YR )
AM*bAN*b
AM* ., AN*
AM*, AN*.

M;=M|1.2,n()

A.n Mh+ M (3 p)+AN*en

N.,

Nex=N +N,,
E,

n

PK=P,-AP,(rel. At)

AT

Greek letter

t'sh.h’ t'sh.sl

JANKO. L

external moment (with load subscripts in parentheses);
resultants of stresses from accessory effects (subscript c, 6: neat
concrete cross-section of the beam, deducing tendon cross-
sections; si. slab cross-section; ps: tendon); accessory effects:
creep and shrinkage;

moment acting at Sthfrom dead loads of beam D, and of slab
D2, as well as from initial prestressing tendon force PK,
external moment sum of total load (dead loads, prestressing
force, live load, accessory stresses) acting at Slh (neglecting
AM*);

share of moment from total load on cracked slab;

share of compressive force from total load on cracked beam
(resultant of beam concrete stresses and of tension increment
AT due to external load);

as for Md but normal force;

external compressive force on the total composite cross-
section after cracking (effective initial prestressing force
deducing losses; Ncx= PK—AN*,);

ratio of initial moduli of elasticity of slab to beam concrete

@=0;

ratio of moduli elasticity of tendons to beam concrete (&= 0);

initial prestressing force deducing effects of steel relaxation
and of temperature difference at beam préfabrication (so-
called effective initial prestressing force);

live load;

centroids of ideal cross-sectional areas (9= 0) of uncracked
beam and slab, respectively;

resultant tension increment (due to external loads) in tendons,
distance of the overall beam concrete cross-section centroid
Stb (including tendon cross-sections) from the compressed
extreme fibre;

distance between the ideal cross-sectional centroid Siband the
compressed extreme fibre of the uncracked beam (= 0);
depth to the neutral axis of the beam section (effective depth of
the cracked beam section);

geometry constant;

geometry constant;

final values of shrinkage coefficients of beam and slab,
respectively;

compressive strain of the beam top (compressed) fibre
(subscripts | and 11 refer to uncracked and cracked state,
respectively, load subscripts are in parentheses; without
subscript < it comprises inherent compression due to creep
and shrinkage);

specific strain of the extreme tensile fibre of the beam;

Acta Technica Acatlemiae Scientiarum Hungaricae 95, 1982



CRACKED PRESTRESSED CONCRETE BEAMS 65

specific compressions of bollom ami lop fibres of the slab (see
comments on <*,);

. hl .
K 4 geometry constant:
X
H= . curvature parameter;
W=f>—<0 eccentricity parameter;
_h-J,

K =(/ geometry constant;

KM Kl curvatures of uncracked and cracked beam, respectively (the
uncracked beam is only subject to permanent loads dead
load + prestressing force + accessory effects);

Kvh Ks/ll the same as before but for the slab;

i \b/I ratio of prestressed reinforcement (tendons);

_ X relative effective depth of the cracked beam under eccentric
4=J axial load:
*1* . -, .
. constant for the centroid position Slhofthe beam in uncracked
=t stale:
stress in the beam top fibre (with load subscripts in
parentheses);
stresses in bottom and top fibres of the slab (with load
subscripts in parentheses);

1", tendon stress variation (compared to prestress deducing
losses. 17 1(7,,.,-tpJ

nor:r stress due to creep and shrinkage in the beam top fibre;

Aa'-t, the same for the slab bottom fibre;

.

t= A m parameter;

Lo final values of creep coefficients of beam and slab, respectively:

. \7? constant for the centroid position Sih of the complete beam

- concrete cross-section (comprising tendon cross-sectional
areas);
h
) geometry constant;
*mé
. C . - .
di- relative eccentricity referred to centroid
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Subscripts, superscripts

uncracked;
1] cracked;
€3 superscript for accessory stresses due to creep and shrinkage;
b beam (without slab);
C concrete;
com composite beam (beam + slab);
lower (bottom) fiber;
ex external (moment, force, load);
ps prestressed (prestressed reinforcement (tendons));
si slab;
u upper (top) fiber;
1,2,3 parts of dead load;
01 subscripts for times tO (prestress), t, (casting the monolithic

slab and waterproofing, paving (finishing), etc.) and I ,, (final
state: completion of accessory effects).

1 Introduction

Bridge construction practice prefers gridwork made of a monolithic slab and
precast, prestressed beams. Single beams may be qualified according to methods,
relying on the service condition and the ultimate condition at failure. The Hungarian
Building Code for Road Bridges requires exemptness from tensile stresses for the so-
called service moment calculated from the dead load and a given percentage of the full
live load (about 35% of the full live load "A”*).

Analysis of stress pattern in the primary beam without monolithic slab (precast
beams) after cracking may follow research work by Tassi and Klatsmanyi [1], [6], [7]
indicating both the exact solution of the problem, and an approximate method
describing essentials of the involved phenomena by simple, easy means for the
structural engineering practice.

In engineering practice, the beam is considered to cope with the nominal load
(dead load + full live load) if the stress in the top fibre of the beam cross-section,
considered to be uncracked, is lower than permissible (and if the steel stress increment
can be absorbed by the reserve in the tendon or by the ordinary reinforcement). In the
positive case the quoted approximate method predicts closure of beam cracks after
removal of loads in excess of the service load.

Exemptness from excessive residual deformations is safeguarded in certain
building codes by imposing the quoted stress limit.

Demonstrating criteria of exemptness from tensions and of limited residual
deformations on a beam assumed to be uncracked, the approximate method is seen to
be correct only for beams without a slab [6], [7]. Correctness of the approximate

* Symbol in the Code.
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method as a function of various parameters can be shown [ 1], [6], [7] to depend on the
prestress rate: the error to the detriment of safety in extreme fibre stresses of an
uncracked beam does not exceed 20% if the mean concrete stress arising from prestress
considered as centric is not less than half the basic concrete strength value.

Further analyses concerning composite beams will be presented below.

It is attempted to develop a method for determining stress conditions in the
cracked beam, the tendon stress increment, crack opening, and the ultimate elastic load.

Chapter 2 will be concerned with the stress and strain condition of cracked I-
beams, relying on references.

Recapitulating particulars, Chapter 3 gives an account of the devised method,
numerically illustrated in Chapter 4, deducing practical conclusions from numerical
results.

2. Cross-sectional characteristics of cracked beams

under eccentric compression

Most of what in stated below is known from references [1], [2], [4], [7] but the
discussion in Chapter 3 is more easily followed by referring to Chapter 2 than to the
special literature.

First, let us consider the geometry conditions of a beam without monolithic slab
vs. eccentricity e.

In any cross-section of a cracked r.c. beam under eccentric compression the
following equilibrium conditions have to be met [9] (compressive force being affected
by a positive, and compressive stress by a negative sign):

2dA = -<!’_c,b 2.1

i
Ne = 72dA = "“Teb 22

41
Hence:

(23)

u . Nx, NX,,
°_C,b c o e*Il - (24)

In conformity with Fig. 1, relative effective depth (£), curvature kbl specific
strains of extreme fibres (e~ «, ech) and stress in the top fibre aabare related by:

n=", (2.5)

D <p
tan y,,= kbl= =-1 2.6-7
Y X Ecbh ( )
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‘= eI

Fig. 1 Basic data, notations. Curvature moment of inertia of the cracked cross-section

(2.8

Further on, moment of inertia about neutral axis —to be called “stress” moment of
intertia—will be needed (involved in (2.4) for the stress in the compressed extreme fibre):

N

bx N
Ixu=~" +nAps(d -xn)2+(bu-b) d'AI X" ~ dzA 2+’ idz
+- j- [*n~{h-d)13+nlg,, (29)
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Ix,,= TN~{&3+ ~n2+{P~1)
+4(C—1)(£-*)3+|2tJ (2 10)
The corresponding static moment is:

Sxu= - nAp(d- X,)+(bu- bym - Y] b) 2.11

2

_{(; _nti(I-Q +{R-N[ ct(-y) +y(i-DU-ic)3 (2.12)

Introducing notations
€X,= X, - (*,,,- ©)=[E- (ff- 0j)]d=(E- 9)d (2.13)

Egs (2.3), (2.10), (2.12) yield  knowing the eccentricity e — a characteristic equation
for relative effective depth ¢:

a3¢3+a2¢2+a,¢ +ao=0. (2.14)

For a neutral axis intersecting the lower flange,coefficients become (d>x,,"(h —d,)->

c/y:

3=C

a2= - 3C3,

a, = 6n/r(1- 3)+ 30e(0- )(a- 23)- 3*(i- I(jc- 23),

uo= -bny(\ —3)—a2(/f—1)(2a-33) + k2(C- 1)(2a-33)-6 t, (2.15a—)

For a neutral axis intersecting the web (x,,(/i —4,)) substitution £= 1 may yield the
corresponding coefficients.

For a neutral axis intersecting the upper flange (xH<du) substitution {=/?=1
(rectangle) is imposed.

The above vyield cross-sectional stresses and compressions (strains) for any
eccentricity e.

Let us now consider the curvature conditions.

Eccentricity e of the normal force N acting on the cracked beam is referred to the
centroidal axis of the uncracked ideal cross-section (S,*) yielding for the curvature in
general (Fig. 1)

~Km- E. 1 ° (219

M=Ne. (2.17)
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To determine the “curvature” moment of inertia Icu, let us express the curvature
according to the strain diagram (Fig. 1)

b Nex
Kl — § ” (2.18)
*n Ec.bXm  Ec.bixu

Egs (2.16) to (2.18) yield for lau:

lcu=~1x,"T"Ix,,. (2.19)
e X,, <5 <X
It should be noted that for an eccentricity ecof force N referred to centroid Sd of the
uncracked complete concrete cross-section, Eq. (2.18) is replaced by
Ner

= 2.20)
Kb, ’Fc s bfcu,c

d cuc 7" feu)

The conc)ept of “curvature moment of inertia” has been introduced by Dullcska [2] in
his stability analyses. At present, this cross-sectional characteristic will facilitate
writing of conditions ofcompatibility between the monolithic slab and the precast beam.
Further analyses will rely on

At=73-6n/r(1-t) +(B- 1)a2(3£-2a)-((- Dk2(3E-2K)-6t, (221
A2= + L 2-6n/i(l-e)-(fl- D3a(@- 2« + (i- 1)3(k- 2f), (2.22)

O=p-w e (2.23)

(according to Egs (2.13) to (2.15)), permitting to determine eccentricity e for a given
effective depth xn.

These geometry characteristics for a precast beam have been illustrated in Fig. 2.

The real form of the beam cross-section is not exactly /;
the listed dimensions bu,b,,d u, d, belong to a /-section with uncracked characteristics
xtb, Alb, identical to those of the real beam. Moments of inertia lcu, Ixn are equal if
neutral axis x,, of the cracked cross-section in eccentric compression is coincident with
the ideal centroidal axis xI) of the uncracked cross-section. Of course, equality also
subsists for e-»00 (pure bending, cracked state). It is interesting to see how fast the
“curvature moment of inertia” for a given structure decreases after cracking (ea
= cracking eccentricity; ek= kernel radius for the bottom fibre). Accordingly, also the
“curvature moment of inertia” markedly increases with eccentricity.

Occurrence ofa compressive force causes the curvature to increase less abruptly

than in pure bending /Tb~ ~ fhj m

After cracking, none of functions kbJand aabin Fig. 2 is linearly dependent on
eccentricity e (while in the tested range they are nearly rectilinear). For e-+oo both
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(0

Fig. 2. Cross-sectional characteristics of cracked beams under eccentric compression
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functions tend to infinity (the N value being fixed). For e-»00 and Ne-*const, both
functions have a limit value (uncracked stress state, pure bending). For a given e, of
course, extreme fibre stresses and curvature are linear functions of external
compression N. The elastic linearity is valid in this form.

3. Analysis of the beam in interaction with a monolithic r.c. slab
3.1 Basic assumptions, approximations, neglects

1 Tendons and concrete are of a linear-elastic material.

2. Cross-sections are assumed to remain in plane (Bernoulli-Navier hypothesis).

3. The effect of ordinary beam reinforcement is neglected.

4. The beam is either a priori made with bonded tendon or grouted.

5. The effect of the cracked tensile concrete zone to reduce the tendon strain (the
stiffness increase due to “growth” of modulus Es)is not directly reckoned with. It can be
approximated e.g. by standard methods, where Esis understood to be the increased
modulus.

6. Internal equilibrium stresses due to creep and shrinkage are reckoned with as in
the uncracked beam. This equilibrium stress system alters the eccentricity of forces on
cracked beam elements, hence also “curvature” moment of inertia Icu. Accordingly,
accessory effects cannot be simply superposed.

7. Steel relaxation is complete soon after prestressing.

8. A monolithic r.c. slab is rectangular and of symmetric reinforcement.

9. Moment of inertia of the cracked beam involves the moments of inertia Ips of
tendons about their centroid but the share AMts on tendons due to creep and
shrinkage—by orders less than the others—is omitted from equilibrium equations.

Also there are load effects to be reckoned with (dead load, working (live) load,
prestress, creep, shrinkage) will be discussed below, not directly involving the external
moments from accessory effects in hyperstatic beams, but the latter may be comprised
among dead load moments to that sense.

Internal equilibrium inherent stresses due to creep and shrinkage in the cross-
sections need to be predetermined by some convenient method for applying the
presented method (accordingly, ideal cross-sectional characteristics have to be
calculated with (p=0). In the numerical example in Chapter 4, Frey's method relying on
Trost’s material model has been applied [3].
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3.2 Description of the method

In the uncracked beam, stress resultants M'b, Nb(Fig. 3) arise from a beam dead
load D ,, slab weight D2 and initial prestressing force PSo.

Moment M(3,p) in the composite cross-section of a beam, assumed to remain
uncracked under further loads, could be decomposed according to e.g. [1] to moments
and forces Mbl, N1 and Msll, Nsil in the beam and in the slab, respectively. Accessory
stresses due to creep and shrinkage in slab and beam may be superposed on the former
ones.

GI(Us0)

Fiy. 3. Well-known stress components in crack-free state
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For a cracked beam, the starting condition will be that where all constant loads
are already acting, and also stress excesses Aav(0o, 0) from accessory effects (shrinkage,
creep, [3], time i=iQ) subsist. Initial prestressing force has been considered as that
reduced by the effects of steel relaxation and temperature difference At0 (Hoyer
prestressing system):

Ps0—Ps—APs(rel., At0) . (3.2)

After cracking, the slab is subject to Mpl, Ns,, and the beam to compressive force N of
eccentricity e. According to Fig. 4c, resultants of slab and beam accessory stresses are
AMft, ANftand AM?h, AN? brespectively, forces balanced in uncracked condition by
steel moments and forces AM?S, AN?Sseen in dashed lines in Fig. 4c. Since accessory
effects alter the eccentricity of forces on structures (beam, slab)—affecting in turn, the
beam “curvature moment of inertia” (Fig. 2—accessory stresses cannot be superposed
on final stresses due to loads. After accessory stresses have developed, prestressing force
PS decreases by AN?Sbut the decrease in this form cannot be taken otherwise into
consideration than in the equilibrium equations. Compatibility equations have to
involve compressions (strains) and curvatures due to moments and forces AM? ,AN?,,
AM? h, AN? bin Fig. 4c, permitting exact determination of the stress jump along the
joint line between slab and beam, and curvature of the structural members, in
compliance with the impossibility to exactly account for accessory stresses by simply
reducing the prestress. With external stress resultants Nex and Mex arising after
accessory effects, equilibrium equations for the cracked condition (Fig. 4) become
(neglecting AMys):

Nex=P,0-All%, 32
Nex—N + Nsi, (33)
Mex=M(1,2,3, sO,p) + AN*seps, (34)
Mex= Ne + Md+Nsda . (35

Here AN'ps gets an overdash, it being somewhat different from AN?S:
ANI=AN«pB+ nApA0%’,

where Ao?b, is concrete stress in tendons centroid due to accessory effects (upper,
framed part in Fig. 5).

Namely, AN?Sbelongs to the condition following cross-sectional deformations
due to accessory stresses (do-"). Thus, according to the present mode of discussion, this
force has to be increased as mentioned above to result in the force (P,0—AN??)—
considered to be external—belonging to the undeformed cross-section. By the way, this
method involves the effect of prestressing force variation AT due to external loads
(negative, i.e. tensile force, indicated in Fig. 4a) and resultant compression Nbof beam
concrete stresses sum up to force N.
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Diagram ofstrain due to total permanent load is seen in the right side part of Fig.
4c. Compatibility of this system means the identity between the increments of
compression along the hardened slab joint line i.e. the curvature, and of the curvature
of the beam top fibre. Shaded area shows compressions arising from stresses
<x(1,2,3,50,tp), the rest being composed of shrinkage and of compressions pro-
portional to creep.

Unshaded compressions are, in detail (where p = 0.8, concrete ageing coefficient
[3], and ¢® = creep coefficients belonging to loads applied at prestress (t0) and after
slab concreting (r,), respectively):

Accessory stresses are joined by subscripts oftime t0, t, , tx in brackets. Subsequently,
these terms in brackets will be omitted, any accessory stress corresponds to complete
increment during interval tO—txi. Compressions KFJ and Kub are considered
invariable after cracking, not to be detailed further. The quoted system of inherent
deformations will be omitted in the analyses, they can be used only in determining
external displacements. The respective curvatures, involving K“d and K[<bwritten by
analogy to the former, become:

KSI ~ ) (38)

P Fﬁ'r.,b; £ 39)

The total dead load combined with the prestress to produce the total accessory
stress system (AMfb, AN*h, AM*,, AN*, AM*S, AN*)~to be called starting
condition—causes a strain in the bottom fibre of the slab. The live load causes the beam
to be cracked, changing the e[, , value to 4, ,,:

-n3) , nalsy

A =Hawu o X8 (3.10)

sl

gin—f 4Kl — , bt ALK (3.12)

Is/ “ c.slhsl

The compression increment (in a slab of symmetric reinforcement):
|

AF - F —fl —— iL), o x| 3.12
Aiii 21t||5|all s> /,'arL].mJ (3.12)
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Fig. 4. Equilibrium of internal stresses in cracked composite cross sections

Elements of deformation (strains and curvatures)
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Beam top fibre compression in the starting condition and after cracking, respectively

(2.4):
MR Tep—= (1'2'%(;0” d<-r xan, (3.13)

(3.14)

Compression increment:

AP i Qe NeXs o (1.2, 3.50)-d<:? (3.15)

Expressing M,, and Ns, from equilibrium equations (3.2) to (3.5) and substituting into
(3.12), compatibility condition

(3.16)
yields for force N acting on the beam:
* o
© (3.17)
Notations mean (e"(3)= €' 5,(3)):
*= - 3.18
a*=<,(1,2,s0)+ £ (3.18)
n="L 3.19
" Kb (3.19)
i- M, -NeA i (3.20)
BIO = B'HXH'I + [a—e + 1\ _1 (321)

xh \ 2fbl 4isJ nc

Force N obtained from (3.17) is other than the true one N*, the curvature compatibility
being still missing.

