
Acta Universitatis Sapientiae

Informatica
Volume 13, Number 1, 2021

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Acta Universitatis Sapientiae, Informatica
is covered by the following services:

DOAJ (Directory of Open Access Journals)
EBSCO (relevant databases)
EBSCO Discovery Service
io-port.net
Japan Science and Technology Agency (JST)
Micosoft Academic
Ulrich’s Periodicals Directory/ulrichsweb
Web of Science – Emerging Sources Citation Index
Zentralblatt für Mathematik

Contents

H. Fatlawi, A. Kiss
Differential privacy based classification model for mining medical
data stream using adaptive random forest .1

J. Kok, J. Shiny
Confluence number of certain derivative graphs 21

B. Varga, M. Balassi, A. Kiss
Towards autoscaling of Apache Flink jobs . 39

A. Kiss, G. Pusztai
Animal Farm—a complex artificial life 3D framework 60

S. Pirzada, T. Shamsher, M. A. Bhat
On ordering of minimal energies in bicyclic signed graphs 86

S. Szabó
Estimating the fractional chromatic number of a graph 122

I. I. Farkas, K. Szabados, A. Kovács
Improving productivity in large scale testing at the compiler level
by changing the intermediate language from C++ to Java 134

III

K. Ullah, H. Khan
Fog-LAEEBA: Fog-assisted Link aware and energy efficient protocol
for wireless body area network . 180

IV

Acta Univ. Sapientiae, Informatica 13, 1 (2021) 1–20

DOI: 10.2478/ausi-2021-0001

Differential privacy based classification

model for mining medical data stream

using adaptive random forest

Hayder K. FATLAWI
ELTE University, Budapest, Hungary

University of Kufa, Najaf, Iraq
email: hayder@inf.elte.hu

Attila KISS
J. Selye University, Komarno, Slovakia

email: kissae@ujs.sk

Abstract. Most typical data mining techniques are developed based on
training the batch data which makes the task of mining the data stream
represent a significant challenge. On the other hand, providing a mecha-
nism to perform data mining operations without revealing the patient’s
identity has increasing importance in the data mining field. In this work,
a classification model with differential privacy is proposed for mining the
medical data stream using Adaptive Random Forest (ARF). The exper-
imental results of applying the proposed model on four medical datasets
show that ARF mostly has a more stable performance over the other six
techniques.

1 Introduction

A series of researches and projects in medical science, and information tech-
nology (IT) are starting a relationship between the healthcare industry and
the IT industry that rapidly leads to a better and interactive relation among
patients, their doctors, and health institutions. Data mining has a significant

Computing Classification System 1998: H.2.8, I.2.1
Mathematics Subject Classification 2010: 68P25, 97R40
Key words and phrases: ensemble methods, bagging, privacy-preserving protocol

1

http://staff.uokufa.edu.iq/en/index.php?hayder.fatlawi
https://inf.elte.hu/
https://itrdc.uokufa.edu.iq/
mailto:hayder@inf.elte.hu
https://people.inf.elte.hu/kiss/
https://www.ujs.sk/en
mailto:kissae@ujs.sk

2 H. Fatlawi, A. Kiss

role in medical data processing and analysis that mostly aims to predict the
possibility of diseases or diagnose them [11]. One of the most remarkable
challenges facing data mining is privacy preservation.

Privacy is an important component of medical data processing, as many
health institutions refrain from providing this data to the public, due to the
fear of compromising patient privacy. Therefore, providing a mechanism to
carry out data mining operations, without revealing the patient’s identity has
recently taken place in the interest of researchers.

1.1 Problem statement

Privacy can be provided using many techniques that aim mostly to make a data
modification to hide the identity of the objects in data and enable performing
the mining operations on the data stream. This modification may destroy
the distribution of the data, hence, the effectiveness of data will weaken for
data mining techniques. Therefore, the combination of privacy and utility of
the data for the mining process represents an interesting challenge. On the
other hand, stream data mining techniques are characterized by fast response
and ability to adapt to change in data distribution, while privacy-preserving
techniques can cause delays in response time or/and difficulty in detecting the
drift, which can lead to failure to adapt the mining model properly.

Also, the differential privacy-preserving technique performs data modifica-
tion in which the average of added noise values for an attribute equal to zero,
and that keeps the overall distribution of the data of this attribute. On the
other hand, with a data stream, this can not be applicable because only some
data instances in a specific time moment are available, which represents an-
other challenge.

Therefore, the mining stream privacy-preserving model should satisfy the
following conditions:

1. Data modification should be performed in which the presence or absence
of any data element doesn’t affect the statistics of the query. This condi-
tion aims to make any attacker can’t ensure if any identity contributes
to the data or not.

2. The modification should preserve the distribution changes in the stream
samples to avoid decreasing classification accuracy.

3. Modification time should be fast as much as possible to avoid the re-
sponse delay of the stream mining technique.

This work aims to design and implements a data stream classification model
that satisfies these conditions. It should be capable of building a classifier

Classification model for data stream using ARF 3

based on modified data to maintain privacy with minimal impact on response
time and classification accuracy.

1.2 Related works

Chaudhuri et al. [5] addressed the tradeoff between privacy and learnability
by focusing on privacy-preserving logistic regression. Their work involved dis-
turbing the classifier with noise proportional to the sensitivity. They claimed
that their technique didn’t depend on the sensitivity of the function, and can
be extended to a class of convex loss functions. Kadampur et al. [12] applied
noise addition after building the decision tree from data in which for each
path from the root to a leaf the noise values were added to the attributes
of that path. Although the capability of handling categorical and numerical
attributes, the classification accuracy was degraded after applying their model
with three datasets.

Dwork et al. [7] constructed a privacy-preserving synopses using boosting
for a set of queries over an input database, their algorithm obtains a synop-
sis that is good for all of these sets in which the privacy is guaranteed for
the rows of the database while boosting is performed on the queries. They
also provided synopsis generators for arbitrary sets of arbitrary low sensitivity
queries. Vaidya et al. [20] utilized a random decision tree and random encryp-
tion to develop a distributed data mining framework with privacy-preserving.
Their model had slower performance compared to a non privacy-preserving
version though the accuracy exactly the same.

Two approaches from a combination of quasi-identifier and sensitive at-
tribute (equal and unequal) were proposed by Bhaladhare et al. [3]. To mini-
mize information loss that happened as a result of applying privacy-preserving,
their model utilized systematic clustering for clusters generation. Although the
loss of information and the execution time was better compared with Greedy
k-member and Systematic clustering algorithms, their model had a moderate
level of data utility. Homomorphic encryption scheme with cloud-aided associa-
tion rule mining proposed by Li et al. [14] to achieve privacy-preserving with
frequent itemset mining. According to their experiment results using many
data sets, the model had fewer information leaks but higher computational
time. Wang et al. [21] proposed a randomized response based approach for
privacy-preserving in data collection. The implementation of their approach
using data of patients showed less utility loss than the standard Laplace ap-
proach.

4 H. Fatlawi, A. Kiss

A distributed framework for preserving privacy using clustering in Hadoop
was proposed by Nayahi et al. [16]. It used Hadoop Distributed File System
and tried to overcome some attacks such as similarity attacks. The computa-
tional time of their model increased as the number of clusters increased, and
they claimed that their algorithms were highly scalable with the size of the
data set. Zhang et al. [22] used two mechanisms of noise: Laplace and expo-
nential for providing privacy. They utilized lower noise sensitivity to avoid a
high impact on split point choosing. They applied the proposed model on only
one dataset, and the results showed more stability in classification accuracy
compared with three other algorithms.

Beck et al. [19] proposed a data analytics system for privacy-preserving of
a data stream, it provided zero-knowledge privacy guarantee for users, a data
analysts interface to explore the output accuracy with the query execution
budget, and a close real-time stream processing based on a scalable distributed
architecture. Manikandanet al. [15] utilized a code-based threshold scheme
with fuzzy c-means clustering for creating distributed privacy-preserving.

Table 1 summarizes the characteristics of those related works which have
been mentioned in this section. Most of the related works mentioned in Table
1 were involving classification tasks and only one of them was working with
stream data. This points to the lack of research works in privacy preservation
for stream data mining. Also, those classification works were mostly lacking in
utilizing ensemble classifiers which have a preferable performance with real-
world datasets.

This paper is an extension to our paper [8], the extension utilizes the ro-
bustness of Adaptive Random Forest (ARF) ensemble classifier against small
changes in the distribution of stream data, and build a classification model
with the ability of privacy-preserving using Laplace distribution instead of
normal distribution. The extension includes mentioning and analysis for addi-
tional related works, also the evaluation of the proposed model including one
addition algorithm, two new datasets, a different range of noise values that
added to the data, and a new comparison for distribution changes and adap-
tive window sizes. The implementation of the proposed model in this extension
produces 364 experiments and confirms the better performance of ARF.

Classification model for data stream using ARF 5

Article Data Mining
Tech.

Dataset Privacy Pre-
serving Tech-
nique

Advantages Disadvantages

Chaudhuri
et al. [5]

Logistic Re-
gression

Artificial
Dataset

Differential Pri-
vacy

Sensitivity Inde-
pendent

Only Simulation
Results

Kadampur
et al. [12]

Decision
Tree

Boston
Housing
Price,Census
Income,Car
Evaluation

Noise Addition Handle Categorical
and Numerical
Data Types

Less Accuracy than
Original Classifier

Dwork et al.
[7]

Boosting - Differential Pri-
vacy

Stronger Bounds
on Expected Pri-
vacy Loss

No Experiment on
Real Datasets

Vaidya et al.
[20]

Random De-
cision Tree

Mushroom,
Nursery,
Image Seg-
mentation,
and Car

Random En-
cryption

Fast Distributed
Mining with Same
Accuracy

Slower than Non
Privacy-preserving
Version

Bhaladhare
et al. [3]

Systematic
Clustering

Benchmark
Adult

Combination of
Quasi-identifier
and Sensitive
Attribute

Lesser Information
Loss

Moderate Level of
Data Utility

Li et al. [14] Frequent
Itemset

Retail and
Pumsb
Datasets

Vertically
Partitioned
Databases

Leak Less Informa-
tion

Slower than Algo-
rithms with Low
Privacy Levels.

Wang et al.
[21]

Data Collec-
tion

YesiWell Randomized
Response

Fewer Utility Loss
with High Sensitiv-
ity of Functions

Depending on Only
One Dataset

Nayahi et al.
[16]

J48 , Naive
Bayes , K-
NN

Benchmark
Adult d

K-
anonymization

Scalability on In-
creasing Dataset
Size

Time Increasing
when Number of
Clusters Increasing

Zhang et al.
[22]

Decision
Tree

Census In-
come

Laplace and Ex-
ponential Noise

More Stable Accu-
racy

Depending on Only
One Dataset

Beck et al.
[19]

Sampling NYC Taxi
Ride,Household
Electricity
Consump-
tion

Randomized
Response

Distributed Real-
time Stream
Processing

Accuracy Loss
doesn’t Always De-
crease when Second
Randomization Pa-
rameter Increases

Manikandan
et al. [15]

Fuzzy C-
Means

Plant Cell
Signaling

Code Based
Technique with
Threshold Esti-
mation

Less Number of
Iterations and No
Cross Trust is
Required

Focus Only on Effi-
ciency

Table 1: Comparison of some research works on privacy-preserving data mining

6 H. Fatlawi, A. Kiss

2 Basic concepts in stream data mining

2.1 Data stream constraints

Unlike with batch data, stream data faces many constraints as follow: (1)
infinite arrival of data samples make storing them impossible, (2) the fast
arrival of data samples requires dealing with each sample in real-time, (3)
the possibility of changing items’ distribution overtime in which the old data
would be useless for the current status. Generally, the perfect classification
model should produce maximum accuracy in the fastest time and minimum
computational resources [2].

2.2 Concept drift

Concept drift refers to that the data is being gathered may change from time to
time, every time according to some minimum persistence. Changes may occur
during the time in which the old training examples become irrelevant to the
current state, and the learning system should forget such kind of information.
There are two important issues related to the change: causes of change and
the rate of change [9].

2.3 Adaptive sliding window (ADWIN)

It is an estimation technique that aims at detecting the change in a data stream
based on a sliding window with adaptive size. It has a qualified and significant
method for tracking the average of bits in the stream. In this technique, the
length of windows is not updated as long as the average value inside the
window doesn’t change [9].

2.4 Hoeffding tree

Hoeffding Tree or Very Fast Decision Tree (VFDT) is a variation from the
typical decision tree designed for stream data. The learning of these techniques
depends on replacing leaves of the tree with decision nodes. Each terminal node
(leaf) in the tree stores enough information statistics about features values that
are used by a heuristic function to perform a splitting test. After reaching a
new data instance, it transfers starting from the root until reaching a specific
leaf node. At this point, the statistics information then is evaluated and a new
decision node may be created based on this evaluation [9]. It is very popular to

Classification model for data stream using ARF 7

utilize VFDT as a base learner for the ensemble classification model, thereby,
the ensemble techniques in this work used VFDT as well.

VFDT depends on the concept of Hoeffding Bound [9] which states that
the probability of the difference between the expected value and the actual
value of the mean of data elements to be more than ε value shouldn’t exceed
a specific small value as follows: let F1, F2, . . . , Fn be an independent random
variable and each Fi is bounded in which

P (Fi ∈ R = [xi, yi]) = 1. (1)

Let

H =
1

n

n∑
i=1

Fi

with expected value E(H). Then for any ε> 0,

P[H− E[H] > ε] ≤ e−
2n2ε2

R2 . (2)

2.5 Adaptive random forest

Models based on a single classifier have some weakness points, such as model
instability which means any slight changes in data may make a change in
the structure of the tree classifier. To overcome that, ensemble methods have
been developed which combine many weak classifiers [13, 1]. Ensembles have
more power predictive performance than a single tree, so they became general
techniques for both classification tasks and numeric prediction [17, 13]. The
methodology of an ensemble model is to combine a set of single models, each
one tries to solve the same original task, aiming to obtain a better integrated
global model [10]. Two points should be taken into account when using en-
sembles: (i) the size of an ensemble (ii) the mechanism of combination among
the results of trees [23]. Many techniques are developed for ensemble models
such as bagging, boosting, and stacking. Bagging combines the decisions of
multiple trees by using the voting concept for binary (and multi) class predic-
tive tasks, and for a numerical predictive task, bagging calculates the average.
A popular example of bagging techniques is the random forest [1].

Ensemble modeling aims at building a strong accumulative classifier from
many weak classifiers. Adaptive Random Forest is a variation from the typical
random forest algorithm for data stream mining tasks. The main idea is to
utilize Hoeffding trees, which have the ability to adapt to distribution changes,
as the base classifier for the bagging ensemble method [2]. For detecting the

8 H. Fatlawi, A. Kiss

change in a data stream, ADWIN is used in these techniques. It depends
on Online Bagging as a resampling method and a drift monitor for change
detection per each tree [2].

2.6 Differential privacy

Differential privacy aims at learning information about the whole data while
preserving the privacy of each data sample. The differential privacy model
assumes that although the availability of the knowledge about all data records
except one, the adversary is not be able to extract the information of that
record. It can be resistant to background attack in comparison with other
privacy models, also, privacy guarantee of differential privacy is provable [24].

In general, the system with differential privacy should have the same per-
formance without any consideration for to presence or absence of any data
sample, and this can be performed by keeping the probability distribution of
data [7]. According to [5], differential privacy can be provided using a ran-
domized mechanism RM if for all databases DB1 and DB2 that differ by one
element for any t,

P[RM(DB1) = t]

P[RM(DB2) = t]
≤ eε (3)

The privacy guarantee level of the differential privacy model is controlled by
the parameter ε which represents the privacy budget. Sensitivity is another
aspect related to differential privacy, it indicates the required amount of per-
turbation for this mechanism by calibrating the volume of noise. There are two
types of sensitivity used in differential privacy: (i) global sensitivity represents
the largest value for the difference between results of the query on different
related datasets, (ii) local sensitivity concern with calibrating the difference
between query results based on records. Queries with relatively low values are
preferable with global sensitivity [24].

3 Methodology

The main aim of this work is to design and implement a classification model for
stream data based on adaptive random forest, including differential privacy.
Thereby, there are two main stages; the first one is to apply some of the
preprocessing procedures to prepare the medical data for the mining task.
The second stage is to build an ensemble classifier which includes many very

Classification model for data stream using ARF 9

fast decision trees, and finally compare the performance based on streaming
real batch datasets. Figure 1 illustrates all the steps of our work.

Figure 1: The classification model with ε-differential privacy for medical data
stream

3.1 Stage one: data preprocessing

The first stage concerns with preparing and generating a new dataset from the
original one by using features transformation, normalization, and the white
noise concept. This stage can be described as following steps:

3.1.1 Categorical to numerical transformation

To add the noise values to the data, features should be in a numeric form. So, in
this step, every Categorical (Textual values) was converted to numerical values.
For binary features values like (Yes, No), the simplest coding is used and the
values became (1,0). For multiple values (more than two values), frequency of

10 H. Fatlawi, A. Kiss

each distinct value (1..N) for each feature was calculated. After that coding
was used in which the most frequent distinct textual value converted to N and
least frequent converted to 1.

3.1.2 Data normalization

The range of feature values can be different, such as age has values between 1 -
150 while the yearly income can be between (1-10000000). For that, we need to
apply normalization to prevent any dominant from one of the features during
statistical calculation that performed during classifier building. The new range
for all feature values were between -1 and 1 in which for each feature f:

f(i) = 2
f(i) −minf

maxf−minf
− 1 (4)

3.1.3 ε-Differential noise generation

For each data set, noise value was added in which the mean of those values for
each feature is zero. The standard deviation (STD) represents the intensity of
the noise and the gradual increase of it will be used in the proposed model to
investigate the suitable value for the input data. The random values should
satisfy the condition of the random mechanism Eq. (3). To obtain these noise
values, Laplace Mechanism as presented in [24] was utilized in which the
values were generated from the Laplace distribution, which has zero center
and scale q. Large q value produces a higher noise value z as the following:

Lab (z) =
1

2q
exp

(
−|z|

q

)
. (5)

3.2 Stage two: building ensemble model

In this stage, we utilized online Bagging of K base classifier [18], each base
classifier built using Hoeffding Tree as presented by [6] . The stage started
with setting the size of ARF ensemble model, then number of data subsets
produced from resampling the data sample that resulted from the previous
stage. The number of subsets was equal to the number of base classifiers, each
subset was used to train a Hoeffding Tree classifier, and finally, voting among
all base classifiers was used to classify each data element.

Classification model for data stream using ARF 11

3.2.1 Initializing the size of ensemble model

While Online Bagging was used for ensemble model building, the size of this
model i.e. the number of base classifiers was a user-defined parameter that
needs its value before the building operation started. The importance of this
parameter comes from it represents a stopping condition for each learning step,
which is related to the complexity of required computational resources. The
value of this parameter in the proposed model prefers to be in low range value
(around 10 base classifier) for the following reasons:

1. Stream mining classifier is expected to have a fast response in learning
and classifying process as a stream element reach continuously.

2. The number of data rows in each data sample inside the current window
is relatively low, thereby, the resampling step in Online Bagging doesn’t
need for large ensemble model for preserving the diversity of each base
classifier.

3.2.2 Ensemble model building

In online Bagging, any new data sample was chosen according to a Poisson(1)
distribution. The classification decision of the ensemble bagging model is based
on the voting of all K base classifiers with equal weight for all of them. It gives
every new data example an initial weight w=1, then it is passed to the first
weak learner. If this data example is misclassified, it’s weight is increased
before passing it to the next weak learner. The base learner in our comparison
was Hoeffding Tree classifier and the size of the ensemble that used was ten
learners. Adaptive Random forest was built depending on [4] which utilized
Online Bagging’s resampling method but the difference was in the adaptive
method.

3.2.3 Hoeffding tree classifier building

It includes two types of nodes: internal (or decision) and terminal (or leaf)
nodes. Each terminal node in the tree stores enough statistical information
about features values. This information is used by a heuristic function to per-
form a splitting test. After reaching a new data instance, it transfers starting
from the first node (root) until reaching a specific leaf node. In this point, if
the class value of new instance isn’t seen before, the instance then is classified
according to the majority class of the current leaf node, otherwise, the statis-
tics information is evaluated and a new decision node may be created based
on this evaluation.

12 H. Fatlawi, A. Kiss

The evaluation includes computing the gain for all features in all possible
split points. For each split point, the impurity of class distribution of the
current node and the possible child nodes will be computed using Entropy,
according to the following equation, for node a:

Entropy(a) = −

c−1∑
i=0

p (i|a) log2p (i|a) , (6)

where c refers to the number of classes. The difference between the Entropy
of the current node and the average of Entropy of its possible child nodes
after splitting represents the gain of that splitting operation. A splitting that
produces a more homogeneous class distribution i.e. higher gain is preferable.
Hoeffding bound computes using Eq. (2), and if the difference between the
highest two features is more than Hoeffding bound value, the current leaf node
will replace by an internal decision node depending on the highest feature, also,
for each split branch of this new node, a new empty leaf node will be added.
Algorithm 1 summarizes all the steps of the proposed model.

4 Implementation and experimental results

4.1 Data analysis platform

In this work, three major tools were utilized to perform the comparison;
Waikato Environment for Knowledge Analysis (Weka), Massive Online Anal-
ysis (MOA), and Sklearn. Weka Platform is open-source software for data
analysis tasks including Classification, Clustering, and Association Rules. It
is developed by the University of Waikato using Java programming language.
It was utilized in this work for preprocessing operations (Transformation and
Normalization).

MOA Platform is an improvement for the Weka platform for the mining
data stream. It provides many popular mining techniques, stream generator,
and concept drift detection techniques, in our comparison, it performed the
data streaming and implementation of classification techniques. Sklearn is a
python free library for machine learning tasks. It contains many classification
techniques such as random forest and boosting. Sklearn was used in this work
for adding white noise values to data.

Classification model for data stream using ARF 13

Algorithm 1 Stream data classification model with ε-differential privacy

1: procedure ARF
2: St = current stream samples in ADWIN window
3: From St Create K data subsets using Bagging resampling
4: for each subset S do
5: for each feature f in S do
6: if IsCatogorical(f) = True then
7: for each distinct value d in f do
8: f(d)= frequency(d)
9: end for

10: end if
11: Apply normalization on S according to Eq. (4)
12: end for
13: for each data instance dt in S do
14: Generate random value R for differential privacy . Based on

Eq. (3),(5)
15: dt = dt+R
16: Trace Hoeffiding tree reaching to a specific terminal node tn
17: if Class value of dt != ? then
18: dt(y)= major class of tn
19: else
20: for each feature f in tn do
21: G1= Class impurity in tn . Based on Eq. (6)
22: G2= Class impurity in tn ’s possible child nodes .

Based on Eq. (6)
23: G= G1-G2
24: end for
25: Rank every features based on its gain
26: Choose two features bf1,bf2 with highest gain
27: Compute HB= Hoeffiding Bound based on Eq. (2)
28: if G(bf1)-G(bf2) > HB then
29: Replace tn with a decision node based on split test of bf1
30: Add new terminal nodes for each possible split value
31: end if
32: end if
33: end for
34: end for
35: Return ARF classifier, Classified sample instances
36: end procedure

14 H. Fatlawi, A. Kiss

4.2 Applying adaptive random forest with differential privacy

This step includes applying ensemble classifier against gradually increasing in
differential privacy strength of data by using white noise. For this task, the
Weka platform is used to perform two preprocessing steps; features transfor-
mation and normalization. Then MOA is used to convert batch datasets to a
data stream, then to train the classifier based on that stream. Four measure-
ments are used for evaluating the performance of the classification techniques;
mean of correctly classified instances, mean of F1 score, mean of precision,
and mean of Recall. Figure 2 and Table 2 clarify the performance of the pro-
posed model using different Standard Deviation STD randomize values for
Differential Privacy.

Diff. Noise STD 0.000 0.001 0.002 0.003 0.004 0.005 0.01 0.015 0.02 0.025 0.05 0.075 0.1

EEG State 98.75 98.28 98.17 98.29 98.11 98.08 98.03 98 97.90 98.06 98.06 98.09 97.84
Skin Seg. 100.00 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 100.00 99.99 99.99 99.99
MIT-BIH 90.93 82.72 82.71 82.71 82.70 82.71 82.71 82.70 82.70 82.71 82.71 82.72 82.70

Breast Cancer 99.35 99.35 99.35 99.35 99.35 99.35 99.35 99.35 99.35 99.35 99.35 99.35 99.35

Table 2: Accuracy of ARF with different STD values

Figure 2: Accuracy of ARF with range of STD values for differential privacy

Classification model for data stream using ARF 15

In both Table 2 and Figure 2 , we can observe the following:

1. Ability of ARF to preserve the accuracy of classification after adding the
noise values with the first two and the fourth datasets.

2. Stability of ARF with different values of additional noise with the first
two and the fourth datasets.

3. There was a decrease in the classification accuracy with the third dataset
after adding the minimum magnitude of the noise, however, ARF recov-
ered its stability with the rest of the range’s values.

The main difference between the first two and the fourth dataset aside, and
the third dataset from another side is that the number of features in the third
dataset is more, this leads to a question that if the high dimensionality can
affect the utility of ARF after adding the differential privacy.

The preference of the proposed model using ARF compared with many
other techniques can be observed in Table 3 and Figure 3, however, there was
a close performance between ARF and Ozabagging. The similarity of those two
techniques that are both of them is a bagging ensemble classifier, a question
arises if the strength of ARF with privacy-preserving in the medical data
stream can be generalized to other bagging techniques. Also, we can observe
that Naive Bayesian had unstable performance, in which it had the worst
performance in most cases. All results in Table 3 were using the minimum
STD value for differential privacy.

Technique Heoffman ARF OzaBagg OzaBoost K-NN N. Baysain Random Hoeffman

EEG State 72.56 98.28 93.33 85.56 88.4 48.42 65.48
Skin Seg. 99.94 99.99 99.97 79.06 99.97 95.29 99.93
MIT-BIH 82.7 82.72 82.72 87.87 82.67 14.61 82.70

Breast Cancer 99.31 99.35 99.35 99.19 99.35 94.33 99.3

Table 3: Accuracy comparison of classification algorithms based on streaming
four medical datasets

Other interesting findings from the experimental results are illustrated in
Figure 4 and Figure 5. We can observe that the number of drifts i.e change
in the distribution of data streams for all features in Skin Seg. and EEG Eye
datasets was reduced significantly after adding differential privacy. As a result
of this reduction, the size of ADWIN window which illustrated in Figure 6
and Figure 7 was maximized to contain all stream elements in EEG state and
Skin Seg. datasets. This smoothness of the data stream leads to reduce the
number of changes in ARF model to adapt to change in distribution, thereby,

16 H. Fatlawi, A. Kiss

the computational time of ARF has been reduced, and that could overcome
the addition time of differential privacy step.

Figure 3: Comparison of the proposed model accuracy with other six tech-
niques

Figure 4: Comparison of drifts in skin sig. dataset with two STD values

Classification model for data stream using ARF 17

Figure 5: Comparison of drifts in EEG state dataset with two STD values

Figure 6: Comparison of ADWIN size in skin sigm. dataset with two STD
values

18 H. Fatlawi, A. Kiss

Figure 7: Comparison of ADWIN size in EEG state dataset with two STD
values

5 Conclusion

In this work, a privacy-preserving classification model for the mining data
stream was proposed. It utilized the robustness of Adaptive Random Forest
classifier to handle the randomized values that added to the original data
stream using differential privacy. The proposed model had the best accuracy
compared with the other six techniques applied on four real medical datasets,
OzaBagging also has notable performance, and both techniques are bagging en-
semble methods. Also, the number of drifts in the distribution of data streams
was reduced significantly after adding differential privacy, as a result, that the
size of ADWIN window was maximized. These results obtained by applying
364 experiments using a gradual increase of STD of randomizing values for
proving the differential privacy.

Acknowledgments

The project was supported by the European Union, co-financed by the Euro-
pean Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

Classification model for data stream using ARF 19

References

[1] A. Al-Fatlawi, H. Fatlawi, S. H. Ling Recognition physical activities with opti-
mal number of wearable sensors using data mining algorithms and deep belief
network, 2017 39th annual international conference of the IEEE engineering in
medicine and biology society (EMBC) Seogwipo, South Korea, 2017, pp. 2871–
2874. ⇒7

[2] B. Babenko, MH. Yang, S. Belongie, A family of online boosting algorithms,
2009 IEEE 12th international conference on computer vision workshops, ICCV
workshops Kyoto, Japan, 2009, pp. 1346–1353. ⇒6, 7, 8

[3] P. R. Bhaladhare, D. C. Jinwala, Novel Approaches for Privacy Preserving Data
Mining in k-Anonymity Model, Journal of information science and engineering,
32 (2016) 63–78. ⇒3, 5

[4] A. Bifet, G. Holmes, B. Pfahringer, G. Bernhard, Improving adaptive bagging
methods for evolving data streams, Asian conference on machine learning Nan-
jing, China, 2009, pp. 23–37. ⇒11

[5] K. Chaudhuri, C. Monteleoni, Privacy-preserving logistic regression, Advances in
neural information processing systems Vancouver, Canada, 2009, pp. 289–296.⇒3, 5, 8

[6] P. Domingos, G. Hulten, Mining high-speed data streams, KDD00: the second
annual international conference on knowledge discovery in data Boston Mas-
sachusetts, USA, 2000, pp. 71–80. ⇒10

[7] C. Dwork, G. N. Rothblum, S. Vadhan, Boosting and differential privacy, 2010
IEEE 51st annual symposium on foundations of computer science Las Vegas,
Nevada USA, 2010, pp. 51–60. ⇒3, 5, 8

[8] H. Fatlawi, A. Kiss, On Robustness of Adaptive Random Forest Classifier
on Biomedical Data Stream, Asian Conference on Intelligent Information and
Database Systems (ACIIDS 2020), Lecture notes in computer science Springer,
12033 (2020) 332-344. ⇒4

[9] J. Gama, Knowledge discovery from data streams, The CRC Press, 2010. ⇒ 6,
7

[10] G. Giovanni, J. F. Elder, Ensemble methods in data mining: improving accu-
racy through combining predictions, The Synthesis lectures on data mining and
knowledge discovery Morgan & Claypool Publishers, 2010. ⇒7

[11] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, Pro-
ceedings of the seventh ACM SIGKDD international conference on knowledge
discovery and data mining San Francisco California, USA, 2001, pp. 97–106. ⇒
2

[12] M. A. Kadampur, D.V.L.N Somayajulu, A noise addition scheme in decision tree
for privacy preserving data mining, Journal of computing 2, 1 (2010) 137–144.⇒3, 5

[13] M. Kuhn, K. Johnson, Applied predictive modeling, Springer, 2013. ⇒7

https://ieeexplore.ieee.org/document/8037456
https://ieeexplore.ieee.org/document/8037456
https://ieeexplore.ieee.org/document/8037456
https://www.computer.org/csdl/pds/api/csdl/proceedings/download-article/12OmNARAn7R/pdf
https://jise.iis.sinica.edu.tw/
https://researchcommons.waikato.ac.nz/bitstream/handle/10289/3646/HatBag.pdf?sequence=1
https://researchcommons.waikato.ac.nz/bitstream/handle/10289/3646/HatBag.pdf?sequence=1
https://papers.nips.cc/paper/2008/file/8065d07da4a77621450aa84fee5656d9-Paper.pdf
https://homes.cs.washington.edu/~pedrod/papers/kdd00.pdf
http://people.seas.harvard.edu/~salil/research/PrivateBoosting-focs.pdf
http://staff.uokufa.edu.iq/en/index.php?hayder.fatlawi
https://people.inf.elte.hu/kiss/
https://link.springer.com/book/10.1007/978-3-030-41964-6
http://www.liaad.up.pt/area/jgama//
https://www.routledge.com/
https://ieeexplore.ieee.org/document/6813170?arnumber=6813170
https://ieeexplore.ieee.org/document/6813170?arnumber=6813170
https://arxiv.org/ftp/arxiv/papers/1001/1001.3504.pdf
https://link.springer.com/book/10.1007/978-1-4614-6849-3

20 H. Fatlawi, A. Kiss

[14] L. Li, R. Lu, K. R. Choo, A. Datta,J. Shao, Privacy-preserving-outsourced as-
sociation rule mining on vertically partitioned databases, IEEE transactions on
information forensics and security, 11, 8 (2016) 1847–1861. ⇒3, 5

[15] V. Manikandan, V. Porkodi, A. S. Mohammed, M. Sivaram, Privacy preserving
data Mining using threshold based fuzzy C-Means clustering, ICTACT journal
on soft computing, 9, 1 (2018) 1820–1823. ⇒4, 5

[16] J. J. v. Nayahi, V. Kavitha, Privacy and utility preserving data clustering for
data anonymization and distribution on Hadoop, Future Generation Computer
Systems, 74 (2017) 393–408. ⇒4, 5

[17] T. Ngo, Data mining: practical machine learning tools and technique, by ian
h. witten, eibe frank, mark a. hell, The ACM SIGSOFT Software Engineering
Notes, 36, 5 2011. ⇒7

[18] N.C. Oza, Online bagging and boosting, 2005 IEEE international conference on
systems, man and cybernetics Waikoloa, HI, USA, 2005, pp. 2340–2345. ⇒10

[19] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, Christof Fetzer, Thorsten Strufe,
PrivApprox: privacy-preserving stream analytics, 2017 annual technical confer-
ence (USENIX ATC ’17) Santa Clara, CA, USA 2017, pp. 659–672. ⇒4, 5

[20] J. Vaidya, B. Shafiq, W. Fan, D. Mehmood, D. Lorenzi, A random decision tree
framework for privacy-preserving data mining, IEEE transactions on dependable
and secure computing, 11, 5 (2013) 399–411. ⇒3, 5

[21] Y. Wang, X. Wu, D. Hu, Using Randomized Response for Differential Privacy
Preserving Data Collection, EDBT/ICDT Workshops, Bordeaux, France, 1558
(2016). ⇒3, 5

[22] L. Zhang, Y. Liu, R. Wang, X. Fu, Q. Lin, Efficient privacy-preserving classifica-
tion construction model with differential privacy technology, Journal of systems
engineering and electronics BIAI, 28, 1 (2017) 170–178. ⇒4, 5

[23] Z. Zhou, Ensemble methods: foundations and algorithms, The CRC press, 2012.⇒7
[24] T. Zhu, G. Li, W. Zhou, S. Y. Philip, Differential privacy and applications,

Springer, 2017. ⇒8, 10

Received: January 23, 2021 • Revised: February 28, 2021

http://www.ieeeprojectmadurai.in/NS22016BASE/Privacy-Preserving-Outsourced%20Association%20Rule.pdf
http://www.ieeeprojectmadurai.in/NS22016BASE/Privacy-Preserving-Outsourced%20Association%20Rule.pdf
http://ictactjournals.in/paper/IJSC_Vol_9_Iss_1_Paper_6_1820_1823.pdf
https://www.sciencedirect.com/journal/future-generation-computer-system
https://www.sciencedirect.com/journal/future-generation-computer-system
https://dl.acm.org/newsletter/sigsoft
https://dl.acm.org/newsletter/sigsoft
https://ti.arc.nasa.gov/profile/oza/
https://www.usenix.org/system/files/conference/atc17/atc17-quoc.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
http://ceur-ws.org/Vol-1558/paper35.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5971804
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5971804
https://www.routledge.com/Ensemble-Methods-Foundations-and-Algorithms/Zhou/p/book/9781439830031
https://www.springer.com/gp/book/9783319620022

Acta Univ. Sapientiae, Informatica 13, 1 (2021) 21–38

DOI: 10.2478/ausi-2021-0002

Confluence number of certain derivative

graphs

Johan KOK
Independent Mathematics Researcher,

City of Tshwane, South Africa &
Visiting Faculty at CHRIST (Deemed to

be a University), Bangalore, India
email: jacotype@gmail.com

Joseph SHINY
Mathematics Research Center,

Mary Matha Arts and Science College
Mananthavady, Kerala, India

email: shinyjoseph314@gmail.com

Abstract. This paper furthers the study on the confluence number of
a graph. In particular results for certain derivative graphs such as the
line graph of trees, cactus graphs, linear Jaco graphs and novel graph
operations are reported.

1 Introduction

Concepts, notation and graph parameters without formal definitions can be
clarified in [3, 4, 12]. Unless stated otherwise, graphs will be finite, undirected
and non-complete, connected simple graphs. A shortest path having end ver-
tices u and v is denoted by u − v(in G). If dG(u, v) ≥ 2 then a vertex w on
u− v(in G), w 6= u, w 6= v is called an internal vertex on u− v(in G). When the
context is clear the notation such as dG(u, v), degG(v) can be abbreviated to
d(u, v), deg(v) and so on.
The notion of a confluence set (a subset of vertices) of a graph G was intro-
duced in [11]. For a non-complete graph G a non-empty subset X ⊆ V(G) is
said to be a confluence set if for every unordered pair {u, v} of distinct vertices

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C07, 05C12
Key words and phrases: Confluence set, minimum confluence set, confluence number.

21

https://www.christuniversity.in/
https://www.christuniversity.in/
mailto:jacotype@gmail.com
http://marymathacollege.ac.in/
http://marymathacollege.ac.in/
mailto:shinyjoseph314@gmail.com

22 J. Kok, J. Shiny

(if such exist) in V(G)\X for which dG(u, v) ≥ 2 there exists at least one
u − v(in G) with at least one internal vertex w ∈ X . Also any vertex u ∈ X
is called a confluence vertex of G. A minimal confluence set X has no proper
subset which is a confluence set of G. The cardinality of a minimum confluence
set denoted by C (also called confluence set C when context is clear) is called
the confluence number of G and is denoted by ζ(G). To distinguish between
different graphs the notation CG may be used for a minimum confluence set of
G.

2 Preliminaries

Recall that the line graph L(G) of graph G is obtained by letting V(L(G)) =
{e ′i : e

′
i a vertex representation of the edge ei iff ei ∈ E(G)} and E(L(G)) =

{e ′ie
′
j : iff ei, ej share a common end-vertex}. A number of known results related

to a line graph and which are important for this paper are recalled throughout.

Theorem 1 [10] For a path Pn, n ≥ 2, L(Pn) = Pn−1.

A corollary is immediate from Theorem 1.

Corollary 2 For a path Pn, n ≥ 2:

ζ(L(Pn)) =

{
0, if n = 2;

bn−13 c, if n ≥ 3.

Proof. The result follows from Theorem 1 read together with Theorem 5 in
[11] i.e.:

ζ(Pn) =

{
0, if n = 1 or 2;

bn3 c, if n ≥ 3.

�

A subsequent corollary is trivial.

Corollary 3 For a path Pn, n ≥ 2 it follows that ζ(Pn) > ζ(L(Pn)) if n = 3t,
t = 1, 2, 3, . . .Else, ζ(Pn) = ζ(L(Pn)).

Theorem 4 A path Pn has a unique minimum confluence set CPn if and only
if n = 5+ 3i, i = 0, 1, 2, . . .

Proof. Let path Pn be on the consecutive vertices v1, v2, v3, . . . , vn. For P5 it
is trivial that {v3} is the unique minimum confluence set.

Confluence number derivative graphs 23

It is easy to verify that if vi, vj ∈ CPn then d(vi, vj) ≤ 3. By ensuring d(vi, vj) =
3 to a maximum results in a minimum confluence set for Pn. In particular for
n = 5 + 3i, i = 1, 2, 3, . . . the selection of a minimum confluence set yields a
unique minimum confluence set for Pn. This settles the ”if”.
The converse follows inherently from the minimum confluence set selection
procedure and the well-defined value n = 5 + 3i, i = 0, 1, 2, . . . in the first
part. �

Counter example. For illustrative purpose consider P6 = v1v2v3v4v5v6. It
is easy to see that amongst others, the sets {v3, v4}, {v3, v5} and {v3, v6} are
non-unique minimum confluence sets of P6, 6 6= 5+ 3i for any i.

Theorem 5 [10] A graph G is isomorphic to its line graph if and only if G is
a cycle Cn, n ≥ 3.

Theorem 5 implies that Cn ∼= L(Cn) ∼= L(L(Cn)) ∼= · · · ∼= L(L · · ·L(Cn)).
Therefore, ζ(Cn) = ζ(L(Cn)), n ≥ 3. With only a change in notation we adopt
the result from [11].

Theorem 6 For a cycle Cn, n ≥ 3:

ζ(L(Cn)) =

0, if n = 3;

1, if n = 4;

dn3 e, if n ≥ 5.

The next lemma is a consequence of the definition of a minimum confluence
set.

Lemma 7 Consider a graph G with at least two vertices u, v, dG(u, v) = 2.
Amongst all possible u − v(in G) there exists at least one such path say, uwv
such that u or w or v an element(s) of CG.

A vertex v to which a leaf (pendent) vertex u is attached is called the pre-leaf
of u or simply, pre-leaf v.

Lemma 8 For any graph G of order n ≥ 3 which has a leaf u there exists a
confluence set C (a minimum) such that u /∈ C.

Proof. Let a leaf u ∈ C and let v be the pre-leaf vertex of u. Clearly if both
u, v ∈ C then C is not minimal thus not minimum. Therefore, v /∈ C hence
(C−u)∪ {v} remains a minimum confluence set of T . This suffices to settle the
result. �

24 J. Kok, J. Shiny

Lemma 8 implies that since a pendent vertex cannot be an internal vertex on
a path it need not by necessity be an element of a minimum confluence set C
of any graph.
Let the pendent degree of vertex u ∈ V(G) denoted by degp(u) be the number
of pendent vertices adjacent to u. The vertex set V(G) can be partitioned into
X1 = {u : degp(u) = 0}, X2 = {v : degp(v) = 1} and X3 = {w : degp(w) ≥ 2}. A
trivial lower bound establishes i.e. ζ(G) ≥ |X3|. Put differently, there exists a
minimum confluence set C of T such that X3 ⊆ C. The aforesaid is true because
the unique shortest path between any two pendent vertices sharing a common
pre-leaf w permits w ∈ C. For a tree T this lower bound can be useful and
equality can hold. For example for a star, S1,n ∼= K1,n. Let X ′

1 = {leafs of T }.
Note that X ′

1 ⊆ X1.

Proposition 9 If for a tree T the vertex set partition is such that V(T) =
X ′
1 ∪ X3 then ζ(T) = |X3|.

Proof. Since V(T) = X ′
1 ∪ X3 the vertex set V(T) consists of only leafs and

pre-leafs. Furthermore, each pre-leaf u has at least two leafs say, v,w. There
exist a unique v − w(in T) with the unique internal vertex u so it follows by
necessity that u ∈ C so, ζ(T) ≥ |X3|. By Lemma 8 a leaf is not by necessity in
C so ζ(T) ≤ |X3|. Therefore ζ(T) = |X3|. �

2.1 Heuristic method to obtain ζ(T)

The path Pn is called a n-path. For paths P and Q we define P ∩ Q =
V(P) ∩ V(Q). For different paths and not necessarily of different order, Pn1

,

Pn2
, Pn3

,. . . , Pnk
we define

k⋂
i=1

Pni
= (((Pn1

∩ Pn2
) ∩ Pn3

) ∩ · · · ∩ Pnk
).

Heuristic A. For a vertex labeled tree T of order n ≥ 3 do:
Step 1A. Let V(T) = {v1, v2, v3, . . . , vn with vn a leaf}. Minimizing by iso-
morphism let P be maximal with P = {all 3-paths v1vivj, } ∪ {all 3-paths
v2vkvl, } ∪ · · · ∪ {all 3-paths vn−1vmvq}.
Step 2A: Consider the vertex subset of V(T) i.e. X3 = {w : degp(w) ≥ 2}.
Step 3A: For all x ∈ X3 remove the 3-paths in P which contains vertex x to
obtain P ′.
Step 4A. Partition P ′ into a minimum partition of 3-path subsets such that,
within a 3-path subset all 3-paths share at least a common vertex except for
singleton subsets. Denote this partition by P(P ′).
Step 5A. Let the number of 3-path subsets in P(P ′) be `. Then ζ(T) = `+ |X3|.

Confluence number derivative graphs 25

Furthermore, for a singleton 3-path subset in P(P ′) any one vertex on the 3-
path is permitted in CT . For 3-path subsets with two or more 3-paths which
share two common vertices, any one of the two vertices is permitted in CT .
For 3-path subsets with two or more 3-paths which share one common vertex,
only the common vertex is permitted in CT .
Note that prescribing vn to be a leaf is only a matter of convenience. Fur-
thermore, besides obtaining the confluence number the heuristic yields a valid
minimum confluence set. In real world applications this additional result can
be worthy.

Theorem 10 Heuristic A is valid.

Proof. Since the 3-path between any two vertices in T is unique, every 3-path
in Step 1A is unique. Lemma 7 implies that no 3-path can exists without
at least one vertex in CT . Therefore a set X = {vi : vi a central vertex of a
3-path in P} is a confluence set of T . Hence, the validity of the Heuristic A
follows immediately from minimizing P by isomorphism in Step 1A and the
minimization of partition P ′ in Step 4A to yield CT . �

Applying Heuristic A to a general graph will yield a confluence set denoted
by Xh. It follows trivially that ζ(G) ≤ Xh. The advantage of the aforesaid
approach for a real world application is that after a Xh has been obtained, Xh
can be minimized to yield a valid minimum confluence set CG.
Example: Consider the tree T of order 12 in figure 1.
Step 1A. Minimizing by isomorphism the maximum set P of 3-paths (elements)
is,
P = {v1v3v2, v1v3v4, v2v3v4, v3v4v5, v3v4v6, v4v6v7, v5v4v6, v6v7v8, v6v7v9,
v7v9v10, v7v9v11, v7v9v12, v8v7v9, v10v9v11, v10v9v12, v11v9v12}.
Step 2A. X3 = {v3, v9}.
Step 3A. After removing all 3-paths which have vertices v3 or v9 the set P ′ =
{v4v6v7, v5v4v6, v6v7v8} is obtained.
Step 4A. In respect of P ′ a minimum partition of 3-path subsets such that,
within a 3-path subset all 3-paths share a single vertex is
P(P ′) = {{v4v6v7, v5v4v6, v6v7v8}}. Therefore, ` = 1.
Step 5A. The result ζ(T) = 1+ 2 = 3. Moreover, a minimum confluence set is
CT = {v3, v6, v9}.

26 J. Kok, J. Shiny

v1

v2

v3

v4
v5

v6

v7

v8

v9
v10

v11

v12

Figure 1: Tree T of order 12.

3 Line graph of trees

From an intersection graph perspective we recall an important definition.

Definition 11 Let C be a non-empty set of non-empty subgraphs of G. Then
let each element (subgraph) in C be represented by a unique vertex say vi.
Hence, vi ∈ C, i = 1, 2, 3, . . . , |C| has well-defined meaning. Define the deriva-
tive graph G(C) on the vertex set C with edge set E(G(C)) = {vivj : if and only
if vi 6= vj and vi, vj satisfy some adjacency condition}.

Note that an adjacency condition can be a condition such as, conventional
adjacency between vertices or edges incident with a common vertex. How-
ever, in an abstract sence, it could be subsets Xi ⊂ V(G), i ≥ 2 such that⋃
all i

Xi = V(G) and Xi∩Xi = ∅, i 6= j. Applications in abstract algebra present

numerous innovative ’adjacency conditions’.
For a graph G let C = E(G). Then the line graph of G denoted by L(G) is
defined by L(G) = G(C) with V(L(G)) = C and E(L(G)) = {vivj : if and only if
vi, vj are adjacent in G}.

