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Abstract. Time-series are ordered sequences of discrete-time data. Due
to their temporal dimension, anomaly detection techniques used in time-
series have to take into consideration time correlations and other time-
related particularities. Generally, in order to evaluate the quality of an
anomaly detection technique, the confusion matrix and its derived met-
rics such as precision and recall are used. These metrics, however, do
not take this temporal dimension into consideration. In this paper, we
propose three metrics that can be used to evaluate the quality of a classi-
fication, while accounting for the temporal dimension found in time-series
data.

1 Introduction

Anomaly detection is the process of identifying erroneous data in big data sets,
in order to improve the quality of further data processing. An anomaly de-
tection method classifies data into normal and abnormal values. The selection
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of the best detection method greatly depends on the data set characteristics.
Therefore, we need metrics to evaluate the performance of different methods,
on a given data set.

Traditionally, in order to evaluate the quality of a classification, the con-
fusion matrix, or one of its derived metrics is used. These metrics work well
when the data set does not have a temporal dimension.

The anomaly detection task has certain particularities when it comes to
time-series data. The temporal dimension that may be lacking in other types
of data sets can be taken into account in order to improve the evaluation of
these methods.

In this paper we propose some evaluation metrics which are more appropri-
ate for time series. The basic idea of the new metrics take into consideration
the temporal distance between the true and predicted anomaly points. This
way, a small time shift between the true and the detected anomaly is consid-
ered a good result as opposed to the traditional metric that will consider it an
erroneous detection.

Through a number of experiments, we demonstrate that our proposed met-
rics are closer to the intuition of a human expert.

The remainder of this paper is organized as follows: Section 2 discusses
how time-series classification is used in the field and what metrics are used to
evaluate the quality of classifications. Section 3 discusses the notation that we
will be using in this paper going forward. The anomaly detection problem is
defined for time-series data. We also define some prior requirements that we
expect to be true for a time-series data metric that takes temporal distances
into account. Section 4 presents the classification metrics we propose which
are evaluated in Section 5. We check if the assumptions from Section 2 hold
for our metrics. We also compare them with the traditional confusion matrix
derived metrics such as accuracy, precision, and recall. We also present the
result of applying our methods to real-world data. Section 6 concludes the
paper.

2 Related work

Anomaly detection in time-series data is an important subset of generic anomaly
detection. Much work has been done in developing anomaly detection meth-
ods. Some work has also been done in developing better metrics.

In many applications, it is more efficient to do feature extraction on the
time-series data, and do classifications based on those features rather than on
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the actual time-series, as is the case for [7]. This is due to the fact the in many
applications the volume of time series data is large and multi-dimensional. It
is not easily analyzed and in many applications where speed is important, it
is not practical to run algorithms directly on the raw data. Instead, the time
series is split into segments, and for each segment features such as mean value,
maximum and minimum amplitude and so on are calculated. Here classical
clustering methods such as K-Nearest Neighbor can be used to classify each
segment of time-series data.

The confusion matrix is generally used in the context of times series classi-
fication, which is the case in [1]. In [3] the authors use the confusion matrix
explicitly as an input to train the classification model.

Better metrics for time-series have been proposed. In [2] the authors propose
a metric that can differentiate between the generative processes of the time-
series data. In [4] the authors propose a number of metrics such as Average
Segmentation Count (ASC), Absolute Segmentation Distance (ASD) and Av-
erage Direction Tendency (ADT). These metrics were developed for evaluating
a segmentation of a time-series, but they can be used just as well for evaluating
the quality of anomaly detection. We will slightly modify the names of ASC
and ASD by replacing segmentation with detection. In the experiments sec-
tion, we will use these metrics Average Detection Count (ADC) and Absolute
Detection Distance (ADD) and compare them with our metrics.

3 Problem statement

3.1 Notation

In order to express concisely the ideas presented in this paper, we will define
the main concepts of anomaly detection and use the notation presented in this
chapter for the following chapters as well.

This paper discusses concepts related to time-series data. By time-series data
we mean an ordered set of real values that are indexed by natural numbers.
We will not be discussing continuous values, since in practice we measure by
sampling.

X = {x0, x1, x2, . . . , xn}, xt ∈ IR

The main focus of this paper are classifications. The set of class labels,
which will be referred to as a classification, is similar to X, the difference being
that while X consists of real values, C consists of binary values {0, 1}. We will
consider values labelled as 0 as being normal values, and values labelled as 1
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being anomalous values.

C = {c0, c1, c2, . . . , cn}, ct ∈ {0, 1}

The classification is generated by a classifier function C. The classifier func-
tion takes an xt ∈ X value, with a range of size w around it, and generates
a classification value ct. Thus, this classifier can be used for a sliding window
classification.

C : X2w+1 → C

ct = C(xt−w, . . . , xt, . . . , xt+w)

For a simplified example, consider the following time-series data:

X = {8, 8, 8, 8, 42, 8, 8, 8, 8}

We classify this data using the following classifier:

C(xt) =

{
1 if xt > 10

0 otherwise

In the example given w = 0. Thus the classifier only looks at one point for
each classification. The result is the following classification:

C = {0, 0, 0, 0, 1, 0, 0, 0, 0}

We can represent the classification visually in Figure 1 as a line, where
each point represents a classification. At the points where the classification
value is 1, we draw a short vertical line through the horizontal line. We use
this notation because our base assumption is that anomalous values are a
disproportionately small subset of the whole set of values.

C:

Figure 1: A classification C represented by a line with vertical lines where the
value of C are 1.

Next, we define the classification evaluation problem. Supervised learning is
a machine learning task with the purpose of reproducing a function by looking
at example inputs and outputs. Given two or more potential candidate func-
tions it is important for such an algorithm to be able to rank such functions.



Evaluation metrics for anomaly detection algorithms in time-series 117

In order to decide which one approximates the original function better, some
metric is used.

This problem can be expressed as a comparison of classifications generated
by different classifiers. We consider the target classifier C0. This is the function
that we would like to reproduce. Given a number of different classifiers C1, C2,
C3 we would like to find which one approximates C0 the most.

In order to do this, we compare the classifications generated by them given
the same training data X. We will use the graphical representation from Figure
2.

C0:

C1:

C2:

Figure 2: A comparison of three classifications, the first one being the target
classification C0 and the rest are regarded as the candidate classifications.
One can see that C1 identifies the anomaly prematurely while C2 identifies
two anomalies, one prematurely and one with a delay

We compare the classifications using a metric m : C → IR, Ci ∈ C. The
metric produces a score by comparing the given classification with the target
classification. If a classification Ca is considered better than another one, say
Cb, the metric would produce a better score for Ca. If a metric produces a
better score for a classification, we consider that classification as better.

As an example, suppose we have the classifications from Figure 2. We will
use a simple metric, that counts the number of anomalous points in each
classification and computes the difference between that classification and the
target classification.

We define the count function as the sum of all the elements of a classification.
This effectively counts the number of anomalies because they are represented
by the number 1, while the normal values are represented by the number 0.

count(Ci) =
n∑
j=1

cj, cj ∈ Ci

Next, we simply calculate the difference between the number of anomalies
in the target classification and the candidate classification.
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m↓(Ci) = |count(C0) − count(Ci)|

Using this classification, we can see that the score for C1 is m↓(C1) = 0

and the score for C2 is m↓(C2) = 1. We can say that the first classification is
better than the second one, since it has a lower value. This is represented by
the subscript arrow that is pointing down. A metric where a higher value is
better is denoted by a little arrow pointing up.

The examples presented in this chapter are simplistic and are only used to
familiarize the reader with the notation that will be used for the remainder of
this paper.

3.2 Prior requirements

We give examples with a target classification and a number of candidate clas-
sifications. We rank the classifications using our intuition. We would like a
classification metric that can capture that intuition. These assumptions may
or may not hold for certain applications.

Each of these situations will be tested both by the existing metrics used,
and also our proposed metrics. In Section 5 we aggregate all the score data
and show if the given metric does indeed respect these requirements.

Detection The first requirement is to rank a classification that finds an
anomaly higher than one that doesn’t. The graphical representation can be
seen in Figure 3a. Because C1 correctly detects the anomaly, whereas C2 does
not.

False Detection The second requirement is that if there is indeed no anomaly,
we would consider the classification that doesn’t detect an anomaly as the
better one. The graphical representation can be seen in Figure 3b. Because
the target classification does not contain anomalies and C2 falsely detects an
anomaly, we can say that it is the worst from the two.

Less Wrong Whenever we have two classifications that correctly predict
the anomaly, an ideal metric would choose the one with the fewer incorrect
classifications, as presented in Figure 3c. Because both C1 and C2 correctly
detect the anomaly, C1 is considered better because it has less errors than C2.
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Near Detection Here we are starting to enter controversial territory. Given
that we use time-series, we will hold the points near the point of interest in
higher regard than those farther away. We consider that a classification that
almost detects the anomaly correctly, is better than one that doesn’t detect
the anomaly at all. The graphical representation can be seen in Figure 3d.
While none of the classifications manage to exactly detect the anomaly in the
right place, we consider C1 as better because at least it did detect something
relatively close to the anomaly, while C2 did not at all.

Closeness Going further, we consider that the closer the detection is to the
actual anomaly in the target classification, the better that classification is. The
graphical representation can be seen in Figure 3e. While both classification
missed the anomaly, C1 detected an anomaly closer to the target one than C2.

C0:

C1:

C2:

(a) Detection

C0:

C1:

C2:

(b) False Negative

C0:

C1:

C2:

(c) Less Wrong

C0:

C1:

C2:

(d) Near Detection

C0:

C1:

C2:

(e) Closeness

C0:

C1:

C2:

(f) Locally Perfect vs Globally Good

Figure 3: Visualisation of the requirements. In each case the top classification
(C0) is the target classification and in these examples middle classification
(C1) is considered to be a better classification than the lower one (C2).

Locally Perfect vs Globally Good Lastly, we introduce the principle
of being Globally Good instead of Locally Perfect. This rule emphasizes the
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fact that we can have clusters of anomalies. Each cluster can have only one
anomaly or multiple, but in close proximity to each other. This rule assumes
that it is better to discover each cluster, rather than perfectly match every
single anomaly from one single cluster. In the example from 3f, we can see
that C0 has two clusters, one with one single anomaly, and one with five close
anomalies. We consider C2 worse than C1 even though it perfectly described
the anomalies from the second cluster, because it failed to detect the first
cluster.

4 Proposed metrics

4.1 Temporal distance method

This method consists of calculating the sum of all distances between anomalies
from the two classifications. This method is similar to the ADD metric from
[4]. The difference being that while in ADD we look only in the proximity
of the detection, while our method looks at the closest detection, regardless
of proximity. To this end we define a function that calculates the distance
between each anomaly of the first classification and the corresponding closest
anomaly from the second classification, fclosest : C2 → IR.

Next we can define our method by using the function described above in
the following manner:

TD↓(Ci) = TTC + CTT

where TTC stands for Target To Candidate and is given by fclosest(C0, Ci),
and CTT stands for Candidate To Target and is given by fclosest(Ci, C0). C0
stands for the target classification and Ci stands for the candidate classifica-
tion.

Note that lower values produced by this method are better than higher ones.
This is represented by a little downward pointing arrow.

We calculate both the sum of all the distances of the closest anomalies from
the candidate classification to the target classification (CTT), and the sum
of all distances of the closest anomalies from the target classification to the
candidate one (TTC). By adding these two together, we have a metric that
punishes false negative values and false positive values. TTC punishes false
negatives and CTT punishes false positives.

A graphical visualization of the metric can be seen in Figure 4. We can see
that C0 has two anomalies, but C1 only has one. Thus the closest anomaly to
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C0:

C1:

TTC
∆t1 ∆t2

CTT
∆t1

Figure 4: Visualization of the Temporal Distance metric. CTT = ∆t1 and
TTC = ∆t1 + ∆t2

both anomalies from C0 is the single anomaly in C1. Because the two temporal
distances are ∆t1 and ∆t2 respectively, TTC = ∆t1 + ∆t2. However, from the
perspective of C1, the closest anomaly to its only anomaly is the first from C0.
Only that one is taken into account, thus CTT = ∆t1. Finally the resulting
value calculated by the metric is TD↓(C1) = 2∆t1+∆t2. One can see that the
best possible value for this metric is 0.

We also define a variation of this metric that we dubbed the Squared Tem-
poral Distance. STD is defined similarly to TD, except when adding up the
distances they are first squared. This is done in order to punish larger dis-
tances more than smaller ones. For example the value of STD for the given
example is 2∆t21 + ∆t

2
2.

4.2 Counting method

The next method is also similar to the ADC method defined in [4]. However
our method is more analogous to a forgiving decision matrix, that counts close
detections as true positives.

The counting method counts the occurrence of four situations. The situa-
tions of interest are pictured in Figure 5, and are as follows:

1. Exact Match (EM) Figure 5a. If the anomaly is from the candidate
classification matches exactly the anomaly in the target classification,
we call that an exact match.

2. Detected Anomaly (DA) Figure 5b. If the candidate anomaly does
not match exactly the target anomaly, a range is considered. If the
anomaly is withing that range, it is considered as a detection. However,
that candidate anomaly will also be counted up as a false anomaly.
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3. Missed Anomaly (MA) Figure 5c. If there is no anomaly present
in the expected range of the target anomaly, we count it as a missed
anomaly.

4. False Anomaly (FA) Figure 5d. Every normal target value that has
an associated anomalous candidate value is counted as a false anomaly.

C0:

C1:

(a) Exact Match (EM)

C0:

C1:

(b) Detected Anomaly (DA)

C0:

C1:

(c) Missed Anomaly (MA)

C0:

C1:

(d) False Anomaly (FA)

Figure 5: Relevant situations that are each counted.

These four values can be used further to define derived metrics. We define
two such metrics here:

Total Detected In Range We calculate the ratio of correctly detected
anomalies to the number of total anomalies. With the maximum score of 1 and
minimum of 0, this metric is similar to recall as derived from the confusion
matrix. We can also call this metric “forgiving recall”.

TDIR↑ = EM + DA

EM + DA + MA

Detection Accuracy In Range We calculate the ratio of correctly de-
tected anomalies to the total number of detected anomalies. With the maxi-
mum score of 1 and minimum of 0, this metric is similar to precision as derived
from the confusion matrix. We can also call this metric “forgiving precision”.

DAIR↑ = EM + DA

EM + DA + FA

We could have implemented “forgiving” versions of the metrics defined for
the confusion matrix, and we could have defined some new ones, like the ratio
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of exact matches to detected anomalies. However in the interest of conciseness,
we will only consider the two defined above.

4.3 Weighted method

The weighted method can be seen as a combination of the previous two meth-
ods. For each anomaly of the target classification we calculate a weight that
is given by a function that takes the distance of the candidate anomaly to the
target anomaly and produces the weight. In Figure 6 we calculate a weight
w for an anomaly. In the example a bell curve function is used. Any function
based on distance can be used as long as it is monotonically decreasing.

C0:

C1:

w

∆t

Figure 6: Weighted metric with a gaussian function, w = f(∆t), where f de-
scribes a bell curve.

We denote with WS the sum up all the weighted values produced for each
target anomaly. Note that we only take into consideration the closest candidate
anomaly. We also count up all the false anomaly cases FA, similar to the
previous section.

We define the Weighted Detection Difference Metric using the WS
and FA. We just scale the FA by some factor and subtract it from the WS.

WDD↑ = WS −wf ∗ FA

where wf is the weight of the false anomalies. Other functions were also
considered such as a linear function:

f(∆t) = 1−
∆t

tmax

or a variant that punishes outliers equally:
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f(∆t) =

{
1− ∆t

tmax
if ∆t < tmax

−1 otherwise

5 Analysis and experiments

5.1 Requirements evaluation

We took each of the six rules defined in Section 3.2, and we turned it into
synthetic data. We did this by considering 101 points for each Classification.
For each point we assigned a one where the figure had a vertical line, and
assigned a zero for the rest of the points. In fact the figures that appear
in Section 3.2 where generated from these synthetic datasets. We used the
synthetic datasets and calculated the scores produced for all the methods
described in the previous chapter alongside classical methods. The results are
aggregated in Table 1.

Table 1 is the cross product of the metrics we used and the rules we defined
in Section 3.2. We differentiate between four possible outcomes. Each outcome
is represented by a special character:

X We represent cases where the metric strictly respects the rule set out by
us via a checkmark. Effectively this means that the metric produced a
better result for the first candidate classification than for the second one.
The actual value produced by the classification can be larger or smaller,
depending on the metric used.

= Equality does not respect the rule we set out in Chapter 2. However
we decided to show it explicitly because it gives better insight into the
workings of the metric. While we do not consider equality cases to be
an instance of a successful quality evaluation, we consider them as cases
where the metric can not tell the difference between two candidate clas-
sifications.

× In cases where the metric gives a strictly better score to a worse candidate
classification, we consider that as a broken rule. A metric that would fit
the rules we laid out would never break any rules.

- There are cases where a metric can not be calculated. Otherwise stated,
there are classifications that yield scores that can not be expressed by
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real numbers. These cases arise because the metric can use the number
of anomalies detected in order to divide some other number. If there are
no anomalies, we can not perform that operation. We call this situation
undecidable and use a dash to denote that situation.

In the second example we produced the ranking in a similar fashion to the
previous example. The actual change point happens in the third group of
anomalies from C0. We consider that only the change point is an anomaly.
The rest of the anomalies are outliers. Outliers can be found both before and
after the change point.

The metrics that best matched the imposed ranking this time were Recall,
ADD, STD and DAIR. In this particular example the classical methods had
similar distances to the proposed metrics. We believe that this is because of
the fact that in this particular example, all of the anomaly groups were made
up of sequential anomalies.

Consider a classifier that is always a few time-samples behind with the
classification. If all anomalies are point anomalies, all candidate anomalies
would miss the target anomalies and a classical metric would produce a bad
score. Now if the anomalies were not point anomalies, but were a continuous
intervals, even though the candidate intervals of anomalies were shifted, most
anomalies would still overlap, thus producing a better score.

m Det FDet LWrong NDet Close LP vs GG

Accuracy↑ X X X × = ×
Precision↑ X - = = = ×

Recall↑ - - X - = =

ADC↓ X = = X X X
ADD↓ - - = - X =

TD↓ - - X - X X
STD↓ - - X - X X

TDIR↑ X - = X X X
DAIR↑ - - X - X =

WDD↑ X X X X X X

Table 1: For each rule defined in Section 2 we verify if the metric respects the
relation.

The table shows that while some of the proposed metrics may sometimes
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be unable to distinguish between two classifications or evaluate an answer,
they never give erroneous results. The same can not be said of Accuracy or
Precision.

From our experiments, while WDD obtained the best results, the efficacy
of the metric is very much dependent on the parameters used. By modifying
the parameters we can get counter intuitive results.

5.2 Real data example

In order to further test the quality of our metric we will apply them to some
example time-series traffic data. Two datasets will be considered. The first
only has outlier points while the other also contains a change point.

Both datasets and classifiers are used in [8]. The classifiers are described in
chapter 4 of that article. The classifications {C1, . . . , C5} are generated by the
classifiers {Bounded Derivative (d = 0), Bounded Derivative (d = 1), Median
Method, Linear Approximation, First Order AR}. The classifiers will not be
discussed in this paper.

