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ON THE “DUAL EXPONENTIALITY” OF THE STRESS 
LEVEL CROSS INTERSECTION NUMBERS IN ROAD 

VEHICLE VIBRATION SYSTEMS
E. Jánosdeák,** A. Keresztes,* P. M ichelberger,* T. Péter***

[Manuscript received: 10 February, 1982]

On the basis of the calculation results can be stated that the endeavour of observing the time
table (which may be considered identic with the case of the running speed distribution determined 
only by the character of the traffic and independent of the road qualities) may cause really “dual 
exponentiality” concerning the stress level cross intersection expectation function. The “dual 
exponentiality” is particularly significant in the case occurring in practice with the greatest 
probability where along the longer section is the higher grade of road quality predominant, however, 
on some sections certain pavement deficiencies also occur. To the factors affecting the form of the 
level cross intersection curves the following conclusions may be drawn: 1. Dual exponentiality is 
caused by too large differences between road qualities and by a lower occurrence probability of the 
type of bad roads. 2. A form approximating pure exponentiality is called forth by very similar road 
qualities or by nearly identic encounter probability of road qualities. 3. The expectation function of 
the level cross intersection tends towards the Gaussian function if the road qualities only slightly 
differ or roads of low grade quality are predominant. An accessory achievement of the investigations 
has been attained: altering the expectation values of the zero level cross intersection numbers might 
be neglected in the course of mixing.

A comprehensive analysis of the statistics of the internal load induced in road 
vehicles pointed out the necessity of the simultaneous investigation of the interactions 
between vehicle and driver and other environmental interconnections [1], [2], [3].

On the basis of road measurement results may be established that the 
expectation value of the number of the stress level cross intersections, in most cases, 
might be described by two exponential functions partially overlapping each other in 
the physically real stress level region. This specific type of the stress level cross 
intersection distribution is called in the following “dual exponentiality”. It is named 
specific because by representing the logarithms of the level cross intersection numbers 
graphically above the positive level region, with a close approximation, two adjoining 
straight segments of different slopes are obtained (Fig. 1).

Summarizing the achievements of [1] and [2], from the interrelation between the 
vehicle and driver might be pointed out that on the roads of different qualities, owing to 
the different schedules i.e., traffic constraints the low stress dispersions occur only with 
low probabilities, wherefore, in the proximity of the zero level of the dynamic stress a
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4 JÂNOSDEÂK KERESZTES MICHELBERGER PÉTER

degressive character differing from the exponential one develops. Nothing refers to the 
fact that the driver would endeavour to maintain the subjective vibration stress on a 
constant level but, from time to time, he selects also higher stress levels. The expectation 
functions of the stress level cross intersection of the processes taking place in the actual 
constructions became well known in an empirical way, from the results of road 
measurements.

In the course of the study in question empirical investigations have been carried 
out also further on by making use of a digital computer. Based on the measurement 
results has been assumed that the driver in achieving his transportation schedule task, 
even in case of periodic damages in the state of pavements strives to observe the

N(z)=1(z-a) 1(a-z) Nq, e Я1'21- 1-1(z-a) l(a-z) N02 e *2'zl

Fig. 1.

running speed distribution (average running speed) pre-established by himself, and this 
phenomenon may cause a “dual exponentiality” in connection with the stress level 
cross intersection function numbers.

Filtering out all disturbing circumstances in the course of the calculations, the 
effects of the distribution functions of the road grades and running speeds on the

Acta Technica Academiae Scienliarum Hungaricae 94. 1982



ROAD VEHICLE VIBRATION SYSTEMS 5

evolution of the expectation values of the stress level cross intersection numbers may 
purely be observed, consequently, in this way, the above assumption becomes to be 
controllable.

1. Method of the investigations and certain assumptions

The evolution of the level cross intersection functions is defined by several 
parameters or, more precisely, by several random variables.

From [2] may be established that, for example, pure exponentiality might be 
called forth merely by several random variables themselves in case where each of them 
follows a separately determined distribution pattern. The distributions of these 
random variables (i.e., the running speed t; of the vehicle, the categories of road и and 
the loading patterns m) calling forth separate pure exponentialities may be determined 
from the density function [1], [2] deduced to the variances az of the dynamic stresses 
z(t) of the vehicle vibration systems and from the empirical functional connections:

ui-+<T. mi—><t.
|u, m = const, |d, m = const. |u,u = const.

This paper is primarily concerned with the further investigation of the 
phenomenon of the “dual exponentiality”.

Let us start from the assumption that the driver riding with his vehicle on roads 
of high and medium grade, follows a certain running speed distribution.

In the opinion of the author this speed distribution is defined predominantly by 
the urgency of transportation to be fulfilled by the driver, as well as by the traffic 
conditions. Meanwhile for certain periods sometimes but for very short while and at 
another time for a longer duration, also the pavement on which the vehicle travels 
might be damaged. The vehicle runs to road sections of state of lower grade with a 
speed earlier used (with the experience of the driver on the developed speed 
distribution). According to [1] and [2] the driver, even at the cost of the vibration 
comfort strives to maintain the mean travelling speed in order to fulfil the 
transportation task to a given term. This phenomenon has been simulated simply in 
such a way that the running speed has been assumed to be of the very same distribution, 
independently of the road categories. The speeds developed on each of the road 
sections had been considered constant, i.e., the transient phenomena of short duration 
taking place due to the changes in speed, i.e., to the excitations of acceleration, have 
been neglected. For the purpose of the calculation a plane model of four degrees of 
freedom of rigid body of linear characteristics has been used (Fig. 2). For the short 
intervals where the speed and road quality do not change but between narrow limits, 
the Rice formula is valid, i.e., in each section the relationships

N(z) = N 0 - exp [ — z2/(2D*)] (1)

Acta Technica Academiae Scientiarum Hungaricae 94. I9H2



6 JÁNOSDEÁK KERESZTES MICHELBERGER PÉTER

N 0=N(0) = - ’^  (2)
n L)z

are to be used to the calculation of the stress level cross intersection numbers N  
depending on the stress level z related to the unit time (1 [s]). The meanings of the 
designations entering in Eqs (1) and (2) are as follows:

Dz — dispersion of signal z(í) (Dz = ^ /п г)
D; — dispersion of the derived signal dz/df—i(f)
N 0 — number of cross intersections of stress level z =  0 related to unit time (1 [s]).

v(t)

M =7580[kg], 9=60420 [kgm2],m 3 = 870[kg], m4 =1550[kg]

S,=37A, S 2 = 870, S3=2800, S4= 5600 [daN/cm]

K,= 30, K2 = 30, K3= 35, K4= 7 [daN/(cm/s)]

Fig. 2.

The dispersion of a certain output signal of a given vehicle vibration system in 
fulfilling the task of transportation is, as a matter of course, the function of the road 
categories, running speeds and loading patterns:

Dz = Dz(u, V, m)

D; = Dziu, v: m)
(3)

and on the basis of Eq. 2 also

N0 = N0(u, V, m)
is true.

Accordingly, it has been pointed out that in the Rice formula N is a four variable 
function depending beside the level value z also on the parameters u, v and m:

N(z, u, v, m) =  N0(u, v, m) exp [ — z2/[2Dz(u, v, m)] (5)

Acta Technica Academiae Scientiarum Hungaricae 94. 1982



ROAD VEHICLE VIBRATION SYSTEMS 7

wherein u, v and m are random variables. With the knowledge of the common density 
function/(u, v, m) associated with the same transportation task of the random variables 
u, v, m the expectation density function of the level cross intersection belonging to the 
task of transportation:

M[JV(z)] = j j j  N(z, u, v, m) ■ f(u , v, m)du dr dm (6)

might be determined.
In carrying out the measurements [1], [2], the loading has not been changed, 

therefore
P(m = m0) =  1. (7)

Also the investigations reported in the present paper have been performed at 
constant loading pattern. In consequence of that said above (the distribution of the 
speed v having been assumed to be independent of the road categories) the random 
variables have been assumed to be independent:

/ ( “, v) = fi(u )-'f2(v) (8)

wherein: / ,  and f 2 being density functions of и and v respectively.
The calculation of multiple integral quickened by applying the simplifying 

assumption that the random variables were discrete:

P(v= 10) = p „  P(u = 20) = p2, . . P(u=100) =  p lo,

P(u = l) = p*, P(u = 2) — p*, . . . ,  P(u = 6) = pJ.
(9)

Thus, the calculations have been carried out by using 10 discrete

l>! — 10 [km /h],.. . ,  ulo=100 [km/h]

and 6 discrete road category-related random variables and their distributions.
The actual calculations have been carried out by making use of a model of four 

degrees of freedom of the bus type IK 260 mentioned above.
Several different cases have been dealt with. In each case, the distribution of the 

road categories have been selected in such a way that the encounter probability of only 
iwo road categories for each case ought to differ from zero.

One of the two road categories was in each case the road No. 6 with concrete 
pavement, of a dispersion of Dg= 1 [cm].

The other categories in each case were as follows:

earth road = 4 [cm] (marked 1)
bad stone road Dg =  3 [cm] (marked 2)
good stone road Dg = 2 [cm] (marked 3)

A da Technica Academiae Scieniiarum Hungaricae 94, 1982



8 JÁNOSDEÁK- KERESZTES- MICHELBERGER PÉTER

square dressed road Dg = 1.6 [cm] (marked 4)
bituminous pavement D9=1 [cm] (marked 5)

(The dispersion and the spectral density function have been taken from the publication 
[4] widely known by the experts on the subject.)

Due to the introduction of the above simplifying condition, the effect of the 
approach of the road categories of lower quality to those of higher grade, on the stress 
level cross intersection functions may definitely be pointed out. Designating the 
encounter probability of the non-concrete road with the symbol p; and that of the 
concrete road with the symbol p6, the following three instances are dealt with in the 
investigations:

I. Pi = 0.25, p6 = 0.75

II. p, = 0.50, p6 =  0.50

III. Pi =  0.75, p6 =  0.25

The discrete distribution of the running speed of the road vehicle has been given 
in all cases with the following values:

P(v = 10) =  0.05, 

P(v =  40) =  0.05, 

P{v = 70) =  0.2, 

P(t> =  100) =  0.05.

/>(!, = 20) = 0.05, 

P{v = 50) =  0.1, 

P{v = 80) =  0.1,

F(n = 30) =  0.05, 

P(v = 60) = 0.3, 

P(v =  90) = 0.05,

The effort of the driver in fulfilling his transportation task at any means to the term 
given, has been simulated by this speed distribution being independent of the quality of 
the road.

2. The achievements of the investigations

The procedure of calculation of the integral (6) is called mixing of the stress level 
cross intersection functions.

The results are represented in Figs 3-17. In the figures for the different cases of 
mixing the expectation functions of the stress level cross intersections of each output 
signals are to be seen. On the axis of ordinates the natural logarithms of the level cross 
intersection numbers related to the unit time and on the x axis the level values of the 
stress investigated have been plotted where

z ! [cm/s2]-signal of exactly vertical vibration acceleration z, — z3 [cm] of the body, over the front axle of the 
bus, and the stress signal of the front bearing spring z, — g, [cm] is the internal loading of the front wheels 
proportionate to the dynamic wheel load, the compression of the tyre.

Acta Technica Academiae Scientiarum Hungaricae 94. 1982
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ROAD VEHICLE VIBRATION SYSTEMS 11

2.1. Effect of the different road qualities in mixing the stress level cross intersection 
functions in case where the encounter probability of the low grade road and the high grade 

road ( i.e., pavement ) of each case is not modified

It may be clearly observed that in case of mixing of road grades significantly 
differing from each other (Fig. 3. mix of bad stone pavement and concrete pavement: 
O O O O O O ,  good stone pavement and concrete pavement □ □ □ □ □ □ )  with a 
fairly good approximation the case of the “dual exponentiality” takes place.

Will the lower grade of road gradually replaced by a better one, so the mixed 
stress level cross intersection function shows, first in the physically realizable region, 
pure exponentiality (mixing of square-dressed pavement with a concrete one 
Д Л Д А Д Д ), thereafter, by upgrading further on the lower pavement quality, in case 
of road grades near to each other, the expectation function of the stress level cross 
intersection approaches more and more to the Gaussian character of the original Rice 
formula.

In case of mixing bituminous and concrete pavements similar conclusions may 
be drawn from the investigation of the level cross intersection functions characterizing 
the stress pattern of the front springs to be seen in Fig. 6, and also from the 
representation of the stress level cross intersection of the tyre compression depicted in 
Fig. 9.

1. On two roads of significantly differing qualities in case where the running 
speed distribution is the same on both of them, with a good approximation a “dual 
exponentiality” occurs.

2. In approximating the road qualities to each other, the slopes of the curves of 
both approximate exponentialities are approaching to each other, and their junction

A d a  Technica Academiae Scientiarum Hungaricae 94, 1982



12 JÁNOSDEÁK-KERESZTES— MICHELBERGER— PÉTER

point is not displaced. Initially, the curves approximate the pure exponentiality, later, 
the stress level cross intersection curve familiar on the basis of the Rice relationship 
valid to the Gaussian signals.

3. In case of high stress level values, for all considered instances, M\_N(zf\ is 
asymptotically parallel to the stress level cross intersection function of Gaussian 
character associated with the output signal of the largest dispersion.

4. Mixing the different road categories, in case of a given fixed speed distribution 
does not significantly alter the zero-level cross intersection numbers M[iV0]. Keeping 
this statement in mind, the assumption of [1], [2] on the subject might now be 
considered to be proved.

2.2. Effect of the encounter probability of the lower road qualities on the result of mixing

1. Is the encounter probability of the lower road quality less than that of the 
higher and rides the driver in his vehicle at a constant speed distribution independently 
of the road qualities according to that mentioned above and is also the static load 
constant, so, in Figs 12-17 is to be seen that in the course of mixing the stress level cross 
intersection functions a “dual exponentiality” occurs. In the instances treated of the 
encounter probability of the bad road was p ,=  0.25 and that of the concrete road 
Р,-=  0.75.

2. By gradually increasing the encounter probability of the bad road first to 
Pi =  0.5 and then to p, =  0.75, might be experienced that the “dual exponentiality” tends

A cta  Technica Academiae Scientiarum  Hungaricae 94, 1982



RO A О VEHICLE VIBRATION SYSTEMS 13

first towards the pure exponentiality and thereafter, towards the Gaussian type 
characterizing the lowest road quality.

In increasing the encounter probability of the bad road, the slopes of the two 
segments displaying approximate exponentialities coming near to each other, and the 
junction point tends to be displaced toward the axis of ordinates.

Acta Technica Academiae Scientiarum Hungaricae 94. 1982



14 JÁNOSDEÁK KERESZTES MICHELBERGER PÉTER

3. In case of high level values the curves are proceeding asymptotically parallel to 
the curve of the function mixed at the highest encounter probability of the bad road 
taking up the highest value.

4. The conclusion 4 of the subchapter 2.1 is true also for the above case.

Stone road Concrete road
(stone pavement) (concrete pavement)

P P
Â Л Â 0.75 025
□ DD 0.50 Q50
ooo 025 075

Fig. 12.

Acta  Technica Academiae Scientiarum Hungaricae 94, 1982
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60 120

Good stone pavement 
P

Concrete pavement 
P

8 8 8 075 0 25
□ □ □ 050 050

..о  о  о . 025 075

300 600 Z! [cm/s2]

Fig. 13.
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16 JÁNOSDEÁK KERESZTES MICHELBERGER PÉTER

3. Summary
«

On the basis of the calculation results can be stated that the endeavour of 
observing the time-table (which may be considered identic with the case of the running 
speed distribution determined only by the character of the traffic and independent of 
road qualities) may cause indeed “dual exponentiality” for the stress level cross 
intersection expectation function. The “dual exponentiality” is particularly significant 
in the case occurring in practice with the greatest probability where along the longer

Acta Technica Academiae Scientiarum Hungaricae 94, 1982



ROAD VEHICLE VIBRATION SYSTEMS 17

section is the higher grade of road predominant, however, on some sections pavement 
deficiencies also occur.

Concerning the factors affecting the history of the stress level cross intersection 
curves, the following conclusions may be drawn:

1. Dual exponentiality is caused
— by the too large differences between the road grades, as well as by the lower 

encounter probability of the type of bad roads.
2. A form approximate to the pure exponentiality is caused:

— by the road qualities being very similar to each other or
— by the nearly identic encounter probability of road qualities.

3. The expectation function of the stress level cross intersection tends towards 
the Gaussian function in case where:
—the road qualities only slightly differ from each other or
— the road qualities only slightly differ from each other or
An accessory achievement of the investigations has been attained:

4. Altering the expectation values of the zero level cross intersection numbers 
might be neglected in the course of mixing.
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FORECASTING FABRIC TENSILE STRENGTH 
FROM COVER FACTOR

B. G rega* and M. G. Abdel Chafour 

[Manuscript received 6 May, 1982]

The aim of the present work is to obtain a mathematical form which connects the tensile 
strength and the cover factor thus, if we know the yarn count of warp or weft in a cotton system and 
by measuring the number of threads per inch, we can obtain the cover factor and by the latter we can 
calculate the tensile strength by the equation we have obtained.

The work of Law [3] and Ashenhurst [1] on yarn diameter, they and other 
workers in the textile industry, used their estimates of yarn diameter as the basis for 
quite elaborate cloth-setting theories which were intended to help designers and cloth 
constructors to produce serviceable fabrics of the desired characteristics with a 
minimum of trial and error.

We have seen in Figure 1 that the ratio yarn diameter: yarn spacing, d/P, is a 
measure of the relative closeness of the yarns in the warp or weft of a woven fabric. This 
ratio also expresses the fraction of the area of the cloth covered by the warp or weft 
yarns. We may, therefore, call it the fractional cover [4].

fractional cover = d/P

Substituting Peirce’s [5] estimate of yarn diameter, d=  1/28^/n , we have

d ____ 1__  \_
P ~  28 Ул7 X P '

But 1 /P = n, where n =  threads/in., so

d n
P ~  28 J N

( 1 )

Now d/P has a value of 1.0 when the yarns are just touching.
Peirce multiplied Eq. (1) by 28 to eliminate the numerical constant, 28, and 

defined the result as the “cover factor”, K.

— cover factor, К = —=
v/N

( 2)

It will be recalled that the cover factor is the ratio of threads per inch to the square 
root of the yarn count (cotton system) [2].

* B. Grega, Németvölgyi út 22, H-1114 Budapest 1126, Hungary 
M. G. Abdel Chafour, Cairo (Egypt), 259 Port-said Street, Sayida Zeinab

2* Acta  Technica Academiae Scientiarum Hungaricae 94, 1982



20 GREGA ABDEL CHAFOUR

Just as twist factor enables us to compare the relative hardness of twist in yarns of 
different counts, so cover factor enables us to compare the relative closeness of the 
yarns in different fabrics. In practice, cover factors are calculated for warp and weft 
independently.

—  warp cover factor,

— weft cover factor,

K,

*2

(3)

(4)

Fabric cover factor (K c) is calculated from and K 2 as follows:

— Fabric cover factor, KC = K X+ K 2 (5)

Therefore, the cover factor depends on the threads and the yarn count (cotton 
system).

Cover factors range from about 8 to 28 for most fabrics. A cover factor of 28 
corresponds to threads which just touch, but higher values than 28 can be obtained 
when there is as lateral compression of the threads. It is usual to calculated separate 
cover factor for the warp and weft yarns and they show how closely each set of threads 
is woven [6].

The factors that determine the character of a particular cloth are its weave, 
threads per inch, count and twist of the warp and weft yarns, and the properties of the 
fibre from which the yarns have been spun.

There are, in addition, the conditions of spinning and weaving, the latter 
involving the types of loom, the loom settings, and the tension of warp and weft. If the 
cloth has been finished there are also the different effects of a large number of possible 
sequences of mechanical and chemical finishing processes and the conditions under 
which the processes are carried out.

It can been seen, therefore, that to describe a cloth fully is a very complicated 
business; indeed, the aim of a considerable branch of textile research is to measure 
properties that define the character of a cloth more precisely than does a statement of 
its structure and the processes that have been applied [6].

Therefore, this work aims to use the cover factor which is considered the more 
important formula in cloth geometry to forecast fabric tensile strength.

Experimental

A series of cloths was woven on Russia Loom AT 105. Six groups of fabrics were 
woven; the warp (50/1 metric) was common for all groups, but the weft was varied 
according to the scheme shown in Table I.

Within each group, five fabrics (Z, E, /, N), and four fabrics (A, B) with different 
number of picks/cm were woven according to the scheme shown in Table II.

A cta  Technica Academiae Scientiarum Hungaricae 94, 1982



FORECASTING FABRIC TENSILE STRENGTH 21

Table I. Details of weft yarns used

Fabric group Weft count (metric Weft specification
Twist (turns/cm)system) Material Spinning method

Z 34/1 cotton Not known 7.5
E 40/1 cotton Not known 8.5
1 50/1 cotton Not known 9.5
N 60/1 cotton Not known 9.3
A 70/1 cotton Not known 8.6
В 85/1 cotton Not known 9.7

Table II. Details of fabric specifications

Fabric group Fabric no. Fabric Warp and picks/cm
construction warp picks

Z 1 1/1 plain 35.6 13.4
2 1/1 plain 35.8 16-
3 1/1 plain 35.8 19,-
4 1/1 plain 36,- 22.4
5 1/1 plain 35.2 24.8

E 1 1/1 plain 35.2 13.-
2 1/1 plain 36.4 16.3
3 1/1 plain 36.9 19.2
4 1/1 plain 37.7 23.9
5 1/1 plain 37.5 26.6

1 1 1/1 plain 36.- 13-
2 1/1 plain 36.- 16.4
3 1/1 plain 36.6 19.6
4 1/1 plain 37.2 24.2
5 1/1 plain 37.2 27

N 1 1/1 plain 37.3 13.4
2 1/1 plain 37.8 16.7
3 1/1 plain 38.5 19.7
4 1/1 plain 38.6 25.2
5 1/1 plain 38.5 30.6

A 1 1/1 plain 37.5 13.3
2 1/1 plain 37.9 16.8
3 1/1 plain 38.6 28.2
4 1/1 plain 38.7 34.4

В 1 1/1 plain 36.8 16,-
2 1/1 plain 38.8 28,-
3 1/1 plain 38.8 30,-
4 1/1 plain 38.4 35.6

Acta Technica Academiae Scienltarum llungaricae 94. 1982
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Table III. Details of tensile strength of warp and weft

Fabric
group

Warp Weft

Fabric No. Breaking load Elongation Breaking load Elongation Weight
gr/m2

K. N C V % % cv% N cv % °//о cv %

z 1 44.53 436.9 3.91 8.49 4.36 20,- 195.8 10.61 13.64 5.71 108.20
2 45.89 450.2 2.61 9.05 4.49 30.7 301.0 10.31 17.32 5.13 116.85
3 45.55 446.9 3.43 10.61 6.78 37.2 364.5 5.13 19.31 5.23 128.13
4 44.94 440.8 2.43 11.85 2.75 48.7 477.9 7.27 20.79 3.15 140.75
5 43.78 429.5 3.01 12.75 7.57 53.9 528.4 3.93 19.95 4.90 149.68

E 1 45.2 443.4 2.12 7.53 9.15 19.2 188.1 3.48 13.77 2.56 99.30
2 44.6 437.1 2.03 7.10 4.79 22.8 223.8 6.61 15.25 2.48 109.32
3 45.0 441.5 2.22 8.52 14.62 28.9 283.9 4.81 20.29 4.18 117.54
4 43.5 427.1 6.81 10.43 7.07 37.8 370.9 5.50 20.29 4.56 130.34
5 44.7 438.6 5.25 10.42 5.89 41.6 407.9 6.92 23.79 5.98 142.07

1 1 44.3 434.8 1.04 6.74 3.38 13.6 133.3 7.78 12.35 5.03 93.06
2 45.4 445.3 3.87 8.19 5.29 17.8 174.2 6.31 13.42 6.84 102.43
3 45.3 444.1 3.39 8.57 11.82 23.3 228.2 6.03 17.55 4.20 109.96
4 48.7 477.9 2.31 9.04 3.30 33.5 328.8 8.16 24.75 4.85 124.41
5 44.9 441.1 1.07 7.47 4.68 34.9 342.0 5.34 25.17 6.06 127.42

N 1 42.02 412.2 6.38 4.95 19.74 10.1 99.4 6.72 12.59 11.10 88.07
2 45.74 448.7 4.11 6.73 4.45 13.4 131.4 6.40 14.27 5.32 97.08
3 45.94 450.7 5.48 6.64 9.35 18.6 182.2 6.91 18.53 5.68 102.75
4 47.60 467.0 4.78 6.78 3.82 22.5 221.1 6.85 22.18 7.67 112.98
5 42.79 419.8 3.25 8.33 6.22 32.1 314.9 3.36 25.77 1.67 123.41

A 1 41.9 410.9 3.28 6.48 3.72 16.2 158.7 6.90 13.06 9.36 86.59
2 43.1 440.2 2.86 6.39 5.29 21.9 214.7 5.15 18.35 4.69 95.61
3 44.7 438.9 3.42 8.04 4.34 43.4 426.2 3.60 26.36 6.32 117.89
4 43.0 422.0 1.93 9.31 2.09 50.7 496.6 1.87 25.53 1.89 125.49

В 1 42.81 419.9 2.50 6.19 15.88 17.25 169.2 5.14 14.54 7.32 91.37
2 43.78 429.5 4.68 7.32 5.37 36.86 361.6 3.31 23.58 4.64 111.49
3 43.02 422.0 3.35 8.78 2.63 40.30 395.4 4.09 23.11 2.77 116.12
4 43.4 409.9 8.21 8.05 7.99 49.68 487.4 1.69 27.46 2.59 124.04
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The fabrics were scoured at 95 °C for one hour in a detergant and sodium 
carbonate.

The warp and weft threads in the fabrics were measured by counting the number 
of the threads in a 1 cm length of cloth.

Table IV. Details of warp, weft and cloth cover factor

Fabric group
Cover factor

warp
* i

weft
*2

cloth
K , + K 2 = KC

Z 1 16.63 7.6 24.23
2 16.73 9.1 25.83
3 16.73 10.8 27.53
4 16.82 12.7 29.52
5 16.45 14.1 30.55

E 1 16.5 6.8 23.3
2 17,- 8.5 25.5
3 17.2 10,- 27.2
4 17.2 12.5 29.7
5 17.5 13.9 31.4

1 1 16.8 6.1 22.9
2 16.8 7.7 24.5
3 17.1 9.2 26.3
4 17.4 11.3 28.7
5 17.4 12.6 30,-

N 1 17.4 5.7 23.1
2 17.7 7.1 24.8
3 18,- 8.4 26.4
4 18,- 10.8 28.8
5 18,- 13.1 31.1

A 1 17.5 5.3 22.8
2 17.7 6.6 24.3
3 18.- 11.1 29.1
4 18.1 13.6 31.1

В 1 17.2 5.7 22.9
2 18.1 10,- 28.1
3 18.1 10.8 28.9
4 17.9 12.7 30.7

Tensile strength of the fabrics F was determined by extending the fabrics on 
ZT 100 Tensile Tester. Samples of size 25 cm x 5 cm were used in the tests, and the 
ZT 100 cross-head was driven at 30 +  2 per second. The resulting of load and 
elongation to all groups is shown in Table III.

The warp and weft threads covered the factor for six group fabrics and were 
calculated according to formula (3), (4), (5) according to the scheme shown in Table IV.
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Now having these results which connects the two factors:
1. tensile strength of the fabric F
2. the cover factor of the cloth К

we will try to get a mathematical form which describes this relationship. 
Assuming that this form has that of a straight line:

F = a + bK ,

with a and b are unknown real numbers.
These coefficients a and b must be determined under the following condition: 
* the deviation of the given values (K, F ) from this assumed equation as a 

function of the unknowns a and b must be a minimum value.
Thus we have the following:

Thread Spacing

Fig. 1.

Considering the function

/(a, b) =  £  tf
Í = 1

(Where n denotes the number of the given points.)
For f{a,b) to be a minimum value, we must have:

(i) the first partial derivatives df /да and df/db must be zero;
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(ii) the second partial derivatives

P f
da2

and P f
db2

must be a positive value.
— the condition (ii) always holds depending on both a and b, so we only use 

condition (i) to get the following equations:

a
m

Z KiFií= 1

*

**

where (Kh F,) describes the given values (i= 1, . . m), with m denoting the number of 
testings.

Equations (*) and (**) determine the coefficients a and b (Fig. 16)
Now to be sure that really that relation between the factors Fk and F is linear, the

ratio:

r =
X, ( F i-F ,)2 

Z ( F u - F ,)2

which describes the ratio of the deviation of the mathematic mean (K, F ) of the given 
values from the straight line and its deviation from the given values, always satisfies the 
inequality:

0.5£r£l .

Now applying these methods to our experiments, we obtain the following results 
for the groups (Z, /, E, N, A and B).

The results (Figs 2,5,8,11, 14,17) show the relationship between tensile strength 
and the cover factor of the warps for the fabrics groups (Z, E, /, N, A, B) and the 
relationship between the parameters which can be described by the linear equation:

Fw= a + b K w
So:

Fw= —33.45 + 4.70 K w

(6)

.. . group Z

Fw = 56.755 —0.712 Kw . . .  group E

Fw= -9 .86  + 3.25 K„ . . .  group /

Fw= -41.94 + 4.87 Kw . . .  group N

Fw= -7 .17  + 2.82 Kw . . .  group A

Fw = 31.25+ 0.67 K w . . .  group В
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Fig. 5.
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Fig. 6.

Fig. 7.
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where:
FH, =  warp tensile strength. 

Kw = warp cover factor.

The results (Figs 3, 6, 9, 12, 15, 18) show the relationship between the tensile 
strength and the cover factor of the wefts for fabrics groups Z, E, 1, N, A , В and 
relationship between the parameters can be described by the linear equation:

F, = a + bKf  (7)

So:

where:

Ff = —18.05 + 5.17 Kf . . .  group Z

Ff = —3.93 + 3.29 К{ . . .  group F

Ff =  —8.6 + 3.54 Kf . . .  group /

F f = — 6.56 + 2.87 К f . . .  group N

Ff = -6 .06  +  4.27 Kf . . .  group A

Ff  = —9.141 +4.608 Кf . . .  group В

Ff  = weft tensile strength

Kf  = weft cover factor.
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The results (Figs 4, 7, 10, 13, 16, 19) show the relationship between tensile 
strength and the cover factor of the cloth for fabrics groups “Z, E, /, N, A, В" and the 
relationship between the parameters can also be described by the linear equation:

So:
Fc = a + bKc

Fc=  —57.75 + 5.11 Kc . . .  group Z

Fc= —2.758 + 2.823 Kc . . .  group E

( 8)
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F c = — 2 1.8 + 3.48 K c . . . g r o u p  /

F c = — 10.73 + 2.79 K c . . .  group N

F c — —35.76 + 4.15 K c . . .  group A

F c =  —35.87 + 4.17 K c . . . g r o u p  В
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Fig. 14.
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Ft

Fig. 16.

К
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where:
Fc = cloth tensile strength 

K c = cloth cover factor.
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LATERAL BUCKLING OF ELASTICALLY SUPPORTED
ARCHES

L. Kollár,* J. G yurkó**
[Manuscript received 9, November, 1982]

The paper develops the differential equations of buckling of arches with monosymmetric 
cross section, elastically supported in the lateral direction, and presents the solution for “fork-like” 
support.

I. Introduction

The problem of lateral (torsional) buckling of centrally compressed free arches 
has been solved for several cases, see e.g. in [1]. However, the main load-bearing 
elements of some recent structural types (e.g. tents stressed onto a row of arches, Fig. 1) 
can be modelled as having a continuous elastic lateral support, so that they necessitate 
to clarify the problem of lateral buckling of such arches. We intend to do that in the 
following.

2. Assumptions and approximations

Let us investigate an arch of constant cross section, made of homogeneous, 
isotropic and linearly elastic material, elastically supported in the lateral direction by a 
continuous medium equally resisting tension and compression. The axis of the arch 
should have the shape of a circular arc. The arch is subjected to central compression, i.e. 
the external forces q form a radially directed, uniformly distributed load system (Fig. 2), 
which is conservative, i.e. it maintains its direction during buckling.

The cross section of the arch has at least one axis of symmetry which lies in the 
plane of the arch. The cross section can also be thin-walled. The point of application of 
the external load should lie anywhere on the axis of symmetry, but its position should 
be the same for every cross section.

We apply the following approximate assumptions:
— The curvature of the arch is not very great, i.e. the ratio of the height of the 

cross section to the radius of curvature of the arch can be neglected in comparison to 
unity. Thus it follows that also all other vertical dimensions of the cross section are 
negligible in comparison to the radius of the arch:

1 ± j  ~  1 , (1)

* Dr. Kollár Lajos, Karap u. 9, H-1122 Budapest, Hungary
** Gyurkó János, Építéstudományi Intézet, Dávid Ferenc u. 6. H-1113 Budapest, Hungary.
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where d is the height of the cross section and R is the radius of the arc passing through 
the centroids of the cross sections, see Fig. 2;

— The longitudinal fibres of the arch undergo during lateral buckling 
elongations which are antisymmetric with respect to the symmetry axis of the cross 
section. Hence only the fibre lying in the symmetry axis remains inextensional;

— The cross sections of the arch maintain their original form during buckling, 
except for their warping perpendicularly to their planes. We shall neglect the changes in 
the static characteristics of the cross sections occurring during buckling.

These assumptions are identical with those made in[l].

F ig .  1. Tent structure pitched on arches

i=2aR

a)

F ig . 2 . The structure investigated: a) the loading; b) the arch

3. Notations

We introduce the following symbols (see also Fig. 3):

e

S
T

C

— centroid of the cross section;
— shear centre of the cross section;
— distance between T  and S;
-— point of application of the elastic support;
— distance between T  and C;
— point of application of the external load q\
— displacements of the centroid S  in three perpendicular directions;
— rotations of the centroidal axes x, ÿ ,  z;
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Fig. 3. Notations: a) the arch; b) the cross section; c) the displacement components of the centroid; the internal
forces of the arch

M, T, N
s
( )’
c
X
I
l

— internal forces (moment, shearing force, normal force);
— arc length measured along the centroidal line of the arch;
— differentiation with respect to s;
— constant of elastic support referred to unit length of the arc [N/m2] or [kN /m 2];
— half central angle of the arc;
— length of the centroidal line of the arch (Fig. 2b);
— distance between P and T
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4. Differential equations of lateral buckling

In the derivation we use the equilibrium method. The static equation system of 
the arch in the stage of bifurcation is [2]:

M'z -  ^  + mz = 0, (2a)

T'y + qy = 0 , (2b)

M
M'x + ~  Ty + mx = 0 , (2c)

Here M  and T are internal forces arising during buckling, m and q are loading terms 
caused by buckling deformation, referred to unit arc length.

These loading terms are to be found in [1] for the case of unsupported arches 
[Eqs (3.120H3.123)]. We now have to complete them by the terms corresponding to 
the elastic support.

Let us express the >’ directed displacement vc of point C with the aid of the 
displacement of the shear centre T:

vc = vT- t ccp, (3)

with vT as the y directed displacement of T.
The specific load term qy has thus to be completed, due to the elastic support, by 

the additional term:
q'"= - c v c = - c (v T- t cq>). (4)

Similarly, we have to add the term

= -  q'X  = c(tc -  e) (vT -  tc(p), (5)

due to the elastic support, to the specific twisting moment тг turning around the axis z.
The loading term mx will not be affected by the elastic support, hence its value 

remains zero.
Summing up, the load terms appearing in Eqs (2) take the form:

qy = -  Nv'-i- + Necp" -  c(vT -  tcq>) ;

mz—N

mx = 0;

t — e
~ ~ R ~

cp-( i2x + i2y)(p"
R- <P + c(tc — e) (vT — tcq>) ;

(6a)

(6b)

(6c)

with ix and iy as the radii of gyration of the cross section.
We express the internal forces of the arch with the aid of the displacements of the 

shear centre:

N = qR = const. (7a)
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Ty = N(v'T — eq>') + c J (vt - t c<p)ds,
(s)

M t - G I T(q>' + + ^ )  + e T y ,

(7 h) 

(7c) 

№

where EIX, GIT and Е1Ю are the lateral bending, the torsional and the warping rigidities, 
respectively.

We introduce Eqs (7) into (2a, b, c), differentiate (2c) according to s, and substitute 
the relation (2b) for T'y:

-N (v 'i-ecp")-

- Ф г - fc<p) = 0 . (8a)

Eq. (2a), written in detail, becomes:

+ f  y.m- e<p")

~(il + i$)N<p" + ~ j N  <p +  с ф т -  tc(p) = 0. (8b)

Eqs (8a, b), containing the unknown displacement functions vT and <p, represent the 
differential equation system which governs lateral buckling of the arch corresponding 
to Sect. 2. They allow to calculate, according to the usual methods of elastic stability 
[3], the critical compressive force N — Ncr for optional end supports.

For the sake of simplicity, we shall confine us in the following to the so-called 
“fork-like support”, i.e. when the end cross sections are prevented from displacing 
laterally and from rotating about the axis z, but can freely rotate about the axis x and
can freely warp:

s = 0:l vT = 0, (9a)

s = l: 1 <P = o , (9b)

f - f r  = 0, (9c)

4>" + j v ' i = 0 . (9d)
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5. Solution in the case of the “fork-like support”

We assume the unknown displacement functions in the form:

<p = (pk sin(/ts), (10a)

vT = vk sin(Aks) ,
where

(10b)

Ak = k j ; (10c)

k — 1,2,3, . . .  is the number of buckling half waves; (pk and vk are constants. Both 
functions satisfy the conditions (9a to d) of the fork-like support.

The derivatives of the functions (10a, b) have to be introduced into equation 
system (8a, b). Provided that s ^ l  and s / 0 ,  we arrive at the following linear equation 
system for the coefficients vk and <pk:

Гаи а >Л Г1,*1 = Г0 
|_<»2 1 <»22J  J  L°_

(11)

The first matrix appearing in (11) is symmetric, i.e. fl)2 = <»2 i- Its elements are:

< » i .= ^ U - ( G / r  +  A2E / J ^  - (12a)

a 4  =  a 2i = +(G /T + A»£/M + E /* )iJ + ctc; (12b)

<»2 2 =  - l î l - { e 2 + i2x + i2y)N + G lT + k l E U  + ^ A ^ f - e  -  0  -  -  cf2 .

(12c)

The value of the critical compressive force N  =  N„ is to be calculated from the 
following equation:

a \ l a22 ~  a\2 —0» (13)

since the condition for the existence of a solution of the equation system (11), which is 
different from zero, is that the determinant of the coefficient matrix be equal to zero. 

Eq. (13) is of the second degree in Ncr:

with
К 2ЛГ2 +К,ЛГ„.+ К o = 0 ; if Л */0;

K 2=(il + iyUl +
t — e 

R

(14)

(15a)

+ xtíii + i2 + e2) + A*2
e + t
I T
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Ko = J

)
(15b)

(15c)

Hence we obtained a closed formula for the critical compressive force of an arch with a 
fork-like support.

Let us show the influence of the elastic support on the critical compressive force 
of a simple arch shown in Fig. 4. The material of the arch is timber, it has a narrow 
rectangular cross section, and its centre line is a circular arc with a central angle
2a = л/2.

The dimensions of the structure are:
R = 15.0 m,
d = 0.5 m,

2h = 0.1 m (the width of the cross section),
1=23.6 m

The cross sectional characteristics of the arch are (Fig. 4b):
£ =  1.5 x 107 IcN/m2.
G »0.4 E = 6x 106 kN/m2 ,

E l ,=625 kNm2,
G Ir = 1000 kNm2
£/„*0,

( = e = tc=0,

Let us suppose that the lateral elastic support acts at the centroid of the cross 
section. Taking all these into account, Eq. (14) assumes the comparatively simple form:

Let us assume the constant of the elastic support to be c=68 kN/m 2, which 
approximately corresponds to the stiffness exerted by the canvas of the structure shown 
in Fig. 1.

6. Numerical example
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Fig. 4. The arch of the numerical example, a) elevation; b) cross section

Let us calculate the critical compressive force from the previous equation for the 
half wave numbers к =  1, 2, 3,4, 5, and varying the value of c from 0 to 68 kN/m2. 

The numerical results are to be seen in Table I.

