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Abstract: Thermodynamics as a wide branch of physics had a long historical 
development from the ancient times to the 20th century. The invention of 
the thermometer was the first important step that made possible to 
formulate the first precise speculations on heat. 

 There were no exact theories about the nature of heat for a long time and 
even the majority of the scientific world in the 18th and the early 19th 
century viewed heat as a substance and the representatives of the Kinetic 
Theory were rejected and stayed in the background. The Caloric Theory 
successfully explained plenty of natural phenomena like gas laws and heat 
transfer and it was impossible to refute it until the 1850s when the Principle 
of Conservation of Energy was introduced (Mayer, Joule, Helmholtz). 

 The Second Law of Thermodynamics was discovered soon after that 
explanation of the tendency of thermodynamic processes and the heat loss 
of useful heat. The Kinetic Theory of Gases motivated the scientists to 
introduce the concept of entropy that was a basis to formulate the laws of 
thermodynamics in a perfect mathematical form and founded a new branch 
of physics called statistical thermodynamics. 

 The Third Law of Thermodynamics was discovered in the beginning of the 
20th century after introducing the concept of thermodynamic potentials and 
the absolute temperature scale. At the same period of time the scientific 
issue of thermal radiation was also solved. 
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1. The invention of the thermometer [4][5][9][11][12]
 

The first important step to discover the principle of thermodynamics was the invention 
of the thermometer because precise and reliable survey results were needed. In the 
Ancient Times scientists wanted to measure the attributes of substances including their 
temperature. 

Philo of Byzantium (280 BC – 220 BC) reported in his manuscript about a heat-sensing 
instrument. He constructed tube with a hollow sphere that was extended over a jug of 
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water. When the sphere was placed in the sun the water began to bubble as the air 
expanded out of the sphere. If he put it in the shade the water rose in the tube as the air 
contracted in the sphere. Hero of Alexandria (10 AD – 70 AD) also inspected that the 
water level in a container rises and sinks due to the change in temperature. 

In the Middle Ages scientists and physicians raised the necessity of measuring 
temperature. They knew that the flame has higher intensity of heat than a hot piece of 
iron while the quantity of heat is much lower in it but they could not clearly define the 
difference between temperature and quantity of heat  

The Persian polymath Avicenna (980-1037) also recorded that he knew a mechanism to 
show the hotness and coldness of the air and developed an instrument in which the 
water level was controlled by the contraction and expansion of air but the really 
improvement came in Europe in the 16th century. 

The Italian Galileo Galilei (1564-1642) created the first thermometer in 1597 which 
was really a thermoscope because it did not have numerical scale so Galilei could find 
out only the relative differences between air temperature. Scientists in the 17th century 
constructed lots of thermometers (Sagredo, Santorio, Fludd, Drebbel) but they all 
suffered from the disadvantage that they were also barometers. In 1654 Ferdinando II 
de’ Medici (1610-1670), Grand Duke of Tuscany made a thermometer of sealed tube 
filled with alcohol that was only sensible to temperature and it was independent of air 
pressure. 

The Englishman, Robert Boyle (1627-1691) was the first who realized the necessity of 
standard scales in 1662 during his experiments with that he discovered his law (Boyle’s 
Law) that describes the relationship between the absolute pressure and volume of gas if 
the temperature is kept constant within a closed system. 

In 1665 Christiaan Huygens (1629-1695) suggested to use the melting and boiling point 
of water as a standard scale and in 1694 Carlo Renaldini (1615-1698) proposed to use 
them as fix points with twelve equal parts between them but it was not accepted 
immediately because scholars were unsure that the freezing and boiling points of water 
are constant. 

In 1724 the German physicist and glassblower Daniel Gabriel Fahrenheit (1686-1736) 
proposed a thermometer with reliable universal scale using mercury instead alcohol as 
the fluid within and it had three fix points. Zero was the coldest day of the winter in 
Danzig, the freezing point of the water was 32 degrees and the healthy human body 
temperature was 96 degrees that resulted 212 degrees for the boiling point of the water. 

Fahrenheit’s thermometer was the first standardised instrument that was suitable for 
scientific measurements. It was cleared that all substances have defined freezing and 
boiling points. Starting from this fact in 1742 the Swedish astronomer Anders Celsius 
(1701-1744) produced a thermometer with a standard scale using the melting point of 
water as zero and boiling point of water as 100 degrees. This scale bears his name and it 
is under use with Fahrenheit scale world-wide nowadays. Because of its simplicity the 
Celsius scale is more popular. 
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2. The first scientific issue: Is heat a substance or a motion? [4][5][9][11][12]
 

Ancient people related heat with flame and fire. The ancient Egyptians viewed it as a 
formation with mysterious origins. The Chinese Taoists believed that fire is one of the 
five principle elements like air, wood, metal and water. 

Ancient Greeks generally viewed fire and heat as a substance and often connected it 
with life and motion. Heraclitus (535 BC – 475 BC) was the first who framed a theory 
on heat. He argued that there are three principle elements in nature – fire, water, earth – 
from which the fire is the central element controlling and modifying the other two. 
Heraclitus claimed that heat is connected with the motion because he observed that 
living creatures are warm and died bodies are cold. The later ancient scholars 
(Empedocles, Aristotle) believed in four principle elements (water, earth, air, fire) and 
they also connected the heat with life and coldness with death. 

In the Middle Ages some Islamic scientists examined heat and fire and all of them 
connected it clearly with motion. Abū Rayhān Bīrūnī (973-1038) stated that the causes 
of heat are movement and friction. Avicenna and Abd Allah Baydawi (?-1286) also 
made similar discoveries that heat is generated from motion of external things and it 
may occur through motion-change. 

Even all the scientists of the 17th century believed in the essential connection between 
heat and motion. The English philosopher, Francis Bacon (1561-1626) in his work 
called Novum Organum demonstrated that heat is a kind of motion. Robert Boyle and 
his colleague Robert Hooke (1635-1703) had comparable opinion that heat is nothing 
else but vehement motion of the elementary particles. 

3. Roundabout ways: The Phlogiston and the Caloric Theory [5][9][11][12]
 

Now we would think that it led directly to the Kinetic Theory, but the level of the 
mathematical knowledge was not enough high to create satisfying answers to a lot of 
questions. This is why the theories on the material nature of heat became conspicuous 
because they were much more suitable for explaining the phenomena like melting heat, 
boiling heat, thermal radiation, heat transfer etc. In 1669 Joachim Johann Becher (1635-
1682) established the Phlogiston Theory that was later developed by Georg Ernst Stahl 
(1659-1735). In his work entitled Experimenta chymicae et physicae (1731) proposed 
that heat was associated with an undetectable substance called phlogiston that was 
driven out of the material when it was burnt. The theory was finally refuted in 1783 by 
Antoine-Laurent de Lavoisier (1743-1794) proving the participation of oxygen in 
burning. He framed instead the Caloric Theory that saw heat as a weightless and 
invisible fluid that moves to hot bodies from the cold ones.  

Herman Boerhaave (1668-1738) was the first who went to the very limits of the Caloric 
Theory. He pronounced that we can not make equal sign between heat, fire and light 
because they can manifest separately. Boerhaave supposed connection between heat and 
motion because rubbing together two parts of flint-stones fire came into being no matter 
how hot or cold they were. He tried to determine the weight of Caloricum and examined 
the phenomena of thermal expansion. 

The concept of fire and heat became clear only in the middle of the 18th century as the 
Scottish physicist, Joseph Black (1728-1799), started his experiments at the Glasgow 
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University in the 1750s. He defined the difference between temperature and the quantity 
of heat and founded the concept of specific heat that is the measure of heat (or thermal 
energy) required to increase the temperature of a unit quantity of a substance by one 
unit. 

Black’s most important discovery was the observation that melting ice absorbs heat 
without changing temperature. From this recognition he came to a conclusion that ice 
needs latent heat for this modification of physical condition. It was the main substantial 
proof of the material nature of heat for him and in 1779 one of his students, William 
Cleghorn (1754-1783), formulated the precise definition of the Caloricum. 

4. The most important results of the Caloric Theory: gas laws and heat 

transfer [1] [4] [5][9][11]
 

4.1. Gas Laws [1][9][10][11] 

The reason for the long survival of the Caloric Theory was that it opened the door to 
obtain the gas laws and to explain the heat flow. 

Based on Boyle’s work Guillaume Amontons (1663-1705) made an accurate 
thermometer in 1695 and investigated the pressure and temperature of gases. He found 
that the pressure of gas increases by one third between the temperature of cold and 
boiling water. From this Amontons concluded that the reduction of temperature leads to 
the disappearance of pressure and with this statement he founded the theory of absolute 
zero of temperature. 

Knowing the Caloric Theory Jacques Alexander César Charles (1746-1823) discovered 
in 1787 that at constant pressure the volume of gas increases or decreases by the same 
factor as its temperature. This theory was further developed by Joseph Louis Gay-
Lussac (1778-1750) and in 1802 he published his law that the pressure of a gas of fixed 
volume is directly proportional to its temperature. 

Then only one step was needed when in 1834 Benoît Paul Émile Clapeyron (1799-
1864) formulated the Combined Gas Law and stated that the ratio between the pressure-
volume product and the temperature of a gas remains constant. 

Clapeyron could not calculate the value of this constant without the knowledge of 
Avogadro’s Law and the absolute zero of temperature, but when these things were 
discovered and also accepted a decade later, the French chemist Henri Victor Regnault 
(1810-1878) created the Ideal Gas Law 

TR
M

m
pV 0=  

where p is the absolute pressure of gas, V is volume, m is the mass, M is the molar mass, 
R0 is the ideal gas constant and T is the absolute temperature. 
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4.2. The theory of heat transfer [3][5][9][10][11] 

Even in 1686 Edmund Halley (1656-1742) identified the fact that warm air rises and 
realized that solar heating is the cause of atmospheric motions. 

The first publication about heat transmission was written by Isaac Newton (1643-1727) 
in 1701 and stated that the rate of heat loss of a body is proportional to the difference in 
temperatures between the body and its surroundings. This law was not enough precise 
and it was further developed after the foundation of the laws of fluid mechanics. The 
first attempt to prove this law was made by Pierre-Louis Dulong (1785-1838) and 
Alexis Thérèse Petit (1791-1820) in 1817 and pointed that Newton’s Law is correct only 
by low differences of temperature. 

In the early 18th century it was not easy to see that all materials had determined 
conductivity of heat but when the new science of electricity appeared it became 
apparent that some materials were good conductors and others were effective insulators. 
In 1785 Jan Ingen-Housz (1730-1799) raised an idea that based on their electrical 
properties some materials might be good thermal conductors or thermal insulator too. 

In 1777 Carl Wilhelm Scheele (1742-1786) distinguished the three forms of heat 
transfer from each other – the thermal radiation, thermal conduction and thermal 
convection – and lots of experiments began in the late 18th century about them. In 1804 
John Leslie (1766-1832) observed that the cooling effect of stream is increasing with its 
speed. In the same year he carried out his famous experiments with the Leslie cube (see 
later). He was the first who artificially froze water into ice in 1810. 

The most important result of the Caloric Theory is associated with the name of the 
French mathematician, Jean Baptiste Joseph Fourier (1768-1830). In 1807 he 
formulated his empirical law of heat conduction based on his observations. It states that 
the rate of heat flow through two surfaces at right angles of a homogenous solid in a 
unit of time is directly proportional to thermal conductivity (heat transfer coefficient, λ) 
and to the temperature difference along the path of the heat flow and inversely 
proportional to the distance between the ends of the crossed surfaces: 

x

T
q

∆
∆

= λ  

In this formula q is the heat flux, λ is the heat transfer coefficient, ∆T is the temperature 
difference between the ends and ∆x is the difference between the ends. 

Fourier’s Law was not accepted for 15 years and it was finally published in 1822 in his 
monograph entitled Théorie analytique de la chaleur (The Analytic Theory of Heat). In 
this work Fourier summarized his most important discoveries and formulated own 
theory in a correct mathematical form by working out the differential form of thermal 
conduction with the help of Fourier series. 

The decisive step in the application of Fourier’s Law and the concept of heat transfer 
coefficient was taken by Ernst Karl Wilhelm Nusselt (1882-1957) when his paper called 
Das Grundgesetz des Wärmeübergangs (The Basic Law of Heat Transfer) was 
published in 1915. 
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5. The first attempts of the Kinetic Theory [4][9][11]
 

In spite of the rapid successes and propagation of the Caloric Theory there were a few 
scientists who took a stand for the Kinetic Theory of heat. In 1716 Jakob Hermann 
(1678-1733) pointed out that the atmospheric pressure is proportional to the air density 
and to the square of the average velocity of moving particles in atmosphere. Leonhard 
Paul Euler (1707-1783) even computed the value of this average velocity as 477 m/s. 

In 1738 Daniel Bernoulli (1700-1782) published his most important work called 
Hydrodynamique (Hydrodynamics). Based on the relation of Boyle’s Law showed that 
as temperature changes the pressure will change proportionally to the square of the 
particle velocities. 

In 1745 the Russian chemist Mikhail Vasilyevich Lomonosov (1711-1765) also wrote a 
relevant work against Caloric Theory under the title of Размышления о причине 
теплоты и холода (Reflections on the Reason of Heat and Cold). He reported that heat 
is generated by motion because when we rub our hands together or strike the iron 
intensively they become warmer. He explained that heat is nothing else but the high-
speed velocity of motion of invisible material particles. In his later works he tried to put 
into words the Principle of Conservation of Energy and diagnosed that however much 
matter is added to any body, as much is taken away from another. 

In the 18th century works of these scientists about the Kinetic Theory created little stir 
throughout the world because of the huge popularity of the Caloric Theory. In addition 
there were lingual difficulties too, because Lomonosov published his works in Russian 
and they were not attractive in Western Europe. 

Caloric Theory had only two weak points – the friction heat and the weight of the 
Caloricum – and a few practical researchers tried to take advantage of this situation. The 
cannon manufacturer Benjamin Thomson, Count Rumford (1753-1814) realized that the 
most suitable moments to take the weight of Caloricum when the ice is melting because 
at this moment ice absorbs a lot of heat without changing temperature. He took 
absolutely accurate and precise measurements with his apparatus and finally declared 
that even if Caloricum had weight it is immensely small. 

In 1798 Rumford made a study about the frictional heat that was generated through 
boring the cannons. He immersed a cannon barrel in water and showed that the water 
could be boiled by the frictional heat generated by the boring tool. Rumford 
demonstrated through the use of friction that it was possible to convert work to heat and 
this heat seemed to be inexhaustible. As a result of these experiments Rumford 
suggested that heat is a form of motion. 

The connection between heat and friction was also analysed in 1799 by Humphrey Davy 
(1778-1829). In his experiment he rubbed two pieces of insulated ice together and 
showed that melting heat could be originated only from mechanical work. 

Rumford and Davy were very close to refute the Caloric Theory but the advocates of it 
could easily explain the results of their experiments supposing the weightlessness of 
Caloricum. 
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6. The devolution of the Caloric Theory and the recruitment of the Kinetic 

Theory [2][4][9][11]
 

The overthrow of the Caloric Theory became possible after the birth and verification of 
the Principle of Conservation of Energy. Although the foundations of this theory are 
findable in the work of Thales of Miletus and lots of others the first mathematical 
formula was created by Gottfried Wilhelm Leibniz (1646-1716) who noticed that in 
many mechanical systems a determinate quantity of vis viva (living force) is conserved. 

Instead the name of vis viva Thomas Young (1773-1829) suggested to use the 
expression of energy in 1802 but he still used Leibniz’s formula (mv2) to calculate the 
quantity of it. Only in 1829 Gaspard-Gustave de Coriolis (1792-1843) recalibrated it to 
an appropriate formula of ½mv2 and named it as kinetic energy. 

It was easy to understand the connection between mechanical work and kinetic energy 
but the verification of the mechanical equivalent of heat was much more difficult. The 
encouragement was brought by the steam engine that was already invented in the 17th 
century but it was improved by James Watt (1736-1819) only in 1769. The main 
problem with these machines was that they were slow and converted less than 2% of the 
invested fuel into useful work. It was immediate to enlarge the useful effect of steam 
engines that was urged by Watt. 

About the first experiments and measurement on the enlargement of the useful effect 
was published in 1776 by the Scottish engineer John Smeaton (1724-1792) in which he 
supported the vis viva theory. Decades later William Hyde Wollaston (1766-1828) and 
Peter Ewart (1767-1842) also confirmed Smeaton’s publication but they were attacked 
on the plea that they are in conflict with Newton’s law on impulse. 

An important step was presented in 1824 by the French engineer, Nicolas Leonard Sadi 
Carnot (1796-1832) who published his work under the title of Réflexions sur la 
puissance motrice du feu et sur les machines propres à développer cette puissance 
(Reflextions on the Motive Power of Fire). On the analogy of the hydropower engine he 
designed a hypothetical engine (Carnot heat engine) that transfers energy from a warm 
region to a cool region of space and, in the process, converting some of that energy to 
mechanical work. This engine operates on a thermodynamic cycle called Carnot cycle 
that consists of four steps: 1. Reversible isothermal expansion of the gas at a hot 
temperature TH (isothermal heat addition). 2. Isentropic (reversible adiabatic) expansion 
of the gas (isentropic work output). 3. Reversible isothermal compression of the gas at a 
cold temperature TC (isothermal heat rejection). 4. Isentropic compression of the gas 
(isentropic work input). After the fourth step the gas returns to the initial state. 

Based on the Caloric Theory Carnot viewed heat as a substance and computed the 
efficiency of the Carnot heat engine with the following relationship: 

1

2121 )(

T

TT

Q

TTQ −
=

−
=η  

where η is the efficiency, Q is the heat put into the system, T1 is the absolute 
temperature of the hot reservoir and T2 is the absolute temperature of the cold reservoir. 
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Although he got seemly correct value for the efficiency the analogy that he used was 
perfectly incorrect. There is not as much heat in the warm region as in the cold region 
because the heat changes into mechanical work. On the other hand the recognition that 
the useful effect of the engine depends only on the temperature difference and it is 
independent of the working substance was perfect. 

In his later memorandums before his early death there are plenty of indications to the 
Principle of Conservation of Energy and to the vitality of the Kinetic Theory. 

7. The First Law of Thermodynamics – The Principle of Conservation of 

Energy [1][2][9][11][12]
 

The German surgeon Julius Robert von Mayer (1814-1878) started a study on the 
physical side of the symptoms of life during his journey in Dutch East India in 1840 and 
noticed that the venous blood of the sailors in the tropics is much darker than in cold 
climates. He concluded that the chemical processes of the body get their sources of 
energy for oxidation from the nature. 

Arriving home he wrote a scientific paper in 1841 under the name of Über die 
quantitative und qualitative Bestimmung der Kräfte (On the Quantitative and 
Qualitative Determination of Forces). It was ignored by the physicists because of its 
strange argumentation that were based on the principle of causa aequat effectum so he 
could publish it next year in a chemical journal under the title of Bemerkungen über die 
Kräfte der unbelebten Natur (Remarks on the Forces of Inorganic Nature). This 
fundamental paper contained the first adequate formulation about the Law of 
Conservation of Energy that although work and heat are different forms of energy, they 
can be transformed into one another. He also specified theoretically the numerical value 
of the mechanical equivalent of heat as 365mkp (3580J) which is a little bit far from the 
real value but the order of size and the deduction was correct. Mayer also gave 
suggestions how to transform experimentally kinetic energy into heat. 

Contemporaneously James Prescott Joule (1818-1889) made experiments and 
measurements to estimate the mechanical equivalent of heat and in 1843 he announced 
his results in a scientific meeting in Cork but there was only meagre attendance. In 1845 
Joule wrote a paper On the Existence of an Equivalment Relation Between Heat and the 
Ordinary Forms of Mechanical Power and sent it to the British Association meeting in 
Cambridge. He reported about his best-known experiment using a falling weight to spin 
a paddle-wheel in an insulated barrel of water that increased the water temperature. 
Firstly he estimated the mechanical equivalent of heat as 424mkp (4158J) that was later 
refined by him as 427mkp (4187J). 

The Law of Conservation of Energy was outlined in the works of Mayer and Joule but 
the modern form of it was formulated by the German physician Ludwig Ferdinand von 
Helmholtz (1821-1894). Studying the muscle metabolism he observed that no energy is 
lost in the muscle movement. In 1847 he based his book Über die Erhaltung der Kraft 
(On the Conservation of Energy) on a rule that all form of energy (mechanic, heat, light, 
magnetism) are equivalent. His theorem was hardly disputed and the Law of 
Conservation of Energy could be gone out of mind if did not raise up the interest of 
William Thomson, Lord Kelvin (1824-1907) who recognized the significance of 
Helmholtz’s paper. He experimented in order to bloster Joule’s results and in 1848 he 
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published his article On the Absolute Thermometric Scale. He suggested the 
introduction of an absolute temperature scale about which Amontons had speculated in 
1695. Based on the Celsius scale Kelvin determined the absolute zero temperature in -
273°C under which the kinetic energy of material particles is as low as possible. 

8. The Second Law of Thermodynamics and the Kinetic Theory of 

Gases
[1][2][4][5][9][11][12]

 

In the middle of the 19th century it was trivial that the Law of Conservation of Energy in 
not enough to explain the natural phenomenon because – as Carnot stated formerly – 
there is a determined tendency of the thermodynamic processes and the heat can 
spontaneously flow only from hot to cold materials. This is why the Second Law of 
Thermodynamics was needed and this necessity was recognized by Rudolf Julius 
Emanuel Clausius (1822-1888). 

In 1850 he wrote his famous paper Über die bewegende Kraft der Wärme (On the 
Moving Force of Heat and the Laws of Heat) in which he stated the basic idea of the 
second law that heat generally cannot flow spontaneously from cold to hot bodies. If it 
could happen it would be possible to transform the 100% of heat into mechanical 
energy. 

Another formulation of the second law was written down in 1851 by Lord Kelvin in his 
work entitled On the Dynamical Theory of Heat that it is impossible to convert heat 
completely into work in a cyclic process. 

These negative sentences as the law of thermodynamics sounded very strange for the 
physicists so a new idea was needed to formulate a more adequate definition. It is going 
to be the idea of entropy a decade later. 

At the same time the work of Bernoulli was rediscovered by John Herapath (1790-
1868) in 1816 and submitted a paper to the Royal Society but it was rejected because its 
conclusions were seemed to be erroneous. 

After the studying of Bernoulli’s and Herapath’s work John James Waterston (1811-
1883) wrote a publication in 1843 under the title of Thoughts on the Mental Functions. 
He correctly derived the consequence that the gas pressure is generated by the high-
speed motion of the material particles and countable with multiplying the number of 
molecules per unit volume, the molecular mass, and the molecular mean-squared 
velocity. 

However it contained the elementary form of the Kinetic Theory of Gases this paper 
was rejected by the Royal Society because of its modern intonation and he could publish 
a short abstract of it. In 1848 Joule made calculations in order to compute the speed of 
the hydrogen molecule but his article in 1851 did not arouse the interest so together with 
Waterston’s work it had only a little influence on the next generation. 

The real breakthrough came after the article of August Karl Krönig (1822-1879) in 
1856. It was based on Waterston’s work and its simple gas-kinetic model gave plenty of 
motivations and ideas for the other researchers. In 1857 Clausius wrote a paper under 
the title of Über die Art der Bewegung, welche wir Wärme nennen (On the Kind of 
Motion which we call Heat) in which he stated that the internal energy of gases equals 
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with the kinetic energy of the atoms or molecules of gases He developed a much more 
complex but sophisticated theory than Kröning that included not only the translational 
but also the rotational and vibrational molecular motions. 

This article motivated the Scottish physicist, James Clerk Maxwell (1831-1879) to give 
up the theorem that in a given amount of gas the molecules have the same speed and 
formulated the Maxwell Distribution of Molecular Velocities with which he founded a 
new branch of physics called statistical thermodynamics. He published his formula in 
1860 in his work called Illustrations of the Dynamical Theory of Gases that described 
the particle speeds of gases at a determinate temperature and showed the statistical 
distribution of it. Maxwell worked out the equipartition theorem which means that in 
thermal equilibrium the total kinetic energy of a system is shared equally (in average) 
among all of its various forms, so the average kinetic energy in the translational motion 
of a molecule should equal the average kinetic energy in its rotational motion. After 
universalizing this law he also stated that the internal energy is equally shared between 
the degrees of freedom and it depends only on the temperature of the system. 

9. Entropy, Statistical Thermodynamics and the Third Law of 

Thermodynamics 
[1][2][7][8][9]

 

Joule and Kelvin also speculated that there was an inevitable loss of useful heat in all 
thermodynamic processes and observed that natural processes are tended from an 
organized to a disorganized state. In addition in the 1850s it was necessary to find a 
correct mathematical description for the Second Law of Thermodynamics because the 
former definitions were not as accurate as needed. 

This is why coined Clausius the concept of entropy in 1865 which means how organized 
or disorganized a system is. With the help of entropy we can explain the tendency of 
processes because the most likely event happens in the nature. It was also possible to 
formulate mathematically why flows spontaneously heat from hot into cold bodies. 
Because decreasing of temperature results the increasing of entropy. 

The young Austrian physicist Ludwig Eduard Boltzmann (1844-1906) started to deal 
with the Kinetic Theory of gases in 1866. His work was promoted by Maxwell’s book 
called Theory of Heat in 1871 and confirmed that the thermodynamic systems is tended 
towards the thermal equilibrium because this is the most likely state. 

Developing Maxwell’s equipartition theory and the distribution of molecular velocities 
he calculated the value of kinetic energy to each degree of freedom with the formula of: 

kT
2

1  

where T is the absolute temperature and k is the Boltzmann’s constant and equals to 
1,38065×10–23 J/K. With the help of entropy Boltzmann redefined the Second Law of 
Thermodynamics in 1877. He introduced the concept of thermodynamics probability as 
the number of microstates corresponding to the current macrostate and formulated the 
connection between entropy and molecular motion showing that the logarithm of 
thermodynamic probability (W) is directly proportional with the entropy (S). 

WkS ln∗=  
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Before the Third Law of Thermodynamics the last important step was taken by the 
American physicist and chemist Josiah Willard Gibbs (1839-1903) by introducing the 
concept of the thermodynamic potentials and free energy in 1876 in his monograph 
called On the Equilibrium of Heterogeneous Substances. Thermodynamic potentials 
could be formulated with the help of the state parameters like volume (V), pressure (p), 
temperature (T) and internal energy (U) and they make easier to calculate some 
characteristics of the system (heat capacity, reaction heat). These potentials are free 
energy (F), enthalpy (H) and free enthalpy (Gibbs energy, G) and they measure the 
useful work of a closed thermodynamic system at constant temperature and volume 
(free energy), or at constant pressure (enthalpy) or at constant pressure and temperature 
(Gibbs energy). 

