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Abstract. Let A and S be the adjacency and the Seidel matrix of a
graph G respectively. A-energy is the ordinary energy E(G) of a graph G
defined as the sum of the absolute values of eigenvalues of A. Analogously,
S-energy is the Seidel energy ES(G) of a graph G defined to be the sum of
the absolute values of eigenvalues of the Seidel matrix S. In this article,
certain class of A-equienergetic and S-equienergetic graphs are presented.
Also some linear relations on A-energies and S-energies are given.
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1 Introduction

Let G be a simple, finite and undirected graph of order n with vertex set
V(G) = {v1, v2, . . . , vn}. The adjacency matrix A = [aij] of G is a square
matrix of order n whose (i, j)-th entry aij = 1 if vi and vj are adjacent and 0
otherwise. The eigenvalues θ1, θ2, . . . , θn of A are called the A-eigenvalues of G
and their collection is called the spectrum or A-spectrum of G. If θ1, θ2, . . . , θk
are the distinct A-eigenvalues of G of order n with respective multiplicities
m1,m2, . . . ,mk, then the A-spectrum of G is denoted by

Spec(G) =

(
θ1 θ2 · · · θk
m1 m2 · · · mk

)
, where

k∑
j=1

mj = n.

In 1966 J. H. van Lint and J. J. Seidel introduced real symmetric {0,±1}-
matrix called the Seidel matrix S is defined as S = J − I − 2A, where J is the
matrix of order n whose all entries are equal to 1 and I is the identity matrix
of order n. The eigenvalues λ1, λ2, . . . , λn of S are called the Seidel eigenvalues
or S-eigenvalues of G and their collection is called the Seidel spectrum or S-
spectrum of G. If λ1, λ2, . . . , λk are the distinct S-eigenvalues of G of order
n with respective multiplicities m1,m2, . . . ,mk, then the Seidel spectrum or
S-spectrum of G is denoted by

SpecS(G) =

(
λ1 λ2 · · · λk
m1 m2 · · · mk

)
, where

k∑
j=1

mj = n.

The number of positive and negative A-eigenvalues of G are denoted by n+

and n− respectively. The complement of a graph G is denoted by G. A graph
G is an r-regular graph if all its vertices have same degree equal to r. The
line graph of G, denoted by L(G) is a graph whose vertex set has one-to-one
correspondence with the edge set of G and two vertices are adjacent in L(G) if
the corresponding edges are adjacent in G. For k = 1, 2, . . . , the k-th iterated
line graph of G is defined as Lk(G) = L(Lk−1(G)), where L0(G) = G and
L1(G) = L(G) [10]. Let Kn be the complete graph of order n and Kn1,n2,...,nk

be the complete multipartite graph of order n =
∑k
j=1 nj.

If θ1 ≥ θ2 ≥ · · · ≥ θn be the A-eigenvalues of G, then the energy or A-energy
is defined as

E(G) =

n∑
j=1

|θj| = 2

n+∑
j=1

θj = −2

n−∑
j=1

θn−j+1.
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Several researchers have introduced many graph operations such as comple-
ment, disjoint union, join, graph products etc. The graph products Cartesian
product, tensor product and strong product are known as the standard graph
products and have been well studied in the graph theory. The energy of a graph
introduced in 1978 [8] in connection with molecular chemistry and gained its
own importance in the spectral graph theory.
Two graphs G1 and G2 of same order are said to be equienergetic or A-
equienergetic if E(G1) = E(G2). Similar to A-energy, the Seidel energy or
S-energy ES(G) [9] of a graph G is defined as the sum of the absolute values
of the eigenvalues of Seidel matrix S. Two graphs G1 and G2 of same order
are said to be Seidel equienergetic or S-equienergetic if ES(G1) = ES(G2). Nu-
merous results dealing with the non-cospectral, A-equienergetic graphs have
been appeared in the literature. Balakrishnan [2] and Stevanović [23] con-
structed A-equienergetic graphs using tensor product. Ramane and Walikar
[20] and Liu and Liu [12] constructed A-equienergetic graphs by join of two
graphs. Bonifácio et al. [3] and Ramane et al. [17] obtained some class of A-
equienergetic graphs through Cartesian product, tensor product and strong
product. Ramane et al. [21] obtained non-cospectral A-equienergetic iterated
line graphs from regular graphs. For other results on A-equienergetic and S-
equienergetic graphs one can see [1, 4, 7, 11, 12, 13, 14, 15, 18, 22, 24]. For
other notation, terminology and results related to the spectra of graphs we
follow [6]. One of the interesting and difficult problem in the study of energy
of a graph in spectral graph theory is to find non-isomorphic graphs of same
order with same energy. So for in the literature the linear relations on ener-
gies of two non isomorphic graphs are not well studied except A-equienergetic
or S-equienergetic graphs. This motivates to find some class of graphs which
satisfies the linear relations on energies of different graphs.
This article is organized as follows. In section 2, basic definitions, known results
on A-eigenvalues of graph products, A-energy of a graph, S-eigenvalues and
S-energy of a graph are presented. In section 3, certain class of A-equienergetic
graphs are constructed and obtained some linear relations on the A-energies.
In section 4, some class of the S-equienergetic graphs are constructed and
obtained some linear relations on the S-energies.

2 Preliminaries

In this section, we shall list some known results which are needed in the next
two sections.
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Theorem 1 [6] Let G be an r-regular graph of order n with the A-eigenvalues
θ1 = r, θ2, . . . , θn. Then the A-eigenvalues of G are n−r−1,−θ2−1, . . . ,−θn−
1.

Theorem 2 [6] Let G be an r-regular graph on n vertices andm edges with the
A-eigenvalues θ1 = r, θ2, . . . , θn. Then the A-eigenvalues of L(G) are θi+r−2,
i = 1, 2, . . . , n and −2 (m− n times).

Theorem 3 [5] Let G is an r-regular graph of order n with the A-eigenvalues
θ1 = r, θ2, . . . , θn. Then the eigenvalues of S are n−2r−1,−1−2θ2, . . . ,−1−
2θn.

Theorem 4 [16] Let G1 and G2 be two r-regular graphs of same order n,
r ≥ 3. Then for k ≥ 2, Lk(G1) and Lk(G2) are S-equienergetic.

The Cartesian product of two graphs G1 and G2 is the graph G1�G2 with ver-
tex set V(G1)×V(G2), in which the vertices (u1, u2) and (v1, v2) are adjacent
if either u1 is adjacent to v1 in G1 and u2 is equal to v2 or u1 is equal to v1
and u2 is adjacent to v2 in G2.

The tensor product of two graphs G1 and G2 is the graph G1⊗G2 with vertex
set V(G1) × V(G2), in which the vertices (u1, u2) and (v1, v2) are adjacent if
u1 is adjacent to v1 in G1 and u2 is adjacent to v2 in G2.

The strong product of two graphs G1 and G2 is the graph G1�G2 with vertex
set V(G1) × V(G2), in which the vertices (u1, u2) and (v1, v2) are adjacent
whenever u1 and v1 are equal or adjacent in G1, and u2 and v2 are equal or
adjacent in G2. If G1 and G2 are two regular graphs then G1�G2, G1⊗G2 and
G1 �G2 are also regular graphs.

Lemma 5 [5] If µ1, µ2, . . . , µn are the A-eigenvalues of a graph G1 and σ1, σ2,
. . . , σm are the A-eigenvalues of a graph G2 then
(i) the A-eigenvalues of G1�G2 are µi + σj, i = 1, 2, . . . , n; j = 1, 2, . . . ,m,
(ii) the A-eigenvalues of G1 ⊗G2 are µiσj, i = 1, 2, . . . , n; j = 1, 2, . . . ,m,
(iii) the A-eigenvalues of G1 � G2 are µiσj + µi + σj, i = 1, 2, . . . , n; j =
1, 2, . . . ,m.

Lemma 6 [17] The A-spectrum of the line graph of a complete bipartite graph
Kp,q, where p, q ≥ 2 is

Spec(L(Kp,q)) =

(
p+ q− 2 p− 2 q− 2 −2

1 q− 1 p− 1 (p− 1)(q− 1)

)
.
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3 A-equienergetic graphs and linear relations on A-
energies of certain class of graphs

3.1 A-equienergetic graphs

Theorem 7 Let G1 and G2 be two r-regular A-equienergetic graphs of order
n. Then for p ≥ r, E(G1�Kp, p, . . . , p︸ ︷︷ ︸

k times

) = E(G2�Kp, p, . . . , p︸ ︷︷ ︸
k times

).

Proof. We have, Spec(Kp, p, . . . , p︸ ︷︷ ︸
k times

) =

(
p(k− 1) 0 −p

1 k(p− 1) k− 1

)
.

Let Spec(G1) =

(
r θ2 . . . θk
1 m2 . . . mk

)
, where 1+

k∑
j=2

mj = n.

By (i) of Lemma 5,

Spec(G1�Kp, p, . . . , p︸ ︷︷ ︸
k times

) =

(
r+ p(k− 1) r r− p θ2 + p(k− 1) · · ·

1 k(p− 1) k− 1 m2 · · ·

θk + p(k− 1) θ2 · · · θk θ2 − p · · · θk − p
mk km2(p− 1) · · · kmk(p− 1) m2(k− 1) · · · mk(k− 1)

)
.

Therefore
E(G1�Kp, p, . . . , p︸ ︷︷ ︸

k times

)

= |r+ p(k− 1)|+ |r|k(p− 1) + |r− p|(k− 1) +

k∑
i=2

mi|θi + p(k− 1)|

+

k∑
i=2

kmi(p− 1)|θi|+

k∑
i=2

mi(k− 1)|θi − p|

= r+ p(k− 1) + kr(p− 1) + (p− r)(k− 1) +

k∑
i=2

mi(θi + p(k− 1))

+k(p− 1)

k∑
i=2

mi|θi|+

k∑
i=2

mi(k− 1)(p− θi)

since θi + p(k− 1) ≥ −r+ p ≥ 0 and θi − p ≤ r− p ≤ 0
= 2np(k− 1) + k(p− 1)E(G1).
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Since G2 is also an r-regular graph of order n, we have

E(G2�Kp, p, . . . , p︸ ︷︷ ︸
k times

) = 2np(k− 1) + k(p− 1)E(G2).

IfG1 andG2 areA-equienergetic then E(G1�Kp, p, . . . , p︸ ︷︷ ︸
k times

) = E(G2�Kp, p, . . . , p︸ ︷︷ ︸
k times

)

which completes the proof. �

Remark 8 Recently in [19] Ramane et al. proved that E(G1�Kp,p) = E(G2�Kp,p).
It is noted that this result becomes particular case of Theorem 7.

Theorem 9 If p ≥ n ≥ 2 and k ≥ 2 then
E(Kp, p, . . . , p︸ ︷︷ ︸

k times

�Kn−1) = E(Kp− 1, p− 1, . . . , p− 1︸ ︷︷ ︸
k times

�Kn) if and only if p = n.

Proof. We have

Spec(Kp, p, . . . , p︸ ︷︷ ︸
k times

) =

(
p(k− 1) 0 −p

1 k(p− 1) k− 1

)
and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.

By (i) of Lemma 5,

Spec(Kp, p, . . . , p︸ ︷︷ ︸
k times

�Kn−1) =

(
pk− p+ n− 2 pk− p− 1 n− 2

1 n− 2 k(p− 1)

−1 n− p− 2 −p− 1
k(n− 2)(p− 1) k− 1 (k− 1)(n− 2)

)
.

If p ≥ n ≥ 2 then pk − p + n − 2, pk − p − 1 and n − 2 are only the positive
A-eigenvalues of Kp, p, . . . , p︸ ︷︷ ︸

k times

�Kn−1. Therefore from definition of A-energy, we

get
E(Kp, p, . . . , p︸ ︷︷ ︸

k times

�Kn−1)

= 2[pk− p+ n− 2+ (n− 2)(pk− p− 1) + k(n− 2)(p− 1)]

= 2[2npk− 3pk− np+ p− nk+ 2k].
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Next, we have

Spec(Kp− 1, p− 1, . . . , p− 1︸ ︷︷ ︸
k times

) =

(
(p− 1)(k− 1) 0 −(p− 1)

1 k(p− 2) k− 1

)

and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By (i) of Lemma 5,
Spec(Kp− 1, p− 1, . . . , p− 1︸ ︷︷ ︸

k times

�Kn)

=

(
pk− p+ n− k pk− p− k n− 1

1 n− 1 k(p− 2)

−1 n− p −p
k(n− 1)(p− 2) k− 1 (k− 1)(n− 1)

)
.

If p ≥ n ≥ 2 then pk− p+ n− k, pk− p− k and n− 1 are only the positive
A-eigenvalues of Kp− 1, p− 1, . . . , p− 1︸ ︷︷ ︸

k times

�Kn. Therefore from definition of A-

energy, we get
E(Kp− 1, p− 1, . . . , p− 1︸ ︷︷ ︸

k times

�Kn)

= 2[pk− p− k+ n+ (n− 1)(pk− p− k) + k(n− 1)(p− 2)]

= 2[2npk− 3nk− np+ n− pk+ 2k].

The graphs Kp, p, . . . , p︸ ︷︷ ︸
k times

�Kn−1 and Kp− 1, p− 1, . . . , p− 1︸ ︷︷ ︸
k times

�Kn are

A-equienergetic if and only if

E(Kp, p, . . . , p︸ ︷︷ ︸
k times

�Kn−1) = E(Kp− 1, p− 1, . . . , p− 1︸ ︷︷ ︸
k times

�Kn).

That is, 2[2npk−3pk−np+p−nk+2k] = 2[2npk−3nk−np+n−pk+2k]
or p + 2nk = n + 2pk, which implies (n − p)(2k − 1) = 0. Since k is positive
integer, we get p = n. This completes the proof. �
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Theorem 10 Let G be the Petersen graph and p, q ≥ 4. Then E
(
G�L(Kp,q)

)
=

E
(
G�L(Kp,q)

)
.

Proof. The A-spectrum of Petersen graph is

Spec(G) =

(
3 1 −2
1 5 4

)
.

From Lemma 6 and Theorem 1, A-spectrum of L(Kp,q) is

Spec
(
L(Kp,q)

)
=

(
pq− p− q+ 1 1− p 1− q 1

1 q− 1 p− 1 (p− 1)(q− 1)

)
.

Now by (i) of Lemma 5, A-spectrum of G�L(Kp,q) is

(
pq− p− q+ 4 4− p 4− q 4 pq− p− q+ 2 2− p

1 q− 1 p− 1 pq− p− q+ 1 5 5q− 5

2− q 2 pq− p− q− 1 −1− p −1− q
5p− 5 5pq− 5p− 5q+ 5 4 4q− 4 4p− 4

−1
4pq− 4p− 4q+ 4

)
.

If p, q ≥ 4 then pq − p − q + 4, 4, pq − p − q + 2, 2 and pq − p − q − 1
are only the positive A-eigenvalues of G�L(Kp,q). Therefore from definition of
A-energy

E
(
G�L(Kp,q)

)
= 2[pq− p− q+ 4+ 4(pq− p− q− 1) + 5(pq− p− q+ 2)

+ 2(5pq− 5p− 5q+ 5) + 4(pq− p− q+ 1)]

= 48(p− 1)(q− 1).

Now

Spec(G) =

(
6 1 −2
1 4 5

)
.

By using (i) of Lemma 5 and Lemma 6, G�L(Kp,q) has A-spectrum,(
p+ q+ 4 p+ 4 q+ 4 4 p+ q− 4 p− 4 q− 4

1 q− 1 p− 1 pq− p− q+ 1 5 5q− 5 5p− 5

−4 p+ q− 1 p− 1 q− 1 −1
5pq− 5p− 5q+ 5 4 4q− 4 4p− 4 4pq− 4p− 4q+ 4

)
.
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If p, q ≥ 4 then −4 and −1 are only the negative A-eigenvalues of G�L(Kp,q).
Therefore from definition of A-energy

E(G�L(Kp,q)) = 2[4(5pq− 5p− 5q+ 5) + 4pq− 4p− 4q+ 4]

= 48(p− 1)(q− 1)

which completes the proof. �

Recently in [17] Ramane et al. proved that E(L(Kp,q)) = E(L(Kp,q)). In the
following A-equienergetic graphs with the help of these graphs are given.

Theorem 11 If p, q ≥ 5 then E(L(Kp,q)�L(K4)) = E(L(Kp,q)�L(K4)).

Proof. The A-spectrum of K4 is

Spec(K4) =

(
3 −1
1 3

)
.

From Theorem 2,

Spec(L(K4)) =

(
4 0 −2
1 3 2

)
.

By using (i) of Lemma 5 and Lemma 6, L(Kp,q)�L(K4) has A-spectrum

(
p+ q+ 2 p+ q− 2 p+ q− 4 p+ 2 p− 2 p− 4 q+ 2 q− 2

1 3 2 q− 1 3q− 3 2q− 2 p− 1 3p− 3

q− 4 −4 2 −2
2p− 2 2pq− 2p− 2q+ 2 pq− p− q+ 1 3pq− 3p− 3q+ 3

)
.

If p, q ≥ 5 then −4 and −2 are only the negativeA-eigenvalues of L(Kp,q)�L(K4).
Therefore from definition of A-energy

E(L(Kp,q)�L(K4)) = 2[4(2pq− 2p− 2q+ 2) + 2(3pq− 3p− 3q+ 3)]

= 28(p− 1)(q− 1).

By using Theorem 1, (i) of Lemma 5 and Lemma 6, L(Kp,q)�L(K4) has A-
spectrum,(
pq− p− q+ 5 pq− p− q+ 1 pq− p− q− 1 5− p 1− p −1− p

1 3 2 q− 1 3q− 3 2q− 2

5− q 1− q −1− q 5 1

p− 1 3p− 3 2p− 2 pq− p− q+ 1 3pq− 3p− 3q+ 3

−1
2pq− 2p− 2q+ 2

)
.
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If p, q ≥ 5 then pq − p − q + 5, pq − p − q + 1, pq − p − q − 1, 5 and 1 are
only the positive A-eigenvalues of L(Kp,q)�L(K4). Therefore from definition of
A-energy

E(L(Kp,q)�L(K4)) = 2[pq− p− q+ 5+ 3(pq− p− q+ 1) + 2(pq− p− q− 1)

+ 5(pq− p− q+ 1) + 3pq− 3p− 3q+ 3]

= 28(p− 1)(q− 1)

which completes the proof. �

Theorem 12 If 3 ≤ p, q ≤ 6 then E(L(Kp,q)�L(K4)) = E(L(Kp,q)�L(K4)).

Proof. We have

Spec(L(K4)) =

(
4 0 −2
1 3 2

)
.

By using (i) of Lemma 5, Lemma 6 and Theorem 1, L(Kp,q)�L(K4) has A-
spectrum(
6pq− p− q− 3 −1− p− q+ 2 −1− p− q+ 4 −1− p− 2 −1− p+ 2

1 3 2 q− 1 3q− 3

−1− p+ 4 −1− q− 2 −1− q+ 2 −1− q+ 4 −3
2q− 2 p− 1 3p− 3 2p− 2 pq− p− q+ 1

1 3

3pq− 3p− 3q+ 3 2pq− 2p− 2q+ 2

)
.

If p, q ≥ 3 then 6pq−p−q− 3, 1 and 3 are only the positive A-eigenvalues
of L(Kp,q)�L(K4). Therefore from definition of A-energy, we have
E(L(Kp,q)�L(K4))

= 2[6pq− p− q− 3+ 1(3pq− 3p− 3q+ 3) + 3(2pq− 2p− 2q+ 2)]

= 2(15pq− 10p− 10q+ 6).

By using (i) of Lemma 5, Lemma 6 and Theorem 1, L(Kp,q)�L(K4) has A-
spectrum(

5pq+ p+ q− 6 p+ q− pq− 2 p+ q− pq p− 6 p− 2 p

1 3 2 q− 1 3q− 3 2q− 2

q− 6 q− 2 q −6 −2
p− 1 3p− 3 2p− 2 pq− p− q+ 1 3pq− 3p− 3q+ 3

0

2pq− 2p− 2q+ 2

)
.
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If 3 ≤ p, q ≤ 6 then 5pq+p+q− 6, p− 2, p, q− 2 and q are only the positive

A-eigenvalues of L(Kp,q)�L(K4). Therefore from definition of A-energy

E(L(Kp,q)�L(K4)) = 2[5pq+ p+ q− 6+ (p− 2)(3q− 3) + p(2q− 2)

+ (q− 2)(3p− 3) + q(2p− 2)]

= 2(15pq− 10p− 10q+ 6)

which completes the proof. �

Theorem 13 If p, q ≥ 3 then E(L(Kp,q)�L(K4)) = E(L(Kp,q)�L(K4)).

Proof. We have

Spec(L(K4)) =

(
4 0 −2
1 3 2

)
and from Theorem 1

Spec(L(K4)) =

(
1 −1
3 3

)
.

By using (i) of Lemma 5 and Lemma 6, L(Kp,q)�L(K4) has A-spectrum(
p+ q− 1 p+ q− 3 p− 1 p− 3 q− 1 q− 3

3 3 3q− 3 3q− 3 3p− 3 3p− 3

−1 −3
3pq− 3p− 3q+ 3 3pq− 3p− 3q+ 3

)
.

If p, q ≥ 3 then −1 and −3 are only the negativeA-eigenvalues of L(Kp,q)�L(K4).
Therefore from definition of A-energy

E(L(Kp,q)�L(K4)) = 2[3(p− 1)(q− 1) + 9(p− 1)(q− 1)]

= 24(p− 1)(q− 1).

By using Lemma 6, Theorem 1 and (i) of Lemma 5, L(Kp,q)�L(K4) has A-
spectrum(

pq− p− q+ 2 pq− p− q 2− p −p 2− q −q
3 3 3q− 3 3q− 3 3p− 3 3p− 3

2 0

3pq− 3p− 3q+ 3 3pq− 3p− 3q+ 3

)
.
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If p, q ≥ 3 then pq − p − q + 2, pq − p − q and 2 are only the positive
A-eigenvalues of L(Kp,q)�L(K4). Therefore from definition of A-energy

E(L(Kp,q)�L(K4)) = 2[3(pq− p− q+ 2) + 3(pq− p− q)

+ 2(3pq− 3p− 3q+ 3)]

= 24(p− 1)(q− 1)

which completes the proof. �

Theorem 14 If p, q ≥ 4 then E(L(Kp,q)�C6) = E
(
L(Kp,q)�C6

)
where C6 is

the cycle of order 6.

Proof. We have

Spec(C6) =

(
2 1 −1 −2
1 2 2 1

)
.

By using Lemma 6, Theorem 1 and (i) of Lemma 5, A-spectrum of L(Kp,q)�C6
is(
pq− p− q+ 3 pq− p− q+ 2 pq− p− q pq− p− q− 1 3− p

1 2 2 1 q− 1

2− p −p −1− p 3− q 2− q −q −1− q 3

2q− 2 2q− 2 q− 1 p− 1 2p− 2 2p− 2 p− 1 pq− p− q+ 1

2 0 −1
2pq− 2p− 2q+ 2 2pq− 2p− 2q+ 2 pq− p− q+ 1

)
.

If p, q ≥ 4 then pq−p−q+3, pq−p−q+2, pq−p−q, pq−p−q−1, 3 and
2 are only the positive A-eigenvalues of L(Kp,q)�C6. Therefore from definition
of A-energy

E
(
L(Kp,q)�C6

)
= 2[pq− p− q+ 3+ 2(pq− p− q+ 2) + 2(pq− p− q)

+ (pq− p− q− 1) + 3(pq− p− q+ 1) + 2(2pq− 2p− 2q+ 2)]

= 26(p− 1)(q− 1).

Now by Theorem 1

Spec(C6) =

(
3 1 0 −2
1 1 2 2

)
.
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By using Lemma 6 and (i) of Lemma 5 L(Kp,q)�C6 has A-spectrum(
p+ q+ 1 p+ q− 1 p+ q− 2 p+ q− 4 p+ 1 p− 1 p− 2 p− 4

1 1 2 2 q− 1 q− 1 2q− 2 2q− 2

q+ 1 q− 1 q− 2 q− 4 1 −1
p− 1 p− 1 2p− 2 2p− 2 pq− p− q+ 1 pq− p− q+ 1

−2 −4
2pq− 2p− 2q+ 2 2pq− 2p− 2q+ 2

)
.

If p, q ≥ 4 then −1,−2 and −4 are only the negativeA-eigenvalues of L(Kp,q)�C6.
Therefore from definition of A-energy

E
(
L(Kp,q)�C6

)
= 2[pq− p− q+ 1+ 2(2pq− 2p− 2q+ 2)

+ 4(2pq− 2p− 2q+ 2)]

= 26(p− 1)(q− 1)

which completes the proof. �

Theorem 15 If p, q ≥ 3 then E
(
L(Kp,q)�W5

)
= E(L(Kp,q)�W5) where W5

is the wheel of order 5.

Proof. Since A-spectrum of W5 is(
1 0 −1
2 1 2

)
.

Now by (i) of Lemma 5, A-spectrum of L(Kp,q)�W5 is(
p+ q− 1 p+ q− 2 p+ q− 3 p− 1 p− 2 p− 3 q− 1 q− 2

2 1 2 2q− 2 q− 1 2q− 2 2p− 2 p− 1

q− 3 −1 −2 −3
2p− 2 2pq− 2p− 2q+ 2 pq− p− q+ 1 2pq− 2p− 2q+ 2

)
.

If p, q ≥ 3 then −1,−2 and −3 are only the negativeA-eigenvalues of L(Kp,q)�W5.
Therefore from definition of A-energy

E
(
L(Kp,q)�W5

)
= 2[2pq− 2p− 2q+ 2+ 2(pq− p− q+ 1)

+ 3(2pq− 2p− 2q+ 2)]

= 20(p− 1)(q− 1).



208 H. S. Ramane, K. Ashoka, B. Parvathalu, D. Patil

By using Lemma 6, Theorem 1 and (i) of Lemma 5, A-spectrum of L(Kp,q)�W5

is(
pq− p− q+ 2 pq− p− q+ 1 pq− p− q 2− p 1− p −p 2− q

2 1 2 2q− 2 q− 1 2q− 2 2p− 2

1− q −q 2 1 0

p− 1 2p− 2 2pq− 2p− 2q+ 2 pq− p− q+ 1 2pq− 2p− 2q+ 2

)
.

If p, q ≥ 3 then pq−p−q+ 2, pq−p−q+ 1, pq−p−q, 2 and 1 are only the
positive A-eigenvalues of L(Kp,q)�W5. Therefore from definition of A-energy

E
(
L(Kp,q)�W5

)
= 2[2(pq− p− q+ 2) + pq− p− q+ 1+ 2(pq− p− q)

+ 2(2pq− 2p− 2q+ 2) + (pq− p− q+ 1)]

= 20(p− 1)(q− 1)

which completes the proof. �

Theorem 16 If n ≥ 3 then E(Kn,n ⊗ Kn−1) = E(Kn−1,n−1 ⊗ Kn).

Proof. We have

Spec(Kn,n) =

(
n 0 −n
1 2n− 2 1

)
and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.

By using (ii) of Lemma 5 and Theorem 1,

Spec(Kn,n ⊗ Kn−1) =
(
n2 − 1 −1− n −1 n(n− 2) − 1 n− 1
1 n− 2 (n− 1)(2n− 2) 1 n− 2

)
.

If n ≥ 3 then n2−1, n(n−2)−1 and n−1 are only the positive A-eigenvalues
of Kn,n ⊗ Kn−1 and from definition of A-energy

E
(
Kn,n ⊗ Kn−1

)
= 2[n2 − 1− 1+ n(n− 2) + (n− 1)(n− 2)]

= 6n2 − 10n.

Now

Spec(Kn−1,n−1) =

(
n− 1 0 −(n− 1)
1 2n− 4 1

)
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and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By using (ii) of Lemma 5 and Theorem 1,
Spec(Kn−1,n−1 ⊗ Kn) =(
n2 − 2 −1+ (n− 1) −1 −1 (n− 1)2 − 1 −1− (n− 1)
1 n− 1 2n− 4 (2n− 4)(n− 1) 1 n− 1

)
.

If n ≥ 3 then n2−2, n−2 and (n−1)2−1 are only the positive A-eigenvalues
of Kn−1,n−1 ⊗ Kn. Therefore from definition of A-energy

E
(
Kn−1,n−1 ⊗ Kn

)
= 2[n2 − 2+ (n− 1)(n− 2) + (n− 1)2 − 1]

= 6n2 − 10n

which completes the proof. �

3.2 Linear relations on energies of graphs

Linear relations on energies of different graphs are not yet well studied in the
study of graph energies except equienergetic graphs, that is E(G1)−E(G2) = 0.
In the following we present some linear relations on energies of different graphs
of same order of the type aE(G1) + bE(G2) = c, where a, b and c are real
numbers.

Theorem 17 If n ≥ 3 then E
(
L(K4)�Kn

)
− E

(
L(K4)�Kn

)
= 2.

Proof. We have

Spec(L(K4)) =

(
4 0 −2
1 3 2

)
and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By using (i) of Lemma 5,

Spec(L(K4)�Kn) =

(
n+ 3 n− 1 n− 3 3 −1 −3
1 3 2 n− 1 3n− 3 2n− 2

)
.

If n ≥ 3 then −1 and −3 are only the negative A-eigenvalues of L(K4)�Kn.
Therefore from definition of A-energy

E (L(K4)�Kn) = 2[(3n− 3) + 3(2n− 2)]

= 18n− 18. (1)
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By using Theorem 1

Spec(L(K4)�Kn) =

(
5n− 4 −n 2− n −4 0 2

1 3 2 n− 1 3n− 3 2n− 2

)
.

If n ≥ 3 then −n, 2 − n and −4 are only the negative A-eigenvalues of
L(K4)�Kn. Therefore from definition of A-energy

E
(
L(K4)�Kn

)
= 2[3n+ 2n− 4+ 4n− 4]

= 18n− 16. (2)

From (1) and (2) the result follows. �

Theorem 18 If n ≥ 3 then E(Kn−1,n−1 ⊗ Kn) − E(Kn,n ⊗ Kn−1) = 4.

Proof. We have

Spec(Kn,n) =

(
n 0 −n
1 2n− 2 1

)
and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.

By using (ii) of Lemma 5,
Spec(Kn,n ⊗ Kn−1) =(
n(n− 2) −n 0 0 −n(n− 2) n

1 n− 2 2n− 2 (n− 2)(2n− 2) 1 n− 2

)
.

If n ≥ 3 then n(n−2) and n are only the positive A-eigenvalues of Kn,n⊗Kn−1.
Therefore from definition of A-energy

E (Kn,n ⊗ Kn−1) = 2[n(n− 2) + n(n− 2)]

= 4n2 − 8n. (3)

Now

Spec(Kn−1,n−1) =

(
n− 1 0 −(n− 1)
1 2n− 4 1

)
and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By using (ii) of Lemma 5,
Spec(Kn−1,n−1 ⊗ Kn) =
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(n− 1)2 −(n− 1) 0 0 −(n− 1)2 n− 1

1 n− 1 2n− 4 (n− 2)(2n− 2) 1 n− 1

)
.

If n ≥ 3 then (n − 1)2 and n − 1 are only the positive A-eigenvalues of
Kn−1,n−1 ⊗ Kn. Therefore from definition of A-energy

E (Kn−1,n−1 ⊗ Kn) = 2[(n− 1)2 + (n− 1)2]

= 4n2 − 8n+ 4. (4)

From (3) and (4) result follows. �

Theorem 19 If n ≥ 3 then

E(Kn− 1, n− 1, . . . , n− 1︸ ︷︷ ︸
k times

� Kn) − E(Kn,n, . . . , n︸ ︷︷ ︸
k times

� Kn−1) = 2.

Proof. We have

Spec(Kn,n, . . . , n︸ ︷︷ ︸
k times

) =

(
n(k− 1) 0 −n

1 k(n− 1) k− 1

)
and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.

By using (iii) of Lemma 5,
Spec(Kn,n, . . . , n︸ ︷︷ ︸

k times

� Kn−1) =(
n2k− n2 − nk+ 2n− 2 n− 2 −1 −n2 + 2n− 2

1 k(n− 1) kn(n− 2) k− 1

)
.

If n ≥ 3 then n2k−n2−nk+2n−2 and n−2 are only the positive A-eigenvalues
of Kn,n, . . . , n︸ ︷︷ ︸

k times

� Kn−1. Therefore from definition of A-energy

E(Kn,n, . . . , n︸ ︷︷ ︸
k times

� Kn−1) = 2[n
2k− n2 − nk+ 2n− 2+ k(n− 2)(n− 1)]

= 4n2k− 2n2 − 8nk+ 4n+ 4k− 4. (5)

Now

Spec(Kn− 1, n− 1, . . . , n− 1︸ ︷︷ ︸
k times

) =

(
(n− 1)(k− 1) 0 −(n− 1)

1 k(n− 2) k− 1

)
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and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By using (iii) of Lemma 5,
Spec(Kn− 1, n− 1, . . . , n− 1︸ ︷︷ ︸

k times

� Kn) =(
n2k− n2 − nk+ 2n− 1 n− 1 −1 −n2 + 2n− 1

1 k(n− 2) k(n− 1)2 k− 1

)
.

If n ≥ 3 then n2k−n2−nk+2n−1 and n−1 are only the positive A-eigenvalues
of Kn− 1, n− 1, . . . , n− 1︸ ︷︷ ︸

k times

� Kn. Therefore from definition of A-energy

E(Kn− 1, n− 1, . . . , n− 1︸ ︷︷ ︸
k times

� Kn) = 2[n
2k− n2 − nk+ 2n− 1+ k(n− 2)(n− 1)]

= 4n2k− 2n2 − 8nk+ 4n+ 4k− 2. (6)

From (5) and (6) the result follows. �

Theorem 20 If n ≥ 3 then E(Kn,n � Kn−1) − E(Kn−1,n−1 � Kn) = 4.

Proof. We have

Spec(Kn,n) =

(
n 0 −n
1 2n− 2 1

)
and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.

By using (iii) of Lemma 5 and Theorem 1,

Spec(Kn,n � Kn−1) =

(
n2 − 2n+ 1 0 −n+ 1

2 2n2 − 2n 2n− 2

)
.

If n ≥ 3 then n2 − 2n + 1 is only the positive A-eigenvalues of Kn,n � Kn−1.
Therefore from definition of A-energy

E
(
Kn,n � Kn−1

)
= 2[2n2 − 4n+ 2]

= 4n2 − 8n+ 4. (7)

Now

Spec(Kn−1,n−1) =

(
n− 1 0 −(n− 1)
1 2n− 4 1

)
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and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By using (iii) of Lemma 5 and Theorem 1,

Spec(Kn−1,n−1 � Kn) =

(
n2 − 2n 0 −n
2 2n2 − 4n+ 2 2n− 4

)
.

If n ≥ 3 then n2 − 2n is only the positive A-eigenvalues of Kn−1,n−1 � Kn.
Therefore from definition of A-energy

E
(
Kn−1,n−1 � Kn

)
= 2[2n2 − 4n]

= 4n2 − 8n. (8)

From (7) and (8) the result follows. �

4 S-equienergetic graphs and linear relations on S-
energies of certain class of graphs

4.1 S-equienergetic graphs

In [16] Ramane et al. studied S-energy of L2(G) for an r-regular graph G, r ≥ 3
and constructed a large class of S-equienergetic graphs. The following result
provides S-equienergetic graphs with the help of iterated line graphs Lk(G)
even for k ≥ 1, where L0(G) = G.

Theorem 21 If n ≥ 5, k ≥ 0 then ES(Lk(Kn,n�Kn−1)) = ES(Lk(Kn−1,n−1�Kn)).

Proof. As Kn,n�Kn−1 and Kn−1,n−1�Kn are both regular graphs of same order
and of same degree, by Theorems 3 and 4, the result is true for k ≥ 2. Now,
it is enough to prove for k = 0, 1.
When k = 0.