In the starting condition, and after beam cracking, the respective slab curvatures
are (tany,,,, tan yj{l in Fig. 4).

Wi r o> e AR (322)
Ms,
e (323)
KM= Fpo Hm
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Curvature increment:
M g -AMit M(@3)
A Ksi — Ks 1~ Ksll — g (3-24)
Ac,sinsl £c,d Icor
Beam curvature in starting condition, and after cracking, resp. (tan yM, tan yM

in Fig. 4):

K Mi, 3 AM%
Kbl — r roo+ rLlJlJ) NF X A Kbl” (325)
c,b*\b *Ac,b* Icom "c,b‘cb
Nex
Kmi — + . 3.26
£chixi " (329

Curvature increment:

Nen M, M(3) AM*b
Kb L n, Ncor Ic,b

AKb=KbU- K U = (3.27)

Expressing moment Msl from equilibrium equations (3.2) to (3.5) and substituting into
(3.24), compatibility condition
Akdl= Akb (3.28)

yields for N:

N " (3.29)

Notations mean:
¢ Mex-Nea-AMZ | Mb | AM*b

lIsl”hc I\b Ic,b

(3.30)

+ 1 3-31)

Under actual conditions, in addition to the equilibrium conditions, both compatibility
conditions are satisfied:

n*=n**=n .

Rather than by further reductions, the solution is advisably found by computer
iteration. Assuming a convenient starting £ value, eccentricity e(@>, 3) results from (2.21)
to (2.23). Depth exu below force N is obtained from (2.13). Now, substituting £ into
(2.10) yields “stress” moment of inertia IXII.

Available parameters are applied to calculate N* from (3.17) and N** from
(3.29). For the procedure is iterated, increasing or decreasing the £ value
until equality N* =N** =N (within a specified error limit).

N being known, equilibrium equations (3.2) to (3.5) yield moment and force Msl,
Nsl, resp. acting on the slab. Steel stress increment (Aops) needed for determining the
crack width is obtained from Fig. 1as usual.
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4. Compressed flange stresses as a function of the load process

Top fibre stresses aoh, 4“s of precast beam and monolithic slab with cross-
sectional characteristics according to Fig. 2 are seen in Fig. 5. The beam meets the
fundamental requirement of the introductorily outlined approximate method: the
stress in the top fibre of the beam due to combined dead and full live loads (the so-called
nominal load Mnom=M(1, 2, 3, p)—assuming no crack—is lower than the permissible
Ifc%= 18 MNm~2).

The Hungarian Code of Road Bridges requires exemptness from tensile stresses
of the bottom fibre under so-called service moment (Ms).

The service moment is composed from the dead load moment iW(1,2, 3) and the
reduced (ar) fundamental (unfactored) values of the full live traffic moment: Mser= M(1,
2, 3)+ arM(p). The full live load of the bridge consists of concentrated loads (4 x 0.18
=0.72 MN) and an uniform load of 0.004 MNm~2 intensity.

Msr= 14637+ 0.35 x 1.2562= 1.9069 MNm in the case of Fig. 5.

Mc in the diagram is the cracking moment.

Accessory stresses (creep, shrinkage) have been determined according to [3].

The obtained results successively pass into those to be calculated, assuming
uncrackedness achieved at moment MO for stress o' £=0 (eKin Fig. 2), where also
tangents coincide and stress functions of both extreme fibres are ascending, but later
the beam function will be concave from below. The functions are nonlinear, namely
both force N and eccentricity e vary continuously. While beam stresses differ little from
those for an assumed uncrackedness, those for the slab are much poorer. The slab
behaves elastically up to about 90% of the nominal load: M\(ms0.9 Mmm
= 2.460 MNm. Permissible stress:/£*,= 11 MNm 2. Plastic behaviour starts at about
79% of the total live moment M(p)(M(p) = 1.2562 MNm).

Transition to the ultimate condition at failure is seen in a dash-dot line. The
ultimate condition arises from the so-called maximum external moment (design value of
the external moment) according to the code applying divided safety factors: Ainax—yg
M{\, 2, 3L+y, M(p)= 2.9711 MNm (where yg= 1and yg= 1.2 is a safety factor for the
live load). Numbers at horizontal tangents to a—e diagrams framed in the right-hand-
side margin of Fig. 5 are ultimate (failure) stresses involving safety factor for concrete yc
=15(—21 and - 13 MNm-2).

The extremal value of moment A/nmax being in excess of the nominal moment
Afram by as little as about 9%, thé results agree with our observation: such a high
nominal moment cannot be the beam in the elastic range. Stress distributions due to
nominal load in an uncracked (dash line) and a cracked (full line) beam are seen in the
upper right hand corner of the figure. Plastic behaviour upon Mmaxmoment is seen in
the dash-dot line. Confrontation of these two diagrams points to the fitness of the
presented method to correctly describe stress conditions after cracking.

Approximate crack width analysis specified in the Building Code for Road
Bridges showed the crack width at the beginning of the plastic range to be correct. It is
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interesting to observe the agreement between beam top fibre stresses obtained with the
introductorily outlined approximate method, and those presented in this paper. Top
fibre of the beam designed according to the approximate method develops elastic
stresses under the full nominal load, but the slab gets into the plastic range at about
90% of the nominal load, limit of the elastic load capacity M ‘[m of the tested beam.
Moments in excess shift the neutral axis upwards, widening the cracks. A higher than
ultimate elastic moment causes plastic deformations in the beam, unloading would not
entrain recovery.

Summary

A method has been developed for the stress-strain analysis of cracked precast
composite beams, i.e. those interacting with monolithic r.c. slabs.

First, eccentricity-dependent variations of the cracked beam cross-sectional
characteristics, in particular, “stress” and “curvature” moments of inertia have been
determined. Before cracking, the “curvature” moment of inertia is identical to the
moment of inertia of the ideal cross-section in an uncracked state, while after cracking,
with increasing eccentricity, it gradually passes into pure bending moment of inertia in
a cracked state. Considering the prestressing force as an external force were written out
as the equilibrium equations.

With the aid of the mentioned moments of inertia the compatibility equations
were deduced regarding both the identical changes of strains (along the joint line
between the slab and the beam) and the identical change of curvatures.

The method is suited for determining the full elastic behaviour and the ultimate
elastic load of the cracked composite beam.

The presented exact treatment may vyield the tendon stress increment in the
cracked beam, permitting to predict crack width.

It was numerical investigation the stresses of a composite beam dimensioned for
the nominal load on the basis ofan uncrackedness approach. Calculating beam stresses
from prestressing up to the application of the nominal load (dead load-(-full live load)
showed the beam to behave elastically up to about 90% of the nominal load, hence 79%
of the full live load.

Crack widths remain permissible until the ultimate elastic load.

Thereafter the slab starts plastic behaviour (elastic stress peaks flatten), with
increasing crack widths that only partly close after unloading (plastic remaining own
strains).
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SOME RECENT EXPERIMENTS
ON SOIL STABILIZATION
IN AGRICULTURAL ROAD CONSTRUCTION

A. KEZDI and E. Biczék*

[Received 5 April, 1983]

The aim of this experimental work was to decide which stabilization method could be applied
most successfully and most economically in some areas that could be taken as typical in Hungary.
Two regions were chosen: a loess area and a clay area in the mountains. In these areas we tried
cement, fly ash and chemical stabilizations were tried applying different technologies: local materials
mixed in situ, transported materials mixed in situ and premixed materials. In the present study the
experiences obtained in planning and in construction are presented.

1 Introduction

The question of transport rentability in the Hungarian agriculture is coming
even more into prominence since large-scale farming and increased mechanization has
generally become spread. Further progress necessitates the improvement of agricul-
tural road network. In order to work properly at all times, the surface of roads must
have a correct bearing capacity and their material must be stable. These tasks can only
be accomplished by soil stabilization. Although these requirements can undoubtedly
be better satisfied by Macadam roads or by high-quality asphalt or concrete roads, the
limit in supply ofavailable raw materials, namely in stone, cement and bitumen and the
high costs of the traditional building methods make impossible the construction of
roads this way. Therefore, the question is never raised whether we construct Macadam
or a stabilized earth road, but, whether we are able to construct stabilized roads or
nothing.

Recognizing all this, the Ministry of Agriculture and Food took the case of
stabilization of main agricultural roads into the technical development programme.
Co-ordination of the some five year research work was made by the Plant Protection
and Agrochemical Centre of the Ministry of Agriculture and Food. The research
programme, the laboratory investigations and the experimental technologies were
elaborated by the Geotechnical Department of the Budapest Technical University.

The Road Research Institute and the Energy Economy Institute also co-
operated, as consultants.

* Dr. E. Biczok, Research engineer, Dept, for Geotechnique, Technical University of Budapest,
Hungary
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Investigation of this problem has long traditions in our department. Yet in the
thirties Prof. Jozsef Jaky urged the introduction of that method, but the condition in
agriculture at that time did not make it possible. In the fifties, an intensive development
directed by the senior author of this article, started, when, the most important physical
and technological problems of the soil stabilization were made clear by large scale
laboratory investigations and by building test roads. The experiences of this work were
presented in the book “Stabilized earth-roads” (Kezdi, 1967.).

2. The aim of the research work

The direct aim of the research work was to decide which stabilization method
could be applied most successfully and most economically in some areas that could be
taken as typical in Hungary. Two regions were chosen: a loess area close to Szekszard
(Zomba) and a clay area in the mountains (Ndgrad County, Szécsény).

In these two areas three kinds of stabilization methods were applied:

— cement

—fly ash and lime

chemical stabilization, the latter one was made with the chemical agents
trademark RRP and CBV.

All the technologies available in Hungary were tested:

in the case ifthe soil in the crown of the road was suitable for stabilization, the
technology of in-situ mixing was applied,

if the soil in the crown of the road was not stabilizable, material from a
neighbouring gravel or stone pit was transported onto the crown of the road and
stabilized by using the technology of in-situ mixing.

—the pre-mixed technology was also tested. Ready made mixture from a
neighbouring mixing plant of a Directorate of Public Roads was transported onto the
prepared surface.

The length of the test sections varied between 150—500 metres. On the same test
site these sections were subjected to equal traffic, to equal loads, to equal weather
conditions, therefore the methods are comparable and this made the choice of the right
procedure possible.

3. Experimental soil stabilization at Zomba
For experimental purposes one of the main inner roads of the co-operative farm
“Egyesult Er6vel” was chosen. The earthwork of the road was made by the co-

operative farm. In the crown of the road two kinds of soil could be found: yellow loess
and yellow-brown lean clay. Physical characteristics of these soils are given in Table I.
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Table I. Physical characteristics of soils at Zomba

Soil U°o V'o  PT'glenP PH caCo,
yellow
loess 30.2 18.3 119 17 7.7 124
brown clay  34.2 19.2 15.0 1.65 7.3 2.2

3.1. Planning the stabilization

The purpose of planning was to determine the required quantity of each
stabilizing material. For that purpose cylindrical specimens were prepared which
consisted of a mixture of soil and different quantities of stabilizing material. The
samples were stored in wet surroundings, then strength, durability and freezing
resistance tests were performed. The samples of proper composition had to meet the
relations of the Standard “Road 5-72” of the Ministry of Traffic and Posts.

Stabilization with cement means to mix the soil and the cement at the proper rate
and to moisten and compact them. Yet in the laboratory experiments we took into
consideration that fly ash-portland cement would be used in the construction. Setting
of this kind of cement is slow, and therefore the unconfined compression strength
values were determined after 14, 28 and 56 days, the durability tests were started after
the 14th day and the freezing tests after the 28th day were started (see Figure 1). The

Fig. 1. Compression strength of soil cement cylinders
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strength requirements of the standard were applied to these dates. The necessary
cement quantity was increased by about 10 per cent because of the uncertainties of the
in-situ mixing. Both values are presented in Table 2.

In the case of stabilization with fly ash and lime the hydraulic binder was lime and
fly ash from Pécs mixed at the rate 1:.4. Because of the very slow binding process of
lime—and fly ash—additive stabilization compression tests were performed after 30,60
and 90 days, and the durability and freezing tests were started after 60 days. As an
example the results of the investigations performed in loess is presented in Figure 2.

With fly ash and lime many fine grains are added to the soil so the compacting
characteristics will be changed. Figure 3 shows an example compacting curves of loess
and fly ash—Ilime mixtures at different rates are presented. Prescriptions for the
construction are shown in Table 3.

Table 2. Characteristics of soil cement road construction

Soil c% e, kg/trr ¢, kg/m2 psgdS% g,cm% «,,9dc>
loess 7 18 20 176 9 13
clay 10 25 25 167 10-14

h'ig. 2. Compression strength of fly ash and lime stabilized cylinders
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Fiy. 3. Compaction test of soil and fly ash and lime

Table 3. Characteristics of soil fly ash road construction

. Lime + fly ash addition Lime Fly ash 95%
Soil \ ka/m?2 ka/m2 Pl glcm3
P% p' kg/m2 g/m g/m
loess 20 45 9 36 171 9
clay 25 55 1 44 1.65 n

In the case of chemical stabilization we aid not performed the tests mentioned
above, because we did not Want the treated soils to behave as a pavement, therefore in
the following we do not speak of stabilization but of chemical treatment.

The most important purpose of this method is to change the soil-water
interaction in a favourable direction by surface reactions. For this reason the method is
mostly applicable in case of cohesive soils. In the experiments two chemicals were used:

Reynolds Road Packer 235 (RRP) and Chemische Boden Verbesserung (CBV). As
to recommendations of the manufacturers “on the treated soils much higher bearing
capacity can be reached than on non-treated ones”. It was particularly investigated
how the chemicals changed the physical characteristics of soils: the plasticity index of
soils decreased and both the values of the optimal water content and the maximum
density in the compaction test increased by only a little, using each chemical. As a
control we made the manufacturer investigated the soils, according to their statement
the soil was conditionally suitable to chemical stabilization. Addition of chemicals was
in each case 6 litres per 100 square metres.
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3.2. Construction works

The construction was made from May to July 1981.

The cement and thefly ash -lime stabilization means performing much the same
operations. Thickness of stabilized layer was 15 centimetres.

Before the operations the compactness of the soil in the crown was checked in
order to determine the necessary cutting depth. After loosening the surface by
ploughing the next stage was the pulverization to a prescribed depth. The aim of the
operation isto disintegrate the clods to the degree demanded by stabilization. This was
not easy at all in cohesive soils. Figure 4 illustrates how the quantity of clods bigger
than 5 millimetres changed after each run of the pulverizer-mixer. It can be seen in the
requirement, that the quantity of clods bigger than 5 millimetres should not exceed 10
per cent, was not reached.

The next task was to spread the stabilizer and to admix it with the soil. The dry
mixing was performed by a rotary scraper again. Then, water was added to the mixture
to reach the optimum water content for compaction. The last operation was the
compaction. Figure 5 illustrates the connection between the number of runs and
compactness inthe stabilization of lean clay with fly ash and lime. It can be seen that the
values of compactness determined by isotope measurements are somewhat less than
that of the direct sampling. Probably this resulted from that, that the radiometric
method did not take the grains of lime and fly ash into account.

Chemical stabilization began by loosening the soil, too, then pulverisation was
made by a rotary scraper. Addition of the chemicals was performed in several runs,

Fig. 4. Connection between pulverizing and number of runs
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Fig. 5. Connection between number of runs and compactness

diluted as prescribed. Hereupon came the period of rest, sprinkling at intervals and
three weeks later the surface of the road was compacted.

Each stabilized section got a coating surface definitely necessary to prevent
freezing in winter.

3.3. Evaluation of the experiment

Completion of the road construction was followed by a one year long period of
observations. The traffic on the road was continuously recorded. On the basis of
analysing the traffic data the planning traffic value is 12500 pieces of 100 KN unit axles
in a year i.e., ehe road falls within the very light (A) load category, thus the value of the
admissible deflection is 1.5 millimeter. Bearing capacity of the road was measured by
deflection measurements and by plate loading tests three times: two months after
finishing, after the spring period and at the end of the one year observation.

The results of the measurements are to be seen on Figure 6. Besides, the damage
ofthe road surface were visually observed. Based upon all these we can say that, though
the cement stabilized sections had a deflection exceeding by little the prescribed value of
15 millimeter, the experiment proved to be successful. The method can be offered for
stabilization of loess and silt in a thickness of 20 centimetres.

The fly ash and lime stabilization was definitely successful, because deflections
were less than 1.5 millimeter, thus the method can be applied in loess and silt to a
thickness of 15 centimetres, in lean clay (/p<20%) to a thickness of 20 centimetres.
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The chemical treatment had no success. The chemical RRP gave an especially bad
result. The pavement laid upon loess and lean clay treated with RRP crumbled entirely
already some months later. The deflections of the section treated with the chemical
CBYV are somewhat less, but in loess the pavement totally crumbled and in lean clay the
first signs of damage could be observed.

Figure 7 allows some interesting comparisons, analysing the per unit costs. The
costs of materials, transportation and machine operations are separately shown.
Dotted line shows the extrapolated costs of stabilizations certainly reaching the
required technical characteristics, proved by experiments.

4. Experimental soil stabilization at Szécsény

For experimental purposes one of the main road of the co-operative farm “II.
Rakdczi Ferenc” was chosen. In the crown of the road there were medium and highly
cohesive clay soils. Therefore, it was intended to stabilize by transported spoil from a
neighbouring gravel pit by cement, by fly ash and lime, respectively, and great hopes
were attached to the chemical treatment, too.

4.1. Planning the stabilizations

To reach the purposes mentioned above, detailed laboratory investigations
were made. In case of cement stabilization we determined the quantity of cement
necessary for the successful stabilization of the spoil from the gravel pit, later the
technology was elaborated based upon these.

The fly ash stabilization was planned to perform with the spoil from the gravel pit
and with the mixture of lime and fly ash from Kazincbarcika.

For chemical treatment the chemical agents trade mark RRP and CBV were used
here, too. The essential physical characteristics of the soils are illustrated in 7able 4.

According to the laboratory investigations the chemicals decreased the values of
the plasticity index and improved the compactibility of soils a little. The manufacturer
of the chemicals also investigated the soils: the brown clay was not, but the red brown
and the yellow clay was suitable for chemical stabilization. The quantity of chemical to
be used was given: for both soils 6 litres per 100 square metres.

4.2. Construction works
The construction began in 1980. Chemical treatment in the three soils were
performed according to the technology reported above. It did not fulfil expectations.

The rains in the autumn, but even more in the winter and in the spring almost totally
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Table 4. Physical characteristics of soils at Szccseny

. . Organic

Soil wL% VA ) Vio CaCOj  .ontos
brown clay 388 171 217 0.4 48
brown clay  51.0 195 315 0.4 53
yellow clay  46.1 16.6 29.5 0.3 438

damaged the road, except of a short section. In the springtime the road was in a worse
condition than other roads of the co-operative farm not treated by chemicals. Then it
was decided to stop further experiments, except the section holding out some hope
mentioned before.