Table I

c <c=l 2 3 4 5

0.00 Dl±] 37.6 93.1 171.2 272.1

0.68 1Ж З 47.2 97.3 173.6 273.6

6.80 388.0 1133.31 135.7 195.2 287.5

68.00 3830.9 994.6 518.9 1411.1 1 426.0

In the table we framed the minimum values of the forces N, belonging to the same 
c, in each row. These minimum values give the critical forces belonging to every c. It is 
to be seen that even one tenth of the actual elastic support stiffness changes the buckling 
shape of the unsupported arch.

In our example the arch buckles in four half waves, under a critical stress of
8.2 MPa. That is, the lateral elastic support increases the critical load of the 
unsupported arch to about its 76-fold.

7. Two additional remarks

If we further simplify Eq. (14) by setting R -ю э  and G /T-»oo, we obtain the 
critical compressive force of an elastically supported straight bar of the length / [3];

N СГ l2 { + k2n*Elx) -
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If we intend to apply the above results to canvas structures as that shown in Fig. 1, 
we also have to consider that the stiffness c of the elastic support exerted by the 
canvas also depends on the number к of buckling half waves [4]. Thus the critical force 
can be obtained by iteration in some steps.
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A RECENT METHOD FOR THE NUMERICAL SOLUTION 
OF ENGINEERING PROBLEMS. PART I.

E. BÉRES*

[Manuscript received: 31 May, 1982]

This method is featured partly by writing physical relationships directly in terms of finite 
elements, rather than to state and solve the problem in terms of differential equations; and partly, by 
applying an approximate function in the form (generally polynomial) of a function series valid for the 
entire domain, or at least for a group of elements. Physical conditions written either for elements or 
for boundary points or boundary domains equally lead to linear equations. Such equation systems 
are generally redundant hence with no exact solution. As an approximate solution that with the least 
square sum of equation errors will be taken. The change of this solution of the redundant equation 
system upon multiplying equations in the system by different constants may be utilized to find the 
solution where error maxima tend to a minimum.

The approximate polynomial at a sufficiently high power yields the exact load for the 
calculated deformation by resubstitution into the exact differential equation. Thereby a possibility 
results to exactly determine the error in terms of load.

I. Introduction

A calculation method advantageous in engineering problems or even in a wide 
field of physics will be presented. Reference to elasticity, a confined field of physics, is by 
no means to the detriment of general validity. At the same time it not only helps 
illustrativeness but it relates the notions to distinct physical magnitudes.

First, let us point to an essential difference between theoretically exact analytic 
methods, and approximate methods. Namely, much of misunderstanding and 
erroneous evaluation has resulted from the assumed validity for approximate methods 
of the statements on, and skills in, analytic methods. Though, recent computer facilities 
impose to revaluate and reformulate certain interpretations and principles, rather than 
to be simply means to extend the validity of theories. Such reinterpretations and 
reformulations include:

— Just the due respect to convergence demonstrations. For instance, con
vergence demonstration is needless for methods or cases where practical implication 
approximates by no means the critical range.

— Appointment of cases suiting an approximate solution exactly meeting one or 
several groups of conditions. One must be aware of the not absolute superiority of the 
method and solution exactly meeting one group of conditions, approximating the 
others, even, such a restriction is likely to impair the solution as a whole.

— Recognition of the excessive rigidity and erroneousness of the attitude to 
invariably consider the method and solution with regular equation systems as more

* Dr. E. Béres, Hunyadi János út 11, H-1011 Budapest, Hungary
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concrete hence superior to those leading to redundant equation systems. The solution 
method applying redundant equation systems has its advantages.

— No optimum solution is possible by relying exclusively on principles to 
classify the methods. The optimum solution has to be found within the range of a given 
solution method — in particular, in complex problems.

In the following, first the suggested method will be presented, then its principal 
features analyzed, together with the problems arisen above.

2. Direct application of the physical model on finite elements

In most fields of physics — including elasticity — analytic methods, differential 
equations describing the problem were the first to be formulated. At present, exact 
theoretical relationships are known in most of the problems, at the same time, exact 
solutions of the established differential or integral equations can only be given — with a 
few exceptions — for special practically irrelevant problems, at most of educational 
interest. Obviously, earlier it was attempted to find some approximate solution for 
these equations, for the computing facilities of that time to cope with, it being no 
question of applying cumbersome numerical methods. The advent, however, of high
speed, program-controlled digital computers brought about radical changes.

Application of digital computers started by making programs for the known 
methods, much facilitating and even forwarding them. Problem volumes could 
significantly be increased, the accuracy improved by refining divisionsand iterations. It 
became, however, soon clear that earlier methods developed for different tools failed to 
fully utilize possibilities offered by the new computing device, challenging to develop 
new methods suiting the new implement. In a meaning the finite element method can be 
classified as such, although it has inherited much of analytic methods (variation 
principle, meeting of boundary conditions, etc.).

Subsequently the case of elasticity problems where displacement components are 
considered as unknown will be concerned with. Three kinds of conditions are 
involved, namely:

equilibrium conditions; 
dynamical boundary conditions; 
geometrical boundary conditions.
Compared to differential equations of the analytic method, the simplest 

approximation is by writing the equilibrium equations directly for finite elements 
obtained by somehow dividing the solid; and the dynamical and geometrical boundary 
conditions partly for the corresponding boundary domains, and partly, for common 
points of the boundary and the dividing planes.

The simplest and most expedient method to divide the solid to elements is that by 
means of planes parallel to the coordinate planes, resulting in pyramids for most of the 
elements. More complex elements occur only in boundary domains where they are 
partly bounded by planes, and partly by domain boundary surfaces.
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These elements are subject to mass forces and to surface stresses. Coordinates of 
the mass force resultants in tridimensional elements are given by triple integrals but 
since, in general, mass forces are constant, this integral simplifies to the product of the 
volume by a constant. Often even the effect of mass forces may be omitted.

Components of the resultant of element surface stresses can be obtained from 
double integrals. Division by planes parallel to the coordinate planes produces mostly 
rectangular integration domains, except boundary surfaces of elements adjacent to 
boundary domains. These double integrals prevail in solving equilibrium equations.

Dynamical boundary conditions are written for intersections of the domain 
boundary surfaces and the dividing planes, as well as for the boundary domains. The 
stress belonging to the displacement functions is equated to the given stress, and the 
force calculated for the boundary domain to the force acting there.

Geomatrical boundary conditions are still simpler handled. At the nodes defined 
above, displacement components are required to equal the given value. In exceptional 
cases, however, the displacement may be axactly specified for each boundary domain.

Of course, plane problems involve still simpler procedures and division. Now, 
elements inside the domain are rectangles, and its boundary is a plane curve. Resulting 
simplifications affect the calculation as a whole. To stress general validity, the 
subsequent theoretical discussion will refer to the spatial case, bidimensional problems 
being understood throughout as special cases with significant simplifications.

As to be detailed below, meeting the boundary conditions in this method 
involves twofold approximations. Namely, partly, displacement functions are replaced 
by approximate functions yielding but an approximation for the displacements of 
defined points, underlying interpolation resulting in further approximations. In 
general cases, this statement is valid for any approximate method, it can only be 
invalidated in special cases. The possibility of exactness at the defined points exists also 
in the presented method, but exact fulfilment of the boundary conditions will be seen 
later not to increase the accuracy, and even maybe to impair the solution as a whole, 
restricting this possibility to particular cases.

3. Polynomial approximation

First the simple, but practically most frequent case of applying a single 
approximate function for the entire domain will be considered. Such functions are 
written as finite function series:

a

u =  Z У' z) ;

V = £  b j g j ( x , y , z ) ,  
]= 1

У

W = Z сЛ(х> y> z) ,
k= 1
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where f h g} and hk are arbitrary functions, a„ bj and c\ are wanted constants causing 
functions u, V and w to meet element equilibrium equations and boundary conditions at 
the defined points at the least error.

The simplest treatment is that where f , g, and hk are power functions, that is, 
displacement functions are polynomials of the form

и  = Y J a i x P i y ‘l , z r i  >
(0

V =  X  bjX^iy4iz r j , 
O')

where p„ qh . . ., rk are positive integers or zero. The polynomial may comprise various 
numbers of terms as a function of u, v, w.

In other methods, e.g. that of finite elements, geometrical isotropy is required as a 
rule (see p. 134 in [1]). On the other hand, for an approximate polynomial affecting the 
entire domain, geometrical isotropy is irrelevant. The applied polynomial needs not be 
complete or symmetrical. Form of, and number of terms in, polynomials are arbitrarily 
chosen to cope with the type of the problem, excepted that the number of different

exponents of a variable must not exceed that of dividing points parallel to the variable 
axis. For instance, dividing a pyramid to 6 parts along x, to 10 parts along y, and to 5 
parts along z, and having every variable at a lower power, too, the highest powers of 
variables x, у and z may be 6,10 and 5, resp., hence the term at the highest power must 
not exceed x6y10z5. Any variable at a higher power may induce a significant error 
inside the element even if the number of equations leads to a unique solution. This 
characteristic of approximate polynomials is, however, common knowledge.

4. Writing the equations

As concerns the approximation by polynomials, the method proceeds seemingly 
similarly to the finite element method. The essential change due to the higher-order 
approximation affecting the entire domain, and the error assessment possibilities it
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offers will only be revealed later. Here simply the scheme of writing the equations will 
be presented and confronted to the same step in the finite element method. Namely, 
both methods yield linear equation systems, and both solutions consists of two parts: to 
write the equations, and to solve the system of equations.

Element equilibrium equations, and expressions for dynamical and geometrical 
boundary conditions at given points are in concise, vectorial form:

JJ s dF + fK = 0 ,
F

SPi =S0i

uw =  u0, ,
respectively.

Coordinates of stress vector s in terms of stress tensor components are:

sx = axl + Tyxm + Tzxn, 

sy =  zxyl + aym + zxyn , 

sz = rxzl + ryzm + azn ,

where l, m, n are direction cosines of the surface normal.
Mass force vector f has been assumed as constant, thus, mass force acting on the 

element could be written as product of vector f by the element volume V. In the special 
case where mass force is place-dependent, mass force acting on the element is:

ÍÍJfdK
V

s0( and u0j are given boundary stress and displacement at P, and Ps, respectively.
Since, however, as stated earlier, displacement components are approximated by 

polynomials, the stress components have to be substituted into the formulae in terms of 
displacement components, using well-known relationships:

° x
E Г du (  dv dw\  

( 1 + v)( 1 — 2v) L -V  Sx + V\d y  + dz)_

E (du dv \
2(1 -f- v) + d x )  '

Actually, the unknowns are coefficients a„ bjt ck of the polynomials, of a number 
independent of that of the elements. The relationship between unknowns and 
equations, will, however, be discussed only later. On element surfaces coincident with 
the domain boundary where surface stresses are given as boundary stresses, the integral 
value is constant, to be integrated with the right-hand-side constant of the equation 
system.
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5. Solving the equations

Just as most of the usual approximate methods, the suggested one leads to a 
linear equation system to be solved. Even in this case, the equation system to be solved 
may be made regular, but the genuine method leads to a redundant system of 
equations. The number of equations and unknowns, advantages and inconvénients of 
redundant equation systems, and possibilities to improve the accuracy will be spent a 
deep-going analysis later. Here only essentials of the solution principle will be 
recapitulated.

The system of linear equations of n unknowns and a total of m equilibrium, 
dynamical and geometrical boundary conditions is, in general form:

A X = b ,
(m n) (n) (m)

solved according to the condition:

(A x-b)2 = min!

Difficulty with— and at the same time, interest in — the problem is that while the result 
of solving a regular equation system remains inaffected by multiplying its equations by 
different constants, and solving the resulting equation system, the result of a redundant 
equation system may be significantly altered by such multiplications.

This apparent instability is, however, not only an inconvenient but it permits at 
the same time to choose the most convenient one among solutions for the given type of 
function. Namely it will soon be clear that the idea of arbitrarily improving the 
accuracy by refining the division, hence increasing the number of elements has to be 
abandoned. It has to be examined instead, how to find the most convenient solution of 
a given type of function, e.g. tenth or twentieth-power polynomials. Development and 
progress impose this change of approach.

6. The problem of convergence

In mathematics, the first and most important requirement for approximation is 
generally the convergence of the procedure, hence decrease of the error with increasing 
number of terms, to tend to  zero as limiting value; although series theoretically 
divergent but for an adequate number of terms yielding fair approximation in a given 
interval, have long been used in practical mathematics. But however selfintended the 
requirement of convergence is in theoretical analyses, it would be quite erroneous to 
prove applicability of an approximate method by its convergence in the case of a 
complex physical problem e.g. that of elasticity. Namely, on one hand, in 
approximating by a single-variable function, to achieve coincidence to 10, 12 or any 
digit is no problem, it can be achieved throughout, or at least in a part of the range of
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Fig. 2.

interpretation by means of polynomials of 10, 15,20 or other, still maneuvrable power. 
The problem to be solved in practice is merely restriction of computation to the range 
where the desired accuracy can be achieved by means of the given computation tool. 
On the other hand, the error of results of some kinds of elasticity problems can hardly 
be diminished below 10, 20 or even 50 per cent. Namely refining the divisions or 
increasing the power have their limitations even for the actual high-capacity 
computers, because of an excessive number of unknowns beyond the storage capacity 
of the computer. To be illsutrative, let us take a simple example, determination of stress 
distribution in a rectangular prism. The prism is divided to elements by planes parallel 
toits sides, toten parts in each direction, yielding 1000 elements and 1331 nodes. In the
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simplest case where approximate functions are only fitted to the nodes, and specifying 
only C°-order continuity of elements, thus, for each node, only three displacement 
components are unknown, the total number of unknowns is 3993. In the finite element 
method, this number is somewhat, but not significantly, reduced by specifying the 
displacement of some boundary points. Solution of equations with so many unknowns 
meets difficulties from several aspects, hence further increase of the number of 
unknowns would be practically meaningless. Namely halving the element edges would 
increase by about eight times the number of unknowns, and dividing to twenty parts, to 
27,783. Neither the attempt to improve the accuracy by increasing the continuity order 
is luckier, namely in the bidimensional case, the number of unknowns assumed to 
provide for a continuity C1 is at least four times that of the simplest case of continuity 
C°.

For the tridimensional case there have not even practical elements been 
developed to provide continuity C1 as stated by Huebner (p. 185 in [1]).

Obviously, refinement of division, hence increase of the number of elements has 
definite limitations. It is a serious problem, namely although often a division to 8 to 10 
parts, underlying approximation, may lead to a result close to several digits, in certain 
— e.g. elasticity — problems of great many unknowns, such an approximation would 
produce an error of the result order.

Therefore it is quite wrong to evaluate the approximation result according to the 
theoretical behaviour at the limit.

All that means the practical irrelevance of theoretically proving the convergence. 
Safe evaluation of results cannot rely but on exact error calculus.

To avoid misunderstanding, it should stressed that the presented method is 
theoretically convergent. Thus, rather than as an apology for this inconvenient of the 
method, the sharp exposition of the problem has been intended to attribute the real 
value to the theoretical demonstration of convergence. Otherwise, so-called asympto
tic or semiconvergent series have been used since Euler for calculating function values. 
These series do not convergent but the upper bound of calculation error is a calculable 
small value not to be made arbitrary small. For details see [2].

7. Bounds in the finite element method

In the finite element method, the system energy is known to be susceptible to an 
upper and a lower bound. This feature of the method is generally referred to, and even if 
it gives no rise to erroneous conclusions, eventual omission of evaluation may induce 
overestimation, misunderstanding. For instance, the sentence on p. 43 in [3]: “In the 
case of varieties np — min! and — nc =  min! of the principles of potential energy and of 
accessory energy, 02np and 02nc, respectively, can be affected by signs, that is, these two 
error principles yield bounds for the exact solution” makes it to seem as if the solution 
would be bounded. Though, there is no question about this, and a deeper-going study 
reveals it not to have been meant by the author.
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Namely these solutions give no bound either for the stresses or for the 
displacements but only for the energy in the solid, and with these bounds tending to the 
common limit value, also solutions tend to the exact solution. Thus, also this possibility 
belongs rather to the problematic of limit value than to that of the practical evaluation 
of the approximate solution. Namely, even if two approximate solutions are known, 
with their respective potential energies, there is no proof that e.g. the maximum stress 
error is the less in the solution with the lesser potential energy.

The greatest convenience with the finite element method resides in the simple 
handling due to the linear approximation inside elements of the field of displacements, 
an approximation rather simple nevertheless with plenty of theoretical and practical 
difficulties. The impossibility to achieve other than C°-order continuity by linearly 
approximating the field of displacements leads to a discontinuity of stress functions at 
element boundaries, not to be helped even by applying a higher-order approximation 
fitting to several points of the element, causing the function to result in a closer 
approximation inside the element but no higher-order continuity at element 
boundaries. Although theoretically a higher-order continuity can be provided at 
element boundaries, but no suitable practical method has yet been developed for 
tridimensional cases. Though, the theoretical possibility may raise better than real 
hopes by borrowing the air of simplicity from the linear approximation. Well, 
simplicity and generalizability are contradictory. But special cases permitting a higher- 
order fitting have been susceptible of development.

This is illustrated by [4] applying higher-order fitting elements for computing 
axisymmetrical deformations of shells of revolution showing the stress to be 
continuous if elements have at least twelve degrees of freedom. Application of such 
elements permits to reduce the number not only of elements but also of unknowns 
without reducing, but generally even increasing, the accuracy.

The strive to a higher-order continuity of elements corresponds to the attempt to 
handle the complete domain as a single element, realized by assuming the approximate 
function as a high-power polynomial.

8. Fulfilment of certain conditions

In developing the analytical methods, it was natural to seek solutions in the form 
of function series with terms meeting some of the conditional equations. If these 
functions make up a complete system then the exact solution can be produced as an 
infinite function series. Often, however, the complete system is even theoretically 
difficult to produce. In reality, always finite function series are encountered, preventing 
fulfilment of certain conditions.

At the first glance it may be misleading that in the finite element method the 
condition for the displacement of given boundary points is exactly met, while in the
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presented method, an approximate solution is made up with even in this respect. The 
inessentiality of this difference is obvious by realizing that

— fulfilment of the boundary condition of displacement for given points means 
no fulfilment for every boundary point;

— continuity of displacements means no continuity of stresses and strains.
These considerations are, however, useless, since it is simple to prove

theoretically, or to show by examples that a forcible exact meeting or close 
approximation of boundary conditions significantly impairs, rather than improves, the 
solution as a whole.

This statement will be theoretically proven as follows.
Be H the error function of arbitrary definition. Its minimum cannot be reduced 

for any by-condition, that is

min H<m in H /F , (1)

H /F denoting the error function meeting condition F. In a still more general way,

min H/F, < min H /F2 ,

if condition F2 comprises condition F,.
Thus, by-conditions are seen to increase the error, or keep it at the same level 

provided the by-condition fits the solution for condition min H.
Thus, from the aspect of solution accuracy, application of functions meeting the 

boundary conditions (or a part of them, or the differential equations of equilibrium) is 
seen not only not to improve but even to impair reliability of the result.

At the first glance, the possibility to define an infinity of functions H may be 
embarrassing. But here the values of the same function H for different solutions, rather 
than comparison of different values of function H anyhow impossible to compare in 
merit, are spoken of.

For the redundant equation system

Ax = b (2)

a simple numerical value, that is, however, typical of the error rate is simplest defined by

H = (Ax —b)2 . (3)

Concerning the defined error function, (1) has the following meaning. Having 
determined vector x with the least H value, then modifying equation system (2) by 
multiplying its equations by a constant each, and solving the obtained equation system 
Äx = B relying on the condition of minimum error square sum, only to substitute 
resulting vector x into (3) yields an H value that is higher than or equal to the H value 
obtained for the original equation system, that is:

(A x-b)2< (A x^b)2 .
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Analysis of numerical examples showed the effect to be significant, decisive for 
the computation result, rather than to be unimportant, only theoretically detectible.

Closer meeting the boundary conditions beyond a given limit was found to much 
impair the solution as a whole. The improvement for the boundary conditions is by 
orders less than the increase of errors elsewhere. It is obvious, since rather than to 
simply reduce the boundary error, to charge the forces correcting the error on the real 
boundary errors of the boundary condition are reduced on the condition of keeping the 
character of the approximate function (e.g. power of, and number of terms in, a 
polynomial) unaltered. Accordingly, this is the most apparent difference between the 
exact and the approximate methods.

The conception that in solving certain problems boundary conditions prevail 
can largely be attributed to the denomination arising from the mathematical solution 
method. The denomination “boundary value problem” is clearly seen in [5] to refer 
mainly to the solution method.

9. The number of unknowns

As mentioned above, division to elements is advisably made by planes parallel to 
coordinate planes. For the power of the approximate polynomial to be applied, only 
the upper bound was given so that the exponent of a variable must not exceed the 
number of divisions parallel to its axis. Under these conditions, writing equilibrium 
equations for each element and also dynamical or geometrical boundary conditions for 
each boundary node (assuming only dynamical or only geometrical boundary 
condition can be specified at a given node), there are more equations than unknowns. 
Without a deeper analysis, let us made some comments.

There is no theoretical or practical hindrance to equate numbers of unknowns 
and of equations. Retaining as many equations as there are unknowns (omitting the 
excess) provides a regular equation system and the usual unique solution. Beyond, 
however, the fact that this approximate solution fails equilibrium and/or boundary 
conditions even for the assumed elements and points, hence reducing the number of 
equations is to the detriment of uniform error distribution (irrespective of the close 
fulfilment of conditions for certain elements and points), in this case the solution is 
markedly affected by what equations have been retained or omitted. Even a slight 
change of the equation weight significantly affects the result, omission of some 
equations being an extreme case of changing the weight. Adding the impossibility to 
suggest a rule or even an advice of what equations to omit to the least detriment of the 
result makes it obvious to renounce of this possibility, and to be concerned with the 
solution by means of redundant equation systems.

Nevertheless let us point out that application of redundant equation systems is 
motivated by its convenients rather than the outlined difficulties. Namely, a redundant 
equation system comprising more equations than unknowns permits, on one hand,
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more of conditions to be taken into consideration, on the other hand, by changing the 
weight of any equation permits to choose the most convenient from among functions of 
the given type. Remind the practical impossibility of an illimited refinement of divisions 
or illimited increase of the power of the approximate polynomial. Therefore the 
purpose of the problem has to be reformulated to yield the most convenient one of the 
given type functions — in general, polynomials of given power and number of terms.

In the presented method, only an upper bound can be given for the number of 
unknowns, even after divisions. In case of the suggested division to prismatic or 
rectangular domains, this upper bound is essentially the same as the lower bound in the 
finite element method. Namely dividing the prism to p, q and r parts by planes parallel 
to its sides results in (p + 1 ) (</ +  1 ) (r + 1 ) nodes. In the simplest case of the finite element 
me1 hod where the displacement function is continuous of order C° and linear 
interpolation between nodes, the simplest approximation possible, is applied, the 
number of unknowns is less than 3(p + l)(<jf +  1 ) ( r -t-1) by not more than as many 
displacement components have been specified at boundary nodes. Again, at most 
3(p+ l)(q + l)(r + 1) unknown coefficients may belong to polynomials approximating 
the displacement component functions. Within this range, both polynomial type and 
the number of unknowns can be arbitrarily assumed, to correspond to the kind of the 
problem.

It is essential to have not much more of unknowns, even in extreme cases than are 
contained in the simplest cases of the finite element method or in the finite difference 
method. But as soon as an approximation of higher order than that in the finite element 
method, for instance, a continuity of order C1 between elements is specified, the number 
of unknowns is multiplied to become several times that in our case.

Realizing the number of unknowns to be quadrupled by ensuring continuity of 
order C 1 in bidimensional problems, providing e.g. continuity of the plate alone, rather 
than those of the stresses and of the load pertaining to the computed form, points out 
the difference between the finite element method providing a continuity C° or maybe 
C 1, and a method of higher-order continuity.

10. The number of equations

Writing only force equilibrium equations and boundary conditions arising from 
the division of a prismatic (or rectangular in the bidimensional case) domain, the 
number of equations can be demonstrated to exceed that of unknowns. Thus, writing 
all equations of the same value for a given division leads to a redundant equation 
system, to underlie the solution procedure.

Of course, also moment equilibrium equations can be written for these elements. 
Their consideration further refines the solution, unduly increasing, however, the 
number of equations and the encumbrance of the problem. Although the number of 
unknowns and the size of the regular equation system yielding the solution remain
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unaltered but the work needed for writing the original redundant equation system and 
the storage capacity needed for the coefficients are much increased. Improvement of the 
results has been experienced not to be proportional to the labour spent, reducing the 
application of this means to improve the accuracy to exceptional cases.

11. The redundant equation system

Rather than only to illustrate the approximateness of the solution, the excess 
number of equations in the system over that of unknowns offers a direct possibility to 
error estimation. Namely whatever approximate solution result is utilized to examine 
the equilibrium of different elements and the fulfilment of boundary conditions, neither 
the equilibrium of the different elements, nor the boundary conditions are perfectly 
met. Here this unfulfilment is sensed directly in the elements, and although not even in 
dividing to congruent elements can it be said that the greatest equilibrium error is the 
possible greatest error of an element of this size and form, since even a greater one is 
possible for a different division, the error in each equation offers a true information on 
both equilibrium and boundary condition errors, to be used for improving the solution.

The lack of common parts of elements the equilibrium conditions are written for, 
so that each equation of boundary condition refers to another node or domain, ensures 
linear independence of the equations. This fact and the increased number of equations 
concludes on that the equation system has no solution in the traditional meaning of the 
word. This is why no solution meeting every equation is sought for, but one minimizing 
the error function established from the error of each equation. An arbitrary number of 
error functions can be established but here the general analysis will be omitted to 
restrict our considerations to the simplest case of defining the error function as square 
sum of the error of each equation. Thus, solution for the equation system with the 
minimum of equation error square sum is sought for.

Solution of redundant equation system (2)

A X = b ( m > n )
(m, n) (я) (m)

meeting the condition above is known to issue from the regular equation system

A*Ax = A*b.

For a fixed matrix A this procedure leads to a unique solution. But matrix A can be 
fixed in an infinity of forms. Namely, correctness of an equation is inaffected by 
multiplying it by any constant, while multiplying different equations by different 
constants leads to different matrices A. Denoting one by A(i) and the other by \ U), 
solutions of this equation system characterized by these two matrices will only be equal 
if

A(i> =  ЯАу,.
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At first glance, this flexibility involving an infinity of possibilities may seem 
rather strange. But at a closer consideration, it is what development may rely on. It is, 
however, connected with error calculation, with the concept of error, to be integrated 
with in the analysis. Still a possible interpretation of multiplying the equations, and a 
special case will be considered.

Multiplication of each equation by a different constant means to change its 
weight. The degree how the change of equation weights in a redundant system alters the 
result could be illustrated on hand of simple numerical examples. These solutions are 
felt, however, to be considered as outcomes of manipulated problems, and the 
phenomenon is underestimated. So no such a purely mathematical example will be

y

Fig. 2.

presented, the more so since this effect is decisive even in solving the simplest technical 
problems, as manifest from practical applications.

The extreme case of weighting the equations is that where certain equations are 
attributed as much weight as to cause their error to tend to zero. There are two simple
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possibilities for it. Either these equations get multiplet! by a relatively high number, 
markedly increasing their weight. A suitably high factor may reduce the error 
practically to zero.

The other possibility — as against increasing the weight of the equation by 
multiplying by a constant, and to reduce its error in course of the numerical solution — 
is to find a solution exactly meeting the preferential equations hence of an also 
theoretically zero error.

Of course, beyond meeting the preferential equations, also the condition of 
minimum square sum of the errors of the other equations has to be met by the solution.

Let us rearrange equation system (2) to make quadratic matrix A22 of system

Ai i А .Л  |~ X, П   I b J
A21 A22J [_x 2 J Lb2_ (4)

inversible, and to have matrices A21 and A22 arising from coefficients of those 
equations to be exactly met. Partitioned it means matrix equations

An x, + A 12x2 = b, , 

A2, X, + A22x2 = b2 .

Expressing from the second equation the vector x2 of unknowns

x 2 = A22* (b2 — A21X,) (5)

and substituting it into the first equation, then arranging, leads to

(A11 -  A 12 Aj/  A21)X( =  b, — A )2 A22* b2 , (6)

to be solved under the condition of minimum error square sum. The resulting vector x, 
includes part of the unknowns. The other unknowns make up vector x2 obtained by 
substituting x, into (5). Perfect flexibility of this procedure results from the possibility 
of simultaneous application of weighing and exactly meeting the equations.
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The normal operation of gearings may be disturbed by interference phenomena. The present 
paper investigates the possibility of the occurrence of internal tooth fillet interference, external tooth 
fillet interference and addendum interference in harmonic drives by taking the peculiar motion of the 
fiex-spline into account.

1. Introduction

In the harmonic drive a pair of gears having external and internal toothing is 
integrated, toothed like a normal cylindrical wheel. Thus, the toothing of the pair of 
gears does not differ from the usual one. However, the teeth of the external gear are 
carried by a flexible wheel body which, during the working of the drive, suffers a wave
like deformation. The present paper deals with this particular case of the engagement 
and investigates the interference phenomena which may impede the normal working of 
the drive.

After a short survey of the calculation of the geometric data of the pair of gears, 
the work begun in [ 1 ] will be continued. In [ 1 ], the author summarizes the symbols and 
concepts needed for the investigation. By taking into accoun the peculiar motion of the 
flex-spline he considers the engagement of the teeth of the two wheels as that of a pair of 
wheels of variable angle of deflection and variable axle base and of internal-external 
toothing. Considering the small deflection angle of the axle, the problem is reduced to 
the simple engagement of a normal circular spline and a spur gear of displaced centre of 
rotation in relation to the centre of a circle, the axle base of the two wheels being 
variable.

For the purpose of the investigation the system of coordinates is fixed to the wave 
generator. Thus, such a pair of gears may be considered which, contrary to the 
customary arrangement are engaged at not only one, but at two zones. The two zones 
are assumed to be symmetrical, wherefore only one of them will be investigated.

2. Geometric basic data of the pair of gears

The distance between the centre 0 3 or the circular spline and the centre 0 2 

associated with the investigated tooth of the flex-spline varies in dependence of their 
deflection as compared with the principal deformation axis ([1] Figs 6 ,7). Incase where

* Péter, J., Derkovits u. 54, 1. 3., H-3529 Miskolc, Hungary
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the symmetry axis / '  of the investigated tooth of the flex-spline and the principal 
deformation axis are congruent (i.e., the tooth is situated on the crest of the wave of 
deformation), the distance between the centres 0 2 0 3 =  w0, which, as a matter of fact, is 
the displacement of the point A 0  of the middle surface К in the direction of the principal 
deformation axis (Fig. 3).

In this situation, the distance between the centres 0 2 and 0 3, similarly to the axle 
base of a normal pair of gears of internal-external toothing is

wherein

w0
cos a0 

cos a9

z2, z3 -  are the numbers of teeth, 
m — module, 
a0 — base profile angle,
txg normal pressure angle defined on the principal deformation axis.

( 2. 1)

The difference between the coefficients of tool supply x 2, x 3 with the familiar 
relationship is as follows

* 3 - * 2
inv a9 — inv a0 z3 — z 2 

tan oc0 2
( 2.2)

In case where the radii of the addendum circles are r/ 2  and г/з> the common tooth 
height is

hk = rf 2  + w0 - r f 3 . (2.3)

The other data of the pair of gears should be determined in the same way as in the 
case of the normal tooth wheels. After this short survey of the geometric data let us 
investigate the possibility of occurrence of the internal tooth fillet interference, the 
external tooth fillet interference and the addendum interference.

3. Internal tooth fillet interference

This phenomenon takes place when the circular spline ought to be engaged by 
the tooth-fillet rounding, built up from the relative path of the addendum point of the 
tool processing the spur gear.

The limiting instance of the internal tooth fillet interference is to be seen in Fig. 1:

wherein
0 3 H2=r / 3 m i n  »

0 3 — centre of circular spline,
H 2 — limiting point of involute tooth profile of wheel 2.

The radius rH 2 of the limit circle of the spur gear depends on whether the tooth 
cutting was carried out with the tool having tooth rack profile or a fellows cutter.
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Fig. 1. Investigation of internal tooth fillet interference. 0 2, O'i and H2 are the centre, the centre of rotation 
and the limit point of the involute tooth profile, respectively, belonging to the investigated tooth of wheel 2\ 
0 3 is the centre and centre of rotation of wheel 3. There is no internal tooth fillet interference in case where

r/ 3> 0 3H2

In case of the tooth cutting with a tooth rack profile tool we have

r H 2 ■M r0 2  sin a0 + ( * 2  ~ f o ) m  

sin a0 Ï
wherein:

ral and r02 — radius of base circle and pitch circle, respectively, 
/5  — addendum factor.

(3.1)
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In case of production with the aid of a fellows cutter

rH 2  = y / r h z  + 0 * * 2  sin a« 2 -  J r 2fsz  -  rjsz] 2 , (3.2)

wherein:
a„ 2 and a„ 2 — axle base and pressure angle of engagement, respectively, between wheel 2 and 

fellows cutter
rf„ and ras, — radius of addendum circle and base circle, respectively, of the tool.

By using the designations of Fig. 1 the distance between points 0 3 and H 2 may be 
calculated with the formula

0 3 H 2 = J ( H 2 N 2 + N 2 N 3 )2 + r2a3, (3.3)
where:

H 2 N 2 =ra2{an <xH2, (3.4)

oiH 2  — profile angle on the limit circle of radius rH2,

N 2 N 3 = s j0 2 0 2 +(ra3 - r a 2 ) 2 (3.5)

If the wave generator is of disc-type ([1] Chapter 4), the distance between the 
centres 0 2 and 0 3 is [ 1] (2 ):

0 2 0 3 = J e 2 + (R0 -  R ' ) 2 -  2e(R0  -  R ) cos <p'2 .

Between the radii 0 2 N 2 and 0 2 A 2 the angle <p'A may be calculated with the 
formula

<Рл = <Р2 + <х'(<Р2 ) + 0(<Р2), (3-6)

a' =  f(<p'2), S = f(<p'2) may be obtained from the relationships (3 and 4) of [1].

m(z3 — z2) cos a0
a = arccos-

2 0203

. (R0  — R‘) sin q>'2
о =  arcsin-----  ------

0 2 0 3

From the involute-geometry it is known that

Ф'л = tan aH2 - ( î 2 , (3.7)

wherein a2 is the central angle associated with the half width of the circle-base tooth 
groove of wheel 2 .

With the knowledge of (p'A (3.7) by making use of the relations (3.6), [1] (3 and 4) 
the value of cp2 may be determined. Replacement of <p'2 into [1] (2) yields the distance 
between the centres 0 2 and 0 3. Knowing 0 2 0 3 permits to calculate N 2 N 3 (3.5) which
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replaced H 2 N 2 (3.4) determined earlier into (3.3) results in the distance between the 
centre 0 3 and boundary point H2.

There is no internal tooth fillet interference in the case where

0 3 H 2 <rf 3 . (3.8)

4. External tooth fillet interference

This phenomenon occurs when the involute point on the addendum circle of the 
spur gear has to engage above the bound of the involute tooth profile of the circular 
spline with the tooth fillet determined by the addendum point of the tool processing the 
circular spline.

The limit case is to be seen in Fig. 2

0 2 H 3 ^*/2 max »

wherein
0 2 — centre, associated with the investigated tooth of wheel 2 
H} — limit point of involute tooth profile of wheel 3.

In case where the circular spline is tootthed with a fellows cutter, the radius of the 
limit circle will be

гнз = \ / Га3 + (°sz3 sin а„з + 4 / r ) S2 -  r \ J 2 , (4.1)

wherein
raJ — radius of base circle of wheel 3,

a„ 3 and sz3 — axle base and pressure angle of engagement between wheel 3 and fellows cutter.

The distance between the centre 0 2 and limit point H 3 may be calculated from 
the formula

Ö JT 3 = V r 2a 2 + С Щ ,  (4.2)
wherein

N 2H 3 = ( ÿ 'A +  ô 2)ra2 . (4.3)

<p'A entering in (4.3) can be calculated with the aid of Eq. (3.6) which is the 
function of (p'2 for the moment unknown.

In the triangle 0 3 N 3 H 3

M3 H 3 =ra 3 tan aH3,

wherein <xH 3  is the profile angle on the circle of radius rH 3  

At the same time
n 3 h 3 = n 3 n 2 + n 2 h 3 .

(4.4)

(4.5)
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Fig. 2. Investigation of external tooth fillet interference. 0 3 and H 3 is the centre of wheel 3 and limit point of 
the involute tooth profile, respectively; 0 2 and 0'2 is the centre and the centre of rotation belonging to the 

investigated tooth of wheel 2. There is no external tooth fillet interference if rf2 < 0 2H 3

Knowing N 3 H 3 (4.4) the value of cp'2 may be determined by making use of the 
relationships (3.5), (4.3), (4.5) with whose knowledge N 2 H 2 (4.3), whereafter the distance 
between the centre 0 2 and the limit point H 3 may be found.

There is no external tooth fillet interference in the case where

0 2H3 > r { 2 . (4.6)
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5. Addendum interference

The engagement of the pair of gears integrated into the harmonic drive is 
comparable to that of a pair of gears of low difference in number of teeth having 
internal-external toothings. In such drives it may occur that the points being on the 
tooth top of the spur gear are knocking against those being on the tooth top of the 
circular spline. This kind of jamming is called tooth fillet interference.

The tooth of the flex-spline positioned in the direction of the surface line (in Fig. 
3, for example, a')of the flexible surface R, engages with the tooth of the circular spline in 
a similar way, like a pair of gears of external-internal toothing of variable axle 
deflection angle and variable axle base [1]. Contrary to the engagement zone (where 
the deflection of the axles is negligible) the deflections of the axles in the zones of 
engagement and disengagement of the teeth of the flex-spline into the tooth grooves of 
the circular spline should be taken into account. Due to the obliquity (Figs 3 and 4) of

Fig. 3. Flexible surface R of the (lex-spline with the tooth situated in the direction of the surface line a'

the teeth the corner of the tooth of the flex-spline may already knock at the moment 
when at a parallel tooth direction there is still a backlash.

The path curve of point F2 of the tooth of the flex-spline intersects the tip cylinder 
of the circular spline at point M (Fig. 4). In case where the two wheels are deflected with 
an angle <p2, i.e., <p3 as compared with the principal axis to deformation, there is no 
addendum interference if the inequality

<Pm <(Pf3< (5-1)
is true.
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Herein:
<pM and <pF3 are the polar coordinates associated with the point of intersection M and with the point 
F 3 on the tooth edge of wheel 3, respectively.

The distance between point F2 and the centre 0 3, depending on the deflection 
(<p2) of the flex-spline in relation to the principal deformation axis is

o7f~i=VQ
with

Q = ^R 0  + w' + h0 2  cos 9' — ~y  sin & + ^i/ +  /i02 sin 3 '+  “ -cos 5'^ , (5.2)

wherein
R 0 — radius of central circle k,
h02 — distance between central circle and addendum circle of wheel 2, 
sf l  — width of tooth top of wheel 2.

Fig. 4. One tooth of each of the wheels of the gear pair of variable axle deflection and variable axle base of 
internal-external toothing. There is no addendum interference if q>F3 >  ipu
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In case where in the plane of the wave generator the radial displacement of point 
A of polar coordinate q>2 is w, its tangential displacement is v, the normal rotation of /  
is B, further, assuming that the displacements, i.e., rotation mentioned in approaching 
the end of wheel 2 decreases linearly in the plane belonging to the edge of the teeth (Fig. 
3) are as follows

L L L
w' = w — ; v' = v —  ; B '- B - - ,  (5.3)

Le Le
wherein:

E — distance of tooth edges and
Lg — distance of plane of wave generator to the end of wheel 2.

At point M:
O3 F2 = r / 3  • (5.4)

By making use of Eqs (5.2), (5.4) the angle q>2 might be found at which the path 
curve of point F2 intersects the tip cylinder of wheel 3.

1 z2
<f>3 = 4>2 -7 -  =  — • (5-5)

' 2 3  z 3

If the width of the tooth groove on the addendum circle of wheel 3 is w/3 , so

<Pf3 =  <P3 + (5.6)
2rn

6 . Example

Let us continue the work begun in [ 1 ] Chapter 5. The characteristics of major significance of the drive 
are as follows: z2=190; z3 = 192; m = l mm; a0 =  20°; / J  = 1.0; cj=0.25; r/2 = 100,1 т т ;г /3 = 99.95 mm; 
R0 = 97.1 mm; Le = 170 mm; L = 155 m; e = 3.9 mm; w0 =  1.2 mm; the flex-spline is toothed with a tool of a 
tooth rack and the circular spline with a fellows cutter (z„ = 76, rr„ = 39.88 mm).