Spec(Kn,n) =

(
n 0 −n
1 2n− 2 1

)
and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.
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Therefore by (i) of Lemma 5,

Spec(Kn,n�Kn−1) =

(
2n− 2 n− 1 n− 2 −1 −2 −n− 1
1 n− 2 2n− 2 (2n− 2)(n− 2) 1 n− 2

)
and

Spec(Kn−1,n−1�Kn) =

(
2n− 2 n− 2 n− 1 −1 0 −n
1 n− 1 2n− 4 (2n− 4)(n− 1) 1 n− 1

)
.

Therefore by Theorem 3,
SpecS(Kn,n�Kn−1) =(

2n2 − 6n+ 3 1− 2n 3− 2n 1 3 2n+ 1
1 n− 2 2n− 2 (2n− 2)(n− 2) 1 n− 2

)
and SpecS(Kn−1,n−1�Kn) =(

2n2 − 6n+ 3 3− 2n 1− 2n 1 −1 2n− 1
1 n− 1 2n− 4 (2n− 4)(n− 1) 1 n− 1

)
.

If n ≥ 5 then 2n2 − 6n+ 3, 1, 3 and 2n+ 1 are only the positive S-eigenvalues
of Kn,n�Kn−1. Therefore from definition of S-energy

ES(Kn,n�Kn−1) = 2[2n2 − 6n+ 3+ (2n− 2)(n− 2) + 3+ (n− 2)(2n+ 1)]

= 12n2 − 26n+ 16.

If n ≥ 5 then 2n2− 6n+ 3, 1 and 2n− 1 are only the positive S-eigenvalues of
Kn−1,n−1�Kn. Therefore from definition of S-energy

ES(Kn−1,n−1�Kn) = 2[2n2 − 6n+ 3+ (2n− 4)(n− 1) + (n− 1)(2n− 1)]

= 12n2 − 26n+ 16.

Hence ES(Kn,n�Kn−1) = ES(Kn−1,n−1�Kn).

When k = 1 both Kn,n�Kn−1 and Kn−1,n−1�Kn are regular graphs of same
order 2n(n− 1) and of same degree 2n− 2. Hence by (i) of Lemma 5,
Spec(L(Kn,n�Kn−1)) =(
4n− 6 3n− 5 3n− 6 2n− 5 2n− 6 n− 5 −2
1 n− 2 2n− 2 (2n− 2)(n− 2) 1 n− 2 2n(n− 1)(n− 2)

)
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and Spec(L(Kn−1,n−1�Kn)) =(
4n− 6 3n− 6 3n− 5 2n− 5 2n− 4 n− 4 −2
1 n− 1 2n− 4 (2n− 4)(n− 1) 1 n− 1 2n(n− 1)(n− 2)

)
.

Therefore from Theorem 3,
SpecS(L(Kn,n�Kn−1)) =(

2n(n− 1)2 − 8n+ 11 9− 6n 11− 6n 9− 4n
1 n− 2 2n− 2 (2n− 2)(n− 2)

11− 4n 9− 2n 3

1 n− 2 2n(n− 1)(n− 2)

)
and SpecS(L(Kn−1,n−1�Kn)) =(

2n(n− 1)2 − 8n+ 11 11− 6n 9− 6n 9− 4n
1 n− 1 2n− 4 (2n− 4)(n− 1)

7− 4n 7− 2n 3

1 n− 1 2n(n− 1)(n− 2)

)
.

If n ≥ 5 then 2n(n − 1)2 − 8n + 11 and 3 are only the positive S-eigenvalues
of L(Kn,n�Kn−1). Therefore from definition of S-energy

ES(L(Kn,n�Kn−1)) = 2[2n(n− 1)2 − 8n+ 11+ 6n(n2 − 3n+ 2)]

= 16n3 − 44n2 + 18n+ 22.

If n ≥ 5 then 2n(n − 1)2 − 8n + 11 and 3 are only the positive S-eigenvalues
of L(Kn,n�Kn−1). Therefore from definition of S-energy

ES(L(Kn,n�Kn−1)) = 2[2n(n− 1)2 − 8n+ 11+ 6n(n2 − 3n+ 2)]

= 16n3 − 44n2 + 18n+ 22.

Hence ES(L(Kn,n�Kn−1)) = ES(L(Kn−1,n−1�Kn)). �

Theorem 22 If n ≥ 3 then ES(Kn,n � Kn−1) = ES(Kn−1,n−1 � Kn).

Proof. We have

Spec(Kn,n) =

(
n 0 −n
1 2n− 2 1

)
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and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.

By using (iii) of Lemma 5 and Theorem 3,

SpecS(Kn,n � Kn−1) =

(
−2n+ 3 1 2n2 − 4n+ 3 −2n+ 3

1 2n2 − 2n 1 2n− 2

)
.

If n ≥ 3 then 2n2 − 4n + 3 and 1 are only the positive S-eigenvalues of
Kn,n � Kn−1. Therefore from definition of S-energy

ES (Kn,n � Kn−1) = 2[2n
2 − 2n+ 2n2 − 4n+ 3]

= 8n2 − 16n+ 6.

Now

Spec(Kn−1,n−1) =

(
n− 1 0 −(n− 1)
1 2n− 4 1

)
and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By using (iii) of Lemma 5 and Theorem 3,

SpecS(Kn−1,n−1�Kn) =

(
−2n+ 1 1 2n2 − 4n+ 1 −2n+ 1

1 (n− 1)(2n− 2) 1 2n− 4

)
.

If n ≥ 5 then 2n2 − 4n + 1 and 1 are only the positive S-eigenvalues of
Kn−1,n−1 � Kn. Therefore from definition of S-energy

ES (Kn−1,n−1 � Kn) = 2[(n− 1)(2n− 2) + 2n2 − 4n+ 1]

= 8n2 − 16n+ 6

which completes the proof. �

4.2 Linear relations on S-energies of graphs

Linear relations on S-energies of different graphs are not yet well studied in
the study of S-energies. In the following we present some linear relations on
S-energies of different graphs of same order of the type aES(G1)+bES(G2) = c,
where a, b and c are real numbers.
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Theorem 23 If n ≥ 3 then ES(Kn−1,n−1 ⊗ Kn) − ES(Kn,n ⊗ Kn−1) = 2.

Proof. We have

Spec(Kn,n) =

(
n 0 −n
1 2n− 2 1

)
and

Spec(Kn−1) =

(
n− 2 −1
1 n− 2

)
.

By using (ii) of Lemma 5 and Theorem 3,

SpecS(Kn,n ⊗ Kn−1) =
(
2n− 1 −1− 2n −1 2n(n− 2) − 1
n− 1 n− 2 (n− 1)(2n− 2) 1

)
.

If n ≥ 5 then 2n− 1 and 2n(n− 2) − 1 are only the positive S-eigenvalues of
Kn,n ⊗ Kn−1. Therefore from definition of S-energy

ES (Kn,n ⊗ Kn−1) = 2[(2n− 1)(n− 1) + 2n(n− 2) − 1]

= 8n2 − 14n. (9)

Now

Spec(Kn−1,n−1) =

(
n− 1 0 −(n− 1)
1 2n− 4 1

)
and

Spec(Kn) =

(
n− 1 −1
1 n− 1

)
.

By using (ii) of Lemma 5 and Theorem 3,

SpecS(Kn−1,n−1 ⊗ Kn) =
(
2n− 3 1− 2n −1 2n2 − 4n+ 1
n n− 1 n(2n− 4) 1

)
.

If n ≥ 5 then 2n − 3 and 2n2 − 4n + 1 are only the positive S-eigenvalues of
Kn−1,n−1 ⊗ Kn. Therefore from definition of S-energy

ES (Kn−1,n−1 ⊗ Kn) = 2[n(2n− 3) + 2n2 − 4n+ 1]

= 8n2 − 14n+ 2. (10)

From (9) and (10) the result follows. �
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Conclusion

In this article we have obtained several classes of A-equienergetic and S-
equienergetic graphs by using Cartesian product, tensor product and strong
product. The results can be further extended to the other class of graphs.
Also some linear relations between A-energies and S-energies of graphs has
been established which shows a possible new direction in the study of relation
between energies of different graphs of same order.
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Abstract. In recent years, community detection in dynamic networks
has received great interest. Due to its importance, many surveys have
been suggested. In these surveys, the authors present and detail a num-
ber of methods that identify a community without taking into account
the incremental methods which, in turn, also take an important place in
dynamic community detection methods. In this survey, we provide a re-
view of incremental approaches to community detection in both fully and
growing dynamic networks. To do this, we have classified the methods
according to the type of network. For each type of network, we describe
three main approaches: the first one is based on modularity optimization;
the second is based on density; finally, the third is based on label prop-
agation. For each method, we list the studies available in the literature
and state their drawbacks and advantages.
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1 Introduction

In real world that represents complex networks, nodes and edges change over
time making the network dynamic. In reality there are two types of dynamic
networks: fully dynamic networks [46, 70, 6] and growing dynamic networks
[10, 65]. In the first case, like social networks, individuals (nodes) and their
relationships (edges) can appear and/or disappear at any time. In the second
type like citation networks, nodes represent articles and the links represent
citations between the articles. Articles and citations can only be added to
the network and they cannot be deleted later. In such type of network, the
discovery of so-called community [27] is very hard problem and a number of
methods have been proposed to solve it.

Among these methods proposed in the literature to explore community in
dynamic networks we find [34, 11, 15] These methods apply static community
detection algorithms multiple times to snapshots of the network. These meth-
ods are more expensive and it is more effective to incrementally review the
community structure of the old network and update the community structure
in a timely manner [40, 21, 36].

Several surveys have been proposed in the literature that focus on classify-
ing existing methods designed for detecting community in dynamic networks
ignoring incremental methods. Note that these methods , known as incremen-
tal methods, came to solve the problems of the traditional approaches while
no researcher has classified them in any paper. In addition, in the existing
surveys, the authors only deal with fully dynamic networks and do not take
into account the growing dynamic networks in which incremental methods are
best used for discovering communities.

In this paper, we present a survey of incremental methods for community
detection in both fully and growing dynamic networks. This survey can be
helpful for understanding of several incremental methods for choosing appro-
priate method. It is organized as follows. In Section 2, we present a history of
community discovery through the listing and classification of methods used in
the literature. In Section 3, we talk about dynamic networks and mention the
events that can occur in community. We present in Section 4 our classifica-
tion of various incremental approaches for community detection in both fully
and growing dynamic networks as we present in Section 5 a discussion study
that explores the advantages and the weaknesses of each approach. Finally,
the conclusions section comes to wrap up the paper.
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2 Historic for community detection

The graph partitioning methods [7, 38, 24] are originally the first solutions
solving the problem of community detection. Graph partitioning relates to
supervised methods1 [31], it allows the classification of large sets and imposes
the number of groups to be identified.

In real networks like social networks, the number of communities is not
known in advance. In these networks, the number of groups is in itself an im-
portant result. A new problem thus posed is to decompose the network into
a set of interconnected subgraphs, each constituting what is called a commu-
nity2 without knowing a priori the number of communities. Hence the birth
of unsupervised methods like static community detection methods [60, 44, 2]
and dynamic community detection methods [10, 34, 15].

It was after the publication of the work of Girvan-Newman [28] and For-
tunato [27] that the problem of community detection gained interest. [44, 59]
use spectral clustering which takes into account the spectral properties based
on the eigenvalues of the Laplacian matrix of the data considered [56]. An-
other type of clustering has been used by the authors of [60] is hierarchical
clustering. This approach are devided into two categories: the first category
[9, 17, 43] groups the pairs of nodes until all nodes are in the same commu-
nity [67]. Conversely compared to the first category, the second class [28, 49, 5]
consists in dividing the graph into several communities [66] by iteratively elim-
inating the edges between the nodes until obtaining a singleton node [22, 1].
The authors of [20, 3] use density-based methods which locate regions of high
density separated from each other by regions of low density. The DBSCAN3

algorithm [20] uses parameters as input, the setting of these parameters is dif-
ficult to determine. In order to overcome this difficulty, the same authors [3]
proposed the method called OPTICS4 with a basic idea similar to DBSCAN.
Another algorithm called DENCLUE5 [33] measures the effect of each object
in its neighborhood. The algorithm is faster than [20] and [3]. In addition to
density-based methods, there are other, diffusion-based methods. These consist
of the propagation of information to all nodes of the network. Nodes with the
same information are grouped together in the same community. Raghavan [50]

1In supervised methods, the number and size of communities are known in advance.
2Community, cluster, group means the same.
3DBSCAN is the abbreviation of Density-Based Spatial Clustering of Applications with

Noise.
4OPTICS is the abbreviation of Ordering Points to Identify the Clustering Structure.
5DENCLUE is the abbreviation of DENsity-based CLUstEring.
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and others [61] have proposed the LPA6 algorithm based on label propagation.
As an extension of these algorithms [29] and [62] have presented respectively
the COPRA7 and SLPA8 algorithms to detect overlapping communities.

In fact, real networks are dynamic, not static, as they evolve over time. This
dynamic requires the use of effective methods to detect communities in the
network. Among these ways we find, a two-stage approach [34, 11] is proposed
to uncover dynamic networks. It independently detects the communities for
each snapshot and then matches them. Since the two-stage approach is not
entirely satisfactory, dependent community detection methods are introduced
[15]. These methods used also snapshots when identifying groups, taking into
account the communities found in the previous snapshot but avoiding the need
to match them. Other methods designed for detecting community in dynamic
networks work directly on temporal networks are the incremental approaches
[10, 42, 57]. They start with an initial community, and then update for each
incoming change the community structure. We are interested in our survey
to dynamic community detection, precisely to incremental methods. Figure 1
summarizes the historic for community detection. The incremental approaches
is our aims, so we have detailed it in Section 4.

Figure 1: Organization diagram of the historic for community detection

6LPA is the abbreviation of Label Propagation Algorithm.
7COPRA is the abbreviation of Community Overlap PRopagation Algorithm.
8SLPA is the abbreviation of Speaker-listener Label Propagation Algorithm.
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3 Dynamic networks

In social networks, the interaction between individual changes over time due
to the change in subjects of interest and relationships. The dynamic nature of
these networks makes difficult the detection of communities. These dynamic
networks can be represented by:

� A time series of static networks, called snapshots (Figure 2) that poorly
supports the dynamic aspect. Each snapshot corresponding to interac-
tions derived from a daily, weekly, or monthly collection of data.

� Gathering information in real time as a stream of edges that integrates
directly the evolutionary aspect of networks in a two-dimensional space.
The nodes are classified on the axis of ordinates and their temporal links
between two are represented by arcs over time (Figure 3).

Figure 2: A temporal social network consisting of five timeframes [13]

3.1 Community events

With dynamic networks, nodes and edges can be added or removed at any
time. These operations are called “events” and several of them are likely to
appear in the life cycle of a community [55, 13, 48, 58]. The examples are
shown in Figure 4 and a brief description can be found below:

� Continuing: the community continues its existence in the next time win-
dow.
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Figure 3: Diagram of a stream of edges with 5 vertices interacting with each
other for 20 minutes (communities are colored differently) [32]

� Shrinking: the community shrinks or contracts when it loses some of its
members.

� Growing: the community grows when some nodes (member) acquire.

� Splitting: the community is divided into several new communities.

� Merging: the community is divided into several new communities.

� Dissolving: when a community disappears (ends its life). All nodes be-
longing to this community disappear because they are dispersed between
other communities.

� Forming: A community is formed or given birth when it appears at a
given time.

3.2 Examination of dynamic community detection

Each algorithm or method designed for community detection must test its
performance in a set of networks. These networks can be artificial networks
or real networks. In this section, we will present most of the network models
proposed in the literature to evaluate the result of the algorithm and the
quality of the community structure.

In artificial networks or synthetic network generators, network data (bench-
marks) are produced to model real-world networks and used to compare and
assess the results of the algorithms. The best known of them are GN bench-
mark [28] and LFR benchmark [39] but there are others like ABCD [35] and
[53] dedicated to community detection. These benchmarks are listed in Table
1. For each benchmark, we present its reference, its name, brief description
and the type of generator.
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Figure 4: Seven possible type of events in the group evolution [13]

To evaluate the quality of a detected community, one method is to con-
sider ground truth communities. In ground truth, community structure of the
network may or may not be known in advance.

� If community structure of the network is known at advance, supervised
measures are used. These measures compare the divergence between the
community structure produced by community detection algorithms and
the effective one. The most famous supervised measure used for the
evaluation of quality of detected communities is NMI [39] which represent
the degree of dependence between to partition. Equal to 1 if the two
partitions are identical or to 0 otherwise. Rand proposed another metric
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Reference Name Description Type of generator 
[5] GN (Girvan-Newman 

benchmark) 
- Based on the input of two 
values: mix parameter and 
average degree 

Static (used also to evaluate dynamic 
community detection at each snapshot). 

[62] LFR (Lancichinetti 
Fortunato-Radicchi 
benchmark 

- Community known in 
advance. 
- Depend on the mixing 
parameter. 

Static (used also to evaluate dynamic 
community detection at each snapshot). 

[63] ABCD (Artificial 
Benchmark for Community 
Detection) 

- Controls the fraction of 
edges between 
communities. 

Static 

[64] A dynamic graph 
generator with overlapping 
community 

- The node degrees, the 
community sizes, and the 
number of communities 
per node all follow power 
law distributions. 
 

Dynamic graph generator with 
overlapping communities which simulate 
community scale events. 

 

Table 1: Some benchmarks used in literature [28, 39, 35, 53]

similar to NMI called ARI [51] to measure the similarity between the
detected community structure and a gold standard.

� If the ground-truth communities are unknown, unsupervised measures
are often used. These measures estimate the quality of the partition with-
out knowing the veritable partitions. Modularity proposed by Newman
et al [43] is the most widely used metric quality (or quality function)
to compare different community detection algorithm (cf. Section 4.2.1).
However, it is not the only one: Kanna et al suggested Conductance
metric [37] based on the density of community and the number of links
outside. Radicchi et al defined the Internal Density measure [49], it is
the ratio between the number of internal edges of the cluster and the
number of its all possible internal edges.

All of these metrics used to evaluate the quality of a partition have some
drawbacks. We cannot say that one metric is better than another, but certain
selection criteria can be used for the choice of the metric. Some drawbacks
and advantages of these measures are summarized in Table 2.

4 Incremental approaches for community detection
in dynamic networks

Before describing the incremental approaches, we first list some notations and
definitions used in this section.
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Measure name Measure type Drawbacks Advantages 

NMI 
(Normalized 
Mutual 
Information)  

Supervised  -You must know the basic community 
structure while it is unknown in many 
real dynamic networks. 
-High computational complexity 
-Impracticable for large-scale networks. 

-Handle small networks. 
 

ARI (Adjusted 
Rand Index) 

Supervised  -Suffer from the problem of deciding if a 
pair of nodes should be linked or remain 
unlinked. 

-Avoid the problem of unknown cluster. 
-ARI has the advantage of generating block 
model data comparing to other link 
prediction methods. 

Modularity Unsupervised  -Small communities may be not found. -Handle large-scale network. 

Conductance Unsupervised  -Partition is good if it has both high values 
of intra and inter community conductance 
at the same time. 

-Efficient in assessing community structure 
of disjoint communities. 

Internal Density Unsupervised  -Just considers internal relations between 
nodes of a community without any 
attention to external ones. 

-Possibility to identify small and large 
communities. 

Table 2: Some metric quality used to evaluate community detection algorithm
(Drawbacks and advantages)

4.1 Notations and definitions

In this sub-section, we list out notations (Table 3) and introduce some defini-
tions.

Notations Description

C/CS Community / Communities

D Disjoint communities

O Overlap communities

In Intrinsic communities

V/v/V+
− Number of vertices / Number of changed (new) vertices

/ Number of vertices added and deleted

E/ε Number of edges / Number of changed edges

〈E〉/E+− Number of edges in each community / Number of edges added and deleted

I/i Number of linear iterations in the number of edges E / Number of iterations

kV Number of degrees of the updated vertex

d/dt/dv Average vertex degree / Average vertex degree at time slice t
/ the average degree of all vertices

NbCinf Number of communities affected by the change in the network

S Number of incremental sub-graphs

K Number of communities

L L� V Maximum of vertices between the infected communities
and incremental sub-graph

Table 3: Some notations used in this paper
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Definition 1. Community
A group of nodes with similar characteristics or function that interact more
densely among themselves.

Definition 2. Disjoint community
A subset of members that belong to one and only one community.

Definition 3. Overlap community
Communities that share common members (interests) across different
communities.

Definition 4. Intrinsic (embedded) community
Sub-community in which members are strongly connected to each other form-
ing a compact group within the parental community to which they belong.

4.2 Incremental approaches

The incremental approach considers the evolution of network as a series of
modification in the network. The input in the network is a sequence of events
such as addition and suppression of nodes and edges. The approach starts by
finding communities for the initial state of the network. These communities are
generally obtained by applying static methods [9, 17], then update, for each
incoming change, the community structure by using community structure of
the previous time step. As a consequence, the most topologies of network
remained unchanged except for a small portion. Moreover, the incremental
method often has a memory of what happened and take into account the
history and the dynamic of network. The principle of incremental approaches
is illustrated in Figure 5. Figure 5a shows the initial network at snapshot t and
the sequence of modifications at snapshot t+1 and t+2. In snapshot t+1, a
node and its links are added/deleted to / from the initial network. At snapshot
t+2, two nodes and its links are added to the network of the snapshot t+1.
In Figure 5b, the incremental approaches detect the first communities at t,
two communities. After having detected communities at t, the incremental
methods update the initial network according to the modification of network
at t+1 (Figure 5c) and detect two communities. In Figure 5d, the same process
in Figure 5c is applied to detect community at t+2 after updating communities
of t+1 based on network changes at t+2.
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Figure 5: Principle of incremental approaches

Below is a classification of the existing methods for community detection
according to the type of network and their based method. We present the set of
existing methods by adopting the following hierarchical organization (Figure
6).
– Community detection in fully dynamic networks
- Modularity based optimization methods
- Density based methods
- Label propagation-based methods

– Community detection in growing dynamic networks
- Modularity based optimization methods
- Density based methods
- Label propagation-based methods
- Other methods

4.2.1 Incremental community detection methods in fully dynamic
networks

In fully dynamic networks, communities can change or evolve over time by
adding and removing nodes and edges. For example, in social networks, indi-
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Figure 6: Classification chart of the existing incremental approaches for com-
munity detection

viduals (nodes) and their relationships (edges) can be added and/or removed
at any time. From this explanation of fully dynamic networks, we present the
existing incremental approaches for community detection on this field of net-
work. For each category of these methods, we present a list of studies available
in the literature. We provide tables (Table 4, 5, 6) in each table we present
the following information: the algorithm name and its reference, the type of
network in which the approach operates (weighted, unweighted, directed, undi-
rected), the technique used by the algorithm to discover communities when
changes occur in the network, the algorithmic complexity (if the algorithmic
complexity is not available in the original paper we present it by ——– or
by ..........), the community type that the algorithm can detect (disjoint, over-
lap, intrinsic) and the algorithm used by the study during the initial phase to
detect initial communities.

� Modularity based optimization methods

The first approach is viewed as one major approach to incremental com-
munity detection. It consists on optimization of the metric modularity
to detect communities on the network. This metric is proposed in [45]
and used to measure the community structure in large scale networks.
It is a difference between the fraction of edges inside the community
and the fraction of edges expected by random version of the network.
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In general methods, the process of maximization of modularity stars by
assigning each node in network to different communities and then merge
the nodes together until no gain of modularity is possible. Table 4 gives
a summary of papers belonging to this category.

[6] introduced a Fast Community Detection for Dynamic Complex Net-
work (FCDDCN) that is a real-time online community detection method
in which network changes by the addition and the deletion of edges. The
method is based on the modularity optimization using heuristic search
and on the greedy agglomerative technique CNM [17]. It starts with an
initial community structure obtained by applying CNM9 algorithm and
updates the network structure by using adjacency lists to add and delete
elements to the lists.

[46] proposed a Quick Community Adaptation (QCA) for identifying and
tracking community structure of dynamic network. The network changes
are a collection of simple events such as newVertex, newEdge, removeV-
ertex, and removeEdge. QCA requires an initial community structure
that is obtained by performing a static community detection method
“Louvain” [9] and the community assignments of neighbor nodes are
adjusted by maximizing the modularity.

[18] introduced a new method which is a modification of the original Lou-
vain method [9]. The proposed method keeps the community structure
always updated after adding or removing edges and nodes by maximiz-
ing the local modularity gain function only for those communities that
are affected by modifications to the network.

Contrary to the rule-based10 methods [46] which considers each network
change as an independent event, [16] proposed an Incremental Batch
(InBatch) Technique for Community Detection. The method considers
the network changes as a batch of network changes that appear in the
same network snapshot. The changes that can undergo to the network are
vertices/edges addition/deletion and communities can merge, split due
to intra edge deletion/addition respectively. To update the community
structure, this method initializes all of the new and changed nodes of
the current snapshot as singleton communities, then applies Louvain
technique until no further increase modularity is possible.

9CNM is the abbreviation of the names of the authors Clauset, Newman and Moore, who
proposed this algorithm.

10Uses predefined rules to specify how to revise vertices’ assignment.
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Algorithm
name and
Reference

Network
type

Technique used Algorithmic complexity Community
type

Algorithm used
during

the initial stageD O

[41]
FCDDCN

Undirected and
unweighted

-List of modified edges over
time steps.

O(EdlogV)
�

CNM [3].

[35] QCA Undirected and
unweighted

-Considers each network
change as an independent

event.

O( )
�

Louvain [1].

[36]
Dynamic
Louvain

Undirected and
unweighted

-Continuous arrival of
information on singular events.

………………….
�

Louvain [1].

[39]
IncBatch

Undirected and
unweighted

-Considers a network changes
as a batch appearing in the

same network snapshot.

O( (v + )
E

V
+ |V| )

|V| : number of unique
vertices after initialization

phase

�

InBatch
initialization

phase.

[40]
LBTR

Undirected and
unweighted

-Predict vertices new
community assignments after
each round of network change.

O( v
drR

(1 drR)P
)

R and P: the recall and
precision of the classifier
r: the probability that an
examined vertex actually

needs community
assignment revision.

�

Louvain [1] or
any static

community
detection

algorithm.

[38]
DynaMo

Undirected and
weighted

-Processing a set of network
changes as a batch.

O( + |E| )

|E| : number of unique
edges after initialization

phase

�

Louvain [1].

Table 4: Incremental community detection methods in fully dynamic networks
based on modularity optimization [46, 18, 70, 16, 55, 6]

[55] proposed a Learning-Based Target Revision (LBTR) approach that
uses machine learning classifiers and historical community structure in-
formation to identify vertices whose community assignment needs to
be revised and filters unchanged vertices. To build the vertex classi-
fier LBTR uses Logistic Regression (LR) and Support Vector Machine
(SVM), namely LBTR-LR and LBTR-SVM. Similar to previous study
[16], this method put the new vertices into singleton communities and
move the community assignment of changed vertices to maximize the
modularity gain.

The authors of [70] proposed DynaMo11, a new method designed for max-
imizing the modularity gain while updating the community structures.
The dynamic network is modelled as a sequence of incremental changes:
intra-community edge addition/weight increase, cross-community edge
addition/weight increase, intra-community edge deletion/weight decrease,
cross-community edge deletion/weight decrease, vertex addition, and
vertex deletion. For each incremental network change, DynaMo maxi-
mizes the modularity in two steps. The first one initializes an intermedi-

11DynaMo: Dynamic Community Detection by Incrementally Maximizing Modularity.
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ate community structure, depending on the incremental network changes
and on the previous network community structure. In the second step,
the last two phases of Louvain algorithm [9] are repeated on the inter-
mediate community structure until no gain of modularity is possible.

� Density based methods

The basic idea of density-based approach is to form a group that is dense
enough and separated by sparse or low-density region. In other words,
the connection of nodes inside a group is greater than the connection
of nodes outside the group. Table 5 gives a summary of studies in the
literature for community detection based on density.

In [23] the graph mining algorithm DenGraph12 is proposed which is
inspired by Incremental DBSCAN [21] the incremental version of DB-
SCAN [20]. The author’s transfer the basic concepts of these algorithms
to graph mining by defining proximity for graph nodes. In others words,
they transfer the idea of density based incremental clustering of spa-
tial data to social network structures. The algorithm adjusted locally
the vertices (Border vertices, noise vertices) whose distances to the core
vertices were changed when the network updates. The same authors
proposed DenGraph-HO13[52] based on the concepts of the DenGraph
algorithm to detect overlapping communities.

[47] used a density [25] as an objective function to Adaptively Finding
Overlapping Community Structures (AFOCS) and tracing their evolu-
tion over time. The framework identifies the basic overlapped community
structure in a network as a collection of dense parts of the network us-
ing FOCS14 and then combines overlapping communities if they share
significant substructure and if they are highly overlapped. The changes
that can occur to the network are summarized into four events: adding
and deleting nodes, adding and deleting edges.

Lastly, [40] proposed iDBLINK an incremental Density Based LINK clus-
tering algorithm which is an extended version of the static algorithm
DBLINK15 [41]. The algorithm can effectively update the current com-
munity structure according to the change of the community structure
and network topology a moment before. It focuses on the change of link

12DenGraph: A Density based Community Detection Algorithm.
13DenGraph-HO: A Density-based Hierarchical Graph Clustering Algorithm.
14FOCS is the abbreviation of Finding Overlapping Community Structures.
15DBLINK is the abbreviation of Density Based LINK clustering algorithm.
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communities through the change of similarity between the edges at the
adjacent moments. The changes of link communities are divided into
positive changes and negative changes. The network topology updates
with positive changes mean that communities grow, merge or create and
negative changes mean that communities delete, split or decline. The
overlapping community detection quality was improved despite the fact
that this algorithm kept the advantage of DBLINK algorithm.

Algorithm 
name and  
Reference 

Network 
Type 

Technique used Algorithmic 
complexity 

Community 
type 

Algorithm used 
during the initial 

stage D O 

[19] 
DenGraph 

Undirected and 
Weighted 

-Continuous arrival of information 
on singular events. O(E+V) 

 

     ✓ 
 IDBSCAN [46]. 

[44] AFOCS Undirected and 
Unweighted 

 

-Considers each network change as 
an independent event. O(E2) 

  

    ✓ 
FOCS [45]. 

[31] iDBLINK Undirected and 
Unweighted 

-A collection of simpler events at 
each time step. ------- 

 

    ✓ 
 

    ✓ 
DBLINK [30.] 

 

Table 5: Incremental community detection methods in fully dynamic networks
based on density [52, 40, 47]

� Label/information propagation-based methods

In label propagation methods, each node has its own label which changes
by interaction with its neighborhood. The nodes can share the same label
to identify a disjoint group or allowing multiple labels to detect overlap-
ping community. Instead of propagating of labels, the information is
propagated and exchanged between nodes in the network. The propa-
gation of information between nodes with similar interests tends to be
more frequent, as a result, node in the same community have almost
the same quantity of information, whereas those in various communities
have different quantity of information. Table 6 gives the studies that
have exploited these ideas.

In their work, [63] proposed LabelRankT16 to detect evolving commu-
nities in large scale dynamic network. The algorithm is based on the
generalized LabelRank17 [64] to incorporate important network features
such as edge weights and directions. Since each node requires only lo-
cal information during label propagation process. During the evolution,

16LabelRankT: Incremental Community Detection in Dynamic Networks via Label Prop-
agation.

17LabelRank: A Stabilized Label Propagation Algorithm for Community Detection in
Networks.
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nodes and edges are added or removed and only the nodes that are
changed between two consecutive snapshots are updated in the algo-
rithm. To give an example, when a new edge is added in the stream, the
algorithm updates only the nodes that are attached to this edge. Indeed,
the communities can split, merge and dissolve.

The ALPA18 algorithm was introduced by [30] to detect communities
through a local label propagation process. The algorithm consists in
adding (or removing) edges/nodes as it appears (or disappears). The
edge can be intra-community edge or inter-community edge and the node
as an isolated or with its adjacent edges. To update the community struc-
ture and avoid unnecessary updates ALPA apply local label propagation
process [50]. ALPA perform the warm-up step to propagate labels only
inside the target communities, then apply local label propagation process
to involve some nodes outside of the target communities.

Other work belonging to this category is [4] that proposed an unsuper-
vised machine learning algorithm based on SLPA [62]. The algorithm
used an extended SLPA to detect communities at the first time slot.
The first list of labels is obtained and is used to assign the labels to
unlabeled nodes at the next time slot. To execute the algorithm, three
input arguments are necessary: an input graph, a stop criterion and a
threshold.

Lastly, [57] proposed a new framework to detect communities in dynamic
networks based on information dynamics. The framework uses informa-
tion dynamic model to identify initial communities and to incrementally
discover community structure of the network. The nodes and edges are
added and deleted to the network that leads to the merging, division,
expansion, contraction, birth and death of communities.

18ALPA is the abbreviation of Adaptive Label Propagation Algorithm.
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Algorithm name 
and 

Reference 

Network 
type 

Technique used Algorithmic complexity Community 
type 

Algorithm used 
during the initial 

stage D O 

[32] LabelRankT 

Directed and 
weighted 
undirected 
and 
unweighted 

-Considers a network changes 
as a batch appearing in the 
same network snapshot. 

O(IE) 
 

   

 

      

✓ 

 
 
LabelRank [33] 

[29] ALPA  
Undirected 
and 
unweighted 

-Considers each network 
change as an independent 
event. 

O(t*i < E >) 
t: time step 

   

      

✓ 

Any available static 
methods or LPA 
[25]. 

[34] ISLPA 
Directed and 
undirected 

 -A network changes is a batch 
of nodes and edges that are 
removed or added over time. 

O(TE) 
T: a stop criterion 

   

     ✓ 
 

    ✓ 
 
ESLPA [34]. 

[54] DCDID 
 
Undirected 

-Batch processing technique. 

(1) In initial community 

partition: O(i*V*d) 
(2) In incremental 
community detection 
O(E+ +  i  V +  dt) 

 

 

     ✓ 

  
CDID [54]. 

Table 6: Incremental community detection methods in fully dynamic networks
based on label/information propagation [30, 63, 4, 57]

Some abbreviations in Table 6 described in footnote: ISLPA19, ESLPA20,
DCDID21, CDID22.

4.2.2 Incremental community detection methods in growing
dynamic networks

We agree that all networks change over time are dynamic networks. In
this type of network, there are networks that evolve only by adding nodes
and their links and cannot be removed later. For example, in research
article citations networks, most articles cite the previous work by other
authors on the same topic. These citations form a network in which nodes
represent articles and edges represent the oriented link from article A to
article B which indicates that B is cited by A. These networks are a
special case of dynamic networks and for this reason we have adopted
the name “growing dynamic networks”. Tables 7, 8, 9, and 10 list the
studies belonging to this category, we present in each table : the algo-
rithm name and its reference, the type of network in which the approach
works (weighted, unweighted, directed, undirected), changes that refer to

19ISLPA is the abbreviation of Incremental Speaker-Listener Propagation Algorithm.
20ESLPA is the abbreviation of Extended Speaker-Listener Label Propagation Algorithm.
21DCDID is the abbreviation of Dynamic Community Detection based on Information

Dynamics
22CDID is the abbreviation of Community Detection based on Information Dynamics.
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the review strategies that an algorithm applies when updating networks
(community events), the technique used by the algorithm to discover
communities when changes occur in the network, the algorithmic com-
plexity, if it is available in the original paper, the community type that
the algorithm can detect (disjoint, overlap, intrinsic) and the algorithm
used by the study during the initial phase to detect initial communities.

� Modularity based optimization methods

Authors of [54] proposed GreMod23, a real time detecting algorithm to
track community structure of growing dynamic networks. Their method
consists in adding of new edges between: (1) two nodes already exist and
belong to the same community, (2) two nodes already exist and belong to
different communities, (3) new node and old node, (4) two new nodes. It
starts with initial communities calculated by Louvain [9] algorithm, then
apply their incremental strategies in a way to increase the modularity if
possible.

