
Acta Universitatis Sapientiae

Informatica
Volume 10, Number 1, 2018

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

G. Kremer, E. Ábrahám
Modular strategic SMT solving with SMT-RAT5

H. Mureşan, M. Oltean
Fruit recognition from images using deep learning 26

N. Lahiani, D. Bennouar
On the use of model transformation for the automation of product
derivation process in SPL . 43

M. R. R. Rana, A. Nawaz, J. Iqbal
A survey on sentiment classification algorithms, challenges and
applications . 58

L. Filep, L. Illyés
Exact fit problem generator for cutting and packing, revisiting of
the upper deck placement algorithm . 73

R. Forster, Á. Fülöp
Hierarchical clustering with deep Q-learning 85

L. Szilágyi, D. Iclănzan, Z. Kapás, Zs. Szabó, Á. Győrfi, L. Lefkovits
Low and high grade glioma segmentation in multispectral brain
MRI . 110

3

Acta Univ. Sapientiae, Informatica 10, 1 (2018) 5–25

DOI: 10.2478/ausi-2018-0001

Modular strategic SMT solving with

SMT-RAT∗∗

Gereon KREMER
RWTH Aachen University

Aachen, Germany
email:

gereon.kremer@cs.rwth-aachen.de

Erika ÁBRAHÁM
RWTH Aachen University

Aachen, Germany
email:

abraham@cs.rwth-aachen.de

Abstract. In this paper we present the latest developments in SMT-RAT,
a tool for the automated check of quantifier-free real and integer arith-
metic formulas for satisfiability. As a distinguishing feature, SMT-RAT

provides a set of solving modules and supports their strategic combi-
nation. We describe our CArL library for arithmetic computations, the
available modules implemented on top of CArL, and how modules can
be combined to satisfiability-modulo-theories (SMT) solvers. Besides the
traditional SMT approach, some new modules support also the recently
proposed and highly promising model-constructing satisfiability calculus
approach.

1 Introduction

The problem of checking the satisfiability of first-order logic formulas appears
in many different areas like, e.g., program verification or synthesis approaches
like planning or scheduling. On the one hand, solving arithmetic formulas has

∗This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No H2020-FETOPEN-2015-CSA 712689.

∗
Computing Classification System 1998: I.2.8
Mathematics Subject Classification 2010: 68-04
Key words and phrases: satisfiability modulo theories, polynomial arithmetic, strategic
combination

5

https://ths.rwth-aachen.de/people/gereon-kremer/
https://www.rwth-aachen.de
mailto:gereon.kremer@cs.rwth-aachen.de
https://ths.rwth-aachen.de/people/erika-abraham/
https://www.rwth-aachen.de
mailto:abraham@cs.rwth-aachen.de
mailto:abraham@cs.rwth-aachen.de

6 G. Kremer, E. Ábrahám

deep historical roots in mathematical logic and symbolic computation. On the
other hand, the last decades led to fruitful developments also in computer
science, resulting in efficient SAT and satisfiability-modulo-theories (SMT)
solvers. Whereas at the beginning SMT solvers focused on theories for equality
logic and uninterpreted functions, bit-vectors, arrays and floating-point arith-
metic, recently notable achievements were made also for arithmetic theories.
For the support of polynomial constraints over the reals interesting symbio-
sis evolved between symbolic computation and satisfiability checking, learning
from each other and mutually integrating successful techniques from the re-
spective areas.

In this paper we describe recent developments for our SMT solver SMT-RAT

[17, 16], which is mainly developed for checking the satisfiability of quantifier-
free real and integer arithmetic formulas. A distinguishing feature of SMT-RAT

is that it offers a library of decision procedure modules, which share a common
interface structure such that they can be strategically combined based on user-
defined specifications to efficient SMT solvers.

The majority of the decision procedures that are implemented in those
SMT-RAT modules stem from the area of symbolic computation, for which im-
plementations in computer algebra systems are available. Examples for such
theory solving procedures are the simplex method, methods using Gröbner
bases, the subtropical satisfiability method, the virtual substitution method
or the cylindrical algebraic decomposition method. Thus it is natural to think
of invoking their implementations provided by different computer algebra sys-
tems. However, there are several obstacles that hinder their direct embedding
in SMT solvers. Firstly, SMT solvers for arithmetic problems need modules
to check the consistency of sets of polynomial constraints in an incremen-
tal fashion, meaning that after the consistency of a constraint set has been
determined, the consistency of an extended set needs to be checked. Such in-
cremental consistency checks need to be executed frequently, therefore it is
important that they are not done independently but re-use information from
previous checks as much as possible. Secondly, in case of inconsistency, these
modules need to return an explanation for unsatisfiability, e.g. in the form
of an inconsistent subset of the constraints. Thirdly, SMT solvers explore the
space of possible solutions in an enumerative manner, accompanied by smart
propagation, resolution and learning procedures to avoid unnecessary work in
unsatisfiable parts of the search space. Once it is detected that the currently
considered part of the search space does not contain satisfying solutions, back-
tracking takes place, which requires also backtracking ability for the theory
solver. Unfortunately, implementations in computer algebra systems do not

Modular strategic SMT solving with SMT-RAT 7

provide these functionalities. Therefore, we implemented adaptations for sev-
eral such methods as SMT-RAT modules that satisfy the above requirements.

These implementations in SMT-RAT required support for basic arithmetic
computations like algorithms for polynomial division or calculating the great-
est common divisor of two (multivariate) polynomials. Today’s commonly used
computer algebra systems like Maple, Mathematica, Singular, GAP or Reduce of-
fer a rich set of highly efficient algorithms on polynomials [28], while also
putting the focus on the user interface and graphical capabilities. Therefore,
we experimented with their usage for our SMT-RAT modules. However, we ex-
perienced a major communication bottleneck at the interface between SMT-RAT

and external tools: the frequent exchange of large constraint sets is very time
consuming. Additionally, as the two communication sides use different data
types to represent numbers, arithmetic expressions and constraints, the fre-
quent communication caused a serious overhead also for datatype conversion.

An optimal solution can be offered by a (preferably free and open-source)
library for arithmetic computations, which offers an object-oriented, generic
and modular data structure for polynomials or, even better, formulas over
polynomial constraints. Though a few libraries exist that try to bridge this
gap, for example GiNaC [6] and CoCoALib [1], they all have various downsides
that led us to implement our own C++ library CArL. It is clearly not one of
our short- or medium-term goals to compete with the performance of these
algorithms on arbitrary inputs, when implementing a polynomial arithmetic
library from scratch. However, we hope that in the long-term our tool will
provide helpful support to other research groups in the SMT community and
beyond.

Previously we reported on our software developments in [17] in 2012 and
in [16] in 2015. The novel contributions of this paper are (i) the introduction
of the CArL library and (ii) the description of SMT-RAT with a special focus on
three new solver modules in the latest release.

The rest of this paper is structured as follows. In Section 2 we give a short
introduction to SAT and SMT solving and briefly explain the main ideas of
some relevant algebraic decision procedures. In Section 3 we introduce our
arithmetic library CArL, followed by a description of our SMT solver SMT-RAT

and its new modules in Section 4. Finally we provide some experimental results
in Section 5 before we conclude the paper in Section 6.

8 G. Kremer, E. Ábrahám

2 Preliminaries

Traditionally, satisfiability checking aims at the automated check of the satisfi-
ability of quantifier-free first-order logic formulas over some theories, whereas
recent developments extend the functionalities for satisfiability checking to,
e.g., quantified formulas or optimization. In this paper we focus on checking
the satisfiability of quantifier-free real arithmetic formulas, which are Boolean
combinations of constraints comparing polynomials over real-valued variables
to zero.

SAT solving The success story of satisfiability checking started with SAT
solving for propositional logic. The main strength of SAT solving is a highly
efficient heuristic combination of enumeration, propagation, resolution and
learning [19, 43]. The input is a propositional logic formula, which is a Boolean
combination (using operators for negation ¬, conjunction ∧, disjunction ∨
etc.) of Boolean variables called propositions. The input formula is first trans-
formed into conjunctive normal form (CNF) in linear time and space on the
cost of additional variables using Tseitin’s transformation [51]. The result is a
conjunction of disjunctions of possibly negated propositions; propositions and
negated propositions are called literals and their disjunctions clauses. Enu-
meration is used to explore possible solutions, deciding which values for which
propositions should be tried first. After each such decision, which is actually
a guess for satisfying variable values, propagation is applied to detect cer-
tain implications of the current assignments and thus to reduce the number
of “wrong guesses”. For example, if the CNF contains a clause (a ∨ b) and
the value false is decided for a then propagation assigns true to b in order to
satisfy the clause. However, propagation cannot always avoid running into an
unsatisfiable assignment. For example, the previous assignments would lead to
the violation of the clause (a∨¬b). When such a conflict is detected, resolution
is applied to determine a reason for the conflict; in our example, resolving the
two clauses (a∨ b) and (a∨¬b) would result in the resolvent (a). Learning the
reason for the conflict will protect the future search from running into conflicts
with the same reason.

SMT solving The impressive success of SAT solving led to the idea to
extend the technology to check satisfiability also for quantifier-free formulas
over different theories. Satisfiability modulo theories (SMT) solving started
for equalities and uninterpreted functions, theories relevant for program veri-
fication (arrays, bit-vectors, floating-point arithmetic etc.) and linear real and
integer arithmetic. Nowadays, powerful tools exist that can handle also harder

Modular strategic SMT solving with SMT-RAT 9

theories like, e.g., nonlinear arithmetic formulas. Some popular SMT solvers
for arithmetic theories are, e.g., AProVE [29], CVC4 [4], MathSAT5 [12], raSAT [39],
veriT [7], Yices2 [22], Z3 [20] and our solver SMT-RAT [16].

SMT solving typically works in a lazy fashion, meaning that the solver prior-
itizes to satisfy the Boolean structure of the formula first and check consistency
in the theory afterwards. To do so, the Boolean skeleton or Boolean abstraction
of the input formula is generated by replacing each theory constraint by a fresh
proposition, resulting in a propositional logic formula, which can be checked
for satisfiability by a SAT solver. If the skeleton is unsatisfiable then the in-
put formula is unsatisfiable, too. Otherwise, if the SAT solver has determined
a Boolean solution for the skeleton then suitable theory solvers are invoked
to check whether all constraints with true abstraction propositions and the
negations of all constraints with false abstraction propositions are together
consistent. If this is the case then a satisfying solution for the input formula
is found. Otherwise, the theory solvers need to provide an explanation for the
inconsistency, typically by returning an inconsistent subset of the considered
constraints. Learning the Boolean abstraction of this explanation refines the
Boolean abstraction, avoiding Boolean solutions with the same theory conflict
in future search. Besides such full lazy approaches, less lazy variants check
theory consistency more frequently (usually after the full propagation of each
Boolean decision).

MCSAT A recent technique called model constructing satisfiability calculus
(MCSAT) [21] generalizes the above approach by defining a set of derivation
rules, which includes besides Boolean decision, propagation and conflict reso-
lution also their counterparts for the theory. Especially, MCSAT provides the
possibility to guess not only truth values for the theory constraints but also
values for the theory variables, and use some theory propagation techniques
to drive the search for further theory variable values away from unsatisfiable
parts of the state space. For example, if we decide to try the value 0 for a
theory variable x and a constraint x > y should hold according to the Boolean
search then we need to guess a negative value for y, e.g. −1. However, if also
the constraint x2 > y2 should hold then we have run into a theory conflict,
because for x = 0 there is no value for y that would satisfy both constraints.
In such cases, the theory conflict needs to be explained by a lemma, which
in the optimal case generalizes the current conflict and helps to exclude from
further search not only the current assignment but also others with similar
reasons for being unsatisfying. For our example, the solver could explain the
conflict by returning x2 > y2 → x > 0.

10 G. Kremer, E. Ábrahám

Theory decision procedures As mentioned above, SMT solvers use, be-
sides SAT solvers, also theory solvers, which need to check sets or conjunctions
of theory constraints for consistency. Furthermore, for efficiency reasons, in the
less lazy setting theory solvers should work incrementally, meaning that if a
set of constraints is found satisfiable and the set is extended by adding some
further constraints then the theory solver should not check the consistency of
the extended set from anew but re-use previous results as much as possible.
Additionally, for inconsistent constraint sets the theory solvers must be able
to provide explanations.

For this purpose, we use decision procedures for arithmetic theories devel-
oped in symbolic computation and implemented in computer algebra systems.
The symbiosis of these methods with SAT solving is fruitful because these
methods are good at checking sets of constraints for satisfiability but they are
not designed for combinatorial checks in Boolean structures. In the following
we describe some of these procedures in a nutshell.

• Interval constraint propagation (ICP) [27, 34] uses interval arithmetic
to contract given variable domains under the assumption of certain con-
straints. For example, if x ∈ [0, 2] and y ∈ [1, 3] and x = y should hold
then ICP can imply that x ∈ [1, 2] and y ∈ [1, 2]. ICP is very powerful
and can be applied to nonlinear arithmetic involving also trigonometric
and transcendental functions, but it is incomplete in general.

• The simplex method [18] is applicable to linear real arithmetic. Originally
it was developed for optimization but in the SMT context we use it for
satisfiability checking only. The main idea is to start from an initial vari-
able assignment satisfying a set of equalities and modify this assignment
step-wise to satisfy also additional variable bounds.

• The Fourier-Motzkin variable elimination method allows to perform quan-
tifier elimination on sets of linear real arithmetic constraints. The idea is
that if two constraints define a lower and an upper bound respectively on
a variable than satisfiability requires the lower bound to be smaller (or
equal, depending on the comparison operator) than the upper bound.
For example, 2y < x and x < w requires 2y < w. Collecting these re-
quirements for all lower-upper-bound pairs on x allows to eliminate x
from the constraint system.

• The original idea of the virtual substitution method [55] is to use solu-
tion equations to solve multivariate low-degree constraints symbolically

Modular strategic SMT solving with SMT-RAT 11

and substitute these solutions into the other constraints to eliminate
variables. As these symbolic solutions might contain e.g. square roots,
special virtual substitution rules are applied which produce standard
arithmetic constraints after the substitution. The method requires the
degree of the polynomials to be bounded and is thus incomplete in gen-
eral.

• The cylindrical algebraic decomposition (CAD) method [13] is a decision
procedure for real arithmetic. It is a quantifier elimination method, which
decomposes the state space into a finite number of sign-invariant (or
truth-invariant) regions, such that in each region either all points satisfy
the input formula or none of them does so. Therefore, it is sufficient to
take a single sample point from each region and check whether any of
the sample points satisfies the formula. The CAD method is complete
but in worst case it comes with doubly exponential solving effort.

• A recent incomplete but highly efficient method for finding solutions for
real-arithmetic constraint sets is the subtropical satisfiability method [25].
It analyzes the exponent vectors of the monomials in the constraints and
tries to find dominating monomials whose values can be made larger or
smaller than all other monomial values. For example, x3y+x2y2 +y < 0
is satisfiable because for any positive value for y we can find a sufficiently
small value for x such that x3y becomes the dominating monomial that
makes the polynomial x3y + x2y2 + y negative.

• The incomplete branch-and-bound method [41] can be used to extend de-
cision procedures for real arithmetic to check the satisfiability of integer
arithmetic constraint sets. It first checks the real relaxation of the input
constraints using some decision procedure for the reals, i.e., assuming
the variables to be real-valued instead of integer-valued. If no solution
exists in the real domain then there is no integer solution. If an integer
solution is found by the real-valued search then the formula is satisfiable.
Otherwise, if a real-valued solution v is found for an integer variable x
then the search branches on values for x that are either less or equal
than the largest integer below v or at least as large as than the smallest
integer above v.

However, practical implementations of these procedures are usually not de-
signed to work incrementally and they neither support the generation of ex-
planations. Therefore, before their embedding in SMT solving they need to be
adapted to satisfy these requirements.

12 G. Kremer, E. Ábrahám

3 CArL

For any project that aims to work on arithmetic formulas, some data structures
are needed to represent numbers, polynomials and formulas. Data types for the
exact representation of real numbers of arbitrary size in C++ are provided e.g.
by the libraries gmp and cln. Similar support is available for other languages
like Java or Python. However, general-purpose libraries for the representation
of real-algebraic numbers, polynomials, polynomial constraints and algebraic
formulas, and efficient implementations of polynomial computations – ranging
from addition and multiplication to pretty complex operations like greatest
common divisor or factorization – are much more rare.

There are manifold reasons for this support gap. First of all, the range of
algorithms that work on polynomials is extremely large and diverse, such that
it is futile to attempt to exhaustively implement all algorithms. Furthermore,
different representations tend to provide vastly different performance on differ-
ent inputs and thus the application domain must be taken into consideration.

One attempt to provide a fairly generic C++ library for polynomial arith-
metic is GiNaC [6]. In contrast to computer algebra systems, GiNaC is designed
as an open framework to be integrated in other tools, providing symbolic ma-
nipulations like arithmetic operations on polynomials. Its popularity reveals
the urgent need for such a library. It is used for example for symbolic execu-
tion [3], probabilistic pointer analysis [11], and in the parametric probabilistic
model checker PARAM [32].

However, GiNaC is not generic in the sense that it does not allow arbitrary
coefficient types for the polynomials, and provides no possibility to influence
the ordering of the variables and monomials in the polynomials. Both are cru-
cial for the efficient implementation of many algorithms, for example decision
procedures based on Gröbner bases [10] or the cylindrical algebraic decompo-
sition method [13]. Furthermore, GiNaC lacks thread safety, thus it cannot be
used safely in parallelized applications.

Another C++ library is CoCoALib [1] which also provides many arithmetic
operations on polynomials, though it is mostly tailored to the computation
of Gröbner bases. Unfortunately, all CoCoALib polynomials are elements of
some polynomial ring with a fixed variable ordering and polynomials of dif-
ferent rings are not directly compatible. This is a major obstacle whenever
fresh variables are introduced or a certain operation is only performed on a
small subset of the variables or on a different variable ordering. Furthermore
CoCoALib does not offer all operations that are needed for methods like the
cylindrical algebraic decomposition.

Modular strategic SMT solving with SMT-RAT 13

After having experimented with available libraries, we decided to develop
a free and open-source Computer Arithmetic Library CArL1 from scratch in
C++ to overcome these problems. The focus of CArL lies on efficient generic
data types and algorithms for polynomials and arithmetic formulas, but also
includes bit vectors and uninterpreted variables and functions.

Most of the data structures in CArL can be instantiated with different num-
ber types; it ships support for gmp, cln and native integers, as well as wrappers
for MPFR and Z3 rationals. For algebraic methods like the cylindrical algebraic
decomposition method, CArL implements real-algebraic numbers – either in in-
terval representation or using an encoding based on Thom’s lemma. Further-
more, CArL implements an extension of the templated boost intervals, which
allows open and closed bounds, and implements methods which are essential
for interval constraint propagation techniques.

The library offers a variety of methods for computations with polynomi-
als. Some of them provide basic functionalities like for example to get the list
of variables of a polynomial, to check whether a polynomial is univariate, to
iterate over the terms of a polynomial, to apply addition, subtraction, multi-
plication, substitution, comparison and evaluation, to normalize polynomials
or to compute their derivatives. For univariate polynomials CArL can compute
Cauchy and other bounds on the real zeros, Sturm sequences and their sign
variations, resultants and sub-resultants, discriminants and real root isolations.
Further methods for multivariate polynomials implement for example test for
definiteness, sum of squares decomposition, polynomial (pseudo-)division and
(pseudo-)remainder computation, factorization, computations of co-prime fac-
tors of coefficients, or S-polynomials. CArL even features its own implementa-
tion of Gröbner bases with a particular focus on the support of incrementality.
Additionally to polynomial expressions, for methods like the virtual substitu-
tion CArL also offers data types for fractions and square root expressions.

To easily borrow further advanced functionality from other libraries or com-
pare against their implementation, CArL integrates CoCoALib and GiNaC, offer-
ing alternative implementations for e.g. polynomial factorization, multivariate
polynomial greatest common divisor and Gröbner bases computations. A pre-
liminary integration of Maple – given an existing Maple installation – is also
available.

Moreover, CArL bundles a lot of utility functionality that we deem useful
when implementing any kind of tool similar to an SMT solver.

1Available at https://github.com/smtrat/carl.

https://github.com/smtrat/carl

14 G. Kremer, E. Ábrahám

4 SMT-RAT

The efficient solving of some variant of the satisfiability problem is a cor-
nerstone for many techniques in formal verification and numerous industrial
applications. We focus on the satisfiability modulo theories (SMT) problem
that combines Boolean satisfiability with one or more theories, for example
nonlinear arithmetic. A number of open-source solvers exist that tackle this
class of problems with great success, for example CVC4 [4], raSAT [52], veriT [7],
Yices2 [22] or Z3 [20].

Our goal is to combine various techniques for SMT solving and study the
interaction of different approaches. This requires a framework that allows a
user to compose an SMT solver from individual modules easily in a very flexible
way. Though the aforementioned solvers all have different solution techniques
and more or less powerful mechanisms to combine them, we want this strategic
combination of modules to be very transparent to the user. This idea is at the
core of our SMT solving library SMT-RAT2.

SMT-RAT is a library meant for, but not limited to, SMT solving. Though it
can be used as-is to compose a stand-alone SMT solver – and this is how we
use it most of the time – it is intended to be employed in either other SMT
solvers or even be used for other solving tasks. The focus on modularity and
composability yields a framework where the individual solver modules have a
well-defined interface and are completely decoupled otherwise. This allows for
an easy extension of SMT-RAT by new solving techniques without knowledge
about the overall architecture and other modules. Undergraduate students
routinely implement new theory solver modules or extend existing ones for
various logics in practical courses or as thesis projects [14, 37, 47, 50, 40, 49,
42, 45, 46, 53, 56, 30, 33, 44, 31].

4.1 Previous SMT-RAT solver modules

SMT-RAT holds a rich collection of solver modules that can be grouped into pre-
processing modules applying simplifications, decision procedure modules that
implement satisfiability checking procedures and meta modules, though the
border is sometimes blurry.

Preprocessing modules Oftentimes input problems have a certain struc-
ture that allows for some simplifications. SMT-RAT contains a collection of pre-
processing techniques to exploit such possibilities. The ESModule searches for

2Available at https://github.com/smtrat/smtrat.

https://github.com/smtrat/smtrat

Modular strategic SMT solving with SMT-RAT 15

variables occurring linearly in equations that must hold and eliminate them.
The GBPPModule is based on Gröbner bases and uses nonlinear equalities to
simplify inequalities. Certain patterns of circular inequalities can be exploited
with the ICEModule to eliminate variables. Some encodings of a multiple choice
scenario can be simplified to Boolean decisions using the MCBModule. The
PFEModule uses bounds on arithmetic variables to identify and remove sign-
invariant factors of polynomials. Finally, the SymmetryModule identifies and
breaks symmetries on both Boolean and theory variables.

Decision procedure modules At the core of most modern SMT solvers,
and SMT-RAT is not different here, is a SAT solver. SMT-RAT uses MiniSat [24]
as its SATModule, which employs CDCL(T)-style SAT solving and forwards
theory calls to its backends. As theory solvers, SMT-RAT offers implementa-
tions of several complete and incomplete decision procedures, each of them
encapsulated in a module.

The theory of bit-vectors is handled by the BVModule [42] that encodes
bit-vector constraints to propositional logic similar to [26]. Another variant
of theory constraints supported by SMT-RAT are pseudo-Boolean constraints –
arithmetic constraints over Boolean variables. These are transformed by the
PBPPModule [30] to either propositional or arithmetic formulas.

Linear arithmetic can be solved using the FouMoModule, which implements
a variant of Fourier-Motzkin variable elimination, or the LRAModule which im-
plements the simplex method in the spirit of [23], including support for linear
integer arithmetic. Additionally the CubeLIAModule provides an incomplete
but fast test for linear integer arithmetic inspired by [8].

The focus of our research lies however on nonlinear arithmetic. The cylin-
drical algebraic decomposition method is implemented in the CADModule [16,
41, 54], the only complete SMT-RAT module for nonlinear real arithmetic, which
is complemented by different incomplete solver modules. The GBModule [38]
uses a variant Gröbner bases to determine satisfiability over the reals. The
virtual substitution method with various optimizations is implemented in the
VSModule [15]. Another very popular method is interval constraint propaga-
tion that is available through the ICPModule [49]. All these modules can also
work on nonlinear integer arithmetic problems using the branch-and-bound
technique, though all of them are incomplete due to the undecidability of non-
linear integer arithmetic. Additionally the IntBlastModule [42, 41] encodes
bounded nonlinear integer problems in bit-vector arithmetic, similar to what
most other solvers do for this kind of problems.

16 G. Kremer, E. Ábrahám

Meta modules These solver modules do not implement any solving tech-
nique by themselves, but connect other modules. Meta modules extend what
the user can do with the strategy framework: they allow to keep the strategy
formalism comparably simple, as more complicated and technical components
can be implemented as meta modules that encapsulate a specific strategic
feature.

One such example is the FPPModule which applies a given strategy of pre-
processing techniques to simplify a formula multiple times until a fixed-point
is reached and no further simplifications can be done.

4.2 New modules

There are three new decision procedure modules in the latest SMT-RAT release.

Subtropical satisfiability The STropModule implements a quick check for
satisfiability following the idea of [25] as briefly explained in Section 2. This
method is very fast but incomplete: either it finds a satisfying solution or
returns unknown, but it is not able to determine unsatisfiability.

Cylindrical algebraic decomposition The new version of SMT-RAT of-
fers a complete re-implementation of the CAD method in the solver module
NewCADModule. The advantage of this new CAD module lies in its data stuc-
tures. The CAD method consists of two phases (projection and construction),
both of them spanning a tree-structured search. Compared to the original
CADModule the data structures for the projection and construction phases are
more modular and allow for more flexibility. For example, the sample point
construction can be performed in any heuristic order and more advanced op-
timizations e.g. for equational constraints could be integrated.

MCSAT-style SMT Solving As briefly mentioned in Section 2, an ap-
proach called model-constructing satisfiability calculus (MCSAT) [21] was pro-
posed recently, firstly instantiated for nonlinear arithmetic which is called
NLSAT [36]. Given its great success on nonlinear arithmetic problems, we de-
veloped a new SMT-RAT module to support MCSAT-style SMT solving based
on the cylindrical algebraic decomposition.

As of now, SMT-RAT features the core solving engine for MCSAT-style solving
and explanation functions based on CAD in the spirit of NLSAT and a first ver-
sion using Fourier-Motzkin variable elimination for linear problems. Current
work includes a more powerful implementation based on Fourier-Motzkin that
also handles certain nonlinear cases, explanations based on virtual substitu-
tion for conflicts of bounded degree as described in [2] and an implementation

Modular strategic SMT solving with SMT-RAT 17

of the OneCell [9] approach. As for CDCL(T)-style SMT solving, we work on
combining the different explanation functions in a meaningful way.

The current version of SMT-RAT can be compiled to an MCSAT-style SMT
solver using an NLSAT-style explanation and it seems to work reliably on the
SMT-LIB benchmark set. It is rather premature still and should be considered
work-in-progress. Because MCSAT-style reasoning requires a close interaction
between the SAT solver and the theory module, our MCSAT module is cur-
rently integrated in the SAT module and can be activated through a dedicated
module configuration. In a later release we will improve the modularity for
MCSAT support.

4.3 Strategic combination of solver modules

The fundamental idea of SMT-RAT is to use a strategic combination of solver
modules for SMT solving. A module encapsulates a single solving technique
and multiple modules can be composed to form a strategy. The manager takes
care of parsing the input formula and executing the strategy on it, possibly
exploiting opportunities to execute multiple branches of the strategy in par-
allel.

Every module works on a set of received formulas Crcv that are the input
to the solving technique. The module can be asked to check the consistency
of the (conjunction of the) received formulas, to which the module can return
sat, unsat or unknown. In case of satisfiability, the module may be asked to
construct a satisfying assignment while unsatisfiability must be proven with
an infeasible subset of Crcv. Common extensions like the generation of theory
lemmas or multiple infeasible subsets are supported as well.

While working on some received formula, a module may ask other modules
for help by adding formulas to the set of passed formulas Cpass and ask its
backends to decide upon the satisfiability of this (sub-)problem. The back-
ends of a module are defined by the strategy and can be annotated with
conditionals that specify when a backend should be used. These conditionals
could check whether the current formula is linear, argues over bit-vectors or
contains weak inequalities. When a module calls its backends, the manager
collects all backends whose conditionals evaluate to true on Cpass and executes
them sequentially or in parallel, according to the strategy specification. For
these backend modules, Crcv is identical to Cpass of the calling module.

We illustrate a possible strategy in Figure 1 that can solve formulas over
bit-vectors and arithmetic theories. It starts with the meta-module FPPModule
that uses the strategy PPStrategy to employ a series of preprocessing mod-

18 G. Kremer, E. Ábrahám

Figure 1: An example SMT-RAT strategy

ules: ESModule, GBPPModule, SymmetryModule and PFEModule. The prepro-
cessed input is then forwarded either to the BVModule or to a SATModule that
forwards theory calls to the LRAModule module. The LRAModule module tries
to determine satisfiability and if it fails then it forwards the formula to its
backends that use interval constraint propagation (ICPModule) or the virtual
substitution (VSModule) method which are both incomplete and use the cylin-
drical algebraic decomposition method (CADModule) as a fallback. Note that
the interval constraint propagation and the virtual substitution methods are
called unconditionally and are thus both executed in parallel, the result of the
first one to finish being returned to the LRAModule module.

All modules are thread-safe and can be used multiple times, for example the
SATModule and the CADModule each have two instances that are completely
independent of each other. In particular, different instances can be executed
using different configurations that specify certain heuristics. The strict sepa-
ration of procedures into modules that are sealed from each other is a great
asset as it allows a high degree of flexibility and modularity and also signif-
icantly simplifies the implementation of new modules. This means, however,
also that all modules should accept all possible input formulas as input. Thus
if a module is called with a formula whose solution is not supported by the
module than it should either call backend modules or return unknown.

5 Experimental results

The presented software, both CArL and SMT-RAT, are meant to be used within
other projects in a community that emphasizes performance, albeit not as

Modular strategic SMT solving with SMT-RAT 19

much as correctness. It is therefore important that it performs reasonably well
on practical problems, in particular as competitors exist. We want to point out
that we do not aim to be the fastest solver for any given logic for two reasons:
firstly, we consider SMT-RAT a framework to allow for low-threshold research
on novel SMT-related research; secondly, beating all the other solvers in a
particular logic would exhaust too many resources on our side. Nevertheless,
we need to perform reasonably well such that using CArL or SMT-RAT makes
sense at all. We therefore present a couple of experiments for both CArL and
SMT-RAT to give a feeling for the level of performance that can be expected.

5.1 Computations with polynomials

First we compare the implementation of multivariate polynomials from CArL,
CoCoALib and GiNaC. We start with basic operations to compare, multiply
and divide multivariate polynomials. Furthermore we compute the pseudo-
remainder and resultant of multivariate polynomials and substitute individual
variables by polynomials.

Figure 2: Experimental results for polynomial computations

20 G. Kremer, E. Ábrahám

Figure 2 shows some experimental results for these operations. We con-
structed a reasonably large set of random inputs (100 for multiplication,
pseudo-remainder and resultant, 1000 for comparison, division and substitu-
tion) for every operation of the degree depicted on the x axis and give the
cumulative computation time in seconds. Note that all three libraries run on
the exact same inputs and the conversions from one representation to another
are not included in the results. We have been unable to find an implemen-
tation for the pseudo-remainder, resultant and substitution in CoCoALib and
therefore only compare with GiNaC in these cases. We can see that CArL signif-
icantly outperforms GiNaC on all operations shown here and is comparable to
CoCoALib.

Note that some more challenging algorithms like multivariate greatest com-
mon divisor of multivariate factorization are not implemented in CArL directly,
but instead CArL provides a seamless integration of either GiNaC or CoCoALib.
Comparisons of these methods are therefore not meaningful.

5.2 SMT solving

Based on the finding that at least our fundamental polynomial procedures
are reasonably fast, we want to investigate whether SMT-RAT is competitive
with other state-of-the-art solvers. Past publications have shown that SMT-RAT

usually performs pretty good, in particular on nonlinear real arithmetic [52, 16]
and nonlinear integer arithmetic [41, 35].

