
Acta Universitatis Sapientiae

Informatica
Volume 12, Number 2, 2020

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Acta Universitatis Sapientiae Informatica
is covered by the following services:

DOAJ (Directory of Open Access Journals)
EBSCO (relevant databases)
EBSCO Discovery Service
io-port.net
Japan Science and Technology Agency (JST)
Micosoft Academic
Ulrich’s Periodicals Directory/ulrichsweb
Web of Science – Emerging Sources Citation Index
Zentralblatt für Mathematik

Contents

M. Šipoš, S. Šimoňák
Development of ATmega 328P micro-controller emulator for edu-
cational purposes . 159

C. Huang, S. D. Bruda
Improved balance in multiplayer online battle arena games . . . 183

D. Andročec
Machine learning methods for toxic comment classification: a
systematic review . 205

J. Kok
Degree tolerant coloring of graph . 217

M. Szokoli, A. Kiss
Enhanced type inference for binding-time analysis 232

T. A. Naikoo, U. Samee, S. Pirzada, B. A. Rather
On degree sets in k-partite graphs . 251

Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov
Comparing epidemiological models with the help of visualization
dashboards . 260

iii

Á. Fülöp
Statistical complexity of the kicked top model considering
chaos. .283

L. Szilágyi, L. Lefkovics. D. Iclanzan
A review on suppressed fuzzy c-means clustering models 302

iv

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 159–182

DOI: 10.2478/ausi-2020-0010

Development of ATmega 328P

micro-controller emulator for educational

purposes

Michal ŠIPOŠ
IBM Slovakia, Ltd., branch office Košice

Aupark Tower, Protifašistických
bojovńıkov 11, Košice, Slovak Republic

email: michal.sipos@ibm.com

Slavomı́r ŠIMOŇÁK
Technical University of Košice

Košice, Slovak Republic
email: slavomir.simonak@tuke.sk

Abstract. The paper presents some of our recent results in the field of
computer emulation for supporting and enhancing the educational pro-
cesses. The ATmega 328P micro-controller emulator has been developed
as a set of emuStudio emulation platform extension modules (plug-ins).
The platform is used at the Department of Computers and Informatics
as a studying and teaching support tool. Within the Assembler course,
currently, the Intel 8080 architecture and language is briefly described as
a preliminary preparation material for the study of Intel x86 architecture,
and the Intel 8080 emuStudio emulator module is used here. The aim of
this work is to explore the possibility to enrich the course by introducing
a more up-to-date and relevant technology and the ATmega is the heart
of Arduino – a popular hardware and software prototyping platform. We
consider the options to make the process of studying the assembly lan-
guage principles more attractive for students and using the ATmega AVR
architecture, which is broadly deployed in embedded systems, seems to
be one of them.

Computing Classification System 1998: K.3.2, C.1.0
Mathematics Subject Classification 2010: 68U20, 68M01
Key words and phrases: emuStudio, emulation, Atmega, Arduino

159

https://www.ibm.com/sk-en
https://www.ibm.com/sk-en
https://www.ibm.com/sk-en
https://www.ibm.com/sk-en
mailto:michal.sipos@ibm.com
https://kpi.fei.tuke.sk/en/person/slavomir-simonak
http://www.tuke.sk
http://www.tuke.sk
mailto:slavomir.simonak@tuke.sk

160 M. Šipoš, S. Šimoňák

1 Introduction

Emulation [13] can be described as a technique of imitating a software or hard-
ware product by another software [21]. Emulation currently is widely used
mainly as a technique for running a software written for computer system dif-
ferent from the host computer operating environment. It provides the possi-
bility of cross-platform compatibility between different computer systems [31],
so it can also be considered as a preservation strategy for digital content [32],
[33]. Our motivation behind the development of the ATmega emulator was
slightly different however, as it was mainly intended for educational purposes.

At the present time, there are many emulators of computer systems avail-
able [34]. Choosing the emuStudio as the platform for which we developed
our emulator was straightforward, since it provides many features, which are
essential for its successful application in educational process. emuStudio is a
platform for emulation of computer architectures that integrates, as a form of
an IDE, also source code editing, compiling and debugging features.

Within the platform, programs for emulated machines are usually written
using assembly language of the particular architecture. Another significant
advantage of the emuStudio is the fact that it does not only serve as a one-
purpose emulator. Essentially, it provides a framework1 in the form of a Java
API. By utilizing it, programmers are enabled to design and implement their
own computer emulators as a set of plug-in modules. The above-mentioned
framework is intended to help to standardize the process of emulation [11], i.e.
to define the key responsibilities, functionalities and types of components that
are common for most emulators. In particular, the task of a programmer is to
implement modules for assembler source code compilation, CPU and memory
emulation, but optional peripheral devices can also be emulated.

With its ability of illustrative exploring the internal operation of emulated
architecture, emuStudio is well suited for educational purposes. The platform
has been designed to be easily extendable and once a component is imple-
mented, it can be reused effectively. As a result, possibilities of enriching the
emuStudio by new modules are very broad.

At the time of writing this paper, the emuStudio is used at the Department
of Computers and Informatics in Assembler and Data Structures and Algo-
rithms courses. In the Assembler course, Intel 8080 emulator is utilized and
within the Data Structures and Algorithms course, emulators of RAM and
RASP [29] abstract machines are used. The 8080 as a predecessor of x86 ar-

1http://www.emustudio.net

http://www.emustudio.net

Development of ATmega 328P micro-controller emulator 161

chitecture and a relevant example of an 8-bit processor architecture is used as
a simple preparation for studying Intel x86 architecture and language. How-
ever, being introduced to the microprocessors market in 1974 [20], despite
of its impact on the industry, it can cause some students to become slightly
demotivated by using a less up-to-date technology.

In the thesis [18], an idea of incorporating Arduino with its ATmega micro-
controller instead of the Intel 8080 in the assembly language course curriculum
has been investigated. Some similarities between Intel 8080 and ATmega 328P
assembly languages has been observed and the possibilities of such substitution
are discussed there. Furthermore a simple library providing students with the
possibility to use basic input and output operations has been developed within
the thesis and further enhanced later.

2 Related work

ATmega is the core of the popular Arduino Uno platform2. In recent years,
Arduino has been introduced to several computer science courses at the De-
partment of Computers and Informatics. This tendency has also been stimu-
lated by the growing demand for knowledge in the area of embedded systems
[1]; the popularity of the term Internet of Things [19] can be observed for
being rapidly increasing, too.

Globally, we can see that teaching assembler courses at some universities
is continually being shifted aside in favor of new subjects. Nowadays, as the
author of [17] suggests, operating systems and virtual machines on the top
of them pose a certain problem for teachers and students when it comes to
studying internal operation of computer systems as they act as a form of a
shield that hides the inner mechanisms. It can be concluded that it is one
of the causes for the phenomena of leaving assembler courses out from the
curriculum that students might not see enough reasons for studying it.

On the other hand, when using embedded systems, a virtual machine as an
abstraction layer is often missing and direct access to hardware is much easier,
but it requires some knowledge of its internal operation. And this is where, in
addition to C language, assembler becomes much more relevant. The topic is
deeper discussed in [17].

An approach similar to the one presented in this paper (but based on 8051
micro-controller emulation) has been taken with the EdSim51 - the 8051 sim-
ulator for teachers and students [25]. The EdSim51 is a simulator of 8051

2https://store.arduino.cc/arduino-uno-rev3

https://store.arduino.cc/arduino-uno-rev3

162 M. Šipoš, S. Šimoňák

micro-controller, which is interfaced with virtual peripheral devices like key-
pad, DC motor, 7-segment display, UART, LEDs, etc. A nice advantage of
the EdSim51 over some other available 8051 simulators is that it provides
graphical representation of several peripheral devices, which can be used in-
teractively [26]. It is a Java-based application, so it can be used in multiple
operating environments.

Another example of very popular processor within the computer architec-
ture academic community and one often utilized for educational purposes [22]
is MIPS. Several simulators have been developed to date for this architec-
ture [37]. We can mention DrMIPS, an educational MIPS simulator [23, 22],
which can simulate the execution of an assembly program and display the dat-
apath graphically. Moreover it can display the values of inputs and outputs
of several components, which are relevant for the execution of the current in-
struction. The simulator was developed in Java and is available not only for
PC, but also for Android devices. On the other hand, since the emulator is
developed mainly for educational purposes, it supports rather limited set of
instructions. Several instructions like syscalls, floating-point operations and
shifts are not supported [23].

CPUlator is a Nios II, ARMv7, and MIPS computer system simulator and
debugger running in a web browser [37]. It allows running and debugging pro-
grams without corresponding hardware board. Systems simulated by CPUlator
are based on the computer systems from the Altera University Program (Nios
II, ARMv7) and SPIM (MIPS) respectively.

Gerd’s AVR simulator [27] is a complex solution for simulating AVR 8-bit
micro-controllers. It provides an editor, assembler, simulator, overview of I/O
ports and timers, memories, etc. Lazarus Pascal source code and executable 64-
bit versions for Windows and for Linux are available from [27]. The advantage
of this solution is the support for many types of AVR 8-bit micro-controllers
and complex support of built-in peripheral devices. As an advantage of our
solution, described in this paper, can be considered the fact that it is developed
using Java and thus could be more portable. It is developed as a set of plug-in
modules for emuStudio emulation platform, so it could be easier to develop
and enhance in the future. Modules for some simple external devices are also
available within our solution (like USART terminal and LED diode emulation
modules).

An interesting approach has been employed in [24], where a methodology
is proposed for teaching the microprocessors interface course based on the
idea of emulating the microprocessor operation. Students are instructed to
use the parallel port for emulating the signals generated by 8088/8086 micro-

Development of ATmega 328P micro-controller emulator 163

processors. According to authors of the paper, emulating a working system
by generating the necessary control signals leads to a good knowledge of the
system.

An educational approach for bridging the gap between low-level and higher
level programming, based on usage of 8-bit microcontrollers has been proposed
in [6]. The approach proposed aims in simplification the students’ learning by
making the parallelization between the assembly language programming and
higher level programming.

But what is the purpose of using an emulator in addition to original hard-
ware? When studying the above-mentioned inner workings of computers, em-
ulation tools can be a way of a deeper insight into them [36], as the complexity
of hardware might sometimes exceed the limit of what can be effectively stud-
ied or taught [38], respectively. Also, emulator gives students the opportunity
to exercise what they have learned at the classes, at home, without owning the
hardware components physically. What is more, emulating an ATmega device
in software brings another advantage – it can be used to automate the testing
of students’ assignments, as has also been suggested in [18].

In addition to using emulators, there are also other efficient approaches
that are used within the education in the field of computer architecture and
organization, such as hardware-description languages and reconfigurable cir-
cuits [7, 16]. An interesting case study is described in [8] where critical investi-
gation of existing course on digital electronics revealed that it mostly produces
surface understanding of digital systems and students lack practical skills to
develop complex digital designs. The course outline has been improved and an
enhanced delivery method was proposed. The study of students’ performance
over a period of six years was evaluated and the results indicate that students
had developed good level of understanding of basic principles and were able
to employ system modeling using VHDL.

3 Emulation techniques

Before proceeding to description of the design of ATmega emulator modules
set, several emulation-related terms will be introduced. According to the study
[21] two basic types of emulation can be distinguished, as they correspond to
the format of the emulated program:

� interpretation – the program is represented in the form that is native for
the original processor it has been written for; this enables the emulator,
in this case interpreter, to work in the “fetch-decode-execute” loop,

164 M. Šipoš, S. Šimoňák

� binary translation – the code of the program is translated into the form
native for the architecture it is being emulated on, which usually means
x86-like binary. The translation, can either take place at runtime (dy-
namic) or in advance, before emulation (static).

In the study also advantages and disadvantages of both of the approaches are
mentioned. Interpretation is generally less complex to implement than binary
translation. On the contrary, as during binary translation a native code is
generated, the resulting performance of the emulation is usually better. One
of the techniques to increase the performance of interpreter emulators is so-
called threaded code. James R. Bell explains its basic principles in his paper
[5]. The algorithm begins by reading the instruction at the PC-th address from
the emulated program storage, where the PC is the program counter register.
The retrieved opcode serves as an index into a so-called jump table. Each
particular table entry contains a reference to the function that implements the
corresponding instruction emulation. The only step left is to call the function,
which is analogous to executing the instruction on the emulator. The jump
table can be filled by function references in advance, when the emulator is
initialized, which unburdens the emulation loop from the time consuming task
of decoding instruction opcodes.

By performing the above-mentioned procedure, we have eliminated the effort
needed for the decode step from the fetch-decode-execute loop. In addition to
this, it is also possible to minimize the fetch part, if we cache the instructions
already fetched from the memory. These optimizations lead to the algorithm
presented in Figure 1 [30].

4 ATmega 328P micro-controller architecture

ATmega 328P micro-controller is based on the AVR architecture, which is
one of the leading 8-bit architectures [4]. From instructions complexity point
of view, it is a RISC (Reduced Instruction Set Computer) architecture [4].
From the perspective of an emulator programmer, this can be considered as
an advantage as it is characteristic for RISC computers to have simpler in-
structions. The fixed-length instructions also make the decoding part of the
execution loop less complex. On the other hand, from the point of view of
the one developing programs for the micro-controller, the CISC (Complex In-
struction Set Computer) addressing modes flexibility might be missing. Also,
a program size might be bigger in case of RISC binary [35] in comparison to a

Development of ATmega 328P micro-controller emulator 165

Figure 1: Threaded code execution algorithm.

CISC one as for one operation, a sequence of several simpler instructions can
be required.

ATmega is a representative of Harvard architecture [4], which affects the
structure of the memory subsystem – separate modules are used for storing
program and data. When compared to von Neumann architecture, Harvard
computers enable more effective pipelined execution [9] – while one instruction
is being executed and is retrieving its operands from the data memory, the
next one can be pre-fetched from the program memory module.

The ATmega 328P micro-controller is equipped with a 32 kilobyte flash pro-
gram memory [2]. It is organized in a less conventional way – each memory cell
contains an instruction word, i.e. two bytes. The reason for such a distribution

166 M. Šipoš, S. Šimoňák

[2] is that the length of all opcodes is either 16 or 32 bits. As a program is
addressed by words, program counter is 14 bits wide, which is enough for the
whole range.

In case of the data memory, addressing is conventional – one byte for one
cell. ATmega chip includes a SRAM (Static Random Access Memory) data
memory module with all general purpose registers (GPR) and input/output
registers (IOR) mapped to its address space. The organization is depicted in
Figure 2 and the capacity of the internal SRAM, i.e. excluding the GPRs and
IORs, is 2 KB.

Figure 2: Data memory organization.

An inevitable part of the micro-controller is the input/output subsystem.
On the ATmega, it includes digital and analog input/output pins, USART
(Universal Synchronous-Asynchronous Receiver/Transmitter) serial interface,
timers and a lot of other peripherals. The peripheral devices communication
with the micro-controller is realized by using of so called ports. They serve as
gates [28] between the CPU core and the other parts of the micro-controller,
or between the CPU and devices out of the chip. These might be various
types of sensors or mechanical equipment, e.g. servo motors or relays. For
digital input/output, there are three ports – B, C and D available. Each of
those ports is controlled by three registers: the DDR register for determining
whether the pin has INPUT or OUTPUT direction, the PORT register for
setting the pin to HIGH or LOW level, and the PIN register for reading the
state of INPUT pins (or toggling the value of particular PORT bit by writing
‘1’ to the corresponding bit of the PIN register) [2]. So to send data e.g. to
port B, writing to the register PORTB is required. Each of its bits represents

Development of ATmega 328P micro-controller emulator 167

the corresponding pin of the port. To read its current value, the PINB register
can be read and the relevant bit needs to be evaluated.

5 ATmega 328P - emuStudio extensions design

The initial step to consider when designing the support for a new architecture
in emuStudio is so called abstract scheme3. The scheme is always based on
the von Neumann model [12], which represents a certain complication in our
design as the ATmega is a computer of the Harvard type – it contains sepa-
rate memory modules for data and for program. Furthermore, also EEPROM
(Electrically Erasable Programmable Read-Only Memory) memory module for
permanent data storage is included on the chip.

5.1 Memory emulation

There has been a discussion with the author of the emuStudio platform re-
garding the memory subsystem, in which several possible solutions has been
considered. One of them was to extend the emuStudio to support Harvard
architecture computers by adding a new type of component in the abstract
scheme – program memory. However, such component would be limited only
to store programs, which would mean to narrow the functionality of a storage
component only for this purpose. Another considered option was to use the
concept of a Memory Management Unit (MMU) that would provide access
to all the three memory modules. This would, however, require them to be
mapped to a single memory space.

Finally, the solution reducing Harvard architecture of ATmega to von Neu-
mann type has been chosen. To perform this, one of the memory modules
needed to be considered as memory, since von Neumann computers, and there-
fore also emuStudio abstract scheme include at most one memory. For practical
purposes, such as the fact that the compiler module needs storage to load a
program to and also that the CPU needs it to fetch instructions, flash program
memory has been chosen.

For the data memory, as it could not be considered as memory after this
decision, it has been chosen to include it within the CPU module. Such an
organization is a compromise. Both of the memory modules are integral parts
of the chip on a real device, so including data memory in the CPU module is
acceptable. As for the program memory, it has been chosen, from the logical

3http://www.emustudio.net/docuser/main_module/index/

http://www.emustudio.net/docuser/main_module/index/

168 M. Šipoš, S. Šimoňák

point of view of a von Neumann computer, as the only memory in the scheme.
EEPROM data permanent storage is not implemented within our solution yet,
however, in the future, it can be added as a device, i.e. peripheral device type
of module.

For the purpose of storing program, Standard Memory, an already imple-
mented emuStudio module has been chosen. This component has been part
of MITS Altair 8800 computer emulator and the fact makes it a sufficient
candidate for reuse. Though, we had to adapt it for two-byte cells address-
ing. Updates in Standard Memory module could have been done, for example,
by designing a new context to support different cell sizes. This would, how-
ever, require changes in the emuLib4 library. Also, an already existing utility
HexfileManager, responsible for loading contents of an Intel HEX files into
memory, would be needed to be adapted as it currently depends on memories
with one byte at a cell.

Therefore, we had to choose a solution with as little changes in Standard
Memory as possible. It has been decided to adapt just the visual representation
of the memory content in the GUI (Graphical User Interface). As a result,
internally, in our solution, the content is still an array of one byte values, while
in the GUI, user sees two bytes at a cell. The interface of the StandardMemory
context has been extended by the option to set the cell size by a programmer.
He or she only needs to do this configuration when requesting it from the
context pool. Also, endianness can be set. The resulting view of the memory
content can be seen in Figure 3.

5.2 Compiler module

Another module that is part of the set presented in this paper is the compiler
module. All compilers currently present in emuStudio use automation tools to
generate lexical (lexer) and syntactic (parser) [10] analyzer. For lexical anal-
ysis, JFlex5 is used. This phase of compilation is also needed for the purpose
of syntax highlighting in the emuStudio source code editor. Thanks to lexical
analyzer generated on the basis of the JFlex specification file, the emuStudio
main module takes care of this task, we only needed to specify the types of
tokens. This fragment from the JFlex file illustrates it:

4https://github.com/vbmacher/emuLib
5http://jflex.de/

https://github.com/vbmacher/emuLib
http://jflex.de/

Development of ATmega 328P micro-controller emulator 169

Figure 3: GUI of StandardMemory after adding a support for different cell
sizes.

"ADD" {

return token(Token.RESERVED);

}

".DB" {

return token(Token.PREPROCESSOR);

}

For the core task of compiling assembler source code of programs written for
ATmega, we call an external tool – GAVRASM6 from the compiler module.
From Java code, it is invoked by utilizing ProcessBuilder provided by the Java
API:

ProcessBuilder processBuilder = new ProcessBuilder(command);

Process process = processBuilder.start();

process.waitFor();

The command depends on the underlying operating system, since the
GAVRASM is available for MS Windows as well as for Linux OS.

6http://www.avr-asm-tutorial.net/gavrasm/index_en.html

http://www.avr-asm-tutorial.net/gavrasm/index_en.html

170 M. Šipoš, S. Šimoňák

5.3 CPU emulator module

Within this subsection we will continue to the core part of the emulator – the
CPU module. The basic algorithm of a CPU emulator in general is presented
in [21]. The diagram is depicted in Figure 4. The algorithm will also be applied
in our solution.

Figure 4: General CPU core emulator algorithm.

Let us explore the steps in deeper detail and discuss how they will be im-
plemented. At first, we need to determine how many CPU clock cycles will be
executed. For this purpose, it is necessary to define a synchronization interval

Development of ATmega 328P micro-controller emulator 171

for which the number will be calculated. The time range will be figured out
by the following formula [15]:

timeSlice = T · numberOfCycles . (1)

This will be equal, as the formula suggests, to the time of execution of
numberOfCycles clock cycles on the real CPU; T is the clock cycle period,
i.e. multiplicative inverse of the CPU frequency. Therefore, timeSlice will be
calculated according to this formula:

timeSlice =
numberOfCycles

f
. (2)

The numberOfCycles value can be then calculated as follows:

numberOfCycles = timeSlice · f . (3)

Now, what is still missing is the timeSlice value. It can be an empirically
chosen constant [15]. In the Intel 8080 emuStudio extension, it is 100 ms
(0.1 s). We will also use this time range and assuming that clock frequency of
ATmega 328P is 16 MHz7, the following formula holds:

numberOfCycles = 0.1 · 16 · 106 = 16 · 105 . (4)

The next step is to determine whether the number of executed cycles is
less than how many are to be executed at all within the 100 ms interval. To
evaluate this condition, we need to know the number of clock cycles of specific
instructions. These are constant values and can be obtained from the AVR
Instruction Set Manual [3]. To keep the number of cycles executed so far, we
need to return the number of clock cycles that the instruction execution took
from the execute(instruction) method.

The following part of the algorithm is reading the instruction opcode from
the program memory. After fetching the instruction, we need to decode it.
This can be done by using an extensive switch statement for all the 131 in-
structions, not even counting all the possible combinations of opcodes that
have their operand encoded in them. The idea is illustrated by the following
code fragment:

7https://www.arduino.cc/en/Products/Compare

https://www.arduino.cc/en/Products/Compare

172 M. Šipoš, S. Šimoňák

switch(opcode){

case 0x0:

execute(instruction1);

case 0x1:

execute(instruction2);

...

}

In contrast to this, it is more efficient to use the concept of a jump ta-
ble, that has been introduced in the Introduction section and can be seen
in the Figure 1. In terms of Java, which is the implementation language
of our solution, we can use so called functional interface for this purpose,
let us call it ExecutableInstruction, with one method – execute(Short[]

opcodeWord) that takes a two-bytes opcode and returns the number of CPU
clock cycles executed by the particular instruction. The jumpTable needs to
be initialized. It is relevant to do so outside of the emulation loop itself and
have it prepared in advance. The number of all possible distinct opcodes is

numOfDistinctOpcodes = 216 = 65536 . (5)

During the emulator initialization, we will go through all these possibilities,
i.e. from 0 to 65535, and in all the case branches of the switch statement, we
will apply assignments in the following form:

executableInstructions[OP] = EmulatorEngine.this::add;

As we can see, a reference to the method add() that implements emulation of
the ADD instruction is put at the OP-th position in the executableInstruc-
tions[] array, which represents the jump table and the OP is the operation
code of the instruction. The last step of the algorithm is to execute the in-
struction at the OP-th item of the jump table. As we have already mentioned,
the table items are of the type ExecutableInstruction and executing the
instruction means calling its execute() method:

cycles = executableInstructions[opcode].execute(opcodeWord);

cyclesExecuted += cycles;

However, one additional adjustment is needed. If we have already reached
the number of cycles to be executed but the time range of 100 ms still has
not passed, we have to wait for the remaining part of the time interval. For
this purpose, Java API provides a utility method to stop current thread –
emulation thread (in emuStudio, there is a separate thread for emulation):

LockSupport.parkNanos(timeSliceNanos - endTime);

Development of ATmega 328P micro-controller emulator 173

5.4 Input/output subsystem emulation

As one of suitable representatives of the input/output subsystem of ATmega
we have chosen the USART serial interface. We will not explain its functional-
ity and operation here, more can be found in the analytic part of the Master’s
thesis [30] and also in the manual [2]. USART interface is usually used for com-
munication between the micro-controller and external peripheral devices, or
even an another micro-controller. A frequent application is also data exchange
between ATmega and a personal computer via a terminal.

On a real ATmega device, the CPU core communicates with the USART
module on the chip via data bus. On the other side, USART is connected with
the outside world via RX and TX micro-controller pins. Communication with
the PC is enabled by a special one-purpose integrated circuit that converts
the data stream between the format used by USART and USB (Universal
Serial Bus) format. The authors of article [14] explain that a suitable level
of abstraction must be agreed on when implementing emulators. One-purpose
auxiliary chips together with buses and also, in our case, RX and TX pins as
communication channels can be omitted in the emulator design.

As a result of abstracting away from these hardware details, two components
in the abstract scheme – USART and Terminal modules can be used in our
solution. The design of the scheme is depicted in Figure 5.

Figure 5: Abstract scheme of the solution.

As we have already stated, bit-after-bit communication via RX and TX
pins will not be emulated exactly as on a real device. We will use a different
approach here. In the section 4, we explained that I/O registers are mapped

174 M. Šipoš, S. Šimoňák

into the SRAM data memory space and this can be effectively exploited also
in our solution.

emuStudio modules use a special component – context, that serves as their
communication interface to exchange data and commands with the other mod-
ules. In our implementation, all the SRAM data memory is integrated in the
CPU module. We will use the context of CPU in modules of peripheral devices
to subscribe them to observe changes in I/O registers. In the case of USART
module, the most important register is UDR0. When writing or reading from
it using OUT and IN instructions, on a real device it is used as a temporary
storage for the byte (character) being transmitted or received. For the sub-
scribing, the CPUContext interface provided by the emuLib library must be
extended, as it can be seen in Figure 6. Here, UDR0 will be the device context,
in our case.

Figure 6: The CPUContext extension.

The interconnection of the CPU and USART modules via subscribing to
changes in I/O registers (mapped to the data memory, which is integrated in
the CPU module) can be seen in Figure 7.

On the other side of communication, USART and terminal modules are
interconnected, again, by using their contexts, as the component diagram in
Figure 8 depicts.

Graphical user interface of the terminal implemented in our solution can be
seen in Figure 9.

For the purpose of effective testing of students’ assignments, automatic em-
ulation support has been added to the terminal module. The functionality is
enabled by redirecting input from a text file with prepared inputs into the
terminal and outputs are then written to a separate output file instead of
being printed to the terminal GUI. Automatic emulation without GUI and
user interaction is already one of the emuStudio features, so it what was only

Development of ATmega 328P micro-controller emulator 175

Figure 7: Interconnection of CPU and USART modules.

Figure 8: Interconnection of CPU, USART and terminal modules.

needed to add support for it in the terminal module. To run the emulation
using USART and terminal in the automatic mode, the following command
can be used:

java -jar emuStudio.jar --auto --nogui --config "AVR"

--input example.s

What needs to be specified is the name of the file with source code of the
program. Path to the file with input values and also to the file where outputs
will be redirected, can be set in the terminal module settings.

Similar concept of observing specific I/O registers for changes has also
been used in another extension – LED (Light-Emitting Diode) diode emu-
lation module. It visualizes the communication via digital ports of the micro-

176 M. Šipoš, S. Šimoňák

Figure 9: Graphical user interface of the USART terminal.

controller. However, now, the LED module needs to subscribe to a specific
pin of a digital port. It is represented by the corresponding bit in the PORTx
register, where “x” stands either for B, C or D. To enable this, one more oper-
ation needed to be added to CPU context extension – the resulting interface
is depicted at diagram in Figure 10.

Figure 10: The CPUContext extension for pin subscribing.

One more peripheral device module has been implemented within our so-
lution – the timer. ATmega chip includes three timers [2]; since our emulator
is mainly intended for usage as a study supporting tool, one of them is suf-
ficient to be emulated at the moment – Timer/Counter0. Again, timer uses,
similarly to USART, its dedicated I/O registers. Just to mention some of
them, TCNT0 register holds current counter value and TIMSK0 is used to

Development of ATmega 328P micro-controller emulator 177

enable/disable timer interrupts. As in the case of the USART module, we can
apply the concept of subscribing the timer to relevant I/O registers within the
data memory, which is included in the CPU module.

According to the documentation8, within emuStudio main module, there is
a dedicated execution thread for emulation. It is not suitable to burden it by
other auxiliary tasks. One of these is the process of counting timer/counter
cycles. Therefore, we should create a separate thread for this purpose. It will
take care of updating the counter register TCNT0 and check for situations
when it should signal timer interrupts. One of them is timer overflow inter-
rupt. Since the Timer/Counter0 uses an 8-bit counter, the highest value is
therefore 255 and in the clock cycle when the counter reaches it, interrupt
signal is generated and sent to the CPU. To configure how often it will occur,
TCCR0B register can be used – by assigning it a specific value, the prescaler
will be set accordingly. Prescaler serves as a frequency divider – it divides
16 MHz frequency of ATmega micro-controller by given constant. E.g., if we
set TCCR0B to 0b101, the divisor will be 1024 and the resulting frequency
of the timer will be equal to 15625 Hz. As a result, the period between timer
ticks will be longer and overflow of the counter register will be less frequent.

Moving on to the interrupts signalization. For this purpose, it is enough to
keep a flag boolean variable – if its value is TRUE, it means that a pending,
not yet handled interrupt is present. We need to, however, ensure synchronized
access to it from both threads that use it – emulation and timer thread.

In each emulation step, it is then required to check the flag variable and
if it is set to TRUE, it is needed to execute corresponding interrupt han-
dling subroutine. Interrupts currently supported by our CPU emulator are
Timer/Counter0 overflow interrupt and Timer/Counter0 compare match in-
terrupt that occurs when TCNT0 counter register becomes equal to either of
two registers values set by the programmer – OCR0A or OCR0B. If an un-
served interrupt is present, program counter register is set to the corresponding
vector address. The algorithm of handling the timer interrupts is depicted in
Figure 11.

6 Conclusion

In this paper we presented a set of extension modules implemented for emuS-
tudio platform that provide support for emulation of ATmega 328P micro-
controller. During the design and implementation, thematic areas covered in

8http://www.emustudio.net/docdevel/emulator_tutorial/index/

http://www.emustudio.net/docdevel/emulator_tutorial/index/

178 M. Šipoš, S. Šimoňák

Figure 11: Algorithm of signaling interrupts from the timer.

a collection of exercises that was a part of thesis [18] have been taken into
account as relevant for application in the Assembler course. Therefore the
areas included work with USART serial interface, digital output, timer and
interrupts handling.

As a result, the set of extensions includes the following modules:

� module for assembler source code compilation using an external tool
(GAVRASM),

� module for emulation of ATmega micro-controller CPU core with in-
tegrated SRAM data memory with general purpose and I/O registers
mapped into its address space; also a disassembler is included for the
purpose of more comfortable program debugging,

� module emulating USART serial interface,

� USART terminal module,

Development of ATmega 328P micro-controller emulator 179

� module emulating Timer/Counter0 – one of three ATmega timers, in-
cluding interrupt generation in cases of counter overflow and counter
match,

� LED diode emulation module to visualize voltage changes on digital pins
of the micro-controller.

As a program storage (ATmega flash program memory), an already existing
module Standard Memory has been reused. What needed to be adjusted was
the visual representation of values in memory cells as the ATmega program
memory is addressed by words (pairs of bytes). In comparison with the official
Atmel Studio IDE9 from the manufacturer of the micro-controller, it removed
the source of misinterpretation of addressing – the Studio displayed one byte
per cell.

As for the CPU emulation, the whole ATmega 328P instruction set is
supported in our solution, except for instructions for switching the device
into sleep mode (SLEEP), breaking program execution for debugging pur-
poses (BREAK), resetting watchdog timer which is not implemented (WDR)
and writing into the program memory as we do not support program self-
modification (SPM).

From peripheral devices, USART and terminal modules can be used in math-
ematical and text-oriented exercises for the purpose of providing inputs and
retrieving outputs from the programs. To support students’ assignments test-
ing, automatic emulation feature has been added to the terminal module, too.
Students can also practically learn how to handle interrupts thanks to avail-
able timer/counter module. As a reaction to timer events, the LED diode
module can be effectively used. It also can visualize the voltage changes on
the ATmega digital pins.

The solution presented within the paper can be practically applied in the
Assembler course at the Department of Computers and Informatics as a study-
ing and teaching support tool. It would help the students to better understand
the internal operation of the ATmega 328P micro-controller.

However, lot of the features of the ATmega micro-controller is currently not
included in our solution. To fulfill the goal of making the Assembler course
more attractive, there is still a large scale of possibilities of how our set of
emuStudio modules can be further improved and extended. What could be
added is the support for EEPROM permanent data storage memory that has
not been implemented within our solution. Within the available timer/counter

9http://www.microchip.com/avr-support/atmel-studio-7

http://www.microchip.com/avr-support/atmel-studio-7

180 M. Šipoš, S. Šimoňák

module, additional modes of operation could be implemented. The next alter-
native is the emulation of additional peripheral devices, e.g. the remaining two
timers/counters. Also, an input on digital pins of the micro-controller could
be considered in addition to currently supported digital output.

Some from the available external peripheral devices could be emulated as
well, like an LCD display or boards for network communication. In addition
to these, servo motors, relays and various sensors could be emulated, too. Our
solution, as explained in the text above, is open for further development and
extension to continue with the effort of making the educational process at our
department more attractive for students by supporting their interest in the
field of machine-oriented languages and computer organization.

References

[1] N. Ádám, Interconnection of computer and software engineering courses (Pre-
pojenie predmetov poč́ıtačového a softvérového inžinierstva), Proceedings of the
10th Workshop on Intelligent and Knowledge oriented Technologies WIKT 2015,
Center of Business Informatics, FEI TUKE, 7 2015. ⇒161

[2] Atmel Corporation, Atmega328/P – datasheet complete, 2016. ⇒165, 166, 173,
176

[3] Atmel Corporation, AVR instruction set manual, 2016. ⇒171
[4] Atmel Corporation, AVR microcontrollers for high-performance and power-

efficient 8-bit processing, 2013. ⇒164, 165
[5] J. R. Bell, Threaded code, Communications of the ACM 16, 6 (1973) 370–372.⇒164
[6] D. E. Bolanakis, G. A. Evangelakis, E. Glavas, K. T. Kotsis, A teaching ap-

proach for bridging the gap between low-level and high-level programming using
assembly language learning for small microcontrollers, Computer Applications in
Engineering Education 19, 3 (2011) 525–537. ⇒163

[7] F. Cancare, D. B. Bartolini, M. Carminati, D. Sciuto, M. D. Santambrogio,
On the Evolution of Hardware Circuits via Reconfigurable Architectures, ACM
Trans. Reconfigurable Technol. Syst. 5, 4 (2012). ⇒163

[8] C. V. Eguzo, B. J. Robert, O. C. Ihemadu, P. A. Avong, Integrating hardware
descriptive language (HDL) in teaching digital electronics-a case of Nigerian
polytechnics, 2017 IEEE 3rd International Conference on Electro-Technology
for National Development (NIGERCON), Owerri, 2017, pp. 650-655. ⇒163

[9] R. Eigenmann, D. J. Lilja, Von Neumann Computers. John Wiley & Sons, Inc.,
2001. ⇒165

[10] S. Chodarev, J. Porubän, Development of custom notation for XML-based lan-
guage: a model-driven approach, Computer Science and Information Systems
(ComSIS) 14, 3 (2017) 939–958. ⇒168

http://web.mit.edu/6.111/volume2/www/f2018/handouts/ATmega328P.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf
https://www.scribd.com/document/201422312/45058A-About-AVR-090913
https://www.scribd.com/document/201422312/45058A-About-AVR-090913
https://dl.acm.org/citation.cfm?id=362270
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.20333
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.20333
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.20333
https://dl.acm.org/doi/10.1145/2392616.2392620
https://ieeexplore.ieee.org/document/8281935
https://ieeexplore.ieee.org/document/8281935
https://ieeexplore.ieee.org/document/8281935
http://dx.doi.org/10.1002/047134608X.W1704
http://www.comsis.org/archive.php?show=ppr5560
http://www.comsis.org/archive.php?show=ppr5560

Development of ATmega 328P micro-controller emulator 181

[11] P. Jakubčo, M. Domiter, Standardization of computer emulation, Applied Ma-
chine Intelligence and Informatics (SAMI), 2010 IEEE 8th International Sym-
posium, IEEE, 2010, pp. 221–224. ⇒160

[12] P. Jakubčo, S. Šimoňák, emuStudio - a plugin-based emulation platform, Journal
of Information, Control and Management Systems 7, 1 (2009) 33–45. ⇒167

[13] P. Jakubčo, S. Šimoňák, Utilizing GPGPU in computer emulation, Journal of
Information and Organizational Sciences 36, 1 (2012) 39–53. ⇒160

[14] P. Jakubčo, S. Šimoňák, N. Ádám, Communication model of emuStudio em-
ulation platform, Acta Univ. Sapientiae, Informatica 2, 2 (2010) 117-134. ⇒
173

[15] P. Jakubčo, L. Vokorokos, Preserving host independent emulation speed,
CSE’2010 International Scientific Conference on Computer Science and Engi-
neering, Department of Computers and Informatics, FEEI, Technical University
of Košice, 2010. ⇒171

[16] B. Madoš, Z. Bilanová, E. Chovancová, N. Ádám, Field Programmable Gate
Array Hardware Accelerator of Prime Implicants Generation for Single-Output
Boolean Functions Minimization, ICETA 2019 - 17th IEEE International con-
ference on emerging elearning technologies and applications, Starý Smokovec,
Slovakia, 2019, pp. 493-498. ⇒163

[17] T. S. Margush, Using an 8-bit RISC microcontroller in an assembly language
programming course, Journal of Computing Sciences in Colleges 22, 1 (2006)
15–22. ⇒161

[18] O. Matija, Using the Arduino platform within the Assembler subject (Využitie
platformy Arduino v rámci predmetu Asembler), Bachelor’s Thesis, Department
of Computers and Informatics, FEEI, Technical University of Košice, Košice,
2015. ⇒161, 163, 178

[19] O. Mavropoulos, H. Mouratidis, A. Fish, E. Panaousis, C. Kalloniatis, A con-
ceptual model to support security analysis in the internet of things, Computer
Science and Information Systems (ComSIS) 14, 2 (2017) 557–578. ⇒161

[20] S. P. Morse, B. W. Ravenel, S. Mazor, W. B. Pohlman, Intel microprocessors –
8008 to 8086, IEEE Computer 13, 10 (1980) 42–60. ⇒161

[21] V. Moya del Barrio, Study of the techniques for emulation programming,
Proyecto fin de carrera. Universidad Politécnica de Cataluña, España, 2001. ⇒
160, 163, 170

[22] B. Nova, J.C. Ferreira, A. Araújo, Tool to Support Computer Architecture
Teachingand Learning, 2013 1st International Conference of the Portuguese So-
ciety for Engineering Education (CISPEE), 2013. ⇒162

[23] B. Nova, DrMIPS Educational MIPS simulator, 2013-2015. ⇒162
[24] E. A. Qaralleh, K. A. Darabh, A new method for teaching microprocessors course

using emulation, Computer Applications in Engineering Education 23, 3 (2014)
455–463. ⇒162

[25] J. Rogers, EdSim51’s Guide to the 8051: core of the popular 51 series of 8-bit
micro-controllers, CreateSpace Independent Publishing Platform, 2009. ⇒161

[26] J. Rogers, The 8051 Simulator for Teachers and Students, 2005-2016. ⇒162

https://jios.foi.hr/index.php/jios/article/view/225
http://www.acta.sapientia.ro/acta-info/C2-2/info22-1.pdf
http://www.acta.sapientia.ro/acta-info/C2-2/info22-1.pdf
https://dl.acm.org/citation.cfm?id=1181813
https://dl.acm.org/citation.cfm?id=1181813
http://www.comsis.org/archive.php?show=pprcaise5039
http://www.comsis.org/archive.php?show=pprcaise5039
https://ieeexplore.ieee.org/document/1653375
https://ieeexplore.ieee.org/document/1653375
http://www.xsim.com/papers/Bario.2001.emubook.pdf
https://repositorio.inesctec.pt/bitstream/123456789/5569/1/P-009-4VC.pdf
https://repositorio.inesctec.pt/bitstream/123456789/5569/1/P-009-4VC.pdf
https://brunonova.github.io/drmips/
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.21616
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.21616
https://www.amazon.com/EdSim51s-Guide-8051-popular-microcontrollers/dp/1442141808/
https://www.amazon.com/EdSim51s-Guide-8051-popular-microcontrollers/dp/1442141808/
https://www.edsim51.com/

182 M. Šipoš, S. Šimoňák

[27] G. Schmidt, Gerd’s AVR simulator, 2017-2020. ⇒162
[28] G. Schmidt, Beginners introduction to the assembly language of ATMEL AVR

microprocessors, 2016. ⇒166
[29] M. Šipoš, S. Šimoňák, RASP abstract machine emulator - extending the emuS-

tudio platform, Acta Electrotechnica et Informatica 17, 3 (2017) 33–41. ⇒160
[30] M. Šipoš, Extension of the emuStudio platform for emulation of computer archi-

tectures (in slovak), Diploma Thesis, Department of Computers and Informatics,
FEEI, Technical University of Košice, Košice, 2018. ⇒164, 173

[31] K. Stevens, The Emulation User’s Guide, Lulu.com, 2008. ⇒160
[32] R. K. Dirk von Suchodoletz, B. van der Werf, Long-term preservation in the

digital age - emulation as a generic preservation strategy, PIK - Praxis der In-
formationsverarbeitung und Kommunikation 35, 4 (2012) 225–226. ⇒160

[33] D. von Suchodoletz, K. Rechert, I. Valizada, A. Strauch, Emulation as an alterna-
tive preservation strategy – use-cases, tools and lessons learned, INFORMATIK
2013 – Informatik angepasst an Mensch, Organisation und Umwelt, 2013. ⇒
160

[34] Wikipedia, List of computer system emulators, 2020. ⇒160
[35] A. Wolfe, A. Chanin, Executing compressed programs on an embedded RISC

architecture, ACM SIGMICRO Newsletter 23, 1-2 (1992) 81–91. ⇒164
[36] G. S. Wolffe, W. Yurcik, H. Osborne, M. A. Holliday, Teaching computer or-

ganization/architecture with limited resources using simulators, ACM SIGCSE
Bulletin 34, 1 (2002) 176–180. ⇒163

[37] H. Wong, CPUlator Computer System Simulator, University of Toronto, 2019.⇒162
[38] C. Yehezkel, W. Yurcik, M. Pearson, D. Armstrong, Three simulator tools for

teaching computer architecture: EasyCPU, Little Man Computer, and RTLSim,
J. Educ. Resour. Comput. 1, 4 (2001) 60–80. ⇒163

Received: February 18, 2020 • Revised: July 1, 2020

http://www.avr-asm-tutorial.net/avr_sim/index_en.html
http://www.avr-asm-download.de/beginner_en.pdf
http://www.avr-asm-download.de/beginner_en.pdf
http://www.aei.tuke.sk/papers/2017/3/07_Simonak.pdf
http://www.aei.tuke.sk/papers/2017/3/07_Simonak.pdf
https://dl.gi.de/handle/20.500.12116/20781
https://dl.gi.de/handle/20.500.12116/20781
https://en.wikipedia.org/wiki/List_of_computer_system_emulators
http://doi.acm.org/10.1145/144965.145003
http://doi.acm.org/10.1145/144965.145003
https://dl.acm.org/citation.cfm?id=563408
https://dl.acm.org/citation.cfm?id=563408
https://cpulator.01xz.net/wiki/Main_Page
http://doi.acm.org/10.1145/514144.514732
http://doi.acm.org/10.1145/514144.514732

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 183–204

DOI: 10.2478/ausi-2020-0011

Improved balance in multiplayer online

battle arena games

Chailong HUANG
Department of Computer Science

Bishop’s University
Sherbrooke, Quebec, Canada

email: huang@cs.ubishops.ca

Stefan D. BRUDA
Department of Computer Science

Bishop’s University
Sherbrooke, Quebec, Canada

email: stefan@bruda.ca

Abstract. The Multiplayer Online Battle Arena (MOBA) game is a pop-
ular type for its competition between players. Due to the high complexity,
balance is the most important factor to secure a fair competitive environ-
ment. The common way to achieve dynamic data balance is by constant
updates. The traditional method of finding unbalanced factors is mostly
based on professional tournaments, a small minority of all the games and
not real time. We develop an evaluation system for the DOTA2 based on
big data with clustering analysis, neural networks, and a small-scale data
collection as a sample. We then provide an ideal matching system based
on the Elo rating system and an evaluation system to encourage players
to try more different heroes for a diversified game environment and more
data supply, which makes for a virtuous circle in the evaluation system.

