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Abstract. According to Gauss-Lucas theorem, every convex set con-
taining all the zeros of a polynomial also contains all its critical points.
This result is of central importance in the geometry of critical points in
the analytic theory of polynomials. In this paper, an extension of Gauss-
Lucas theorem is obtained and as an application some generalizations of
Bernstein-type polynomial inequalities are also established.

1 Extension of Gauss-Lucas theorem

Let g be a real differential function, then Rolle’s theorem guarantees the exis-
tence of at least one critical point (zero of its derivative g′) between any two
real zeros of g. While as, in case of analytic functions of a complex variable,
Rolle’s theorem does not hold in general. This fact can be realized from the
function g(z) = eiz − 1 which has zeros at z = 0 and z = 2π, however, its
derivative g′ has no zeros whatsoever.
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If the idea of a critical point lying between two points on the real line is
replaced in the complex plane by the concept of a critical point located in
some region containing the zero of the function then following result (see [3,
pp. 22], [4, pp. 179]) called as Gauss-Lucas theorem gives a relative location
of critical points with respect to the zero for polynomials.

Theorem 1 The critical points of a non-constant polynomial f lie in the con-

vex hull H of the zeros of f.

Let a circle C encloses all the zeros of f then by theorem 1, H ⊂ C. On the
other hand, through each pair of vertices of the polygon H a family of circles
Cδ can be drawn which contains H and consequently all the zeros and critical
points of f. The region Γ = ∩Cδ would also contain all zeros of f and f′. Hence,
all the critical points of f must lie in the region common to all possible Γ ’s,
which is equal to H. Thus, an equivalent form of Theorem 1 can be stated as
follows.

Theorem 2 A circle C containing all the zeros of a non-constant polynomial

f also encloses all the zeros of its derivative f′.

In literature, there exist different variants of Gauss-Lucas theorem (for refer-
ences see [3, pp. 22], [4, pp. 180], [5, pp. 71]). In this paper, we first present
the following extension of Gauss-Lucas theorem.

Theorem 3 Let all the zeros of an nth degree polynomial f(z) lie in |z| ≤ r,

then for every α ∈ C with ℜ(α) ≤ n
2 , the zeros of zf′(z) − αf(z) also lie in

|z| ≤ r.

Proof. Let P(z) = zf′(z)−αf(z) andw ∈ C with |w| > r. Suppose z1, z2, . . . , zn
be the zeros of f(z), then |zν| ≤ r and |w|− |zν| > 0 for ν = 1, 2, . . . , n. Now,

P(w)

f(w)
=

wf′(w)

f(w)
− α =

n
∑

ν=1

w

w− zν
− α

=
1

2

n
∑

ν=1

(w− zν) + (w+ zν)

w− zν
− α

=
n

2
− α+

1

2

n
∑

ν=1

(w+ zν)(w̄− z̄ν)

|w− zν|2
.

This implies

ℜ

(
P(w)

f(w)

)
=

n

2
−ℜ(α) +

1

2

n
∑

ν=1

|w|2 − |zν|
2

|w− zν|2
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≥
n

2
−

n

2
+

1

2

n
∑

ν=1

|w|2 − |zν|
2

|w− zν|2
> 0.

This further implies that P(w) 6= 0. Hence, P(z) cannot have a zero in |z| > r.

Therefore, we conclude that all the zeros of the polynomial zf′(z) − αf(z) lie
in |z| ≤ r. �

Note that the Theorem 2 follows by taking α = 0 in Theorem 3.

2 Bernstein-type inequalities

The zero-preserving property of the derivative, which emerge out of Gauss-
Lucas theorem, plays an important role in Bernstein-type inequalities for poly-
nomials. A simple proof of the following result using Gauss-Lucas theorem can
be found in a comprehensive book of Rahman & Schmeisser [5, pp. 510].

Theorem 4 Let a polynomial F(z) of degree n has all its zeros in |z| ≤ 1 and

G(z) be a polynomial of degree at most n such that |G(z)| ≤ |F(z)| for |z| = 1,

then

|G′(z)| ≤ |F′(z)| for |z| ≥ 1. (1)

The equality holds outside the closed unit disk if and only if G(z) ≡ eiδF(z) for

some δ ∈ R.

By taking F(z) = Mzn, where M = max|z|=1 |G(z)|, following sharp estimate
for the derivative over closed unit disc, called as Bernstein’s inequality [1],
follows immediately.

Theorem 5 Let G(z) be a polynomial of degree at most n, then

max
|z|=1

|G′(z)| ≤ nmax
|z|=1

|G(z)|. (2)

The equality is attained in (2) if and only if G(z) = azn, a 6= 0. Therefore,
for the polynomials having zeros away from origin, there is a scope for an
improvement in (2). In this regard, Erdös conjectured that if a polynomial
G(z) of degree n has no zero in |z| < 1, then

max
|z|=1

|G′(z)| ≤
n

2
max
|z|=1

|G(z)|. (3)

This conjecture was later proved by Lax [2].
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As an application of Theorem 3, here we next present the following extension
of Theorem 4. The proof of this theorem is similar to that of theorem 4 given
in [5].

Theorem 6 Let a polynomial F(z) of degree n has all its zeros in |z| ≤ 1 and

G(z) be a polynomial of degree at most n such that |G(z)| ≤ |F(z)| for |z| = 1,

then for every α,β ∈ C with ℜ(α) ≤ n/2, ℜ(β) ≤ n/2 and |z| ≥ 1, we have

|zG′(z) − αG(z)| ≤ |zF′(z) − αF(z)| (4)

and

|z2G′′(z) + (1−α− β)zG′(z) + αβG(z)|

≤ |z2F′′(z) + (1− α− β)zF′(z) + αβF(z)|. (5)

The bound is sharp and equality holds for some point z in |z| > 1 if and only

if G(z) = eiδF(z) for some δ ∈ R.

Proof. Since the result holds trivially true, if G(z) = eiδF(z) for some δ ∈ R.

Therefore, let G(z) 6= eiδF(z). Consider the function φ(z) = G∗(z)/F∗(z) where
F∗(z) = znF(1/z) and G∗(z) = znG(1/z). Since F(z) has its all zeros in |z| ≤ 1,

then F∗(z) has no zero in |z| < 1. This implies that the rational function φ(z)

is analytic for |z| ≤ 1. Also, |G(z)| = |G∗(z)| and |F(z)| = |F∗(z)| for |z| = 1,

therefore, |φ(z)| ≤ 1 for |z| = 1. By invoking maximum modulus theorem, we
obtain;

|φ(z)| < 1 for |z| < 1.

On replacing z by 1/z in the above inequality, we get |G(z)| < |F(z)| for |z| > 1.

It follows by Rouche’s theorem that for any λ ∈ C with |λ| ≥ 1, the polynomial
G(z) − λF(z) of degree n has all its zeros in |z| ≤ 1. Applying Theorem 3 to
the polynomial P(z) = G(z) − λF(z), for α ∈ C with ℜ(α) ≤ n/2, we obtain
that the polynomial

zP′(z) − αP(z) = z(G′(z) − λF′(z)) − α(G(z) − λF(z))

= (zG′(z) − αG(z)) − λ(zF′(z) − αF(z))

has all zeros in |z| ≤ 1. This implies

|zG′(z) − αG(z)| ≤ |zF′(z) − αF(z)| for |z| > 1. (6)
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If inequality (6) were not true, then there is some point w ∈ C with |w| > 1

such that |wG′(w) − αG(w)| > |wF′(w) − αF(w)|. By Theorem 3, wF′(w) −

αF(w) 6= 0. Now, choose λ = −
wG′(w)−αG(w)

wF′(w)−αF(w)
and note that λ is a well defined

complex number with modulus greater than 1. So, with this choice of λ, one
can easily observe that w is a zero of zP′(z) − αP(z) of modulus greater than
one. This is a contradiction, since all the zeros of this polynomial lie in |z| ≤ 1.

Hence, the inequality (6) is true, by continuity (6) also holds for |z| = 1. This
proves the inequality (4).
Finally, if we take H(z) = zG′(z) − αG(z) and K(z) = zF′(z) − αF(z) with

ℜ(α) ≤ n/2, then by inequality (4), |H(z)| ≤ |K(z)| for |z| = 1. Therefore,
by using inequality (4) again, for β ∈ C with ℜ(β) ≤ n/2, we get, |zH′(z) −

βH(z)| ≤ |zK′(z)−βK(z)| for |z| ≥ 1, which is equivalent to (5). This completes
the proof of this theorem. �

For α = 0 the inequality (4) reduces to (1).
The following result can be deduced from Theorem 6 by taking F(z) = Mzn

where M = max|z|=1 |G(z)|.

Corollary 1 Let G(z) be a polynomial of degree n and α,β ∈ C with ℜ(α) ≤

n/2, ℜ(β) ≤ n/2, then for |z| ≥ 1,

|zG′(z) − αG(z)| ≤ |n− α||z|nmax
|z|=1

|G(z)| (7)

|z2G′′(z) + (1− α− β)zG′(z) + αβG(z)|

≤ |n(n− α− β) + αβ||z|nmax
|z|=1

|G(z)|. (8)

Equality in (7) and (8) hold for G(z) = azn where a 6= 0.

The next corollary follows by taking α = β = n/2 in (7) and (8).

Corollary 2 Let G(z) be a polynomial of degree n, then for |z| ≥ 1,

∣∣∣zG′(z) −
n

2
G(z)

∣∣∣ ≤ n

2
|z|nmax

|z|=1
|G(z)| (9)

∣∣∣∣z
2G′′(z) + (1− n)zG′(z) +

n2

4
G(z)

∣∣∣∣ ≤
n2

4
|z|nmax

|z|=1
|G(z)|. (10)

The inequalities (9) and (10) are sharp and equality holds for G(z) = azn,

a 6= 0
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Next, if we take α = 1 in (7) and β = 0 in (8), we obtain the following:

Corollary 3 Let G(z) be a polynomial of degree n ≥ 2 and α ∈ C with

ℜ(α) ≤ n/2, then for |z| ≥ 1,

|zG′(z) −G(z)| ≤ (n− 1)|z|nmax
|z|=1

|G(z)|

|zG′′(z) + (1− α)G′(z)| ≤ n|n− α||z|n−1max
|z|=1

|G(z)|.

The results are best possible and G(z) = azn, a 6= 0 is the extremal polynomial

for both the inequalities.

The Theorem 6 and preceding corollaries can be improved for the class of
polynomials having no zero in |z| < 1. For that, we require following lemmas.

3 Lemmas

If we are given an nth degree polynomial f(z) which does not vanish for |z| < 1,

then all the zeros of q(z) = znf(1/z) lie in |z| ≤ 1 and |f(z)| = |q(z)| for |z| = 1.

Applying Theorem 6 by taking G(z) = f(z) and F(z) = q(z), we get:

Lemma 1 Let a polynomial f(z) of degree n has no zero in |z| < 1 and q(z) =

znf(1/z), then for every α,β ∈ C with ℜ(α) ≤ n/2, ℜ(β) ≤ n/2 and |z| ≥ 1,

we have

|zf′(z) − αf(z)| ≤ |zq′(z) − αq(z)| (11)

and

|z2f′′(z) + (1−α− β)zf′(z) + αβf(z)|

≤ |z2q′′(z) + (1− α− β)zq′(z) + αβq(z)|. (12)

Lemma 2 Let f(z) be a polynomial of degree n and q(z) = znf(1/z), then for

every α,β ∈ C with ℜ(α) ≤ n/2, ℜ(β) ≤ n/2 and |z| ≥ 1, we have

|zf′(z) − αf(z)|+ |zq′(z) − αq(z)| ≤ (|n− α|+ |α|)|z|nmax
|z|=1

|f(z)|,

and

|z2f′′(z) + (1−α− β)zf′(z) + αβf(z)|

+ |z2q′′(z) + (1− α− β)zq′(z) + αβq(z)|

≤ |n(n− α− β) + αβ|+ |αβ|)|z|nmax
|z|=1

|f(z)|.



Gauss Lucas theorem and Bernstein-type inequalities for polynomials 217

Proof. Let M = max|z|=1 |f(z)| then by Rouche’s theorem, for every λ ∈ C

with |λ| ≥ 1, the polynomial f(z) + λM does not vanish in |z| < 1. Applying
Lemma 1 to f(z) + λM, then for α,β ∈ C with ℜ(α) ≤ n/2, ℜ(β) ≤ n/2 and
|z| ≥ 1, we have

|(zf′(z) − αf(z)) + λαM| ≤ |(zq′(z) − αq(z)) + λ̄(n− α)Mzn| (13)

and

|z2f′′(z) + (1−α− β)zf′(z) + αβf(z) + αβλM|

≤ |z2q′′(z) + (1− α− β)zq′(z) + αβq(z)

+ λ̄ {n(n− α− β) + αβ}Mzn|, (14)

where q(z) = znf(1/z). In view of Corollary 1, we can choose argument of λ
in (13) and separately in (14) such that

|(zq′(z) − αq(z)) + λ̄(n− α)Mzn| = |̄λ||n− α||z|nM− |zq′(z) − αq(z)|

and

|z2q′′(z) + (1− α− β)zq′(z) + αβq(z)) + λ̄ {n(n− α− β) + αβ}Mzn|

= |̄λ||n(n− α− β) + αβ||z|nM− |z2q′′(z) + (1− α− β)zq′(z) + αβq(z)|

for |z| ≥ 1. Using these inequalities in (13) and (14) and taking |λ| = 1, we
conclude for |z| ≥ 1,

|zf′(z) − αf(z)|+ |zq′(z) − αq(z)| ≤ (|n− α|+ |α|)M|z|n,

and

|z2f′′(z) + (1−α− β)zf′(z) + αβf(z)|

+ |z2q′′(z) + (1− α− β)zq′(z) + αβq(z)|

≤ |n(n− α− β) + αβ|+ |αβ|)M|z|n.

This completes the proof. �

4 Extension of Erdös-Lax theorem

Finally, we prove the following extension of inequality (3) for the class of
polynomials having no zero in |z| < 1.
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Theorem 7 Let G(z) be a polynomial of degree n and has no zero in |z| < 1,

then for every α,β ∈ C with ℜ(α) ≤ n/2, ℜ(β) ≤ n/2 and |z| ≥ 1, we have

|zG′(z) − αG(z)| ≤
|n− α|+ |α|

2
|z|nmax

|z|=1
|G(z)| (15)

and

|z2G′′(z) + (1−α− β)zG′(z) + αβG(z)|

≤
|n(n− α− β) + αβ|+ |αβ|

2
|z|nmax

|z|=1
|G(z)|. (16)

Equality in (15) and (16) hold for G(z) = azn + b where |a| = |b| 6= 0.

Proof. The proof follows by combining the lemmas 1 and 2. �

Note that inequality (3) follows from (15) by taking α = 0.

If we take α = 1 in (15) and β = 0 in (16), we obtain the following:

Corollary 4 Let a polynomial G(z) of degree n ≥ 2 does not vanish for |z| < 1

and α ∈ C with ℜ(α) ≤ n/2, then for |z| ≥ 1,

|zG′(z) −G(z)| ≤
n

2
|z|nmax

|z|=1
|G(z)| (17)

|zG′′(z) + (1− α)zG′(z)| ≤
n|n− α|

2
|z|n−1max

|z|=1
|G(z)|. (18)

These inequalities are sharp.

Remark 1 A polynomial f(z) of degree n is said to be self-inversive if f(z) =

σq(z), where q(z) = znf(1/z) and |σ| = 1. It is not difficult to prove that the

Theorem 7 also holds for self-inversive polynomials as well.
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Abstract. In this paper, we study two generalizations of dual-complex
Lucas-balancing numbers: dual-complex k-Lucas balancing numbers and
dual-complex k-Lucas-balancing numbers. We give some of their proper-
ties, among others the Binet formula, Catalan, Cassini, d’Ocagne identi-
ties.

1 Introduction

The sequence of balancing numbers, denoted by {Bn}, was introduced by
Behera and Panda in [4]. In [9], Panda introduced the sequence of Lucas-
balancing numbers, denoted by {Cn} and defined as follows: if Bn is a balan-
cing number, the number Cn =

√
8B2

n + 1 is called a Lucas-balancing number.
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Key words and phrases: Lucas-balancing numbers, Diophantine equation, dual-complex
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Recall that a balancing number n with balancer r is the solution of the Dio-
phantine equation

1+ 2+ . . .+ (n− 1) = (n+ 1) + (n+ 2) + . . .+ (n+ r). (1)

The balancing and Lucas-balancing numbers fulfill the following recurrence
relations

Bn = 6Bn−1 − Bn−2 for n ≥ 2, with B0 = 0, B1 = 1,

Cn = 6Cn−1 − Cn−2 for n ≥ 2, with C0 = 1, C1 = 3.

The Table 1 includes initial terms of the balancing and Lucas-balancing
numbers for 0 ≤ n ≤ 7.

Table 1.

n 0 1 2 3 4 5 6 7

Bn 0 1 6 35 204 1189 6930 40391

Cn 1 3 17 99 577 3363 19601 114243

The Binet type formulas for the balancing and Lucas-balancing numbers
have the forms

Bn =
αn − βn

α− β
,

Cn =
αn + βn

2
,

respectively, for n ≥ 0, where α = 3+ 2
√
2, β = 3− 2

√
2.

The concept of balancing numbers has been extended and generalized by
many authors, see [7, 8, 10]. In this paper, we focus our attention on k-Lucas
balancing numbers and k-Lucas-balancing numbers and their applications in
the theory of dual-complex numbers.

Based on the concept from [6], Özkoç in [7] introduced k-Lucas balancing
numbers as follows.

For some positive integer k ≥ 1 let Ck
n denote the nth k-Lucas balancing

number which is the number defined by

Ck
n = 6kCk

n−1 − Ck
n−2

for n ≥ 2, with Ck
0 = 1, Ck

1 = 3.
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Theorem 1 ([7]) The Binet type formula for k-Lucas balancing numbers is

Ck
n =

(3− βk)α
n
k − (3− αk)β

n
k

2
√
9k2 − 1

, (2)

for n ≥ 0, k ≥ 1, where αk = 3k+
√
9k2 − 1, βk = 3k−

√
9k2 − 1.

Another generalization of the Lucas-balancing numbers was presented in
[12]. For integer k ≥ 1 the sequence of k-Lucas-balancing numbers (written
with two hyphens) is defined recursively by

Ck,n = 6kCk,n−1 − Ck,n−2

for n ≥ 2, with Ck,0 = 1, Ck,1 = 3k.

Theorem 2 ([13]) The Binet type formula for k-Lucas-balancing numbers is

Ck,n =
αn
k + βn

k

2
(3)

for n ≥ 0, k ≥ 1, where αk = 3k+
√
9k2 − 1, βk = 3k−

√
9k2 − 1.

Note that for k = 1 we have C1
n = C1,n = Cn.

Complex and dual numbers are well known two dimensional number sys-
tems. Let C and D denote the set of complex numbers with imaginary unit
i and the set of dual numbers with nilpotent unit ε, respectively. The set of
dual-complex numbers is expressed in the form

DC = {w = z1 + εz2 : z1, z2 ∈ C, ε2 = 0, ε 6= 0},

see [1]. Here if z1 = x1+ iy1 and z2 = x2+ iy2, then any dual-complex number
can be written as

w = x1 + iy1 + εx2 + iεy2. (4)

If w1 = z1 + εz2 and w2 = z3 + εz4 are any two dual-complex numbers then
the equality, the addition, the subtraction, the multiplication by scalar and
the multiplication are defined in the natural way:

w1 = w2 only if z1 = z3, z2 = z4,

w1 ±w2 = (z1 ± z3) + ε(z2 ± z4),

for s ∈ R : sw1 = sz1 + εsz2,

w1 ·w1 = z1z3 + ε(z1z4 + z2z3).

If we write the dual-complex numbers using (4) then the multiplication of
dual-complex numbers can be made analogously as multiplications of algebraic
expressions using Table 2.
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Table 2. The dual-complex numbers multiplication

· i ε iε

i −1 iε −ε

ε iε 0 0

iε −ε 0 0

Balancing and Lucas-balancing numbers are numbers defined by the linear
recurrence relation and they are named as numbers of the Fibonacci type.
These numbers have many applications in the theory of hypercomplex num-
bers, for details see [14]. Some interesting properties of dual-complex Fibonacci
and dual-complex Lucas numbers we can find in [5]. The dual-complex Pell
numbers (quaternions) were introduced quite recently in [3]. In [2], the author
investigated one-parameter generalization of dual-complex Fibonacci numbers,
called dual-complex k-Fibonacci numbers. Based on these ideas we define and
study dual-complex Lucas-balancing numbers and their generalizations.

2 Main results

Let n ≥ 0 be an integer. The nth dual-complex balancing number DCBn and
nth dual-complex Lucas-balancing number DCCn are defined as

DCBn = Bn + iBn+1 + εBn+2 + iεBn+3,

DCCn = Cn + iCn+1 + εCn+2 + iεCn+3,

where Bn is the nth balancing number, Cn is the nth Lucas-balancing number
and i, ε, iε are dual-complex units.

In the similar way we define the nth dual-complex k-Lucas balancing number
DCCk

n and the nth dual-complex k-Lucas-balancing number DCCk,n as

DCCk
n = Ck

n + iCk
n+1 + εCk

n+2 + iεCk
n+3,

DCCk,n = Ck,n + iCk,n+1 + εCk,n+2 + iεCk,n+3,

respectively.
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For k = 1 we have DCC1
n = DCC1,n = DCCn.

Theorem 3 (Binet type formulas) Let n ≥ 0, k ≥ 1 be integers. Then

(i) DCCk
n =

(3− βk)α
n
k α̂k − (3− αk)β

n
k β̂k

2
√
9k2 − 1

,

(ii) DCCk,n =
αn
k α̂k + βn

k β̂k

2
,

where

αk = 3k+
√
9k2 − 1, βk = 3k−

√
9k2 − 1 (5)

and

α̂k = 1+ iαk + εα2
k + iεα3

k, β̂k = 1+ iβk + εβ2
k + iεβ3

k. (6)

Proof. By formula (2) we get

DCCk
n = Ck

n + iCk
n+1 + εCk

n+2 + iεCk
n+3

=
(3− βk)α

n
k − (3− αk)β

n
k

2
√
9k2 − 1

+ i
(3− βk)α

n+1
k − (3− αk)β

n+1
k

2
√
9k2 − 1

+ ε
(3− βk)α

n+2
k − (3− αk)β

n+2
k

2
√
9k2 − 1

+ iε
(3− βk)α

n+3
k − (3− αk)β

n+3
k

2
√
9k2 − 1

and after calculation we obtain (i). By the same method, using (3), we can
prove formula (ii). �

For k = 1 we obtain the Binet type formula for the dual-complex Lucas-
balancing numbers.

Corollary 1 Let n ≥ 0 be an integer. Then

DCCn =
αnα̂+ βnβ̂

2
,

where

α = 3+ 2
√
2, β = 3− 2

√
2,

α̂ = 1+ i(3+
√
8) + ε(17+ 6

√
8) + iε(99+ 35

√
8),

β̂ = 1+ i(3−
√
8) + ε(17− 6

√
8) + iε(99− 35

√
8).

(7)
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Moreover, by simple calculations, we get

αk + βk = 6k,

αk − βk = 2
√

9k2 − 1,

αkβk = 1,

(3− αk)(3− βk) = 10− 18k,

α3
k + β3

k = (αk + βk)
3 − 3αkβk(αk + βk) = 216k3 − 18k

and

α̂kβ̂k =
(
1+ iαk + εα2

k + iεα3
k

)(
1+ iβk + εβ2

k + iεβ3
k

)

= i(αk + βk) + iε(α3
k + β3

k + αk + βk)

= i(6k) + iε(216k3 − 12k).

In particular, for k = 1, we have

α̂β̂ = 6i+ 204iε.

Now we will give some identities such as Catalan type, Cassini type and
d’Ocagne type identities for the dual-complex k-Lucas balancing numbers and
dual-complex k-Lucas-balancing numbers. These identities can be proved using
the Binet type formulas for these numbers.

Theorem 4 (Catalan type identity for dual-complex k-Lucas balancing num-

bers) Let k ≥ 1, n ≥ 0, r ≥ 0 be integers such that n ≥ r. Then

DCCk
n−r · DCC

k
n+r −

(
DCCk

n

)2
=

=
(3− βk)(3− αk)

4(9k2 − 1)

(
2−

(
βk

αk

)r

−

(
αk

βk

)r)
α̂kβ̂k,

where αk, βk and α̂k, β̂k are given by (5) and (6), respectively.

Proof. By formula (i) of Theorem 3 we have

DCCk
n−r · DCC

k
n+r −

(
DCCk

n

)2

=
−(3− αk)(3− βk)α

n−r
k βn+r

k α̂kβ̂k − (3− αk)(3− βk)α
n+r
k βn−r

k α̂kβ̂k

4(9k2 − 1)

+
2(3− αk)(3− βk)α

n
kβ

n
k α̂kβ̂k

4(9k2 − 1)

=
(3− αk)(3− βk)α

n
kβ

n
k α̂kβ̂k

4(9k2 − 1)

(
2−

(
βk

αk

)r

−

(
αk

βk

)r)
.
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Using the fact that αkβk = 1, we obtain the desired formula. �

Theorem 5 (Catalan type identity for dual-complex k-Lucas-balancing num-

bers) Let k ≥ 1, n ≥ 0, r ≥ 0 be integers such that n ≥ r. Then

DCCk,n−r · DCCk,n+r − (DCCk,n)
2 =

1

4

((
βk

αk

)r

+

(
αk

βk

)r

− 2

)
α̂kβ̂k,

where αk, βk and α̂k, β̂k are given by (5) and (6), respectively.

Proof. By formula (ii) of Theorem 3 we have

DCCk,n−r · DCCk,n+r − (DCCk,n)
2

=
αn−r
k α̂kβ

n+r
k β̂k + βn−r

k β̂kα
n+r
k α̂k − 2αn

k α̂kβ
n
k β̂k

4

=
1

4
αn
kβ

n
k α̂kβ̂k

((
βk

αk

)r

+

(
αk

βk

)r

− 2

)
.

Using the fact that αkβk = 1, we obtain the desired formula. �

Note that for r = 1 we obtain Cassini type identities for the dual-complex
k-Lucas balancing numbers and the dual-complex k-Lucas-balancing numbers.

Corollary 2 (Cassini type identity for dual-complex k-Lucas balancing num-

bers) Let k ≥ 1, n ≥ 1 be integers. Then

DCCk
n−1 · DCC

k
n+1 −

(
DCCk

n

)2
= (18k− 10) α̂kβ̂k,

where αk, βk and α̂k, β̂k are given by (5) and (6), respectively.

Corollary 3 (Cassini type identity for dual-complex k-Lucas-balancing num-

bers) Let k ≥ 1, n ≥ 1 be integers. Then

DCCk,n−1 · DCCk,n+1 − (DCCk,n)
2 =

(
9k2 − 1

)
α̂kβ̂k,

where αk, βk and α̂k, β̂k are given by (5) and (6), respectively.

Theorem 6 (d’Ocagne type identity for dual-complex k-Lucas balancing num-

bers) Let k ≥ 1, m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then

DCCk
m · DCCk

n+1 − DCCk
m+1 · DCC

k
n =

=
(3− αk)(3− βk)α

n
kβ

n
k

(
αm−n
k − βm−n

k

)

2
√
9k2 − 1

α̂kβ̂k,

where αk, βk and α̂k, β̂k are given by (5) and (6), respectively.
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Proof. By formula (i) of Theorem 3 we have

DCCk
m · DCCk

n+1 − DCCk
m+1 · DCC

k
n

=
−(3− βk)α

m
k α̂k(3− αk)β

n+1
k β̂k − (3− αk)β

m
k β̂k(3− βk)α

n+1
k α̂k

4(9k2 − 1)

+
(3− βk)α

m+1
k α̂k(3− αk)β

n
k β̂k + (3− αk)β

m+1
k β̂k(3− βk)α

n
k α̂k

4(9k2 − 1)

=
(3− αk)(3− βk)α

n
kβ

n
k

(
αm−n+1
k + βm−n+1

k − αkβ
m−n
k − αm−n

k βk

)

4(9k2 − 1)
α̂kβ̂k

=
(3− αk)(3− βk)α

n
kβ

n
k

(
αm−n
k − βm−n

k

)
(αk − βk)

4(9k2 − 1)
α̂kβ̂k

=
(3− αk)(3− βk)α

n
kβ

n
k

(
αm−n
k − βm−n

k

)

2
√
9k2 − 1

α̂kβ̂k,

which ends the proof. �

Theorem 7 (d’Ocagne type identity for dual-complex k-Lucas-balancing num-

bers) Let k ≥ 1, m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then

DCCk,m · DCCk,n+1 − DCCk,m+1 · DCCk,n =

=
1

4

(
αm−n
k − βm−n

k

)
(βk − αk) α̂kβ̂k,

where αk, βk and α̂k, β̂k are given by (5) and (6), respectively.

Proof. By formula (ii) of Theorem 3 we have

DCCk,m · DCCk,n+1 − DCCk,m+1 · DCCk,n

=
αm
k α̂kβ

n+1
k β̂k + βm

k β̂kα
n+1
k α̂k − αm+1

k α̂kβ
n
k β̂k − βm+1

k β̂kα
n
k α̂k

4

=
1

4
αn
kβ

n
k

(
αm−n
k − βm−n

k

)
(βk − αk) α̂kβ̂k

=
1

4

(
αm−n
k − βm−n

k

)
(βk − αk) α̂kβ̂k,

which ends the proof. �

For k = 1 we obtain the Catalan, Cassini and d’Ocagne identities for the
dual-complex Lucas-balancing numbers.
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Corollary 4 (Catalan type identity for dual-complex Lucas-balancing num-

bers) Let n ≥ 0, r ≥ 0 be integers such that n ≥ r. Then

DCCn−r · DCCn+r − (DCCn)
2 =

= −
1

4

(
2−

(
β

α

)r

−

(
α

β

)r)
α̂β̂,

where α, β, α̂ and β̂ are given by (7).

Corollary 5 (Cassini type identity for dual-complex Lucas-balancing num-

bers) Let n ≥ 1 be an integer. Then

DCCn−1 · DCCn+1 − (DCCn)
2 = 8α̂β̂,

where α̂ and β̂ are given by (7).

Corollary 6 (d’Ocagne type identity for dual-complex Lucas-balancing num-

bers) Let m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then

DCCm · DCCn+1 − DCCm+1 · DCCn = −
√
2
(
αm−n − βm−n

)
α̂kβ̂k,

where α, β, α̂ and β̂ are given by (7).

3 Concluding Remarks

Cobalancing numbers were defined and introduced in [10] by modification
of formula (1). The authors called positive integer number n a cobalancing
number with cobalancer r if

1+ 2+ . . .+ n = (n+ 1) + (n+ 2) + . . .+ (n+ r).

