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Abstract. Nowadays, when multiple aspects of our life depend on com-
plex cyber-physical systems, automated anomaly detection, prevention
and handling is a critical issue that influence our security and quality of
life. Recent catastrophic events showed that manual (human-based) han-
dling of anomalies in complex systems is not recommended, automatic
and intelligent handling being the proper approach. This paper presents,
through a number of case studies, the challenges and possible solutions
for implementing computer-based anomaly detection systems.

1 Introduction

Anomaly detection in physical processes (form very simple ones like an electric
motor toward very complex industrial infrastructures) is not a new task; it is
part of the operating and maintenance procedure of that system. Because of
the multitude of anomaly sources and consequent system behaviors this task
was traditionally left to the experience and intuition of a human operator. But
in today’s complex cyber-physical systems with thousands of process variables
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involved and multiple automatic control loops the ability of a human operator
to identify an abnormal behavior or state is overwhelming. Sometimes the
required reaction time to a given event is much under the typical reaction
time of a human (which is usually greater than 0.1 s).

There are a number of examples of catastrophic events caused by the fact
that an abnormal system behavior was not properly identified and handled.
For instance, recently (Aug. 2016) an explosion could have been avoided at the
Petromidia petroleum processing plant (in Romania) if the human operators
wouldn’t have ignored a sequence of alerts that signaled a gas leakage [13].
But the real problem was that more than 1.6 million alerts were generated by
the automated system in the last 3 days previous to the explosion, probably
a lot of them being false alerts. In front of such a huge number of alerts a
human cannot identify and classify the anomalies and threats at their correct
risk level.

Therefore automated algorithms and methods are needed to identify and
handle in real-time critical system anomalies. But implementing efficient ano-
maly detection methods is not a trivial task. For example, for a person is
rather simple to say that something is wrong with his/her car based just on
the sound generated by that car and a specialist can even tell the compo-
nent that cause the trouble. Transposing such an intuitive detection into an
algorithm or automated method is not a straightforward task.

The difficulty starts with the definition of an abnormal behavior or sim-
ply of an anomaly. It continues with the multitude of possible anomalies and
sources of anomalies. An anomaly may be caused by accidental (non-malicious)
causes such as: a communication error, faulty equipment or measuring device,
a noisy signal and significant environmental changes; it may also be caused
by intentional (malicious) actions, such as: a virus, an intruder or a theorist.
There are examples of cybernetic attacks specially designed for very critical
cyber-physical and embedded systems (e.g. Stuxnet, Duqu).

It is generally accepted that an anomaly is a deviation from a normal state
or behavior; therefore it is important to identify a normal state (or states) as a
discriminant for identifying anomalies. As it will be showed in the case studies,
most of the proposed anomaly detection mechanisms are trying to identify a
number of relevant features of the analyzed system that allows making the
difference between normal and abnormal behavior.

Due to abnormal system behavior, monitoring data sets include outliers.
The term “outlier” was originally used in the field of statistics and it is [1]
defined as an observation that is inconsistent with the set of data it belongs
to. Even if they are not quite equivalent, in many cases the terms “outlier
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detection” and “anomaly detection” are used with the same meaning. In our
view outlier detection is more an off-line process, while anomaly detection is
an on-line one.

As presented in a very good survey on anomaly detection methods [2] there
are different forms of anomalies, different anomaly sources, different types of
systems (system behaviors) and different application domains. Therefore there
is a very wide range of methods used for this purpose, “borrowed” from mul-
tiple domains, such as: statistics, data mining, machine learning, information
theory, signal processing and spectral analysis, etc.

The goal of this paper is to analyze through some examples those methods
that are best fitted for the cyber-physical domain. Typical for this domain
is the use of sensorial networks and sensorial data, the need for on-line (real-
time) analysis and detection and the presence of multiple correlations between
the acquired data. As shown in the next chapters, the common feature for the
methods applied in different case studies is the identification of an anomaly as
a value or a state that breaks the previously detected or learned correlation
rules.

This paper is a retrospective survey of our manifold research in the area of
anomaly detection applied in different domains and for various purposes.

The rest of the paper is structured as follows: the next section presents some
basic concepts and related research in the field of anomaly detection, specific
for cyber-physical systems. Section 3 tries to classify the different conceptual
approaches for anomaly detection and analyze the possibility to adapt a given
method to the specificity of physical systems. The next sections present a
number of case studies for different types of anomaly sources and system types.
These sections reflect some of our previous results in different areas. The last
section presents our conclusions and some future research possibilities.

2 Related work

There are several recent survey papers that try to organize and classify the
large amount of research work that has been conducted in the field of outlier
or anomaly detection, while highlighting the research issues that still need
attention [12, 6, 4, 11].

The authors in [12] identify three large types of outlier detection problems
based on outlier sources: fault detection in case of noise and defects, event de-
tection in case of multi-variable systems and intrusion detection in case of mali-
cious attacks. One of the main challenges of outlier detection in sensor networks
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is in fact identifying the source of outlier data, since traditional techniques fail
to distinguish between errors and events. Other important challenges identi-
fied in [12] are related to the scalability and the computational complexity of
the detection techniques. The authors classify the outlier detection methods
in statistical-based approaches, nearest-neighbor based approaches, clustering-
based, classification-based approaches and spectral decomposition-based ap-
proaches. They point out that the first two classes can’t handle multivariate
data sets and the other, more complex methods can’t be easily used for large
scale sensor networks because of their large resource requirements or compu-
tational complexity.

The authors of [6] identify the requirements for an efficient and effective
anomaly detection model that include five items: reduction of data, online de-
tection, distributed detection, adaptive detection and correlation exploitation.
They point out that current anomaly detection models have important limita-
tions such as the failure of adaptability in dynamic environments, not taking
into account spatial and temporal correlations between data and the absence
of automated parameter tuning.

Other surveys [4, 11] extensively cover outlier detection techniques that
are used for the detection of malicious attacks. The authors in [4] mainly
cover the problem of data injections in sensor networks. As they classify the
techniques used for the detection of anomalies, they emphasize the importance
of attribute, temporal and spatial correlation in solving the problem of multiple
compromised sensors that produce anomalous values in a coordinated fashion.
In [11], the authors make a classification of security threats in sensor networks
and of the outlier detection methods used. They conclude that data mining
and computational intelligence based schemes are the strongest in terms of
detection generality as long as the adequate attributes are selected. Finally,
they identify some potential research areas such as modeling the problem
of anomaly detection, attribute selection and the development of a uniform
performance evaluation standard.

In this research context, our paper tries to give a more pragmatic approach
to the anomaly detection problem. Through the case studies we show that
the key for any anomaly detection method is to find the set of features that
discriminate between normal and abnormal system states, process variable
values or events. It is also important to find correlations between process
variables that are broken in case of an anomaly.
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Figure 1: Anomalies in time series (X : original signal, Xa : signal with singular
anomalies).

3 Anomaly detection techniques

An important group of anomalies are singular values that do not fit with the
rest of the acquired data. In time series these outliers can be seen as values
that do not follow the continuous shape of a variable graph. Some values,
which are outside of a normal variation range (e.g. dots 3 and 4 in Figure
1), can be detected if a minimum and maximum value is set or detected on
a training set. Other values are in the normal range but it is still obvious for
a human eye that something is wrong (e.g. dots 1 and 2 in Figure 1). These
outlier values can be detected with linear and parabolic prediction or through
autocorrelation techniques (see more details in next chapter, case study “a”).

Also singular anomalies may be detected in spatially distributed variables.
For instance, in environmental monitoring systems, values (e.g. temperature,
pressure, humidity) measured in a small vicinity tend to be similar or at least
correlated somehow. In such systems (see Figure 2) an outlier is a value that
does not fit with the spatial curves of the neighbor values. Linear approxima-
tion and spatial correlation techniques may be used for detection. Sometimes
time and spatial correlation may be combined for more accurate anomaly de-
tection.
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Figure 2: Anomalies in spatially distributed values.

In a cyber-physical system there are multiple functional correlations between
process variables, which can be used for anomaly detection. These functional
dependencies may be theoretically deducted from the physical and chemical
laws that govern that process or they may be determined experimentally from
the measured data sets. Figure 3 shows 5 process variables and Table 1 presents
computed correlations between some pairs of variables. Through correlation
values we can establish that variable v is mostly correlated with x and z

variables and less correlated with y and u. In this case there is a functional
relation between v, x and z, which may be exploited for anomaly detection.

Correlation x and Y x and v z and v y and V u and v

Values -0.66 0.91 0.89 -0.64 0.19

Table 1: Correlations between pairs of variables.

Another category of anomalies (beside singular ones) are those that change
the typical shape of a signal. In this case the allowed variation domain or the
“continuity” feature of the graph are not violated and therefore other tech-
niques must be applied, techniques that recognize the normal and abnormal
shape of the signal. Here, pattern recognition and classification methods are
used. For instance, a doctor can recognize a given heart disease based on the
specific normal and abnormal ECG signals. A pattern recognition tool (e.g.
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Figure 3: Functional correlations between variables.

neural network, decision tree) is trained with normal and abnormal ECG sig-
nal shapes. But in cyber-physical a system, generating abnormal signal shapes
is not a trivial task (it may even destroy the system) and there are many ab-
normal behaviors, most of them not predictable from the design phase.

An interesting approach in this area is to classify in simple terms (e.g.
letters or codes) the different slopes of a signal and then identify a normal or
abnormal behavior based on the sequence and duration of codes. We used this
approach for identifying road anomalies (see case study “d”) and also abnormal
behavior of elderly persons [8]. Because the human behavior is rather complex,
with multiple possible choices, normality was hard to define. Hidden Markov
chains were trained in order to classify normal and abnormal behavior.

4 Case studies of anomaly detection

This chapter gathers a number of relevant cases regarding anomaly detection
methods developed for different purposes. In every case we analyze the main
goal of the detection, possible methods and expected outcomes.
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4.1 Anomaly detection in sensorial networks

In case of sensorial networks most of the methods used [2] try to exploit the
existing correlations between the data acquired from sensors. Usually there
are three types of correlations that may be identified in such systems:

• Time correlation or correlation of a sensor with itself;

• Spatial correlation or correlation between a sensor and its neighbors;

• Functional correlation or a correlation imposed by the functional rela-
tions between components of a complex system.

The first kind of correlation is specific for process variables that have a quasi-
continuous evolution in time and their future behavior can be predicted from
their past values. In this case linear prediction and auto-regression techniques
can be used. Linear prediction is an easy and fast method that can be imple-
mented even at the intelligent sensor’s level. A predicted value X̄ is computed
using the last 2 (linear approximation) or 3 samples (parabolic approximation)
of the signal. If the difference (ε) between the predicted and the last measured
value exceeds a given threshold the value is considered a candidate outlier.
The threshold can be learned in a training phase as the maximum difference
occurred in the training set; the condition is to have a training set without
outlier values. Usually the outlier value will be replaced with the predicted
one.

The success of this method depends on the granularity of the time sam-
pling (the sampling rate). In order to apply successfully a linear or parabolic
approximation the original curve of the signal should be well approximated
with line segments or parabolic segments. Our experiments showed that if the
sampling frequency is one magnitude (10 times) higher than the highest fre-
quency in the input signal than the approximation error is reasonably small
and the error threshold can be kept small. Otherwise, computed differences
in the training set will be high and consequently the threshold is too high
for a good outlier discriminant. The maximum frequency in the input set can
be obtained by applying an FFT on the training set. To avoid false high fre-
quencies generated mainly by noise, the amplitude of the highest frequency in
FFT taken into consideration should be a fraction (e.g. 1/10) of the biggest
harmonic amplitude. Threshold computation can be done in the initialization
phase when no time limits are imposed.

A more computer-intensive method for anomaly detection is through auto-
regression. The predicted value is computed as a weighted some of previous
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samples, as follows:

X̄i[k] =

N∑
j=1

ui,jXi[k− j],

where ui,j is the weighting coefficient of order j of node i in an auto regression
model. Computing ui coefficients is a computer intensive process, which can
be performed only in a device with sufficient computing resources (not on a
microcontroller or an intelligent sensor). The coefficients can be computed on
the training set, but also on the incoming samples. The window of samples on
which the auto-regression model is computed must include a relevant period
of time in the evolution of the signal, meaning that the window must include
seasonal variations of the time series (variations cause by day-night cycles or
season changes). Some programing languages (e.g. the “R” language used by
us) have very good library functions for auto-regression and linear modeling
coefficients computation.

An outlier value is detected if the difference between the predicted and
measured value is higher than a threshold; this threshold can be determined
based on the “residuals” of the auto-regression model.

For systems that change their behavior in time the auto regression model
should be periodically recomputed on the newly collected data.

Another correlation which may be exploited in sensorial data is the spatial
correlation. For instance if there is a set of sensors that are collecting tem-
perature values in a given region it is reasonable to suppose that the values
generated by a sensor are in a correlation with the values generated by its
neighbors. In this case again a linear model or a regressive model can be com-
puted for each node of the network. Now the predicted value of a node is
computed using its neighbors values at the same sampling time or at a lagged
time. The lag (or time delay) can be determined experimentally or based on
a physical propagation formula (e.g. propagation of temperature gradient in a
given environment):

X̄i[k] =

N∑
j=1

ui,jXi,j[k]

where

• ui,j is the weighting coefficient of neighbor j,

• N may be 3 to 8 (for pragmatic reasons),

• Xi,j[k] the j-th neighbor of node i.
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The vicinity of a node in a sensorial network can be obtained using the ge-
ographical position of the nodes in the area (e.g. GPS coordinates). If such
information does not exist than proximity of a neighbor can be determined
through the radio connectivity between nodes and the amplitude (power) of
the radio signal. Of course, a triangulation method would improve the preci-
sion of selecting the best neighbor candidates. The number of neighbors may
vary from 3 to 8 depending on the available time for computation.

The linear approximation technique can be implemented directly on the
sensor nodes. Every node hears (through radio transmission) their neighbor
reports and can decide if its value is an outlier. In a similar way the detection
can be made by the nodes that aggregate data through the acquisition tree.

The regression model on spatially distributed nodes requires more comput-
ing power and can be implemented at the “Access point” node or in a central
computer (e.g. server). In the formula that predicts the value of a node at mo-
ment “k” we can include the weighted sum of the neighbors’ values at the same
“k” moment as well as values at one, two or more earlier sampling periods.

X̄i[k] =

N∑
j=1

ui,j,0Xi,j[k] +

N∑
j=1

ui,j,1Xi,j[k− 1] +

N∑
j=1

ui,j,2Xi,j[k− 2] + ...

where ui,j,l is the weighting coefficient for neighbor j and time delay l.
Functional correlation can be exploited as an alternative for spatial corre-

lation, when the similarity between two variables is in accordance with some
functional dependencies between the system’s parameters and spatial proxim-
ity between two nodes is not relevant. This is the case for a sensor network that
collects multiple types of process variable values and there is a correlation be-
tween variables in accordance with the physical laws that govern that process.
For instance in an electrical energy distribution system the voltage, current,
power and energy measurements must be in accordance with the electricity
laws (e.g. Kirchhoff’s laws).

Functional dependencies between any two process variables can be estab-
lished on theoretical bases or through an experimental process. In the first
case the designer must know a-priory the physical law that govern the process
and interconnect the process variables. The system theory shows that find-
ing a true and precise model of a system is not a trivial task and in many
cases the multiple external influences (e.g. environmental variations) diverts
the system’s behavior from the pure theoretical mode. Therefore an experi-
mental approach is more feasible. We can build an experimental model of the
system (a process called identification in system theory), or we can compute



Anomaly detection techniques in cyber-physical systems 111

correlation functions between pears of process variables. For a variable we can
consider as its closest neighbors the “N” variables for which the correlation
functions are the highest. This computation can be done off-line in the learning
phase, based on some previously collected data.

4.2 Pollution detection in rivers using rule-based systems

The detection of abnormal events in environmental monitoring is based on
analyzing the values obtained from sensors and the correlations between these
values. In the special case of pollution detection in rivers, time, spatial, as well
as functional correlations between different parameters have to be taken into
consideration.

Several parameters such as temperature, pH, specific conductivity, dissolved
oxygen, turbidity and discharge can be used to assess the quality of water.
Some of these parameters are measured using sensors (e.g. temperature, pH)
and others are computed based on measured values (e.g. discharge is computed
based on pressure and river profile measurements [3]). To be able to take
advantage of time and spatial correlations, the measurements, acquired from
sensors, have to be made continuously in subsequent locations on the river
shore for each of these parameters.

Our approach for detecting events while monitoring water quality param-
eters is a two-step rule based system. In the first step, the parameter values
are labeled based on a set of rules that take into consideration time and space
correlations between the values measured for each parameter. In the second
step, a second rule-based component assesses the functional correlations be-
tween several parameters to detect events such as river shore erosion, floods
or chemical pollution.

The first step of the rule-based event detection system is focused on the
detection of anomalies in the time series of each measured parameter, at each
location. These anomalies can be erroneous measurements provided by faulty
sensors or values that are outside the accepted value interval, which may sig-
nal an event. Labeling rules are different for each parameter, not only because
accepted value intervals and correlation rules differ, but also because some pa-
rameters’ accepted value intervals are variable based on the context in which
they are measured (e.g. normal values for water temperature vary based on
season). During labeling, it is important to differentiate between erroneous
measurements and actual events. This is done by correlating the values mea-
sured at subsequent locations. If an event appears at one location, then the
measurements downstream for the same parameter will be correlated. More-
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over, values showing events are time correlated. In case of errors, there are
no spatial correlations. A faulty sensor can give unpredictable readings. The
labels assigned to the measured or computed values place them in one of the
following categories: error, normal, low, high.

Labeled values are passed to the second step rule-based component that
will be able to detect actual events based on correlations between several
parameters values. For example, river shore erosion may be detected based
on high turbidity and high discharge. River shore erosion may signal the risk
of floods. If the river shore is near an agricultural land, in the presence of
a flood, there is a high risk of nitrate and nitrite pollution. High turbidity
is usually detected during and after a rainfall and it causes an increase of
temperature and a decrease of dissolved oxygen. This will cause damage to
the flora and fauna of the river. Conductivity and pH levels are specific to
each water stream due to the soil and geology. Therefore, the change in pH
and increased conductivity levels signal the presence of polluting chemicals
such as nitrate, phosphate or sodium.

By applying similar water quality assessment rules the second step compo-
nent will be able to identify various types of events. The performance of event
detection is heavily influenced by the quality of preliminary value labeling. An
increased spectrum of categories (label types) should improve the assessment
process. A partial implementation of this system and its integration with a
water monitoring system for Somes River is presented in [10].

4.3 Malicious attack detection using system models

Malicious attacks on cyber-physical systems are another source for anomalies
and abnormal behavior of some automatically controlled systems. Before a
catastrophic failure happens a number of anomalies may indicate an imminent
attack on the system. The goal in this case is to identify the initial signs of an
attack and counteract in order to avoid total failure.

One possibility is to use traditional virus and intruder detection methods
specific for computer systems. But as showed in [5] cyber-physical systems
require specific detection methods that take into account the type of equip-
ment involved (sensors, actuators, regulators, PLCs), the gravity of a malicious
attack and the inter-correlation between process variables.

The idea promoted in our research is to try to model the physical process
and then simulate different attacks in different points of the infrastructure in
order to identify and learn malfunctioning patterns. Then these patterns can
be used as discriminants for identifying real attacks.
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Two kinds of cyber-physical systems were modeled: a chemical process and
an electrical distribution network [5]. In both cases the models allowed us
to inject false data at different points and measure their effect upon system
variables. It was demonstrated that an efficient attack is not one that try to
influence major elements in the infrastructure (they can be detected rather
simple in an effective time) but an attack that keep its effect stealthy as much
time as possible. In the second case the initial variations are too small for a
simple anomaly detector and later when the effects are detectable a significant
part of the infrastructure is already under the control of the attacker.

A system model allows an anomaly detector to compute the next predicted
value based on the previously measured ones. A maliciously injected value will
differ significantly from the predicted one, being a candidate for an anomaly.

Another bases for anomaly detection is an inherent redundancy between
measured process variables. The system model gives the inter-conditioning
relations between different process variables. For instance in the electrical
distribution network example, the sum of the currents going in and out of
an intersection must be theoretically zero. In practice, because of the energy
loses on the electrical lines an error threshold had to be considered. Similar
relations can be found between variables of different types (e.g. power, cur-
rent and voltage). This kind of anomaly detection can be used not just for
malicious attacks but also for malfunctioning components. In the second case
(faulty component) the effect tends to be permanent.