In [65], Authors introduced NGI24, a novel approach for node-grained
streaming network in which changes arrive sequentially and frequently.
The method adds a single node with its connecting edges in the network
simultaneously and all the edges at the same time. The node added to the
network can come: (1) without any neighbor, (2) with multiple neigh-
bors belonging to an isolating singleton community, (3) with multiple
neighbors belonging to different communities.

[68] proposed ∆−screening technique to quickly identify the relevant parts
of the graph that are potentially impacted by a batch of changes ((1)
adding edges). The approach assigns firstly all vertices to a distinct com-
munity using any static community detection algorithm [9, 17]. After an
iterative process, the method identifies all vertices whose community af-
filiation could potentially change and retrain the previous community
assignments to the remaining vertices. The vertex that changes his affil-
iation migrates to a neighboring community that maximizes the modu-
larity gain of that vertex. Table 7 lists the works talk over in this section.

23GreMod: A Real-Time Detecting Algorithm for Tracking Community Structure of Dy-
namic Networks.

24NGI is the abbreviation of Node-Grained Incremental community detection algorithm.
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Algorithm 
name and 
Reference 

Network 
type 

Changes Technique used Algorithmic 
complexity 

Community 
type 

Algorithm used 
during the initial 

stage D O 
[47] 

GreMod 
Undirected 

and 
Weighted 

-(1)-> No change. 
-(2)->No change/merge CS . 
-(3)->assigning node to an 
existing C / create new C. 
-(4)-> assigning node to 
an existing C / create new 
C. 

 

-The edges added to the 
network are processed 
one by one. 

O( ) 
 

 

 

✓ 

 Louvain [1]. 

[57] NGI Undirected 
and 

unweighted 

-(1)- > New isolated C. 
-(2) ->Aggregate all nodes 
in the adjacent Cs  with 
newly arrived node into a 
community.  
-(3) -> Insert a new node 
in one of its adjacent Cs or 
merge similar Cs with new 
coming node. 

-Node with its connecting 
edges is added into 
network simultaneously 
and all edges arrive at 
the same time. 

O(E  dv )  

 

✓ 

 Detect the initial 
communities 
after the arriving 
of the first node 
in the network. 

[43] 
�-screening 

Undirected 
and 

weighted or 
unweighted 

(1) (not specified the type 
of edges)->reevaluate all 
vertices whose 
community affiliation 
could potentially change. 

-Considers the addition 
of edges as a batch 
appearing in the same 
network snapshot. 

_________  

✓ 

 

 Any static 
community 
detection 
algorithm. 

 

Table 7: Incremental community detection methods in growing dynamic net-
works based on modularity optimization [68, 54, 65]

� Density based methods

To detect and track the evolution of hierarchical and overlapping com-
munities in evolving networks [8] proposed a novel approach called HOC-
Tracker. The approach identifies a cluster by detecting the neighborhood
of each node in the network using a distance function. Then for each
new event, it classifies the active nodes that have caused the network
to change in order to track evolutionary events like birth, death, merge,
split, growth and shrink of communities.

[42] proposed InDEN (Intrinsic Community Detection in Evolving Net-
works) method to find intrinsic community in growing dynamic networks.
The method starts with the initialization of community containing the
first two nodes that are incoming with the first edge. Then, InDEN uses
the membership score to assign any new incoming node into the commu-
nity with maximum score. To detect intrinsic communities, the approach
analyses the density variation in community at each time.

In their work, [10] proposed a density-based approach with dual opti-
mization to track and identify the community structure. The proposed
method starts from an initial community obtained by Louvain [9], then
for each event that occurs in the network, a new node and their links
are added in the best community after having passed by two levels of
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density optimization. This optimization is calculated only in the com-
munity affected by the changes. Table 8 lists the studies discussed in this
section.

✓

Algorithm 
name and 
Reference 

Network 
Type 

Changes Technique used Algorithmic 
complexity 

Community 
type 

Algorithm used 
during the initial 

stage D O In 

[53] 
HOCTracker 

Directed/ 
undirected 
and 
Weighted/ 
unweighted 

-New core node emerges 
->expansion/birth/merge 
of CS . 
-A core node becomes non-
core->split/shrink of CS . 
- A core node gains nodes/ 
loses nodes but remains a 
core->merge, growth,  
split, shrink of CS . 

-Considers the active 
node and their direct
neighbors at each new 
state of the network. 

O(E) ✓

✓ 

Initial community 
obtained by 
HOCTracker [53].  

[48] 
InDEN 

Undirected 
and  

unweighted 

-New edges between two 
existing nodes or a new 
edge between one existing 
node and new node -
>movement of node from 
one C to another/ merge of 
CS  / create new C. 

-Adds edges to the 
community 
independently.  

___________ ✓

 

✓ 

 
✓ 

 
 

____________ 

[37] Undirected 
and  

unweighted 

-New isolated node -> 
create new C. 
-New node with its links 

in the same C -> reinforce 
the infected C. 
-New node with its links 

in different CS-> 
split/merge /birth of 
infected CS . 

-For each time stamp 
adding node and its 
links simultaneously.  

O(nbCinf) 
 

 
 
✓ 

Louvain [1] or 
Any static 
community 
detection 
algorithm [3]. 

 

Table 8: Incremental community detection methods in growing dynamic net-
works based on density [10, 42, 8]

Some abbreviations in Table 8 described in footnote: HOCTracker25, core
node26

� Label propagation-based methods

Hiroki et al. [36] proposed a new algorithm to detect communities for
high volume graphs stream based on DEMON27 [19] algorithm. It used
three functions for this issue, two incremental functions ((1) Ego minus
ego network, (2) Label propagation) and (3) optimized merge function.
Table 9 summarizes the papers belonging to this class.

25HOCTracker: Tracking the Evolution of Hierarchical and Overlapping Communities in
Dynamic Social Networks.

26Core node is a node having non-zero reciprocated interactions with any of its neighbor(s)
in a set of nodes of the network.

27DEMON: a local-first discovery method for overlapping communities.
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Algorithm
name and
Reference

Network
Type

Changes Technique used Algorithmic
complexity

Community
type

Algorithm
used during
the initial

stage
D O In

[51]
Incremental

DEMON

Undirected
and

unweighted

-Adding nodes and his
edges/Adding edges.

between existing nodes->
merge of CS .

-Batch technique. (1): O(V+E)*d
(2): O(V+d2)

(3): |KV|*V

✓ ✓ DEMON [52]

Table 9: Incremental community detection methods in growing dynamic net-
works based on label propagation [36]

� Other methods

Algorithm 
name and 
Reference 

Network 
type 

Changes Technique used Algorithmic 
complexity 

Community 
type 

Algorithm 
used during 
the initial 

stage 
D O In 

iLCD [50] Undirected 
and 
unweighted 

-(1) and (2)->updating of 
existing CS  /create new C 
/merge similar CS . 

-For each time 
stamped adding 
a set of edges 
simultaneously.  

It’s nearly 
impossible to 
determine the 
complexity of 
iLCD. 

 
✓ 

 
✓ 

 
_________ 

[49] Undirected 
and 
unweighted 

-(1) ->birth of new C. 
-(2) ->keep or not the 
edges in their C. 
-(3) ->birth of new C/ 
enlarging of the previous 
CS . 
-(4) ->birth of new 
C/strengthening of 
previous CS . 

-Joining 
simultaneously 
incremental 
subgraph in the 
network. 

O(V +  S +  K +  L) 
 

 
 
 
✓ 

 _________ 

 

Table 10: Some other incremental community detection methods in growing
dynamic networks [69, 14]

A part from that, [14] proposed iLCD (intrinsic Longitudinal Community
Detection) algorithm to find intrinsic and overlapping communities. The events
that can occur to the network are: (1) adding edges between existing nodes,
(2) adding edges between new nodes and existing nodes. The community are
detected by doing re-evaluation at each new iteration according to the path
lengths between each node and its adjacent communities.

[69] proposed a new incremental method capable of handling subgraphs (in-
cluding nodes and edges) addition. To do this, the method proposes four types
of incremental elements: (1) complete independent, (2) complete contained, (3)
mixed with new and old nodes and (4) multiple contained. It then applies its
own update strategies based on the edge weights to determine the impact of
historical relationship. Finally, it outputs the latest communities and updates
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the evolutionary path accordingly. Table 10 reviews some other methods for
community detection in growing dynamic networks.

5 Discussion study

We discuss in this section the weaknesses and strengths of each incremental
approach based on modularity optimization, density and label propagation.
An overview is summarized in Table 11. We present then in general terms
the main advantages and disadvantages of using of incremental approaches
for community detection in fully dynamic networks and in growing dynamic
networks. The advantages and disadvantages are listed in Table 12.

5.1 Modularity based optimization methods

Most of these approaches aim to maximize modularity in order to assess the
quality and robustness of their detected communities. This scale is one of the
most important metrics because it has the unique advantage of being a uni-
versal standard at the same time for defining communities and it is a key
component of the most common method of graph clustering. These methods
are suitable for temporal networks whose stream changes or evolves over time
and for a stochastic network that not expected to have a cluster structure. De-
spite these strengths, some limitations have been noted about its performance.
First, small communities may not be found. This limitation is called resolution
limit problem [12, 26] and is considered one of the most serious problems in
detecting communities. Another problem known as degeneracy problem, when
modularity maximization finds so many different partitions whose typical val-
ues are very close to each other. This problem is most grave when applied to
networks with modular structure; it happens for weighted, directed, bipartite
and multi-scale generalizations of modularity. Finally, maximizing modularity
is NP-complete problem, so the solution cannot be found in polynomial-time.

5.2 Density based methods

Most of the algorithms belonging in this class are able to identify groups that
are more connected inside and less connected outside. Its aim is to discover
small and large clusters thus solving the resolution limit problem resulting
from modularity optimization. Other strengths of these methods: is that the
number of clusters is not required as an input to the algorithm but rather
is disclosed in the algorithm based on data set characteristics, insensitive to
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noise28 and outliers29 and capable to identify clusters of arbitrary shapes30.
Even though these advantages, these approaches still have weaknesses it is
unsuitable for high-dimensional datasets because of the inherent shortage of
the feature space, which in turn, reduces any clustering propensity.

5.3 Label propagation-based methods

Label propagation approaches are considered as one of the fastest methods of
community detection with a near linear time complexity. At this speed, these
methods are suitable for large-scale networks. One of the main weaknesses of
these approaches is that in the general case the algorithm is non-deterministic,
the multiplicity execution of the same algorithm produces no unique solution,
but an aggregate of many solutions. This problem remains important, and all
label propagation-based methods attempt to overcome it. Another potential
issue is the uncertainty and randomness in the label propagation process. This
problem may affect the stability and accuracy of detected communities. Also,
the bad propagation of labels can lead to the discovery of huge communities
without sense, this problem is known as “Giant community’s problem”.

Method based on Weaknesses Strengths 

Modularity optimization [35, 36, 38, 
39, 40, 41, 43, 47, 57] 

-Suffers from the resolution limit 
problem and degeneracy problem. 
-Less efficient in networks with a 
modular or hierarchical structure. 
-Maximizing modularity to detect  
communities is an NP -complete 
problem. 

-The most common quality measure to 
evaluate community detection 
algorithm. 
-One of the most important criteria for 
community detection. 
-Communities are detected in real -
world networks without knowing the 
community structure in advance. 

Density [19, 31, 37, 44, 48, 53] -Unsuitable for high -dimensional 
datasets 

-Able to identify small and large 
groups. 
-Number of clusters is not predefined. 
-Clusters of arbitrary shape   can be 
detected. 
-Outliers and noise  do not a ffect the 
result of the algorithm. 

Label propagation 
[29, 32, 34, 51, 54] 

-Non-deterministic algorithm. 
- Giant community's problem. 
-Instability and inaccuracy of 
community detection algorithm. 

-The fastest way to discover 
communities. 
-Low time complexity.  

 

Table 11: Some weaknesses and strengths of incremental methods based on
modularity optimization, density, and label propagation [52, 30, 40, 63, 4, 46,
18, 10, 70, 16, 55, 6, 68, 47, 54, 42, 36, 8, 57, 65]

28Node with area of low density.
29Nodes which cannot be grouped into any of the communities.
30Non-convex shape.
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5.4 Advantages and disadvantages of incremental methods for
community detection in both fully and growing dynamic
networks

We return to the first tree level of our classification (Figure 6) to discuss
the main advantages and disadvantages of incremental community detection
methods in fully and growing dynamic networks (Table 12). In general, the
incremental approach has the advantage in runtime and computational com-
plexity because it updates the current community structure according to the
change of the network and the previous community structure, thus it can also
avoid the hassles of re-detection. There are other advantages of ensuring stable
communities across time steps which allows avoiding the instability problem
taken from methods that detect communities at each time steps undepend-
ably. As a result, it deals with temporal networks31 that change frequently and
works well in growing dynamic networks. Incremental clustering has been used
as one of the most efficient methods; however, it requires initial community
structure of the network, but this is unknown in many real networks. Another
defect is the accumulation of errors resulting from the partition error which
will lead to a discrepancy between the computed community structure and
the underlying ground-truth. As a result, it is difficult to ensure the cohesion
of communities in the set of steps in evolution because tracking a community
is only done when switching from one snapshot to another. Another problem
is the possibility of neglecting of some changes in the associated community
structure due to the detection of only local structure of the network.

Advantages Disadvantages
-It has low runtime and low complexity to detect
community.
-Ensure the stability of communities because
unaffected communities keep unchanged, that
simplify the p rocess of tracking of communities over
time.
-Avoid re-detection at each snapshot.
-Effective compared to other methods that detect
communities independently.
-More valuable when the networks are in mega -scale
or change frequently (streaming network).
-Suitable to detect community of temporal dynamic
networks but works well in growing dynamic
networks.

-Requires to have the initial community structure of the
network, but this is unknown in many real networks.
-It is difficult to ensure the cohesion of commu nities in the
set of steps in evolution.
-Inconsistency between the computed community structure
and the underlying ground-truth.
-The processing order of nodes / edges deletion/ addition in
fully dynamic networks may have an impact on the
detection results and efficiency.

Table 12: Major disadvantages and advantages of incremental approaches in
fully and growing dynamic networks

31A temporal network also known as time-varying network is a dynamic network in which
both nodes and edges may appear and disappear as time goes.
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Abbreviation in Table 12 described in footnote: Unaffected communities
(column one)32.

6 Conclusions

An incremental approach is one way to discover communities in both fully
and growing dynamic networks. The idea of these approaches is to build and
maintain communities in a network, following a series of changes that occur
to the network itself.

In this paper, a study of incremental methods for detecting communities
in both fully and growing dynamic networks is presented and discussed. The
aim of this survey was to classify the incremental methods and discuss their
disadvantages and advantages. Both points will help the reader to define and
find direction for his future research and choose the appropriate method de-
pending on the type of networks, type of communities and the technique used
to identify community.

Detecting communities is NP-hard problem. Therefore, defining the commu-
nity accurately and effectively in dynamic networks remains a very interesting
and challenging task and incremental approaches try to solve it.
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Abstract. Let R be a commutative ring with unity 1 6= 0 and let R×

be the set of all unit elements of R. The unitary Cayley graph of R,
denoted by GR = Cay(R, R×), is a simple graph whose vertex set is R and
there is an edge between two distinct vertices x and y of R if and only
if x − y ∈ R×. In this paper, we determine the Laplacian and signless
Laplacian eigenvalues for the unitary Cayley graph of a commutative
ring. Also, we compute the Laplacian and signless Laplacian energy of
the graph GR and its line graph.

1 Introduction

We consider finite commutative rings R with unit element 1 6= 0. Let R× be the
set of all unit elements of R. We know that an Artinian ring R can be written
as R ∼= R1× · · · ×Rt, where Ri is a finite local ring with maximal ideal Mi, for
all 1 6 i 6 t. This decomposition is unique up to permutation of factors. We
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denote the (finite) residue field Ri
Mi

by Ki and fi = |Ki| =
|Ri|
|Mi|

. Also, assume
that f1 6 f2 6 · · · 6 ft.

A simple graphG consists of a vertex set V(G) = {v1, v2, . . . , vn} and the edge
set E(G) = {e1, e2, . . . , em}. We call |V(G) = n| and |E(G)| = m, respectively,
as the order and the size of the graph G. The complement of G, denoted by
G, is the graph whose vertex set is same as that of G and two vertices are
adjacent in G if and only if they are not adjacent in G. A complete graph
on n vertices is denoted by Kn. A graph G is multipartite if its vertex set
can be partitioned into non-empty subsets, called partite sets, such that no
two vertices in the same part are adjacent. A multipartite graph is complete if
every vertex of a partite set is adjacent to each vertex of the other partite sets.
A complete multipartite graph with k parts is denoted by Kn1,n2,...,nk

where
ni is the number of vertices in the i-th part of the graph.

The join of two graphs G1 and G2, denoted by G1 ∨ G2, is the graph with
vertex set V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2) ∪ {xy; x ∈ V(G1), y ∈
V(G2)}. The direct product of G1 and G2, denoted by G1 ⊗ G2, is the graph
with vertex set V(G1) × V(G2) in which (u1, v1) and (u2, v2) are adjacent if
u1 and u2 are adjacent in G1 and v1 and v2 are adjacent in G2. For other
undefined notations and terminology from graph theory and spectral graph
theory, the readers are referred to [6, 18].

The unitary Cayley graph of R, denoted by GR = Cay(R, R×), is a (simple)
graph whose vertex set is R and two distinct vertices x and y of R are adjacent
if and only if x−y ∈ R×. Some recent results on unitary Cayley graphs can be
seen in [16]. If G = Zn is the finite cyclic group of order n and the set S consists
of two elements, the standard generator of G and its inverse, then the Cayley
graph is the cycle Cn. More generally, the Cayley graphs of finite cyclic groups
are exactly the circulant graphs. Some examples of unitary Cayley graphs are
given in Figure 1.

Figure 1: The unitary Cayley graphs for Z6, Z7, Z8
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The following proposition is a basic consequence of the definition and it was
illustrated in [1].

Proposition 1 Let R be a commutative ring.

(a) Then GR is a |R×|-regular graph.

(b) If R is a local ring with maximal ideal M, then GR is a complete multi-
partite graph whose partite sets are the cosets of M in R. In particular,
GR is a complete graph if and only if R is a field.

(c) If R is an Artinian ring and R ∼= R1 × . . . × Rt as a product of local
rings, then GR ∼= ⊗ti=1GRi. Hence, GR is a direct product of complete
multipartite graphs.

The adjacency matrix A of a graph G is a (0, 1)-square matrix of order n
whose (i, j)-entry is equal to 1, if vi is adjacent to vj and equal to 0, otherwise.
The eigenvalues of A are the eigenvalues of the graph G. The set of all eigen-
values of G is called the spectrum of G. If λ1 ≥ · · · ≥ λk are the eigenvalues of
G with multiplicities r1, . . . , rk, respectively, the spectrum of G is denoted by

Spec(G) =

(
λ1 . . . λk
r1 . . . rk

)
. The energy of a graph was introduced by Gut-

man [13] and is defined as the sum of the absolute values of all the eigenvalues
of a graph G and it is denoted by E(G).

Kiani et al. [15] obtained the following result about the eigenvalues of the
unitary Cayley graph. Also, they computed the energy of the unitary Cayley
graph of a finite commutative ring R.

Theorem 2 [15] Let R be a finite ring.

(a) If R is a finite local ring with the maximal ideal M of size m and |R|
m = f,

then

Spec(GR) =

(
|R×| 0 −m
1 |R|− f f− 1

)
.

In particular, if Fq is the field with q elements, then

Spec(GFq) =

(
q− 1 −1
1 q− 1

)
.
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(b) Let R be a finite commutative ring, where R ∼= R1 × R2 × . . .× Rt and Ri
is a local ring with maximal ideal Mi of size mi for all 1 6 i 6 t. Then
the eigenvalues of GR are:

(b-1) (−1)|C|
|R×|∏

j∈C |R
×
j |/mj

with multiplicity
∏
j∈C |R

×
j |/mj for all subsets

C of the set {1, 2, . . . , t}.

(b-2) 0 with multiplicity |R|−
∏t
i=1(1+ |R×i |/mi)

Theorem 3 [15] Let R ∼= R1×R2× . . .×Rt be a finite commutative ring where
Ri is a local ring for all 1 6 i 6 t. Then E(GR) = 2

t|R×|.

Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to the
graph G, where di = deg(vi) is the degree of the vertex vi, for all 1 6 i 6 n.
The matrices L(G) = D(G) − A(G) and |L|(G) = D(G) + A(G) are respec-
tively, called the Laplacian and the signless Laplacian matrices of G. Their
spectrum are respectively, the Laplacian spectrum and the signless Lapla-
cian spectrum of the graph G. We denote the Laplacian spectrum and the
signless Laplacian spectrum of the graph G by SpecL(G) and Spec|L|(G), re-
spectively. Both the matrices L(G) and |L|(G) are real symmetric, positive
semi-definite and therefore their eigenvalues are non-negative real numbers.
Let 0 = µ1 6 µ2 6 · · · 6 µn and µ+n 6 µ+n−1 6 · · · 6 µ+1 be respectively,
the Laplacian spectrum and the signless Laplacian spectrum of G. It is known
that the smallest eigenvalue of L(G) is 0 with multiplicity equal to the number
of connected components of G. So, µ2 > 0 if and only if G is connected. Also,
the least eigenvalue of the signless Laplacian matrix of a connected graph
is 0 if and only if the graph is bipartite. In this case, 0 is a simple eigen-
value. Furthermore, it is easy to see that tr(L(G)) =

∑n
i=1 µi = 2m and

tr(—L—(G)) =
∑n
i=1 µ

+
i = 2m. Recent work on Laplacian eigenvalues can

be seen in [2, 5, 9, 10, 11, 12]. The Laplacian energy of a graph G defined
by Gutman and Zhou [14] is LE(G) =

∑n
i=1 |µi −

2m
n |. The Laplacian energy,

which is an extension of graph energy concept, has found remarkable chem-
ical applications (see [24]). For recent development on LE(G) see [7, 8] and
the references therein. The signless Laplacian energy |L|E(G) of G, in analogy
to LE(G), is defined as |L|E(G) =

∑n
i=1 |µ

+
i − 2m

n |. Recent work on Laplacian
eigenvalues can be seen in [19].

The rest of the paper is organized as follows. In Section 2, we determine the
Laplacian spectrum and the Laplacian energy of the unitary Cayley graph GR.
Also, we completely obtain the signless Laplacian spectrum of the graph GR
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and compute the signless Laplacian energy of GR. Further, we compute the
Laplacian and signless Laplacian energy of the line graph of GR.

2 Laplacian spectrum of unitary Cayley graphs

We begin with the following theorem, which gives the Laplacian spectrum of
the join of two graphs G1 and G2.

Theorem 4 [17] Let G1 and G2 be two graphs with n1 and n2 vertices, re-
spectively. Suppose that 0 = λ1 6 λ2 6 · · · 6 λn1

and 0 = µ1 6 µ2 6 · · · 6 µn2

are the Laplacian eigenvalues of G1 and G2, respectively. Then the Laplacian
eigenvalues of the graph G1 ∨G2 are

(i) 0 with multiplicity 1,

(ii) λi + n2 with multiplicity 1 for all 2 6 i 6 n1,

(iii) µj + n1 with multiplicity 1 for all 2 6 j 6 n2,

(iv) n1 + n2 with multiplicity 1.

Now, we have the following observation.

Lemma 5 If G = Kn1,n2,...,nk
, where ni ∈ N for all 1 6 i 6 k, then the

Laplacian eigenvalues of G are

(i) 0 with multiplicity 1,

(ii) αi =
k∑
j=1
j6=i

nj with multiplicity ni − 1 for all 1 6 i 6 k,

(iii) n1 + n2 + · · ·+ nk with multiplicity k− 1.

Proof. We induct on k. For k = 2, we have G = Kn1
∨Kn2

. So, by Theorem
4, we have that

SpecL(Kn1,n2
) =

(
0 n1 n2 n1 + n2
1 n2 − 1 n1 − 1 1

)
.

Assume that the hypothesis is true for Kn1,n2,...,nk
.

We prove it for the graph Kn1,n2,...,nk,nk+1
.

Clearly, Kn1,n2,...,nk,nk+1
∼= Kn1,n2,...,nk

∨ Knk
.

Now, by Theorem 4, it is easy to see that the Laplacian eigenvalues of Kn1,n2,...,nk,nk+1

are



256 S. Pirzada, Z. Barati, M. Afkhami

(i) 0 with multiplicity 1,

(ii)
k+1∑
j=1
j6=i

nj with multiplicity ni − 1 for all 1 6 i 6 k+ 1,

(iii) n1 + n2 + · · ·+ nk + nk+1 with multiplicity k. �

At first, we assume that R is a local ring.

Proposition 6 Let (R,M) be a local ring with |M| = m and | RM | = f. Then

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
.

In particular, if R = Fq is the field with q elements, then

SpecL(GFq) =

(
0 q

1 q− 1

)
.

Proof. It is easy to see that GR is a complete multipartite graph in which
every partite set is a coset of M. So, GR is the join of f copies of the empty
graph Km. Now, by Lemma 5, we have

SpecL(GR) =

(
0 |R|−m |R|

1 |R|− f f− 1

)
.

Since |R|−m = |R×|, therefore

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
.

�

The Laplacian spectrum of the direct product of graphs has been described
completely only when the factor graphs are regular. The Laplacian eigenvalues
of the direct product of two regular graphs are listed in the following theorem.

Theorem 7 [3] Let G1 be an r1-regular graph with n1 vertices and G2 be
an r2-regular graph with n2 vertices. Let SpecL(G1) = (λ1, λ2, . . . , λn1

) and
SpecL(G2) = (µ1, µ2, . . . , µn2

). Then the eigenvalues of the graph G1 ⊗G2 are
r1µj + r2λi − µjλi for all 1 6 i 6 n1 and 1 6 j 6 n2.
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In the following theorem, we obtain the Laplacian eigenvalues of GR with
their multiplicities. Here, |R×S | stands for |R×s1 × R

×
s2
. . . × R×sk |, where S =

{s1, . . . , sk} ⊆ {1, 2, . . . , t} (if S = ∅, then we define |R×S | = 1).

Theorem 8 Let R be a finite commutative ring such that R ∼= R1×R2×· · ·×Rt,
where (Ri,Mi) is a local ring with |Mi| = mi and | RiMi

| = fi. Then the Laplacian
eigenvalues of GR are

(i) 0 with multiplicity 1,

(ii) |R×| with multiplicity |R|−
∏t
i=1 fi,

(iii) λA with multiplicity
∏
i∈A ′(fi − 1) for all A ( {1, 2, . . . , t}, where

λA = |R×A |

|A ′|∑
C={i1,i2,...,ik}⊆A ′

k=1

(−1)|C|−1|Ri1 ||Ri2 | . . . |Rik |
|R×A ′ |

|R×C |

and A ′ is the complement of A.

Proof. We use induction on t. For t = 1 and the local ring R ∼= R1, by
Proposition 6, we have

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
.

Note that ∅ is the only proper subset of {1} and λ∅ = |R|. So, we are done in
this case. Now, assume that the Laplacian eigenvalues of R1 × R2 × · · · × Rt−1
are

(i) 0 with multiplicity 1,

(ii) |R×1 × R
×
2 × · · · × R

×
t−1| with multiplicity |R1 × R2 × · · · × Rt−1|−

∏t−1
i=1 fi,

(iii) λA with multiplicity
∏
i∈A ′(fi − 1) for all A ( {1, 2, . . . , t− 1}, where

λA = |R×A |

|A ′|∑
C={i1,i2,...,ik}⊆A ′

k=1

(−1)|C|−1|Ri1 ||Ri2 | . . . |Rik |
|R×A ′ |

|R×C |
.
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Now, we determine the Laplacian eigenvalues of GR when R ∼= R1 × R2 × · · · ×
Rt−1 × Rt. We know that GR ∼= GR1×R2×···×Rt−1

⊗ GRt . Note that the graphs
GR1×R2×···×Rt−1

and GRt are regular, so we can use Theorem 7. Since

SpecL(GRt) =

(
µ1 = 0 µ2 = |R×t | µ3 = |Rt|

1 |Rt|− ft ft − 1

)
,

we have the following cases to consider.

Case 1. For µ1 = 0, we have the following eigenvalues.

1.1. 0 with multiplicity 1,

1.2. |R×1 ×R
×
2 ×· · ·×R

×
t−1|× |R×t | with multiplicity |R1×R2×· · ·×Rt−1|−∏t−1

i=1 fi,

1.3. λA× |R×t | with multiplicity
∏
i∈A ′(fi−1) for all A ( {1, 2, . . . , t−1}.

Case 2. For µ2 = |R×t |, we obtain the following eigenvalues.

2.1. |R×1 × R
×
2 × · · · × R

×
t−1||R

×
t | with multiplicity |Rt|− ft,

2.2. |R×1 ×R
×
2 × · · · ×R

×
t−1||R

×
t | with multiplicity (|R1×R2× · · · ×Rt−1|−∏t−1

i=1 fi)(|Rt|− ft),

2.3. |R×1 ×R
×
2 ×· · ·×R

×
t−1||R

×
t | with multiplicity

∑
A({1,2,...,t−1}

∏
i∈A ′(fi−

1)(|Rt|− ft).

Therefore, in this case, we see that the eigenvalue is equal to |R×1 ×R
×
2 ×

· · · × R×t−1||R
×
t | and this implies that |R×1 × R

×
2 × · · · × R

×
t−1||R

×
t | is an

eigenvalue with multiplicity |R1 × R2 × · · · × Rt−1|(|Rt|− ft).

Case 3. For µ3 = |Rt|, the following eigenvalues can be obtained.

3.1. |R×1 × R
×
2 × · · · × R

×
t−1||Rt| with multiplicity ft − 1,

3.2. |R×1 ×R
×
2 × · · · ×R

×
t−1||R

×
t | with multiplicity (|R1×R2× · · · ×Rt−1|−∏t−1

i=1 fi)(ft − 1),

3.3. |R×1 ×R
×
2 ×· · ·×R

×
t−1||Rt|+λA|R

×
t |−λA|Rt| with multiplicity (

∏
i∈A ′(fi−

1))(ft − 1) for all A ( {1, 2, . . . , t− 1}.

Thus, we conclude the following.

(i) By case (1.1), 0 with multiplicity 1 is a Laplacian eigenvalue of GR.
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(ii) By cases (1.2),(2.1), (2.2),(2.3) and (3.2), |R×1 × R
×
2 × · · · × R

×
t−1||R

×
t | is a

Laplacian eigenvalue of GR. Its multiplicity is equal to(
|R1 × R2 × · · · × Rt−1|−

t−1∏
i=1

fi

)
+

(
|R1 × R2 × · · · × Rt−1|(|Rt|− ft)

)
+

(
|R1 × R2 × · · · × Rt−1|−

t−1∏
i=1

fi

)
(ft − 1) = |R1 × R2 × · · · × Rt|−

t∏
i=1

fi

(iii) For A ( {1, 2, . . . , t}, three cases (1.3), (3.1) and (3.3) cover all eigenval-
ues with the type λA.

(a) From case (1.3), λA× |R×t | with multiplicity
∏
i∈A ′(fi−1) is a Lapla-

cian eigenvalue of GR for all A ( {1, 2, . . . , t − 1}. Note that if we
set A = A ∪ {t}, then λA = λA × |R×t |.

(b) From case (3.1), |R×1 ×R
×
2 ×· · ·×R

×
t−1||Rt| with multiplicity ft− 1 is

a Laplacian eigenvalue of GR. By setting A = {1, 2, , . . . , t − 1}, we
have λA = |R×1 × R

×
2 × · · · × R

×
t−1||Rt|.

(c) From case (3.3), |R×1 × R
×
2 × · · · × R

×
t−1||Rt| + λA|R

×
t | − λA|Rt| with

multiplicity (
∏
i∈A ′(fi− 1))(ft− 1) is a Laplacian eigenvalue of GR,

for all A ( {1, 2, . . . , t− 1}. This case covers all eigenvalues like λA,
when A is a proper subset of the set {1, 2, . . . , t} and t /∈ A. �

Now, we compute the Laplacian energy of the unitary Cayley graph, when
R is a finite commutative ring. We start with the local case.

Lemma 9 Let R be a finite local commutative ring. Then LE(GR) = 2|R
×|.

Proof. First, note that in the graph GR, we have 2m
n = |R×|. Since the Lapla-

cian spectrum of GR is

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
,

we have LE(GR) = 2|R
×|. �

Lemma 10 Let R ∼= R1 × R2, where (R1,M1) and (R2,M2) are local rings.
Then

LE(GR) = 2
2|R×|.
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Proof. We know thatGR ∼= GR1⊗GR2 . Now, let SpecL(GR1) = (λ1, λ2, . . . , λ|R1|)
and SpecL(GR2) = (µ1, µ2, . . . , µ|R2|). Then, by Theorem 7, we have

LE(GR) =

|R1|∑
i=1

|R2|∑
j=1

∣∣|R×1 |µj + |R×2 |λi − µjλi − |R×1 ||R
×
2 |
∣∣

=

|R1|∑
i=1

|R2|∑
j=1

∣∣(µj − |R×2 |)
∣∣ ∣∣(λi − |R×1 |)

∣∣
= LE(GR1)LE(GR2) = (2|R×1 |)(2|R

×
2 |) = 2

2|R×|. �

Theorem 11 Let R be a finite commutative ring such that R ∼= R1×R2×· · ·×
Rt, where Ri is a local ring for all 1 6 i 6 t. Then LE(GR) = 2

t|R×|.

Proof. This follows by using induction on t and in view of Lemmas 9 and 10.
�

The following results concern about the signless Laplacia spectrum of GR.
The proofs are omitted since they are similar to the proofs on the Laplacian
spectrum.

Proposition 12 Let (R,M) be a local ring with |M| = m and | RM | = f. Then

Spec|L|(GR) =

(
|R×|−m |R×| 2|R×|
f− 1 |R|− f 1

)
.

In particular, if R = Fq is the field with q elements, then

Spec|L|(GFq) =

(
q− 2 2(q− 1)
q− 1 1

)
.

Theorem 13 Let R be a finite commutative ring such that R ∼= R1 × R2 ×
· · · ×Rt, where (Ri,Mi) is a local ring with |Mi| = mi and | RiMi

| = fi. Then the
signless Laplacian eigenvalues of GR are

(i) 2|R×| with multiplicity 1,

(ii) |R×| with multiplicity |R|−
∏t
i=1 fi,

(iii) λA with multiplicity
∏
i∈A ′(fi − 1) for all A ( {1, 2, . . . , t} where

λA = |R×|+ (−1)|A
′|
∏
i∈A

|R×i |
∏
j∈A ′

|mj|.
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If R be a local finite commutative ring, it is easy to see that the signless
Laplacian energy of GR is given by |L|E(GR) = 2|R

×|. Further, if R ∼= R1 × R2,
where R1 and R2 are local rings, then |L|E(GR) = 2

2|R×|.
Thus, we have the following observation.

Theorem 14 Let R be a finite commutative ring such that R ∼= R1×R2×· · ·×
Rt, (t > 2), where Ri is a local ring for all 1 6 i 6 t. Then |L|E(GR) = 2

t|R×|.

Let G be a graph with n vertices and m edges. The line graph L(G) of G
is a simple graph whose vertex set is the set of edges of G and two vertices of
L(G) are adjacent if and only if the corresponding edges in G have a vertex in
common. So, nL(G) (the number of vertices of L(G)) equals m. Also, it is easy
to see that if G is an r-regular graph, then L(G) is a (2r− 2)-regular graph.

Theorem 15 [4] Let G be an r-regular graph (r > 2) with n vertices and m
edges. Then

(a) The Laplacian eigenvalues of the graph L(G) are

(i) 2− λi, where λi is a Laplacian eigenvalue of G for all 1 6 i 6 n,

(ii) r− 2 with multiplicity m− n.