1 Introduction

Electronic games [10], especially e-sports games, have become an important
part of people’s lives. Multiplayer Online Battle Arena (MOBA) games [2] in
particular are very popular among young people because of their interesting

Computing Classification System 1998: H.3.3
Mathematics Subject Classification 2010: 62H30, 62M45
Key words and phrases: mupliplayer online battle arena game, game balance, matching
system, clustering, neural network

183

https://cs.ubishops.ca
https://cs.ubishops.ca
https://www.ubishops.ca
mailto:huang@cs.ubishops.ca
https://bruda.ca
https://cs.ubishops.ca
https://www.ubishops.ca
mailto:stefan@bruda.ca

184 C. Huang, S. D. Bruda

and playful features. The reason why there are so many MOBA game lovers is
the competition in all kinds of areas such as operation, strategy, and teamwork.
The basis of this competitive pleasure lies in its balance.

DOTA (Defense of the Ancient) is the first independent MOBA game. A
classic game with a 15-year history, it is still very popular as the second gener-
ation DOTA2. Witnessing its enduring popularity, more companies have seen
the business opportunities, so a batch of similar MOBA games came out. Even
though they are not as balanced as DOTA, they still have a large number of
players.

Success and failure always exist simultaneously, so not all games are good.
There are even more MOBA games in China, but most are commonly criticized
for their low quality, unbalanced setting, even plagiarism. Game design is
actually a process of producing artwork: beside creativity and inspiration,
exquisite workmanship is also required. Balance is the workmanship of games,
and is even more important in a competitive MOBA game. An imbalanced
game cannot guarantee the loyalty of the fans; players will get bored easily if
they only have a few options to win a game. Thus a deep understanding of
the balance of the game as well as the way to achieve it are both necessary.

This paper develops a new method for achieving a better implementation of
dynamic balance in DOTA2, and then an ideal matching system is designed
as an improvement over the original. That is, the main contribution of this
paper is a new method to achieve a better implementation of dynamic balance,
with small-scale data collection as a sample. As a multiplayer online game, a
fair matching system also plays an important role in game balance. Based
on DOTA2 original rank/matching system (which uses the same rank system
based on Elo ratings as League of Legends), we also design an ideal algorithm
for the matching system. Finally we come up with an improvement on the
rank/matching system based on the analysis of dynamic data balance.

2 MOBA games overview

Mutiplayer Online Battle Arena (MOBA) games are also called Action Real-
time Strategy Games (Action RTS, ARTS), or DOTA-like Games. This in turn
is all a subclass of Real-time Strategy (RTS) Games. In a MOBA game players
are usually divided into two camps five versus five, and fight for more gold to
buy items and for experience to level up. The ultimate goal is to destroy a
certain building of the other side. A MOBA game player usually controls one
character only called “hero”, which has specific abilities and slots to equip with

Improved balance in multiplayer online battle arena games 185

items. Our work focuses on DOTA2, which is a complex game. This section
will only introduce (briefly) the elements that are related to our research.

Every DOTA2 game has generally 10 players, divided into two camps. Every
player needs to pick a hero to control at the beginning of the game. The
two camps have one ancient structure in each of their bases. The bases are
located on each side’s high ground, with three lanes to the other side. For
each side, there are two barracks (melee and range) and tree defense towers on
each lane. Barracks produce three types of “creeps” (melee, range and siege)
every 30 seconds, who automatically attack all the enemy units along the lane.
Defense towers automatically attack enemies within their range. The strength
and number of creeps grow over time. Each side also has two jungles, with
some neutral creeps in them. Players control their heroes to kill creeps and
enemy heroes to gain gold and experience. Gold can be used to build items
strengthening heroes. Experience is for leveling up; heroes can get one spell
point each level for one of their four abilities (three basic abilities and one
ultimate ability which can only be gained on certain levels). The only way to
win is to destroy enemy’s ancient structure at the center of their base.

There are 113 different heroes. Based on their major attributes, each hero
is one of the following three types: Strength, Agility and Intelligence. There
are more attributes combined in every hero beside these three types, including
Armor, Move speed, Attack speed, Magic resistance, Health/Mana points,
Damage, four abilities with different cool down and damage types, etc.

Most heroes have four abilities, three ordinary abilities and one ultimate.
Each ordinary ability can be leveled up with a maximum level 4. The ultimate
ability can be leveled up only at hero’s level 6, 12 and 18. Every ability has a
different effect such as dealing damage, stun, slow the enemy units, or provide
beneficial status for the hero and its allies.

3 Game balance overview

“A game is a series of meaningful choices.” — Sid Meier

The quote above reveals the nature of game balance, namely that every player
is supposed to have multiple choices to achieve their goals. Since there are
more than a hundred heroes and items in the game, countless choices like
team composition, item choice and combat strategy are made by every player
every minute everywhere. Some of them are wise and good, others are not.
But if only one choice is correct at every crossroad the game will soon become
a meaningless repetition, and so becomes gradually boring; this is imbalance.

186 C. Huang, S. D. Bruda

By contrast, a balanced MOBA game has bad choices, but it also has several
good choices every time. In a balanced MOBA game you can try everything
to win, unlike a robot who follows the same rules all the time.

The fundamental purpose for a player to play a game is to gain pleasure,
so the playability of a game decides how long its life will be. In MOBA games
balance is even more important for playability than in other types of games.
Without balance, it doesn’t even matter if you have more experience or bet-
ter skill, the one who grabs the “perfect choice” always win the game. This
situation could be caused by an unbalanced hero or by a bug in the matching
system. In all, balance is always the most important factor for every game
designer and developer, from beginning to the end.

Game data balance Data balance is subdivided into static and dynamic
balance. Static data balance means that after the design and development, but
before the release of the game, all the parameters in the game are in balance.
For dynamic data balance, after feedback during internal test and public beta,
the production team adjusts data and adds new elements through updates
to achieve a better balance. Dynamic data balance is the interaction between
players and game designers through feedback and adjustments to keep the
game in a healthy balance all the time. Section 5 will elaborate on the process
of achieving data balance in a MOBA game like DOTA2.

Focusing again on DOTA2 as an example, Valve has a dedicated team to
accept reports from players around the world in the DOTA2 community. If
too many players report a single imbalanced problem (or a bug), analysis and
adjustment will be considered for next update. Another important reference
is Professional Tournaments. There are around 100 games in a DOTA2 pro-
fessional tournament [14]. From the behaviour of professional players, most
based on the popularity of the heroes and items, Valve analyzes which heroes
or items are picked the most and which the least. With the principle “balance
every single hero”, they will strengthen the most unpopular heroes and nerf
(weaken) the hottest. However, with such a limited data collection only signif-
icant imbalance can be identified. Professional players are a very small part of
the DOTA2 community, so this method cannot reflect the imbalanced factors
comprehensively.

The above methodology makes the evaluation one-sided and not real time
(big professional tournaments only happen every 2 to 3 months). This is the
main problem we try to address in this paper; a new method based on data
analysis for all players is developed in Section 5.

Improved balance in multiplayer online battle arena games 187

Matching system balance A player’s level depends on experience, per-
sonal reaction time, teamwork awareness and physical/mental status. With-
out a reasonable matching system that can give every player an appropriate
evaluation on their level it would be impossible to set up both team to have a
similar overall level before the game starts. Fortunately, most MOBA games’
matching systems have a general judgement for every player according to their
performance in a large number of past games. After awhile, the evaluation sys-
tem can objectively reflect the player’s level.

DOTA2 has an excellent matching system with MMR (Match Making Rat-
ing). In Section 5, through a detailed analysis of DOTA2 matching system, an
ideal matching system with improvements will be developed.

4 Further preliminaries

K-means cluster analysis will be used in this paper to cluster all the heroes into
different types according to their data, so that the same type of heroes can be
assessed with the same standard. Given a set of observations (x1, x2, . . . , xn),
where each observation is a d-dimensional real vector, K-means clustering [8]
aims to partition the n observations into k ≤ n sets S = {S1, S2, . . . , Sk} so as
to minimize the within-cluster sum of squares or WCSS (i.e., variance). This
is accomplished by randomly selecting k cluster centroids µj, 1 ≤ j ≤ k, deter-
mine cluster membership based on the distance from centroids, calculate new
centroids by averaging the coordinates of the vectors in the current clusters,
and repeat this process until the centroid selection converges.

An artificial neural network [3] consists of numerous simple units connect as
a network. There are several kinds of neural networks, but based on our data
processing requirement this paper will use a BP-neural network [11]. Such a
network will be used to determine the specific weights of each type of data for
every type of heroes respectively, for the final complete evaluation system.

The BP-neural network is based on the back-propagation algorithm. It is
a multi-level learning network with supervised learning, featuring input and
output neurons but also a “hidden” layer of neurons. The learning algorithm
adjusts the parameters of the neurons based on the training data. Thus, a BP-
neural network converts the input/output problem of a group of samples into
a nonlinear optimization problem, which uses a gradient descent algorithm
most commonly used in optimization techniques.

The Elo rating system [7] is a method for calculating the relative skill levels
of players in zero-sum games such as chess. The current hierarchical scoring

188 C. Huang, S. D. Bruda

system usually uses the logistic distribution f(x) = L/(1+ e−k(x−x0), where x0
is the x-value of the sigmoid’s midpoint, L is the curve’s maximum value, and
k the steepness of the curve.

If Player A has a rating of RA and Player B a rating of RB, then the expected
score of Player A is EA = 1/(1 + 10(RB−RA)/400). Similarly the expected score
for Player B is EA = 1/(1 + 10(RA−RB)/400). Supposing Player A was expected
to score of EA points but actually scored SA points, the formula for updating
their rating is R ′

A = RA + K(SA − EA). The factor K is based on the scoring
rules and depends on what is the score unit for each game (10, 50, 100, etc.).
SA = 1 if player won the game, else SA = 0.

In the Elo rating system the new updated rating for a player is only related
to his original rating, the outcome of the game (win/lose) and the opponent’s
rating before the game, which satisfies the basic ranking/matching system of
DOTA2. Players’ behaviour is similar in competitive games. Finally, official
description of another MOBA game League of Legends confirms the fact that
its rank/match system is based on Elo ratings [13]. Considering their high
level of similarity, we thus assume that DOTA2 follows the Elo rating system
in the same way.

5 Balance implementation in DOTA2

In order to accurately evaluate the balance/ imbalance factors, we will es-
tablish an evaluation system for Heroes. Inspired by this evaluation system
we then introduce an ideal matching system based on the Elo rating system
together with some other improvements to achieve a better balance.

Win rate and damage dealt would be good choices to judge if a hero is too
strong [1]. We consider 17 different heroes. Zeus, Huskar and Outworld De-
vourer appear in the statistics collected (using an API as described later) for
both win rate and damage dealt, so we primarily focus on them to simplify data
processing. We then collected a 10-player sample (randomly selected from one
of the aurhor’s friends list) playing with these 17 heroes as shown in Figure 1
in all the games played in January 2018 (ranging from 2 to 23).

The distribution shown in Figure 2 shows that different heroes’ ability to
deal damage differ substantially, so that damage dealt appears to be important
in evaluating whether a specific hero is too strong or not. However there are
obviously more factors that must be considered for a complete picture. Differ-
ent heroes have different positions, attributes and abilities, which in turn have
different effects in every DOTA2 game. For example, some heroes are meant

Improved balance in multiplayer online battle arena games 189

Figure 1: Average damage dealt per game using 17 heroes and 10 players
(January 2018).

to deal a huge amount of damage; some on the other hand are good at limiting
enemy heroes’ actions with stuns, slow, silence, etc; some others are supposed
to help teammates by healing and take damage from the enemy.

Figure 3 show three different types of heroes: Zeus has a damage-dealing
abilities of 4, so that even a bad player can deal a lot of damage with it. Centaur
Warrunner, a representative tank, is supposed to take the most damages from
enemy in every fight, and also deals some damage at the same time. Shadow
Shaman, usually played as a support, helps cores (damage dealers) have a
better environment to farm, and stuns enemy heroes to let allies have easy
kills.

These samples show that the evaluation should be done in a comprehensive
way considering all the abilities of a hero. In this aspect even the data analysis
website dotamax.com has many deficiencies in that it features too few types
of data. Fortunately, DOTA2 itself has an application programming interface
(API) for its database including every single game’s detailed data [5, 12]. This
API allows access to many more types such as “damage taken” or “stun time”
for every single game. With all these data, comprehensive analysis becomes
possible. The following factors are significant in the assessment of a hero:

1. Win rate is the most important factor to evaluate, weight S is given.

2. Damage dealt can be divided into Building damage dealt, and Hero dam-
age dealt. The only way to win a DOTA2 game is to destroy the enemy’s
Ancient base, and killing enemy’s heroes would lead to an easy push, so
these two factors are both important. Weight A is given.

190 C. Huang, S. D. Bruda

Figure 2: Different heroes’ performance on dealing damage.

3. Time of stun and hex: Stun and hex can totally restrict any of enemy
heroes’ actions, which lead to an easy kill. However stun and hex them-
selves cannot make a killing happen, so they have a lighter weight B.

4. Time of debuff includes silence, root, slow and mute. These debuffs can
only restrict one of the abilities such as move, attack, using ability of
items, so they are even weaker than stun and hex. Weight C is given.

5. Buff and heal provide a beneficial effect for allies including speed up and
extra damage (buff), and help allies regenerate their health/mana points
(heal). These two factors have the same weight C as debuff.

6. Damage taken is helpful but it is not necessary all the time. Sometimes
having a high capacity to take damage may even promote mistakes. In
all this is weaker than all the factors above; weight D is given.

7. Support ability is mainly reflected in purchasing supportive items for the
whole team, such as wards to provide vision and dust/sentry for detec-
tion. Supportive behaviour is very important in MOBA games including
DOTA2; we give the weight B for it.

Obtaining accurate weights requires massive computation and iterative ver-
ification based on big data. Our aim is to provide a method rather than com-
plete the calculation. Once the weights are determined we construct the usual

Improved balance in multiplayer online battle arena games 191

Figure 3: Different types of heroes.

formula for the assessment of heroes:

M =

n∑
i−1

Wi × Fi (1)

where Fi represent the normalized average values for the factors listed above
based on the data from all DOTA2 games over a period of time, and Wi are
the corresponding weights listed above. M thus becomes the Balance value.
In a certain period of time, if a specific hero has a significantly abnormal
balance value (too high or low), it is very likely that the last update had a
very imbalanced effect on this hero. A fix may be needed after more tests to
decide whether a new update is necessary.

However, based on the general idea outlined above it is easy to see that
the “damage dealt” (to heroes or towers) type heroes always have the best
assessment since these two data have the highest weights all the time. In
practice things are not that simple. Many imbalanced heroes are so because of
their different functional abilities, such as long-time stuns and huge amounts
of healing. The assessment above is therefore not suitable for every unique
hero. A better classification is required.

Besides damage dealt, two more data are now considered: Stun Time and
Hero Healing (as a representative of Buff). There is no big data directly avail-
able for these two on the statistics website. Instead we obtained game data
from the combat summary of the 10 players mentioned earlier, using 17 heroes
in January 2018. Figure 4 shows the average statistics for stun time, hero heal-
ing, and damage dealing. We then performed clustering analysis [9] in Weka.

192 C. Huang, S. D. Bruda

Figure 4: Average statistics of 17 heroes.

The first step is to determine the number of clusters. According to the rules
of DOTA2, Heroes are divided into two primary roles, known as the Carry and
the Support. Carries (or “cores”) begin each match as weak and vulnerable,
but are able to become more powerful later in the game, thus becoming able
to “carry” their team to victory. Supports generally lack abilities that deal
heavy damage, instead having functionality and utility that provide assistance
for their carries. Basically a Carry is responsible for dealing huge amount of
damage, while Supports create better chances for their Carries. However in our
opinion, two classifications are not enough. Some heroes in DOTA2 can deal
some lower amount of damage, while offering stun and healing at the same
time. Most players call this kind of heroes Functional Cores. We thus submit
that three types (“Carry” “Support” and “Functional Core”) are needed.

Figure 5 shows the summary of our clustering analysis. Clusters 0, 1, 2
represent Functional Core, Support, and Carry, respectively. Hence Cluster 1
mainly contributes stun, Cluster 2 mainly contributes damage, and Cluster
0 does pretty well on damage, stun, and healing at the same time. The only
element in Cluster 1 is Shadow Shaman, which is indeed an excellent support
hero. Vegenful Spirit, Chaos Knight, Underlord, Omiknight and Centaur War-
runner are indeed able to deal some amount of damage and offer healing and
stun at the same time. Others are purely damage dealers. The reason there

Improved balance in multiplayer online battle arena games 193

Final cluster centroids:

Cluster#

Attribute Full Data 0 1 2

(17.0) (5.0) (1.0) (11.0)

==

AverageDamage 11978.4353 8142.3 4340.3 14416.5091

AverageStun 45.5353 74.72 156.4 22.1909

AverageHealing 735.1471 1612.44 92 394.8455

Figure 5: Result of clustering analysis on 17 DOTA2 heroes data.

is only one support hero is that the sample was picked as 10 most damage
dealing heroes and 7 highest win rate heroes, so the data is supposed to have
most elements in Cluster 2 and least elements in Cluster 1, which reflects the
real world. Notice that determining the type of a hero should be based not
only on the three types of data considered here, but also on the other factors
discussed earlier. We limit our cluster analysis only on these three data points
due to the limited resources allocated to this work. Extending our analysis to
more data is however immediate.

Based on the cluster analysis, we refine the weights for our heroes’ abilities
in Equation (1) as follows:

1. Carry heroes: damage dealt > healing ≥ time of stun and hex

2. Support heroes: time of stun and hex > damage dealt ≥ healing

3. Functional cores: the weights of damage dealt, healing and time of stun
and hex are almost at the same level.

We used the following principle: Each type of heroes has its specific duty,
so the most important capability for a hero is based on what it is supposed
to do (deal damage or support or limit enemy). The other abilities are not
that important compared with its main purpose. This way, the balance of
every single hero can be quantified in the same evaluation system. A better
balanced update can be completed afterward based on big data on thousands
million games rather than only professional tournaments.

Suppose the weights for damage, stun, and heal, respectively are 0.5, 0.3, 0.2
for the 11 Carry heroes, and 0.35, 0.35, 0.3 for the 5 Functional Cores. Since
the Support cluster contains a single sample, this type will be ignored here. We
then normalize our values using a linear function (y = (x−min)(max−min)).
The Balance values for these two types are then shown in Figure 6.

194 C. Huang, S. D. Bruda

Carry BalanceValue FunctionalCores BalanceValue
Lycan 0.305882353 Vengeful Spirit 0.603650768
Zeus 0.760553204 Chaos Knight 0.675028769

Huskar 0.178206232 Underlord 0.478515032
Outworld Devourer 0.107470106 Omniknight 0.3

Tinker 0.471929363 Centaur Warrunner 0.624677433
Spectre 0.473918548

Bristleback 0.231839052
Sniper 0.202656888

Gyrocopter 0.366235384
Arc Warden 0.175338899
Ember Spirit 0.188945456

Figure 6: Rough balance values for carry and functional cores.

The Balance value ranges from 0.107 to 0.76. Based on these values all types
of heroes can be evaluated at the same level. When there are 113 heroes with
all the 7 attributes listed above considered, this range will be smaller and more
precise. The ideal model will have a range from 0.4 to 0.6.

Based on the rough estimate above, we then used a BP-neural network to
determine the weight for each type. We only consider the Carry heroes in
this paper as the type has 11 samples, but the extension for other types is
immediate. The inputs are the three types of data namely damage, stun and
heal. Each input datum has a neuron (1, 2, 3, respectively) and the output is
the evaluation for hero’s balance (balanced or not) based on the Balance Value
M. The activation function is O = 0 for 0.4 ≤M ≤ 0.6 and O = 1 otherwise.

To obtain a complete training set some method of determining the output
value O is needed. We propose one of the following two methods:

1. Refer to the previous update; if some heroes were modified, then the data
before was unbalanced and the data after modifications is balanced.

2. Wait for the next update; heroes with modifications are assumed to have
transitioned from unbalanced to balanced.

The logs for DOTA2 replays are only kept for 30 days, which makes it difficult
to collect data from last update (it is also the reason why only the data
from January 2018 is collected). We will therefore determine which heroes are
balanced and which are not using the following assumption for a rough training
of the neural network: we suppose that the heroes who just got modifications
in the latest update are balanced, while the others are not. According to this

Improved balance in multiplayer online battle arena games 195

Hidden Input neurons Output
neurons 1 2 3 neurons

1 0.205612 0.102755 0.768041 0.5719874
2 0.672780 0.207483 0.344029 -0.263680
3 0.980589 0.462451 0.016968 0.585587

Figure 7: Weight coefficients between neurons.

Data type: Damage Stun Heal
Weight (S): 0.446598302 0.240285127 0.31311657

Figure 8: Weight coefficients of every type of data for carry heroes.

estimate the balanced heroes are Lycan, Ember Spirit, Gyrocopter and Tinker,
while the other seven are not balanced.

With the three types of data as input, 3 neurons in the hidden layer and
initial weight as 0.5, 0.3, 0.2, after the training with 11 samples, the weights
for every neuron are as shown in Figure 7.

We refer to the neurons using the indices i for input neurons, j for output
neurons, and k for neurons in the hidden layer, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, and
1 ≤ k ≤ P. The relations between every 2 neurons are given by the method
of Wang and Sun [4]: rij =

∑P
k−1Wki(1 − e

−x)/(1 + e−x) with x = wjk, and
Rij = |(1− e−x)/(1+ e−y)| with y = rij. Wki is the weight between the hidden
layer neuron k to the input neuron i, and wjk is the weight between the output
neuron j and the hidden layer neuron k. The absolute influence coefficient is
then Sj = Rij/

∑m
i=1 Rij, which is the required weight.

Based on this method and the data collected, the weights for every type
of data were calculated as shown in Figure 8. We can establish a relatively
complete evaluation system for Carry heroes by plugging in these weights
into Equation (1), with (Wi) = [0.446598302, 0.240285127, 0.31311657], and
the normalized Fi = [AverageDamage,AverageStunTime,AverageHeal]T .
Then a Carry hero is balanced if and only if 0.4 ≤M ≤ 0.6.

It should be emphasized again that to simplify the calculation only three
types of data are considered. A complete evaluation system will require all the
types of data listed earlier.

The process above assumes that the latest updated heroes are balanced,
which is likely an inaccurate method. The ideal accurate method is to always
keep all the data for every hero for the latest month. After the new update
is released (with the traditional methods mentioned above), we can pick the
heroes that were modified and separate them into the old version set and the

196 C. Huang, S. D. Bruda

new version set. These sets can be used for training the BP-neural network,
where the old version set is unbalanced and the new version set is balanced.
Once data is available for a new version we can retrain the system, making
it more accurate. The final (“production”) system should be established after
several training sessions with different updates.

In all, the sample experiment described above is based on an inaccurate
assumption (because as mentioned logs are only kept for 30 days, which makes
it impossible to collect data from other updates), which makes it of reduced
utility for validating more heroes. The ideal model requires persistent data
collection for a long time, covering several updates. This being said, we believe
that our system is both feasible and accurate if it is fed with accurate and
complete big data. Our system has the following advantages:

1. Updates no longer rely on the limited data from professional tourna-
ments; instead all player around the world can be part of it.

2. The new game changes (like new heroes and new strategies) can be
balanced through the reevaluation of the related heroes in real time; any
new training can be finished in a short time, with assessment readily
available for the next update.

3. With more training, this evaluation system will become increasingly ac-
curate and stable.

Since the third point requires substantially more data for training and test in
the future, we only elaborate on the first and second advantages.

While 113 unique heroes seem to be enough, this is not actually true for
an energetic MOBA game. In fact, Valve Corporation is still designing and
releasing new heroes every year to maintain freshness. Some existing heroes are
also reconstructed with brand new abilities, which in effect create another kind
of new heroes. New (or reconstructed) heroes can be analyzed and clustered
in a short time, in respect to their balance for a quick update, rather than
waiting for feedback or data from professional tournaments.

With some modifications on its abilities, the position of a certain hero may
change. For example, the Hero Monkey King used to be known as a Support,
and Naga Siren as Carry. After an update on their ability values (mostly dam-
age and time of stun), Monkey King became Carry and Naga Siren Support.
Using our evaluation system new clustering analysis and balance evaluation
can also be finished in a very short time, as soon as the data have changed.

When new strategies appear, there may be some heroes who can take full
(and unexpected) advantage of them. For example, there used to be a popular

Improved balance in multiplayer online battle arena games 197

Average Damage Average Stun(s) Average Healing
Sven 16187.5 29.8 0

Troll Lord 14982.3 13.2 1195.2

Figure 9: Average statistics of two heroes.

strategy in mid 2014 named the Pushing Strategy. This strategy requires all
five heroes as a group and destroys enemy’s towers early in the game. Only a
few heroes are suitable for this strategy such as Pugna, Nature Prophet and
Undying. With increasing popularity and higher win rate than other strategies,
all types of data of pushing heroes rose rapidly. If this strategy is too strong
in most conditions, then the new balance value of the respective heroes will go
beyond the balanced range (> 0.6). Then a nerf on the heroes in combination
with this strategy must be considered, and can be considered in the next
update rather than waiting for the results of the tournaments.

This evaluation system based on big data from daily games all over the
world can be more accurate and comprehensive, and a real-time reflection of
the dynamic data balance of every single hero. It can work even more effectively
on a new MOBA game, for which keeping the balance in an ideal range in a
short time would be important to seize the players and the market.

Example Suppose that two new heroes are released in an update. We use
Sven and Troll Lord as examples, since they are pure damage dealer Carry
according to experience.

Figure 9 shows the data in the last 15 days from the 10 players sample. As-
sume that this is the first 2-weeks worth of data for the two new heroes. With
our classification, they are classified as Carry hero. To compare them with
others, we use Equation (1) to calculate their Balance value with weight co-
efficients (Wi) = [0.446598302, 0.240285127, 0.31311657]. The outcome is that
the Balance values are 0.356003529 for Sven and 0.293009308 for Troll Lord.

Assuming that the weight coefficients are accurate enough (which will hap-
pen with enough training), then we can say that these 2 new heroes are a bit
weaker than the average level (< 0.4). Some positive modifications are there-
fore necessary in the next update. All this analysis can be finished in a short
time (2 weeks after the new heroes were released).

198 C. Huang, S. D. Bruda

6 Ideal matching based on the Elo rating system

Inspired by the principle of the DOTA2 matching and rank system and the
evaluation system described earlier, we introduce an ideal matching system
based on Elo ratings together with other improvements to achieve a system
that provides a better balance in support of the MOBA game players’ expe-
rience. Notice that the DOTA2 matching system is not open-sourced, so we
start from an ideal matching system based on matching rules instead.

6.1 An ideal matching system

The ideal matching system follows the Elo rating system as follows: Let K = 50
(standard points a player may earn or lose after a DOTA2 game) and SA =
1 (player wins this game) or 0 (player loses this game). Based on DOTA2
rank/matching system, there are two Teams A and B with different average
rank scores (RA and RB) in the same game, 5 players on each side. With
D = RB − RA, we have EA = P(D) = 1/(1 + 10D/400) and EB = P(−D) =
1/(1 + 10−D/400). For convenience we use the Percentage Expectancy Tables
[6] provided in the appendix to simplify the calculation process.

As an example, suppose Team A has an average rank score of 3890, and
Team B an average rank of 3700. We have D = 190 and so EA = 0.75 and
EB = 0.25. Therefore if Team A wins the game then every player in Team A

will gain 12.5 points and every player in Team B will lose 12.5 points. On the
other hand, if Team A loses the game then every player in Team A will lose
47.5 points and every player in Team B will gain 47.5 points.

Based on the Elo rating system, matching rules can be set up so that they
observe the following properties:

1. Both sides have a similar average score.

2. The gap between the players with the highest and lowest score is small.

3. Both sides have a similar experience that is, a similar number of played
games for players on both sides.

4. Scores of highest players on both sides are similar.

5. Both sides have similar number of solo/party players.

6. Complete the matching as fast as possible.

Improved balance in multiplayer online battle arena games 199

We then propose the following ideal matching system. Every team is a node,
and every match is a queue with maximum 10 players. A team can be a solo
player with his MMR, or a 2-5 party players with their average party MMR.

1. Once a new node comes in, detect if there is an eligible queue for it (the
MMR is in range, there is space available for the node, etc.),

2. If yes, then add the node to the queue with minimal score difference.

3. Otherwise, add this node to a empty queue, with the new matching
parameters based on the Elo rating system then wait.

4. Once a new node is added to a queue, check if this queue is full.

5. If yes, then find a sever to start this game and empty the queue, other-
wise, keep waiting.

6. Every 30 seconds, check if there are new nodes added into the waiting
queue.

7. If yes, then keep waiting.

8. Otherwise, expand the condition to a larger acceptable score difference
based on the Elo rating system.

9. Repeat from 7.

10. If a queue has waited for 5 minutes, remove all the nodes, repeat from 1
to 6, and empty the queue.

The corresponding flow chart is shown in Figure 10.

6.2 An improved scoring method for the matching system

The rank system is suitable for most competitive games, in real life as well as
in e-sports. However for MOBA games balance is the most important factor.
With 113 different heroes, everyone is supposed to have a seat in this game.
The Elo rating system only focuses on the outcome of a game, with no concern
about what heroes players use.

What if all the players only pick certain strong heroes to play all the time?
In this situation the balance of the game will be destroyed, together with the
player experience. On other hand, some heroes are meant to be harder to get
started than most others; if the designer doesn’t encourage players to start

200 C. Huang, S. D. Bruda

Figure 10: Flow chart for the ideal matching system.

with them, then the game will lack variety. In order to encourage players to
play different heroes for a diverse environment, we propose an improvement
on the scoring method discussed earlier.

First, we introduce a hero rank. This rank reflects the players’ level while
playing a certain hero, and is similar to the assessment of heroes in Equa-
tion (1). We establish it as H = (

∑n
i=1 Ki × Ei)/n. H is the rank score for

a certain hero of a player, Ei ranges over the data from all the games with
this player using the given hero, including Win rate, Damage dealt, Stun/Slow
Time, K/D/A, Damage Taken, etc. Ki are the weights for each type of data,
which is the same concept as the weights in Equation (1) (different weights be-
tween heroes’ types reflect how important the respective ability is for a certain
hero), and n is the number of games the player has played with the respective
hero. n is effective only when it is greater than a certain, small but not too

Improved balance in multiplayer online battle arena games 201

small a number (such as 10), to make sure the player is familiar enough to this
hero for a precise and stable evaluation; this is the same as the calibration of
the DOTA2 rank system.

We then compute the Hero-Pool value T = (
∑n
i=1Hi × Ui)/

∑n
i=1Ui to

evaluate a single player’s ability to use different heroes. Hi is the Hero rank
for a certain hero, Ui is the number of games this player has played with this
certain hero, and n is the number of heroes this player has used.

Notice that it is not realistic to assume that every single player can operate
every single hero, so n should be set between 30 and 50, meaning that the
Hero-Pool value only considers a player’s highest top 30 to 50 unique heroes,
encouraging players to play as many heroes as they reasonably can.

With this value, together with the old formula, we compute the improved
final rank O as follows:

O = T × k+ S (2)

where S is the old-version rank score based on the Elo rating system, T is the
Hero-Pool value, and k is a constant coefficient given by statistical calculations.

With this improvement, the outcome of the game is no longer the only
element that affects a players’ rank score in DOTA2. Players will be encouraged
to try more heroes with more combinations in a team. Therefore more heroes
will be used in every play, more data will become available, problems and
imbalance are easier to find, for an overall better balanced environment.

The improved matching system developed above is a bonus on top of the
evaluation system (the most important contribution of this paper). Indeed, the
evaluation system makes it possible to assess players’ ability using different
heroes. At the same time, according to statistics some most popular heroes
are played 20 times more than the least popular ones, and this gap has a
bad influence both on the game environment and on the data analysis of our
evaluation system. Therefore the improvement given by Equation (2) on the
matching/rank system will directly encourage players to use more heroes for a
balanced environment and more data supply for an accurate clustering analysis
and evaluation of all the heroes. This is all a virtuous circle.

7 Conclusions

We analyzed the importance of balance and the way to achieve it in MOBA,
based on DOTA2 as an outstanding representative. We studied ways of im-
proving balance in DOTA2, both on data and rank/matching system. Balance
directly determines the diversity, playability and even life of a game, and the

202 C. Huang, S. D. Bruda

traditional method of determining what data needs to be modified in the next
patch in DOTA2 basically relies on players’ reports and professional tourna-
ments. Thousands of millions players’ game data are not considered in this
traditional method, which in turn makes it unsuitable for real-time analysis
and also not accurate or comprehensive enough.

We developed a new method which consists of data collection, cluster anal-
ysis and neural network classification to quantify the 113 unique heroes in
DOTA2, and to measure balance. With original data collected from the DOTA2
API, heroes are clustered into three types based on their features and data. A
neural network is then used to determine the weights for every piece of data.
A Balance value is then computed as a standard to measure whether a certain
hero is balanced. Further updates can then target the unbalanced factors.

Although applied on limited data (30 days worth of logs, only three rep-
resentative types of data, some inaccurate assumptions), this evaluation is
still feasible and effective, especially with more time and data support. This
method would also play a better and more important role in newborn MOBA
games than in a mature game that is already balanced such as DOTA2.

Based on the Elo rating system, we also designed an ideal matching sys-
tem for DOTA2, together with an improvement based on the hero evaluation
system for a better balanced environment and more data supply. This is the
second contribution of this paper.

An immediate continuation of this work would be to investigate how to
accurately calculate all the weights from Equation (1) for each type of data.
This paper used the strategy to assume that the latest updated heroes are
balanced, which diminishes the accuracy of the results of training the neural
network. An ideal and accurate method is to always keep all the data for every
hero for the last month. After the new update is released (with the traditional
methods mentioned above), one can pick the heroes with modifications, and
separate them into two sets (old version and new version sets). We can then
train the neural network with the old version set as “unbalanced” and new
version set as “balanced”; note that this method requires more time and data
collection. With enough training and our adjustment of the weights (ideally
thought 3–4 patches), we believe that this system can become a standard.

This paper only focuses on heroes. Data on items can and should be consid-
ered as a balance factor. Items have the same types of data to heroes’ abilities
such as damage, stun, buff, plus price as one more factor to be considered.

Improved balance in multiplayer online battle arena games 203

References

[1] K. Conley, D. Perry, How does he saw me? A recommendation engine for picking
heroes in Dota 2 , Technical report, Stanford University, 2013. ⇒188

[2] J. Funk, MOBA, DOTA, ARTs: A brief introduction to gaming’s biggest, most
impenetrable genre, Polygon, December 2013. ⇒183

[3] M. van Gerven, Computational foundations of natural intelligence, Frontiers in
Computational Neuroscience, 11 (2017), 112. ⇒187

[4] S. Huijun, W. Xinhua, Determination of the weight of evaluation indexes with
artificial neural network method, Journal of Shandong University of Science and
Technology, 20:84, 2001. ⇒195

[5] F. Johansson, J. Wikstrom, Result prediction by mining replays in DOTA2. Mas-
ter’s thesis, Blekinge Institute of Technology, Faculty of Computing, 2015. ⇒
189

[6] P. Kannan, Elo percentage expectancy table ⇒198, 204
[7] H. P. Kriegel, M. Schubert, A. Züfle, Managing and mining multiplayer online

games, Advances in Spatial and Temporal Databases (SSTD 2011), Lecture Notes
in Computer Science, 6849, (2011), 441–444. ⇒187

[8] J. MacQueen. Some methods for classification and analysis of multivariate ob-
servations, Berkeley Symposium on Mathematical Statistics and Probability, Uni-
versity of California Press, 1967, 281–297. ⇒187

[9] M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, K. Hornik, Cluster: Cluster
analysis basics and extensions, 2016, R package version 2.0.4. ⇒191

[10] R. L. D. Mandryk, D. S. Maranan, False prophets: Exploring hybrid board/video
games, CHI: Conference on Human Factors in Computing Systems, Minneapolis,
Minnesota, 2002, pp. 640—641. ⇒183

[11] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by
back-propagating errors, Nature, 323 (1986), 533–536. ⇒187

[12] B. G. Weber and M. Mateas. A data mining approach to strategy prediction.
In Proc. Computational Intelligence and Games, pages 140–147, 2009. ⇒189

[13] Roit Games, League of legends matchmaking explained, 2009. ⇒188
[14] Valve Corporation, The international DOTA2 championships official website. ⇒

186

http://cs229.stanford.edu/proj2013/PerryConley-HowDoesHeSawMeARecommendationEngineForPickingHeroesInDota2.pdf
http://cs229.stanford.edu/proj2013/PerryConley-HowDoesHeSawMeARecommendationEngineForPickingHeroesInDota2.pdf
https://www.stanford.edu/
https://www.polygon.com/2013/9/2/4672920/moba-dota-arts-a-brief-introduction-to-gamings-biggest-most
https://www.polygon.com/2013/9/2/4672920/moba-dota-arts-a-brief-introduction-to-gamings-biggest-most
https://www.polygon.com/
https://doi.org/10.3389/fncom.2017.00112
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience
https://www.diva-portal.org/smash/get/diva2:829556/FULLTEXT01.pdf
https://www.bth.se/eng/
http://www.pradu.us/old/Nov27_2008/Buzz/elotable.html
https://link.springer.com/chapter/10.1007/978-3-642-22922-0_26
https://link.springer.com/chapter/10.1007/978-3-642-22922-0_26
https://link.springer.com/book/10.1007/978-3-642-22922-0
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp
https://www.researchgate.net/publication/272176869_Cluster_Cluster_Analysis_Basics_and_Extensions
https://www.researchgate.net/publication/272176869_Cluster_Cluster_Analysis_Basics_and_Extensions
https://www.r-project.org/
https://dl.acm.org/doi/10.1145/506443.506523
https://dl.acm.org/doi/10.1145/506443.506523
https://dl.acm.org/doi/proceedings/10.1145/506443
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/
http://forums.na.leagueoflegends.com/board/showthread.php?t=12029
http://www.dota2.com/international/overview/

204 C. Huang, S. D. Bruda

A Elo percentage expectancy table

Based on the Elo rating and on D = RB − RA, EA and EB can be easily
completed from the Percentage Expectancy Table [6] (Table 1). Further score
differences can be obtained from Table 2 with the results in Table 1 as the
median.