Let bn denote the nth cobalancing number. The nth Lucas-cobalancing num-
ber cn is defined with cn =

√
8b2

n + 8bn + 1, see [7, 8].
In [11], we can find some relations of balancing and cobalancing numbers

with Pell numbers. Related to these dependences it seems to be interesting
to define dual-complex cobalancing numbers, dual-complex Lucas-cobalancing
numbers and next to find relations of dual-complex balancing and cobalancing
numbers with dual-complex Pell numbers (quaternions). For dual-complex Pell
numbers details, see [3].
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[6] K. Liptai, F. Luca, Á. Pintér and L. Szalay, Generalized balancing num-
bers, Indag. Math. (N.S.), 20(1) (2009), 87–100.
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Abstract. A permutation p of [k] = {1, 2, 3, . . . , k} is called Layman
permutation iff i+p(i) is a Fibonacci number for 1 ≤ i ≤ k. This concept
is introduced by Layman in the A097082 entry of the Encyclopedia of
Integers Sequences, that is the number of Layman permutations of [n]. In
this paper, we will study Layman permutations. We introduce the notion
of the Fibonacci complement of a natural number, that plays a crucial
role in our investigation. Using this notion we prove some results on the
number of Layman permutations, related to a conjecture of Layman that
is implicit in the A097083 entry of OEIS.

1 Introduction

Sequence (Fi)
∞

i=0 is the Fibonacci sequence ([9] A000045) defined as Fn =

Fn−1 + Fn−2 (n ≥ 2) with F0 = 0 and F1 = 1. We refer to F2 < F3 < F4 < . . . as
Fibonacci numbers. These numbers

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

are the initial object of essential mathematical research. Also, many deep re-
sults in mathematics use them to solve central open problems. For example,
the solution of Hilbert’s tenth problem [8], or designing complex data struc-
tures for important algorithms [4] rely on properties of Fibonacci numbers.
Many mathematical concepts are related to Fibonacci numbers. Enumerat-

ing special permutations leads to the sequence (Fi)
∞

i=0: The set of permutations
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Key words and phrases: permutations, Fibonacci numbers, unique perfect matching
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with |σ(i) − i| ≤ 1 for all i = 1, . . . , n is called the set of Fibonacci permuta-
tions. Investigating these has proved very fruitful (see for example [1] and [3]).
Permutation polynomials can also be linked to Fibonacci numbers (see [2]).
Our motivation is different from the above. Layman introduced a special

property of permutations (hereafter referred to as Layman’s property) which
is also related to Fibonacci numbers. Such permutations are henceforth called
Layman permutations.

Definition 1 (Layman (2004) [7]) A permutation p of [k] = {1, 2, 3, . . . , k}

is called Layman permutation iff i + p(i) is a Fibonacci number for all 1 ≤

i ≤ k.

The following permutations are Layman permutations

(
1

1

)
,

(
1 2

2 1

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3 4

4 3 2 1

)
,

(
1 2 3 4

1 3 2 4

)
.

We use the two-line notation to represent permutations. The last one denotes
π : 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 4, i.e. π(1) = 1, π(2) = 3, π(3) = 2, π(4) = 4.
The Layman’s property means that the column sums in these permutations
are Fibonacci numbers.
Layman also submitted the sequence of ”the number of Layman permuta-

tions of [n]” to OEIS (entry A097082). The first few terms suggest that for all
positive integer n the set [n] has Layman permutation. Also, infinitely often
[n] has unique Layman permutation. The sequence of these positive integers
is submitted as the A097083 entry of OEIS. These entries of the Encyclopedia
do not have any mathematical content. The statements in A097083 are all
hypothetical ones, they are conjectures.
The main reason for this paper is to establish some mathematical results

on these sequences. Our main results are two claims. The first one is an easy
observation.

Observation 1 For all positive natural number n the set [n] has a Layman

permutation.

For the second results we need to introduce the sequence

Mm(n) =
∑

2≤i≤n,i≡n (mod m)

Fi = Fn + Fn−m + Fn−2m + . . . .
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We can considerMm(2) as the initial term of the sequence or start the sequence
with Mm(0) = Mm(1) = 0 (the value of the empty sum).

M4(n) =
∑

2≤i≤n,i≡n (mod 4)

Fi = Fn + Fn−4 + Fn−8 + . . .

plays a very important role in our discussion.

Theorem 1 If n ∈ N+ is not in the sequence (M4(k))
∞

k=2 then [n] has at least

two Layman permutations.

The entry A097083 of OEIS suggests the following conjecture.

Conjecture 1 For n ∈ N+ that set [n] has a unique Layman permutation if

and only if n is in the sequence (M4(k))
∞

k=2.

We established one direction of the conjecture.
In section 2 we introduce the notion of the Fibonacci complement of a

positive integer. Using the properties of this notion in section 3 we prove our
main results.
Throughout the paper the set {0, 1, 2, 3, . . .}, i.e. the set of natural numbers is

denoted as N. N+ denotes the set of positive integers. The intervals are always
intervals of Z, so ]2, 6] = (2, 6] = {3, 4, 5, 6}. A∪̇B denotes A ∪ B and contains
the extra information that A and B are disjoint.

2 Fibonacci complement of positive integers

Definition 2 Let n ∈ N+ be a positive integer. ν ∈ N is the Fibonacci com-

plement of n iff 1 ≤ ν ≤ n and n+ ν is a Fibonacci number.

We will use F-complement as an abbreviation of Fibonacci complement.

Observation 2 Every positive number has one or two F-complements.

Proof. Let Fℓ be the minimal Fibonacci number, that is larger than n: Fℓ−1 ≤

n < Fℓ. The F-complements are the terms of Fℓ−n < Fℓ+1−n < Fℓ+2−n < . . .,
that are at most n.

n < Fℓ < Fℓ + (Fℓ+1 − n) = Fℓ+2 − n,

hence we have only two options left: Fℓ − n and Fℓ+1 − n.

Fℓ = Fℓ−1 + Fℓ−2 ≤ n+ n,

so Fℓ − n ≤ n is an F-complement indeed. �
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Notation 1 Using the notation of the proof of the above observation we write

nF for Fℓ −n, i.e. nF is the only F-complement of n or the smaller of the two

ones.

The final result of this section describes which case occurs for each natural
number n. For this, we need some preparations.
Recall, that

M3(k) = Fk + Fk−3 + Fk−6 + . . . .

Lemma 1 Mk(3) is the largest natural number t, that satisfies 2t < Fk+2.

Proof. It is well-known that 2Fk = Fk+2 − Fk−1 (see [6]). So

2M3(k) =2Fk + 2Fk−3 + 2Fk−6 + . . .

=(Fk+2 − Fk−1) + (Fk−1 − Fk−4) + (Fk−4 − Fk−7) + . . . .

The last term is 2F2 = F4−1 or 2F3 = F5−1 or 2F4 = F6−2. Depending on the
parity of Fk+2 (Fs is even iff s is divisible by 3, see [6]) we get Fk+2 − 1 (when
Fk+2 is odd) or Fk+2 − 2 (when Fk+2 is even). After collapsing the telescopic
sum we get Fk+2 − 1 or Fk+2 − 2, that proves the claim. �

Recall that

M2(k) = Fk + Fk−2 + Fk−4 + . . . = Fk+1 − 1,

where the last equality is a well-known, easy fact on Fibonacci numbers (see
[6]). Using Lemma 1 we get the following important claim.

Lemma 2 For all ℓ ∈ N+ any number n ∈ [M3(ℓ − 1) + 1,M2(ℓ − 1)] =

[M3(ℓ − 1) + 1, Fℓ[ has two F-complements. If n ∈ [Fℓ−1,M3(ℓ − 1)] for any

ℓ ∈ N+, then it has exactly one F-complement.

Note that [Fℓ−1,M3(ℓ − 1)]∪̇]M3(ℓ − 1), Fℓ[ covers all integers in [Fℓ−1, Fℓ[,
furthermore these intervals partition N+.
Proof. Take an arbitrary natural number n from [Fℓ−1, Fℓ[. Note that our
notation coincides with the notation of the proof of Observation 2: Fℓ is the
minimal Fibonacci number, that is larger than n: Fℓ−1 ≤ n < Fℓ.
From the proof of Observation 2 we know that n has two F-complements iff

Fℓ+1 − n ≤ n, i.e. Fℓ+1 ≤ 2n.
Lemma 1 says that M3(ℓ−1) satisfies 2M3(ℓ−1) < Fℓ+1. Hence the elements

of [Fℓ−1,M3(ℓ− 1)], i.e. M3(ℓ− 1) and smaller numbers from our interval have
unique F-complement.
Lemma 1 also says that 2(M3(ℓ − 1) + 1) ≥ Fℓ+1. Hence n ∈]M3(ℓ − 1), Fℓ[

has two F-complements. �
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3 Layman permutations

Notation 2 Let Ln be denote the set of Layman permutations.

We will use the so-called two-line notation to describe permutations. A 2×n

matrix visualizes the permutation. The Layman property is equivalent to that
each column sum is a Fibonacci number. Examples for Layman permutations:

(
1

1

)
,

(
1 2

2 1

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

4 3 2 1

)
,

(
1 2 3 4 5

2 1 5 4 3

)
,

(
1 2 3 4 5 6

1 6 5 4 3 2

)
,

(
1 2 3 4 5 6

4 6 5 1 3 2

)
,

(
1 2 3 4 5 6 7

2 1 5 4 3 7 6

)
,

(
1 2 3 4 5 6 7

7 6 5 4 3 2 1

)
,

(
1 2 3 4 5 6 7 8

1 3 2 4 8 7 6 5

)
,

(
1 2 3 4 5 6 7 8

4 3 2 1 8 7 6 5

)
.

(
1 2 3 4 5 6 7 8 9 10

7 1 10 9 8 2 6 5 4 3

)
,

(
1 2 3 4 5 6 7 8 9 10

2 6 10 9 8 7 1 5 4 3

)
.

Observation 3 For any positive integer n the set Ln is not empty.

Our previous examples prove that the claim is true for n ≤ 8. If nF = 1

(equivalently nF− := nF − 1 = 0) then the reverse permutation exhibits the
truth of Observation 3.
One can prove Observation 3 by induction: If nF − 1 > 0 take p ∈ LnF− and

extend it with (
nF nF + 1 . . . n− 1 n

n n− 1 . . . nF + 1 nF

)
.

The argument, proving Observation 3, immediately gives us the following
claim.

Observation 4 If n has two F-complements then Ln has more than one ele-

ment.

Indeed. We have already constructed one. In that we used nF to cut [n] into
two blocks and apply induction plus a reverse permutation. We can do the
same with a second F-complement.
Observe that M4(ℓ − 1) ∈ [Fℓ−1,M3(ℓ − 1)], hence M4(ℓ − 1) has a unique

F-complement.
Also understanding the simple proof leads to the following definition.
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Definition 3 Let (s
(n)
i ) the following finite, decreasing sequence of positive

integers: s0 = n, furthermore if si exists and si
F− is positive then si+1 exists

too and si+1 = si
F−.

Based on (s
(n)
i )ki=0 we can explicitly describe the permutation produced by

the above recursion: Partition {1, 2, . . . , n} into blocks

{1, 2, . . . , sk} ∪ {sk + 1, . . . , sk−1} ∪ . . . ∪ {s2 + 1, . . . , s1} ∪ {s1 + 1, . . . , s0}

and reverse the order of each block (note that sk
F = 1 and si−1

F = si + 1 for
i = 1, 2, . . . , k− 1).
Let us see a few examples (each arrow denotes the application of the map-

ping x 7→ xF−):
s(2021) : 2021 → 562 → 47 → 8 → 4,

s(1869) : 1869 → 714 → 272 → 104 → 59 → 13 → 5 → 2, s(14) : 14 → 6 → 1,

s10 : 10 → 2, s(9) : 9 → 3 → 1, s(8) : 8 → 4, s(7) : 7, s(6) : 6 → 1.

Corollary 1 Assume that for n ∈ N+ in the sequence (s
(n)
i )ki=0 we have the

element 6 or 10 or a number with two F-complements. Then Ln has more than

one element.

For example, L6 and L10 have more than 1 permutation (see of our previous
examples). L7 has more than 1 permutation since 7 has two F-complements (1
and 6). L2021 has more than one permutation since 47 is in its s-sequence and
47 has two F-complements (8 and 42): For example, we obtain two elements
of L2021 we start with two elements of L47 based on the two F-complements of
47 and extend them by

(
48 49 . . . 561 562 563 . . . 2021

562 561 . . . 49 48 2021 . . . 563

)
.

Note that in the case of n = M4(ℓ) the corresponding s-sequence is

M4(ℓ),M4(ℓ− 2),M4(ℓ− 4), . . .

a sequence ending with M4(3) = 2 or with M4(2) = 1. Indeed M4(ℓ)+M4(ℓ−

2) = M2(ℓ) = Fℓ+1 − 1, i.e. M4(ℓ)
F−

= M4(ℓ− 2).
A simple consequence of Corollary 1 is the following Theorem.

Theorem 2 Assume that n ∈ N+ is a number not in the form M4(ℓ). Then

Ln has more than one element.
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Proof. n ∈ [Fℓ−1, Fℓ[ for a unique ℓ. We are going to prove our claim, by
induction on ℓ.
The claim is easy for ℓ = 3, 4, 5, 6, 7. For the induction step, assume that

n ∈ [Fℓ−1, Fℓ[\{M4(ℓ−1)} = [Fℓ−1,M3(ℓ−1)]\{M4(ℓ−1)}∪̇[M3(ℓ−1)+1,M2(ℓ−1)]

If n ∈ [M3(ℓ − 1) + 1,M2(ℓ − 1)], them we are done since n = s
(n)
0 has two

F-Complements. If k ∈ [Fℓ−1,M3(ℓ− 1)], then

s
(k)
1 = k

F−
= Fℓ − k− 1 ∈ [Fℓ −M3(ℓ− 1) − 1, Fℓ − Fℓ−1 − 1].

Remember, that M4(ℓ− 1)
F−

= M4(ℓ− 3).
So if n ∈ [Fℓ−1,M3(ℓ− 1)] \ {M4(ℓ− 1)} then

s
(n)
1 = (n)

F−
= Fℓ−n−1 ∈ [Fℓ−M3(ℓ−1)−1,M4(ℓ−3)−1]∪̇[M4(ℓ−3)+1, Fℓ−2−1].

Easy to check that M4(ℓ − 4) < Fℓ −M3(ℓ − 1) − 1 hence the right hand side
does not contain any number of the form M4(m). The Theorem is proved. �

The proof really gave us the claim, that if n is not of the form M4(ℓ), then
the assumption of Corollary 1 holds.
So the hardness of Layman’s conjecture (Conjecture 1) is to prove that for

n = M4(ℓ) we have a unique Layman permutation.

4 Conclusion

We consider Conjecture 1 as a nice, important conjecture. It has a graph the-
oretical interpretation about bipartite graphs with a unique perfect matching.
The investigation of bipartite graphs with unique perfect matching ([5]) is
independent of our motivation. The conjecture connects two different lines of
research. We made the first step to settle the conjecture. We need further effort
to understand Layman permutations.
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Abstract. Graph theory has applications in various fields due to offer-
ing important tools such as topological indices. Among the topological
indices, the Randić index is simple and of great importance. The Randić
index of a graph G can be expressed as R(G) =

∑
xy∈Y(G)

1√
τ(x)τ(y)

,

where Y(G) represents the edge set and τ(x) is the degree of vertex x. In
this paper, considering the importance of the Randić index and applica-
tions two-trees graphs, we determine the first two minimums among the
two-trees graphs.

1 Introduction

Let G be a simple graph having the vertex set X = X(G) and the edge set
Y(G). Moreover, υ = |X(G)| and m = |Y(G)|. In this case, we say that G is a
graph of order υ and size m. The open neighborhood of vertex x is defined
as ΩG(x) = Ω(x) = {y ∈ X(G)|xy ∈ Y(G)} and the degree of x is denoted
by |Ω(x)| = τG(x) = τ(x). Suppose that G is a graph with x ∈ X(G) and
xy ∈ Y(G), then the graphs G − x and G − xy are obtained by removing the
vertex x and the edge xy from G, respectively.
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The two-tree graph was first defined in the paper [9] in two steps as follows:
A. If s = 0 then Θ0 = K2. In this case, we have a two-tree with two vertices.
B. Suppose Θs is a two-tree produced during the s-th step. Then, graph Θs+1
is generated during (s+1)-step from graph Θs by adding a new vertex adjacent
to the two end vertices of an edge in Θs.

Some examples are shown in Figure 1. They will play an important role
in the later development. Two-tree graphs have found many applications in
complex networks see [6, 13] and more information see e.g. [5, 7, 8, 12].

Figure 1: The graphs Aυ and Bυ.

In the past few decades, the topological indices due to their wide applications
has been considered by many researchers. One of their oldest applications
in chemistry was proposed by Wiener in the paper [11], which gave rise to
the Wiener index. Due to the application of topological indices in various
fields, many indices have been defined nowadays and their applications have
been identified. Among those numerous indices [10], the Randić index was the
most successful. The Randić index was first introduced in chemistry by Milan
Randić in [4] to obtain the boiling point of paraffin and is defined as follows:

R(G) =
∑

xy∈Y(G)

1√
τ(x)τ(y)

.

As we mentioned before, due to the importance of the Randić index in other
indices, it has been studied by many researchers over the years.

The Randić index has been considered extensively by researchers in the
field of mathematics. For example, Lu et al. [3] discussed the Randić index
quasi-tree graphs. Bermudo et al. [1] characterized Randić index tree with
given domination number. In [2], the authors characterized Randić index for
chemical trees. Motivated by the above line of research and the importance of
the two-tree graphs, we in this paper intend to discuss the Randić index of two-



Extremal trees for the Randić index 241

tree graphs. We establish the Randić index of two-tree graphs and determine
the first two minimums among the two-tree graphs.

2 Some lemmas

In this section, we will prove a few lemmas that will help us achieve the main
results.

Lemma 1 Let 3 ≤ g, h ≤ υ− 1. For the function

ϕ(g, h) =
g− 1
√
2g

+
h− 1
√
2h

−
g− 2√
2(g− 1)

−
h− 2√
2(h− 1)

+
1

√
gh

−
1√

(g− 1)(h− 1)
,

we have ϕ(g, h) ≥ ϕ(υ− 1, υ− 1).

Proof. By deriving from function ϕ(g, h), we have

∂ϕ(g, h)

∂g
=

g− 2

(2g− 2)3/2
−
g− 1

(2g)3/2

−
1

√
2g− 2

+
1

√
2g

+
h− 1

2((g− 1)(h− 1))3/2
−

h

2(gh)3/2

and

∂

∂h

∂ϕ(g, h)

∂g
=

1

2((g− 1)(h− 1))3/2
−

1

2(gh)3/2

−
3(g− 1)(h− 1)

4((g− 1)(h− 1))5/2
+

3gh

4(gh)5/2
.

Note that when g, h ≥ 3, we get ∂
∂h
∂ϕ(g,h)
∂g < 0. Therefore, we have

∂ϕ(g, h)

∂g
≤
∂ϕ(g, 3)

∂g

=
g− 2

(2g− 2)3/2
−
g− 1

(2g)3/2

−
1

√
2g− 2

+
1

√
2g

+
1

(2g− 2)3/2
−

3

2(3g)3/2
.

It is not difficult to see that the above inequality is negative for g ≥ 3. Hence,
we derive ∂ϕ(g,h)

∂g ,
∂ϕ(g,h)
∂h < 0 and that means ϕ(g, h) ≥ ϕ(υ− 1, υ− 1). �
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Lemma 2 Let 3 ≤ g, h ≤ υ− 2. For the following function

ψ(g, h) =
1

√
gh

−
1√

(g− 1)(h− 1)
+

1
√
3g

−
1√

3(g− 1)
+

1
√
3h

−
1√

3(h− 1)

+
g− 3
√
2g

−
g− 3√
2(g− 1)

+
h− 3
√
2h

−
h− 3√
2(h− 1)

,

we have ψ(g, h) ≥ ψ(υ− 2, υ− 2).

Proof. By deriving from function ψ(g, h), we have

∂ψ(g, h)

∂g
=

g− 3

(2g− 2)3/2
−
g− 2

(2g)3/2
−

1
√
2g− 2

+
1

√
2g

+
h− 1

2((g− 1)(h− 1))3/2

−
h

2(gh)3/2
+

3

2(3g− 3)3/2
−

3

2(3g)3/2

and

∂

∂h

∂ψ(g, h)

∂g
=

1

2((g− 1)(h− 1))3/2
−

1

2(gh)3/2
−

3(g− 1)(h− 1)

4((g− 1)(h− 1))5/2
+

3gh

4(gh)5/2
.

Note that when g, h ≥ 3, we get ∂
∂h
∂ψ(g,h)
∂g < 0. Hence, we have

∂ψ(g, h)

∂g
≤
∂g(g, 3)

∂g

=
g− 3

(2g− 2)3/2
−
g− 2

(2g)3/2
−

1
√
2g− 2

+
1

√
2g

+
1

(2g− 2)3/2
+

3

2(3g− 3)3/2
−

3

(3g)3/2
.

It is not difficult to see that the above inequality is negative for g ≥ 3. Hence,
we obtain ∂ψ(g,h)

∂g ,
∂ψ(g,h)
∂h < 0 and that means ψ(g, h) ≥ ψ(υ− 1, υ− 1). �

Lemma 3 For υ > 4, we have

h(υ) =
2(υ− 4)
√
2υ− 4

−
(υ− 5)
√
2υ− 6

−
υ− 3

√
2υ− 2

+
2

√
3υ− 6

−
1

√
3υ− 9

−
1

√
3υ− 3

+
1

υ− 2
−

1

υ− 3
+

1√
(υ− 3)(υ− 2)

−
1√

(υ− 2)(υ− 1)
> 0.
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Proof. We know that

h(υ) =
2(υ− 4)
√
2υ− 4

−
(υ− 5)
√
2υ− 6

−
υ− 3

√
2υ− 2

+
2

√
3υ− 6

−
1

√
3υ− 9

−
1

√
3υ− 3

+
1

υ− 2
−

1

υ− 3
+

1√
(υ− 3)(υ− 2)

−
1√

(υ− 2)(υ− 1)

=
2
√
3υ− 8

√
3+ 2

√
2√

6(υ− 2)
−

√
3υ− 5

√
3+

√
2√

6(υ− 3)
−

√
3υ− 3

√
3+

√
2√

6(υ− 1)

+

√
(υ− 3)(υ− 2) − 1

(υ− 3)(υ− 2)
−

1√
(υ− 2)(υ− 1)

> 0.

It is not difficult the above inequality holds for υ ≥ 4.

�

3 Main results

In this section, we will discuss the Randić index of two-tree graphs and deter-
mine the first two minimums among this type of tree.
We start by proving a new result for Randić index.

Theorem 1 For a two-tree graph G with υ ≥ 4 vertices, we have

R(G) ≥
1

υ− 1
+

2(υ− 2)√
2(υ− 1)

.

The equality holds if and only if G = Aυ (see Figure 1).

Proof. We start the proof by inducing on υ. First, we assume that Tυ is a
two-tree of with four vertices. If G is a graph with four vertices, then this graph
can be obtained from the complete graph with four vertices by removing an
edge. By applying the definition of the Randić index for this graph, we get

R(T4) = 1.9663264951888 = 2
√

6+1
3 . We suppose our result holds for υ − 1.

Select a vertex of degree two from the graph Tυ, and we call it z. It is not
difficult to see that the graph Tυ − z is a two-tree of υ− 1 vertices.
By applying the induction hypothesis, we derive R(Tυ − z) ≥ R(Aυ−1) and

the equality holds if and only if Tυ − z ∼= Aυ−1. Hence, to complete the proof
it suffices to show that R(Tυ) ≥ R(Aυ).
Assume that x and y are two vertices adjacent to the vertex z in Tυ. Let

τTυ
(x) = ϑ, τTυ

(y) = ρ andΩTυ
(x)\{y, z} = {x1, x2, . . . , xϑ−2},ΩTυ

(y)\{x, z} =
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{x1, x2, . . . , xρ−2}. Noth that 3 ≤ ϑ, ρ ≤ υ − 1. By applying Lemma 1 and the
induction hypothesis, we can write that

R(Tυ) =R(Tυ − z) +
1

√
2ϑ

+
1

√
2ρ

+
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+

ϑ−2∑

i=1

(
1√
ϑτ(xi)

−
1√

(ϑ− 1)τ(xi)

)

+

ρ−2∑

j=1

(
1√
ρτ(yj)

−
1√

(ρ− 1)τ(yj)

)

≥R(Aυ−1) +
1

√
2ϑ

+
1

√
2ρ

+
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+

ϑ−2∑

i=1

(
1

√
2ϑ

−
1√

2(ϑ− 1)

)
+

ρ−2∑

j=1

(
1

√
2ρ

−
1√

2(ρ− 1)

)

=R(Aυ−1) +
ϑ− 1
√
2ϑ

+
ρ− 1
√
2ρ

−
ϑ− 2√
2(ϑ− 1)

−
ρ− 2√
2(ρ− 1)

+
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

≥R(Aυ−1) +
2(υ− 2)√
2(υ− 1)

−
2(υ− 3)√
2(υ− 2)

+
1

υ− 1
−

1√
(υ− 2)(υ− 2)

=
1

υ− 2
+

2(υ− 3)√
2(υ− 2)

+
2(υ− 2)√
2(υ− 1)

−
2(υ− 3)√
2(υ− 2)

+
1

υ− 1
−

1

(υ− 2)

=R(Aυ),

where the last equality is right if and only if Tυ− z ∼= Aυ−1, ϑ = ρ = υ− 1 and
dTυ

(xi) = 2 for i = 1, 2, . . . , υ − 3 and that means Tυ
∼= Aυ. This completes

the proof. �

Theorem 2 For a two-tree graph G with υ ≥ 5 vertices and G ≇ Aυ, we have

R(G) ≥
1√

(υ− 1)(υ− 2)
+

υ− 3√
2(υ− 1)

+
υ− 4√
2(υ− 2)

+
1√

3(υ− 1)
+

1√
3(υ− 2)

+

√
6

6
.

The equality holds if and only if G ∼= Bυ; see Figure 1.
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Proof. We begin the proof by inducing on υ. We assume that Tυ is a two-tree
with n vertices and Tυ ≇ Aυ. First, we assume that Tυ is a two-tree of with
five vertices. We obtain Tυ

∼= Aυ or Tυ
∼= Bυ. Since Tυ ≇ Aυ, then G ∼= Bυ.

Obviously R(T5) = 2.4342869646372 =
√

2
2 +

√

3
3 +

√

6
3 + 1

3 . Suppose that theorem
is true for υ − 1. It is clear that a two-tree graph has at least two vertices of
degree two. In addition, we have Tυ ≇ Aυ. Hence we choose a vertex of Tυ
with degree two, and call this vertex z. We have Tυ − z ≇ Aυ−1. Clearly, the
graph Tυ − w is a two-tree with υ − 1 vertices. By applying the induction
hypothesis, we get that R(Tυ − z) ≥ R(Bυ−1) and the equality holds if and
only if Tυ − z ∼= Bυ−1. To complete the proof, it suffices for us to show that
R(Tυ) ≥ R(Bυ). Assume that x and y are two vertices adjacent to the vertex
z in Tυ. Note that υ ≥ 5. Given that the graph is a two-tree graph, there
should exist a vertex ξ adjacent to two vertices x and y satisfying τTυ

(ξ) ≥ 3

(Otherwise, Tυ − z ≇ Aυ−1 ). Let τTυ
(x) = ϑ, τTυ

(y) = ρ, τTυ
(ξ) = ζ and

ΩTυ
(x) \ {x, z, ξ} = {x1, x2, . . . , xϑ−3}, ΩTυ

(y) \ {x, z, ξ} = {y1, y2, . . . , yρ−3}.
Note that 3 ≤ ϑ, ρ, ζ ≤ υ− 1. For convenience here we assume that ϑ ≤ ρ and
max{ϑ, ρ, ζ} = ρ. Since vertex ξ is not adjacent to the vertex z, ζ ≤ υ− 2 and
ϑ ≤ ρ ≤ υ−2. By applying Lemma 2, Lemma 3 and the induction hypothesis,
we obtain

R(Tυ) =R(Tυ − z) +
1

√
2ϑ

+
1

√
2ρ

+
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+
1

ϑζ
−

1√
(ϑ− 1)ζ

+
1

√
ρζ

−
1√

(ρ− 1)ζ

+

ϑ−3∑

i=1

(
1√
ϑτ(xi)

−
1√

(ϑ− 1)τ(xi)

)

+

ρ−3∑

j=1

(
1√
ρτ(yj)

−
1√

(ρ− 1)τ(yj)

)

≥R(Bυ−1)
1

√
2ϑ

+
1

√
2ρ

+
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+
1

√
3ϑ

−
1√

3(ϑ− 1)
+

1
√
3ρ

−
1√

3(ρ− 1)

+

ϑ−3∑

i=1

(
1

√
2ϑ

−
1√

2(ϑ− 1)

)
+

ρ−3∑

j=1

(
1

√
2ρ

−
1√

2(ρ− 1)

)
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=R(Bυ−1) +
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+
1

√
3ϑ

−
1√

3(ϑ− 1)
+

1
√
3ρ

−
1√

3(ρ− 1)

+
ϑ− 2
√
2ϑ

−
ϑ− 3√
2(ϑ− 1)

+
ρ− 2
√
2ρ

−
ρ− 3√
2(ρ− 1)

≥R(Bυ−1) +
2(υ− 4)
√
2υ− 4

−
2(υ− 5)
√
2υ− 6

+
2

√
3υ− 6

−
2

√
3υ− 9

+
1

υ− 2
−

1

υ− 3

=
3(υ− 4)
√
2υ− 4

−
υ− 5

√
2υ− 6

+

√
6

6
+

3
√
3υ− 6

−
1

√
3υ− 9

+
1

υ− 2
−

1

υ− 3
+

1√
(υ− 3)(υ− 2)

=R(Bυ) +
2(υ− 4)
√
2υ− 4

−
(υ− 5)
√
2υ− 6

−
υ− 3

√
2υ− 2

+
2

√
3υ− 6

−
1

√
3υ− 9

−
1

√
3υ− 3

+
1

υ− 2
−

1

υ− 3
+

1√
(υ− 3)(υ− 2)

−
1√

(υ− 2)(υ− 1)

>R(Bυ).

