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A. Iványi , N. Fogarasi
On partial sorting in restricted rounds . . . . . . . . . . . . . . . . . . . . . . . . . 17

S. Pirzada, B. A. Chat, U. T. Samee
On multigraphic and potentially multigraphic sequences . . . . . . . 35

R. Forster, Á. Fülöp
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Professor Antal Iványi, an active and always helpful member of our editorial
board, passed away on January 8, 2017 at the age of 75. He was born in
Kecskemét on January 23, 1942. After graduating from the Faculty of Chemical
Engineering Veszprém in 1965, he obtained a degree in Mathematics from
Eötvös Loránd University (ELTE) Budapest in 1969. From 1971 he taught
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at the Department of Numerical and Computational Mathematics (since 2003
Faculty of Informatics) of ELTE Budapest until his retiring in 2012.

His interest turned to computers and their applications early. Initially, he
taught mathematics students subjects such as Computational Mathematics,
Programming of Digital Electronic Computers, ALGOL Programming with
Chemical Applications etc. Between 1972 and 1975, and later in 1983-84, he
studied and worked at the Moscow State University. He received his university
doctor degree in 1972, afterwards he earned his CSc (candidate of science) in
1978, and his DSc (doctor of science) in 1984, in Mathematics and Computer
Science.

He initiated and organized between 1984 and 1989 the international confe-
rence of young program designer at the ELTE Budapest.

He was not only a professor and researcher, but an outstanding educator,
educational organizer, book writer, translator and editor. His books and edited
volumes contribute significantly to the development of Hungarian computer
science education. We mention here only the most important translations and
volumes coordinated by Professor Iványi:
• Cormen–Leiserson–Rivest: Introduction to Algorithms,
• Cormen–Leiserson–Rivest–Stein: Introduction to Algorithms,
• Donald E. Knuth: The Art of Computer Programming (issues of vol. 4),
• Algorithms of Informatics (three volumes in Hungarian and English).
Professor Iványi was also a former competitor of the University Athletics

Club of Budapest (BEAC). He liked chess, bridge and sudoku too.
For his outstanding work he received the Neumann Prize awarded by the

John von Neumann Computer Society (Budapest) in 2005.
Despite his illness, he remained active until the end of his life. His last edited

book has been left unfinished.
With a terrible feeling of pain and loss, we say goodbye to our colleague and

friend. We shall treasure his memory!
On behalf of the Editorial Board

Z. KásaIn memoriam

When I try to invoke the memory of our colleague and friend, Anti Iványi
(Toncsi, Tony), I can recall four situations of our long-life relationship.

Anti, the teacher

It goes back to 1971 when I first met him. I was a second-year student when
Anti (not yet 30) gave us a course in Numerical mathematics. It was a reve-
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lation for us at that time that commonly known constants can be computed
to many digits or transcendental equations can be solved approximately by
root-finding algorithms. At the end of the semester the enthusiastic teacher
could give a mark ”five” (excellent) to his dedicated student. This mark and
his signature is a curiously valuable entry in my university record book.

Anti, the editor of the book Algoritmusok

A great adventure of his active life was to manage the Hungarian translation
of the book Introduction to Algorithms by Cormen et al. This book brought
the wonderful experience of the common creative work with Anti. We had
been co-designers of the cover of the book. Remember that A. Calder’s ”Big
Red“ appearing on the original book cover lets the reader associate to the data
structure ”tree“. During a long conversation an idea popped in our heads: for
the cover of the Hungarian edition a ”Hungarian tree“ would be most suitable.
The next thought already was Csontváry’s ”The Lonely Cedar“. However, to
translate this idea into action turned out to be extremely hard (copyright
problems, poor quality diapositives) and any person other than Anti presum-
ably would gave up the realization. Finally, in 1997 the Algoritmusok appeared
with its attractive cover.

Anti, the tennis partner

From the second part of the ’80-s we were bound by the love of tennis. Through
nearly 30 years we played a lot against each other and together in a double.
Anti as a double partner was really amazing. From the very first moment until
the last one it was unquestionably a team on the court. The responsibility and
the assistance for each other was achieved beside him on a high level. He never
exhausted, which was quite unbelievable to see, not even in an extremely hot
weather. He always wanted to win and he never gave up.

Anti, the trusted friend

His long struggle with illness began in 2004 when Anti had the first surgery.
He spent a longer period in the hospital and I visited him two or three times in
a week. He asked me to manage his extensive electronic correspondence. I was
allowed to answer the easy letters independently (with naming the situation).
However, I had to print out the more complicated ones, and during the visiting
time Anti compiled the similarly complex answers using a red pen. In the
third week, I was heavily interested in his healing, as I felt. Coming back to
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the university he mentioned in laughs several times that my letters certainly
improved his human relations. After a long and desperate battle with illness
in January this year, Anti passed away. He was a unique man who always
tried to be fairly similar to majority but he remained an individual, from the
distance he kept, a lovable individual.

István Fekete
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25. A. Iványi, Density of safe matrices, Acta Univ. Sapientiae Mathematica
1, 2 (2009) 121–142.
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putatorica 3 (1982) 33–46.
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73. Iványi Antal (Ed.) Informatikai algoritmusok 2. Budapest: ELTE Eötvös
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garian translation, Ed. Iványi Antal), AnTonCom Budapst, 2009. ISBN 978-
963-87947-4-1
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91. Antal Iványi (Ed.): Fourth conference of program designers, ELTE, Bu-
dapest, June 1–3, 1988
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1 Introduction

Sorting, that is ranking of objects using pairwise comparisons, is a common
practical problem with application in different fields. Many authors describe
different applications, e.g., Landau [51] biological, Hakimi [33] chemical, Kim
et al. [46] and Newman et al. [57] network modelling, Bozóki, Csató, Fülöp,
Kéri, Poesz, Rónyai and Temesi economical [6, 13, 14, 18, 19, 45], Liljeros et al.
human relation modelling [52], while Csató, Iványi, Lucz, Móri, Pirzada, Reid,
and Sótér [18, 30, 37, 38, 39, 41, 40, 43, 44, 62, 64, 65, 69] sport applications.

Partial sorting is a relaxed variant of the sorting problem in which the
task is to return a list of the k largest (or k smallest) elements in order. A
common practical example of partial sorting is computing the “Top 100” of
some list. Martinez [56] has optimized the Quicksort algorithm for partial
sorting. After unsuccessful attempts by Schreier [67] and Slupecki [68], in
1964 Kislitsyn [49] determined the number of necessary comparisons for k = 2.
Aigner [1] has proposed a general solution for k = 3 but this has been improved
by Eusterbrock [24] and Kirkpatrick [47, 48] and upper bounds have been
established and proven for the required number of comparisons for k = 3 by
Hadian and Sodel [32] and Kirkpatrick [48].

Related problems are unordered partial sorting that is choosing the k largest
elements in any order and selection which is choosing the kth largest element
of a given list. The selection problem has been extensively studied. There
are many results on the lower and upper bounds of the number of necessary
comparisons [10, 47, 71], near-optimal algorithms such as Ford-Johnson [28]
and its improvements [7, 15, 53, 54, 55], and brute-force results [59, 60]. Finding
both the largest and smallest elements at the same time has also been studied
extensively [2, 3, 63, 70]. Of particular importance is the selection of the median
element, for example in order to apply it as a pivot strategy for Quicksort.
[22, 66, 21, 66]. The minimal and average number of necessary comparisons
have been examined for median selection [32, 72, 20]. Knuth [50] remains an
excellent survey of these problems and results.

With the advent of parallel computing devices, a natural direction for re-
search is the parallelisation of sorting algorithms. Following the treatment of
Pippenger [61], there are two different modes of parallelism for these problems:
the case of a number of parallel comparisons equal to the number of elements
which is called balanced case; and the case of a number of parallel comparisons
large enough to allow the solution to be found in a fixed number of rounds:
asking a fixed number of questions in the first round, processing the informa-
tion then repeating this for a fixed number of rounds. This is called the highly
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parallel case. For sorting n elements, it has long been known that, in the non-
parallel case, Θ(n logn) steps are needed. This implies that Θ(logn) steps are
needed in the balanced case, but Ajtai et al [4] showed that O(logn) steps
are sufficient. For the highly parallel case, Haggkvist and Hell [34] showed

that Ω(n1+
1
k ) comparisons are needed to sort in k rounds which Alon et al

[5] improved to a tighter bound. Bollobás and Thomason [11] showed that

O(n
3
2
logn) comparisons are sufficient to sort in 2 rounds which was improved

by Alon et al. [5] and generalized by Bollobás and Hell [12] to O(n1+
1
k
logn)

comparisons for k rounds.
In this paper, we study the problem of partially sorting n distinct elements,

in order to find the top k, in rounds, where only one pairwise comparison of
each element to another is allowed in each round. We will call this a restricted
round and is similar to sport tournaments where in each round, each team or
individual can only play against one opposing team or individual. If we use
the analogy of sports, we need to make the following three assumptions:

(i) in each match there is a winner (no ties)

(ii) the relative strengths of the players is constant throughout the tourna-
ment and

(iii) the players’ strengths are transitive (i.e., if A beats B and B beats C
then A beats C)

The task then is to come up with an optimal pairing algorithm which guar-
antees that the top k players can be found in a fixed number of rounds. Aziz et
al. [8] study the related problem of determining possible and necessary winners
for partially completed tournaments, Beasley et al. [9] also consider different
ways of extending partial tournaments.

The structure of the paper is as follows: In section 2, formal definitions and
notation are introduced, whilst in section 3 we review existing algorithms and
present some related problems. In section 4, we propose some new algorithms
and present some results, whilst in section 5 we draw conclusions and present
directions for future research.

2 Definitions and notation

Throughout the paper, we will use the terminology of sports: the compared
objects are called players, the comparisons matches and the comparisons in
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each round the pairing of round i and corresponding ordering the results of
round i. Let n ≥ 2 be an integer denoting the total number of players and
1 ≤ k ≤ n the desired number of top players the pairing algorithm should find.
In each match, the winner gets 1 point and the loser 0, so the set of permitted
results is R = {0 : 1, 1 : 0}. At the beginning of a tournament, each player is
assigned an index which is an integer label i ∈ {1, . . . , n}, while the rank of
a player is the position of the player in the final ordering once the required
comparisons have been made, which is equivalent to the value of the integer
if we consider the equivalent problem of sorting integers {1, . . . , n} by pairwise
comparisons.

A natural tool for the representation of the results of tournaments with
n players is a directed graph G on n vertices (T1, . . . , Tn) or an n × n
sized point matrix M, where if player i gets x ∈ {0, 1} points against player
j then G contains x edges directed from Ti to Tj and Mij = x. As such,
the results of tournaments can be represented by loopless directed graphs.
Let Π = {Π1, . . . , Πn!} be the set of n! possible permutations of the n players
and RA (n, k,Πi) denote the minimum required number of rounds needed for
a given deterministic pairing algorithm A to rank the top k players out of
n, under permutation Πi. Our task is to find the algorithm with the least
number of required rounds in the worst case, over all player permutations and
the necessary number of rounds and games, i.e.,

R(n, k) := min
A∈A

max
i
RA(n, k,Πi) , (1)

where A is the class of all deterministic pairing algorithms which perform
pairwise comparisons in rounds, pairing each player at most once in each
round.

3 Existing algorithms and related problems

The two most commonly used tournament formats in sport tournaments are
round-robin (all-play-all) and knock-out (elimination). Round-robin tourna-
ments provide an upper bound for determining the full ordering, i.e., R(n, 1) ≤
R(n, 2) ≤ . . . ≤ R(n,n) ≤ n − 1. Knock-out tournaments are efficient in de-
termining the strongest player and illustrate the result that R(n, 1) = dlog2 ne
[50]. Observing that the second best player must have been knocked out
by the winner directly in one of the log2 n rounds yields the result that
R(n, 2) = dlog2 ne + dlog2dlog2 nee. R(n, 3) was first investigated by Carroll
[16] who argued against the knock-out system for giving out multiple prizes
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and proposed a novel algorithm to find the top three in a lawn tournament of
32 players.

A pairing algorithm which is widely used for chess tournaments with many
participants (e.g., Chess Olympiad, large Open tournaments) is the Swiss pair-
ing system (see [25, 26, 27]). This was first used in 1903 in the Swiss national
tournament [58] although there are claims [35] that it was used in Zurich as
early as in 1895. It was first formalized as an algorithm and programmed by
Olafsson [58]. By construction, the Swiss pairing system has three main goals:

(i) Minimize the difference in the score of players paired against each other.

(ii) Each player should play against a new opponent in each round (unless
a “bye” is requested in advance).

(iii) The same player cannot have the same colour (black or white) in three
successive rounds (i.e., alternate the playing colour of each player as
much as possible).

There are many variations to the original algorithm (e.g., FIDE Dubov,
FIDE Dutch, FIDE Lim, FIDE Burstein, Amalfi etc. [29]) to address various
shortcomings, for example the inability of the algorithm to determine the top
k ≥ 2 players and the lack of clear and widely accepted tie-breaking system for
players with the same score at the end of the tournament [19, 36]. Despite this
problem, to this day, the Swiss pairing system is used to give out significant
monetary prizes in Open tournaments worldwide and determine the official
Chess Olympiad results and medals.

Although there is a heuristic rule of thumb proposed in [35] for the required

number of rounds to reliably determine the top k players out of n: R = (n+7k)
5 ,

in 1972 Haág and Meleghegyi [31] argued in the context of a failed Hungarian
National chess tournament that this is not fool-proof due to the negative
incentives placed on players and the possibility of draws in chess.

Because the Swiss pairing system has different goals than the algorithm
we seek, it is clear that it will not be optimal as is. However, it provides a
very useful starting point and raises a number of questions which any pairing
algorithm should address, such as how to pair players in the first round, or
more generally large groups of players with the same score (score group)?
How to move a player from a score group with odd number of participants to
another (floaters)? In what order should score groups be paired?

Before we present and analyze concrete pairing algorithms, we would like to
point out some related/modified pairing problems which could be analyzed. In
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our current formalism, we allow up to bn2 c matches in each restricted round.
However, we could impose further restrictions to allow only a maximum of
m ≤ bn2 c matches per round up to the serial case of m = 1. A different
generalization of the problem is if a single match does not just order 2 players,
but up to j of them (e.g., a horse race or swimming competition). Another
complexity we may introduce to the model is that of draws in a single match
which will result in the possibility of ties in the final ordering of objects.
Finally, we may introduce the restrictions (ii) or (iii) from the Swiss system
pairing objectives above which would make the formulation more complex,
but the resulting algorithm practically more viable.

4 Newly proposed algorithms and results

4.1 Definitions and preliminary observations

At the beginning of the tournament, we assume to have no information about
the relative strengths of the players, so any of them could be among the top
k, thus they are all active. If the rank of a player is definitively determined,
the player becomes inactive. Below, we restate some results from [42] which
we will use in the construction of the proposed algorithms.

Lemma 1 If a player has played all matches and has l losses then his rank is
l+ 1 for any l ∈ {0, 1, . . . , n− 1}.

Lemma 2 If a player has w wins at any point in the tournament then his
rank is at most n−w.

Lemma 3 (Carroll [16]) If a player has k losses at any point in the tourna-
ment then his rank is at least k+ 1 and will not be among the top k players.