P(D) D P(D) D P(D) D P(D) D P(D) D P(D) D
1.00 * 0.83 273 0.66 117 0.49 -7 0.32 -133 0.15 -296
0.99 677 0.82 262 0.65 110 0.48 -14 0.31 -141 0.14 -309
0.98 589 0.81 251 0.64 102 0.47 -21 0.30 -149 0.13 -322
0.97 538 0.80 240 0.63 95 0.46 -29 0.29 -158 0.12 -336
0.96 501 0.79 230 0.62 87 0.45 -36 0.28 -166 0.11 -351
0.95 470 0.78 220 0.61 80 0.44 -43 0.27 -175 0.10 -366
0.94 444 0.77 211 0.60 72 0.43 -50 0.26 -184 0.09 -383
0.93 422 0.76 202 0.59 65 0.42 -57 0.25 -193 0.08 -401
0.92 401 0.75 193 0.58 57 0.41 -65 0.24 -202 0.07 -422
0.91 383 0.74 184 0.57 50 0.40 -72 0.23 -211 0.06 -444
0.90 366 0.73 175 0.56 43 0.39 -80 0.22 -220 0.05 -470
0.89 351 0.72 166 0.55 36 0.38 -87 0.21 -230 0.04 -501
0.88 336 0.71 158 0.54 29 0.37 -95 0.20 -240 0.03 -538
0.87 322 0.70 149 0.53 21 0.36 -102 0.19 -251 0.02 -589
0.86 309 0.69 141 0.52 14 0.35 -110 0.18 -262 0.01 -677
0.85 296 0.68 133 0.51 7 0.34 -117 0.17 -273 0.00 *
0.84 284 0.67 125 0.50 0 0.33 -125 0.16 -284

Table 1: P(D) Table according to the Elo percentage expectancy table.

SD = Score difference, EH = Expected score rate for high scorers,
EL = Expected score rate for low scorers
SD EH EL SD EH EL SD EH EL SD EH EL
0-3 0.50 0.50 92-98 0.63 0.37 198-206 0.76 0.24 345-357 0.89 0.11
4-10 0.51 0.49 99-106 0.64 0.36 207-215 0.77 0.23 358-374 0.90 0.10
11-17 0.52 0.48 107-113 0.65 0.35 216-225 0.78 0.22 375-391 0.91 0.09
18-25 0.53 0.47 114-121 0.66 0.34 226-235 0.79 0.21 392-411 0.92 0.08
26-32 0.54 0.46 122-129 0.67 0.33 236-245 0.80 0.20 412-432 0.93 0.07
33-39 0.55 0.45 139-137 0.68 0.32 246-256 0.81 0.19 433-456 0.94 0.06
40-46 0.56 0.44 138-145 0.69 0.31 257-267 0.82 0.18 457-484 0.95 0.05
47-53 0.57 0.43 146-153 0.70 0.30 268-278 0.83 0.17 485-517 0.96 0.04
54-61 0.58 0.42 154-162 0.71 0.29 279-290 0.84 0.16 518-559 0.97 0.03
62-68 0.59 0.41 163-170 0.72 0.28 291-302 0.85 0.15 560-619 0.98 0.02
69-76 0.60 0.40 171-179 0.73 0.27 303-315 0.86 0.14 620-735 0.99 0.01
77-83 0.61 0.39 180-188 0.74 0.26 316-328 0.87 0.13 735 1.00 0.00
84-91 0.62 0.38 189-197 0.75 0.25 329-344 0.88 0.12

Table 2: Corresponding expected score rate based on scores difference

Received: May 18, 2020 • Revised: September 15, 2020

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 205–216

DOI: 10.2478/ausi-2020-0012

Machine learning methods for toxic

comment classification: a systematic review

Darko ANDROČEC
Faculty of Organization and Informatics, University

of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia

email: dandrocec@foi.unizg.hr

Abstract. Nowadays users leave numerous comments on different social
networks, news portals, and forums. Some of the comments are toxic or
abusive. Due to numbers of comments, it is unfeasible to manually mod-
erate them, so most of the systems use some kind of automatic discovery
of toxicity using machine learning models. In this work, we performed a
systematic review of the state-of-the-art in toxic comment classification
using machine learning methods. We extracted data from 31 selected pri-
mary relevant studies. First, we have investigated when and where the
papers were published and their maturity level. In our analysis of every
primary study we investigated: data set used, evaluation metric, used ma-
chine learning methods, classes of toxicity, and comment language. We
finish our work with comprehensive list of gaps in current research and
suggestions for future research themes related to online toxic comment
classification problem.

1 Introduction

Toxic comments are defined as comments that are rude, disrespectful, or that
tend to force users to leave the discussion. If these toxic comment can be auto-

Computing Classification System 1998: I.2.7
Mathematics Subject Classification 2010: 68T50
Key words and phrases: machine learning, toxic comment, deep learning, systematic
review

205

http://www.foi.unizg.hr/en/staff/darko.androcec
http://www.foi.unizg.hr/en
http://www.foi.unizg.hr/en
http://www.foi.unizg.hr/en
mailto:dandrocec@foi.unizg.hr

206 Darko Andročec

matically identified, we could have safer discussions on various social networks,
news portals, or online forums. Manual moderation of comments is costly, in-
effective, and sometimes infeasible. Automatic or semi-automatic detection of
toxic comment is done by using different machine learning methods, mostly
different deep neural networks architectures.

Recently, there is a significant number of research papers on the toxic com-
ment classification problem, but, to date, there has not been a systematic
literature review of this research theme, making it difficult to assess the matu-
rity, trends and research gaps. In this work, our main aim was to overcome this
by systematically listing, comparing and classifying the existing research on
toxic comment classification to find promising research directions. The results
of this systematic literature review are beneficial for researchers and natural
language processing practitioners.

This work is organized as follows: Section 2 describes in detail the research
methodology used for our systematic literature review. The next section lists
the results and provides a discussion about obtained results of the systematic
review. Our conclusions and future research ideas are provided in the final
section.

2 Research methodology

This study has been carried out using the systematic literature review (SLR)
methodology described in [16]. First, we have defined the SLR protocol. Then,
we performed the study selection and the data extraction process whose out-
come is the final list of papers. The main steps of the SLR protocol are listed
and elaborated in the next subsections.

2.1 Planning

Planning starts with the identification of the needs for a specific systematic
review. We have explained the needs for a systematic review on machine learn-
ing methods for toxic comment classification in Introduction section. Next, we
have defined the following main research questions:
RQ1: When did the research on toxic comment classification become active in
the research community?
RQ2: How is toxic comment classification research reported and what is the
maturity level of the research in this field?
RQ3: Which data sets are used to classify toxic comments?

Machine Learning Methods for Toxic Comment Classification 207

RQ4: Which machine learning methods are used to classify toxic comments?
RQ5: What are main evaluation metrics used to classify toxic comments?

Based on the objectives and research questions of this study, we have de-
fined the review protocol. We have decided to include the following electronic
databases: ACM Digital Library, IEEE Xplore, Scopus, and Web of Science
Core Collection. These sources are chosen because they represent comprehen-
sive literature in the machine learning field. We also included arXiv, because
some highly-cited machine learning papers from researchers of commercial or-
ganizations is sometimes published only at this open-access archive service.
The search string was simply defined as ”toxic comment classification”. We
defined the following inclusion criteria (IC):
� IC1 - The main objective of the paper must discuss or investigate an issue
related to toxic comment classification.
� IC2 - The work must be a research (scientific) paper.
� IC3 - The paper must be written in English.
� IC4 - The study should be published as a conference or a journal paper or
a book chapter or an arXiv document.
We excluded papers based on the following exclusion criteria (EC):
� EC1 - Studies that are not related to the research questions.
� EC2 - Studies in which claims are non-justified or studies that had ad hoc
statements instead of evidence-based statements.
� EC4 - Papers reported only by abstracts or slides.
� EC5 - Duplicate studies.
� EC6 - Demonstrations, preliminary studies, position papers, technical re-
ports, posters and proof-of-concept papers were excluded.

2.2 Conducting

Conducting is the second step of the systematic review procedure. We have
performed the search operation on the mentioned five electronic sources using
search string ”toxic comment classification” on 3th July 2020. We have used
a reference management system Zotero where we added full texts of the arti-
cles to easy our systematic literature review. Our first search resulted in 202
extracted papers. After performing inclusion/exclusion criteria on titles and
abstracts, 63 papers remained. After excluding the unrelated and duplicate
works, 40 papers remained. The final selection was done by reading the whole
text of the papers, and after this phase, we have selected 31 primary studies
for our systematic review (Table 1).

208 Darko Andročec

ID Paper title and reference

S1 A supervised multi-class multi-label word embeddings approach for toxic com-
ment classification [5]

S2 Adversarial Text Generation for Googleś Perspective API [13]

S3 Are These Comments Triggering? Predicting Triggers of Toxicity in Online
Discussions [1]

S4 Automation in Social Networking Comments With the Help of Robust fastText
and CNN [18]

S5 Avoiding Unintended Bias in Toxicity Classification with Neural Networks [21]

S6 Bangla Toxic Comment Classification (Machine Learning and Deep Learning
Approach) [15]

S7 BEEP! Korean Corpus of Online News Comments for Toxic Speech Detection
[20]

S8 Challenges for Toxic Comment Classification: An In-Depth Error Analysis [32]

S9 Classification of Abusive Comments in Social Media using Deep Learning [2]

S10 Classification of Online Toxic Comments Using Machine Learning Algorithms
[24]

S11 Classification of Online Toxic Comments Using the Logistic Regression and
Neural Networks Models [28]

S12 Convolutional Neural Networks for Toxic Comment Classification [9]

S13 Cyberbullying ends here: Towards robust detection of cyberbullying in social
media [33]

S14 Detecting Aggression and Toxicity using a Multi Dimension Capsule Network
[30]

S15 Detecting Toxicity with Bidirectional Gated Recurrent Unit Networks [17]

S16 Detection of social network toxic comments with usage of syntactic dependen-
cies in the sentences [29]

S17 Empirical Analysis of Multi-Task Learning for Reducing Model Bias in Toxic
Comment Detection [31]

S18 Ensemble Deep Learning for Multilabel Binary Classification of User-
Generated Content [10]

S19 Imbalanced Toxic Comments Classification Using Data Augmentation and
Deep Learning [12]

S20 Is preprocessing of text really worth your time for toxic comment classification?
[19]

S21 LSTM neural networks for transfer learning in online moderation of abuse
context [3]

S22 Machine Learning Suites for Online Toxicity Detection [22]

S23 On the Design and Tuning of Machine Learning Models for Language Toxicity
Classification in Online Platform [26]

S24 Overlapping Toxic Sentiment Classification Using Deep Neural Architectures
[27]

S25 Practical Significance of GA PartCC in Multi-Label Classification [23]

S26 Reading Between the Demographic Lines: Resolving Sources of Bias in Toxicity
Classifiers [25]

S27 Stop illegal comments: A multi-task deep learning approach [8]

S28 Tackling Toxic Online Communication with Recurrent Capsule Networks [6]

S29 Towards non-toxic landscapes: Automatic toxic comment detection using DNN
[7]

S30 Toxic comments identification in arabic social media [11]

S31 Using Sentiment Information for Preemptive Detection of Toxic Comments in
Online Conversations [4]

Table 1: The list of selected primary studies

Machine Learning Methods for Toxic Comment Classification 209

Figure 1: Selected primary studies per year

In the end, we extracted data from the 31 selected primary studies and did
a synthesis taking into consideration the stated research questions. The results
of our systematic literature review on toxic comment classification are shown
in the next sections.

3 Results and discussion

3.1 Temporal overview of studies

The earliest relevant works on toxic comment classification were published in
2018 and their number significantly increased in 2019 (see Fig.1). There is a
decrease in the number of studies in 2020, but this is due to the date when
we performed the SLR search (3th July 2020, data are actually only for first
halve of 2020).

3.2 Types of publications

The number of studies per publication type is demonstrated in Fig. 2. Most of
the primary studies are conference papers (twenty), followed by arXiv papers
(seven), three journal papers, and one book chapter.

210 Darko Andročec

Figure 2: Papers per publication type

3.3 Used data set

Most of the primary studies have used one or two data sets with labelled
toxic comments for a supervised machine learning. The most used data set is
Jigsaw’s data set hosted on Kaggle for Toxic Comment Classification Chal-
lenge competition [14]. It is used on twenty-two selected primary studies. This
data set was later updated in Jigsaw Unintended Bias in Toxicity Classifica-
tion Kaggle’s competition. The mentioned data set contains a large number
of Wikipedia comments which have been labelled by human raters for toxic
behaviour. The types of toxicity are: toxic, severe toxic, obscene, threat, insult,
and identity hate. Other used data sets are specific to a certain primary studies.
Some of these other data sets are created by third parties: Twitter dataset by
Davidson, Instagram dataset collected by Hosseinmardi et al., Semeval2018-
Task 1 with almost 7000 tweets, The Twitter Hate Speech dataset, dataset
of tweets made by members of the U.S. House of Representatives, Wikipedia
Detox corpus, and live in-game chat conversations from a video game. The
rest of datasets used in primary studies where created by authors of these
studies: reviews taken from Udemy, synthetic training data by using Facebook
comments that were posted in response to popular news articles, extensive
collection of more than 104 million Reddit comments, a dataset taking com-
ments from Facebook pages posts, 9.4K manually labelled entertainment news
comments for identifying Korean toxic speech, comments in Hindi and English

Machine Learning Methods for Toxic Comment Classification 211

both scraped from Facebook and Twitter, and custom prepared data in Arabic
language from Facebook, Twitter, Instagram, and WhatsApp.

3.4 Used machine learning methods

Most of the selected primary studies have used more than one machine learning
method to classify toxic comments from datasets mentioned in the previous
subsection of this work. Table 2 shows in how many primary studies a specific
machine learning method was used. The most used and effective methods are
different deep neural networks, but often simpler and faster methods such as
a logistic regression were used for baseline approaches.

Machine learning method Number of
papers

Convolutional neural network (CNN) 12

Logistic regression classifier 9

Bidirectional long short-term memory (BiLSTM) 8

Bidirectional Gated Recurrent Unit Networks (Bidirectional GRU) 6

Long Short Term Memory (LSTM) 5

Support Vector Machine (SVM) 5

Bidirectional Encoder Representations from Transformers (BERT) 4

Naive Bayes 4

Capsule Network 3

Random Forest 2

Decision tree 2

KNN classification 2

Gated Recurrent Unit (GRU) 2

Extreme Gradient Boosting (XGBoost) 2

Recurrent Neural Network (RNN) 2

Bi-GRU-LSTM 1

Gaussian Naive Bayes 1

Genetic Algorithms (GA) 1

Partial Classifier Chains (PartCC) 1

Table 2: Machine learning methods used in primary studies

3.5 Evaluation metrics

To evaluate results of using different machine learning methods to tackle prob-
lem of toxic comment classification, authors of primary studies use one or more
evaluation metrics. Most used evaluation metrics are F1 score, accuracy, and
area under the ROC curve (AUC ROC). All evaluation metrics used in selected
primary studies are listed in Table 3.

212 Darko Andročec

Evaluation metric Number of
papers

F1 score 15

Accuracy 14

Area Under the ROC Curve (AUC ROC) 9

Custom AUC bias metric 2

Log loss 2

Hamming loss 2

False discovery rate 2

Mean precision 2

Mean recall 2

Pearson correlation coefficients 1

Specificity 1

Mean of the error rates 1

Generalized Mean Bias AUC 1

Subgroup AUC 1

BPSN AUC 1

Table 3: Used evaluation metrics

3.6 Classes of toxicity

Twenty-three of the primary studies have used six classes of toxicity defined in
Jigsaw’s data set hosted on Kaggle for Toxic Comment Classification Challenge
competition [14]: toxic, severe toxic, obscene, threat, insult, and identity hate.
Three papers used two classes (toxic or non-toxic). All used classes of toxicity
are listed in Table 4.

Classes of toxicity Number of
papers

toxic, severe toxic, obscene, threat, insult, and identity hate 23

toxic or non-toxic 3

hate, offensive, and none 2

overtly aggressive, covertly aggressive, and non-aggressive 1

anger, anticipation, disgust, fear, joy, love, optimism, pessimism,
sadness, surprise and trust

1

racist content, sexist, and neutral 1

Table 4: Classes of toxicity identified in primary studies

3.7 Language of toxic comments

Only one paper (S14) analyse the toxic comment for two languages (in this
case Hindi and English). Toxic comments in English are used the most (28

Machine Learning Methods for Toxic Comment Classification 213

primary studies). The rest of studies dealt with Bangla (Bengali), Korean,
and Arabic language.

4 Conclusions and future research ideas

Toxic comment classification is a complex research problem tackled by sev-
eral machine learning methods. That is illustrated by many recent works in
literature. After conducting a systematic review literature protocol proposed
by Kitchenham and Charters [1], we have selected and analysed 31 primary
studies. Our main conclusions are presented as answers to research questions
as follows:
RQ1: When did the research on toxic comment classification become active
in the research community? – The research on toxic comment classification
become active recently, from 2018. It is due to release of Jigsaw’s data set [33]
that is mostly used in current related papers. From this year the number of
paper is growing and this is an indicator that this research topic is actual and
trendy.
RQ2: How is toxic comment classification research reported and what is the
maturity level of the research in this field? – The most of the work are confer-
ence papers, so toxic comment classification is still a novel research topic.
RQ3: Which data sets are used to classify toxic comments? - The most used
data set is the Jigsaw’s data set hosted on Kaggle for Toxic Comment Classi-
fication Challenge competition [33]. Other data sets are mostly created from
comments on popular social networks.
RQ4: Which machine learning methods are used to classify toxic comments? -
The most used and effective methods are different architectures of deep neural
networks, but often simpler and faster methods such as a logistic regression
were used for baseline approaches.
RQ5: What are main evaluation metrics used to classify toxic comments? –
Main evaluation metrics used to classify toxic comments are: F1 score, accu-
racy, and area under the ROC curve (AUC ROC).

The toxic comment classification research topic is a very active and chal-
lenging theme. Different transformers have recently shown a superior per-
formance in many natural language processing tasks, so we recommend use
of transformers for toxic comment classification in future works. Our sys-
tematic literature review identified three uses of BERT, but other trans-
formers were not used yet (e.g. Hugging Face Transformers such as GPT-2,
RoBERTa, XLM, DistilBert, XLNet. . . with pre-trained models in Tensor-

214 Darko Andročec

Flow 2.0 and PyTorch). Next, multilingual toxic comment classification is
yet unsolved problem. In 2020, Jigsaw released multilingual toxic comment
classification data set (https://www.kaggle.com/c/jigsaw-multilingual-toxic-
comment-classification/data) that will be a basis for future work on this topic.
The dataset is released under CC0, with the underlying comment text being
governed by Wikipedia’s CC-SA-3.0.

References

[1] H. Almerekhi, H. Kwak, J. Salminen, B. J. Jansen, Are These Comments Trig-
gering? Predicting Triggers of Toxicity in Online Discussions, Proceedings of The
Web Conference 2020, Taipei, Taiwan, Apr. 2020, pp. 3033–3040. ⇒208

[2] M. Anand, R. Eswari, Classification of Abusive Comments in Social Media using
Deep Learning, 2019 3rd International Conference on Computing Methodologies
and Communication (ICCMC), Erode, India, Mar. 2019, pp. 974–977. ⇒208

[3] A. Bleiweiss, LSTM neural networks for transfer learning in online moderation of
abuse context, ICAART 2019 - Proceedings of the 11th International Conference
on Agents and Artificial Intelligence, Prague, Czech Republic,2019, pp. 112–122.⇒208

[4] É. Brassard-Gourdeau, R. Khoury, Using Sentiment Information for Preemptive
Detection of Toxic Comments in Online Conversations, ArXiv200610145 Cs, Jun.
2020, Accessed: Jul. 03, 2020. http://arxiv.org/abs/2006.10145. ⇒208

[5] S. Carta, A. Corriga, R. Mulas, D. R. Recupero, R. Saia, A supervised multi-
class multi-label word embeddings approach for toxic comment classification,
IC3K 2019 - Proceedings of the 11th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowledge Management, Vienna,
Austria, 2019, pp. 105–112. ⇒208

[6] A. G. D’Sa, I. Illina, D. Fohr, Towards non-toxic landscapes: Automatic toxic
comment detection using DNN, ArXiv191108395 Cs Stat, Nov. 2019, Accessed:
Jul. 03, 2020. http://arxiv.org/abs/1911.08395. ⇒208

[7] S. Deshmukh, R. Rade, Tackling Toxic Online Communication with Recurrent
Capsule Networks, 2018 Conference on Information and Communication Tech-
nology (CICT), Jabalpur, India, 2018. ⇒208

[8] A. Elnaggar, B. Waltl, I. Glaser, J. Landthaler, E. Scepankova, F. Matthes, Stop
Illegal Comments: A Multi-Task Deep Learning Approach, ACM International
Conference Proceeding Series, 2018, pp. 41–47. ⇒208

[9] S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, V. P. Plagianakos, Convo-
lutional Neural Networks for Toxic Comment Classification, Proceedings of the
10th Hellenic Conference on Artificial Intelligence, Patras, Greece, Jul. 2018,
pp. 1–6. ⇒208

https://scholar.google.com/citations?user=YmZYpv8AAAAJ&hl=en
https://scholar.google.com/citations?user=wd751oQAAAAJ&hl=en
https://scholar.google.com/citations?user=wd751oQAAAAJ&hl=en
http://arxiv.org/abs/2006.10145
https://tcs.unica.it/members/salvatore-carta
https://people.unica.it/diegoreforgiato/
https://members.loria.fr/IIllina/
http://arxiv.org/abs/1911.08395
https://soham97.github.io/
https://wwwmatthes.in.tum.de/pages/etcg7ctr5mnl/Ahmed-Elnaggar
https://wwwmatthes.in.tum.de/pages/5uj7ccpr2wvr/Ingo-Glaser
https://wwwmatthes.in.tum.de/pages/dsjvw8dm1u01/Joerg-Landthaler
http://sgeorgakopoulos.users.uth.gr/
https://sites.google.com/site/sotiristasoulis/
https://sites.google.com/view/arisgvrahatis/home

Machine Learning Methods for Toxic Comment Classification 215

[10] G. Haralabopoulos, I. Anagnostopoulos, D. McAuley, Ensemble Deep Learning
for Multilabel Binary Classification of User-Generated Content, Algorithms, 13,
4 (2020). ⇒208

[11] O. Hosam, Toxic comments identification in arabic social media, Int. J. Comput.
Inf. Syst. Ind. Manag. Appl., 11, (2019) 219–226. ⇒208

[12] M. Ibrahim, M. Torki, N. El-Makky, Imbalanced Toxic Comments Classifica-
tion using Data Augmentation and Deep Learning, Proceedings - 17th IEEE
International Conference on Machine Learning and Applications, ICMLA 2018,
Orlando, USA, 2018, pp. 875–878. ⇒208

[13] E. Jain et al., Adversarial Text Generation for Google’s Perspective API, 2018
International Conference on Computational Science and Computational Intelli-
gence (CSCI), Las Vegas, USA, Dec. 2018, pp. 1136–1141. ⇒208

[14] Jigsaw, Data for Toxic Comment Classification Challenge. https://www.

kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

[15] A. N. M. Jubaer, A. Sayem, Md. A. Rahman, Bangla Toxic Comment Classifica-
tion (Machine Learning and Deep Learning Approach), 2019 8th International
Conference System Modeling and Advancement in Research Trends (SMART),
Moradabad, India, Nov. 2019, pp. 62–66. ⇒210, 212

[16] B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature
Reviews in Software Engineering(2007). ⇒208

[17] V. Kumar, B. K. Tripathy, Detecting Toxicity with Bidirectional Gated Recur-
rent Unit Networks, Adv. Intell. Syst. Comput., vol. 1034,(2020) 591–600. ⇒
206

[18] S. Mestry, H. Singh, R. Chauhan, V. Bisht, K. Tiwari, Automation in Social
Networking Comments With the Help of Robust fastText and CNN, 2019 1st
International Conference on Innovations in Information and Communication
Technology (ICIICT), Chennai, India, Apr. 2019, pp. 1–4. ⇒208

[19] F. Mohammad, Is preprocessing of text really worth your time for toxic comment
classification?, CSCE 2018 - Proceedings of the 2018 International Conference
on Artificial Intelligence, ICAI 2018, Las Vegas, USA, 2018, pp. 447–453. ⇒
208

[20] J. Moon, W. I. Cho, J. Lee, BEEP! Korean Corpus of Online News Comments
for Toxic Speech Detection, ArXiv200512503 Cs, May 2020, Accessed: Jul. 03,
2020. http://arxiv.org/abs/2005.12503. ⇒208

[21] S. Morzhov, Avoiding Unintended Bias in Toxicity Classification with Neural
Networks, 2020 26th Conference of Open Innovations Association (FRUCT),
Yaroslavl, Russia, Apr. 2020, pp. 314–320. ⇒208

[22] D. Noever, Machine Learning Suites for Online Toxicity Detec-
tion, ArXiv181001869 Cs Stat, Oct. 2018, Accessed: Jul. 03, 2020.
http://arxiv.org/abs/1810.01869. ⇒208

https://giannisharalabopoulos.github.io/
http://www.anagnostopoulos.name/index.htm
https://drdrmc.github.io/
http://osama-hosam.blogspot.com/
http://eng.staff.alexu.edu.eg/~mtorki/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.keele.ac.uk/scm/staff/barbarakitchenham/
https://researchers.lincoln.ac.nz/stuart.charters
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471
http://www.bktripathy.co.in/
https://www.springer.com/series/11156
https://www.linkedin.com/in/fahim-ai/
https://inmoonlight.github.io/
https://sites.google.com/site/warnikchow/home
http://arxiv.org/abs/2005.12503
http://arxiv.org/abs/1810.01869

216 Darko Andročec

[23] A. P. Patil, A. Mohammed, G. Elachitaya, M. Tiwary, Practical Significance of
GA PartCC in Multi-Label Classification, Proceedings of the 2019 Ieee Region 10
Conference (tencon 2019): Technology, Knowledge, and Society, Kerala, India,
2019, pp. 2487–2490. ⇒208

[24] Rahul, H. Kajla, J. Hooda, G. Saini, Classification of Online Toxic Comments
Using Machine Learning Algorithms, 2020 4th International Conference on In-
telligent Computing and Control Systems (ICICCS), Madurai, India, May 2020,
pp. 1119–1123. ⇒208

[25] E. Reichert, H. Qiu, J. Bayrooti, Reading Between the Demographic Lines: Re-
solving Sources of Bias in Toxicity Classifiers, ArXiv200616402 Cs, Jun. 2020,
Accessed: Jul. 03, 2020. http://arxiv.org/abs/2006.16402. ⇒208

[26] M. Rybinski, W. Miller, J. Del Ser, M. Nekane Bilbao, J. F. Aldana-Montes,
On the Design and Tuning of Machine Learning Models for Language Toxicity
Classification in Online Platforms, Intelligent Distributed Computing Xii, 798
(2018), pp. 329–343. ⇒208

[27] H. H. Saeed, K. Shahzad, F. Kamiran, Overlapping Toxic Sentiment Classifica-
tion using Deep Neural Architectures, 2018 18th Ieee International Conference
on Data Mining Workshops (icdmw), Sentosa, Singapore, 2018, pp. 1361–1366.⇒208

[28] M. A. Saif, A. N. Medvedev, M. A. Medvedev, T. Atanasova, Classification of
Online Toxic Comments Using the Logistic Regression and Neural Networks
Models, Proceedings of the 44th International Conference Applications of Math-
ematics in Engineering and Economics, Sozopol, Bulgaria, 2018. ⇒208

[29] S. Shtovba, O. Shtovba, M. Petrychko, Detection of social network toxic com-
ments with usage of syntactic dependencies in the sentences, CEUR Workshop
Proceedings, Otzenhausen, Germany, 2019, pp. 313–323. ⇒208

[30] S. Srivastava, P. Khurana, Detecting Aggression and Toxicity using a Multi Di-
mension Capsule Network. Stroudsburg: Assoc Computational Linguistics-Acl,
2019, pp. 157–162. ⇒208⇒208

[31] A. Vaidya, F. Mai, Y. Ning, Empirical Analysis of Multi-Task Learning for Re-
ducing Model Bias in Toxic Comment Detection, ArXiv190909758 Cs, Mar. 2020,
Accessed: Jul. 03, 2020. http://arxiv.org/abs/1909.09758. ⇒208

[32] B. van Aken, J. Risch, R. Krestel, A. Löser, Challenges for Toxic Comment Clas-
sification: An In-Depth Error Analysis, ArXiv180907572 Cs, Sep. 2018, Accessed:
Jul. 03, 2020. http://arxiv.org/abs/1809.07572. ⇒208

[33] M. Yao, C. Chelmis, D.-S. Zois, Cyberbullying Ends Here: Towards Robust De-
tection of Cyberbullying in Social Media, The Web Conference 2019 - Proceed-
ings of the World Wide Web Conference, WWW 2019, San Francisco, USA,
2019, pp. 3427–3433. ⇒208

Received: July 23, 2020 • Revised: October 5, 2020

http://arxiv.org/abs/2006.16402
https://people.csiro.au/r/m/maciek-rybinski
https://www.springer.com/gp/book/9783319996257
https://urfu.ru/ru/about/personal-pages/Personal/person/m.a.saif/
http://www.shtovba.vinnitsa.com/
http://oshtovba.vk.vntu.edu.ua/
https://www.linkedin.com/in/prerna-khurana-5b23a062/?originalSubdomain=in
https://yue-ning.github.io/
http://arxiv.org/abs/1909.09758
https://prof.beuth-hochschule.de/loeser/people/betty-van-aken/
https://hpi.de/naumann/people/julian-risch.html
http://arxiv.org/abs/1809.07572
https://www.linkedin.com/in/mengfan-yao-a92828a8/
http://www.cs.albany.edu/~cchelmis/
https://www.albany.edu/~dz973423/

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 217–231

DOI: 10.2478/ausi-2020-0013

Degree tolerant coloring of graph

Johan KOK
Independent Mathematics Researcher, City of
Tshwane, South Africa & Visiting Faculty at

CHRIST (Deemed to be a University), Bangalore,
India

email: jacotype@gmail.com

Abstract. This paper initiates a study on a new coloring regime which
sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈
V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant
coloring”. The degree tolerant chromatic number is defined. A number
of interesting introductory results are presented. Amongst others, new
Nordhaus-Gaddum type bounds are provided.

1 Introduction

For general notation and concepts in graphs see [2, 5, 8]. Throughout only
finite, undirected, simple graphs will be considered. It is assumed that the
reader is familiar with the concept of graph coloring. Recall that in a proper
coloring of G all edges are good i.e. ∀ uv ∈ E(G), c(u) 6= c(v). The set of
colors assigned in a proper graph coloring is denoted by C and a subset of
colors assigned to a subset of vertices X ⊆ V(G) is denoted by c(X). In an
improper (or defect) coloring it is permitted that for some uv ∈ E(G), the
coloring is c(u) = c(v). It is evident that improper coloring has been formally
defined and studied by [3, 4, 6].

Since any graph G has the parameters, δ(G) and ∆(G), an integer degree
condition related to an integer k, δ(G) ≤ k ≤ ∆(G) will be introduced. For

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C15, 05C38, 05C75, 05C85
Key words and phrases: Degree tolerant coloring, degree tolerant chromatic number,
proper coloring, defect coloring

217

218 J. Kok

a ”degree tolerant coloring” abbreviated as, DT -coloring of a graph G the
following conditions are set:

(i) If uv /∈ E(G) then, either c(u) = c(v) or c(u) 6= c(v);
(ii) If uv ∈ E(G) and deg(u) = deg(v) then, c(u) = c(v) else, c(u) 6= c(v).
Alternative formulation for condition (ii). If uv ∈ E(G) then, c(u) = c(v) if

and only if deg(u) = deg(v).
The motivation for this study is that, it is fundamentally acceptable to

”do mathematics for the sake of mathematics”. From an application point
of view the vertices could represent communication elements (graph vertices
in graph context) in a communication network. Failure of a communication
vertex u could be replaced by a neighbor v if and only deg(u) = deg(v).
This can be made possible by imbedding equivalent or identical technology in
both u and v. The technology equivalence is characterised by equal degrees for
such pair of neighbors. The aforesaid could be viewed as spontaneous merging
of such vertices on failure of any one vertex. Hence, a maximum number of
such merging operations exists for a communication network before complete
communication failure occurs. Analogy is found in electrical networks where
one network relies on say, conventional fossil fuel generation and another relies
of solar generation which is then distributed via an inverter plant. On failure
of either, the neighbor can provide electricity to the other through a switch
over protocol. The author foresees that interesting informatica research can
result from this introductory paper.

The minimum number of colors which yields a DT -coloring is called the
degree tolerant chromatic number of G and is denoted by, χdt(G). For certain
classes of connected graphs the value of χdt(G) follows immediately. For ex-
ample, for paths we have χdt(P1) = χdt(P2) = 1 and χdt(Pn) = 2, n ≥ 3. For
all cycles, χdt(Cn) = 1, n ≥ 3. All regular graphs G have χdt(G) = 1. Also,
the null graph (edgeless) Nn has χdt(Nn) = 1. Clearly there exist graphs for
which, χdt(G) ≤ χ(G). However, it is easy to verify that the graph G in Figure
1 has, χdt(G) > χ(G).

As an introductory paper a variety as aspects are considered. Section 2
deals with preliminaries on general results and with elementary graph oper-
ations. Section 3 deals with three standard graph products. In addition, new
Nordhaus-Gaddum type bounds are provided. In the conclusion some further
research avenues are mentioned.

Degree tolerant coloring 219

v1

v2

v3

v4

v5

v6

v7

v8

Figure 1: Graph G for which χ(G) = 2 and χdt(G) = 3

2 Some general results

In the literature a wide range of coloring regimes have been defined and many
have been well researched. It is rare to find a formal result to show that all
graphs permit a particular coloring regime. The aforesaid is mostly stated or
silently assumed to be true. However, there does exist at least one coloring
regime called, Johan coloring (or J -coloring) which is not permitted by all
graphs. See [7] and related references. It cannot be assumed that all graphs
permit a DT -coloring but this is true in this case.

Theorem 1 Any graph permits a DT -coloring.

Proof. We proof the result through induction on n. At first, assume the graph
G is a connected graph of order n. It is known that χdt(K1) = 1 hence, the
result holds a connected graphs of order 1. Also, χdt(P2) = 1 hence, the result
holds for all connected graphs of order 2. For n = 3 we have two cases to
consider.

Case 13. Let G = P3. It is known that, χdt(P3) = 2.
Case 23. Let G = K3. Since K3 is a regular graph, χdt(K3) = 1.
Thus far the result holds for all connected graphs of order 3.

For connected graphs of order 4, six cases up to isomorphism must be consid-
ered.

Case 14. For P4 we have, χdt(P4) = 2.
Case 24. For the star S1,3 it easily follows that, χdt(S1,3) = 2.
Case 34. For the graph G obtained from K3 on vertices v1, v2, v3 with a

single pendant vertex u attached to any vertex of K3 say, to v1 the coloring,
c(v1) = c1, c(v2) = c(v3) = c(u) = c2 is a permissible DT -coloring.

220 J. Kok

Case 44. For the graph C4 a DT -coloring is permissible because C4 is regular.
Case 54. For the graph G obtained from C4 on vertices v1, v2, v3, v4 with

the addition of a chord say, v1v3, the coloring c(v1) = c(v3) = c1 and c(v2) =
c(v4) = c2 is a permissible DT -coloring.

Case 64. It is known that K4 permits a DT -coloring.
The basis for the induction assumption is now well established. Assume the

result holds for all connected graphs on 1 ≤ q ≤ n vertices. Let the distinct
connected graphs of order n up to isomorphism be, G1, G2, G3, . . . , Gκ.
Consider any connected graph Gi, 1 ≤ i ≤ κ on q = n vertices. To reason for
the case q = n + 1 begin with the disconnected graph Gi ∪ K1. Let V(K1) =
{vn+1}. Also assume the color set C = {ci : i = 1, 2, 3, . . . , k} is a DT -coloring
set of Gi.

Construct G ′i by adding any number of edges say, t edges, 1 ≤ t ≤ n given
by,

X = {vn+1vi, vn+1vj, vn+1vk, . . . , vn+1vs}︸ ︷︷ ︸
(t edges)

.

Clearly, deg(vn+1) = t. Also the open neighborhood of vn+1 is, N(vn+1) = X =
{vi, vj, vk, . . . , vs}.

If deg(vn+1) 6= deg(vi), vi ∈ X then let c(vn+1) be any color in C\c(X)
if possible else, assign a new color say c∗. In both cases, be it C or C ∪ {c∗}
assigned, a minimum DT -coloring is obtained.

If deg(vn+1) = deg(vi), for some vi ∈ X we have the following subcases.
(i) If deg(vn+1) = deg(vi), for exactly one vi ∈ X, let c(vn+1) = c(vi) to

yield a permissible DT -coloring of G ′i.
(ii) Let deg(vn+1) = deg(vi), for two or more vertices in X. If the said

two or more adjacent vertices have identical coloring say, color cr then assign
c(vn+1) = cr. If at least one of the said adjacent vertices has a coloring other
than the rest then recolor to c(X∪ {vn+1}) any color in C and through iterative
neighborhood re-assigned coloring obtain a DT -coloring, ϕ : V(G ′i) 7→ C if pos-
sible. Otherwise, assign c(X∪ {vn+1}) = c∗. Therefore, C ∪ {c∗} is a permissible
DT -coloring of G ′i.

Through immediate induction the results holds for all connected graphs G ′i,
1 ≤ i ≤ κ. Put differently, it holds for all connected graphs of order n + 1.
Hence, for all connected graphs of order q, 1 ≤ q ≤ n+ 1. Therefore, through
mathematical induction it hold for all connected graphs of finite order.

Assume the graph H has t connected components i.e. H1, H2, H3, . . . , Ht.
Clearly, χdt(H) = max{χdt(Hi) : for some i, 1 ≤ i ≤ t}. Since all Hi permit a

Degree tolerant coloring 221

DT -coloring it follows that H permits a DT -coloring. Hence, the result holds
for any simple graph of order n, n ∈ N. �

Remark: The proof of Theorem 1 can be achieved through a reconstructive
technique. Recall that the formal definition of a graph G of order n is, an
ordered triple (V(G), E(G), ιG) consisting of an non-empty set V(G) of vertices
say, {v1, v2, v3, . . . , vn} and a set E(G), disjoint from V(G), of edges and an
incidence function, ιG that associates with each edge of G an unordered pair of
vertices of G (vertices in an unordered pair are not necessarily distinct). Begin
with the null graph (edgeless) denoted by, Nn on the vertices {v1, v2, v3, . . . , vn}.
Note that χdt(Nn) = 1. Let E(G) = {e1, e2, e3, . . . , eq}. Reconstruct G by
iteratively adding the edges ei, i = 1, 2, 3, . . . , q and by assigning aDT -coloring
iteratively. Observe that after adding the edge e1 the result, χdt(Nn + e1) =
1 follows. If edge e2 is added such that e1, e2 are incident then the result,
χdt((Nn+e1)+e2) = 2 follows. Else, χdt((Nn+e1)+e2) = 1. The observation is
that G can be reconstructed iteratively and after each iteration a DT -coloring
can be assigned. Formalising this approach as a proof is left to the reader.

Henceforth, only simple connected graphs will be considered. We now present
some general results for χdt(G). Note that χdt(Kn) = 1 because Kn is a regular
graph.

Theorem 2 For n ∈ N there exists a graph G with, χdt(G) = n.

Proof. Obviously, χdt(K1) = 1. Also, χdt(P3) = 2. For n ≥ 3 begin with the
complete graph Kn. Let V(Kn) = {v1, v2, v3, . . . , vn}. Construct a new graph G
by attaching to each vertex vi an arbitrary number ki ≥ 0 pendent vertices
such that, ki 6= kj if and only if i 6= j. Clearly dG(vi) 6= dG(vj) if i 6= j. However,
vivj ∈ V(G) hence, c(vi) 6= c(vj). Therefore, χdt(G) ≥ n. Without loss of
generality let the pendent vertices adjacent to vi be labeled ui,`, 1 ≤ ` ≤ ki.
Because dG(ui,`) = 1 ≤ dG(vi) and ui,`vi ∈ E(G) the coloring c(ui,`) = cj,
j 6= i is permissible. Thus χdt(G) ≤ n and the result, χdt(G) = n follows. �

Recall that the order and size (number of edges) of a graph is denoted by
ν(G) and ε(G). For a graph parameter p(G) of specific value say, k ∈ N a
minimal graph G is a graph with min{ν(G) + ε(G)} which yields, p(G) =
k. Observe that for k = 1 the minimal graph G = K1 yields, χdt(G) = 1.
For k = 2 the minimal graph G = P3 yields, χdt(G) = 2. For k = 3 the
minimal graph is the dart graph. The dart graph has order 5 and size 6.
These observations can be verified exhaustively against the list of small graphs
at, www.graphclasses.org/smallgraphs.html We claim that, to construct such
minimal graph the founding or initial graph is the complete graph of order

222 J. Kok

k. Firstly, we see that K1, K2 (or P2) and K3 (or C3) are complete as well as
regular graphs. Note that for k = 4 one could reasonably consider to begin
with the trivial founding graph C4 on vertices v1, v2, v3, v4, which is 2-regular.
However, to achieve distinct colorings i.e. c(v1) 6= c(vj) if i 6= j with the
minimal constructive additions of graph elements (vertices or edges), a K4 will
inevitably result through any construction methodology. Inductive reasoning
is the basis of our claim.

Theorem 3 For k ∈ N there exists a minimal graph G of order n = 2k − 1
(or ν(G) = 2k− 1) and size ε(G) = k(k− 1) for which, χdt(G) = k. Also, this
minimal graph is unique.