Hence, we derive ρ ≤ υ−1 and max{ϑ, ζ} ≤ υ−2. Otherwise, we have Tυ ≇ Aυ.
Again by applying Lemma 2 and the induction hypothesis, we know that

R(Tυ) =R(Tυ − z) +
1

√
2ϑ

+
1

√
2ρ

+
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+
1

√
ϑζ

−
1√

(ϑ− 1)ζ
+

1
√
ρζ

−
1√

(ρ− 1)ζ

+

ϑ−3∑

i=1

(
1√
ϑτ(xi)

−
1√

(ϑ− 1)τ(xi)

)

+

ρ−3∑

j=1

(
1√
ρτ(yj)

−
1√

(ρ− 1)τ(yj)

)

≥R(Bυ−1)
1

√
2ϑ

+
1

√
2ρ

+
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+
1

√
3ϑ

−
1√

3(ϑ− 1)
+

1
√
3ρ

−
1√

3(ρ− 1)
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+

ϑ−3∑

i=1

(
1

√
2ϑ

−
1√

2(ϑ− 1)

)
+

ρ−3∑

j=1

(
1

√
2ρ

−
1√

2(ρ− 1)

)

=R(Bυ−1) +
1

√
ϑρ

−
1√

(ϑ− 1)(ρ− 1)

+
1

√
3ϑ

−
1√

3(ϑ− 1)
+

1
√
3ρ

−
1√

3(ρ− 1)

+
ϑ− 2
√
2ϑ

−
ϑ− 3√
2(ϑ− 1)

+
ρ− 2
√
2ρ

−
ρ− 3√
2(ρ− 1)

≥R(Bυ−1) +
υ− 3

√
2υ− 2

−
υ− 5

√
2υ− 6

+
1

√
3υ− 3

−
1

√
3υ− 9

+
1√

(υ− 2)(υ− 1)
−

1√
(υ− 3)(υ− 2)

=
1√

(υ− 1)(υ− 2)
+

υ− 3√
2(υ− 1)

+
υ− 4√
2(υ− 2)

+
1√

3(υ− 1)
+

1√
3(υ− 2)

+

√
6

6

=R(Bυ).

It is easy to check that the last equality holds if and only if Tυ−z ∼= Bυ−1, ϑ =

υ − 2, ρ = υ − 1, ζ = 3 and τTυ
(xi) = τTυ

(yj) = 2 for i = 1, 2, . . . , υ − 3 and
j = 1, 2, . . . , υ− 2, which means Tυ ∼= Bυ. �

4 Concluding Remark

In this article we have studied the Randić index for two-tree graphs and also
discussed the first minimum and the second minimum of these graphs. How-
ever, discussions about the maximum of these graphs have not yet been re-
solved and seem to be difficult. In view of this, we make the following conjec-
ture.

Conjecture 1 If G is a two-tree graph with υ ≥ 6 vertices, then R(G) ≤ υ
2 −k

and the equality holds for graphs shown in Figure 2.
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Figure 2: Graph described in conjecture 1 with R(G) = υ
2 − k where, k =

0.0716960995065.
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Abstract. This article deals with the ratio of normalized Rabotnov
function Rα,β (z) and its sequence of partial sums (Rα,β)m (z) . Several
examples which illustrate the validity of our results are also given.

1 Introduction

Let A be the class of functions f normalized by

f (z) = z+

∞∑

n=2

anz
n (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} .

Denote by S the subclass of A which consists of univalent functions in U .
Consider the function Rα,β (z) defined by

Rα,β (z) = zα
∞∑

n=0

βn

Γ ((n+ 1) (1+ α))
zn(1+α) (2)

where Γ stands for the Euler gamma function and α ≥ 0, β ∈ C and z ∈ U .

This function was introduced by Rabotnov in 1948 [14] and is therefore known
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as the Rabotnov function.
The function defined by (2) does not belong to the class A. Therefore, we
consider the following normalization of the Rabotnov function Rα,β (z) : for
z ∈ U ,

Rα,β (z) = Γ (1+ α) z1/(1+α)Rα,β

(
z1/(1+α)

)
=

∞∑

n=0

βnΓ (1+ α)

Γ ((1+ α) (n+ 1))
zn+1 (3)

where α ≥ 0 and β ∈ C.

Note that some special cases of Rα,β (z) are:






R0,− 1
3

(z) = ze−
z
3

R1, 1
2

(z) =
√
2z sinh

√
z
2

R1,− 1
4

(z) = 2
√
z sin

√

z
2

R1,1 (z) =
√
z sinh

√
z

R1,2 (z) =
√

2z sinh
√

2z
2 .

(4)

For various interesting developments concerning partial sums of analytic uni-
valent functions, the reader may be (for examples) refered to the works of
Kazımoğlu et al. [7], Çağlar and Orhan [1], Lin and Owa [9], Deniz and Orhan
[3, 4], Owa et al. [13], Sheil-Small [17], Silverman [18] and Silvia [20]. Re-
cently, some researchers have studied on partial sums of special functions (see
[2, 7, 8, 12, 16, 22]).
In this paper, we investigate the ratio of normalized Rabotnov function Rα,β (z)

and its derivative defined by (3) to their sequences of partial sums






(Rα,β)0 (z) = z

(Rα,β)m (z) = z+
m∑

n=1

Anz
n+1, m ∈ N = {1, 2, 3, . . .} ,

(5)

where

An =
βnΓ (1+ α)

Γ ((1+ α) (n+ 1))
, α ≥ 0 and β ∈ C.

We obtain lower bounds on ratios like

ℜ

{
Rα,β (z)

(Rα,β)m (z)

}

, ℜ

{
(Rα,β)m (z)

Rα,β (z)

}

, ℜ

{
R ′

α,β (z)

(Rα,β)
′

m (z)

}

, ℜ

{
(Rα,β)

′

m (z)

R ′
α,β (z)

}

.

Several examples will be also given.
Results concerning partial sums of analytic functions may be found in [5, 15].
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2 Main results

In order to prove our results we need the following lemma.

Lemma 1 Let α ≥ 0 and β ∈ C. Then the function Rα,β (z) satisfies the

following inequalities:

|Rα,β (z)| ≤ e
|β|

1+α (z ∈ U) (6)

∣∣R ′

α,β (z)
∣∣ ≤

(
1+

|β|

1+ α

)
e

|β|

1+α (z ∈ U) . (7)

Proof. By using the inductive method, we easily see that

(1+ α)n (n) !Γ (1+ α) ≤ Γ ((1+ α) (n+ 1))

and thus

Γ (1+ α)

Γ ((1+ α) (n+ 1))
≤

1

(1+ α)n (n) !
, α ≥ 0, n ∈ N. (8)

Making use of (8) and also the well-known triangle inequality, for z ∈ U , we
have

|Rα,β (z)| =

∣∣∣∣∣z+
∞∑

n=1

βnΓ (1+ α)

Γ ((1+ α) (n+ 1))
zn+1

∣∣∣∣∣ ≤ 1+

∞∑

n=1

|β|nΓ (1+ α)

Γ ((1+ α) (n+ 1))

≤ 1+

∞∑

n=1

|β|n

(1+ α)n (n) !
= e

|β|

1+α

and thus, inequality (6) is proved.
To prove (7), using again (8) and the triangle inequality, for z ∈ U , we obtain

∣∣R ′

α,β (z)
∣∣ =

∣∣∣∣∣1+
∞∑

n=1

(n+ 1)βnΓ (1+ α)

Γ ((1+ α) (n+ 1))
zn

∣∣∣∣∣ ≤ 1+

∞∑

n=1

(n+ 1) |β|nΓ (1+ α)

Γ ((1+ α) (n+ 1))

≤ 1+

∞∑

n=1

(n+ 1) |β|n

(1+ α)n (n) !
=

(
1+

|β|

1+ α

)
e

|β|

1+α

and thus, inequality (7) is proved. �

Let w (z) be an analytic function in U . In the sequel, we will frequently use
the following well-known result:

ℜ

{
1+w (z)

1−w (z)

}

> 0, z ∈ U if and only if |w (z)| < 1, z ∈ U .
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Theorem 1 Let α ≥ 0 and 0 < |β| ≤ (1+ α) ln 2. Then

ℜ

{
Rα,β(z)

(Rα,β)m (z)

}

≥ 2− e
|β|

1+α , z ∈ U (9)

and

ℜ

{
(Rα,β)m (z)

Rα,β(z)

}

≥ e
−|β|

1+α , z ∈ U . (10)

Proof. From inequality (6) we get

1+

∞∑

n=1

An ≤ e
|β|

1+α ,where An =
βnΓ (1+ α)

Γ ((1+ α) (n+ 1))
.

The last inequality is equivalent to
(

1

e
|β|

1+α − 1

)
∞∑

n=1

An ≤ 1.

In order to prove the inequality (9), we consider the function w(z) defined by

1+w(z)

1−w(z)
=

(
1

e
|β|

1+α − 1

)
Rα,β(z)

(Rα,β)m (z)
−

(
1

e
|β|

1+α − 1
− 1

)

and, thus we have

1+w(z)

1−w(z)
=

1+
∑m

n=1Anz
n +

(
1

e
|β|
1+α−1

)
∑

∞

n=m+1Anz
n

1+
∑m

n=1Anzn
. (11)

From (11), we obtain

w(z) =

(
1

e
|β|
1+α−1

)
∑

∞

n=m+1Anz
n

2+ 2
∑m

n=1Anzn +

(
1

e
|β|
1+α−1

)
∑

∞

n=m+1Anzn

and

|w(z)| ≤

(
1

e
|β|
1+α−1

)
∑

∞

n=m+1An

2− 2
∑m

n=1An −

(
1

e
|β|
1+α−1

)
∑

∞

n=m+1An

.



254 S. Kazımoğlu, E. Deniz

Now, |w(z)| ≤ 1 if and only if
(

2

e
|β|

1+α − 1

)
∞∑

n=m+1

An ≤ 2− 2

m∑

n=1

An

which is equivalent to

m∑

n=1

An +

(
1

e
|β|

1+α − 1

)
∞∑

n=m+1

An ≤ 1. (12)

To prove (12), it suffices to show that its left-hand side is bounded above by
(

1

e
|β|

1+α − 1

)
∞∑

n=1

An

which is equivalent to (
2− e

|β|

1+α

e
|β|

1+α − 1

)
m∑

n=1

An ≥ 0.

The last inequality holds true for 0 < |β| ≤ (1+ α) ln 2.
We use the same method to prove the inequality (10). Consider the function
w(z) given by

1+w(z)

1−w(z)
=

(
1

e
|β|

1+α − 1
+ 1

)
Rα,β(z)

(Rα,β)m (z)
−

(
1

e
|β|

1+α − 1

)

=

1+
∑m

n=1Anz
n −

(
1

e
|β|
1+α−1

)
∑

∞

n=m+1Anz
n

1+
∑m

n=1Anzn
.

From the last equality we get

w(z) =

−

(
1

e
|β|
1+α−1

+ 1

)
∑

∞

n=m+1Anz
n

2+ 2
∑m

n=1Anzn −

(
1

e
|β|
1+α−1

− 1

)
∑

∞

n=m+1Anzn

and

|w(z)| ≤

(
1

e
|β|
1+α−1

+ 1

)
∑

∞

n=m+1An

2− 2
∑m

n=1An −

(
1

e
|β|
1+α−1

− 1

)
∑

∞

n=m+1An

.
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Then, |w(z)| ≤ 1 if and only if

m∑

n=1

An +

(
1

e
|β|

1+α − 1

)
∞∑

n=m+1

An ≤ 1. (13)

Since the left-hand side of (13) is bounded above by

(
1

e
|β|

1+α − 1

)
∞∑

n=1

An,

we have that the inequality (10) holds true. Now, the proof of our theorem is
completed. �

Theorem 2 Let α ≥ 0 and 1 <
(
1+

|β|
1+α

)
e

|β|

1+α ≤ 2. Then

ℜ

{
R′

α,β(z)

(Rα,β)
′

m (z)

}

≥ 2−

(
1+

|β|

1+ α

)
e

|β|

1+α , z ∈ U (14)

and

ℜ

{
(Rα,β)

′

m (z)

R′

α,β(z)

}

≥

(
1+ α

1+ α+ |β|

)
e

−|β|

1+α , z ∈ U . (15)

Proof. From (7) we have

1+

∞∑

n=1

(n+ 1)An ≤ £α,β,

where An =
βnΓ(1+α)

Γ((1+α)(n+1))
, £α,β =

(
1+

|β|
1+α

)
e

|β|

1+α , α ≥ 0, β ∈ C and n ∈ N.

The above inequality is equivalent to

1

£α,β − 1

∞∑

n=1

(n+ 1)An ≤ 1.

To prove (14), define the function w(z) by

1+w(z)

1−w(z)
=

1

£α,β − 1

R′

α,β(z)

(Rα,β)
′

m (z)
−

2−£α,β

£α,β − 1
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which gives

w(z) =

1
£α,β−1

∑
∞

n=m+1 (n+ 1)Anz
n

2+ 2
∑m

n=1 (n+ 1)Anzn + 1
£α,β−1

∑
∞

n=m+1 (n+ 1)Anzn

and

|w(z)| ≤

1
£α,β−1

∑
∞

n=m+1 (n+ 1)An

2− 2
∑m

n=1 (n+ 1)An − 1
£α,β−1

∑
∞

n=m+1 (n+ 1)An

.

The condition |w(z)| ≤ 1 holds true if and only if

m∑

n=1

(n+ 1)An +
1

£α,β − 1

∞∑

n=m+1

(n+ 1)An ≤ 1. (16)

The left-hand side of (16) is bounded above by

1

£α,β − 1

∞∑

n=1

(n+ 1)An

which is equivalent to

2−£α,β

£α,β − 1

m∑

n=1

(n+ 1)An ≥ 0

which holds true for 1 <
(
1+

|β|
1+α

)
e

|β|

1+α ≤ 2.

The proof of (15) follows the same pattern. Consider the function w(z) given
by

1+w(z)

1−w(z)
=

£α,β

£α,β − 1

R′

α,β(z)

(Rα,β)
′

m (z)
−

1

£α,β − 1

=
1+

∑m
n=1 (n+ 1)Anz

n − 1
£α,β−1

∑
∞

n=m+1 (n+ 1)Anz
n

1+
∑

∞

n=1 (n+ 1)Anzn
.

Consequently, we have that

w(z) =
−

£α,β

£α,β−1

∑
∞

n=m+1 (n+ 1)Anz
n

2+ 2
∑m

n=1 (n+ 1)Anzn −
2−£α,β

£α,β−1

∑
∞

n=m+1 (n+ 1)Anzn
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and

|w(z)| ≤

£α,β

£α,β−1

∑
∞

n=m+1 (n+ 1)An

2− 2
∑m

n=1 (n+ 1)An −
2−£α,β

£α,β−1

∑
∞

n=m+1 (n+ 1)An

.

The last inequality implies that |w(z)| ≤ 1 if and only if

2

£α,β − 1

∞∑

n=m+1

(n+ 1)An ≤ 2− 2

m∑

n=1

(n+ 1)An

or equivalently

m∑

n=1

(n+ 1)An +
1

£α,β − 1

∞∑

n=m+1

(n+ 1)An ≤ 1. (17)

It remains to show that the left-hand side of (17) is bounded above by

1

£α,β − 1

∞∑

n=1

(n+ 1)An.

This is equivalent to

2−£α,β

£α,β − 1

m∑

n=1

(n+ 1)An ≥ 0,

which holds true for 1 <
(
1+

|β|
1+α

)
e

|β|

1+α ≤ 2. Now, the proof of our theorem

is completed. �

3 Illustrative examples and image domains

In this section, we present several illustrative examples along with the geo-
metrical descriptions of the image domains of the appropriately chosen disk
by the partial sums which we considered in our main theorems in Sections 2.
From Theorem 1 and Theorem 2, we obtain the following corollaries for special
cases of α and β.

Corollary 1 If we take α = 0 and β = −1
3 , we have

R0,− 1
3

(z) = ze−
z
3 , R′

0,− 1
3

(z) = −
1

3
e−

z
3 (z− 3)
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and for m = 0 we get

(
R0,− 1

3

(z)
)
0
(z) = z,

(
R′

0,− 1
3

(z)
)

0
(z) = 1,

so,

ℜ
{
e−

z
3

}
≥ 2− e

1
3 ≈ 0.60439, z ∈ U ,

ℜ
{
e

z
3

}
≥ e−

1
3 ≈ 0.71653, z ∈ U ,

ℜ

{

−
1

3
e−

z
3 (z− 3)

}

≥ 2−
4

3
e

1
3 ≈ 0.13918, z ∈ U ,

ℜ

{

−
3e

z
3

z− 3

}

≥
3

4
e−

1
3 ≈ 0.5374, z ∈ U .

Corollary 2 For α = 1 and β = 1
2 , we obtain

R1, 1
2

(z) =
√
2z sinh

√
z

2
, R′

1, 1
2

(z) =
1

2
cosh

√
z

2
+

sinh
√

z
2√

2z

and for m = 0 we have

(
R1, 1

2

(z)
)
0
(z) = z,

(
R′

1, 1
2

(z)
)

0
(z) = 1,

so,

ℜ

{√
2

z
sinh

√
z

2

}

≥ 2− e
1
4 ≈ 0.71597, z ∈ U ,

ℜ

{√
z

2
csch

√
z

2

}

≥ e−
1
4 ≈ 0.7788, z ∈ U ,

ℜ

{
1

2
cosh

√
z

2
+

sinh
√

z
2√

2z

}

≥ 2−
5

4
e

1
4 ≈ 0.39497, z ∈ U ,

ℜ






2

cosh
√

z
2 +

√

2 sinh
√

z
2

√

z





≥

4

5
e−

1
4 ≈ 0.62304, z ∈ U .

Setting m = 0, α = 1 and β = −1
4 in Theorem 1 and Theorem 2 respectively,

we obtain the next result involving the function R1,− 1
4

(z), defined by (4), and

its derivative.
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Corollary 3 The following inequıalities hold true:

<

{
1√
z

sin

√
z

2

}
≥ 2− e

1
8

2
≈ 0.43343, z ∈ U ,

<

{√
z csc

√
z

2

}
≥ 2e−

1
8 ≈ 1.765, z ∈ U ,

<

{
cos

√
z

2
+
2 sin

√
z
2√
z

}
≥ 4−

9

4
e
1
8 ≈ 1.4504, z ∈ U ,

<

 1

cos
√
z
2 +

2 sin
√
z
2√
z

 ≥ 4

9
e−

1
8 ≈ 0.39222, z ∈ U .

Example 1 The image domains of f1(z) = 1√
z

sin
√
z
2 , f2(z) =

√
z csc

√
z
2 ,

f3(z) = cos
√
z
2 +

2 sin
√
z
2√
z

and f4(z) =
1

cos
√
z
2
+
2 sin

√
z
2√
z

are shown in Figure 1.

Figure 1.

It is therefore of interest to determine the largest disk Uρ in which the partial

sums fn = z +
n∑
k=1

akz
k+1 of the functions f ∈ A are univalent, starlike, con-

vex and close-to-convex. Recently, Ravichandran also wrote a survey [15] on
geometric properties of partial sums of univalent functions. By the Noshiro-
Warschowski Theorem (see [6]) for m = 0 in the inequality (14) of Theorem 2,
we conclude that the function Rα,β is univalent and also close-to-convex under

the condition 1 <
(
1+ |β|

1+α

)
e

|β|
1+α ≤ 2. Noshiro [11] showed that the radius of

starlikeness of fn partial sums of the functions f ∈ A is 1�M if satisfies the
inequality |f′(z)| ≤M. Therefore if we consider the inequality (7) in Lemma 1,

we conclude that the radius of starlikeness of (Rα,β)m is
(

1+α
1+α+|β|

)
e

−|β|
1+α . For



260 S. Kazımoğlu, E. Deniz

functions whose derivatives has positive real part (ℜ(f′(z)) > 0), Silverman
[19] and Singh [21] proved that fn is univalent in |z| < rn, where rn is the
smallest positive root of the equation 1− r− 2rn = 0 and convex in |z| < 1�4,
respectively. In light of these results, for m = 0 in the inequality (14) of The-
orem 2, (Rα,β)m is univalent in |z| < rn and convex in |z| < 1�4. According to
the result of Miki [10], from (14), (Rα,β)m is close-to-convex in |z| < 1�4. The
results are all sharp.
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Abstract. In this article, the main objective is to establish the Grüss-
type fractional integral inequalities by employing the Caputo-Fabrizio
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1 Introduction

Grüss inequality which establishes a connection between the integral of the
product of two functions and the product of the integrals of the two functions.
In 1935, G. Grüss proved the following well known classical integral inequality,
see [24, 27].
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Theorem 1 [27] Let f, g : [a, b] → R be two integrable functions such that

φ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b]; φ,Φ, γ and Γ are constant,

then

∣∣∣∣
1

b− a

∫b

a

f(x)g(x)dx−
1

b− a

∫b

a

f(x)dx.
1

b− a

∫b

a

g(x)dx

∣∣∣∣

≤
1

4
(Γ − γ)(Φ− φ),

(1)

where the constant 1
4 is sharp.

During the last few years, several numerous generalizations, variants and ex-
tensions of the Grüss inequality have appeared in the literature, see [18, 19,
20, 22, 24, 25, 26, 27, 29, 30, 31, 40] and the references cited therein. Chin-
chane and Pachpatte [10], investigated some new fractional integral inequali-
ties of the Grüss-type by considering the Saigo fractional integral operator. In
[1, 21, 34, 35, 36] authors obtained some the Grüss-type inequalities by using
different types of fractional integral operators. Fractional calculus is general-
ization of traditional calculus into non-integer differential and integral order.
Fractional calculus is very important due to it’s various application in field of
science and technology, see [2, 4, 32, 37].
In [5, 6], Caputo and Fabrizio introduced a new fractional derivative and ap-

plication of new time and spatial fractional derivative with exponential kernels.
In literature very little work is reported on fractional integral inequalities us-
ing Caputo and Caputo-Fabrizio integral operator. Wang et al. [39] presented
some properties of Caputo–Fabrizio fractional integral operator in the setting
of-convex function. Recently, Nchama and et al. [28], proposed some fractional
integral inequalities using the Caputo-Fabrizio fractional integral.
Recently, many researchers have worked on fractional integral inequalities

using the Riemann-Liouville, Hadamard and q-fractional integral, see [3, 7,
8, 9, 11, 12, 13, 14, 15, 16, 17, 23, 38]. In [16], Dahmani and et al. gave the
following fractional integral inequality using the Riemann-Liouville fractional
integral.
Motivated from [5, 6, 10, 16, 28, 39], our purpose in this paper is to pro-

pose some new results using the Caputo-Fabrizio integral operator. The paper
has been organized as follows, in Section 2, we recall some auxiliary results
related to the Caputo-Fabrizio integral operator. In Section 3, we investigate
the Grüss-type fractional integral inequality using the Caputo-Fabrizio inte-
gral operator, in Section 4, we give the concluding remarks.
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2 Preliminaries

In this section, we give some auxiliary results of fractional calculus that will
be useful in this paper.

Definition 1 [6, 28] Let α ∈ R such that 0 < α < 1. The Caputo-Fabrizio

fractional integral of order α of a function f is defined by

Iα
0,xf(x) =

1

α

∫x

0

e−( 1−α
α

)(x−s)f(s)ds. (2)

Definition 2 [6, 28] Let α, a ∈ R such that 0 < x < 1. The Caputo-Fabrizio

fractional derivative of order α of a function f is defined by

Iα
a,xf(x) =

1

1− α

∫x

a

e
−α
1−α

(x−s)f
′

(s)ds. (3)

Definition 3 Let α > 0, β, η ∈ R, then the Saigo fractional integral I
α,β,η
0,x [f(x)]

of order α for a real valued continuous function f(x) is defined by

I
α,β,η
0,x f(x) =

x−α−β

Γ(α)

∫x

0

(x− τ)α−1F1(α+ β,−η;α; 1−
τ

x
)f(τ)dτ, (4)

where the function F1(−) is the Gaussian hypergeometric function defined by

F1(a, b; c; x) =

∞∑

n=0

(a)n(b)n

(c)n

(x)n

n!
,

and (a)n is the pochhammer symbol

(a)n = a(a+ 1)...(a+ n− 1), (a)0 = 1.

Definition 4 The Hadamard fractional integral is defined by

HIαf(x) =
1

Γ(α)

∫x

1

(log
x

τ
)α−1f(τ)

dτ

τ
for Re(α) > 0, x > 1. (5)

Definition 5 The Riemann-Liouville fractional integral is defined by

Iα
0,xf(x) =

1

Γ(α)

∫x

0

(x− τ)α−1f(τ)dτ. (6)
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3 Grüss-type fractional integral inequality

In this section, we investigate Grüss-type fractional integral inequalities involv-
ing the Caputo-Fabrizio fractional integer operator, for which assume that
(H1) There exist two integrable function Φ1(x), Φ2(x) on [0,∞[, such that

Φ1(x) ≤ u(x) ≤ Φ2(x), for all x ∈ [0,∞[.

(H2) There exist two integrable function Ψ1(x),Ψ2(x) on [0,∞[, such that

Ψ1(x) ≤ v(x) ≤ Ψ2(x), for all x ∈ [0,∞[.

Theorem 2 Suppose that u be an integrable function defined on [0,∞[, con-

sider the condition (H1) hold. Then for all x > 0, α,β > 0, we have

I
β
0,tΦ1(x)I

α
0,tu(x) + Iα

0,tΦ2(x)I
β
0,tu(x) ≥

Iα
0,tΦ2(x)I

β
0,tΦ1(x) + Iα

0,tu(x)I
β
0,tu(x).

(7)

Proof. From condition (H1), for all ρ, σ ≥ 0, we obtain

(Φ2(ρ) − u(ρ)) (u(σ) −Φ1(σ)) ≥ 0. (8)

that is
Φ2(ρ)u(σ) −Φ2(ρ)Φ1(σ) − u(ρ)u(σ) + u(ρ)Φ1(σ) ≥ 0, (9)

which implies that

Φ2(ρ)u(σ) + u(ρ)Φ1(σ) ≥ Φ2(ρ)Φ1(σ) + u(ρ)u(σ). (10)

Multiplying (10) by 1
αe

−( 1−α
α

)(x−ρ), which is positive because ρ ∈ (0, x), x > 0.

u(σ)
1

α
e−( 1−α

α
)(x−ρ)Φ2(ρ) +Φ1(σ)

1

α
e−( 1−α

α
)(x−ρ)u(ρ)

≥ Φ1(σ)
1

α
e−( 1−α

α
)(x−ρ)Φ2(ρ) + u(σ)

1

α
e−( 1−α

α
)(x−ρ)u(ρ).

(11)

Now, integrating (11) with respect to ρ from 0 to x, we have

u(σ)

α

∫ t

0

e−( 1−α
α

)(x−ρ)Φ2(ρ)dρ+
Φ1(σ)

α

∫ t

0

e−( 1−α
α

)(x−ρ)u(ρ)dρ

≥
Φ1(σ)

α

∫ t

0

e−( 1−α
α

)(x−ρ)Φ2(ρ)dρ+
u(σ)

α

∫ t

0

e−( 1−α
α

)(x−ρ)u(ρ)dρ,

(12)
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therefore

u(σ)Iα
0,tΦ2(x) +Φ1(σ)I

α
0,tu(x)

≥ Φ1(σ)I
α
0,tΦ2(x) + u(σ)Iα

0,tu(x).
(13)

Now, multiplying (13) by 1
βe

−( 1−β

β
)(x−σ), which is positive because σ ∈ (0, x),

x > 0. Then integrating obtained result with respective to σ from 0 to x, we
obtain

Iα
0,xΦ2(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

u(σ)dσ+
Iα
0,xu(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

Φ1(σ)dσ

≥
Iα
0,tΦ2(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

Φ1(σ)dσ+
Iα
0,tu(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

u(σ)dσ.

(14)

This completes the proof. �

Remark 1 If u be an integrable function defined on [0,∞[, such that γ ≤

u(x) ≤ Γ , for all x ∈ [0,∞[ and γ, Γ ∈ R. Then for all x > 0 and α,β > 0, we

have

γ

(
1

1− β

[
1− e

−( 1−β

β
)x

])
Iα
0,xu(x) +

(
1

1− α

[
1− e−( 1−α

α
)x

])
I
β
0,xu(x)

≥ Γγ

(
1

1− β

[
1− e

−( 1−β

β
)x

])(
1

1− α

[
1− e−( 1−α

α
)x

])
+ Iα

0,xu(x)I
β
0,xu(x).

(15)

Theorem 3 If u and v be two integrable functions defined on [0,∞[, Sup-

pose that (H1) and (H2) holds. Then for all x > 0, α,β > 0, the following

inequalities satisfied

(h1) I
β
0,xΨ1(x) I

α
0,xu(x) + Iα

0,xΦ2(x) I
β
0,xv(x)

≥ I
β
0,xΨ1(x) I

α
0,xΦ2(x) + Iα

0,xu(x) I
β
0,xv(x).

(h2) I
β
0,xΦ1(x) I

α
0,xv(x) + Iα

0,xΨ2(x) I
β
0,xu(x)

≥ I
β
0,xΦ1(x) I

α
0,xΨ2(x) + I

β
0,xu(x) I

α
0,xv(x).

(h3) Iα
0,xΦ2(x) I

β
0,xΨ2(x) + Iα

0,xu(x) I
β
0,xv(x)

≥ Iα
0,xΦ2(x) I

β
0,xv(x) + I

β
0,xΨ2(x) I

α
0,xu(x).

(h4) Iα
0,xΦ1(x) I

β
0,xΨ1(x) + Iα

0,xu(x) I
β
0,xv(x)

≥ Iα
0,xΦ1(x) I

β
0,xv(x) + I

β
0,xΨ1(x) I

α
0,xu(x).

(16)
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Proof. To prove (h1), we use condition (H1) and (H2), for all x ∈ [0,∞[, we
have

(Φ2(ρ) − u(ρ)) (v(σ) − Ψ1(σ)) ≥ 0, (17)

which implies that

Φ2(ρ)v(σ) + u(ρ)Ψ1(σ) ≥ Φ2(ρ)Ψ1(σ) + u(ρ)u(σ). (18)

Multiplying (18) by 1
αe

−( 1−α
α

)(x−ρ), which is positive because ρ ∈ (0, x), x > 0

v(σ)
1

α
e−( 1−α

α
)(x−ρ)Φ2(ρ) + Ψ1(σ)

1

α
e−( 1−α

α
)(x−ρ)u(ρ)

≥ Ψ1(σ)
1

α
e−( 1−α

α
)(x−ρ)Φ2(ρ) + v(σ)

1

α
e−( 1−α

α
)(x−ρ)u(ρ).

(19)

Integrating (19) with respect to ρ from 0 to x, we get

v(σ)

α

∫ t

0

e−( 1−α
α

)(x−ρ)Φ2(ρ)dρ+
Ψ1(σ))

α

∫ t

0

e−( 1−α
α

)(x−ρ)u(ρ)dρ

≥
Ψ1(σ)

α

∫ t

0

e−( 1−α
α

)(x−ρ)Φ2(ρ)dρ+
v(σ)

α

∫ t

0

e−( 1−α
α

)(x−ρ)u(ρ)dρ,

(20)

therefore

v(σ)Iα
0,xΦ2(x) + Ψ1(σ)I

α
0,xu(x) ≥ Ψ1(σ)I

α
0,xΦ2(x) + v(σ)Iα

0,xu(x). (21)

Multiplying both sides of (21) by 1
βe

−( 1−β

β
)(x−σ), which is positive because

σ ∈ (0, x), x > 0. Then integrating resulting identity with respective σ over 0
to x, we obtain

Iα
0,xΦ2(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

v(σ)dσ+
Iα
0,xu(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

Ψ1(σ)dσ

≥
Iα
0,xΦ2(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

vΨ1(σ)dσ+
Iα
0,xu(x)

β

∫x

0

e
−( 1−β

β
)(x−σ)

v(σ)dσ.