Cement stabilization was performed on a section of about 400 metres long, but in
a very bad quality. For this reason and for several other problems the construction firm
had to be exempted from further operation.

The further construction was performed by the Salgétarjan Directorate of Public
Roads from May to July 1981.

The fly ash stabilization was made applying several methods, the local
possibilities maximally taken into consideration. The fly ash was in every case wet fly
ash from the nearby thermal power station of Visonta, transported on plateau trucks.
As activating material in addition to the calcium hydrate, the byproduct of calcium
hydrate from Dorog was used, too. The raw material was the spoil from the gravel pit of
the co-operative farm, transported to the road crown, in other cases it was the soil ofa
neighbouring gravel pit. In these two cases stabilization was made by in-situ mixing.
On a third section pre-mixed stabilization was made. In this case the mixture of soil-
calcium hydrate—fly ash made at the mixing plant of the Directorate of Public Roads
was ready made and transported by plateau trucks to the road crown and after
spreading, was compacted.

4.3. Evaluation of the experiment

After finishing the road came a year long observation period, while traffic was
permanently recorded. The analysis showed the value of the planning traffic was 10000
pieces of 100 kN unit axles, i.e. the road fell is within the very light (A) load category,
thus the value of the admissible deflection was 15 millimeter. Bearing capacity of the
road was also checked three times: after finishing the road, after wintertime and at the
end of the observation period. Deflection measurements and plate loading tests were
performed. The results of the tests are shown in Fiqure 8.

The cement stabilization of the gravel and sand did not succeeded here, but it was
due to the bad quality of construction, the method is further recommended.

Al of thefly ash stabilizations gave good results. Taking into consideration the
technical parameters, the best was the pre-mixed soil of a stone pit with fly ash, the next
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one is the in-situ mixing of the spoil ofa stone pit and the last one is the in-situ mixing of
the gravel spoil.

The chemical treatment did not fulfil the expectations here either. As was
mentioned, after the first winter the road sections treated with chemicals were in worse
condition than the other roads of the co-operative farm that were untreated. The some
150 metres long section made with RRP that needed a continuous maintenance and
because of the repeated puddling would slowly take on the character of a mechanical
stabilization. The chemicals remained were spreed on another area of Szécsény, on
another clay. The section treated with RRP is already completely damaged, the part
treated with CBV is still in good condition.

Figure 9 illustrates the per unit costs of the stabilizations. Dotted lines show the
extrapolated costs of stabilizations fulfilling the technical requirements. Attention
should be paid to the fact that the costs of the cement stabilization should not be
compared to the cost of other stabilizations, because it was performed by another
construction firm a year earlier.

Summary

In our experiments, on the one hand, well-known stabilization methods were
investigated in order to expand their field of application, on the other hand new
materials and methods were tested.

Summarizing the experiences the following conclusion can be drawn:

Application field of the cement stabilization is found in regulations. The thickness
of stabilizations made from loess and silty soils shall be 20 centimetres.

The fly ash stabilization may be economical near to thermal power stations
within a distance of 100 km. Instead of calcium hydrate which is difficult to obtain, the
by-product of calcium hydrate also suits as activating material. In the absence of local
materials (spoil of gravel or stone pit) premixed stabilization can also be applied, ifa
mixing plant can be found within 100 kilometres.

In connection with the chemical treatments we gained bad experiences. The
chemical RRP did not prove to be fit on any experimental section, and the treatment
with the CBV also proved unsuccessful, except in one case.

Finishing the experimental period we express our hope that the stabilization
methods, which proved succesful would soon be used to a great extent and would help
to solve the transport problems in agriculture.

Finally we wish to express our thanks to associate professor Mr. Istvan Lazanyi,
who elaborated the basic conception of this experimental programme.
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LATERAL BUCKLING OF ARCHES WITH FORK-LIKE
SUPPORTS, ELASTICALLY RESTRAINED
ALONG THEIR ENTIRE LENGTHS AGAINST
LATERAL DISPLACEMENT AND ROTATION

L. K.OLLAR*—. BODI**

[Received 3 May, 1983]

The arches of a tent structure are supported against lateral buckling, on the one hand, by the
tensile stillness, on the other hand, by the shear rigidity ofthe fabric. The tensile stiffness acts as a row
of springs, and the shear rigidity acts in the form ofdistributed elastic bending moments on the arch.
The paper takes these two effects into account, and determines the critical compressive force of the
arch with “fork-like” supports.

1 Introduction

Lateral-torsional buckling of centrally compressed arches, elastically supported
against lateral displacement, is dealt with in [2]. This lateral restraint is in most cases
provided by the fabric roofing stretched onto the arches. Detailed investigations of the
static properties of the fabric [3] showed that it exerts, besides hindering lateral
displacement, also another restraint: the shear rigidity of the fabric hinders the rotation
in lateral direction of the arch as well. This elastic restraint comes about in the form of
distributed horizontal forces, which act, as a rule, at a point G different from the shear
centre T of the arch, so that they also exert twisting moments on the arch [3].

In this paper we shall consider this restraining effect, in addition to that against
lateral displacement treated in [2]. The assumptions and approximations to be used
are identical with those of [2].

2. Notations

The notations showed in Fig. 3 of [2] are to be supplemented by the following
(see also Fig. 2.

G — point of application of the lateral shear restraint;
vG— y-directed displacement of point G;
tg — distance between shear centre T and G;

* L. Kollar, KaTap u. 9. H-1122, Budapest, Hungary
** |, Bodi, Budapesti M(iszaki Egyetem, Vashetontanszék, Miegyetem rkp. 3, H -1111 Budapest,

Hungary
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Fig. I. The cross-section of the arch supported by the fabric

g — modulus of shear restraint [/V] (referred to unit arc length), with whose aid the
horizontal force qygcan be computed by the formula

(1
see in [3]. Here prime denotes differentiation with respect to the arc length.

3. Differential equations of lateral buckling

According to [4] the differential equation system of an arch in the state of
bifurcation of equilibrium is:

where M and Tare the internal forces developing during buckling, and mand gy denote
the loading terms which come about due to buckling, referred to unit arc length.

Due to the shear rigidity of the fabric, these loading terms have to be completed,
with respect to those defined by Eqs (6a) and (6b) in [2], by the following terms marked
by the subscript g

U= Wii=dT - 19P), (32)
- 9(tg-e)v'b= -g (tg-e)(v'i—tg(p"). (30)
Hence, we finally obtain for the loading terms:
ay=-Nv"r+ Necp"-c(vT-tc@)+g(v'r~tgg"), (4a)
m=N o <P~(ig+iy)(P"~ J2<P +c(te-e) (vT- te(p)-
-g(tg-e)(v'r-te(p"), (4b)
mx= 0. (4c)
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Expressing the internal forces by the displacements of the shear centre T, we
obtain the following expressions:

N =gR = const.. (5a)
Ty=N(v'T-eip') +cj (VT- tccpds- g(VT- ted), (5b)
(50)
<d)

After performing the necessary derivations, we introduce the expressions (5) into
Egs (2a) and (2c). Eq. (2a) thus becomes:

- (™ +iy)N(p" +ctc(vr - Lip)- gte(v'r- Ap")=0. o

If we differentiate Eq. (2c) once with respect to s, and substitute for Tyaccording
to (2b), we arrive at the second differential equation:

+ N{ey" - vr)—(vT—f,.(®+q(v'r- t i) =0. H)

Egs (1) and (ll), containing the unknown displacement functions vT and oz
constitute the differential equation system of lateral buckling of the arch investigated.
The critical compressive force (Mr, causing buckling, can always be computed from
these equations, taking into account the boundary conditions corresponding to the
supports of the arch.

It should be kept in mind that Eqgs (I) and (II) have been developed with the
assumption that R and N are constant all along the arc length. The equations are thus
valid, strictly speaking, for circular arches acted upon by a constant radial load g only.
For arches of other shapes, however, the result can be used as an approximation.
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4. Solution for “fork-like” supports

In the case of “fork-like” supports, when the end cross-sections of the arch are
prevented from displacing laterally, but can freely rotate, and they cannot turn about
the arch axis, but can freely warp, the following boundary conditions hold:

s=0:

. V= o (6a)
s=1: } X

R = (6b)

®=0; (6¢)

<P"+j v i =0. (6d)

This special kind of support allows to assume the unknown displacement
functions in the form:

<= 7z 4ksin(/ks), (72)
fe=1. 2. 3...
rT=  Z  vksin (A%s), (7b)
k=1.2.3...
where /.k and @k and vk are constant coefficients.

Since every term satisfies the boundary conditions (6a) to (6d) and the differential
equation system (1) and (1), the linear equation system for the coefficients decomposes
and can be written in the form:

flu a2 (& "0’ o
@ a2 w0 e

The coefficient matrix is symmetric (ci, 2= a21), and its elements are the following:

1 in  El ~
an = ->Z[ GIT+tiEI*-Nie2+il +ig)+gta\+ - N[(
R r e-i) ~ R
-ct2, (9a)
Ne +(GIT+/REIm+EIX)" -gte +ctc, (9b)
azz2— Ak N-(Glt+/2ELyrz  ~6TX -C. (9¢)

The value of the critical compressive force N = Na can be obtained from the

condition
det A=au a2—a h —G,
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which yields an equation of the second degree for Ncr:
K2b12+K ,bl,,+k0=0. (10

Performing the multiplications and dividing by A* we arrive at the following
expressions for the coefficients:

2

Hence we obtained a closed formula for the critical compressive force of the arch
with fork-like support.

S.  Numerical example

Let us determine the critical compressive force ofthe timber arch shown in Fig. 2,
supported against lateral displacement and rotation. It corresponds to one of the
arches of the tent structure investigated in Sect. 6.2 of [3].

The geometric data of the structure not given in Fig. 2 are as follows:

/=2aR=2 71(9.30)= 24.48 m,

A= fey =0.1283* (fc=1,2,3, ...),

£=W 7kN/m2,
Gs;0.4£ = 4(10')kN/m2,
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Fig. 2. The timber arch investigated numerically, a — elevation; b — cross-section

1/ 2600.16)3

/o, = 2048 KNm2,

0.60(0.16)J
GI, = 4(106) = 2726.5 KNm2,
36055

e=0 (since S and T coincide),
t=te=t4=0,30 m

ij»0,

, 0.602

iy— 7l =0.030 m2

The characteristics of the elastic support are (see in [3]):

cefr=4.54kN/m2
4= 216 kN.

Introducing the above data into Eqgs (L1a, b, ¢), the quadratic equation (10) for
N a assumes the following form:

(12)
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Let us solve Eg. (12), assuming half wave numbers k=1,2, 3,4, 5, for four
different cases: taking both tensile and shear stiffnesses of the fabric into account,
neglecting the shear stiffness, neglecting the tensile stiffness, and for the case of the
unsupported arch.

The values of N,, (in kN) are compiled in Table 1

Table 1

= 454 KN/m2 &= 454 KN/m2 -0 =0

4=2I6kN 4=0 <=210kN =0

k=1 4XX.5 276.4 2174 19
K=2 371.3 150.7 1XK71 79.9
k=3 496.7 273.7 465J 241.9
k=4 717.3 4933 699.6 475.3
k=5 10135 789.0 1002.1 777.4

The values of the table show that if elastic support is present, buckling in more
than one half waves is the most onerous.

According to the reasoning given in [3], the stiffness cof the elastic support of the
fabric should be taken equal to zero in the cases k2. Thus, for k= 1, N,, = 488.5 kN,
computed with c=4.54kN/m2 and i/=216kN, is valid, while for k*.2 the critical
forces computed with c=0 and y =216 kN have to be considered. These values have
been printed in italics in the table. Among them, the value 301.2 kN, corresponding to
K=2, is the smallest, so that it represents the critical compressive force of the arch
supported by the fabric. This is 158 times the critical force 1.9 kN of the unsupported
arch. (It should be remarked that this exceptionally low value of the critical force of
the unsupported arch can be explained by the fact that the central angle 2a= 150.82°
of our arch is quite close to 2a= 180° in which case N,,=0, since the arch will tilt
laterally like a rigid body, due to the assumed fork-like support.)

The results of Table 1show the following interesting feature. If we denote the
critical compressive force of the unsupported arch with N ‘insupp, the critical force N,, of
the elastically supported arch can approximately be given by the following formula:

wer rpp+cKiK+i/. (13

This relation can be rendered likely in the following way. In [5] we find Eqg. (2-37)
which shows that the critical force ofa bar on an elastic foundation can be obtained by
summing up the critical force of the unsupported bar and the expression cl2/(n2k2); and
[1] proves that the critical force ofa bar elastically restrained against rotation along its
entire length is also given by the sum of the critical force of the unsupported bar and of
the modulus of elastic restraint y. In our case the phenomenon is somewhat more
complicated because of the possibility of twisting deformation and of the varying
position of the point of attachement C (and G) of the fabric. This is the reason why we
put an “approximately equal” sign in Eq. (13). In the cases k2 the term containing c
has to be omitted from Eq. (13).
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BEITRAG ZU DEN METHODEN DER AQUIVALENTEN
LINEARISIERUNG FUR SCHWINGUNGSSYSTEME
TEIL 1l
Gy. Patko*

[Eingegangen: 22 Juli, 1981]

Im ersten Teil der Arbeit wurde eine Verallgemeinerung der direkten Linearisierungsmetho-
de von Panovko vorgestellt, und es wurde die Methode der Linearisierung tber der Phasenkurve
eingefuhrt. Auf Grund der letzten Methode wurde eine Definition des MaRes der Nichtlinearitat
vorgeschlagen. Im zweiten Teil der Arbeit wird die Bedeutung der Transformation der unabhéngigen
Variablen bei der Linearisierung tber der Phasenkurve untersucht. Es wird gezeigt, da mehrere zur

Untersuchung der nichtlinearen Schwingungssysteme angewandten Methoden eine anschauliche
geometrische Deutung haben.

5. Der EinfluR der Transformation der unabhéngigen
Variablen bei der Linearisierung tber der Phasenkurve

5.1. Vor der Anndherung der Kennflache J(x,x) wurde die dimensionlose Zeit
r==Rr, bzw. T=at (5.1

in den Punkten 4.1. und 4.2. eingefiihrt. Dadurch kann das Bogenelement auf der
Phasenebene interpretiert werden. Mit der Transformation (5.1) wird die Phasenkurve
auf der Phasenebene x —x' ein Kreis, womit die Rechnungen bedeutend vereinfacht
werden. Die Wahl der Transformationen ist aber willkirlich. Man kénnte auch andere
Transformationen benutzen.

5.2. In den Bewegungsgleichungen (3.1) und (3.2) wird die dimensionlose Zeit
t= vf

eingefiihrt, wobei v eine vorlaufig unbekannte Konstante ist. So kdnnen die
Gleichungen (3.1) und (3.2) in der Form

mvX"+f(x,vx")—F cos %r, (5.2)

mv2x"+ bvx'+cx +d - F cos 7* (5.3
geschrieben werden. Mit Strich ist wieder die Ableitung nach T bezeichnet. Die
* Patk6 Gyula, Kdzépszer u. 60. 1V/3. H-3529 Miskolc, Ungarn
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stationdren Schwingungen von (5.3) werden durch
x = a0+ alcos (5.4)

beschrieben, wobei die Konstanten a0, a,, .9, bei Kenntnis von b, ¢ und d aus den
Formeln (3.4)—(3.6) berechnet werden kdnnen. Aus (5.4) ergibt sich

B
x = —J—sin (5.5
\%

Die zu (5.4) und (5.5) gehdrende Phasenkurve aufder Phasenebene x —x' ist eine Ellipse
der Form

Der auf der Phasenkurve stehende elliptische Zylinder schneidet die Kennflache
[ (x, vX') in einer Raumkurve und die Ebene bvx' +cx + d in einer Ellipse. Die Grof3en b,
c und d werden jetzt so bestimmt, daR die zwischen den zwei Kurven liegende Flache
des Mantels des elliptischen Zylinders minimal wird. Deshalb wird vorgeschrieben,
daB das Quadratintegral

J2=1 [/(X, vx)—{hvX'+ cx + d)]2ds (5.6)
(S)

minimal sei. Es wird die Bezeichnung
R
cb: VT_
eingefihrt, mit der das Bogenelement der Phasenkurve nach (5.4) und (5.5) in der Form

8 R2-v2
ds= al V' sin2 b Ady G.7)
v B2

geschrieben werden kann. Weil man bei der Minimierung des Integrals (5.6) zu
elliptischen Integralen gelangt, ist es zweckmaRig, die Falle v< 8 und v> R zu trennen.
Mit den Bezeichnungen

k2=\~ (5.8)

kann (5.7) in der Form

g
ds=a, —~/l —k2sin2cbAdy,  bei  v<(2
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oder

R
ds=a, —y/l +p2sin2¢pdip, bei V>R

geschrieben werden. Auf Grund der Bedingungen

d, _ o d, _ . OJj 0 59
do de ~ (id ~ 5.9

erhalt man bei v<B die Formeln

__ 3 K2
© 4Ra, (1—k2F(K)—(\ —2k2E(K)

iJnf(oo+ Ui cosod, —a, B sing) Y1 —k2sin2¢ sin ¢ dijt, (5.10)
% 4a, (1 +KIEK) —(\ —k2F(K)
' [ f @0+ ai cos B<—i B sin ¢) yj\ —Kk2sin2¢h cos 6a , (5.11)
J=-ca0, (5.12)
und weiterhin zwischen a0 und a, die Beziehung
2fk/(a0+ a, cos gy, -a, Bsinii) T—«ZsinZddifr=0. (5.13)

Mit F(/c) und £(k) sind die vollstandigen elliptischen Integrale erster und zweiter
Gattung vom Modul K bezeichnet.
Bei v>[ ergeben sich aus den Bedingungen (5.9) die Formeln

24

*~/(a0+a, cos g, —a, B sin 1+p2sin2dsin pdd, (5.14)
©= 4a P
s/+P2
2n
ml /(a0+aicos i, —a, Bsind) ™1 +p2sin2|dcos ddtjj . (5.15)
d=—ca0, (5.16)
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und zwischen «Ound a, die Beziehung

0

Bei gegebenem Wert von v kdnnen die Funktionen a0=a0(al, R), b=b{a", R),
c=c(al, R) aus (5.10)—(5.17) berechnet werden, mit deren Hilfe die Anndherung des
Amplitude-Frequenzganges und des Phasen-Frequenzganges des nichtlinearen Sy-
stems erfolgen kann.

Bei autonomen Systemen steht a anstatt 8 in den obigen Beziehungen. Stabile
Grenzzykel kdénnen dhnlich zu den im Punkt 4.2. beschriebenen gesucht werden.