Proof. Obviously for k ∈ N and χdt(G) = k we must have, ν(G) ≥ k. It
follows that for k = 1, the graph K1 is minimal of order, 2× 1− 1 = 1.

For k ≥ 2, begin with a graph putting all vertices on equal footing with
regards to degree, i.e. having equal degree. Let the complete graph be on
vertices v1, v2, v3, . . . , vk. For vi, i = 2, 3, 4, . . . , k add a distinct pendent vertex
ui. Also add the edges uivi+j, i = 2, 3, 4, . . . , (k − 1), j = 1, 2, 3, . . . , (k − i)
to obtain G. Clearly, the aforesaid addition of pendent vertices and edges is
the minimum constructive additions of graph elements to ensure, deg(vi) 6=
deg(vj) for i 6= j. Clearly, from conditions (i) and (ii) the minimum color
set C = {c1, c2, c3, . . . , ck} is required to assign a DT -coloring to G. From the
construction of G it follows that G is a minimal graph hence,min{ν(G)+ε(G)},
∀ ν, ε ∈ N to yield, χdt(G) = k. Furthermore, ν(G) = 2k − 1 and ε(G) =
k(k−1)
2 + (k−1)k

2 = k(k−1). Minimality and uniqueness of G follow directly from
the stringent and unambiguous construction methodology. �

Figure 2 depicts the unique minimal graph for which χdt(G) = 3. For example
let, c(v1) = c1, c(v2) = c2, c(v3) = c2, c(u2) = c1, c(u3) = c1.

Theorem 3 leads to an important inverse result.

Theorem 4 For a graph G of order n ≥ 1 it follows that,

χdt(G) ≤
⌊
n+1
2

⌋
.

Proof. Observe that for k = 1, 2, 3, 4 . . . Theorem 3 provides the minimum
order of graphs i.e. n = 1, 3, 5, 7, . . . , 2k− 1, . . . for which a minimal graph G
can be constructed such that, χdt(G) = k. It follows that for any graph G ′ of
order `, 2k− 1 < ` < 2k+ 1 we have, χdt(G

′) < k+ 1. Thus χdt(G
′) ≤ k.

Since for k ∈ N, the minimal graph G is of order n = 2k−1, it implies that:

n− 2k+ 1 = 0 has root at, k = n+1
2 .

Degree tolerant coloring 223

v2

v1

v3

u3

u2

Figure 2: Unique minimal graph for which χdt(G) = 3

For an integer solution it follows that,

χdt(G) ≤
⌊
n+1
2

⌋
.

�

Theorem 5 For a graph G of size ε(G) = q ≥ 1 it follows that,

χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
.

Proof. We know that for k = 1, 2, 3, 4 . . . , Theorem 3 provides the minimum
size of graphs i.e. q = 0, 2, 6, 12, . . . , k(k − 1), . . . for which a minimal graph
G can be constructed such that, χdt(G) = k. It follows that for any graph G ′

of size `, k(k− 1) < ` < (k+ 1)k we have, χdt(G
′) < k+ 1. Thus, χdt(G

′) ≤ k.
Since for q ∈ N, the minimal graph G is of size q = k(k−1), it implies that:

q− k(k− 1) = 0 has roots at, 1±
√
1+4q
2 .

For an integer solution it follows that,

χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
.

�

For n as determined by Theorem 3 in respect of k ∈ N, let C1(G) be all graphs
of order n.

Corollary 6 A graph G ∈ C1(G) has χdt(G) ≤ k.

Proof. The result is a direct consequence of Theorems 3 and 4. �

For q as determined by Theorem 3 in respect of k ∈ N, let C2(G) be all graphs
of of size q.

224 J. Kok

Corollary 7 A graph G ∈ C2(G) has χdt(G) ≤ k.

Proof. The result is a direct consequence of Theorems 3 and 5. �

Corollary 8 A minimal graph G in respect of k-degree tolerant coloring is
always of odd order and even size.

A more significant result which follows directly from Theorems 4 and 5 is
presented.

Theorem 9 For a graph G of order n and size q we have,

χdt(G) ≤ min{
⌊
n+1
2

⌋
,
⌊
1+
√
1+4q
2

⌋
}.

2.1 On three elementary graph operations

Consider non-trivial graphs G and H and the elementary graph operations
known as the disjoint union G ∪H, the corona G ◦H and the join G+H.

Proposition 10 For graphs G and H on order n and m respectively:
(a) χdt(G ∪H) = max{χdt(G), χdt(H)}.
(b)

χdt(G ◦H) =

{
χdt(G), if χdt(G) > χdt(H);

χdt(H) + 1, if χdt(G) ≤ χdt(H).

Proof.
(a) Trivial.
(b) From a χdt(G)-color set C assign a DT -coloring to graph G. In the graph

G◦H a vertex u in a copy of H has, deg(u) ≤ m. In the graph G◦H a vertex v
in G has, deg(v) ≥ 1+m. Hence, c(v) is distinct from any vertex color in the
copy of H. For purposes of reasoning, begin by coloring each copy of H with
its independent DT -coloring (ignoring adjacency of the corresponding vertex
in V(G).)

Case 1: If χdt(G) > χdt(H) and c(v) = ci then all vertices in u ∈ V(H) for
which c(u) = ci, may be recolored with any color in the set C\{ci}. The coloring
obtained is a permissible DT -coloring of G ◦H. Hence, χdt(G ◦H) = χdt(G).

Case 2. If χdt(G) ≤ χdt(H) and c(v) = ci then all vertices in u ∈ V(H)
for which c(u) = ci, must be recolored with a new color cχdt(H)+1. Hence,
χdt(G ◦H) = χdt(H) + 1. �

Degree tolerant coloring 225

Lemma 11 For a graph G partition V(G) into vertex subsets, P = {X1, X2, X3,

. . . , Xt} such that vj, vk ∈ Xi if and only if deg(vj) = deg(vk) else, |Xi| = 1. It
follows that, χdt(G) ≤ |P|.

Proof. Let a set of distinct colors be C = {c1, c2, c3, . . . , c|P|} together with
the mapping, c(Xi) 7→ ci, ∀ i. Assume that the partition coloring does not
correspond to a χdt-coloring of G and that χdt(G) > |P|. It implies that for at
least one Xi ∈ P there exists at least one vertex vj ∈ Xi. Therefore, c(vj) = cl,
cl /∈ C is required. If vjvk ∈ E(G), c(vk) = ck ∈ C, it is a contradiction in
terms of condition (ii). Hence, c(vj) = ci is permissible. If vjvk /∈ E(G), then
by condition (i) the coloring c(vj) = ci is permissible. Therefore, χdt(G) ≤ |P|.

�

Corollary 12 For graph G the degree tolerant chromatic number is bounded
by, 1 ≤ χdt(G) ≤ |P|.

Association with vertex partition P. Obviously P is a partition of the
vertex set of a graph. The parameter, degG(Xi) = degG(v), v ∈ Xi is also
associated with P. Finally, for P = {Xi : 1 ≤ i ≤ t} of V(G) and P ′ =
{Y1, Y2, Y3, . . . , Yl} of V(H) we define the operation, P 	 P ′ = k, where k is
the number of vertex subsets, Yj with degH(Yj) 6= degG(Xi), ∀i.

Reduction procedure: Reflecting on Lemma 11 it is observed that, if a

vertex subset, Xi ∈ P can itself be partitioned such that, Xi =
r⋃
j=1

Xi,j and for

each Xi,j there exists some vertex subset Xk ∈ P, i 6= k such that, ∀ vl ∈ Xi,j
and ∀ vt ∈ Xk the edge vlvt /∈ E(G), then the upper bound can be decreased
(improved) by 1.

Example. Consider the path P3 on vertices v1, v2, v3. Attach pendent ver-
tices u1, u2, u3, u4 to v1 to obtain the graph G. Utilising Lemma 11 the vertex
partition, P = {{v1}, {v2}, {v3, u1, u2, u3, u4}} is obtained. Hence, χdt(G) ≤ 3.
Note that the vertex subset {v3, u1, u2, u3, u4} itself can be partitioned into
{{v1}, {u1, u2, u3, u4}}. Observe that edge, v1v3 /∈ E(G) and edges, u1v2, u2v2, u3v2,
u4v2 /∈ E(G). Thus, χdt(G) ≤ 2. When the stated reduction procedure is ex-
hausted, equality is attained. In the example, χdt(G) = 2.

Proposition 13 For graphs G and H of order n and m respectively, we have:
χdt(G+H) = χdt(G) + (P 	 P ′).

Proof. Without loss of generality let n ≥ m. Assign a DT -coloring to G. Such
DT -coloring exists by Theorem 1. Let theDT -color set be, C = {c1, c2, c3, . . . , ct}

226 J. Kok

and let V(G) = {v1, v2, v3, . . . , vn}. Clearly, in the join G + H the vertex de-
grees of V(G) increases by the constant m hence, degG+H(vi) = degG(vi)+m,
1 ≤ i ≤ n. Therefore, the color set C remains a DT -color set for the induced
subgraph 〈V(G)〉. Also, V(G) can be partitioned into P = {X1, X2, X3, . . . , Xt}

such that, c(Xi) = ci ∈ C, i = 1, 2, 3, . . . , t.
Similarly, partition V(H) = {u1, u2, u3, . . . , um} in accordance to an assigned

DT -coloring of H. Let this partition be P ′ = {Y1, Y2, Y3, . . . , Yl}. Note that
each vertex degree in V(H) has increased with a constant i.e. degG+H(ui) =
degG(ui) + n, 1 ≤ i ≤ m. Clearly, the vertices of V(H) in a partition subset,
Yi ∈ P ′ which has degG+H(Yi) = degG+H(Xj), must be colored c(Yi) = c(Xj).
See condition(ii). Those which have degG+H(Yi) 6= degG+H(Xj), ∀ i must be
colored with a new color not in C. See condition (ii). Hence, by Lemma 11,
χdt(G+H) ≤ χdt(G)+(P	P ′). Because DT -colorings were assigned to both G
and H the reasoning of Lemma 11 has been met. Also, the reduction procedure
has implicitly been exhausted. Therefore, χdt(G+H) = χdt(G) + (P	 P ′). �

Due to the commutative property of G + H it follows that, χdt(G + H) =
χdt(G) + (P 	 P ′) = χdt(H) + (P ′ 	 P).

3 On graph products

Consider two graphs G and H of order n andm, respectively. Let the respective
vertex sets be, V(G) = {v1, v2, v3, . . . , vn} and V(H) = {u1, u2, u3, . . . , um}.
Recall that in general, a graph product is defined on the vertices V(G)×V(H).
Adjacency (symbolised by, ∼) in the graph product is defined by conditions of
adjacency (or non-adjacency) or equality, between pairs of distinct vertices in
V(G) and/or V(H). It is known that 28 = 256 products can be defined. This
section will address three standard graph products. Note that in the literature
there are different names corresponding to some of these graph products.

Convention: It is agreed that a comparable copy of a graph G means, com-
parable diagrammatic presentation including self evident comparable vertex
labeling. For example, if the path P3 is sketch horizontally with the vertices
labeled from left to right as, v1, v2, v3 then, a comparable copy (just copy for
brevity) could be on the vertices labeled from left to right as, vi, vi+1, vi+2,
i ≥ 4. It also implies that v1 corresponds to vi and it does not correspond to,
vi+2.

(i) Recall that adjacency in the Cartesian product denoted by, G�H is
defined by (vi, uj) ∼ (vk, ut) if, vi = vk and uj ∼ ut or, vi ∼ vk and uj = ut.
To visualize this adjacency definition, simply replace each vertex of G with

Degree tolerant coloring 227

a copy of H. For the vertex vi ∈ V(G) label such copy, Hvi . If the edge vivj
exists then add an edge between corresponding vertices of the copies, Hvi and
Hvj .

(ii) Recall that adjacency in the tensor product (also called, categorical
product) denoted by, G × H is defined by vi ∼ vk and uj ∼ ut. To visualize
this adjacency definition is not easy. What is important to note is that, if the
respective degree sequences are,

(deg(v1), deg(v2), deg(v3), . . . , deg(vn))

and,

(deg(u1), deg(u2), deg(u3), . . . , deg(um))

then die degree sequence of G×H is given by,
(deg(v1)deg(u1), deg(v1)deg(u2), deg(v1)deg(u3), . . . , deg(v1)deg(um),
deg(v2)deg(u1), deg(v2)deg(u2), deg(v2)deg(u3), . . . , deg(v2)deg(um),
· · ·
· · ·
· · ·
deg(vn)deg(u1), deg(vn)deg(u2), deg(vn)deg(u3), . . . , deg(vn)deg(um)).

(iii) Recall that adjacency in the lexicographical product denoted by, G •H
is defined by vi ∼ vk or, vi = vk and uj ∼ ut. To visualize this adjacency
definition, simply replace each vertex of G with a copy of H. For the vertex
vi ∈ V(G) label such copy, Hvi . If the edge vivj exists then add all edges of
the join, Hvi +Hvj .

Definition 14 Let (deg(v1), deg(v2), deg(v3), . . . , deg(vn)) be the degree se-
quence of graph G. The degree index of graph G denoted by di(G), is the
number of distinct vertex degree values.

Note that for any path Pn), n ≥ 3 we have, di(Pn) = 2. For any cycle Cn,
n ≥ 3 we have, di(Cn) = 1.

Theorem 15 For graphs G and H it follows that,

χdt(G�H) = min{di(H)χdt(G), di(G)χdt(H)}.

Proof. It is known that the Cartesian product is commutative to isomorphism.
Hence, G�H ∼= H�G.

Case 1. Consider G�H. Replace each vertex vi ∈ V(G) with Hvi . The adja-
cency condition, vi = vk and uj ∼ ut is immediately satisfied. Do the following

228 J. Kok

in respect of each (vi, uj)j=1,2,3,...,m, i = 1, 2, 3, . . . , n − 1. For each neighbor
of vi in G add an edge between the vertices (vi, uj), j = 1, 2, 3, . . . ,m and
between the respective corresponding vertices in the neighboring copy of H,
if such edges do not exist. After the stated procedure the condition vi ∼ vk
and uj = ut has been satisfied. Hence, G�H has been obtained. Clearly,
deg((vi, uj)) = deg(uj) + |N(vi)|. Following from Lemma 11, χdt(G�H) ≤
di(G)χdt(H).

Case 2. Consider H�G. By similar reasoning as in Case 1 it follows that,
χdt(H�G) ≤ di(H)χdt(G).

Thus far by Lemma 11, we showed that,

χdt(G�H) ≤ min{di(H)χdt(G), di(G)χdt(H)}.

Since the reduction procedure has implicitly been exhausted for at least one
of the two cases it follows that,

χdt(G�H) = min{di(H)χdt(G), di(G)χdt(H)}.

�

Theorem 16 For graphs G and H it follows that, χdt(G×H) ≤ di(G×H).

Proof. It is known that the tensor product is commutative to isomorphism.
Hence, G×H ∼= H×G.

The degree sequence of G×H is given by:
(deg(v1)deg(u1), deg(v1)deg(u2), deg(v1)deg(u3), . . . , deg(v1)deg(um),
deg(v2)deg(u1), deg(v2)deg(u2), deg(v2)deg(u3), . . . , deg(v2)deg(um),
· · ·
· · ·
· · ·
deg(vn)deg(u1), deg(vn)deg(u2), deg(vn)deg(u3), . . . , deg(vn)deg(um)).
Hence, the minimum number of colors needed to be assigned is di(G × H).
The reduction procedure can be used to yield equality on a case by case basis.
Therefore, χdt(G×H) ≤ di(G×H). �

Theorem 17 For graphs G and H it follows that, χdt(G •H) ≤ di(G)χdt(H).

Proof. It is known that the lexicographical product is associative but not
commutative. Therefore, the reasoning is similar to that stated in the proof of
Theorem 15, Case 1. However, exhaustion of the reduction procedure is not
self-evident. Hence, χdt(G •H) ≤ di(G)χdt(H). �

Degree tolerant coloring 229

3.1 Nordhaus-Gaddum type bounds

Relations between a graph G and its complement G have been studied since the
inception of graph theory. Perhaps the most interesting category of relations
between the two graphs are those with regards to the sum and products of
graph parameters. The first known such relations were introduced by Nordhaus
and Gaddum in 1956. The relations provide lower and upper bounds on the
sum and the product of the chromatic number of a graph and its compliment.
A comprehensive survey of the wide field which developed over the years can
be found in [1].

Definition 14 read together with Lemma 11 imply that for a graph G,
di(G) = t. Also, degG(vi) = (n− 1) − degG(vi)⇒ di(G) = di(G).

Theorem 18 For a graph G of order n and size q it holds that,
(a)

2 ≤ χdt(G) + χdt(G) ≤ 2di(G),
1 ≤ χdt(G) · χdt(G) ≤ di(G)2.

Weaker bounds are;
(b)

2 ≤ χdt(G) + χdt(G) ≤ 2(
⌊
n+1
2

⌋
),

1 ≤ χdt(G) · χdt(G) ≤
⌊
n+1
2

⌋2
.

(c)

2 ≤ χdt(G) + χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
+

⌊
1+

√
1+4(

n(n−1)
2

−q)

2

⌋
,

1 ≤ χdt(G) · χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
·

⌊
1+

√
1+4(

n(n−1)
2

−q)

2

⌋
.

Proof. (a) The result is a direct consequence of Lemma 11.
(b) The result is a direct consequence of Theorem 4.
(c) The result is a direct consequence of Theorem 5. �

Any simple graph G of order n has at most, n(n−1)
2 edges. From Theorem

3 it follows that the minimal graph G has order 2k − 1 and size k(k − 1)
for k ∈ N. Hence, G has ε(G) = k2 − 2k + 1. The aforesaid implies that
ε(G) − ε(G) = k − 1 > 0, ∀ k ≥ 2. Clearly G is not self-complementary. This
leads to a corollary.

230 J. Kok

Corollary 19 For the minimal graph G from Theorem 3 and for k ≥ 2 we
have, χdt(G) > χdt(G).

Proof. Theorem 5 read together with the fact that, ε(G) − ε(G) = k− 1 > 0,
∀ k ≥ 2, suffice. �

4 Conclusion

The degree tolerant chromatic number was introduced subject to conditions
(i) and (ii). Different conditions can be formulated to study derivatives of the
notion of degree tolerance coloring. For example, for a given k, 1 ≤ k ≤ n− 1
a condition such as; if deg(u) ≤ k and deg(v) ≤ k and uv ∈ E(G) then,
c(u) = c(v) else, c(u) 6= c(v) is a derivative for further study.

Problem 1. The procedure to improve the upper bound stated in Lemma 11
follows from condition (i). The fact that applying the procedure exhaustively
will yield equality has been stated without proof. Formalise the statement.

Problem 2. Utilise the result in problem 1 to determine exact values of
χdt(G) for various classes of graphs.

Problem 3. If possible find improved results for Theorems 16 and 17.
Conjecture. For graphs G and H it follows that,

χdt(G×H) = min{di(H)χdt(G), di(G)χdt(H)}.

A worthy avenue for further research would be to consider all known graph
products such as, strong product, co-normal product, modular product, rooted
product and so on.

It is observed that with regards to the clique number the minimal graph
G constructed in the proof of Theorem 4 is, ω(G) = k. Furthermore, exactly
two such induced cliques exist in G. We suggest that studying other graph
parameter specific to this minimal graph could be a worthy avenue.
Let f(k), g(k), h(k) be functions such that f(k) = min{g(k), h(k)}. If for some
k ∈ N we have that, g(k) = h(k) then f(k) is said to be tied or equal-valued.
If g(k) 6= h(k) then f(k) is said to be non-tied or decisive. A graph of order
n and size q can be called a (n, q)-graph. It is obvious from Theorems 4 and

5 that the function, f1(n, q) = min{
⌊
n+1
2

⌋
,
⌊
1+
√
1+4q
2

⌋
} is tied (equal-valued)

for all (2k− 1, k(k− 1))-graphs.
Problem 4. Prove that f2(n, q) is non-tied (or decisive) for all (g(k), h(k))-

graphs if the functions, n = g(k)k∈N 6= 2k− 1 or q = h(k)k∈N 6= k(k− 1).

Degree tolerant coloring 231

References

[1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete
Applied Mathematics, 161 (2013) 466–546. ⇒229

[2] J. A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press,
London, (1976). ⇒217

[3] L. Cowen, R. Cowen, D. Woodall, Defective colorings of graphs in surfaces: par-
titions into subgraphs of bounded valence, Journal of Graph Theory, 10 (1986)
187–195. ⇒217

[4] L. Cowen, W. Goddard, C. Jesurum, Coloring with defect, Proceedings of the
8th ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 548–557. ⇒217

[5] F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969. ⇒217
[6] F. Harary, K. Jones, Conditional colorability II: Bipartite variations, Congressus

Numer., 50 (1985) 205–218. ⇒217
[7] N. K. Sudev, On certain J -colouring parameters of graphs, Nat. Acad. Sci. Lett.,

43 (2020) 53–57. ⇒219
[8] B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River,

(1996). ⇒217

Received: June 9, 2020 • Revised: October 13, 2020

https://www.sciencedirect.com/science/article/pii/S0166218X11005075
https://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf
https://www.semanticscholar.org/paper/Defective-colorings-of-graphs-in-surfaces%3A-into-of-Cowen-Cowen/960ae8b1cc0b7e3ddcf12bd37b2ba9e721abad3f
https://www.semanticscholar.org/paper/Coloring-with-defect-Cowen-Goddard/230a95194493806df0b43a0c84c8988b9350896c
https://en.wikipedia.org/wiki/Frank_Harary
https://faculty.math.illinois.edu/~west/igt/

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 232–250

DOI: 10.2478/ausi-2020-0014

Enhanced type inference for binding-time

analysis

Mátyás SZOKOLI
Eötvös Loránd University

Budapest, Hungary
email: vyu4a5@inf.elte.hu

Attila KISS
J. Selye University
Komárno, Slovakia

email: kissae@ujs.sk

Abstract. In this paper we will be taking a look at type inference and its
uses for binding-time analysis, dynamic typing and better error messages.
We will propose a new binding-time analysis algorithm B, which is a
modification of an already existing algorithm by Gomard [4], and discuss
the speed difference.

1 Introduction

Binding-time analysis (BTA) is used to guide partial evaluation, which is an
optimization technique that from an input program produces an output pro-
gram behaving in the same way, with the output having faster run time. We
divide the program into separate parts based on two or more stages. In the case
of two stages these are the static and dynamic parts. The compiler can perform
the static computations in compile time, yielding a more efficient residual pro-
gram. This analysis can be done from multiple angles and approaches: through
abstract interpretation, type inference, temporal logic and type-based search.
One such method developed by Gomard uses the widely-known W type infer-
ence algorithm. We replace this inference algorithm by M. We show that this
modified algorithm is correct, and is faster then using W in many cases.

Computing Classification System 1998: D.1.1, F.4.1, F.3.2, F.3.3
Mathematics Subject Classification 2010: 68N18, 68N15, 03B38
Key words and phrases: type inference, dynamic typing, binding-time analysis, partial
evaluation, functional languages

232

https://www.elte.hu/
https://www.elte.hu/
https://www.elte.hu/
mailto:vyu4a5@inf.elte.hu
https://people.inf.elte.hu/kiss/
https://www.ujs.sk/en
https://www.ujs.sk/en
mailto:kissae@ujs.sk

Type inference for BTA 233

2 Related works

The value of type systems for binding-time analysis was found early, both
Nielson [10] and Gomard [3] formalized it as a type inference problem for the
two-level typed λ-calculus. Algorithm W was already used by both Gomard
and Nielsen for their respective λ-calculus variants. For a detailed look into
types and type systems beyond what is included in this paper, see the works
of Benjamin C. Pierce [15, 16].

Tim Sheard and Nathan Linger introduced a search-based method to per-
form BTA [11], and they implemented it for MetaML. MetaML already had
manual staging annotations, and they integrated automatic BTA to get a
unified system to get the advantages from both manual and automated anno-
tations, as they felt that both ways are beneficial to the programmer. Their
proposal integrates automatic BTA as a part of the language, not an external
tool.

Takuma Murakam et al. also worked with binding-time analysis based on
MetaML [9], but they solved it using the maximum marking problem, and used
the program transformation optimization theorem for maximum marking to
achieve an effective algorithm. This also had the advantage of having a formal
computational complexity and guaranteeing the optimality of the solutions
based on a given weight function. They also allow the user to define their own
weight measurements.

Kenichi Asai introduced binding-time analysis to MetaOCaml [1], a staged
language. He relates the 2-level λ-calculus with staged λ-calculus. The advan-
tage of his approach is that the optimal binding times can be found easier in
the 2-level λ-calculus, avoiding searching or complex constraint solving. This
is in opposition to Sheard and Linger, who also considered multiple stages
and polymorphism. Kenichi Asai thinks it is not clear if his approach supports
these two features.

These works show that even the type-theoretic viewpoint has several sep-
arate solutions. Our contribution concerns the use of classic type inference
algorithms for this purpose.

3 Additional uses of type inference

3.1 Binding-time analysis

Binding-time analysis is used to reason about the availability of the data,
that is, which parts of a program we can evaluate at compile time. Guided

234 M. Szokoli, A. Kiss

by this information, we can produce a residual program, which only contains
computations that cannot be executed at compile time. We will be using the
terms ”dynamic”, ”late-bound” interchangeably.

Binding-time analysis aims to produce a minimal completion - the least
amount of program parts should be dynamic. Different solutions were proposed
for this problem, one of them being the use of type inference and of two-level
expressions.

We can view this analysis as a type inference problem, where we are trying
to produce a completion which satisfies some typing rules.

However, as mentioned, these can be also used for other problems, namely
type checking dynamic types, and providing more comprehensive type errors
in statically typed languages.

3.2 Dynamic typing

We can split functional programming languages into two separate groups, stat-
ically typed ones like Haskell, ML and dynamically typed languages, e. g. Lisp,
Scheme, Clojure and Erlang. In statically typed languages types are known
at compile-time. This means that we don’t need typechecking in the runtime,
which can be a performance bonus. This can also replace some basic tests, as
it narrows down the domain of possible input values. In a rich type system
types can also act as documentation, detailing the computation itself.

On the other hand dynamic languages can offer great flexibility at the cost of
some performance. In the former languages through many so-called typecheck-
ing algorithms we have assurances, that no type errors will arise at runtime.
This analysis can be done in compile time. In dynamically typed languages
we must keep track of types in the runtime, and type errors often only can be
found at runtime. However there exist many separate approaches to provide
as much type safety as we can while keeping dynamic typing.

Staged type inference is run multiple times. One possibility is to separate
dynamic and static parts, and run checks on them in compile time and runtime.

Success typing finds definite type clashes without changing the source lan-
guage fundamentally, and was implemented for Erlang in the popular static
analysis tool Dialyzer [7].

We will present an approach in this paper, which finds all possible sources
of type errors in the program, and underline them. Later, we will discuss ways
we can improve the performance and enrich the languages we can examine,
and other possible uses. Our algorithm, B is based on the one presented by
Gomard [4].

Type inference for BTA 235

4 Overview

These problems are quite similar: we are searching for points where the ex-
pression is not well-formed in regards to some predefined rules. In the former
it means that these conflicting parts cannot be executed at compile time, and
in the latter that we don’t know the types statically.

Viewed from a type-theoretic angle these can be handled as type inference
problems: inferring a completion of a term with annotations so that it is well-
typed in regards to some type rules. Gomard proved that for every term of his
two-level λ-calculus exists a completion that minimizes late binding.

Figures 1 and 2 show such a system. This is almost directly lifted from
Gomard [4], the difference being that we use Λ to mean the type Untyped for
the sake of brevity.

For our purposes we will be using lambda calculus with constants, condi-
tional branching, and an explicit fixpoint-operator. We will be using a Curry-
style type system. There are several implications of this: firstly, we can view
untyped programs as potentially typed programs without annotations, and
the expressions whose types can be inferred as well-typed.

Naturally, this technique can be used with other type systems that have
decidable type inference capabilities. We will be using a modified version of
Algorithm M (M) instead of W. M is also sound and complete, and was
shown to always find type errors earlier than W [6]. We will examine how this
behaviour is affected by the modified type system.

The extended lambda calculus with annotations is defined by the following
production:

e ::=x | λx.e′ | e′@e′′ | if e′ e′′ e′′′ | fix e | constn base−valuen |

x | λx.e′ | e′@e′′ | if e′ e′′ e′′′ | fix e | constn base−valuen

where x ranges over a class of variables, n is a natural number, base−valuen
is member of the set of curried n-ary base functions on first order values. and
fix is a fix-point operator.

Binding time information is represented by types. Our types τ are generated
like so:

τ ::= Baseω | Λ | α | τ ′ −→ω τ
′′

Base is a type constant, it represents concrete static values - values known
at compile-time. Λ stands for values not known at compile-time, or in the
second use case it means an unknown type at compile-time. α denotes the set
of type variables, and τ1 −→ω τ2 is a function type. ω is a sequence describing

236 M. Szokoli, A. Kiss

where the type was inferred in the examined expression. For instance in the
expression (λx.x)@const the right hand side’s type is BaseArg::∗.

ω ::= ∗ | Fun :: ω | Arg :: ω | Body :: ω | FixBody :: ω |
Cond :: ω | Then :: ω | Else :: ω

Γ ` e : τ −→ τ
Γ ` fix e : τ

[FIX1]

Γ ` e1 : Base Γ ` e2 : τ Γ ` e3 : τ
Γ ` if e1 e2 e3 : τ

[IF1]

Γ ` e1 : τ2 −→ τ1 Γ ` e2 : τ2
Γ ` e1 @ e2 : τ1

[APP1]

Γ, x : τ1 ` e : τ2
Γ ` λx.e : τ1 −→ τ2

[ABS1]

Γ(x) = τ

Γ ` x : τ
[VAR1]

Γ ` const : Base [CON1]

Γ ` const1 : Base −→ Base [CONFN1]

Figure 1: Basic expressions

Γ ` e : Λ
Γ ` fix e : Λ

[FIX2]

Γ ` e1 : Λ Γ ` e2 : Λ Γ ` e3 : Λ
Γ ` if e1 e2 e3 : Λ

[IF2]

Γ ` e1 : Λ Γ ` e2 : Λ
Γ ` e1 @ e2 : Λ

[APP2]

Γ, x : Λ ` e : Λ

Γ ` λx.e : Λ
[ABS2]

Γ ` x : Λ [VAR2]

Γ ` const : Λ [CON2]

Γ ` const1 : Λ [CONFN2]

Figure 2: Underlined expressions

Type inference for BTA 237

Binding-time information is represented syntactically: a late-bound/dynamic
operator is different from it’s matching basic version by being underlined. A
λ-term with these annotations is called an annotated λ-term. If a term satisfies
the inference rules in Figures 2 and 1 we also call it ”well-annotated”.

We call an untyped λ-term the erasure of an annotated λ-term e if the
untyped term has no operator and type annotations, but otherwise is identical
to e. A completion of a non-annotated term e with reference to some typing
assumptions A is a well-annotated term w.r.t A with the erasure e.

We can get a trivial completion for every untyped λ-term by underlining all
of the subexpressions. A minimal completion is a completion with the minimal
amount of late-binding operators. Gomard presented a modified W (W) al-
gorithm, and conjectures that using it we can compute minimal completions,
which we will compare to our M algorithm.

We give a possible definition of Gomard’s algorithm (B′). Then we will detail
ours (B).

B′(e,Γ) =

{
B′(U(e, ω),Γ), if W(e,Γ, ∗) = FAIL(ω)

e otherwise

B(e,Γ) =

{
B(U(e, ω),Γ), if M(Γ, e, β, ∗) = FAIL(ω), new β

e otherwise

We provide no definition for the U function, which has the sole purpose
of underlining the operator in the e parameter which is pointed to by the ω
occurrence parameter. Both M and W are extended to support underlined
operators. The M algorithm is detailed in Fig. 4.

To summarize both B and B′: both algorithms run their respective type
inference algorithms first, to check if the e input is well typed w.r.t the Γ type
environment. If the type of e is inferred successfully, then it is finished. If M
or W announce failure, we iterate once more, but with a modified e, which
has the offending operator underlined.

Theorem 1 (Oukseh Lee, Kwangkeun Yi [6]) Let Γ be a type environ-
ment, e an expression and β a new type variable. Then∣∣[[M(Γ, e, β)]]| ≤ |[[W(Γ, e)]]

∣∣
M’s call string is shorter or equal to W’s. Put in other words, the first type

inference algorithm makes fewer or the same amount of recursive calls. We will
see later what this means in practice

238 M. Szokoli, A. Kiss

W is bottom-up, andM is top-down, they process expressions in a different
order. The former infers the type of every subexpression, and then tries to
unify them, while the latter tries to check each subexpression after another
with a constraint, which will be unified at the ”leaf nodes”. This means that
it often catches errors earlier that violate the constraint. The main difference
can be seen with e1 @ e2: it is possible, that a not well-typed subexpression is
typechecked by W before it gets into conflict at the application. In the cases
where the left-hand side of the application is not a valid function,M only has
to examine it, while W has to check both and then unify.

mgu : Type× Type −→ Subst

mgu(Baseω, Baseω′) = nullSubst

mgu(Λ,Λ) = nullSubst

mgu(α, t) = FAIL(ω), if t is l −→ω r and α ∈ ftv(t),

{n 7→ t} otherwise
mgu(t, α) = symmetric to the case above

mgu(l −→ω r, l
′ −→ω′ r

′) = let s1 = mgu(l, l′)

s2 = mgu(s1r, s1r
′)

in s1s2

mgu(t, t′) = FAIL(ω), as one of the types must be Baseω

or l −→ω r

Figure 3: The unification used. t, t′, l, l′, r, r′ ∈ τ are arbitrary types, α is
a type variable.

Type inference for BTA 239

M : TypeEnv × Expr × Type×Occurrence −→ Subst

M(Γ, e1 @ e2, τ, ω) = let s1 =M(Γ, e1, β −→ω τ, Fun ::ω), new β (1.1)

s2 =M(s1 Γ, e2, s1 β,Arg :: ω) (1.2)
in s2 s1

M(Γ, e1 @ e2, τ, ω) = let s1 = mgu(τ,Λ) (2.1)

s2 =M(s1Γ, e1,Λ, Fun :: ω) (2.2)

s3 =M(s2 s1 Γ, e2,Λ, Arg :: ω) (2.3)
in s3 s2 s1

M(Γ, λ.e, τ, ω) = let s1 = mgu(τ, β1 −→ω β2), new β1, β2 (3.1)

s2 =M(s1Γ+x :s1β1, e, s1β2, Body :: ω) (3.2)
in s2 s1

M(Γ, λ.e, τ, ω) = let s1 = mgu(τ,Λ) (4.1)

s2 =M(s1 Γ + x : Λ, e,Λ, Body :: ω) (4.2)
in s2 s1

M(Γ, var n, τ, ω) = mgu(τ,Γ(n))

M(Γ, var n, τ, ω) = mgu(τ,Λ)

M(Γ, const, τ, ω) = mgu(τ,Baseω)

M(Γ, const, τ, ω) = mgu(τ,Λ)

M(Γ, const1, τ, ω) = mgu(τ,Baseω −→ω Baseω)

M(Γ, const1, τ, ω) = mgu(τ,Λ)

M(Γ, if e1 e2 e3, τ, ω) = let s1 =M(Γ, e1, Baseω, Cond :: ω) (11.1)

s2 =M(s1 Γ, e2, s1τ, Then :: ω) (11.2)

s3 =M(s2 s1 Γ, e3, s2 s1τ, Else :: ω) (11.3)
in s3 s2 s1

M(Γ, if e1 e2 e3, τ, ω) = let s1 = mgu(τ,Λ) (12.1)

s2 =M(s1Γ, e1,Λ, Cond :: ω) (12.2)

s3 =M(s2s1 Γ, e2,Λ, Then :: ω) (12.3)

s4 =M(s3s2s1 Γ, e3,Λ, Else :: ω) (12.4)
in s4 s3 s2 s1

M(Γ, fix e, τ, ω) =M(Γ, e, τ −→ω τ, F ixBody :: ω) (13.1)

M(Γ, fix e, τ, ω) = let s1 = mgu(τ,Λ) (14.1)

s2 =M(s1Γ, e,Λ, F ixBody :: ω) (14.2)
in s2 s1

Figure 4: The modified M algorithm

240 M. Szokoli, A. Kiss

5 Proof of correctness

Lemma 2 (Damas and Milner) If S is a substitution and Γ ` e : τ , then
SΓ ` e : Sτ [8]

Lemma 3 (M is sound) Let e be an expression and Γ a type environment.
If there exist a type τ such that M(Γ, e, τ, ∗) = S, then SΓ ` e : Sτ .

This section heavily builds upon the work of Oukseh Lee and Kwangkeun Yi
[6]. The only differences are that we have a new constant type, Λ, and that we
are not using polymorphism in this instance. We will use structural induction
on e.
Proof.

� case const: Sτ = SBaseω = Baseω. So SΓ ` const : Sτ by [CON1].

� case const: Sτ = SΛ = Λ. So SΓ ` const : Sτ by [CON2].

� case const1: Sτ = S(Baseω −→ Baseω′) = Baseω −→ Baseω′ .

So SΓ ` const1 : Sτ by [CONFN1].

� case const1: Sτ = SΛ = Λ. So SΓ ` const1 : Sτ by [CONFN2].

� case x: Sτ = SΓ(x). So SΓ ` x : Sτ by [VAR1].

� case x: Sτ = SΛ = Λ. So SΓ ` x : Sτ by [VAR2].

� case λx.e:

1. By induction, (3.2) implies

S2S1Γ + x : S2S1β1 ` e : S2S1β2.

2. By [ABS1] S2S1Γ ` λx.e : S2S1β1 −→ S2S1β2; which is, by (3.1)

S2S1Γ ` λx.e : S2S1τ.

� case λx.e:

1. By induction, (4.2) implies

S2S1Γ + x : S2Λ ` e : S2Λ. So S2S1Γ + x : Λ ` e : Λ.

Type inference for BTA 241

2. By [ABS2] S2S1Γ ` λx.e : S2S1Λ; which is, by (4.1)

S2S1Γ ` λx.e : S2S1τ.

� case e1@e2:

1. By induction, (1.1) implies S1Γ ` e1 : S1(β −→ τ). By Lemma 2, we
can apply S2 to both sides.

S2S1Γ ` e1 : S2S1β −→ S2S1τ

2. By induction, (1.2) implies

S2S1Γ ` e2 : S2S1β.

3. By [APP1],
S2S1Γ ` e1@e2 : S2S1τ.

� case e1@e2:

1. By induction, (2.2) implies S2S1Γ ` e1 : S2S1Λ. By Lemma 2, we
can apply S3 to both sides.

S3S2S1Γ ` e1 : S3S2S1Λ. So S3S2S1Γ ` e1 : Λ.

2. By induction, (2.3) implies

S3S2S1Γ ` e2 : S3Λ. So S3S2S1Γ ` e2 : Λ.

3. By [APP2] S3S2S1Γ ` e1@e2 : Λ. So S3S2S1Γ ` e1@e2 : S3S2S1Λ.
That is, by (2.1),

S3S2S1Γ ` e1@e2 : S3S2S1τ.

� case if e1 e2 e3:

1. By induction, (11.1) implies S1Γ ` e1 : S1Base. By Lemma 2, we
can apply S2 and S3 to both sides:

S3S2S1Γ ` e1 : S3S2S1Base.

2. By induction, (11.2) implies S2S1Γ ` e2 : S2S1τ . By Lemma 2, we
can apply s3 to both sides:

S3S2S1Γ ` e2 : S3S2S1τ.

242 M. Szokoli, A. Kiss

3. By induction, (11.3) implies

S3S2S1Γ ` e3 : S3S2S1τ.

4. By [IF1],

S3S2S1Γ ` if e1 e2 e3 : S3S2S1τ

� case if e1 e2 e3:

1. By induction, (12.2) implies S2S1Γ ` e1 : S2Λ. By Lemma 2, we
can apply S3 and S4 to both sides:

S4S3S2S1Γ ` e1 : S4S3S1Λ. So S4S3S2S1Γ ` e1 : Λ.

2. By induction, (12.3) implies S3S2S1Γ ` e2 : S3Λ. By Lemma 2, we
can apply S4 to both sides:

S4S3S2S1Γ ` e2 : S4S3Λ. So S4S3S2S1Γ ` e2 : Λ.

3. By induction, (12.4) implies

S4S3S2S1Γ ` e3 : S4Λ. So S4S3S2S1Γ ` e3 : Λ.

4. By [IF2] S4S3S2S1Γ ` if e1 e2 e3 : Λ. So S4S3S2S1Γ ` if e1 e2 e3 :
S4S3S2S1Λ, that is, by (12.1)

S4S3S2S1Γ ` if e1 e2 e3 : S4S3S2S1τ

� case fix e:

1. By induction, (13.1) implies S1Γ ` e : S1(τ −→ τ), which is by
definition

S1Γ ` e : S1τ −→ S1τ.

2. By [FIX1],

S1Γ ` fix e : S1τ.

� case fix e:

1. By induction, (14.2) implies

S2S1Γ ` e : S2Λ. So S2S1Γ ` e : Λ.

Type inference for BTA 243

2. By [FIX2] S2S1Γ ` fix e : Λ. So S2S1Γ ` fix e : S2S1Λ, that is, by
(14.1)

S2S1Γ ` fix e : S2S1τ.

�

Lemma 4 No operator is underlined twice.

Proof. To be subject to underlining, an operator has to have their occurrence
in the exception raised by the mgu algorithm. This can only happen if the
occurrence is in one ofmgu’s parameters. There are two ways some o operator’s
occurrence can be one of the the parameters of an mgu call:

� This can happen directly if we call mgu with o’s occurence when o is
processed (see const).

� If we make a recursive call to M, where the type parameter has o’s
occurrence (see 1.1), which is unified later.