The designer of the anomaly detector module can define a set of rules
or inter-conditioning relations extracted from the system model. If a precise
model of the system does not exist the rules may be formulated based on the
experience and intuition of the human operator; in this case Fuzzy relations
are preferred.

More difficult is to consider dynamic relations between variables, which are
described by differential equations. Dynamic behavior is typical for transitions
between more or less stable states of the monitored system. Here an experi-
mentally determined transfer function allows us to write a time dependency
between an input and an output variable and then this relation is used for
anomaly detection. In system theory this process is called system identifica-
tion and a number of experimental methods are given for determining the
transfer function. Again an error threshold must be considered between the
predicted (computed) and measured output variable. The level of the error is
influenced by the effect of the noise over the analyzed component (which can
be determined in the training phase).
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The dynamic behavior should be taken into consideration when the transi-
tion periods of the system are more dominant over the stable state periods.
In our case, static relations were typical for the electrical distribution network
model and dynamic relations for the chemical process.

4.4 Anomaly detection through pattern recognition

A forth direction of our research was to identify an abnormal behavior through
pattern recognition techniques. The idea is to collect and learn a number of
normal and abnormal behaviors of the system variables (e.g. time variation
patterns) and then use them as discriminant for abnormal behavior. There
are many methods described in the literature [2] that can be used for pat-
tern recognition (e.g. neural networks, frequency analysis, classification and
clustering, SVM, etc.), most of them being time consuming. Our goal was
to develop simple methods that can be used for on-line (real-time) anomaly
detection and they should be deployed on devices with limited resources.

In this case study [9] our idea was to identify anomalies in the road based on
the acceleration signals (on 3 directions) collected from a smart phone placed
in a car. The goal was twofold: to identify and locate the holes and speed
bumps in a road section and also to give a quality measure of a road section.
Through crowd sourcing a realistic and up-to-date map of a given region (e.g.
city, highway, etc.) can be obtained and users can be notified about anomalies
on the roads they are traveling.

For the first part we implemented a sequence of low and high pass filters that
allowed us to discriminate between usual trepidations of the car (caused by low
quality roads, acceleration/decelerations, engine rotation, etc.) and variations
caused by holes or bumps. Then, with an adaptive threshold we determined a
region in the curve as candidate for an anomaly. A neural network was trained
to identify different categories of road holes and bumps. As input the neural
network considers the order and the sign of the curve slopes and the magnitude
and the duration of the abnormal period.

For the second goal (road quality evaluation) a number of features were
extracted from the acceleration signals, such as dominant frequencies, compo-
nent amplitudes and frequency of anomalies. Through calibration we reduced
the effect of car speed over the measured signals. More details on this research
can be found here [9].

This experiment showed us that simple intuitive rules deployed as a sequence
of signal processing procedures (e.g. filters, FFT) allowed us to develop an
efficient and real-time road anomaly detection system. Similar techniques can
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be used for identifying abnormal shapes in the graph of a process variable.
Based on our experience we can say as a rule of thumb that if an abnormal
shape is recognizable for the human eye than probably a set of signal processing
procedures and rules can be implemented in a program that will recognize that
shape. This rule applies for anomalies which are a-priori known (as the holes
in our experiment).

Anomaly detection based on the signals’ shape recognition can be used in
cyber-physical systems as well as in many other domains such as: medicine
(e.g. ECG complexes, EEG waves, electromyography), electrical and mechan-
ical components maintenance (e.g. early signs of failure), financial processes,
meteorology or earth sciences. The methods used are similar but the interpre-
tations are very different.

4.5 Anomaly detection in network traffic

In computer networks the traffic shape and content is very divers because com-
munication applications are run randomly on different computers. Opposed to
this case, in networks used for cyber-physical systems the traffic is dominated
by periodical data flows. Usually here the data acquisition, processing, storage
and visualization are made in a periodical manner and consequently the traf-
fic associated to these activities adopts the same periodicity. Also the order of
the activities (tasks) is somehow stable. This quasi-stable state may change if
a malicious code tries to infiltrate in the system or if some kind of physical
failure occurred and the system reacts with some counter measures. From our
point of view both cases can be classified as anomalies.

Based on these observations we can define as an anomaly discriminator a
significant change in the pattern of the packages transmitted on the network.
The pattern can be identified through the following features:

• The frequencies of different types of packages

• The order of different types of packages

• The lengths of different package types

• Delays between different packages

Through a network sniffer component, in the training phase, the program can
identify the types of packages transferred through the network, their periodic-
ity (or their sporadic nature), the typical length of the packages (depending on
their type) and the order of the packages. Sometimes these details are a-priori
known by the physical-system’s designer or by the control systems developer.
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Also in some industrial networks (e.g. Profibus, FF, WorldFIP) the traffic pat-
tern is set in the configuration phase and it is strictly imposed through a MAC
protocol. Any change in this pattern may be considered an anomaly.

In less restricted networks (e.g. cell industrial networks, Etherbus, CAN,
control over Internet) some pattern features can still be detected and trans-
formed into anomaly detection rules. In a training phase a sniffer program can
determine all the package types transferred through the network, their length
interval (min, max) and repetition frequency. Any significant deviation from
normal values is considered candidate for anomaly. Sporadic packages don’t
have a regular repetition period, but even in this case a minimum frequency
can be derived from the physical phenomena or component that initiated it.
For instance in a car (on its CAN network), the frequency of packages sent by
the rotation sensor placed on the engine cannot exceed the maximum rotation
frequency of that engine. Similarly packages reflecting the driver’s activity
(wheel movement) cannot exceed the reaction time of a human.

In a complex cyber-physical system for reliability and robustness reasons
a single anomaly detector is not enough [7]. Multiple detection points must
be established in a consistent manner, in different points of the network in-
frastructure. In [7] we proposed a method for optimal placement of anomaly
detectors. The method minimizes a combined cost function that takes into
consideration the total coverage of each network node, the transmission over-
head and the delays. Further research is needed to identify and express normal
and abnormal traffic patterns used by the detector nodes.

5 Conclusions

Analyzing the different cases presented in the paper we can generate a number
of rules that may help a developer to select and implement the best anomaly
detection solution for a given cyber-physical system. Here are our conclusions:

• Today’s cyber-physical systems are becoming so complex and incorpo-
rate so many components that a manual (human) anomaly detection is
not recommended and in some cases is even impossible;

• Most anomaly detection methods are trying to exploit some regularities
or correlations existing between process variables during normal execu-
tion;

• The discriminants for detecting anomalies must be built upon a set of
signal or system features that mostly change in an abnormal behavior;
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• As shown in the case studies, these discriminants are very different,
depending on the domain, the source of the anomaly and the complexity
of the system;

• In most cases the anomaly detection method must be tolerant with some
variations caused by known (e.g. noise) or unknown sources (e.g. Gaus-
sian spread of values);

• In a cyber-physical system multiple anomaly detection points should be
spread in the infrastructure and a combination of multiple techniques
can coupe better with the multitude of anomaly sources and types.

As future work, based on our previous experiments, we try to develop a
platform that will contain a number of anomaly detection tools. This platform
will be used by a developer to test the best combination of anomaly detec-
tion methods for a given analyzed system. The platform will include facilities
for acquiring data from different sources, tools for automatic generation of
anomalies and interactive interfaces for flexible result evaluation.
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112

[11] M. Xie, S. Han, B. Tian, S. Parvin, Anomaly detection in wireless sensor net-
works:a survey, Journal of Network and Computer Applications 34, 4 (2011)
1302–1325. ⇒103, 104

[12] Y. Zhang, N. Meratnia, P. Havinga, Outlier detection techniques for wireless
sensor networks: a survey, IEEE Communications Surveys and Tutorials 12, 2
(2010) 159–170. ⇒103, 104

[13] ∗ ∗ ∗ Rompetrol Refinery explosion, www.wall-street.ro, http://www.wall-
street.ro/articol/Companii/205623/rompetrol-rafinare-trimisa-in-judecata-
in-dosarul-privind-explozia-de-la-petromidia-soldata-cu-doi-morti-si-doi-
raniti.html. ⇒102

Received: September 7, 2017 • Revised: November 17, 2017

https://scholar.google.com/citations?user=gT83IVcAAAAJ&hl=ru
https://scholar.google.com.pk/citations?user=whH24s4AAAAJ&hl=en
https://scholar.google.com/citations?user=OEuPDdsAAAAJ&hl=en
http://users.utcluj.ro/~sebestyen/sebestyen.html
http://users.utcluj.ro/~ancapop/
http://www.cityu.edu.hk/seem/minxie/
https://scholar.google.com.au/citations?user=TxCU9wEAAAAJ&hl=en
https://www.journals.elsevier.com/journal-of-network-and-computer-applications/
https://scholar.google.com/citations?user=24RvhUMAAAAJ&hl=hu
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://www.wall-street.ro/articol/Companii/205623/rompetrol-rafinare-trimisa-in-judecata-in-dosarul-privind-explozia-de-la-petromidia-soldata-cu-doi-morti-si-doi-raniti.html
http://www.wall-street.ro/articol/Companii/205623/rompetrol-rafinare-trimisa-in-judecata-in-dosarul-privind-explozia-de-la-petromidia-soldata-cu-doi-morti-si-doi-raniti.html
http://www.wall-street.ro/articol/Companii/205623/rompetrol-rafinare-trimisa-in-judecata-in-dosarul-privind-explozia-de-la-petromidia-soldata-cu-doi-morti-si-doi-raniti.html
http://www.wall-street.ro/articol/Companii/205623/rompetrol-rafinare-trimisa-in-judecata-in-dosarul-privind-explozia-de-la-petromidia-soldata-cu-doi-morti-si-doi-raniti.html


Acta Univ. Sapientiae, Informatica 9, 2 (2017) 119–133

DOI: 10.1515/ausi-2017-0008

Further results on color energy of graphs

Prajakta Bharat JOSHI
Christ University

Bengaluru - 560029, India.
email:

prajakta.joshi@res.christuniversity.in

Mayamma JOSEPH
Department of Mathematics

Christ University
Bengaluru - 560029, India.

email:
mayamma.joseph@christuniversity.in

Abstract. Given a colored graph G, its color energy Ec(G) is defined as
the sum of the absolute values of the eigenvalues of the color matrix of
G. The concept of color energy was introduced by Adiga et al. [1]. In this
article, we obtain some new bounds for the color energy of graphs and
establish relationship between color energy Ec(G) and energy E(G) of a
graph G. Further, we construct some new families of graphs in which one
is non-co-spectral color-equienergetic with some families of graphs and
another is color-hyperenergetic. Also we derive explicit formulas for their
color energies.

1 Introduction

The concept of energy of a graph G was introduced by Gutman [9] in 1978
as the sum of the absolute values of the eigenvalues of the adjacency matrix
of the graph G. His focus was to solve a question from theoretical chemistry
“how energy depends on the molecular structure?” In other words, he tried to
find the relation between the energy of a graph and its structure. Gutman has
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obtained an upper and a lower bound for energy of a graph G in terms its size
m,

2
√
m ≤ E(G) ≤ 2m (1)

He further characterized graphs for which these bounds are sharp. For details
of graph energy we refer to [9, 10, 11].

For many years, researchers have extended the concept of graph energy
and continued to work on varieties of graph energy such as Laplacian energy,
distance energy etc [11].

Recently Adiga et al. [1] introduced the concept of color energy of a graph
based on the color matrix of the graph.

Definition 1 Let G be a vertex colored graph of order n. Then the color ma-
trix of G is the matrix Ac(G) = [aij]n×n, whose entries are given by

aij =


1 if vi and vj are adjacent with c(vi) 6= c(vj)
−1 if vi and vj are non-adjacent with c(vi) = c(vj)

0 otherwise.

where c(vi) is the color of a vertex vi in G.

If the eigenvalues of Ac(G) are λ1, λ2, . . . λn, which are also called as color
eigenvalues, then the color energy Ec(G) is the sum of their absolute values.
That is,

Ec(G) =

n∑
i=1

|λi|

If a graph G is colored with minimum number of colors χ, then Eχ(G) is
the color energy of G, Aχ(G) is the color matrix, Pχ(G, λ) is the characteristic
polynomial and Specχ(G) is the spectrum of the graph G.

They have proved that

n∑
i=1

λ2i = 2(m+m′c) (2)

where m is the size of G and m′c is the number of pairs of non-adjacent vertices
receiving the same color in G.

Further, the authors have derived explicit formulas for color energies of some
families of graphs and have obtained bounds for Ec(G). Among those results
the following would be used for further discussion.
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The color energies of Kn and K1,n−1 are

Eχ(Kn) = 2(n− 1) and Eχ(K1,n−1) = 2(n− 1) (3)

respectively with the spectra

Specχ(Kn) =

(
−1 n− 1
n− 1 1

)
and Specχ(K1,n−1) =

(
−(n− 1) 1

1 n− 1

)
(4)

and for any graph G√
2(m+m′c) + n(n− 1)D

2
n ≤ Ec(G) ≤

√
2n(m+m′c) (5)

where D = |det(Ac(G))|.
In this direction, Rajesh Kanna et al. [12] have proved that the color energy

of the friendship graph F
(k)
3 of order n is 2(n− 1) with the spectrum

Specχ(F
(k)
3 ) =

(
o 2 −k

k− 1 k 2

)
(6)

where the friendship graph F
(k)
3 is the graph obtained by taking k copies of C3

with a vertex in common.
Research in the area of color energy has seen rapid rise in recent years and

concepts such as color Laplacian energy [4, 15], color signless Laplacian energy
[5], minimum covering color energy of a graph [13], reduced color energy etc.
[2, 3] were added to the literature. Although several studies have been done
in this area, no study has been initiated to explore the relation between color
energy and energy of graphs.

Apart from these studies, a classification of graphs of order ≤ 6 on the basis
of their color energy is found in [16]. Also the lower bounds in terms of the
smallest and largest color eigenvalues of a graph G with order n, size m and
the number of pairs of the non-adjacent vertices in G receiving same color
were obtained in [17].

In this paper, we establish relationships between Ec(G) and E(G) apart
from finding new bounds for Ec(G). In addition to this, we introduce non-co-
spectral graphs that are color-equienergetic with complete graphs and a family
of color-hyperenergetic graphs.

All graphs considered in this paper are simple and connected. Our graph
theoretic and spectral graph theoretic terminologies follow [6, 7, 8, 18].
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2 Bounds for color energy of graphs

In this section, we present some new bounds for the color energy of graphs in
terms of the largest positive color eigenvalue λ1 and the largest absolute value
of the color eigenvalue λmax of Ac(G). First we present an upper bound for
color energy in terms of λ1, order n, size m and m ′c which denotes the number
of pairs of non-adjacent vertices receiving the same color in G.

Theorem 2 Let G be a colored graph of order n, size m. Let λ1 ≥ λ2 ≥ · · · ≥
λn be the color eigenvalues of Ac(G). Then

Ec(G) ≤ |λ1|+
√
(n− 1)[2(m+m′c) − λ

2
1] (7)

where m′c be the number of pairs of non-adjacent vertices receiving the same
color.

Proof. λ1 ≥ λ2 ≥ · · · ≥ λn are color eigenvalues of Ac(G), so by the Cauchy-
Schwartz inequality,

( n∑
i=2

|λi|

)2
≤ (n− 1)

( n∑
i=2

|λi|
2

)
n∑
i=2

|λi| ≤

√√√√(n− 1)

( n∑
i=2

|λi|2
)

=

√
(n− 1)[2(m+m′c) − λ1

2], by Equation (2).

Hence,

Ec(G) ≤ |λ1|+

√
(n− 1)[2(m+m′c) − λ1

2].

�

Remark 3 The above theorem gives an upper bound for color energy of a
graph G. This is an improvement on the upper bound given in the Inequality
(5). For example, consider the graph G given in Figure 1 which is a paw.
χ(G) = 3 with respect to given coloring. Inequality (5) yields the result that
Ec(G) ≤ 6.33 whereas Inequality (7) shows that Ec(G) ≤ 6.24. It is to be

observed that Specχ (G) =

(
−2 −1 1 2

1 1 1 1

)
and hence Eχ(G) = 6.
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b b

b

b

1 2

3

1

Figure 1: Graph G

Theorem 4 If G is a graph of order n, size m and λmax is the largest absolute
value of eigenvalue of the color matrix of G, then

Ec(G) ≥
(
2(m+m′c)

λmax

)
where m′c be the number of pairs of non-adjacent vertices receiving the same
color.

Proof. Let λmax be the largest absolute value of color eigenvalue of Ac(G).
Then

λmax|λi| ≥ λ2i
holds for i = 1, 2, . . . , n. Then summing over all i’s, we get

n∑
i=1

λmax|λi| ≥
n∑
i=1

λ2i

λmax

n∑
i=1

|λi| ≥ 2(m+m′c), by Equation (2).

So that,

Ec(G) ≥
(
2(m+m′c)

λmax

)
.

�

Next we present bounds of the color energy of a graph G in terms of only
m and m ′c. In order to prove this result, we require the following lemma.

Lemma 5 ([14]) If A is a real or complex n × n matrix with eigenvalues
λ1, λ2, . . . , λn, then for 1 ≤ k ≤ n
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1. Sk = (−1)kck.

2. Sk is the sum of the k× k principal minors of A.

where cks are the coefficients in characteristic polynomial of A and Sk, the kth

symmetric function of λ1, λ2, . . . , λn is the sum of the products of the eigen-
values taken k at a time.

Theorem 6 If G is a colored graph of order n, size m and m ′c is the number
of pairs of non-adjacent vertices receiving the same color, then

2
√
(m+m ′c) ≤ Ec(G) ≤ 2(m+m ′c).

Proof. Consider,

(Ec(G))
2 =

( n∑
i=1

|λi|

)2
=

n∑
i=1

|λi|
2 +

∑
i6=j

|λi||λj|

=

n∑
i=1

|λi|
2 + 2

∑
i<j

|λi||λj|. (8)

By Lemma 5, S2 is the sum of all 2×2 principal minors of Ac(G). Therefore,
we get ∑

1≤i<j≤n
λiλj =

∑
1≤i<j≤n

∣∣∣∣aii aij
aji ajj

∣∣∣∣
=

∑
1≤i<j≤n

(aiiajj − aijaji).

As Ac(G) is the color matrix, aij = aji and aii = 0 ∀i. Thus,∑
1≤i<j≤n

λiλj =
∑

1≤i<j≤n
−(aij)

2

= −(m+m ′c). (9)

We know that ∑
i<j

|λi||λj| ≥ |
∑
i<j

λiλj| (10)
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therefore, from Equation (9) and (10), we have∑
i<j

|λi||λj| ≥ |m+m′c|. (11)

Using this together with Equations (2), (8) and (11), we get

(Ec(G))
2 ≥ 2|(m+m′c)|+ 2|(m+m′c)|

≥ 4|(m+m′c)|.

Taking positive square-root, we get

Ec(G) ≥ 2
√
(m+m′c). (12)

Now, for all connected graphs, n ≤ 2m ≤ 2(m+m′c).
Thus, √

2n(m+m′c) ≤
√
4(m+m′c)

2.

Taking positive square-root, we get√
2n(m+m′c) ≤ 2(m+m′c).

Therefore, from Equation (5), we can write

Ec(G) ≤ 2(m+m′c) (13)

and the result follows from Equations (12) and (13). �

Remark 7 The inequality 2
√
(m+m ′c) ≤ Ec(G) is true for disconnected

graphs also.

3 Relationship between color energy and energy of
a graph

Although several aspects of color energy have been studied, relationship be-
tween color energy and energy was not taken into account. The color energy
of Kn is 2(n − 1) which is same as its energy, whereas the color energy and
the energy of K1,n−1 are not same. So, it is interesting to find the relationship
between color energy and energy and in this section an attempt is made to
obtain this relationship.
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Theorem 8 If G is a graph of order n and size m, then

[Ec(G)]
2 ≥ E(G).

Proof. From Equations (1) and (5), we know that

2m ≥ E(G) and Ec(G) ≥
√
2(m+m′c) + n(n− 1)D

2
n ).

Therefore,

[Ec(G)]
2 ≥ 2(m+m′c) + n(n− 1)D

2
n

≥ 2(m+m′c)

≥ 2m
≥ E(G).

�

Next theorem tells us about the relation between Ec(G), E(G) and the largest
absolute value of the eigenvalue of the color matrix of G.