The first dataset is from [5], and the second one from [6]. The classification
diagrams of the aforementioned datasets can be seen in Figure 7 and Figure 8
respectively. We evaluate each classification with each of the metrics used in
Table 1. We also add another metric that ranks each classification according to
the subjective opinions of the authors. We would like that all metrics generate
a similar order to the one imposed by us.

The imposed ranking is done by assigning a number starting from 1 to each
classification, where 1 is considered the best classification, and 5 is considered
the worst. Next we compare that ranking with the ranking generated by the
metrics. We consider the classification with the best result as the one with
ranking of 1, the second best with 2 and so on. This step can be checked
manually in the table. Finally we calculate the distance between the imposed
ranking and the ranking generated by the metric. The lower the distance,
the better the metric performed. The distance is calculated by summing the
differences between the two rankings.

Distance =

5∑
i=1

|ri − r̂i|

where ri is the ranking of the classification Ci generated by a metric m and r̂i
is the imposed ranking of the given classification Ci.
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C0:

C1:

C2:

C3:

C4:

C5:

Figure 7: CO2 emissions

m m(C1) m(C2) m(C3) m(C4) m(C5) Distance

Accuracy↑ 0.9688 0.9479 0.9479 0.9427 0.9531 9

Precision↑ 0.0000 0.0000 0.0000 0.0000 0.0000 10

Recall↑ - 0.0000 0.0000 0.0000 0.0000 6

ADC↑ 0 4 4 5 2 5

ADD↓ - 9 24 27 12 2

TD↓ - 8 99 490 132 0

STD↓ - 2048 1561 60538 2646 2

TDIR↑ 0.0000 0.6667 0.6667 0.1667 0.3333 1

DAIR↑ - 0.5000 0.5000 0.1667 0.4000 1

WDD↑ 0.0000 -3.5000 -3.9000 -43.3000 -6.1000 8

Ranking↓ 5 1 2 4 3 0

Table 2: CO2 emissions. Note that all missing values are considered to be the
worst scores.

For the first example we considered C0. None of the classifiers managed to
pin down the anomalies exactly. While all of them were off by some margin,
some of them are clearly worse than others. For example, C1 didn’t detect any
anomalies, while C4 detected a cluster of them towards the end, where only one
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anomaly exists. Looking at the table of results, we can see that precision and
accuracy can not tell the difference between these classifications. However, we
would argue that C2 is the clear winner. While the detection of the anomalies
are off by one or two time samples, they are still in the neighborhood of the
true anomalies. Only the fourth and fifth anomalies are missed by it. 2.

The metrics that best matched our ranking were TD, TDIR, DAIR. STD
and ADD matched but they are also good classifications. This example shows
the potential instability of the WDD method, that produced a ranking that is
as bad as the ones produced by the confusion matrix.

C0:

C1:

C2:

C3:

C4:

C5:

Figure 8: Concurrent users – Change point

6 Conclusion

In this paper we tackled with the problem of qualitative metrics applied to
anomaly detection in time-series data. We concluded that classical metrics
such as Accuracy, Precision and Recall do not take into consideration the
time dimension of time-series data, in which near matches might be just as
good as exact matches, or at least they are better than complete misses.

We defined the problem in more rigorous terms, and provided some require-
ments that we believe a good metric should meet. Next we defined some new
metrics. We checked whether or not our proposed metrics respect the require-
ments set out by us previously. We also compared the performance of our
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m m(C1) m(C2) m(C3) m(C4) m(C5) Distance

Accuracy↑ 0.7354 0.9609 0.9659 0.9619 0.9498 4
Precision↑ 0.9333 0.1555 0.4444 0.2 0.0222 8

Recall↑ 0.1386 0.875 0.6896 0.8181 0.1428 2

ADC↑ 92 8 29 10 5 8
ADD↓ 275 1 18 2 23 2

TD↓ 8101 166 183 147 4123 4
STD↓ 364933 1360 1849 3079 892305 2

TDIR↑ 1 0.8888 0.8444 1 0.2 11
DAIR↑ 0.1470 0.9756 0.8085 0.9574 0.6 2

WDD↑ -112.1999 27.8999 23.0999 34.4999 -353.6 6

Ranking↓ 5 1 2 3 4 0

Table 3: Concurrent users – Change point

proposed metrics with the performance of the classical metrics. We concluded
that our metrics never gave an incorrect answer. The same could not be said
of the classical methods.

We also applied our proposed metrics to two real datasets of web traffic. We
compared the performance of all metrics discussed, and concluded that our
proposed metrics performed better or the same as the classical metrics.
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Metric space method for constructing

splitting partitions of graphs
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Abstract. In an earlier work [6] the concept of splitting partition of a
graph was introduced in connection with the maximum clique problem.
A splitting partition of a graph can be used to replace the graph by
two smaller graphs in the course of a clique search algorithm. In other
words splitting partitions can serve as a branching rule in an algorithm
to compute the clique number of a given graph. In the paper we revisit
this branching idea. We will describe a technique to construct not nec-
essary optimal splitting partitions. The given graph can be viewed as a
metric space and the geometry of this space plays a guiding role. In or-
der to assess the performance of the procedure we carried out numerical
experiments.

1 Introduction

Throughout this note the word graph is used for in the restricted meaning of
finite simple graph, that is, each graph will have finitely many vertices and
finitely many edges. Further, neither loops nor double edges may occur. Let
G = (V, E) be a finite simple graph, where V is the node set and E is the edge
set of G. The set of edges E consists of unordered pairs of elements of V. The
simplicity of the graph G means that it has neither double edges nor loops.
The finiteness of the graph G means that the sets V and E have finitely many
elements.
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A subgraph ∆ of G is called a clique in G if two distinct nodes of ∆ are always
adjacent in G. If the clique ∆ has k nodes we will say that ∆ is a k-clique in
G. A node of G as a subgraph of G is of course a 1-clique and an edge of G as
a subgraph can be viewed as a 2-clique. A k-clique ∆ is maximal if it cannot
be extended to a (k + 1)-clique in G by adding a further node of G to ∆. A
k-clique ∆ in G is a maximum clique if G does not contain any (k+ 1)-clique.
A maximum clique in G is always maximal in G but a maximal clique in G is
not necessarily a maximum clique in G. For each finite simple graph G there
is a number k such that G contains a k-clique but G does not contain any
(k + 1)-clique. This well defined number k is called the clique number of G
and it is denoted by ω(G).

Problem 1 Given a finite simple graph G = (V, E). Determine ω(G).

Problem 2 Given a finite simple graph G = (V, E) and given a positive integer
k. Decide if G contains a k-clique.

Problem 3 Given a finite simple graph G = (V, E) list all maximum cliques
that appear in G.

Problem 4 Given a finite simple graph G = (V, E) list all maximal cliques
that appear in G.

Problem 1 is referred to as the maximum clique problem. It is an optimiza-
tion problem and by the complexity theory of the algorithms it belongs to the
NP-hard complexity class. (For further details see [2].)

Problem 2 is referred to as the k-clique problem. It is a decision problem
and by the complexity theory of the algorithms it belongs to the NP-complete
complexity class. (For further details see [4].) The four problems above all have
important applications in discrete applied mathematics.

Some of the clique search problems are optimization problems and many of
these algorithms have the following outline. Using computationally affordable
techniques upper and lower bounds for the clique number of the given graph are
established. If the lower and upper estimates agree, then the clique number of
the graph is computed. If there is a gap between the upper and lower estimates,
then we divide the clique search instance into smaller instances. In other words
one carries out an optimality test and when this test is inconclusive a branching
takes place.

Let G = (V, E) be a finite simple graph and let P, Q, R be subsets of the
set of nodes of G. The ordered triplet (P,Q, R) is called a splitting partition
of the graph G if the following conditions are all satisfied.
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(1) P ∪Q ∪ R = V.

(2) P 6= ∅, R 6= ∅.

(3) P ∩Q = P ∩ R = Q ∩ R = ∅.

(4) p ∈ P, r ∈ R implies that the unordered pair {p, r} is not an edge of the
graph G.

Let H be the subgraph of G induced by the set of nodes P∪Q and let K be the
subgraph of G induced by the set of nodes Q ∪ R. Let us suppose that ∆ be a
clique in G. In [6] it was proved that either ∆ is a clique in H or ∆ is a clique
in K. This result is in an intimate relation with clique search procedures.

Let us suppose that we are looking for a maximum clique in the graph G.
By the observation above we may restrict our attention to look for a maximum
clique in the smaller graphs H and K. The larger are the sizes of the sets P
and R the smaller are the subgraph H and K. Thus setting up a computation-
ally economic branching rule in a maximum clique or in a k-clique algorithm
depends on our ability to locate a splitting partition in a computationally
economic manner.

As the main result of this paper we will propose a method to speedily locate
splitting partitions in a given graph. The procedure we propose is rather my-
opic and so there is no any guarantee that the procedure provides splitting sets
with optimal P and R sets. Unfortunately we do not possess theoretical tools
to establish performance measurements of the splitting set spotting algorithm.
We will carry out numerical experiments to demonstrate that the procedure
works reasonably well.

2 Metric spaces and splitting partitions

Let G = (V, E) be a finite simple graph and let u and v be two nodes of G.
Set d(u, v) to be the length of a shortest path leading from node u to node
v. If there is no path from node u to node v we set d(u, v) to be ∞. It may
happen that there are more than one shortest paths leading from u to v. But
their lengths must be the same. The quantity d(u, v) can play the role of a
distance between the nodes of G and the graph G can be viewed as a metric
space equipped with this distance function.

For a vertex v of G the set of nodes adjacent to v is called the set neighbors
of v and it is denoted by N(v). In notation N(v) = {u : u ∈ V, {v, u} ∈ E}. The
number of the elements of the set N(v) is referred to as the degree of the node
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v and it is denoted by deg(v). In a more general setting for a vertex v of G and
for a subset U of V we define the degree of v with respect to the subset U as
the number of neighbors of v in the subset U. We denote this restricted degree
of v by degU(v). Plainly, degU(v) = |N(v) ∩U| and further deg(v) = degG(v) .

Set ball1(v) = {v}∪N(v) and note that it is a ball of radius 1 centered at the
point v in the metric space. For a subset U of V we define Uc to be the union
of ball1(u) as u ranges over the elements of U. We may call the set Uc the
closure of the set U. Condition (4) in the definition of the splitting partition
can be expressed coveniently in terms of closure of the sets involved.

Lemma 5 Let G = (V, E) be a finite simple graph and let P, Q, R be subsets
of V such that the ordered triplet (P,Q, R) is a splitting partition of G. Then

Pc ∩ R = ∅, P ∩ Rc = ∅ (1)

must hold.

Proof. Let us assume assume on the contrary that the ordered triplet (P,Q, R)
is a splitting partition of G and in addition Pc ∩ R 6= ∅ holds. In this situation
there is a p ∈ P and an r ∈ R such that r ∈ ball1(p). It follows that the
unordered pair {p, r} is an edge of G. This contradicts condition (4) in the def-
inition of the splitting partition. Assuming that P∩Rc 6= ∅ a similar reasoning
gives the contradiction again that the unordered pair {p, r} is an edge of G. �

Lemma 6 Let G = (V, E) be a finite simple graph and let P, R be subsets of
V. Suppose that beside condition (1) in Lemma 5 the condition

P 6= ∅, R 6= ∅ (2)

also holds. Then setting Q = V \ (P ∪ R) the ordered triplet (P,Q, R) is a
splitting partition of G.

Proof. It is easy to see that each of the conditions (1), (3) in the definition
of the splitting partition holds. Clearly, condition (2) in the definition of the
splitting partition holds as a consequence of condition (2) in Lemma 6.

It remains to show that condition (4) in the definition of the splitting par-
tition also holds. In order to do so assume on the contrary that condition (4)
does not hold, that is, there is a p ∈ P and an r ∈ R such that the unordered
pair {p, r} is an edge of G. In this situation r ∈ ball1(p) and consequently
P ∩ Rc 6= ∅. This is in contradiction with the first part of condition (1) in
Lemma 5. �
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Lemma 7 Let G = (V, E) be a finite simple graph and let P be a subset of V.
If P satisfies the condition

P 6= ∅, Pc 6= V. (3)

Then setting R = V \ Pc for the sets P and R condition (1) in Lemma 5 and
condition (2) in Lemma 6 hold.

Proof. As P 6= ∅ holds by assumption, we need to prove only R 6= ∅ to get
condition (2) in Lemma 6. But R 6= ∅ is a consequence of the assumption
Pc 6= V.

The way the set R is constructed from Pc shows that the equation Pc∩R = ∅
must hold. The equation P ∩ Rc = ∅ follows from Pc ∩ R = ∅. This gives that
condition (1) in Lemma 5 is satisfied. �

By Lemmas 5, 6, 7, constructing a splitting partition (P,Q, R) for G can be
reduced to finding a subset P of V satisfying condition (3) in Lemma 7. This
condition can be satisfied easily. For example the choice P = {v} is a suitable
choice whenever v is node of G that is not adjacent to at least one node of G. In
this case P = {v}, Q = N(v), R = V \({v}∪N(v)). In fact, the splitting partition
(P,Q, R) constructed in this way is the most commonly used branching rule
in clique search algorithms. It is part of the Carraghan-Pardalos algorithm [1]
and it is part of the Österg̊ard algorithm [3]. A splitting partition (P,Q, R) for
which either |P| = 1 or |R| = 1 is coming free of charge. From this reason we
call such splitting partition of G a trivial splitting partition.

If (P,Q, R) is a splitting partition for G we may construct a new splitting
partition (P′, Q′, R′) for G. We set U = Q ∪ R and locate a node u of U for
which degR(u) is a minimum. Then we move u from U to P and move the
neighbors of u in R to Q to get the sets P′, Q′, R′. For the sake of simplicity
we may use the initial setting P = ∅, Q = ∅, R = V and construct new triplets
(P,Q, R) while the condition |P| < |R| holds.

3 Two small size examples

In order to illustrate the results presented so far we work out a small size
example in details.

Example 8 Let us consider the graph G = (V, E). Here V = {1, . . . , 6}. The
adjacency matrix of G is depicted in Table 2. Figure 1 shows a geometric
representation of G.
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Figure 1: A graphical representation of the graph G in Example 8 and the
steps of the procedure of spotting a splitting partition.
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1 2 3 4 5 6 7 8 9

1 × • • • • • •
2 • × • • • •
3 • • × • • •
4 • • × • •
5 • • • • ×
6 • • × • •
7 • • • × • •
8 • • × •
9 • • • • ×

3 4 5 1 2 6 7 8 9

3 × • • • • •
4 • × • • •
5 • • × • •
1 • • × • • • •
2 • • • • × •
6 • • × • •
7 • • • × • •
8 • • × •
9 • • • • ×

Table 1: The adjacency matrices of the graph in Example 8. In the second
adjacency matrix we rearranged the rows and columns to make the splitting
partition more apparent.

The reader can verify easily that the triplet (P,Q, R) of the subsets

P = {3, 4, 5}, Q = {1, 2, 6}, R = {7, 8, 9} (4)

is a splitting partition of the graph G. Note that upper right and the lower
left three by three submatrices are unfilled in the second adjacency matrix in
Table 2.

We try to construct a splitting partition (P,Q, R) for the graph G. We set

P = ∅, Q = ∅, R = {1, . . . , 9}.

The conditions (1), (3), (4) in the definition of splitting partition are satisfied.
Condition (2) is not satisfied. We compute the degree of each node in U = Q∪R
with respect to the set R.

node 1 2 3 4 5 6 7 8 9

degree 6 5 5 4 4 4 5 3 4

Node 8 has a minimum degree. We move node 8 from set R to set P. We move
the neighbors of 8 from set R to set Q. In this way we get

P = {8}, Q = {1, 7, 9}, R = {2, 3, 4, 5, 6}.

The conditions (1), (2), (3), (4) in the definition of splitting partition are
satisfied and consequently we have a genuine splitting partition of G. The
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Figure 2: The graph G in Example 9.

sizes of the sets P and R are far from each other. We try to enlarge |P| even if
this results a smaller |R|.

We compute the degree of each node in U = Q ∪ R with respect to the set
R.

node 1 7 9 2 3 4 5 6

degree 3 2 1 3 4 4 3 2

Node 9 has a minimum degree. We move node 9 from set Q to set P. We move
the neighbors of 9 from set R to set Q. In this way we get

P = {8, 9}, Q = {1, 7, 6}, R = {2, 3, 4, 5}.

The conditions (1), (2), (3), (4) in the definition of splitting partition are sat-
isfied and consequently we have a splitting partition of G where the difference
between |P| and |R| is reduced.

We compute the degree of each node in U = Q ∪ R with respect to the set
R.

node 1 7 6 2 3 4 5

degree 2 1 1 3 3 4 3

Node 7 has a minimum degree. We move node 7 from set Q to set P. We
move the neighbors of 7 from set R to set Q. In this way we get the splitting
partition

P = {7, 8, 9}, Q = {1, 2, 6}, R = {3, 4, 5}
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1 2 3 4 5 6 7 8

1 × • • • •
2 • × • • • •
3 • • × • • •
4 • • × • • • •
5 • • • × • • •
6 • • • • × • •
7 • • • • × •
8 • • • • • ×

Table 2: The adjacency matrix of the graph G in Example 9.

of G. This splitting partition is essentially the same as (4). The steps of the
procedure can be followed on the geometric version of the graph G. Figure 1
shows these steps. The elements of the set R are marked with a double circle
and the elements of the set Q are marked with a simple circle. Finally the
elements of the set P are left unmarked.

We exhibit now an example to illustrate that the algorithm for spotting
splitting partition described in the paper is a myopic one. Let A, B, C be
pair-wise disjoint sets and let u be an element such that u 6∈ (A ∪ B ∪ C).
Let us assume that |A| = |C| = n and |B| = n + 1. Using the sets A, B, C,
{u} we construct a graph G = (V, E). We set V = A ∪ B ∪ C ∪ {u}. We draw
edges between nodes such that the subgraph induced by the set A ∪ B is a
clique in G and similarly the subgraph induced by the set B ∪C is a clique in
G. Finally, we connect node u to each node in A ∪ C. The reader can verify
that with the P = A, Q = B, R = C choices the ordered triplet (P,Q, R)
is a splitting partition of G. Here |P| = n and |R| = n. On the other hand,
the greedy algorithm proposed by the paper will locate the splitting partition
(P,Q, R), where P = {u}, Q = A ∪ C, R = B. Here |P| = 1 and |R| = n+ 1. We
can see that for n ≥ 2 the graph G has a non-trivial splitting partition. But
the greedy algorithm locates a trivial splitting partition. The n = 2 particular
case of the above construction is the content of the next example.

Example 9 Set A = {2, 3}, B = {4, 5, 6}, C = {7, 8}, u = 1. Let us consider the
graph G = (V, E), where V = {1, . . . , 8}. The adjacency matrix of G is depicted
in Table 3. Figure 2 shows a possible geometric representation of G.



140 S. Szabó

4 Numerical experiments

For testing purposes we have selected three infinite families of graphs that are
connected to the existence and construction of certain error detecting and error
correcting codes. The so-called monotonic matrices are in intimate connection
with codes over the alphabet {1, . . . , n}. Each code words has length three. The
problem is to find a code whose inner distance is at least two. (See [6], [8].) The
deletion error detecting codes are consisting of binary code words of length
n. These words are sent over a noisy channel. Due to transmission error on
the receiver side a shorter word may arrive. The task is to devise a code that
makes possible to detect a one bit deletion error. (For further details see [5].)
The Johnson codes we are considering here are binary codes with word length
n. Each code word consists of 4 1’s and n − 4 0’s. The Hamming distance of
two distinct code words is at least 3.