If we take a look atM’s branches where the expression parameter is under-
lined, we can see that neither of these conditions are met. �

Theorem 5 (The B algorithm is correct) Let e be some starting lambda
expression and Γ a starting type environment. B(e,Γ) completes in finite steps,
and for the expression e′, where B(e,Γ) = e′:

� There exist some τ type and S substitution, such that SΓ ` e′ : Sp.

� e is the erasure of e′.

Proof. Let n(e) ∈ N be the number of underlined operators in e, and s(e) ∈ N
be the total number of operators in the expression in e, underlined or otherwise.
It is trivial, that for every e λ-term n(e) ≤ s(e). On each recursive step, based
upon M’s result either:

� M(Γ, e, τ, ∗) = FAIL(ω) for some new τ . We underline the indicated
operator, e′ = U(e, ω). Because of Lemma 4 we can say that this is a
new underlining, so n(e′) = n(e) + 1. We continue the recursion with e′.

� IfM(Γ, e, τ, ∗) = S, then according to Lemma 3 we get SΓ ` e : Sp. This
means that the expression e in the environment Γ is well typed w.r.t.
the type inference system presented in figures 1 and 2, so e is correctly
annotated.

244 M. Szokoli, A. Kiss

If follows, that if B stops, the first case is true, so we have the correct output.
This means that the only way B be incorrect, is if it doesn’t halt. But because
n(e) grows by one between each recursive call, we must reach the state where
n(e) = s(e). If M(Γ, e, τ, ∗) = FAIL(ω), then we must underline a new non-
underlined operator, but because n(e) = s(e), there is no operator that is
lined.

We defined U as a function that only underlines operators. Between every
recursion we modify the expression in no other way, meaning that the output
expression’s erasure is the initial input expression. �

6 Examples

In this section we will be taking a look at a few examples, and how our algo-
rithm’s behaviour differs from that of Gomard’s.

6.1 Simple expression

@

const const

Let us examine the expression const@ const,
where const-s are some arbitrary con-
stants. The current analysis doesn’t dif-
ferentiate between constant types, so
this could consist of any two expressions
with such types like Int, Bool.W infers
the type of the left-hand side, then the right-hand side, then fails at unification:

tleft = tright −→ T

(where T is a new type variable), because tleft and tright are both Base. In
case of a unification failure, the occurrence of one of the types is sent, which
in our implementation’s case is that of the left. We can see that on each round
we must check both subexpressions.
M however finds this problem one step earlier. According to the algorithm

above, it checks if the left subexpression has a function type, and here it fails,
because the type found is Baseω and fails with the same occurrence as earlier.

After underlining the expression we try again. We fail at the same place,
but this time it is with the constraint

Λ = τ −→ T

We have the occurrence of the equation’s right side as error message. The
selector in question is empty, because the application is the root of the whole

Type inference for BTA 245

expression. This means that we will underline the application. Upon restarting,
we branch again at the underlined application. This time left-hand side checks
out, because we both expect and get Λ. There is conflict on the right however:
we expect Λ, but have Base. The second const gets underlined, then we restart
the algorithm again, which is finally successful.

6.2 Y combinator

λh

@

λx

@

h @ 1.

x x

λx 3.

@

h @ 2.

x x

For this second example we will take a
look at the Y combinator. This fixpoint-
combinator is not well-typed, so we will
need to underline the problem areas to
conform to the type rules. We have num-
bered these in the figure for an easier un-
derstanding. The numbering is accord-
ing to the order in which W finds them.
Both algorithms find 1. first. Here M
examines the same number of subex-
pressions, we don’t gain any advantage
at the application. This is because the
left-hand side’s type is a type variable
that hasn’t had any constraints or sub-
stitutions placed upon it, so it can be
unified with a function type. 1 Conflict only arises after visiting the other side
with

T = τ −→ T

The rest of the errors are found earlier. In these two cases the different ways
of inferring application types do come in to play. To summarize, the main
cause of difference is that at applications W has to infer both children, while
in some cases M can do it by only one.

7 Implementation and random testing

Random testing compiler optimizations have become more common practice
in the last decades as computing power grew and the necessary frameworks
and algorithms were established. We will be using the package QuickCheck [2]

1This is why λx.x@x takes the same number of visited nodes despite being similar to the
first example.

246 M. Szokoli, A. Kiss

Figure 5: Number of recursive calls for a set expression size

with a random expression generator to test the two approaches discussed in
this paper.

The size of an expression e is:

size(e) =


1, if e ≡ x
1 + size(f) + size(g), if e ≡ (f@g)

1 + size(f), if e ≡ (λx.f)

We will generate random untyped lambda expressions and calculate the
total number recursive calls made by the inference algorithms depending on
the size of the input. We will be using and algorithm developed by Jue Wang
[12]. This algorithm generates random λ-terms of a given size, assuming a
uniform distribution over all terms of a given size.

These calculations will be run with empty starting type environments. For
each size we will generate a hundred expressions, and take the average of the
visited nodes/recursive steps made by the algorithms.

Type inference for BTA 247

We can see that the numbers of recursive calls are super linear in both cases
but there is a noticeable difference in the multiplier. This data corresponds
only to the number of recursive calls made by M and W. It is important to
keep in mind that this doesn’t take the cost of unification into consideration.
This is why we have also included the time spent by both algorithms in the
following figure.

Mean execution time

Size B B′
100 1.09 ms 1.91 ms
250 3.93 ms 6.84 ms
500 88.4 ms 113 ms
1000 1.10 s 1.58 s

Both B and B′ were implemented in Haskell. The unification algorithm and
the definitions describing the type system and the expressions are common
between the two algorithms. The code for generating λ-terms is also available.2

To facilitate exception throwing and the calls for new type variables, we used
a monad stack in the type inference algorithms.

type TyVar = Int

data Type = TBase [Occurrence]
| TArrow Type Type [Occurrence]
| TVar TyVar
| TUntyped

type TI a = ExceptT [Occurrence] (State TyVar) a

The core types and definitions are located in Common, B and B′ are found
in AlgoM and AlgoW respectively. A basic parser is provided in Parser for
interactive testing. Testing includes the functions and generators used for
random testing.

8 Conclusion

Binding time analysis and partial evaluation are well-researched fields. Possible
advances can only mostly be done to better efficiency and support a wider

2Link to publicly available repository: https://github.com/szokolimatyas/Type-Inference-
for-BTA

https://github.com/szokolimatyas/Type-Inference-for-BTA
https://github.com/szokolimatyas/Type-Inference-for-BTA

248 M. Szokoli, A. Kiss

range of language features. This paper proposes some modest improvements
to an existing algorithm without great changes. These improvements speed
up the algorithm, but not by orders of magnitude, still having a super-linear
complexity.

It is not possible to achieve linearity for these types of ”restarting” inference
algorithms, as in the worst case - which means every operator needs to be
underlined - for an expression with a size s the complexity is s∗θ(k). One run of
the algorithm tries to find the next operator that needs to be underlined, which
(θ(k)) is almost linear in practice. If we used the Hindley-Milner type system,
the inference algorithm would mostly have a polynomial complexity. However,
there are some pathological cases where it is non-linear [14]. Intuitively, we
run the algorithm s times, with the time complexity proportional to s each
time.

It would be remiss if we did not mention the work of Henglein [5], who
took a more constraint-oriented approach based on Gomard, proposing a near
linear time solution to binding time analysis.

There are some more efficient algorithms provided for BTA as mentioned
in the related works, but this direction still can be more thoroughly explored.
Neither was the use of type inference for detecting type conflicts in untyped
programs deeply examined formerly.

We feel that this algorithm has legitimacy, because it can be applied to
a wide range of problems, promises good prospects for further advancement,
and is easily derived from existing approaches, providing an easy to understand
solution to binding time analysis and analyzing dynamically typed programs.

9 Future work

Type inference algorithms have been developed in more descriptive type sys-
tems and we think that the same type of modifications could also be ap-
plied there to produce similar results. Namely, the two algorithms described
in this paper can also be used in the Hindley-Milner system, even with let-
polymorphism. One hindrance is that in some cases inference is not decidable
[13]. This can cause problems if we wanted to use it for better error messages
in statically typed languages. Binding time analysis, however, could fare bet-
ter, as we don’t differentiate between type constants, so we could avoid some
of the ambiguity.

Type inference for BTA 249

We have not implemented the proposed changes by Gomard: the addition
of lifting and reporting more than one occurrences is possible avenue for im-
provement. It is also trivial to change M to support let-polymorphism.

Acknowledgements

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] K. Asai, Toward introducing binding-time analysis to MetaOCaml, Proceedings
of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Ma-
nipulation, St. Petersburg, FL, USA, 2016, pp. 97-102. ⇒233

[2] K. Claessen, J. Hughes, Quickcheck: A lightweight tool for random testing of
Haskell programs, SIGPLAN 35, 9 (2000) 268—279. ⇒245

[3] C. Gomard, N. Jones, A partial evaluator for the untyped lambda calculus,
Journal of Functional Programming 1, 1 (1991) 21–69. ⇒233

[4] C. K. Gomard, Partial type inference for untyped functional programs, Proceed-
ings of the 1990 ACM Conference on LISP and Functional Programming, Nice,
France, 1990, pp. 282–287. ⇒232, 234, 235

[5] F. Henglein, Efficient type inference for higher-order binding-time analysis, Con-
ference on Functional Programming Languages and Computer Architecture, Lec-
ture Notes in Computer Science 523 (1991) 448—472. ⇒248

[6] O. Lee, K. Yi, Proofs about a folklore let-polymorphic type inference algorithm,
ACM Trans. Program. Lang. Syst., 20, 4 (1998) 707—723. ⇒235, 237, 240

[7] T. Lindahl, K. Sagonas, Practical Type Inference Based on Success Typings,
Proc. 8th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, Venice, Italy, 2006, pp. 167–178. ⇒234

[8] R. Milner, L. Damas, Principal type-scheme for functional programs, Proc. 9th
ACM Symposium on Principles of Programming Languages New York, USA,
1982, pp. 207–212. ⇒240

[9] T. Murakami, Z. Hu, K. Kakehi, M. Takeichi, An efficient staging algorithm for
binding-time analysis, International Symposium on Logic-Based Program Syn-
thesis and Transformation, Lecture Notes in Computer Science 3018 (2003) pp.
106-107. ⇒233

[10] H. R. Nielson, F. Nielson, Automatic binding time analysis for a typed lambda-
calculus (extended abstract), Proc. 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages San Diego, California, USA, 1988, pp.
98–106. ⇒233

https://dl.acm.org/sig/sigplan
https://www.cambridge.org/core/journals/journal-of-functional-programming
https://www.springer.com/series/558
https://dl.acm.org/journal/toplas
https://www.springer.com/series/558

250 M. Szokoli, A. Kiss

[11] T. Sheard, N. Linger, Search-based binding time analysis using type-directed
pruning, Proceedings of the ASIAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, Aizu, Japan, 2002, pp. 20-–31. ⇒233

[12] J. Wang, Generating random lambda calculus terms, Semantic Scholar, 2005.
https://www.semanticscholar.org ⇒246

[13] J. B. Wells, Typability and type checking in system F are equivalent and unde-
cidable, Annals of Pure and Applied Logic, 98, 1 (1999) 111 – 156. ⇒248

[14] H. G. Mairson, Deciding ML typability is complete for deterministic exponential
time, Proc. 17th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, New York, NY, United States, 1989, pp. 382-401. ⇒248

[15] B. C. Pierce, Advanced Topics in Types and Programming Languages, MIT Press,
Cambridge, MA, 2004. ⇒233

[16] B. C. Pierce, Types and Programming Languages, MIT Press, Cambridge, MA,
2002. ⇒233

Received: June 9, 2020 • Revised: October 12, 2020

https://pdfs.semanticscholar.org/34b8/c2a17ae46416e11e2ccfba4a7b602225ae25.pdf
https://www.journals.elsevier.com/annals-of-pure-and-applied-logic
https://mitpress.mit.edu/
https://mitpress.mit.edu/

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 251–259

DOI: 10.2478/ausi-2020-0015

On degree sets in k-partite graphs

T. A. Naikoo
Islamia College of Science and

Commerce, Srinagar, India
email: tariqnaikoo@rediffmail.com

U. Samee
Institute of Technology, University of

Kashmir, Srinagar, India
email: drumatulsamee@gmail.com

S. Pirzada
University of Kashmir, Srinagar, India

email:
pirzadasd@kashmiruniversity.ac.in

Bilal A. Rather
Department of Mathematics, University

of Kashmir, India
email: bilalahmadrr@gmail.com

Abstract. The degree set of a k-partite graph is the set of distinct de-
grees of its vertices. We prove that every set of non-negative integers is
a degree set of some k-partite graph.

1 Introduction

In a graph G, the degree of a vertex vi, denoted by dvi (or simply di), is the
number of edges which are incident on vi. A sequence of non-negative integers
[d1, d2, . . . , dp] is called the degree sequence of a graph G if the vertices of G
can be labelled v1, v2, . . . , vp such that deg vi = di for each i, 1 ≤ i ≤ p. The
terminology and notations used in this paper are same as in [6, 25].

The set of distinct degrees of the vertices of a graph is called its degree set.
The following result can be found in [8].

Theorem 1 [8] Any set D of distinct positive integers is the degree set of a
connected graph and the maximum order of such a graph is M + 1, where M

is the maximum integer in the set D.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C20
Key words and phrases: bipartite graph, k-partite graph, degree, degree set

251

http://www.http://www.islamiacollege.edu.in/
http://www.http://www.islamiacollege.edu.in/
mailto:tariqnaikoo@rediffmail.com
http://iot.uok.edu.in/Main/Default.aspx
http://iot.uok.edu.in/Main/Default.aspx
mailto:drumatulsamee@gmail.com
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.kashmiruniversity.net/
mailto:pirzadasd@kashmiruniversity.ac.in
http://www.kashmiruniversity.net/
http://www.kashmiruniversity.net/
mailto:bilalahmadrr@gmail.com

252 T. A. Naikoo, U. Samee, S. Pirzada, B. A. Rather

More on degree sets in graphs can be seen in [1, 2, 3, 4, 5, 9, 10, 11, 12, 13,
14, 15, 29, 30, 31]. Analogous results in directed graphs and signed graphs can
be found in [17, 18, 19, 20, 21, 22, 23, 24, 26, 27].

2 Degree sets in k-partite graphs

A k-partite graph (k ≥ 2) is a graph G whose vertex set can be partitioned
into k nonempty disjoint sets V1, V2, . . . , Vk, known as partite sets, such that
vivj is an edge of G if vi is in some Vi and vj is in some Vj (i 6= j). A k-
partite graph with partite sets V1, V2, . . . , Vk is denoted by G(V1, V2, . . . , Vk).
For k = 2 and K = 3 we get respectively bipartite graph and 3-partite graph.
Also, a k-partite graph G(V1, V2, . . . , Vk) is said to be connected if each ver-
tex vi ∈ Vi is connected to every vertex vj ∈ Vj (i 6= j). The degree of a
vertex vi in a k-partite graph G(V1, V2, . . . , Vk) is the number of edges of
G(V1, V2, . . . , Vk) which are incident to vi and is denoted by dvi or di. Let
G(V1, V2, . . . , Vk) be a k-partite graph with Vi = {vi1, vi2, . . . , vipi}, 1 ≤ i ≤ k

and let di1, di2, . . . , dipi be the respective degrees of vi1, vi2, . . . , vipi . Then the
sequence Di = [di1, di2, . . . , dipi], 1 ≤ i ≤ k, are called degree sequences of
G(V1, V2, . . . , Vk).

The set of distinct degrees of the vertices of a k-partite graph G(V1,V2,. . . , Vk)
is called its degree set.

The following result is given in [16].

Theorem 2 [16] Every set of positive integers is a degree set of some con-
nected bipartite graph.

The following result can be seen in [7].

Theorem 3 [7] Every set of positive integers, except {1} is a degree set of
some connected 3-partite graph.

Now, we have the following observation.

Theorem 4 Every singleton set of positive integers is a degree set of some
k-partite graph.

Proof. Let D = {d}, where d is a positive integer. For d = 1, construct a
k-partite graph G(V1, V2, . . . , Vk) as follows

On degree sets in k-partite graphs 253

V1 = A11 ∪A12 ∪ · · · ∪A1(k−2) ∪A1(k−1),

V2 = A21,

V3 = A31,

...

Vk−1 = A(k−1)1,

Vk = Ak1,

with A1p∩A1q = ∅ (p 6= q), |Aij| = 1 for all i, j where 1 ≤ i ≤ k, 1 ≤ j ≤ k−1.

Let there be an edge from the vertex of A1(i−1) to the vertex of Ai1. Then the
degrees of the vertices of G(V1, V2, . . . , Vk) are as follow.

For 2 ≤ i ≤ k

da1(i−1)
= dai−1

= |A1(i−1)| = 1 = d, for all a1(i−1) ∈ A1(i−1), ai1 ∈ Ai1.

Therefore, degree set of G(V1, V2, . . . , Vk) is D = {d}.
Now we assume that d ≥ 2. For k = 2, consider the bipartite graph G(V1, V2)

with |V1| = |V2| = d and let there be an edge from each vertex of V1 to every
vertex of V2. Then the degrees of the vertices of G(V1, V2) are as follows.

dv1 = dv2 = |V1| = d, for all v1 ∈ V1, v2 ∈ V2.

Therefore, degrees set of G(V1, V2) is D = {d}.

If k ≥ 3 is odd, say k = 2m + 1 where m ≥ 1, construct a 2m + 1-partite
graph G(V1, V2, . . . , V2m+1) as follows.

Let V1 = A1, V2 = A2 ∪ B2, V3 = A3, . . . , V2m = A2m, V2m+1 = A2m+1

with |Ai| = |B2| = d − 1 for all i, 1 ≤ i ≤ 2m + 1, A2 ∩ B2 = ∅. Let there
be an edge (i) from each vertex of Ai to every vertex of Ai+1 for all odd
i, (ii) from distinct vertices of Ai to distinct vertices of Ai+1 for all even i,

(iii) from distinct vertices of A1 to distinct vertices of B2, and (iv) from each
vertex of A2m+1 to every vertex of B2. Then the degrees of the vertices of
G(V1, V2, . . . , V2m+1) are as follows.

For 1 ≤ i ≤ 2m+ 1

dai
= db2 = |Ai|+ 1 = d− 1+ 1 = d for all ai ∈ Ai and b2 ∈ B2.

Therefore, degree set of G(V1, V2, . . . , V2m+1) is {d}.
Again, if k ≥ 4 is even, say k = 2m + 2 where m ≥ 1, consider a 2m + 2-

partite graph G(V1, V2, . . . , V2m+2) with |Vi| = d− 1 for all i, 1 ≤ i ≤ 2m+ 2.

254 T. A. Naikoo, U. Samee, S. Pirzada, B. A. Rather

Let there be an edge (i) from each vertex of Vi to every vertex of Vi+1 for all
odd i, (ii) from distinct vertices of Vi to distinct vertices of Vi+1 for all odd
i, and (iii) from distinct vertices of V1 to distinct vertices of V2m+2. Then the
degrees of the vertices of G(V1, V2, . . . , V2m+2) are as follows

For, 1 ≤ i ≤ 2m+ 2,

dvi = |Vi|+ 1 = d− 1+ 1 = d, for all vi ∈ Vi.

Therefore, degree set of G(V1, V2, . . . , V2m+2) is D = {d}. �

Except for d = 1 and k ≥ 3 in the proof of Theorem 4, the construction
there yields a connected k-partite graph and we have the following result.

Corollary 5 Every singleton set of positive integers is a degree set of some
connected k-partite graph, except {1} for k ≥ 3 in which case the k-partite
graph is not connected.

Now, we obtain the following result.

Theorem 6 Every set of positive integers is a degree set of some connected
k-partite graph, except {1} for k ≥ 3 in which case the k-partite graph is not
connected.

Proof. Let d1, d2, . . . , dn be positive integers. We will show that there is a con-

nected k-partite graph G(V1,V2,. . . ,Vk) with degree set D=
{
d1,

2∑
i=1

di, . . . ,
n∑
i=1

di

}
,

except when d = 1 and k ≥ 3 in which case the k-partite graph is not con-
nected.

The case k = 2 and k = 3 are respectively given in Theorem 2 and Theorem
3. Also the case k = 1 follows by Corollary 5. So, we assume k ≥ 4 and n ≥ 2.

For k = 4, construct a 4-partite graph G(V1, V2, V3, V4) as follows. Let

V1 = A11 ∪A12 ∪A13 ∪ · · · ∪A1(n−1) ∪A1n,

V2 = A21 ∪A22 ∪A23 ∪ · · · ∪A2(n−1),

V3 = A31 ∪A32 ∪A33 ∪ · · · ∪A3(n−1) ∪A3n,

V4 = A41 ∪A42 ∪A43 ∪ · · · ∪A4(n−1) ∪A4n,

with A1p ∩ A1q = ∅, A2p ∩ A2q = ∅, A3p ∩ A3q = ∅ , A4p ∩ A4q = ∅ (p 6=
q), |A1j| = dj for all j, 1 ≤ j ≤ n, |A2j| = d1 + d2 + · · · + dj for all j, 1 ≤ j ≤
n − 1, |A3j| = dj for all j, 1 ≤ j ≤ n, |A41| = d2, |A4j| = d1 + d2 + · · · + dj−1

for all j, 2 ≤ j ≤ n. Let there be an edge (i) from each vertex of A1j to every

On degree sets in k-partite graphs 255

vertex of A3r whenever j ≥ r, (ii) from each vertex of A11 to every vertex of
A41, (iii) from each vertex of A2j to every vertex of A3(j+1), and (iv) from
each vertex of A2j to every vertex of A4(j+1). Then, the degrees of the vertices
of G(V1, V2, V3, V4) are as follows.

da11
= |A31|+ |A41| = d1 + d2, for all a11 ∈ A11,

for 2 ≤ j ≤ n, da1j
=

j∑
r=1

|A3r| =

j∑
r=1

dr, for all a1j ∈ A1j,

for 1 ≤ j ≤ n− 1, da2j
= |A3(j+1)|+ |A4(j+1)| = dj+1 + d1 + · · ·+ dj =

j+1∑
r=1

dr,

for all a2j ∈ A2j,

da31
=

n∑
r=1

|A1r| =

n∑
r=1

dr, for all a31 ∈ A31,

for 2 ≤ j ≤ n, da3j
=

n∑
r=j

|A1r|+ |A2(j−1)| =

n∑
r=j

dr + d1 + · · ·+ dj−1 =

n∑
r=1

dr,

for all a3j ∈ A3j,

da41
= |A11| = d1, for all a41 ∈ A41,

for 2 ≤ j ≤ n, da4j
= |A2(j−1)| = d1+d2+ · · ·+dj−1 =

j−1∑
r=1

dr, for all a4j ∈ A4j.

Therefore, degree set of G(V1, V2, V3, V4) is D = {d1,
2∑

i=1

di, . . . ,
n∑
i=1

di}.

If k ≥ 5 is odd say k = 2m + 3 where m ≥ 1, construct a 2m + 3-partite
graph G(V1, V2, . . . , V2m+3) as follows.

Let

V1 = A11 ∪A12 ∪A13 ∪ · · · ∪A1(n−1) ∪A1n,

V2 = A21 ∪A22 ∪A23 ∪ · · · ∪A2(n−1),

V3 = A31 ∪A32 ∪A33 ∪ · · · ∪A3(n−1) ∪A3n,

V4 = A41 ∪ B42 ∪A42 ∪A43 ∪ · · · ∪A4(n−1) ∪A4n,

V5 = A51 ∪ B52,

V6 = A61 ∪ B62,

...

V2m+2 = A(2m+2)1 ∪ B(2m+2)2,

V2m+3 = A(2m+3)1 ∪ B(2m+3)2,

256 T. A. Naikoo, U. Samee, S. Pirzada, B. A. Rather

with A1p ∩ A1q = ∅, A2p ∩ A2q = ∅, A3p ∩ A3q = ∅, A4p ∩ A4q = ∅, (p 6=
q), A4p∩B42 = ∅, Ap1∩Bp2 = ∅, |A1j| = dj for all j, 1 ≤ j ≤ n, |A2j| = d1+d2+
· · ·+dj for all j, 1 ≤ j ≤ n−1, |A3j| = dj for all j, 1 ≤ j ≤ n, |Ai1| = d2, for all
i, 4 ≤ i ≤ 2m+3, |Bi2| = d1 for all i, 4 ≤ i ≤ 2m+3, |A4j| = d1+d2+· · ·+dj−1

for all j, 2 ≤ j ≤ n. Let there be an edge (i) from each vertex of A1j to every
vertex of A3r whenever j ≥ r, (ii) from each vertex of A11 to every vertex of
A41, (iii) from each vertex of A2j to every vertex of A3(j+1), (iv) from each
vertex of A2j to every vertex of A4(j+1), (v) from each vertex of Ai1 to every
vertex of A(i+1)1 for all even i ≥ 4, (vi) from each vertex of Bi2 to every vertex
of B(i+1)2 for all even i ≥ 4, and vii from each vertex of Bi2 to every vertex of
A(i+1)1 for all i ≥ 4. Then the degrees of the vertices of G(V1, V2, . . . , V2m+3)
are as follows.

da11
= |A31|+ |A41| = d1 + d2, for all a11 ∈ A11,

for 2 ≤ j ≤ n, da1j
=

j∑
r=1

|A3r| =

j∑
r=1

dr, for all a1j ∈ A1j,

for 1 ≤ j ≤ n− 1, da2j
= |A3(j+1)|+ |A4(j+1)| = dj+1 + d1 + · · ·+ dj =

j+1∑
r=1

dr,

for all a2j ∈ A2j,

da31
=

n∑
r=1

|A1r| =

n∑
r=1

dr, for all a31 ∈ A31,

for 2 ≤ j ≤ n, da3j
=

n∑
r=j

|A1r|+ |A2(j−1)| =

n∑
r=j

dr + d1 + · · ·+ dj−1 =

n∑
r=1

dr,

for all a3j ∈ A3j,

da41
= |A11|+ |A51| = d1 + d2, for all a41 ∈ A41,

for 2 ≤ j ≤ n, da4j
= |A2(j−1)| = d1+d2+ · · ·+dj−1 =

j−1∑
r=1

dr, for all a4j ∈ A4j,

for even 4 ≤ i ≤ 2m+2, dbi2 = |A(i+1)1|+|B(i+1)2| = d2+d1 = d1+d2,

for all bi2 ∈ Bi2,

for odd 5 ≤ i ≤ 2m+ 1, dbi2 = |B(i−1)2|+ |A(i+1)1| = d1 + d2, for all bi2 ∈ Bi2,

db(2m+3)2
= |B(2m+2)2| = d1, for all b(2m+3)2 ∈ B(2m+3)2,

for odd 5 ≤ i ≤ 2m+3, dai1
= |A(i−1)2|+|B(i−1)2| = d2+d1 = d1+d2,

for all ai1 ∈ Ai1,

On degree sets in k-partite graphs 257

for even 6 ≤ i ≤ 2m+2, dai1
= |A(i+1)1|+|B(i−1)2| = d2+d1 = d1+d2,

for all ai1 ∈ Ai1.

Therefore, degree set of G(V1, V2, . . . , V2m+3) is D = {d1,
2∑

i=1

di, . . . ,
n∑
i=1

di}.

Now, assume k ≥ 6 is even, say k = 2m + 4 where m ≥ 1. We add
a new partition set V2m+4 to the above constructed 2m + 3-partite graph
G(V1, V2, . . . , V2m+3) with |V2m+4| = d2 and let there be an edge from each
vertex of V2m+4 to every vertex of B(2m+3)2 so that we obtain a 2m+ 4-partite
graph G(V1,V2,. . . ,V2m+3,V2m+4). It is clear that in G(V1, V2, . . . , V2m+3, V2m+4)
the degrees of all the vertices from the partite sets V1, V2, . . . , V2m+3 remain
unchanged except the vertices in B(2m+3)2 (of V2m+3) whose degrees are in-
creased to d1+d2 and the degree of each vertex in V2m+4 is d1. Therefore, the

degree set of G(V1, V2, . . . , V2m+3, V2m+4) is D = {d1,
2∑

i=1

di, . . . ,
n∑
i=1

di}.

We note that in above construction, all the k−partite graphs are connected
except when d1 = 1 and k ≥ 3. �

Finally, we have the following result.

Theorem 7 Every set of non-negative integers is a degree set of some k-
partite graph.

Proof. Let d1, d2, . . . , dn be non-negative integers with d2, d3, . . . , dn > 0.

We will show there is a k-partite graph G(V1, V2, . . . , Vk) with the degree set

D = {d1,
2∑

i=1

di, . . . ,
n∑
i=1

di}.

First assume that d1 = 0. For n = 1, consider a null k-partite graph
G(V1, V2, . . . , Vk) with |Vi| = 1 for all i, 1 ≤ i ≤ k. Then for 1 ≤ i ≤ k, dvi =
0 = d1, for all vi ∈ Vi. Therefore, degree set of G(V1, V2, . . . , Vk) is D = {d1}.

Now let n > 1. Since d2, d3, . . . , dn are positive integers, therefore by Theo-
rem 6, there exists a k-partite graph G(W1,W2, . . . ,Wk) with degree set D1 =

{d2,
3∑

i=2

di, . . . ,
n∑
i=2

di}. We construct another k-partite graph G(V1, V2, . . . , Vk)

as follows.
Let V1=W1∪ {v}, V2=W2, . . . , Vk=Wk. Then the degree of the vertex v

is zero, that is, dv=0=d1 and the degrees of all the vertices of the parti-
tion set W1,W2, . . . ,Wk remain unchanged in G(V1, V2, . . . , Vk). Therefore

G(V1,V2, . . . ,Vk) is a k-partite graph with degree set D=
{
d1,

2∑
i=1

di, . . . ,
n∑
i=1

di

}
.

258 T. A. Naikoo, U. Samee, S. Pirzada, B. A. Rather

Now assume that d1 > 0. Then d1, d2, . . . , dn are the positive integers and
therefore by Theorem 6, there exists a k-partite graph G(V1, V2, . . . , Vk) with

degree set D = {d1,
2∑

i=1

di, . . . ,
n∑
i=1

di}. �

References

[1] T. S. Ahuja, A. Tripathi, On the order of a graph with a given degree set. J.
Comb. Math. Comb. Comput., 57 (2006) 157–162. ⇒252

[2] G. Chartrand, R. J. Gould, S. F. Kapoor, Graphs with prescribed degree sets
and girth, Periodica Math. Hung., 12, 4 (1981) 261–266. ⇒252

[3] A. A. Chernyak, Minimal graphs with a given degree set and girth (Russian),
Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1988, 2 21–25, 123. ⇒252

[4] F. Harary, E. Harzheim, The degree sets of connected infinite graphs. Fund.
Math., 118, 3 (1983) 233–236. ⇒252

[5] A. Iványi, J. Elek, Degree sets of tournaments, Studia Univ. Babeş-Bolyai, In-
formatica, 59 (2014) 150–164. ⇒252

[6] F. Harary, Graph Theory, Reading, MA, Addison-Wesley (1969). ⇒251
[7] A. Iványi, S. Pirzada and F. A. Dar, Tripartite graphs with given degree set,

Acta Univ. Sap. Informatica, 7, 1 (2015) 72–106. ⇒252
[8] S. F. Kapoor, A. D. Polimeni, C. E. Wall, Degree sets for graphs, Fund. Math.,

95, 3 (1977) 189–194. ⇒251
[9] S. Koukichi and H. Katsuhiro, Some remarks on degree sets for graphs, Rep.

Fac. Sci. Kogoshima Univ., 32 (1999) 9–14. ⇒252
[10] Y. Manoussakis, H. P. Patil, V. Shankar, Further results on degree sets for

graphs, AKCE J. Graphs Combin., 1, 2 (2004) 77–82. ⇒252
[11] Y. Manoussakis, H. P. Patil, Bipartite graphs and their degree sets, Electron.

Notes on Discrete Math., (Proceedings of the R. C. Bose Centenary Symposium
on Discrete Mathematics and Applications,) 15 (2003) 125–125. ⇒252

[12] Y. Manoussakis, H. P. Patil, On degree sets and the minimum orders in bipartite
graphs, Discussiones Math. Graph Theory, 34, 2 (2014) 383–390. ⇒252

[13] C. M. Mynhardt, Degree sets of degree uniform graphs, Graphs Comb., 1 (1985)
183–190. ⇒252

[14] S. Osawa, Y. Sabata, Degree sequences related to degree sets, Kokyuroki, 1744
(2011) 151–158. ⇒252

[15] S. Pirzada and Y. Jian Hua, Degree sequences in graphs, J. Math. Study, 39,1
(2006) 25–31. ⇒252

[16] S. Pirzada, T. A. Naikoo and F. A. Dar, Degree sets in bipartite and 3-partite
graphs, Oriental J. Math. Sci., 1,1 (2007) 39–45. ⇒252

[17] S. Pirzada, F. A. Dar, Signed degree sets in signed tripartite graphs, Matematicki
Vesnik, 59 (3) (2007) 121–124. ⇒252

[18] S. Pirzada, F. A. Dar, Signed degree sequences in signed tripartite graphs, J.
Korean Soc. Ind, Appl. Math., 11, 2 (2007) 9–14. ⇒252

http://web.iitd.ac.in/~atripath/
http://homepages.wmich.edu/~zhang/gary.html
http://wikibin.org/articles/s.-f.-kapoor.html
http://www.springer.com/mathematics/journal/10998
http://en.wikipedia.org/wiki/Frank_Harary
http://journals.impan.gov.pl/fm/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://elekjani.web.elte.hu
http://www.cs.ubbcluj.ro/~studia-i/2014-macs/12Ivanyi.pdf
http://www.cs.ubbcluj.ro/~studia-i/contents.php
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://wikibin.org/articles/s.-f.-kapoor.html
http://journals.impan.gov.pl/fm/
https://www.lri.fr/~yannis/
http://www.pondiuni.edu.in/profile/dr-hp-patil
http://www.akcejournal.org/
https://www.lri.fr/~yannis/
http://www.pondiuni.edu.in/profile/dr-hp-patil
https://www.lri.fr/~yannis/
http://www.pondiuni.edu.in/profile/dr-hp-patil
http://www.discuss.wmie.uz.zgora.pl/gt/
http://link.springer.com/journal/373
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1744-21.pdf
http://maths.uok.edu.in/Faculty5.aspx
mailto:sfarooqdar@yahoo.co.in
http://www.emis.de/journals/MV/073/5.html
http://maths.uok.edu.in/Faculty5.aspx
mailto:sfarooqdar@yahoo.co.in
http://mathnet.kaist.ac.kr/mathnet/kms_journal_info.php?coden=KSIAM

On degree sets in k-partite graphs 259

[19] S. Pirzada, Merajuddin, T. A. Naikoo, Score sets in oriented 3-partite graphs,
Analysis Theory Appl., 4 (2007) 363–374. ⇒252

[20] S. Pirzada, T. A. Naikoo, Score sets in oriented k-partite graphs, AKCE J.
Graphs Combin., 3, 2 (2006) 135–145. ⇒252

[21] S. Pirzada, T. A. Naikoo, Score sets in k-partite tournaments, J. Appl. Math.
Comp., 22, 1–2 (2006) 237–245. ⇒252

[22] S. Pirzada, T. A. Naikoo, Score sets in oriented graphs, Appl. Anal. Discrete
Math., 2 1 (2008) 107–113. ⇒252

[23] S. Pirzada, T. A. Naikoo, T. A. Chishti, Score sets in oriented bipartite graphs,
Novi Sad J. Math, 36, 1 (2006) 35–45. ⇒252

[24] S. Pirzada, T. A. Naikoo, F. A. Dar, Signed degree sets in signed graphs,
Czechoslovak Math. J., 57, 3 (2007) 843–848. ⇒252

[25] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad,
India, 2012. ⇒251

[26] S. Pirzada, T. A. Naikoo, F. A. Dar, A note on signed degree sets in signed
bipartite graphs, Appl. Anal. Discrete Math., 2, 1 (2008) 114–117. ⇒252

[27] K. B. Reid. Score sets for tournaments, Congressus Numer., 21 (1978) 607–618.⇒252
[28] T. A. Sipka, The orders of graphs with prescribed degree sets, J. Graph Theory,

4, 3 (1980) 301–307. ⇒
[29] A. Tripathi, S. Vijay, On the least size of a graph with a given degree set, Discrete

Appl. Math., 154 (2006) 2530–2536. ⇒252
[30] A. Tripathi, S. Vijay, A short proof of a theorem on degree sets of graphs,

Discrete Appl. Math., 155 (2007) 670–671. ⇒252
[31] L. Volkmann, Some remarks on degree sets of multigraphs, J. Combin. Math.

Combin. Comput., 77 (2011) 45–49. ⇒252

Received: October 19, 2020 • Revised: November 6, 2020

http://maths.uok.edu.in/Faculty5.aspx
http://link.springer.com/search?query=Pirzada&search-within=Journal&facet-journal-id=10496
http://link.springer.com/journal/10496
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.akcejournal.org/
http://maths.uok.edu.in/DrSPirzada.aspx
http://maths.uok.edu.in/DrSPirzada.aspx
http://pefmath.etf.rs/component/content/32.html?task=view
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.dmi.pmf.uns.ac.rs/nsjom/framepaper.htm
http://maths.uok.edu.in/DrSPirzada.aspx
mailto:sfarooqdar@yahoo.co.in
http://link.springer.com/journal/10587
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.universitiespress.com/
http://maths.uok.edu.in/DrSPirzada.aspx
mailto:sfarooqdar@yahoo.co.in
http://pefmath.etf.rs/component/content/32.html?task=view
http://www.csusm.edu/math/facultydescrips/kbreid.html
http://www.combinatorics.net/journals/congress.html
http://www.alma.edu/live/profiles/182-timothy-sipka
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118/issues
http://web.iitd.ac.in/~atripath/
http://www.math.uiuc.edu/~sujith/
http://www.sciencedirect.com/science/journal/0166218X
http://web.iitd.ac.in/~atripath/
http://www.math.uiuc.edu/~sujith/
http://www.sciencedirect.com/science/journal/0166218X
http://www.math2.rwth-aachen.de/volkmann
http://www.combinatorialmath.ca/jcmcc/

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 260–282

DOI: 10.2478/ausi-2020-0016

Comparing epidemiological models with

the help of visualization dashboards

Csaba FARKAS
Sapientia Hungarian University of

Transylvania, Cluj-Napoca, Romania
Dept. of Mathematics and Informatics,

Târgu Mures,
email: farkascs@ms.sapientia.ro

David ICLANZAN
Sapientia Hungarian University of

Transylvania, Cluj-Napoca, Romania
Dept. of Mathematics and Informatics,

Târgu Mures,
email: iclanzan@ms.sapientia.ro

Boróka OLTEAN-PÉTER
Sapientia Hungarian University of

Transylvania, Cluj-Napoca, Romania
Dept. of Mathematics and Informatics,

Târgu Mures,
email:

boroka.oltean@ms.sapientia.ro

Géza VEKOV
Babes,-Bolyai University, Cluj-Napoca,

Romania
Faculty of Mathematics and Computer

Science
email: geza.vekov@cs.ubbcluj.ro

Abstract. In 2020, due to the COVID−19 pandemic, various epidemio-
logical models appeared in major studies [16, 22, 21], which differ in terms
of complexity, type, etc. In accordance with the hypothesis, a complex
model is more accurate and gives more reliable results than a simpler one
because it takes into consideration more parameters.

In this paper we study three different epidemiological models: a SIR,
a SEIR and a SEIR− type model. Our aim is to set up differential equa-
tion models, which rely on similar parameters, however, the systems of
equation and number of parameters deviate from each other. A visual-
ization dashboard is implemented through this study, and thus, we are

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 68R15
Key words and phrases: Visualization dashboard, epidemiological model, optimization
algorithm

260

https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
mailto:farkascs@ms.sapientia.ro
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
mailto:iclanzan@ms.sapientia.ro
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
https://ms.sapientia.ro/en
mailto:boroka.oltean@ms.sapientia.ro
https://cs.ubbcluj.ro/en
https://cs.ubbcluj.ro/en
https://cs.ubbcluj.ro/en
https://cs.ubbcluj.ro/en
mailto:geza.vekov@cs.ubbcluj.ro
https://seir-visualisation.vercel.app/
https://seir-visualisation.vercel.app/

Comparing epidemiological models with the visualization dashboards 261

able not only to study the models but also to make users understand the
differences between the complexity of epidemiological models, and ulti-
mately, to share a more specific overview about these that are defined by
differential equations [24].

In order to validate our results, we make a comparison between the
three models and the empirical data from Northern Italy and Wuhan,
based on the infectious cases of COVID-19. To validate our results, we
calculate the values of the parameters using the Least Square optimiza-
tion algorithm.

1 Introduction

The COVID-19 pandemic has been responsible for over 24 million cases world-
wide according to WHO reports. Not only has it been causing one of the biggest
global health crises and the greatest challenge we have faced since World War
II., but will also turn global economic growth “sharply negative” this year,
based on a forecast by BBC.

Mathematical models have been employed to inform media, authorities and
researchers from different areas about the effect of the virus from different per-
spectives. In this study, we are going to discuss three different epidemiological
models, which are visualized by a reactive tool. As [24] says epidemiological
models are a key tool to guide public health measures. Without having experi-
ences in crises such as this one, modelling and simulations require assumptions
and different test scenarios. Therefore, visualizing three models with different
complexity and parameter numbers as well as, comparing them are crucial
to be well prepared for future events and to understand the roles of different
factors in this pandemic.

Our first goal is to minimize the gap between medical reports, statistics,
interoperability and public health information system [1, 6, 14, 3]. However,
[3] study also highlighted that the pressure from this gap has always been
particularly acute for the surveillance and management of infectious diseases
with pandemic or bioterrorism potential, we reckon that nowadays this issue
is one of the most pressing global problems.