In case of toothing the flex-spline with a tool of a tooth rack rH2 = 99.222 mm, xH2 = 25.880 478°, 
^2 = 2.359 371°, ^  = 30.156961°. In this case ф'2= -2 .7 5 ° , 0 20 3 =  1.210063 mm, n 7n ~3= 0.762 384 mm, 
H2N 2 — 43.310mm, 0 3H2 = 100.400973 mm. 0 3H 2>rf3, therefore internal tooth fillet interference exists. 
The radius of the addendum circled should be increased from 99.95 mm to 100.45 mm. In the present example 
0 20 3 -  Wo^O.Ol mm; considering this very small value, the calculations may be carried out also in 
connection with a pair of gears of normal internal-external toothing (0 3H2 = 100.394 mm).

The circular spline is toothed with a fellows cutter. The radius of the limit circle is rH3 = 101.518 mm. 
In this case, яиз = 27.300236°, <p'2= — 3.92°, 0 20 3= 1.220357mm, N 2N 3 =0.77862 mm; N 3H 3 = 
= 46.516577 mm, N 2H3 =45.782957 mm, 0 2H } = 100.326241 mm. 0 2H3>rf2, therefore there is no 
external tooth fillet interference. Considering the very small value 0 20 3 — w0s;0.02 mm, if one calculates 
with a pair of wheels of w0 axle base, and of normal internal-external toothing, 0 2H3 = 100.341 mm.

The path curve of the point F intersects the tip cylinder of wheel 3 at <p2 = 49.45". The angle 
coordinate belonging to point M is <pu =49.346665 . <p3 = 48.934896 , w/3 = 2.018838 mm. In this case, 
<Pn = 49.513 54' . There is no addendum interference, because <pt 3 >  <pu .
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7. Summary

The normal operation of harmonic drives might be impeded by interference 
phenomena similar to those of gear pairs of internal-external toothing. The 
investigation of the addendum interference may be performed on a tooth of each of the 
wheels of a normal gear pair of internal-external toothing of variable axle deflection 
and variable axle base.

In investigating the internal tooth fillet, interference and external tooth fillet 
interference, the axle deflection is assumed to be negligible and the problem is reduced 
to that of a simple investigation of a tooth of both a normal wheel of internal toothing 
and that of external toothing, however, of a displaced centre of rotation as compared to 
its centre.
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THE ANALYSIS OF SPHERICAL AND 
PLANE GRIDS OF TRIANGULAR NETWORK 

WITH THE AID OF DUAL NETWORKS
I. H e g e d ű s*

[Manuscript received; 15 July, 1982]

The paper presents a method for analysing the bar forces of single-layer space grids of 
triangular network, constructed into a sphere and subjected to uniformly distributed radial load. The 
results of the analysis permit to state a necessary condition of macroscopically homogeneous 
isotropy of spherical and plane grids of triangular network.

Introduction

A variety of radiolariae (sphere-shaped unicellular deep-sea animals of the size of 
~  100 microns) has an external cellular skeleton of triangular network. The geometry 
of the skeleton suggests its being optimalized from the statical point of view. Some 
measurements have supported this conjecture with the discovery that the ratio of 
length of the longest and the shortest “bar” of the “structure” is closer to unity than that 
of engineering structures ostensibly having been optimalized from this point of view. 
[1,2, 3]

To the author’s knowledge until now also no investigations have been made on 
radiolaria skeletons for controlling the complementary conjecture that the ratios of 
“bar cross sections” show an optimalized structure too.

The subsequent analysis yields a simple rule for determining the optimal ratios of 
bar cross sections of grids of spherical triangular network subjected to uniformly 
distributed radial load. The results of the analysis can be used to give a similarly simple 
rule for assuming the ratios of cross sectional areas of bars in plane and spherical grids 
of triangular network in such a way that it results in the macrospically homogeneous 
isotropy of the grids.

I. The dual polyhedron of a triangular polyhedron constructed into a sphere

For the sake of brevity let us call the triangular polyhedron constructed into a 
sphere as primal polyhedron, its network as primal network, its elements — faces, edges 
and nodes — as primal faces, edges and nodes. The planes touching the circumscribed 
sphere of the primal polyhedron at the primal nodes form another polyhedron. Let it be 
defined as the dual polyhedron, corresponding to the primal one, and let us call its 
elements dual faces, edges and nodes (Fig. 1).

* Hegedűs István, Váci Mihály u. 10, 2083 Solymár, Hungary
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The relations between the primal and dual elements are as follows:
I. Each dual face contains one primal node, thus the numbers of primal nodes and 

of dual faces are equal. The dual faces can be brought into correspondence with the 
primal nodes and vice versa.

<*<

•  p r im a l n o d e s  -------- p r im a l  n e t - l i n e s
о d u a l  n o d e s  -------- d u a l n e t - l i n e s

Fig. 1.

II. The neighbouring dual faces containing neighbouring primal nodes intersect 
each other along a dual edge perpendicular to the primal edge connecting the primal 
nodes lie on the intersecting dual faces, thus each dual edge can be brought into 
correspondence with a primal edge perpendicular to it and vice versa.

III. The number of dual nodes equals that of primal faces, the primal edges 
corresponding to the dual ones, intersecting each other in a dual node, form a triangle 
of the primal network.

IV. Each dual face is a polygon bordered by edges which are the duals of the 
primal edges intersecting each other at the primal node which lies on the dual face.

V. The angles enclosed by a primal edge and the adjacent dual faces are equal, 
thus the length of projections of this edge on the planes of both dual faces are equal.

VI. If the primal polyhedron is convex, its dual is also convex, or else among the 
faces of the dual polyhedron there are star-shaped polygons with self intersecting 
boundary lines (Fig. 2).
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For the sake of continuity of the discussion, two well-known statements 
concerning the space grids, loaded at the joints by concentrated forces, are attached to 
the above ones.

VII. Each space grid of hinged joints, having a network forming a convex 
triangular polyhedron is internally statically determinate, i.e. each system of bar forces 
belongs to one equilibrium system of external loads acting on the joints of the grid and 
vice versa. (This statement is called Maxwell’s or Föppl’s theorem in the literature of 
statics.)

VIII. Let the forces acting at the same joint be projected to an arbitrary plane and 
to its normal line. If these projections yield zero sums for each joint, then the external

forces loading the grid at the joints form an equilibrium system, thus an arbitrarily 
taken system of the bar forces uniquely determines an equilibrium system of external 
forces, the elements of which can be separately computed at each joint.

All statements I to VIII may concern the investigated type of radiolaria 
skeletons.

2. The dual network as united diagram of bar forces

Let us stipulate that the primal polyhedron is convex. Since the polyhedron has a 
triangular network constructed into a sphere, the necessary and sufficient condition of 
its convexity is that no primal node lies inside any spherical calotte cut out by the 
planes of primal faces. Another condition, equivalent with the former one, is that the 
sum of the two angles of any pairs of neighbouring triangles which lie at the corners 
opposite to the common side of the triangles must be less than n, (see on Fig. L).

Statements II and IV yield a basis for the further statement that the boundary 
polygon of a dual face is a projection vector polygon of a properly chosen system of bar 
forces acting at the corresponding primal node, provided the vector polygon is rotated 
by тг/ 2  in its plane.
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Statement V permits to extend this interpretation simultaneously to all dual 
faces. That is, it also follows from the statement that the projections of bar forces on the 
adjecent dual faces are also equal.

Thus the common section of the boundaries of neighbouring dual faces can be 
considered as two projections of equal size of the same bar force which are rotated until 
they coincide. As a matter of course, the sense of rotation of the vector polygons has to 
be the same for all dual faces. Having stipulated this too, we can state that the dual 
network represents a system of bar forces which can be consistently determined by 
using the boundary polygons of the dual faces as vector polygons of the projected bar 
forces.

3. Determination of the internal and external forces belonging 
to the dual network

The corollary of Statement VII is that the structure has no self-stress state. As a 
consequence, the nodal resultants of the non-zero bar forces must not vanish. As was 
shown in the former section, the boundary polygons of the dual faces represent closed 
vector polygons of the projected bar forces. Since the lines of action of these bar forces 
have a common points of intersection at the joints, and the projected vector polygons 
which belong to the joints are closed, the resultant of the bar forces acting at any primal 
node has to be normal to the corresponding plane of projection, i.e. to the 
corresponding dual face. According to the equilibrium condition of internal and 
external forces, these nodal resultants have to be the opposites of nodal forces which 
constitute the load system.

Let the lengths of the primal edges, intersecting each other in the i-th node, be 
denoted with sn , . . . ,s ik, . . . , s in, the lengths of the corresponding dual edges with 
tn , . . ., tik, . . . ,  t,„, the angles enclosed by the i-th dual face and the primal edges with 
<pn , • • ■, cpik, ■ ■ -, (pin, and the radius of the sphere with R. The relation between <pik and 
sik is given by the formula

sin (pik = ^  • (1)

Let the bar force acting in the bar, which coincides with the primal edge of length sik, be 
denoted with Nik and considered positive ifit is tension, the external force acting at the 
i-th point denoted with Pt and considered positive if it points outwards.

From the fact that the dual network can be regarded as a unified vector diagram 
of the projection bar forces, it follows that these projections of bar forces are 
proportional to the lengths tik of the corresponding dual edges. Hence, by properly 
choosing a scale factor denoted by f  the projections of bar forces can be expressed 
according the formula

N ik ■ cos <pik = /  • tik. (2 )
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The equilibrium condition, written for the components of the nodal forces normal to 
the i-th dual face, yields the following equation:

P,=
ni

N ik ■ sin <pik, (3)

where n, denotes the number of bars joining the i-th node. Introducing Eqs (1) and (2) 
into Eq (3), we obtain

P,=
J _  Ä tik-N ik
2 R k = i cos cpik ' (4)

According to Statement VIII, the nodal loads determined by Eq (4) constitute a force 
system being in equilibrium. Since we stipulated that the primal polyhedron is convex, 
the dual one is also convex. In consequence of the convexity, all dual edges represent 
bar force projections of the same sign.

The sum in Eq (4) geometrically means the quadruple of the area of i-th dual face. 
Neglecting for sake of simplicity that the centroids of the dual faces do not necessarily 
coincide with the corresponding primal nodes, the nodal forces can be regarded as the 
resultants of a uniformly distributed load of the intensity

P  =
2 /
R ’ (5)

acting perpendicularly to the dual faces.
Tarnai [6 ] have drawn the author’s attention to the resemblance of the presented 

results to a not too much known principle of the equilibrium of polyhedral frames, 
which has been stated by Rankine [5] as follows: “If planes diverging from a point or 
line be drawn normal to the lines of resistance of the bars of a polyhedral frame, then the 
faces of a polyhedron whose edges lie on in those diverging planes (in such a manner 
that those faces together with the diverging planes which contain their edges form a set 
of continuous diverging pyramids or wedges) will represent, and be normal to a system 
of forces which, being applied to the summits of the polyhedral frame, will balance each 
other — each such force being applied to the summit of meeting of the bars whose lines 
of resistance are normal to the set of diverging planes that enclose that face of the 
polyhedron of forces which represents and is normal to the force in question. Also, 
areas of the diverging planes will represent the stresses along the bars to whose lines of 
resistance they are respectively normal.”

Actually, if the polyhedral frame is constructed into a sphere, the planes in 
question are diverging from the centre of this sphere, and the bases of the diverging 
pyramids are touching this sphere (or another concentric sphere), then the connections 
between the geometric quantities permit to transform Rankine’s principle into the form 
presented here in Sects. 2 and 3.
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4. The geometric condition of uniform strength of radiolaria skeletons

Radiolaria skeletons — and engineering structures of similar forming — have a 
fine network, in which even the longest bar length is smaller by magnitudes than the 
radius of the circumscribed sphere. It follows from this, on the one hand, that all cosines 
in Eqs (2) and (4) are very close to and can be replaced by unity, and on the other hand, 
that the surfaces of the primal and the dual polyhedrons are very close to each other, and 
can be replaced by the surface of the sphere. Thus the bar forces of a sphere-shaped 
single-layer space grid of sufficiently fine and uniform triangular network, loaded by a 
pressure of intensity p, can be calculated using the formula, derived from Eqs (2) and (5), 
as follows:

p R
Nik= - ^ - t ik. (6 )

The role of the radiolaria skeleton is to subtend the cellular membrane attached to it by 
short appendices of the nodes, thus the skeleton is subjected to a system of concentrated 
nodal loads, statically equivalent to a pressure on the surface, just like in our previously 
investigated case. It follows from this that — in knowledge of the data of network and 
pressure — the bar forces are to be calculated from Eq. (6 ).

In a grid of uniform strength the ratios of cross sectional areas have to be equal to 
those of bar forces. Consequently, in our problem they have to agree with the ratios of 
lengths of dual edges. According to the conjecture mentioned in the introduction, the 
“bar cross sections” of the radiolaria skeleton probably meet this condition of uniform 
strength. If the skeleton behaves as a structure of uniform strength, the uniform 
pressure does not cause any bending moments in the bars, even if the joints are not 
hinged ones.

5. The macroscopic homogeneous isotropy of single-layer spherical and 
plane grids of triangular network

If the spherical grid of uniform strength is subjected to an external load system 
statically equivalent to a uniform external pressure, its network deforms into an affine 
one in such a way that no marked points or directions of the deformation can be found, 
i.e. the deformation is macroscopically homogeneous.

The finer network we take, the closer the stress state and the strain state of the 
grid come to those of a plane grid having macroscopically homogeneous hydrostatic 
stress and strain states. While performing the smaJ R ~*0 limit transition, the primal 
network passes over to a general triangular plane network, and at the same time, the 
dual network becomes со-planar with the primal one so that the dual nodes coincide 
with the centres of circumscribed circles of the primal triangles (Fig. 3.).

Since, on the one hand, macroscopically homogeneous isotropy of a plane grid 
requires that homogeneous hydrostatic stress states belong to macroscopically
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•  p rim a l n o d e s  ------p r im a l n e t - l i n e s
о d u a l  n o d e s  ------d u a l  n e t - l i n e s

Fig. 3.

homogeneous strain states, and, on the other hand, only the derived ratios of cross 
sectional areas (more correctly: tensile rigidities) can furnish a grid with effective 
rigidities, which represent such connection between the stress and strain states, the 
equality of the ratios of the tensile rigidities to that of the lengths of the corresponding 
dual net lines is the necessary condition of macroscopically homogeneous isotropy of 
grids of triangular network.

The sufficiency of this condition does not follow from our analysis. Actually, the 
detailed analysis of grids of triangular network which consists of congruent scalane or 
isosceles triangles [4] shows that such grids cannot be made isotropic. However, if 
isotropy can exist, the above necessary condition adequately determines the ratios of 
tensile rigidities of the bars.

References
1. Makai, E. Jr.—Tárnái, T.: On the Morphology of Spherical Grids (in Hungarian), Műszaki Tudomány 51 

(1976), 123-155
2. Makowski, Z. S.: Space Structures. A short review of their development. In: Space Structures. Ed. by R. M. 

Davies; Blackwell Sc. Publ., Oxford and Edinburgh 1967
3. Le Ricolais, R.: Essai sur des systèmes réticulés à 3 dimensions. Annales des Ponts et Chaussées (1940), VU. 

No. 4, 63-70; VIII. No. 11. 153-166.
4. Kollár, L.—Hegedűs, I.: Solution of Double-layer Space Trusses of General Triangular Grid by the 

Equivalent Continuum Method. Acta Technica Hung. 74, (1972), 363-381
5. Rankine, W. J. M.: Principle of the Equilibrium of Polyhedral Frames. In: Miscellaneous Technical 

Papers; Ch. Griffin & Co. Stationers’ Hall Court, London 1881. Ch. XXXVI
6. Tárnái, T.: Oral addendum to the referee’s report written by him on this paper, 1982

A d a  Technica Academiae Scientiarum Hungaricae 94, 1982





Acta Technica Academiae Scientiarum Hungaricae, 94 (1— 2).pp . 81— 90 (1982)
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The field of dynamic equivalents of interconnected power systems has been rapidly developed 
during the past decade. Several techniques have been advanced for constructing power system 
dynamic equivalents in the off-line mode as well as in the on-line mode. A survey of such techniques is 
presented.

Introduction

Dynamic modelling is a necessary step for the solution of many practical 
problems in planning as well as operational applications. Among such problems: 
transient and dynamic stability studies, dynamic security analysis, dynamic identifica
tion, on-line control, etc. The use of an exact model for the analysis of such problems 
may be too complex to be conveniently handled, even by large computers, due to 
various factors such as: the growing size of interconnected power systems, the need for 
more detailed representation of system components, the analytical development, the 
computational effort, etc. It may also be inadequate due to: unavailability of data 
(parameters, structure, operating conditions), inaccuracy of available data, many 
details may not be relevant for the particular objective of a given study, and computing 
errors may be larger than by using a suitable simplified model. Therefore, suitable 
simplifications, with a certain accuracy, in power system dynamic models are usually 
needed. The accuracy requirements of a simplified model may be defined in terms of 
different targets, as: satisfactory reproduction of given selected variables for given time 
intervals, and satisfactory reproduction of some properties of the real system.

Several techniques have been advocated for constructing dynamic equivalents in 
planning (off-line) mode and in the operations (on-line) mode. In the off-line methods 
sufficient information about external systems is required to construct a complete 
dynamic model for both study and external systems. The most usual approaches in this 
mode are coherency analysis [1-15] and modal reduction [16-35] techniques. There 
are other methods [36-44] which use different criteria for constructing dynamic 
equivalents. The on-line methods are used if the direct information on the 
configuration, parameters or operating state of external systems are not available. In 
this mode identification techniques are used to identify external system parameters 
[45-51].

* G. Horniak, Villamosenergia Ipari Kutató Intézet, Zrínyi u. 1, 1051 Budapest, Hungary
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In this paper, a survey of power system dynamic equivalents is given; detailed 
descriptions were given in reference [57]. The methods proposed to simplify dynamic 
systems in control theory, that unrelated to power systems and the static equivalents as 
used in steady-state power system analysis, are outside the scope of this paper. 
References on these topics can be found in the bibliography [56].

Coherency based dynamic equivalents have been tested, using a real system, for 
the purpose of measuring the accuracy of the simplified models as well as the 
computational requirements. The results of this procedure are deferred to a later paper.

1. Coherency based dynamic equivalents

The coherency analysis procedure is usually made for machines which can be 
represented by constant voltage behind transient reactance and which are remote from 
an initiating disturbance. The coherency approach reduces the order by lumping 
together groups of machines, in the external system, which tend to swing together when 
perturbed by distrubances in the internal system. The possibility of obtaining a 
simplified but still accurate representation of the system depends on the existence of 
nontrivial groups of generators oscillating coherently. The definition of an equivalent 
generator, for a given group, implies further simplification for deriving the equivalent 
network. Identification of groups of coherent generators is the essential step in 
developing coherency based dynamic equivalents. The proposed methods of coherency 
recognition are reviewed below.

( i) The Relaxed Definition of Coherency [ 1-6]

Two generators will be said to oscillate coherently if their angular difference is 
constant within a certain tolerance over a certain time interval. Based on this definition, 
several techniques have been proposed for constructing dynamic equivalents, such as: 
comparison of simulated responses [1, 4] and network structural [2, 3, 27, 28].

(ii) The Max-Min Coherency Measure [7]

It is defined to measure the difference between the maximum and minimum 
deviations in the rotor angles of two generators over a certain time interval.

(Hi) The RMS Coherency Measure /7, 8 ]

It is defined to measure the expected value of a time average of differences in 
voltage angle deviations on generator buses for a probabilistically described 
disturbance. The generalized algebraic formula of this measure is derived in a way that 
relates it to both the parameters of the power system state model and the disturbance 
vector.
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(iv) The Transient Coherency Measure [9]

It is defined as a Taylor series approximation of a mean square coherency 
measure, where the number of terms increases as the observation interval increases in 
order to keep the approximation error within some limits. The mean square coherency 
measure is equivalent and uniquely related to the RMS coherency measure.

(v) Coherency Indices Derived from Weighted Eigenvectors [10]

A closed form expression for the rotor angles and speeds of generators in the 
transient period is obtained in terms of weighted eigenvectors under the assumption of 
linearity. From these eigenvectors the coherency indices are derived. Two coherency 
indices are defined as the relative measures of the maximum deviations between the 
rotor angles of two generators in the faulted period and contributed by oscillatory and 
nonoscillatory modes. The corresponding degree of deviations in the post-fault period 
is defined in another two coherency indices.

(vi) The Pattern Recognition Method [11]

Coherency recognition is made by examining three factors. They are defined as: 
r, measures the spread of initial machine accelerations in the potentially coherent 
group, r2 measures the ratio of maximum admittance distance between any two 
machines in the group to the minimum admittance distance from any machine in the 
group to the area of disturbance and r3 measures the spread of machine inertias.

(vii) The Singular Points Method [12]

Two generators are said to oscillate coherently if the difference between the angle 
differences of the two generators is less than or equal to a certain tolerance. The angle 
difference of each generator is defined as the difference between the angle coordinates of 
the stable operating point and that of the singular point of the post-fault system which 
corresponds to the expected system instability.

(viii) The Lyapunov Function Method [13]

A group of generators whose partial Lyapunov function is of sufficiently small 
value, compared with that of the entire system, is thought to oscillate coherently.

(ix) The Slow Coherency Definition [14, 15]

Separating the slow and fast variables of the power system model, the notation of 
the slow coherency is expressed in the following way. If we consider the r is the slowest 
modes of the system’s response to any fault, then two generators are slowly coherent if 
the difference of their angles contains non of the r slowest modes.
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2. Modal analysis based on dynamic equivalents

Several methods have been proposed to derive reduced order models for external 
systems or the entire power system based on modal analysis criteria. The general aspect 
of these methods is the reduction of the eigenvalues of the original system and only 
significant eigenvalues are kept for the dynamic analysis. Rules for mode elimination of 
the nondominant modes were defined according to different criteria. The proposed 
dynamic equivalents may be classified as follows.

2.1. Modal Reduction Techniques

(i) Davison [16] proposes a method for simplifying dynamic systems which is 
based on neglecting eigenvalues of the original system that are farthest from the origin 
and retaining only dominant eigenvalues. An extension of this method was proposed 
[17, 18] in which the eigenvalues are divided into three groups, depending on their 
location in the complex plane, and theree simplified models can be evaluated for initial, 
intermediate and final stages of transient response. For this method the eigenvalues 
and eigenvectors of the overall systêm are to be computed. A decomposition- 
aggregation technique [19] can be used with this method offering the computation of 
eigenvalues and eigenvectors of subsystems instead of the overall system. Davison’s 
method has been used [ 2 0 ] to form reduced order models of system components 
separately, and then combining these reduced models to obtain a dynamic equivalent 
of the overall system.

(ii) In contrast to the above method, a well defined criteria based on modal 
analysis technique has been proposed [21, 22, 23] for simplifying the model of any 
given area of the real system, viewed from its terminal nodes. Such criteria require the 
determination of dominant modes in the area response to small perturbation of a given 
form. The equivalent procedure produces three different forms of equivalents: 
linearized state equations, diagonalized state equations and reduced state equations. 
Several criteria were postulated for selecting modes which could be eliminated: very 
large eigenvalues, modes with very small rows in the input matrix and modes with very 
small columns in the output matrix. The reduced state equations can also be obtained 
[25,26] by retaining only those modes of the external area which strongly interact with 
the states of the study area. The dynamic equivalent may be used for transient stability 
studies [25] with nonlinear representation of the study area. A link between this 
technique and coherency based reduction is established from the generalized algebraic 
formula of the RMS coherency measure [24].

(iii) Modal reduction technique was proposed [27, 28] to derive simplified 
models, for the whole system, by retaining some dominant modes and simplifying the 
remainders, in which case the modes of the simplified models come out as coincident 
with a subset of the original modes. The selection of dominant modes depends on the
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observability conditions and the influence of the modes, in the output variables, on the 
input. Analysis was given to indicate cases when modal reduction is compatible with 
coherency based reduction.

2.2. Order Reduction Techniques

Some attempts have been made to put the form of system equations in a reduced 
order with comparison of the state space form, such as:

(i) A polynomial matrix form [29] of the differential equations describing the 
dynamics of the system. The retained variables are those appearing at the interface 
between generating units and transmission system.

(ii) An operational transfer matrix form [30, 31] of system equations between 
internal generator angles and input mechanical torques. The dimension of this matrix 
is equal to the number of system generators. Thus, significant eigenvalues can be 
obtained without calculating all the eigenvalues.

2.3. Physical Reduction Techniques

State variable grouping technique was used [18] to obtain simplified models of 
systems based on the speed of response of the variables. The model is obtained by the 
omission of the derivatives of state variables associated with small time constants. The 
omission of some states and state derivatives may be accomplished in their 
corresponding to some physical assumptions [32].

2.4. Different Methods of Modal Analysis

(i) A topological method of reduction [33, 34] in which the block diagrams and 
the interconnections that are to exist in the reduced model are chosen, and a set of 
desired eigenvalues with their eigenvectors is specified. The parameters of the reduced 
model are then computed so as to give a dynamic system with the desired eigenvalues 
and with the difference between the desired and specified eigenvectors minimized.

(ii) A diakoptically based eigenvalue method [35] which involves tearing the 
overall system into subsystems, formulating its characteristic equations and 
subsequently determining the eigenvalues. Eigenvalues are computed using a method 
that finds one eigenvalue at a time, offering the flexibility of computing some modes.

3. Dynamic equivalents based on different methods

Several procedures have been proposed to obtain dynamic equivalents for power 
system models using different criteria. These procedures are classified as follows, see 
[57] for detailed description.

(i) Dynamic equivalents developed in terms of equivalent circuits using 
distribution factors method [36], or by formulating an active network equivalent for 
the external area [37].
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(ii) Dynamic equivalents based on different representations of system generators 
[38-40] according to their electrical distance from the fault location. Reference [40] 
proposes a factor that would give guidance to the choice of modelling accuracy 
required for each generator.

(iii) Dynamic equivalent based on the geometric properties of a quadratic type 
Lyapunov [41].

(iv) Dynamic equivalent based on multi-area dynamic energy balance technique 
[42, 43].

(v) Dynamic equivalent based on the theory of linear systems [44].

4. On-line dynamic equivalents

In the on-line mode, techniques are used to estimate equivalents of external 
systems using information on the present configuration of the study system and data 
telemetered to the control center from points within the study system, including 
boundary points. The best possibility for accomplishing this procedure seems to be in 
the application of identification techniques, which refer to the determination of the 
essential characteristics of the dynamic system by observing the response of system 
variables to random system inputs either natural or intentional. The proposed 
methods for on-line dynamic equivalents may be classified as given below. It will be 
noted that, many other procedures proposed concerning the development and 
applications of identification techniques to the estimation of unknown power system 
dynamics in neighbouring areas for various aims. C.f. [52-55].

4.1. Methods assume partial knowledge o f external systems

In this case an off-line technique can be used to represent the steady-state 
performance of external systems, while an identification technique is used to represent 
their dynamics. These methods are:

(i) Coherent machine grouping is used [45] to form possible equivalents for 
various external system conditions, processing real-time measurements for these 
equivalents and computation of the likelihood functions. The true equivalent is the one 
that is the maximum of the likelihood function.

(ii) The generalized Thevenin’s theory is used [46, 47] to represent static 
equivalent of the external system and stochastic linear difference equations to represent 
its dynamics. A recursive least-mean-square algorith is used to estimate the param
eters of the stochastic model.

(iii) The REI (Radial, Equivalent, and Independent) approach is used [48] to 
determine the external system equivalent, together with a method for tracking on-line 
injection and network changes in the external system, by modifying the parameters of 
the equivalent.
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4.2. Methods assume certain models for external systems and identification techniques are 
used to identify the parameters of such models

These methods are:
(i) Maximum likelihood technique is used [49] to identify parameter values for a 

specified equivalent structure of the external system. Measurements are made only 
within the study system without the intentional perturbation of the system.

(ii) An equivalent model with damping and inertia, explicity expressed, is chosen 
[50], an intentional disturbance of pulsed excitation is applied to generators of the 
study system and a least-squares algorithm is used to estimate the equivalent 
parameters.

(iii) A reduced order power system model consisting of two decoupled 
underdamped second order systems is assumed [51] whose damping factors and 
undamped natural frequencies are to be identified by a Model Adaptive Reference 
Control system.

Conclusions

In the previous sections different methods for simplifying power system dynamic 
models in the off-line mode as well as in the on-line mode have been mentioned. These 
methods are classified according to the basis of the techniques used for the construction 
of the dynamic equivalents.

The most usual approaches to power system dynamic equivalents in the off-line 
mode, are coherency analysis and modal reduction techniques. Coherency approach 
reduces the order by lumping together groups of machines, in the external system, 
which tend to swing together when perturbed by disturbances in the internal system. 
Most coherency studies are for linearized electromechanical models. This simplifica
tion has been justified by experimental evidence that coherency observed on linearized 
model is preserved for large disturbances of the nonlinear model [4, 14,15]. By modal 
analysis techniques the number of eigenvalues of the original power system model is 
reduced according to certain criteria, and only significant eigenvalues are kept for the 
dynamic analysis. Coherency based dynamic equivalents have been compared with 
modal analysis based dynamic equivalents and it has been observed that either the 
physical variables or the modes retained by the two techniques do not necessarily 
coincide. Different attempts have been made to indicate cases when a modal reduction 
is compatible with coherency based reduction [7, 8 , 27, 28]. Several discussions were 
given in literature concerning the applicability of the off-line methods for simplifying 
large scale power systems. Some of the predescribed methods have no such 
applicability due to some limitations of the techniques e.g., [18, 32, 33] or due to the 
lack of theoretical basis e.g., [36, 38, 39].

In the on-line mode, system identification techniques are used to estimate 
equivalents of neighbouring systems using information which can be obtained within
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the study system. The proposed techniques are classified as: a — Methods assume 
partial knowledge of external systems [45-48]. In this case an off-line technique can be 
used to represent the steady-state performance of external systems, while an 
identification technique is used to represent their dynamics, b — Methods assume 
certain models for external systems and identification techniques are used to identify 
the parameters of such models [49-51].
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INVESTIGATION OF THE ENGAGEMENT OF HARMONIC
DRIVES. PART I.

J. Peter*
[Manuscript received: April 12, 1982]

In harmonic drives the teeth of one gear of a pair of gears are carried by a flexible gear body. During 
the running of the drive, the flexible wheel body suffers a wave-like deformation. The present paper 
deals with this particular case of the engagement of gears. The engagement of two gears is attributed 
to that of a pair of gears of a variable axle deflection and to a variable axle base of a spur gear and a 
circular spline, and the problem is reduced to the simple phenomenon of the engagement of a normal 
circular spline, and a spur gear the centre of rotation of which is displaced from its geometric centre.

1. Introduction

The harmonic drive is one of the varieties of the gear drives. A circular spline and 
a spur gear participate in the transformation of the motion. Dompared with the classic 
gear drives, the essential difference may be found in the fact that the teeth of the spur 
gear are carried by a flexible wheel body (Fig. 1. a). The circular spline does not differ 
from the usual one. The third central element is the wave generator, the function of

Fig. 1. Harmonic drive, type bh

* Péter, J., Derkovits u. 54, I. 3., H-3S29 Miskolc, Hungary
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Fig. 2. Simplified scheme drawing of the harmonic drive type bh. 1 case; 2 flexible spur gear, wave wheel; 3 
inflexible circular spline, ring wheel; g generator; p mantle

Fig. 3. Simplified scheme drawing of epicyclic train, type b. 1 case; 2 spur gear, satellite; 3 circular spline, ring
wheel; tk coupling

which is to bring gears into engagement and to forward the zone of meshing (Fig. 1. b). 
The elements mentioned are comprised in a casing or stand (Fig. l.c) [1].

The harmonic drive might be ranged among the family of the epicyclic train and 
might be compared to the simple b-type [3] planetary drive. The flexible satellite 2 (Fig. 
2) of the harmonic drive does not engage at a single point, but at two points, to the 
circular spline. The function of the wave generator g is the same as that of the arm к 
(Fig. 3). The function of the casing p is similar to that of the coupling tk. This simple type 
of a harmonic drive comprising a spur gear and a circular spline meshing to each other 
in a wave-like way, may be called type bh.
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2. The flex-spline

The flexspline is, prior to the assembling of the drive a cylindrical solid of 
revolution. It is assumed that

a) the middle surface К is a cylinder of radius R0 (Fig. 4),
b) the generator g exerts effect upon the flexspline in a plane,
c) the middle surface K, after the wave generator having been slipped into the 

flexspline transits into the flexible surface R and an arbitrary generatrix a of the middle 
surface К transits into the surface line a',

d) the divergence of the surface line a' from the straight line may be neglected,
e) the displacement of the point A0 lying on the middle surface К in the direction 

of the principal deformation axis is w0 (/l0/lo =  w0),
f) the plane of the generator (the plane x, y) intersects the middle surface К in the 

centre-line к and the flexible surface R in the flexible line r,

Fig. 4. Middle surface К and flexible surface R of the flexspline (due to symmetry only the half of them are 
investigated), к middle line; r flexible line; eevolute of the flexible line r; a generatrix of the middle surface K\a'

surface line of the flexible surface R

g) the radial displacement w of an arbitrary point A of <p2 angular coordinate of 
the centre-line k, its tangential displacement v, the normal / '  of R at point A' forms an 
angle .9 with the normal /  of К at point A.

h) the radius of the osculatory circle associated with point A' of R is p \  the centre 
of the osculatory circle is 0 '2,
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j) the geometrical locus of the centres of the osculatory circles is the evolute e,
k) the flexspline is geared as a normal cylindrical wheel,
l) its teeth are situated, as compared with the middle surface K, in the direction of 

the generatrix and, as compared with the surface R in the direction of the surface line,
m) the deformation of the ceeth in relation to the displacement of the points on 

the middle surface might be neglected; the teeth may be considered inflexible, in turn, 
the tooth groves may be taken as flexible (similarly to an endless chain: the teeth could 
be taken as chain links and the tooth grooves as hinges),

n) the axis of symmetry /  of any arbitrary tooth transits into the plane of the 
wave generator, into / ' ,

the symmetry axis / '  of the tooth is the normal of r (Fig. 6),
p) the centre 0 2 associated with the tooth on the axis of symmetry / '  of the tooth 

as compared to the line r, may always be found to be at a distance R0.

3. Engagement of the teeth of the harmonic drive

Prior to the investigations let us compare the satellite type b with the harmonic 
drive type bh. Stopping the arm к in the b-type epicyclic train (Fig. 3) the engagement of 
a spur gear and a circular spline may be investigated. Let us do the same with the 
harmonic drive; stop the wave generator g (Fig. 2). In this case, the teeth of the spur gear 
are moving on a path defined by the surface R (Figs 4 and 5) or by the linear r (Fig. 6) 
and are meshing at two points with the circular spline (Figs lb and 2).

We assume that the two meshing zones are symmetrical, therefore, it is sufficient 
to investigate only one of them. The inflexible teeth situated in the direction of the 
surface lines of the surface R (Chapter 2) of the flexible wheel are engaging with the teeth 
of the circular spline like a pair of gears of a circular spline and a spur gear of a deflected 
axis. The angle of the axis deflection associated with each tooth as well as the axle base 
changes depending on the rotation (the angle <p2) in relation to the principal 
deformation axis (Fig. 5). In the plane of the principal deformation axis (i.e. in the plane 
X ,  y) the axes intersect each other (Figs 4 and 5).

4. Investigation of the engagement in the plane of the wave generator

The zone of engagement is to be found in the proximity of the principal 
deformation axis. At the proximity of the principal deformation axis the angle of the 
axis deflection is neglectable. Neglecting the effect of the intersection of the axes exerted 
on the engagement, we may continue the investigations in the plane of the wave 
generator (Fig. 6). The centre and that of the rotation of the circular spline are at point 
0 3. The centre 0 2 belonging to the investigated tooth of the spur gear is to be found on 
the axis of symmetry of tooth / '  (at a distance R 0 from point A'), and the momentary 
point of rotation 0'2 is on the involute e of line r.
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Fig. 5. Teeth of the pair of gears of internal and external toothings of variable axle deflection angle and 
variable axle base, t' is the momentary axis of rotation associated with the surface line a' of the flexible

surface R

In case where the involute of the tooth profile (the radii of the basic circles being 
ra2 and ra3), the momentary pole P' of the engagement is defined by the tooth normal 
n23 and by the straight line intersecting the centres of rotation 0'2, 0 3.

The momentary transmission ratio is

,'9
*23

Q3P'
0'2p '

( 1 )

where the superscript g of the transmission ratio designates the member which is at a 
standstill or to which the reference system is fixed, while the subscripts indicate the 
direction of drive 2->3.
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Fig. 6. Engagement of two teeth of a pair of gears of internal and external toothings of variable axle base. К 
middle line; r flexible line; /  normal at the point A of the middle line k, symmetry axis of tooth which transits 
into the normal / ' ;  0 2 centre associated with the tooth investigated of the flexspline, and 0'2 its momentary 

centre of rotation; 0 3 is the centre and centre of rotation of the circular spline

Let us investigate how the transmission ratio of the tooth-pair changes if the 
generator is of disc design (Fig. 2). In case where the flexspline is deformed with two 
large diameter discs eccentrically supported in bearings, in dependence on the 
construction parameters, at the peak of the deformation wave, the flexspline closely 
osculates to the disc along the arc belonging to a central angle 3 5 ... 60° [2]. Assuming 
that the zone of engagement is situated within the arc of the osculation of flexspline to 
the disc.

On the arc of osculation to the disc the radius of curvature of the elastic line r is 
constant, p' =  R'. The axis of symmetry of the tooth / '  is situated in the radial direction
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of the disc while the momentary centre of rotation 0'2 is in the centre of rotation of the 
disc (Fig. 7).

The distance between the centre 0 3 of the circular spline and the centre 0 2 
associated with the investigated tooth of the flexspline may be calculated as the 
function of the rotation (p'2 from the relationship

0 2Оъ =a' = J e 1 + (R0 -  R')2 -  2e(R0 -  R') cos <p'2 (2)

wherein
e =  arm of eccentricity of disc generator,

R0 = radius of central circle,
R' = radius of curvature of elastic line r along arc of osculation to disc,
tp'2 = rotation of axis of symmetry of tooth investigated as compared to principal deformation axis.

Fig. 7. Engagement of two teeth of a pair of gears of internal and external toothing. The generator is of disc- 
type. 0 2 is the centre belonging to the investigated tooth of the flexible spline and 0'2 is the momentary centre 

of rotation, the centre of rotation of the disc
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With the knowledge of a'

a' =  arccos
m(z3 — z 2) cos a0 

2 a'

wherein

. (K0 -K ')s in  <p'2 d = arcsin---------- — ----- -

m = modul,
z2 andz3 = number of teeth,

<x'0 = basic profile angle.

(3)

(4)

With the knowledge of a! and <5, the momentary transmission ratio (1) is

=  = _______ :_______  (5)
2 3 0 3P '- 0 '20 3 1 2 ccos(«'+<$) '

z3m cos a0

In describing the harmonic drives the great number of teeth simultaneously 
engaging is a stereotype attribute. At the nominal loading the 10.. .40 per cent of the 
teeth of the flexspline may be engaged. However, in an unloaded drive or at a 
fragmentary loading of the nominal one within the zones of engagement only the 
engagement of one or two pairs of teeth is typical. Let us investigate how the 
transmission ratio changes in case of individual engagement.

Assuming that the middle surface К is unstreachable. In such cases the absolute 
value of the velocity (Fig. 6 ) of point A  as well as the point A or В (Fig. 4) is the same:
ИП =  1*о1.

If at point A'v' = a>2 gR', at point Av0 = w 2gR 0, wherein m2 g is the angular 
velocity of the investigated tooth of the flexspline as compared with the generator, a>2g 
is the angular velocity of the axle of the flexspline as compared with the wave generator.

Making use of the equality of the absolute values of the velocities of points A' and 
A results in

R0
°>2 ', = <И2 ,  дГ • ( 6)

The momentary transmission ratio (1) with the angular velocities

;e
*2 '3

w'ze 
o>3 » ’

(7)

wherein a>3g is the angular velocity of wheel 3 as compared with the wave generator.
In case of two degrees of freedom the engagement between of the transmission 

ratios of the harmonic drive may be given with the relationship

=  (8 )
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where
| Ъ = “ 2 8( ® з ( . | ' з » ) = « ) з Ч  and i2„ = a)2/œg.