(b) The signless Laplacian eigenvalues of the graph L(G) are

(i) λ+i + 2r − 4, where λ+i is a signless Laplacian eigenvalue of G for
all 1 6 i 6 n,

(ii) 2r− 4 with multiplicity m− n.

Now, we compute the Laplacian energy of the line graph of the unitary
Cayley graphs. If |R×| = 1, then L(GR) is an empty graph. So in this case,
LE(L(GR)) = 0. Thus, we suppose that |R×| > 2. Now, by Theorem 15, the
spectrum of L(G) consists of the following eigenvalues.

(i) 2− λi, where λi is a Laplacian eigenvalue of GR for all 1 6 i 6 |R|,

(ii) |R×|− 2 with multiplicity |R||R×|/2− |R|.

Proposition 16 Let R be a finite commutative ring with |R×| > 2. Then

LE(L(GR)) =
|R|
(
|R×|2 + 4|R×|− 8

)
2

.
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Proof. Since GR is |R×|-reqular, L(GR) is a (2|R×|− 2)-regular graph. So,

2mL(GR)/nL(GR) = 2|R
×|− 2,

where nL(GR) and mL(GR) are the number of vertices and edges of L(GR), re-
spectively. We have

LE(L(GR)) =

|R|∑
i=1

∣∣2− λi − (2|R×|− 2)
∣∣+ |R||R×|/2−|R|∑

i=1

∣∣|R×|− 2− (2|R×|− 2))
∣∣

=

|R|∑
i=1

∣∣−λi − 2|R×|+ 4∣∣+ |R||R×|/2−|R|∑
i=1

|R×|

=

|R|∑
i=1

(λi + 2|R
×|− 4) +

|R||R×|/2−|R|∑
i=1

|R×| (Since |R×| > 2)

=

|R|∑
i=1

λi + 2|R||R
×|− 4|R|+ (|R||R×|/2− |R|)|R×|

= |R||R×|+ 2|R||R×|− 4|R|+ (|R||R×|/2− |R|)|R×|

(Since

|R|∑
i=1

λi = |R||R×|)

=
|R|
(
|R×|2 + 4|R×|− 8

)
2

. �

The following result gives the signless Laplacian energy of the line graph of
unitary Cayley graphs. The proof is similar to the Laplacian case.

Proposition 17 Let R be a finite commutative ring with |R×| > 2. Then

(i) If f1 = 2, then |L|E(L(GR)) = 2

(
|R|(|R×|− 2) + 1

)
.

(ii) |L|E(L(GR)) = 2|R|(|R
×|− 2), otherwise.
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Kinzel, D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J.
Combin. 16 (2009) R117. ⇒253

[2] A. Alhevaz, M. Baghipur, Hilal A. Ganie, S. Pirzada, Brouwer type conjecture
for the eigenvalues of distance signless Laplacian matrix of a graph, Linear Mul-
tilinear Algebra 69, 13 (2021) 2423–2440. ⇒254

[3] S. Barik, R. B. Bapat, S. Pati, On the Laplacian spectra of product graphs,
Appl. Anal. Discrete Math. 9 (2015) 39–58. ⇒256

[4] S. Barik, D. Kalita, S. Pati, G. Sahoo, Spectra of graphs resulting from various
graph operations and products: a survey, Spec. Matrices 6 (2018) 323–342. ⇒
261

[5] B. A. Rather, S. Pirzada, T. A. Naikoo, Y. Shang, On Laplacian eigenvalues of
the zero-divisor graph associated to the ring of integers modulo n, Mathematics
9, 5 (2021) 482. ⇒254

[6] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application,
Academic Press, New York, 1980. ⇒252
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Abstract. Cryptocurrencies are digital assets that can be stored and
transferred electronically. Bitcoin (BTC) is one of the most popular cryp-
tocurrencies that has attracted many attentions. The BTC price is con-
sidered as a high volatility time series with non-stationary and non-linear
behavior. Therefore, the BTC price forecasting is a new, challenging, and
open problem. In this research, we aim the predicting price using machine
learning and statistical techniques. We deploy several robust approaches
such as the Box-Jenkins, Autoregression (AR), Moving Average (MA),
ARIMA, Autocorrelation Function (ACF), Partial Autocorrelation Func-
tion (PACF), and Grid Search algorithms to predict BTC price. To eval-
uate the performance of the proposed model, Forecast Error (FE), Mean
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Forecast Error (MFE), Mean Absolute Error (MAE), Mean Squared Er-
ror (MSE), as well as Root Mean Squared Error (RMSE), are considered
in our study.

1 Introduction

Fiat currencies are currently used to exchange daily payments but the expo-
nential growth of the cryptocurrency market is a phenomenon that has got
much attention in recent years. It is a new emerging financial ecosystem, so
its opportunities and threats are under evaluation in many academic studies.
There are some critical issues that should be analyzed, and the primary ques-
tion is that whether the price dynamic behavior is predictable or not? Given
the efficient market hypothesis (EMH), they have non-deterministic variation
patterns, and Bitcoin (BTC) price should be assumed as a stochastic signal.
BTC was created and introduced to the world as the first cryptocurrency coin
, but since then, many other coins/tokens, so called Altcoins, have generated
[12]. Today, about 10,000 coins/tokens are actively traded, and the market
capitalization increases noticeably. Many of them have different key features
and applications. The various researches were conducted to answer whether
BTC is a real currency or not? [43, 42]. Now, between three to six million in-
vestors in the private sector including institutions, and individuals (retailers)
actively exchange different coins and tokens via well-known available trading
networks [27]. In the second quartile (Q2) of 2017, the value of the available
cryptocurrencies market, so-called Market Cap, exceeded 91 billion USD [19].

BTC is currently dominant in the market, its position as a strong leader (the
king) is vulnerable due to technical issues of the first generation blockchain
(G1), security, and the technological advances of new generations of cryptocur-
rencies (G2 and G3) [33, 13, 21]. Despite the relatively stable economic and
gradual growing of interest in cryptocurrencies [3, 40, 14, 38], there is still
no comprehensive analysis of cryptocurrency dynamics and ecosystems. In the
research field, most of the existing studies focus on Bitcoin itself [34, 30], trans-
action network, BTC price behavior [18], BTC market trend, BTC dominance,
regarding to a limited numbers of fiat currencies (in particular USD) [22, 21].
For example, there is even a disagreement about whether the dominant posi-
tion of BTC may be compromised or not? Because, BTC dominance plays key
role in the whole ecosystem [22]. BTC is the most famous and pioneer coin;
however, recent studies on the BTC total market share and other altcoins (in
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particular Ethereum (ETH)) indicate that its first rank would be in a real
danger in the future.

BTC is an emerging digital currency with the very high volatility. In com-
parison to the legacy moneys, it leads to more complex challenges in the price
prediction problem [11]. A lot of researches have been conducted for the tradi-
tional stock markets such as Nasdaq, Japan Exchange Group, New York Stock
Exchange, etc. [28, 41], while there are a few studies for cryptocurrencies. It
opened a new challenging problem in parallel. BTC price is a time series with
a very high volatility and its forecasting problem is still in its early stage of
gradual developments. Traditional methods for time series forecasting, such as
Holt-Winters exponential models, basically assumes the linear behavior and
needs data that can be divided into a trend, seasonal, and noise [15]. On the
other hand, there are some approaches to predict BTC price based on Natu-
ral Language Processing (NLP) and sentiment analysis. Today, NLP as an AI
(artificial intelligence) technology and Deep learning [9, 2] are used together
in advanced text mining/analytic tools [23, 4, 26, 8, 7]. These approaches get
social media text data from Twitter, Facebook, and etc., as the input and try
to draw a link between the content of daily messages and the BTC price. These
approaches are on their primal development steps now. The performance of
Sentiment analysis are usually restricted to detect just big movements due
to some important affecting news. In regular conditions, their performance
degrades.

In this research, we aimed to predict the BTC price found on several different
algorithms. The Box-Jenkins method, Autoregression, Autocorrelation and
Partial Autocorrelation methods, ARIMA method, the Moving Average and
Grid search approach are considered. In addition, the Forecast Error (FE),
Mean Forecast Error (MFE), Mean Absolute Error (MAE), Mean Squared
Error (MSE), as well as Root Mean Squared Error (RMSE), have been used
to evaluate our proposed model.

The article is presented as follows: In Section 2, related works are men-
tioned, while in Section 3, the methodology of the current study is described.
Section 4 also presents the simulation results. Finally, Section 5 summarizes
and concludes this study.

2 Related works

In [32], the BTC price prediction was introduced using decision tree and regres-
sion techniques. The main idea was to get order book data and transfer them
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into features over time. These features were referred as feature series which can
be used to make prediction models with emphasizing on both volatility and fea-
ture series. Their method depends on local data of a special broker/exchanger
so the scalability issue should be improved in the future works.

[5] proposed a new approach found on computational intelligence. It used a
hybrid controller based on the Neuro-Fuzzy so-called PATIOS to predict the
BTC daily price. The results of their work show that their proposed method
outperforms the simple neuro-fuzzy approach or simple model of artificial neu-
ral networks. The research demonstrated the use of the closed-loop or feedback
control technique to expand the BTC and fuzzy modeling literature and un-
certainty related to the dynamic behavior of BTC prices to overcome and gain
a relatively positive return. PATIOS does not have a user-friendly interface.
To enhance it, more focus on creating a UI/UX interface is essential.

In [24], a wide-scale vector model has been proposed to explain how price in-
formation was transferred among different crypto market brokers, exchanges,
and between traditional markets and crypto ones. Accordingly, they intro-
duced a Vector Autoregressive model (VAR). Their empirical findings suggest
that there is a robust correlation between the prices of BTC in different cryp-
tocurrency markets. In contrast, BTC-price correlation with most traditional
assets is relatively low. This model can also improve the BTC price forecasts
concerning a simple autoregressive model.

In [39], they compared the volatility of one stage and BTC-VaR (BTC
value-at-risk (VaR)) forecasting using some important volatility models. It
also considered methods that actually involve the presence of outdated data
and strongly estimate fluctuations and VaR. The achieved results explicitly
suggested that noises and outliers can play an influential role in modeling and
forecasting BTC-VaR.

In [29], some graph models had been investigated to analyze BTC price
fluctuations. It was found that the optimal model was AR-CGARCH in terms
of a good fit with the data. The result indicated well the importance of the
existence of both short-term and long-term components for an accurate pre-
diction.

Machine learning (ML) is known as a sub-domain of data science. It can
improve software applications to get more accurate results in various applica-
tions [6, 35, 36, 25, 10]. It deploys historical perceptions (data) as input to
make new predictions. [31] proposed classifier and regression models based on
machine learning with high performance for both mid-term and short-term
long lines. In their work, the prediction was not restricted to just daily data.
They extended the work for monthly and yearly data as well. The classification
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model can achieve above 65% accuracy for the next day price prediction and
64% to 62% accuracy for the 7 and 17 days forecasts. For the daily, the error
rate is as low as 1.44%, while for the seven to ninety-day horizons, it varies
from 2.88% to 4.10%.

To predict BTC price value at different frequencies using machine learning
techniques, [17] first classified the price of BTC based on the price of the day
and the high frequencies. A set of high- dimensional features include property,
gold spot price, network, and trading market were used to predict BTC price
on a daily time scale. Statistical methods (SM) include logistic regression (LR)
along with linear analysis, were used to predict the daily price prediction with
accuracy 66% accuracy, and more complex algorithms pass machine learning
(ML). In comparison with results of the criterion for daily price prediction, the
results are higher in SM and ML algorithms have 66% and 65.3%better per-
formance, respectively. The machine learning models, such as Support Vector
Machine (SVM), XGBoost, Random Forest (RF), and Quadratic Discriminant
Analysis (QDA), were superior to SM for the 5 minutes price prediction (5m)
with an accuracy of 67.2%.

In the next section, we are going to discuss about methodology and the
proposed model.

3 Methodology

In this section, our proposed model is proposed to provide a detailed forecast
of price. For this purpose, first, the datasets used are introduced, and then
the performance evaluation criteria and our proposed forecasting models such
as Box-Jenkins method, ACF, PACF, ARIMA, MA, AR, and Grid Search are
investigated.

3.1 Dataset

We have used the BTC price dataset from [44]. It provides price values
from 1 December 2014 to 29 may 2020. The data is available in the daily time
scale. The statistical summary of the dataset is presented in Table 1.

count mean std min 25% 50% 75% max

1994 4213.51 4005.48 120.00 446.51 3425.41 7459.77 19650.00

Table 1: The statistical summary of the BTC price datasets from 1 December
2014 to 29 May 2020.
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3.2 Performance evaluation criteria

The performance evaluation criteria of regression algorithms for time series
forecasting problem are introduced as follows.

3.2.1 Forecast error (residual forecast error)

Forecast errors (FE) on a time series forecasting problem are considered as
residuals (residual errors). According to Equation 1, the residual error at time

t(et) can be calculated as the expected outcome (yt) minus the forecast (f
(m)
t ):

et = (yt − f
(m)
t ) (1)

et can be calculated for every observation of the time series. The much more
closer the residual error to the zero, the better performance archives.

3.2.2 Mean forecast error (forecast bias)

This value is obtained from the average error residual.

BIAS =
1

n
Σn(i=1)(ei) (2)

Where n is the number of samples and ei is the ith error. The residual error
is either positive or negative. The best BIAS value would be zero.

3.2.3 Mean absolute error (MAE)

One of the loss functions that have interesting properties is the mean absolute
error which is also called the MAE. The loss function, such as the MSE, uses
only the distance between predicted and expected values but does not consider
the direction for this difference. The following formula is used to calculate MAE
[20]:

MAE =
1

n
Σn(i=1)|ei| (3)

When MAE is closer to zero; the ideal model is achieved.
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3.2.4 Mean squared error (MSE)

In mean square errors or MSE, the values are positive. It also has a more
significant impact on large errors. The loss function computes the mean square
error between the predicted and expected values. The Equation 4 shows MSE
formula [20]:

MSE =
1

n
Σn(i=1)(e

2
i ) (4)

3.2.5 Root mean squared error (RMSE)

If the effect of the MSE is derived, another loss function is constructed as the
”square root of error” which is briefly shown with RMSE.

RMSE =

√
1

n
Σn(i=1)(e

2
i )

(5)

RMSE zero value means the model is actually error-free.

Where N is the total number of observations, (e2i ) is the actual value.

3.3 Forecast models

Figure 1 shows the steps of the current research in which the Box-Jenkins
method, ACF, PACF, ARIMA, MA, AR, and Grid Search are used.

3.3.1 Box-Jenkins method

The Box-Jenkins method consists of three essential steps. The first step is
Model Identification/selection; the second one is Parameter estimation and
the last one Statistical model checking. In the identification phase, one or
more time series models will be selected by their graphs. The parameters of
the selected model are determined in the identification phase. In the control
phase (verification), statistical tests are performed to verify the selected model.
These tests include the independence of model error values. If the control phase
is not approved, then back to the identification phase and selects a new model,
the above steps are repeated.
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Figure 1: The workflow steps in our proposed model

3.3.2 Autoregression method

The Autoregressive (AR) model is used for stationary time series values de-
pending on their previous values. In this case, we consider the number of past
observations to predict a value. Therefore, it can be written as follows [37]:

xt = c+ Σ
P
(i=1)φix(t−i) + εt (6)

Where xt is the stationary variable, c is constant, the terms in φi are auto-
correlation coefficients at lags 1, 2, p and εt.

3.3.3 Moving average algorithm

The moving average (MA) model is written as a linear combination, similar to
the AR model, but it is written in terms of a linear combination of errors in
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terms of time. In this case, we consider q the number of previous observations.
The relationship between static time-series values in this model is formulated
in Equation 7 [37]:

xt = µ+ Σq(i=0)φiεt − i (7)

Where µ is the expectation of xt (usually assumed equal to zero), the φi
terms are the weights applied to the current Where µ is the expectation of xt
(usually assumed equal to zero), the φi terms are the weights applied to the
current.

3.3.4 ARIMA method

The autoregressive moving average is an ARIMA (Autoregressive Integrated
Moving Average) model, which is a more general model of ARMA. According
to the Equation 8, ARIMA combines the combination of two methods of AR
and MA [37].

xt = c+ Σ
P
(i=1)φix(t−i) + εt + Σ

q
(i=0)φiεt − i (8)

An ARIMA model has coordinates (p, d, q):

� The p is defined as the total number of autoregressive terms. In other
words, p is the number of previous observations (from past values) that
are used to predict future values. For example, if the value p is equal to
2, this means that two previous temporal observations are used in the
series to do forecast the future trends.

� d points to the number of differences which are required to have a sta-
tionary the time series (i.e. one with a constant mean, variance, and
autocorrelation). For example, if d =1, then the first difference of the
time series must be calculated to convert it to the stationary series should
be calculated represents the ”moving average” error in the previous pre-
diction error in the model or the residual value.

� q represents the MA of the previous FE in the model (the lagged values
of the error term). For example, if q has a high value, there is a lagged
value of the error term in the model.
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3.3.5 Autocorrelation and partial autocorrelation methods

Correlation and partial correlation diagrams are enormously used in time se-
ries analysis and forecasting. These are diagrams that summarize the strength
of the relationship with observations in a time series with observations at the
previous stages. Partial Autocorrelation and Autocorrelation index are used
to determine whether the data are stationary or not? The autocorrelation and
autocorrelation index for ”different degrees” measures the correlation coeffi-
cient (CC) between the series and the delay of variables over time. A process is
achieved when the time series follows a particular pattern in which the present
value depends on the previous values.

3.3.6 Grid search method

Grid search (GS) is a nifty approach that tries to explore data space exhaus-
tively using a manually specified hyperparameter subset of the search space for
a selected algorithm while Random search choses values for all hyperparam-
eters independently based on their probability distributions. Accurate tuning
(Fine Tuning) means finding the best parameter for machine learning algo-
rithms to improve the results. An optimized planning is an effective practical
step that can lead to noticeable improvements at the output of the ARIMA
method. The optimal parameters can be automatically found on the Grid
Search.

4 Experimental results

As noted, the data set includes daily BTC close price from 1 December 2014
to 29 May 2020 [44]. In the simulation, we have used 70% of data as training
data and 30% as the test data. We have used Python programing language
and related libraries for time series to implement our simulations.

In time series, it is essential to evaluate and compare the results to spot
the best predictor with a minimum error. In our study, the results obtained
are compared using BIAS, MAE, MSE, and RMSE. In the term of error,
a zero error indicates complete skill for prediction. In Tables 2 and 3, the
obtained results are compared well. Figures 2 to 5 are derived from Table 2
and demonstrate the results separately for each algorithm.

In Figures 6, 7, 8, and 9, autocorrelation functions (ACF) and partial auto-
correlation (PACF) are calculated for the AR, MA, ARIMA, and Box Jenkins
algorithms. We know these functions reveal the logical link between data in
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Figure 2: Bias comparison for all algorithms

Figure 3: MAE comparison for all algorithms
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Figure 4: MSE comparison for all algorithms

Figure 5: RMSE comparison for all algorithms
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Forecast methods RMSE MSE MAE MFE

AR 345.46 119346.60 218.85 104.88

MA 345.79 119571.57 219.55 -0.31

ARIMA 323.45 104621.57 198.49 - 1.16

Box-Jenkins 320.67 102834.39 95.15 -1.47

Grid Search 317.417 100753.86 192.76 -0.77

Table 2: Different evaluation methods for various prediction algorithms.

AR -425.71 , 148.50 , -112.42 , . . . . . . . . . 315.33, 396.05, 89.32

MA -435.46, 153.67 , -124.88 , . . . . . . . . . 294.43 , 388.70 , 67.43

ARIMA -351.55, 108.85, -191.76, . . . . . . . . . 347.01, 362.92, -116.02

Box- Jenkins -345.70 , 129.47 , -150.95 , . . . . . . . . . 373.48, 381.12, -147.27

Grid Search Best ARIMA(0, 2, 0), FE=-527.228

Table 3: Assessment of forecasting algorithms with the Forecast Error (FE).

time series. We first extracted prediction data based on the mentioned al-
gorithms, and then we applied ACF and PACF. In Figure 6(a), an ACF plot
demonstrates correlation coefficients (CC) bar chart of a time series and lagged
values for the AR model. In Figure 6(b), a PACF plot indicates the partial
correlation between the series and lags of itself. For the AR process, it can be
seen that the ACF plot decreases gradually while simultaneously the PACF
has a severe drop after p significant lags.

Figure 7 show ACF and PACF for a MA process. In this figure, the ACF fall
down sharply after a q number of lags while PACF follows a gradual declining
pattern.

As mentioned before, a model that can get lower errors represents the best
model. In our research the Grid Search method is the only algorithm that
led to the optimal values in most performance metrics such as MAE equal to
192.76, RMSE = 317.417, and MSE equal to 100753.86.

Ultimately, we compare our model with some available methods in Table 4
and Table 5. Table 4 indicates that our model outperforms others in term of
MSE while in Table 5, it shows better achievement based on RMSE and MAE.

Performance metric The proposed [20] [1] [16]

MSE 104621.57 170962.195 21,215,311 2519603.08

Table 4: Comparing BTC price prediction algorithms based on the MSE.
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(a)

(b)

Figure 6: Results of the ACF and PACF methods for the predicted values by
the AR method.
(a) ACF plots of the Prediction from AR models
(b) PACF plots of the Prediction from AR models
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(a)

(b)

Figure 7: Results of the ACF and PACF methods for the predicted values by
the MA method.
(a) ACF plots of the Prediction from MA models
(b) PACF plots of the Prediction from MA models
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(a)

(b)

Figure 8: Results of the ACF and PACF method for ACF plots of the Predic-
tion from ARIMA.
(a) ACF plots of the Prediction from ARIMA models
(b) PACF plots of the Prediction from ARIMA models
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(a)

(b)

Figure 9: Results of the ACF and PACF method results for predicted values
predicted by the Box-Jenkins method.
(a) ACF plots (b) PACF plots
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Figure 10: Comparison of ARIMA and AR algorithms with the current value of
bitcoin price from 1 December 2014 to 29 May 2020 (Current price of Bitcoin
(black), ARIMA (red), AR (blue)).

Performance metric The proposed [16]

RMSE 323.45 1587.32

MAE 198.49 920.45

Table 5: Comparison of BTC price prediction models using the RMSE and
MAE.

In Figure 10, a comparison among real price of bitcoin and two prediction
models is depicted. In this figure, our proposed algorithm based on grid search
ARIMA (red line) greedily tries to track the real BTC price (black line) and
it outperforms other models based on AR.

Finally, we have extended our dataset to cover forward test. In the early
version, the BTC price datasets from 1 December 2014 to 29 May 2020 was
used in training and validation steps. In the new version, we added some new
daily price samples from 1 June to 30 June (2020) as unseen data. The unseen
data has fitted to the model in order to evaluate the forward testing results.
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Figure 11: Comparison of ARIMA and AR algorithms with the current value
of bitcoin price for June 2020 (Current price of Bitcoin (black), ARIMA (red),
AR (blue)).

In Figure 11, it can be seen that the accuracy of our algorithm is much higher
even for unseen data.

5 Conclusions and future work

As an emerging digital currency, Bitcoin has got much attention nowadays. In
fact, BTC is the most valuable encrypted currency globally traded in almost
all cryptocurrency exchanges. It provides a fantastic opportunity to make price
prediction due to its relatively low-maturity technology with very high price
volatility. Developing an accurate and automated predictive system for BTC
with non-linear and high range variations is still an open challenging task.

In our study, we have evaluated the number of algorithms using several
evaluation criteria. In summary, we have used the Box-Jenkins model, Au-
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toregression, Moving Average, ARIMA model, Autocorrelation and Partial
Autocorrelation model, and Grid Search model. Besides, to evaluate and com-
pare them, we used FE, MFE, MAE, MSE, and RMSE. In our study, the Grid
Search method has the best performance with lower errors than other meth-
ods. This method tries to find the best results with optimizing the ARIMA
method. It achieved the minimum value in the MAE at 192.76, the MSE equal
to 100753.86, and RMSE = 317.417. Furthermore, the values of the forecast
error method in the Grid Search have the lowest values approximately close
to zero. Consequently, the proposed model outperformed others in most per-
formance metrics.

As both the test and train data are scattered randomly in the entire time-
interval, the problem actually would be one of price interpolation or filling
the gaps problems (not extrapolation). The main contribution is a thorough
comparison of the performance of existing methods and also optimizing mod-
els based on Grid search optimization. The Grid searching is the process of
scanning the data to configure optimal parameters for a given model. Based
on the Grid search, the optimal hyperparameters of our model have tunned.
As a result, the more accurate predictions have achieved in our study.

Price volatility has been extensively investigated on financial markets, but
due to the recent emergence of Bitcoin market, researchers have started to
scratch the surface in this area. Hence, the excessive volatility of Bitcoin and
how determine it properly has not yet been sufficiently studied providing for
an extensive research gap. Consequently, similar to the most available studies
in BTC price prediction, we have not aimed to offer a discussion into Bitcoin
price volatility but it may be our new study in the future to solve this issue
using deep learning algorithms. Today, deep learning algorithms are deployed
widely in various applications [23, 9, 2]. To continue this research, more studies
can be done on the non-linear and even non-stationary BTC price time series
in lower time scales using deep learning models.

Funding Statement. There is no specific funding for this study.
Conflicts of Interest. The authors declare that they have no conflicts of
interest to report regarding the present study.
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Abstract. We investigated the predictability of mean reverting port-
folios and the VAR(1) model in several aspects. First, we checked the
dependency of the accuracy of VAR(1) model on different data types
including the original data itself, the return of prices, the natural loga-
rithm of stock and on the log return. Then we compared the accuracy
of predictions of mean reverting portfolios coming from VAR(1) with dif-
ferent generative models such as VAR(1) and LSTM for both online and
offline data. It was eventually shown that the LSTM predicts much better
than the VAR(1) model. The conclusion is that the VAR(1) assumption
works well in selecting the mean reverting portfolio, however, LSTM is a
better choice for prediction. With the combined model a strategy with
positive trading mean profit was successfully developed. We found that
online LSTM outperforms all VAR(1) predictions and results in a positive
expected profit when used in a simple trading algorithm.

1 Introduction

The usefulness of mean reverting portfolios was discussed several times before
[2], [1], [3], [4]. Maximizing the predictability helps to create simple, effective
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and robust trading strategies. Our previous work based on calibrating the
VAR(1) generative model produced acceptable results on the S&P500 stock
prices [10]. In the first part of this work we investigate how accurate the
VAR(1) model is on different data models. Data models could mean the repre-
sentation of the data, ie. the raw stock data itself or its transformation. Using a
well performed data model we generate sparse portfolios with high predictabil-
ity by searching the maximal generalized eigenvalue of the regression matrix.
The second part of this work focuses to the prediction of the already created
portfolio. The first strategy is to utilize the calibrated regression matrix of the
VAR(1) model, the second is to train an LSTM neural network on the portfolio
and use it for prediction [13], [11]. Both methods were tested for online and
offline data. Prediction on online data means we use only the available real
time data for future values while offline means we incorporate the previously
predicted values to regress the next portfolio value. The latter makes it possi-
ble to predict accurately for a longer term. The structure of the paper is the
following:

� In section 2, we briefly discuss the concept of VAR(1) model and mean
reversion. Then we make a comparison of the accuracy of the VAR(1)
model on the different data models.

� In section 3, we discuss the concept of LSTM neural network and how
useful it is on mean reverting time series.

� In section 4, we discuss the details of the concept of online and offline
prediction.

� In section 5, we compare the performance of the different techniques.

� In section 6, we make conclusions and recommendations.

2 VAR(1) model on derived time series

This section briefly explains the mean reverting processes and the modeling of
the stock data with VAR(1). We call a stochastic process mean reverting when
the value of the process oscillates around its average value. When the price is
below its long-term mean it will likely increase rather than decrease and vice
versa. This supports building a simple trading strategy and to estimate the
trading range for the portfolio.
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2.1 Ornstein-Uhlenbeck process

Mean reverting processes are formalized by the so-called Ornstein-Uhlenbeck
process [8]. Let’s denote the price of our portfolio by pt at time t, and by sit the
price of the ith stock at time t. Our mean reverting portfolio pt is composed by
the linear combination of sit’s. The stochastic differential equation that drives
the Ornstein-Uhlenbeck process is

dpt = λ (µ− pt)dt+ σdWt (1)

where Wt is a Wiener process, σ is a parameter proportional to the standard
deviation of the Wiener process, λ is the speed of mean reversion and µ is
the long-term mean of the process reverting to. The deterministic part of the
stochastic differential equation (SDE) represents the property and that the
magnitude of attraction to the long-term mean is proportional to the distance
from the mean. The solution of stochastic differential equation is:

p (t) = p (0) e−λt + µ
(
1− e−λt

)
+

∫ t
0

σe−λ(t−s)dW (s) (2)

The expected value of equation (2) is

E [p (t)] = p (0) e−λt + µ
(
1− e−λt

)
(3)

and the variance is

V [p (t)] = σ2
∫ t
0

e−2λ(t−s)ds = σ2
1− e−2λt

2λ
. (4)

Consequently in very long-term, the expectation converges to

limt→∞E [p (t)] = µ, (5)

while the variance is

limt→∞V [p (t)] =
σ2

2λ
, (6)

Note the variance is inversely proportional to the speed of mean reversion.

2.2 Asset dynamics and portfolio selection

2.2.1 Modeling asset dynamics with VAR(1)

In [2], [3] the concept of predictability was introduced in the following way:

ν =
σ2t−1
σ2t

(7)
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where σ2t is the variance of the time series. If the denominator is larger in (7),
St will be pure noise as t goes to infinity therefore the time series is completely
unpredictable, however while the nominator is larger as t going forward St will
be perfectly predictable. Let the dynamics of the assets be modeled as discrete
vector autoregressive process with parameter 1. Generally, VAR(p) means
that the regression uses the last p values in the time series. As mentioned
before si,t denotes the price of the stock i at time t where i = 1, . . . , n, where
n is the size of the set of stocks. The most general model used in article 8 is
the non-stationary VAR(1) model that contains a time independent constant
scalar shift term to describe drift or ie. to ensure positivity of the elements for
all t:

st+1 = c+Ast +Wt, (8)

where A is an n by n real matrix constant at some certain time period, c
is a time independent real scalar constant, Wt represents the noise or error
term of the model with zero mean value, some constant variance and uncor-
related across time. This can be rewritten in a concise VAR(1) notation by
incorporating shift into the matrix of auto regression:

s′t+1 = A
′s′t +W

′
t (9)

extending the notations
s′1t+1

...
s′nt+1
1

 =


a1,1 · · · a1,n c1

...
. . .

...
an,1 · · · an,n cn
0 · · · 0 1



s′1t
...
s′nt
1

+


W1
t

...
Wn
t

0

 (10)

where A′ refers to a (n + 1) × (n + 1) matrix in which the last column is
filled with the constant shift c, the last row has zeros except the element of
(n+ 1)st which should be strictly 1, x′t a vector with n + 1 elements strictly
1 at the (n+ 1)st element and W′

t still provides the noise as in the previous
case except no noise for the (n+ 1)st element [7]. Henceforth, we ignore the
prime sign in this article. The auto regression matrix in equation (8) can be
approximated using least squares regression by

Â =
(
sTt−1st−1

)−1
sTt−1st (11)

Using this model a portfolio can be created with a linear combinations of the
assets. To make this, let P be a real valued vector. This vector represents the
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weights that relate to stocks. The time evolution of the value of our portfolio
can be written as

Pst = PAst−1 + PWt (12)

After using the definition of predictability (7) for the VAR (1) model we get:

v (P) =
var

(
PTAst−1

)
var (PTst−1)

=
E
(
PTAst−1s

T
t−1A

TP
)

E
(
PTst−1s

T
t−1P

) (13)

As only st is stochastic, A and P can be factored out from the expectation
calculation. So eventually we have the covariance matrix of the time series,
which we denote by G. Maximizing predictability is eventually a generalized
eigenvalue problem:

Popt = argmax (v (P)) = argmax

(
PTAGATP

PTGP

)
, (14)

The argument of the argmax operator is the so called Rayleigh quotient,
where the above becomes the following:

AGATP = λ (15)

Current scenario is to keep the number of constituents low, which is an addi-
tional constraint to the optimization. On the other hand, to hold the transac-
tion cost as low as possible and also to keep the portfolio complexity low, only
a low number of stocks will need to be enabled. The optimization problem
now is the trade-off between the maximization of mean reversion speed and
the minimization of the cardinality of stocks. Mathematically the equation
(14) has an additional constraint

Popt = argmax (v (P)) = argmax

(
PTAGATP

PTGP

)
,

subject to Card (P) ≤ k
(16)

The above optimization was performed in two steps. First a suboptimal so-
lution is found by a greedy algorithm. In the next step Simulated Annealing
(SA) was applied, as in [12], [5] and [4]. The starting point of the SA was the
solution of the first step. To model the dynamics of the stock prices VAR(1)
model with or without constant shift being used. However the calibrated re-
gression matrix not applied for predict individual stock prices only to find it’s
maximal generalized eigenvalue, it is worth to investigate how accurate the
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Without constant shift With constant shift

Normal data 0.0047619 0.08424908
Normal return 0.07875458 0.10769231

Log Data 0.0021978 0.23736264
Log return 0.19157509 0.29340659

Table 1: Relative frequency of the highest accuracy

regression model for different data types. Here, we will now discuss whether
it is useful to apply the calibration on derived data such as the return, the
natural logarithm or the logarithmic return of stock prices. The tests were
performed on S&P500 data with many configurations. A point in this config-
uration space includes the width of the calibration window and the starting
point. The particular time window range varied between 50 days to 400 days,
the end points moved between 2016 − 01 − 01 and 2021 − 01 − 01. The cali-
bration performed with and without the time independent shift for every data
model. To be able to compare the accuracy, every regressed data other than
normal data (i.e. normal return, log and log return) were transformed back to
normal. Then we calculated the mean squared error and recorded which data
model has the lowest error for a certain configuration. The results in relative
frequency are summarized in Table 1. In this table we can see that higher
accuracy is reachable when we incorporate the constant shift into the VAR(1)
model. That also applies to a large extent of the cases the log or log return
data model are the most accurate. In the future we use the log model to test
and compare the effectiveness of different trading algorithms.

An example of regression with constant shift is in Figure 1. Here all the four
prediction of data model (ie. the original data, simple return(diff), natural log-
arithm of the original and the log return) and values of the asset (Adobe) are
represented. Here the regressed values can vary to a large extent compared to
the real stock values. As mentioned previously the aim is not to predict indi-
vidual stock prices but create a portfolio which has the highest predictability.

3 Predicting mean-reverting portfolio with LSTM

3.1 LSTM introduction

Long Short Term Memory networks (LSTM) are recurrent neural networks
(RNN), designed to learn long-term dependencies by [6]. As an RNN, LSTMs
have a repeating modules and each module has the similar structure with four,
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Figure 1: Result of prediction for every data model with constant shift on an
example stock (Adobe).

interacting layers. The most important constituent for long-term learning is
the state of the module or cell, which is represented by the top horizontal
line. It interacts with other layers in the cell via pointwise multiplication ans
addition and provides input for the next cell. The way how an LSTM cell
constructed by gates makes it possible to remove or add information to the
cell state. Since the sigmoid function outputs numbers between zero and
one, it can provide weights to each components. A cell in an LSTM network
contains three of these sigmoid gates. The first gate is the forget gate which
is to decide what information have to be thrown away from the cell state. It
takes the ht−1 hidden state from previous cell and xt input, and the output
multiplicated with the cell state Ct−1.
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Figure 2: Schematic diagram of LSTM network. Source: [9]

oforget = σ(Wf[ht−1, xt] + bf) (17)

where σ is the sigmoid function, Wf and bf represents the network in forget
gate. The following gate, the input gate is for to decide what information
should be updated in the cell state which is consist of two layers with two
different activation function.

finput = σ(Wi[ht−1, xt] + bi) (18)

where Wi and bi represent the neural network of the layer. The output of the
input gate is multiplicated with the output of the tanh layer that creates a
vector which will be used to update cell state values, Ct by pointwise adding
the multiplicated result to the old cell state vector Ct−1.

fC = tanh(WC[ht−1, xt] + bC) (19)

The final gate, the output gate decides what should hidden state values
should be transferred to the next cell. The output will be the combination of
the previous hidden state values, inputs of the actual cell and the updated cell
state values.