Confluence number derivative graphs 27

In the literature there exist different views on the distinction between block
graphs and cactus graphs. This section will accept the view that a block graph
is a graph whose blocks are cliques. Furthermore, in a block graph the inter-
section between any two distinct blocks are either empty or a cut vertex. Note
that a tree T is a block graph. See a good characterization of block graphs in
[2]. A path Pn, n ≥ 3 which has an end-vertex merged with a vertex of G which
is not a path itself and the other end-vertex of the path remains pendent is a
beam of G.
For a graph G � Pn, n ≥ 3 the line graph L(G) typically has a combination
of the structural elements (not necessarily all), (i) cliques of order ≥ 3 which
share a common vertex (called a clique-cut vertex) and/or (ii) cliques of order
≥ 3 which are connected by an edge (a clique-cut edge) and/or (iii) cliques
of order ≥ 3 which are connected by a 3-path (end-vertices in the respective
cliques) and/or (iv) cliques of order ≥ 3 which are connected by a 4-path (end-
vertices in the respective cliques) and/or (v) cliques of order ≥ 3 which are
connected by a k-path, k ≥ 5 (end-vertices in the respective cliques) and/or
(vi) cliques of order ≥ 3 with beams and/or (vii) pendent vertices.
For a tree T � Pn, n ≥ 4 and T � K1,m, m ≥ 3 the line graph has a ”tree-like”
graphical embodiment i.e. besides cycles in cliques of order ≥ 3, the line graph
L(T) is acyclic. It typically has a combination of the structural elements (not
necessarily all), (i) cliques of order ≥ 3 which pairwise share a unique common
vertex (called a clique-cut vertex) and/or (ii) cliques of order ≥ 3 which are
pairwise connected by an unique edge (a clique-cut edge) and/or (iii) cliques
of order ≥ 3 which are pairwise connected by an unique k-path, k ≥ 3 (end-
vertices in the respective cliques and called a clique k-path) and/or (iv) cliques
of order ≥ 3 with beams such that, one beam is attached to one clique vertex
(clique-beam) and/or (v) cliques of order ≥ 3 with pendent vertices such that
one pendent vertex is adjacent to one clique vertex (clique-pendent vertex).
Let a clique (or block) Qn,i of order n ≥ 2 and i ∈ N an identifier be repre-
sented by a vertex vQn,i

. Derive the following graph from L(T). Replace each
clique Qn,i with a vertex vQn,i

and add the edge between adjacent vQn,i
and

vQn,j
. If a clique Qn,i has only one cut vertex then add all non-cut vertices as

leafs to vQn,i
. If a clique Qn,j has two or more cut vertices then delete all non-

cut vertices and all edges from Qn,i. Clearly a tree results from this operation.
This tree is called the confluence tree of L(T) and denoted by f(L(T)).

28 J. Kok, J. Shiny

3.1 Heuristic B for minimum confluence set of line graph of
tree

For the line graph L(T), T � Pn, n ≥ 4 and T � K1,m, m ≥ 3 do:
Step 1B. Construct the confluence tree f(L(G)) and relabel the vertices ac-
cordingly, u1, u2, u3, . . . , ut.
Step 2B. Apply Heuristic A to obtain ζ(f(L(T)))
Step 3B. Yield ζ(L(T)) = ζ(f(L(T))).

Theorem 12 Heuristic B is valid.

Proof. The result for ζ(L(Pn)), n ≥ 2 is provided by Corollary 2. Hence, the
exclusion of paths is justified. The line graph L(K1,m), m ≥ 3 is complete.
Therefore the exclusion is justified.

Furthermore, in L(T) all 3-paths, if any, from a non-cut vertex of a clique
must transverse through a cut vertex of the clique. Therefore, the vertex vQn,i

represents all cut vertices in Qn,i definitively with regards to the definition of
a confluence set. Therefore, Heuristic B is valid. Hence, ζ(L(T)) = ζ(f(L(T))).

�

3.2 Novel graph operations

Two finite sets X and Y of equal cardinality is said to be identical if and
only if |X ∩ Y| = |X|, (or |X ∩ Y| = |Y|). Otherwise the sets are distinct. Let
C(G) = {distinct minimum confluence sets of G}. Clearly, for a finite graph G
the set C(G) exists and is finite. If a pendent vertex u is attached to vertex w
of graph G the operation is denoted by G(w)(u.

Theorem 13 For any graph G it follows that

ζ(G) ≤ ζ(G(w)(u) ≤ ζ(G) + 1.

Proof. Consider G(w) (u. If a confluence set C ∈ C(G) exists such that
∀v ∈ V(G) some shortest path P = v − u(in G(w)(u) exists such that P has a
confluence vertex x ∈ NG[w] then ζ(G(w)(u) = ζ(G). If no such set exists
then for any C ∈ C(G) a set C∪ {w} is a minimum confluence set of G(w)(u.
Therefore, ζ(G(w)(u) = ζ(G)+1. Hence, ζ(G) ≤ ζ(G(w)(u) ≤ ζ(G)+1.

�

For graphs G and H let u ∈ V(G), v ∈ V(H). By adding the edge uv to
connect graphs G and H the graph G(u)! H(v) is obtained. The edge uv is
said to edge-merge graphs G and H. Reversing the operation is simply called
edge-unmerging or unmerging if the context is clear.

Confluence number derivative graphs 29

Theorem 14 For G(u)! H(v) provided that G 6= K1 and H 6= K1 it follows
that

ζ(G) + ζ(H) ≤ ζ(G(u)! H(v)) ≤ ζ(G) + ζ(H) + 1.

Proof. (a) If a confluence set C1 ∈ C(G) or C2 ∈ C(H) exists such that u ∈ C1
or v ∈ C2 then ζ(G(u)! H(v)) = ζ(G) + ζ(H).
(b) If in G and H respectively,NG(u) ⊆ C1 for some C1 ∈ C(G) andNH(v) ⊆ C2
for some C2 ∈ C(H) then ζ(G(u)! H(v)) = ζ(G) + ζ(H).
(c) If both (a) and (b) fail it implies that ∀C1 ∈ C(G) and ∀C2 ∈ C(H) there
exist vertices x ∈ NG(u), y ∈ NH(v) such that the (x, y)-path (shortest) does
not contain a confluence vertex of either G or H. Therefore, and without loss of
generality a set C1 ∪C2 ∪ {u} is a minimum confluence set of ζ(G(u)! H(v)).
The reasoning through (a), (b), (c) suffices to settle the result. �

Definition 15 Let S = (G1, G2, G3, . . . , G`), ` ≥ 2 be an ordered string of
graphs. Each graph corresponds to order ni, 1 ≤ i ≤ ` with corresponding
vertex sets V(Gi) = {vi,j : 1 ≤ j ≤ nj}. For ordered pairs of vertices (vt,j, vt+1,k),
1 ≤ t ≤ ` − 1 and j ∈ {1, 2, 3, . . . , nt}, k ∈ {1, 2, 3, . . . , nt+1} the graph G�` =
(((G1�G2)�G3) · · ·�G`) is obtained by merging each pair of ordered vertices
(vt,j, vt+1,k). This new graph is called a `-sliced graph.

Note that Definition 15 implies that all edges of the respective graphs Gi,
1 ≤ i ≤ ` are retained. The merged vertex corresponding to say, vt,j and vt+1,k
serves as a common end-vertex for all edges incident to vt,j and vt+1,k. Revers-
ing the merging operation is simply called vertex-unmerging or unmerging if
the context is clear. By convention any graph G per se and in particular a
graph without a cut vertex are said to be a 1-sliced graph.
Let T be a tree on at least n ≥ 3 vertices. Let n = q + p with q the number
of pendent vertices. The next corollary is stated without proof as it is deemed
to be self-evident.

Corollary 16 For any tree T of order n ≥ 3 (a lower bound for convenience)
the line graph L(T) is a block graph which is a p-sliced graph.

Theorem 17 Consider graph G of order n with at least one cut vertex. Un-
merge sufficient cut vertices to obtain a maximum of t components. Then the
graph G is a maximum t-sliced graph.

Proof. Let v be a cut vertex of G. Let the components of G − v (cut-vertex
deletion) be on vertices V(G1), V(G2), . . . V(Gr), r ≥ 2. Consider the induced

30 J. Kok, J. Shiny

subgraphs of G i.e. H1 = 〈V(G1)∪ {v}〉, H2 = 〈V(G2)∪ {v}〉, . . . , Ht = 〈V(Gr)∪
{v}〉. Clearly, in respect of v ∈ V(H1) and v ∈ V(H2) and . . . , and v ∈ V(Hr)
the graph obtained recursively, (((H1 � H2) � H3) · · · � Hr) is isomorphic to
∼= G. In the case of removing k ≥ 2 cut vertices to obtain the maximum t

components the result follows through immediate induction. �

The notation G�` = (((G1�G2)�G3) · · ·�G`) per se does not specify the pairs
of vertices under operation. Definition 13 requires that the pairs be specified
prior. For application we consider only 2-sliced graphs in respect of u ∈ V(G)
and v ∈ V(H) denoted by, G(u)�H(v). The result can be applied recursively
to any `-sliced graph, ` ≥ 3.

Theorem 18 For graphs G and H and provided that G 6= K1 and H 6= K1
and; without loss of generality, G 6= K2 and H 6= K1 it follows that

ζ(G) + ζ(H) − 1 ≤ ζ(G(u)�H(v)) ≤ ζ(G) + ζ(H) + 1.

Proof. (a) If confluence sets C1 ∈ C(G) and C2 ∈ C(H) exist such that u ∈ C1
and v ∈ C2 then ζ(G(u)�H(v)) = ζ(G) + ζ(H) − 1.
(b) If a confluence set C1 ∈ C(G) exists such that u ∈ C1 and v /∈ C2 ∀C2 ∈ C(H)
then ζ(G(u)�H(v)) = ζ(G) + ζ(H).
(c) If in G and H respectively, NG(u) ⊆ C1 for some C1 ∈ C(G) or NH(v) ⊆ C2
for some C2 ∈ C(H) then ζ(G(u)�H(v)) = ζ(G) + ζ(H).
(d) If (a), (b) and (c) fail it implies that ∀C1 ∈ C(G) and ∀C2 ∈ C(H) there
exist vertices x ∈ NG(u), y ∈ NH(v) such that the (x, y)-path (shortest) does
not contain a confluence vertex of either G or H. Therefore, and without loss
of generality a set C1∪C2∪ {u} is a minimum confluence set of ζ(G(u)�H(v)).
Hence, ζ(G(u)�H(v)) = ζ(G) + ζ(H) + 1.
The reasoning through (a), (b), (c) and (d) suffices to settle the result. �

Note that Theorem 18 has an intriguing application to Kn � Km, n ≥ 2,
m ≥ 2. By convention ζ(Kn) = 0, n ≥ 1. Hence, by convention the minimum
confluence set CKn = ∅. Therefore, Theorem 18(d) finds application.

4 Cactus graphs

For the purpose of studying cactus graphs (simply a cactus) it is noted that
a cycle is meant to be a simple cycle or put differently, a chordless cycle. A
cactus is a connected graph with at least one cycle and any two distinct cycle
share at most one common vertex. Generally a cactus is denoted by Cac. The
cycle C3 is considered a trivial cactus. A well studied family of cactus graphs

Confluence number derivative graphs 31

called the friendship graphs or n-fan graphs denoted by Fn belongs to a wider
family F = {F(n) : F(n). These graphs consist of n cycles each of order ≥ 3

which share a common vertex}. Note that in a F(n) the respective order of
distinct cycles may differ.

Proposition 19 For F(n) ∈ F and we have:
(a) ζ(F(n)) = 1 if F(n) = (((C3 � C3)� C3) · · ·� C3︸ ︷︷ ︸

n−copies

),

(b) ζ(F(n)) = nζ(Cm)−(n−1) if F(n) = (((Cm � Cm)� Cm) · · ·� Cm︸ ︷︷ ︸
n−copies

), m ≥ 4,

(c) ζ(F(n)) =
n∑
i=1

ζ(Cmi
) − (n− 1) if F(n) = (((Cm1

� Cm2
)� Cm3

) · · ·� Cmn),

mi ≥ 4,

(d) ζ(F(n)) =
n−t∑
i=1

ζ(Cmi
)−(n−t−1) if F(n) = (((Cm1

�Cm2
)�Cm3

) · · ·�Cmn),

mi ≥ 4 for 1 ≤ i ≤ n− t and t cycles are copies of C3.

Proof. (a) The proof will be by immediate induction. Consider two copies
of C3. Let first copy be on vertices v1, v2, v3 and second copy on u1, u2, u3.
Without loss of generality let vertices v1, u1 merge as the common vertex in
C3 � C3. Label this common vertex as w1. Although ζ(C3) = 0 the existence
of a 3-path say, v2w1u2 necessitates CC3�C3

= {w1}. By iteratively construct-
ing (((C3 � C3)� C3) · · ·� C3︸ ︷︷ ︸

n−copies

) it follows through immediate induction that

ζ(F(n)) = 1.
(b) Let the vertices of the ith-copy of Cm be labeled vi,j, j = 1, 2, 3, . . . ,m and
select a confluence set labeled CiCm

for each 1 ≤ i ≤ n. Through stepwise rota-

tion of the vertex labeling say, clockwise, it is possible to let v1,i ∈ CiCm
, ∀ i. By

merging vertices v1,1, v2,1 to yield w1 in Cm�Cm it follows that ζ(Cm�Cm) =
2ζ(Cm)− 1 = 2ζ(Cm)− (2− 1). After following similar iterative procedure the
result ζ(F(n)) = nζ(Cm) − (n− 1) follows through immediate induction.
(c), (d). These results follow through similar reasoning found in parts (a) and
(b). �

Note that in the first iteration in the proof of Proposition 19(a), Theorem
18(d) applies. In the induction step, Theorem 18(b) applies. In the proofs of
parts (b) through (d) Theorem 18(a) applies.
Essentially G � H means that graphs G and H are connected by merging
two vertices v ∈ V(G) and u ∈ V(H) which results in a cut vertex say w.
The term unmerging w means to disconnect G and H by cloning w into say,

32 J. Kok, J. Shiny

v ∈ V(G) and u ∈ V(H). Furthermore, if a combination of more than three
cycles and/or trees share a common vertex w then unmerging w may occur for
graphical subsets. It means that if say tree T and cycles Cn, Cm share vertex
w, the graphical subsets say {T }, {Cn, Cm} can unmerge to render Cn � Cm
with common vertex w and T unmerges with new vertex say v substituting w.
Consider a cactus. Besides the wider meaning of connectivity we specialize to
say, two connected cycles will mean directly connected through either a com-
mon vertex (cut vertex) or a common edge (cut edge). If a cycle is connected
to a tree it means directly connected to a maximal tree. Hence, the maximal
tree and the cycle only share a common vertex. Two cycles connected by an
edge may only unmerge by edge deletion. The next corollary is deemed to be
self-evident.

Corollary 20 Any cactus Cac can be unmerged into a minimum number of
maximal graphical structures i.e. cycles, maximal trees and edges.

Theorem 21 (Existence theorem) There exists a heuristic algorithm to find
both the confluence number and a minimum confluence set of a cactus.

Proof. It is known from [11] that finding a minimum confluence set of a graph
G is NP-complete. Iterative pairwise unmerging of a cactus Cac in an arbitrary
order to find a minimum number of maximal graphical structures i.e. cycles,
maximal trees and edges is possible. Pairwise unmerging is possible in a finite
number of steps and the solution (cluster of graphical structures) is unique.
Let the arbitrary ordered pairwise unmerging steps be s1,s2,. . . , s`. Further-
more, an ordered set of prescriptions exist to orderly reconstruct the cactus
through pairwise merging. The prescriptions are in the order s−1` ,s−1`−1,. . . , s−11 .
Therefore, the original cactus is uniquely reconstructed. Let a merging oper-
ation be f ∈ {�,!}.
Step s−1` . Label the one graphical structure G1 and the other H1. Apply
s−1` = G1fH1 to obtain G2. Depending on f, G1, H1 any one of Theorems
14 or 18 ensures that a minimal confluence set and the confluence number of
G2 can be found.
Step s−1`−1. Consider G2 and the appropriate graphical structure H2 prescribed

by s−1`−1. Apply s−1`−1 = G2fH2 to obtain G3. Depending on f, G2, H2 any one of
Theorems 14 or 18 ensures that a minimal confluence set and the confluence
number of G3 can be found.
Through immediate induction it follows that through inversing the merges,
s−1` ,s−1`−1,. . . , s−11 the confluence number and a minimum confluence set of a
cactus can be found. Thus a heuristic algorithm exists. �

Confluence number derivative graphs 33

5 Linear Jaco graphs

Linear Jaco graphs was introduced by Kok et.al, [5, 6, 7, 9]. Linear Jaco graphs
are digraphs. Therefore the definitions define arcs. It is important to note that
in the notation Jn(f(x)) means that a Jaco graph is of order n and for vertex
vi the vertex degree is bounded by deg(vi) ≤ f(i). For the family of linear
Jaco graphs f(x) is restricted to linear functions. Reference to the definitions
will assist in some proofs to follow. For ease of reference we recall the formal
definitions.

Definition 22 The infinite linear Jaco graph J∞(x), x ∈ N is defined by
V(J∞(x)) = {vi : i ∈ N}, A(J∞(x)) ⊆ {(vi, vj) : i, j ∈ N, i < j} and (vi, vj) ∈
A(J∞(x)) if and only if 2i− d−(vi) ≥ j.

Definition 23 The family of finite linear Jaco graphs is defined by {Jn(x) ⊆
J∞(x) : n, x ∈ N}. A member of the family is referred to as the Jaco graph,
Jn(x).

We shall only consider the underlying graph (undirected). See figure 2. How-
ever, within the context the notions of in-degree deg−(vi) and out-degree
deg+(vi) remains relevant. Since the linear Jaco graphs for n = 1, 2, 3, 4 are
K1, K2, P3, P4 respectively. Because d+(v3) = 2 ≥ 2 the lower bound n ≥ 3
will be considered.

For J5(x) vertex v3 is a confluence vertex therefore CJ5(x) = {v3}. To con-
structively find a minimum confluence set of Jn(x), n ≥ 3 we call vertex v3 the
prime confluence vertex of all linear Jaco graphs. When we skip or hop from
say vertex vi to vj (not necessarily adjacent) it is denoted by viyj = vj. For
example, let `(i) = (i + 2) + deg+(vi+1). Then v3y`(3) = v8 and v8y`(8) = v16.

See table 1, page 71 in [5]. Let an jth-iteration yielding a minimum conflu-
ence set be denoted by itj. Define it1 � {v3}, it2 � {v3, v8} and itj+1 �
{v3, v8, . . . , v(viy`(i))y`(viy`(i))}.

Lemma 24 For a Jaco graph Jn(x), n ≥ 3 a confluence set is given by
X = {v3, v8, v8y`(8), v16y`(16), . . . , vt = v(viy`(i))y`(viy`(i))}, t ≤ n.

Proof. The result may be said to be trivial because for any vertex vi ∈ X, all
vertices vj, (i − 2) − deg

−(vi−1) ≤ j ≤ `(i) have d(vi, vj) ≤ 2. Hence, by the
definition of a confluence set, X is a confluence set of Jn(x). �

The induced path 〈{v1, v2} ∪ X〉 is called the confluence path of Jn(x). It is
denoted by fP(Jn(x)).

34 J. Kok, J. Shiny

v1

v2

v3

v4
v5

v6

v7

v8

v9
v10

v11

v12

Figure 2: Linear Jaco graph J12(x).

Theorem 25 For n ≥ 3, ζ(Jn(x)) = ζ(fP(Jn(x))).

Proof. From Lemma 24, ζ(Jn(x)) ≤ |X|. From Definition 22 it follows if X ′ =
X\{vj}, vi ∈ X then some vertices vk, k < i and vt, t > i exist with d(vk, vt) ≥ 3.
Therefore ζ(Jn(x)) > |X ′|. Hence, ζ(Jn(x)) = |X|. �

Define sub-families of linear Jaco graphs as follows, F1 on n1,1 = 3 ≤ n ≤ 7 =
n1,2 vertices, F2 on n2,1 = 8 ≤ n ≤ 15 = n2,2 vertices, F3 on n3,1 = `(8) ≤
n ≤ `(9)− 1 = n3,2 vertices, . . . ,Fi on ni,1 = `(ni−1,1) ≤ n ≤ `(ni,1)− 1 = ni,2
vertices.

Corollary 26 For n ≥ 3 let Jn(x) ∈ Fi then ζ(Jn(x)) = i.

Proof. The results follow by similar reasoning found in the proof of Lemma
24. �

Corollary 27 For Jn(x), n ≥ 3, Let the diameter of Jn(x) be diam(Jn(x)) =
k. Then ζ(Jn(x)) = bk+13 c.

Proof. From Definition 22 it follows that if vertices vi, vj, i < j are adjacent
then vk, vl, i ≤ k < l ≤ j are adjacent. There exists a path Pk+1 (of length

Confluence number derivative graphs 35

k) such that any vi ∈ V(Jn(x) and any vertex vj on Pk+1 has d(vi, vj) ≤ 2.
Therefore path Pk+1 is a path of max{min} length in Jn(x). The result finally
follows from the result for paths. �

To illustrate reasoning in the proof of Corollary 27 see figure 2. Since edge v6v10
exists all pairs of vertices in {v6, v7, v8, v9, v10} are adjacent. Put differently, the
induced subgraph 〈{v6, v7, v8, v9, v10}〉 ∼= K5.

6 Conclusion

Theorem 4 characterized paths which have unique minimum confluence sets.
Based on this characterization a few research avenues are highlighted.
Problem 1. Characterize graphs with unique minimum confluence sets.
Solving Problem 1 opens an avenue to characterize forbidden graphs in rela-
tion to confluence number and minimum confluence set. The next conjecture
could be the key.
Conjecture 1. Let ζ(G) ≥ 2. A minimum confluence set CG of G has, for each
confluence vertex u ∈ CG at least one vertex v6=u ∈ CG such that the distance
dG(u, v) ≤ 3.
When a vertex u ∈ V(G) is selected whereupon a set X which complies with
some parameter set prescriptions and u ∈ X it is said that, X has been built on
u. If Conjecture 2 is found to be correct the next conjecture with motivation
might be settled.
Conjecture 2. Let G be a non-complete connected graph of order n ≥ 3 and
G does not have a unique minimum confluence set. There exists a minimum
confluence set C of G which contains a vertex u with degG(u) = ∆(G).

Motivation: Firstly, it is possible to select a vertex u and ”build” a min-
imal confluence set X for G. It is claimed that amongst all vertices with
degG(v) = ∆(G) at least one such ”built” X ′ on say v ′ will be a minimum
confluence set because firstly, there exists a v ′ such that |X ′| = min{X : built
on u, degG(u) = ∆(G)} and |N(v ′)| = ∆(G) contributes a maximum to Y with
Y =

⋃
w∈X ′

N[w].

It is easy to verify the result for the one graph order 3, the five graphs of
order 4, the twenty graphs of order 5 all of which are non-complete connected
graphs. Assume the result holds for all non-complete connected graphs of or-
der k. Consider any non-complete connected graph G of order k+ 1. Amongst
all vertices with degree δ(G) select a vertex w with minimum |N2(w)| such
that w is not a cut-vertex. Such w always exists. Consider graph H = G−w.

36 J. Kok, J. Shiny

Since H is a non-complete connected graph of order k consider a minimum
confluence set CH which contains a vertex x with degH(x) = ∆(H).
Case 1. If degH(x) = degG(x) − 1 then w is adjacent to x in G and the result
holds.
Case 2. If degH(x) = degG(x) then w is not adjacent to x in G. If w is adjacent
to a vertex in N[y], y ∈ CH the result holds for G. If w is adjacent to a vertex
t ∈ N2[y], y ∈ CH then X ′ = CH ∪ {t} is necessarily a minimum confluence set
of G. Therefore, the results holds for G of order k+ 1. Hence, ζ(G) = |X ′|.
By induction the result holds for all non-complete connected graphs G be of
order n ≥ 3. � Following Theorem 21 it
is important to develop and code an efficient algorithm to further research for
graphs in general. Computational research is an avenue to to find substantial
results for the new notion. The three novel graph operations with the results
of Theorems 13, 14, 17 & 18 provide a framework to achieve an algorithmic
approach.
Problem 2. Design and code an efficient algorithm to find a minimum con-
fluence set an the confluence number of a graph.
For the construction of f(L(T)) the pseudo entities, representative vertices for
cliques were utilized. Upon utilizing Heuristic A the procedure remained blind
to the pseudo entities. Such representative vertices may appear in the mini-
mum confluence set yielded by Heuristic A. Although ζ(L(T)) is valid same
cannot be said of the set CL(T).
Problem 3. If possible find an improved construction of a confluence tree for
the line graph of a tree which will yield both the confluence number and a
valid minimum confluence set.
If some blocks of a block graph are substituted by general graphs a blocklike
graph G is constructed. It implies that G can be decomposed into a maxi-
mum number of graphs through unmerging operations f−1, f ∈ {�,!,(}.
Let such decomposition result in a set of minimal subgraphs denoted by
D(G) = {G1, G2, G3, . . . , Gt}. Let S = (ζ(G1), ζ(G2), ζ(G3), . . . , ζ(Gt)). Iter-
atively reconstructing G with the results of Theorems 13, 14 and 18 will de-
termine ζ(G). This avenue of research remains open.
Let ζ(G) = k. For any minimum confluence CG let V ′(G) = V(G)\CG. Let
Z = {Zi : Zj is a k-tuple subset of vertices of V ′(G)}.
Conjecture 3. There exist a minimum confluence set C ′ of G such that,

∑
v∈C ′

degG(v) ≥
∑

u∈Zi,∀Zi∈Z
degG(u).

Confluence number derivative graphs 37

In the field of algebra it is known that posets of minimal type are related to
linear Jaco graphs [1, 8]. Section 5 suggests that algebraic results may follow
in respect of the minimum confluence number and confluence path of linear
Jaco graphs. It is deemed a worthy avenue for research.

Dedication

This paper is dedicated to the life and career of the first author’s remarkable
Uncle Ben Kok. Uncle Ben was born on 18 December 1930 and at the time
of writing this paper, he continues to show a keen interest in the advances in
mathematics, quantum physics, nuclear physics and modern day technology.
Linear Jaco graphs were named after Pieter Jaco Kok, an elder brother of
Uncle Ben Kok. The dedication is to celebrate the occasion of Uncle Ben’s
90th birthday.

Acknowledgment

The authors would like to thank the anonymous referees for their constructive
comments, which helped to improve on the elegance of this paper.

References

[1] R. Assous, M. Pouzet, Jónsson posets, Algebra Universalis 79, 3 (2018) article
74. ⇒37

[2] A. Behtoei, M. Jannesari, B. Taeri, A characterization of block graphs, Discrete
Applied Mathematics 158 (2010) 219–221. ⇒27

[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press,
London, 1976. ⇒21

[4] F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969. ⇒21
[5] J. Kok, Linear Jaco graphs: A critical review, Journal of Informatics and Math-

ematical Sciences 8, 2 (2016) 67–103. ⇒33
[6] J. Kok, P. Fisher, B. Wilkens, M. Mabula, V. Mukungunugwa, Characteristics

of finite Jaco graphs, Jn(1), n ∈ N, arXiv: 1404.0484v1 [math.CO]. ⇒33
[7] J. Kok, P. Fisher, B. Wilkens, M. Mabula, V. Mukungunugwa, Characteristics

of Jaco graphs, J∞(a), a ∈ N, arXiv: 1404.1714v1 [math.CO]. ⇒33
[8] J. Kok, N.K. Sudev, K.P. Chithra, U. Mary, Jaco-type graphs and black energy

dissipation, Advances in Pure and Applied Mathematics 8, 2 (2017) 141–152. ⇒
37

https://link.springer.com/content/pdf/10.1007/s00012-018-0551-7.pdf
https://en.wikipedia.org/wiki/John_Adrian_Bondy
https://en.wikipedia.org/wiki/Frank_Harary
https://www.rgnpublications.com/journals/index.php/jims/article/view/402

38 J. Kok, J. Shiny

[9] J. Kok, C. Susanth, S.J. Kalayathankal, A study on linear Jaco graphs, Journal
of Informatics and Mathematical Sciences 7, 2 (2015) 69–80. ⇒33

[10] A.C.M. Rooij, H.S. Wilf, The interchange graph of a finite graph, Acta Mathe-
matica Hungarica 16, 3-4 (1965) 263–269. ⇒22, 23

[11] J. Shiny, J. Kok, V. Ajitha, Confluence number of graphs, Communicated. ⇒
21, 22, 23, 32

[12] B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, 1996.⇒21

Received: December 18, 2020 • Revised: January 31, 2021

Acta Univ. Sapientiae, Informatica 13, 1 (2021) 39–59

DOI: 10.2478/ausi-2021-0003

Towards autoscaling of Apache Flink jobs

Balázs VARGA
ELTE Eötvös Loránd University

Budapest, Hungary
email: balazsvarga@student.elte.hu

Márton BALASSI
Cloudera

Budapest, Hungary
email: mbalassi@cloudera.com

Attila KISS
J. Selye University
Komárno, Slovakia

email: kissae@ujs.sk

Abstract. Data stream processing has been gaining attention in the past
decade. Apache Flink is an open-source distributed stream processing en-
gine that is able to process a large amount of data in real time with low
latency. Computations are distributed among a cluster of nodes. Cur-
rently, provisioning the appropriate amount of cloud resources must be
done manually ahead of time. A dynamically varying workload may ex-
ceed the capacity of the cluster, or leave resources underutilized. In our
paper, we describe an architecture that enables the automatic scaling
of Flink jobs on Kubernetes based on custom metrics, and describe a
simple scaling policy. We also measure the effects of state size and tar-
get parallelism on the duration of the scaling operation, which must be
considered when designing an autoscaling policy, so that the Flink job
respects a Service Level Agreement.

1 Introduction

Apache Flink [5, 18, 10] is an open-source distributed data stream process-
ing engine and framework. It can perform computations on both bounded and

Computing Classification System 1998: C.2.4
Mathematics Subject Classification 2010: 68M14
Key words and phrases: Apache Flink, autoscaling, data stream processing, big data,
kubernetes, distributed computing

39

http:https://www.inf.elte.hu/
http://www.elte.hu
http://www.elte.hu
mailto:balazsvarga@student.elte.hu
http://www.cloudera.com
http://www.cloudera.com
http://www.cloudera.com
mailto:mbalassi@cloudera.com
https://people.inf.elte.hu/kiss/
https://www.ujs.sk/en
https://www.ujs.sk/en
mailto:kissae@ujs.sk

40 B. Varga, M. Balassi, A. Kiss

unbounded data streams using various APIs offering different levels of abstrac-
tion. A Flink application consists of a streaming pipeline, which is a directed
graph of operators performing computations as nodes, and the streaming of
data between them as edges.

Flink applications can handle large state in a consistent manner. Most pro-
duction jobs make use of stateful operators that can store internal state via
various state backends, such as in-memory or on disk. Flink has an advanced
checkpointing and savepointing mechanism to create consistent snapshots of
the application state, which can be used to recover from failure or to restart
the application with an existing state [4, 3].

These streaming jobs are typically long-running, their usage may span weeks
or months. In these cases, the workload may change over time. The applica-
tion must handle the changed demands while meeting the originally set service
level agreement (SLA). This changing demand may be predictable ahead of
time, in case some periodicity is known, or there are events that are known to
influence the workload, but in other cases, it is bursty and unpredictable. Stat-
ically provisioning resources and setting the job’s parallelism at launch-time is
unsuited for these long-running jobs. If too few resources are allocated (under-
provisioning), the application will not keep up with the increasing workload,
and start missing SLAs. If the resources are provisioned to match the pre-
dicted maximum load, the system will run over-provisioned most of the time,
not utilizing the resources efficiently, and incurring unnecessary cloud costs.

Flink jobs’ parallelism can not be changed during runtime. It is possible
however to take a savepoint, then restart the job with a different parallelism
from the snapshot. If the job is running in the cloud, it is also possible at this
point to provision (or unprovision) additional resources, new instances that
can perform computations. This is called horizontal scaling.

Restarting a job is an expensive operation. The state must be written to a
persistent storage beforehand, which can be done asynchronously, but restoring
from this savepoint after the restart can take a considerable amount of time.
Meanwhile, the incoming workload is not being processed, so the restarted
application has to catch up with this additional delay. Scaling decisions should
therefore be made wisely. We must monitor various metrics of the running
job, take into account the delays allowed by the SLA, and decide whether
the trade-off of the scaling is worth it. Algorithms that make this decision
automatically, reacting to the changing load dynamically, and performing the
actual scaling operation are of great value, and make the operations of long-
running streaming applications feasible and efficient.

Towards autoscaling of Apache Flink jobs 41

Container orchestrators such as Kubernetes [9] allow us to both automate
the mechanics of the scaling process, and to implement the custom algorithms
that make the decisions. We have set up a system that can perform these
scaling operations using Kubernetes’ Horizontal Pod Autoscaler resource [20]
and Google’s open-source Flink operator [21].

In this paper, we discuss the architecture of this system. We describe a
simple scaling policy that we have implemented, that is based on operator
idleness and changes of the input records’ lag. Additionally, we analyze the
downtime caused by the scaling operation and how it is influenced by the size
of the application state. We make observations regarding these results, that
should be considered when designing an autoscaling policy to best meet a
given SLA while minimizing overprovisioning.

2 Related work

Cloud computing is a relatively new field, but in the recent years it has gained
a large interest among researchers.

The automatic scaling of distributed streaming applications consists of the
following phases [13]: a monitoring system provides measurements about the
current state of the system, these metrics are analyzed and processed, which is
then applied to a policy to make a scaling decision (plan). Finally, the decision
is executed, a mechanism performs the scaling operation. Most research is
focused on the analytic and planning phase.

The authors of [13] have reviewed a large body of research regarding au-
toscaling techniques. They categorize the techniques into five categories: (1)
threshold-based rules, (2) reinforcement learning, (3) queuing theory, (4) con-
trol theory, and (5) time series analysis based approaches.

The DS2 controller [11] uses a lightweight instrumentation to monitor stream-
ing applications at the operator level, specifically the proportion of time each
operator instance spends doing useful computations. It works online and in
a reactive manner. It computes the optimal parallelism of each operator by
a single traversal of the job graph. The authors have implemented instru-
mentation for Flink among other streaming systems. They have performed
experiments on various queries of the Nexmark benchmarking suite to show
that DS2 satisfies the SASO properties [1]: stability, accuracy, short settling
time, and no overshoot. The job converges to the optimal parallelism in at
most 3 steps (scalings). The resulting configuration exhibits no backpressure,
and provisions the minimum necessary resources.

42 B. Varga, M. Balassi, A. Kiss

PASCAL [12] is a proactive autoscaling architecture for distributed stream-
ing applications and datastores. It consists of a profiling and an autoscaling
phase. In the profiling phase, a workload model and a performance model are
built using machine learning techniques. These models are used at runtime by
the autoscaler to predict the input rate and estimate future performance met-
rics, calculate a minimum configuration, and to trigger scaling if the current
configuration is different from the calculated target. For streaming applica-
tions, these models are used to estimate the CPU usage of each operator in-
stance for a predicted future workload. The authors show that their proactive
scaling model can outperform reactive approaches and is able to successfully
reduce overprovisioning for variable workloads. In our work, we use a different
metric from the CPU load, based on how much the job lags behind the in-
put. Our policy is a reactive approach, but it might be interesting to explore
whether a proactive model could be built on these metrics.

Ghanbari et. al. [8] investigate cost-optimal autoscaling of applications that
run in the cloud, on an IaaS (infrastructure as a service) platform. They pro-
pose an approach that uses a stochastic model predictive control (MPC) tech-
nique. They create a model of cloud and application dynamics. The authors
define a cost function that incorporates both cloud usage costs, as well as the
expected value of the cost or penalty associated with the deviation from cer-
tain service level objectives (SLOs). These SLOs are based on metrics that
describe the overall performance of the application.

In our work, we aim to describe the characteristics of scaling Flink jobs, to
serve as a base for an optimal scaling policy in the future. We also provide an
architecture for making and executing the scaling decisions.

3 System architecture

We have implemented an autoscaling architecture on Kubernetes. This section
gives an overview of the components involved in running, monitoring and
scaling the applications.

3.1 Kubernetes operator

Flink applications can be executed in different ways. Flink offers per-job, ses-
sion and application execution. Flink supports various deployment targets,
such as standalone, Yarn, Mesos, Docker and Kubernetes based solutions.
There are various managed or fully hosted solutions available by different ven-
dors.

Towards autoscaling of Apache Flink jobs 43

There are also multiple approaches of running Flink on Kubernetes. One
method is to deploy a standalone cluster on top of Kubernetes. In this case,
Kubernetes only provides the underlying resources, which the Flink application
has no knowledge about. Flink also supports native Kubernetes deployments,
where the Flink client knows about and interacts with the Kubernetes API
server.

We have decided to use the standalone mode combined with Kubernetes’ op-
erator pattern [6] to manage Flink resources. The open-source operator [21] by
Google defines Flink clusters as custom resources, allowing native management
through the Kubernetes API and seamless integration with other resources and
the metrics pipelines. The operator encodes Flink-specific knowledge and logic
in its controller.

The desired state of the cluster is specified in a declarative manner, con-
forming to the format defined in the custom resource definition (CRD). The
user submits this specification to the Kubernetes API server, which creates
the FlinkCluster resource. The operator, installed as a deployment, starts to
track the resource. The reconciliation loop performs four steps.

1. It observes the resource, and its sub-resources, such as JobManager or
TaskManager deployments, ingresses, etc.

2. The controller uses the observed information to compute and update the
Status fields of the resource through the API.

3. The desired state of the individual cluster components is calculated,
based on the (potentially changed) observed specification, and the ob-
served status.

4. Finally, the desired component specifications are applied through the
API.

This loop runs every few seconds for every FlinkCluster resource in the
Kubernetes cluster.

3.2 Scale subresource

We have modified the operator to expose the scale subresource on the FlinkClus-
ter custom resource. This exposes an endpoint that returns the current status
of the scaling, which corresponds to the number of TaskManager replicas and
the job parallelism, as well as a selector, which can be used to identify the

44 B. Varga, M. Balassi, A. Kiss

Pods that belong to the given cluster. Additionally, this endpoint can be used
to set the desired number of replicas in the FlinkCluster Spec.

The scaling process starts with this step, the desired replicas are set through
the scale subresource. The scaling is done in multiple steps, with intermediate
desired deployments in the process. The operator can keep track of the clus-
ter’s and the job’s state, and perform the steps of a scaling operation. As the
scale subresource’s replicas specification changes, the operator first requests
a savepoint and the deletion of the existing cluster. Once this is complete, it
computes the desired deployment (step 3 of the reconciliation loop) with the
newly desired replicas. When the cluster components are ready, it resubmits
the job with the appropriate parallelism, starting from the latest savepoint.

3.3 Custom metrics pipeline

The scaling decisions are based on metrics from the Flink job. We have used
Prometheus [2] to scrape the job’s metrics. Flink has an established metrics
system, including access to connector metrics (such as Kafka). We have used
Flink’s Prometheus reporter to expose the metrics to Prometheus.

To access Prometheus metrics through the Kubernetes metrics API, we have
used an adapter [16]. It finds the desired time series metrics in Prometheus,
connects them to the appropriate Kubernetes resources, and performs aggre-
gations, exposing the results as queryable endpoints in the custom metrics
API. The metrics we have decided to calculate will be described in detail in
Section 4. Figure 1 shows the overview of the metrics pipeline.

3.4 Horizontal Pod Autoscaler

The Horizontal Pod Autoscaler (HPA) [20] is a built-in Kubernetes resource. It
can control the scaling of Pods in a replication controller, such as ReplicaSet
or Deployment. It can also scale custom resources whose Scale subresource
is exposed and the scaling logic is implemented. Since we have done this for
FlinkCluster resources, we can set them as scaling targets for the HPA.

The Horizontal Pod Autoscaler uses the currently observed replica count
(either calculated by counting pods with certain labels, or read from the scale
endpoint), as well as various types of metrics to calculate the desired number
of replicas, by the following formula:

desiredReplicas = max
i∈usedMetrics

⌈
currentReplicas× currentMetricValuei

desiredMetricValuei

⌉
(1)

Towards autoscaling of Apache Flink jobs 45

Figure 1: The custom metrics pipeline with Prometheus, used in our scaling
architecture.

We have used the latest, autoscaling/v2beta2 version of HPA, which has
support for both resource, custom, and external metrics. We can specify mul-
tiple metrics, including those we have exposed through Prometheus and the
custom metrics API. The HPA calculates the desired replica count based on
each metric, and uses the largest value to scale the resource. In our setup, we
have used two metrics through the custom metrics pipeline described above.
The metrics will be described in Section 4.

The above equation assumes that the application can handle workload pro-
portionally to the number of replicas, and that the metrics linearly change
with the utilization, and therefore inversely with the number of replicas. This
means that if the current metric is n times the desired metric, the desired
replicas are calculated to be n times the current replicas. After the scaling, we
expect the current metric value to decrease to near the desired metric value.

4 Scaling policy

We have implemented a scaling policy inspired by [15, 7]. We assume that the
stateful Flink job reads a stream of data from a Kafka topic, performs some
calculations on the records, and emits the results to another Kafka topic.
Apache Kafka [14] is an open-source event streaming, message broker plat-
form. Producers can write and consumers can read topics that are stored in a

46 B. Varga, M. Balassi, A. Kiss

distributed manner among Kafka brokers. The data in the topics is broken up
to partitions.

The data is assumed to be evenly distributed, i.e. there is no skew among
the number of messages in the partitions, so the parallel operator instances
are under a nearly equal load.

The scaling policy uses two different metrics. One is based on the relative
changes in the lag of the input records, and the other on the proportion of
time that the tasks spend performing useful computations.

4.1 Relative lag changes

The goal of autoscaling is for the Flink job to be able to handle the incoming
workload. In distributed systems, failures are inevitable and a part of normal
operation, so the processing capacity of the job should slightly exceed the rate
of incoming records. This way, in the case of a failure, the job can catch up
after a recovery. However, the job should not be overprovisioned by a large
factor, to avoid wasting resources.

Kafka keeps track of the committed offsets in each partition (number of
records that have been read by Flink), as well as the latest offset (the number
of records). The difference between these is called the consumer lag. Flink uses
a separate mechanism from Kafka’s offsets to keep track of how much it has
consumed, due to the way it handles checkpoints and consistency, but it is still
possible to extract information about how far the consumption lags behind.

Flink’s operators are deployed to tasks as multiple parallel instances. Each
task of the Kafka source operator is assigned a number of partitions of the in-
put topic. A total lag or an average lag metric would be more useful, but it is
not available with this setup. Therefore, we give an upper bound for the total
lag using the records lag max metric, which returns for instance the maximum
of the lags in the partitions that they read. For example, consider a topic with
1 million messages evenly balanced among 20 partitions, when read from the
beginning by a Flink job with 4 consumer instances. Each instance would get
assigned 5 partitions, and when reading from the beginning, the lag for each
partition would be 50000, hence the records lag max would also be 50000 for
each instance. As the job consumes the messages (faster than they are pro-
duced), the lag in each partition would decrease, and this metric would give
the largest among them for each task instance. We give an overestimation for
the total lag by multiplying this metric for each instance with the correspond-
ing assigned partitions metric, and summing this value for all tasks with the
source operator’s instances. Equation 2 summarizes this calculation.

Towards autoscaling of Apache Flink jobs 47

totalLag =
∑

i∈SourceTasks
records lag maxi × assigned partitionsi (2)

If this lag is nearly constant, the job is keeping up with the workload. If the
lag is increasing, the job is underprovisioned and needs to scale up. If the lag
is decreasing, the job may be overprovisioned. However, this may be a desired
scenario if there was a large lag, as the latency will decrease if the job can
process the lagging records.

To decide whether the current parallelism is enough to handle the workload,
we take the rate of change of the lag metric (in records / second), using
PromQL’s (Prometheus’ query language) [2] deriv function over a period of 1
minute.

The specific value of lag by itself is not too meaningful, and neither is
its rate of change. To be useful, we compare it to the rate at which the job
processes records (in records/second), which can be calculated by summing the
records consumed rate metric for each operator instance of the Kafka source,
which we call totalRate. To smooth the effect of temporary spikes, we use a
1-minute rolling average of this metric.

The ratio of these two metrics gives a dimensionless value, which repre-
sents how much the workload is increasing (positive) or decreasing (negative)
relative to the current processing capabilities. After adding 1, the resulting
number is the multiplier necessary for the number of replicas to keep up with
the load.

relativeLagChangeRate = 1+
deriv(totalLag)

totalRate
(3)

This number is only meaningful for scale up decisions, since a decreasing lag
might still warrant the current number of replicas, until the application catches
up to the latest records. By using relativeLagChangeRate as the currentMet-
ricValue, and 1 as the desiredMetricValue for the Horizontal Pod Autoscaler,
as described in Equation 1, the desired replicas are properly calculated when
scaling up. For downscaling, multiplying the parallelism with this value would
still correctly make the job match the incoming message rate, but a down-
scaling is likely not warranted until the lag is below a certain threshold. The
utilization portion of the policy, described in the next subsection, is responsible
for making downscaling decisions.

To make the job catch up to the lag after the scaling, and to account for
future failures, it might be worthwhile to slightly overshoot when scaling up.

48 B. Varga, M. Balassi, A. Kiss

This could be achieved by setting the desired metric value to a slightly smaller
number or including a multiplier in the fraction in Equation 3.

When the job can process messages at the rate they are generated, or if
the job is overprovisioned with no lag, then the change of the lag is 0, giving
the relativeLagChangeRate metric a value of 1. These two cases need to be
distinguished, as in the latter case scaling down might be possible. Since the
HPA sets the parallelism to the maximum dictated by various metrics, a value
of 1 for relativeLagChangeRate in the case of 0 lag would prevent a downscaling
based on other metrics (whose values would be between 0 and 1).

To avoid this, we need some logic not to use this metric when the total lag
is below a desired threshold. To simulate this, we can use the following value
instead in the query for the HPA:

totalLag− threshold

abs(totalLag− threshold)
× relativeLagChangeRate (4)

If the total lag is less than the threshold, then the fraction in the equation
is −1, which makes the above expression negative. Then, this metric will no
longer prevent the downscaling based on the other metric, since the HPA takes
the maximum of the values calculated based on various metrics. If the total
lag is larger than the threshold, then the fraction is 1, so this metric will be
taken into account when making the scaling decision.

As noted before, this metric always overestimates, since the total lag is
calculated based on the maximum lag of each subtask. If the data has a large
skew, the effect of this overestimation may be very large. Therefore, it may
be necessary to adjust the desired value of this metric based on knowledge
about the actual data being processed. If the number of subtasks matches the
number of Kafka partitions, and each subtask processes one partition, then
the metric is based on the true lag value. Obviously, due to scaling, this will
not be the general case, because the parallelism changes over the lifetime of a
job. In the future, it would be desirable to expose a metric about the lag in
each of the partitions.

4.2 Utilization

As noted in the previous subsection, another rule is necessary for the policy
to distinguish between cases when the lag remains unchanged because the
job’s processing capabilities match the incoming rate, and when the job could
process more than the incoming rate, but there are no records to be processed.

Towards autoscaling of Apache Flink jobs 49

This rule is based on the idleTimeMsPerSecond metric. It is a task-level
built-in metric in Flink, that represents the time in milliseconds that a task
is idle. A task can be idle either because it has no data to process, or because
it is backpressured (it is waiting for downstream operators to process their
data).

If a task is idle due to a lack of incoming records, then the job is overpro-
visioned for the current load. We define the utilization metric for a job as the
average portion of time its tasks spend in a non-idle state.

In our observations, the tasks executing the source operators (Kafka con-
sumers) have shown an idleTimeMsPerSecond metric of 0 ms when there was
no lag and the job was able to keep up with the messages, and 1000ms when
the job was processing events at its maximum capacity, due to the source tasks
being backpressured by the downstream processor operators. This is not an
accurate representation of the overall utilization of the job, therefore we have
excluded the tasks containing the first operator from the calculation. For this
metric to be useful, the source operators should not be chained to others.

The metric can be expressed with the following formula:

utilization = 1−
avgnonSourceTasks(idleTimeMsPerSecond)

1000
(5)

This is a dimensionless number between 0 and 1, representing the average
utilization of tasks in the job. We use this as the currentMetricValue in the
Horizontal Pod Autoscaler, and set the desired value to a number less than 1.

If the utilization is above the desired value, it may trigger a scale up before
the lag metric. Its main purpose however, is to scale down when the utilization
is low. If this is the case, the lag metric is 0, so the job would be able to process
more records than the incoming rate. For example, if the target utilization is
0.8, and its current value is 0.4, then a scale down should be triggered, the
new parallelism should be half of the original.

This simple metric assumes that the job’s tasks are under even load. A finer-
grained approach could be used with more knowledge about a job’s specifics,
such as which operators perform heavy calculations, and consider tasks with
different weights in the average.

5 The effects of scaling on performance

The scaling operation requires the snapshotting of the whole application state
onto persistent storage. Additionally, in our Kubernetes operator implemen-
tation, the original job’s pods are destroyed, and new pods are provisioned

50 B. Varga, M. Balassi, A. Kiss

instead with the appropriate replica count. The Flink job then has to be
restarted from the recently snapshotted state.

In this section, we analyze how the size of the state affects the downtime
during the scaling operation. We perform measurements regarding the save-
point duration, the overall downtime, and the loading time of the savepoint
after the scaling.

5.1 Experimental setup

We have created a simple Flink job that reads records from a topic in Apache
Kafka [14], keys them by one of the fields, performs a simple calculation in a
KeyedProcessFunction, and writes the results to another topic. The job stores
a random string of configurable size in a keyed state. The number of keys is
also configurable.