5.3. Der Wert von v wurde in den obigen Rechnungen als ein freier Parameter
angesehen. Fir ihn konnen weitere Vorschriften gemacht werden. Mit der
Verénderung von vbei festen a{und 3 verdndern sich der linearisierte D&mpfungswert
b(ax, R), Federwert cfa,, ) und die Funktion a0=a0(a R). Wenn der Wert von v
richtig gewéhlt wird, kdnnen die obigen Ergebnisse genauer als die des Punktes 4. sein
(vgl.: Punkt 54.). Damit ist der Einflul von vzu dem der in Punkt 2. und 3. erwdhnten
Gewichtsfunktionen &hnlich.

Die obigen Ergebnisse kdnnen offensichtlich auch durch Gewichtsfunktionen
modifiziert werden. In diesem Falle werden die gewichteten Abweichungen iber der
Phasenkurve s minimiert, das heil3t die GroRen b, c und d werden aus der Bedingung

J- 8 {[/'(*, vx)—bvX' +ex + d)]k (x, x)32dsiMinimum

berechnet.
Die Ergebnisse des Punktes 5.2. kdnnen dem Gedankengang des Punktes 4.1.
folgend erhalten werden, wenn dort die mit der Gewichtsfunktion

(5.18)

gewichteten Abweichungen tber dem Kreis mit dem Radius a{und dem Mittelpunkt
(a0,0) minimiert werden. Zur Frage, wie der Wert von vrichtig gewéhlt werden mufR,
geben die obigen Darlegungen keine Antwort. Die im Punkt 4. gewéhlten Werte v=1
und v=a haben die Rechnungen bedeutend vereinfacht. Diese einfache
Durchfiihrbarkeit der Rechnungen kann einer der Gesichtspunkte sein.

5.4. Als Beispiel wird die Ldsung der Bewegungsgleichung

(5.19)

durch die der linearen Differentialgleichung mit konstanten Koeffizienten

(5.20)
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Hier ist/(x, X) = oto*+ ex3, das heillt sie hdngt von x nicht ab. ao=0 ist eine
Ldsung von (5.13) und (5.17), und das bedeutet, dal? die maximalen Auslenkungen zum
Koordinatenursprung symmetrisch sind und d =0.

Im Falle b=0 ist die allgemeine L&sung von (5.20)

x=a, cos(af—9,) (5.21)

wobei x=yjc istund a, , Y, die von den Anfangsbedingungen abhéngigen Konstanten
sind. Es wird die dimensionlose Zeit t= vi eingefiihrt und die Ableitung nach r wieder
mit Strich bezeichnet. So kdnnen die Differentialgleichungen in der Form

V" + 00X+ £X3= 0, (5.22)
VX" +bvx'+cx=0 (5.23)

geschrieben werden. (5.21) hat die Form

x=a, cosl -T— ), (5-24)
/
aus der man
. Q. IX \
X'z —a, Vsm Wr Y, 7 (5.25)

erhélt. Es werden wiederum die Abkulrzungen

- - (1) s 1 (5-26)

eingefuhrt. Weil hier autonome Systeme untersucht werden, tritt in (5.10)—(5.17) x an
die Stelle von Q und die Phasenkurve sist durch (5.24), (5.25) bestimmt. Nach (5.10) und
(5.14) erhalt man b=0, was ein offensichtliches Ergebnis ist, weil durch (5.19) ein
konservatives System beschrieben wird. Man erhdlt nach [19] bei v<a aus (5.11)

L 21 k) (1- 3kQF(K) + 3k + 1k2- 2)E(K)
) [ (T = (O = (== (A (627)

und bei v>a aus (5.15)

2(1 + 3p2)F +(3p4-7p2-2)E
>* +] y 1 +P2 (5.28)

o [FE\+ o2 (=PAE iy

Wenn man letzte Formeln zusammenfafit, dann kann

c=<0+IM

a2=sb+ w\H (5.29
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far die Naherung des Quadrates der Eigenkreisfrequenz @ geschrieben werden. Die
Bedeutung von H(v/a) is aus (5.26)—(5.29) ersichtlich. Die Funktion H(v/oc) ist im
Bild 7. dargestellt. Weil der Wert von vnicht festgelegt wurde, kann man fur ihn weitere
Vorschriften machen. Er kann beispielsweise so gewahlt werden, dall die beste
Annéherung fir die Eigenkreisfrequenz a durch (5.29) erhalten wird.

Zum Beispiel ergibt sich

a2=0,75 caf

aus (5.29) im Falle do= Ound bei der Wahl v/a= 1 Die Bewegungsgleichung (5.19) kann
auch exakt gelést werden, wobei man bei ao= 0, den Wert

a2=07178 t.a (5.30)

erhélt (vgl.: [2], S. 85). Falls die obige N&herung angewandt wird, so ergibt sich das
Ergebnis (5.30) bei der Wahl (v/a)= 1,5629.

Es ist ersichtlich, daR die Rechnungen durch die Transformationen (5.1) der
unabhdngigen Variable wesentlich vereinfacht werden. Auf Grund von Punkt 52.
kann man mit erhéhtem Aufwand genauere Ergebnisse erhalten, aber zur richtigen
Wahl von v ist entsprechende Erfahrung nétig.

5.5. Die in Punkt 5.4. behandelte Aufgabe kann auch mit Hilfe der Gewichtsfunk-
tion
H
o
04
as4
Bild 7
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die einfacher als (5.18) ist, dem Gedankengang von 4.2. folgend, geldst werden. So erhélt
man nach einfachen Rechnungen

Die Beziehung (5.30), die fir a0=0 als genau angenommen werden kann, ergibt sich
hier bei der Wahl v/a= 1,2619.

6. Vergleich der Linearisierung Uber der Phasenkurve
mit anderen Methoden

6.1. Im Laufe der Zeit wurden qualitative Methoden entwickelt, die — oder
deren Varianten — im Wesentlichen gleichwertige Ergebnisse liefern. Sie kénnen in
zwei Gruppen aufgeteilt werden.

Zu einer dieser Gruppen gehdren die Methoden, die von einer dierekten
Linearisierung ausgehen. Der Zweck ist, die nichtlineare Differentialgleichung
irgendwie durch eine lineare zu ersetzten. Solche Methoden sind die direkte
Linearisierungsmethode von Panovko [15], die Methode der harmonischen Lineari-
sierung [18], die dquivalente bzw. optimale Linearisierung [4—6] usw. Zu dieser
Gruppe gehort auch die Methode der Linearisierung uber der Phasenkurve.

Die zu der anderen Gruppe gehdrenden analytischen Methoden haben zum Ziel,
Né&herungen hdherer Ordnung herzustellen. Solche Methoden sind die Methode von
Bubnow—=Galerkin, die Methode der harmonischen Balance [16]. die Methode der
Storungsrechnung von Poincaré [11], die asymptotische Methode von Krylow
Bogoljubow [20] usw. Der erste Schritt dieser Methoden kann — wie es in der
Literatur tblich ist — so konstruiert werden, dal? die durch sie erhaltenen Ergebnisse
mit den der zur ersten Gruppe gehdérenden Methoden identisch oder ndherungsweise
gleich sind. Die Operationen dieser ersten Schritte sind, wie es von Fall zu Fall
uberpruft werden kann (vgl.: Punkt 6.4.), mit einer Linearisierung &quivalent.

Auf Grund des obigen besteht die Bedeutung der Linearisierung Uber der
Phasenkurve darin, daf3

— sie mehreren zur ersten Gruppe der obigen Einteilung gehérenden Methoden
eine anschauliche geometrische Deutung gibt,

— durch sie eine anschauliche geometrische Deutung flr den ersten Schritt der
zur zweiten Gruppe gehdrenden Methoden gegeben werden kann.

In den Punkten 6.2. und 6.4. wird beispielsweise je eine Methode beider Gruppen
der obigen Einteilung mit der Linearisierung tiber der Phasenkurve gegenuibergestellt.

6.2. Die Methode der harmonischen Linearisierung wird zur L&sung von
zahlreichen Aufgaben mit Erfolg angewandt (vgl.: z. B. [18]). Sie ist ein Sonderfall der
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Methode der harmonischen Balance, und daraus kann sie folgenderweise abgeleitet
werden.

Durch die harmonische Balance wird die periodische Losung z. B. der
Bewegungsgleichung

mx+/(x, xX) = F cos LL (6.2)
in der Form

x=A0+ I‘El(AnCOS nit + B,, sin nit) (6.2

gesucht. Die Beziehung (6.2) wird in (6.1) eingesetzt. Die Funktionf(x, X) wird in eine
Fourier-Reihe entwickelt, und in (6.1) wird die Gleichheit der Koeffizienten der
einzelnen harmonischen Glieder vorgeschrieben. So erhédlt man zur Bestimmung der
Koeffizienten AQ, A,,, B, (n=1,2, ...) ein nichtlineares algebraisches Gleichungssy-
stem, dessen Ldsung bei unendlich vielen Unbekannten unmdglich ist. In der Praxis

wird deswegen nur ein Abschnitt der Reihe (6.2) angewandt.

Eine N&herung der Ldsung von (6.1) wird in der Form
x=A0+A{cosRf + fi, sin Qt (6.3)

gesucht. Es ist zweckmaRig (6.3) in die Form
x=al+alcos ¢ (6.4)

zu schreiben, wobei die trigonometrischen Funktionen zu einer Schwingung
umgeformt wurden und die friher angewandte Abkirzung = — und a0=A0
eingefiihrt ist. Die Ndherung (6.4) wird in (6.1)eingesetzt und die Funktion/ (x, x) in die
Fourier-Reihe

f(a0+Ui cos ¢, —ati2sing)-cO+clcos g+ btsin g+ ... (6.5)
entwickelt, deren Koeffizienten aus den Formeln
i
/(Go + ol cos h, —ati2sin , 6.6
Co_ 2n ( ¢, &) A (6.6)
0
n
=" | /K +«icCost —ajf sin ) cos dt/*, (6.7)
0
.
= f(a0+ai €os ¢ —axQ sin ¢ sin ¢pdip, (6.8

berechnet werden kénnen. Analog zu (6.3) bzw. (6.4) werden hier nur Glieder bis zur
zweiten Harmonischen der Fourier-Reihe mitgenommen. So ergibt sich aus (6.1)

—mQ2a, cos p+ cO+c, cos h+b T ¢ =Fcos tf+9,). (6.9)
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Die Grofen a0)u,,9, kdénnen aus (6.9) auf Grund der Gleichheit der einzelnen
Harmonischen berechnet werden. Mit den Bezeichnungen

d-c0-ca0 (6.10

hat (6.9) die Form
—mi2aicos b +c(a0+al cos p)—bal (2sin ip+d=Fcos (ip+ 9,), (6.11)

aus der sich die Formeln (3.4)—(3.6) fur die GréRen a0, au 9, ergeben. Es ist leicht
einzusehen, daf man auch dann zur Gleichung (6.11) gelangt, falls die periodische
Losung der Form (6.4) der linearen Differentialgleichung

mx +bx +cx +d=F cos Qt (6.12

anstatt der von (6.1) gesucht wird, wobei die GréfRen b, ¢, d in (6.12) durch (6.10) und
(6.6)—(6.8) definiert sind.

Jeder nichtlinearen Differentialgleichung der Form von (6.1) kann eine lineare
Differentialgleichung der Form von (6.12) so zugeordnet werden, daB ihre in der Form
(6.4) gesuchten Ldésungen Ubereinstimmen. (6.12) wird als die zu (6.1) gehérende
harmonisch linearisierte Differentialgleichung bezeichnet. Die Methode, mit Hilfe
deren man von (6.1) ausgehend zu (6.12) gelangt, hei3t die Methode der harmonischen
Linearisierung.

Die durch die Beziehungen (6.10) und (6.6)—(6.8) definierten GroRen b, c und d
stimmen mit den Ergebnissen (4.5)—(4.7) uberein. Die durch die obige harmonische
Linearisierung erhaltenen Ergebnisse sind mit denen durch Linearisierung Uber die
Phasenkurve in Punkt 4.1. erhaltenen identisch. Im Zusammenhang mit dem in Punkt
6.1. gesagten kann also diese Variante der Methode der Linearisierung (ber der
Phasenkurve, die im Punkt 4.1. beschrieben ist, auch als eine geometrische Deutung
der oben beschriebenen Methode der harmonischen Linearisierung aufgefalt werden.

6.3. Auf &hnliche Weise kann gezeigt werden, dall die Methoden der optimalen
Linearisierung [4], bzw. der &quivalenten Linearisierung [5], [6] auch anschauliche
geometrische Deutungen haben.

6.4. Im folgenden wird die erste Ndherung der asymptotischen Methode von
Krylow—Bogoljubow [20] untersucht.

6.4.1. Bei dieser Methode wird angenommen, daB die Funktion f(x, x) schwach
nichtlinear ist, das heif3t sie in der Form
f(x,x) =kx +eg(x,x) (6.13)

geschrieben werden kann, wobei k> 0 und e ein kleiner Parameter ist. Im autonomen
Falle kann also

mx + kx +eg(x, x)=0 (6.14)

anstatt (4.9) geschrieben werden. Mit den Bezeichnungen
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axx, x) _
und o =/1 (*, X) (6.15)
hat (6.14) die Form
X+W2X+e.]\(x,x): 0. (616)

Aus (6.16) ist ersichtlich, dall w die Eigenkreisfrequenz des bei c= 0 erhaltenen linearen
Systems ist.
In erster Naherung wird die Ldsung von (6.16) in der Form

X =acos ¢

gesucht, wobei u und p aus den Differentialgleichungen

2n
du F £ . . 0
of anj i (ucosd, —uw sin ¢) sin ¢ 0,
0
A

=w+ --aEJ- fi (acos ¢h, —aw sin ) cos dpdi//

berechnet werden kénnen (vgl.: [20], S. 51).

Im weiteren werden nur die stationdren Schwingungen untersucht. Dabei
bestehen die Gleichungen da/df = 0 bzw. di/Ydr = a und es kénnen die Schwingungsam-
plitude aus 2n

0= j*/,(acos)/*, —a0) sin ¢) sin ¢ Och (6.17)
0
sowie die Eigenkreisfrequenz der Schwingungen aus

a=aH- 2na0j fi («cos ¢, —aty sin ¢) cos ¢ Ocp (6.18)

berechnet werden. Mit Vernachlassigung von r2 ergibt sich aus (6.18)
ar

a2= w2+ HJI’ /_(« cos  —aw sin ¢v) cos dp iy . (6.19)

Mit Rducksicht auf (6.13) und (6.15) kénnen (6.17) und (6.19) in der Form

n

0= j/(« cos iy —uwsin i)sin difi, (6.20,
n
mr = nu Jiﬂa cos (. —uw sin ¢) cos ¢ Ocp (6.21,
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geschrieben werden. Die Gleichungen (6.20) und (6.21)sind &hnlich zu den in Punkt 4.2.
erhaltenen Ergebnissen. Falls (4.25) fur die Funktion/(x, x) gltig ist, das heilt ao=0,
dann kénnen (4.24) und (4.23) aus (6.20) und (6.21) so erhalten werden, dall man in den
rechten Seiten der letzten Gleichungen u, anstatt a und a anstatt oo schreibt.

6.4.2. In [20] (S. 109.) wird gezeigt, daB die Ergebnisse der ersten N&herung auch
so erhalten werden kdnnen, daf die aquivalente lineare Differentialgleichung

TX + JB(a)x + ke{a)x =0 (6.22)
anstatt (6.14) geltst wird, wobei die GroBen Ala) und kefa) aus den Formeln
pg
Ae(a) = g y(a cos ¢, —aw sin ¢ sin ¢ dip ,
0
n

ke(@ =k + _n%Jf g(a cosi/c —acosin ) cos ¢ dil/
0
berechnet werden koénnen. Letztere kénnen mit (6.13) in der Form

In

/fa)= - nalw f(a cos tlc —acosin ¢) sin ¢ Op (6.23)

kr(a)= na f(a cos ¢, —acosin &) cos ¢ Ocp (6.24)

geschrieben werden. Bei ao=0 unterscheiden sich die linearisierten Feder- und
Dampfungswerte (6.23) und (6.24) von den aus (4.19) und (4.20) berechneten dadurch,
daR in den letzten die Eigenkreisfrequenz io des zu c= 0 gehdrenden linearen Systems
anstatt der Eigenkreisfrequenz a des nichtlinearen Systems und a anstatt a, stehen.

6.4.3. Die obigen Ergebnisse der asymptotischen Methode kénnen, dem
Gedankengang des Punktes 4.2. folgend, auch durch geometrische Uberlegungen
erhalten werden. In den Differentialgleichungen (6.14) und (6.22) wird die dimensionlo-

se Zeit T=ana eingefihrt, wobei cu= v/k/m. So kdnnen (6.14) und (6.22) in der Form
mo)2X" +kx +eir(x, wx') =0, (6.25)
TwX" + Afwx' +kex=0 (6.26)

geschrieben werden (mit Strich ist wieder die Ableitung nach 1 bezeichet). Im Fallee=10
hat die Ldsung (6.25) die Form

x=ucos(r—19) (6.27)
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wobei a und 9, die von den Anfangswerten abhdngigen Konstanten sind. Aus (6.27)
folgt

X'= —asin(t—$,). (6.28)
Auf der Phasenebene (x, x') ist die zu (6.27) und (6.28) gehdrende Phasenkurve s ein
Kreis mit dem Radius a. Der auf der Phasenkurve stehende Kreiszylinder schneidet die
Flache f(x,wx"') =kx + Eg(x, cox’) in einer Raumkurve und die Ebene kecox' +kex in
einer Ellipse. Die GroRRen ke und ke werden so gewahlt, dal? die zwischen den zwei
Kurven liegende Flache des Mantels des Zylinders klein ist. Auf Grund der Bedingung

I [/(x, eux)—Aea)x' + kex)]2ds= Minimum
)
erhélt man fir die GroRen ke und ke die Beziehungen (6.23) und (6.24).

Diese Uberlegungen geben der asymptotischen Methode von Krylow—
Bogoljubow eine anschauliche geometrische Deutung.

Der Vergleich des obigen mit dem Punkt 4.2. macht klar, dafl grundsétzliche
Unterschiede zwischen der ersten N&herung der asymptotischen Methode von
Krylow—Bogoljubow und der im Punkt 4.2. beschriebenen Methode der Linearisie-
rung uber der Phasenkurve (und der Methoden, die damit dquivalente Ergebnisse
liefern) bestehen. Sie griinden sich darauf, daB die Transformation von r = af in einem
Falle und die von x=cot im anderen Falle angewandt wird, und dementsprechend die
Schwingungen mit der Kreisfrequenz win einem Falle und mit der Kreisfrequenz a im
anderen Falle zur Bestimmung der &quivalenten Ausgleichsebene zugrunde gelegt
werden.