Theorem 9 If G is a colored graph and λmax is the largest absolute value of

the eigenvalue of the color matrix of G, then Ec(G) ≥
E(G)

λmax
.

Proof. From Theorem 4, we have

Ec(G) ≥
(
2(m+m′c)

λmax

)
.

Thus,

λmaxEc(G) ≥ 2(m+m′c)

≥ 2m
≥ E(G), by Equation (1).

Therefore,

Ec(G) ≥
E(G)

λmax
.

�

Computation of Ec(G) and E(G) have shown that E(G) ≤ Ec(G) and hence
we state the following conjecture.

Conjecture 10 If G is a graph, then

E(G) ≤ Ec(G).
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4 Non-co-spectral color-equienergetic graphs

The color-co-spectral graphs are the graphs having same color eigenvalues [1].
Obviously these graphs are color-equienergetic. It is interesting to note that
Kn and K1,n−1 graphs are color-equienergetic with Eχ = 2(n − 1). However,
they are not color-co-spectral.

In this section, we introduce a new family of unicyclic graphs which is color-
equienergetic with some families of graphs and a family of bicyclic graphs
which is color-hyperenergetic. Also we present explicit formulas for color en-
ergies of these graphs.

Theorem 11 If S = K1,n−1 + e is a unicyclic graph of order n and size m
obtained by adding a single edge between two pendant vertices of the star graph
K1,n−1, then Eχ(S ) = 2(n− 1).

b

b b

b

b

b

b
b

b

b

b

b

Figure 2: S = K1,n−1 + e

Proof. S is a unicyclic graph of order n with n−3 pendant vertices. χ(S ) =
3, as it contains a C3.

The color matrix of S of order n× n,

Aχ(S ) =



0 1 1 −1 −1 −1 . . . −1 −1
1 0 1 0 0 0 . . . 0 0

1 1 0 1 1 1 . . . 1 1

−1 0 1 0 −1 −1 . . . −1 −1
−1 0 1 −1 0 −1 . . . −1 −1
−1 0 1 −1 −1 0 . . . −1 −1
...

...
...

...
...

...
. . .

...
...

−1 0 1 −1 −1 −1 . . . 0 −1
−1 0 1 −1 −1 −1 . . . −1 0


n×n

The characteristic polynomial

Pχ(S , λ) = det(λI−Aχ(S )).
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That is,

Pχ(S , λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 1 1 1 . . . 1 1

−1 λ −1 0 0 0 . . . 0 0

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

In order to get the characteristic polynomial we apply a series of row trans-
formations.

Adding first three rows of Pχ(S , λ) to take the factor (λ−2) out of the first
row.

Pχ(S , λ) = (λ− 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

−1 λ −1 0 0 0 . . . 0 0

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Adding first row of Pχ(S , λ) to its second row and taking the factor (λ+ 1)
out of the second row, we get

Pχ(S , λ) = (λ− 2)(λ+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.
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Now adding second row of Pχ(S , λ) to its third row, we get

Pχ(S , λ) = (λ− 2)(λ+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

−1 0 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 1

1 0 −1 1 λ 1 . . . 1 1

1 0 −1 1 1 λ . . . 1 1
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 1

1 0 −1 1 1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Adding the third row of Pχ(S , λ) to its qth row where q ≥ 4 and taking the
factor (λ− 1) common from q rows, we get

Pχ(S , λ)=(λ−2)(λ+1)(λ−1)(n−3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

−1 0 λ −1 −1 −1 . . . −1 −1
0 0 1 1 0 0 . . . 0 0

0 0 1 0 1 0 . . . 0 0

0 0 1 0 0 1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 1 0 0 0 . . . 1 0

0 0 1 0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Adding the first row and q rows of Pχ(S , λ) to its third row and subtracting
the second row from its third row, then take the factor [λ+(n− 2)] out of the
third row

Pχ(S , λ)=(λ−2)(λ+1)(λ−1)(n−3)[λ+(n−2)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

0 0 1 0 0 0 . . . 0 0

0 0 1 1 0 0 . . . 0 0

0 0 1 0 1 0 . . . 0 0

0 0 1 0 0 1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 1 0 0 0 . . . 1 0

0 0 1 0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.
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Now subtracting the second and third row of Pχ(S , λ) from its first row and
subtract the third row from qth row where q ≥ 4, we get

Pχ(S , λ) = (λ− 2)(λ+ 1)(λ− 1)(n−3)[λ+ (n− 2)] det(I)

where I is the identity matrix.
Thus,

Pχ(S , λ) = (λ− 2)(λ+ 1)(λ− 1)(n−3)[λ+ (n− 2)].

Therefore,

Specχ S =

(
−(n− 2) −1 1 2

1 1 n− 3 1

)
. (14)

Hence, Eχ(S ) = 2(n− 1). �

Remark 12 We observe that, the family of graphs S , F
(k)
3 , Kn and K1,n−1 are

color-equienergetic. From Equations (4), (6) and (14), clearly we can see their
spectra are not same. So, these families of graphs are non-co-spectral color-
equienergetic.

It is interesting to note that addition of an edge between a pendant vertex
and a vertex of degree two to S brings a significant difference in its energy.

Theorem 13 If H = S +e is a bicyclic graph of order n and size m obtained
by adding an edge between a pendant vertex and a vertex of degree two of the
graph S = K1,n−1 + e, then Eχ(H ) = 2(n− 3+

√
5).

b

b

b

b

b b

b

b

b

b
b

Figure 3: H = S + e

Proof. H is bicyclic graph of order n with n − 4 pendent vertices. Thus,
χ(H ) = 3, as it contains two copies of C3 with two vertices in common.
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The color matrix of H of order n× n,

Aχ(H ) =



0 1 1 −1 −1 −1 . . . −1 1

1 0 1 0 0 0 . . . 0 −1
1 1 0 1 1 1 . . . 1 1

−1 0 1 0 −1 −1 . . . −1 0

−1 0 1 −1 0 −1 . . . −1 0

−1 0 1 −1 −1 0 . . . −1 0
...

...
...

...
...

...
. . .

...
...

−1 0 1 −1 −1 −1 . . . 0 0

1 −1 1 0 0 0 . . . 0 0


n×n

The characteristic polynomial

Pχ(H , λ) = det(λI−Aχ(H )).

That is,

Pχ(H , λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 1 1 1 . . . 1 −1
−1 λ −1 0 0 0 . . . 0 1

−1 −1 λ −1 −1 −1 . . . −1 −1
1 0 −1 λ 1 1 . . . 1 0

1 0 −1 1 λ 1 . . . 1 0

1 0 −1 1 1 λ . . . 1 0
...

...
...

...
...

...
. . .

...
...

1 0 −1 1 1 1 . . . λ 0

−1 1 −1 0 0 0 . . . 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

Thus,

Pχ(H , λ) = [λ+ (n− 3)](λ+
√
5)(λ−

√
5)(λ− 1)(n+1)

Therefore,

Specχ H =

(
−(n− 3) −

√
5 1

√
5

1 1 (n− 3) 1

)
.

Hence, Eχ(H ) = 2(n− 3+
√
5).

�

Remark 14 The above theorem gives us the color energy of the family of
graphs H = S + e of order n which is 2(n − 3 +

√
5). We observe that

Eχ(H ) > 2(n−1). As a color-hyperenergetic graph has the color energy greater
than 2(n− 1) [1], H is a family of color-hyperenergetic graphs.
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5 Concluding remarks and scope

In this study, we have explored new bounds for the color energy of graphs
and have been successful in finding better bounds than those found in the
literature. However, it remains as an open problem to determine graphs for
which these bounds are sharp. Further, new bounds for Ec(G) in terms of its
order n can be determined. Another interesting area would be explore the
relation between Ec(G) and topological indices, and identify graphs for which
they match. As we have observed the color energy is defined in terms of its
color matrix which of course depends upon the coloring scheme. Therefore,
study of color energy with respect to a specific coloring is yet another area to
be investigated.
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Abstract. We describe here an optical device, based on time-delays,
for solving the set splitting problem which is well-known NP-complete
problem. The device has a graph-like structure and the light is traversing
it from a start node to a destination node. All possible (potential) paths
in the graph are generated and at the destination we will check which
one satisfies completely the problem’s constrains.

1 Introduction

Recently, an increased number of difficult (most of them being NP-complete
[3]) problems have been proposed to be solved by using optical devices. Hamil-
tonian path [2, 25, 29, 30], traveling salesman [2, 13, 14], subset sum [2, 17, 23,
26, 22], exact cover [22, 27], Diophantine equations [24, 22], 3-SAT [2, 4, 8, 18],
SAT [6, 9, 11, 28], dominating set [7], prime factorization [20, 21], security [16],
independent sets [19], graph colorability [5], k-clique [12], ultrafast arithmetic
[15], abstract machines [10] are just few of the problems whose solution can
be computed by using an optical device.

Here we show how to solve another problem, namely set splitting, which
is an known NP-complete problem [3]. The underlying mechanism is to use
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delays for encoding possible solutions. The approach here is derived from the
solution for the subset sum problem [26]. The novelty consists in a special set
of delays attached to each arc and a special set of moments when the solution
is expected in the destination node.

The paper is organized as follows: Section 2 contains a description of the
problem to be solved. Properties of the signal useful for our research and the
operations performed on that signal are described in section 3. Section 4 deeply
describe the proposed device. Details about the physical implementation are
given in section 5. Complexity is discussed in section 6. The size of the in-
stances that can be solved with this method is computed in section 7. A short
discussion of the weaknesses of this method is given in section 8. Section 9
concludes our paper.

2 The set splitting problem

“Given a family F of subsets of a finite set A, decide whether there exists a
partition of A into two subsets A1, A2 such that all elements of F are split
by this partition, i.e., none of the elements of F is completely in A1 or A2.”
[3, 31].

Set splitting is a NP-complete problem. No polynomial-time algorithm is
known to exist for it.

The optical solution of the set splitting is based on the solution for the
subset sum problem whose definition is given below:

Given a set of positive numbers A = {a1, a2, ..., an} and another positive
number B. Is there a subset of A whose sum equals B? [3]

3 Time-delay systems

Time-delay systems have been proposed in [25]. They are based on 2 properties
of the signals (optical, electrical, etc):

• The signal can be delayed by forcing it to pass through a cable of a
certain length.

• The signal can be easily divided into multiple signals of smaller inten-
sity/power which run within the same cables. This ensures a high par-
allelism of the method.

The proposed device has a graph-like structure with a start and destination
node. Nodes are connected through cables made of optical fiber.
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The system works as follows: A beam of light is sent to the start node. The
beams travel through arcs and is divided inside nodes. Because arcs have a
length greater than 0, the light is delayed by them. At the destination node we
will have different signals arriving at various moments of time. One of them
will tell us if we have a solution to our problem.

Since we work with continuous signal we cannot expect to have discrete
output at the destination node. This means that beams arrival is notified
by fluctuations in the intensity of the light. These fluctuations will be trans-
formed, by a photodiode, in fluctuations of the electric power which will be
read by an oscilloscope.

4 The optical device for the set splitting problem

This section deeply describes the proposed system.
Since the solution for set splitting is based on the solution from the subset

sum, we first briefly describe (see section 4.1) the device which solves the
subset sum problem. This device has been proposed in [26]. Later, in section
4.2 we describe the graph for the set splitting problem.

4.1 The graph for the subset sum problem

As described in [26] the numbers from the given set A represent the delays
induced to the signals (light) that passes through the device. For instance, if
numbers a1, a3 and a7 generate the expected subset, then the total delay of
the signal should be a1 + a3 + a7. Recall that, when using light, we can easily
induce some delays by forcing the beam to pass through an optical cable of a
given length.

The device has been designed [26] as a simple directed graph. There are
n + 1 nodes connected by arcs. In each node (but the last one) we place a
beam-splitter which will split a beam into 2 sub-beams of smaller intensity.
Arcs are implemented by using optical cables and have lengths proportional
to the numbers from the given set A. A mechanism for skipping a value from
the given set is also needed. A possible way for achieving this is to add an
extra arc, of length 0, between any pair of consecutive nodes. A beam leaving
a node will have the possibility to either traverse an arc representing a number
from the given set or to skip it (by traversing the arc of 0 length).

The graph for solving the subset sum problem is depicted in Figure 1.
In the destination node we will have signals (fluctuation in the intensity

of the signal) arriving at moments representing the sum of elements of all
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Figure 1: The device for solving the subset sum problem. Each arc delays the
beam by the amount of time written on it. Image taken from [26].

subsets. For instance if the lights travels through the top arcs only we will have
the subset containing all elements: a1, a2, ..., an. If the light travels through
bottom arc only we will have the empty subset. Thus the device will generate
all possible subsets of A. Each subset will delay one of the beams by an amount
of time equal to the sum of the lengths of the arcs in that path. If there is a
fluctuation in the intensity of the signal at moment B it means that we have
a solution to our problem.

Note that in practice we cannot have cables of length 0 in practice, thus we
add a small ε to the length of all arcs and the final solution is expected at
moment B+ n ∗ ε.

4.2 The graph for the set splitting problem

We have seen that the device described in section 4.1 generates all possible
subsets of the given set A, so theoretically we could use it for the set splitting
problem. But, there are some issues:

• In the case of subset sum we already have some values for the elements
in set A. Here, in the set splitting, we have no predefined values in A.

• If 2 values from the set A are identical, it is not possible to uniquely
identify a subset at the destination node.

In order to overcome these issues we introduce here a new set of delays. The
main attribute of this delaying system is to allow a unique identification of
the generated subsets.

The smallest set of n numbers such that each subset has a different value for
the sum of its elements is the set of the first n powers of 2: A = {20, 21, . . . 2n−1}.

Thus, we assign the values {20, 21, . . . 2n−1} as lengths for the top arcs.
The graph for solving the set splitting problem is depicted in Figure 2.
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Figure 2: The device for solving the set splitting problem. Each arc delays the
beam by the amount of time written on it.

Now we can easily identify a subset at the destination node: having the
moment of arrival (name it k) we know exactly what elements belong to that
subset (because each number (k) is uniquely decomposed as sum of powers of
2).

Knowing the subset, we can easily find if it represents or not a solution
to our problem. Let’s denote by A1 the subset that has just arrived in the
destination node. We also compute its complement: A2 = A−A1.

Now, we want to know if the split of A into sets (A1 and A2) represents
or not a solution to our problem, that is, whether one of the sets in F is
completely included in either A1 or A2. For this we check if any of them (A1
or A2) includes any set from F. If they do, it means that the corresponding
split does not represent a solution for our problem.

We can check the inclusion property very easily by working only with delay
moments: for each set in F we compute and cache the moments when any
superset (a set that includes the current one) of it arrives at the destination
node. Let’s denote by M those moments. If a signal arrives at a moment
not belonging to M, that set (who generated the signal) is a solution for our
problem. If M contains all integer numbers between 0 and 2n − 1 it means
that the instance does not have a solution.

We can do a small optimization here: we want to minimize the number of
moments when we wait for a solution at the destination node. So, we check
the size of M. If it is less than 2n−1 we wait for numbers belonging to M.
Otherwise we wait for numbers not belonging to M.

4.3 Example of solution

Let’s suppose that we have a set A made from 4 elements: A = {a1, a2, a3, a4}

and a set of subsets F = {F1 = {a1, a2}, F2 = {a1, a3}}. We want to find if it is
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possible to split A into 2 subsets (A1 and A2) such that neither F1 nor F2 is
completely included in A1 or A2.

To each number from A we assign a power of 2 as follows: a1 = 20, a2 =
21, a3 = 2

2 and a4 = 2
3.

The supersets which includes F1 are:
{{a1, a2}, {a1, a2, a3}, {a1, a2, a4}, {a1, a2, a3, a4}}

which have the following delay times:M1 = {3, 7, 11, 15} (which were computed
as sum of elements).

The supersets including F2 are:
{{a1, a3}, {a1, a3, a2}, {a1, a3, a4}, {a1, a3, a2, a4}}

which have the following delay times: M2 = {5, 7, 13, 15}.
Set M which represents the union of M1 with M2 is M = {3, 5, 7, 11, 13, 15}.
If a beam of light arrives in the destination at any of the moments from M

it does not encode a subset representing a solution to our problem. However,
if a beam arrives at another moment in the integer interval [1...15] but does
not belong to M, it represents a solution to our problem. For instance, if a
beam arrives at moment 1 it represents a solution because it encodes the split
A1 = {a1} and A2 = {a2, a3, a4} and none of the sets in F is included into either
A1 or A2.

5 Physical implementation

As discussed in [26] for the physical implementation we need the following
components:

• A source of light (laser),
• Several beam-splitters for dividing light beams into 2 sub-beams.
• A high speed photodiode for converting light into electrical power. The

photodiode is placed in the destination node,
• A tool for detecting fluctuations in the intensity of electric power gener-

ated by the photodiode (oscilloscope),
• A set of optical fiber cables having lengths proportional with the numbers
20, 21, . . . 2n−1 (plus constant ε) and another set of n cables having fixed
length ε.

6 Build and running complexity

The time required to build the device has θ(n ∗ 2n) complexity because we
have to build n arcs having at most 2n−1 length.
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The running time complexity is θ(2n).
The intensity of the signal decreases exponentially with the number of nodes

(because it is divided in 2 in each node). This is why the required power is
proportional to 2n (exponential).

7 Instance size

We want to find the size of the instances (how many numbers can we have in
set A) that can be solved by our device.

For computing this number we use the same reasoning as for the Hamiltonian
Path problem [30] because in both cases the delays are powers of 2. (Note that
only delays are similar with Hamiltonian Path solution. The devices (graphs)
are extremely different.)

Assuming that the best oscilloscope available on the market has the rise-
time in the range of picoseconds (10−12 seconds - this is also the smallest
difference between 2 consecutive moments when 2 solution may arrive in the
destination) and also knowing the speed of light (3 · 108m/s) we can compute
the minimal cable length that should be traversed by the light in order to be
delayed by 10−12 seconds. This is 0.0003 meters [25].

This length is for the shortest cable. All other cables have lengths obtained
by multiplying this shortest length with powers of 2.

It is easy to compute the maximal number of nodes that a graph can have in
order to have the total delay equal by 1 second. This results from the equation
(taken from [25]):

2n · 0.0003 = 3 · 108

This gives us a number of nodes equal to 39 nodes, so in one second we can
solve instances having 39 numbers. However, the length of the optical fibers
used for inducing the largest delay for this graph is huge: about 8 ·108 meters.
We cannot expect to have such long cables for our experiments [25].

But, shorter cables (of several hundreds of kilometers) are already available
in the internet networks. They can be easily used for our purpose. Assuming
that the longest cable that we have is about 300 kilometers we may solve
instances with about 26 numbers. The amount of time required to obtain a
solution is about 10−6 seconds [25].

The maximum number of nodes can be increased by increasing the precision
of the instruments (oscilloscope, photodiode etc).

In [1] the authors have solved with DNA another problem with a 2n com-
plexity, namely the SAT problem. The largest instance solved was with 20
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nodes. Here we have shown that theoretically we can solve an instance with 26
nodes with the available resources. This is with almost 2 orders of magnitude
larger that the DNA solution presented in [1] for the SAT problem.

8 Weaknesses of the solution

The proposed device has some weaknesses:

• it contains exponential delays,

• the number of possible moments when a solution can appear is expo-
nential in the number of elements in the initial set. This is different
compared to subset sum (see [26]) where only one moment was enough
for detecting the solution.

9 Conclusion

We have shown how the set splitting problem can be attacked with an optical
device. The solution was derived from the graph for the the subset sum problem
by adding a new set of delays and a new set of moments when the solution is
expected at the destination node. Weak points of the proposed solution are:
the use of optical cables of exponential length, and the exponential amount of
energy required to power the device.
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Abstract. Several versions of the backtracking are known. In this paper,
those versions are in focus which solve the problems whose problem space
can be described with a special directed tree. The traversal strategies of
this tree will be analyzed and they will be implemented in object-oriented
style. In this way, the traversal is made by an enumerator object which
iterates over all the paths (partial solutions) of the tree. Two different
“backtracking enumerators” are going to be presented and the backtrack-
ing algorithm will be a linear search over one of these enumerators. Since
these algorithms consist of independent objects (the enumerator, the lin-
ear search and the task which must be solved), it is very easy to exchange
one component in order to solve another problem. Even the linear search
could be substituted with another algorithm pattern, for example, with
a counting or a maximum selection if the task had to be solved with a
backtracking counting or a backtracking maximum selection.