4.2 Combined algorithm and enhancements

Based on the above results, Iványi [42] proposes an algorithm which works
on the principle of the Swiss pairing algorithm (i.e., in each round it pairs
players with the same or similar scores who have not yet played) and with the
following two enhancements:

(i) Transitivity rule: At the completion of each round, once the results
have been recorded in score matrix M, all of the additional results which
can be deduced using the transitivity assumption are recorded.
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(ii) Deletion rule: If the rank of a player is unambiguously determined
then we delete the player and all their results from the score matrix and
make them inactive.

Further enhancements can be made to the Combined algorithm by clarify-
ing the following set of algorithm attributes:

1. Ordering of score groups. When preparing the pairings for the next
round, we may begin from the top score group and move the odd player of
a score group down to a lower score group (float down). Alternatively, we
may start from the bottom score group and float up. In formally defining
the Swiss pairing algorithm, Olafsson [58] argues for a bi-directional score
group order: in the top half of the tournament, the odd player floats
down, in the bottom half, they float up and conflicts are iteratively
resolved around the middle.

2. Ordering within a score group. When determining the “standings”
within a score group, for players of the same score, we may decide to
simply apply the original indexing of players. (In chess tournaments this
is usually based on the ELO rating of the players [23] and represents a
pre-conceived strength order). Alternatively, the Buchholz score (sum of
the scores of previous opponents) or other tie-breaking score [36] may
be computed to determine an ordering within a score group.

3. Group pairing. Hollosi and Pahle [35] enlist four different ways in
which 2m players with a given ordering within a score group may be
paired: Fold pairing (1 vs. 2m, 2 vs. 2m − 1, . . . ,m vs. m + 1), Slide
pairing (1 vs. m+ 1, 2 vs. m+ 2, . . . ,m vs. 2m), Adjacent pairing (1 vs.
2, 3 vs. 4, . . . , 2m − 1 vs. 2m) or random. In particular, this method is
used to determine the first round pairings for the tournament. For Swiss
system chess tournaments, Slide pairing is usually applied.

4. Handling of unpaired players. A strict requirement of the Swiss pair-
ing system is that all players must be paired in each round against a new
opponent (unless a “bye” has been requested). However, in an optimal
partial sorting algorithm this is not a necessary condition. Indeed, when
players are deleted, they are omitted from further rounds. There may be
pairing situations where active players must remain unpaired, otherwise
existing pairings and paired score groups are disrupted. An attribute of
any pairing algorithm is how it handles such situations, it may leave
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players unpaired or maximize the number of paired players within a
score group or combine a score group with another score group in order
to maximize the number of paired players [58].

4.3 Top-Down pairing algorithm

Starting from the Combined algorithm of Iványi [42] and considering the
algorithm attributes of the previous section, we propose the following Top-
Down pairing algorithm. At the beginning of each round, players are sorted
as follows:

(i) In increasing order by the number of losses.

(ii) If the number of losses is equal then in decreasing order by their total
score.

(iii) If the total score is also equal then in decreasing order by their Buchholz
score.

(iv) If all of the above are equal then in increasing order by the initial index.

Once players are sorted, we iterate in a top-down fashion, scanning down
the list, trying to find an opponent for the highest ranked unpaired player. If
an opponent cannot be found for a player, we leave them unpaired and move
to the next unpaired player on the list. At the end of each round, we record
the results in the score matrix, fill in the results implied by the transitive rule,
update the Buchholz scores and determine if any player can be made inactive
and possibly added to the top k players. The formal pseudocode for Top-
Down, recorded in the conventions described in Cormen et al. [17] is given
below.

Input. n: the total number of players; k: the number of top players to rank;
V = [V1, V2, . . . , Vn]: the relative strengths of players, a permutation of the
numbers 1 to n.

Output. r: the required number of rounds;m: the required number of matches,
res = [res1, . . . .resk]: ordered list of the index of the top k elements in V.

Work variables. i, j: cycle variables; c: counter for res; M: match matrix,
augmented with 7 helping metrics for each player
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Top-Down(n, k, V)

01 c = 1 // lines 01–02: initialization of working variables
02 m = 0
03 for i = 1 to n // lines 03–12: initialization of M
04 for j = 1 to n
05 Mi,j =null
06 Mi,n+1 = 0 // total score for player i
07 Mi,n+2 = 0 //number of losses for player i
08 Mi,n+3 = 0 // Buchholz score for player i
09 Mi,n+4 = 0 // flag for having been paired this round for player i
10 Mi,n+5 = 1 // active flag for player i
11 Mi,n+6 = V [i] // rank for player i
12 Mi,n+7 = i // original index for player i
13 for r = 1 to n− 1 // maximum of n− 1 rounds to be paired
14 for i = 1 to n− 1
15 if (Mi,n+4 == 0 and Mi,n+5 == 1) //active and not yet paired
16 for j = i+ 1 to n
17 if (Mj,n+4 == 0 and Mj,n+5 == 1 and Mi,j == null)
18 m = m+ 1
19 Mj,n+4 = 1
20 M =RecordResult(i, j,M)
21 break
22 M =UpdateTrans(M) // lines 22-38 tasks at the end of each round
23 M =UpdateBuchholz(M)
24 for i = 1 to n
25 Mi,n+4 = 0 // reset paired flag
26 M =SortMatrix(M) // sort by losses, total score, Buchholz
27 for i = 1 to n− 1 // lines 27-35 deactivate right players
28 if Mi,n+5 == 1
29 if Mi,n+2 < Mi+1,n+2

30 res[c] =Mi,n+7

31 Mi,n+5 = 0
32 c = c+ 1
33 if k == c− 1
34 return r,m, res
35 else break
36 if c == n // special case for last player
37 res[c] =Mn,n+7

38 return r,m, res
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Note that helper functions RecordResult, UpdateTrans, UpdateBuchhlz and
SortMatrix are used in Top-Down, but their pseudocode are not listed here
for the sake of brevity. They are constructed in a straightforward way as
explained at the beginning of this section.
Top-Down is simple in that it does not consider score groups separately

and thus it avoids the problem of floating the odd player in a score group.
It is also intuitive, in that it aims to pair the strongest players against the
strongest available opponent in a greedy fashion. In order to demonstrate how
the algorithm works, we will present a simple example for n = 4. Using the
notation of [42], let Pi,j denote the player with index i and rank j. We will
consdier the following permutation of four players: π1 = {P1,1, P2,4, P3,2, P4,3} =
{1, 4, 2, 3} and assume we are interested in finding the full ordering, so k = 4.

The basic principle of Top-Down is that once the players are sorted (be-
fore the first round, this is done by index), the top player is paired with the
highest available opponent, so P1,1 is paired against P2,4 and the remaining
two players are paired against each other. Once the results are recorded, the
stylized match matrix including relevant tournament result columns and with
the round number in the index of the result is shown in Table 1.

Player P1,1 P2,4 P3,2 P4,3 Score Losses Buchholz Active

P1,1 X 11 1 0 0 1

P2,4 01 X 0 1 0 1

P3,2 X 11 1 0 0 1

P4,3 01 X 0 1 0 1

Table 1: Stylized match matrix M after the first round.

Since there are no transitive results to record, the players are then sorted in
increasing order of losses, keeping the index order between tied players, yield-
ing the ordering P1,1, P3,2, P2,4, P4,3. Since sorting by total score and Buchholz
does not modify this order, the second round top-down pairing will be per-
formed on this ordering. P1,1 is now paired against P3,2 and P2,4 is paired
against P4,3. Table 2 shows the stylized match matrix with pre-round sorting,
after the second round results are recorded, but before the application of the
transitivity rule.

Applying the transitivity rule, the results of the matches P1,1 vs. P4,3 and
P3,2 vs. P2,4 can be deduced and the newly sorted result matrix is shown in
Table 3 with results obtained by the transitivity rule shown in bold.
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Player P1,1 P3,2 P2,4 P4,3 Score Losses Buchholz Active

P1,1 X 12 11 2 0 1 1

P3,2 02 X 11 1 1 1 1

P2,4 01 X 02 0 2 0 1

P4,3 01 12 X 1 1 0 1

Table 2: Stylized match matrix M after the second round.

Player P1,1 P3,2 P2,4 P4,3 Score Losses Buchholz Active

P1,1 X 12 11 12 3 0 3 1

P3,2 02 X 12 11 2 1 1 1

P4,3 02 01 X 12 1 2 0 1

P2,4 01 02 02 X 0 3 0 1

Table 3: Stylized match matrix M after two full rounds and the transitivity
rule applied.

Applying the de-activation rules of the algorithm, we can see that the full
ordering has been determined in 2 rounds. Working through the same algo-
rithm for the other 23 permutations, we observe that in one third of the cases,
Top-Down finds the full ranking in 2 rounds, while in two thirds of the cases,
3 rounds are necessary, yielding an average of 2.66667 rounds to be necesesary.
Some more results associated with the Top-Down algorithm for small values
of n and k are presented in Table 4.

It is trivial that the cases n = k and n = k− 1 are equivalent, so the former
is not even shown in the table. However, further examining the table of results,
we observe that there is no difference, on average, between finding the top 2
or 3 amongst 4 players and similarly the top 6 or 7 amongst 8 players. This
implies that finding the 2nd best player automatically implies the 3rd best
out of 4 and similarly, the same round that determines the 6th best always
determines the 7th best out of 8 players. Why these are true, but the same
relationship does not hold for n = 6 and k = 4 and 5 can be the subject of
future research.

Conjecture 4 The Top-Down algorithm is optimal amongst deterministic
algorithms in terms of the worst case number of rounds required, that is

R(n, k) = max
i

Top-Down(n, k,Πi) , (2)

where R(n, k) is as defined in equation (1).
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n k min max average

2 1 1 1 2/2 = 1

4 1 2 2 48/24 = 2

4 2 2 3 64/24 = 2.66667

4 3 2 3 64/24 = 2.66667

6 1 2 3 2040/720 = 2.83333

6 2 2 4 2552/720 = 3.54444

6 3 2 5 2808/720 = 3.9

6 4 2 5 2960/720 = 4.11111

6 5 2 5 2992/720 = 4.15556

8 1 3 3 120960/40320 = 3

8 2 3 5 160128/40320 = 3.97143

8 3 3 6 183296/40320 = 4.54603

8 4 3 6 192512/40320 = 4.77460

8 5 3 6 200576/40320 = 4.97460

8 6 3 6 206464/40320 = 5.12063

8 7 3 6 206464/40320 = 5.12063

Table 4: Minimal, maximal and average number of rounds required for Top-
Down for small values of n and k.

Note that we do not conjecture optimality for the number of matches, as Top-
Down pairs all the players it can in each round even though in the last round
this may not be necessary for the determination of the k best players.

4.4 Exhaustive pairing algorithm

In this subsection, we will assume that n is even and consider all possible,
unique pairings of n elements. In the case that n is odd, we can make it even
by adding a dummy element which is smaller than all other elements. Now,
consider all possible pairings for the first round. After any pairing in the first
round, there will be exactly n

2 winners and n
2 losers. We could then consider

all possible pairings for the second round and evaluate the standings after
applying the transitive and deletion rules. We could continue this in a brute-
force exhaustive way and for a given input permutation of elements, find the
best possible pairing which determines the top k elements most quickly.
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For the trivial case of n = 2, a single round with the one possible pairing
completes the full ranking. The following result gives a constructive solution
to the exhaustive approach for all even n ≥ 4.

Theorem 5 For any even n ≥ 4 there exists a pairing which, utilizing the
transitivity rule, determines the full ordering of n players in exactly 2 rounds.

Proof. Let Pi be the index of the player with rank i for all i ∈ {1, . . . , n}.
We first observe that the match between Pi and Pi+1 must be played for all
i, 1 ≤ i ≤ k − 1 because these results cannot be deduced by transitivity.
Therefore, at least k − 1 matches will be necessary to determine the top k
players, or n − 1 matches in the case k = n. Since at most n

2 matches can be
played in one round, at least 2 rounds are needed to construct full ordering.

Now, consider the following pairing which shows that this lower bound is
tight:
Round 1: {P1 − P2, P3 − P4, . . . , Pn−1 − Pn}. The player listed first wins each
match.
Round 2: {P2−P3, P4−P5, . . . , Pn−2−Pn−1}. The player listed first again wins
each match.
Applying the transitivity rule, we can reconstruct the full ordering and deter-
mine the top k players {P1, . . . , Pk} for any k. �

The above result demonstrates that pairing players with different scores
can be efficient, if the player with the lower score wins. This observation could
inspire randomly introducing such pairings into the algorithm, which would
lead to stochastic pairing algorithms, but this is beyond the scope of this
paper.

5 Conclusions and directions for future research

In this paper, we introduced the problem of partial sorting in restricted rounds,
where in each round, each element can only be compared with at most one
other element. We examined various algorithms for minimizing the number
of rounds required to select the top k elements and made a conjecture about
Top-Down being optimal among the class of deterministic algorithms. Fur-
ther computer simulations and comparison against various benchmarks and
ultimately proving this conjecture mathematically is a fertile area of future
research.

We also considered exhaustively finding the best possible pairing among all
possible pairings and proved that for any n and any permutation, there exists
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a pairing which determines the top k elements in just 2 rounds for any k. This
approach shows that pairing players with the same score is not necessarily
optimal and points towards considering stochastic pairing algorithms. Sadly,
professor Iványi could not complete this, his last project, so this paper is
dedicated to his memory.
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[38] A. Iványi, Reconstruction of complete interval tournaments II., Acta Univ. Sapi-
entiae, Math., 2, 1 (2010) 47–71. ⇒18
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construction, J. Physics: Math. Theor. A 42, 39 (2009), 392001-1-3920001.10. ⇒
18

[47] D. G. Kirkpatrick, A unified lower bound for selection and set partitioning prob-
lems, J. ACM, 28 (1981) 150–165. ⇒18

[48] D. G. Kirkpatrick, Closing a long-standing complexity gap for selection: V3(42) =
50, in Space-efficient Data Structures, Streams, and Algorithms, Springer Verlag,
Berlin, 2013, pp.61–76 ⇒18

[49] S.S. Kislitsyn, Finding the kth element in ordered set with pairwise comparisons
(in Russian), Sibirsk. Mat. Zh., 2, 5 (1964) 557–564. ⇒18

[50] D. E. Knuth, The Art of Computer programming, Vol. 3. Sorting, Addison-
Wesley, Upper Saddle River, NJ, 1998. ⇒18, 20

http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.jstor.org/action/showPublication?journalCode=jsociinduapplmat
http://epubs.siam.org/loi/smjcat
http://senseis.xmp.net/?SwissPairing
http://senseis.xmp.net/?TieBreaker
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-math/matematica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.cs.ubbcluj.ro/~kasa/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/Faculty5.aspx
http://www.tankonyvtar.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.oplab.sztaki.hu/cv_kg_hu.htm
http://www.springerlink.com/content/1435-246x/19/2/
http://www.phys.vt.edu/people/hkim.shtml
http://obelix.phys.nd.edu/~toro/
http://www.renyi.hu/~miklosi/
http://www.math.sc.edu/~szekely/
http://iopscience.iop.org/1751-8121/42/39/392001/
https://www.cs.ubc.ca/people/david-kirkpatrick
https://www.cs.ubc.ca/people/david-kirkpatrick


On partial sorting in restricted rounds 33

[51] H. G. Landau, On dominance relations and the structure of animal societies. III.
The condition for a score sequence, Bull. Math. Biophys. 15 (1953) 143–148. ⇒
18

[52] F. Liljeros, C. R. Edling, L. Amaral, H. E. Stanley, Y. Aberg, The web of human
sexual contacts. Nature 411 (2001) 907–908. ⇒18

[53] G. K. Manacher, The Ford-Johnson sorting algorithm is not optimal. J. ACM,
26, 3 (1979) 441–456. ⇒18

[54] G. K. Manacher, Significant improvements to the Hwang-Lin merging algorithm,
J. ACM, 26, 3 (1979) 434–440. ⇒18

[55] G. K. Manacher, T. D. Bu, T. Mai, Optimal combinations of sorting and merging,
J. ACM 36 (1989) 290–334. ⇒18

[56] C. Mart́ınez, Partial quicksort Proc. 6th ACM-SIAM Workshop on Algorithm
Engineering and Experiments and 1st ACM-SIAM Workshop on Analytic Algo-
rithmics and Combinatorics. (2004) 5 pages. ⇒18

[57] M. Newman, A. L. Barabási, D. J. Watts, The Structure and Dynamics of Net-
works. Princeton University Press, (2006). ⇒18
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1 Introduction

For a positive integer r, an r-graph(or multigraph) is a loopless graph in which
no two vertices are joined by more than r edges. An r-complete graph on n

vertices, denoted by K
(r)
n , is an r-graph on n vertices in which each pair of

vertices is joined by exactly r edges. Clearly, K
(1)
n = Kn. A non-increasing se-

quence π = (d1, d2, . . . , dn) of non-negative integers is said to be r-graphic if it
is the degree sequence of an r-graph G on n vertices, and such an r-graph G is
referred to as a realization of π. We take σ(π) =

∑n
i=1 di. For graph theoretical

notations and definitions we refer to [9].