Auch bei den héheren N&herungen der asymptotischen Methode von Krylow—
Bogoljubow werden die Werte der nichtlinearen Funktion und ihrer Ableitungen
beriicksichtigt, die auf einer Phasenkurve der Form von (6.27), (6.28) lokalisiert sind.
Diese Phasenkurve ist auch bei den héheren N&herungen ein Kreis mit einem Radius a

In der Praxis kommt es vor, dal’ die Funktion/ (x, X) in der Form von (6.13) nicht
aufgespaltet werden kann, weil der Wert von K nicht eindeutig bestimmbar ist. In
diesem Falle schlagen mehrere Verfasser vor (vgl.: z. B. [18], S. 142.), die Grundgedan-
ken der asymptotischen Methoden bei der Wahl a>=a anzuwenden. Es ist leicht
einzusehen, dal} die durch die erste N&dherung der Methode von Krylow—Bogoljubow
erhaltenen Ergebnisse im Falle ao=0 mit den Ergebnissen des Punktes 4.2.
ubereinstimmen.

Hier sei es nur erwéhnt, dal} die Gegeniiberstellung der Ergebnissen des Punktes
4.1. und der Methode von Krylow—Bogoljubow bei harmonisch erregten Schwingun-
gen zu den obigen &hnlichen SchluRfolgerungen fiihren.

6,5. Es ist noch bemerkenswert, daR die Methode von Poincaré und die Methode
der harmonischen Linearisierung (vgl.: [9], S. 102.) sowie die Methode von Poincaré
und die Methode von Krylow—Bogoljubow (vgl.: [24]) in speziellen Fallen gleiche
Ergebnisse liefern. So kann eine anschauliche geometrische Deutung, dhnlich wie es in
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den Punkten 6.2. und 6.4. gemacht wurde, auch fiir den ersten Schritt der Methode von
Poincaré gegeben werden.

6.6. Oben wurde gezeigt, daR verschiedene N&herungsmethoden existieren, die
mit der Methode der Linearisierung tber der Phasenkurve gleichwertige Ergebnisse
liefern. Mann kann erwarten, daf? durch diese N&herungen umso bessere Ergebnisse
erhalten werden kénnen, je genauer die Raumkurve, die aus der Kennflache /(x, X)
durch einen Zylinder ausgeschnitten wird, durch eine Ellipse approximiert werden
kann (vgl.: Bilder 3 und 5). Ublicherweise wird angenommen, daR diese Bedingung bei
kleinem Wert von e im allgemeinen erfillt wird. AufGrund der obigen geometrischen
Uberlegungen scheint es naheliegend zu sein, daB man sich in Abhingigkeit von der
Form der Kennflache nicht auf kleine Werte von e beschranken muR. Es kann
Vorkommen, daR die Methoden, bei denen angenommen wird, dal die nichtlineare
Funktion einen kleinen Parameter enthdlt, in erster N&herung bei groRem Wert des
kleinen Parameters gute Ann&herungen liefern.

7. SchluRfolgerungen

7.1. Der Grundgedanke der direkten Linearisierungsmethode von Panovko
kann bei allgemeiner Nichtlinearitdt von der Form/(x, X) angewandt werden. Dabei
wird die Kennflache/(x, x) durch eine Ebene bx +cx +d uber irgendeinem Gebiet der
Phasenebene (x, x) angendhert. Dieses Gebiet kann auf verschiedene Weise gewéhlt
werden. Bei geeigneter Wahl des Gebietes und der Gewichtsfunktion kénnen die von
Panovko gewonnenen Ergebnisse als Spezialfélle erhalten werden.

7.2. Aquivalent lineare Schwingungssysteme konnen einem anderen Gedanken-
gang folgend, der sich von den bisher angewandten, unterscheidet, erhalten werden.
Auch in diesem Falle wird eine lineare Bewegungsgleichung der nichtlinearen
zugeordnet. lhre Koeffizienten werden aber so bestimmt, dal die Abweichungen
zwischen der nichtlinearen Funktion und der N&herungsebene tber der Phasenkurve
der N&herungslésung minimal sind. Die Minimierung der Abweichungen uber der
Phasenkurve kann auf verschiedene Weise erfolgen. Eine mdgliche Variante wird in
den Punkten 4. und 5. eingehend dargestellt. Hier wird das Quadratintegral der
Abweichungen (iber der Phasenkurve minimiert. Zur Interpretation des Bogenele-
ments wird eine Transformation in der Phasenebene bendétigt. Diese Transformation
kann auf verschiedene Weise gewéhlt werden.

7.3. Nach der Linearisierung uber der Phasenkurve kann der relative Fehler des
quadratischen Integralmittelwertes berechnet werden. Die GroRe des relativen Fehlers
ist fur das Mal der Nichtlinearitit kennzeichnend. Die Definition dieses Mafes der
Nichtlinearitat (4.30) ist allgemeiner anwendbar als die bisher aus der Literatur
bekannten.
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7.4. AufGrund der Linearisierung tber der Phasenkurve kann eine anschauliche
geometrische Deutung fiir mehrere in der Untersuchung der nichtlinearen Systeme
hdufig angewandten Methoden gegeben werden.
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THE LEANING OF THE PISA TOWER
AND THE GEOHYDROLOGY OF THE AREA

L. Réthati*

[Received 29 November, 1982]

The author aimed at finding a correlation between the movement of the tower and the
geohydrological characteristics of its environment. He has been trusted with it by the jury for the
tender to save the tower, as a relationship of this kind could be supposed to exist.

1 Arrangement of the available data

The calculations were based on time series comprising:

— the inclination of the tower (in s),

— the piezometric level of the deep groundwater,

— the monthly precipitations,
in the years 1967 to 1975 (later to 1977).

The results of the measurements were made available by the “Commissione per il
consolidamento della térre di Pisa" in diagrammatic form.

First, the data deviating greatly from neighboring values had to be eliminated.
These were found to be the following: among the inclination values January 23, 1971
and August 19, 1971; among the piezometric levels August 7 and 20, 1971. This
correction was needed because these values would distort the mathematical
relationships although they have no technical importance. In the series of the
piezometric levels, in addition, twelve missing linear interpolation.

For the purpose of the numerical calculations tables have been worked out which
contained the respective values for the days 1, 3, ..., 29. of the calendar months. The
monthly mean values and the monthly precipitation are given in Tables 1-3. (Here and
in what follows, the inclination values have the dimension of 0.1 s, the piezometric
levels are given in cm, the precipitation in mm.)

The calculated statistical characteristics are presented in the following table.

Denomination Symbol Dimension Mean value dg\t/?gggrr]dq
Inclination a 0ls 3705.3 256.6
Piezometric level w cm 366.1 142.0
Monthly
precipitation Pm mm 872 52.6

* Dr. L. Rethati, Raday u. 43., H-1092, Budapest, Hungary
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Month

1.
1.
V.

VL.
VILI.
VIII.

XI.
XIl.

Mean

1967

3376
3371
3364
3366
3372
3386
3389
3386
3393
3384
3404
3424

3385

1968

3440
3439
3427
3417
3438
3449
3465
3465
3463
3454
3482
3492

3452

1969

3500
3507
3504
3496
3500
3513
3510
3515
3501
3478
3522
3547

3508

1970

3556
3551
3546
3539
3545
3556
3566
3557
3548
3541
3574
3589

3556

1971

3604
3592
3602
3605
3614
3638
3632
3627
3637
3629
3663
3694

3628

1972

3715
3718
3707
3709
3722
3734
3741
3742
3750
3746
3773
3796

3738

1973

3803
3806
3804
3818
3831
3854
3884
3889
3909
3945
3967
4001

3876

Table 1. Monthly averages of inclination and of piezometric levels. Inclination (sm 0.1 s)

1974

4015
4022
4016
4028
4049
4058
4066
4054
4057
4094
4112
4123

4058

1975

4130
4131
4129
4133
4131
4148
4146
4154
4152
4153
4173
4191

4146

Mean

3682.0
3681.9
3677.7
3679.1
3689.1
3703.9
3710.9
3709.7
3712.1
3713.7
37413
3761.9

3705.3
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Month

VL.
VILI.
VIII.

XI.
Xl

Mean

1967

196
174
177
195
208
219
303
320
271
238
240
240

232

1968

229
224
231
214
231
256
338
357
305
281
260
236

263

1969

203
184
194
198
204
228
280
309
266
225
190
155

220

Table 2. Piezometric level (\Whm cm)

1970

147
189
215
223
246
264
310
354
345
325
310
291

268

1971

284
293
282
293
310
311
379
484
505
491
470
467

381

1972

447
435
431
412
486
514
549
569
561
535
486
461

491

1973

435
443
490
513
516
559
687
673
708
642
595
526

566

1974

494
512
505
520
507
552
631
645
608
575
520
428

541

1975

346
314
299
297
305
344
415
431
358
327
293
283

334

Mean

308.9
307.9
313.7
318.5
334.9
360.8
431.3
460.3
436.2
404.4
373.7
343.1

366.1
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Table 3. Precipitation (P,,, mm)

Month 1967 1968 1969 1970 1971 1972 1973 1974 1975 Mean
L. 33 60 119 193 8l 96 45 56 68 83.4

1. 60 221 116 81 60 87 52 85 41 89.2
11 69 30 110 123 70 63 17 85 105 747
V. 25 56 31 27 44 88 50 79 76 52.9
V. 57 91 61 37 160 38 24 61 67 66.2
VL. 100 38 32 60 76 37 58 25 94 57.8
VII. 0 5 17 25 20 29 15 n 13 15.0
VIII. 26 100 26 100 5 28 46 76 158 62.8
IX. 291 54 104 0 45 74 254 55 70 105.2
X 68 75 10 27 50 9 127 90 108 70.4
XI. 121 120 251 75 162 73 66 7 160 122.8
Xl 120 86 86 78 38 53 40 18 124 714

L= 970 936 963 826 811 745 794 718 1084 872

ILYH13d
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n n
0 50 K0 150 0 W 100 130

3BA9 319 3689 3859 4029  ~4204(c0

Fig. 1.

The original tables contain each 1620 values of a and W. Hystograms and
empirical distribution diagrams, presented on Fig. 1, served to investigate the statistical
character of the time series.

2. Analysis of the curves of averages
Figure 2 shows the curves of the yearly averages of W,aand P. The points on the
first two diagrams furnish the mean values of the data for January, 1,3 ... December
27, 29 for nine years, (1967 to 1975) the third diagram gives the mean monthly

precipitations for the same years. The curves can be valued as follows.
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e ok og ©

The piezometric level reaches on February 19 the highest and on August 5, the
lowest level. The difference between them {A=477 —300= 177 cm) is relatively large.
The curve is somewhat different from the time series of regular, undisturbed
groundwater levels, it practically stagnates in the first three months of the year, the
approximately linear section for the preceding five months joins the horizontal section
without transition. The curves also reveal that for any construction work beneath the
surface, July and August represent the most favourable period.

The curve of the inclinations is much less regular. Its most conspicuous
characteristics is that the average values for the end of the year are considerably higher
than those for the beginning of the year. The calendar year can be divided into four
periods: the rate of inclination stagnates or slightly decreases from January until the
end of March (middle of April), then it increases: from the end of July it stagnates again
and, from October 11, it starts to increase rapidly.

The distribution of the precipitation is unimodal, having a November maximum
and a strikingly low July minimum. This character of the precipitation points toward
the effect of the sea.

Using the curves of averages we are able to investigate whether there exists a
correlation va=/(9 Wbetween the rate of inclination (va) and the rate of change of the
piezometric level (9J, and, if so, what is the time lag if any in the process.

Acta Technica Academiae Scientiarum Hungaricae 95, 19H2

3670
3680
3690
3700
3710

3720
3730
3740

3750
3760
3770



THE LEANING OF THE PISA TOWER 124

3670

3680

This investigation can be accomplished only, if the abscissa axis of the a-curve is
previously modified. This is needed because — in contrast with the fF-curve — this
curve does not close in itself. The values at the beginning of the year are always higher
than those at the end. This increasing inclination of the tower amounts in average to
8.02 0.1 s/month which means that the a-values have to be reduced by 0.2673 0.1 s for
every calendar day. The new curve (Fig. 3) gives rise to the following statements.

(@ The modified curve is bimodal: it has two minima, and two maxima.

(b) The IF-curve being unimodal (which is usually characterizing groundwater
time-curves), curve Wand curve a are not conform. So for example, the piezometric
level rises rapidly from the beginning of August, however, the inclination which has
been “liberated” from the trend increases to half time only and decreases onwards.

In order to prove the non-accidental character of this phenomenon (i.e. it’s not
being the effect of anomalies in one or two years), the modified a-curves have been
constructed for each calendar year. The right procedure will be to determine best fitting
straight lines for the a-values of respective year and to plot continuously, according to
their signs, the a' ordinate — differences between the measured values and the said line.
The a' curves thus obtained are given on Fig. 4. Here, trends for each calendar year and
the time series of average a'-values for the years 1967 to 1975 are presented. It can be
seen that the character of the curves is for each year identical.

Based on the curves on Figs 3 and 4, it can be stated that the velocity of the
inclination is independent of the velocity of the variation of the water level.

9 Aria Terhnica Arademiav Seienliarum Hungaricae 95. I9N2



130 RETHATI, L.

3. Analysis of curves averaged over many years
3.1 Piezometric level
The curve constructed from the monthly averages for the years 1967 to 1975 is
given on Fig. 5 The following statements can be made.

(@ The piezometric level was high between 1967 and 1970 (1T=246 cm), then it
started to fall, reaching in 1973 and 1974 the deepest point (1T=566, 541 cm,
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respectively). The mean value for 1975 is again near the values measured in 1967 to
1970.

(b) The seasonal fluctuation in each year is clearly visible; the nine curves are
rather conform.

(c) The inclination of the best fitting straight line is significant: a=3.077
cm/month which corresponds to 3.32 cm in 9 years. To fit the curve, not a single
straight line, but a polygon consisting of three linear sections is suited best.

The influence of the precipitation on the curve of the piezometric levels can be
evaluated as follows.

The first question is, whether the difference between two successive maxima or
minima of the groundwater levels is determined by the precipitations in this period.
The limit values and their differences were the following:

1967 1968 1969 1970 1971 1972 1973 1974 1975

Maximum 145 200 165 130 260 380 415 480 285
-55 35 3% -130 - 120 -35 -65 195

Minimum 345 390 33% 370 515 595 730 685 480
-45 55 -35 - 145 -80 - 135 45 205

Correlating the AEMvalues with the precipitation sum for the months I1., 11,
... L, and the AEmvalues with those for the months VIIL., IX,, .. . VIL,, the following
relationships are obtained:

zZIEM=0.3150£ P—321
a.
and
VII.

dEm=0.2476 X P - 265.

VIIL.

The correlation coefficients: 0.677 and 0.588, respectively (the latter is smaller, most
likely because the minimum is governed also by temperature which was disregarded
here).

In determining the relationship the difference of the data for the years 1974 and
1975 has not been considered.

According to the pairs of point of Fig. 6a and Fig. 6b, the water level in 1975 was
2.80 m higher than would be justified by the amount of precipitation.

The equations may be used also to determine that amount of yearly precipitation
which would ensure a dynamic equilibrium:

321 265

= 1019, - 1070 mm.
Prr= 10,3150 P= 02476 mm
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a)

°)

Although, the other factors of the water household are not known, it seems that
the amount of the critical amount of precipitation is higher than the usual one.

Another check which has to be performed: comparison of the curve of the
piezometric levels for many years with the integral curve ofthe precipitation anomalies.
The latter is obtained by forming then summing the differences between the monthly
effective precipitation and the calculated average values. Based on Table 3., the
measured value in January 1967 was 33 mm, the average of 9 years 83 mm, thus the
anomaly 33-83= -50. For February 1967:60 —89= —29; the sum: —50—29= -79.
The final result and the fF-curve — copied from Fig. 5 — is given on Fig. 6¢c. The
comparison of these time series leads to the following conclusions:

(@ The curves between 1968 and 1974 run similarly;
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(b) Based on the precipitation anomalies in 1967 one would expect a higher
ground water level in 1968;

(c) There was a significant shortage of precipitation between November 1973
and February 1975, notwithstanding, the piezometric level kept rising (cf. with the
statements in connection with Figs 6a and 6b).

3.2 Inclination of the tower

The time series formed by the monthly averages of the a-values are given on
Fig. 5.
The best fitting straight line for all points (n—9.12= 108) has the equation:

«=8.0192 n+ 3268

wherein n is the serial number of the month (January 1967 s 1); its coefficient has a
dimension of 0.1 s/month; the constant 0.1 s.

As can be seen on the figure, this trend line represents a crude approximation
only. Based on the relative position of the points, the nine years can be divided into
three characteristic periods. These are:

I.: January 1, 1967 to August 31, 1971
Il.: September 1, 1971 to December 31, 1974

I1l.: January 1, 1975 to December 31, 1975.

The constants of the best fitting straight lines for the three periods are (of is the
residual standard deviation):

r af
l. 4,769 0.984 13.94
Il 12.768 0.986 24.56
1. 4.822 0.907 7.73

The increment of the inclination is thus made up ofthree parts (see the diagram in
the left corner of Fig. 5): in the first 4.7 years and in the last year occurred 39 per cent of
the movement, in the 3.3 years in between 61 per cent. In the period Il., the velocity of
the movement is 1.7 times greater than in the two others.

3.3 Autoregression investigations
In order to investigate the periodicity which is hidden in the data, autoregression
(autocorrelation) functions were prepared. These are given in Fig. 7. There were 9x12

= 108 data, the width of the interval i= 1month. The p-values which are written on the
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curves, were calculated from Anderson’s formula:

C[_ -\xtp™n +\'|
n—i

wherein CL is the critical correlation coefficient, tpthe functional value, calculated from
the normal distribution to the probability p,n — the number of data (here n= 108), i—
the serial number of the month (here 1to 72). The dashed line connects the CL-valucs
which belong to the probability p=95 per cent (rp= 1.645).

The autocorrelograms can be evaluated as follows.
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The autocorrelogram of the groundwater is quite regular, its shape coincides
with the regular. The location of the negative minimum points out that the length of the
period is 10 years.

The autocorrelation function of the precipitation is much more irregular, the r,-
values are much smaller, consequently, the reliability p =95 per cent is passed in a few
months only.

The first diagram related to the inclination values was prepared by making use of
the rough a-values (monthly averages); the great trend value in the time series distorts
the autocorrelogram. The r,-values are exceedingly great and the periodicity becomes
blurred. This difficulty can be overcome ifthe best fitting straight line of the a-values is
calculated for each calendar year and the deviations from these (a') are taken as a basis
of the autoregression investigation. The lowest curve on Fig. 7 proves that thus the
periods become distinct: there is a stronger 12 months-period and a weaker 6 months-
period. The confidency-levels of the local peaks — with one exception — are all greater
than 95 per cent.

The curse of the autocorrelograms in one calendar year can be studied best by
calculating the mean of the r,-values which pertain to 12k+ 1, 12k +2, ..., 12(/c+ 1)
(Fig. 8).

Although, according to Figs 7 and 8 the autocorrelograms of the groundwater
level and of the inclination are both very regular; there are two very substantial
differences:

(a) curve IThas a single peak in one year, whereas curve a' has two;

(b) the r,-values ofthe peaks in the IT-curve are functions of i, those pertaining to
the peaks of the curve a' are approximately identical. This means that W varies
periodically, a' cyclically.