Studying the high-temperature reaction of gases Walther Hermann Nernst (1864-1941) 
analyzed these kinds of thermodynamic potentials in 1889. He was deeply influenced by 
the thermodynamic researches of Max Karl Ernst Ludwig Planck (1858-1947) and the 
birth of quantum mechanics in 1900 and started to examine the change in specific heat 
of different materials. In 1906 he published his theorem with which he established the 
Third Law of Thermodynamics. This law describes the behaviour of a thermodynamic 
system as the temperature decreases to the absolute zero. Nernst stated that the entropy 
of a system at a temperature of absolute zero becomes zero in the case of perfect 
crystalline substances. He also laid down that it is impossible to reduce the temperature 
of any system to the absolute zero in the finite number of steps. 

0lim
0

=∆
→

S
T

 

In this formula T is the absolute temperature and S is the entropy of the system. 

10. Thermal radiation [1][3][4][5][6][9][11][12]
 

It was an important scientific issue from the beginnings of the thermodynamics to solve 
the problem of thermal radiation. Scientists in the Middle Ages observed that a heated 
piece of iron radiates heat and light at the same time but the forms of heat transfer were 
distinguished only in 1777 by Scheele as convection, conduction and radiation. 

The Swiss physicist Pierre Prévost (1751-1839) showed it first in 1791 that all bodies 
radiate heat no matter how hot or cold they are and discovered in 1809 that the radiated 
heat depends only on the temperature of the radiating body and it is independent from 
the temperature of the surroundings. 

In 1804 John Leslie (1766-1832) experimented with his famous apparatus called Leslie 
cube in order to monitor the intensity of radiant heat. He filled a cubical vessel with 
boiling water and composed one side with highly polished metal and two sides with dull 
metal. One side of the cube was painted black. During his experiments he detected the 
greatest radiation from the black side and irrelevant from the polished side. 

Using an optical bench that was set up with theropiles, shields and heat and light 
sources the Italian physicist Macedonio Melloni (1798-1854) examined carefully the 
black body radiation and in 1831 he showed that radiant heat could be reflected, 
refracted and polarized as light. 
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The Prussian physicist, Gustav Robert Kirchhoff (1824-1887) was interested in black-
body radiation too and in 1859 he noticed a simple but important connection between 
the emission and absorption of radiating bodies. Kirchhoff’s Law of the Thermal 
Radiation states that in a unit of time the emission of a radiating body or a surface at 
given temperature and frequency equals its absorption, so the ratio of the emission and 
absorption is independent from the material parameters of the radiating body. 

The further development was promoted by Maxwell’s conclusion in 1862 that there is a 
clear connection between light, electromagnetic and thermal radiation. John Tyndall 
(1820-1893) also made experiments about thermal radiation in the 1860s and loaded 
with errors measured that the emission of black-body at 1473K is 11,7 times higher than 
at a temperature of 798K. His measurements were analyzed by the Slovenian physicist, 
Jožef Štefan (1835-1893) in 1879 and realized a connection between Tyndall’s results. 
He constructed a law that the total energy (E) radiated per unit surface area of a black 
body in unit of time is directly proportional to the fourth power of the black body’s 
absolute temperature (T): 

4TE σ=  

Using the laws of thermodynamics Boltzmann also recognized the same connection in 
1884 therefore this law was named Štefan-Boltzmann Law. The σ constant in the 
formula (Štefan-Boltzmann constant) was determined as 5,672x10–8W/m2K4. 

The solution of the radiant heat problem got near when in 1893 Wilhelm Karl Werner 
Wien (1864-1928) noticed an empirical formula between the temperature (T) of the 
body and the peak wavelength (λmax) emitted by it: 

mKT 3
max 108978,2 −∗=λ  

He also ascertained that hotter bodies emit most of their radiation at shorter and colder 
bodies at longer wavelengths. Based on Maxwell’s Law of Speed Distribution he 
created a formula to describe the intensity of black body radiation in 1896. 

At the same time Lord Rayleigh (1842-1919) and James Hopwood Jeans (1877-1946) 
tried to introduce another kind of formula to describe spectral radiance of 
electromagnetic radiation that was later known as Rayleigh-Jeans Law. 

Plenty of scientific researchers (Lummer, Pringsheim, Rubens, Kurlbaum) wanted to 
measure the intensity of thermal radiation in a huge scale of wavelengths and found out 
that Wien’s Law is applicable only at short and Rayleigh-Jeans Law only at long 
wavelengths. 

Finally the German physicist Max Karl Ernst Ludwig Planck (1858-1947) solved the 
problem and created a perfect formula that describes the black body radiation at all 
wavelengths as a function of temperature and wavelength 
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where c is the speed of light, h is Planck’s constant, λ is the wavelength, k is 
Boltzmann’s constant and T is the temperature of the black body. 
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To construct this relationship Planck had to postulate that energy could be emitted only 
in quantized form. This was presented by him on 14th December 1900 in Berlin and this 
date is declared as the birth of Quantum Physics. 

Planck also gave a very simple formula to describe the energy quantum (energy of the 
photon) with the product of the frequency of its associated electromagnetic wave (ν) and 
the Planck constant (h=6,626×10–34 Js): 

νhE =  

On the basis of Planck’s quantum theory Albert Einstein (1879-1955) could come 
forward in 1905 with the idea of the quantization of light. In his article entitled Über 
einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen 
Gesichtspunkt (On a Heuristic Point of View Concerning the Production and 
Transformation of Light) Einstein stated that light consists of localized particles 
(quanta). This theory was first rejected and it became fully accepted only in 1919. In 
1906 Einstein also solved with the help of the quantum theory the dilemma why exists a 
huge difference between the theoretically and measured specific heat of solids. 
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Abstract:  The paper shows some convincing Hungarian examples for the necessity of 
road safety performance indicators. In lack of these data sometimes it is 
almost impossible to explain the changes in the road safety situations. What 
is more, it is also impossible to discover the deteriorating factors behind 
general improvement, which is important in order to make the road safety 
policy more target-oriented and effective. In Hungary, the monitoring 
system has been working for more than a decade and the time series show 
very interesting and important changes. (In the field of safety belt wearing 
rate and usage of DRL we have such data collection methodology which 
has been considered as best practice in the framework of the SafetyNet 
project.) Based on the monitoring of such data, some important 
countermeasures could be introduced in Hungary. International comparison 
of safety performance indicators could have significant impact on the 
national road safety policy. The paper shows some examples for such 
impacts as well. 

Keywords: road safety, performance indicators, safety belt, daytime running lights, 

child safety 

1.  The system of data collection 

Collection and evaluation of some kinds of road safety performance indicators began in 
1992 in Hungary. All work items were carried out by the TÜV NORD-KTI Kft. [1]. 
Since the usage of Daytime Running Lights (DRL) became obligatory from 1993 on, it 
seemed to be obvious to collect the safety belt wearing and DRL usage rates together. 
The yearly sample size is approximately 10 000 vehicles, including cars, microbuses 
and small vans (categories M1 and N1). The cars equipped with foreign and taxi licence 
plates haven’t been taken into account. Sample sizes by different road types (country 
roads, motorways, roads inside built-up areas) were above 3000. 

Since collection of the DRL usage and the safety belt wearing rates have been 
combined, the observations were carried out always in good weather and visibility 
conditions in order to avoid the influence of these factors on DRL usage rates. Data 
collection was carried out always in the same period of the year (May, June) for the 
sake of comparability. 
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Performance indicators mentioned are so-called behavioural ones [2], since they reflect 
the rate of following the rules by drivers. 

As the next examples show, there are already relatively long time series of SPIs in 
Hungary. They reflect different trends, which are useful in the evaluation and 
elaboration of road safety policies. 

The methodology of Hungarian data collection in the field of safety belt wearing rate 
and the usage rate of DRL has been considered as best practice in the framework of the 
SafetyNet project. 

After the introduction of uniform EU legislation regarding DRL (automatic DRL for 
new cars), this kind of performance indicators will lose its importance step by step. 

2.  Safety belts 

2.1.  Changes in safety belt wearing rates 

In Figure 1 the development of the safety belt wearing rate can be seen by seat positions 
and in general. The first survey was carried out in 1992 and for the year 2006 – in lack 
of contract – we do not have data. 

 

Figure 1: Safety belt wearing rates in Hungary 

After a sudden increase in the wearing rate in the front seats, following the modification 
of the Highway Code in 1993, a declining trend was characteristic from this year until 
1999. It is very contradictory and shows clearly the necessity of the road safety 
performance indicators, that this declining trend in safety belt wearing rate could be 
observed in a period, which was a so-called “success story” in the history of the 
Hungarian road safety. (Between 1990 and 2000, the number of the people killed in 
road traffic accidents decreased by more than 50%). 



Acta Technica Jaurinensis Vol. 3. No. 1. 2010 

 19

After the nadir in 1999 there was an increasing trend in safety belt wearing rate not only 
in the front, but in the back seats as well. This trend is the same even today; the values 
in 2009 are higher than the earlier ones. Although safety belt wearing rate in the back 
seats of passenger cars is below 50% yet, the relative change (from 6.6 % in 1999 to 
49.3 % in 2009) was higher (42.7 %) than in the front seats (from 43.8 % in 1999 to 
79.2 % in 2009 = 35.4 %). 

The Figure 2 shows the changes in safety belt wearing rate outside built-up areas by 
road categories and seat positions. 

 

Figure 2: Safety belt wearing rates outside built-up areas 

on rural roads and on motorways 

There are similar changes on rural roads (in the IRTAD database: country roads) and 
motorways as well: after a declining trend, until this year there was an increasing rate in 
the safety belt wearing. It can be observed that the rates are higher on motorways than 
on rural roads. It seems that car occupants consider the accident risk on motorways 
(travelling at higher speed) higher than on rural roads. In 2009, the safety belt wearing 
rate was 75.5 % in the front seats of passenger cars on rural roads and almost 89.0 % on 
motorways. 

The safety belt wearing rates inside built-up areas have been always the lowest in 
Hungary in comparison with roads outside built-up areas (country roads and 
motorways). 

This is the case in 2009, too, in spite of the fact that increasing trend is characteristic on 
roads inside built-up areas as well. The amount of increase is outstandingly high in back 
seats of passenger cars. This can be seen in the Figure 3 very well. 

Although the increasing trend in safety belt wearing seems to be general in Hungary, the 
international comparison shows that there is a further potential of improvement in this 
field. 
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Figure 3: Safety belt wearing rates inside built-up areas (in Budapest) 

2.2.  International comparison of safety belt wearing rates 

In the IRTAD database there are data for safety belt wearing rates observed in the front 
seats of passenger cars. These data are appropriate for international comparison. 
Unfortunately only some countries have data for 2008, most of them have only those for 
2007. 

In Figure 4 the safety belt wearing rates observed inside built-up areas in 2007 and 2008 
can be seen. 

 

Figure 4: International comparison of safety belt wearing rates in front seats 

of passenger cars inside built-up areas (Source: IRTAD) 
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In spite of the improvement of recent years, Hungary is the last one out of the 
investigated countries. Even the rate of 2009 (72 %) would be the lowest among the 
countries shown in Figure 4. It is surprising that in France, Japan and the Netherlands 
95-98 % of the drivers are wearing the safety belt inside built-up areas. 

Figure 5 shows the same comparison for country roads. Here, the Hungarian data for 
2009 (75.5 %) were found to be equal to the Belgian ones for 2007. 

 

Figure 5:International comparison of safety belt wearing rates in front seats of 

passenger cars on rural roads (Source: IRTAD)  

Despite the clear improvement in Hungary, we are still the last considering the usage of 
safety belts on country roads, out of the countries displayed in Figure 5. The French rate 
is almost 100 % and the rates in New-Zealand, Great Britain, Israel, and the Netherlands 
are 96 %. 

 
Figure 6: International comparison of safety belt wearing rates in front seats of 

passenger cars on motorways (Source: IRTAD)  
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The safety belt wearing rates observed in front seats of passenger cars on motorways 
can be seen in Figure 6. Here, the number of countries compared is lower than in the 
earlier two Figures. If we take into account the Hungarian rate for 2009 (89 %, cannot 
be seen in the Figure), we can say that perhaps Hungary could “overtake” Belgium, 
what is more, this data would be very close to the Swiss and Austrian figures registered 
in 2007. 

2.3. Child Safety 

The safety of children is of high priority in Hungary. 

In Figure 7 the usage rate of child safety devices can be observed.  

 

Figure 7: Usage rate of child safety devices in Hungary 

Until the year 2000 the usage rate of child seats and the rate of protected children were 
very low, about, or below 10%. It means that the rate of unprotected children was very 
high, between 80 and 90 %. The first step towards the higher safety of children was the 
introduction of the mandatory use of child seats as of 1 January 2002. From that time 
children younger than 12 years and below 150 cm height are obliged to travel in child 
safety seats. From 1 April 2007 the legislation changed. It means that instead of age, the 
body height is decisive. Under 150 cm height, children have to travel in child restraint 
systems which are in accordance with their weight. 

From 1 January 2008 the point demerit system became stricter. The number of demerit 
points for non-using the proper safety device has been doubled: from this date on the 
number of demerit points for this offence are two. 

As of 1 January 2009 only the child safety seats having an approval number starting 
with 03 or 04 can be sold and used. This means a stricter approval procedure. 
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Due to all of these measures and road safety campaigns, the usage rate of child restraint 
systems was almost 70% in 2009. The rate of children restrained by adult safety belts 
remained below 10%. Promising result is that the rate of unprotected children decreased 
from 65% (1994) to 28% (2009). Of course, in the future there is a lot to do for the 
higher safety of children, but there is a clear positive progress.  

The number of killed and injured child car-occupants in the last three years shows 
clearly the positive development (Table 1). 

Table 1: Number of killed and injured child (0-14 years) car-occupants 
 

Year Killed Seriously 

injured 

Slightly 

injured 

All casualties 

2000 13 128 641 782 

2001 15 114 837 966 

2002 17 124 843 984 

2003 15 156 907 1078 

2004 22 142 988 1152 

2005 19 135 1044 1198 

2006 23 134 1033 1190 

2007 18 118 1063 1199 

2008 13 104 915 1032 
 

2.4. The remaining safety potential of safety belt wearing in Hungary 

The earlier estimations regarding the number of avoidable deaths and injuries by further 
increase in the safety belt wearing rate have been based mostly on Bohlin’s [3] research 
results. In the meantime a lot of research projects have been carried out and now their 
meta-analysis is available [4]. These results can be considered as the most reliable ones, 
therefore the data from Elvik and Vaa are considered to be the basis of our estimation, 
too. It is important that the authors [4] make a distinction from the point of view of 
efficiency between the front and the back seats safety belts, what is more, between 
drivers and front seat passengers, too. According to the results of the meta-analysis the 
fatality risk of the car driver can decrease by 50% as a result of safety belt wearing. The 
respective values for the decrease of the risks of serious and slight injuries are 45% and 
25%. The same values for the front seat passengers are the following:  

Fatality risk:       –45% 
Risk of serious injuries:     –45% 
Risk of slight injuries:   –20% 

The values for the back seats are: 

Fatality risk:       –25% 
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Risk of serious injuries:   –25% 
Risk of slight injuries:     –20% 

It seems to be surprising at the first sight that the results of the meta-analysis estimate 
much less decrease in the number of slight injuries than Bohlin’s results (80%) do. But 
is is very probable, if we consider that the safety belt can save life by decreasing the 
severity of injuries. This means that the persons who sustained fatal injuries without 
safety belt will only be serious injured if wearing a belt, and the persons who sustained 
serious injuries without safety belt will only be slight injured with safety belt. Taking 
this into account the results from Elvik and Vaa are more understandable.  

First we carry out the estimation for 100% safety belt wearing rate. 

In Hungary 146 car drivers sustained fatal, 511 serious, and 1096 slight injuries without 
safety belt in 2008. It means that in their group 

  146×0.5  =  73  fatal 
  511×0.45=230  serious 
1096×0.25=274  slight 

Injuries could have been avoided in case of 100% safety belt wearing rate. (In 2008  the 
average safety belt wearing rate was 77% in Hungary). 

In the same year 59 front seat car passengers sustained fatal, 203 serious, 526 slight 
injuries without safety belt. Having applied the data of the meta-analysis: 

   59×0.45 =  27 fatal 
 203×0.45 =  91 serious 
 526×0.20 =105 slight  

Injuries could have been prevented in case of 100% safety belt wearing rate. 

Finally, in the back seats of cars 55 passenger died, 266 sustained serious and 622 slight 
injuries without safety belt in 2008. Having used these data and the results of the meta-
analysis: 

   55×0.24 =  14 fatal 
 266×0.25 =   67 serious 
 622×0.20 = 124 slight 

Injuries could have been prevented in case of 100% safety belt wearing rate in the group 
of car occupants. 

Taking into account  that 100% safety belt wearing rate – especially in Hungary – is 
unrealistic, the real target could only be 95%. The example of highly motorized 
countries has shown that this rate could be kept permanently above 90% with 
appropriate awareness campaigns and police enforcement.  

In case of 95% safety belt wearing rate: 

114×0.95 = 108 fatal 
388×0.95 = 369 serious 
503×0.95 = 478 slight  

Injuries could have been prevented.  
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Nowadays – in the era of high-tech safety belt systems (belt retention system, 
pyrotechnic device) – the safety potential of the belts is higher, not to mention the fact 
that they “work together” in most cases with airbag systems.  

3.  Daytime Running Lights (DRL) 

In Hungary, the obligatory use of DRL was introduced in two steps. First, as of 1 March 
1993, this involved only the main roads outside built-up areas and the so-called motor 
roads (semi-motorways). Later, from 1 June 2004 the use of DRL became obligatory on 
all roads outside built-up areas. It means that on roads inside built-up areas the usage of 
DRL is not obligatory. The legislation is valid outside built-up areas throughout the 
whole year. 

In Figure 8 the changes in DRL usage rate can be seen by road categories. (The data for 
2006 are lacking here also). The trend of the DRL usage rates is entirely different from 
those of safety belt wearing rates. Here – outside built-up areas – an almost continuous 
increasing trend can be observed. After the obligatory introduction of DRL, this rate 
was below 60 % and in 2009 it was almost 95 % on rural roads and on motorways. The 
rates in Budapest are very low, which is obvious, since – as mentioned earlier – inside 
built-up areas the usage of DRL is not mandatory. In spite of this, DRL usage rate 
increased in the last two years in Budapest as well. 

 

Figure 8: DRL usage rates in Hungary according to road categories 

4.  Conclusions 

Hungary has reliable performance indicators on the rate of safety belt and DRL users. 
Time series of these indicators are available from 1992 or 1993, respectively. The trend 
in safety belt wearing shows almost the same changes on all road types and seat 
positions: declining rate from 1992 to 1999 and increasing rate from 2000 on until now. 
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This positive development confirms that the road safety policy is on the right track 
regarding safety belt wearing. The increasing rates are the results of the further 
development of the point demerit system, the co-ordinated awareness campaigns, the 
more intensive police enforcement and the more serious consequences of non-wearing. 
In spite of the positive development of recent years, there is a relatively great potential 
in the further increasing of the safety belt wearing rates. According to estimations 108 
fatalities, 369 serious injuries and 478 slight injuries could have been prevented in case 
of 95% safety belt wearing rates in Hungary. 

The usage of child restraint systems shows also a great development, the rate of 
unprotected children decreased from 65% (1994) to 28 % (2009), though on the other 
hand it means, that almost one third of children travel still unprotected. 

The rate of DRL users shows a continuously increasing trend. 

The introduction and widespread usage of other performance indicators detecting the 
behavioural characteristics in the field of legislation regarding speed, drinking and 
driving, etc. would be very important in the future [5].  
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Abstract: Unbalanced classification problems are quite common in the practice

of machine learning. Unbalancedness means that the distribution of the

class labels is far from uniform. Convex polyhedron classifiers are special

binary classifiers that fit well to unbalanced problems. In this paper

I propose novel and computationally efficient algorithms for training

convex polyhedron classifiers. The proposed algorithms are based on the

smooth approximation of the maximum function. I also give the analogous

variant of the approach for regression and collaborative filtering. Finally,

I demonstrate the usefulness of the approach via experiments on artificial

and real datasets.
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1. Introduction

In this paper machine learning is considered as discovering the relationship between

the features of a phenomenon, based on a dataset that was collected by observing the

phenomenon. Classification, regression, and collaborative filtering are three important

special cases of machine learning.

In the problem of classification the phenomenon is modeled by a random pair (X,Y ),
where

• X taking values from R
d is called input, and

• Y taking values from C = {c1, . . . ,cM},M ≥ 2 is called label. If M = 2, then the

problem is termed binary classification, otherwise it is termed multiclass classification.

The goal is to predict Y from X with a function1 g : R
d 7→ C called classifier such that

the probability of error

L(g) = P{g(X) 6= Y }

1Functions are always assumed to be measurable in this paper. Otherwise the function of a random variable

would not necessarily be a random variable.
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is minimal.

Typically, the distribution of (X,Y ) is unknown, therefore the minimal error probability

and the optimal classifier are unknown too. We only have a finite sequence of corresponding

input–label pairs from the past

T = ((X1,Y1), . . . ,(Xn,Yn)),

called training set. It is assumed that these pairs were drawn independently from the

unknown distribution of (X,Y ), and also that (X,Y ) and T are independent. In practice

we usually observe only one realization of T denoted by t = ((x1,y1), . . . ,(xn,yn)). This

is our data at hand that we have to live with. The task is to estimate the optimal classifier

on the basis of T.

In the problem of regression the phenomenon is a random pair (X,Y ), where

• X taking values from R
d is called input, and

• Y taking values from R is called target.

The goal is to predict Y from X with a function g : R
d 7→ R called predictor such that the

mean squared error

L(g) = E{(g(X)− Y )2}

is minimal. It is true again that typically we have no information about the distribution

of (X,Y ). The task is to estimate the optimal predictor based on an independent and

identically distributed sample.

In collaborative filtering, the phenomenon is a random triplet (U,I,R), where

• U taking values from {1, . . . ,NU} is called the user identifier,

• I taking values from {1, . . . ,NI} is called the item identifier, and

• R taking values from {v1, . . . ,vM} ⊂ R is called the rating value.

A realization of (U,I,R) denoted by (u,i,r) means that the u-th user rated the i-th item

with value r. The goal is to predict R from (U , I) with a function g : {1, . . . ,NU} ×
{1, . . . ,NI} 7→ {v1, . . . ,vM} such that mean squared error

L(g) = E{(g(U,I)−R)2}

is minimal.

Collaborative filtering can be viewed as a special case of regression. However, classical

regression techniques are not suitable for solving collaborative filtering problems, because

of the unique characteristics of the input variables.
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Denote the random training set by T = ((U1,I1,R1), . . . ,(Un,In,Rn)), and its realization

by t = ((u1,i1,r1), . . . ,(un,in,rn)). Denote the set of user–item pairs appearing in the

training set by T = {u,i : ∃k : uk = u,ik = i}.

In real life, if a user has rated an item, then it is unlikely that he/she will rate the same

item again. Therefore it is unrealistic to assume that the elements of the training set are

independent. A more reasonable assumption is

P{Uk = uk,Ik = ik,Rk = rk} =

P{U = uk,I = ik,R = rk| ∩
k−1
l=1 (U 6= ul,I 6= il)},

which means that the training set is generated by a “sampling without replacement” proce-

dure.

If this assumption holds, then the training data can be represented as a partially specified

matrix R ∈ R
NU×NI called rating matrix, where the matrix elements are known in

positions (u,i) ∈ T , and unknown in positions (u,i) /∈ T . The value of the matrix R at

position (u,i) ∈ T , denoted by rui, stores the rating of user u for item i.

1.1. Convex polyhedron classification

Many interesting classification problems arising in practice are unbalanced, which means

that the distribution of labels is far from uniform. For example, in the case of breast cancer

screening most patients are (fortunately) healthy. This results that in the corresponding

binary classification problem most training examples belong to the “healthy” class. Convex

polyhedron classifiers are special nonlinear classifiers that fit well to unbalanced problems.

Let us consider an unbalanced binary classification problem with labels c1 and c2. Let

us call c1 the positive and c2 the negative class, and assume that the class with higher

probability is the negative class. A convex K-polyhedron (polyhedron) is the intersection

of K half-spaces (any number of half-spaces).

A convex polyhedron (K-polyhedron) classifier is a function g : R
d 7→ {c1,c2} such that

{x ∈ R
d : g(x) = c1} is a convex polyhedron (K-polyhedron). An equivalent definition

is the following: A function g : R
d 7→ {c1,c2} is called a convex K-polyhedron classifier,

if it can be written as

g(x) =th(min{wT
1 x + b1, . . . ,w

T
Kx + bK}) (1)

=th(−max{−wT
1 x− b1, . . . ,−wT

Kx− bK}),

where w1, . . . ,wK are called weight vectors, b1, . . . ,bK are termed biases, and

th(z) =

{

c1 if z ≥ 0
c2 if z < 0
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is the threshold function.

When classifying an input x, we iterate over the weight vectors. If wT
k x + bk < 0 for

any k ∈ {1, . . . ,K}, then the input can be classified as negative immediately. As a

consequence, convex polyhedron classifiers tend to classify negative examples quickly.

This property makes the approach particularly suitable for unbalanced problems.

Despite this appealing property, currently convex polyhedron classifiers are not frequently

used in practice. The main reason for that is the lack of efficient and practical training

algorithms. In the next section we will overview the small literature of the area. Then,

I will propose novel algorithms that attempt to make the convex polyhedron classifier a

practical tool.

2. Known methods

Probably the best known work that applied convex polyhedron classifiers for solving a

practical problem is [10]. In this paper the authors propose the maximal rejection (MR)

approach that can be applied for training convex polyhedron classifiers. The key idea of

MR is defining the criterion function

M(w) =
(wT m1 −wT m0)

2 + wT R1w + wT R0w

wT R1w + λwT w
, (2)

where m1, m0, R1 and R0 are the empirical means and covariances of the classes in the

training set, and λ is the regularization coefficient. The detailed derivation of this criterion

function (without the regularization term λwT w) can be found in [10]. The main idea is

to modify the criterion function of Fisher discriminant analysis [12] such that we allow

more variance within class 0, if the variance within class 1 is smaller. If we introduce the

notation Q = (m1 −m0)(m1 −m0)T + R1 + R0, thenM can be written as

M(w) =
wT Qw

wT (R1 + λI)w
,

where I is the d× d identity matrix.