Let π = (d1, d2, . . . , dn) be a non-increasing sequence of non-negative inte-

gers with d1 ≤
n∑
i=2

min{r, di}. Define π
′
k = (d′1, d

′
2, . . . , d

′
n−1) to be the non-

increasing rearrangement of the sequence obtained from

(d1, d2, . . . , dk−1, dk+1, . . . , dn)

by reducing by 1 the remaining largest terms that have not been reduced r
times, and repeating the procedure dk times. π

′
k is called the residual sequence

obtained from π by laying off dk.

The following three results due to Chungphaisian [2] are generalizations from
1-graphs to r-graphs of three well-known results, one by Erdős and Gallai [3],
one by Kleitman and Wang [6] and one by Fulkerson, Hoffman and Mcandrew
[5].

Theorem 1 [2] Let π = (d1, d2, . . . , dn) be a non-increasing sequence of non-
negative integers, where σ(π) is even. Then π is r-graphic if and only if for
each positive integer t ≤ n,

t∑
i=1

di ≤ rt(t− 1) +
n∑

i=t+1

min{rt, di}.

Theorem 2 [2] π is r-graphic if and only if π′k is r-graphic.

Let the subgraph H on the vertices vi, vj, vk, vl of a multigraph G contain the
edges vivj and vkvl. The operation of deleting these edges and introducing a
pair of new edges vivl and vjvk, or vivk and vjvl is called an elementary degree
preserving transformation. If this operation is performed r times on the same
edge set, it is called r-exchange.
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Theorem 3 [2] Let π be an r-graphic sequence, and let G and G′ be realiza-
tions of π. Then there is a sequence of r-exchanges, E1, . . . , Ek such that the
application of these r-exchanges to G in order will result in G′.

An r-graphic sequence π is said to be potentially K
(r)
m+1 if there exists a real-

ization of π containing K
(r)
m+1 as a subgraph. If π has a realization G containing

K
(r)
m+1 on the m+ 1 vertices of highest degree in G, then π is said to be poten-

tially A
(r)
m+1-graphic. As a special case of Lemma 2.1 in [13], Yin showed that

an r-graphic sequence is potentially K
(r)
m+1-graphic if and only if it is potentially

A
(r)
m+1-graphic.

The r-join (complete product) of two r-graphs G1 and G2 is a graph G =
G1∨G2 with vertex set V(G1)∪V(G2) and the edge set consisting of all edges
of G1 and G2 together with the edges joining each vertex of G1 with every

vertex of G2 by exactly r edges. Let K
(r)
l and K

(r)
m be complete r-graphs with

l and m vertices respectively, that is the complete graphs having exactly r

edges between every two vertices. The r-split graph of K
(r)
l and K

(r)
m denoted

by S
(r)
l,m is the graph K

(r)
l ∨ K

(r)
m having l +m vertices, where K

(r)
m (having no

edges) is the complement of K
(r)
m . [14]. If π has a realization G containing Sl,m

on the l +m vertices of highest degree in G, then π is said to be potentially
Al,m-graphic.

The following two results due to Yin [13] are generalizations from 1-graphs
to r-graphs of two well-known results given by A. R. Rao [12].

Theorem 4 [13] Let n ≥ l + 1 and π = (d1, d2, . . . , dn) be an r-graphic

sequence with dl+1 ≥ rl. Then π is potentially A
(r)
l+1-graphic if and only if πl+1

is r-graphic.

Theorem 5 [13] Let n ≥ l + 1 and π = (d1, d2, . . . , dn) be an r-graphic

sequence with dl+1 ≥ 2rl− 1, then π is potentially K
(r)
l+1.

An extremal problem for 1-graphic sequences to be potentially K
(1)
l -graphic

was considered by Erdős, Jacobson and Lehel [4] and solved by Li et al. [7, 8].
Yin [13] generalized this extremal problem and the Erdős-Jacobson-Lehel con-
jecture from 1-graphs to r-graphs.

In 2014, the authors [10] proved the following assertion.
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Theorem 6 [10] If G1 is a realization of π1 = (d11, . . . , d
1
m) containing Kp as

a subgraph and G2 is a realization of π2 = (d21, . . . , d
2
n) containing Kq as a

subgraph, then the degree sequence π = (d1, . . . , dm+n) of the join of G1 and
G2 is potentially Kp+q-graphic.

The following two results for simple graphs are due to Yin [14].

Theorem 7 [14] π is potentially Al,m-graphic if and only if πl is graphic.

Theorem 8 [14] Let n ≥ l + m and let π = (d1, d2, · · · , dn) be a non-
increasing graphic sequence. If dl+m ≥ 2l+m− 2, then π is potentially Al,m-
graphic.

A condition for a graphic sequence π to be potentially K4 − e graphic can
be found in [11], where K4 − e is the graph obtained from the complete graph
K4 by deleting one edge e.

2 Bounds on the sum of squares of degrees of a
multigraph

From the Cauchy-Schwarz inequality, we have

n∑
i=1

|aibi| ≤
( n∑
i=1

|ai|
2
) 1

2
( n∑
i=1

|bi|
2
) 1

2 ,

Taking ai = di and bi = 1, we have
( n∑
i=1

di
)2 ≤ n

n∑
i=1

d2i which implies

1
n

( n∑
i=1

di
)2 ≤ ( n∑

i=1

d2i
)
. From this and the hand shaking Lemma

n∑
i=1

di = 2|E|,

we have 4|E|2

n = 1
n

( n∑
i=1

di
)2 ≤ n∑

i=1

d2i .

Now we have the following observation, the proof is by using the same ar-
gument as in Theorem 1 of [1].

Lemma 9 For an r-graph G,
n∑
i=1

d2i ≤ |E|
(
r(n− 2) + 2|E|

n−1

)
.
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Figure 1: A 2-graph

Remark 10 From Lemma 9, we observe that

4|E|2

n
≤

n∑
i=1

d2i ≤ |E|
(
r(n− 2) +

2|E|

n− 1

)
.

The following example shows that the equality does not hold in the above
inequality.

Example 11 Consider the 2-graph as shown in Figure 1.

Here, 4|E|
2

n = 4×162
6 = 512

3 < 42+ 62+ 62+ 62+ 62+ 42 = 176 < 16
(
2(6− 2) +

2×16
6−1 ) =

1152
5 .

Now, we have the following result.

Lemma 12 A multigraph G is regular if and only if 4|E|2

n =
n∑
i=1

d2i .

Proof. Suppose an r-graph G is regular of degree b. Then 2|E| = nb and di = b

for all i = 1, 2, . . . , n. We know that
n∑
i=1

d2i = nb
2 and 4|E|2

n = 1
n4

1
4n

2b2 = nb2.

These together give
n∑
i=1

d2i =
4|E|2

n .

Conversely, suppose that
n∑
i=1

d2i = 4|E|2

n . Then 4
n |E|

2 =
n∑
i=1

d2i . This implies

that 1
n(d

2
1 + d

2
2 + . . .+ d

2
n + 2(d1d2 + d1d3 + . . .+ d1dn) + . . .+ 2(dn−2dn−1 +

dn−2dn)+ 2(dn−1dn))− (d21+d
2
2+ . . .+d

2
n) = 0, which on simplification gives
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1
n

(
(d1 − d2)

2 + (d1 − d3)
2 + . . .+ (d1 − dn)

2 + (d2 − d3)
2 + (d2 − d4)

2 + . . .+

(d2−dn)
2+ . . .+ (dn−1−dn)

2

)
= 0. From this, we see that each term on left

side is non-negative for every i, j and right side is equal to zero. Therefore the
above equation is possible when di = dj for every i, j = 1, 2, . . . , n and hence
G is a regular graph. �

Now, we have the following observation.

Lemma 13 Let G be an r-graph with n > 2 vertices. Then G is a complete

graph Krn if and only if 4|E|2

n =
n∑
i=1

d2i = |E|
(
r(n− 2) + 2|E|

n−1

)
.

Proof. First we note that an r-graph G is a complete r-graph if and only if
|E| = 1

2rn(n − 1). Moreover, we know that |E| = 1
2nr(n − 1), which implies

that 2|E|(n− 2) + 2|E|n = nr(n− 1)(n− 2) + 2|E|n and on simplication gives
4|E|2

n = |E|
(
r(n− 2) + 2|E|

n−1

)
. Thus the result follows. �

The following result partially answers the question raised in Remark 10.

Theorem 14 A bipartite multigraph G = K
(r)
l,m, where m > 1, is an r-star

graph K
(r)
1,n−1 if and only if

n∑
i=1

d2i = |E|
(
r(n− 2) + 2|E|

n−1

)
.

Proof. Let K
(r)
l,m be an r-complete bipartite graph, where m > 1, n = l +m

and |E| = rlm. There are l-vertices each of whose degree is r×m andm vertices

each of whose degree is r× l, so
n∑
i=1

d2i = l(rm)2 +m(rl)2 = lr2m2 +mr2l2 =

r2(lm2 + ml2) = r2lm(l + m). Therefore, we have |E|
(
r(n − 2) + 2|E|

n−1

)
=

rlm
(
r(l+m−2)+ 2rlm

n−1

)
= r2lm

(
l2+m2+4lm−3l−3m+2

l+m−1

)
. Therefore, r2lm(l+m) =

r2lm
(
l2+m2+4lm−3l−3m+2

l+m−1

)
, which gives l = 1. Hence the result follows. �

3 Potentially r-graphic sequences

Definition 15 Let S
(r)
r1,s1

, S
(r)
r2,s2

, . . . , S
(r)
rp,sp be r-split graphs, respectively with

r1 + s1, r2 + s2,. . ., rp + sp vertices. Let L =
∑p
i=1 ri and M =

∑p
i=1 si. Then
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the p-tuple r-split graph, denoted by S
(r)
L,M, is the graph

S
(r)
L,M = S

(r)
p∑

i=1

ri,
p∑

i=1

si

= S
(r)
r1,s1

∨ S
(r)
r2,s2

∨ . . .∨ S
(r)
rp,sp .

Clearly SrL,M has vertex set
⋃p
i=1 V(S

(r)
ri,si

) and the edge set consists of all edges

of S
(r)
r1,s1

, S
(r)
r2,s2

, . . . , S
(r)
rp,sp together with the edges joining each vertex of S

(r)
ri,si

with every vertex of S
(r)
rj,sj

by exactly r-edges for every i, j with i 6= j.

An r-graphic sequence π is said to be potentially S
(r)
L+M-graphic if there ex-

ists a realization of π containing S
(r)
L+M as a subgraph. If π has a realization G

containing S
(r)
L+M on the L +M vertices of highest degree in G, then π is said

to be potentially A
(r)
L+M-graphic.

Let n ≥ L +M and let π = (d1, . . . , dn) be a non-increasing sequence of
non-negative integers with dL ≥ r(L +M) − 1 and dL+M ≥ rL. We define
sequences π1, . . . , πL as follows. Construct the sequence

π1 = (d2 − r, . . . , dL − r, dL+1 − r, . . . , dL+M − r, d1L+M+1, . . . , d
1
n)

from π by reducing 1 from the largest term that have not been already reduced
r times, and then reordering the last n − L −M terms to be non-increasing.
For 2 ≤ i ≤ r, construct

πi = (di+1 − ir, . . . , dL − ir, dL+1 − ir, . . . , dL+M − ir, diL+M+1, . . . , d
i
n)

from

πi−1 =(di − (i− 1)r, . . . , dL − (i− 1)r, dL+1 − (i− 1)r, . . . ,

dL+M − (i− 1)r, di−1L+M+1, . . . , d
i−1
n )

by deleting di − (i − 1)r, reducing the first di − (i − 1)r remaining terms of
di−1 by one that have not been already reduced r times, and then reordering
the last n− L−M terms to be non-increasing.

We start with the following lemma.
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Lemma 16 If π = (d1, d2, . . . , dn) is the graphic sequence of S
(r)
L,M, then

π =

(( m∑
i=1

r(ri + si − 1)

)rj
,

( m∑
i=1

rri +

m∑
i=1, i6=j

rsi

)sj)
, for j = 1, 2, . . . ,m.

Proof. To prove the result we use induction on m.

For m = 1, the result is obviously true. For m = 2, we have S
(r)
2∑

i=1

ri,
2∑

i=1

si

.

Therefore for every i = 1, 2, . . . , r1 and i = 1, 2, 3, . . . = r2 and j =
1, 2, 3, . . . , s1 and j = 1, 2, 3, . . . , s2

di = di + r(r2 + s2) (1)

and

dj = r(r1 + r2 + s2), (2)

where di and dj are respectively the degree of vthi and vthj vertex in Sr1+r2,s1+s2
and di is the degree of ith vertex in Kr1 . Equations (1) and (2) hold for every
i, j. Thus the graphic sequence π2 of Sr1+r2, s1+s2 is

π2 =

((
r(r1 + s1 − 1) + r(r2 + s2

)r1
,

(
r(r1 + s1 − 1) + r(r2 + s2

)r2
,

(
r(r1 + r2 + s2)

)s1
,

(
r(r1 + r2 + s2)

)s2)

=

(( 2∑
i=1

r(ri + si − 1)

)rj
,

( m∑
i=1

rri +

m∑
i=1, i 6=j

rsi

)rj)
, for j = 1, 2.