We think that this tool is useful not only from the perspective of the public
health information system, but also from that of simulations. We use one of
the newest Javascript libraries, Svelte, to create a reactive tool. Secondary,
our aim is to validate our results with help of the Least Square optimization
algorithm. Truncated Newton method is suitable for solving large nonlinear
optimization problems [18].

https://www.bbc.com/news/business-52236936
https://svelte.dev/

262 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

The novelty of this research is that even though there exist several tools
which visualize the results of mathematics models, which are presented in 3
section, we have no knowledge of tools which compare the models and validate
the results with empirical data.

2 Short overview of epidemiological models and vi-
sualization dashboards

Study [3] in 2014 made a systematic review about visualization and analyt-
ics tools used for infectious disease epidemiology. In this study 247 articles
were screened, and 88 articles were included in the review process. These ar-
ticles primarily included descriptive reports, qualitative (e.g. interviews, focus
groups) and usability studies. Although, public health workspace is extremely
diverse [19] and the need for rapid access to information to support critical
decisions in public health is inevitable, the public health information sources
are unstandardized [12]. As a result, the visualization and analytics tools are
various, especially in the case of COVID− 19 disease.

There are many studies which concentrate on the model proposal, such as
[16, 22, 21], but there is a lack of visualization of these models. To our knowl-
edge, the number of dashboards which project and simulate the population’s
exposure is very low, there is only one tool1 which is a reactive data visualiza-
tion based on an epidemiological model. However, the above mentioned visu-
alization dashboard uses a basic SEIR model which cannot provide sufficiently
accurate results from our point of view. We reckon that the demand for these
tools which predict cases would be much higher, especially because there are a
lot of different other software which visualize the empirical, measured cases in
different countries and regions, such as Covidvisualizer2, Gisanddata3 which
was presented in [9] study or Wolframcloud Visualization Dashboard4. Other
web pages which try to inform individuals and to minimize the COVID − 19
damages are rife, for instance, the ′plugandplaydiagnostics ′ software, pre-
sented in [25] study, which helps to prevent future epidemics or the COVID-19
Search Intensity Monitoring tool5. We also need to mention Epirisk dashboard6

1https://gabgoh.github.io/COVID/index.html
2https://www.covidvisualizer.com/
3https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#

/bda7594740fd40299423467b48e9ecf6
4https://www.wolframcloud.com/obj/examples/COVID19Dashboard
5https://covid19map.uptodate.com/
6https://epirisk.net/

https://gabgoh.github.io/COVID/index.html
https://www.covidvisualizer.com/
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.wolframcloud.com/obj/examples/COVID19Dashboard
https://covid19map.uptodate.com/
https://epirisk.net/

Comparing epidemiological models with the visualization dashboards 263

which is a computational platform estimating of the probability of exporting
infected individuals from sites affected by a disease outbreak to other areas in
the world through the airline transportation network and the daily commuting
patterns.

As it can be seen, the above listed tools do not concentrate on mathematical
models, and they do not contain a model comparison, even though different
mathematical models bring various results [13, 1].

There is no accepted consensus regarding the modelling approach is con-
sidered to be the most accurate. Cooper et al. [8] use an susceptible-infected-
removed (SIR) model and Wangping et al. [26] calculates with an extended SIR
model, where transmission can be changed through many interventions, such
as personal protective measures, community-level isolation, and city blockade.
A lot of studies use susceptible-infected-exposed-removed (SEIR) models and
their extended versions [29, 16, 22, 21, 23, 28, 17, 11].

In the above mentioned studies not only are the epidemiological models are
different, but also the results and the parameter values are various.

3 Mathematical background for epidemiological
models and optimization algorithm

Not only do we confirm that it is not possible to decide which model brings
the most accurate results, but we also reckon that users’ knowledge regarding
the COVID− 19 pandemic and mathematical modelling is very wide-ranging.
Even though we would accept the hypothesis according to which a more com-
plex model is more accurate than a simpler one, we are faced with challenges
regarding the user environment: users need to set up many parameters, which
is difficult to comprehend. As one of our aims is to minimize the gap between
general users and the public health information system, we reckon that by
choosing a too complex model we would lose a significant part of possible
users who we want to address.

For that, we have implemented three different models, with different com-
plexity and different parameter numbers, but they use same parameters, which
have the same meaning from a medical and environmental point of view.

3.1 SEIR-type model

The most complex model is a general SEIR-type model, which incorporates
biological, social, environmental processes, such as governmental actions, (e.g.

264 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

school closing), weather conditions (temperature, humidity), and behavioral
responses. Taking into account the above factors, we propose for the visual-
ization the following SEIR-type model (see for more details see [10]):



S ′ = −(βc (t) + c (t)q (1− β))S (I+ θA) /N+ λSq

E ′ = βc (t) (1− q)S (I+ θA) /N− σE

I ′ = σρE− (δI + α+ γI) I

A ′ = σ (1− ρ)E− γAA

S ′q = (1− β) c (t)qS (I+ θA) /N− λS

E ′
q = βc (t)qS (I+ θA) /N− δqEq

H ′ = δII+ δqEq − (α+ γH)H

R ′ = (δI + α+ γI) I+ γAA+ γHH− γRR

where the functions S, E, I, A, Sq, Eq, H and R denote the proportion of the
population into eight groups: susceptible (S(t)), exposed (E(t)), infectious
(I(t)), pre-symptomatic (A(t)), hospitalized (H(t)), recovered (R(t)), quar-
antined susceptible (Sq(t)) and isolated exposed (Eq(t)) groups of population,
see Figure 1 for infection dynamics:

�

��

� �

�

�

�

���

(1 − �)��

��(1 − �)

�
�
�

(1
−

�)
�

��

��

��

��

��

�
�

� �

Figure 1: Model diagram for infection dynamics (SEIR-type model)

Comparing epidemiological models with the visualization dashboards 265

3.2 SEIR model

The SEIR − type model’s simplified version is the SEIR model which uses
significantly less parameters. This model was developed from the SEIR− type
model: 

S ′ = −(βc (t) + c (t)q (1− β))SI/N

E ′ = (βc (t) + c (t)q (1− β))SI/N− σρE

I ′ = σρE− (δI + α+ γI) I

R ′ = (δI + α+ γI) I− γRR

where the functions denote the proportion of the population into four groups:
susceptible (S(t)), exposed (E(t)), infectious (I(t)) and recovered (R(t)), see
Figure 2.

S E

I

R

Figure 2: Model diagram for infection dynamics (SEIR model)

3.3 SIR model

By following the previous logic, we get the SIR model, if we exclude from the
SEIR model the exposed population:

S ′ = −βSI/N

I ′ = βSI/N− γII

R ′ = γII− γRR

where the population is split into 3 groups: susceptible (S(t)), infected (I(t))
and recovered (R(t)) proportions.

S I R

Figure 3: Model diagram for infection dynamics (SIR model)

266 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

3.4 The meaning of the parameters

The above mentioned models use same parameters in order to be comparable.
These parameters are presented briefly, in case any additional information is
needed, read [10] study.

The parameters σ and λ describe the transition rate of exposed individuals
to the infected class and the rate at which the quarantined uninfected were
released into the wider community, while the parameter ρ represents the prob-
ability of having symptoms among infected individuals. The parameters δI and
δq denote the transition rate of symptomatic infected and quarantined exposed
to the quarantined infected class. The γI, γA and γH represent the recovery
rate of symptomatic, asymptomatic and quarantined infected individuals, and
finally γR is the rate at which immunity is lost and recovered individuals move
to the pre-symptomatic class (according to a recent NHK-World Japan report7

and [15]). The parameter θ represents the relative transmission probability of
pre-symptomatic individuals to infected individuals. Finally we assume that
natural birth and natural death rates are equal.

The motivation of such a choice is the following (see also [5, 28]): individuals
move from quarantined cases with 1− q proportion to Sq and with q propor-
tion to Eq. If the transmission probability is β and the contact rate is c, then,
the infected quarantined individuals move to Eq at rate of βcq and uninfected
quarantined individuals move to Sq at (1− β) cq rate. In case of not quar-
antined infected, they are going to move to E at a rate of βc (1− q). When
an epidemiological outbreak occurs, many preemptive actions can be taken to
mitigate the spreading. Once people become informed, they can change their
behavior, working from home, practicing social distancing, and take actions
like washing hands more often, wearing protective clothing, disinfecting etc.,
all of them contributing to the prevention of the spread. The media interacts
with the susceptible population, it starts influencing them to take appropriate
measures to minimize the chances of getting infected. This media influence is
initially low and increases as the infection increases. This observation suggests
the following contact rate function:

c(t) = ca +
3(c0 − ca)

1+ 2b−t
, t ≥ 0, (1)

where b < 1 and c0 denotes the initial contact rate, while ca denotes the
minimum contact rate under the current control strategies.

7https://www3.nhk.or.jp/nhkworld/en/news/20200315_13/

https://www3.nhk.or.jp/nhkworld/en/news/20200315_13/

Comparing epidemiological models with the visualization dashboards 267

Obviously, not every parameter appears in all of three models. This descrip-
tion can be seen complete only in case of the SEIR− type model.

3.5 Least square optimization algorithm

Optimization algorithms can be classified into two major categories: line search
methods and trust region methods, as Ya-xinag Yuan confirms [30]. The trust
region approach associates with approximation, assuming that we have a cur-
rent guess and the model can be constructed near that point. This algorithm
is proposed to solve large-scale bound constrained minimization problems.
It solves trust-region subproblems iteratively, augmenting with trust-region
shape determined by the distance from the bounds and the direction of the
gradient and by a special diagonal quadratic term as it is formulated in Python
documentation8. The aim of this improvement is to iterate through the whole
space of variables and to avoid hitting directly the bounds.

The mathematical approach of Trust Region Reflective Algorithm was for-
mulated based on [“A subspace, interior and conjugate gradient method for
large-scale bound-constrained minimization problems”] paper by Nikolay May-
orov through article9. It is defined the following bound-constrained minimiza-
tion problem

min f (x) , x ∈ F = {x : l ≤ x ≤ u} ,

where l ∈ {R ∪ {−∞}}n and u ∈ {R ∪ {∞}}n and also the f function is a smooth
function [2]. The g (x) = ∇f (x) and H (x) = ∇2f (x). Defining the following
vector, we get

v (x)i =


ui − xi gi < 0, ui <∞,
xi − li gi > 0, li > −∞,
1 otherwise.

Defining a matrix D (x) = diag
(
v (x)

1
2

)
, we can formulate the first order

optimality as followed:
D2 (x)g (x) = 0.

If v (x)i = 0 the Jacobian of the left hand does not exists, so we can consider
that

v (x)i 6= 0,
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_

squares.html
9https://nmayorov.wordpress.com/2015/06/19/trust-region-reflective-algorithm/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://nmayorov.wordpress.com/2015/06/19/trust-region-reflective-algorithm/

268 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

for all i. This happens if x is not on the bound. In this case the Newton step
for this system is

(
D2H+ diag (g (x)) Jv

)
p = −D2g (x) ,

where Jv is the v (x) vector’s diagonal Jacobian matrix. Now the corresponding
trust-region problem can be formulated:

min
p
m (p) =

1

2
pTBp+ gTp, s.t. ||D−1p|| ≤ ∆,

where B = H + D−1CD−1 and C = diag (g) Jv. As it is formulated in [7]
study reflective algorithms are used to maintain feasibility by a piecewise lin-
ear function, which helps to avoid bounds. The following implementation (Al-
gorithm 3.5), which was developed by Nikolay Mayorov is mainly the same as
scipy.optimize.least_squares:

1 import numpy as np

2

3 def reflective_transformation(y,l,u):

4 if l is None:

5 l=np.full_like(y, -np.inf)

6 if u is None:

7 u=np.full_like(y,np.inf)

8 l_fin=np.isfinite(l)

9 u_fin=np.isfinite(u)

10 x=y.copy()

11 m=l_fin & ~u_fin

12 x[m] = np.maximum(y[m], 2*l[m]-y[m])

13 m=~l_fin & u_fin

14 x[m] = np.maximum(y[m], 2*u[m]-y[m])

15

16 m=l_fin & u_fin

17 d=u-l

18 t=np.remainder(y[m]-l[m], 2*d[m])

19 x[m]=l[m]+np.minimum(t,2*d[m]-t)

20

21 return x

22

Algorithm 1: Reflective transformation algorithm

Comparing epidemiological models with the visualization dashboards 269

4 The overview of the visualization dashboard

Wekler at al. [27] defines dashboards as: “a visual display of data used to
monitor conditions and/or facilitate understanding”, our aims are to monitor
conditions and facilitate the understanding of the COVID − 19 pandemic
and similar infectious diseases. The presented tool is a functional genre of
dashboard which, as Sarikaya et al. [20] defines, means an interactive display
that enables real-time monitoring of dynamically updating data.

The dashboard is a reactive, interactive tool, which is going to be presented
trough the following types of interactivity [20]:

1. Construction and Composition,

2. Multipage,

3. Interactive Interface.

The role of this classification is that reactivity and interactivity can take place
at a number of different places in the dashboard lifecycle.

Reactive programming means a declarative programming paradigm where
variables are updated automatically whenever other values change, while the
re-execution of the statements is not necessary. Reactivity is programming
with asynchronous data streams10. The benefit of the reactivity is that the
dashboard becomes highly interactive with a multitude of UI events related
to data events. This benefit evolves real-time monitoring: modifying a single
value, such as a parameter, can automatically trigger other contents. Using
Svelte Javascript library reactivity is realized by techniques such as virtual
DOM which runs at built time, converting the components into a highly effi-
cient imperative code that updates the DOM11.

Due to the reactivity of the tool, the differential equation solver needs to
compute the model very efficiently in order to serve a reasonable re-computa-
tion time based on the current parameters. From data visualization’s perspec-
tive one of the most pressing issues was to find an implementation which is
accurate enough and does not cause lagging. For that, we have chosen the
classic Runge-Kutta IV (RK4) method. There are a lot of Javascript libraries
which implement Runge-Kutta methods, such as Runge-Kutta 4 library12, or
Cash-Karp implementation13 which is an adaptive Runge-Kutta method and

10https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
11https://svelte.dev/blog/svelte-3-rethinking-reactivity
12https://www.npmjs.com/package/runge-kutta-4
13https://www.npmjs.com/package/ode45-cash-karp

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://svelte.dev/blog/svelte-3-rethinking-reactivity
https://www.npmjs.com/package/runge-kutta-4
https://www.npmjs.com/package/ode45-cash-karp

270 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

is presented in [4] study. However, we chose almost the simplest library Runge-
Kutta library14, because this one can set up properly the interval and the step
size. Our issue with adaptive Runge-Kutta method is that it gave significantly
less efficiency than our final choice.

4.1 Construction and composition

These dashboards provide flexibility for the viewer to customize the placement
of views, modify the visual representations inside those views, or select the
particular dimensions and measures to visualize [20].

As we presented in Section 3, we visualize values of three different mathe-
matical compartment models. As a result, users can modify the visual repre-
sentations of the models. Users can choose the following three major represen-
tations:

� SIR model representation

� SEIR model representation

� SEIR− type model representation

� Overall trend.

As we discussed in section 1, different parameter lists help the user to find
the model which is consistent with their knowledge. For instance, if the most
complex model, 17 parameters and 8 initial values of functions appear (Figure
5). In case of selecting SEIR representation, the number of parameters is 11,
4 initial values are needed. For the least complex model only 5 parameters, 3
initial values are needed. These options modify drastically the user experience,
because as long as the most complex representation gives a scientific view of
the topic, the simplest representation can be understood by general users.

14https://www.npmjs.com/package/runge-kutta

https://www.npmjs.com/package/runge-kutta

Comparing epidemiological models with the visualization dashboards 271

Figure 4: SIR model, SEIR model, SEIR-type models’ representation, and over-
all trend

272 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

Figure 5: SEIR-plus model’s parameter list and initial value condition

Comparing epidemiological models with the visualization dashboards 273

4.2 Multipage

Usually dashboards are monopages, but some of them support tabbed layouts.
These dashboards allow viewers to switch between pages, which may have
visualizations that relate to a different component of decision-making or help
to provide the necessary context [20].

Regarding the presented dashboard, multipage and constraction-composition
relate closely. The user can navigate between the three model representations
and the comparison of three models. However, the dashboard has multi-level
structure, meaning that a single page, such as Overall trend page, is divided
to more than one components. The user can compare the tree models based
on each basic proportion of population. As it can seen on 6, the comparison
of models is visualized based on Recovered (R(t)) cases.

Figure 6: The user can choose which function to be visualized: S(t), I(t) or
R(t)). Here, the S(t) function is displayed.

4.3 Interactive interface

Obviously, drop-down menus (Figure 7), slicers (Figure 5) appear on the dash-
board which improve user-experience. But, due to the reactivity of the tool,
the differential equation solver was needed the model to be computed very
efficiently in order to serve a reasonable re-computation time based on the
current parameters. From data visualization one of the most pressing issues
was to find an implementation which is accurate enough and does not cause
lagging. For that, we have chosen the classic Runge-Kutta IV (RK4) method.
There are a lot of Javascript libraries which implement Runge-Kutta meth-

274 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

ods, such as Runge-Kutta 4 library15, or Cash-Karp implementation16 which
is an adaptive Runge-Kutta method and is presented in [4] study. However, we
chose one of the simplest libraries Runga Kutta library17, because the adaptive
Runge-Kutta method gave significantly less efficiency than our final choice.

Figure 7: Drop-down list where the user can choose the country or area data
the data of which they want to be set up.

5 Results

We reckon that we accomplished our aims formulated in Section 1. Our pri-
marily one with visualization dashboard was to reduce the gap between general
user’s knowledge regarding mathematical modelling and public health informa-
tion system which helps to make correct decisions. For that, we implemented
different informative labelling and description (as shown Figure 8) regarding

15https://www.npmjs.com/package/runge-kutta-4
16https://www.npmjs.com/package/ode45-cash-karp
17https://www.npmjs.com/package/runge-kutta

https://www.npmjs.com/package/runge-kutta-4
https://www.npmjs.com/package/ode45-cash-karp

Comparing epidemiological models with the visualization dashboards 275

the models, the parameters and initial conditions, which change dynamically
after modifying of the models. The fact, that parameters can be modified
only in predefined intervals serves the same purpose. We would like to suggest
values which reflect the reality. Because of it, when the dashboard is loaded
for the first time, the parameters are predefined based on Least-Square opti-
mization algorithm and empirical data of Northern Italy which can be seen in
SEIR-type column of Table 2.

Figure 8: Model description and informative labelling

However, based on our results, we reckon that choosing the proper model and
parameters’ values presumes prior knowledge from users. For that, we think
all visualization dashboards based on mathematical models mostly targeted
users who are mathematicians investigating the discussed models, and these
tools might be providing them with important insights.

5.1 Visualization dashboard

The functionalities of the visualization dashboard’s presented in this study
accomplish the aims formulated in 1 Section. The following functionalities
serve the demands of general lay users but they also help the work of practised
ones by the following components.

As it is presented on Figure 9, the web page has different components.
When the user enters the web page, they see a predefined parameter settings,
ebpagehich we calculated based on the cases of infection as measured in the
region of Northern Italy and the parameters were obtained with the help of the

276 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

Least−Square algorithm. The user can start to change parameters manually
or can import new parameter setup via a JSON file. It is given the oppor-
tunity to set up some parameters manually after importing the parameters,
and the other way around, they can import some parameters after setting
up the parameter manually as well. After setting up the parameters, they
can be exported, resulting a JSON file with the current parameter setup, or
can directly display data visualization. If the user changes a parameter, the
differential equation solver automatically recalculates the result. After data
visualization, the charts can be exported in the PDF format as well.

Due to reactivity, these steps are not detached strictly, they can be inverted,
and other steps will respond to these changes directly and instantly.

START

Parameter
setup

Parameter
import

Hu
be

i’s

pa
ra

m
at

er
s

JS
O

N
fil

e

Model
simplifying

Parameter
export

Data
visualization

D
iff

. e
q.

 s
ol

ve
r

Chart export
JSON file

Figure 9: The stucture of visualization dashboard, the yellow segment
represents the parameter setup part, the green component represents
the differential equation solver and the grey one represents data

visualization.

5.2 Models comparison

As we expected, the tree models usually bring slightly different results (Figures
10, 11). These figures present results with different parameter setup and initial
value conditions.

We can observe that the SIR epidemiological model presented in Section 3
is not complex enough to model COVID− 19 pandemic.

The comparison of models can be performed from various perspectives. We
have studied the models based on the comparison of empirical data. For that,
we have used Least-Square optimization algorithm to estimate the parameters
for models. To see more about this optimization algorithm, see [10].

Comparing epidemiological models with the visualization dashboards 277

Figure 10: Model comparison (first fig. S(t), second fig. I(t), third fig. R(t))

0 50 100 150 200
0

20000

40000

60000

80000

100000

TRF SEIR type model
Nos. infected individuals

0 50 100 150 200
0

20000

40000

60000

80000

100000

TRF SEIR model
Nos. infected individuals

Figure 11: SEIR − type and SEIR models comparison based on parameter
estimation

278 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

As long as the SEIR−type and SEIR model perform quite similarly, the SIR
model fails from different perspectives. As shown in Table 1, the cumulative
errors between measured and estimated values are similar in case of the SEIR−
type model and the SEIR model. The algorithm was run for multiple dataset,
and the errors move approximately in the same interval in case of SEIR and
SEIR− type models. The algorithm could not fit to measured data in case of
the SIR model, as the error values suggest.

Empirical data SIR SEIR SEIR-type

North-Italy 160968187 1209142 1113692

Hubei 149720737 103984 127389

Germany 215503664 1446547 1336592

Table 1: Models comparison based on error bounds

As long as the error bounds of the SEIR and the SEIR-type models are
approximately similar, the parameter lists based on the estimation are various.
And even tough, the estimations seem to be very close to each other, as shown
Figures 11, these results were gotten from strongly dissimilar parameter lists
(see Table 2).

6 Discussion

The phenomenon, which was presented at Subsection 5.2 can have multiple
reasons. We need to emphasize that running an optimization algorithm does
not necessarily mean that parameters from Table 2 are the most optimal pa-
rameters for the presented models.

These approaches can be further aims, but our primarily goal with this study
was not parameter optimization. In accordance with the previously formulated
hypothesis, we cannot decide unequivocally that a more complex model is more
accurate than a simpler one. This study highlights the fact that neither the
complexity of the model, nor parameter number are crucial in mathematical
models. If we do not interpret the values of parameters from medical and
epidemiological point of view, almost every model can fit properly to empirical
values.

We also need to emphasize that these models divide the population in dif-
ferent groups. For instance, as long as the SEIR-type model defines 8 different
proportions, associating exposed, isolated exposed, etc., the SIR model does
not even take into account the exposed proportion of the population. This dif-

Comparing epidemiological models with the visualization dashboards 279

ference obviously comes up in the values and in the visualization as well. Based
on this study we confirm that mathematical epidemiological models provide a
certain way to understand infectious diseases and pandemics, but without a
medical perspective it is not possible to conclude clear conclusions regarding
the future-events.

Based on the above formulated affirmations, we think that this visualization
dashboard is the most useful, when the user knows some parameter values
and wants to check different test scenarios based on their knowledge, and not
inversely.

Name of variables SEIR-type SEIR

S 60461744 60461744

E 194 195.656

I 10 10

A 96.69 −

Sq 151.86 −

Eq 158.28 −

H 2 −

R 0 0

c0 33.74 33.34

ca 10.95 2.49

q1 0.29 0.20

β0 0.11 0.38

ε 0.46 0.57

σ 0.17 0.17

λ 0.071 0.071

δI 0.0028 0.999

δq 0.16 −

γI 0.219 0.333

γR 0.219 0.023

γA 0.197 −

γH 0.326 −

θ 0.502 −

α 0.838 0.999

Table 2: Optimal parameter lists

280 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

Acknowledgment

Csaba Farkas has been supported by the Sapientia Foundation — Institute
for Scientific Research, Romania, Project No. 17/11.06.2019. Boróka Oltean-
Péter has been supported by the Sapientia Hungariae Foundation – Collegium
Talentum project and by Accenture Student Research Scholarship.

References

[1] A. Abta, A. Kaddar, T. Hamad, Global stability for delay sir and seir epi-
demic models with saturated incidence rates, Electronic Journal of Differential
Equations 2012, 23 (2012) 1–13. ⇒261, 263

[2] M. Branch, Th. Coleman, Y. Li, A subspace, interior, and conjugate gradient
method for large-scale bound-constrained minimization problems. SIAM Journal
on Scientific Computing, 21, 1 (1999) 1–13. doi:10.1137/S1064827595289108 ⇒
267

[3] L. N. Carroll, A. P. Au, L. T. Detwiler, T. Ch. Fu, I. S. Painter, N. F. Aber-
nethy, Visualization and analytics tools for infectious disease epidemiology:
A systematic review, Journal of Biomedical Informatics, 51 (2014) 287–298.
doi:10.1016/j.jbi.2014.04.006 ⇒261, 262

[4] J. Cash, A. Karp, A variable order Runge-Kutta method for value problems
with rapidly varying right-hand sides, ACM Trans. Math. Softw., 16, 3 (1990)
201–222. doi:10.1145/79505.79507 ⇒270, 274

[5] C. Castillo-Chavez, C. W. Castillo-Garsow, A.-A. Yakubu, Mathematical models
of isolation and quarantine, JAMA, 290, 21 (2003) 2876–2877.
doi:10.1001/jama.290.21.2876 ⇒266

[6] H. Chen, D. Zeng, P. Yan, Data visualization, information dissemination, and
alerting, In Integrated Series in Information Systems, vol. 21. Springer, New
York, NY. 2010, pp. 73–87. doi:10.1007/978-1-4419-1278-7 5 ⇒261

[7] Th. Coleman Y Li, On the convergence of reflective newton methods for large-
scale nonlinear minimization subject to bounds, Math. Program. 67, 1-3 (1994)
189–224. doi: 10.1007/BF01582221 ⇒268

[8] I. Cooper, A. Mondal, Ch. G. Antonopoulos, A SIR model assumption for the
spread of COVID-19 in different communities, Chaos, Solitons & Fractals, 139
(2020) 110057. doi:10.1016/j.chaos.2020.110057 ⇒263

[9] L. Gardner E. Dong, H. Du, An interactive web-based dashboard to track
Covid-19 real time, THE LANCET Infectious Diseases 20, 5 (2020) 533–534.
doi:10.1016/S1473-3099(20)30120-1 ⇒262

[10] Cs. Farkas, D. Iclanzan, B. Olteán Péter, G. Vekov, Estimation of parameters for
a temperature and humidity-dependent compartmental model of the Covid-19
outbreak, Preprint, 2020. ⇒264, 266, 276

https://ejde.math.txstate.edu/
https://ejde.math.txstate.edu/
https://doi.org/10.1137/S1064827595289108
https://doi.org/10.1016/j.jbi.2014.04.006
https://doi.org/10.1145/79505.79507
https://doi.org/10.1001/jama.290.21.2876
https://doi.org/10.1007/978-1-4419-1278-7_5
https://doi.org/10.1007/BF01582221
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.1016/S1473-3099(20)30120-1

Comparing epidemiological models with the visualization dashboards 281

[11] Q. Griette, Z. Liu, P. Magal, Estimating the last day for Covid-19 outbreak in
mainland China, Preprint at medRχiv.org, July 6, 2020.
doi:10.1101/2020.04.14.20064824 ⇒263

[12] B. L. Humphreys, Meeting information needs in health policy and public health:
Priorities for the national library of medicine and the national network of li-
braries of medicine, Journal of Urban Health, 75, 4 (1998) 878–883.
doi:10.1007/BF02344515 ⇒262

[13] A. Kaddar, A. Abta, H. T. Alaoui, A comparison of delayed SIR and SEIR
epidemic models, Nonlinear Analysis: Modelling and Control 16, 2 (2011) 181–
190. doi:10.15388/na.16.2.14104 ⇒263

[14] M. Klompas, M. Murphy, J. Lankiewicz, J. McVetta, R. Lazarus, E. Eggleston,
P. Daly, P. Oppedisano, B. Beagan, Ch. Kirby, R. Platt, Harnessing electronic
health records for public health surveillance, Online Journal of Public Health
Informatics, 3, 3 (2011) doi:10.5210/ojphi.v3i3.3794 ⇒261

[15] G. Li, Y. Fan, Y. Lai, T. Han, Z. Li, P. Zhou, P. Pan, W. Wang, D. Hu, X.
Liu, Q. Zhang, J. Wu, Coronavirus infections and immune responses, Journal
of Medical Virology, 92, 4 (2020) 424–432. doi:10.1002/jmv.25685 ⇒266

[16] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, M. H. Wang, Y. Cai,
W. Wang, L. Yang, D. He, A conceptual model for the coronavirus disease 2019
(covid-19) outbreak in wuhan, china with individual reaction and governmen-
tal action, International Journal of Infectious Diseases, 93 (2020) 211–216.
doi:10.1016/j.ijid.2020.02.058 ⇒260, 262, 263

[17] Y. Ma, Y. Zhao, J. Liu, X. He, B. Wang, Sh. Fu, J. Yan, J. Niu, J. Zhou, B.
Luo, Effects of temperature variation and humidity on the death of Covid-19
in Wuhan, China, Science of the Total Environment, 724, 7 (2020) 138226.
doi:10.1016/j.scitotenv.2020.138226 ⇒263

[18] S. G. Nash, A survey of truncated-Newton methods, Journal of Compu-
tational and Applied Mathematics 124, 1-2 (2000) 45–59. doi:10.1016/S0377-
0427(00)00426-X ⇒261

[19] D. Revere, A. M. Turner, A. Madhavan, N. Rambo, P. F. Bugni, A. Kimball,
Sh. S. Fuller, Understanding the information needs of public health practition-
ers: A literature review to inform design of an interactive digital knowledge
management system, Journal of Biomedical Informatics, 40, 4 (2007) 410–421.
doi:10.1016/j.jbi.2006.12.008 ⇒262

[20] A. Sarikaya, M. Correll, L. Bartram, M. Tory, D. Fisher, What do we talk
about when we talk about dashboards? IEEE Transactions on Visualization
and Computer Graphics, 29, 1 (2019) 682–692. ⇒269, 270, 273

[21] B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, The effectiveness of
quarantine and isolation determine the trend of Covid-19 epidemics in the final
phase of current outbreak in China, International Journal of Infectious Diseases
95, 6 (2020) 288–293. doi:10.1016/j.ijid.2020.03.018 ⇒260, 262, 263

[22] B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of
the risk of transmission of the novel coronavirus (2019-nCov), Infectious Disease
Modelling, 5 (2020) 248–255. doi:10.1016/j.idm.2020.02.001 ⇒260, 262, 263

https://doi.org/10.1101/2020.04.14.20064824
https://doi.org/10.1007/BF02344515
https://doi.org/10.15388/na.16.2.14104
https://doi.org/10.5210/ojphi.v3i3.3794
 https://doi.org/10.1002/jmv.25685
https://doi.org/10.1016/j.ijid.2020.02.058
https://doi.org/10.1016/j.scitotenv.2020.138226
https://doi.org/10.1016/S0377-0427(00)00426-X
https://doi.org/10.1016/S0377-0427(00)00426-X
https://doi.org/10.1016/j.jbi.2006.12.008
https://doi.org/10.1016/j.ijid.2020.03.018
https://doi.org/10.1016/j.idm.2020.02.001

282 Cs. Farkas, D. Iclanzan, B. Oltean-Péter, G. Vekov

[23] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, J. Wu, Estimation of
the transmission risk of the 2019-nCov and its implication for public health inter-
ventions, Journal of Clinical Medicine 9, 2 (2020) 462. doi:10.3390/jcm9020462⇒263

[24] R. N. Thompson, Epidemiological models are important tools for guiding
COVID-19 interventions, BMC Medicine 18, 152 (2020). doi:10.1186/s12916-
020-01628-4 ⇒261

[25] B. Udugama, P. Kadhiresan, H. N. Kozlowski, A. Malekjahani, M. Osborne,
V. Y. C. Li, H. Chen, J. B. Gubbay S. Mubareka, W. C. W. Chan, Diagnosing
Covid-19: The disease and tools for detection, ACS Nano 14, 4 (2020) 3822–
3835. doi:doi:10.1021/acsnano.0c02624 ⇒262

[26] J. Wangping, H. Ke, S. Yang, C. Wenzhe, W. Shengshu, Y. Shanshan, W. Jian-
wei, K. Fuyin, T. Penggang, L. Jing, L. Miao, H. Yao, Extended SIR prediction
of the epidemics trend of COVID-19 in Italy and compared with Hunan, China.
Frontiers in Medicine, 7, 5 (2020) doi:10.3389/fmed.2020.00169 ⇒263

[27] S. Wexler, J. Shaffer, A. Cotgreave, The Big Book of Dashboards: Visualizing
Your Data Using Real-World Business Scenarios, Wiley Publishing, 1st edition,
2017. ISBN: 978-1-119-28271-6 ⇒269

[28] Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious
disease outbreak, Scientific Reports 5, 7838 (2015). doi:10.1038/srep07838 ⇒
263, 266

[29] Z. Yang, Zh. Zeng, K. Wang, S.-S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao,
Zh. Gao, Zh. Mai, J. Liang, X. Liu, Sh. Li, Y. Li, F. Ye, W. Guan, Y. Yang, F.
Li, Sh. Luo, Y. Xie, B. Liu, Zh. Wang, Sh. Zhang, Y. Wang, N. Zhong, J. He,
Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China
under public health interventions, Journal of Thoracic Disease 12, 3 (2020)
165–174. doi:10.21037/jtd.2020.02.64 ⇒263

[30] Ya-xiang Yuan. A review of trust region algorithms for optimization, ICM99:

Proceedings of the Fourth International Congress on Industrial and Applied

Mathematics, September, 1999. ⇒267

Received: October 13, 2020 • Revised: November 11, 2020

https://doi.org/10.3390/jcm9020462
https://doi.org/10.1186/s12916-020-01628-4
https://doi.org/10.1186/s12916-020-01628-4
https://doi.org/10.1021/acsnano.0c02624
https://doi.org/10.3389/fmed.2020.00169
https://doi.org/10.1038/srep07838
https://doi.org/10.21037/jtd.2020.02.64
ftp://lsec.cc.ac.cn/pub/home/yyx/papers/p995.pdf

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 283–301

DOI: 10.2478/ausi-2020-0017

Statistical complexity of the kicked top

model considering chaos

Ágnes FÜLÖP
Faculty of Informatics

Loránd Eötvös University, Budapest
email: fulop@caesar.elte.hu

Abstract.
The concept of the statistical complexity is studied to characterize

the classical kicked top model which plays important role in the qbit
systems and the chaotic properties of the entanglement. This allow us
to understand this driven dynamical system by the probability distribu-
tion in phase space to make distinguish among the regular, random and
structural complexity on finite simulation. We present the dependence of
the kicked top and kicked rotor model through the strength excitation in
the framework of statistical complexity.

1 Introduction

In this article we study the driven systems considering the statistical com-
plexity. The concept of statistical complexity has been introduced in different
way from complexity of finite series (Lempel, Ziv) [36], algorithmic complexity
(Kolmogorov) [30], the amount of information about the optimal prediction,
where the future fulfills to the expected past (Crutchfield, Young) [17]

The effective entropy was published by Grassberger [26] considering the mix-
ture of the order and disorder, regularity and randomness, since the entropy
of most systems is between the maximum and minimum entropy values.

Computing Classification System 1998: F.2.1
Mathematics Subject Classification 2010: 68U20
Key words and phrases: statistical complexity, Shannon entropy, chaos, kicked top map,
kicked rotor map, qbit

283

http://www.inf.elte.hu/en
http://www.inf.elte.hu/en
mailto:fulop@caesar.elte.hu

284 Á. Fülöp

The definition of statistical complexity was introduced by López, Ruiz,
Manchini, Calbet (LMC) [2] and Shiner, Davison, Landsberg (SDL) [55]. The
generalized statistical complexity measure (Martin, Palestino, Rosso) [43] is
based on the LMC’s that gives a description of the finite sequence of nonlin-
ear systems with the adequate probability distribution of the time dependent
method. It was extended to Tsallis, Wootters, Renyi entropy and Kullback-
Leibler, Jensen-Shannon divergence. Tsallis suggested a generalization of the
Shannon-Boltzmann-Gibbs entropy measure [58]. The new entropy funtional
plays an significant role along with its corresponding thermodynamics (1998).
Wootters reflected on the Euclidean distance [61], because he studied this con-
cept in a quantum mechanical field; this consideration allowed to consider an
intrinsic statistical measure, this concept can be employed to any probability
space.

Both experimental and theoretical sign can be evaluated by the information
theory tools, as entropy, distance, statistical divergence provides an opportu-
nity to make estimation, detection and transmission processes.

In the last two decades more kind of complexity measures and methodologies
were introduced with their time evolution connected to optimal predictability,
symbolic analysis [1], algorithmic data compression, number system, pseudo-
random bit generator, earthquake the chaotic regim etc. [36, 17, 59, 38, 18,
55, 43, 35, 11, 22, 25, 39, 19]. The dynamics of the statistical complexity mea-
sure is formulated according to the second law of thermodynamics. According
to, entropy increases monotonically at time. It follows that the quantity H is
implied as an arrow of time.

We study the kicked top and kicked rotor model in this article, these driven
systems are intensively researched field in quantum mechanics. These are stud-
ied in the field of quantum chaos and entanglement in ergodic and non ergodic
system [48]. In the past two decades the kicked top model was an intensively
researched area which contained the chaotic dynamics and quantum correla-
tions considering in quantum information and computation. The kicked top is
a suitable model for studying spins or qbits and corresponds for the studying
of entanglement. We approximate the classical limit of the kicked top if the
number of spins tend to infinity.

Therefore this model is an important area of research [9, 33, 42, 52] for the
study of entanglement [37, 24, 45, 34, 4, 60] and its relationship to classical
dynamics [57], sign of bifurcations on different quantum correlation measures
[9], quantum classical transition with respect to periodic trajectories [33] and
the behavior of entropy in the transition to chaos citezs. Measure of quantum
correlations is strongly correlated with the qualitative nature of classical phase

Statistical complexity of the kicked top model considering chaos 285

space, whether it is regular or chaotic [9, 52, 37, 3, 41, 20, 62]. The importance
of the kicked top model is also demonstrated by the large number in a series
of papers [14, 9, 52, 37, 3, 41, 20, 47, 10].

The structure of the article contains the next parts:
In the section (2) we introduce the idea of complexity accordingly the mea-

sure of entropy and disequilibrium with the probability distributions by the
by LMC functional associating to SCM family. We discuss the statistical com-
plexity considering the Wootters, Kullback-Leibler relative entropy and the
Jensen-Shannon divergency. The time evolution of the SCM associated to the
evolving of entropy. In the section (3) the quantum kicked top model is investi-
gated by the Hamiltonian functions considering the properties of the classical
equation motions. The quantum kicked rotor system is derived by the Hamil-
tonian and we compere the chaotic behavior of these systems in the section
(4). The Numerical approximation of the statistical complexity of the models
is discussed in the section (5).

2 Statistical complexity measures

In this section we discuss the entropy and distance in the probability space
which can be used to determine the statistical complexity measure. This plays
important role in the dynamics of quantum-classical transition and the chaotic
motion. We review the main futures of statistical considerations describing
dynamical properties.

2.1 Information measures

The information measure I is defined by a given probability distribution. I[P]
refers as the measure of the uncertainty connected to probability distribution
P = {pj, j = 1, . . . ,N}, where N indicates the the number of possible states of

the systems satisfying
∑N
j=1 pj = 1 (micro-canonical ensemble).

If I[P] = Imin = 0 then this means that the maximum information is ex-
tracted from all possible outputs states. Otherwise the ignorance appears when
I[P] = I[Pe] ≡ Imax; Pe = {pi = 1/n;∀i}, Pe being the uniform distribution.
These are the trivial cases. We define the amount of disorder H at a given
probability distribution P and considering the information measure I[P]:

H[P] = I[P]/Imax (1)

The value of H is changing 0 ≤ H ≤ 1.

286 Á. Fülöp

Based on the Shannon-Kinchin paradigm I is introduced in the expression of
entropy. It can arise by canonical formulation (Boltzmann-Gibbs) of statistical
mechanics which is expandable to another entropy term as Renyi, Tsallis [51].
We define the disorder H for the P ≡ {pi, i = 1, . . . ,N} on a discrete probability
distribution:

H[P] = S[P]/S[Pe], (2)

where S[P] means Shannon’s logarithm entropy [53] by this form

S[P] = −

N∑
j=1

pj log(pj) (3)

and S[Pe] = logN.

2.2 Distances and statistical complexity measure

In order to define Statistical Complexity Measure (SCM) we need to use some
distance D [31] between given P and the uniform distribution Pe on the avail-
able states of the system [38, 43, 35].

Q[P] = Q0 ·D[P, Pe], (4)

where Q0 is a normalization constant (0 ≤ Q ≤ 1) i. e. the inverse of the
maximum distance D[P, Pe]. The value of largest distance corresponds to that
one component of probability distribution P takes 1 and the others equal to
zero. The disequilibrium-distanceQ shows the structure of the system, because
the ”privileged” states differ from zero probability value.

The functional form of the SCM is introduced by Lopetoz-Ruiz, Manchini
and Calbet (LMC) [38].

C[P] = H[P] ·Q[P] (5)

This quantity represents at a given scale between the amount of information
stored in the system and its disequilibrium [38]. In this article we study com-
plex dynamics where the different regime are mixed, i.e. chaos, regular islands
and trajectory that are neither periodic nor chaotic can be featured by SCM.