4. Calculation of the critical piezometric level

4.1 Determination of the empirical functions

The empirical distributions of the a and W-values (Fig. 1) and the curves of the
averages (Fig. 5) point toward the conclusion that the rate of inclination of the tower
depends on the depth of the piezometric level, i.e.

w=f(W)

wherein PTis the mean water level of the period concerned.

Now, the year has to be divided into periods, within which the functionf(W) is
unequivocal and relatively tight. For this purpose, every month is divided into three
parts and the arithmetic mean of a for every decade calculated. Determining now and
plotting the mean values for 1967 to 1970 and for 1971 to 1974 respectively, a very
interesting picture is obtained which reveals the behaviour of the Tower. (The upper
two lines on Fig. 9.)
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(@) In the years with a high water level, the tower is found on October 25 in the
same position as it was at the beginning of the year;

(b) in the years with a low water level the successive inclination starts at the
beginning of April.

(c) Based on the trend-values exhibited on the first curve, the total calendar year
can be divided into four periods (a to d).

The functional relationship will be obtained by calculating for the periods ato d
ofeach calendar year (now including 1975 too) the average trend of the inclination (e,,)
and by plotting these vs. the average water level during these periods (Fig. 10). Then,
correlating these sets of data the constants a and b in the equation

va=aW+b
can be determined.
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months

The results of the calculations are given in Table 4, displaying values of the
correlation coefficient r, the standard deviation rjwgof the r,-s and the sf standard
deviation around the best fitting straight line. According to this (see also Fig. 10), the
interdependence of vaand W in the period d is practically zero, afterwards it increases
successively. Between August 1 and October 15 a variation of 1 m in IT means
approximately 1s/month in the velocity of the inclination. Table 4 shows clearly that
the period a can be described with the slightest residual standard deviation <ly= 2.70),
period d has a much higher value (of =7.73).

Another possibility for the investigation consists in calculating for each calendar
months (i.e. for 108 months) the velocity of the inclination and in determining the mean
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Table 4. The relationships t,= /(W)
a) Forfour periods of the year

Period a b r 4m of
a 0.010747 -5.55 0.429 2.99 2.70

a 0.022302 3.57 0.656 4.42 3.34

C 0.092463 -41.17 0.908 14.66 6.15

d -0.002117 25.77 -0.036 1.74 7.73
Mean: 0.507 7.45 4.98

b) For calendar months

Month a b r tva
I 4.920 -1.32 0.614 0.95 0.75
Il -6.712 -1.84 0.613 132 1.04
1. 1.359 -0.93 0.127 130 1.29
V. 7.660 -2.37 0.593 1.60 1.29
V. -1.721 1.10 -0.383 0.56 0.51
AR 4.042 -0.69 0.661 0.82 0.61
VILI. 4.183 -1.48 0.539 112 0.94
VIIL -0.188 -0.21 -0.023 1.08 1.08
IX. 8.350 -3.37 0.747 171 114
X 1.666 0.17 0.309 0.80 0.76
XI. 3.060 0.84 0.337 124 117
XIl. 0.679 0.94 0.087 0.95 0.95
Mean: 0.419 112 . 0.85

¢) For the whole year

a b r oy, of
0.031106 -4.75 0.838 4.74 2.59
values for the months L., 1L, 111, .. ., XIl., separately for the periods 1967 to 1970 and

for 1971 to 1974, respectively. The two curves in the lower part of Fig. 9 show the
continuous sums of the so obtained ta-values; the difference between the two curves is
similar to that of the curves obtained for the periods a—d.

In the possession of the monthly trend-values new better differentiated
relationships can be found between and iF(including again the year 1975). Results of
the regression calculations are summarized in Table 2. It can be concluded that:

(a) excluding three months, the velocity of the inclination increases with
increasing depth of the groundwater level, most sensitively in September and January;

(b) the slightest error occurs in the description for the months May and June, the
greatest in March and April.

It is possible to determine a correlation between the yearly average values of va
and I~fsee Table 4 and Fig. 10). The approximation of this correlation is a function

& .=fm
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where W is the water level observed on any one day of the year; expediently at the
beginning of it. (The search for this correlation is encouraged by the similarity of the
yearly water level variations.) The results of the calculations:

Date a b r al
L1 0.02724 -2.01 0.685 3.45
I 1 0.02912 -2.40 0.766 3.04
1. 1 0.03068 -3.09 0.744 3.16
V. L 0.02834 -2.36 0.801 2.83

With decreasing time scores the tightness of the correlation increases. Starting
with the April 1 water level a similar accuracy can be achieved in the prognosis (af
= 2.83~ 2,59 0.1 s/month) which is rather surprising, since the water level on April 1,
“does not know” the meteorological data to occur in April to December.
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4.2 Checking the empirical functions

The above described empirical relationships are suitable to describe the
movement of the Tower based on the knowledge of the piezometric levels.

The increments da, calculated by the equations determined for the periods ato d
for the years 1967 to 1975 are given in Table 5. The second column contains the average
water level for the period in consideration, the third column its product with the a-

Tatrfe 5. Calculation of the polygon describing inclination by using the relationships for the periods a to d

Av. - al Values at years end
water level Measured Calculated  Difference

67 182 1.956 -3.59 -10.8

231 5.152 8.72 34.9

284 26.259 —14.91 -37.3

240 -0.508 25.26 63.2 50.0 3433 3426 7
68 228 2.450 -3.10 -9.3

257 5.732 9.30 37.2

319 29.496 -11.67 -29.2

256 -0.542 25.23 63.1 61.8 3506 3488 18
69 194 2.085 -3.47 -10.4

235 5.241 8.81 35.2

276 25.520 -15.65 -39.1

182 -0.385 25.38 63.5 49.2 3554 3537 17
70 184 1.977 -3.57 -10.7

261 5.821 9.39 37.6

345 31.900 -9.27 -23.2

304 -0.644 25.13 62.8 66.5 3595 3604 -9
71 286 3.074 -2.48 -7.4

323 7.204 10.77 431

496 45.862 4.69 11.7

471 -0.997 24.77 61.9 109.3 3710 3713 -3
72 438 4,707 -0.84 -2.5

490 10.928 14.50 58.0

563 52.057 10.89 27.2

482 -1.020 24.75 61.9 144.6 3810 3857 -47
73 456 4.900 -0.65 -1.9

569 12.690 16.26 65.0

681 62.967 21.80 545

576 -1.219 24.55 61.4 179.0 4016 4036 - 20
74 504 5.416 -0.13 -0.4

553 12.333 15.90 63.6

619 57.235 16.06 40.2

491 - 1.039 24.73 61.8 165.2 4125 4202 =77
16 320 3.439 -2.11 -6.3

340 7.583 11.15 44.6

384 35.506 -5.66 -14.2

292 -0.618 25.15 62.9 87.0 4190 4289 -99

[=912.6
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value given in Table 4b. Adding to this the constant b vx is obtained. Multiplying this
with the length ofthe time intervals ato d(3,4,2.5,2.5 months, respectively), Aatresults.
Since the difference between the a values for the date December 31,1975 and January 1,
1967, amounts to 4190—3376 = 814 0.1 s, and the calculated value is

Zdaj=912.6 0.1s,

it can be concluded that by using the four empirical functions it is possible to give a
prognosis for nine years with an accuracy of 12 per cent.

The calculations of the polygon by making use of the monthly trend is shown in
Table 6. Here

Table 6. Calculation ofthe polygon describing inclination by using the relationships for the calendar months

©? ©? 2

Year w Ad 1 Year w Acii Year w Aat 1
67 1% -53 70 147 -9.0 73 435 123

174 -10.0 13 85 43  -17.0

177 -10.4 215 -9.6 490 -4.0

1% -13.1 23 -9.9 513 234

208 12 246 102 516 32

219 29 264 57 559 236

30 -3.2 310 -2.7 687 209

320 -4.0 ™M 41 673 -5.0

2711 -16.6 U 74 708 381

23 85 35 106 642 186

240 236 310 268 5% 399

240 166 202 2 171 B2 526 195 1735
68 29 -29 71 284 12 74 4A 167

224 50 23 -1.9 512 -24.0

21 93 282 -8.2 506 -3.7

214 -10.9 23 -1.9 520 24.2

231 106 310 85 507 35

256 52 3m 85 552 21

38 -1.6 379 16 631 174

FH7 41 484 -45 645 -4.9

3B -124 506 127 608 25.6

281 95 491 148 575 169

260 245 470 32 520 364

236 166 302 467 189 839 428 185 1497
69 28 -48 72 47 132 s 346 5.7

137} 90 435 -16.2 314 -4.1

M -10.0 431 -5.2 29 -7.9

18 -12.8 412 18 297 -1.4

24 13 486 40 305 8.7

228 35 514 208 K71 105

280 -4.6 59 123 415 39

30 -4.0 569 -4.7 431 -4.3

266 -17.2 %1 197 358 -5.7

25 81 5% 159 327 107

10 213 48 A9 293 26.0

155 157 155 461 189 1254 283 170 51

Acta Technica Academiae Scientiarum Hunmarkaé 95, 1982



THE LEANING OF THE PISA TOWER 143

o 365.22
I'de=6937 —22"=704 0.1s,

the accuracy of the prognosis is then 14.8 per cent. From the connection between the
yearly average values of W and vx we obtain
£da=717 0.1s;

the accuracy is 11.9 per cent.
Calculations using the water levels on April 1 furnish

I'da=711 0.1s;

with an accuracy of 12.7%.
The comparison of the measured and calculated date is given on Fig. 11
Computed from the piezometric levels on January 1, and on February 1, 1976,
the position of the Tower for December 31, 1976 will be

a=4190+(0.02724 +260-2.01)12 = 4251
a=4190+ (0.02912-250- 2.40)12= 4249 resp.

in 0.1 s. According to the calculations related to the period 1967 to 1975, the average
difference between the measured and the computed values is 26 per cent, and thus the
forecast for the inclination can be given as

a=425"+2.2"

4.3 Calculation of the critical water level

About half of the values of the constant b in equation v,,=f(W) is negative (see
Table 4). It can be hoped rightly that there exists a Wetit>0 piezometric level to which
da = 0 belongs. This critical level can be determined by putting

Ti= Z(«iWeni+ b)Ti= 0.

i is the serial number of the interval, T(is their length. According to Table 4, using the
time intervals a to d:

(0.010747 « Wet—5.55)3 + (0.022302 » Wer + 357)4 +
+(0.092463- fFor—41.47)2.5+ (—0.002117 « IFor+ 25.77)2.5=0,

wherefrom
41.62

"= 0347314 - 120 CM

With similar considerations, using monthly intervals one gets
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5.4748
WCI= =201
= 0.5 ood =201 om,
from the means of Wand v,,
4.75
W,, = = 153 cm.
oo3ros 0"

Starting from the variations at the beginning of the year:

2.01
from January
W-~ 002724 ° 74Cm’
2.40
February W&— f)-déé-l-Z = 82cm,
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3.09
March Wer- 0.03068 - 101cm’

April
""™.- 0.02834 - 83cm-

their arithmetic mean W,.r—85 cm.

Although the final values of the 9 year-prognosis are rather similar (see Fig. 11), but the
polygons which belong to the water levels at the beginning of the year are more
irregular than the others, therefore it is justified to use a factor of 0.5. Thus

N = 120+ 201 + 153+ 0.5-85 _ 1}%)%

Keeping the piezometric level at 148, the inclination ofthe tower will not change in
a period of one calendar year, the levels at the beginning and at the end of the year will
be identical.

4.4 Other effects

The original shape of the series of the a-values shows a rather irregular polygon.

One of the reasons for the irregularities is likely the limited accuracy of the
measurements. It can be, however, easily proved, that other effects are also interfering.
By calculating the monthly trends ofthe inclination the standard deviations G-around
the best fitting straight lines were also obtained. Their monthly mean values for the
period 1967 to 1975 are shown on Fig. 12a. According to this, there are also cyclical
elements in the time series of a. It could be ascertained, by analyzing several
relationships, that the values a, r and of , which characterize the function va=f(W)
change continuously during the year; one of the consequencies ofthis is the bimodality
of curve a'.

The autoregression investigations have proven that there is a sharper 12 month-
period and a weaker 6-month period in the series of the a-values in contrast to the W
curve having a single period. An interesting result is obtained if the differences of the
ordinates of curves al and W are plotted: the line is a rather regular sinusoidal curve
(Fig. 12b).

Comparing the phenomena which were described above, the conclusion can be
brought that these are due to the yearly rhythm of the temperature changes. This has a
double effect: it induces stresses and deformations in the superstructure and causes
changes in the moisture content of the subsoil. It is very likely that the former effect is
here stronger and causes that the southern side of the Tower, due to the insolation,
expands more than the northern side and, since the Tower leans toward the South, the
recorded inclination will be smaller in summer. The effects on both the structure and
the subsoil could be separated if not only the inclination but also the differential
settlements of the foundation had been measured.
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Months

It could also be suggested that there is an effect of the precipitations. This forms a
considerable amount of surface water, there may be some leakage from the drainage
system which may change the moisture content of the soil etc. This effect is in all
probability not significant since the measurements did not show anomalies in months
with high precipitations. However, it must not be disregarded as is proven by the
following.

After calculating the value a to be expected at the end of each time interval
(March 31, July 31 etc.) by using the coefficients obtained for the time intervals a to d,
the differences between these and the time values will be formed. Then, for each inter-
val, a relationship

"measured ~calculated f
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can be found, where JIP is the difference between the effective and mean sum of
precipitation in the respective time interval. The tightness ofthe relationship is different
for the intervals; it amounts to

for interval a r= -0.232

b r=-0.287
¢ r= +0.416
d r= +0.141

According to this the effect of the precipitations is strongest between August 1
and October 15; the positive sign means that the inclination ofthe Tower will be greater
than expected with increasing amount at precipitation (positive P-anomaly). The
calculation with yearly data results in a similar figure (r= +0.31).

The effect of wind must not be excluded either. It was observed in Hungary that
the majority of chimney stacks tilts toward S— SE; this can be explained partly by the
main wind direction (N—NW) and partly by the residual deformation of the building
materials, due to the elevated insolation.

In order to demonstrate the consequencies of secondary effects and to prove the
results obtained so far and to clarify further the causes of the movement, following
investigations seem useful:

— comparison of the movements of the Dome with the leaning of the Tower and
with the geohydrological characteristics;

— comparative analysis of the leaning and of the settlement differences
measured on the base;

— comparison of the fluctuations of the upper and lower ground water levels;

— investigation of the interaction between leaning, settlement differences and
insolation;

— analysis of water pumping elsewhere in the town;

— study of both the direction and intensity of wind.

5. Conclusions

It could be proven unequivocally that the velocity of the inclination is in
correlation with the position of the groundwater level and not with the velocity of its
fluctuation. Through the arrangement of available data the conclusion could be
brought about, that in the period 1967 to 1970 (having high piezometric level) the
Tower was in the same position about October 25 as at the beginning ofJanuary; on the
other hand, in the period 1971 to 1974 (having low piezometric level) the inclination
increased rapidly from the beginning of April.

The relationship Q)= /(10, determined for different periods, and the
relationships wx=f(W), determined for four water levels at the beginning of the year,
served to calculate a critical piezometric level, at which the increment of the inclination
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becomes zero. This level is given by
WQ= 148 cm.

If we keep this level constant, the further increase of the tilting will stop.

The introduction of data for the years 1976 and 1977 has not considerably
changed the results obtained earlier, indicating thus the persistence of discovered
regularities.
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NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS
WITH EIGENVALUE PARAMETER
IN THE BOUNDARY CONDITIONS

T. Tarnai*—M. Kurutz**—G. Popper***

There are linear problems in the theory of vibration and stability of continuous structures
which can be described by differential equations having eigenvalue parameter in the boundary
conditions. Applying the finite difference method for solving the problem, an algebraic eigenvalue
problem of a lambda-matrix ofthe same degree as in the original problem is obtained. However, the
finitization under the same conditions by amethod of Ritz—Galerkin type may increase the degree of
the lambda-matrix. A comparison between the mentioned finitizing methods is given by the example
of the lateral buckling of a beam hung at both ends.

1 Introduction

It is well-known that for linear problems, under certain restrictions, the finite
difference method and the Galerkin method with finite elements are, in general,
perfectly equivalent [6]. The Galerkin method with finite elements gives results which
are identical to those obtained by the finite difference method.

However, there are linear problems leading to eigenvalue problems with
eigenvalue parameter in the boundary conditions for which this statement does not
hold. Applying the finite difference method and the Galerkin method with finite
elements under the same restrictions for solving these problems, in general, different
algebraic eigenvalue problems are obtained.

In the theory of vibration and stability of continuous structures there are
problems known for a long time where the boundary conditions are functions of the
eigenvalue parameter. In his book Collatz [2] has collected some of such problems.

Although, recently many papers have been published in the topic [4, 7, 10, 12],
the theory of differential operators with eigenvalue parameter in the boundary
conditions is not worked out so well as that of differential operators whose boundary
conditions are independent of the eigenvalue parameter. There are known problems in
which the eigenvalues can also be complex numbers. If we want to embed the problem
into the theory of Hilbert space then a question is how the selfadjointness is to be

* Dr. T. Tarnai, Hungarian Institute for Building Science, David Ferenc u. 6., H-1 113 Budapest,
Hungary
** Dr. M. Kurutz, Technical University of Budapest, Dept, of Civil Engineering Mechanics,
Mdegyetem rkp. 3,, H-I1 111 Hungary
*** Dr. G. Popper, Technical University of Budapest, Dept, of Civil Engineering Mechanics,
Mdegyetem rkp. 3., H-1111 Budapest, Hungary
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defined in order that the spectrum be contained in the reals. Another question is how to
give matrix representations of these operators, independent of the eigenvalue
parameter, namely, due to the classical theory, all the base functions have to satisfy all
the boundary conditions [1]. These mathematical questions have only been partly
answered and they have many consequences in the numerical computations.

In this paper, a comparison between the main finitizing techniques, the finite
difference method and the finite element method joined with the Galerkin method, is
made by the example of the lateral buckhng of a beam hung at both ends. This
engineering problem can mathematically be written as the eigenvalue problem AO0f)
—2A 18 —n2A28 =0 of differential operators A0, Ax, A2 with boundary conditions
linearly containing the eigenvalue parameter 2.