Let us fix the circular spline to the casing (Fig. lc), be the driving element the 
wave generator and the driven one the flexspline (the direction of drive being g-*2). 
From Eq. (8 ) the transmission ratio is

Taking into account the relationships (6 , 7, 9) within the individual engagement 
the transmission ratio changes according to the relationship

i3 -
1 -

R' = A v'i) ( 10)

5. Example

Let us investigate how the transmission ratio of a drive gear changes if it is 
characterized by the data: z2=190, z3=192, m= 1 mm, a = 20°, e = 3.9 mm, R0 = 
= 97.1 mm, R' = 94.4 mm.

The point at the tooth tip edge of the circular spline engages at <p'2 = —4.83°. At this moment 
a '= 40.226°, <5= —10.644°, Pr l  = 1.039, ig2 = —98.296. The point on the tooth tip edge of the flexspline 
engages at <p'2= —4.045 , «' =  39.719°, ô=  —8.969°, i2 i = 1.038 6°, <32 =  —103.0025. It is to be seen that while 
the pair of teeth engages in the interval —4.045"; —4.83°, the transmission ratio of the drive gear changes 
between —98.296... — 103.0025 and, at the same time, the transmission ratio of the drive calculated on the 
basis of the number of teeth would be i32 =  -95. It is to be noted that beyond the given very small interval 
theoretically engaged by their edges (in practice along the tooth-profiles in the proximity of the tooth tip 
edges), and their transmission ratio fluctuates at about that calculated on the basis of the number of the teeth.

6. Summary

The engagement of the teeth of the harmonic drive my be investigated on the 
analogy of the epicyclic train type b. Instead of the arm, the generator is brought to a 
standstill, and such a pair of of gears is investigated where two zones of engagement are 
present. It is assumed that the engagement zones are symmetrical, wherefore, it is 
sufficient to investigate only one of them.

One assumes that the teeth of the flexspline are inflexible and are situated in the 
direction of the surface lines of the surface and the tooth-grooves are flexible.

Each of the teeth of the flexible spur gear and those of the inflexible circular spline 
is engaging like those of a pair of a spur gear and a circular spline of deflecting axle. The 
axle base and the angle of the axle deflection changes depending on their deflection 
related to the principal deformation axis.
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By continuing the investigation in the plane of the generator, the problem will be 
reduced to the mere simple case of the engagement of a normal circular spline and a 
spur gear of a centre of rotation displaced in comparison to its centre. The transmission 
ratio of the “pair of wheels” is not constant.
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BOOK REVIEW

G. Franz (Schriftleiter) Beton-Kalender 1982, 
Taschenbuch für Beton-, Stahlbeton- und Spann
betonbau sowie die verwandten Fächer.
Verlag von Wilhelm Ernst u. Sohn, Berlin— 
München 1982, Teil I: 1228 Seiten, Teil II: 1015 
Seiten, Literaturnachweise, Stichwortverzeichnis.

Dieses Werk erscheint traditionsgemäß von 
Jahr zu Jahr wieder und bietet die Zusammenfas
sung der neuesten theoretischen und praktischen 
Kenntnisse des Beton- und Stahlbetonbaus in 
verjüngter Form. Professor Dr. Ing. Dr. Ing. E. h. G. 
Franz em. Professor der Technischen Universität 
Karlsruhe hat mit Hilfe der besten Kräfte des 
Faches den Stoff der verschiedenen Kapitel 
vorzüglich dargeboten. Sein Bestreben war es einen 
entsprechenden Überblick der aktuellen Fragen, 
besonders der neuesten Forschungsergebnisse des 
Betonfaches zu sichern und dadurch das 
zeitgemäße Bauen und die wirtschaftliche 
Anwendung und Ausnützung der geistigen, bzw. 
materiellen Werte zu fördern.

Der erste Band des Buches behandelt in 21 
Kapiteln die bezeichnenden Eigenschaften der ver
schiedenen Baustoffe, und unterrichtet eingehend 
über die nötigen Kenntnisse der Konstruk
tionsplanung. In dem äußerst vielseitigen Stoff 
bedeuten eine besonders große Hilfe für den Ent
wurfsingenieur die von Prof. F. Czerny zusammen
gestellten Tafeln, welche die statischen Anga
ben für Rechteckplatten von verschiedenen Seiten
verhältnissen bei gleichmäßig verteilter und nach 
Dreieckdiagramm veränderlicher Belastung ent
halten.

Ein anderer ebenfalls sehr eingehend behandel
ter Teil des Buches — Verfasser: Proof. H. Duddeck

und Prof. H. Ahrens — befaßt sich mit der Statik 
der Stabtragwerke und gibt einen verzüglichen 
Überblick von den verschiedenen genauen und 
annähernder Rechen verfahren. Sein reiches Tafel
material bietet eine außerordentlich nützliche Hilfe 
bei der Berechnung von Stabtragwerken und ver
schiedenen Rahmentragwerken. Besonders be
deutend ist die von Prof. N. Dimitrov geschrie
bene Zusammenfassung der Regel der Festig
keitslehre, sowie das Kapitel von Prof. E. Grasser 
über die Bemessung der Stahlbeton-Konstruktions
elemente.

Der zweite Band des Buches behandelt 
hauptsächlich praktische Fragen. Das ausführliche 
Kapitel von G. Goffin teilt die gegenwärtig in der 
BRD gültigen Normen und Bestimmungen mit, 
welche sich auf die Planung und Ausführung von 
Beton-, Stahlbeton- und Spannbetonbauten 
beziehen. Nacher werden von Prof. H. Paschen die 
Bauverfahren mit Betonfertigteilen erörtert, mit der 
Betonung der Vorteile und Schwierigkeiten dieser 
Bauart. W. Klöckner und sene Mitverfasser 
behandeln die verschiedenen Gründungsmethoden, 
mit besonderer Hinsicht auf die Ausführungspro
bleme. Schließlich werden die Abdichtungsfragen 
der Bauten von R. Linder mit besonderer Achtung 
auf die Grundwasserisolation erörtert.

Zusammenfassend kann festgestellt werden, 
daß der jüngste, 71. Jahrgang des Beton-Kalenders 
den vorhergehenden ähnlich — für die Fachkreise, 
die sich mit Beton-, Stahlbeton- und Spannbe
tonbau befassen, ein wertvolles Handbuch bedeutet 
und nicht nur im Verlagsland sondern auch weit 
über seine Grenzen auf allgemeines Interesse rech
nen kann.

P. Csonka
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NUMERICAL METHOD FOR SOLVING 
EIGENVALUE PROBLEMS 

OF LAMBDA-MATRICES OF DEGREE m

G y. Popper*, Zs. G áspár**

[Manuscript received 10 July, I980J

The present paper deals with a numerically efficient iteration method for computing the ft 
smallest generalized eigenvalues in magnitude and the corresponding generalized eigenvectors of /.- 
matrices of degree m and order n. The conditions of convergence are given in the theorem. The 
method can be considered as an extension of the Bernoulli's method for matrix-polinomials.

1. Introduction

The numerical solution of mechanical problems often leads to the generalized 
eigenvalue problem of /-matrices (see e.g.: [1], [2]). Vibration problems resulting /.- 
matrices of second degree are well-known. There are also stability and vibration 
problems which can be described by differential equations where the boundary 
conditions are functions of the eigenvalues. Finitization using the Galerkin’s method 
can lead to the solution of the eigenvalue problem of a /.-matrix of higher degree.

In many cases we are interested only in the computing of some smallest (or 
largest) generalized eigenvalues in magnitude and the corresponding generalized 
eigenvectors.

The generalized eigenvalue problem of a /.-matrix of degree m always can be 
transformed to a special eigenvalue problem of a constant matrix of order mn. where n 
denotes the order of the original /.-matrix. However, this alternation is numerically 
fraught with difficulties because of the very high order.

In the present paper we consider a numerically very efficient iterative method for 
computing the first n smallest generalized eigenvalues in magnitude and the 
corresponding generalized eigenvectors of a /.-matrix of order n and degree m.

2. The method

Let us consider the generalized eigenvalue problem of a /.-matrix of degree m

(l/.m + A ,/"  1 + . . . + Am ,/. + Am)v = 0, (I)

where I, A,, . . . , Am denotes real matrices all of order n. I is the identity matrix and Am 
is non-singular.

* Dr. Popper, Gy„ Szirtes u. 28/A, H-I0I6 Budapest. Hungary
** Dr. Gáspár, Zs., Кару u. 40/b. H-1025 Budapest. Hungary
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Lemma. If the matrix \  is a solution of the matrix equation

Ym + AI Ym 4  . . .  + A m 1 Y + Am = 0 (2)

then every eigenvalue and eigenvector of Ÿ is generalized eigenvalue and eigenvector of 
problem (1).

This lemma follows from theorem 3.7. (i) p.5 and corrollary p. 49 in [3]. So, if an 
arbitrary solution (e.g. Ÿ) of Eq. (2) is known, solving the special eigenvalue problem of 
matrix \  we obtain n generalized eigenvalues and eigenvectors from the mn generalized 
eigenvalues and eigenvectors of problem (1).

This gives rise to concentrate on the solving Eq. (2). To solve it, let us apply the 
iteration formula

(■•■(('T /п + 2 + A iIY* m + 3 + A2) ■ • • + Am ,)Yk + 1 = —Am

(k =  0. 1.2___ )

with the starting matrices Y0, Y , , . . . ,  Y2 m.
The iteration (3) can be written in the form

(3)

(4a)

(4b)

(4c)

(5a)

(5b)

A c t a  T e c h n ic a  A c a d c m ia c  S c i e n t  i a r ú m  H u n m a r k u e  94 . Í9H 2
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The equivalence of formula (3) with the inverse iteration (4) can be shown easily by the 
following. If we multiply from the right Eq. (3) by the inverse of \ k + ,, we obtain the first 
equation in hyperequation (4a); the remaining equations of (4a) represent obvious 
equivalences. Because of

(RZt + , ) 1 = Y* + I

Eq. (4b) corresponding to a normalization means the remultiplication of Eq. (4a) by 
matrix Yt +I . Eq. (4c) is a formal extraction of block Yk + 1.

The rewriting of the iteration (3) into form (4) is also very useful because of the 
followings:

a) The generalized eigenvalue problem (1) can always be reduced to the special 
eigenvalue problem

AX = ХЛ

where the matrix A of order mn was already introduced, A denotes a diagonal matrix 
composed of the mn generalized eigenvalues /., of the original problem.

- VAm 1 

VAm 2

VA

- V

(7)

and the i-th column of the n x mn matrix V is the generalized eigenvector v, belonging to 
the generalized eigenvalue /.,.

b) If the A —matrix in (1) is a simple /. — matrix (i.e. to every generalized 
eigenvalue of multiplicity r there exist r linearly independent generalized eigenvectors).

A da  Technica AcaJemiae Scientiarurn Hunmarkáé 94. J9H2
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then — as the consequence of Theorem 4.2. in [3] — 
i.e. it can be written

A = XAX *.

the matrix A has a simple structure

( 8 )

Assume the following ordering of the generalized eigenvalues:

Ц ,1 <  Ui+il, i = l , 2 , .. . , m n - l .

Denoting by A, and A2 the diagonal matrices

A ,= < / , ,  . . .,/„> , A2 = </„ + ,, . . .,/„,„>,

and by V, and V2 matrices having the corresponding generalized eigenvalues as 
columns, it can be written

V = [V,, V2]
n x mn  n x n n x ( m —\)n (9)

In the following it is supposed, that the /-matrix in (1) is a simple /-matrix. Then an 
arbitrary mnx n  matrix Z 0 can be written in a unique way in the form

z 0 = x c = x C,
C2

where C, is quadratic matrix of order n and C2 is a (m— \ )nxn  matrix. 
If the iteration (4a, b) is started with the matrix Z 0, then

Z, = A 'Z 0(RA 1Z0) ‘ ,

Z 2 = A 2Z0(RA ‘Z0) 1 [RA 2Z0(RA 'Z 0) ‘] ‘ =A 2Z0(RA 2Z0) ',

Z k = A ‘Z0(RA *Z0) '.

Using (4c), (8 ) and (10)

Yt = SXA |IC(RXA ‘С ) 1

holds.
Because of SX = VA and RX = V it follows

Yt = VA' *C(VA *C) '. (11)

Using the symbols introduced in (9) and (10)

Y* = (V, A j “‘С, + V2 A2 *С2) (V, A,' ‘C, + V2A2 ‘C2) 1.
From the nonsingularity of Am follows the nonsingularity of A ,. Suppose that neither 
V, nor C, are singular. Then Yk can be written in the form

Yj = V, A| ‘C .d  + Cr'A* ‘V, ‘V2 A‘ lC2)

(I + + C f 1 A*V, % А 2 ‘С2) ’C,“ 'Л*V, '.

A d a  Technica Academiae Scientiarum Hungaricae 94. 1982
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Each element in position (i.j) of matrix A'JV, 'Y^Aj * 

If the inequality
|AJ<|A„+1|

holds, then

contains a coefficient of form

( 12)

Yk- V ,A l  ‘C,(! + 0)(I+0) 1С , 1 A‘ V, 1 = V, Л, V ,'1

as к-ю о.
It means that solving Eq. (2) by iteration (3) the process converges to that 

solution of Eq. (2), for which the eigenvalues and the eigenvectors coincide with the 
smallest generalized eigenvalues in magnitude and the corresponding generalized 
eigenvectors of problem (1).

On this basis we have proved the following convergence theorem.

Theorem. Suppose that
1) IAm +A, A1"- 1 + . .. +Am 

is a simple Я-matrix,
2 ) for its generalized eigenvalues the

0<|A, |g|A2|g . . .  ^|Ял|<|Яя + 1|^ . . .  SI AJ
inequalities hold,

3) the matrix
V1 =  [v J, . . . ,  v„]

formed from the generalized eigenvectors associated with the generalized 
eigenvalues Aj, . . . ,  A„ respectively is nonsingular.

If the iteration (3) started with matrices Y0, Y Y2 m for which the matrix
C, defined by the relations (5b) and (1 0 ) is nonsingular, then the iteration converges to 
matrix

î  = V1<A1, . . . , A B>Vr1.

3. Remarks

1. For a non-singular matrix V, condition |A„|<|A„+1| indicates the matrix 
V, A, V f 1 to be real.

2. For n = 1 the iteration method (3) is identical with that variation of Bernoulli’s 
method for computing of the smallest root in magnitude of polinomial equations, 
which overcomes the under- and overflow (see e g.: [4] 8.10—52). An other extention of 
the Bernoulli’s algorithm for computing of the dominant solution Y of the Eq. (2) was 
given by Lancaster in [5].

3. Analogously to the Bernoulli’s method and the Mises's process the rate of 
convergence of the iteration (3) depends on the ratio |A„|/|A„ + 1|.

A d a  Technic a Academiae Scientiarum Пинца neue 94. !9H2



108 P O P P E R .  G Y . — G Á S P Á R ,  Z S

4. If we multiply Eq. ( 1 ) from left by the inverse of Am and we denote X= 1 /À, then 
we obtain a Я-matrix of identical form with the original one in Eq. (1). If the original À- 
matrix is symmetric and Am is positive definite, then the symmetric can be provided (see 
e.g. DD- The iteration (3) with the new À-matrix leads to the greatest generalized 
eigenvalues in magnitude and the corresponding generalized eigenvectors of the 
original problem.

5. Let us suppose, that using iteration (3) we have obtained a solution of Eq. (2) 
denoted by Ÿ. Then by the recursion

B„ = I,

B, = A, +  B;_ ,Ÿ, (/=1,2, 1)

i.e. using the Ruffini—Horner’s formula with the coefficients of (2), a À-matrix of degree 
m — 1 with coefficients Bf can be determined. The generalized eigenvalues of the new À- 
matrix coincide with the generalized eigenvalues Àn + Àm„ of the problem (1), and 
the generalized eigenvectors v, of the original problem are given by the relation

V,- = (IÀ, — Ÿ) ‘v,-,

where V; denotes the generalized eigenvectors of the new À-matrix.
If the conditions in the previous theorem holds also for the À-matrix of degree 

m — 1, then the iteration (3) can be used for determination of the next n smallest 
generalized eigenvalues in magnitude and the corresponding generalized eigenvectors. 
In this sense the process can be continued.

6 . An unreduced Hessenberg-matrix (i.e. there are no zero subdiagonal elements) 
of order mn always can be transformed into form (5a) using similarity transformations 
([6 ]). In consequence the iteration process (3) can be applied to compute the n smallest 
eigenvalues in magnitude and the corresponding eigenvectors of a matrix of order mn. 4

4. Example

Consider the generalized eigenvalue problem

IÀ3 + À2 +
7

39
- 2 4
-5 4

-2 4
-8 4

v = 0

with À-matrix of 3rd degree. Its generalized eigenvalues are À, = /, /=  1,2, . . . ,  6  and the 
corresponding eigenvectors are:

Apply the iteration process (3) with starting matrix Yo = 0(Yo = 0 implies that Y x is 
arbitrary).

Acta Technica Academiue Scientiarum Hungáriáié 94, 1982
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To characterize the iteration process, in each step we computed the Euclidean 
norm И Yk — Yfc ! II, the eigenvalues and eigenvectors of \ k. The eigenvectors are 
normed in the sense, that their first components should coincide with the first 
components of vectors in (13).

The iteration can be well illustrated by the following table:

к l|Yk-Yt_,|| -íi ^ 2 «1.2 «2.2

10 8 ■ 10” 1 1.000138 76 1.888 006 85 21.000 157 2 10.857 265 6
15 1 10” 1 1.000 00051 1.985 50840 21.0000006 10.980706 2
20 1 • 10 2 1.00000000 1.99808200 21.000 000 0 10.997 4324
25 2 - 10"-' 1 1.999 746 81 21 10.999 6609
30 2 - 10 4 1 1.999966 63 21 10.999 955 3
35 3 • 10“ 5 1 1.999 995 61 21 10.999994 1
40

■сОт

1 1.999 999 42 21 10.999 999 2
45 5 10 7 1 1.999 999 92 21 10.999999 9
50 8 - 10 8 1 1.999 999 99 21 11.0000000
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MEASUREMENT OF BOTH PORE AIR 
AND PORE WATER PRESSURE 

IN TRIAXIAL TESTING

Á. K kzdiT, G y . H o r v á t h *

[Received: 7 April, 1983]

Soils having M. jondary porosity display both pore air and pore water pressures which 
influence the shear strength and the behaviour of such systems. Authors constructed a device which 
can be used to measure — in the first phase of the compression — the pore air pressure in an open 
system, and, in the second phase, when the soil became quasi-saturated, the pore water pressure. Two 
test results are given: in the first, the load increased gradually, the critical state and the pore pressures 
have been determined; in the second, real conditions of dumping have been simulated.

Introduction

In the course of the construction of earthworks, there are periods, when the 
excavated earth material arrives to the site in bigger or smaller clods, it will be 
deposited and spread there. Later, these layers will or will not be compacted, a 
compression will come either due to an artifical compaction, or to the own weight of the 
material. It the stage between spreading and compaction, the earth has a special 
structure: the individual clods have the structure of the original material, before 
excavation, it constans solid grains and small voids filled by air and/or water; this is the 
primary structure, between the clods however, there are voids which are much larger 
than the individual solid particles and form, with the clods together, the so-called 
secondary structure. Even when compacted, the blocks and lumps cannot be brought 
into tight contact. Dams before and after compaction, loosely dumped heaps or so- 
called tips are typical representatives of this type of earthworks. The latters serve for the 
disposal of the spoil in open pit mining, the loose material will arrange itself according 
to its own laws, compaction usually will not follow. The material has — in the case of 
cohesive soils typical secondary structure.

Since the behaviour of soils having both primary and secondary structure will be 
highly influenced by the stresses which arise in the pores, the knowledge of the pore 
water and pore air pressures, respectively, is a very important problem. This paper 
describes both a device and a method which serves to the independent measurement of

* Civ. F.ngr. Research Assistant. Budapest, H-1521, Műegyetem rkp. 3. Hungary
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these pressures. First, we investigate some properties of soils having both primary and 
secondary pores.

In the spoil tips of the open pit mines in Hungary, the clay clods of medium 
plasticity (Ip = 30 — 50 per/cent) represent a substantial quantity. These soils cannot be 
dewatered by gravitation before excavation, in the original condition they are usually 
saturated, i.e. the “primary” pores contain only water, and this is the case also in the tip. 
During excavation and transport the clods become disintegrated, according to the 
conditions of weather and of the excavation method and they arrive in this state to the 
tip. The individual clods have a rather high compressive strength, their consistency is 
stiff to rigid. In thoroughly remoulded condition, the strength is usually much smaller, 
by one order of magnitude. We want to express numerically the phase composition of 
these materials.

Primary and secondary void ratios

Usually, the phase composition of a soil sample can be represented by a 
triangular diagram (Fig. 1.) (relative volume percentages of the solid, liquid and air 
particles s, v, and a). These values are calculated by using the respective masses (m) and 
density values (p). (Fig. 1.) The phase composition can be represented by a point (P) in 
the triangular diagram. (Kezdi, 1974.) This method is very useful in the practice.

s V. = 

w V. =

100 =
Pd

mw~ md 
v Pw

100 =
? b " ? d

Pv,

□ */• = 100 -  ( s 7. • w V. )

Fig. 1. Phase composition of soil in triangle diagram
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Fig. 2. Soil sample containing primary and secondary pores

The here discussed materials have primary voids within the individual clods and 
secondary ones between them (Fig. 2.) The phase composition can be characterized 
only by the introduction of certain new characteristics.

If the secondary voids contain only air, the unit volume in Fig. 3.a. can be divided 
into two parts: air and the soil containing only primary voids (Fig. 3.b) The phase 
composition in this case is shown in Fig. 3.c. from which the s' a', s, v and a quantities 
can be determined. Since the mass related to the unit volume is always identical, we get

Pb = v- pw + s - p,

a'+ s' = a + v + s ( 1 )

ph = s'pr \ pd = sp, ;

from which it follows that

s' =  — ; a' =  1 — s'
P r

S = P ± .  P b ~ s ' P s  =  P h -  Pd  

P s  ’  P w  P w

a =  1 — (s -F t>)

( 2)

p, — density of the solid grains; (gr/cm3) 
pw— density of water; (gr/cm3)
pb — wet bulk density of the soil containing both primary and secondary voids (gr/cm3) 
p4 — the same under dry conditions; (gr/cm3) 
p, — natural wet bulk density of the clods; (gr/cm3) 
pci— the dry bulk density of the clods, (gr/cm3)

If the secondary voids contain both air and water, the unit volume will look like 
Fig. 4.
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(a)

Fig. 3. Phase composition of a lump if the secondary voids contain only air

Fig. 4. Phase composition of a lump if the secondary voids contain air and water

In order to characterize the secondary structure, the following ratio may be 
introduced ,

If rç>0,05, then the importance of the secondary voids is quite considerable.
The secondary porosity is:

n'= \ — s' (4)

Methods of determination of the secondary structure are given in Kézdi, 1980; 
along with numerical examples.

State of stress in the tip

The tip represents a loose three- phase unconsolidated mass. The stresses in this 
are mainly caused by its own weight; these stresses in the case of a growing tip, increse in 
time. The vertical stress is given by az = hy.

In the inside of the tip, the state of stress corresponds to the “earth pressure at 
rest” condition. The value of the horizontal stress

ox= K 0 o: = K 0h y . (5)

The loose material suffers first, in the continuously dumped tip, a considerable 
compression. The original structure of the lumps is still stable, in the pores only air is
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moving (the pore air pressure, u„> 0 ), — this is possible in the large secondary pores 
however — the water is still fixed, due to capillary forces or to weak surface bonds. In 
this'case, the state of stress can be considered as an anisotropic consolidation in an 
open system (<t2 = <r3 = K0trl ;c, # 0 , e2 — e3 = 0 ), since the phase movements, due to the 
pressures, are not hindered therein. The compression presses out a certain amount of 
the air contained in the secondary pores. In the course of the further compression, the 
small voids will become saturated, the air collects in the large pores or will partly be 
dissolved in the water. The compression caused by air movement keeps on, until the 
degree of saturation reaches a critical state, where independent movement of the 
gaseous phase stops, the enclosed air bubbles can move along the water only, since the 
inital air canals of the loose material became closed. The soil becomes quasi-saturated, 
the air does not make a continuous phase, the voids are filled with a compressible 
mixture of air and water (ua> u w> 0 ), where the air exists in a finely distributed or a 
dissolved state. After having reached this critical state, the pressure squeeze this 
mixture out of the tip or of the upper parts thereof. The inner part of the tip behaves 
then in the quasi-saturated state as a closed system, where the movement of the liquid 
and gaseus phases is hindered. If this air and water cannot leave the pores, they remain 
under pressure, and since these stresses are neutral, the shear strength will be radically 
decreased, slides and subsidences will occur in the tips or a liquifaction comes about. 
These phenomena are very important from practical point of view because they may 
cause disasters and endanger human lives. (Bishop, A. W., 1973.) In the frame of 
investigations connected with open-pit mining in H ungary, the stability of tips was of a 
major concern, therefore, the Soil Mechanics Laboratory of the Department of 
Geotechnique (Budapest Technical University) constructed a measuring device and 
worked out a method to measure pore water and pore air pressures in soils having 
secondary porosity.

Method of investigation

One of the important conditions to determine the shear strength of tip materials 
is to model precisely the loading process and the consolidation. Another important 
factor is the time coefficient, the rate of loading. Whether the tip forms, under the 
influence of the increasing load, an open, or a closed system, will depend on the rate of 
loading. At a relatively high rate of loading, the totally open system cannot be 
completely developed at the beginning of the anisotropic compression, since one part 
of the air canals will be closed by some plastic lumps. In these enclosed air-bubbles 
considerable pore-air pressure may develop, even in the initial phase.
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Description of the measuring device

At the beginning of loading, as stated before, air will be pressed out in an open 
system from the soil having secondary porosity. After having reached a critical 
saturation, water will be squeezed out, which contains finely distributed and/or 
dissolved air. The investigation was made with a triaxial compression chamber 
equipped with a device for pore water pressure measurements. The triaxial chamber 
has been somewhat modified for the purpose of these tests. (For a detailed description 
of the modified apparatus see Kezdi, Á., Horváth, Gy., 1983.) It is possible to perform 
tests in axially symmetrical stress state, following different stress paths, at different 
loading rates. The data which can be measured are the following:

— the principal stresses (er, ; cr2 = cr3)
— the pore water pressure,
— deformations,
— volume change,
— pore air pressure.
The latter can be measured by using the device illustrated on Fig. 5. It is 

measured at the beginning of the test only, before reaching the critical saturation, which 
indicates that the sample became quasisaturated. In this moment, the device is switched 
to measure pore water pressure, and it furnishes the uw values, in closed system.

Fig. 5 shows also base plate of the triaxial chamber (B); the new device (A) is 
coupled here to the chamber and mounted on valve 4 .  Pipes H  to 1 0  are filled with water. 
The free water surfaces in pipe 9  and container 1 0  are under atmospheric pressure.

If the soil sample is exposed to an anisotropic compression which corresponds to 
the state of stresses in the "at rest” condition, in the way, that valve 4. will be opened and 
the air from one part of the secondary pores can be squeezed out. The escaped air will 
displace the water level in tube 8 . In order to determine the exact volume of the air 
pressed out at the athmospheric pressure, we move container 10 downwards, until the 
water levels in the tubes 8 ., 9. and 10 will become indentical. (Pipe 9 serves to measure 
the exact volume of the air.) Now, we know the amount of air pressed out from the 
sample in unit of time and the vertical compression (volume change) of the sample, and 
making use of the Boyle-Mariotte equation, the pore-air pressure in the closed pores of 
the sample can be exactly calculated, even in open system.

I K - à D + i y - p ,
“■=— -ÇTÎT—  161

In this equation:

Va air volume (cm’)
AV — volume decrease, measured under anisotropic consolidation, due to the vertical compression 

of the sample (cm’)
Vp —  air-volume, remained in the sample (cm’)
p, — athmospheric pressure (lOOkPa)
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Fiq. 5. Device to measure the pore-water and pore-air pressures (/1; H triaxial cell). / base of the cell; 
2 cell to measure the vertical principal stress; 3 miniature cell to measure the third principal stress; 
4 -  valve connecting the pore-air pressure measuring device; 5 valve connecting the pore-water pressure 

measuring device; 6 — filter stone ring; 7 -  10 device to measure the pore air pressure indirectly

The measurement is continued until the critical saturation is reached, when there 
is pressure also in the pore water. The interconnected air canals will be closed, water is 
squeezed out from the sample and water enters into the system of the measuring device. 
In this moment, valve 4 is closed and valve 5 opened, where a small pressure cell serves 
to measure further the pressure of water in the voids of the lumps and of the pressure of 
the water-air matrix in closed system.

Test results

The results of a test are given on Fig. 6 . The height of the sample was 22,5 cm, its 
diameter 10 cm. The clay which was composed of lumps having the original, primary 
porosity, has been loosely filled into a mould and then lightly tamped. The 
characteristics of the soil and the test results are given in Table 1. The soil has a 
secondary porosity. The load was applied at the constant rate of 4 kPa/min. This rate 
corresponds in Hungary approximately to the usual rate in tip forming. The first 
principal stress, which is identical with the pressure due to the ownweight, increases
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7ПП

О ЮО 200 300
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O ',, k P a

<J\. k P a

Fig. 6. Test results, a — values of the uniformly increasing principal stresses; b — pore air and pore water 
pressures vs. the first principal stress; c — specific compression, vs. the first principal stress

thus linearly in time; also, the third principal stress increases uniformly, according to 
the formula

аз ~ K0o l . (7)

In the test, the ratio of the principal stresses was (at e3 = 0) a3jax =0,6 Fig. 6  a shows the 
relationship between cr, and a3 ; however, since the rate of loading is constant the 
diagram can be regarded as representing the increase of the load in time. Fig. 6 b 
presents the measured values of the neutral stresses. Before reaching the criticial state, 
the system is, as shown, open, the air can freely escape. The phase composition of the 
sample, at the beginning of the test, is shown on Fig. 7. Fig. 7a symbolizes the total 
volume; 7b represents the volume of the original sample (having primary pores only) 
and the total volume of the secondary pores. Finally, Fig. 7c gives the volume of the 
different phases. This is then, the composition of the sample at the beginning of the test. 
At increasing a, the specific compression also increased (see Fig. 6 c); at point 1 — 
before reaching the critical state —, after pressing out a certain volume of air and
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Table I

Results of triaxial test

<r,kPa <73kPa Ah
mm °//О

Pd
(gr/cm3)

s
у
/ о

w

/ о

a
У/ о

S u kPa

** 1.36 48.6 48.3 3.1 0.94 0
0 0 0 0 0.84 30.0 29.8 40.2 0.43 0
7.3 10 33.8 15 0.99 35.4 35.1 29.5 0.54 7

23.7 27 41.9 18.6 1.03 36.8 36.6 26.6 0.58 14
48.7 39 50.4 22.4 1.08 38.6 38.3 23.1 0.62 23

100 63 60.1 26.7 1.14 40.7 40.5 18.8 0.68 29
134.6* 81 64.6 28.7 1.18 42.1 41.8 16.1 0.73 34

149.4 91 66.4 29.5 1.19 42.5 42.2 15.3 0.74 25
169.1 105 67.5 30.0 1.20 42.9 42.6 14.5 0.75 55.6
192.6 118 68.9 30.6 1.21 43.2 43.0 14.0 0.76 89.4
213.6 130 69.5 30.9 1.21 43.4 43.1 13.5 0.76 113.8
235.8 145 69.8 31.0 1.22 43.6 43.2 13.2 0.77 140.0
259.3 163 70.0 31.1 1.22 43.8 43.3 12.9 0.77 158

Soil type: yellow clay; /,, = 42 percent 
•critical pressure 

••one lump

..0"

Fig. 7. The soil sample having secondary porosity at the beginning of the test (at point “О"). a total soil
sample; b —■ the original soil and the secondary pores, filled partly with air, partly with water

compressing the sample, the phase composition will be represented by Fig. 8 . The phase 
composition will be similar in the critical state, where the water starts to escape. The 
system will be closed here, and the load increased; thus volume of the sample remains 
from here principally unchanged. However, a slight change will occur (Fig. 6 c) since the 
air-water mixture, which is enclosed into the secondary pores, is not incompressible. 
The values of the pore-water pressures uw after having passed the critical state, are 
given on Fig. 6 b. At point 3 the phase composition will be as it is given on Fig. 8 , since 
the volume will slightly change and this change is due to the compression of the air- 
water mixture, and not the squeezing out of the same.
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F ig . fi. Composition of the sample at points /, 2  (critical) and 3

F ig . 9. Variation of a — the degree of saturation and b — of the phase composition respectively, vs. the first
principal stress
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The change in the degree of saturation (S) of the sample is given on Fig. 9a, vs. ct, . 
There is indeed a very slight change over the critical state. Fig. 9b illustrates the change 
of the phase composition.

In the following another example is given: the investigation of the aelotropic 
consolidation of a clay tip (K0 condition). The soil is composed of lumps, and it shows a 
considerable secondary porosity. The load was increased — in order to simulate real 
conditions -— according to Fig. 10 (curve «); the specific compression is shown in Fig. 10 
(curve b). The measured values of the pore — air, and pore — water pressures, 
respectively, are also given on Fig. 10 (curve c), vs. the specific compression. The test 
furnished important numerical data to visualize the stress state, the deformations and 
volume changes in the tip, which help to judge its comportment.

0  50 100 150 200min

Fig. 10. Variation of the pore-air and pore-water pressures, respectively, due to the loading rate shown in o; 
b — specific compression; c -  pore pressures vs. specific compression
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TRIAXIAL PRESSURE CELL FOR PRECISE 
TESTING

A. K.ÉZDI , G y. Horváth*

Using a specially transformed triaxial testing device with large sample which can be used to 
work along prescribed stress path (either stress or strain control), tests were performed to investigate 
the strains and volume changes in loose and dense sands. A given homogeneous inital condition has 
been established with a prescribed phase composition. The rate of loading was the same for all test. 
After establishing and measuring the coefficient of earth pressure at rest (K0) strains, volume changes 
were measured during loading, and the character of the variations in the different stages of the test 
observed. The critical density can therefore be defined not only from point of view of the sign of 
volume change but also of the kind of the failure mechanism. It has been proved that the different 
stress paths do not influence the shear strength parameters neither the critical states of stresses 
occurring during the failure process.

Introduction

The triaxial pressure cell is generally known as a device which furnishes the 
relatively most reliable values of the shearing strength parameters of soil. The cells of 
different makes allow to apply to the sample a combined state of stress (ct, ><t2 =<t3) to 
measure the pore stresses, the vertical displacements and the volume changes. If the 
stresses are continuously changed, definite stress paths can be followed, it is possible to 
investigate the effect of the different stress paths and of turning of the principal planes. 
A few characteristic stress paths are given on Fig. 1; Fig. 2 shows the determination of 
shearing strength, by following different stress paths.

The differences found in test results due to these effects are generally small so they 
cannot be detected by using the customary equipment and testing methods. Therefore, 
the Geotechnical Laboratory of the Technical University of Budapest substantially 
modified a triaxial testing device of the make of Wykeham Farrance Engg. Ltd. making 
it suitable for the precise investigation of failure mechanism and thus increased the 
accuracy of the measurements. The modified device is suitable to produce any axially 
symmetrical state of stress and to follow any stress paths. In order to increase the 
accuracy of the measurements the device has been equipped with electric sensors and 
automatic registrating instruments. The original equipment was also suitable to carry 
out tests in different axial symmetrical stressed states, in open or in closed system, along 
different stress paths, with different loading rates. In the following the paper discusses 
the modified equipment and presents some test results.

* Horváth, György, Civil Engineer, Department of Geotechnique, Technical University, Budapest
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Fig. I. Typical stress paths [p = (<r, + <x3)/2; q =  (ct, -<r3)/2]

Fig. 2. Determining the shearing strength with triaxial test; applying different stress paths

Modification of the triaxial equipment

The block diagram of the modified triaxial equipment is given on Fig. 3. The end 
surfaces of the sample in the cell (1) having a diameter of 1 0  cm are loaded by pistons (2 ) 
of the same diameter and by the cell base. The loading piston and the cell base (3) have 
two different forms, as they are shown on the left hand side and the right hand side of 
Fig. 3. (Variants a and b.) It depends on the desired type of the test, which piston and 
which cell base are used, according to the diagram, so that stress ox can be registered 
also by pressure cell (4). The sample is covered, as usual, by a rubber membrane; the 
fluid pressure <r3 acts on the lateral surface of the same, er, and <r3 can be varied in any 
stage of the test, independently of each other.

In the course of the test, the separately mounted motor of the loading device 
pushes the cell with its base (5) upwards. The vertical load which acts on the sample will 
be displayed, besides the pressure cells (4), having a diameter of 7 cm, are also indirectly
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13

Fiy. 3. The block diagram of the modified triaxial testing equipment. I — triaxial cell; 2 — pistons, 0  10 cm 
diám; 3 - cell base; 4 — pressure cells, 0  7 cm diam.; 5 — loading plate; 6 — pressure gauge; 7 — electric 
strain gauge; H — miniature cell to measure lateral pressure; 9 — connection to the volume change measuring 
device; 10 bands to measure the changes in perimeter; II  and 12 -  measurement of pore pressures; 13 — 

stiff yoke; 14 loading lever; 15 — deairing valve; 16 — oil valve

measured by the pressure gauge (6 ); at the same time, the glued strain gauges serve for 
automatic registration of the stresses. The velocity of vertical deformation can be 
varied between wide limits. Its exact value can be measured by an electric strain gauge 
(7). The prescribed <r3 =const. fluid pressure can be set by a mercury stress stabilizer 
through value (#). Its value is measured by a miniature pressure cell mounted on value
8. The volume change will be obtained either a by measuring device mounted directly 
on value (9), or it is calculated using the readings taken on the precision perimeter 
measuring bands (10). These bands register the changes of the sample perimeter with an 
exactitude of two per mill. Slow deformations are measured by direct reading, fast ones 
by taking pictures. The pore water pressure is measured either manually by a
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manometer fixed on valve (/ /), by using a null indicator and a regulating pump; or by a 
miniature cell (of the make Kyowa, Japan) connected through valve (12), with 
continuous registration. In soils having three phases — solids, water and air —, then 
there acts also a pore air pressure in the pores. These can be measured by using a device 
constructed on the basis of Boyle-Mariotte’s Law (Kézdi, A.—Horváth, Gy., 1979). 
This apparatus can be connected through valve (12).

For a test in open system, both the air and the water may leave through valves 
( // )  and (12) to the open air.

The equipment has a m otor drive and thus allows a loading with uniform 
displacement velocity (“stress-control"-method). The sample which is pushed upwards 
through the piston and the pressuremeter, is supported by a stiff yoke.

If, between the stiff yoke ( 13) and the pressuremeter (6) a one-armed loading lever 
(14) is installed, having a gear ratio 1 : 1 0 , with a water container on the end of it, then, 
applying a load increase by filling the container uniformly by water, a “strain- 
controlled" test can also be performed. End switches on the one-armed lever ensure the 
uniform transmission of the load to the sample through piston (2).

The measuring elements (4), (6 ), (7), (#) and (12) allow to measure and register 
electrically the stresses and deformations. The signs go through an amplifier and to the 
registrating device having several canals and to the plotter. The results are evaluated by 
a Hewlett-Packard computer.

The complete equipment with the multicanalplotter is shown on Fig. 4.

Fig. 4. Photo of the equipment
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Tests with the modified equipment

a) Shearing strength o f sand

For this test, a sand with the grain size distribution curve shown on Fig. 5 was 
used, in dense and loose state, having the physical characteristics in Table 1. It has to be 
mentioned that the density in the loose state was smaller than the critical one, in the 
dense state, it was greater than that, in the stress range used. The stress paths, the 
deformations, the volume changes have been determined and the shearing strength 
parameters in the failure state obtained. The sample was acted first by the principal 
stresses which corresponded to the “at-rest" state, then loaded by increasing the 
vertical stress up to the failure. Fig. 6  shows the stress paths and the failure line in the 
coordinate system in the loose and the dense state of the sand as well.

Further shearing strength results are given in the paper Kézdi, Á. and Horváth, 
Gy. (1977). It was an important result of the investigations that the angle of internal 
friction was independent of the stress path applied, in this axial symmetrical stressed 
state, for this sand.