Ct = oforget ∗ Ct−1 + finput ∗ fC (20)
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First the third sigmoid layer decides what parts of the cell state will be treated
as output.

ooutput = σ(Wo[ht−1, xt] + bo) (21)

The cell state Ct runs through the tanh layer, this makes the state values
between -1 and 1, and multiply it by the output of the sigmoid gate ooutput.

ht = ooutput tanh(Ct) (22)

.
The state variables ht and Ct serve as input for the next module.

3.2 Predicting

The VAR(1) model was applied to fit an analytical model to the data model
and from that a well predictable portfolio was created. The regression matrix
can be used to predict the future values of the portfolio. However, the pre-
diction is not based on the portfolio itself but on the constituents. Hence, the
errors accumulated during the calibration against each stock make the pre-
dicted time series very noisy and inaccurate. It is much more reasonable to
use the historical values of the portfolio itself to regress future prices. We con-
structed and trained LSTM recurrent neural network to predict future prices
of our portfolio. We trained the network on the same time range as used for
VAR(1) calibration. So we created the portfolio with the regression matrix
and used as an input for the training. The number of LSTM layers is 4, batch
size is 1, epochs is 100. We used 3 consecutive data to predict. In Figure 3 an
example of the testing can be seen.

4 Online vs Offline prediction

The common property of the two methods, which are VAR(1) and LSTM is
that they are only able regress one time step ahead. The online prediction is
fully based on real data. As both VAR(1) and simple LSTM predict only t
time step ahead, to regress a time interval we should use previously predicted
data, as well.

Online prediction: Using only real data for prediction the next value can
only be estimated when all real data are available.

Offline prediction: Using both real and predicted data, longer terms can
be predicted by utilizing the previously estimated data as input for the regres-
sion.
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Figure 3: Predicting optimized portfolio. Green curve is the calibration range,
blue VAR(1) prediction, red curve real value, yellow is the LSTM prediction.

4.1 Trading strategies

We can build trading strategies by combining the online and offline predictions
with the regression methods. The definition of the trading range is essential. It
can happen retrospectively or prospectively. As we incorporate the LSTM or
VAR(1) regression values into the simple mean-reverting trading strategy the
information they carry modifies the logic. As the selling or buying events are
triggered by the value of the portfolio, the final decision is affected by the value
of the prediction. As if the trader has cash in hand and the purchase event
is triggered the real buying will be performed if the next estimated value is
higher than the current. Otherwise at least one step will be waited out. Similar
logic occurs when there is a portfolio in hand, see Figure 4.

Online strategies: The online strategy uses only the online prediction.
Therefore the trading range can be estimated using the historical data.

Offline strategies: The offline trading strategy involves long-term price
prediction regressing still only one time step ahead and incorporating predicted
data for farther estimation. The method simply involves more predicted data
successively as regression goes further ahead. This provides another method to
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Figure 4: Schematic diagram of the general trading workflow.

estimate the trading range, which is utilized in this strategy both for VAR(1)
and LSTM.

5 Performance test

The performance tests were carried out for all the 4 trading configurations,
ie. combining online and offline prediction with VAR(1) and LSTM methods.
The initial invested amount was $10000. Each configuration was run with
5 different sparsities: (3, 5, 8, 11, 14). The data was S&P500 daily close stock
prices between 01/01/2016 and 12/31/2020. For a sparsity the trading was
repeated 30 times with different calibration window lengths and positions.

The length of trading time was constrained to 100 days. This was necessary
to be able to compare each trading cases, as we have limited length of data
and the possible trading length could vary from few weeks to few years. In case
when portfolio was at hand at the end of trading range because price did not
hit sell threshold, the return was calculated by the actual value of portfolio
subtracted the price at buying. During the test we see that at most 2 buy-sell
events were performed. When 0 events was performed it was mostly due the
trading range was not estimated precisely and the buy threshold was not hit.
At this point we did not incorporate the trading fees as our work focused on
the comparison of trading strategies detailed above.

In Table 2 we can see the mean gain and the standard deviation of returns
for the used strategies.

On figures (5), (6) the distribution of the profits for the used strategies are
visualized. We tested the strategies against different trading starting points
and calibration window length (50, 100, 150, 200). We applied a floor and ceil-
ing functions for below −$100 and above $100 respectively only to make the
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3 5 8 11 13
Offline VAR -3.31/39.52 2.38/20.04 0.30/25.42 1.03/18.53 -0.72/19.49
Offline LSTM -2.88/30.52 1.08/23.18 -1.37/15.96 1.91/22.62 -0.69/19.38
Online VAR 4.73/28.15 7.86/40.79 3.97/27.32 4.97/31.06 5.88/35.79
Online LSTM 10.51/27.19 8.21/23.16 10.45/20.24 7.41/23.81 9.37/20.09

Table 2: The mean and standard deviation in terms of [$] of trade performance
for trade methods and sparsity

useful part of distribution more detailed, this did not affected the calculation
of the mean and standard deviation in Table 2.

It is clear from the table and from the figures that the most effective strategy
is the online LSTM. It was able to consistently produce positive profits. Note
that the offline data plots on Figures 5 and 6 very high peaks can be seen at
0 profit. These are due to inaccurate estimation of the trading range and no
action was performed.

6 Conclusion and future works

We have presented how accurately we predict the S&P500 stocks with VAR(q)
using different data models. We conclude that it is worth calibrating with
log or log return data model. In the second part we have explained how
the prediction of the sparse mean reverting portfolio, which was created by
VAR(1), can be improved. The tests were performed on online and offline
prediction. We modified the simple mean reverting trading logic by adding the
predicted values to the trading decision process. We found that online LSTM
outperforms all VAR(1) predictions and results in a positive expected profit
when that is used in a simple trading algorithm in case of online prediction.
One of the crucial things to increase profit is to estimate the trading range very
precisely. One possible way is to create a Seq2seq LSTM neural network, that
is able to predict more than one time step ahead. This can be the direction of
future research.
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Figure 5: Profit histogram of LSTM prediction on online and offline data.
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Figure 6: Profit histogram of VAR prediction on online and offline data.
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Abstract. The intersection of surfaces is a fundamental process in com-
putational geometry and computer-aided design applications to build and
interrogate complex shapes in the computer. This paper presents a novel
and simple dual quaternion-based osculating circle DQOC algorithm to
find the intersection curve of two regular surfaces based on the osculat-
ing circle concept and dual quaternions. Additionally, we expressed the
natural equations of the intersection curve. We have also demonstrated
the superiority of our method through numerical examples.

1 Introduction

Surface/surface intersections are widely used in computer-aided manufacturing
(CAM) / computer-aided design (CAD), such as path planning, animations,
and modeling some shapes. Numerical methods are generally preferred for the
intersection of two surface cases.

The marching method provides an intersection curve’s points sequences by
utilizing the local differential geometry [8],[10]. First, the initial point must
be determined to proceed through this method, and next, the point contin-
ues along the intersection curve by marching. The intersection curve’s local
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Key words and phrases: Surface intersection, Marching method,osculating circle, dual
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geometric properties are used to compute the marching direction plus steps.
The marching step is computed via the sequence of points that originated
from the first point. Several possible solutions exist for marching directions,
including moving in a tangential direction [2], [9] or traveling along a circle [1]
or a parabola [12]. However, the most commonly used solution is step length,
based on the curve’s curvature.

Not only are dual quaternions vital because they perform the solution more
robust and straightforward, but they also provide a compact, unambiguous,
singularity - free rigid transform using minimal computations. Another positive
feature of dual quaternions is that they are the most efficient and most compact
form that can be utilized to represent rotation and translation. Additionally,
they can solve a problem more rapidly while doing it in fewer steps, and
they show the result more clearly. Also, fewer code lines are used for dual
quaternions to practice [7].

In literature, some authors have used lengthy calculations to determine the
step length and next intersection point. This study presents a new and ap-
plicable DQOC algorithm that employs fewer computational calculations to
obtain the solution less complicated. Additionally, we obtain closer points to
the intersection curve. On the other hand, we present the natural equations of
the intersection curve. We also compare our algorithm with the method that
Wu and Andrade used [15].

2 Preliminaries

2.1 Dual quaternions

Definition 1 A dual number is written as

A = a+ εā

in which, a and ā are real numbers and ε2 = 0, ε 6= 0 [13], [16].

Definition 2 An ordinary quaternion is defined as

q = a+ bi+ cj+ dk

where i, j, k are the standard orthonormal basis in R3, providing i2 = j2 = k2 =
ijk = −1, and a, b, c, d are real numbers.

Quaternions can present a rigid body’s rotation according to an axis. Quater-
nions do not cause any singularity problem and provide the keyframe interpo-
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lation better [5], [11], [6].

Definition 3 A dual quaternion can be expressed by

Q̂ = Q+ εQ∗ (1)

in which

Q = qr + ~q Q∗ = q∗r + ~q∗

and ε2 = 0.

Dual quaternions were first described by W. Kingdon Clifford in 1873 [3].
They are different from the real quaternions because they are utilized for both
translation and rotation. A dual quaternion’s four dual number terms can be
interpreted as

Q̂ = q̂r + q̂xi+ q̂yj+ q̂zk (2)

or

Q̂ = s+ xi+ yj+ zk+ ε (sε + xεi+ yεj+ zεk) .

Lemma 4 If we take the two dual quaternions as

Q̂1 = Q1 + εQ
∗
1, Q̂2 = Q2 + εQ

∗
2,

then, the dual quaternion multiplication can be given with

Q̂1Q̂2 = Q1Q2 + ε (Q1Q
∗
2 +Q2Q

∗
1) .

Lemma 5 Dual conjugate Q̂ and dual quaternion norm can be defined as

Q̂ = Q− εQ∗

and

||Q̂|| = ||Q||+ ε
< Q,Q∗ >

||Q||
.

Definition 6 A dual quaternion that satisfies the conditions ||Q̂|| = 1 and
< Q,Q∗ >= 0 is called a unit dual quaternion.
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Lemma 7 The inverse of a dual quaternion is

Q̂−1 =
1

Q
− ε

Q∗

Q2

in which, Q 6= 0.

Lemma 8 A second conjugation operator for a dual quaternion is

Q̂
∗
= (s,−x,−y,−z,−sε, xε, yε, zε) .

Lemma 9 Transformations can be represented by only one dual quaternion.
Let Q̂ and P̂ be two transformation dual quaternions and Qv be a position
vector dual quaternion. Then, the combined transformation C can be applied
to Qv as

Q̂
′
v = P̂

(
Q̂QvQ̂

∗)
P̂
∗
=
(
P̂Q̂
)
(Qv)

(
Q̂
∗
P̂
∗)

(3)

or
Ĉ = P̂Q̂⇒ Q̂

′
v = ĈQvĈ

∗
.

Lemma 10 Unit dual quaternions represent the three-dimensional 3D rota-
tion with an angle θ and a unit axis n when the dual part Q∗ = 0.

Q̂r =
[
cos
(
θ
2

)
, nx sin

(
θ
2

)
, ny sin

(
θ
2

)
,

nz sin
(
θ
2

)]
[0, 0, 0, 0]

Lemma 11 A pure translation can be expressed in terms of a dual quaternion
by

Q̂t = [1, 0, 0, 0]

[
0,
tx

2
,
ty

2
,
tz

2

]
Lemma 12 On the following, a single unit quaternion can be used to denote
a rotation followed by a translation as [7], [18]

Q̂ = Q̂t × Q̂r. (4)

3 Intersection curve

3.1 Geometric concepts of the intersection curve

First and second derivatives of the parametric curve α = α (s) in R3 in terms
of arc-length parameter are given by

α
′
(s) = T, α

′′
(s) = κN (5)
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in which the vectors T, N correspond to the components of the Frenet-Serret
frame, and κ represent the curvature of this curve.

Definition 13 Assume that the points P, Q, and M be on the same curve. If
the points P and M tend to Q, the circle’s limit that passes through all these
points is called the osculating circle at Q.

The osculating circle can then be used as an approximation of the intersec-
tion curve because the curve’s osculating circle at a point has the same tangent
and curvature as the curve at that point [4].

Suppose that the intersection curve α (s) is given as of regular surfaces
S1 (u, v) and S2 (r, s). The tangent vector of this curve can be written using
the surfaces’ unit normal vectors n1 and n2 at the point P with following
equation [17].

T =
n1 × n2
||n1 × n2||

. (6)

In this paper, the intersection curve is obtained by the transversal intersection
of two regular surfaces.

3.2 Marching algorithm

Finding the starting points of the intersection curves plays a vital role in
tracing methods. Analytically, we need to compute the below equation to
determine these two parametric surfaces’ intersection.

S1 (u, v) = S2 (r, s) . (7)

In the case of not intersecting these surfaces, the minimum distance is com-
puted between two surfaces to determine the starting points. For instance, if
the two surfaces exist in the same bounding box, we can compute a starting
point using the bounding box method.

For every next point, we can find the step vector at each point by using the
marching algorithm and the marching process can be performed in parametric
or Cartesian space. In Cartesian spaces, the marching method uses a fixed-
step. However, with our algorithm, we consider the curve’s local geometry
instead of a fixed step [14].

This paper utilizes the osculating circle to compute the length of each step.
The reason is that the intersection curve’s osculating circle α (s) can best
approximate the curve at the same point [15].
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4 Proposed method

Our proposed method focused on the osculating circle of the intersection curve
via using dual quaternions:

� We need to find initial points.

� We can compute the center and the osculating circle’s radius by using
these initial points.

� We obtain the next intersection point using dual quaternions.

In our method, we begin with determining the starting points by applying the
steps as follows:

Step 1: Determine the point P to be a starting point using the equation
(7).

Step 2: Obtain the point Q. It is accepted that the distance between the
points P and Q is L

(k.10) . The initial value of k is taken as 2. Here, L indicates
the step length.

Step 3: Increase the value of k by one, and continue by Step 2 if the point
Q becomes a singular point. On the other hand, if the singular case remains
the same, the value of k can be increased sequentially till 10.

Step 4: Continue with step 1 if the point Q can not be found because of
the singularity.

Next, to find the osculating circle’s center and radius, we utilized the method
in [15]. We can compute the osculating circle’s center with the following linear
system of equations. 

Cu = Pu

Cv = Qv

Cw = Qw

(8)

in which C is the osculating circle’s center point at Q. This center point C is
obtained via the intersection of three planes that have the normal vectors u,
v and w. Also, the distance between C and Q indicates the osculating circle’s
radius.

The step length can be obtained right after the osculating circle approxima-
tion. Wu and Andrade first computed the normal vector to the circumference
plane. After the transformations of translation and rotation, they moved the
osculating circle to the XOY plane by placing the center to O = (0, 0, 0). Con-
sequently, they obtained the transformed points and then determined whether



Osculating circle algorithm for finding intersection curves 309

P

Q

C

A

L

u v

θ
R

Figure 1: The circular step is obtained by the proposed method.

the orientation of the arc

(
_
PQ

)
was clockwise or counterclockwise. Next,

they found point A
′

after some computations and applied the inverse trans-
formations to point A

′
to ascertain the next intersection point A [15]. For this

process, they used very long calculations to find the next intersection point A.
In our new method, we determined θ as an increment L as shown in Fig.

1. We can compute the next intersection point A using only the equation (3)
below as

A = Q̂QQ̂
∗

= [1, 0, 0, 0] + ε[0, c1 + (q1 − c1) cos θ+ (c2 − q2) sin θ,

c2 + (q2 − c2) cos θ+ (q1 − c1) sin θ, q3].

(9)

Using the equation (9), we translate the osculating circle’s center C to the
origin O, implement the rotation, and then re-translate C to its initial position
and find the next intersection point applying only unit dual quaternions. The
proposed dual quaternion based osculating circle DQOC algorithm is given in
Algorithm 1.

5 Natural equation of the intersection curve

We can obtain the natural equation of the intersection curve obtained by the
transversal intersection of two regular surfaces, using the Darboux frames of
these surfaces.

Theorem 14 Let two surfaces be given as S1 (u, v) and S2 (r, s), and the inter-
section curve of these surfaces be α(s) parametrized with arc length parameter.
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We can expand series of the intersection curve α(s) at s = 0 as

α(s) =
s

1!

dα

ds
+
s2

2!

d2α

ds2
+
s3

3!

d3α

ds3
+ ... (10)

We can write the natural equation of the intersection curve α(s) at s = 0

in terms of the Darboux frame coefficients of the surfaces S1 and S2 with the
following equation.

α(s) =
s

1!
t+

s2

2!

1

||n1 ∧ n2||
[−a (τg1 − τg2)n

−kn2
g1 + τg1bn1 + kn1

g2 − τg2cn2]

= +
s3

3!

1

||n1 ∧ n2||

[
−a

′
(τg1 − τg2) − a

(
τ
′
g1

− τ
′
g2

)
+

1

||n1 ∧ n2||
a2 (τg1 − τg2)

2 + kn2
g1

−τg1bkn1
− kn1

kg2 − τg2kn2
] t

+
s3

3!

1

||n1 ∧ n2||

[
1

||n1 ∧ n2||
a (τg1 − τg2)kn2

−k
′
n2

− τ2g1b
]
g1

+
s3

3!

1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2) τg1b

−kn2
τg1 + τ

′
g1
b+ τg1b

′]n1
+
s3

3!

1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2)kn1

+ k
′
n1

+ τ2g2

]
n2

+
s3

3!

1

||n1 ∧ n2||

[
+

1

||n1 ∧ n2||
a (τg1 − τg2) τg2c

+kn1
τg2 − τ

′
g2
c− τg2c

′
]
n2

+...

(11)
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Proof. Since the intersection curve will take place on both surfaces, Darboux
frames of this curve on the surfaces S1 and S2 can be taken as {t1, g1, n1} and
{t2, g2, n2}. These frames are right-handed orthogonal frames associated with
each point of the intersection curve α(s), where t1 and t2 are the unit tangent
vectors of α(s) at the surfaces S1 and S2 ; n1 and n2 are the unit normal vectors
of the surfaces S1 and S2; g1 and g2 are the geodesic normals of the surfaces S1
and S2, respectively. On the other hand, we can write the unit tangent vector
of the intersection curve using the equation (6) as

dα

ds
=

n1 ∧ n2
||n1 ∧ n2||

= t = t1 = t2. (12)

Next, we can get the second derivative of the above equation as follows:

d2α

ds2
=

1

||n1 ∧ n2||

[
n
′
1 ∧ n2 + n1∧n

′
2

]
=

1

||n1 ∧ n2||
[(−kn1

t− τg1g1)∧n2 + n1∧ (−kn2
t− τg2g2)]

=
1

||n1 ∧ n2||
[kn1

n2 − τg1 ((n1n2) t− (tn2) n1)

−kn2
g1 − τg2 ((n1t) n2 − (n1n2) t)]

=
1

||n1 ∧ n2||
[−a (τg1 − τg2) t

−kn2
g1 + τg1bn1 + kn1

g2 − τg2cn2]

(13)

where, n1n2 = a, tn2 = b and n1t = c. Also, we can write the third derivative
of the equation (12) with below equation as
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d3α

ds3
=

1

||n1 ∧ n2||
[−a

′
(τg1 − τg2) t

−a
(
τ
′
g1

− τ
′
g2

)
t− a (τg1 − τg2) t

′
− k

′
n2
g1 − kn2

g
′
1

+τ
′
g1
bn1 + τg1b

′
n1 + τg1bn

′
1 + k

′
n1
g2

+kn1
g
′
2 − τ

′
g2
cn2 − τg2c

′
n2 − τg2cn

′
2]

=
1

||n1 ∧ n2||

[
−a

′
(τg1 − τg2) − a

(
τ
′
g1

− τ
′
g2

)
+

1

||n1 ∧ n2||
a2 (τg1 − τg2)

2 + kn2
g1 − τg1bkn1

−kn1
kg2 − τg2kn2

] t

+
1

||n1 ∧ n2||

[
1

||n1 ∧ n2||
a (τg1 − τg2)kn2

− k
′
n2

− τ2g1b

]
g1

+
1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2) τg1b

−kn2
τg1 + τ

′
g1
b+ τg1b

′]n1
+

1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2)kn1

+ k
′
n1

+ τ2g2

]
g2

+
1

||n1 ∧ n2||

[
+

1

||n1 ∧ n2||
a (τg1 − τg2) τg2c

+kn1
τg2 − τ

′
g2
c− τg2c

′
]
n2.

(14)

If we continue taking this derivative process as above, we can find the nth

derivative with following equation.

dnα

dsn
= unt+ vng1 +wnn1 + v

∗
ng2 +w

∗
nn2 (15)
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where, un, vn, wn, v∗n and w∗n are the known functions of sequential derivatives
of kni

, kgi and τgi , i = 1, 2. Taking derivative of (15), we can get the equation
below.

dn+1α

dsn+1
=
dun

ds
t+ unt

′ +
dvn

ds
g1 + vng

′
1 +

dwn

ds
n1

+wnn
′
1 +

dv∗n
ds

g2 + v
∗
ng
′
2 +

dw∗n
ds

n2 +w
∗
nn
′
2

=

[
dun

ds
− kg1vn − kn1

wn − kg2v
∗
n − kn2

w∗n

−
un

||n1 ∧ n2||
a (τg1 − τg2)

]
t

+

(
dvn

ds
− τg1wn −

un

||n1 ∧ n2||
akn2

)
g1

+

(
dwn

ds
+ τg1vn +

un

||n1 ∧ n2||
τg1b

)
n1

+

(
dv∗n
ds

− τg2w
∗
n +

un

||n1 ∧ n2||
kn1

)
g2

+

(
dw∗n
ds

+ τg2v
∗
n −

un

||n1 ∧ n2||
τg2c

)
n2.

(16)

Thus, we can obtain the recurrence formulas as
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un+1 =
dun

ds
− kg1vn − kn1

wn − kg2v
∗
n − kn2

w∗n

−
un

||n1 ∧ n2||
a (τg1 − τg2) ,

vn+1 =
dvn

ds
− τg1wn −

un

||n1 ∧ n2||
akn2

,

wn+1 =
dwn

ds
+ τg1vn +

un

||n1 ∧ n2||
τg1b,

v∗n+1 =
dv∗n
ds

− τg2w
∗
n +

un

||n1 ∧ n2||
kn1
,

w∗n+1 =
dw∗n
ds

+ τg2v
∗
n −

un

||n1 ∧ n2||
τg2c.

(17)

Finally, using the equations (12), (13), (14), (15), (16) and (17) the natural
equation of the intersection curve given in (11) can be written. �

6 Experimental results

This study compares our proposed dual quaternion-based osculating circle
DQOC algorithm with Wu and Andrade’s [15] method. To determine the in-
tersection curve points, we need to check the parallelism between the tangent
vectors u and v at the points P and Q, and so on. If u and v are parallel,
the curvature radius goes to infinity. Therefore, the best choice for step vector
is the tangent vector at Q. We used the value cos θ, which is the angle be-
tween the tangent vectors of consecutive intersection points. If cos θ ≥ 1 − ε
or cos θ ≤ −1 + ε, we can assume that the vectors u and v are parallel. If,
cos θ −→ 1 or cos θ −→ −1, then radius of the osculating circle −→ ∞. Be-
cause of this situation, we defined a parallel threshold value called ε above. In
the following applications, we obtained closer points to the intersection curve
than their method did. On the other hand, the number of next intersection
points on the tangential direction of the point Q can change according to the
threshold value. If the threshold value grows steadily, then, the number of
next intersection points may increase on the tangential direction of the point
Q. If the threshold value is taken as very small, next intersection points are
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Algorithm 1 Dual Quaternion based Osculating Circle DQOC Algorithm

Input: Two surfaces, Si (i = 1, 2)
Output: Points on the intersection curve
1: global Points, pointA, pointP, pointQ, pointM, center
2: global Tangent vectors, pointPtan, pointQtan
3: global Normal vector of plane, normal; radius of osculating circle, R
4: global Transformation matrices and their elements, lambda, V, TMatrix, RMa-

trix, pointPTrans, pointQTrans, directionValue, beta, dist, L;
. Find the initial points of the intersection of two surfaces Si (i = 1, 2)

5: count← 1;
6: tValue1← 0.0;
7: tStartValue← 0.0;
8: tValue1← tStartValue+ count ∗ 0.005;
9: findInitialPointsPQM(tValue1);

10: while count < 2 do
11: count← count+ 1;
12: parallel← isParallel(pointPtan, pointQtan);
13: if parallel then
14: pointA← getNewPointAlongTangent(pointQ, L);
15: else
16: findCenterOfOsculatingCircle();
17: R← getRadiusOfOsculator(pointQ, center);
18: normal← getNormalVector(center, pointQ, pointP);
19: lambda← getLambda(normal);
20: V ← getV(normal);
21: TMatrix← getTMatrix(center); . Obtain translation matrix
22: RMatrix← getRMatrix(normal); . Obtain rotation matrix
23: findTransformedPoints();
24: directionValue← getDirectionValue(pointPTrans, pointQTrans);
25: beta← getBeta(directionValue);
26: pointA← getPointA(R, beta, TMatrix, RMatrix);
27: dist← getDistanceToCurve(pointA);
28: end if
29: pointAtan← getTangentOfPoint(pointA);
30: updatePoints();
31: end while
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going to be far from the intersection curve. First, we present intersection of
two surfaces and intersection curves of these surfaces as seen from the figures
(6) and (6) for example 1, figures (6(a)) and (6) for example 2, and figures
(10(a)) and (10) for example 3. Next, we compared our method with Wu and
Andrade’s [15] method for different parallel threshold values as seen from the
figures (3), (4) and (5) for example 1, figures (7), (8) and (9) for example 2,
and figures (11), (12) and (13) for example 3.

Example 1: Let two surfaces be given as S1 : xy − z = 0 and S2 : z =
x3 + xy − 2z = 0. Then, the intersection curve of these two surfaces can be
expressed as α (t) =

(
t, t2, t3

)
.

(a) The intersection of surfaces
S1 : xy − z = 0 S2 : z = x3 + xy − 2z = 0

(b) The intersection curve
α (t) =

(
t, t2, t3

)
Figure 2: Intersection curve of two given surfaces.
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(a) (b)

Figure 4: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by the pro-
posed method based on the threshold value 10−9.

(a) (b)

Figure 3: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by our
method based on the threshold value 10−7.
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Figure 5: Comparison of distances to the intersection curve.

Example 2: The surfaces are given as S1 : x
2 + y2 = z and S2 : y = x2. We

can define the intersection curve with α (t) =
(
t, t2, t2 + t4

)
.

(a) The intersection of surfaces S1 : x2 + y2 = z
and S2 : y = x2.

(b) The intersection curve α (t) =
(
t, t2, t2 + t4

)
.

Figure 6: Intersection curve of two given surfaces.
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(a) (b)

Figure 7: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by our
method based on the threshold value 10−7.

(a) (b)

Figure 8: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by the pro-
posed method based on the threshold value 10−9.
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Figure 9: Comparision of distances to the intesection curve.

Example 3: Let’s take two surfaces as S1 : x
2+y2 = 1 and S2 : z = x

2−y2.
We can find the intersection curve as α (t) = (cos t, sin t, cos 2t, ).

(a) The intersection of surfaces S1 : x2 +
y2 = 1 and S2 : z = x2 − y2.

(b) The intersection curve α (t) =
(cos t, sin t, cos 2t, ).

Figure 10: Intersection curve of two given surfaces.
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(a) (b)

Figure 11: The figure on the left shows the approximated points found by the
method in ([15]), and the one on the right shows the approximated points
found by our method based on the threshold value 10−7.

(a) (b)

Figure 12: The figure in (a) shows the approximated points found by the
method in ([15]), and the figure (b) shows the approximated points found by
the proposed method based on the threshold value 10−9.
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Figure 13: Comparision of distances to the intesection curve.

7 Conclusion

In this study, we presented a novel dual quaternion-based osculating circle
DQOC algorithm for finding the intersection curve points of regular two sur-
faces based on the differential geometric properties of the curve and the use
of dual quaternions. We obtained closer points to the intersection curve when
we compare our method with Wu and Andrade’s [15] method. Our proposed
method is more efficient and accurate when we compare our method with Wu
and Andrade’s method for different parallel threshold values. Also, we used
fewer calculations for this process. Moreover, we gave the natural equations of
the intersection curve.
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Abstract. This paper presents results for some vertex stress related
parameters in respect of specific subfamilies of Kneser graphs. Kneser
graphs for which diam(KG(n, k)) = 2 and k ≥ 2 are considered. The
note establishes the foundation for researching similar results for Kneser
graphs for which diam(KG(n, k)) ≥ 3. In addition some important ver-
tex stress related properties are stated. Finally some results for specific
bipartite Kneser graphs i.e. BK(n, 1), n ≥ 3 will be presented. In the
conclusion some worthy research avenues are proposed.

1 Introduction

It is assumed that the reader has good working knowledge of set theory. For
the general notation, notions and important introductory results in set theory,
see [3]. For the general notation, notions and important introductory results
in graph theory, see [2, 4].

Only non-trivial, finite, undirected and connected simple graphs are consid-
ered. Let Xi, i = 1, 2, 3, . . . ,

(
n
k

)
, k ≥ 1 be the k-element subsets of the set,
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{1, 2, 3, . . . , n}. A Kneser graph denoted by KG(n, k), n, k ∈ N is a graph with
vertex set,

V(KG(n, k)) = {vi : vi 7→ Xi}

and the edge set,
E(KG(n, k)) = {vivj : Xi ∩ Xj = ∅}.

Without any relation between n and k the following subfamilies of Kneser
graphs follow easily.
1. For k > n the Kneser graph has an empty vertex set implying that the edge
set is empty. Hence, for n ∈ N the empty graph is obtained.
2. For k = 1 the Kneser graph KG(n, k) ∼= Kn ∀ n.
3. For k = n the Kneser graph is always a trivial graph (i.e. K1).
4. For n

2 < k < n the vertex set is non-empty. However, the edge set is empty
so for the permissible values of k and n the corresponding null graphs Nt,
t =

(
n
k

)
are obtained.

5. For n even and k = n
2 a corresponding matching graph is obtained.

6. For n even and 2 ≤ k ≤ n−2
2 and; for n odd and 2 ≤ k ≤ bn2 c the subfamily

of non-trivial, connected and non-complete Kneser graphs is obtained.

Note that the author draws a distinction between an empty graph G, (both
V(G) = ∅ and E(G) = ∅) and a null graph H, (V(H) 6= ∅ and E(H) = ∅).
This distinction is not common in the literature. Conventionally, the 0-element
subset is not considered. However, from set theory it is known that the empty-
set is indeed a subset of any set. Therefore, it seems proper to state that
KG(n, 0) is a trivial graph say, v1 7→ ∅.

It follows directly from the structure of a Kneser graph that the order of a
Kneser graph is given by ν(KG(n, k)) =

(
n
k

)
. Furthermore, because vertex ad-

jacency as it relates to a k-element subset is defined without loss of generality,
a Kneser graph is inherently a degree regular graph. The number of neighbors
of any vertex vi is given by, deg(vi) =

(
n−k
k

)
. From the aforesaid it follows

that the number of edges is given by, ε(KG(n, k)) = 1
2 ×

n!
k!k!(n−2k)! .

Example: KG(5, 2): Let V(KG(5, 2)) be define as: v1 7→ {1, 2}, v2 7→ {1, 3},
v3 7→ {1, 4}, v4 7→ {1, 5}, v5 7→ {2, 3}, v6 7→ {2, 4}, v7 7→ {2, 5}, v8 7→ {3, 4}, v9 7→
{3, 5}, v10 7→ {4, 5}. See figure 1 as illustration. It is known that, KG(5, 2) ∼=
Petersen graph.



326 J. Kok

v1

v2

v3v4

v5

v6

v7

v8 v9

v10

Figure 1: KG(5, 2) of order 10.

2 Total induced vertex stress, total vertex stress
and vertex stress

The vertex stress of vertex v ∈ V(G) is the number of times v is contained as
an internal vertex in all shortest paths between all pairs of distinct vertices
in V(G)\{v}. Formally stated, SG(v) =

∑
u6=w6=v6=u

σ(v) with σ(v) the number of

shortest paths between vertices u, w which contain v as an internal vertex.
Such a shortest uw-path is also called a uw-distance path. See [8, 9]. The total
vertex stress of G is given by S(G) =

∑
v∈V(G)

SG(v), [5]. From [10, 11] we recall

the definition of total induced vertex stress denoted by, sG(vi), vi ∈ V(G).

Definition 1 [11] Let V(G) = {vi : 1 ≤ i ≤ n}. For the ordered vertex pair
(vi, vj) let there be kG(i, j) distinct shortest paths of length lG(i, j) from vi to

vj. Then, sG(vi) =
n∑

j=1,j6=i
kG(i, j)(`G(i, j) − 1).

The notion of vertex stress finds application in research related to centrality
in graphs. In dynamical graph theory the parameter assists to identify vertices
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which are more prone to system failure. The nodes within road networks are
a good example. A more subtle example is identifying the possibility of a
high number of step-through certain steps in an algorithm. Such high number
step-through may lead to excessive memory requirements. Highly congested
airports can be pre-empted by determining the vertex stress of airports serving
as the nodes of a flight route network.

The families no. 1 to 5 have the vertex stress related parameters equal
to 0. The only interesting family of Kneser graphs to consider with regards
to vertex stress and related parameters is family no. 6. Thus only Kneser
graphs within the range 2 ≤ k < n

2 will be studied. From [12] we have that

diam(KG(n, k)) = 1+d k−1n−2ke. Hence, for 2 ≤ k ≤ n+1
3 a corresponding Kneser

graph has diam(KG(n, k)) = 2. This section seeks to find results for k ≥ 2
subject to, n ≥ 3k− 1.

Case 1: Let k = 2, then n ≥ 5. For ease of reasoning the following con-
vention for 2-subsets of the set {1, 2, 3, . . . , n} will be used. The vertices are
defined as: v1 7→ {1, 2}, v2 7→ {1, 3}, . . . , vn−1 7→ {1, n}, vn 7→ {2, 3}, vn+1 7→
{2, 4}, . . . , v2n−3 7→ {2, n}, . . . , v(n2)

7→ {n− 1, n}.

Remark. As stated before, since vertex adjacency is defined without loss of
generality (for brevity, the wlg-principle) all results in respect of vertex v1 are
(immediately) valid for all vi ∈ V(KG(n, k)). Hence, for ease of reasoning the
results for v1 will be determined and then generalized. Such generalization is
axiomatically valid and requires no further proof.

Recall that the set of vertices adjacent to vertex vi is called the open neigh-
borhood of vi and it is denoted by N(vi) (or NG(vi) if reference to G is impor-
tant). The closed neighborhood of vertex vi is defined as, N[vi] = N(vi) ∪ {vi}

(or NG[vi] if reference to G is important).

Proposition 2 For a Kneser graph KG(n, 2), n ≥ 5 the total induced vertex
stress of v1 is given by

sKG(n,2)(v1) =
[(
n
2

)
−
((
n−2
2

)
+ 1
)]
×
(
n−3
2

)
.

Proof. Clearly, N(v1) = {vi : 1, 2 /∈ vi}. It is known that |N(v1)| =
(
n−2
2

)
.