2. Lateral buckling of beams hung at both ends
2.1 Equation of the problem
The ditferential equation of equilibrium of a laterally buckled thin-walled beam

with open constant mono-symmetric cross-section, where the displacements are small.
is as follows [11]:

EJJ)""-GJ,0" +(r-2t)(Mx0"')'-(v-t)p0 -EI\J_A{/Z 0=0 @)

under the boundary conditions
0"0)=Q (22)
0"(L) =0, (2b)
E 6T@0)- GJ,sL +(fo- )MX(G)m =0, (2¢)
EJoiB™(L)- CJ,e'(E)+ (A - MX(L)O(L)=0 (2d)

with the notation

Xy, z rectangular coordinates (see Fig. 1),

0 angle of rotation of the cross-section in the x -y plane,

1 distance from the centroid to the shear centre,

Vv distance from the centroid to the point of application of the load,

L span of the beam.

fo, f, distances from the centroid to the point ofattachment of the rope at the end cross-sections z= 0 and z

= L, respectively,

r cross-sectional radius: r=Jx 1'{ ytx1+y2<f,

Jx, Jy moments of inertia of the cross-section with respect to the x and y axes.
F , area of the cross-section,
J, torsional constant of the cross-section.
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warping constant of the cross-section,
modulus of elasticity,
modulus of elasticity in shear,
transverse load, considered positive in the negative direction of y,
X bending moment in the beam in the y —z plane, considered positive if tensional stresses are in the
bottom fibre,
(.)  —didz symbol of differentiation with respect to variable z.

zTcomg

The boundary conditions (2a, b) express that the end cross sections are warping
free and the boundary conditions (2c, d) express the equilibrium of inner and outer
twisting moments in the end cross-sections.

Let / denote the load parameter. Let p0and Mx0 denote the basic values of the
load and the bending moment functions, respectively. By introducing notations

a=r—2f, ff=p—,
Yo~)o~L yi.-Ji.~f
(1) and (2a <0) assume the following form:

EJJ""- GJ,0"-n[- X(MXOB')'+BpOO]—A2|\EAJ10=O 3
y

i"(0)= 0, (4a)

ti"(L)=0, (4b)

F.JJ-LL - GJ,0L + ayOMxom m = o, (40)

EJ00"\L)—GJ,0/(L) + Ayl MXQL)O{L) = 0. (4d)

It can be seen that boundary conditions (4c, d) are functions of the parameter [, Let us
introduce the following notations:

A00=EJJ)""~GJ,0", )
A10=-*{M x00') + Bpl)h 6)
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= A
A2e LJff' U

The differential expressions A0, At, A2 with the boundary conditions (4a-d) denote
linear differential operators. Then equation (3) with the boundary conditions (4a-d)
may be written as

(AO-AAt-A2A2e=0. ®

Equation (8) seems to be a quadratic eigenvalue problem where operators AQ, At, A2
are symmetric and the operator A2 is positive as well.
Let the scalar product of complex functionsf g be defined as

i f 0>=1f{z)g(z)dz.

Forming the scalar product of the left hand side of equation (8) and the element B,
considering the boundary conditions (4a-d) and the fact that MxQ0) = Mx0(L) = 0, we
obtain

JEJItf"|2dz+ JGJ, D'z —A at])MXO\G'\ZdZ+
0 0

+B ] pOlB Iz~ yOAH0(0) I6(0) I8+ YLMXOL)\O(L)\2 —A  _ [fll2dz=0. (9)
O 1

If Ais an eigenvalue and 0 is the corresponding eigenfunction then equation (9) is
satisfied. Let us denote the coefficients of AL(i=0, 1, 2) in (9) by a b, c, respectively.
Relationship (9) can be considered as a quadratic equation

a—Ab—AX =0. (10)

Since numbers a, b, c are real and a*O, c”O as well, it follows that the discriminant of
equation (10) is non-negative: b2+4acjS0, consequently the eigenvalue Ais real. Thus
the problem (3, 4a-d) can have only real eigenvalues.

2.2 Thefinite difference method

At writing the difference equations we use the order of succession as follows: (4a),
(4c), (3), (4d), (4b).
So we obtain a quadratic eigenvalue problem of square matrices:
(A0—AA —A2A2)6 = 0. (11)

The elements in the first and last rows of matrix A, and in the first two and last two
rows of matrix A2will be zeros. Let us use equidistant subdivision ofthe interval [0, L]
and differences approximating the differentials with error of the same order of
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magnitude. In spite of the fact that we apply central difference expressions for equation
(3), because of the boundary conditions, the matrices will not be symmetric except
matrix A2 which is diagonal. We mention here, that if the order of magnitude of the
errors of the various difference expressions is not required to be the same then matrix
A0 can also be symmetric.

It can be seen that the finite difference method has a quadratic eigenvalue
problem of matrices (11) corresponding to the original quadratic eigenvalue problem of
differential operators (8). Dependence ofthe boundary conditions on Happears mainly
in matrix A,.

2.3 Thefinite element Galerkin method

Let us denote the quadratic pencil AO- S/4, —A2A2 shortly by A. Elements of
domain of definition DA of operator A are functions belonging to class C4(0, L) and
satisfying boundary conditions (4a-d).

Let N be a fixed integer. Let us look for the approximation of the exact solution
in the M-dimensional subspace DA of the infinite dimensional space DA in the form of
the linear combination

ON= i la,cb,, &ie Da (12

|_
where {,}fL, is the system of base functions and {a,}fL i are the unknown coefficients.
In accordance with the Galerkin principle the error vector 0—ON has to be

orthogonal to the /V-dimensional subspace spanned by the base vectors of,
®2i ..., du- This condition leads to a system of linear equations as follows:

t atAQlpr=0  7=12...N (13)
|_

where real scalar product is defined:
L
<Adudp]>= "Ad,t;dz, <+ d]s Da.

Let us use the equidistant subdivision of the interval [0, L]:
20=0<z, <722<... <zZn<zn+ =L (14
and search the approximate solution function 6N{z) in a piecewise polynomial form
ONz) =fli'(z), ze[zt_|,zZd k=1,2,...,n+1

The degree number and the coefficients of the polynomial with respect to section
(element) [z*_,, zt] can be determined from the continuity conditions for the function
eNz). Firstly, let us choose functions satisfying the continuity conditions but not
necessarily the boundary conditions. Such asystem of functions (not yet base functions)
{<*> $*1k =0 belonging to boundary and inner dividing points {zk}21Ocan be
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Nz-z*_))2- NM(z-2*.,))4 ze[zk 1'zj

<2= 1-"(z-zt)2+ "(z-2*)3- "(z-2j4, ze [ZfCZ:+1]

0 1mcHI]
- )2- p-(z-zt )\ ze[zk 17z(
<fi)= (2z- 29- ~(z- zK2+ p (z- zt)3 ze[z* Z+1]
0 ZE [zk 1'Z*+i] (15

where 1=L/(n + 1). These functions are shown in Fig. 2. It is easy to see that functions
(15) belonging to points {z*}£l 2automatically satisfy all the boundary conditions since
their value on the first and last elements is zero. In the case of the functions belonging to
points z, and z,, respectively, we have to take care of satisfying the boundary
conditions, which can modify also the other functions.

Let us satisfy the boundary conditions with the help of functions (15). For this
reason let us write the function (*(z) on the first and last elements of the interval, and in
order to distinguish it from its final form, let us mark it by a superscript tilde:

6Nz)=c0$" + b0$ D+ ci$i + bl $\, Z6[Zo,Z2,], (16a)
SNz)=c A +f>ii+q+ifi+i+f,+ 1ftti ze[z,,,z +il- (16b)
Substituting expressions (l16a, b) in boundary conditions (4a-d) we obtain a system of

linear equations from which we can express the coefficients belonging to the boundary
points by the adjacent coefficients. Thus we have

(17)
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CL=- —~  + 2AyLMXO(L),

DO——Ao/M>Q(0),
DL= XyLIMx0(L),

24E)
ho= —j2 * +4GJ,+ 2XyoIM'xQ0),

_ 24E)
Fi.= +4GJ-22yIMXO(L). (18)

Replacing c0, c,,+1, b0, b,,+ in (16a, b) by expressions (17) we have
1

Since Fgand F, contain parameter /, they cannot be in the denominator. Multiplying
(19) by FOFI, we obtain the approximate function on the first and last elements,
respectively, in the form:

A (r) = c 1df1+ b 1p\,
e?,n+1(2)=cncf + b ndin (20)

where 0%A (z2) = FOF,J1% {(z) and 0"n+I(z) = FOFLSYmn+I(z), and dfv ¢\ and &°, dia are
the base functions belonging to points z, and z,, respectively, satisfying the continuity
conditions and the boundary conditions:

®\=FI1(A0$q+ CO +F0$°),
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<I>\-F1(Bo$% o+ Do$ o+ Fo$\)'
dn=FO(A,M +. + CL$ h+, + Ft <),
@, =FO(B, $°+, +£),, <"+, + F, (). (22)

These special base functions are shown in Fig. 3. It is important to see that not only the
functions belonging to points z, and z, are modified by satisfying the boundary
conditions but all the other functions ¢k, &, too.

Thus the solution is obtained in the form

ONQZ) = _y1|v| 2+B0), 4, e Da 22)
J:

where N —2n and the base functions contain the second power of parameter
The Galerkin principle with these base functions leads to the homogeneous set of
linear equations as follows:

(23)

Considering the fact that both operator pencil A and the base functions ¢°, ¢ contain
P, after forming the scalar product, we arrive at a sixth degree eigenvalue problem of
square matrices of order 2n:

(Ao-S1A, -1 2A2-9 3A3-51 4A4- Al 5A5-51 6A6)0= Q (24)

In the special case, where the load p is constant and the distances between the centroid
and the point ofattachment of the rope at both end cross-sections are the same (f 0= fL)
and thus FO=FL, the sixth degree eigenvalue problem (24) is reduced to a fourth degree
one.

It can be seen that the Galerkin method, where the base functions satisfy all the
boundary conditions, has a sixth (fourth) degree eigenvalue problem of matrices (24)
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Fig. 3.

corresponding to the original quadratic eigenvalue problem of differential operators
(8.

It should be noted that in the case of a similar problem the Rayleigh—Ritz
method with base functions satisfying all the boundary conditions leads to an
eigenvalue problem higher degree than the original one. This fact was discovered by
Falk [5] and was applied e.g. by Zimmermann [14] and Kelkel [8].

2.4 The extended Galerkin method

In the eigenvalue problem (3, 4a d), (4a) and (4b) are the essential boundary
conditions but (4c) and (4d) are the natural boundary conditions. If we use base
functions satisfying the essential boundary conditions and not necessarily the natural
boundary conditions then the quadratic pencil of linear operators in (3) can be
modified by the natural boundary conditions (4c, d). The extended Galerkin statement
[3] can be written for functions 0 and wu satisfying the essential boundary conditions:
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M2 1
EJJ"" - GJ,0"- /[ - a(MXQD) +Rp00] - 12~ Oj udz-

{EJjr(L) - GJ,0L)+/yl MQL)U(L)}u(L) +
+{EJjrm - GJ,O0LL + AOM;0O0)MO)}u(0) = O. (25)

Integrating the first term by parts, we obtain

i. l l.
JEJ,,0"u"az + j GJ,0Ou'dz- /[a j MxD0'u'dz +

+0 %PCOU dz + yLMQL)0(L)u(L)- yOM ;o(0)0(0)W0)] -

- Qudz=0. 26
2 Ely z (26)

Ifwe consider the interval (0, L) as single element then base functions can bee.g: =T,
H2=N—L/2,("i+2=sin inz/L(i= 1,2,...). When the technique offinite elements is used
then the spline functions can be of an order lower than in the previous Section (third
degree instead of fourth degree). Thus we arrive at a problem

(Ao-/.A ,-12A20=Q 27)

It may be seen that the extended Galerkin method has a quadratic eigenvalue
problem of symmetric square matrices (27) corresponding to the original quadratic
eigenvalue problem of symmetric differential operators (8). Dependence of the
boundary conditions on 7. appears mainly in matrix At3

3. Numerical solution of the algebraic eigenvalue problems
The algebraic eigenvalue problems (24) and (27) are special cases of the
generalized eigenvalue problem of lambda-matrix of order n and degree m
(AO+ A + A272+ ... + Am_7."-1+ A,7m0=0 (28)

where AOQ, A ,,..., Amare real square matrices all of order n and either A0 or Amis
supposed to be nonsingular [9].

If Amis non-singular, the generalized eigenvalue problem (28) can be reduced to
the special eigenvalue problem of the hypermatrix
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i.e. of the matrix of order mx n with constant elements. If AO is non-singular, a
hypermatrix of similar form to (29) can be obtained after introducing a new variable k
= 1A

The hypermatrix (29) is, in general, very badly balanced that is, the
corresponding rows and columns have very different norms. Hence before calculating
its eigenvalues and eigenvectors it is very important to balance it.

The solution of the standard eigenvalue problem of matrix (29) has been
accomplished by a program composed of procedures balance, elmhes, elmtrans, hqr2,
and balbak published in Wilkinson—Reinsch [13].

4. Numerical example

Let us consider the steel 1beam which has been analysed in [11]. The beam (Fig.
4) is hung at both ends by vertical ropes attached to the upper flange of the beam and is
loaded by uniformly distributed forces acting along the centroidal axis of the beam. The
data of the beam are the following:

Jy =3.576 x 103 cm4, V=0 cm,
J,= 1.48 x 102 cm4, fo- T1=48-16 cm,
1., = 7.364 x 106 cm§, £ =2.05947 x 107 N/cm2,
t= 19.44 cm, G=7.94367 x 106 N/cm2,
r=—5.22 cm, p0=9.807 x 103 N/cm.

L= 1.25x 103 cm.

The case will be examined where the models have three degrees of freedom. This
means that in the case of the finite difference method three internal grid points are taken
into account and in the case of the (extended) Galerkin method three terms of the series
of the displacement function are taken into account.
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Fig. 4.

4.1. Thefinite difference method

Using three internal grid points and the four boundary points corresponding to
the four boundary conditions, we obtain a quadratic eigenvalue problem of square
matrices of order 7. The eigenvalues of this problem are found to be

At =0.00000000,

A2= +1.295 38825 x 10"2,

A3= -6.459 50484 x 10" 3,

A= + 1,948 56769 x 10"\

As= -3.23682731 xI0"2

A6= +5.731 911 57 x 10~2,

,= —1.08871581 x 10~\

A8= -1.87891473,

Al3= —7.037 x 10”1+ i7.105 x 10™*,
Aj4d= —7.037 x 10" 1- j7.105 x 10"*.
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Analysing these results, we have found that the eigenvalues A to A6 are correct
approximations of the eigenvalues of the original problem. However, the eigenvalues
A7to A 4are false results, they are not approximations of the eigenvalues of the original
problem, their existence is a consequence of the method.

4.2. The Galerkin method

Using either finite elements or the whole interval (0, L) as single element, the
Galerkin method results in many false eigenvalues, for example complex numbers not
having any physical meaning. Similarly to the finite difference method, the appearance
of the false solutions is due to the method itself.

The fact, that in this example the Galerkin method gives also false eigenvalues,
was numerically illustrated earlier in [ 11] and therefore numerical details are omitted
here. We only mention that, in the case of three degrees of freedom by the Galerkin
method, we obtain 18 eigenvalues from which 6 ones are correct approximations and
12 ones are false.

4.3. The extended Galerkin method
Considering the interval (0, L) as single element and using base functions gx= 1,
h2=r—L/2, ¢p3=sin (nz/L), we have obtained the following eigenvalues:

A =0.00000000,

A2= +1.428711 88 x KT 2,

A3= -5.881 827 12x10 -3,

A= + 1.348 12600 XK T\
,= -2.272 18758 x 10 2,

A6= +4.19592702 x 10_1.

It can be seen that all the eigenvalues are real in agreement with the statement in
Section 2.1.

5. Conclusions

When one solves a complete eigenvalue problem, and has a lot of solutions, many
numbers, it is important to know what are the correct and what are the false values. In
the case of the buckling problem treated here, the extended Galerkin method seems to
be the only one among the examined methods, in which every eigenvalue is an
approximation of the eigenvalues of the original problem and thus this method does
not result in false solution.
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In this paper some of the theoretical possibilities of the numerical solution of
eigenvalue problems with eigenvalue parameter in the boundary conditions were
mainly treated. A detailed numerical analysis of the problem will be published
elsewhere.

References

—

. Akhiezer, N. .—Glazman, I. M.: Theory of linear operators in Hilbert space. Vol. 1. (in Russian). Izd.
“Vishcha Shkola”, Khar’kov 1977
2. Collatz, L.: Eigenwertaufgaben mit technischen Anwendungen. Akademische Verlagsgesellschaft, Leipzig

1949

3. Connor, J. J.— Brebbia, C. A.: Finite Element Techniquesfor Fluid Flow. Newnes-Butterworths, London
1976

4. Evans, W. D.: A Non-Self-Adjoint Differential Operator in I3\ g h], Quart. J. Math. Oxford (2) 21 (1967),
371-383

5. Falk, S.. Das Verfahren von Rayleigh— Ritz mit hermiteschen Interpolations-polynomen. ZAMM 43
(1963), 149-166

6. Finlayson, B. A: The Method of Weighted Residuals and Variational Principles. Academic Press, New
York 1972

7. Fulton, Ch. T.: Two-Point Boundary Value Problems with Eigenvalue Parameter Contained in the
Boundary Conditions. Proc. ofthe Royal Society of Edinburgh 77A (1977), 293-308

8. Kelkel, K.: Selbstadjungiertheit und Volldefinitheit bei Eigenwertaufgaben der Schwingungslehre, die
den Eigenwert (Eigenfrequenz) in den Randbedingungen enthalten. ZAMM 58 (1978), T149-T151

9. Popper, Gy.—Gaspar, Zs.. The solution of the algebraic eigenvalue problem by partitioning.
EUROMECH 112 Matrafired (Hungary) 21-23, February 1979. Bracketing of eigenfrequencies of
continuous structures. Akadémiai Kiadé (1980), 399-413

10. Schneider, A. A.: Note on Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions.
Math. Z. 136(1974), 163-167

11. Tarndi, T.: Variational Methods for Analysis of Lateral Buckling of Beams Hung at Both Ends. Int. J.
Mech. Sei. 21 (1979), 329-337

12. W alter, J.: Regular Eigenvalue Problems with Eigenvalue Parameter in the Boundary Condition. Math.
Z. 133(1973), 301-312

13. Wilkinson, J. H.—Reinsch, C: Linear Algebra, Handbook for Automatic Computation, Volume IL,
Springer 1971

14. Zimmermann, R.: Ritzsches Verfahren fiir Aufgaben mit Eigenwerten in den Randbedingungen. ZAMM
50 (1970), 315-316

Acta Technica Academiae Scientiarum Hungaricae 95, 1982



Acta Technica Academiae Scientiarum Hungaricae, 95 (1- 4), pp. 163-166 (1982)

BOOK REVIEWS

Mor Korach-E rika K 1iment: Chemical Engineer-
ing as a Science. Redaction and postscript by Pal
Juhdsz Nagy, Akadémiai Kiad6, Budapest 1982.170

pp.