0.5 0,2 0,1
d, mm

Ну. Л. Grain size distribution curve of Ihc soil lested 

Table I

Physical characteristics of the soils tested

Physical
characteristics Dimension Dense

a
Loose

h

Dry density kN/mJ 15.9 14.0
Volume percentage of solids s% 60 53
Volume percentage of water v% 8 7
Volume percentage of air a% 32 40
Void ratio e 0.67 0.89
Water content w% 5
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b) Determination of the coefficient o f earth pressure at rest

The coefficient of earth pressure at rest (K0) in axial symmetrical stressed state is 
usually determined by performing the triaxial test at different cr, values and evaluating 
the <r3 value at which the lateral displacement of the sample is zero. The modified 
equipment offers another method with a greater accuracy. The sample and the piston 
having both 10 cm diameter are surrounded by water. This water transmits the 
principal stress <j 3 on the sample. If we keep the amount of this water constant, then, at 
the load exerting by the piston the pressure <r3 on the sample, if the water is deaired and 
the cell perfectly sealed, the pressure cr3 in the closed cell space will necessarily 
correspond to the state of the earth pressure at rest. The sealings were checked before 
testing in the stress range used.

c) Measurements o f the deformations

The vertical and radial displacements which occurred during the run of the 
previously given stress path are given on Fig. 7a; Fig. 7b shows the values of the 
specific volume change. On the latter diagram, the stress Aax has been plotted, which 
means the pressure increment applied after the “at-rest” stressed state has been 
reached. The volume change which occurred up to this point was proportional to the 
principal stresses. The volume change was a decrease first also in the dense state, then 
the process of failure starts which is accompanied by a loosening; finally, the soil fails 
and plastic deformations occur. (Section 3-4.) The loose sand passes through 
alternating densification and loosening processes, no definite sliding surface is formed, 
only local slides occur. The failure mechanism for the dense sand and for the loose sand 
is different; this is particularly well displayed by the formation of the volume changes.

The Mohr’s circles of the stressed states which were formed during the failure 
process and can be called as critical, are shown on Fig. 8. The “at-rest” state (/), the limit
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Fig. 7. а — specific displacements; b — volume changes

Acta Technica Acadcmiue Scientiarum Hunjtaricac 94. !9H2

Fig. 8. Mohr's circles in the critical stressed states



1 3 0 K E Z D I ,  Á. H O R V Á T H ,  G Y .

of linearity (2) and the failure state (4) are given. The inclination of the tangents to the 
circles, the <P0 and Ф values respectively can be found in Table 2. In the initial state, the 
inclination of the tangent to this circle, being (<r1 — a0)/(al + <r0); based on this the 
coefficient of the earth pressure at rest can be calculated. The values Ф, Ф0 and K0 are 
summarized in Table 2.

The precision bands fastened on the surface of the cylindrical sample like tyres, 
allowed to measure the lateral — radial — displacements in several cross sections. 
Results of such a measurement are given on Fig. 9 for loose and dense sand. It can be 
seen that the deformations of a dense sand are represented in every cross section by a 
smooth curve. The value of the pressure increment where the failure process starts, can

Table 2

Inclination of the tangents to Mohr's circles for critical stressed states

Data
Dense

a
Loose

h

e 0.67 0.89

Point 1.
(Earth pressure at rest) 26.6° 23.3°

Point 2.
(Limit of linearity) 31.0° 25.4°

Point 4.
(Failure) 33.4° 29.8°

Ко 0.39 0.44

4 Öv  к N / m2
0 100 200 300
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be clearly determined. The smooth curves suggest the formation of an individual 
sliding surface which is initiated in the inside of the sample it then propagates and 
covers the whole sample. The bands located symmetrically on both sides of the sample, 
furnished identical results. In the same way, like the line of the volume change on Fig. 8 , 
a loose sample gets into the failure state through alternating densification and 
loosening processes, through the formation of local sliding surfaces. The critical density 
can therefore be defined not only from point of view of the sign of volume change but 
also of the kind of the failure mechanism. Samples denser than the critical fail through 
progressive loosening and the forming of an individual sliding surface. Looser samples 
fail through a process of alternating loosenings and densifications, reaching a plastic 
state. It has been proved that the different stress paths do not influence the shear 
strength parameters neither the critical states of stresses occurring during the failure 
process.
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CONTINUUM EQUATIONS OF TIMBER 
LATTICE SHELLS

L. K o l l á r *

[Received: 28 August, 1982]

Lattice shells, consisting of timber laths running in two directions, are, due to their simple 
method of erection, advantageous for covering large areas. The paper derives continuum differential 
equations suitable for calculating internal forces and deformations of such lattice shells, both during 
erection and in the final state under arbitrary vertical loading.

Introduction

An advantageous solution for covering large areas is the lattice shell, mostly 
made of timber [2]. This is constructed in such a way that a grid of square (or 
rectangular) meshes is assembled of continuous laths by loose bolts on the ground (Fig. 
1). It is lifted into the surface of desired shape, and in this position it is fastened to the 
edge girder (Fig. 2). The laths undergo during this operation, as a rule, bending in two 
directions and torsion, and the originally right angles subtended by them become 
distorted.

In the following we intend to set up the continuum differential equations 
describing the internal forces and the deformations of the lattice shell.

Assumptions

The individual laths are continuous; they are connected to each other in the 
joints by bolts which allow unhindered relative rotation of the two laths in the 
tangential plane of the shell.

The principal directions of the lath cross sections are perpendicular and parallel 
to the tangential plane of the shell surface at the point in question.

The elongation of the laths is negligible.
The surface of the lattice shell can be considered as sufficiently shallow as to 

make the approximations of the shallow-shell theory valid. Consequently, the network, 
originally rectangular in ground plan, remains (approximately) rectangular on the shell 
surface as well.

* Dr. Kollár L., Karap u. 9., H-l 122 Budapest, Hungary
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Fig. 1.
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The laths are placed densely enough in order to allow us to describe the internal 
forces of the lattice shell by those of a continuum. To this purpose we have to divide the 
forces or moments arising in one lath by the distance bx (or by) perpendicular to this 
lath, in order to obtain specific forces or moments. The well-foundedness of this 
assumption has been clarified in [4].

Poisson’s ratio of the continuum will be taken equal to zero (v =  0).
The structure is only acted upon by a vertical load pz.

In the lattice shell the internal forces shown in Figs 3a, 4a and 5 arise. Of these 
forces those depicted in Figs 3a and 4a have equivalents in the continuous, bent shallow 
shell (Figs 3b and 4b). However, the internal forces of Fig. 5 have no equivalents in the 
continuous shell, so that the equivalent continuum of the lattice shell has to be a 
generalized (multipolar) continuum, in which also the equivalents of the forces of Fig. 5 
exist.

Of the forces in Fig. 3 we have to remark that in the lattice shell no forces 
equivalent to the membrane shearing forces nxy of the continuous shell develop, since 
the individual squares of the lattice have no shear resistance in themselves. This is the 
reason why in Fig. 3b nxy = nyx = 0 appears. Although the shearing forces Tz x and Tz y of 
Fig. 5 seemingly correspond to the forces nxy and nyx of the continuous shell, actually a 
fundamental difference exists between them. Tz x and Tz y are the shearing forces of the 
laths as individual beams bent in the tangential plane of the shell, and are not connected 
to each other by a relation similar to nxy = nyx, because they arise in two independent 
beams, and they are balanced by the variation of the bending moments of these beams.

Equilibrium equations

X X

Aa) b)
Fig. 3.
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This property of the lattice shell can also be formulated as follows. The lattice 
shell has no shear rigidity proper: the deformation shown in Fig. 6 a (y = const) can 
develop without any resistance. On the other hand, it resists the deformation in Fig. 6 b, 
which is, in fact, the variation of y. This resistance is the bending stiffness of the beam in 
the tangential plane of the shell, which is connected to the internal forces shown 
in Fig. 5.

The shearing forces Tz x and Tz y are directly connected with the normal forces of 
the perpendicular laths: the normal force Ny (or N  J  increases in a joint to the same 
amounts as Tz x (or T, y) decreases.

Taking all these into account, the following equilibrium equations can be set up 
for the equivalent continuum of the lattice shell in a rectangular co-ordinate system,
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using the notations
' =  d/dx 

■ = d/dy.

Projection equilibrium in the directions x and y :

The equation for the equilibrium in the z direction can be written on the basis of 
the shallow-shell theory [ 1], [ la ] (considering that in our case nx>, =  0 ):

nx(z" + w") + ny(z" + w") + q'x+ Чу + Pz = 0- (3)

In this equation

z is th e  o r d in a te  o f  th e  sm a ll su rfa c e , m e a s u r e d  f ro m  th e  p la n e  x y ,  in  u n lo a d e d  s t a t e  ( " e r e c t io n  s h a p e ’’): 
tv is  th e  d is p la c e m e n t  p e r p e n d ic u la r  t o  th e  s h e ll  su r fa c e :

The equilibrium of moments turning around the axes у and x can also be taken 
from the shallow-shell theory:

m'x +  m x, - q x =  0 , (4)

m'x,  +  m ; - q y = 0 . (5)
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Finally, the moment equilibrium around axis z is ensured by the relations 
TZX = M'ZX and T ,y= M : ‘y, valid for the individual laths as beams bent in the 
tangential plane of the shell, so that there is no need to set up the sixth equation.

In Eq. (3) we let appear in the expressions for the curvatures, in addition to z, also 
the derivatives of w, that is we wrote down this equation for the surface changed due to 
the loading, rather than for the “original” shape defined by z, i.e. we used the “large- 
deflection theory”. If we content ourselves to use the “small-deflection theory”, we can 
cancel the two w-derivatives.

Expressing the internal forces by the displacements

Denoting the displacements in the x and y directions by и and v respectively, 
the internal forces of the continuous laths, as beams bent in the tangential plane, can be 
expressed by the usual formulas:

v" = — 

v'" = — 

v"" = — 

u" = — 

u " = — 

u"" = —

In these relations E l, x and El,,y are the bending stiffnesses, effective against 
bending in the tangential plane of the shell (i.e. referred to the axis z), of the lath-beams 
running in the x and у directions respectively.

In the following we shall denote by u0 and v0 the x and у directed displacements 
coming about during erection, and by и and v those developing under external loads.

The specific “plate” moments appearing in Eqs (4) and (5) can be expressed by the 
curvatures and twist of the shell surface z and by the displacement w perpendicular to 
the surface:

E E , „mx = -  —  (z + w ),
bx

(8 )

Ely . .. ...my= -  -r^(z  + vv ),
Dy

(9)

M.
EL

T:,x 
EL r

T '‘  Z , X

EL X ’

Tl2,y
ЕЕ. у

EE .y

(6 a)

(6 b)

(6 c)

(7a)

(7b)

(7c)
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m' xy ( 10)

where EIX and EIy are the bending rigidities, valid in bending in the plane normal to the 
shell surface, of the lath-beams running in the x  and y directions respectively, and GI,X 
and GIly are the torsional rigidities of the same beams.

The second derivatives of z in Eqs (8 ) to (10) express the fact that one part of the 
moments in the laths are caused by distorting the lattice into the required erection 
shape, and the second derivatives of w show that the other part of the moments is due to 
the displacement w measured from the erection shape.

We still should express the normal forces nx and ny, appearing in Eqs (1) and (2), 
by the displacements parallel to the laths in which these forces arise. However, this 
cannot be done because of the assumed inextensionality of the laths. Instead, we can 
write the condition of inextensionality itself.

The condition of inextensionality during erection cannot be expressed by a 
simple equation, since the ordinate z of the erection shape can by no means considered 
as a “small” displacement. Hence, the fulfilment of this requirement has to be described 
by a method also valid for large displacements, as to be found e.g. in [3], which 
furnishes the displacements u0 and v0, pertaining to z.

The inextensional character of the deformation caused by external loads are 
expressed by the equations

valid for small displacements, see e.g. in [6 ]. In most cases we can omit from these 
equations the terms w" and w", being small in comparison with the corresponding 
derivatives of z.

However, we can establish relations between the normal forces nx, ny and the 
displacements u, v of the perpendicular laths by expressing T*and Tz y from Eqs (6 c) 
and (7c), and introducing them into (1) and (2), (separating u0, e0 from и, v):

u! — w{z" + w") = 0 , 

v — w(z" +  w") =  0 ,

( 1 1 )

( 12)

(13)

(14)
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Writing the equations in terms of the displacements

Let us introduce (8 ), (9) and (10) into (4) and (5), express qx and qy and introduce 
them into (3):

Elx .............. (G l,x G I , \
nx(z" + w") + n,(z" + w") -  - ^ ( z " "  + w”") -  +w" ) -

— (2 "" + w"“) + pz = 0 . (15)
Ь У

We have, in addition the two equations of inextensionality (11) and ( 12), which 
have to be substituted for by the method to be found in [3] when investigating the 
erection shape.

We thus have three equations, for determining the three displacement functions. 
However, in (15) also nx and ny appear, and cannot be eliminated. Consequently, we 
have to add also Eqs (13) and (14), so that we finally have five equations for the five 
unknowns (u, V, nx, ny, and z or w).

Solution principle of the equation

We have to solve our equation system for two cases: for producing the erection 
shape and for the loading.

When looking for the erection shape, we have

U =  D =  W=0. (16)

We assume the erection shape z(x, y) required, expediently in the form of a series, 
compute the pertaining functions u0, v0 (e.g. on the basis of [3]), i.e. the horizontal 
displacements of the laths, and from these we determine n'x and ny with the aid of (13) 
and (14). By integration we produce nx and ny, which should be introduced into (15). 
Thus we obtain an equation for z, in which two unknown functions resulting from the 
integration of nx and ny also appear. From this equation we determine z, and we repeat 
the procedure starting from this new z. The procedure can be repeated until the final z 
agrees with the initial z with the required accuracy.

The problem can be simplified by neglecting the own weight of the lattice shell (p, 
=  0). In this case we determine, in fact, the buckled shape of the lattice shell with large 
deformations.

If the erection shape is known and we are looking for the deformation and 
internal forces of the lattice shell under a given load pz, the task becomes more 
complicated. We can proceed in several steps, and use approximations in the first steps.

A d a  Technica Academiae Scientiarum Hungarian1 V4. 1982



T I M B E R  L A T T I C E  S H E L L S 141

So in the first step we may neglect u and v, i.e. we can consider the magnitudes of nx and 
ny as unchanged.

We intend to show the application of the method outlined above in the frame of a 
numerical example in a subsequent paper.
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A RECENT METHOD FOR THE NUMERICAL 
SOLUTION OF ENGINEERING PROBLEMS 

PART II

E. BÉRES

[Received: 31 May 1982]

Computation error

The result of an approximate analysis can only be evaluated in knowledge of its 
accuracy, or else, of the computation error. Theoretically, this concept of an error is 
rather simple, it being understood as the difference between the computed and the true 
value. Only that in practice, this concept escapes quantification exactly when it would 
be a must. The approximate method is mostly applied in the absence of an exact 
solution possibility. Though, in that case, no error can be indicated, in more complex 
cases not even estimated. Namely, while in most problems, analysis can give an upper 
bound for the computation error, methods applied in several domains of physics — e.g. 
in elasticity — can give no such bounds, underlying the practice of qualifying these 
methods according to exactly solvable problems, permitting to confront approximate 
results with the exact solution. This yields fair conclusions on the method and its 
accuracy in general, without, however, yielding information on critical ranges of 
critical problems.

In several domains of physics — e g. in elasticity — assignment is, however, in 
only one direction as complicated as to inhibit assignment of one group of variables to 
the other group, hence computation of the exact values. In the other direction the 
relationship is simple and exactly determinable. For instance, a common problem is to 
determine deformation and stress distribution under a given load, exceptional to be 
exactly solved. Though, load for a given deformation or stress distribution is rather 
simple to exactly compute.

Naturally follows the interpretation of another error. After having computed the 
approximate stress or deformation values for a given load, the load pertaining to this 
stress distribution (deformation) is to be computed, a rather simple computation 
theoretically yielding the exact load for a given stress distribution (deformation). 
Deviation between the given and the recalculated load is the computation error 
reflected to the load. This interpretation of the error may be countered by that it is in 
terms other than of stresses the solution is aimed at. But it is supported by the fact that 
in practice, load is always indicated at a — not too close — approximation. A further 
increase of the accuracy of the recalculated value within this range is about 
meaningless.
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A number of computation methods relying on these error concepts have been 
developed, comprehensively recapitulated by Schade [3]. Referring to the errors 
defined above, five “error principles” have been established, four among them may be 
conditions in practical computations. This clear-cut study discovers the drawback of 
these attempts by indicating the goal in p. 21  as “to a predetermined sense ‘best’ 
approximation”. Namely there is an infinity of conditions to be assigned a solution best 
from the aspect of that condition. But it cannot be predicted, to what of these 
conditions the solutions best meeting the goal of the problem pertains. This 
predetermined sense is generally the extreme value of a scalar function. Now, to 
describe an error given by a multielement vector, a scalar is of limited use even if error 
vector elements are of the same unit. In elasticity problems, this convenience is 
restricted to special cases. The vector of errors generally contains also errors of the 
equilibrium conditions as well as of the dynamical and geometrical boundary 
conditions, with units [N], [N /m 2] and [m], resp., in the tridimensional case. No 
physical meaning can be attributed to the scalar value formed of the numerical values 
of these elements. As a matter of fact, extreme value of a fictious mathematical term is 
determined and assigned to the problem as solution. But this is not to mean the 
largeness of the computation, against the fact that the result is accepted without 
checking by resubstitution, while enhancing the extreme value character of the 
solution.

Essentially the best solution as defined above is to solve the redundant equation 
system after some weighting. Neither of the five error principles in [3] gives a more 
concrete solution than that.

The energetic method applied in the finite element method has, however, to be 
exempted from this general statement, namely that the extreme value of a concrete 
physical quantity in terms of a scalar gets determined. Obviously, extreme value of the 
error function does not refer to stresses of the minimum deviation from the real value 
obtained from a given function type.

This is one among items requiring exact and approximate methods to be 
definitely distinguished. Namely if the scalar value of the properly defined error 
function tends to zero then it is true that the solution tends to the exact one. It would be 
erroneous to conclude that where the error function of the approximate solution has an 
extreme value there is the best solution from every aspect. No such relationship exists!

To be precise, energy minimum of the approximate solution does not mean a 
minimum of errors. If the potential energy belonging to one of two given solutions is 
less than that of the other one it does not mean that the stress error maximum is the less 
in the same solution. Even the stress error in the solution with the lower energy 
minimum may be the multiple of that in the other one. All these hint to caution in 
evaluating the solution based on the principle of energy minimum.
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Error calculation

Neither error principles nor variation methods are seen to suit error 
determination, let alone estimation. In the finite element method, equations for the 
equilibrium of each element and boundary conditions for each boundary point can 
though be written in terms of the calculated displacement and stress components, and 
their error applied to estimate calculation error, but on one hand, to write this equation 
system involves as much of work as that of the suggested method, thus the checking 
work demand is of the same order as that of the solution, on the other hand, errors 
obtained in checking the finite element method cannot be applied for correction. In the 
finite element method, an exact error calculation at an arbitrary point would only be 
possible if also the elements would be continuous to a properly high order, an 
impossibility under the actual circumstances except for extremely simple cases.

On the contrary, the suggested method permits both estimation and exact 
tracking of the error. This sharp distinction means that while even the exact error value 
is easy to obtain at any point (i.e. the error function can be produced,) equilibrium error 
of elements and error of boundary conditions for given nodes — mere error 
approximations — are just as important by helping the method to improve the result 
accuracy without increasing the number of terms of the approximate function, hence of 
the unknowns.

Error measured in terms of load or other starting data permits a relatively simple 
and exact error determination. The suggested method seems to be easier to understand 
via available results.

In the simplest case fulfilment of equilibrium conditions for a finite number of 
points is examined. Solution for a complete structure of finite elements accessible to 
exact analysis consists in determining the displacement of a finite number of points, its 
error being the difference between given nodal loads and loads that acting at the same 
poinst would produce exactly the calculated displacements. A typical example is the 
plane lattice subject to normal forces at nodes alone. Szabó [6 ] was the first to expound 
this method underlying also [8 ] by the Author. In this case all elements of the error 
vector being of the same unit, the complete calculation error is well described by a 
scalar value. The calculation accuracy is simplest improved in case of convergence to 
apply the load error with reversed sign, as load complement on the lattice. Thus, in case 
of a lattice, this way of error calculation suits, besides of calculation error estimation, 
also to increase the calculation accuracy.

The next important development of the method has been due to Szabó extending 
it to rope nets. The change consists essentially in assigning other than given rope 
lengths, rather than different nodal loads alone, to approximate nodal displacement 
values. Thus, calculating then resubstituting approximate rope net nodal displacement 
values will show not only loads at each node to differ from the given one but also rope 
lengths to differ from given rope lengths under calculated forces and at the given 
temperature. All these deviations should be contained in the error vector that thus will
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have elements of different units. As a conclusion, no unique physical concept can be 
defined for error principles in [3] let alone tridimensional continua and more complex 
technical problems. Szabó [6 ], [7] has found a rather ingenious way to eliminate these 
difficulties in the case of rope nets. Nodal loads and rope lengths in the approximate 
solution are determined by resubstitution and the closeness of the solution is examined 
in terms of the physical reality corresponding to the errors rather than of the single 
scalar formed of them. In case of a rope net the recalculated nodal load values are 
required to be within the specified load accuracy range, while rope length errors are 
reckoned with in terms of the compensating temperature, rather than of the original 
unit (m). Namely, the length difference gives little hint of the resulting further force 
effects in the rope, affected also by the rope length and cross section. Though, 
converting the length error to e.g. stress partly makes the assignent more complex, and 
partly it will be less illustrative and perceptible than in terms of temperature. Error 
expressed in terms of temperature has the further advantage that practically also 
temperature is only known at a given accuracy. If the length error in terms of 
temperature is inside this range, a further refinement of the calculation would be 
meaningless in this respect.

Now, let us point out differences in handling continuum problems compared to 
the earlier procedure. First, for finite models, after having eliminated the errors, the 
solution accuracy could be arbitrarily improved, while in a continuum problem the 
type of the assumed approximate function (in the case of e.g. a polynomial its power 
and number of its terms) does not permit to reduce the calculation error below a given 
specific limit. This statement is obvious from the consideration that the error cannot be 
reduced below an arbitrary low limit else than by arbitrarily incresing the number of 
terms in the function series. Limitation of the number of terms in the function series 
involves the approximation error not to decrease beyond all bounds. In this case the 
best solution tends to another limiting condition rather than to the exact solution.

The continuum character and the approximation in form of finite series have 
another consequence. Rather than the exact error function, only the conditions of 
equilibrium for finite size elements, and boundary conditions for a finite number of 
nodes can be used for correcting the solution. Namely the solution process involves 
only these equations, the error function serving exclusively for exactly expressing the 
errors.

Let us see now, how to extend the principle developed for lattices and rope nets to 
continuum problems.

Remind that in the outlined method there are more equations than unknowns, 
and also that these equations are independent for normally assumed elements and edge 
nodes. Thus, substituting the solution with the minimum error square sum into given 
equations these are only met at some error, that are thus present already in the 
equilibrium and boundary condition equations. They are advantageous, however, by 
being no pure numerical values but physical magnitudes in units corresponding to the
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given case, susceptible to realistic evaluation. How to utilize this approximate error 
value to improve accuracy will be seen in the subsequent item.

The error is made accessible to exact analysis by applying approximate functions 
continuous over the complete domain and differentiable as many times as required. 
Thereby solution functions can be substituted into differential equations and boundary 
conditions of the problem, and the rate of unfulfilment, to be considered error of the 
solution in a sense, can be determined at any point of the domain.

For instance, in the tridimensional case, error f 'a of the equilibrium differential 
equation

«ríj +  px‘ =  0

is obtained from:

f e  — <*'■) +  Px ‘

So are errors f ‘p and f ‘u of dynamical and geometrical boundary conditions, from 
formulae

/ ‘ =<7 % - f f ,  
and

f i  = u‘-Uo

respectively, where
alj y-th element a1’ = aj‘ of the i-th row of the stress tensor; 
p density;
p i-th coordinate of the mass force; 
rij y-th component of the surface normal; 
u‘ i-th displacement component.

<r<j
' i

V
j=\ dxj

Stress tensor T = [<r1-'] and deformation tensor D =  [eij] being related by:

T = 2 G { D + T- ^ / 1(D)E}

where G is the modulus of elasticity in shear, v is the Poisson’s ratio; /i(D ) the first 
scalar invariant of tensor D, / 1(D) = e11 and E a third-order unit matrix, further,

D = yfuV^ + Vu*)

is the deformation tensor in terms of displacement, V being a symbolic vector
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ÔX

tbc 2

equilibrium equations in terms of displacement components are seen in final account to 
contain their second derivatives. Thus, in the finite element method, the error can only 
be exactly computed if the elements are continuously fitted even in the second 
derivative, a rather intricate, still unsolved problem in the general case, but even the 
theoretical solution would involve much more unknowns in the equation system than 
does the suggested method. The number of unknowns would increase by orders of 
magnitude upon requiring — for the given division — the continuity of elements to the 
desired order. Of course, practical hindrances of fitting to the desired order refer only to 
the general case. In special cases such as that in [4], fitting to the desired order is 
possible, the more so in checking a plate problem or in evaluating its solution. The plate 
equation is in a convenient form:

where p[N/m2] is load intensity and

£ is the modulus of elasticity, h the plate thickness and v the Poisson’s ratio. 
Substituting into this formula the calculated function w yields load p[N/m 2] in the 
form given by function w. Deviation of this value from that given at any point of the 
plate is the computation error in terms of load. Error of the geometrical boundary 
condition is directly given by the difference between the computed and the measured 
deflection. Of course, a similar computation may yield the error of another boundary 
condition — e.g. boundary moment. The formula shows such an error computation for 
a plate to be only possible if elements are continuous to at least order C4.

According to the terminology in [3], the redundant equation system is a solution 
based on the error principle, comprised in the condition of minimum error square sum. 
But just as different solutions belong to different error principles, conditions of different 
solutions may be considered as different error principles. In this meaning, in solving a

Solution correction
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redundant equation system, a new error principle is not only to minimize e.g. the sum of 
absolute values or other powers rather than the error square sum, but also to multiply 
each equation by a different constant. All the obtained solutions are "best 
approximations to a predefined sense”. Unfortunately, these predefined senses cannot 
be ranked with respect to the final goal, it cannot be predicted, according to which to 
calculate to obtain the best solution from the aspect of the problem as a whole. Each of 
these solutions is the best from a given purely mathematical aspect, and it cannot 
be predicted which aspect would coincide with the solution closest approximating the 
physical reality.

The method of writing equilibrium conditions for finite elements, and boundary 
conditions for nodes at the edge or for part domains, and to determine the solution with 
the minimum error square sum for the obtained redundant equation is in fact a 
computation method on error principle itself, with all its uncertainties. Its essential 
advantage over others is to permit fast and rather simple computation of the error of 
each equation, hence fast estimation of load and boundary condition errors. Even, 
beyond helping evaluation, result appreciation, equation errors give a direct hint on 
what equations have the greatest errors. Though, reduction of greatest errors improves 
the solution.

In a redundant equation system, the error of any equation is rather simple to 
reduce. Namely multiplying the given equation by more than unity, hence increasing its 
weight compared to the other ones reduces the absolute numerical value of the 
equation error in terms of the given unit. With increasing the multiplier the error is 
reduced, with multiplier tending to infinity the error tends to zero.

Thereupon, for a given function type, the available redundant equation system 
can be applied to improve the computation results as follows:

Equations in the system are written multiplied by the proper constants, 
providing partly for coefficients in the equation system to belong to the domain of 
manageable numbers, and partly for the absence of differences by orders of magnitude 
between equations in terms of different units.

Eventual different orders of magnitude between numerical values of the physical 
magnitudes of each equation dependent on its type are easy to understand. For 
instance, be the element a cube with 10 cm sides: stress unit is N/m2, then the numerical 
value of components in N of the resultant of forces acting on the element are by two 
orders less than that of the stresses. The proportion between equations of equilibrium 
and of dynamical boundary conditions will be the right one either upon dividing 
boundary condition equations, or upon multiplying equilibrium equations by 100. The 
balanced equation system will not only be .uarted from, but also errors are calculated 
on its basis. Correction of the solution comprises the following steps:

Solution of the equation system with the minimum error square sum is 
determined.

The solution is resubstituted into the equation system, error of each equation 
determined and evaluated with respect to its unit.

4 Acta Technicu Acuilemiue Scient iarum HungarUae 44. 14X2



150 B É R E S .  E.

— Equations featuring excessive errors are multiplied by a number depending 
on the relative magnitude of the error. (A possible way to choose the multiplier is shown 
in Example 2.)

— The reweighted equation system is solved.
— The result is substituted into the original equation system and evaluated as 

above.
— It is examined whether the error with the greatest absolute value is less or not 

than that of the former solution.
— If yes, then the computation goes on by changing again the equation weights 

taking the greatest errors into consideration, and solving the equation system. But if 
not, this result is rejected and the former taken as the best solution.

This is a rather unusual procedure. The effect of changes is only known in certain 
limits, or better, only its tendency. But it cannot be predicted whether it furthers the 
desired improvement or not, just as for any error principle. As a matter of fact, the result 
is improved by the checking computation deciding over the acceptance or refusal of the 
correction step.

Errors of the highest absolute value can practically always be reduced by 
reweighting, since, although theoretically there is a limit where any change of the 
weight increases the maximum error, but since this limit value is not the same as the 
exact solution of the probelm, the strive to a highly close approximation beyond 
practical requirements is useless. The numerical example shows a rather slight change 
of the weights to significantly alter the results. Thus, often this procedure is the only 
useful means to increase the accuracy, the number of iterations is, however, to be 
reasonably restricted.

Computation of composite domains

To now the simplest case of approximating the displacement by a single, 
continuous function valid for the entire domain has been concerned with. In most 
problems, treatment as a single domain is self-intended, but the method is valid also for 
part domains making up the domain.

Theoretically, displacement components in any domain can be approximated by 
a continuous function each, valid over the entire domain. Though, in certain cases an 
excessive insistence on it would hamper or even prevent practical realization, but at 
least it would be unreasonable. It seems self-intended to consider the plate of the plan 
seen in Fig. 1 as to consist of two part-domains, special equations providing for their 
connection.

For a complex domain, the computation starts by dividing the entire domain to 
part domains proper to its geometry. Displacement components are approximated by 
a different function (polynomial) in each part domain. Part domain boundaries are 
marked so as to cross nodes where function values for both parts, and also derivatives 
up to the specified order are required to be equal.
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Just as all boundary conditions are written as linear equations and are all 
incorporated into the equation system, also connection conditions of part domains are 
expressed by linear equations to share the redundant equation system. Conditions of 
connection add to the number of equations rather than to that of the unknowns. Parts 
of the equation system for a part domain each contain only terms for the unknowns 
occurring in the given part domain, connected exactly by the equations of connection 
condition.

The mentioned possibility to reduce the error in, or even to prescribe exactness of 
single equations of the redundant equation system is equally of importance. However 
desirable it would be to fit part domains in the due order, this condition must not be 
excessively insisted on in approximate calculation. Just as fulfilment of boundary 
conditions for the boundary of a complete domain is required at an accuracy fitting the 
circumstances, the same refers to part domain connections.

It is decidedly advantageous to have a possibility to connect in the due order. In 
general, however, fulfilment of the connection conditions at a moderate accuracy has to 
be made up with. Exact fulfilment of boundary and connection conditions is often 
renounced of, even if a possibility exists, but fulfilment of the condition would impair 
the computation as a whole by more than the benefit from exactly meeting this 
condition.

Numerical examples

Two problems have been solved as practical applications of the method. The first 
problem is that of a diaphragm, solved, in addition to the presented method, also by the 
finite element method. The second problem refers to a plate where also correction steps 
have been applied.

Both problems are bidimensional, hence displacement components are two- 
variable functions. While, however, the first problem comprises two displacement 
component functions, the second one, i.e. the plate problem has a single one.

The first problem has been illustrated in Fig. 2 where part b) shows division to 
elements according to the presented method.

Taking symmetry of the problem into consideration, displacement functions are:

и = а ,х  + а2ху + а3 х3 + а4 х>'2 -|-й5Х3 >’-|-а6 х>'3 + • • • + « 2 6 x 7>’3 +

+ а27х У + «28*V
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У

v = bly + b2x 2 + b3y 2 + b4x 2y + b5y3 + bbx* + . . . +Ь29х йу2 + b30xby* +

+ Ь31х4уь + Ь32х 2у* .

A solution exactly meeting geometrical boundary conditions along boundary x =  4 is 
wanted.

Equilibrium errors have been determined for elements with 1 m sides also the 
finite element method has been applied on.

Equally weighting equilibrium and dynamical boundary condition equations, 
the maximum error of equilibrium is 236.3 N, while the hundredfold weight of 
boundary conditions at boundaries >’ = 0 and y = 5 increases the maximum error or 
equilibrium to 604.2 N at a reduction of the error of dynamical boundary conditions.
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У
fill. з

At the same time the finite element method yields a maximum equilibrium error of 
1050.6 N.

The second problem is that of a plate with 2.00 m sides, simply supported edges, 
subject to uniform load. Symmetry of the problem permits to reduce the computation 
to a quarter of the plate, still symmetry can be reckoned with inside it. The applied 
coordinate system and division of the quarter-plate to elements are seen in Fig. 3. The 
deflection function has been assumed as:

w = u, + u2 (x2 + v2) + u,(.x4+ v4) + a4 .v2j '2 + • • • +

+ uJ7 (x2V  + x2y20) + a3H(xl*y* + XУ  8) +

+ ít34(.vl V  + л V 6) + «4„(.y 1V  + X V 4) +

+ u4 ,(x ,y o + * 1V 2>-

A solution meeting geometrical boundary conditions at every point hence w = 0 
all the boundary is wanted.

Dynamical boundary conditions specify zero moment at edge nodes.

A d o  ic i  hniia  Academiac Scientiarum llungarn ac V4. 1VH2



1 5 4 BI RI S. I

Two alternative solutions have been developed. In one case only force- 
equilibrium equations, numbering 77 make up the equilibrium equations, in the other 
case also equations for the moment equilibria of the elements have been written, 177 in 
number. In both cases, there are 41 unknowns.

Correction steps have only been made in the second case. For the successive 
solutions, equation weights have been changed according to instruction

where h, is error of the i-th equation; ha the average of the error absolute values; and s, 
the weight of the i-th equation.

Let us present some results picked out at random. For a uniform load intensity q, 
maximum moment, shear force and deflection values are

M = y.qu2 Q = [iqa w = -—--

respectively, various solutions yield the tabulated a, ß, y values. First row of the table 
contains values for the solution with pure force equilibrium equations. The second row 
shows results where equilibrium equations comprise also those for moments, and 
equations are equally weighted. The third row is that for results after three 
reweightings, where the greatest weight is 4 applied only for two equations but even 3 is 
the multiplier for only seven equations. This weighting offered the best solution. 
Finally, the fourth row contains exact values by Timoshenko [9].

Table I

7. II 7

0.04778 0.3388 0.004053
0.04775 0.3372 0.004055
0.04798 0.3365 0.004067
0.0479 0.338 0.00406

Particulars, evaluation, and conclusions drawn from the solutions and results of 
bqth problems are found in [ 1 0 ].

References

1 Huebner, К H : The Finite Element Method for Engineers. John Wiley and Sons New York London 
Sydney Toronto 1975

2. Rothe, R.. Höhere Mathematik für Mathematiker, Physiker, Ingenieure. 6. T. von István Szabó Stuttgart, 
Teubner 1958

A d a  Technicu A rudern iae Scicntiarum Hunyaricue 94. 19H2



N U M E R I C A L  S O L U T I O N  O F  E N G I N E E R I N G  P R O B L E M S 15 5

3. Scharle, P.: Numerical Analysis of Engineering Problems of Continua.* ÉTI Tudományos Közlemények 
84, Budapest 1976

4. Herpai, B. B.— Páczelt, I.: Analysis of Axisymmetrically Deformed Shells by the Finite Element 
Displacement Method. Acta Techn. Huny. 85 (1977), 93-122

5. Collatz, L.: The Numerical Treatment of Differential Equations. Springer Verlag, Berlin Göttingen 
Heidelberg 1960

6. Szabó, J.: Spatial Grid Equations.* ÉTI Tudományos Közlemények 34, Budapest 1964
7. Szabó, J.—Kollár, L.: Structural Deseign of Cable-Suspended Roofs. Akadémiai kiadó, Budapest 1984
8. Béres, E.: Calculation of Grid Systems.* ÉTI Tudományos Közlemények 62, Budapest, 1967
9. Timoshenko, S.—Woinowsky—Krieger: Theory of Plates and Shells. McGraw Hill, New York 

London-Toronto 1959
10. Béres, E.: Numerical Solution of Technical Problems.* SZ1KKT1 Tudományos Közlemények 65, 

Budapest 1981

* In Hungarian.

Acta Technica AcaJemiac Scientiarum Hungaricac V4. IM2





DISPERSION OF A SOLUTE IN A CHANNEL FLOW 
OF NONLOCAL FLUIDS

Goodarz Ahmadi* **
Department of Physics

The dispersion of a solute in a nonlocal channel flow is studied. The possibility of nonlocal 
mass diffusion is discussed. For the case where the regular Fick's law governs the diffusion process, it 
is shown that the solute is dispersed relative to a plane moving with the mean speed of the flow with an 
effective Taylor diffusivity which is a strong function of nonlocality of te fluid.

A da Technica Academiae Scientiarum Hungaricae, 94 (3— 4), pp. 157 162 ( 1982)

Introduction

In a series of papers Taylor [1,2, 3] discussed the dispersion of soluble matter in 
the incompressible flow of a viscous fluid in a circular pipe. His method was applied to 
more complex fluids by other authors. The dispersion of a solute in a non-Newtonian 
fluid flow in a circular pipe was considered by Fan and Hwang [4]. Dispersion in 
hydro-magnetic channel flows has been investigated by Gupta and Chaterjee [5], 
Soundalgekar [6 ] and Ahmadi [7]. Soundalgekar [ 8 , 9] studied dispersion in 
micropolar and couple stress fluid channel flows. The dispersion of soluble matter in 
the micropolar pipe flow was investigated by Ahmadi [10]. The theory of nonlocal 
media was developed by Eringen and Edelen [11] and Eringen [12]. The velocity 
distribution of a nonlocal fluid in a channel flow is also derived by Eringen [12].

In the present work, the diffusion of soluble matter in a nonlocal fluid is first 
discussed and a generalized Fick’s law is proposed. In Section 3, a regular Fick’s law is 
assumed and the dispersion of a solute in the laminar channel flow of a nonlocal fluid 
with respect to a plane moving with the mean speed of the flow is studied. Partial 
equilibrium is assumed and the effective Taylor diffusivity is obtained which is shown 
to be a strong function of nonlocality of the fluid. The results are tabulated and 
discussed. The paper is concluded by a few remarks in Section 4.

Nonlocal diffusion

The theory of nonlocal media as developed by Kroner [ 13], Eringen and Edelen 
[11], Edelen and Law [14] and Eringen [12] takes the nonlocal interatomic forces into 
consideration and hence nonlocal residuals appear in the equations of balance. The 
constitutive laws are also generalized and usually consist of a local classical part and a

* Goodarz Ahmadi, Department of Mechanical Engineering, Clarkson University, Potsdam, NY,
USA and School of Engineering, Shiraz University, Shiraz, Iran

A d a  Technica Academiae Scientiarum Hungaricae 44. 14M2



158 A H M  A D I ,  G .

nonlocal part. These considerations have been discussed in [11-14] in detail. A similar 
generalization for mass diffusion seems to be in order. The classical diffusion theory is 
the well known Fick’s law

4  c= - D V c  (1)

where qr is the mass flux, c is concentration and D is the molecular diffusion. Equation 
(1) is a local equation and indicates that a local concentration gradient implies a mass 
flux with a coefficient of proportionality D. When the media is nonlocal and long range 
intermolecular forces affect the macroscopic process following [11-14], we propose 
the following generalized constitutive equation

qr = — DVc— J D'(| X — x' \)V'c' dx' (2)
x'

where V'c' is Pc evaluated at x'. The second term in equation (2) is the nonlocal mass 
diffusion and expresses the mass flux at point x due to the concentration gradient at all 
the points of the body. The nonlocal diffusivity D'(| x —x' |) is space dependent and 
usually is assumed to be a rapidly decaying function of its argument.