A separate data generator job produces the records of the input topic. The
creation timestamp is stored as a field of each record. The main job’s last
operator before the Kafka producer calculates the difference between its own
processing time and the stored timestamp, and writes this elapsed time to the
emitted record. This value can be used to determine the total downtime in
Section 5.3. We disregard the differences among the nodes’ clocks.

We have used the operator’s savepoint mechanism, as well as the scale end-
point to trigger savepoints and restarts. We have observed the duration of
savepointing on the JobManager dashboard. To calculate the downtime and
latency distribution, we have observed the output Kafka topic’s records with
the elapsed time field.

5.2 Effects of state size on savepoint duration

Flink has an aligned checkpoint mechanism [3]. When triggering a snapshot,
a snapshot barrier is inserted at each input operator, which flows along the
streaming pipeline along with the records. An operator takes a snapshot of its
state when it has received the snapshot barriers from all of its inputs. When
operators are under different loads, this can significantly delay the snapshot-
ting of certain operators’ states.

The latest versions of Flink also support unaligned checkpoints [19] (but
not unaligned savepoints), where checkpoint barriers can overtake buffered
records, and thus avoid this delay caused by the alignment. This does not affect
the time required for the I/O operations involving the checkpoint. In future

Towards autoscaling of Apache Flink jobs 51

Figure 2: Duration of taking a savepoint as measured by Flink, with relation
to state size, when the job runs with a parallelism of 1 or 3.

research, it might be worthwhile to investigate how using aligned or unaligned
checkpoints instead of savepoints might affect performance and scaling time.

Each operator must serialize its state and write it to a persistent storage.
We have measured how the size of application state affects this portion of the
snapshotting process. To avoid the fluctuation caused by the barrier mecha-
nism, we have stopped the data generator, and thus the stream of incoming
records, before taking snapshots. At this point, the keyed application state
had the sizes of {1.0, 2.0, 3.0, 4.0, 8.0} GB. The application has run with a
parallelism of 1 and 3. We have used Amazon’s Elastic File System (EFS) to
store the snapshots. This is one of the storage options that can be used for
Kubernetes, but there are other implementations and providers that may offer
different performance characteristics. In the future, it might be worthwhile to
compare the offerings of various providers.

We have manually triggered savepoints 5 times for each combination of
parallelism and state size. The measurements, read from the Flink dashboard,
were rounded to seconds, and an average value was taken. As seen on Figure 2,
state size has a strong linear correlation to the serialization and writing time
of the snapshotting phase.

52 B. Varga, M. Balassi, A. Kiss

The parallelism of the job did not affect the savepoint duration. It is limited
by the write rate of the file system. EFS offers 100 MiB/s (105 MB/s) bursting
performance. In our measurements, we have confirmed that savepoints were
written at this rate.

This has been measured when the application is in a healthy state and
not backpressured. The job did not need so spend time synchronizing the
checkpoint barriers, as the pipeline was simple, with no multi-input operators.
Backpressure does significantly increase the time to the completion of a save-
point, since the snapshot barriers must flow through all operators of the job.
The beginning of writing an operator’s state may thus be delayed until the
barrier reaches it. The magnitude of this effect depends highly on the specific
job.

The snapshotting of an operator’s state happens asynchronously, with a
small impact on the overall performance of the pipeline. While this effect
itself may cause delays in processing and slow the pipeline, it is unlikely to
cause problems in real-world scenarios due to its small magnitude, so we have
decided not to focus on this effect.

5.3 Effects of state size on scaling downtime

The majority of the downtime during a scaling operation is due to the loading
of state from the persistent storage. The properly partitioned state must be
distributed to the operator instances from the persistent storage.

We have measured how the total downtime of the processing job is affected
by the size of the state. We have manually triggered trigger scale-up and scale-
down operations with different state sizes. To measure the downtime, we have
used the method described in Subsection 5.1.

With state sizes of approximately 1, 2, 4 and 8 GB, we have found that the
creation of the infrastructure done by Kubernetes, the deletion and initializa-
tion of pods is a factor with a large variance, that is responsible for the larger
portion of the scaling time. Additionally, if the Flink image is not available
on the node, or the image pull policy is set to Always, its pulling is another
factor that we have little control over, and might dominate the scaling time.

In an extreme case, the cluster has no available resources to provision the
requested number of pods, and the job is in a stopped state until resources
become available, or a new node is initialized by some autoscaling mecha-
nism. To make measurements feasible, we limit the experiments to cases when
enough resources are available on the cluster, and new pods can be provisioned
without delay.

Towards autoscaling of Apache Flink jobs 53

However, even in this limited case, our observations have shown a large
variance in the scaling times due to the above described factor of waiting
for Kubernetes. Figure 3 shows the downtimes we have measured for target
parallelisms of 2 to 8, with state sizes between 2 and 8 GB. Based on the
observed data, we were not able to establish the effect of either the state size
or the target parallelism on the scaling time.

Figure 3: Total time for the scaling operation, during which the job processes
no messages.

5.4 Effects of state size on savepoint restoration duration

To directly observe the effects of state size, while eliminating the large vari-
ance described in the previous section, we have taken a different approach. We
have added a measurement directly to the OperatorChain class’ initializeS-
tateAndOpenOperators method. This exposes the duration of initializing each
operator’s state. This can either be a newly created state, or one restored from
a savepoint. In our setup, only one operator had stored state, whose size we
have had control over. We have exposed the load time as a gauge type metric
through Prometheus, and filtered it by the operator name in a query.

54 B. Varga, M. Balassi, A. Kiss

We have performed measurements with state sizes up to 8 GB, and target
parallelisms of 2, 4, 6, and 8. In each measurement, we have recorded the state
initialization time of each stateful parallel operator instance. The operator
instances work in a parallel manner, so the job is able to start processing at
the full rate after the last subtask has loaded its state. We have measured the
averages and the maximums of the subtask load times.

We have hypothesized the correlation between state size and load times to be
linear. This was confirmed by performing a linear regression on the data points
of the maximum and average values, while disregarding the target parallelism
component. The R2 values of 0.905 and 0.833 respectively indicate that state
size explains a large portion of the load times’ variability. Figure 4 shows the
data points and the trendlines for linear regression.

Figure 4: Maximum and average state initialization times of all instances of
the stateful operator in job restarts with various state sizes.

5.5 Effects of target parallelism

Each parallel operator instance loads only a portion of the state, partitioned
by some key. With a higher parallelism, the state that each operator must load
is smaller, which may result in a quicker load time. However, there may be

Towards autoscaling of Apache Flink jobs 55

other bottlenecks (e.g. disk or network performance), that may limit the rate
of loading the state.

Flink uses key groups as the smallest unit of distributing keyed state. Each
key group gets assigned to a parallel instance of an operator. The number of
key groups is equal to the maximum parallelism, which can only be set when
the job is first started. If key groups are not distributed evenly, the state size is
uneven between operator instances. It is recommended [17] to use parallelisms
that are divisors of the maximum parallelism setting to avoid this issue. In
our measurements, we have used a maximum parallelism setting of 720, which
is divisible by most of the parallelism settings we have measured with (except
for 32).

We have performed measurements to determine what the effect of the target
parallelism is on the load time. We have used a cluster with 6 AWS m5.2xlarge
instances, and ran the benchmark job with approximately 10 GiB state. We
have initiated the scaling operation with target parallelisms of 4, 6, 8, 12, 16,
24, and 32, scaling from various parallelisms. The job was initially started with
a parallelism of 8.

We have measured the state load times of each subtask using the same
tooling as before. We have scaled the job to each parallelism 6 times, and taken
the averages of the maximum and the average load times of each measurement.

Based on the results of the measurements, seen in Figure 5, we were not able
to observe a clear correlation between the target parallelism and the loading
time of the state.

6 Discussion and future work

We have worked on the problem of autoscaling Flink applications to adapt
to the current workload. We have built and described a scaling architecture
based on Kubernetes and its operator pattern.

We have focused on Flink jobs with inputs from Kafka, and detailed a sim-
ple scaling policy based on relative changes to the Kafka consumer lag, as well
as the idle rate of the tasks in the job. The policy is implemented on a Hor-
izontal Pod Autoscaler with custom metrics. We have described this scaling
architecture in detail. It can be used to implement different policies with min-
imal modifications. For more complex setups, the Horizontal Pod Autoscaler
may be replaced with a custom controller that implements an advanced scaling
algorithm.

56 B. Varga, M. Balassi, A. Kiss

Figure 5: The average of the 6 measurements for maximum and average load
times.

We have investigated the factors that affect the downtime caused by the
scaling operation. Due to the steps of the scaling, the processing latencies of
records may greatly increase during and after the scaling, as there is some
downtime when there are no records being processed.

We have found that there is a linear correlation between the state size and
the duration of savepointing to a persistent storage, excluding the time spent
aligning the checkpoint barriers. While this is done asynchronously, it causes a
delay between when the scaling is triggered and the beginning of the downtime.

Our measurements showed that there is a large variance in the total down-
time caused by the scaling operation. We were not able to establish the effect
of state size or target parallelism at this point. The time it takes for Kuber-
netes to reconcile the number of necessary pods, pull the images and start the
Flink processes takes up a large portion of the total duration.

This means that with this setup there is a lower bound to the maximum
latencies and the downtime. Therefore it is not possible to give guarantees
that every record will be processed with a low latency, the SLA has to allow
for occasional downtimes on the scale of a few minutes, if the application uses
autoscaling.

Towards autoscaling of Apache Flink jobs 57

In our measurements, we have tried to break down the factors that influence
the job’s restarting time. When restarting from a savepoint, portions of the
state are loaded by the subtasks from the persistent storage. The duration of
this loading is one of the factors that affect the total downtime. We have found
that the state size is linearly correlated with this duration. We have not found
a correlation between the parallelism of the restarted job and the maximum
or the average load time of its subtasks.

Our described policy may serve as a basis for designing a more advanced
autoscaling setup. When the policy must respect an SLA, the scaling downtime
is a factor to take into consideration. A longer restart time means that the job
will accrue a larger lag during the scaling operation. Thus, it might violate
the SLA for a longer period. It might make sense to overprovision by a larger
factor to account for this and make the job catch up quicker.

In future work, it may be worthwhile to investigate how to incorporate
our results about the effects of state size to the policy. If we can calculate
the scaling downtime based on state size, it can be approximated how much
additional lag the restart will cause, and how much the total lag will be. Based
on this, we may calculate an appropriate scaling factor that allows the job to
catch up (to decrease the lag below a threshold) within the time allowed by
the SLA.

With a good autoscaling architecture and policy, long-running Flink jobs will
be able to keep up with changing workloads while utilizing resources effectively.
Our contributions serve as a basis towards building such an architecture and
designing an optimal policy.

Acknowledgements

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] T. Abdelzaher, Y. Diao, J.L. Hellerstein, C. Lu, X, Zhu, Introduction to control
theory and its application to computing systems, in: Performance Modeling and
Engineering, Springer US, Boston, MA, 2008, 185–215. ⇒41

[2] B. Brazil, Prometheus: Up & Running : Infrastructure and Application Perfor-
mance Monitoring, O’Reilly Media, Inc., 2018 ⇒44, 47

[3] P. Carbone, G. Fóra, S. Ewen, S. Haridi, K. Tzoumas, Lightweight asynchronous
snapshots for distributed dataflows, arXiv preprint 1506.08603, 2015 ⇒40, 50

https://www.springer.com/
https://www.oreilly.com/
https://arxiv.org/pdf/1506.08603.pdf

58 B. Varga, M. Balassi, A. Kiss

[4] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, K. Tzoumas, State man-
agement in Apache Flink: Consistent stateful distributed stream processing, in
Proc. VLDB Endow. 10, 12 (2017) 1718–1729 ⇒40

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas, Apache
flink: Stream and batch processing in a single engine, Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering 38, 4 (2015) 28–38 ⇒
39

[6] J. Dobies, J. Wood, Kubernetes Operators: Automating the Container Orches-
tration Platform, O’Reilly Media, Inc., 2020 ⇒43

[7] Fabian Paul, Autoscaling Apache Flink with Ververica Platform Au-
topilot, Ververica Blog, 2021, https://www.ververica.com/blog/

autoscaling-apache-flink-with-ververica-platform-autopilot ⇒
45

[8] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, G. Iszlai, Optimal autoscaling in
a IaaS cloud, in: Proceedings of the 9th International Conference on Autonomic
Computing, ICAC ’12, Association for Computing Machinery, New York, NY,
USA, 2012, 173–178 ⇒42

[9] K. Hightower, B. Burns, J, Beda, Kubernetes: Up and Running Dive into the
Future of Infrastructure, O’Reilly Media, Inc., 1st edn., 2017 ⇒41

[10] F. Hueske, V. Kalavri, Stream Processing with Apache Flink: Fundamentals,
Implementation, and Operation of Streaming Applications. O’Reilly Media, Inc.,
2019 ⇒39

[11] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, T. Roscoe,
Three steps is all you need, Fast, accurate, automatic scaling decisions for dis-
tributed streaming dataflows, in: Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, OSDI’18, USENIX Association,
USA, 2018, 783–798 ⇒41

[12] F. Lombardi, A. Muti, L. Aniello, R. Baldoni, S. Bonomi, L. Querzoni, Pascal: An
architecture for proactive auto-scaling of distributed services. Future Generation
Computer Systems 98 (2019), 342–361 ⇒42

[13] T. Lorido-Botrán, J. Miguel-Alonso, J. Lozano, A review of auto-scaling tech-
niques for elastic applications in cloud environments, Journal of Grid Computing
12 (2014) 559–592 ⇒41

[14] N. Narkhede, G. Shapira, T. Palino, Kafka: The Definitive Guide: Real-Time
Data and Stream Processing at Scale. O’Reilly Media, Inc., 2017 ⇒45, 50

[15] F. Paul, Towards a Flink Autopilot in Ververica platform, Flink Forward Global
(2020),
https://www.flink-forward.org/global-2020/conference-program#

towards-a-flink-autopilot-in-ververica-platform ⇒45
[16] S. Ross, Prometheus Adapter for Kubernetes Metrics APIs (10.04.2021),

https://github.com/DirectXMan12/k8s-prometheus-adapter ⇒44

https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
https://tc.computer.org/tcde/data-engineering-bulletin/
https://tc.computer.org/tcde/data-engineering-bulletin/
https://www.oreilly.com/
https://www.ververica.com/blog/autoscaling-apache-flink-with-ververica-platform-autopilot
https://www.ververica.com/blog/autoscaling-apache-flink-with-ververica-platform-autopilot
https://dl.acm.org/doi/10.1145/2371536.2371567
https://dl.acm.org/doi/10.1145/2371536.2371567
https://www.oreilly.com/
https://www.oreilly.com/
https://www.usenix.org/system/files/osdi18-kalavri.pdf
https://www.usenix.org/system/files/osdi18-kalavri.pdf
https://www.sciencedirect.com/journal/future-generation-computer-systems
https://www.sciencedirect.com/journal/future-generation-computer-systems
https://www.springer.com/journal/10723
https://www.oreilly.com/
https://www.flink-forward.org/global-2020/conference-program#towards-a-flink-autopilot-in-ververica-platform
https://www.flink-forward.org/global-2020/conference-program#towards-a-flink-autopilot-in-ververica-platform
https://github.com/DirectXMan12/k8s-prometheus-adapter

Towards autoscaling of Apache Flink jobs 59

[17] ∗ ∗ ∗ Setting max parallelism, Cloudera Docs / Streaming Analytics 1.2.0
(10.04.2021),
https://docs.cloudera.com/csa/1.2.0/configuration/topics/

csa-max-parallelism.html ⇒55
[18] ∗ ∗ ∗ Apache Flink — Stateful Computations over Data Streams (10.04.2021),

https://flink.apache.org/ ⇒39
[19] ∗ ∗ ∗ Stateful Stream Processing, Apache Flink Documentation (10.04.2021),

https://ci.apache.org/projects/flink/flink-docs-release-1.12/

concepts/stateful-stream-processing.html ⇒50
[20] ∗ ∗ ∗ Horizontal Pod Autoscaler, Kubernetes Documentation (10.04.2021),

https://kubernetes.io/docs/tasks/run-application/

horizontal-pod-autoscale/ ⇒41, 44
[21] ∗ ∗ ∗ Kubernetes Operator for Apache Flink (10.04.2021),

https://github.com/GoogleCloudPlatform/flink-on-k8s-operator ⇒41,
43

Received: March 22, 2021 • Revised: April 11, 2021

https://docs.cloudera.com/csa/1.2.0/configuration/topics/csa-max-parallelism.html
https://docs.cloudera.com/csa/1.2.0/configuration/topics/csa-max-parallelism.html
https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/concepts/stateful-stream-processing.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/concepts/stateful-stream-processing.html
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/GoogleCloudPlatform/flink-on-k8s-operator

Acta Univ. Sapientiae, Informatica 13, 1 (2021) 60–85

DOI: 10.2478/ausi-2021-0004

Animal Farm—a complex artificial life 3D

framework

Attila KISS
J. Selye University
Komárno, Slovakia

email: kissae@ujs.sk

Gábor PUSZTAI
ELTE Eötvös Loránd University

Budapest, Hungary
email: afbdpk@inf.elte.hu

Abstract. The development of computer-generated ecosystem simula-
tions are becoming more common due to the greater computational ca-
pabilities of machines. Because natural ecosystems are very complex, sim-
plifications are required for implementation. This simulation environment
offer a global view of the system and generate a lot of data to process and
analyse, which are difficult or impossible to do in nature. 3D simulations,
besides of the scientific advantages in experiments, can be used for pre-
sentation, educational and entertainment purposes too. In our simulated
framework (Animal Farm) we have implemented a few basic animal be-
haviors and mechanics to observe in 3D. All animals are controlled by an
individual logic model, which determines the next action of the animal,
based on their needs and surrounding environment.

1 Introduction

Within the concept of ecology, we treat an ecosystem as a small part of the
whole living system. The ecosystem can scale in different sizes, from a local
few species environment, to highly complex continent wide coexistence.

Computing Classification System 1998: J.4
Mathematics Subject Classification 2010: 68T20
Key words and phrases: artificial life, multi-agent systems, ecosystem, animal-simulation,
extinction, sustainability, unity (engine), computer-generated, 3D-simulation, competing-
ecosystem, ecosystem-model

60

https://people.inf.elte.hu/kiss/
https://www.ujs.sk/en
https://www.ujs.sk/en
mailto:kissae@ujs.sk
https://people.inf.elte.hu/kiss/
https://www.inf.elte.hu/
https://www.inf.elte.hu/
mailto:afbdpk@inf.elte.hu

Animal Farm 61

An ecosystem comprises the entirety of the living things (plants, animals)
in a given territory, interacting with each other. Natural ecosystems are “bal-
anced” structures. This means that through interactions between the individ-
uals, ecosystems are constantly changing. With this changes, the system is
constantly trying to stabilize and thus able to sustain for a long time. Every
living creature has impact on the environment, like during their lifetime preda-
tors are hunting down smaller animals for food source to sustain themselves
and grow their species population, while keeping prolific animal populations
lower to reduce their noxiousness.

In the lifetime of an ecosystem there are many influencing factors that can
change the whole image and future of the system. This factors can be abiotic
(environmental impacts) like climate change, earthquakes and sea level rising;
and biotic (living creatures and their interactions) like extinction of a species
in the food web, new predator appearance from another neighbour ecosystem,
human interference. This effects can make entire systems unstable, regardless
of the complexity, size and thoroughly development by observations. Taking
all aspects into account is impossible and the smallest undefined or random
effects can alter the system in enormous ways.

Replicating small ecosystem environments with living beings is not an easy
task. Animals’ behavior can become unpredictable in a few seconds, when
they are reacting to outside effects (abiotic and biotic components as well)
and every individual will react differently depending on their surrounding,
characteristics and logic. This changes can force species to migrate or extinct,
if their natural habitat changes rapidly and they can’t adopt fast enough.

Both fixed and random effects occur in the ecosystem. Fixed effects are well
observed, monitored and known behaviors and characteristics of animals and
the environment and most of the time simple to implement. Environmental
effects can be remodelled in the system too, but hard to replicate realistically,
because their strength and occurrence has to be set correctly, otherwise their
impacts can be overwhelming. It is also hard to model animals’ logic and their
behaviors (instincts) and how they react to different situations and occurring
environmental and interaction effects. Their decisions is hard to determine
based on purely outside effects or pure logic. Creating an ecosystem in a simu-
lation is really difficult, because of this many unknown (indetermined or hard
to monitor or remodel) factors. To imitate and simplify unknown influential
factors, the most easy way to consider and determine them as random deci-
sions and events as well. Without calculating these complex tasks and relying
only on the values of the randomness, many alternatives are being created by
running same simulations multiple times. While rerunning the same simula-

62 A. Kiss, G. Pusztai

tion and getting different result may sound odd, this way we can observe many
alternatives of an evolvement of our ecosystem.

A 3D environment for a simulation can be useful to monitor different events
and animals real time by graphical observation as well. It can show how the
animals live, like when they eat or drink, and how they react to other species,
like fleeing or hunting. It’s more an eye-catching experience to see the actual
animals, rather than only reading the plain resulted statistics value of the
populations. Also, while we can specify a lot of ways what and how to extract
data form the simulations, sometimes it’s hard to determine what is important
to extract from a situation. We can monitor what caused the animal’s death,
say like it was killed by a predator, but this doesn’t determines if the animal
wasn’t a suitable prey or just unlucky and couldn’t flee away from the predator
due to a terrain (mountain or water) formation. And the opposite is true, when
we say an animal died from like thirst, before it’s death, it could have been
chased a long way by a predator, which would suggest to give the credit for
the predator, but the system registered as a death of thirst, which in the
plan statistics would imply a lack of water source on the terrain. Without a
perfect register system, sometimes it is advised to check on the simulation’s
3D environment to observe interactions and events.

2 Related work

Scientists have been trying to analyse and model real ecosystems for a century.
One of the earliest, and most well-known, ecological model is the predator-prey
model of Alfred J. Lotka (1925) [17] and Vito Volterra (1926) [22] called “The
Lotka–Volterra equations”. Volterra originally devised the model to explain
fluctuations in fish and shark populations observed in the Adriatic Sea after
the First World War. There are multiple alternatives to the Lotka-Volterra
predator-prey model and its common prey dependent generalizations, like
Richard G. Wiegert’s [23] simulation model or the Arditi-Ginzburg (ratio de-
pendent) equations [2, 3] (it’s connection to Lotka-Volterra [21]) or a three
species model, where two predator competing for the same prey by Reddy and
Ramacharyulu [18].

In addition to mathematical models, there are also simulation models that
can be used to model ecosystems, where the mathematical model is either too
complex or impossible to compute. The difficulty of creating a model is, we
need to include an enormous amount of factors and data (gathered or repli-
cated), which could interact unpredictably with each other. In a simulated

Animal Farm 63

model, it is an always asked question, which attributes and effects should be
included in the program. The best would be if we could replicate all the proper-
ties of the environment and the animals (this is what complicated mathematic
models are trying to do). To reduce this complexity, simulated models typically
simplify the systems they are representing, to limit the number of components.
So simulation models are more widely utilized and more biologically reason-
able, while analytic models are esteemed for their numerical tastefulness and
elegance.

There are multiple other frameworks, which generate valuable ecosystem
data, but most of them are using high abstraction in implementation (like
only text-based or 2D environments and unrealistic creatures to study). In the
’90s, computer simulation programs were developed, modeled on the 1984’s
programming game Core War [9], where two or more programs competed by
switching turns to control virtual machines and get all the resources by termi-
nating other programs. This kind of competition is similar to real-life ecosys-
tems where the animals are rivals to each other. A simulation named Tierra
[20] appeared to show this connection parallel, with the difference of evolve-
ment, where the programs could alter themselves like an evolution approach
to evolve. After a few years, another simulation called Avida [1] appeared with
another addition, where “organisms” could have different execution speeds in-
stead of a simple distributed turn switching. Many other improved and altered
versions with modified rules appeared since then, like a modified model [4].
After this many variations appeared, the community decided to keep the basic
approach, and an International Core War Society (ICWS) was established for
the maintenance of Core War standards and running the tournaments.

Meanwhile, computer graphics improved and finally allowed to create graphic
representations of the simulations. With graphics, we became closer to repli-
cate and observe real ecosystem environments instead of just creating simula-
tions with complex calculations showing numbers on the screens like mathe-
matical ecosystem models. Some simulations take a 2D abstractions to simplify
their model and save computer resources like Bubbleworld.Evo [19]. Bubble-
world.Evo is a multi-agent simulation where hundreds of prey (bubbles) are
trying to avoid predators (triangles) to survive. The agents determined by
size, energy, speed, and in their life cycle, when they reach a dedicated size or
energy, they reproduce into multiple offsprings, starting their live cycles again
from the start.

Creating simulations where the animals have complex logic has many cons
and pros. If they are very complex, their behaviors will be hard to define

64 A. Kiss, G. Pusztai

and control, and also calculating this for every individual requires significant
computer resources. A 3D simulation called PolyWorld [24] created trapezoid
agents to search for food and mate. They needed to keep their whole population
only in the hundreds to be able to run. With lower population numbers, it is
hard to create any solid ecological statements.

Another 3D simulation is Framsticks [15, 10, 14, 11, 12, 13], but here, they
took a very unusual approach to the animal models and evolution mechanics.
The creatures contain mechanical structures (“bodies”) and control systems
(“brains”), which results in very unusual appearance, like stick segments with
joints. Their complicated system requires a ton of physics calculations like
collisions with other creatures and the environment, gravity, and mechatron-
ics forces (friction, elastic reaction). However, if we have enough computa-
tion power, we can run different enormous, physically accurate experiments,
including evolution optimizations, co-evolution, and spontaneous evolutions
from gene pools.

3 Simulation environment

While scientists like to analyse data from simulations, to catch other (like
younger) audiences’ interest, the simulation has to be just as engaging as
informative. We named our simulation framework to “Animal Farm” after
George Orwell’s novella as an indication of the animals’ logic model, where
they can behave unexpectedly (and “rebel against us” as in the novella’s story).

To make our immersive 3D graphical simulation we used Unity (engine).
Unity [27] is a cross-platform game engine, developed by Unity Technologies.
The editor is supported on Windows, Linux, and macOS, but the engine can
build applications for more than 25 different platforms. Unity integrates mul-
tiple custom rendering options with an incredible physics engine and with
Mono, the open-source implementation of Microsoft’s .NET libraries, with we
can write scripts in the object-oriented programming language C# to create
and control the running simulation. Unity is well documented and constantly
upgraded and supported with many official and unofficial tutorials on the in-
ternet.

In the past, many graphical engines were used to create 3D environments,
but the most popular was the Unreal engine. After the launch of Unity in 2005,
many developers and projects like “Search and Rescue Game Environment”
[5] moved to this new platform. The editor is a well-designed environment with
a lot of features and options like drag-n-drop features and built-in windows

Animal Farm 65

and also custom windows, which can be easily created by ourselves to use in
our project to make the work easier.

In the past, Unity had only paid options, and Unity Indie was the cheapest
with limited features, but after 2009, they discontinued the Indie version and
released a free Unity version with very few feature locks. Unity’s policy is that
Unity (Personal) is free to creators with revenue or funding (raised or self-
funded) below USD $100K in one year, meaning after 2009, a large number of
students, hobbyists, and Indie developer had the opportunity the start projects
with Unity for free. To unlock all the features and functionalities, a Plus or
Pro license is required, but year after year, many paid features have been
moved into the free version, which makes Unity an amazing platform to use
for smaller, Indie development and for scientific demonstration purposes. You
can learn more about Unity’s history in [8].

4 Our work

In our project, we are using our developed multi-agent predator-prey simula-
tion model to create an isolated 3D environment with a few example species.
From the simulations, we collect data to analyse and set up certain hypothe-
ses. Our animals are not simply separated into 2 distinct groups (predators
and prey), we created a model, which supports food chain approaches too. A
medium-sized animal can be the predator of a smaller animal, but an even
bigger animal could consider this medium-sized animal as prey.

In our simulation, the animals can move intelligently on a terrain with
Unity’s AI system, which provides a navigation mesh, by scanning the ter-
rain and creates a walkable mesh. On this mesh, we can set a position as a
destination point for the animal. The AI system will calculate the shortest
path to our destination with obstacle avoidance (like hills, trees, lakes).

To provide land for our animals, we created two separate modes (called
Sample and Custom scene). The Sample scene contains a premade, static
terrain created with Unity’s Terrain Editor and 3 lakes, many trees, and at
the edges of the map a range of mountains to keep the animals on the map. The
Custom scene is for self-made maps, where we can import terrain data using
heightmaps (more in the designated section) and modify it in some aspects,
then start the simulation on your newly created map.

Both scenes have a ‘Console Prompt’ feature (by pressing the TAB key)
where, with specific commands, we can interact with the running simulation
like, spawn and reset animals, manipulate time, get statistics of the animal.

66 A. Kiss, G. Pusztai

Two camera modes are possible, the default is to fly around inside the simula-
tion (WASD keys) to inspect the animals, and a follow mode to automatically
follow an animal (by left-clicking on the animal, which you want to follow).

Above each animal, you can see primary information of the animal’s thirst,
hunger levels, current logical and mating states, the animal’s age, age stage,
and the pack’s name, which the animal belongs to.

To create some of the graphical and technical parts, we used free assets from
the official Unity asset website [28]. The animal models are from 2 packages, the
“Voxel Animals Pack” from “Total Game Assets” [33] and “5 animated Voxel
animals” from “VoxelGuy” [29]. Our vegetation models are from the “Low Poly
Nature – FREE Vegetation” from “Elcanetay” [31] and the tree models “Free
Trees” from “Ada King” [30]. We have used a file browser implementation for
importing heightmap images into our custom map generation “Runtime File
Browser” by “Süleyman Yasir Kula” [32].

5 Featured mechanics and logical phases

5.1 Exploring mechanic:

This is the default phase mechanic, if no other mechanics’ criteria are fulfilled
(e.g., the animal can’t see any water in view range, when thirsty), the animal
will explore the area, until a needed resource or an enemy is found. If the pack
mechanic is turned on, the animals will explore together, following the pack
leader.

Figure 1: Exploring mechanic

Animal Farm 67

5.2 Drinking mechanic:

If the animal’s thirst level is below a set threshold and a designated water
source found within view range, the animal goes to the source and starts to
refill its thirst (lower, blue bar) meter.

Figure 2: Drinking mechanic

5.3 Hunting mechanic:

If the animal is a predator and the animal’s hunger level is below its threshold
and a designated food source found within view range, the animal starts to
hunt the prey by following it and if reaches close proximity, kills the prey. The
prey’s body becomes a corpse and the predators can consume it.

Figure 3: Hunting mechanic

5.4 Eating mechanic:

If the animal is a vegetarian or the hunting mechanic is completed, the animal
goes to the food source (the hunted animal or the plant) and starts consuming
it. The feeding is represented by filling up the hunger (upper, red bar) me-
ter, and the source’s meter (single, red bar) drains. Additionally, the corpse’s

68 A. Kiss, G. Pusztai

source fades overtime, representing flesh decomposition and the vegetation’s
source is increases overtime as the plant’s natural regeneration ability. When
the source is completely depleted, it disappears from the simulation.

(a) Predator eating (b) Vegetarian eating

Figure 4: Eating mechanic

5.5 Fleeing mechanic:

If the animal senses a hostile animal within the view range, a fleeing movement
overrides any other mechanics and the animal starts to run in the opposite
direction, trying to escape from the predator. If the prey loses the predator,
the natural logical cycle is restored and continued.

Figure 5: Fleeing mechanic

5.6 Mating mechanic:

Within the view range, if the animal finds a right (gender, mating and age
status requirements are fulfilled) partner, a mating request is sent by the male
to the female, and if it is accepted by the female, they will start the mating

Animal Farm 69

process, which will result in the female becoming pregnant. After the preg-
nancy time ends, new children are born (depending on the species childbirth
capability).

(a) Finding a partner (b) Creating new life

Figure 6: Mating mechanic

5.7 Pack mechanic:

The animals can form packs with others from their own race. During the sim-
ulation, multiple packs can be formed for each race (in this simulation animals
will always try to form bigger packs until a set maximum threshold number
is reached), an individual can request a join (even change, which pack they
belong) to an other pack, which could be accepted or rejected. Every pack has
a leader, whose movement will be considered during an individual’s exploring
logic phase. This results in a group of animals, which moves and sticks to-
gether. This mechanic has many positive (e.g., easier to find mating partners)
and negative (e.g., predators will find and catch preys easier) qualities. These
assets have been analysed with statistics at the end of the article.

Figure 7: Pack mechanic

70 A. Kiss, G. Pusztai

6 Adjustable parameters in the simulations

To modify any animal parameters, we have to alter their species’ attributes.
There are many attributes, which control the behaviors of the animals and
they can be set for all species separately. First, we have to set a race type, so
the animal knows, which animals are in the same race, to consider them as
allies. Addition relations are the list of enemies, where the animals who belong
here will trigger the fleeing mechanic, and the list of foods, which determines
the animal’s feeding type and which sources (animal or vegetation) to look for
to trigger the hunting and eating mechanics.

There are some parameters, which change as the animal grows. These vari-
ables can be set to animals depending on their age stages. Animals are cat-
egorised into age stages based on their current age. Our pre-determined age
stages are Puppy, Juvenile, Young, Adult, Aged, and Elder. Inside every age
stage, there are 4 primary variables: view distance, walking speed, hunger
modifier, thirst modifier. View distance means, how far the animal can see,
and from this information, the animals will determine what to do. The walk-
ing speed means how fast the animal can move on the terrain. The hunger
and thirst modifiers alter the basic life requirements (metabolism), where the
animals always lose hunger and thirst, while the time passes. With this, we
can determine characteristics for different ages, like older animals’ metabolism
slows down, so their hunger and thirst bars will decrease slower than an Adult’s
from the same species, but their view distance and walking speed decrease as
well.

The mating mechanics is determined by age stages too, where the Puppy
and Elder can’t reproduce, meaning they will be in a not sexually active sta-
tus, but other stages can. Males and females have unique attributes here,
females have pregnancy duration and max childbirth capacity, and males have
spermatogenesis duration, which means the length of a state, when the male
sexually inactive.

With the pack forming ability, we can set which species use this mechanics.
If they are capable to form packs, the species will start to create groups and
move together, if not, every animal stay an individual from others (except in
the mating mechanic) and explore the map separately.

7 Custom map generation

In this simulation environment, we can choose between 2 maps to run our sim-
ulation. The first is a sample static map, which was created by hand to test the

Animal Farm 71

animals and illustrate a beautiful landscape, while our simulation is running,
but due to its static nature of the map rerunning with the same properties
multiple times, will end in slightly similar results, because of the landscape’s
image (lakes’ and hills’ position). According to solve this problem, we cre-
ated a tool to import custom maps into the simulations, using heightmaps.
A heightmap [6] is a black-white image file containing data from a landscape,
where the pixel positions are representing the 2D surface coordinates and the
pixel’s grey shade will represent the height in a 0-1 scale. This allows us to
convert an image file into a 3D mesh surface (terrain map), which our animals
can walk on. Heightmaps include water on their representation (usually the
darkest areas) but we can’t be sure if that area is water or land with sea level
0, or even below sea level. In our generator section, we provided some tools to
scale, increase, set a maximum height and set water level after the image is im-
ported to modify the terrain as we wish, and see the modifications in real-time
inside the environment. After we are satisfied with the map, pressing the start
button will calculate any furthermore necessary technical details, and start
the simulation like the sample scene, except this time with our custom-made
map.

(a) Plain terrain with low sea level (b) High mountains with higher sea level

Figure 8: One of the 3 example maps provided inside the program, the same
heightmap was used in both pictures, only the maximum height and the sea level
was modified at runtime with the right-upper modifier sliders.

8 Heightmaps

As described in the previous section, we need an image to start a custom
simulation. There are various different methods to acquire images like search-
ing online, using any search engine, which is a great way to gather var-
ied types and shapes to run an experiment. If we want a specific location’s

72 A. Kiss, G. Pusztai

heightmap on Earth we can search for it by name or we can use “https:
//terrain.party/” website to create our own snapshot of a part of the Earth.
Or, if we would like to run our simulation on many different (unreal) terrains
we can use a noise heightmap generater like “http://kitfox.com/projects/
perlinNoiseMaker/” to generate a random terrain to import into our envi-
ronment.

Inside the map generator, we can modify a heightmap image with 5 differ-
ent attributes. The “Size scale” will scale the whole image to a bigger terrain.
“Height scaling” multiplies every positive height value. “Height increase” adds
this fix value to every positive height value. “Maximum height” sets and trans-
lates the original heightmap’s 0-1 value into the simulation’s value system,
meaning if a point is 1 (the most white color) on the heightmap, inside the
simulation, it will be 11.48 (example value from [Figure 9b]) units tall. And
the final attribute sets the “Sea level” to a designated value.

(a) Heightmap of the example [Figure 8] (b) Changeable heightmap variables

Figure 9: Heightmaps

9 Demonstration of the platform

For demonstration purposes, we have created 6 prototype animals with differ-
ent properties and 1 plant with a fixed 9-second reproduction rate and random
spawn positions. The animals’ names are only for demonstration purposes, we
named them randomly (considering some attributes as animal characteristics
to strive for realistic representations of the real world animals). We named our
only plant type “Grain”. We planned to create multiple types of vegetation,
but decided to keep only one for this demonstration, because there are only
3 vegetarian types, and we didn’t want to complicate the experiments and
decided to set them as to eat the same type of vegetation.

https://terrain.party/
https://terrain.party/
http://kitfox.com/projects/perlinNoiseMaker/
http://kitfox.com/projects/perlinNoiseMaker/

Animal Farm 73

Parameters Chicken Pig Cow Dog Fox Lion

Avarage lifetime 375 700 800 650 550 700

Most childbirth 3 3 1 1 2 1

Pregnancy dur. 55 70 80 65 65 70

Spermatogenesis 50 30 30 30 30 30

Food Grain Grain Grain Chicken Chicken,Pig All

Enemy Dog,Fox,Lion Dog,Fox,Lion Dog,Fox,Lion Lion Lion,Dog None

Viewrange Chicken Pig Cow Dog Fox Lion

Puppy 20 22 22 23 26 23

Juvenile 22 24 24 25 28 25

Young 23 24 26 27 30 27

Adult 25 25 28 29 32 29

Aged 22 24 24 25 28 25

Elder 18 22 21 21 24 21

Walkingspeed Chicken Pig Cow Dog Fox Lion

Puppy 3.3 3.2 3.2 3.55 3.65 3.5

Juvenile 3.6 3.6 3.4 3.85 3.85 3.65

Young 4.1 3.9 3.6 4.05 4.15 3.85

Adult 4.3 4.1 4 4.2 4.25 4.1

Aged 3.7 3.6 3.4 3.7 3.85 3.55

Elder 3.2 3.1 2.9 3.2 3.35 3.3

Thirst/Hunger Chicken Pig Cow Dog Fox Lion

Puppy 1.3 1.1 1 1.1 15 1.1

Juvenile 1.55 1.35 1.35 1.3 1.35 1.22

Young 1.65 1.5 1.5 1.4 1.45 1.3

Adult 1.55 1.4 1.35 1.3 1.35 1.2

Aged 1.25 1.3 1.1 1.1 1.15 1.1

Elder 1 0.9 0.8 0.7 0.7 0.7

AgeStage bound. Chicken Pig Cow Dog Fox Lion

Puppy 37.5 105 120 97.5 82.5 105

Juvenile 75 154 176 143 121 154

Young 112.5 231 264 214.5 181.5 231

Adult 187.5 350 400 325 275 350

Aged 281.25 525 600 487.5 412.5 525

Elder 375 700 800 650 550 700

9.1 Sample results

We ran simulations with the same parameters and heightmap multiple times,
and from the generated data we created summary graphs for each simulation.
Here, we represent 5 unique situations to analyse, which were different form
the major of the results.

For these simulations, we created a custom made map with balanced land-
water ratio and distribution in our opinion. We placed 9 circle shaped lakes
on a big square land, where the animals had plenty of space to go around
and between the lakes. This way the combined water surface area was around
35-40% of the map. The water itself shaped multiple natural obstacles for the
animals, so we didn’t add any mountains to this terrain, to give the preys
plenty of opportunities to flee in multiple directions without trapping them-
selves.

Our simulations start with spawning the designated number of animals (24
chicken, 24 cow, 24 pig, 18 dog, 18 fox and 12 lion) on the map with random
positions. The spawned animals start as newborns on random positions, with
their properties reduced to their current age stage of their species’ characteris-
tics. Because, the predators are already capable of hunting when they young,
sometimes they spawn close to the preys and start to chase them in every-
where on the land, which creates a chaotic start of every simulation. From

74 A. Kiss, G. Pusztai

this chaos, unfortunately only a few species come out alive, usually 1-2 veg-
etarian and a predator type. Later the survived animals’ numbers normalize
and they start to create different symbiosis variations for a short time. Also,
because the terrain is an isolated land from other ecosystems, there are no
outside effects to our ecosystem, and if a species extinct there will be no more
of them to observe in the simulation. We tried to balance the species capabil-
ities (demonstration attributes), but this only resulted in a random selection
of which animals survive the start chaos.

Figure 10: Symbiosis between vegetarian animals and the vegetation

[Figure 10] shows a unique case where only 1 vegetarian animal (chicken)
survived in the long run of the simulation. We can observe a very balanced
symbiosis between our chicken and grain species with a natural both-sided
waving population increase and decrease. The chicken fluctuates in waves with
the vegetation due to their rapid reproduction rate, when their numbers reach a
high value they start to eat more vegetation than the vegetation’s reproduction
rate and the vegetation starts to decrease, which results a low food supply for
the high number of chickens and they start to starve to death, lowering the
chicken’s number, letting the vegetation to replenish and at a point, it will
be able to sustain the lower chicken population again. Without any predator
the chickens’ only danger is their own gluttony, meaning if the vegetation hits
a very low value, maybe there won’t be enough time for the vegetation to
recover before the whole chicken population starve to death.

Animal Farm 75

Figure 11: Symbiosis between 3 species

In this simulation [Figure 11] we can observe a more complex symbiosis
between the chicken, fox, and grain. Chickens multiply rapidly, capable of a
fast recovery in numbers, resulting in a grain decrease first and a fox increase
secondly. The foxes overcome of the chickens’ number and will decrease them
significantly. If the low chicken population can survive for a brief time, the
foxes number will decrease due to the food shortage, resulting in a fox popu-
lation shrink and the cycle can restart. Unfortunately, this simulation ended,
because after the second huge fox population wave, the chickens couldn’t sus-
tain themselves against the foxes and died out.

Figure 12: Pigs have eaten all the food from the chickens

Here [Figure 12] pigs overpopulated the map. Pigs have a slower reproduc-
tion rate, but because of the early low population of the foxes and the other
predators’ extinctions, pigs by chance could overcome of the chicken popula-

76 A. Kiss, G. Pusztai

tion, which extincted because of the food shortage and their low population
number soon reached zero. The chickens couldn’t reproduce enough, because
the pregnancy and childbirth infer an extra hunger modifier, which if not
enough food is available, could be fatal for the population. Foxes could barely
survive, but at the early stages, pigs and chickens provided enough to reach
a safe number, and after the chicken’s extinction the foxes started to eat the
pigs and their population started to grow rapidly since they didn’t have any
enemy. When the foxes population grow higher, the pigs couldn’t keep up with
the hunt and their numbers started to go down, which resulted in their and
after a short time the foxes extinction.

Figure 13: Unsustainable symbiosis

Figure 14: Unsustainable symbiosis 2

[Figure 13] and [Figure 14] is a more common result, rather than [Figure 12],
because the pigs are not as prolific as the chickens and with an even slower

Animal Farm 77

start as before, they extincted even faster, because the foxes hunted them at
the same rate, but due to the low population, the same scenario happened,
just earlier. This means, that the chickens and foxes could perform better
in a predator-prey symbiosis, rather than the pigs and foxes. Pigs have an
advantage against the chickens with a longer lifetime attribute, but have the
disadvantage in their pregnancy duration. If the predators are hunting the
preys rapidly and the prey dies before reaching an older age, the extended
lifetime has no real advantage, but the faster reproduction rate could mean
the survival of the prey population, which the preys in the real world also use
for survival.

Figure 15: Bigger size is not always an advantage

In our last demonstration, the cows survived the chaos alone, like in our first
demonstration [Figure 10] with the chickens and the vegetation. In the cows’
characteristics we have given them a much lower reproduction and movement
skills on purpose. Their only two advantage is in their size (out of our preda-
tors, only the lions can harm the cows) and their expanded lifetime. As the
only survivors, without any enemy and plenty of food, they managed to sur-
vive, but unlike the chickens their numbers didn’t fluctuate as much, keeping
a low population despite the food abundance, due to their low reproduction
rate their population kept a low value. Without predators or environmental
effect this can be an acceptable solution, but if the lions were present or any
catastrophe (e.g., environmental event or biological disease) occurs, while they
keep a low population, they wouldn’t survive for long and extinct.

78 A. Kiss, G. Pusztai

9.2 The pack forming ability and the advantages of the me-
chanic

To demonstrate the pack forming ability usefulness, we ran multiple simu-
lations with the same animals (types and properties, same animal starting
numbers), on the same terrain with random starting points, the only thing we
changed is the pack forming ability for all or none of the animals. Without
a cohesion force, the animals make their decisions fully separately from each
other (ignoring each other, except in the mating process) and with the packing
mechanism the pack’s members always try to stay and move together.

We observed our prey animals (Chicken, Cow, Pig) more closely, because
they had a more a more notable change in their populations than the preys’ .

Hypothesis 1 (H1): Forming a pack could benefit in the mating process,
because the animals are close together and they don’t need to search long for a
mate to reproduce which will greatly increase the population.

The simulations support this assumption. The prey animals have a default
faster reproduction rate than the predators, furthermore the mating process
is accelerated rapidly due to the close distance between the species, because
the animal doesn’t have to spend a lot of time to find a suitable mate.

(a) Without pack (b) With pack

Figure 16: Prey animals’ birth numbers.

The difference between these 3 animals is we have given them different
maximal child births at labor (pig 4, chicken 3, cow 1).

Hypothesis 2 (H2): Forming a pack also could improve their lifetime or
help in their species survival.

The simulations support this assumption as well,

Animal Farm 79

1. With the growing population (shown in Hypothesis 1) the predators have
a lot more food source to ease their hunger, which extends the predator’s
lifetime.

2. In a pack, animals with different ages are staying close together. When
a predator attacks, it will choose the closest prey to catch. The younger
ones, because they have more speed, they can flee more quicker than the
older members of the pack. The predator will likely change it’s hunting
target to them, because they are easier to catch. After the successful
hunt (and the tragical death of an elder) the predator becomes satiated
by consuming it’s prey and leaves the pack alone for a while. With the
survival of the younger animals, the pack has more repopulation ability,
which extends the pack’s and also their species’ survival.

(a) Without pack (b) With pack

Figure 17: Prey animals’ reached age stages

Here we can see the dispersion of the reached age groups. This means, if an
animal dies in it’s current (e.g., Adult stage), it will be counted in the previous
(Juvenile, Young) and current (Adult) groups, but not in the following (Aged
and Elder). The percentages show how much of the population has reached
that designated group, for example in [Figure 17a], 85.5% at the Juvenile
column’s Chicken section means that 14.5% died early at the age of Puppy.
The pack mechanic had a greater impact on the younger groups, but all groups
had an increase in their combined (value of considering the 3 animals together)
number.

Hypothesis 3 (H3): Sticking together has it’s danger, when predators attack
they can surround more prey at once or in a shorter time.

In our simulation, every animal was set as scavengers carnivores, whom
consume corpses. With this presumption this hypothesis considered as false.

80 A. Kiss, G. Pusztai

1. If the predators attack in a large group, they can surround an area,
but they will likely target one or few of the prey at once (shown in
Hypothesis 2) and most likely catch older preys, additionally, when a
predator catches a prey, other predators, if they are close, they can leave
their hunting target to escape and join in the corpse consumption, this
way no leftover from the corpse will go to waste (predators hunger will
be more efficiently satisfies) and the hunt for the pack’s other members
will only continue if the predators are still hungry.

2. If a member of the pack dies in natural causes, like due to thirst, hunger
or age, the predators who followed the pack, but didn’t attack yet, can
find the recently deceased animal’s corpse easier and consume it, if they
are scavenger carnivores. Without the pack function, the deceased animal
can die in an abandoned section of the terrain, without ever been found
and consumed by a predator, leading to more hungry predators, whom
will try to catch alive members of the pack, decreasing their population.