This shows that the result is true for m = 2. Assume that the result holds for
m = k− 1, therefore for all j = 1, 2, · · · , k− 1,

πk−1 =

(( k−1∑
i=1

r(ri + si − 1)

)rj
,

( k−1∑
i=1

rri +

k−1∑
i=1, i 6=j

rsi

)rj)
, for j = 1, 2.

Now for m = k,

G = S
(r)
r1,s1 ∨ S

(r)
r2,s2 ∨ . . .∨ S

(r)
rk−1,sk−1

∨ S
(r)
rk,sk

= A∨ S
(r)
rk,sk , where A = S

(r)
r1,s1 ∨ S

(r)
r2,s2 ∨ . . .∨ S

(r)
rk−1,sk−1

.
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Since the result is proved for all m = k−1 and using the fact that the result is
proved for each pair and since the result is already proved for k = 2, it follows
by induction hypothesis that result holds for m = k also. That is,

π =

(( k∑
i=1

r(ri + si − 1)
)rj , ( k∑

i=1

rri +

k∑
i=1, i 6=j

rsi

)sj)
, for j = 1, 2, . . . , k

This proves the lemma. �

Lemma 17 A non-increasing integer sequence π = (d1, . . . , dn) is potentially

A
(r)
L,M-graphic if and only if it is potentially S

(r)
L,M-graphic.

Proof. We only need to prove that if π = (d1, . . . , dn) is potentially S
(r)
L,M-

graphic, then it is potentially A
(r)
L,M-graphic. We choose a realization G of

π with vertex set V(G) = {v1, . . . , vn} such that dG(vi) = di for 1 ≤ i ≤
n, the induced r-subgraph G[{v1, . . . , vL+M}] of {v1, . . . , vL+M} in G contains

S
(r)
L,M as its r-subgraph and |V(K

(r)
L ) ∩ {v1, . . . , vL}| is maximum. Denote H =

G[{v1, . . . , vL+M}]. If |V(K
(r)
L ) ∩ {v1, . . . , dL}| = L, that is, V(K

(r)
L ) = {v1, . . . , vL},

then π is potentially A
(r)
L,M-graphic. Assume that |V(K

(r)
L ) ∩ {v1, . . . , vL}| < L.

Then there exists vi ∈ {v1, . . . , vL} \ V(K
(r)
L ) and a vj ∈ V(K

(r)
L ) \ {v1, . . . , vL}.

Let A = NH(vj) \ ({vi} ∪ NH(vi)) and B = NG(vi) \ ({vj} ∪ NG(vj)). Since
dG(vi) ≥ dG(vj), we have |B| ≥ |A|. Let C be any subset of B such that
|C| = |A|. Now form a new realization G′ of π by a sequence of r-exchanges to
the r-edges of the star centralized at vj with end vertices in A with the non
r-edges of the star centralized at vj with end vertices in C, and by a sequence
of r-exchange the r-edges of the star centralized at vi with end vertices in C
with the non r-edges of the star centralized at vi with end vertices in A. It is

easy to see that G′ contains S
(r)
L,M on {v1, . . . vL+M} so that |V(K

(r)
L )∩{v1, . . . , vL}|

is larger than that of G, which contradicts to the choice of G. �

We use the Havel-Hakimi procedure to test whether or not an r-graphic

sequence π is potentially A
(r)
L,M-graphic.

Theorem 18 For r ≥ 1 and n ≥ 1, an r-graphic sequence π = (d1, . . . , dn) is

potentially A
(r)
L,M-graphic if and only if πL is r-graphic.

Proof. Assume that π is potentially A
(r)
L,M-graphic. Then π has a realization G

with the vertex set V(G) = {v1, . . . , vn} such that dG(vi) = di for (1 ≤ i ≤ n)
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and G contains S
(r)
L,M on the vertices v1, . . . , vL+M, where L +M ≤ n, so that

V(r)(KL) = {v1, . . . , vL} and V(K
(r)
M ) = {vL+1, . . . , vL+M}. By applying a sequence

of r-exchanges to G in order we will show that there is one such realization
G′ such that G′ \ v1 has degree sequence π1. If not, we may choose such a
realization H of r-graphic sequence π such that the number of vertices adjacent
to v1 in {vL+M+1, . . . , vd1+1} is maximum. Let vi ∈ {vL+M+1, . . . , vd1+1} and
assume that there is no edge between v1 and vi and let vj ∈ {vd1+2, . . . , vn}

and there are r edges between v1 and vj. We may assume that di > dj. Hence
there is a vertex vt, t 6= i, j such that there are r edges between vi and vt
and no edge between vj and vt. Clearly G =

(
H\ {v

(r)
1 vj, v

(r)
i vt}

)⋃
{v

(r)
1 vi, v

(r)
j vt}

(where v
(r)
i vj means that there are r edges between vi and vj) is a realization

of π such that dG(vi) = di for 1 ≤ i ≤ n, G contains S
(r)
L,M on v1, . . . , vL+M

with V(r)(KL) = {v1, . . . , vL} and V(K
(r)
M ) = {vL+1, . . . , vL+M} and G has the

number of vertices adjacent to v1 in {vL+M+1, . . . , vd1+1} larger than that of H.
This contradicts the choice of H. Repeating this procedure, we can see that

πi is potentially A
(r)
L−i-graphic successively for i = 2, . . . , L. In particular, πL is

r-graphic.
Conversely, suppose that πL is r-graphic and is realized by a graph GL

with a vertex set V(GL) = {vL+1, . . . , vn} such that dGL
(vi) = di for L + 1 ≤

i ≤ n. For i = L, L − 1 . . . , 1 form Gi−1 from Gi by adding a new vertex
vi that is adjacent to each of vi+1, . . . , vL+M with r-edges and also to the
vertices of Gi with degrees si−1L+M+1 − r, . . . , d

i−1
di+1

− r. Then for each i, Gi has

degrees given by πi and Gi contains S
(r)
L−i,M on L+M−i vertices vi+1, . . . , vL+M

whose degrees are di+1 − ir, . . . , dL+M − ir so that V(K
(r)
L−i) = {vi+1, . . . , vL}

and V(K
(r)
M ) = {vL+1, . . . , vL+M}. In particular, G0 has degrees given by π and

contains S
(r)
L,M on L+M vertices v1, . . . , vL+M whose degrees are d1, . . . , dL+M

so that V(K
(r)
L ) = {v1, . . . , vL} and V(K

(r)
M ) = {vL+1, . . . , vL+M}. Hence the result

follows. �

The following is a sufficient condition for an r-graphic sequence to be po-

tentially A
(r)
L,M-graphic.

Theorem 19 Let n ≥ L +M and let π = (d1, . . . , dn) be an r-graphic se-

quence. If dL+M ≥ 2rL+ rM− 2, then π is potentially A
(r)
L,M-graphic.

Proof. Let n ≥ L + M and let π = (d1, . . . , dn) be a non-increasing r-
graphic sequence with dL+M ≥ 2rL + rM − 2. By using the argument similar
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to Theorem 8, π is potentially K
(r)
L -graphic and hence by Lemma 17, A

(r)
L -

graphic. Therefore, we assume that G is a realization of π with a vertex set

V(G) = (v1, . . . , vn) such that dG(vi) = di, (1 ≤ i ≤ n) and G contains K
(r)
L

on (v1, . . . , vL), that is, V(K
(r)
L ) = {v1, . . . , vL} and

t = eG({v1, . . . , vr1 , . . . , vL}, {vL+1, . . . , vL+s1 , . . . , vL+M})

(that is, the number of edges between {v1, . . . , vL} and {vL+1, . . . , vL+M}) is

maximum. If t = rLM+rs1s2+sj
j−1∑
i=1

rsi, for j = 3, 4, . . . , p, then the cardinality

of the edge set of S
(r)
L,M is same as t and therefore G contains S

(r)
L,M on the vertices

v1, v2, . . . , vL+M with V(r)(KM) = {v1, v2, . . . , vL} and

V(K(r)
M) = {vL+1, vL+2, . . . , vL+s1 , . . . , vL+M}.

In other-words, π is potentially A
(r)
L,M-graphic. Assume that t < {rLM+rs1s2+

sj
j−1∑
i=1

rsi}, for j = 3, 4, . . . , p. Then there exists a vk ∈ {v1, v2, . . . , vsi} and

vm ∈ {vsi+1, vsi+2, . . . , vsi+sj}, (i 6= j) such that vrkvm /∈ E(G). Let

A = NG\{vsi+1,vsi+2,...,vsi+sj
}(vk) \NG\{v1,v2,...,vsi }(vm)

and

B = NG\{vsi+1,vsi+2,...,vsi+sj
}(vk) ∩NG\{v1,v2,...,vsi }(vm).

Then eG(x, y) = r for x ∈ NG\{v1,...,vL}(vm) and y ∈ NG\{v1,...,vL+M}(vk). Oth-

erwise, if eG(x, y) < r, then G′ = (G \ {v(r)y, v
(r)
m x}) ∪ {v

(r)
k vm, x

(r)y} is a real-

ization of π and contains S
(r)
L,M on v1, . . . , vL+M with V(K

(r)
L ) = {v1, . . . , vL} and

(K
(r)
M ) = {vL+1, . . . , vL+M} such that

eG′({v1, . . . , vL}, {vL+1, . . . , vL+M}) > t,

which contradicts the choice of G. Thus B is r-complete. We consider the fol-
lowing cases.

Let A = ∅. Then 2rL+ rM− 2 ≤ dk = dG(vk) < rL+ rM− 1+ r|B|, and so
|B| ≥ rL. Since each vertex in NG\v1,...,vL(vm) is adjacent to each vertex in B by
r edges and |NG\{v1,...,vL}(vm)| ≥ 2rL+ rM− 2 = rL+ rM− 1. It can be easily

seen that the r induced subgraph of NG\{v1,...,vL}(vm)∪ {vm} in G contains S
(r)
L,M
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as a subgraph. Thus π is potentially A
(r)
L,M- graphic.

Let A 6= ∅. Let a ∈ A. If there are x, y ∈ NG\{v1,...,vL}(vm) such that

eG(x, y) < r then G′ = (G \ {v
(r)
m x, v

(r)
m y, v

(r)
k a}) ∪ {v

(r)
k vm, a

(r)vm, x
(r)y} is a

realization of π and contains S
(r)
L,M on v1, . . . , vL+M with V(K

(r)
L ) = {v1, . . . , vL}

and V(K
(r)
M ) = {vL+1, . . . , vL+M} such that eG′({v1, . . . , vL}, {vL+1, . . . , vL+M}) > t

which contradicts the choice of G. Thus NG\{v1,...,vL}(vm) is r-complete. Since

|NG\{v1,...,vL}(vm)| ≥ rL+ rM− 1 and eG(vm, z) = r,

for any z ∈ NG\{v1,...,vL}(vm), it is easy to see that the induced r-subgraph of

NG\{v1,...,vL}(vm)∪{vm} in G is r-complete, and so contains S
(r)
L,M as a r-subgraph.

Thus π is potentially A
(r)
L,M-graphic. �

Theorem 20 If π = (d1, d2, . . . , dn) is an r-graphic sequence such that σ(π)

is at least (n2 − 3n+ 8)r, then π is potentially K
(r)
4 -graphic.

Proof. Let π = (d1, d2, . . . , dn) be an r-graphic sequence such that d1 ≥ d2 ≥
. . . ≥ dn ≥ 1 and σ(π) = (n2 − 3n+ 8)r. Suppose G is a graphical realization
of π and e(G) is the size of G. Then 2e(G) = σ(π) and 2e(Gc) = nb(n− 1) −
σ(π) = nr(n−1)−(n2−3n+6)r = r(2n−6), so that e(Gc) = r(n−3), where
Gc is the complement of the r-graph G. An extremal problem is r-graph G is
obtained by deleting r(n − 3) independent edges from the complete r-graph

K
(r)
n of order n. Hence the largest vertex number of independent sets in Gc is
3. This implies that the largest possible complete r-subgraph of G is of order
3. As 1 ≤ n − 3 ≤ 3. Hence there is no complete r-subgraph of order 4 in G.
Therefore, we have

σ(K
(r)
4 , n) ≥ (n2 − 3n+ 6)r+ 2r = (n2 − 3n+ 8)r

Now Suppose that π = (d1, d2, . . . , dn) is r-graphic sequence with d1 ≥ d2 ≥
. . . ≥ dn ≥ r and σ(π) ≥ (n2 − 3n + 8)r. Then every graphical realization
G of π is obtained by removing at most r(n − 4) edges from the r-complete

graph K
(r)
n . Hence the maximal complete subgraph of G has order at least

n− (n− 4) = 4. Thus G is potentially K
(r)
4 . In other words,

σ(K
(r)
4 , n) ≤ (n2 − 3n+ 8)r (3)

Combining (3) and (4), the result follows. �
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[4] P. Erdős, M. S. Jacobson, J. Lehel, Graphs realizing the same degree sequences
and their respective clique numbers, in: Graph Theory, Combinatorics and Ap-
plications, vol. 1, John Wiley and Sons, New York, 1991, 439–449. ⇒37

[5] D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs
with multiple edges, Canad. J. Math. 17 (1965) 166–177. ⇒36

[6] D. J. Kleitman, D. L. Wang, Algorithm for constructing graphs and digraphs
with given valencies and factors, Discrete Math. 6 (1973) 79–88. ⇒36

[7] J. S. Li, Z. X. Song, R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially
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Abstract. The numerical simulation allows to study the high energy
particle physics. It plays important of role in the reconstruction and an-
alyze of these experimental and theoretical researches. This requires a
computer background with a large capacity. Jet physics is an intensively
researched area, where the factorization process can be solved by algo-
rithmic solutions.

We studied parallelization of the kt cluster algorithms. This method
allows to know the development of particles due to the collision of high-
energy nucleus-nucleus.

The Alice offline library contains the required modules to simulate
the ALICE detector that is a dedicated Pb-Pb detector. Using this sim-
ulation we can generate input particles, that we can further analyzed by
clustering them, reconstructing their jet structure. The FastJet toolkit
is an efficient C++ implementation of the most widely used jet cluster-
ing algorithms, among them the kt clustering. Parallelizing the standard
non-optimized version of this algorithm utilizing the available CPU ar-
chitecture a 1.6 times faster runtime was achieved, paving the way to
drastic performance increase using many-core architectures.
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1 Introduction

We studied the structure of the jet in the high energy physics using the many-
core architecture of the modern CPUs. We consider the important concept of
the particle physics.

The parton model was introduced by Richard Feynman to analyse the high-
energy hadron collisions. Any hadron can be considered a composition of a
number of point-like constituents.

In the theoretical physics the Quantum Chromodynamics (QCD) is the
theory of strong interaction which describe the interaction between quark and
gluon [5]. The QCD analogue of electric charge is a property called color. The
phenomenon of color confinement, that no particle with colour charge which
can be observed on its own, was introduced. So the color neutral particles
are examined, then we can measure the bound states, hadrons, which are
composed of quark-antiquark pair, meson or three quarks, so called baryon
[6, 7].

Parton is useful for interpreting the cascades of radiation produced from
QCD processes and interactions in high-energy particle collisions.