In the subsequent sections we assume that although the fluid is nonlocal, the 
diffusion process is governed by Fick’s law as given by equation (I) and the nonlocal 
diffusion is absent.

Dispersion in channel flow

The expression for the velocity profile in a fully developed channel flow of a 
nonlocal fluid as derived by Eringen [12] is given by

where

= -  1 - r j 2 + (x 1 - 4 I +
1

— (e m — e m

h2 dP
/i( 2  + ma) dx ’

W o
ктц

(3)

4 = y/h, m=(k + n'0/n)h. (4)

Here и ! is a velocity scale, 2h is the thickness of the channel and dP/dx is pressure 
gradient along the channel, /r is the coefficient viscosity and ц'0 and к are constants 
specifying the nonlocal viscosity of fluid. In the derivation of equation (3) Eringen [ 12] 
assumed the following nonlocal constitutive equation for the shear stress f21 ,

du f ,
' 2 1 = / ^  + I ИЛ\У n\) ,dr] (5)

with 0

, , , y>  0
y < 0

(6 )
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Restricting ourselves to the Fick’s law ( 1 ) the concentration c of a solute diffusing 
in a fluid moving in x-direction is given by

(7)

Following Taylor [1-3] we assume that the axial diffusion is much smaller than the 
diffusion normal to the flow direction, i.e.

( 8)

Using the dimensionless quantities

ц=(х — üt)/L, ()=tü/L

the diffusion (7) in a frame moving with the average velocity й becomes

ü Pc W Pc _  D P2c 
LPÔ + L Pc ~  I? Prj2

where Lis a given length along the flow direction and

W= u — u.

(9)

( 10)

(ID
The average velocity и is given by

( 12)

The relative velocity W then becomes

H7u, = j  -> /2 + a | ^ | + ( l _ , - _
í  m

me (13)

If Taylor’s limiting condition is valid for the present problem, then the partial 
equilibrium may be assumed in any cross section of the channel, thus Pc/PO can be 
neglected and equation (10) becomes

(14)

Substituting for fFfrom (13) and integrating twice we find
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where c satisfies the non-reacting wall boundary condition

dc
— = 0  at >7 = + l (16)dt]

and c0 is a constant which must be determined from the entry condition.
Now the volume rate of the transport of the solute across a section of the pipe is 

given by h
Q = \cW d y . (17)

Inserting the expression for c and IF from (15) and (13) after integration we find

Dividing ( 18) by 2h and comparing the resulting equation with the Fick’s law ( 1 ) we find 
that the solute is dispersed relative to a plane moving with the mean speed of the flow 
with an effective Taylor diffusion coefficient D* given by

(2 0 )
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Table I

Values of F(ix, m)

a/m 50 10 5 2 1 0.5 0.2 0.1

0.01 0.0086 0.0086 0.0086 0.0085 0.0085 0.0094 0.059 0.9
0.05 0.0094 0.0093 0.0092 0.0090 0.0097 0.033 1.28 22.57
0.1 0.010 0.010 0.010 0.097 0.013 0.11 5.12 90.37
0.2 0.013 0.013 0.012 0.011 0.025 0.39 20.47 361.68
0.5 0.020 0.019 0.017 0.016 0.104 2.44 127.92 2261.0
1.0 0.037 0.036 0.033 0.034 0.38 9.72 511.68 9046.0
2.0 0.091 0.087 0.078 0.091 1.51 38.85 2046.0 36186.0

The numerical values of F(a, m) for several values of a and m are given in Table I. It is 
observed that F(a, m) is an increasing function of a and decreases rapidly with an 
increase in m for small values of m and reaches a minimum and increases slightly with 
further increase of m.

In order to compare the Taylor diffusivity in a nonlocal fluid with that of a local 
viscous fluid with the same conditions and equal pressure gradient from ( 19) and (4) we 
obtain

D* F( a, m)
o f  = 8

945

( 21)

(\+md/2)2

where D(* is the Taylor diffusivity of a regular viscous fluid. For small values of a and 
relatively large values of m which is usually valid from (2) and (21) we find

D* /63
D f ~  + Ч з 2 _ т

for a<? — < 1 
m

( 22)

It is observed that in this limiting case Taylor diffusivity of nonlocal fluid is greater or 
less than that of the corresponding local fluid if m is less or greater than 63/32, 
respectively. Several other limiting cases could be considered but in general D* could 
be calculated from (19).

Further remarks

In the present work the Taylor diffusion coefficient of a solute dispersing in a 
laminar plane Poiseuille flow is calculated and it is shown to be strongly effected by the 
nonlocality of the fluid. The present work is limited to the validity of the Fick’s law of 
diffusion given by equation (1). In principle it is possible to use the more suitable 
nonlocal form of Fick’s law which is suggested by equation (2). Equations (7), (10) and 
(14) then become integro-differential equations. For instance instead of (14) we would 
have

п дс(Пi) . h Sc 
n - h  ) — ------d 7 i  =  —  w (4.1)
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For given £)'(I r\ — r\x |) it is possible in principle to solve the equation (4.1 ) for c and then 
following the steps similar to those of equations (17-19) the effective Taylor diffusivity 
could be calculated. The calculations are rather lengthy and we leave this for a future 
study.

Another important consideration is the effect of chemical reaction. In the present 
work it is assumed that the solutes are not chemically active. The effects of chemical 
reaction were investigated by Cleland and Wilhelm [15], Soloman and Hudson [16], 
Gupta and Gupta [17], Soundalgekar [18] and Soundalgekar and Gupta [19]. The 
study of coupling between nonlocality and chemical reaction is also left for a future 
communication.
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BEITRAG ZU DEN METHODEN DER ÄQUIVALENTEN 
LINEARISIERUNG FÜR SCHWINGUNGSSYSTEME

TEIL I.

G y . P a t k ó *

[Eingegangen: 22 Juli 1981]

Contribution to the construction of the equivalent linear vibrating systems In the first part of 
the paper a generalisation of the Panovko type direct linearisation and the introduction of a 
linearisation method above the phase curve are shown. According to the latest a proposal is given to a 
definition of a measure of non-linearity. In the second part of the paper the character of 
transformation of the independent variable is analysed in the case of linearisation above the phase 
curve. It is shown, there are several methods for the analysis of non-linear oscillations having clear 
geometrical meaning.

Bezeichnungen

m
1
П
F
g(x)
Щ)

/( .X , X)
A

p (x ) ,K ( .v ,  x )

Masse
Eigenkreisfrequenz 
Erregerkreisfrequenz 
Amplitude der Erregerkraft 
nichtlineare Federkennlinie 
nichtlineare Dämpfungskennlinie 
nichtlineare Kennfläche 
Integrationsgebiet 
Phasenkurve 
Gewichtsfunktionen

Andere Bezeichnungen werden im Text erklärt.

1. Einleitung

1.1. In früheren Jahrzehnten war man im Ingenieurwesen bestrebt, die 
Schwingungserscheinungen mit Hilfe von linearen dynamischen Modellen, deren 
Bewegungsgleichungen Systeme von linearen Differentialgleichungen sind, zu be
schreiben. Die bei diesen Arbeiten gewonnenen Erfahrungen haben gezeigt, daß die in 
der Modellftndung unvermeidbaren kleineren bis größeren Vernachlässigungen und 
Näherungen auf vielen Gebieten der Praxis — mindestens in erster Näherung — 
gestattet sind.

Mit dem Ansteigen der Ansprüche bezüglich der Qualität von Maschinen und 
Konstruktionen ist es in zunehmendem Maße offensichtlich geworden, daß solche

* Patkó Gyula, Középszer u. 60. IV/3, H-3529 Miskolc, Ungarn.

A d a  Technica Academiuc Scienliarum Hungaricae 94. !9H2



1 6 4 P A T K Ó ,  G Y

dynamischen Modelle einen Teil der praktisch bedeutsamen Erscheinungen nicht 
beschreiben können. Deshalb ist es in der letzten Zeit immer notwendiger geworden, 
nichtlineare dynamische Modelle anzuwenden und die zu ihrer Untersuchung 
geeigneten mathematischen Methoden auszuarbeiten. In den letzten 2 ~ 3 Jahrzehnten 
hat die Verbreitung moderner rechentechnischer Methoden die Behandlung der 
nichtlinearen Modelle in großem Maße gefördert.

Bei der Untersuchung der nichtlinearen Modelle ergeben sich große Schwierig
keiten aus dem Umstand, daß die ihre Eigenschaften beschreibende Theorie der 
nichtlinearen Differentialgleichungen auch im Falle der gewöhnlichen Differentialglei
chungen zweiter Ordnung nicht vollständig ausgearbeitet ist, obschon viele wertvolle 
Teilergebnisse erschienen sind. Exakte Lösungen von geschlossener Form, die bei den 
linearen Differentialgleichungen mit konstanten Koeffizienten zur Verfügung stehen 
und über die Eigenschaften des Schwingungssystems einen schnellen und genauen 
Überblick ermöglichen, sind bei nichtlinearen Differentialgleichungen leider nur in 
Sonderfällen bekannt. Es ist möglich, die Lösungen mit Hilfe von unendlichen Reihen 
oder einer unendlichen Anzahl von Iterationsschritten aufzubauen, aber sie lassen die 
schnelle Übersehbarkeit, die dem Ingenieur notwendig ist, vermissen.

1.2. Die Praxis erhebt zwangsweise den Anspruch, daß zu entstehenden 
Problemen trotz der obenerwähnten Schwierigkeiten eine in der Technik akzeptable 
Lösung gefunden werden muß. Deswegen wurden die sogenannten Ingenieurmetho
den überwiegend in den letzten Jahrzehnten entwickelt, ihre Wurzeln kann man aber 
bis auf die Arbeiten von Lagrange zurückführen. Weil die strenge mathematische 
Begründung dieser Ingenieurmethoden in manchen Fällen unvollkommen ist (vgl. 
[12], S. 115), wird hier die Frage der Kontrolle der Ergebnisse schärfer aufgeworfen, als 
es in anderen Fällen üblich ist.

1.3. Beim Überblicken der in der Praxis heutzutage gebräuchlichen Methoden 
kann man feststellen, daß sie sich größtenteils direkt oder indirekt auf schrittweise 
Näherungen gründen. Es ist wert, zwei solche Methoden gegenüberzustellen:

a) Heute stehen schon effektive Rechenprogramme zur numerischen Integration 
der Bewegungsgleichungen zur Verfügung, die zu festen Anfangsbedingungen die 
Lösung der nichtlinearen Differentialgleichung mit früher unvorstellbarer Genauigkeit 
erzeugen. Diese Methode hat neben ihren Vorteilen (z. B. hohe Genauigkeit) den 
Nachteil, daß sie nur zur Herstellung diskreter Lösungen geeignet und in vielen Fällen 
besonders bei Schwingungssystemen mit schwacher Dämpfung aufwendig ist [6 ].

b) In der Ingenieurpraxis braucht man oft Lösungen, aus denen die Abhängigkeit 
von technischen Parametern überblickt werden kann. Diese Aufgabe erfordert die 
Verwendung unendlicher Reihen für die erwähnten schrittweisen Näherungen. Dabei 
stößt man aber auf die allbekannten Schwierigkeiten. Trotzdem sind diese Methoden 
verbreitet, und es ergibt sich aus der praktischen Erfahrung, daß oft schon einige 
Schritte der Näherungen die Eigenschaften der dynamischen Erscheinungen klar 
machen, wobei meist sogar der erste Schritt die wichtigsten Informationen enthält.
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1.4. Es gibt eine Gruppe der als analytisch bezeichneten Methoden, die nicht in 
die Kategorie der schrittweisen Näherungen eingeordnet werden kann. Sie heißen 
Linearisierungsmethoden. Sie erstreben nicht die genauen Lösungen sondern eine erste 
in der Praxis gut anwendbare Näherung dadurch, daß eine lineare im allgemeinen als 
äquivalent genannte Differentialgleichung durch irgendeine Überlegung der ursprüng
lichen nichtlinearen Differentialgleichung zugeordnet wird. Der Zweck der Zuordnung 
ist, die gesuchte Lösung der nichtlinearen Bewegungsgleichung durch eine Lösung der 
linearen Bewegungsgleichung möglichst gut zu approximieren. Bei der Durchführung 
der Linearisierung werden die von der Lage und Geschwindigkeit abhängigen 
nichtlinearen Funktionen der nichtlinearen Differentialgleichung durch lineare 
Funktionen ersetzt. Die Linearisierungsmethoden haben verschiedene Varianten (vgl.: 
[1], [4], [5], [16], [18], [23]).

Es ist bemerkenswert, daß unter den Methoden, die sich auf schrittweise 
Näherungen gründen, auch solche gefunden werden können, deren erster Schritt mit 
einer Linearisierung äquivalent ist, aber ihre Erklärung für Ingenieure im allgemeinen 
nicht unmittelbar anschaulich und manchmal schwer zu begreifen ist.

1.5. Die oben umrissenen Ingenieurmethoden haben von mathematischem 
Standpunkt aus wohl mehrere Mängel. Zwei davon sind:

a) In der Ingenieurpraxis werden periodische Lösungen in überwiegender 
Mehrheit untersucht, ohne daß die Bedingungen der Existenz der periodischen 
Lösungen auf theoretischem Weg überprüft werden. Der Ingenieur ersetzt diese 
Untersuchungen durch die aus der Praxis entnommenen Erfahrungen.

b) Im allgemeinen braucht man weitere Untersuchungen, um zu entscheiden, ob 
und in welchem Maße die gesuchte Lösung der ursprünglichen nichtlinearen 
Differentialgleichung durch die erhaltene Näherung approximiert wird. Fallweise 
stehen geeignete Methoden zur Fehlerabschätzung zur Verfügung (vgl.: [8 ], [13], [14], 
[21], [25]), in anderen Fällen sind sie noch mangelhaft. Häufig sieht es der Ingenieur 
nicht als seine Aufgabe an, solche mathematischen Methoden auszuarbeiten, sondern 
er begnügt sich damit, seine Näherungslösungen entweder direkt mit praktischen 
Erfahrungen, oder mit anderen in der Literatur als gut angenommenen Ergebnissen zu 
vergleichen.

1.6. Die vorliegende Arbeit gründet sich auf die von Panovko vorgeschlagene 
direkte Linearisierungsmethode. Diese Methode wurde im Jahre 1952 in russischer 
[15] später in englischer Sprache [1] veröffentlicht. Viele weitere Arbeiten (z. B.: [2], 
[3], [16], [17], [22], [23]), die einerseits über die mit dieser Methode erreichbaren 
Ergebnisse, andererseits über ihre Verbesserung berichten, zeigen, daß diese Methode 
bekannt und populär geworden ist. In Kenntnis der zitierten Arbeiten stellt es sich 
heraus, daß die Methode von Panovko neben den für die Ingenieure sympathischen 
Eigenschaften auch Mängel hat.

Die vorliegende Arbeit setzt sich zum Ziel, diese Methode zu verfeinern.
In der Literatur wird diese Methode zur Linearisierung von mathematisch 

getrennten Feder- und Dämpfungskennlinien benutzt. In dieser Arbeit wird sie für
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solche Fälle verallgemeinert, bei denen die nichtlineare Kennfläche nicht aus einer nur 
von der Lage abhängigen Federkennlinie und aus einer von der Geschwindigkeit 
abhängigen Dämpfungskennlinie zusammengesetzt werden kann.

Bei der Verallgemeinerung erhebt sich die Frage, wie der Fehlerausgleich im 
allgemeinen Fall interpretiert werden soll. Dazu empfehlen sich mehrere Möglichkei
ten. Ein möglicher Weg ist der in dieser Arbeit dargelegte Ausgleich über die 
Phasenkurve. Diese Methode wird im folgenden als Linearisierung über der 
Phasenkurve bezeichnet. Damit kann folgendes gezeigt werden:

— Die Methode gibt eine naheliegende und anschauliche Vorschrift zur 
Durchführung der Linearisierung, und die erhaltenen Ergebnisse stimmen mit den in 
der Literatur als gut anerkannten überein.

— Mit Hilfe dieses Verfahrens kann gezeigt werden, daß mehrere häufig 
angewandte Methoden auch eine anschauliche geometrische Deutung haben.

— Ein geometrisches Maß der Nichtlinearität kann eingeführt werden, das 
allgemeiner ist, als das aus der Literatur bekannte und mit der Erfahrung besser in 
Einklang steht.

In dieser Arbeit wird die Linearisierung über der Phasenkurve nur in 
Verbindung mit mechanischen Systemen von einem Freiheitsgrad behandelt, aber sie 
kann auch für Systeme mit mehreren Freiheitsgraden angewandt werden.

2. Über die direkte Linearisierungsmethode von Panovko

2.1. Die direkte Linearisierungsmethode, die von Panovko vorgeschlagen wurde, 
ordnet der nichtlinearen Differentialgleichung

mx + 0 (x) = O (2.1)

eine lineare Differentialgleichung der Form

m'x + cx + d = 0  (2 .2 )

zu. Der hier dargestellte Gedankengang dieser Methode weicht aus Zweckmäßigkeits
gründen für das Folgende von der üblichen Darstellung ab.

Mit der Bezeichnung oe2 = c/m hat die allgemeine Lösung von (2.2) die Form

x = A0 + A l cos(ocf — $!),

wobei die Größe A0 aus der Gleichung

cAl) + d = 0 (2.3)

berechnet werden kann, A t und 9, sind durch die Anfangsbedingungen bestimmt.
Für die Größen c und d schreibt die Methode von Panovko vor, daß das 

Quadratintegral der Abweichung

r(x) = g(x)-(cx + d) (2.4)
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im Intervall [A0 — Л,; A0 + A {~\ minimal sei (Bild 1). So gelangt man aus
Ло + А  l

/ 1 = J [í/(x) —(cx + d) ] 2 d x *  Minimum (2.5)
A o  — A  1

auf Grund der Beziehungen d l  Jdc = 0, <Jl2/dd =  0 zu den Formeln
A o  + A \ A o +  А  I

■ = 2 ^ 7  J  g { x ) x d x - A 0 j* i/(x) d x , ( 2. 6)

A o  -  А  I A o  ~ А  1

d =

A o  + А I A o  + А I

y ( x ) d x - 3 ^ f  
A 1

g(x)x d.x

A o  ~ А 1 Ao -  A \

(2.7)

Setzt man (2.6) und (2.7) in (2.3) ein, so ergibt sich, daß die Größen AQ und A, die 
Gleichung

Ao  + А  I
J g(x) d x = 0  (2 .8 )

A o  А I

erfüllen. Das bedeutet, daß das System (2.1) an den Stellen A0 — A l und A0 + A, 
dieselbe potentielle Energie hat. Berücksichtigt man (2.8) in (2.6) und (2.7), so können 
die Größen c und d aus

c =

und

Ao  +  A ,

у (l(x)x dx (2.9)
1 J

Ao A i

d= - c A 0 (2 . 1 0 )

berechnet werden.
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2.2. Falls die Funktion A0 = A0(AX) nach (2.8) und die Größen c, d nach (2.9), 
(2.10) bestimmt werden, dann bekommt man erfahrungsgemäß für die Eigenfrequenz 
eine sehr ungenaue Gleichung. Deswegen wird in [15] vorgeschlagen, daß die 
Funktion A0 = A0{AX) auch ferner aus (2.8) berechnet wird, aber zur Bestimmung der 
Größen c und d nicht (2.5), sondern das Quadratintegral der gewichteten Abweichun
gen r(x)p(x — A0) zum Minimum gemacht wird, wobei p(x) eine passend gewählte 
Gewichtsfunktion ist. So bringt die Methode gute Ergebnisse. Zum Beispiel erhält man 
die Schwingungsperiode des vorgespannten Duffingschen Systems bei der Wahl von 
p(x) = x  nach [3] mit einem Fehler, der kleiner als 5% ist.

In Kenntnis von g(x) kann die Gewichtsfunktion p(x) so gewählt werden, daß c 
in (2.2) optimal wird (vgl.: [17], [23]). In [23] ist gezeigt, daß die Ergebnisse aller 
bekannten Linearisierungsmethoden bei geeigneter Wahl der Gewichtsfunktion 
mittels der Methode von Panovko erhalten werden können. Deswegen wird diese 
Methode in [17] als die Verallgemeinerung von anderen Methoden angesehen.

2.3. Der Grundgedanke der direkten Linearisierungsmethode kann auch bei 
erregten Schwingungen, bei Schwingungen mit mehreren Freiheitsgraden (vgl.: [15]) 
und bei gedämpften Schwingungen mit einer Dämpfungskennlinie h(x) (vgl.: [22]) 
benutzt werden.

Die direkte Linearisierungsmethode wird bei vielen technischen Aufgaben mit 
Erfolg angewendet [1], [17]. Ein großer Vorteil dieser Methode besteht darin, daß sie 
einfach ist, und eine anschauliche geometrische Deutung hat.

3. Die Verallgemeinerung der direkten Linearisierungsmethode 
von Panovko

3.1. In der Praxis treten nichtlineare Schwingungssysteme auf, bei denen die 
Nichtlinearität J(x, x) nicht als Summe einer Federkennlinie g(x) und einer 
Dämpferkennlinie h(x) zusammengesetzt werden kann, das heißt

f (x ,x )^g(x)  + h{x).

Im weiteren wird gezeigt, daß der Gedankengang der direkten Linearisierungsmethode 
von Panovko in solchen Fällen angewandt werden kann, aber die Formeln etwas 
allgemeiner aufgeschrieben werden müssen. Die Verallgemeinerung wird für harmo
nisch erregte Schwingungen dargestellt, sie ist jedoch auch bei freien Schwingungen 
anwendbar.

Betrachtet sei das nichtlineare Schwingungssystem, deren Bewegungsgleichung 
die Form

m'x +/(x, x) =  F cos Qt (3.1)

hat. Zu (3.1) wird die Bewegungsgleichung

mx + bx + cx + d = F cos Qt (3.2)
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eines linearen Schwingungssystems zugeordnet. Die stationären Schwingungen von 
(3.2) haben die Form

x = a0 + a, c o s (ß /-3 ,) ,  (3.3)

wobei die Konstanten a0, a , , .9, bei Kenntnis von b, c, d bekanntlich nach den Formeln

ün =
d
c ’

y / i c  — m ü 2)2 +(hC 2)2 

„ bÜ
tan Wl = ------ Я2c — mii

berechnet werden können. Auf Grund von (3.3) kann

x = — a, ß  sin (ßf — S,)

(3.4)

(3.5)

(3.6)

(3.7)

geschrieben werden, wobei a ,ß  die Geschwindigkeitsamplitude ist.
Die in (3.2) vorkommenen Größen b, c, d werden so bestimmt, daß die 

Kennfläche/(x, x) durch die Ebene bx + cx + d über das Gebiet a0 — «, g x ^ a 0 + a t , 
— a, ß ^ x ^ u ,  ß  möglichst gut angenähert wird (Bild 2). Deswegen wird vorgeschrie
ben, daß das Quadratintegral der Differenz

q(x, x) =  f(x , x) -  (hx 4- cx + d)

über das obenerwähnte Gebiet minimal sei. So bekommt man aus

/ 2 — j" J [ /(x ,x )-(h x  + cx+i/)]2dxdxiM in im um
M)

auf Grund der Beziehungen d l2/db = 0, C12/dc = 0, i'l2/('d = 0 die Formeln

(3.10)

Setzt man (3.9) und (3.10) in (3.4) ein, so ergibt sich, daß die Konstanten a0 und a , die 
Gleichung

во + a  I a IÍ 2

j  í  f(x , x) dx dx = 0 (3.11)
x  -  au a I i  u \ i i
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erfüllen. So können die Größen c und d anstatt über (3.9) und (3.10) aus den Formeln

(.4)

j \x,  x)x d.v d \ , (3.12)

t
- c a 0 (3.13)

berechnet werden.
3.2. Falls für die Nichtlinearität / (,v, x) = c/(x) gilt, das heißt sie unabhängig von x 

ist. dann bekommt man aus (3.8) 6  = 0 und aus (3.9)—(3.13) die Formeln (2.6)-—(2.10). 
Wenn die Nichtlinearität vom Typ

f (x ,  x) = i/(.v) + /j(.v)

ist, das heißt sie aus einer Feder- und Dämpferkennlinie zusammengesetzt werden 
kann, dann erhält man im Fall

a,S>
f h[x) d \ =0 (3.14)
Ul«

aus (3.9) (3.13) wieder die Formeln (2.6)- (2.10). Die Bedingung (3.14) bedeutet bei 
beliebigem a, ü, daß h(x) eine ungerade Funktion ist. ln diesem Fall kann die 
Dämpfungskennlinie h(x) auf Grund des im Punkt 2.1. beschriebenen Prinzips mit 
Hilfe einer Gerade angenähert werden, die durch den Anfangspunkt des Koordinaten
systems geht.
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3.3. Der Punkt 3.1. ist eine formale Verallgemeinerung der im Punkt 2.1. 
beschriebenen direkten Linearisierungsmethode. Weil die direkte Linearisierungsme
thode in der im Punkt 2.1. beschriebenen Form, das heißt ohne Gewichtsfunktionen, 
sehr ungenaue Ergebnisse liefert, kann man dasselbe von der Verallgemeinerung 
erwarten.

Die im Punkt 2.2. erwähnten Gewichtsfunktionen können auf verschiedene 
Weise ausgewählt werden. Die Verallgemeinerung hat darüber hinaus eine weitere 
Willkür. Im Punkt 2.1. lag es auf der Hand, die Kennlinie g(x) im Intervall A0 — A t ^ x  
^ A 0+ A t mit einer Gerade anzunähern. Im Punkt 3.1. wurde das Rechteck a0 — a t ^ x  
^ a 0 + a,, — a, Í 2 ^ x ^ a , ű  zum Gebiet der Integration deswegen gewählt, weill sich so 
die Ergebnisse des Punktes 2.1. als Spezialfälle ergaben. Diese auf den ersten Blick 
vielleicht naheliegende Wahl gibt keine Garantie dafür, daß man eine gute Annäherung 
bekommt. So können die Ergebnisse der Verallgemeinerung auf zwei verschiedenen 
Wegen verbessert werden.

Die Ergebnisse des Punktes 3.1. können auf ähnliche Weise wie in Punkt 2.2. mit 
Hilfe von Gewichtsfunktionen modifiziert werden. In diesem Fall werden die Funktion 
a0 = a0(aI) und die Größe d auch ferner aus (3.11) und (3.13) berechnet, aber zur 
Bestimmung der Größen c und b wird das Quadratintegral der gewichteten 
Differenzen q(x, x ) k ( x  — a0, x ) minimiert. Zur geeigneten Wahl der Gewichtsfunktion 
к braucht man Erfahrung. Es ist zu betonen, daß der größte Vorteil dieser 
Linearisierung darin besteht, daß ihre Anwendung einfache Rechnungen mit sich 
bringt.

Eine andere Möglichkeit der Modifikation der Ergebnisse besteht darin, daß die 
Kennfläche J'(x, x) durch eine Ebene bx + cx + d über ein anderes Gebiet angenähert 
wird. Mit der Veränderung der Form und Größe des Integrationsgebietes verändern 
sich die Größen b, c, d. Dementsprechend kann man eventuell ein Integrationsgebiet 
finden, bei dem die zu den Größen b, c und d gehörende stationäre Lösung von (3.2) die 
beste Annäherung von (3.1) wird.

Man hat den Eindruck, daß diese Überlegungen ebenso, wie ein Teil der in der 
nichtlinearen Schwingungen üblichen Überlegungen, viel Willkür enthalten.

3.4. Im folgenden wird deshalb eine Methode, die bei der Bestimmung der 
Näherungsebene weniger Willkür enthält, vorgeschlagen. Bisher wurde die nichtline
are Kennfläche durch eine Ebene so angenähert, daß alle ihre über einem Gebiet А 
liegenden Punkte berücksichtigt wurden, obwohl nur die über der Phasenkurve 
liegenden Punkte der Kennfläche an einer konkreten periodischen Bewegung 
teilnehmen. Zwei unterschiedliche Schwingungssysteme, deren obenerwähnte Kurve 
gemeinsam ist, können sich bei passenden Anfangsbedingungen auf gleiche Weise 
bewegen. Das führt zum Gedanken, daß nur die über der Phasenkurve liegende Kurve 
der Kennfläche bei der Bestimmung der Näherungsebene berücksichtigt werden soll.

Weil die wirkliche Bewegung des Schwingungssystems (3.1) nicht bekannt ist, 
kann man von vornherein nur eine Näherung anwenden. Falls angenommen werden 
kann, daß die Phasenkurven der Bewegungsgleichungen (3.1) und (3.2) zueinander
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nahe liegen, scheint es zulässig zu sein, daß man die mit (3.2) beschriebene äquivalente 
Bewegung statt der wirklichen Bewegung von (3.1) benutzt. Dementsprechend werden 
die Punkte der nichtlinearen Kennfläche, die über der Phasenkurve der äquivalenten 
Bewegung liegen, zur Bestimmung der Näherungsebene berücksichtigt. Es läßt sich 
zeigen, daß die auf diesem Weg erhaltenen Ergebnisse mit den Ergebnissen in Einklang 
stehen, die in der Literatur als gute Annäherungen bezeichnet sind. Der Vorteil dieser 
Methode besteht darin, daß die Bestimmung der Näherungsebene anschaulich ist.

Die Einzelheiten werden in den Punkten 4 und 5 behandelt.

4. Linearisierung über der Phasenkurve

4.1. Es werden die Bewegungsgleichungen (3.1) und (3.2) zugrunde gelegt. Wir 
wollen die Größen b, c, d in (3.2) so bestimmen, daß die Abweichungen zwischen den 
Flächen f (x ,  x) und bx + cx + d über der Phasenkurve der Lösung von (3.2) klein sind.

Es wird die dimensionlose Zeit т = ß t eingeführt. Dann können die Gleichungen 
(3.1) und (3.2) in der Form

m ü 2x" + f (x,  ßx') =  F cos T ,  (4.1)

mi22x" + büx' + cx + d= F co s t (4.2)

geschrieben werden, wobei der Strich die Ableitung nach x bezeichnet. Die stationären 
Schwingungen von (4.2) haben die Form

x = a0 + al cos(r — $,), (4.3)

wobei die Konstanten a0, a {, bei Kenntnis von b, c und d aus den Beziehungen 
(3.4)—(3.6) berechnet werden können. Aus (4.3) ergibt sich:

x '=  - a ,  sin (r— 9,). (4.4)

Weil x  und x' von derselben Maßeinheit sind, kann das Bogenelement auf der 
Phasenebene x —x' definiert werden.

Im Bild 3 ist die Kennfläche /(x , ßx') und die Näherungsebene bQx' + cx+d  
über der Phasenebene x — x' dargestellt. Die den Formeln (4.3) und (4.4) entsprechende 
Phasenkurve ist ein Kreis mit dem Radius at und dem Mittelpunkt (a0, 0). Der auf der 
Phasenkurve stehende Kreiszylinder schneidet die Kennfläche /(x , ßx ') in der 
durchgezogen gezeichneten Raumkurve, und die Ebene bS2x' + cx + d schneidet sie in 
der strichpunktiert gezeichneten Ellipse. Bei festen Werten von a0, at und У, werden 
die Größen b, c und d so bestimmt, daß die Raumkurve durch die Ellipse gut 
approximiert wird. Zur Approximation können verschiedene Kriterien gewählt 
werden. Hier wird nur eine Möglichkeit untersucht, bei der das Quadratintegral der auf 
Bild 3 schraffierten Abweichungen über der Phasenkurve des linearen Systems
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minimal wird, das heißt

J I = ^ [ /(x , ßx') —(hßx' + cx + d)]2ds^= Minimum.
(•S )

Wird die Abkürzung ф = т — У, eingeführt, so erhält man das Bogenelement d.s =  n, dtp. 
Auf Grund der Bedingungen

" l - O t  ^  = 0 , " l
db de dd

= 0

ergeben sich die Formeln
2 n

b = - L - f
ля, Í2 J

f (a0 + a, c o s i / i ; — я, ß  sin ф) sin ij/dip, (4.5)

2n

c = —  /( я 0 + я, cos i/i; — я, Q sin ф) cos фйф.- - Í J
О

2*

- i lО
In

до Г
«1 7Г J

/(я 0 + я, cos i/i; — a ,ß sin  i/i)di/i —

/(я 0 + я, cos ф\ — a, ß  sin i/í) cos i/idi/i.

(4.6)

(4.7)
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Setzt man (4.6) und (4.7) in (3.4) ein, so bekommt man die Beziehung
2n
J f ( a 0 + a, cos ip\ — a0ß  sin ip)dip = 0  (4.8)
о

zwischen den Größen a0 und at . Auf diese Weise kann der Wert von d aus der 
Beziehung d= —ca0 berechnet werden.

Aus (4.8) kann die Funktion a0 = a0(a,, ß) bestimmt werden. Diese wird in (4.5) 
und (4.6) eingesetzt, und daraus können die Funktionen b = b{al ,Q) und c = c(al ,Q) 
berechnet werden. Durch Einsetzen der letzten in (3.5) ist der Amplituden- 
Frequenzgang a, =^(£2) des nichtlinearen Schwingungssystems (3.1) näherungsweise 
berechenbar. Eine Näherung des Phasen-Frequenzganges des nichtlinearen Schwin
gungssystems (3.1) kann mit der Einsetzung der Funktionen 6 (a ,,ß ) und c (a ,,ß ) in 
(3.6) berechnet werden.

Oben wurde die Kennfläche f(x, ß x )  über der in der Phasenebene x — x' 
dargestellten Phasenkurve des Schwingungssystems (4.2) durch die Ebene bÜx' + cx 
+ d angenähert. Es ist leicht einzusehen, daß die obigen Ergebnisse auch dann erhalten

werden können, wenn die Kennfläche f (x,  x) über der in der Phasenebene x — ~

dargestellten Phasenkurve des Schwingungssystems (3.2) durch die Ebene bx + cx + d 
angenähert wird.

4.2. Das im Punkt 4.1. beschriebene Verfahren kann zur Annäherung der 
periodischen Lösungen von autonomen Systemen benutzt werden. In diesem Fall wird 
der nichtlinearen Bewegungsgleichung

mx + /(x , x) =  0 (4.9)

die homogene lineare Differentialgleichung mit konstanten Koeffizienten

mx + bx + cx + d = 0 (4.10)

zugeordnet. (4.10) hat periodische Lösungen nur bei 6  = 0, es ist aber im weiteren 
zweckmäßig, b als Parameter zu behalten. Im Falle b — 0 hat die allgemeine Lösung von 
(4.10) die Form

x = a0 + a, cos(ott — .9,), (4.11)

wobei eij und .9j die von den Anfangswerten abhängigen Konstanten sind. Für a0 gilt 
die Beziehung

cao + i/ = 0. (4.12)

Auf Grund von (4.9) und (4.10) kann die Eigenkreisfrequenz a der durch (4.9) 
beschriebenen nichtlinearen periodischen Schwingung näherungsweise aus der 
Beziehung

m

berechnet werden.
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Es wird wiederum die dimensionlose Zeit r =  at eingeführt. So können die 
Differentialgleichungen (4.9) und (4.10) in der Form

a.2mx" + f(x,  ax') = 0, (4.14)

a 2mx" + h<xx' + cx + d -  0 (4.15)

geschrieben werden, wobei der Strich die Ableitung nach r bezeichnet. 
(4.11) kann

Auf Grund von

x = a0 + а 1 cos (t — .9, ) (4.16)
und

x '=  —а 1 sin (t —19|) (4.17)

geschrieben werden. Die Kennfläche wird analog zu Punkt 4.1. über die Phasenebene x 
— x' dargestellt (vgl.: Bild 3). Die in (4.10) und (4.15) vorkommenden Grö(3en werden so 
bestimmt, daß das Quadratintegral

(4.18)

über die zu (4.16) und (4.17) gehörende Phasenk urve s minimal wird. So erhält man die 
Beziehungen 2n

1
/ ( « 0  + «, cos ф', — a, a sin tp) sin ipdip, (4.19)

Durch Einsetzen von (4.20) und (4.21) in (4.12) ergibt sich die Beziehung
2n
J f (a 0 + ax cos t//; — a, a sin >p)à\p =  0 (4.22)
о

zwischen den Größen a0 und a,.
Aus (4.22) kann die Funktion a0 = an(a,, a) bestimmt und durch Einsetzen in 

(4.20) die Funktion der linearisierten Federsteifigkeiten c =  c(<i1,a) berechnet werden. 
Wenn die letzte in (4.13) eingesetzt wird, so ergibt sich die Beziehung

ma2=c(al ,oc). (4.23)
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ь,

Bild 4

Weil sich periodische Lösungen nur bei b = 0 ergeben, besteht auf Grund von (4.19)

Aus den Gleichungen (4.22)—(4.24) können die Werte u, und oc bestimmt werden, bei 
denen die Bewegungsgleichung (4.9) nach der obigen Näherung eine periodische 
Lösung oder auf der Phasenebene x —x' einen Grenzzykel haben kann.

Durch Einsetzen der aus (4.23) bestimmbaren Funktion in (4.19) ergibt sich die 
Funktion mit einer Variablen b = b(al) (Bild 4), deren Nullstellen die Amplituden der 
periodischen Lösungen angeben. Die Phasenkurve werde zur Bestimmung der 
Ausgleichsebene auch bei kleinen Werten von b durch den obigen Kreis mit dem 
Radius Ű! angenähert. So kann man dem Gedankengang von [20] folgend aus dem 
Verhalten der Funktion b = b{al) auf die Stabilität der Grenzzykel schließen. Auf 
G rund von Bild 4 ist es leicht einzusehen, daß die Amplitude a MI stabil ist. Falls die 
Ungleichheit a 1 > a in in der unmittelbaren Umgebung von a lu besteht, dann ist der 
linearisierte Dämpfungswert positiv, und das führt in (4.9) zur Abnahme der 
Amplituden. Wenn al < а П|, dann b < 0 und das zieht die Zunahme der Amplituden 
nach sich. Auf gleiche Weise kann man einsehen, daß die periodischen Lösungen mit 
den Amplituden au und a 1M1 instabil sind.

Falls (4.24) sich identisch erfüllt, dann erhält man aus (4.23) den Amplituden- 
Frequenzgang des Schwingungssystems (4.9).

4.3. In der Schwingungstechnik trifft man Nichtlinearitäten an, die antimetrisch 
sind, das heißt die Bedingung

erfüllen. Es ist leicht einzusehen, daß

ao = 0

eine Lösung von (4.8) ist, womit sich die Beziehungen (4.5)—(4.7) auf die Form

2n
I / ( а 0 + а, cos i/>; — а, a sin ip) sin фйф = 0 . (4.24)

/ ( х ,х ) =  - / ( - X ,  - х ) (4.25)

(4.26)
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C =

o
/(a,cosi/f; — a , i 2 sin i/^cosi/fdi/», (4.27)

d = 0 (4.28)

reduzieren.
Entsprechend dem Punkt 4.2. tritt a an die Stelle von Q in (4.26) und (4.27) im 

Falle von autonomen Systemen.
Der auf der Phasenkurve s stehende Kreiszylinder schneidet die Kennfläche in 

einer Raumkurve, die nach dem obigen durch eine Ellipse angenähert werden kann, die 
in der durch den Koordinatenursprung gehenden Ebene liegt (Bild 5).

4.4. Als ein Maß der im Punkt 4.1. beschriebenen Näherung kann der 
quadratische Integralmittelwert der am Kreiszylinder gemessenen Abweichungen

dienen. Der zu diesem Integralmittelwert gehörende relative Fehler kann in der Form

(4.29)

(4.30)

geschrieben werden.

Bild 5
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Im autonomen Fall tritt a anstatt Q in den Formeln (4.29) und (4.30) auf.
Der Ausdruck (4.30) kann als ein geometrisches M aß der Nichtlinearität benutzt 

werden. Falls f(x,  x) linear ist, ist er Null. Bei einer schwach nichtlinearen Kennfläche 
/(x , x) ist er offensichtlich ein in der Nähe von Null liegender Wert. In diesem Sinne 
kann man in Abhängigkeit der Größe von er Systeme als stark oder schwach 
nichtlinear interpretieren.

Es kommt vor, daß die nichtlineare Kennfläche in der Form

f (x , x)  = kx + щy(x, x) (4.31)

geschrieben werden kann, wobei keine Konstante und ц ein dimensionloser Parameter 
ist. Man findet in der Literatur Angaben (vgl.: [11], S. 147), die als Maß der 
Nichtlinearität ansehen. Es ist wichtig, daß das mit (4.30) definierte Maß der 
Nichtlinearität auch dann benutzt werden kann, wenn die nichtlineare Kennfläche 
nicht eindeutig in der Form (4.31) aufgespaltet werden kann.