Three methods we have recently worked on are the CADModule, STropModule
and our version of MCSAT-style solving. All three of them are targeted towards
nonlinear real arithmetic and we show an overview about the current status
in Figure 3 on the SMT-LIB [5] QF NRA benchmark set, which contains 11354
problem instances from 10 different applications. The table shows the number
of instances that could be solved (as sat or unsat) and those that could not
be solved due to time or memory limits (as resout), in our case 60 seconds
and 4 GB. The STropModule can not be applied to certain problems which is
shown as unknown.

For the first solver the STropModule is used as the sole theory solver,
while it can use other theory modules as backends in the second configura-
tion, namely the ICPModule, VSModule and CADModule. As for the CADModule,
we analyzed the impact of exploiting incrementality and different heuristics.
CADModulenaive uses no incrementality while CADModuleA and CADModuleB

only differ in the order used for projecting polynomials. Using the exact same
basic data structures as the CAD from CADModule, the MCSATModule imple-

Modular strategic SMT solving with SMT-RAT 21

sat unsat solved unknown resout

STropModule 1372 2605 3977 5620 1757

STropModule + Backends 4260 4289 8549 – 2805

CADModule naive 2872 2699 5571 – 5783

CADModule A 4263 3873 8136 – 3218

CADModule B 4271 3803 8074 – 3280

MCSATModule 4297 4455 8752 – 2602

Figure 3: Experimental SMT solving results for different strategies on QF NRA

ments a variant of the NLSAT approach. Note that these are preliminary
results and none of the solvers uses our preprocessing techniques yet because
we currently focus on these methods on their own. As a rough comparison,
the leading solvers solved almost 9950 of the QF NRA benchmarks at last year’s
SMT competition [48], though in 20 minutes instead of 60 seconds.

6 Conclusion

The implementation of formal approaches to handle arithmetic problems is
highly challenging and extremely time consuming. In this paper we presented
our CArL library for arithmetic computations, whose development required a
serious effort. We also presented the latest version of SMT-RAT, whose devel-
opment started in 2009. It required six years of work till we were able to
participate in the SMT competition in 2015 the first time. Since then, our
solver was enriched by further important modules like MCSAT-support based
on the CAD method and a module for the subtropical satisfiability. All this
work resulted in free and open-source software libraries that can be used not
only in SMT-RAT but also in other software projects. Further optimizations like
reduced projection in the CAD for equality constraints and further modules
like MCSAT support based on the virtual substitution method are currently
being implemented and will hopefully further strengthen applicability and ef-
ficiency.

Our hope is that other research groups can make use of SMT-RAT for their
own research in their own tools. We have seen time and time again that SMT
solvers are used as black-boxes and thus researchers cannot understand or
modify the inner workings of the solver in question. We want to provide the
opportunity to change that and make the customization and extension of a

22 G. Kremer, E. Ábrahám

reasonably good solver for a specific class of problems accessible to non-experts
that are so far forced to use a monolithic black-box solver.

References

[1] J. Abbott, A. M. Bigatti, CoCoALib: A C++ library for computations in com-
mutative algebra . . . and beyond. Proc. of ICMS’10 (2010), vol. 6327 of LNCS,
Springer, pp. 73–76. ⇒7, 12

[2] E. Ábrahám, J. Nalbach, G. Kremer, Embedding the virtual substitution
method in the model constructing satisfiability calculus framework. Proc. of
SC-square’17 (2017), vol. 1974 of CEUR Workshop Proceedings, CEUR-WS.org.
⇒16

[3] A. Albarghouthi, A. Gurfinkel, O. Wei, M. Chechik, Abstract analysis of sym-
bolic executions. Proc. of CAV’10 (2010), vol. 6174 of LNCS, Springer, pp. 495–
510. ⇒12

[4] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A.
Reynolds, C. Tinelli, CVC4. Proc. of CAV’11 (2011), vol. 6806 of LNCS,
Springer, pp. 171–177. ⇒9, 14

[5] C. Barrett, P. Fontaine, C. Tinelli, The Satisfiability Modulo Theories Library
(SMT-LIB). http://www.SMT-LIB.org, 2016. ⇒20

[6] C. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC framework for sym-
bolic computation within the C++ programming language, Journal of Symbolic
Computation 33, 1 (2002) 1–12. ⇒7, 12

[7] T. Bouton, D. C. B. de Oliveira, D. Déharbe, P. Fontaine, veriT: An open,
trustable and efficient SMT-solver, Proc. of CADE-22 (2009), vol. 5663 of LNCS,
Springer, pp. 151–156. ⇒9, 14

[8] M. Bromberger, C. Weidenbach, Fast cube tests for LIA constraint solving. Proc.
of IJCAR’16 (2016), Springer, pp. 116–132. ⇒15

[9] C. W. Brown, M. Košta, Constructing a single cell in cylindrical algebraic
decomposition, Journal of Symbolic Computation 70 (2015) 14–48. ⇒17

[10] B. Buchberger, Gröbner bases: Applications. in: The Concise Handbook of
Algebra. Kluwer Academic Publishers, 2002, pp. 265–268. ⇒12

[11] P.-S. Chen, Y.-S. Hwang, R. D.-C. Ju, J.-K. Lee, Interprocedural probabilistic
pointer analysis, IEEE Trans. Parallel Distrib. Syst. 15, 10 (2004) 893–907. ⇒
12

[12] A. Cimatti, A. Griggio, B. Schaafsma, B., R. Sebastiani, The MathSAT5 SMT
solver. Proc. of TACAS’13, vol. 7795 of LNCS. Springer, 2013, pp. 93–107. ⇒9

[13] G. E. Collins, Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition, Automata Theory and Formal Languages (1975), vol. 33 of
LNCS, Springer, pp. 134–183. ⇒11, 12

[14] F. Corzilius, Virtual substitution in SMT solving, Diploma thesis, RWTH Aachen
University, 2011. ⇒14

http://www.dima.unige.it/~abbott/
http://www.dima.unige.it/~bigatti/
https://ths.rwth-aachen.de/people/erika-abraham/
https://ths.rwth-aachen.de/people/gereon-kremer/
https://www.cs.wisc.edu/people/aws
http://theory.stanford.edu/~barrett/
https://link.springer.com/chapter/10.1007%2F978-3-642-22110-1_14
http://www.SMT-LIB.org
https://ac.els-cdn.com/S0747717101904948/1-s2.0-S0747717101904948-main.pdf?_tid=2f4b41d7-ebd8-49c8-97dd-4c479687dc4f&acdnat=1528027536_a28d7fd32c1abf2120ee753cc29b0d1f
https://scholar.google.co.in/citations?user=Po4r0zsAAAAJ&hl=en
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.800.972&rep=rep1&type=pdf#page=163
https://www.mpi-inf.mpg.de/departments/automation-of-logic/people/christoph-weidenbach/
https://dblp.uni-trier.de/pers/hd/b/Brown:Christopher_W=
https://en.wikipedia.org/wiki/Bruno_Buchberger
http://pllab.cs.nthu.edu.tw/~jklee/papers/TPDS03_final_revision.pdf
https://scholar.google.it/citations?user=lbZ6n5IAAAAJ
https://scholar.google.it/citations?user=u3rfspAAAAAJ&hl=it
https://link.springer.com/chapter/10.1007/978-3-642-36742-7_7
https://en.wikipedia.org/wiki/George_E._Collins
https://link.springer.com/chapter/10.1007/3-540-07407-4
https://link.springer.com/chapter/10.1007/3-540-07407-4
https://ths.rwth-aachen.de/people/florian-corzilius/

Modular strategic SMT solving with SMT-RAT 23

[15] F. Corzilius, Integrating Virtual Substitution into Strategic SMT Solving. PhD
thesis, RWTH Aachen University, 2016. ⇒15

[16] F. Corzilius, G. Kremer, S. Junges, S. Schupp, E. Ábrahám, SMT-RAT: An open
source C++ toolbox for strategic and parallel SMT solving. Proc. of SAT’15
(2015), vol. 9340 of LNCS, Springer, pp. 360–368. ⇒6, 7, 9, 15, 20

[17] F. Corzilius, U. Loup, S. Junges, S., E. Ábrahám, SMT-RAT: An SMT-compliant
nonlinear real arithmetic toolbox. Proc. of SAT’12 (2012), vol. 7317 of LNCS,
Springer, pp. 442–448. ⇒6, 7

[18] G. B. Dantzig, Linear programming and extensions. Princeton University Press,
1963. ⇒10

[19] M. Davis, H. Putnam, A computing procedure for quantification theory. Journal
of the ACM 7, 3 (1960) 201–215. ⇒8

[20] L. de Moura, N. Bjørner, Z3: An efficient SMT solver. Proc. of TACAS’08
(2008), vol. 4963 of LNCS, Springer, pp. 337–340. ⇒9, 14

[21] L. M. de Moura, D. Jovanovic, A model-constructing satisfiability calculus. Proc.
of VMCAI’13 (2013), vol. 7737 of LNCS, Springer, pp. 1–12. ⇒9, 16

[22] B. Dutertre, Yices 2.2. Proc. of CAV’14 (2014), vol. 8559 of LNCS, Springer,
pp. 737–744. ⇒9, 14

[23] B. Dutertre, L. M. de Moura, A fast linear-arithmetic solver for DPLL(T).
Proc. of CAV’06 (2006), vol. 4144 of LNCS, Springer, pp. 81–94. ⇒15

[24] N. Eén, N. Sörensson, An extensible SAT-solver. Proc. of SAT’03 (2004),
vol. 2919 of LNCS, Springer, pp. 502–518. ⇒15

[25] P. Fontaine, M. Ogawa, T. Sturm, T., X. T. Vu, Subtropical satisfiability. Proc.
of FroCoS’17 (2017), Springer, pp. 189–206. ⇒11, 16

[26] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl,
SAT solving for termination analysis with polynomial interpretations. Proc. of
SAT’07 (2007), Springer, pp. 340–354. ⇒15

[27] S. Gao, M. Ganai, F. Ivančić, A. Gupta, S. Sankaranarayanan, E. M. Clarke,
Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems.
Proc. of FMCAD’10 (2010), IEEE, pp. 81–90. ⇒10

[28] K. O. Geddes, S. R. Czapor, G. Labahn, Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992. ⇒7

[29] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P.
Schneider-Kamp, T. Ströder, S. Swiderski, R. Thiemann, Proving termination
of programs automatically with AProVE. Proc. of IJCAR’14 (2014), vol. 8562
of LNAI, Springer, pp. 184–191. ⇒9

[30] M. Grobelna, SAT-modulo-theories solving for pseudo-Boolean constraints.
Bachelor’s Thesis, RWTH Aachen University, 2017. ⇒14, 15

[31] R. Haehn, Using equational constraints in an incremental CAD projection. Mas-
ter’s thesis, RWTH Aachen University, 2017. ⇒14

[32] E. M. Hahn, H. Hermanns, B. Wachter, L. Zhang, PARAM: A model checker
for parametric Markov models. Proc. of CAV’10 (2010), vol. 6174 of LNCS,
Springer, pp. 660–664. ⇒12

https://en.wikipedia.org/wiki/George_Dantzig
https://en.wikipedia.org/wiki/Martin_Davis
https://en.wikipedia.org/wiki/Hilary_Putnam
https://scholar.google.com/citations?user=CwazDKgAAAAJ&hl=en
http://www.csl.sri.com/users/bruno/
https://link.springer.com/chapter/10.1007/978-3-540-24605-3_37
https://link.springer.com/chapter/10.1007/978-3-319-66167-4_11
http://www.dcs.bbk.ac.uk/~carsten/
http://www.dcs.bbk.ac.uk/~carsten/papers/SAT07-satpolo.pdf
https://scungao.github.io/
http://www.cs.cmu.edu/~sicung/papers/FMCAD10.pdf
https://en.wikipedia.org/wiki/Keith_Geddes
https://verify.rwth-aachen.de/giesl/papers/IJCAR14-AProVE.pdf
https://verify.rwth-aachen.de/giesl/papers/IJCAR14-AProVE.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/grobelna_bachelor.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/haehn_master.pdf
https://link.springer.com/chapter/10.1007/978-3-642-14295-6_56

24 G. Kremer, E. Ábrahám

[33] W. Hentze, Infeasible subsets for nonlinear SMT. Bachelor’s Thesis, RWTH
Aachen University, 2017. ⇒14

[34] S. Herbort, D. Ratz, Improving the efficiency of a nonlinear-system-solver using
a componentwise Newton method. Tech. Rep. 2/1997, Inst. für Angewandte
Mathematik, University of Karlsruhe, 1997. ⇒10

[35] D. Jovanović, Solving nonlinear integer arithmetic with MCSAT. Proc. of VM-
CAI’17 (2017), Springer, pp. 330–346. ⇒20

[36] D. Jovanović, L. de Moura, Solving non-linear arithmetic. Proc. of IJCAR’12
(2012), vol. 7364 of LNAI, Springer, pp. 339–354. ⇒16

[37] S. Junges, On Gröbner bases in SMT-compliant decision procedures. Bachelor’s
Thesis, RWTH Aachen University, 2012. ⇒14

[38] S. Junges, U. Loup, F. Corzilius, E. Ábrahám, E. On Gröbner bases in the
context of satisfiability-modulo-theories solving over the real numbers. Proc. of
CAI’13 (2013), vol. 8080 of LNCS, Springer, pp. 186–198. ⇒15

[39] T. V. Khanh, X. Vu, M. Ogawa, raSAT: SMT for polynomial inequality. Proc.
of SMT’14 (2014), p. 67. ⇒9

[40] G. Kremer, Isolating real roots using adaptable-precision interval arithmetic.
Master’s thesis, RWTH Aachen University, 2013. ⇒14

[41] G. Kremer, F. Corzilius, E. Ábrahám, A generalised branch-and-bound ap-
proach and its application in SAT modulo nonlinear integer arithmetic. Proc. of
CASC’16 (2016), vol. 9890 of LNCS, Springer, pp. 315–335. ⇒11, 15, 20

[42] A. Krüger, Bitvectors in SMT-RAT and their application to integer arithmetics.
Master’s thesis, RWTH Aachen University, 2015. ⇒14, 15

[43] J. P. Marques-Silva, K. A. Sakallah, Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48 (1999) 506–521. ⇒8

[44] J. Nalbach, Embedding the virtual substitution in the MCSAT framework.
Bachelor’s Thesis, RWTH Aachen University, 2017. ⇒14

[45] L. Netz, Using Horner schemes to improve the efficiency and precision of interval
constraint propagation. Bachelor’s Thesis, RWTH Aachen University, 2015. ⇒
14

[46] L. Neuberger, Generation of infeasible subsets in less-lazy SMT-solving for the
theory of uninterpreted functions. Bachelor’s Thesis, RWTH Aachen University,
2015. ⇒14

[47] J. Redies, An extension of the GiNaCRA library for the cylindrical algebraic
decomposition. Bachelor’s Thesis, RWTH Aachen University, 2012. ⇒14

[48] SMT-COMP 2017 result summary. http://smtcomp.sourceforge.net/2017/
results-toc.shtml, 2017. ⇒21

[49] S. Schupp, Interval constraint propagation in SMT compliant decision proce-
dures. Master’s thesis, RWTH Aachen University, 2013. ⇒14, 15

[50] D. Scully, Preprocessing for solving non-linear real-arithmetic formulas. Bache-
lor’s Thesis, RWTH Aachen University, 2012. ⇒14

http://csl.sri.com/users/dejan/
http://www.csl.sri.com/users/dejan/papers/jovanovic-vmcai2017.pdf
http://csl.sri.com/users/dejan/papers/jovanovic-ijcar2012.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/junges_bachelor.pdf
https://link.springer.com/chapter/10.1007/978-3-642-40663-8_18
https://scholar.google.com.vn/citations?user=kq2ht6wAAAAJ&hl=en
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/kremer_master.pdf
https://pdfs.semanticscholar.org/48bc/0c2c6831aa605ca5a676a8b999fa91690401.pdf
https://pdfs.semanticscholar.org/48bc/0c2c6831aa605ca5a676a8b999fa91690401.pdf
ttps://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/krueger_master.pdf
https://scholar.google.com/citations?user=1b9hppwAAAAJ&hl=en
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/nalbach_bachelor.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/netz_bachelor.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/netz_bachelor.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/neuberger_bachelor.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/redies_bachelor.pdf
http://smtcomp.sourceforge.net/2017/results-toc.shtml
http://smtcomp.sourceforge.net/2017/results-toc.shtml
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/schupp_master.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/schupp_master.pdf

Modular strategic SMT solving with SMT-RAT 25

[51] G. S. Tseitin, On the complexity of derivation in propositional calculus. in:
Automation of Reasoning. Springer, 1983, pp. 466–483. ⇒8

[52] V. X. Tung, T. Van Khanh, M. Ogawa, raSAT: An SMT solver for polynomial
constraints. Formal Methods in System Design 51, 3 (2017), 462–499. ⇒14, 20

[53] T. Viehmann, Projection operators for the CAD. Bachelor’s Thesis, RWTH
Aachen University, 2016. ⇒14

[54] T. Viehmann, G. Kremer, E. Ábrahám, Comparing different projection operators
in the cylindrical algebraic decomposition for SMT solving. Proc. of SC-square’17
(2017), vol. 1974 of CEUR Workshop Proceedings, CEUR-WS.org. ⇒15

[55] V. Weispfenning, Quantifier elimination for real algebra – the quadratic case
and beyond. Appl. Algebra Eng. Commun. Comput. 8, 2 (1997), 85–101. ⇒10

[56] T. Winkler, Using Thom’s lemma for real algebraic numbers in the CAD. Bach-
elor’s Thesis, RWTH Aachen University, 2016. ⇒14

Received: May 15, 2018 • Revised: July 23, 2018

https://link.springer.com/chapter/10.1007/978-3-642-81955-1_28
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/viehmann_bachelor.pdf
http://ceur-ws.org/Vol-1974/RP2.pdf
http://ceur-ws.org/Vol-1974/RP2.pdf
https://link.springer.com/article/10.1007/s002000050055
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/winkler_bachelor.pdf

Acta Univ. Sapientiae, Informatica 10, 1 (2018) 26–42

DOI: 10.2478/ausi-2018-0002

Fruit recognition from images using deep

learning

Horea MUREŞAN
Faculty of Mathematics and Computer

Science
Babeş-Bolyai University
Cluj-Napoca, Romania

email: horea94@gmail.com

Mihai OLTEAN
Faculty of Exact Sciences and

Engineering
“1 Decembrie 1918” University of Alba

Iulia
Alba Iulia, Romania

email: mihai.oltean@gmail.com

Abstract. In this paper we introduce a new, high-quality, dataset of
images containing fruits. We also present the results of some numerical
experiment for training a neural network to detect fruits. We discuss
the reason why we chose to use fruits in this project by proposing a
few applications that could use such classifier.

1 Introduction

The aim of this paper is to propose a new dataset of images containing
popular fruits. The dataset was named Fruits-360 and can be downloaded
from the addresses pointed by references [30] and [31]. Currently (as of
2018.05.22) the set contains 38409 images of 60 fruits and it is constantly
updated with images of new fruits as soon as the authors have accesses to
them. The reader is encouraged to access the latest version of the dataset
from the above indicated addresses.

Computing Classification System 1998: I.2.6
Mathematics Subject Classification 2010: 68T45
Key words and phrases: deep learning, object recognition, computer vision, fruits
dataset, image processing

26

http://www.ubbcluj.ro/en/
mailto:horea94@gmail.com
https://mihaioltean.github.io/
http://en.uab.ro/
http://en.uab.ro/
mailto:mihai.oltean@gmail.com

Fruit recognition from images using deep learning 27

Having a high-quality dataset is essential for obtaining a good classifier.
Most of the existing datasets with images (see for instance the popular
CIFAR dataset [29]) contain both the object and the noisy background.
This could lead to cases where changing the background will lead to the
incorrect classification of the object.
As a second objective we have trained a deep neural network that is

capable of identifying fruits from images. This is part of a more complex
project that has the target of obtaining a classifier that can identify a much
wider array of objects from images. This fits the current trend of companies
working in the augmented reality field. During its annual I/O conference,
Google announced [32] that is working on an application named Google Lens
which will tell the user many useful information about the object toward
which the phone camera is pointing. First step in creating such application
is to correctly identify the objects. The software has been released later in
2017 as a feature of Google Assistant and Google Photos apps. Currently
the identification of objects is based on a deep neural network [33].
Such a network would have numerous applications across multiple do-

mains like autonomous navigation, modeling objects, controlling processes
or human-robot interactions. The area we are most interested in is creating
an autonomous robot that can perform more complex tasks than a regular
industrial robot. An example of this is a robot that can perform inspections
on the aisles of stores in order to identify out of place items or understocked
shelves. Furthermore, this robot could be enhanced to be able to interact
with the products so that it can solve the problems on its own.
As the start of this project we chose the task of identifying fruits for

several reasons. On one side, fruits have certain categories that are hard to
differentiate, like the citrus genus, that contains oranges and grapefruits.
Thus we want to see how well can an artificial intelligence complete the
task of classifying them. Another reason is that fruits are very often found
in stores, so they serve as a good starting point for the previously mentioned
project.
The paper is structured as follows: in the first part we will shortly discuss a

few outstanding achievements obtained using deep learning for fruits recog-
nition, followed by a presentation of the concept of deep learning. In the sec-
ond part we will present the framework used in this project - TensorFlow[27]
and the reasons we chose it. Following the framework presentation, we will
detail the structure of the neural network that we used. We also describe
the training and testing data used as well as the obtained performance. Fi-

28 H. Mureşan, M. Oltean

nally, we will conclude with a few plans on how to improve the results of
this project.

2 Related work

In this section we review several previous attempts to use neural networks
and deep learning for fruits recognition.
A method for recognizing and counting fruits from images in cluttered

greenhouses is presented in [19]. The targeted plants are peppers with fruits
of complex shapes and varying colors similar to the plant canopy. The aim of
the application is to locate and count green and red pepper fruits on large,
dense pepper plants growing in a greenhouse. The training and validation
data used in this paper consists of 28000 images of over 1000 plants and
their fruits. The used method to locate and count the peppers is two-step:
in the first step, the fruits are located in a single image and in a second step
multiple views are combined to increase the detection rate of the fruits. The
approach to find the pepper fruits in a single image is based on a combination
of (1) finding points of interest, (2) applying a complex high-dimensional
feature descriptor of a patch around the point of interest and (3) using a
so-called bag-of-words for classifying the patch.
Paper [17] presents a novel approach for detecting fruits from images

using deep neural networks. For this purpose the authors adapt a Faster
Region-based convolutional network. The objective is to create a neural
network that would be used by autonomous robots that can harvest fruits.
The network is trained using RGB and NIR (near infra red) images. The
combination of the RGB and NIR models is done in 2 separate cases: early
and late fusion. Early fusion implies that the input layer has 4 channels: 3 for
the RGB image and one for the NIR image. Late fusion uses 2 independently
trained models that are merged by obtaining predictions from both models
and averaging the results. The result is a multi modal network which obtains
much better performance than the existing networks.
On the topic of autonomous robots used for harvesting, paper [2] shows

a network trained to recognize fruits in an orchard. This is a particularly
difficult task because in order to optimize operations, images that span
many fruit trees must be used. In such images, the amount of fruits can be
large, in the case of almonds up to 1500 fruits per image. Also, because the
images are taken outside, there is a lot of variance in luminosity, fruit size,
clustering and view point. Like in paper [17], this project makes use of the

Fruit recognition from images using deep learning 29

Faster Region-based convolutional network, which is presented in a detailed
view in paper [16]. Related to the automatic harvest of fruits, article [14]
presents a method of detecting ripe strawberries and apples from orchards.
The paper also highlights existing methods and their performance.
In [10] the authors compile a list of the available state of the art methods

for harvesting with the aid of robots. They also analyze the method and
propose ways to improve them.
In [3] one can see a method of generating synthetic images that are highly

similar to empirical images. Specifically, this paper introduces a method for
the generation of large-scale semantic segmentation datasets on a plant-part
level of realistic agriculture scenes, including automated per-pixel class and
depth labeling. One purpose of such synthetic dataset would be to bootstrap
or pre-train computer vision models, which are fine-tuned thereafter on a
smaller empirical image dataset. Similarly, in paper [15] we can see a network
trained on synthetic images that can count the number of fruits in images
without actually detecting where they are in the image.
Another paper, [5], uses two back propagation neural networks trained

on images with apple ”Gala” variety trees in order to predict the yield for
the upcoming season. For this task, four features have been extracted from
images: total cross-sectional area of fruits, fruit number, total cross-section
area of small fruits, and cross-sectional area of foliage.
Paper [9] presents an analysis of fruit detectability in relation to the

angle of the camera when the image was taken. Based on this research, it
was concluded that the fruit detectability was the highest on front views
and looking with a zenith angle of 60◦ upwards.
In papers [23, 1, 24] we can see an approach to detecting fruits based on

color, shape and texture. They highlight the difficulty of correctly classifying
similar fruits of different species. They propose combining existing methods
using the texture, shape and color of fruits to detect regions of interest from
images. Similarly, in [13] a method combining shape, size and color, texture
of the fruits together with a k nearest neighbor algorithm is used to increase
the accuracy of recognition.
One of the most recent works [22] presents an algorithm based on the

improved ChanVese level-set model [4] and combined with the level-set idea
and M-S mode [12]. The proposed goal was to conduct night-time green
grape detection. Combining the principle of the minimum circumscribed
rectangle of fruit and the method of Hough straight-line detection, the pick-
ing point of the fruit stem was calculated.

30 H. Mureşan, M. Oltean

3 Deep learning

Deep learning is a class of machine learning algorithms that use multiple
layers that contain nonlinear processing units [18]. Each layer uses the out-
put from the previous layer as input. Deep learning[26] algorithms use more
layers than shallow learning algorithms. Convolutional neural networks are
classified as a deep learning algorithm. These networks are composed of mul-
tiple convolutional layers with a few fully connected layers. They also make
use of pooling. This configuration allows convolutional networks to take
advantage of bidimensional representation of data. Another deep learning
algorithm is the recursive neural network. In this kind of architecture the
same set of weights is recursively applied over some data. Recurrent net-
works have shown good results in natural language processing. Yet another
model that is part of the deep learning algorithms is the deep belief net-
work. A deep belief network is a probabilistic model composed by multiple
layers of hidden units. The usages of a deep belief network are the same
as the other presented networks but can also be used to pre-train a deep
neural network in order to improve the initial values of the weights. This
process is important because it can improve the quality of the network and
can reduce training times. Deep belief networks can be combined with con-
volutional ones in order to obtain convolutional deep belief networks which
exploit the advantages offered by both types of architectures.
In the area of image recognition and classification, the most successful

results were obtained using artificial neural networks [6, 21]. This served as
one of the reasons we chose to use a deep neural network in order to identify
fruits from images. Deep neural networks have managed to outperform other
machine learning algorithms. They also achieved the first superhuman pat-
tern recognition in certain domains. This is further reinforced by the fact
that deep learning is considered as an important step towards obtaining
Strong AI. Secondly, deep neural networks – specifically convolutional neu-
ral networks – have been proved to obtain great results in the field of image
recognition. We will present a few results on popular datasets and the used
methods.
Among the best results obtained on the MNIST [28] dataset is done by

using multi-column deep neural networks. As described in paper [7], they
use multiple maps per layer with many layers of non-linear neurons. Even
if the complexity of such networks makes them harder to train, by using
graphical processors and special code written for them. The structure of the

Fruit recognition from images using deep learning 31

network uses winner-take-all neurons with max pooling that determine the
winner neurons.
Another paper [11] further reinforces the idea that convolutional networks

have obtained better accuracy in the domain of computer vision. The paper
proposes an improvement to the popular convolutional network in the form
of a recurrent convolutional network. Traditionally, recurrent networks have
been used to process sequential data, handwriting or speech recognition
being the most known examples. By using recurrent convolutional layers
with some max pool layers in between them and a final global max pool
layer at the end several advantages are obtained. Firstly, within a layer,
every unit takes into account the state of units in an increasingly larger area
around it. Secondly, by having recurrent layers, the depth of the network is
increased without adding more parameters.
In paper [20] an all convolutional network that gains very good perfor-

mance on CIFAR-10 [29] is described in detail. The paper proposes the
replacement of pooling and fully connected layers with equivalent convolu-
tional ones. This may increase the number of parameters and adds inter-
feature dependencies however it can be mitigated by using smaller convolu-
tional layers within the network and acts as a form of regularization.

4 Fruits-360 data set

In this section we describe how the data set was created and what it contains.
The images were obtained by filming the fruits while they are rotated by

a motor and then extracting frames.
Fruits were planted in the shaft of a low speed motor (3 rpm) and a short

movie of 20 seconds was recorded. Behind the fruits we placed a white sheet
of paper as background.
However due to the variations in the lighting conditions, the background

was not uniform and we wrote a dedicated algorithm which extract the
fruit from the background. This algorithm is of flood fill type: we start
from each edge of the image and we mark all pixels there, then we mark
all pixels found in the neighborhood of the already marked pixels for which
the distance between colors is less than a prescribed value. we repeat the
previous step until no more pixels can be marked.
All marked pixels are considered as being background (which is then

filled with white) and the rest of pixels are considered as belonging to the
object. The maximum value for the distance between 2 neighbor pixels is a

32 H. Mureşan, M. Oltean

parameter of the algorithm and is set (by trial and error) for each movie.
Fruits were scaled to fit a 100x100 pixels image. Other datasets (like

MNIST) use 28x28 images, but we feel that small size is detrimental when
you have too similar objects (a red cherry looks very similar to a red apple
in small images). Our future plan is to work with even larger images, but
this will require much more longer training times.
To understand the complexity of background-removal process we have

depicted in Figure 1 a fruit with its original background and after the back-
ground was removed and the fruit was scaled down to 100 x 100 pixels.

Figure 1: Left-side: original image. Notice the background and the motor
shaft. Right-side: the fruit after the background removal and after it was
scaled down to 100x100 pixels.

The resulted dataset has 38409 images of fruits spread across 60 labels.
The data set is available on GitHub [30] and Kaggle [31]. The labels and
the number of images for training are given in Table 1.

Fruit recognition from images using deep learning 33

Label Number of
training images

Number of test
images

Apple Braeburn 492 164

Apple Golden 1 492 164

Apple Golden 2 492 164

Apple Golden 3 481 161

Apple Granny Smith 492 164

Apple Red 1 492 164

Apple Red 2 492 164

Apple Red 3 429 144

Apple Red Delicious 490 166

Apple Red Yellow 492 164

Apricot 492 164

Avocado 427 143

Avocado ripe 491 166

Banana 490 166

Banana Red 490 166

Cactus fruit 490 166

Carambula 490 166

Cherry 492 164

Clementine 490 166

Cocos 490 166

Dates 490 166

Granadilla 490 166

Grape Pink 492 164

Grape White 490 166

Grape White 2 490 166

Grapefruit Pink 490 166

Grapefruit White 492 164

Guava 490 166

Huckleberry 490 166

Kaki 490 166
It continues on the next page.

34 H. Mureşan, M. Oltean

Label Number of
training images

Number of test
images

Kiwi 466 156

Kumquats 490 166

Lemon 246 82

Lemon Meyer 490 166

Limes 490 166

Litchi 490 166

Mandarine 490 166

Mango 490 166

Maracuja 490 166

Nectarine 492 164

Orange 479 160

Papaya 492 164

Passion Fruit 490 166

Peach 492 164

Peach Flat 492 164

Pear 492 164

Pear Abate 490 166

Pear Monster 490 166

Pear Williams 490 166

Pepino 490 166

Pineapple 490 166

Pitahaya Red 490 166

Plum 447 151

Pomegranate 246 82

Quince 490 166

Raspberry 490 166

Salak 490 162

Strawberry 492 164

Tamarillo 490 166

Tangelo 490 166

Table 1: Number of images for each fruit. There are multiple varieties of
apples each of them being considered as a separate object. We did not find
the scientific/popular name for each apple so we labeled with digits (e.g.
apple red 1, apple red 2 etc).

Fruit recognition from images using deep learning 35

5 Neural network structure and utilized frame-
work

For this project we used a convolutional neural network. This type of net-
work makes use of convolutional layers, pooling layers, ReLU layers, fully
connected layers and loss layers. In a typical CNN architecture, each con-
volutional layer is followed by a Rectified Linear Unit (ReLU) layer, then a
Pooling layer then one or more convolutional layer and finally one or more
fully connected layer.
A characteristic that sets apart the CNN from a regular neural network

is taking into account the structure of the images while processing them. A
regular neural network converts the input in a one dimensional array which
makes the trained classifier less sensitive to positional changes.
Convolutional layers are named after the convolution operation. In math-

ematics convolution is an operation on two functions that produces a third
function that is the modified (convoluted) version of one of the original func-
tions. The resulting function gives in integral of the pointwise multiplication
of the two functions as a function of the amount that one of the original
functions is translated [25].
A convolutional layer consists of groups of neurons that make up kernels.