Modern CPU architectures are capable of running multiple threads at the
same time, allowing the developers to utilize more resources at the same time
for the same application, increasing it’s performance. With the increase of
complexity and performance standard tools are including more tools to ease
the development for those architectures. The C++11 standard contains im-
portant tools for threading, like conditional variables and mutexes, that gives
more control over the parallelized algorithms. Using these tools and apply-
ing them in a reasonable way by taking into consideration the hardware and
operating system limitations a 1.6 times better performing kt clustering was
achieved without doing any additional optimizations on the code based on the
FastJet libraries solution.

2 Jet in high energy physics

In the experiment the conception of jet differs from the picture which was
presented by theoretical physics. We observe final state particles moving in
one direction, because the information about particle origin was lost during
hadronisation phase of collision. Therefore, when speaking about jets then we
speak about collimated sprays of particles (Figure 1).

Therefore one should have to map a set of particle to a set of jets by spe-
cial rules. These rules define a jet algorithm [8]. This method contains some
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parameters, which allow us to describe the behaviours more precisely. All to-
gether they determine the definition of the jet. We apply these consideration
to understand the structure of jet in the high energy experimental and the-
oretical physics. The results of theoretical QCD are built in the simulation,
recombination and analyses of the jet research.

2.1 Jet kinematics

We introduce some quantities which are important to know in the kt jet al-
gorithm. The interacting partons are not generally in the centre-of-mass of
colliding system, because the fraction of the hadron momentum is changing
from event to event which is specified by each partons. The jets can be intro-
duced by longitudinally boost-invariant variables because the centre-of-mass
system of the partons is boosted along the direction of the colliding hadrons
randomized. The mass, transverse momentum, azimutal angle and rapidity are
introduced by the next expressions:

mass: m =
√
E2 − p2x − p

2
y − p

2
z

transverse momentum: pT =
√
p2x + p

2
y

azimutal angle: Φ = arctan(py/px)

rapidity: y = arctan(px/E) =
1
2 ln E+pz

E−pz
In the high energy limit, when |p| >> m, the directly measured quantities

are the following
energy E or the transverse energy: ET sinΘ ∼= pT
the azimuth: Φ
the pseudo-rapidity: η = − ln[tan(Θ/2)],
where the polar angle is given by Θ = arctan(pT/pz).

3 Jet algorithm

The origin of the basic publication of the jet finding method is Sterman and
Weinberg [4] and there is huge literature which was published about the newer
version of these processes [16, 15, 3, 1]. These algorithms can be divided into
two major groups: cone algorithms and sequential recombination algorithms.

3.1 Cone algorithms

In the case of cone algorithm we study that particles which are situated inside
the conical angular regions, then the sum of the particle’s momentum concurs
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Figure 1: The structure of jet.
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with the cone axis. The QCD radiation and hadronisation don’t change the di-
rection of a parton’s energy flow. The stable cones are close to original partons
in the direction and energy. The discrepancy between these cone algorithms
are the strategy to find the stable cones and that process which is applied in
that cases where the same particle is found in multiple stable cones.

3.2 Sequential recombination algorithms

This type of the algorithm identifies the closest particles in a pair to calcu-
late the distance measure and recombine them. This process is repeat again,
until it reaches a stopping criterion. The distance measure depends on the
divergence of the perturbative QCD. The differences among the sequential
recombination algorithms are the selecting of the distance measure and the
stopping parameters.

3.2.1 The clustering algorithms

The kt algorithm uses the final state particles in a shower which are collinear, it
means that they have small transverse momentum between their constituent
particles [10]. All sequential clustering algorithms have similar method. We
define two distance variables.

The first of them is the one between two particles i and j, where dij =

min{pati, p
a
tj} ·

R2ij
R and a is an exponent which means the kind of the particular

clustering algorithm. The value Rij is determined by this expression R2ij =

(ηi − ηj)
2 + (Φi −Φj)

2 is a distance between the two particles i and j in the
(η − Φ) space and R is the radius parameter which specifies the final size of
the jet.

The second distance variable is diB = pati this means the distance between
the beam axis and the measured particle in the momentum space.

In the sequential clustering algorithms that process plays important role to
find the minimum of the entire set {dij, diB}. If dij is the minimum value of
the distance then particles i and j are unified into one particle (ij) and it is
calculated sum of four-vectors after which i and j are removed from the list of
particles. If diB is the minimum, then object i is becomed part of a final jet
and removed from the list of particles.

This process is repeated until there are particles in a jet, where the distance
between the axes Rij greater than R, this process is an inclusive clustering.
Otherwise the all amount of jets have been found, this is exclusive clustering.
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kt algorithm The a value corresponding to the kt algorithms is 2.
The first step of the method is creating a list of the distance in the momentum-

space and the distance from the beams. This algorithm involves a distance
value dij between all pairs of particles i and j

dij = dji = min(p
2
ti, p

2
t,j)
∆R2ij

R2
, (1)

where pti means the transverse momentum of particle i with respect to the
beam direction z and the expression ∆R2ij = (yi − yj)

2 + (Φi − Φj)
2, where

yi =
1
2 ln Ei+pzi

Ei−pzi
denotes the i’s rapidity and Φi constituted the azimuth. The

jet radius R is a parameter of the algorithm. This method contains a distance
measure between each of particles i and the beam:

diB = p2ti.

The first kind of this method was the exclusive variation of the kt algorithm
[13], where the consideration of smallest dij and diB were introduced.

If it is a dij, we can replace i and j together with a single object which has
a momentum pi+ pj. This object is a pseudojet, this is neither a particle, nor
a full jet.

If the smallest distance is a diB, then we take away i from the list of particles
and pseudojets than we add it to the beam jet. This method is repeated until
the smallest dij or diB reaches the threshold dcut. All particles and pseudojets
are processed.

In the case of the inclusive variation of the kt algorithm [14] the distances
dij and diB are the same as in the exclusive method.

The difference is between them when we determine the smallest value diB,
then the object i is removed from the list of particle and pseudojet set and it
is added to the list of final inclusive jets. There is no threshold dcut and the
clustering process is kept until particle or pseudojets remain.

Because the distance measures are the same in both of the inclusive and
exclusive algorithms, the clustering sequence is same in these processes.

We consider the longitudinally-invariant kt algorithm for hadron collisions
[13, 14]. It was the first jet algorithm to be implemented in FastJet [9].

Longitudinally invariant kt jet algorithm This jet method applies the
inclusive version [14]. The steps of algorithm are written as following:

1. For each pair of particles i, j determine the kt distance to use equation
(1). with ∆R2ij = (yi − yj)

2 + (Φi − Φj)
2, where pi, yi and Φi are transverse
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momentum (with respect to the beam direction), rapidity and azimuth of
particle i. R is a jet-radius parameter which is taken of order 1. For each
parton i we calculate the beam distance diB = p2ti.

2. We find the minimum dmin of all the dij, diB. If dmin is a dij merge
particles i and j into a single particle, then we sum their four-momenta. If it
is a diB then declare particle i which is a final jet and remove it from the list.

3. Repeat from step 1 until no particle are left.

The exclusive version of the longitudinally invariant kt jet algorithm [14] is
similar, except two cases:

i. a diB is the smallest value, that particle becomes part of the beam jet.
ii. The clustering is stopped when all dij and diB are larger than the value

dcut.
In the next section we study the parallelization of the cluster kt algorithm.

We apply the simulation of the CERN Alice experiment offline method.

4 FastJet clustering

To do the jet clustering on the detected points, the FastJet [9] package is used.
It is implemented in C++ and provides many different jet finding algorithms
and analysis tools. The user can select from the widely used sequential recom-
bination algorithms, that are implemented efficiently, while it also supports
plugins for other solutions. The initial motivation to use this toolkit is the
inclusion of it in the Alice Offline Framework, so after the simulation of the
detector, the further process of the resulting particles can generate the jet
structures.

4.1 AliRoot

AliRoot is the Off-line framework for simulation, reconstruction and analysis
of the ALICE experiment at CERN. The framework and all applications are
developed based on the ROOT system. Mostly it is based on Object Oriented
programming paradigm, but as it was developed since 1998 it has some legacy
code and other libraries, that were developed based on different principles.

The simulation part of the tool covers all processes of primary collisions and
it generates the newly created particles, follows through their transportation
in the detector, calculates the hits in each component. The result can be either
stored in so called summable digits or digits derived from the summable ones
and it can also create raw data.
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For the work presented in this paper the system’s TPC detected points were
used. The Time Projection Chamber (TPC) detector is the main tracking
component of ALICE. Particles passing through this detector ionizes the gas
molecules inside the TPC and these ionization points are registered. The TPC
detector consists of two cylindrical volumes sitting along the beam. These
volumes are split into 18 trapezoidal readout sectors. The detector measures
track positions on 159 rows [2].

4.2 Parallelizing the clustering

The goal is to not rewrite the structure of the toolkit, only include the nec-
essary parts to utilize the parallel processing capabilities of the CPU. The
used N2 clustering - which requires O(N2) operations - is considerably slower
than the more optimized versions of the tile based clustering methods, but
applying SIMD techniques can show rapidly how much we can gain on this
field from utilizing multiple cores [17]. Even if parallelism is used, the current
algorithm can lead to very inefficient solutions if not done right. It is necessary
to check each element N times, which naively may result in the generation of
new threads for every single particle. Even if the maximum number of threads
supported by the hardware is taken into account, the overhead of creating
just a few threads in each iteration results in significant bottlenecks. Thus, for
such applications a generally good idea is to implement a Thread Pool that will
create the maximum number of threads only once and keep them alive until
there is any future work to do. In this initial work parallelization is done on
the distance update of the newly created jets after each recombination step.
This requires the new jet to being compared with other existing jets and find
the nearest neighbor and to set it’s distance. In case a closer jet is found the
process becomes sequential on the the assignment of the new closest neighbor
(Subsection 3.2.1).

4.3 Implementation

An important part of the implementation is the presence of the Thread Pool.
The threading uses the elements of the C++11 standard, namely the pool
depends on conditional variables, mutexes and locks. It provides two queues
for storing the incoming callable functions and the input data. The required
argument of the function implemented for the parallel computation is a user
defined JetData typed parameter. This will contain the necessary values for
the computation of clusters. After the pool’s creation, the initialized threads
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are waiting on a conditional variable until some work is presented to the FIFO.
To push work into the queues and to retrieve them from there, a unique lock
is ensuring, that only one thread can reach the container at any given time.
After a job is pushed in or popped out by a worker, the lock gets released
and some other threads can reach the additional if any tasks. The workers
are notified through the conditional variable if they have any processing to
do. After pushing in the jobs, the pool will know how much (numberOfTasks)
work there is to do. This information is used for waiting until all the tasks
are finished. This is followed by an atomic counter done, that is increased
each time a task finishes it’s work. The main thread of the application will
wait on a conditional variable (exitCondition) of the pool, dedicated to signal
the conclusion of all the processing, that have been assigned before the last
waitKernel call. After all the work is done and the waiting is over the counters
are reset to 0. At the program’s end, all containers are destroyed and the
threads are joined.

The function responsible for the processing of the work needs to be able
to access the internal functions required for the jet clustering, so it was im-
plemented in the ClusterSequence class as an additional member function. It
requires a template parameter, that will tell what is the jet definition used by
FastJet, when the clustering itself was instantiated.

The clusterization is done through the ClusterSequence’s simple N2 cluster
function, as such, this is the only routine from FastJet, that is changed. These
modifications apply the currently available parallelism, creating the thread
pool, preparing the work for the threads and waiting for them to be finished
before moving onto the recombination step of the next jet. For the input data
of the workers an evenly chunked subset of the jets are used. Because the
jets are not changed, except the current one, it will not create additional race
condition among the threads. The presented implementation has one part only
where concurrency applies, when the new nearest neighbor is set. To prevent
issues from this a unique lock protects the assignment of the new element.

4.3.1 Algorithm

The algorithm of the thread pool’s enqueue is presented in Figure 2. The
input parameter fn is a function pointer to the implemented worker callable
InitJetBPool and data is a JetData type pointer to the input of the actual
task.

The function handling the wait for finishing all running tasks is shown in
Figure 3.

How the worker threads are retrieving their task and processing it is shown
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1: procedure Enqueue(fn, data)
2: lock queue mutex
3: tasks.push back(fn)
4: datas.push back(data)
5: ++numberOfTasks
6: unlock queue mutex
7: end procedure

Figure 2: The Enqueue function of the Thread Pool

1: procedure WaitAll
2: lock wait mutex
3: if done != numberOfTasks then
4: exitCondition.wait(wait mutex)
5: done← 0

6: numberOfTasks← 0

7: else
8: done← 0

9: numberOfTasks← 0

10: end if
11: end procedure

Figure 3: The WaitAll function of the Thread Pool

in Figure 4. As this is the most time consuming kernel, it incorporates the
shared memory to compute the triplets as fast as possible.

The routine responsible for the nearest neighbor check is described in Fig-
ure 5. The required parameters are the last jet (jetA), the new jet after jet-jet
recombination (jetB), the table containing the distance between two jets (diJ),
the pointer to the first element of the list containing the jets (head) and the
pointer to the last element (tail). The NN member of jetI is the nearest neigh-
bor of jetI, while NN dist is the distance between the two. The initial NN dist
is set to R2, where in this case R, the jet-radius parameter is set to 0.2. The
parallel version of InitJetB also two more parameters to know which interval
a specific thread needs to work on.
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1: procedure worker
2: lock queue mutex
3: task← tasks.front()
4: data← datas.front()
5: tasks.pop front()
6: datas.pop front()
7: unlock queue mutex
8: task(data)
9: ++done

10: if done == numberOfTasks then
11: exitCondition.notify one()
12: end if
13: end procedure

Figure 4: The worker retrieving a task with it’s argument and processing it

1: procedure InitJetB(jetA, jetB, diJ, head, tail)
2: for jetI in head..tail do
3: if jetI→NN == jetA or jetI→NN == jetB then
4: find nearest neighbor for jetI
5: end if
6: if jetB != NULL and jetI != jetB then
7: if distance(jetI, jetB) < jetI→NN dist then
8: jetI→NN dist = distance(jetI, jetB)
9: jetI→NN = jetB

10: Update diJ accordingly
11: end if
12: if distance(jetI, jetB) < jetB→NN dist then
13: jetB→NN dist = distance(jetI, jetB)
14: jetB→NN = jetI
15: end if
16: end if
17: if jetI→NN == tail then
18: jetI→NN = jetA
19: end if
20: end for
21: end procedure

Figure 5: Nearest neighbor calculation after a recombination step
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The part dispatching the parallel work is described in Figure 6. The required
parameter is maxThread that tells how many concurrent threads can run on
the given processor.

1: procedure DispatchToPool(maxThread)
2: JetData data[maxThread]
3: for i in 0..maxThread do
4: data[i].begin← beginning of the ith chunk of the jet list

5: data[i].end← end of the ith chunk of the jet list

6: data[i].jetA← jetA

7: data[i].jetB← jetB

8: data[i].diJ← diJ

9: data[i].head← head

10: data[i].tail← tail

11: ThreadPool.enqueue(InitJetBPool, data[i])
12: end for
13: ThreadPool.WaitAll()
14: end procedure

Figure 6: Dispatching work to the thread pool and synchronization at the end

4.4 Results

The complexity of the used algorithm (Subsection 4.3.1) is O(N2), which re-
quires a high amount of computation to be done. In such case the usage of
parallel computing can reduce the overall runtime. In this subsection the re-
sulting performance increase is discussed and how the implemented thread
pool helps keeping the thread creation overhead down. All tests were running
on the same environment detailed in Table 1. The performance evaluation and
comparison was done using the raw data from an event simulated with the Ali-
Root (Subsection 4.1) framework’s PbPbbench test application. The detected
points were directly sent to the modified FastJet routine. The generated event
used for the tests contained 140535 elements.