Monoton Deletion Johnson

n |V | α β n |V | α β n |V | α β

3 27 4 4 3 8 2 4

4 64 5 7 4 16 4 4

5 125 7 8 5 32 4 5

6 216 9 9 6 64 4 5 6 15 2 4

7 343 10 12 7 128 4 7 7 35 2 5

8 512 12 13 8 256 5 5 8 70 2 6

9 729 14 14 9 512 5 8 9 126 3 3

10 1 000 15 17 10 1024 6 6 10 210 3 4

11 1 331 17 18 11 2048 6 10 11 330 4 4

12 1 728 19 19 12 4096 7 7 12 495 4 5

13 2 197 20 22 13 715 5 5

14 2 744 22 23 14 1 001 5 6

15 3 375 24 24 15 1 365 6 6

16 4 096 25 27 16 1 820 6 7

17 4 913 27 28 17 2 380 7 7

18 3 060 7 8

19 3 876 8 8

20 4 845 8 9

Table 3: Numerical results in connection with graphs coming from coding
theory.
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The results of the numerical experiments are summarized in the Table 3.
We describe the meaning of the entries using the 10-th row of Table 3 as an
illustration. A graph G is associated with a monotonic matrix of parameter
n = 10. The graph has |V | = 1000 vertices. These values are in the first two
columns of the table. The splitting partition (P,Q, R) we have spotted has the
parameters |P| = α = 15, |R| = β = 17 and the next two columns contain these
α, β values.

At this stage we may conclude that the algorithm spots splitting partitions
rapidly and works reliably in connection with non-trivial size graphs. Only
after working with the algorithm for a longer period of time involving a much
wider variety and range of graphs would enable us to assess the merits of the
proposed procedure.
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Abstract. The debts’ clearing problem is about clearing all the debts in
a group of n entities (banks, companies etc.) using a minimal number of
money transaction operations. The problem is known to be NP-hard in
the strong sense. As for many intractable problems, techniques from the
field of artificial intelligence are useful in finding solutions close to opti-
mum for large inputs. An evolutionary algorithm for solving the debts’
clearing problem is proposed.

1 Introduction

The problem of debt clearing (DC problem) can arise among a group of friends,
but it also needs to be solved regularly among the affiliates of multinational
corporations, banks or even countries ([16, 18]). As money transactions are
time- and money-sensitive operations, it can be desirable to clear the debts in
a minimal number of money transaction operations.

Problems related to debt clearing were studied in the past. Shapiro gave
a linear programming based model to minimize the cost of payments netting
assuming that costs are directly proportional to the volume transacted ([16]).
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In [18] a network flow based model was given which solves some of the weak-
nesses of Shapiro’s model and is more efficient computationally. Because in our
problem the goal is to minimize the number of transactions in a multilateral
netting system, there is no linearity of costs, thus neither of these methods
can be used as it was briefly discussed in [13].

In [9] the NP-complete Bank Clearing Problem (BCP) was introduced as it
occurred in Germany’s largest interbank payment system and efficient heuris-
tic algorithms were given to solve it. Later in [17] an approximation algorithm
for the BCP was given. In the BCP the objective is to maximize the clear-
ing volume with the restriction that the negative net balance cannot exceed
a previously deposited amount for each bank. Because the objective and the
constraints of the BCP are different from the version of the DC problem dis-
cussed here (where the objective is to minimize the number of transactions),
these heuristic algorithms cannot be adapted to solve the DC problem and
cannot provide a comparison for our proposed evolutionary algorithm.

In [11] a survey is given on solving some other banking related issues (such
as portfolio optimization, bankruptcy prediction and FOREX rate prediction)
using evolutionary computing. A stochastic model for a payment and settle-
ment system capable of processing payments in real time is presented in [1] by
the example of the Clearinghouse of the Bank of Lithuania. Using this model,
in [2] several FIFO clearing algorithms are tested by simulation.

The problem of mutual debts compensation (MDC) is formulated using
graph theory in [4, 5]. The author proposes a cycle elimination method, but
also shows by an example that the order of elimination is important, which is
also mentioned in [13]. In this problem the goal is to maximize the total amount
of eliminated debts and can be solved efficiently by linear programming and
also by network flow methods. In [6] new models for MDC are introduced.

The problem of settling debts in a minimal number of transactions was
discussed by Verhoeff in 2004 ([21]).

Pătcaş [13] later re-discovered the problem and proposed it in 2008 at the
qualification contest of the Romanian national team of informatics. The solu-
tion was described in [13] and the problem conjectured to be intractable, which
was earlier proved in [21]. In [15] the problem’s relation to complexity classes
was further studied. In [14] the problem in a dynamic setting is discussed and
a new algorithm given, having superior speed in some cases compared to the
one described in [13].
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List of borrowings:
Borrower Lender Amount of money

1 3 4
3 4 7
4 2 2
2 1 2
1 5 1
3 5 1
5 4 2

Solution:
Sender Reciever Amount of money

1 4 3
3 4 4

Figure 1: Example for the DC problem

2 Stating the problem

The problem statement is the following([13]):
Let us consider a number of n entities (persons, companies etc.), and a list

of m borrowings among these entities. A borrowing can be described by three
parameters: the index of the borrower entity, the index of the lender entity and
the amount of money that was lent. The task is to find a minimal list of money
transactions that clears the debts formed among these n entities as a result of
the m borrowings made.

It is natural to model this problem using graph theory. Consider the follow-
ing definitions.

Definition 1 ([13]) Let G(V,A,W) be a directed, weighted multigraph with-
out loops, |V | = n, |A| = m, W : A → Z, where V is the set of vertices, A

is the set of arcs and W is the weight function. G represents the borrowings
made, so we will call it the borrowing graph.

The borrowing graph corresponding to the example in Figure 1 is depicted
in Figure 2.

Definition 2 ([13]) Let us define for each vertex v ∈ V the absolute amount
of debt over the graph G: DG(v) =

∑
v ′ ∈ V

(v, v ′) ∈ A

W(v, v ′) −
∑

v ′′ ∈ V

(v ′′, v) ∈ A

W(v ′′, v)
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Figure 2: The borrowing graph associated with the given example. An arc
from node i to node j with weight w means, that entity i must pay w amount
of money to entity j.

i 1 2 3 4 5

D(i) 3 0 4 -7 0

Figure 3: Absolute amounts of debt corresponding to the given example.

Sometimes for simplicity we will refer to the absolute amount of debt of a
node as D-value.

The D-values corresponding to the example from Figure 1 are listed in
Figure 3.

Definition 3 ([13]) Let G ′(V,A ′,W ′) be a directed, weighted multigraph with-
out loops, with each arc (i, j) representing a transaction of W ′(i, j) amount of
money from entity i to entity j. We call this graph a transaction graph.
These transactions clear1 the debts formed by the borrowings modeled by graph
G(V,A,W) if and only if:
DG(vi) = DG ′(vi), ∀i = 1, n, where V = {v1, v2, . . . , vn}

We will note this by: G ∼ G ′.

See Figure 4 for a transaction graph with minimal number of arcs corres-
ponding to the example from Figure 1.

We are now ready to reformulate the problem mathematically:

1When trying to decide if the transactions described by a transaction graph clear the
debts represented by a borrowing graph, it is easy to see that only D-values matter ([21]).
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Figure 4: The respective minimum transaction graph. An arc from node i to
node j with weight w means, that entity i pays w amount of money to entity
j.

Given a borrowing graph G(V,A,W) we are looking for a minimal tran-
saction graph Gmin(V,Amin,Wmin), so that G ∼ Gmin and ∀G ′(V,A ′,W ′) :
G ∼ G ′, |Amin| ≤ |A ′| holds.

3 An equivalent problem

The following observation is crucial in all of the solutions known so far.

Theorem 4 ([21, 13]) Any instance of the DC problem can be solved trivially
by at most n− 1 transactions.

Proof. We give an algorithmic proof.

1. Let us choose two nodes i and j, such that D(i) > 0 and D(j) < 0.

2. Add arc (i, j) to the transaction graph having weight min(D(i),−D(j)).

3. Update the D-values of i and j to reflect the addition of the arc (by
decreasing D(i) and increasing D(j)).

4. Repeat steps (1) - (3) as long as possible.

It is clear that at least one D-value becomes zero as a result of executing
steps (1) - (3). Also, because we have the invariant that the sum of all D-
values is always zero, at the last iteration we always have D(i) = −D(j). Thus
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two D-values become zero at the last iteration, which yields the needed upper
bound. �

We observe that finding a minimal transaction graph is equivalent to parti-
tioning V into a maximal number of disjoint zero-sum subsets, more formally
V = P1 ∪ . . . ∪ Pmax,

∑
u∈Pi

D(u) = 0, ∀i = 1,max and Pi ∩ Pj = ∅, ∀i, j =

1,max, i 6= j. The reason for this is, that all the debts in a zero-sum subset
Pi can be cleared by |Pi| − 1 transactions by Theorem 4, thus to clear all the
debts, |V |−max transactions are necessary.

4 Evolutionary technique for solving the DC prob-
lem

We use the reformulation of the problem described in Section 3.

Representation In our method we represent a solution of the problem by a
permutation of the D-values of V, the set of nodes. Thus a candidate solution
is a vector C = (c1, c2, . . . , cn), such that ci = D(u), ∀i ∈ 1, n for some unique
u ∈ V.

For instance C = (3, 0,−7, 4, 0) is a chromosome representing a candidate
solution for the D-values from Figure 3.

The idea of representing solutions as permutations was discussed intensively
in the context of the Traveling Salesman Problem (TSP) ([7, 12, 22]).

Fitness assignment To evaluate the fitness of a chromosome, we need to
determine the number of zero-sum subsets codified by the candidate solution,
taking into consideration the order of appearance of the D-values. In order to
calculate it, we iterate over the genes of the chromosome from left to right and

maintain the partial sum obtained so far, that is si =
i∑

j=1

cj. For every si = 0,

we have found a new zero-sum subset of the partition (starting after the last
encountered partial sum equal to zero and ending at i), so we can add one to
the fitness of the chromosome.

For instance if we have C = (−3, 2, 1,−5, 5), then s = (−3,−1, 0,−5, 0), so
the fitness of C will be 2, corresponding to the partition formed by the first
three elements and the last two elements.
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Recombination Various operators for permutation representations are dis-
cussed in [3, 7, 8, 12, 19, 20, 22, 23].

When selecting existing recombination operators or designing new ones the
representation of the problem is crucial to consider. In our case we had to
take into account that we have a permutation representation corresponding
to disjoint sets whose number has to be maximized. Thus for our problem
the resulting offsprings of a crossover must represent a valid permutation and
must have the potential to improve the number of zero-sum sets.

Because these sets are constructed by looking at the order of genes, for
operator Recomb1 we have chosen an order-based crossover method, in par-
ticular the Modified Order Crossover (MOX) operator described in [23]. Most
crossover operators for permutation representations are designed for the TSP.
Replacing a few arcs in the solution of the TSP usually does not greatly change
the fitness of the solution, but may have a negative impact in the DC prob-
lem by perturbing too many zero-sum sets. Thus we had to be careful which
operators to adapt to our problem.

For operator Recomb2 we propose a new crossover operator, which intu-
itively has a great potential in increasing the number of subsets codified by
the offsprings, by leveraging information from the parents.

Recomb1 Let C1 and C2 be the two chromosomes, and k ∈ [1, n] a random
crossover point. Then, the first descendant C ′

1 can be obtained by copying the
first k genes from C1 and appending to it the elements of the permutation not
used so far in the same order as they appear in C2. The second descendant C ′

2

is obtained symmetrically.
For instance,

k = 2

C1 = (−3,2, 1,−5, 5) C2 = (−5,2, 1,−3, 5)↓
C ′
1 = (−3,2,−5, 1, 5) C ′

2 = (−5,2,−3, 1, 5)

Recomb2 The problem with Recomb1 is, that the first descendant inherits
most of its properties from C1 and very little from C2. Symmetrically C ′

2 inher-
its most of its properties from C2 and very little from C1. This is undesirable,
as both C1 and C2 can contain subsets from the optimal partition.

A better recombination operator may be the following. First, determine the
zero-sum subsets codified by C1 and C2, as described at the fitness assignment.
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Let those be C1 = P1,1 ∪P1,2 ∪ . . . and C2 = P2,1 ∪P2,2 ∪ . . .. Initialize C ′
1 := C1

and C ′
2 := C2.

Then, iterate over every P1,i. If some P1,i is contained in some P2,j, that is
P1,i ⊂ P2,j, replace P2,j in the second descendant with P1,i∪ (P2,j \P1,i)2 Repeat
the same procedure for C2 symmetrically.

For instance,

C1 = (−3, 2, 1,−5, 5) = {−3, 2, 1} ∪ {−5, 5}

C2 = (2, 1, 5,−5,−3) = {2, 1, 5,−5,−3}↓
C ′
1 = {−3, 2, 1} ∪ {−5, 5} = (−3, 2, 1,−5, 5)

C ′
2 = {−3, 2, 1} ∪ {5,−5} = (−3, 2, 1, 5,−5)

Mutation In our experiments we have used three mutation operators. Mut1
is a classical inversion operator.

We propose two new mutation operators with the property, that the fit-
ness value of the chromosome does not decrease. The new mutation operators
are based on Mut1, but are using the additional information of the chosen
representation of our particular problem.

Mut1 Holland described an inversion operator in [10], which reverses the
order of the elements between two randomly chosen indices. This method
can be used without modification, on the sequence between the ith and jth

elements.
For instance,

i = 2, j = 5

C = (−3,2,1,−5,5)↓
C ′ = (−3,5,−5,1,2)

Mut2 Mut1 can be used on the partition C = P1 ∪ P2 ∪ . . . instead of the
permutation representation. This method guarantees that the fitness of the
chromosome does not decrease.

For instance,

2In our implementation we have chosen to put the elements of P1,i into C ′2 in the same
order as they were in C1 and the elements of P2,j \P1,i in the same order as they were in C2.
Other variations are possible as well.
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i = 1, j = 4

C = (−2, 2, 3, 4,−7, 1,−1, 6,−3, 2,−5) =
{−2,2} ∪ {3,4,−7} ∪ {1,−1} ∪ {6,−3,2,−5}↓

C ′ = {6,−3,2,−5} ∪ {1,−1} ∪ {3,4,−7} ∪ {−2,2} =
(6,−3, 2,−5, 1,−1, 3, 4,−7,−2, 2)

Mut3 Mut1 can also be used inside some Pk without decreasing the fitness.
For instance,

k = 4, i = 1, j = 4

C = (−2, 2, 3, 4,−7, 1,−1, 6,−3, 2,−5) =
{−2, 2} ∪ {3, 4,−7} ∪ {1,−1} ∪ {6,−3,2,−5}↓

C ′ = {−2, 2} ∪ {3, 4,−7} ∪ {1,−1} ∪ {−5,2,−3,6} =
(−2, 2, 3, 4,−7, 1,−1,−5, 2,−3, 6)

5 How to obtain large instances of the DC problem

Because our problem is NP-hard as demonstrated in [15], it is challenging to
generate large test cases for which information about the optimal solution is
known. We describe five methods to generate large test cases.

Method 1 If the optimal solution for some input is known, padding the set
of D-values with k zeros increases the optimal solution also by k.

Method 2 Method 1 can be modified by padding the input with k pairs of
the structure (x,−x).

Method 3 If the number of negative (or positive) numbers is two, the prob-
lem is equivalent to the Subset Sum problem and is solvable in pseudopoly-
nomial time by dynamic programming. Using this method we can generate
inputs for which the optimal solution is unique, that is, there is a single subset
of positive (negative) numbers having the sum equal to one of the two neg-
ative (positive) numbers (in absolute value). An optimal answer for such an
input is expected to be difficult to find for our evolutionary approach, as in the
worst case (when the cardinality of the subset is n/2) only 2 · (n2 !)

2 out of the
n! possible permutations do represent an optimal solution. For n = 10, this
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means that the ratio of optimal solutions and all solutions is about 7.9 · 10−3,
while for n = 100 the ratio is about 1.9 · 10−29.

This idea can be extended for any fixed number of negative (positive) num-
bers, but the running time of the dynamic programming solution raises quickly.

Method 4 Let n be the desired size of the input and l ≤ bn/2c an integer.
First generate randomly a set of n − l elements, containing only positive D-
values and l distinct integers from the [1, n− l] range (denoted r1 < . . . < rl).

Let s be the vector of partial sums, that is si =
i∑

j=1

D(j), ∀i = 1, n− l (we

assume s0 = 0 and r0 = 0). For every ri, ∀i = 1, l insert −(sri − sri−1
) to

the set. In other words we insert with a negative sign the sum of l partial
sequences, whose borders are denoted by ri−1 and ri. By this method we can
get the optimal solution to be equal to l. As the range of the possible values
of the first n− l positive elements gets bigger, we expect the optimal solution
to be harder and harder to find. The reason is that the probability to get the
same sum from a different combination of positive numbers gets smaller, thus
the number of genetic representations corresponding to an optimal solution
decreases.

Method 5 It can be easily seen, that if the optimal solution for a set V is
known to be max, then the solution for V ∪V will be 2 ·max, the solution for
V ∪ V ∪ V will be 3 ·max and so on.

6 Numerical experiments

A preliminary testing phase was carried out using the same 15 test cases
which were used when the problem was proposed in 2008 at the qualification
contest of the Romanian national team (see [14] for a description of each
instance). These test cases all have specially crafted structures, with n ≤ 20,
m ≤ 100 and the cost of an arc being a natural number no larger than 100. For
comparison, the optimal solution was determined for each test case by using
the algorithm described in [13].

Because these instances have small size, our genetic algorithm can be used
with a wide range of parameters and operators to reach the optimal solution
in a matter of seconds.

To test the above statement empirically, we used a population of 100 indi-
viduals and the number of generations was set 100. We used operator Recomb2
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in conjunction with roulette wheel selection and operator Mut1 with a muta-
tion probability of 0.5. The best five individuals always survived to the next
generation. Our genetic algorithm found the best solution for all of the test
cases.

6.1 Combinations of operators

In the first set of experiments our goal was to determine which combinations
of our recombination and mutation operators work best in practice, along
with desirable values for mutation probability. We constructed three test cases
(debt100a, debt100b and debt100c)3 with different structures, all of them
having n = 100

debt100a was obtained by concatenating the test case from the initial 15
which was the most difficult to solve for the genetic algorithm (case 15) five
times to itself. By the observation above in Method 5, the optimal solution for
this test case is max = 25.

To generate debt100b we used Method 3 for n = 50 and concatenated the
obtained set once to itself, thus obtaining a case having max = 4 by the
observation above.

To obtain debt100c we first generated, using a dynamic programming algo-
rithm, a set having 20 elements, which can be uniquely partitioned into three
zero-sum subsets (and no more). Then we concatenated this set five times to
itself, yielding max = 15 for this test case.