Because diam(KG(n, k)) = 2 there does not exist any shortest 3-path in
KG(n, 2). Hence, there only exist shortest 2-paths from v1 to the remaining(
n
2

)
−
((
n−2
2

)
+1
)

vertices of KG(n, 2). Without loss of generality consider vertex

v2 7→ {1, 3}. Since N(v2) = {vj : 1, 3 /∈ vj} it follows easily that |N(v1)∩N(v2)| =(
n−3
2

)
. The aforesaid is true because the elements 1, 2, 3 are (must be) excluded
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as elements of the 2-element subsets in N(v1) ∩N(v2). Thus, the partial total
vertex stress induced by vertex v1 along all shortest v1v2-paths is settled. By
the wlg-principle the principle of immediate induction is valid. Therefore,

sKG(n,2)(v1) =
[(
n
2

)
−
((
n−2
2

)
+ 1
)]
×
(
n−3
2

)
. �

The generalized corollaries follow immediately.

Corollary 3 For a Kneser graph KG(n, 2), n ≥ 5 the total induced vertex
stress of vi ∈ V(KG(n, 2)) is given by,

sKG(n,2)(vi) =
[(
n
2

)
−
((
n−2
2

)
+ 1
)]
×
(
n−3
2

)
.

Corollary 4 For a Kneser graph KG(n, 2), n ≥ 5 the total vertex stress is
given by

S(KG(n, 2)) = 1
2

(
n
2

)[(
n
2

)
−
((
n−2
2

)
+ 1
)]
×
(
n−3
2

)
.

Proof. The result follows from Definition 1 read together with the proof of
Proposition 2 and Corollary 3. �

Corollary 5 For a Kneser graph KG(n, 2), n ≥ 5 the vertex stress is given by

SKG(n,2)(vi) =
1
2

[(
n
2

)
−
((

n−2
2

)
+ 1
)]
×
(
n−3
2

)
.

Proof. It is known that the Kneser graphs KG(n, 2) are distance regular, see
[1]. By Theorem 3.6 in [9] the Kneser graphs KG(n, 2) are stress regular as
well. Thus, the result of Corollary 4 must simply be divided by

(
n
2

)
. �

Note that since 2 ≤ k ≤ n+1
3 it follows that n ≥ 3k1 − 1 for a k1 ∈ N\{1}

to ensure that diam(KG(n, k1)) = 2. This observation enables immediate
generalizations. The vertices which may be used for reasoning of proof are:

v1 7→ {1, 2, 3, . . . , k1 − 1, k1}, v2 7→ {1, 2, 3, . . . , k1 − 1, k1 + 1}
and vi ∈ N(v1) ∩N(v2).

Because the reasoning of proof is similar to that found in Proposition 2 and
Corollaries 3 to 5 and the fact that the wlg-principle applies throughout in
all Kneser graph embodiments, no further proofs are presented.

Theorem 6 For a Kneser graph KG(n, k1), k1 ∈ N\{1, 2}, n ≥ 3k1 − 1 the
total induced vertex stress of vi ∈ V(KG(n, k1)) is given by

sKG(n,k1)(vi) =
[(
n
k1

)
− (
(
n−k1
k1

)
+ 1)

]
×
(
n−(k1+1)

k1

)
.
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Corollary 7 For a Kneser graph KG(n, k1), k1 ∈ N\{1, 2}, n ≥ 3k1 − 1 the
total vertex stress is given by

S(KG(n, k1)) = 1
2

(
n
k1

)[(
n
k1

)
−
((
n−k1
k1

)
+ 1
)]
×
(
n−(k1+1)

k1

)
.

Corollary 8 For a Kneser graph KG(n, k1), k1 ∈ N\{1, 2}, n ≥ 3k1 − 1 the
vertex stress is given by,

SKG(n,k1)(vi) =
1
2

[(
n
k1

)
−
((
n−k1
k1

)
+ 1
)]
×
(
n−(k1+1)

k1

)
.

2.1 Vertex stress related properties of KG(n, 2)

Recall some results from [9]. A graph G for which SG(vi) = SG(vj) for all
distinct pairs vi, vj ∈ V(G) is said to be stress regular.

Theorem 9 [9] Every distance regular graph is stress regular.

Corollary 10 [9] Every strongly regular graph is stress regular.

Corollary 11 [9] Every distance transitive graph is stress regular.

Since it is known that the family of Kneser graphs KG(n, 2) are distance
regular graphs it follows from Theorem 9 that the Kneser graphs KG(n, 2) are
stress regular. Furthermore, it is known from [1] that every distance regular
graph G with diam(G) = 2, is strongly regular. The aforesaid read together
with Corollary 10 permit the next corollary without further proof.

Corollary 12 Kneser graphs KG(n, k1), k1 ∈ N\{1, 2}, n ≥ 3k1− 1 are stress
regular.

In fact, a general result (without further proof) is permitted from the knowl-
edge that all Kneser graphs KG(n, k), n ≥ k are vertex transitive.

Theorem 13 All Kneser graphs KG(n, k), n ≥ k are stress regular.

2.2 Stress balanced graphs

Definition 14 A graph G is said to be stress-balanced if and only if∑
vt∈N[vi]

SG(vt) =
∑

vl∈N[vj]

SG(vl)

for all pairs of distinct vertices vi, vj ∈ V(G).
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The value γ(vi) =
∑

vt∈N[vi]

SG(vt) is called the vertex stress index of the vertex

vi. A star graph (for brevity, a star) is a tree which has a central vertex v0
with m ≥ 0 pendent vertices (or leafs) attached to v0. The star is denoted
by S1,m and the leafs are labeled, vi, i = 1, 2, 3, . . . ,m. It is straightforward
to verify that the respective vertex stress are, SS1,m(vi) = 0, 1 ≤ i ≤ m and

SS1,m(v0) = m(m−1)
2 . Since,

∑
vj∈NS1,m

[v0]

SS1,m(vj) = m(m−1)
2 +m × 0 = m(m−1)

2

and
∑

vj∈NS1,m
[vi]

SS1,m(vj) = 0 + m(m−1)
2 = m(m−1)

2 , 1 ≤ i ≤ m a star is stress-

balanced. A star shows that, despite not being degree regular or stress regular,
a star is stress-balanced. Figure 2 depicts another example. The graph G =
C4 + v1v3 is not degree regular and has SG(v1) = SG(v3) = 1 and SG(v2) =
SG(v4) = 0. So G is not stress regular but it is stress-balanced.

v1

v2

v3

v4

Figure 2: G = C4 + v1v3.

Lemma 15 A graph G which is degree regular (or regular for brevity) and
stress regular is stress-balanced.

Proof. The result is a direct consequence of Definition 14. �

We present the main result of this subsection.

Theorem 16 All Kneser graphs KG(n, k), n ≥ k are stress-balanced.

Proof. Since all Kneser graphs KG(n, k), n ≥ k are degree regular and stress
regular (see Theorem 13), read together with Definition 14 and Lemma 15,
settles the result. �
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3 On bipartite Kneser graphs, BK(n, k)

Without loss of generality let n ≥ 3 and let 1 ≤ k ≤ dn2 e − 1. Let Xi, i =
1, 2, 3, . . . ,

(
n
k

)
be the k-element subsets of the set, {1, 2, 3, . . . , n}. Let Yi, i =

1, 2, 3, . . . ,
(
n
k

)
be the (n − k)-element subsets of the set, {1, 2, 3, . . . , n}. Let

V1 = {vi : vi 7→ Xi} and V2 = {ui : ui 7→ Yi}. A connected bipartite Kneser
graph denoted by BK(n, k) is a graph with vertex set,

V(BG(n, k)) = V1 ∪ V2

and the edge set,

E(BG(n, k)) = {viuj : Xi ⊂ Yj}.

From the definition it is axiomatically true (or from applying thewlg-principle)
that BK(n, k) is degree regular with deg(vi) = deg(uj) =

(
n−k
k

)
. Equally

straightforward is that BK(n, k) is of order 2×
(
n
k

)
. In fact, |V1| = |V2| =

(
n
k

)
.

Theorem 17 A bipartite Kneser graph BK(n, k) has diam(BK(n, k)) ≥ 3.

Proof. Since
(
n−k
k

)
<
(
n
k

)
it follows that N(vi) ⊂ V2 and similarly, N(uj) ⊂ V1.

Hence, there exists at least one shortest viuj-path (or shortest ujvi-path) of
distance greater or equal to 3. �

Similar to the notion of stress regularity it is said that a graph G is induced
vertex stress regular (for brevity, IVS-regular) if and only if sG(vi) = sG(vj)
for all distinct pairs vi, vj ∈ V(G).

Theorem 18 An IVS-regular graph G is stress regular.

Proof. The result follows from the fact that for any vertex vi the vertex stress
is given by, SG(vi) = sG(vi)

2 . �

Corollary 19 An IVS-regular graph G with a singular adjacency regime for
all vertices is stress-balanced.

Proof. The result follows from Theorem 18 and the fact that degG(vi) =
degG(vj) for all distinct pairs vi, vj ∈ V(G). �

Theorem 18 and Corollary 19 read together with the definition of BK(n, k)
imply that bipartite Kneser graphs are stress-balanced.
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3.1 Specific results for BK(n, 1), n ≥ 3

Theorem 20 Bipartite Kneser graphs, BK(n, 1), n ≥ 3 are stress regular.

Proof. Proposition 3.4 in [7] convinces that a graph BK(n, 1) is distance-
transitive. Also, distance-transitive ⇒ distance regular. Therefore, the latter
read together with Theorem 9 (Theorem 3.6 in [9]) settles the fact that bipar-
tite Kneser graphs BK(n, 1), n ≥ 3 are stress regular. �

Theorem 21 A bipartite Kneser graph, BK(n, 1), n ≥ 3 has,

diam(BK(n, 1)) = 3.

Proof. Let V1(BK(3, 1)) = {vi 7→ {i} : i = 1, 2, 3 and V2(BK(n, 1)) = {u1 7→
{1, 2}, u2 7→ {1, 3}, u3 7→ {2, 3}}. From the definition of BK(n, 1) it follows im-
mediately that BK(3, 1) ∼= C6. Hence, diam(BK(3, 1)) = 3. For B(4, 1) each
vertex ui ∈ V2(B(3, 1)) becomes ui ∪ {4} and exactly two vertices are added.
Therefore, V1(BK(4, 1)) = V1(BK(3, 1)) ∪ {4} and V2(BK(4, 1)) = {ui ∪ {4} :
ui ∈ V2(BK(3, 1))} ∪ {1, 2, 3}. After adding the edges in accordance with the
adjacency definition it follows easily that, diam(BK(4, 1)) = 3. Obviously the
vertex changes and the addition of exactly two new vertices remain consistent
as n progresses consecutively through 5, 6, 7 . . . .

Assume the result holds for BK(n, 1), 5 ≤ n ≤ k. By similar reasoning
to show the result for the progression from n = 3 to n = 4, it follows by
immediate induction that the results holds for the progression from n = k to
n = k+ 1. Thus,

BK(n, 1), n ≥ 3 has diam(BK(n, 1)) = 3. �

Proposition 22 A vertex vi ∈ V1(BK(n, 1)) (or uj ∈ V2(BK(n, 1))) has:

sBK(n,1)(vi) = 3× degBK(n,1)(vi)(degBK(n,1)(vi) − 1).

Proof. It follows from Theorem 21 that a vertex vi ∈ V1(BK(n, 1)) (or uj ∈
V2(BK(n, 1))) has exactly,

degBK(n,1)(vi)(degBK(n,1)(vi) − 1) shortest 2-paths

and exactly,

degBK(n,1)(vi)(degBK(n,1)(vi) − 1) shortest 3-paths.

Obviously v1 has degBK(n,1)(vi) shortests 1-paths (or edges). Applying Defini-
tion 1 settles the result. �
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Corollary 23 (a) A vertex vi ∈ V1(BK(n, 1)) (or uj ∈ V2(BK(n, 1))) has:

SBK(n,1)(vi) =
3(n−1)(n−2)

2 .

(b) BK(n, 1), n ≥ 3 has, S(BK(n, 1)) = 3n(n− 1)(n− 2).
(c) BK(n, 1), n ≥ 3 has, s(BK(n, 1)) = 6n(n− 1)(n− 2).

Proof. Trivial from the appropriate definitions. �

4 Conclusion

Author is of the view that an extension of this paper through a study of
Kneser graphs with diameter greater than 2 is a worthy endeavor. To ensure
that say, diam(KG(n, k)) = 3 it follows that for k ≥ 3, n ≥ 5k−1

2 . The num-

ber of vertices (k-subsets) of
(≥ 5k−1

2
k

)
becomes large very rapidly. More so for

diam(KG(n, k)) = `, ` ≥ 4. It is suggested that shortest path algorithms (ex-
isting or newly developed) or experimental mathematics through simulation
programs be utilized in support of further research.

The new notion of stress-balanced graphs has only been briefly introduced. It
is suggested to be an interesting concept with a wide scope for further research.
A graph G which is not stress-balanced will have at least one vertex say, vi
such that γ(vi) = max{γ(vj) : γ(vj) =

∑
vt∈N[vj]

SG(vt)}. A closed neighborhood

N[vi] which yields such maximum is called a stress district of G. Similarly a
closed neighborhood N[vj] which yields min{γ(vk) : γ(vk) =

∑
vt∈N[vk]

SG(vt)} is

called a stress suburb of G. Studying stress districts and stress suburbs remains
open.

Various studies of other families of graphs which are constructed from the
subsets of a set together with a well-defined adjacency regime have been pub-
lished. We refer to this as the study of graphs from sets. A specific and perhaps
less known family called set-graphs can be read in [6]. Hence, various research
projects under the theme Vertex stress related parameters for graphs from sets
remain open.

Acknowledgment

The author would like to thank the anonymous referee for his(her) constructive
comments, which helped to improve the elegance and the content enhancement
(bipartite Kneser graphs) of this paper.



334 J. Kok

References

[1] N. Biggs, Algebraic Graph Theory 2nd Edition, Cambridge University Press,
Cambridge, 1993, ISBN-13: 978-0521458979. ⇒328, 329

[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press,
London, 1976. ⇒324

[3] R.C. Freiwald, An Introduction to Set Theory and Topology, Washington State
University, Saint. Louis, (2014), http://doi.org/10.7936/K7D798QH ⇒324

[4] F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969. ⇒324
[5] J. Kok, J. Shiny, V. Ajitha, Total vertex stress alteration in cycle related

graphs, Matematichki Bilten, 44, 2 (2020) 149–162. http://doi.org/10.37560/
matbil2020149k ⇒326

[6] J. Kok, K. P. Chithra, N.K. Sudev, C. Susanth, A study on set-graphs, Interna-
tional Journal of Computer Applications, 118, 7, (2015) 1–5. http://doi.org/
10.5120/20754-3173 ⇒333

[7] S. M. Mirafzal, A. Zafari, Some algebraic properties of bipartite Kneser graphs,
arXiv: 1804.04570V1, (2018) 1–11, to appear in Ars Combinatoria. ⇒332

[8] A. Shimbel, Structural parameters of communication networks, The Bulletin of
Mathematical Biophysics, 15, 4 (1953) 501–507. ⇒326

[9] J. Shiny, V. Ajitha, Stress regular graphs, Malaya Journal of Matematik, 8, 3
(2020) 1152–1154. http://doi.org/10.26637/MJM0803/0072 ⇒326, 328, 329,
332

[10] J. Shiny, Induced stress of some graph operations, Malaya Journal of Matematik,
9(1), (2021), 259-261. https://doi.org/10.26637/MJM0901/0043 ⇒326

[11] J. Shiny, J. Kok, V. Ajitha, Total induced vertex stress in barbell-like graphs,
Journal of the Indonesian Mathematical Society, 27(2), (2021), 150-157. ⇒326

[12] M. Valencia-Pabon and J-C. Vera, On the diameter of Kneser graphs, Discrete
Mathematics, 305 (1-3), (2005), 383-385. ⇒327

Received: November 14, 2021 • Revised: November 27, 2021



Acta Univ. Sapientiae, Informatica 13, 2 (2021) 335–360

DOI: 10.2478/ausi-2021-0016

Reproducibility in the technical debt

domain
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Abstract.
Context: It is crucial to understand how reproducible the measure-

ment results in the scientific publications are, as reproducibility is one of
the cornerstones of engineering.

Objective: The goal of this study is to investigate the scientific pub-
lications presented at the premier technical debt conferences by under-
standing how reproducible the reported findings are.

Method: We conducted a systematic literature review of 135 unique
papers published at the “International Workshop on Managing Technical
Debt” and the “International Conference on Managing Technical Debt”,
the premier scientific conference series on technical debt.

Results: Only 44 of the investigated 135 papers presented numerical
evidence and only 5 papers listed the tools, the availability of the tools,
and the version of the tools used. For the rest of the papers additional
information would have been needed for the potential reproducibility.
One of the published papers even referred to a pornographic site as a
source of a toolset for empirical research.
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Conclusions: The field of technical debt research might have a repro-
ducibility crisis as only approx. 32% of the papers published at the most
prestigious workshop/conference series of the field present measurement
results, of which only approx. 11% (4% of all papers investigated) iden-
tify the tools used, to make reproduction possible. Our findings might
even point out to a bias in the field: researchers of this domain pursue
Technical Debts in order to improve the quality of software products,
assuming that the software products used for measurement are flawless
and no longer possible to improve upon, which is a contradiction in and
of itself.

1 Introduction

Reproducibility is one of the cornerstones of engineering science. Results, that
can not be consistently reproduced (within the same boundary conditions and
field-specific accepted divergence) by independent or groups of researchers,
using different measurement tools, can not be reliably built upon to extend
scientific knowledge. Such scientific publications can even erode the general
public’s trust in scientific claims.

Reproducing results with different measurement instruments was already
shown to be hard in the technical debt domain research. Results of different
tools claiming to measure technical debt might not be statistically correlated
([48]), might even use different terms and metrics ([10]). Even when using the
same tool, the exact version used for measurements might matter.

On one hand, researchers and tool vendors are actively working on identi-
fying new ways and methods for software product quality improvement, for
example by identifying constructs that might lead to faults ([58]). Detecting
such new constructs may increase the technical debt related measures reported
by tools in the future.

On the other hand, the reported data are frequently overestimated ([52]).
In case of junior developers it could even be up to 2 - 20 times ([40]). The
fault proneness of the found issues (how likely they would be to lead to bugs)
might also be unclear ([39], [44]). Improving the theory and precision of the
detection algorithms might lead to tools reporting different (maybe drastically
smaller) technical debt related measures in the future.

Also, these tools sometimes evolve even with backwards incompatible chan-
ges, which can make community extensions obsolete or unable working to-
gether with newer versions ([11]). Research including such extensions might
produce misleading output.
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In this paper we overview the articles published at the domain’s premier
workshop series “Workshop on Managing Technical Debt” ([14], [63], [64], [65],
[66], [67], [68]) and conference series “International Conference on Technical
Debt” ([69], [70], [71]), [72]) in order to see how many of them include the
measured values:

� The name of all of the tools used for the measurements.

� The public availability of those tools.

� Exact versions of the applied tools.

These information would be indispensable for independent researchers to be
able to reproduce the presented results. Please note that we did not require
the input data to be publicly available.

We have found that of the 135 articles published in the proceedings of these
conferences, only 44 presented any numerical measurement results. Of these
44 articles, only 5 contained all of the information about the used tools that
might be needed to reproduce the results. We also found an article, published
in 2018 ([8]), referencing a website as a source of “a toolset developed to
support empirical software engineering research”, which was by 2021 showing
pornographic content.

The paper is organised as follows. In Section 2 we present some earlier
work related to the subject. Section 3 presents our research methodology.
Section 4 presents our findings. Section 5 deals with the validity of our results.
Finally, Section 6 summarises our findings and Section 7 offers ideas for further
research.

2 Related work

The term debt, in a technical context, was first used in 1992 by Cunningham
[20] in his experience report to illustrate the difference between a theoretical
waterfall development[51] and incremental growth (enabled by object oriented
programming at the time). “The traditional waterfall development cycle has
endeavored to avoid programming catastrophe by working out a program in
detail before programming begins”, “we recognize this amounts to preserving
the concept of payment up-front and in-full”. In incremental growth develop-
ment can start before all of the requirements are collected, all architecture is
completely designed and all details are fixed, but comes with a risk: “Ship-
ping first time code is like going into debt. A little debt speeds development
so long as it is paid back promptly with a rewrite. Objects make the cost
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of this transaction tolerable”. Stating that incremental growth “leads to the
most appropriate product in the shortest possible time” and concluding that
“The modularity offered by objects and the practice of consolidation make the
alternative, incremental growth, both feasible and desirable in the competitive
financial software market”.

Since 1992 the technical debt research domain has greatly expanded. The
first scientific workshop titled “Workshop on Managing Technical Debt” ([14])
was organized already in 2010. Khomyakov et al. [36] found 603 papers pub-
lished between 2011 and 2017 related to the automated measurement of tech-
nical debt. According to Lenarduzzi et al. [38] in 2018 alone (between March
2018 to December 2018) 384 unique papers were published related to technical
debt research. By the end of 2021 already 7 workshops have been organized in
the series “Workshop on Managing Technical Debt” ([14], [63], [64], [65], [66],
[67], [68]) and 4 conferences in the conference series “International Conference
on Technical Debt” ([69], [70], [71], [72]).

While the domain expanded with papers reporting valuable results, some
of the papers pointed out to some challenges. Barta et al. ([11]) presented
how backward incompatible changes were introduced during the evolution of
SonarQube’s API. They investigated 66 plug-ins listed as community plug-ins
on github1. They found that 22 were by the time of their investigation obso-
lete, 5 of the 23 most recently updated plug-ins (at that time) were already
incompatible to the point of not working with the newest SonarQube ver-
sion. Parodi et al. [48] showed that even different static analysis tools (Sonar,
FindBugs) claim to measure technical debt, their outputs are not statistically
correlated. They conclude that “Static code analysis tools must be thoroughly
studied in order to evaluate if they represent meaningful proxies for Technical
Debt” Paris et al. [10] studied numerous tools (both commercial and research
prototypes) that claimed to measure technical debt. They found among others
that “different tools adopt different terms, metrics, and ways to identify and
measure technical debt”. They also observed fragmentation of communities on
discussion forums on the internet around tools: different tools being popular
on different web forums. Saarimki et al. [52] investigated the accuracy of the
fixing time estimations for technical debt items by SonarQube on 15 projects
with 65 student developers. They found that the estimations were only correct
for 2 projects, for 9 projects they were overestimated. Lenarduzzi et al. [40]
investigated (among others) how long it takes for junior developers to refac-
tor technical debt items detected by SonarQube. They found that the time

1https://github.com/SonarQubeCommunity (last accessed 2021.10.05)
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estimated by SonarQube was always at least 2 times higher than the actual
fixing time, in some cases 20 times higher. Marcilio et al. [44] studied the re-
alistic use of SonarQube on 421 976 issues from 246 projects. They found that
only approx. 13% of the issues reported by SonarQube were resolved. They
conjectured that “just a subset of the checkers reveal real design and coding
flaws, and this might artificially increase the technical debt of the systems”.
Lenarduzzi et al. [39] conducted an empirical study on 21 open-source projects
to understand how fault-prone SonarQube’s violations are. They found that of
the 202 violations defined for Java only 26 have a low fault-proneness, “viola-
tions classified as “bug” does not seem to be the root cause of faults”, warning
that the current way of calculating technical debt is incorrect as several non-
fault prone rules are counted as fault-prone, while some other rules should be
considered fault-prone. Concluding that “companies should carefully consider
which rules they really need to apply”.

Even if only looking at the release notes of SonarQube (the tool used most
often in the reviewed articles), the tool obviously goes through changes that
might impact the measures it reports for a given source code:

� On one hand, the number of rules supported for Java increased from
400+ in version 7.32 (released on August 13, 2018) to 550+ by version
8.03 (released on October 16th, 2019). More rules, finding more instances
of quality issues, potentially lead to higher technical debt values reported
for the same source codes.

� On the other hand, version 8.24 describes its Java related changes as
“Ground-up rewrite brings more accurate analysis, with fewer false pos-
itives”. More precise detection reporting fewer false positives, potentially
leads to lower technical debt values reported for the same source codes.

Other software products used for checking code quality are also not immune to
software quality issues, that might affect their measured and reported values.
We have already reported some issues to the producers of such products. For
example:

� The functionality of PMD, checking if a public function is commented
or not, might not correctly detect in some cases that the function has a
comment, falsely reporting that the function is undocumented 5.

2https://www.sonarqube.org/sonarqube-7-3/ (last accessed 2021.10.05)
3https://www.sonarqube.org/sonarqube-8-0/ (last accessed 2021.10.05)
4https://www.sonarqube.org/sonarqube-8-2/ (last accessed 2021.10.05)
5https://github.com/pmd/pmd-eclipse-plugin/issues/138 (last accessed 2021.10.05)
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� We have found a situation, where the correctness of the code was not
evaluated in enough depth in a sub-tool, that lead to false-positive find-
ing reported in the main tool and complexities in the issue reporting
procedure. In a particular case6 it turned out, that:

1. The root of the problem is not in the given product, but in a dif-
ferent product they use to offer their functionalities.

2. The developers/maintainers don’t have the resources needed to help
in handling the issue, or to help report the issue (with additional
information) to the correct source.

3. We, as users, are not well equipped to identify which sub-product
embedded in/used by this main-product is the root of the prob-
lem. Also, not well equipped to provide the developers of that
sub-product with additional information on how their product is
called/integrated.

In general, at the time of writing this article there are:

� 729 open bugs for the “Static Analyzer” component of Clang7

� 8 066 for Clang itself8.

� At least 10 000 for GCC9

� 519 open issues for PMD10

� 386 open issues for SpotBugs11

� SonarSource also has an active community12 with many topic related to
shortcomings of some products (like SonarQube itself).

6https://github.com/Ericsson/codechecker/issues/3098 (last accessed 2021.10.05)
7https://bugs.llvm.org/buglist.cgi?bug_status=__open__&component=Static%

20Analyzer&limit=0&order=priority%2Cbug_severity&product=clang&query_format=

advanced (last accessed 2021.10.05, needs registered user)
8https://bugs.llvm.org/buglist.cgi?bug_status=__open__&limit=0&no_redirect=

1&order=priority%2Cbug_severity&product=clang&query_format=specific (last ac-
cessed 2021.10.05, needs registered user)

9https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=__open__&limit=0&no_

redirect=1&order=priority%2Cbug_severity&product=gcc&query_format=specific

(last accessed 2021.10.05, needs registered user)
10https://github.com/pmd/pmd/issues (last accessed 2021.10.05)
11https://github.com/spotbugs/spotbugs/issues (last accessed 2021.10.05)
12https://community.sonarsource.com/tags (last accessed 2021.10.05)
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3 Methodology

In order to understand how reproducible the results published in the technical
debt domain research are, we conducted a systematic literature review. In this
section, we describe the goal of our research, report our search strategy and
paper evaluation method.

3.1 Goal of our research

The goal of the research presented in this paper was to investigate the existing
body of knowledge in software engineering to understand how reproducible the
academic papers published in the technical debt domain research are.

3.2 Search strategy

The search strategy involves the bibliographic sources, the definition of the
inclusion and exclusion criteria.
Bibliographic sources: To get a good view of the field of technical debt

research, we decided to use the domain’s premier workshop series “Workshop
on Managing Technical Debt” ([14], [63], [64], [65], [66], [67], [68]) and con-
ference series “International Conference on Technical Debt” ([69], [70], [71]),
[72]) as sources. We used the ACM Digital Library13 and IEEEXplore Digital
Library14 to reach the articles that were published as part of the proceedings
of these conferences.
Inclusion criteria:

� Papers presenting measured values in relation to technical debt (numer-
ical values that might be reproduced and compared to in a replication
study).

Exclusion criteria:

� Papers not presenting a measurement result (example: [3], [13]).

� Papers using surveys as input for measurements (example: [12]).

Please note, that we did include papers that performed their measurements
on projects that were anonymized in the paper. We believe that the field
needs to have information from the industry, which might come with such
limitations.

13https://www.acm.org/ (last accessed 2021.10.05)
14https://ieeexplore.ieee.org (last accessed 2021.10.05)
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Search process: The search was conducted in March 2021.
Based on the described process, we retrieved a total of 122 papers for the

review.

3.3 Paper evaluation

To decide if a result presented in a paper might be reproducible, we tried
to identify what tools were described as being used to create the result, and
checked how well they were identified:

� Is the name of the tool represented?
� Is there a direct link provided, from where the tool could be accessed

(either for free or commercially)?
� Is the version of the tool identified?

During the evaluation of the papers, we only considered those tools, for each
paper, that were presented as being used for creating the published result.
Tools mentioned in relation to other works or in comparison with the used
tools, were not counted as used in the paper.

Please note, that this method comes with a limitation: as we did not actually
try to reproduce the published result, we could not detect if the researchers
had to use some undisclosed tools to get to the published result.

4 Results

In this section we present our findings. In a number of investigated papers
it is not clear what tools the researchers were using. Even if the tool’s name
resembles a well known tool we could not precisely cite the tool, as it is not
clear if they meant the same tool and if so which version of it. For this reason
in our short assessments of all investigated papers we list the tool names found
in a paper, in apostrophes first. This is done to provide a common presentation
format and to indicate that the name might not refer to the tool readers could
automatically associate it with.

4.1 Details for 2010 ([14])

According to the Software Engineering Institute of Carnegie Mellon University
[17] the results of the first workshop organized for the topic of managing tech-
nical debt was published as [14]. This was a single paper, that only introduced
the idea and importance of holding international workshops on managing tech-
nical debt, but in itself did not disclose measurements.
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Table 1: The general result of our Systematic Literature Review

Venue Nr. of articles Presents Fully identifies
measured results used tools

MTD 2010 ([14]) 1 0 0
MTD 2011 ([63]) 9 4 0
MTD 2012 ([64]) 11 3 0

MTD 2013a ([65]) 11 2 0
MTD 2013b ([27]) 1 0 0

MTD 2014 ([66]) 9 4 1
MTD 2015 ([67]) 12 7 0
MTD 2016 ([68]) 7 3 1

TechDebt 2018 ([69]) 22 7 0
TechDebt 2019 ([70]) 24 3 0
TechDebt 2020 ([71]) 15 4 1
TechDebt 2021 ([72]) 13 7 2

4.2 Details for: “MTD 2011: Proceedings of the 2nd Workshop
on Managing Technical Debt” ([63])

Out of the 9 papers published as part of the 2nd workshop on Managing
Technical Debt we have found 4 that disclosed some measurement results.
None of which might be reproducible.

The papers that might have reproducibility problems:

� “An Empirical Model of Technical Debt and Interest” ([47]) mentions
that they use the “Software Analysis Toolkit” of the “Software Improve-
ment Group”, but there is no reference to the tool or a version number
disclosed.

� “From Assessment to Reduction: How Cutter Consortium Helps Rein
in Millions of Dollars in Technical Debt” ([33]) mentions that “Cutter’s
technical debt assessment is an automated analysis of code deficits”, but
the availability or version of the tool is not disclosed. The only referenced
document does not seem to be available any longer.

� “An Extraction Method to Collect Data on Defects and Effort Evolution
in a Constantly Modified System” ([34]) mentions querying the “Mantis
Tool” and contains a reference to it, but does not disclose the version
used.



344 K. Szabados, I. I. Farkas, A. Kovács

� “Prioritizing Design Debt Investment Opportunities” ([62]) discloses the
metrics they measured and the methods they used, but not the tool.

4.3 Details for: “MTD 2012: Proceedings of the Third Inter-
national Workshop on Managing Technical Debt” ([64])

Out of the 11 papers published as part of the third International Workshop on
Managing Technical Debt we have found 3 that disclosed some measurement
results, none of which might be reproducible.

The papers that might have reproducibility problems:

� “Estimating the Size, Cost, and Types of Technical Debt” ([21]) uses the
“Application Intelligence Platform” of “CAST”, without disclosing the
version used.

� “Investigating the Impact of Code Smells Debt on Quality Code Evalu-
ation” ([30]) uses several tools:

– “iPlasma”: the referenced web page is not available.

– “Eclipse Metrics”: version used is not disclosed, although according
to the referenced page the tool was not updated since 2013.

– “Google CodePro Analytix”: the referenced webpage is not avail-
able.

� “What Is the Value of Your Software?” ([24]) discloses taking the data
from the “software analysis warehouse” of the “Software Improvement
Group”, without disclosing a reference to the data, when it was accessed,
with which tool version the data was measured.

4.4 Details for: “MTD 2013: Proceedings of the 4th Interna-
tional Workshop on Managing Technical Debt” ([65])

Out of the 11 papers published as part of the 4th International Workshop on
Managing Technical Debt we have found 2 that disclosed some measurement
results, none of which might be reproducible.

The papers that might have reproducibility problems:

� “Exploring Software Supply Chains From a Technical Debt Perspective”
([45]) uses the tools “Sonar”, “Understand” and “Cytoscape”. Although
their web pages are referenced and their last access time is presented, it
is not clear which version of these tools was used for the measurement
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(that might be different from the version available on the web page at
the last time it was accessed).

� “Generating Precise Dependencies for Large Software” ([61]) uses a tool
written by the authors for measurements. There is no link to the tool,
not even it’s name is disclosed.

4.5 Details for: “MTD 2013: Proceedings of the fifth Interna-
tional Workshop on Managing Technical Debt” ([27])

According to the Software Engineering Institute of Carnegie Mellon University
([17]) the summary of the fifth workshop organized for the topic of managing
technical debt was published as [27].

The workshop does not seem to have had a proceedings published. Although
the Software Engineering Institute of Carnegie Mellon University ([17]) makes
the slides of some of the presentations of the workshops available, we excluded
them as not being published articles.

This was a single paper, that summarized the discussions of the workshop,
but in itself did not disclose measurements.

4.6 Details for: “MTD 2014: Proceedings of the 2014 Sixth In-
ternational Workshop on Managing Technical Debt” ([66])

Out of the 9 papers published as part of the sixth International Workshop on
Managing Technical Debt we have found 4 that disclosed some measurement
results, only 1 also disclosing the version of the tool used.

The papers that might have reproducibility problems:

� “A Framework for Estimating Interest on Technical Debt by Monitoring
Developer Activity Related to Code Comprehension” ([55]) uses the tools
“Blaze” and “Understand”. The version of neither of them is disclosed,
also the reference of Blaze points to a paper, not directly to the tool.

� “Are the Methods in Your Data Access Objects (DAOs) in the Right
Place?A Preliminary Study” ([9]) uses the tool “calculadora-de-daos”.
The link of the tool, is either corrupted or points to a source code repos-
itory no longer available.

� “The Correspondence between Software Quality Models and Technical
Debt Estimation Approaches” ([35]) uses the tools “PMD”, “findbugs”,
“SonarQube”, “Understand”, “inFusion” all of which identified by their
websites only, without disclosing their versions used. In the case of in-
Fusion the website does not seem to be available.
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The paper fully identifying the tool used:

� “Explicating, Understanding and Managing Technical Debt from Self-
Driving Miniature Car Projects” ([43]) uses the tools “SonarQube”,
“Sonar-Runner” and “SonarWay” disclosing the version of these tools
used for their measurements.

4.7 Details for: “2015 IEEE 7th International Workshop on
Managing Technical Debt (MTD 2015)” ([67])

Out of the 12 papers published as part of the 7th International Workshop on
Managing Technical Debt we have found 7 that disclosed some measurement
results, none of which might be reproducible.

The papers that might have reproducibility problems:

� “A Contextualized Vocabulary Model for Identifying Technical Debt on
Code Comments” ([23]) uses the tool “eXcomment” developed by the
authors. The tool is only identified by a web link, that no longer works.

� “Detecting and Quantifying Different Types of Self-Admitted Techni-
cal Debt” ([42]) uses “jDeodorant” for information extraction and an
unnamed tool supporting manual classification. The version of jDeodor-
ant is not disclosed and the reference points to an academic paper, not
directly a tool.

� “Estimating the Breaking Point for Technical Debt” ([16]) uses the tools
“JCaliper” and “SEAgle”. Both of them developed by the authors, nei-
ther of them has their version disclosed. SEAgle is identified by a refer-
ence to an academic paper, while jCaliper is not identified at all.