1 Introduction

The backtracking can solve the tasks that can be made possible to be viewed
as a path-finding problem. In this case, the solution of a task is searched in a
directed graph which may contain even infinite nodes but the number of the
outgoing arcs of each node (i.e. branching factor) is finite. This is the so called
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δ-graph [10]. The problem space of the task consists of the paths going out
from the start node. Among these paths, the solution path must be found,
which drives from the start node to any goal node.

There exist several versions of the backtracking algorithm [9] and always
that one must be applied which best fits the special features of the directed
graph describing the problem [7].

The most general version [5, 7, 10] can be used in arbitrary δ-graphs but
it needs a so-called depth bound to terminate for sure. In this way, if there
exists a solution path whose length is not greater than the depth bound, the
search must find such a solution. However, the determination of the appro-
priate depth bound is not simple. If this depth bound is too small, a solution
will not be found; if it is too big, the computational complexity will grow. The
backtracking algorithms over only finite and acyclic directed graphs [5, 7, 10]
do not need the depth bound to terminate and they can find solution if there
is one.

The best-known versions work in a special directed tree (finite, rooted by
the start node, with the same branching factor of the nodes being at the same
level). Its branches make up the problem space of the task which is represented
by this tree.

This paper focuses on these latest versions of the backtracking. In section
2, those tasks will be defined which can be solved with these versions and
there it will be shown how the problem space of these tasks can be symbolized
with a special so-called backtracking tree. section 4 presents two different
methods that can traverse this backtracking tree in order to enumerate its
branches (that is, the elements of the problem space). These traversals are
based on well-known concepts but the separation of these traversals and the
search will be novel. section 4 shows how these traversals can be implemented
as an isolated object-oriented enumerator. In the section 5 a model will be
sketched where the backtracking is a collaboration between three objects: a
backtracking enumerator, a commonly linear search [3, 4], and the task that
is wanted to solve. The advantages of this approach are discussed in section 6.

2 Model of backtracking tasks

The state-space representation is a well-known general modeling technique
which can treat the tasks as a path-finding problem [5]. It requires a state
space (the set of tuples of values of the essential data corresponding to the
task), the initial and final states, and the operators over the state space. The
solution of a task is the sequence of operators which can transform the initial



146 T. Gregorics

state to any final state. It is obvious that a state space representation can
be mapped to a directed graph where the nodes represent the states, and the
directed arcs symbolize the effects of the operators. In this way, in order to
solve the problem it is enough to find a path which derives from the start node
corresponding to the initial state to any goal node describing the final states.
This is the solution path.

When a task has got particular features, the following modeling technique,
which are a special state space representation, might be used [1, 6, 8, 9].

Definition 1 (Backtracking task) There are given n finite sets (n ∈ N):
D1, . . . , Dn. Let us consider the Cartesian product D = D1×. . .×Dn. The aim
is to find the element of the set D that satisfies the statement ρ : D→ L (L =
{false, true}) where this statement can be defined by a series of statetments
ρ0, ρ1, . . . , ρn : D→ L with the conditions below:

1. ρ0 ≡ true
2. ρn ≡ ρ
3. ρ0, ρ1, . . . , ρn is monotone, i.e. ∀u ∈ D : ρi(u) ⇒ ρi−1(u)(i = 1, . . . , n)

4. ρi(u) depends on only the first i ∈ {1, . . . , n} components of u ∈ D, i.e.
∀i ∈ {1, . . . , n} and ∀u, v ∈ D : ρi(u) = ρi(v) if ∀j, 1 ≤ j ≤ i : ui = vi.

The tasks that can be modeled in this way are called backtracking tasks.
Other path-finding problems might also be solved with backtracking but the
backtracking tasks can be solved with a special version of the backtracking
algorithm that will be defined below.

Many times, the series ρ0, ρ1, . . . , ρn can be defined so that ∀i ∈ {1, . . . , n} :
ρi ≡ ρi−1 ∧ βi where β : D→ L and βi(u) depends on the first i ∈ {1, . . . , n}

components of u ∈ D. In this way, the (3) and (4) conditions of the backtrack-
ing tasks automatically hold.

A classic example for this model is given by the n-queen problem where
n queens must be placed onto an n × n chessboard without being able to
attack each other. One queen attacks any piece in the same row, column and
diagonals. Each row of the board must contain exactly one queen. The possible
positions of the ith queen put on the ith row are included by the set Di =
{0, . . . , n − 1}. (As you can see, the columns are numbered from zero up to
n−1. The reason for this will be clarified soon.) Let us fix that ρ0 ≡ ρ1 ≡ true
and ∀i ∈ {2, . . . , n} and ∀u ∈ D : ρi(u) = ρi−1(u) ∧ ∀j ∈ {1, . . . , i − 1} : (ui 6=
uj ∧ |ui − uj| 6= |i− j|).
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Definition 2 (Backtracking tree) Let us consider a backtracking task. Its
backtracking tree can be constructed in the following way. The nodes on the
first level (children of the root) represent the elements of D1. The nodes on
the second level symbolize the elements of D1×D2 so that the first component
of a node on this level is equal to its parent node. In general, the nodes on the
ith level (i = 1, . . . , n) are the elements of D1× . . .×Di. The branching factor
of the nodes on the i− 1th level is the cardinality of the set Di. The first i− 1
components of a node on the ith level give just the parent of this node; in other
words, the parent node is the prefix of its children. The leaves of this tree are
the elements of set D.

According to this definition, a backtracking task can be treated as a path-
finding problem in its backtracking tree. In order to solve this problem, it is
sometimes enough to find the leaf which satisfies the statement ρ; sometimes
that path (branch) which drives from the root (this is the start node) to the
leaf satisfying the statement ρ (this is the goal node) must be sought.

Let mi denote the cardinality of Di for all i ∈ {1, . . . , n}. Since the elements
of Di might be numbered from 0 up to mi−1, these elements can be referred
with their ordinal numbers.

Figure 1: Backtracking tree

This serialization of the set Di defines a bijection between the set D and the
set {0, . . . ,m1 ·m2 · · ·mn − 1}. One element of D can be mapped to a number
in a positional numeral system in mixed bases. The base of the ith digit of
such numbers is mi+1 · · ·mn and the value of the ith digit might be between
0 and mi − 1 for all i ∈ {1, . . . , n}. It is obvious that the value of an n-digit
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natural number is between 0 and m1 ·m2 · · ·mn − 1. Formally, if νi : Di →
{0, . . . ,mi−1} is a bijection (i ∈ {1, . . . , n}), then ν : D → {0, . . . ,

∏
i=1...nmi}

where ∀u ∈ D : ν(u) =
∑
i=1...n νi(ui)·

∏
j=i+1...nmj is a bijection, too. Finally,

let us denote φ the inverse of ν.
Thus each node on the ith (i ∈ {1, . . . , n}) level of the backtracking tree can

be substituted with a code which is a natural number in a positional numeral
system in mixed bases. The base of the jth digit of this number is mj+1 · · ·mi

and the value of the jth digit might be between 0 and mj−1 for all j ∈ {1, . . . , i}.
The root node is labeled with the special blank.

This backtracking tree can be shown in the Figure 1.

3 Traversals of the problem space

3.1 Depth-first traversal

Perhaps the best known traversals method of the problem space of the back-
tracking tasks is the depth-first strategy. This strategy could not work only in
special directed trees but also in general directed graphs. Nevertheless, we must
underline that there is some difference between the well-known depth-first
graph-traversal strategy [2] and the depth-first traversal of a backtracking[10].
Firstly, the latter one does not enumerate only the nodes of the graph but it
searches for the first appropriate path driving from the start node. Secondly,
the standard depth-first graph-traversal explicitly needs the whole graph which
must be traversed but a backtracking algorithm uses much less memory: it
stores only the current path. This property is very useful when a typical artifi-
cial intelligence problem must be solved and the graph of the problem space is
so huge (sometimes infinite) that the total graph could not be stored explicitly.
Thirdly, the backtracking could not record all nodes of the graph which have
been touched earlier. Thus, a node which have been checked might be checked
again when the algorithm rediscovers the very node via another path outgoing
from the start node. Fortunately, this unpleasant phenomenon cannot occur if
the graph is a tree as it can be seen in our case. In the following, the depth-first
traversal means this memory-efficient version of the depth-first strategy.

The depth-first traversal of a directed tree means that the search system-
atically examines the paths outgoing from the root (these are the branches)
from left to right. At each moment, only one partial branch (a path) is stored.
This is the current path and its last node is the current node. In each step, the
traversal tries to go forward (downward in the tree). If it is not able to or it is
not worth going forward, it steps back (upward) to the parent node and selects
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the next branch outgoing from this parent. If there are no other unchecked
branches going from this parent, then it steps backward (upward) while it
finds a parent with untested outgoing branches. In order to implement this
process, the untested branches outgoing from the nodes of the current path
must be recorded.

This depth-first traversal is even easier over the backtracking tree where the
nodes are represented with numbers in a numeral system with mixed bases.
For this traversal, it is enough to store only the current node that can be
represented with an n-length array v (v : Nn) and the natural number ind. The
label of the current node is the (ind−1)-length prefix of v (i.e. v[1, . . . , ind−1])
and it is always supposed that the ρind−1(φ(v)) holds and each element of v
after the position ind is zero. From this information, all outgoing untested
branches of the current path can be read out.

Figure 2: One step of the depth-first traversal

Initially the value of the number ind is 1 and each element of the array v
is zero. The next step of the traversal depends on the statement ρind(φ(v))
(Figure 2). If it holds and ind ≤ n, then the traversal steps forward with
the increase of ind. Otherwise, the traversal steps back – as if the part of the
current branch below the ind − 1th level had been cut – and it looks for the
node on the current path that has got an unchecked successor and then selects
the first such one as a new current node. The same happens when ind = n+1,
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although, in this case, the traversal does not need to continue since ρn(φ(v))
holds, i.e. ρ(φ(v)) holds. The traversal must stop definitely if ind = 0. This
event indicates that the traversal is over.

3.2 Increasing traversal

The problem space of the backtracking tasks in our focus can be traversed with
another strategy. It is enough to enumerate the leaves of the backtracking tree
(see Figure 1) from left to right. Since the nodes can be represented with
natural numbers in a positional numeral system in mixed bases, each leaf is
a natural number and they can be generated in increasing order. However, it
is not worth enumerating them all one by one because those numbers which
may not be goal nodes can be skipped. Yet, how can it be decided without
their examination?

Let us suppose that the number v has been examined and the statement
ρind−1(φ(v)) holds but the statement ρind(φ(v)) does not. It is obvious that
each natural number whose first ind digits are identical to the first ind digits
of v does not satisfy ρind, too. Thus, the enumeration might ignore these
numbers. In order to get the next number of the enumeration, it is enough to
increase the indth digit of v by one. In the case when ρ(φ(v)) holds there is no
index ind where array v can be changed, i.e. ind = n+1). If the enumeration
should be continued, the value of the variable ind must be changed to n.

Figure 3: One step of the increasing traversal
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This increasing is the task of the algorithm of the Figure 3 [6, 9]. This is
a positional addition where variable ind indicates the position which must
be increased. The variable c contains the carry digit of the addition. If this
algorithm terminates with c = 0, then the variable v will contain the next
element of the enumeration. The termination with c = 1 indicates the overflow
of the addition and it means that the enumeration is over.

This algorithm must be embedded into the environment which analyzes the
current v and looks for the first ind for which the statement ρind(φ(v)) is
false. (If there is no such ind, then ρn(φ(v)) and thus ρ(φ(v)) is true.) This
ind must be passed to the above algorithm.

3.3 Comparison of the traversals

It is worth comparing the two traversal techniques. Let us look at, for example,
the problem space of the 4-queens problem (see Figure 4). In this tree, the
depth-first traversal moves vertically while the increasing traversal enumerates
a part of the leaves horizontally.

Figure 4: Two kinds of traversals over the 4-queen problem

The backtracking steps can be observed well in the depth-first traversal.
If a number of a node at the level ind does not satisfy the statement ρind,
i.e. ρind(φ(v)) is false where v is the label of the node, then the traversal
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steps back. During the increasing traversal, the backtracking steps are totally
hidden. When this enumeration selects a new leaf, then it might jump over
several leaves. Each jump is corresponded to the series of backtracking steps
of the depth-first traversal which selects the next branch for examination.

The depth-first traversal does not need the examination of ρ. It relies on the
statements ρind only. The algorithm of the increasing traversal does not use
directly the statements ρind but it is supposed that, before calling this algo-
rithm, the ρ(φ(v)) has been examined. If it is false, the statement ρind−1(φ(v))
holds but the statement ρind(φ(v)) does not; this ind must be given to the
algorithm as input parameter beside the v.

4 Backtracking enumerators

Now the above traversals are going to be implemented as independent enu-
merator objects. These enumerators iterate over the elements of the problem
space.

The problem space (D = D1×. . .×Dn) can be modeled by the class Task (see
Figure 5). This class provides the method rho() which can decide whether an
element satisfies ρi or does not. Certainly, this method is abstract; it must be
overridden when the concrete task becomes known. A task can be represented
by the pair of array v and array m. These are the members of the class Task.
The array v contains one element of the set of D. The m[i] gives upper limit
of the elements of v[i], i.e. for all i ∈ [1, . . . , n] : 0 ≤ v[i] < m[i]. This is the
invariant of this representation.

Figure 5: Abstract class of the backtracking task

This class is extended with the method correct() that decides whether the
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current element of the problem space satisfies the statement ρ(φ(u.v)) or does
not.

Figure 6: The method correct()

This examination is a special (optimistic) linear search [3, 4] which must
check ρ(i) where i goes from 0 up to n and must give the first i for which ρ(i)
is false. This process can be accelerated if the index ind (ind ∈ [1, . . . , n])
is known where ρind−1(φ(u.v)) is true. In this case, it is enough to start the
search from the index ind instead of 1 (see Figure 6). If ρ(φ(u.v)) is false, it
is useful to give back the ind where rho(ind− 1) is true but rho(ind) is false.

4.1 Depth-first enumerator

The class DepthFirstEnum describes the object of dept-first enumerator (see
Figure 7). It provides the enumeration operators: first(), next(), current(),
end() [3, 4]. These operators iterate over the partial branches of the back-
tracking tree of the problem space of the backtracking task.

Each partial branch can be represented with its ending node, which is an
element of D1 × . . . × Dind−1. It can be described with the members of the
variable u of Task and the variable ind of (N). The values of ind are between
0 and n. Thus these are members of the class DepthFirstEnum. We suppose
that ρind−1(φ(u.v)) and for all i ∈ [ind+ 1..n] : u.v[i] = 0. The method end()
indicates the end of the traversal. This is implemented by ind = 0 when the
traversal has stepped back from the root because it could not find a solution.
The method current() returns the current node that is represented by the
members. The method first() sets the initial values of the members. In the
case n < 1 the traversal must be finished immediately, i.e. ind := 0. Otherwise
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Figure 7: The class of depth-first enumerator

the initialization u.v := [0, . . . , 0] : ind := 1 is needed. The method next() does
one step in the problem space according to the depth-first traversal (see Figure
2 with the following corresponding: u.rho(ind) instead of ρind(φ(v)) , u.v[ind]
instead of vind, and u.m[ind] instead of mind).

4.2 Increasing enumerator

The class IncreasingEnum describes the object of increasing enumerator
(Figure 8). It provides the enumeration operators: first(), next(), current(),
end(). These operators iterate over some leaves of the backtracking tree. These
leaves must be enumerated in increasing order according to their value in the
positional numeral system in mixed bases, which has been mentioned before.

Each leaf can be represented by the variable u of Task. It is worth introduc-
ing the member c of {0, 1} that is the overflow digit of the increasing process
(see Figure 8). Its value 1 indicates the end of the traversal.

The method end() checks the value of overflow digit c. The method current()
returns the current leaf. The method first() initializes u.v and c. The enu-
meration starts with the element described by the number [0, . . . , 0] (this is
the first value of the variable u) and the overflow c is 0 except for the case
n < 1 when the traversal must be finished immediately, i.e. c := 1. The method
next() does one step in the problem space according to the increasing traver-
sal (see Figure 2). Its input parameter is the position ind (ind ∈ [1, . . . , n]),
which shows which position of the number u must be increased according to
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Figure 8: The class of increasing enumerator

the rules of the positional numeral system in mixed bases.
The input of the method next() is provided by the method correct() (see

the class Task) and that method requires the index ind produced by the
method next() where ρind−1(φ(u.v)) is true but ρind(φ(u.v)) is false. Thus
the members of the class of the increasing enumerator might be completed
with the index ind so that either ind is zero or ρind−1(φ(u.v)) holds. In
addition each element of u.v behind the position ind is zero. Initially the
method first() gives the index ind a value (ind := 0), this index is changed
based on its input parameter and then its value is recomputed by the method
next(), and its value can be queried by the method current().

5 Component-oriented backtracking

Based on a backtracking enumerator, the backtracking algorithm can be com-
posed easily. In object-oriented environment, the backtracking algorithm is
the result of the cooperation of three objects (see Figure 9): the object of the
backtracking enumerator, the object of the task, and the object of the linear
search over enumerator [3, 4].

The classes of two kinds of enumerators have been derived from the abstract
class Enumerator (see Figure 11). This super class includes an object of the
class Task and an index. The role of this index has been discussed earlier. This
index is needed for the method cond() of the linear searching.

Under increasing enumeration the method next() uses this index: its initial
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Figure 9: Collaboration of components of the backtracking algorithm

value is got from the linear searching and then the method next() modifies it.
However, this would be an irregular implementation of the method next() be-
cause it usually has no external input. Thus – instead of changing the interface
of the method next() – a “setter” method of the index has been introduced
(setInd()). We do the same with the extra output of the method current().
Since this output is required by the linear search a “getter” method has been
also implemented with this very index (getInd()). These new methods are
defined in the super class Enumerator.

The super class LinearSearch (see in Figure 11) provides the method run()
that encapsulates the schema of the algorithm of linear searching, further-
more the method found() and the method elem() that give the result of the
search. Two versions of this algorithm can be differed depending on the way
of the traversal. (see Figure 10) Under depth-first traversal the solution can
be found if the index of the enumerator is greater than n. This makes calling
the method correct() unnecessary. The index ind can be asked from the class
DepthFirstEnum with its “getter” and the value n can be reached through
the object u. Under the increasing traversal the method correct() requires
the index of the enumerator (this can be asked with the “getter” of the class
IncreasingEnum), modifies this index, and gives it to the method next()
through the “setter” of the enumerator. These differences can be written in
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Figure 10: Two versions of linear search

the overridden method cond() of the class DepthFirstLinSearch and the
class IncreasingLinSearch thus the method run() which calls this method
cond() can be implemented independently on the way of enumeration. Here
the “template function” design pattern is applied. (We must remark that the
assignment u := t.current() in the method run() requires a deep copy.)

The backtracking algorithm is an instance of the class BacktrackSearch
(see Figure 11). It owns the enumerator which includes the task and creates
the appropriate object of the linear searching depending on the kind of the
enumerator. The method run() calls the same named method of linear search-
ing. Here the “bridge” design pattern is applied.

6 Discussion

The fact that the backtracking consists of three, well-separated components
makes the algorithm very flexible. By changing components, it is very easy to
change the properties of the search.

In order to solve a new task, it is enough to derive a new class from the
super class Task and only the abstract method rho(i) must be overridden.
The object u of the enumerator will be an instance of this new class while the
other two objects (the enumerator and the linear search) do not change; they
are reused.

The object of linear search must be exchanged when the task does not look
for one solution but it wants to count how many solutions there are or it wants
to look for the best solution according to a given point of view. In these cases,
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Figure 11: Class diagram of the backtracking algorithm

it is enough to use a counting or a conditional maximum search instead of the
linear search.

The “backtracking counting” comes from the counting [3, 4] over enumer-
ators if it uses a backtracking enumerator. Sometimes, only certain solutions
must be counted. To solve this task, a logical function βi : D → L is needed
to check this certain property. (see Figure 12)

The “backtracking maximum search” is the conditional maximum search
[3, 4] with a special enumerator. (see Figure 13) The function f : D→ H maps
to the well-ordered set H, thus the states of D can be compared.