(a) Without pack (b) With pack

Figure 18: Vegetarian cause of death

As we can see in the above figure, the dispersion of predator death cases
were drastically decreased.

Hypothesis 4 (H4): The food can decrease drastically near the pack’s area
because of the many hungry mouth.

1. Considering the predator animals, this could depend on the hunting
instinct. If a predator pack’s consumption is greater than a prey pack’s
reproduction rate or multiple predator packs hunt the same prey pack it
could be a disadvantage. Other than this situation, the pack’s survival
rate is increased (shown in Hypothesis 2 and Hypothesis 3).

Animal Farm 81

2. Considering the prey animals, this hugely depends on the landscape’s
layout and size. If the vegetation runs out in an area the pack will wan-
der to a different area. This option is only available if the map’s size
is big enough with few natural huge obstacle formations like oceans,
mountains.

(a) High mountains (b) Huge oceans
Figure 19: Limitations of the land

10 Conclusion and future works

With the “Animal Farm” Framework, we created a simulation platform for
everyone to run personal ecosystem simulations, with customizable animals
in a simplified behavior and logic system. Running and observing this sim-
ulations, not only aesthetically beautiful, but generates ecosystem data in a
large quantity. Using this data helps analyse and predict animal behaviours,
extinction processes and any kind of change in the system on a wide variety
(real and imaginary landscapes using heightmap data) of terrains. These kind
of predictions can be very useful, when we run simulations of a real landscape
terrain, with the replications of the animals living in that specific area, to
observe and have a slight insight into the future of the real world’s ecosystem.

In the Framework, we are working on the implementation of more mechan-
ics in animals’ behaviors, functionalities of the framework and monitoring,
exporting and analysing more data for different experiments. The plan is to
first upgrade and optimize some of the already implemented mechanics like
a more complex calculation of the escape direction vector, where the animal
takes into account all the enemies and their distances and calculates the appro-
priate summary vector instead of the closest enemy and reworking the animal’s
view mechanic to a more optimized approach.

82 A. Kiss, G. Pusztai

We are also want to implement multiple new different mechanics, like a gene
mechanic, which will influence the mating procedure, what kind of attractive
attributes are the females and the males are looking for and whether they
accept other ones approach or refuse them. Offsprings inherit different combi-
nations of parental genes, also they can mutate a little the inherited gene pool
at birth, taking evolutionary steps. We consider developing a role mechanic,
which would mean, within the packs there could be different roles (such as
hunter, explorer etc.) based on the animal’s outstanding abilities (using the
gene system) to split jobs within packs. A hiding ability, smaller animals will
be able to hide in specific locations (like bushes, nests) to escape from preda-
tors. New day-night cycles and sleeping mechanics. A family mechanic which
represents a strong cohesion, like a pack, but this will be a closer bond, for ex-
ample if a family member is in trouble, they will help immediately, the young
ones may offer or share the food to the elder ones if they dangerously hungry.
A basic form of communication (information transfer) between family, pack,
race, to share location information like food and water location, dangerous
areas and basic planned hunting process like attacking and surrounding the
prey together. And an advanced fighting mechanic which replaces the current
instant killing hunting mechanic of the predators. Introducing a new vitality
meter (alongside the hunger and thirst) which shows, if the animal is full with
energy (like not thirsty or hungry and not wounded) or lowered, because some
causes, this will determine the damage they take and make to others. If tak-
ing damage or having a lower energy level, they start to suffer a penalty in
attributes, like they will be reduced (e.g., the speed attribute will be lowered)
until the energy reaches an optimal level and if the animal can keep it above
this level the attribute will be slowly restored to the original value. With this
new fighting mechanic, new battle types can be developed like intra-species
struggles for food or females or during a hunt, a duel can take place where
the prey can attacks back instead of just fleeing (creating a damage system,
that takes down life force from both participants), where if one of the animal
has a low life level he can decide to run away. Fellow animals nearby can help
in the fight, if they decide to. This way not always the predators will win a
fight if multiple preys unite to fight back and they kill or chase away a single
predator.

Multiple functions are under consideration of adding, like an animal cus-
tomization interface to create new animals and set the properties inside of the
program. This custom created animals can be saved and spawned in simula-
tions just like our 6 basic provided animals. New random/procedurally gen-
erated maps, using noises (Perlin [16] and other noise types merged) instead

Animal Farm 83

of using only heightmaps. For only entertainment we considered to implement
one of the Unity’s VR (virtual reality) [7] functions into our simulation, to
walk alongside of our animals and observe their behaviour closely, instead of
just flying above them. If this implementation is successful and popular, we
are considering adding additional functionalities like interacting with animals
(human interference), where we could chase away predators or feed gentle an-
imals and create farms with animals to experiment with the gene system or
just testing our custom created animals.

We ran a large number of simulations, but the data gathering in the current
framework wasn’t nearly complete. Only the major statistics were monitored
like number changes (every time something happened, the program logged
the current statistic numbers) in the living (distributed by age stages) and the
dead (distributed by death types) and the overall animal numbers in the whole
simulations. We are planning to log and analyse more information like veg-
etation dispersion and monitoring vegetarian feeding habits, pack wondering
patterns, influence of terrain formations (like hills and lakes) on the animals’
habits.

The “Animal Farm” Framework can be accessed on Github [25]. The sys-
tem can freely be downloaded, extended and modified as a Unity project for
personal use. To try out and use a live version of the program without any
installation, visit the browser version [26].

Acknowledgements

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] C. Adami, C.T. Brown, Evolutionary learning in the 2D artificial life system
“Avida”, arXiv preprint adap-org/9405003, (1994). ⇒63

[2] H.R. Akcakaya, R. Arditi, L.R. Ginzburg, Ratio-dependent predation: an ab-
straction that works, Ecology, 76, 3 (1995) 995–1004. ⇒62

[3] A.A. Berryman, A.P. Gutierrez, R. Arditi, Credible, parsimonious and useful
predator-prey models: a reply to Abrams, Gleeson, and Sarnelle, Ecology, 76, 6
(1995) 1980–1985. ⇒62

[4] F. Corno, E. Sanchez, G. Squillero, Exploiting co-evolution and a modified island
model to climb the core war hill, The 2003 Congress on Evolutionary Computa-
tion, 2003. CEC’03, IEEE, 3, (2003) 2217–2221. ⇒63

https://github.com/Wornox/AnimalFarmFramework
https://wornox.github.io/AnimalFarmWebGL

84 A. Kiss, G. Pusztai

[5] J. Craighead, J. Burke, R. Murphy, Using the unity game engine to develop
SARGE: A case study, Computer, 4552 (2007). ⇒64

[6] C. Dachsbacher, M. Stamminger, Rendering procedural terrain by geometry im-
age warping, Eurographics Symposium on Rendering (2004) 103–110. ⇒71

[7] J. Glover, Jesse J. Linowes, Complete Virtual Reality and Augmented Reality De-
velopment with Unity: Leverage the power of Unity and become a pro at creating
mixed reality applications, Packt Publishing Ltd, 2019. ⇒83

[8] J.K. Haas, A history of the unity game engine, Worcester Polytechnic Institute,
2014. ⇒65

[9] D.G.Jones, A.K. Dewdney, Core war guidelines, Department of Computer Sci-
ence, the University of Western Ontario, 1992. ⇒63

[10] M. Komosinski, The world of framsticks: Simulation, evolution, interaction, In-
ternational Conference on Virtual Worlds, Springer, 2000, pp. 214–224. ⇒64

[11] M. Komosinski, Framsticks: A platform for modeling, simulating, and evolving
3D creatures, Artificial Life Models in Software, Springer, 2005. 37–66. ⇒64

[12] M. Komosinski, Sz. Ulatowski, Framsticks, Artificial Life Models in Software,
2007. ⇒64

[13] M. Komosinski, Framsticks, Artificial Life Models in Software, Springer, 2009.
pp. 107–148. ⇒64

[14] M. Komosinski, et al., The Framsticks system: versatile simulator of 3D agents
and their evolution, Kybernetes, MCB UP Ltd, 2003. ⇒64

[15] M. Komosinski, Sz. Ulatowski, Framsticks: Towards a simulation of a nature-like
world, creatures and evolution, European Conference on Artificial Life, Springer,
1999. pp. 261–265. ⇒64

[16] H. Li, X. Tuo, Y. Liu, X, Jiang, A parallel algorithm using Perlin noise superpo-
sition method for terrain generation based on CUDA architecture, International
Conference on Materials Engineering and Information Technology Applications
(MEITA 2015), Atlantis Press, 2015. ⇒82

[17] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins Company, 1925.⇒62
[18] K. Reddy, N. Ramacharyulu, A three species ecosystem comprising of two preda-

tors competing for a prey, International Conference on Simulation of Adaptive
Behavior, Springer, 2011. pp. 208–218. ⇒62

[19] T. Schmickl, K. Crailsheim, Bubbleworld. Evo: Artificial evolution of behavioral
decisions in a simulated predator-prey ecosystem, Advances in Applied Science
Research, 2 (2006) 594–605. ⇒63

[20] S. Tom, Ray, An approach to the synthesis of life, Physica D, 1992. ⇒63
[21] Y.V. Tyutyunov, L.I. Titova, From Lotka–Volterra to Arditi–Ginzburg: 90 years

of evolving trophic functions, Biology Bulletin Reviews, Springer, 10 (2020) 167–
185. ⇒62

[22] V. Volterra, Leconssen la theorie mathematique de la leitte pou lavie, 1931. ⇒
62

[23] R. Wiegert, G. Richard, Simulation Models of Ecosystems, Annual Review of
Ecology and Systematics, 1, 6 (1975) 311–338. ⇒62

Animal Farm 85

[24] L.Yaeger, Computational genetics, physiology, metabolism, neural systems,
learning, vision, and behavior or Poly World: Life in a new context, Santa Fe
Institute Studies in the Sciences of Complexity, Addison-Wesley Publishing Co.
17 (1994). ⇒64

[25] ∗ ∗ ∗ Github project repository, (2020),
https://github.com/Wornox/AnimalFarmFramework. ⇒83

[26] ∗ ∗ ∗ Github runnable browser version of the program, (2020),
https://wornox.github.io/AnimalFarmWebGL. ⇒83

[27] ∗ ∗ ∗ Unity (game engine), (2020), http://www.unity3d.com/. ⇒64
[28] ∗ ∗ ∗ Unity asset store, (2020), https://assetstore.unity.com/. ⇒66
[29] ∗ ∗ ∗ Unity asset: 5 animated Voxel animals by “VoxelGuy”, (2020),

https://assetstore.unity.com/packages/3d/characters/animals/5-animated-
voxel-animals-145754. ⇒66

[30] ∗ ∗ ∗ Unity asset: Free Trees by ”AdaKing”, (2020),
https://assetstore.unity.com/packages/3d/vegetation/trees/free-trees-103208.⇒66

[31] ∗ ∗ ∗ Unity asset: Low Poly Nature - FREE Vegetation by ”Elcanetay”, (2020),
https://assetstore.unity.com/packages/3d/vegetation/low-poly-nature-free-
vegetation-134006. ⇒66

[32] ∗ ∗ ∗ Unity asset: Runtime File Browser by ”yasirkulaa”, (2020),
https://assetstore.unity.com/packages/tools/gui/runtime-file-browser-113006.⇒66

[33] ∗ ∗ ∗ Unity asset: Voxel Animals Pack by ”VoxelGuy”, (2020),
https://assetstore.unity.com/packages/3d/characters/animals/voxel-animals-
pack-133366. ⇒66

Received: January 8, 2021 • Revised: April 23, 2021

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.2435&rep=rep1&type=pdf
https://github.com/Wornox/AnimalFarmFramework
https://wornox.github.io/AnimalFarmWebGL
http://www.unity3d.com
https://assetstore.unity.com
https://assetstore.unity.com/packages/3d/characters/animals/5-animated-voxel-animals-145754
https://assetstore.unity.com/packages/3d/characters/animals/5-animated-voxel-animals-145754
https://assetstore.unity.com/packages/3d/vegetation/trees/free-trees-103208
https://assetstore.unity.com/packages/3d/vegetation/low-poly-nature-free-vegetation-134006
https://assetstore.unity.com/packages/3d/vegetation/low-poly-nature-free-vegetation-134006
https://assetstore.unity.com/packages/tools/gui/runtime-file-browser-113006
https://assetstore.unity.com/packages/3d/characters/animals/voxel-animals-pack-133366
https://assetstore.unity.com/packages/3d/characters/animals/voxel-animals-pack-133366

Acta Univ. Sapientiae, Informatica 13,1 (2021) 86–121

DOI: 10.2478/ausi-2021-0005

On ordering of minimal energies in bicyclic

signed graphs

S. PIRZADA
Department of Mathematics, University of

Kashmir, Srinagar, India
email: pirzadasd@kashmiruniversity.ac.in

Tahir SHAMSHER
Department of Mathematics, University

of Kashmir, Srinagar, India
email: tahir.maths.uok@gmail.com

Mushtaq A. BHAT
Department of Mathematics, National
Institute of Technology, Srinagar, India

email: mushtaqab1125@gmail.com

Abstract. Let S = (G,σ) be a signed graph of order n and size m

and let x1, x2, . . . , xn be the eigenvalues of S. The energy of S is defined

as E(S) =
n∑

j=1

|xj|. A connected signed graph is said to be bicyclic if

m = n + 1. In this paper, we determine the bicyclic signed graphs with

first 20 minimal energies for all n ≥ 30 and with first 16 minimal energies

for all 17 ≤ n ≤ 29.

1 Introduction

Let S = (G,σ) be a signed graph, where G = (V, E) is the underlying graph

of S and σ : E → {−1, 1} is the signing function (or signature). We represent

a positive edge by a plain line and a negative edge by a dotted line. The sign

of a signed cycle is defined as the product of signs of its edges. A signed cycle

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 05C22, 05C50, 05C76

Key words and phrases: Bicyclic signed graph, balance, spectrum, signed energy, ordering

86

http://maths.uok.edu.in/DrSPirzada.aspx
http://www.kashmiruniversity.net/
http://www.kashmiruniversity.net/
mailto:pirzadasd@kashmiruniversity.ac.in
http://www.kashmiruniversity.net/
http://www.kashmiruniversity.net/
mailto:tahir.maths.uok@gmail.com
https://nitsri.ac.in/Pages/FacultyProfile.aspx?nEmpID=ims&nDeptID=o
https://nitsri.ac.in/Department/Deptindex.aspx?page=a&ItemID=eo&nDeptID=o
https://nitsri.ac.in/Department/Deptindex.aspx?page=a&ItemID=eo&nDeptID=o
mailto:mushtaqab1125@gmail.com

On ordering of minimal energies in bicyclic signed graphs 87

is said to be positive (resp., negative) if its sign is positive (resp., negative),

that is, it contains an even (resp., odd) number of negative edges. A signed

graph is said to be balanced if each of its cycle is positive and unbalanced,

otherwise. Throughout, by C+
n , we denote a positive cycle of order n and by

C−
n a negative cycle of order n. A connected signed graph of order n is said to

be unicyclic or bicyclic according as the number of its edges is respectively n

or n+ 1.

The adjacency matrix of a signed graph S with vertex set {v1, v2, . . . , vn} is

the n×nmatrix A(S) = (aij), where aij = σ(vi, vj) if vi and vj are adjacent and

zero, otherwise. The adjacency matrix A(S) is real symmetric and so has real

eigenvalues. Let ψ(S, x) denote the characteristic polynomial of the adjacency

matrix of S. The eigenvalues of A(S) are called the eigenvalues of S.

Gutman [7] defined the energy of a graph as the sum of the absolute val-

ues of eigenvalues of its adjacency matrix. Germina, Hameed and Zaslavsky

[6] extended this concept to signed graphs. The energy of a signed graph S

with eigenvalues x1, x2, . . . , xn is defined as E(S) =
n∑
j=1

|xj|. Bhat and Pirzada

[2] characterized the unicyclic signed graphs with minimal energy. Bhat et al.

[4], characterized the bicyclic signed graphs with minimal and second mini-

mal energy. Similar problems for graphs, digraphs, signed graphs and signed

digraphs have been studied in [3, 5, 9, 10, 11, 13, 14, 15, 16, 17].

Let S be a signed graph with vertex set V. Switching S by a set X ⊂ V means

reversing the signs of all the edges between X and its complement. Two signed

graphs of the same order are said to be switching equivalent if one can be ob-

tained from the other by a switching. Switching equivalence is an equivalence

relation on the signings of a fixed graph. For more details about switching

see [4, 15]. An equivalence class is called a switching class. Switching a signed

graph does not change the sign of cycles (see [15]), switching equivalent signed

graphs have the same set of positive cycles, and they are either both balanced

or both unbalanced. Also, switching preserves the spectrum. So, as long as

spectra is concerned, we use a single signed graph for a switching class and

call that the representative of the switching class.

The rest of the paper is organized as follows. In section 2, we give some

definitions and state preliminary results, which will be used to prove our main

results. All the main results are in section 3. In that section, we compare en-

88 S. Pirzada, T. Shamsher, M. A. Bhat

ergy by using integral formula, Descartes’ rule of signs, by cut set deletion and

energy change techniques.

2 Preliminaries

In this section, we give some notations, definitions and state some of the

results which will be used in the sequel. A basic figure is a signed graph whose

components are signed cycles or edges or both.

Theorem 1 [1] If S is a signed graph with characteristic polynomial

ψ(S, x) = xn + a1(S)x
n−1 + · · ·+ an−1(S)x+ an(S),

then

ak(S) =
∑
L∈Lk

(−1)p(L)2|c(L)|
∏
X∈c(L)

s(X),

for all k = 1, 2, . . . , n, where Lk is the set of all basic figures L of S of order

k, p(L) denotes number of components of L, c(L) denotes the set of all cycles

of L and s(X) the sign of cycle X.

The following is the integral formula for the energy of signed graphs.

Theorem 2 [2] Let S be a signed graph on n vertices with characteristic poly-

nomial ψ(S, x) = xn + a1(S)x
n−1 + · · ·+ an−1(S)x+ an(S). Then

E(S) = 1

2π

∞∫
−∞

1

x2
log

bn2 c∑
k=0

(−1)ka2k(S)x
2k

2+
bn2 c∑
k=0

(−1)ka2k+1(S)x
2k+1

2
dx.

In a signed graph S, if the even and odd coefficients respectively alternate

in sign, we have two cases to consider.

Case (i). (−1)ka2k(S) ≥ 0 and (−1)ka2k+1(S) ≤ 0 for k ≥ 0.
Case (ii). (−1)ka2k(S) ≥ 0 and (−1)ka2k+1(S) ≥ 0 for k ≥ 0.
Put bk(S) = |ak(S)|, then for a signed graph S with even and odd coefficients

alternating, above integral formula takes the form

E(S) = 1

2π

∞∫
−∞

1

x2
log

bn2 c∑
k=0

b2k(S)x
2k

2 +
bn2 c∑
k=0

b2k+1(S)x
2k+1

2
dx.

On ordering of minimal energies in bicyclic signed graphs 89

Let S ′ and S ′′ be two signed graphs of same order with even and odd co-

efficients of their respective characteristic polynomials alternating in sign. If

b2k(S
′) = b2k(S

′′) and b2k+1(S
′) = b2k+1(S

′′) for all k ≥ 0, then it is clear that

E(S ′) = E(S ′′). In this case, we write S ′ ∼ S ′′. Further, if b2k(S
′) ≤ b2k(S ′′)

and b2k+1(S
′) ≤ b2k+1(S

′′) for all k ≥ 0, we write S ′ � S ′′ or S ′′ � S ′. If

b2k(S
′) ≤ b2k(S ′′) and b2k+1(S

′) ≤ b2k+1(S ′′) for all k ≥ 0 and for some k0,

strict inequality holds in one of the two inequalities, then we write S ′ ≺ S ′′ or

S ′′ � S ′. Clearly, � is a transitive relation on the coefficients. Thus, if S ′ � S ′′,
we see that E(S ′) ≤ E(S ′′). Moreover, if S ′ ≺ S ′′, then E(S ′) < E(S ′′).

Lemma 3 [4] Let e = uv be an edge of a signed graph S. Then

ψ(S, x) = ψ(S− {e}, x) −ψ(S− {u, v}, x)

− 2

 ∑
Z∈C+

uv

ψ(S− V(Z), x) −
∑
Z∈C−

uv

ψ(S− V(Z), x)

 .
where C +

uv and C −
uv respectively denote the set of positive and negative cycles

containing the edge e = uv and by V(Z) we mean the vertex set of Z.

From this recurrence relation, it is easy to obtain the following lemma.

Lemma 4 If S is a signed graph with even and odd coefficients alternating in

sign and if (u, v) is the pendent edge of S with pendent vertex v, then

bi(S) = bi(S− v) + bi−2(S− v− u).

It is well known that there are three classes of bicyclic signed graphs, which

are defined as follows.

(1). For positive integers p and q with p, q ≥ 3 and 6 ≤ p+q ≤ n, we denote

by CC[n, p, q], the class of bicyclic signed graphs of order n and having two

vertex disjoint cycles of length p and q.

(2). For positive integers p and q with p, q ≥ 3 and 6 ≤ p + q ≤ n + 1, we

denote by ∞(n, p, q), the class of bicyclic signed graphs of order n with two

cycles of lengths p and q such that these cycles have exactly one vertex in

common.

(3). For positive integers p, q and r with (p−r) ≥ r, (q−r) ≥ r, p, q ≥ 3, r ≥ 1
and 6 ≤ p + q ≤ n − r + 1, we denote by θ(n, p, q, r), the class of bicyclic

90 S. Pirzada, T. Shamsher, M. A. Bhat

 (n, p , q ,r)

cc(n, p , q) 8(n, p , q)

Figure 1: Three classes of bicyclic signed graphs

signed graphs on n vertices with three cycles; one has length p, and the other

has length q and two cycles share r edges so that the third cycle has p+q−2r

edges. For illustration, see Figure 1, where we have not shown non-cyclic edges

which can be present.

Lemma 5 [4] Let C be a cut set of a signed graph S. Then E(S− C) ≤ E(S).
Moreover, if C is a single edge, then E(S− C) < E(S).

Given a signed star Sn on n vertices, let Sn,n denote the collection of uni-

cyclic signed graphs on n vertices such that each element of Sn,n is obtained

from Sn by adding a single signed edge between any two non adjacent vertices.

Then there are two switching classes in Sn,n, one containing unicyclic signed

graphs with positive cycle C+
3 and other containing unicyclic signed graphs

with negative cycle C−
3 . In Sn,n, if a unicyclic signed graph contains C+

3 , we

denote it by S1n,n and if it contains C−
3 , we denote it by S2n,n. We denote a

signed path on n vertices by Pn.

The following result characterizes unicyclic signed graphs with minimal en-

ergy [2].

Lemma 6 Among all unicyclic signed graphs with n ≥ 3 vertices, n 6= 4, 5,

each signed graph in Sn,n has the minimal energy. Moreover, for n = 4, C+
4

has the minimal energy. Further, for n = 5, the signed graph S as shown in

Figure 5 has the minimal energy.

Consider the graph K4 − e and nonnegative integer 0 ≤ k ≤ n − 4. Let

G(K4 − e, n, k) be the graph obtained from K4 − e by respectively identifying

the centers of the stars Sk+1 and Sn−k−3 to two vertices of degree 3. Let Skn,n+1
denote the collection of bicyclic signed graphs on n vertices obtained from

On ordering of minimal energies in bicyclic signed graphs 91

(n-4-k)

k

S
n, n+1

k,1 S
n, n+1

k,2 S
n, n+1

k,3

Figure 2: Three switching classes in Skn,n+1

(n-5-k)

k

B
n, n+1

k,1 B
n, n+1

k,2

Figure 3: Two switching classes in Bkn,n+1

G(K4 − e, n, k). There are three switching classes in Skn,n+1. We use Sk,1n,n+1,

Sk,2n,n+1 and Sk,3n,n+1 as representative of these three switching classes as shown

in Figure 2. Note that Sk,1n,n+1 is balanced, Sk,2n,n+1 contains two negative cycles of

length 3 and a positive cycle of length 4 while as Sk,3n,n+1 has one positive cycle

of length 3, one negative cycle of lengths 3 and one negative cycle of length

4. The following result characterizes bicyclic signed graphs with minimal and

second minimal energy[4].

Lemma 7 Among all bicyclic signed graphs with n ≥ 12 vertices, S0,1n,n+1 and

S0,2n,n+1 have minimal energy and S0,3n,n+1 has the second minimal energy.

92 S. Pirzada, T. Shamsher, M. A. Bhat

3 Main results

Given a complete bipartite graph K2,3 and nonnegative integer 0 ≤ k ≤ n− 5,

let G(K2,3, n, k) be the graph obtained by respectively identifying the centers

of the stars Sk+1 and Sn−k−4 to two vertices of degree 3. Let Bkn,n+1 denote

the collection of bipartite bicyclic signed graphs on n vertices obtained from

G(K2,3, n, k). There are two switching classes in Bkn,n+1. We use Bk,1n,n+1 and

Bk,2n,n+1 as representative of these two switching classes, for illustration, see

Figure 3. Bk,1n,n+1 contains three positive cycles of length 4 and Bk,2n,n+1 contains

two negative cycles of length 4 and one positive cycle of length 4. With these

notations, we have the following observation.

Lemma 8 (i) For all n ≥ 6 and 1 ≤ k ≤ 3 , E(Bk−1,1n,n+1) < E(S
k,1
n,n+1) =

E(Sk,2n,n+1).
(ii) For all n ≥ 6 and k ≥ 0, E(Sk,1n,n+1) = E(Sk,2n,n+1) < E(Sk,3n,n+1).
(iii) For all n ≥ 6 and k ≥ 1, E(Sk,3n,n+1) < E(B

k−1,2
n,n+1).

(iv) For all n > 2k+ 12 and k ≥ 1, E(Bk−1,2n,n+1) < E(B
k,1
n,n+1).

(v) For all n ≥ 12, E(S0,3n,n+1) < E(B0,1n,n+1).

Proof. (i). By Sach’s theorem, we have

ψ(Bk−1,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [(k+ 2)(n− k− 4) + 3k− 3]},

ψ(Sk,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 − 4x+ [(k+ 2)(n− k− 4) + 2k]}

and

ψ(Sk,2n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + 4x+ [(k+ 2)(n− k− 4) + 2k]}.

It is clear that Bk−1,1n,n+1 ≺ S
k,1
n,n+1, S

k,2
n,n+1 for all 1 ≤ k ≤ 3 and Sk,1n,n+1 ∼ S

k,2
n,n+1,

therefore

E(Bk−1,1n,n+1) < E(S
k,1
n,n+1) = E(Sk,2n,n+1) for all n ≥ 6 and 1 ≤ k ≤ 3.

(ii). The characteristic polynomial of Sk,rn,n+1 for r = 1, 2, 3 are given by

ψ(Sk,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 − 4x+ [(k+ 2)(n− k− 4) + 2k]},

ψ(Sk,2n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + 4x+ [(k+ 2)(n− k− 4) + 2k]}

and

ψ(Sk,3n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [(k+ 2)(n− k− 4) + 2k+ 4]}.

On ordering of minimal energies in bicyclic signed graphs 93

Clearly, Sk,1n,n+1 ∼ S
k,2
n,n+1 and so E(Sk,1n,n+1) = E(Sk,2n,n+1). Therefore, to compare

the energy of Sk,rn,n+1 for r = 1, 2 and Sk,3n,n+1, it is enough to compare the

energy of Sk,1n,n+1 and Sk,3n,n+1. We see that even and odd coefficients of Sk,rn,n+1
for r = 1, 2, 3, alternate in sign but coefficients are not quasi-order comparable

for r = 1 or 2 and r = 3. We will compare energy using Coulson’s integral

formula by directly solving the integrals. We have E(Sk,3n,n+1) − E(Sk,1n,n+1)

=
1

π

∞∫
0

ln
{1+ (n+ 1)x2 + [(k+ 2)(n− k− 4) + 2k+ 4]x4}2

{1+ (n+ 1)x2 + [(k+ 2)(n− k− 4) + 2k]x4}2 + 16x6
dx.

Put

α1(x) = {1+ (n+ 1)x2 + [(k+ 2)(n− k− 4) + 2k+ 4]x4}2

and

β1(x) = {1+ (n+ 1)x2 + [(k+ 2)(n− k− 4) + 2k]x4}2 + 16x6.

Since n ≥ k+ 4, we get α1(x) − β1(x) = 8x
4 + 8(n− 1)x6 + 8[(k+ 2)(n− k−

4) + 2k+ 2]x8 > 0 for n ≥ 6 and x > 0. Thus, E(Sk,3n,n+1) > E(Sk,1n,n+1).
(iii). The characteristic polynomial of Bk−1,2n,n+1 and Sk,3n,n+1 are given by

ψ(Bk−1,2n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [(k+ 2)(n− k− 4) + 3k+ 5]}

and

ψ(Sk,3n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [(k+ 2)(n− k− 4) + 2k+ 4]}.

Clearly, Sk,3n,n+1 ≺ B
k−1,2
n,n+1 for all k ≥ 1 and therefore E(Sk,3n,n+1) < E(B

k−1,2
n,n+1) for

all n ≥ 6 and k ≥ 1.
(iv). Again, the characteristic polynomial of Bk−1,2n,n+1 and Bk,1n,n+1 are respec-

tively, given by

ψ(Bk−1,2n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [(k+ 2)(n− k− 4) + 3k+ 5]}

and

ψ(Bk,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [(k+ 3)(n− k− 5) + 3k]}.

94 S. Pirzada, T. Shamsher, M. A. Bhat

Clearly, Bk−1,2n,n+1 ≺ B
k,1
n,n+1 for all n > 2k+12. Therefore, E(Bk−1,2n,n+1) < E(B

k,1
n,n+1)

for all n > 2k+ 12.

(v). The characteristic polynomial of S0,3n,n+1 and B0,1n,n+1 are given by

ψ(S0,3n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [2(n− 4) + 4]}

and

ψ(B0,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + [3(n− 5)]}.

Clearly, S0,3n,n+1 ≺ B0,1n,n+1 for all n ≥ 12 and therefore E(S0,3n,n+1) < E(B0,1n,n+1)
for all n ≥ 12. �

Let Qr,1n,n+1, r = 1, 2, 3 and H1n,n+1 be the graphs as shown in Figure 4.

Then it is easy to see that there are two switching classes on the signings of

Q1,1n,n+1. Let Q1,1n,n+1 and Q1,2n,n+1 be the representative for these two switching

classes, where Q1,1n,n+1 contains C+
4 , C+

4 , C+
4 and Q1,2n,n+1 contains C−

4 , C−
4 and

C+
4 . There are four switching classes on the signings of Q2,1n,n+1. Let Q2,1n,n+1,

Q2,2n,n+1, Q
2,3
n,n+1 and Q2,4n,n+1, respectively be the representative for these four

switching classes, where Q2,1n,n+1 contains C+
3 , C+

4 and C+
5 ; Q2,2n,n+1 contains C−

3 ,

C−
4 and C+

5 ; Q2,3n,n+1 contains C−
3 , C+

4 , C−
5 ; and Q2,4n,n+1 contains C+

3 , C−
4 and

C−
5 . There are three switching classes on the signings of Q3,1n,n+1. Let Q3,1n,n+1,

Q3,2n,n+1 and Q3,3n,n+1, respectively be the representative for these three switching

classes, where Q3,2n,n+1 is the signed graphs obtained from Q3,1n,n+1, by making

both triangles negative in Q3,1n,n+1. Also, Q3,3n,n+1 is the signed graph obtained

from Q3,1n,n+1 by making one triangle negative and other triangle positive in

Q3,1n,n+1. There are three switching classes on the signings of H1n,n+1. We use

Hrn,n+1 for r = 1, 2, 3, as the representative for these switching classes. H1n,n+1
is balanced, H2n,n+1 has both triangles negative and H3n,n+1 has one positive

triangle and one negative triangle. With these notations, we have the following

observation.

Lemma 9 (i) For all n ≥ 10, E(B1,1n,n+1) < E(Q1,1n,n+1) < E(S2,1n,n+1).
(ii) For all n ≥ 10, E(Q1,2n,n+1) > E(B2,2n,n+1).
(iii) For all n ≥ 10, E(S2,3n,n+1) < E(Q2,1n,n+1) = E(Q2,3n,n+1) < E(B1,2n,n+1).
(iv) For all n ≥ 10, E(Q2,2n,n+1) = E(Q2,4n,n+1) > E(B2,2n,n+1).
(v) For all n ≥ 10, E(B1,2n,n+1) < E(Q3,1n,n+1) = E(Q3,2n,n+1) < E(Q3,3n,n+1) <
E(H3n,n+1).

On ordering of minimal energies in bicyclic signed graphs 95

Q
n, n+1

1,1 Q
n, n+1

2,1
Q

n, n+1

3,1

H
n, n+1

1

Figure 4: Signed graphs Qr,1n,n+1, r = 1, 2, 3 and H1n,n+1

(vi) For all n ≥ 10, E(H3n,n+1) < E(H1n,n+1) = E(H2n,n+1).
(vii) For all n ≥ 30, E(H1n,n+1) = E(H2n,n+1) < E(B2,1n,n+1).

Proof. (i). We have

ψ(B1,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + (4n− 21)},

ψ(Q1,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + (4n− 20)},

ψ(S2,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 − 4x+ (5n− 20)}.

It is easy to see that even and odd coefficients of signed graphs B1,1n,n+1, Q
1,1
n,n+1

and S2,1n,n+1 alternate in sign. Clearly, B1,1n,n+1 ≺ Q1,1n,n+1 and Q1,1n,n+1 ≺ S2,1n,n+1
for all n ≥ 10. Therefore, E(B1,1n,n+1) < E(Q1,1n,n+1) < E(S2,1n,n+1) for all n ≥ 10.
(ii). We have

ψ(B2,2n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + (5n− 21)},

ψ(Q1,2n,n+1, x) = x
n−6{x6 − (n+ 1)x4 + (4n− 12)x2 − (4n− 20)}.

The signed graphs B2,2n,n+1 and Q1,2n,n+1 are not quasi-order comparable. There-

fore, consider the functions α2(x) = x
6−(n+1)x4+(4n−12)x2−(4n−20) and

β2(x) = x
4−(n+1)x2+(5n−21). It is easy to see that β2(2) > 0, β2(

√
5) < 0,

β2(
√
n− 4) < 0 and β2(

√
n− 3) > 0 for all n ≥ 10. Also, α2(

√
2) = 0,

α2(1) < 0, α2(
7071
5000) > 0, α2(

√
n− 3) < 0 and α2(

√
n− 2) > 0 for all n ≥ 10.

96 S. Pirzada, T. Shamsher, M. A. Bhat

We observe that α2(x) = α2(−x) and β2(x) = β2(−x). Therefore α2(x) has

three positive and three negative zeros and β2(x) has two positive and two

negative zeros. Recall that the energy of signed graph is twice the sum of its

positive eigenvalues. Therefore, we have

E(Q1,2n,n+1) > 2(
√
2+ 1+

√
n− 3) > 2(

√
5+
√
n− 3) > E(B2,2n,n+1)

for all n ≥ 10, which proves part (ii).

(iii). We have

ψ(S2,3n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + (4n− 16)},

ψ(Q2,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 − 2x+ (4n− 16)},

ψ(Q2,3n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + 2x+ (4n− 16)},

ψ(B1,2n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + (4n− 13)}.

Clearly, S2,3n,n+1 ≺ Q2,1n,n+1 and Q2,1n,n+1 ∼ Q2,3n,n+1 for all n ≥ 10. Therefore,

E(S2,3n,n+1) < E(Q2,1n,n+1) = E(Q2,3n,n+1) for all n ≥ 10. Thus, to prove the result,

it is enough to show that E(Q2,1n,n+1) < E(B1,2n,n+1) for all n ≥ 10. We see

that even and odd coefficients of Q2,1n,n+1 and B1,2n,n+1 alternate in sign but the

coefficients are not quasi-order comparable. We will compare the energy using

Coulson’s integral formula by directly solving the integrals. We have

E(B1,2n,n+1) − E(Q2,1n,n+1) =
1

π

∞∫
0

ln
{1+ (n+ 1)x2 + (4n− 13)x4}2

{1+ (n+ 1)x2 + (4n− 16)x4}2 + 4x6
dx.

Put α3(x) = {1+ (n+ 1)x2 + (4n− 13)x4}2 and

β3(x) = {1+ (n+ 1)x2 + (4n− 16)x4}2 + 4x6,

we get α3(x) − β3(x) = 6x4 + (6n + 2)x6 + (24n − 87)x8 > 0 for n ≥ 10 and

x > 0. Thus, E(B1,2n,n+1) > E(Q2,1n,n+1).
(iv). We have

ψ(Q2,2n,n+1, x) = x
n−6{x6 − (n+ 1)x4 + 2x3 + (4n− 12)x2 − 4x− (4n− 20)},

ψ(Q2,4n,n+1, x) = x
n−6{x6 − (n+ 1)x4 − 2x3 + (4n− 12)x2 + 4x− (4n− 20)}.

On ordering of minimal energies in bicyclic signed graphs 97

Clearly, Q2,2n,n+1 ∼ Q
2,4
n,n+1 for all n ≥ 10 and therefore E(Q2,2n,n+1) = E(Q2,4n,n+1)

for all n ≥ 10. Thus, to prove the result, it is enough to show that E(Q2,2n,n+1) >
E(B2,2n,n+1) for all n ≥ 10. The signed graphs B2,2n,n+1 and Q2,2n,n+1 are not quasi-

order comparable. Consider the function α4(x) = x
6− (n+ 1)x4+ 2x3+ (4n−

12)x2−4x−(4n−20). It is easy to see that α4(
√
2) = 0, α4(1) < 0, α4(

7071
5000) > 0,

α4(
√
n− 4) < 0 and α4(

√
n) > 0 for all n ≥ 10. By Descartes’ rule of signs,

α4(x) has three positive and three negative zeros. Therefore,

E(Q2,2n,n+1) > 2(
√
2+ 1+

√
n− 4) > 2(

√
5+
√
n− 3) > E(B2,2n,n+1)

for all n ≥ 12. We verified the result directly for n = 10, 11. This proves part

(iv).

(v). We have

ψ(B1,2n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + (4n− 13)},

ψ(Q3,1n,n+1, x) = x
n−5{x5 − (n+ 1)x3 − 4x2 + (3n− 12)x+ 2(n− 4)},

ψ(Q3,2n,n+1, x) = x
n−5{x5 − (n+ 1)x3 + 4x2 + (3n− 12)x− 2(n− 4)},

ψ(Q3,3n,n+1, x) = x
n−5{x5 − (n+ 1)x3 + (3n− 8)x− 2(n− 4)},

ψ(H3n,n+1, x) = x
n−6{x6 − (n+ 1)x4 + (2n− 5)x2 − (n− 5)}.

First, we will show that E(Q3,1n,n+1) < E(Q3,3n,n+1). We see that even and odd

coefficients of Q3,1n,n+1 and Q3,3n,n+1 alternate in sign but the coefficients are

not quasi-order comparable. We will compare energy using Coulson’s integral

formula by directly solving the integrals, and we have E(Q3,3n,n+1) − E(Q3,1n,n+1)

=
1

π

∞∫
0

ln
{1+ (n+ 1)x2 + (3n− 8)x4}2 + {(2n− 8)x5}2

{1+ (n+ 1)x2 + (3n− 12)x4}2 + {4x3 + (2n− 8)x5}2
dx.

Put

α5(x) = {1+ (n+ 1)x2 + (3n− 8)x4}2 + {(2n− 8)x5}2

and

β5(x) = {1+ (n+ 1)x2 + (3n− 12)x4}2 + {4x3 + (2n− 8)x5}2,

we get α5(x)−β5(x) = 8x
4+8(n−1)x6+8(n−2)x8 > 0 for n ≥ 10 and x > 0.

Thus, E(Q3,3n,n+1) > E(Q3,1n,n+1).

98 S. Pirzada, T. Shamsher, M. A. Bhat

Next we will show that, E(Q3,3n,n+1) < E(H3n,n+1). The signed graphs Q3,3n,n+1
and H3n,n+1 are not quasi-order comparable. Therefore, consider the functions

α6(x) = x5 − (n + 1)x3 + (3n − 8)x − 2(n − 4) and β6(x) = x6 − (n + 1)x4 +

(2n − 5)x2 − (n − 5). It is easy to see that α6(−2) = 0, α6(−
√
n− 3) > 0,

α6(−
√
n− 5

2) < 0 and β6(
n−3
n) < 0, β6(

n−1
n) > 0, β6(1) = 0, β6(

√
n− 1) < 0

and β6(
√
n) > 0. By Descartes’ rule of signs, α6(x) has three positive and two

negative zeros and β6(x) has three positive and three negative zeros. As the

energy of signed graph is twice the sum of its positive eigenvalues or −2 times

the sum of negative eigenvalues, therefore,

E(H3n,n+1) > 2(
n− 3

n
+ 1+

√
n− 1) > 2(2+

√
n−

5

2
) > E(Q3,3n,n+1)

for all n ≥ 14. We verified the result directly for n = 10, 11, 13.

Clearly, Q3,1n,n+1 ∼ Q
3,2
n,n+1 for all n ≥ 10 and therefore E(Q3,1n,n+1) = E(Q3,2n,n+1)

for all n ≥ 10. Thus, to prove the result, it is enough to show that E(Q3,1n,n+1) >
E(B1,2n,n+1) for all n ≥ 10. The signed graphs B1,2n,n+1 and Q3,1n,n+1 are not quasi-

order comparable, therefore consider the functions α7(x) = x5 − (n + 1)x3 −

4x2+(3n−12)x+2(n−4) and β7(x) = x
4−(n+1)x2+(4n−13) and proceeding

similarly as above, we can prove that E(Q3,1n,n+1) > E(B1,2n,n+1) for all n ≥ 10.
This proves part (v).

(vi). We have

ψ(H1n,n+1, x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (2n− 5)x2 + 4x− (n− 5)},

ψ(H2n,n+1, x) = x
n−6{x6 − (n+ 1)x4 + 4x3 + (2n− 5)x2 − 4x− (n− 5)},

ψ(H3n,n+1, x) = x
n−6{x6 − (n+ 1)x4 + (2n− 5)x2 − (n− 5)}.

It is clear that H1n,n+1 ∼ H
2
n,n+1 and H1n,n+1, H

2
n,n+1 � H3n,n+1 for all n ≥ 10.

Therefore, E(H1n,n+1) = E(H2n,n+1) > E(H3n,n+1) for all n ≥ 10.
(vii). We have

ψ(B2,1n,n+1, x) = x
n−4{x4 − (n+ 1)x2 + (5n− 29)}.

The signed graphs Hrn,n+1 for r = 1, 2 and B2,1n,n+1 are not quasi-order compa-

rable. Therefore consider the functions α8(x) = x
6 − (n + 1)x4 − 4x3 + (2n −

5)x2+ 4x−(n− 5) and β8(x) = x
4−(n+ 1)x2+(5n− 29). Again, it is easy to

On ordering of minimal energies in bicyclic signed graphs 99

see that α8(−
√
n) > 0 and α8(−

√
n− 2) < 0 for all n ≥ 12. Also, −1 is a zero

of α8(x) with multiplicity 2 and β8(
√

9
2) > 0, β8(

√
5) < 0, β8(

√
n− 3) > 0

and β8(
√
n− 4) < 0 for all n ≥ 22. By Descartes’ rule of signs, α8(x) has three

negative and three positive zeros and β8(x) has two positive and two negative

zeros. Therefore,

E(B2,1n,n+1) > 2(
√
9

2
+
√
n− 4) > 2(2+

√
n) > E(H1n,n+1)

for all n ≥ 275. We can directly verify the result from n = 30 to 274. As

E(H1n,n+1) = E(H2n,n+1), therefore E(H1n,n+1) = E(H2n,n+1) < E(B2,1n,n+1) for all

≥ 30. �

Combining Lemmas 8 and 9, we have the following result.

Corollary 10 (i) For all n ≥ 30, we have

E(S0,1n,n+1) = E(S0,2n,n+1) < E(S0,3n,n+1) < E(B0,1n,n+1) < E(S1,1n,n+1) = E(S1,2n,n+1) <
E(S1,3n,n+1)
< E(B0,2n,n+1) < E(B1,1n,n+1) < E(Q1,1n,n+1) < E(S2,1n,n+1) = E(S2,2n,n+1) < E(S2,3n,n+1)
< E(Q2,1n,n+1) = E(Q2,3n,n+1) < E(B1,2n,n+1) < E(Q3,1n,n+1) = E(Q3,2n,n+1) < E(Q3,3n,n+1)
< E(H3n,n+1) < E(H1n,n+1) = E(H2n,n+1) < E(B2,1n,n+1) < E(S3,1n,n+1) = E(S3,2n,n+1)
< E(S3,3n,n+1) < E(B2,2n,n+1).

(ii) For all 17 ≤ n ≤ 29, we have

E(S0,1n,n+1) = E(S0,2n,n+1) < E(S0,3n,n+1) < E(B0,1n,n+1) < E(S1,1n,n+1) = E(S1,2n,n+1) <
E(S1,3n,n+1)
< E(B0,2n,n+1) < E(B1,1n,n+1) < E(Q1,1n,n+1) < E(S2,1n,n+1) = E(S2,2n,n+1) < E(S2,3n,n+1) <
E(Q2,1n,n+1)
= E(Q2,3n,n+1) < E(B1,2n,n+1) < E(B2,1n,n+1) < E(S3,1n,n+1) = E(S3,2n,n+1) < E(S3,3n,n+1) <
E(B2,2n,n+1).

The following lemma [4] will be useful in the sequel.

Lemma 11 Let S ′ and S ′′ be two unicyclic signed graphs of order m1,m2 ≥ 6
and let n = m1 +m2. Then, for t = 1, 2,

E(S ′ ∪ S ′′) ≥ E(Stm1,m1
∪ Stm2,m2

) ≥ E(Stn−6,n−6 ∪ St6,6)

with equality if and only if m1,m2 ∈ {6, n− 6}.

100 S. Pirzada, T. Shamsher, M. A. Bhat

Now, we have the following theorem.

Theorem 12 If S ∈ CC[n, p, q], with n ≥ 12 and p, q ≥ 3, then E(S) >
E(B2,2n,n+1).

Proof. As S ∈ CC[n, p, q], with n ≥ 12 and p, q ≥ 3, therefore S has a

cut-edge say e, such that S− {e} is disconnected with two components, which

are unicyclic signed graphs, say S ′ and S ′′. Let m1 and m2 respectively be

the number of vertices in S ′ and S ′′. Without loss of generality, we assume

that m1 ≥ m2. The following cases arise. (i) m1,m2 ≥ 6, (ii) m1 ≥ 7 and

m2 ≥ 5,(iii) m1 ≥ 8 and m2 ≥ 4,(iv) m1 ≥ 9 and m2 ≥ 3.
Case (i). m1,m2 ≥ 6. By Lemmas 5, 6 and 11, we have

E(S) > E(S− e) = E(S ′ ∪ S ′′) = E(S ′) + E(S ′′)
≥ E(Stm1,m1

) + E(Stm2,m2
) = E(Stm1,m1

∪ Stm2,m2
)

≥ E(Stn−6,n−6 ∪ St6,6) = E(S1n−6,n−6 ∪ S16,6).

We see that E(S16,6) > 6. Consider the functions, α9(x) = x4 − (n − 6)x2 −

2x + (n − 9) and β9(x) = x4 − (n + 1)x2 + (5n − 21). It is easy to see that

α9(
1
2) > 0 , α9(1) < 0, α9(

√
n− 7) < 0 and α9(

√
n− 4) > 0. Similarly,

β9(2) > 0, β9(
√
5) < 0, β9(

√
n− 4) < 0 and β9(

√
n− 3) > 0. By Descartes’

rule of signs, both α9(x) and β9(x) have two positive and two negative zeros.

Let the positive zeros of α9(x) and β9(x) be x1, x2 and y1, y2, respectively.

Therefore, we have E(S1n−6,n−6 ∪ S16,6.) > 2(x1 + x2) + 6 > 2(
1
2 +
√
n− 7) + 6 =

7+ 2
√
n− 7 > 2(

√
5+
√
n− 3) > 2(y1 + y2) = E(B2,2n,n+1) for all n ≥ 12. This

completes the proof of case(i).

Case (ii). Proceeding similarly as in case (i), we can prove that E(S) >
E(S1n−5,n−5) + E(S), where S is the signed graph shown in Figure 5. Note that

E(S) > 5.5. Therefore, we have

E(S) > E(S1n−5,n−5) + E(S) > 2(12 +
√
n− 6) + 5.5 = 6.5 + 2

√
n− 6 >

2(
√
5+
√
n− 3) > E(B2,2n,n+1) for all ≥ 12.