The system used for development and testing is described in Table 1.
While applying parallelism (Subsection 4.2) on a given problem can greatly

increase the performance, it also generates some overhead by creating ad-
ditional threads. Comparing a parallel implementation (Subsection 4.3) with
constant thread creation and another with the thread pool enabled, the thread-
ing performance of the two is far from each other. Also while using multiple
threads the operating system needs to do context switching to let a specific



Parallel kt jet clustering algorithm 61

work be done. Figure 7 shows the runtime of the two different approach.

CPU #Thread OS Compiler
Intel Core
i7 4710HQ

8
Windows
10 Pro

Visual
C++ 2013

Table 1: The test system

The result shows, that the naive threading based implementation took 271, 31
seconds to finish, while with the thread pool the runtime was only 207, 9 sec-
onds, leading to a 1.3 times better performance.

Figure 8 shows the runtimes of the parallel thread pool based implementa-
tion with the original sequential clustering.

Figure 7: Runtime using naive threading or a thread pool

The parallel implementation taking 207, 9 seconds is 1.67 times faster com-
pared to the original sequential solution’s 347, 18 second long run.

Figure 9 shows the full time of the recombination loop. Comparing the paral-
lel implementation with the performance of the optimized tile based clustering,
the difference is still big.

The runtime of the parallel O(N2) algorithm is 234, 52 seconds, the tile
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Figure 8: Runtime of the parallel O(N2) algorithm and the sequential cluster-
ing

Figure 9: Runtime of the parallel O(N2) algorithm and tile based clustering
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based clustering takes only 3, 58 seconds. This shows the optimized tile based
clustering of the FastJet toolkit is 65.5 times faster compared to the proposed
parallel method. As more work is still needs to be done on the parallelization
this number can be greatly reduced giving the possibility to the parallelized
algorithm to be even faster compared to the tile based solution.

5 Summary

Applying parallelization is the mean to utilize all the available processor re-
sources independent from the given algorithm. Even if the complexity is O(N2),
the performance increase is valuable. It was shown, by using a naive paralleliza-
tion approach the resulting algorithm might perform better in comparison to
it’s sequential implementation, but the generated overhead will neglect it’s
positive effect. Thus by applying a thread pool on the overall system and gen-
erating the worker threads only once at the start of the application the over-
all runtime can be decreased considerably. Comparing the proposed parallel
method to an already optimized, yet not multi-threaded, tile based cluster-
ing method also implemented in the FastJet toolkit (Section 4), the proposed
algorithm still shows much slower runtime because of it’s O(N2) nature.

6 Future work

To further increase the performance of the algorithm and even if not to make
an O(N2) clustering faster than a tile based one, additional techniques should
be explored for further optimizations and performance gain. Modern CPUs
have some form of vectorization support for multiple generations now that
can further speed up the evaluation of the different algorithms. This requires
the data to be restructured to conform the requirements of the vectorization.

By using many-core architectures, like GPUs, it is possible to achieve full
parallelization [11, 12], meaning to do all available computation in parallel. The
downfall of this approach might come from the increasing amount of required
memory. To fully parallelize an O(N2) algorithm, it will take N2 memory too,
which leads to impossible requirements fairly soon. It needs to be explored
where the balance is and where the limit should be drawn between runtime and
resource requirement to be able to run the application much faster, without
needing insane amount of memory.

Furthermore it is important to not just increase the performance of the
selected algorithm, but to apply the techniques and conclusions shown in this
paper on other already optimized routines, to see how the overall jet clustering
can benefit from parallelization.
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1 Introduction

In mathematics, a partial function is a binary relation from X to Y that does
not map every element of X to an element of Y. It is well-known that the
expression a/b is not defined if the divisor b is zero. But even the subtraction
x − y may have no defined value, it occurs if x and y are natural numbers
and x is less than y, and the expected value also should be a natural number.
More precisely, f : N × N → N (where f(x − y) = x − y) is a partial function,
because not every element of the set N×N is in the domain of f. The value of
a partial function is undefined when its argument is out of the domain of the
partial function.

In programming, an attempt to divide by zero is handled in various ways
depending on the programming environment. It either leads to a compile-time
error or produces a catchable runtime error if it happens at runtime. In gen-
eral, evaluation to an undefined value may lead to exception or undefined be-
haviour. Programmers encounter with expressions on a daily basis, when they
are constructing statements. The most commonly used form of the assignment
statement sets the value of an expression to a variable. Particularly, boolean
expressions are concerned when one writes loop condition or conditions of an
alternative command. The value of these expressions is not certainly defined
mathematically.

There are programs that have to work without any error. To be able to rea-
son about the correctness of such programs we need to have rigorous definition
of the semantics of the language of these programs. We also need methods
that allow us to verify the correctness of programs. When one provides the
semantics of a program construct, the functions that are used to build the
programming statement (loop condition for example) are assumed to be total
functions. The verification methods also consider program descriptions where
these functions are well-defined.

This paper focuses on partial functions in program descriptions. In par-
ticular, not well defined boolean expressions of various statements will be
considered. They will be took into account when providing the semantics of
statements. The semantics of program constructs are given in such a way that
they suit an existing relational programming model. This model defines the
basic concepts of programming, for example defines the program as a set of
its possible executions. A verification method will be presented as well, that
handles statements containing partial logical functions. Some rules of the ver-
ification method are well known, the new rules will be given along with their
proof.
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The rest of this paper is organized as follows. Section 2 reviews how partial
functions are handled in the literature. Section 3 introduces keywords that are
allowed to use to build programs we want to investigate. Next, the semantics
of these elementary programs and construct are provided. The mentioned re-
lational programming model is also presented here shortly. Then we provide
verification rule for each statement that can be formed from our keywords.
Section 4 presents a verification example and illustrates the use of the verifi-
cation rules given in the previous section. Section 5 summarizes our approach
and work.

2 Related work

Z. Manna in [10] presents a verification method for flowchart programs. A
flowchart program is a diagram constructed by edges and nodes, where the
nodes denote statements. y ← g(x, y) stands for an assignment statement
where g(x, y) is a total function mapping Dx ×Dy into Dy.

C. A. Hoare in [9] did not mention that the conditions of the alternative or
loop constructions were total logical functions but his examples showed this.

K. R. Apt and E.-R. Olderog use total logical functions namely Boolean
expressions in their work. For example, to ensure that the expressions x div y
and x mod y are total they additionally stipulate x div y = 0 and x mod y = x
for the special case of y = 0 [1].

D. Gries in his fundamental work on investigating program correctness states
that the guards β1, . . .βn have to be well-defined boolean expressions to make
sure that the alternative command avoids abortion. However, in his verification
rules, by assuming that all boolean expressions used in program descriptions
(i.e. loop conditions, guards of guarded commands) are well-defined, he elim-
inates this condition to make the verification rules simpler [8].

Williem-Paul de Roever et al. extend Floyd’s inductive assertion method for
proving sequential transition systems. In sequential transition systems edges
are labelled by commands in the form of c → f. In their work c has to be a
total boolean condition, but partial state transformations that might lead to
runtime error (for example c→ x := 1/y where c is the guard of the command
x := 1/y) are allowed to use. They present a method for proving that the
execution of a given program will not apply undefined operations [11].
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3 Theoretical background

3.1 Syntax

A parallel nondeterministic program (let S denote it) can be described with a
finite string of symbols including the keywords skip, abort, if, fi, while, do,
od, [, ], await, then, ta, parbegin, ‖ and parend, which is generated by the
following grammar:

S =skip | abort | v := f(v) | [S0] | await β then S0 ta |

S1;S2 | if π1 → S1 � . . . � πn → Sn fi | while π do S0 od |

parbegin S1 ‖ · · · ‖ Sn parend

where v denotes the current variables, π, π1, . . . , πn, β are partial logical
functions over the current state space, S0, S1, . . . , Sn are programs. The skip
is the empty program (doing nothing), abort is the wrong program (result-
ing fail), the v := f(v) is the nondeterministic assignment, the (S1;S2) is the
sequential compisition, the if π1 → S1 � . . . � πn → Sn fi is the nonde-
terministic conditional statement, the while π do S0 od is the loop, the [S0]
is the atomic region, the await β then S0 ta is the await-statement, and
parbegin S1 ‖ · · · ‖ Sn parend is the parallel composition.

3.2 Semantics

Before the semantics of the elementary programs and the program construc-
tions described above are shown the concept of the program must be clarified.

All concepts of our programming model as like as the concept of the program
are based on the state space. The concept of the state space has already been
interpreted in several ways. For many people, the state space is a model of a
von Neumann type of computer, others, e.g. Dijkstra [2], associate this notion
with the problem to be solved where a state is a compound of the values of the
main data types. So, the program is “outside” of the state space operating on
it. In our programming model, this second meaning is used. In [3], the notion
of the state space is a Cartesian product of the type value set of data types.
The only mistake of this obvious definition is that it imposes an order on the
components. In [5, 6], this mistake has been repaired.

A program is the complex of its executions. An execution is a sequence of
states. A program, by definition, can always begin, i.e. at least one execution
has to start from each state. The program is nondeterministic because several
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executions may start from the same state and nobody knows which execution
will happen. The first state (start state) of all executions and the last, if the
execution is finite, are in the so called base state space. Namely the state space
can be permanently changed; the inner states of the executions may have got
new components because the program can create and destroy new components
(variables) during its execution, so the state space changes dynamically. Two
constraints are given: all new components have to be destroyed at the ter-
mination, at the very latest, but the base variables should never be removed.
The current state always contains the components of the base state space. The
variables of the base state space are the base variables; the other variables are
the auxiliary variables of the program. Thus the base state space is always a
subspace of the current state space. The case when the execution of a program
goes wrong will be denoted by a finite sequence of states where the last state
is the fail.

A sequence can be given by the enumeration of its elements between the signs
”<” and ”>”: < e1, e2, · · · >. We will use the interconnection of two sequences
if the end of the first sequence is identical to the front of the second one.
More precisely, if α =< a1, . . . , an > and β =< b1, b2, · · · > are sequences and
an = b1 6= fail, then their interconnection is α⊗ β =< a1, . . . , an, b2, · · · >.

The formal definition of the program [6] requires some notions. Let H∗∗

denote the set of all finite and infinite sequences of the elements of set H. H∞
includes the infinite sequences; H∗ contains the finite ones. So, H∗∗ = H∗∪H∞
and H∗ ∩ H∞ = ∅. The length of the sequence α ∈ H∗∗ is |α|, the value of
which is ∞ if the sequence is infinite.

Definition 1 Let A be the so-called base state space and Ā be the set of all
states which belong to the state spaces B whose subspace is A, i.e. Ā =

⋃
A≤B

B.

Ā does not contain the state fail. The relation S ⊆ A × (Ā ∪ {fail})∗∗ is a
program over A, if

1. DS = A

2. ∀a ∈ A and ∀α ∈ S(a) : |α| ≥ 1 and α1 = ai

3. ∀α ∈ RS and ∀i(1 ≤ i < |α|) : αi 6= fail

4. ∀α ∈ RS : |α| <∞→ α|α| ∈ A ∪ {fail}

Now, we are going to give the semantics of the elementary programs and
program constructions so that they are treated as programs in the sense of
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the previous definition. Our aim is to define the set of state-sequences that are
mapped to an arbitrary state by a construction.

Definition 2 Let A be a state space and σ ∈ A be the current state.
skip(σ) ::= {< σ >}

Definition 3 Let A be a state space and σ ∈ A be the current state.
abort(σ) ::= {< σ, fail >}

Definition 4 Let A be a state space and f ⊆ A× A be a relation and σ ∈ A
be the current state.

(v := f(v))(σ) ::=

{
{< σ, σ ′ >| σ ′ ∈ f(σ)} if σ ∈ Df
{< σ, fail >} if σ /∈ Df

Definition 5 Let A be the common base state space of the program S1 and
S2. Let σ ∈ A be the current state.

(S1;S2)(σ) ::= {α | α ∈ S1(σ) ∩A
∞
} ∪

{α | α ∈ S1(σ) and | α |<∞ and α|α| = fail} ∪
{α⊗ β | α ∈ S1(σ) ∩A

∗
and β ∈ S2(α|α|)}

Definition 6 Let A be the common base state space of the program S1 . . . Sn
and the conditions π1 . . . πn. Let σ ∈ A be the current state.

(if π1 → S1 � . . .� πn → Sn fi)(σ) ::= ω(σ) ∪
n⋃
i=1

σ∈Dπi∧πi(σ)

Si(σ)

where ω(σ) =

{
{< σ, fail >} if ∃i ∈ [1..n] : σ /∈ Dπi

∨ ∀i ∈ [1..n] : σ ∈ Dπi
∧ ¬πi(σ)

∅ otherwise

Definition 7 Let A be the common base state space of the program S0 and
the condition π. Let σ ∈ A be the current state.

(while π do S0 od)(σ) ::=


(S0;while π do S0 od)(σ) if σ ∈ Dπ ∧ π(σ)
{< σ >} if σ ∈ Dπ ∧ ¬π(σ)

{< σ, fail >} if σ /∈ Dπ
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Definition 8 Let A be a state space and f ⊆ A× A be a relation and σ ∈ A
be the current state.
[S](σ) ::= S(σ)

Definition 9 Let A be the common base state space of the program S0 and
the condition β. Let σ ∈ A be the current state.

(await β then S0 ta)(σ) ::=


abort(σ) if σ /∈ Dβ
[if β then S0 fi ](σ) if σ ∈ Dβ ∧ β(σ)

(skip;await β then S0 ta)(σ) if σ ∈ Dβ ∧ ¬β(σ)

Before the definition of the parallel composition the concept of the “unin-
terrupted” must be intoduced. Let S be a program and σ be an arbitrary state
of its base state space. The execution S(σ) is uninterrupted if the program S

is the skip, abort, an assignment statement, an atomic region [P] or an await
statement await β then S0 ta where σ /∈ Dβ or β(σ) is true.

We must remark that in case of S(σ) is not uniterrupted (where σ is an
arbitrary state and S is a program), then there is a finite set H of program
pairs (u, T) so that u(σ) is uninterrupted and S(σ) =

⋃
(u,T)∈H

(u; T)(σ). This u is

named as the first statement of S and T is the remainder part of S relative to
the state σ.

Definition 10 Let A be the common base state space of the programs S1 . . . Sn
and σ ∈ A be the current state.