(22)

This gives desired inequality (h1).
To prove (h2)-(h4), we use the following inequalities respectively
(Ψ2(ρ) − v(ρ)) (u(σ) −Φ1(σ)) ≥ 0.

(Φ2(ρ) − u(ρ)) (v(σ) − Ψ2(σ)) ≤ 0.

(Φ2(ρ) − u(ρ)) (v(σ) − Ψ1(σ)) ≤ 0. �
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Remark 2 If u and v be two integrable function defined on [0,∞[, Assume

that (H3) There exist real constant Γ, γ, Γ
′

, γ
′

such that

γ ≤ u(x) ≤ Γ and γ
′

≤ v(x) ≤ Γ
′

∀ x ∈ [0,∞[. (23)

Then for all x > 0, α,β > 0, the following inequalities satisfied

(h1)

(
γ

′ 1

1− β

[
1− e

−( 1−β

β
)x

])
Iα
0,xu(x) +

(
Γ

1

1− α

[
1− e−( 1−α

α
)x

])
I
β
0,xv(x)

≥

(
γ

′ 1

1− β

[
1− e

−( 1−β

β
)x

])(
Γ

1

1− α

[
1− e−( 1−α

α
)x

])
+ Iα

0,xu(x)I
β
0,xv(x).

(h2)

(
γ

1

1− β

[
1− e

−( 1−β

β
)x

])
Iα
0,xv(x) +

(
Γ

′ 1

1− α

[
1− e−( 1−α

α
)x

])
I
β
0,xu(x)

≥

(
γ

1

1− β

[
1− e

−( 1−β

β
)x

])(
Γ

′ 1

1− α

[
1− e−( 1−α

α
)x

])
+ I

β
0,xu(x)I

α
0,xv(x).

(h3)

(
Γ

1

1− β

[
1− e

−( 1−β

β
)x

])(
Γ

′ 1

1− α

[
1− e−( 1−α

α
)x

])
+ Iα

0,xu(x)I
β
0,xv(x)

≥

(
Γ

1

1− α

[
1− e−( 1−α

α
)x

])
I
β
0,xv(x) +

(
γ

1

1− β

[
1− e

−( 1−β

β
)x

])
Iα
0,xu(x).

(h4)

(
γ

1

1− β

[
1− e

−( 1−β

β
)x

])(
γ

′ 1

1− α

[
1− e−( 1−α

α
)x

])
+ Iα

0,xu(x)I
β
0,xv(x)

≥

(
γ

1

1− β

[
1− e

−( 1−β

β
)x

])
I
β
0,xv(x) +

(
γ

′ 1

1− β

[
1− e

−( 1−β

β
)x

])
Iα
0,xu(x).

(24)

Lemma 1 If u be an integrable function on [0,∞), and Φ1(x), Φ2(x) be two

integrable functions on [0,∞). Assume that the condition H1 holds. Then for

all x > 0, α > 0, we have

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xu

2(x) − (Iα
0,xu(x))

2

= (Iα
0,xΦ2(x) − Iα

0,xu(x)) (I
α
0,xu(x) − Iα

0,xΦ1(x))

−

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,x [(Φ2(x) − u(x))(u(x) −Φ1(x))]

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΦ1u(x) − Iα

0,xΦ1(x)I
α
0,xu(x)

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΦ2u(x) − Iα

0,xΦ2(x)I
α
0,xu(x)

(25)
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+ Iα
0,xΦ1(x)I

α
0,xΦ2(x) −

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΦ1Φ2(x).

Proof. Since u be an integrable function on [0,∞). For all ρ, σ > 0, we have

(Φ2(σ) − u(σ)) (u(ρ) −Φ1(ρ)) + (Φ2(ρ) − u(ρ)) (u(σ) −Φ1(σ))

− (Φ2(ρ) − u(ρ)) (u(ρ) −Φ1(ρ)) − (Φ2(σ) − u(σ)) (u(σ) −Φ1(σ))

= u2(ρ) + u2(σ) − 2u(τ)u(ρ) +Φ2(σ)u(ρ) +Φ1(ρ)u(σ) −Φ1(ρ)Φ2(σ)

+Φ1(ρ)u(σ) +Φ1(σ)u(ρ) −Φ1(σ)Φ2(ρ) −Φ2(ρ)u(ρ) +Φ1(ρ)Φ2(ρ)

−Φ1(ρ)u(ρ) −Φ2(σ)u(σ) +Φ1(σ)Φ(σ) −Φ1(σ)u(σ).

(26)

Multiplying both sides of (26) by 1
αe

−( 1−α
α

)(x−ρ), which is positive because
ρ ∈ (0, x), x > 0, integrating obtained result with respect to ρ from 0 to x, we
have

(Φ2(σ) − u(σ)) (Iα
0,xu(x) − Iα

0,xΦ1(x))

+ (Iα
0,xΦ2(x) − Iα

0,xu(x)) (u(σ) −Φ1(σ))

− Iα
0,x [(Φ2(x) − u(x)) (u(x) −Φ1(x))] −

(ln x)α

Γ(α+ 1)
(Φ2(σ)

−u(σ)) (u(σ) −Φ1(σ))

= Iα
0,xu

2(x) + u2(σ)

(
1

1− α

[
1− e−( 1−α

α
)x

])

− 2u(σ)Iα
0,xu(x) +Φ2(σ)I

α
0,xu(x)

+ u(σ)Iα
0,xΦ1(x) −Φ2(σ)I

α
0,xΦ1(x) + u(σ)Iα

0,xΦ2(x)

+Φ1(σ)I
α
0,xu(x) −Φ1(σ)I

α
0,xΦ2(x) − Iα

0,xΦ2u(x)

+ Iα
0,xΦ1Φ2(x) − Iα

0,xΦ1u(x) −Φ2(σ)u(σ)

(
1

1− α

[
1− e−( 1−α

α
)x

])

+Φ1(σ)Φ2(σ)

(
1

1− α

[
1− e−( 1−α

α
)x

])

−Φ1(σ)u(σ)

(
1

1− α

[
1− e−( 1−α

α
)x

])
.

(27)

Again, multiplying (27) by 1
αe

−( 1−α
α

)(x−σ), which is positive because σ ∈ (0, x),
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x > 0, integrating obtained result with respect to ρ from 0 to x, we have

(Iα
0,xΦ2(x) − Iα

0,xu(x)) (I
α
0,xu(x) − Iα

0,xΦ1(x))

+ (Iα
0,xΦ2(x) − Iα

0,xu(x)) (I
α
0,xu(x) − Iα

0,xΦ1(x))

−

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,x [(Φ2(x) − u(x)) (u(x) −Φ1(x))]

−

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,x [(Φ2(x) − u(x)) (u(x) −Φ1(x))]

= Iα
0,xu

2(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])
+ Iα

0,xu
2(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])

− 2Iα
0,xu(x)I

α
0,xu(x) + Iα

0,xΦ2(x)I
α
0,xu(x) + Iα

0,xu(x)I
α
0,xΦ1(x)

− Iα
0,xΦ2(x)I

α
0,xΦ1(x)

+ Iα
0,xu(x)HD

−α
1,xΦ2(x) + Iα

0,xΦ1(x)I
α
0,xu(x) − Iα

0,xΦ1(x)I
α
0,xΦ2(x)

− Iα
0,xΦ2u(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])
+ Iα

0,xΦ1Φ2(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])

− Iα
0,xΦ1u(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])

− Iα
0,xΦ2u(x)

(
1

1− α

[
1− e−(1−α

α
)x

])
+ Iα

0,xΦ1Φ2(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])

− Iα
0,xΦ1u(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])
,

(28)

which implies that

2 (Iα
0,xΦ2(x) − Iα

0,xu(x)) (I
α
0,xu(x) − Iα

0,xΦ1(x))

− 2

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,x [(Φ2(x) − u(x)) (u(x) −Φ1(x))]

= 2Iα
0,xu

2(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])
− 2(Iα

0,xu(x))
2 + 2Iα

0,xΦ2(x)I
α
0,xu(x)

+ 2Iα
0,xu(x)I

α
0,xΦ1(x) − 2Iα

0,xΦ2(x)I
α
0,xΦ1(x)

− 2Iα
0,xΦ2u(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])
+ 2Iα

0,xΦ1Φ2(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])

− 2Iα
0,xΦ1u(x)

(
1

1− α

[
1− e−( 1−α

α
)x

])
.

(29)
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This completes the proof. �

If Φ1(x) = γ and Φ2(x) = Γ ; γ, Γ ∈ R for all x ∈ [0,∞), then inequality (25)
reduces to following lemma.

Lemma 2 If γ, Γ ∈ R, and u(x) be an integrable function on [0,∞) and sat-

isfying the condition γ ≤ u(x) ≤ Γ . Then for all x > 0, α > 0, we have

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xu

2(x) − (Iα
0,xu(x))

2

=

(
Γ

(
1

1− α

[
1− e−( 1−α

α
)x

])
− Iα

0,xu(x)

)
×

(
Iα
0,xu(x) −

(
γ

1

1− α

[
1− e−( 1−α

α
)x

]))

−

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,x ((Γ − u(x))(u(x) − γ)) .

(30)

Theorem 4 Let u and v be two integrable functions on [0,∞), and Φ1(x),

Φ2(x), Ψ1(x) and Ψ2(x) are four integrable functions on [0,∞) satisfying the

conditions H1 and H2 on [0,∞). Then for all x > 0, α > 0, we have

∣∣∣∣
(

1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xuv(x) − Iα

0,xu(x)I
α
0,xv(x)

∣∣∣∣

≤
√
R(u,Φ1(x),Φ2(x))R(v, Ψ1(x), Ψ2(x)).

(31)

where R(a, b, c) is defined by

R(a, b, c) = (Iα
0,xc(x) − Iα

0,xa(x)) (I
α
0,xa(x) − Iα

0,xb(x))

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xba(x) − Iα

0,xb(x)I
α
0,xa(x)

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xca(x) − Iα

0,xc(x)I
α
0,xa(x)

+ Iα
0,xb(x)I

α
0,xc(x) +

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xbc(x).

(32)

Proof Let u and v be two functions defined on [0,∞) satisfying the condition
H1 and H2. Define

H(ρ, σ) := (u(ρ) − u(σ)) (v(ρ) − v(σ)) ; ρ, σ ∈ (0, x), x > 0, (33)
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it follows that

H(ρ, σ) := u(ρ)v(ρ) − u(ρ)v(σ) − u(σ)v(ρ) + u(σ)v(σ). (34)

Now, multiplying (34) by 1
αe

−( 1−α
α

)(x−ρ), which is positive because ρ ∈ (0, x),
x > 0, integrating obtained result with respect to ρ from 0 to x, we have

1

α

∫ t

0

e−( 1−α
α

)(x−ρ)H(ρ, σ)dρ

= Iα
0,xuv(x) − u(τ)Iα

0,xu(x) − u(σ)Iα
0,xv(x) + u(σ)v(σ)Iα

0,x(1).

(35)

Multiplying (35) by 1
αe

−( 1−α
α

)(x−σ), which is positive because σ ∈ (0, x), x > 0,
integrating obtained result with respect to σ from 0 to x, we have

1

α2

∫ t

0

∫ t

0

e−( 1−α
α

)(x−ρ)e−( 1−α
α

)(x−σ)H(ρ, σ)dρdσ

= 2

((
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xuv(x) − Iα

0,xu(x)I
α
0,xu(x)

)
.

(36)

Applying the Cauchy-Schwarz inequality to (36), we have

((
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xuv(x) − Iα

0,xu(x)I
α
0,xv(x)

)2

≤

((
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xu

2(x) − (Iα
0,xu(x))

2

)
×

((
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xv

2(x) − Iα
0,xv(x)

2

)
,

(37)

since (Φ2(x) − u(t))(u(t) −Φ1(x)) ≥ 0 and (Ψ2(x) − v(t))(v(t) − Ψ1(x)) ≥ 0,
we have

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,x(Φ2(x) − u(t))(u(t) −Φ1(x)) ≥ 0, (38)

and

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,x(Ψ2(x) − v(t))(v(t) − Ψ1(x)) ≥ 0. (39)
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Thus, we have
(

1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xu

2(x) − (Iα
0,xu(x))

2

≤ (Iα
0,xΦ2(x) − Iα

0,xu(x)) (I
α
0,xu(x) − Iα

0,xΦ1(x))

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΦ1u(x) − Iα

0,xΦ1(x)I
α
0,xu(x)

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΦ2u(x) − Iα

0,xΦ2(x)I
α
0,xu(x)

+ Iα
0,xΦ1(x)I

α
0,xΦ2(x) −

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΦ1Φ2(x)

= R(u,Φ1,Φ2),

(40)

and
(

1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xu

2(x) − (Iα
0,xu(x))

2

≤ (Iα
0,xΨ2(x) − Iα

0,xu(x)) (I
α
0,xu(x) − Iα

0,xΨ1(x))

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΨ1u(x) − Iα

0,xΨ1(x)I
α
0,xu(x)

+

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΨ2u(x) − Iα

0,xΨ2(x)I
α
0,xu(x)

+ Iα
0,xΨ1(x)I

α
0,xΨ2(x) −

(
1

1− α

[
1− e−( 1−α

α
)x

])
Iα
0,xΨ1Ψ2(x)

= R(u,Ψ1, Ψ2).

(41)

Combining (37), (40) and (41), we get (31).

4 Concluding Remarks

Nchama et al. [28], investigated some integral inequalities by considering
Caputo-Fabrizio fractional integral operator. In [6] Caputo and Farbrizio in-
troduced a new fractional differential and integral operator. Motivated by the
above work, here we studied Grüss-type inequalities and other fractional in-
equalities by considering Caputo-Fabrizio fractional integral operator. By the
help of this study we establish more general inequalities than in the classical
cases. The inequalities investigated in this paper give some contribution to the
fields of fractional calculus and Caputo-Fabrizio fractional integral operator.
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These inequalities are expected to lead to some application for finding bounds
and uniqueness of solutions in fractional differential equations.
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1 Introduction and preliminaries

Banach [2] stated the first metric fixed point result in 1922. After this, enor-
mous generalizations and extensions of Banach’s result have been announced
([1], [4], [7], [13], [17], [23], [27] -[30], and so on). These essentially centred
around two components: (i) by changing the structure and (ii) by changing
the conditions on the mapping under consideration. One such interesting struc-
ture, parametric Nb-metric spaces is recently introduced by Tas and Özgür
[21]. It generalizes the metric space (Fréchet [5]), b−metric space (Bakhtin
[1] and Czerwik [4]), S−metric space (Sedghi et al. [17]), Sb−metric space
(Souayah and Mlaiki [19] and Sedghi et al. [16]), parametric S-metric space
(Tas and Özgür [20]), Ab-metric space (Ughade et al. [30]) and so on. It is
worth to mention that Souayah et al. [19] used the symmetry condition, in
addition to other conditions used by Sedghi et al. [16]. Motivated by the fact
that the equations, obtained on modeling real-world problems may be solved
using the fixed point technique and geometry of nonunique fixed points, we
familiarize SA, η − SA, η − SAmin, SAη,δ,ζ−contractions and the notions of
η-admissibility of type b and ηb− regularity in parametric Nb−metric space to
establish a unique fixed point, a unique fixed circle, and a greatest fixed disc.
In the sequel, with the help of examples and remarks, we demonstrate that our
contractions are incomparable over each one of those contractions wherein the
continuity of mapping is presumed for the survival of a fixed point. Further, we
investigate the geometry of non-unique fixed points in reference to fixed circle
or greatest fixed disc problems and demonstrate by illustrative examples that
a circle or a disc in parametric Nb−metric space is not necessarily the same
as a circle or a disc in a Euclidean space. We conclude the paper by resolving
the system of linear equations to demonstrate the significance of our proposed
contractions in parametric Nb−metric space.

We denote N (x, x, · · · , (x)n−1, y, t) by Nx,y,t.

Definition 1 [21] Let X 6= ∅, b ≥ 1 be a given real number, n ∈ N. A distance

function N : X n × (0,∞) → [0,∞) is a parametric Nb−metric if

(N1) N (x1, x2, · · · , xn−1, xn, t) = 0 iff x1 = x2 = · · · = xn−1 = xn;

(N2) N (x1, x2, · · · , xn−1, xn, t) ≤ b[N (x1, a, t) +N (x2, a, t) + · · ·+N (xn−1, a, t) +

N (xn, a, t)],

t > 0, for every a, xi ∈ X and i = 1, 2, · · · , n.
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Example 1 [21] Let X = {S |S : (0,∞) → R} be the set of functions and

N : X 3 × (0,∞) → [0,∞) be

N (St, T t,J t, t) =
1

9

(
|St − T t|+ |St − J t|+ |T t − J t|

)2
,

t > 0, for every S, T , J ∈ X . Noticeably, (X ,N ) is a parametric Nb−metric

space with n = 3 and b = 4.

Remark 1 Noticeably, a parametric Nb−metric is an improvement of a para-

metric S−metric [20] because every parametric Nb−metric, for b = 1 and

n = 3, is a parametric S−metric. However, one may verify that a parametric

S−metric need not essentially be a parametric Nb−metric.

Lemma 1 [21] In a parametric Nb−metric space (X ,N ),

(i) Nx,y,t ≤ bNy,x,t and Ny,x,t ≤ bNx,y,t,

(ii) Nx,y,t ≤ b[(n − 1)Nx,z,t +Ny,z,t] and Nx,y,t ≤ b[(n − 1)Nx,z,t + bNz,y,t],

t > 0 and x y ∈ X .

Definition 2 [21] Let {xk} be a sequence in a parametric Nb−metric space

(X ,N ), then

(1) {xk} converges to x, if for ǫ > 0, there exists an n0 ∈ N so that, we attain

Nxk,x,t ≤ ǫ, i.e., limk→∞Nxk,x,t = 0, l ≥ n0. It is denoted limk→∞ xk = x;

(2) {xk} is a Cauchy sequence, if for each ǫ > 0, there exists an n0 ∈ N so

that, we attain Nxk,xl,t ≤ ǫ, i.e., limk→∞Nxk,xl,t = 0, k, l ≥ n0;

(3) (X ,N ) is complete if every Cauchy sequence in (X ,N ) converges to a

point in it.

Lemma 2 [21] If {xk} and {yk} are two sequences in a parametric Nb−metric

space (X ,N ) that converge to x and y respectively in X then:

(i) x is unique,

(ii) {xk} is a Cauchy sequence,

(iii) 1
b2
Nx,y,t ≤ limk→∞ infNxk,yk,t ≤ limk→∞ supNxk,yk,t ≤ b2Nx,y,t.

Lemma 3 [21] If two sequences {xk} and {yk} in a parametric Nb−metric space

(X ,N ) are such that

lim
k→∞

Nxk,yk,t = 0,

when {xk} is convergent and limk→∞ xk = x0, x0 ∈ X , then limk→∞ yk = x0.
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2 Main results

I. Existence of a single fixed point

We define SA, η − SA, η − SAmin, and SAη,δ,ζ−contractive conditions in a
parametric Nb-metric space to prove a fixed point.

Definition 3 A self mapping S : X → X in a parametric Nb−metric space

(X ,N ) with b ≥ 1 is called an SA−contraction if

NSx,Sy,t ≤ a1Nx,y,t + a2
Nx,Sx,tNy,Sy,t

1+Nx,y,t
+ a3

Nx,Sy,tNy,Sx,t

1+Nx,y,t

+ a4
Nx,Sx,tNx,Sy,t

1+Nx,y,t
+ a5

Ny,Sy,tNy,Sx,t

1+Nx,y,t
,

(1)

where,
∑5
i=1 ai < 1 and a1 + a3b < 1, (ai, i = 1 to 5, are non-negative con-

stants).

Definition 4 A self mapping S : X → X in a parametric Nb−metric space

with b ≥ 1 is called an η− SA−contraction if

η(x, y, t) NSx,Sy,t ≤ a1Nx,y,t + a2φ

(
max

{

Nx,y,t,Nx,Sx,t,Ny,Sx,t,Ny,Sy,t,

Nx,Sy,t,
Nx,Sx,t+Ny,Sy,t

2

} )

+ a3φ

(
Nx,y,t[1+

√
Nx,y,tNx,Sx,t

]2

(1+Nx,y,t)2

)
, (2)

x, y ∈ A, a1, a2, a3 ≥ 0, a1+a2+a3 < 1, a1+ba2+a3 < 1, 0 ≤ a2 <
1−a1−a3
b2+b(n−1)

,

η, φ : [0,∞) → [0,∞) are increasing functions and φ(t) < t, t > 0.

Definition 5 A self mapping S : X → X in a parametric Nb-metric space

(X ,N ) with b ≥ 1 is called an η− SAmin

η(x, y, t) φ(NSx,Sy,t) ≤ a1Nx,y,t + a2φ

(
min

{

Nx,y,t,Nx,Sx,t,Ny,Sx,t,Ny,Sy,t,

Nx,Sy,t,
Nx,Sx,t+Ny,Sy,t

2

} )

+ a3φ

(
Nx,y,t[1+

√
Nx,y,tNx,Sx,t

]2

(1+Nx,y,t)2

)
, (3)

x, y ∈ X and a1, a2, a3 ≥ 0 with a1 + a2 + a3 < 1, η, φ : [0,∞) → [0,∞) are

increasing functions and φ(t) < t, t > 0.
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Definition 6 A self mapping S : X → X in a parametric Nb-metric space

(X ,N ) with b ≥ 1 is called an SAη,δ,ζ− contraction if

[η(x, y, t) − 1+ δ]NSx,Sy,t ≤ δ
ζ(Nx,y,t)

(
max

{

Nx,y,t,Nx,Sx,t,Ny,Sx,t,Ny,Sy,t,
Nx,Sx,t+Ny,Sy,t

2

})

,

(4)

x, y ∈ X , a constant δ ≥ 1, ζ : [0,∞) → [0, 1
b
] and η : [0,∞) → [0,∞) is a

non-decreasing function.

Next, we prove our first main result for an SA−contraction.

Theorem 1 Let S : X → X be an SA−contraction (1) in a complete para-

metric Nb-metric space (X ,N ). Then, S has a unique fixed point in X .

Proof. Let us assume that x0 ∈ X . Let a sequence {xn} be constructed as
xn+1 = Sxn. If, we have xn0 = xn0+1 then xn0 = xn0+1 = Sxn0 , n0 ∈ N, i.e., we
infer that xn0 is a fixed point of S.
Let xn0 6= xn0+1, n0 ∈ N. Using inequality (1), we attain

Nxn,xn+1,t = NSxn−1,Sxn,t

≤ a1Nxn−1,xn,t + a2
Nxn−1,Sxn−1,tNxn,Sxn,t

1+Nxn−1,xn,t
+ a3

Nxn−1,Sxn,tNxn,Sxn−1,t

1+Nxn−1,xn,t

+ a4
Nxn−1,Sxn−1,tNxn−1,Sxn,t

1+Nxn−1,xn,t
+ a5

Nxn,Sxn,tNxn,Sxn−1,t

1+Nxn−1,xn,t

= a1Nxn−1,xn,t + a2
Nxn−1,xn,tNxn,xn+1,t

1+Nxn−1,xn,t
+ a3

Nxn−1,xn+1,tNxn,xn,t

1+Nxn−1,xn,t

+ a4
Nxn−1,xn,tNxn−1,xn+1,t

1+Nxn−1,xn,t
+ a5

Nxn,xn+1,tNxn,xn,t

1+Nxn−1,xn,t

≤ a1Nxn−1,xn,t + a2Nxn,xn+1,t + a4[b(n − 1)Nxn−1,xn,t + b2Nxn,xn+1,t].

It follows that

(1 − a2 − b2a4)Nxn,xn+1,t ≤
(
a1 + b(n − 1)a4

)
Nxn−1,xn,t. (5)

Again using inequality (1), we obtain

Nxn+1,xn,t = NSxn,Sxn−1,t

≤ a1Nxn,xn−1,t + a2
Nxn,Sxn,tNxn−1,Sxn−1,t

1+Nxn,xn−1,t
+ a3

Nxn−1,Sxn,tNxn,Sxn−1,t

1+Nxn,xn−1,t
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+ a4
Nxn,Sxn,tNxn,Sxn−1,t

1+Nxn,xn−1,t
+ a5

Nxn−1,Sxn−1,tNxn−1,Sxn,t

1+Nxn,xn−1,t

= a1Nxn,xn−1,t + a2
Nxn,xn+1,tNxn−1,xn,t

1+Nxn,xn−1,t
+ a3

Nxn,xn+1,tNxn,xn,t

1+Nxn,xn−1,t

+ a4
Nxn,xn+1,tNxn,xn,t

1+Nxn,xn−1,t
+ a5

Nxn−1,xn,tNxn−1,xn+1,t

1+Nxn,xn−1,t

≤ a1Nxn−1,xn,t + a2Nxn,xn+1,t + a5[b(n − 1)Nxn−1,xn,t + b2Nxn,xn+1,t]. (6)

It follows that

(1 − a2 − b2a5)Nxn,xn+1,t ≤
(
a1 + b(n − 1)a5

)
Nxn−1,xn,t. (7)

Adding inequalities (5) and (7), we obtain

Nxn,xn+1,t ≤

(
2a1 + b(n − 1)(a4 + a5)

2 − 2a2 − b2(a4 + a5)

)
Nxn−1,xn,t.

Let
2a1+b(n−1)(a4+a5)

2−2a2−b2(a4+a5)
= h. In view of

∑5
1 ai < 1, h ∈ (0, 1). Then,

Nxn,xn+1,t ≤ hNxn−1,xn,t.

Similarly,
Nxn−1,xn,t ≤ hNxn−2,xn−1,t.

So,
Nxn,xn+1,t ≤ h

2Nxn−1,xn,t.

Following the same pattern, we attain

Nxn,xn+1,t ≤ h
nNx0,x1,t.

Since, h ∈ (0, 1), letting n → ∞, hn → 0, we attain

lim
n→∞

Nxn,xn+1,t = 0. (8)

Then, for l > k, k, l ∈ N, using equation (8), condition (N2) and Lemma 1, we
obtain

Nxk,xl,t ≤ b(n − 1)Nxk,xk+1,t + bNxl,xk+1,t ≤ b(n − 1)Nxk,xk+1,t + b2Nxk+1,xl,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b3Nxk+2,xl,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b4Nxl,xk+2,t
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≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b5(n − 1)Nxk+2,xk+3,t

+ b5Nxl,xk+3,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b5(n − 1)Nxk+2,xk+3,t

+ b7Nxk+3,xk+4,t + · · · .

Letting k, l → ∞, we obtain

lim
k, l→∞

Nxk,xl,t = 0,

i.e., {xn} is a Cauchy sequence. Using the completeness of the space, limk, l→∞ xk
= x, x ∈ X .
Assume x is not a fixed point of S. Applying inequality (1), we obtain

Nxk,Sx,t = NSxk−1,Sx,t ≤ a1Nxk−1,x,t + a2
Nxk−1,Sxk−1,tNx,Sx,t

1+Nxk−1,x,t
+ a3

Nxk−1,Sx,tNx,Sxk−1,t

1+Nxk−1,x,t

+ a4
Nxk−1,Sxk−1,tNxk−1,Sx,t

1+Nxk−1,x,t
+ a5

Nx,Sx,tNx,Sxk−1,t

1+Nxk−1,x,t

= a1Nxk−1,x,t + a2
Nxk−1,xk,tNx,Sx,t

1+Nxk−1,x,t
+ a3

Nxk−1,Sx,tNx,xk,t

1+Nxk−1,x,t

+ a4
Nxk−1,xk,tNxk−1,Sx,t

1+Nxk−1,x,t
+ a5

Nx,Sx,tNx,xk,t

1+Nxk−1,x,t
. (9)

As k → ∞, using condition (N1), we get Nx,Sx,t ≤ 0, i.e., Sx = x.
Presume that y is one more fixed point of S, then Sx = x and Sy = y. Using

inequality (1), we obtain

Nx,y,t = NSx,Sy,t ≤ a1Nx,y,t + a2
Nx,Sx,tNy,Sy,t

1+Nx,y,t
+ a3

Nx,Sy,tNy,Sx,t

1+Nx,y,t
+ a4

Nx,Sx,tNx,Sy,t

1+Nx,y,t

+ a5
Ny,Sy,tNy,Sx,t

1+Nx,y,t
= (a1 + a3b)Nx,y,t, a contradiction.

Thus, x = y, i.e., a fixed point of S is unique. �

Next, we furnish a non-trivial illustration to exhibit the validity of the above
outcome.

Example 2 Let X = R
+ ∪ {0}. Let a function N : X 3 × (0,∞) → [0,∞) be

N (x, y, z, t) =

{

0, if x = y = z;

t2max{x, y, z}, otherwise,
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for each x, y, z ∈ X and t >0. Then, (X ,N ) is a complete parametric Nb−metric

space for b = 2 and n = 3. Define S : X → X as

Sx =

{
x2

16 , if x ∈ [0, a);
x
15 , if x ∈ [a,∞),

, x ∈ X

with a ∈ (14 , 1). Taking a1 =
1
5
= a2 = a3 = a4 and a5 = 1

10 , S verifies the

hypotheses of Theorem 1 and has a unique fixed point at x = 0.

For a1 ∈ [0, 1) and a2 = a3 = a4 = a5 = 0, Theorem 1 is an extension and an
improvement of Banach [2] to a parametric Nb−metric space wherein the in-
volved mapping is not necessarily continuous.

Following Sintunavarat [18], we familiarize η−admissibility of type b and ηb−
regularity to determine a fixed point in a parametric Nb−metric space (X ,N ).

Definition 7 A self mapping S : X → X is called η−admissible of type b if

there exists an η : X × X × (0,∞) → (0,∞) so that η(x, y, t) ≥ b implies that

η(Sx,Sy, t) ≥ b, t > 0 and x, y ∈ X .

Example 3 Let X = {(0, 0), (1, 0), (1, 2), (1, 3), (1, 4)} be a subset of R2. Let

S : X → X be

Sx =

{

(1, 2), if x ∈ X\{(1, 4)}

(1, 3), if x = (1, 4).

Now, define an η : X × X × (0,∞) → (0,∞) as

η(x, y, t) =

{

(1, 0), if x, y ∈ X\{(1, 4)}

3
2 , if x = (1, 4).

In case x, y ∈ X\{(1, 4)}, then η(Sx,Sy, t) = η((1, 2), (1, 2), t) = (1, 0). If

x = y = (1, 3), then η(Sx,Sy, t) = η
(
S(1, 4),S(1, 4), t)

)
= η((1, 3), (1, 3), t)) =

(1, 0), t > 0. Hence, S is η−admissible of type b. One may verify that S is

neither an α−admissible [14] nor an α−admissible type S [18].

Definition 8 Let {xn} be a sequence in X so that η(xn, xn+1, t) ≥ b, n ∈ N∪ {0},

t > 0 and limn−→∞ xn = x ∈ X , then X is called ηb−regular if η(xn, x, t) ≥ b.