Only the class Task has to be modified if the model of the task which is
wanted to solve slightly differs from the model of backtracking tasks. Many
times, the problem space of a path-finding task can be described with the
directed tree where the number of the outgoing arcs of the nodes can differ on
the same level and the goal nodes may be inner nodes.
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Figure 12: Backtracing counting with increasing enumerator

In the first case, the tree can be extended with alibi nodes so that the
branching factor becomes constant inside one level of the tree. Certainly, the
semantic of the statement ρi must be changed so that it gives false on these
alibi (fake) children node.

In the second case, the criterion ρ ≡ ρn is substituted with the criterion
ρ ≡ ∃i ∈ 1, . . . , n : ρi or, in a more general way, the criterion ρ ≡ ∃i ∈
1, ldots, n : ρi ∧ γi where γi : D→ L is the logical function so that the value
of γi(u) depends only on the first i components of the state u. During depth-
first traversal, the method correct() of the linear search must be overridden
as γind(u). The value of γind(u) can be computed by an appropriate new
method gamma() of the class Task. During increasing traversal, the method
correct() must be overridden so that it results in true if there exists an ind ∈
1, . . . , n where ρind(u) ∧ γind(u) holds, otherwise it results in the first index
ind ∈ 1, . . . , n where ρind(u) false.

At the end, we mention the didactical advantage which appears when this
component-oriented backtracking is introduced into education. At this stage
of the syllabus, the linear search (and other algorithm patterns) has been
well known. Only the backtracking enumerator is the novelty. It can help if
students have already met the concept of the enumerator; moreover, they have
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Figure 13: Backtracking maximum search with increasing enumerator

used various enumerators. Certainly, the description of the backtracking tasks
which can be solved in this way must be introduced but it is not avoidable in
other syllabi.

References

[1] K.A. Berman, J. L. Paul, Fundamentals of Sequential Algorithms, PWS Publish-
ing, 1996. ⇒146

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
(3rd edition), The MIT Press, 2009. ⇒148
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Széchenyi István University,

Egyetem tér 1. Győr, 9026, Hungary
email: foldesi@sze.hu

Abstract. Order picking is the most labour-intensive and costly activity
of warehouses. The main challenges of its improvement are the synchro-
nisation of warehouse layout, storage assignment policy, routing, zoning,
and batching. Furthermore, the competitiveness of the warehouse de-
pends on how it adapts to the unique customer demands and product
parameters and the changes. The operators usually have to manage the
picking sequence based on best practices taking into consideration the
product stacking factors and minimising the lead time. It is usually nec-
essary to support the operators by making effective decisions. Researchers
of the pallet loading problem, bin packing problem, and order picking op-
timisation provide a wide horizon of solutions but their results are rarely
synchronised.

Computing Classification System 1998: F.2.2
Mathematics Subject Classification 2010: 90B05
Key words and phrases: order picking, pallet loading problem, bin packing, complexity,
routing, simulated annealing

162

https://www.researchgate.net/profile/Tamas_Bodis
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
mailto:bodis.tamas@sze.hu
http://automatizalas.sze.hu/images/CV/BJ_CV.pdf
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
mailto:dr.janos.botzheim@ieee.org
https://www.researchgate.net/profile/Peter_Foldesi
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
http://uni.sze.hu/en_GB/baross-gabor-institute-of-built-environment-and-transport#logistics
mailto:foldesi@sze.hu


Necessity and complexity of OPRO based on PLF 163

The research defines the order picking routing problem based on
Pallet Loading Feature (PLF). It describes measurement and product
stacking rule evaluation methods to highlight when the PLF based op-
timisation is necessary. The paper shows that in order picking problems
based on PLF, the number of combinations a brute-force search algorithm
has to examine grows exponentially, which highlights the importance of
meta-heuristic optimisation. The study describes a Simulated Annealing
algorithm for order picking based on PLF.

1 Introduction

Satisfying the customers from a warehouse with the right products at the
right place and time with low cost requires a synchronised and optimised
warehousing system. The general warehousing goals are to handle and store
items in the storage system and prepare the ordered Unit Loads (UL) for
transport.

Order picking is the most labour and capital intensive operation when the
operators collect the ordered items and build transport units. As Gamberini
et al. highlighted, its cost can reach 65% of the total warehouse management
expense [14]. The order picking system (OPS) design depends on several ele-
ments: products, customer orders, different types of functional areas, different
combination of equipment types, and operating policies for each functional
area [2, 12, 14].

The layout design, storage location assignment methods, routing methods,
order batching, and zoning are the main decision fields during order pick-
ing processes (OPP) development [12]. The main influencing factors of order
picking time are moving, searching, picking, and preparation. While travelling
time gives 50% of the whole picking time, the primary optimisation task is the
routing. Its aim is to sequence the items on the order picking list in order to
get the shortest order picking route length [12].

“The Storage Location Assignment (SLA) optimisation is responsible for
allocating products to storage locations for the purpose of lowering routing
distance, travelling time, material handling cost and improving space utilisa-
tion.” [10]. It enables us to take into consideration the ordering frequency of
items and product parameters.

During order picking, the operators collect and allocate products to Stock
Keeping Units (SKU) where positioning is a general problem. SKU can be
for example a pallet, box or bin, which is responsible for forming a material
handling unit, protecting the products and supporting material handling. The
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Container Loading Problem algorithms are responsible for assigning three-
dimensional small items to three-dimensional rectangular large objects (i.e.,
truck, containers, pallet). Its aim is to hold the basic geometric feasibility
conditions and reach the defined problem specific objective function [6].

The basic geometric feasibility conditions are: [6]

• the small items are positioned within the container,

• the small items do not overlap.

Bortfeldt et al. collected and structured the main objective functions and
problem types of the Container Loading Problem, where Bin Packing is a min-
imisation problem. Generally it is responsible for assigning strongly heteroge-
neous items into a minimum number of containers. In the case of warehouses,
Bin Packing algorithms are used, for example, when the customer order has
to be separated to ULs, because of, for example, a large quantity order or a
high number of items [6].

The Pallet Loading Problem (PLP) is a maximisation problem, which is
responsible for packing the maximum number of identical rectangular boxes
onto a rectangular pallet [1]. In the case of warehouses the PLP answers the
question of how to position the items on the pallet. These items can be defined
to this pallet by a Bin Packing algorithm.

The various SKU properties of the ordered products and the specified pallet
loading requirements of different partners make the Bin Packing and Pallet
Loading Problem complex.

While each influencing parameter of order picking has an impact on the
others with a different importance, these factors should be synchronised. It
highlights the complexity of the warehousing system development. For exam-
ple, Webster et al. examined the impact of SLA on warehouse throughput in
the case of bucked brigade order picking [24]. Many researchers work on the dif-
ferent segments of the OPP, Bin Packing or PLP development. A huge amount
of research has been done in the field of routing optimisation in warehouses
(e.g., [23, 9]). Many solutions have been defined for harmonising SLA and rout-
ing to decrease the routing distances and times (e.g., [19, 8]). However, while
the physical product parameters (dimensions, weight, SKU type) and product
stacking properties influence the physically possible picking sequence in order
to build stable ULs, researchers rarely take into account these aspects during
SLA and routing optimisation. Furthermore, many researchers have attained
valuable results in the fields of Pallet Loading and Bin Packing Problem (e.g.,
[18, 17, 3, 21, 11]), but the solutions are rarely harmonised with SLA and rout-
ing algorithms. Shiau et al. solved the multi-container loading problem and



Necessity and complexity of OPRO based on PLF 165

defined the order picking sequence but they avoided the SLA [22]. Molnar et
al. highlighted the importance of a well sequenced order picking list to support
well structured and stable ULs to avoid product damages [20]. While Molnar
et al. developed routing optimisation by considering product stacking prop-
erties, they determined picking sequence of product classes. Their algorithm
minimises the difference from the defined sequence and minimises the distance
but sometimes a more flexible and more complex sequencing rule definition
could be required, which depends not only on the product parameters [20].

While the product stacking property based order picking is not relevant at
every warehouse, the first goal of the proposed research is to define a method-
ology for determining its relevance for a given warehouse. The second research
goal is to support the order picking operators in order for them to make more
objective decisions to decrease the order picking lead time and to build sta-
ble transport units that avoid product damages, when stacking property is an
important factor during order picking.

We already partly discussed the research problem, methods and results in
papers [4] and [5]. The aim of [5] was to describe the pallet loading rule mod-
elling, product classification, and decision matrix defining methodology. It
examined the complexity of a simple order picking routing case with pallet
loading, where the products are stored in separated warehouse zones. The
examination highlighted, when the products are stored in separated and se-
quenced pallet loading parameter based zones, the order picking operators
visit the zones in logical sequence and collect the items using general routing
algorithms within the zone, then non-evolutionary algorithms can handle the
problem and support the operator with right picking sequence. While it was a
simplified case of the mentioned research, this current paper examines a more
detailed methodology and more complex cases.

The aim of this paper is to define and describe the Order Picking Routing
Problem based on Pallet Loading Feature (OPRP-PLF). It describes, clari-
fies, and applies methodologies, measurement- and evaluation techniques for
highlighting the relevance of OPRP-PLF at the examined warehouse to sup-
port tactical decisions before algorithm development. The paper explains and
applies classification and PLF based order picking decision matrix modelling
solutions. The previous versions of these solutions were developed by the au-
thors [5]. Besides the detailed problem description and clarified explanation of
methodologies, the novelty of this paper is to apply methodologies for more
complex and industrially more relevant cases. While examining the complex-
ity of the problem is necessary before optimisation in order to find the right
methodology, the paper proves the complexity of PLF based order picking
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routing optimisation in the case of one and more UL required orders. The
complexity evaluation highlights the importance of meta-heuristic optimisa-
tion. As a novelty, the paper examines analytic examples for simple order
picking tasks and introduces a Simulated Annealing (SA) algorithm for solv-
ing complex PLF based order picking sequencing tasks. The aim of the SA
algorithm is to introduce one possible algorithm for the problem to support
the operators with quick pallet loading feature related order picking routing
decisions.

2 Order Picking Routing Problem based on Pallet
Loading Feature (OPRP-PLF)

The proposed research defines the Pallet Loading Feature (PLF) and the Or-
der Picking Routing Problem based on Pallet Loading Feature (OPRP-PLF).
PLF is defined as logistics system property, which requires the right picking
sequence and pallet loading method to build stable ULs and to avoid prod-
uct damages. The challenges of OPRP-PLF are to minimise the order picking
lead time, build stable transport units and avoid product damages, when in-
dustrially relevant but rarely discussed PLF based order picking sequencing is
necessary.

The PLF and the OPRP-PLF depends on product properties, order picking
list characteristics, and the order picking system, which has several factors:

• Product properties

– Weight,
– Shape,
– Size,
– Stock Keeping Unit,
– Stacking properties.

• Order picking list characteristics

– Ordered items,
– Ordered quantity,
– Length of picking list,
– Number of product types on the list, with different stacking pro-

perties,
– Special customer rules for pallet loading.
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• Order picking system

– Previously picked units and the sequence,
– Product assignment in the warehouse.

Each product has several parameters, which define their physical stacking
property and the required picking sequence (i.e., weight, shape, size). SKUs
are not only boxes but bags, cans or any amorphous units, which also have
huge impact on stacking property.

The characteristics of orders also influence the OPRP-PLF and the right
picking sequence. Its evaluation is essential during warehouse development.
The ordered items’ property and the ordered quantity influence the stacking
properties. For example a high quantity from a small and weakly packaged
product can behave together like one simple box and after its picking, the
picker might be able to pick further boxes. Some different items with differ-
ent types of SKU or packaging also can behave stronger together, rather than
separately. The length of picking list highlights the necessity of the routing
optimisation. A short list usually does not require complex and maybe time
consuming optimisation. However, it is necessary to optimise the longer and
more complex picking lists, which will save time for the warehouse operation.
The number of different product stacking types also influences the require-
ments of PLF based optimisation. More and more different product types on
the same picking list increase the complexity of the order picking sequence,
which requires applying optimisation algorithms for OPRP-PLF. The cus-
tomers usually define the expected pallet loading rules, which usually limit
the possible picking sequence. For example the customer sometimes expects
“sandwich ULs”, which needs to pick a pallet after every picked record to sep-
arate items in the same UL. This UL type has an impact on the OPRP-PLF
and sometimes changes the stacking properties of items.

The order picking processes themselves have an impact on the OPRP-PLF.
During order picking, the previously picked items and its quantity usually
influence the possible further picked items and sequence. The picking positions
of the products (SLA) have a high impact on picking distances, which influence
the necessity of the routing optimisation to reach the shortest lead time and
follow the stacking rules.

2.1 OPRP-PLF related decisions

The OPRP-PLF based development is connected to strategical, tactical, and
operative decisions. Related to our research the following main challenges and
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questions arise regarding the different decision levels.
On a strategic level the warehouse management has to determine the long

term business strategy, the main services offered, the main industry (Fast-
Moving Consumer Goods (FMCG), automotive, pharmaceutical . . . ), the in-
frastructure requirements, and development goals.

On a tactical level several decisions should be made regarding policies and
algorithms. It is important to define an ordering policy, as it is allowed for
the customers to purchase order (minimum quantity, SKU, ordering time win-
dow, etc.). The handled product types and those possible SKUs should also
be determined. The product properties will be one input to define the rele-
vance of OPRP-PLF, which must be examined on tactical level as an initial
step of algorithm development. Warehousing algorithms (storing in, storing
out, replenishment, routing) should be developed, which hopefully will sup-
port the operational decisions. If the OPRP-PLF is relevant, the warehous-
ing algorithms should take into consideration the OPRP-PLF with the right
weighting. The SLA should also be determined on a tactical level and con-
tinuous re-engineering is necessary based on seasonal or periods of changing
demand.

On the operational level the warehouse management has to make several
decisions hopefully supported by algorithms. When the orders arrive at the
warehouse and the order picking tasks are defined, it is necessary to determine:
does the ordered quantity fit into one UL or how many UL will be necessary?
It is a complex and important question of how the ordered items will be
separated to ULs. The optimised order picking routing of the rightly defined
UL picking lists should result in the shortest order satisfaction lead time and
result in stable ULs. The routing optimisation is strongly connected with the
SLA and with the PLF. Due to complex OPRP-PLF, in the case of a well
designed SLA and routing algorithm, the shortest picking distance might not
result in the shortest lead time, because the picker might have to spend time
on UL reconstruction during order picking. The necessity of reconstruction can
be caused by higher or lower ordered quantity, as it is assumed during SLA,
because different amounts of product can behave differently on the UL. In this
case a longer distance might result in shorter lead time because of less pallet
loading time. On an operational level the routing algorithm should decide,
how to reach the shortest lead time. The possible solutions are to collect items
in the right PLF based sequence and walk more or pick with shorter routing
and spend time on redesigning the contents of the UL when it is necessary.
The best choice depends on the SLA, the time requirement of movements, and
the length and contents of the picking list. The increasing frequency and time
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requirement of pallet loading and reconstruction can highlight the decreasing
efficiency of SLA and the necessity of its re-engineering. The well-defined Key
Performance Indicators (KPIs) can highlight the necessity of tactical decisions
or re-engineering.

3 Defining the necessity of optimisation for
OPRP-PLF

PLFs are unique characteristics of each warehouse. It is an important factor
mainly at distribution warehouses where order picking has a high importance,
and the handled products have a huge number of variants. The unique nature
of warehousing systems requires that methodology be defined for determining
warehouse by warehouse the relevance of OPRP-PLF and the importance of
applying optimisation algorithms for it. The proposed research defines the
relevance of OPRP-PLF with time measurements of warehousing processes
and with the evaluation of the modelled pallet loading sequencing possibilities.

3.1 Defining the relevance of OPRP-PLF with measurement

Measuring the warehousing processes is essential to understand the real na-
ture of the developed warehouse and collect information about the most time
consuming movements, relation of causes and effects. The warehousing pro-
cesses are separable for elementary movements (i.e., travel, administration,
pick, search, setup), which can highlight the relevance of PLF at a given ware-
house. It is necessary to examine the processes step by step to overlook the
sequence, the frequency, the time distribution, and the casual relations of
elementary movements. The PLF dependent movements and those that are
relevant are different warehouse to warehouse. Some typical steps are the UL
reconstruction, travel time, and wrapping [4].

3.1.1 UL Reconstruction

The picker spends time on UL reconstruction when rebuilding the UL structure
during order picking. Frequent UL reconstruction movement highlights the
importance of PLF and the necessity of SLA re-engineering [4].
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3.1.2 Travelling speed

When the PLF is relevant at the measured warehouse and re-engineering of the
OPP is necessary, the order picking operators usually move longer distances
and have longer routes for similar picking lists and lower the travelling speed
during picking to avoid the products from falling down [4].

3.1.3 Wrapping

Wrapping is sometimes necessary to strengthen the picked ULs during the
long and complex picking tasks. The wrapped ULs are much more stable,
which results in less product damage and higher travel speed during order
picking. The frequency and the time requirements of wrapping during OPP
are measurable. The necessity of wrapping during picking can highlight the
relevance of PLF [4].

3.2 Modelling the pallet loading possibilities

The OPRP-PLF depends on product properties, order picking list character-
istics, and order picking systems. The possible PLF factors’ combination and
importance are different warehouse to warehouse, which makes the PLF exam-
ination and implementation into the order picking algorithms complex. In the
previous part of the research [5] a methodology has been defined to model the
possible sequencing rules. The resulted PLF based Decision Matrix (PLFDM)
allows us to examine the nature and the complexity of proposed problem. It
defines the pallet loading possibilities and the order picking sequencing rules.
It will be the basis of the loading algorithm during order picking routing op-
timisation based on PLF. One, two, and three dimensional loading algorithm
can control the possible picking sequence based on the PLFDM. In the case of
the 1D problem, a full layer of products is picked into one column and only the
vertical sequencing is important. The 2D problem handles neighbouring pallet
wide columns on the pallet. The 3D problem is the most complex, because it
allows to build any columns on the pallet. This paper will apply the PLFDM
to the 1D order picking problem. [5]

4 Methodology to define the PLFDM

The warehouses usually do not have enough and appropriate data regarding
the handled items (i.e., dimensions, shape, weight) or those that are changing
too often to support a complex PLP or Bin Packing algorithm. However, based
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on known, easily measurable, and rarely changing information it is possible to
classify the items and every order line. Furthermore, the warehouse operator’s
best practices and experiences are essential and valuable inputs to the clas-
sification. The defined Pallet Loading Classes (PLC) have PLF based logical
connections (i.e., we should not put heavy goods on fragile products), which
will be the basis of the PLF based OPP algorithms [5].

This section summarises and clarifies the mentioned classification process
step by step based on previous research of the authors [5].

4.1 Classification of the product parameter based classes

The products are grouped based on physical product parameters, which has
different stacking properties (Eq. (1)). The usually considered factors of Prod-
uct Classes (PC) are the SKUs, the packaging solution, and the item property.
Equation (2) shows a possible industrial example [4, 5].

PC = {A,B,C,D} (1)

PC = {PlasticBin,CartonBox, SmallBox, Fragile} (2)

4.2 Classification of the product and order parameter based
classes

The defined PCs are specified based on order parameters to define the Product
and Order Parameter based Classes (POPC). If it is necessary we separate PCs
into further classes. The high quantity of the same item usually has different
stacking parameters. For example element B (CartonBox) of the PC set is
separated into High Quantity (HQ) and Low Quantity (LQ) elements (Eqs. (3)
and (4)). In this case, if the ordered Quantity (Q) is equal to or higher than 4
then the order line is classified as BHQ. Four carton boxes – which are stored
in a full layer on the pallet – can be more stable on a UL than only one carton
box. If the ordered Quantity (Q) is smaller than 4, then the order line (r) is
classified as BLQ. Equations (5) and (6) show an example of the CartonBox
class. [4, 5]

BHQ ∈ POPC | (rPC = B)∧ (Q > 4) (3)

BLQ ∈ POPC | (rPC = B)∧ (Q < 4) (4)

CartonBoxHQ ∈ POPC | (rPC = CartonBox)∧ (Q > 4) (5)

CartonBoxLQ ∈ POPC | (rPC = CartonBox)∧ (Q < 4) (6)
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4.3 Classification of the special product and order parameter
based classes

The Special POPCs (SPOPC) are defined with consideration of previously
picked units and their sequence (Eq. (7)). The picked items on the pallet form
a physical structure, which influences the choosing of subsequent items. For
example, it is possible to pick one layer of small boxes, after one layer of small
boxes but the third layer of small boxes would destabilize the UL, so in this
case it is forbidden to pick one layer of small boxes after two layers of small
boxes (Eq. (8)). [4, 5]

S ∈ SPOPC | (POPCt−1 = Y)∧ (POPCt−2 = Y) (7)

SmallBoxSmallBox ∈ SPOPC |

(POPCt−1 = SmallBox)∧

(POPCt−2 = SmallBox) (8)

Where t is the actual picking step, t − 1 is the previously picked POPC, and
t− 2 is the last but two picked POPC.