Case (iii). Again, for n = 12, we proved the result directly. For n ≥ 13, we

have

E(S) > E(S1n−4,n−4) + E(C+
4) > 2(

1

2
+
√
n− 5) + 4 = 5+ 2

√
n− 5

> 2(
√
5+
√
n− 3) > E(B2,2n,n+1).

On ordering of minimal energies in bicyclic signed graphs 101

S
T

Figure 5: Signed graphs S and T

Case (iv). Finally, we have

E(S) > E(S1n−3,n−3) + E(C3) > 2(
1

2
+
√
n− 4) + 4 = 5+ 2

√
n− 4

> 2(
√
5+
√
n− 3) > E(B2,2n,n+1),

for all n ≥ 12. This completes the proof. �

Recall that ∞(n, p, q) is the class of bicyclic signed graphs on n vertices,

which have exactly two edge-disjoint cycles sharing a common vertex, which

we call the meet vertex. According to the sign and order of cycles in∞(n, p, q),

we divide the class ∞(n, p, q) into three main subclasses.

Subclass 1. According to the sign of Cp(p is even) and Cq(q is odd).This

class is further divided into four subclasses:

(1.1) ∞11(n, p, q) : σ(Cp) = σ(Cq) = +; (1.2) ∞12(n, p, q) : σ(Cp) = + and

σ(Cq) = −;

(1.3) ∞13(n, p, q) : σ(Cp) = − and σ(Cq) = +; (1.4) ∞14(n, p, q) : σ(Cp) =

σ(Cq) = −;

Subclass 2. According to the sign of Cp(p is odd) and Cq(q is odd). Also,

this class is further divided into four subclasses:

(2.1) ∞21(n, p, q) : σ(Cp) = σ(Cq) = +; (2.2) ∞22(n, p, q) : σ(Cp) = + and

σ(Cq) = −;

(2.3) ∞23(n, p, q) : σ(Cp) = − and σ(Cq) = +; (2.4) ∞24(n, p, q) : σ(Cp) =

σ(Cq) = −;

Subclass 3. According to the sign of Cp(p is even) and Cq(q is even). This

class is further divided into four subclasses:

(3.1) ∞31(n, p, q) : σ(Cp) = σ(Cq) = +; (3.2) ∞32(n, p, q) : σ(Cp) = + and

σ(Cq) = −;

102 S. Pirzada, T. Shamsher, M. A. Bhat

(3.3) ∞33(n, p, q) : σ(Cp) = − and σ(Cq) = +; (3.4) ∞34(n, p, q) : σ(Cp) =

σ(Cq) = −;

For an underlying graphG and the corresponding signed graph Sij = (G,σij) ∈∞ij(n, p, q) (i = 1, 2, 3 and j = 1, 2, 3, 4), we can easily obtain λk(Aσ1.1) =

−λk(Aσ1.2) , λk(Aσ1.3) = −λk(Aσ1.4), λk(Aσ2.1) = −λk(Aσ2.4) and λk(Aσ2.2) =

−λk(Aσ2.3) for k = 1, 2, . . . , n. So E(G,σ1.1) = E(G,σ1.2), E(G,σ1.3) = E(G,σ1.4),
E(G,σ2.1) = E(G,σ2.4) and E(G,σ2.2) = E(G,σ2.3) . Thus we can regard (1.1)

and (1.2) as identical, (1.3) and (1.4) as identical, (2.1) and (2.4) as iden-

tical and (2.2) and (2.3) as identical. Let ∞∗(n, p, q) denote the collection

of signed graphs in ∞(n, p, q) having all (n − p − q + 1) pendent vertices

adjacent to the meet vertex in ∞∗(n, p, q). Let ∞ij
∗ (n, p, q) (i = 1, 2, 3 and

j = 1, 2, 3, 4) be the corresponding switching class, as shown in Figure 6, in∞∗(n, p, q), where p and q are not equal to 3 simultaneously, that is ac-

cording to sign and order of cycles as defined above in subclasses. Also let∞∗2(n, 3, 3),∞∗∗2 (n, 3, 3) ∈ ∞(n, 3, 3) be signed graphs having both cycles of

length 3, (n− 6) pendent vertices are adjacent to meet vertex, remaining one

pendent vertex is adjacent to any vertex of either cycle other than the meet

vertex in∞∗2(n, 3, 3) and (n−5) pendent vertices are adjacent to a single vertex

in either of the cycles other than the meet vertex in ∞∗∗2 (n, 3, 3), respectively.

We use ∞∗2r(n, 3, 3),∞∗∗2r (n, 3, 3) r = 1, 2, 3, 4 as the representative of these

switching classes, as shown in Figure 7, in ∞∗2(n, 3, 3) and ∞∗∗2 (n, 3, 3), re-

spectively corresponding to subclass 2. We know that the necessary condition

to use quasi-order method is that the coefficients of the characteristic poly-

nomials of signed graphs must have uniform sign. We next have the following

result.

Lemma 13 (i) If S ∈ ∞1j(n, p, q) (j = 1, 3), contains an even cycle Cp and

an odd cycle Cq, q = 2t+ 1, then, for all i ≥ 0, we have

(a) (−1)ia2i(S) ≥ 0, (b) (−1)ia2i+1(S) ≥ 0 (resp. ≤ 0) if t is odd (resp,even)

(ii) If S ∈∞3j(n, p, q) (j = 1, 2, 3, 4), containing both even cycles, then for all

i ≥ 0, we have

(a) (−1)ia2i(S) ≥ 0, (b) (−1)ia2i+1(S) = 0
(iii) (a) If S ∈∞2j(n, p, q) (j = 1, 2, 3, 4), containing both odd cycles,then for

all i ≥ 0, we have (−1)ia2i(S) ≥ 0
(b) If S ∈ ∞2j(n, p, p) (j = 1, 2), containing both odd cycles of equal length

p = 2t+ 1,then for all i ≥ 0, we have (−1)ia2i+1(S) ≥ 0 (or ≤ 0).

On ordering of minimal energies in bicyclic signed graphs 103

8

i1

*

8

i2

*

8

i3

*

8

i4

*

n-p-q+1

C
+
p C

+
q C

+
p

C
+
q

(n,p,q) (n,p,q)

Cp
_

Cp
_

Cq
_

Cq
_

(n,p,q) (n,p,q)

Figure 6: Switching classes corresponding to ∞∗(n, p, q)
Proof. (i). If S ∈∞11(n, p, q), then the proof follows from Lemma 1.8 in [8]

and if S ∈∞13(n, p, q), then the proof follows from Lemma 4.3 in [12] .

(ii). If S ∈ ∞3j(n, p, q) (j = 1, 2, 3, 4),then the proof follows from Theorem

2.1 in [3]

(iii). Let L2i, L
(1)
2i+1 and L

(2)
2i+1 denote the basic figures of S ∈ ∞2j(n, p, q)

(j = 1, 2, 3, 4) containing only edges, an odd cycle Cp and an odd cycle Cq,

respectively. Then

(a). Since S ∈ ∞2j(n, p, q) (j = 1, 2, 3, 4), therefore the odd cycles share

a common vertex in S and hence the basic figure on even vertices does not

contain any odd cycle. Therefore, from Theorem 1, we have

(−1)ia2i(S) = (−1)i
(∑
L∈L 2i

(−1)P(L)2|c(L)|
∏
X∈c(L)

σ(X)

)

= (−1)i
(∑
L∈L 2i

(−1)i
)

= m(S, i).

Thus, (−1)ia2i(S) = m(S, i) ≥ 0 for all i. This proves part (a).

(b). There are two cases to be executed as follows.

Case 1. If S ∈ ∞21(n, p, p), that is, containing both positive cycles of equal

odd lengths p = 2t + 1. If 2i + 1 < p = 2t + 1, then (−1)ia2i+1(S) = 0 and if

104 S. Pirzada, T. Shamsher, M. A. Bhat

2i+ 1 ≥ p = 2t+ 1, then

(−1)ia2i+1(S) = (−1)i
(
2
∑

L∈L
(1)
2i+1

(−1)
2i+1−(2t+1)

2
+1 + 2

∑
L∈L

(2)
2i+1

(−1)
2i+1−(2t+1)

2
+1

)

=

(
2
∑

L∈L
(1)
2i+1

(−1)−t+1 + 2
∑

L∈L
(2)
2i+1

(−1)−t+1
)

Thus (−1)ia2i+1(S) ≥ 0 if t = 2k+ 1, and (−1)ia2i+1(S) ≤ 0 if t = 2k for all i.

Case 2. S ∈∞22(n, p, p), that is, containing one positive cycle and one nega-

tive cycle of equal odd lengths p = 2t+ 1, respectively. If 2i+ 1 < p = 2t+ 1,

then (−1)ia2i+1(S) = 0 and if 2i+ 1 ≥ p = 2t+ 1, then

(−1)ia2i+1(S) = (−1)i
(
2
∑

L∈L
(1)
2i+1

(−1)
2i+1−(2t+1)

2
+1 − 2

∑
L∈L

(2)
2i+1

(−1)
2i+1−(2t+1)

2
+1

)

=

(
2
∑

L∈L
(1)
2i+1

(−1)−t+1 − 2
∑

L∈L
(2)
2i+1

(−1)−t+1
)
.

Thus, (−1)ia2i+1(S) ≥ 0 if t = 2k+ 1 and |L
(1)
2i+1| ≥ |L

(2)
2i+1|; (−1)

ia2i+1(S) ≤ 0
if t = 2k + 1 and |L

(1)
2i+1| ≤ |L

(2)
2i+1|; (−1)

ia2i+1(S) ≥ 0 if t = 2k and |L
(1)
2i+1| ≤

|L
(2)
2i+1|; and (−1)ia2i+1(S) ≤ 0 if t = 2k and |L

(1)
2i+1| ≥ |L

(2)
2i+1| for all i, where

|Z| denotes the cardinality of a set Z. This completes the proof. �

The following two lemmas can be easily established.

Lemma 14 For positive integers m1,m2 ≥ 5, m1+m2 = n ≥ 17 and t = 1, 2,

E(Sm1
∪ Stm2,m2

) ≥ E(S5 ∪ Stn−5,n−5),

with equality if and only if m1,m2 ∈ {5, n− 5}.

Lemma 15 (i) E(Sn−4 ∪ S14,4) > E(B2,2n,n+1) for all n ≥ 12.
(ii) E(Sn−4 ∪ C−

4) > E(B
2,2
n,n+1) for all n ≥ 12.

(iii) E(S5 ∪ S1n−5,n−5) > E(B2,2n,n+1) for all n ≥ 12.
(iv) E(Sn−5∪S) > E(B2,2n,n+1) for all n ≥ 12, where S is the signed graph shown

in Figure 5.

(v) E(Sn−5∪T) > E(B2,2n,n+1) for all n ≥ 12, where T is the signed graph shown

in Figure 5.

On ordering of minimal energies in bicyclic signed graphs 105

821 (n,3,3)

(n-6)

*

822 (n,3,3)
*

823 (n,3,3)
* 824 (n,3,3)

*

821 (n,3,3)
** 822 (n,3,3)

** 823 (n,3,3)
** 824 (n,3,3)

**

(n-5)

Figure 7: Switching classes ∞∗2r(n, 3, 3) and ∞∗∗2r (n, 3, 3), r = 1, 2, 3, 4
Now, as the proof of the following result is similar as in Lemma 9. So we

skip the proof here.

Lemma 16 (i) For all n ≥ 12, E [∞∗21(n, 3, 3)] > E [∞∗22(n, 3, 3)] > E(B2,2n,n+1).
(ii) For all n ≥ 12, E [∞∗∗21(n, 3, 3)] > E [∞∗∗22(n, 3, 3)] > E(B2,2n,n+1).
(iii) For all n ≥ 12, E [∞13

∗ (n, 4, 3)] > E [∞11
∗ (n, 4, 3)] > E(B2,2n,n+1).

(iv) For all n ≥ 12, E [∞34
∗ (n, 4, 4)] > E [∞32

∗ (n, 4, 4)] > E [∞31
∗ (n, 4, 4)] >

E(B2,2n,n+1).

(v) For all n ≥ 12, E [∞22
∗ (n, 5, 3)] > E [∞21

∗ (n, 5, 3)] > E [∞∗22(n, 3, 3)].
Now, we proceed to prove the following theorem.

Theorem 17 If S ∈∞(n, p, q), n ≥ 17, p, q ≥ 3 and S 6= Hrn,n+1 (r = 1, 2, 3),
then E(S) > E(B2,2n,n+1).

Proof. Let v be the meet vertex of the two cycles Cp and Cq. The following

cases arise.

Case 1. Let S ∈∞(n, 3, 3). We have the following claim.

Claim. If S ∈∞2r(n, 3, 3) (r = 1, 2) and S 6= Hsn,n+1(s = 1, 3),∞∗∗2t (n, 3, 3)(t =
1, 2), ∞∗2r(n, 3, 3)(r = 1, 2), then for all n ≥ 7, S �∞∗22(n, 3, 3).

106 S. Pirzada, T. Shamsher, M. A. Bhat

We shall prove the claim by induction on n. Assume that the claim holds for

smaller values of n. Let v1 be a pendent vertex which is adjacent to the meet

vertex v in ∞∗22(n, 3, 3). For n ≥ 7, S ∈∞2r(n, 3, 3), r = 1, 2, has at least one

pendent vertex say v2 (such that S − v2 is again different from signed graphs

forbidden in this claim), which is adjacent to u (say) in S. Then from Lemmas

4 and 13, we obtain

bi(S) = bi(S− v2) + bi−2(S− v2 − u)

and

bi(∞∗22(n, 3, 3)) = bi(∞∗22(n, 3, 3) − v1) + bi−2(P3 ∪ P2).
By induction assumption, S− v2 �∞∗22(n, 3, 3) − v1.
Since S 6= Hsn,n+1(s = 1, 3),∞∗∗2t (n, 3, 3)(t = 1, 2), ∞∗2r(n, 3, 3) (r = 1, 2),

therefore S− v2−u has P3 ∪P2 as a subgraph and hence we have S− v2−u �
P3 ∪ P2. This proves the claim.

By Lemma 13, the even and odd coefficients of S alternate in sign. Thus, by

the above claim, for S 6= Hsn,n+1(s = 1, 3),∞∗∗2t (n, 3, 3)(t = 1, 2), ∞∗2r(n, 3, 3)
(r = 1, 2) , we have E(S) > E [∞∗22(n, 3, 3)]. Also for the same underlined graph

, the energy of signed graphs S ∈ ∞21(n, 3, 3) and T ∈ ∞24(n, 3, 3) is same,

S ∈ ∞22(n, 3, 3) and T ∈ ∞23(n, 3, 3) is same and therefore the result follows

by Lemma 16 in this case.

Case 2. Let S ∈∞(n, 4, 3). We have the following claim.

Claim. If S ∈ ∞1r(n, 4, 3) (r = 1, 3) and S 6= ∞1r
∗ (n, 4, 3) (r = 1, 3), then for

all n ≥ 7, S �∞11
∗ (n, 4, 3).

We shall prove the claim by induction on n. Assume that the claim holds for

smaller values of n. Let v1 be a pendent vertex which is adjacent to the meet

vertex v in ∞11
∗ (n, 4, 3). For n ≥ 7, S ∈∞1r(n, 4, 3), r = 1, 2, has at least one

pendent vertex say v2, which is adjacent to u (say) in S. Then from Lemmas

4 and 13, we obtain

bi(S) = bi(S− v2) + bi−2(S− v2 − u).

and

bi(∞11
∗ (n, 4, 3)) = bi(∞11

∗ (n, 4, 3) − v1) + bi−2(P3 ∪ P2).

By induction assumption, S − v2 � ∞11
∗ (n, 4, 3) − v1. Since S 6= ∞1r

∗ (n, 4, 3)

(r = 1, 3) and therefore S−v2−u has P3∪P2 as a subgraph and thus S−v2−u �

On ordering of minimal energies in bicyclic signed graphs 107

P3 ∪ P2. This proves the claim.

By Lemma 13, the even and odd coefficients of S alternate in sign. Thus, by

the above claim, we have E(S) > E [∞11
∗ (n, 3, 3)]. Also, for the same underlined

graph , the energy of signed graphs S ∈ ∞11(n, 4, 3) and T ∈ ∞12(n, 4, 3) is

same, S ∈ ∞13(n, 4, 3) and T ∈ ∞14(n, 4, 3) is same and therefore the result

follows by Lemma 16 in this case.

Case 3. If S ∈ ∞(n, 4, 4) and S 6= ∞3r
∗ (n, 4, 4)(r = 1, 2, 4), then proceeding

similarly as in case 2, one can easily prove that, E(S) > E [∞31
∗ (n, 4, 4)] and

hence the result follows by Lemma 16.

Case 4. If S ∈ ∞(n, 5, 3),∞(n, 5, 4),∞(n, 5, 5) and S 6= ∞2r
∗ (n, 5, 3), r =

1, 2, 3, 4 then it easy to see that b4(S) > b4(B
2,2
n,n+1) = 5n − 21. Since by

Lemma 13 even coefficients S alternate in sign and therefore E(S) > E(B2,2n,n+1),
and so the result follows in this case. If S =∞2r

∗ (n, 5, 3), r = 1, 2, 3, 4, then the

result follows by Lemma 16, since for the same underlined graph, the energy of

signed graphs S ∈ ∞21(n, 5, 3) and T ∈ ∞24(n, 5, 3) is same, S ∈ ∞22(n, 5, 3)

and T ∈∞23(n, 5, 3) is same.

Case 5. Let S ∈∞(n, p, q) and at least one of p and q is greater or equal to

6. Without loss of generality, we assume Cp is such a cycle. Then the following

four subcases arise.

Subcase 5.1. Let Cq 6= C+
3 , C

−
3 , C

+
4 , C

−
4 , if there be at most a single noncyclic

signed edge incident to any vertex of C+
3 or C−

3 and no noncyclic signed edge

incident to the vertices of C+
4 , C

−
4 . Then choose the cut set Z = {e1, e2}, where

e1 and e2 are the edges on the cycle Cp adjacent to v. Then S − Z has two

components, say S ′ and S ′′, where S ′ is a signed tree on m1 ≥ 5 vertices and

S ′′ is unicyclic signed graph with m2 ≥ 5 vertices such that m1+m2 = n ≥ 17.
Then the result follows by Lemmas 14 and 15.

Subcase 5.2. If Cq = C−
4 , C

+
3 , C

−
3 such that there is exactly single noncyclic

signed edge incident to any vertex of C+
3 , C

−
3 and there is no noncyclic signed

edge incident to any vertex of C−
4 , then choose the cut set Z = {e1, e2}, where

e1 and e2 are the edges on the cycle Cp adjacent to v. Then S − Z has two

components, say S ′ and S ′′, where S ′ is a signed tree on n− 4 vertices and S ′′

is unicyclic signed graph with 4 vertices such that m1 +m2 = n ≥ 17. Since

S ′′ is either St4,4, t = 1, 2 or C−
4 and E(S14,4) = E(S24,4), then the result follows

by Lemma 15.

Subcase 5.3. Let Cq = C+
4 and there be no noncyclic signed edge incident to

108 S. Pirzada, T. Shamsher, M. A. Bhat

any vertex of C+
4 . Let {e1, e2, . . . , ep−1, ep} be the edges of cycle Cp. Without

loss of generality, suppose that the edges e1 and ep are incident to meet vertex

v such that the edges er and es are adjacent in Cp if |r− s| = 1 and e1 , ep are

incident to meet vertex v. Then choose the cut set either {e1, ep−1} or {e2, ep}

such that S − {e1, ep−1} or S − {e2, ep} has two components, say S ′ and S ′′,

where S ′ is a signed tree on m1 ≥ 5 vertices and S ′′ is unicyclic signed graph

with m2 ≥ 5 vertices such that m1 +m2 = n ≥ 17. Then the result follows by

Lemmas 14 and 15.

Subcase 5.4. Let Cq = C+
3 , C

−
3 and there is no noncyclic signed edge incident

to any vertex of C+
3 , C

−
3 . Then there exists a cut set Z consisting of the two

edges of Cp such that S−Z has two components, say S ′ and S ′′, where S ′ is a

signed tree on m1 ≥ 5 vertices and S ′′ is unicyclic signed graph with m2 ≥ 5
vertices such that m1 +m2 = n ≥ 17. Then the result follows by Lemmas 14

and 15. This completes the proof. �

Let L−q and L+q respectively denote the number of negative and positive

4-cycles in a signed graph. Then, by Theorem 1, we have

b4(S) = m(S, 2) − 2(L+q − L−q). (1)

Where m(S, k) denote the number of matchings of size k. Let Lk denote the

set of basic figures of order k of a signed graph S and let L 1
k denote the set

of basic figures which do not contain any cycle and L 2
k = Lk − L 1

k . It is

clear that for a signed graph S ∈ θ(n, p, q, r),
∣∣L 1

2k

∣∣ ≥ 2 ∣∣L 2
2k

∣∣. From this, we

can easily see that if S ∈ θ(n, p, q, r), then b2k(S) ≥ 0 for all k ≥ 0. Also,

if b4(S) > 5n − 21, then it is easy to see that E(S) > E(B2,2n,n+1). Let Q1,1k ,

k = 1, 2, 3, ..., 52 be the graphs as shown in Figure 8. Then it is easy to see

that there are three switching classes on the signings of Q1,1k k = 1, 2, 3, . . . , 52.

LetQ1,1k ,Q1,2k andQ1,3k k = 1, 2, 3, . . . , 52, respectively be the representative for

these three switching classes, where Q1,2k are the signed graphs obtained from

Q1,1k , by making both triangles negative in Q1,1k and Q1,3k be the signed graphs

obtained from Q1,1k by making one triangle negative(left sided triangle) and

other triangle positive(right sided triangle) in Q1,1k . It is easy to see that Q1,2k
is switching equivalent to −Q1,1k and therefore E(Q1,1k) = E(Q1,2k) for all k =

1, 2, 3, . . . , 52. Thus, we can regard Q1,1k and Q1,2k as identical. Also, b4(Q
1,3
k) >

5n − 21 for all k = 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, . . . , 52

and therefore we omit these signed graphs here, as these signed graphs will be

On ordering of minimal energies in bicyclic signed graphs 109

considered later (Theorem 22). With these notations, we have the following

observation.

Lemma 18 For all n ≥ 10, we have

(i) E(B2,2n,n+1) < E(Q1,11) < E(Q1,1k) for all k = 2, 3, . . . , 52.

(ii) E(B2,2n,n+1) < E(Q1,31) < E(Q1,3k) for all k = 3, 4, 6, 8, 13, 14, 17, 39, 40, . . . , 44.

(iii) E(B2,2n,n+1) < E(Q1,32) < E(Q1,3k) for all k = 5, 9, 10, 11, 12, 18, 30.

(iv) E(B2,2n,n+1) < E(Q1,37).

Proof. (i). We have

ψ(Q1,11 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (3n− 12)x2 + 2x− (n− 5)},

ψ(Q1,12 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (3n− 11)x2 + 4x− 2(n− 6)},

ψ(Q1,13 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 18)x2 + 4x− 2(n− 6)},

ψ(Q1,14 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 18)x2 + 2x− (2n− 11)},

ψ(Q1,15 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 17)x2 + 4x− (3n− 17)},

ψ(Q1,16 , x) = x
n−8{x8−(n+1)x6−4x5+(4n−16)x4+6x3−(4n−24)x2−2x+(n−7)},

ψ(Q1,17 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 17)x2 + 4x− (2n− 14)},

ψ(Q1,18 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 16)x2 + 6x− 3(n− 6)},

ψ(Q1,19 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 21)x2 + 4x− (3n− 22)},

ψ(Q1,110 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 19)x2 + 8x− (4n− 30)},

ψ(Q1,111 , x)=x
n−8{x8−(n+1)x6−4x5+(4n−15)x4+8x3−(5n−31)x2−4x+2(n−8)},

ψ(Q1,112 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 16)x2 + 8x− 4(n− 7)},

ψ(Q1,113 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 26)x2 + 6x− 3(n− 7)},

ψ(Q1,114 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 25)x2 + 4x− (4n− 26)},

ψ(Q1,115 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 24)x2 + 6x− (5n− 33)},

ψ(Q1,116 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−23)x4+8x3−(6n−40)x2−4x+2(n−8)},

ψ(Q1,117 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 26)x2 + 2x− (3n− 19)},

ψ(Q1,118 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 25)x2 + 4x− (4n− 28)},

110 S. Pirzada, T. Shamsher, M. A. Bhat

ψ(Q1,119 , x) = x
n−8{x8−(n+1)x6−4x5+(5n−24)x4+4x3−4(n−7)x2+(n−7)},

ψ(Q1,120 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−23)x4+6x3−(6n−39)x2−2x+(2n−15)},

ψ(Q1,121 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−22)x4+8x3−(7n−45)x2−4x+(3n−23)},

ψ(Q1,122 , x) = x
n−10{x10 − (n+ 1)x8 − 4x7 + (5n− 21)x6 + 10x5 − (8n− 52)x4

− 8x3 + (5n− 40)x2 + 2x− (n− 9)},

ψ(Q1,123 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−22)x4+8x3−(7n−47)x2−4x+(3n−25)},

ψ(Q1,124 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−21)x4+10x3−(6n−39)x2−2x+(n−7)},

ψ(Q1,125 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−23)x4+8x3−(5n−32)x2−2x+(n−7)},

ψ(Q1,126 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 23)x2 + 6x− (5n− 32)},

ψ(Q1,127 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−22)x4+8x3−(5n−28)x2−2x+(n−7)},

ψ(Q1,128 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−21)x4+10x3−(7n−43)x2−6x+3(n−8)},

ψ(Q1,129 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 24)x2 + 8x− (5n− 33)},

ψ(Q1,130 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 25)x2 + 4x− (3n− 19)},

ψ(Q1,131 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−23)x4+6x3−(5n−31)x2−2x+(n−7)},

ψ(Q1,132 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−22)x4+8x3−(6n−39)x2−4x+2(n−8)},

ψ(Q1,133 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 22)x2 + 10x− 5(n− 7)},

ψ(Q1,134 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 23)x2 + 8x− 4(n− 7)},

ψ(Q1,135 , x)=x
n−8{x8−(n+1)x6−4x5+(5n−21)x4+10x3−(7n−46)x2−4x+(2n−15)},

ψ(Q1,136 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 22)x2 + 8x− (6n− 41)},

ψ(Q1,137 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 21)x2 + 12x− (6n− 44)},

ψ(Q1,138 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 23)x2 + 12x− 6(n− 8)},

ψ(Q1,139 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 18)x2 + 2(n− 5)x− (n− 5)},

ψ(Q1,140 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (4n− 17)x2 + (2n− 8)x− (n− 5)},

ψ(Q1,141 , x)=x
n−7{x7−(n+1)x5−4x4+(4n−16)x3+(2n−6)x2−3(n−6)x−2(n−6)},

ψ(Q1,142 , x)=x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 26)x2 + 2(n− 6)x− 2(n− 6)},

On ordering of minimal energies in bicyclic signed graphs 111

ψ(Q1,143 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 26)x2 + (2n− 10)x− 3(n− 6)},

ψ(Q1,144 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 25)x2 + 2(n− 6)x− 3(n− 6)},

ψ(Q1,145 , x) = x
n−8{x8 − (n+ 1)x6 − 4x5 + (5n− 23)x4 + (2n− 8)x3

− (5n− 32)x2 − 2(n− 7)x+ (n− 7)},

ψ(Q1,146 , x) = x
n−6{x6 − (n+ 1)x4 − 4x3 + (5n− 24)x2 + (2n− 8)x− 2(n− 6)},

ψ(Q1,147 , x) = x
n−8{x8 − (n+ 1)x6 − 4x5 + (5n− 22)x4 + (2n− 6)x3

− (5n− 31)x2 − (2n− 12)x+ (n− 7)},

ψ(Q1,148 , x) = x
n−7{x7 − (n+ 1)x5 − 4x4 + (5n− 21)x3 + (2n− 4)x2

− (6n− 39)x− (4n− 26)},

ψ(Q1,149 , x)=x
n−7{x7−(n+1)x5−4x4+(5n−23)x3+(2n−8)x2−4(n−6)x−2(n−6)},

ψ(Q1,150 , x)=x
n−7{x7−(n+1)x5−4x4+(5n−22)x3+(2n−6)x2−4(n−6)x−2(n−6)},

ψ(Q1,151 , x) = x
n−9{x9 − (n+ 1)x7 − 4x6 + (5n− 21)x5 + (2n− 4)x4

− (7n− 45)x3 − (4n− 24)x2 + 3(n− 8) + 2(n− 8)},

ψ(Q1,152 , x)=x
n−7{x7−(n+1)x5−4x4+(5n−22)x3+(2n−4)x2−6(n−7)x−4(n−7)}.

First we will show that E(B2,2n,n+1) < E(Q1,11). Now, consider the function

α10(x) = x
6 − (n+ 1)x4 − 4x3 + (3n− 12)x2 + 2x− (n− 5)

and proceeding similarly as in part (ii), Lemma 9, we can prove that E(Q1,11) >

E(B2,2n,n+1) for all n ≥ 10. Also, it is easy to see that even and odd coefficients

of Q1,1k , k = 1, 2, 3, . . . , 52, alternate in sign and clearly Q1,11 ≺ Q1,1k for all

k = 2, 3, . . . , 52. Therefore, E(Q1,11) < E(Q1,1k) for all k = 2, 3, . . . , 52. This

completes the proof.

(ii). We have

ψ(Q1,31 , x) = x
n−6{x6 − (n+ 1)x4 + (3n− 8)x2 + 2x− (n− 5)},

ψ(Q1,33 , x) = x
n−6{x6 − (n+ 1)x4 + (4n− 14)x2 − 4x− 2(n− 6)},

ψ(Q1,34 , x) = x
n−6{x6 − (n+ 1)x4 + (4n− 14)x2 − 2x− (2n− 11)},

112 S. Pirzada, T. Shamsher, M. A. Bhat

ψ(Q1,36 , x) = x
n−8{x8−(n+1)x6+(4n−12)x4+2x3−(4n−20)x2−2x+(n−7)},

ψ(Q1,38 , x) = x
n−6{x6 − (n+ 1)x4 + (4n− 12)x2 + 2x− (3n− 14)},

ψ(Q1,313 , x) = x
n−6{x6 − (n+ 1)x4 + (5n− 22)x2 + 6x− 3(n− 7)},

ψ(Q1,314 , x) = x
n−6{x6 − (n+ 1)x4 + (5n− 21)x2 + 4x− (4n− 26)},

ψ(Q1,317 , x) = x
n−6{x6 − (n+ 1)x4 + (5n− 22)x2 − 2x− (3n− 19)},

ψ(Q1,339 , x) = x
n−6{x6 − (n+ 1)x4 + (4n− 14)x2 − 2(n− 5)x− (n− 5)}

ψ(Q1,340 , x) = x
n−6{x6 − (n+ 1)x4 + (4n− 13)x2 − (2n− 8)x− (n− 5)},

ψ(Q1,341 , x) = x
n−7{x7−(n+1)x5+(4n−12)x3−(2n−10)x2−(3n−14)x+2(n−6)},

ψ(Q1,342 , x) = x
n−6{x6 − (n+ 1)x4 + (5n− 22)x2 − 2(n− 6)x− 2(n− 6)},

ψ(Q1,343 , x) = x
n−6{x6 − (n+ 1)x4 + (5n− 22)x2 − (2n− 14)x− 3(n− 6)},

ψ(Q1,344 , x) = x
n−6{x6 − (n+ 1)x4 + (5n− 21)x2 − 2(n− 6)x− 3(n− 6)}.

First we will show that E(B2,2n,n+1) < E(Q1,31). Consider the function

α11(x) = x
6 − (n+ 1)x4 + (3n− 8)x2 + 2x− (n− 5)

and proceeding similarly as in part (ii), Lemma 9, we can prove that EQ1,31) >

E(B2,2n,n+1) for all n ≥ 10. Also, the even and odd coefficients of Q1,3k ,

k = 2, 3, 4, 6, 8, 13, 14, 17, 39, 40, 41, 42, 43, 44,

alternate in sign and clearly Q1,31 ≺ Q1,1k , for all

k = 3, 4, 6, 8, 13, 14, 17, 39, 40, 41, 42, 43, 44.

Therefore, E(Q1,11) < E(Q1,1k) for all

k = 3, 4, 6, 8, 13, 14, 17, 39, 40, 41, 42, 43, 44.

This completes the proof.

(iii, iv). The proof is similar to (1). �

Let Q2,1k , k = 1, 2, 3, . . . , 34 be the graphs as shown in Figure 9. Then it

is easy to see that there are four switching classes on the signings of Q2,1k ,

k = 1, 2, 3, . . . , 34. Let Q2,1k , Q2,2k , Q2,3k , Q2,4k , k = 1, 2, 3, . . . , 34, respectively be

On ordering of minimal energies in bicyclic signed graphs 113

the representative for these four switching classes, where Q2,1k contains C+
3 , C+

4

and C+
5 ;Q2,2k contains C−

3 , C−
4 and C+

5 ; Q2,3k contains C−
3 , C+

4 and C−
5 ; and Q2,4k

contains C+
3 , C−

4 and C−
5 . It is easy to see that Q2,1k are switching equivalent to

−Q2,3k and Q2,2k are switching equivalent to −Q2,4k , therefore E(Q2,1k) = E(Q2,3k)

and E(Q2,2k) = E(Q2,4k) for all k = 1, 2, 3, . . . , 34. Thus, we can regard Q2,1k
and Q2,3k as identical, Q2,2k and Q2,4k as identical, respectively. Also, b4(Q

2,r
k) >

5n − 21 for all k = 7, 8, . . . , 34, k 6= 26 and r = 2, 4, therefore we omit these

signed graphs here, as these signed graphs will be considered later. With these

notations, we have the following result, whose proof is similar as in Lemma

18. So we skip the proof here.

Lemma 19 For all n ≥ 10, we have

(i) E(B2,2n,n+1) < E(Q2,11) < E(Q2,1k) for all k = 2, 3, . . . , 34.

(ii) E(Q2,11) < E(Q2,21) < E(Q2,2k) for all k = 2, 3, 4, 5, 6, 26.

Let Q3,11 be the graph as shown in Figure 10. It is easy to see that there

are four switching classes on the signings of Q3,11 . Let Q3,11 , Q3,21 , Q3,31 , Q3,31 be

the representative for these four switching classes, where Q3,11 contains C+
3 , C+

5

and C+
6 ; Q3,21 contains C−

3 , C−
5 and C+

6 ; Q3,31 contains C−
3 , C+

5 and C−
6 ; and Q3,41

contains C+
3 , C−

5 and C−
6 . It is easy to see that Q3,11 is switching equivalent to

−Q3,21 and Q3,31 is switching equivalent to −Q3,41 , therefore E(Q3,11) = E(Q3,21)

and E(Q3,31) = E(Q3,41). Thus, we can regard Q3,11 and Q3,21 as identical, Q3,31
and Q3,41 as identical. Also, let Q4,1k , k = 1, 2, 3, 4, 5, 6 be the graphs as shown

in Figure 10. Then it is easy to see that there are three switching classes on

the signings of Q4,1k , k = 1, 2, 3, 4, 5. Let Q4,1k , Q4,2k , Q4,3k , k = 1, 2, 3, 4, 5, 6,

respectively be the representative for these three switching classes, where Q4,1k
contains C+

4 , C+
4 and C+

6 ; Q4,2k contains C−
4 , C+

4 and C−
6 ; Q4,3k contains C−

4 , C−
4

and C+
6 . It is easy to see that b4(Q

4,r
k) > 5n−21 for all k = 2, 3, 4, 5, 6, r = 2, 3

and therefore we omit these signed graphs here, as these signed graphs will

be considered later. With these notations, we have the following result, whose

proof is similar as in Lemma 18. So we skip the proof here.

Lemma 20 For all n ≥ 10, we have (i) E(B2,2n,n+1) < E(Q3,11).

(ii) E(B2,2n,n+1) < E(Q3,31).

(iii) E(B2,2n,n+1) < E(Q4,11) < E(Q4,tk) for all k = 1 when t = 2, 3 and k =

2, 3, 4, 5 when t = 1.

(iv) E(B2,2n,n+1) < E(Q4,16).

114 S. Pirzada, T. Shamsher, M. A. Bhat

Let Q5,1k , k = 1, 2, 3, . . . , 15, be the graphs as shown in Figure 11. Clearly,

there are two switching classes on the signings of Q5,1k k = 1, 2, 3, . . . , 15. Let

Q5,1k and Q5,2k , k = 1, 2, 3, . . . , 15, be the representative for these two switching

classes, where Q5,1k contains C+
4 , C+

4 , C+
4 ; and Q5,2k contains C−

4 , C−
4 and C+

4

respectively. Also, let Q6,1k , k = 1, 2, . . . , 7, be the graphs as shown in Figure

11. Then it is easy to see that there are three switching classes on the signings

of Q6,1k , k = 1, 2, . . . , 7. Let Q6,1k , Q6,2k , Q6,3k ,k = 1, 2, . . . , 7 respectively, be the

representative for these three switching classes, where Q6,1k contains C+
4 , C+

5

and C+
5 ; Q3,2k contains C+

4 , C−
5 and C−

5 ; Q6,3k contains C−
4 , C+

5 and C−
5 . It is easy

to see that Q6,1k is switching equivalent to −Q6,2k . Therefore, E(Q6,1k) = E(Q6,2k)

for all k = 1, 2, . . . , 7, thus we can regard Q6,1k and Q6,2k as identical. Also,

b4(Q
5,2
k) > 5n − 21 for all k = 3, 4, . . . , 15 and b4(Q

6,3
k) > 5n − 21 for all

k = 2, 3, . . . , 7. Therefore, we omit these signed graphs here, as these signed

graphs will be considered later. With these notations, we have the following

result, whose proof is similar as in Lemma 18. So we skip the proof here.

Lemma 21 For all n ≥ 10, we have (i) E(B2,2n,n+1) < E(Q5,11) < E(Q5,tk) for

all k = 1, 2 when t = 2 and k = 2, 3, . . . , 15 when t = 1.

(ii) E(Q5,11) < E(Q6,tk) for all k = 1 when t = 3 and k = 1, 2, 3, . . . , 7 when

t = 1.

Now, we have the following theorem.

Theorem 22 Let S ∈ θ(n, p, q, r), S 6= Sk,tn,n+1 (k = 0, 1, 2, 3 and t = 1, 2, 3),

Bk,tn,n+1 (k = 0, 1, 2, and t = 1, 2), Q1,1n,n+1, Q2,tn,n+1 (t = 1, 3), Q3,tn,n+1 (t =

1, 2, 3), where n ≥ 17, p ≥ 3, q ≥ 3 and r ≥ 1. Then E(S) > E(B2,2n,n+1).

Proof. As Cp and Cq have r ≥ 1 common edges, we first assume that r ≥ 6,
and let Pr+1 = e1e2 . . . er be the path formed by these r edges. Choose the cut

set as Z = {e1, er}, so that S−{e1, er} has two components say S ′ and S ′′, where

S ′ is a signed tree on m1 ≥ 5 vertices and S ′′ is a unicyclic signed graph on

m2 ≥ 5 vertices. Therefore the result follows by Lemmas 14 and 15. This proves

the result for r ≥ 6 and n ≥ 17. For r ≤ 5, the above technique still applies

but we need to consider several cases while choosing the cut set. For r ≤ 5, we

prove the result by induction on n − p − q + r. Clearly, n − p − q + r ≥ −1.

If n− p− q+ r = −1, then S has no pendant edge. We consider the following

cases, (i) r = 1, (ii) r = 2 and (iii) 3 ≤ r ≤ 5.

On ordering of minimal energies in bicyclic signed graphs 115

Q
24

1,1

Q
1

1,1
Q
2

1,1
Q
3

1,1 Q
4

1,1
Q
5

1,1 Q
6

1,1 Q
7

1,1

Q
8

1,1 Q
9

1,1

Q
10

1,1

Q
11

1,1 Q
12

1,1 Q
13

1,1
Q
14

1,1

Q
15

1,1 Q
16

1,1
Q
17

1,1
Q
18

1,1 Q
19

1,1 Q
20

1,1
Q
21

1,1

Q
22

1,1 Q
23

1,1
Q
25

1,1 Q
26

1,1

Q
27

1,1 Q
28

1,1

Q
29

1,1
Q
30

1,1 Q
31

1,1 Q
32

1,1 Q
33

1,1

Q
34

1,1 Q
35

1,1

Q
36

1,1
Q
37

1,1
Q
38

1,1 Q
39

1,1 Q
40

1,1
Q
41

1,1
Q
42

1,1

Q
43

1,1 Q
44

1,1

Q
45

1,1

Q
46

1,1
Q
47

1,1

Q
48

1,1

Q
49

1,1 Q
50

1,1 Q
51

1,1 Q
52

1,1

Figure 8: Signed graphs Q1,1k , k = 1, 2, . . . , 52

116 S. Pirzada, T. Shamsher, M. A. Bhat

Q
1

2,1 Q
2

2,1 Q
3

2,1 Q
4

2,1 Q
5

2,1

Q
6

2,1
Q
7

2,1
Q
8

2,1 Q
9

2,1
Q
10

2,1

Q
11

2,1
Q
12

2,1
Q
13

2,1
Q
14

2,1
Q
15

2,1

Q
16

2,1 Q
17

2,1
Q
18

2,1
Q
19

2,1
Q
20

2,1

Q
25

2,1
Q
24

2,1
Q
23

2,1Q
22

2,1
Q
21

2,1

Q
26

2,1

Q
27

2,1 Q
28

2,1
Q
29

2,1
Q
30

2,1

Q
34

2,1

Q
33

2,1Q
32

2,1

Q
31

2,1

Figure 9: Signed graphs Q2,1k , k = 1, 2, . . . , 34

On ordering of minimal energies in bicyclic signed graphs 117

Q
1

3,1

Q
1

4,1

Q
2

4,1 Q
3

4,1

Q
6

4,1
Q
5

4,1
Q
4

4,1

Figure 10: Signed graphs Q3,11 and Q4,1k , k = 1, 2, 3, 4, 5, 6

Case (i). If r = 1, then n − p − q = −2 or n = p + q − 2. As n ≥ 17, S can

have at most one 4-cycle. If p = 4, then n = q+ 2. Now, by (3.1), we have

b4(S) = q− 2+m(Cq+2, 2)± 2 =

{
1
2(q

2 + 3q− 10), if 4-cycle is positive
1
2(q

2 + 3q− 2), if 4-cycle is negative.

As b4(B
2,2
n,n+1) = 5n− 21, so b4(B

2,2
q+2,q+3) = 5q− 11 and therefore

b4(S)−b4(B
2,2
q+2,q+3)=b4(S)−(5n−11)=

{
1
2(q

2−7q+12), if 4-cycle is positive
1
2(q

2−7q+20), if 4-cycle is negative.

Since n ≥ 17, so q ≥ 15 and thus b4(S) − b4(B
2,2
q+2,q+3) > 0. If there is no 4-

cycle in S, then since n = p+1−2, we have b4(B
2,2
n,n+1) = 5n−11 = 5(p+q)−31.

Also,

b4(S) = m(S, 2) = m(Cp+q−2, 2) + p+ q− 6 =
1

2
[(p+ q)2 − 5(p+ q) − 2]

and so

b4(S) − b4(B
2,2
n,n+1) =

1

2
[(p+ q)2 − 15(p+ q) + 60] > 0

because n ≥ 17 and so p+ q ≥ 19.
Case (ii). Let r = 2, so that in this case n = p+ q− 3. Again, S can have at

most one 4-cycle. Suppose S contains a 4-cycle and let p = 4. Then n = q+ 1

and so b4(B
2,2
n,n+1) = b4(B

2,2
q+1,q+2) = 5q− 16. Also,

b4(S) = 2(q− 2) +m(Cq, 2)± 2 = 2(q− 2) +
q(q− 3)

2
± 2.

118 S. Pirzada, T. Shamsher, M. A. Bhat

Therefore,

b4(S)−b4(B
2,2
q+1,q+2)=b4(S)−(5q−16)=

{
1
2(q

2−9q+20), if 4 cycle is positive
1
2(q

2−9q+28), if 4 cycle is negative.

As n ≥ 17, so q ≥ 16 and therefore b4(S) − b4(B
2,2
q+1,q+2) > 0. Suppose S does

not contain a 4-cycle. Then

b4(S) = m(S, 2) = 2(p+ q− 6) +m(Cp+q−4, 2)

=
1

2
{4(p+ q− 6)(p+ q− 4)(p+ q− 7)}

=
1

2
{(p+ q)2 − 7(p+ q) + 4}.

Therefore

b4(S) − b4(B
2,2
n,n+1) =

1

2
{(p+ q)2 − 17(p+ q) + 76} > 0,

since p+ q ≥ 20.
Case (iii). If 3 ≤ r ≤ 5, then n = p + q − r − 1. So S does not contain a

4-cycle. Then proceeding similarly as above, we can prove that

b4(S) − b4(B
2,2
n,n+1) =

1

2
{(p+ q)2 − 13(p+ q) + r2 + 13r− 2(p+ q)r+ 46} > 0.

This proves that the result is true for n − p− q+ r = −1. Assume the result

to be true for n− p− q+ r < p ′, where p ′ ≥ 0. Let n− p− q+ r = p ′. Then

S has a pendent edge, say e = uv, with v as a pendant vertex. Apply Lemma

4, we have

b4(S) = b4(S− {v}) + b2(S− {u, v})

and

b4(B
2,2
n,n+1) = b4(B

2,2
n−1,n) + b2(S5).

By induction, it is easy to see that b4(S−{v}) > b4(B
2,2
n−1,n) and b2(S−{u, v}) ≥

5 = b2(S5) if S 6= Sk,tn,n+1 (k = 0, 1, 2, 3 and t = 1, 2, 3), Bk,tn,n+1 (k = 0, 1, 2, and

t = 1, 2), Q1,tn,n+1 (t = 1, 2), Q
2,t
n,n+1 (t = 1, 2, 3, 4), Q

3,t
n,n+1 (t = 1, 2, 3), Q1,tk

(k = 1, 2, . . . , 52 and t = 1, 2), Q1,3k (k = 1, 2, . . . , 14, 17, 18, 30, 39, 40, . . . , 44),

Q2,tk (k = 1, 2, 3, . . . , 34 and t = 1, 3), Q2,tk (k = 1, 2, 3, 4, 5, 6, 26 and t =

2, 4), Q3,t1 (t = 1, 2, 3, 4), Q4,1k (k = 1, 2, . . . , 6), Q4,t1 (t = 2, 3), Q5,1k (k =

On ordering of minimal energies in bicyclic signed graphs 119

1, 2, . . . , 15), Q5,21 , Q5,22 , Q6,tk (k = 1, 2, . . . , 7 and t = 1, 2) and Q6,31 . Thus

b4(S) > b4(B
2,2
n,n+1). Further as S ∈ θ(n, p, q, r), so b2j(S) ≥ 0 for all j ≥ 3.

Also, b2j(B
2,2
n,n+1) = 0 for all j ≥ 3 and b2j+1(B

2,2
n,n+1) = 0 for all j ≥ 0. The

second summand of logarithm in integral formula given in Theorem 2 is non

negative for the signed graph S ∈ θ(n, p, q, r) (in fact for every signed graph).

Hence, S � B2,2n,n+1. By integral formula given in Theorem 2, we see that E(S) >
E(B2,2n,n+1). If S = Q1,2n,n+1 , Q2,2n,n+1, Q

2,4
n,n+1,Q

1,t
k (k = 1, 2, . . . , 52 and t = 1, 2),

Q1,3k (k = 1, 2, . . . , 14, 17, 18, 30, 39, 40, . . . , 44), Q2,tk (k = 1, 2, 3, . . . , 34 and

t = 1, 3), Q2,tk (k = 1, 2, 3, 4, 5, 6, 26 and t = 2, 4), Q3,t1 (t = 1, 2, 3, 4), Q4,1k
(k = 1, 2, . . . , 6), Q4,t1 (t = 2, 3), Q5,1k (k = 1, 2, . . . , 15), Q5,21 , Q5,22 , Q6,tk
(k = 1, 2, . . . , 7 and t = 1, 2) and Q6,31 , then the result follows by Lemmas 9,

18, 19, 20 and 21. This completes the proof. �

Theorem 23 Among all bicyclic signed graphs with n ≥ 17 vertices, B2,2n,n+1
is the signed graph with 20th minimal energy for all n ≥ 30 and with 16th

minimal energy for all 17 ≤ n ≤ 29. Also, we have ordering of energies in

ascending order as follows.