Theorem 2 Let S : X → X be an η − SA− contraction (2) in a complete

parametric Nb−metric space (X ,N ) with b ≥ 1 satisfying
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(i) S is η−admissible of type b;

(ii) X is ηb−regular;

(iii) There exists a x0 ∈ X so that η(x0,Sx0, t) ≥ b, for t >0.

Then, S has a unique fixed point.

Proof. Consider x0 ∈ X so that η(x0,Sx0, t) ≥ b, t >0. Let a sequence {xn} be
constructed as xn+1 = Sxn, n ∈ N∪ {0}. Since, η(x0, x1, t) = η(x0,Sx0, t) ≥ b and
η(x1, x2, t) = η(Sx0,SSx0, t) ≥ b, using (ii). Following this pattern, we attain
η(xn, xn+1, t) ≥ b. In case, xn = xn+1, we conclude that xn is a fixed point of S.
Let xn 6= xn+1. Using inequality (2), we obtain

N xn,xn+1,t = NSxn−1,Sxn,t ≤ η(xn−1, xn, t)NSxn−1,Sxn,t

≤ a1Nxn−1,xn,t + a2φ

(
max

{

Nxn−1,xn,t,Nxn−1,Sxn−1,t,Nxn,Sxn−1,t,Nxn,Sxn,t,

Nxn−1,Sxn,t,
Nxn−1,Sxn−1,t+Nxn,Sxn,t

2

} )

+ a3φ

(
Nxn−1,y,t[1+

√
Nxn−1,xn,tNxn−1,Sxn−1,t

]2

(1+Nxn−1,xn,t)
2

)

= a1Nxn−1,xn,t + a2φ

(
max

{

Nxn−1,xn,t,Nxn−1,xn,t,Nxn,xn,t,Nxn,xn+1,t,

Nxn−1,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2

} )

+ a3φ

(
Nxn−1,y,t[1+

√
Nxn−1,xn,tNxn−1,xn,t

]2

(1+Nxn−1,xn,t)
2

)

= a1Nxn−1,xn,t + a2φ

(
max

{

Nxn−1,xn,t,Nxn,xn+1,t,Nxn−1,xn+1,t,

Nxn−1,xn,t+Nxn,xn+1,t

2

} )

+ a3φ

(
Nxn−1,y,t[1+

√
Nxn−1,xn,tNxn−1,xn,t

]2

(1+Nxn−1,xn,t)
2

)

≤ a1Nxn−1,xn,t + a2φ

(
max

{

Nxn−1,xn,t,Nxn,xn+1,t,Nxn−1,xn+1,t,

Nxn−1,xn,t+Nxn,xn+1,t

2

} )

+ a3φ(Nxn−1,xn,t). (10)

If max{Nxn−1,xn,t,Nxn,xn+1,t,Nxn−1,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2 } = Nxn−1,xn,t. Then, in-
equality (10) becomes

Nxn,xn+1,t ≤ a1Nxn−1,xn,t + a2φ(Nxn−1,xn,t) + a3φ(Nxn−1,xn,t).
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Since, φ(t) < t, we attain

Nxn,xn+1,t < (a1 + a2 + a3)Nxn−1,xn,t.

Let a1 + a2 + a3 = h, we have

Nxn,xn+1,t < hNxn−1,xn,t.

Similarly,
Nxn−1,xn,t < hNxn−2,xn−1,t.

Therefore,
Nxn,xn+1,t < h

2Nxn−2,xn−1,t.

Following this pattern, we attain

Nxn,xn+1,t ≤ h
nNx0,x1,t.

Since, h ∈ (0, 1), letting n → ∞, hn → 0, we attain

lim
n→∞

Nxn,xn+1,t = 0. (11)

If max {Nxn−1,xn,t,Nxn,xn+1,t,Nxn−1,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2 } = Nxn,xn+1,t. Then,
inequality (10) becomes

Nxn,xn+1,t ≤ a1Nxn−1,xn,t + a2φ(Nxn,xn+1,t) + a3φ(Nxn−1,xn,t).

Since, φ(t) < t, we attain

Nxn,xn+1,t ≤
(a1 + a3

1− a2

)
Nxn−1,xn,t.

Let
(
a1+a3
1−a2

)
= h, we have

Nxn,xn+1,t ≤ hNxn−1,xn,t.

Similarly,
Nxn−1,xn,t ≤ hNxn−2,xn−1,t.

Therefore,
Nxn,xn+1,t ≤ h

2Nxn−2,xn−1,t.

Following this pattern, we attain

Nxn,xn+1,t ≤ h
nNx0,x1,t.
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Since, h ∈ (0, 1), letting n → ∞, hn → 0, we attain

lim
n→∞

Nxn,xn+1,t = 0. (12)

If max{Nxn−1,xn,t, Nxn,xn+1,t,Nxn−1,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2 } = Nxn−1,xn+1,t. Then,
inequality (10) becomes

Nxn,xn+1,t ≤ a1Nxn−1,xn,t + a2φ(Nxn−1,xn+1,t) + a3φ(Nxn−1,xn,t).

Utilizing Lemma 1 and the definition of φ , we attain

Nxn,xn+1,t ≤ (a1 + a3)Nxn−1,xn,t + a2φ
(
b(n − 1)Nxn−1,xn,t + b2Nxn,xn+1,t

)

≤
(a1 + a3 + a2b(n − 1)

1− b2a2

)
Nxn−1,xn,t.

Let
a1+a3+a2b(n−1)

1−b2a2
= h, we attain

Nxn,xn+1,t ≤ hNxn−1,xn,t.

Similarly,
Nxn−1,xn,t ≤ hNxn−2,xn−1,t.

Therefore,
Nxn,xn+1,t ≤ h

2Nxn−2,xn−1,t.

Following this pattern, we attain

Nxn,xn+1,t ≤ h
nNx0,x1,t.

Since, 0 ≤ a2 <
1−a1−a3
b2+b(n−1)

, h ∈ (0, 1), letting n → ∞, hn → 0, we attain

lim
n→∞

Nxn,xn+1,t = 0. (13)

If max{Nxn−1,xn,t,Nxn,xn+1,t,Nxn−1,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2 } =
Nxn−1,xn,t+Nxn,xn+1,t

2 .
Then, inequality (10) becomes

Nxn,xn+1,t ≤ a1Nxn−1,xn,t + a2

(Nxn−1,xn,t +Nxn,xn+1,t

2

)
+ a3φ(Nxn−1,xn,t).

Since, φ(t) < t, we attain

Nxn,xn+1,t ≤ a1Nxn−1,xn,t + a2

(Nxn−1,xn,t +Nxn,xn+1,t

2

)
+ a3(Nxn−1,xn,t)
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≤
(2a1 + a2 + 2a3

2− a2

)
Nxn−1,xn,t.

Let
(
2a1+a2+2a3

2−a2

)
= h, we attain

Nxn,xn+1,t ≤ hNxn−1,xn,t.

Similarly,
Nxn−1,xn,t ≤ hNxn−2,xn−1,t.

Therefore,
Nxn,xn+1,t ≤ h

2Nxn−2,xn−1,t.

Following this pattern, we attain

Nxn,xn+1,t ≤ h
nNx0,x1,t.

Since, h ∈ (0, 1), letting n → ∞, hn → 0, we attain

lim
n→∞

Nxn,xn+1,t = 0. (14)

Then, for k, l ∈ N so that l > k, using equation (14), condition (N2), and
Lemma 1, we obtain

Nxk,xl,t ≤ b(n − 1)Nxk,xk+1,t + bNxl,xk+1,t

≤ b(n − 1)Nxk,xk+1,t + b2Nxk+1,xl,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b3Nxk+2,xl,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b4Nxl,xk+2,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b5(n − 1)Nxk+2,xk+3,t

+ b5Nxl,xk+3,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b5(n − 1)Nxk+2,xk+3,t

+ b7Nxk+3,xk+4,t + · · · .

Letting k, l → ∞, we get limk, l→∞Nxk,xl,t = 0, i.e., {xn} is a Cauchy sequence.
Using the completeness hypotheses, limk,l→∞ xk = x, x ∈ X .

Assume x is not a fixed point of S. Since, X is ηb−regular, then xn → x as
n → ∞ and η(xn, xn+1, t) ≥ b, which implies that η(xn, x, t) ≥ b, n ∈ N ∪ {0}.
Using inequality (2), we attain

N xk,Sx,t = NSxk−1,Sx,t ≤ η(xk−1, x, t)NSxk−1,Sx,t
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≤ a1Nxk−1,x,t + a2φ

(
max

{

Nxk−1,x,t,Nxk−1,Sxk−1,t,Nx,Sxk−1,t,Nx,Sx,t,

Nxk−1,Sx,t,
Nxk−1,Sxk−1,t

+Nx,Sx,t

2

} )

+ a3φ

(
Nxk−1,x,t[1+

√
Nxk−1,x,tNxk−1,Sxk−1,t

]2

(1+Nxk−1,x,t)
2

)

= a1Nxk−1,x,t + a2φ

(
max

{

Nxk−1,x,t,Nxk−1,xk,t,Nx,xk,t,Nx,Sx,t,

Nxk−1,Sx,t,
Nxk−1,xk,t

+Nx,Sx,t

2

} )

+ a3φ

(
Nxk−1,x,t[1+

√
Nxk−1,x,tNxk−1,xk,t

]2

(1+Nxk−1,x,t)
2

)
. (15)

As k → ∞, using Lemma 1 and condition (N1), we get Nx,Sx,t ≤ 0 which
implies that Sx = x.
Let S has one more fixed point, i.e., Sx = x and Sy = y, (x 6= y). Applying
inequality (2), we obtain

Nx,y,t ≤ η(x, y, t)NSx,Sy,t ≤ a1Nx,y,t + a2φ

(
max

{

Nx,y,t,Nx,Sx,t,Ny,Sx,t,Ny,Sx,t,

Nx,Sy,t,
Nx,Sx,t+Ny,Sx,t

2

})

+ a3φ

(
Nx,y,t[1+

√
Nx,y,tNx,Sx,t

]2

(1+Nx,y,t)2

)

≤ a1Nx,y,t + a2φ

(
max

{

Nx,y,t, 0, bNx,y,t,

bNx,y,t

2

} )
+ a3φ(Nx,y,t)

= a1Nx,y,t + a2φ
(
bNx,v,t

)
+ a3φ(Nx,y,t).

Since, φ(t) < t, t > 0, Nx,y,t ≤ (a1 + ba2 + a3)Nx,y,t, which is a contradiction.
Thus, Nx,y,t = 0, i.e., x = y. So, a fixed point of S is unique. �

The next example is provided to justify Theorem 2.

Example 4 Let X = R
+ ∪ {0} and function N : X 3 × (0,∞) → [0,∞) be

given by N (x, y, z, t) = 1
2(|x − y|+ |x − z|+ |y − z|)2, for every t > 0and x, y,

z ∈ X . Then, (X ,N ) is a complete parametric Nb−metric space with b = 2

and n = 3. Define S : X → X as

Sx =

{
x2

16 , if x ∈ [0, a);
x
15 , if x ∈ [a,∞),

x ∈ X , a ∈ (14 , 1). Now, define an η : X × X × (0,∞) → (0,∞) as

η(x, y, t) =

{

1, if x, y ∈ X ;

3
2 , if otherwise
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and φ(s) = 1
2s. Taking a1 =

1
10 = a2 and a3 =

1
15 , S verifies the hypotheses of

Theorem 2 and has a unique fixed point at x = 0.

For a2 ∈ [0, 1), a1 = a3 = 0 and η(x, y, t) = 1, Theorem 2 is an extension
and an improvement of Ćirić [3] to a parametric Nb−metric space wherein the
involved mapping is not necessarily continuous.

The next result is slightly more interesting as here the max term is replaced
by the min term in Theorem 2.10.

Theorem 3 Let S : X → X be an η − SAmin contraction (3)) in a complete

parametric Nb−metric space (X ,N ) with b ≥ 1 satisfying

(i) S is η−admissible of type b;

(ii) X is ηb−regular;

(iii) There exists a x0 ∈ X so that η(x0, fx0, t) ≥ 1, t > 0.

Then, S has a unique fixed point in X .

Proof. The proof is easy and follows the pattern of Theorem 2. �

The following result is more interesting as a weaker control function φ is used
with the η−admissibility of type b function, without exploiting ηb−regularity,
for a more general contractivity condition involving rational and irrational
terms to establish a fixed point of discontinuous mapping.

Theorem 4 Let S : X → X be a SAη,δ,ζ− contraction (4) in a complete para-

metric Nb-metric space (X ,N ) satisfying

(i) S is η−admissible of type b;

(ii) There exists a x0 ∈ X so that η(x0,Sx0, t) ≥ b, t > 0.

Then, S has a unique fixed point.

Proof. Consider x0 ∈ X so that η(x0,Sx0, t) ≥ b, t > 0. Let a sequence {xn}

be constructed as xn+1 = Sxn, n ∈ N ∪ {0}. As η(x0, x1, t) = η(x0,Sx0, t) ≥ b

and η(x1, x2, t) = η(Sx0,SSx0) ≥ b, using (ii). Following the same pattern, we
attain η(xn, xn+1, t) ≥ b. If xn = xn+1, then we conclude that xn is a fixed point
of S.
Let xn 6= xn+1. Utilizing SAηδζ−contraction (4), we attain

δNxn,xn+1,t = δNSxn−1,Sxn,t ≤ [η(xn−1, xn, t) − 1+ δ]
NSxn−1,Sxn,t
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≤ δ

ζ(Nxn−1,xn,t)max









Nxn−1,xn,t,Nxn−1,Sxn−1,t,Nxn,Sxn−1,t,

Nxn,Sxn,t,
Nxn−1,Sxn−1,t+Nxn,Sxn,t

2

}

= δ
1
b
max{Nxn−1,xn,t,Nxn,xn+1,t,

Nxn−1,xn,t
+Nxn,xn+1,t

2
}

Therefore,

Nxn,xn+1,t ≤
1

b
max{Nxn−1,xn,t,Nxn,xn+1,t,

Nxn−1,xn,t +Nxn,xn+1,t

2
}. (16)

If max{Nxn−1,xn,t,Nxn,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2 } = Nxn−1,xn,t. Then, inequality (16)
becomes

Nxn,xn+1,t ≤
1

b
Nxn−1,xn,t.

Similarly,

Nxn−1,xn,t ≤
1

b
Nxn−2,xn−1,t.

Therefore,

Nxn,xn+1,t ≤
1

b2
Nxn−2,xn−1,t.

Following the same pattern, we attain

Nxn,xn+1,t ≤
1

bn
Nx0,x1,t.

Since, b ≥ 1, letting n → ∞, 1
bn

→ 0, we attain

lim
n→∞

Nxn,xn+1,t = 0. (17)

If max{Nxn−1,xn,t,Nxn,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2 } = Nxn,xn+1,t. Then, inequality (16)
becomes

Nxn,xn+1,t ≤
1

b
Nxn,xn+1,t, a contradiction.

Therefore,
Nxn,xn+1,t = 0.

If max{Nxn−1,xn,t,Nxn,xn+1,t,
Nxn−1,xn,t+Nxn,xn+1,t

2 } =
Nxn−1,xn,t+Nxn,xn+1,t

2 . Then, in-
equality (16) becomes

Nxn,xn+1,t ≤

(
1

2b − 1

)
Nxn−1,xn,t.
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Let
(

1
2b−1

)
= h, we attain

Nxn,xn+1,t ≤ hNxn−1,xn,t.

Similarly,
Nxn−1,xn,t ≤ hNxn−2,xn−1,t.

Therefore,
Nxn,xn+1,t ≤ h

2Nxn−2,xn−1,t.

Following the same pattern, we attain

Nxn,xn+1,t ≤ h
nNx0,x1,t.

Since, h ∈ (0, 1), letting n → ∞, hn → 0, we attain

lim
n→∞

Nxn,xn+1,t = 0. (18)

Now, claim that {xn} is a Cauchy sequence. Then, for k, l ∈ N so that l > k,
using equation (18), condition (N2), and Lemma 1, we have

Nxk,xl,t ≤ b(n − 1)Nxk,xk+1,t + bNxl,xk+1,t ≤ b(n − 1)Nxk,xk+1,t + b
2Nxk+1,xl,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b3Nxk+2,xl,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b4Nxl,xk+2,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b5(n − 1)Nxk+2,xk+3,t

+ b5Nxl,xk+3,t

≤ b(n − 1)Nxk,xk+1,t + b3(n − 1)Nxk+1,xk+2,t + b5(n − 1)Nxk+2,xk+3,t

+ b7Nxk+3,xk+4,t + · · · .

Letting k, l → ∞, we obtain

lim
k,l→∞

Nxk,xl,t = 0.

Therefore, {xn} is a Cauchy sequence. Using the completeness hypotheses,
limk→∞ xk =x ∈ X .
Assume x is not a fixed point of S. Applying inequality (4), we obtain

δNxk,Sx,t = δNSxk−1,Sx,t ≤ [η(xk−1, x, t) − 1+ δ]
NSxk−1,Sx,t

≤ δ

ζ(Nxk−1,x,t
)max









Nxk−1,x,t,Nxk−1,Sxk−1,t,Nx,Sxk−1,t,

Nx,Sx,t,
Nxk−1,Sxk−1,t

+Nx,Sx,t

2

}
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= δ
1
b
max

{

Nxk−1,x,t
,Nx,xk+1,t

,
Nxk−1,x,t

+Nx,xk+1,t

2

}

. (19)

As k → ∞, using Lemma 1 and condition (N1), we get Nx,Sx,t ≤ 0, i.e., Sx = x.
Let S has one more fixed point, i.e., Sy = y, (x 6= y). Applying inequality

(4), we obtain

δNx,y,t = δNSx,Sy,t ≤ [η(x, y, t) − 1+ δ]NSx,Sy,t

≤ δ

ζ(Nx,y,t)max









Nx,y,t,Nx,Sx,t,Ny,Sx,t,

Ny,Sy,t,
Nx,Sx,t+Ny,Sy,t

2

}

= δ
1
b
max

{

Nx,y,t,Ny,x,t,
Nx,y,t+Ny,x,t

2

}

= δmax

{
1
b
Nx,y,t,Nx,y,t,

(
1+b
2b

)
Nx,y,t}.

Therefore,

Nx,y,t ≤ max
{1

b
Nx,y,t,Nx,y,t,

(1 + b

2b

)
Nx,y,t}, a contradiction.

Thus, Nx,y,t = 0, i.e., x = y. Hence, a fixed point of S is unique. �

Next, we provide examples to demonstrate the authenticity of Theorem 4
besides exhibiting its supremacy over prior related outcomes.

Example 5 Let X be the set of Lebesgue measurable functions on [0, 1] so

that
∫1
0
|x(t)|dt < 1. Let N : X 3 × (0,∞) → [0,∞) be

N (x, y, z, t) =
1

3

∫ 1

0

(|x − y|+ |x − z|+ |y − z|)2dt, t > 0 and x, y, z ∈ X .

Then, (X ,N ) is a complete parametric Nb−metric space with b = 2 and n = 3.

Define S : X → X so that Sx = sinx, x ∈ X . Define η : X×X×(0,∞) → (0,∞)

as η(x, y, t) = ex+y+t. Let δ = 2 and ζ : [0,∞) → (0, 12 ] be given by ζ(s) = 1
2 .

Take x = 1
2 = y = t. Applying inequality (4), we get

[e
3
2 − 1+ 2]

N
sin 1

2
,sin 1

2
, 1
2 = [e2 − 1+ 2]0 = 1

≤ 2
ζ(N 1

2
, 1
2
, 1
2

)

(
max

{

N 1
2
, 1
2
, 1
2

,N 1
2
,sin 1

2
, 1
2

,N 1
2
,sin 1

2
, 1
2

,N 1
2
,sin 1

2
, 1
2

,
N 1

2
,sin 1

2
, 1
2

+N 1
2
,sin 1

2
, 1
2

2 ,

})

.

Since, η(x, y, t) = ex+y+t > b implies that η(Sx,Sy, t) = eSx+Sy+t = esinx+siny+t >

b. Therefore, S : X → X is η−admissible type b. Hence, S verifies the hypothe-

ses of Theorem 4 and has a unique fixed point at x = 0. Clearly, N is not a

parametric S−metric.
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Example 6 Let X = R
+ ∪ {0}. Let a function N : X 3 × (0,∞) → [0,∞) be

N (x, y, z, t) =

{

0, if x = y = z;

1
3 , otherwise,

,

for each x, y, z ∈ X and t > 0. Then, (X ,N ) is a complete parametric

Nb−metric space with b = 2 and n = 3. Define S : X → X as

Sx =

{
1
3 , if x ∈ [0, 14);

2
3 , if x ∈ [14 ,∞),

x ∈ X . Define η : X × X × (0,∞) → (0,∞) as η(x, y, t) = 40x + y + t, δ = 2

and ζ : [0,∞) → (0, 12 ] be given by ζ(s) = 1
2 .

Case I. If x ∈ [0, 14) and x = y = t. Take x = 1
5 = y = t. Applying inequality

(4), we get

[40x + y + t − 1 + 2]
N 1

3
, 1
3
, 1
3 = [40x + y + t + 1]0 = 1

≤ 2
ζ

(
N 1

5
, 1
5
, 1
5

)(
max

{

N 1
5
, 1
5
, 1
5

,N 1
5
, 1
3
, 1
5

,N 1
5
, 1
3
, 1
5

,N 1
5
, 1
3
, 1
5

,
N 1

5
, 1
3
, 1
5

+N 1
5
, 1
3
, 1
5

2

})

.

Case II. If x ∈ [14 ,∞) and x = y = t. Take x = 1
4 = y = t. Applying inequality

(4), we get

[40x + y + t − 1+ 2]
N 2

3
, 2
3
, 2
3 = [40x + y + t + 1]0 = 1

≤ 2
ζ

(
N 2

3
, 2
3
, 2
3

)(
max

{

N 1
4
, 1
4
, 1
4

,N 1
4
, 2
3
, 1
4

,N 1
4
, 2
3
, 1
4

,N 1
4
, 2
3
, 1
4

,
N 1

4
, 2
3
, 1
4

+N 1
4
, 2
3
, 1
4

2

})

.

Case III. If x ∈ [0, 14), y ∈ [14 ,∞) and x 6= y 6= t. Take x = 1
10 , y = 1

4 and

t = 1
9 . Applying inequality (4), we get

[40x + y + t − 1+ 2]
N 1

3
, 2
3
, 1
9

≤ 2
ζ

(
N 1

10
, 1
4
, 1
9

)(
max

{

N 1
10
, 1
4
, 1
9

,N 1
10
,
3
, 1
9

,N 1
4
, 1
3
, 1
9

,N 1
4
, 2
3
, 1
9

,
N 1

10
, 1
3
, 1
9

+N 1
4
, 2
3
, 1
9

2

})

.

Now, η(x, y, t) = 40x + y + t > b implies that η
(
Sx,Sy, t

)
= 40Sx + Sy+ t > b.

Therefore, S : X → X is an η−admissible of type b. Hence, S verifies the hy-

potheses of Theorem 4 and has a unique fixed point at x = 2
3 .
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For η(x, y, t) = 1, Theorem 4 is an extension and an improvement of Ćirić [3]
to a parametric Nb−metric space wherein the continuity of mapping is not
essentially required.

Remark 2 (i) If we take n = 3, b = 1 in Theorems 1, 2, 3 and 4, we

get results in a parametric S−metric space. Consequently, our outcomes

generalize, improve, unify, and extend the known outcomes, choosing

suitably the values of constants a1, a2, a3, the functions φ and η (for
instance: Bakhtin [1], Banach [2], Ćirić [3], Czerwik [4], Samet et al.

[14], Sedghi et al. [15]-[17], Tas and Özgür [20, 21], Ughade et al. [30]).
It is interesting to see that parametric Nb−metric space is essentially

greater, improved, and distinct than that of parametric S−metric spaces

or metric spaces due to the fact that it is defined on a domain with n

dimensions .

(ii) Clearly, Nb is not a parametric S−metric and an underlying function is

discontinuous in nature in the above Examples 2.6, 2.11, and 2.15. Con-

sequently, our examples are not applicable to the recent and celebrated

results existing in the literature wherein continuity of mapping is an es-

sential condition and the underlying metric is other than the parametric

Nb−metric.

(iii) Theorems 1, 2, 3, and 4 along with the supporting Examples 2, 4, and

6, assert that continuity of self mapping is not a significant requirement

for the survival of a unique fixed point of a SA, η − SA, η − SAmin,

or SAη,δ,ζ− contraction mapping in parametric Nb−metric space. It is

worth mentioning here that the continuity of a self mapping is an in-

dispensable condition for proving a fixed point in most of the theorems

existing in the literature (For a detailed discussion on the continuity,

refer to Tomar and Karapinar [22]). Consequently, our outcomes reveal

the prominence of novel contractions and mark supremacy.

II. Existence of a unique fixed circle/fixed disc

Following Özgür [12], we introduce notions of the disc and fixed disc in para-
metric Nb− metric spaces and then apply our contractions to obtain a unique
fixed circle/fixed disc. It is worth mentioning here that a fixed point of map-
ping is not always unique and the set of non-unique fixed points may form
some geometrical shape like a circle or a disc or an ellipse or an elliptic disc.
For more work on geometry, we may refer to [6]-[10], [25]-[26]. In the following,
(X ,N ) denotes the parametric Nb−metric space.
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Definition 9 [21] A circle centred at x0 having a radius r in (X ,N ) is

CNb
x0,r = {x ∈ X : Nx,x0,t = r}.

Definition 10 We define a disc centred at x0 having a radius r in (X ,N ) as

DNb
x0,r = {x ∈ X : Nx,x0,t ≤ r}.

Definition 11 For a self-mapping S : X −→ X in (X ,N ), if Sx = x, ∀ x ∈

C
Xb
x0,r/D

Xb
x0,r, then C

Xb
x0,r/D

Xb
x0,r is called a fixed circle/fixed disc of S.

Example 7 Let X = R
2 and for n = 3, N : X 3 × (0,∞) −→ R

+ be

N (x, y, z, t) = t3(|x − y|+ |y − z|+ |z − x|)2,

where x = (x1, x2), y = (y1, y2), z = (z1, z2) and |x − y| = |x1 − y1| + |x2 − y2|.

Obviously, (X ,N ) is a parametric Nb−metric space with b = 4. Then, a circle

centred at x0 = (0, 0) having a radius r = 32 is

CNb
x0,r = {x ∈ X : N (x, x, x0, t) = 32}

= {x ∈ X : t3(|x − x|+ |x − x0|+ |x0 − x|)2 = 32}

= {x ∈ X : 4t3(|x − x0|)
2 = 32}

= {4t3(|x1|+ |x2|)
2 = 32}

= {(|x1|+ |x2|)
2 =

8

t3
}.

Fig. 1
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Fig. 1 Circles centred at (0, 0) with radius 32 for t = 1, 1.18, 2, 3 are shown

by the red, the green, the pink and the orange lines respectively.

Similarly, a disc D
Nb
x0,r centred at x0 = (0, 0) having radius r = 32 is

DNb
x0,r = {(|x1|+ |x2|)

2 ≤
8

t3
}

Fig. 2

Fig. 2 Disc centred at (0, 0) with radius 32 for t = 2 is shown by the pink

shaded region.

Now, we establish a unique fixed circle as an application of the SA−contractive
condition.

Theorem 5 Let C
Nb
x0,r be a circle in (X ,N ). Define ζ : R+ ∪ {0} −→ R as:

ζ(x) =

{

x − r, x > 0

0, x = 0
. (20)

If a self mapping S : X −→ X verifies

(i) NSx,x0,t = r,

(ii) NSx,Sy,t > r, x 6= y,

(iii) NSx,Sy,t ≤ Nx,y,t − ζ(Nx,Sx,t), x, y ∈ C
Nb
x0,r,

then C
Nb
x0,r is a fixed circle of S. Further if SA−contractive condition (1) holds

for x ∈ C
Nb
x0,r and y ∈ X \ C

Nb
x0,r, then C

Nb
x0,r is a unique fixed circle of S.
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Proof. Let x ∈ C
Nb
x0,r be an arbitrary point. Using (i), Sx ∈ C

Nb
x0,r. Now, we

establish that x is a fixed point of S. Consider Sx 6= x. Taking y = Sx in (ii)

N
Sx,S2x,t > r. (21)

Now, using (iii)

N
Sx,S2x,t ≤ Nx,Sx,t − ζ(Nx,Sx,t)

= Nx,Sx,t −Nx,Sx,t + r

= r,

(22)

a contradiction. So a self mapping S fixes the circle C
Nb
x0,r, i.e., a set of non-

unique fixed points of S includes a circle.
Let there exist two fixed circles C

Nb
x0,r0 and C

Nb
x1,r1 (r0 6= r1) of S, i.e., S

satisfies the conditions (i) to (iii) for each of the circles C
Nb
x0,r0 and C

Nb
x1,r1 . Let

x ∈ C
Nb
x0,r and y ∈ C

Nb
x1,r1 . Using (iv),

NSx,Sy,t = Nx,y,t ≤ a1Nx,y,t + a2
Nx,Sx,tNy,Sy,t

1+Nx,y,t
+ a3

Nx,Sy,tNy,Sx,t

1+Nx,y,t

+ a4
Nx,Sx,tNx,Sy,t

1+Nx,y,t
+ a5

Ny,Sy,tNy,Sx,t

1+Nx,y,t

= a1Nx,y,t + a2
Nx,x,tNy,y,t

1+Nx,y,t
+ a3

Nx,y,tNy,x,t

1+Nx,y,t

+ a4
Nx,x,tNx,y,t

1+Nx,y,t
+ a5

Ny,y,tNy,x,t

1+Nx,y,t

< a1Nx,y,t + a3Ny,x,t

< (a1 + ba3)Nx,y,t,

a contradiction. Thus, CNb
x0,r0 is a unique fixed circle of S. �

Example 8 Let X = R
2 and for n = 3, N : X 3 × (0,∞) −→ R

+ be

N (x, y, z, t) = t2(
∣∣∣sin−1 x − sin−1 y

∣∣∣
2
+
∣∣∣sin−1 y − sin−1 z

∣∣∣
2
+
∣∣∣sin−1 z − sin−1 x

∣∣∣
2
),

where x = (x1, x2), y = (y1, y2), z = (z1, z2) and

∣∣∣sin−1 x − sin−1 y
∣∣∣
2
=
∣∣∣sin−1 x1 − sin−1 y1

∣∣∣
2
+
∣∣∣sin−1 x2 − sin−1 y2

∣∣∣
2
.
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Clearly, (X ,N ) is a parametric Nb−metric space with b = 4. Then, a circle

centred at x0 = (0, 0) having radius r = 8 is

CNb
x0,r = {x ∈ X : N (x, x, x0, t) = 8}

=
{

x ∈ X : t2
( ∣∣∣sin−1 x − sin−1 x

∣∣∣
2
+
∣∣∣sin−1 x − sin−1 x0

∣∣∣
2

+
∣∣∣sin−1 x0 − sin−1 x

∣∣∣
2 )

= 8
}

=
{

2t2
( ∣∣∣sin−1 x1

∣∣∣
2
+
∣∣∣sin−1 x2

∣∣∣
2 )

= 8

}

=

{ ∣∣∣sin−1 x1
∣∣∣
2
+
∣∣∣sin−1 x2

∣∣∣
2
=
4

t2

}

.