4.4 Defining the PLFDM

PLF based Decision Matrix (PLFDM) models the PLF based sequencing logic.
The predecessors (rows) are the elements of the Pallet Loading Class (PLC)
set, which are the union of POPC and SPOPC sets. The successors (columns)
are the elements of the POPC set (Eqs. (9) and (10)). [4, 5]

PLC = POPC ∪ SPOPC (9)

PLFDM : PLC× POPC 7→ {0, 1} (10)

PLFDM (PLCi, POPCj) =

{
1, if POPCj can be picked after PLCi

0, if POPCj can’t be picked after PLCi
(11)

The PLFDM values are 0 or 1, depending on pallet loading possibilities. If it
is possible to pick the examined item (one element of POPC) after the already
picked units (PLC element), then the PLFDM value is 1 (true). Otherwise
picking is forbidden, so the PLFDM value is 0 (false) (Eq. (11)). Table (1) and
Table (2) illustrate an example PLFDM. [4, 5]
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POPC1 POPC2 POPC3 POPC4 POPC5
PLC1 1 1 1 1 1
PLC2 0 1 1 1 1
PLC3 0 0 1 1 1
PLC4 0 0 0 1 1
PLC5 0 0 0 0 1
PLC6 0 0 0 0 1

Table 1: Pallet Loading Feature based Decision Matrix (PLFDM).

PlasticBin CartonBoxHQ CartonBoxLQ SmallBox Fragile

PlasticBin 1 1 1 1 1
CartonBoxHQ 0 1 1 1 1
CartonBoxLQ 0 0 1 1 1
SmallBox 0 0 0 1 1

SmallBoxSmallBox 0 0 0 0 1
Fragile 0 0 0 0 1

Table 2: Pallet Loading Feature based Decision Matrix (PLFDM) example.

4.5 Merging the compatible records in the PLFDM

The resulted PLFDM usually contains records, which have exactly the same
values. These PLCs have different properties but they behave in the same way
during order picking. This is the reason why those records can be merged,
which can simplify the PLFDM. For example in Table (3), where PLC5 and
PLC6 are merged this results in PLC5,6. [5]

POPC1 POPC2 POPC3 POPC4 POPC5
PLC1 1 1 1 1 1
PLC2 0 1 1 1 1
PLC3 0 0 1 1 1
PLC4 0 0 0 1 1
PLC5,6 0 0 0 0 1

Table 3: Merged pallet loading feature based decision matrix (PLFDM)
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5 Defining the importance rate of PLF based order
picking process development

After defining the PLFDM of a warehouse, it is possible to evaluate the matrix
and define the relevance of PLF based order picking routing optimisation.
The Pallet Loading Rate (PLR) is defined based on the amount of pallet
loading restrictions; otherwise it is based on the amount of the edges in the
PLFDM. Basically, when every POPC can be picked after every PLC, the
PLFDM contains 1 in every cell, then the PLF is not relevant at the given
warehouse and the Pallet Loading Rate (PLR) is 0. When more and more
restrictions (0 value) are defined in our PLFDM then the complexity of OPP
and the importance of PLF based routing optimisation is growing. The PLR is
calculated by Equation (12), where MaxNume is equal to the number of true
values in the PLFDM when every POPC element can be picked after every
PLC element. Nume equals to the number of true values in the PLFDM when
PLF is modelled [4].

PLR = 1−
Nume

MaxNume
(12)

As part of the research the PLR values have been classified based on inter-
vals, which describe the importance of PLF based routing optimisation at the
examined warehouse [4].

• PLF is not relevant, when PLR = 0,

• PLF is weakly relevant, when 0 < PLR 6 0.2,
• PLF is relevant, when 0.2 < PLR 6 0.4,
• PLF is strongly relevant, when 0.4 < PLR.

Tables (4)–(7) show examples for each PLR category.

6 Complexity of PLF based routing optimisation

This paper examines the OPRP-PLF to define the complexity of PLF based
order picking routing optimisation. Two main cases have been defined for
OPRP-PLF, which might have further sub-problems:

• optimising an order with items, which can be picked into 1 UL and order
separation is not necessary,

• optimising an order, which will be picked into more than 1 UL and order
separation is necessary.
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POPC1 POPC2 POPC3 POPC4 POPC5
PLC1 1 1 1 1 1
PLC2 1 1 1 1 1
PLC3 1 1 1 1 1
PLC4 1 1 1 1 1
PLC5 1 1 1 1 1

Table 4: PLFDM example, when PLF is not relevant

POPC1 POPC2 POPC3 POPC4 POPC5
PLC1 1 1 1 1 1
PLC2 1 1 1 1 1
PLC3 1 1 1 1 1
PLC4 0 0 1 1 1
PLC5 0 0 0 1 1

Table 5: PLFDM example, when PLF is weakly relevant

POPC1 POPC2 POPC3 POPC4 POPC5
PLC1 1 1 1 1 1
PLC2 1 1 1 1 1
PLC3 0 0 1 1 1
PLC4 0 0 0 1 1
PLC5 0 0 0 0 1

Table 6: PLFDM example, when PLF is relevant

POPC1 POPC2 POPC3 POPC4 POPC5
PLC1 0 0 1 1 1
PLC2 0 0 1 1 1
PLC3 0 0 0 1 1
PLC4 0 0 0 0 1
PLC5 0 0 0 0 0

Table 7: PLFDM example, when PLF is strongly relevant
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The paper determines the formula for both cases to calculate the possible
number of order picking sequencing variations and it examines the behaviour
of those in the case of several order picking lists whose length and contents
are different.

The aim of this research is to define the complexity and the nature of the
search space, which should be handled by the order picking operator. It is not
an objective of the paper to classify the investigated problem into a specific
complexity class. Its goal is merely to emphasize the supra-exponential growing
of the proposed problem.

6.1 Complexity of order picking of one UL without order sep-
aration

First, a simpler case is examined when order picking of one UL should be
optimised and order separation is not necessary. In this case the customer
purchases an order, which will be picked by an operator to one UL. The im-
portant questions are:

• How many different picking sequences of the ordered products are pos-
sible?

• Is the operator able to find the right sequence of picking herself/himself
or is an algorithm necessary?

• What kind of optimisation algorithm is necessary for this kind of problem
depending on its complexity?

Each order picking list can contain every PLC every time. While the rules of
PLFDM are true, any sequence of the PLCs is possible. The main parameters,
which influence the number of sequencing variations of a picking list, are the
number of records (k), the number of PLCs (n) and the occurrence of the
PLCs (i) in the order picking list.

The PLC occurrence is necessary because every PLC contains several prod-
ucts, which usually have their own picking positions. The possible variations
of the picking positions within a PLC have to be considered. i is defined from
the order picking list point of view, to count the occurrence of PLCs, which
are on the order picking list (Eq. (13)). When a PLC occurs i times in a pick-
ing list then its possible sequencing variations have to be counted due to the
different picking positions (i!) (Eq. (14)). The sum of occurrence values (i)
has to be equal to the number of order picking list records (k) (Eq. (15)). The
number of records (k) has to be equal to or higher than the number of PLCs
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(n) (Eq. (16)). When k = n then the picking list contains 1 product from each
PLC and then the variations of occurrence (i!) is not necessary (Eq. (17)).

i > 0 (13)

V = i1! · i2! . . . · in! (14)

k = i1 + i2 + . . . in (15)

k ≥ n (16)

V = i1 · i2 . . . · in (17)

For example, when the following inputs are given:

• Number of different PLCs on the list equals 3 (n = 3), PLC = {A,B,C},

• Number of order picking list records equals 12 (k = 12),

• A PLC occurs 5 times, i1 = 5,

• B PLC occurs 4 times, i2 = 4,

• C PLC occurs 3 times, i3 = 3.

The number of variations for the above mentioned example is 5!·4!·3! = 17280.
This example is just one case, each n and k pairs have several combinations

depending on the occurrence of PLCs. Equation (18) shows the formula, which
defines the number of possible combinations.

Ck;n =

(
k− 1

n− 1

)
(18)

One possible combination is when the occurrence values are balanced (i1 u
i2 u . . . u in) and this reaches the minimum number of variations. In the case
of the mentioned example the minimum number of variations equals 13824
when:

• n = 3,

• k = 12,

• A PLC occurs 4 times,

• B PLC occurs 4 times,

• C PLC occurs 4 times.
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Another possible combination is when one of the occurrence values is max-
imum and the others equal 1, and this reaches the maximum number of vari-
ations (Eq. (19)).

(k− (n− 1)) ! · (1!)n−1 = (k− n+ 1) ! (19)

In the case of the mentioned example the maximum number of variations
equals 3628800, when:

• n = 3,

• k = 12,

• A PLC occurs 10 times,

• B PLC occurs 1 times,

• C PLC occurs 1 times.

During the complexity examination the maximum formula is going to be
used (Eq. (19)) because the order picking routing optimisation algorithm has
to be able to handle in this case as well, which results in the highest number
of variations and causes the highest complexity.

The (k− n+ 1)! formula (Eq. (19)) takes into consideration the PLF rules
in the case of standard triangular and symmetrical PLFDM and it has some
important facts:

• Many industrial cases are reducible to standard triangular and symmetri-
cal PLFDM. However, some special industrial cases can result in neither
symmetrical nor standard triangular PLFDM, which might modify the
real number of variations.

• When the inverse PLFDM is examined, the number of possible variations
will be the same. It highlights that the proposed formula is not applicable
in PLF based order picking routing optimisation without the PLFDM.

• The proposed formula assumes that each product has only 1 picking
position. However, sometimes more than 1 picking position of a product
is also possible.

The aim of this formula (Eq. (19)) is to highlight the importance and com-
plexity of PLF based order picking routing optimisation. In this case the spe-
cific cases and the inverse solutions are negligible. It could be said that when
PLFs are implemented into the order picking routing optimisation, the algo-
rithm should be able to handle a unique (non-symmetrical and non-standard
triangular) PLFDM with the exact picking rules.
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Generally, the necessary data (n, k, i1, i2,. . . in) regarding the order picking
list will be available during PLF based order picking routing optimisation to
see each possible variation. The algorithm will optimise the picking sequence
of several order picking lists whose parameters will be different depending on
the customer orders.

The (k−n+1)! formula (Eq. (19)) is compared to the ek formula to examine
the complexity of the OPRP-PLF. Equation (20) can prove the exponential
growth of variations, where n is an optional constant and k goes to infinity.

lim
k→∞

ek

(k− n+ 1) !
=

lim
k→∞

e · e · e · . . . · e
(k− n+ 1) · (k− n) · (k− n− 1) · . . . · 3 · 2 · 1 · . . . · 1

= 0 (20)

Equation (20) goes to 0 because each
e

(k− n+ 1)
,

e

(k− n)
,

e

(k− n− 1)
. . .

quotient goes to 0 and the further quotients
(e
2
,
e

1
. . .

)
are constants. This re-

sult means that the number of variations ((k−n+ 1)!) has a stronger growth
than the ek has. It proves that the proposed formula has at least exponen-
tial growth. It could be said that a heuristics optimisation method would be
necessary for PLF based routing optimisation.

Each warehouse handles shorter and longer picking lists. Table (8) repre-
sents an example when n = 3 and k is between 1 and 15. In this case when
k = 12 and n = 3, which is definitely possible in real life, the possible se-
quencing variations equal 3628800. It could be said that it is impossible for
the order picking operator to be able to define a nearly optimal sequence by
herself/himself without any support. Naturally, there are possible cases when
k and n are smaller but in this case complex heuristic optimisation might not
be relevant (i.e., in Table (8), when n = 3 and k = 6 there are 24 possible vari-
ations). It is necessary to examine the nature of picking lists on a tactical level
and determine whether the order picking lists require complex PLF based op-
timisation or not. When there is a possibility for several complex order picking
lists then implementation of PLF based heuristic routing optimisation is nec-
essary. However, the Warehouse Management System should be able to decide
on an operational level which list will be sequenced by complex and maybe
time consuming algorithms and which will be handled by simple algorithms
or by the order picking operator herself/himself.
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k MaxVar ek

1 0 2.72
2 0 7.39
3 1 20.09
4 2 54.60
5 6 148.41
6 24 403.43
7 120 1 096.63
8 720 2 980.96
9 5 040 8 103.08
10 40 320 22 026.47
11 362 880 59 874.14
12 3 628 800 162 754.79
13 39 916 800 442 413.39
14 479 001 600 1 202 604.28
15 6 227 020 800 3 269 017.37

Table 8: Number of order picking sequencing variations, when n = 3 and k is
growing.

6.2 Complexity of order picking when order is separated to
several ULs

This section examines the case when the purchased order should be separated
to ULs because the ordered amount of products is higher than 1 UL’s capacity.
The defined ULs have the same parameters and behave in the same way as
the previously discussed picking lists. The important questions are:

• How many different variations are possible for separating an order and
sequencing the picking items of each UL?

• Is the operator able to find the right separation of an order and picking
sequence of each UL herself/himself or is an algorithm necessary?

• What kind of optimisation algorithm is necessary for these kinds of prob-
lems depending on its complexity?

The main parameters, which influence the number of separating and se-
quencing variations of an order, are the number of records (Order:K, UL:k), the
number of PLCs (Order:N, UL:n) and the occurrence of the PLCs (Order:I,
UL:i).
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It is assumed that the number of possible ULs could be equal to or lower
than the number of ordered records (K) (Eq. (21)). The sum of each UL’s
length (k1, k2 . . . kULnum) equals K(Eq. (22)). The order picking sequencing
variations of each possible UL are counted by the previously defined formula,
V = i1! · i2! . . . · in! (Eq. (14)). Based on the combination with repetition
formula, Eq. (23) defines the possible order separation combinations, where
ULnum = K, because of Eq. (21).

ULnum 6 K (21)

K = k1 + k2 + . . .+ kULnum (22)(
ULnum + K− 1

ULnum − 1

)
=

(
2 · K− 1

K

)
(23)

Equation (24) sums up the possible separating combinations and sequencing
variations of each UL.

k1+k2+...+kK=K∑
k1,k2,...,kK=0

(
K

k1

)
· Vk1 +

(
K− k1
k2

)
· Vk2 + . . .+(

K− k1 − k2 − . . .− kK−3 − kK−2
kK−1

)
· VkK−1

+(
K− k1 − k2 − . . .− kK−2 − kK−1

kK

)
· VkK (24)

The model counts using the maximum number of variations of each UL, when
i >= 0, thus Vkj = kj!. Differently from Eq. (13), i = 0 is allowed because
in this case the order picking lists are combined during examination, thus the
exact occurrence of each n is unknown. It is a specific case, which results
in the highest number of variations, although during optimisation the exact
occurrence of each n might be known. In this case the proposed formula can
be simplified as Eq. (25) shows. Some further simplifications result in Eq. (26),
which defines the possible variations for separating an order and sequencing
the picking items of each UL.

k1+k2+...+kK=K∑
k1,k2,...,kK=0

K!

(K− k1)!
+

(K− k1)!

(K− k1 − k2)!
+ . . .+

(K− k1 − k2 . . . kK−2)!

(K− k1 − k2 . . . kK−1)!
+

(K− k1 − k2 . . . kK−1)!

(K− k1 − k2 . . . kK)!
(25)
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k1+k2+...+kK=K∑
k1,k2,...,kK=0

K!

(K− k1)!
+

(K− k1)!

(K− k1 − k2)!
+ . . .+

(kK−1 + kK)!

kK!
+
kK!

0!
(26)

Equation (20) proves, that sequencing 1 UL is at least an exponential problem
and requires heuristic optimisation. When an algorithm separates orders to
ULs and sequences each UL it will be at least an exponential problem as well,
which requires heuristic optimisation. It could be said that supporting the
order picking operator with a separating and sequencing algorithm is even
more important in this case because this problem is even more complex.

7 PLF based order picking optimisation

Depending on the length and complexity of one UL’s picking list, there are 3
different levels for handling the possible picking sequence.

• When the picking lists are short (k is low, like 2-6 records) and/or the
lists are simple (contain a low number of POPC, n is low) then the
order picking operator is usually able to define the optimal sequence for
picking, which results in the shortest picking lead time.

• When the lists are longer but still not longer than about 10 records, an
enumeration based algorithm can find the best sequence using a com-
puter. In the case of a 10 records long list the number of possible solu-
tions are 10! = 3628800 (when reconstruction is allowed), which can be
handled by a computer without an intelligent algorithm.

• When the lists are longer than about 10 records (k > 10), a quick al-
gorithm is necessary. The growing number of records results in an ex-
ponentially growing complexity, which is unmanageable within a short
time window by the operators or simple heuristics. Meta-heuristic based
solutions usually can be an appropriate solution to get a nearly optimal
picking sequence quickly.

The following subsections introduce analytic examples for simple cases and
a Simulated Annealing (SA) algorithm for more complex picking lists. The
examples and the SA algorithm are defined for a 1D loading during the order
picking.

The aim of this paper is to describe one possible algorithm for the complex
cases to introduce the nature of the problem. While several further methodolo-
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gies are possible (e.g. genetic algorithms, branch and bound methods, multi-
restart hill climbers), it is not an objective of this paper to find the best
methodology. We leave it for future research. Further aim is to confirm, that
supporting the order picking operators with OPRP-PLF algorithms is essen-
tial to get a nearly optimal picking sequence quickly. The reasons why the
SA algorithm is applied, are its potential application in an evolutionary based
search, its possibility to avoid local optimum, and the good experiences about
its effectiveness and simplicity.

First of all, the next subsection discusses the objective function, which eval-
uates the order picking sequencing solutions.

7.1 Evaluation of order picking sequence - objective function

The proposed research evaluates the possible order picking sequencing solu-
tions based on time requirements. Counting the lead time of each picking task
begins when the picking operator starts the list and picks up an empty pallet
at the start-end position. The lead time measurement is finished when the
picking operator has transported the ready UL to the start-end point. During
order picking the picker visits each picking position on her/his list, picks the
ordered items and reconstructs the UL structure, if it is necessary. The ob-
jective function (T) summarises the picking time, the UL reconstruction time,
the travelling time and other time requirements (Eq. (27)). The aim of the
OPRP-PLF is to minimise the order picking lead time of stable unit loads
(Eq. (29)).

T = TP + TR + TT + TO (27)

min (TP + TR + TT + TO) (28)

min (T) (29)

The picking time (TP) depends on several parameters, which are usually
unique for each warehouse, for example ordered quantity, weight, shape and
SKU of the ordered product. In the later described test examples a constant is
going to be used for the picking time (10 sec/ordered record) for simplification
(Eq. (30)).

TP =

k∑
i=1

tPi (30)

The reconstruction time (TR) depends also on several unique factors. During
the order picking the picker collects the items based on the defined sequence,
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when he/she reaches a record that can’t be picked after the already picked
items, the picker has to unload items from the UL until the actual picking
record can be picked. When the actual picked items are allocated to the UL
the unloaded items should be loaded back onto the UL in the right sequence.
In this case it is assumed that the picker unloads the items separately in order
to load everything back in the right sequence to avoid the Tower of Hanoi
problem. Equation (31) shows our formula for reconstruction time, where rp
is the number of problematic records where reconstruction will be necessary,
and rr is the number of records with stronger POPC after the problematic
record, and this shows the number of unpicked records. In the later described
test examples a constant is going to be used for reconstruction time (tR equals
7.5 sec/ordered record) for simplification.

TR =

rp∑
i=0

rri · 2 · tRi (31)

Equation (32) defines the travelling time based on the picker’s moving speed
(v = 1, 6m/s) and the distances between positions (S). Sri−1,ri is the travelling
distance from the position of the previous record to the position of the actual
record. Sr0 and SSE define the start-end point where the picking starts and
ends.

TT =
Srk,SE
v

+

k∑
i=1

Sri−1,ri

v
(32)

Further time parameters (like for example extra administration, correction,
and searching) are definable with the other time TO parameter. In the later
described test examples TO equals 0 seconds.

The overall task is to minimise T (Eq. (29)) subject to k (number of records
on the order picking list), rp, rr, and the distances between positions S.