For each of the three described test cases we used the following methodol-
ogy. For every possible combination of recombination and mutation operators
we fixed the mutation probability to every value from 0 to 1 in steps of 0.1
and executed the genetic algorithm 10 times. We recorded the best solution
obtained among the 10 executions, the average of the 10 best values and the
average fitness of all genomes. In each case the population size was set to
100 individuals and the number of generations to 1000. For the recombination
operators roulette wheel selection was used in every case and the best five
individuals always survived to the next generation.

To assess the efficacy of our algorithm we compared it to an algorithm called
RandomSearch, which works by generating an independent random solution
in every generation for each chromosome. In our case this meant generating
100000 random solutions and remembering the one with the maximum fitness
value among them.

3All test cases used in our experiments can be downloaded from http://cs.ubbcluj.ro/

~patcas/debt_experiments.zip

http://cs.ubbcluj.ro/~patcas/debt_experiments.zip
http://cs.ubbcluj.ro/~patcas/debt_experiments.zip
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The results of the first set of experiments were the following:

• debt100c was the most difficult of the three test cases used, no algo-
rithm being able to find the optimal solution max = 15. The best solu-
tion found by RandomSearch was 5, and the best solution found by the
evolutionary algorithms was 13, using Recomb2 along with Mut1 with a
mutation probability ranging from 0.8 to 1. The average fitness of all
genomes was maximal at mutation probability 0.7.

• debt100b was the easiest of the test cases, our genetic algorithm being
able to find the optimal solution max = 4 in the majority of the cases (in
about 76% of the possible combinations of recombination and mutation
operators and mutation probabilities). Mutation probability 0.7 along
with Recomb2 and Mut1 maximized the average fitness again. The best
solution found by RandomSearch was 3.

• For debt100a RandomSearch was able to find a solution with fitness
9. Our genetic algorithm found the optimal solution 25 in a small per-
centage of the cases, using the same parameters that yielded the best
solutions for debt100c. Maximal average fitness was obtained with mu-
tation probability 0.4 using Recomb2 and Mut1.

We can draw the conclusion that our genetic algorithm is much more efficient
than generating random solutions. The results suggest that using Recomb2 with
Mut1 works best in practice for a wide range of inputs. On the other hand we
note that Recomb2 and Mut2 is a particularly bad combination, the reason
being that it does not allow the exploration of a sufficient varied range of
solutions, because neither of the operators is able to introduce new partition
sets into the population. Still, Mut2 works fairly well together with Recomb1,
as the latter is capable of constructing new partition sets.

6.2 Convergence to optimum

In the second set of experiments we studied the convergence of the solution
to the optimal value as the number of generations increases. We concatenated
each of the three test cases described above ten times to itself, obtaining
cases debt1000a, debt1000b and debt1000c respectively. We executed our
genetic algorithm using Recomb2 and Mut1 with a mutation probability of
0.75. The population size was set to 80 and the best five individuals were
always promoted to the next generation. The algorithm was executed once for
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Figure 5: The fitness of the best individual compared to the optimal solution
in percentages for test case debt1000a as the number of generations increases.

50000 generations, and the fitness of the best chromosome was recorded every
100 generations.

The results are depicted in Figures 5, 6 and 7. We can observe that in
every case the fitness of the best individual raises sharply in the first 5000
generations, then slows down gradually. 50000 generations were enough to
find a solution having fitness 244 (97.6% of the optimum) for debt1000a and
a solution having fitness 39 (97.5% of the optimum) for debt1000b. Case
debt1000c was significantly more difficult, the best solution having only fitness
122 (81.3% of the optimum).

6.3 Efficiency on very difficult test cases

In the third set of experiments we used Method 2 to generate test cases which
are very difficult for our evolutionary algorithm. Starting with n = 100 and go-
ing by increments of 100 we generated sets having the structure {1, 2, . . . , n/2,

− 1,−2, . . . ,−n/2}. It can be easily seen that the optimal solution for these
cases is max = n/2 and it is unique. Only n

2 ! · 2
n/2 representations out of

n! translate to an optimal solution, which means that the ratio of optimal
solutions to all solutions is about 1.0 · 10−3 for n = 10 and about 3.6 · 10−79

for n = 100.
For every case we executed the genetic algorithm 10 times using Recomb2
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Figure 6: The fitness of the best individual compared to the optimal solution
in percentages for test case debt1000b as the number of generations increases.

and Mut1 with a mutation probability 0.75. The population size was set to 80
and the best five individuals were always promoted to the next generation. The
algorithm was stopped after 5000 generations. For every test case we recorded
the best solution found by the algorithm, the average of the best solutions
over the 10 executions and the summed up running time of the 10 executions.
The results are presented in Figure 8.

For n = 100 the optimal solution was found in all of the 10 executions, but
as the size of the input increased, the best solution got further and further from
the optimum. We note the robustness of the algorithm, as the best solution is
usually just a few percentages away from the average.

7 Conclusions

The debts’ clearing problem is an NP-hard problem of practical interest, as it
arises in real life situations as well. The only known algorithms to solve the
problem were the ones presented in [13] and [14], which are exact algorithms
that always provide the optimal solution, but their running time is practical
only for small inputs (n ≤ 20).

Using an equivalent problem, we described an evolutionary algorithm to
solve the problem and made extensive experiments to assess its efficacy. From
the experiments we concluded that our algorithm is much more efficient than a
random search in the space of the solutions. Our algorithm is capable of finding
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Figure 7: The fitness of the best individual compared to the optimal solution
in percentages for test case debt1000c as the number of generations increases.

N Best solution Average of bests Running time
(% of optimum) (% of optimum) (in seconds)

100 50 (100%) 50 (100%) 203
200 76 (76%) 70.4 (70.4%) 710
300 91 (60.6%) 85.5 (57%) 1247
400 108 (54%) 100.5 (50.2%) 1919
500 116 (46.4%) 109.8 (43.9%) 2610
600 130 (43.3%) 121.1 (40.3%) 3328
700 138 (39.4%) 132 (37.7%) 4225
800 147 (36.7%) 142.4 (35.6%) 5134
900 155 (34.4%) 146.6 (32.5%) 6084
1000 166 (33.2%) 157.3 (31.4%) 6766

Figure 8: Results of 10 executions for 5000 generations each, on very difficult
test cases

the optimal solution for the most difficult test cases with sizes up to n = 100

in a matter of minutes. For cases as large as n = 1000 our approach remains
practical, as it can obtain solutions in the range of 80% - 98% compared to
the optimal solution in about an hour on a personal computer. In comparison
a random search does not go above 15% even for the easiest cases of this size.
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[23] J. Wróblewski, Theoretical foundations of order-based genetic algorithms,
Fundamenta Informaticae 28, 3-4 (1996) 423–430. ⇒148

Received: September 26, 2019 • Revised: November 26, 2019

http://cs.ubbcluj.ro/~patcas/
http://studia.ubbcluj.ro/arhiva/abstract.php?editie=INFORMATICA&nr=2&an=2009&id_art=7268
http://cs.ubbcluj.ro/~patcas/
http://www.acta.sapientia.ro/acta-info/C3-2/info32-4.pdf
http://cs.ubbcluj.ro/~patcas/
https://www.emis.de/journals/AMAPN/vol28_2/28_21.pdf
https://link.springer.com/journal/41267
https://www.journals.elsevier.com/european-journal-of-operational-research
https://www.journals.elsevier.com/european-journal-of-operational-research
https://link.springer.com/journal/41267
http://wce.ac.in/faculty-pages/faculty-page.php?tfaculty=7
http://ictactjournals.in/paper/IJSC_V6_I1_paper_4_pp_1083_1092.pdf
http://www.win.tue.nl/~wstomv/
http://www.mii.lt/informatics_in_education/pdf/INFE023.pdf
https://fi.mimuw.edu.pl/index.php/FI


Acta Univ. Sapientiae, Informatica 11, 2 (2019) 159–173

DOI: 10.2478/ausi-2019-0011

On J-colorability of certain derived graph

classes

Federico FORNASIERO
Department of Mathemathics

Universidade Federal de Pernambuco
Recife, Pernambuco, BRAZIL

email: federico@dmat.ufpe.br

Sudev NADUVATH
Department of Mathematics

CHRIST (Deemed to be University)
Bangalore-560029, INDIA.

email: sudev.nk@christuniversity.in

Abstract. A vertex v of a given graph G is said to be in a rainbow
neighbourhood of G, with respect to a proper coloring C of G, if the
closed neighbourhood N[v] of the vertex v consists of at least one vertex
from every color class of G with respect to C. A maximal proper coloring
of a graph G is a J-coloring of G such that every vertex of G belongs to a
rainbow neighbourhood of G. In this paper, we study certain parameters
related to J-coloring of certain Mycielski-type graphs.

1 Introduction

For general notations and concepts in graphs and digraphs we refer to [1, 3, 15].
For further definitions in the theory of graph coloring, see [2, 8, 4]. Unless
specified otherwise, all graphs mentioned in this paper are simple, connected
and undirected graphs.
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1.1 Mycielskian of graphs

Let G be a triangle-free graph with the vertex set V(G) = {v1, . . . , vn}. The
Mycielski graph or the Mycielskian of a graph G, denoted by µ(G), is the
graph with vertex set V(µ(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w} such that
vivj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G), viuj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G) and
uiw ∈ E(µ(G)) for all i = 1, . . . , n (see [9]).

v1 v2 v3 v4 v5 v6 v7

u1 u2 u3 u4 u5 u6 u7

w

Figure 1: The Mycielski graph µ(P7)

In the above mentioned conditions of Mycielski graphs, we call the two
vertices vi, ui twin vertices and the vertex w is called the root vertex of the
Mycielskian µ(G).

By a Mycielski type graph, we mean a graph that can be constructed from
the Mycielski graphs or the graphs generated from a given graphs using some
or similar rules of constructing their Mycielski graphs.

1.2 Rainbow neighbourhoods in graphs

A graph coloring is an assignment of colors to its elements. If colors are assigned
to the vertices of a graph G, then it is called a vertex coloring of G. A vertex
coloring is said to be a proper coloring if no two adjacent vertices have the
same color, with respect to the coloring concerned.

In this study, we follow a proper coloring protocol as follows: Assign color
c1 to the maximum possible number of vertices in G, then assign color c2 is
given to the maximum possible number of remaining uncolored vertices and
the procedure is continued until all vertices of G are colored properly. Then,
the closed neighbourhoodN[v] of a vertex v ∈ V(G) which contains at least one
colored vertex of each color with respect to the above-mentioned coloring, is
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called a rainbow neighbourhood in G. The number of rainbow neighbourhoods
in a graph is said to be the rainbow neighbourhood number of the graph (see
[5]).

Later rainbow neighbourhood number of different graph classes have been
studied in detail and many interesting results have been added to the litera-
ture (see [5, 6, 7, 10, 11]). These studies motivated researchers to investigate
further in this area and thus a new type of coloring called J-coloring has been
introduced and studied.

1.3 J-coloring of graphs

The notion of J-coloring of a graph, has been defined for the first time in [12]
as follows:

Definition 1 [12] A graph G is said to have a J-coloring C if it has the max-
imal number of colors such that every vertex v of G belongs to a rainbow
neighbourhood of G. The number of colors in a J-coloring C of G is called the
J-coloring number of G.

Definition 2 [12] A graph G is said to have a J∗-coloring C if it has the
maximal number of colors such that every internal vertex v (a vertex with
degree greater than 1) of G belongs to a rainbow neighbourhood of G. The
number of colors in a J∗-coloring C of G is called the J∗-coloring number of G.

It can be noted that all graphs, in general, need not have a J-coloring.
Hence, the studies on the graphs which admit J-coloring and their properties
and structural characterisations attract much interests. Some studies in this
direction can be seen in [6, 12, 13].

The initial purpose of this paper is to study the J-colorability of the Myciel-
skian and certain Mycielski type graphs of some fundamental graph classes.

2 J-colorability of Mycielski graphs

Note that the Mycielski graph µ(G) of a graph G has no pendant vertices
and hence the J-coloring and the J∗-coloring of the Mycielski graphs µ(G), if
they exist, are the same. We first try to repeat the original demonstration of
Mycielskian graph. To do that, we have to fix a J-coloring on the graph G.

Theorem 3 Let G be a graph with J-coloring C = {c1, c2, c3 . . . , ck}. Then, the
graph µ(G) is not J-colorable (and so, it is not J∗-colorable).
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Proof. Note that µ(K2) is isomorphic to C5 and hence it is not J− colorable
(as it is proved in [12]). Hence, we can consider graphs with order greater than
2. Let us assume that we can have a new J-coloring C = {c1, c2 . . . , cj} on µ(G).
Without loss of generality, we can assume now that the color of w is c ′1. Every
vertex ui have to be colored with one of the other color c2, . . . , cj. Hence, there
exists at least a vertex v1 with color c1. Let be v2 the vertex connected to v1
such as the twin vertex u2 has the color c2. Here, we have the following two
possibilities:

(i) : If the color of v2 is different from the previous ones, let us say c3,
we have that for the definition of rainbow neighbourhood even the twin
vertex u2 has to be connected with a vertex with the same color, and it
has to be a vertex v3 because no one of the vertices uj are connected,
and w has the color c1. But if it is so, than for the construction of µ(G)
even the vertex v2 has to be connected with v3, and so it is not a proper
coloring because two vertices has the same colors (see Figure 2).

c1v1 c3 v2c3v3

c2u1 c2 u2

c1

w

Figure 2: Case (i)

(ii) If the color of v2 is c2, the twin vertices u1 of v1 has to have a different
color (let us say c3), because it is linked to w that has the color c ′1 and
to v2 that has the color c2. But, in this case the vertex v1 has to be
connected with another vertex which has the color c3.

So we have to differentiate two different possibilities:

(ii)(a) If the vertex v1 is connected to a vertex v3 who has the color c3 for the
construction of µ(G) even the twin vertices u1 is connected to v3 and so
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it is not a proper coloring because two connected vertices have the same
color (see Figure 3).

c1

v1

c2

v2

c3

v3

c3

u1

c2

u2

c1

w

Figure 3: Case (ii)(a)

(ii)(b) If the vertex v1 is connected to a vertex u3 which has the color c3, first
we can note that the twin vertex v3 cannot have a new color, because it
would lead to a contradiction over u3 similar to the case (i).

Note that v3 cannot have the color c1 (because for construction it is
connected with v1) nor the color c3 (because always for construction
it is connected to the twin vertex u1) so it has to be colored with the
color c2. But if it is so, u3 needs to be connected with a vertex vi whose
color is c2, but it cannot be the twin vertex v3 for the construction, nor
the vertex v2 because it will lead to have the triangle v1v2u3v1. If the
graph G has only 3 nodes we reach a contradiction yet, if it is not let
us call v4 the vertex with color c2 connected to u3. For the construction
of µ(G) it has to be connected to the vertex v3 and it finally leads to a
contradiction because the two vertices would have the same color (see
Figure 4).

Hence, the Mycielskian graph of any graph G is not J-colorable, irrespective
of whether the G is J-colorable or not. �

3 Some new constructions

Since Mycielskian of any graph does not admit a J-coloring, our immediate
aim is to construct some simple connected graphs from certain given graphs
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c1

v1

c2

v2

c2

v3

c3

u1

c2

u2

c1w

c3

u3

c2

v4

Figure 4: Case (ii)(b)

such that new graphs also admit an extended J-coloring. In this section, we
discuss the J-colorability of certain newly constructed Mycielski type graphs
of a given graphs.

The first one among such graphs is the crib graph, denoted by c(G), of a
graph G, which is defined in [13] as follows:

Definition 4 [13]The crib graph, denoted by c(G), of a graph G is the graph
whose vertex set is V(µ(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w} such that vivj ∈
E(µ(G)) ⇐⇒ vivj ∈ E(G), viuj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G) and viw,uiw ∈
E(µ(G)) for all i = 1, . . . , n.

Figure 5 depicts the crib graph of P6.

v1 v2 v3 v4 v5 v6

u1 u2
u3 u4

u5 u6

w

Figure 5: Crib graph of P6
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The following theorem discusses the admissibility of an extended J-coloring
by the crib graph of a J-colorable graph G.

Theorem 5 The crib graph c(G) of a J-colorable graph G is also J-colorable.
Also, J(c(G)) = J(G) + 1.

Proof. Assume that the graph G under consideration admits a J-coloring,
say C = {c1, c2, . . . , ck}, where k = χ(G), the chromatic number of G. While
coloring the vertices of c(G), we notice the following points:

(i) Since, the twin vertices ui and vi in c(G) are adjacent to each other,
both of them can have the same color.

(ii) Since N(ui) = N(vi) for all 1 ≤ i ≤ n, it follows that N[ui] is also a
rainbow neighbourhood in c(G). Therefore, the subgraph of c(G) induced
by the vertex set {v1, v2, . . . , vn, u1, u2, . . . , un} admit the same J-coloring
C.

(iii) Since the root vertex w is adjacent to other vertices in c(G), it cannot
have any color from C. Therefore, we need a new color, say ck+1 to color
the vertex w.

(iv) Since the root vertex w is adjacent to other vertices in c(G), it belongs
to a rainbow neighbourhood in c(G) and will not influence the belong-
ingness of other vertices to some rainbow neighbourhoods in c(G).

In view of the conditions mentioned above, notice that C ∪ {ck+1} is a J-
coloring of c(G) and J(c(G)) = k + 1 = J(G) + 1. This completes the proof.
�

Another similar graph that catches attention in this context is the shadow
graph of a graph G. The shadow graph of a graph G, denoted by s(G), is the
graph G is the graph obtained from its Mycielski graph µ(G) by removing the
root vertex.
The following theorem discusses the admissibility of a J-coloring by the shadow
graph s(G) of a J-colorable graph G.

Theorem 6 The shadow graph s(G) of a J-colorable graph G is also J-colorable.
Moreover, J(s(G)) = J(G).

Proof. The proof is immediate from the proof of Theorem 5. �

Next, we construct a new graph F(G) from a triangle-free, simple and con-
nected graph G such that F(G) has J-chromatic number k + 1 when G has
J-chromatic number k. The construction is described below.
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Definition 7 Let G be a triangle-fee graph, with V(G) = {v1, . . . , vn}. We de-
fine the Federico graph F(G) ofG as the graph such that V(F(G)) = {v1, v2 . . . , vn, u1, u2 . . . ,

un, w1, w2 . . . , wn} and with edges that follows the rules:

(i) vivj ∈ E(F(G)) ⇐⇒ vivj ∈ E(G)
(ii) wiwj ∈ E(F(G)) ⇐⇒ vivj ∈ E(G)

(iii) uiwj ∈ E(F(G)) ⇐⇒ vivj ∈ E(G)
(iv) for all i = 1, . . . , n, viui ∈ V(F(G))

The following figure illustrates the Federico graph of the graph P5.

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

Figure 6: The Federico Graph F(P5)

First we can note that the graph F(G) has no pendant vertices and so the
J-coloring od F(G), if exists, coincides to the J∗-coloring. This fact is straight
forward.

Theorem 8 Let G be a J-colorable, triangle-free graph of order n with J-
coloring number k. Then the graph F(G) is triangle-free and with higher J-
coloring number. If J(G) = k, then J(F(G)) = k+ 1.

Proof. First of all we can see that no pair of vertices ui is connected, therefore
no triangle can involve a pair of these vertices. Also, no vertex wi is connected
to a vertex vj.