For t = 2,

CNb
x0,r

= {x ∈ X :
∣∣∣sin−1 x1

∣∣∣
2
+
∣∣∣sin−1 x2

∣∣∣
2
= 1}. (23)

Define a self mapping S : X −→ X as Sx =

{

x, x ∈ C
Nb
x0,r

(0, 0.84), otherwise
. Then, a

self mapping S verifies all the postulates of Theorem 5 and fixes a unique

circle C
Nb
x0,r, i.e., the set of non-unique fixed points of a self mapping S contains

a unique fixed circle C
Nb
x0,r.

Fig. 3

Fig. 3 The blue lines demonstrate a circle 23 which is fixed by a function S.
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Theorem 6 Let D
Nb
x0,r be a disc in (X ,N ). Define ζ : R+ ∪ {0} −→ R as in

Equation (20). If a self mapping S : X −→ X verifies

(i) NSx,x0,t ≤ r,

(ii) NSx,Sy,t > r, x 6= y,

(iii) NSx,Sy,t ≤ Nx,y,t − ζ(Nx,Sx,t), x, y ∈ D
Nb
x0,r,

then D
Nb
x0,r is a fixed disc of S.

(iv) Further if, SA−contractive condition (1) holds for x ∈ D
Nb
x0,r and y ∈

X \D
Nb
x0,r, then D

Nb
x0,r is a disc of maximum radius r, i.e., there is no fixed

disc D
Nb
x0,r of S having a radius greater than r.

Proof. Following the pattern of Theorem 5, we can easily show that D
Nb
x0,r is

a fixed disc of S.
Let there exist two fixed discs D

Nb
x0,r0 and D

Nb
x1,r1 ; r0 < r1 of S; i.e., S satisfies

the conditions (i) to (iii) for each of the discs DNb
x0,r0 and D

Nb
x1,r1 . Let x ∈ D

Nb
x0,r0

and y ∈ D
Nb
x1,r1 such that y /∈ D

Nb
x0,r0 . Using (iv),

NSx,Sy,t = Nx,y,t ≤ a1Nx,y,t + a2
Nx,Sx,tNy,Sy,t

1+Nx,y,t
+ a3

Nx,Sy,tNy,Sx,t

1+Nx,y,t
+ a4

Nx,Sx,tNx,Sy,t

1+Nx,y,t

+ a5
Ny,Sy,tNy,Sx,t

1+Nx,y,t

= a1Nx,y,t + a2
Nx,x,tNy,y,t

1+Nx,y,t
+ a3

Nx,y,tNy,x,t

1+Nx,y,t
+ a4

Nx,x,tNx,y,t

1+Nx,y,t

+ a5
Ny,y,tNy,x,t

1+Nx,y,t

< a1Nx,y,t + a3Ny,x,t

< (a1 + ba3)Nx,y,t,

a contradiction.Hence,DNb
x0,r0 is a fixed disc of S having a maximum radius r. �

Example 9 If in Example 8, a disc centred at x0 = (0, 0) having radius r = 8
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is

DNb
x0,r = {x ∈ X : N (x, x, x0, t) ≤ 8}

=
{

x ∈ X : t2
( ∣∣∣sin−1 x − sin−1 x

∣∣∣
2
+
∣∣∣sin−1 x − sin−1 x0

∣∣∣
2

+
∣∣∣sin−1 x0 − sin−1 x

∣∣∣
2 )

≤ 8
}

=
{

2t2
( ∣∣∣sin−1 x1

∣∣∣
2
+
∣∣∣sin−1 x2

∣∣∣
2 )

≤ 8
}

=
{ ∣∣∣sin−1 x1

∣∣∣
2
+
∣∣∣sin−1 x2

∣∣∣
2
≤
4

t2

}

.

For t = 2,

DNb
x0,r

= {x ∈ X :
∣∣∣sin−1 x1

∣∣∣
2
+
∣∣∣sin−1 x2

∣∣∣
2
≤ 1}. (24)

Define a self mapping S : X −→ X as Sx =

{

x, x ∈ D
Nb
x0,r

(0, 0.84), otherwise
. Then, a

self mapping S verifies all the postulates of Theorem 6 except (iv) and fixes a

disc D
Nb
x0,r, i.e., the set of non-unique fixed points of a self mapping S contains

a fixed disc D
Nb
x0,r.

Remark 3 (i) Following a similar pattern, we may establish a unique fixed

circle (greatest fixed disc) using η − SA, η − SAmin and SAη,δ,ζ− con-

tractions.

(ii) It is fascinating to see that the shape of a circle or a disc may change on

changing the radius, the centre, or the involved metric (refer to figures

1 and 3).

(iii) It is not necessary that a circle or a disc in a parametric Nb−metric

space is the same as a circle or a disc in a Euclidean space.

(iv) Noticeably, the radius of a fixed circle or a fixed disc does not depend on

a centre and may not be maximal.

(v) SCNb
x0,r = C

Nb
x0,r or SD

Nb
x0,r = D

Nb
x0,r does not imply that C

Nb
x0,r or D

Nb
x0,r is a fixed

circle or a fixed disc of S.

3 An application

Motivated by the fact that the theory of linear systems is the foundation of nu-
merical linear algebra, which performs a significant role in chemistry, physics,
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computer science, engineering, and economics, we resolve the system of lin-
ear equations in parametric Nb−metric space using SA−contraction condition
(1).
Let X = R

mand N : Xm × (0,∞) → [0,∞) be

N (x, y, z, t) = t3
(
Σmi=1 |xi − yi|+ Σ

m
i=1 |yi − zi|+ Σ

m
i=1 |zi − xi|

)2
,

where x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym), z = (z1, z2, . . . , zm) ∈ R
m.

Obviously, (X ,N ) is a parametric Nb−metric space with b = 4, n = 3.

Theorem 7 The system of linear equations

c11x1 + c12x2 + · · ·+ c1mxm = d1

c21x1 + c22x2 + · · ·+ c2mxm = d2

. . .

cm1x1 + hm2x2 + · · ·+ cmmxm = dm,

(25)

where cij, di ∈ R, i, j = 1, 2, . . . ,m, have a unique solution if maxmj=1
(
Σmi=1 |cij|

)2
< λ < 1.

Proof. Define a self mapping S : X −→ X as Sx = Cx + d, x, d ∈ R
m and

C = [cij]m×m. First, we show that the self-mapping S satisfies Theorem 1.
Then, the unique fixed point of the operator S is the unique solution of a
system of linear equations (25). For x, y ∈ R

n

N (Sx,Sx,Sy, t) = t3
(
Σmi=1 |Sxi − Sxi|+ Σ

m
i=1 |Sxi − Syi|+ Σ

m
i=1 |Syi − Sxi|

)2

= 4t3
(
Σmi=1|Sxi − Syi|

)2

= 4t3(Σmi=1|Σ
m
j=1cij(xj − yj)|)

2

≤ 4t3
(
Σmi=1(Σ

m
j=1|cij|

2|xj − yj|
2)
)

≤ 4t3
(

m
max
j=1

Σmi=1|cij|
2
)(
Σmj=1|xj − yj|

2
)

< 4t3Σmj=1|xj − yj|
2

= t3N (x, x, y, t)

≤ a1Nx,y,t + a2
Nx,Sx,tNy,Sy,t

1+Nx,y,t
+ a3

Nx,Sy,tNy,Sx,t

1+Nx,y,t

+ a4
Nx,Sx,tNx,Sy,t

1+Nx,y,t
+ a5

Ny,Sy,tNy,Sx,t

1+Nx,y,t
,
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then S satisfies SA−contraction (1) for a1 = a3 = a5 =
1
5
and a2 = a4 = 1

10 .
Thus, Theorem 1 is verified and consequently, S has a unique fixed point.
Hence, a system of linear equations (25) has a unique solution. �

Remark 4 Similarly, we may apply η−SA, η−SAmin and SAη,δ,ζ−contrac-

tions to resolve a system of linear equations arising from modeling real-world

problems. It is worth mentioning here that to model real-life or scientific prob-

lems by means of algebra we transform the known situation into mathematical

assertions so that it evidently explains the correlation between the unknowns

and the known information.

4 Conclusion

We have established a unique fixed point, a unique fixed circle, and a great-
est fixed disc for the SA, η − SA, η − SAmin, and SAη,δ,ζ− contractions in
parametric Nb−metric spaces, which is fascinating, generalized, and distinct
than a usual metric space due to the fact that it is defined on a domain with
n dimensions. In the sequel, we have explored a new direction in the geometry
of non-unique fixed points of discontinuous mapping in parametric Nb−metric
spaces. It is interesting to mention here that a circle or a disc in parametric
Nb−metric space changes its shape by changing the centre, the radius, or the
metric under consideration. Our theorems are refined and extended variants of
the well-known results. The examples furnished display an interesting charac-
teristic of novel contractions that continuity of mappings is not mandatory for
the survival of a fixed point. The paper is concluded by resolving the system
of linear equations as an application to demonstrate the significance of our
contractions in parametric Nb−metric space. Essentially, these investigations
unlock a distinct era in parametric Nb−metric spaces.
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Abstract. Let R be a finite commutative ring. We define a co-unit graph,
associated to a ring R, denoted by Gnu(R) with vertex set V(Gnu(R))

= U(R), where U(R) is the set of units of R, and two distinct vertices
x, y of U(R) being adjacent if and only if x + y /∈ U(R). In this paper,
we investigate some basic properties of Gnu(R), where R is the ring of
integers modulo n, for different values of n. We find the domination
number, clique number and the girth of Gnu(R).

1 Introduction

A graph G = (V, E) consists of the vertex set V(G) = {v1, v2, . . . , vn} and the
edge set E(G). Further, |V(G)| = n is the order and |E(G)| = m is the size

of G. The degree of a vertex v, denoted by dG(v) (we simply write dv) is the
number of edges incident on the vertex v.
A path of length n is denoted by Pn and a cycle of length n is denoted by

Cn. A graph G is connected if their is at least one path between every pair
of distinct vertices, otherwise disconnected. As usual, Kn denotes a complete
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graph with n vertices and Ka,b denotes a complete bipartite graph with a+ b

vertices. Also a graph G is said to be k− regular if degree of every vertex of
G is k. The girth of a graph G, denoted by gr(G), is the length of the shortest
cycle contained G. In G, an independent set is a subset S of the vertex set V(G)

if no two vertices of S are adjacent. The independence number of G, denoted
by α(G), is defined as α(G) = max{|S| : S is an independent set of G}. Two
graphs G1 and G2 are said to be isomorphic if there exists a bijection between
vertices and edges so that the incidence relationship is preserved and is written
as G1

∼= G2. A subset D of V(G) is called a dominating set of G if every
vertex in V \ D is adjacent to at least one vertex in D. A dominating set of
minimum cardinality is called a γ − set of G. The domination number of
G, denoted by γ(G), is the cardinality of a γ− set of G.
Let R be a finite commutative ring and let U(R) be the set of units of R.

Let R ∼= R1 × R2 × ...× Rn be the direct product of the finite rings Ri. If ai is
a unit in Ri, where 1 ≤ i ≤ n, then (a1, a2, a3, . . . , an) is the unit element of
R1 × R2 × ...× Rn.
Let n be a positive integer and let Zn be the ring of integers modulo n.

Grimaldi [4] defined the unit graph G(Zn) whose vertex set is the set of ele-
ments of Zn and two distinct vertices x and y are adjacent if and only if x+y

is a unit of Zn. Ashrafi et. al [2] extended the concept of G(Zn) to G(R), where
R is any arbitrary associative ring with nonzero identity. More literature on
this can be seen in [1, 5, 6, 13, 15, 14].
We define a co-unit graph associated to a ring R, denoted by Gnu(R), with

vertex set as the set U(R) and two vertices x, y ∈ U(R) are adjacent if and only
if x+y /∈ U(R). We observe that Gnu(R) is an empty graph when R is the ring
of real numbers or the ring of rational numbers. More generally, if R is a field,
then Gnu(R) is an empty graph. Also, for the ring of integers Z, Gnu(Z) ∼= K2,
since U(Z) = {−1, 1} and −1 + 1 = 0 /∈ U(Z) which implies that the vertex
corresponding to the unit −1 is adjacent to the vertex corresponding to the
unit 1 and hence becomes K2.
In Section 2, we characterize the graphs Gnu(Zn), for different values of n.

Also, we find the domination number, clique number and the girth of Gnu(Zn).

2 On graphs Gnu(Zn) associated to the ring Zn

Definition 1 The Euler’s phi function φ(n), where n is positive integer, is

defined as the number of non-negative integers less than n that are relatively

prime to n. If n ≥ 2 and p is prime, then φ(pn) = pn − pn−1.
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We begin with the following observation.

Theorem 1 The graph Gnu(Zp) ∼= (p−1
2 )K2, where p ≥ 3 is a prime number.

Proof. Since all nonzero elements of the ring Zp are units, so the vertex set of
Gnu(Zp) is V= {1, 2, 3, . . . , , p− 1}. Partition the vertex set V into two disjoint
subsets V1 and V2, where V1 = {1, 2, . . . , p−1

2 } and V2 = {p+1
2 , . . . , p− 1}. Let x

and y be any two elements in V1. Then, clearly x+y ≤ p−2, implying that the
sum of any two elements in V1 is a unit. Therefore, no two vertices in V1 are
adjacent. Now, let x and y be any elements in V2. Clearly, p+2 ≤ x+y ≤ 2p−3,
so that x + y is a unit, which implies that there is no edge in V2. Also, for
every element k ∈ V1, 1 ≤ k ≤ p−1

2 , there is exactly one element p − k in V2

such that k + p − k = p is a non unit. Hence the graph Gnu(Zp) is bipartite
and contains p−1

2 copies of K2, that is Gnu(Zp) ∼= (p−1
2 )K2. �

Remark. From Theorem 1, we observe that the independence number of
Gnu(Zp) is equal to

φ(p)
2 .

Theorem 2 For prime p ≥ 5 and n ≥ 2, the graph Gnu(Zpn) is p
n−1- regular

graph.

Proof. By Euler’s φ- function , φ(pn) = pn−pn−1. So the order of the graph
Gnu(Zpn) is φ(p

n). Let V = {1, 2, . . . , p−1, p+ 1, . . . , 2p−1, 2p+ 1, . . . , pn−1}

be the vertex set of Gnu(Zpn). It is clear that V has no vertex of the type
npα. As |V | = φ(pn), so the number of non units in Zpn is pn − φ(pn) =
pn − pn + pn−1 = pn−1. Let D = {npα : n,α ∈ N} be the set of non units
in Gnu(Zpn), so that |D| = pn−1. Consider the set S = {npα − k : k ∈ V}.
Clearly, each vertex of V is adjacent to every vertex of S, since for every fixed
k ∈ V and npα − k ∈ S, we have k + npα − k = npα /∈ U(Zpn). Define a
mapping f : D → S by f(npα) = npα − k. Clearly, f is bijective, so it follows
that |S| = pn−1. As each vertex of Gnu(Zpn) is adjacent to every vertex of S,
so degree of every vertex of v ∈ V = |S|. Thus, Gnu(Zpn) is p

n−1 − regular. �

Example 1 Let p = 5 and n = 2. The graph Gnu(Z52) is 52−1 = 5−regular,

as shown in Figure 1.

Theorem 3 The graph Gnu(Zp × Zq) is (φ(p) + φ(q) − 1)− regular, where

both p and q are distinct odd primes with p < q. Further, the domination

number γ(Gnu(Zp × Zq)) = φ(p) and gr(γ(Gnu(Zp × Zq)) = 3.
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Figure 1: Gnu(Z52)

Proof. Since p and q are odd primes with p < q, the number of units in the
rings Zp and Zq are φ(p) and φ(q), respectively. So the order of the graph
Gnu(Zp × Zq) is φ(p)φ(q). Now, let

V ={(u1, v1), (u1, v2), . . . (u1, vq−1), (u2, v1), . . . (u2, vq−1), . . .

(up−1, v1), (up−1, v2), . . . , (up−1, vq−1)}

be the vertex set of Gnu(Zp × Zq), where {ui : 1 ≤ i ≤ (p − 1)} and {vj : 1 ≤

j ≤ (q−1)} are the set of units in Zp and Zq, respectively. Partition vertex set
V into φ(p) disjoint subsets, each having cardinality φ(q), which are given by

B1 = {(u1, v1), (u1, v2), (u1, v3), . . . , (u1, vq−1)}

B2 = {(u2, v1), (u2, v2), (u2, v3), . . . , (u2, vq−1)}

B3 = {(u3, v1), (u3, v2), (u3, v3), . . . , (u3, vq−1)}

...

Bφ(p) = {(up−1, v1), (up−1, v2), (up−3, v3), . . . , (up−1, vq−1)}.

Choose some arbitrary subset, say Bi, 1 ≤ i ≤ φ(p). We show that each vertex
in Bi has degree φ(p)+φ(q)− 1. Let (i, x) ∈ Bi be an arbitrary vertex, where
1 ≤ x ≤ φ(q). Obviously, (i, x) is adjacent to every vertex in Bφ(p)+1−i, and
(i, x) is adjacent to exactly one vertex in the remaining subsets. So the degree
of (i, x) is φ(p) + φ(q) − 1, proving first part of the result.
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The vertices of V are {(u1, v1), (u1, v2), (u1, v3), . . . , (u1, vq−1), (u2, v1),

(u2, v2), (u2, v3), . . . , (u2, vq−1), . . . (up−1, v1), (up−1, v2), (up−3, v3), . . . , (up−1,

vq−1). The vertices of the type (u1, vi), where 1 ≤ i ≤ q − 1, are adjacent
to the vertex (up−1, v1). Similarly, the vertices of the type (u2, vi), where
1 ≤ i ≤ q − 1, are adjacent to the vertex (up−2, v1). In this way, the ver-
tices (up−1, vi), where 1 ≤ i ≤ q − 1, are adjacent to the vertex of the type
(u1, v1). Now, form the subset of the vertex set V , say D, where D con-
tains vertices of the type {(u1, v1), (u2, v1), (u3, v1), . . . , (up−1, v1)}. We have
|D| = p − 1 = φ(p). Also, each vertex of V \ D is adjacent to at least
one vertex of D. We show that D is minimal with the above conditions.
From D, if we remove any number of the vertices of the type (ux, v1), where
1 ≤ x ≤ p − 1, then there exist vertices of the type (up−x, vi) in V \ D,
which are not adjacent to any vertex in D. It follows that D is a minimal
dominating set and γ(Gnu(Zp × Zq)) = |D| = p − 1 = φ(p). The subset
{(up−1, v1), (u1, vq−1), (up−1, vq−1)} of the vertex set V , forms an induced sub-
graph which is complete. Hence it follows that gr(γ(Gnu(Zp × Zq)) = 3. �

Theorem 4 If n = 2m, then the graph Gnu(Z2m) is complete.

Proof. We know that the number of units of the ring Z2m is φ(2m). Also,
if a ∈ Z2m is a unit then (a, 2m) = 1. So the vertex set of Gnu(Z2m) con-
tains only odd integers, while as all even integers are nonunits. Let V =

{vα1
, vα2

, vα3
, . . . ., vαφ(2m)

} be the vertex set of Gnu(Z2m), where the set {vαi
|i =

1, 2, 3, . . . , φ(2m)} is the set of units of Z2m. Clearly, every vαi
in V is an odd

integer. As sum of two odd integers is even, therefore, every two vertices in V

are adjacent. Thus, Gnu(Z2m) forms a complete graph. �

Theorem 5 Let R ∼= Z3×Zp, where p is odd prime. Then the graph Gnu(Z3×

Zp) is a connected p−regular graph and γ(Gnu(Z3×Zp)) =
φ(p)
2 , gr(Gnu(Z3×

Zp)) = 3, cl(Gnu(Z3 × Zp)) = 4.

Proof. As the units of the ring Z3 are {1, 2} and units of the ring Zp are
{1, 2, 3, 4, . . . , p− 1}, so the vertex set for the graph Gnu(Z3 × Zp) is

V = {(1, 1), (1, 2), . . . , (1, p− 1), (2, 1), (2, 2), . . . , (2, p− 1)}.

Partition vertex set V into two disjoint sets V ′ and V ′′ such that V ′ =

{(1, i)|1 ≤ i ≤ p − 1} and V ′′ = {(2, j)|1 ≤ j ≤ p − 1}. Then |V ′| = p − 1

and |V ′′| = p− 1. By definition, each vertex of V of the type (2, u) is adjacent
to every vertex of V of the type (1, v), where u and v are units in the ring
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Zp, since (1, v) + (2, u) = (3, u ′) /∈ U(Z3 × Zp), where u ′ = u + v ∈ Zp. It
follows that Kp−1,p−1 is an induced subgraph of Gnu(Z3 × Zp). Also, in V ′,
corresponding to each vertex of the type (1, ur), there exists a unique vertex
(1, up−r) in V ′ such that (1, r) ∼ (1, p − r). The same argument holds for V ′′.
Therefore, the degree of each vertex in both the sets V ′ and V ′′ is equal to
p− 1+ 1 = p. Hence the graph Gnu(Z3 × Zp) is p-regular.
Every vertex of V ′ is adjacent to every vertex of V ′′, since (1, u) + (2, u) =

(3, u ′) /∈ U(Z3 × Zp). So there exists a path between every pair of vertices
{(1, u), (2, v)}, where u, v ∈ Zp. From the above discussion, for partite sets V ′

and V ′′, vertices of the type (1, up−r) are adjacent to the vertices of the type
(1, ur) in V ′, and vertices of the type (2, up−r) are adjacent to vertices of the
type (2, ur) in V ′′. So, it follows that there is a path between every pair of
vertices in V , see Figure 2. Thus, Gnu(Z3 × Zp) is connected.
As each vertex of the type (2, ui) is adjacent to the vertex (1, 1), and the

vertex (1, up−1) is adjacent to (1, 1), so the remaining vertices are of the type
{(1, uj)|2 ≤ j ≤ p − 2}. Now, corresponding to each vertex of the type (1, uj)

in V , where 2 ≤ j ≤ p − 2, there exist a vertex of the type (1, up−j), where
2 ≤ j ≤ p − 2, such that (1, uj) + (1, up−j) /∈ U(Z3 × Zp). Let D be a subset

of the vertex set V defined as D = {(1, uj) : 1 ≤ j ≤ p−1
2 } . Now, each vertex

of V \D is adjacent to at least one vertex of D, since each vertex of the type
(2, ui) is adjacent to every vertex of the type (1, ui). Also, half of the vertices
of the type (1, ui), where 1 ≤ i ≤ p−1

2 , are adjacent to other half of the vertices

of the type (1, uk), where
p+1
2 ≤ k ≤ p − 1. From D, if we remove vertices

of the type {(1, ur)}, where 1 ≤ r ≤ p−1
2 , then those vertices go to set V \D.

Therefore, there exist vertices in V \D of the type (1, up−r), r = 1, 2, 3, . . . p−1
2 ,

which are not adjacent to any vertex in D. So D \ {(1, ur)} does not form a
dominating set for Gnu(Z3×Zp). Therefore, it follows that D is a dominating

set for Gnu(Z3 × Zp) and |D| = p−1
2 =

φ(p)
2 . So γ(Gnu(Z3 × Zp)) =

φ(p)
2 .

Let S = {(1, u1), (1, up−1), (2, ui)} be the subset of V , where ui, 1 ≤ i ≤ p−1,
are units in the ring Zp. The induced subgraph < S > is a cycle of length
3, so it follows that gr(Gnu(Z3 × Zp)) = 3 . Again, let S ′ = {(1, 1), (1, p −

1), (2, 1), (2, p − 1)} be the subset of the vertex set V . Then the induced sub-
graph < S ′ > is a complete subgraph. This induced subgraph is maximal, in
Gnu(Z3×Zp). To see this, if we add any vertex either of the type (1, ui), where
ui 6= 1, p− 1, or of the type (2, uj), where uj 6= 1, p− 1, to S ′, then the follow-
ing three possibilities arise. (i) If we add vertex (1, ui), where 2 ≤ i ≤ p − 2,
to S ′, then this vertex is not adjacent to the vertices (1, 1), (1, p − 1). So the
induced subgraph < S ′+(1, ui) > is not complete. (ii) If we add vertex (2, ui)
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to S ′, where 2 ≤ i ≤ p − 2, then this vertex is not adjacent to the vertices
(2, 1), (2, p−1). So the induced subgraph < S ′+(2, ui) > is not complete. (iii)
If we add both types of vertices as in (i) and (ii), then in this case the induced
subgraph <S ′+(1, ui)+(2, ui) > is not complete. Thus the subgraph induced by
<S ′> forms a clique in Gnu(Z3×Zp) and therefore cl(Gnu(Z3×Zp)) = |S ′| = 4.
The graph Gnu(Z3 × Zp) can be seen in Figure 2. �

Theorem 6 If R ∼= Z2n × Zm, then the graph Gnu(Z2n × Zm) is complete.

(1,1) (1,2) (1,p-2) (1,p-1)

(2,1) (2,2) (2,p-2) (2,p-1)

Figure 2: Gnu(Z3 × Zp)

Proof. It is easy to see that the set of units for the ring Z2n are {2k+1;k ∈ Z}.
Let V be the vertex set for the graph Gnu(Z2n × Zm). Then, V = {(xi, yj) :

1 ≤ i ≤ φ(2n), 1 ≤ j ≤ φ(m)}, where xi and yi are units in the rings Z2n and
Zm, respectively. Since each xi, 1 ≤ i ≤ φ(2n), is an odd integer, therefore,
(xi, yj) + (xr, ys) /∈ U(Z2n × Zm), as xi + xr is always even. Thus, each vertex
of V is adjacent to every vertex of V . Thus the graph Gnu(Z2n × Zm) is a
complete graph. �

Theorem 6 can be generalized as follows, the proof of which is similar to that
of Theorem 6.

Theorem 7 If R ∼= Z2n × Zα1
× Zα2

× · · · × Zαm, then the graph Gnu(Z2n ×

Zα1
× Zα2

× · · · × Zαm) is complete.

Theorem 8 Let n ∈ N and p be a prime. Then Gnu(Zpn) is complete if and

only if p = 2 and Gnu(Zpn) is complete bipartite if and only if p = 3. Moreover,

if p > 3, then Gnu(Zpn) has
p− 1

2
components each being a complete bipartite

graph isomorphic to Kr,r, where r = pn − 1.
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Proof. Partition vertex set V(Gnu((Zpn))) into subsets V1, V2, . . . , Vp−1,
where Vi = {pk − i : k ∈ N and pk − i < pn}, 1 ≤ i ≤ p − 1. Then, as
|V(Gnu((Zpn)))| = (p−1)pn−1, we have |Vi| = pn−1, for each i. Moreover, each
Vi is an independent set for all p ≥ 3.
If p = 2, then V(Gnu((Z2n))) = V1 = {1, 3, 5, . . . , 2n − 1} and so Gnu((Z2n))

is complete. For p = 3, V(Gnu((Z3n))) = V1 ∪ V2, where V1 = {3k − 1 : k ∈

N and 3k− 1 < 3n} and V2 = {3k− 2 : k ∈ N and 3k− 2 < 3n}. Then, for any
x ∈ V1 and y ∈ V2, we have x+ y /∈ U(Z3n). Thus, Gnu(Z3n) is isomorphic to
K3n−1,3n−1 . Now, for p > 3, let x ∈ Vt and y ∈ Vs, 1 ≤ t, s ≤ p − 1. Then x

and y are adjacent in Gnu(Zpn) if and only if t + s = p. Thus, we partition
the set {V1, V2, . . . , Vp−1} into the (p − 1)/2 sets, namely, Vj,p−j = {Vj, Vp−j},
1 ≤ j ≤ (p − 1)/2. Then each Vj,p−j induces a complete bipartite graph Kr,r,
where r = |Vi| = pn−1. �

Conclusion For a finite commutative ring R we associated a co-unit graph,
denoted by Gnu(R), with vertex set V(Gnu(R)) = U(R), where U(R) is the
set of units of R, and two distinct vertices x, y of U(R) being adjacent if and
only if x+ y /∈ U(R). We investigated some basic properties of Gnu(R), where
R is the ring of integers modulo n, for different values of n. We obtained the
domination number, the clique number and the girth of Gnu(R). For the future
work, we need to investigate several other graph invariants of Gnu(R), for any
ring R. Also, there is scope to study the line graph of the co-unit graph, in
analogy to the line graph of the unit graph, see [10]. Further directions to
study in co-unit graphs can be metric dimension and spectra, for instance like
in [3, 9, 10, 11, 12].
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Abstract. In this work we define the concepts of the coupled orbit
and coupled orbitally completeness. After then, using the method of
Bollenbacher and Hicks [8], we prove some Caristi type coupled fixed
point theorems in coupled orbitally complete metric spaces for a func-
tion P : E× E→ E. We also give two examples that support our results.

1 Introduction and preliminaries

In the litareture concerning the fixed point theory, one of the most interesting
and useful results is the Caristi’s fixed point theorem [9], which is equivalent to
Ekeland’s variational principle [12] and is also a generalization of the famous
Banach contraction principle.

In 1976, Caristi proved in [9] that “if S is a self mapping of a complete
metric space (E, ρ) such that there is a lower semi-continuous function ψ from
E into [0,∞) satisfying

ρ(u, Su) ≤ ψ(u) −ψ(Su)

for all u ∈ E, then S has a fixed point”.
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In this theorem, saying that “ψ is lower semi-continuous at u if for any
sequence {un} ⊂ E, we have limun = u implies ψ(u) ≤ lim inf ψ(un)”.

Several authors have obtained various extensions and generalizations of
Caristi’s theorem by considering Caristi type mappings on many different
spaces. For example [1, 2, 3, 4, 8, 10, 14, 15, 16, 17, 18, 19, 20, 28, 29], and
others.

In this paper, by using the method in [8], we give some Caristi type coupled
fixed point theorems for a function P from a product space E× E to E.

The idea of the coupled fixed point was given first by Opoitsev [22, 23] and
Opoitsev and Khurodze [24] and then by Guo and Lakhsmikantham in [13].
The first coupled fixed point theorems under the contractive conditions were
studied by Bhaskar and Lakhsmikantham, see [7]. Since then various authors
have obtained several important, useful and interesting results for the coupled
fixed points under different condition [5, 6, 11, 21, 25, 26, 27].

We now give some basic definitions and notions.

Definition 1 ([7]) Let E be a nonempty set and P : E×E→ E be a mapping.

An element (u, v) ∈ E × E is said to be a coupled fixed point of mapping P if

u = P(u, v) and v = P(v, u).

Definition 2 Let E be a nonempty set and P : E × E → E be a mapping. Let

u0 and v0 are arbitrary two points in E. Consider the sequences {un} and {vn}

by

un = P(un−1, vn−1), vn = P(vn−1, un−1) (1)

for n = 1, 2, 3, . . ..