7.2 Analytic solution for simple cases

When the picking lists are short (k is low, like 2-6 records) and/or the list
is simple (contains low number of POPC – n is low) then the order picking
operator is usually able to define the optimal sequence for picking, which re-
sults in the shortest picking lead time. This subsection describes some simple
picking lists and their calculated objective functions. The lead times are cal-
culated using the previously described formulas based on a simple distance
matrix (Table (9)), where the values are defined in meters. The possible UL
building rules are described in Table (10). Obviously in the explained cases the
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warehouse operator defines the right sequence without any calculation, based
merely on experience and best practices.

Pos 1 Pos 2 Pos 3 Start-End

Pos 1 0 50 20 100
Pos 2 50 0 30 80
Pos 3 20 30 0 10

Start-End 100 80 10 0

Table 9: Distance matrix for the simple cases.

A B C

A 1 1 1
B 0 1 1
C 0 0 1

Table 10: PLFDM for the simple cases.

The first simple case has 2 records (k = 2) and contains 2 POPCs (n = 2).
Table (11) shows a possible picking sequence when UL reconstruction is nec-
essary based on the PLFDM because the record number 1 (POPC property is
“B”) is picked before the record number 2 (POPC property is “A”). Table (12)
describes a better picking sequence when reconstruction is not necessary and
the travel time is equal to the previously discussed solution.

The second simple case has 3 records (k = 3) and contains 3 POPCs (n = 3).
Table (13) and Table (14) evaluate 2 possible picking sequences when recon-
struction is necessary and when it is not required, respectively. The results
show that the second solution’s lead time is lower when reconstruction is not
necessary. It is highlighted that in this case the picker has to travel a longer
route to avoid reconstruction and reach a lower lead time. It could be said
that the picker has to take into consideration the PLF and not to minimise
the route length. When the number of records is higher and/or the picking list
is more complex the picking operator won’t be able to make the right decision
without any IT support, which defines the nearly optimal sequence.
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Record ID Position POPC TP rri TR Sri−1,ri TT Lead Time

1 Position 2 B 00:10 0 00:00 80 00:50
2 Position 1 A 00:10 1 00:15 50 00:31

Start-End 100 01:02
Sum 00:20 00:15 230 02:23 02:58

Table 11: Simple case 1 (k = 2 and n = 2) with reconstruction.

Record ID Position POPC TP rri TR Sri−1,ri TT Lead Time

2 Position 1 A 00:10 0 00:00 100 01:02
1 Position 2 B 00:10 0 00:00 50 00:31

Start-End 80 00:50
Sum 00:20 00:00 230 02:23 02:43

Table 12: Simple case 1 (k = 2 and n = 2) without reconstruction.

7.3 Simulated annealing algorithm for PLF based order pick-
ing optimisation

This paper applies a simple optimisation algorithm for OPRP-PLF to find
nearly optimal picking sequences in an effective way by using an enumeration
based algorithm. The basis of the applied Simulated Annealing (SA) algorithm
is defined by Kirkpatrick et al. for Travelling Salesman Problems (TSP) [16].
This research generalised the method for a population based Simulated An-
nealing algorithm. Each individual defines a possible picking sequence of the
order picking list as part of a population. Each individual was developed in-
dependently based on SA methodology.

The initial population has Nind individuals, which contains 1 previously
sequenced individual (eugenic individual) and Nind− 1 randomly defined per-
mutations of order picking list records. The eugenic individual is sequenced by
POPC properties to define a reliable starting solution, and its role is to verify
that our SA algorithm can provide a better solution than simple sequencing.

Each individual is evolved for Niter iterations without any information ex-
change between the individuals. The individuals do not consider the PLFDM,
the PLF aspects are considered in the objective function. In iteration Iter
every individual is perturbed randomly. The number of perturbed records
(NumPR) are randomly defined between 2 and MaxPR, where MaxPR is de-
fined by Eq. (33) with rounding, where k is the number of picking records. If
MaxPR is lower than MinPR (MinPR = 4) then MaxPR = MinPR. The ran-
domly selected NumPR records are perturbed and the other records are fixed
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Record ID Position POPC TP rri TR Sri−1,ri TT Lead Time

3 Position 3 B 00:10 0 00:00 10 00:06
1 Position 2 C 00:10 1 00:15 30 00:19
2 Position 1 A 00:10 2 00:30 50 00:31

Start-End 100 01:02
Sum 00:30 00:45 190 01:58 03:13

Table 13: Simple case 2 (k = 3 and n = 3) with reconstruction.

Record ID Position POPC TP rri TR Sri−1,ri TT Lead Time

2 Position 1 A 00:10 0 00:00 100 01:02
3 Position 3 B 00:10 0 00:00 20 00:13
1 Position 2 C 00:10 0 00:00 30 00:19

Start-End 80 00:50
Sum 00:30 00:00 230 02:24 02:54

Table 14: Simple case 2 (k = 3 and n = 3) without reconstruction.

on the list. Equation (33) is used iteration by iteration to decrease the impact
of the perturbation.

MaxPR =

(
1−

(
Iter

Niter

))
· k (33)

The perturbed individual is kept if it gives a better solution than the unper-
turbed (origin) individual or if Eq. (34) holds, where r ∈ [0, 1] is a uniform
random number and τ is a positive scaling factor. The eugenic individual is
overwritten only when the lead time of the perturbed individual is lower than
that of the unperturbed individual. Algorithm (1) summarises the individual
overwriting procedure.

r < e((−Iter·τ)/Niter) (34)

The SA algorithms are tested with one complex picking list, which is picked
in a warehouse where 480 items are randomly allocated on 480 picking posi-
tions. The test picking list contains 20 records (k = 20) and 6 POPCs (n = 6).

Table (15) shows the parameters of the SA algorithm.
Because of the stochastic nature of the SA algorithm, this paper tested the

algorithm on 10 different random generator seed values. Table (16) shows the
objective function results of the 10 runs in ascending order by NotEugenic-
LeadTime(T). It highlights, that NotEugenicLeadTime individuals generally
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if Individual = Eugenic individual then
Overwriting the original individual

else
if Tunperturbed < Tperturbed or Eq. ( 34) holds then

Overwriting the original individual
end

end
Algorithm 1: Individual overwriting procedure

reached lower lead time T . The deviation highlights the stochastic nature of
the algorithm, but every result is acceptable.

Figure (1) shows iteration by iteration the best eugenic and not eugenic
individuals of the SA algorithm (Seed=1: SA+1) for PLF based routing op-
timisation. Axes X visualise the iterations and axes Y visualise the objective
function values (T). The red (initially lower) points show the decreasing lead
time of 1 eugenic individual. The green (initially upper) triangles show the
changing of the not eugenic individuals’ lead time. The decreasing number
of accepted weaker solutions shows the nature of the SA algorithm. It could
be said that the best not eugenic individuals exceeded the eugenic individ-
ual. The graph proves, that the eugenic individual was never overwritten by
a weaker individual. Furthermore, the not eugenic individual was overwritten
by a weaker individual with a decreasing probability.

Table (17) shows the top 10 individuals after SA optimisation. The best so-
lutions needed some reconstructions for the defined picking task in the case of
the given SLA. It proves the importance of PLF based order picking optimisa-
tion to reach a lower picking lead time. The SA algorithm found significantly
better solutions than the eugenic individual (“I1”). The results highlighted
that the SA algorithm is able to define a reliable solution for the PLF based
routing problem.

Parameter Value

Nind 50
Niter 1200
τ 10

Table 15: Parameters of the SA algorithm
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Scenario EugenicLeadTime NotEugenicLeadTime

SA+1 0:12:46 0:12:15
SA+2 0:12:38 0:12:17
SA+3 0:13:34 0:12:17
SA+4 0:12:57 0:12:26
SA+5 0:12:24 0:12:57
SA+6 0:13:17 0:12:17
SA+7 0:12:34 0:12:31
SA+8 0:12:34 0:12:45
SA+9 0:12:28 0:12:28
SA+10 0:12:31 0:12:24

Min 0:12:24 0:12:15
AVG 0:12:46 0:12:28

Deviation 0:00:23 0:00:14

Table 16: SA results of the 10 seeds

8 Conclusion

Several warehouses handle products that require the right picking sequence
and stacking method to build stable Unit Loads and to avoid product dam-
ages during order picking. The proposed research defined the Pallet Loading
Features (PLF), the Order Picking Routing Problem based on Pallet Loading
Feature (OPRP-PLF), and those influencing factors.

The warehouse management has to make several tactical and operative de-
cisions to operate cost and time effective PLF, as it will influence the order
picking processes to perform proper ULs. While PLF is not relevant at every
warehouse, the examination of its importance is essential on tactical level. If
PLF is relevant, the operating algorithms should take into consideration the
PLFs with the right weighting.

Several operational decisions have an impact on order performance lead
time and costs, whose minimisation is a general goal. The main PLF relevant
decisions are: how to separate the customer orders to UL order picking lists?
How many UL and which UL picking list contents will result in the lowest
order picking lead time? If the actual SLA won’t let us follow the pallet loading
rules and collect the ordered items with the shortest route distance, the picking
operator or the routing algorithm should decide whether to collect items in
the right stacking sequence and move a longer distance or to pick with a
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Ind. ID T TP TR TT
I43 0:12:15 0:03:20 0:00:45 0:08:10
I1 0:12:46 0:03:20 0:00:15 0:09:11
I14 0:12:47 0:03:20 0:01:30 0:07:57
I6 0:12:58 0:03:20 0:01:00 0:08:38
I31 0:13:08 0:03:20 0:01:15 0:08:33
I3 0:13:12 0:03:20 0:01:00 0:08:52
I16 0:13:23 0:03:20 0:00:45 0:09:18
I33 0:13:24 0:03:20 0:01:45 0:08:19
I32 0:13:26 0:03:20 0:02:00 0:08:06
I25 0:13:26 0:03:20 0:00:15 0:09:51

Table 17: Top 10 individuals of SA+1

shorter routing and spend more time redesigning the contents of the UL during
picking. The decision should result in the shortest lead time.

This paper described the methodology for defining the importance of PLF on
a tactical level. It introduced how the measurement of warehousing processes
can highlight OPRP-PLF. It described the methodology for modelling and
evaluating pallet loading rules. The defined PLFDM is the basis of PLF based
order picking optimisation, which defines a possible picking sequence to avoid
product damages and increase the OPP effectiveness.

Two main cases of customer order fulfilment were explained. The first is
when the customer order can be picked into 1 UL and order separation is not
necessary. The second is when the customer order should be picked into more
than 1 UL and order separation is necessary. The examined cases have some
alternative sub-cases, which is necessary to examine in further research. This
paper determined a formula for both cases to calculate the possible number of
order picking sequencing variations and examined its behaviour in the case of
several order picking lists whose length and contents are different. The results
proved, where PLF is relevant, the possible sequencing combinations of order
picking lists that have an exponential growth. This fact proves the necessity of
the heuristic optimisation method for OPRP-PLF, for example Foldesi et al.
defined for the road transport travelling salesman problem or Theyset al. and
Chen et al. defined for warehouse routing problem [13, 23, 9]. The order picking
routing optimisation algorithm has to support the operational decisions, like
customer order separation for ULs and the longer distance versus more UL
reconstruction time trade-off.
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Figure 1: Iterations of the SA algorithm

The paper described some analytic examples for simple cases to introduce
operational decisions, which can be made by operators themselves. A Simu-
lated Annealing (SA) algorithm was defined for optimising complex and long
picking lists. It resulted in better solutions than a simply sequenced and de-
terministic optimised eugenic individual. However, as a further research, more
effective and quicker algorithms should be developed.

The routing optimisation is usually running on given Storage Location As-
signment, whose optimisation and harmonisation with routing are essential. As
part of the proposed research SLA algorithms will be developed which take into
consideration PLFs and be harmonised with the nature of the orders. The gen-
erated SLA alternatives will be evaluated with the developed PLFDM based
routing algorithms. The nature of customer demands and the product lines are
usually changing, which requires continuous re-engineering of OPP. When the
items are dedicated to a position and the SLA is not optimised dynamically,
the picking distances will possibly be growing and the routing optimisation will
be more important. The increasing order picking lead time usually highlights
the necessity of SLA re-engineering. A well-defined Performance Measurement
system is the basis of OPP optimisation. It helps realise the changed nature
of orders and it highlights the necessity of OPP re-engineering.

The outputs of distribution warehouses are transportation ULs, which are
homogeneous or inhomogeneous order picked ULs. These ULs’ structure,
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strength, transportation requirements, and behaviour during transport have
a huge impact on supply chain management, influence its effectiveness, and
have impact on the possible risks during transportation. The risk management,
which is an examined field by many researchers, like [7, 15] also has to take
into consideration the PLF to examine the possibilities of product damages
during transport.

Understanding the nature of OPP is the first step in harmonising the ware-
housing processes. The realised warehouse dependent factors have to be imple-
mented into OPP algorithms with the right weighting. The OPP development
should be continuous based on well-defined Performance Measurement indica-
tors to harmonise the warehousing system with the changing environment.
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[15] U. Jüttner, Supply chain risk management: Understanding the business require-
ments from a practitioner perspective, The International Journal of Logistics
Management , 16, 1 (2005) 120–141. ⇒192

[16] S. Kirkpatrick and C. D. Gelatt and M. P. Vecchi, Optimization by Simulated
Annealing, Science, 220, 4598 (1983) 671–680. ⇒186

[17] H.C.W. Lau and T.M. Chan and W.T. Tsui and G.T.S. Ho and K.L. Choy, An
AI approach for optimizing multi-pallet loading operations, Expert Systems with
Applications, 36, 3 (2009) 4296–4312. ⇒164

[18] G. H. A. Martins and R. F. Dell, Solving the pallet loading problem, European
Journal of Operational Research, 184, 2 (2008) 429–440. ⇒164

[19] K. Moeller, Increasing warehouse order picking performance by sequence opti-
mization, Procedia Social and Behavioral Sciences, 20, (2011) 177–185. ⇒164

[20] B. Molnár and Gy. Lipovszki, Multi-objective routing and scheduling of order
pickers in a warehouse, International Journal of SIMULATION, 6, 5 (2005)
22–33. ⇒165

http://www.emeraldinsight.com/journal/ijlm
https://www.journals.elsevier.com/expert-systems-with-applications
https://www.journals.elsevier.com/international-journal-of-production-economics
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.ijicic.org/
http://www.ijicic.org/
http://link.springer.com/10.1007/978-1-4471-2274-6_15
http://www.emeraldinsight.com/journal/ijlm
http://www.emeraldinsight.com/journal/ijlm
https://www.journals.elsevier.com/expert-systems-with-applications
https://www.journals.elsevier.com/expert-systems-with-applications
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://www.journals.elsevier.com/european-journal-of-operational-research/
https://www.journals.elsevier.com/procedia-social-and-behavioral-sciences/
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Abstract. The reconstruction and analyze of measured data play impor-
tant role in the research of high energy particle physics. This leads to new
results in both experimental and theoretical physics. This requires algo-
rithm improvements and high computer capacity. Clustering algorithm
makes it possible to get to know the jet structure more accurately.

More granular parallelization of the kt cluster algorithms was ex-
plored by combining it with the hierarchical clustering methods used in
network evaluations. The kt method allows to know the development of
particles due to the collision of high-energy nucleus-nucleus.

The hierarchical clustering algorithms works on graphs, so the parti-
cle information used by the standard kt algorithm was first transformed
into an appropriate graph, representing the network of particles. Test-
ing was done using data samples from the Alice offline library, which
contains the required modules to simulate the ALICE detector that is
a dedicated Pb-Pb detector. The proposed algorithm was compared to
the FastJet toolkit’s standard longitudinal invariant kt implementation.
Parallelizing the standard non-optimized version of this algorithm utiliz-
ing the available CPU architecture proved to be 1.6 times faster, than
the standard implementation, while the proposed solution in this paper
was able to achieve a 12 times faster computing performance, also being
scalable enough to efficiently run on GPUs.
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1 Introduction

We researched the behaviour of the jet in the high energy physics [20, 25, 30]
using the many-core architecture of the modern CPUs [18, 19]. We applied the
most important principles of physics and we review the main concepts in this
article.

The basic conception is the parton model to study the high energy hadron
collisions. Due to the hadronisation process we can measure the final state ob-
ject. The theory of strong interaction between the quark and gluon is described
by Quantum Chromodynamics (QCD) [26]. In this process colored objects are
created i.e. quarks and gluons. The scale of this procedure is few fermi 10−15 m.
The short and long distance physics are fundamentally different. The colored
objects are free to move within short range. On the scale of a few centimeter
the colored objects become confined into color singlets. The process of quarks
and gluon showering is a hadronization. During this procedure many mesons
and baryons emerge they decay and form evolve the final state objects which
are measured by detector. The spray of hadron is called jet which is a con-
nection between the short scale physics and a final state measured particles
[9, 28].

Different type of data requires different approaches to clusterize the input.
For real world networks, hierarchical algorithms are used to compute the clus-
ters. By combining some aspects of hierarchical processes and kt jet clustering,
a more efficient process will be made available for generating jets. This pro-
posed algorithm has lower complexity compared to the kt solution and has
faster computation on the same hardware, while also being more scalable,
that further enables jet generation on many-core architectures, such as GPUs.
The Louvain method, used as the hierarchical clustering algorithm for the ba-
sis of the new process already proved to be scalable on both CPUs and GPUs.
Combining the two methods provided a final algorithm, that can process 12
times faster, than the standard kt clustering.

2 Clustering and declustering mechanism

In this Section we discuss the clustering of jets and it is followed by declustering
in order to fine the substructures. There are many articles about this question
in the literature [1, 16, 32]. We consider the most important algorithms [3]
and discuss the physical meaning of these processes.
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2.1 Jet

A jet is a narrow cone of hadrons and other particles which are formed by
quark and gluon during the high-energy collisions. From the hard subpro-
cess hadronize the created hadrons become collimated around original parton
directions and the higher energy parton takes shapes more collimated. These
bunches of hadrons are called jets (Figure 1). They can be interpreted as a link
to partons and it can yield to understand a deeper level of the important par-
ton interactions. Jets sketch forms a rather simple process, what happened in
an event without taking into calculation the multiparticle dynamics. Therefore
we use the jets, rather the directly measured hadrons, these can be constructed
as infrared-safe observables. The QCD is theoretical background to calculate
the predictions of jets with high precision.

2.2 Clustering of jet

The jet is clustered, when we study the jet momentum due to the final state
particles in the calorimeter [5]. The results can be made more accurate to
consider the other measured quantities as muon systems. All together it means
the clusters. By theoretical research we have to mention two questions. These
are the infrared (IR) safety and collinear safety[28].

An observable is infrared safe, if it does not depend on the low energy
physics of the theory. We speak about the collinear(C) safety, when a parton
is replaced by a collinear pair of partons, then it should not modulate the
jet clustering results. The properties of jet does not change, when one of the
particles radiates a very soft objects, or breaks up two collinear particles.
Therefore the jet can be determined by perturbative methods to compare
with the experiment.

In the theoretical physics the infrared divergence means that situation, when
an integral of Feynman diagram diverges because of the constituent objects
with very small energy goes to zero. It is important, when the model contains
massless particles, as photons. One possibility to deal with it is to apply an
infrared cutoff and it approaches zero. The divergence is usually remains finite
in all measurable quantities. Therefore the infrared safe and collinear safe jet
reconstruction algorithm can be used to the evaluation of the measured data
responsing to theoretical condition or it is applied to a given order thanks to
the algorithm becomes IRC safe.

The determination of the jets mass and energy depend on the size of jet
radius. In the case of larger jet radius these quantities can be calculated more
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Figure 1: Structure of jet
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exactly than smaller distance because the cluster contains more hadronised
particles, which includes the underlying event and pile-up.

2.3 Cone and sequential recombination algorithms

We discuss two important classes of jet algorithms. The first is the cone algo-
rithm. This methods are the iterative cone with progressive-removal (IC-PR)
[2], The iterative cone with split-merge (IC-SM) [7] and seedless infra-red safe
cone (SIScone) [31].

The second part of the algorithm is the sequential clustering algorithms.
We will introduce the Kt [14], Anti-Kt [12] and the Cambridge/Aachen [34]
algorithms.

2.3.1 Cone algorithms

In the case of cone algorithm a conical region contains the particles of jet,
so the cluster takes place in the (η − φ) space. Therefore the jet has rigid
boundaries. This algorithm was popular in the experimental physics, because
it could be easier implemented, but it was not so preferred in the theoretical
physics. The cone algorithms are IRC unsafe.