4.5. Als Beispiel wird untersucht, wie das Maß der Nichtlinearität sich bei der 
Duffingschen Gleichung

mx + kx+ex3 =0  (4.32)

verändert. Hier hängt die nichtlineare Funktion

f (x ,x)  = kx + EX3 (4.33)

nicht von x ab. (4.32) wird die lineare Bewegungsgleichung

mx + cx = 0 (4.34)

zugeordnet. Mit der Transformation x = cU werden die Gleichungen (4.32) und (4.34) in

nnx2x" +  kx +  e x 3 =  0 ,  

ma2x" + cx = 0

überführt. Hier wird durch Strich wieder die Ableitung nach т bezeichnet. Die 
Lösungen der obigen Bewegungsgleichungen werden in der Form

x  =  ű c o s i / í (4.35)

gesucht, wobei ip = T — .9,. Mit Hilfe von (4.27) ergibt sich

c = k + --£a2. (4.36)
4

Durch Einsetzung der Formeln (4.33), (4.35), (4.36) in (4.30) erhält man

wobei die Bezeichnung

e, =
^ 2 (8 + 12/1 + 5 ^ ) ’

V =
E 2

(4.37)
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benutzt wurde. Die Funktion ег = ег(ц) ist auf Bild 6  dargestellt. Im Bild ist zu sehen, 
daß es bei Duffingschen Systemen, deren Differentialgleichungen sich nur im 
Vorzeichen von e voneinander unterscheiden, das zu c<0 gehörende stärker 
nichtlinear ist als das zu e > 0  gehörende.

Weigand (vgl.: [10], S. 43—50) erzielte beispielsweise bei der Untersuchung des 
Systems (4.32) das Resultat, daß die Lösung bei ц = 2 einer cosinus Linie ähnlicher ist 
als die bei —0.8. Dieses Ergebnis stimmt mit der Aussage des in dieser Arbeit 
definierten Maßes der Nichtlinearität überein. Nach Bild 6  ist das System (4.32) bei ц = 
— 0 . 8  stärker nichtlinear, als bei ц = 2.

4.6. Die Werte von b, c und J wurden in den Punkten 4.1. und 4.2. so bestimmt, 
daß die durch den Kreiszylinder ausgeschnittene Raumkurve durch die Ellipse gut 
angenähert wird. Deswegen wurde vorgeschrieben, daß das Quadratintegral der 
Abweichungen

f i x ,  C2x') — (bQx' + cx + d) (4.38)

über der Phasenkurve oder beim autonomen Fall (4.18), minimal wird.
Zur Annäherung der obigen Raumkurve können auch andere Bedingungen 

gestellt werden. Man könnte zum Beispiel vorschreiben, daß das Integral der absoluten 
Werte der Abweichungen (4.38) überder Phasenkurve minimal wird. Man könnte auch 
vorschreiben, daß der größte Absolutwert der Abweichungen über der Phasenkurve 
minimal wird. Es ist bemerkenswert, daß die Einführung der dimensionlosen Zeit in 
letzterem Fall nicht nötig ist. In diesen Fällen kann erwartet werden, daß man zu 
abweichenden Ergebnissen gegenüber den in den Punkten 4.1. und 4.2. erhaltenen 
gelangt.
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Iwan und Patula [7] haben in Verbindung mit den obenerwähnten Methoden 
numerische Untersuchungen gemacht. Sie haben festgestellt, daß zwischen den mit 
unterschiedlichen Ausgleichsmethoden erhaltenen Ergebnissen keine wesentlichen 
Unterschiede bestehen. Die Rechnungsdurchführung ist jedoch dann am einfachsten, 
wenn das Quadratintegral der Abweichungen minimiert wird. Man kann für die in den 
Punkten 4.1. und 4.2. beschriebene Methode offensichtlich dasselbe Ergebnis erwarten.

Die in den Punkten 4.1. und 4.2. gewählte Annäherung hat außer der Einfachheit 
den Vorteil, daß eine anschauliche geometrische Deutung auch der anderen für die 
Untersuchung der nichtlinearen Systeme benutzten Methoden durch sie angegeben 
werden kann. Auf deren Untersuchung kommen wir in Punkt 6 . zurück.
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ZUSAMMENFASSUNG

Im ersten Teil der Arbeit wird eine Verallgemeinerung der direkten Linearisierungsmethode von 
Panovko vorgestellt, und es wird die Methode der Linearisierung über der Phasenkurve eingeführt. Auf 
Grund der letzten Methode wird eine Definition des Maßes der Nichtlinearität vorgeschlagen. Im zweiten 
Teil der Arbeit wird die Bedeutung der Transformation der unabhängigen Variablen bei der Linearisierung 
über der Phasenkurve untersucht. Es wird gezeigt, daß mehrere zur Untersuchung der nichtlinearen 
Schwingungssysteme angewandten Methoden eine anschauliche geometrische Deutung haben.
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PRACTICAL TESTING
OF COHERENCY BASED DYNAMIC EQUIVALENTS

G. H o r n ia k *, A. Y. S alib
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The coherency analysis procedure is one of the useful approaches to power system dynamic 
equivalents. Practical testing of different methods of coherency recognition is presented. The 
computational requirements for the identification of coherent generators and the accuracy of the 
dynamic equivalents are considered. A necessary condition for increasing the accuracy of some 
methods is discussed.

Introduction

Dynamic equivalents are commonly used for interconnected power systems to 
allow transient studies to be made with limited computer time and memory resources. 
Several techniques [15,16] have been advanced for such a purpose. Coherency analysis 
procedure is one of the practical approaches to power system dynamic equivalents. 
Different methods [1— 13] have been proposed for the identification of groups of 
coherent generators, which is the essential step for constructing coherency based 
dynamic equivalents.

This paper describes practical testing of coherency based dynamic equivalents. 
Two important factors are considered: the computational requirements for coherency 
recognition and the agreement of the results of the simplified models with the 
performance of the real system. Coherency recognition methods have been evaluated 
using a real system, and the computational requirements are presented. Coherency 
based reduction is made for identified groups and dynamic equivalents are formed. 
Comparisons of swing curves of internal system generators of the full system and 
reduced order models are shown. For better measuring of the accuracy of the different 
methods, an accuracy measure is proposed. The necessary condition for increasing the 
accuracy of some methods is discussed.

Coherency recognition

Six methods of coherency recognition have been applied to the 16-machine 
system shown in Fig. 1. The network is divided into a study system, containing 
generators at buses 2, 5, 6, 14 and associated transmission network, and an external 
system. The generators are represented by constant voltage behind transient reactance.

* G. Horniak, Villamosenergiaipari Kutató Intézet Zrínyi u. 1. H-1051 Budapest, Hungary
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For all methods, with the exception of the 3rd method, the fault selected for the 
evaluation is 0.1 Sec. three-phase short circuit at the terminal bus of generator 14. For 
the 3rd method the disturbance is assumed to be a zero mean, independent, of the 
disturbances at all other buses, and identically distributed step disturbance in 
mechanical input power (ZMIID). The coherent groups identified from the methods 
are given in Table II for two levels of specified tolerance given in Table I. The CPU time 
and core size requirements, for IBM/360 system, are given in Table III. The evaluated 
methods are:

The relaxed definition of coherency

Two generators i and j  are defined as coherent if

d ,( i)-^ (t)< £  0 < f < T  (1)
where

ő internal rotor angle, degrees 
£ specified tolerance 
T transient period, Sec.

Recognition of coherent groups from this definition requires a base case transient 
stability study [1]. Large computational effort can be achieved using simulation of a 
simplified linear model [5]. If the power system is divided into some areas and 
assuming that the definition (1) is satisfied for generators within each area, network 
structural procedure [2—4] may be used to form dynamic equivalents.

In this paper, the linear simulation has been used to identify groups of coherent 
generators from this definition.
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The max— min coherency measure

The max—min coherency measure [6] between generator internal buses i and j  is

C,j = max {<5,(0 —<5,(0} —min {á,(t)-áj(0}. (2)
0< t<  T  0 < f < T

This measure requires a base case transient stability study to obtain the time- 
angle response of each generator.

The RMS coherency measure

The RMS coherency measure between generator internal buses i and j  based on 
the uncertain description of disturbances is

Cij = (3)

where SX(T) is a (n— 1) square matrix and ê,7 is a (n — 1 ) dimensional vector; n is the 
number of system generators.

The matrix Sx( T) has been derived in reference [6]. As T approaches infinity and 
when the disturbance in mechanical input power is ZMIID, S* will take the form [7]

§ x(oo) =  [(MT)_1M] [(МТГ'М] ' . (4)

In this case the RMS coherency measure is a function of system structure only. The 
matrices M and T, and the vector ê,7 have been defined in references [6, 7].

Weighted eigenvectors method

The linearized power system state space model has been derived [9] as

X = Ax + Bu, 0 < f < rc, О II О (5)
x =  Ax, t> tc. x(/f) = xc, (6)

where
tc fault clearing time
xc state of the system at tc, evaluated from (5)

equations (5) and (6) refer to faulted state and post-fault state, respectively. The eigen 
system approach (eigenvalues, eigenvectors and reciprocal eigenvectors) of A together 
with \ c determine the post-fault solution of (6) as

xp/ = Sz,(t) (7)

where zs is the vector of modes of A. Then S depends on both xc and the eigen system.
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Row properties of S are then used to determine coherency; thus, generators i and j  are 
coherent if

Ло т а х  H r* I
< s , k=  1,2, . . n— 1 ( 8)

where r, and t} are the i-th and y-th rows of S. The matrices and vectors of equations (5), 
(6) and (7) have been defined in reference [9].

The pattern recognition method

Coherency recognition is made [10] by the examination of the three factors

max ű; — min a,

max u,
(9)

min min Ytj
i e C  j e C

-------iii-----  (10)
max max Yik

ieC  к е Ф

where

max M, — min M,

max Mi

Ф set of generators in the area of disturbance 
C set of generators considered for coherency 
a, acceleration of generator i during fault 
Mj inertia constant of generator i
Yu magnitude of transfer admittance between generators i and j

( П )

The singular points method

Two generators i and j  are defined as coherent if the following condition is 
satisfied [11]

l ( ^ - á ? ) - ( ^ - á 9 ) | < e (12)

where ősin and <5? i = 1, 2, . . n — 1 are, respectively, the angle coordinates of the stable 
operating point and the singular point which corresponds to the expected system 
instability.
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Table I

Specified tolerances or thresholds

Method Relaxed Max—Min RMS Eigenvectors Pattern S. Points

Tight
Criteria 5° 10" 0.5 0.05

r, <.10% 
r2 à  3.0 
G <90%

2"

Loose
Criteria 10° 20° 0.7 0.10

г, <50% 
r2> 0.68 
г 3á90%

5

Table II

Identified Coherent Groups

Method
Generator Numbers

Tight Criteria Loose Criteria

Relaxed 45, 44, 34
33, 19, 17

45, 44, 41, 34, 11 
33, 19, 18, 17

46,44 46, 44
Max—Min 41, 30 41, 34, 30, 11

19, 17 33, 19, 18, 17

52, 46, 45 52, 46, 45, 44
RMS 33, 17 33, 30, 19, 18, 17

30, 18

46, 45, 44 52, 46, 45, 44
Eigenvectors 33, 17 34, 33, 17 

30, 19, 18

30, 18 46, 45, 44, 41, 34

Pattern 52, 46 30, 18
34, 33 19, 17

33, 11

44, 34 46, 45

S. Points 33, 18, 11 
19, 17

44, 34
33, 19, 17 
30, 18, 11
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Table III

Computational Requirements

Method Relaxed Max— Min RMS Eigenvectors Pattern S. Points

CPU  time
M

16.80 36.94 28.40 12.66 3.52* 3.86

Core size 
[Kbyte] 100 62 118 122 58 64

* The algorithm is repeated for tight and loose tolerances

Dynamic equivalents

The REI approach [14] is applied to each coherent group to establish the 
magnitude and initial angle of the internal voltage of the equivalent generator, and its 
connection to the network. The load buses are reduced using Gaussian elimination. A 
simple transient stability study, for the sake of simplicity, is carried out for each of the 
reduced order models. The fault selected for this evaluation is 0.1 Sec three-phase short 
circuit at the terminal bus of generator 14 for a transient period of 2 seconds. 
Comparisons of swing curves, of generator 14, of the full system and reduced order 
models are shown in Figures 2 through 7.

Discussion

All the methods appear to give satisfactory results for the particular fault studied, 
although the groups of coherent generators are not identical. However, to compare the 
methods it is interesting to introduce a certain factor which may give better indication 
of the accuracy of the methods. The root mean square of the rotor angle deviation of the 
faulted generator, over the transient period, from the base case simulation is proposed 
as an accuracy measure. These accuracy measures are given in Table IV.

It is worthwhile to note that, for the methods which use certain factors for 
coherency recognition the identified coherent groups must be inspected carefully to 
insure that there is no large deviation between the initial rotor angles of generators in 
the group. For this purpose, the following formula can be used

max 0° — min <5? < £0 (13)
i i

where
<5? initial rotor angle of generator i in a group
e0  specified tolerance (e0 <  20" is proposed)

Acta Technica Academiae Scientiarum Hungaricae 94, 1982
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Fig. 2. Comparison of swing curves of Generator 14 with 
coherent groups identified from the relaxed definition
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Fig. 3. Comparison of swing curves of Generator 14 with 
coherent groups identified from the max—min coherency 

measure
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Fig. 4. Comparison of swing curves of Generator 14 with 
coherent groups identified from the RMS coherency measure
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Fig. 5. Comparison of swing curves of Generator 14 with 
coherent groups identified from the weighted eigenvectors 
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Fix. 6. Comparison of swing curves of Generator 14 with 
coherent groups identified from the pattern recognition 

method
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Fig. 7. Comparison of swing curves of Generator 14 with 
coherent groups identified from the singular points method
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Table IV

Accuracy Measures in Degrees

Method Relaxed Max— Min RMS Eigenvectors Pattern S. Points

Tight
Criteria 1.417 3.115 9.041 1.215 7.962 1.125

Loose
Criteria 8.631 3.850 10.968 9.293 2.192 1.784

Table V

Accuracy measures in degrees, with generator 52 excluded from coherent groups

Method Relaxed Max— Min RMS Eigenvectors Pattern S. Points

Tight
Criteria 1.417 3.115 1.317 1.215 1.814 1.125

Loose
Criteria 8.631 3.850 2.267 1.563 2.192 1.784

The above check (13) will produce dynamic equivalents with higher accuracy. 
This will be seen by excluding generator 52 from coherent groups given in Table II. 
Comparisons of swing curves of generator 14 under this condition are shown in Figures 
8 through 10, and the accuracy measures are given in Table V.

Conclusions

The practical testing of coherency based dynamic equivalents has been 
mentioned. Two important factors are considered:

(1) The computational requirements. For the particular system studied, 
identification of coherent groups from the pattern recognition method requires the 
smaller computer time and core size. For large interconnected power systems this 
method and the relaxed definition, as used with the linear simulation of the power 
system model, are the more practical methods. This fact is due to the smaller 
computational effort required for these methods.

(2) The agreement of the results of the dynamic equivalents with the performance 
of the original system. If we consider the lower order dynamic equivalents (9-machine 
system), the dynamic equivalent obtained from the pattern recognition method 
produces greater accuracy.
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F iq . 10 . Comparison of swing curves of Generator 14 with'coherent groups identified from the pattern 
recognition method, generator “52” excluded

For some methods, which use certain factors for coherency recognition, the 
identified coherent groups can be checked to insure that there is no large deviation 
between the initial rotor angles of generators in the group. By this checking the 
accuracy of the dynamic equivalents can be increased.
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THE SUPPORTING EFFECT OF THE FABRIC 
OF TENT STRUCTURES STRECHED ONTO AN ARCH ROW 

ON THE LATERAL STABILITY 
OF THE ARCHES

L. Kollá r*

[Received: 28 August, 1982]

The arches of prestressed tent structures are laterally restrained against buckling by the 
fabric. The paper presents a method by which, in the case of tent structures stretched onto arch rows, 
this restraining effect can be simply computed. I n knowledge of these data the lateral stability analysis 
of the arches can be performed by the usual methods.

1. Introduction

One of the most frequently used forms of tent structures is that streched onto an 
arch row (Fig. 1). Its arches can be economically designed if the elastic supporting effect 
of the fabric against their lateral-torsional buckling is also taken into account.

In the following we set as an aim to develop a method, also suitable for practical 
use, for taking the elastic supporting effect of the fabric into account.

2. Assumptions and approximations

The problem of lateral stability of elastically supported arches has been solved 
only for the case when the stiffness of the lateral support is constant all along the length 
of the arch [4], [5]. Hence we take some “average” value of this stiffness, and assume 
that this is constant along the arch axis.

We consider the fabric as a linearly elastic and orthotropic material, and we 
compute its stiffnesses on the basis of its original geometric shape (small-deflection 
theory), i.e. we neglect the influence of the change in shape of the fabric on its rigidities. 
Consequently, we need not consider the vertical excess loads, due to the supporting 
effect of the fabric, acting on the arches, and also not the change of rigidity of the fabric 
caused by the external loads. For the same reason we can consider the relation between 
the supporting force, arising when the arch deforms, and the displacement of the arch as 
linear.

* Dr. L. Kollár. Karap u. 9. H-l 122 Budapest, Hungary
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Fit/. I . Tent structure stretched onto an arch row

We stipulate that the fabric is appropriately fastened to the arches, and it is 
sufficiently stressed in order to take both tension and compression necessary for 
supporting the arch.

The fabrics used in practice are mostly coated on both sides by a plastic film. The 
fabric itself has considerable tensile stiffnesses in the directions of both threads 
perpendicular to each other, but has no shear stiffness at all. The plastic coating has 
tensile and shear stiffnesses as well, but these are small in comparison to the tensile 
stiffnesses of the fabric. Hence the coated fabric has a comparatively high tensile and a 
comparatively low shear rigidity.

We shall separately consider these two kinds of rigidities in our paper. In Sect. 3 
we only take its two tensile stiffnesses into account. To this purpose we can adequately 
model the fabric by a cable net with cables running in the directions of the threads. We 
suppose that these two directions are parallel and perpendicular, respectively, to the 
projections of the arches onto the ground plan. We further stipulate that both sets of 
cables consist of shallow arcs, so that the pertaining approximations can be applied.

The shear stiffness of the coated fabric will be taken into account in Sect. 4.
We shall consider the stiffnesses of the intermediate fabric sections as equal to 

each other, but the stiffnesses of the extreme fabric sections (connecting the last arch 
with the earth) may be different.

We stipulate that every arch has the same cross section, and that they are loaded 
totally with the same load intensity. (This latter assumption mostly means a deviation 
to the safe side for the extreme arches.) Since all arches must buckle simultaneously due 
to their elastic interconnections, it follows from the foregoing that the buckling shapes 
of all arches are identical.

3. Taking into account the tensile stiffness of the coated fabric

3.1 The stiffness of one fabric section

The tensile stiffness of a fabric section which can be modelled by a cable net can 
be simply computed by using the assumption that we consider two strips of unit width, 
crossing each other, treat them as “representative” cables, and suppose that all other 
cables develop the same cable force as the representative cable which is parallel to them.
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h it /. 2. Two cables representing a doubly-curved canvas section

By so doing we obtain, according to the investigations made on cable nets [6], a good 
approximation, as a rule.

Let us consider the two cables, crossing each other, shown in Fig. 2 as the 
representative strips of the fabric section between two arches (Fig. 1). Let us compute 
the y directed v displacement of one end point of the y directed cable due to a force Hy, 
also acting at this end point in the y direction.

The displacement v of the y directed cable consists of two parts. First we have to 
consider the displacement due to the elongation caused by Hy:

t 'h (E A )/ ( 1 )

(the notations are shown in Fig. 2; (EA) is the tensile stiffness of the cable). The second 
part is due to the deflection arising from the elongation of the cables running in the 
other direction. In order to compute this effect, we first have to determine the load p, 
considered as uniform, transmitted from the y directed cables to the z directed ones:

thus

W.. рЦ
8 / /

„ _  а д

From this we obtain the central deflection of the г directed cable [6]:

128f 2:(EA)z '

( 2 )

(3)
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The y directed cable undergoes a deflection of the same magnitude, due to which 
a horizontal displacement

= J H
3L w, (4)

comes about at the end point where Hy acts [6]. 
Introducing (2) and (3) into (4):

= / 2 
У_
2 #3/

It
f \  &EA)z Hy-

(5)

The “spring constant” c of the fabric section, i.e. its stiffness, can be obtained by 
dividing Hy by the total displacement v, consisting of the sum of (1) and (5):

c = HJ
vH + v„ L f 2

+ 7*
n

(EA)y f  \  1у(ЕА)г

( 6)

This spring constant is valid in the middle of the arc. At other points it is greater, 
since the assumed uniform load p causes deflections of the shape shown in Fig. 3 in the 
cables, i.e. the largest one at the centre, and smaller ones at other places. However we 
commit an error to the benefit of safety if we consider the central spring constant as 
overall valid.

Fig. J. Deflection of the cable due to uniformly distributed load

The derivation shown has the condition of validity that the z-directed 
prestressing cables displace outwards (or inwards) all along their lengths. This 
corresponds to the buckling of the arches in one half wave. In the cases of buckling in 
two or more half waves a different situation arises (Fig. 4). From Fig. 4 we can 
immediately see that the у-directed cables would undergo elongation and compression 
along the one and the other half length of the arch, respectively, but the antisymmetric 
deformation of the z-directed cables allows the y directed ones to follow these 
displacements by the changes of their sags, without any elongation. Hence this 
deformation of the cable net needs no forces at all, so that the spring constant of the 
cable net becomes zero for this deformation.

A more detailed investigation would probably show that the у-directed cables 
undergo some stretching too. However, we certainly commit an error to the benefit of 
safety if we neglect the rigidity due to this elongation. We shall do this in the following.

Consequently, in the case of buckling in two or more half waves only the shear 
rigidity of the coated fabric, not treated so far, supports the arches, see in Sect. 4.
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l iil. 4. "Inexlensional deformation" of the cable net in the case of buckling in two half waves

3.2 The spring force supporting the individual arches

Knowing the spring constants of each fabric section, the "effective” spring 
constant ccff, which supports the individual arches, can be determined as follows:

The whole structure can be modelled as shown in Fig. 5a or b. We shall denote 
the stiffness of the springs, referred to unit arch length, in the intermediate fields by c,, 
and in the extreme fields by ce. We stipulate that neither ch nor c, is equal to zero or 
infinity.

Since the loading and rigidity of each arch is identical, and, due to their elastic 
interconnection, they can only buckle simultaneously, their lateral displacements y 
have to assume values which give rise to identical spring constants ecfr for every arch, 
i.e. the sum of the spring forces acting on one arch divided by its displacement y should 
be the same for ail arches.

It can be seen by inspection that all arches have to buckle in the same direction, 
since it is this way that the springs exert the least total resistance. It is also obvious that 
the arches which are in the middle part of the structure have to develop larger 
displacements y than the extreme ones, since otherwise the springs were not able to 
support them. Finally it can also be seen that the magnitudes of the displacements y of 
the various arches should have a distribution symmetric with respect to the axis of 
symmetry of the whole structure, while the magnitude of the spring forces have to vary 
antisymmetrically. Consequently, in the centre of the structure (at its axis of symmetry) 
no spring force can develop, so that here the structure can be cut into two parts. (If there 
is an arch on the symmetry line, we have to cut it into two half arches, each having half
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the rigidities of the original one. By so doing no forces arise in the connection between 
the two half arches, so that we again arrive at two independent half structures.)

The most characteristic features of the arch row connected by springs can also be 
demonstrated on the pendulum row coupled by springs, shown in Fig. 5c. The 
pendulum columns have no own rigidities, and are only connected with each other by 
one spring each, so that the system is much simpler than the arch row of Figs 5a, b. 
Nevertheless, even this simple model clearly shows the influence of springs.

The following derivation is equally valid for both the pendulum row and the arch
row.
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In the derivation we apply the usual notations of the finite difference calculus. We 
begin the numbering of the arches in the middle of the structure. If there is an arch here 
(Fig. 5a), then for this arch x = 0, further x = 1 ; 2; etc., so that an interval becomes Ax = 1. 
If, however, there is a spring in the middle of the structure (Fig. 5b), then for the first 
arch x =  0.5, further x =  1.5, 2.5; etc., but the interval remains Ax — 1 also in this case. 

Taking all these into consideration, we can write the following relations (see also
[3]):

The spring forces acting upon an intermediate arch к are (taking the positive 
signs of forces as indicated in Fig. 5a):

from the left: -  сДу* _, -  у*);

from the right: + c,(y* -  yt +,);

summing up: -с',[(ук +, — >’k) — (yk — vfc_ ,)] = - c ,d 2yt ; (7)

203

i.e. the resultant of the spring forces acting on an arch is proportional to the second 
difference quotient of the lateral displacement y. (We omitted Ax and A2x, respectively, 
in the denominator, since Ax=  1.)

The effective spring constant is the quotient of the spring force and the 
displacement:

Ceff — — ( 'i
л 2 У к 

Ук
( 8 )

The value of ceff has to be the same for every arch, so that (8) represents a linear, 
homogeneous difference equation with constant coefficients:

A2y + —  y =  0. (9)
t'i

It has the solution:

у = A cos (Ax) + В sin (Ax),
with

A = &
V ct 

or
ccff = A2c(.

Due to the aforementioned symmetric distribution of the displacements у it is 
sufficient to keep only the symmetric part of (10), so that

у = ,4 cos (Ax). (12)

( 10)

(Ha)

(11b)
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The boundary condition is furnished by the n,h (extreme) arch. The spring forces 
acting upon it are:

from the left: 

from the right: 

summing up:

- Ci(yn- i - y „);

+ ceyn:

- с А У п -  l - У п )  +  £ е Уп- (13)

The spring constant becomes:

c .-c , У п - 1 - У п  
Уп

(14)

The spring constant also has to be equal to ceff, valid for the intermediate arches, 
which can be expressed, according to (lib), with the aid of A. We thus arrive at the 
following relation:

c„ +  c Уп-Уп i
У„

= c.A (15a)

or

— + I -A 2 -  =  0. (15b)
Ci yn

The numerator of the fourth term is, according to (12), equal to A cos A(n— 1), 
and its denominator to A cos An. Hence we can write (15b) in the following form:

ce ,2 cosA (n-l)---- f- I — л ---------- ;-----
Cj COS АП

= 0. (16)

Thus the hitherto unknown A, and, with the aid of (11), also ceff, is arrived at by 
solving the transcendent equation (16). Since, according to (11), A2 is proportional to 
ceff, consequently we have to use the smallest of the roots of (16), in order to obtain 
the smallest spring constant, i.e. the lowest critical force.

The coefficient A, which determines the magnitude of the displacements, remains 
unknown, like the buckling amplitudes in general in the frame of the linear theory.

In order to find the smallest root of Eq. (ló) an orientation is given by the 
consideration that ceff has to be smaller than the sum of the two extreme spring 
constants, divided by the total number of arches, i.e.

'̂cff < 2c,
2(11 + 0.5)’ (17)

or, taking (lib) into account:

A <
гДл + 0.5)

( 1 8 )
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The explanation of relation ( 17) is that if the intermediate arches were connected 
to each other by springs of infinite stiffness, the inequality ( 17) would turn into equality. 
The finite stiffness of the intermediate springs obviously reduces the effective spring 
constant ccff with respect to this case.

4. The role of the shear stiffness of the coated fabric

The rigidity of the fabric against shear deformation acts on the arch in the form of 
distributed moments (Fig. 6). Hence in the following we have to clarify some basic 
questions concerning distributed moment loads.

. - V
О
m*

Arch

Fabric

Arch

Hi). 6. Distributed moments exerted by the shear stiffness of the fabric

4.1 The kinds of distributed moments

Let us consider the simple beam on two supports, shown in Fig. 7, subjected to 
linearly varying distributed bending moments acting in the plane of the beam. Let us 
first investigate the case in which the distributed moments are transmitted to the beam 
in the form of couples parallel to the axis of the beam (e.g. as twisting moments of two- 
flanged trusses, joining the beam on its side, like purlins). Constructing the bending 
moment and shearing force diagrams according to the well-known rules of statics, we 
obtain those shown in Fig. 7a.

However, if we transmit the distributed moments by couples which are 
perpendicular to the axis of the beam (e.g. by bending moments of vertical bars that join 
our beam in its plane, perpendicularly to its axis, as in Fig. 7c, which is obtained by 
turning Fig. 7b by 90“), then these couples yield distributed forces q perpendicular to 
the axis of the beam, — as with the Kirchhoff forces arising from twisting moments 
acting along the simply supported boundaries of plates [7], — whose magnitude is 
equal to the first derivative of the distributed moments, so that in our case they will be 
uniformly distributed (Fig. 7b). From these forces qy the same bending moment 
diagram as in Fig. 7a will be obtained, but the shearing force diagram differs.

At the right end of the beam, where the magnitude of the distributed moment is 
not zero, but it suddenly “ceases to exist”, a concentrated force arises, corresponding to
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r% = î]

П Г  T l
C o m in g  i n t o  e x i s t e n c e  
o f  t h e  K i r c h h o tf  f o r c e s

Fiy. 7. Cases of transmitting the distributed moments 
a in the form of couples parallel to the beam axis
tr in the form of couples perpendicular to the beam axis 
c example for b.
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this “derivative”, as with the concentrated KirchhofT force in the corners of simply 
supported rectangular plates.

Hence, as can be seen, the distributed moments transmitted in two different ways 
produce the same bending moment diagram, but yield different results with respect to 
the shearing force and the lateral load qy. Hence we have to decide, on the basis of the 
static model of the structure, which way of transmitting the distributed bending 
moments is valid, and we have to determine the lateral load and the shearing force 
diagram accordingly.

4.2 The supporting effect of the shear rigidity of the coated fabric

For taking the shear rigidity into account, we shall model the fabric according to 
Fig. 8, i.e. wc divide it perpendicularly to the arch axis into narrow strips of the width a, 
and we surround each of these strips by a hinged frame consisting of incompressible 
bars. The fabric is attached to the cross section of the arch at point G. Consequently, the 
shearing forces necessary to produce angular distortion y = dvG/ds of the strip are 
transmitted from the arch by a couple F,« and by the tangential force P,, , as shown in 
the figure. Hence the arch is subjected to distributed axial forces P,Ja  and to 
distributed couples F,<t a = F, ; on the other hand, the fabric obtains all these forces as 
tangential ones. (With r(i we denoted the у-directed displacement of the point of 
attachement of the fabric.)

Since a fabric section of the width /, joins two arches, the force

Pt = x b 2 = Gdy - = G d - — (19)

has to act from one arch to the fabric to produce the angular distortion y. (Here ô 
denotes the thickness and G the modulus of shear of the coated fabric.)

hifi. X. Modelling the canvas for computing the restraining effect due to shear stiffness
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The distributed moments are transmitted to the arch by couples perpendicular to 
the arch axis. Hence, according to what was said in Sect. 4.1, a lateral force qy, , equal to 
the derivative of these moments, will act on the arch:

where

d p i r J y d y  ^ J y d2vo d2vc
=  -5 7 = “ 2 S ' “ 2 d.,‘ (20a)

= G6ly/2 . (20b)

Since the fabric is mostly attached to the arch at a point different from the shear 
centre, the aforementioned lateral forces qyl also cause distributed twisting moments. 

In addition, the distributed axial force

Pо
a

TÔa

a
div; Gdy = Gd —— 
d.v ( 21)

also acts on the arch.
All the above data give the supporting forces exerted by one fabric section onto 

one arch. The subscripts 1 refer to this circumstance. Since, however, one arch is in most 
cases supported by two fabric sections, we accordingly have to take twice these values 
into account. Hence on one arch the force

acts, where

Яу = 9
d2L-(;
d.s-2

g = 2gl = G0ly .

(22a)

(22b)

It should be remarked that we also could obtain the above results with the aid of the 
elementary theory of strength of materials: considering the two arches together with the 
intermediate fabric section as an I-beam, the shear distortion of the web can be 
computed from the formula

Since

dVg T 
ds Gôly ' (23a)

« ,= ( - )
d T
ds ’

we arrive at the relation (22), giving the total shear rigidity of one fabric section, exerted 
on two arches.

The curvedness of the fabric does not change the shear rigidity computed for the 
plane fabric, since the assumed pure shear stress state can equally develop in curved 
surfaces (cf. the twisting of thin-walled closed sections). The only reason why the shear 
rigidity of curved fabric sections may be different from that of plane sections is that the 
arc length of the curved section is longer than ly . However, this deviation is negligibly 
small in our treatment, due to the assumption concerning the shallowness of the fabric.
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5. Lateral stability analysis of the arches

5.1 Analysis neglecting the shear rigidity of the fabric

If we only consider the tensile stiffness of the fabric, we have to perform the 
stability analysis, according to what has been said in Sect. 3, in such a way that, after 
computing ceff from Eqs. (16) and (11), we determine the critical compressive force of 
the arch supported elastically in the lateral direction, taking one half wave as the 
buckling shape (first, symmetric buckling mode), from the formulas given in [4] or [ 1 ], 
depending on the end support conditions. In addition, we have to compute the critical 
force of the unsupported arch with two half waves (second, antisymmetric buckling 
mode). The lower value of the two gives the most onerous critical load.

5.2 Taking into account both the tensile and shear rigidities o f the fabric

If we consider both kinds of rigidities of the fabric, then, in performing the 
stability analysis, according to what has been said in Sect. 5.1, we have to consider both 
the tensile and shear rigidities when investigating the first, symmetric buckling mode, as 
described in [5] and [1]; and to take only shear rigidity into account when computing 
the second, antisymmetric mode (i.e. by setting ceff = 0 in the equations).

Obviously, both the tensile and shear stiffnesses of the fabric increase the critical 
load of the arch.

Let us compute the spring constant ceff, supporting each arch of the tent 
structure consisting of six arches, shown in Fig. 9. The stiffnesses of the extreme and 
intermediate springs be equal (ce =  c, =  c). Let us perform the computation by the 
method outlined in this paper and also by directly solving the equations written for 
each arch (exact method).

6.1.1 Method outlined in the paper. For the extreme arch: n = 2.5 (cf. Fig. 5b). 
Eq. (16):

According to (18):

6. Numerical examples

6.1 Controlling example
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i f

*У
♦ force

Fii/. 9. Model of the structure of the controlling example

By trial and error we find.

/  = 0.448,

or, according to (lib):

ccff = 0.201c.

6.1.2 Directly solving the equations. The serial numbers of the arches would 
become, according to Fig. 5b, broken numbers. Hence, for simplification, we number 
the arches on the left-hand side of the structure with whole numbers from 1 on, and 
write the equations accordingly. We denote the displacements of the arches by y. The 
spring forces acting on the individual arches are:

Arch 1: c v 1 — £'(V2 — V, ) ;

Arch 2: t (>’2 — >t) — — T’z) ^

Arch 3: t (>3 — v2) (since in the central spring no force arises).

We obtain the spring constant ccff, valid for each arch, by dividing these forces by the 
corresponding displacements y. Since ceff has to be equal for all arches, we can write:

<’(2У1 -У 2 ) t‘(2v2 — - > ’3 ) . .
C'eff= ---------- = -------------------= f’cff > (a)

У 1 У 2
and

From Eq. (a):

c(2y2- y i - y 3) c(y3- y 2)
>’2 >’3

—  t ’e f f  •

>’2= v/yî + TiTj •

(b)

(c)

Introducing (c) into (b), we arrive at the following equation of the fourth order for
*1з=Уз/У i- ____

'72i - ' b v  l + ' b - , = 0 -
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By trial and error: 

i.e.
4 , = 2.5.

and, from Eq. (c):
>-3 = 2.5y,

y 2 = 1 -80V| .

The spring constant ceff can be obtained either from (a), or from (b):

<eff = 0.200c,

i.e. practically identical with that yielded by the method outlined in this paper.

6.2 Analysis of an erected tent structure

Let us determine the effective tensile and shear rigidities of the fabric of the tent 
structure shown in Fig. 10. The data not explained in the figure are:

The tensile and shear stiffnesses of a strip of 1 m width of the fabric are, on the 
basis of [2]:

(EA),. = EVÓ = 737.7 kN m ;

(EA).== E.ó = 257.7 kN, m ;

GÖ = 24.0 к N/m .

The tensile stiffness of an intermediate fabric section is, according to (6):

t-i =
1

9 L52 184
737/7 + "б5“ 93(257.7)

= 21 kN/m2.

Fitf. 10. Geometric dala of the erected tent structure

A d a  Tcchnica Avademiav Sacn liar urn Hungarian- 44. !4H2



212 KOI.I.ÁR. i

The stiffness of the extreme, slanting section of the fabric is to be computed on the 
basis of the section B — B o i  Fig. 10. Using Eq. (6) we obtain:

..s la n t in g __ ______________________________________

'  ~  6.5 i 0.402 12.74
737/7 + 3.12 6.53 x 257.7

= 67.0 kN/m2.

From this value we have to compute the spring force due to the horizontal 
displacement dhoriz =  1 of the extreme arch (Fig. 11).

Since /lhoriz = A sin a =  0.872/1 ,

and Ae — A sin (x + ß) = 0.731/1,

consequently Ле= / |horiz = 0.838 /1horiz.

Hence, due to d horiz =  l a spring force

c-,hor,z =0.838 x67.0 = 56.1 kN/m 2

arises, so that the spring constant of the extreme section to be considered is:

ce = 56.1 kN/m2 .

Since the structure contains seven arches, we have for the extreme arch, 
according to Fig. 5a, n = 3.
Eq. (16) becomes:

2.671 + i - ; . 2 cos 2/. 
cos 3/.

Fig. 11. Converting the slanting spring constant into a horizontal one
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On the basis of (18):

By trial and error (16) yields: 

and, according to (lib):

A<
56.1

21(3 + 0.5)

A = 0.465,

= 0.874.

cCff = 4.54 kN/m2 .

The shear stiffness of one fabric section gives rise to a distributed force

« ,.=  2 4 .0 -
9 d2vr,
2 ds2

so that twice this value acts on one arch:

= 108 d 2t>G
ds2

kN /m ,

d2vr 
^ = 216d / kN/m,

or, according to (22):

3 = 216 kN .

Although the two rigidity characteristics (ccfr and y) cannot be directly compared 
due to their different units, their numerical values show that the comparatively high 
tensile stiffness of the fabric results in a low ccff, while the comparatively low shear 
stiffness of the fabric yields a high y. We can explain this phenomenon by considering, 
on the one hand, that ccff decreases with the increasing number of arches, according to 
the explanation given to Eqs. (17) and (18), and that ccff is inversely proportional to the 
lengths of the fabric sections. On the other hand, y is independent of the number of 
arches, since each arch is stiffened by the neighbouring fabric sections, and, according 
to our assumption made in Sect. 4.2, the magnitude of y is directly proportional to the 
lengths of the fabric sections.

We omit the computation of the axial force P ,, since it gives a term small of the 
second order in the stability analysis, so that it is to be neglected in comparison with 
other, first-order terms.

With these data we shall perform the stability analysis of the arch in [5], 
according to the principles described in Sect. 5.
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BOUNDS FOR THE FLEXIBILITY OF CIRCULAR 
PLATES OF VARIABLE THICKNESS

I. E c s e d i*

[Received: 29 November, 1982]

The paper deals with circular plates of variable thickness made of elastic material. The proof 
of the bounds relating to the coefficient of flexibility defined by the formula (2.1) is based on the two 
minimum-theorems of the elastostatics. Applications of the inequality relations (3.3) and (4.2) are 
demonstrated by an example.

The following symbols of major significance are used in this paper:

r, <p,z polar coordinates.
t Young's modulus.
V Poissons ratio.
h = h(r) plate thickness.
D bending stiffness of plate.
w = w(r) deflection of plate middle surface.
F force,
V energy of deformation,
c flexibility (coefficient of flexibility),
R stiffness.
9 = 9(r) auxiliary function.

moments with respect to unit length of radial and tangential direction respectively,
Q, radial shear force with respect to the unit length.
V= E(r) auxiliary function,
л potential energy,
К complementary energy
A = A(r) auxiliary function.

The problem to be solved

The homogeneous, isotropic, circular plate of variable thickness and linearly 
elastic material is bounded in the radial direction by a cylindrical surface having a 
radius r = a. The thickness of the plate is a given function of the radial coordinate r. h 
— h(r). The plane designated with the coordinate z = 0 is the middle plane of the plate, 
and at the same time, its symmetry plane. The plate is freely supported at its external 
edge and is subjected to the force F at its centre.