Then the sets

OP(u0,∞) = {u0, u1, u2, . . . } and OP(v0,∞) = {v0, v1, v2, . . . }

are called the coupled orbit of (u0, v0) ∈ E× E.

Now let (E, ρ) be a metric space. If every Cauchy sequence in OP(u0,∞)

and OP(v0,∞) converges to a point in E, for some (u0, v0) ∈ E × E, then the

(E, ρ) metric space is said to be coupled orbitally complete.

Note that a complete metric space (E, ρ) clearly coupled orbitally complete,
but a coupled orbitally complete metric space (E, ρ) does not necessarily com-
plete as in shown by Example 1.
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Definition 3 Let (E, ρ) be a metric space, P : E × E → E a mapping and

u0, v0 ∈ E. A real-valued function B : E×E→ [0,∞) is said to be ((u0, v0), P)–

coupled orbitally weak lower semi-continuous (c.o.w.l.s.c.) at (u, v) ∈ E×E iff

{un} and {vn} are sequences in OP(u0,∞) and OP(v0,∞) respectively and

un → u, vn → v implies B(u, v) ≤ lim
n→∞

supB(un, vn)

(See [10]).

2 Main results

The following theorem is a version of Caristi’s theorem, which was proved by
Bollenbacher and Hicks (See [8]).

Theorem 1 Let (E, ρ) be a metric space. Suppose S : E → E and ψ : E →
[0,∞). Suppose there exists an u such that

ρ(v, Sv) ≤ ψ(v) −ψ(Sv)

for every v ∈ OS(u,∞), and any Cauchy sequence in OS(u,∞) converges to

a point in E. Then:

(a) limSnu = u ′ exists,

(b) ρ(Snu, u ′) ≤ ψ(Snu),

(c) Su ′ = u ′ iff B(u) = ρ(u, Su) is S-orbitally lower semi-continuous at u,

(d) ρ(Snu, u) ≤ ψ(u) and ρ(u ′, u) ≤ ψ(u).

Now we prove the following coupled fixed point theorem for a function P on
the product space E× E.

Theorem 2 Let (E, ρ) be a metric space, P : E× E → E and ψ : E → [0,∞).

Suppose there exist u0, v0 ∈ E such that (E, ρ) is coupled orbitally complete

and

max{ρ(u, P(u, v)), ρ(v, P(v, u))} ≤ ψ(u)+ψ(v)−ψ(P(u, v))−ψ(P(v, u)) (2)

for all u ∈ OP(u0,∞) and v ∈ OP(v0,∞). Then:

(a) limun = limP(un−1, vn−1) = u
′ and lim vn = limP(vn−1, un−1) = v

′ exist,

where the sequences {un} and {vn} are defined as in (1),
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(b) max{ρ(un, u
′), ρ(vn, v

′)} ≤ ψ(un) +ψ(vn),

(c) (u ′, v ′) is a coupled fixed point of P if and only if

B(u, v) = ρ(P(u, v), u) is ((u0, v0), P)– c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′),

(d) max{ρ(un, u0), ρ(vn, v0)} ≤ ψ(u0) +ψ(v0) and
max{ρ(u ′, u0), ρ(v

′, v0)} ≤ ψ(u0) +ψ(v0).

Proof. (a) Using inequality (2) we have

Sn =

n∑

k=0

max{ρ(uk, uk+1), ρ(vk, vk+1)}

=

n∑

k=0

max{ρ(uk, P(uk, vk)), ρ(vk, P(vk, uk))}

≤

n∑

k=0

[ψ(uk) +ψ(vk) −ψ(P(uk, vk)) −ψ(P(vk, uk))]

=

n∑

k=0

[ψ(uk) −ψ(uk+1) +ψ(vk) −ψ(vk+1)]

= ψ(u0) −ψ(un+1) +ψ(v0) −ψ(vn+1)

≤ ψ(u0) +ψ(v0).

Hence {Sn} is bounded above and also non-decreasing, and so convergent.
Now let m,n be any positive integers with m > n. Then from triangle

inequality of ρ, we have

max{ρ(un, um), ρ(vn, vm)} ≤ max
{m−1∑

k=n

ρ(uk, uk+1),

m−1∑

k=n

ρ(vk, vk+1)
}

≤

m−1∑

k=n

max{ρ(uk, uk+1), ρ(vk, vk+1)}. (3)

Since {Sn} is convergent, for every ε > 0, we can find a sufficiently large positive
integer N such that

∞∑

k=n

max{ρ(uk, uk+1), ρ(vk, vk+1)} < ε

for all n ≥ N. Thus, we get from (3) that

max{ρ(un, um), ρ(vn, vm)} < ε
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for all m,n ≥ N, and so {un} and {vn} are two Cauchy sequences in OP(u0,∞),
and OP(v0,∞) respectively. Since (E, ρ) is coupled orbitally complete,

lim
n→∞

un = lim
n→∞

P(un−1, vn−1) = u
′ and lim

n→∞

vn = lim
n→∞

P(vn−1, un−1) = v
′

exist.

(b) Let m,n be any positive integers with m > n. Using inequalities (2)
and (3) we have

max{ρ(un, um), ρ(vn, vm)} ≤

m−1∑

k=n

max{ρ(uk, uk+1), ρ(vk, vk+1)}

=

m−1∑

k=n

max{ρ(uk, P(uk, vk)), ρ(vk, P(vk, uk))}

≤

m−1∑

k=n

[ψ(uk) +ψ(vk) −ψ(uk+1) −ψ(vk+1)]

= ψ(un) −ψ(um) +ψ(vn) −ψ(vm)

≤ ψ(un) +ψ(vn).

Letting m tend to infinity, we have from (a)

max{ρ(un, u
′), ρ(vn, v

′)} ≤ ψ(un) +ψ(vn).

(c) Assume that u ′ = P(u ′, v ′), v ′ = P(v ′, u ′) and {un}, {vn} are sequences
in OP(u0,∞) and OP(v0,∞) respectively with un → u ′, vn → v ′. Then we
have,

B(u ′, v ′) = ρ(P(u ′, v ′), u ′) = 0 ≤ lim sup ρ(P(un, vn), un)

= lim supB(un, vn)

and

B(v ′, u ′) = ρ(P(v ′, u ′), v ′) = 0 ≤ lim sup ρ(P(vn, un), vn)

= lim supB(vn, un)

and so B is ((u0, v0), P)–c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′).
Now let un = P(un−1, vn−1), vn = P(vn−1, un−1) and B is ((u0, v0), P)–

c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′). Then from (a) we have

0 ≤ ρ(P(u ′, v ′), u ′) = B(u ′, v ′) ≤ lim supB(un, vn)
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= lim sup ρ(P(un, vn), un) = 0

and

0 ≤ ρ(P(v ′, u ′), v ′) = B(v ′, u ′) ≤ lim supB(vn, un)

= lim sup ρ(P(vn, un), vn) = 0.

Thus u ′ = P(u ′, v ′) and v ′ = P(v ′, u ′).

(d) Using triangle inequality of ρ and inequaliy (2) we have

max{ρ(un, u0), ρ(vn, v0)} ≤ max

{ n∑

k=1

ρ(uk, uk−1),

n∑

k=1

ρ(vk, vk−1)

}

≤

n∑

k=1

max{ρ(uk, uk−1), ρ(vk, vk−1)}

=

n∑

k=1

max{ρ(uk−1, P(uk−1, vk−1)), ρ(vk−1, P(vk−1, uk−1))}

≤

n∑

k=1

[ψ(uk−1) +ψ(vk−1) −ψ(uk) −ψ(vk)]

= ψ(u0) −ψ(un) +ψ(v0) −ψ(vn)

≤ ψ(u0) +ψ(v0).

Letting n tend to infinity, we have from (a)

max{ρ(u ′, u0), ρ(v
′, v0)} ≤ ψ(u0) +ψ(v0).

�

We now prove the following theorem.

Theorem 3 Let (E, ρ) be a metric space, P : E× E → E and ψ : E → [0,∞).

Suppose there exist u0, v0 ∈ E such that (E, ρ) is coupled orbitally complete

and

ρ(u, P(u, v)) + ρ(v, P(v, u)) ≤ ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(v, u)) (4)

for all u ∈ OP(u0,∞) and v ∈ OP(v0,∞). Then:

(a) limun = limP(un−1, vn−1) = u
′ and lim vn = limP(vn−1, un−1) = v

′ exist,

where the sequences {un} and {vn} are defined as in (1),
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(b) ρ(un, u
′) + ρ(vn, v

′) ≤ ψ(un) +ψ(vn),

(c) (u ′, v ′) is a coupled fixed point of P if and only if

B(u, v) = ρ(P(u, v), u) is ((u0, v0), P)– c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′),

(d) ρ(un, u0) + ρ(vn, v0) ≤ ψ(u0) +ψ(v0) and
ρ(u ′, u0) + ρ(v

′, v0) ≤ ψ(u0) +ψ(v0).

Proof. We have

max{ρ(u, P(u, v)), ρ(v, P(v, u))} ≤ ρ(u, P(u, v)) + ρ(v, P(v, u))

≤ ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(v, u)).

The results (a) and (c) of this theorem follow immediately from Theorem 2.

(b) Let m,n be any positive integers with m > n. Using triangle inequality
of ρ and inequality (4), we have

ρ(un, um) + ρ(vn, vm) ≤

m−1∑

k=n

[ρ(uk, uk+1),+ρ(vk, vk+1)]

=

m−1∑

k=n

[ρ(uk, P(uk, vk)) + ρ(vk, P(vk, uk))]

≤

m−1∑

k=n

[ψ(uk) +ψ(vk) −ψ(uk+1) −ψ(vk+1)]

= ψ(un) −ψ(um) +ψ(vn) −ψ(vm)

≤ ψ(un) +ψ(vn).

Letting m tend to infinity, we have from (a)

ρ(un, u
′) + ρ(vn, v

′) ≤ ψ(un) +ψ(vn).

(d) Using triangle inequality of ρ and inequaliy (4) we have

ρ(un, u0) + ρ(vn, v0) ≤

n∑

k=1

[ρ(uk, uk−1) + ρ(vk, vk−1)]

=

n∑

k=1

[ρ(uk−1, P(uk−1, vk−1)) + ρ(vk−1, P(vk−1, uk−1))]
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≤

n∑

k=1

[ψ(uk−1) +ψ(vk−1) −ψ(uk) −ψ(vk)]

= ψ(u0) −ψ(un) +ψ(v0) −ψ(vn)

≤ ψ(u0) +ψ(v0).

Letting n tend to infinity, we have from (a)

ρ(u ′, u0) + ρ(v
′, v0) ≤ ψ(u0) +ψ(v0).

�

Finally, we prove the following theorem.

Theorem 4 Let (E, ρ) be a metric space, P : E× E → E and ψ : E → [0,∞).

Suppose there exist u0, v0 ∈ E such that (E, ρ) is coupled orbitally complete

and

ρ(u, P(u, v)) ≤ ψ(u) −ψ(P(u, v)), (5)

ρ(v, P(v, u)) ≤ ψ(v) −ψ(P(v, u)) (6)

for all u ∈ OP(u0,∞) and v ∈ OP(v0,∞). Then:

(a) limun = limP(un−1, vn−1) = u
′ and lim vn = limP(vn−1, un−1) = v

′ exist,

where the sequences {un} and {vn} are defined as in (1),

(b) ρ(un, u
′) ≤ ψ(un) and ρ(vn, v

′) ≤ ψ(vn),

(c) (u ′, v ′) is a coupled fixed point of P if and only if

B(u, v) = ρ(P(u, v), u) is ((u0, v0), P)– c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′),

(d) ρ(un, u0) ≤ ψ(u0) and ρ(u
′, u0) ≤ ψ(u0),

ρ(vn, v0) ≤ ψ(v0) and ρ(v
′, v0) ≤ ψ(v0).

Proof. From inequalities (5) and (6) we have

ρ(u, P(u, v)) + ρ(v, P(v, u)) ≤ ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(v, u)).

The results (a) and (c) of this theorem follow immediately from Theorem 3.

(b) Let m,n be any positive integers with m > n. Using triangle inequality
of ρ and inequality (5) we get

ρ(un, um) ≤

m−1∑

k=n

ρ(uk, uk+1) =

m−1∑

k=n

ρ(uk, P(uk, vk))
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≤

m−1∑

k=n

[ψ(uk) −ψ(uk+1)] = ψ(un) −ψ(um) ≤ ψ(un).

Letting m tend to infinity, we have from (a)

ρ(un, u
′) ≤ ψ(un).

Similarly, using triangle inequality of ρ and inequality (6) we get

ρ(vn, v
′) ≤ ψ(vn).

(d) Using triangle inequality of ρ and inequality (5) we have

ρ(un, u0) ≤

n∑

k=1

ρ(uk, uk−1) =

n∑

k=1

ρ(uk−1, P(uk−1, vk−1))

≤

n∑

k=1

[ψ(uk−1) −ψ(uk)]

= ψ(u0) −ψ(un) ≤ ψ(u0).

Letting n tend to infinity, we have from (a)

ρ(u ′, u0) ≤ ψ(u0).

Similarly, it can be proved that

ρ(vn, v0) ≤ ψ(v0) and ρ(v ′, v0) ≤ ψ(v0).

�

3 Some Examples

We now give two examples which illustrate our results.

Example 1 Let E = [0, 1) with Euclidean metric ρ.

Define P : E× E −→ E by P(u, v) = u/2 for all (u, v) in E× E and also define

ψ : E −→ [0,∞) by ψ(u) = 2u for all u in E.

Let u0 and v0 are arbitrary two points in E. Then we have

OP(u0,∞) =

{

u0,
u0

2
,
u0

22
, . . . ,

u0

2n
, . . .

}

and
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OP(v0,∞) =

{

v0,
v0

2
,
v0

22
, . . . ,

v0

2n
, . . .

}

.

Clearly, (E, ρ) is coupled orbitally complete as it is not complete. Further, for

all u in OP(u0,∞) and v in OP(v0,∞), we have

max{ρ(u, P(u, v)), ρ(v, P(v, u))} = max{|u− u/2| , |v− v/2|} = max{u/2, v/2}

≤ u+ v = ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(u, v)).

Thus P satisfies inequality (2) with ψ(u) = 2u and so the conditions of The-

orem 2 are satisfied and limP(un−1, vn−1) = limP(vn−1, un−1) = 0. Further,

(0, 0) is a coupled fixed point of P and B(u, v) = ρ(P(u, v), u) is c.o.w.l.s.c. at

(0, 0).

Example 2 Let E = [0,∞) with Euclidean metric ρ and define

P : E× E −→ E by P(u, v) =

{
0 if u < v

2 if u ≥ v
.

for all (u, v) in E× E. If we take u0 = 2 and v0 = 2, then

OP(2,∞) = {2, 2, 2, . . . .} and OP(2,∞) = {2, 2, 2, . . . .}.

Clearly, (E, ρ) is coupled orbitally complete and P satisfies inequality (2) for all
u in OP(2,∞) and v in OP(2,∞) with ψ(u) = u. So the conditions of Theorem

2 are satisfied and limP(un−1, vn−1) = limP(vn−1, un−1) = 2. Further, (2, 2)

is a coupled fixed point of P and B(u, v) = ρ(P(u, v), u) is c.o.w.l.s.c. at (2, 2).

Similarly, if we take u0 = 0 and v0 = 2, then

OP(0,∞) = {0, 0, 0, . . . .} and OP(2,∞) = {2, 2, 2, . . . .}.

Clearly, (E, ρ) is coupled orbitally complete and P satisfies inequality (2) for all
u in OP(0,∞) and v in OP(2,∞) with ψ(u) = u. So the conditions of Theorem

2 are satisfied and limP(un−1, vn−1) = 0, limP(vn−1, un−1) = 2. Further, (0, 2)
is a coupled fixed point of P and B(u, v) = ρ(P(u, v), u) is c.o.w.l.s.c. at (0, 2)

and (2, 0).

This shows that the coupled fixed point of P is not unique.
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[25] S. Radenović, Coupled fixed point theorems for monotone mappings in
partially ordered metric spaces, Kragujevac J. Math., 38 (2) (2014), 249–
257.



Some results on Caristi type coupled fixed point theorems 329

[26] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces.
Hacet. J. Math. Stat., 40 (3) (2011), 441–447.

[27] W. Shatanawi, A. Pitea, Some coupled fixed point theorems in quasi-
partialmetric spaces, Fixed Point Theory Appl., 2013 (153) (2013)
DOI:10.1186/1687-1812-2013-153, 15 pages.

[28] T. Suzuki, Generalized Caristi’s fixed point theorems by Bae and others,
J. Math. Anal. Appl. 302 (2)(2005), 502–508.

[29] K. W lodarczyk, R. Plebaniak, Maximality principle and general results
of Ekeland and Caristi types without lower semicontinuity assumptions
in cone uniform spaces with generalized pseudodistances, Fixed Point

Theory and Appl., 2010, Article ID 175453, 35 pages.

Received: April 20, 2021



Acta Univ. Sapientiae, Mathematica, 14, 2 (2022) 330–340

DOI: 10.2478/ausm-2022-0022

On Chern classes of the tensor product

of vector bundles

Zsolt Szilágyi
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Abstract. We present two formulas for Chern classes (polynomial) of
the tensor product of two vector bundles. In the first formula the Chern
polynomial of the product is expressed as determinant of a polynomial
in a matrix variable involving the Chern classes of the first bundle with
Chern classes of the second bundle as coefficients. In the second formula
the total Chern class of the tensor product is expressed as resultant of
two explicit polynomials. Finally, formulas for the total Chern class of
the second symmetric and the second alternating products are deduced.

1 Introduction

One associates a series of cohomological (characteristic) classes ci(E) ∈ H2i(M)

called the ith Chern class of E , for any i = 1, . . . , r, with a complex vector
bundle E of rank r over a manifold M (cf. [9, Ch. IV] or [3, Ch. I, ➜4]). One
can arrange these classes into a polynomial c(E ; t) = 1+ c1(E)t+ · · ·+ cr(E)t

r,
called the Chern polynomial. Its value c(E) = c(E ; 1) = 1+ c1(E) + · · ·+ cr(E)

at t = 1 is the total Chern class of E .
We recall some basic properties of the Chern classes. If E and F are two com-

plex vector bundles over the same manifold then c(E⊕F ; t) = c(E ; t)·c(F ; t) by
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theWhitney product formula (cf. [9, (20.10.3)]). Computing with Chern classes
one can pretend using the Splitting Principle (cf. [9, Ch. IV, ➜21]) that the
bundle E of rank r splits into direct sum of r complex line bundles and the first
Chern classes α1, . . . , αr of these hypothetical line bundles are the so-called
Chern roots of E . Hence, by the Whitney product formula we have c(E ; t) =∏r

i=1(1+αit), thus ck(E) = ek(α) = ek(α1, . . . , αr) =
∑

1≤i1<···<ik≤r αi1 · · ·αik

for any k = 1, . . . , r, i.e. the Chern classes are elementary symmetric polyno-

mials of the Chern roots. The dual bundle E∗ has opposite Chern roots to E ,
hence its Chern polynomial equals c(E∗, t) =

∏r
i=1(1− αit) = c(E ,−t).

The Chern polynomial does not behave so well for the tensor product like
for the direct sum. Nevertheless, for complex line bundles L and L ′ we have
c1(L⊗L ′) = c1(L)+c1(L

′) (cf. [9, (20.1)]). Hence, if α1, . . . , αr and β1, . . . , βq

are Chern roots of E and F , respectively, then αi+βj, i = 1, . . . , r, j = 1, . . . , q

are the Chern roots of the tensor product E ⊗F and the Chern polynomial of
the tensor product equals

c(E ⊗ F ; t) =

r∏

i=1

q∏

j=1

(1+ αit+ βjt). (1)

Our goal is to express (1) in terms of Chern classes of E and F , or equivalently
in terms of elementary symmetric polynomials of the Chern roots α1, . . . , αr

and β1, . . . , βq, respectively.
There are several approaches to compute the Chern classes of the tensor

product. We mention the four approaches compared in [4]. The first method
computes the Chern classes of the tensor product by eliminating the Chern
roots α1, . . . , αr, β1, . . . , βq from c(E ⊗ F) =

∏r
i=1

∏q
j=1(1 + αi + βj) using

relations ci(E) = ei(α1, . . . , αr) and cj(F) = ej(β1, . . . , βq) for i = 1, . . . , r

and j = 1, . . . , q. The second approach uses the multiplicativity of the Chern
character (cf. [3, Ch. III, ➜10.1]) and Newton’s identities (cf. [7, (2.11 ′)]).
The third uses Lascoux’s formula [6] which expresses the Chern classes of
the tensor product as linear combination of products of Schur polynomials of
Chern classes of E and F . The last approach is Manivel’s formula [8], which has
the same form as Lascoux’s formula, but computes the coefficients differently.
These methods have been implemented in the library chern.lib [5] for the
computer algebra system Singular [2].
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2 Chern polynomial of the tensor product: first ap-

proach

Lemma 1 Let u1, . . . , ur, v1, . . . , vq be formal variables. We consider elemen-

tary symmetric polynomials ek(u) =
∑

1≤i1<···<ik≤r ui1 · · ·uik for any k =

1, . . . , r and we set e0(u) = 1. We associate with the list (e1(v), . . . , eq(v))

the following matrix

Λ(e(v)) =




e1(v) −1
...

. . .

eq−1(v) −1

eq(v)


 (2)

(it has non-zero entries only in the first column and above the diagonal). Then
we have

r∏

i=1

q∏

j=1

(1+ ui + vj) = det

(
r∑

k=0

ek(u)[I+Λ(e(v))]r−k

)
,

where I = Iq is the q-by-q identity matrix.

Proof. First, we diagonalize the matrix Λ(e(v)). Therefore, we consider the
q-by-q matrix E = E(v1, . . . , vq) =

[
ei−1(v1, . . . , v̂j, . . . , vq)

]q
i,j=1

, where v̂j
means that the term vj is omitted. We show that E is non-singular by com-
puting its determinant as follows. We subtract the first column from the
other columns, then we raise a (v1 − vj)-factor from columns j = 2, . . . , q,
respectively. Expanding the resulting determinant by the first row we get the
recurrent relation detE(v1, . . . , vq) =

∏q
j=2(v1 − vj)detE(v2, . . . , vq), hence

detE =
∏

1≤i<j≤q(vi − vj) 6= 0. Moreover, Λ(e(v))E = E diag(v1, . . . , vq) by re-
lations ei(v1, . . . , vq) = ei(v1, . . . , v̂j, . . . , vq) + vjei−1(v1, . . . , v̂j, . . . , vq), hence
Λ(e(v)) = Ediag(v1, . . . , vq)E

−1. Furthermore,

I+Λ(e(v)) = I+ Ediag(v1, . . . , vq)E
−1 = Ediag(1+ v1, . . . , 1+ vq)E

−1

is also diagonalizable with eigenvalues 1+ v1, . . . , 1+ vq. Finally,

q∏

j=1

r∏

i=1

(1+ ui + vj) =

q∏

j=1

r∑

k=0

ek(u)(1+ vj)
r−k =

= det

(
Ediag

( r∑

k=0

ek(u)(1+ v1)
r−k, . . . ,

r∑

k=0

ek(u)(1+ vq)
r−k

)
E−1

)
=
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= det

( r∑

k=0

ek(u)Ediag
(
1+ v1, . . . , 1+ vq

)r−k
E−1

)

= det

( r∑

k=0

ek(u)[I+Λ(e(v))]r−k

)
.

�

Theorem 1 Let E and F be two complex vector bundles of rank r and q,

respectively over the same manifold. Then the Chern polynomial of the tensor

product E ⊗ F equals

c(E ⊗ F ; t) = det

(
r∑

k=0

ck(E)t
k[I+Λ(c(F); t)]r−k

)
,

where c0(E) = 1 and Λ(c(F); t) is the matrix (2) with c1(F)t, . . . , cq(F)tq in

the first column.

Proof. Let α1, . . . , αr and β1, . . . , βq be the Chern roots of E and F , respec-
tively. Then it is enough to show that

r∏

i=1

q∏

j=1

(1+ αit+ βjt) = det

(
r∑

k=0

ek(α)t
k[I+Λ(e(βt))]r−k

)
,

where Λ(e(βt)) equals the matrix Λ(c(F); t) only replacing Chern classes
cj(F) by elementary symmetric polynomials ej(β) = ej(β1, . . . , βq) of Chern
roots for all j = 1, . . . , q. Finally, substituting u1 = α1t, . . . , ur = αrt, v1 =

β1t, . . . , vq = βqt in Lemma 1 we get the desired relation. �

3 Resultant and Chern classes of the tensor prod-

uct: second approach

The second approach uses the resultant of two polynomials. This will lead us
to a determinantal formula for Chern classes of the second alternating and the
second symmetric products of a vector bundle.
Let A(t) = ar + ar−1t + · · · + a0t

r = a0

∏r
i=1(t − αi) and B(t) = bq +

bq−1t + · · · + b0t
q = b0

∏q
j=1(t − βj) be two polynomials in variable t with
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roots α1, . . . , αr and β1, . . . , βq, respectively. The resultant of polynomials A

and B with respect to t is given by

res(A(t), B(t), t) = a
q
0b

r
0

r∏

i=1

q∏

j=1

(αi − βj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0

a1
. . . b1

. . .
... a0

... b0

ar

... bq

...
. . . ar−1

. . . bq−1

ar bq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the first q columns contain the coefficients of A, while the last r columns
contain the coefficients of B and empty spaces contain zeroes (cf. [1, Ch. III]).
Instead of the Chern polynomial c(F ; t) = 1+ c1(F)t+ · · ·+ cq(F)tq of the

rank q vector bundle F we consider the polynomial with coefficients in reverse
order

C(F ; t) =

q∑

k=0

ck(F)tq−k = cq(F) + cq−1(F)t+ · · ·+ c1(F)tq−1 + tq. (3)

They are related by C(F ; t) = tqc(F ; t−1) and moreover, we can recover the
total Chern class by substituting t = 1, i.e. c(F) = C(F ; 1). Furthermore, if
β1, . . . , βq are Chern roots of F then C(F ; t) =

∏q
j=1(t+βj), i.e. the opposite

of Chern roots of F are roots of the polynomial C(F ; t). We note that for the
dual bundle F∗ we have C(F∗; t) = (−1)qC(F ; −t).

Lemma 2 If α1, . . . , αr are the Chern roots of the complex vector bundle E

of rank r then
∏r

i=1(t−s−αi) = (−1)rC(E ; s−t) =
∑r

k=0(−1)kdk(E ; s)t
r−k with

coefficients dk(E ; s) =
(
r
k

)
sk+

(
r−1
k−1

)
c1(E)s

k−1+· · ·+ck(E) =
∑k

i=0

(
r−i
k−i

)
ci(E)s

k−i.

Proof. Indeed,
∏r

i=1(t− s− αi) = (−1)r
∏r

i=1(s− t+ αi) = (−1)rC(E ; s− t)

and moreover,
∏r

i=1(t− s−αi) =
∑r

k=0(−1)kek(s+α1, . . . , s+αr)t
r−k, where

ek(s+ α1, . . . , s+ αr) =
∑

1≤i1<···<ik≤r

(s+ αi1) · · · (s+ αik) =

=
∑

1≤i1<···<ik≤r

[
sk + e1(αi1 , . . . , αik)s

k−1 + · · ·+ ek(αi1 , . . . , αik)
]
=

=

(
r

k

)
sk +

(
r− 1

k− 1

)
e1(α1, . . . , αr)s

k−1 + · · ·+

(
r− k

0

)
ek(α1, . . . , αr) =
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=

r∑

i=0

(
r− i

k− i

)
ei(α1, . . . , αr)s

k−i =

k∑

i=0

(
r− i

k− i

)
ci(E)s

k−i = dk(E ; s).

�

In the next theorem we express C(E ⊗ F ; s) as resultant of polynomials
(−1)rC(E ; s − t) and C(F ; t). We can also get a formula for the total Chern
class of the tensor product by substituting s = 1.

Theorem 2 If E and F are two complex vector bundles of rank r and q,

respectively over the same manifold then

C(E ⊗ F ; s) = res((−1)rC(E ; s− t), C(F ; t), t), (4)

where the polynomial C is defined by (3). Substituting s = 1 yields the total

Chern class of the tensor product c(E ⊗ F) = res((−1)rC(E ; 1− t), C(F ; t), t).

Moreover, the top Chern classes of the tensor product equals

crq(E ⊗ F) = (−1)rq res(c(E ; −t), c(F ; t), t),

while the top Chern classes of the Hom(E ,F) bundle equals

crq(Hom(E ,F)) = (−1)rq res(c(E ; t), c(F ; t), t).

Proof. Denote α1, . . . , αr and β1, . . . , βq the Chern roots of E and F , respec-
tively. Then

C(E ⊗ F ; s) =

r∏

i=1

q∏

j=1

(s+ αi + βj) =

r∏

i=1

q∏

j=1

(s+ αi − (−βj)),

hence C(E ⊗ F ; s) is the resultant of polynomials
∏q

j=1(t + βj) = C(F ; t)

and
∏r

i=1(t − s − αi) = (−1)rC(E ; s − t) with respect to the variable t, i.e.
C(E ⊗ F ; s) = res((−1)rC(E ; s− t), C(F ; t), t).
To obtain the top Chern class of the tensor product we substitute s = 0

into (4), thus crq(E ⊗F ; t) = res((−1)rC(E ; −t), C(F ; t), t). The coefficients of
polynomials C(F ; t) and c(F ; t) are in reverse order, and similarly the coef-
ficients of polynomials (−1)rC(E ; −t) and c(E ; −t) are also in reverse order.
Hence we get res((−1)rC(E ; −t), C(F ; t), t) = (−1)rq res(c(E ; −t), c(F ; t), t) by
reversing the order of rows, the order of the first q columns and last r columns
in the defining determinant (3) of the resultant.
Finally, the top Chern class of the Hom(E ,F)-bundle crq(Hom(E ,F); t) =

crq(E
∗⊗F ; t) = (−1)rq res(c(E∗; −t), c(F ; t), t) = (−1)rq res(c(E ; t), c(F ; t), t).�
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4 Chern classes the second alternating product ∧
2E

and the second symmetric product S2E

We give a different version of Theorem 2, which leads to determinantal formu-
las for total Chern classes of the second alternating and symmetric products.

Theorem 3 If E and F are two complex vector bundles of rank r and q,

respectively over the same manifold, then

C(E ⊗ F ; s) = res((−1)rC
(
E ;

s

2
− t
)
, C
(
F ;

s

2
+ t
)
, t),

By substituting s = 1 we get c(E⊗F) = res((−1)rC
(
E ; 12 − t

)
, C
(
F ; 12 + t

)
, t).