(i) For all n ≥ 30, we have

E(S0,1n,n+1) = E(S0,2n,n+1) < E(S0,3n,n+1) < E(B0,1n,n+1) < E(S1,1n,n+1) = E(S1,2n,n+1)
< E(S1,3n,n+1) < E(B0,2n,n+1) < E(B1,1n,n+1) < E(Q1,1n,n+1) < E(S2,1n,n+1) = E(S2,2n,n+1)
< E(S2,3n,n+1)
< E(Q2,1n,n+1) = E(Q2,3n,n+1) < E(B1,2n,n+1) < E(Q3,1n,n+1) = E(Q3,2n,n+1)
< E(Q3,3n,n+1) < E(H3n,n+1) < E(H1n,n+1) = E(H2n,n+1) < E(B2,1n,n+1) < E(S3,1n,n+1)
= E(S3,2n,n+1) < E(S3,3n,n+1) < E(B2,2n,n+1).
(ii) For all 17 ≤ n ≤ 29, we have

E(S0,1n,n+1) = E(S0,2n,n+1) < E(S0,3n,n+1) < E(B0,1n,n+1) < E(S1,1n,n+1) = E(S1,2n,n+1)
< E(S1,3n,n+1) < E(B0,2n,n+1) < E(B1,1n,n+1) < E(Q1,1n,n+1) < E(S2,1n,n+1) = E(S2,2n,n+1) <
E(S2,3n,n+1) < E(Q2,1n,n+1) = E(Q2,3n,n+1)
< E(B1,2n,n+1) < E(B2,1n,n+1) < E(S3,1n,n+1) = E(S3,2n,n+1) < E(S3,3n,n+1) < E(B2,2n,n+1).

Proof. This follows by Corollary 10 and Theorems 12, 17 and 22. �

Acknowledgements. This research is supported by SERB-DST research

project number CRG/2020/000109. The research of Tahir Shamsher is sup-

ported by JRF financial assistance by Council of Scientific and Industrial Re-

search (CSIR), New Delhi, India.

120 S. Pirzada, T. Shamsher, M. A. Bhat

Q
1

5,1 Q
2

5,1 Q
3

5,1

Q
4

5,1

Q
5

5,1
Q
6

5,1

Q
7

5,1

Q
8

5,1

Q
9

5,1

Q
10

5,1 Q
11

5,1
Q
12

5,1

Q
13

5,1

Q
14

5,1 Q
15

5,1

Q
1

6,1
Q
2

6,1

Q
3

6,1 Q
4

6,1

Q
5

6,1 Q
6

6,1

Q
7

6,1

Figure 11: Signed raphs Q5,1k , k = 1, 2, . . . 15 and Q6,1k , k = 1, 2, . . . , 7

On ordering of minimal energies in bicyclic signed graphs 121

References

[1] B. D. Acharya, Spectral criterion for the cycle balance in networks, J. Graph

Theory 4 (1980) 1–11. ⇒88

[2] M. A. Bhat, S. Pirzada, Unicyclic signed graphs with minimal energy, Discrete

Appl. Math. 226 (2017) 32–39. ⇒87, 88, 90

[3] M. A. Bhat, S. Pirzada, On equienergetic signed graphs, Discrete Appl. Math.

189 (2015) 1–7. ⇒87, 103

[4] M. A. Bhat, U. Samee, S. Pirzada, Bicyclic signed graphs with minimal and

second minimal energy, Linear Algebra Appl. 551 (2018) 18–35. ⇒ 87, 89, 90,

91, 99

[5] X. Yang L. Wang, On the ordering of bicyclic digraphs with respect to energy

and iota energy, Applied Math. Comput. 339 (2018) 768–778. ⇒87

[6] K. A. Germina, S. Hameed, T. Zaslavsky, On products and line graphs of signed

graphs,their eigenvalues and energy, Linear Algebra Appl. 435 (2010) 2432–2450.⇒87

[7] I. Gutman, The energy of a graph, Ber. Math. Statist. Forschungszenturm Graz.

103 (1978) 1–22. ⇒87

[8] S. Ji, J. Li, An approach to the problem of the maximal energy of bicyclic graphs,

MATCH Commun. Math. Comput. Chem. 68 (2012) 741–762. ⇒103

[9] D. Wang, Y. Hou, Bicyclic signed graphs with at most one odd cycle and maximal

energy, Discrete Applied Math. 260 (2019) 244–255. ⇒87

[10] S. Hafeez, R. Farooq and M. Khan, Bicyclic signed digraphs with maximal en-

ergy, Applied Math. Comput. 347 (2019) 702-=711. ⇒87

[11] Y. Hou, Bicyclic graphs with minimum energy, Linear Multilinear Algbera 49

(2001) 347–354. ⇒87

[12] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad,

India, 2012. ⇒103

[13] S. Pirzada, M. A. Bhat, Energy of signed digraphs, Discrete Applied Math. 169

(2014) 195–205. ⇒87

[14] J. Rada, Energy ordering of catacondensed hexagonal systems, Discrete Appl.

Math. 145 (2005) 437–443. ⇒87

[15] J. Zhu, Unicyclic signed graphs with first bn+1
2
c largest energies, Discrete Appl.

Math. 285 (2020) 350–363. ⇒87

[16] J. Zhang, B. Zhou, On bicyclic graphs with minimal energy, J. Math. Chem. 37

(2005) 423—431. ⇒87

[17] J. Zhang, H. Kan, On the minimal energy of graphs, Linear Algebra Appl. 153

(2014) 141–153. ⇒87

Received: March 22, 2021 • Revised: April 5, 2021

https://doi.org/10.1016/j.dam.2017.03.015
https://doi.org/10.1016/j.dam.2017.03.015
https://doi.org/10.1016/j.dam.2015.03.003
https://doi.org/10.1016/j.laa.2018.03.047
https://orcid.org/0000-0002-6160-1761
https://doi.org/10.1016/j.amc.2018.07.067
https://scholar.google.co.in/citations?user=7-KVUXwAAAAJ&hl=en
http://people.math.binghamton.edu/zaslav/
https://doi.org/10.1016/j.laa.2010.10.026
https://www.pmf.kg.ac.rs/gutman/
https://match.pmf.kg.ac.rs/electronic_versions/Match68/n3/match68n3_741-762.pdf
https://doi.org/10.1016/j.dam.2019.01.034
https://scholar.google.com/citations?user=zKG694IAAAAJ&hl=en
https://doi.org/10.1016/j.amc.2018.11.040
https://www.scopus.com/authid/detail.uri?authorId=57197793954
https://doi.org/10.1080/03081080108818705
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.universitiespress.com/
https://doi.org/10.1016/j.dam.2013.12.018
https://dl.acm.org/profile/81100561151
https://doi.org/10.1016/j.dam.2004.03.007
https://doi.org/10.1016/j.dam.2004.03.007
https://doi.org/10.1016/j.dam.2020.06.004
https://doi.org/10.1016/j.dam.2020.06.004
https://www.researchgate.net/profile/Jianbin_Zhang
https://www.researchgate.net/profile/Bo-Zhou-43
https://doi.org/10.1007/s10910-004-1108-x
https://www.scopus.com/authid/detail.uri?authorId=56136347700
https://doi.org/10.1016/j.laa.2014.04.009

Acta Univ. Sapientiae, Informatica 13, 1 (2021) 122–133

DOI: 10.2478/ausi-2021-0006

Estimating the fractional chromatic

number of a graph

Sándor SZABÓ
University of Pécs

email: sszabo7@hotmail.com

Abstract. The fractional chromatic number of a graph is defined as the
optimum of a rather unwieldy linear program. (Setting up the program
requires generating all independent sets of the given graph.) Using com-
binatorial arguments we construct a more manageable linear program
whose optimum value provides an upper estimate for the fractional chro-
matic number. In order to assess the feasibility of the proposal and in
order to check the accuracy of the estimates we carry out numerical ex-
periments.

1 Introduction and preliminaries

A loop and double edge free graph with finitely many vertices and edges is
referred as a finite simple graph. Let V and E be the set of vertices and edges of
a finite simple graph G, respectively. Clearly, the ordered pair (V, E) determines
G uniquely.

Let G = (V, E) be a finite simple graph. A subset I of V is called an in-
dependent set if any two distinct vertices of I are non-adjacent in G. We say
that a subset C of V is a clique in G if two distinct vertices of C are always
adjacent in G. If C has k elements we call C a k-clique. We would like to point
out that a one element subset of V is both a clique and an independent set

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 11A05, 11R04
Key words and phrases: clique and chromatic numbers, fractional chromatic number,
integer programming.

122

http://www.domain.edu
http://www.domain.edu
mailto:sszabo7@hotmail.com

Estimating the fractional chromatic number 123

of G. Similarly, the empty set is both a clique and an independent set of G.
Sometimes the subgraph induced by C in G is called a clique. This ambiguity
in the terminology is not going to cause any problem.

For each finite simple graph G there is an integer k such that G contains
a k-clique but G does not contain any (k + 1)-clique. This well defined k is
called the clique number of G and it is denoted by ω(G). We color the nodes
of G choosing colors from a palette of k colors such that each vertex of G
receives exactly one color and the end points of adjacent vertices never receive
the same color. Such a coloring of the nodes of G is called a legal k-coloring.
For each finite simple graph G there is an integer k such that the nodes of G
can be legally colored with k colors but they cannot be legally colored using
(k− 1) colors. This well defined k is called the chromatic number of G and it
is denoted by χ(G).

There are important problems in applied and theoretical discrete optimiza-
tion which are essentially about determining the clique or chromatic numbers
of a given graph. (Many such instances can be found in [1].) It is known from
the complexity theory of the computations that the optimization problems of
computing the clique or chromatic numbers belong to the NP hard complexity
class. (For more details see [2], [4].) A commonly held interpretation of this
fact is that computing the clique or chromatic numbers are computationally
demanding tasks.

Let G = (V, E) be a finite simple graph. If a vertex v of G is adjacent to
each vertex of G distinct from v, then we call v a full degree node. Deleting a
full degree node from G is reducing both the clique and chromatic number of
G by one. From this reason we may restrict our attention to graphs without
full degree nodes when we are looking for the clique or chromatic numbers.

Let G = (V, E) be a full degree free finite simple graph and let I(1), . . . , I(r)
be all the independent sets of G. To each vertex v of G we assign a non-negative
variable x(v). The optimum value of the linear program P∑

v∈V
x(v)→ max

∑
v∈I(s)

x(v) ≤ 1, 1 ≤ s ≤ r

is called the fractional clique number of G and it is denoted by ωf(G). The
optimum value of the dual of the program is referred to as fractional chromatic
number of the graph G and χf(G) denotes it. By the duality theorem of linear
programming, ωf(G) = χf(G).

124 S. Szabó

1 2 3 4 5 6 7 8

1 × • • • •
2 • × • • •
3 • • × • • •
4 • • × •
5 • × • •
6 • • • × • •
7 • • • × •
8 • • • • ×

1 2 3 4 5 6 7 8

1 × • • •
2 × • • •
3 × • •
4 • × • • •
5 • • • × •
6 • • ×
7 • • • ×
8 • • • ×

Table 1: The adjacency matrices of the graph G and its complement G in
Example 2.

Note that the linear program P is a relaxed version of the linear program Q∑
v∈V

x(v)→ max

x(u) + x(v) ≤ 1, {u, v} 6∈ E.

Solving Q in zero-one variables gives that ω(G) ≤ ωf(G). The main rea-
son behind restricting our attention to full degree free graphs is that in this
situation the inequality x(v) ≤ 1 holds for each v ∈ V.

Consider a legal coloring of the vertices of G and let C(1), . . . , C(k) be the
color classes of the nodes. Note that the linear program R∑

v∈V
x(v)→ max

∑
v∈C(s)

x(v) ≤ 1, 1 ≤ s ≤ k

is a relaxed version of the linear program P. The optimum value of the dual of
R is k even if we solve it in zero-one variables. It follows that χf(G) ≤ χ(G).
Therefore

ω(G) ≤ ωf(G) = χf(G) ≤ χ(G).

Estimating the fractional chromatic number 125

1 1 1 2 2 2 3 3 4 4 4 5

6 7 8 4 5 8 5 8 5 6 7 7

1,6 ×
1,7 ×
1,8 ×
2,4 × • •
2,5 • × •
2,8 ×
3,5 ×
3,8 ×
4,5 • • × • •
4,6 ×
4,7 • × •
5,7 • • ×

1 1 1 2 2 2 3 3 4 4 4 5

6 7 8 4 5 8 5 8 5 6 7 7

1,6 × • • • • • • • • • • •
1,7 • × • • • • • • • • • •
1,8 • • × • • • • • • • • •
2,4 • • • × • • • • • •
2,5 • • • × • • • • • •
2,8 • • • • • × • • • • • •
3,5 • • • • • • × • • • • •
3,8 • • • • • • • × • • • •
4,5 • • • • • • × •
4,6 • • • • • • • • • × • •
4,7 • • • • • • • • • ×
5,7 • • • • • • • • • ×

Table 2: The adjacency matrices of the edge auxiliary graph Γ of the graph G
and its complement Γ in Example 2.

{1,6} [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 1

{1,7} ← [2 [2 [2 [2 [2 [2 [2 [2 [2 [2 2

{1,8} ← [3 [3 [3 [3 [3 [3 [3 [3 [3 3

{2,4} ← 4 [4 [4 [4 4 [4 [4 [4 4

{2,5} ← [4 [4 [4 4 [4 [4 [4 4

{2,8} ← [5 [5 [5 [5 [5 [5 5

{3,5} ← [6 [6 [6 [6 [6 6

{3,8} ← [7 [7 [7 [7 7

{4,5} ← [4 4 4 4

{4,6} ← [8 [8 8

{4,7} ← 9 9

{5,7} ← 9

Table 3: Greedy sequential coloring of the nodes of the complement of the edge
auxiliary graph Γ in Example 2.

126 S. Szabó

C(1): {1,6} I(1): 1,6

C(2): {1,7} I(2): 1,7

C(3): {1,8} I(3): 1,8

C(4): {2,4},{2,5},{4,5} I(4): 2,4,5

C(5): {2,8} I(5): 2,8

C(6): {3,5} I(6): 3,5

C(7): {3,8} I(7): 3,8

C(8): {4,6} I(8): 4,6

C(9): {4,7},{5,7} I(9): 4,5,7

Table 4: The cliques C(1), . . . , C(9) of the graph Γ and the corresponding
cliques I(1), . . . , I(9) of the graph G in Example 2.

x1 x2 x3 x4 x5 x6 x7 x8
1 1 1 1 1 1 1 1 → max

(1) 1 1 ≤ 1

(2) 1 1 ≤ 1

(3) 1 1 ≤ 1

(4) 1 1 1 ≤ 1

(5) 1 1 ≤ 1

(6) 1 1 ≤ 1

(7) 1 1 ≤ 1

(8) 1 1 ≤ 1

(9) 1 1 1 ≤ 1

Table 5: The linear program constructed using the independent sets
I(1), . . . , I(9) of the graph G in Example 2.

Estimating the fractional chromatic number 127

�
�
�
�
�
�

�
�
�
�
�
�@

@
@
@
@
@

@
@
@
@
@
@��

��
��

��
��

��
��

��
��PPPPPPPPPPPPPPPPPPs s s s

s s s s

5 6 3 4

8 7 2 1

G :

�
�
�
�
�
�@

@
@
@
@
@s s s s

s s s s

3 5 4 6

8 2 7 1

G :

Figure 1: Graphical representations of the graph G and its complement G in
Example 2.

2 The edge auxiliary graph

To a given finite simple graph G = (V, E) we assign a new graph Γ = (W,F).
We call Γ the edge auxiliary graph of G. The nodes of Γ are the edges of G,
that is, W = E. Let us consider two distinct nodes

w1 = {u1, v1}, w2 = {u2, v2} (1)

of Γ . Here the unordered pairs {u1, v1}, {u2, v2} are edges of G. We construct
the subset X = {u1, v1, u2, v2} of V. Since the nodes w1, w2 are not equal, the
set X has either 3 or 4 elements. If the subgraph induced by X in G is a clique
in G, then we say that X is a qualifying subset of V. The nodes (1) are adjacent
in Γ if the associated subset X is qualifying.

We are interested in the interplay between the cliques in the graphs G and
Γ . If a subset U of V is the set of nodes of a k-clique in G, then the unordered
pairs {u, v}, u, v ∈ U are the nodes of an s-clique in Γ , where s = k(k − 1)/2.
In other words cliques in G give rise to cliques in Γ . Cliques in Γ also give rise
to cliques in G. Let

w1 = {u1, v1}, . . . , ws = {us, vs} (2)

128 S. Szabó

�
�
�
�
��

@
@
@
@
@@s

s

s

s

s

s

s

s

s

s

s

s

{4, 7} {5, 7}

{2, 4} {2, 5}

{4, 5}

{1, 8}

{1, 7}

{1, 6}

{3, 8}

{3, 5}

{2, 8}

{4, 6}Γ :

��
��

�
��

�
��
�

�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
AA

@
@

@
@
@@

�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

@
@
@

@
@
@

@
@
@

@@

HH
HH

H
HH

H
HH

H
��

��
��

��
��

��
��

��PPPPPPPPPPPPPPPP

�
�
�
�
�
�
��

Q
Q

Q
Q
Q

Q
QQ

s

s s

s s

s s

s s

s s

s

{4, 5}

{4, 7} {2, 5}

{2, 4} {5, 7} {1, 6}

{4, 6} {1, 7}

{3, 8} {1, 8}

{3, 5} {2, 8}

Γ :

Figure 2: Graphical representations of the graph Γ and its complement Γ in
Example 2. Each node of the graph on the right in Γ is adjacent to each node of
the graph on the left. In order to avoid an overly cluttered picture we omitted
these 35 edges.

Estimating the fractional chromatic number 129

parameter number of number of number estimate

of G nodes of G nodes of Γ of colors for ω(G)

3 27 162 17 5

4 64 720 44 9

5 125 2 250 91 14

6 216 5 670 165 21

7 343 12 348 272 29

8 512 24 192 417 38

9 729 43 740 608 48

10 1 000 74 250 850 59

11 1 331 119 790 1 148 72

12 1 728 185 328 1 510 85

13 2 197 276 822 1 940 100

Table 6: Monoton matrices

be vertices of an s-clique in Γ and let

x1, . . . , xk (3)

be all the distinct elements among u1, v1, . . . , us, vs.

Lemma 1 Using the notation introduced above the nodes x1, . . . , xk of G are
the nodes of a k-clique in G.

Proof. We show that the unordered pair {xi, xj} is a edge of the graph G for
each i, j, 1 ≤ i < j ≤ k. As nodes of Γ on the list (2) are nodes of a clique
in Γ it follows that there is an xp on the list (3) such that the unordered pair
w′
1 = {xi, xp} is an edge of G. Similarly, there is an xq on the list (3) such that

the unordered pair w′
2 = {xj, xq} is an edge of G. Using the fact that the nodes

of Γ on the list (2) are the nodes of a clique in Γ we can draw the conclusion
that the subset X = {xi, xp, xj, xq} associated with w′

1 and w′
2 is qualifying.

Consequently, the unordered pair {xi, xj} is an edge of a clique in the graph G.
(It is an edge of either a 3-clique or a 4-clique.) In particular, the unordered
pair {xi, xj} is an edge of the graph G. �

In the next lines we summarize the work flow of computing an upper bound
for the clique number of a given finite simple graph.

(1) Using the given graph G we construct its complement graph G.

130 S. Szabó

parameter number of number of number estimate

of G nodes of G nodes of Γ of colors for ω(G)

3 8 19 5 2

4 16 63 9 4

5 32 191 18 6

6 64 543 34 10

7 128 1 471 66 17

8 256 3 839 130 30

9 512 9 724 258 53

10 1024 24 063 514 96

11 2048 58 367 1 026 175

Table 7: Deletion error detecting codes

parameter number of number of number estimate

of G nodes of G nodes of Γ of colors for ω(G)

6 15 60 20 5

7 35 210 35 8

8 70 560 56 11

9 126 1 260 84 21

10 210 2 520 120 30

11 330 4 620 165 41

12 495 7 920 220 55

13 715 12 870 286 71

14 1 001 20 020 364 91

15 1 365 30 030 455 113

16 1 820 43 680 560 140

17 2 380 61 880 680 170

Table 8: Johnson codes

Estimating the fractional chromatic number 131

(2) Using G we construct its edge auxiliary graph Γ .

(3) From Γ we construct its complement graph Γ .

(4) We color the nodes of Γ legally. The color classes C(1), . . . , C(s) of the
nodes of Γ are cliques in Γ .

(5) Using the cliques C(1), . . . , C(s) in Γ we construct cliques I(1), . . . , I(s) in
G. (We apply Lemma 1.) The cliques I(1), . . . , I(s) in G are independent
sets in G.

(6) Using the independent sets I(1), . . . , I(s) in G we construct a linear pro-
gram P.

(7) Solving the linear program P gives an upper bound for ω(G).

3 A small size toy example

In this section we work out a small example in details. Our intension is to
illustrate the concepts and arguments we have seen earlier.

Example 2 Let us consider the finite simple graph G = (V, E) defined by its
adjacency matrix in Table 1. The graph G has 8 vertices and 16 edges. The
vertices are denoted by 1, . . . , 8, that is, V = {1, . . . , 8}. A possible geometric
representation of G can be seen in Figure 1.

An inspection shows that ω(G) = 4. We pretend that we are not aware of
this fact and with full seriousness we carry out a procedure to establish an
upper estimate for ω(G).

Table 1 shows the adjacency matrix of the given graph G. This is adjacency
matrix is on the left. We constructed the adjacency matrix of the graph G. This
can be seen on the right. Possible geometric representations of these graphs
are in Figure 1. Using G we constructed its edge auxiliary graph Γ . Table 2
shows the adjacency matrices of the edge auxiliary graph Γ of the graph G
and its complement Γ . Possible geometric representations of these graphs are
depicted by Figure 2.

We used the simplest greedy coloring procedure to construct a legal coloring
of the nodes of Γ . Table 3 summarizes the procedure. The first column contains
the nodes of Γ and the last column holds the colors of the nodes. The color
classes C(1), . . . , C(9) of the nodes of Γ are nodes of cliques in Γ and are listed in

132 S. Szabó

Table 4. This table also lists the independent sets I(1), . . . , I(9) corresponding
to the cliques C(1), . . . , C(9) in the given graph G.

We used these independent sets to set up a linear program. The linear
program is given by Table 5.

4 Numerical experiments

The edge auxiliary graph Γ , we construct from the complement G of the given
graph G, has as many vertices as many edges G has. Then we locate a legal
coloring of the nodes of Γ the complement of the auxiliary graph Γ . We carry
out numerical experiments to see whether greedy coloring of such large graphs
gives results that are useful in practical setting.

We use three infinite families of graphs as test cases. All of them are related
to coding theory. The graphs associated with monotonic matrices are described
in details in [6] and [7]. The graphs connected to deletion error detecting codes
are presented in [5]. Finally the reader can find further material about the so-
called Johnson codes in [3].

Table 6 contains the result of our computation related to the graphs associ-
ated with monotonic matrices. The first column contains the parameter of the
graph G we work with. In the second column one can find the number of the
nodes of G. The third column holds the number vertices of Γ which is equal to
the number of edges of G. The fourth column lists the number of colors used
for legally coloring the nodes of Γ . Finally, the last column shows the upper
estimate we get for ω(G).

Tables 7 and 8 can be interpreted in an analogous way. We may conclude
that the procedure we proposed to set up a linear program to estimate the
clique number of a given graph can be carried out safely in connection with
relatively large graphs that occur in practical clique search problems.

Acknowledgements

I would like to express my thanks for the anonymous referees.

References

[1] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The Maximum Clique
Problem, Handbook of Combinatorial Optimization Vol. 4, Kluwer Academic
Publisher, 1999. ⇒123

Estimating the fractional chromatic number 133

[2] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness, Freeman, New York, 2003. ⇒123

[3] J. Hasselberg, P. M. Pardalos, G. Vairaktarakis, Test case generators and compu-
tational results for the maximum clique problem, Journal of Global Optimization
3 (1993) 463–482. ⇒132

[4] C. H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing
Company, Inc., Reading, MA 1994. ⇒123

[5] N. J. A. Sloane, Challenge Problems: Independent Sets in Graphs. https://

oeis.org/A265032/a265032.html ⇒132
[6] S. Szabó, Monotonic matrices and clique search in graphs, Annales Univ. Sci.

Budapest., Sect. Computatorica 41 (2013), 307–322. ⇒132
[7] E. W. Weisstein, Monotonic Matrix, In: MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/MonotonicMatrix.html ⇒132

Received: April 1, 2021 • Revised: May 16, 2021

https://link.springer.com/article/10.1007/BF01096415
https://oeis.org/A265032/a265032.html
https://oeis.org/A265032/a265032.html
http://mathworld.wolfram.com/MonotonicMatrix.html

Acta Univ. Sapientiae, Informatica 13, 1 (2021) 134–179

DOI: 10.2478/ausi-2021-0007

Improving productivity in large scale

testing at the compiler level by changing

the intermediate language from C++ to

Java

Izabella Ingrid FARKAS
Eötvös Loránd University,

Budapest, Hungary
email: Ingrid.Farkas@inf.elte.hu

Kristóf SZABADOS
Ericsson Hungary Ltd.,

Budapest, Hungary
email:

Kristof.Szabados@ericsson.com

Attila KOVÁCS
Eötvös Loránd University,

Budapest, Hungary
email: Attila.Kovacs@inf.elte.hu

Abstract. This paper is based on research results achieved by a col-
laboration between Ericsson Hungary Ltd. and the Large Scale Testing
Research Lab of Eötvös Loránd University, Budapest. We present de-
sign issues and empirical observations on extending an existing industrial
toolset with a new intermediate language1.

Context: The industry partner’s toolset is using C/C++ as an inter-
mediate language, providing good execution performance, but “somewhat
long” build times, offering a sub-optimal experience for users.

Objective: In cooperation with our industry partner our task was to
perform an experiment with Java as a different intermediate language
and evaluate results, to see if this could improve build times.

Computing Classification System 1998: D.2.2, D.2.3, D.2.6, D.2.9, D.3.4
Mathematics Subject Classification 2010: 68N20
Key words and phrases: C/C++, Java, IDE, compiler, Titan, developer productivity,
performance, efficiency, incremental compilation, industrial experience, TTCN-3

1An intermediate language is a language which the input program is translated to, by
using the already existing compilation toolchain, reaching the executable state.

134

https://www.researchgate.net/profile/Ingrid-Farkas-2
http://www.elte.hu/
http://www.elte.hu/
mailto:Ingrid.Farkas@inf.elte.hu
https://www.researchgate.net/profile/Kristof_Szabados
https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/hungary
https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/hungary
mailto:Kristof.Szabados@ericsson.com
http://compalg.inf.elte.hu/~attila/
http://www.elte.hu/
http://www.elte.hu/
mailto:Attila.Kovacs@inf.elte.hu

Improving productivity by changing the intermediate language 135

Method: We extended the mentioned toolset to use Java as an inter-
mediate language.

Results: Our measurements show that using Java as an intermediate
language improves build times significantly. We also found that, while
the runtime performance of C/C++ is better in some situations, Java,
at least in our testing scenarios, can be a viable alternative to improve
developer productivity.

Our contribution is unique in the sense that both ways of building
and execution can use the same source code as input, written in the same
language, generate intermediate codes with the same high-level structure,
compile into executables that are configured using the same files, run on
the same machine, show the same behaviour and generate the same logs.

Conclusions: We created an alternative build pipeline that might en-
hance the productivity of our industry partner’s test developers by re-
ducing the length of builds during their daily work.

1 Introduction

Nowadays, the usage of software – developed by 11 million professional soft-
ware developers ([4]) – belongs to the everyday life of our society. Software
helps in navigating to destinations, communicating with other people, driving
the production, distribution and consumption of energy resources. Software
drives companies, trades on the markets, takes care of people‘s health. In or-
der to support the growing demand for assuring quality ETSI2 designed the
TTCN-33 ([16]) standardised notation specifically for testing. TTCN-3 is im-
portant in many industrial domains. It is used for testing telecommunication
systems ([13, 14]), IoT4 systems ([45]), ITS5 systems ([15, 34]), oneM2M sys-
tems ([25]), security in the industry ([3]), smart grids ([35]), etc.

As the products to be tested grow, so did their test systems written in
TTCN-3, growing to millions of lines of code in size ([5]), having complex ar-
chitectures ([36, 39]), showing code quality patterns ([27, 28, 37]) and evolution
trends ([38]) very similar to those present in other programming languages.
The size and complexity of these huge test systems lead to long lasting build
and development iterations (also seen for various projects ([23]) using other
programming languages). At our industry partner in a full build scenario –
Figure 1(a) – building some of these large-scale test systems could require

2European Telecommunications Standards Institute
3Test and Test Control Notation 3
4Internet of Things
5Intelligent Transportation Systems

136 I. I. Farkas, K. Szabados, A. Kovács

approximately 20 minutes from zero even on server-grade, 28 core machines
allocated for such tasks only. In an incremental, iterative scenario – Figure
1(b) – even if every developer worked on such a dedicated server, it would
still take a few minutes to check the effect of a code change. Clearly, neither
scenario means “fast feedback” for the developers and allocating a separate
build server for each developer is not cost-efficient.

Sources Binary Result

Build Execution

(a)

Binary

Result

BuildExecution

New Source
version

Modification

(b)

Figure 1: Building from source code. In the full build scenario 1(a) the full code
base is built from zero so that the developer is able to execute the produced
binary to see how it works. In the incremental build scenario 1(b) developers
perform some modifications to the code, re-build the binary (incrementally, us-
ing the already built parts), execute the produced binary to see how it works
and based on the result produce further modifications to the source starting
the loop again. The length of these loops (build and execution time together)
highly impact the development speed. Please note that applying a Continu-
ous Integration machinery the full build can also be a loop, determining how
fast/often developers can get feedback on their changes.

In this paper we present how a build process was created for our industry
partner’s tool that uses Java as the intermediate language. This new process
is based on the existing one that used C/C++. We were tasked by our indus-
try partner for performing and experimenting on the effects of adding a new
intermediate language to our industry partner’s toolset. We found that our
solution is a good way to support the process of building large-scale TTCN-3
test systems by enabling the developers to get faster feedback after a code
change.

Some of the reasons why our industry partner (at around 2000 as shown in
[40]) chooses to create a build process that uses C/C++ as an intermediate
language:

Improving productivity by changing the intermediate language 137

� TTCN-3 defines itself to be a language operating on an abstract level,
creating abstract test suites, offering standardised mapping of its runtime
([12]) and control ([17]) interfaces to Java, ANSI C, C++6, C#.

� Translating from TTCN-3 to C/C++ and lets platform dependent C/C++
compilers generate the binary, reduces development cost by supporting
several platforms (operating system) handled by the C/C++ compilers.

� In case of a new C/C++ compiler version, used in the build pipeline on
a platform, improves its code optimisation mechanisms (as part of the
build process) then users of our industry partner’s tool will also benefit
from it on that platform.

� Translating from TTCN-3 to C/C++ not just offers high execution
speeds, but as the code generated is statically typed, the type correctness
of the operations is checked by the C/C++ compiler as well.

While for the purpose of the experiment presented in this article Java is
just another programming language, in practice, our industry partner chooses
Java for its added benefits:

� As the part of the toolset running on Eclipse was already written in
Java (syntax and semantic analysis, code quality checking, refactoring,
architecture visualisation), generating Java code keeps their systems con-
sistent, and builds on already existing expertise.

� Eclipse users have access to a free and mature Java Development En-
vironment that can be used to compile the generated Java code to an
executable format, supports users in executing these projects, offers ex-
tensive support for developing code (for example developing test ports),
etc...

� Opposed to C/C++ codes, that require to build separate binaries for the
different operating systems, Java is running on virtual machines available
on most platforms, and only one build is needed during the release, and
CI procedures to support those systems (and maybe even ones not yet
supported) automatically.

Our contribution is unique in the sense that with our extension there are
two different build and runtime environments (see Figure 2) available for the

6Our industry partner uses a proprietary mapping better suited for their specific needs

138 I. I. Farkas, K. Szabados, A. Kovács

developers. The input to both can be the same TTCN-3 source code. In order
to unburden the conversion of the already existing platform dependent code
parts, we kept the new runtime architecture, generated code and conversion
methods as close as possible to the original one. The execution of the built “bi-
naries” can be configured with exactly the same configuration files, performed
on the same machine, creates same log messages, and in parallel mode, con-
nects to and is directed by the same main controller via the same internal
protocols. This puts us in the position of being able to study the effects of
both environments on the development of the same user product.

TTCN3 code

Executable

Log file

Executable

Execution Java code

Titan Runtime
libary (Java)

C/C++ code

Titan Runtime
libary (C/C++)

Java compiler

C/C++ compiler

Titan
Build

{XOR}

Figure 2: The figure presents the relationship of the 2 build and runtime envi-
ronments. The input is the same for both the Java and C/C++ build pipeline
and the execution of the binaries produce the same log files. The runtime li-
braries are the implementation of the base types, additional functions, etc. of
the TTCN-3 language.

Our findings indicate that while C/C++ still might have performance ad-
vantages over Java in some situations, Java enables faster development itera-
tions, and at least in our case, provides acceptable execution performance.

This paper is organised as follows. In Section 2 we present earlier work
related to our subject. Section 3 presents our design and Section 4 some general
implementation details. Section 5 shows our measurements and comparisons
on build times and execution performance on both the C/C++ and Java sides.
Section 6 deals with the limitations and Section 7 deals with the validity of
our results. Finally, Section 8 summarises our findings.

In Section A in the Appendix we provide a short introduction to TTCN-3
and in Section B we show more details to our measurements.

Improving productivity by changing the intermediate language 139

2 Related Work

The examined toolset, Titan7, has actively been developed and used in the last
20 years. During this time it has already gone through the usual steps of build
time improvements: optimisation, experimenting with Continuous Integration
configurations, better hardware, incremental build support, caching, etc. Our
industry partner’s experience showed that in the case of Titan’s build process
the full length of the compilation mostly came from using C/C++ as the
intermediate language (in the projects shown in sections 5.2 and 5.5 this is
measured to be approx. 96-97%). In order to improve the build process our
university laboratory were asked to perform an experiment for compiling to a
different intermediate language and for creating an alternative build process
for the users of our industry partner’s tool.

Although it could be said that we had to create a cross-compiler translating
from TTCN-3 to Java and the runtime library it links to, this is only a part of
the build process that creates value for the users. The users, in this case, write
automated tests and execute them. From their point of view all of the oper-
ations required to make their tests run are “necessary technical limitations”
that should be done in the background as fast as possible, as it engrosses time
from the productive work. Also the term “cross-compilation” might induce
misunderstandings: In the everyday usage of the term, a cross-compiler is a
compiler that is compiling to a different hardware/software architecture that
is not available, or does not support direct compilation on itself (like embed-
ded devices). Compared to this, our solution takes the same input source code
and creates an output executable that will be executed on the same machine
(see figure 2). As such, we also find it better to look at our work as creating
an alternative side of the toolset (instead of cross-compilation) as that better
captures the scope and goal of the work.

When we tried to elicit information on the build time of different program-
ming languages, we found that plenty of people engage in rather unhealthy
discourses on how one programming language is “better” than the other, with-
out any measurements for practical use cases. The general internet community
does not seem to have easily available and thorough information about that.
There also seems to be little academic interest on this topic. Maybe this is
coming from the lack of deep connection between industry and academia.
Maybe it is hard to find funding to run a 3 year-long experiment purely on

7https://projects.eclipse.org/projects/tools.titan

140 I. I. Farkas, K. Szabados, A. Kovács

the academic side to reach functional equivalence in the implementation, while
keeping industrial level code quality and coding practices.

At the same time long compilation times seem to be a widespread problem.
While studying GitHub repositories of Java and Ruby projects Ghaleb et
al. found ([23]), that 40% of the builds lasted more than 30 minutes. They
suggest that developers should properly configure their Continuous Integration
systems and use tools to identify cacheable spots. Others, like Abdalkareem
et al. [1], tried to combat long-running builds by trying to identify changes for
which the CI build might be skipped. While their results might make it possible
to skip on average about 5% of the CI builds, in the iterative working scenarios
we are investigating, this would still mean too many, too long-running builds,
that hold back the productivity of the developers.

Reinholtz predicted ([33]) that Java not only can, but also will have better
general performance than C++. He reasoned that Java can compile and re-
compile the program as it executes and has access to runtime information not
available to a traditional C++ compiler allowing to achieve better execution
performance. Our measurements show that C++ still has an edge during the
initial executions, however, for longer executions, Java can reach a measurably
better performance in some situations.

Although they directly migrated a software from COBOL to Java, the clos-
est to our task we could find was the experience of De Marco et al. ([8]). They
explained that an earlier attempt at redeveloping the same application from
scratch has failed. So they choose to migrate the application to a new plat-
form and programming language using code and data translation approaches.
They reported delivering an application functionally equivalent to the origi-
nal and provided some useful remarks: (1) the new Java application still had
to follow COBOL idioms and mainframe concepts, (2) they observed perfor-
mance bottlenecks during the conversion, and (3) mentioned that even with
the translation they needed to develop deep application understanding.

Batyuk et al. found ([6]) that native C applications running on the Linux
layer of Android can be up to 30 times faster than identical Java applications
running on the Java Virtual Machine of Android. For their measurement they
sorted arrays of random integers with different sorting algorithms. Although
this can be a way for performance measurement it is not something most
people use their phones for.

Some researchers have already observed that even if Java is not always
“better” than C++, it has other features which might make it as a reasonable

Improving productivity by changing the intermediate language 141

choice. Amedro et al. ([2] compared the performance of a Fortran + MPI8 and
a Java implementation of the NPBs9. They found that “the overhead of Java is
now acceptable when performing computationally intensive tasks”, but they
also found that (in 2008) Java had scalability problems in communication-
intensive benchmarks.

Gherardi et al. found ([24]) that using the server compiler option, Java was
only 1.09 to 1.91 times slower in their tests aiming at robotics-related scenarios.
They concluded that for their use cases, also taking into account the additional
benefits offered by the language, “Java can be considered a valid alternative
to C++”.

Taboada et al. analysed ([41]) the applicability of Java for High-Performance
Computing. They also started with the assumption that Java lacks thorough
evaluation on its performance, therefore they provided their implementation.
They concluded that Java may achieve similar performance to natively com-
piled languages. Their most favourite features of the language (platform in-
dependence, portability, type safety, etc.) seem to them reasonable for the
trade-off in the performance overhead.

Cook found ([7]) that a Java implementation of OpenMP10 can be faster
than a C implementation. They hypothesised that maybe the GCC implemen-
tation of OpenMP had deficiencies.

Nanz and Furia analysed ([31]) programs from the Rosetta Wiki, a site that
collects solutions to programming tasks, implemented in various programming
languages. This repository allowed them to compare several solutions, written
in different programming languages, to the same programming tasks. Using
statistical analysis (p-values, effect sizes) they found that “C is the king on
computing-intensive workloads”, but in the case of “everyday” workloads “lan-
guages may be able to compete successfully regardless of their programming
paradigm”. Later Furia et al. reanalysed ([21]) the same data with Bayesian
techniques allowing them to draw more detailed conclusions.

While their works ([31, 21]) are consistent for their purposes, from our
point of view their performance measurement had a bias for languages that
compile into machine code: a) the compilation times were not measured/dis-
closed, which effectively gives an edge to pre-compiled languages over Just-
In-time languages; b) as each execution was a standalone execution, this still
might have penalised the Just-In-Time compiled languages where optimisa-
tions might only happen after a code part was executed several times (to have

8Message Passing Interface
9Numerical Aerodynamic Simulation Parallel Benchmarks

10http://www.openmp.org

142 I. I. Farkas, K. Szabados, A. Kovács

profiling information for the optimisation). This way, pre-compiled languages
could spend as much time as they wish on compilation and code optimisation
at no cost in this setup, while Just-In-Time compiled languages might have
been penalised for it if this starts during execution (because their compilation
happens during execution), or have optimisations effectively disabled in some
cases.

The papers described above presented some advantageous features of Java
over C++, and in special cases showed that they have similar runtime perfor-
mance. However, we could not find any recent academic studies which would
present us the experiments on full build and execution times.

While working on this article it came to our attention that some hardware
testing youtube channels like Gamers Nexus ([29]) started to publish code
compilation test results for their hardware tests, in order to be able to measure
the performance differences in massively multi-core modern CPUs. Their work
offers useful, publicly available and detailed information for developers on what
hardware to buy as their development equipment to improve their productivity.
At the same time, by the very nature of their tests (building the same code
with the same build system on several different CPUs), they will miss the
opportunities presented in this article (where we reduce the build time on
the same hardware, by using a different intermediate language, to reach a
functionally equivalent executable).

3 Design

In this section we go into the design of our solution. We introduce the general
context in which the design had to fit in. We explain the general design rules
that we had to follow to be able to handle the long-lasting development process.

We don’t detail the mapping of TTCN-3 elements to C/C++ or Java for
two reasons: 1) as we tried to follow the mapping already existing on the C
side, we dare claim as original ideas/observation only those cases where we
had to differ in some way, 2) to save space in this article, as the mapping of
TTCN-3 elements, runtime elements and API are already described in detail
in the reference guide of the C side ([11]) and the reference guide of the Java
side ([10]). We also made an example package available ([20]) containing a
”Hello World” and some simple types in TTCN-3, together with the C/C++
and Java codes they compile into.

Improving productivity by changing the intermediate language 143

3.1 Context

To the best of our knowledge, at present TTCN-3 is the only internationally
standardised notation designed specifically for testing which is also used fre-
quently in the industry. Originally, Titan was able to translate TTCN-3 using
C/C++ as the intermediate language ([40]). We were tasked to extend the
part of Titan that runs on Eclipse to be able to generate Java code and write
the necessary runtime libraries. As the examined tool stands behind many
applications our solution might have a high impact, and at the same time, is
also limited in how far we can drift from the current setup incentivising us to
keep the architecture as close as possible to the original one.

Compared to De Marco et al. ([8]), we already had a deep understanding of
the behaviour of the already existing code. Our team had a profound experi-
ence with Titan, either being its system architect, or being the member of the
Large Scale Testing Research Lab.

Almost all of the needed tests had already been available for us before
starting the development. Titan uses TTCN-3 code to test how well it can
build and execute TTCN-3 code. As the new extension had to support the
same input language, resulting in the same behaviour and output, and needed
to conform to the same tests, our industry partner selected a set of their
already existing tests to test our extension. We had to be able to successfully
build and execute these tests, generate the same runtime logs during execution
to show that the result of our experiment can be functionally equivalent to
the existing solution.

We would like to highlight that we consider functionally equivalent the
C/C++ and Java side if the logs, of the executions of the same tests, are
the same since the logs contain detailed information together with the result
(none, pass, inconc, fail, error) of the test cases. Keeping the architecture and
the Java implementation as close as possible to the C/C++ architecture and
implementation also contributed to guarantee this functional equivalence.

3.2 General design approach

It was clear from the beginning, that this experiment was going to take years,
so we had to establish some general design rules that would govern our work
and accept that certain limitations were reasonable to keep the timeframe.

Instead of inventing a new concept, we decided to stick to the already exist-
ing build and runtime structures. The following design decisions were made:
(1) maximize the speed of work, (2) minimize the risk of running into major

144 I. I. Farkas, K. Szabados, A. Kovács

blocking issues, (3) provide the users of our industry partner with the option
to choose between tools that are as much as possible identical in their func-
tionality, (4) minimize the cost of converting the already existing platform
dependent code (testports and external functions). We also decided to leave
possible Java-specific optimisations (that were not necessary to provide the
same functionality) for later.

3.3 Performance optimisation shifted to the end

It is important to understand that when building a compiler, most of the
infrastructure must be in place and language support must be implemented,
before any kind of relevant performance measurement, needed for optimisation,
can be done. For example:

� The concept of the compiled code, the runtime libraries and how they
relate to each other must exist.

� The compiler needs to be able to generate the classes that represent the
TTCN-3 modules.

� The compiler must also be able to generate code for functions and func-
tion calls.

� The runtime must have a decent implementation of the classes repre-
senting the used types, so that they could be used in the generated code.

� The compiler must be able to generate code for variables of these types,
for their instantiation, for checking their values, etc...

� The compiler must also be able to support statements that represent
loops, assignments, variable definitions, etc...

Already, reaching the minimum level to do some performance measurement
(e.g. simple operation in a loop) requires substantial work, and this might still
not be indicative of the performance characteristics of the final tool, as that
will need to support much more features with possibly different structures.
Hence, as the first step, we decided to “just rewrite” the existing C/C++
code to a functionally equivalent Java code, and optimise it further only after
thorough testing.

Improving productivity by changing the intermediate language 145

3.4 Handling long development timeframe

It took us 3 years to reach a stage where we could claim to have reached
functional equivalence on the tests we received from our industry partner. This
is of course not complete functional equivalence to the industrial tool, but a
transition point when our experiment can be turned into industrial product
to reach complete functional equivalence.

To make sure we are on the right track we used parts of the tests we received
from our industrial partner. Throughout the development we have seen that
the build times were showing promising results (for the limited set of elements
supported at those times) and that we did not run into problems that could
have blocked this project.

To handle the challenge of not yet supported features and missing code
parts, we used FIXME and TODO tags in the compiler and Dynamic Testcase
Errors (DTE) in the runtime. Initially, we generated a syntactically erroneous
FIXME string into the code for every statement, type and definition telling
what is missing. Also, functions in the runtime libraries reported DTE when
executed. Putting them together:

1. When a new branch was implemented in the code generator or the run-
time, the FIXME tag was moved into the still missing branch. In this
way, we could effectively reduce the scope of the FIXME tags and allow
testing the executable paths.

2. When a feature was first implemented in the compiler to generate valid
code, the library function still reported a DTE during execution reducing
the scope of the FIXME tag effectively.

3. When a design element for a type, statement or a feature was fully
implemented, all tests had to be run to pass.

This strategy enabled us precise tracking of what was still missing, since those
tests didn’t compile or run into errors.

The TODO tags were used similarly as the FIXME tags, marking improve-
ment ideas that will be implemented later.

4 Implementation

In this section we go into the technical implementation details of which fea-
tures/concepts of the original C/C++ conversion could be reused, and which
needed to be done differently in Java to succeed. Finally, we show a way

146 I. I. Farkas, K. Szabados, A. Kovács

how a compiler in an IDE might offer better performance than a traditional
command-line compiler.

4.1 Concepts that could be reused from the C/C++ side

As we tried to stay as close to the original architecture as possible, there were
several points/concepts that could be reused on the Java side without any
problems.

� On the C side, each module was generated as a separate .hh and .cc

file with a name generated from the module’s name. The Java side kept
the concept, generating a separate .java file from each module, using
the same name conversion procedure.

� On both the C and Java sides non-synonym types were generated as
a class representing the value version of the type and a class (with
template postfix in its name) representing the template version of the

type.

� The runtime libraries of Titan on both sides contained the implemen-
tation of the same built-in types, runtime functionalities and additional
functions.

� The implementation of each type in the runtime library of Titan on both
sides followed the same abstract logic, had similar abstract interfaces,
access patterns, etc...

4.2 Concepts of the C side that needed to be adapted

While many of the concepts could be reused, we had to make some changes.

� In the generated .hh and .cc files of the modules the code was located
in a namespace generated from the module’s name. On the Java side, we
generated a class from each module, and the definitions of the module
would be members and static nested classes of this class.

� Synonym types were mapped on the C side onto typedef -s. On the Java
side we either used the referenced type’s name instead of the new type’s
in the generated code or generated new classes to extend the referenced
ones (if the user requested it or additional properties made it necessary).

Improving productivity by changing the intermediate language 147

� While the runtime libraries of Titan contained the same abstract con-
tents on both sides, there were some minor differences: all code had to
be placed into a package, the additional functions into a class of their
own (on the C side they were outside namespaces), etc...

� While the implementations of each type in the runtime library of Titan
on both sides were similar on an abstract level, in the actual implemen-
tations they differed slightly: Operator overloadings from the C side were
translated as functions on the Java side (operator[] → get at(),

operator== → operator equals(), etc...). Also, const and non-const
access operators are important in the runtime, so they have been mapped
to functions following the naming convention get() / const get(),
get at() / const get at(), etc...