The kernels have a small size but they always have the same depth as the
input. The neurons from a kernel are connected to a small region of the
input, called the receptive field, because it is highly inefficient to link all
neurons to all previous outputs in the case of inputs of high dimensions
such as images. For example, a 100 x 100 image has 10000 pixels and if the
first layer has 100 neurons, it would result in 1000000 parameters. Instead
of each neuron having weights for the full dimension of the input, a neuron
holds weights for the dimension of the kernel input. The kernels slide across
the width and height of the input, extract high level features and produce
a 2 dimensional activation map. The stride at which a kernel slides is given
as a parameter. The output of a convolutional layer is made by stacking the
resulted activation maps which in turned is used to define the input of the
next layer.
In TensorFlow [27] framework (which we utilized in the numerical exper-

iments), a convolutional layer is defined like this:

conv2d (
input ,
f i l t e r ,

36 H. Mureşan, M. Oltean

s t r i d e s ,
padding ,
use cudnn on gpu=True ,
data format=’NHWC’ ,
d i l a t i o n s =[1 , 1 , 1 , 1] ,
name=None

)

Applying a convolutional layer over an image of size 32 X 32 results in an
activation map of size 28 X 28. If we apply more convolutional layers, the size
will be further reduced, and, as a result the image size is drastically reduced
which produces loss of information and the vanishing gradient problem. To
correct this, we use padding. Padding increases the size of a input data by
filling constants around input data. In most of the cases, this constant is
zero so the operation is named zero padding. ”Same” padding means that
the output feature map has the same spatial dimensions as the input feature
map. This tries to pad evenly left and right, but if the number of columns to
be added is odd, it will add an extra column to the right. ”Valid” padding
is equivalent to no padding.
The strides causes a kernel to skip over pixels in an image and not include

them in the output. The strides determines how a convolution operation
works with a kernel when a larger image and more complex kernel are used.
As a kernel is sliding the input, it is using the strides parameter to determine
how many positions to skip.
ReLU layer, or Rectified Linear Units layer, applies the activation function

max(0, x). It does not reduce the size of the network, but it increases its
nonlinear properties.
Pooling layers are used on one hand to reduce the spatial dimensions of

the representation and to reduce the amount of computation done in the
network. The other use of pooling layers is to control overfitting. The most
used pooling layer has filters of size 2 x 2 with a stride 2. This effectively
reduces the input to a quarter of its original size.
Fully connected layers are layers from a regular neural network. Each

neuron from a fully connected layer is linked to each output of the previous
layer. The operations behind a convolutional layer are the same as in a fully
connected layer. Thus, it is possible to convert between the two.
Loss layers are used to penalize the network for deviating from the ex-

pected output. This is normally the last layer of the network. Various loss
function exist: softmax is used for predicting a class from multiple disjunct

Fruit recognition from images using deep learning 37

classes, sigmoid cross-entropy is used for predicting multiple independent
probabilities (from the [0, 1] interval).
The input that we used consists of standard RGB images of size 100 x

100 pixels.
The neural network that we used in this project has the structure given

in Table 2.

Layer type Dimensions Outputs

Convolutional 5 x 5 x 4 16

Max pooling 2 x 2 — Stride: 2 -

Convolutional 5 x 5 x 16 32

Max pooling 2 x 2 — Stride: 2 -

Convolutional 5 x 5 x 32 64

Max pooling 2 x 2 — Stride: 2 -

Convolutional 5 x 5 x 64 128

Max pooling 2 x 2 — Stride: 2 -

Fully connected 5 x 5 x 128 1024

Fully connected 1024 256

Softmax 256 60

Table 2: The structure of the neural network used in this paper.

The first layer is a convolutional layer which applies 16 5 x 5 filters. On
this layer we apply max pooling with a filter of shape 2 x 2 with stride 2
which specifies that the pooled regions do not overlap. This also reduces the
width and height to 50 pixels each. The second convolutional layer applies
32 5 x 5 filters which outputs 32 activation maps. We apply on this layer
the same kind of max pooling as on the first layer, shape 2 x 2 and stride 2.
The third convolutional layer applies 64 5 x 5 filters. Following is another
max pool layer of shape 2 x 2 and stride 2. The fourth convolutional layer
applies 128 5 x 5 filters after which we apply a final max pool layer. Because
of the four max pooling layers, the dimensions of the representation have
each been reduced by a factor of 16, therefore the fifth layer, which is a
fully connected layer, has 5 x 5 x 16 inputs. This layer feeds into another
fully connected layer with 1024 inputs and 256 outputs. The last layer is a
softmax loss layer with 256 inputs. The number of outputs is equal to the
number of classes.
In order to create our convolutional neural network we used TensorFlow

[27]. This is an open source framework for machine learning created by

38 H. Mureşan, M. Oltean

Google for numerical computation using data flow graphs. Nodes in the
graph represent mathematical operations, while the graph edges represent
the multidimensional data arrays called tensors. The main components in a
TensorFlow system are the client, which uses the Session interface to com-
municate with the master, and one or more worker processes, with each
worker process responsible for arbitrating access to one or more computa-
tional devices (such as CPU cores or GPU cards) and for executing graph
nodes on those devices as instructed by the master. TensorFlow offers some
powerful features such as: it allows computation mapping to multiple ma-
chines, unlike most other similar frameworks; it has built in support for
automatic gradient computation; it can partially execute subgraphs of the
entire graph and it can add constraints to devices, like placing nodes on
devices of a certain type, ensure that two or more objects are placed in the
same space etc.

6 Numerical experiments

The dataset was split in 2 parts: training set – which consists of 28736
images of fruits and testing set – which is made of 9673 images.
The data was bundled into TFRecords file (specific to TensorFlow). This

is a binary file that contains protocol buffers with a feature map. In this map
it is possible to store information such as the image height, width, depth and
even the raw image. Using these files we can create queues in order to feed
the data to the neural network. By calling the method shuffle batch we
provide randomized input to the network. The way we used this method was
providing it example tensors for images and labels and it returned tensors
of shape batch size x image dimensions and batch size x labels. This helps
greatly lower the chance of using the same batch multiple times for training,
which in turn improves the quality of the network.
On each image from the batch we applied some preprocessing in order to

augment the data set. The preprocessing consists of randomly altering the
hue and saturation, and applying random vertical and horizontal flips.
For the hue and saturation we use the tensorflow methods: random hue

and random saturation. To further improve the accuracy of the network
we converted each image from the batch to grayscale and concatenated it
to the image. Thus the data that is fed into the network will have the size
100 x 100 x 4.
In order to be able to detect fruits from images we used the previously de-

Fruit recognition from images using deep learning 39

scribed neural network which was trained over 40000 iterations with batches
of 50 images selected at random from the training set. Every 50 steps we
calculated the accuracy using cross-validation. This showed steady improv-
ing of the network until reaching 100% accuracy on cross-validation. For
the testing phase, we used the testing set and the calculated accuracy was
96.3%.
Some of the incorrectly classified images are given in Table 3.

Apple Golden
2

Apple Golden
3

Braeburn(Apple) Peach

Apple Golden
3

Granny Smith
(Apple)

Apple Red 2 Apple Red
Yellow

Pomegranate Peach Pear Pomegranate

Nectarine Apple Red 1 Apple Golden
2

Braeburn(Apple)

Table 3: Some of the images that were classified incorrectly. On the top we
have the correct class of the fruit and on the bottom we have the class that
was given by the network.

7 Conclusions

This project tries to set up a start to an area that is less explored at the cur-
rent time. During this project we were able to explore part of the deep learn-
ing algorithms and discover strengths and weaknesses. We gained knowledge
on deep learning and we obtained a software that can recognize fruits from
images. We hope that the results and methods presented in this paper can
be further expanded in a bigger project.

40 H. Mureşan, M. Oltean

From our point of view one of the main objectives for the future is to
improve the accuracy of the neural network. This involves further experi-
menting with the structure of the network. Various tweaks and changes to
any layers as well as the introduction of new layers can provide completely
different results. Another option is to replace all layers with convolutional
layers. This has been shown to provide some improvement over the net-
works that have fully connected layers in their structure. A consequence of
replacing all layers with convolutional ones is that there will be an increase
in the number of parameters for the network [20]. Another possibility is to
replace the rectified linear units with exponential linear units. According to
paper [8], this reduces computational complexity and add significantly bet-
ter generalization performance than rectified linear units on networks with
more that 5 layers. We would like to try out these practices and also to try
to find new configurations that provide interesting results.
In the near future we plan to create a mobile application which takes

pictures of fruits and labels them accordingly.
Another objective is to expand the data set to include more fruits. This

is a more time consuming process since we want to include items that were
not used in most others related papers.

Acknowledgments

A preliminary version of this dataset with 25 fruits was presented during
the Students Communication Session from Babeş-Bolyai University, June
2017.

References

[1] S. Arivazhagan, N. Shebiah, S. Nidhyanandhan, L.Ganesan, Fruit recognition
using color and texture features, Journal of Emerging Trends in Computing
and Information Sciences, 1, 2 (2010) 90–94. ⇒29

[2] S. Bargoti, J. Underwood, Deep fruit detection in orchards, IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2017, pp. 3626–3633.
⇒28

[3] R. Barth, J. Ijsselmuiden, J. Hemming, E. Van Henten, Data synthesis meth-
ods for semantic segmentation in agriculture: A Capsicum annuum dataset,
Computers and Electronics in Agriculture 144 (2018) 284–296. ⇒29

[4] T. F. Chan, L. Vese, Active contours without edges. IEEE Trans. Image
Process 10, (2001) 266–277. ⇒29

https://scholar.google.co.in/citations?user=Lrrs99cAAAAJ&hl=en
https://www.researchgate.net/publication/286181643_Fruit_Recognition_using_Color_and_Texture_Features
https://www.researchgate.net/publication/286181643_Fruit_Recognition_using_Color_and_Texture_Features
https://scholar.google.com.au/citations?user=GY1rwOMAAAAJ&hl=en
https://www.sciencedirect.com/science/article/pii/S0168169917305689
https://www.sciencedirect.com/science/article/pii/S0168169917305689
http://www.math.ucla.edu/~lvese/PAPERS/IEEEIP2001.pdf

Fruit recognition from images using deep learning 41

[5] H. Cheng, L. Damerow, Y. Sun, M. Blanke, Early yield prediction using image
analysis of apple fruit and tree canopy features with neural networks, Journal
of Imaging, 3, 1 (2017) 6. ⇒29

[6] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, J. Schmidhuber,
Flexible, high performance convolutional neural networks for image classifica-
tion, Twenty-Second International Joint Conference on Artificial Intelligence,
Barcelona, pp. 1237–1242, AAAI Press, 2011. ⇒30

[7] D. C. Cireşan, U. Meier, J. Schmidhuber, Multi-column deep neural networks
for image classification, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Providence, pp. 3642–3649, 2012. ⇒30

[8] D. Clevert, T. Unterthiner, S. Hochreiter, Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs) CoRR abs/1511.07289, 2015.
⇒40

[9] J. Hemming, J. Ruizendaal, J. W. Hofstee. E J. Van Henten, Fruit detectabil-
ity analysis for different camera positions in sweet-pepper Sensors 14, 4
(2014) 6032–6044. ⇒29

[10] K. Kapach, E. Barnea, R. Mairon, Y. Edan, O. Ben-Shahar, Computer vision
for fruit harvesting robots state of the art and challenges ahead, Journal of
Imaging 3, 1 (2017) 4–34. ⇒29

[11] M. Liang, X. Hu, Recurrent convolutional neural network for object recogni-
tion, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Boston. 2015. pp. 3367–3375. ⇒31

[12] D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions
and associated variational problems, Commun. Pure Appl. Math. 42 (1989)
577-685. ⇒29

[13] P. Ninawe, S. Pandey, A completion on fruit recognition system using k-
nearest neighbors algorithm, International Journal of Advanced Research in
Computer Engineering & Technology (IJARCET) 3, 7 (2014) 2352–2356. ⇒
29

[14] S. Puttemans, Y. Vanbrabant, L. Tits, T. Goedem, Automated visual fruit
detection for harvest estimation and robotic harvesting, Sixth International
Conference on Image Processing Theory, Tools and Applications, 2016. ⇒29

[15] M, Rahnemoonfar, C. Sheppard, Deep count: fruit counting based on deep
simulated learning, Sensors 17, 4 (2017) 905. ⇒29

[16] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, Advances in Neural Information
Processing Systems, 2015, 91–99. ⇒29

[17] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez & C. McCool, DeepFruits:
A fruit detection system using deep neural networks, Sensors 16, 8 (2016)
1222. ⇒28

[18] J. Schmidhuber, Deep learning in neural networks: An overview, Neural
Networks 61 (2015) 85–117. ⇒30

http://www.mdpi.com/2313-433X/3/1/6
http://people.idsia.ch/~ciresan/
http://people.idsia.ch/~juergen/cvpr2012.pdf
https://arxiv.org/abs/1511.07289
https://www.ncbi.nlm.nih.gov/pubmed/24681670
https://www.ncbi.nlm.nih.gov/pubmed/24681670
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.2555&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.2555&rep=rep1&type=pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liang_Recurrent_Convolutional_Neural_2015_CVPR_paper.pdf
https://dash.harvard.edu/bitstream/handle/1/3637121/mumford_optimalapproxpiece.pdf?sequence=1
http://ijarcet.org/wp-content/uploads/IJARCET-VOL-3-ISSUE-7-2352-2356.pdf
https://lirias2repo.kuleuven.be/bitstream/id/404299/;jsessionid=FA0F4DD9B96D33A7852F2C2D7043B2BB
https://lirias2repo.kuleuven.be/bitstream/id/404299/;jsessionid=FA0F4DD9B96D33A7852F2C2D7043B2BB
http://www.mdpi.com/1424-8220/17/4/905/htm
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://www.mdpi.com/1424-8220/16/8/1222
https://arxiv.org/abs/1404.7828

42 H. Mureşan, M. Oltean

[19] Y. Song, C. Glasbey, G. Horgan, G. Polder, J. A. Dieleman, G. Van Der
Heijden, Automatic fruit recognition and counting from multiple images,
Biosystems Engineering 118 (2)14 203–215. ⇒28

[20] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. A. Riedmiller, Striving for
simplicity: The all convolutional net, CoRR abs/1412.6806, 2014. ⇒31, 40

[21] R. K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks, ad-
vances in neural information processing systems, Twenty-Eight International
Conference on Neural Information Processing Systems, Montreal, Canada,
2015, pp. 2377–2385. ⇒30

[22] J. Xiong, Z. Liu, R. Lin, R. Bu, Z. He, Z. Yang, C. Liang , Green grape
detection and picking-point calculation in a night-time natural environment
using a charge-coupled device (CCD) vision sensor with artificial ullumination,
Sensors 18, 4, (2018) 969. ⇒29

[23] H. M. Zawbaa, M. Abbass, M. Hazman, A. E. Hassenian, Automatic fruit
image recognition system based on shape and color features, in: Advanced Ma-
chine Learning Technologies and Applications. (eds.: Hassanien A. E., Tolba
M. F., Taher Azar A.) AMLTA 2014. Series: Communications in Computer
and Information Science vol. 488, 2014, 278–290. ⇒29

[24] D. Li, H. Zhao, X. Zhao, Q. Gao, L. Xu, Cucumber detection based on texture
and color in greenhouse, International Journal of Pattern Recognition and
Artificial Intelligence 31 1754016 (2017) 17 pag. ⇒29

[25] Convolution in Mathematics. https://en.wikipedia.org/wiki/Convolution.
Last visited on 26.05.2018 ⇒35

[26] Deep Learning article on Wikipedia. https://en.wikipedia.org/wiki/

Deep_learning. Last visited on 05.05.2018 ⇒30
[27] TensorFlow. https://www.tensorflow.org. Last visited on 05.05.2018 ⇒

27, 35, 37
[28] MNIST. http://yann.lecun.com/exdb/mnist. Last visited on 05.05.2018

⇒30
[29] CIFAR-10 and CIFAR-100 Datasets. https://www.cs.toronto.edu/~kriz/

cifar.html. Last visited on 05.05.2018 ⇒27, 31
[30] Fruits 360 Dataset on GitHub. https://github.com/Horea94/

Fruit-Images-Dataset. Last visited on 05.05.2018 ⇒26, 32
[31] Fruits 360 Dataset on Kaggle. https://www.kaggle.com/moltean/fruits.

Last visited on 28.05.2018 ⇒26, 32
[32] Britta O’Boyle, Chris Hall, What is Google Lens and how do you use it? Last

visited on 05.05.2018 ⇒27
[33] Google Lens on Wikipedia, https://en.wikipedia.org/wiki/Google_Lens.

Last visited on 05.05.2018 ⇒27

Received: May 15, 2018 • Revised: June 25, 2018

https://www.sciencedirect.com/science/article/pii/S1537511013002109
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
http://people.idsia.ch/~juergen/
https://www.ncbi.nlm.nih.gov/pubmed/29587378
https://www.ncbi.nlm.nih.gov/pubmed/29587378
https://link.springer.com/chapter/10.1007/978-3-319-13461-1_27
https://link.springer.com/chapter/10.1007/978-3-319-13461-1_27
https://www.researchgate.net/publication/312957921_Cucumber_Detection_Based_on_Texture_and_Color_in_Greenhouse
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://www.tensorflow.org
http://yann.lecun.com/exdb/mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/Horea94/Fruit-Images-Dataset
https://github.com/Horea94/Fruit-Images-Dataset
https://www.kaggle.com/moltean/fruits
https://www.pocket-lint.com/apps/news/google/141075-what-is-google-lens-and-how-do-you-use-it
https://en.wikipedia.org/wiki/Google_Lens

Acta Univ. Sapientiae, Informatica 10, 1 (2018) 43–57

DOI: 10.2478/ausi-2018-0003

On the use of model transformation for the

automation of product derivation process

in SPL

Nesrine LAHIANI
LRDSI Laboratory
C.S. Department

Saad Dahlab University
Blida, Algeria

email:
lahiani.nesrine@gmail.com

Djamal BENNOUAR
LIMPAF Laboratory

C.S. Department
Akli Mohand Oulhadj University

Bouira, Algeria
email:

djamal.bennouar@univ-bouira.dz

Abstract. Product Derivation represents one of the main challenges
that Software Product Line (SPL) faces. Deriving individual products
from shared software assets is a time-consuming and an expensive activ-
ity. In this paper, we (1) present an MDE approach for engineering SPL
and (2) propose to leverage model-to-model transformations (MMT) and
model-to-text (MTT) transformations for supporting both domain engi-
neering and application engineering processes. In this work, we use ATL
as a model-to-model transformation language and Acceleo as a model-to-
text transformation language.The proposed approach is discussed with
e-Health product line applications.

1 Introduction

Companies are more and more forced to customize their software products for
completely different customers. In practice they often clone an existing system

Computing Classification System 1998: C4, D.2.11 D.2.13
Mathematics Subject Classification 2010: 68N99
Key words and phrases: product derivation, software product lines, model-driven engi-
neering, domain specific language

43

https://www.researchgate.net/profile/Lahiani_Nesrine
http://www.univ-blida.dz/
http://www.univ-blida.dz/
http://www.univ-blida.dz/
http://www.univ-blida.dz/
mailto:lahiani.nesrine@gmail.com
mailto:lahiani.nesrine@gmail.com
https://www.researchgate.net/profile/Djamal_Bennouar3
http://www.univ-bouira.dz
http://www.univ-bouira.dz
http://www.univ-bouira.dz
http://www.univ-bouira.dz
mailto:djamal.bennouar@univ-bouira.dz

44 N. Lahiani, D. Bennouar

and adapt it to the customer’s needs. In such scenarios software product lines
promise benefits, for example, reduced maintenance effort, improved quality,
and customizability. However, introducing new development processes into a
company is risky and might not pay off . The other advantage is that this fairly
recent software development paradigm allows companies to create efficiently
a variety of complicated products with a short lead-time.

In a software product line context, software products are developed in two
phases, i.e. a domain engineering process and an application engineering pro-
cess. Domain engineering a basis is provided for the actual development of the
individual products. During application engineering individual products are
derived from the product line, i.e. constructed using a subset of the shared
software artifacts. If necessary, additional or replacement product-specific as-
sets may be created.

The key activity in application engineering is Product Derivation. It ad-
dresses the construction of a concrete product from the product line core
assets, which includes the derivation of application artifacts from domain ar-
tifacts, for instance the derivation of Application Requirements from Domain
Requirements, the derivation of the Application Architecture from the Do-
main Architecture and the derivation of Application Components from Do-
main Components.

In this context, this paper proposes a model-driven product derivation ap-
proach based on Model-Driven Engineering principles [20, 21] . We use (1)
metamodels to represent domain concerns such as application, architectural,
or technological; (2) models that conform to metamodels to designate partic-
ular products of product lines; (3) model transformation programs to derivate
members of the line from an initial model. Transformation programs are com-
posed by transformation rules. Each transformation rule is responsible for pro-
ducing a part of the final product. To derive a complete product, we have to
assemble the rules in a precise ordering that determines the order in which the
individual parts are produced and assembled. To express configurable variabil-
ity we use feature models. Our feature model represents variation points and
variants according to user needs. From the feature model, a product Designer
defines a Configuration with his choices. Consequently, our big challenge is
to produce adapted transformation programs to contain rules able to derive
products with the desired user choices.

The remainder of this paper is structured as follows: Section 2 discusses
related work, while Section 3 introduces the terminology and concepts used
in this work.In Section 4 we present an overview of our approach for product

On the use of MT for the automation of PD process in SPL 45

derivation. Section 5 illustrates the application of our approach on a case study.
Finally, Section 6 presents the conclusions.

2 Related work

In this section, we cite the state-of-the-art related to product derivation ap-
proaches. Perovich et al. in [19] employ model-driven techniques to transform
a feature model to specific product architectures. However, the domain design
is specified in terms of ATL transformation rules, therefore the transforma-
tion processes is not completely automated. Such an approach is complex and
makes the SPL architecture design process difficult.

An approach is proposed in [4, 5] to derive the architecture of a product by
selectively copying elements from the SPL architecture based on a product-
specific feature configuration. The SPL architecture model contains variability
to cover all products aspects. This approach deals only with the derivation of
the high level product architecture. The mapping between features and the
components realizing their implementation is done through an implementation
model. A prototype that implements the derivation as a model transformation
is described in the Atlas Transformation language.

Tawhid et al. in [22] proposed to derive an UML model of a specific product
from the UML model of a product line based on a given feature configuration
is enabled through the mapping between features from the feature model and
their realizations in the design model. The mapping technique proposed aims
to minimize the amount of explicit feature annotations in the UML design
model of SPL. Implicit feature mapping is inferred during product derivation
from the relationships between annotated and non-annotated model elements
as defined in the UML metamodel and well-formed rules. The transformation
is realized in ATL.

Gonzlez-Huerta et al. in [11] presented a set of guidelines for the definition of
pattern-based quality-driven architectural transformations in a Model-Driven
SPL development environment. These guidelines rely both on a multimodel
that represents the product line from multiple viewpoints as well as on a deriva-
tion process that makes use of this multimodel to derive a product architecture
that meets the quality requirements.

Parra et al.[18] propose an approach for feature-based architecture com-
position in component-based software product lines. To fill the gap between
features and software components, authors rely on the definition of aspect-like
composition models that link every particular feature with several software

46 N. Lahiani, D. Bennouar

components. The approach detects that one feature requires a second feature
when the pointcut that define the variation point for the first feature refer-
ences source code elements referred to by the aspect that defines the second
feature. The approach can detect when one feature excludes a second feature,
when the pointcuts (that define the variation points) for both features refer
to the same source code elements.

All the preceding approaches constitute good effort to provide a smooth
transition from feature models to product architectures. In addition, some ap-
proaches such as [19, 22] use model-driven techniques to transform a feature
model into product architectures. However, as the domain design is speci-
fied in terms of ATL transformation rules [3], the transformation processes
cannot be fully automated. Other similar efforts that rely on aspect-oriented
techniques[18] to derive product architectures from feature selections .Al-
though, the derivation at higher levels of abstraction, that is from generic
to concrete product line architectures, is poorly addressed.

3 Terminology and basic concepts

In this Section we describe the main terminology and basic concepts of the
different areas involved in our approach.

3.1 Product lines

Definition (Product lines). A Software Product Lines can be defined as
is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission
and are developed from a common set of core assets in a prescribed way [6].
Definition (Feature modeling). Feature modeling is the activity of

identifying externally visible characteristics of products in a domain and or-
ganizing them into a model called a feature model. The feature modeling
described in this section is based on that of [7].
Definition (Product derivation) We focus in this paper at application

engineering known also as product derivation (PD). PD has been defined in
many different ways. McGregor in [16] describes the process as “Product
derivation is the focus of a software product line organization and its exact
form contributes heavily to the achievement of targeted goals“.

Deelstra et al. in [8] define product derivation by “A product is said to be
derived from a product family if it is developed using shared product family
artifacts. The term product derivation therefore refers to the complete process
of constructing a product from product family software assets“.

On the use of MT for the automation of PD process in SPL 47

3.2 Model-driven engineering

Definition (MDE) Kent defines Model Driven Engineering (MDE) by ex-
tending MDA with the notion of software development process (i.e., MDE
emerged later as a generalization of the MDA for software development) [12].
MDE refers to the systematicuse of models as primary engineering artifacts
throughout the engineering lifecycle. All the definition of MDE are based on
the concept of model, meta-model, and model transformation.
Definition (Meta-Model) A model is frequently considered an instance

conforming a meta-model. Based on [14] “a meta-model is a model of a mod-
eling language where the languageis specified”.
Definition (Model transformation) Performing a model transforma-

tion by taking one or more models as the input and producing one or more
models as the output requires a clear understanding of the abstract syntax
and the semantics of the source and the target models. Metamodelling is a
key concept in MDA that defines the abstract syntax of the models and the
inter-relationships between the model elements [13].

The common setting for all transformation languages is such that the model
to be transformed (source model) is supplied as a set of class and association
instances conforming to the source metamodel. The result of transformation
is the target model - the set of instances conforming to the target metamodel.
Therefore the transformation has to operate on instance sets specified by a
class diagram.

4 Model-driven product derivation approach

In this section, we present an overview of our approach for product deriva-
tion. It is founded on the principles and techniques of software product lines
and model driven engineering. Figure 1 illustrates the main elements of our
approach and their respective relationships.

4.1 Domain engineering

Domain analysis. Domain analysis [17] or Feature modelling is the first
activity to define the commonality and variability that can be expected to
occur among the SPL members identified in the product line’s scope. We use
feature model to present the similarities and variations among the products
identified in the product line’s scope that can be expected to occur.

48 N. Lahiani, D. Bennouar

Figure 1: Overview of our approach

To build our metamodel we modify and simplify the metamodel proposed
by Czarnecki et al. [7]; we depict it in Figure 2. All Features in the Feature
Model have different names and may be composed of several members.
Domain design. At this stage the proposed derivation approach uses the

mapping technique [15] in aim to map features to architecture model. After
that, feature model is considered as an input parameter and then is processed
by a model-to-model (M2M) transformation written in ATL (Atlas Transfor-
mation Language)[2] that creates an Architecture Model which is composed
of a set of rules and helpers. The rules define the mapping between the source
and target model. The helpers are methods that can be called from different
points in the ATL transformation. This model describes all components that
have to be included to implement this particular Application Feature Model.
We need to create in the target model all the model element types that com-
pose a component model as its shown in Figure 3.

On the use of MT for the automation of PD process in SPL 49

Figure 2: UML metamodel for feature models.

Domain realization. The goals of the domain realization sub-process are
to provide the detailed design and the implementation of reusable software
assets, based on the Architecture Model obtained in the domain design. In ad-
dition, domain realization incorporates configuration mechanisms that enable
application realization to select variants and build an application with the
reusable artifacts. The model obtained in Domain Design is then processed
by a model-to-text (M2T) transformation which generates an equivalent tex-
tual configuration implemented using Acceleo language [1] to promote the
generation of Java. This tool specializes in the generation of text files (code,
XML, documentation) starting from models. Using Acceleo we can generate
the source code based on templates and models expressed with EMF [9].

4.2 Application engineering

Product analysis. The main goal of product analysis is to document the
requirements artifacts for a particular application and at the same time reuse,
as much as possible, the domain requirements artefacts. A feature configura-

50 N. Lahiani, D. Bennouar

Figure 3: UML metamodel for Component models.

tion is the production of this activity which is a legal combination of features
that specifies a particular product. This activity uses feature models as input
to select the feature relevant for customers requirements to build the product
and identify the specific-assets of the product. Once the selection is checked
and validated by the product designer the output at this stage is a specialized
version of feature model (application feature model).
Product design. The main goal of the product design activity is to produce

the product architecture model. The product architecture model is defined for
the particular product being developed, considering its desired features defined
in the feature configuration model.
Product realization. The main goal of product realization is to build the

actual product, taking in consideration the product architecture defined in the
previous activity. The corresponding component implementations developed

On the use of MT for the automation of PD process in SPL 51

during the domain implementation must be used to obtain the implementation
of the product.

5 Case study

Health-related Internet technology applications delivering a range of clinical
care, content, and connectivity, are referred to collectively as e-health. The
most remarkable attribute of e-Health is that it is enabling the transformation
of the health system from one that is barely focused on curing diseases in hos-
pitals by health professionals, to a system focused on keeping citizens healthy
by affording them with information to take care of their health whenever the
need arises, and wherever they may be. E-health is promoted as a mechanism
to bring growth, gain, cost savings, and process improvement to health care.

In this context of an e-Health application, we present in this section a simple
case study to illustrate the overall process, from the feature model to the final
product.

5.1 Domain engineering

The first activity is domain analysis where we define the feature model for
e-Health Product Line, as Figure 4 (part A) shown doctors could connect via
the application to follow up (1) remote consultation (via phone/message) and
(2) manage patients accounts. Patient also must do (3) a registration so that
he/she can consult and (4) pay using its own credit card or just by bank
transfer which are alternative features only one could be chosen. Drug refill
and offline consultation are two optional features that could be chosen or just
left.

Second activity, the domain design where we build the feature-to-architecture
transformation rule artifact is built. We use a model-to-model transforma-
tion we developed to create an initial version of this model from the feature
model, only containing all defined features and their member relationship.
We present a fragment of one of the rules using the ATL specialization of our
metamodel illustrated in Figure 3, using textual notation. Final activity in do-
main engineering is the domain realization. The architecture-to-components
transformation rule artifact is built. We use a model-to-text transformation
we developed to create an initial version of this model from the architecture
model, only containing all defined features and their member relationship

52 N. Lahiani, D. Bennouar

Figure 4: e-Health product line: (a) Feature Model tree for e-Health applica-
tions (b) Feature Configuration Model for e-Health.

5.2 Application engineering

During product analysis we use FeatureIDE [10] an Eclipse plug-in for Feature-
Oriented Software Development to create the feature configuration model
defining the desired features in the new product being built. A feature configu-
ration is a legal combination of features that specifies a particular product. We
use a text-to-model transformation to obtain the model shown in Figure ?? (
part B),that illustrates the selected features as an instance of the metamodel
shown in Figure 2.