Different distance-forms D can be used to define the quantity Q for the
SCM. In the following we apply two discrete probability distributions Pi ≡
{p

(i)
1 , . . . , p

(i)
N }, with i = 1, 2 consider the next options:

Statistical complexity of the kicked top model considering chaos 287

(I) Euclidean norm DE in RN [38]:
This is natural case for the distance D. We get

DE[P1, P2] = ‖P1 − P2‖2E =

N∑
j=1

{
p
(1)
j − p

(2)
j

}2
(6)

This is the disequlibrium term which was contained in the original complex-
ity measure by López-Ruiz, Manchini and Calbet (LMC-complexity measure
[38]). Wootter extended it to the possibility, where we also consider the shape
of the probability distributions.

(II) Wootter’s distance DW [43, 61]
The concept of statistical distance is extended in a quantum mechanical

field. He proposed a definition to distinguish among different preparations of
a given quantum state and to take it into account that two such states differ
from one another inside statistical error. It allows to consider an intrinsic
statistical nature, this can be applied to any probabilistic space [61].

DW [P1, P2] = cos−1


N∑
j=1

(
p
(1)
j

)1/2
·
(
p
(2)
j

)1/2 (7)

Two divergence classes were distinguished by Basseville [5]. The first class
contains divergences defined by relative entropy, while the second one pays
attention divergences related as entropy differences.

(III) Kullback-Leiber relative entropy DK [32]:
The relative entropy of P1 with respect to P2 connected to Shannon measure

is the relative Kullback-Leibler Shannon entropy in the discrete case follows

DK[P1, P2] = K[P1|P2] =

N∑
j=1

p
(1)
j log

p(1)j
p
(2)
j

 (8)

The distance between the probability distribution P and uniform distribution
Pe in the Kullback-Leibler Shannon expression is given by this form

DK[P, Pe] = K[P|Pe] = S[Pe] − S[P] (9)

(IV) Jensen divergence Dj [35]:
The entropic difference S[P1] − S[P2] does not mean an information gain (or

divergence), bacause the difference is not inevitably positive definite. Jensen’s

288 Á. Fülöp

divergence is a symmetric version of the Kullback-Leibler relative entropy,
which can be written in the form of the Shannon entropy as follow:

DJ[P1, P2] = JS[P1, P2] = {K[P1|P2] + K[P2|P1]}/2

= S[P1+P22] − S[P1]/2− S[P2]/2
(10)

The Jensen-Shannon divergence verifies the following properties

(i) JS[P1, P2] ≥ 0
(ii) JS[P1, P2] = JS[P2, P1]
(iii) KS[P1, P2] = 0⇔ P2 = P1

(11)

It square root fulfills the triangle inequality:

(iv) (JS[P1, P2])
1/2 + (JS[P2, P3])

1/2 = (JS[P1, P3])
1/2 (12)

So the square root of the Jensen-Shannon divergence is a metric [12]. These
entropy concepts are extensive quantities in thermodynamics, therefore the
associated statistical complexity will be an intensive quantity.

Generally on the basis of LMC-functional product term we get a family of
SCMs for each four disequilibrium

Cν[P = H[P] ·Qν[P] (13)

The index ν = E,W,K, J denoted the disequilibrium distance which is deter-
mined with the adequate distance measure (Euclidean, Wootters, Kullback-
Leibler, and Jensen-Shannon) Then the SCM family for ν = K is following

C(K)[P] = H[P] ·QK[P] = H[P] · (1−H[P]) (14)

The generalized functional term was introduced by Davison and Landsberg
[55] for the SCM. Similar results are published by these article [16, 8, 56].

We consider three members of the family Cν (ν = E,W, J) these are not
trivial functions of the entropy [44] because they associate to two dissimilar
probabilities distributions P and uniform distribution Pe. It can be seen that
a given H value determines a range of SCM values from Cmin to Cmax. These
bounds are changing during the time evolution. We obtain the range Cmin
and Cmax relating to the generalized Cν = H ·Qν family which provides more
information corresponding to the correlation structure between the elements
of physical system.

Statistical complexity of the kicked top model considering chaos 289

2.3 The evolution

In statistical mechanics isolated systems [13] play important role featured by
an initial discrete probability distribution going toward equilibrium. The uni-
form distribution Pe characterizes the equilibrium. The evolution of the SCM
can be plotted on the Figure of C versus time t. Nevertheless in isolated system
the entropy grows monotonically with time (dH/dt ≥ 0) by the second law of
thermodynamics [49]. It follows that H behaves as an arrow of time, i.e. the
time evolution of the SCM corresponds to plot C versus H. The normalized
entropy-axis equivalent with the time-axis [38, 51, 50].

3 Kicked top model

Quantum kicked top The Quantum Kicked top (QKT) is e time-dependent
periodic system, which is described by an angular momentum vector J =
(Jx, Jy, Jz). Here we choose natural unit where the Planck’s constant has been
adjusted to unity. The time evolution of the model is given by Hamiltonian

H(t) = pJy +
k

2j
J2z

∞∑
n=−∞ δ(t− nτ) (15)

The first expression of the Equation (15) means the free precession of the
kicked top model around y axis with angular frequency p. The second expres-
sion indicates the periodic δ kicks on the kicked top system, where each kick
causes a torsion by an angle (k/2j)Jz about the z axis. The components of
angular momentum satisfy the commutation relations in standard algebra of
angular momentum:

[Ji, Jj] = iεi,j,kJk (16)

The magnitude of total angular momentum J2 = j(j+ 1)}2 is conserved quan-
tity. The classical limit is obtained when j → ∞. The time between periodic
kicks corresponds to τ. In this article it is chosen unit (τ = 1). The parameter
k characterizes the chaotic behavior of the system and the strength of the
kick. If k = 0 then the equation (15) can be integrated, which is the classical
boundary of the system. As the value of k increases, the chaoticity of this
model is growing.

The expression of the periodic-one Floquet operator for the Hamiltonian
equation (15) is as follows:

U = exp

(
−i
k

2j
J2z

)
exp(−ipJy) (17)

290 Á. Fülöp

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

T
h

e
ta

Phi

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

T
h

e
ta

Phi

Figure 1: The Θ depends on Φ variables at the kicked top model at k = 0.07,
k = 2.2.

Each time period contains a linear rotation by angle p around the y axis
and a nonlinear rotation around the z axis. The dimension of Hilbert space
is 2j+ 1 therefore the time dependent behavior can be described without any
truncation of the Hilbert space.

The quantum simulation of a given set of qbits with N = 2j is well described
by the quantum kicked top model for given angular momentum j. These are
half-spin particles which are confined to a subspace that is symmetrical for
qbit exchange.

In the symmetric subspace the state vector is defined by the following
states {|j,m >: (m = −j,−j + 1, . . . , j)} where j = N/2. The ground con-
ditions fulfill the following conditions Sz|j,m >= m|j,m > and S±|j,m >=√
(j∓m)(j±m+ 1)|j,m± 1 >, where Sz and S± are collective spin operator

[46]. This is a multiqubit system and the collective properties evolve according
to Hamiltonian Eq. (15).

According to the quantum mechanics, the initial state of the kicked top
system is a spin coherent state(minimum-uncertainty states) pointing in the
direction of Φ,Θ. The time evolution is determined by the Floquet operator.
The classical map of the kicked top model is discuss below.

Classical kicked top The phase space is represented in Fig. (1) as a func-
tion of coordinates Φ and Θ.

Statistical complexity of the kicked top model considering chaos 291

The classic map of the kicked top model is derived in the following form
[28]

X ′ = (X cosp+ Z sinp) cos[k(Z cosp− X sinp)] − Y sin(k(Z cosp− X sinp))
Y ′ = (X cosp+ Z sinp) sin[k(Z cosp− X sinp)] + Y cos[k(Z cosp− X sinp)]
Z ′ = −X sinp+ Z cosp

(18)

The time-dependent variables (X, Y, Z) fulfill the constraint X2+ Y2+Z2 = 1.
The trajectories are located on a sphere of unit radius.

These equations (18) can be specified by polar coordinates i.e. with polar
angle Φ and azimuth angle Θ, therefore X = sinΘ cosΦ, Y = sinΘ sinΦ,Z =
cosΘ. During the time evolution of the equations, the values of Φ and Θ are
determined in each step. The symmetry properties of the model are discussed
below.

The phase space is reflective on Θ = π
2 during the transformation k→ −k.

This is fulfilled because k → −k transformation has the same meaning as
X → −X and Z → −Z in Eq. (18). It follows that Z ′ → −Z ′ due to which
Θ → π − Θ. Therefore the k → −k transformation is an isomorphism in the
phase space.

Further symmetry can be found in the Equations (18) studying the classical
map. The classical map contains the parameter p. So we analyze the depen-
dence on it which leads to different simpler equations. first consider the system
at p = π

2 . It was studied by wide range of articles [9, 33, 3, 41, 47, 28] in the
literature. Due to newer symmetries, the shape of the mapping is simplified as
follows

X ′ = Z cos(kX) + Y sin(kX)
Y ′ = Y cos(kX) − Z sin(kX)
Z ′ = −X

(19)

At small values k, the phase space is mainly covered by regular trajecto-
ries (Fig. (1)) at k = 0.07. The trivial fixed points is situated at (Φ,Θ) =
(π/2,±π/2). Increasing the value of k, the chaotic regions expands more and
more in the phase space. For growing parameter value k the phase space con-
tains mainly chaotic sea with a few regular regions.

The map is studied for the value of the parameter p = 3π/2. It is derived
from p = π/2 by the the transformation X ′ → −X ′ and Z ′ → −Z ′. This means
reflections about Φ = 0 and Θ = π/2 because Φ→ −Φ and Θ→ π−Θ. In the
case of phase space, we also find such a behavior when we use these reflection.

292 Á. Fülöp

The next p value is chosen to be π, then the Equation (18) of the classical
map forms:

X ′ = Y sin(kZ) − X cos(kZ)
Y ′ = Y cos(kZ) − X sin(kZ)
Z ′ = −Z

(20)

In this case the fully developed chaos does not appear. The angle Θ is changing
between cos−1 Z and π− cos−1 Z at a given initial value of Z. These quantities
are reflected for π/2.

Th last instance is p = 2π which we investigate

X ′ = X cos(kZ) − Y sin(kZ)
Y ′ = X sin(kZ) + Y cos(kZ)
Z ′ = Z

(21)

In this situation the fully developed chaos does not evolve for a given initial
value Z and the angle Θ equals to constant at cos−1 Z.

4 Quantum kicked rotor

The kicked rotor(QKR) plays an important role in the research of chaos. The
Hamiltonian of this driven system is

HR =
1

2I
P2 + k cosΦ

∞∑
n=−∞ δ(t− nT), (22)

where Φ is the angle operator and P is the angular momentum, canonically
conjugate to Φ and T is a periodic time. The strength of the kick is denoted
by k and I is the moment of inertia and the rotor operators satisfy the com-
munication relation:

[P,Φ] = −i. (23)

From the discrete dynamics, we get the angular operator and angular momen-
tum from driven to driven in the Heisenberg picture by these equations:

P ′ = U†RPUR
Φ ′ = U†RΦUR,

(24)

Statistical complexity of the kicked top model considering chaos 293

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

P
h
i

p

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

P
h
i

p

Figure 2: Kicked rotor model k = 0.9 k = 1.26.

where the Floquet uniter operator UR is defined by this term

UR = exp

(
−i
P2

2I

)
exp(−ik cosΦ) (25)

The stroboscopic equations is as follows

P ′ = P + k sinΦ
Φ ′ = Φ+ P ′/I.

(26)

The classical equation of motion following from Eq. (22) in the literature it is
known as Chirikov’s standard map [15, 23, 6] (I = T = 1).

The surface of the rotor phase space is a cylinder, −∞ < P < ∞, 0 ≤ Φ <

2π. It is seem from the stroboscopic equation that the model is invariant under
2πI translations in P and 2π in Φ, even though the model is not bounded in
P.

Comparing the topology of the systems rotor and kicked top model this
is dissimilar because the kicked top model holds spherical phase space. The
classical rotor model is plotted in Fig. (2) for k = 0.9, I = 1.

The classical phase space of the rotor model contains elliptic and hyper-
bolic fixed points and KAM tori (as circles) corresponding to KAM theory
and Poincaré-Birkhoff theorem. The KAM tori are invariant sets therefore the
chaotic trajectories can not pass through to evolve hyperbolic fixed points.
In the case of k = 0 the model is a free rotor corresponding to regular mo-
tion. As the value of k becomes larger, the KAM tori decompose into cantori
[40, 7](invariant Cantor sets) and these are partly passable. There exists a
critical nonlinearity kc with universal scaling properties [27, 54], where the

294 Á. Fülöp

Figure 3: (left)The magnitude of the angular momentum J of the kicked top
model is connserved quantity therefore it is displayed on a sphere. (right) The
rotor limit is driven with rescaling α = k/j, β = j/I, as j→∞. If we start in
the equatorial waistband, the rescaling constrains the angular momentum to
X = cosΦ, Y = sinΦ, P/j.

final KAM tori split the phase space into partition along the P axis and the
system becomes globally chaotic. The classical KAM theory is extended to the
quantum sytems [23].

Classical rotor-limit The time evolution of the rotor map can be risen
from the kicked top model, if we bound the top to an equatorial waistband
as plotted in Fig. (3). Then the precession frequency is decreased around the
x-axis fulfilling the rescaling.

α = k/j, β = j/I, (27)

where j→∞. This means the rotor-limit of the top kicked model.
We begin in the equatorial waistband, this rescaling recricts the angular

momentum to Fig. (3)

X = cosΦ, Y = sinΦ Z = P/j. (28)

If we replace the Eq. (27) and (28) in the kicked top map of Eq. (18), we get
the kicked rotor map of Eq. (26) [29].

Quantum rotor-limit Here we introduce the next rescaled operators:

X̂ ≡ Ĵx/j, Ŷ ≡ Ĵy, P̂ ≡ Ĵx (29)

Statistical complexity of the kicked top model considering chaos 295

These operators fulfill the communication relations of Eq. (16). Consider j→∞ so that we may cat the 1/j2 terms:

[X̂, Ŷ] = 0, [Ŷ, P̂] = iX̂, [P̂, X̂] = iŶ. (30)

These expressions fulfill the communication relations:

X̂ = cosφ, Ŷ = sinΦ, P̂ = −i
∂

∂Φ
. (31)

These Equations (27) (29) and (30) are put in the top Hamiltonian of Eq. (15)
than we obtain the rotor Hamiltonian of Eq. (22).

5 Numerical approximation

In this section we represent the statistical complexity of the kicked top and
kicked rot model. This is a well signature of the chaotic features of these
systems to show the mixed inner structure and the time dependent evolution
in the top model associating the behavior of qbits.

Statistical complexity The statistical complexity is introduced on the
probability distribution yielding a statistical estimation of the points in the
phase space (section 2).

The dynamical behavior of the systems is discussed in the next form [21].
The notation of measured sequence is denoted by y1, . . . , yn time series, where
yi corresponds to measurement of the quantity y at the time ti = t0+ iT , (T >
0 ∈ R). The trajectory of length n ∈ Rd i.e. time series of the measurement is

written by x(n). The point of the orbit of the length n is denoted by x
(n)
k , (k =

1, . . . , n) and the set K contains the points of some trajectories x
(n)
k (k =

1, . . . , n). Let us consider a time sequent of length N ′ >> n . A given series

x
(n)
k , (k = 1, . . . , n) appears with probability P(x(n)) along the the sequences

of length N ′, where the corresponding set of discrete probability distribution
P ≡ {p1, . . . , pN ′} , pi = P(x

n
i) (
∑N ′

i=1 pi = 1), and pi > 0 ∀i.
The driven systems can be derived numerically in different methods. We

may determine a single very long trajectory of the periodically excited system
or compute an ensemble of orbits. If the kicked model is periodic, the single
long trajectory can be simulated stroboscopically in the three dimensional
phase space. We select the smooth initial values in the past from the domain
of the map for the variables x, y and z at time t = 0. The periodicity is T = 1

296 Á. Fülöp

and the length of the trajectory is chosen as N = 104. On this basis the value
of the entropy, disequilibrium and statistical complexity are able to determine
unambiguously.

The motion of the (a)kicked top and (b)kicked rotor map becomes on a
surface in the three dimensional phase space. The trajectories of the kicked
top map are found on the sphere (section 3) and the orbits of rotor map are
located on cylinder (section 4). In the periodically driven model these systems
depend on the parameter k, this means the strength of the excitation.

The chaotic behavior turns up at the critical parameter value kc and the
statistical complexity C becomes to zero. The quantity of the kicked top map
is kc = 1.26 and the value of the rotor map is kc = 2.64 ((a)Fig. 4, (b)Fig.
5). Because the distance between the probability distribution P and the uni-
form distribution Pe tends to zero and the entropy approaches 1 at the equal
probability points in the phase space.

The parameter k is extended to the neighbor of critical values (a)k ∈ [0, 6]
(b)k ∈ [0, 2]. Due to the increasing strong perturbation of the periodic driven
systems, the statistical complexity C decreases to zero at the same time the
value of the entropy H tends to 1 depending on the parameter k, therefore the
values C and H changing between extreme states Cmax at H ∼ 0 and Cmin at
H ∼ 1 with the transition intervals. The chaotic behavior corresponds to the
range, where the values is C = 0 and H = 1 (Fig. (6)). For the calculation
owing to the finite size of the simulation, the count accuracy becomes larger
when the number of element N increases. At the small value k the periodically
driven forcing does not have effect on the model i.e. the the motion of system
is regular on the surface.

The spectrum of the statistical complexity is finite and limiting but not
inevitably a unique function of H and there exists a range of values between a
minimal value Cmin and a maximal value Cmax containing the inner structure
(Fig. (6)).

Because the number of points on the phase space is finite, C as a function H
shows scaling behavior, i.e. the bigger complexity associates with less entropy
with a larger discrete probability distribution. Since the probability distribu-
tion of element in the phase space is discontinuous in the three-dimensional
space, some complexity and disequilibrium values do not appear for certain
entropy quantities.

Statistical complexity of the kicked top model considering chaos 297

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 1 2 3 4 5 6

H

k

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0 1 2 3 4 5 6

C

k

Figure 4: Kicked top model (left):Entropy H as a function strength of the
driven k. (right): Statistical complexity C depends on the driven parameter k.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H

k

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C

k

Figure 5: Kicked rotor model: (left): Entropy H as a function strength of the
driven k. (right): Statistical complexity C depends on the driven parameter k.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

C

H

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C

H

Figure 6: The statistical complexity C depends on the entropy H. left:kicked
top model, right: kicked rotor system.

298 Á. Fülöp

6 Conclusion

The model describing the qbits are kicked top and rotor model, which are
studied by statistical complexity in a finite probability distribution in a three-
dimensional space considering the measure of the entropy and disequilibrium
using the scaling behavior of these quantities. At the range of chaoticity the
statistical complexity approximates zero and entropy goes to one.

We extended the parameter values of k to the neighbor of the critical quanti-
ties studying the spectrum of the statistical complexity and the disequilibrium
depending in the entropy. In the range of parameter k we reached the depen-
dence of the quantities C and H, which is acts as a periodical driven force.

References

[1] C. Adami, N. T. Cerf, Physical complexity of symbolic sequences, Physica D:
Nonlinear Phenomena 137 (2000) 62–69. doi:10.1016/S0167-2789(99)00179-7 ⇒
284

[2] C. Anteneodo, A. R. Plastino, Some features of the López-Ruiz-Manchini-Calbet
(LMC) statistical measure of complexity, Physics Letters A 223 (1996) 348–354.
doi:10.1016/S0375-9601(96)00756-6 ⇒284

[3] J. N. Bandyopadhyay, A. Lakshminarayan, Entanglement production in cou-
pled chaotic systems: Case of the kicked tops Phys. Rev. E 69 (2004) 016201.
doi:10.1103/PhysRevE.69.016201 ⇒285, 291

[4] J. N. Bandyopadhyay, A. Lakshminarayan, Testing Statistical Bounds on
Entanglement Using Quantum Chaos Phys. Rev. Lett.89 (2002) 060402.
doi:10.1103/PhysRevLett.89.060402 ⇒284

[5] M. Basseville, Information: Entropies, Divergences et Mayennes, (IRISA) Pub-
lication Interne 1020 (1996) (Campus Universitaire de Beaulieu, 35042 Rennes
Cedex, France). ⇒287

[6] J. Bene, P. Szépfalusy, A. Fülöp Generic dynamical phase-transition
in chaotic Hamiltonian-systems Phys. Rev. A 40 (1989) 6719–6722.
doi:10.1103/physreva.40.6719 ⇒293

[7] D. Bensimon, L. P. Kadanoff, Extended chaos and disappearance of KAM tra-
jectories Physica D: Nonlinear Phenomena 13 (1984) 82–89. doi:10.1016/0167-
2789(84)90271-9 ⇒293

[8] P. M. Binder, N. Perry, Comment II on: Simple measure of complexity. Phys.
Rev. E 62 (2000) 2998–2999. ⇒288

[9] U. T. Bhosale and M. S. Santhanam, Signatures of bifurcation on quantum
correlations: Case of the quantum kicked top Phys. Rev. E 95 (2016) 012216.
doi:10.1103/PhysRevE.95.012216 ⇒284, 285, 291

https://doi.org/10.1016/S0167-2789(99)00179-7
https://doi.org/10.1016/S0375-9601(96)00756-6
https://doi.org/10.1103/PhysRevE.69.016201
https://doi.org/10.1103/PhysRevLett.89.060402
https://doi.org/10.1103/physreva.40.6719
https://doi.org/10.1016/0167-2789(84)90271-9
https://doi.org/10.1016/0167-2789(84)90271-9
https://doi.org/10.1103/PhysRevE.95.012216

Statistical complexity of the kicked top model considering chaos 299

[10] U. T. Bhosale, M. S. Santhanam Periodicity of quantum correlations in the quan-
tum kicked top, Phys. Rev. E 98 (2018) 052228. doi:10.1103/physreve.98.052228⇒285

[11] G. Boffetta, M. Cencini, M. Falcioni, A. Vulpiani, Predictability: a way to
characterize complexity, Phys. Reports 356 (2002) 367–474. doi:10.1016/S0370-
1573(01)00025-4 ⇒284

[12] J. Briet, P. Harremoes, Properties of classical and quantum Jensen-Shannon
divergence. Phys. Rev. A 79 (2009) 052311. ⇒288

[13] X. Calbet, R. López-Ruiz, Tendency towards maximum complexity in a
nonequlibrium isolated system, Phys. Rev. E 63 066116. ⇒289

[14] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, P. S. Jessen, Quantum
signatures of chaos in a kicked top Nature 461 (2009) 768. ⇒285

[15] B. V. Chirikov A universal instability of many-dimensional oscillator systems
Phys. Rep. 52 (1979) 265. ⇒293

[16] J. P. Crutchfield,D.P. Feldman,C.R. Shalizi Comment I on: simple measure of
complexity. Phys.Rev. E 62 (2000) 2996–2997. ⇒288

[17] J. P. Crutchfield, K. Young, Inferring statistical complexity, Phys. Rev. Lett. 63
(1989) 105. ⇒283, 284

[18] D. P. Feldman, J. P. Crutchfield, Measures of statistical complexity: Why? Phys.
Lett. A 238 (1998)244–252. ⇒284

[19] G. L. Ferri, F. Pennini, A. Plastino, LMC-complexity and various chaotic regime,
Physics Letters A 373 (2009) 2210–2214. ⇒284

[20] H. Fujisaki, T. Miyadera, A. Tanaka, Dynamical aspects of quantum entangle-
ment for weakly coupled kicked tops Phys. Rev. E 67, (2003)066201. ⇒285

[21] Á. Fülöp, Estimation of the Kolmogorov entropy in the generalized number
system, Annales Univ. Sci. Budapest Sect. Comp. 40 (2013) 245–256. ⇒295

[22] Á. Fülöp, Statistical complexity and generalized number system, Acta Univ.
Sapientiae, Informatica 6 (2) (2014) 230–251. ⇒284

[23] T. Geisel, G. Radons, J. Rubner, Kolmogorov-Arnold-Moser Barriers in the
Quantum Dynamics of Chaotic Systems Phys Rew. Letters 57 (1986) 2883. ⇒
293, 294

[24] S. Ghose, R. Stock, P. Jessen, R. Lal, A. Silberfarb, Chaos, entanglement, and
decoherence in the quantum kicked top Phys. Rev. A 78 (2008) 042318. ⇒284

[25] C. M. Gonzalez, H. A Larrondo, O. A. Rosso, Statistical complexity measure of
pseudorandom bit generators, Physica A 354 (2005) 281. ⇒284

[26] P. Grassberger, Toward a Quantitative Theory of self-generated complexity, Int.
Journ. Theor. Phys. 25 (1988) 907–938. ⇒283

[27] J. M. Greene A method for determining a stochastic transition J. Math. Phys.
20 (1979) 1183. ⇒293

[28] F. Haake, M. Kus, R. Scharf, Classical and quantum chaos for a kicked top Z.
Phys. B 65 (1987) 381. ⇒291

[29] F. Haake, D. L. Shepelyansky, The kicked rotator as a limit of the kicked top,
EPL (Europhys. Lett.) 5 (1988) 671. ⇒294

[30] A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphism,

https://doi.org/10.1103/physreve.98.052228
https://doi.org/10.1016/S0370-1573(01)00025-4
https://doi.org/10.1016/S0370-1573(01)00025-4

300 Á. Fülöp

Doklady of Russian Academy of Sciences, 124 (1959) 754–755. ⇒283
[31] A. M. Kowalski, M. T. Martin, A. Plastino, O. A. Rosso, M. Casas, Distances

in probability space and the statistical complexity setup, Entropy 13 (2011)
1055–1075. ⇒286

[32] S. Kullback, R. A Leibler, On information and sufficiency Ann. Math. Stat. 22
(1951)79—86. ⇒287

[33] M. Kumari, S. Ghose Quantum-classical correspondence in the vicinity of peri-
odic orbits Phys. Rev. E 97 (2018) 052209. ⇒284, 291

[34] A. Lakshminarayan, Entangling power of quantized chaotic systems Phys. Rev.
E 64 2001 036207. ⇒284

[35] P. W. Lamberti, M. T. Martin, A. Plastino, O. A. Rosso, Intensive entropic
nontriviality measure, Physica A 334 (2004) 119—131. ⇒284, 286, 287

[36] A. Lempel, J. Ziv On the complexity of finite sequences, IEEE Trans. Inform
Theory 22 (1976) 75–81. ⇒283, 284

[37] M. Lombardi, A. Matzkin, Entanglement and chaos in the kicked top Phys. Rev.
E 83, 2001 016207 (2011). ⇒284, 285

[38] R. López-Ruiz, H.L. Mancini, X. Calbet, A statistical measure of complexity,
Phys. Letters A 209 (1995) 321–326. ⇒284, 286, 287, 289

[39] M. Lovallo, V. Lapenna, L. Telesca, Transitionmatrix analysis of earthquake
magnitude sequences Chaos, soliton and fractals 24 (1) (2005) 33–43. ⇒284

[40] R. S. Mackay, J. D. Meiss, I. C. Shepelyanski Transport in Hamiltonian systems,
Physica 13D (1984) 55. ⇒293

[41] V. Madhok, V. Gupta, D. A. Trottier, S. Ghose, Signatures of chaos in the
dynamics of quantum discord, Phys. Rev. E 91 (2015) 032906. ⇒285, 291

[42] V. Madhok, S. Dogra, A. Lakshminarayan, Quantum correlations as probes of
chaos and ergodicity Opt. Commun.420(2018) 189. ⇒284

[43] M. T. Martin, A. Plastino, O. A. Rosso, Statistical complexity and disequilib-
rium, Physics Letters A 311 (2003) 126–132. ⇒284, 286, 287

[44] M. T. Martin, A. Plastino, O. A. Rosso, Generalized statistical complexity mea-
sures: Geometrical and analytical properties, Physica A 369 (2006) 439–462.⇒288

[45] P. A. Miller, S. Sarkar, Signatures of chaos in the entanglement of two coupled
quantum kicked tops Phys. Rev. E 60 (1999) 1542. ⇒284

[46] H. Ming-Lian, X. Xiao-Qiang, Mixedness of the N-qubit states with ex-
change symmetry Chinese Physics B 17, 10 (2008) 3559. doi:10.1088/1674-
1056/17/10/006 ⇒290

[47] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant,
R. Barends, B. Campbell, B. Chiaro et al., Ergodic dynamics and ther-
malization in an isolated quantum system Nat. Phys. 12 (2016) 1037–1041.
doi:10.1038/nphys3830 ⇒285, 291

[48] A. Piga, M. Lewenstein, J. Q. Quach Quantum chaos and entanglement in er-
godic and nonergodic systems, Phys. Rev. E 99 (2019) 032213. ⇒284

[49] A. R. Plastino, A. Plastino, Symmetries of the Fokker-Plank equation and Fisher-
Frieden arrow of time, Phys. Rev. E 54 (1996) 4423–4326. ⇒289

https://doi.org/10.1088/1674-1056/17/10/006
https://doi.org/10.1088/1674-1056/17/10/006
https://doi.org/10.1038/nphys3830

Statistical complexity of the kicked top model considering chaos 301

[50] O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino, M. A. Fuentes,
Distinguishing noise from chaos, Phys. Rev. Lett. 99 (2007) 154102.
doi:10.1103/PhysRevLett.99.154102 ⇒289

[51] O. A. Rosso, L. De Micco, H. A. Larrondo, M. T. Martin, A. Plastino, Gen-
eralized statistical complexity measure, Int. J. Bif. Chaos 20 (2010) 775—785.
doi:10.1142/S021812741002606X ⇒286, 289

[52] J. B. Ruebeck, J. Lin, and A. K. Pattanayak, Entanglement and its relationship
to classical dynamics Phys. Rev. E 95 (2017)062222. ⇒284, 285

[53] C.E. Shannon, The Mathematical Theory of Communication, Bell System Tech-
nical Journal, 27 (1948) 379–423, 623–656. ⇒286

[54] S.J. Shenker, L.P. Kadanoff Critical behavior of a KAM surface: I. Empirical
results J. Stat. Phys. 27 (1982) 631. ⇒293

[55] J.S. Shiner, M. Davison, P.T. Landsberg, Simple measure for complexity, Phys.
Rev. E 59(2)(1999)1459–1464. ⇒284, 288

[56] J.S. Shiner, M. Davison,P.T Landsberg, Replay to comments on: simple measure
for complexity. Phys. Rev. E 62 (2000) 3000–3003. ⇒288

[57] G. Stamatiou and D. P. K. Ghikas, Quantum entanglement dependence on bi-
furcations and scars in non-autonomous systems. The case of quantum kicked
top Phys. Lett. A 368 (2007) 206. ⇒284

[58] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys.
52 (1988) 479. ⇒284

[59] R. Wackerbauer, R.A. Witt, H. Atmanspacher, J. Kurths, H. Scheingraber, A
comparative classification of complexity-measures. Chaos Solitons Fractals 4
(1994) 133–173. ⇒284

[60] X. Wang, S. Ghose, B. C. Sanders, and B. Hu Entanglement as a signature of
quantum chaos Phys. Rev. E 70 (2004) 016217. ⇒284

[61] W.K. Wootters, Statistical distance and Hilbert space, Phys. Rev. D 23 (1981)
357. ⇒284, 287

[62] R. Zarum and S. Sarkar Quantum-classical correspondence of entropy contours
in the transition to chaos Phys. Rev. E 57 (1998) 5467. ⇒285

Received: November 8, 2020 • Revised: November 20, 2020

https://doi.org/10.1103/PhysRevLett.99.154102
https://doi.org/10.1142/S021812741002606X

Acta Univ. Sapientiae, Informatica 12, 2 (2020) 302–324

DOI: 10.2478/ausi-2020-0018

A review on suppressed fuzzy c-means

clustering models

László SZILÁGYI
Sapientia Hungarian University of Transylvania,

Cluj-Napoca, Romania
Dept. of Electrical Engineering, Târgu Mureş

Óbuda University, Budapest, Hungary
University Research, Innovation and Service Center

email: lalo@ms.sapientia.ro
szilagyi.laszlo@nik.uni-obuda.hu

László LEFKOVITS
Sapientia Hungarian University of Transylvania,

Cluj-Napoca, Romania
Dept. of Electrical Engineering, Târgu Mureş

email: lefkolaci@ms.sapientia.ro

David ICLANZAN
Sapientia Hungarian University of Transylvania,

Cluj-Napoca, Romania
Dept. of Mathematics-Informatics, Târgu Mureş

email: iclanzan@ms.sapientia.ro

Abstract. Suppressed fuzzy c-means clustering was proposed as an at-
tempt to combine the better properties of hard and fuzzy c-means cluster-
ing, namely the quicker convergence of the former and the finer partition
quality of the latter. In the meantime, it became much more than that. Its
competitive behavior was revealed, based on which it received two gen-
eralization schemes. It was found a close relative of the so-called fuzzy

Computing Classification System 1998: I.5.1, I.5.3
Mathematics Subject Classification 2010: 62H30
Key words and phrases: fuzzy c-means algorithm, suppressed fuzzy c-means algorithm,
image segmentation, data mining

302

http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
http://ekik.uni-obuda.hu
http://ekik.uni-obuda.hu
mailto:lalo@ms.sapientia.ro
szilagyi.laszlo@nik.uni-obuda.hu
http://www.umfst.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
mailto:lefkolaci@ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
mailto:iclanzan@ms.sapientia.ro

Suppressed fuzzy c-means clustering models 303

c-means algorithm with generalized improved partition, which could im-
prove its popularity due to the existence of an objective function it op-
timizes. Using certain suppression rules, it was found more accurate and
efficient than the conventional fuzzy c-means in several, mostly image
processing applications. This paper reviews the most relevant extensions
and generalizations added to the theory of fuzzy c-means clustering mod-
els with suppressed partitions, and summarizes the practical advances
these algorithms can offer.

1 Introduction

C-means clustering algorithms represent a subset of the objective function
optimizer clustering methods, which group a set of object data into a set of
predefined number of clusters. Chronologically, the first c-means clustering
algorithm is hard c-means (HCM) having its origins in the works of Steinhaus
[34] and McQueen [23], also known as k-means, which uses bivalent (crisp)
logic to represent the created partition, namely it assigns each object to a
single cluster. The fuzzy c-means (FCM) algorithm was introduced by Dunn
[7], and generalized by Bezdek [2]. FCM uses a probabilistic partition to create
the clusters: for any object, the sum of the fuzzy memberships with respect to
all clusters is always one.

Both HCM and FCM have certain limitations. HCM converges quickly but
it is very sensitive to initialization [1], and frequently gives mediocre partitions
because it gets stuck in local minima of the objective function. On the other
hand, FCM has a slower convergence, which becomes a problem when the
input data is huge. Despite these limitations, HCM and FCM are very popular
algorithms, having lots of applications in various research domains.

Several solutions have been proposed to reduce the runtime of the FCM algo-
rithm, without damaging the quality of the provided partition. Early solutions
generally turned to data approximation, e.g. Cannon [3] et al. and Kamel et al.
[18] implemented FCM using only computations on integer values. Cheng et
al. [6] deployed a random sampling of the input data, thus achieving a fast ap-
proximative FCM clustering. Later, data reduction schemes were introduced,
aggregating similar input data before proceeding to clustering. Eschrich et al.
[8] accelerated FCM this way by an order of magnitude. Data aggregation was
also employed in image segmentation: clustering gray intensity levels instead of
individual pixel intensities can speed up FCM by up to two orders of magnitude
[29]. Szilágyi et al. [31] extended this pixel aggregation scheme to color images,
thus achieving an efficient color reduction procedure. Alternately, Lázaro et

304 L. Szilágyi et al.

al. [21] proposed a parallel hardware implementation to FCM, and deployed it
successfully in signal processing. Kolen and Hutcheson [20] proposed an FCM
implementation that does not need to store the partition matrix, which is a
relevant step toward clustering unloadable amounts of data. Further remark-
able FCM solutions specialized for clustering huge data sets were introduced
by Hathaway and Bezdek [12], and Havens et al. [13].

FCM has a main governing parameter called fuzzy exponent, usually de-
noted by m, and generally constrained by m > 1. The value of m has a strong
impact on the fuzzyness of the created partition, and on the convergence speed
as well. Large values of m reduce the ability of FCM to distinguish the input
data: above a certain limit value all clusters merge together at the grand mean
of the input data. However, this limit value is unknown, it strongly depends
on the data. If m approaches its lower limit, the fuzzy partition tends toward
the crisp one. In the limit case m→ 1+, FCM becomes HCM.

Let us consider an FCM algorithm that uses fuzzy exponent m0. If we do
not like its convergence speed and the partition it makes, we may reduce
the fuzzy exponent to m (where 1 < m < m0), which is a step towards the
behavior of the HCM algorithm. The algorithm we obtain with this change
is still FCM. The suppressed fuzzy c-means (s-FCM) algorithm, introduced
by Fan et al. [9] in 2003, also makes a step towards HCM determined by the
so-called suppression rate α ∈ [0, 1], but a different way, without staying in the
bounds of the FCM algorithm. The s-FCM proved to converge in less iterations
than FCM when used with the same fuzzy exponent m, and it provided fine
partitions in all tested cases. However, the authors left several questions open,
including (1) how to choose the value of the suppression rate α, or (2) is s-
FCM an optimal algorithm? Since its introduction, the theory of the s-FCM
algorithm evolved a lot, some of the open questions were answered and further
open questions emerged. For example, Szilágyi et al. [28] explained the effect
of the partition suppression in a comparative study with competitive learning
[19], based on which later they introduced several generalized suppression rules
for the fuzzy partition [30]. Several other works [15, 16, 17, 24, 27, 36] proposed
minor modifications of the original s-FCM algorithm, providing parameter
selection schemes for the suppression rate, and successfully applying s-FCM
in various image processing tasks.

This paper proposes to provide an inventory of the theoretical advances re-
garding the s-FCM algorithm, and the successful applications that emerged
since its introduction. The rest of this paper is structured as follows: Section
2 enumerates the foundations of the s-FCM algorithm, the c-means clustering
models s-FCM relies on. Section 3 presents the details of the original s-FCM

Suppressed fuzzy c-means clustering models 305

algorithm, analyses its competitive behavior, and shows some of its general-
ization schemes. Section 4 explores the relation between suppressed c-means
clustering models and the so-called FCM with generalized improved partition,
giving some hints about the optimality of suppressed FCM clustering models.
Section 5 relates on suppression parameter setting techniques found in the
literature. Section 6 discusses the advantages and disadvantages of suppressed
FCM clustering algorithms, while Section 7 concludes this study.

2 Background

2.1 The fuzzy and hard c-means algorithms

The conventional c-means clustering algorithms partition a set of object data
into a predefined number of c clusters, through minimizing of a quadratic
objective function. The objective function of FCM is:

JFCM =

c∑
i=1

n∑
k=1

umik||xk − vi||
2 =

c∑
i=1

n∑
k=1

umikd
2
ik , (1)

where

� xk stands for the input data (k = 1, 2, . . . , n),

� vi represents the prototype (or centroid or representative element) of
cluster i (i = 1, 2, . . . , c),

� uik ∈ [0, 1] is the fuzzy membership function describing the degree to
which input vector xk belongs to cluster i,

� m > 1 is the fuzzy exponent (m = 2 in the version of Dunn [7]),

� and dik represents the distance between vector xk and cluster prototype
vi.

FCM uses a probabilistic partition, meaning that for any input vector xk
we have

c∑
i=1

uik = 1 . (2)

The objective function JFCM is minimized by alternately applying the opti-
mization of JFCM over {uik} with vi fixed, i = 1, 2, . . . , c, and the optimization

306 L. Szilágyi et al.

0 10 20 30 40 50 60 70 80 90 100

F
uz

zy
 m

em
be

rs
hi

ps

0.0

0.2

0.4

0.6

0.8

1.0
m=1.5

0 10 20 30 40 50 60 70 80 90 100

F
uz

zy
 m

em
be

rs
hi

ps

0.0

0.2

0.4

0.6

0.8

1.0
m=2.0

0 10 20 30 40 50 60 70 80 90 100

F
uz

zy
 m

em
be

rs
hi

ps

0.0

0.2

0.4

0.6

0.8

1.0
m=3.0

0 10 20 30 40 50 60 70 80 90 100
F

uz
zy

 m
em

be
rs

hi
ps

0.0

0.2

0.4

0.6

0.8

1.0
m=6.0

Figure 1: Fuzzy membership functions provided by FCM in a 1D problem,
with random integer input values between 0 and 100. In case of m = 6, the
peak of the membership functions also reach the maximum value 1, but not
at integer valued inputs.

of JFCM over {vi} with uik fixed, i = 1, 2, . . . , c; k = 1, 2, . . . , n [2]. The opti-
mization formulas are deduced from the zero gradient conditions of JFCM and
Lagrange multipliers, and obtained as follows:

u?ik =
d
−2/(m−1)
ik

c∑
j=1

d
−2/(m−1)
jk

∀ i = 1, 2, . . . , c
∀k = 1, 2, . . . , n

, (3)

v?i =

n∑
k=1

umikxk

n∑
k=1

umik

∀ i = 1, 2, . . . , c . (4)

According to the optimization scheme of the FCM, Eqs. (3) and (4) are
alternately applied, until cluster prototypes converge.

HCM is a limit case of FCM, which usesm→ 1+, and thus the memberships
are obtained by the winner-takes-all rule:

u?ik =

{
1 if i = arg min

j
{djk, j = 1, . . . , c}

0 otherwise
. (5)

Suppressed fuzzy c-means clustering models 307

The propotype of each cluster in HCM is the average of the input vectors
assigned to it, according to Eq. (4) using m = 1.