It can be shown that the w that maximizes M is an eigenvector of (R1 + λI)−1Q

corresponding to the largest eigenvalue. Note that the maximum is not unique, since

M(w) =M(αw) for every α 6= 0.

The outline of MR training is the following2:

• For k = 1, . . . ,K:

2This variant is a bit more flexible than the original one.
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– Set wk to arg maxw∈RM(w).
– If

∑

i:yi=1 wT
k xi/

∑

i yi <
∑

i:yi=0 wT
k xi/

∑

i(1− yi), then flip the sign

of wk.

– Define gk(x) as th(min{wT
1 x + b1, . . . ,w

T
k x + bk}).

– Set bk by minimizing
∑

i:yi=1 I{gk(xi) 6= yi} + β
∑

i:yi=0 I{gk(xi) 6=
yi}.

– Exclude examples from the training set for which gk(xi) = 0.

The output of training is a convex K-polyhedron classifier. The parameter β > 0 ex-

presses our willingness to tolerate false negative classifications (larger β results more false

negatives and less false positives).

There also exist other known methods for training convex polyhedron classifiers, but they

are less practical than MR. Some of the alternatives are the following:

• [17] tries to separate each negative example from the positive class individually

with an adaptation of the multiclass support vector machine method [8]. The algorithm

can be used only for small problems due to its large computational complexity.

• The training algorithm if the ID3 decision tree [18] can also be used for training

convex polyhedron classifiers, if we introduce the following restrictions: all features

have to be continuous or binary, and one of the partitions has to be labeled as negative

after each split. Unfortunately, the modeling power of this approach is quite limited.

• In the literature of probably approximately correct learning (PAC learning) [22]

one can find theoretical works related to convex polyhedron classification, for example

[11, 14, 15, 23]. PAC is a formalism for determining how much data is needed for a

given classification algorithm to achieve a given accuracy on a given fraction of test

examples. Unfortunately, the convex polyhedron classification algorithms published in

the PAC papers are not practical methods. They are instead tools for proving theorems

about PAC-learnability.

3. Smooth maximum functions

One of the factors that make the training of convex K-polyhedron classifiers hard is the

non-differentiable maximum function appearing in the definition formula. One possible

way of handling the difficulty is approximating maximum taking with a smooth3 function.

Let us start the discussion with a simple observation. Assume that we have K different

real numbers u1, . . . ,uK , and a function f : R 7→ R with the following property:

∀u ∈ R : lim
∆→∞

f(u + ∆)

f(u)
=∞.

3Infinitely many times differentiable.
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Denote the largest number by umax = max{u1, . . . ,uK}, and the smallest number by

umin = min{u1, . . . ,uK}. Let us apply f on the numbers and investigate the values

f(u1), . . . ,f(uK). If the difference between umax and the other numbers is large enough,

then the following approximation is admissible:

f(uj)

f(umax)
=

f(uj)

f(uj + (umax − uj))
≈

{

0 if uj 6= umax,

1 if uj = umax.
(3)

It follows from (3) that

f(uj)
∑K

k=1 f(uk)
=

f(uj)/f(umax)
∑K

k=1 f(uk)/f(umax)
≈

{

0 if uj 6= umax,

1 if uj = umax.
(4)

If f is monotonically increasing and smooth, then based on (4) it is possible to define

smooth approximations for the maximum function:

A) max{u1, . . . ,uK} ≈ f−1

(

K
∑

k=1

f(uk)

)

,

B) max{u1, . . . ,uK} ≈ f−1

(

1

K

K
∑

k=1

f(uk)

)

, (5)

C) max{u1, . . . ,uK} ≈

K
∑

j=1

f(uj)
∑K

k=1 f(uk)
uj .

Schemes A and B are similar: the only difference between them is the 1
K factor appearing

in B. An advantage of A over B is that it approximates the max function better, if the

difference between umax and the other numbers is large. An advantage of B over A is that

its result is always between umin and umax. Scheme C is an interesting one: it calculates

the answer by assigning a weight to each variable, and it does not need the inverse of f . It

is also true for C that the output is always between umin and umax.

The most natural choice for f is the exponential function f(u) = exp(αu),α > 0. The

power function f(u) = uα,α > 1 is also suitable in the nonnegative domain. With the

given approximation schemes and f functions we can define 6 different smooth maximum
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functions:

smaxA1(u) =
1

α
ln

(

K
∑

k=1

exp(αuk)

)

smaxA2(u) =

(

K
∑

k=1

uα
k

)1/α

smaxB1(u) =
1

α
ln

(

1

K

K
∑

k=1

exp(αuk)

)

(6)

smaxB2(u) =

(

1

K

K
∑

k=1

uα
k

)1/α

smaxC1(u) =

K
∑

j=1

exp(αuj)
∑K

k=1 exp(αuk)
uj

smaxC2(u) =

K
∑

j=1

uα
j

∑K
k=1 uα

k

uj

where u = [u1, . . . ,uK ] denotes the vector containing all numbers. Parameter α can be

used to control the “degree of smoothness” (larger α results better approximation, but less

smooth functions). Note that smaxA1 and smaxB1 differ only in a constant, and smaxA2,

smaxB2, smaxC2 are admissible only if u1, . . . ,uK are all non-negative 4. The surface

plot of the maximum function in 2 dimensions can be seen in Figure (1). The presented

smooth maximum functions are depicted in Figure (2) and their difference from max in

Figure (3).

Two simple properties of the maximum function are interchangeability with constant

addition and non-negative constant multiplication:

max{u1 + C, . . . ,uK + C} = max{u1, . . . ,uK}+ C,

max{CuK , . . . ,CuK} = C max{u1, . . . ,uK},

where C is an arbitrary constant in the first case and a non-negative constant in the second

case. Interestingly, for 5 of the given smooth maximum functions exactly one of these

properties is true (smaxA1, smaxB1 and smaxC1 have the first, smaxB2 and smaxC2 have

the second property).

4smaxC2(0) can be defined as zero.
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Figure 1: The maximum function in 2 dimensions.

Let us introduce the following abbreviation (j = 1, . . . ,K):

pj =
f(uj)

∑K
k=1 f(uk)

.

The quantity pj can be interpreted as a “measure of dominance” of the j-th number over the

others. If f(u) = exp(αu), then pj =
exp(αuj)

P

K
k=1

exp(αuk)
. If f(u) = uα, then pj =

uα
j

P

K
k=1

uα
k

.

The partial derivatives of the proposed smooth maximum functions are (j = 1, . . . ,K):

smax′
j,A1(u) =

∂smaxA1

∂uj
(u) = pj ,

smax′
j,A2(u) =

∂smaxA2

∂uj
(u) = pj

s

uj
,

smax′
j,B1(u) =

∂smaxB1

∂uj
(u) = pj , (7)

smax′
j,B2(u) =

∂smaxB2

∂uj
(u) = pj

s

Kuj
,

smax′
j,C1(u) =

∂smaxC1

∂uj
(u) = pj (1 + α(uj − s)) ,

smax′
j,C2(u) =

∂smaxC2

∂uj
(u) = pj

(

1 + α

(

1−
s

uj

))

,

where s is the value of smax at u (always the same smooth max type is used as on the

corresponding left hand side).
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Figure 2: Smooth maximum functions in 2 dimensions (α = 2).
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Figure 3: The error of smooth maximum functions in 2 dimensions (α = 2).
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Interestingly, each derivative contains the factor pj . In the case of power function based

approximations (smaxA2, smaxB2 and smaxC2), the derivative also depends on the ratio

of the approximated maximum and the j-th number. In the case of smaxC1, the derivative

also depends on the difference of the approximated maximum and the j-th number.

The second partial derivatives are the following (j,k = 1, . . . ,K):

smax′′
jk,A1(u) =

∂2smaxA1

∂uj∂uk
(u) = (−pjpk + δjkpj)α,

smax′′
jk,A2(u) =

∂2smaxA2

∂uj∂uk
(u) = (−pjpk + δjkpj)

(α− 1)s

ujuk
,

smax′′
jk,B1(u) =

∂2smaxB1

∂uj∂uk
(u) = (−pjpk + δjkpj)α, (8)

smax′′
jk,B2(u) =

∂2smaxB2

∂uj∂uk
(u) = (−pjpk + δjkpj)

(α− 1)s

K2ujuk
,

smax′′
jk,C1(u) =

∂2smaxC1

∂uj∂uk
(u) =

(

−pjs
′
k − pks′j + δjk(s′j + pj)

)

α,

smax′′
jk,C2(u) =

∂2smaxC2

∂uj∂uk
(u) =

(

−
pjs

′
k

uj
−

pks′j
uk

+ δjk

(

s′j
uj

+
pjs

u2
j

))

α,

where δjk = I{j = k} is the Kronecker delta symbol and s′j is the value of ∂smax
∂uj

at u

(always the same smooth max type is used as on the corresponding left hand side).

4. Smooth maximum based training

A large family of training algorithms can be introduced for convex polyhedron classi-

fiers with the help of smooth maximum functions. One branching point is what smooth

maximum type to use. Another is how to approximate the convex polyhedron classifier

itself.

Let us introduce the notation z = [z1, . . . ,zK ] = [wT
1 x + b1, . . . ,w

T
Kx + bK ]. Three

equivalent forms of the convex polyhedron classifier are:

g(x) = th(min{z1, . . . ,zK})

= min{th(z1), . . . ,th(zK)}

= min{th(z1)− 1, . . . ,th(zK)− 1}+ 1
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Using the maximum function the previous formulae can be written as

g(x) = th(−max{−z1, . . . ,− zK})

= −max{−th(z1), . . . ,− th(zK)}

= −max{1− th(z1), . . . ,1− th(zK)}+ 1.

Note that in the third case we always take the maximum of positive numbers.

Now we are ready to introduce smooth versions of g: max can be replaced with a smooth

max and th(γ) with sgm(γ) = 1/(1 + exp(−γ)) or γ + 0.5, where sgm is called the

logistic sigmoid function. After filtering out some irrelevant combinations we get the

following smooth versions of g:

hA(x) = sgm(−smax(−z1, . . . ,− zK)),

hB(x) = −smax(−z1, . . . ,− zK) + 0.5,

hC(x) = −smax(1− sgm(z1), . . . ,1− sgm(zK)) + 1.

In the first two cases, smax takes value from {smaxA1,smaxB1,smaxC1}. In the third

case, smax takes value from {smaxA1,smaxA2,smaxB1,smaxB2,smaxC1,smaxC2}.

It will be useful to unify the three branches by decomposing h functions into three parts:

h(x) = h2(smax(h1(z1), . . . ,h1(zK))),

where h1 and h2 are R 7→ R mappings. The h1 and h2 parts of the given h functions are

the following:

hA1(z) = −z, hA2(s) = sgm(−s),

hB1(z) = −z, hB2(s) = −s + 0.5, (9)

hC1(z) = 1− sgm(z), hC2(s) = −s + 1.

The first and the second derivatives of the above functions are:

h′
A1(z) = −1, h′

A2(s) = −hA2(s)(1− hA2(s)),

h′
B1(z) = −1, h′

B2(s) = −1, (10)

h′
C1(z) = −hC1(z)(1− hC1(z)), h′

C2(s) = −1,

h′′
A1(z) = 0, h′′

A2(s) = −h′
A2(s)(1− 2hA2(s)),

h′′
B1(z) = 0, h′′

B2(s) = 0, (11)

h′′
C1(z) = h′

C1(z)(1− 2hC1(z)), h′′
C2(s) = 0.
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Let us denote the output of h for input x by a = h(x). The error of the classifier on

example (x,y) can be measured with differentiable loss functions. Two possible choices

are the squared loss and the logistic loss:

lossS(a,y) = 1
2 (a− y)

2
, (12)

lossL(a,y) = − ln
(

ay(1− a)1−y
)

.

In the first case, h takes value from {hA,hB ,hC}. In the second case, a has to fall into

[0,1], therefore h takes value from {hA,hC}, but if h = hC , then the smooth maximum

function cannot be smaxA1 or smaxA2.

The first and the second derivatives of the proposed loss functions with respect to a are:

loss′S(a,y) =
∂lossS

∂a
(a,y) = a− y, (13)

loss′L(a,y) =
∂lossL

∂a
(a,y) =

1− y

1− a
−

y

a
,

loss′′S(a,y) =
∂2lossS

∂2a2
(a,y) = 1, (14)

loss′′S(a,y) =
∂2lossL

∂2a2
(a,y) =

1− y

(1− a)2
−

y

a2
.

Based on the per example loss, the regularized total loss can be defined as

L(b1,w1, . . . ,bK ,wK) =

(

n
∑

i=1

loss(h(xi),yi)

)

+ λ





1

2

K
∑

j=1

wT
j wj



 , (15)

where loss ∈ {lossS ,lossL}, and λ is called regularization coefficient. The number of

allowed choices for (smax,h,loss) is 19. In every case, a local minimum of L can be found

by derivative based algorithms. This proposed approach of training convex polyhedron

classifiers will be referred as SMAX from now.

It is important to note that smooth approximations are used only during the training.

In the classification phase, the original formula of the convex polyhedron classifier is

applied. Obviously, using different prediction formulae at training and classification may

deteriorate the accuracy. A possible way to to handle this problem is to gradually decrease

the smoothness of the approximation during the training by increasing the value of α.

The first proposed training method uses stochastic gradient descent for the approximate

minimization of L. The pseudo-code of the algorithm can be seen in Figure (4).
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Input: (x1,y1), . . . ,(xn,yn) // the training set

Input: smax, α, h, loss, K, R, E, B, η, µ, λ, A0, A1 // meta-parameters

Output: (w1,b1), . . . ,(wK ,bK) // the trained model

(w1,b1), . . . ,(wK ,bK)← uniform random numbers from [−R,R]1

// initialization

(wold
1 ,bold

1 ), . . . ,(wold
K ,bold

K )← (w1,b1), . . . ,(wK ,bK)2

(w′
1,b

′
1), . . . ,(w

′
K ,b′K)← zeros3

macro AccumlateGradient(i) begin4

for j ← 1 to K do zj ←wT
j xi + bj // calculate branch activations5

u← [h1(z1), . . . ,h1(zK)]T6

s← smax(u)7

a← h2(s) // calculate answer8

for j ← 1 to K do // update gradient9

c′j ← loss′(a,yi) · h
′
2(s) · smax′

j(u) · h′
1(zj)10

w′
j ← w′

j + c′jxi + λwj/n11

b′j ← b′j + c′j12

end13

end14

for e← 1 to E do // for all epochs15

α← A1α + A0 // update smoothness16

for i← 1 to n do // for all examples17

AccumlateGradient(i)18

if i ≡ 0 (mod B) then // update model19

for j ← 1 to K do20

∆← wj −wold
j , wold

j ← wj21

wj ← wj − ηw′
j + µ∆22

∆← bj − bold
j , bold

j ← bj23

bj ← bj − ηb′j + µ∆24

end25

(w′
1,b

′
1), . . . ,(w

′
K ,b′K)← zeros // reset gradient26

end27

end28

end29

Figure 4: Stochastic gradient descent with momentum for training the convex polyhedron

classifier.
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The meanings of the algorithm’s meta-parameters are as follows:

• smax ∈ {smaxA1,smaxA2,smaxB1,smaxB2,smaxC1,smaxC2}: smooth max

function,

• α ∈ R: initial value of the smoothness parameter,

• h ∈ {hA,hB ,hC}: smooth replacement of g,

• loss ∈ {lossS ,lossL}: per example loss function,

• K ∈ N: number of hyperplanes in the convex polyhedron classifier,

• R ∈ R: range of random number generation at model initialization,

• E ∈ N: number of epochs (iterations over the training set),

• B ∈ N: batch size — the model is updated after each B example,

• η ∈ R: learning rate — step size at model update,

• µ ∈ R: momentum factor — the weight of the previous update in the current one,

• λ ∈ R: regularization coefficient — how aggressively the weights are pushed

towards 0,

• A0,A1 ∈ R: coefficients for controlling the change of α.

The time requirement of one iteration is O(ndK), and the time requirement of the algorithm

is O(EndK), therefore the algorithm can be run on very large problems. In practice it is

not always necessary to find a local minimum. It is often enough to reach a sufficiently

small objective function value. Of course, there is no guarantee that the trained model will

be acceptable after a modest number of iterations, but at least we are able to test it.

The second proposed training algorithm uses Newton’s method for the approximate min-

imization of L. The pseudo-code of the algorithm can be seen in Figure (5). The meta-

parameters of the algorithm are the same as before except that there is no batch size B,

learning rate η, and momentum factor µ, and there is a new parameter S, the number of

step sizes tried before model update. The role of parameter S is to make the algorithm

more stable.

The time requirement of one iteration is O(nd2K2 + d3K3) and the time requirement

of the algorithm is O(End2K2 + Ed3K3). An advantage of Newton’s method over

stochastic gradient descent is better accuracy. A disadvantage is the substantially increased

time complexity of iterations. It may happen that we are unable to run even one iteration.

It is also true that Newton’s method is typically less robust than gradient method. It is

more sensible to stuck in minor local minima, and also it is more prone to diverge. A

possible way to overcome these difficulties is to introduce a hybrid approach that starts the

minimization with gradient method, and then switches to Newton’s method.
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Input: (x1,y1), . . . ,(xn,yn) // the training set

Input: smax, α, h, loss, K, R, E, λ, A0, A1, S // meta-parameters

Output: (w1,b1), . . . ,(wK ,bK) // the trained model

(w1,b1), . . . ,(wK ,bK)← uniform random numbers from [−R,R] // initialization1

(w′

1,b
′

1), . . . ,(w
′

K ,b′K), H, g← zeros2

Lmin←∞3

macro AccumlateHessian(i) begin4

xi0← 1 // consider the 0-th coordinate as 15

for j, k in {1, . . . K} × {1, . . . K} do6

c′′jk ← loss′′(a,yi) · h
′

2(s)
2 · smax′

j(u)smax′

k(u) · h′

1(zj)h
′

1(zk) +7

loss′(a,yi) · h
′′

2 (s) · smax′

j(u)smax′

k(u) · h′

1(zj)h
′

1(zk) +8

loss′(a,yi) · h
′

2(s) · smax′′

jk(u) · h′

1(zj)h
′

1(zk) +9

loss′(a,yi) · h
′

2(s) · smax′

j(u)δjk · h
′′

1 (zj)δjk10

for l, m in {0, . . . ,d} × {0, . . . ,d} do // update Hessian11

bj← (j − 1)(d + 1) + l + 112

bk← (k − 1)(d + 1) + m + 113

h
bjbk
← h

bjbk
+ c′′jkxilxim + λδl0δm014

end15

end16

end17

for e← 1 to E do // for all epochs18

α← A1α + A0 // update smoothness19

for i← 1 to n do // for all examples20

AccumlateGradient(i)21

AccumlateHessian(i)22

end23

v← [(b1w11 · · ·w1d) · · · (bKwK1 · · ·wKd)]T24

g← [(b′1w
′

11 · · ·w
′

1d) · · · (b′Kw′

K1 · · ·w
′

Kd)]T25

for σ in {1,2−1, . . . ,2−S+2,0} do // try S step sizes26

vnew ← v − σH−1g27

Lnew ←L(vnew) // use (15)28

if Lnew < Lmin then Lmin←Lnew, vbest← vnew29

end30

[(b1w11 · · ·w1d) · · · (bKwK1 · · ·wKd)]← vT
best // update model31

(w′

1,b
′

1), . . . ,(w
′

K ,b′k), H, g← zeros // reset gradient and Hessian32

end33

Figure 5: Newton’s method for training the convex polyhedron classifier.
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4.1. Algorithms for regression

Convex polyhedron regression can be introduced analogously with convex polyhedron

classification. A convex K-polyhedron predictor is a function g : R
d 7→ R that can be

written in the following form:

g(x) =min{wT
1 x + b1, . . . ,w

T
Kx + bK} (16)

=−max{−wT
1 x− b1, . . . ,−wT

Kx− bK}.

The only difference from convex the K-polyhedron classifier is that the threshold function

is missing. The reason behind using the term “convex polyhedron” here is that the set

{(x,y) ∈ R
d+1 : y ≤ g(x)} is a convex polyhedron in R

d+1.

Like in the case of classification, it is possible define smooth maximum based algorithms

for training. The only difference is that now the only reasonable choice for h and loss
is hB and lossS , because the target takes value from R. Apart from this restriction, the

training algorithms remain the same.

Note that in the case of regression we always have to evaluate all scalar products at

prediction. Therefore, unlike the case of classification, there is no extra speedup in the

prediction phase, however, the prediction is still not slow. Applying a convex polyhedron

predictor can be a reasonable choice, if we know a priori that the optimal predictor g∗ is

convex.

4.2. Algorithms for collaborative filtering

In the case of collaborative filtering we can obtain a convex polyhedron approach via the

generalization of matrix factorization. The answer of the convex polyhedron predictor for

user u and item i is

g(u,i) = bu + ci −max

{

−

(

L
∑

l=1

p
(1)
ul qli

)

, . . . ,−

(

L
∑

l=1

p
(K)
ul qli

)}

,

where P(k) ∈ R
NU×L, [P(k)]ul = p

(k)
ul , k = 1, . . . ,K called user factor matrices, Q ∈

R
L×NI , [Q]li = qli called item factor matrix, b ∈ R

NU called user bias vector, and

c ∈ R
NI called item bias vector are the parameters of the model.

An analogous variant can be obtained, if we have one user factor matrix P and K item

factor matrices Q(1), . . . ,Q(K):

g(u,i) = bu + ci −max

{

−

(

L
∑

l=1

pulq
(1)
li

)

, . . . ,−

(

L
∑

l=1

pulq
(K)
li

)}

.
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Let us assume the first variant and introduce the notation z = [z1, . . . ,zK ], zk =
∑L

l=1 p
(k)
ul qli (k = 1, . . . ,K). The smooth version of g can be obtained as

h(u,i) = bu + ci + smax(z),

where smax ∈ {smaxA1,smaxB1,smaxC1}.

Now it is possible measure the error at example (u,i) with a differentiable loss function:

Lui(w) =
1

2
(h(u,i)− rui)

2
+ λU

1

2

K
∑

k=1

L
∑

l=1

(

p
(k)
ul

)2

+ λI
1

2

L
∑

l=1

(qli)
2
,

where w denotes the vector containing all parameters of the model (P(1), . . . ,P(K),Q,b,c),

and λU , λI are the regularization coefficients. The total loss on the training set is the sum

of the per example losses:

L(w) =
∑

(u,i)∈T

Lui(w).

Similarly to classification and regression, the approximate minimization of L can be

done with stochastic gradient descent. This approach of training the convex polyhedron

predictor will be referred as SMAXCF. Note that in the case of collaborative filtering the

typical problem size is large (say NU ,NI > 1000, L > 10), therefore Newton’s method is

computationally too expensive.

The partial derivatives of Lui can be written as

∂Lui

∂p
(k)
ul

(w) = (h(u,i)− rui)(smax′
k(z)qui) + λUp

(k)
ul ,

∂Lui

∂qli
(w) = (h(u,i)− rui)

(

K
∑

k=1

smax′
k(z)p

(k)
ul

)

+ λIqli, (17)

∂Lui

∂bu
(w) = h(u,i)− rui,

∂Lui

∂ci
(w) = h(u,i)− rui,

Note that the second equation builds upon the assumption smax ∈ {smaxA1,smaxB1,smaxC1},
and it would not be true, if smax was an arbitrary differentiable function.

The pseudo-code of stochastic gradient descent based training can be seen in Figure (6).

The meanings of the meta-parameters are the same as before, except that now we have

different learning rate and regularization coefficient for users and items. The role of

parameter D is to control whether ordering by date within user ratings should be used.
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Input: rui : (u,i) ∈ T ,|T | = n // the training set

Input: smax, α, K, R, E, ηU , ηI , λU , λI , D, A0, A1 // meta-parameters

Output: P(1), . . . ,P(K),Q // the trained model

P(1), . . . ,P(K), Q, b, c← uniform random numbers from [−R,R]1

// initialization

for e← 1 to E do // for all epochs2

α← A1α + A0 // update smoothness3

for u← 1 to NU do // for all users4

Tu ← {i : ∃u : (u,i) ∈ T }5

I ← a random permutation of the elements of Tu6

if D = 1 and dates are available for ratings then7

I ← the elements of Tu sorted by rating date (in ascending order)8

end9

for i in I do // for user’s ratings10

for k← 1 to K do zk ←
∑L

l=1 p
(k)
ul qli11

for k← 1 to K do s′k ← smax′
k(−z)12

a← bu + ci − smax(−z) // calculate answer13

ε← a− yi // calculate error14

bu ← bu − ηUε // update biases15

ci ← ci − ηIε16

for l← 1 to L do // update factors17

p←
∑K

k=1 s′kpk
ul18

for k← 1 to K do p
(k)
ul ← p

(k)
ul − ηU (εs′kqli + λUp

(k)
ul )19

qli ← qli − ηI(εp + λIqli)20

end21

end22

end23

end24

Figure 6: Stochastic gradient descent for training the convex polyhedron predictor.
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Figure 7: The TOY dataset.

5. Experiments

5.1. Classification

In this section, we will compare convex polyhedron classification algorithms with other

methods both on artificial and real-life datasets. The artificial datasets involved in the

experiments are the following:

• TOY: This dataset contains 6 examples: x1 = [−1,2],y1 = 1, x2 = [0,1],y2 = 1,

x3 = [1,2],y3 = 1, x4 = [−1,1],y4 = 0, x5 = [0,0],y5 = 0, x6 = [1,2],y6 = 0. The

classes can be separated from each other with 2 lines (see Figure 7). One may find it

interesting to analyze the differences between the many proposed training algorithms on

such an extremely simple dataset.

• V2: Let us define the V distribution as the following: The components of the input

vector X are drawn independently, according to uniform distribution over [−1, + 1].

If Xd ≥
∑d−1

j=1 |Xj |, then the class label Y is set to 1, otherwise it is set to 0. Finally,

the value of Y is flipped with probability α. Note, that the Bayes classifier for the V

distribution is a convex 2d−1-polyhedron classifier. The V2 dataset contains n = 105

examples generated according to the V distribution with settings d = 2 and α = 0.05
(see Figure 8).