During product design, the meta-transformation is used to generate from
the feature-to-architecture transformation rule the Model Architecture arti-
fact. The proposed model transformation approach takes as input the SPL
source model and generates a product target model. Our transformation gen-
erating a concrete product model from a SPL model is implemented in (ATL).
An ATL transformation is composed of a set of rules and helpers. The rules
define the mapping between the source and target model, while the helpers
are methods that can be called from different points in the ATL transforma-
tion. This transformation is then applied to the feature configuration model
to automatically generate the product architecture. Here we show an example
of an ATL helper and rules:

On the use of MT for the automation of PD process in SPL 53

module MyRules; -- Module Template

create OUT: Components from IN: Features;

rule Componnent{

from

e : Feature!Feature

to

out : Component!Component (

name <- e.name,)

}

rule Association{

from

e : Feature!Dependency

to

out : Component!Connector (

name <- e.name,)

}

rule Attribute {

from

e : Feature!Attribute

to

out : Component!Attribute (

name <- e.name,

type <- e.type)

}

rule Port {

from

e : Feature!Operation

to

out : Component!Port (

name <- e.name,

type <- e.parameter->select(x|x.kind=#pdk_return)->

asSequence()->first().type,

parameters <- e.parameter->select(x|x.kind<>#pdk_return)->

asSequence()

)

}

As Figure 5 illustrates a fragment of the resulting PRODUCT ARCHITEC-
TURE model generated by the rules, applied to the FEATURE CONFIGU-
RATION MODEL shown in Figure 4. The e-Health product line application
component is composed by the subcomponents generated by the rules. Final
activity in application engineering is the application realization. At this stage,

54 N. Lahiani, D. Bennouar

Figure 5: Component Model for e-Health product Line applications.

we write a program that generates Java code from our previously created ar-
chitecture model using Acceleo, which navigates the model and creates the
source code (∗.java files for Java). Our goal is to transform the features into
java classes and Attribute into class properties, and finally generate set and
get methods for class properties. here is the code used to create a bean for
each of the classes defined in our target model:

On the use of MT for the automation of PD process in SPL 55

[comment encoding = UTF-8 /]

[module generate(’http://www.eclipse.org/uml2/3.0.0/UML’)/]

[template public generate(aClass : Class)]

[file (aClass.name.concat(’.java’), false)]

public class [aClass.name.toUpperFirst()/] {

[for (p: Property | aClass.attribute) separator(’\n’)]

private [p.type.name/] [p.name/];

[/for]

[for (p: Property | aClass.attribute) separator(’\n’)]

public [p.type.name/] get[p.name.toUpperFirst()/]() {

return this.[p.name/];

}

[/for]

[for (o: Operation | aClass.ownedOperation) separator(’\n’)]

public [o.type.name/] [o.name/]() {

}

[/for]

}

[/file]

[/template]

6 Conclusion

The main objective of a product line is reusability.Various assets are being
used in software product lines. These assets have different values. Also, the
values of them differ from the value of the profit obtained through using these
assets is different. Derivation of a product from an SPL seems to be an easy
step since its relied on reuse. Actually the product derivation represents one
of the main challenges that SPL faces due to time-consuming. In this paper,
we intended to reduce the development time of a product by automating the
derivation by generating some java code using Acceleo in conjunction with
ATL. The proposed transformation uses Feature-architecture mapping tech-
nique by instantiating the initial feature model, an instance of feature model
is constructed according to customers requirements. Then, separate features
into two kinds: common and variable. The main idea is to create for each fea-
ture a component or a set of components combined in a specific way. Linking

56 N. Lahiani, D. Bennouar

these created components together based on the relationships among features
in the feature model is the last step of our process. Although testing is of main
importance in the context of product lines due to high reuse, in this paper we
do not cover testing activities and it is one of the limitations of our proposed
approach. This paper has illustrated by means of e-Health application the
overall process, from the feature model to the final product. As future work,
we will add more features to e-Health product line application and also intend
to build a new set of components. A possibility is to apply our approach on
other product line applications as e-Vote and also add testing activity to the
approach.

References

[1] Acceleo Project, [Online]. Available:https: //eclipse.org/acceleo. ⇒49
[2] ATL Project, [Online]. Available: http: //www.eclipse.org/atl/. ⇒48
[3] J. Bèzivin, G. Dup, F. Jouault, G. Pitette, & J. E.Rougui, First experiments with

the ATL model transformation language: Transforming XSLT into XQuery. 2nd
OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture Vol. 37. 2003 ⇒46

[4] G. Botterweck, K. Lee, S. Thiel, Automating product derivation in software
product line engineering, Software Engineering, Kaiserslautern, 2009, pp. 177–
182. ⇒45

[5] G.Botterweck, L. OBrien, & S. Thiel. Model-driven derivation of product ar-
chitectures. Proc. of the twenty-second IEEE/ACM international conference on
Automated software engineering, 2007, pp. 469–472. ⇒45

[6] P. Clements, L. Northrop. Software Product Lines: Practices and Patterns. The
SEI series in software engineering. Addison–Wesley, Boston, 2002. ⇒46

[7] K. Czarnecki, S. Helsen, U. Eisenecker. Staged configuration using feature mod-
els. Int. Conf. on Software Product Lines, Springer Berlin Heidelberg, 2004,
pp.266–283. ⇒46, 48

[8] S. Deelstra, M. Sinnema, J. Bosch, Product derivation in software product fam-
ilies: a case study. The Journal of Systems and Software, 74 (2005) 173–194. ⇒
46

[9] Eclipse Modeling Framework, [Online]. Available: http://www.eclipse.org/emf/.⇒49
[10] FeatureIDE,[Online] Available: http://wwwiti.cs.unimagdeburg.de/iti_db/

research/featureide/. ⇒52
[11] J. Gonzàlez-Huerta, E. Insfran, S. Abrahao, J. D. McGregor, Architecture deriva-

tion in product line development through model transformations, 22nd Int. Conf.
on Information Systems Development, 2013, pp. 371–384. ⇒45

[12] S. Kent, Model driven engineering, Int. Conf. on Integrated Formal Methods,
Lecture Notes in Comp. Sci., 2335 (2002) pp. 286–298. ⇒47

 https: //eclipse.org/acceleo.
http: //www.eclipse.org/atl/.
http://www.botterweck.de/
https://pdfs.semanticscholar.org/a4e7/3e26f01eeff4b4343cdfdcb240636fb9ba72.pdf
http://www.botterweck.de/
https://resources.sei.cmu.edu/library/author.cfm?authorID=4785
https://resources.sei.cmu.edu/library/author.cfm?authorID=4179
http://www.pearsonhighered.com/
https://gsd.uwaterloo.ca/kczarnec
https://www.researchgate.net/scientific-contributions/70544932_Sybren_Deelstra
https://www.researchgate.net/profile/Jan_Bosch
https://www.journals.elsevier.com/journal-of-systems-and-software/
 http://www.eclipse.org/emf/.
http://wwwiti.cs.unimagdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.unimagdeburg.de/iti_db/research/featureide/
https://scholar.google.es/citations?user=yQermMoAAAAJ&hl=es
http://einsfran.blogspot.com/
https://sabrahao.wixsite.com/dsic-upv

On the use of MT for the automation of PD process in SPL 57

[13] A. G. Kleppe, J. B. Warmer, W. Bast, MDA Explained: the Model Driven Ar-
chitecture: Practice and Promise, Addison-Wesley Professional. 2003. ⇒47

[14] I. Kurtev. Adaptability of model transformations, PhD Thesis, University of
Twente Research Information. ⇒47

[15] N. Lahiani, D. Bennouar, A software product line derivation process based on
mapping features to architecture, Proc. of the Int. Conf. on Advanced Commu-
nication Systems and Signal Processing ICOSI, 2015. ⇒48

[16] J. McGregor, Goal-driven product derivation, Journal of Object Technology, 8
5 (2009) 7–19. ⇒46

[17] L. Northrop, P. Clements, With F. Bachmann, J. Bergey, G. Chastek, S. Cohen,
P. Donohoe, L. Jones, R. Krut, R. Little, J. McGregor, L. OBrien, A frame-
work for software product line practice, version 5.0, Software Enginering Institut,
2012. ⇒47

[18] C. Parra, A. Cleve, X.Blanc, L. Duchien, Feature-based composition of soft-
ware architectures. European Conf. on Software Architecture, Springer, Berlin,
Heidelberg, 2010, pp. 230–245. ⇒45, 46

[19] D. Perovich , P. O. Rossel, M. C.Bastarrica, Feature model to product archi-
tectures: Applying MDE to software product lines, Software Architecture, &
European Conf. on Software Architecture, WICSA/ECSA 2009, Joint Working
IEEE/IFIP Conf., IEEE 2009, pp. 201–210. ⇒45, 46

[20] D. C. Schmidt. Guest editors introduction: model-driven engineering. IEEE
Comput. 39 2 (2006) 25–31. ⇒44

[21] T. Stahl, M. Voelter, K. Czarnecki, Model-Driven Software Development: Tech-
nology, Engineering, Management, John Wiley & Sons 2006. ⇒44

[22] R. Tawhid , D. C. Petriu. Product model derivation by model transformation
in software product lines. Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops (ISORCW), 14th IEEE International Sympo-
sium, IEEE 2011, pp. 72–79. ⇒45, 46

Received: January 14, 2018 • Revised: April 5, 2018

http://www.pearsonhighered.com/
https://research.utwente.nl/en/
https://research.utwente.nl/en/
https://people.cs.clemson.edu/~johnmc/
http://www.jot.fm/
https://resources.sei.cmu.edu/library/author.cfm?authorID=4179
https://resources.sei.cmu.edu/library/author.cfm?authorID=4785
https://scholar.google.fr/citations?user=Amx0tmUAAAAJ&hl=fr&oi=sra
https://scholar.google.fr/citations?user=LM0e_fcAAAAJ&hl=fr&oi=sra
https://www.dcc.uchile.cl/danielperovich
https://users.dcc.uchile.cl/~prossel/
http://www.dre.vanderbilt.edu/~schmidt/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://www.voelter.de/
https://gsd.uwaterloo.ca/kczarnec
http://www.sce.carleton.ca/faculty/petriu.html

Acta Univ. Sapientiae, Informatica 10, 1 (2018) 58–72

DOI: 10.2478/ausi-2018-0004

A survey on sentiment classification

algorithms, challenges and applications

Muhammad Rizwan Rashid RANA
University Institute of Information Technology
Pir Mehr Ali Shah Arid Agriculture University

Rawalpindi, Pakistan
email: rizwanrana315@gmail.com

Asif NAWAZ
University Institute of Information

Technology
Pir Mehr Ali Shah Arid Agriculture

University
Rawalpindi, Pakistan

email: asif.nawaz@uaar.edu.pk

Javed IQBAL
Department of Computer Science

University of Engineering and
Technology

Taxila, Pakistan
email: javed1797@hotmail.com

Abstract. Sentiment classification is the process of exploring sentiments,
emotions, ideas and thoughts in the sentences which are expressed by
the people. Sentiment classification allows us to judge the sentiments
and feelings of the peoples by analyzing their reviews, social media com-
ments etc. about all the aspects. Machine learning techniques and Lex-
icon based techniques are being mostly used in sentiment classification
to predict sentiments from customers reviews and comments. Machine
learning techniques includes several learning algorithms to judge the sen-
timents i.e Navie bayes, support vector machines etc whereas Lexicon
Based techniques includes SentiWordnet, Wordnet etc. The main target
of this survey is to give nearly full image of sentiment classification tech-
niques. Survey paper provides the comprehensive overview of recent and
past research on sentiment classification and provides excellent research
queries and approaches for future aspects

Computing Classification System 1998: I.2.6, K.3.0, K.3.m
Mathematics Subject Classification 2010: 68R15
Key words and phrases: sentiment classification, supervised learning, opinion mining,
machine learning, lexicon approaches, unsupervised learning

58

http://www.uaar.edu.pk/uiit
http://www.uaar.edu.pk/uiit
http://www.uaar.edu.pk/uiit
mailto:rizwanrana315@gmail.com
http://www.uaar.edu.pk/uiit
http://www.uaar.edu.pk/uiit
http://www.uaar.edu.pk/uiit
http://www.uaar.edu.pk/uiit
http://www.uaar.edu.pk/uiit
mailto:asif.nawaz@uaar.edu.pk
http://web.uettaxila.edu.pk/uet/CS/index.asp
http://web.uettaxila.edu.pk/uet/CS/index.asp
http://web.uettaxila.edu.pk/uet/CS/index.asp
http://web.uettaxila.edu.pk/uet/CS/index.asp
mailto:javed1797@hotmail.com

A survey on sentiment classification 59

1 Introduction

The fast growth of World Wide Web (WWW) is constantly increasing the
online communication. A huge number of customers reviews or suggestions
on everything are present on the web and these customers reviews and sug-
gestions are increasing day by day. Micro blogging like twitter, Facebook etc.
are powerful channels for peoples sentiments, thoughts, ideas and feelings.
It is now estimated that, in just 60 seconds, over 400,000 Twitter posts are
being shared, about 300,000 Facebook statuses updates, about 25,000 items
purchased from Amazon, over 5million YouTube videos viewed and about 2.7
million Google searches are being made among many other things [1] . Users
rating and reviews, which have been found on many ecommerce and market
websites is a good source that helps peoples to build opinion about specific
products. As a result of this phenomenon, increasing numbers of opinions and
thoughts are being spread and published over the internet

Before the rise of internet to answer the question of What do people think
about any product or anything else, Surveys and polls are distributed in the
form of paper in peoples. With the expeditious development of internet and
the popularity of Micro-blogging sites like Facebook, Twitter etc enables an
alternative option for getting opinions from large population [38]. Now a days
Web become the necessity for people to share their ideas, experiences and
opinions as well as seeking others experiences and opinions [47]. Millions of
ideas and experiences are shared every day. It is impossible for peoples to read
all ideas and experiences. About 2.7 million Google searches was made. A query
Artificial Intelligence returns 98,400,000 results. This whole scenario demands
fast, effective and accurate technique to track sentiments, opinions and ideas
that are flowing on internet. Sentiment classification is the key component of
such techniques [4, 41, 11].

Sentiments represent the viewpoint of customer such as like (positive), dis-
like (negative) and may be neutral viewpoint [7]. Sentiment classification also
called opinion mining is the process to automatically determine the sentiment
category to which the textual content belongs [46]. We can categorize the
reviews, comments and document mainly in two types. These are numeric
sentiment and categorical sentiment. Common example of a numeric senti-
ment is rating system in ecommerce sites. Using this rating system company
judge the response of peoples. Categorical sentiment is a method to classify
the comments or reviews in different categories. These categories are binary
(positive and negative), ternary (positive, negative and neutral) and multiple
categories (Anger, happy, sad etc.) [40]. Opinions are become the necessary

60 M. R. R. Rana, A. Nawaz, J. Iqbal

parts in all human activities. There are two types of reviewing sites, generic
reviewing sites and specified reviewing sites. Generic reviewing sites include
sites like amazon.com, epinions.com, rottentomatoes.com etc and Specified re-
viewing sites includes tripadvisor.com, yelp.com. Both of these reviewing sites
have a significant effect in our decision meaning process. These decisions in-
cludes buying a camera, smart phone etc, making investments on any product
etc, choosing schools, decision about any movie etc etc. Before the Internet,
Other sources such as friends, relatives etc affect the human decision process.
Positive review is showing in Figure 1 and negative review is showing in Figure
2.

Figure 1: Positive review

Figure 2: Negative review

The meaning of word sentiment itself is still very wide. Opinion mining
mostly focuses on opinions which communicate or involve positive or negative
sentiments from reviews, comments etc. These user reviews are very useful to
organizations for making intelligent decisions about product purchasing and
also helpful for merchants in knowing their products progress in the market

A survey on sentiment classification 61

[29]. Nowadays everyone shares their views and experiences online. For exam-
ple, if somebody wants to buy a mobile phone, such as the Samsung mobile,
and he or she dont know about this mobile phone. He or she can use the inter-
net, open mobile phone web site and read customer reviews about the product
and then he or she can make a decision in the light of provided user reviews.
This manual process is named as text mining, opinion mining or sentiment
analysis. History calculation sentiment of document is the task of marketing
team of any company. Humans have no trouble in reading the movie review,
product review and any political comment and categorized it in positive, neg-
ative or neutral class. We humans use a technique of reading and understand
the underlying meaning of a sentence but when there are a millions of re-
views then its a time consuming task to read all reviews and categorized it in
positive, negative or neutral class.

In the wake of digital age, thousands of movies are directed per year and
peoples share millions of reviews and comments about these movies on the
internet. Usually a movie reviews peoples share their comments about the
movie. As it is the time consuming task so it is very hard for humans to judge
the tone of these reviews and classify it in positive or negative category. There
is a strong demand for automatically analyzing and summarizing the opinions
expressed in natural language text. We can automatically analyze and classify
the reviews using machine learning techniques. Sentiment classification can be
helpful for customers who need to research the sentiment of product before
purchase or companies that need to watch the general public sentiment of their
brands.

Sentiment classification or opinion mining has been studied at three different
levels of classification [28] these include sentiment classification at document
level, sentence level and at aspect level. Classification of whole document in
a positive or negative is called document level classification. Sentence-level
sentiment classification techniques read document sentence by sentence and
decide whether each sentence gives a positive, negative or neutral opinion for
a service, product etc. Aspect level or entity level sentiment classification is
the most modern technique which classifies the reviews or comments on the
basis of aspects or entities

2 Literature review

In the last decade, lot of research work has been carried out in sentiment
classification. Techniques of sentiment classification (i.e judging tone of the

62 M. R. R. Rana, A. Nawaz, J. Iqbal

text) have been performed for a variety of applications over a wide range of
classification algorithms. A Review of some existing techniques from literature
is provided in the following section. There exists a four different techniques
for sentiment classification as shown in Figure 3.

Figure 3: Sentiment classification techniques

2.1 Lexicon based methods

Lexicon based methods adopt a lexicon to perform aspect based sentiment
analysis. These methods can work by counting, analyzing and weighting opin-
ion words. These methods are further divided in two broad classes. They are
dictionary-based methods and corpus-based methods

A survey on sentiment classification 63

2.1.1 Dictionary based methods

Dictionary- based methods used the lexicon database to judge the tone of text.
Popular lexicon databases are WordNet, Sentiwordnet etc. WordNet groups
the words into synsets (synonym sets) and the semantic relation between
synsets [32]. WordNet is used on adjectives in order to find their semantic ori-
entation [20]. Process first count the number of synonym links for adjectives
such as bad,good etc. Another paper used the WordNet to create semantic
lexicon. They used the antonym relation of adjective and WordNet synonym
[10]. This idea is used for constructing another lexicon named as SentiWord-
Net. SentiWordNet provides the three types of sentiment scores of each words.
These types are positive score, negative score and objective score. Another
paper uses the three different lexical relations in WordNet [2]. These lexical
relations consists on antonymy, hyponymy and synonymy). It takes the adjec-
tive from epinions.com reviews and mapped to the star rating. Paper proposed
method uses the breadth first search adjective on WordNet synonymy graph
with unknown sentiment and then distance-weighted nearest neighbor algo-
rithm is to calculate the weights of two average rating of two nearest neighbor
as related adjective. Different bootstrapping method using WordNet is pro-
posed in [43]. Algorithms take the known sentiment orientations as input and
generate the set of synonyms (Synsets) as output. The new generated sys-
sets are then used to calculate the polarities of words. Constrained symmetric
nonnegative matrix factorization (CSNMF) technique with sentiment lexicon
generation is used in [14]. Proposed method words on two steps. In first step
dictionary is used to find the candidate sentiment and in second step corpus
is used to assign the polarity score to each word.

2.1.2 Corpus based methods

One of the earliest ideas that use the Corpus-based method was presented by
Hazivassiloglou and McKeown [13]. Proposed idea used the seed adjective and
corpus to find other sentiment adjectives in corpus. This technique also used
some linguistic rules. One of the rule is about conjunction AND. According
to this rule where ever conjoined adjective comes, they have same orientation.
For example if there is a sentence Today I am happy and delighted Here if
happy is a positive then definitely delighted is also a positive. Basic idea behind
conjunction AND rule is peoples always express same sentiments on both side
of AND. Other rules are OR, BUT, NEITHERNOR etc.

64 M. R. R. Rana, A. Nawaz, J. Iqbal

Above approach was extended by introducing call coherency [21]. Call co-
herency includes intra-sentential consistency and inter-sentential consistency.
Intra- sentential consistency exists within sentence and inter-sentential consis-
tencies exist between neighboring sentences. This technique is used to find the
domain dependent sentiment words. Later this technique was also used in [19].
There are many words in same domain have different orientations in different
way of writing [9]. Same word is uses as positive in one context and in second
context it will be used as negative. For example in mobile domain lets takes
two reviews. First review is Mobile have long battery life and second review
It takes long time to open contacts. In first review long is used in positive
sense and in second review long is used in negative sense. Author presents the
solution to solve this problem. First find the aspects and sentiment words or
opinion words from text then use both aspects and sentiment word in pair like
(aspect, sentiment word). For example (contacts,long). To predict which pair
is positive and which is negative, the call con coherency will also used.

In 2011, authors argue the technique to study the lengthening of words (e.g
thankssssssssss) in social media sites [5]. Usually in comments and tweets are
many lenghty words present. According to authors these lengthy words shows
the high sentiments in comments and proposed a automatic the technique for
finding the sentiments. Connotation lexicon is very much changed from simple
sentiment lexicon [12]. Using Connotation lexicon paper achieved the better
results as compare to other lexicons

2.2 Machine learning

Machine learning is further divided in Supervised Learning and Unsupervised
Learning. In supervised learning, output dataset is necessary, we train algo-
rithm on output dataset and get the desired outputs whereas in unsupervised
learning we dont have any output datasets, instead the data is clustered into
different classes [45].

2.2.1 Supervised learning

Pang et al. applied Support Vector Machine, Navie Bayes and Maximum en-
tropy with different feature extracting techniques on movie reviews [34]. Ex-
perimental results shows the SVM have best performance with unigram text
representation. It has been noted that without POS tagging information ac-
curacy of naive bases and maximum entropy increases but it decreases the
performance of SVM. Liu et al. argued the sentiment classification system

A survey on sentiment classification 65

that uses Nave Bayes Classifier and Map Reduce framework [26]. Paper uses
machine leaning algorithm Nave Bayes Classifier to classify the sentiments in
two classes positive and negative. Paper also uses Map Reduce framework with
Naive Bayes Classifier to get better results. Map Reduce framework usually
use to analyze extremely large datasets such as tweets collections, movie re-
views etc. Experimental results show the accuracy of Naive Bayes classifier on
large data sets is 82%.

Dhande and Patnaik uses neural network with Naive Bayes classifier be-
cause in many complex real world situations Naive Bayes cannot work well
[8]. An experimental result shows that, when we are using Naive Bayes Clas-
sifier then Accuracy will be 62.35. So for getting better results Paper uses
the Neural Network with Naive Bayes Classifier. Results show that accuracy
of sentimental analysis increased up to 80.65 by combining Neural Network
with Naive Bayes Classifier. Shaziya et al. takes the dataset of movie reviews
and apply two well knows classifier on this dataset. These classifiers are Naive
Bayes classifier (NB) and Support Vector Machine (SVM) [37]. The dataset is
preprocessed and various filters have been applied to reduce the feature set.
Papers use the Feature selection method for getting most valuable words and
use Information Gain, and Gain Ratio methods for getting distinctive word.
Using these methods we get the most value data from dataset. An experi-
mental result shows that Navies Bayes results are better than SVM results.
Accuracy of Naive Bayes classifier is 86.1% for positive reviews and 84.1%
for negative reviews and accuracy for SVM classifier is 84.7% for positive re-
views and 84.4% for negative reviews.Support Vector Machine (SVM) is more
efficient classifier than Naive Bayes in many cases.

Manek et al. adopted SVM classifier with Gini Index feature selection method
for sentiment classification for large movie review data set [28]. Experimen-
tal results show that Gini Index feature selection method is better in terms
of accuracy and performance. Paper achieves the accuracy 78% using SVM
classifier on large dataset of movie reviews. Paper [15] implement the three
sentiment analysis algorithms for identifying the sentiments (positive or nega-
tive) from reviews. Experiential results are then compared with the numerical
ratings of hotels. Dataset of One million reviews with numerical rating is col-
lected from Tripadvisor. Results shows that predicted rating from sentiment
analysis algorithms are very close to actual ratings of the hostel. Sentiment
classification using Bayesian Classifier was implemented in [36]. Experimental
results show that bayesian classifier works well on large dataset as well as small
dataset.

66 M. R. R. Rana, A. Nawaz, J. Iqbal

2.2.2 Unsupervised learning

Unsupervised learning is the second type of Machine Learning. They proposed
a technique to find the potential sentiment phrase by explicit aspects in its
surrounding. Surrounding of any aspect is measured using syntactic dependen-
cies. All potential sentiment phrases are examined and the phrase which shows
positive or negative sentiments is retained. Semantic orientation and polarity
is calculated by unsupervised technique. Unsupervised technique that is used
are named as relaxation labeling. In paper [30], the probabilistic latent seman-
tic indexing (pLSI) [17] was used to develop Topic-Sentiment Mixture (TSM)
model which reveal latent topics including sentiment classes as additional top-
ics. The dynamic nature of social media data whereby sentiments and topics
constantly change means that sentiment/topic models also need to be updated
over time. This is addressed by the dynamic JST [24] which captures both topic
and sentiment dynamics by assuming that the current sentiment-topic specific
word distributions are generated according to the word distributions.

Consequently the Dependency Sentiment-LDA model, which relaxes the sen-
timent independent assumption, was introduced by Li et al [23]. In this model
the sentiments of the words in a document are viewed to form a Markov
chain, where the sentiment of a word is dependent on the previous one. Al-
though topic modeling approaches to sentiment classification do not require
labeled data, they still rely on sentiment lexicons as the source of prior senti-
ment knowledge. Like with purely lexicon-based methods, their performance
was shown to be dependent on both the coverage and quality of the lexicons
used by Lin and He [25]. However, the lexicon-based methods offer greater
flexibility to incorporate linguistically derived contextual knowledge making
for a more transparent and accessible approach to sentiment classification.

2.3 Hybird methods

Sentiment classification was also observed to improve when multiple classifiers,
formed from machine learning and lexicon-based methods, are used to classify
a document [35]. The hybrid method also helps overcome certain limitations
of the combined methods. For instance, in a system called P Senti lexicon
knowledge was used to filter out non sentiment-bearing words from the feature
set subsequently used for machine learning [22].

Evaluation of P Senti shows the hybrid approach achieved better perfor-
mance compared to pure lexicon-based and better cross-domain portability
compared to pure machine learning. In another work, a small amount of train-

A survey on sentiment classification 67

ing data for machine learning was compensated with lexicon knowledge [31].
In some other work, machine learning was applied to optimize sentiment scores
prior to lexicon based sentiment classification [42]. This approach has the ten-
dency to produce domain adapted lexicons which in turn improve sentiment
classification. It is noteworthy, however, that although the hybrid approach can
help overcome certain limitations of either of the combined methods (lexicon-
based or machine learning) alone, it can also combine challenges from both
methods. For instance, it often requires both labeled data, which can be diffi-
cult to obtain, as well as a sentiment lexicon.

2.4 Dependency relationship (DR) techniques

DR can be used to generalize the changing relationship of opinion words and
aspects. Paper [3] enlisted the DR to get paired aspect-opinion by using movie
reviews. By using dependency relationship parser, the parsed words in a sen-
tence are joined by definite dependency relationship. By using dependency
sequence, encouraging results in various research fields by employing distinct
approaches to point product features and their kindred point of view from var-
ious language reviews. Different feature selection techniques have been used
besides with machine learning approaches like bigrams and unigrams [34]. Pa-
per [16] deployed syntactic relations between words in different sentnces for the
organization of document sentiments. Agarwal et al. (2015) used ConceptNet
ontologybased dependency relations to extract features from text. They also
used a method called mRMR which is basically a feature selection scheme to
remove redundant information. Paper [39] proposed a technique that retrieves
product aspects and opinions by taking signifies and linguistics information
based on dependency relationship.

3 Applications

Sentiment classification is a large field that contains the vast range of applica-
tions being discussed in past research. In last decade, a lot of research has been
done to examine the influence of media on the business world. The Internet
has turned into a vast source of all kind of knowledge for everybody. Using in-
ternet there is an opportunity to discover the perspectives of people in general
about organization methodologies, political developments, business world etc.
In short, numerous applications of sentiment classification have emerged in do-
mains of daily life like sentiment classification for the business world, political
reviews, movie reviews etc. Some of these applications are OpinionMiner [27],
Opinion observer [18] and OpinionFinder [44].

68 M. R. R. Rana, A. Nawaz, J. Iqbal

There are hundreds of companies that develop sentiment classification tools
for their themselves and for their clients. These companies include Oracle,
Azamon, Google, Hawlett-Packart, SAS and Facebook. Some small companies
also build sentiment classification tool for theor clients. They are Lexalyt-
ics, Semantria, Synapsify, ThriveMetrics, Etuma and MeshLabs. Facebook’s
Gross National Happiness application developed by facebook to predict the
happiness of peoples on facebook, by countries. This application works by
checking positive and negative words from peoples statuses [33]. For politi-
cal parties tracking sentiments of peoples are very important. A site named
as Sentex.com tracks sentiments of political parties and political topics and
provides sentiment classification in ternary category (positive, negative and
neutral) [6].