2.2 FCM versions with improved partition

An undesired property of the fuzzy memberships provided by FCM is their
multimodality. Figure 1 presents some membership functions obtained by FCM
in a single dimension problem with c = 4 clusters at various values of the fuzzy
exponent. Each of the four fuzzy membership functions has a maximum at the
cluster prototype, having the value of 1. Because of the probabilistic constraint,
all other fuzzy membership functions are zero at these points. But, for example
the fuzzy membership function represented in blue can have elevated values
for input data situated very far from the cluster prototype. This is the multi-
modality, which gets stronger as the value of the fuzzy exponentm grows. So it
is obvious that the multimodality gets suppressed if we reduce the value of m.
Alternately, intending to suppress the multimodality, Höppner and Klawonn
[14] proposed the so-called FCM with improved partition (IFP-FCM), which
adds a rewarding term to the objective function of FCM:

JIFP−FCM =

c∑
i=1

n∑
k=1

µmikd
2
ik −

n∑
k=1

ak

c∑
i=1

(µik − 1/2)
2 , (6)

where parameters denoted by ak are supposed to be positive numbers. The
second term pushes the fuzzy membership values uik, i = 1, 2, . . . , c; k =
1, 2, . . . , n towards the limits situated at 0 and 1, while preserving the prob-
abilistic constraint. A generalized version of this algorithm (GIFP-FCM) was
introduced by Zhu et al. [40], by replacing the rewarding term as follows:

JGIFP−FCM =

c∑
i=1

n∑
k=1

µmikd
2
ik +

n∑
k=1

ak

c∑
i=1

µik(1− µ
m−1
ik) . (7)

The partition update formula derived by zero gradient conditions of the ob-
jective function is

µ?ik =
(d2ik − ak)

−1/(m−1)

c∑
j=1

(d2jk − ak)
−1/(m−1)

∀ i = 1, 2, . . . , c
∀k = 1, 2, . . . , n

. (8)

Fuzzy membership functions obtained with Eq. (8) can be interpreted as FCM
partition memberships obtained by applying virtually reduced distances be-
tween cluster prototypes and input data. Each distance dik is replaced by

308 L. Szilágyi et al.

δik =
√
d2ik − ak. The authors also proposed a formula for ak:

ak = ωmin
i
{d2ik, i = 1, 2, . . . , c} , (9)

where ω ∈ [0.9, 0.99]. Setting ω = 1 would reduce GIFP-FCM to HCM, while
ω = 0 to FCM.

It is important to remark that both of the above improved clustering models
kept FCM’s prototype update formula given in Eq. (4), but applied to fuzzy
membership functions µik instead of uik, as described in Eq. (11).

Lately, these improved FCM clustering models were involved in several ap-
plications [4, 5].

3 The suppressed FCM algorithm

3.1 The original suppressed FCM

The suppressed fuzzy c-means algorithm was introduced by Fan et al. [9],
declaring the goal to propose an algorithm with better convergence speed and
reduced execution time than FCM, but providing the same partition quality.
The s-FCM algorithm manipulates the optimization scheme of FCM, by in-
serting an extra step in each iteration, between partition updating via Eq. (3)
and prototype updating via Eq. (4). This new step deforms the partition given
by FCM according to the following rule:

µik =

{
1− α+ αuik if i = arg max

j
{ujk}

αuik otherwise
, (10)

where µik (i = 1, 2, . . . , c; k = 1, 2, . . . , n) represents the fuzzy memberships
obtained after suppression. The cluster prototype update formula of s-FCM
becomes:

v?i =

n∑
k=1

µmikxk

n∑
k=1

µmik

∀ i = 1, 2, . . . , c . (11)

Just like in case of competitive clustering [19], s-FCM sets up a competition
for each input vector xk in each iteration, which is won by the cluster whose
prototype is situated at shortest distance from xk. Fuzzy memberships of xk
with respect to any non-winner cluster is proportionally suppressed (µik =
αuik), while all suppressed parts are given to the winner cluster to preserve

Suppressed fuzzy c-means clustering models 309

Figure 2: Shortened distance caused by suppression.

the probabilistic constraint: µwk = 1− α+ αuwk. Let w stand for the winner
class index in the current competition for input vector xk. Actually it should
be denoted by wk, as it is specific to input vector xk, but for the sake of
simplicity, the index of w is neglected in all formulas.

In the original article that introduced s-FCM, Fan et al. did not give any
recipe or hint how to choose a suppression rate that would be optimal in any
sense, or suitable for general or any specific purpose. They set the suppression
rate to the middle of its range (α = 0.5). Fan et al. validated s-FCM with
some toy problems and found it insensitive to the fuzzy exponent m [9].

3.2 Suppression, regarded as a competition

Szilágyi et al. [28] showed that the proportional suppression of the FCM par-
tition, the multiplication of all non-winner fuzzy memberships with a sup-
pression rate α ∈ [0, 1], is mathematically equivalent with a reduction of the
distance between the input vector and the closest cluster prototype. In any
stage of the algorithm at partition updating, for any input vector xk and its
winner class with index w, there exists a virtually reduced distance δwk < dwk,
which fulfils all partition update formulas of s-FCM, namely:

µwk =
δ

−2
m−1

wk

δ
−2
m−1

wk +
c∑

j=1,j 6=w
d

−2
m−1

jk

= 1− α+ α
d

−2
m−1

wk
c∑
j=1

d
−2
m−1

jk

(12)

310 L. Szilágyi et al.

Suppression rate ,
0.0 0.2 0.4 0.6 0.8 1.0

Le
ar

ni
ng

 r
at

e
2

0.0

0.2

0.4

0.6

0.8

1.0
u

w
=0.8

m=1.2
m=1.5
m=2.0
m=3.0
m=4.0

(a) Suppression rate ,
0.0 0.2 0.4 0.6 0.8 1.0

Le
ar

ni
ng

 r
at

e
2

0.0

0.2

0.4

0.6

0.8

1.0
m=2

u
w

=0.5

u
w

=0.6

u
w

=0.7

u
w

=0.8

u
w

=0.9

(b) Winner fuzzy membership u
w

0.0 0.2 0.4 0.6 0.8 1.0

Le
ar

ni
ng

 r
at

e
2

0.0

0.2

0.4

0.6

0.8

1.0
,=0.5 m=1.2

m=1.5
m=2.0
m=3.0
m=4.0

(c)

Figure 3: Some characteristics of the s-FCM algorithm: (a) learning rate η
plotted against suppression rate α in case of uw = 0.8, at various constant
values of fuzzy exponent m; (b) learning rate η plotted against suppression
rate α in case ofm = 2, at various constant values of winner fuzzy membership
uw; (c) learning rate η plotted against winner fuzzy membership uw in case
of α = 0.5, at various constant values of fuzzy exponent m.

and

µik =
d

−2
m−1

ik

δ
−2
m−1

wk +
c∑

j=1,j 6=w
d

−2
m−1

jk

= α
d

−2
m−1

ik
c∑
j=1

d
−2
m−1

jk

∀i 6= w . (13)

This virtual distance reduction is exhibited in Fig. 2. For the sake of clarity
we need to remark that although the competition among clusters seems to be
the same as in case of conventional competitive algorithms, these algorithms
radically differ in the sense that conventional competitive algorithms do not
work with quadratic objective functions [26].

Szilágyi et al. [28] also defined a quasi learning rate η of the s-FCM algo-
rithm, in a similar way to the learning rate of competitive algorithms, and
deduced its formula:

η(m,α, uwk) ≡ 1−
δwk
dwk

= 1−

(
1+

1− α

αuwk

) 1−m
2

, (14)

where uwk stands for the winner fuzzy membership value of vector xk, obtained
without suppression. The learning rate η depends on both parameters of the
s-FCM algorithm (fuzzy exponent m and suppression rate α), but also on the
winner fuzzy membership function (uwk) of the given input vector xk. This

Suppressed fuzzy c-means clustering models 311

means that η can hardly be a constant in any s-FCM scenario, unless defined
as such.

3.3 Generalized suppressed FCM algorithm

The FCM algorithm with generalized suppression (gs-FCM) was introduced
by Szilágyi et al. [30]. The s-FCM algorithm, as proposed by Fan et al. [9],
uses a constant suppression rate α. There are three possible ways to give the
suppression rate some variation:

1. Time variant suppression means to employ a suppression rate αt that
changes according to the iteration counter t. This sort of variation was
used for example by Hung et al. [15].

2. Context sensitive or data sensitive suppression means to introduce time
invariant rules of suppression, which provide dedicated suppression rate
αk for each input vector xk, depending on the current distances dik,
k = 1, 2, . . . , n.

3. Time and context variant suppression means to combine both previous
variation versions in a unique suppression rule.

Szilágyi et al. [30] focused on context sensitive suppression rules only. Aiming
at achieving quicker convergence they did not consider changing the suppres-
sion rule in every iteration. Their suppression rules were define according to
two different schemes, presented in the following sections.

3.3.1 Learning rate defined as a function of the winner fuzzy mem-
bership

The first generalization scheme of the s-FCM algorithm uses a learning rate
defined as a function of winner fuzzy membership uw: η = f(uw), where f :
[0, 1]→ [0, 1] is a continuous function. Using Eq. (14), the context dependent
suppression rate generally becomes

αk =
[
1− uw + uw(1− f(uw))

2
1−m

]−1
. (15)

Some special cases using the above definition are:

� θ-type gs-FCM (gsθ-FCM) that uses constant learning rate η = f(uw) =
θ with parameter θ ∈ [0, 1], which leads to suppression rate

αk =
[
1− uw + uw(1− θ)

2
1−m

]−1
, (16)

312 L. Szilágyi et al.

Definition η vs. uw αk vs. uw

Original
s − FCM
αk = α
α ∈ [0, 1]

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

Le
ar

ni
ng

 r
at

e
2

0

0.2

0.4

0.6

0.8

1

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

S
up

pr
es

si
on

 r
at

e
,

k

0

0.2

0.4

0.6

0.8

1

,=0.1 ,=0.3 ,=0.5 ,=0.7 ,=0.9

gsθ−FCM
η = θ
θ ∈ [0, 1]

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

Le
ar

ni
ng

 r
at

e
2

0

0.2

0.4

0.6

0.8

1

3=0.1 3=0.3 3=0.5 3=0.7 3=0.9

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

S
up

pr
es

si
on

 r
at

e
,

k

0

0.2

0.4

0.6

0.8

1

gsρ−FCM
η = 1− ρuw
ρ ∈ [0, 1]

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

Le
ar

ni
ng

 r
at

e
2

0

0.2

0.4

0.6

0.8

1

;=0.2
;=0.5
;=0.8

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

S
up

pr
es

si
on

 r
at

e
,

k

0

0.2

0.4

0.6

0.8

1

m=2 m=3 m=4

gsβ−FCM

η = 1− u
β/(1−β)
w

β ∈ [0, 1)

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

Le
ar

ni
ng

 r
at

e
2

0

0.2

0.4

0.6

0.8

1

-=0.1
-=0.3
-=0.5
-=0.7
-=0.9

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

S
up

pr
es

si
on

 r
at

e
,

k

0

0.2

0.4

0.6

0.8

1

Table 1: Original s-FCM and generalized s-FCM algorithms defined with the
first scheme (η = f(uw)): definitions and context dependent suppression rates.

Suppressed fuzzy c-means clustering models 313

Definition η vs. uw αk vs. uw

gsτ−FCM
µw = uw+τ

1+uwτ

τ ∈ [0, 1]

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

Le
ar

ni
ng

 r
at

e
2

0

0.2

0.4

0.6

0.8

1

==0.1 ==0.3 ==0.5 ==0.7 ==0.9

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

S
up

pr
es

si
on

 r
at

e
,

k

0

0.2

0.4

0.6

0.8

1

gsσ−FCM
µw = uσw
σ ∈ [0, 1]

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

Le
ar

ni
ng

 r
at

e
2

0

0.2

0.4

0.6

0.8

1
<=0.1 <=0.3 <=0.5 <=0.7 <=0.9

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

S
up

pr
es

si
on

 r
at

e
,

k

0

0.2

0.4

0.6

0.8

1

gsξ−FCM
µw = (sin πuw

2)ξ

ξ ∈ [0, 1]

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

Le
ar

ni
ng

 r
at

e
2

0

0.2

0.4

0.6

0.8

1

9=0.1
9=0.3
9=0.5
9=0.7
9=0.9

Winner fuzzy membership u
w

0 0.2 0.4 0.6 0.8 1

S
up

pr
es

si
on

 r
at

e
,

k

0

0.2

0.4

0.6

0.8

1

Table 2: Generalized s-FCM algorithms defined with the second scheme (µw =
g(uw)): learning rates and context dependent suppression rates.

� ρ-type gs-FCM (gsρ-FCM) that uses learning rate linearly decreasing
with the winner fuzzy membership η = f(uw) = 1−ρuw with parameter
ρ ∈ [0, 1], which leads to suppression rate

αk =

[
1− uw + ρ

2
1−mu

3−m
1−m
w

]−1
, (17)

314 L. Szilágyi et al.

� β-type gs-FCM (gsβ-FCM) that uses learning rate decreasing with the
winner fuzzy membership according to the exponential rule η = f(uw) =

1− u
β
1−β
w with parameter β ∈ [0, 1), which leads to suppression rate

αk =

[
1+ uw

(
u

2β
(1−m)(1−β)
w − 1

)]−1
. (18)

3.3.2 Direct formula between µw and uw

The second generalization scheme is defined by a direct formula between the
winner fuzzy membership values before and after suppression. In a general
form, it is defined as µw = g(uw) with g : [0, 1] → [0, 1] and g(x) ≥ x

∀x ∈ [1/c, 1]. Using Eq. (14), the context dependent suppression rate gen-
erally becomes

αk =
1− g(uw)

1− uw
∀uw ∈ [1/c, 1) . (19)

For the special case when uw = 1, the suppression rate is irrelevant, as non-
winner memberships are zero valued, so there is nothing to suppress. Some
special cases using the above definition are:

� τ-type gs-FCM (gsτ-FCM) that is inspired by the relativistic speed ad-
dition formula µw = (uw+τ)/(1+uwτ) with parameter τ ∈ [0, 1], which
leads to suppression rate

αk =
1− τ

1+ uwτ
∀uw ∈ [1/c, 1] , (20)

� σ-type gs-FCM (gsσ-FCM) that uses the relation µw = uσw with param-
eter σ ∈ [0, 1], which leads to suppression rate

αk =
1− uσw
1− uw

∀uw ∈ [1/c, 1) , (21)

� ξ-type gs-FCM (gsξ-FCM) that uses learning rate decreasing with the
winner fuzzy membership according to the rule µw = (sinπuw/2)

ξ with
parameter ξ ∈ [0, 1], which leads to suppression rate

αk =
1−

(
sin πuw

2

)ξ
1− uw

∀uw ∈ [1/c, 1) . (22)

Suppressed fuzzy c-means clustering models 315

Algorithm 1: The gs-FCM algorithm

Data: Input data xk, k = 1, 2, . . . , n
Data: Fuzzy exponent m > 1, suppression scheme and parameter,

limit ε
Result: Cluster prototypes vi, i = 1, 2, . . . , c
Initialize cluster prototypes vi, i = 1, 2, . . . , c with random

input vectors, vi 6= vj ∀i 6= j
repeat

for k = 1, 2, . . . , n do
Compute fuzzy memberships uik, i = 1, 2, . . . , c with Eq.

(3).
Compute suppression rate αk, according to the chosen

suppression scheme and parameter value with one of

the Eqs. (16)-(22).
Compute suppressed fuzzy memberships µik, i = 1, 2, . . . , c
with Eq. (10), using suppression rate αk.

end
for i = 1, 2, . . . , c do

v
(old)
i ← vi

Update cluster prototype vi with Eq. (11).
end

until
c∑
i=1

||v
(old)
i − vi|| < ε;

3.3.3 The gs-FCM algorithm

The previous sections presented six generalized suppression rules, each regu-
lated by a suppression parameter that can take an infinite number of different
values. A limited number of these parameter values (up to two) reduce the
generated algorithm to either FCM or HCM, while all other value define new
clustering algorithms, different from HCM and FCM, or the original s-FCM.
The suppression rules introduced above are summarized in Tables 1 and 2.
Anyone can define further suppression rules by following the recipe given in
Sections 3.3.1 and 3.3.2, by proposing a function η = f(uw) or µw = g(uw),
different from the ones exhibited in Tables 1 and 2. The gs-FCM algorithm is
summarized in Algorithm 1.

316 L. Szilágyi et al.

4 The relation between s-FCM and GIFP-FCM clus-
tering models

Now let us investigate the similarities and differences in the main loop of
gs-FCM variants (let us call in this section the original s-FCM a variant of
gs-FCM) and GIFP-FCM:

� All gs-FCM variants and GIFP-FCM use the same formula to update
the cluster prototypes, given in Eq. (11).

� Compared to the original FCM, all gs-FCM variants and GIFP-FCM use
modified dik distances. GIFP-FCM changes all distances by subtracting
the same amount from the square of all dik values, i = 1, 2, . . . , c, while
gs-FCM variants reduce only the shortest distance dwk to δwk = dwk(1−
ηk), where ηk is the learning rate applied to vector xk.

� GIFP-FCM makes two optimal steps in each loop, by executing its par-
tition update and cluster prototype update formula. However, it changes
the cost function in every loop by establishing the winner cluster for each
vector xk and adjusting the ak values accordingly. Szilágyi [32] showed
that gs-FCM variants can act the same way, the only difference is in the
ak terms, which are changed to sik and thus made dependent on cluster
index i.

Szilágyi [32] introduced a unification theory for gs-FCM variants and GIFP-
FCM. The new clustering model has the objective function very similar to the
one of GIFP-FCM, but the so-called rewarding term, now denoted by sik, has
a double indexing.

JU =

c∑
i=1

n∑
k=1

umikd
2
ik +

n∑
k=1

sik

c∑
i=1

uik(1− u
m−1
ik) . (23)

Obviously, we can make this clustering model act like GIFP-FCM by setting
sik = ak ∀i = 1, 2, . . . , c, where ak is the rewarding term of GIFP-FCM defined
in Eq. (9).

On the other hand, if we wish this new clustering model act like a certain
gs-FCM variant, it is necessary to set:

sik =

{
d2wk(1− η

2
k) if i = w ≡ arg min

j
{djk, j = 1, . . . , c}

0 otherwise
, (24)

Suppressed fuzzy c-means clustering models 317

Algorithm Parameter Formula of swk

s-FCM α ∈ [0, 1] d2wk

[
1−

(
αuw

1−α+αuw

)m−1
]

gsθ-FCM θ ∈ [0, 1] d2wkθ(2− θ)

gsρ-FCM ρ ∈ [0, 1] d2wk(1− ρ
2u2w)

gsβ-FCM β ∈ [0, 1) d2wk

(
1− u

2β/(1−β)
w

)
gsτ-FCM τ ∈ [0, 1] d2wk

[
1−

(
uw(1−τ)
uw+τ

)m−1
]

gsσ-FCM σ ∈ [0, 1]

 d2wk

[
1−

(
uw−uσ+1w

uσw−uσ+1w

)m−1
]

if uw < 1

0 if uw = 1

gsξ-FCM ξ ∈ [0, 1]

 d2wk

[
1−

(
uw
1−uw

((sin πuw
2)−ξ − 1)

)m−1
]

if uw < 1

0 if uw = 1

Table 3: The definition of swk rewarding term for gs-FCM algorithm variants,
uw stands for the highest fuzzy membership provided by FCM for the input
vector xk.

where ηk represents the learning rate applied to the current vector xk according
to the chosen suppression scheme, suppression parameter, and dik distances
with i = 1, 2, . . . , c. Table 3 exhibits swk rewarding terms for various gs-FCM
algorithms.

Consequently we can affirm that s-FCM and gs-FCM are optimal algorithms
to the same extent as GIFP-FCM, as they all optimize JU. The partition
update formula of the unified clustering model is:

µ?ik =
(d2ik − sik)

−1/(m−1)

c∑
j=1

(d2jk − sjk)
−1/(m−1)

∀ i = 1, 2, . . . , c
∀k = 1, 2, . . . , n

, (25)

while the cluster prototype update formula is the one given in Eq. (11). The
unified clustering algorithm that integrates all suppressed clustering models
and the GIFP-FCM algorithm is exhibited in Algorithm 2. This version of the
algorithm is not the recommended one to implement GIFP-FCM or gs-FCM
model. It is only the proof of their similar structure. GIFP-FCM runs optimally
as described in [40], while gs-FCM variants as described in Algorithm 1.

318 L. Szilágyi et al.

Algorithm 2: The unified algorithm

Data: Input data xk, k = 1, 2, . . . , n
Data: Fuzzy exponent m > 1, limit ε, the chosen algorithm and its

parameter (one of {α, θ, ρ, β, τ, σ, ξ,ω})
Result: Cluster prototypes vi, i = 1, 2, . . . , c
Initialize cluster prototypes vi, i = 1, 2, . . . , c with random

input vectors, vi 6= vj ∀i 6= j
repeat

for k = 1, 2, . . . , n do
Find the index of the winner cluster

w = arg min
i
{dik, i = 1, 2, . . . , c}.

Compute fuzzy memberships uik, i = 1, 2, . . . , c with Eq.

(3).
if algorithm is GIFP-FCM then

sik ← ωd2wk, i = 1, 2, . . . , c
end
else

Set sik values according to Eq. (24) and Table 3.

end
Compute suppressed fuzzy memberships µik, i = 1, 2, . . . , c
with Eq. (25).

end
for i = 1, 2, . . . , c do

v
(old)
i ← vi

Update cluster prototype vi with Eq. (11).
end

until
c∑
i=1

||v
(old)
i − vi|| < ε;

5 Parameter selection

Fan et al. [9] did not give any recipe how to choose the value of the suppression
rate α. They set the suppression rate to the middle of its definition interval,
to be well in between HCM and FCM. Several further works, including the
gs-FCM clustering models of Szilágyi et al. [28, 30], set the parameter values
experimentally and showed that there are various settings that make s-FCM
and gs-FCM models work better than FCM or HCM in various applications.

Suppressed fuzzy c-means clustering models 319

However, there are some application papers [15, 16, 17, 24, 27, 36] in the
literature that give recipes for the choice of the suppression parameter.

5.1 Constant suppression rate based on input data

Fan et al. [10] proposed a constant suppression rate based on the distribution
of the input data, defined as

α =

n∑
j=1

n∑
r=1

||xj − xr||

n
n∑
j=1

||xj − x||

− 1 , (26)

where x stands for the grand mean of the input vectors: x = n−1
∑n
i=1 xi. The

authors proved that the value of α defined by Eq. (26) is always in the interval
[0, 1]. The value of α should be evaluated once as an initialization step of the
algorithm, and applied as constant compression rate through all optimization
loops. Obviously, this only works with the original s-FCM algorithm, not with
gs-FCM models.

5.2 Time variant suppression rate based on partition entropy

Li et al. [22] proposed a time variant suppression rate based on the entropy of
the partition provided by the FCM algorithm, defined with the formula

αLi =
1

log c

(
−
1

n

c∑
i=1

n∑
k=1

uik log(uik)

)
. (27)

This formula is evaluated in every optimization loop, after having applied the
partition update formula given in Eq. (3) and before starting the partition
suppression using Eq. (10). The authors found their method successful in im-
age segmentation problems, despite this entropy based suppression rate fully
suppresses the crisp partition and applies no change in the completely am-
biguous situation described by uik = 1/c ∀i = 1, 2, . . . , c and ∀k = 1, 2, . . . , n.
In our opinion, it would be more useful setting the suppression rate to 1−αLi.

5.3 Time variant suppression rate based on current cluster
prototypes

There is a set of works that apply time variant suppression rate, which changes
from iteration to iteration according to the current cluster prototypes. As

320 L. Szilágyi et al.

prototypes converge, the suppression rate also stabilizes. The foundation of all
these recipes is the formula of the Xie-Beni cluster validity index [38]:

XB =

c∑
i=1

n∑
k=1

u2ik||xk − vi||
2

n
(
min1≤i 6=j≤c ||vi − vj||2

) , (28)

which indicates fine cluster quality at low values of XB. Knowing that well sep-
arable clusters are best partitioned by HCM, while FCM handles overlapping
clusters better, it seems a good idea to apply stronger suppression when the
minimum distance between cluster prototypes is higher. In this order, Hung
et al. [15] proposed a time variant suppression rate defined as

α = exp

(
−
1

β
min

1≤i 6=j≤c
||vi − vj||

2

)
, (29)

where

β =
1

n

n∑
j=1

||xj − x||2 , (30)

and x = n−1
∑n
i=1 xi is the grand mean of input vectors. In the application

of Hung et al. [15], α is evaluated at the beginning of each optimization loop,
and applied to suppress the fuzzy memberships provided by the FCM partition
update formula. This suppression was found successful in an ophthalmology
image segmentation problem, similarly to the alternative one introduced by
the same authors in [16]:

α =

(
1+ min

1≤i6=j≤c

||vi − vj||
2

β

)−1

, (31)

that also uses the formula of β given in Eq. (30). Tsai et al. [36] also introduced
a kernel-based suppressed FCM version, using the suppression formula derived
from Eq. (29).

A very similar formulation of the suppression rate formula was given by
Nyma et al. [24]:

α = exp

(
− min
1≤i 6=j≤c

||vi − vj||
2

m

)
, (32)

wherem is the fuzzy exponent. In spite of being applied successfully in medical
image segmentation by the authors, we find this an ill-posed formula, as it
advises a different suppression rate if we replace all input vectors by a constant
κ 6= 1.

Suppressed fuzzy c-means clustering models 321

6 Discussion

All fuzzy c-means algorithms with suppressed or improved partitions use an
extra parameter compared to FCM, which regulates the alteration of the FCM
partition. In case of the GIFP-FCM algorithm we cannot talk about suppres-
sion, but the effect is similar: although the parameter ω is recommended to be
chosen from the interval [0.9, 0.99], we need to remark that ω = 1 reduces the
GIFP-FCM to HCM, while ω = 0 means fully FCM behavior for GIFP-FCM.
Some of the suppression schemes, namely the original s-FCM and the gs-FCM
algorithm of type σ act like HCM when the value of the parameter (α, σ) is 0,
and as FCM at the other extremum 1. On the other hand, the gs-FCM algo-
rithms of type θ, β, τ act like FCM when the value of the parameter (θ, β, τ)
is 0, and as HCM at the other extremum 1. Any other value of the suppression
parameters defines a clustering model that is different from HCM or FCM of
any fuzzy exponent m > 1.

Suppressed FCM clustering algorithms have a moderate popularity, because
they are not optimal, as they do not minimize the objective function of FCM
or any other known objective function. The unification theory with the GIFP-
FCM algorithm revealed that all suppressed clustering models can be consid-
ered optimal to the same extent as GIFP-FCM. Despite this disadvantage,
several applications showed that s-FCM and gs-FCM clustering models can
perform better than HCM or FCM, and run in less time than FCM. Although
the quality of the clustering outcome should be characterized by cluster va-
lidity indexes (CVI), several image processing applications showed that sup-
pressed FCM clustering models can capture better the underlying structure
of the input data than FCM or HCM, leading to better segmentation quality.
Szilágyi et al. [30] employed the Xie-Beni [38], the extended Xie-Beni [25],
and the Fukuyama-Sugeno [11] CVIs to prove the ability of gs-FCM models to
produce valid partitions. The authors also showed that suppressed FCM clus-
tering is substantially less sensitive to imbalanced cluster sizes. Hung et al.
[15, 16] deployed suppressed FCM in an ophthalmologic MRI image segmen-
tation problem and found it more effective than the classical FCM. Zhao et
al. [39] reported improved image processing accuracy achieved via suppress-
ing the FCM partition in a general purpose image processing environment.
Improvement in performance against the clock achieved via suppressing the
FCM partition were reported by Szilágyi et al. [31, 33] in a color reduction
application. In a very recent paper, Wu et al. [37] combined the suppressed
FCM with the so-called picture fuzzy clustering method [35] that has type

322 L. Szilágyi et al.

II fuzzy background. The resulting clustering model performed better than
previous methods in terms of both accuracy and efficiency.

7 Conclusion

This paper presents the short history of the suppressed fuzzy c-means algo-
rithm, focusing on the most important theoretical advances and providing a
short summary of practical achievements. Applying suppressed partitions in
clustering models derived from fuzzy c-means currently have a moderate pop-
ularity, which may rise in the future due to the recent successful extensions
and applications.

Acknowledgements

This study was supported in part by the Institute for Research Programs of
Sapientia University. The work of L. Szilágyi was supported by the ÚNKP
20-5 New National Excellence Program of the Ministry of Human Capacities
of Hungary, contract no. OE-RH, 1109/3, 2020. L. Szilágyi is Bolyai Research
Fellow of the Hungarian Academy of Sciences.

References

[1] D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, Proc.
18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA
USA, 2007, pp. 1027–1035. ⇒303

[2] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms,
Plenum, New York (1981) ⇒303, 306

[3] R. L. Cannon, J. V. Dave, J. C. Bezdek, Efficient implementation of the fuzzy c-
means clustering algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 8 (1986)
248–255. ⇒303

[4] A. Celikyilmaz, I. B. Türkşen, Enhanced fuzzy system models with improved
fuzzy clustering algorithm, IEEE Trans. Fuzzy Syst. 16 (2008) 779–794. ⇒308

[5] A. Celikyilmaz, I. B. Türkşen, R., Aktaş, M. M. Doganay, N. B. Ceylan, Increas-
ing accuracy of two-class pattern recognition with enhanced fuzzy functions,
Expert Syst. Appl. 36 (2009) 1337–1354. ⇒308

[6] T. W. Cheng, D. B. Goldgof, L. O. Hall, Fast fuzzy clustering, Fuzzy Sets Syst.
93 (1998) 49–56. ⇒303

[7] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting
compact well separated clusters, J. Cybern. 3 (1974) 32–57. ⇒303, 305

[8] S. Eschrich, J. Ke, L. O. Hall, D. B. Goldgof, Fast accurate fuzzy clustering
through data reduction, IEEE Trans. Fuzzy Syst. 11 (2003) 262–270 ⇒303

https://www.computer.org/csdl/journal/tp
https://cis.ieee.org/publications/t-fuzzy-systems
https://www.journals.elsevier.com/expert-systems-with-applications
https://www.journals.elsevier.com/fuzzy-sets-and-systems
https://cis.ieee.org/publications/t-fuzzy-systems

Suppressed fuzzy c-means clustering models 323

[9] J. L. Fan, W. Z. Zhen, W. X. Xie, Suppressed fuzzy c-means clustering algorithm.
Patt. Recogn. Lett. 24 (2003) 1607–1612. ⇒304, 308, 309, 311, 318

[10] J. L. Fan, J. Li, A fixed suppressed rate selection method for suppressed fuzzy
c-means clustering algorithm, Appl. Math. 5 (2014) 1275–1283. ⇒319

[11] Y. Fukuyama, M. Sugeno, A new method of choosing the number of clusters for
the fuzzy c-means method (in Japanese), Proc. 5th Fuzzy Systems Symposium,
Japan, 1989, pp. 247–250. ⇒321

[12] R. J. Hathaway, J. C. Bezdek, Extending fuzzy and probabilistic clustering to
very large data sets. Comput. Stat. Data Anal. 51 (2006) 215–234. ⇒304

[13] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, M. Palaniswami, Fuzzy c-
means algorithms for very large data, IEEE Trans. Fuzzy Syst. 20 (2012) 1130–
1146. ⇒304

[14] F. Höppner, F. Klawonn, Improved fuzzy partition for fuzzy regression models,
Int. J. Approx. Reason. 5 (2003) 599–613. ⇒307

[15] W. L. Hung, M. S. Yang, D. H. Chen, Parameter selection for suppressed fuzzy
c-means with an application to MRI segmentation, Patt. Recogn. Lett. 27 (2006)
424–438. ⇒304, 311, 319, 320, 321

[16] W. L. Hung, Y. C. Chang, A modified fuzzy c-means algorithm for differentiation
in MRI of ophtalmology, Int’l Conference on Modeling Decisions for Artificial
Intelligence, Tarragona, Spain, LNCS 3885 (2006) 340–350. ⇒ 304, 319, 320,
321

[17] W. L. Hung, D. H. Chen, M. S. Yang, Suppressed fuzzy-soft learning vector
quantization for MRI segmentation, Artif. Intell. Med. 52 (2011) 33–43. ⇒304,
319

[18] M. S. Kamel, S. Z. Selim, New algorithms for solving the fuzzy clustering prob-
lem, Patt. Recogn. 27 (1994) 421–428. ⇒303

[19] T. Kohonen, The self-organizing map, Proc. IEEE 78 (1990) 1474–1480. ⇒304,
308

[20] J. F. Kolen, T. Hutcheson, Reducing the time complexity of the fuzzy c-means
algorithm. IEEE Trans. Fuzzy Syst. 10 (2002) 263–267. ⇒304

[21] J. Lázaro, J. Arias, J. L. Mart́ın, C. Cuadrado, A. Astarloa, Implementation of
a modified fuzzy c-means clustering algorithm for real-time applications, Micro-
proc. & Microsyst. 29 (2005) 375–380. ⇒304

[22] J. Li, J. L Fan, Parameter selection for suppressed fuzzy c-means clustering
algorithm based on fuzzy partition entropy, 11th Int. Conf. on Fuzzy Systems
and Knowledge Discovery, Xiamen, China, 2014, pp. 82–87. ⇒319

[23] S. McQueen, Some methods for classification and analysis of multivariate obser-
vations, Proc. 5th Berkeley Symp. Math. Stat. Probab., 1967, pp. 281–297. ⇒
303

[24] A. Nyma, M. Kang, Y. K. Kwon, C. H. Kim, J. M. Kim, A hybrid technique for
medical image segmentation, J. Biomed. Biotechnol. 2012 (2012) 830252. ⇒
304, 319, 320

[25] N. R. Pal, J. C. Bezdek, On cluster validity for the fuzzy c-means model, IEEE
Trans. Fuzzy Syst. 3 (1995) 370–379. ⇒321

https://www.journals.elsevier.com/pattern-recognition-letters
https://www.scirp.org/journal/am/
https://www.journals.elsevier.com/computational-statistics-and-data-analysis
https://cis.ieee.org/publications/t-fuzzy-systems
https://www.journals.elsevier.com/international-journal-of-approximate-reasoning
https://www.journals.elsevier.com/pattern-recognition-letters
https://www.journals.elsevier.com/artificial-intelligence-in-medicine
https://www.journals.elsevier.com/pattern-recognition
https://proceedingsoftheieee.ieee.org
https://cis.ieee.org/publications/t-fuzzy-systems
https://www.journals.elsevier.com/microprocessors-and-microsystems
https://www.journals.elsevier.com/microprocessors-and-microsystems
https://www.hindawi.com/journals/bmri/2001/762515/
https://cis.ieee.org/publications/t-fuzzy-systems
https://cis.ieee.org/publications/t-fuzzy-systems

324 L. Szilágyi et al.

[26] N. R. Pal, J. C. Bezdek, R. J. Hathaway, Sequential competitive learning and
the fuzzy c-means clustering algorithms, Neural Networks 9 (1996) 787–796. ⇒
310

[27] M. F. Saad, A. M. Alimi, Improved modified suppressed fuzzy c-meanss, Proc.
2nd Int’l Conference on Image Processing Theory, Tools and Applications, Paris,
2010, pp. 313–318. ⇒304, 319

[28] L. Szilágyi, S. M. Szilágyi, Z. Benyó, Analytical and numerical evaluation of
the suppressed fuzzy c-means algorithm: a study on the competition in c-means
clustering models, Soft. Comput. 14 (2010) 495–505. ⇒304, 309, 310, 318

[29] L. Szilágyi, S. M. Szilágyi, B. Benyó, Efficient inhomogeneity compensation using
fuzzy c-means clustering models, Comput. Meth. Prog. Biol. 108 (2012) 80–89.⇒303

[30] L. Szilágyi, S. M. Szilágyi, Generalization rules for the suppressed fuzzy c-means
clustering algorithm, Neurocomput. 139 (2014) 298–309. ⇒304, 311, 318, 321

[31] L. Szilágyi, G. Dénesi, S. M. Szilágyi, Fast color reduction using approximative c-
means clustering models, Proc. IEEE Int. Conference on Fuzzy Systems, Beijing,
2014, pp. 194–201. ⇒303, 321

[32] L. Szilágyi, A unified theory of fuzzy c-means clustering models with improved
partition, Proc. Int’l Conference on Modeling Decisions for Artificial Intelli-
gence, Skövde, Sweden, LNCS 9321 (2015) 129–140. ⇒316

[33] L. Szilágyi, G. Dénesi, C. Enăchescu, Fast color quantization via fuzzy clustering,
Proc. 23rd International Conference on Neural Information Processing, Kyoto,
2016, LNCS 9950 (2016) 95–103. ⇒321

[34] H. Steinhaus, Sur la division des corps matériels en parties, Bulletin de
l’Académie Polonaise des Sciences C1 III.(IV) (1956) 801–804. ⇒303

[35] P. H. Thong, L. H. Son, Picture fuzzy clustering: a new computational intelli-
gence method, Soft. Comput. 20 (2016) 3549–3562. ⇒321

[36] H. S. Tsai, W. L. Hung, M. S. Yang, A robust kernel-based fuzzy c-means al-
gorithm by incorporating suppressed and magnified membership for MRI image
segmentation, Proc. Int’l Conference on Artificial Intelligence and Computa-
tional Intelligence, Chengdu, China, LNCS 7530 (2012) 744–754. ⇒ 304, 319,
320

[37] C. M. Wu, N. Liu, Suppressed robust picture fuzzy clustering for image segmen-
tation, Soft. Comput. doi: 10.1007/s00500-020-05403-8. ⇒321

[38] X. L. Xie, G. A. Beni, Validity measure for fuzzy clustering, IEEE Trans. Pattern
Anal. Mach. Intell. 3 (1991) 841–846. ⇒320, 321

[39] F. Zhao, J. L. Fan, H. Q. Liu, Optimal-selection-based suppressed fuzzy c-means
clustering algorithm with self-tuning non local spatial information for image
segmentation, Expert Syst. Appl. 41 (2014) 4083–4093. ⇒321

[40] L. Zhu, F. L. Chung, S. Wang, Generalized fuzzy c-means clustering algorithm
with improved fuzzy partitions, IEEE Trans. Syst. Man Cybern. B. 39 (2009)
578–591. ⇒307, 317

Received: 15 November 2020 • Revised: 21 November 2020

https://www.journals.elsevier.com/neural-networks
https://www.springer.com/journal/500
https://www.sciencedirect.com/science/article/pii/S0169260712000326
https://www.sciencedirect.com/science/article/pii/S0169260712000326
https://www.journals.elsevier.com/computer-methods-and-programs-in-biomedicine
https://www.journals.elsevier.com/neurocomputing
https://www.springer.com/journal/500
https://www.springer.com/journal/500
https://www.computer.org/csdl/journal/tp
https://www.computer.org/csdl/journal/tp
https://www.journals.elsevier.com/expert-systems-with-applications
https://www.ieeesmc.org/publications/transactions-on-cybernetics

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Main Editorial Board
László DÁVID Editor-in-Chief

Adalbert BALOG Executive Editor
Angella SORBÁN Managing Editor
Csaba FARKAS Member

Zoltán KÁSA Member
Laura NISTOR Member
Ágnes PETHŐ Member

Acta Universitatis Sapientiae Informatica
Editorial Board

Executive Editor
Zoltán KÁSA (Sapientia Hungarian University of Transylvania, Romania)

kasa@ms.sapientia.ro

Assistent Editor
Dávid ICLANZAN (Sapientia Hungarian University of Transylvania, Romania)

Members
Tibor CSENDES (University of Szeged, Hungary)

László DÁVID (Sapientia Hungarian University of Transylvania, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Zoltán KÁTAI (Sapientia Hungarian University of Transylvania, Romania)

Attila KISS (Eötvös Loránd University, Hungary)
Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)

Attila PETHŐ (University of Debrecen, Hungary)
Shariefudddin PIRZADA (University of Kashmir, India)

Veronika STOFFA (STOFFOVA) (Trnava University in Trnava, Slovakia)
Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Sciendo by De Gruyter Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
http://www.acta.sapientia.ro

Information for authors
Acta Universitatis Sapientiae Informatica publishes peer-reviewed, high-quality
original papers and surveys in English, in all areas of Computer Science and allied
fields. The papers must be self-contained, including the purpose of the research, the
basic definitions, the antecedents of the research, the presentation of the state-of-the-
art and novel contributions. The articles must contain sufficient references to give the
reader a broad view of the studied subject. Articles must follow the technical require-
ments described in the Instruction for Authors. Please note, that if an article fails to
do so, it will be rejected without peer-review. The submitted papers should not be
considered for publication by other journals. The corresponding author is responsible
for obtaining the permission of coauthors and of the authorities or institutions, if
needed, for publication, the Editorial Board is disclaiming any responsibility.

The papers have to be prepared carefully, and must include the relevant keywords,
and the appropriate ACM Computing Classification System (http://www.acm.org/
about/class/1998) and AMS Mathematics Subject Classification codes (http://
www.ams.org/msc/). References should be listed alphabetically based on the Instruc-
tion for Authors given at the address http://www.acta.sapientia.ro.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Contact address and subscription:
Acta Universitatis Sapientiae Informatica

RO 400112 Cluj-Napoca, Str. Matei Corvin nr. 4.
Email: acta-inf@acta.sapientia.ro

Printed by F&F INTERNATIONAL
Director: Enikő Ambrus

Supported by:

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acm.org/about/class/1998
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.acta.sapientia.ro
http://www.acta.sapientia.ro
acta-inf@acta.sapientia.ro
http://www.acta.sapientia.ro
http://www.acta.sapientia.ro