• V3: The 3-dimensional (d = 3, n = 105) version of the previous dataset (see

Figure 8).

The real-life datasets involved in the experiments were extracted from the UCI machine

learning repository [2]. Convex polyhedron classification assumes two classes, therefore

all problems were transformed to binary ones by merging classes. The specific datasets

were the following:

• ABALONE: Here the task is to predict from various physical characteristics (e.g.

length, diameter, height) whether the number of rings of an abalone is greater than 12.

The number of input features in the dataset after variable encoding is d = 10, and the

number of of examples is n = 4177 (16.6 % of the examples belong to the positive
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Figure 8: The V distribution with settings d = 2, α = 0.05 (a) and d = 3, α = 0.05 (b).

The optimal decision boundary is indicated with green.

class).

• BLOOD: This dataset originates from the donor database of Blood Transfusion

Service Center in Hsin-Chu City, Taiwan. The goal is to predict whether a donor donated

blood at a given date in 2007. The dataset contains d = 4 input features (months since

last donation, total number of donations, total blood donated in c.c., months since first

donation), and n = 748 examples (23.8 % positives).

• CHESS: This dataset came from the domain of chess endgames. The d = 6 input

features are integers, representing the location of the white king, the white rook and the

black king. The task is to decide whether black can escape from being mated in 14 (or

less) moves. The number of examples is n = 28056 (9.1 % positives).

• SEGMENT: The instances were drawn randomly from a database of 7 outdoor

images. The images were hand-segmented to create a classification for every pixel. The

task is to predict whether a pixel is part of a window object in the image. The number of

features is d = 19, and the number of examples is n = 2310 (14.3 % positives).

The classification algorithms included in the comparison were the following:

• FDA: Regularized Fisher discriminant analysis [12]. Regularization was done by

adding the term λwT w to the denominator of the objective function, where w ∈ R
d

denotes the weight vector. The sole parameter of the algorithm is the regularization

coefficient λ (default value: 10−6).

• LOGR: Logistic regression [26] with L2 regularization applied on the weight

vector. The minimization of the objective function was done by Newton’s method. The
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starting point was the all-zero vector. The algorithm has 2 parameters: the regularization

coefficient λ (default value: 10−6) and the number of iterations E.

• SPER: The smooth variant of Rosenblatt’s perceptron [19] with L2 regularization.

The activation function was the logistic sigmoid function. The minimization of the

objective function was done by Newton’s method, started from the all-zero vector. The

algorithm has 2 parameters: the regularization coefficient λ (default value: 10−6) and

the number of iterations E.

• ALN: Adaptive linear neuron [25] with L2 regularization applied on the weight

vector. The only parameter of the algorithm is the regularization coefficient λ (default

value: 10−6).

• LSVM: Linear support vector machine [6]. The algorithm has one parameter: the

tradeoff coefficient C.

• KNN: K nearest neighbors [13]. The only parameter of the approach is the number

of relevant neighbors K.

• ID3: ID3 decision tree [18]. All features were treated as continuous ones. The

algorithm has 3 parameters: the number of splitting values tried K (default value: 10),

the Laplace smoothing term β, and the information gain threshold Gmin.

• MLP: Multilayer perceptron [24] with L2 regularization applied on the non-bias

weights. The objective function was minimized by batch gradient descent with mo-

mentum. The parameters of the algorithm are the regularization coefficient λ (default

value: 10−6), the number of hidden units K (default value: 5), the range of random

initialization R, the number of epochs E, the learning rate η, and the momentum factor

µ.

• SVM: Support vector machine [6] with Gaussian kernel. The only parameter of

the algorithm is the tradeoff coefficient C.

• MR: Convex polyhedron classifier with maximal rejection based training (see page

30). The parameters of the algorithm are the number of hyperplanes K, and the tolerance

β.

• SMAX: The proposed smooth maximum function based approach for convex

polyhedron classification (see page 37). The parameters of the algorithm are the training

method (G: gradient method, see page 40, N: Newton’s method, see page 42, G+N:

start with gradient method, and then continue with Newton’s method — default: G+N),

the smooth max function (smaxA1, smaxA2, smaxB1, smaxB2, smaxC1, or smaxC2 —

default: smaxA1), the smoothness parameter α (default value: 2), the smoothness change

coefficients A1 and A0 (default values: A1 = 1, A0 = 0) the h function (hA, hB , or

hC — default: hA), the per example loss function (lossS or lossL — default: lossS), the

number of hyperplanes K, the range of random initialization R (default value: 1), the

number of epochs in the G phase E, the number of epochs in the N phase E2, the batch

size B (default value: n, which means batch mode), the regularization coefficient λ
(default value: 10−6), the learning rate η, the momentum factor µ (default value: 0.95),
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and the number of step sizes tried before Newton updates S (default value: 10).

For LSVM and SVM the libsvm [7] implementation was used, via the built-in Python

interface. All other algorithms were implemented from scratch in Python [20], using the

NumPy [1] module. The hardware environment was a notebook PC with Intel Pentium M

2 GHz CPU and 1 Gb memory. If the value of a parameter is not specified, then the default

value is used.

5.1.1. Comparing the variants of SMAX

In these experiments I ran the variants of SMAX training on the TOY dataset. Every

valid combination of optimization method, loss, h and smax were tested with the 3

different optimization methods (G, N, G+N). The parameters E (number of epochs in

the G phase), η (learning rate), E2 (number of epochs in the N phase), and R (range of

random initialization) were set heuristically via “trial and error” for each setting. The other

parameters were kept fixed at their default values. The results can be seen in Table 1 and

Table 2. The meaning of the last 3 columns are:

• ‖W‖: The Frobenius norm of weight matrix part of the solution (
√

∑K
k=1

∑d
j=1 w2

kj).

• L01: The number of training examples misclassified by the trained model.

• L: The value of the regularized total loss at the solution.

It can be seen, that the G and the G+N methods were always able to build a classifier that

does not err on the training set. In contrast, the N method sometimes converged to local

minima with relatively high L value. This is because gradient descent with momentum

is less prone to stuck in local minima than Newton’s method (however, it needs more

iterations to converge).

If we consider the categories defined by the second and third columns, then we can observe

the following:

• SA (loss = lossS , h = hA): In this category the G+N method required a relatively

short G phase. The lowest L value was achieved by smax = smaxC1.

• SB (loss = lossS , h = hB): This category required 2 magnitudes smaller learning

rates than the other ones. (This is because in the case of hB the changes of the weights

are not “dampened” by the sigmoid function.) The ‖W‖ values were relatively small.

The G+N method required a relatively long G phase. The lowest L value was achieved

by smax = smaxC2.

• SC (loss = lossS , h = hC): The L value was typically higher than in SA and SB.

The lowest L value was achieved by smax = smaxC2.

• LA (loss = lossL, h = hA): In this category the pure N method was more stable

than in the other categories: it was always able to achieve zero misclassifications. The
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variant loss h smax method parameters ‖W‖ L01 L

#1 S A A1 G E = 1000, η = 0.1 9.6 0 0.0478

#2 S A A1 N E2 = 10, R = 0.5 4.8 1 0.3493

#3 S A A1 G+N E = 50, η = 0.1, E2 = 10 9.6 0 0.0474

#4 S A B1 G E = 1000, η = 0.1 9.6 0 0.0487

#5 S A B1 N E2 = 10 9.6 0 0.0483

#6 S A B1 G+N E = 50, η = 0.1, E2 = 10 9.6 0 0.0483

#7 S A C1 G E = 1000, η = 0.1 9.3 0 0.0478

#8 S A C1 N E2 = 10, R = 0.5 9.3 0 0.0449

#9 S A C1 G+N E = 50, η = 0.1, E2 = 10 9.3 0 0.0476

#10 S B A1 G E = 1000, η = 0.001 2.4 0 0.0013

#11 S B A1 N E2 = 10 2.4 0 0.0014

#12 S B A1 G+N E = 200, η = 0.001, E2 = 10 2.4 0 0.0013

#13 S B B1 G E = 1000, η = 0.001 2.4 0 0.0015

#14 S B B1 N E2 = 10 2.4 0 0.0015

#15 S B B1 G+N E = 100, η = 0.001, E2 = 10 2.4 0 0.0014

#16 S B C1 G E = 1000, η = 0.001 2.0 0 0.0011

#17 S B C1 N E2 = 10 0.7 1 0.3533

#18 S B C1 G+N E = 200, η = 0.001, E2 = 10 2.0 0 0.0011

#19 S C A1 G E = 1000, η = 0.1 10.2 0 0.2362

#20 S C A1 N E2 = 20 10.2 0 0.2362

#21 S C A1 G+N E = 200, η = 0.1, E2 = 10 10.2 0 0.2362

#22 S C A2 G E = 1000, η = 0.1 9.5 0 0.0488

#23 S C A2 N E2 = 20 9.5 0 0.0488

#24 S C A2 G+N E = 50, η = 0.1, E2 = 10 9.5 0 0.0488

#25 S C B1 G E = 1000, η = 0.1 10.5 0 0.1442

#26 S C B1 N E2 = 10, R = 0.5 10.4 0 0.1440

#27 S C B1 G+N E = 100, η = 0.1, E2 = 10 10.5 0 0.1442

#28 S C B2 G E = 1000, η = 0.1 8.7 0 0.1628

#29 S C B2 N E2 = 20, R = 0.5 9.8 0 0.1576

#30 S C B2 G+N E = 200, η = 0.1, E2 = 10 8.8 0 0.1623

#31 S C C1 G E = 1000, η = 0.1 10.0 0 0.0714

#32 S C C1 N E2 = 10 4.0 1 0.3665

#33 S C C1 G+N E = 50, η = 0.1, E2 = 10 10.0 0 0.0714

#34 S C C2 G E = 1000, η = 0.1 9.3 0 0.0464

#35 S C C2 N E2 = 10, R = 0.5 4.0 1 0.3117

#36 S C C2 G+N E = 50, η = 0.1, E2 = 10 9.3 0 0.0464

Table 1: Results of SMAX training on the TOY dataset (with squared loss).
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variant loss h smax method parameters ‖W‖ L01 L

#37 L A A1 G E = 1000, η = 0.05 17.5 0 0.1652

#38 L A A1 N E2 = 10 17.5 0 0.1620

#39 L A A1 G+N E = 200, η = 0.05, E2 = 10 17.5 0 0.1620

#40 L A B1 G E = 1000, η = 0.05 17.5 0 0.1662

#41 L A B1 N E2 = 10 17.5 0 0.1592

#42 L A B1 G+N E = 50, η = 0.05, E2 = 10 17.5 0 0.1639

#43 L A C1 G E = 1000, η = 0.05 17.2 0 0.1643

#44 L A C1 N E2 = 10 17.2 0 0.1508

#45 L A C1 G+N E = 50, η = 0.05, E2 = 10 17.2 0 0.1638

#46 L C B1 G E = 1000, η = 0.05 17.1 0 0.8212

#47 L C B1 N E2 = 10, R = 0.5 11.3 0 1.3688

#48 L C B1 G+N E = 50, η = 0.05, E2 = 10 17.1 0 0.8210

#49 L C B2 G E = 1000, η = 0.05 14.8 0 0.8795

#50 L C B2 N E2 = 10, R = 0.5 7.5 2 3.2423

#51 L C B2 G+N E = 100, η = 0.05, E2 = 10 14.8 0 0.8783

#52 L C C1 G E = 1000, η = 0.05 17.1 0 0.4095

#53 L C C1 N E2 = 10, R = 0.5 8.4 1 1.9603

#54 L C C1 G+N E = 50, η = 0.05, E2 = 10 17.1 0 0.4094

#55 L C C2 G E = 1000, η = 0.05 17.2 0 0.1583

#56 L C C2 N E2 = 10, R = 0.5 8.4 1 1.9607

#57 L C C2 G+N E = 50, η = 0.05, E2 = 10 17.3 0 0.1582

Table 2: Results of SMAX training on the TOY dataset (with logistic loss).

lowest L value was achieved by smax = smaxC1.

• LC (loss = lossL, h = hC ): In this category the pure N method performed poorly

in terms of misclassifications. The L value was typically higher than in LA. The lowest

L value was achieved by smax = smaxC2.

5.1.2. Comparing SMAX with other methods

In the next experiments we will compare the proposed SMAX approach with other classifi-

cation algorithms. The algorithms were tested on the given problems using 10-fold cross

validation. This means that each dataset was partitioned randomly into 10 parts. Then,

each algorithm was run on each problem 10 times, so that in the i-th run the i-th part was

used as the test set, and the other parts as the training set.

The performance measures used in the experiments were the following:

• AUC: The area under the receiver operating characteristics [9]. Given a predictor g
and a test dataset (x1,y1), . . . ,(xm,ym) the AUC value can be obtained as follows: At

first, the values g(x1), . . . ,g(xm) are calculated, and sorted in descending order. If we

denote the indices of the sorted sequence by (1), . . . ,(m), and introduce the notations
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TP0 = 0, FP0 = 0, TPk =
∑k

i=1 y(i)/
∑m

i=1 yi, and FPk =
∑m

i=k+1 y(i)/
∑m

i=1(1−
yi) (k = 1 . . . ,m), then the AUC value can be written as:

AUC =

m
∑

k=1

(FPk − FPk−1)(TPk + TPk−1)/2.

In each experiment, we measure the empirical mean and standard deviation of the AUC

values obtained from the 10 runs.

• ∆AUC: The difference of the AUC value from the value from the AUC of FDA,

which is treated as the baseline result. Again, we measure the empirical mean and the

standard deviation of the ∆AUC values obtained from the 10 runs. Note that the standard

deviation of AUC and ∆AUC provide different information about the uncertainty of the

measurement. The second value is typically smaller than the first, and it is more useful

for comparing algorithms.

• TTIME: Training time in seconds, summed over the 10 runs.

• VTIME: Validation time in seconds, summed over the 10 runs.

The results of classification algorithms on the V2 dataset can be seen in Table 3. Not

surprisingly, nonlinear methods outperformed linear ones on this problem in terms of AUC.

According to the (mean) AUC value, SMAX was the third best algorithm. According to

∆AUC/VTIME, it was the best one.

Results on the V3 dataset can be seen in Table 4. The accuracy of the methods is generally

lower than in the case of V2 in terms of AUC. This is because now the optimal decision

surface is more complex, and the input space is less densely filled with training examples as

in previous case. Again, according to the AUC value, SMAX was the third best algorithm,

and according to ∆AUC/VTIME, it was the best one.

Results for the ABALONE dataset can be seen in Table 5. Although the highest AUC

values were achieved by nonlinear methods, the accuracy of linear methods was relatively

good. Nevertheless, SMAX was still the best algorithm in terms of ∆AUC/VTIME,

slightly outperforming SPER. According to the AUC value, SMAX was the third best

method. The other convex polyhedron method, MR performed weak on this problem.

Results for the BLOOD dataset can be seen in Table 6. The best accuracies achieved by

linear and nonlinear methods were close to each other. Some nonlinear methods (including

MR) performed weak. According to the AUC value, SMAX was the third best algorithm.

According to ∆AUC/VTIME, it was the second best one (beaten by MLP, tied with

LOGR).

Results for the CHESS dataset can be seen in Table 7. We can observe that ID3 and

KNN show outstanding accuracy. This interesting phenomenon can be explained by

the characteristics of the chess endgames domain. Recall that the inputs are 6 integers,
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Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.877 (±0.017) +0.000 (±0.000) 0.08 0.006

LOGR E = 1 0.877 (±0.017) +0.000 (±0.000) 0.45 0.006

SPER E = 1 0.877 (±0.017) +0.000 (±0.000) 0.47 0.006

ALN 0.877 (±0.017) +0.000 (±0.000) 0.43 0.006

LSVM C = 10 0.877 (±0.017) +0.000 (±0.000) 79.0 0.006

KNN K = 35 0.930 (±0.015) +0.053 (±0.010) 0.00 27.6

ID3 β = 1, Gmin = 0.001 0.929 (±0.014) +0.052 (±0.009) 31.6 0.18

MLP
R = 0.2, E = 200,

η = 0.0005, µ = 0.9
0.923 (±0.014) +0.046 (±0.005) 120 0.07

SVM C = 10 0.927 (±0.013) +0.050 (±0.010) 61.5 3.28

MR K = 6, β = 0.2 0.920 (±0.014) +0.043 (±0.006) 0.31 0.010

SMAX

K = 2, R = 0.1,

E = 500, E2 = 0,

η = 0.005
0.925 (±0.013) +0.048 (±0.007) 54.6 0.009

Table 3: Results of classification algorithms on the V2 dataset.

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.846 (±0.017) +0.000 (±0.000) 0.08 0.006

LOGR E = 1 0.846 (±0.017) +0.000 (±0.000) 0.45 0.006

SPER E = 1 0.846 (±0.017) +0.000 (±0.000) 0.47 0.006

ALN 0.846 (±0.017) +0.000 (±0.000) 0.43 0.006

LSVM C = 10 0.846 (±0.018) +0.000 (±0.000) 60.7 0.006

KNN K = 35 0.887 (±0.020) +0.041 (±0.010) 0.00 27.5

ID3 β = 1, Gmin = 0.001 0.877 (±0.019) +0.031 (±0.009) 22.1 0.19

MLP
R = 0.2, E = 200

η = 0.0005, µ = 0.9
0.877 (±0.016) +0.031 (±0.005) 120 0.07

SVM C = 10 0.888 (±0.015) +0.041 (±0.007) 125 3.17

MR K = 12, β = 0.2 0.867 (±0.017) +0.021 (±0.006) 0.47 0.012

SMAX

K = 6, R = 0.1,

E = 500, E2 = 0,

η = 0.005
0.884 (±0.017) +0.038 (±0.007) 105 0.011

Table 4: Results of classification algorithms on the V3 dataset.
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Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.844 (±0.018) +0.000 (±0.000) 0.067 0.004

LOGR E = 1 0.849 (±0.018) +0.006 (±0.002) 0.206 0.004

SPER E = 2 0.852 (±0.018) +0.009 (±0.005) 0.256 0.004

ALN 0.849 (±0.018) +0.006 (±0.002) 0.195 0.004

LSVM C = 10 0.850 (±0.021) +0.007 (±0.005) 16.47 0.004

KNN K = 25 0.847 (±0.017) +0.003 (±0.007) 0.000 7.037

ID3 β = 2, Gmin = 0.001 0.821 (±0.024) −0.023 (±0.011) 164.2 0.153

MLP
R = 0.2, E = 500

η = 0.002, µ = 0.95
0.866 (±0.017) +0.022 (±0.006) 138.1 0.031

SVM C = 1000 0.863 (±0.015) +0.019 (±0.007) 30.23 1.517

MR K = 6, β = 0.2 0.748 (±0.030) −0.095 (±0.020) 0.481 0.007

SMAX

K = 5, R = 0.2,

E = 5000, E2 = 5,

η = 0.01
0.855 (±0.019) +0.012 (±0.008) 430.1 0.007

Table 5: Results of classification algorithms on the ABALONE dataset.

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.754 (±0.043) +0.000 (±0.000) 0.009 0.002

LOGR E = 2 0.755 (±0.044) +0.001 (±0.007) 0.039 0.002

SPER E = 4 0.754 (±0.043) +0.000 (±0.008) 0.055 0.002

ALN 0.753 (±0.041) −0.002 (±0.010) 0.034 0.002

LSVM C = 0.1 0.745 (±0.048) −0.009 (±0.020) 1.738 0.002

KNN K = 35 0.759 (±0.053) +0.004 (±0.047) 0.000 0.157

ID3 β = 5, Gmin = 0.005 0.732 (±0.056) −0.022 (±0.038) 1.538 0.010

MLP
R = 0.5, E = 2000
η = 0.01, µ = 0.95

0.768 (±0.053) +0.013 (±0.024) 93.35 0.008

SVM C = 2000 0.744 (±0.053) −0.010 (±0.035) 17.74 0.067

MR K = 4, β = 0.1 0.711 (±0.067) −0.043 (±0.052) 0.054 0.003

SMAX

K = 6, R = 0.2,

E = 500, E2 = 5,

η = 0.0001
0.757 (±0.040) +0.002 (±0.009) 55.64 0.004

Table 6: Results of classification algorithms on the BLOOD dataset.
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Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.853 (±0.005) +0.000 (±0.000) 0.353 0.013

LOGR E = 5 0.854 (±0.005) +0.001 (±0.002) 1.949 0.013

SPER E = 6 0.854 (±0.005) +0.001 (±0.001) 2.711 0.013

ALN 0.832 (±0.006) −0.020 (±0.004) 1.282 0.013

LSVM C = 0.001 0.651 (±0.123) −0.201 (±0.120) 106.9 0.013

KNN K = 15 0.982 (±0.002) +0.129 (±0.005) 0.000 279.5

ID3 β = 0.1, Gmin = 0.001 0.993 (±0.003) +0.140 (±0.006) 192.9 0.700

MLP
R = 0.01, E = 500
η = 0.0002, µ = 0

0.836 (±0.006) −0.017 (±0.004) 916.1 0.178

SVM C = 100 0.955 (±0.006) +0.102 (±0.007) 277.5 18.76

MR K = 6, β = 0.2 0.916 (±0.008) +0.063 (±0.008) 0.783 0.026

SMAX

K = 6, R = 0.2,

E = 1000, E2 = 5,

η = 0.0002
0.937 (±0.006) +0.085 (±0.009) 2231 0.026

Table 7: Results of classification algorithms on the CHESS dataset.

representing the coordinates of the pieces, and the task is to decide if black can avoid

being mated in 14 moves. All of the given methods except ID3 and KNN base their model

upon the linear combination(s) of the features. In chess, this information is not very useful,

because the position value is a highly nonlinear function of the coordinates of the pieces

(e.g. the relation is not monotonic). If we analyze the performance of SMAX, then we can

see that it was the fourth best method in terms of AUC, and it was the best method in terms

of ∆AUC/VTIME.

Results for the SEGMENT dataset are shown in Table 8. We can see that linear methods

were strongly outperformed by nonlinear ones in terms of accuracy on this problem. The

only nonlinear method that performed poorly was MLP. According to the AUC value,

SMAX was the best algorithm, tied with SVM. According to ∆AUC/VTIME, it was the

sole best.

Summarizing the results of the experiments, we can say that SMAX proved to be a

useful classification algorithm. Typically, it was less accurate than sophisticated nonlinear

methods but more accurate than linear methods. Compared to MR, the other convex

polyhedron algorithm, SMAX was more accurate in all of the 6 test problems. If take both

accuracy and classification speed into account, then SMAX performed particularly well.

A disadvantage of SMAX on the given problems was relatively long training time (however
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Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.930 (±0.019) +0.000 (±0.000) 0.077 0.003

LOGR E = 10 0.945 (±0.017) +0.015 (±0.009) 0.420 0.003

SPER E = 10 0.942 (±0.020) +0.012 (±0.011) 0.448 0.003

ALN 0.931 (±0.024) +0.001 (±0.011) 0.127 0.003

LSVM C = 10 0.939 (±0.024) +0.009 (±0.014) 5.519 0.003

KNN K = 15 0.988 (±0.009) +0.058 (±0.019) 0.000 2.748

ID3 β = 0.01, Gmin = 0.001 0.987 (±0.005) +0.057 (±0.018) 39.09 0.045

MLP
R = 0.01, E = 500

η = 5 · 10−6, µ = 0.95
0.858 (±0.026) −0.072 (±0.025) 76.75 0.018

SVM C = 5 · 105 0.989 (±0.010) +0.058 (±0.019) 84.82 0.260

MR K = 8, β = 0.2 0.973 (±0.013) +0.042 (±0.017) 0.342 0.006

SMAX

K = 6, R = 0.05,

E = 500, E2 = 5,

η = 0.008
0.989 (±0.010) +0.059 (±0.016) 195.6 0.006

Table 8: Results of classification algorithms on the SEGMENT dataset.

it was still acceptable). I emphasize that the complexity of gradient method based SMAX

training is O(EndK), therefore the approach is able to deal with very large problems (as

it will be demonstrated in the collaborative filtering experiments).

5.1.3. Notes on running times

Because the implementation environment was Python + NumPy, the measured running

times not always reflect the true time requirements of the algorithms. The reason why

such phenomena can occur is that Python is a relatively slow, interpreted language, while

NumPy is a highly optimized library of numerical routines.

In most cases (FDA, LOGR, SPER, ALN, KNN, MLP, MR, SMAX with gradient training),

it was possible to translate every important step of the algorithm to linear algebra operations

supported by NumPy, and therefore the overhead of using an interpreted language was

small.

In other cases (ID3, SMAX with Newton training), there were critical parts written in pure

Python, which resulted a significantly increased running time. These algorithms could be

speeded up greatly (up to a constant factor only of course), if we implemented them in

C/C++.
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In the case of the support vector machines (LSVM, SVM), Python was used only as

a wrapper. Most of the computation was done by the highly optimized libsvm library,

therefore, the measured running times can be considered as “state of the art”.

5.2. Collaborative filtering

5.2.1. The NETFLIX dataset

This collaborative filtering dataset is currrently one of the largest publicly available machine

learning datasets. It contains about 100 million rating from over 480 thousand users on

nearly 18 thousand items (movies). The dataset was provided generously by Netflix, the

popular movie rental service, for the Netflix Prize (NP) competition [5].

The examples are (u,i,r,d) quadruplets, representing that user u rated item i as r on date d.

The ratings values are integers from 1 to 5, where 1 is the worst, and 5 is the best. The data

were collected between October, 1998 and December, 2005 and reflect the distribution of

all ratings received by Netflix during this period.

The collected data was released in a train–test setting in the following manner: Netflix

selected a random subset of users from their entire customer base with at least 20 ratings

in the given period. A Hold-out set was created from the 9 most recent ratings of the users,

consisting of about 4.2 million ratings. The remaining data formed the Training set. The

ratings of the Hold-out set were split randomly with equal probability into three subsets

of equal size: Quiz, Test and Probe. The Probe set was added to the Training set and was

released with ratings. The ratings of the Quiz and Test sets were withheld as a Qualifying

set to evaluate competitors. The Quiz/Test split of the qualifying set is unknown to the

public. I remark that the date based partition of the entire NP dataset into train–test sets

reflects the original aim of recommender systems, which is the prediction of future interest

of users from their past ratings/activities.