4 Challenges

There are several challenges in judging sentiments form reviews, comments
etc. Usually in reviews there is inconsistent and erratic data. People have var-
ious ways of expressing sentiments; sometime they use shorthand and lots of
abbreviations. Usually they cannot use proper grammar in reviews. We judge
positive or negative opinions from reviews using opinion words and phrases
are usually used to express. These phrases and opinion words may be used
in positive and negative situations. For example good is for positive and not
good is for negative. Judgment of positive and negative sentiments from review
depends on context of what is around it. There are very less words that will
always attach a positive or negative sentiment to an expression. Comments
and reviews also contain irony and hidden emotions. The task of judging sen-
timents is also a challenging task, due subjective sentences and also ambiguity
naturally found in opinionated text. Ambiguity words are the same meaning
words which come in more than one time in same sentence. Ambiguity be-
comes a serious problem when it come with irony and convey words. Take for
example the sentence A great mobile, yeah right!this may look like a positive
review, but it may be taken as a negative review. One of the major issue in
Lexicon based approaches is need of lexicons for other languages. Lexicons are
only available for some popular languages like English, Arabic, Chinese etc
but for unpopular languages there is no lexicons available. Also lexicons of
Arabic, Chinese languages are limited in term of words, they cannot cover all
words of these languages

A survey on sentiment classification 69

5 Conclusion

Sentiment classification comes forth as a challenging field with lots of fence as
it involves natural language processing and hidden emotions. It has a wide va-
riety of applications that could benefit from its results, such as movie reviews,
product reviews, news analytics, and marketing, question answering, knowl-
edge bases and so on. There are various areas in sentiment classification field
where lots of improvement is needed with existing techniques. This survey gives
a brief insight about sentiment classification, types of sentiment classification
and comparison of existing techniques. The interest of peoples in languages
other than English in this sentiment classification is growing day by day as
there is still a lack of resources and researches concerning these languages.
Building resources, used in sentiment classification tasks, is still needed for
many natural languages. Survey also highlights some major challenges about
judging sentiments and future work is to overcome these challenges to get
better results

References

[1] M. Aminu, Contextual lexicon-based sentiment analysis for social media, PhD
Thesis, Université Robert Gordon University, Aberdeen, 2016. ⇒59

[2] A. Andreevskaia, S. Bergler, When specialists and generalists work togethe over-
coming domain dependence in sentiment tagging, Proc. ACL08 HLT, 2008,
pp.290–298. ⇒63

[3] A. Andronic, F. Arleo, R. Arnaldi, A. Beraudo, E. Bruna, D. Caffarri, Z. Conesa
del Valle et al., Heavy-flavour and quarkonium production in the lhc era: from
protonproton to heavy-ion collisions, The European Physical Journal (2016) 76:
107. ⇒67

[4] R. N. Behera, R. Manan, S. Dash, Ensemble based hybrid machine learning ap-
proach for sentiment classification –A Review, International Journal of Com-
puter Applications 146, 6 (2016) 31–36. ⇒59

[5] S. Brody, N. Diakopoulos, Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using word
lengthening to detect sentiment in microblogs, Conference on Empirical Meth-
ods in Natural Language Processing, 2007, pp. 562–570. ⇒64

[6] Y. Choi, H.Lee, Data properties and the performance of sentiment classification
for electronic commerce applications, Information Systems Frontiers 19 (2017)
1–20. ⇒68

[7] K. T. Devendra, S. K. Yadav, Fast retrieval approach of sentimental analysis with
implementation of bloom filter on Hadoop, International Conference on Com-
putational Techniques in Information and Communication Technologies, 2016,
pp.529–551. ⇒59

https://scholar.google.com.pk/citations?user=HwN2z48AAAAJ
https://www.rgu.ac.uk/
https://scholar.google.com.pk/citations?user=o4FjPMIAAAAJ
https://www.epj.org/
https://scholar.google.com.pk/citations?user=uUqnwJUAAAAJ&hl
https://scholar.google.com.pk/citations?user=JCtXdPkAAAAJ
https://scholar.google.com.pk/citations?user=ORRLFbYAAAAJ
https://www.ijcaonline.org/
https://www.ijcaonline.org/
https://scholar.google.com.pk/citations?user=_GXpoFwAAAAJ
https://dl.acm.org/author_page.cfm?id=81309489274
https://scholar.google.com.pk/citations?user=X3ubC4EAAAAJ
https://scholar.google.com.pk/citations?user=U1HP2_gAAAAJ
https://link.springer.com/journal/10796
https://scholar.google.com.pk/citations?user=mejfFvwAAAAJ

70 M. R. R. Rana, A. Nawaz, J. Iqbal

[8] L. Dey, S. Chakraborty, A. Beepa, S. Tiwari, Sentiment analysis of review
datasets Using nave bayes and k-nn classifier, Information Engineering and
Electronic Business (2016) 54–62. ⇒65

[9] X. Ding, B. Liu, P. S. Yu, A holistic lexicon-based approach to opinion mining,
Proc. of the 2008 international conference on web search and data mining, ACM,
2008, pp. 231–240. ⇒64

[10] A. Esuli, F. Sebastiani, Determining term subjectivity and term orientation for
opinion mining, 11th Conference of the European Chapter of the Association for
Computational Linguistics, 2006. ⇒63

[11] Y. Fei, Simultaneous support vector selection and parameter optimization using
support vector machines for sentiment classification, Software Engineering and
Service Science (ICSESS), 7th IEEE Int. Conference, 2016, pp. 59–62. ⇒59

[12] S. Feng, R. Bose, Y. Choi, Connotation lexicon: A dash of sentiment beneath
the surface meaning, Proc. 51st Annual Meeting of the Association for Compu-
tational Linguistics, 2013, pp- 1774–1784. ⇒64

[13] V. Hatzivassiloglou, K. R. McKeown, Predicting the semantic orientation of ad-
jectives, Proc. 35th Annual Meeting of the Association for Computational Lin-
guistics, 1997, pp. 174–181. ⇒63

[14] W. Haywood, J. Ricky, J. B. Holcomb, E. A. Gonzalez, Z. Peng, S. Pati, P. W.
Park, W. Wang, A. M. Zaske, T. Menge, R. A. Kozar, Modulation of syndecan-1
shedding after hemorrhagic shock and resuscitation, PloS, 2011. ⇒63

[15] W. He, X. Tian, R. Tao, W. Zhang, G. Yan, V. Akula, Application of social
media analytics: a case of analyzing online hotel reviews, Online Information
Review (2017) 921–935. ⇒65

[16] D. T. Hess, Akio Matsumoto, Sung-Oog Kim, H. E. Marshall, J. S. Stamler,
Protein s-nitrosylation: purview and parameters, Nature Reviews Molecular Cell
Biology (2005). ⇒67

[17] T. Hofmann, Probabilistic latent semantic indexing, Proc. 16th Int. Conference
on World Wide Web, 1999, pp. 50–57. ⇒66

[18] W. Jin, H. H. Ho, R. K. Srihari, Opinionminer: a novel machine learning system
for web opinion mining and extraction, Proc. 15th ACM SIGKDD Int. Confer-
ence on Knowledge Discovery and Data Mining, 2009, pp. 1195–1204. ⇒67

[19] N. Kaji, M. Kitsuregawa, Building lexicon for sentiment analysis from massive
collection of html documents, Proc. of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), 2007. ⇒64

[20] J. Kamps, M. Marx, R. J. Mokken, M. D. Rijkel, Using wordnet to measure
semantic orientations of adjectives, LREC, 2004, pp. 1115–1118. ⇒63

[21] H. Kanayama, T. Nasukawa, Fully automatic lexicon expansion for domain-
oriented sentiment analysis, Proc. 2006 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2006,
pp. 355–363. ⇒64

https://scholar.google.com.pk/citations?user=3DyQ8KYAAAAJ
https://scholar.google.com.pk/citations?user=vtUt3S4AAAAJ
http://www.mecs-press.org/ijieeb
http://www.mecs-press.org/ijieeb
https://scholar.google.com.pk/citations?user=wpVEsSIAAAAJ
https://scholar.google.com.pk/citations?user=Kt1bjZoAAAAJ
https://scholar.google.com.pk/citations?user=D0lL1r0AAAAJ
https://scholar.google.com.pk/citations?user=2f9Zj68AAAAJ
https://scholar.google.com.pk/citations?user=WZBcZV4AAAAJ
https://scholar.google.com.pk/citations?user=ujDhg2sAAAAJ
https://www.plos.org
https://scholar.google.com.pk/citations?user=tfrJuuoAAAAJ
https://scholar.google.com.pk/citations?user=LGowbiYAAAAJ
https://www.emeraldinsight.com/loi/oir
https://www.emeraldinsight.com/loi/oir
https://www.nature.com/nrm
https://www.nature.com/nrm
https://scholar.google.com.pk/citations?user=T3hAyLkAAAAJ
https://scholar.google.com.pk/citations?user=zdwn-v4AAAAJ
https://scholar.google.com.pk/citations?user=Uttu9kkAAAAJ
https://scholar.google.com.pk/citations?user=zCVY9FsAAAAJ
https://scholar.google.com.pk/citations?user=bWlQ2uEAAAAJ
https://scholar.google.com.pk/citations?user=H54oRlIAAAAJ
https://scholar.google.com.pk/citations?user=AVDkgFIAAAAJ
https://scholar.google.com.pk/citations?user=V6LNLfsAAAAJ

A survey on sentiment classification 71

[22] A. Mudinas, D. Zhang, M. Levene, Combining lexicon and learning based ap-
proaches for concept-level sentiment analysis, Proc. of the First Int. Workshop
on Issues of Sentiment Discovery and Opinion Mining, 2012, pp. 51–58. ⇒66

[23] S. Li, C. R. Huang, G. Zhou, S. Y. M. Lee, Employing personal/impersonal views
in supervised and semi-supervised sentiment classification, Proc. 48th Annual
Meeting of the Association for Computational Linguistics, 2010, pp. 414–423.⇒66

[24] F. Li, M. Huang, X. Zhu, Sentiment analysis with global topics and local de-
pendency, Association for the Advancement of Artificial Intelligence 10 (2010)
1371–1376. ⇒66

[25] C. Lin, Y. H. Lee, Joint sentiment/topic model for sentiment analysis, Proc.
18th ACM Conference on Information and Knowledge Management, 2009, pp.
375–384. ⇒66

[26] B. Liu, E. Blasch, Y. Chen, D. Shen, G. Chen, Scalable sentiment classification
for big data analysis using naive bayes classifier, IEEE Int. Conference on Big
Data, 2013, pp. 99–104. ⇒65

[27] B. Liu, H. Minqing, C. Junsheng, Opinion observer: analyzing and comparing
opinions on the Web, Proc. 14th Int. Conference on World Wide Web, 2005, pp.
342–351. ⇒67

[28] A. Manek, P. Deepa, C. Mohan, K.Venugopal, Aspect term extraction for senti-
ment analysis in large movie reviews using gini index feature selection method
and svm classifier, World wide web 20 (2016). ⇒61, 65

[29] C. Mate, Product aspect ranking using sentiment analysis: a survey, , Int. Re-
search Journal of Engineering and Technology (2014). ⇒61

[30] Q. Mei, X. Ling, M. Wondra, H. Su, C. Zhai, Topic sentiment mixture: modeling
facts and opinions in weblogs, Proc. 16th Int. Conference on World Wide Web,
2007, pp. 171–180. ⇒66

[31] P. Melville, W. Gryc, R. D. Lawrence, Sentiment analysis of blogs by combining
lexical knowledge with text classication, Proc. 15th ACM SIGKDD Int. Confer-
ence on Knowledge Discovery and Data Mining, 2012, pp. 163–173. ⇒67

[32] G. M. Miller, Wordnet: a lexical database for english, Communications of the
Association for Computing Machinery (1995) 39–41. ⇒63

[33] A. Ortigosa, J. Martin, R. Carro, Sentiment analysis in facebook and its appli-
cation to e-learning, Computers in Human Behavior 31 (2014) 527–541. ⇒
68

[34] B. Pang, L. Lee, S. Vaithyanathan, Thumbs up?: sentiment classification using
machine learning techniques, Proc. ACL-02 Conference on Empirical Methods
in Natural Language Processing, 2002, pp. 79–86. ⇒64, 67

[35] R. Prabowo, M. Thelwal, Sentiment analysis: a combined approach, Journal of
Informetrics 3 (2009) 143–157. ⇒66

[36] M. R. R. Rana, M. A. Akbar, T. Ahmad, Sentiment classification of customer
reviews using bayesian classifier, Asian Journal of Engineering, Sciences & Tech-
nology 7 (2017). ⇒65

https://scholar.google.com.pk/citations?user=mPoNxDAAAAAJ
https://scholar.google.com.pk/citations?user=ZRGSxdUAAAAJ
https://scholar.google.com.pk/citations?user=zP4DNqgAAAAJ
https://scholar.google.com.pk/citations?user=KELQj9cAAAAJ
https://scholar.google.com.pk/citations?user=0t_4lhMAAAAJ
https://scholar.google.com.pk/citations?user=mWS1pY4AAAAJ
https://www.aaai.org
https://scholar.google.com.pk/citations?user=Tp1RdIQAAAAJ
https://scholar.google.com.pk/citations?user=SP9r32UAAAAJ
https://scholar.google.com.pk/citations?user=bUWrf7kAAAAJ
https://scholar.google.com.pk/citations?user=Po7s1TsAAAAJ
https://scholar.google.com.pk/citations?user=fs2LVqkAAAAJ
https://scholar.google.com.pk/citations?user=k3E1Gz0AAAAJ
https://scholar.google.com.pk/citations?user=Kt1bjZoAAAAJ
https://scholar.google.com.pk/citations?user=pf4zqQYAAAAJ
https://scholar.google.com.pk/citations?user=F4Fhh8IAAAAJ
https://link.springer.com/journal/11280
https://www.irjet.net
https://www.irjet.net
https://scholar.google.com.pk/citations?user=zr22WkQAAAAJ
https://scholar.google.com.pk/citations?user=w8JK9v0AAAAJ
https://dl.acm.org/author_page.cfm?id=81327490512
https://cacm.acm.org/
https://cacm.acm.org/
https://scholar.google.com.pk/citations?user=S_LEFz8AAAAJ
https://scholar.google.com.pk/citations?user=woyZW9sAAAAJ
https://scholar.google.com.pk/citations?user=DfXyEzYAAAAJ
https://www.journals.elsevier.com/computers-in-human-behavior
https://scholar.google.com.pk/citations?user=qCdLtIoAAAAJ
https://scholar.google.com.pk/citations?user=oJESe-cAAAAJ
https://scholar.google.com.pk/citations?user=8jCKL1sAAAAJ
https://www.journals.elsevier.com/journal-of-informetrics
https://www.journals.elsevier.com/journal-of-informetrics
https://scholar.google.com.pk/citations?user=wPkCXX4AAAAJ
http://ajest.iqra.edu.pk
http://ajest.iqra.edu.pk

72 M. R. R. Rana, A. Nawaz, J. Iqbal

[37] H. Shaziya, G. Kavitha, R. Zaheer, Text categorization of movie reviews for
sentiment analysis, Int. Journal of Innovative Research in Science, Engineering
and Technology (2015) 11255–11262. ⇒65

[38] S. P. Sivasubramanian, N. Suganya, Sentiment analysis on micro-blogs, Int.
Innovative Research Journal of Engineering and Technology 2 (2017) 46–51. ⇒
59

[39] G. Somprasertsri, P. Lalitrojwong, Mining feature-opinion in online customer
reviews for opinion summarization, J. UCS 16 (2010) 938–955. ⇒67

[40] J. Steinberger, T. Brychcin, M. Konkol, Sentiment and social media analysis,
Proc. 5th Workshop on Computational Approaches to Subjectivity, 2014. ⇒59

[41] B. N. Supriya, V. Kallimani, S. Prakash, C. B. Akki, Twitter sentiment analysis
using binary classification technique, Int. Conference on Nature of Computation
and Communication, 2016, pp. 391–396. ⇒59

[42] M. Thelwall, K. Buckley, G. Paltoglou, Sentiment strength detection for the
social web, Journal of the Association for Information Science and Technology
63 (2012) 163–173. ⇒67

[43] P. D. Turney, M. L. Littman, Measuring praise and criticism: inference of se-
mantic orientation from association, ACM Transactions on Information Systems
(TOIS) (2003) 315–346. ⇒63

[44] T. Wilson, P. Hoffmann, S. Somasundaran, J. Kessler, Opinionfinder: a system
for subjectivity analysis, HLT-Demo ’05 Proc. of HLT/EMNLP on Interactive
Demonstrations, 2005, pp. 34–35. ⇒67

[45] Q. Ye, Z. Zhang, R. Law, Sentiment classification of online reviews to travel
destinations by supervised machine learning approaches, Expert systems with
applications 36 (2009) 6527–6535. ⇒64

[46] N. Zainuddin, A. Selamat, V. Kekan, Sentiment analysis using support vector
machine, Computer, Communications, and Control Technology (I4CT), 2014
Int. Conference, 2014, pp. 333–337. ⇒59

[47] A. Zubiaga, I. S. Vicente, P. Gamallo, J. R. P. Campos, I. A. Loinaz, N. Aran-
berri, A. Ezeiza, V. F. Fernandez, Overview of tweetlid: tweet language identifi-
cation, TweetLID SEPLN, 2014, pp. 1–11. ⇒59

Received: May 30, 2018 • Revised: July 15, 2018

https://www.ijirset.com
https://www.ijirset.com
https://scholar.google.com.pk/citations?user=6QWcbggAAAAJ
http://iirjet.org/
http://iirjet.org/
http://www.jucs.org/
https://scholar.google.com.pk/citations?user=rwcGmHMAAAAJ
https://scholar.google.com.pk/citations?user=8jCKL1sAAAAJ
https://scholar.google.com.pk/citations?user=TBdDuuEAAAAJ
https://onlinelibrary.wiley.com/journal/15322890
https://scholar.google.com.pk/citations?user=-B4voPsAAAAJ
https://scholar.google.com.pk/citations?user=Jj00ksMAAAAJ
https://tois.acm.org
https://tois.acm.org
https://scholar.google.com.pk/citations?user=pWzjQJUAAAAJ
https://scholar.google.com.pk/citations?user=vt_ki6oAAAAJ
https://scholar.google.com.pk/citations?user=LHf6Oo0AAAAJ
https://scholar.google.com.pk/citations?user=mRMgTLsAAAAJ
https://www.journals.elsevier.com/expert-systems-with-applications
https://www.journals.elsevier.com/expert-systems-with-applications
https://scholar.google.com.pk/citations?user=RquT8zsAAAAJ
https://scholar.google.com.pk/citations?user=lhBZ45kAAAAJ
https://scholar.google.com.pk/citations?user=IUb-xxMAAAAJ
https://scholar.google.com.pk/citations?user=eb_xVO4AAAAJ
https://scholar.google.com.pk/citations?user=DeNWIBYAAAAJ
https://scholar.google.com.pk/citations?user=0fsDVR8AAAAJ

Acta Univ. Sapientiae, Informatica 10, 1 (2018) 73–85

DOI: 10.2478/ausi-2018-0005

Exact fit problem generator for cutting and

packing, revisiting of the upper deck

placement algorithm

Levente FILEP
Sapientia University

Department of Economic Sciences
Miercurea Ciuc

email:
fileplevente@uni.sapientia.ro

László ILLYÉS
Sapientia University

Department of Economic Sciences
Miercurea Ciuc

email:
illyeslaszlo@uni.sapientia.ro

Abstract. Problem generators are practical solutions for generating a set
of inputs to specific problems. These inputs are widely used for testing,
comparing and optimizing placement algorithms. The problem generator
presented in this paper fills the gap in the area of 2D Cutting & Pack-
ing as the sum of the area of the small objects is equal to the area of
the Large Object and has at least one perfect solution. In this paper,
the already proposed Upper Deck algorithm is revisited and used to test
the proposed generator outputs. This algorithm bypasses the dead area
problem that occurs in most of all well-known strategies of the 2D Single
Knapsack Problem where we have a single large rectangle to cover with
small, heterogeneous rectangle shapes, whom total area exceeds the large
object’s area. The idea of placing the small shapes in a free corner sim-
plifies and speeds the placement algorithm as only the available angles
are checked for possible placements, and collision detection only requires
the checking of corners and edges of the placed shape. Since the proposed
generator output has at least one exact solution, a series of optimization
performed on the algorithm is also presented.

Computing Classification System 1998: I.2.8. [Problem Solving, Control Methods, and
Search]: Subtopic - Heuristic methods
Mathematics Subject Classification 2010: 68T20, 90B40
Key words and phrases: Cutting stock problem, problem generator, genetic algorithm

73

http://csik.sapientia.ro/
http://www.sapientia.ro
mailto:fileplevente@uni.sapientia.ro
http://emte.siculorum.ro/~illyeslaszlo/
http://www.sapientia.ro
mailto:illyeslaszlo@uni.sapientia.ro

74 L. Filep, L. Illyés

1 Introduction

Cutting and Packing (C&P) problems are of great interest in operation re-
search. From storage filling to memory allocation, the knapsack problem ap-
pears in many forms. As these problems are NP-complete (non-deterministic
polynomial time), meta-heuristic approaches, such as Genetic Algorithms (GA),
are popular as they provide good-enough solutions.

Problem generators are seen as a tool to overcome limitations imposed by
the absence of appropriate test problems [14] in the field of C&P. The problem
generator proposed and presented in this paper aims to fill the gap in the area
by providing problems with at least one exact solution which, besides bench-
marking, can be used to improve upon existing algorithms.

The upper deck placement GA, which was presented by one of the authors
in the 2nd ESICUP meeting [6], is revisited in this paper and improvement
attempts are made using the output of the proposed problem generator.

1.1 Problem generators

There are many problem generators developed for C&P. For our problem of
two-dimensional rectangle cutting problem, the existing generator is the 2DC-
PackGen [14] developed by Silva, Oliveira and Wsher, downloadable from [17].
Since each of these generates shapes whose summed areas exceeds the surface
area there is no best-known solution to these. While this is not a problem, since
the aim of meta-heuristic algorithms is to provide a good enough solution for
this kind of problems, it is a problem if we need to know of better solutions
to further optimize the placing algorithms. Using brute force to try out all
possible combinations to obtain the best possible solution its not a practical
option. On the 2ndESICUP meeting, Alvarez-Valdez [1] defined the problems
with perfect solutions as Jigsaw problems. T. Inamichi, et al. [9] proposed al-
gorithms for perfect packing problems. Mumford and Wang [13] uses a perfect
guillotine-cut example to check the performance of their algorithms. The first
approach to the Jigsaw generator problem was from Illys and Fbin [7], but it
was not implemented. This paper presents such an exact fit or in other words
a perfect matching 2D, non-guillotine cutting stock problem generator.

1.2 Cutting stock problems

According to the typology of cutting stock problems [16], our work falls into
the two-dimensional Single Knapsack Problem (2D-SKP) category. Previous
algorithms to solve this problem are the Bottom Left algorithm (BL) [10], the

Exact fit problem generator, revisiting the upper deck placement GA 75

improved BL algorithm [12], the BL Fill algorithm [4]. There are other, newer
algorithms proposed and presented, but these are the first best approaches.

2 Proposed problem generator

In contrast to existing generators which generate shapes with a given distri-
bution, usually gamma, until the combined area of these exceeds the cutting
stock area, our generator starts with the cutting stock area and uses expand-
ing rectangles placed at random locations to achieve complete coverage of this
area. As opposed to other methods of randomly cutting an area into smaller
pieces, the presented method was chosen due to ease of implementation in an
arbitrary programming language.

For easy use, the generator is provided a graphical interface where the in-
put parameters can be set: the width and height of the cutting stock area, the
initial seed used for the pseudo-random number generator, the minimum and
maximum shape extensions (in other words the growth of the shapes) and a
cutoff ratio for random shape location. The width and height determine the
unit square size of the stock cutting area, where each generated shape size is
a multiple of this unit area.

The generation process starts with a given size area represented as a W×H

(width, height) grid on which small shapes are placed and expanded in each
step. These steps are repeated by the generator until these shapes cover the
entire surface area.

Each step begins by randomly selecting an X and Y location on the grid. If
the chosen coordinates are outside of any existing shape, in other words, it’s a
free cell, then a new 1× 1 size shape is created at the location and marked for
the next operation. If the coordinates are inside an existing shape then, that
shape is marked.

Using the previously marked shape, if possible, this is expanded in a random
direction: up, down, left or right. The number of expansion attempts of the
shape is dictated by the input parameters.

It is trivial to observe that as the number of free unit squares decreases it’s
harder to hit any new unoccupied cells by generating random X, Y locations,
consequently the algorithm’s progression is slowing down. The FaCR cutoff
ratio represents the ratio between the free and total cells after which instead
of choosing random locations, the generator selects one from the remaining
free cells, marks it as a new shape and expands this until possible. This oper-
ation is repeated until all cells are occupied by a shape, thus completing the

76 L. Filep, L. Illyés

generation process and achieving a perfect matching problem. This measure is
needed to ensure that the generation process ends in a timely manner. From
experimental results a 0.1−0.25 cutoff value is ideal. Figure 1 illustrates some
of the steps and the end result.

Algorithm 1: Pseudo-code for problem generator

Data: Input parameters:
W,H: width and height of the cutting stock area
FaCR: Free area Cutoff Ratio
minEs, maxEs: minimum and maximum number of shape
expansion

Result: shape list
begin

TotalArea←W ∗H;
FreeArea← 0;
while (FreeArea/TotalArea) > FaCR do

Generate random X, Y coordinates // 0 6 X 6 W, 0 6 Y 6 H

if Grid[X, Y] is empty then
Generate new 1× 1 Shape[i] at Grid[X, Y] location;
Mark Grid[X, Y] as part of Shape[i];

Es← Random() // minEs 6 Es 6 maxEs

Expand Shape[i] Es number of times;
Recalculate FreeArea;

while FreeArea ¿ 0 do
Get X, Y of next free unit square;
Generate new 1× 1 Shape[i] at Grid[X, Y] location;
Es← Random() // minEs 6 Es 6 maxEs

Expand Shape[i] Es number of times;
Recalculate FreeArea;

3 Upper deck placement genetic algorithm

Placement algorithms are used to place small objects, known as shapes in
our case rectangles on a Large Object, known as cutting stock in our case a
rectangle too. The sides of the small pieces are parallel to the stock plate, the
pieces do not overlap each other and do not exceed the dimension of the stock
plate.

Exact fit problem generator, revisiting the upper deck placement GA 77

Figure 1: Shape generation process, early, mid and final stage

The genetic algorithm version of the upper deck algorithm was proposed at
a previous conference [6], therefore a full version of this is not described here.
Instead, we reflect on the differentiating parts from a conventional placement
GA, namely the shape placement, angle generation part and the genetic op-
erators of this. Before this paper, only the little objects order of placement
was coded in permutation chromosomes. The rotation possibility was also ad-
dressed by Hopper and Turton in [3] but was not encoded in the gene, while
the deck was not addressed at all.

Each input shapes is provided with a unique identification id. Even if two
shapes are identical they are given separate ids and treated as distinct. This
sacrifices some memory for computational speed gains since avoids the neces-
sity of counting and checking the correct number of placed shapes against the
input at each genetic operation.

3.1 Chromosome structure

Each gene in the chromosome represents a shape’s placement properties. These
include: unique identification id, a set of Boolean value indicating whether the
shape is placed or not at the stored angle number and its rotation.

3.2 Heuristic

The strong point of the algorithm consists of the utilized heuristic. The al-
gorithm maintains a list of the available angles where the next shape can
be placed. This significantly lowers the number of possibilities needed to be
checked for a possible shape placement, thus increasing the computational ef-
ficiency of the algorithm. The notation of the available angles is in the order
of appearance and clockwise as shown in Figure 2. As new shapes are placed,
depending on the placement, the number of angles can increase or decrease,
but the notation is always maintained.

78 L. Filep, L. Illyés

By definition [6], the upper angles are defined as the angle created by the
intersection of either two of the cutting stock area walls, the edges of previ-
ously placed shapes or a combination of these. Therefore these are the concave
angles. This definition has practical reasons behind it. As an example let’s con-
sider the filling a storage area that has a single entrance, where placing crates
in concave angles would be unpractical.

Figure 2: Angle notation on various stages of placement

Figure 3: Collision detection: corners first, then along the edges

3.3 Collision detection

For computational speed improvement, as proposed prior [6], a raster grid is
used to detect the possibility of placement. This sacrifices additional memory
in favor of computational speed. The collision detection in this case, as illus-
trated in Figure 3, only involves checking the corners first and then checking
against the borders in the raster grid. Another advantage is that the number of
already placed shapes does not impact the detection speed since this depends

Exact fit problem generator, revisiting the upper deck placement GA 79

only on the number of angles which has to be checked and on the length of
the edges (width, height) of the shape being tested.

3.4 Genetic operators

Roulette Based Fitness (RBF) selection and Partially mixed-cyclic (PMX-
CX) crossover are used. The fitness value is F = 1 − R, where R is the waste
percentage

R =
Areafree

Areatotal
,

R ∈ [0, 1], therefore F ∈ [0, 1]. A higher value of F indicates a better solution
than a lower one. Mutation can either change the rotation of an angle or switch
two genes. Since shape id is unique, their change it’s not allowed.

4 Results and improvements

The first test of the algorithm was using an already presented problem [5,
8]. The problem is presented in more detail in Section 4.4. The initial tests
were conducted using a population of 100 individuals, 1000 generations, 0.15
crossover and 0.05 mutation. Both crossover and mutation values express the
fraction of affected population by the genetic operators in a [0..1] interval. The
algorithm generated a best fitness value of 0.969 with an average best fitness
value of 0.941 out of 100 runs. The fitness value was collected after each 100th
generation. This result is illustrated in Figure 5a by the straight line.

However, using an input of 558 shapes listed in Appendix Input list, 120x110,
558 shapes with an cutting stock area of 120 × 110 from our generator, as
indicated by the dotted line on the same figure, the algorithm convergence,
in our opinion, was extremely low over the 1000 generations. Arguably the
difference is due to the exact fit solution generated. In this case, each of the
shapes not placed has a far bigger impact on the fitness value compared to
the previous test where the number of shapes used has a far greater total area
than the cutting stock. To improve on this limitation, instead of placing a
shape at a random angle, we modified the algorithm to try all possible angles
of placement available at a given step. The following sections describe the
improvements obtained using this idea.

80 L. Filep, L. Illyés

4.1 Crossover and mutation operation improvement

Since each gene stores the placed angle number for the shape, in case of
crossover and mutation operations some of these will fall outside of the avail-
able angle numbers at a given step. While this is not necessarily an issue
because with generation progression these individuals are eliminated, in prac-
tice, we found that this results in unreasonable slow convergence over the 1000

generations. To overcome this limitation all mutated chromosomes are reeval-
uated, the placement angles of the shapes are, if needed, recalculated and the
genes updated. In such case, the shape is attempted to be placed again at
the available angles. This in term, requires that the rest of the chromosome
to be updated as well. The operation requires an additional computational
effort, however, the result is a significant convergence improvement as seen in
Figure 5b represented by the straight line compared to the result shown in
Figure 5a with the dotted line.

We also applied the concept of elite individuals [15], the aim of which is
to ensure that individuals carrying the best solutions propagate to the next
generation. The result of this improvement is also incorporated in the result
illustrated in Figure 5b with the straight line.

Figure 4: Population size influence on fitness

4.2 Initial population and maximum generation size

After we achieved a satisfying conversion, we investigated the quality of the
starting population and the size of maximum generations. As there is an exact
fit solution to the input used but also noticing the fitness convergence, we tried
to improve the quality of the initial population by applying the above idea of
testing all possible angles when trying to place a given shape. This resulted in
the starting population’s best fitness value improvement by an average value

Exact fit problem generator, revisiting the upper deck placement GA 81

(a) initial results (b) improved algorithm

Figure 5: Comparison between the original and the improved algorithm

of 0.1122 (11.22%). This result is observable in the difference of the starting
fitness values between Figure 5a and Figure 5b.

Testing the population size influence on the algorithm’s result quality we
considered that the average fitness value increase is beneficial up to a popula-
tion of 200−250 for the current set of input. Illustrated in Figure 4, the result
was obtained out of 10 runs using the 558 input shape list and the fitness value
collected every 100th generation. As a result, we considered a population of
250 with a maximum of 1000 generations for the further tests.

4.3 Mass extinction

For even better convergence to the known solution, the notion of mass ex-
tinction [11] which shows some promise in regards to certain types of genetic
algorithms [2] was also tested. Using preliminary tests, parameter values of
0.25 and 250 are used, meaning that a quarter of the population is eliminated
each 250th generations. After the extinction process, the crossover probability
is dynamically increased to double the value to allow for population regenera-
tion. In this case, the chance increases for weaker fitness value individuals to
produce offsets. The theoretical benefit of the extinction process is that the
newly created individuals increase the population diversity, thus allowing the
population to explore more of the search space or if being stuck in a local
maxima this operation increases the chance of breaking out. The result ob-
tained from a 100 consecutive runs, as illustrated in Figure 5b with the dotted
line, shows a slight improvement of the average best fitness values by 0.00418

(0.418%) with a lightly faster convergence.

82 L. Filep, L. Illyés

4.4 Revisiting the 64x64 particular covering problem

With the improved algorithm, we revisited the particular covering problem
[5, 8] of placing most squares from a list of 1×1, 2×2, to 46×46 on a 64×64

grid, trying to get the most cell coverage. Here we managed to improve on the
existing solution presented in the old paper where the best result obtained left
35 free cells, illustrated in figure Figure 6a, while the new solution, illustrated
in figure Figure 6b, has only 32 free. The result was obtained from 100 runs
and the best fitness was achieved twice, in runs 24 and 71.

(a) Previous result with 35 free space (b) Improved result with 32 free space

Figure 6: Improvement made to the particular placement problem

5 Conclusions and future work

In this paper, we presented an exact fit 2D problem generator which fills a
gap in the problem generators area. Preliminary testing was done using the
revisited upper deck placement genetic algorithm. Using the input from the
generator a series of improvements made to the algorithm was investigated
and presented. These improved both the quality of the starting population as
well as the convergence of the GA. We also revisited the 64 × 64 particular
covering problem where we managed to improve on the previous result. Further
development plans for the presented generator include the option to generate
guillotine stock problems as well as three-dimensional problems.

Exact fit problem generator, revisiting the upper deck placement GA 83

Acknowledgements

This work was partially supported by the Collegium Talentum 2017 Programme
of Hungary.