� “Technical Debt of Standardized Test Software” ([57]) uses “Titan” for
measurement, only identified by a reference to an academic paper.

� “Towards a Prioritization of Code Debt: A CodeSmell Intensity Index”
([31]) uses the tool “JCodeOdor” developed by the authors. The tool is
only identified by a reference to an academic article, without a direct
reference to the tool, or its version used.

� “Towards an Open-Source Tool for Measuring and Visualizing the Inter-
est of Technical Debt” ([28]) uses the tool “MIND (ManagIng techNical
Debt)” built as a plug-in of “SonarQube”. Both tools are identified by a
link to their web pages, neither of them has their version disclosed.
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� “Validating and Prioritizing Quality Rules for Managing Technical Debt:
An Industrial Case Study” ([29]) uses the tool “Technical Debt Ana-
lyzer” built by the authors as a plug-in for “SonarQube”. SonarQube is
only identified by a link to its web page, Technical Debt Analyzer is not
identified in any way.

4.8 Details for: “2016 IEEE 8th International Workshop on
Managing Technical Debt (MTD 2016)” ([68])

Out of the 7 papers published as part of the 8th International Workshop on
Managing Technical Debt we have found 3 that disclosed some measurement
results, only 1 also disclosing the version of the tool used.

The papers that might have reproducibility problems:

� “Practical Technical Debt Discovery by Matching Patterns in Assess-
ment Graph” ([54]) does not identify the tools used for measurements.

� “The Perception of Technical Debt in the Embedded Systems Domain:
An Industrial Case Study” ([7]) does not identify the tool used for mea-
suring maintainability (used as a proxy for technical debt).

The paper fully identifying the tool used:

� “Technical Debt Indexes provided by tools:a preliminary discussion”
([32]) uses the tools “CAST”, “inFusion”, “Sonargraph”, “SonarQube”
and “Structure101”. Each identified by their respective web pages and
the exact version of the tools used.

4.9 Details for: “TechDebt ’18: Proceedings of the 2018 Inter-
national Conference on Technical Debt” ([69])

Out of the 22 papers published as part of the 2018 International Conference
on Technical Debt we have found 7 that disclosed some measurement results,
none of which might be reproducible.

The papers that might have reproducibility problems:

� “A Framework for Managing Interest in Technical Debt: An Industrial
Validation” ([8]) uses the tools “SonarQube”, “Percerons Client” and
“Breaking Point Calculator”.

– For SonarQube only the documentation is referenced, with a link,
not the used version of the tool or the tool itself.
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– Breaking Point Calculator was developed by the authors, is not
referenced and does not seem to be available for the community.

– “Percerons Client” is identified by a link to, what seems to be a
website for pornographic movies15 (see figure 1).

� “An exploratory study on the influence of developers in technical debt”
([4]) uses “SonarQube” and the author’s own scripts. SonarQube is only
identified by a reference to an academic article, without a direct reference
to the tool, or its version used. The author’s own scripts are not available.

� “Design Debt Prioritization: A Design Best Practice-Based Approach”
([50]) uses “MUSE” a tool developed by the authors, identified by a
reference to an academic article, without a direct reference to the tool,
or its version used.

� “Evaluating Domain-Specific Metric Thresholds: An Empirical Study”
([46]) uses the tools “CK Tool” and “TDTool”. “CK Tool” is identified
with a link to its source code repository, without revealing the version
used. TDTool is identified by a reference to an academic article, without
a direct reference to the tool, or its version used.

� “From Lasagna to Spaghetti, a Decision Model to Manage Defect Debt”
([2]) uses a tool developed by the authors for measurements, but does
not identify the tool or its availability.

� “Prioritize Technical Debt in Large-Scale Systems Using CodeScene”
([60]) uses “CodeScene”. The tool itself is only indirectly referenced in a
reference of a data set, that is stored on a web page similar to the tool’s
name. The version used is not identified.

� “The developer’s dilemma: factors affecting the decision to repay code
debt” ([6]) uses “SonarQube”, which is only identified by a reference to
the tool’s website, without disclosing the version used for measurements.

4.10 Details for: “TechDebt ’19: Proceedings of the Second
International Conference on Technical Debt” ([70])

Out of the 24 papers published as part of the 2019 International Conference
on Technical Debt we have found 3 that disclosed some measurement results,
none of which might be reproducible.

15Already on 2021.05.18, last checked on 2021.10.05
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Figure 1: The pornographic site referenced by Ampatzoglou et al. ([8]) as
the source of “a toolset developed to support empirical software engineering
research”. (last accessed 2021.10.05)

The papers that might have reproducibility problems:

� “Investigating on the Impact of Software Clones on Technical Debt”
([41]) uses “NiCad Clone Detector” and “SonarQube”, neither of them
being identified in the article.

� “On the Diffuseness of Code Technical Debt in Java Projects of the
Apache Ecosystem” ([53]) uses “SonarQube”, identified only by a refer-
ence to the tool’s website, without disclosing the version used for mea-
surements.

� “The Delta Maintainability Model: Measuring Maintainability of Fine-
Grained Code Changes” ([25]) proposes and uses a new maintainability
model “Delta Maintainability Model” (DMM) for fine-grained measure-
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ments of code changes, without making the tool implemented and used
for measurements available (or at least it is not referenced in the article).

4.11 Details for: “TechDebt ’20: Proceedings of the 3rd Inter-
national Conference on Technical Debt” ([71])

Out of the 15 papers published as part of the 2020 International Conference
on Technical Debt we have found 4 that disclosed some measurement results,
only 1 also disclosing the version of the tool used.

The papers that might have reproducibility problems:

� “Detecting Bad Smells with Machine Learning Algorithms: An Em-
pirical Study” ([19]) uses the tools “JDeodorant”, “JSpirit”, “PMD”,
“DECOR”, “Organic”. While PMD is identified with a link to it’s open
source repository, the other tools are identified by references to academic
papers. None of the tools used has it’s version disclosed.

� “Towards Microservice Smells Detection” ([49]) uses “Arcan”, a tool
developed by the authors, identified by a reference to 2 academic articles,
without a direct reference to the tool, or its version used.

� “The Hidden Cost of Backward Compatibility: When Deprecation Turns
into Technical Debt - an Experience Report” ([56]) uses a unidentified
tool developed by the authors of the article.

The paper fully identifying the tool used:

� “An Empirical Study on Self-Fixed Technical Debt” ([59]) uses the tool
“SonarQube”, disclosing also the version used for their measurements.

4.12 Details for: “TechDebt ’21: Proceedings of the 4th Inter-
national Conference on Technical Debt” ([72])

Out of the 13 papers published as part of the 2021 International Conference
on Technical Debt we have found 7 that disclosed some measurement results,
only 2 also disclosing the version of all of the tools used.

The papers that might have reproducibility problems:

� “Assessing Smart Contracts Security Technical Debts” ([1]) uses several
tools:
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– “Slither”, “SmartCheck”, “Securify” and “Mythril” are identified
by reference to academic articles, without direct references to the
tools, or their versions disclosed.

– “Manticore”, “Solhint” and “Ethlint” are identified by links to their
GitHub repositories, without disclosing the used version.

– “Sfuzz” is referenced by an academic article, without disclosing the
used version. It is also disclosed, that a web interface was used, not
a local installation.

� “Business-Driven Technical Debt Prioritization: An Industrial Case Study”
([22]) uses an undisclosed tool.

� “Predicting Relative Thresholds for Object Oriented Metrics” ([5]) uses
a tool developed by the authors for measurements, but does not identify
the tool or its availability.

� “Worst Smells and Their Worst Reasons” ([26]) uses “SonarCloud”, iden-
tified by a reference to the tools website, without disclosing the version
used for measurements.

� “Impact of Opportunistic Reuse Practices to Technical Debt” ([15]) uses
“SonarQube” and “Arcan”. SonarQube is identified by a link to its web-
site and the version used. Arcan is identified by a reference to an aca-
demic article, without a direct reference to the tool or its version dis-
closed.

The paper fully identifying the tool used:

� “Carrot and Stick approaches revisited when managing Technical Debt
in an educational context” ([18]) uses the tool “SonarQube”, disclos-
ing also the version used for their measurements. (They also use “Post-
greSQL” and “MySQL server” without any identification, “Tablon” iden-
tified by a link to a web page without dislosing the version used. These
tools are not used to measure technical debt.)

� “Experiences on Managing Technical Debt with Code Smells and An-
tiPatterns” ([37]) uses the tools “CodeMR” and “IntelliJ IDEA code
inspection tool”. CodeMR is dientified with a link to its website and the
version used is disclosed. The “IntelliJ IDEA code inspection tool” also
has the used version disclosed.
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5 Threats to validity

While we believe that our results are valid in their described context, we have
to point out that this is a limited context.

We did not try to reproduce the results published in the papers, and we did
not include in our reproducibility criteria the public availability of the projects
used as input to the tools. This way, it was not possible to detect potential
data manipulation or required tools not being mentioned.

We only reviewed the papers published in the workshop and conference
series we believed to be the most prestigious in the field. It might very well
be the case that reviewing all publications in the field would find a different
number and ratio of reproducible papers.

6 Summary

In this paper we presented our work and findings on the reproducibility of
research results in the technical debt research domain, published at the most
prestigious workshop and conference series.

We have found that of the 135 papers published in the proceedings of these
conferences, only 44 presented any numerical measurements. Of these 44 pa-
pers, only 5 contained the information about the used tools that might be
needed to reproduce the result.

This might indicate a bias in the field. Researchers working to improve the
quality of software products might not be aware that the software products
they use for measurements could also need quality improvements.

One of the papers we investigated ([8]) referenced a website showing porno-
graphic content. This situation is problematic for both the publisher of the
proceedings (that now indirectly advertises pornographic content) and the
field in general (in 2 years after publication, entire toolset can move or disap-
pear).

We also found articles where the measurement tool was not available (either
was never made public, or their repository already was deleted).

Our final observation is that the field should use more stringent practices
when reviewing and handling research publications to ensure that the pub-
lished results can be reproduced/replicated (and so safely built upon) by oth-
ers.

We believe this paper is a step forward to the technical debt researching
community. Improving the reproducibility of papers published in this field by
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raising the scientific standard could enable more scrutiny towards the pub-
lished results, making them safer to build on.

We would recommend authors to follow (and reviewers to check) the follow-
ing guidelines to make their papers more reproducible:

� Disclose in the paper the tools used:

– Hardware used.

– Software stack used (operating system etc..)

– The names, configuration, precise version identification for all of
the tools used and a link to a web page from where the tool can be
obtained (even if commercially).

– Governance completeness. When using cloud based tools or ones
shared with other groups, if the team does not have complete and
exclusive governance, the tool might be updated and setting changed
even during measurements, without the team being notified of such
actions16.

– Any other special circumstances that could affect the numbers re-
ported. For example:

* According to the download site17 of SonarQube the detection
of injection flows for Java is only available in the commercial
editions of the software.

* Before version 6.6 of SonarQube18 the built-in profiles could
be changed. Potentially leading to researchers miss-reporting
what setting were used.

� Make a direct statement that all of the tools used are listed. No other
scripts, methods, transformations were needed to produce the reported
results.

� If the input was open-source data, identify it. If the input data is the
property of a company, include information that might reasonably be
needed for other researchers to contact that company and request access
to the data.

16Please note, that determining this property might require care. For exam-
ple CAST promotes its solution as being SaaS subscription, but actually the
measurements are done locally, only the results are uploaded into the cloud.
https://www.castsoftware.com/products/highlight/pricing (last accessed 2021.10.05)

17https://www.sonarqube.org/downloads/ (last accessed 2021.10.05)
18https://blog.sonarsource.com/sonarqube-6.5-in-screenshots (last accessed 2021.10.05)
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7 Further work

There are several ways to extend the research presented in this paper.
We have only reviewed articles published at the most prestigious workshop

and conference series. The whole field of technical debt research is bigger,
containing papers published at other venues and journals, that should be re-
viewed.

We have limited resources, so we did not try to reproduce the results in the
papers we have found to be potentially reproducible. It would be possible to
get a deeper understanding of the situation by doing the actual reproducibility
check.

It would also be interesting to investigate how cloud-based technical debt
tools impact research and work efforts. On the one side, we can expect cloud-
based solutions to spread in both work and research environments, as they free
people from the mundane task of allocating and managing hardware resources,
installing and managing software tools, making sure these tools are up to date
and configured for security, etc. On the other side, the automated updating
of the platform and software resources can cause problems for research repro-
ducibility as these changes might happen independently from the researchers
at any point in time (even during experiments).
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[50] R. Plösch, J. Bräuer, M. Saft and C. Körner, Design Debt Prioritization: A De-
sign Best Practice-Based Approach, 2018 IEEE/ACM International Conference
on Technical Debt (TechDebt), 2018, pp. 95-104. ⇒348

[51] W. W. Royce, Managing the development of large software systems, Proceedings
of IEEE WESCON, 1970, pp. 1–9. ⇒337
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Abstract. Dynamic programming (DP) is a widely used optimization
method with several applications in various fields of science. The DP
problem solving process can be divided in two phases: mathematical part
and programming part. There are a number of researchers for whom the
mathematical part is available, but they are not familiar with computer
programming. In this paper we present a software tool that automates
the programming part of DP and allows users to solve problems based
only on their mathematical approach. The application builds up the “d-
graph model” of the problem to be solved and applies the “d-variant” of
the corresponding single source shortest path algorithm. In addition, we
report experimental results regarding the efficiency of the tool relative to
the Matlab implementation.

1 Introduction

Dynamic programming (DP) is an optimization method used in numerous
fields of science. It was proposed by Richard Bellman in his book published
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in 1957 [1]. Since that, this strategy has become an often used problem solv-
ing method in applied mathematics, computer sciences, artificial intelligence,
bioinformatics, macroeconomics, etc. The solving process of these kinds of
problems can be divided into two major steps. Firstly, a functional equation
is established, which describes the problem solving process in a recursive way
by implementing the principle of optimality. Secondly, a computer program is
implemented, which processes the recursive formula in a bottom-up way. In
this paper we will refer to these two phases as mathematical and programming
parts of DP.

Due to the diversity of applications of this optimization method, the pro-
gramming part of DP may cause difficulties for researchers who are not familiar
with the programming languages or scripts. In this paper we present a soft-
ware tool that automates the programming part of DP and allows users to
solve problems based only on their mathematical approach.

2 Literature review

As mentioned above, in the last more than half century DP has been applied in
several fields of science. More recently, for example, it was applied for solving
the k-Color Shortest Path Problem that arises in the field of transmission
networks design [3]. The authors of this study compared their DP approach
with two previously published methods and they found that the DP algorithm
vastly outperformed previous approaches. The authors of paper [18] present
a survey of financial applications under a specific semimartingale result of
Markov chains and two of the described strategies apply DP approach. Besides,
other recent studies apply DP in the field of genomics and bioinformatics [15],
for developing modern rainwater harvesting systems [17], for optimizing the
synchronization and reducing gear-shifting time in mechanical transmissions
[13], and even for solving the School Bus Routing Problem [19].

As DP became more widespread, software tools for solving (more or less au-
tomatically) certain DP problem families began to appear. For example, the
Stochastic Dynamic Programming application (published in 1995) was a com-
mercial software for solving general stochastic and deterministic optimization
problems [14]. This tool (running on PCs using DOS operating system) was
able (i) to accommodate user-specified conditions and functions of stage, state
and decision; (ii) to minimize or maximize the optimal value function; (iii) to
solve finite and infinite time-horizon problems, etc. Another software tool for
solving DP problems is DP2PN2Solver [4]. This application uses specialized
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Petri nets, named Bellman nets, to solve DP problems. In addition, it should
also be mentioned the tool named MDPToolbox, which has been developed
since 2004 [2]. MDPToolbox is a set of functions for solving Markov-decision
Problems in various platforms like Matlab, Scilab, R and GNU Octave.

De Moor [16] also emphasizes the need for DP solvers. After stating that in
contrast with other techniques (such as linear programming, where there exists
a single generic program that solves all instances) DP is usually regarded as a
design technique where each application is designed as an individual program,
he argues that it would be much preferable if dynamic programming could be
understood as a software component. The component presented by De Moor
is suitable for a large class of applications in which the decision process is a
sequential scan of the input sequence. With respect to the programming part
he introduces a C++ and Haskell program and concludes that the simplicity
offered by lazy functional programming is preferable. Another useful tool is
VisuAlgo [24] which is a website for visualizing different algorithms includ-
ing DP strategies. This tool was developed mostly for educational purposes
and also uses a programming language (JavaScript) instead of mathematical
functional equations.

Relatively recent studies were realized in this field by Kátai [5, 6, 7, 8, 10, 12].
In [5], he proposed the concept of d-graphs for modelling DP problems. The
software tool presented in [9] was based on this approach. Later, Katai refined
the model and introduced the notion of generalized d-graphs [5]. Katai and
Fulop [11] compared Petri nets (used by the above referred DP2PN2Solver)
and d-graphs as tools for intermediate representation of certain DP problems.
They emphasize two advantages of d-graphs: (i) d-graphs can handle problems
with cyclic target function; (ii) while the usage of DP2PN2-Solver requires the
knowledge of gDPS language, d-graphs can be built based on the functional
equation. In [12], Katai defines the so-called generalized deterministic Markov
decision processes where each decision may result in more than one next state.
The author also proposed a combined d-graph algorithm for finding optimal
policies for the previously mentioned Markov processes.

From this enumeration the probably most generally known and commonly
used software cannot be missed. The Matlab is an available commercial soft-
ware, which is able to perform numeric computations and to visualize data
structures and models. There are also a lot of available plugins for solving
various problems, including DP. The programming language used by Matlab
is also relatively simple and has a high abstraction level.

In this paper we present a simplified implementation of the approach Katai
proposed [10, 12], and more importantly, we present a software tool that imple-
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ments this strategy and also visualizes the DP solving process. In addition, we
report experimental results regarding the efficiency of the tool we developed
(compared with the Matlab solutions).

3 Mathematical part of the DP solving process

The core of DP is the principle of optimality, which states that the optimal
solution for the initial problem is based on the optimal solutions of its subprob-
lems. This principle is expressed by a recursive formula (target function). Sub-
problems are solved in bottom-up order (starting from the level of the trivial
ones), and the optimal solution of the current subproblem is computed (based
on the recursive formula) from the optimal solutions of previously solved (and
stored) simpler subproblems. The solving process is a sequence of optimal deci-
sions (min or max) that results in the optimal solution of the original problem.
To illustrate this approach we present the strategy on a sample problem.
Two Person Game: Let us consider a sequence of natural numbers stored

in array ai, i = 0, . . . , n− 1 (where n is even). In every step the current player
takes a number from the beginning or the end of the sequence. The question is,
what is the highest score which can be collected by the beginner? We assume
that both players are taking the optimal decision.

Assuming that cell cij of array c (i, j = 0, . . . , n−1) stores the optimal value
associated to sub-sequence ai . . . aj, the functional equation for this problem
is the following:

cij =


0 j ≤ i

max{ai + min{ci+1,j−1, ci+2,j},

aj + min{ci+1,j−1, ci,j−2}} i < j

In this problem the sub-problems are represented by the even length sub-
sequences of the original sequence. More precisely, cell ci,j stores the maximum
score that can be collected by the first player if they play on sub-sequence
ai . . . aj. The solving process implies the computation of the highest scores
which the first player can collect from all 2, 4, . . . , n length sub-sequences.
Function max reflects that player 1 takes optimal decisions. Function min
reflects that player 2 also takes optimal decisions.
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4 The idea behind the software

As mentioned above, Kátai [10] proposed generalized d-graphs as intermediate
representations to solve DP problems based on the optimal path algorithms in
weighted graphs. There are three main single-source shortest path algorithms
in weighted digraph:

� If the graph is cycle free, the optimal paths can be found based on the
topological order of the vertices (Viterbi algorithm);

� If the graph contains circles and all arcs have positive weights, then we
use the Dijkstra algorithm;

� If the graph contains negative weighted arcs, but does not contains “neg-
ative cycles” (the sum of the weights of the arcs of the cycle is negative),
the problem is solved by the Bellman-Ford algorithm.

Katai [7, 10] emphasizes that, on the one hand, these algorithms implement
DP strategies and, on the other hand, the DP problem solving process can be
reduced to these strategies. Katai suggests the following approach (for details
see [10]): (i) the DP problem to be solved is modelled with a d-graph where
p-vertices represent the sub-problems and d-vertices represent the possible
choices defined by the target function; (ii) the optimal decision sequence is
found by searching for the optimal d-path between the source vertex, repre-
senting the original problem, and a virtual sink vertex, representing the trivial
sub-problems. In the second step the d-variant of the corresponding optimal
path algorithm is applied (d-Viterbi, d-Dijkstra, d-BellmanFord).

5 DP-solver

DP-solver is a software tool for solving DP problems based only on the math-
ematical functional equation. To automate the programming part of the DP
solving process it takes advantage of the relationship between dynamic pro-
gramming and optimal paths algorithms. The tool is easy to use in the sense
that it does not presume to learn any programming language and the input
format is very similar to the mathematical syntax. Another functionality is
the visualization of the solving process. This feature uses 1D and 2D arrays,
where the cells represent the sub-problems. Thus, DP-solver is both a scientific
and educational tool.

The application was implemented using the JavaFX language and its core
is a Java package, named exp4j [20], which is able to interpret mathematical
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expressions. From developer point of view, exp4j is an easy to use package
which knows the fundamental mathematical operators and functions and it is
able to work with variables and general formulas and to detect syntactic and
runtime errors. Since it is easy to define more operators and functions, the
package could comfortably be adapted to the current software requirements.

As mentioned above, the main functionality of the software is to solve DP
problems based on the mathematical equation. Accordingly, the user’s role
includes the following steps: (i) to introduce the formula and its variables, and
to ask the tool (ii) to evaluate the formula and (iii) to visualize the solving
process. The application also enables users to save, reload and edit previously
created DP models. In visualization mode the software works similarly to a
media player.

Figure 1: The main window of DP-solver
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6 The graphical interface

Figure 1 shows the graphical interface of DP-solver. In the input fields labeled
with “Branch” and “Criteria” the user has to introduce the formula, branch-
by-branch. Attached to each branch, the corresponding criterion has to be also
introduced.

In the “Target variable” field the user has to specify the array which stores
the optimal values corresponding to the optimal solutions of the subproblems.
The dimension of the problem (dimension of the target variable) and the in-
dices of the cell that represents the optimal value of the original problem
(“Start indices”) are also required to be specified. In the “Variables” field the
input variables (which are included in the formula) have to be defined. Before
the evaluation starts the software checks all input fields for syntax errors. The
optimal value attached to the optimal solution is displayed in the field named
“Result”.

The status bar (on the bottom of the window) informs the user about the
state of the problem solving process. For example, the user is informed about
the currently performed task and error messages also appears here.

Figure 2: Input and output of the Two Person Game problem

Figure 2 illustrates the usage of DP-solver for the above presented Two
Person Game problem for a 10-length number sequence. As it could be no-
ticed, the recursive formula has two branches, the target variable is a 10x10
bi-dimensional array and cell c09 represents the original problem. If the input
sequence stored in array a is {19, 2, 4, 16, 3, 15, 4, 14, 17, 1} then the opti-
mal value which is going to appear (after pushing the “Run” button) in the
“Result” field is 65.

After the result appears, the solving process can be visualized step by step.
Since sub-problems correspond to the even length sub-sequences, only every
second diagonal of the target variable is filled (green cells containing non-NaN
values) (see Fig. 3). The diagonal below the main diagonal stores the optimal
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Figure 3: The completed visualization process (Two Person Game problem)

values for the trivial sub-problems (corresponding to the 0-length sequences).
The optimal values of “non-trivial cells” are computed from diagonal to diag-
onal. Lastly, cell c09 gets the value 65.

The screenshot from Figure 4 captures the solving process in an intermediate
step. By default every cell has a white background color and dotted border.
The default value of each cell is NaN until the result of the corresponding sub-
problem is computed. Accessed cells get a light gray background color (the
solving process reached them, but their values are not computed yet). The
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Figure 4: The visualization process in progress (Two Person Game problem)

current cell is marked with black thick solid border and dark gray background
color. The cells representing the direct descendants of the current subproblem
(the value of the current cell is computed based on these cells’ values) are
highlighted with a yellow dashed border. When a subproblem is solved, the
related cell turns its border to solid and its background color to green. The
buttons for controlling the visualization process are in the bottom left corner
of the main window.
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7 Performance

To find out our software’s performance, we compared DP-Solver with Mat-
lab®. We have chosen Matlab®, because it is one of the most commonly
used, well known and widely available programming software used for mathe-
matical problem solving. In our tests we used the Matlab® R2017b version.
The laptop we used has the following configuration: Intel® Celeron® N2940
CPU (quad core, up to 2.23 GHz), 4 GB DDR3L memory and Samsung 860
EVO SSD.

Figure 5: DP-solver vs. Matlab® results

We performed the comparison for the DP solutions of the problems referred
below (for details see the corresponding references). The analysis was based
on the average run-time after 10 measurements (the brackets include the size
of the corresponding one- or bi-dimensional input array(s)):

� Longest Common Subsequence [23] ([1000], [500])
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� Two Person Game ([1000])

� The Triangle [21] ([1000]x[1000])

� Little Shop of Flowers [22] ([750]x[1000])

As shown in Figure 5 DP-solver was 6.1 times faster than the Matlab®
implementations of the DP solutions.

8 Conclusions

In this paper we presented DP-solver, an easy to use software tool for those who
are familiar with the mathematical fundamentals of dynamic programming.
The application uses as intermediate representation the d-graph model of the
DP problem to be solved. Our experimental results shows that the tool can
provide the optimal solution more than six times faster than the corresponding
Matlab implementation. The application also includes a visualization module.
Consequently, DP-solver is both a scientific and educational software tool.
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[7] Z. Kátai, The single-source shortest paths algorithms and the dynamic program-
ming, Teaching Mathematics and Computer Science, 6 (2008) 25–35. ⇒363, 365
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Abstract. The quark-gluon plasma is written by the non-Abelian gauge
theory. The dynamics of the gauge SU(2) are given by the Hamiltonian
function, which contains the quadratic part of the field strength tensor
Faµν expressed in Minkowski space. The homogeneous Yang-Mills equa-

tions are solved on lattice Nd considering classical approximation, which
exhibits chaotic dynamics. We research the time-dependent entropy-energy
relation, which can be shown by the energy spectrum of Kolmogorov-
Sinai entropy and the spectra of the statistical complexity.

1 Introduction

In order to know the microscopic mechanisms of high-energy physics, non-
Abelian gauge theory provides an appropriate theoretical model. It plays an
important role in understanding non-equilibrium processes where energy and
momentum are in local equilibrium. Within the framework of perturbative
quantum field theory the equilibrium and transport processes are studied.
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The quantum field theory introduction of quark-gluon plasma was described
by the Feynman path integral, which was derived using gauge transforma-
tions for non-Abelian gauge fields in a continuous case. The solution of the
Yang-Mills equation was determined on a lattice by classical approaching, the
equations of motion contain a field strength tensor square.

The time evolution of this system showed to be chaotic[35, 3, 27]. This
dynamical quantity is well characterized by the Kolmogorov-Sinai entropy
depending on energy and time resp. the statistical complexity as a function of
energy and entropy.

The relation between average energy and Kolmogorov entropy was first in-
troduced in [21] for pure SU(2) Yang-Mills systems. The finite size extrapo-
lated initial evolution and as a function of the scaled energy was researched in
[19]. The Lyapunov exponent was determined by monodromy matrix and ex-
trapolated (N→∞), the scaling properties were studied at a given time range.
The spectra of the maximal Lyapunov exponent were calculated depending on
the time and energy. The Kolmogorov-Sinai entropy was investigated by Pesin
form. In this article, we derived the spectrum of this quantity as a function of
time and energy.

The idea of complexity has been presented several times recently as al-
gorithmic complexity (Kolmogorov) [25], the amount of information about
the optimal predicts the future according to the expected past (Crutchfield,
Young) [13, 8], finite series complexity (Lempel, Ziv) [29].

Effective entropy was published by P. Grassberger [20], taking into account
the combination of order and disorder, regularity, and randomness, since most
systems do not have the highest Shannon information[40] (random structure)
or the lowest (ordered structures) alone.

The definition of statistical complexity is introduced by R. López-Ruiz, L.
Manchini, X. Calbet (LMC) [11, 32, 2] and J. Shiner, M. Davison, P. Landsberg
(SDL) [41].

The generalized statistical complexity measure (M. Martin, A. Palestino, O.
Rosso) [33] is based on the LMC concept, which describes the finite time series
of nonlinear systems together with the associated probability distribution of
the dynamic method. It was extended to Tsallis (Tq), Wootters, Rényi (Rq)
[38] entropy and Kulbach-Shannon, Kulbach-Tsallis, Kulbach-Rényi, Jensen
divergence. Tsallis suggested generalizing the degree of entropy of the fa-
mous Shannon-Boltzmann-Gibbs (SBGS) entropy measure[43]. The new en-
tropy function plays an important role together with its associated generalized
thermostats (1998). The Euclidean distance was criticized by Wootters [46],
who studied this concept in a quantum mechanical context. Since the related
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consideration is an internal statistical measure, this concept can be applied to
any probability space. Remark that SBGS, Tq, Rq considered as special cases
of the (h,ϕ) entropies [39] for the study of asymptotic probability distribu-
tions. These quantities were generalized to quantum information theory [39].
This includes the Neumann entropy [36] and a quantum version of Tsallis’
and Renyi entropies, which have been applied for example to the detection of
quantum entanglement [10].

In addition, we use information theory tools to analyze complex signals, as
entropies, distances, and statistical differences play a crucial role in forecast-
ing, estimation, detection, and transmission processes. This concept has been
widely used in the chaotic field [15, 18], symbolic sequences [1], pseudo-random
bit generator [22], number system [17].

We consider creating a quantitative statistical metric complexity. It is based
on a statistical description of the system imposing on the physical model.
Suppose the system has N available states {x1, . . . , xn} on a given scale and
determine the appropriate probabilities p1, . . . , pn of each state.

The LMC statistical measure of complexity[2] is described in two compo-
nents, i.e. entropy or information stored in the system and distance from the
equilibrium probability distribution, an imbalance giving its corresponding
asymptotic properties well-behaved measure of complexity.

This quantity is often characterized by a controversial situation an elaborate
dynamics created from relatively simple systems. If the system itself is already
enough contained and it is consisted of many different parts, you can support a
complex dynamic without it appearance of typical characteristic patterns[26].
Therefore a complex system does not necessarily produce a complex output.

Statistical approaches are easier to implement than to solve equations of
motion, and in many cases offer a solution for treatment otherwise difficult
problems.

The structure of the article: In the second section we introduced the field the-
ory by Feynman path integral and considered the gluonic part of gauge fields.
These quantities play an important role in particle and statistical physics.
In the third section, we discretized these quantities on the lattice by parallel
transporter and Wilson action. In the fourth we study the maximal Lyapunov
spectrum and Kolmogorov-Sinai entropy energy relation. In the fifth section,
the statistical complexity is introduced on the probability space and we con-
sider the states sequence along the time-evolution of the gauge field, where
the state means all links of the lattice at a given time moment.
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2 Path integral

Numerous representations of the field theory are known, Schrödinger wave
mechanics resp. Heisenberg operator algebra. One of the best-known methods
of quantum production with the Feynman path integral. The advantage of this
method is that the analogy between statistical physics and particle physics can
be easily drawn. It is well applicable to the formulation of the gauge theory
and also accurately reproduces its symmetries. This method is briefly described
through quantum mechanics.

2.1 Field theory

2.1.1 Feynman path integral

Using canonical transformations in classical and quantum mechanics, the ac-
tion is a general function of the canonical transformation. Dirac [14] applied
this procedure in the quantum mechanics to the Hamiltonian function H at
time t in the q ′ state, respectively. At the moment T for a system where the
transient amplitude is:

〈
q ′t|qT

〉
∼ exp

(
i

h̄

∫ t
T

Ldt

)
. (1)

On a finite time interval T − t, the range T − t is divided into N infinitesimal
time intervals, ta = t+ aε, Nε = T − t. Let qa = qta for all ta. We apply the∫
dq|q 〉〈q| = 1 = 1 correlation then it is following:

〈
q ′t|qT

〉
=

∫
dq1dq2 . . . dqN−1

〈
q ′t|q1

〉
〈q1|q2〉 . . . 〈qN−1|qT 〉 .

The transient amplitude prescribed by the path integral for infinitesimal time
interval δt introduced by Feynman[16]:

〈
q ′t|qt+δt

〉
= lim

( N→∞
Nε=konst.)

AN
∫ (N−1∏

i=1

dqi

)(
N−1∏
i=1

dpi

)
×

exp

(
−
i

h̄

∫ t
T

dtL(q, q̇)

)
, (2)

where AN is the normalization factor dividing this coefficient by a factor A for
each instant of time. This expression is equivalent to the integral of the action
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function as follows

≡
∫
DqDp exp

(
−
i

h̄
S(t, T, q)

)
. (3)

The boundary conditions are the value of orbit at the initial and at the final
moment. The above expression gives the probability amplitude of the particle,
assuming that it was at t moment in q ′ state and at time T was in q state. The
transient amplitude is expressed as the sum of each of the possible orbits, which
begins in q at time T and ends in q ′ at time t, weighted by the exponential
expression (− i

h̄S) for each trajectory.
The expression of the transient amplitude for Hamiltonian systems can be

described as

〈
q ′t
∣∣qT〉 = ∫ · · · ∫ DqDp exp

(
i

∫ t
T

dτ

[
p
dq

dτ
−H(p, 〈q〉)

])
, (4)

where 〈q〉 is the average of q over a given interval.

2.1.2 Relation between statistical physics and particle physics

Statistical mechanics is closely related to the Feynman path integral of quan-
tum mechanics. Creutz showed in 1977 [12] that the transfer matrix method
simplifies the problem of quadratic functions operator diagonalization in Hilbert
space.

The Lagrange function of the free nonrelativistic particle, which measure is
m moving in potential V(x) (imaginaries time lattice):

L(x, ẋ) = K(ẋ) + V(x), K(ẋ) =
1

2
mẋ2.

The action function of any trajectory is following

S =

∫
dtL (ẋ(t), x(t)) , (5)

with which we can specify with the path integral:

Z =

∫
[dx(t)] exp(−S). (6)

The integral is for all trajectories x(t). The time component of the lattice is
discretized. Investigate the trajectories over the entire τ time interval, which
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is decomposed into discrete time slices of length a = τ/N. The coordinate
for the i-th time slice is xi. The time derivative x is approximated with the
difference of the neighbors:

S = a
∑
i

[
1

2
m

(xi+1 − xi)
2

a2
+ V(xi)

]
. (7)

Expression (6) is written with xi coordinates using the Z integral approxima-
tion:

Z =

∫ (∏
i

dxi

)
exp(−S). (8)

Equation (8) is no different then the shape of partition functions in a statistical
physical system.

The procedure that leads from the path integral to the expression of the
quantum mechanical Hilbert space in three steps is: First, we define the path
integral on a time-like lattice. We construct the transfer matrix in Hilbert
space. We finally take the logarithm of the transfer matrix, where the linear
term expresses the temporal evolution of the system. If the i-th eigenvalue of
the transfer matrix is λi, then Z =

∑
λNi . Since the number of time slices goes

to infinity, therefore, the expression can be characterized by the maximum
self-values λ0:

Z = λN0

[
1+O

(
exp

[
−N ln

(
λ0
λ1

)])]
.

2.2 Gauge fields

Several introductions of the gauge fields are known. The simplest way is an
extension of the Abelian gauge theory describing the electromagnetic field.
The components of the antisymmetric tensor are electromagnetic fields, which
are four-dimensional vectors:

Fµν = ∂µAν − ∂νAµ µ, ν = 0, 1, 2, 3.