Proof. If α1, . . . , αr and β1, . . . , βq are the Chern roots of E and F , respec-
tively, then

C(E ⊗ F ; s) =

r∏

i=1

q∏

j=1

(s+ αi + βj) =

r∏

i=1

q∏

j=1

(s
2
+ αi −

(
−
s

2
− βj

))
,

hence C(E ⊗ F ; s) is the resultant of
∏q

i=1

(
t+ s

2 + βj

)
= C

(
F ; s2 + t

)
and∏r

i=1

(
t− s

2 − αi

)
= (−1)rC(E ; s2 − t). �

If α1, . . . , αr are the Chern roots of the vector bundle E then the total Chern
classes of the second alternating and the second symmetric bundles

c(∧2E) =
∏

1≤i<j≤r

(1+ αi + αj),

c(S2E) =
∏

1≤i≤j≤r

(1+ αi + αj) = c(E ; 2)c(∧2E),

hence their corresponding C polynomials

C(∧2E ; s) =
∏

1≤i<j≤r

(s+ αi + αj),

C(S2E ; s) =
∏

1≤i≤j≤r

(s+ αi + αj) = 2rC
(
E ;

s

2

)
C(∧2E ; s).
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Theorem 4 Let d̄k = dk(E ;
s
2) =

∑k
i=0

(
r−i
k−i

)
ci(E)(

s
2)

k−i for k = 0, 1, . . . , r and

d̄k = 0 otherwise. With these notations we have

C(∧2E ; s) = det

([
d2i−j

(
E ;

s

2

)]r−1

i,j=1

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

d̄1 1

d̄3 d̄2 d̄1 1

d̄5 d̄4 d̄3 d̄2 d̄1
...

. . .
. . .

. . .
. . .

. . .

d̄r d̄r−1 d̄r−2 d̄r−3

d̄r d̄r−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5)

By substituting s = 1 we get c(∧2E) = det
([

d2i−j(E ;
1
2)
]r−1

i,j=1

)
.

Proof. By Theorem 3 we have C(E⊗E ; s) = res((−1)rC(E ; s2−t), C(E ; s2+t), t).
Note that (−1)rC(E ; s2 − t) =

∑r
k=0(−1)kdk(E ;

s
2)t

r−k =
∑r

k=0(−1)kd̄kt
r−k and

C(E ; s2 + t) =
∑r

k=0 dk(E ;
s
2)t

r−k =
∑r

k=0 d̄kt
r−k, hence

C(E ⊗ E ; s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1

−d̄1
. . . d̄1

. . .

d̄2
. . . 1 d̄2

. . . 1
... −d̄1

... d̄1

(−1)rd̄r

... d̄r

...
. . . (−1)r−1d̄r−1

. . . d̄r−1

(−1)rd̄r d̄r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6)

We add the (r + i)th column to the ith column, then we subtract the 1
2 of

the ith column from the (r + i)th column for all i = 1, . . . , r. This results the
determinant on the left hand side of (7). From the first r columns we raise a
2r factor. Then we switch the (2i)th and (r+2i)th columns for all 1 ≤ i ≤ ⌊ r2⌋.
This yields the determinant on the right hand side of (7), which has zeroes in
the even and odd rows of the first and last r columns, respectively.



338 Zs. Szilágyi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0

0 2 d̄1 0

2d̄2 0
. . . 0 d̄1

. . .

0 2d̄2
. . . d̄3 0

. . .
... 0

. . .
... d̄3

. . .
...

...
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)⌊
r

2
⌋2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0

0 0 d̄1 1

d̄2 d̄1 1 0 0 0

0 0 0
. . . d̄3 d̄2 d̄1

. . .
... d̄3 d̄2

. . .
... 0 0

. . .
... 0

. . .
... d̄3

. . .
...

. . .
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(7)

Moving the odd rows up and the even rows down yields a 2-by-2 block deter-
minant with zeroes in the off-diagonal blocks and a (−1)r(r−1)/2-sign, which
cancels the existing (−1)⌊r/2⌋-sign. We expand this determinant with respect
to the first and last rows. These rows contain only zeroes, except the first row
has 1 in the first column and the last row has d̄r in the last column. After
expansion the two diagonal blocks become identical, hence

2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0

d̄2 d̄1 1 0 0

d̄4 d̄3 d̄2
. . .

...
...

...
...

...
...

. . . d̄r−3 0 0

d̄r−1 0 0 0 · · · 0

0 0 0 · · · 0 d̄1 1

0 0 d̄3 d̄2 d̄1
...

...
... d̄4 d̄3

. . .
...

0 0
...

...
. . . d̄r−2

0 0 0 · · · 0 d̄r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= 2rd̄r

∣∣∣∣∣∣∣∣∣∣∣∣∣

d̄1 1

d̄3 d̄2 d̄1 1

d̄5 d̄4 d̄3 d̄2 d̄1
...

. . .
. . .

. . .
. . .

d̄r d̄r−1 d̄r−2 d̄r−3

d̄r d̄r−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.



Chern classes of the tensor product 339

Note that C(E ; s2) = d̄r = dr(E ;
s
2). Finally, by the relation

C(E ⊗ E ; s) = C(∧2E ⊕ S2E ; s) = C(∧2E ; s)C(S2E ; s) = 2rC
(
E ;

s

2

)
C(∧2E ; s)2

we are able to identify the C(∧2E ; s)-part in C(E ⊗ E ; s) to be (5). �

Remark 1 We can also compute C(∧r−2E ; s) from C(∧2E ; s) by the duality

C(∧r−2E ; s) =
∏

1≤i1<···<ir−2≤r

(s+ αi1 + · · ·+ αir−2
)

=
∏

1≤j1<j2≤r

(s+ c1(E) − αj1 − αj2) = (−1)
r(r−1)

2 C(∧2E ; −(s+ c1(E))).
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Abstract. We utilize Hardy-Rogers contraction and CJM−contraction
in a C∗−algebra valued partial metric space to create an environment to
establish a fixed point.

Next, we present examples to elaborate on the novel space and val-
idate our result. We conclude the paper by solving a boundary value
problem and a matrix equation as applications of our main results which
demonstrate the significance of our contraction and motivation for such
investigations.

1 Introduction and preliminaries

Recently Chandok et al. [3] acquainted with the C∗−algebra valued partial
metric combining the notions of partial metric (Matthews [12]) and C∗−algebra
valued metric ( Ma et al. [10]). Tomar and Joshi [17] pointed out, by giving
explanatory examples that functions have different natures in different spaces
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and the consequences in C∗−algebra valued metric space can not be reduced
to their metric counterparts unless unital C∗−algebra, A = R. Further, Tomar
et al. [16] familiarised contractiveness and expansiveness in a newly introduced
space to establish a fixed point and utilized these to solve an integral equation
and an operator equation.
In the present work, we familiarize Hardy-Rogers contraction [6] and CJM−

contraction [5]. The basic idea comprises utilizing the non-negative elements
of an unital C∗−algebra (A) as an alternative to a set of real numbers. Our
outcomes are improvements and extensions of the existing results in metric
spaces. Further, we provide illustrative examples to validate our result. Ap-
plications to a Boundary Value problem and a matrix equation conclude the
paper.

Definition 1 [3] A C∗−algebra valued partial metric is a function p : M ×

M −→ A on a non-empty set M if:

(i) θ � p(w, v) and p(w,w) = p(v, v) = p(w, v) if and only if w = v, θ is

zero element of A;

(ii) p(w,w) � p(w, v);

(iii) p(w, v) = p(v,w);

(iv) p(w, v) � p(w, z) + p(z, v) − p(z, z), w, v, z ∈ M.

Here, (M,A, p) is a C∗−algebra valued partial metric space.

One may refer to [13] and [19], to study in detail on C∗−algebra.

The following example is given by Tomar et al. [16].

Example 1 Let F(M) be a collection of balls such that B(w0, ρ) = {v : |w0 −

v| ≤ ρ, ρ > 0} and A = Mn(C) be the C∗−algebra of complex matrices. If

A = [aij] ∈ A, then A∗ = [āji] is a non-zero element of A. Norm is de-

fined as, ‖A‖ = sup{‖Aα‖2 : α ∈ C
n, ‖α‖2 ≤ 1}, where ‖.‖2 is the usual

l2−norm on C
n. Define p : F(M) × F(M) −→ A by p[B(w0, ρ), B(v0, σ)] =

|w0−v0|AA∗+max{ρ, σ}I. Then p is a C∗−algebra valued partial metric how-

ever, it is neither a C∗−algebra valued metric nor a standard partial metric,

since p[B(w0, ρ), B(w0, ρ)] = ρ 6= θ and

p[B(w0, ρ),B(v0, τ)] = |w0 − v0|AA∗ +max {ρ, τ} I

� [|w0 − z0|+ |z0 − v0|]AA∗ + [max{ρ, σ}+max{σ, τ}− σ]I

= p[B(w0, ρ), B(z0, σ)] + p[B(z0, σ), B(v0, τ)] − p[B(z0, σ), B(z0, σ)].
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The C∗−algebra valued partial metric reduces to the standard partial metric

on taking A = R. For detailed discussions on C∗−algebra-valued metric spaces,

one may refer to Tomar and Joshi [17]. Tomar et al. [16] discussed the con-

vergence of the sequence when it converges to a zero element of (M,A, p) and

introduced the following definitions to create an environment to establish a

fixed point in (M,A, p).

Definition 2 [16]

(i) A sequence {wn}n∈N is called a Cauchy sequence in (M,A, p) if limn,m−→∞

p(wn,wm) exists with respect to A and is finite.

(ii) (M,A, p) is complete if every Cauchy sequence {wn}n∈N converges with

respect to A in M, to a point w ∈ M and satisfy

lim
n,m→∞

p(wn,wm) = lim
n→∞

p(wn,wn) = p(w,w).

(iii) The sequence {wn}n∈N in (M,A, p) θ−converges to a point w ∈ M if

lim
n→∞

p(wn,w) = lim
n→∞

p(wn,wn) = p(w,w) = θ.

(iv) A sequence {wn}n∈N is θ−Cauchy if limn,m→∞ p(wm,wn) = θ, θ is the

zero element of (M,A, p).

(v) (M,A, p) is called θ− complete if every θ−Cauchy sequence converges

to a point w ∈ M and p(w,w) = θ.

Example 2 (Example 3.5−Tomar et al. [16]) Let

p(w, v) =

{
I, if w = v

p(w, v) = 2I, otherwise.

If M is a Hausdorff space and B(M) is the set of all bounded functions,

then B(M) becomes a C∗−algebra with ‖f(w)‖ = supw∈M
|f(w)|. Here, the

sequence {wn} = a, n ≥ 1 is not θ−Cauchy as it converges to a. However,

{wn} is a Cauchy sequence. Implying thereby that every θ−Cauchy sequence

in (M,A, p) is a Cauchy sequence. However, the reverse implication is not

necessarily true.

Remark 1 [16] It is worth mentioning here that if a sequence θ−converges to

some point then its self-distance, as well as the self-distance of that point, is

equal to zero element of (M,A, p).
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2 Main results

In the following, A+ denotes a set of self-adjoint (positive) operators of A.
Now, following Ma et al. [10], we introduce a Hardy - Rogers contraction and
a CJM−contraction, then utilize these to establish a fixed point.

Definition 3 A self-map T of (M,A, p) is called a C∗−algebra valued Hardy-

Roger contractive map if

p(T w, T v) � Ap(w, v)+Bp(w, T w)+Cp(v, T v)+Dp(v, T w)+Ep(w, T v), (1)

∀ w, v ∈ M, ‖A+ B + C +D + E‖ ≤ 1 and A, B, C, D, E ∈ A
+.

Example 3 Let M = C and A =Collection of all scalar matrices on C. Let

p : M×M −→ A be defined as,

p(w, v) =

[
max{|w|, |v|} 0

0 max{|w|, |v|}

]
.

So (M,A, p) is a C∗−algebra valued partial metric space and

p(w,w) =

[
|w| 0

0 |w|

]
6= θ.

A function T : M −→ M defined as

T w =






w
4 , w is even
w−1
5 , w is odd

0, otherwise

,

is a C∗−algebra valued Hardy-Roger contraction for θ � A = D = E ≺ I
7 and

θ � B = C ≺ I
9 .

It is fascinating to see here that, T is not a Hardy-Roger contraction [6] as a
space under consideration is not a standard metric space.

Definition 4 A self map T in (M,A, p) is called a C∗−algebra valued CJM−

contraction, if

(a) for each ε ≻ θ there exists a number δ ≻ θ satisfying

p(w, v) ≺ ε+ δ =⇒ p(T w, T v) ≺ ε,
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(b) w 6= v =⇒ p(T w, T v) ≺ p(w, v), w, v ∈ M.

Example 4 Let M = {0, 1} ∪ {2n : n ∈ N} ∪ { 2n−1
2 + 1

2n−1 : n ∈ N} and

A =Collection of complex diagonal matrices defined on M. Let p : M×M −→
A be defined as,

p(w, v) =

[
|w− v|+max{w, v}, 0

0, α(|w− v|+max{w, v})

]
. So (M,A, p) is a

C∗−algebra valued partial metric space and p(w,w) =

[
w, 0

0, w

]
. A func-

tion T : M×M −→ R be defined as T w =

{
2n−1
2 + 1

2n−1 , w = 2n

0, otherwise
, is

a C∗−algebra valued CJM−contraction for ε, δ > θ.

It is fascinating to see here that, T is not a CJM− contraction [5] as a space
under consideration is not a standard metric space.

Now, we establish our result for C∗−algebra valued Hardy-Rogers contrac-
tion.

Theorem 1 If a self map T is a continuous C∗−algebra valued Hardy-Rogers

contractive map (1) of a θ−complete C∗−algebra valued partial metric space

(M,A, p), then T has a unique fixed point z ∈ M and p(T z, T z) = θ = p(z, z).

Proof. Starting from the given element w0 ∈ M, form the sequence {wn} ,
where wn = T wn−1, n ∈ N. If p(wn,wn+1) = θ, for some n ≥ 0, then T wn =

wn+1 = wn and p(wn,wn) = θ and this completes the proof.
Further, take p(wn,wn+1) ≻ θ, n ≥ 0 . For w = wn+1, v = wn+2, in condi-

tion (1),

p(wn+1,wn+2) = p(T wn, T wn+1)

� Ap(wn,wn+1) + Bp(wn, T wn) + Cp(wn+1, T wn+1)

+Dp(wn+1, T wn) + Ep(wn, T wn+1)

� Ap(wn,wn+1) + Bp(wn,wn+1) + Cp(wn+1, wn+2)

+Dp(wn+1,wn+1) + E [p(wn,wn+1) + p(wn+1,wn+2)

− p(wn+1,wn+1)]

= (A+ B + E)p(wn,wn+1) + (C + E)p(wn+1,wn+2)

+ (D − E)p(wn+1,wn+1),

(2)
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and

p(wn+2,wn+1) = p(T wn+1, T wn)

� Ap(wn+1,wn) + Bp(wn+1, T wn+1) + Cp(wn, T wn)

+Dp(wn,T wn+1
) + Ep(wn+1, T wn)

� Ap(wn+1,wn) + Bp(wn+2,wn+1) + Cp(wn+1,wn)

+D[p(wn,wn+1) + p(wn+1,wn+2) − p(wn+1,wn+1)]

+ Ep(wn+1,wn+1)

= (A+ C +D)p(wn,wn+1) + (B +D)p(wn+1,wn+2)

+ (E −D)p(wn+1,wn+1).

(3)

Adding (2) and (3)

2p(wn+1,wn+2)) � (2A+ B + C +D + E)P(wn,wn+1)

+ (B + C +D + E)p(wn+1,wn+2),

that is,

(2−B − C −D − E)p(wn+1,wn+2)) � (2A+ B + C +D + E)p(wn,wn+1),

that is,

p(wn+1,wn+2)) �
2A+ B + C +D + E

2− B − C −D − E
p(wn,wn+1) � ξ p(wn,wn+1),

where, ξ = 2A+B+C+D+E

2−B−C−D−E
and 0 ≤ ‖ ξ‖ < 1.

Now, for n > m,

p(wn,wm) � p(wn,wn−1) + p(wn−1,wn−2) + . . .+ p(wm+1,wm)

− p(wn−1,wn−1)−p(wn−2,wn−2)−. . .− p(wm+1,wm+1)p(wn,wm)

� p(wn,wn−1) + p(wn−1,wn−2) + . . .+ p(wm+1,wm)

� (ξn−1 + ξn−2 + · · ·+ ξm)p(w0,w2),

and hence limn,m−→∞ p(wn,wm) = θ, that is, {wn}n∈N is a Cauchy sequence
in (M,A, p).
Using θ−completeness of (M,A, p), we have z ∈ M so that wn −→ z in
(M,A, p) and p(z, z) = θ.
Now,

p(z, T z) � p(z,wn+1) + p(wn+1, T z) − p(wn+1,wn+1)

� p(z,wn+1) + p(T wn, T z) − p(wn+1, wn+1).
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Since T is continuous, n −→ ∞ implies that,

p(z, T z) � (B+ C+D+ E)p(z, T z) ≺ p(z, T z),

a contradiction, so p(z, T z) = θ.
Thus, p(T z, T z) = p(z, T z) = p(z, z) = θ, that is, z is a fixed point of T .
To conclude the theorem, suppose z and w are two different fixed points of T ,
so

p(z,w) = p(T z, T w) � Ap(z,w) + Bp(z, T z) + Cp(w, T w)

+Dp(w, T z) + Ep(z, T w),

� (A+D + E)p(z,w)

≺ (A+ B + C +D + E)p(z,w)

≺ p(z,w),

a contradiction. So, p(z,w) = θ. Hence, z = w. �

Next, an example is provided to validate Theorem 1.

Example 5 Let M = C and A = M3(C) be the set of complex matrices. Let,

for a > b > c > 0 , p : M×M −→ A be defined as,

p(w, v) =



af(w, v) 0 0

0 bf(w, v) 0

0 0 cf(w, v)


 ,

where, f(w, v) = max {‖w‖, ‖v‖}. So (M,A, p) is a complete C∗−algebra

valued partial metric space and

p(w,w) =



a‖w‖ 0 0

0 b‖w‖ 0

0 0 c‖w‖


 6= θ.

A continuous function T : M −→ M defined as T w = w
2 , is a C∗−algebra

valued Hardy-Roger contraction for θ � A = B = C ≺ I
6 , θ � D = E ≺ I

8 .

Consequently, postulates of Theorem 1 are verified and T has a unique fixed

point at w = 0.

Remark 2

(i) Conclusion of Theorem 1 continues to be true if B = C = D = E = 0 and

we get an extension of Banach [2], to C∗−algebra-valued partial metric

spaces.
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(ii) Conclusion of Theorem 1 continues to be true if A = D = E = 0 and

B = C and we get an extension of Kannan [8] to C∗−algebra-valued

partial metric spaces.

(iii) Conclusion of Theorem 1 continues to be true if A = B = C = 0 and

D = E , we get an extension of Chatterjea [4] to C∗−algebra-valued partial

metric spaces.

(iv) Conclusion of Theorem 1 continues to be true if D = E = 0, we get an

extension of Reich [14] to C∗−algebra-valued partial metric spaces.

Now, we establish our next result for C∗−algebra valued CJM−contraction.

Theorem 2 Theorem 1 continues to be true if (1) is replaced by C∗−algebra

valued CJM-contractive map.

Proof. Define a Picard sequence {wn} ⊆ M, wn+1 = T wn, n ∈ N0. If
p(wn,wn+1) = θ for some n ≥ 0, then T wn = wn+1 = wn and p(wn,wn) = θ

and the proof is complete.
Now, let for all n ∈ N0, p(wn,wn+1) ≻ θ. Using (b), we get
p(wn+1,wn+2) = p(T wn, T wn+1) ≺ p(wn,wn+1),

that is, the sequence {p(wn,wn+1)} is bounded below and decreasing. Thus, it
is convergent and
limn−→∞ p(wn,wn+1) = ε � θ. If ε ≻ θ, then ε ≺ p(wn,wn+1), for n ≥ m or

ε ≺ p(wn,wn+1) ≺ ε+ δ(ε), n ≥ m,

which contradicts condition (a). Thus, limn−→∞ p(wn,wn+1) = θ.

Now, we demonstrate that {p(wn,wn+1)} is a Cauchy sequence. Fix an ε ≻ θ,
we may consider δ = δ(ε) ≺ ε. Since {p(wn,wn+1)} is monotonically decreasing
to θ, there exists m ∈ N, n ≥ m satisfying p(wn,wn+1) ≺

δ
s .

We shall use the principle of mathematical induction to demonstrate that for
l ∈ N

p(wm,wm+l) ≺
ε

s
+

δ

s
≺ ε+ δ. (4)

Clearly, Equation (4) holds for l = 1. Suppose Equation (4) holds for some l.
We shall prove it for l+ 1. By the property (iv), we have

p(wm,wm+l+1) � p(wm,wm+1) + p(wm+1,wm+l+1) − p(wm+1,wm+1).

It is enough to show that p(wm+1,wm+l+1) ≺ ε
s . By the induction hypothe-

sis, p(wm,wm+l) ≺
ε
s +

δ
s ≺ ε

s + δ. So using (a), p(wm+1,wm+l+1) ≺
ε
s .

Hence, Equation (4) implies that {wn} is a Cauchy sequence in M.
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Using θ−completeness of (M,A, p), there exists z ∈ M so that wn −→ z in
(M,A, p) and p(z, z) = θ.
Since T is continuous, wn+1 = T wn −→ T z.
Hence, T z = z, that is, z is a fixed point of T .
To conclude the proof, let z and w be two different fixed points of T .

p(z,w) = p(T z, T w) ≺ p(z,w),

a contradiction. So, p(z,w) = θ.
Hence, z = w. �

Next, an example is provided to validate Theorem 2.

Example 6 Let M = C and A = M2(M) be the set of complex matrices. Let,

for α > 0 , p : M×M −→ A be,

p(w, v) =

[
|w− v|+max{|w|, |v|} 0

0 α(|w− v|+max{|w|, |v|})

]
.

So, (M,A, p) is a complete C∗−algebra valued partial metric space and

p(w,w) =

[
|w| 0

0 α|w|

]
6= θ.

A continuous function T : M −→ M given by T w = w
7 , is a C∗−algebra

valued CJM−contraction. Hence, all the postulates of Theorem 2 are verified

and T has a unique fixed point at w = 0.

It is interesting to see that Examples 5 and 6 can not be covered by any
function in a standard metric space, a partial metric space, or a C∗−algebra
valued metric space in the context of Hardy and Roger [6] and Górnicki [5].
Consequently, C∗−algebra-valued partial metric space is an improved version
of existing spaces wherein unital C∗−algebra (A) is exploited as an alternative
to a set of real numbers and the results in this space are genuine generalizations
/ improvements / extensions of the corresponding outcomes in the literature
in standard metric spaces. Further, the results of C∗−algebra-valued partial
metric spaces do not coincide with / derived from the results in other related
spaces.

3 Application

Now, we utilize Theorem 1, to solve a boundary value problem.
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Theorem 3 Consider a boundary value problem

d2w

dt2
= −φ(t,w(t)), t ∈ I = [−1, 1] and φ ∈ C(I,R) (5)

with two-point boundary condition w(−1) = 0,w(1) = 0.

Assume the following:

(i) φ : I × R −→ R is a Lipschitz continuous relative to w for Lipschitz

constant value 0 ≤ ‖ξ‖ ≤ 1
3 ,∀ t ∈ I,w1,w2 ∈ R such that ‖φ(t,w1) −

φ(t,w2)‖ ≤ ξ(t)‖w1 −w2‖ and function ξ is continuous on I.

(ii) |φ(t,w)| ≤ µ(t) |w| , where, 0 ≤ ‖µ‖ ≤ 1
3 and function µ is continuous

on I.

Then, the differential equation has exactly one solution w∗ ∈ C(I,R).

Proof. The problem in equation (5) may be rewritten as

w(t) =

∫ 1

−1

G(t, u)φ(u,w(u))du, for t ∈ I, (6)

and the Green function G(t, u) =

{
(1− t)(1+ u),−1 ≤ u ≤ t ≤ 1

(1− u)(1+ t),−1 ≤ t ≤ u ≤ 1
.

Now, if w ∈ C2(I,R), then w is the solution of (5) if and only if it is the
solution of (6).
M = C(I), the set of a continuous function on I forms a C∗−algebra with
pointwise operation with ‖w‖∞ = maxt∈I |w|, w ∈ M.
Define p : M×M −→ M by p(w, v) = [‖w− v‖+‖w‖+‖v‖]f is a C∗−algebra
valued partial metric space, where, f is the self-adjoint element of M.
Define a self map T : M −→ M by

T w(t) =

∫ 1

−1

G(t, u)φ(u,w(u))du, (7)

for all w ∈ M and t ∈ I. Now, our problem (5) may be expressed as deter-
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mining a fixed point of T . So

|T w(t) − T v(t)| =

∣∣∣∣
∫ 1

−1

G(t, u)(φ(u,w(u)) − φ(u, v(u)))du

∣∣∣∣ ,

�

∫ 1

−1

G(t, u) |φ(u,w(u)) − φ(u, v(u))|du,

�

∫ 1

−1

G(t, u)ξ |w(u) − v(u)|du

� ξ ‖w(u) − v(u)‖
∞
sup
t∈I

∫ 1

−1

G(t, u)du.

Therefore,
‖T w(t) − T v(t)‖ ≤ ‖ξ‖ ‖w(u) − v(u)‖

∞
. (8)

Since,
∫1
−1

G(t, u)du = 1− t2 and supt∈I
∫1
−1

G(t, u)du = 1.
Now,

|T w(t)| =

∣∣∣∣
∫ 1

−1

G(t, u)φ(u,w(u))du

∣∣∣∣ ,

�

∫ 1

−1

G(t, u) |φ(u,w(u))|du,

�

∫ 1

−1

µ |w(u)|G(t, u)du,

� µ ‖w‖
∞

∫ 1

−1

G(t, u)du.

Therefore,
‖T w(t)‖

∞
≤ ‖µ‖ ‖w‖

∞
, (9)

and also
‖T v(t)‖

∞
≤ ‖µ‖ ‖v‖

∞
. (10)

Now,

p(T w, T v) = [‖T w− T v‖
∞

+ ‖T w‖
∞

+ ‖T v‖
∞
]f

� [ξ ‖w− v‖
∞

+ µ ‖w‖
∞

+ µ ‖v‖
∞
]f

� (ξ+ 2µ)(‖w− v‖
∞

+ ‖w‖
∞

+ ‖v‖
∞
]f)

= (ξ+ 2µ)p(w, v) � Ap(w, v) + Bp(w, T w) + Cp(w, T v)

+Dp(v, T w) + Ep(w, T v).
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Taking A = ξ, B = C = D = E = µ
2 , we may observe that postulates of The-

orem 1 are verified, and so T has only one fixed point w∗ ∈ M, that is,
boundary value problem (5) has only one solution w∗ ∈ M. �

Now, we make use of Theorem 2, to solve a matrix equation to demonstrate
the applicability of C∗−algebra valued CJM−contraction map. In the follow-
ing, the symbol ‖.‖ is the spectral norm of a matrix P = [pij]n×n, that is,
‖P‖ =

√
λ+(P∗P), λ+(P∗P) is the largest eigenvalue of P∗P, where P∗ is

the conjugate transpose of P. Further, ‖.‖tr denotes the trace norm of P and

‖P‖tr =
√
Σn
i=1Σ

n
j=1|pij|2 =

√
tr(P∗P) =

√
Σn
i=1σ

2
i (P), σi(P), i = 1, 2, . . . , n,

denotes largest singular values of P ∈ Mn(C). The set of all Hermitian ma-
trices of order n, Hn(C) ⊆ Mn(C), induced by this trace norm, is a Banach
space.

Theorem 4 Let a non-linear matrix equation be

W = Σn
i=1P

∗

i f(W)Pi, (11)

where, the C∗−algebra of complex matrices of order n, M = Mn(C), Pi ∈

Mn(C) is an arbitrary matrix of order n. Let f : Mn(C) −→ Mn(C) be a

continuous self map satisfying f(θ) = θ and

(i) max{|tr(fW)|, |tr(fV)|}I � η
2 max{|tr(W)|, |tr(V)|}In,

(ii) |tr(T W − T V)|In � η
2 |tr(W − V)|In,

(iii) tr(WV) ≤ ‖W‖tr(V), W ∈ Mn(C),

(iv) Σn
i=1P

∗

i P � ξIn, where identity matrix of order n, In ∈ Mn(C) and

η 6= 0.

Then the matrix equation (11) has exactly one solution W∗ ∈ M. Further, the

iteration Wn = Σn
i=1P

∗

i f(W)Pi, W0 ∈ Mn(C) such that W0 � Σn
i=1P

∗

i f(W)Pi,

converges to W∗ ∈ M satisfying the nonlinear matrix equation (11).

Proof. Let a map T : M −→ M be defined as

T (W) = Σn
i=1P

∗

i f(W)Pi (12)

and a C∗−algebra valued partial metric p : M×M −→ M be

p(W,V) =
[
max{|trW |, |trV |}+ |tr(W − V)|

]
In.
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Noticeably, a fixed point of T is a solution of a matrix equation (11).

p(T W, T V) = [max{tr|T W |, tr|T V |}+ |tr(T W − T V)|]In

=
[
max{|tr(Σn

i=1P
∗

i f(W)Pi)|, |tr(Σn
i=1P

∗

i f(V)Pi)|}

+ |tr(Σn
i=1P

∗

i (f(W) − f(V)Pi))|
]
In

=
[
max{|tr(Σn

i=1P
∗

i Pif(W))|, |tr(Σn
i=1P

∗

i Pif(V))|}

+ |tr(Σn
i=1P

∗

i Pif(W) − f(V))|
]
In

� ‖Σn
i=1P

∗

i Pi‖
[
max{|tr(fW)|, |tr(fV)|}+ |fW − fV |

]
In

� ‖ηI‖
1

2η
[max{|tr(W)|, |tr(V)|}+ |tr(fW − fV)|]In

=
1

2

[
max{|tr(W)|, |tr(V)|}+ |tr(fW − fV)|

]
In

≺ p(W,V).

Taking ε = 1
2

[
max{|tr(W)|, |tr(V)|}+ |tr(fW − fV)|

]
In and δ = 3

2ε,

p(W,V) ≺ ε + δ =⇒ p(T W, T V) ≺ ε and W 6= V =⇒ p(T W, T V) ≺

p(W,V).

We may observe that postulates of Theorem 2 are verified, and T has only
one fixed point W∗ ∈ M, that is, matrix equation (11) has only one solution
W∗ ∈ M. �

4 Conclusion

Acknowledging the C∗−algebra valued partial metric space, we have famil-
iarized Hardy-Roger contraction [6] and CJM−contraction [5] in it to elicit
the fixed point theorems in the most generalized environment. From our re-
sults, we have deduced results for a C∗−algebra valued variants of Kannan
contraction[8], Chatterjee contraction [4], Reich contraction [14] and Banach
contraction [2]. Further, we have solved a boundary value problem using
C∗−algebra valued Hardy-Roger contraction and a matrix equation using
C∗−algebra valued CJM− contraction. The motivation behind using this space
is its application in quantum field theory and statistical mechanics. It is worth
to mention that there may be some circumstances when it is possible to apply
C∗−algebra valued partial metric results, however it is not possible to apply
standard metric results . These novel ideas promote further examinations and
applications.
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