(parbegin S1 ‖ · · · ‖ Si ‖ · · · ‖ Sn parend)(σ) ::=
n⋃
i=1

Bi(σ)

where

Bi(σ) =



(Si;parbegin S1 ‖ · · · ‖ Si−1 ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is uninterrupted⋃
(u,T)∈H
(u;parbegin S1 ‖ · · · ‖ Si−1 ‖ T ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is not uninterrupted and Si(σ) =
⋃

(u,T)∈H
(u; T)(σ)

Let S be a program, σ be an arbitrary state of its base state space and the
execution S(σ) is not uniterrupted. A finite set H of program pairs (u, T) so
that u(σ) is uninterrupted and S(σ) =

⋃
(u,T)∈H

(u; T)(σ) can be given as follows:
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• If S = (S1;S2) and S1(σ) is uninterrupted, then S(σ) = (S1;S2)(σ).
If S = (S1;S2) where S1(σ) is not uninterrupted and S1(σ) =

⋃
(u,T)∈H

(u; T)(σ),

then S(σ) =
⋃

(u,T)∈H
(u; (T ;S2))(σ).

• If S = if π1 → S1 � . . .� πn → Sn fi and all of its conditions are defined
and some of them are true in σ (∀i ∈ [1..n] : σ ∈ Dπi ∧ ∃i ∈ [1..n] : σ ∈
πi(σ)), then

S(σ) =
n⋃
i=1

σ∈Dπi∧πi(σ)

(skip;Si)(σ)

• If S = while π do S0 od and σ ∈ Dπ ∧ ¬π(σ),
then S(σ) = (skip; (S0;while π do S0 od))(σ).

• If S = await β then S0 ta and σ ∈ Dβ ∧ ¬β(σ),
then S(σ) = (skip;await β then S0 ta))(σ).

• If S = parbegin S1 ‖ · · · ‖ Si ‖ · · · ‖ Sn parend, then S(σ) =
n⋃
i=1

Bi(σ)

where

Bi(σ) =



(Si;parbegin S1 ‖ · · · ‖ Si−1 ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is uninterrupted⋃
(uij

,Tij)∈Hi

(uij ;parbegin S1 ‖ · · · ‖ Si−1 ‖ T ‖ Si+1 ‖ · · · ‖ Sn parend)(σ)

if Si(σ) is not uninterrupted and Si(σ) =
⋃

(uij
,Tij)∈Hi

(uij ; Tij)(σ)

3.3 Verification

Informally, a program is correct if it satisfies the intended input/output rela-
tion. Program correctness is expressed by so-called correctness formulas. These
are statements of the form

{{Q}}S{{R}}

where S is a program and Q and R are assertions. The assertion Q is the
precondition of the correctness formula and R is the postcondition. The pre-
condition describes the set of initial states in which the program S is started
and the postcondition describes the set of desirable final states.
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More precisely: a correctness formula is true if every excecution of S that
starts in a state satisfying Q is finite (it terminates) and its final state satisfies
R. (This is the concept of the total correctness. The partial correctness is
omitted in this paper.)

Reasoning about correctness formulas in terms of semantics is not very con-
venient. Hoare has introduced a proof system allowing us to prove partial
correctness of deterministic programs in a syntax-directed manner, by induc-
tion on the program syntax [9]. Dijkstra, Gries and Owicki have developed this
system for nondeterministic and parallel programs [2, 8, 7]. Now this system
is going to be extended.

The first six rules are well-known, they are only shown for the sake of com-
pleteness without their proofs.

Theorem 11 Let Q and R be two assertions.

Q =⇒ R

{{Q}} skip {{R}}

Theorem 12 Let Q and R be two assertions, v := f(v) be an assignment.

Q =⇒ v ∈ Df ∧ ∀e ∈ f(v) : Rv←e
{{Q}} v := f(v) {{R}}

The Rv←e means that the components of v must be substituted for the
corresponding components of e. In that case when the relation f ⊆ A × A of
the assingment is a total function, i.e., f is a (deterministic) function mapping
from A to A and Df = A, the rule of assigment can be written in the following
form.

Q =⇒ Rv←f(v)
{{Q}} v := f(v) {{R}}

Theorem 13 Let Q and R be two assertions, S be a program.

{{Q}} S {{R}}

{{Q}} [S] {{R}}

Theorem 14 Let Q and R be two assertions, S1 and S2 be two programs.

∃Q ′ : A→ L
{{Q}} S1 {{Q

′}}

{{Q ′}} S2 {{R}}

{{Q}} (S1;S2) {{R}}
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Theorem 15 Let Q and R be two assertions, and S∗ stand for the program S

annotated with assertions such as preconditions of the assignments or invari-
ants of the loops.

{{Q}} S∗ {{R}}

{{Q}} S {{R}}

The next three rules take into consideration the cases when some logical
functions of the construction is not well-defined. These rules are the extensions
of the well-known versions that use well-defined logical functions. An assertion
P will be interpreted as the set of states that satisfy P many times in the
following rules. From its context it can be decided which interpretation holds.
For example, Q and R are assertions in the expression Q =⇒ R but they are
sets in Q ⊆ R.

Theorem 16 Let Q and R be two assertions, and S1, . . . Sn be programs and
π1, . . . πn be conditions.

Q =⇒ π1 ∨ · · ·∨ πn
Q ⊆ Dπ1 ∩ · · · ∩ Dπn

∀i ∈ {1, . . . , n} : {{Q∧ πi}} Si {{R}}

{{Q}} if π1 → S1 � . . .� πn → Sn fi {{R}}

Proof. We must show that the executions of the conditional statement starting
from Q finish at R. Let q be an arbitrary state of Q. Since Q ⊆ Dπ1 ∩· · ·∩Dπn
and Q =⇒ π1 ∨ · · · ∨ πn, according to the definition each execution of
the conditional statement starting from q belongs to the executions of the
component Si where its condition πi is satisfied by q.

These executions terminate in a state satisfying R because ∀i ∈ {1, . . . , n} :
{{Q∧ πi}}Si{{R}} thus {{Q}} if π1 → S1 � . . .� πn → Sn fi {{R}} holds. �

Theorem 17 Let Q and R be two assertions, and S0 be a program and π be
a condition.

∃I : A→ L and ∃t : A→ Z
Q =⇒ I

I ⊆ Dπ
I∧ ¬π =⇒ R

I∧ π =⇒ t ≥ 0
{{I∧ π}} S0 {{I}}

∀c0 ∈ Z : {{I∧ π∧ t = c0}} S0 {{t < c0}}

{{Q}} while π do S0 od {{R}}
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Proof. We need to prove that the executions of the loop starting from Q are
finite and they finish at R. Let q be an arbitrary state of Q. Since Q =⇒ I

and I ⊆ Dπ thus q ∈ Dπ.
The execution starting from q can be splitted into the sections of the exe-

cutions generated by the body S0. Each section is started at a state satisfying
I ∧ π and terminates at a state satisfying I (see the cond. {{I ∧ π}}S0{{I}}). If
the total execution is finite, its last section finishes at a state satisfying ¬π or
the state q own satisfies ¬π if the loop stops at once. It means that each finite
execution strating from q finishes at a state of R since I∧ ¬π =⇒ R.

The proof will be complete if we show that there is no infinite execution
from q. If there would be an infinite execution, it should consist of infinite
sections. Let us consider the infinite sequence of integers that is mapped from
the beginning states of the sections by the function t. Because of the criterion
∀c0 ∈ Z : {{I ∧ π ∧ t = c0}} S0 {{t < c0}} this sequence should be strictly
monotone decreasing thus it should contain negative numbers. However all
numbers must be nonnegative because of the criterion I∧ π =⇒ t ≥ 0. This
is a contradiction. �

Theorem 18 Let Q and R be two assertions, and S0 be a program and β be
a condition.

Q ⊆ Dβ
{{Q∧ β}} S0 {{R}}

{{Q}} await β then S0 ta {{R}}

Proof. It is enough to show that the executions of the conditional statement
starting from Q finish at R. Let q be an arbitrary state of Q. If q ∈ Dβ and q
satisfies β, the executions of the await-statement starting from q are identical
to the executions of the atomic region S0 starting from q. These executions
finish at a state in R because of {{Q∧ β}} S0 {{R}}. �

The last rule is about the parallel composition.

Theorem 19 Let Q, Q1, . . . Qn and R, R1, . . . Rn be assertions, S1, . . . Sn
be programs, and S∗1, . . . S

∗
n be the annotations of the corresponded programs.

Q =⇒ Q1 ∧ . . . ∧ Qn

∀i ∈ {1, . . . , n} : {{Qi}}S
∗
i {{Ri}}

and they are interference free

R1 ∧ . . . ∧ Rn =⇒ R

{{Q}} parbegin S1 ‖ · · · ‖ Sn parend {{R}}
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where standard proof outlines {{Qi}}S
∗
i {{Ri}}, i ∈ {1, . . . , n}, are called interfer-

ence free if no normal assignment or atomic region u of a component program
Si interferes with the proof outline {{Qj}}S

∗
j {{Rj}} of another component pro-

gram Sj where i 6= j. We say that u does not interfere with {{Q}}S∗{{R}} if the
following conditions are satisfied:

1. for all assertions r in {{Q}}S∗{{R}} the formula {{r∧ pre(u)}}u{{r}} holds,
where pre(u) is the precondition of u in the annotation S∗,

2. for all termination function t : Ā → Z in {{Q}}S∗{{R}} where A is the
base state space of the parallel composition the formula {{pre(u) ∧ t =
c0}} u {{t ≤ c0}} holds, where c0 is an arbitrary integer.

4 Case study

Consider the following problem: given an array x of n integer numbers and an
integer number k. Count the elements of x that are divisors of k.
Specification of the problem can be given in the following way:
A = (x : Zn, k : Z, count : N)
Pre = (x = x ′)

Post = (Pre∧ count =
n∑
j=1

χ(x[j] | k))

where χ : L→ {0, 1} and χ(true) = 1 and χ(false) = 0

Let S denote the following program:

i, count := 1, 0
while i ≤ n do

if
x[i] | k→ count := count+ 1 �
x[i] - k→ skip

fi ;
i := i+1

od

LetQ ′ denote the intermediate assertion of the sequence S, between the initial-
isation and the loop,Q ′′ the intermediate assertion that holds before executing
the assignment i := i + 1, Inv the invariant and t the variant function of the
loop.
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Now we shall to prove that {{Pre}} S {{Post}} holds. Since S is a sequence,
due to Theorem 14. it is sufficient to prove that

1. {{Pre}} i, count := 1, 0 {{Q ′}} and

2. {{Q ′}} DO {{Post}}, where DO denotes the loop:
while i ≤ n do if x[i] | k→ count := count+ 1 � x[i] - k→ skip fi;
i:=i+1 od
and Q ′ = (Pre∧ count = 0∧ i = 1) is given.

Let us prove the two conditions:

1. {{Pre}} i, count := 1, 0 {{Q ′}}
By replacing i with 1 and count with 0 in Q ′ we obtain (Pre ∧ 0 =
0 ∧ 1 = 1), that is Pre. Obviously Pre =⇒ Pre holds. We proved
that Pre =⇒ Q ′i←1,count←0 holds. Now, by the remark of Theorem 12.
{{Pre}} i, count := 1, 0 {{Q ′}} is deduced.

2. {{Q ′}} DO {{Post}}

Instead of proving this verification condition, due to Theorem 17. it is
sufficient to prove that

(a) Q ′ =⇒ Inv and

(b) Inv ⊆ Di≤n and

(c) Inv∧ ¬(i ≤ n) =⇒ Post and

(d) Inv∧ i ≤ n =⇒ n− i ≥ 0 and

(e) ∀c0 ∈ Z : {{Inv∧ i ≤ n∧ n− i = c0}} S0 {{Inv∧ n− i < c0}}

where S0 denotes the loop body if x[i] | k → count := count + 1�
x[i] - k→ skip fi; i:=i+1.
and the loop invariant Inv and the variant function t are given as follows:

Inv = (Pre∧ i ∈ [1..n+ 1]∧ count =
i−1∑
j=1

χ(x[j] | k))

t = n− i
Let us prove the conditions separately:

(a) Q ′ =⇒ Inv

We have to prove that Q ′ implies

i. Pre
This holds since Q ′ contains Pre.
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ii. i ∈ [1..n+ 1]
Since i = 1, i is an element of the not empty set [1..n+ 1]. The
interval [1..n+ 1] is not empty, because n, that is the length of
the array x, is zero or a positive integer number.

iii. count =
i−1∑
j=1

χ(x[j] | k)

Due to condition Q ′, count = 0 and i = 1. Thus the sum is
empty and its value is also 0.

(b) Inv ⊆ Di≤n
Since i ≤ n is a well-defined logical function, its domain contains
all states of the statespace, including those that satisfy Inv.

(c) Inv∧ ¬(i ≤ n) =⇒ Post

i. Pre
The invariant contains the precondition, therefore Inv implies
Pre.

ii. count =
n∑
j=1

χ(x[j] | k)

Since i ∈ [1..n+ 1] and ¬(i ≤ n), therefore we get i = n+ 1.

This, together with count =
i−1∑
j=1

χ(j | k)) we know from Inv,

yields the desired condition.

(d) Inv∧ i ≤ n =⇒ n− i ≥ 0
This holds because due to the loop condition i ≤ n is true.

(e) ∀c0 ∈ Z : {{Inv∧ i ≤ n∧ n− i = c0}} S0 {{Inv∧ n− i < c0}}
Let c0 be an arbitrary integer number. Since the loop body S0 is a
sequence, we use Theorem 14. with Inv∧ i ≤ n∧ n − i = c0 as Q
and with Inv∧n− i < c0 as R. It is sufficient to prove the following
two conditions:

i. {{Inv∧ i ≤ n∧ n− i = c0}} IF {{Q
′′}} and

ii. {{Q ′′}} i := i+ 1 {{P ∧ n− i < c0}}

where IF denotes the conditional statement if x[i] | k → count :=
count+ 1� x[i] - k→ skip fi
and the intermediate assertion of the loop body is Q ′′ is given:
Q ′′ = Invi←i+1 ∧ n− i = c0
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i. {{Inv∧ i ≤ n∧ n− i = c0}} IF {{Q
′′}}

Due to Theorem 16., the following conditions are sufficient to
prove:

A. Inv∧ i ≤ n∧ n− i = c0 =⇒ (x[i] | k∨ x[i] - k) and

B. Inv∧ i ≤ n∧ n− i = c0 ⊆ Dx[i]|k ∩ Dx[i]-k and

C. {{Inv∧ i ≤ n∧n− i = c0∧ x[i] | k∧n− i = c0}} count :=
count+ 1 {{Q ′′}} and

D. {{Inv∧i ≤ n∧n−i = c0∧x[i] - k∧n−i = c0}} skip {{Q ′′}}

Let us prove the conditions separately:

A. Inv∧ i ≤ n∧ n− i = c0 =⇒ (x[i] | k∨ x[i] - k)
For each state of the statespace for which Inv ∧ i ≤ n ∧

n− i = c0 holds, either x[i] is a divisor of k or x[i] is not a
divisor of k.