As the aim of the competition is to improve the prediction accuracy of user ratings,

Netflix adopted RMSE (root mean squared error) as evaluation measure. The goal of the

competition is to reduce the RMSE on the Test set by at least 10 percent, relative to the

RMSE achieved by Netflix’s own system Cinematch.5 The contestants have to submit

predictions for the Qualifying set. The organizers return the RMSE of the submissions on

the Quiz set, which is also reported on a public leaderboard.6 Note that the RMSE on the

Test set is withheld by Netflix.

5The first team achieving the 10 percent improvement is promised to be awarded by a Grand Prize of $1

million by Netflix. Not surprisingly, this prospective award drawn much interest towards the competition. So far,

more than 3 000 teams submitted entries for the competition.
6http://www.netflixprize.com/leaderboard
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There are some interesting characteristics of the data and the set-up of the competition that

pose a difficult challenge for prediction:

• The distribution over the time of the ratings of the Hold-out set is quite different

from the Training set. As a consequence of the selection method, the Hold-out set does

not reflect the skewness of the movie-per-user, observed in the much larger Training set.

Therefore the Qualifying set contains approximately equal number of queries for often

and rarely rating users.

• The designated aim of the release of the Probe set is to facilitate unbiased estimation

of RMSE for the Quiz/Test sets despite of the different distributions of the Training

and the Hold-out sets. In addition, it permits off-line comparison of predictors before

submission.

• We already mentioned that users’ activity at rating is skewed. To put this into

numbers, ten percent of users rated 16 or fewer movies and one quarter rated 36 or fewer.

The median is 93. Some very active users rated more than 10,000 movies. A similar

biased property can be observed for movies: The most-rated movie, Miss Congeniality

was rated by almost every second user, but a quarter of titles were rated fewer than 190

times, and a handful were rated fewer than 10 times [3].

• The variance of movie ratings is also very different. Some movies are rated

approximately equally by the user base (typically well), and some partition the users.

The latter ones may be more informative in predicting the taste of individual users.

5.2.2. Comparing SMAXCF with other methods

The algorithms involved in the experiments were the following:

• DC: Double centering [4]. The only parameter of the algorithm is the number of

epochs E (default value: 2).

• BRISMF: Biased regularized incremental simultaneous matrix factorization [21].

The parameters of the algorithm are the number of epochs E, the number of factors

L, the user learning rate ηU (default value: 0.016), the item learning rate ηI (default

value: 0.005), the user regularization coefficient λU (default value: 0.015), and the item

regularization coefficient λI (default value: 0.015).

• NSVD1: Item neighbor based approach with factorized similarity (also known as

Paterek’s NSVD1) [16]s. The parameters of the algorithm are the number of epochs

E, the number of factors L, the user learning rate ηU (default value: 0.005), the item

learning rate ηI (default value: 0.005), the user regularization coefficient λU (default

value: 0.015), and the item regularization coefficient λI (default value: 0.015).

• SMAXCF: The proposed smooth maximum based convex polyhedron approach

(see page 43). The parameters of the algorithm are the smooth max function (default

value: smaxA1), the smoothness parameter α (default value: 2), the smoothness change
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parameters A1 and A0 (default value: A1 = 1, A0 = 0.25), the number of epochs

E, the number of factors L, the user learning rate ηU (default value: 0.016), the item

learning rate ηI (default value: 0.005), the user regularization coefficient λU (default

value: 0.015), and the item regularization coefficient λI (default value: 0.015).

All algorithms were implemented in C++ from scratch. The hardware environment was a

server PC with Intel Pentium Q9300 2.5 GHz CPU and 3 Gb memory.

Let us denote the NETFLIX Training set by T = {(u1,i1,r1,d1), . . . ,(un,in,rn,dn)}, and

the Probe set by P = {(u1,i1,r1,d1), . . . ,(um,im,rm,dm)}. The exact sizes of the sets

are n = 100,480,507 and m = 1,408,395. All algorithms were trained using T \ P , and

then the Probe RMSE of the trained predictor g was calculated as

Probe RMSE =

√

√

√

√

1

|P|

∑

(u,i,r,d)∈P

(g(u,i)− r)2.

The results of individual algorithms are shown in Table 9. Recall that SMAXCF can be

considered as a generalization of BRISMF. We can see, that the SMAXCF approach was

able to boost the accuracy of BRISMF, however if we used more factors, then the benefit

was smaller. The NSVD1 approach was less accurate than than BRISMF and SMAXCF,

and not surprisingly, DC was the worst in terms of RMSE. It is true for all of BRISMF,

NSVD1, and SMAXCF that the accuracy was increasing with introducing more factors.

Each experiment consists of three main phases: data loading, training, and validation. The

last column of the table shows the total running time of the experiments in seconds. If we

take into account that more than 99 million examples were used for training, then we can

conclude that all of the presented algorithms are efficient in terms of time requirement.

In the last experiments the predictions of the previous methods for the Probe set were

blended with L2 regularized linear regression. The value of the regularization coefficient

was λ = 1.4. The results can be seen in Table 10.

The last column shows the 10-fold cross validation Probe RMSE of the optimal linear

combination of the inputs. The reason why the single-input blends (#11, #12, and #13)

have lower RMSE than the inputs themselves is that the linear blender introduces a bias

term too. We can see that the SMAXCF approach was able to improve the result of the

combination of BRISMF and NSVD1 models. This indicates that SMAXCF was able to

capture new aspects of the data that was not captured by BRISMF and NSVD1.
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No. Method Parameters Probe RMSE
Running time

(seconds)

#1 DC 0.9868 11

#2 BRISMF L = 10, E = 13 0.9190 161

#3 BRISMF L = 20, E = 12 0.9125 263

#4 BRISMF L = 50, E = 12 0.9081 598

#5 NSVD1 L = 10, E = 26 0.9492 568

#6 NSVD1 L = 20, E = 24 0.9459 1057

#7 NSVD1 L = 50, E = 22 0.9435 1900

#8 SMAXCF L = 10, E = 18 0.9169 861

#9 SMAXCF L = 20, E = 18 0.9114 1234

#10 SMAXCF L = 50, E = 18 0.9079 2692

Table 9: Results of collaborative filtering algorithms on the NETFLIX dataset.

No. Inputs Probe RMSE

#11 #4 0.9069

#12 #7 0.9430

#13 #10 0.9069

#14 #2+#3+#4 0.9065

#15 #5+#6+#7 0.9429

#16 #8+#9+#10 0.9068

#17 #14+#15 0.9035

#18 #14+#16 0.9050

#19 #15+#16 0.9033

#20 #14+#15+#16 0.9021

Table 10: Results of linear blending on the NETFLIX dataset.
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6. Conclusion

Convex polyhedron classifiers are special binary classifiers that fit well to unbalanced

problems, because they tend to classify negative examples quickly. Despite this appealing

property, the approach is not frequently used in practice. The main reason for that is the

lack of good training algorithms.

In this paper I proposed novel and computationally efficient algorithms for training convex

polyhedron classifiers. The proposed algorithms are based on the smooth approximation

of the maximum function. I also introduced the analogous variant of the smooth maximum

approach for regression and collaborative filtering.

The usefulness of the proposed methods was demonstrated via experiments on artificial

and real datasets. It turned out turned out that smooth maximum based classifiers are

able to provide a good tradeoff between accuracy and classification time on unbalanced

classification problems. In the case of collaborative filtering, smooth maximum based

methods are able to complement other methods well.
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Abstract: There are several iterative models for solving general, large linear 

equations. In this paper a parallel algorithm with slow convergence speed 

for studying the speed-up effect of the parallel algorithms has been 

presented. The difference between the ring and hierarchical topology 

considering running speed and efficiency has also been explored. Detailed 

numerical test results of the algorithm including the speedup of parallel 

execution are shown. 

Keywords: parallel programming, linear equation, cluster computing 

1. The minimal residual algorithm 

The main goal of this article is to study the speed up effect on a parallel computer using 

a parallel algorithm for solving a full rank, general, symmetric, positive definite not 

sparse (but dense) linear equation with high condition number 

( 1000=n , 10102 ⋅=cond ; 5000=n  , 13104 ⋅=cond ; 10000=n  , 12107 ⋅=cond ; 

15000=n  , 16105 ⋅=cond ), where 1)( −⋅= AAAcond and Euclidean norm was used. 

The condition number shows the difficulty of the linear equation. Higher condition 

number means the complexity of the problem, in other words the equation gets more 

and more difficult with numerical methods. 

The solving algorithms of the general b=Ax  equation are well known [1] [2] [3]. In 

the case of large systems direct algorithms are inefficient. Only iterative methods can be 

used that can produce results with the desired precision [4] [10], otherwise the floating 

point arithmetic causes several rounding errors. 

The base of the presented numerical algorithm for the solution of linear systems of 

equations is a generalisation of the classical one-step iterative algorithm (such as the 

gradient method). Generalisation will not improve the convergence speed of the 

algorithm but it highly improves parallel execution. In a sequential case the base 

algorithm [5] [6] has slow convergence speed. The minimal residual algorithm is a 

widely known algorithm, but the suggested versions of Algorithm1 and Algorithm2 have 

been created by the authors. The results of the parallel realisation of the algorithms and 

the measured data are the results of the present research. 
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The suggested algorithms give a good opportunity to study the effects of parallel 

processing. If a cluster or a multiprocessor computer is used, one can expect 

considerable speed-up effect. 

2. Methods for parallelisation on homogeneous and heterogeneous systems 

The aim of parallel processing is to break a large problem down to several smaller 

components or calculations that can be solved parallelly with different processors at the 

same time. The most efficient tools for scientific computations would be massively 

parallel computers, with a large shared memory, but this hardware is expensive and 

unattainable for the research team. Other solutions can be distributed systems and 

cluster computing. A small cluster of 16 PCs with normal network connection and an 

interconnected cluster machine with 88 processors (HP BladeSystem C3000) were used. 

On the cluster computing model a message passing software (MPI) was used to solve 

the tasks. 

2.1. Ring and hierarchical topologies 

In parallel solutions there are two bottlenecks for optimisation: the communication and 

the calculations. These aspects have been studied with two topologies. For linear 

equations based on numerical models the ring model is often used [8]. In this case every 

node has a connection with the two neighbouring nodes, or other nodes. This solution 

works efficiently on homogeneous systems. On this model the heartbeat algorithm is 

useful (see Figure 1 a). First it starts an initialization procedure, then a loop starts. In 

the first phase of the loop a data sending and receiving mechanism process is 

accomplished (synchronization). This is the data exchange period between each 

computation node. After that, every node runs the computation algorithm. This is the 

“cpu” period of the work. The loop runs until the stopping criteria. In this model every 

node has an equivalent role. This model needs a homogeneous network and the same 

type of processor because each synchronization step made by the slowest node. Fast 

nodes need to wait for them. 

Figure 1. Ring (a) and hierarchical (b) topology 

In other cases hierarchical topologies are useful [9]. The master-worker model is based 

on a distributed and large, heterogeneous cluster (see Fig 1b.). The master node controls 
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the running processes, assigns problems to workers and manages the partial solutions. 

The role of the worker nodes is to solve smaller parts of the problem. This model works 

well with asynchronous methods, too because worker nodes have not connected to each 

other. Every worker node can reach the maximum performance of the processors. 

2.2. Algorithm 1 

For a ring topology the following algorithm has been used: 

I. Let P be the number of nodes, let eps be the tolerated error value. 

II. Let A be the matrix to be solved and let b be the solution vector. 

III. For every node Pp∈ do in parallel: generate 1x random vector.  

IV. For every node Pp∈ do in parallel:  

 Operation() while a result arrives or converges. 

V. The result of solution is 1x on master node. 

The algorithm uses the Operation() function on every node: 

1. do 

2.  let 2x be a new random vector 

3.  let bAx=r −11 and bAx=r −22 , where 021 ≠− rr  

4.  let 
( )

2

21

21,2
12 :

rr

rrr
=c

−

−
 

5.  let ( ) 21211212 1: xc+xc=x −  

6.  let ( ) 21211212 1: rc+rc=r −  

7.  let 121 : x=x , and 121 : r=r  

8.  if min<r
2

1  or n>umiterationn  

   then send 1x to the next node and wait for a new 2x vector 

9. while eps<r
2

1  

10. return 1x , the solution with desired precision. 

Remarks: 

From the vector exchange it is expected that the given result is better, or when the 

algorithm reaches a local minimum value this 1x  solution is sent to another node, which 

continues the computation with a new random number coming from another node (see 

Figure 2). 
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In the implementation of the algorithm the Mersenne-twister pseudorandom number 

generator has been applied [7] and the independence of iteration sequences is based on 

the independent clock of the computing nodes.  

Two error measure methods have been used in the algorithm. The first was the general 

residual error: 
22

1 bAxrerrr −== . When the exact solution of the test case is known 

(x’), there is a chance to compute the absolute error value: 
2

xxerrx ′−= , where x is 

the approximate solution vector. 

 

Figure 2. The convergence of Algorithm1 (n = 100) 

In the case of large-sized, badly conditioned linear equations these error values are 

relatively high numbers (with 1610=cond , 1000=rerr  means a close solution as 

shown in Figure 4, in detail that means 
2

xx ′− is ∑
=

′−
n

i
ii xx

1

2
and the error for every 

member of the solution vector is approximately 82
10−≈′− ii xx ).  

If a problem was solved where the correct solution had already been known, and the 

residual and absolute error were compared it has to be noted that the absolute error of 

the solution is always better than the residual. 

The efficiency of the algorithm depends on load balancing: the operation can be 

repeated several times with slow convergence speed or the result vector can be 

exchanged between nodes to give extra speedup. In this case and referring to Amdahl's 

law the ring model has a theoretical maximum number of nodes. If more nodes are used 

and the best solution is sent to the next node, the larger ring will increase running time 

as the solution waves slowly on to the other nodes.  
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Figure 3. The convergence of Algorithm1 (n = 500) 

This Algorithm1 works well on a homogeneous cluster (see Figure3). But if there is a 

slower or a loaded computer on the ring the send-receive method will be slow and 

several traffic jams are expected and running times also grow. 

Algorithm1 has been revised and a new, hierarchical model has been composed. 

2.3. Algorithm 2 

I. Let P be the number of nodes, let eps be the tolerated error value. 

II. Let A be the matrix to be solved and let b be the solution vector. 

III. The master node generates a random vector 2x and sends for every worker 

node. 

IV. For every node Pp∈ do in parallel: generate a random vector 1x  

V. On master node do Control() while eps<x
2

1  

VI. For every worker node Pp∈ do in parallel:  

 Operation(x1) while a vector arrives 

VII. The result of solution is 1x on master node. 

On the worker nodes the Operation() function uses a residual approach like Algorithm1. 

The difference is that the operation function sends and receives data from the master 

node only. 
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Figure 4. Residual and absolute error of the solution vector 

 (n = 15000, P = 88 cpus, log-log scale)  

The Control function of the master node distributes and collects data from every worker 

node. On the master node the problem is not solved, but the result is presented here. The 

master node controls the data exchanges, and presents the best approximate result vector 

for every node (see Figure 4). This model is flexible because the number of worker 

nodes number can grow dynamically [8]. 

This model can be used on heterogeneous clusters, too, because the worker nodes are 

independent and communicate only with the master node. Every node works on the 

master’s best solution. 

 

Figure 5. Convergence speed between topologies (n = 500, P = 16 cpus);  
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The difference between the ring and hierarchical algorithm is that the hierarchical 

algorithm results in smaller computational time and better convergence. As it can be 

seen in Figure 5 the ring solution (solid line) has a minor gradient whereas the 

hierarchical solution (dotted line) has a steeper gradient. This is because at the ring 

model the corrective effect of a new solution reaches the previous node in P–1 steps, 

while in the hierarchical model the corrective effect is achieved in one step. Moreover, 

on the ring model we can only take the result of one or two neighbours into 

consideration. 

 

Figure 6. The results of working nodes (dotted) and the minimal residual error (solid 

line) (n = 10000, P = 88, log-log scale) 

 

The hierarchical model has better convergence features. At every iteration loop the 

master node sends the best solution vector for the workers. This adds some genetic 

features to the algorithm [5]. If we examine the details on Figure 3 and Figure 4 steps in 

the curve can be seen. It has to be noted that in a P-processor master-worker model only 

P-1 processors solve the linear equation. 

Let us focus now on this hierarchical solution. If the convergence curves are observed it 

can be noticed that all of the solutions are similar, and the final solution has always the 

same order of error in every case. The differences between the exact values of the errors 

are unfortunately caused by the pseudo-random number generator. In this algorithm 

only an approximate solution is achieved, not the exact vector. 

If the problem is examined from another point of view and the execution time of the 

algorithm is recorded, the results shown in Figure 7 are achieved. If more computing 

nodes are used the running time is expected to decrease.  
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Figure 7. Time of execution and processor numbers (n = 5000); 

In these cases only parallel execution provides results in an acceptable time. At some 

points larger than linear relative speed-up can be achieved, as it is shown in Fig 8. But 

when the number of processors grows, the effective speedup and efficiency decreases as 

the worker nodes report their own solutions and the load of the master node grows. 

More precise load balancing can be used, but the size of the problem and the 

communication delays prevent further advances. For better results another method has 

to be used. 

 

Figure 8. Algortihm2 relative speedup (n = 500) 
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3. Results 

Above a new type of algorithm for the solution of a linear equation system on 

heterogeneous clusters has been presented. The algorithm is based on a residual 

minimisation technique with master-worker solutions. The algorithm has some genetic 

features because the new, better vectors are made from a group of good vectors as seen 

in Figure 8 for extra speed-up.  

Computer tests have proved the theoretical results; parallel implementation is much 

better than the sequential one. We get a considerable speed-up effect using a parallel 

computer. 

The goal of creating these algorithms has been basic research but the solution of bad 

condition linear equations is a useful method for several practical and realistic 

problems. Optimization, finite element methods, control or simulation problems are 

often based on large dense linear equations.  

We have to note that only the simplest algorithm has been tested. The test with more 

effective algorithms will be the subject of a forthcoming work. 
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Abstract: Many physical phenomena in acoustics, optics and electromagnetic wave 

theory are governed by the scalar wave equation. In the frequency-domain, 

the wave equation is the so called Helmholtz equation. In many cases, a 

theoretical numerical solution can be obtained for this equation by using 

finite differences with Sommerfeld boundary condition, resulting in a 

system of linear equations to be solved. The Sommerfeld boundary 

condition is used to solve uniquely the Helmholtz equation. However, in 

practice great difficulties are caused by the above method’s great demand on 

operative storing capacity and calculation time. In the following 

contribution, a method for directly solving a linear equation system with a 

five off-diagonal matrix is presented. We show, that for this method, the 

number of computational steps and the memory requirement can be 

significantly reduced, and the possibilities for parallelization are also 

analyzed.  

Keywords: Helmholtz equation, Sommerfeld boundary condition, finite difference 

method, sparse matrix 

1. Introduction 

Let ),( yxuu =  be the complex valued wave function on the region Ω , satisfying the 

Helmholtz equation [13][12] 

 0
2 =+∆ uku , (1) 

where  
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2
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2
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u
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u
u

∂
∂
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∂
∂

=∆ , (2) 
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and k is the wave number, 
λ
π2

=k , with λ  being the wavelength. Let the shape of 

Ω  be a rectangle, and the wave propagate in the Ω  plane. A Sommerfeld boundary 

condition [1] is applied, i.e., 

 0=−
∂
∂

iku
n

u
 (3) 

on the subset Γ′Ω∂=Γ \ , where Ω∂  is the boundary of domain, on the set Γ′  the 

values of u are known. Here n denotes the unit normal vector of Ω∂ , and i means the 

imaginary unit. Let the examined domain Ω  be covered with an equidistant grid of 

spacing d, centered in a certain grid point with coordinates ( )yx, . Applying this choice, 

the discretized wave function is given only in the grid points as 

pquqdpduyxu == ),(),( [14], with bqap ≤≤≤≤ 00 , Ν∈qp, . The discretization 

scheme is illustrated in Figure 1. The aim of the work is to determine the values of u in 

these points according to the prescribed boundary conditions. 

 

Figure 1. The studied domain Ω  with the boundary Ω∂=Γ , and the applied grid 

centered in the gray point. 

The discretization, together with the finite difference approximation, results in a system 

of linear equations. The system matrix is a large but sparse matrix with complex values. 

In order to obtain a sufficiently accurate numerical solution, the number of grid points per 

wavelength should be sufficiently large. As a result, the linear system becomes extremely 

large. 

In this work, a method is presented to generate a solution of the problem. Efforts were 

made to place as much valuable (non-zero) data into the memory as possible and to apply 

the fastest possible operations. 

The linear equation system describing the studied wave-range is composed of matrices 

with five non-zero off-diagonals, which can be transformed into matrices containing five 

valuable lines. This is, however, still too large to be kept in the memory simultaneously. 

We can achieve further memory size decrease by applying a sliding working-window in 

which the data transfer is minimized for the optimized operation. Within the 

work-window a direct procedure was used based on the Gaussian elimination. Further 

decrement in the necessary storing capacity can be achieved by dividing the domain. 
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Considering everything that depends on the capacity of the operating memory, we can 

achieve a good calculation capacity if the wave-range is optimally selected within the 

memory and the applied variables are ideally organized. 

The effectiveness of the presented method is investigated by a numerical example of 

the beam propagation in a homogeneous medium. 

2. The difference equations and the boundary equations 

Inside the domain, the studied point is elements of an equidistant grid [11] which can be 

seen in Figure 2.  

 

Figure 2. The equidistant grid for finite differences method. 

The equation (1) can be approximated by the 5-point difference scheme [3][11]: 

 0)4( 22
1111 =−−+++ ++−− pqpqqppqqp uhkuuuu .  (4) 

Two types of boundary points can be defined, where the values u are unknown. Figure 

3. A) shows the adx =  side points, except for the edges. Calculating with grid points on 

the side [7][8]: 

 02)24( 111
22 =−−−−− +−− pqpqqppq uuuuhkikh .        (5) 

The same procedure can be followed on the other corners. 

 

Figure 3. The boundary points of type A) side, B) corner. 
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Applying the ⎟⎟
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Based on (4) it yields on the bdyadx ==  corner : 

 11
22

2

1
220 −− −−⎟

⎠
⎞

⎜
⎝
⎛ −−= pqqppq uuuhkikh , (7) 

which can be applied for the other corners as well. 

3. Numerical solution 

3.1. Optimal buffering in the operating memory 

Applying the conditions (4), (5) and (7), a 5 diagonal homogenous linear set of 

equations is received containing the equation of ( )( )11 ++ ba  [2]. Figure 4.A) represents 

the extended matrix of simultaneous equations in the case of 5== ba . The black places 

indicate zero values, while the white ones mean some complex values different from zero. 

 

Figure 4. Storage layouts 

Considering Dirichlet boundary points, inhomogeneous system of equation is resulted 

in that is illustrated the Figure 4.B). The Helmholtz equation with special preliminary 

conditions can be represented by a large system of equations with a sparse matrix. The 

size of the matrix is too large compared to the stored information [6]. The necessary 

storing capacity can be significantly reduced in the following way. The last column can 

be detached, and stored in a separate vector. The valuable diagonal dots of the system 

with coordinates ( )yx,  can be transformed into a row formation according to 

 ( ) ( ) ( )( )( )[ ]( )ydbaadyxyx ,11mod1/, ++−−− . (8) 

Figure 4.C) demonstrates the state after the row transformation. 

Only the first 32 +a  rows of the matrix are kept, it is unnecessary to reserve space for 

the others (Figure 4.D). After this reduction, extra care needs to be taken in order not to 

step out of the reduced ( ) ( )( )1132 ++×+ baa  matrix during the elimination of the 

coefficients. During the Gaussian elimination modified considering (8), the coefficients 
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under the row ( )2+a  can be zeroed in increasing column-index (Procedure I), then the 

coefficients above row ( )2+a  in decreasing column-index can also be eliminated in the 

same way. 

A further decrease in storing capacity can be obtained if the line number ( )3+a and the 

last row are stored in two separate vectors, and afterwards, rows after line 

number ( )2+a are left out. The size of the resulting matrix is ( ) ( )( )112 ++×+ baa , 

which can be seen in Figure 4.E). 

For Procedure I, a sliding matrix of size ( ) ( )21 +×+ aa  can be used, which is filled by 

values from separate vectors for an iteration step. This sliding matrix also stores the 

transitional values of the elimination process under the „transformed main diagonal”, as it 

can be seen in Figure 4.F). 

When moving the sliding matrix one step to the right, the new incoming column can be 

written to the place of the outgoing column, thus there is no need to rewrite the whole 

matrix. The columns can be referred to with the modulo-index ( )2+a . 

With the first procedure, the range above the row ( )2+a  gets saturated with 

transitional values, which is to be eliminated with Procedure II. 

3.2. The required storing capacity 

It becomes obvious that, basically the distance of the two side-diagonals determines the 

size of the storage demand according to the above method. On the other hand, this 

distance depends on the values of the border dimensions a and b in the studied range. 

Further decrement in the necessary storing capacity can be achieved by dividing the 

domain Ω . The question is, what shape and size is practical for the resulting 

sub-domains. According to Figure 4.E), in case of 16 byte storage of the complex values, 

the necessary storage capacity in byte units is 

 ( ))1)(1(2)1)(2()1)(1)(2(16),( +++++++++= baaabaabaS .  (9) 

The area of the domain Ω  was 

 ( )2)1)(1(),( dbabaA ++= .  (10) 

For a given area A the necessary storage capacity can be reduced by decreasing 

parameter a as it can be derived from the following expression 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++= )1)(2()4(16),( aaa

d

A
AaS .  (11) 

Unfortunately parameter a can not be decreased arbitrarily because of the distortion of 

the result. According to the above considerations, it is effective to divide the system 

parallel to axis y, thus generating n congruent sub-domains [3]. Compared with the case 

of (9), the simultaneous storage of these data needs less capacity by a factor 
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Although even according to (12) a considerable memory load decrement can be 

achieved, it is not necessary to store the data of the sub-domains simultaneously, the 

procession of their data is possible separately. 

The memory need of a sub-domain in case of ba =  is 
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According to (13), the value of S increases strongly with the augmentation of a, but 

choosing the right number of sub-domains n, it can be divided into computationally 

manageable sub-problems. This experience can be derived from Figure 5. 
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Figure 5. The necessary storing capacity as a function of the linear domain size a and the 

number of sub-domains n. 