References

[1] R. Alvarez-Valdez, F. Parreño, J.M. Tamarit, A Tabu Search Algorithm for
two-dimensional, non-quillotine problems, 2nd ESICUP Meeting, Southampton,
England, 2005. ⇒74

[2] H. David Mathias, R. Vincent, An empirical study of crossover and mass extinc-
tion in a genetic algorithm for pathfinding in a continuous environment, 2016
IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada, 2016,
pp. 4111–4118. ⇒81

[3] E. Hopper, B. C. H. Turton, A genetic algorithm for a 2D industrial packing
problem, Computers & Industrial Engineering 37, (1999), 375–378. ⇒77

[4] E. Hopper, B. C. H. Turton, An empirical investigation of meta-heuristic and
heuristic algorithms for a 2D packing problem, European Journal of Operational
Research 128, 1 (2001) 34–57. ⇒75

[5] L. Illyés, Genetic algorithms for a particular covering problem, International
Conf. on Economic Cybernetics, Bucuresti, Romania, 2004. ⇒79, 82

[6] L. Illyés, Upper Angle Placement Algorithm with Genetic Approach for 2D Rect-
angle Knapsack Problem, 2nd ESICUP Meeting, Southampton, England, 2005.⇒74, 77, 78

[7] L. Illyés, Cs. Fábián, ”Jigsaw” problem generator for 2D rectangle single large
object for non-guillotine and guillotine cutting, Proc. WSCSP2005, Workshop
on Cutting Stock Problems, Miercurea-Ciuc, Romania, 2005, pp. 83–89. ⇒74

[8] L. Illyés, L. Pál, Generalized particular covering problem with genetic algo-
rithms, AMO - Advanced Modeling and Optimization, 7, 1, 2005, 1–7. ⇒ 79,
82

[9] T. Inamichi et. al., Branch-and-bound algorithms for regular strip packing and
perfect packing problems, 2nd ESICUP Meeting, Southampton, England, 2005.⇒74

[10] S. Jakobs, On genetic algorithms for packing polygons, European Journal of
Operational Research 88, (1996), 165–181. ⇒74

[11] B. Jaworski, Kuczkowski, R. Śmierzchalski, Extinction Event Concepts for the
Evolutionary Algorithms, Przeglad Elektrotechniczny , 1, 88 (2012), 252–255. ⇒
81

[12] D. Liu, H. Teng, An improved BL-algorithm for genetic algorithm of the or-
thogonal packing of rectangles, European Journal of Operational Research 112,
(1999), 413–420. ⇒75

https://www.journals.elsevier.com/computers-and-industrial-engineering
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://www.journals.elsevier.com/european-journal-of-operational-research/
http://emte.siculorum.ro/~illyeslaszlo/research/CuttingANDPacking/jigsaw.PDF
https://camo.ici.ro/journal/jamo.htm
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.pe.org.pl/articles/2012/10b/65.pdf
https://www.journals.elsevier.com/european-journal-of-operational-research/

84 L. Filep, L. Illyés

[13] C. L. Mumford, P. Y. Wang, A genetic simulated annealig approach to aacking,
2nd ESICUP Meeting, Southampton, England, 2005. ⇒74

[14] E. Silva, J. F. Oliveira, G. Wäsher, A problem generator for two-
dimensional rectangular cutting and packing problems, ESICUP. (2007),
https://paginas.fe.up.pt/˜esicup/problem generators. ⇒74

[15] M. Villalobos-Arias, C. Coello Coello, O. Hernndez-Lerma, Asymptotic conver-
gence of some metaheuristics used for multiobjective optimization, FOGA 2005:
Foundations of Genetic Algorithms, Aizu-Wakamatsu, Japan, 2005, pp. 95–111.⇒80

[16] G. Wäscher, H. Hauner, H. Schumann, An improved typology of cutting and
packing problems, European Journal of Operational Research 183, 3 (2007),
1109–1130. ⇒74

[17] EURO Special Interest Group on Cutting and Packing, https://paginas.fe.
up.pt/~esicup/problem_generators ⇒74

https://paginas.fe.up.pt/~esicup/problem_generators
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://paginas.fe.up.pt/~esicup/problem_generators
https://paginas.fe.up.pt/~esicup/problem_generators

Exact fit problem generator, revisiting the upper deck placement GA 85

Appendix

Input list, 120x110, 558 shapes

The following table contains the list of input shapes used for testing the GA.
The values in column ”#” represents the id of the shape, columns ”W.” and
”H.” its width and height, while column ”Nr.” indicates the quantity of this.

W. H. Nr. # W. H. Nr. # W. H. Nr. # W. H. Nr.
1 1 1 34 36 4 5 6 71 7 3 3 106 10 7 2
2 1 2 19 37 4 6 5 72 7 4 3 107 10 8 3
3 1 3 9 38 4 7 2 73 7 5 4 108 10 12 1
4 1 4 9 39 4 8 1 74 7 6 4 109 10 13 2
5 1 5 13 40 4 9 2 75 7 7 2 110 10 16 1
6 1 6 5 41 4 10 2 76 7 8 1 111 11 3 1
7 1 7 2 42 5 1 7 77 7 9 1 112 11 5 3
8 1 8 4 43 5 2 8 78 7 12 3 113 11 6 1
9 1 11 1 44 5 3 6 79 7 13 2 114 11 10 1

10 2 1 15 45 5 4 10 80 8 1 1 115 11 11 1
11 2 2 18 46 5 5 7 81 8 2 6 116 11 12 1
12 2 3 19 47 5 6 6 82 8 3 1 117 12 4 2
13 2 4 11 48 5 7 5 83 8 4 1 118 12 5 2
14 2 5 7 49 5 8 1 84 8 5 3 119 12 7 1
15 2 6 7 50 5 9 3 85 8 6 1 120 12 8 2
16 2 7 2 51 5 10 1 86 8 7 1 121 12 10 1
17 2 8 3 52 5 11 1 87 8 8 2 122 13 3 1
18 2 9 1 53 5 12 1 88 8 9 1 123 13 4 1
19 2 15 1 54 6 1 5 89 8 10 2 124 13 5 1
20 3 1 18 55 6 2 6 90 8 12 1 125 13 6 2
21 3 2 22 56 6 3 3 91 8 13 1 126 13 7 1
22 3 3 14 57 6 4 9 92 9 1 1 127 13 12 1
23 3 4 8 58 6 5 9 93 9 2 2 128 14 4 1
24 3 5 4 59 6 6 5 94 9 3 1 129 14 5 2
25 3 6 11 60 6 7 3 95 9 4 3 130 15 2 1
26 3 7 1 61 6 8 3 96 9 5 2 131 15 6 1
27 3 9 2 62 6 9 3 97 9 7 2 132 15 9 2
28 3 10 1 63 6 10 1 98 9 8 1 133 16 4 1
29 3 11 2 64 6 11 1 99 9 9 2 134 16 5 1
30 3 13 3 65 6 12 1 100 9 10 1 135 16 6 1
31 3 20 1 66 6 14 1 101 9 11 2 136 19 9 1
32 4 1 10 67 6 15 2 102 9 15 1 137 22 9 1
33 4 2 9 68 6 19 1 103 10 2 1
34 4 3 12 69 7 1 6 104 10 4 2
35 4 4 10 70 7 2 7 105 10 6 1

Received: March 15, 2018 • Revised: July 13, 2018

Acta Univ. Sapientiae, Informatica 10, 1 (2018) 86–109

DOI: 10.2478/ausi-2018-0006

Hierarchical clustering with deep

Q-learning

Richárd FORSTER
Eötvös University

email: forceuse@inf.elte.hu

Ágnes FÜLÖP
Eötvös University

email: fulop@caesar.elte.hu

Abstract. Following up on our previous study on applying hierarchical
clustering algorithms to high energy particle physics, this paper explores
the possibilities to use deep learning to generate models capable of pro-
cessing the clusterization themselves. The technique chosen for training
is reinforcement learning, that allows the system to evolve based on in-
teractions between the model and the underlying graph. The result is a
model, that by learning on a modest dataset of 10, 000 nodes during 70
epochs can reach 83, 77% precision for hierarchical and 86, 33% for high
energy jet physics datasets in predicting the appropriate clusters.

1 Introduction

Different datasets should be clusterized with specific approaches. For real world
networks, hierarchical algorithms, like the Louvain method, provides an effi-
cient way to produce the clusters, that will represent elements, that have a
strong connection. In high energy physics clusterization can be done by finding
jets using for example the kt jet clustering. Here a cluster will be a narrow
cone of hadrons and other particles produced by the hadronization of a quark
or gluon in a heavy ion experiment. Fusing these algorithms a more generic

Computing Classification System 1998: I.1.4
Mathematics Subject Classification 2010: 58A20
Key words and phrases: jet, cluster algorithm, hierarchical clustering, deep q-learning,
neural network, multi-core, keras, cntk, louvain

86

http://people.inf.elte.hu/forceuse/
http://www.inf.elte.hu
mailto:forceuse@inf.elte.hu
http://compalg.inf.elte.hu/~fulop/
http://www.inf.elte.hu
mailto:fulop@caesar.elte.hu

Clustering with deep learning 87

process can be conceived, that was studied in [13]. As a consequence building
a graph from the available particles, the same hierarchical clustering can be
computed, like on other network related datasets. The graph of the two differ-
ent input differs only in how the edges are represented, while networks have
some strength associated to their connections, the weight of the edges between
the different nodes, for particles this weight will be the distance between the
elements.

Further generalizing the approach, in this paper a deep learning method is
described based on reinforcement learning, that allows the system, to learn
to clusterize the input graphs without any external user interaction, relying
only on the agent’s experience on the graph. This way a single algorithm can
be used for the different kind of datasets without any additional specificity
in the computational process. In the context of present paper this will lead
to a generic model, that is capable to predict the clusterization steps of the
elements in different hierarchical clustering tasks.

The evaluation is provided on real world network data taken from the U.S.
Census 2010 database. Further data was generated for jet physics using the
AliRoot framework [29]. A comparison is given on modularity level of the
clusterization between the standard Louvain method and a modified version
using the generated model for predicting future communities. Early results
shows, that the neural network is capable to achieve an average precision on
the Census test dataset of 83, 77% and 84, 12% for jet dataset, learning for
only 70 epochs on a training set consisting from information collected only on
the hierarchical dataset.

2 Hierarchical clustering

This section contains a brief introduction of the used hierarchical clustering
algorithm and how it was fused with the processes of the jet algorithms from
physics to achieve a generalized clustering solution.

2.1 Jet

A jet is a narrow cone of hadrons and other particles which were produced by
the hadronization processes of a quark or gluon plasma in a particle physics or
heavy ion experiment[27]. The constituent particles are carrying a color charge,
such as quarks, they cannot exist in free form due to QCD confinement. This
theory allows the colorless states only. The color-free particles formed dur-
ing the fragmentation process form the jet, because the fragments all tend to

88 R. Forster, Á. Fülöp

travel in the same direction, creating a narrow jet of particles (Figure 1). Jets
are measured in particle detectors and researched to determine the properties
of the original quarks. Jets are produced in QCD hard scattering processes,
evolving high transverse momentum quarks or gluons, which is called collec-
tively partons in the partonic picture[25]. Perturbative QCD calculations may
have colored partons in the final state, but the colorless hadrons are detected
in the observed experimental. It can be understand what happened in the
detector, if all outgoing colored partons must first undergo parton showering
and then combination of the created partons into hadrons.

Figure 1: Structure of jet

2.2 Jet clusterisation

The jet clustererisation means when we research the jet momentum owing to
the final state particles in the calorimeter [30]. For more accurate understand-
ing the conversion results, we can take into account a muon systems. They form
the clusters all together. Two problems should be noted in theoretical research:
the infrared (IR) safety and collinear safety. The infrared safe means, that the
measured object does not depend on the low energy theoretical physics. The
collinear(C) safety is understood, when a parton is substituted by a collinear
pair of partons, then the jet clustering outcome does not change. Then the jet
can be observed by perturbative technic to apply the experiment, because the
jet does not modulate when the particles radiates a very soft objects, or fails to
two collinear particles. By theoretical consideration in the case of the infrared
divergence the integral of Feynman diagram diverges due to the constituent
objects hold very small energy which goes to zero. When the system consists
massless particles, it can apply an infrared cutoff and it approximates to zero.
The divergence stays finite quantity in the experimental data. Then the in-

Clustering with deep learning 89

frared safe and collinear safe jet reconstruction algorithm can be evaluated for
the measurement which satisfies the theoretical considerations or it is used to
a given order due to the IRC safe method. Because the jet mass and energy
depend on the jet radius, therefore these quantities can be determined more
precisely, if the jet radius becomes larger. In the case of the smaller size the
cluster consists of more hadronised particles.

Substructure of jet It can be one jet which including more than one group
of gaussian- distributed clusters. Substructure is possible a non gaussian com-
ponent, which is compliances to an offset. It can also contains another gaussian
group of clusters, ie. second hard jet. Three different types can be defined:

I: Subjet from uncorrelated sources, overlapping the hard jet which is thought
or clustered together with it. This is soft process, derived from proton-leftovers,
initial state radiation, beam-rests and/or scatterings, e.g. pileup (PU) and un-
derlying event (UE).

II: Subjet from correlated sources, clustered together with the hard jet con-
sidered, coming from the same primary vertex, but another branch of the
Feynman diagram.

III: Subjet from correlated sources, deriving from the decay of a single
boosted particle, clustered together into a single jet.

2.3 Jet algorithm

During the last 40 years several jet reconstruction algorithms have been devel-
oped for hadronic colliders [31, 1]. The first ever jet algorithm was published
by Sterman and Weinberg in the 1970’s [34]. The cone algorithm plays an
important role when a jet consists of a large amount of hadronic energy in a
small angular region. It is based on a combination of particles with their neigh-
bours in η − ϕ space within a cone of radius R =

√
(∆ϕ2 + ∆η2). However

the sequential recombination cluster algorithms combine the pairs of objects
which have very close pt values. The particles merge into a new cluster through
successive pair recombination. The starting point is the lowest pt particles for
clustering in the kt algorithm, but in the anti-kt recombination algorithm it
is the highest momentum particles.

The jet clustering involves the reconstructed jet momentum of particles,
which leaves the calorimeter together with modified values by the tracker
system.

90 R. Forster, Á. Fülöp

2.3.1 Cone algorithm

The Cone algorithm is one of the regularly used methods at the hadron col-
liders. The main steps of the iteration are the following [34]: the seed par-
ticle i belongs to the initial direction, and it is necessary to sum up the
momenta of all particle j, which is situated in a circle of radius R (∆R2ij =

(yi − yj)
2 + (ϕi − ϕj)

2 < R2) around i, where yi and ϕi are the rapidity and
azimuth of particle i.

The direction of the sum is applied as a new seed direction. The iteration
procedure is repeated as long as the direction of the determined cone is stable.

It is worth noting what happens when two seed cone overlaps during the
iteration. Two different groups of cone algorithms are discussed: One possible
solution is to select the first seed particle that has the greatest transverse
momentum. Have to find the corresponding stable cone, i.e. jet and delete the
particles from the event, which were included in the jet. Then choose a new
seed, which is the hardest particle from the remaining particles, and apply to
search the next jet. The procedure is repeated until there is no particle that
has not worked. This method avoids overlapping.
Other possibility is the so called ”overlapping” cones with the split-merge
approach. All the stable cones are found, which are determined by iteration
from all particles. This avoids the same particle from appearing in multiple
cones. The split-merge procedure can be used to consider combining pair of
cones. In this case more than a fraction f of the transverse momentum of the
softer cones derives from the harder particles; otherwise the common particles
assigned to the cone, which is closer to them. The split-merge procedure applies
the initial list of protojets, which contains the full list of stable cones:

1. Take the protojet with the largest pt (i.e. hardest protojet), label it a.

2. Search the next hardest protojet that shares particles with a (i.e. over-
laps), label it b. If no such protojet exists, delete a from the list of
protojets and add it to the list of final jets.

3. Determine the total pt of the particles, which is shared between the two
protojets, pt,shared.

• If pt,shared > f, where f is a free parameter, it is called the overlap
threshold, replace protojets a and b with a single merged protojet.

• Otherwise the protojets are scattered, for example assigning the
shared particles to the protojet whose axis is closer.

4. Repeat from step 1 as long as there are protojets left.

Clustering with deep learning 91

A similar procedure to split-merge method is the so called split-drop, where
the non-shared particles, which fall into the softer of two overlapping cones
are dropped, i.e. are deleted from the jets altogether.

2.3.2 Sequential recombination jet algorithm

They go beyond just finding jets and implicitly assign a clustering sequence
to an event, which is often closely connected with approximate probabilistic
pictures that one may have for parton branching. The current work focuses
on the kt algorithm, whose parallelization was studied in [11] and [12].

The kt algorithm for hadrons In the case of the proton-proton collision,
the variables which are invariant under longitudinal boots are applied. These
quantities which were introduced by [5] and the distance measures are longi-
tudinally invariant as the following:

dij = min
(
p2ti, p

2
tj

)
∆R2ij, ∆Rij = (yi − yj)

2 + (ϕi −ϕj)
2 (1)

diB = p2ti. (2)

In this definition the two beam jets are not distinguished.
If p = −1, then it gives the ”anti-kt” algorithm. In this case the clustering

contains hard particles instead of soft ones. Therefore the jets extend out-
wards around hard seeds. Because the algorithm depends on the energy and
angle through the distance measure, therefore the collinear branching will be
collected at the beginning of the sequence.

2.4 The Louvain algorithm

The Louvain method [4], is a multi-phase, iterative, greedy hierarchical clus-
terization algorithm, working on undirected, weighted graphs. The algorithm
processes through multiple phases, within each phase multiple iterations until
a convergence criteria is met. Its parallelization was explored in [22], that was
further evolved into a GPU based implementation as was detailed in [10]. The
modularity is a monotonically increasing function, spreading across multiple
iterations, giving a numerical representation on the quality of the clusters.
Because the modularity is monotonically increasing, the process is guaranteed
to terminate. Running on a real world dataset, termination is achieved in not
more than a dozen iterations.

92 R. Forster, Á. Fülöp

2.4.1 Modularity

On a set, S = C1, C2, ..., Ck, containing every community in a given partitioning
of V, where 1 ≤ k ≤ N and V is the set of nodes, N is the number of nodes.
Modularity Q is given by the following [26]:

Q =
1

2W

∑
i∈V

ei→C(i) −∑
C∈S

(
degC
2W

· degC
2W

)
, (3)

where degC is the sum of the degrees of all the nodes in community C,
ei→C(i) is the sum of weights of all edges connecting node i to all nodes in
community C(i) and W is the sum of the weight of all the edges.

Modularity has multiple variants, like the ones described in [37, 2, 3]. Yet
the one defined in Eq. (3) is the more commonly used.

2.5 Hierarchical kt clustering

In [13] it was studied how to do hierarchical clustering, following the rules of
the kt algorithm. First the list of particles has to be transformed into a graph,
with the particles themselves appointed as nodes. The distance between the
elements is a suitable selection for a weight to all edges between adjacent
particles. But as it eventually leads up to n ∗ (n − 1)/2 links, where n is the
number of nodes, a better solution is to make connections between nearest
neighbours and to the second to nearest. If the particle’s nearest ”neighbour”
is the beam, it will be represented with an isolated node. While the Louvain
algorithm relies on modularity gain to drive the computation, the jet clustering
variant doesn’t have the modularity calculation, as it is known that the process
will end, when all particles are assigned to a jet.

The result of this clustering will still be a dendogram, where the leafs will
represent the jets.

3 Basic artificial neural networks

Since the beginning of the 1990s the artificial neural network (ANN) methods
are employed widely in the high energy physics for the jet reconstruction and
track identification [9, 18]. These methods are well-known in offline and online
data analysis also.

Artificial neural networks are layered networks of artificial neurons (AN) in
which biological neurons are modeled. The underlying principle of operation
is as follows, each AN receives signals from another AN or from environment,

Clustering with deep learning 93

gathers these and creates an output signal which is forwarded to another AN
or the environment. An ANN contains one input layer, one or more hidden
layers and one output layer of ANs. Each AN in a layer is connected to the
ANs in the next layer. There are such kind ANN configurations, where the
feedback connections are introduced to the previous layers.

3.1 Architecture

An artificial neuron is denoted by a set of input signals (x1, x2, . . . xn) from
the environment or from another AN. A weight wi (i = 1, . . . n) is assigned
to each input signal. If the value of weight is larger than zero then the signal
is excited, otherwise the signal is inhibited. AN assembles all input signals,
determines a net signal and propagates an output signal.

3.1.1 Types of artificial networks

Some features of neural systems which makes them the most distinct from the
properties of conventional computing:

• The associative recognition of complex structures

• Data may be non-complete, inconsistent or noisy

• The systems can train, i.e. they are able to learn and organize themselves

• The algorithm and hardware are parallel

There are many types of artificial neural networks. In the high energy partic-
le physics the so-called multi-layer perception (MLP) is the most widespread.
Here a functional mapping from input xk to output zk values is realised with
a function fzk :

zk = fzk

m+1∑
j=1

wkjfyj

(
n+1∑
i=1

vjixi

) ,
where vji are the weights between the input layer and the hidden layer, and
wkj are the weights between the hidden layer and the output layer. This type
of ANN is called feed-forward multi-layer ANN.

It can be extended into a layer of functional units. In this case an activation
function is implemented for the input layer. This ANN type is called functional
link ANN. The output of this ANN is similar such as previously ANN, without
it has additional layer, which contains q functions hl(x1 . . . xn)(l = 1 . . . q).

94 R. Forster, Á. Fülöp

The weights between the input layer and the functional layer are uli = 1, if hl
depends on xi, and uli = 0 otherwise. The output of this ANN is:

zk = fzk

m+1∑
j=1

wkjfyj

(
q+1∑
l=1

vjlhl(x1 . . . xn)

) .
The functional link ANNs provides better computational time and accuracy
then the simple feed-forward multi-layer ANN.

Application in high-energy physics The first application, which was
published in 1988, discussed a recurrent ANN for tracking reconstruction [8].
A recurrent ANN was also used for tracking reconstruction in LEP experiment
[28]. An article published about a neural network method which was applied to
find efficient mapping between certain observed hadronic kinematical variables
and the quark-gluon identify. With this method it is able to separate gluon
from quark jets originating from the Monte-Carlo generated e+e− events [21].
A possible discrimination method is presented by the combination of a neural
network and QCD to separate the quark and gluon jet of e+e− annihilation
[6].

The neural network clusterisation algorithm was applied for the ATLAS
pixel detector to identify and split merged measurements created by multiple
charged particles [20]. The neural network based cluster reconstruction algo-
rithm which can identify overlapping clusters and improves overall particle
position reconstruction [32].

Artificial intelligence offers the potential to automate challenging data-
processing tasks in collider physics. To establish its prospects, it was explored
to what extent deep learning with convolutional neural networks can discrim-
inate quark and gluon jets [19].

4 Q-learning

Q-learning is a model-free reinforcement learning technique [35]. The reinforce-
ment learning problem is meant to be learning from interactions to achieve a
goal. The learner and decision-maker is called the agent. The thing it interacts
with is called the environment, that contains everything from the world sur-
rounding the agent. There’s a continuous interaction between, where the agent
selects an action and the environment responds by presenting new situations
(states) to the agent. The environment also returns rewards, special numerical

Clustering with deep learning 95

values that the agent tries to maximize over time. A full specification of an
environment defines a task, that is an instance of the reinforcement learning
problem. Specifically, the agent and environment interact at each of a sequence
of discrete time steps t = 0, 1, 2, At each time step t, the agent receives
the environment’s state, st ∈ S, where S is the set of possible states, and based
on that it selects an action, at ∈ A(st), where A(st) is the set of all available
actions in state st. At the next time step as a response to the action, the agent
receives a numerical reward, rt+1 ∈ R , and finds itself in a new state, st+1
(Figure 2).

Figure 2: The agent-environment interaction in reinforcement learning

At every time step, the agent implements a mapping from states to proba-
bilities of selecting the available actions. This is called the agent’s policy and

96 R. Forster, Á. Fülöp

is denoted by πt, where πt(s, a) is the probability that at = a if st = s.
Reinforcement learning methods specify how the agent changes this using its
experience. The agent’s goal is to maximize the total amount of reward it
receives over the long run.

4.1 Goals and rewards

The purpose or goal of the agent is formalized in terms of a special reward
passed from the environment. At each time step, the reward is a simple num-
ber, rt ∈ R. The agent’s goal is to maximize the total reward it receives.

4.2 Returns

If the rewards accumulated after time step t is denoted by rt+1, rt+2, rt+3, . . . ,
what will be maximized by the agent is the expected return Rt, that is defined
as some function of the received rewards. The simplest case is the sum of the
rewards: Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT , where T is the final time step. This
approach comes naturally, when the agent-environment interaction breaks into
subsequences, or episodes. Each episode ends in a special terminal state, that
is then being reset to a standard starting state. The set of all nonterminal
states is denoted by S, while the set with a terminal state is denoted by S+.

Introducing discounting, the agent tries to maximize the the sum of the
discounted rewards by selecting the right actions. At time step t choosing
action at, the discounted return will be defined with Eq. (4).

Rt = rt+1 + γrt+2 + γ
2rt+3 + · · · =

∞∑
k=0

γkrt+k+1, (4)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. It determines
the present value of future rewards: a reward received at time step t + k is
worth only γk−1 times the immediate reward. If γ < 1, the infinite sum still
is a finite value as long as the reward sequence {rk} is bounded. If γ = 0,
the agent is concerned only with maximizing immediate rewards. If all actions
influences only the immediate reward, then the agent could maximize equation
4 by separately maximizing each reward. In general, this can reduce access to
future rewards and the return may get reduced. As γ approaches 1, future
rewards are used more strongly.

Clustering with deep learning 97

4.3 The Markov property

Assuming a finite set of states and reward values, also considering how a
general environment responds at time t+ 1 to the action taken at time t, this
response may depend on everything that has happened earlier. In this case
only the complete probability distribution can define the dynamics:

Pr{st+1 = s
′, rt+1 = r|st, at, rt, st−1, at−1, . . . , r1, s0, a0}, (5)

for all s ′,r, and all possible values of the past events: st, at, rt, . . . , r1, s0, a0. If
the state has the Markov property the environment’s response at t+1 depends
only on the state and action at t and the dynamics can be defined by applying
only Eq. (6).

Pr{st+1 = s
′, rt+1 = r|st, at}, (6)

for all s ′, r, st, and at. Consequently if a state has the Markov property,
then it’s a Markov state, only if (6) is equal to (5) for all s ′, r, and histories,
st, at, rt, . . . , r1, s0, a0. In this case, the environment has the Markov property.

4.4 Markov cecision process

A reinforcement learning task satisfying the Markov property is a Markov de-
cision process, or MDP. If the state and action spaces are finite, then it is a
finite MDP. This is defined by its state and action sets and by the environ-
ment’s one-step dynamics. Given any state, action pair, (s, a), the probability
of each possible next state, s ′, is

Pass ′ = Pr{st+1 = s
′|st = s, at = a}.

Having the current state and action, s and a, with any next state, s ′, the
expected value of the next reward can be computed with

Rass ′ = E{rt+1|st = s, at = a, st+1 = s
′}.

These quantities, Pass ′ and Rass ′ , completely specify the most important aspects
of the dynamics of a finite MDP.

4.5 Value functions

Reinforcement learning algorithms are generally based on estimating value
functions, that are either functions of states or state-action. They estimate

98 R. Forster, Á. Fülöp

how good a given state is, or how good a given action in the present state is.
How good it is, depends on future rewards that can be expected, more precisely,
on the expected return. As the rewards received depends on the taken actions,
the value functions are defined with respect to particular policies. A policy, π,
is a mapping from each state, s ∈ S, and action, a ∈ A(s), to the probability
π(s, a) of taking action a while in state s. The value of a state s under a policy
π, denoted by Vπ(s), is the expected return when starting in s and following
π. For MDPs Vπ(s) is defined as

Vπ(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
,

where Eπ is the expected value given that the agent follows policy π. The value
of the terminal state is always zero. Vπ is the state-value function for policy π.
Similarly, the value of taking action a in state s under a policy π, denoted by
Qπ(s, a) is defined as the expected return starting from s, taking the action
a, and following policy π:

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
.

Qπ is the action-value function for policy π.
Vπ and Qπ can be estimated from experience. If an agent follows policy π

and maintains an average of the actual return values in each encountered state,
then it will converge to the state’s value, Vπ(s), as the number of times that
state is encountered approaches infinity. If in a given state every action has a
separate average, then these will also converge to the action values, Qπ(s, a).

4.6 Optimal value functions

To solve a reinforcement learning task, a specific policy needs to be found,
that achieves a lot of reward over the long run. For finite MDPs, an optimal
policy can be defined. Value functions define a partial ordering over policies.
A policy π is defined to be better than or equal to a policy π ′ if its expected
return is greater than or equal to π ′ for all states. Formally, π ≥ π ′ if and only
if Vπ(s) ≥ Vπ ′(s) for all s ∈ S. At least one policy exists, that is better than
or equal to all other policies and this is the optimal policy. If more than one
exists, the optimal policies are denoted by π∗. The state-value function among

Clustering with deep learning 99

them is the same, called the optimal state-value function, denoted by V∗, and
defined as

V∗(s) = max
π
Vπ(s),

for all s ∈ S. The optimal action-value functions are also shared, denoted by
Q∗, and defined as

Q∗(s, a) = max
π
Qπ(s, a),

for all s ∈ S and a ∈ A(s). For the state-action pair (s, a), this gives the
expected return for taking action a in state s and following an optimal policy.
Thus, Q∗ can be defined in terms of V∗ as follows:

Q∗(s, a) = E{rt+1 + γV
∗(st+1)|st = s, at = a}.

5 Clustering with deep Q-learning

The Deep Q-learning (DQL) [23, 24] is about using deep learning techniques
on the standard Q-learning (Section 4).

Calculating the Q state-action values using deep learning can be achieved by
applying the following extensions to standard reinforcement learning problems:

1. Calculate Q for all possible actions in state st,

2. Make prediction for Q on the new state st+1 and find the action at+1 =
maxa a ∈ A(st+1), that will yield the biggest return,

3. Set the Q return for the selected action to r + γQ(st+1, at+1). For all
other actions the return should remain unchanged,

4. Update the network using back-propagation and mini-batches stochastic
gradient descent.

This approach in itself leads to some additional problems. The exploration-
exploitation issue is related to which action is taken in a given state. By se-
lecting an action that always seems to maximize the discounted future reward,
the agent is acting greedy and might miss other actions, that can yield higher
overall reward in the long run. To be able to find the optimal policy the agent
needs to take some exploratory steps at specific time steps. This is solved by
applying the ε-greedy algorithm [35], where a small probability ε will choose
a completely random action.

100 R. Forster, Á. Fülöp

The other issue is the problem of the local-minima [36]. During training
multiple states can be explored, that are highly correlated and this may make
the network to learn replaying the same episode. This can be solved, by first
storing past observations in a replay memory and taking random samples from
there for the mini-batch, that is used to replay the experience.

5.1 Environment

The environment provides the state that the agent will react to. In case of
clustering the environment will be the full input graph. The actual state the
necessary information required to compute the Louvain method, packaged into
a Numpy stack. These include the weights, degrees, number of loops, the actual
community and the total weight of the graph. Each state represents one node
of the graph with all of its neighbors. The returned rewards for each state will
be based on the result of the actual Louvain clusterization, which means during
training the environment will compute the real clusters. If the action selected
by the agent leads to the best community, that will have a positive reward
set to 10000 and in any other case the returned value will be −1000. After
stepping, the next state will contain the modified community informations.

The agent’s action space is finite and predefined and the environment also
has to reflect this. Let the cardinality of the action space be noted for all
s ∈ S states by |A(s)| For this reason, the state of the environment contains
information about only |A(s)| neighbors. This can lead to more nodes, than
how many really is connected to a given element. In this case the additional
dummy node’s values are filled with extremals, in the current implementation
with negative numbers. One limitation of the actual solution is that if the
number of neighbors are higher, than |A(s)|, then only the first |A(s)| neighbors
will be considered, in the order in which they appear in dataset. The first
”neighbor” will be currently evaluated node, so in case the clusterization will
not yield any better community, the model should see, that the node stays in
place.

To help avoid potential overflow during the computation, weights of the
input graph are normalized to be between 0.000001 and 1.

5.2 Agent

The agent acts as the decision maker, selecting the next community for a given
node. It takes the state of the environment as an input and gives back the index
of the neighbor that is considered to be providing the best community.

Clustering with deep learning 101

5.2.1 Implementation in Keras

Keras [38] is a Python based high-level neural networks API, compatible with
the TensorFlow, CNTK, and Theano machine learning frameworks. This API
encourages experimentation as it supports rapid development of neural net-
works. It allows easy and fast prototyping, with a user friendly, modular, and
extensible structure. Both convolutional networks and recurrent networks can
be developed, also their combinations are also possible in the same agent. As
all modern neural network API it both runs on CPU and GPU for higher
performance.

The core data structure is a model, that is a collection of layers. The simplest
type is the Sequential model, a linear stack of layers. More complex architec-
tures also can be achieved using the Keras functional API.

The clustering agent utilizes a sequential model:

from keras.models import Sequential

model = Sequential()

Stacking layers into a model is done through the add function:

from keras.layers import Dense

model.add(Dense(128, input_shape=(self.state_size,

self.action_size), activation=’relu’))

model.add(Dropout(0.5))

model.add(Dense(128, activation=’relu’))

model.add(Dropout(0.5))

model.add(Dense(128, activation=’relu’))

The first layer will handle the input and has a mandatory parameter defining
its size. In this case input shape is provided as a 2-dimensional matrix, where
state size is the number of parameters stored in the state and action size is
the number of possible actions. The first parameter tells how big the output
dimension will be, so in this case the input will be propagated into a 128-
dimensional output.

The following two layers are hidden layers (Section 3) with 128 internal
nodes, with rectified linear unit (ReLU) activation. The rectifier is an activa-
tion function given by the positive part of its argument: f(x) = x+ = max(0, x),
where x is the input to a neuron. The rectifier was first introduced to a dy-
namical network in [16]. It has been demonstrated in [14] to enable better

102 R. Forster, Á. Fülöp

training of deeper networks, compared to the widely used activation function
prior 2011, the logistic sigmoid [15].