� On the C side each TTCN-3 import statement was translated to be a
C/C++ include statement. As this statement is transitive in C/C++,
it automatically ensures that all needed types are present. However, im-
ports are not recursive in Java. As such, we decided not to generate code
for TTCN-3 import statements, but whenever the code generator found
that it needed to use a definition that was not defined in the TTCN-
3 module (we are currently generating code for) it would generate the
necessary Java import instead for the class that represents the mod-
ule of that definition and generate the “usage” prefix with the name
of its encompassing class (that represents the module it is located in).
Please note, that this way the dependency hierarchy in the generated
Java code can be different from that present in the generated C code.
When the code compiled does not have unnecessary imports, all directly
used modules will be referenced in both generated codes.

� In the generated code the C side used implicit type conversions11 heavily.
In the Java generated code, we had to use two different methods: (1) in
the general case we generated the type conversions as static functions, or
calls to constructors, or (2) we create several versions of the functions in
the runtime library with both native and generated/runtime represented
types, allowing to save the costs of the conversion.

� The Java side had a unique challenge not present on the C side. Nested
classes in the .java files are translated into separate .class files. On MS-

11E.g. assignments between different types when the receiving type has a constructor with
a single parameter of the type to be assigned to it or the assigning type has an implicit cast
operator to the target type.

148 I. I. Farkas, K. Szabados, A. Kovács

Windows however, where the file system is not case sensitive by default,
this created a problem when the names of two or more embedded classes
differ only in small/capital letters, as the file system will not allow gener-
ating the class files properly. To solve this problem an extra translation
step checking the names of TTCN-3 types in the modules, before code
generation, and the problematic names were postfixed with the starting
offset of the definition (to make them unique). As this might create in-
conveniences for the users accessing these definitions from Java, a code
smell checker was implemented in Titanium12 that warns the user dur-
ing semantic checking about similar type definition names in the same
module.

� While C/C++ compilers can choose to ignore unreachable codes (and
so it was also allowed in TTCN-3 in Titan), this is a semantic error in
Java. Since we already had a code smell checker for such situations, we
decided that this issue can be fixed best by the users: they can remove
(the already reported) unnecessary statements from the TTCN-3 code.

� On the C side, the internal representation of string types used reference
counting. This enabled efficient TTCN-3 assignment operations since the
left-hand side could be set to reference the same internal structure used
on the right-hand side (for example unsigned char array for hexstrings)
and delay the actual copy till the variable of a string type needs to be
modified and its internal structure has a reference count > 1. When we
implemented this feature on the Java side we did not measure any sig-
nificant performance benefit (outside of artificial use-cases) and decided
to leave it out to keep the code as simple as possible.

� On the C side, static values of string types were generated into the code
only once, as static objects, that are unique, initialised at startup time
and only referenced during execution. On the Java side, each occurrence
of such a string created a new object in the code. Once implemented, such
an optimisation should improve the runtime speed of the Java generated
code.

� The internal representation of some types on the C side used unsigned

char array to store the elements (for example, hexstring, octetstring).
As Java does not support such an unsigned type we had to use other

12The code quality analyser of Titan for checking for code smells, measuring code metrics
and having support for extracting and visualizing architecture.

Improving productivity by changing the intermediate language 149

signed types, for example byte arrays instead. This also meant using
additional code (for example using & 0xFF to make sure the value was
understood correctly as an unsigned value) in certain operations.

� Java also has the limitation that functions cannot contain more than
65535 bytes of code ([43]). We run into this in two situations: (1) Some
of the functions generated for a TTCN-3 union type with more than
approx. 1670 alternative fields (in which case we had to generate helper
functions each of which could handle 200 alternatives), or (2) we also
ran into a 2.800+ lines long TTCN-3 function (where we had to ask the
users to partition it into smaller parts as we could not find an easy way
to automatically generate helper functions to it so far).

� When a new PTC13 was created on a HC14 the C side does a fork, both
resulting in a parallel process for the new PTC and also copying the
memory contents15. Java does not support this behaviour, so we decided
to use threads instead. This way, while every PTC was a new process
on the C side, they were new threads on the Java side. Plus, every
static variable inside the runtime library on the C side was mapped to
be a thread-local variable on the Java side. Thus, we do not need to
start a new JVM and configure it for every PTC created, as the C side
algorithms had already been designed to run in their own process, and
the TTCN-3 language also does not allow direct access between two
PTCs. This introduced minor slowdowns during access. As thread-local
variables are currently implemented inside the JVM using map data
structures with the threads as keys, accessing the value that should be
seen in the current thread has the overhead of an extra data access.

For a detailed description of the mapping of TTCN-3 elements, runtime
elements and API turn to the reference guide of the C side ([11]) and the
reference guide of the Java side ([10]). To demonstrate the mappings we made a
short example package available ([20]). This package contains a ”Hello World”
module and some simple types in TTCN-3, together with the C/C++ and Java
codes they compile into, to illustrate the mappings between these language
elements. For a more complete example turn to the regression tests ([19]) we

13Parallel Test Components are TTCN-3 concept for components created by the Main
Test Component and running in parallel to each other.

14Host Controllers are instances of the executable test program.
15Actual implementations might use a copy-on-write solutions for performance.

150 I. I. Farkas, K. Szabados, A. Kovács

used for our measurements, which can also be used to check the mappings of
all supported language elements.

4.3 The benefits of being an IDE

In this subsection, we show one more element of our work, that goes beyond
simple cross-compilation, to improve the performance of the build process. As
the Java side was built into an IDE, that was able to track changes on a fine
grain level to optimise semantic checking, we could use this information to
improve the build times even before the compilation to Java happens.

On both the C and the Java sides the codes were generated on a per-
module base. That is, first the code generator compiled the string char*

and StringBuilder that represents the module in the target language (called
S further), then compared it to the content of the already existing file. The
string S was only written out if the target file did not exist, or had a dif-
ferent content. The mentioned process created a potentially large saving in
compilation time: since most of the TTCN-3 modules do not change from one
compilation to the next, their generated code will also not change, not even
be touched. During the build process the C/C++ and Java compilers might
notice that their input file has not been changed, and skip its compilation. It
can be a large improvement, as comparing the contents of strings and files is
negligible compared to compiling the file again (in larger systems the generated
code can be several hundreds of thousands or millions of lines of code).

On the Java side, the compilation process could further be improved since
it was part of the TTCN-3 IDE of Titan. As presented in the work of Oláh
([32]), the Designer part of Titan could analyze the code of TTCN-3 projects
incrementally. Once the project was analyzed, and when the user edited some-
thing, the IDE was able to discover easily (and on a fine grain) the code parts
whose status might have changed (being correct or erroneous in some way, or
referring to a different target, etc...) and used this information to minimize
the amount of code whose semantic information needed to be re-checked.

There is no need to generate the string S for modules which had already
been compiled and their status has not been changed. Adding this technique
(further referred to as IDE mode) to the new compiler, it had a substantial
effect on the speed characteristics of compilation: as most daily changes can
be reasonably assumed to affect the status of only a few code parts, the (same)
file overwriting process can be saved for most of the dependent modules. For
example, while a full compilation might have compiled all code, changing the
signature of a function required recompiling only that module and the modules

Improving productivity by changing the intermediate language 151

from where that function is called directly. While a change inside a function
only required compiling the module it is located in.

Please note that while in this article we analyse this feature as something
that can be turned on/off, in the product it will be always active.

5 Performance measurements

In the first part of this section we describe the input on which we performed
the measurements together with the testing machines. In the second and third
part, we present the build and execution performance. In the last part, we
show the information we have on the scalability of our implementation.

5.1 Performance measurement environment

To measure and compare the performance of the C and Java sides we used the
subset of the regression tests of Titan provided to us by our industry partner
([19]). These tests included:

� Tests for handling the values of all

– Base types (boolean, integer, float, objid, bitstring, hexstring,
octetstring, charstring, universal charstring);

– Complex types (records, sets, record ofs, set ofs, enumerations,
unions, the anytype type).

� Tests for template matching for all base types and complex types.

� Tests for basic statements.

� Two ASN.1 modules and two TTCN-3 modules that import them (to
test importing from ASN.1).

� Tests for the predefined functions of TTCN-3.

� Tests for timers within testcases and used as a testcase timer to limit
their execution duration.

� Tests for the all from language construct (for its special handling of
values).

� Tests for the “RAW” encoding supported by the Java code generator.

152 I. I. Farkas, K. Szabados, A. Kovács

We note that although the verdict tests were excluded from our measurements,
they could also be compiled and executed. The reason was that when test
verdicts other than pass are reported, the replication studies can be confusing.

Altogether 90 source files were used in the measurement of compilation
and execution speed: 88 TTCN-3 files and 2 ASN.1 files. The package also
contained configuration files, set to execute all control parts in the modules at
a given amount of times. This package can be downloaded from [19].

From our point of view, these tests were input. Examining the output we
could conclude that the implementation was functionally equivalent with the
original compiler.

For the measurements, we used two different architectures (laptops).

1. Laptop 1 used for measurements was a HP EliteBook 840 G5, with
an Intel® Core� i5-8350U CPU, 16 GB RAM, using a SSD, running
Windows 10 and the 3.0.7-1 version of Cygwin ([44]), GCC 7.4.0, Eclipse
4.4.2, Java SDK 1.8.

2. Laptop 2 used for measurements was a Lenovo ideapad Y700, with an
Intel® Core� i7-6700HQ CPU, 8 GB RAM, using a HDD, running
Windows 10 and the 3.0.7-1 version of Cygwin, GCC 7.4.0, Eclipse 4.10.0,
Java SDK 1.8.

Laptop 1 was expected to be the target architecture at our industry partner,
Laptop 2 was used as a control platform to check our observations in a different
setup ([22]). We had to use a control platform to account for the potential
issues coming from Laptop 1 being a machine used at our industry partner.
Users (test automation developers in this case) have limited control over it
(the firewall software could not be stopped/deactivated/reconfigured for the
duration of measurements, operators might trigger minor refreshes remotely,
that would run in the background, etc.).

The source code used for the measurements is part of the ”CRL 113 200/6
R6A (6.6 pl0)” version of Titan ([46]), with the ”6.6.0” tag on github.

5.2 Build speed

To get a picture of the speed of the build processes for both the C and Java
sides we set up and measured 4 uses cases.

1. Full build. In order to measure the speed of a full build we cleaned all
generated files and ran the build process from scratch.

Improving productivity by changing the intermediate language 153

2. Incremental build with minor change. In order to measure how the sys-
tem might perform in daily operations we also measured the build times
after a small change in an already built project. For this reason, we
changed in the 22nd line of the TboolOper.ttcn file the true value to
false and back. This modification triggered the re-generation of the
code for this module but did not re-generate code for any other mod-
ules. Also it made the “boolAssign” test report a fail verdict, but this
was not an issue for measuring the compilation time.

3. Incremental build with inserting/deleting a testcase. In this use case we
simulate a scenario when users write or delete a small testcase in a single
file resulting in only one incremental build after this operation. For this
purpose in the TboolOper.ttcn file we commented out the execution
call of the boolAssign testcase from the control part, deleted the code
of the testcase for one change and reverted this modification as another
change.

4. Incremental build, refactoring in 5 files at the same time. In this use
case we simulate a scenario, when users perform refactoring operations
that create changes in 5 files at the same time. For this, we extended the
TcharOper.ttcn, TbitstrOper.ttcn, ThexstrOper.ttcn, Toctetstr-
Oper.ttcn and TucharstrOper.ttcn files with a new testcase called
“dummy test()” having an empty body and using the search & replace
features of Eclipse we renamed it “dummy2 test” for one change and
reverted it for another.

Full builds are expected to happen rarely (as they take a long time), but
when developers wish to make sure that everything works from zero, they have
to do full builds and it gives an upper bound for our measurements.

Incremental builds are expected to happen more frequent in practice. In fact,
in Eclipse one of the default settings for builds is to “Build Automatically”.
That is, whenever a developer saves a file after a change, Eclipse starts an
incremental build in the background. For builds on the C side users had to
turn this off, as the duration of incremental builds was a lengthy and resource
intensive process. Based on the numbers we have measured for incremental
builds, on the Java side users should be able to leave this feature on and work
interactively in the environment.

As the extended tool was an IDE running on Eclipse (supporting both
C/C++ and Java code generation), we measured the compilation speed via

154 I. I. Farkas, K. Szabados, A. Kovács

the Eclipse’s interface16. This method allowed us measuring the entire build
duration, as the user would experience it. At the same time, it applied a com-
mon interface for both the build process generating the C/C++ code and the
build process generating the Java code.

Internally, the build on the Java side used the mechanisms provided by
Eclipse to build the generated Java files. Here we assumed that the process
used all available processing power for a fast compilation. We considered the
following settings as a form of configuration that might affect the build:

� The Eclipse in which the builds were done was launched with the “-
Xms5178m” and “-Xmx5178m” options. In this way we could minimise
the chance for garbage collections.

� Inside the Eclipse instance where the builds were done, we set the “Com-
piler compliance level” of the “JDK Compliance” options to 1.6 (compil-
ing for Java version 1.6), as that is the minimal version of Java supported
by the generated Java code.

On the C side, we used the processes and tools Titan offers for its users. The
“-O2” flag was used to control the optimisation used by g++, make was called
with “-j8” to enable parallel compilation, and inside the generated makefile
the following rule was used to call g++ to translate the generated .c and .cc
files into .o files17:

. cc . o . c . o :
g++ =c $ (CPPFLAGS) =Wall =O2 =o $@ $<

Where CPPFLAGS listed the files to be included from the runtime libraries
of Titan.

To do statistically rigorous performance evaluation ([22]) we measured 50

compilations for all scenarios.
We could make several observations from the results presented in Tables

1(a) and 1(b).
The full build (case 1) was measured to be much faster on the Java side than

on the C side, 14∗ faster on laptop 1 and 8∗ faster on laptop 2. Considering
case 2 from the table the Java side was 35∗ faster on Laptop 1 and 21∗ faster

16To run our plugins from source we already had “Eclipse application” style launch config-
urations set up. We selected the “build/invoke” and “debug” options for the measurements
on the launch configuration’s “Tracing” tab. This way, for every build invoked in the launched
Eclipse instance, we got debug logs on the duration of the build in the Eclipse instance the
source code was located in.

17Please note that these are the default and recommended settings of our industry partner

Improving productivity by changing the intermediate language 155

Tool case 1 case 2 case 3 case 4

C side
avg 153.40 34.51 35.15 35.20

min 150.25 29.06 33.44 32.63

max 159.49 41.64 37.60 36.99

Java side
avg 10.95 0.98 0.86 0.87

min 9.51 0.88 0.82 0.83

max 18.31 1.30 1.16 0.97

Java side + IDE
avg 0.15 0.18 0.34

min 0.08 0.15 0.31

max 0.24 0.22 0.39

(a) Laptop 1

Tool case 1 case 2 case 3 case 4

C side
avg 224.52 25.73 25.74 26.38

min 221.29 25.09 24.65 25.52

max 234.08 26.72 27.47 27.26

Java side
avg 28.12 1.23 1.29 1.64

min 26.43 1.09 1.18 1.59

max 29.94 1.52 1.44 1.74

Java side + IDE
avg 0.3 0.32 0.74

min 0.25 0.29 0.7

max 0.38 0.44 0.82

(b) Laptop 2

Table 1: Build speeds measured on Laptop 1 1(a) and Laptop 2 1(b) in seconds.
Case 1 is Full build, Case 2 is Incremental build with a minor change, Case 3
is Incremental build with inserting/deleting a testcase, Case 4 is Incremental
build with refactoring in 5 files at the same time

on Laptop 2. When the IDE mode was used, the speedup increased to 230∗
on Laptop 1 and 85∗ on Laptop 2.

The speedups were different, but were present on both laptops in all scenar-
ios used for measurements. It would be reasonable to assume that the HDD
in Laptop 2 might have created the overhead in both cases (access time and
read/write speed), compared to the SSD in Laptop 1.

Our observations shows that the effort for reducing the build time was suc-
cessful. We could also see how users benefit from the IDE mode: knowing what
the user has edited it is possible to calculate the set of code pieces needed for
the re-analysis.

In order to understand better the importance of the measurements it is
beneficial to look at the development activity from the viewpoint of the user
([26, 42]):

� 0.1 second is the limit where the user still feels the interface to be reacting
instantaneously.

� 0.1 − 1 second is a “stammer”, when the user’s flow of thought is not
interrupted, but the delay is noticeable. User’s do loose the feeling of
operating directly with the interface.

156 I. I. Farkas, K. Szabados, A. Kovács

� > 10 seconds is “disruption”, this is the limit of keeping the user’s atten-
tion focused. User’s might wish to do something else while the computer
is working, leading to even longer non-productive periods of time.

Based on the above classification we found that the user experience of builds
on the C side fall into the “disruption” category, on the Java side into the
“stammer” category, keeping user’s attention un-interrupted. In best case sce-
narios the user experience can even be instantaneous on the Java side.

5.2.1 Some interesting facts and observations

1. On the C side for this project, in full build, the translation from TTCN-3
to C/C++ files took approximately 6 seconds, the translation of C/C++
files into .o files approximately 132 seconds, linking the object files took
approximately 15 seconds. Altogether, approximately 96% of the build
on the C side was coming from using C/C++ as the intermediate lan-
guage.

2. On the Java side for this project, in full build, the translation from
TTCN-3 to Java files took approximately 1.2 seconds. Here, approxi-
mately 89% of the build on the Java side was coming from using Java
as the intermediate language.

Although we lack the necessary skills to analyse the internal procedures
done during build in GCC and Eclipse’s Java toolset, we can still offer some
intuitive reason for this difference in build speeds:

� In C/C++ the platform specifics of the target system has to be taken
into account during build time. In Java this is not done during build, as
the actual execution platform is only known during execution.

� In C/C++ all optimisations have to take place during build, before ex-
ecution. As Java is a Just In Time compiled language, most of the opti-
misation work happens during execution.

5.3 Execution speed

The execution speed of the generated C/C++ binary was measured on both
laptops in a Cygwin bash shell instance using the time command.

To measure the execution speed of the Java code, as it was executed from
within Eclipse, we had to extend the generated code of the main class used for

Improving productivity by changing the intermediate language 157

single-mode execution Single main. The very first Java line to be encoun-
tered was long absoluteStart = System.nanoTime() (this was executed
before any test-related code) and the last line calculates the elapsed time as
(System.nanoTime - absoluteStart) * (1e-9) and outputs to the stan-
dard output (this was executed after all test-related code is properly termi-
nated).

To see how each side performed on a longer run we decided to run and
measure different amount of iterations of the same test set. A single iteration
means that in the configuration file each module’s control part was executed.
Each control part in a module executed the testcases in that module, resulting
in each testcase was executed exactly once. The 500 iteration means that we
had a configuration file which listed the contents of the single iteration 500

times. This was not a good simulation for complex tests running for days,
simulating complex network components and user, while sending millions of
messages per seconds, but the best option we had to understand how the Java
side we created might perform in such situations (the effects of Just In Time
compilation, garbage collection, whether we had memory leaks, etc...).

Since these tests also contained tests on how Titan was handling timers, we
decided to perform two different measurements. The “with timers” means that
we were executing the tests as they were. The “without timers” means that
the testcases testing timers were commented out from their module’s control
parts. More precisely, in the TcontrolTimer.ttcn and TlostTimer.ttcn files
we put in comment the content of the control part. This eliminated the part of
the execution that was not beneficial for performance testing and also reduced
the number of features to be tested. For each iteration size, both with and
without timers, we measured the execution time 50 times.

Performance measurements (see Figures 5 and 6 in the appendix) showed
similar results on both machines for high iteration counts, in the same mea-
surement modes. For low iteration counts Laptop 1 executed the C side code
and Laptop 2 the Java side code somewhat faster at identical settings (see
data in [18]).

Figures 3 and 4 (showing the per iteration times on Laptop 1 and 2) help
emphasise some interesting observations. In the first iteration, we could see
that the C side is usually faster in both measured ways. The C side also
had an approximately constant per iteration execution time for all iteration
scenarios. The Java side seemed to “warm-up” as the number of iterations
increased reaching a constant per iteration execution time after approximately
50 iterations. On Laptop 1, without timers, the iteration time (initially 2.37s)
decreased to approx. 0.42s on average which is 83% reduction. Java finished the

158 I. I. Farkas, K. Szabados, A. Kovács

(a) Laptop 1 (b) Laptop 2

Figure 3: Box & Whisker chart of the Per Iteration Execution times with
Timers.

(a) Laptop 1 (b) Laptop 2

Figure 4: Box & Whisker chart of the Per Iteration Execution times without
Timers.

500 iterations in 390 seconds which was 65% faster than the C side. On Laptop
1, the Java side was running faster than the C side from the 3rd iteration, on
Laptop 2 from already the second iteration.

We analysed our measurements with the statistical package R (see table
2). We applied t-tests (Welch two-sample) and Bayesian analysis (BESTmcmc
described in [30]). Both showed a clear difference between the C and Java
sides for the same iteration counts. BESTmcmc also showed how the C side
was faster in one iteration, but fell behind the Java side for iteration counts
larger than two for both laptops (see tables 2(a), 2(b)). For the 2-iteration
case there was a difference between Laptop 1 and Laptop 2: the Java side was
faster on Laptop 2 but slower on Laptop 1, compared to the C side.

Improving productivity by changing the intermediate language 159

Measurement \ Iteration 1, 2 3 5 - 500

with timers
p < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

muDiff 0.0 100.0 100.0

without timer
p < 2.2e− 16 < 1.523e− 10 < 2.2e− 16

muDiff 0.0 100.0 100.0

(a) Laptop 1

Measurement \ Iteration 1 2 3 - 500

with timers
p < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

muDiff 0.0 100.0 100.0

without timer
p < 2.2e− 16 < 2.756e− 14 < 2.2e− 16

muDiff 0.0 100.0 100.0

(b) Laptop 2

Table 2: t-test results on execution times (p value is reported by t.test in R
doing Welch Two Sample t-test, muDiff is the $>compval value of muDiff
reported by the summary of BESTmcmc result)

We note that, although so far we have only aimed at providing the necessary
functionality, not execution performance, according to our measurements our
tool might be also useful in long-running testing scenarios to improve the
runtime performance of tests.

Recall that both Java and C sides were built from the same TTCN-3 code,
had to parse the same configuration file, run on the same machine and gener-
ated the same amount of log files, so the measured difference in speed could
not be explained by a different workload on the abstraction level of executing
the testcases. However, while the static compilation of the C side might have
resulted in faster code loading-up, the Java side might have also needed to
start the JVM and/or perform the first iteration in interpreted mode (adding
the JIT compilation as an extra overhead) 18.

5.3.1 Some interesting facts and observations

1. We could see the largest standard deviation of the measured execution
times in case of the 1-iteration executions. In case of Laptop 1, the worst
1-iteration execution times of the C side were similar to the best Java
execution time for the same scenario.

2. In the case of 1-iteration on Laptop 2, there were no huge extremal
values. The deviation increased having multiple iterations compared to
Laptop 1 in case of “with timers” (Figure 3).

18One more technical difference was that the C side used flex+bison for parsing the con-
figuration files, the Java side ANTLRv4. The startup time could also be explained by the
different performance characteristics of LALR(1) parsing used by Bison and LL* used by
ANTLRv4, but as the input in our case was very simple, this was unlikely.

160 I. I. Farkas, K. Szabados, A. Kovács

3. We could see that the per iteration time on Laptop 2 was larger than on
Laptop 1 for the C side, however, on Java side, they were very close to
each other.

4. A 500-iteration long execution was executing 882, 500 testcases.

5. A 500-iteration long execution generated a log file of 1.7GB19.

6. The execution with timers was executing 1765, while the execution with-
out timers executed 1757 testcases.

While in our research we did not do a deep analysis of why we observed
such different performance curves we can still offer some intuitive reason that
can explain them:

� In C/C++ the optimisations happen during build time, the built exe-
cutable does not undergo changes during execution. As Java is a Just
In Time compiled language, the performance of the application can be
optimised during execution time, possibly leading to better performance
over time.

� Parallel hardware architectures might also play a role. As the software ar-
chitecture used by our industry partner is single threaded, on the C side
memory deallocation has to be done by the same thread doing the busi-
ness logic. In Java, even though the business logic is still single threaded,
garbage collection can happen at any time after a resource is no longer
in use delaying the cost of deallocation and the garbage collector itself
might run on a CPU core different from the business logic, eliminating
all work that CPU core would have to do to free up memory.

5.4 Build + Execution iterations

We have already presented our observations separately on the improvements in
build time and the execution speeds on our test project. It is also interesting
to take a look at these observations from the point of developer iterations,
where we are interested in how long a single build + execute iteration takes.
This is the duration developers need to wait from changing the source code,
to being able to analyse the effects of the change.

19This cost was present on both sides during the execution.

Improving productivity by changing the intermediate language 161

For this we decided to check how long it would take for a build and execution
to last, for 4 different build scenarios20 and all iteration numbers measured so
far, by adding together the average build time of the given build type and the
average execution time of the given execution with a given iteration number,
presented in the Appendix in Table B.

Please note that these are only theoretical durations, the real world dura-
tions could be much bigger. In the case of the incremental build and single
iteration execution combination, on the Java side this operation is so fast (2, 49
seconds) that simply the act of moving the mouse pointer after invoking the
build to the toolbar of Eclipse to start the execution could substantially in-
crease it. At the other end of the spectrum, full build and 500 iterations on
the C side, we see approximately 53 minutes where the developer is bound to
start doing something else either leaving their computer, or slowing it down
with some other activities.

5.4.1 Some interesting facts and observations

1. For all build scenarios and iteration number combinations (and on both
laptops) we observe that the Java side performs better. Having the short-
est theoretical duration between a change by the developer and having
the execution results ready to be analysed.

2. In case of full builds and executions with timers the improvement is at
least approximately 140 seconds, increasing to approximately 535 sec-
onds for the largest iteration number on Laptop 1 (respectively 88% to
16% improvement).

3. In the case of incremental builds and executions with timers, the im-
provement is at least approximately 33 seconds, increasing to approx-
imately 424 seconds for the largest iteration number on Laptop 1 (re-
spectively 82% to 13% improvement).

5.5 Scaling up for larger projects

In order to see if our solution would scale up for larger projects we asked for
some help from our industry partner. They have provided us with another
large scale project and one of their system architects could spend a day on
providing us with some measurements on this project on a build server used by

20We leave out the incremental build on the Java side without the IDE mode, as the users
will not be able to turn off IDE mode.

162 I. I. Farkas, K. Szabados, A. Kovács

our industry partner. The aim in this exercise was purely to see if our solution
would be able to scale up. We disclose both our numbers and the numbers
we got from our industry partner, but note that at that point in time and
implementation completeness, this was not a core part of our observations,
only a look ahead. The 3 years of development was not enough for our group
to reach full functional equivalence and for many of these numbers, we had
to rely on the information given to us by our industry partner, where we had
little control on the way the measurements were done.

The project used had 1275 modules (1143 TTCN-3 and 132 ASN.1), 1.24
million LOC at the time of measurements21. Our Java code generator gener-
ated 930 MBs of .java files from it. Since it was a large codebase, this project
seemed to be appropriate to see if our method would work on large scale
projects. There were 2 issues unique to this measurement, that we could not
overcome for the amount of work needed:

1. At that time, our implemented compiler supported only the “RAW”
encoding, while the examined project on the C side used several others.
This means, that on the C side somewhat more code was generated.
Approx. 18.93% of the code was used to support the other encodings.

2. To compile the project, we created dummy implementations (empty
function bodies) of all required platform-dependent testports and exter-
nal functions (proper implementation would have required a solid back-
ground on protocols and a large amount of time). The creation was made
by hand and constitutes only a small amount of code compared to the
930MB generated codes. Hence, we didn’t expect them to greatly impact
the scaling of the build performance.

We performed 3 measurements for full build and 10 for incremental on Lap-
top 1, with the Java side only, as this project did not compile on Cygwin on
the C side due to missing libraries.

The full build of the project took approximately 741 seconds (see Table 3).
The time needed to incrementally re-build the project was approximately one
to five seconds, depending on how many Java files had to be re-generated for
the change. All 8 logical processors were heavily used during the builds.

To be able to compare build times of the C and Java sides of this project, a
system architect of our industry partner (Eduard Czimbalmos) was asked to
perform the measurements on one of their industrial build servers. The build

21More information is available on this project at [38, 39].

Improving productivity by changing the intermediate language 163

Scenario build time

Laptop 1 full build 741.70

Laptop 1 incremental build (4 files are re-generated) 3.27

Laptop 1 incremental build (1 file is re-generated) 1.28

Table 3: Large industrial project build times on Laptop 1 (Java only, in sec-
onds)

server characteristics used for the measurements were: Intel® Xeon® E5-
2450v2 CPU @ 2.50Ghz, 64 GB RAM, running GCC version 4.8.5 (Ubuntu
4.8.5-4Ubuntu2) and Java HotSpot� 64-Bit VM (build 25.201-B09) in server
mode.

We received the numbers presented in Table 4 from our industry partner,
who also told us that they were measuring a typical working scenario and
there was no other task running on the build server during the measurements.
Please note as these measurements were not done by our group, we had no
direct control on the measurements and don’t have more detail about them.
These numbers should only be regarded as showing the possibility of scaling,
not as exact figures.

Scenario build time

Build Server full C build 1150

Build Server full Java build 640

Build Server incremental C build 61-130
Build Server incremental Java build 12

Table 4: Large industrial project build times on the Build Server (in seconds)

The full builds on the build server took 1150s on the C side and 640s on
the Java side (see Table 4). The incremental build took approximately 61-130
seconds on the C side and 12 seconds on the Java side.

164 I. I. Farkas, K. Szabados, A. Kovács

5.5.1 Some interesting facts and observations during the measure-
ments

1. During the C build all 28 cores were used to almost 100% for the whole
duration of the build (maximum or close to the maximum potential
parallelisation of build).

2. During the Java build for most of the build time 1-3 cores were used
and jumped to 4-8 cores only for a few seconds (as they could observe it
using the output of top command).

3. On this project, doing a full build, the translation from TTCN-3 to
C/C++ files took approx. 33 seconds, leaving 97% of the build on the
C side coming from using C/C++ as the intermediate language.

5.5.2 Consequences

(1) While the C side required a 28 core build server for the development
and build scenarios, the Java side might have made it possible to develop
this project on a laptop; (2) the full build time of the Java side was half, the
incremental build was 1/5th to 1/10th to the C side; (3) the scaling of the Java
build in terms of build duration seemed to break in the many-core situations,
as it was not able to take advantage of all cores to build faster; (4) at the
same time, from the resource usage point of view, the Java side had about
50 times more efficient resource usage. While the C side put the build server
under heavy load for approximately 20 minutes to build this project, using
Java it might have been possible for approximately 20-28 developers to work
on the same machine at the same time and still finish the full build in half the
time.

6 Limitations

This paper presents a work that was an experiment with limited scope. We had
a list of features not yet supported by our extension, compared to the industrial
tool, but they were not used in the examples provided by our industry partner.
It is also possible that there might be programming issues in the generated
Java code. The C side had been in production and use for about 20 years,
long enough for most issues to manifest. Although our extension was new, we
were able to show functional equivalence (as far as the tests provided by our

Improving productivity by changing the intermediate language 165

industry partner go). This makes us confident to say that we don’t expect
issues resulting in larger architectural changes in our solution.

As a limitation, there might be problems with scaling. The Java class file
format is known to have some strict limitations ([43]) that might cause further
problems in the generated Java code for larger projects.

Due to the very specific context of our work, our results might not generalise
to other systems. Compiling from TTCN-3 to Java in itself might be a limited
context and measuring build times and execution times of test systems might
also not be a priority for other companies with smaller test systems.

We followed the approach presented by Georges et al. ([22]) to make our
performance evaluation statistically rigorous for the compilation and execution
measurements done on Laptop 1 and 2, but not for the build server as we had
limited and indirect access to it.

7 Threats to validity

During our measurements we had to turn on some debug printouts, which
might have added some overhead, that will not be present during the normal
usage of the tool.

We had limited control over Laptop 1, as it was used at our industry part-
ner (the firewall software could not be stopped/deactivated/reconfigured for
the duration of measurements, etc.). We tried to make sure that no resource
intensive operation was running in the background while performing our mea-
surements, but there is still a possibility of some background tasks specific to
our industry partner’s systems affecting our measurements in ways that might
not be present when reproducing this research elsewhere.

There is also a question of fairness in our measurements: we do not have
intimate understanding of the internal implementations of either the C/C++
compiler or the Java builder used. That is, in our experiments we tried to reach
the best possible performance on both sides. On the C side we used ”-O2” to
get optimised binaries and ”-j8” to use all processing power available in our
laptops. On the Java side, in Eclipse, we could not find such options, but we
made sure to give enough memory for the build process to minimise the need
for garbage collection.

Also at the time our work was accepted by our industrial partner we had
limited access to their internal test systems: information on how certain equip-
ment is being tested could raise potential security concerns.

166 I. I. Farkas, K. Szabados, A. Kovács

As we had no control over the measurements our industry partner did,
checking whether our solution is able to scale might not be perfectly valid
and reproducible. However, our industry partner used the information gained
from those measurements, and decided that our solution can be turned into
an industrial product, we believe that it was in their best interest to gain valid
and reliable information.

8 Summary

In this paper we presented our work and empirical observations on extending
an industrial compiler to support a new intermediate language.

We have shown how we created an alternative of the existing build proce-
dures of our industry partner by creating an extension that uses Java as the
intermediate language besides the already supported C/C++. We described
how much of the architecture could be kept to proceed fast and how we over-
came the difficulties coming from the differences of the languages.

Our contribution is unique in the sense that both the build and the execu-
tion used the same source code (as input) written in the same input language,
generated intermediate codes with the same abstract hierarchy, built into ex-
ecutables that were configured using the same files, performed the same be-
haviour on the same machine and generated the same logs. Evidenced by the
test files provided to us by our industry partner, selected from their regression
tests, to decide if our solution could be functionally equivalent to their existing
system.

Our measurements showed that using Java as an intermediate language
might improve build times significantly, providing users with better develop-
ment iteration times, that might lead to improved productivity. While C/C++
still has better performance in some situations, at least in longer testing sce-
narios, Java can be a viable alternative as an intermediate language.

In contrast to De Marco et al. ([8]), our development from scratch can be
considered a successful migration as we couldn’t identify any performance
bottleneck and is more maintainable since the knowledge was transferred by
programmers using Java idioms where it was possible without changing the
architecture. Our observations both supported and contradicted the findings
of Nanz and Furia ([31]) and Furia et al. ([21]). Our 1-iteration measurements
supported that the same input compiled to C/C++ could usually execute
faster compared to Java (although at the cost of much longer compilation).
But our measurements with larger iteration counts showed a reversing situ-

Improving productivity by changing the intermediate language 167

ation, where compiling to Java might lead to executables that finish faster.
Adding the overhead of the build to the execution time (to measure build-
execute workflows) would, in our situation, lead to Java finishing earlier in all
investigated situations. As such in contrast to Taboada et al. ([41]), we found
that for us, Java was a good alternative also from a performance point of view.

Thanks to the help of our industry partner we could check (using one of
the largest test systems of our industry partner) that our method scaled up
well and kept its benefits, even on large scale test systems. This will enable
our industry partner to provide a unique solution for their customers. The
developers of these large industrial test systems will be able to use the Java-
based build system to work from an IDE with fast feedback cycles (eliminating
the negative effect on productivity coming from the C sides build times). At
the same time, they will also be able to build the same test systems using the
C/C++ based build system for situations where the Java-based executable
would not be able to provide the necessary runtime performance.

To support the reproduction of the results of this study all information
was made publicly available. The code of the toolset is part of the open-
source Titan ([9]) toolset (the Eclipse plugins), and the tests used for testing
compilation and execution speed are available at [19].

9 Further work

Even with so limited time we could reach a point where we can confidently
say that it is desirable to continue this work.

First of all, there were several features still missing from our solution, that
were present in Titan already. We hope they will be added by our industry
partner while turning our solution into an industrial product. So that their
users can enjoy the benefit of this research.

As described in section 3.2, the 3 years of development was only enough to
reach the level of functional equivalence our industry partner required from us.
As a follow-up research, it would be desirable to investigate opportunities for
performance optimisations in both the runtime and build time. For example:
we generated the Java files from TTCN-3 files sequentially. In theory, all of
these files could be generated at the same time, in parallel, leading to further
build time improvements.

This analysis could be extended to involve more and different hardware
into the research and go into more detail on how different hardware features
impact performance. It would also be interesting to see how different compiler

168 I. I. Farkas, K. Szabados, A. Kovács

versions (GCC, Java, etc...) perform on the same source codes in build time
and execution performance. For us, the target platforms we were aiming to
support were given by our industry partner.

It would be interesting to look into how to improve CPU utilisation on mas-
sively multi-core CPUs. According to our industry partner, the build on the
Java side did not seem to use all cores to provide maximum build performance.

It might also be a good idea to think of our solution as a platform for
further research. A side effect of our solution is that we are transforming large
scale industrial and standardised test codes, that are in active use, into a
large amount of Java code. This could allow researchers to experiment with
how different Java features and usage patterns impact both compilation and
runtime performance. Such an experiment would just need to change how our
solution translates TTCN-3 code into Java code to have a large amount of
source code, from complex and in use systems, for measurements.

Acknowledgements

The authors would like to thank the Test Competence Center of Ericsson
Hungary for the financial support of this research and for providing access to
their in-house tools. These proved to be invaluable to our measurements.

We would also like to thank Andrea Pálfi, Gergő Újhelyi, Árpad Lovassy,
Attila Balaskó and the Titan team for their help in the implementation and
measurements. We would also like to thank Eduárd Czimbalmos for his help
in our measurements and his feedbacks on the tool.

The research of the first author was supported by the ELTE-Ericsson Labo-
ratory, for the third author by the Project no. TKP2020-NKA-06 (Application
domain specific highly reliable IT solutions) with the support from the Na-
tional Research, Development and Innovation Fund of Hungary, financed under
the Thematic Excellence Programme funding scheme.

References

[1] R. Abdalkareem, S. Mujahid, E. Shihab, A machine learning approach to improve
the detection of ci skip commits, IEEE Transactions on Software Engineering,
pp. 1–1, 2020. ⇒140

[2] B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbe, F. Huet, G. L. Taboada,
Current State of Java for HPC, Technical Report RT-0353, INRIA, 2008. [ac-
cessed Apr-2020] ⇒141

https://rabeabdalkareem.github.io/
http://users.encs.concordia.ca/~s_mujahi
http://das.encs.concordia.ca/members/emad-shihab/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://www.researchgate.net/profile/Brian-Amedro
https://www.researchgate.net/profile/Vladimir-Bodnartchouk
https://www.researchgate.net/profile/Denis-Caromel-2
http://www-sop.inria.fr/oasis/personnel/Christian.Delbe/
https://www.researchgate.net/profile/Fabrice-Huet
http://www.des.udc.es/~gltaboada/
https://hal.inria.fr/inria-00312039/document
https://hal.inria.fr/INRIA

Improving productivity by changing the intermediate language 169

[3] ARMOUR, Test generation strategies for large-scale IoT security testing – v1,
2016. [accessed Apr-2020] ⇒135

[4] A. Avram, IDC Study: How Many Software Developers Are Out There?, 2014.⇒135
[5] N. Bartha, Scalability on IT projects, Master’s thesis, 2016. ⇒135
[6] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, S. Albayrak, Developing

and Benchmarking Native Linux Applications on Android, in J.-M. Bonnin,
C. Giannelli, T. Magedanz, MobileWireless Middleware, Operating Systems, and
Applications, volume 7, pages 381–392, Berlin, Heidelberg, 2009. Springer. ⇒
140

[7] R. P. Cook, An OpenMP library for Java, In 2013 Proceedings of IEEE South-
eastcon, pp. 1–6, April 2013. ⇒141

[8] A.De Marco, V. Iancu, I. Asinofsky, COBOL to Java and Newspapers Still Get
Delivered, in 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 583–586, Sep. 2018. ⇒140, 143, 166

[9] Ericsson Telecom AB., Source code of titan, version 6.6.0. https://github.

com/eclipse/titan.EclipsePlug-ins/releases/tag/6.6.0, 2019. [accessed
Apr-2020]. ⇒167

[10] Ericsson Telecom AB., Programmers’ Technical Reference Guide for the Java
side of the TITAN TTCN-3 Toolset, https://github.com/eclipse/titan.

core/blob/master/usrguide/java_referenceguide/JavaReferenceGuide.

adoc, 2020. [accessed Apr-2020]. ⇒142, 149
[11] Ericsson Telecom AB., Programmers’ Technical Reference Guide for the TITAN

TTCN-3 Toolset, https://github.com/eclipse/titan.core/blob/master/

usrguide/referenceguide/ReferenceGuide.adoc, 2020. [accessed Apr-2020].⇒142, 149
[12] ETSI, Methods for Testing and Specification (MTS);The Testing and

Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface
(TRI), https://www.etsi.org/deliver/etsi_es/201800_201899/20187305/
04.08.01_60/es_20187305v040801p.pdf, 2017. [accessed Apr-2020.] ⇒137

[13] ETSI, 3GPP test suites, http://www.ttcn-3.org/index.php/downloads/

publicts/publicts-3gpp, 2020. [accessed Apr-2020]. ⇒135
[14] ETSI, 5G;5GS; User Equipment (UE) conformance specification; Part

3: Protocol Test Suites, https://www.etsi.org/deliver/etsi_ts/138500_

138599/13852303/15.00.00_60/ts_13852303v150000p.pdf, 2020. [accessed
Apr-2020]. ⇒135

[15] ETSI, Intelligent Transport Systems (ITS) Test Suites, http://www.ttcn-3.

org/index.php/downloads/publicts/publicts-etsi/65-publicts-its,
2020. [accessed Apr-2020]. ⇒135

[16] ETSI, Methods for Testing and Specification (MTS);The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language,
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.