Remembering that G is triangle-free, it is not possible that three vertices
vi are connected in F(G) too. Similarly for the vertices wi that form between
them a copy of the graph G. Hence, we have only two possibilities left:

(i) if vi is connected to vj we have that ui is connected to vi but not to vj,
by construction, so no triangle of this type is involved.
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(ii) if wi is connected to wj we have that ui is connected to wj but not to
wi, so it is proved that F(G) is triangle-free.

To construct a proper J-coloring on F(G), let consider a proper J-coloring
ϕ : V(G)→ {c1, . . . , ck} and let us construct ϕ∗ : V(F(G))→ {c1, . . . , ck, ck+1}

by setting:

(i) ϕ∗(vi) = f
∗(wi) = f(vi) for all i = 1, . . . , n

(ii) ϕ∗(ui) = ck+1 for all i = 1, . . . , n

First, we have to prove that it is a proper J-coloring of F(G). We note that
every vertex vi has a rainbow neighbourhood in G, and hence it has in µ(G)
with one more color (the color of ui). Every wi has the same rainbow of the
twin vi because it is connected with the same vertices connected to vi, and it is
connected at least to one of the vertex uj. Finally, every ui has a k+1 rainbow
neighbourhood of because it is connected with every vi and with every wj that
are the connections of vi in the original graph, so by the definition of ϕ∗, every
ui has the same rainbow neighbourhood of vi. Hence, this coloring define a
proper J-coloring of G, it remains to prove that this coloring is maximal.

Hence, let us assume that there exists a proper J-coloring of F(G) such that
J(F(G)) = 2. In this case, we can assume that not every ui has the same color
because if not every ui is connected only to vi, and every vi has a rainbow
neighbourhood of order k+ 2 and can’t have the same color of the vertices ui.
But it would mean that the graph G was (k+ 1) − J−coloring.

Hence, let us start considering the vertex ui. If we prove that independent
from the choice of the color of ui, it is necessary that every ui has the same
color, for what we have just proved, it follows that the coloring is maximal.

From the above choice of the coloring assignment ϕ∗, we note that F(G)
requires at least one more color in its proper coloring than the corresponding
proper coloring of the graph G. Now, note that the upper bound for the J-
chromatic number of a graph G is δ(G)+1 (see [12]). Since δ(F(G)) = δ(G)+1,
any J-coloring of F(G) can have at most one more color than the J-coloring of
G. From these two conditions, we can conclude that the coloring ϕ∗ defined
above is a maximal coloring of F(G) such that every vertex of F(G) belongs
to some rainbow neighbourhood of F(G). Then, we have J(F(G)) = J(G) + 1,
completing the proof. �

Hence, we have found an interesting construction to have new triangle free
graphs with higher J-coloring number. In the following theorem, we study what
happens to the chromatic number of a Federico graph.
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Theorem 9 Let G be a graph and F(G) its Federico graph. Then, χ(G) =
χ(F(G))

Proof. Let f : V(G) = {v1, . . . , vn}→ c1, . . . , ck be a coloring of the vertices of
G. Let us consider the coloring g : V(F(G)) = {v1, . . . , vn, u1, . . . , un, w1, . . . , wn}→
{c1, . . . , ck} defined by:

(i) g(ui) = g(wi) = f(vi) for all i = 1, . . . , n.

(ii) if f(vi) = ch then g(vi) = ch+1 for all i = 1, . . . , n and h = 1, . . . , k− 1

(iii) if f(vi) = ck then g(vi) = c1 for all i = 1, . . . , n.

To prove that it is a proper coloring, first we can note that it is a proper
coloring on the vertices vi because f was a proper coloring of G and we have
only permutated the colors, and also it is a proper coloring on the vertices wi
because it is a copy of the graph and we have colored in the same way. So it
only left to see that we cannot have the same color with connections with a
vertex ui.

But, vi is only connected to ui and they have different colors because g(ui) =
f(vi) but ch+1 = g(vi) 6= f(vi) = ch for the definition of g. Also, because each
wi is connected to every uj such that vj ∈ V(G) was connected to vi ∈ V(G)
and none of which has the same color g(ui) = f(ui) no conflicts arise here.

Hence, we have constructed a proper coloring of F(G) with the same number
of colors of G, as claimed. �

Now we want to study another important coloring property of the Modified
Mycielski graph, the circular chromatic number. It was first studied in [14] with
the name of star chromatic number, and later in [16] provided a comprehensive
survey.

Let G be a graph. For two positive numbers k, d with k ≥ 2d, we define
a (k, d)-coloring as the function f : V(G) → {0, 1, . . . , k − 1} such that if two
vertices u, v are adjacent, then |f(u) − f(v)|k ≤ d where |a − b|k = min{|a −
b|, k− |a− b|}. Then, the circular chromatic number of G is defined as

χc(G) := inf

{
k

d
| G has a (k, d) − coloring

}
In [16] it is shown that if the graph G has at least one edge, then the infimum

can be replaced with the minimum and we have χ(G) − 1 ≤ χc(G) ≤ χ(G).
The circular chromatic number is hard to compute in Mycielski graphs and

there’s not yet a general formula that compute χc(µ(G)) knowing the circular
chromatic number of G. But, in the case of Federico graph, we have
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Theorem 10 Let G be a graph with χc(G). Then, χc(F(G)) = χc(G).

Proof. Let G be a graph with a (k, d) coloring f over V(G) = {v1, v2 . . . , vn}.
Then, we construct the coloring f∗ over F(G) as follows:

(i) f∗(vi) = f(vi) for all i = 1, . . . , n

(ii) f∗(ui) = f
∗(wi) = f(vi) − dmodk for all i = 1, . . . , n

To see that it’s a proper (k, d) coloring of F(G) we first note that between
it’s a proper coloring over the vertices vi’s (because it was on G) and over the
vertices wi’s (because in the construction we have simply added the distance
modulo k, and their connections are the same than the connections over the
vertices vi). A vertex vi is adjacent only to the vertex ui and so by construction
it has exactly distance d.

The vertex ui is connected to every vertex wj such that vivj is an edge in G.
But for construction the vertex ui has color f(vi) − dmodk and the vertices
wj have color f(vj) − dmodk, so the connection maintain the same distances
over the edges vivj ∈ E(G). Therefore, it is a proper (k, d)−coloring of F(G)
and if k

d is minimal in G and hence it is minimal in F(G). �

4 J-paucity number of graphs

In view of our results on the absence of J-coloring for Mycielski graphs and
our new constructions from the Mycielski graphs which admit J-colorings, we
define a new graph parameter with respect to J-coloring as follows:

Definition 11 Let G be a graph which does not admit a J-coloring. Then, the
J-paucity number of G, denoted by ρ(G), is defined as the minimum number
of edges to be added to G so that the reduced graph becomes J-colorable with
respect to a (δ(G) + 1)-coloring of G.

In the following theorem, we determine the J-paucity number of paths.

Theorem 12 ρ(µ(Pn)) = n.

Proof. Note that for δ(µ(Pn)) = 2 and hence we have to find the minimum
number of edges to be added to µ(Pn) so that the reduced graph becomes
J-colorable using 3 colors. For this, first assign colors c1 and c2 alternatively
to the vertices v1, v2, . . . , vn. Now color the vertices ui such that ui and its
twin vertex vi have the same color. Since the vertex w is adjacent to all ui’s,
it can be seen that it must have a different color, say c3 (see Figure 7).

We notice the following points in this context:
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v1
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v2
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v3
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v4
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c1
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c3

w

Figure 7: A 3-coloring of µ(P7).

(i) No vertex vi in V(µ(Pn)) belongs to a rainbow neighbourhood of µ(Pn),
as none of them is adjacent to a vertex having color c3;

(ii) Every vertex ui with color c2 is adjacent to at least one vertex vj with
color c2 and the vertex w with color c3, thus belonging to some rainbow
neighbourhood in µ(Pn).

(iii) Every vertex uj with color c2 is adjacent to at least one vertex vk with
color c1 the vertex w with color c3, thus belonging to some rainbow
neighbourhood in µ(Pn).

(iv) The vertex w, being adjacent to all vertices ui, belongs to some rainbow
neighbourhoods in µ(Pn).

Therefore, from the above arguments, what we need is to draw edges from
the vertices vi to the vertex w so that they also are in some rainbow neigh-
bourhoods of G. Therefore, ρ(µ(Pn)) = n. �

Theorem 13 ρ(µ(Cn)) = n+ 2r, where r ∈ N is given by n ≡ r(mod 3).

Proof. Since δ(µ(Cn)) = 3, the maximum number of colors in its J-coloring is
4. Hence, we have to find the minimum number of edges to be added to µ(Pn)
so that the reduced graph becomes J-colorable using 4 colors. Here we have to
consider the following cases:
Case-1 : Let n ≡ 0(mod 3). Then, we can assign colors c1, c2 and c3 alter-

natively to the vertices v1, v2, . . . , vn. As mentioned in the previous result, we
can color the vertices ui such that ui and its twin vertex vi have the same
color. Since the vertex w is adjacent to all ui’s, it must have a different color,
say c4 (see Figure 8). In this case, all vertices ui and the vertex w will belong
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to some rainbow neighbourhoods of µ(Cn), but no vertex vi has an adjacent
vertex having color c4. So, we need to draw edges from all vi; 1 ≤ i ≤ n to the
vertex w in order to include them in some rainbow neighbourhoods of µ(Cn).

c4w c1 v1

c2 v2

c3

v3

c1

v4

c2v5

c3v6

c1

v7 c2

v8

c3 v9

c1 u1

c2 u2

c3

u3

c1

u4

c2u5

c3u6

c1

u7
c2

u8

c3 u9

Figure 8: A minimal proper coloring of µ(C9)

Case-2 : Let n ≡ 1(mod 3). Then, we can assign colors c1, c2 and c3 alterna-
tively to the vertices v1, v2, . . . , vn−1. The vertex vn can be colored only by c2,
as it is adjacent to v1 with color c1 and to vn−1 with color c3. Here, we notice
that the vertex v1 is not adjacent to any vertex having color c3. Here, we need
to draw an edge between v1 and one of the vertices having color c3.

If we label the vertices ui in such a way that the twin vertices have the same
color, then as in the case of v1, the vertex u1 is not adjacent to any vertex of
color c3. Hence, we need to draw an edge from u1 to any one of the vertices
having color c3.

Since w is adjacent to all ui, w must have the fourth color c4. Since every
vertex ui is adjacent tow, all these vertices,(except u1) belong to some rainbow
neighbourhood of µ(Cn). (Also, note that when we draw an edge from u1 to
a vertex having color c3, it will also belong to some rainbow neighbourhood).
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Since no vertex vi is adjacent to a vertex having color c4, each of them
is to be connected to the vertex w by a new edge. Therefore, in this case
ρ(µ(Cn)) = n+ 2.
Case-3 : Let n ≡ 2(mod 3). Then, we can assign colors c1, c2 and c3 alterna-

tively to the vertices v1, v2, . . . , vn−2. Then, the vertex vn−1 gets the color c1,
the vertex v1 can have the color color c2 Note that the vertex v1 and vn are
not adjacent to any vertex having color c3. Here, we need to draw one edge
each from v1 and v2 to some vertices having color c3.

If we label the vertices ui in such a way that the twin vertices have the
same color, then as in the case of v1 and v2, the vertices u1 and un will not
be adjacent to any vertex of color c3. Hence, we need to draw one edge each
from u1 and u3 to some of the vertices having color c3.

The vertex w gets the color c4 and as mentioned in the above cases, we need
to draw edges from all vertices vi to w so that all vertices in µ(Cn) belong to
some rainbow neighbourhoods in µ(Cn). Therefore, in this case ρ(µ(Cn)) =
n+ 4. �

5 Conclusion

In this paper, we have proved that the Mycielskian of any graph G will not
have a J-coloring, irrespective of whether G has a J-coloring or not. We have
also checked the existence of J-coloring for certain new Mycielski type graphs
constructed from certain graphs. There is a wide scope for further studies in
this area by exploring for new and related graph constructions.

We have also investigated the possibility of defining J-colorings for given
graphs by adding new edges between their non-adjacent vertices. Furthermore,
we have determined the minimum number of such edges to be introduced for
the Mycielskian of paths and cycles. The studies in this area for more graph
classes and more derived graphs are also promising.
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Abstract. We prove that for a triangulated plane graph it is NP-complete
to determine its domination number and its power domination number.

1 Introduction

Given a graph G = (V, E), for a subset of the vertices S ⊂ V, denote by Γ(S)
the closed neighborhood of S, i.e.,

Γ(S) = S ∪ {v ∈ V | ∃ s ∈ S such that (v, s) ∈ E}.

S is called a dominating set if V = Γ(S), i.e., every vertex from V \ S has a
neighbor in S. The size of the smallest dominating set is called the domination
number of G and is denoted by γ(G). A simple graph embedded in the plane
without crossing edges is called a triangulated plane graph if each of its faces
(including the other face) is triangular, i.e., its boundary consists of three
edges. We emphasize that in this paper we only consider undirected simple
graphs, i.e., multiple edges are not allowed. Garey and Johnson [5] have proved
that it is NP-hard to determine γ(G), already for planar graphs. We extend
this result to triangulated planar graphs.
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Theorem 1 For a triangulated plane graph G and integer n, it is NP-complete
to determine its domination number, that is, to decide whether γ(G) ≤ n.

Our method also works for the related parameter called power domination
number. This problem originates from monitoring electrical networks with so-
called Phasor Measurement Units; it was first formulated for graphs by Haynes
et al. [7], but we use the (somewhat different) definition given by Brueni and
Heath [3]. Given a graph G = (V, E), a set of vertices S, let S1 be the subset
of vertices from S that have exactly one neighbor outside S, i.e.,

S1 = {s ∈ S | ∃! v ∈ V \ S such that (s, v) ∈ E}.

The vertices of S1 can propagate to their neighbors, so we define

Γ1(S) = S ∪ Γ(S1).

The power domination process starts from any set of vertices S, in the first
steps applies the Γ operator, and then in each following step the Γ1 operator,
until Γ1 stops increasing the size of the set (which happens after finitely many
steps in a finite graph). The set of vertices obtained this way is denoted by

ΓP(S) = Γ1(. . . Γ1(Γ(S)) . . .).

If V = ΓP(S), then we say that S is a power dominating set and the size of
the smallest such set is the power domination number, γP(G), of the graph
G. Brueni and Heath [3] have proved that it is NP-hard to determine γP(G),
already for planar graphs. We extend this result to triangulated planar graphs.

Theorem 2 For a triangulated plane graph G and integer n, it is NP-complete
to determine its power domination number, that is, to decide whether γP(G) ≤
n.

In fact, our construction will be such that either there is an S with |S| = n
such that already V = Γ1(Γ(S)), or γP(G) > n.

For more related literature and background, see the recent works [1, 4].

2 Technical claims

Our reductions are from the Planar Monotone 3-sat problem, which was
defined and shown to be NP-complete in [2]. In this problem the goal is to
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x1 x2 x3 x4 x6x5

x1 ∨ x4 ∨ x6

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4 x4 ∨ x5 ∨ x6

x̄4 ∨ x̄5 ∨ x̄6x̄1 ∨ x̄2 ∨ x̄3

x̄1 ∨ x̄4 ∨ x̄6

x̄3 ∨ x̄4

Figure 1: Example of a Planar Monotone 3-sat input. A satisfying assign-
ment: only x4 is true.

decide the satisfiability of a conjunctive normal form (CNF), where each clause
contains at most 3 literals, all of which are either negated, or all unnegated,
along with a planar embedding of the incidence structure in the following way.
(See Figure 1.)

• Each variable corresponds to an interval in the horizontal line y = 0;
these intervals are pairwise disjoint.

• Each clause corresponds to an axis-parallel rectangle; these rectangles
are pairwise disjoint.

• If a clause contains only negated (resp. unnegated) variables, then its
rectangle is entirely contained in the y < 0 (resp. y > 0) halfplane.

• Every rectangle is connected to (the intervals corresponding to) the vari-
ables contained in (the clause corresponding to) it by a vertical segment,
which does not pass through any other rectangles.

Note that clauses containing less than 3 literals are also allowed; we are not
aware of whether the problem remains NP-complete or not if we require that
every clause contains exactly 3 literals (this would slightly simplify our proof).
Note that without requiring monotonicity (and any other special structure)
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Planar Exact 3-sat is NP-complete [9], even if the planar incidence graph
is vertex 3-connected [8]. In our case, however, it seems more likely that the
problem always becomes solvable. This would also follow from a conjecture
of Goddard and Henning [6], according to which the vertices of any plane
triangulation can be 2-colored such that each vertex is adjacent to a vertex of
each color. (Here we do not go into details about why their conjecture would
imply our claim; it involves a triangulation similar to the one that can be
found in our main proof.)

We can, however, suppose that no clause contains exactly 1 literal, as in
this case the formula could be easily simplified. Moreover, we can also suppose
that if a clause contains exactly 2 literals, then there is no other clause that
would contain the same two literals (with the same negations); e.g., (xi∨xj)∧
(xi ∨ xj ∨ xk) is equivalent to (xi ∨ xj). Because of this, and the properties of
the embedding, we can suppose the following.

Observation 3 For any two literals there are at most two clauses that contain
both of them, and if two such clauses exist, both of them also contains a third
literal.

We will also use the following technical lemma about triangulating plane
graphs.

Lemma 4 Suppose that G = (V, E) is a plane graph and Z ⊂ V is a subset of
its vertices such that

(1) every vertex z ∈ Z has at least three neighbors,

(2) for a vertex z ∈ Z and two of the edges adjacent to it, (z, v) and (z, v ′),
that follow each other in the rotation around z in the embedding of G,
either (v, v ′) /∈ E or (v, v ′, z) forms a triangular face,

(3) if z, z ′ ∈ Z are neighbors, then they have exactly two common neighbors,
v, v ′ ∈ V, and (z, z ′, v) and (z, z ′, v ′) are two triangular faces of the
embedding,

(4) if two vertices v, v ′ ∈ V\Z have two common neighbors from Z, then they
have exactly two common neighbors from Z, z and z ′, and (v, z, v ′, z ′) is
a face of the embedding of G,

then G can be triangulated by adding only edges that are not adjacent to any
vertex in Z.
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Proof. We need to show that if for a vertex z ∈ Z two of the edges adjacent
to it, (z, v) and (z, v ′), follow each other in the embedding of G in the rotation
around z, then either (v, v ′) ∈ E and (v, v ′, z) forms a triangular face, or
(v, v ′) can be added as such. This way the faces around each z ∈ Z become
triangulated and we can triangulate the rest of the graph arbitrarily.

We handle the following cases separately.

• If (v, v ′) ∈ E, then because of condition (2) (v, v ′, z) forms a triangular
face.

• If v or v ′ is from Z, then because of condition (3) (v, v ′) ∈ E.

• If v and v ′ have no other common neighbor from Z, then connect them
by an edge in the vicinity of the curves of the edges (v, z) and (z, v ′).

• If v and v ′ have another common neighbor from Z, then because of
condition (4) they have exactly one, z ′ ∈ Z, and (v, z, v ′, z ′) is a face of
the embedding of G, thus we can divide it by adding the edge (v, v ′).

By repeatedly applying the above, the only condition we could violate is
condition (2) by adding the edge (v, v ′) such that (v, v ′, z) does not form a
triangular face. But we can add (v, v ′) to G only in the last two cases, when
v and v ′ have a common neighbor from Z, and in each case (v, v ′, z) forms a
triangular face after adding (v, v ′). This finishes the proof of Lemma 4. �

3 Proofs of Theorems 1 and 2

Proof. [of Theorem 1] The problem is trivially in NP, we only have to prove
its hardness.