Applying the Huygens-Fresnel principle to the elementary domains, these sub-domains 

shall be treated as the starting objects of waves and the wave propagation between the 

sub-domains have to be ensured. In order to guarantee the proper wave propagation, 

domain Ω  should not be divided into disjoint parts, but into overlapping regions. All of 

the two adjacent overlapping sets of points along the boundary are common. The 

sub-domains, containing known values of u at their boundary, can be calculated, applying 

Sommerfeld boundary condition in boundary points which are contained unknown values 

of u . Then the neighbouring sub-domains can receive the wave propagation data from the 

overlapping regions, i.e., through the pqu  values received from their neighbouring 

domains and through the relation (4) applicable as the continuation of the two common 

sets of points. In practice two grid lines of overlap in the division of Ω  can ensure 

sufficient wave propagation. 
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The number of the possible starting threads in the parallel calculations is the number of 

the domains, where boundary values u is known. After the solution of one sub-domain 

two neighbouring sub-domains receive boundary values. Starting two new threads with 

each of these new boundary stripes the calculation can be carried out, the direction of the 

propagation remains the same. The gain from the parallel computing algorithm depends 

on the initial conditions, i.e., on the number of possible parallel treads and the position of 

their beginning sub-domain within the system. Generally only the following can be 

stated. For n sub-domains, even if the number of available computing units is sufficiently 

large, the necessary solution time of the parallel computation is at least n−2 times the 

sequential computing time. In the next section the duration of the calculation of a rather 

simple system is analyzed. 

3.3. Simulation results 

In Figure 6 the solution of the same problem with two Dirichlet boundary points can be 

seen for different subdivisions of the whole domain. 

 

Figure 6. Subplots A), B), C) give the wave-space intensities corresponding to n=1, n=2, 

n=3 respectively, showing the overlapping regions. The applied data are the following. 

Grid size a=b=200, wavelength λ=0.0003m, d=0.000003m, 

)}1,120,0(),1,0,45{( =======Γ′ valueqpvalueqp  

Calculation of error of solution with partition the domain compared to calculation of 

undivided domain is shown the following result. The relative error of the solution in 

Figure 6. B) according to norm 
1
 is 0.14, whereas according to norm 

∞
 the relative 

error is 0.13 compared to the values of the non-divided solution in Figure 6. A). The 

relative error of the calculated solution in Figure 6. C) is 0.29 according to norm 
1
, 

while for norm 
∞

 0.22. 

By compact storage of the matrix for determining the solution of the wave-space linear 

system of equations, not only the operative storing capacity load is decreased, but the 

necessary calculation time shortened, as well. 

The operation steps demand corresponding to the case given in Figure 4.F) with the 

constraint ba =  is 

 aaaaaaaaaaM ++++=+++−++−+≈ )1()1()1()1)(1)1(()1)1(()( 222222 . (14) 
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After dividing the domain Ω  to n sub-domains, the necessary operation steps for one 

part can be reduced to 
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If m parallel computational threads can be started, the wave propagation has to be 

followed in all the remaining sub-domains, thus the total number of operation steps is 
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Comparing M and mM  of equations (14) and (16) yields to an operation-saving factor, 

which relates the complete calculation within the domain to the calculation performed in 

the undivided Ω  domain as 
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By dividing the problem into sub-domain problems, the necessary real calculation time 

compared to that of the undivided problem depends on the value of mϑ , but of course, it 

is also affected by the programming technique. 

As an example, let ba =  hold, and ),(2 nat  denote the necessary computation time of 

the space with two Dirichlet boundary points in the case of n subdomains with the data 

visualized in Figure 6. Thus the time-saving factor 1D  according to this calculation is 
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On the basis of measurements, according to relation (18), the values 1D  are given in 

Tab. 1. At a fixed grid size a let us introduce another factor 2D  in order to facilitate the 

exploration of the relation between 1D  and 2ϑ  as 

 ),()()(2 2 nancnD ϑ= .  (19) 

Expression c(n) can be determined the following way. Condition 

 )(2)(1 nDnD ≈   (20) 

has to be satisfied, in order to make 1D  and 2ϑ  comparable. Based on the 

experiments, condition (2) is ensured by relation 

 nnc =)( .  (21) 

The value 2D  calculated according to condition (21) can be seen in Table 1., while the 

realization of (20) is illustrated in Figure 7. 
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Table 1. The values D1 and D2 for various numbers of sub-domains n in case of c(n)=n. 

n 2 3 4 5 6 7 8 9 10 

D1 0,501 0,230 0,132 0,092 0,064 0,050 0,040 0,032 0,028 

D2 0,508 0,229 0,131 0,085 0,06 0,045 0,035 0,028 0,023 

0

0,1

0,2

0,3

0,4

0,5

0,6

2 3 4 5 6 7 8 9 10

D1

D2

n

 

Figure 7. The values D1 and D2 for various numbers of sub-domains n in case of 

nnc =)( . 

4. Conclusion 

With the development of hardware and software technology, together with increasing 

calculation capacities and memory-optimization, the direct method can also be used 

successfully in the case of small-sized electromagnetic wave-ranges of relatively long 

wavelength. For reducing the required storing capacity, a special matrix reduction 

method was introduced in this paper, using sliding matrices. For aiding parallel 

computing, a wave space dividing method was also introduced and tested with small 

overlaps ensuring the wave front transmission between the space parts with reasonable 

results. 

Beyond the studied discretization method, there are many other possibilities to solve 

the above problems. These solutions can be characterized by the number of 

computational steps and the necessary memory capacity for the sufficiently accurate 

results, which, at the end, determine the necessary computing time. The following 

estimations are based on the case of square grids with a=b. The method considered in 

Section 3, is based on stripped Gaussian elimination, its necessary computational 

capacity according to (14) is O(a4). The filling does not impact the whole matrix, but only 

approximately a3 elements. Applying LU decomposition, a quicker solution can be 

achieved with significantly larger storage need. The conjugate gradient method is much 

more favourable both in computational (less than O(a4)) and in storage needs, but it 

demands a symmetric positive definite matrix, which has to be pre-conditioned for an 

efficient convergence. The special shape of the studied domain makes it possible to apply 
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FFT (Fast Fourier Transform), which presents a quick solution with a computational 

requirement of O(a2loga) steps, and its storage need is O(a2loga). Wavelet based 

differential equation solving methods of order a exist [5], but their application range is 

limited mostly to elliptic differential equations and Schrödinger type eigenvalue 

equations [9], and their straightforward representation of the kinetic energy can lead to 

systematic errors [10], which results in slower convergence. The boundary element 

method’s storage capacity demand is approximately the same as that of the finite 

differences method, but its algorithmical complexity is O(a3). The best solution seems to 

be the multigrid method, since its computational need is O(a2), and memory demand is 

about the same as in the conjugate gradient method. More accurate and effective solution 

can be achieved by unevenly meshed multigrid method. 

The main advantage of the method presented in this article is the simple algorithm 

which can be easily applied even if no complex, efficient program is available, and the 

development time has to be minimal. It can also play a role in the design of the uneven 

grid multigrid method by giving a rough scale solution of the problem as a starting point. 
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Abstract: Problem: More and more applications use Radio Frequency Identification 

(RFID) technology for wireless identification or data transfer in consumer 

electronics, automation and automotive market nowadays. The most 

important component from the communication point of view is the 

transponder coil. There are numerous transponder coil manufacturers in the 

world, and even more RFID application manufacturer. For both of them it 

is important to recognize the differences of various transponder 

constructions. This paper focuses only on the measurement of the Low 

Frequency RFID transponder coils, which operates using the inductive 

coupling. 

Solution: The parameter which gives the most information about the 

performance of the transponder coil is the sensitivity. This paper explains 

what the sensitivity means, how it can be calculated, and gives alternatives 

for the measurements. Reveals the disadvantage of the widely used 

standard sensitivity measurement, and provides a proposal for a new kind 

of measurement, by changing the excitation signal and tuning the 

transponder coil with a capacitor. The new measurement method results 

two independent parameters instead of one that give more information 

about the transponder coil and its performance. The paper also presents the 

exact phenomenon that takes place in the resonant circuit, in other words 

the time function of the voltage and current of the circuit, during the 

measurement and the standard operation.  

Verification: There can be found in the end of this paper an example for the 

measurement, where different transponder constructions are compared. The 

evaluation of the measurement is also introduced in two different ways. 

Based on the measurement and on the evaluation of the different 

transponder constructions the impacts of the changes in the construction 

can be identified and proved. 

Keywords: LF RFID, LF transponder, Sensitivity, Sensitivity measurement 

1. Introduction 

More and more applications use RFID technology for wireless identification or data 

transfer in consumer electronics, automation and automotive market nowadays. These 
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RFID systems can be classified in certain groups based on their properties, requirements 

and operating principles. Most commonly when high privacy and thus low reading 

distance, but reliable connection between the transmitter and the receiver is needed 

together with passive operating mode low frequency RFID system is chosen. Due to the 

operating principle these systems have the advantage that the transmission is not 

disturbed very much or blocked by obstacles or bad weather conditions. The operating 

principle of these systems is the inductive coupling. The main components of the system 

from the communication point of view, which ensure the inductive coupling are the 

primary and secondary resonant circuits. The resonant circuits consist of at least two 

components, a tuning capacitor and a reader or transponder coil, depending on which 

side of the coupled inductors is observed. Inductive coupling means a connection 

between the two coils through the electromagnetic field. The mutual inductance 

between the transponder and Reader coil helps to forward the energy and the 

transmitted signals between the two coils. These two coils can be seen as a weakly 

coupled transformer, where the primary coil is the Reader and the secondary coil is the 

transponder coil. The properties of these two coils determine mostly the limits of the 

communication. Therefore the coils in the two side of the transformer play a major role 

in the energy, the signal transfer and the operating of the complete RFID system. From 

this point of view it is very important to be aware of the behaviour, the properties and 

the limitations of the reader and transponder coils. For instance the maximum reading 

distance of the RFID application is determined by the coils. [1] 

2. Transponder coil parameters and standard sensitivity measurement 

The key parameters of the transponder coils – just like other inductors – are the 

inductance value, the DC resistance and the quality factor. As the component has to 

withstand only signal level load and not power level therefore values like saturation 

current or rated current are not required and so thus the manufacturers don’t define or 

state these parameters. However due to the special use of the inductor a special 

parameter is introduced for the transponder coils, which helps comparing different 

constructions and the products of different manufacturers. This parameter is the 

sensitivity value, which gives information about how sensitive the component to the 

changing external electromagnetic field is. The sensitivity is defined as the quotient of 

the induced voltage and the strength of the magnetic field, which induces the voltage 

across the inductor. [2] 

 
H

V
S i=  or 

B

V
S i= , (1) 

where Vi is the induced voltage across the inductor due to changing electromagnetic 

field, and H or B is the strength of the electromagnetic field, or the flux density. 

The unit of the sensitivity is 
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depending what type of excitation is considered during the measurement. 
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The measurement of the sensitivity can be performed with the help of a device, which is 

capable of creating uniform (nearly constant in magnitude and in orientation as well) 

electromagnetic field. These devices are the Helmholtz coil and the Maxwell coil. A 

typical sensitivity test setup consists of a signal generator, a Helmholtz coil and an 

oscilloscope, Figure 1. [2] 

 

Figure 1. Typical Sensitivity test setup 

This test setup is the most common and most conservative version in the variations of 

the sensitivity measurements. The inductor is measured as a single part and so there is 

not any attached component like tuning capacitor or damping resistor. The excitation 

signal is a sine wave, which is generated by the signal generator, and feeds the 

Helmholtz coil, which creates the changing electromagnetic field. The induced voltage 

on the transponder coil is measured by an oscilloscope, and the sensitivity can be 

calculated using the formula (1). This kind of measurement results one scalar parameter, 

which allows the comparison of different transponder coils, but does not give any 

further information about the reason or the background of the difference. 

The sensitivity measurement as single component measurement arises some questions 

and problems. The first problem is – which has an influence on the measured sensitivity 

value – the first Self Resonance Frequency (SRF) of the inductor. There is not any 

passive component, which behaves in the frequency domain purely resistive, capacitive, 

or inductive. Inductors should be considered not only as an inductive component, but as 

a more complex circuit where the source of the losses can be identified by capacitive 

and resistive components, Figure 2. [3, 4] 

 

Figure 2. Equivalent circuit of a lossy inductor 



Vol. 3. No. 1. 2010 Acta Technica Jaurinensis 

 90

The transponder coil during the measurement behaves not only as a purely inductive 

component, but as a damped resonant circuit. So the measured sensitivity value is 

influenced by the resonance phenomenon, which might result a higher value than the 

real one. The different parasitic capacitances and thus the different self resonance 

frequencies are determined by the different winding methods and the used components 

and materials. The higher the parasitic capacitance the lower the self resonance 

frequency is. For example an inductor, which is wound by layer winding appears to 

have higher sensitivity than an inductor which has the same number of turns and ferrite 

core, but the winding method is random winding. In resonant circuits in case of 

sinusoidal excitation the output voltage of an element can be calculated using the 

impedances instead of the differential equation of the circuit. According to this the 

transfer function of the inductor during the sensitivity measurement can be calculated as 

the quotient of the output and the input voltage, which is equal to the inductor 

impedance divided by the total impedance of the RLC circuit: 

 ( )
2

2 1
⎟
⎠
⎞

⎜
⎝
⎛ −+

=

Cω
LωR

LωωH  (3) 

Drawing the transfer function curves of transponder coils with different parasitic 

(winding) capacitances the huge difference is evident, Figure 3. 

 

Figure 3. Transfer function curves of transponder coils with different capacitances 

 

The difference in the transfer function values between the various transponders 

represents the difference in the measured sensitivity value. The false measurement may 

lead to false conclusion and decision, because a transponder coil with lower real 
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performance might have a higher sensitivity value in this kind of measurement. Another 

problem of this measurement is that the test does not simulate the real operating of the 

inductor. In the real RFID application the transponder is always tuned to a specific 

frequency, and thus the induced voltage across the inductor is many times higher due 

the resonance phenomenon, as can be seen in the transfer function, Figure 3. 

3. Sensitivity measurement in tuned resonant circuit 

The above explained measurement error can be eliminated by the resonant circuit 

measurement, where the circumstances and the mode of the operation is almost identical 

to the real use of the transponder coil. In these kinds of measurements the transponder 

coil is tuned to the desired frequency by a tuning capacitor. The frequency of the RFID 

system is usually between 125 kHz and 134.2 kHz. Although this measurement 

approximates better the real operation, but it still has the problem that the output is only 

one scalar parameter, because the used evaluation method of the measurement is 

identical to the formula (1). 

It is important to note when a resonant circuit is measured, the capacitor is qualified 

together with the transponder coil as well. So the capacitor influences the whole circuit 

and the measured values. But choosing a proper capacitor the losses of the capacitor can 

be neglected compared to the losses of the transponder coil. A rotary capacitor, which 

has air gap between its plates, has a sufficient high quality factor. The frequency of the 

measurement allows the using of these kinds of capacitors, because in this frequency 

range the dielectric loss of the capacitor can be neglected. From this point of view using 

tuning capacitor will not change noticeably the measured sensitivity value. 

 

Figure 4. Ttransponder coil in tuned resonant circuit 

4. Advanced Sensitivity measurement 

Changing the excitation signal and the evaluation of the measurement two independent 

parameters can be identified. Taking a deeper look in the resonant circuit (Figure 4), 

which is built up from the transponder coil (L), the tuning capacitor (C) and the 

damping resistor (R) the complete resonance phenomenon can be described as follows: 

� Using the Kirchoff’s loop rule on the circuit (with the reference in Figure 4) the 

following equation can be identified: 

 0VVVV CRL =++
. (4) 
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� Due to the same current flows through all the components it is practical to 

calculate the voltages in the function of the current: 

 
iRVR ⋅=
, (5) 

 dt

di
LVL ⋅=

, (6) 
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� Substituting the voltages described above (5-7) to the Kirchhoff’s loop (4) the 

following second order differential equations will be created: 
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� Introducing the 
LC

ω 1
0 =  parameter the differential equation can be written in 

the following simpler form: 
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id 02
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� The characteristic equation of the (10) differential equation is: 
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� Assuming that the damping of the resonant circuit is below the critical damping, 

and introducing the 
L

Rδ
2

=  the root of the characteristic equation will be: 

 

22

02,1 δωjδλ −⋅±−=
. (12) 

� Introducing the 22

0 δωω −=  the root of the equation can be further 

simplified in the following form: 

 
ωjδλ ±−=2,1 . (13) 

� The solution of the differential equation (with considering the 0=sti  condition) 

is: 
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� The initial condition of the current in the resonant circuit is: 
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� Substituting the (6) equation with the (15): 
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� The following results will occur for the A1 and A2 parameters from the last two 

equations: 
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� So thus the current of the circuit in complex form will be the following: 
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� Using the Euler’s formula the solution for the current is: 
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� The voltage of the coil, which shall be monitored during the measurement 

according to the (6) equation is: 
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The calculated voltage and current of a resonant circuit can be seen in the Figure 5. The 

calculated example represents a typical LF RFID circuit, where the components have 

the following values: L=2.36mH, C=680pF, R=20Ω. 

 

Figure 5. Simulated time function of the voltage and current of a RLC circuit 

As can be seen from the time function of the voltage on the coil, the shape of the curve is 

determined by three parameters: the initial amplitude (V0), the damping constant (δ) and 

the resonant frequency of the circuit (ω). One of these three parameters is intentionally 

fixed in the measurement of different transponder coils. The fixed parameter is the 

resonance frequency. The frequency is defined by the application, which shall be the same 

during the benchmark of different transponder constructions to provide the same external 

circumstances for the coils. This resonance frequency can be adjusted by a tuning 

capacitor. The two other parameters are the amplitude and damping factor. These two 

parameters give more information than only the scalar sensitivity value, because both 

parameters are independent from each other, and have a physical meaning. The amplitude 

of the induced voltage gives information how sensitive really the transponder coil to the 

electromagnetic field is. Without any exception a more sensitive coil shall have higher 

induced voltage (amplitude of the first peak) regardless what the self resonance frequency 

of the coil is. The damping factor gives information about the quality factor of the whole 

resonant circuit. As the losses of the resonant circuit mostly determined by the losses of 

the transponder coil, the damping factor gives information only about the transponder coil. 

In this frequency range the losses of the inductor are the eddy current losses, the iron 

losses of the ferrite core and the resistive losses of the winding wire. Usually in the low 

frequency range skin and proximity effect doesn’t play major role. It is obvious that an 

inductor with higher losses has a higher damping factor too and so the swinging energy 

between the tuning capacitor and the transponder coil will collapse much faster. It is 

important to emphasize that the measurement setup is almost identical in this case than in 

the original measurement, only the tuning capacitor and the excitation signal is different. 
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The excitation of the resonant circuit shall be a Dirac delta pulse. The resonant circuit is 

fed through the transponder coil, therefore the Dirac delta will occur on the coil due to the 

electromagnetic field created by the Helmholtz coil. The induced voltage which feeds the 

resonant circuit can be identified by the Faraday’s law of induction: 

 
( )tδ

dt

d
NVL =−=

Φ
. (24) 

The required signal on the Helmholtz coil for getting the Dirac delta pulse on the 

transponder coil can be calculated according to the (24) equation. If the required signal 

on the coil is a Dirac delta pulse, the signal on the Helmholtz coil shall be the integral of 

the Dirac delta pulse, as it can be seen in the follows. 

 
( ) ( )tdttδHelmholtz 1Φ == ∫ . (25) 

So the flux of the Helmholtz coil should be a step function. As the flux and the field 

strength of the coil is proportional to the current, therefore the excitation current of the 

Helmholtz coil should be also a step function. The current of a coil can not be changed 

in infinite short time, therefore the only way to get the desired induced voltage on the 

transponder coil to apply an increasing current on the Helmholtz coil with sufficient 

high slope. 

The evaluation of the measurement can be performed by analysing the time function of 

the voltage or the current of the transponder coil. The current or the voltage of the coil 

can be easily recorded with the help of an oscilloscope and a voltage or current probe. 

Based on the curves the two parameters (amplitude, damping factor) can be calculated, 

which reveal the background of the difference of the transponders. 

5. Verification of the new advanced measurement 

 

Figure 6. V(t) function of different transponder constructions 
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A comparison of different transponders with the above mentioned new measurement 

can be seen in the follows. 

For the verification of the measurement four different transponder constructions were 

tested. The first sample, which is called standard construction is available on the market 

from an existing manufacturer, and represents a standard transponder coil. The three 

other parts differs from the standard one in the ferrite core material, the ferrite core 

geometry and the terminal length. As it can be seen the measurement method gives 

information about the reason of the difference in the sensitivity value as well. So thus 

based on the curves of this new measurement the impacts of each change in the 

construction can be evaluated. 

The differences can be more clearly seen, if the exponential envelopes of the different 

constructions are plotted only, without the disturbing sine wave, Figure 7.  

 

Figure 7. Exponential envelopes of different transponder constructions 

Comparing each sample to the standard one, conclusions about the construction changes 

can be made. 

� Different terminal: By choosing a better terminal geometry not only the 

amplitude of the signal, but the damping factor of the circuit is also better than 

using the standard one. The reason is that there are much less eddy current losses 

generated in the terminal, and so the resonant circuit dissipates less energy. 

� Different core material: Changing the core material from NiZn to MnZn ferrite, 

on one hand causes higher sensitivity amplitude, but on the other hand the 

damping factor is higher, therefore this change made the transponder coil worse 

in total. The reason of the higher sensitivity amplitude is the higher permeability, 

and the higher damping factor occurred due to the high conductivity of the MnZn 

ferrite, which leads to higher eddy current losses. 
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� Different core geometry: The highest sensitivity amplitude value is given in this 

case. The reason is that the sensitivity is mostly determined by the length and the 

shape of the ferrite core. 

Combining and using the conclusions of the tests above, the performance of the 

transponder coil can be increased during a development process. These conclusions 

would have been more difficult to find out if this new measurement had not been 

available. 

The final result of the measurement also can be achieved by evaluating the measured 

data with Fourier Transform. Using the Fast Fourier Transform procedure on the 

measured data the spectral density of the signal (current or voltage of the resonant 

circuit) can be calculated. It is not possible directly to calculate the amplitude and the 

damping factor from the spectral density, but the peak amplitude on the resonant 

frequency and the bandwidth, 

 LH ffB −=
, (26) 

provides the same kind of information as the sensitivity amplitude and the damping 

factor in time domain. 

The quality factor of the resonant circuit using the bandwidth of the signal can be 

calculated by the following equation: 

 LH ff

f

B

f
Q

−
== 00

 (27) 

It is a bit harder to evaluate the FFT data, as can be seen on the Figure 8, but the 

comparison of different constructions also can be made. 

 

Figure 8. Spectral density of the signals of the sensitivity measurement 



Vol. 3. No. 1. 2010 Acta Technica Jaurinensis 

 98

6. Summary and field of application 

The design processes require accurate and reliable information about all the components 

and parts what the designed product contains either it is an RFID application or a 

transponder coil design or development. As all the engineers try to reach the highest 

possible efficiency and performance it is highly required to improve the available 

measurement methods to learn even more about the components. The presented 

measurement method helps to identify and understand the differences and backgrounds 

of different transponder constructions. 
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Abstract: The design of inductors is not an easy and cheap task considering the 

dimensions, the nominal value of inductance, the quality factor and the 

impedance of the component. Before the beginning of manufacturing a new 

type of inductors, a lot of trial components have to produce, have to 

measure and have to try out. Finite element modelling is a well-tried 

process to examine engineering products before manufacturing them. To 

reduce the cost and the time of the design process, in the paper a finite 

element model has been built up to simulate inductors. By the implemented 

model the component designers can examine the behaviour of an arbitrary 

inductor and the effects of the modification on its geometry or on its 

winding. 

Keywords: RF inductor, Finite element method, Quality factor, Absorbing boundary 

condition 

1. Introduction 

In the paper the model is presented, which is able to simulate the important attributes of 

the component, for example the inductance, the impedance and the quality factor. The 

comparison of the experimental and the simulated attributes of the inductor will also be 

shown. By using the built up model the development possibilities of the inductor have 

been examined through the modification of the winding. 

An electronic component manufacturer develops, manufactures and markets electronic 

components, modules and systems, focusing on fast-growing leading-edge technology 

markets: in information technology (IT) and telecommunications, but also in 

automotive, industrial and consumer electronics. To satisfy the private demand of some 

customers, the company needs to design new components and modify the actual 

parameters of several types of inductors. The company has a developing team to find 

the best geometry, material, and manufacturing process of inductors. Many researches 

are improving the attributes of their components, i.e. the inductance, the quality factor, 

the maximum current, the sensitivity and so on, through applying new materials and 

new geometries, which are also developing there [1]. 

The first aim of this work is to build up a finite element model, with which the attributes 

of an optional inductor can be simulated. Since inductors are working in wide range of 

the frequency, the model has to provide correct results at low and very high frequencies, 

as well. 
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The second aim is to examine the development possibilities of the quality factor by 

modifying the coil of the component. In physics and engineering, the quality factor, or 

Q-factor is a dimensionless parameter that compares the time constant for decay of an 

oscillating physical system’s amplitude to its oscillation period. To increase the quality 

factor, the original winding of the inductor has been replaced by a newly designed one. 

In the new coil several wires and winding type – “closely-” and “widely spaced” coils – 

have been applied to found the best arrangement. The attributes of prepared components 

have been measured and by using the finite element model they have been simulated. 

The measured and the simulated results have been compared. 

In the engineering point of view, the optimization of an attribute in the case of an 

optional component is a very huge problem, which cannot be solved by using the well-

tried manufacture and measure method. Numerically, it can be solved by using a finite 

element model and an iterative modification of the parameters of the problem can be 

achieved. It is the main motivation of this research. Here, the model has been built up 

and checked by experimental results. 

The inductor, which has been examined, is an SMT (Surface Mount Technology) one, 

which is usually working in the range of the radio frequency. The dimensions of the 

component are 1.24±0.04 mm × 1.22±0.04 mm × 2.03±0.04 mm [1]. The component 

has a cubic coil on ferrite or ceramic core, depending on the application field of it. The 

diameter of the winding wire is 50 µm, is welded to the thick film coating on its 

terminations, is made of silver, palladium and platinum or, in an other case it is made of 

wolfram, nickel and gold. It has a flat top made of epoxy for vacuum pickup. The major 

features of the inductor are the high resonant frequency, between 300 MHz and 9 GHz 

depending on the type of the component, and the close inductance tolerance. This type 

of inductor is used in resonant circuits, antenna amplifiers, mobile phones, Digital 

Enhanced Cordless Telecommunications (DECT) systems, car access systems, tire 

pressure monitoring systems (TPMS), wireless communication systems and global 

positioning systems (GPS) [1]. The microscopic photo of the component can be seen in 

Figure 1. 