IC-PR The iterative cone algorithm together progressive removal is a collinear
unsafe algorithm.

Look for that cell which has the largest pt i.e. the hardest box. It becomes
a center. Let us generated the radius of cone R around the center. We can
determine the trial jet axis to sum up the cells inside the cone by four-vectors.
If the trial jet axis corresponds to center axis, the behaviour of cone is stable.
Each particles which are situated in the stable cone are deleted from the list of
particles. This method is repeated by the next hardest cell. But if the trial jet
axis does not correspond to the center of axis, thenn the trial jet axis need to
look for the another center axis. This method is repeated until convergence of
the axes occurs. This process is repeated until there are center above threshold
energy Ecut.

IC-SM The iterative cone algorithm together with the split merge method
is an infra-red unsafe algorithm. For example JetClu, midpoint cone. This
process of the jet is as follows:

The first all cells which are above a threshold energy Ecut are center. Look
for all stable cones together with those center applying the same method as in
the IC-PR algorithm, but we do not delete any particles from the list once, a
stable cone is discovered. Each stable cones which were recovered are written
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as ptortojets. A split merge method is run on the protojets until we do not
discover each of them.

SIScone That infra-red safe cone method which does not have center is a
IRC safe cone algorithm. Because the area is relatively small, therefore it works
by the UE and PU well. It has better results than the R for hard radiation,
therefore has good resolution, but it is wrong for resolving multijets. The
process of SIScone of the jet is written schematically:

1. Choose a particle i
2. Look for each particles j within distance 2R of i
3. If there is no more particle j
4. then i is a stable cone and write to the list of protojets
5. Else
6. Look after the circles which is generated by i and j. These are lying on

their circumference and determine the momenta of the cones.
7. For each circle
8. All four permutations of the two edge points which are situated on or out

of the circle. These four circles mean as current cones.
9. Each current cone, which was not previously looked for.
10. It must be decided that the current cones are situated in or out of the

edge particles. This is same as the cone determined by the momentum of the
particles in the current cone. If not, then the current cone is unstable.

11. Check each current cones which are not unstable and create an explicit
stability one. Write each stable cones to the list of protojets.

12. Run a split merge method on the protojets.

2.3.2 Sequential clustering algorithms

The sequential clustering algorithms [3] can be used when the particles are
situated in the jets and there are small differences in the transverse momenta.
Therefore so called groups particles can be written on the momentum space
in jets, which contain fluctuating areas in (η− φ) space. The sequential clus-
tering algorithms were preferred by theorists. This method do not have been
favoured by experimentalists, because it has slow implementation. The FastJet
program [13] provides such clustering algorithms which are speed enough for
experimental research. Sequential clustering algorithms are also IRC safe.

We introduce the basic idea of sequential clustering algorithms. The first we

mention the distance variable between two particles dij = min(p
a
ti, p

a
tj)×

R2ij
R ,

where a is an exponent corresponding to a particular clustering algorithm. We
define distance R2ij = (ηi−ηj)

2+(φi−φj)
2 between two particles in the (η−φ)
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space and R is the radius parameter which determines the final size of the jet.
The value is changing in the range [0.4,0.7]. The second distance variable is
diB = pati which is the momentum space distance between the beam axis and
the measured particle.

In the sequential clustering algorithms the first step is to look for the mini-
mum of the entire set {dij, diB}. If dij is the minimum distance then the particle
i and j are integrated in one particle (ij) we need to take the summation four-
vectors and i and j are deleted from the list of particles.

If diB is the minimum value, then i becomes a final jet and it is deleted from
the list of particles.

We need to continue this method until either each particles are part of jet,
where the distance between the jet axes Rij larger than R, this process is the
inclusive clustering. Or until a designed the total of jets have been looked for.
We call it exclusive clustering.

Kt method In the case of Kt algorithm [12, 14] the a value equals to 2, then
the equations follows this form:

dij = min
(
p2ti, p

2
tj

)
×
R2ij

R
(1)

diB = p2ti (2)

The Kt algorithm [15] is applied mainly to cluster the soft particles, because
the particles have low pt particularly effecting the fluctuates in area appre-
ciably and a method that is susceptible to the UE and PU [23]. Because the
method of clustering is efficient process, therefore Kt algorithm works well at
resolving subjets.

Anti-Kt method The value a equals to -2, then we speak about Anti-Kt.
The form of equation is the following:

dij = min

(
1

p2ij
,
1

p2ij

)
×
R2ij

R
(3)

diB =
1

p2ti
(4)

The equation (3) is dominated by high pt, therefore this method can be applied
to cluster hard particles mainly. So the area fluctuates slightly and the process
is slightly susceptible to the UE and PU. The Anti-Kt’s clustering preference
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results in a method, namely it has the optimum at resolving jets, but therefore
it has poor de-clustering.

Cambridge/Aachen The value a equals to 0 which yields the C/A algo-
rithm, which provides the following equations:

dij =
R2ij

R

diB = 1

Both of the distance variables do not depend on the momentum, therefore its
area fluctuates poorly and slightly susceptible to the UE and PU. Because the
spatial property of the distance variable is little, therefore C/A de-clusters is
optimum for studying jet substructure, but it is poorly more complicated to
de-cluster than the Kt algorithm.

2.3.3 Sequential algorithms: the FastJet package

FastJet [13] is a software package which is used to determine the cluster jets.
It is an open source program.

The basic reconstruction algorithm [11] has been further developed to faster
software including the array structure for the distance between the objects.

The original program implementation provides the next calculation of the
demand:

First we determine the dij distance between all the particles and the diB
between all the objects. This calculation needs O(N2).

Second we search the closest particles and that objects which are nearest
neighbour, i.e. the minimal value of the distance dij and diB. This calculation
disposes O(N2) and it is done N times.

Then we can perform the jet reconstruction to apply the advanced pairs and
cluster of measured data set. The calculation of the algorithm in particular
the cluster provides O(N3).

FastJet algorithm employs two arrays to solve the original processes. One of
them is applied for the distance between the closest objects, another contains
the distance of the beamline. The calculation demand is O(N2).

Further development of the FastJet software achieves O(NlnN) calculation
to use another applicable metric instead of the array structure for the distance
of closest particles.

That clusters and jets, which were produced by FastJet, are saved in pseu-
dojets. It plays important role, because it allows to reconstruct the structure
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of the clusters. The pseudojets include the four-momentum and the hierarchi-
cal time dependent events inside the cluster, this results all objects in the jet
and it plays important role for the declustering mechanism.

2.4 Substructure of jet

Substructure of jets can be one jet containing more than one group of gaussian-
distributed clusters. Substructure can also be a non gaussian component, which
is corresponds to an offset. It can as well consist of another gaussian group of
clusters, namely second hard jet.

Three different types which is able to define:
I: Subjet from uncorrelated sources, overlapping the hard jet considered or

clustered together with it. It is soft process, originating from proton-leftovers,
initial state radiation, beam-rests and/or scatterings, e.g. pileup (PU) and
underlying event (UE).

II: Subjet from correlated sources, clustered together with the hard jet con-
sidered, originating from the same primary vertex, but another branch of the
Feynman diagram.

III: Subjet from correlated sources, originating from the decay of a single
boosted particle, clustered together into a single jet.

3 Problem statement and notation

Let G(V, E,ω) be an undirected weighted graph, with V representing the set of
vertices, E the set of edges and ω a weighting function that assigns a positive
weight to every edge from E. If the input graph is unweighted, then the weight
of the edges is considered to be 0. The graph is allowed to have loops, so edges
like (i, i) are valid, while multiple edges between the same nodes should not be
present. The following will be the adjacency list of vertex i: Γ(i) = j|(i, j) ∈ E.
Let δi denote the weighted degree of vertex i, such as δi =

∑
j∈Γ(i){ω(i, j)}.

Let N denote the number of vertices in graph G, M the number of edges, and
W the sum of all edge weights, such as M = 1

2

∑
i∈V δi. By computing the

communities, the vertex set V will be partitioned into an arbitrary number
of disjoint subsets, each with size n, where 0 < n ≤ N. C(i) will denote the
community containing vertex i. Ei→C is the set of all edges connecting vertex
i into community C. Consequently let ei→C hold the sum of the edge weights
in Ei→C.
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ei→C =
∑

(i,j)∈Ei→C

ω(i, j) (5)

The sum of all the vertices in community C shall be denoted by degC, which
will represent the degree of the whole community.

degC =
∑
i∈C

δi (6)

3.1 Modularity

Let S = C1, C2, ..., Ck be the set of every community in a given partitioning
of V , where {1 ≤ k ≤ N}. Modularity Q of partitioning S is given by the
following [27]:

Q =
1

2W

∑
i∈V

ei→C(i) −∑
C∈S

(
degC
2W

· degC
2W

)
(7)

Modularity calculation is a common solution to measure the quality of the
process and also to define a termination function. Still it’s not without some
drawbacks, like the resolution limit [21, 33]. Definition can be given in multiple
forms as are described in [33, 4, 6]. In the literature the more widespread
version is defined in Eq. 7, also this is used in the Louvain method [8].

3.2 Community detection

Given a G(V, E,ω) graph as input, the expected result is partitioning S of
communities that leads to the greatest modularity. This problem is known
to be NP-complete [10]. The major difference compared to other partitioning
solutions is the number and size of the clusters, while also in specific cases
some initial distribution is given [22].

4 The Louvain algorithm

The Louvain method [8], gives an iterative, greedy algorithm, that produces
the communities in multiple phases. Each phase runs for many iterations until
the system is converging. As the initialization of the first phase each vertex will
belong to a set containing only that node. As the process goes on, through the
iterations the gain in modularity becomes lesser and the iterating stops when
a predefined threshold is reached. In every round the vertices are checked in an
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arbitrary, but predefined order. Visiting vertex i, the neighbors are explored,
searching for a new community with the highest modularity gain. Once this
calculation is done, the selected neighbors community will be selected and
vertex i will be moved there. If this search yields no suitable community, no
changes are made to the current node. One iteration lasts until all vertices
are examined. Because of this the modularity is a monotonically increasing.
By reaching convergence in a given phase, the system is getting reduced, by
assigning a single ”meta-vertex”[24] in the place of all the nodes belonging to
the same community. The new nodes can have loops and the weight of these
new edges will be the sum of the weights of all the edges that are connecting the
inner nodes of the group. For an edge pointing into another cluster, the weight
is calculated by summing the weights of all the edges between the connected
sets. The result will be a reduced graph G ′(V ′, E ′,ω ′), which becomes the
input for the next phase. At any given iteration, ∆Qi→C(j) holds the modularity
gain resulting from the reassignment of vertex i from its current community
C(i) to a neighboring C(j). This is given by:

∆Qi→C(j) = ei→C(j)
W

+
2 · δi ·modC(i)/i − 2 · δi ·modC(j)

(2W)2
(8)

For any vertex i the new community will be computed based on the follow-
ing. For j ∈ Γ(i) ∪ {i}:

C(i) = argmax
C

(j)∆Qi→C(j) (9)

Because the modularity is monotonically increasing it guarantees termina-
tion. By running only for a dozen iterations during a few phases, this method
can find the clusters in real world datasets.

4.1 Parallel heuristics

The challenges to parallelize the Louvain method were explored in [24]. To
solve those issues multiple heuristics were introduced, that can be used to
leverage the performance of the parallel systems in a basically sequential algo-
rithm. From the proposed heuristics two is going to be detailed in this paper.
Lets assume the communities at any given stage are labeled numerically. The
notation l(C) will return the label of community C.
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4.1.1 Singlet minimum label heuristic

In the parallel algorithm, if at any given iteration vertex i which is in a com-
munity by itself (C(i) = i, singlet community [24]), in hope for modularity
gain might decide to move into another community, that holds only vertex j.
This transition will only be applied if l(C(j) < l(C(i))).

4.1.2 Generalized minimum label heuristic

In the parallel algorithm, if at any given iteration the vertex i has multiple
neighboring communities providing modularity gains, the community with the
minimum label will be selected. Swap situations might occur, when two vertices
are transitioning into the other’s community in the same iteration. This can
delay the convergence, but can never lead to nontermination as the minimum
required modularity gain threshold will guarantee a successful termination.

5 Hierarchical jet clustering

The hierarchical clustering is based on the Louvain clustering (Section 4). To
work with it, the algorithm was tweaked to incorporate the specific needs of
the jet clustering.

The Louvain method works on a weighted, undirected graph, while on the
other hand jet clustering (Subsection 2.2) uses a list of input particles, hence
this list needs to be transformed into a graph. Obviously the particles them-
selves will be appropriate for the nodes. As the kt clustering uses the distance
between the elements, a function assigning an edge to the nodes with the dis-
tance between the two adjacent items is a logical solution. The problem in this
case is the sheer volume of edges, as this will create a fully connected graph
with n ∗ (n− 1)/2 total links. Instead making the connection between nearest
neighbours and second to nearest proves to be sufficient. Also, the edges will
now contain directionality. In those cases, when the particle’s nearest ”neigh-
bour” is the beam, the node in graph will be isolated, and will represent a
singular jet. The original hierarchical process is greedy in the sense, that it re-
lies on modularity gain to drive the computation. This is important, because
there is no information about the clusters before starting the computation.
While using the kt algorithm it is known, that the processing will end, when
all particles are assigned into a jet, thus eliminating the need to compute the
modularity for the graph.

The result of a hierarchical clustering is the dendogram. This tree will con-
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tain the connection between the different phases of the cluster generation,
leading to the final assignments. Originally this is implemented by generating
a level of this tree, a new graph is induced by renumbering the nodes based
on their actual cluster assignment and recalculate the edges for them. Jet
clustering doesn’t need the inner weight of the clusters, only the calculated
distance from that subjet and that will be incorporated into the graph itself
through the edges. The solution proposed here doesn’t require the regener-
ation of each levels graph, but the graph will be dynamically morphed, by
applying the changes through the different phases. Also the terminology used
for the generation in the original Louvain algorithm is to move the nodes into
clusters, where each individual node will check which cluster will be the best
in the actual phase. Here the nodes connected with a directed edge will decide
among each other in such a way, that the node pointing to another one will
draw that to itself.

5.1 Sequential processing

Initially the result of the Louvain clustering depends on the original order of
the input value. The same can be said about the kt clustering (Subsection
2.3.2) as well: always the two closest elements are combined into a new jet,
thus the input should be ascending ordered. This way always the first element
of this list will be tested. After generating the new item, its distance should be
calculated against the remaining elements and finally it needs to be inserted
into the input array using a sorted insert based on the calculated distance and
a link will be generated between this item and its nearest neighbour, while the
links to the original subjets will be removed. The algorithm checks after this
recombination if the other elements nearest neighbour is the new recombined
jet or a completely different item. If the distance between an element and the
recombined jet becomes bigger, than how much for its individual part was,
then have to check if there are additional nearer neighbours and the closest of
them will be linked too and the two edges will be set this way. The processing
continues until any of the original input particles are present.

5.2 Parallel processing

The evaluation of the original hierarchical clustering in parallel required some
additional heuristics (Subsection 4.1) to keep the precision and consistency of
the base algorithm. By introducing the method to a more complex clustering
process, further requirements have to be satisfied to compute the final inclusive
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jets. These additional heuristics are closely connected to the structure of the
generated graph.

5.2.1 Transitivity effect

Let’s call the transitivity effect the case, when multiple particles or subjets
are having at least 1 input and 1 output edge. The different problems, that
can rise from this are explored in this subsection.

Processing in parallel in one phase multiple nodes will try to merge them-
selves with the connected nearest neighbour, while also that neighbour might
do the same at the same time, building up a chain. Just following through
that chain and merging the nodes together, might omit a potential change in
the nearest neighbours, that might appear by computing the separate recom-
bined subjets. In a simple case (Figure 2a) this can be solved, by only applying
the draw from the node, that is not tried to be recombined by another node,
meaning the node doesn’t have incoming edges.

(a) Chained nodes in the graph (b) Cycle in the graph

Figure 2

A more complex case might involve cycles (Figure 2b) on this chain, where
all the nodes have inbound links and the previous solution can’t be applied.
While processing the graph, if no cycles are present, then new subjets will
be generated. Even if there are cycles, but still have simple chains, the com-
putation can continue. At one point the clustering will not be able to push
any node into a new cluster as only cycles are available, effectively halting the
processing. If the clusterization is incomplete, there are nodes, that are not
assigned to jets and no cluster assignment is taking place in a given phase, it
is known to have cycles only, so there is no need for additional cycle checking.

The next step is to eliminate the cycle. For this the two nodes with the
shortest distance needs to be found, thus a minimum search is required. This
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way the two elements are getting removed from the chain, with all of its
connections. In case of the new subjet invocating a new cycle, this search
will be repeated. If the graph has multiple unconnected components (Figure
3), the search can be done in parallel among all the components, but not for
connected components, as they might connect to the same cycle.

Figure 3: Multiple components in the graph

5.3 Results

The complexity of the kt jet algorithm is Θ(N2), which requires a high amount
of computation to be done. It was shown in [18], that by applying paralleliza-
tion, the runtime of this process can be reduced considerably. Tests running on
the system detailed in Table 1, using the raw data from an event (containing
140535 points) simulated with the AliRoot framework’s PbPbbench [29] test
application.

The system used for development and testing is described in Table 1.

CPU GPU OS Compiler
Intel Core
i7 4710HQ

GeForce
GTX 980M

Windows
10 Pro

Visual
C++ 2013

Table 1: The test system

The previously proposed parallel implementation takes 207, 9 seconds com-
pared to the FastJet [13] (Subsection 2.3.3) framework’s sequential kt imple-
mentation, that needs 347, 18 seconds to finish the clustering, giving a 1.67
faster runtime. On the other hand the new hierarchical jet clustering (Section
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5) method needs only 81 seconds to conclude the generation, while produc-
ing the same output and the parallel implementation takes only 26 seconds
to finish the clustering. This leads to a 13 times faster evaluation compared
to the sequential kt algorithm and 8 times faster compared to the parallel
implementation of the same jet clustering (Table 2).

Algorithm Complexity Runtime

kt Θ(N2) 347, 18 s
parallel kt Θ(N2) 207, 9 s

hierarchical jet clustering O(N) 81 s
parallel hierarchical jet clustering O(N) 26 s

Table 2: Runtimes of the kt and parallel kt algorithm and the hierarchical jet
clustering

5.3.1 Complexity

In every step, where a new subjet is generated, it’s distance will be computed
to the other remaining n−2 nodes, where n is the number of nodes in the actual
phase. If the computation is running sequentially (Subsection 5.1), the number
of nodes decreases by 1 between each phase, while in parallel (Subsection 5.2)
it depends on how many subjets will be computed at once. Overall this part
will take (n − 2) + (n − 4) + · · · + 1, because the process will continue until
all original particles are assigned to a jet. In the worst case it might be, that
always subjets will be merged and at the end there will be 1 subjet and 1
particle.

If chains will be present, to break them up can be done in constant time as
the node that isn’t pulled by someone will merge it’s nearest neighbour. In the
case of cycles, the complexity comes from finding the unconnected components
and doing the minimum search in each of them. To find the minimum edge,
the complexity will be O(N). For the component search, if the graph is stored
with the list of edges, to find all components it will take O(N +M) steps,
where N is the number of nodes and M is the number of edges.

Overall the complexity of the proposed algorithm is O(N) +O(N) +O(N+
M) = O(N).
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6 Summary

In this paper a new kind of jet clustering algorithm is detailed, that builds on
some fundamental characteristics of hierarchical clustering used on real net-
work datasets. Thanks to this approach the Θ(N2) complexity of the original kt
jet algorithm was reduced to be linear (Subsection 5.3.1). This and the higher
granularity coming from this allows for further parallelization, that greatly
helps reducing the time of processing, providing a 13 times faster computation.
Also thanks to this GPU based computing for jet clustering becomes imple-
mentable and as it was introduced in [17] for the Louvain clustering method,
the use of many-core architectures further decreases the runtime even with a
factor of 12.

7 Future work

The proposed approach needs more thorough testing, with different data sets
to see if the precision always stays the same and produces the same result as
the original kt algorithm. On the other hand the modifications to the hierar-
chical clustering should be also applied on the full GPU implementation to
see the performance benefits of the new solution with extremely parallelizable
architectures.

A bigger step will be to see how this solution can be further improved upon,
potentially using machine learning in the process and providing a fundamen-
tally different approach to clustering.
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