Nearing the end of his career. Academician Mér
Korach with his co-worker undertook to compile
this comprehensive work based on his widely
extended experience and chemical engineering
studies. He meant to speak to all those interested in
scientific work, in scientific mentality, and even in
regularities of the social medium inducing and
surrounding science. Once a professor in Bologna,
then in Budapest, director of an industrial research
laboratory in Faenza, and of a research institute in
Budapest, director of the Chemical Engineering
Research Institute of the Hungarian Academy of
Sciences, he has solved several industrial problems,
elaborated inventions, his work is intended as an
orientation from the observation tower of chemis-
try, rather than being concerned with certain
branches of chemical technology. This work reflects
systems approaching a scientific approach, relevant
to still actual questions of “Science of Sciences".

Rather than to present new principles or
methods, Mér Korach considered it as a goal of his
book to recapitulate engineering experience of a life,
hoping “to have outlined of some regularities to
unfold, beyond the rather chaotic literature of
chemical engineering, in the chemical industry
itself’. He does not only look back to the past and
transmit his generalizable experience, the recapitu-
lated regularities of chemical technology, but he has
confidence in future, as written in the preface:

“Looking forward to a future in the evening of
my life, | realize the to-be représentants of complex
sciences as members of a well-attuned, excellent
orchestra who are able to play variations even
without a conductor, or to create new music, since
each musician has a command of his instrument.
They would always play something different. They

could improvise like Indian orchestras. Namely |
am convinced in our scientific circulation a higher-
order human community will develop.”

The book comprises seven chapters, with pre-
face, postscript, and references. Chapter 1 is con-
cerned with the terminology of chemical engineer-
ing: with concepts of technique and technology;
fields, development and subregions of chemical
engineering. Chapter 2 presents epistemology back-
ground of chemical engineering, discussing, among
others, the metrological significance of material
reality, solid state and invariants. The next chapter
is spent on the theoretical fundamentals of chemical
engineering. It is followed by the chapter on
fundamental and evolutional laws of chemical
engineering, then by that on relationships and
controversies between chemical engineering and
other sciences. A separate part is devoted to the
application of theoretical and natural sciences in
chemical engineering. The chapter on the method-
ology of chemical engineering is of special interest.

Part of the theoretical chemical engineering
works have already been incorporated into univer-
sity education as subject matter, and are a guideline
in chemical research. In both fields his activity has
been of pioneering importance, updating chemical
technology and setting out new ways for its develop-
ment. We as his former co-workers find a special
delight in the appearance of this book with the
contribution of Mrs. Erika Kliment-Kisdalnoki, as
an overall synthesis of Korach’s activities. Thanks
are due to Mr. Pal Juh&sz Nagy for his efforts in
editing the book.

I hope the confidence of Korach in the future of
chemical engineering is right, and this book will be
read with interest not only by those concerned with
teaching and research in chemical engineering, but
also by those active in other fields of science,
enjoying the irradiated practical philosophy, the
colourful expressions and métaphores.

K. Polinszky
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Proceedings of an International Symposium on
Absorbed specific energy and/or strain energy density
criterion in memory of the late Professor Laszl6

G illemot

The Publishing House of the Hungarian
Academy of Sciences, incommon with the Martinus
NijhofT Publishers Co,, has published the lectures at
the international symposium in commemoration of
the late LaszIl6 Gillemot, Academician, in his special
scientific fields of activity, specific contraction work
and strain energy density criterion, organized upon
the initiative of Professor G. C. Sih, at Lehigh
University (Betlehem, Pennsylvania, U.S.A.) by
Section VI of Technical Sciences of the Hungarian
Academy of Sciences.

Lectures were classified into seven groups.

The first group comprises lectures on conditions
of crack propagation, of the start of crack
propagation.

The second group was concerned with metal
fracture phenomena, presenting some interesting
tests to illustrate details of this much debated field,
far from being reassuringly known.

The third group recapitulates lectures on the
fracture of materials recently getting into the
foreground of interest, such as plastics, concrete, and
rubber-like materials.

The only lecture in the fourth group on photo-
elasticity has been spent on applying a photoelastic
coat of lacquer on the surroundings of a crack in a
thin metal sheet to measure displacements con-
trolling the strain energy, and comparing the results
to those obtained by the finite element method.

Short lectures in the fifth group discuss fracture
as a consequence of energy density as a controlling
criterion.

In the sixth group, short lectures on fatigue
failure are found.

The seventh, last group presents some concise
reports on experimental and analytic work.

The thirty-three professional lectures in this
volume are seen to embrace a wide scope of fracture
mechanisms and of the eliciting loading conditions.
Lecturers, that is, authors are eminent specialists of
these problems, among them G. C. Sih (Lehigh
University, U.S.A), T. Yakobori (Tohoku Univer-
sity, Japan), P. S. Theokaris (Athens National
Technical University, Greece), H. P. Stiiwe (Erich-
Schmid Institut fur Festkdrperphysik, Austria).

The lively interest raised by the lectures at the
Symposium, and the success of the published
volume show that it was worth-while organizing this
Symposium in Budapest, attended by the inter-
nationally most outstanding specialists, giving
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Hungarian specialists an opportunity both to
present their achievements, and to personally meet
leading authorities of this profession, to discuss,
exchange ideas with those setting the trend of
development. Lectures by Hungarian specialists
testify it as being reasonable to investigate this
subject also in this country, giving rise to inter-
nationally appreciable achievements.

Last but not least, this successful meeting held
upon an initiative from abroad in memory ofthe late
Prof. LaszI6 Gillemot added both to his esteem and
to the acknowledgement of Hungarian engineering
science.

J. Prohéaszka

Attita J. Roos: Elektrotechnik anschaulich:
Resultierende, 1982 Roos, Germering BRD, 128
Seiten

Das Buch behandelt die anschaulichen graphi-
schen Verfahren der Elektrotechnik. Die GrofRen,
die sich zeitlich sinusférmig dndern, kénnen mit den
Resultierenden niedergeschrieben werden. Die
Zeigerdiagramme sind wichtige Bestandteile der
Grundlagen der Elektrotechnik.

Das Buch behandelt mehr als 100 Probleme. Die
farbigen Bilder, die viele Testfragen und Antworten
machen das Buch sehr gut angepaft fur das
selbststandige Studium. Fir das Verstandnis sind
elementare algebraische, geometrische und physi-
kalische Kenntnisse geniigend.

Dieser Leitfaden kann man fir Studenten der
Ingenieurschulen und elektrotechnischen Hoch-
schulen empfehlen.

K. Geher

Elektrische und
elektronische MeRtechnik. Akademie-Verlag Berlin
1982, 194 pages

Hans Neumann-K taus Schafer:

Disregarding simple  measurements, the
electronic and electrical methods have obtained a
leading role in almost every field of the measuring
technics. The elements ofa typical measuring system
are: some kind of sensor, electrical measuring
instrument and display or data processing device.

Beside the very comprehensive encyclopedic
works made for experts or the monographs discuss-
ing certain questions of detail there can hardly be
found any such shorter survey, which brings the
whole topic to the younger student nearer or to the
not professional inquirer without submerging
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excessively into the details. The little book, which
appeared in the series entitled “Wissenschaftliche
Taschenblcher” of the publisher, tries to retrieve
this lack.

After discussing the idea of measuring and
electrical basic instruments, the presentation of the
principles of the bridges and compensators follows.
The second half of the book surveys the electronic
measuring technology with the same compactness.

The extremely limited volume gives no possi-
bility for much more than to disclose the treasure of
the knowledge of the technically educated man.
However, this is accomplished on a high, modern
level, and it is especially pleasing, that a relatively
great part of the last chapter is devoted to the digital
technology.

1 P. Valké

Andras Ambrézy: Electronic Noise. Publishing
House of the Hungarian Academy of Sciences,
Budapest and McGraw-Hill Inc., New York 1982,
28 pages

Many books have been published on electronic
noises, but they have not generally been engaged in
the whole field. They are either excessively immersed
in the mathematical formalism, or they treat noise as
a primary physical phenomenon from the point of
wiev of the natural scientist, or by heuristically
treating the problem of noise reduction, they mainly
contain solutions in electric circuits.

The present book of Andras Ambrézy is free
from these onesidednesses. It supplies adequate
spaces for the mathematical apparatus as well, as for
the physical background and for the practical
standpoints of the electronic engineer. Thus, in spite
ofthe high level ofthe treatment ofthis topic, it is not
necessary to have profound preliminary studies: the
older specialist already remembering with difficulty
his studies at the university and the student, who has
not finished it yet can equally make use of it.

The first chapter gives the explanation of the
basic ideas, the second one discusses the most
important distribution types and relating math-
ematical expressions, and in the third one the time
and frequency domain characteristics of stochastic
signals can be found.

The next chapter contains the physical causes of
the origin of noise.

The fifth chapter reviews the noise parameters of
linear networks, the sixth chapter treats the noise of
bipolar and field effect transistors, also keeping in
mind the special circumstances of the integrated
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circuit. The next chapter discusses the modifications
of noise caused by nonlinear transfer mechanisms.
The last chapter is dedicated to the methods for
measuring the noise. One or two completely
elaborated practical examples are attached to each
chapter as well as an abundant literature. The style
of the book is clear, the structure of it is logical,
therefore, the study of it is not exhausting, although
it sticks to scientific exactness.

The original work appeared some years ago in
Hungarian (and was sold out very quickly). The
author—who have incorporated the results of his
own research into the material—has revised the
English edition and has brought it up to date.

The book can equally be recommended to
electric engineers, in general, and also to those, who
want to have a guideline in this field for a more
profound investigation.

I. P. Valké

Edetmann Cnriscian: Druckmessung und Drucker-
zeugung. Wissenschaftliche Taschenbiicher. (Aka-
demie-Verlag. Berlin 1982) 181 pages. Size 11 x 19
cm.

The booklet describes the methods available for
generation and measurement of pressure, especially
of very low pressures (high vacuum). A summary of
physics and physical chemistry of gases and vapors
covering 35 pages serves as an introduction, needed
for the explanation of the very different physical
principles of pressure measurement instrumenta-
tion.

Measurement of low pressures covers 60 pages.
Besides mechanical manometer instruments based
on heat conduction and friction, radiometer- and
ionization manometers aré presented, following by
mass-spectrometers for the measurement of partial
pressure. Generation of low pressures and its
instrumentation covers 45 pages. Beside the de-
scription of different types of vacuum pumps,
combinations of these are discussed, and Some
problems of pipe-connections and the detecting of
leakages are mentioned. The generation and
measurement of high pressures is dealt with far
shorter. (15 pages). Thus the reader has the im-
pression that this field is outside of the authors range
of interest. No mention is made about the safety
devices necessary in operating high pressure
apparatus.

The booklet is a useful summary of the physical
basis of measuring and generating pressure but is
greatly limited in dealing with practical con-
struction and maintenance of pressurizing and
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pressure measurement apparatus. The figures are
extremely simplified, no pictures of actual instru-
ments are shown at all. So the booklet may be a
guide for making up a concept for an experimental
procedure but none for the assembly ofa measuring
device and its maintenance.

Fr. Thamm

Attita J. Roos: Operations in Electrical Engineering
I. Resultants; 1982 by ROOS, D-8034 Germering,
64 pages

A series of manuals will be published under the

title “Operations in Electrical Engineering”. The
title of the first volume is: “Resultants” and it gives a
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detailed discussion of the graphical representation
of sine functions for students of electrical engineer-
ing colleges. The clear understanding of rotating
phasors is very important in basic electrical en-
gineering. The book presents a systematic intro-
duction into the subject for almost a hundred
problems. Test questions, answers and applications,
coloured figures and text help the students in the
learning procedure. In order to understand the
book, elementary algebra, geometry and physics are
sufficient.

K. Géher
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Jankd, L.. Stresses due to slow deformation and

shrinkage of prestressed concrete composite gird-
ers having adhesive insert (Mélyépitéstudoma-
nyi Szemle, Vol 32, 1982, p. 14.)

The most popular procedures concerning the
determination of additional stresses resulting
from slow deformation and shrinkage of pre-
stressed concrete composite girders having
adhesive insert are described and compared.

Lamer, G.: Dynamic action ofthe travelling load on

continuous girder (Mélyépitéstudomanyi Szem-
le, Vol. 32, 1982, p. 24)

Under the influence of a force travelling with
uniform speed along a two support beam, this
one performs bending vibrations. Dynamic test
of a continuous girder having a concentrated
load performing a steady motion is described.
The development of the critical speed as well as
the necessity of testing dynamic stability of
bridges constructed with 10 spans are shown on
appropriate examples.

Markus, Gy.: Antimetrically loaded circular plates

having spring mounting (Mélyépitéstudomanyi
Szemle, Vol. 32. 1982, p. 49.)

An analytical solution is provided by the paper
for calculating round plates having spring
mounting, loaded antimetrically. This method
of procedure affords possibility of economizing
building materials in case of subsoils having
great load bearing capacity.

Jankd, L.: Elastic load-capacity response ofcracked,

reinforced concrete beam girders (Mélyépitéstu-
domanyi Szemle, Vol. 32. 1982, p. 106.)

The procedure described in this paper provides a
method for computing stress and deformation
conditions after cracking of prefabricated beam

girders co-operative together with reinforced
concrete monolithic slabs. The method of com-
putation is exposed in detail, as well as the
stresses of the compression flange as function of
the loading process.

Mistéth, E.: System technical evaluation ofnetworks

and establishments made by building engineer
(Mélyépitéstudomanyi Szemle, Vol. 32, 1982, p.
123))

The optimization should be carried out accord-
ing to several points of view, when designing
installations and qualifying a work. The most
important complex methods of evaluation and
the mode of their appreciation are discussed in
the paper.

Duldcska, E.. Test of the stability of reinforced

concrete shells of hyperboloid of revolution for
cooling towers (Mélyépitéstudoményi Szemle,
Vol. 32, 1982, p. 281)

This paper deals with the special relationships of
the test of stability of reinforced concrete shells.
All the possible forms of buckles of hyperboloid
shells of revolution are discussed, together with
initial errors to be considered and with the
necessary safety factor. The course of the test is
illustrated by an example of actual size and real
ratio.

Bognar, L.: Dynamic test o ffloor discs (M élyépitéstu-

doményi Szemle, Vol. 32, 1982, p. 312)

This paper presents relationships allowing exact
description of stresses arising in the environ-
ment of the junction of floor discs and the
bracing walls. Starting from the disc formula it
gives the solution for three practical cases.
Further solutions may be obtained by using of
the three basic cases.
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Gabor, P.:

ABSTRACTS

Construction of reinforced concrete
highway bridges, taking into account considera-
tions for probability calculation (Mélyépitéstu-
domanyi Szemle, Vol. 32, 1982, p. 368)

The most important points of view of construct-
ing up-to-date, economic and safe bridges are
surveyed. The paper deals with the durability,
the traffic arrangements, as well as with some
problems of the design work, the execution and

maintenance.

Varga, L.. Effects of line load working inside an

endless, cylindrical hole (Mélyépitéstudomanyi
Szemle, Vol. 32, 1982, p. 399)

A symmetrically situated, linear radial load
works upon the inside surface of an endless hole
having straight axis and circular cross-section.
The influences of various load cases are analysed
and the non-dimensional multiplicators of the
required quantities are provided on a diagram.

.assné, Szlics R: Membrane cone-shaped shells

having linearly alternating thickness (Mélyépités-
tudomanyi Szemle, Vol. 32, 1982, p. 409)

Cone-shaped shells having linearly alternating
thickness often occur in engineering practice,
formulae worked out for their calculation,
however, are none. This article renders help for
precise reckoning of the structure, in order to
simplify shuttering work, and provides formulae
of calculation for the commonest load cases in
membrane stress state.

Benedek, A.: Computation of anchored diaphragm

Szilvagyi, L.

walls (Mélyépitéstudomanyi Szemle, Vol. 32,
1982, p. 500)

Supporting working pits of Dunakiliti river
barrage is planned making use of anchored
reinforced concrete diaphragm walls. Various
solutions for calculation are analysed with the
consideration of the problems of grouting.

Thest of annular foundation body
having eccentric load (Mélyépitéstudomanyi
Szemle, Vol. 32, 1982, p. 515)

Annular solution is used for the foundations of
tower-like buildings with high centre of gravity.
The article deals with the planning of annular
foundation bodies, as well as the general geo-
technical calculations necessary to dimen-
sioning.
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Czap, Z.:

Examination of a beam resting upon

combined  half-space (Mélyépitéstudomanyi
Szemle, Vol. 32, p. 532)

The paper deals with the influence exerted by the
dimensions, location and building technology of
Underground Railway tunnels on the sub-
sidence of surface, on the basis of a series of
finite-element testing. Approximate values are
given for the probable magnitude of the sub-
sidences and for the form of the sinking trough.

Kollar, L.: A paradoxical phenomenon of the shell

buckle (Mélyépitéstudoményi Szemle, Vol. 32, p.
558)

In the paper the buckle of the shellsof revolution
under the influence of internal overpressure is
discussed, as well as the behaviour beyond
critical stress of shells of revolution and the use
of air tent in the meantime.

Holld, E.:— Sikldssy, P.: Nuclear power plant diag-

nostics (VEIKI Kdzlemények 1982, p. 29)

Our Institute is the designer, partial supplier and
executor of the vibration diagnostical system for
block 1in the Paks Nuclear Power Plant. In the
treatise the major characteristics of the primary-
circuit part, the experience gained during the
time of designing, location and commissioning,
some results of the measurements conducted
during the hot trial run of block 1as well as the
future goal setting of research and development
are summarized.

Horvath, Gabor L.: Possibilities ofactivity reduction

in nuclear power plants (VEIKI Kdzlemények
1982, p. 51)

For the calculation of the amount of radioactive
wastes in nuclear power plants as well as of the
activity of the corrosion products activated on
the technological system surfaces outside the
active zone the programme system RADSYS-
RADTRAN has been developed. In the physi-
cochemical theory, on which the activation
calculation is based, we have considered the
transport of material both in solved and particle
form. The above-mentioned theory presents
explanation to the differences between the
existing models. The contamination can be
reduced by using a particle filter operating at
primary-circuit working temperatures. Accord-
ing to our calculation results, without this filter
the contamination of the system surfaces by
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corrosion products is mostly influenced by the
pH. The second part of the programme cal-
culates the dynamics of the arising of radioactive
wastes and offers the possibility of detecting the
factors mostly influencing the arising wastes.

Pammer, Z.—Szab6, L.: solution of elasticlplastic

strength tasks with the finite-elements method
(VEIKI Kozlemények 1982, p. 191)

The up-to-date strength calculation processes
require the consideration of the non-elastic
material properties. As a result, in designing
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machine elements more economic material
utilization can be realized, Beside this a more
precise determination of the stress and expec-
table, life of the mechanisms is achievable with
the consequence that the safety of the nuclear
power plant equipment can be increased. In this
paper the finite-elements programme system
suitable for solving elastic/plastic problems,
developed for the above purposes, is described.
A brief survey of the theoretical fundamentals
associated with the programme is given and on
two rather simple examples the application
possibilities illustrated.

Acta Technica Academiae Scicntiarum Hungaricae 9S, 1982
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