 

Figure 1. The microscopic photo of the component 

It is important to note that different applications need different values of inductance, 

resistance, maximum current and quality factor. The most of the parameters can be 

changed easily by the modification of the winding wire or the material of the core, but 

the modification of one parameter causes variation in the other parameters, as well [2]. 



Acta Technica Jaurinensis Vol. 3. No. 1. 2010 

101 

For example, if the inductance of the component is modified via the modification of the 

winding, i.e. the number of turns is increased or the distance between adjacent coils are 

decreased, the resistance of the inductor is increasing, the quality factor is decreasing 

and the SRF (self resonant frequency) is also decreasing both in the two cases. But the 

reason of the variation of the attributes is different in the mentioned two examples. 

In the first case, the resistance is increasing in the effect of the more coils, because the 

longer wire means higher resistance, the quality factor is decreasing according to the 

expression of the quality factor, and the SRF is decreasing through the higher 

capacitance between the coils. In the second case, the resistance is increasing by the 

reason of the higher proximity effect between the coils, which get closer to each other, 

the Q-factor is decreasing because of the increasing of the resistance, and finally, the 

SRF is decreasing through the high capacitance between the closer coils. It seems that it 

is not an easy task to improve parameters without the deterioration of other ones [2]. 

Between 2.7 nH and 820 nH, inductors are manufactured with ceramic core and over 1 

µH they are made with ferrite core. The reason of this is that the higher value of the 

inductance is only achievable with higher permeability of the core. However, ferrite 

core has disadvantages, i.e. the eddy current losses and the hysteresis losses, so the 

quality factor of a ceramic core inductor can be higher. 

The quality factor is one of the most important attribute of inductors, the high value of 

the Q is necessary in several cases, for example in oscillators, and in tuned circuits. 

Because of the continuous development of electronic components manufacturers needs 

to produce inductors with higher and higher Q. Now, the reachable value of it is at least 

60 between 85 MHz and 110 MHz. In the present, this value is about 30 as it can be 

seen in Figure 2. At first, only the effects of the modification of the winding wire have 

been examined. The core has standard dimensions and it is made of standard materials, 

so they should not be modified in the present study. 

 

Figure 2. The actual quality factor as a function of the frequency 
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The finite element model of the problem has been built up by using the COMSOL 

Multiphysics software package and the trial components have been measured by an 

Agilent E4991A RF impedance and material analyzer, which can be seen in Figure 3 [3]. 

 

Figure 3. E4991A RF impedance and material analyzer 

2. Governing equations 

During the simulation of inductors, the base equations are the full form of the 

Maxwell’s equations, because at high frequency the effect of the eddy currents and the 

displacement currents cannot be neglected [2], [4]. Since only sinusoidal excitation have 

been used in the problem, the operator t∂∂  has been replaced by ωj . 

The partial differential equations and the boundary conditions are the following in the 

investigated case [5]-[11]: 

 ( ) nΩ=−×∇×∇    in   , 2
0AA εων , (1) 

 cΩ=−×∇×∇    in   ,j)( 0JAA ωσν , (2) 

 DΩ=−×∇×∇    in   ,)( 2
0AA εων , (3) 

 
nHΓ=×∇    on   ,0Aν , (4) 

 BΓ=×    on   ,0An , (5) 

 nDnD Γ=×+×    on   ,0AnAn , (6) 

 nDnD Γ=××∇+××∇    on   ,)()( 0nAnA νν , (7) 

 cDDc Γ=×+×    on   ,0AnAn , (8) 

 cDDc Γ=××∇+××∇  on   ,)()( 0nAnA νν , (9) 
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 EΓ=×    on   ,0An , (10) 

 
DHΓ=×∇    on   ,0Aν , (11) 

 nDnD Γ=××∇+××∇    on   ,)()( 0nAnA νν , (12) 

where, A  is the magnetic vector potential, ν  is µ/1 , where µ  is the permeability, ε  

is the permittivity, σ  is the conductivity of the material, ω  is the angular frequency of 

the excitation, 0J is the current density of the excitation and n  is the normal unit vector 

of the boundary. In this example (6) and (8) are satisfied automatically [5], [11]. In 

Figure 4, the structure of a wave propagation field problem can be seen, where a 

dielectric material is bounded by EΓ , 
DHΓ and nDΓ ; aΓ  is the artificial far boundary. 

The air is bounded by BΓ  and 
nHΓ . cDΓ  is the boundary between the conducting 

material and the dielectric material. 

2.1. Absorbing boundary condition 

In some cases, particularly at high frequencies it is important that the electromagnetic 

waves should not reflect from the artificial far boundary. Here, the so-called absorbing 

boundary condition can be used, which can be formulated as [11] 

 0=××−×∇× )(
j

)(
1 0

2

EnnEn
ηµ
k

r

, (13) 

or 

 0=××−×∇× )( j)(
1

0

2

HnnHn η
ε

k
r

, (14) 

where 11 / rr εµη =  is the normalized intrinsic impedance of medium 1, which is equal 

to one in air, moreover 000 µεω=k  is the wave number, 12 =rε , and 12 =rµ . 

Substituting η , 0k  and 2rµ  into (13) results in 

 0=××⋅−×∇× )()( 00 EnnEn µεωj , (15) 

where .0HE ωµj−=×∇  After simplification, the absorbing boundary condition can be 

written as [2] 

 0=××+× )(
0

0
EnnHn

ε
µ

. (16) 
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Figure 4. Structure of a wave propagation field problem 

The absorbing boundary condition has been used on the artificial far boundary aΓ . 

Substituting AH ×∇= 0ν  and AE ωj−=  into (16) results in the used boundary 

condition, 

 aΓ=××+×∇×−    on   )(j
0

0
0 0,AnnAn

µ
εων . (17) 

It is important to note that the above partial differential equations and the absorbing 

boundary condition are valid only when the excitation is a sinusoidal current or a 

sinusoidal voltage. 

The system of equation has been solved by using the weak form of the equations, which 

is the following:  
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µ
εωωσν

εων

 (18) 

where ,,,1 Jk =  and A
~

 is the function approximated the magnetic vector potential 

A , moreover W  is a weighting function. 

3. Finite element model 

While building up the model, the first problem was the complexity of the component. 

The largest problem was the cubical coil of the inductor, because in the COMSOL 

Multiphysics [12] the current flowing in the coil can be described by a mathematical 

formula, which can be determined from the equation of the circle in the case of a helical 

coil [5]. 
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That is the reason why the shape of the core and the cubic coil were neglected and a two 

dimensional axial symmetry model has been created. The COMSOL Multiphysics 

software package can handle a three dimensional axial symmetry model, as a two 

dimensional axial symmetry model, so the built up model is equivalent to a three 

dimensional one. The procedure of the simplification can be seen in Figure 5.  

3.1. Simplification of the model 

The solution of the above problem provides the results of the unknown quantities via the 

computed potentials and the calculated integrals and expressions. This is the first chance 

to check the results and to execute modifications about the model. After the early 

simulations serious problems were discovered. There are too many finite elements, 

59952 in the mesh, which cause 120085 unknowns in the simulation, that yields the 

simulation to be very slow. The solution time of the problem is 406 seconds with a 

computer having an Intel Pentium D 3.4 GHz processor with two cores and 4 GB RAM. 

 

Figure 5. The procedure of the simplification 

To decrease the processing time, the number of the mesh elements has been decreased 

through the removal of the enamel insulation of the winding wire. The mesh of the 

insulation effects high mesh elements, because it is not in the same order of magnitude 

with the whole model. The results show that the insulation of the wire can be neglected, 

because the results of the simulation are almost the same with and without the 

insulation. After the simplification the solution time decreased to 230 seconds. 

Another problem was that, by using the two dimensional model, some attributes could 

not be simulated, i.e. the resistance of the terminations and the capacitance between the 

terminations. The winding wire is welded to the terminations where higher resistance 

has been appeared. Furthermore, the terminations have large surface, which causes 

some additional capacitance. 

In the simulation the less resistance and the less capacitance cause higher self-resonant 

frequency and higher maximum value of the quality factor than the measured ones. To 

compensate these effects, an electric network model was created, wherein a capacitor 

and a resistor are in parallel with the simulated inductor to consider the higher 
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capacitance and the higher resistance. In Figure 6 the applied electric network model 

can be seen [2]. 

The experiences show that the optimal value of the capacitance is 90 fF and the value of 

the resistance is 40 kΩ in the case of this type of inductor. The capacitance is marked by 

C and the resistance is symbolized by R. The network was built into the finite element 

model via the modification of the current passing through the component. The total 

current passing through the electric network can be determined by the following 

formula; henceforth it is used to calculate the impedance and other attributes [2], 

 
0

0
0 j

R

V
CVII totm ++= ω , (19) 

 

Figure 6. The applied network to consider the resistance and the capacitance on the 

terminations 

 

where mI  is the modified current, totI  is the total current of the finite element model 

and 0V  is the voltage of the network.  

It is important to note that the components of the network model are only parameters. 

4. Results of the simulations 

After building up the finite element model, the computed DC resistance and DC 

inductance have been compared with analytic calculations and measured data to check 

the correctness of the model at low frequencies. The calculated resistance results in 

0.463088 Ω by using Nagaoka's expression [2]. The DC resistance is 0.47 Ω, measured 

by the impedance analyzer. The computed DC resistance can be determined from the 

real part of the impedance, i.e. { })0(Re == ωZRDC , where )0( =ωZ  is the value of the 

impedance in direct current case. The computed DC resistance results in 0.485 Ω. 

The nominal value of the low frequency inductance is 180 nH of this type of inductor 

[1]. The aL  DC inductance of the component is 178.9 nH, by using the following 

analytical formula: 
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 ,
2

0 K
l

AN
La

µ
=  (20) 

where N is the number of turns, A is the cross section of the wire, l is the length of the 

coil and K is a constant, which is changing by the function of the length and the cross 

section of the coil [2]. 

In the case of a specific inductor the measured inductance is 183 nH. The computed 

value of it in this case is 185 nH, which can be determined from the following equation 

[4]: 

 
{ }
f

Z
L

π2

Im
= . (21) 

The obtained values are quite close to each other, so it is noticeable, that the created 

finite element model is working properly at low frequencies. 

The comparison of the measured and the computed inductance between 10 MHz and 

3 GHz can be seen in Figure 7, and the measured and the computed quality factor can 

be seen in Figure 8. It can be seen that the results are practically the same, so the finite 

element model is working properly at the whole range of the frequency. The difference 

between the measured and the computed quality factor, plotted in Figure 8, is probably 

caused by the simplification of the core. 

At this point, the investigation of the modification of the winding to find the best 

geometry of the coil can be started. The aim is to find the maximal value of the quality 

factor. Several inductor models, with larger and smaller diameter of the wire, with 

closely- and widely-spaced coil, and with one and two layered coil were drawn to 

COMSOL Multiphysics [12]. In Figure 9 finite element meshes of inductors can be 

seen with three different windings. During the examination, the finite element models 

were created and simulated and trial components were manufactured and measured with 

the same windings to compare the results. 

 

Figure 7. The measured and the computed inductance 
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Figure 8. The measured and the computed quality factor 

 

 

Figure 9. Finite element meshes of three different windings 

The concrete experiments are the following about the increasing of the quality factor. It 

is trivial from the expression of the quality factor [4] that the value of it will increase if 

the imaginary part of the impedance increases or the real part of the impedance 

decreases. Because the nominal value of the inductance must be kept, the solution of the 

increasing of the Q-factor is the decreasing of the resistance. 

The easiest way to decrease the resistance is using a wire with larger diameter in the 

coil. So a trial component was manufactured and a finite element model has been 

implemented with 60 µm diameter of the winding wire. The results in the simulation 

showed that the quality factor increase two or three percents in this case. Unfortunately, 

in the practice there are some problems. First of all, the measurements show that in the 

reality Q is increased slightly than the simulation shows, and only at lower frequencies 

in the studied range. At higher frequencies Q become smaller than in the case of the 

original wire, but it could not be a problem, because the quality factor has to increase at 

lower frequencies – between 85 MHz and 110 MHz. Furthermore, because of the 

manufacturing process the distance between the turns must be increased to eliminate the 

cross-windings, so using a wire with larger diameter and increasing the distance 
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between the turns caused that the value of the inductance is fallen to 170 nH. Because of 

the width of the winding cell, more turns to compensate the decreasing of the 

inductance cannot be used. Consequently, it is impossible to increase the quality factor 

by using thicker wire in the coil [2]. 

Then a wire with less diameter – it is 40 µm – has been tried out. By using thinner wire, 

the value of the inductance is increasing, so it can be enough to wind less turns to the 

core. Thus, there are more space to ‘play game’ with the wire. During the simulations 

and the experiments, it is cleared that the inductance is not increasing significantly to 

leave one or more turns. Therefore, 14 turns also must be used in this case. It is 

executable to spread the coil on the core, i.e. to increase the distance between the turns, 

to examine the effect of it. Our experiences show that the SRF is moved to higher 

frequency, through the less stray capacitance between the turns, and via it the maximum 

value of the Q-factor is also moved to higher frequency, moreover the maximum value 

of it is increased slightly. The rise of the quality factor is faster in this case, but 

unfortunately it starts in lower values than in the case of the original winding. Between 

85 MHz and 110 MHz the Q of this trial component is lower than the Q of the present 

manufactured one. Consequently, the using of thinner wire in the coil is not the solution 

of the problem. 

Another attempt was to manufacture the inductor with ferrite core. Because of the high 

relative permeability, the nominal value of the inductance can be achieved with less 

turns, effects the decreasing of the resistance of the coil. The examinations show that it 

is true, but the quality factor is not increased, moreover it is decreased significantly. The 

reason of this is the eddy currents and the hysteresis inside the ferrite core, which causes 

eddy current loss and hysteresis loss. These losses result the lower quality factor of a 

ferrite-cored component. Consequently, manufacturing inductors with ferrite core is not 

the solution of the problem of the Q-factor. 

Finally, it can be said that thank to the experiences of the engineers, the presently 

manufactured component is nearly the best solution of the problem of the quality factor. 

So, the answer to the first question is that by the modification of the winding the quality 

factor cannot be increased significantly. But the question is hanging at poise: Is it 

possible to increase the quality factor, or not? The answer is yes, by the modification of 

the geometry and by using new materials. 

5. Conclusions 

The paper presents an actual problem of research engineers working with inductors and 

electronic components. 

To solve several problems beyond the examination of the quality factor, a finite element 

model has been developed by using the COMSOL Multiphysics software package. The 

weak form of the potential formulations to solve the presented problems has been 

implemented from the Maxwell equations. The so-called absorbing boundary condition 

has been determined and has been applied to eliminate the effect of the reflected 

electromagnetic waves at the artificial far boundary. 

The simulation of the simplified manufactured inductor has been done. To consider the 

capacitance and the resistance of the terminals, an electric network has been 
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implemented and the values of the parameters have been set to fit the computed results 

to the measurements. The built up finite element model has been tested. The 

measurements of the trial components have been executed and the results have been 

described and analyzed. The measured and the analyzed data have been compared with 

the results of the simulations. It is observable that the implemented model is working 

properly, the simulated attributes and the measurements are practically the same. 

Consequently it can be said that by using the present materials and the present 

manufacturing technology, the quality factor cannot be increased significantly, as our 

experiences have shown. The increasing of the quality factor can only be realized by 

applying new materials and new geometries in the manufacturing. 

The future aim of the research is to try out new materials in the manufacturing and to 

examine the effects of these materials to the quality factor. To execute this examinations 

a three dimensional, more accurate finite element model must be built up. 
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Abstract: Machines with huge computational power have become gradually 

affordable even for researchers of the universities in Hungary. In the 

summer of 2009 Széchenyi University also obtained a modern blade server. 

Using this machine we have solved several problems, these have given us a 

broad spectrum survey on the benefits and complications that come from 

performing concurrency in practice. After a short general introduction the 

machine of the university is presented in this paper (hardware, access, 

environment of execution), followed by the classic laws of multiprocessing 

systems. We present and examine several interesting problems afterwards. 

We show, that classic theorems are applicable in the case of problems with 

properly big computational- and properly low communication costs. Based 

on empiric argumentation we propose an amendment to Amdahl’s laws to 

consider initialization time in multiprocessing systems. Additional effects 

of the multiprocessing environment are presented in the second part of the 

article. 

Keywords: Supercomputers, MPI, PBS, Amdahl’s law 

1. Introduction, basic notions  

1.1. Supercomputers  

Some concepts in Informatics are interesting even for people with modest interest in this 

field, and some are even considered mystical. The “supercomputer” is definitely one, 

because of the high-tech applied or the extremely costly construction, for example.  

The appearance of modern supercomputers is the result of a long development. Picking 

supercomputers from certain eras and comparing their computational powers, a clear 

picture can be drawn on this evolution. (Table 1., [1])1  

                                                           
1 Here “Flops” is the abbreviation of floating point operation per second, which is a standard measure of 

computational power. 
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Table 1. Evolution of supercomputers  

Computer’s name Delivery time Max. computational power (Flops)  

ENIAC 1946 500  

IBM 704 1955 40 000  

CDC 6600 1966 3 000 000 

Cray 1 1976 250 000 000 

Cray 2  1985 3 900 000 000 

Intel ACSI Red  1997 1 300 000 000 000  

IBM Roadrunner 2008-09 1 100 000 000 000 000  

Behind this fascinating improvement there is indeed the most amazing development of 

the technology. The most substantial parts of it are the following: 

� Miniaturization – there were more and more transistors integrated in each 

processor. For example, in case of PC-s the number of built-in transistors is 

doubled roughly every two years; from 30.000 (8088, 1979) it is increased up to 

approximately 300 million (Pentium D, 2005).  

� Efficient solutions for multiprocessor architectures. The initial SIMD type 

machines were followed by MIMD type ones. Within MIMD, the first systems to 

handle relatively few processors were followed by advanced architectures (e.g. 

NUMA, hybrid systems), that had efficient memory access. Communication 

between units – e.g. among (a groups of) processors – were successfully 

accelerated to a great extent. Here we can discover a variety of ideas, from the 

theoretical investigation of network topologies to the development of infiniband 

connection2.  

� Changing over to multicore processors – several processor cores were integrated 

in each chip. Comparing with the traditional unicore solution, power and space 

consumptions were clearly reduced, making this solution more cost effective. 

Although the technology would allow the integration of even several hundred 

cores theoretically, the dominant manufacturers nowadays construct processors 

with 2, 3 or 4 cores. In the near future, gradual growing of the number of cores is 

expected.  

The development trends briefly mentioned here are among the favorite topics in 

architecture curses in a more detailed fashion [2].  

Generally, we can say that a supercomputer is a machine which is in the given era on 

the top of information technology. The top500 list is widely known, on which the best 

500 supercomputers (according to computational power) of the world [3] are published. 

Following the rigorous interpretation (only) these are supercomputers. However, 

employing a less strict notion, nowadays machines of at least 1 Teraflops in 

computational power can be considered as supercomputers. 

                                                           
2 We note here that a modern supercomputer is often a computer cluster, i.e. a group of tightly coupled 

computers which can be considered in many regards as one “big” computer.  
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1.2. Blade server at Széchenyi University  

In the summer of 2009 Széchenyi University also obtained a modern blade server. 

Nowadays this is one of the most powerful engineering, scientific configurations in 

Hungary. Although we can not assert that this machine belongs to the most significant 

supercomputers on a word scale3, on the basis of its computational power this machine 

can be considered as a real supercomputer.  

This machine consists of 13 servers which are incorporated in a house of type HP c3000 

[4]. One of the servers is prominent (the head node) its job is the control of the cluster, 

i.e. it runs the resource management software (PBS system, see below) which 

distributes the tasks appropriately and collects the results. The calculations are executed 

on the other servers (compute nodes). The compute nodes are positioned two by two in 

blade servers of type HP BL2×220c (6 pieces altogether) the blade containing the head 

node is of type BL260c, and the system includes also a container-blade of type SB40c 

which contains 6 fast 146 GB SAS disks.  

The head node and the compute nodes equally contain 2-2 quad core Intel Xeon 5400 

type processor with 3 GHz frequency; thus, the system altogether contains 26 

processors and 104 cores. Because of the reasons mentioned above we can use only 96 

cores for our computations (on compute nodes).  

 

Figure 1. The blade server of Széchenyi University  

The rapid connection among the servers (which is indispensable for effective 

calculations) is ensured beside the traditional Ethernet connection (1 Gbps) with quick 

infiniband switch (2×20 Gbps).  

To compute nodes join 16 GB memory each, the total memory integrated into the 

system is 208 GB. The primary storages are the above mentioned SAS disks, besides 

                                                           
3 According to the available former data it could have got into the top 500 list of the world’s best 

supercomputers roughly 5-6 years ago.  
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this every compute node contains one 250 GB SATA drive (to store the temporary 

results of the computations), and the head node also includes even two of the same kind. 

Thus, the aggregate theoretical storage capacity is now 4.3 Terabytes, however, because 

of the safety technologies applied (mirroring, redundancy) we can use practically only 

about 3.9 Terabytes.  

The cluster has theoretically 1,248 Teraflops computational power. Comparing this with 

the 4-70 Gigaflops power of a modern 2-4 core PC, we can conclude that the difference 

is roughly 17-300-times. Taking this fact into account, it can be really surprising for the 

external observer the relatively small dimension and power consumption of the 

machine.  

1.3. Amdahl’s law and its variants  

G. M. Amdahl was the first, who published a general observation about the theoretical 

limits of the computations executed on multiprocessing architectures (1967, [5]) which 

remark was later named as Amdahl’s law.  

The assertion of Amdahl’s law is the following: if an f part of a computation can be 

sped up parallel with a factor m, and the remaining part cannot be accelerated any more, 

then the non-acceleratable part will be quickly dominant in the total output, and any 

further improvement in the part f will have only little effect.  

The same assertion using a formula:  

 
)/(1

1
SpeedupAmdahl

mff +−
=  (1) 

where f is the parallelizable part and m is the number of processors.  

If m → ∞, then the we get for the speedup the following (ideal) upper bound:  

 
f−

→
1

1
Speedup Amdahl

 (2) 

The data-amount does not appear directly in the assertion of Amdahl’s law, because we 

have to execute a given problem i.e. a given number of calculation, sequentially and 

concurrently, respectively. Thus, the total amount of calculations does not change even 

in a multiprocessing system. We called this as a “fixed-size speedup” model.  

If the fix workload to be performed is called by w, then the speedup factor can be 

written in the following form, too:  

 
w

w

for  timeexecution  parallel

 for  timeexecution  sequential
Speedup FS =  (3) 

If the problem can be parallelized completely (or almost completely), then using m 

processors an m-times speedup is expectable.  

With the appearance of machines with good computation power several 

deficiencies/limits of the Amdahl model came to light slowly. These limits derive from 

the fact that this model examines the execution of a fixed-size task. In many cases the 



Acta Technica Jaurinensis Vol. 3. No. 1. 2010 

115 

problem can be such type that it is not necessary or it is not possible to solve it 

completely. However, it is interesting even in these cases that in a given time with a 

given computational capacity how far we can get with the solution. Generally, not only 

the number of processors is important to estimate the parallel execution time, but we 

have to take into account even the possibilities of enlargement and effects of the 

workload (scalability).  

Based on this realization, J. L. Gustafson published a new speedup formula in 1988 

(fixed-time speedup model, [6]).  

Let w be the workload which we can execute in a given time sequentially, i.e. with one 

processor. Let w’ be the workload which we can execute in the same time using the 

concurrent architecture, with m processors. Then  

 
 'for  timeexecution  parallel

'for  timeexecution  sequential

for  timeexecution  sequential

'for  timeexecution  sequential
SpeedupFT

w

w

w

w
==  (4) 

Expanding this formula we get the following result:  

 Speedup FT = (1 – f) + mf. (5) 

Gustafson’s law suggests that is it worthwhile constructing large parallel systems. The 

speedup grows proportionally with the size of the system, thus, for suitably large 

problems the system can be exploited well in fact.  

With further development of architectures the deficiencies of this model became 

increasingly obtrusive. The theoretically possible expansion cannot be reached because 

of some physical constraints. Such can be e.g. the bound of memory-access which is 

described lately as the “memory-bounded speedup” model [7]. However, this model 

belongs not tightly to the scope of this paper; thus, here we omit the details.  

There is a need of clarification here concerning arbitrary units of calculation. On the 

hardware level chips installed into the CPU-socket of the motherboard are commonly 

called processors. However, as we mentioned above, recent developments integrated 

several processing units into these chips, making each unit capable of executing code 

separately. These units are called processor-cores or simply cores. Later on we will use 

the notion processor and core as presented here. Also, by running on a certain number 

of cores we mean that we will start one process for each core.  

1.4. What is our goal now?  

The aim of this paper can be summarized in three points, as follows.  

� The presentation of important notions and theoretical laws connected to the 

machines with large computational power (section 1, see above).  

� The presentation of typical programming environment of these machines; and to 

overview the runtime system and methods for measuring the execution time, 

focusing on our blade server, specially (section 2.).  

� The presentation of specific examples and measured results. In this part we 

analyze – taking up the blade server of the University to work – how the 

theoretical laws presented above are satisfied in the case of our examples 

(section 3 and second part).  
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The problems presented here were selected from the ones solved by us in such a way that 

those should be not only interesting, but also useful for the motivated reader, and should 

demonstrate the possibilities of real parallelization well. It was also important that the 

computational cost of the exercises be big enough to exploit the capacities of the cluster in 

all detail. Results were used here for verification foremost, besides this we dealt with 

effectiveness examinations too, but in this paper this respect was not the primary one.  

It is important to underline yet that our programs are custom-built, so, this paper is not 

about the installation and execution experiences of various factory-made software.  

Before we start to explain the exercises the runtime system and methods for measuring 

the execution time will be presented.  

2. Programming environment  

2.1. Message Passing Interface  

Programming the multiprocessing systems needs a method greatly different from the 

traditional uniprocessor machines.  

Surveying the history of parallel computing we can state – although the many benefits 

of this type of problem-solving were theoretically always clear comparing with the 

traditional, non-concurrent approach – that its real spreading and popularity was often 

significantly limited by the lack of adequate software support. This problem arose 

particularly sharply in the beginning of the 90s, by the time supercomputer prices had 

become more reasonable, and the smaller machines connected in networks – through 

their total computational power – become able to solve harder computational tasks, 

respectively.  