During training overfitting happens, when the ANN goes to memorize the
training patterns. In this case the network is weak in generalizing on new
datasets. This appears for example, when an ANN is very large, namely it has
too many hidden nodes and hence, there are too many weights which need to
be optimized.
The dropout for the hidden layers is used to prevent overfitting on the learning
dataset. Dropout is a technique that makes some randomly selected neurons
ignored during training. Their contribution to the activation of neurons on
deeper layers is removed temporally and the weight updates are not applied
back to the neurons. If neurons are randomly dropped during training, then
others will have to handle the representation, that is required to make pre-
dictions, that is normally handled by the dropped elements. This results in
multiple independent internal representations for the given features [33]. This
way the network becomes capable of better generalization and avoids potential
overfitting on the training data.

The output so far will still be a matrix with the same shape as the input.
This is flatten into a 1-dimensional array by adding the following layer:

model.add(Flatten())

Finally to have the output provide the returns on each available actions, the
last layer changes the output dimension to action size:

model.add(Dense(self.action_size, activation=’linear’))

Once the model is set up, the learning process can be configured with the
compile function:

model.compile(loss=’mse’, optimizer=Adam(lr=self.learning_rate)),

where learning rate has been set to 0.001. For the loss function mean squared
error is used, optimizer is an instance of Adam [17] with the mentioned learning
rate. The discount rate for future rewards have been set to γ = 0.001. This
way the model will try to select actions, that yield the maximum rewards in
the short term. While maximizing the reward in long term can eventually lead
to a policy, that computes the communities correctly, choosing it this small
makes the model learn to select the correct neighbors faster.

To make a prediction on the current state, the predict function is used:

model.predict(state.reshape(1, self.state_size,

self.action_size))

Clustering with deep learning 103

For Keras to work on the input state, it always have to be reshaped into
dimensions (1, state size, action size), while the change always has to keep
the same number of state elements.

6 Results

Evaluation of the proposed solution is done by processing network clustering on
undirected, weighted graphs. These graphs contain real network information,
instead of evaluating on physics related datasets (Section 2.3), as it is more
suitable for the original Louvain method. Because of this, the modularity can
be used as a sort of metric to measure the quality (Subsection 2.4) of the
results. Additionally the number of correct predictions and misses are used to
describe the deep Q-learning (Section 5) based method’s efficiency.

Numerical evaluations are done by generating one iteration on the first level
of the dendogram as the top level takes the most time to generate as it is
based on all the original input nodes. The GPU implementation of the Louvain
method being used was first described in [10].

6.1 Dataset

The proposed model, as well as the Louvain clustering works on undirected,
weighted graphs. Such graphs can be generated from U.S. Census 2010 and
Tiger/Line 2010 shapefiles, that are freely available from [40] and from jet
physics information simulated by the AliRoot framework.

6.1.1 Census dataset

The Census dataset contains the following:

• the vertices are the Census Blocks;

• there’s an edge between two vertices if the corresponding Census Blocks
share a line segment on their border

• each vertex has two weights:

– Census2010 POP100 or the number of people living in that Census
Block

– Land Area of the Census Block in square meters

• the edge weights are the pseudo-length of the shared borderlines.

• each Census Block is identified by a point, that is given longitudinal and
latitudinal coordinates

104 R. Forster, Á. Fülöp

A census block is the smallest geographical unit used by the United States
Census Bureau for tabulation of 100-percent data. The pseudo-length is given
by
√
(x2 + y2), where x and y are the differences in longitudes and latitudes

of each line segment on the shared borderlines. The final result is multiplied
by 107 to make the edge weights integers. For clusterization the node weights
are not used.

The matrices used for evaluation contains the information related to New
York, Oregon and Texas (Table 1), that was arbitrarily selected from the
SuiteSparse Matrix Collection [39]. The graph details can be found in [7].

New York Oregon Texas

Nodes 350, 169 196, 621 914, 231

Edges 1, 709, 544 979, 512 4, 456, 272

Table 1: Size of the Census datasets

6.1.2 Jet dataset

AliRoot is the Off-line framework for simulation, reconstruction and anal-
ysis for CERN’s ALICE experiment. The simulation covers all processes of
primary collisions and generates the newly created particles, follows through
their transportation and calculates the hits in each component.

For the current work the selected dataset is based on the points detected
by the system’s TPC. The Time Projection Chamber (TPC) detector is the
main tracking component of ALICE. Particles passing through this detector
ionizes the gas molecules inside and these ionization points are registered [29].

The datasets were simulated with the framework’s PbPbbench test applica-
tion. Three events were generated, the sizes are detailed in Table 2.

Event1 Event2 Event3

Nodes 140, 535 139, 162 67, 778

Edges 140, 535 139, 162 67, 778

Table 2: Size of the Jet datasets

Due to the limitations of the proposed solution as was described in Sub-
section 5.1, in all cases only 4 neighbors are kept for each nodes during the
computation.

Clustering with deep learning 105

6.2 Precision of the neural network

The precision depends on how well the model can generalize the learned in-
formation. In clustering this will highly depend on the structure of the graph.
The model described in Section 5 have been trained on a training set built
from the Oregon graph. The first 10000 nodes based on the order how they
are first mentioned in the original dataset was taken as a subgraph and the
Louvain method was applied on it, generating the communities. In each step
a matrix was built, where the lines represents the nodes and the columns con-
tains the necessary values for the computation (current community, weight,
degree). Learning phase was running for 70 epochs. The ratio of the good and
bad predictions for Census data are shown in Table 3 and for jet data are
shown in Table 4.

New York Oregon Texas

Positive 310, 972 172, 028 750, 563

Negative 39, 197 24, 593 163, 668

Table 3: Positive/negative predictions of the model for Census data

The deep learning solution’s precision in average is 83, 77%. Specifically on
the datasets it’s respectively 87, 4%, 85, 7% and 78, 2%. Precision can be fur-
ther increased by running the training for more epochs or by further tune
the hyper-parameters. Looking at the number of connected components of
each graph, New York has 3, Oregon 1 and Texas 1. The highest number of
connected components lead to the highest precision, since subgraphs are con-
taining less nodes, than in graphs with less components. As a consequence of
this the model performs better with smaller subgraphs, than on more complex
structures.

Event1 Event2 Event3

Positive 122, 405 123, 436 56, 391

Negative 18, 130 15, 726 11, 387

Table 4: Positive/negative predictions of the model dor jet data

The average precision in this case is 86, 33%. For each event it’s respectively
87, 1%, 88, 7% and 83, 2%. This could be further increased by teaching the
model on training sets that also contains information on the jet structure.

106 R. Forster, Á. Fülöp

6.3 Modularity comparison

The Louvain method assumes nothing of the input graph. The clusterization
can be done without any prior information of the groups being present in the
network. The modularity (Subsection 2.4.1) for the Census data is presented
(Table 5) for all 3 test matrices for both the Louvain algorithm and the deep
Q-learning based solution. The same results are presented for the jet data in
Table 6.

New York Oregon Texas

Louvain 0.82 0.68 0.76

DQL 0.72 0.58 0.59

Table 5: Modularities achieved by Louvain and with the DQL solution for
Census data

The modularities showing similar results to the precision of the network: the
New York graph has a modularity less with 14, 53% compared to the Louvain
computation, while Oregon is less with 13, 8% and Texas is less with 17, 36%.
This proves, that by loosing from the precision, the qualities of the clusters do
not degrade more than, what is lost on the precision.

Event1 Event2 Event3

Louvain 0.76 0.78 0.81

DQL 0.66 0.69 0.67

Table 6: Modularities achieved by Louvain and with the DQL solution for jet
data

The changes in modularities is comparable to that of the Census dataset
results, proving that the generic model learning only on hierarchical data can
also work with comparable efficiency on jet related datasets.

7 Summary

In this paper a reinforcement learning based model was devised to use a com-
munity processor during the generation the dendogram in clusterization tasks.
The training dataset was based on the Louvain method’s processing and was
learned using deep learning from one of the test graphs. The model detailed in
Section 5 predicted the next level of the dendogram with 83, 77% of precision

Clustering with deep learning 107

for the Census dataset and 86.33% for the jet dataset, achieving that, while
only being learned for 70 epochs and on 10000 nodes, that were selected from
the same graph. Reinforcement learning produces a model, that can generalize
based on the training data, as such without a broader selection of structures
it cannot reach higher efficiency.

8 Future work

Increasing the model’s effectiveness, the learning process should be extended,
so it will generalize on any kind of graph with arbitrary number of children.
Also the training set needs to extended with data from graphs with different
structures and complexity. The model should be further evaluated on datasets
with different structural complexities. A coherent method to test the perfor-
mance of the new clusterization should be explored. Thanks to the GPU based
deep learning frameworks, the learning rate increases in accordance with the
power of the underlying GPU, but how the inferencing performance affects
the clustering should be further evaluated.

References

[1] A. Ali, G. Kramer, Jets and QCD: A historical review of the discovery of the
quark and gluon jets and its impact on QCD Eur. Phys. J. H. 36 (2011) 245–326.
[arXiv:1012.2288 [hep-ph]]. ⇒89

[2] D. Bader, J. McCloskey, Modularity and graph algorithms, SIAM AN10 Min-
isymposium on Analyzing Massive Real-World Graphs, 2009, pp. 12-16. ⇒92

[3] J. W. Berry, B. Hendrickson, R. A. LaViolette, C. A. Phillips, Tolerating the
community detection resolution limit with edge weighting, Phys. Rev. E 83, 5
(2011) 056119. ⇒92

[4] V. D. Blondel, J-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, Journal of Statistical Mechanics: Theory and
Experiment 10 (2008) P10008 ⇒91

[5] S. Carani, Yu. L Dokshitzer, M. H. Seymour, B. R. Webher, Longitudinally-
invariant k⊥-clustering algorithms for hadron-hadron collisions, Nuclear Physics
B 406 (1993) 187–224. ⇒91

[6] I. Csabai, F. Czakó, Z. Fodor, Quark- and gluon-jet separations using neural
networks, Phys. Rev. D 44 7 (1991) R1905–R1908. ⇒94

[7] T. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, Mathe-
matical Software, Vol 38, Issue 1, 2011, pp 1:1–1:25. ⇒104

[8] B. Denby, Neural networks and cellular automata in experimental high energy
physics, Computer Physics Communications 49 (1988) 429–448. ⇒94

http://www.springer.com/physics/journal/13129
https://arxiv.org/abs/1012.2288
https://www.cc.gatech.edu/~bader/
http://iopscience.iop.org/journal/1742-5468
http://iopscience.iop.org/journal/1742-5468
https://www.researchgate.net/profile/Istvan_Csabai/publications
https://www.neurones.espci.fr/denby/

108 R. Forster, Á. Fülöp

[9] B. Denby, Neural networks in high energy physics: a ten year perspective, Com-
puter Physics Communications 119 (1999) 219. ⇒92

[10] R. Forster, Louvain community detection with parallel heuristics on GPUs, 20th
Jubilee IEEE International Conference on Intelligent Engineering Systems 20
(2016) doi: 10.1109/INES.2016.7555126 ⇒91, 103

[11] R. Forster, A. Fülöp, Jet browser model accelerated by GPUs, Acta Univ. Sapi-
entiae Informatica 8, 2 (2016) 171–185. ⇒91

[12] R. Forster, A. Fülöp, Parallel kt jet clustering algorithm, Acta Univ. Sapientiae
Informatica 9, 1 (2017) 49–64. ⇒91

[13] R. Forster, A. Fülöp, Hierarchical kt jet clustering for parallel achitectures, Acta
Univ. Sapientiae Informatica 9, 2 (2017) 195–213. ⇒87, 92

[14] X. Glorot, A. Bordes, Y- Bengio, Deep sparse rectifier neural networks, Proc 14th
International Conference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:W&CP 15. ⇒101

[15] J. Han. C. Moraga, The influence of the sigmoid function parameters on the
speed of backpropagation learning, IWANN ’96 Proc. of the Int. Workshop on
Artificial Neural Networks: From Natural to Artificial Neural Computation, 1995,
pp. 195-201. ⇒102

[16] R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S. Seung,
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405 (2000) 947-951. ⇒101

[17] D. P. Kingma, J. B. Adam, A method for stochastic optimization, 2014,
arXiv:1412.6980 ⇒102

[18] H. Kolanoski, Application of artifical neural networks in particle physics, Nuclear
Instruments and Methods in Physics Research A 367 (1995) 14–20. ⇒92

[19] P. T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards
automated quark/gluon jet discrimination, J. High Energy Physics (2017) 110.⇒94

[20] K. J. C. Leney, A neural-network clusterisation algorithm for the ATLAS silicon
pixel detector, J. of Physics: Conbnference Series 523 (2014) 012023. ⇒94

[21] L. Lönnblad, C. Peterson, T. Rögnvaldsson, Using neural networks to identify
jets, Nuclear Physics B349 (1991) 675–702. ⇒94

[22] H. Lu, Mahantesh Halappanavar, A. Kalyanaraman, Parallel heuristics for scal-
able community detection, Parallel Computing 47 (2015) 1937. ⇒91

[23] V. Mnih et al., Playing Atari with deep reinforcement learning, 2013,
arXiv:1312.5602 ⇒99

[24] V. Mnih et al., Human-level control through deep reinforcement learning, Nature,
2015, doi:10.1038/nature14236 ⇒99

[25] T. Muta, Foundation of Quantum Chrodinamics, World Scientific Press, 1986.⇒88
[26] M. E. J. Newman, M. Girvan, Finding and evaluating community structure in

networks, Phys. Rev. E 69 2 (2004) 026113. ⇒92
[27] M. E. Peskin, D. V. Schroeder, Quantum Field Theory, Westview Press, 1995.⇒87

http://www.acta.sapientia.ro/acta-info
http://www.acta.sapientia.ro/acta-info
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://arxiv.org/abs/1412.6980
https://www-zeuthen.desy.de/~kolanosk/home/person/Publications_Kolanoski_130925.pdf
https://scholar.google.com/citations?user=rLdfJ1gAAAAJ&hl=en
https://arxiv.org/abs/1312.5602

Clustering with deep learning 109

[28] C. Peterson, Track finding with neural networks, Nuclear Instruments and Meth-
ods A279 (1988) 537. ⇒94

[29] D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner, T. Alt,
ALICE HLT TPC Tracking of Pb-Pb Events on GPUs, Journal of Physics:
Conference Series 396 (2012) doi:10.1088/1742-6596/396/1/012044 ⇒87, 104

[30] G. P. Salam, Towards jetography, Eur. Phys. J. C67 (2010) 637-686. ⇒88
[31] S. Salur, Full Jet reconstruction in heavy ion collisions, Nuclear Physics A 830,

1-4 (2009) 139c–146c. ⇒89
[32] K. E. Selbach, Neural network based cluster reconstruction in the ATLAS pixel

detector, Nuclear Instruments and Methods in Physics Research A 718 (2013)
363–365. ⇒94

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, JMLR 15
(2014) 1929-1958. ⇒102

[34] G. Sterman, S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett.
39 (1977) 1436. ⇒89, 90

[35] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, A Bradford
Book, 1998, ISBN: 978-0262193986 ⇒94, 99

[36] G. Swirszcz, W. M. Czarnecki, R. Pascanu, Local minima in training of neural
networks, 2016, arXiv:1611.06310 ⇒100

[37] V. A. Traag, P. Van Dooren, Y. Nesterov, Narrow scope for resolution-limit-free
community detection, Phys. Rev. E 84, 1 (2011) 016114. ⇒92

[38] ∗ ∗ ∗ Keras: The Python Deep Learning library ⇒101
[39] ∗ ∗ ∗ SuiteSparse Matrix Collection ⇒104
[40] ∗ ∗ ∗ United States Census Bureau ⇒103

Received: April 5, 2018 • Revised: July 30, 2018

http://iopscience.iop.org/journal/1742-6596
http://iopscience.iop.org/journal/1742-6596
https://en.wikipedia.org/wiki/Gavin_Salam
https://arxiv.org/abs/0906.1833
https://journals.aps.org/prl/
https://scholar.google.ca/citations?user=eSPY8LwAAAAJ&hl=en
https://arxiv.org/abs/1611.06310v1
https://keras.io/
https://sparse.tamu.edu/
https://census.gov/

Acta Univ. Sapientiae, Informatica 10, 1 (2018) 110–132

DOI: 10.2478/ausi-2018-0007

Low and high grade glioma segmentation

in multispectral brain MRI data

László SZILÁGYI
Sapientia University

Târgu Mureş, Romania
email: lalo@ms.sapientia.ro

David ICLĂNZAN
Sapientia University

Târgu Mureş, Romania
email: iclanzan@ms.sapientia.ro

Zoltán KAPÁS
Sapientia University

Târgu Mureş, Romania
email: zoltankapas@yahoo.com

Zsófia SZABÓ
Sapientia University

Târgu Mureş, Romania
email: sz zsokaa@yahoo.com

Ágnes GYŐRFI
Sapientia University

Târgu Mureş, Romania
email: gyorfiagnes@ms.sapientia.ro

László LEFKOVITS
Sapientia University

Târgu Mureş, Romania
email: lefkolaci@ms.sapientia.ro

Abstract. Several hundreds of thousand humans are diagnosed with
brain cancer every year, and the majority dies within the next two years.
The chances of survival could be easiest improved by early diagnosis.
This is why there is a strong need for reliable algorithms that can detect
the presence of gliomas in their early stage. While an automatic tumor
detection algorithm can support a mass screening system, the precise seg-
mentation of the tumor can assist medical staff at therapy planning and
patient monitoring. This paper presents a random forest based procedure
trained to segment gliomas in multispectral volumetric MRI records. Be-
side the four observed features, the proposed solution uses 100 further

Computing Classification System 1998: I.5.3
Mathematics Subject Classification 2010: 68T10
Key words and phrases: machine learning, random forest, image segmentation

110

http://www.ms.sapientia.ro/~lalo/
http://www.ms.sapientia.ro/en
http://www.ms.sapientia.ro/en
mailto:lalo@ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro/en
http://www.ms.sapientia.ro/en
mailto:iclanzan@ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro/en
http://www.ms.sapientia.ro/en
mailto:zoltankapas@yahoo.com
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro/en
http://www.ms.sapientia.ro/en
mailto:erzsokasszony55@petofi.hu
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro/en
http://www.ms.sapientia.ro/en
mailto:gyorfiagnes@ms.sapientia.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro/en
http://www.ms.sapientia.ro/en
mailto:lefkolaci@ms.sapientia.ro

Brain tumor segmentation 111

features extracted via morphological operations and Gabor wavelet fil-
tering. A neighborhood-based post-processing was designed to regularize
and improve the output of the classifier. The proposed algorithm was
trained and tested separately with the 54 low-grade and 220 high-grade
tumor volumes of the MICCAI BRATS 2016 training database. For both
data sets, the achieved accuracy is characterized by an overall mean Dice
score > 83%, sensitivity > 85%, and specificity > 98%. The proposed
method is likely to detect all gliomas larger than 10mL.

1 Introduction

Most brain tumors are diagnosed in a certain advanced stage, when the symp-
toms convince the patient to go to the doctor. The average brain tumor pa-
tient lives 14 months after the diagnosis. The development of imaging devices
and computers make it possible to elaborate intelligent automated procedures
that would allow for regular screening of a larger population and detecting
most tumors in an earlier phase. Beside establishing the diagnosis, the auto-
matic segmentation and quantitative analysis can assist therapy planning and
evolution tracking of the tumor. However, automatic tumor segmentation is
not only utmost important task, but also a very challenging one, because of
the high variety of anatomical structures and low contrast of current imaging
techniques, which make the difference between normal regions and the tumor
hardly recognizable for the human eye [6].

Magnetic resonance imaging (MRI) is the preferred imaging device in brain
tumor screening, due to its better contrast and relatively fine resolution. How-
ever, it also bears difficulties like the possible presence of intensity inhomogene-
ity [27], and the relative intensity values that vary from device to device and
from patient to patient [19]. The MICCAI Brain Tumor Segmentation Chal-
lenge, organized yearly since 2012, intensified the research in this topic and led
to several important solutions, which are usually assisted by the use of prior
information, and employ various image processing and pattern recognition
methodologies. Asman et al. [2] applied a non-parametric intensity analysis in
combination with a segmentation based on multiple atlases. Ghanavati et al.
[5] provided a solution using the AdaBoost classifier to distinguish tumor vox-
els from normal ones using features based on intensity, texture, and symmetry.
Hamamci et al. [7] proposed a cellular automata driven method that produces
segmentation based on level sets. Sachdeva et al. [22] deployed a content based
active contour model relying on intensity and texture features extracted from
the histogram and co-occurrence matrix of the MRI data. Njeh et al. [18] intro-

112 L. Szilágyi et al.

duced a graph cut based solution that performs distribution matching, which
is highly efficient because of using rather global than pixelwise information.
Zhang et al. [29] proposed a support vector machine based procedure to follow
the evolution of brain tumors over time. Tustison et al. [26] combined random
forests with symmetry based features to segment brain tumors. Szilágyi et al.
[25] provided a semi-supervised framework for the fuzzy c-means clustering al-
gorithm to produce accurately segmented tumors. Kanas et al. [13] combined
a clustering based preprocessing with a multi-parametric random walker seg-
mentation. Havaei et al. [8] developed an automatic brain tumor segmentation
procedure based on deep neural networks that exploits both local and global
contextual features simultaneously. Pereira et al. [20] proposed a convolutional
neural network solution exploiting small kernels and successfully applied it for
brain tumor segmentation. Menze et al. [17] combined a Gaussian mixture
model with the expectation maximization (EM) algorithm to achieve an ac-
curate segmentation. Another Gaussian mixture based accurate solution was
given by Juan-Albarraćın et al. [12]. Islam et al. [11] employed multifractional
Brownian motion features to provide patient-independent characterization of
tumor tissues and applied the AdaBoost algorithm for tissue segmentation.
Shin et al. [23] proposed deep convolutional neural networks and successfully
combined it with transfer learning. Huang et al. [9] provided a brain tumor
segmentation framework employing local independent projection-based classi-
fication. Lê et al. [15] proposed a brain tumor segmentation procedure based
on a tumor growth model. Pinto et al. [21] employed extremely random trees to
provide a hierarchical solution to the low-grade glioma segmentation problem.
Zaouche et al. [28] provided a semi-supervised low-grade glioma segmenta-
tion based on specially designed spatial edge filters and maximum likelihood
optimization. For further information on current brain tumor segmentation
techniques, there are available recent reviews [6, 10].

In a previous paper [14] we have presented a preliminary study on the use of
random forests in the detection and segmentation of high-grade gliomas. Each
voxel was characterized by a 16-element feature vector, including minimum,
maximum, and median values computed from the neighborhood of the voxel.
The procedure proposed in that study was evaluated using the 220 high-grade
tumor volumes from the MICCAI BRATS 2016 data set. The best overall
Dice Score was found 81%. As a further development [24], we proposed a
random forest solution trained and tested using 104-element feature vectors
that included various computed morphological and Gabor wavelet features.
Our main goal in this paper is to perform a detailed evaluation of the solution
based on 104-element feature vector using all low-grade (LG) and high-grade

Brain tumor segmentation 113

Histogram
normalization

Feature
extraction

Definition
of train

and test data

Data sampling
for each tree in
random forest

Apply trained
forest to
test data

Neighborhood
based

postprocessing

Training
decision trees

OOB based
evaluation

Result
evaluation

?

?

?

?

6

?

?

-

-

�
�
�
�
�
���

-

�

Trained
forest

Raw data

Test

data

Train
data

Segmented
volumes

Final

segmented
volumes

TP, TN, FP, FN
TPR, TNR, DS

Figure 1: Block diagram of the proposed method.

(HG) tumor volumes of the MICCAI BRATS 2016 train database.
The rest of this paper is structured as follows: Section 2 gives details on the

proposed methodology. Section 3 exhibits and discusses the achieved results.
Finally, Section 4 concludes the investigation.

2 Materials and Methods

Our goal was to elaborate an accurate segmentation procedure based on a
machine learning algorithm, applicable for both LG and HG brain tumor vol-
umes separately. This paper presents results obtained using a random forest
approach, combined with histogram normalization, Gabor feature extraction
for texture characterization, and a neighborhood-based post-processing. The
trees of the random forest are trained to separate the whole tumor from normal
tissues. The structure of the elaborated segmentation procedure is presented
in Fig. 1.

114 L. Szilágyi et al.

Property LG volumes HG volumes

Number of data volumes 54 220

Average size of whole tumor (mL) 101.1 110.6

Minimum size of whole tumor (mL) 18.9 8.5

Maximum size of whole tumor (mL) 265.3 318.4

Total number of negative voxels 72.2M 311.5M

Total number of positive voxels 5.46M 24.32M

Table 1: Main attributes of the input data set

2.1 MICCAI BRATS data sets

Fully anonymized multimodal MR image data was obtained from the MICCAI
2016 Challenge on Multimodal Brain Tumor Segmentation [16]. This database
contains multi-contrast MR scans of 274 glioma patients, out of which 54

having low-grade and 220 having having-grade glioma lesions. For each patient,
multimodal (T1, T2, FLAIR, and post-Gadolinium T1 (T1C)) MR images were
recorded and linearly co-registered to the T1 contrast image. All data volumes
were skull stripped, and interpolated to 1mm isotropic resolution. Each record
contains approximately 1.5 millions of true tissue voxels, out of which the rate
of positives ranges from 0.5% to 20%. Manual annotation produced by human
experts is provided for all voxels. Further technical details of the data set are
given in Table 1.

2.2 Data preprocessing

A major drawback of MR imaging consists in the lack of a standard scale of
image intensities. This is why we need to map the histogram of each data
channel of BRATS volumes onto a uniform scale. Although literature contains
various recommendation is this issue [19, 4], we opted to employ a simple
linear transform x→ αx+β to all intensities, where parameters α and β were
established separately for each volume and each data channel such a way that
the 25-percentile and 75-percentile values became 600 and 800, respectively.
Further on, a minimum and a maximum intensity barrier was enforced at 200
and 1200, respectively. This approximately corresponds to a 10-bit resolution
in each data channel.

Most voxels of the MRI records have valid nonzero intensity in all data chan-
nels. However, there are voxels with one or more missing values. We considered

Brain tumor segmentation 115

Neighborhood 3× 3× 3 3× 3 5× 5 7× 7 9× 9 11× 11 Total

Average 4 4 4 4 4 4 24

Maximum 4 4

Minimum 4 4

Median 4 4 4 4 4 20

Gradient 16 16

Gabor wavelet 32 32

Total 12 8 8 24 8 40 100

Table 2: Inventory of computed features. All four data channels were involved
equally.

that the region of interest (ROI) in the BRATS volumes includes all voxels
that have at least one nonzero value in any of the observed data channels.
Missing values were replaced by the mean intensity value of existing neighbors
within the 26-element immediate spatial neighborhood, or the grand mean
of the given data channel whenever no neighbors with correct intensity were
found in the neighborhood.

Although the four observed features of each voxel bear a lot more informa-
tion than any one of them, there is an acute need to extend the feature vectors
with further computed features. A total number of 100 computed features were
added to the feature vector describing each voxel, according to the inventory
given in Table 4. For each of the four observed intensities (T1, T2, T1C, FLAIR),
six average, five median, one minimum, one maximum, four gradient values,
and further eight Gabor features were extracted. All computed feature values
were linearly scaled into the [200, 1200] interval. This way, together with the
four observed features, each voxel is described by a 104-element feature vec-
tor. These feature vectors are used by the classification stage of the proposed
segmentation procedure.

2.3 Data classification

Binary decision trees (BDT) of unlimited depth can describe any hierarchy
of crisp (non-fuzzy) two-way decisions [1]. Given an input data set of vec-
tors X = {x1,x2, . . . ,xn}, where xi = [xi,1, xi,2, . . . , xi,m]

T , a BDT can be
employed to learn the classification that corresponds to any set of labels
Λ = {λ1, λ2, . . . , λn}. The classification learned by the BDT can be perfect
if there are no identical training vectors with different labels, that is, xi = xj

116 L. Szilágyi et al.

implies λi = λj, ∀i, j ∈ {1, 2, . . . , n}. The BDT is built during the training pro-
cess. Initially the tree consists of a single node, the root, which has to make a
decision regarding all n train data vectors. If not all n vectors have the same
label, which is likely to be so, then the set of data is not homogeneous, and
there is a need for a separation. The decision will compare a single chosen
feature, the one with index k (1 ≤ k ≤ m), of the input vectors with a certain
threshold α, and the comparison will separate the vectors into two subgroups:
those with xi,k < α (i = 1 . . . n), and those with xi,k ≥ α (i = 1 . . . n). The
root will then have two child nodes, each corresponding to one of the possible
outcomes of the above decision. The left child will further classify those n1
input vectors, which satisfied the former condition, while the right child those
n2 ones that satisfied the latter condition. Obviously, we have n1 + n2 = n

with n1 > 0 and n2 > 0. For both child nodes, the procedure is the same as it
was for the root. When at a certain point of the learning algorithm, all vectors
being classified by a node have the same label λp, then the node is declared
a leaf node, which is attributed to the class with index p. Another case when
a node is declared leaf node is when all vectors to be separated by the node
are identical, so there is no possible condition to separate the vectors. In this
case, the label of the node is decided by the majority of labels, or if there is no
majority, a label should be chosen from the present ones. In our application,
this kind of rare leaves are labeled as tumor.

The separation of a finite set of data vectors always terminates in a finite
number of steps. The maximum depth of the tree highly depends on the way
of establishing the separation condition in each node. Our application uses
an entropy based criterion to choose the separation condition. Whenever a
node has to establish its separation criterion for a subset of vectors X ⊆ X
containing n items with 1 < n ≤ n, the following algorithm is performed:

1. Find all those features which have at least two different values in X.
2. Find all different values for each feature and sort them in increasing

order.
3. Set a threshold candidate at the middle of the distance between each

consecutive pair of values for each feature.
4. Choose that feature and that threshold, for which the entropy-based

criterion

E = n1 log
n1
n

+ n2 log
n2
n

(1)

gives the minimum value, where n1 (n2) will be the cardinality of the
subset of vectors X1 (X2), for which the value of the tested feature is
less than (greater or equal than) the tested threshold value.

Brain tumor segmentation 117

After having the BDT trained, it can be applied for the classification of test
data vectors. Any test vector is first fed to the root node, which according
to the stored condition and the feature values of the vector, decides towards
which child node to forward the vector. This strategy is followed then by the
chosen child node, and the vector will be forwarded to a further child. The
classification of a vector terminates at the moment when it is forwarded to a
leaf node of the tree. The test vector will be attributed to the class indicated
by the labeling of the reached leaf node.

Binary decision trees were trained to separate tumor voxels from negative
ones. Due to practical reasons, negative voxels were randomly subsampled to
12% for the BDT training process. Random forests were trained according to
the following parameters:

1. The number of trees in the forest denoted by nT . This parameter was
usually set to 255. Experiments proved this number of trees more than
necessary for good accuracy.

2. The number of data vectors used to train each tree of the forest, denoted
by nP. Typical values of this parameter ranged from 10 thousand to 500
thousand.

3. The rate (percentage) of negative labeled data within the training set,
denoted by pn.

4. The threshold of positive votes θp (expressed in percentage) necessary
to assign a voxel to the class of positives. Making a decision according
to majority voting would mean using a θp = 50% threshold, but slightly
shifted values of θ may lead to better accuracy.

Ideal parameter settings were identified using the so-called out-of-bag (OOB)
data, as recommended by Breiman in [3]. Testing on OOB data allowed us to
preselect those forests that were likely to produce high accuracy, and dis-
card those that were prone to severe misclassifications. The best performing
trees achieved 93−95% correct decisions, while the most accurately classifying
forests scored 96− 98% in labeling the OOB data.

2.4 Post-processing

A posterior relabeling scheme was implemented as follows. The input data of
the post-processing step consisted in the labels provided by the random forest
to all voxels in the test volume. For each voxel, the number of tumor labeled
neighbors (νT) and the number of all neighbors (νAll) were extracted, using
a predefined neighborhood. The final label of a voxel was set to tumor if and

118 L. Szilágyi et al.

only if νT/νAll > θn. The optimal value of this threshold was established based
on tests performed on OOB data. The ideal neighborhood to be employed in
post-processing was identified as the cubic 11×11×11 sized one for LG tumor
volumes, and 9× 9× 9 for HG tumor volumes.