Given an input Ψ to the Planar Monotone 3-sat problem on n variables,
we transform it into a plane triangulation G such that γ(G) ≤ n if and only
if Ψ is satisfiable. (See Figure 2 for the basic graph G obtained from Ψ and
Figure 3 for the plane triangulation.)

For each variable xi, G will contain a K4 (a complete graph on 4 vertices),
whose vertices we denote by vi, v̄i, ui, wi. The vertexwi has no other neighbors,
which already shows that γ(G) ≥ n, as we must select a vertex from each K4.

For each clause Ch we introduce a vertex, zh, that is connected only to one
vertex for each literal it contains; if xi ∈ Ch, then we connect zh to vi, while
if x̄i ∈ Ch, then we connect zh to v̄i.

The graph obtained so-far is obviously planar, now we need the following
bound on its domination number.
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w1

v1

v̄1 u1 w4

v4
v̄4 u4 w6

v6
v̄6 u6w2

v2

v̄2 u2 w3

v3

v̄3 u3 w5

v5

v̄5
u5

z3

z1

z2

z4

z5 z7 z8

z6

Figure 2: Example of graph G used for hardness of domination obtained
from Planar Monotone 3-sat input. A dominating set of size 6:
{v4, v̄1, v̄2, v̄3, v̄5, v̄6}.

Claim 5 γ(G) = n if and only if Ψ is satisfiable.

Proof. Suppose that Ψ is satisfiable and fix a satisfying assignment. If xi is
true, we can let vi ∈ S, and if xi is false, we can let v̄i ∈ S. This way we
have picked a vertex from each K4 corresponding to the variables and since
the assignment satisfies Ψ, every vertex zh corresponding to a clause is also
dominated.

Suppose that γ(G) = n and fix a dominating set S of size n. As wi needs
to be dominated for each i, |S ∩ {vi, v̄i, ui, wi}| = 1. If vi ∈ S, we can let xi be
true, if v̄i ∈ S, we can let xi be false, and otherwise we can choose its truth
value arbitrarily. This way each clause is satisfied, as the corresponding vertex
zh had to be dominated. �

This already establishes the hardness of the problem for plane graphs; to
finish the proof of Theorem 1, we only need to show that we can triangulate G
without introducing any new neighbors to the zh vertices. If each clause of Ψ
contains exactly three literals, then this follows by taking the (not necessarily
straight-line) “natural embedding” of G obtained from the embedding of Ψ,
and applying Lemma 4 with Z containing the zh vertices that correspond to
the clauses (it is straight-forward to check that the conditions of Lemma 4
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z3

z1

z2

z4

z5 z7 z8

z6

v′7

Figure 3: Triangulation of G (with vertex v ′7 added to the only clause with two
variables).

hold using Observation 3).
If Ψ also contains clauses with only two literals, we need to introduce extra

vertices to G in the following way. For each clause with two literals, e.g.,
Ch = (xi ∨ xj), we add one extra vertex, v ′h, that we connect to xi, xj and zh.
Note that this does not change the domination number of G, as v ′h is connected
to exactly the same vertices as zh, and they are also connected to each other.
But now the conditions of Lemma 4 hold with Z containing the zh vertices,
thus we can obtain a triangulation, finishing the proof of Theorem 1. �

Proof. [of Theorem 2] As in the case of Theorem 1, the problem is trivially
in NP, we only have to prove its hardness.

Given an input Ψ to the Planar Monotone 3-sat problem on n variables,
we transform it into a plane triangulation G such that γP(G) ≤ n if and only
if Ψ is satisfiable. (See Figure 4.)

For each variable xi, G will contain six vertices, vi, v̄i, ui, v
′
i, v̄

′
i, u

′
i, such

that they all have edges between them except (vi, v
′
i), (v̄i, v̄

′
i) and (ui, u

′
i).

The vertices v ′i, v̄
′
i, u

′
i have no other neighbors among the other vertices of
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v4
v̄4 u4

v6
v̄6 u6

v2

v̄2 u2

v3
v̄3

u3
v5

v̄5
u5

z3,3

v1

v̄1 u1

z3,4 z3,2

z7,7

z7,3z7,4

z1,2

z1,4 z1,1

z2,4

z2,6

z2,1

z4,5

z4,6 z4,4

z6,4

z6,1z6,6

z5,2

z5,1
z5,3

z8,5

z8,4z8,6
v7,7

Figure 4: Example of graph G used for hardness of power domination obtained
from Planar Monotone 3-sat input. A power dominating set of size 6:
{v4, v̄1, v̄2, v̄3, v̄5, v̄6}. This graph can be triangulated similarly as on Figure 3.

the graph, thus their degrees are 4. This already shows that γ(G) ≥ n, as
we must select a vertex from each such sextuple1, otherwise we could not
propagate to v ′i, v̄

′
i, u

′
i, as each of their neighbors is adjacent to at least two

of them. If, however, we choose any of vi, v̄i, ui to our initial set S, we have
{vi, v̄i, ui, v

′
i, v̄

′
i, u

′
i} ⊂ Γ1(Γ(S)) ⊂ ΓP(S).

For each clause with three literals, e.g., Ch = (xi ∨ xj ∨ xk), we introduce
three degree 4 vertices, zh,i, zh,j, zh,k, that are connected to each other and to
two of the literals each; zh,i is connected to vj and vk, zh,j is connected to vi and
vk, and zh,k is connected to vi and vj. (If Ch contained negated literals, than
instead of the vi, vj, vk we would use v̄i, v̄j, v̄k.) Notice that we must select

1The six titles won by Barcelona in 2009 (Copa del Rey, La Liga, UEFA Champions
League, Supercopa de España, UEFA Super Cup and FIFA Club World Cup) have been
described as a ‘sextuple’. This achievement, however, took place over the course of two
different Spanish seasons, including a treble in the 2008-09 season. Despite occurring in two
seasons, the six titles are still counted as a ‘sextuple’ by many people, because the three
added trophies (during the 2009-2010 season) were extra matches of the 2008-2009 treble
and all six titles were won in the same calendar year.
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at least one of vi, vj, vk, zh,i, zh,j, zh,k, otherwise we could not propagate to
zh,i, zh,j, zh,k, as each of their neighbors is adjacent to at least two of them. If,
however, we choose any of vi, vj, vk to our initial set S, we have {zh,i, zh,j, zh,k} ⊂
Γ1(Γ(S)) ⊂ ΓP(S).

For each clause with two literals, e.g., Ch = (xi ∨ xj), we introduce four
degree 4 vertices, zh,i, zh,j, zh,h, vh,h, that are connected to each other and two
additional vertices each: zh,i is connected to vj and vh,h, zh,j is connected to
vi and vh,h, and zh,h and vh,h are connected to vi and vj. (If Ch contained
negated literals, than instead of the vi and vj we would use v̄i and v̄j.) Notice
that we must select at least one of vi, vj, zh,i, zh,j, zh,h, vh,h, otherwise we could
not propagate to zh,i, zh,j, zh,k, as each of their neighbors is adjacent to at least
two of them. If, however, we choose any of vi or vj to our initial set S, we have
{zh,i, zh,j, zh,h, vh,h} ⊂ Γ1(Γ(S)) ⊂ ΓP(S).

The graph obtained so-far is obviously planar, now we need the following
bound on its domination number.

Claim 6 γP(G) = n if and only if Ψ is satisfiable.

Proof. Suppose that Ψ is satisfiable and fix a satisfying assignment. If xi is
true, we can let vi ∈ S, and if xi is false, we can let v̄i ∈ S. This way we have
picked a vertex from each sextuple corresponding to the variables and since
the assignment satisfies Ψ, every vertex corresponding to a clause is power
dominated by S.

Suppose that γ(G) = n and fix a power dominating set S of size n. As we
need to pick a vertex from each sextuple for each i, |S∩{vi, v̄i, ui, v ′i, v̄ ′i, u ′

i}| = 1.
If vi ∈ S, we can let xi be true, if v̄i ∈ S, we can let xi be false, and otherwise
we can choose its truth value arbitrarily. This way each clause is satisfied, as
the corresponding zh,. vertices had to be power dominated. �

This already establishes the hardness of the problem for plane graphs; to
finish the proof of Theorem 2, we only need to show that we can triangulate
G without introducing any new neighbors to the zh vertices. This follows by
taking the “natural embedding” of G obtained from the embedding of Ψ, and
applying Lemma 4 with Z containing the zh,. vertices that correspond to the
clauses (it is straight-forward to check that the conditions of Lemma 4 hold
using Observation 3). �
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Abstract. Graph coloring can be considered as a random experiment
with the color of a randomly selected vertex as the random variable. In
this paper, we consider the L(2, 1)-coloring of G as the random experi-
ment and we discuss the concept of two fundamental statistical parame-
ters – mean and variance – with respect to the L(2, 1)-coloring of certain
fundamental graph classes.

1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to
[1, 5, 13, 14]. Moreover, for notions and norms in graph colouring, see [2, 6, 8].
Unless mentioned otherwise, all graphs considered here are undirected, simple,
finite and connected.

Graph coloring is an assignment of colors or labels or weights to the ele-
ments of the graph. A vertex coloring of a graph is a function c : V(G) →
Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C15, 05C38.
Key words and phrases: L(2, 1)-coloring, L−1 -chromatic mean, L−1 -chromatic variance, L+1 -
chromatic mean, L+1 -chromatic variance.
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C =
{
c1, c2, c3, ....cl

}
, where C is a set of l distinct colors. Unless mentioned

otherwise, by graph coloring, we mean a vertex coloring of G.
A proper coloring of a graph G is a coloring such that no two adjacent

vertices receive the same color. The chromatic number of a graph G, denoted
by χ(G), is the minimum number of colors required in a proper vertex coloring
of the graph G.

Note that the color set C =
{
c1, c2, c3, . . . , cl

}
can also be written as C ={

1, 2, 3, . . . ,
}

. Invoking this representation, we have

Definition 1 [4] The L(2, 1)-coloring of a graph G is a vertex coloring which
assigns colors to the vertices of graph G satisfying the following two conditions:

|c(u) − c(v)| ≥ 2 if d(u, v) = 1

|c(u) − c(v)| ≥ 1 if d(u, v) = 2

where u and v are vertices of G.

The span of a L(2, 1)-coloring is its maximum label. The minimum span of a
L(2, 1)-coloring of a graph G is called the L(2, 1)-chromatic number of G. This
coloring scheme has significant applications in channel assignment problem
and many other fields.

A proper k-coloring of graph G be given by c: V(G) → C = {c1, c2, .......ck}.
We denote number of vertices of G receiving the color ci by θ(ci) which is
called the color strength or color weight of the color ci. The coloring sum with

respect to a given color set C of G is defined as ωC(G) =
k∑
i=1

iθ(ci) (see [7]).

Recently, some studies have been done by treating graph coloring as a ran-
dom experiment (see [12, 3, 11, 10, 9]) and the color of an arbitrarily chosen
vertex of G as the corresponding discrete random variable X. Then, the prob-
ability mass function (p.m.f) of this discrete random variable X is defined
as

f(i) =

θ(ci)|V(G)| if i = 1, 2, ...k,

0 elsewhere.

where θ(ci) is the cardinality of the color class of G with respect to the color
ci (c.f. [12]). If the context is clear, this p.m.f is referred as the p.m.f of G.

For mean and variance, we use the standard notation µ and σ. Therefore,
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for a graph G with color set C, the coloring mean is defined as

µC(G) =

k∑
i=1

iθ(ci)

k∑
i=1

θ(ci)

and the coloring variance is defined as

σ2C(G) =

k∑
i=1

i2θ(ci)

k∑
i=1

θ(ci)

−

( k∑
i=1

iθ(ci)

k∑
i=1

θ(ci)

)2

In general, the r-th moment is given by

µCr(G) =

k∑
i=1

irθ(ci)

k∑
i=1

θ(ci)

where r is any positive integer. If context is clear, we say that µC(G) and σ2C(G)
are the chromatic mean and variance of G.

Motivated by the above studies, in this paper, we extend the notions of
chromatic mean and variance to L(2, 1)-coloring of graphs.

2 Discussion and new results

Throughout this discussion, we denote the L(2, 1)-color set of G with the min-
imum possible color by C(G). In view of this convention, we have the following
definitions:

Definition 2 Let C = {c1, c2, ...cl} be the color set corresponding to an
L(2, 1)-coloring c of a given graph G. The coloring mean corresponding to
the L(2, 1)- coloring having minimum chromatic sum is called L−1 -chromatic
mean of G and is denoted by µC−(G).

Definition 3 Let C = {c1, c2, ...cl} be the color set corresponding to an
L(2, 1)- coloring c of a given graph G. The coloring variance corresponding
to the L(2, 1)- coloring having minimum chromatic sum is called L−1 -chromatic
variance of G and is denoted by σ2C−(G).
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Definition 4 Let C = {c1, c2, ...cl} be the color set corresponding to an
L(2, 1)- coloring c of a given graph G. The coloring mean corresponding to
the L(2, 1)- coloring having maximum chromatic sum is called L+1 -chromatic
mean of G and is denoted by µC+(G).

Definition 5 Let C = {c1, c2, ...cl} be the color set corresponding to an
L(2, 1)- coloring c of a given graph G. The coloring variance corresponding to
the L(2, 1)- coloring having maximum chromatic sum is called L+1 -chromatic
variance of G and is denoted by σ2C+(G).

In view of the above notions, the chromatic mean and variance correspond-
ing to L−1 and L+1 coloring of complete graphs is discussed below:

Theorem 6 For a complete graph Kn, the coloring parameters, L−1 -chromatic
mean and variance and L+1 -chromatic mean and variance are given by

µC−(Kn) = µC+(Kn) = n

σ2C−(Kn) = σ
2
C+(Kn) =

n2 − 1

3

Proof. In a complete graph, each vertex receives distinct color and color
difference between any two vertices is at least 2. Therefore, we need at least
(2n − 1) colors say, {c1, c3, c5, ...c2n−1}, for coloring the vertices of Kn. We
cannot use the colors {c2, c4, ...c2n} by the protocol of L(2, 1)- coloring. For
illustration, see Figure 1. Hence, the corresponding p.m.f is given by

f(i) =

{
1
n for i = 1, 3, 5, ...(2n− 1),

0 elsewhere.

Here, we observe that the minimum and maximum coloring sum remains the
same. Therefore,

µC−(Kn) = µC+(Kn) =
1+ 3+ 5+ ....+ (2n− 1)

n

=
1

n
(n2)

= n
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σ2C−(Kn) = σ
2
C+(Kn) =

12 + 32 + 52 + ....+ (2n− 1)2

n
− n2

=
1

n

n(2n− 1)(2n+ 1)

3
− n2

=
n2 − 1

3

�

c1
v1

c3
v2

c5
v3

c7

v4

Figure 1

Theorem 7 For path Pn of length n ≡ 1, 2 (mod 3), The L−1 -chromatic mean
is

µC−(Pn) =
3n− 2

n

and their L−1 -chromatic variance is given by

σ2C−(Pn) =


8n2 + 4n− 12

3n2
if n ≡ 1 (mod 3)

8n2 − 4n− 12

3n2
if n ≡ 2 (mod 3)

Also, for n ≡ 0 (mod 3), the L−1 -chromatic mean for path Pn is

µC−(Pn) =


3 if n ≡ 0 (mod 5),
3n− 2

n
if n ≡ 1, 2, 3 (mod 5)

3n− 1

n
if n ≡ 4 (mod 5)
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and it’s L−1 -chromatic variance is given by

σ2C−(Pn) =



2 if n ≡ 0 (mod 5)

2n2 + 2n− 4

n2
if n ≡ 1 (mod 5)

2n2 − 4

n2
if n ≡ 2, 3 (mod 5)

2n2 + n− 1

n2
if n ≡ 4 (mod 5)

Proof. Note that according to the L(2, 1)- coloring protocol, any three con-
secutive vertices of Pn must receive distinct colors. L(2, 1)- chromatic number
of Pn is 3, thus we have the color set as {c1, c2, c3, c4, c5}. Now let us consider
each case separately.
Case 1 : When n ≡ 1 (mod 3), we observe that (n+23 ) vertices receive the color

c1, (n−13 ) vertices each receive color c3 and c5. In accordance with L(2, 1)-
coloring protocol, c2 and c4 cannot be assigned to any vertex. Then, the cor-
responding p.m.f is given by

f(i) =


n+ 2

3n
if i = 1,

n− 1

3n
if i = 3, 5,

0 elsewhere.

Therefore, the L−1 -chromatic mean = (1)n+23n + (3+ 5)n−13n = 3n−2
n and

variance = (12)n+23n + (32 + 52)n−13n − ( 3n−2n )2 = 8n2+4n−12
3n2 (refer to Figure 2).

c1
v1

c3
v2

c5
v3

c1
v4

Figure 2

Case 2 : When n ≡ 2 (mod 3), we observe that (n+13 ) vertices each receive

the color c1 and c3, (n−23 ) vertices receive color c5. In accordance with L(2, 1)-
coloring protocol, c2 and c4 cannot be assigned to any vertex. Then, the cor-
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responding p.m.f is given by

f(i) =


n+ 1

3n
if i = 1, 3,

n− 2

3n
if i = 5,

0 elsewhere.

Then, the L−1 -chromatic mean = (1+ 3)n+13n + (5)n−23n = 3n−2
n and

variance = (12 + 32)n+13n + (52)n−23n − ( 3n−2n )2 = 8n2−4n−12
3n2 (refer to Figure 3).

c1
v1

c3
v2

c5
v3

c1
v4

c3
v5

Figure 3

Case 3 : When n ≡ 0 (mod 5), each color c1, c2, c3, c4 and c5 is given to (n5 )
vertices. Then, the corresponding p.m.f is given by

f(i) =

{
1
5 if i = 1, 2, 3, 4, 5,

0 elsewhere.

The L−1 -chromatic mean =
5∑
i=1

(i) 15 =
15
5 = 3 and

variance =
5∑
i=1

(i2) 15 − (32) = 11− 9 = 2 (refer to Figure 4).

Figure 4

Case 4 : When n ≡ 1 (mod 5), we shall see that (n+45 ) vertices receive color

c1, and (n−15 ) vertices each receive color c2, c3, c4 and c5. Then, the p.m.f is
given by

f(i) =



n+ 4

5n
if i = 1

n− 1

5n
if i = 2, 3, 4, 5,

0 elsewhere.
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The L−1 -chromatic mean = (1)n+45n + (2+ 3+ 4+ 5)n−15n = 15n−10
5n = 3n−2

n and

variance = (12)n+45n + (22 + 32 + 42 + 52)n−15n − (3n−2n )2 = 2n2+2n−4
n2 (refer to

Figure 5).

c1
v1

c4
v2

c2
v3

c5
v4

c3
v5

c1
v6

c4
v7

c2
v8

c5
v9

c3 v10

c1 v11

c4 v12c2
v13

c5
v14

c3
v15

c1
v16

c4
v17

c2
v18

c5
v19

c3
v20

c1
v21

Figure 5

Case 5 : When n ≡ 2 (mod 5), we shall give (n+35 ) vertices each color c1 and

c3; (n−25 ) vertices each color c2, c4 and c5. Then, the p.m.f is given by

f(i) =



n+ 3

5n
if i = 1, 3,

n− 2

5n
if i = 2, 4, 5

0 elsewhere.

The L−1 -chromatic mean = (1+ 3)n+35n + (2+ 4+ 5)n−25n = 15n−10
5n = 3n−2

n and

variance = (12+32)n+35n +(22+42+52)n−25n −( 3n−1n )2 = 2n2−4
n2 (refer to Figure 6).

Figure 6

Case 6 : When n ≡ 3 (mod 5), we observe that each (n+25 ) vertices receive

the color c1, c4 and c2; and each (n−35 ) vertices receive the color c3 and c5.
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Then, the p.m.f is given by

f(i) =



n+ 2

5n
if i = 1, 4, 2

n− 3

5n
if i = 3, 5,

0 elsewhere.

The L−1 -chromatic mean = (1+ 2+ 4)n+25n + (3+ 5)n−35n = 15n−10
5n = 3n−2

n and

variance = (12+22+42)n+25n +(32++52)n−35n −(3n−2n )2 = 2n2−4
n2 (refer to Figure 7).

c1

v1
c4

v2
c2

v3
c5

v4
c3

v5
c1

v6
c4

v7
c2

v8
c5 v9

c3 v10c1
v11

c4
v12

c2
v13

c5
v14

c3
v15

c1
v16

c4
v17

c2
v18

Figure 7

Case 7 : When n ≡ 4 (mod 5), we observe that (n−45 )vertices receive color

c4, (n+15 ) vertices each receives color c1, c2, c3 and c5. Then, the p.m.f is given
by

f(i) =



n+ 1

5n
if i = 1, 2, 3, 5

n− 4

5n
if i = 4,

0 elsewhere.

The L−1 -chromatic mean = (1+ 2+ 3+ 5)n+15n + (4)n−45n = 15n−5
5n = 3n−1

n and

variance = (12+22+32+52)n+15n +(42)n−45n −(3n−15n )2 = 2n2+n−1
n2 (refer to Figure

8).

c1
v1

c3
v2

c5
v3

c2
v4

c4
v5

c1
v6

c3
v7

c5
v8

c2
v9

Figure 8

�
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Theorem 8 The L+1 -chromatic mean of path Pn of length n ≡ 1, 2 (mod 3) is

µC+(Pn) =
3n+ 2

n

and their L+1 -chromatic variance is given by

σ2C+(Pn) =


8n2 + 4n− 12

3n2
if n ≡ 1 (mod 3)

8n2 − 4n− 12

3n2
if n ≡ 2 (mod 3).

Also, the L+1 -chromatic mean for path Pn of length n ≡ 0 (mod 3) is

µC+(Pn) =



3 if n ≡ 0 (mod 5)
3n+ 1

n
if n ≡ 1 (mod 5)

3n+ 2

n
if n ≡ 2, 3, 4 (mod 5)

0 elsewhere.

and it’s L+1 -chromatic variance is given by

σ2C+(Pn) =



2 if n ≡ 0 (mod 5)

2n2 − n− 1

n2
if n ≡ 1 (mod 5)

2n2 − 4

n2
if n ≡ 2, 3 (mod 5)

2n2 − 2n− 4

n2
if n ≡ 4 (mod 5)

0 elsewhere.

Proof. In accordance with L(2, 1)- coloring protocol, any three consecutive
vertices of Pn must receive distinct colors. L(2, 1)- chromatic number of Pn is
3 and the corresponding color set is {c1, c2, c3, c4, c5}. Considering each case
separately,
Case 1 : When n ≡ 1 (mod 3), we shall give color c5 to (n+23 ) vertices and

color c1 and c3 to (n−13 ) vertices. c2 and c4 cannot be assigned to any vertex
according to the L(2, 1)- coloring protocol. Then, the corresponding p.m.f is
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given by

f(i) =


n− 1

3n
if i = 1, 3,

n+ 2

3n
if i = 5,

0 elsewhere.

Then, the L+1 -chromatic mean = (1+ 3)n−13n + (5)n+23n = 3n+2
n and

variance = (12 + 32)n−13n + (52)n+23n − ( 3n+2n )2 = 8n2+4n−12
3n2 (refer to Figure 9).

c5
v1

c3
v2

c1
v3

c5
v4

Figure 9

Case 2 : When n ≡ 2 (mod 3), we shall give (n−23 ) vertices color c1 and (n+13
vertices each receive color c3 and c5. Then, the p.m.f is given by

f(i) =


n−2
3n if i = 1,
n+1
3n if i = 3, 5,

0 elsewhere.

Then, the L+1 -chromatic mean = (1)n−23n + (3+ 5)n+13n = 3n+2
n and

variance = (12)n−23n + (32 + 52)n+13n − ( 3n+2n )2 = 8n2−4n−12
3n2 (refer to Figure 10).

c5
v1

c3
v2

c1
v3

c5
v4

c3
v5

Figure 10

When n ≡ 0 (mod 3), the p.m.f is given by
Case 3 : When n ≡ 0 (mod 5), each color c1, c2, c3, c4 and c5 is given to (n5 )

vertices. Then, the corresponding p.m.f is given by

f(i) =


1

5
if i = 1, 2, 3, 4, 5,

0 elsewhere.
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The L+1 -chromatic mean =
5∑
i=1

(i) 15 =
15
5 = 3 and

variance =
5∑
i=1

(i2) 15 − (32) = 11− 9 = 2 (refer to Figure 11).

Figure 11

Case 4 : When n ≡ 1 (mod 5), we observe that (n+45 ) vertices receive the

color c4 and (n−15 ) vertices each receive c1, c2, c4 and c5. Then, the p.m.f is
given by

f(i) =


n+ 4

5n
if i = 4

n− 1

5n
if i = 1, 2, 3, 5,

0 elsewhere.

The L+1 -chromatic mean = (4)n+45n + (1+ 2+ 3+ 5)n−15n = 15n+5
5n = 3n+1

n and

variance = (42)n+45n +(12+22+32+52)n−15n −(3)2 = 2n2−n−1
n2 (refer to Figure 12).
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c2 v12c5
v13

c3
v14

c1
v15

c4
v16
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c3
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v20
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v21

Figure 12

Case 5 : When n ≡ 2 (mod 5), we observe that (n+35 ) vertices each receive
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c3, c5 and (n−25 ) vertices each receive c1, c2 and c4. The p.m.f is given by

f(i) =



n+ 3

5n
if i = 3, 5

n− 2

5n
if i = 1, 2, 4,

0 elsewhere.

The L+1 -chromatic mean = (3+ 5)n+35n + (1+ 2+ 4)n−25n = 15n+10
5n = 3n+2

n and

variance = (32+52)n+35n +(12+22+42)n−25n −( 3n+2n )2 = 2n2−4
n2 (refer to Figure 13).
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v1
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v2
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c4
v4
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v6

c5
v7
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c1
v10

c3
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c5
v12

Figure 13

Case 6 : When n ≡ 3 (mod 5), we shall give color c2, c4 and c5 to each (n+25 )

vertices and color c1 and c3 to each (n−35 ) vertices. Then, the corresponding
p.m.f is given by

f(i) =



n+ 2

5n
if i = 2, 4, 5

n− 3

5n
if i = 1, 3,

0 elsewhere.

The L+1 -chromatic mean = (2+ 4+ 5)n+25n + (1+ 3)n−35n = 15n+10
5n = 3n+2

n and

variance = (22+ 42+ 52)n+25n + (12+ 32)n−35n − (3n+2n )2 = 2n2−4
n2 (refer to Figure

14).
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Figure 14
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Case 7 : When n ≡ 4 (mod 5), we give c1 to (n−45 ) vertices and each color

c2, c3, c4, c5 to (n+15 ) vertices. Then, the corresponding p.m.f is given by

f(i) =



n+ 1

5n
if i = 2, 3, 4, 5

n− 4

5n
if i = 1,

0 elsewhere.

The L+1 -chromatic mean = (2+ 3+ 4+ 5)n+15n + (1)n−45n = 15n+10
5n = 3n+2

n and

variance = (22 + 32 + 42 + 52)n+15n + (12)n−45n − (3n+2n )2 = 2n2−2n−4
n2 (refer to

Figure 15).
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c5
v2

c2
v3

c4
v4

c1
v5

c3
v6

c5
v7

c2
v8

c4
v9

Figure 15

�

Next our aim is to find L−1 -chromatic mean of cycles. Consider C3 and C6
and their color set {c1, c3, c5}, their p.m.f is given by

f(i) =


1

3
if i = 1, 3, 5,

0 elsewhere.

The L−1 -chromatic mean = (1+ 3+ 5) 13 =
9
3 = 3 and

variance = (12 + 32 + 52) 13 − (32) = 35
3 − 9 = 8

3 .
Therefore, for C3 and C6 L

−
1 -chromatic mean is 3 and L−1 -chromatic variance

is 8
3 .

Theorem 9 The L−1 -chromatic mean of cycle Cn where n 6= 3, 6 is

µC−(Cn) = 3
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and L−1 -chromatic variance for Cn where n 6= 3, 6 is given by

σ2C−(Cn) =



5

2
if n ≡ 0 mod 4)

5n− 5

2n
if n ≡ 1 (mod 4)

5n− 10

2n
if n ≡ 2 (mod 4)

5n+ 1

2n
if n ≡ 3 (mod 4)

Proof. From the definition of L(2, 1)- coloring, any three consecutive vertices
of Cn must receive distinct colors. Chromatic number of Cn is 5 and the color
classes used are c1, c2, c3, c4, c5. Now let us consider each case separately.
Case 1 : When n ≡ 0 (mod 4),each color c1, c2, c4 and c5 is received by (n4 )
vertices. Hence, the p.m.f is given by

f(i) =


1

4
if i = 1, 2, 4, 5,

0 elsewhere.

The L−1 -chromatic mean = (1+ 2+ 4+ 5) 14 =
12
4 = 3 and

variance = (12 + 22 + 42 + 52) 14 − (32) = 46
4 − 9 = 5

2 (refer to Figure 16a).

c1
v1

c4
v2

c2
v3

c5
v4

(a)

c1
v1

c4
v2

c2
v3

c5v4

c3

v5

(b)

Figure 16
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Case 2 : When n ≡ 1 (mod 4), c3 is given to the last vertex i.e. vn and
remaining (n−14 ) vertices each receive c1, c2, c4 and c5. Then, the p.m.f is
given by

f(i) =



n− 1

4n
if i = 1, 2, 4, 5

1

n
if i = 3,

0 elsewhere.

The L−1 -chromatic mean = (1+ 2+ 4+ 5)n−14n + (3) 1n = 3 and

variance = (12 + 22 + 42 + 52)n−14n + (32) 1n − (3)2 = 5n−5
2n (refer to Figure 16b).

Case 3 : When n ≡ 2 (mod 4), we observe that two vertices receive c3 and
(n−24 ) vertices each receive c1, c2, c4 and c5. Then, the p.m.f is given by

f(i) =



n− 2

4n
if i = 1, 2, 4, 5

2

n
if i = 3,

0 elsewhere.

The L−1 -chromatic mean = (1+ 2+ 4+ 5)n−24n + (3) 2n = 3 and

variance = (12+ 22+ 42+ 52)n−24n + (32) 2n − (3)2 = 5n−10
2n (refer to Figure 17a).

Case 4 : When n ≡ 3 (mod 4),each set of (n+14 ) vertices receive c1 and c5;

each set of (n−34 ) vertices receive c2 and c4; and one vertex receives c3. Then,
the corresponding p.m.f is given by

f(i) =



n+ 1

4n
if i = 1, 5

n− 3

4n
if i = 2, 4

1

n
if i = 3,

0 elsewhere.

The L−1 -chromatic mean = (1+ 5)n+14n + (2+ 4)n−34n + (3) 1n = 3 and

variance = (12 + 52)n+14n + (22 + 42)n−34n + (32) 1n − (3)2 = 5n+1
2n (refer to Figure

17b). �



200 G. Anjali, N. K. Sudev

c1 v1

c4
v2

c2
v3c5

v4

c3
v5

c1
v6

c4
v7

c2v8

c5v9

c3

v10 c1

v11

c4

v12

c2

v13

c5 v14

(a)

c1
v1

c4
v2c2

v3

c5
v4

c1v5

c3
v6 c5

v7

(b)

Figure 17

Theorem 10 The L+1 -chromatic mean of cycle of length n ≡ 0 (mod 3) is

µC+(Cn) = 3

and L+1 -chromatic variance by

σ2C+(Cn) =
8

3

Proof. In case of n ≡ 1,2 (mod 3), L−1 and L+1 -chromatic mean are same and
so is the case of L−1 and L+1 -chromatic variance. Therefore, we just consider
the cycle of length n ≡ 0 (mod 3). Here, (n3 ) vertices each receive color c1, c3
and c5.c2 and c4 are not received by any vertex of graph G. For illustration,
see Figure 18a. The corresponding p.m.f for L+1 coloring is given by

f(i) =


1

3
, for i = 1, 3, 5

0 elsewhere

The L+1 -chromatic mean = (1+3+5) 13 = 3 and variance = (12+32+52) 13−(3)2 =
8
3 .

�
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Theorem 11 For wheel graphs having n vertices, where n ≥ 6, mean and
variance for L−1 and L+1 coloring are given by

µC−(Wn) = µC+(Wn) =
n2 + n+ 2

2n

and

σ2C−(Wn) = σ
2
C+(Wn) =

n4 + 11n2 − 12

12n2

Proof. The diameter of wheel graph is 2. Also, the central vertex is adjacent
to all the other vertices. Hence, we need (n+1) colors. We give the color cn+1
to the central vertex and remaining colors to the other vertices of G. Its p.m.f
is given by

f(i) =


1

n
, if i = 1, 2, ...(n− 1), (n+ 1)

0 elsewhere

Therefore, L−1 and L+1 -chromatic mean = (1+ 2+ ...n− 1+n+ 1) 1n = n2+n+2
2n .

L−1 and L+1 chromatic variance = (12+22+ ...(n−1)2+(n+1)2 1n−(n
2+n+2
2n )2 =

n4+11n2−12
12n2 (refer to Figure 18b). �

Theorem 12 For helm graphs having 2n + 1 vertices, where n ≥ 7, L−1 -
chromatic mean is given by

µC−(Hn) =
n2 + 5n+ 28

4n+ 2
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and L−1 -chromatic variance is given by

σ2C−(Hn) =
2n3 + 9n2 + 31n+ 198

6(2n+ 1)

Proof. We need n + 2 colors to color the vertices of helm graph. The wheel
graph induced from the given helm graph is colored as discussed in the previous
theorem. Among the remaining n vertices, n− 4 vertices receive c1, 2 vertices
receive C2, and c3, c4 is given to one vertex each. For illustration, see Figure
19a. The corresponding p.m.f is given by:

f(i) =



n− 3

2n+ 1
if i = 1

3

2n+ 1
if i = 2

2

2n+ 1
if i = 3, 4

1

2n+ 1
if i = 5, 6, 7, ...n, (n+ 2)

0 elsewhere.

L−1 -chromatic mean = 1 n−32n+1+(2) 3
2n+1+(3+4) 2

2n+1+(5+6+...n+(n+2)) 1
2n+1 =

n2+5n+28
4n+2 and variance = (12) n−32n+1 + (22) 3

2n+1 + (32 + 42) 2
2n+1(5

2 + 62 + ..n2 +

(n+ 2)2) 1
2n+1 − (n

2+5n+28
4n+2 )2 = 2n3+9n2+31n+198

6(2n+1)
�

Theorem 13 For helm graphs having 2n + 1 vertices, where n ≥ 7, L+1 -
chromatic mean is given by

µC+(Hn) =
n2 + 2n+ 2

2n+ 1

and L+1 -chromatic variance is given by

σ2C+(Hn) =
n4 + 2n3 + 8n2 + 13n

3(2n+ 1)2

Proof. We need n + 2 colors to color the vertices of helm graph. The wheel
graph induced from the given helm graph is colored as discussed in Theorem
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Figure 19

6. And each vertex in the remaining n vertices receive distinct color ci (where
i = 1, 2, ..n). The corresponding p.m.f is given by:

f(i) =


2

2n+ 1
1, 2, ... n

1

2n+ 1
n+2

L+1 -chromatic mean = (1+ 2+ ..n) 2
2n+1 + (n+ 2) 1

2n+1 =
n2+2n+2
2n+1 and variance

= (12 + 22 + ...n2) 2
2n+1 + (n+ 2)2 1

2n+1 − (n
2+2n+2
2n+1 )2 = n4+2n3+8n2+13n

3(2n+1)2
(refer to

Figure 19b). �

Theorem 14 For flower graph having n + 1 vertices, where n ≥ 6, L−1 and
L+1 -chromatic mean and variance are given by

µC−(Fln) = µC+(Fln) =
n2 + 3n+ 4

2n+ 2

and

σ2C−(Fln) = σ
2
C+(Fln) =

n4 + 4n3 + 17n2 + 26n

12(n+ 1)2
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Proof. The diameter of flower graph is 2. Thus, each vertex receives distinct
color and central vertex is adjacent to all the other vertices. By definition, color
difference between central vertex and any other vertex is 2. so we shall give
the color cn+2 to the central vertex and other vertices receive distinct color ci,
(where i = 1, 2, ...n). For illustration, see Figure 20. The corresponding p.m.f
is given by

f(i) =


1

n+ 1
, if i = 1, 2, ...n, (n+ 2)

0 elsewhere.

Therefore, L−1 and L++ chromatic mean = (1+ 2+ ...n+(n+ 2)) 1
n+1 =

n2+3n+4
2n+2

and variance = (12 + 22 + ...n2 + (n+ 2)2) 1
n+1 − (n

2+2n+2
n+1 )2 = n4+4n3+17n2+26n

12(n+1)2

c1
v1

c3v2

c5 v3

c4
v4

c6
v5

c2

v6

c8

v7

Figure 20

�

3 Conclusion

In this paper, we have introduced the notions of certain coloring means and
variances related to L(2, 1)-coloring and discussed these parameters in context
of some fundamental graph classes. Further investigations are possible in this
area, as the above-mentioned parameters can be discussed for many other
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classes of graphs, graph operations, graph products and known derived graphs.
The coloring parameters play vital role in many areas such as network analysis,
distribution problems, transportation problems, etc.
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Abstract. The existence of edges is a huge challenge with regards to
determining lucky k-polynomials of simple connected graphs in general.
In this paper the lucky 3-polynomials of path and cycle graphs of or-
der, 3 ≤ n ≤ 8 are presented as the basis for the heuristic method to
determine the lucky k-polynomials for k-colorable graphs. The difficulty
of adjacency with graphs is illustrated through these elementary graph
structures . The results are also illustratively compared with the results
for null graphs (edgeless graphs). The paper could serve as a basis for
finding recurrence results through innovative methodology.

1 Introduction

For general notation and concepts in graphs see, [1, 2, 6]. It is assumed that the
reader is familiar with the concept of graph coloring. Recall that in a proper
coloring of G all edges are good i.e. uv⇔ c(u) 6= c(v). For any proper coloring
ϕ(G) of a graph G the addition of all good edges, if any, is called the chromatic
completion of G in respect of ϕ(G). The additional edges are called chromatic
completion edges. The set of such chromatic completion edges is denoted by,
Eϕ(G). The resultant graph Gϕ is called a chromatic completion graph of G.
See [3] for an introduction to chromatic completion of a graph.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C15, 05C38, 05C75, 05C85
Key words and phrases: chromatic completion, perfect lucky 3-coloring, lucky 3-
polynomial
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The chromatic completion number of a graph G denoted by, ζ(G) is the
maximum number of good edges that can be added to G over all chromatic
colorings (χ-colorings). Hence, ζ(G) = max{|Eχ(G)| : over all ϕχ(G)}.

A χ-coloring which yields ζ(G) is called a lucky χ-coloring or simply, a lucky
coloring1 and is denoted by, ϕL(G). The resultant graph Gζ is called a minimal
chromatic completion graph of G. It is trivially true that G ⊆ Gζ. Furthermore,
the graph induced by the set of completion edges, 〈Eχ〉 is a subgraph of the
complement graph, G. See [4] for the notion of stability in respect of chromatic
completion.

A k-coloring of a graph G which yields max{|Eϕ(G)| : overall k-colorings} is
called a lucky k-coloring.2

In an improper coloring an edge uv for which, c(u) = c(v) is called a bad
edge. See [5] for an introduction to defect colorings of graphs. It is observed
that the number of edges of G which are omitted from Eχ is the minimum
number of bad edges in a bad chromatic completion of a graph G.

2 Lucky 3-polynomials of paths

A path graph (or simply, a path) denoted by, Pn, is a graph on n ≥ 1 vertices
say, V(Pn) = {v1, v2, v3, . . . , vn} and n edges namely, E(Pn) = {vivi+1 : i =
1, 2, 3, . . . , n− 1}.

Recall that for λ distinct colors, λ ≥ χ(G), the number of ways a graph G
can be assigned a proper coloring is given by the chromatic polynomial of G
and is denoted by, PG(λ, n). For λ distinct colors, λ ≥ 3, the path P3 can be
assigned a proper 3-coloring in PP3(λ, n) = λ(λ−1)(λ−2) ways. The aforesaid
is equal to the number of ways a perfect lucky 3-coloring can be assigned to
the path P3 in accordance with lucky’s theorem [3]. Since [3] has not been
published as yet we recall lucky’s theorem for perfect lucky k-coloring to be:

Theorem 1 [3] For a positive integer n ≥ 2 and 2 ≤ p ≤ n let integers,

1 ≤ a1, a2, a3, . . . , ap−r, a ′1, a ′2, a ′3, . . . , a ′r ≤ n−1 be such that n =
p−r∑
i=1

ai+
r∑
j=1

a ′j

then, the `-completion sum-product L = max{
p−r−1∑
i=1

p−r∏
k=i+1

aiak +
p−r∑
i=1

r∏
j=1

aia
′
j +

r−1∑
j=1

r∏
k=j+1

a ′ja
′
k} over all possible, n =

p−r∑
i=1

ai +
r∑
j=1

a ′j .

1Note that for many graphs a lucky coloring is equivalent an equitable χ-coloring.
2Note that for many graphs a lucky k-coloring is equivalent an equitable k-coloring.
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Note that lucky’s theorem is reliant on the notion of the `-completion sum-
product [3]. We recall the definition to be:

Definition 2 Let, ti = bn` c, i = 1, 2, 3, . . . , (`−r) and t
′
j = d

n
` e, j = 1, 2, 3, . . . , r.

Call, L =
`−r−1∑
i=1

`−r∏
k=i+1

titk +
`−r∑
i=1

r∏
j=1

tit
′
j +

r−1∑
j=1

r∏
k=j+1

t ′jt
′
k, the `-completion sum-

product of n.

Also, because of the simplicity of the graph structure of paths no figure illustra-
tions are deemed necessary for clarity. It is assumed that the reader can easily
verify the vertex set partitions obtained. For path P3 the lucky 3-polynomial
is expressed as, LP3(λ, 3) = λ(λ− 1)(λ− 2). Note that the lucky 3-polynomial
corresponds to coloring the vertex set partition, {{v1}, {v2}, {v3}}.

Consider the path P4. By the definition of a path a particular convention
is implicit i.e. to obtain Pn from Pn−1 we necessarily extend from vn−1 to
vn with the edge vn−1vn. Hence, it is not permissible to insert the vertex
v4 into an existing edge of P3. The permissible lucky partitions for a lucky
3-coloring are, {{v1, v4}, {v2}, {v3}}, {{v1}, {v2, v4}, {v3}}, {{v1, v3}, {v2}, {v4}}. Hence,
LP4(λ, 3) = 3λ(λ − 1)(λ − 2). Progressing to path P5 the permissible lucky
partitions for a lucky 3-coloring are found to be,

{{v1, v4}, {v2, v5}, {v3}}, {{v1, v4}, {v2}, {v3, v5}}, {{v1, v5}, {v2, v4}, {v3}},
{{v1}, {v2, v4}, {v3, v5}}, {{v1, v3}, {v2, v5}, {v4}}, {{v1, v3}, {v2, v4}, {v5}}.

Hence, LP5(λ, 3) = 6λ(λ− 1)(λ− 2).

Progressing to path P6 the permissible lucky partitions for a lucky 3-coloring
are found to be,

{{v1, v4}, {v2, v5}, {v3, v6}}, {{v1, v4}, {v2, v6}, {v3, v5}}, {{v1, v5}, {v2, v4}, {v3, v6}},
{{v1, v6}, {v2, v4}, {v3, v5}}, {{v1, v3}, {v2, v5}, {v4, v6}}.

Therefore, LP6(λ, 3) = 5λ(λ− 1)(λ− 2). Note that LP6(λ, 3) < LP5(λ, 3).

Progressing to path P7 the permissible lucky partitions for a lucky 3-coloring
are found to be,

{{v1, v4, v7}, {v2, v5}, {v3, v6}}, {{v1, v4}, {v2, v5, v7}, {v3, v6}},
{{v1, v4, v7}, {v2, v6}, {v3, v5}}, {{v1, v4}, {v2, v6}, {v3, v5, v7}},
{{v1, v5, v7}, {v2, v4}, {v3, v6}}, {{v1, v5}, {v2, v4, v7}, {v3, v6}},
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{{v1, v6}, {v2, v4, v7}, {v3, v5}}, {{v1, v6}, {v2, v4}, {v3, v5, v7}},
{{v1, v3, v7}, {v2, v5}, {v4, v6}}, {{v1, v3}, {v2, v5, v7}, {v4, v6}},
{{v1, v4, v6}, {v2, v5}, {v3, v7}}, {{v1, v4, v6}, {v2, v7}, {v3, v5}},
{{v1, v5}, {v2, v4, v6}, {v3, v7}}, {{v1, v3, v6}, {v2, v4}, {v5, v7}},
{{v1, v3, v5}, {v2, v7}, {v4, v6}}, {{v1, v3, v6}, {v2, v5}, {v4, v7}}.

Therefore, LP7(λ, 3) = 16λ(λ− 1)(λ− 2).

For path P8 the permissible lucky partitions for a lucky 3-coloring are found
to be,

{{v1, v4, v7}, {v2, v5, v8}, {v3, v6}}, {{v1, v4, v7}, {v2, v5}, {v3, v6, v8}},
{{v1, v4, v8}, {v2, v5, v7}, {v3, v6}}, {{v1, v4}, {v2, v5, v7}, {v3, v6, v8}},
{{v1, v4, v7}, {v2, v6, v8}, {v3, v5}}, {{v1, v4, v7}, {v2, v6}, {v3, v5, v8}},
{{v1, v4, v8}, {v2, v6}, {v3, v5, v7}}, {{v1, v4}, {v2, v6, v8}, {v3, v5, v7}},
{{v1, v5, v7}, {v2, v4, v8}, {v3, v6}}, {{v1, v5, v7}, {v2, v4}, {v3, v6, v8}},
{{v1, v5, v8}, {v2, v4, v7}, {v3, v6}}, {{v1, v5}, {v2, v4, v7}, {v3, v6, v8}},
{{v1, v6, v8}, {v2, v4, v7}, {v3, v5}}, {{v1, v6}, {v2, v4, v7}, {v3, v5, v8}},
{{v1, v6, v8}, {v2, v4}, {v3, v5, v7}}, {{v1, v6}, {v2, v4, v8}, {v3, v5, v7}},
{{v1, v3, v7}, {v2, v5, v8}, {v4, v6}}, {{v1, v3, v7}, {v2, v5}, {v4, v6, v8}},
{{v1, v3, v7}, {v2, v4, v6}, {v5, v8}}, {{v1, v3, v8}, {v2, v5, v7}, {v4, v6}},
{{v1, v3}, {v2, v5, v7}, {v4, v6, v8}}, {{v1, v4, v6}, {v2, v5, v8}, {v3, v7}},
{{v1, v4, v6}, {v2, v7}, {v3, v5, v8}}, {{v1, v5, v8}, {v2, v4, v6}, {v3, v7}},
{{v1, v4, v6}, {v2, v7}, {v3, v5, v8}}, {{v1, v3, v6}, {v2, v4, v8}, {v5, v7}},
{{v1, v3, v5}, {v2, v7}, {v4, v6, v8}}, {{v1, v3, v6}, {v2, v5, v8}, {v4, v7}},
{{v1, v4, v6}, {v2, v5, v7}, {v3, v8}}, {{v1, v4, v6}, {v2, v8}, {v3, v5, v7}},
{{v1, v5, v7}, {v2, v4, v6}, {v3, v8}}, {{v1, v3, v5}, {v2, v4, v7}, {v6, v8}},
{{v1, v3, v6}, {v2, v4, v7}, {v5, v8}}, {{v1, v4, v6}, {v2, v8}, {v3, v5, v7}},
{{v1, v3, v6}, {v2, v5, v7}, {v4, v8}}, {{v1, v4, v6}, {v2, v5, v7}, {v3, v8}},
{{v1, v5, v7}, {v2, v4, v6}, {v3, v8}}, {{v1, v5, v7}, {v2, v4, v6}, {v3, v8}},
{{v1, v3, v6}, {v2, v4, v7}, {v5, v8}}, {{v1, v3, v5}, {v2, v4, v7}, {v6, v8}},
{{v1, v3, v6}, {v2, v5, v7}, {v4, v8}}.

Therefore, LP8(λ, 3) = 41λ(λ− 1)(λ− 2).

A cycle graph (or simply, a cycle) denoted by, Cn, is a graph on n ≥ 1

vertices say, V(Cn) = {v1, v2, v3, . . . , vn} and n edges namely, E(Cn) = {vivi+1 :
i = 1, 2, 3, . . . , n − 1} ∪ {vnv1}. The graph structural difference between Pn
and Cn is the edge vnv1. It implies that to obtain the corresponding lucky
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3-polynomial, the permissible lucky partitions for V(Cn) are those obtained
after eliminating those lucky partitions of V(Pn) with vertex subsets which
have both v1, vn as elements. The next results follows easily without further
proof.

Corollary 3 (i) LC3
(λ, 3) = λ(λ− 1)(λ− 2),

(ii) LC4
(λ, 3) = 2λ(λ− 1)(λ− 2),

(iii) LC5
(λ, 3) = 5λ(λ− 1)(λ− 2),

(iv) LC6
(λ, 3) = 4λ(λ− 1)(λ− 2),

(v) LC7
(λ, 3) = 13λ(λ− 1)(λ− 2),

(vi) LC8
(λ, 3) = 34λ(λ− 1)(λ− 2).

Recall that a null graph, Nn of order n is simply an edgeless graph with ver-
tex set, {vi : 1 ≤ i ≤ n}. Constructing a path is considered to be the simplest
way to add edges to a null graph to obtain a connected simple graph with
minimum maximum degree, minimum number of edges and the property of
symmetry. However, to find either a closed or recurrence relation between the
lucky k-polynomials of null graphs and paths and cycles remains open. The
table below depicts the lucky 3-polynomials for the three families of graphs
for order 3 to 8.

n Nn, Pn Cn
3 λ(λ− 1)(λ− 2) λ(λ− 1)(λ− 2) λ(λ− 1)(λ− 2)

4 6λ(λ− 1)(λ− 2) 3λ(λ− 1)(λ− 2) 2λ(λ− 1)(λ− 2)

5 15λ(λ− 1)(λ− 2) 6λ(λ− 1)(λ− 2) 5λ(λ− 1)(λ− 2)

6 15λ(λ− 1)(λ− 2) 5λ(λ− 1)(λ− 2) 4λ(λ− 1)(λ− 2)

7 51λ(λ− 1)(λ− 2) 16λ(λ− 1)(λ− 2) 13λ(λ− 1)(λ− 2)

8 109λ(λ− 1)(λ− 2) 41λ(λ− 1)(λ− 2) 34λ(λ− 1)(λ− 2)
Table 1.

We recall from [3] that a graphG is perfect lucky k-colorable if and only if the
graph is k-colorable in accordance with lucky’s theorem hence, in accordance
with the lucky partition form,

{{bnk c-element}, {bnk c-element}, . . . , {bnk c-element}︸ ︷︷ ︸
(k−r)−subsets

,

{dnk e-element}, {dnk e-element}, . . . , {dnk e-element}︸ ︷︷ ︸
(r≥0)−subsets

}.

First we present a lemma.
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Lemma 4 If G of order n and ∆(G) 6= n− 1 is perfect lucky k-colorable and
H is a graph obtained from, G with one pendant vertex vn+1 added to any
vi ∈ V(G), then H is perfect lucky k-colorable.

Proof. Consider any graph G of order n and ∆(G) 6= n − 1 which is perfect
lucky k-colorable. It implies that the G permits a proper k-coloring on the
vertex set partitions of the lucky partition form,

{{bnk c-element}, {bnk c-element}, . . . , {bnk c-element}︸ ︷︷ ︸
(k−r)−subsets

,

{dnk e-element}, {dnk e-element}, . . . , {dnk e-element}︸ ︷︷ ︸
(r≥0)−subsets

}.

Let graphH be, graphG with one pendant vertex vn+1 added to any vi ∈ V(G).
Assume without loss of generality that in H the pendant vertex vn+1 is adja-
cent to vertex vj.
Case 1: Assume r > 0. Because ∆(G) 6= n− 1, there exists at least one vertex
partition which contains a vertex subset say, X such that, |X| = dnk e such that
vj ∈ X and there exists at least one vertex subset say, Y such that, |Y| = bnk c.
Therefore, with regards to a lucky partition form for V(H), the vertex subset
Y ∪ {vn+1} is permissible. It means that, the lucky partition form,

{{bn+1k c-element}, {bn+1k c-element}, . . . , {bn+1k c-element}︸ ︷︷ ︸
(k−r−1)−subsets

,

{dn+1k e-element}, {dn+1k e-element}, . . . , {dn+1k e-element}︸ ︷︷ ︸
(r+1≥0)−subsets

},

yielding a vertex partition having the vertex subset Y ∪ {vn+1} is a permissible
to assign a perfect lucky k-coloring to graph H.
Case 2: Assume r = 0. By similar reasoning to that, found in Case 1 the result
follows conclusively. �

Theorem 5 Let G of order n = k(t + 1) − 1, t ≥ 1 with ∆(G) 6= n − 1 be
a simple connected graph. Let G permit a perfect lucky k-coloring. Let H be
the graph, G with one pendant vertex vt(k+1) added to any vi ∈ V(G). Then,
LH(λ, k) < LG(λ, k).

Proof. Clearly the perfect lucky colorings are assigned to vertex partitions in
accordance to the lucky partition form,
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{{bnk c-element}, {bnk c-element}, . . . , {bnk c-element}︸ ︷︷ ︸
1−subset

,

{dnk e-element}, {dnk e-element}, . . . , {dnk e-element}︸ ︷︷ ︸
(k−1)−subsets

}.

Assume without loss of generality that inH the pendant vertex vn+1 is adjacent
to vertex vj. Since, ∆(G) 6= n − 1, there exist at least two permissible vertex
partitions. If we relax adjacency (allow a bad edge) then vertex vn+1 can
only be added to all the {bnk c-element}, {bnk c-element}, . . . , {bnk c-element} vertex
subsets, over all permissible vertex partitions. For this relaxed case, LH(λ, k) =
LG(λ, k). Else, Lemma 2 above ensures a perfect lucky coloring and LH(λ, k) <
LG(λ, k). �

Theorem 3 above explains the observation that, LP6(λ, 3) < LP5(λ, 3).

2.1 Heuristic method to determine lucky k-polynomials.

It is observed from Table 1 that LCn(λ, 3) < LPn(λ, 3), 4 ≤ n ≤ 8. The next
theorem follows from this observation.

Theorem 6 Let graph G be k-colourable and let H = G− e, e ∈ E(G). Then,
LH(λ, k) > LG(λ, k).

Proof. Because G is k-colourable it follows trivially that H is k-colourable.
The lucky partitions of V(H) serves as a basis to determine the permissible
lucky partitions of V(G) because the only graph structural difference between
G and H is the edge e. Hence, with regards to G the lucky partitions of
V(H) which have vertex subsets which have the end-points of e as elements
must be eliminated. Since, at least one such lucky partition exists, the result
LH(λ, k) > LG(λ, k) follows immediately. �

Let G be a graph of order n. Note that loops in G, if any, are irrelevant and
may be deleted. For application of the heuristic method G is considered to be
free of loops. Assume G is k-colourable.

Heuristic method:
Step 1: Since the null graph Nn is k-colourable, let the set P0 = {lucky parti-
tions of V(Nn)}. Let E(G) = {ei : 1 ≤ i ≤ ε(G)}. Also let j = 0.
Step 2: Let i = j + 1. Let Pi = Pi−1\{lucky partitions of Pi−1 which have
vertex subsets which have the endpoints of ei as elements}.
Step 3: If i = ε(G) then go to Step 4. Else, let j = i and go to Step 2.
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Step 4: Let LG(λ, k) = |Pε(G)|λ(λ− 1)(λ− 2) · · · (λ− k+ 1) and exit.

Claim 2.5. The heuristic method converges and yields a unique and correct
result.

Motivation. Since G is finite it implies that ε(G) is finite. Hence, the iter-
ative looping between Step 2 and Step 3 will reach go to Step 4 after ε(G)
iterations.
Furthermore, the lucky partitions of V(G) are finite and due to the combinato-
rial properties of the lucky partitions all vertex subsets which have endpoints
of an edge as elements are unique and finite in number. Therefore, the elim-
ination of the corresponding lucky partitions yields a unique result. Finally,
it is obvious that after exhaustive iterations, i = 1, 2, 3, . . . , ε(G), the unique
maximum number i.e. |Pε(G)|, of lucky partitions remain to ensure a proper
lucky k-colouring of G.

3 Conclusion

No step function or recurrence formula is known to determine LPn(λ, 3) and
LCn(λ, 3), n ≥ 9. Finding recurrence formula to determine lucky numbers
where-after, finding a combinatorial formula to determine the number of lucky
partitions which have vertex subsets without the endpoints of edges are needed
to resolve these open questions.

For perfect lucky 3-colorings of paths and cycles the lucky 3-polynomial’s
coefficient decreases by 1 when Pkt−1 (or Ckt−1), t ≥ 2 extends to Pkt (or to
Ckt). It is clear from Theorem 3 that for sufficiently large n and for k ≥ 4 the
decrease values will be greater than 1. Finding the decreases is considered a
worthy avenue for research.

It is deemed worthy to have an algorithm coded to obtain the Lucky par-
titions of V(Nn) in respect of a given lucky k-colouring. Such is needed to
advance research.
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