At this time the demand appeared for such an efficient, portable programming 

recommendation with good expressive power which applies the popular message-

passing model and fits well both types of parallel architectures mentioned above. The 

communication protocol called MPI (Message Passing Interface) was created which 

comprised luckily the good features of the existing systems and conformed to the goals 

set, so, it became very popular among the programmers of distributed systems soon, 

moreover, it turned into a kind of standard in fact.  

The MPI implementations consist of collections of routines which support frequently 

environments in Fortran, C and C++ (recently even Java).  

The two most successful “standards” are MPI 1.2 (often: MPI 1, 1994) and MPI 2.1 

(often: MPI 2, 1996). MPI 1 supported basically a static programming environment 

contrary to MPI 2, in which new dynamic possibilities were built in (e.g. parallel I/O, 

dynamic process management), conforming to newer demand.  

Major grouping of the MPI functions are as follows:  

� Functions for point-to-point communication and data-exchange (between nodes);  

� Synchronization functions;  

� Functions which combine the results of partial computations.  

A simple, “minimalist” MPI can be constructed even from a few functions (Table 2.).  
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Table 2. “Minimalist” MPI, based on language C, without detailing the parameters  

MPI function Activity/Job 

MPI_Init Initialization  

MPI_Comm_size Get number of ranks (tasks)  

MPI_Comm_rank Get own rank id 

MPI_Send Send a message 

MPI_Recv Receive a message 

MPI_Bcast Send a message to all at once 

MPI_Reduce Reduction operator 

MPI_Finalize End MPI  

We will present a piece of code within the discussion of the first problem, which gives 

an example of using these functions. 

For a further, more detailed introduction to MPI programming, see: [8] and [9]. 

2.2. Environment of execution on the blade server 

PBS Professional (Portable Batch System) [10] is installed on the server, and is used to 

queue executions4.  

Due to reasons of security and efficiency, users can log in solely on the head node to 

issue execution on the cluster. It is possible to compile the code here, if needed, and to 

queue for execution via PBS. Our codes were compiled using MVAPICH2 version 1.2, 

which is an implementation of the MPI2 standard. Most MPI implementations use the 

command mpicc in place of the standard gcc. We compiled with the command: 

mpicc -O2 -funroll-loops <source_code>.c -o <executable> 

In order to run under PBS, it is advisable to use a script to include running parameters 

and the programs to execute. We include the script qn-pbs.sh for the N-queen-problem we 

will present next. The script is heavily simplified to help understanding, but will work, 

if used. 

#!/bin/sh 

#PBS -N nqueen  # job name 

#PBS -m ae  # mail to user on abort and exit 

#PBS -q workq # working queue name 

cd $PBS_O_WORKDIR  # working directory 

# $PBS_NODEFILE is the nodefile for this job 

NNODES=`uniq $PBS_NODEFILE | wc -l̀   # number of nodes 

NPROCS=`wc -l < $PBS_NODEFILE  ̀ # number of processors 

mpdboot -f $PBS_NODEFILE -n $NNODES  # creating MPI environment 

./bench -error 0.01 mpiexec -np $NPROCS ./qn-mpi 20 | tee nq-$NPROCS.out ; 

# “qn-mpi 20” will be executed on $NPROCS CPUs at least 3 times  

# until the error of average execution time gets below 1%. 

mpdallexit # terminates MPI environment 

                                                           
4 PBS is an efficient resource management software for cluster systems. It enables monitoring of resources 

and job queuing using preset rules in order to optimize utilization.  
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Please note, that bench is a custom developed code to measure wall-clock time of the total 

execution. The command qn-mpi 20 will issue the actual calculation for board size 20. 

To submit this job for execution allocating 4 resource units of 8 cores, 8 processes per 

unit (one per core) you need to invoke qsub as follows: 

qsub –l select=4:ncpus=8:mpiprocs=8 ./qn-pbs.sh 

Please refer to the PBS manual for a more extensive description. Resources can also be 

reserved within the submitted script; alas we used a wide combination of resources, 

which proved this method a bit clumsy. We used similar scripts to queue the programs 

of the additional problems we investigated, this makes presenting these superfluous. 

2.3. Measurement method 

To test the computational power of the blade cluster several custom-made programs 

were developed and wall-clock time cost of sequential and parallel solutions were 

measured. Parallel runs were submitted to typical configurations of 2 to 80 cores. Please 

note the denomination as follows: one node is the actual computer within the cluster. 

As we mentioned previously, the blade cluster consists of a head node and 12 slave 

nodes. All nodes have two processor sockets on the motherboard, so we have a total of 

26 processors. Every processor has four cores, which can work separately, but shares 

some resources, like cache, memory bandwidth and RAM. So this cluster is a 12+1 

node, 24+2 processor, 96+8 core system. In this multiprocessing environment each core 

can handle several processes, though less efficiently.  

So as we said we ran our program on 2 to 80 cores, this means we allocated a resource 

of some cores, and ran the same number of processes, one for each core. Alas, in this 

article the expression “running on p cores” or “running p processes” means the same. 

In order to obtain reliable data, program execution was repeated several times, up to the 

point, where the relative error of the mean time cost was below 1%, but at least 3 times. 

The error of the mean, x , is derived from the standard deviation of the measurements, 

σ, as follows: 

%
nxx

x 1mean oferror   relative <
σ

=
σ

= , 

where n is the number of executions. 

The separate program bench was developed for this purpose. Wall-clock time is 

measured using gettimeofday(), and for even more precise data new processes are started 

with vfork(). 

Benchmarks were made with all possible configurations from 2 to 8 cores within one 

node. Multinode measurements were utilizing all cores of the used nodes, so additional 

data on 16, 24, 32, 40, 48, 56, 64, 72 and 80 cores were obtained. 

3. The N-queen-problem 

The original problem comes from the regular chess board, and eight queen figures. The 

goal is to place all queens on the board, so none can strike the other. In general, you 
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must place N queens on a board of size N×N. The original puzzle was proposed by 

chess player Max Bezzel in 1848, and was generalized by mathematicians later. The 

eight-queen problem has 40 different, but only 12 unique solutions. Using board 

symmetries on the 12, the remaining 28 can be reproduced. 

Finding one solution for the problem can be achieved in linear time [11]. Counting and 

listing all possible configurations is still a hefty job, with exponential time cost. We set 

the later task as aim, whereby we put appropriate workload on the blade cluster, and 

grab the opportunity to present an example on parallel backtracking.  

3.1. Sequential and parallel solutions 

In 1972, Edsger Dijkstra used the very same problem to illustrate the power of what he 

called structured programming and the depth-first backtracking algorithm. A simple 

approach is to place the queens row by row. Having some placed, the next is set where it 

cannot strike any previous. If there are multiple possibilities, the first one is chosen. If 

there are none, the previous figure is picked up, and moved to the next valid position. If all 

the queens are placed, one configuration is found, and the next is sought with stepping 

back. The algorithm terminates, if there are no more valid positions left for the first queen 

to be placed. Some heuristics can haste this algorithm by some order of magnitude. 

 

Figure 2. The master-slave setup. As a job is finished, the slave sends back the results to 

the master, which replies with the next viable configuration encoded in id.  

Parallel implementation is the text-book example of the principle “divide and conquer”. 

After placing the first four queens, each viable branch will be walked by separate 

processes. Walk time for separate branches can differ greatly, so walking every pth 

branch is not a viable option. A feasible solution is to have a master process, that will 

have the first four queens placed, have all viable solutions sent to slave processes, which 

will do the full walk (see Figure 2). 

Let us look at the part implementing this message passing in C. The master process will 

execute: 
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typedef struct { int jno; long long ret ; } packet; // type of comm package 
packet send, recv;    // sent and recv’d 
MPI_Status status; 
 
send.jno = jobids[1];   // the first viable conf to send 
for(i=1; i<jobs + pnos; i++) 
{ 
  MPI_Recv(&recv, sizeof(packet),  // recv, from anyone 
           MPI_CHAR, MPI_ANY_SOURCE, 
           TAG_REQ, MPI_COMM_WORLD, 
           &status);   // sender rank gets in status 
 
  MPI_Send(&send, sizeof(packet),  // next job id is sent to sender 
           MPI_CHAR, status.MPI_SOURCE, 
           TAG_ACK, MPI_COMM_WORLD); 
 
  if(recv.jno) answers += recv.ret; // sum up results 
  if(i > jobs) send.jno = 0;  // if no more jobs left, send 0 
  else  send.jno = jobids[i]; // else send next job id 
} 
print_result(n, answers); 

The main loop of the slave processes: 

while(1) 
{ 
    MPI_Sendrecv(&send, sizeof(packet), // send current result, 
                 MPI_CHAR, 0, TAG_REQ, // 0 first 
                 &recv, sizeof(packet), // we get next job id 
                 MPI_CHAR, 0, TAG_ACK, 
                 MPI_COMM_WORLD, &status); 
 
    if(recv.jno==0) return;  // if got 0, no jobs left 
    send.jno  = recv.jno;  // job id copied to send package 
    send.ret  = solver(n, recv.jno); // solve current subproblem 
} 

We use an implementation by Kenji et al. [12], results for N = 24 are published herein. The 

impact on computation power due to master-slave setup is tangible in benchmark results. 

3.2. Wall-clock time cost of the implementation 

Regarding the N-queen problem, board sizes from 8×8 to 20×20 were used. Execution 

times for enumerating valid configurations are shown on Figure 3. We can observe that 

all parallel runs take at least a couple of seconds to complete, although the sequential 

code can be as fast as a few tenths of a millisecond. The straight line for bigger board 

sizes implies exponential complexity of the algorithm as the scale of the vertical axis is 

logarithmic. Execution times for the sequential and the parallel code become 

comparable only at a board size of 15-16. The advantage of the 64-core system gets 

tangible only beyond board sizes of 17. Clearly, the master-slave setup will make only 

one process work, if two are started, which makes it comparable to the sequential code. 

Note that for the smallest board sizes execution time grows with the number of 

processes. This could be caused by a hefty initialization time of the MPI.  
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Figure 3. Execution time of the N-queen problem for board sizes N = 8…20 on a semi-

log scale. The sequential and parallel runs for 2, 8 and 64 cores are shown. Dots are 

connected for better visuals. 

Figure 4. Fixed size speedup for board sizes 8, 16 and 20 are shown for various # of 

cores on log-log scale (above). The execution times for N = 20 including relevant fits on 

log-log scale (bottom, left). Execution times for N = 8 are shown including incremental 

costs for additional cores (below, right). 

Figure 4 shows fixed size speedups that include slowdown effects, as well as execution 

times for the largest and smallest board size. The enormous gap between the “speedup” 
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and “slowdown” curves on the top plot comes from the fact, that while the sequential 

execution can be finished well below a millisecond, parallel execution needs at least a 

second. As table size grows, this initialization-like time becomes negligible, as 

observable on the plot for N = 20. This confirms an Amdahl-type argument: execution 

time is inversely proportional to the number of processes, p; actually as for the master-

slave setup, to p – 1, which hints, that for a system big enough the problem can be fully 

parallelized – within the scope of the error. 

As seen on Figure 3, execution time is independent of the board size below a critical 

value, and will increase with the number of processes started. This implies a kind of 

initialization time, which we measured at N = 8. Results and fits are shown on the lower 

right plot of Figure 4. We find that creating the MPI environment costs at least ~1.2 

seconds, including ~50 ms/core for the first node, and ~20 ms/core for additional ones. 

3.3. Time cost model 

To formulate the fixed size speedup, we propose a model to describe time cost for the 

parallel algorithm depending on the number of processes, p, and board size, N. 

According to Amdahl’s model sequential execution time can be divided into parts that 

can, and parts, that cannot be parallelized – let us denote these tp and ts accordingly. 

These can only depend on the board size, as the initialization time, ti depends only on 

the number of processes. This yields the following form for the total execution time, t, 

for a master-slave type setup: 

 
1
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. (6) 

Using the observation, that for N small enough, execution time becomes independent of 

board size, the form above will look like: 

 
crit)(),( NNptpNt i <<≈ . (7) 

This makes ti measureable indirectly, whereas t is measured directly. Using the 

following linearized form, tp and ts can be estimated, independently for all board sizes 

used: 

 )()1()()1())(),(( NtpNtpptpNt psi +−⋅=−⋅−  (8) 

Plotting the left side as a function of (p – 1), also the validity of equation (6) can be 

verified, see Figure 5. 
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Figure 5. Linearization of eq. (6) respect to eq. (8), including linear fit. Multiplication 

with p – 1 amplifies errors, some data was excluded. Different symbols mean different 

board sizes from 15 to 20. 

There are two important consequences of the figure. First, the cost function proposed in 

equation (6) holds valid. Also the linear slope obtained for ts is not significantly 

different from 0. This is due to the high relative significance level for lower, and high 

absolute measurement error for higher board sizes. 

Empirically there are two parts of the execution time. The first includes an initialization-

type time cost that depends solely on the number of processes started, and increases 

linearly with them. The second is the classical parallel part that scales inversely with the 

number of slave processes. The first one dominates for smaller board sizes, and the 

second one for larger ones. Critical board size will depend on the number of processes 

as to be shown. 

3.4. Fixed Size Speedup 

Let us calculate the fixed size speedup according to the Amdahl’s law (3). The 

numerator will hold the parallelizable part, tp(N), alone, the denominator will be t(N, p) 

expanded with equation (6), and set ts = 0: 
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There are two dominant regions to simplify the formula. The speedup is linear, if the 

board size is big enough relative to the processes started, that is:  

 )()1()(if,1SpeedupFS ptpNtp ip ⋅−>>−= . (10) 
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However, we cannot increase the number of slaves beyond any borders without severely 

crippling speedup, as: 

 )()1()(if,
)(

)(
SpeedupFS ptpNt
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Nt
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i

p ⋅−<<= . (11) 

Let us investigate the case, if the number of cores and processes is raised infinitely, as in 

the case of Amdahl’s law (2). Here equation (9) will describe speedup validly. We can 

justly assume that ∞→)( pti
, as ∞→p , that means 

 ∞→→ p, as0SpeedupFS
. (12) 

This find can also be formulated as follows: If parallel execution time includes a 

member that increases limitlessly with the number of processes, fixed size speedup will 

converge to zero. 

4. Discussion 

In this article we studied the wall-clock execution time of the sequential and parallel 

implementation of the presented problem. Sequential time cost varied in a broad range 

from ~0.0002 up to ~20000 seconds, which are 8 orders of magnitude. The same range 

for a 64 core 8 node system is ~3 to ~300 seconds, these are just 2 orders. Two orders 

are won at the upper end, and four are lost at the lower one. Initialization time, held 

responsible, is investigated more thoroughly. 

We make a proposition, that if the original problem is highly parallelizable in a master-

slave setup, there will be two relevant parts of the execution time cost. One is 

responsible for the parallel environment setup, we called initialization time that will 

depend on only and increase with p, the number of processes started. The other for 

actual calculations will be inversely proportional to p – 1, the number of slave 

processes. Fixed size speedup will have a form of (9), also (10) and (11) will hold. 

We also amend, that if the initialization time grows endlessly with the number of 

processes, the fixed size speedup will eventually decay to zero. Clearly this is the case, 

if any part of the time cost diverges with p. 

There are many other limiting factors in a parallel computing environment; we will 

address some of these in the second part of our article.  
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Abstract: The most important measured parameters of an antenna are the input 

impedance and the radiation pattern. Other parameters, such as the 

reflection coefficient or the voltage standing-wave ratio can be calculated 

from the input impedance, the directivity as well as the gain can be 

obtained from the radiation pattern. The simulated input impedance is 

depending on the applied feed model that is why it is very important to 

know the advantages and the disadvantages of the feeding models. The 

most frequently used models are the current probe model, the voltage gap 

generator, the magnetic frill generator and the waveguide port. This paper 

presents the above mentioned approaches through a monopole antenna 

situated above a ground plane. The Finite Element Method (FEM) has been 

used in the numerical field analysis, which is a widely used technique to 

solve partial differential equations obtained from Maxwell’s equations. 

Here, Helmholtz equation for the magnetic field intensity is studied in two 

dimensions supposing axial symmetry and in three dimensions modeling 

the complete geometry of the antenna. First, the problem and the 

corresponding equations are shown, and then the four feeding models are 

described. After the presentation of numerical results, a short discussion 

and summary close the paper. 

Keywords: antenna feeding, antenna parameters, finite element method 

1. Finite Element Method in Antenna Simulation 

The Finite Element Method is a widely used numerical technique in computer aided 

design of electrical engineering problems. Only a brief introduction can be written here, 

the focus is only on the antennas and the corresponding equations. A detailed 

description can be found in [3-5]. 

The basis of the technique is the discretization of the problem region by simple finite 

elements. These finite elements are the triangle and the quadrangle in two dimensional 

problems, or the tetrahedral, hexahedral and prism elements in three dimensional 

problems. The system of equations to be solved for the potentials or for the field 

quantities can be assembled after obtaining the weak formulation of the partial 

differential equations and the boundary conditions of the problem. The latter equations 

can be derived from Maxwell’s equations [3-5,7]. 
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Figure 1. The geometry of the monopole antenna 

The problem to be presented here is a monopole antenna situated above a ground plane 

[3]. The body of the antenna is the inner wire of a coaxial transmission line as it can be 

seen in Figure 1. The following Maxwell’s equations must be solved in the domain Ω  

[7]: 

 EH ωε=×∇ j , (1) 

 HE ωµ−=×∇ j , (2) 

 0=⋅∇ H , (3) 

 0=⋅∇ E , (4) 

where H, E, ω, ε, and µ are the magnetic field intensity and the electric field intensity, 

the angular frequency of excitation, the permittivity and the permeability, respectively. 

The phasor representation has been used, because of the time-harmonic excitation (the 

generator is supposed to be sinusoidal), i.e. 1j2 −=  is the imaginary unit. 

It is well known that the electromagnetic field of the monopole antenna is transverse 

magnetic (TM) [3,4,7], or in other words, the magnetic field has only one component in 

the φ-direction, and the electric field has two orthogonal components, as it is denoted in 

Figure 1. 

The electric field intensity must be normal to the surface of the ground plane and the 

surface of the antenna, i.e. the boundary condition 

 0nE =×  (5) 

can be supposed on EΓ , and n is the outer normal unit vector. 
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On SΓ , absorbing boundary condition must be prescribed to absorb the electromagnetic 

energy [3,4],  

 [ ] 0HnH =×+×∇
∞→

 j lim 0kr
r

,  on  SΓ , (6) 

which can be approximated by the first order absorbing boundary condition 

 [ ] 0HnHn =×+×∇×  j 0k ,  on  SΓ , (7) 

where µεω=0k  is the wavenumber in free space ( 0µ=µ , 0ε=ε ). This models the 

unbounded space. The calculation domain must be truncated somehow, because the 

discretization can not be performed at infinity, and the condition (7) on SΓ  can be used 

to decrease the domain volume. The efficiency of absorbing the electromagnetic energy 

along the boundary SΓ  can be increased by applying a perfectly matched layer (PML) 

which outer boundary has been assigned as the absorbing boundary [3]. 

Finally, 0nH =×  must be satisfied along symmetry planes (along the line 0=r  in 

axial symmetry situations). 

It is evident that the application of the magnetic field intensity as the primary variable 

results in the most economic formulation. The partial differential equation to be solved 

for the magnetic field intensity here is the following [3,7]: 

 0HH =−×∇×∇ 2
0k , (8) 

and ( ) ωε×∇= jHE  is the electric field intensity from (1) and (2). After some 

mathematical manipulations and using (3), the following partial differential equation 

can be obtained for ϕH : 

 02
0 =+∆ ϕϕ HkH , (9) 

which is a scalar Helmholtz equation of the magnetic field intensity. 

2. Feeding Models in FEM 

The feeding models of antennas are applied to take the input of the antenna into 

account. The most widely used feeding models are shown in Figure 2 [1-3,6]. 

2.1. The current probe model 

The most widely used current probe model is a short current with a delta function, e.g. 

 ),(  ),,( 0 ffz yyxxIzyx −−δ= eJ ,  dz ≤≤0 . (10) 

It models a wire with zero diameter, fx  and fy  are the coordinates of the current 0I  

( 0=fx , and 0=fy  in Figure 2. a), and J has only one component in the z direction. 

This infinitesimal dipole can be generalized in any direction of the space. The 

electromagnetic field is singular in the vicinity of the probe [3]. This is the reason why 
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it is more convenient to prescribe the magnetic field intensity on the surface of the 

antenna wire as it is represented in Figure 2. a. The φ-component of the magnetic field 

intensity can be calculated by 

 
π

=ϕ
a

I
H

2

0 ,  dz ≤≤0 , (11) 

and mm 52.1=a is the radius of the antenna. The length of the probe in the z direction 

should be as small as possible, but it can be concluded that λ<<l  must be specified, 

and λ is the wavelength of the electromagnetic wave in vacuum, fc=λ  (c is the 

speed of light and f is the frequency of excitation). Here mm 6.1=d  has been used. 

 

Figure 2. Feeding models 

Once the electric field E is determined by the applied numerical method, the voltage 

across the probe can be computed as 

 ( )∫ =−=
d

z zEU

0

d ar , (12) 

and the input impedance of the antenna is 

 
0I

U
Z = . (13) 

The current distribution along the antenna can be calculated by the following form of 

Ampere’s law: 

 ( ) ( )zHazI ϕπ=  2 . (14) 
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2.2. The voltage gap generator 

This model is basically used in the Method of Moments (MoM) plane as it is presented 

in Figure 2. b. The z component of the electric field can be obtained by 

 
d

U
E z

0−=  (15) 

in the gap ( dz ≤≤0 ), and d the length of the gap. The electric field intensity is 

prescribed along the line ar = , and dz ≤≤0  (see in Figure 2. b). 

The current in the feeding point then can be calculated by (14) substituting 0=z , i.e.  

 ( )0 2 =π= ϕ zHaI ,  (16) 

then the input impedance can be obtained by  

 
I

U
Z 0= .  (17) 

The current distribution along the antenna can be simulated by (14). 

2.3. The magnetic frill generator 

The magnetic frill generator is a model of the antenna input fed by a coaxial line [1]. 

The following electric field intensity can be supposed in the radial direction by 

assuming purely TEM mode inside the coaxial transmission line (see in Figure 2. c.): 

 ( ) ( )abr

U
rEr

ln2

0= ,  bra ≤≤ , (18) 

where a and b are the inner and outer radius of the coaxial line ( mm 52.1=a and 

mm5.3=b ) and 0U  is the potential difference between the inner wire and the outer 

shielding. The current distribution along the antenna can also be simulated by (14), and 

the input impedance can be calculated in the same way as presented in section 2.2. 

2.4. The waveguide port 

The waveguide port model is more accurate and more efficient approach in general 

case. This is based on the weighted sum of TEM, TE and TM waveguide modes, and 

the weighting coefficients are collected in tables [3]. This model has been implemented 

in Comsol Multiphysics [8].  

The scattering parameter (reflection coefficient) 11S  can be extracted from the 

simulated electric field, finally, the input impedance can be obtained as [3,8] 

 
11

11
0

1

1

S

S
ZZ

−
+

= , (19) 

where Ω= 500Z  is the characteristic impedance of the waveguide. 
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3. Simulation Results 

The problem has been solved by the functions of the Radio Frequency module of 

Comsol Multiphysics [8]. This software is a very efficient FEM design environment. 

The above mentioned feeding models can be implemented and tried out in an easy way. 

The models can be downloaded from the Author’s homepage [9].  

First, the φ-component of the magnetic field intensity has been simulated by the TM 

Electromagnetic Waves application mode, and two dimensional axial symmetry 

geometry has been analyzed for simplicity, because the aim is the study of the different 

models. Second order Lagrange shape functions have been used to approximate the 

unknown field quantity. Second, the whole 3D problem has been analyzed aiming to 

compare the two dimensional and the three dimensional results. In 3D vector shape 

functions have been used [3-5]. 

 

     

Figure 3. FEM mesh in 2D and in 3D, the vicinity of antenna is magnified 
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After some trials, 55296 triangles have been used to mesh the two dimensional 

geometry, and it results in 111329 unknowns. In 3D, 36682 tetrahedra have been 

generated, which results in 247814 unknowns. This is a very dense mesh and it can be 

seen in Figure 3.  

The convergence of the simulated input impedance can be seen in Figure 4, where the 

measured impedance is also shown. Measured data are from [2]. The variation of input 

impedance is practically the same when applying finer and finer mesh. There is a 

permanent difference between measured and simulated data. 

 

Figure 4. Convergence of the solution vs. number of triangles 

The geometry of the antenna has been subtracted from the calculation domain, because 

it is supposed to be made of ideal conducting material, i.e. discretization is not 

necessary inside the wire. The same mesh has been used in all the frequency during the 

frequency sweep in the range of 1GHz and 4.5GHz. A PML layer [3,8] has been 

inserted to improve the absorption of electromagnetic field, and the radius of the 

computational domain is 1m in the two dimensional case and it is 0.25 m in the three 

dimensional case. 

Figure 5 shows a comparison between measured input impedance and simulated 

ones. The application of current probe model results in the weakest approximation, the 

approximated value obtained from the other models are practically the same. The results 

from the 2D and 3D simulations are the same, i.e. the mentioned feeding models can be 

used in any three dimensional situations. 
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Figure 5. Comparison of the input impedance of the monopole antenna  

(up–2D simulations, down–3D simulations) 
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The current distribution along the antenna is a very important input data to calculate 

other quantities. A comparison between the obtained currents simulated by the above 

mentioned feeding models can be seen in Figure 6 at the frequencies GHz5.1=f , 

GHz3=f , and GHz5.4=f . The results are practically the same, but a small 

difference can be seen in the vicinity of 0=z  (the feeding point), and it is the effect of 

the different feeding models. 

 

Figure 6. Normalized current distribution along the antenna at three different 

frequencies 

Figure 7 shows a very spectacular three dimensional result. The variation of the electric 

field intensity is presented as normalized vectors on the plane 0=z . The magnetic field 

intensity is also shown in the figure as a slice on the plane 0=x . 

4. Summary 

Feeding models of antennas have been presented in the frame of FEM. The input 

impedance, the current distribution of a monopole antenna on a ground plane and the 

variation of electromagnetic field quantities around the antenna have been simulated 

and compared with measured data.  

The next step of the research work is to apply the feeding models in the case of more 

complex antennas in three dimensional situations, and to compare the results with other 

numerical techniques, e.g. with MoM. 
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Figure 7. The magnetic field intensity and the electric field intensity around the antenna 
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