The paper makes use of the customary assumptions of Kirchhoffs theory of 
plates.

The conclusion of KirchhofT s theory of plates is that the relation between force F 
and the displacement w(0) of its point of application is homogeneously linear (Fig. 1), 
that is:

w(0) = C F . (2.1)

* Dr. 1. Ecsedi, Vászonfehérítö u. 24., H-3531 Miskolc, Hungary
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Fig. /. Circular plate of variable thickness

The quantity C entering in the above formula is referred to as the flexibility of the 
plate of variable thickness (i.e. its flexibility coefficient). The inverse of flexibility C is 
called the stiffness of the circular plate:

1

C
F

й о г
( 2.2)

In the case with h = constant one obtains the result for flexibility C:

wherein

(3 + \’)a2 
16л( 1 + v)D

D =
Eh3

\ 2 (  1 -  V)2 '

(2.3)

(2.4)

The correctness of the formula (2.3) directly ensues from formula (88) to be found 
on page 70 of the work [1].

In case with (inconstant, for the determination of the exact (strict) value of 
flexibility C a fourth order, inhomogeneous linear differential equation of variable 
coefficient should be solved, the explicit solution of which is, in a great many instances,
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unknown. That is because such methods and principles are of very high significance, 
through the application of which the lower and upper bounds can be produced to the 
flexibility of a circular plate of variable thickness defined by formula (2.1).

Lower bound

Proposition. With the function g = g(r) nonidentically equal to zero, being in the 
open interval 0 <r<a  twice, and in the closed interval 0 < r < a  once, continuously 
differentiable, and satisfying the homogeneous boundary conditions

<У'(0) =  0, g(a) =  0 (3.1), (3.2)

(3.3)

r dr

is valid wherein:

the inequality relation

C> [y(0 ) ] 2

2nDn H
d2g 1 dg
dr2 r dr

1 dg d2g
+  — f -  - 2( 1— V) - - ^ - 4

r dr dr2

D„ = 12(1- V ) 2 ’

ho = h(0).

(3.4), (3.5)

Demonstration. Proving takes place by the application of the minimum theorem 
connected to the potential energy functional.

The value of the potential energy associated to the kinematically possible field of 
displacement satisfying the homogeneous kinematic boundary conditions

w'(0 ) = 0  vv(«) = 0

can be determined on the basis of formula [1]:

n(w)=D0n H
d2\v 1 dvv4' 2 
dr2 + r dr

„ 1 dvv d2vv
-2 (1  -  V ) -  —  - T  

r dr drz
r dr — Fvv(O)

(3.6), (3.7)

(3.8)

The value of the potential energy associated with the exact solution w = w(r) may also 
be expressed by the work W of force F :

я(и’) =
1
2 — — Fw(0 ) (3.9)
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Let us have

w=F/.g(r). (3.10)

In formula (3.10) the symbol Я so far denoted a voluntary real parameter.
It is evident that

9'(0) = 0, 0(e) = 0 . (3.11), (3.12)

Considering the relationships (3.8), (3.9), (3.10) and the minimum theorem 
associated with the potential energy functional

7t(w)< ft(w)

it can be written that

С >Я 2 ( —2D0n H d 2g  1 dg
dr dr

(3.13)

- 2 d —v ) - ^  ,
1 dg d2g 
r dr dr‘

r dr + 2Xg{0).

The relation (3.14) is valid for any value of variable Я. 
At the point

/  = .9(0)

2nD0 J  H
d2g 1 dg
d r + dr r dr dr

r dr

(3.14)

(3.15)

the expression at the right-hand side of the inequality (3.14) has an absolute maximum. 
On the basis of the value of the maximum in question it may be written:

C >
[9(0)]2 (3.16)

2nDn H
J

d2g ld g V  1 dg d2g
dr2 r dr ) r dr dr2

r dr

The formula (3.16) is always true in that case where the function g = g(r) which 
satisfies the continuity and differentiability conditions, is non-identically constant, 
because, the expression of the specific energy of deformation is, in such cases, positive.

Upper bound

Proposition. With any one-variable function A =  A(r) which is continuous in the 
closed interval 0 < r< a  and continuously differentiable in the open interval 0 <r<a, 
satisfying the boundary condition
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A(a) =

the inequality relation

2n
D o (l-v 2)J

■2(1 +v)

a
2 n ’

A dA
----1-

d7r

à A"
2n) dr

(4.1)

■ dr (4.2)

is valid.
Demonstration. Proving is based upon the minimum theorem associated with the 

complementary energy functional K.
The expression of the complementary energy associated to the statically 

potential fields of moments M r = Mr(r) and Mv = M v(r) satisfying the equilibrium 
conditions

d Mr
M r + r

dr Mv -r Q r = 0 0 < r<a, (4.3)

Mr(a) = 0 (4.4)

is, by taking as basis the formula (8.55) on page 162 of [2]:
a

ы Ь ? | й [ |й ' + й -»>-
о

- 2( 1 + v) Mr M v~] r dr (4.5)

The quantities of positive signs Mr, Mv, Qr are shown in Fig. 2.
The value of the complementary energy belonging to the fields Mr= Mr(r) and 

Mv = M v(r) satisfying all conditions relating to the plate problem, including the 
compatibility and equilibrium conditions, is K(Mr, Mv). Taking for basis the minimum 
theorem associated with the complementary energy functional, the following may be 
written:

K ( M „ M v) < K ( M r, M v ).  (4.6)

F ig .  2. Interpretation of the signs of Mr, М ф, Q r
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Let us have
M r = Fmr, M0 = Fmv (4.7), (4.8)

(4.9)

Combination of (4.3), (4.7), (4.8), (4.9) yields the equation

(4.10)

Be given
A V

mr = — + - (4.11)r r

wherein A = A(r) is a one-variable function, at least once continuously differentiable. 
Then, on the basis of (4.10) it may be written that of necessity

By an elementary train of thoughts it may be pointed out that in the present problem

The exact value of the work W  of force F is the same as that of the complementary 
energy:

K (M r,M v) = - F w ( 0 ) = j C F 2 (4.15)

Combination of the formulae (4.5), (4.6), (4.7), (4.8), (4.11 ), (4.12), (4.14) and (4.15) yields 
the inequality relation (4.2) to be proved if one takes equation

resulting from the boundary condition (4.4) into account.

Example

5.1. Fig. 3 represents a plate of linearly variable thickness. The Young's modulus 
and Poissons ratio of the material of the disc are as follows respectively:

£  =  2 105Nmm 2, v =  0.25.

(4.12)

([1] p. 62)
(4.13)

By combining (4.9) and (4.13) one finds

(4.14)

(4.16)
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T Z
Fill. J. Circular plate of linearly changeable thickness

Application of the inequality relation (3.3) to the function

i/(r) = r2— a2 (5.1)

yields the lower bound

C = 1.38 • 10 5 mmN 1 (5.2)

5.2. The upper bound with respect to the flexibility C of the plate investigated in 
the preceding example is obtained from the inequality relation (4.2) with the help of the 
function

A(r) = r2 Í In -  + —i—J (5.3)
\  a  2 n a J

C< 1.421 10 5 mm - N '. (5.4)
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INVESTIGATION OF THE ENGAGEMENT 
OF HARMONIC DRIVES — PART II

J.  PÉTER*

[Received: April 12, 1982]

In engaging of a pair of toothed gears consisting of a circular spline and a flexspline of a great 
number of teeth and small difference in number of teeth, those which are simultaneously meshing, 
may be significantly higher than those calculated. The present paper investigates this phenomenon in 
the harmonic drives.

1. Introduction

In the late 50s C. W. Musser, an American engineer, surprised the technicians 
engaged in the problems of gearings: he integrated in the drive a flexible toothed wheel, 
the flexspline. During running, the flexspline is deformed in a wave-like way.

The present paper deals with this particular case of meshing of toothed wheels 
and continues the author’s work began in [1]. Part I [1] summarizes the symbols and 
concepts needed for the investigations and simplifies the problem to the engagement of 
a normal circular spline and a spur gear of a centre of rotation displaced as compared 
to its centre. Each of the pairs of teeth are engaged, similarly to the cylindrical gears, 
along the tooth profiles.

In the harmonic drives, a pair of gears, i.c., a circular spline and a spur gear of 
high tooth number (z2 = 100. . .800) and a slight difference in tooth number (in general, 
z3 — z2 = 2) are included. The teeth of both gears of greathly similar profiles are, beyond 
the theoretical bounds of the involute engagement so near to each other that the 
backlash between them, in consequence of the flexible deformation of the drive 
elements (and, first of all, the flexspline) and due to the rearrangement of the clearances, 
will be suppressed. Then, in theory, the engagement takes place between the crest edge 
of one of the wheels (in practice the part of the tooth flank near the crest edge) and the 
tooth flank of the other wheel.

Beyond the theoretical bounds of the involute engagement, the number of teeth 
being engaged simultaneously, non-correctly in an edge-like way, is the function of the 
construction parameters and loading of the drive, as is to be seen in Fig. 1 [3, 4].

* Peter J„ Derkovils u. 54, I. 3, H-3529 Miskolc, Hungary
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О 0,2 0,4 0,6 0 ,8  1,0 1,2 1,4

F i g .  / .  C h a n g e  o f  th e  r a t io  (z2 =  z / z 2) o f  th e  n u m b e r  o f  th e  s im u l ta n e o u s l y  m e s h in g  te e th  (z )  a n d  th e  to o th  
n u m b e r  ( z 2) o f  th e  f le x sp lin e , d e p e n d i n g  o n  th e  r a t io  b e tw e e n  th e  t o r q u e  ( M 2) a c tu a t i n g  th e  s lo w ly  r o ta t i n g  

ax le  a n d  th e  n o m i n a l  to r q u e  ( M 2J  a c t in g  o n  th e  s lo w ly  r o ta t i n g  ax le

2. Engagement beyond the theoretical bounds of the involute 
engagement

The teeth of the harmonic drive are engaging beyond the bounds of the involute 
engagement, in case where the backlash is

j< cm , (2.1)

wherein c is a coefficient depending on the loading and the construction parameters of 
the drive and its value may be, according to experiments, in case of nominal loading 
and drives of light design 0.06 and for drives of heavier design 0.04; m, being the module.

The investigations are carried out in the plane of the wave generator, in the 
system of coordinates established to the generator. It was examined how the backlash 
changed depending on the rotation of the flexspline in relation to the principal 
deformation axis. It was assumed that where (2.1) is true, the teeth are engaging. 
Thereafter, the momentary transmission ratio [1] and the velocity of slip should be 
determined.

2.1. The engagement between the crest edge of the ßexspline 
and the tooth flank of the circular spline

2.1.1. Definition of the backlash.
Let us investigate how the backlash changes depending on the rotation g>2 of the 

flexspline in relation to the principal deformation axis (Fig. 2):

, , cos a0
7 =  (P +  <Рэ + стэ — tan a). 2) ——  ------ , (2.1.1.1)

wherein:
z 3 =  to o th  n u m b e r  o f  c i r c u l a r  s p l in e ;  
m  =  m o d u le ;
a 0 =  an g le  o f  s t a n d a r d  r a c k .

Acta Technica Academiae Scientiarum Hungaricae 94, 1982
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Fig. 2. Backlash between the tooth edge of the flexspline and the tooth flank of the circular spline

Between the radii 0 3N 3, 0 3F2 the formulae

, z 3m coso(n
otp2 ~ arccos ' -----:— , ((2.1.1.2)

2 0 3F2

0F~2=s/ S
with

S=  ^R0 + w + h02 cos 3 — sin +

+ ^v + h02 sin .9+ -^co s  , (2.1.1.3)

are valid.
Herein:

R0 =  radius of the middle line k;
w = fl(<p2), f = 9 = fi(</?2) = a displacement of point A of the middle line in the radial and tangential

direction, and the rotation of the cross section, respectively;
h02 = distance between middle line (middle circle) and addendum circle; 
sr2 = width of tooth top of wheel 2.

Between the radius 0 3N 3 and the principal deformation axis it is valid that

ц=л'г1- (р У2. (2.1.1.4)

9 Acta Technica Academiae Scientiarum Hungaricae 94, !9H2
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wherein

(p F2 = <p 2 +  arctan
V + h 0 2  sin 9 + ~y  cos 9

R0 + w + h02 cos 9 — ~  sin 9
(2.1.1.5)

In case where the flexspline rotates at an angle ц>2 as compared with the deformation 
principal-axis, the rotation of the circular spline, with the knowledge of the tooth 
number, is:

1 z2
<P3= ,g <Pl = — 4> 2 •

' 2 3  z 3
(2 .1 .1.6 )

The central angle corresponding to the half width of the tooth groove of the 
standard rack of wheel J is

<x3 = inva0H----— , (2.1.1.7)
z3m

wherein the width of the tooth groove on the pitch circle

k-o3 = —  + 2x3m tan a0 , (2 .1.1.8 )

and x 3 is the coefficient of tool supply.

2.1.2. The momentary transmission ratio
Let us assume that the backlash calculated at some angle cp2 is smaller than that 

given by (2.1), i.e., the tooth pair is in engagement (Fig. 3). In this case we have

(v'2- v 3)n3=0 
or

— (u3(i0 3F 2 cos a,.2 , (2 .1.2 .1)

where (u2 g and w3g are the angular velocities of the tooth of the wheel 2 investigated 
and wheel J, respectively, as compared with the generator.

By making yse of Eq. (2.1.2.1) for the momentary transmission ratio one obtains

/8
2' 3 —

' 2 8  

'J3 8
0 3F 2 cos aj. 2

(p' + h02)co$ H + 4>2 + 2(f>' + h02)
+ .9

(2 .1 .2 .2 )

0 3F 2,a j2 and ц entering in the relationship (2.1.2.2) are to be calculated with the 
aid of relationships (2.1.1.3), (2.1.1.2) and (2.1.1.4) respectively, p' = f(</?2) is the radius of 
curvature at point A' of the flexible line.
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Fiq. i. The slip velocity between the tooth edge of the flexspline and the tooth flank of the circular spline

2.1.3. The velocity of slip
Let us investigate how much the velocity of slip is in case where the engagement 

of the teeth has an edge-pattern. Using the symbols of Fig. 3 yields

v, 2 3  = <'>2 ■•(/>'+ Л02) sin И + Ф 2 +
4 2

2(f)'+ h02) 

— (UjgOjF, sin z'v l .

+ .9

(2.1.3.1)

In relationship (2.1.3.1) w2g = ч)2-—<пк. ro,g = o>3 — rug, <o2-. oj3 and u>g are the 
angular velocities of the tooth investigated of wheel 2, wheel 3 and the generator q, 
respectively, in relation to the casing.

Let us introduce the designations i2 g =  w2/a)g, i3g = w,/wg. After transformation 
we have

<ug<(i2 g-  l)(/>' + /i02)sin + (p2+ -2(t> +h02)

: 3m cos a„
-Оза~  U ----- ï ----- tan a,. (2.1.3.2)

From the relationship (2.1.3.2) in case of one degree of freedom (if <d3 =0), the 
direction of the drive is q-*2. one obtains

v* A d a  lech n u u  A cade mine Scient iar urn Нипцагиас 44. !4H
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z3 w cosa0
f . 2 ' 3  =  « g i --------- ^ --------- t a n  a F 2 -

- i l i í P '  +  t« 0 2 )  s i n P  +  <P 2 +  X 7 7 T 7 — Г +  ®2(р' + Л02)

If o)2 =0, the direction of the drive is g-*3,

f 1 Zjfficosa0
t’.2'3=wg | ™ ^ — 2------ tan aF2 -

- ( / /  + /i02)sin g + (p2 + —~P^-— г + -9 
2  (p + h02)

(2.1.3.3)

(2.1.3.4)

2.2. Engagement between the crest edge of the circular spline 
and the tooth flunk of the flexspline

2.2.1. Determination of the backlash
Making use of the symbols of Fig. 4 and following the train of thought of Chapter 

2 .1.1 the backlash may be calculated with the following relationship

cos an
7 = (tan otF3 —<pA —<r2) *— 2 ------> (2 .2 . 1.1)

wherein z2 is the tooth number of the teeth of the flexspline,

, z2m cos a0
aE3 — -----

2  0 2 F 3
(2 .2 .1 .2 )

0 2F3 = \ /  0 20$ + г^з _ 2 0 20^r^^ cos ( S c p F2 ) (2.2.1.3)

0 20 3 =  V  0 }A'2 + R l - 2 0 3A' R0 cos Э’ ; (2 .2 .1.4)

0 3A' = s/ (R 0 + w )2 + v 2 ; (2 .2 .1.5)

.9' = ,9 — arctan — -—  ;
Rq + w (2 .2 .1 .6 )

t . R0 sin .9' V
0  — arcsin------------- (p2 — arctan--------- ;

0 20 3 ‘ R0 + w
(2 .2 .1.7)

wf3(Рп = <Рз-~— ;
2 rf3

(2 .2 .1.8 )

the width of the tooth groove on the addendum circle of radius rf3 is

Acta Technica Academiae Scientiarum Hungaricae 94, 19H2
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Fig. 4. Backlash between the tooth edge of the circular spline and the tooth flank of the flexspline

wf3 = m cos a0

cos af3

я
2  + 2хз tan a0 + z3(inv a0 -  inv a, 3) ,

wherein
ips should be calculated with the aid of Formula (2.1.1.6) and 
0,3 profile angle on the addendum circle of radius rf3.

(2 .2 .1.9)

2.2.2. The momentary transmission ratio
Similarly to (2.1.2.1), on the basis of Fig. 5, the condition of the engagement is

w2 , 0 ' 2 F 3 cos af3 = o>3gr f3 cos (af3 + / ) . (2 .2 .2 .1  )

This, after transformation gives the momentary transmission ratio

/8 = = rf3 cos + y')
w3g 0 ' 2 F3 cos otf3

or
r r3 cos (a'K3 + y')

‘ 2 '3 --- 3
0 2 F 3 cos (a'F3 +  у  -у ')

where
r,J =the addendum circle of wheel 3 and
Of3 = may be calculated with the aid of relationship (2.2.1.2),

( 2 . 2 . 2 2 )

у = arcsin O j O j  sin (<S +  <pK3) (2.2.2.3)
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F i y .  5 .  T h e  s l ip  v e lo c ity  b e tw e e n  th e  t o o t h  e d g e  o f  th e  c i r c u l a r  s p l in e  a n d  th e  to o th  f la n k  o f  th e  f le x s p l in e

0 20 3 =  V 0 3A'2 + R l ~ 2 0 3A' R0 cosS ', (2.2.2Â)

the values of ô, (pF3, 0 2F 3, 0 3A' and S' may be found with the aid of relationships 
(2.2.1.7), (2.2.1.8), (2.2.1.3), (2.2.1.5) and (2.2.1.6) respectively.

, . 0'20 3 sin (<pF3 +  <5') 
у = arcsin________ =----------;

o '2f ,
(2.2.2.5)

0'20 3 = s j  0 3A’2 + p'2 — 2 0 3A'p'cos  S'; (2 2 .2 .6 )

0'2F3 = V  rf 3 + 0'20] — 20'20 3rf3 cos ((pF3 + 0') ; (2.2.2.1)

p' sin S' wf3
d' = arcsin------------ cp 3 +  - — .

0'20 3 2  rf3
(2 .2 .2 .8 )

2.2.3. Slip velocity
Developing the idea of Chapter 2.1.3 and making use of Fig. 5 we have

«i2-3 = ‘»*[('2 -g- 1) 0'2F 3 sin a?3 - ( ' 3g -  >)Pf3 sin (a? 3 + /) ]  . (2.2.3.1 )

If w 3 = 0, the direction of the drive is

ni2-3 = wg[rf3 sin ( а ' р з  + y) —/* '3  0'2F 3 sin ( a ' K J  + у  -  у')] . (2.2.3.2)
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wherein a'K3, y, i\ 3, 0'2F 3, /  may be calculated with the aid of relationships (2 .2 .1.2 ), 
(2.2.2.3), (2.2.22), (2.2.2.1) and (2.2.2.S), respectively.

If (o2 = 0, g-*3.

t\2'3=Wg rn  sin (a'K3 + y) -  O'г F 3 sin (tx'y 3 + y -  y' (2.2.3.3)

3. Number of teeth engaging simultaneously

By making use of the relationships (2.1.1.1) and (2.2.1.1), in case where j  = cm the 
angle </>2 = </>2 K2 and </) 2 =  <P2 K3 т а У be determined at which the edge-like engagement 
begins and ends.

The pitch of the flexspiine being т2 = 2л/г2, so within the interval <<p гкг! «Ргкз) 'n 
each engagement zone simultaneously

г  = 0 > 2 K 2 - » 2 F 3  ( 3 . D

2  T2

teeth will be engaged (in case where the number of the deformation waves is 2 ).
The ratio of the tooth number simultaneously engagingand that of the flexspiine

( Fig. 1 ) is: z
2 ,=  -  (3.2)

4. Example

Let us continue the investigation begun in Chapter [1] 5. The significant 
characteristics of the drive are: z2 = 190; z3 = 192; m = 1 mm; a0 = 2 0 °; w0 =  1 .2  mm; R0 
= 97.1 mm; rf2= 100.1 mm; rf3 = 99.95 mm; r 2= 1.89474".

To describe the flexible line the relationships recommended in [2] are used.
Let us assume that under the effect of the loading the radial displacement w0 (Fig. 

2 ) will be reduced from 1 .2  mm to 1 .0  mm and increasing the loading of the drive, w0 

decreases to 0.9, further, the teeth will be meshed in case where the value of the backlash 
calculated with the aid of the relationships (2 .1 .1 .1) and (2 .2 .1.1) is j  < 0.06m.

For w0/m= 1.0 (Fig. 6 .a) at each zone of meshing z/2% 18 teeth will be meshed 
simultaneously. In such cases zr = z/z2 %0.19. The value of the backlash determined by 
photographs magnified twenty times (Fig. 6 b) and the change of loading (measured 
with strain gauges) acting on a tooth of the circular spline measured as the function of 
the rotation of the wave generator (Fig. 6 .c) are in agreement with the results of the 
calculations.

For wo/w = 0.9 (Figs. 6 .d, 6 .e, 6.0 z/2*31, z2 %0.33. The calculated backlash 
increases after the beginning of the meshing, then decreases, and subsequently rapidly
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Hg. 6. Comparison of the calculated (Figs. 6.a. 6.d)and measured (Figs. 6.b, 6.e) values of the backlash as well
as the tooth load measured (Figs. 6.c, 6.f)

increases. The tooth loading increases after meshing begins, then decreases (where the 
calculated backlash increased) which is followed by a new peak load. The characteristic 
points of the backlash calculated and the tooth load measured (which are marked with 
arrows) do not cover correctly the defectivenesses of the relationships [2 ] describing 
the flexible line.

Let us now see how the momentary transmission ratio of the pair of teeth 
meshing edge-like (2.1.2.2), (2.2.2.2J and the slip velocity (2.1.3.3), (2.2.3.2) in dependence 
of the deflection of the flexspline as compared with the principal deformation axis.

If the teeth are meshing at j  < 0.06m, so simultaneously z/2*  14 pairs of teeth are 
meshing within each engagement zone. In this case, the transmission ratio of the pair of 
teeth meshing edge-like changes between the limits i |.3=  1.033 876. .. 1.043 342.

If the wave generator, in agreement with Figs. 3 and 5, rotates with an r.p.m. 
ng=1500 counter clockwise and co3 =0, g-*2, the slip velocity varies between the 
values rt2 '3 ~ — 182... 136 mm s ~ 1.

5. Summary

The number of teeth of harmonic drives engaging simultaneously depends on the 
loading and construction parameters of the drive. Under the effect of the loading the 
elements (essentially the flexspline) will be flexibly deformed and displaced as
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compared with their theoretical position defined, in consequence of which the teeth of 
the gear pair will be engaged beyond the theoretical bounds of the involute engagement 
doing that in an improper, edge-like way. It is assumed that where the backlash 
theoretically defined is smaller than the value determined experimentally depending on 
the construction parameters and loading of the drive, the teeth are meshing.

With the knowledge of the momentary value of the transmission ratio of the gear 
pair meshing the slip velocity may be determined in case of any arbitrary drive 
direction.
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BOOK REVIEWS

À. Bo s z n a y  (Editor): Bracketing of eigenfrequencies 
o f continuous structures, Akadémiai Kiadó, Buda
pest 1980

Organized by the Department of the Technical 
Sciences of the Hungarian Academy of Sciences, and 
technically arranged by the Structural Engineering 
Departmental Research Party, the 112th 
EUROMECH Colloquium was held in Mátrafüred 
from 21st to 23rd February 1979.

At the Conference of high scientific standard 59 
participants assisted from 11 countries. The con
cluding proceedings of the Colloquium contain 
most of the verbal lectures or papers admitted 
subsequently, on 670 pages.

The papers deal with the following subjects 
associated with the group of processes designated by 
the title of the Colloquium:
1. the recent variants, developments and new appli

cations of the Poincaré-Rayleigh-Ritz-method, 
the method of the intermediate operators, recent 
variants of Fichera's method of the orthogonal 
nonvariants or other procedures serving for the 
same purposes,

2. optimizations in connection with the eigenvalues,
3. procedures with the purpose to determine all of 

the eigenvalues in a given region.
The number of participants and, in general, the 

objective of the EUROMECH permitted to realize 
the programme of the Colloquium in a single 
section.

In the proceedings, the papers are arranged in 
the alphabetical order according to the authors’ 
names. Their scientific value is outstanding; in the 
field of the given subject the recent results of the 
research investigations are reported. The high 
scientific level is warranted also by the names of thé 
authors. The works of mathematicians, engineers of 
theoretical cast of mind and physicists, engineers 
skilled in measuring practice give starting points to 
further research work. All of these circumstances 
show that it was timely to assure such a forum for

summarizing the results attained in the subject 
standing in the foreground of scientific interest 
having also practical significance, and to assure due 
development on this field.

Most of the 38 manuscripts produced by using 
the "camera ready” technique are of proper presen
tation, the figures and tables are easy to survey, 
clearly arranged. It is to be seen that the authors 
brought great care to bear upon the lucidity in 
formulating the mathematical expressions and here 
and there did not take due care of the forms of 
characters and indices. Nevertheless, all in all, it can 
be stated that the exterior appearance of the book 
equals its high internal professional value. The neat 
and careful work of the Publishing House of the 
Hungarian Academy of Sciences has to be especially 
emphasized.

Gy. Czeglédi

F r a n z , G. (Schriftleiter): Beton-Kalender 1983. 
Taschenbuch für Beton-, Stahlbeton- und Spann
betonbau sowie die verwandten Fächer. 72. 
Jahrgang, Verlag von Wilhelm Ernst u. Sohn, 
Berlin—München. Teil I: S. 872, Teil II: S. 1006.

Dieses Taschenbuch ist seit 72 Jahren ein 
wertvolles Handbuch des Beton- und Stahlbe
tonfaches, dessen Erscheinung von Jahr zu Jahr 
selbst über den Grenzen der BRD — mit lebhaftem 
Interesse erwartet wird. In diesem mit jährlich 
veränderlichem Inhalt erscheinenden Werk sind die 
neuesten Ergebnisse der Wissenschaft und Praxis in 
kurzgefaßter aber leicht verständlicher Form auf
zufinden, sowie jene Kenntnisse gesammelt, die zur 
zeitgemäßen, sicheren und wirtschaftlichen 
Ausführung der Beton- und Stahlbetonbauten nötig 
sind.

Im I. 7Ы1 des Werkes behandelt Prof. J. 
BONZEL die Eigenschaften, das Herstellen und 
Bearbeiten des Betons. D. BERTRAM berichtet
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über Baustähle« Stahlerzeugnisse, Betonstahl und 
Betoneinlagen. Prof. K. MÖHLER befaßt sich mit 
Bauholz, Holzwerkstoffen und Schalungen. K. 
STIGLAT—H. WIPPEL behandeln Fragen von 
der Bemessung verschiedenartig belasteter und 
gestützter massiver Platten. Prof. E. GASSER gibt 
Anweisungen zur Bemessung der Stahlbetonteile für 
Biegung mit Längskraft, Schub und Torsion. Von 
Prof. K. KORDINA und Prof. U. QUAST wird die 
Bemessung der schlanken Bauteile eingehend be
sprochen, sowie auch Tragverhalten schlanker 
Druckglieder und verschiedene Knicksicherheits
fragen. Die Anwendungsbeispiele, Diagramme und 
Tafeln erleichtern die Anwendung der Vorgetra
genen. Prof. H. KUPFER beschäftigt sich mit der 
Bemessung der Stahlbetonbauteile, sowie mit den 
Fragen der teilweisen Vorspannung. Hier wird 
unter anderen der Nachweis der Gebrauchsfähig
keit eingehend erörtert. Der I. Teil endet mit Anga
ben der Niederländischen Stahlbetonbestimmun
gen.

Im II. Teil des Werkes berichtet H. GOFFIN 
über die in der BRD gültigen Bestimmungen, 
Normen, Richtlinien, und Erlasse. Dieses Kapitel 
umfasst mehr als 500 Seiten und ist für den 
praktizierenden Fachmann unentbehrlich und 
äußerst nützlich. H. BECHER berichtet über ver
schiedene Fragen bezüglich der Massivbrücken. W. 
SCHLEEH beschäftigt sich mit Bauteilen 
(Scheiben), die sich in zweiachsigem Spannungszu
stand befinden. Ausser der klassischen analytischen 
Verfahren werden auch vereinfachte Rech
nungsmethoden mitgeteilt, sowie Versuchsverfah
ren zur Bestimmung von Scheibenspannungen. Im 
letzten Kapitel berichtet Prof. W. SCHÜLE über 
Wärme- und Feuchteschutzfragen und Prof. K. 
GÖSELE erörtert verschiedene Probleme des 
Schallschutzes.

Es kann festgestellt werden, dass der neueste 
Jahrgang des Beton-Kalenders, den früheren 
Jahrgängen entsprechend, einen weiten Überblick 
vom neuesten Stand der Betonwissenschaft und der 
aktuellen Fragen dieses Faches bietet. Die Verfasser 
der einzelnen Kapitel sind anerkannte Fachmänner 
ihres Faches die unter der Leitung des weitbe 
kannten erfahrenen Schriftleiters, Prof. Dr.-Ing. e.h. 
G. FRANZ alles mögliche geleistet haben damit 
dieses Taschenbuch mit seinem reichen Inhalt und 
wertvollen Wissensmaterial ein treues, verläßliches 
Hilfsmittel der Fachkreise bleibe.

P. Csonka

L i p k a , I.: Theoretical Investigation o f the Precision 
of Metal Cutting Machine-Tools (geometric and 
processing accuracies). Akadémiai Kiadó, Buda
pest, 1982. 286 pages.

The Author of the book, the contents of which is 
comprehensively expressed by the title, is a math
ematician, Anyhow, it is very difficult to find a 
mathematician who does not spare any trouble in 
order to become absorbed in the details of the 
machine-building technology for trying to find 
models with the aid of the solution and evaluation of 
which renders help to the design engineer of the up- 
to-date machine-tools.

The Author of the book who earned the scientific 
degree of Doctor of Technical Sciences, became a 
few decades ago a research officer of the Institute of 
the Development of the Hungarian Machine-Tool 
works, where in possession of the knowledge in 
applied mathematics fostered the work of the 
developing, designing and researching engineers.

The Author and the publisher Akadémiai Kiadó 
acted right on summarizing and completing on 
uniform bases the numerous papers (the Author 
refers to 23 papers of his own) and publishing them 
in form of a book of general interest.

The book is divided into three parts. Part one 
and two try to find the theoretical relationships 
between the accuracy of the processed work-piece 
and the factors influencing the precision of the work 
of the machine-tools to the technologies using 
single-edged and multi-edged cutting tools re
spectively. The third part (i.e., the annexe) presents 
the mathematical methods applied.

In investigating the accuracy of shape of the 
circular-cylinder surfaces processed with a single- 
edged cutting tool, the cylindrical inaccuracy is 
analysed in case of processing by tool feed, i.e., by 
work-piece feed. The cylindrical or positioning 
inaccuracies occurring in fine boring are separately 
treated. Part one is concluded by the failure analysis 
of the jig-borer, further by the circular inaccuracy of 
shape of the circular-cylinder surfaces processed 
with single-edged cutting tool.

In the geometrical accuracy of the circular- 
cylinder surfaces processed with multi-edged cutting 
tool, the theory of the envelopes of the set of surfaces 
and curves plays a decisive part. Therefore, the book 
investigates in detail the cross-sectional curves of the 
work pieces, the envelope of the set of circles 
described by the abrasive disc, their singularities, the 
characteristics, cylindrical inaccuracy of the profiles

A d a  Technica Academiac Scientiarum llunearicae 94. 19112



B O O K  R E V I E W S 237

of the work pieces ground with grinding wheels of 
large diameter. This part is ended by the analysis of 
the accuracy of the centreless grinder, the optical 
shape grinder, the shape and position and that of the 
drilling-milling machine of horizontal and vertical 
spindle.

From the annex, the theory of the envelope of the 
sets of curves and the surfaces is to be mentioned in 
particular (as well as the definition, and the de
duction of the set of the parametric equations of the 
envelope).

The simplified mathematical treatment and the 
70 linear explanatory figures help to easily read and 
understand the book.

Z. Terplan

Bo l o t in , V. V.: Wahrscheinlichkeitsmethoden zur 
Berechnung von Konstruktionen (Methods of the 
Theory o f Probability in the Calculation of Con
structions) 567 pages, 272 figures, 5 tables

The book published in 1965 and 1971 has been 
translated from Russian by a collective consisting of 
German experts, under the leadership of the 
scientific editor Albert Duda. The work is, as a 
matter of fact, an enlarged re-edition of the hand
book written in Russian also by Bolodin: "Statistical 
Methods in the Mechanics of Construction” pub
lished in 1961.

The book consists of three parts, from which the 
first one gives a recapitulation on the theory of 
probability; in particular, the first head chapter 
deals with the elements of the theory of the 
calculation of probabilities, while the second one 
with those of the stochastic processes. Both head 
chapters treat of the parts of the theoretical math
ematics which are necessary in the dimensioning of 
constructions as well as in their static and dynamic 
examination. The first head chapter consists of 
nineteen, and the second one of eleven chapters.

Part two discusses the statistical methods of the 
dynamics of constructions. Chapter three is titled: 
"Statistical Methods and Problems". The head 
chapter comprises 12 chapters. Head chapter 4 
which is composed of nine chapters, treats by 
making use of the statements of the preceding head 
chapter of the dimensioning and the stability 
problems of beams on elastic foundation. Head 
chapter five describes the dynamic dimensioning of 
structures, as a matter of course, by utilizing 
methods of the theory of probability. The head 
chapter in question consisting of thirteen chapters 
details the application of stochastic processes and 
systems to the dynamic dimensioning.

The third main part of the book deals with the 
reliability of constructions. Head chapter six bears 
the superscription "Theory of the Reliability and 
Durability of Bearing Structures". The head chapter 
consisting of eighteen chapters deals not only with 
bearing constructions but also with the problems of 
oscillating systems. The subject of head chapter 
seven is the statistical ultimate design-theory. This 
head chapter containing eleven chapters uses for the 
description of strength the second lower extremes 
(Weibull’s) distribution. It also treats of the theoret
ical fundaments of the accumulation of damages. 
Head chapter eight discusses the theoretical bases of 
the dimensioning of bearing structures according to 
the prescriptions on the subject. The head chapter 
consisting of six chapters details the different 
formulations of the problem of safety.

The work may be utilized as a very useful 
handbook by the civil engineers, architects and 
mechanicafengineers, and is an indispensable aid 
for engineers being engaged in structural
dimensioning. -  . . .  . ,6 £. Misteth

M a jo r , S.: Dynamics in Civil Enyineeriny, Vol. I: 320 
pp„ Vol. II: 302 pp., Vol. Ill: 291 pp„ Vol. IV: 306 pp. 
Akadémiai Kiadó, Budapest 1980.

This book of four volumes in English is a natural 
successor of the first edition in Hungarian, and the 
second one in German. The recent, abrupt develop
ment imposed to spend as much as four volumes on 
the most crucial problems. This work assists both 
theoreticians and practicing engineers by offering a 
wealth of numerical examples and references. 
Chapter subjects are the following:

Volume I focussed on theory reflects the idea of 
its Author to present practically proven, useful 
theoretical results in addition to latest test results. 
Completing data in previous editions by latest 
results, a detailed discussion is spent on the theoreti
cal deduction and methods of damping. Problems of 
shock effects and of systems with several, up to six, 
degrees of freedom are investigated. In classifying 
machine foundations, kinds of spring-supported 
machine foundations and great many general cases 
and conditions of designing machine foundations 
are presented. Problems of fatigue of building 
materials and of determining moduli of elasticity are 
scrutinized. The data set compiled in tables and 
diagrams is of utmost importance in design, permit
ting researchers to take the optimum from among 
alternatives of dynamic force effects on soils.

The scope of Volume II relies on theoretical and 
practical fundamentals in Volume I. It devotes a
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uniform discussion to technology and foundation 
problems of machines of impact action, low r.p.m., 
or of special destination, including foundations for 
machine tools set directly on the floor. A detailed 
examination is spent on vibration damping pro
blems, including spring-damping interaction. A 
detailed analysis is given of steel and rubber springs 
and of their comparison, advantages and draw
backs. Ail these are illustrated on recent numerical 
examples. Thereafter mechanical methods aiming at 
reducing or avoiding vibrations inside the machine 
itself are discussed, including problems of the critical 
number of revolutions, of machine balancing, anti
vibrators and amortizers. At last, elastic couplings 
are presented, with their latest, most up-to-date 
types, omitting outdated ones. Essential modifica
tions have been suggested for the design of hammer 
foundations.

Volume III has been concerned with foundations 
for high r.p.m. machines, involving technology 
problems of these latter. Theoretical matter in this 
volume relies on fundamentals in Volume 1. Chapter 
1 refers to classification of machines and their 
arrangement, points out the trend of development, 
ways of load assumption, data for material con
sumption and for economically favourable arrange
ment outdoors or in part outdoors are being 
considered, in particular, for thermal and nuclear 
power stations. Chapter 2 imparts theoretical 
fundamentals together with different computation 
methods. Resonance, amplitude and combined 
methods are discussed according to a new system 
matching practice of the recent decade.

First part of Volume IV  has been concerned with 
overall dynamic problems of constructions and 
industrial structures, including wind effects, seismic 
effects and explosions. The second part is devoted to 
dynamic problems of hydraulic engineering 
structures and objects, including dynamic effects on 
dams, pressure oscillations in pipelines, dynamic 
effects in hydraulic power stations and pumping 
stations. Also vibration problems of floating 
structures and pumping stations have been con
sidered, including ship vibrations, extending to 
elastic foundations for ship-borne machines. Third 
part of the volume has been concerned with dynamic 
problems of bridges, classifies them according to 
span from the aspect of dynamics, describes 
theoretical and field vibration measurements on 
bridges, including determination of the dynamic 
factor in course of internationally organized experi
ments. Particular consideration is given to dynamic 
problems of large-span suspended bridges and 
short-span, mainly pipe aqueducts, relying on 
theoretical considerations and test results.

This new book of four volumes by Prof. Major is 
a significant item in the Hungarian and inter
national special literature, counting, just as hitherto, 
on the acknowledgement of English-speaking spe
cialists, in particular, by treating subjects -  sky
scrapers, earthquakes, seaside power stations 
extending beyond Hungarian practice. Both English 
and Russian publications are referred to, compared 
and evaluated, and up-to-date computer facilities 
are widely taken into account.

O. Halász
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NEWS

THE INDIAN CONCRETE INSTITUTE

We have been asked for anouncing that a new Scientific Centre — The Indian 
Concrete Institute — has been formed. Its headquaters are at the Structural 
Engineering Research Centre, CSIR Campus, TTTI — Pharamani PO, Madras 
600113. President of the Institute is Ramaiah, M. (Structural Engineering Research 
Centre, CSIR Compus, Madras-600113, Vice president is Chakravarti S. K. (Tata Iron 
and Steel Co. Limited, Jamshedpur — 831001).

The membership is open to all those, who are interested in the development of 
concrete construction technology.

In Volume 93 of this periodical on page 93 in P. Csonka's paper: "Elliptic Plate with Clamped 
Edge” the well-known formulas of the moments were misprinted. The correct formulas are:

E R R A T A

m

mxy = K( I—/2)
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