2.5 Evaluation of accuracy

We employed the Dice score (DS) as the main indicator of accuracy, defined
as

DS =
2× TP

2× TP + FP + FN
∈ [0, 1] , (2)

where TP, FP, and FN stand for the number of true positives, false positives,
and false negatives, respectively. Fine accuracy is reflected by DS values close
to 1, but in this brain tumor segmentation problem, DS values around 0.94
are considered ideal [16], due to inter-rater differences that are present in the
ground truth. Further on, sensitivity (or true positive rate, TPR) defined as

TPR =
TP

TP + FN
, (3)

specificity (or true negative rate) defined as

TNR =
TN

TN+ FP
, (4)

and the rate of correct decisions

ACC =
TP + TN

TP + TN+ FP + FN
(5)

were used as secondary accuracy indicators, where TN represents the number
of true negatives.

If we denote by TPi, TNi, FPi, and FNi, the true/false positives/negatives
obtained at testing volume number i (i = 1 . . . p, where p is the number of
volumes), then we define average Dice score as

D̃S =
1

p

p∑
i=1

DSi =
1

p

p∑
i=1

2× TPi
2× TPi + FPi + FNi

, (6)

and overall Dice score as:

DS =

2×
p∑
i=1

TPi

2×
p∑
i=1

TPi +
p∑
i=1

FPi +
p∑
i=1

FNi

. (7)

Brain tumor segmentation 119

Similarly, we will compute overall and average values for the sensitivity
(TPR, T̃PR) and the specificity (TNR,T̃NR).

3 Results and Discussion

The proposed algorithm was validated using the total number of 220 HG
and 54 LG tumor volumes separately. Both volume sets were ordered ran-
domly and then divided into two groups which were called the even and the
odd group. Volumes from the even (odd) group were segmented with random
forests trained with all volumes from the odd (even) group. The main param-
eters of the algorithm were each given several values in a suitable range: train
data size between 1k and 500k pixels per tree, rate of negative train data be-
tween 85% and 95%. The number of trees was set to 255, but smaller forests
were also evaluated via omitting some of the trees. The rate of positive votes
(given by the trees of the forest) that is necessary to declare a pixel positive,
was also investigated in the range between 20% and 80%, to optimize the final
decision. Accuracy results were obtained for all image volumes. Average, me-
dian, and overall values of main statistical accuracy indicators were computed
as presented in Section 2.5. Table 3 summarizes the main accuracy indicator
values for both LG and HG tumor volumes.

Figure 2 presents the overall Dice score values (DS) obtained for the output
of the random forest, plotted against the training data size, for various values
of the negative data rate (pn) situated between 86% and 95%. In case of LG
data, the RF classifier performed best at pn = 93%, achieving DS > 81%. In
case of HG data, the accuracy seems to saturate at pn = 94%, but the obtained
Dice scores are lower. Larger training data size usually leads to better accuracy,
but this tendency saturates around 300k pixels per tree in LG data. Figure
3 shows the overall Dice scores obtained after post-processing. Validating the
labels given by the random forest to each pixel visibly helped more in HG
volumes.

Figures 4 and 5 exhibit the same Dice scores as Figs. 2 and 3, but here the
overall Dice scores are plotted against the rate of negatives in the training
data pN, and each curve stands for a certain training data size. These graphs
also show us that the random forest classified LG data better than HG data,
but the post-processing improved the overall accuracy in HG, thus the final
overall Dice scores are close to each other. Post-processing improves the DS
by approximately 2% in LG volumes and by 3% in HG volumes. The accuracy
difference between the largest and smallest training data size is lower in HG

120 L. Szilágyi et al.

Accuracy LG volumes HG volumes
Indicator Before PP After PP Before PP After PP

Overall DS 81.0% 83.8% 81.1% 83.6%

Average D̃S 77.0% 81.3% 76.2% 80.2%
Median DS 81.0% 84.6% 80.3% 85.5%

Overall TPR 76.7% 84.8% 74.5% 83.2%

Average T̃PR 77.0% 81.3% 70.7% 77.6%
Median TPR 81.0% 84.6% 75.4% 85.1%

Overall TNR 99.03% 98.64% 99.28% 98.86%

Average T̃NR 99.04% 98.64% 99.28% 98.86%
Median TNP 99.33% 98.84% 99.55% 99.25%

DS > 80% 30 of 54 42 of 54 114 of 220 144 of 220
DS > 85% 16 of 54 26 of 54 89 of 220 111 of 220
DS > 90% 6 of 54 12 of 54 48 of 220 56 of 220

PP stands for post-processing.

Table 3: Main accuracy indicators

data, probably due to the largest number in data volumes. The optimal rate of
negatives in the training data for HG volumes is pN = 93% at any tested train
data size, while for the LG volumes it varies between 92% and 94%. Below
10k training pixels per tree, there is a sudden drop in accuracy.

Figure 6 exhibits the final overall sensitivity values, for LG and HG volumes
separately, plotted against the rate of negatives in the training data (pN), for
training data sizes ranging from 10k to 500k. Sensitivity values have a slight
dropping tendency as pN rises. Sensitivity is higher in HG volumes, especially
at smaller training data sizes.

Figure 7 presents the sensibility, specificity, and Dice score values obtained
for individual LG and HG records, sorted in increasing order of the accuracy
indictors. Sensitivity and Dice score values range between 30% and 100%, but
they do not follow a uniform distribution. In both LG and HG data, there is a
small subset (10−15%) of volumes which lead to mediocre resuts. Most of these
volumes have a lot of missing data. The graphs presented in Fig. 7 suggest
that accuracy indicators have a distribution that grants higher median value
than the average. Numeric values listed in Table 3 confirm this suggestion.
Specificity is over 95% in most of the cases, having its average and median
value between 98.5% and 99%. It is important to have such a high specificity,

Brain tumor segmentation 121

Train data size
10k 20k 50k 100k 200k 500k

D
ic

e
S

co
re

 (
%

)

78.5

79.0

79.5

80.0

80.5

81.0

81.5
LG: before post-processing

 p
N

=86%

 p
N

=88%

 p
N

=90%

 p
N

=92%

 p
N

=94%

 p
N

=95%

Train data size
10k 20k 50k 100k 200k 500k

D
ic

e
S

co
re

 (
%

)
78.5

79.0

79.5

80.0

80.5

81.0

81.5
HG: before post-processing

 p
N

=86%

 p
N

=88%

 p
N

=90%

 p
N

=92%

 p
N

=94%

 p
N

=95%

Figure 2: Overall Dice score plotted against the train data size, at various
values of the rate of negative train data pn, and nT = 255 trees in each
random forest, without post-processing. Left and right panel exhibit the results
obtained for the 54 LG and 220 HG tumor volumes, respectively.

Train data size
10k 20k 50k 100k 200k 500k

D
ic

e
S

co
re

 (
%

)

81.5

82

82.5

83

83.5

84
LG: after post-processing

 p
N

=86%

 p
N

=88%

 p
N

=90%

 p
N

=92%

 p
N

=94%

 p
N

=95%

Train data size
10k 20k 50k 100k 200k 500k

D
ic

e
S

co
re

 (
%

)

81.5

82

82.5

83

83.5

84
HG: after post-processing

Figure 3: Improved values of the overall Dice scores exhibited in Fig. 2, ob-
tained after post-processing.

122 L. Szilágyi et al.

Rate of negatives in train data (%)
86 87 88 89 90 91 92 93 94 95

D
ic

e
S

co
re

 (
%

)

78.5

79.0

79.5

80.0

80.5

81.0

81.5
LG: before post-processing

 n
P
=10k

 n
P
=20k

 n
P
=30k

 n
P
=50k

 n
P
=100k

 n
P
=200k

 n
P
=300k

 n
P
=500k

Rate of negatives in train data (%)
86 87 88 89 90 91 92 93 94 95

D
ic

e
S

co
re

 (
%

)
78.5

79.0

79.5

80.0

80.5

81.0

81.5
HG: before post-processing

Figure 4: Overall Dice score plotted against the rate of negative train data
pn, at various values of the train data size, and nT = 255 trees in each ran-
dom forest, without post-processing. Left and right panel exhibit the results
obtained for the 54 LG and 220 HG tumor volumes, respectively.

Rate of negatives in train data (%)
86 87 88 89 90 91 92 93 94 95

D
ic

e
S

co
re

 (
%

)

81.5

82.0

82.5

83.0

83.5

84.0
LG: after post-processing

Rate of negatives in train data (%)
86 87 88 89 90 91 92 93 94 95

D
ic

e
S

co
re

 (
%

)

81.5

82.0

82.5

83.0

83.5

84.0
HG: after post-processing

n
P
=10k n

P
=20k n

P
=30k n

P
=50k n

P
=100k n

P
=200k n

P
=300k n

P
=500k

Figure 5: Improved values of the overall Dice scores exhibited in Fig. 4, ob-
tained after post-processing.

Brain tumor segmentation 123

Rate of negatives in train data (%)
86 87 88 89 90 91 92 93 94 95

S
en

si
tiv

ity
 (

%
)

81

82

83

84

85

86

LG

Rate of negatives in train data (%)
86 87 88 89 90 91 92 93 94 95

S
en

si
tiv

ity
 (

%
)

81

82

83

84

85

86

HG

 n
P
=10k

 n
P
=20k

 n
P
=30k

 n
P
=50k

 n
P
=100k

 n
P
=200k

 n
P
=300k

 n
P
=500k

Figure 6: Overall Sensitivity plotted against the rate of negative train data
pn, at various values of the number of pixels used to train each random tree.
These results were obtained using nT = 255 trees in each random forest, after
post-processing. Left and right panel exhibit the results obtained for the 54
LG and 220 HG tumor volumes, respectively.

because otherwise we would have a lot of false positives due to the high rate
of negative data.

Figure 8 depicts the Dice score values obtained for individual MRI records,
before and after post-processing, sorted in the increasing order of the Dice
score. Left and right panels show LG ang HG volumes, respectively. Post-
processing seems to help most volumes, especially those with lower Dice score
value. When the random forest classifier produces a Dice score over 90%,
post-processing may slightly reduce the accuracy. Figure 9 exhibits similar
curves for the Sensitivity instead of the Dice score. Here the post-processing
proves highly effective, as all Sensitivity values rise during the last processing
step. Dice scores of individual volumes improve by 4% in average for both
LG and HG volumes, while Sensitivity values rise by 4% and 7% for LG and
HG volumes, respectively. Figure 10 plots individual Dice score values after
post-processing vs. before post-processing, for LG volumes in the left panel
and HG volumes in the right panel. Figure 11 uses the same representation
for Sensitivity values instead of Dice scores. Each cross (×) situated above the
diagonal drawn in dashed line indicates a case where post-processing improved

124 L. Szilágyi et al.

LG records in increasing order of accuracy indicators
0 10 20 30 40 50

A
cc

ur
ac

y
in

di
ca

to
rs

 (
%

)

30

40

50

60

70

80

90

100
LG

 Dice Score
 Sensitivity
 Specificity

HG records in increasing order of accuracy indicators
0 30 60 90 120 150 180 210

A
cc

ur
ac

y
in

di
ca

to
rs

 (
%

)

30

40

50

60

70

80

90

100
HG

 Dice Score
 Sensitivity
 Specificity

Figure 7: The three main accuracy indicators obtained for each LG (left panel)
and HG (right panel) tumor volume separately, after post-processing. Accu-
racy indicator values were sorted in increasing order.

the value of the accuracy indicator. Figure 10 also contains crosses below the
diagonal, which means that the Dice score does not always improve during
post-processing. Even if the accuracy is damaged in some cases, the average
effect of post-processing is beneficial (Table 3).

Figure 12 plots the individual Dice scores obtained for each LG and HG
volume against the size of the tumor, showing the difference between the out-
put of the random forest classifier (left column) and the final post-processed
result (right column). There is a general rule that the larger the tumor the
better the chances of detection and accurate segmentation. The identified lin-
ear trends show that the strongest effect of post-processing occurs in case of
small tumors.

Figure 13 shows detailed final result obtained on two MRI slices originating
from LG volumes. The top row shows a slice whose segmentation was suc-
cessful, with a very reduced number of misclassified pixels. The bottom row
exhibits a slice where the segmentation of the tumor was visibly mistaken,
with a large area of false negatives (unidentified part of the tumor), but the
presence of the tumor can be reliably detected based on this segmentation,
because most of the tumor pixels were identified.

Brain tumor segmentation 125

LG records in incresing order of the Dice Score
0 10 20 30 40 50

D
ic

e
S

co
re

 (
%

)

30

40

50

60

70

80

90

100
LG

 before post-processing
 after post-processing

HG records in incresing order of the Dice Score
0 30 60 90 120 150 180 210

D
ic

e
S

co
re

 (
%

)

30

40

50

60

70

80

90

100
HG

 before post-processing
 after post-processing

Figure 8: The effect of post-processing upon individual Dice score values ob-
tained for LG (left panel) and HG (right panel) tumor volumes separately.
Accuracy indicator values were sorted in increasing order.

LG records in incresing order of the Sensitivity
0 10 20 30 40 50

S
en

si
tiv

ity
 (

%
)

30

40

50

60

70

80

90

100
LG

 before post-processing
 after post-processing

HG records in incresing order of the Sensitivity
0 30 60 90 120 150 180 210

S
en

si
tiv

ity
 (

%
)

30

40

50

60

70

80

90

100
HG

 before post-processing
 after post-processing

Figure 9: The effect of post-processing upon individual Sensitivity values ob-
tained for LG (left panel) and HG (right panel) tumor volumes separately.
Accuracy indicator values were sorted in increasing order.

126 L. Szilágyi et al.

Dice Score before post-processing (%)
30 40 50 60 70 80 90 100

D
ic

e
S

co
re

 a
fte

r
po

st
-p

ro
ce

ss
in

g
(%

)

30

40

50

60

70

80

90

100
LG

Dice Score before post-processing (%)
20 30 40 50 60 70 80 90 100

D
ic

e
S

co
re

 a
fte

r
po

st
-p

ro
ce

ss
in

g
(%

)
20

30

40

50

60

70

80

90

100
HG

Figure 10: Dice scores obtained for individual LG (left panel) and HG (right
panel) tumor volumes, plotted after post-processing vs. before post-processing.

Sensitivity before post-processing (%)
30 40 50 60 70 80 90 100

S
en

si
tiv

ity
 a

fte
r

po
st

-p
ro

ce
ss

in
g

(%
)

30

40

50

60

70

80

90

100
LG

Sensitivity before post-processing (%)
20 30 40 50 60 70 80 90 100

S
en

si
tiv

ity
 a

fte
r

po
st

-p
ro

ce
ss

in
g

(%
)

20

30

40

50

60

70

80

90

100
HG

Figure 11: TPR values obtained for individual LG (left panel) and HG (right
panel) tumor volumes, plotted after post-processing vs. before post-processing.

Brain tumor segmentation 127

Tumor size (mL)
0 40 80 120 160 200 240 280

D
ic

e
S

co
re

 (
%

)

30

40

50

60

70

80

90

100
LG: before post-processing

Tumor size (mL)
0 40 80 120 160 200 240 280

D
ic

e
S

co
re

 (
%

)

30

40

50

60

70

80

90

100
LG: after post-processing

Tumor size (mL)
0 40 80 120 160 200 240 280 320

D
ic

e
S

co
re

 (
%

)

20

30

40

50

60

70

80

90

100
HG: before post-processing

Tumor size (mL)
0 40 80 120 160 200 240 280 320

D
ic

e
S

co
re

 (
%

)

20

30

40

50

60

70

80

90

100
HG: after post-processing

Figure 12: Dice score values obtained for individual LG (top row) and HG
(bottom row) tumor volumes separately, represented against tumor size. The
linear trend was also identified and indicated by the dashed lines. Left panel
shows the benchmarks of the random forest’s output, while the right panel the
benchmarks of the post-processed segmentation.

The segmentation of a single volume ranges between 60 and 75 seconds,
when executed on a single core of a PC with i7 processor running at 3.4GHz
frequency, which can be reduced below 20 seconds when executed in paral-
lelized version on four cores. The largest computational burden represents the

128 L. Szilágyi et al.

Figure 13: Detailed results presented for two slices: (a) the actual tumor
(ground truth) is shown in black; (b) the segmented tumor; (c) false posi-
tives; (d) false negatives.

extraction of the 100 extra features for the approximately 1.5 million voxels
of the volume.

The overall Dice score over 83.5% allows us to detect the presence of the
tumor in a great majority of cases. However, the accuracy indicators can be
further improved the following ways:

1. Using further texture features extracted from the neighborhood of each
voxel.

2. Employing an effective feature selection scheme to eliminate useless fea-
tures.

3. Implementing a more complex post-processing that investigates the con-
tiguous ensembles of detected tumor voxels and discard small ones.

An objective comparison with existing methods enumerated in the Introduc-
tion is not an easily accomplishable task, as not all of them used the BRATS
data set for evaluation, and even those which did, they did not evaluate all

Brain tumor segmentation 129

Feature name Rate of
Data channel Operation Neighborhood usage

T1 Median 11× 11 99.38%
FLAIR Average 11× 11 94.66%
FLAIR Average 9× 9 53.30%
FLAIR Maximum 3× 3× 3 32.53%

T2 Average 11× 11 26.24%
T1c Average 11× 11 20.63%

FLAIR Average 3× 3× 3 19.43%
T2 Maximum 3× 3× 3 18.35%

FLAIR Average 7× 7 18.34%
T1c Median 11× 11 17.00%

FLAIR Median 3× 3 15.85%
FLAIR Median 11× 11 14.45%
FLAIR Average 5× 5 12.17%

T2 Minimum 3× 3× 3 11.77%
T1 Median 11× 11 10.75%

FLAIR Median 5× 5 10.39%

Table 4: Most frequently used features

the 54 available low-grade and/or 220 available high-grade tumor volumes.
With respect to the methods involved in the comparison in [21], our proposed
methodology seems competitive, and it will further improve with the imple-
mentation of the above listed ideas.

To optimize the efficiency of the random forest classifier, it is useful to know
how many times the features are used in decision making during the testing
phase, which are the most and least used features? The number of trees in the
random forest was denoted by nT . Let us denote the number of test voxels by
Ntest. Performing the whole classification requires to perform nT ×Ntest tests
on binary decision trees. Let us further suppose, that feature number f is used
at least once in Nf tests, with 0 ≤ Nf ≤ nT ×Ntest. Having all these assumed,
the rate of usage of feature number f is Nf/(nT × Ntest). Table 4 lists those
features, whose rate of usage exceeds 10%, in decreasing order of the rate of
usage. There are three important things to remark:

130 L. Szilágyi et al.

1. Data channels FLAIR and T2 are apparently more useful than the other
two.

2. The four observed features do not appear in the table, indicating their re-
duced usefulness in the decision making. However, they cannot be called
useless, because all other computed features are extracted from them.

3. Eliminating the least used features from the system may reduce the
computation burden without damaging the segmentation accuracy.

4 Conclusion

This paper presented an automatic tumor detection and segmentation al-
gorithm employing random forests of binary decision trees. The proposed
methodology reliably detects both LG and HG tumors if their volume ex-
ceeds 10mL. It is likely to obtain finer segmentation accuracy in the future
via implementing some of the above mentioned further development ideas.
We will also concentrate on differentiating among the parts of the whole tu-
mor (edema, tumor core, necrosis, active tumor), according to the grand truth
provided by the BRATS database.

Acknowledgements

This research was funded by the Sapientia Institute for Research Programs
(KPI). The work of L. Szilágyi was additionally funded by the János Bolyai
Research Fellowship program of the Hungarian Academy of Sciences. The work
of Z. Kapás was additionally funded by the Szekely Forerunner Federation. The
work of Zs. Szabó was additionally funded by the Accenture Student Research
Scholarship program.

References

[1] S. B. Akers, Binary decision diagrams, IEEE Trans. Computers C-27, 6 (1978)
509–516. ⇒115

[2] A. J. Asman, B. A. Landman, Out-of-atlas labeling: a multi-atlas approach to
cancer segmentation, Proc. IEEE International Symposium on Biomedical Imag-
ing, Barcelona, Catalunya, 2012, pp. 1236–1239. ⇒111

[3] L. Breiman, Random forests, Machine Learning 45, 1 (2001) 5–32. ⇒117
[4] J. D. Christensen, Normalization of brain magnetic resonance images using his-

togram even-order derivative analysis, Magn. Reson. Imaging 21, 7 (2003) 817–
820. ⇒114

https://www.computer.org/web/tc
https://www.springer.com/computer/ai/journal/10994
https://www.journals.elsevier.com/magnetic-resonance-imaging/

Brain tumor segmentation 131

[5] S. Ghanavati, J. Li, T. Liu, P. S. Babyn, W. Doda, G. Lampropoulos, Automatic
brain tumor detection in magnetic resonance images, Proc. IEEE International
Symposium on Biomedical Imaging, Barcelona, Catalunya, 2012, pp. 574–577.⇒111

[6] N. Gordillo, E. Montseny, P. Sobrevilla, State of the art survey on MRI brain
tumor segmentation, Magn. Reson. Imaging 31 (2013) 1426–1438. ⇒111, 112

[7] A. Hamamci, N. Kucuk, K. Karamam, K. Engin, G. Unal, Tumor-Cut: seg-
mentation of brain tumors on contranst enhanced MR images for radiosurgery
applications, IEEE Trans. Med. Imaging 31 (2012) 790–804. ⇒111

[8] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C.
Pal, P. M. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural
networks, Med. Image Anal. 35 (2017) 18–31. ⇒112

[9] M. Y. Huang, W. Yang, Y. Wu, J. Jiang, W. F. Chen, Q. J. Feng, Brain tumor
segmentation based on local independent projection-based classification, IEEE
Trans. Biomed. Eng. 61 (2014) 2633–2645. ⇒112

[10] J. E. Iglesias, M. R. Sabuncu, Multi-atlas segmentation of biomedical images: A
survey, Med. Image Anal. 24 (2015) 205–219. ⇒112

[11] A. Islam, S. M. S. Reza, K. M. Iftekharuddin, Multifractal texture estimation
for detection and segmentation of brain tumors, IEEE Trans. Biomed. Eng. 60
(2013) 3204–3215. ⇒112

[12] J. Juan-Albarraćın, E. Fuster-Garcia, J. V. Manjón, M. Robles, F. Aparici,
L. Mart́ı-Bonmat́ı, J. M. Garćıa-Gómez, Automated glioblastoma segmentation
based on a multiparametric structured unsupervised classification, PLoS ONE
10 5 (2015) e0125143. ⇒112

[13] V. G. Kanas, E. I. Zacharaki, C. Davatzikos, K. N. Sgarbas, V. Mega-
looikonomou, A low cost approach for brain tumor segmentation based on in-
tensity modeling and 3D random walker, Biomed. Sign. Proc. Control 22 (2015)
19–30. ⇒112

[14] Z. Kapás, L. Lefkovits, D. Iclănzan, Á. Győrfi, B. L. Iantovics, Sz. Lefkovits, S.
M.. Szilágyi, L. Szilágyi, Automatic brain tumor segmentation in multispectral
MRI volumes using a random forest approach, Proc. Pacific-Rim Symposium on
Image and Video Technology (PSIVT’17), Lecture Notes in Artificial Intelligence
10749 (2018) 137–149. ⇒112

[15] M. Lê, H. Delingette, J. Kalpathy-Cramer, E. R. Gerstner, T. Batchelor, J.
Unkelbach, N. Ayache, Personalized radiotherapy planning based on a compu-
tational tumor growth model, IEEE Trans. Med. Imaging 36 (2017) 815–825.⇒112

[16] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,
et al., The multimodal brain tumor image segmentation benchmark (BRATS),
IEEE Trans. Med. Imaging 34, 10 (2015) 1993–2024. ⇒114, 118

[17] B. H. Menze, K. van Leemput, D. Lashkari, T. Riklin-Raviv, E. Geremia, E.
Alberts, et al. , A generative probabilistic model and discriminative extensions
for brain lesion segmentation – with application to tumor and stroke, IEEE
Trans. Med. Imaging 35 (2016) 933–946. ⇒112

https://www.journals.elsevier.com/magnetic-resonance-imaging/
https://ieee-tmi.org
https://www.journals.elsevier.com/medical-image-analysis
https://tbme.embs.org
https://tbme.embs.org
https://www.journals.elsevier.com/medical-image-analysis
https://tbme.embs.org
http://journals.plos.org/plosone/
https://www.journals.elsevier.com/biomedical-signal-processing-and-control
http://www.springer.com/series/1244
https://ieee-tmi.org
https://ieee-tmi.org
https://ieee-tmi.org
https://ieee-tmi.org

132 L. Szilágyi et al.

[18] I. Njeh, L. Sallemi, I. Ben Ayed, K. Chtourou, S. Lehericy, D. Galanaud, A. Ben
Hamida, 3D multimodal MRI brain glioma tumor and edema segmentation: a
graph cut distribution matching approach, Comput. Med. Image Anal. 40 (2015)
108–119. ⇒111

[19] L. G. Nyúl, J. K. Udupa, X. Zhang, New variants of a method of MRI scale
standardization, IEEE Trans. Med. Imaging 19, 2 (2010) 143–150. ⇒111, 114

[20] S. Pereira, A. Pinto, V. Alves, C. A. Silva, Brain tumor segmentation using
convolutional neural networks in MRI images, IEEE Trans. Med. Imaging 35
(2016) 1240–1251. ⇒112

[21] A. Pinto, S. Pereira, D. Rasteiro, C. A. Silva, Hierarchical brain tumour seg-
mentation using extremely randomized trees, Patt. Recogn. 82 (2018) 105–117.⇒112, 129

[22] J. Sahdeva, V. Kumar, I. Gupta, N. Khandelwal, C. K. Ahuja, A novel content-
based active countour model for brain tumor segmentation, Magn. Reson. Imag-
ing 30 (2012) 694–715. ⇒111

[23] H. C. Shin, H. R. Roth, M. C. Gao, L. Lu, Z. Y. Xu, I. Nogues, J. H. Yao,
D. Mollura, R. M. Summers, Deep nonvolutional neural networks for computer-
aided detection: CNN architectures, dataset characteristics and transfer learning,
IEEE Trans. Med. Imaging 35 (2016) 1285–1298. ⇒112

[24] Zs. Szabó, Z. Kapás, Á. Győrfi, L. Lefkovits, S. M. Szilágyi, L. Szilágyi, Auto-
matic segmentation of low-grade brain tumor using a random forest classifier
and Gabor features, Proc. 14th International Conference on Fuzzy Systems and
Knowledge Discovery, Huangshan, China, 2018, pp. 1106–1113. ⇒112

[25] L. Szilágyi, L. Lefkovits, B. Benyó, Automatic Brain Tumor Segmentation in
multispectral MRI volumes using a fuzzy c-means cascade algorithm, Proc. 11th
International Conference on Fuzzy Systems and Knowledge Discovery, Zhangji-
ajie, China, 2015, pp. 285–291. ⇒112

[26] N. J. Tustison, K. L. Shrinidhi, M. Wintermark, C. R. Durst, B. M. Kandel, J.
C. Gee, M. C. Grossman, B. B. Avants, Optimal symmetric multimodal tem-
plates and concatenated random forests for supervised brain tumor segmentation
(simplified) with ANTsR, Neuroinformatics 13 (2015) 209–225. ⇒112

[27] U. Vovk, F. Pernus̆, B. Likar, A review of methods for correction of intensity
inhomogeneity in MRI, IEEE Trans. Med. Imaging 26 (2007) 405–421. ⇒111

[28] R. Zaouche, A. Belaid, S. Aloui, B. Solaiman, L. Lecornu, D. Ben Salem, S.
Tliba, Semi-automatic method for low-grade gliomas segmentation in magnetic
resonance imaging, IRBM 39 (2018) 116–128. ⇒112

[29] N. Zhang, S. Ruan, S. Lebonvallet, Q. Liao, Y. Zhou, Kernel feature selection
to fuse multi-spectral MRI images for brain tumor segmentation, Comput. Vis.
Image Undestand. 115 (2011) 256–269. ⇒112

Received: Aug. 5, 2018 • Revised: Aug. 15, 2018

https://www.journals.elsevier.com/computerized-medical-imaging-and-graphics
https://ieee-tmi.org
https://ieee-tmi.org
https://www.journals.elsevier.com/pattern-recognition
https://www.journals.elsevier.com/magnetic-resonance-imaging/
https://www.journals.elsevier.com/magnetic-resonance-imaging/
https://ieee-tmi.org
https://www.springer.com/biomed/neuroscience/journal/12021
https://ieee-tmi.org
https://www.journals.elsevier.com/irbm
https://www.journals.elsevier.com/computer-vision-and-image-understanding
https://www.journals.elsevier.com/computer-vision-and-image-understanding

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
László DÁVID

Main Editorial Board

Zoltán KÁSA András KELEMEN Laura NISTOR
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica
Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro
Assistent Editor

Dávid ICLANZAN (Sapientia University, Romania)

Editorial Board
Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Horia GEORGESCU (University of Bucureşti, Romania)
Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)

Zoltán KÁTAI (Sapientia University, Romania)
Attila KISS (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Shariefudddin PIRZADA (University of Kashmir, India)
Veronika STOFFA (STOFFOVA) (Trnava University in Trnava, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Sciendo by De Gruyter Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Idea Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
acta-inf@acta.sapientia.ro
http://www.acta.sapientia.ro
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro

	info101-1.pdf
	1 Introduction
	2 Preliminaries
	3 CArL
	4 SMT-RAT
	4.1 Previous SMT-RAT solver modules
	4.2 New modules
	4.3 Strategic combination of solver modules

	5 Experimental results
	5.1 Computations with polynomials
	5.2 SMT solving

	6 Conclusion

	info101-2.pdf
	1 Introduction
	2 Related work
	3 Deep learning
	4 Fruits-360 data set
	5 Neural network structure and utilized framework
	6 Numerical experiments
	7 Conclusions

	info101-3.pdf
	1 Introduction
	2 Related work
	3 Terminology and basic concepts
	3.1 Product lines
	3.2 Model-driven engineering

	4 Model-driven product derivation approach
	4.1 Domain engineering
	4.2 Application engineering

	5 Case study
	5.1 Domain engineering
	5.2 Application engineering

	6 Conclusion

	info101-4.pdf
	1 Introduction
	2 Literature review
	2.1 Lexicon based methods
	2.1.1 Dictionary based methods
	2.1.2 Corpus based methods

	2.2 Machine learning
	2.2.1 Supervised learning
	2.2.2 Unsupervised learning

	2.3 Hybird methods
	2.4 Dependency relationship (DR) techniques

	3 Applications
	4 Challenges
	5 Conclusion

	info101-5.pdf
	1 Introduction
	1.1 Problem generators
	1.2 Cutting stock problems

	2 Proposed problem generator
	3 Upper deck placement genetic algorithm
	3.1 Chromosome structure
	3.2 Heuristic
	3.3 Collision detection
	3.4 Genetic operators

	4 Results and improvements
	4.1 Crossover and mutation operation improvement
	4.2 Initial population and maximum generation size
	4.3 Mass extinction
	4.4 Revisiting the 64x64 particular covering problem

	5 Conclusions and future work

	info101-6.pdf
	1 Introduction
	2 Hierarchical clustering
	2.1 Jet
	2.2 Jet clusterisation
	2.3 Jet algorithm
	2.3.1 Cone algorithm
	2.3.2 Sequential recombination jet algorithm

	2.4 The Louvain algorithm
	2.4.1 Modularity

	2.5 Hierarchical kt clustering

	3 Basic artificial neural networks
	3.1 Architecture
	3.1.1 Types of artificial networks

	4 Q-learning
	4.1 Goals and rewards
	4.2 Returns
	4.3 The Markov property
	4.4 Markov cecision process
	4.5 Value functions
	4.6 Optimal value functions

	5 Clustering with deep Q-learning
	5.1 Environment
	5.2 Agent
	5.2.1 Implementation in Keras

	6 Results
	6.1 Dataset
	6.1.1 Census dataset
	6.1.2 Jet dataset

	6.2 Precision of the neural network
	6.3 Modularity comparison

	7 Summary
	8 Future work

	info101-7.pdf
	1 Introduction
	2 Materials and Methods
	2.1 MICCAI BRATS data sets
	2.2 Data preprocessing
	2.3 Data classification
	2.4 Post-processing
	2.5 Evaluation of accuracy

	3 Results and Discussion
	4 Conclusion