12.01_60/es_20187301v041201p.pdf, 2020, [accessed Oct-2020]. ⇒135, 172
[17] ETSI, Methods for Testing and Specification (MTS);The Testing and

https://www.armour-project.eu/wp-content/uploads/2016/08/D22-Test-generation-strategies-for-large-scale-IoT-security-testing-v1.pdf
https://www.infoq.com/news/2014/01/IDC-software-developers/
https://www.linkedin.com/in/norbert-bartha-0a681b96/
http://compalg.inf.elte.hu/~attila/materials/ScalabilityOnITProjects.pdf
https://www.researchgate.net/profile/Leonid-Batyuk
http://strafejump.de/
https://www.researchgate.net/scientific-contributions/Hans-Gunther-Schmidt-69566673
https://people.csiro.au/C/S/Seyit-Camtepe
https://dai-labor.de/en/team/sahin-albayrak-2/
https://link.springer.com/book/10.1007/978-3-642-01802-2
https://link.springer.com/book/10.1007/978-3-642-01802-2
https://www.springer.com/gp
https://ieeexplore.ieee.org/author/37272339400
https://ieeexplore.ieee.org/xpl/conhome/6552248/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6552248/proceeding
https://www.researchgate.net/scientific-contributions/Alessandro-De-Marco-2146054484
https://www.researchgate.net/scientific-contributions/Valentin-Iancu-2146057516
https://www.researchgate.net/scientific-contributions/Ira-Asinofsky-2146042981
https://ieeexplore.ieee.org/xpl/conhome/8528818/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8528818/proceeding
https://github.com/eclipse/titan.EclipsePlug-ins/releases/tag/6.6.0
https://github.com/eclipse/titan.EclipsePlug-ins/releases/tag/6.6.0
https://github.com/eclipse/titan.core/blob/master/usrguide/java_referenceguide/JavaReferenceGuide.adoc
https://github.com/eclipse/titan.core/blob/master/usrguide/java_referenceguide/JavaReferenceGuide.adoc
https://github.com/eclipse/titan.core/blob/master/usrguide/java_referenceguide/JavaReferenceGuide.adoc
https://github.com/eclipse/titan.core/blob/master/usrguide/referenceguide/ReferenceGuide.adoc
https://github.com/eclipse/titan.core/blob/master/usrguide/referenceguide/ReferenceGuide.adoc
https://www.etsi.org/deliver/etsi_es/201800_201899/20187305/04.08.01_60/es_20187305v040801p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187305/04.08.01_60/es_20187305v040801p.pdf
http://www.ttcn-3.org/index.php/downloads/publicts/publicts-3gpp
http://www.ttcn-3.org/index.php/downloads/publicts/publicts-3gpp
https://www.etsi.org/deliver/etsi_ts/138500_138599/13852303/15.00.00_60/ts_13852303v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/138500_138599/13852303/15.00.00_60/ts_13852303v150000p.pdf
http://www.ttcn-3.org/index.php/downloads/publicts/publicts-etsi/65-publicts-its
http://www.ttcn-3.org/index.php/downloads/publicts/publicts-etsi/65-publicts-its
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.12.01_60/es_20187301v041201p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.12.01_60/es_20187301v041201p.pdf

170 I. I. Farkas, K. Szabados, A. Kovács

Test Control Notation version 3; Part 6: TTCN-3 Control Interface
(TCI), https://www.etsi.org/deliver/etsi_es/201800_201899/20187306/
04.12.01_60/es_20187306v041201p.pdf, 2020, [accessed Oct-2020]. ⇒137

[18] I. I. Farkas, K. Szabados, A. Kovács, Measurement data with configuration,
http://compalg.inf.elte.hu/~attila/materials/Measurements_Laptop1.

xlsx, http://compalg.inf.elte.hu/~attila/materials/Measurements_

Laptop2.xlsx, 2019. ⇒157
[19] I. I. Farkas, K. Szabados, A. Kovács, Regression test data, http://compalg.inf.

elte.hu/~attila/materials/RegressionTestSmall_20190724.zip, 2019. ⇒
149, 151, 152, 167

[20] I. I. Farkas, K. Szabados, A. Kovács, An example containing a
”Hello World”, some simple types in TTCN-3, and the compiled C/C++
and Java codes, http://compalg.inf.elte.hu/~attila/materials/Example_
package.zip, 2020. ⇒142, 149

[21] C. A. Furia, R. Feldt, R. Torkar, Bayesian Data Analysis in Empirical Software
Engineering Research, IEEE Transactions on Software Engineering, pp. 1–1,
2019. ⇒141, 166

[22] A. Georges, D.Buytaert, L. Eeckhout, Statistically Rigorous Java Performance
Evaluation, Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOPSLA ’07, pp. 57–
76, New York, NY, USA, 2007. ACM. ⇒152, 154, 165

[23] T. A. Ghaleb, D. A. da Costa, Y. Zou, An empirical study of the long duration of
continuous integration builds, Empirical Software Engineering, 24(4):2102–2139,
Aug 2019. ⇒135, 140

[24] L. Gherardi, D. Brugali, D. Comotti, A Java vs. C++ Performance Evaluation:
A 3D Modeling Benchmark, I. Noda, N. Ando, D. Brugali, J. J. Kuffner, editors,
Simulation, Modeling, and Programming for Autonomous Robots, pp. 161–172,
Berlin, Heidelberg, 2012. Springer. ⇒141

[25] IoTKETI, oneM2MTester, https://github.com/IoTKETI/oneM2MTester,
2016. Last visited: April, 2020. ⇒135

[26] J. Nielsen, Response times: The 3 important limits https://www.nngroup.com/
articles/response-times-3-important-limits/, 1993. Last visited: Octo-
ber, 2020. ⇒155

[27] A. Kovács, K. Szabados, Test software quality issues and connections to interna-
tional standards, Acta Universitatis Sapientiae, Informatica, 5, pp. 77–102, 05
2013. ⇒135

[28] A. Kovács, K. Szabados, Advanced TTCN-3 Test Suite validation with Titan,
In Proceedings of the 9th International Conference on Applied Informatics, vol-
ume 2, pp. 273–281, 02 2014. ⇒135

[29] P. Lathan, S. Burke, K. Gallick, A. Coleman, New cpu test methodology 2020:
Code compile, updated gaming, transcoding, & more https://www.youtube.

com/watch?v=sg9WgwIkhvU, 2020, [accessed May-2020]. ⇒142

https://www.etsi.org/deliver/etsi_es/201800_201899/20187306/04.12.01_60/es_20187306v041201p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187306/04.12.01_60/es_20187306v041201p.pdf
https://www.researchgate.net/profile/Ingrid-Farkas-2
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://compalg.inf.elte.hu/~attila/materials/Measurements_Laptop1.xlsx
http://compalg.inf.elte.hu/~attila/materials/Measurements_Laptop1.xlsx
http://compalg.inf.elte.hu/~attila/materials/Measurements_Laptop2.xlsx
http://compalg.inf.elte.hu/~attila/materials/Measurements_Laptop2.xlsx
https://www.researchgate.net/profile/Ingrid-Farkas-2
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://compalg.inf.elte.hu/~attila/materials/RegressionTestSmall_20190724.zip
http://compalg.inf.elte.hu/~attila/materials/RegressionTestSmall_20190724.zip
https://www.researchgate.net/profile/Ingrid-Farkas-2
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://compalg.inf.elte.hu/~attila/materials/Example_package.zip
http://compalg.inf.elte.hu/~attila/materials/Example_package.zip
https://bugcounting.net/
http://www.robertfeldt.net/
https://torkar.github.io/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://www.researchgate.net/profile/Andy-Georges
https://dri.es/about
https://users.elis.ugent.be/~leeckhou/
https://dl.acm.org/doi/proceedings/10.1145/1297027
https://taher-ghaleb.github.io/
https://danielcalencar.github.io/
https://www.ece.queensu.ca/people/Y-Zou/
https://www.springer.com/journal/10664
http://lucagherardi.it/
http://robotics.unibg.it/people/brugali.html
https://www.researchgate.net/scientific-contributions/D-Comotti-2004439281
https://link.springer.com/book/10.1007/978-3-642-34327-8
https://www.springer.com/gp
https://github.com/IoTKETI/oneM2MTester
https://www.nngroup.com/articles/author/jakob-nielsen/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
http://compalg.inf.elte.hu/~attila/
https://www.researchgate.net/profile/Kristof_Szabados
http://www.acta.sapientia.ro/acta-info/
http://compalg.inf.elte.hu/~attila/
https://www.researchgate.net/profile/Kristof_Szabados
http://icai.ektf.hu/icai2014/
https://www.linkedin.com/in/patrick-lathan-a053a383/
https://www.linkedin.com/in/stephenlburke/
https://www.youtube.com/watch?v=sg9WgwIkhvU
https://www.youtube.com/watch?v=sg9WgwIkhvU

Improving productivity by changing the intermediate language 171

[30] M. Meredith, J. Kruschke, Bayesian Estimation Supersedes the t-Test, https:
//cran.r-project.org/web/packages/BEST/vignettes/BEST.pdf, 2018, [ac-
cessed Apr-2020]. ⇒158

[31] S. Nanz, C. A. Furia, A Comparative Study of Programming Languages in
Rosetta Code, 2015 IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering, volume 1, pp. 778–788, May 2015. ⇒141, 166

[32] P. Oláh. Improving the semantic analysis in TTCN-3 environment, Master’s
thesis, Eötvös Loránd University, Budapest, Hungary, 2016. ⇒150

[33] K. Reinholtz, Java will be faster than C++, SIGPLAN Not., 35(2):25–28, Feb.
2000. ⇒140

[34] A. Ruano, G. Réthy, Developing an Open Source conformance testing environ-
ment for ITS communications, UCAAT, 2016. ⇒135

[35] S. Salmons, M. Arnaud, X. Zeitoun, C. Bouattour, Model-based platform for
smart grid interoperability testing using TTCN-3 In UCAAT, 2018. ⇒135

[36] K. Szabados, Structural Analysis of Large TTCN-3 Projects In M. Núñez,
P. Baker, M. G. Merayo, editors, Testing of Software and Communication Sys-
tems, pages 241–246, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ⇒
135

[37] K. Szabados, A. Kovács. Technical debt of standardized test software In 2015
IEEE 7th International Workshop on Managing Technical Debt (MTD), pages
57–60, Bremen, Oct 2015. ⇒135

[38] K. Szabados, A. Kovács, Internal quality evolution of a large test system–an
industrial study In Acta Universitatis Sapientiae, Informatica, 8(2):216–240, 12
2016. ⇒135, 162

[39] K. Szabados, A. Kovács, G. Jenei, D. Góbor, Titanium: Visualization of TTCN-
3 system architecture In 2016 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR), pages 7–11, May 2016. ⇒135, 162

[40] J. Szabó, T. Csöndes, TITAN, TTCN-3 test execution environment,
https://www.hiradastechnika.hu/data/upload/file/2007/2007_1a/

HT_0701a-6.pdf, 2007. Last visited: October, 2020. ⇒136, 143
[41] G. L. Taboada, S. Ramos, R. R. Expósito, J. Touriño, R. Doallo. Java in the

High Performance Computing arena: Research, practice and experience, Science
of Computer Programming, 78(5):425 – 444, 2013. Special section: Principles and
Practice of Programming in Java 2009/2010 & Special section: Self-Organizing
Coordination. ⇒141, 167

[42] U.S. General Services Administration (GSA) Technology Transformation Ser-
vice, Interaction Design Basics, https://www.usability.gov/what-and-why/
interaction-design.html, 2020. Last visited: October, 2020. ⇒155

[43] ∗ ∗ ∗. Chapter 4. The class File Format, https://docs.oracle.com/javase/
specs/jvms/se7/html/jvms-4.html, 2020. last visited: April, 2020. ⇒149, 165

[44] ∗ ∗ ∗. Cygwin, 2020. last visited: January, 2020. ⇒152
[45] ∗ ∗ ∗. Eclipse IoT-Testware, 2020. Last visited: April, 2020. ⇒135
[46] ∗ ∗ ∗. Titan, 2020. last visited: January, 2020. ⇒152

https://mmeredith.net/
https://psych.indiana.edu/directory/faculty/kruschke-john.html
https://cran.r-project.org/web/packages/BEST/vignettes/BEST.pdf
https://cran.r-project.org/web/packages/BEST/vignettes/BEST.pdf
https://scholar.google.com/citations?user=6U8MewUAAAAJ&hl=en
https://bugcounting.net/
https://ieeexplore.ieee.org/xpl/conhome/7174815/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7174815/proceeding
http://compalg.inf.elte.hu/~attila/materials/OlahPeter_Diplomamunka.pdf
https://www.researchgate.net/scientific-contributions/William-K-Reinholtz-69964664
https://trs.jpl.nasa.gov/bitstream/handle/2014/18351/99-1827.pdf
https://dl.acm.org/newsletter/sigplan
https://www.researchgate.net/profile/Gyoergy-Rethy-2
https://ucaat.etsi.org/2016/
https://www.researchgate.net/profile/Stephane-Salmons
https://www.researchgate.net/profile/Mathilde-Arnaud-3
https://www.researchgate.net/profile/Xavier-Zeitoun
https://www.researchgate.net/scientific-contributions/Chiheb-Bouattour-2169448934
https://ucaat.etsi.org/2018/home
https://www.researchgate.net/profile/Kristof_Szabados
https://link.springer.com/book/10.1007/978-3-642-05031-2
https://link.springer.com/book/10.1007/978-3-642-05031-2
https://www.springer.com/de
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
https://ieeexplore.ieee.org/xpl/conhome/7321917/proceeding
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://www.acta.sapientia.ro/acta-info/
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
https://www.researchgate.net/scientific-contributions/Gabor-Jenei-2112101835
https://www.researchgate.net/scientific-contributions/Daniel-Gobor-2112062460
https://ieeexplore.ieee.org/xpl/conhome/7497413/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7497413/proceeding
https://www.researchgate.net/scientific-contributions/Janos-Zoltan-Szabo-73005048
https://www.tmit.bme.hu/csondes.tibor?language=en
https://www.hiradastechnika.hu/data/upload/file/2007/2007_1a/HT_0701a-6.pdf
https://www.hiradastechnika.hu/data/upload/file/2007/2007_1a/HT_0701a-6.pdf
http://www.des.udc.es/~gltaboada/
https://www.researchgate.net/profile/Sabela-Ramos
https://www.researchgate.net/profile/Roberto-Exposito
https://www.researchgate.net/scientific-contributions/Juan-Tourino-71077890
https://www.researchgate.net/profile/Ramon-Doallo
https://www.sciencedirect.com/journal/science-of-computer-programming
https://www.sciencedirect.com/journal/science-of-computer-programming
https://www.usability.gov/what-and-why/interaction-design.html
https://www.usability.gov/what-and-why/interaction-design.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://www.cygwin.com
https://projects.eclipse.org/projects/technology.iottestware
https://projects.eclipse.org/projects/tools.titan

172

Appendices

A Short introduction to TTCN-3

TTCN-322 is a high level standardised language ([16]) designed for testing.
Mostly used for functional testing (conformance testing, function testing, in-
tegration, verification, end-to-end and network integration testing) and perfor-
mance testing. TTCN-3 can be used (1) to test reactive systems via: message
based communication, (2) API based and analog interfaces and systems.

The language is governed by a strict, internationally accepted specification.
Each language construct, allowed by the syntax and semantics of the standard,
has a well specified behaviour. Tests written in TTCN-3 can be transferred to
other vendor’s tools without modification. Some standards of reactive systems
(for example communication protocols) offer their specifications together with
a set of tests written in TTCN-3. This provides an easy and automated way
for tool vendors and users to check the conformance of the implementation.

TTCN-3 offers platform independent abstract data types (see listing 1).
There is no value range restriction for integers, no precision restriction for
floats, and no length restriction for string types. String types are differentiated
based on their contents (bitstring, hexstring, octetstring, charstring, universal
charstring). Creating new types is supported by building structured types with
fields (record, set) or by list of an element type (record of, set of). It is also
possible to create new types with restriction (for example length restriction on
strings). This rich type / data constructs can easily be extended by importing
other data types / schema (ASN.123, IDL24, XSD25 and JSON26) without need
for manual conversion.

The templates of TTCN-3 merge the notions of test data and test data
matching into one concept (see listing 2). This enables the specification of
expected responses in a concise way. Matching rules can be for example: sin-
gle value (“Budapest”), list of alternatives (“Monday”, “Tuesday”), range
(1 .. 5), ordered and unordered lists of values, sub- and supersets of un-
ordered values, string patterns (pattern”* chapter”), permutations of values.
When declaring templates for structured data types, these matching rules
can be declared for each field and element individually or for the whole tem-

22Test and Test Control Notation 3
23Abstract Syntax Notation One
24Interface Definition Language
25XML Schema Definition
26JavaScript Object Notation

173

Listing 1: data types example

var boo lean v boo l ean := t rue ;
const i n t e g e r c i := 123456789101112131415;
const f l o a t c f 1 :=1E2 ;
const f l o a t c f 2 :=100 .0 ;
var b i t s t r i n g v b i t s := ’01101 ’B ;
var c h a r s t r i n g v char s :=”ABCD” ;
var hex s t r i ng v hex s := ’01A’H ;
var o c t e t s t r i n g v o c t s := ’0BF2 ’O;
var u n i v e r s a l c h a r s t r i n g v uchars := ”F” & char (0 , 0 , 0 , 65)

type record recordOper t record {
i n t e g e r x1 op t iona l ,
f l o a t x2 } ;

type record o f o c t e t s t r i n g r ecordOper t r eco f ;
type s e t r e co rdOper t s e t {

i n t e g e r x1 ,
f l o a t x2 op t i ona l } ;

type s e t o f c h a r s t r i n g r e co rdOpe r t s e t o f ;

type i n t e g e r t emp l a t e In t s u b t y p e (0 . . 1 4 5 7 6 6 4) ;
type record l ength (3)

o f record l ength (3)
o f record l ength (3) o f i n t e g e r threeD ;

Listing 2: templates example

template i n t e g e r t i := 123456789101112131415
var template f l o a t v t f := (1 . 0 . . 2 . 0) ;
template mycstr t mycs t r := pattern ”ab” & ”cd” ;

template t emp la t eChar s t r r ec t emp l a t eCha r s t r tL i s t :={
x1 :=”00AA” , // s p e c i f i c va lue
x2 :=(”01AA” , ”01AB” , ”11AC”) , // va lue l i s t
x3 :=complement (”11” , ”0A” , ”1BC0”) , // complement l i s t
x4 :=? l ength (2 . . 4) , //any s t r i n g wi th a l ength o f 2 to 4
x5 := pattern ”10*” //any s t r i n g matching the pattern

} ;

174

Listing 3: Example for receiving message

t e s t c a s e t c He l loWor ld () runs on MTCType system MTCType
{

t imer TL T := 1 5 . 0 ;
map(mtc :MyPCO PT, system :MyPCO PT) ;
MyPCO PT . send (” Hel lo , world ! ”) ;
TL T . s t a r t ;
a l t { // branching based on even t s

[] MyPCO PT . r e c e i v e (” Hel lo , TTCN=3!”) {
TL T . s top ;
s e t v e r d i c t (pass) ; / / r e c e i v i n g the r i g h t message

}
[] TL T . t imeout {

s e t v e r d i c t (inconc) ; // the t e s t timed out
}

[] MyPCO PT . r e c e i v e {
TL T . s top ; // some other message was r e c e i v ed
s e t v e r d i c t (f a i l) ;

}
}

}

plate. Checking whether a data value matches to the template is as easy as
“match(value, templateValue)”. Other constructs offer additional functional-
ity, e.g. “∗.receive(templateValue) → value” activates only if a value matching
to the provided template is received, in which case the value of the message is
saved in “value” for further processing.

TTCN-3 can also be viewed as a “C -like” procedural language with test-
ing specific extensions. The usual programming language features (function,
if, while, for, etc.) are extended with other constructs needed for testing: test
cases as standalone constructs, sending/receiving messages, invoking remote
procedures and checking the content of the received data structures (mes-
sages/results/exceptions), alternative behaviors depending on the response of
the tested entity, handling timers and timeouts, verdict assignment and track-
ing, logging of events (see listing 3) are all built in.

Creating distributed test cases and test execution logic is easy as well. A
TTCN- 3 test may consist of several parallel test components which are dis-
tributed on a set of physical machines, able to work in tandem to test all
interfaces of the tested system, or able to create high load. Test components,
communication ports to the tested entity and to other test components are

175

defined in TTCN-3. The number of test component instances and their con-
nections are controlled from the code of the test case dynamically using various
language features (see listing 4). Deploying and controlling the test component
also happens in an abstract and platform independent way. The user does not
need to work with the implementation details. It is the tools responsibility to
utilize the available pool of machines, possibly running on different operating
systems.

Listing 4: multiple components example

t e s t c a s e commMessageValue () runs on commMessage comp2 {
var commMessage comp1 comp [5] ;
var i n t e g e r x x i n t ;
f o r (var i n t e g e r i :=0; i <5; i := i+1)
{ l og (i) ;

comp [i] := commMessage comp1 . c r e a t e ; // c r ea t i n g component
comp [i] . s t a r t (commMessage behav1 (i)) ; / / s t a r t remote behav ior
connect (s e l f : Port2 [i] , comp [i] : Port1) ; / / connect to component
x x i n t :=5;
Port2 [i] . send (x x i n t) ; / / send message on port
Port2 [i] . r e c e i v e (i n t e g e r : ?) => va lue x x i n t ; // r e c e i v e response
i f (x x i n t==5+i) { s e t v e r d i c t (pass)}

e l s e { s e t v e r d i c t (f a i l) } ;
}
f o r (i :=0; i <5; i := i+1) {comp [i] . s top } ; // stop the components
} ;

TTCN-3 is also independent from the test environment. The user needs only
to define abstract messages exchanged between the test system and test tested
entity. Message encoding (serialization), decoding (de-serialization), handling
of connections and transport layers are done by the tools.

TTCN-3 also offers to control the test case execution logic and dynamic
test selection from within the the TTCN-3 code itself (see listing 5). Module
parameters allow for the user to leave data open in the source code and provide
the actual values at execution time (IP addresses, IDs, passwords, etc...)

176

Listing 5: execution control example

con t r o l {
f o r (var i n t e g e r i := 0 ; i < 10 ; i := i+1)
{

execute (pa rame t e r i s e d t e s t c a s e (i)) ;
}
execute (t r an s f e rTe s t ()) ;
execute (t c r u n s o n s e l f ()) ;

}

B Measurement details and histograms

177

1 it

6.2 6.8

0
10

20
30

40

2 it

12.2 12.8

0
5

15
25

35

3 it

18.35 18.60

0
5

10
15

5 it

30.5 30.9

0
5

10
15

20

8 it

49.0 49.6

0
5

10
15

10 it

61.0 63.0

0
5

10
15

20
25

50 it

305 309

0
5

10
15

20
25

100 it

610 616

0
5

10
15

200 it

1222 1230

0
5

10
15

300 it

1835 1850

0
2

4
6

8
10

400 it

2440 2460

0
5

10
15

20

500 it

3040 3070

0
5

10
15

20

(a) C side with timers

1 it

7.10 7.25

0
5

10
15

20

2 it

12.7 13.0

0
5

10
15

3 it

18.00 18.25

0
5

10
15

20

5 it

28.6 28.9

0
5

10
15

8 it

44.7 45.0
0

5
10

15

10 it

55.3 55.7

0
5

10
15

50 it

267.0 269.0

0
10

20
30

40

100 it

534.5 536.5

0
5

10
15

20

200 it

1064 1070

0
5

10
15

300 it

1596 1602

0
5

10
15

400 it

2120 2135

0
5

10
15

20

500 it

2650 2670

0
10

20
30

(b) Java side with timers

1 it

1.2 1.8 2.4

0
10

20
30

40

2 it

2.4 2.7 3.0

0
5

10
20

30

3 it

3.6 3.8 4.0

0
5

10
15

20

5 it

5.95 6.15

0
2

4
6

8
12

8 it

9.5 9.8

0
5

10
15

10 it

11.9 12.2

0
5

10
15

50 it

59.2 60.0

0
5

10
15

100 it

118.5 120.5

0
5

10
15

20

200 it

237 240

0
2

4
6

8
12

300 it

354 362

0
5

10
15

20

400 it

475 485

0
2

4
6

8
10

500 it

590 610 630

0
2

4
6

8
12

(c) C side without timers

1 it

2.30 2.45

0
5

10
15

20

2 it

2.90 3.10

0
5

10
15

3 it

3.5 3.7 3.9

0
5

10
15

5 it

4.40 4.60

0
5

10
15

8 it

5.8 6.0

0
2

4
6

8
12

10 it

6.6 6.8 7.0

0
2

4
6

8
10

50 it

23.0 23.8

0
5

10
15

20

100 it

43.5 44.5

0
5

10
15

200 it

84 86

0
2

4
6

8
12

300 it

124 127 130

0
2

4
6

8
12

400 it

164 170 176

0
5

10
15

20

500 it

205 215

0
5

10
15

(d) Java side without timers

Figure 5: Histogram of the measured execution times on Laptop 1. C (5(a))
and Java (5(b)) side with timers; C (5(c)) and Java (5(d)) side without timers.
On each histogram the horizontal axis shows the execution times, the vertical
axis the number of their occurrences.

178

1 it

6.60 6.70

0
2

4
6

8
10

2 it

13.0 13.6

0
5

10
15

3 it

20.0 21.5

0
2

4
6

8
10

5 it

32.5 34.5

0
2

4
6

8
10

8 it

52 55 58

0
2

4
6

8
10

10 it

65.5 67.5

0
2

4
6

8
10

50 it

325 340

0
5

10
20

30

100 it

650 680

0
5

10
15

20

200 it

1330 1380

0
5

10
15

20

300 it

1800 2000

0
5

15
25

35

400 it

2660 2740

0
5

10
15

500 it

3200 3400

0
5

10
15

20
25

(a) C side with timers

1 it

7.25 7.35

0
2

4
6

8
10

2 it

12.0 12.8

0
5

15
25

35

3 it

18.00 18.20

0
5

10
15

5 it

28.8 29.1

0
5

10
15

8 it

44.70 44.95
0

2
4

6
8

10

10 it

55.3 55.6

0
2

4
6

8
10

50 it

266 272 278

0
5

10
20

30

100 it

530 540 550

0
5

10
15

20
25

200 it

1060 1090

0
5

10
20

30

300 it

1585 1605

0
5

15
25

35

400 it

2110 2125

0
2

4
6

8
12

500 it

2630 2660

0
5

10
15

(b) Java side with timers

1 it

1.55 1.70

0
5

10
15

20

2 it

3.05 3.25

0
2

4
6

8
12

3 it

4.5 4.7 4.9

0
2

4
6

8
10

5 it

7.6 7.9 8.2

0
5

10
15

8 it

11.8 12.6

0
5

10
15

20

10 it

15.0 15.8

0
2

4
6

8
10

50 it

75 77 79

0
2

4
6

8
10

100 it

145 160 175

0
5

10
20

30

200 it

290 330

0
5

10
15

20

300 it

440 460

0
5

10
15

400 it

600 640

0
2

4
6

8
12

500 it

740 770

0
2

4
6

8
10

(c) C side without timers

1 it

2.35 2.55

0
5

10
15

20
25

2 it

2.95 3.15

0
5

10
15

3 it

3.50 3.65

0
5

10
15

5 it

4.4 4.6

0
5

10
15

8 it

5.6 5.8

0
5

10
15

10 it

6.3 6.6 6.9

0
5

10
15

50 it

20.8 21.6

0
5

10
15

100 it

39.5 40.5

0
2

4
6

8
10

200 it

74 76 78

0
5

10
15

300 it

110 125 140

0
10

20
30

40

400 it

150 180

0
5

10
15

500 it

185 200 215

0
5

10
15

20
25

(d) Java side without timers

Figure 6: Histogram of the measured execution times on Laptop 2. C (6(a))
and Java (6(b)) side with timers; C (6(c)) and Java (6(d)) side without timers.
On each histogram the horizontal axis shows the different execution times, the
vertical axis the number of their occurrences.

179

it. nr C + full Java + full C + inc Java + IDE m.

1 159.69 18.13 40.80 7.29

2 165.81 23.71 46.92 12.88

3 171.90 29.13 53.02 18.30

5 184.16 39.90 65.27 29.07

8 202.58 55.99 83.69 45.15

10 214.95 66.55 96.06 55.71

50 460.13 280.08 342.24 269.24

100 766.49 546.76 647.60 535.93

200 1378.82 1079.79 1259.93 1068.95

300 1992.45 1613.31 1873.56 1602.47

400 2602.08 2140.54 2483.19 2129.70

500 3205.31 2669.37 3086.42 2658.53

(a) Laptop 1 with timers

it. nr C + full Java + full C + inc Java + IDE m.

1 154.75 13.33 35.86 2.49

2 155.92 13.99 37.03 3.15

3 157.12 14.57 38.23 3.74

5 159.52 15.51 40.63 4.67

8 163.09 16.86 44.20 6.02

10 165.47 17.73 46.58 6.90

50 213.30 34.43 94.41 23.60

100 273.09 55.22 154.21 44.38

200 392.69 96.13 273.80 85.29

300 513.03 137.67 394.14 126.83

400 633.35 180.51 514.46 169.67

500 756.39 223.90 637.50 213.06

(b) Laptop 1 without timers

it. nr C + full Java + full C + inc Java + IDE m.

1 231.20 35.44 32.40 7.61

2 237.80 40.97 39.00 13.14

3 244.84 46.28 46.04 18.46

5 258.65 57.01 59.85 29.19

8 278.94 73.01 80.14 45.19

10 291.41 83.60 92.61 55.78

50 565.01 296.07 366.21 268.24

100 684.41 562.35 710.14 534.53

200 1364.92 1094.89 1390.65 1067.07

300 2228.21 1623.23 2029.41 1595.41

400 2953.54 2147.90 2754.74 2120.07

500 3590.27 2676.44 3391.47 2648.62

(c) Laptop 2 with timers

it. nr C + full Java + full C + inc Java + IDE m.

1 226.18 30.66 27.38 2.78

2 227.75 31.29 28.95 3.41

3 229.24 31.83 30.44 3.94

5 232.45 32.70 33.65 4.82

8 236.94 33.95 38.14 6.07

10 240.20 34.75 41.40 6.87

50 301.68 49.57 102.88 21.69

100 379.07 68.06 180.27 40.18

200 534.88 104.07 336.08 76.19

300 685.23 144.76 486.43 116.87

400 838.43 186.96 639.63 159.08

500 996.47 231.90 797.67 204.02

(d) Laptop 2 without timers

Table 5: The sums of the average build times of the build kinds (already
presented in Table 1) and the averages of execution times for different iteration
numbers on Laptop 1 with 5(a) and without timers 5(b), on Laptop 2 with
5(c) and without timers 5(d) in seconds (also already presented on Figures 3
and 4). The full postfix of the table means a full build, the inc postfix means
the incremental build and the inc means the incremental build in IDE mode.

Received: April 18, 2021 • Revised: June 1, 2021

Acta Univ. Sapientiae, Informatica 13, 1 (2021) 180–194

DOI: 10.2478/ausi-2021-0008

Fog-LAEEBA: Fog-assisted Link aware and

energy efficient protocol for wireless body

area network

Kifayat ULLAH
Department of Computer Science,

CECOS University of IT and Emerging
Sciences, Peshawar, Pakistan

email: kifayat@cecos.edu.pk

Haris KHAN
Department of Computer Science,

CECOS University of IT and Emerging
Sciences, Peshawar, Pakistan

email: hariskhan5848@gmail.com

Abstract. The integration of Wireless Sensor Networks (WSN) and
cloud computing brings several advantages. However, one of the main
problems with the existing cloud solutions is the latency involved in ac-
cessing, storing, and processing data. This limits the use of cloud com-
puting for various types of applications (for instance, patient health mon-
itoring) that require real-time access and processing of data. To address
the latency problem, we proposed a fog-assisted Link Aware and Energy
Efficient Protocol for Wireless Body Area Networks (Fog-LAEEBA). The
proposed solution is based on the already developed state-of-the-art pro-
tocol called LAEEBA. We implement, test, evaluate and compare the
results of Fog-LAEEBA in terms of stability period, end-to-end delay,
throughput, residual energy, and path-loss. For the stability period all
nodes in the LAEEBA protocol die after 7445 rounds, while in our case
the last node dies after 9000 rounds. For the same number of rounds,
the end-to-end delay is 2 seconds for LAEEBA and 1.25 seconds for Fog-
LAEEBA. In terms of throughput, our proposed solution increases the
number of packets received by the sink node from 1.5 packets to 1.8 pack-
ets. The residual energy of the nodes in Fog-LAEEBA is also less than

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 68R15
Key words and phrases: wireless sensor network, wireless body area network, fog com-
puting, fog-laeeba, energy efficiency

180

http://www.cecos.edu.pk
http://www.cs.cecos.edu.pk
http://www.cs.cecos.edu.pk
http://www.cs.cecos.edu.pk
mailto:kifayat@cecos.edu.pk
http://www.cecos.edu.pk
http://www.cs.cecos.edu.pk
http://www.cs.cecos.edu.pk
http://www.cs.cecos.edu.pk
mailto:hariskhan5848@gmail.com

Fog-LAEEBA 181

the LAEEBA protocol. Finally, our proposed solution improves the path
loss by 24 percent.

1 Introduction

The advancement in emerging technologies is reshaping our world and liv-
ing styles. Some of these emerging technologies are Wireless Sensor Network
(WSN), Wireless Body Area Network (WBAN), and cloud computing. A large
number of cloud-based solutions have been developed. One of the major draw-
backs of cloud computing is the delay involved in accessing and processing
data. This delay can significantly influence network performance [1]. Cloud
computing does not fulfill the real-time requirements of delay-sensitive ap-
plications [14]. To address this limitation of cloud computing the idea of fog
computing was proposed. Fog computing is a new paradigm shift in providing
cloud services at the edge of the network. It provides tools for managing, dis-
tributing, and securing resources and facilities across networks and between
devices that exist at the edge of the network [4].

WBAN is a special type of WSN in which several small lightweight wireless
sensors are placed or implanted in human bodies for health monitoring [8]. The
main objective is to monitor, collect, and report medical data from the patient
body [12, 3]. Different applications have been proposed using WBAN. For
example, patient monitoring, sudden fall of a patient, informing an emergency
response unit, call, sudden falls of patients, and providing guidance to the
patients, etc.

Current solutions for monitoring patient health focuses on the collection
of medical data and sending it towards a centralized server for making it
available to the medical staff. One such solution is the so-called Link Aware
and Energy Efficient Scheme for Body Area Networks (LAEEBA). It is a
well-known, reliable, and efficient protocol designed for WBAN. The design of
LAEEBA is based on cloud architecture. The major issue with the LAEEBA
protocol is the delay involved in the data processing, which is not tolerable in
the case of health-related applications [10].

We extend the operations of the LAEEBA protocol to fog computing. In this
regard, we proposed the design, and implementation of fog assisted efficient
solution called Fog-LAEEBA. The main focus is to address the problem of
delay involved in the LAEEBA protocol. On one side, this will help in storing,
managing, computing, and analyzing the sensory data. On the other side, it
will minimize the delay involved in the LAEEBA protocol. In the proposed

182 K. Ullah, H. Khan

solution, we deployed different sensors on the human body to monitor the
patient’s health-related data. Such data includes blood pressure, pulse rate,
and temperate, etc. This information will be transferred to a sink node, placed
on the body. The sink node will then send the data to the fog node.

The general objective of this research is to extend the operations of the
LAEEBA protocol to support the fog computing paradigm. To this end, the
more specific objectives are:

� To design a fog-assisted solution for patient health monitoring;

� To implement, test, and evaluate the performance of the proposed solu-
tion in terms of stability period, delay, throughput, path-loss, and energy
utilization;

� To compare the result of the proposed solution with the LAEEBA pro-
tocol.

2 Literature review

In the literature different algorithms, and protocols have been proposed for
WBAN using cloud and fog computing. These solutions include different ap-
plications for real-time health monitoring, improving network performance,
enhancing energy utilization, and minimizing the delay involved in processing.
In this section, we provide a literature review of the existing solutions.

A detailed overview of WBAN is provided in [3]. This work highlights both
the medical and non-medical applications. It also specifies the requirements for
different types of sensors, which are used in WBAN. Furthermore, this work
outlines the communication technologies, like, Global System for Mobile com-
munication (GSM), Wireless Personal Area Network (WPAN), WiFi, cellular
networks, ZigBee, and Bluetooth for WBAN.

As the sensor nodes in WBAN are battery-powered, hence, it is important
to efficiently utilize the energy of these nodes. To increase the network perfor-
mance of WBAN, an Identification Key Scheme (IKS) was proposed in [2]. The
IKS improves the performance of WBAN in terms of minimizing the packet
loss, and end-to-end delay. The authors used the OMNET++ simulator to
implement and evaluate the performance of IKS. Our proposed scheme also
considered these evaluation metrics, however, we implement our scenario in
the presence of a fog unit.

An analytical model, to improve the network performance of healthcare
applications, is proposed in [13]. The proposed solution recommends the use

Fog-LAEEBA 183

of fuzzy logic and fog computing to reduce the latency involved in the WBAN.
The proposed solution was implemented in the iFogSim simulator. The authors
only consider network latency metric for the evaluation of the proposed model.

A Long Range (LoRa) based, fog-assisted health monitoring application is
proposed in [7]. The proposed work highlight the importance of a health mon-
itoring system. To address the need for a proper health system in practice, the
authors emphasize the use of fog computing, IoT, and LoRa communication
technologies. They also proposed an architecture for the proposed monitor-
ing system. Finally, the authors developed a Raspberry Pi-based test-bed to
perform their experiments. However, they focus on the communication aspect
(e.g., RSS, and SNR) of the LoRa. One of the main drawbacks of the proposed
solution is the placement of fog nodes. In this work, the fog nodes are placed
health centers and hospitals, which are far away from the patient homes.

As the aging population of the world is increasing. There is a social need
to address the health issues of this large community. To address this prob-
lem, a fog computing-based elderly health monitoring system is proposed in
[5]. The proposed system utilizes the Mysignals HW kit for measuring health
parameters. They also developed a mobile application to analyze the collected
information.

A fog computing and K-Nearest Neighbor (KNN) based health monitoring
system for heart patient monitoring is proposed in [11]. This work makes use of
fog computing to minimize the delay problem and also enhance the accessibility
of the system. The main focus of this work is to monitor the heart disease
patient and alert the doctor, in case of an emergency. The authors implement
their solution by using an Arduino board, Raspberry pi device, and heart rate
sensor module. They evaluated the performance in terms of accuracy only.

The authors in [9] proposed a scheme called AnyCasting In Dual Sink
(ACIDS) for enhancing the performance of WBAN. This work focuses on
enhancing the performance of the WBAN in terms of throughput and sta-
bility period. Like our proposed solution, they compared the results with the
LAEEBA protocol. This work does not give attention to energy efficiency,
which is important to consider to evaluate the performance of WBAN. Further-
more, their solution does not consider the use of the fog computing paradigm.

The major inspiration behind our proposed solution is the protocol pre-
sented in [10]. This protocol is called Link Aware and Energy Efficient Scheme
for BAN (LAEEBA). The LAEEBA is a well-recognized, reliable, and efficient
routing protocol designed for WBAN. The LAEEBA protocol tries to improve
the energy efficiency of the network by maximizing the network throughput
and minimizing delay. For efficient path selection, it utilizes the number of hops

184 K. Ullah, H. Khan

while for energy consumption a cost function is calculated. The idea of coop-
erative Link-Aware and Energy Efficient protocol for WBAN (Co-LAEEBA)
is provided in [?]. This work focuses on the impact of single-hop and multi-
hop communication techniques. It also highlights the importance of coopera-
tion among sensor nodes. The main conclusion was that such cooperation can
maximize the throughput of a network.

3 Research methodology

The main objective of this research work is to propose a fog-assisted protocol
for WBAN. To achieve this goal, we followed a step-by-step research method-
ology. This section presents the most important steps of our methodology.

3.1 Conduct literature survey

To conduct this research, we performed a detailed literature review by consult-
ing standard libraries, e.g., Google Scholar, IEEE, ACM, SpringerLink, and
ScienceDirect, etc. We studied different approaches for the provision of health
services using WBAN. This study enables us to identify the main limitations
of the existing approaches and identify a research gap.

3.2 Simulation tools

For WBAN and fog computing, performing real-world experiments is a costly,
laborious, and time-consuming task. Similarly, it is difficult to repeat the same
experiments for different parameters. An alternative solution is to perform
simulations. Simulation tools are used to implement, test, validate, compare,
and evaluate the performance of the proposed solution. For this purpose, a wide
range of simulation tools, ranging from open source to proprietary solutions,
are available. However, the selection of the most appropriate simulation tools
is an important step in any research. We used a well-known simulation tool
called MATLAB. It is a matured and popular platform for scientific computing
and is widely used for conducting various simulation-based studies. MATLAB
has a rich set of modules that allows the user to perform different tasks.

3.3 Simulation scenario

After the selection of simulation tool, an important step to perform any
simulation-based experiment is to select a suitable scenario and set up the

Fog-LAEEBA 185

simulation environment. This step is also valuable for achieving reliable sim-
ulation results. In our proposed solution, we deployed different sensor nodes
on the human body. In addition, we also placed a sink node. Fig. 1 shows the
placement of these sensor nodes. All the sensor nodes are homogeneous having
the same computational capabilities. These sensor nodes are responsible for
sensing body temperature, heart rate, and oxygen level, etc. On the other side,
the sink node forwards the data collected from these sensor nodes toward the
fog node for further processing.

3.4 Simulation parameters

To evaluate the performance of the proposed solution, it is important to define
a set of parameters and metrics. The parameters that we choose for our ex-
periments are stability period, end-to-end delay, throughput, residual energy,
and path loss. These parameters are important for WBAN. In addition, the
selection of this standard set of parameters would help other researchers to
compare their solution with our approach.

3.5 Performance evaluation

To evaluate the performance of our proposed system, we performed different
experiments. We studied how the selected parameters influence the perfor-
mance of the proposed solution. Furthermore, we also compared the result
with the LAEEBA protocol.

3.6 Results analysis

The last step of our proposed research methodology is to analyze the collected
results of the experiments and draw some useful conclusions. We discuss our
results in more detail in section 5.

4 Fog-laeeba

In this section we present the details about our proposed solution. Fog-LAEEBA
is an extension to the LAEEBA protocol. It addresses the limitations, e.g., de-
lay, energy consumption, throughput, and path-loss of the LAEEBA protocol.
The design of our protocol is based on fog computing paradigm. Compared
to the cloud computing, the fog node is much closer to the sensor nodes and

186 K. Ullah, H. Khan

hence is considered to be an efficient solution, especially for health related
applications.

Figure 1: Proposed system model.

4.1 System model

In our proposed model we deployed eight sensors and one sink node. All nodes
have equivalent power and computation abilities. Fig. 1 shows the placement
of various sensors on the body. Each node is responsible for sensing different
health-related parameters. From the sink node, the collected data is transferred
to the fog Node. The flowchart of our system is also depicted in Fig. 2.

To implement our proposed solution, we used MATLAB. We perform exten-
sive simulation experiments to evaluate and compare the performance. Table
1 indicates the various parameters used for experiments.

Fog-LAEEBA 187

Figure 2: Flow diagram of proposed solution.

5 Results and discussion

This section presents the results of our simulation experiments. We also pro-
vide a comparison of the results with the existing LAEEBA protocol. It is
important to note that we repeat each set of experiments five times.

5.1 Stability period

The first metric that we consider to evaluate the performance of Fog-LAEEBA
is the stability period. The stability period is the time in which all the nodes
in a network stay alive. It is considered to be the key performance evaluation
metric. We present the obtained results of the stability metric in Fig. 3. The
results reveal that in the LAEEBA protocol the first node dies at around 2147,
while in our protocol the first node dies after 4437 rounds. After round number

188 K. Ullah, H. Khan

Parameter Value

Number of nodes 8
Position of nodes On human body
Mobility model First order radio Model
Size of packet 1000 bits
Initial Energy 0.4J
Eamp 0.0013 PJ/bit/m4

Eelec 50nj/bit
Efs 100 pj/bit//m2

Eda 5 NJ/bit
Emp 1.97 NJ/bit
Initial Energy 0.5 J
Frequency 2.4 GHz
Wavelength 0.125m
Standard IEEE 802.15.6

Table 1: Simulation parameters and their values.

7445, all nodes in the LAEEBA protocol died, whereas in our proposed solution
the last node dies after round number 9000. From the result, it is clear that
our proposed solution performed better than the LAEEBA protocol. We can
conclude that the stability period of our protocol is high, which will enhance
the lifetime of the network.

5.2 End-to-end delay

An important parameter to consider in performance evaluation is an end-to-
end delay. It is the time taken by a packet to reach the destination. One of
the main goals of WBAN is to decrease the end-to-end delay. We evaluate the
performance of the Fog-LAEEBA with the objectives to minimize this delay.

Our simulation results are shown in Fig. 4. The results demonstrate that
in terms of end-to-end delay our solution performs better as compared to
LAEEBA Protocol. It can be observed that in our case, the end-to-end delay
is high (i.e., 2.243 milliseconds) during the early stages. However, after some
cycles, this delay is minimized.

Fog-LAEEBA 189

Figure 3: Stability period.

Figure 4: End-to-end delay.

5.3 Throughput

Throughput means the number of packets being transferred from source to
destination in unit time. It is also an important factor to be considered for

190 K. Ullah, H. Khan

performance evaluation. The design goal of any solution should be to improve
network performance by maximizing throughput. We also considered through-
put for evaluating the performance of Fog-LAEEBA.

The results collected are shown in Fig. 5. At the initial stages of the sim-
ulations, the performance of both protocols is the same. However, at later
stages, our proposed solution achieved higher throughput as compared to the
LAEEBA protocol. In the case of the LAEEBA protocol, about 1.5 packets
(on average) were received by the sink node. However, in the case of Fog-
LAEEBA, around 1.8 packets were successfully received. From the results, we
concluded that Fog-LAEEBA improved the performance by about 13 percent.

Figure 5: Throughput.

5.4 Residual energy

As the sensor nodes rely on batteries, hence, energy is the main concern in
such types of networks. The term residual energy means the current energy
of a sensor node, after performing basic operations,e .g., sending or receiving
data packets. To perform the experiments, we kept the initial energy of sensor
nodes to four joules. The obtained simulation results are shown in Fig. 6. From
the results, it is clear that our proposed solution consumes less energy at the
start of the network operation. Up to round number 4000, the residual energy
of our proposed solution is less than that of the LAEEBA protocol. However,

Fog-LAEEBA 191

after that point, there is a slight variation in the energy consumption by both
solutions.

Figure 6: Residual energy.

5.5 Path-loss

Path loss is the reduction in the power of an electromagnetic wave. Several
factors can affect the quality of the transmitted signal. Usually, in WBAN,
the sensors are placed on or implanted inside the human body. Hence losses
between these devices could reduce the performance of health monitoring ac-
tivities. We performed different experiments to evaluate the performance of
our proposed solution in terms of path-loss. The results of path-lose exper-
iments are shown in Fig. 7. From the result, it is clear that the proposed
solution reduces the path loss at various rounds. Only between 2150 and 3900,
the path loss in our protocol is high. Overall, our proposed solution achieves
24 percent improvements over the LAEEBA protocol by reducing the average
path loss from 316.01 dB to 239.95 dB.

6 Conclusion and future work

WBAN and fog computing will pave the way for the deployment of several
applications. One such application area is the provision of health-related ser-
vices. Although the integration of WBAN and cloud computing brings several

192 K. Ullah, H. Khan

Figure 7: Path-loss.

advantages, one of the main problems with the existing cloud-based solutions
is the latency involved in accessing, storing, and processing data. This lim-
its the use of cloud computing for applications that require real-time access
and processing of data. To address this challenge, we proposed Fog-LAEEBA,
which follows the fog computing paradigm. Instead of sending the data to the
cloud for processing, which involved delay and complexities, the sensory data
would be processed locally on a fog unit. We implement, test, and evaluate the
performance of Fog-LAEEBA in a simulation environment. For this purpose,
we used a MATLAB simulator. Different parameters were used to evaluate
the performance of our proposed solution, such as stability period, end-to-
end delay, and throughput, etc. From the simulation results, we conclude that
Fog-LAEEBA performs better in several ways. Fog-LAEEBA minimizes the
end-to-end delay, involved in the LAEEBA protocol. In terms of energy effi-
ciency, our proposed solution enhances the lifetime of the network. Moreover,
we observed that Fog-LAEEBA brings a 24 percent improvement to the ex-
isting LAEEBA protocol by reducing the average path-loss from 316.01 dB to
239.95 dB.

In the future, we plan to test and deploy Fog-LAEEBA in real-world sce-
narios. Instead of using MATLAB simulations, we can deploy several medical
sensors on the human body. Furthermore, we can also compare the results of
our simulations with the results collected from real-world scenarios. This will
help us to understand the gap between simulation and practical implementa-

Fog-LAEEBA 193

tion setup. Security, privacy, safety, and trust cannot be eliminated from any
research work. Another future direction would be the consideration of these
aspects for safe and secure operations of the Fog-LAEEBA.

Finally, we will enhance the performance of the proposed solution by taking
into consideration several other parameters, e.g., sending the collected infor-
mation to a nearby hospital, or medical response teams.

References

[1] A. A. Mutlag, M. K. A. Ghani, N. Arunkumar, M. A. Mohammed, O. Mohd,
Enabling technologies for fog computing in healthcare IoT systems, Future Gen-
eration Computer Systems 90, (2019) 62–78. ⇒181

[2] A. Israa, A. Haider, S. Shihab, S. Siti, Identification key scheme to enhance
network performance in wireless body area network, Periodicals of Engineering
and Natural Sciences (PEN) 7, 2 (2019) 895–906. ⇒182

[3] A. Md. Taslim, H. M. Haque, A.K.M Fazlul, Wireless Body Area Network: An
Overview and Various Applications, Journal of Computer and Communications
5, (2017) 53–64. ⇒181, 182

[4] B. Flavio, M. Rodolfo, Z. Jiang, A. Sateesh, Fog Computing and Its Role in the
Internet of Things, Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, Helsinki, Finland, 2012, pp. 13–16. ⇒181

[5] E. Moghadas, J. Rezazadeh, R. Farahbakhsh, An IoT patient monitoring based
on fog computing and data mining: Cardiac arrhythmia usecase, Internet of
Things 11, (2020) 2542–6605. ⇒183

[6] H. B. Hassen, W. Dghais, B. Hamdi, An E-health system for monitoring elderly
health based on Internet of Things and Fog computing, Health Information Sci-
ence and Systems 7, 1 (2019) 1–9. ⇒183

[7] J. Kharel, H. T. Reda, S. Y. Shin, Fog Computing-Based Smart Health Monitor-
ing System Deploying LoRa Wireless Communication, IETE Technical Review
36, 1 (2019) 69–82. ⇒183

[8] K. Rani, N. Parma, Performance comparison of various routing protocols in WSN
and WBAN, 2016 International Conference on Computing, Communication and
Automation (ICCCA), Greater Noida, India, 2016, pp. 427–431. ⇒181

[9] M. R. Baig, N. Ullah, F. Hadi, S. Ahmed, A. Hanan, I. Ahmed, AnyCasting In
Dual Sink Approach (ACIDS) for WBASNs, International Journal of Advanced
Computer Science and Applications 8, 3 (2017) 257–263. ⇒183

[10] S. Ahmed, N. Javaid, M. Akbar, A. Iqbal, Z. A. Khan, U. Qasim, LAEEBA:
Link Aware and Energy Efficient Scheme for Body Area Networks, 2014 IEEE
28th International Conference on Advanced Information Networking and Appli-
cations, Victoria, BC, Canada, 2014, pp. 435–440. ⇒181, 183

[11] S. Ahmed, N. Javaid, S. Yousaf, A. Ahmad, M.M. Sandhu, M. Imran, Z.A. Khan,
N. Alrajeh, Co-LAEEBA: Cooperative link aware and energy efficient protocol

https://www.sciencedirect.com/science/article/pii/S0167739X18314006
https://www.sciencedirect.com/science/article/pii/S0167739X18314006
http://pen.ius.edu.ba/index.php/pen/article/view/606
http://pen.ius.edu.ba/index.php/pen/article/view/606
https://www.scirp.org/journal/paperinformation.aspx?paperid=762007
https://www.sciencedirect.com/science/article/abs/pii/S254266052030086X
https://www.sciencedirect.com/science/article/abs/pii/S254266052030086X
https://pubmed.ncbi.nlm.nih.gov/31695910/
https://pubmed.ncbi.nlm.nih.gov/31695910/
https://www.tandfonline.com/doi/abs/10.1080/02564602.2017.1406828
https://thesai.org/Publications/ViewPaper?Volume=8&Issue=3&Code=IJACSA&SerialNo=36
https://thesai.org/Publications/ViewPaper?Volume=8&Issue=3&Code=IJACSA&SerialNo=36

194 K. Ullah, H. Khan

for wireless body area networks, Computers in Human Behavior 51, B (2019)
1205–1215. ⇒183

[12] S. Ahmed, N. Sadiq, K. Sadiq, N. Javaid, M. A. Taqi, Node Density Analysis
for WBAN Schemes in Terms of Stability and Throughput, Recent Trends and
Advances in Wireless and IoT-enabled Networks, Springer, Cham, 2019. ⇒181

[13] S. Saurabh, H. M. Fadzil, J. L. Tang, A. Azlan, K. M. Khalid, 3-Tier Architec-
ture for Network Latency Reduction in Healthcare Internet-of-Things Using Fog
Computing and Machine Learning, Proceedings of the 2019 8th International
Conference on Software and Computer Applications, VPenang, Malaysia, 2019,
pp. 522–528. ⇒182

[14] V. Prabal, S. Sandeep, Fog Assisted-IoT Enabled Patient Health Monitoring in
Smart Homes, IEEE Internet of Things Journal 5, 3 (2018) 1789–1796. ⇒181

Received: April 24, 2021 • Revised: June 1, 2021

https://www.sciencedirect.com/science/article/abs/pii/S0747563215000072
https://link.springer.com/chapter/10.1007/978-3-319-99966-1_23
https://link.springer.com/chapter/10.1007/978-3-319-99966-1_23
https://ieeexplore.ieee.org/document/8283747

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Main Editorial Board

Márton TONK Editor-in-Chief
Adalbert BALOG Executive Editor
Angella SORBÁN Managing Editor

Csaba FARKAS member
Zoltán KÁSA member
Laura Nistor member
Ágnes PETHŐ member

Acta Universitatis Sapientiae, Informatica
Editorial Board

Executive Editor
Zoltán KÁSA (Sapientia Hungarian University of Transylvania, Romania)

kasa@ms.sapientia.ro

Assistent Editor
Dávid ICLANZAN (Sapientia Hungarian University of Transylvania, Romania)

Members
Tibor CSENDES (University of Szeged, Hungary)

László DÁVID (Sapientia Hungarian University of Transylvania, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Zoltán KÁTAI (Sapientia Hungarian University of Transylvania, Romania)

Attila KISS (Eötvös Loránd University, Hungary)
Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)

Attila PETHŐ (University of Debrecen, Hungary)
Shariefudddin PIRZADA (University of Kashmir, India)

Veronika STOFFA (STOFFOVA) (Trnava University in Trnava, Slovakia)
Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Sciendo by De Gruyter Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by F&F INTERNATIONAL
Director: Enikő Ambrus

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
acta-inf@acta.sapientia.ro
http://www.acta.sapientia.ro
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro

