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Special Issue Foreword 

 

Modern vehicles and transportation systems rely extensively on stand-alone and 

widely distributed control systems solutions. In fact, advanced transportation and 

vehicle systems simply would not exist in their recent forms without extensive use of 

electronic devices and sophisticated control algorithms; i.e., a combination of electronic 

sensors, data processors and smart actuators, which represent the “hidden intelligence” 
of these systems that govern their correct functioning. The ultimate goal is to improve 

traveler’s safety and comfort, performance and energy efficiency of the transportation 
system as a whole through stand-alone control and interactions among vehicles and their 

immediate environment. The technology has the promise to provide solutions to some 

of our most intractable socio-economic problems – the high cost of traffic accidents and 

other losses originated in the transportation infrastructure. 

The automotive industry has been a driving force for innovation and economic 

growth for one hundred years in the Győr industrial area in Hungary. Continuing this 
tradition, the Center for Automotive Research (JKK) hosted by the Széchenyi 
University of Győr, which is the biggest nonprofit institution of this category in the 
country, continues interdisciplinary research for intelligent vehicles and transportation 

systems. 

This special issue contains 6 papers solicited from researchers working for the JKK 

in the past few months. They are all associated with the ongoing works related to the 

research and development of intelligent and future generation vehicles and 

transportation systems. Papers were sought to encompass the activity of the JKK briefly 

that is characterized by its highly interdisciplinary nature in this area. In particular, the 

articles reflect research spanning from the basic control theoretic approaches (linear and 

nonlinear approaches are equally weighted) to large-scale interdisciplinary views, which 

are designed to exploit information at multiple scales. This was done in an attempt to 

demonstrate how stand-alone control methods and solutions can be integrated in the 

analysis and synthesis of large-scale interconnected vehicle and transportation systems. 

The paper Edelmayer et.al., for examples, introduces the novel idea of quasi 

consensus networks that can be used in the solution of a wide range of control and 

detection problems in cyber-physical systems including cooperative distributed and 

connected vehicle and traffic systems. The approach plays invaluable role in intrusion 

and malicious effect generated malfunction detection in security sensitive cyber-

physical systems, such as in sensor networks.  

The multivariable decoupling control solution of Bányász and Keviczky, which is 
based on Youla parametrization, suits to the robust controller design for 2 degrees-of-

freedom (DoF) systems very frequently encountered in the synthesis of vehicle control.  

In the scholarly article Keviczky and Bokor some fundamental issues of control 

design methods most frequently used in the recent industrial practice are discussed. 

More specifically, relationships between the classical pole-placement state feedback 
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designs, the Riccati-equation based LQ paradigm and the Kalman-frequency domain 

approaches are discussed. 

Gáspár et.al. adopts the popular “plug-and-play” idea from information technology 
to the design of complex control systems with multiple functional building blocks 

applied to Electric Vehicle Systems (EVS) in the future. 

Szabó et.al. treats the inherently nonlinear character of vehicle control problems in 

the framework of Linear Parameter Varying systems and relies on Linear Matrix 

Inequality when finding solutions to performance improvement of vehicle dynamics 

controllers. The approach presented facilitates solutions to specific control design tasks 

encountered in vehicle dynamics applications. 

The paper Takarics et.al. and its wider 2 and 3 DoF approach in handling structural 

nonlinearities of the system provides a particularly interesting contribution in presenting 

stabilization solutions to the 3 DoF model of vehicle control problems. 

We are pleased to submit this special issue to the engineering community and hope 

that it accomplishes our goal of highlighting recent advances in the combined and 

interdisciplinary fields of vehicle and traffic control achieved by the interdisciplinary 

research team of JKK at Széchenyi University, Győr. 
 

 

Győr, December 2013. 
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Abstract: It is interesting to investigate how a decoupling controller can be designed. 

The YOULA-parametrization is a simple method to design controllers. The 

KB-parametrization is a successful extension of this method for two-

degree-of-freedom (TDOF) systems. The paper extends this methodology 

for multivariable case after summarizing the classical TFM based methods. 

Interesting examples are also given including a decoupling lateral control 

application. 

Keywords: MIMO processes, YOULA-parametrization, KB-parametrization, 

decoupling control 

1. Introduction 

The state equation of Multiple Input Multiple Output (shortly MIMO), i.e., 

multivariable linear dynamic systems has the form 

 

      ̇               (1) 

where A, B, C and D are (nxn), (nxp), (pxn) and (pxp) matrices, respectively. For the 

simplicity, let the number of the input and output variables be the same and denote by p 

(quadratic systems), so the input u  and the output y  are p-dimensional vectors. The 

(nxn)-dimensional transfer function matrix (TFM) of the MIMO process is 

   

P s  C s I A 1B+D  C s B+D 
1

A s B s 
 (2) 

where 

  

 s  sI  A 1  1

A s  s 
         

 s  adj sI A 
 (3) 

The scalar denominator 
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A s  det sI A 

 (4) 

is the n-th-degree characteristic polynomial of the process.   and   are also (nxn)-

dimensional. The form (2) means the simplest MIMO process model, though P s   is 

not necessarily minimal, it might be reduced. The right side of (2) is usually also called 

the “naive” model of the MIMO process. (In this paper the parameter matrices of the 

state equation are denoted by bold plain fonts while the cursive bold fonts denote the 

TFMs.) 

At the control design of the SISO processes the decomposition of the process into 

inverse stable and unstable factors was usually a requirement. The TFM P  of a MIMO 

process can be decomposed in a similar way 

 P  PP  PP  (5) 

where P  and P  are the inverse stable (IS) and inverse unstable (IU) matrix operators 

(TFM), respectively. Obviously P can be always written in the equivalent form 

 P  PP  PP  (6) 

2. The YOULA-parametrized MIMO closed control loop 

Formally it is very easy to extend the YOULA-parametrization to MIMO processes by 

introducing the TFM 

  
Q  C I  PC 1  I CP 1C

 (7) 

which results in the following YP MIMO regulator [6], [7] 

  
C  I QP 1Q  Q I  PQ 1  (8) 

Here P  is assumed to be stable. It can be easily verified that the two sides of (7) 

and (8) are the same. 

 

Figure 1. The generalization of the YOULA-parametrization for MIMO processes 
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The following identities have important role in the investigation of the TFM of the 

MIMO closed control loop 

  

I  PC 1  I  PQ I  PQ 1




1
 I  PQ

I  CP 1  I  I QP 1QP




1
 I QP

 (9) 

  
I  I  A 1A




1
 I  A

           
I B I B 1




1
 I B

 (10) 

The overall transfer characteristics of the YP closed system shown in Fig. 1 can be 

obtained by simple calculations 

  
y  PQr  I  PQ yn  (11) 

but it has to be taken into account that the multiplication of the TFM is not 

commutative. Here the KB-parametrization introduced at SISO processes can also be 

applied, thus the multiplication by the pre-filter Q
1 , what results in the TDOF MIMO 

closed system of Fig. 2, where the overall transfer characteristic is  

  
y  Pr  I  PQ yn  (12) 

what virtually opens the closed-loop. Note that the KB-parametrization can be applied 

for all closed control loops, not only for the YP loops and it always virtually opens the 

loop, thus it ensures the tracking properties Pr . The noise rejection property 
 
I  PQ , 

however, appears only in the case of YP. 

 

Figure 2. The KB-parametrized MIMO closed control loop 
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Figure 3. Generic TDOF closed-loop of MIMO processes 

The overall characteristic of the generic closed system is 

 
y  PQr yr  I  PQn yn  PKrRr yr  I  PKnRn yn  yt  yd  (13) 

Assume that the stable MIMO process P  can be decomposed according to (5). Then 

the MIMO YOULA-parameters are 

 
Q  Qn  KnRn  P

1
GnRn  (14) 

and 

 
Qr  KrRr  P

1
GrRr ; Kn  P

1
Gn ; Kr  P

1
Gr  (15) 

The YOULA-parametrized MIMO regulator is 

  
C  Q I  PQ 1  KnRn I  PKnRn 1  P1GnRn I  PGnRn 1

 (16) 

Using the expressions (14)-(16), the obtained closed system has the form 

  
y  PGrRr yr  I  PGnRn yn  yt  yd  (17) 

where, similarly to the SISO case, yt  and yd  mean the tracking and disturbance 

rejection properties, respectively. Here Kr  and Kn  contain the inverse P
1

 of the 

invertible part P  of P , furthermore Gr  and Gn  attenuate the effect of the invariant 

factor P .  

If the process P  is decomposed according to (6), then we get the YOULA-

parametrized MIMO regulator as 

  
C  I QP 1Q  I  RnKnP 1RnKn  I  RnGnP 1RnGnP1  (18) 

where 

 Kn  Gn P
1

 (19) 
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Now the equation of the closed system becomes 

  
y  PGrRr yr  I  RnGnP yn  yt  yd  (20) 

It is well seen that the tracking property yt  is the same for the two-type of the 

decomposition, the noise rejection properties yd  and yd , however, may be different.  

Note that while, for the SISO case, the realizability of the YOULA-parametrized 

regulator can be simply ensured by the reasonable choice of the pole access of the 

reference models Rr  and Rn , the same cannot be stated for the MIMO case. It is true 

that in many cases, raising the pole access of the elements in the main diagonal of Rr  

and Rn  helps the realizability, if they are given in TFM form. The general condition, 

however, always needs further, thorough investigation. Consider next some special 

cases. 

2.1. The YOULA-parametrized MIMO regulator for the “naive” process model 

The derivation of the regulators (16) and (18) requires complex operations between 

the TFMs. This computation demand can be slightly decreased by using the “naive” 
model given in (2). In this case the decomposition (5) has the form 

   

P s  PP 
1

A s B s  1

A s B s B s 
 (21) 

The advantage of this model is that the designated operation with the polynomial 

 
A s  in the denominator can be exchanged by any matrix polynomial. Futher 

simplification can be reached for inverse stable processes, when the model (2) is 

   

P 
1

A s B s 
           B+B

            B I  (22) 

Let the reference models be given in the “naive” form, i.e., 

   

Rr 
1

A r s 
B r s 

            

Rn 
1

A n s 
Bn s 

 (23) 

If 
  B I  and 

 B+B , then further optimization is impossible, thus it is reasonable 

to choose  Gr  Gn  I . In this case the MIMO YOULA-parameter is 

   

Q  Qn A s B1 s Rn 
A s 
An s 

B1 s Bn s 
 (24) 

and the YOULA-parametrized MIMO regulator becomes 

    
C s A s B1 s Rn s  I  Rn s  

1
A s B

1 s Bn s  An s I Bn s  
1

 (25) 
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2.2. Sampled data systems 

In many practical cases the MIMO process model is given in a special, inverse stable 

form. This is especially valid for sampled (or discrete-time: DT) processes 

 
G  GG  z

d
G  GG  Gz

d
          G G  (26) 

Here for all inputs in the main diagonal the time-delay is zd . All other variants 

can be taken into account in G . In this case the YOULA-parameter is 

 
Q  G

1
Rn           

Q  RnG
1

 (27) 

Using these parameters the regulator (16) and (18) becomes 

  

C  Q I  PQ 1  G1Rn I  Rnz
d 1  G1 I  Rnz

d 1 Rn
C  I  QP 1Q  I  Rnz

d 1 RnG1  Rn I  Rnz
d 1G1

 (28) 

Here G G  is considered and the identity 

  
Rn I  Rnz

d 1  I  Rnz
d 1Rn

 (29) 

can be simply checked. The closed system for the two-type of regulators is exactly the 

same 

  

y  Rrz
d
yr  I  Rnz

d yn  yt  yd
y  Rrz

d
yr  I  Rnz

d yn  yt  yd
 (30) 

thus yd  yd . Note that for this case  Gr  Gn  I  is chosen, since the effect of the 

invariant factor  G  z
dI  cannot be attenuated. 

The DT “naive” model of the MIMO process is 

     

G z  1

A z B z  ; B+B ; B z
dI

 (31) 

and the sampled YOULA-parametrized MIMO regulator is obtained by performing the 

analogous computations providing (25) 

    

C z A z B1 z Bn z  A n z I  zdBn z 




1


A z B
1 z Bn z  A n z I  zdBn z 




1

 (32) 
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It is worth to check that the similarly computed sampled YOULA-parametrized SISO 

regulator has the form 

  
C A z B1 z Bn z  An z  zdBn z 




1
A z B1 z Bn z  An z  zdBn z 




1

(33) 

In these expressions the reference model has also the “naive” form. Let us assume 
now that Rn  is given in left side MFD form, i.e., 

        ( )  ( )      ̃ (   )     (   ) (34) 

In this case the output of the regulator can be computed by a two-step algorithm. Let 

us denote the output by the vector c k . It is reasonable to use (18) according to which 

the necessary computation has the form 

  
c  Ce  I  RnG 1RnG1x           

x  G
1
e

 (35) 

Here the auxiliary variable x k  is introduced. Using these equations the regulator 

can be written in the form of vector difference equation form linear in parameters 

   (       ̃ )      (36) 

where x k  can also be given in similar form 

            (37) 

In the equations of the regulator the following simple notations are used 

  
G
1  N L

 z 




1

DL z            G N L


                 ̃   (38) 

3. Decoupling control of the MIMO process models 

The decoupling control of Multi-Input-Multi-Output (MIMO) processes is not a 

simple problem. In general case, considering MIMO process models, each input signal 

has effect on each output signal. The same is valid for the all elements of the output 

disturbance. It is an important practical task to construct control system where each 

reference signal has effect only on the corresponding output signal. Similarly it is a 

favorable case when a certain output disturbance has effect on a given output signal and 

has no effect at all on the other outputs. The joint solutions of the above tasks are called 

decoupling or decoupling control. The practical solutions available in the literature 

usually apply two approaches [12], [14], [15]. 

The first approach applies state feedback where the decoupling vector can be chosen 

by algebraic method in order to reach partial or complete decoupling. These methods 

are very complicated, do not illustrate well how the decoupling operates, therefore they 

are not widely used in the engineering practice [14]. 

The other approach introduces process model structures (P and V structures) what 

handle the feed-forward and feedback elements of the TFM separately. The analysis of 
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these elements makes easier the design of the necessary control though they do not 

provide systematic solution and do not give the theoretical limits of the decoupling [14]. 

Let us investigate the decoupling for sampled systems where the TFM of the process 

is assumed as 

G  GD GA  GD I GD
1
GA  I GAGD1 GD   (39) 

Here GD  contains the diagonal elements, i.e., it is a diagonal matrix, GA  does the 

elements outside the diagonal (antidiagonal elements) in the original structure. The 

block scheme of the MIMO processes is usually feed-forward like as it is shown on 

Fig. 4 for two-variable case. The operation of the decoupling regulators is usually 

demonstrated on two-input two-output simple MIMO systems where the essence of the 

method can be understood in the simplest way. In the industrial practice the input and 

output variables are usually considered in pairs if the technology allows. These kinds of 

schema are used next to illustrate the methods. 

The decoupler, serially connected with the MIMO process and providing the 

decoupling effect, is noted by D. One of the most natural decoupling could be reached 

by the compensator D  Do  G
1 , i.e., by the inverse of the process, what would mean 

complete decoupling DoG  I . But the inverse is usually not realisable and there is 

almost never need to eliminate the complete dynamics of the process. In general case 

the structure of the decoupler D corresponds to the process model shown on Fig. 4 if the 

elements Gij  are simply substituted by Dij .  

Considering the engineering aspects the ideal decoupling would contain the process 

dynamics GD  in the main diagonal what could be reached by the following 

compensator 

 D  Di  G
1
GD  (40) 

Observe that this case also requires the inverse of the process though in certain cases 

there are more chances to realize the elements of the product G
1
GD  than those of G

1 . 

 

Figure 4. Block scheme of two-variable MIMO process 
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There are models for decoupling where the feed-forward and feedback effects 

appear mixed. Such topology is shown in Fig. 5. This structure is called V-topology or 

inverse (inverted) structure [12], [15]. 

 

 

Figure 5. Block scheme of the decoupler of V-topology 

The relationships of the resulting model can be written as 

u1

u2





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
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
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
    (41) 

Analogously with the notations introduced in (39) we can write now that  

 u  VD e VDVA u  (42) 

where the decomposition 

 
V  VD  VA  (43) 

for diagonal and antidiagonal components is similar what was used for the process 

model. Based on (39) we can write that 

 
u  I VDVA 1VD e  DV e  (44) 

The V-topology can be simply used for the design of a decoupling compensator. Let 

us use the following equation for the design of the decoupling 

 
GDV  GD I GD

1
GA I VDVA 1VD

 (45) 

Observe that if in the decoupler VDVA  GD
1
GA  is chosen then the ideal 

decoupling GDV  GDVD  is ensured. It can be stated that the elements of VD  can 
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provide the decoupled, already single variable regulator in the control loop. The 

realization of the above compensation is ensured by the following choices 

 
VA  GA           

VD  GD
1

 (46) 

These relationships explain the introduction of the V-topology since the prescribed 

operations are so simple that they can be performed manually. 

Using the design relationships (46) it can be seen that the V-topology shown here 

corresponds to the following decoupling compensator 

 DV  G1
GDVD  (47) 

 

Figure 6. Block scheme of the decoupler of the U-topology 

The practice of the decoupling tasks inspired the introduction of a very useful 

structure what can be seen in the right side of the Fig. 6 between the variables c and u. 

Let us call this U-topology where U (unity) refers to the channels having unity transfer. 

It is well seen from the comparison with the V-topology that the U-topology can be 

obtained by the choices U11  1 and U22  1 , thus corresponds to VD  I . Let us write 

DU  for this case and substituting VD  I  into DV  we get 

 
DU  DV VDI

 I UA 1
 (48) 

Here it is assumed that, in comply with the notations of (39) and (43), U  I UA . 

After identical rearrangements we get 

 
DU  I UA 1  GD I UA  

1
GD  GD GDUA 1GD  (49) 

Choosing UA  GD
1
GA  the final form of the decoupler becomes 

 
DU  GD GA 1GD  G1

GD  (50) 
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Using the compensator the decoupling is obtained as 

 
GDU  GD GA  GD GA 1GD  GD  (51) 

Compared to the V-topology the effect of the main diagonal elements are still 

missing. It can be easily substituted if a diagonal element VD  is serially connected to 

the compensator DU . This effect is illustrated on the left side of Fig. 6 between the 

variables e  and c . This means at the same time that the relation between the two 

compensators can be simply written as 

 GV  GUVD  G1
GDVD  (52) 

There is the following simple relationship between the V- and U-topology 

 
V  VD VA  VD I VD

1
VA  VD I UA  VDU

 (53) 

what explaines all the above results. 

 

Figure 7. Joint block scheme of the decoupler and the process 

The joint block scheme of the process and the decoupler of the U-topology is 

summarized in the Fig. 7. The cross-effects can be eliminated by the equations 

G12  U21G11  and 
G21  U12G22 , whence the equations 

U12  G21 G22  and 

U21  G12 G11  are obtained for the decoupler. Due to the simplicity this method is 

widely used  in the industrial practice of the decoupling by pairs. 

This structure is beloved in the practical applications because the two inputs (V11  

and 
U21  or 

V22  and 
U12 ) of the summing elements allow to use standard PLC 

elements where the regulators (now 
V11  and 

V22 ) appear together with the feed-

forward elements (now 
U21  and 

U12 ) what is usually the conventional tool of the 

classical solution of the noise compensation.  

Besides the aboves, however, the decoupling can be performed by further simple 

topologies. The unity values of the diagonal elements can be used also for feed-forward 
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structures. This method is used to be called simple or simplified decoupling method [9]. 

The corresponding S-topology of the decoupling block scheme is shown in Fig. 8. 

 

Figure 8. Block scheme of the decoupler of the S-topology 

 

The basic relationship of the model can be written as 

 

u 
u1

u2









 

1 S12

S21 1










c1

c2









  I  SA c

 (54) 

Introduce the following notation for the inverse of the process 

 
G
1  GD GA 1  GD GA  (55) 

Let SA  GAGD
1  be, then 

 
I  SA  I GAGD1  I GAGD1 GDGD1  GD GA GD1  G1

GD
1

 (56) 

 

Using the S-compensator the decoupling becomes 

 GG
1
GD
1  GD

1
 (57) 

Thus the decoupling is fulfilled but there are very complicated transfer functions in 

the diagonals, namely the reciprocals of the main diagonal of G
1

. 

It is worth noting that the decouplers of feedback topology are welcome in sampled 

time applications because the actuator signal can be easily computed and programmed 

using (44) from the following expression 

 
u  VD e VDVAu  VD e VAu  GD1 e GAu 

 (58) 
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4. Decoupling control using YOULA-parametrized MIMO regulators 

The YP-parametrized MIMO regulator, introduced in Section 2, makes also possible 

to solve the decoupling problem. The real advantage of this approach is that it is clearly 

observable whether the decoupling is possible or not. 

According to (17) and choosing 
 Gr  I  and 

 Gn  I , the overall transfer 

characteristic of the closed system obtained by YOULA-parametrization for MIMO 

systems has the form 

  
y  PRr yr  I  PRn yn  yt  yd  (59) 

It is well seen that if the invariant MIMO process factor P  is non-diagonal, then it 

is impossible to apply decoupling regulator. If P  is diagonal or 
 P  I , then choosing 

diagonal Rr  or Rn  [8], [9], the tracking and noise rejection decoupling can be 

performed. If P  is diagonal, then the diagonal inner matrix filters Gr  or Gn  can also 

be applied for the optimal compensation of the invariant factors. In the case of diagonal 

reference models providing decoupling, the design of the main diagonal elements of the 

inner filters is completely the same as in the optimization methods shown for scalar 

(SISO) systems [6].  

5. Decoupling examples 

Example 1. 

Consider a very simple MIMO process, whose TFM is 
  
P s  B s  A s , i.e., 

 

P s 
1

1 s
1

1 2s

0
1

1 4s




















1

1 s  1 2s  1 4s 
1 2s  1 4s  1 s  1 4s 

0 1 s  1 2s 










 (60) 

Choose such reference models what can perform both the speeding up and 

decoupling design goals 

    

Rn s 
1

A n s 
Bn s 

1

1 0.5s 
1 0

0 1









 

1

1 0.5s I
 (61) 

After the calculations of (25) the following regulator is obtained 

 

C s 
1 s
0.5s


1 s  1 4s 
0.5s 1 2s 

0
1 4s
0.5s



















 (62) 

whose elements contain signal forming of PI and PID character. 
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Example 2. 

Investigate now a DT process where the impulse TFM of the process is 

 

G z 

0.5z1

1 0.5z1
0.2z1

1 0.8z1

0
z1  0.5z2

11.7z1  0.2z1


















 (63) 

Apply again the speeding up and decoupling design goals using the following 

reference model 

 

Rn z 

0.8z1

1 0.2z1
0

0
0.9z1

1 0.1z1







2























0.8z1 1 0.1z1 2 0

0 0.9z1 2 1 0.2z1 

















1 0.2z1 1 0.1z1 2
 (64) 

After the calculations given by (25), the impulse TFM of the obtained matrix 

regulator is 

  

C z  C11 z  C12 z 
C21 z  C22 z 









 (65) 

where 

 

  
C11 z 

1.6 1 0.5z1 
1 z1             

C12 z 
0.32 11.7z1  0.2z2 
1 z1 1 0.8z1 

 (66) 

                   
C21 z  0                  

C22 z 
0.81z1 11.7z1  0.2z2 
1 z1 1 0.8z1 1 0.5z1 

 (67) 

All elements of the regulator can be realized what is the consequence of the 

specially chosen reference model TFM. Since all non-trivial elements of Rn  have unity 

gain, therefore the scalar regulators have integrating character (i.e., all elements have 

the pole z 1 ). 

Example 3. 

An aircraft obviously has a very complex dynamics [1], [10], [13], which can be 

described by many state, input and/or output variables. Experts states that the vital 

lateral dynamics, however, can be described by relatively simple models which have 

four state variables and two major input signals. The input variables are the aileron a  
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and the rudder  r . For the small changes a  and r  in the vicinity of a working 

point we can introduce the following input vector 

 
u  a r T  (68) 

so the next state equation well approaches the dynamics [10], [13] 

 

x 

Y  0   1  g

V

L Lp Lr 0

N N p Nr 0

0 1 0 0























x 

0 Yr

La Lr

Na Nr

0 0





















u  Ax  Bu

y  Cx  (69) 

Here A  and B  contain the so-called dimensional derivatives typical for a given 

aircraft. The subscripts a  and  r  refer to the aileron and rudder input, respectively. 

Introduce the following variables: the sideslip angle  , the roll rate p , the yaw rate r  

and the roll angle  . The small changes of the above variables produce the elements of 

the state vector, i.e., 

 
x   p r  T  (70) 

The output variables depend on the selection of the structure of matrix C . The 

following special selection, for example, 

 

C 
0 1 0 0

0 0 0 1











 (71) 

means that the output variables are the roll rate p  and the roll angle  , i.e., for their 

small changes 

 
y  p  T  (72) 

It is an interesting task to design a simple decoupling regulator in order to reach the 

independent regulation of the roll rate and roll angle, or other selected output variables. 

The parameter matrices of the above state equation are available for different types of 

aircrafts in the literature. First choose an aircraft where this model is stable. A possible 

model according to [12] is 

x 

-0.099593 0 -1 0.1056796

-1.700982 -1.184647 0.223908 0

0.407420 -0.056276 -0.188010 0

0 1 0 0



















x 

0

0.531304

0.005685

0

0.740361

0.049766

-0.106592

0



















u 

 Ax  Bu (73) 
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From the eigenvalues -0.0603 0.7555i; -0.0603-0.7555i; -1.3198; -0.0319  

of the matrix A, two is complex conjugate and one is very slow. Let now the output 

variables be the sideslip angle   and the yaw rate r , i.e., 

 
y   r T  (74) 

This task can be solved by the choice 

 

C 
1 0 0 0

0 0 1 0











 (75) 

To the decoupling choose the diagonal reference models 

    

Rn s 
1

A n s 
Bn s 

1

1 0.5s 
1 0

0 1









 

2

s  2
I = Rr

 (76) 

Using (25) we can compute the decoupling regulator as 

   

C s  C11 s  C12 s 
C21 s  C22 s 










 (77) 

where 

  

C11 s 
50.6501 s  2.862  s 1.383  s  0.04035 

s s  3.687  s  3.687   (78) 

  

C12 s 
351.803 s 1.154  s  0.3676  s  0.004883 

s s  3.687  s  3.687   (79) 

  

C21 s 
2.7014 s  3.79  s 1.15  s  0.9645 

s s  3.687  s  3.687   (80) 

  

C22 s 
2.7014 s 14.08  s  0.1335 
s s  3.687  s  3.687   (81) 

It can be checked by simple calculations that the overall characteristic of the closed 

system is 

  

y 

r








 

2

s  2
I
a
r









 

2

s  2
I yn

 (82) 

i.e., the decoupling is realized both for tracking and noise rejection. Each element of 

the MIMO regulator is realizable integrating regulator with third order transfer 

functions. Of course, depending on the feature of the task, different reference models 

can be chosen for Rr  and Rn .  
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On the basis of [13], the state equation of an unstable aircraft can be obtained by 

linearization around the working point 

 

x 

0.05 0.003 0.98 0.2

1.0 0.75 1.0 0

0.3 0.3 0.15 0

0 1 0 0



















x 

0

1.7

0.3

0

0

0.2
0.6
0



















u  Ax  Bu

 (83) 

where the relative gain for the aileron and rudder are g1  1.0  and g2  r a .  

The dynamic model of most of the aircrafts for the above state variables, however, is 

unstable. The YOULA-parametrization based regulators can be applied only for stable 

processes. The solution may the usual two-step method, where first an inner control 

loop is applied to stabilize the system. 

The eigenvalues of the matrix  A  are -0.0035  0.8834i; -0.9821;-0.0391 . The 

two complex conjugate poles and one of the real poles are stable, the other pole is 

unstable. This latter one corresponds to the instability of the so-called spiral dynamics. 

Different types of stabilizing regulators can be applied. The simplest case when the 

stabilization is solved by state feedback. Choose the following design poles: 

-0.0035  0.8834i; -0.9821;-0.0391 , i.e., mirror the unstable pole on the complex 

axis. This pole assigning task can be solved by the following state feedback matrix 

 

K 
0.5606 0.3848 0.5529 0.5071

0.7622 0.2099 1.0143 0.6824











 (84) 

Let the output variables be the sideslip   and roll angle  , i.e., 

 
y    T  (85) 

and the corresponding control matrix is 

 

C 
1 0 0 0

0 0 0 1











 (86) 

Similarly to the previous case the elements of the MIMO regulator are 

  
C11 s 

0.42517 s2  0.5416s  0.6217 
s  (87) 

  
C12 s 

1.2513 s2  0.0332s  0.7768 
s  (88) 

  
C21 s 

3.6139 s  0.8423  s  0.107 
s  (89) 



Vol. 6. No. 5. 2013  Acta Technica Jaurinensis 

20 

  
C22 s 

0.63584 s2 1.395s 1.124 
s  (90) 

Here we got PID regulators in each element of the matrix regulator. The overall 

characteristic of the closed system is 

  

y 










 

2

s  2
I
a
r









 

2

s  2
I yn

 (91) 
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Abstract: The specific relationships between the classical pole-placement state 

feedback, the Riccati equation based LQ paradigm and the Kalman 

frequency domain approach are discussed. It is shown that arbitrary pole 

placement is not possible by standard LQ optimality. A possible solution of 

this anomaly is to use more general LQ criterion with specific weights on 

the state, input and crossterm. 
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1. Introduction 

In the early time of control theory the optimization of transient processes in dynamic 

systems used a quadratic criterion, i.e., the integral square of error 

 I2  e2 t dt
0



  E s E s ds




 
1


E j 2 d

0



 . (1) 

Here e t  is the error signal of a closed-loop control system. The second half of (1) is 

the so-called Parseval theorem [3], [6], using the strictly proper E s , the Laplace 

transform of e t . 
This integral criterion was very popular, because the evaluation of (1) could be 

performed analytically and easily computed even by the early slow computers (by 

preprogrammed formulas). The general theory was called Wiener approach [3] and 

thousands of papers were published for the different optimal designs. The first critics 

came from the industry: the optimal regulators minimizing (1) were not acceptable in 

the practice, because they resulted a very large (20~25 %) overshoot in the step 

response transients. 

One way to overcome this problem was first to introduce a more general quadratic 

integral criterion, penalizing the different state variables as 

   ( )  ∫ [       ̇       ( ( )) ]      (2) 
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which is called generalized quadratic criterion. It is not difficult to show that (2) has an 

equivalent form 

   ( )  ∫ [     ̇       ( )]      (3) 

where  ( )   ̇( )     (   )( )    and co  1xo
2

, xo  x 0 . The 

coefficients of the two forms depend on each other by the Rekasius-Feldbaum equations 

[1], [2] 

 

                                                          

 
         (4) 

From (3) the minimum can be easily seen, if x t  fulfils the differential equation 

    ( )       (   )                  . (5) 

Here the signal x t  is more general than e t , because it can be one of the state 

variables of a linear system. 

2. State feedback (SFB) 

Consider a SISO continuous time linear time invariant (LTI) dynamic plant described 

by the state variable representation (SVR) 

 

      ̇             (6) 

Here u , y  and x  are the input, output and state variables of the controlled process 

and T stands for transposition. The transfer function representation (TFR) of the open-

loop system can be calculated by 

  

P s  B s 
A s   c

T s I  A 1b  cT s b
 (7) 

where I  is the unit matrix, 

   

 s  sI  A 1  L eAt   s 
A s 

 s  adj sI  A 
 (8) 

and 

  ( )                          ( )  (9) 

 

  ( )                           (    ) (10) 

are the numerator and denominator polynomials, respectively. If the feedback is 

restricted to a linear SFB, then the classical solution can be written as 
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u  kr rkT x

 (11) 

where r  is the reference signal, kr  is a calibrating constant and k
T  is the linear SFB 

vector. It is easy to check that the transfer function from the reference signal r  to the 

output y  is [4] 

  

Try s  cT s I  A bkT 1bkr 
kr B s 

A s  kT s b
 (12) 

where kr  is obtained by requiring that the static gain of Try  should be equal to one 

 

kr 
k
T
A
1
b 1

c
T
A
1
b  (13) 

The usual classical design goal is to determine the feedback gain k
T  so that the 

closed-loop system has the characteristic polynomial 

  ( )                        (14) 

The solution formally means equating the characteristic polynomial of the closed-loop 

with the desired polynomial ("pole placement method") 

  
R s  det sI  A bkT  A s  kT s b  A s K s 

 (15) 

to compute k
T . The solution always exists if P s  is controllable. 

If the TFR of the process is known then one can easily form a controllable canonical 

form Ac ,bc ,cc
T  with 

    [       ]                                                    (16) 

and now the feedback gain is obtained from (15) as 

                                        (17) 

because 

   ( )                 (18) 

and 

      ( )                     ( ). (19) 

The calibration factor is calculated by 

 

kr 
an  rn  an 

bn


an

bn  (20) 
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The SVR of the closed-loop system is described by 

 

dx

d t
 A bkT x kr b r  A kr b r

y  cTx  (21) 

It is easy to see from equation (12) that Try s  is now 

  

Try s 
krB s 
R s 

 (22) 

i.e., besides reaching the desired pole-placement the SFB leaves the open-loop zeros 

untouched. 

3. The LQR (Linear system - Quadratic criterion - Regulator) problem 

Not only the bad transient of the error signal obtained from the optimal quadratic 

criterion was the problem, but also the big amplitude jumps necessary to the control 

action. An other way suggested to overcome the combined problem was the 

introduction of a penalty for the energy of the control signal. This optimization was 

formulated by the more general [3], [4] quadratic criterion 

 

I 
1

2
x
T t Wxx t  wuu

2 t 





0



 dt

 (23) 

where x t  is the state vector, u t  is the input of the process, respectively. The 

positive definite Wx  stands for penalizing the variations in the state space, wu  is for 

penalizing the energy of the control action, which is more general than (2). The 

solution, minimizing (23) is again a negative SFB [7] 

 
u t  kLQT x t 

 (24) 

where kLQ
T  is given by 

 

kLQ
T 

1

wu
b
T
P

 (25) 

where the symmetric positive semi definite matrix P  can be obtained from the solution 

of the algebraic Riccati equation [4] 

 

P A AT P 
1

wu
Pbb

T
P  Wx

 (26) 

Analytic solution is not possible, because this equation is nonlinear in P , therefore 

only numeric solution can be obtained by MATLAB
©
 and other CACSD programs. 
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Introducing the orthogonal factorization 

 
Wx  G

T
G

 (27) 

the closed-loop system is stable if the auxiliary process 

 
v  Gx

 (28) 

is observable. 

The characteristic polynomial coefficients are computed now from 

                                  (29) 

Note that this SFB also provides the same Try s  as (22) before. 

A joint use of time domain optimality criteria, prescribed constraints and pole 

locations are often required in practice. Optimal and partially optimal pole placement 

based on optimality criteria (58) was studied in [19], [20], [21] and [22]. It can be 

shown, however, that [20] does not provide solution for the general problem (illustrated 

by the examples later), mainly due to the fact that it uses only the weights Wx , Wu  but 

not the cross term Wux . 

4. The frequency domain solution of the LQR problem 

The LQR approach is widely used for control problems in all over the world, 

however, in a practical problem it is not an easy task to find the best Wx  and wu  

weights, which are usually obtained by trial and error iterative methods. The LQR 

problem has an almost forgotten frequency domain solution, too, which will give us a 

deterministic design process to find useful relationships between the classical pole 

placement SFB solution and the LQR paradigm. It can be shown that the simpler dyadic 

factorization [3] 

                             (30) 

can also be used. The frequency domain condition of the minimum of (23) is called the 

Kalman equation [3] or sometimes it is named frequency domain identity (FDI) 

 
wu 1 k

T s b
2
 wu  g

T s b
2

 (31) 

Assuming unity weight wu  1  the equation becomes even simpler 

 
1 kT s b

2
 1 gT s b

2

2
 1 gT s b

2

 (32) 

Using the well known relationship of complex functions 

 
Z s  2  Z s 2  Z s Z s 

 (33) 

and introducing the (n-1)-th order polynomial G(s) as the numerator of 

  ( )     ( )   ( ) ( )                    ( )  (34) 
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the equation (32) can be rearranged into a new form 

   ( )     ( )  ⏟             ( )   (  )     (  )  ⏟               (  )   ( ) (  )      ( )  ⏟       ( )     (  )  ⏟         (  )   

  (35) 

which provides the quadratic polynomial solution of the Kalman equation. Thus the 

final quadratic equation, ensuring relationship between the process 
 
A s , design 

 
R s  

and weighting 
 
G s  polynomials, is 

  
R s R s  A s A s G s G s 

          
R s 2  A s 2  G s 2

 (36) 

or in the general form 

  
wu R s 2  wu A s 2  G s 2

 (37) 

Observe that the solution tends to 
 
R s  A s  if Wu   and gTx  0  if wu  0 . 

Do not forget that 
 
K s  and 

 
G s  are of n 1 -th order [8]. 

5. Some anomalies in the LQR problem 

The solution of the polynomial equation can be a direct coefficient comparison or a 

spectral factorization approach [5]. Consider some examples in the sequel. 

 

Example 1 

Consider a first order example with 

  
A s  s  a1         

R s  s  r1         
G s  g1  (38) 

The two sides of (35) are 

 
s2  r1s  r1s  r1

2  s2  a1s  a1s  a1
2  g1

2

 (39) 

and the solution is 

 
r1
2  a1

2  g1
2  0

 (40) 

and 

 
k1  r1  a1  a1

2  g1
2  a1  0  (41) 

If we want to ensure (place) a required pole then the necessary weight in the LQR 

problem is 

 
g1  r1

2  a1
2

 (42) 

It is easy to see that only such r1  can be placed, which fulfills the condition 

 
r1
2  a1

2  r1  a1  r1  a1  (43) 
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for stable design polynomial R(s). So this example shows that only a faster pole can be 

placed by the LQR optimization comparing to the original process pole. 

 

Example 2 

Consider a second order example with 

  
A s  s2  a1s  a2       

R s  s2  r1s  r2         
G s  g1s  g2  (44) 

The two sides of (35) are now 

 

 
s2  r1s  r2 s2  r1s  r2  s2  a1s  a2 s2  a1s  a2  g1s  g2  g1s  g2 

 (45) 

and the solutions are 

 
r2  a2

2  g2
2  a2  (46) 

 

 

r1  2 a2
2  g2

2  a2  a1
2  g1

2  2 r2  a2  a1
2  g1

2  a1  0
 (47) 

The SFB to be applied is given by 

 
k1  r1  a1  0     

k2  r2  a2  0  (48) 

For pole placement the necessary LQR weights are 

 
g2  r2

2  a2
2

 (49) 

and 

 
g1  r2

2  a1
2  2 r2  a2  2 r

2  a
2 

 (50) 

where 

 
r
2 

r1
2  2r2

2


s1
r 2  s2

r 2
2  (51) 

and 

 
a
2 

a1
2  2a2

2


s1
a 2  s2

a 2
2  (52) 

It is easy to see that there are such r1 ,r2  domains, which can not be reached by any 

g1 ,g2  selection. These conditions are 

 
r2
2  a2

2  r2  a2  r2  a2  (53) 
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and 

 
r2 

r1
2

2
 2a

2 
r1
2

2
 a1

2  2a2 
 (54) 

 
Figure 1. Unreachable design parameter domains 

These conditions are graphically demonstrated on Fig.1, where the shaded area shows 

the unreachable design parameters for the case of open-loop process parameters 

a2  0.8  and 2a
2  0.5 . 

One can check these results either via the solution of the Riccati equation (very time 

consuming method) or by the spectral factorization approach 

  
R s R s  A s A s G s G s  


A s A s G s G s  



 (55) 

as the solution of (36), i.e., by 

  
R s  A s A s G s G s  



 (56) 

6. Solutions for LQ-pole placement 

We can not explain the above anomalies physically and provide unique solutions, 

however, offer some applicable solutions. Therefore it is necessary to discuss first the 

original MIMO LQR problem. 

 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

฀

r2

฀

r1

฀

a2  0.8

฀

2a
2  0.5



Acta Technica Jaurinensis  Vol. 6. No. 5. 2013 

29 

Infinite-horizon, continuous-time LQ Regulator (LQR) 

For a continuous-time MIMO linear system described by 

 

 

      ̇        ( )     (57) 

with a LQ cost functional (performance index) defined as 

 

J(x0 ,u) =
1

2
x
T
Wxx  u

T
Wuu 

0



 dt

 (58) 

with Wx  0  and Wu > 0 , the stabilizing feedback control law that minimizes the value 

of the cost is 

 
u = Kx

 (59) 

where K  is given by 

 
K = Wu

1
B
T
P

 (60) 

and P = PT > 0  is the solution of the continuous time algebraic Riccati equation 

 
A
T
P  PA  PBWu

1
B
T
P Wx = 0  (61) 

It is possible to construct an even more general LQR performance index, which 

penalizes the interaction of the state and control variables, too: 

 

J(x0 ,u) =
1

2
x
T
Wxx  2u

T
Wuxx  u

T
Wuu 

0



 dt

      Wx  0      
Wu > 0  (62) 

where the stabilizing feedback control law that minimizes the value of the cost is again 

 
u = Kx

 

but here K  is given by 

 
K = Wu

1
Wux  B

T
P 

 (63) 

and P = PT > 0  is now the solution of a more complex algebraic Riccati equation 

 
PA ATP  PBWux

T Wu1 Wux  BTP Wx = 0
 (64) 

These results are standard facts of the LQR theory. For the sake of completeness a 

sketch of the proof for the sufficiency is given as follows: assume that Wux > 0 , 

Wx  0 , Wux  are given. Then it will be shown that (62) is minimized by K  in (60). 

The Riccati equation can be rewritten as 

 
PA  ATP  KWu

1
K Wx = 0  (65) 
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Pre- and post-multiplying by xT  and x , respectively and substituting     ̇    , it 

follows: 

    ( ̇    )  ( ̇    )                    

Using WuK = B
T
P Wux  and 

   (    )   ̇        ̇, one arrives at 

 

x
T
Wxx  2u

T
Wuxx  u

T
Wuu = 

d

d t
x
T
Px  u  Kx TWu u  Kx 

 
and by integration 

 

J x0 ,u = 1
2
x
T t0 Pt0

x t0 
1

2
u  Kx TWu u  Kx 

t0



 d t

 

is obtained. Obviously Jmin x0 = 1
2
x
T t0 Pt0

x t0  if u = Kx . 

Inverse optimality for LQR performance  

Given a stabilizing feedback u = Kx  for (57) one can formulate the problem whether 

there exists an LQR problem of the form (58) or (62) that has the given feedback as a 

solution, i.e., the feedback is optimal. If the pair A,B  is controllable, then for any 

given spectrum   there is a feedback gain K  such that  A BK =  . 

Concerning the pole-placement problem one can state that a spectrum   is LQ optimal 

if there is an associated K  such that it is a solution of the RICCATI equation with a 

Wx  0 . 

It turns out that the problem associated to the performance index (58) is nontrivial 

while the general case, corresponding to (62) can be always solved. 

 

The MIMO KALMAN-FDI 

In frequency domain the solution of the problem leads to the so called return 

difference condition. Its single input formulation is due to Kalman and was later 

extended by Anderson and Moore [9]. 

Specifically, K  is optimal for Wx =Wx
T  0  and Wu =Wu

T > 0  if and only if 

A BK  is stable and there exists an Wu =Wu
T > 0  that satisfies the return difference 

inequality: 

 
I  HLQ s  

T
Wu I  HLQ s   Wu  (66) 

for all s = j ,     or equivalently the Kalman-FDI is also satisfied: 

 
I  HLQ s  

T
Wu I  HLQ s   =Wu  H s H s 

 (67) 

where 

 
HLQ s = K(sI  A)1B

     
H s =G sI  A 1B

     Wx  G
T
G  (68) 
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Choosing Wu = wuI , wu > 0  one has: 

Proposition 1 Consider (58), then the static state feedback gain K  is optimal for 

some Wx > 0 , Wu > 0  if and only if 

 
Rei A BK < 0

  
 i

 

 
i I K(i A)1B >1

  
 i

 
 

 

where  i  denotes the singular values. For SISO systems the Kalman-FDI becomes: 

 

 
wu 1 HLQ s   1 HLQ s   = wu  H s H s 

 (69) 

where   ( )   ( ) ( ) and 

  

HLQ s = kT sI  A 1 b kT s b  k
T s b
A s 

. 

Denoting the closed loop characteristic align by
 
R s , 

 

  
R s = det sI  A bkT  det sI  A det 1 kT sI  A 1b



  

 

leading to 

  
R s = A s  1 HLQ s    

 

if wu  1  is chosen. From the Kalman-FDI one obtains: 

 

  

wu
R s R s 
A s A s   wu 

G s G s 
A s A s             

R s R s 
A s A s  =1wu

1 G s G s 
A s A s   (70) 

which corrresponds to (36). We now give a simple test for a given state feedback gain k 

to decide if it can be an LQ optimal gain. 

Proposition 2 Assume that with u = kTx  the closed loop is stable. Then k is optimal 

for some Wx  0 , and wu > 0  if and only if 

 

  

R i 
A i   1 

 (71) 

Proof. If k is LQ optimal, then the closed loop is stable and from the Kalman-FDI 

follows that 1 HLQ  1  and (71) is satisfied. On the contrary, if k is stabilizing and 

(71) is satisfied, one can find a Wx  0  and wu > 0  such that the Kalman-FDI is 
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satisfied, too, i.e., k is LQ optimal with this Wx  and wu .  

Example 3 

Let the system be given as 

 x  2x  u  
 

i.e., A = A  a = 2 , B= B  b =1. The open loop (plant) transfer function is 

 

P(s) =
1

s  2
=

b1

s  a1      
A s = s  a1  

Applying state feedback u = k x , allocate the pole to p1  r1 = 1 , i.e. 
 
R s  s  r1 . 

This will be performed by k =1 and the closed loop system will be 

 x = 1x  u  

i.e., 

  
R s = s  r1 = s 1

 

Plotting the Bode diagram for 

  

R i 
A i  

1

2

1 i
1 i 2

 

one can deduce that this is below the 0  dB for small frequencies and asymptotically 

approaches 0  dB if  . This shows that this k cannot be optimal for the LQR 

performance index (58). 

It is seen that using static state feedback, it is not possible to "slow down" the system 

since r1 > a1  has to be satisfied for LQ optimality. 

Time domain conditions 

In time domain inverse optimality of the feedback gain can be described through the 

concept of passivity. 

For a LTI system passivity, equivalent in this case to the positive realness, is assured 

in accordance with the following lemma, often termed as the KALMAN-YACUBOVICH-

POPOV lemma: 

Lemma 1 A stable system (57) is passive, if and only if, there exists a matrix 

P = PT > 0  such that 

 

 

PA ATP = Wx  0

PB = CT  (72) 

with  CR
mn  a suitable output matrix for system (61). Then, inverse optimality is 

given by the following result: 

Proposition 3 A stable feedback gain-matrix K  is optimal for a given input weighting 

matrix Wu > 0  and some state weighting matrix Wx  0 , i.e., it minimizes a 

performance index of the form of (58), if and only if, the closed-loop system with gain-
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matrix 

 
K =

1

2
K

 (73) 

is passive for an output matrix C = WuK . 

 

Inverse optimality for LQR performance (67) 

Including the cross term Wux  in the LQR performance index makes the problem 

trivial. For a stabilizing state feedback K one can find the extended matrix W (see (75)) 

such, that K is LQ optimal according to the performance (62). The procedure of deriving 

such weighting matrices, however, is neither trivial, nor unique. We show one possible 

solution that follows the procedure in [12]. 

It is obvious, that for any Wu > 0  the stabilizing feedback u = Kx  is optimal for 

the performance index: 

 

J(x0 ,u) =
1

2
u  Kx TWu u  Kx 

0



 d t

 (74) 

i.e., Wx = K
T
WuK  0  and Wux = WuK  in (58). Observe that this corresponds to the 

solution P = 0  of the Riccati equation. 

A more standard solution is given by the following result: 

 

Proposition 4 For a given stabilizing feedback K  there exists a feedback law 

u = Kx  and an extended matrix 

 

W 
Wx Wux

Wux
T

Wu









 > 0

 (75) 

such that 

 

[xTuT]
Wx Wux

Wux
T

Wu










x

u










0



 dt min
KKstab

 (76) 

if 

 

Wu >
B
T
P

2 P A BK 
 (77) 

where P = PT > 0  satisfies the Lyapunov equation 

 
P A BK  A BK T P < 0

 (78) 
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Then 

 
Wx = P(A  BK)  (A  BK)

T
P  KTWuK  KTBTP  PBK

 (79) 

 Wux = (B
T
P WuK)  (80) 

 

Example 4 

Consider the Example 3 again. Let 

 x = 2x  u  

and apply the state feedback k =1. The closed loop system x = 1x  u  becomes 

stable and "slower". It can be shown that this k =1 is optimal for the LQR performance 

index 

 

5x2  4xu  u2 
0



 d t

 (81) 

Indeed, using the Riccati-equation with 

 A  A = a = 2       B B=b =1      
Wx Wx = wx = 5  

 
Wux  Wux  wux = 2     

Wu  Wu  wu =1 

and 

 
4p2  p  2 2  5 = 0

 

and choosing the positive solution p =1 , the state feedback is given by 

 
k = wu

1 bp wux =  1 2 =1
 

and the closed loop matrix A A = a = a bk  21= 1 as required, i.e., 

p1  r1  1 . So the closed-loop is slower- 

This result was obtained by using the method in Proposition 4. Pick any p > 0  such 

that it is a solution of the Lyapunov equation 2p a  bk < 0 . Since a = abk =1  

and 2p 1 < 0  for all p > 0 , one can choose p =1  and compute 

 

wu,min =
bp 2
2p a

=
1

2
 

Choose any wu > wu,min , e.g., let wu =1 , then wx = 2 1 2 = 5  and 

wux = (11) = 2 . Notice that this solution is not unique, any Wu  wu  1 

would do, e.g., wu = 2  results in wx =10 , wux = 4 . 
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7. Conclusions 

The paper presents the specific historical comparison of the relationships between the 

classical quadratic integral criterion, the pole-placement state feedback, the algebraic 

Riccati equation based LQR paradigm and Kalman's frequency domain approach.  

Then two low order examples are shown how the obtained quadratic polynomial 

equation can be used. It is shown that arbitrary pole placement is not possible by 

standard classical LQ optimality by choosing only Wx , Wu  weights. For a second order 

case the unreachable domains are graphically demonstrated. 

The MIMO LTI case is discussed next with more general LQR criterion which 

penalizes the interaction between the state and input variables. In this framework it is 

possible to obtain LQR solutions for the whole parameter space, but the design of the 

crossterm weight Wux  is necessary, too. The uniqueness of the proposed solution is not 

guaranteed. 

Acknowledgement 

This work was supported in part by the Control Engineering Research Group of the 

HAS, at the Budapest University of Technology and Economics and by the project 

TAMOP 4.2.2.A-11/1/KONV-2012-2012, at the Széchenyi University of Győr. 

References 

[1] Rekasius, Z.V.: A general performance index for analytica of control systems, 

IRE Transactions on Automatic Control, p. 217, 1960 

[2] Feldbaum, A.A.: Theoretical foundations of automatic systems (in Russian), State 

Publishing House in Physics and Mathematics, Moscow, 1960 

[3] Csáki, F.: State-space methods for control systems, Akadémiai Kiadó, Budapest, 
1978 

[4] Kailath, T.: Linear systems, Prentice Hall, 1980 

[5] Grimble, M.J., Kucera, V.: Polynomial methods for control systems design, 

Springer, Berlin, 1996 

[6] Åström, K.J.: Control system design, Lecture Notes, University of California, 

Santa Barbara, 2002 

[7] Bányász, Cs., Keviczky, L.: State-feedback solutions via transfer function 

representations, Journal of Systems Science, vol. 30, no. 2, pp. 21-34, 2004 

[8] Keviczky, L., Bányász, Cs.: Model error properties of observer-based state-

feedback controller, 6. Int. Conf. System identification and control problems 

SICPRO'07, Moscow, Russia, pp. 879-888, 2007 

[9] Anderson, B.D.O., Moore, J.B.: Optimal control, Linear Quadratic Methods, 

Prentice-Hall, 1989 

[10] Casti, J.: The linear-quadratic control problem: some recent results and 

outstanding problems, SIAM Review, vol. 22, no. 4, pp. 459-485, 1980 

 

 

 



Vol. 6. No. 5. 2013  Acta Technica Jaurinensis 

36 

[11] Cigler, J., Kucera, V.: Pole-by-Pole shifting via a linear-quadratic regulation, 

17th Int. Conf. on Process Control, Strbske Pleso, Slovakia, pp. 1-9, 2009 

[12] Gattami, A., Rantzer, A.: Linear quadratic performance criteria for cascade 

control, Conf. on Decision and Control and European Control Conference CDC-

ECC'05, pp. 3632-3637, 2005 

[13] Jameson, A.: Inverse problem of linear optimal control, SIAM Journal on 

Control. vol. 11, no. 1, pp. 1-19, 1973 

[14] Medanic, J., Tharp, H.S., Perkins, W.R.: Pole placement by performance criterion 

modification, IEEE Trans. on Aut. Control, vol. 33, no. 5, pp. 469-472, 1988 

[15] Mehdi, D.,  Hamid, Al M., Perrin, F.: Robustness and optimality of linear 

quadratic controller for uncertain systems, Automatica, vol. 32, no. 7, pp. 1081-

1083, 1996 

[16] Molinari, B.: The stable regulator problem and its inverse, IEEE Trans. on Aut. 

Control, vol. 18, no. 5, pp. 454-459, 1973 

[17] Willems, J.: Least squares stationary optimal control and the algebraic Riccati 

equation, IEEE Trans. on Aut. Control, vol. 16, no. 6, pp. 621-634, 2003 

[18] Yao, D., Zhang, S., Zhou, X.: LQ control via semi-definite programming, 38th 

IEEE Conference on Decision and Control CDC99, pp. 1027-1032, 1999 

[19] Sugimoto, K.: Partial pole placement by LQ regulators: an inverse problem 

approach, IEEE Trans. on Aut. Control, vol. 43, no. 5, pp. 706-708, 1998 

[20] Alexandridis, A.T., Galanos, G.D.: Optimal pole-placement for linear multi-input 

controllable systems, IEEE Trans. Circuits Syst., vol. CAS-34, pp. 1602-1604, 

1987 

[21] Alexandridis, A.T.: Algorithm for the design of state feedback controllers by 

optimal eigenstructure assignment, Proc. ECC European Control Conference, vol. 

4b, pp. 3365-3369, 1995 

[22] Iracleous, D.P., Alexandridis, A.T.: A simple solution to the optimal eigenvalue 

assignment problem, IEEE Trans. on Aut. Control, vol. 44, no. 10, pp. 1746–
1749, 1999 



Acta Technica Jaurinensis  Vol. 6. No. 5. 2013 

37 

Plug and Play Design in the Electric Vehicle 

Systems 

P. Gáspár, L. Keviczky, Z. Szabó 

Széchenyi István University, Győr  

MTA SZTAKI, Systems and Control Laboratory  

Kende u, 13-17, Budapest, Hungary  

Phone: +36 1 279 6171 

e-mail: szaboz@sztaki.hu 

Abstract: The plug and play concept focuses on the design of complex control 

systems with multiple functional building blocks. Each of the blocks 

fulfills certain specifications, is designed separately and might be delivered 

by different vendors. Concerning vehicle systems complexity is handled in 

the integrated design framework built around a supervisory architecture. 

This paper investigates the possibilities of the plug and play design built in 

the supervisory integrated control. The supervisory control makes decisions 

about the necessary interventions, guarantees coordination between 

components and meets performance specifications. The well-defined 

interfaces provide that the decisions are propagated between the supervisor 

and the local components. Therefore the interfaces between components 

have crucial roles. The concept of the plug and play design is presented and 

several design methods based on the weighting strategy in the closed-loop 

interconnection structure are proposed. 

Keywords: electric vehicle, plug and play, robust control, qLPV design 

1. Introduction  

The demand for the integrated vehicle control methodologies including the driver, 

the vehicle and the road arises at several research centers and automotive suppliers, see, 

e.g., [6], [16]. The purpose of the integrated control is to combine and supervise all 

controllable subsystems affecting vehicle dynamic responses. In more details it means 

that multiple-objective performances from available actuators must be improved, 

sensors must be used in several control tasks, the number of independent control 

systems must be reduced and at the same time the flexibility of control systems must be 

enhanced, see e.g. [2], [4], [9]. 

A possible approach to the integrated control may be to set the design problem for 

the entire vehicle and include all the performance demands in a single specification. In 

the framework of available design techniques the formulation and successful solution of 

complex multi-objective control tasks are highly nontrivial. In the integration of various 
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control components, which operate only in some limited part of the overall operating 

regime of the plant, the multiple model approach is proposed. 

Another approach to the integrated control is the supervisory decentralized control 

structure where the components are designed independently, see, e.g., [5], [15]. The role 

of the supervisor in the integrated control is to guarantee the coordination of the local 

controllers in order to meet global performance specifications, guarantee priority 

between controllers and reduce conflicts between them. The concepts of an agent and a 

multi-agent system is proposed by [12]. Conflicts between agents, which naturally arise 

in such systems due to the dependencies between the partial problems the agents solve, 

are handled by supervisory activities by adequately coordinating the agents. 

The integrated control creates the possibility of the plug and play design, which is 

important in the industrial applications. In [11] the plug and play control concept is 

presented and a number of problems and solutions are proposed for the industrial 

requirements. In [13] a hierarchical control architecture applied to several complex 

dynamic systems is presented. 

In this paper the concept of the plug and play design in connection with the 

integrated supervisory control is presented for vehicle systems. In the design of the 

integrated control the LPV (Linear Parameter Varying) methods play an important role. 

LPV methods are well elaborated and successfully applied to various industrial 

problems. Moreover, in LPV methods both performance specifications and model 

uncertainties are taken into consideration. 

2. Concept of the supervisory integrated control 

2.1. Architecture of the integrated control 

The integrated control proposed in the paper is based on a supervisory decentralized 

control structure, which is illustrated in Figure 1. The supervisor is a high-level 

controller which is able to handle the effects of individual control components on 

vehicle dynamics. The advantage of this solution is that the components with their 

sensors and actuators can be designed by the suppliers independently.  

The supervisor has information about the current operational mode of the vehicle, 

i.e., the various vehicle maneuvers or the different fault operations gathered from 

monitoring components. In addition it is able to make decisions about the necessary 

interventions into the vehicle components. The communication between the supervisor 

and the local control components is performed by using a CAN bus and a well-defined 

interface. 

A local controller must meet the predefined performance specifications based on the 

measured signals. The main point of the proposed approach is that in the control design 

of the local components scheduling variables received from the supervisor are used as a 

key of the integration. The controller is able to modify or reconfigure its normal 

operations in order to focus on other performances instead of the actual performances. It 

is often able to detect different faults and can adapt to the dynamic properties of the 

faulty plant or changes in the environment. In this way the operation of a local 

controller can be extended to reconfigurable and fault-tolerant functions. 
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Figure 1. The supervisory decentralized architecture of integrated control  

The solution of the problem is that the performance specifications are formalized in 

a parameter-dependent way in which this parameter depends on the monitoring and fault 

information. Moreover, the local controller sends messages about the changes to the 

supervisor and it receives messages from the supervisor about the special requirements. 

The local controllers often have a hierarchical structure, in which the high-level 

controller is distinguished from the low-level actuator. 

2.2. LPV control of vehicle systems 

In the decentralized architecture the signals are propagated between the supervisor 

and the local components through a well-defined encoded interface. This interface uses 

the monitoring signals as scheduling variables of the individual LPV controllers 

introduced to distinguish the performances that correspond to different operational 

modes. The advantage of this architecture is that local LPV controllers are designed 

independently provided that the monitoring signals are taken into consideration in the 

formalization of their performance specifications. 

The design of a local controller is based on the standard closed-loop interconnection 

structure of the model     , the compensator, and elements associated with the 

uncertainty models and performance objectives. A typical interconnection structure is 

shown in Figure 1.  
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Figure 2. The closed-loop interconnection structure  

In this framework performance requirements   are imposed by a suitable choice of 

the weighting functions   . Usually the purpose of weighting functions    is to define 

penalty functions, i.e., weights should be large where small signals are desired and 

small where large performance outputs can be tolerated. The proposed approach realizes 

the reconfiguration of the performance objectives by an appropriate scheduling of these 

weighting functions. The values of the monitoring signals are usually built into the 

weighting functions applied for performance requirements. 

In the augmented plant the uncertainties, such as unmodelled dynamics and 

parameter uncertainty, are represented by a weighting function    and a block   . The 

transfer function    is assumed to be stable and unknown with the norm condition, ‖  ‖   . It is assumed that the transfer function    is known, and it reflects the size 

of the uncertainty in the model. The purpose of the weighting functions    and    is to 

reflect the disturbance and sensor noises. 

Finally, the control problem can be formulated in the general       structure, 

where   is the generalized plant and   contains both the uncertainties and the 

scheduling variables, see Figure 2.  

 

Figure 3: The       structure  
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  In the design of local controllers the quadratic LPV performance problem is to 

choose the parameter-varying controller in such a way that the resulting closed-loop 

system is quadratically stable and the induced    norm from the disturbance and the 

performances is less than the value  . The minimization task is the following:  

            ‖ ‖        ‖ ‖ ‖ ‖   (1) 

The existence of a controller that solves the quadratic LPV  -performance problem 

can be expressed as the feasibility of a set of Linear Matrix Inequalities (LMIs), which 

can be solved numerically. Stability and performance are guaranteed by the design 

procedure, for details see [1], [10]. 

3. Plug and play design 

3.1. Motivation of the plug and play design 

In the decentralized supervisory control the concept of the plug and play method 

plays and important role. If a new control component is added, an old control is 

replaced by a new one, or an old component is removed, the structure of the system (or 

the control) changes. In these cases the conventional control should be redesigned, 

which is expensive and takes a long time. This is often not acceptable due to the cost 

associated with the control design procedure. In the supervisory control concept the 

supervisory logic must be modified on the highest level. The ultimate goal is to provide 

a design method for a plug and play control architecture, i.e., the possibility to use 

sensors and actuators provided by different vendors interchangeably on a core system 

by guaranteeing a performance level and leaving the global controller intact. 

If a new component is added or an old one is replaced by a new one, the dynamics of 

the entire system may change. A possible way to model the effects of the different 

components is by using a monitoring signal with its operation range. Then controllers 

are designed at selected operation points within the range, and finally a family of 

controllers are implemented as a single controller. As a consequence, during the 

operation of the system the monitoring signal is used in order to select the appropriate 

control and adapt to the current operating conditions. 

A possible solution of the plug and play design is to apply a set of controllers and 

the selection of the appropriate control is based on a switching method and monitoring 

signals. The operation range is divided into several grid points. Then controllers are 

designed for all the grid points and a finite set of controllers is constructed. The 

advantage of the solution is that the local controllers are always able to adapt to the new 

situations by using the monitoring signals. 

The vehicle, however, has a large number of monitoring signals, which must be 

taken into consideration during the operation. There are a few examples. The changes of 

the adhesion coefficient influence road stability, it may also cause a   split problem. 

The saturation of an actuator may cause the unstable operation of a control system. The 

performance degradation of an actuator leads to insufficient control actions. The fault 

operation of a sensor may result in the fault intervention of an actuator. As the number 

of the monitoring signals increases the number of controllers significantly increases. 
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The solution for the plug and play method proposed in the paper is based on a high-

level supervisory control. It is a complex control, which includes monitoring 

components as additional scheduling variables. It leads to a special LPV structure, since 

some of the scheduling variables are constant during the operation. For example the fact 

of an actuator fault, the mass of the vehicle, the height of center of gravity or the 

actuator dynamics are fixed, thus scheduling variables must be selected constant during 

the operation. 

In what follows this principle is illustrated for the vehicle dynamics example 

considered in the paper. Each of the actuators and sensors is listed and the weighting 

policy is presented. 

3.2. Actuators  

Bound limiter 

The intervention of an actuator is related to its construction and operation limits. The 

construction limit must be taken into consideration all the time, e.g. the value of front-

wheel steering must not exceed its upper bound     . Brake control also has an 

operation limit       , which is related to the adhesion factor. The skidding is 

monitored by the estimation of the longitudinal slips  . 

In order to avoid reaching the steering limit, differential braking and the wheel 

camber angle must be increased. In order to avoid the skidding of tires, the value of 

differential braking must be reduced and other control inputs must be increased. Due to 

the redundancy of the action of different actuators for the same vehicle dynamics the 

integrated control framework makes it possible to handle this problem by 

reconfiguration. 

Rate limiter 

Usually, in the control design the control input of the actuators is assumed to be 

arbitrarily fast. However, if the bandwidth of the actuators or the signals is disregarded, 

the control signal does not meet the industrial requirements. Thus, the rate bound on the 

control input must be estimated and taken into consideration in the control design. In the 

design a gain is used as a scheduling variable in the weighting function which is applied 

for the control input. Then a rate bound on the scheduling variable is applied. In the 

LPV framework the solution leads to the application of the parameter dependent 

Lyapunov function (PDLF), see [14]. 

Balance between actuators 

The actuator selection depends on several factors such as construction limits, energy 

requirement and the actuator dynamics. The maximal control input of the steering is 

determined by their physical construction limits, while in the case of the braking system 

the constraints are the tire-road adhesion conditions. It is necessary to avoid the 

skidding of tires, thus in such a case the generation of differential braking must be 

reduced. The skidding of tires can be monitored by the estimation of the longitudinal 

slips of the tires  . These constraints must also be taken into consideration in the control 

design and must be guaranteed by the supervisor. 
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Moreover, the activation of the different components have an energy requirement. 

By using differential braking the velocity of the vehicle is reduced, which must be 

compensated for by the driveline with additional energy. Therefore the use of 

differential braking must be avoided during acceleration and front-wheel steering is 

preferred. During deceleration the brake is already being used, thus the lateral dynamics 

is handled by the braking for practical reasons. Thus differential braking is preferred, 

but close to the limit of skidding, front-wheel steering must also be generated. 

According to the inertia of steering, the bandwidths of steering is lower than the 

bandwidth of differential braking. The fast operation of actuators is an important feature 

mainly at high velocities. At higher velocities it is recommended to use differential 

braking, while at lower velocities steering actuation is preferred for practical reasons. 

The weighting functions for the front wheel steering, brake yaw-moment and 

suspension moment are selected in the following form:  

                (2) 

                     (3) 

 respectively, where      and      are determined by the constructional maximum 

of the steering and the camber angle, while        is the maximum of the brake yaw-

moment. Weighting factors        are chosen to influence the priority of the actuators. 

Figure 4 shows the characteristics of the weighting factors.  

 

a. Parameter     

 

b. Parameter     

Figure  4: Selection of parameters     and     
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When the vehicle is being driven the front wheel steering is actuated, which is 

determined by factor    , see Figure 4(a). The value is reduced between    and   , 

which represents the constructional criterion of the steering system. When the brakes 

are being applied the tire longitudinal slip angle affects factor    , see Figure 4(b). In 

this interval differential braking is preferred for practical reasons. It requires an interval 

to reduce tire skidding and it also requires an interval to prevent chattering between 

steering and differential braking. Therefore four parameters are designed:    and    are 

used to prevent chattering between steering and braking and    and    are applied to 

prevent the skidding of tires. The weights also depend on the velocity of the vehicle. 

The effect of the velocity on the weighting factors is the consequence of the interaction 

between the bandwidth values of the actuators. 

3.3. Sensors  

The monitoring parameters are critical in the operation of the supervisor, thus in the 

cooperation of the local control systems. The more signals are used in the control of the 

entire vehicle the more accurately and safety the control systems can operate. In the 

following a few important monitoring signals are listed. 

Tracking error 

In the control design the purpose is to handle the tracking problem. In trajectory 

tracking the reference signal is the yaw rate defined by the steering angle of the driver  ̇   , while the actual yaw rate is a measured signal  ̇. The performance signal is the 

tracking error, which is the difference between the actual yaw rate and the yaw rate 

command. The weighting function of the tracking error is selected as:  

      ̇                  (4) 

 where     are time constants. Here, it is required that the steady state value of the 

tracking error should be below      in steady-state. 

Roll dynamics 

In order to reduce the chassis roll angle, the dynamic displacement of the height of 

the roll center      is reduced. In this solution a signal      is introduced and applied as 

a reference signal for the tracking task:              , in which    is calculated 

from the measured   according to the suspension geometry. 

When the roll angle   increases significantly, the variable-geometry suspension 

control must minimize the roll angle. This configuration is achieved by the selection              . Note that it is possible to achieve vehicle maneuvers in which there is 

a balance between two performances, i.e., the reduction of the half-track change and 

that of the roll angle. In these configurations      is selected in an interval                 . When the suspension system must focus on the trajectory tracking, i.e., in 

emergency maneuvers, the scheduling variable         is selected, and the safety 

factor overrides the other performances. The selection of the variables      is the 

following:         if     ,                                     if        , otherwise              . where   ,    are design parameters. Note 



Acta Technica Jaurinensis  Vol. 6. No. 5. 2013 

45 

that      is also a supervisory variable, since in an emergency it is modified by the set 

of the scheduling variable        . 

FDI sensors  

The fault-tolerant control requires fault information in order to guarantee 

performances and modify its operation. At the level of local control design the 

reconfiguration is achieved by scheduling the performance weights by a signal    

related to the fault information and provided by a fault decision block. As a simple 

example, one might consider             , where      is an estimation of the failure 

(output of the FDI filter) and      is an estimation of the maximum value of the 

potential failure (fatal error). The value of a possible fault is normalized into the interval         . The estimated value      represents the rate of the performance degradation 

of an active components. 

The operation of the fault-tolerant control is based on two factors: the failure or 

performance degradation has already been detected and the fault information    and the 

necessary intervention possibilities are built into its control design. Instead of a 

switching type controller reconfiguration the control structure changes due to a 

reconfiguration of the performance goal achieved by a scheduling of the performance 

weights. In order to achieve that, the signals of various fault scenarios provided by FDI 

filters are built in the performance specifications of the controller. 

For example when performance degradation occurs in the operation of a brake 

circuit the brake yaw moment must be substituted for by using the steering and 

suspension to provide trajectory tracking. In addition, the effect of the degradation of 

the brake yaw moment is asymmetric. For example, in the case of a left-hand-side brake 

circuit fault in the rear the brake is not able to turn the vehicle anti-clockwise, therefore 

positive     is not allowed, i.e.,      . However, if       then      . 

Consequently, if there is one fault in the brake system the weight of braking     

depends on the sign of the desired brake yaw moment     and a gain     . In the 

realization of the gain     , either         or          must be set. The modification of     

is based on the sign of the desired brake yaw moment and the parameters     , i.e.,                , where      is the scheduling parameter. 

3.4. Uncertainties  

In order to cope with the complexity problem integrated control design has already 

reduced the design task to subsystems and individual components. These elements are 

joined together by a correctly defined interface. This interface connects high level 

(virtual) signals to actuators and sensors. If a plug and play setting is considered on the 

connecting points the presence of an uncertainty, usually unmodelled dynamics, should 

be considered. 

The properties of the assumed uncertainty set depend on the diversity of the possible 

devices that are allowed to be used for a given component. Thus, the specific task for 

the plug and play design is to specify these uncertainties by setting suitable weights at 

the given points. These uncertainty models are usually more complex those used in a 

baseline integrated control design. 
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The uncertainties of the model are caused by neglected components, unknown or 

little known parameters. The uncertainties are modelled by both unmodelled dynamics 

and parametric uncertainties. The estimation of the uncertain interval around its nominal 

value is important in the control design. If the uncertain interval is selected too large, 

the designed controller will be conservative. The unmodelled dynamics can be reduced 

by using a more accurate estimation of a component in the model. For example, if 

parametric uncertainties of mechanical components are known, the uncertainties for 

unmodelled dynamics can also be reduced. 

As an example, in the suspension design uncertainties are usually modelled as a 

complex full block with multiplicative uncertainty at the plant input. The weighting 

function of the unmodelled dynamics is selected                             , 

with time constant     in such a way that in the low frequency domain, uncertainties are 

about        and, in the upper frequency domain they are up to     . Parameters in 

the vertical vehicle model always contain uncertainties, which can be described by their 

nominal values and ranges of possible variations, e.g., the mass, the damping 

coefficient, the spring coefficient. If parametric uncertainties are built into the control 

design, the magnitude of the unmodelled dynamics may be reduced. In the latter case 

the uncertainty structure contains an uncertainty block, which represents the ignored 

actuator dynamics and real uncertainty blocks. Thus, it is possible to select the 

weighting function significantly smaller than in the previous case. It means that in the 

low frequency domain the modelling error is          :                           . 

In addition to these uncertainties in the plug and play framework it is necessary to 

consider uncertainties related to the interfaces. As an example the high level suspension 

module produces forces as requested control inputs while the plug and play actuator 

module receives these forces as reference signals. During the specification on this 

interface proper weights are necessary in order to guarantee the interoperability. For the 

high level design the weight specifies a required performance that tells the high level 

controller to produce force requests compatible with the available actuators. Moreover, 

the dynamics of the actuator will not necessary be able to follow the requested force, 

thus an unmodelled dynamics should be modelled on the inputs side. On the actuator 

side the weight specifies the performance of the tracking problem in order to provide the 

requested actual forces. 

4. Analysis of the entire system 

The verification of the specification for the supervisor is a highly nontrivial task and 

can be performed in the same setting as for the baseline supervisory integrated design. 

In order to provide a formal verification of the achieved control performance on a 

global level, the problem must be formulated globally. Only on this extended level are 

the performance variables which are relevant for the whole vehicle available. Once the 

local controllers have been designed, however, it is possible to perform an analysis step 

in the same robust control framework on a global level, for details see [3], [7]. 

Concerning the performance assessment the plug and play setting makes it necessary to 

use a robust LPV setting. 
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This is a highly computation-intensive procedure, that may be set, as an example, in 

the robust LPV framework [14], or in the integral quadratic framework [8]. Moreover 

the presence of competing multi-objective criteria deny the applicability of this global 

approach. E.g., in emergency events certain performance components gain absolute 

priority over others, thus requiring a given performance level for the ignored 

performance components is not justified. On the other hand the local design guarantees 

the prescribed performance level for the critical components. Therefore in practice the 

formal global verification is often omitted and the quality of the overall control scheme 

is assessed through simulation experiments. 

The relationship between the supervisor and the local controllers guarantees that the 

system meets the specified performances. Applying parameter-dependent weighting a 

balance between different controllers is achieved. In different critical cases related to 

extreme maneuvers or performance degradations/faults in sensors or actuators the 

controllers reconfigure their operations. However, situations in which different critical 

performances must be achieved simultaneously may occur. These difficult situations are 

necessary to examine in different time domain scenarios using a simulation software. 

For example in a high-speed cornering maneuver the risk of a rollover increases 

significantly. The performances are in contradiction: deviating from the lane might 

cause the vehicle to run off the road while increasing roll dynamics might lead to 

rollover. This maneuver requires an intensive cooperation between the steering and the 

brake control systems. The supervisor sends critical signals to the controllers and 

consequently these control systems are activated. However, in order to reduce the 

rollover risk the yaw signals are modified and consequently, the deviation from the 

predefined path may increase. In contrast reducing the deviation from the path might 

increase the rollover risk. Since both interventions are critical the supervisor is not able 

to resolve the problem entirely, thus the performances are handled by the actuators with 

performance degradation. 

5. Conclusion 

In the paper the principles of the plug and play design in connection with the 

supervisory integrated control system have been presented. The relationship between 

the supervisor and the local plug and play controllers is ensured by a proper parameter 

dependent weighting strategy that guarantees that the system meets the specified 

performances. The weighting strategy leads to a complex control task, which includes 

different types of monitoring components as additional scheduling variables in the LPV 

design. Concerning actuators, sensors, functions and uncertainties the proposed method 

is illustrated through several examples based on the weighting strategy in the closed-

loop interconnection structure. 
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Abstract: This paper proposes a framework for selecting affinely parametrized quasi 

Linear Parameter Varying (qLPV) model structures that facilitates 

solutions to specific control design tasks encountered in vehicle dynamics 

applications. Moreover it facilitates the selection of the scheduling 

variables and provides a framework to decide whether the controller 

performance can be improved by introducing some estimated parameters as 

scheduling variables, i.e., if some adaptive strategy is needed or not. The 

proposed scheme is an iterative process: in every step a suitable model 

transformation is applied to generate a finite element convex polytopic 

representation in order to obtain a qLPV model. Then the LMI  feasibility 

of a robust control objective is verified, which is closely related to the 

original control task. This step provides a selection criterion that sorts out 

the suitable models from a finite set of model candidates generated by the 

iterative method.  

Keywords: electric vehicle, nonlinear modelling, robust control, qLPV design 

1. Introduction and motivation 

In a control design problem a control law must be designed for a not entirely known 

system in order to reach given performance specifications. For a successful analysis and 

design, it is crucial to obtain a model that captures the essential behaviors of the system 

under consideration. 

In modern control design the approximation of nonlinear models with linear models 

is often based on a qLPV description. This approach is based on the possibility of 

rewriting the plant in a form in which nonlinear terms can be hidden by using suitably 

defined scheduling variables by maintaining the linear structure of the model. An 

advantage of qLPV models is that in the entire operational interval nonlinear systems 

can be defined and a well-developed linear system theory to analyze and design 

nonlinear control system can be used. 
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Figure 1. General feedback configuration 

The models are augmented with performance specifications and uncertainties. 

Weighting functions are applied to the performance signals to meet performance 

specifications and guarantee a tradeoff between performances. The uncertainties are 

modelled by both unmodelled dynamics and parametric uncertainties. As a result of this 

construction a Linear Fractional Transformation (LFT) interconnection structure, which 

is the basis of control design, is achieved, see Figure 1. 

These representations provide a particular structure to the LPV system, also known 

as a     configuration, whereby the parameter-varying, uncertain or nonlinear terms 

are located in the diagonal   operator and the time invariant part is described by the 

operator  . An LFT based model set is widely considered to be the most general 

representation adopted in robust controller design. 

It is apparent that there is a great amount of analogy between classical adaptive 

schemes and the qLPV design philosophy, see [1], [2]. The parameters that are 

estimated during operational time and which are used to tune the actual controller in an 

adaptive scheme play the same role as the scheduling variables in the qLPV context. 

From this latter perspective the difference consists in the acquisition of the scheduling 

variable, namely, in the adaptive case the values of the scheduling variable are not 

directly available by the measurement and need to be obtained by a specific estimation 

process based on the directly available data. This observation leads us to propose a 

unified view of both control design strategies cast in the qLPV design framework by 

extending the set of scheduling variables with parameters that might not be directly 

measured but estimated using a suitable designed procedure. The idea was tested 

through certain applications, see [3]. 

The solution to the LPV control synthesis problem is formulated as a parameter 

dependent LMI optimization problem, i.e. a convex problem for which efficient 

optimization techniques are available. This control structure is applicable whenever the 

value of parameter is available in real-time. The resulting controller is time-varying and 

smoothly scheduled by the values of the scheduling variables. Therefore qLPV models 

with Linear Matrix Inequalities (LMI), as the main design tool, seem to be the most 

efficient approach to achieve robust and non-conservative results. 

Besides the weighting functions  (performance and uncertainty weights) the model 

structure itself -- which is not unique -- influences decisively the success of the design 

and control quality. Concerning the latter the role of the uncertainty structure 
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(modeling) is well known. It is less understood that in the LFT framework the choice of 

the scheduling variables affects the model in the same way as the uncertainties, 

moreover for a given model their choice is also non-unique, in general. The aim of this 

paper is to provide a systematic framework in which the search for a suitable model-

concerning both uncertainty and scheduling variable structure- for a given control task 

can be performed. 

1.1. The proposed modeling framework 

The starting point is a (nominal) model  

 ( ̇  )        (   ) (1) 

where   is the performance vector,   contains the measured variables, i.e., 

components/functions of   and some measured/estimated parameters,   is the control 

input, while   is the disturbance vector. The set of uncertain parameters is denoted by  .  

The goal is to give a description of the type  

           ∑                    (2) 

of the system which facilitates the control design task as much as possible where    will 

be the scheduling variables of the design while    will catch the effect of the parametric 

uncertainties. 

Robust control is handled based on the feedback connection depicted on Figure 0 

and the associated well-posedness theorem, for details see [5]:  

Theorem 1 Let a subset        and a matrix        be given. The following 

statements are equivalent:   

 1.  the feedback system on Figure 0 is well-posed, i.e.,             for all     

 2.  there exist a symmetric matrix                such that  

 (  )  (   )     (3) 

 (  )  (   )             (4) 

The constraint set in (4) is convex, however, it is usually not easily dealt with, since 

represents an infinity number of conditions. One way to overcome this difficulty is to 

approximate the exact set by a tractable one. By choosing appropriate inner/outer 

approximations one may develop computable lower/upper bounds for certain 

performances, e.g., stability margins. 

As a possible solution, a uniformly and automatically executable Tensor Product 

(TP) model transformation method based on the recently developed Higher Order 

Singular Value Decomposition (HOSVD) concept has been proposed, see [7], [6]. The 
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TP model transformation offers uniform, tractable and readily executable numerical 

ways and creative manipulations to generate convex (polytopic) representations of LPV 

models upon which LMI-based design techniques are immediately executable. The 

result of the TP model transformation is a TP model that belongs to the class of 

polytopic models, where the parameter-dependent weightings of the vertex systems are 

one-dimensional functions of the elements of the parameter vector. 

This form offers a relatively simple way to describe various convex hull generations 

in terms of matrix operations. The obtained structures are not unique, however the 

framework provides an efficient background to introduce a set of rules, heuristics and 

algorithms that provide us with a set of candidate model structures on which further 

analysis and final model selection can be carried out. 

The selection criteria in the proposed framework can be tailored according to the 

given control task. The idea is to set an LMI feasibility problem related to a control-

relevant task, e.g., robust stability with state feedback, robust performance with state 

feedback, etc., while solvability and the level of the achieved performances (if 

applicable) will provide the desired selection method. 

The proposed framework facilitates the execution of the following program:   

• build an qLPV model of the type (2),  

• put the given model in the LFT form, e.g.,  

                                (5) 

 where   [                  ] and      are constant matrices,  

• solve an LMI feasibility problem related to the control task,  

• evaluate the results. 

In order to make the method reliable the framework must provide efficient 

numerical techniques to perform each step. The aim of the paper is to propose such a 

framework. 

The layout of the paper is the following: in Section 2 a brief description of the TP 

method is given. Section 3 gives details how the LMI problems suitable for the desired 

selection can be set. In Section 4 an example is provided to illustrate the proposed 

method. Finally, Section 5 contains some concluding remarks and future directions. 

2. Tensor Product (TP) transformation for qLPV modeling 

Tensor Product (TP) modeling, in broad sense, is an approximation technique where 

the approximating functions are in a tensor product form. The motivation is 

straightforward: one dimensional functions are much easier to calculate with, handle 

and visualize. A family of methods use tensor products of continuous univariate basis 

functions, e.g., non-uniform rational B-splines. 
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Consider a parameter-varying state-space model with input     , output      and 

state vector      

 [ ̇       ]         [        ] (6) 

with the parameter-varying system matrix  

         (                            )  (7) 

 The time varying  -dimensional parameter vector        is an element of the 

closed hypercube                               . 

For practical reasons a finite element TP modeling is applied which uses a tensor 

defined by the values of         on a suitable discretization of   (usually a grid), i.e., a 

piecewise linear approximation of the multivariate map        . Based on this data TP 

model transformation generates the HOSVD-based canonical form of LPV models [8], 

i.e.,  

 ( ̇       )                   (        )  (8)    denotes the  -mode tensor product as defined in [7]. For further details we refer to 

[6], [9]. 

This procedure extracts the unique structure of a given LPV model in the same sense as 

the HOSVD does for tensors and matrices, in a way such that:   

 the number of LTI components are minimized;  

 the weighting functions are univariate functions of the parameter vector in an 

orthonormed system for each parameter;  

 the LTI systems are also in orthogonal position;  

 the LTI systems and the weighting functions are ordered according to the 

higher-order singular values of the parameter vector.  

Based on the higher-order singular values (that express the rank properties of the 

given model for each element of the parameter vector in    norm), the TP model 

transformation offers a trade-off between the complexity of further design and the 

accuracy of the resulting TP model. 

One of the advantages of the TP model transformation is that it can be executed 

uniformly (irrespective of whether the model is given in the form of analytical equations 

resulting from physical considerations, or as an outcome of soft computing based 

identification techniques such as neural networks or fuzzy logic based methods, or as a 

result of a black-box identification), without analytical interaction, within a reasonable 

amount of time. The obtained structure can be directly used for an LFT type modeling 

without any further preprocessing step. 
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Consider the map defined by the ordering            in the multi base number 

system defined by             . According to this indexing the weighting functions are 

denoted by  

          ∏                       
where                   is the  -th one variable weighting function defined on the  -

th dimension of  , while the corresponding vertex systems are               . Using 

this index transformation one can write the TP model in the typical polytopic form:  

         ∑                  (9) 

Remark: Having               and the functions       are univariate the further 

splitting of the sum, i.e.,                     is straightforward. 

2.1. Multi-affine models 

In many cases the convexity of the resulting TP model is required. The convex hull 

of      might not be polytopic, however for design purposes a finite, polytopic (outer) 

approximation is needed. Convexity is ensured by the following conditions:  

                                     (10) 

                    ∑                      (11) 

 These conditions ensure that         is within the convex hull of the LTI vertex 

systems    for any       . 

One of the main advantages of the TP model transformation is that we can find the 

convex representation via numerical matrix operations instead of analytical interactions. 

This approximation is highly nonunique and the TP approach provides a systematic 

approach in which different convex descriptions can be built. The TP model 

transformation was extended to generate different types of convex polytopic models, 

[10]. The generated convex hull of the polytopic models considerably influences the 

feasibility of the LMI-based design and the resulting performance level. 

There are many ways to define the vertex systems and the type of the convex hull 

determined by the vertex system can be defined by the weighting functions. The 

applications of TP models specifies special requirements for the weighting functions. 

For illustration purposes consider                   where         . In Figure 

1 one can see the systems        (in blue). The dotted red lines depicts the directions 

given by the HOSVD while in green is depicted the smallest box that contains the 

convex hull  ̃ of  . Another convex hull is depicted in magenta, that corresponds to a 

TP model. The corresponding weights are depicted in Figure 2.  

It is worth noting that both the TP model transformation and the LMI-based control 

design methods are numerically executable one after the other, and this makes the 

resolution of a wide class of problems possible in a straightforward and tractable, 

numerical way. 

 



Acta Technica Jaurinensis  Vol. 6. No. 5. 2013 

55 

Figure 2. Different convex approximations  

3. Setting LMI feasibility problems 

Modern control design strategies strongly use LMI techniques. The variety of the 

control tasks affect the complexity of the resulting algorithms. For the purposes of this 

paper robust control objectives that lead to efficiently solvable LMI feasibility problems 

are to be selected. 

Since output feedback control objectives often lead to non--convex bilinear matrix 

inequalities (BMI), which have computationally hard solution algorithms, this class of 

problems are not suitable candidates for a selection criteria. State feedback problems, 

however, usually lead to LMI feasibility problems, which can be solved more 

efficiently. 

The easiest control objective is to stabilize the system. Let us recall that an LPV 

system is quadratically stable if                is fulfilled with a        

matrix for all the parameters      A necessary and sufficient condition for a system to 

be quadratically stable is that this condition holds for all the corner points of the 

parameter space, i.e., one can obtain a finite system of LMIs that must be fulfilled for      with a suitable positive definite matrix  , see [11], [12]. 

It follows that for the closed--loop system, i.e, for the matrices                           the matrix inequality                  must hold for suitable      

and         By introducing the auxiliary variable             one can reduce 

the problem to a set of LMIs that must be solved at the corner points of the parameter 
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space. This method makes possible to handle in a fairly straightforward way the 

parameter dependent feedback situation. However the method may lead to big LMI 

feasibility problems. This drawback can be eliminated by using relaxation techniques, 

e.g., for details see [13]. 

The drawback of using merely stabilizability as a selection criterion is that there is 

no direct information provided about the performance of the controller since there is no 

explicit performance criteria formulated in the problem. By doing simulations on 

relevant test scenarios, however, the different controllers, hence the different models, 

can be evaluated. 

Fortunately, problems that contain meaningful performance specifications can be 

formulated in terms of LMI feasibility conditions. These problems can be set for 

systems of generalized LFT type:  

 ( 
  ̇                 ) 

  (  
                                 )  

 
( 
                   ) 

 
 

 (          )                 (12) 

 with the time-varying parameters satisfying       . It is assumed that      admits 

the explicit description               with a continuous matrix function      of 

full column rank. Furthermore, we suppose that (12) is well-posed, and that there exists 

a nominal value      for which   (    )       . 
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Figure 3. Weights for the different TP models  

A -state-feedback or output feedback- controller is searched to fulfill a quadratic 

performance index:  

 ∫    [  ] [         ] [  ]            
e.g., for an   --gain specification one has              and     . For these 

problems the performance index   is an indicator on the quality of the controller. 

An output-feedback LPV controller for (12) is described as  

 ( ̇             )  (                              )(              ) 
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 (          )                  (13) 

and consists of an LTI system in which the on-line measured parameter      enters via 

an implicit constraint imposed by      . Here       is a subspace that depends 

continuously on     and that satisfies   (    )        . 

An LPV controller can be obtained by using the following result, for details see e.g. 

[14], [15], [16]:  

Theorem 2 (LPV synthesis)  There exist a controller (13) such that closed-loop system 

is well-posed and stable if and only if there exist    , multipliers   (     ) and 

 ̃  ( ̃  ̃ ̃  ̃ ) with     on      and  ̃    on       for all     that satisfy the 

matrix inequalities    

 (    )     (14) 

   
( 
   

   ) 
   

 

( 
    

                                          ) 
    

( 
    

                              ) 
         (15) 

  
( 
   

   ) 
   

 

( 
   
                ̃  ̃      ̃  ̃        ̃  ̃      ̃   ̃ ) 

   
 

( 
    

                                                ) 
        (16) 

 where    (      )     (        ) and  (      )            .  

This basic setting for the controller synthesis can be varied depending on the 

problem at hand and on the actual demands. The information on the change rate of the 

measured scheduling variables can be introduced through the slightly extended design 
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equations derived in [17] and [18]. The details of the controller construction are fairly 

standard, hence, are omitted. Some details on the construction of controller scheduling 

variables, however, are relevant for our topic: 

Relaxation: the LMI conditions on the scaling matrices   and  ̃ must hold on an 

infinite set. In order to make the problem tractable a so called  relaxation technique, i.e., 

sufficient conditions that must hold on a finite set, are needed. However, this might lead 

to a conservative design, hence we want to reduce the relaxation "gap" . 

Having convex weighting functions a sufficient condition for the double summation: ∑               is  

                                       
 

              
A recursive version can be formulated for multi-convex TP summations: ∑              :  

                                                   
 

 ∑                                              
Using the later technique stability can be proved even the stability domain is not 

convex, see [19] 

Scheduling variables: the scheduling variables of the controller can be obtained 

applying the following procedure; perturb  ̃  if required, to render it non-singular. 

Choose   such that its columns form an orthogonal basis of the image of    ̃  . 

Define  

                ̃                                      (17) 

where   is non-singular with   

                                      
 Set            and           . If       denotes the orthogonal projector 

onto the eigenspace of      with respect to its positive eigenvalues, the continuous 

controller scheduling subspace of dimension    is given by                . 

Since expression (17) is quite complicated in general, by using a TP transform 

technique, one can obtain an affine parametrisation of the controllers scheduling block 

in terms of the original scheduling variables. Thus a more suitable expression that can 

be easily implemented is obtained. 

4. Simulation example 

In Figure 4. a two-degree-of-freedom quarter-car model is shown with body mass   , unsprung mass   , suspension stiffness   , suspension damping    and tire 
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stiffness   . The displacements of the sprung mass, the unsprung mass and their 

derivatives are   ,   ,  ̇  and  ̇ , respectively. The system is excited by the road 

disturbance   and controlled by a force  . 

Control performances of the suspension system are to keep sprung mass acceleration 

and suspension deflection small, and simultaneously limit the control force. 

 

Figure 4. Quarter-car model  

The vertical dynamics of the suspension system is formalized in the following way:  

    ̈             (18) 

    ̈                       (19) 

where         ̇        ̇     ̇      √  ̇      ̇  is the suspension damping force 

and                 is the suspension spring force, with        . The parts of 

the nonlinear suspension stiffness (  ) are a linear coefficient     and a nonlinear 

coefficient      while the nonlinear suspension damping    consists of a linear 

coefficient     and two nonlinear coefficients      and      
, [20]. The measured outputs 

are   and  ̇. 

The performance outputs are the passenger comfort (heave acceleration) (    ̈ ), 

the suspension deflection (        ) and the control input (  ). The purpose of 

weighting functions    ,    , and     in the closed-loop interconnection structure is 

to keep the heave acceleration, suspension deflection, wheel travel, and control input 

small over the desired frequency range. These weighting functions can be considered as 

penalty functions, i.e., weights should be large in a frequency range where small signals 

are desired and small where larger performance outputs can be tolerated. 

The weighting functions for heave acceleration and suspension deflection are 

selected as                and               , where parameter-dependent 

gains are applied to obtain trade-off between passenger comfort and road holding. A 

large gain    and a small gain    correspond to a design that emphasize passenger 

comfort. On the other hand, choosing    small and    large corresponds to a design 

that focuses on suspension deflection. 
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The LPV controller schedules on suspension deflection, and focuses on minimizing 

either the heave acceleration or suspension deflection response, depending on the 

magnitude of the vertical suspension deflection. In order to achieve the shift in focus 

from vertical acceleration to suspension deflection the weights associated with these 

signals are chosen to be parameter-dependent. In the mechanism two parameters are 

defined:    and   . When the suspension deflection   is below   , the gain    is 

selected to be constant and the gain    is zero. When the deflection is between    and    the gains change linearly. When the value of the suspension deflection is greater than   , the gain    is constant and the gain    is zero, see Figure 5 for   . 

 

Figure 5. Performance gain  

The parameters of the quarter-car model used in the simulations are given in Table 

1. The control oriented qLPV model considers the nonlinearity of the generalized plant 

by selecting as scheduling parameters the measured outputs   and  ̇. Due to the 

structure of the dynamical equations the nonlinearities of the plant are cancelled out by 

a static term, i.e.,  

                  ̇      √  ̇      ̇   ̅   
 Thus the generalized plant will contain only the nonlinearities introduced by the 

performance weights, with the control signal  ̅ . 
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Table 1. Parameters of the quarter-car model 

  Symbols   Values   Unit   Description            body mass           unsprung mass                   lin. susp. damping                  nonlin. susp. damping                      nonlin. susp. damping                  lin. susp. stiffness                   nonlin. susp. damping               tire stiffness  

 

 

 

Figure 6. Gains of the performance weights:    and    
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Figure 7. Convex relaxations for         

The weighting functions for heave acceleration, suspension deflection and control 

input are selected as   

    •                            ,  

    •                   ,  

    •         ,  
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with                            and                        . The function       has the shape as 

in Figure 5, thus the qualitative shapes of the performance weights    and    are 

depicted o Figure 6. Note that the design guarantees stability for a convex region, i.e., 

one can tune the position of    and    according to the engineering needs. In the 

simulations these values were fixed to      mm and       mm. Moreover, the 

tuning can be done in operational time. For an example for an application where such a 

tuning was exploited in order to achieve a desired behavior see [4]. 

For reference purposes two    controllers were designed where controller      

concentrates only on the heave acceleration while controller      concentrates only on 

the minimization of the suspension deflection. 

The convex relaxations used for            is depicted on Figure 7. Under the 

same conditions (weighting function, performance index) these tests have revealed that 

the value of the performance index that corresponds to the solution of the synthesis 

LMIs (15), (16) vary considerably depending on the choice made for the type of 

convex-hull. This result is in accordance with previous experiences obtained for 

stabilizing state feedback designs and indicates the influence of the convexification on 

the achievable performance in more complex settings, too. 

Several qLPV controllers were design by using the tuning possibility of the LTI part 

of the controller. Two of them,       and       are included in the comparison in 

order to demonstrate the effects that can be achieved by such a tuning. 

 

Figure 8. Achieved heave accelerations 
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Figure 9. Achieved suspension deflections 

 

 

Figure 10. Control inputs of the designed controllers 
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The plots on Figure 8, 9 and 10 contain the achieved heave accelerations, the 

achieved suspension deflections and the applied control forces, respectively. The results 

reflects the achieved trade-off by the qLPV controllers between the conflicting multi-

objective control criteria, i.e., road holding (suspension deflection) and passenger 

comfort (acceleration). 

5. Conclusions 

This paper has proposed methods to facilitate the design process of multi-objective 

qLPV robust control problems, often encountered in the design of vehicle systems, by 

efficient tuning possibilities. The proposed scheme is an iterative process in which a 

Tensor Product model transformation is applied to generate a finite element convex 

polytopic representation in order to obtain a quasi Linear Parameter Varying model. 

Then the LMI  feasibility of a robust control objective is verified that is closely related 

by the original control task. This step provides a selection criterion that sorts out the 

suitable models from a finite set of model candidates generated by the TP method. 

Since the choice of the most suitable convex relaxation has a great impact on the 

achievable performance, further research is done in order to provide algorithmic 

methods that facilitate the generation of different models by the TP  technique. It is also 

a nontrivial question that for a given TP based model (9) how to derive the most suitable 

LFT description that fits the given control task. 
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Abstract: The paper introduces the novel idea of the application of quasi consensus 

networks to modelling networked distributed systems. Quasi consensus 

networks operate alike standard consensus seeking ones without requesting 

the information state of the contributing systems to converge to a 

predetermined value. The quasi consensus-modelling paradigm can be used 

in modelling cooperative control problems in the cyber environment when 

the achievement of a common value of the information state is not the 

ultimate goal of the systems operation. 
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1. Introduction 

An emerging trend in modern control theory that reflects the use of distributed and 

networked dynamical systems in the information age is called cyber physical systems 

(CPS). CPSs integrate data acquisition, computation and communication to interact with 

the physical world and with other systems in an attempt to acquire, distribute and share 

data around each other. The amount of literature dealing with various categories of 

cyber physical systems, spanning from distributed robotic microsystems to large-scale 

networked systems, is wide and varied. 

A special operational policy of distributed systems, emerged quite lately in modern 

control theory, is based on the principle of cooperation. Cooperative systems consists of 

a set of interacting autonomous agents, interconnected over an information network to 

achieve a common desired task and enhance operational effectiveness through 

cooperative teamwork. The agents exchange information over a communication 

medium, either on wires or wireless. Examples include large-scale mass transport and 

power (energy, electricity) distribution networks, ad-hoc vehicle networks and others. 
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A particular policy of operation within cooperative behaviour is called coordination. 

Coordination is the organisation of the different elements of a complex distributed 

system so as to enable them to work together in a controlled and supervised way. 

Potential application of the coordination idea includes formation control of vehicles 

required to maintain a prescribed shape during travel, or rendezvous problems, where 

the movement trajectories of two or more autonomous vehicles are required to meet in 

space and time. 

Hence, devices which acquire, process and transfer information from one agent to 

another are inherent part of the system, and are recognised as critical infrastructure of 

the distributed (control) systems based on interconnected information technology, which 

cannot be disregarded when modelling. Properties of the information exchange process, 

and so this communication infrastructure (which is frequently referred to cyber 

infrastructure), is inseparable part of systems operation. 

Due to the largely fragmented nature of CPSs and the cyber infrastructure itself, this 

specific architecture is exposed to the possibility of being harmed by environmental 

effects or attacked maliciously. As most CPSs, especially those consisting of mobile 

autonomous agents, such as vehicle and robotic networks, are based on wireless 

communication, communication links have to be assumed insecure. Information coded 

radio waves are potentially subject of interception. By obtaining trustful network 

information the attackers are able to bypass intrusion prevention techniques. Fake and 

malicious nodes e.g., may be able to hacked into the network by eavesdropping on 

network traffic acquiring network information for launching attacks. Therefore, 

vulnerability of cyber physical systems has received increasing attention in the past 

years and security has to be addressed as a primary concern. 

As vulnerability is an engineering principle that cannot be securely avoided CPSs 

have to use proper protection techniques as precautionary measure. First of all it is 

absolutely necessary to know at each time instant if the system is intact, i.e., it is 

complete and not damaged or impaired in any way. Therefore, timely detection and 

identification of intrusions and other malicious actions is of a primordial design goal.  

Existing techniques of fault detection and identification may provide standard means 

for the implementation of this protection mechanism for CPSs as attacks can be thought 

as faults. One difficulty with this analogy is that faulty behaviours caused by malicious 

actions may be very difficult to detect as the attacker have knowledge on the system 

itself and thus could be able to use masking techniques to conceal the action. Model-

based fault detection is one of the most powerful methods to the solution of this 

problem, as it possesses information on the system as well. 

Using model-based detection, however, necessitates the availability of a system 

model. Due to the crucial role of distributed and networked systems, including CPSs, in 

advanced engineering systems modelling of these type of systems have received much 

attention lately. Recent modelling approaches are motivated by existing CPS use cases 

and attack experiences basically relying on representation of the complex CPS as a 

single, homogeneous entity of interconnected dynamical systems with special focus on 

the modelling of the interconnection scheme, while the behaviour of the cyber 

infrastructure is not explicitly treated by the theory. 
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This paper, instead of committing itself to the discussion of the detection problem as 

a whole, addresses the modelling issue only. A novel modelling paradigm i.e., the 

concept of quasi-consensus networks is introduced that can be useful in the description 

of the cyber infrastructure in cases when some conditions, posed by the standard 

consensus seeking operation, can be resolved. This specific system model, analogously 

to [9], allows the introduction of misbehaving agents for the modelling of faulty and/or 

changed behaviour of the system without taking particular restrictions on the way the 

consensus seeking is made. 

The layout of the paper is as follows. In Section 2 the techniques that have been 

recently used for modelling CPSs are briefly reviewed. Based on this knowledge this is 

followed by the introduction of quasi consensus networks in Section 3. A brief section 

of conclusions on future works closes the paper. 

2. Modelling Cyber Physical Systems 

Living with the constructive assumption that cyber physical systems can be thought of 

like a set of interconnected dynamical systems, which are modelled by linear time 

invariant (LTI) dynamics the approach of [10] became quite common in the synthesis 

and analysis of large-scale CPSs. This approach considers the set of connected 

subsystems                                                       (1) 

                                

with the state         , input          and measurement          vectors of the 

individual subsystems. The matrices          and    are given in the appropriate 

dimensions. These can be combined by taking interconnections among subsystems into 

consideration to produce the overall system equations by the time invariant descriptor 

system [5] in the form   ̇                                                     (2) 

y                 
where        ,         and         are the state, input and measurement 

vectors of the combined system, respectively.        is called the connectivity 

matrix of the system, which encodes the interconnection structure of the networked 

subsystems. For practical reasons   is generally required to be singular. The input      

can be thought quite generally, it can be composed and extended arbitrarily, 

representing unknown inputs, failures and other incipient effects depending on the 

purpose of modelling, which affect the plant in predetermined directions. 

An obvious shortcoming of this modelling approach comes from the assertion that 

subsystems dynamics is viewed to be homogeneously LTI, which may prove to be a 

very strong assumption in modelling of complex, large-scale CPSs. For the difficulties 

of the use of nonlinear descriptor systems, see [6]. The use of heterogeneous or hybrid 
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system models (containing LTI and nonlinear subsystems jointly) is not a viable 

modelling option neither. 

The classical modelling approach, which is based on the composition of the set of 

autonomous systems (2) that perform and are modelled individually then connected 

together as in (2), is useful in modelling large-scale CPSs. Examples can be cited from 

mass transport and power distribution networks. 

A somewhat different approach is needed to CPSs, where compared to the previous 

approach, the emphasis of operation (and thus, modelling) is not on individual system 

dynamics but the quality of information acquisition and exchange, moreover, the 

devices which transmit and process information, i.e., the principles of communication 

and networking. This is a modelling approach where the performance of the cyber-

infrastructure of the network gets in the forefront. Cyber-infrastructure is considered the 

enabling body of CPS functionality and viewed as the medium in which the input 

acquisition, processing and transmission of information occurs. Control and detection of 

cyber-infrastructure that must ensure that the global CPS are kept in an operating 

condition as expected is therefore of primary importance. 

A particular class of advanced CPS applications is based on the principle of 

cooperation. In the modern theory of decentralised and distributed control, cooperative 

systems are thought to be as composed of multiple dynamic entities that share and 

exchange information or tasks among each other to support a common effort. The 

shared information among contributing parties of the overall system, which may take 

the form of common objectives, common control algorithms or common data is a 

necessary condition for cooperation [13]. Performing in the cyber environment in an 

attempt to align a common objective requires among coordinated systems to share a 

consistent view of the goals and other control specific data that is critical to the 

accomplishment of that objective. The instantaneous value of that information is called 

the information state [12]. 

Cooperative systems collect and exchange information by communication and 

sensing, and as such, are ultimately based on the quality and performance of the cyber-

infrastructure. Coordinated control and filtering (targeting vehicle formation control, 

rendezvous and attitude alignment problems, flocking, foraging, payload transport and 

enhanced position estimation just to mention a few) are typical applications of the 

cooperating idea [1, 8, 14]. 

Consensus seeking cooperation algorithms are best known from coordinated control 

problems. In classical coordination systems, the goal is the zeroing of the difference of 

the value of the information states around all the contributing systems. To achieve a 

successful coordination, the contributing systems have to agree (i.e., have to have 

information consensus) over the objective value of the information state. In coordinated 

control scenarios, therefore, the goal is to design a control law so that the information 

states of the coordinated systems converge to a common value in time ( cf. rendezvous 

problem) [2, 3]. 

This control law can be implemented by means of consensus iterations, where, at 

each iteration, the contributing actors get closer to the implementation of the common 

objective. In classical consensus iterations, at each time instant, a contributing system 
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update its state as a weighted combination of its own value and also those received from 

the partners. As a result of this procedure the information state may converge to the 

objective value in case stability can be ensured. 

 

Figure 1. The initially unordered structure of vehicle topology (see Fig. 1/a) is made 

structured and ordered (Fig. 1/b) by selecting the distance between immediate 

neighbours as information state and applying a consensus algorithm to iteratively 

modify the value of this state as long as the desired formation is reached, i.e., until all 

the information states are equal 

The most typical application of the consensus algorithm is in vehicle formation 

control, see Fig. 1, when onboard vehicle controllers manoeuver each vehicle to the 

equidistant locations which satisfy the geometric criteria of the formation. In the next 

section the consensus-based modelling is reviewed briefly and the idea of quasi-

consensus networks is introduced. 

3. Linear quasi-consensus networks 

Standard consensus problems assume similar dynamics on the information state of each 

subsystems (cf. the assumption made in system models (2) for the system state 

dynamics). Apart from all the works which tend to model CPSs as linear descriptor 

systems it is a common approach to model information exchange among dynamical 

subsystems by means of graph theory. Team's communications topologies can be 

represented with directed or undirected graphs. This modelling technique became very 

popular as it fits to the description of complex networked system structures. 

Consider the pair       denoting a directed graph with vertex set           and 

edge set      . The edge         indicates that the node (or agent)   can obtain 

information from node  . As the graph is directed, this is not necessarily vice versa and   
is called the parent node and   is the child node. Undirected graphs are considered a 

special case of undirected ones where the edge       in the undirected graph 

corresponds to       in the directed one. The physical meaning of directed graph 

representation is that information flow is considered unidirectional between nodes, 

while undirected graph may represent bidirectional flow of information. 

For the representation of the interconnection structures one needs to introduce the so 

called adjacency matrix that describes the structure of neighbourhood connections. The 

adjacency matrix            of the node set           is defined such that     
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is a positive weight if        , while        if         . If weights are not relevant 

in the model, then                . 

Based on the linear graph theoretic notions defined above the most common 

continuous time consensus seeking problem, similarly to [4] [11], can be represented by 

the linear system  

  ̇      ∑            (           )                                   (3)  

where        is the       entry of the adjacency matrix of the associated communication 

graph at time   and    is the information state of the     subsystem (node). Setting       means that subsystem   cannot receive information from subsystem  . Realize 

that the dynamics of system (3) is determined by the difference of the information state 

of the neighbouring subsystems. 

Ensuring stability the information state       of subsystem   is driven toward the 

state of its immediate neighbours. Obviously, the critical question is, if under what 

conditions the information states of all nodes in the connected network converge to a 

common predetermined value and, in what time. This is the point when traditional 

consensus algorithms become problematic. Even in fixed, time invariant topologies, it is 

possible to guarantee only that the common value of the negotiated information state is 

a convex combination of the initial ones. However, topologies are more frequently 

dynamic and satisfying conditions under which the consensus is stable during random 

switching of the communication topologies is not trivial. As an additional difficulty, 

consensus making must satisfy certain requirements for performance criteria such as 

convergence time. 

Now let the linear iteration over the adjacency matrix   be defined in terms of the 

matrix Laplacian. The Laplacian matrix              of a directed graph, similarly 

to [7] is defined such that     ∑         and          for all    . If         then             to satisfy the conditions  

                                               
                          ∑                        

Based on the above the consensus algorithm [9] can be written in matrix form as  

                                                   ̇                                                               (4) 

where              is the information state and                    is the 

Laplacian of the interconnection graph that serves for the update rule of the information 

state     . We say that (4) is consensus seeking if, for all initial information state       
and all              the state difference  ̃                 disappears i.e., it 

converges to zero as    . 

While the consensus paradigm discussed above is useful for many coordinated 

control applications, the assumptions might not be appropriate when each agent's 

information state evolves in an uncoordinated fashion and the objective of the control 

problem is different than zeroing out the state differences.  
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Figure 2.  Sensor network under cyber attack 

There are problems, however, when posing conditions for the information state 

convergence is overly restrictive and simply not necessary. 

Consider, for example, the case of distributed sensor networks: the elements of the 

network provide measurement data at the output of the network which contain 

measurements slightly different from node to node, even in case we have a 

homogeneous set of redundant sensors in the network. If the measurement value is 

considered the information state of the network it is meaningless to require that this 

value converges to anything. However, the system model (4) still describes the 

connectivity of the network and provides useful means to model the information 

exchange around the network elements. 

 

Proposition 1: The system representation (4) is thought quasi consensus network if, for 

all initial information state       and all             the state difference  ̃                  is bounded as    . 

Note that the obvious extension of Proposition 1 includes systems permitting  ̃   to 

converge to a bounded constant value. Recall that traditional consensus systems like (3) 

ensures only that the information state converges to a common value but does not let the 

specification of a particular value of that state. Many cooperative problem setup in 

advanced control theory can be represented by quasi consensus system models. 

Examples are heterogeneous ad-hoc vehicle networks and sensor networks. 

Quasi consensus models allow for some network elements to update their state 

differently than specified by the update matrix  . This is required for modelling faults 

and external disturbances or even malicious effects. By adding an exogenous input to 

the network to model (4) malicious inputs or other cyber attacks can be modelled as 

depicted in Fig. 2. A quasi consensus network with faulty behaviour can be represented 

as  

                                       ̇                                                                 (5) 



Acta Technica Jaurinensis  Vol. 6. No. 5. 2013 

75 

where       is the malicious effect, which affects the network in the predetermined 

direction   . Now standard methods of fault detection can be used for the detection and 

isolation of the attack. This, however, is not in the scope of the paper. 

4. Conclusions 

This article provided a brief introduction to quasi consensus networks, a modelling 

paradigm applicable to networked decentralised systems. The approach fits to the 

description of heterogeneous cyber physical systems subject to faults and other external 

disturbances or malicious effects. Application of the quasi consensus seeking idea 

widens the possibility of the application of advanced methods of control and detection 

in the field of CPSs. More work will be needed to clarify the properties of the matrix 

Laplacian   in view of the application of particular detection and control problems, 

moreover, the construction and evaluation of malicious input models in the quasi 

consensus representation. 
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Abstract: Several control design approaches were utilized recently for actively stabi-

lizing the 2 and 3 degrees-of-freedom (DoF) aeroelastic wind section, which

have structural nonlinearities. The present paper focuses on the stabilization

of the 3 DoF model. The proposed control design strategy takes into account

the uncertainties of the trailing edge dynamics and robust output feedback

control is designed where the only measurable state variable is the pitch angle.

Beside robust asymptotic stability, the controller has to fulfill criteria related

to the bound of the l2 norm of the control signal. The control design is based

on Tensor Product (TP) type convex polytopic representation of the 3 DoF

aeroelastic wing section model and all of the control performance objectives

are formulated via Linear Matrix Inequalities (LMIs). The convex TP type

polytopic model is obtained via TP model transformation as the first step of

the design and the feedback and observer gains are derived via LMI based

convex optimization as the second step. The resulting controller and observer

takes the polytopic structure of the TP type convex NATA model. The derived

controller and observer structure is evaluated and validated via numerical

simulations.

Keywords: aeroelastic wing, robust LMI-based multi-objetive control, TP model transfor-

mation, qLPV systems

Nomenclature

The variables related to the 3 degrees of freedom aeroelastic wing section are given bellow:

- a = non-dimensional distance from the mid-chord to the elastic axis
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- b = semi-chord of the wing – m

- ch = the plunge structural damping coefficients – Nms/rad

- clα = aerofoil coefficient of lift about the elastic axis

- clβ
= trailing-edge surface coefficient of lift about the elastic axis

- cmα ,e f f . = aerofoil moment coefficient about the elastic axis

- cmβ ,e f f . = trailing-edge moment coefficient about the elastic axis

- cα = the pitch structural damping coefficient – Nms/rad

- h = plunging displacement – m

- Iα = the mass moment of inertia – kgm2

- kh = the plunge structural spring constant

- kα(α) = non-linear stiffness contribution

- L = aerodynamic force – N

- M = aerodynamic moment – Nm

- m = the mass of the wing – kg

- U = free stream velocity – m/s

- xα = the non-dimensional distance between elastic axis and the center of mass

- α = pitching displacement – rad

- β = control surface deflection – rad

- ρ = air density – kg/m3

1. Introduction

Active stabilization of aeroelastic wing sections has been in focus of aerospace and control

engineers for several decades [13]. [6, 8] derived the unsteady aerodynamics of the 3

degrees of freeeddom (DoF) Nonlinear Aeroelastic Test Apparatus (NATA) model. A very

broad range of control solutions were examined in [20, 11, 14, 25, 19, 17, 12, 24, 15],

which include adaptive control, neural network based control, mixed H∞/H2 scheduling

control etc. An improved model of the NATA is proposed in [16].

Tensor Product (TP) model transformation and LMI based approach is applied in

[5, 4, 10, 21, 22]. [5] proposes state feedback control for the 2 DoF version of the

NATA model and [4] improves the control solution with an observer and [10] adds further

improvement via convex hull manipulation based optimization. [21] extends the TP model
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based approach by adding nonlinear friction to the 2 DoF NATA based on [7] and output

feedbeck control design for the 3 DoF NATA model based on [16] is given in [22] for both

linear and nonlinear friction models.

The current research aims to extend the TP model type based control approaches listed

above with robustness properties and limits on the l2 norm of the control signal. The model

used in the paper is the same 3 DoF NATA model presented in [16]. The control design

framework is formulated with the assumption that not all states can be measured, thus

output feedback design is proposed.

The control design process is executed in two steps. First, we obtain the TP type convex

polytopic form of the NATA model via TP model transformation, which can derive various

types of convex representations of the same model. The quasi Linear Parameter Varying

(qLPV) model can be given by analytical equations based in the system dynamics, via

soft-computing or black-box identification. The second step is to design the controller

and observer via LMI based convex optimization, where the control performance criteria

are formulated in terms of LMIs and the resulting control solution is defined by the same

polytopic form as the qLPV model.

It is shown that various structures of the same uncertainty can highly influence the

feasibility of the LMIs and the control performance of the resulting solutions.

The paper is structured as follows: the following section presents the dynamic equations

and the qLPV model of the 3 DoF NATA, Section 3 introduces the proposed control design

strategy, Section 4 gives the results of the control design. Section 5 shows the results

of the numerical simulations with detailed evaluation and at the end of the paper are the

conclusions.

2. Dynamic Equations and qLPV Model of the Aeroelastic Wing Sec-

tion

The following section presents the basic dynamic equations related to the 3 DoF NATA

model based on [15, 16]. The degrees of freedom of the model are related to the plunge h,

pitch α and trailing-edge surface deflection β . The equations of motion are given as:





mh +mα +mβ maxab+mβ rβ +mβ xβ mβ rβ

maxab+mβ rβ +mβ xβ Îα + Îβ +mβ r2
β +2xβ mβ rβ Îβ + xβ mβ rβ

mβ rβ Îβ + xβ mβ rβ Îβ mxα b Iα









ḧ

α̈

β̈



+ (1)

79



Vol. 6. No. 5. 2013 Acta Technica Jaurinensis





ch 0 0

0 cα 0

0 0 cβservo









ḣ

α̇

β̇



+





kh 0 0

0 kα(α) 0

0 0 kβservo









h

α
β



=





−L

M

kβservo
βdes



 .

The non-linear stiffness kα(α) is defined as kα(α) = 25.55− 103.19α + 543.24α2

([16]) and the quasi-steady aerodynamic force and moment are defined by:

L = ρU2bClα

(

α +
ḣ

U
+

(
1

2
−a

)

b
α̇

U

)

+ρU2bclβ
β (2)

M = ρU2b2Cmα,e f f .

(

α +
ḣ

U
+

(
1

2
−a

)

b
α̇

U

)

+ρU2bCmβ ,e f f .
β .

Both the quasi-steady aerodynamic force L and the quasi-steady aerodynamic moment

M defined for the low-velocity regime only. The trailing-edge servo-motor dynamics are

taken form [16] as:

Îβ β̈ + cβservo
β̇ + kβservo

β = kβservo
uβ . (3)

Let us combine equations (1), (3) and (2) in order to obtain:





mh +mα +mβ maxab+mβ rβ +mβ xβ mβ rβ

maxab+mβ rβ +mβ xβ Îα + Îβ +mβ r2
β +2xβ mβ rβ Îβ + xβ mβ rβ

mβ rβ Îβ + xβ mβ rβ Îβ mxα b Iα





︸ ︷︷ ︸

Meom





ḧ

α̈

β̈



+ (4)

+





ch +ρbSClαU
(

1
2
−a
)

bρbSClαU 0

−ρb2SCmα,e f f
U cα −

(
1
2
−a
)

bρb2SCmα,e f f
U 0

0 0 cβservo





︸ ︷︷ ︸

Ceom





ḣ

α̇

β̇



+

+





kh ρbSClαU2 ρbSClβ
U2

0 kα(α)−ρb2SCmα,e f f
U2 −ρb2SCmβ ,e f f

U2

0 0 kβservo





︸ ︷︷ ︸

Keom





h

α
β



=





0

0

kβservo





︸ ︷︷ ︸

Feom

u.
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where: Meom is the mass matrix of the equation of motion, Ceom is the damping matrix

of the equation of motion, Keom is the stiffness matrix of the equation of motion, Feom is

the forcing matrix of the equation of motion.

The qLPV state-space representation can be defined as:

x(t) =











x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)











=











ḣ

α̇

β̇
h

α
β











and u(t) = uβ .

The state matrix and the input matrix are:

A(p(t)) =

(
−M−1

eomCeom(p(t)) −M−1
eomKeom(p(t))

−I 0

)

, B =

(
M−1

eomFeom

0

)

. (5)

Let u assume that the only measurable state is x5(t) = α , thus the output and feed-

through matrices are:

C =
(
0 0 0 0 1 0

)
, D = 0. (6)

We can construct the system matrix as:

S(p(t)) =

(
A(p(t)) B

C D

)

(7)

The parameters of the aeroelastic wing section are defined in [16] as:

mh = 6.516 kg; mα = 6.7 kg; mβ = 0.537 kg; xα = 0.21; xβ = 0.233; rβ = 0 m; a =

−0.673 m; b = 0.1905 m; Îα = 0.126 kgm2; Îβ = 10−5; ch = 27.43 Nms/rad; cα = 0.215

Nms/rad; cβservo
= 4.182×10−4 Nms/rad; kh = 2844; kβservo

= 7.6608×10−3; ρ = 1.225

kg/m3; Clα = 6.757; Cmα,e f f
=−1.17; Clβ

= 3.774; Cmβ ,e f f
=−2.1; S = 0.5945 m.
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3. The Proposed Control Design Methodology

3.1. TP model transformation based polytopic models

TP model transformation is a numerical method able to uniformly transform qLPV dynamic

models into Higher Order Singular Value Decomposition (HOSVD) basec canonical form

or various convex polytopic representation. The main concepts of the mathematical

background of TP model transformation is given in [2, 1, 3] and some of the recent

applications for TP model type LMI based control design can be found in [9, 22]. Let us

list the main definitions related to TP model transformation and TP type convex polytopic

representation:

Definition 1. (Finite element TP type convex polytopic model - TP model [2, 1, 3]):

S(p(t)) in (7) for any parameter is given as the parameter-varying convex combination of

LTI system matrices S ∈ R
O×I .

S(p(t)) =
I1

∑
i1=1

I2

∑
i2=1

..
IN

∑
iN=1

wn,in(pn(t))Si1,i2,..,iN = S
N

⊠
n=1

wn (pn (t)) , (8)

where p(t) ∈ Ω. The coefficient tensor S ∈ R
I1×I2×···×In×O×I has N + 2 dimensions,

it is constructed from the LTI vertex systems Si1,i2,...,iN (8) and the row vector wn (pn (t))
contains one variable and continuous weighting functions wn,in(pn(t)), in = 1 . . . IN . In

order to get convex representation the weighting functions satisfy the following criteria:

∀n,i,pn(t) : wn,i(pn(t)) ∈ [0,1]; (9)

∀n,pn(t) :
In

∑
i=1

wn,i(pn(t)) = 1. (10)

Definition 2. (NO/CNO, NOrmal type TP model [2, 1, 3]): The TP model is NO (normal)

type model if its weighting functions are Normal, that is if it satisfies (9), (10), and the

largest value of all weighting functions is 1. The convex TP model is CNO (close to normal)

if it satisfies (9), (10) and the largest value of all weighting functions is 1 or close to 1.

The TP type polytopic convex model given in (8) can be immediately applied for LMI

based control design. Since TP model transformation is based on HOSVD it can give

an upper bound of the approximation error in case nonzero singular values are discarded

during the process. TP model transformation can be applied for qLPV models based on

analytical dynamic equations, soft-computing based or black-box identification.
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3.2. The structure of the uncertainty

We take the uncertainty structure presented in [23], which can be given as:

ẋ(t) =(A(p(t))+Da(p(t))∆a(t)Ea(p(t)))x(t)

(B(p(t))+Db(p(t))∆b(t)Eb(p(t)))u(t),
(11)

where ∆a(t) and ∆b(t) are the uncertain blocks that satisfy

‖∆a(t)‖ ≤
1

γa

, ∆a(t) = ∆T
a (t), (12)

‖∆b(t)‖ ≤
1

γb

, ∆b(t) = ∆T
b (t) (13)

and Da(p(t)), Ea(p(t)), Db(p(t)) and Eb(p(t)) are known scaling matrices.

3.3. LMI based control for TP type polytopic models

The paper presents an output feedback control structure as it is assumed that only the pitch

angle α of the NATA model is measurable. The observer has to satisfy x(t)− x̂(t) →
0 as t → ∞, where x̂(t) is the observed state vector. Parameter vector p(t) does not

include any observed parameters, therefore the design strategy that was presented in

[18, 23] can be applied:

ˆ̇x(t) = A(p(t))x̂(t)+B(p(t))u(t)+K(p(t))(y(t)− ŷ(t))

ŷ(t) = C(p(t))x̂(t),

where u(t) =−F(p(t))x(t).

The resulting controller and observer of the proposed control design strategy and the TP

type polytopic model have a common polytopic structure:
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ˆ̇x(t) = A
N

⊠
n=1

wn(pn(t))x̂(t)+B
N

⊠
n=1

wn(pn(t))u(t)+K
N

⊠
n=1

wn(pn(t))(y(t)− ŷ(t))

ŷ(t) = C
N

⊠
n=1

wn(pn(t))x̂(t)

u(t) =−

(

F
N

⊠
n=1

wn(pn(t))

)

x(t).

(14)

The resulting tensors of the vertex feedback and observer gains F and K contain the

LTI feedback gains Fi1,i2,...,iN and LTI observer gains Ki1,i2,...,iN . The control design has to

satisfy the following control performance objectives:

• Asymptotically stable controller and observer;

• Robust stability of the controller for parameter uncertainties.

• Constrain on the control value.

There is a large number of LMIs already developed for polytopic systems guaranteeing

various control performance specifications and in the present case we select the LMIs

derived and given in [23].

Theorem 1. (Globally and asymptotically stable controller for uncertain qLPV systems

[23]) A controller stabilising the uncertain qLPV system (11) can be obtained by solving

the following LMIs for P > 0 and Mr (r = 1, . . . ,R)

Srr < 0,

Trs < 0,

where

Srr =









(
PAT

r +ArP−BrMr −MT
r BT

r

)
Dar Dbr PET

ar −MT
r ET

br

DT
ar −I 0 0 0

DT
br 0 −I 0 0

EarP 0 0 −γ2
a I 0

−EbrMr 0 0 0 −γ2
b I









,
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and

Trs =













































PAT
r

+ArP

−BrMs

−MT
s BT

r

+PAT
s

+AsP

−BsMr

−MT
r BT

s















Dar Dbr Das Dbs PET
ar −MT

s ET
br PET

as −MT
r ET

bs

DT
ar −I 0 0 0 0 0 0 0

DT
br 0 −I 0 0 0 0 0 0

DT
as 0 0 −I 0 0 0 0 0

DT
bs 0 0 0 −I 0 0 0 0

EarP 0 0 0 0 −γ2
a I 0 0 0

−EbrMr 0 0 0 0 0 −γ2
b I 0 0

EasP 0 0 0 0 0 0 −γ2
a I 0

−EbsAr 0 0 0 0 0 0 0 −γ2
b I































for r < s ≤ R, except the pairs (r,s) such that ∀p(t) : wr(p(t))ws(p(t)) = 0 and where

Mr = FrP.

The feedback gains can be obtained from the solution of the above LMIs as Fr = MrP
−1.

Theorem 2. (Globally and asymptotically stable controller with constraint on the control

value [23]) The simultaneous solution of the LMIs of Theorem 1 and Theorem 2 in the

form of:

φ 2I ≤ P
(

P Mr
T

Mr µ2I

)

≥ 0

yields an asymptotically stable controller, where ‖u(t)‖2 ≤ µ is enforced at all time and

‖x(0)‖2 ≤ φ .

Theorem 3. (Globally and asymptotically stable observer [23]) Assume the polytopic

model (8) and a control structure as given by (14). An asymptotically stable observer can

be obtained by solving the following LMIs for P > 0 and Nr (r = 1, . . . ,R):
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AT
r P−CT

r NT
r +PAr −NrCr < 0,

AT
r P−CT

s NT
r +PAr −NrCs +AT

s P−CT
r NT

2 +PAs −NsCr < 0

for r < s ≤ R, except the pairs (r,s) such that ∀p(t) : wr(p(t))ws(p(t)) = 0, and where

Nr = PKr. The observer gains can derived from the solution of the above LMIs as

Kr = P−1Nr.

4. Control Design Results

4.1. Results of TP model transformation

Executing TP model transformation on the qLPV model (5) of the NATA systems leads

us to TP type convex representation of the system. The transformation space Ω and the

discretization grid M are defined as: Ω : U ∈ [8,20](m/s) and α ∈ [−0.3,0.3](rad) and

M = M1 ×M2 = 137×137. HOSVD on the discretized tensor S D ∈ R
M1×M2×7×7 results
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Figure 1. Weighting functions: (above) HOSVD-based canonical form (bellow) CNO type

convex form
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in rank 2 and 3 in the fist and second dimension respectively, which means that the exact

HOSVD based canonical form of the NATA model can be defined with 6 LTI vertex

systems. The CNO type convex representation can also be given by 6 LTI vertex systems.

Figure 1 shows the weighting functions w1,i(U), i = 1..2 and w2, j(α), j = 1..3 for the

HOSVD-based canonical form and the CNO type convex representation.

4.2. Output feedback control design based on LMIs

4.2.1 Uncertainty in the dynamics of the trailing-edge servo-motor

The dynamics of the trailing-edge servo motor (3) was derived in [16]. The dynamics have

two parameters, kβservo
and cβservo

. The aim of this paper is to design a controller that shows

robustness properties regarding these two parameters, therefore the first step is to define

the uncertainty structure of the NATA model based on the methodology given as (11) in

[23]. Element groups A13, A23, A33 and A16(p(t)), A26(p(t)), A36(p(t)) of the state matrix

A(p(t)) contain parameters cβservo
and kβservo

, respectively. B11, B21 and B31 of input matrix

B include kβservo
as well. Based on the considerations above one can define the uncertain

blocks ∆a(t) and ∆b(t) as:

∆a(t) =

(
∆kβservo

(t) 0

0 ∆cβservo
(t)

)

(15)

and

∆b(t) =
(

∆kβservo
(t)
)

, (16)

where bounded functions ∆kβservo
(t) and ∆cβservo

(t) stand for the difference of the actual

and nominal values of parameters kβservo
and cβservo

. Scaling matrices Da(p(t)), Ea(p(t)),
Db(p(t)) and Eb(p(t)) are defined with the aim to match the system matrix elements with

the related uncertainties.

Uncertainty structure (11) gives two possibilities to construct the scaling matrices:

Case 1 of uncertainty
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Da =











−M−1
eom13

cβservo
−M−1

eom13
kβservo

−M−1
eom23

cβservo
−M−1

eom23
kβservo

−M−1
eom33

cβservo
−M−1

eom33
kβservo

0 0

0 0

0 0











, Ea =

(
0 0 1 0 0 0

0 0 0 0 0 1

)

(17)

and

DT
b =

(
M−1

eom13
kβservo

M−1
eom23

kβservo
M−1

eom33
kβservo

0 0 0
)
, Eb = 1. (18)

Case 2 of uncertainty

Da =











−M−1
eom13

−M−1
eom13

−M−1
eom23

−M−1
eom23

−M−1
eom33

−M−1
eom33

0 0

0 0

0 0











, Ea =

(
0 0 cβservo

0 0 0

0 0 0 0 0 kβservo

)

(19)

and

DT
b =

(
M−1

eom13
M−1

eom23
M−1

eom33
0 0 0

)
, Eb = kβservo

. (20)

4.2.2 Resulting control solutions

In order to derive controller and observer feedback gains we applied the CNO type TP

model of the NATA system for LMI based design. The various control design specifications

are based on the requirements given in the previous section and both uncertainty structure

cases were considered in the control design process.

In the first step of the control design we define the maximal allowable uncertainty of

kβservo
and cβservo

. The uncertain blocks ∆a(t) and ∆b(t) are given as (15) and (16), which
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satisfy criteria given in (12) and (13). Matrix ∆a(t) being diagonal has a norm equal to

the absolute value of its largest element and the norm of the scalar ∆b(t) is equal to its

absolute value. The minimal value of γb is set to equal the minimal value of γa since ∆b(t)
is part of ∆a(t). The maximal difference between the nominal and actual values of the two

parameters are then given as:

∆max
kβservo

=
1

γa

≥ |∆kβservo
(t)|;

∆max
cβservo

=
1

γa

≥ |∆cβservo
(t)|.

Controller 1.1 and 1.2

The specification for designing Controller 1.1 and 1.2 was to find γamin
= γbmin

, which

leads maximal allowable uncertainty in kβservo
and cβservo

. LMIs from Theorem 1 were

applied to design the feedback gains. Uncertainty structure case 1 resulted in γamin
=

γbmin
= 1.44 while structure 2 resulted in γamin

= γbmin
= 1.77.

Controller 2.1 and 2.2

Controllers 2.1, 2.2, 3.1, 3.2, 4.1 and 4.2 were designed with the aim to set a trade-off

between the maximal allowable uncertainty and maximal control signal amplitude. In these

cases LMIs from Theorems 1 and 2 were applied. The initial state condition is bounded as

φ = 0.002. The maximal uncertainty was set as 50%, thus the aim is to find the minimal l2
norm of the control signal defined by µmin in Theorem 2 that lead to stable controller when

γamin
= γbmin

= 2. Controller 2.1 resulted in µmin = 44 and Controller 2.2 in µmin = 13286.

Controller 3.1 and 3.2

Controllers 3.1 and 3.2 were designed based on the same principle as controller 2.1

and 2.2 with γamin
= γbmin

= 5. Controller 3.1 resulted in µmin = 26 and Controller 3.2 in

µmin = 3672.

Controller 4.1 and 4.2
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Table 1. Simulation environment 1 and 2

Description Environment 1 Environment 2

Parameter uncertainty ∆kβservo
(t) = ∆kβservo

(t) =

1

γamin

sin

(

6πt +
π

2

)

1

γamin

sin

(

6πt +
π

2

)

Parameter uncertainty ∆cβservo
(t) =

1

γamin

sin(10πt) ∆cβservo
(t) =

1

γamin

sin(10πt)

Computation delay – 1 ms constant time delay

Control signal saturation – ±2[rad/s]
normally distributed

Sensor noise – random noise,

10% variance

Free stream velocity U(t) = 14.1 U(t) = 14.1+5sin(2πt)

Input disturbance – ud(t) =
30

180
π from t = 1 s

The maximal uncertainty was set as 10% with γamin
= γbmin

= 10 and the control design

achieved µmin = 22 and µmin = 3595 for controllers 4.1 and 4.2 respectively.

Observer

The observer gains for every controller were designed by applying LMIs from Theorem

3.

5. Numerical Simulation Results

5.1. Simulation environment setup and results

Simulations were executed at U = 14.1m/s, which falls in the critical free stream velocity

range in which the uncontrolled aeroelastic model develops limit cycle oscillations. The

figures bellow show only that part of the simulations where the controller is turned on

and the open loop part where the oscillations develop are not depicted. Two simulation

environments were examined, in the first case there were no perturbations and the second

case contained some perturbations, which may occur in case of a physical implementation

of the control solution. The characteristics of the two environments are given in Table 1.
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Table 2. Evaluation of the controllers and the observer

Controller Evaluation

Controller 1.1 & 1.2 – maximal parameter uncertainty (70% and 56.5%)

– very high control signal (umax ≈ 105)

– settling time approximately 1s in environment 1

– environment 2 leads to limit cycle oscillations – high gains

– Practical implementation is difficult due to high

control signals

Controller 2.1 & 2.2 – 50% allowable parameter uncertainty

– high control signal (umax2.1 = 150, umax2.2 = 250)

– settling time approximately 1s in environment 1

– settling time approximately 1.5s in environment 2

– Acceptable solution for high uncertainty

Controller 3.1 & 3.2 – 20% allowable parameter uncertainty

– low control signal (umax2.1 = 35, umax2.2 = 7.8)

– settling time approximately 1s in environment 1

– settling time approximately 1.5s in environment 2

– Advantageous control signal magnitude

Controller 4.1 & 4.2 – 10% allowable parameter uncertainty

– lowest control signal (umax2.1 = 15, umax2.2 = 7)

– settling time approximately 1s in environment 1

– settling time approximately 1.5s in environment 2

– Decreasing the uncertainty does not decrease the control

signal magnitude significantly

Figures 2 and 3 show the closed loop responses of controllers 2.1 and 2.2 with observer

in simulation environments 1 and 2; and controllers 3.1 and 3.2 with observer in simulation

environments 1 and 2.

5.2. Evaluation of the results

All of the designed controllers and the observer is able to asymptotically stabilize the 3

DoF aeroelastic model with parametric uncertainties in domain Ω. The performance of

each controller is evaluated regarding to the settling time, control signal magnitude and

maximal parameter uncertainty. The main characteristics of the control solutions are given

in Table 2.

The general conclusion based on the time responses of the closed loop systems is that
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Figure 2. Time responses of controller 2.1 and 2.2 for environment 1 (top) and environment

2 (bottom)
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Figure 3. Time responses of controller 3.1 and 3.2 for environment 1 (top) and environment

2 (bottom)
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it is possible to find an acceptable trade-off between the allowable uncertainty and the

control signal magnitude. Increasing the allowable uncertainty leads to very high control

signals, which make the physical implementation difficult, on the other hand, there is a

lower limit of the uncertainty bellow which there is no significant gain in the decrease of

the control signal magnitude. It is also worth to note that the structure of the uncertainties

can highly influence the feasibility of the LMIs, in the present case structure 1 gave better

control performance at high allowable uncertainties and structure had better performance

in the lower uncertainty range.

Regarding the settling time, there is no significant difference between the controllers,

except for controller 1.1 and 1.2 in environment 2, which are not able to stabilize the

perturbed system due to very high feedback gains and the effect of the time delay.

6. Conclusions

The paper proposes output feedback control design strategy to robustly stabilize the

degrees-of-freedom Nonlinear Aeroelastic Test Apparatus, which can have parameter

uncertainties in the trailing edge dynamics. It was shown that it is possible to find an

optimal trade-off between the bound of control signal magnitude and the magnitude

of the acceptable parameter uncertainties by carrying out the numerical control design

systematically in a straightforward manner. The various structures of the same uncertainties

are highly influencing the Linear Matrix Inequalities feasibilities and also have a high

influence on the control performance. In the present system it was possible to derive two

different uncertainty structures and both of the structures have their own advantages and

disadvantages, thus the investigation of the uncertainty structures is not neglect-able. The

Tensor Model transformation and Linear Matrix Inequalities based multi objective control

design for quasi Linear Parameter Varying models can be executes in a routine-like fashion.
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