The space-time indices are denoted by µ, ν, and the group generators by
α,β, γ. Yang and Mills [47] proposed (1954) to assign the isospin index to
Aµ and Fµν:

Aµ → Aαµ Fµν → Fαµν α = 1, . . . ,N,
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a further antisymmetric term is added to the expression and the shape of Fµν
is:

Fαµν = ∂µA
α
ν − ∂νA

α
µ + g0C

αβγAβµA
γ
ν, (9)

where g0 is the bare coupling constant, Cαβγ is the structural constant of the
Lie algebra of a G Lie group. Here we use only uniter groups, the fundamental
representation of the G group. We parameterize the elements of G with the set
of generators g = exp(iωαζα), where ωζ is the set of parameters and λα is the
set of Hermitian matrices that generalize the group. The structure constants
are defined by the following context:[

ζα, ζβ
]
= iCαβγζγ.

The generators are orthonormal: tr(ζαζβ) = 1
2δ
αβ. The simplest non-Abelian

theory uses the SU(2) group, which is generalized by Pauli matrices ζα =
1
2τ
α, Cαβγ = εαβγ. The Maxwell equations can be derived from the Lagrange

density:

L =
1

4
FµνFµν + jµAµ,

where jµ is the external source as the electrodynamic fields. The non-Abelian
Lagrange density starts in the same way, except for the amount for isospin and
Fµν contains an additional member. The classical equation of motion of electro-
dynamics is the equation ∂µFµν = jν. In the non-Abelian theory (DµFµν)

α = jαν .
Here are the covariant derivatives:

(DµFµν)
α = ∂µF

α
µν + g0C

αβγAβµF
γ
µν. (10)

The non-Abelian analog of current conservation following

Dµjµ = 0.

Second definition of gauge fields uses the local symmetry of the action function.
Gauge symmetry of electrodynamics: Aµ + ∂µΛ, where the gauge function
Λ(x) is an arbitrary function of the space-time coordinates. In the case of
non-Abelian, Aµ is transformed as follows: Aµ → g−1Aµg +

i
g0
g−1∂µg, where

g is an element of a suitably chosen group of gauges. In electrodynamics,
this transformation is written by a simple phase: g(x) = exp(−ig0Λ(x))).
This is the so-called U(1) gauge theory of electrodynamics. Then, using the
transformation formula given above, the transformation of Fµν can be simply
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written: Fµν → g−1Fµνg. The gauge transformation of the covariance derivative
can be given in a similar form.

A third possible introduction to gauge theory is phase theory (Mandelstam
(1962)[31], Yang (1975)).

In this article we mention the introduction of gauge theories to canonical
Hamiltonian formalism following Steven Weinberg (1965) [44].

Group In this article, we apply some basic properties of the invariant inte-
gral introduced by Haar [23] in Wilson on compact Lie groups. Haar-measure
satisfies the following condition:∫

G

f(U)dU =

∫
G

f(U−1)dU.

In the case of G = SU(2) the group elements can be parameterized in the
following way:

U = x01+ i~x~τ =

(
x0 + ix3, x2 + ix1

−x2 + ix1, x0 − ix3

)
.

The parameters xi must be sufficient to satisfy the condition:

detU = x2 = (x0)2 + ~x2 = 1.

that specifies the S3 key. In the case of numerical calculation, we used the
quaternion representation x0, x1, x2, x3, because the runtime is faster and the
memory requirement is smaller than the matrix representation.

3 Lattice field theory

Continuous gauge quantities are introduced on a lattice [34]. We consider the
Wilson action and the Yang-Mills theory by these discretized quantities.

3.1 Discrete parallel transporter

Consider hypercubic lattice of size a and the regularization of the continuous
Euclidean lattice. The scalar field φ(x) is interpreted on the lattice point.
Local gauge transformation is following:

φ(x)→ φ ′(x) = Λ−1(x)φ(x).
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In this case, the nearest non-zero lattice spacing a must be introduced on the
hypercube grid.

The elementary parallel transporters are closely connected by the links b,
which connect the neighboring points. Let x be an arbitrary point on the
lattice. Nearest neighbour points can be written in the form x + aµ̂, where
µ = 1, 2, 3, 4 and µ̂ denotes the µ-th unit vector. The links from x to x + aµ̂
can be denoted by the following ordered pair: b = (x + aµ̂, x) ≡ (x, µ). The
parallel transporter can be described by the link b:

U(b) ≡ U(x+ aµ̂, x) ≡ Uxµ ∈ G, (11)

where G is the gauge group. The link thus introduced satisfies the correspond-
ing properties of the parallel transporter. Arbitrary path C = bn◦bn−1◦· · ·◦b1
corresponds to the parallel transporter U(b) = U(bn) . . . U(b1) ≡

∏
b∈CU(b)

on lattice, which describes the link variables. These are denoted by {U(b)}[30].
Transformation of link variables is following:

U ′(y, x) = Λ−1(y)U(y, x)Λ(x),

where Λ ∈ SU(N) and the size of matrix is N ×N. We define the covariance
derivative:

Dµφ(x) =
1

a
(U−1(x, µ)φ(x+ aµ̂) − φ(x)).

The term of derivatives are substituted by covariate derivatives in the kinetic
expression:

1

2

∑
x

a4DµφDµφ = −a2
∑
〈xy〉

φ(x)U(x, y)φ(y) + 4a2
∑
x

φ(x)2.

The smallest closed loop on the lattice is called a plaque. A plaque is enclosed
by 4 links and it contains the following points: x, x+ aµ̂, x+ aµ̂+ aν̂, x+ aν̂,
denoted by p = (x;µν). The corresponding parallel transporter can be written
in the following form:

Up ≡ Ux;µν ≡ U(x, x+ aν̂)U(x+ aν̂, x+ aµ̂+ aν̂)×
U†(x+ aµ̂+ aν̂, x+ aµ̂)U†(x+ aµ̂, x), (12)

which we call the plaque variables. Wilson’s suggestion [24, 45] is to write the
theoretical definition of a simple lattice gauge with the plaque variables: S[U] =∑
p Sp(Up), that is, the action is summed for all p, i.e.

∑
p =

∑
x

∑
1≤µ,ν≤4
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means. The action is written on the elementary plaque (showing only one
direction):

Sp(Up) = β

{
1−

1

N
RetrUp

}
. (13)

3.2 Wilson action, lattice Hamiltonian

Wilson action is gauge invariant quantity because trU ′p = trUp is appropriately
chosen for group SU(N), further real and positive. We consider the Yang-Mills
action by the Wilson action. We introduced the vector potential: Aµ(x) =
−igAbµ(x)Tb. Lie-algebra value vector field was defined on the lattice:

U(x, µ) ≡ exp(−aAµ(x)) = 1− aAµ(x) +
a2

2
Aµ(x)

2 + . . .

we apply Aν(x+ aµ̂) = Aν(x)a∆
f
µAν(x) where ∆fµf(x) =

1
a(f(x+ aµ̂) − f(x)).

The Campbell-Baker-Hausdorff expression:
exp(x) exp(y) = exp(x+ y+ 1

2 [x, y] + . . .) therefore we get:

Ux;µν = exp
(
−a2Gµν(x)

)
, where Gµν(x) = Fµν(x) +O(a)

Fµν(x) = ∆
f
µAν(x) − ∆

f
νAµ(x) + [Aµ(x), Aν(x)].

Therefore

1−
1

N
Re trUp = 2tr1+ a

4tr(Fµν(x))
2 +O(a5),

where Re tr means the real value of the trace Up, since trGµν(x) = 0 and∑
p tr(Fµν(x))

2 = 1
2

∑
x;µν tr(Fµν(x))

2. We get the following expression of the
Wilson action:

S = −
β

4N

∑
x

a4trFµν(x)F
µν(x) +O(a5). (14)

Because, the leading member coincides with the Yang-Mills action for small a
if β = 2N

g2
and g correspond to the bare coupling constant of the lattice theory.

We split the action into time-space components

S =
2

g2

∑
pt

(N− trUpt) −
2

g2

∑
ps

(N− trUps), (15)
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where g is the continuous limitation value of the coupling constant, the (-)
sign is derived from the Minkovski space-time structure. The Taylor series of
Upt is explained in time-dependent term

Upt = U(t)U
†(t+ at) = UU

† + atUU̇
† +

a2t
2
UÜ† + . . . ,

The expressions appear in the Wilson Action:

N− trUpt = −
a2t
2

tr(UÜ†) O(a3t) correction.

Since UU† = 1, trace disappears N. It follows from the first derivative of this
term that tr(UU̇†) = 0 and the second derivative is ÜU† + 2U̇U̇† + UÜ† = 0.
Therefore the Hamiltonian lattice action is following:

∆SH =
2

g2

a2t
2

∑
i

tr
(
U̇iU̇

†
i

)
−
∑
ij

(N− tr (Uij))

 . (16)

The generalized discretized ansatz can be written:

S = at
∑
t

a3s
∑
s

L.

The scaled Hamilton density is able to write in the following form.

atH =
2

g2

a2t
2

∑
x,i

tr
(
U̇x,i, U̇

†
x,i

)
+
∑
x,ij

(N− tr (Ux,ij))

 , (17)

namely

H = a3s
∑
s

(
tr

(
U̇,
∂L

∂U̇

)
− L

)
.

On the lattice, the gauge field can be specified by configuring the link variables.
The expected value of the quantity denoted by the {U(b)} ≡ U and Θ({U(b)})
link variables:

〈Θ〉 = 1

Z

∫∏
b

dU(b)Θ exp(−S(U)), (18)

where Z =
∫∏

b dU(b) exp(−S(U)) and S(U) are Wilson actions. If we intro-
duce φ(x) the field ”material” is given by the corresponding integral:

〈Θ〉 = 1

Z

∫∏
b

dU(b)
∏
x

dφ(x)Θ exp(−S(U,φ)).
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In these expressions, the integration measures dU(b), must be chosen to be
gauge invariant. During the gauge transformation it is written:

U ′(x, y) = Λ−1(x)U(x, y)Λ(y)

because the action is invariant: dU = dU ′, S(U) = S(U ′).

3.3 Lattice Yang-Mills theory

In the following, we use Hamiltonian formulation of the classical lattice SU(2)
gauge theory [4]. The Hamilton function is considering:

H ′ =
g2aH

4
=
∑
x,i

a2

4
tr
(
U̇
†
x,i, U̇x,i

)
+
∑
x,ij

[
1−

1

2
trUx,ij

]
,

whereUx,i is the group element SU(2), this term means the x+aei link pointing
in the i direction starting at x = (x1, x2, x3) on the lattice. Ux,ij denotes the

elementary plaque which is expressed by link Ux,ij = Ux,iUx+i,jU
†
x+j,iU

†
x,j lying

in the plane stretched by the elementary vectors i and j starting at x. We
apply the link variables only in the expressions H:

H =
∑
x,i

[
1

2
〈U̇x,i, U̇x,i〉+

(
1−

1

4
〈Ux,i, Vx,i〉

)]
, (19)

where the complement link variable Vx,l(U) is following:

Vx,l =
1

4

∑
((l,s):{(i,j),(k,j),(−i,j),(−k,j)} )

Ux+l,sU
†
x+l+s,−lU

†
x+l,−l, where

i, j, k are the unit vectors of the three-dimensional lattice.
In the gauge field section (2.2) we introduced the quaterinon representation,

which is defined in the following way on a lattice:

U = u01+ i~τ~u U =

(
u0 + iu3, iu1 + u2
iu1 − u2, u0 − iu3

)
.

The equations of motion are derived from the Hamiltonian function:

U̇ = P,

Ṗ = V − 〈U,V〉U− 〈P, P〉U, (20)
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where 〈P, P〉 = 1
2

∑
j PjP

j.
The lattice equation of motion [5] follows:

Ut+1 −Ut−1 = 2h(P?t − εU
?
t ), (21)

Pt+1 − Pt−1 = 2h(V(U?
t ) − µU

?
t + εP

?
t ), where

ε =
〈U?

t , P
?
t 〉

〈U?
t , U

?
t 〉
, µ =

〈V(U?
t ), U

?
t 〉+ 〈P?t , P?t 〉

〈U?
t , U

?
t 〉

, and

U?
t = aUt+1 + bUt + cUt−1.

The quantities ε, µ denote the Lagrange multipliers. The energy of the Hamil-
tonian system was constant and Gaussian law is satisfied [7] during the move-
ment. A periodic boundary condition was used to solve the system of equations.
The color charge was defined following:

Γi =
∑
l+

PlU
†
l −
∑
l−

U
†
lPl, i = 1, . . .N

The measure of change is written by this term:

Γ̇i =
∑
l+

(VU† − 〈V,U〉 1),

where P1 = QU1 and P1 = QU1 and Pn = U
†
n−1Pn−1Un, 1 < n < N. The

condition of neutrality formulated as

Q− F†QF = 0, trQ = 0,

from which it follows

Q =
q

2
(F† − F), where F =

N−1∏
i=1

Ui oriented product

the initial color charge is Q and the final state is −F†QF.

4 Nonlinearity

In this section, we numerically determined the Lyapunov spectrum on the
three-dimensional lattice of the SU(2) Yang-Mills field. The spectra of Kolmogorov-
Sinai entropy are studied by the eigenvalues of the monodromy matrix from
the classical chaotic dynamics to extrapolate on a lattice with a large size
limit.
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Monodromy matrix We consider a periodic orbit of the energy E, with
initial phase space coordinates (p = p0, x = x0) and final coordinates (p = p0,
x = x0). We study the behavior of the neighborhood path of the periodic orbits,
how these trajectories develop in the case of small transverse perturbation.

This means the same situation when considering the deviation of flow on
the Poincare surface of the section transverse to the path. Then the relation
between the initial {δy0i, δp0i} and final state {δyi, δpi} deviation is following:

δyi =

d−1∑
j=1

(
∂yi
∂y0i

)
δy0j +

(
∂yi
∂p0i

)
δp0j =

d−1∑
j=1

Aijδ0j + Cijδp0j

and

δpi =

d−1∑
j=1

(
∂pi
∂y0i

)
δy0j +

(
∂pi
∂p0i

)
δp0j =

d−1∑
j=1

Cijδ0j +Dijδp0j

It is written by matrix form:(
δy

δp

)
=

(
A, B

C, D

)(
δy0
δp0

)
=M

(
δy0
δp0

)
, (22)

where δy and δp are 1× (d− 1) dimensional column matrices, and A,B,C, D
are (d−1)× (d−1) dimensional square matrices where Aij, Bij, Cij Dij matrix
elements. This (2d − 2) × (2d − 2) dimensional square matrix M means the
monodromy matrix according to the equation motion [37].

The shape of the monodromy matrix by the lattice equations of motion [19]
is following

M =

(
∂U̇
∂U

∂U̇
∂P

∂Ṗ
∂U

∂Ṗ
∂P

)
. (23)

We write down each partial derivative by the equation of motion:

∂U̇a

∂Ub
= 0, ∂U̇a

∂Pb
= δab,

∂Ṗa

∂Ub
= ∂Va

∂Ub
−
(∑N

c=1Uc
∂Vc

∂Ub

)
Ua − VbUa −

∑N
c=1 (UcV

c + PcP
c) δab,

∂Ṗa

∂Pb
= −2PbUa, where

∂V
αq
k

∂Uβq
=

N∑
l=1

∂V
αq
k (U1, . . . , UN )

∂U
βq
l

, where N = 12, αq, βq = 0, 1, 2, 3.
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The shape of the characteristic equation is then:

det

[(
0 1
∂Ṗ
∂U

∂Ṗ
∂P

)
−Λi1

]
= 0. (24)

We showed the stability of the trajectories along the trajectory in the vicinity
of any point on the (U, P) phase space. The time evolution of a small (δU, δP)
perturbation is determined by the monodromy matrix. Among the eigenvalues
of the stability matrix, real and positive quantities indicate an exponential
departure of adjacent trajectories, i.e., motion is unstable. At the long-term
limit, the Lyapunov exponents are obtained from the eigenvalues.

4.1 Spectrum of the maximal Lyapunov exponent

We investigated the ergodization of the SU(2) lattice gauge theory due to
classical chaotic dynamics [19]. We get a good approximation to the real max-
imum Lyapunov spectrum by monodromy matrix of time-evolving field con-
figurations. The lattice size was chosen to be N = 2, 3, 4, 5, 6, 7. The initial
configurations are randomized we choose according to the Haar measure and
the total energy constraint.

The Lyapunov exponent Li is introduced with eigenvalues Λi of monodromy
matrix:

Li = lim
T→∞

∫T
0 Λi(t)dt

T
i = 1, . . . , f, (25)

where Λi(t) is the solution of the characteristic equation:

det[Λi(t)1−M(t)] = 0, (26)

in whichM is the linear stability matrix, f is the number of degrees of freedom.
Conservative dynamical systems satisfy the Liouville theorem:

∑f
i=0 Li = 0. In

numerical calculations, we use the definition of the discrete Lyapunov spectrum

L ′i = 〈Λi〉
(n) =

1

n

n∑
j=1

Λi(tj−1), i = 1, . . . , f, (27)

where tj is the time series during the trajectory evolution of the gauge field
configuration.

The quantities L ′i are extrapolated to a long-term (N → ∞) limit with
fixed time steps. We assumed it converges to the Li Lyapunov exponent in
noncompact configuration space.
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The eigenvalues of the monodromy matrix were determined along the time-
evolution of a single gauge trajectory which allows us to know the behavior of
the Lyapunov spectrum as a function of time.

In the numerical simulation the total number of degrees of freedom f =
4× 3×N3 = 12×N3, where the group element SU(2) is represented by 4 real
quaternions (thus the phase space has a dimension of 2f = 24N3). Due to the
conditions of survival (unity, orthogonality), the number of physically relevant
degrees of independent freedom decreases [6].

The spectrum of the 2f× 2f stability matrix although rare is large enough
to determine the eigenvalue with sufficient accuracy. Since it requires O(f2)
memory to calculate eigenvalues, N = 7 (2f = 24N3 = 8232 dimensional phase
space) was the maximum size of the system, which could be examined by the
capacity of the computer, which is due to the fact that the Hamiltonian system
is conservative (energy is time-independent).

In the literature, it has been shown that in the semiclassical limit the real-
time Hamiltonian dynamics of SU(2) gauge theory exhibits deterministic chaos
on a spatial lattice [35]. The largest Lyapunov exponent of the gauge field was
calculated as a function of energy density. Numerical integration of the equa-
tions of motion has been applied considering the conservation of energy and
Gaussian law. The exponential divergence of two trajectories was studied on
the lattice gauge field configuration. The gauge-invariant metric is proportional
to the absolute local difference in the magnetic energy of two different gauge
fields. The nearest neighboring configurations were chosen randomly and along
the time-evolution, the distance between the two trajectories increased expo-
nentially until it is saturated. This process is known as the rescaling method.

In this paper, we determine the maximum value of the Lyapunov exponent
along with the real-time evolution of a single long trajectory using the mon-
odromy matrix. Our goal is to calculate the spectrum of maximal Lyapunov
exponent depending on the energy resp. time and we consider the scaling be-
havior of this system.

Therefore the first step we extrapolated the real maximal Lyapunov ex-
ponent (N → ∞) to the thermodynamical limit from the dataset, which is
taken for N = 2, 3, 4, 5, 6, 7 at the different energies g2aE ∈ [0.0, 0.7] range
considering the finite-size scaling.

Figure (1) shows the real maximal Lyapunov exponent’s aL0 dependence
on scaling time t/a and scaling energy g2aE, where a is a lattice size and g
means the strong coupling constant (Section 3.).

The scaling of the maximal Lyapunov exponent as a function of scaling
energy has been studied [19]. In the past, the research on the scaling behavior of
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aL0

t/a

g2aE

Figure 1: Maximal Lyapunov spectrum aL0 as a function of the scaling time
t/a and scaling energy g2aE.

maximal Lyapunov exponent has been debated whether it is linear or not in the

long-time limit[19]. According to some research results, this would be L0 ∼ E
1
4

relation. It has been shown that linear scaling at low energy is acceptable using
the rescaling method in the long-term boundary case.

In the Figure (1) the scaling of the maximal Lyapunov exponent at short
time range t/a = 0.0005 satisfies the linear L0 ∼ E relation before the curve
saturates. In the long-time limit at t/a = 0.003 the scaling becomes logarith-

mic rather than L0 ∼ E
1
4 relation [19]. It can be considered that too long a

trajectory and the compactness of the configuration space create the calcu-
lated eigenvalues, which is the Hamiltonian lattice field theory artifact. In the
following, we imply linear scaling.

The extrapolation of the maximum Lyapunov exponent values was plotted
on the Figure (1) i.e. the thermodynamic limit N → ∞ at different energies.
The finite-size scaling of this quantity to be almost linear:

L0 ∼
1√
f
∼ N− 3

2 .

This corresponds to sampling ergodic states [9].
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4.2 Spectrum of Kolmogorov-Sinai Entropy

The relation between average energy and Kolmogorov-Sinai entropy was first
published in [35] for the simple SU(2) Yang-Mills system.

We define the Kolmogorov-Sinai entropy by the term Pesin:

hKS =
∑
i

LiΘ(Li), (28)

where the value of the function Θ(x) equals 1 if the argument is positive and
0 otherwise. The dimension of the quantity hKS is a rate (1/time). Therefore,
the entropy can be given on an N3 lattice by normalizing quantity:

S =
hKS

Re(L0)N3
. (29)

The state equation can be derived from the simulations of the dynamics. The
finite-size scaling is extrapolated to infinity ( 1N → 0) on the lattice. We consider
the Kolmogorov-Sinai entropy as a function of time and energy. This leads
to the state equation, which is the relation of entropy-energy S(E) in the
thermodynamic limit of infinite volume.

The normalized Kolmogorov-Sinai entropy is derived from the extrapolated
Li data, which depends only slightly on the initial values and scaling linearly
according to the energy.

〈S〉 ∼ b lg(g2Ea) + c,

where b, c ∈ R. This is an appropriate estimation of the inverse temperature:

1

T
=
∂ 〈S〉
∂E

∼
0.5

E

Thus the equipartition, i.e. the energy per degree of freedom:

E =
1

2
kT.

In the Figure (2) the entropy spectrum S depending on the scaling timet/a and
scaling energy g2aE is plotted on the ranges t/a ∈ [0, 0.004], g2aE ∈ [0, 0.7].
The closest relation of the entropy S as a function of scaling energy g2aE is
the ideal gas S ∼ lgE within the interval of scaling time t/a [0.001,0.004]. In
the short range of the scaling time t/a [0, 0.001] the lattice artifact appears.
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S

t/a

g2aE

Figure 2: Entropy spectrum S depends on the scaling time t/a and scaling
energy g2aE.

Since the Kolmogorov-Sinai entropy was determined from the Lyapunov
exponents with the Pesin form, the lattice artifact experienced in the numeri-
cal calculation of the Lyapunov exponents manifests in the Kolmogorov-Sinai
entropy spectrum.

It has been shown that the entropy of the SU(2) lattice gauge field has
a first-order phase transition [42]. The entropy as a function of energy was
expressed by the action on the microcanonical ensemble (section 2.1.2).

In our case lattice SU(2) system S(E) curve would show a first-order two-
phase structure containing a break somewhere or crossover (two-phase struc-
ture) at the range of time [0.001,0.003] on the interval of the energy [0.1,0.6].
To decide this, we need to filter out lattice artifacts and reduce entropy fluctu-
ations to give a clear answer. The numerical error can be derived by maximal
Lyapunov exponents determination, resp. calculation of the eigenvalue of rare
matrices.
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5 Spectrum of statistical complexity

5.1 Statistical complexity

The family of statistical complexity measures C is introduced by the func-
tional product form C = H ·Q for difference disorder H and disequilibrium Q

measures on the probabilistic space[33].
The information measure L is able to be described by a given probability

distribution P = {pj, j = 1, . . . , n}, and this quantity corresponds to the mea-
sure of uncertainty of a physical system. The amount of disorder H is defined:

H[P] = L[P]/Lmax, (30)

where Lmax = L[Pe] and Pe = {1/n, . . . , 1/n} is the uniform distribution which
maximizes the information measure (0 ≥ H ≥ 1).

To take into account the idea of statistical complexity, a disequilibrium Q

needs to be identified.
The measure of this quantity is examined at some distance D to the equal

probability distribution Pe.

Q[P] = Q0D[P, Pe], (31)

where Q0 is a normalization factor (0 ≤ Q ≤ 1). This concept describes the
structure of systems as larger than zero if there are possibly more steady states
among the possible situations.

Therefore, we take the following functional form for the statistical complex-
ity measure:

C[P] = H[P] ·Q[P]. (32)

This quantity C[P] characterizes the amount of information stored and its
disequilibrium in this system altogether [32]. The definition of this concept can
be divided into three categories: (c1) this quantity increases monotonically as
the function of entropy;

(c2) it is a convex function that contains the maximum value of Cmax for
the probability distribution Pe and the minimum value of Cmin that occurs at
the extreme values of entropy, i.e. H = 0 or H = 1;

(c3) the third type decreases monotonically with increasing entropy [32].
The two extreme situations can be understood as follows:
(i) Each set of sequences has the same probability distribution. All of them

accept the information stored in an equal measure similar to the ideal gas[28].
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The probability distribution is the same for all series. All of them accept
the information stored in the equivalent measure as the ideal gas [28].

(ii) If we research a system with certain symmetry properties and distance,
then this object is able to write by minimum information as a mineral or
symmetrical in quantum mechanics or the system is completely disordered.

The statistical complexity is characterized by the scale because it was intro-
duced in a finite system. At each scale of measurement, a new set of available
simulated series occurs with its appropriate probability distribution P; so the
complexity is changing.

In statistical mechanics, isolated systems often occur that have arbitrary
initial conditions and a discrete equal probability distribution [11]. It was con-
cluded that in the case of time-evolving isolated systems and their statistical
complexity, the measurements should not take arbitrary values in the CLMC
as a function of H. These constrain the bounds of complexity to certain limits
of minimum and maximum value.

We use the Shannon entropy measure and Euclidean distance on the prob-
ability space as the statistical complexity was investigated by Lopez-Ruiz,
Manchini, and Calbet (LMC)[32].

Information measure We consider the Shannon logarithmic information
measure on the P ≡ {p1, . . . , pn} discrete probability distribution in this article
as follows:

L[P] = −

n∑
j=1

pj log(pj) (33)

The maximal value Lmax is calculated by the uniform probability Pe =
{
1
n , . . . ,

1
n

}
fulfilling this criterion

∑n
j=1 pj = 1 so, Lmax = lnn. If L[P] = 0, it means that

the possible outcomes j whose probabilities are given by pj will currently take
place. The knowledge of the advantaged process is corresponded by the prob-
ability distribution, in this case, is maximal. Anyway this quantity turns into
largest for a uniform distribution, when L[P] = Smax. These two extreme crite-
ria correspond to the (i) perfect order and (ii)maximum randomness as trivial
ones.

Disequilibrium Evidently, the Euclidean statistical distance is taken to give
the quantity D, i.e., the quadratic distance between the probability distribu-
tions of each state to the equiprobability. If D means the Euclidean norm in
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Rn, we find

DE[P, Pe] =‖ P − Pe ‖=
n∑
i=1

(pi − pe)
2, (34)

where pe = 1/n. The maximum disequilibrium is gained for overwhelming
simulation sequences with pi ∼ 1 and D → 1 for increasing n, as long as
this quantity disappears D ∼ 0 for pi ∼ 1/n for all i. In other probability
distribution, the value of the disequilibrium D will vary between these two ex-
treme rates. Then, the expression of the normalization factor of the Euclidean
statistical distance fulfills Q0 =

n
n−1 .

5.2 Complexity of the lattice Yang-Mills equation

In the section (5.1) we introduced the statistical complexity which is based
on the probability distribution providing a statistical estimation of the series
of dynamical systems. There are n finite different elements on the sequence
{x1, x2, . . . , xn} corresponding to the set of discrete probability distribution
P ≡ {p1, p2, . . . , pn}, where pi := P(xi), (

∑n
i=1 pi = 1), and pi > 0 for all i.

We study the real-time evolution of the gauge field by the Yang-Mills equa-
tion on the lattice. Random initial values are chosen which fulfill the constraint
(unitarity, orthogonality, and energy). The length of trajectory is taken as
n = 10000, the subsequent along the orbit is m = 2. The lattice size was
chosen N = 2, 3, 4, 5, 6, 7.

The state of the gauge field at time t contains all Ux,i links on a lattice of
size a. The number of links is dim ∗N3. The lattice gauge field configuration
characterizes the state at a given time instant by the links altogether.

The value of entropy (30), disequilibrium (31), and the statistical complexity
(32) can be calculated by the simulation unambiguously. Since the probabil-
ity distribution of element is discontinuous in three-dimensional lattice gauge
space, some complexity and disequilibrium values do not appear for certain
entropy quantities.

In the Figure (3) the complexity C as a function of scaling energy g2aE and
entropy H is presented and the lattice size is N = 7. The spectrum of complex-
ity C was calculated for 8 different energy values, g2aE = 0.075, 0.11, 0.17, 0.22,
0.33, 0.4, 0.5, 0.7. The spectrum of complexity C is finite and limited but not
necessarily a unique function of entropy H and there exists a convex bound-
ary and larger internal structure between the minimal value Cmin and the
maximal value Cmax for different energy range [0.075,08]. The minimal and
maximal boundary is increasing as the energy is growing.



Kolmogorov-Sinai entropy of non-Abelian gauge field from the complexity 395

The eight different spectra of the statistical complexity C as a function
of entropy H and energy g2aE are determined with the same dynamics, i.e.
their internal structure leads to a similar probability distribution along time-
evolution.

The inner structure can be seen better in Figure (4), where the complexity
C dependence on the entropy H is shown for eight different energy rates. The
value of the complexity C becomes to zero at H ∼ 0 and H ∼ 1 and the curve
is convex on the interval H ∈ [0, 1]. This behavior of complexity belongs to a
class (c2). In the immediate neighbour of the Cmax ∼ 0.07 values for entropy
H ∼ 0.5, i.e. near to the equilibrium distribution Pe, the values of complexity
are more strongly scattered than in the case of H ∼ 0 or H ∼ 1.

As we have seen in these Figures their lower boundary Cmin shows slightly
scattered curves with decreasing entropy values, where the maximum value
of each curve increases in proportion to the energy in the range entropy H
[0.5,1.0]. The upper bound values of the complexity C are widely scattered
in the neighbor of equilibrium distribution Pe. On the interval of the entropy
[0,0.5], the figure does not show any internal structure, where Cmax and Cmin
belonging to the dynamics of the Yang-Mills system assume almost the same
value.

In the Figure (5) the complexity C as a function entropyH and disequlibrium
D is plotted. Because the number of points on a long trajectory is finite, C is a
function H shows scaling behavior, i.e., the bigger complexity appears at less
entropy with a larger discrete probability distribution. Due to the symmetry
SU(2) of the non-Abelian gauge field and the constraint of the total energy and
Gaussian law, the system does not reach all states of phase space. In constract
to the ideal gas [28], where all state of phases space was available, the internal
structure evenly filled in the range between the Cmax and Cmin boundary.

The statistical complexity of the non-Abelian gauge theory was studied for
a long time evolution along the trajectory n. It is showed internal structure in
the immediate vicinity of the equilibrium distribution Pe, the further research
allows us to narrow the energy range to be examined for the immediate vicinity
of the entropy, because the S(E) curve would present a first-order two-phase
structure i.e. having a break somewhere within a certain energy range, that
the lattice artifact could be filtered out.



396 Á. Fülöp
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Figure 3: left:Complexity spectra C as a function of the H and 0 < g2aE < 1
(0.075,0.11,0.17,0.22,0.33,0.4,0.5,0.7) and the lattice size N = 7,m = 2.

6 Summary

In this article, we considered the Hamiltonian function on lattice gauge theory
in especially the maximal real Lyapunov spectrum of the non-Abelian gauge
theory. The spectra of Kolmogorov-Sinai entropy were studied as a function
of energy and lattice size approaching the thermodynamical limit for SU(2)
lattice gauge theory. Long time evolution of the equation of motion of gauge
fields was characterized by statistical complexity in a probability space. The
inner structure of this quantity as a function of entropy allows a more accurate
determination of the phase transition in non-Abelian SU(2) lattice space the-
ory using a monodromy matrix with appropriate parameter range on growing
lattice size by eliminating the effect of the lattice artifact.
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Figure 4: C depends on H on the lattice size N = 7,m = 2 for eight different
energy rates.
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Figure 5: left:Complexity C as a function of the H and D, 0 < g2aE < 1 on
the lattice size N = 7,m = 2 for eight different energy rates.
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References

[1] C. Adami, N. T. Cerf, Physical complexity of symbolic sequences, Physica D
137 (2000) 62–69. ⇒375

[2] C. Anteneodo, A.R. Plastino, Some features of the López-Ruiz-Mancini-Calbet
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[19] A. Fülöp, T. S. Biró, Towards the equation of state of a classical SU(2) lattice
gauge theory, Phys. Rev. C 64 (2001) 064902. ⇒374, 386, 387, 388, 389



Kolmogorov-Sinai entropy of non-Abelian gauge field from the complexity 399

[20] P. Grassberger, Toward a quantitative theory of self-generated complexity Int.
Journ. Theor. Phys. 25 (1986) 907–938. ⇒374

[21] C. Gong, Lyapunov spectra in SU(2) lattice gauge theory Phys. Rev. D 49 (1994)
2642. ⇒374

[22] C. M. Gonzalez, H. A Larrondo, O. A. Rosso,, Statistical complexity measure of
pseudorandom bit generators Physica A 354 (2005) 281. ⇒375

[23] A. Haar, Der Massbegriff in der Theorie der kontinuierlichen Gruppen Ann.
Math. 34 (1933) 147. ⇒380

[24] J. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories
Phys. Rev. D 11 (1975) 395–408. ⇒381

[25] A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphism
Doklady of Russian Academy of Sciences 124 (1959) 754–755. ⇒374

[26] A-M. Kowalski, M-T. Martin, A. Plastino, O-A. Rosso, M. Casas, Distances in
probability space and the statistical complexity setup Entropy 13 (2011) 1055–
1075. ⇒375

[27] V. Kuvshinov, A. Kuzmin, Deterministic chaos in quantum field theory, Prog.
Theor. Phys. Suppl. 150 (2003) 126–135. ⇒374

[28] P. T. Landsberg, J. S. Shiner, Disorder and complexity in an ideal non-
equilibrium Fermi gas Phys. Lett. A 245 (1998) 228. ⇒392, 393, 395

[29] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform.
Theory 22 (1976) 75–81. ⇒374

[30] G. Mack, Physical principles, geometrical aspects, and locality properties of
gauge field theories, Fortsch. Phys. 29 (1981) 135. ⇒381

[31] S. Mandelstam, Quantum electrodynamics without potentials Ann. Phys. 19
(1962) 1. ⇒380

[32] M. T. Martin, A. Plastino, O. A. Rosso, Statistical complexity and disequilib-
rium Phys. Lett A 311 (2003) 126. ⇒374, 392, 393

[33] M. T. Martin, A. Plastino, O. A. Rosso, Generalized statistical complexity mea-
sures: Geometrical and analytical properties Physica A 369 (2006) 439–462. ⇒
374, 392

[34] I. Montvay, G. Münster, Quantum fields on a lattice, Cambridge University
Press, Cambridge CB2 1RP, 1994. ⇒380

[35] B. Müller, A. Trayanov, Deterministic Chaos on Non-Abelian Lattice Gauge
Theory, Phys. Rev. Letters 68 23 (1992) 3387–3390. ⇒374, 388, 390

[36] J. von Neumann, Thermodynamik quantenmechanischer Gesamtheiten,
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 1927 (1927)
273–291. ⇒375

[37] L. E. Reichl, The Transition to Chaos, Springer-Verlag, 1992. ⇒386
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Zoltán KÁTAI (Sapientia Hungarian University of Transylvania, Romania)
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