B. Inv∧ i ≤ n∧ n− i = c0 ⊆ Dx[i]|k ∩ Dx[i]-k
In order to ensure that x[i] | k and x[i] - k are well-defined
functions, we have to take into account not only that the
divisibility x[i] | k can be answered only if x[i] is not zero,
but the index i has to be inside the bounds of the array x.
More precisely, we want to prove that
Inv ∧ i ≤ n ∧ n − i = c0 =⇒ i ∈ [1..n] ∧ x[i] 6= 0 ∧ i ∈
[1..n]∧ x[i] 6= 0.
Although i ∈ [1..n+ 1] (due to the invariant) and the loop
condition i ≤ n together allow us to deduce that i ∈ [1..n]
holds, we cannot guarantee that each state of the statespace
for which Inv∧ i ≤ n∧n− i = c0 holds, x[i] is not 0. The
reason is, that there is no assumption for the elements of
x, except that they are integer numbers. The case when
x[i] = 0, is not excluded by any condition we know and are
allowed to use. If x[i] equals 0, the expressions x[i] | k and
x[i] - k have no defined value. The current condition cannot
be proven. We provide the remaining part of the proof for
the sake of completeness.

C. {{Inv∧ i ≤ n∧n− i = c0∧ x[i] | k∧n− i = c0}} count :=
count+ 1 {{Q ′′}}
Let us recall that Q ′′ is (Invi←i+1 ∧ n− i = c0).
Q ′′count←count+1 = (Pre∧ i+ 1 ∈ [1..n+ 1]∧ count+ 1 =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] | k)). By Theorem 12. it is sufficient
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to prove that
(Inv ∧ i ≤ n ∧ n − i = c0 ∧ x[i] | k ∧ n − i = c0) =⇒
Q ′′count←count+1.
• Pre
Pre in included in Inv.

• i+ 1 ∈ [1..n+ 1]
Due to the invariant i ∈ [1..n+ 1] holds. This, combined
with the loop condition i ≤ n implies i + 1 ∈ [1..n + 1].
i = 1 and i ≤ n.

• count+ 1 =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] | k))

By the loop invariant Inv, count =
i−1∑
j=1

χ(x[j] | k)). Since

in this case x[i] is a divisor of k, χ(x[i] | k) = 1, we added
1 to both sides of the previous equation.

D. {{Inv∧i ≤ n∧n−i = c0∧x[i] - k∧n−i = c0}} skip {{Q ′′}}
Let us recall that Q ′′ is (Invi←i+1 ∧ n − i = c0) that is

(Pre∧ i+ 1 ∈ [1..n+ 1]∧ count =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] |

k) ∧ n − i = c0). By Theorem 11. it is sufficient to prove
that
(Inv∧ i ≤ n∧ n− i = c0 ∧ x[i] - k∧ n− i = c0) =⇒ Q ′′.

• Pre
Pre in included in Inv.

• i+ 1 ∈ [1..n+ 1]
We prove this in the same way as we did in the previous
case.

• count =
i−1∑
j=1

χ(x[j] | k)) + χ(x[i] | k))

By the loop invariant Inv, count =
i−1∑
j=1

χ(x[j] | k)). Since

in this case x[j] is not a divisor of k, χ(x[i] | k) evaluates
to zero. The desired condition holds because both sides

of the equation count =
i−1∑
j=1

χ(x[j] | k)) in Inv remained

the same.

• n− i = c0
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It is obviously true, since it is on the left side.

ii. {{Q ′′}} i := i+ 1 {{Inv∧ n− i < c0}}
Q ′′ = (Invi←i+1∧n− i = c0. It is obvious that (Invi←i+1∧n−
i = c0) =⇒ (Inv∧n− i < c0)

i←i+1, therefore by Theorem 12
we get the expected correctness formula.

To prove the correctness formula {{Q}} S {{R}}, all the verification conditions
generated by the verification rules have to be satisfied. Let us remember that
the following condition was not proven:
Inv∧ i ≤ n∧ n− i = c0 ⊆ Dx[i]|k ∩ Dx[i]-k
We could not guarantee that both of the logical functions x[i] | k and x[i] - k
are well-defined functions. Evaluating these functions of the program might
lead to abortion. The rest of the conditions were unnecessary to prove, their
proof was given for the sake of completeness.

5 Summarization

The main idea behind this work is to take into account abortion caused by
partial functions in programs and extend verification rules to be able to ensure
that such programs are total correct. To reason about correctness, we provided
the formal definition of the semantics of programs under our investigation. One
of the contributions of this paper is, that the semantics of program constructs
are defined in such a way that they suit an existing relational model of pro-
gramming. This relational model defines the program as a set of its possible
executions and also provides definition for other important programming no-
tions like problem and solution. Then, we provide a verification rule for each
class of statements. The first six rules are well-known. Three rules are new,
they are presented along with their proofs. The use of the rules is demonstrated
by means of a verification case study.
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1 Introduction

Access to the research literature is essential to the successful work of re-
searchers and the education of the general public [1]. Scientists and the general
public rely on a wide range of channels to access the research literature [2]:
printed issues of journals, interlibrary loans, publishers’ online platforms such
as Elsevier ScienceDirect, preprint repositories such as ArXiv, institutional
and authors’ web pages. Many now propose free access to all scientific papers
to everybody, including the European Union where consensus of all members’
ministers of science, innovation, trade and industry was made in May 2016
that all scientific papers founded by the EU should be freely available by 2020
[3]. People failing to retrieve articles through these channels use article re-
quests from authors by e-mail or using social media such as Academia.edu,
Mendeley and ResearchGate. Recently, some online repositories offer most of
the scientific papers for free. One of them is Sci-Hub. Sci-Hub website cur-
rently hosts more than 47 million pirated research papers and has millions of
visitors per month. Online piracy represents a copyright infringement whereby
copyright material (scientific articles in this case) is reproduced or distributed
without appropriate permission [4]. The Sci-Hub founder Alexandra Elbakyan
from Kazakhstan claims that the main aim of the Sci-Hub project is to cir-
cumvent the copyright restrictions to speed up the development of science,
especially in developing countries where researchers do not have institutional
access to publishers’ paywalls. Of course, publishers have a different opinion,
e.g. Elsevier sued Sci-Hub and its founder, and frequently requested its web
domains to be put down. Publishers claim that journals have costs, even if they
do not pay researchers - authors and reviewers, e.g. editors (and sometimes
copy editors, proofreaders, illustrators) are mostly paid professionals, digital
publishing is nowadays expensive, and article usage information is lost when
using Sci-Hub and/or similar websites [5]. Sci-Hub website is controversial,
but many researchers from all parts of the world (even from countries and
institutions that have legal access to research papers) are using its services
[6]. ”Over the 6 months leading up to March, Sci-Hub served up 28 million
documents” [6]. The six-month log data (September 2015-February 2016) from
Sci-Hub website are now publicly available at [7].

Bohannon [6] presented an aggregate view that relies on all downloads and
for all fields of study, but his findings might be hiding interesting patterns
within computer science, and this is still gap in the current literature. In this
paper, the mentioned data was analysed in more detail and with computer
science papers in the focus. The main research questions are: Who are Sci-
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Hub users that download computer science research papers and where are
they from? What computer science research papers did the mentioned users
download? The results of this research can be used to identify the most relevant
scientific repositories, journals, and conference proceedings for the computer
science field, and which of the sources is more inaccessible to researchers.

This paper proceeds as follows. First, in Section 2, the related work is listed.
The next section presents the used research methodology. The results are
shown in Section 4. The conclusions are provided in the final section.

2 Related work

Bohannon [6] presented the statistics of the Sci-Hub usage based on exten-
sive server log data [7] supplied by the Sci-Hub creator, Alexandra Elbakyan.
To protect the privacy of Sci-Hub users, their geographical locations were
aggregated to the nearest town using Google Maps, so IP addresses are not
contained in the publicly released data set [7]. Bohannon’s first conclusion is
that Sci-Hub users are not limited to the developing world, e.g. a quarter of
the Sci-Hub requests came from OECD members that should have the best
journal access.

Parkhill [8] loaded the top 100 downloads from the Sci-Hub data set [7]
into tool PlumX. Most of the downloaded papers are from 2015, so Sci-Hub
users were downloading the most recently published papers. Physical sciences
and engineering, together with life sciences, garnered most of the downloads.
Babutsidze [9] examined the data from illegal downloads of economic content
from Sci-Hub, based on the log data from [7]. He concentrated on downloads of
the top five economics journals: American Economic Review, Quarterly Jour-
nal of Economics, Journal of Political Economy, Econometrica and Review of
Economic Studies. Babutsidze [9] concluded that there is a very small num-
ber of downloads of economics papers from Sci-Hub, most of the downloads
are from under-developed countries, and open access economics papers were
downloaded from Sci-Hub because of convenience.

Cabanac [1] reveals that 36% of all digital object identifier (DOI) articles
are available for free at Library Genesis platform (LibGen). For the three
major publishers (Elsevier, Springer and Wiley) the percentage is even higher
(68%). As of January 2014, LibGen hosted and distributed 25 million digital
documents, mainly for educational purposes. Users crowdsource articles to
LibGen directly or indirectly through services such as Reddit Scholar and Sci-
Hub. Cabanac [1] also claims that people crowdsource articles through various
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other channels such as Reddit, Sci-Hub, #icanhazpdf hashtag on Twitter,
personal websites and text-sharing platforms.

Swab and Romme [10] analysed the use of #icanhazpdf hashtag as a means
of obtaining health science literature. They have used RowFeeder software to
monitor #icanhazpdf requests between 1 February and 30 April 2015, and
they concluded that there were 302 requests for health sciences literature in
this period. This number accounts for a relatively small proportion of paper
sharing compared with other online platforms.

Gardner and Gardner [11] surveyed users of Twitter, Reddit Scholar and
Facebook about crowdsourced research, their demographic information, fre-
quency of use and motivations. They concluded that primary platforms used
to organize crowdsourcing of research articles are Twitter, Facebook and Red-
dit, and the primary websites to host the content were AvaxHome, LibGen
and Sci-Hub. Elsevier, Springer and Wiley account for 83% of all LibGen’s
content. The majority of respondents claim to obtain articles for utilitarian
reasons, and crowdsourcing is their preferred alternative to using interlibrary
loans.

Timus and Bautsidze [4] examined the Sci-Hub downloads data to uncover
patterns in piracy in the European Studies research. They relied on the infor-
mation provided by the University Association for Contemporary European
Studies (UACES) that provides the list of European Studies journals. For their
analysis, they have chosen the journals with ISI impact factor greater than 1.
Their analysis reveals that the readers are mostly interested in subjects re-
flecting the current European challenges such as populism, extremism and the
economic crisis.

3 Research methodology

The publicly available Sci-Hub’s server log data available at [7] was down-
loaded and imported into MySQL database system. The mentioned data set
was already anonymised (there are no IP addresses, IP addresses were aggre-
gated to the nearest city location). For the efficiency reasons, the data was put
into six tables (scihub data1 - scihub data6), one table for each monthly server
log data. The data consists of date and time, digital object identifier (DOI),
country, town and geographical position. DOIs are not tagged by subject or
keyword so it is not possible to return a set of DOIs for the computer science
field. Therefore, identifying the articles from computer science field represents
a challenge. For this reason, all the DOIs from DBLP were extracted in XML
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format on May 23, 2016, and imported into another MySQL table. DBLP
service provides open bibliographic information on major computer science
journals and proceedings. ”The DBLP Computer Science Bibliography of the
University of Trier has grown from a very specialized small collection of bibli-
ographic information to a major part of the infrastructure used by thousands
of computer scientists” [12]. As of May 2016, DBLP indexes over 3.3 million
publications, published by more than 1.7 million authors. To this end, DBLP
indexes about 32,000 journal volumes, more than 31,000 conference or work-
shop proceedings and more than 23,000 monographs.

The DBLP data was downloaded in the XML format. The Java classes were
developed to parse the DBLP’s XML file and extract the DOIs data into CSV
file that was used to import the DBLP’s DOIs data into MySQL database. The
list of all DOIs from DBLP computer science bibliography was saved into a new
table (dblp dois), and it is assumed that all the main computer science works
are included. Of course, some works may not be in this catalogue, which is the
limitation of this study, but the situation in other science fields is even worse,
e.g. comprehensive meta-indices are missing for most areas of science [12]. The
DOIs fields in both tables were defined as database indexes, to enable better
query performance. Next, the SQL queries were used to find an intersection
of two data sets (Sci-Hub log data and DBLP’s DOIs).

First, the views containing the intersection of each of the six scihub data
tables with dblp dois were created.These tables were very big, and it was
impractical (time-consuming) to analyse the data, because SQL queries on
the views in some cases run for several hours. Table 1 shows the number of
rows in each of the six tables containing Sci-Hub data, and the number of
rows of views showing the intersection with DBLP data. Only 5.95% of the
data downloaded from Sci-Hub were computer science papers. For this reason,
separate tables for each of the six views were created.

The creation of each table took several hours, but after that the complete
intersection data was in tables, indexes were put on relevant fields (DOI and
country), and SQL queries needed to analyse the results took reasonable execu-
tion time (a few minutes). This data (Sci-Hub downloads of computer science
papers) is publicly available at https://github.com/dandrocec/in the SciHub-
ComputerScience repository in the form of SQL scripts.
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Table Total in DBLP %

scihub data1 3 759 219 217 689 57̇9

scihub data2 6,017,112 407,387 6.77

scihub data3 4,774,085 279,952 5.86

scihub data4 1,837,701 97,042 5.28

scihub data5 5,876,395 325,795 5.54

scihub data6 4,752,852 280,770 5.91

Sum 27,017,364 1,608,635 5.95

Table 1: Intersection of Sci-Hub and DBLP data

4 Results

The analysis was done on the six tables (data1-data6) that represent the in-
tersection of Sci-Hub log data and DBLP DOIs data, i.e. the computer science
papers downloaded at Sci-Hub web page in a six-month time frame. One of
the research questions of this paper is: What computer science research papers
did the mentioned users download? First, the ranking of the most downloaded
computer science papers from Sci-Hub had to be obtained. For the purpose of
performing queries on all data, one view with all the data was created Then,
the most downloaded computer science papers were obtained by using the SQL
query.

In total, 607,023 computer science papers were downloaded from Sci-Hub
website in a six-month period. Table 2 shows twenty most downloaded com-
puter science papers from Sci-Hub. Fourteen of the mentioned papers are jour-
nal papers, three are conference papers, two are chapters in scientific books,
and one is a technical report. Eleven papers are published in IEEE’s pub-
lications, three in Springer’s publications, two in Elsevier’s, and one paper
in MIT’s, Wiley’s, SIAM’s and ArXiv’s publications, respectively. Most of
the downloaded papers are new, the only exception being ”How to Construct
Pseudorandom Permutations from Pseudorandom Functions” from 1988. The
most downloaded papers are aligned with currently popular themes in com-
puter science, e.g. titles of five papers contain the phrase ”Internet of things”.
Some of the papers are from open-access journals, but readers still decide to
use Sci-Hub instead of journals’ official web pages, so paid access is not the
only problem. The reason might be that Sci-Hub users do not bother with
which of the articles is open-access, they just use Sci-Hub website to retrieve
all the necessary articles from one place.

Next, the authors of the top 20 most downloaded papers were extracted to
analyse how many total downloaded articles these authors have. Data contains
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DOI Title Down-
loads

10.1109/ISPASS .2015.7095803 Nyami: a synthesizable GPU architec-
tural model for general-purpose and
graphics-specific workloads

1,118

10.1007/s11948-014-9521-4 Penetrating the Omerta of Predatory
Publishing: The Romanian Connection

746

10.1109/TKDE .2013.109 Data mining with big data 725
10.1007/978-3-319-28658-7 55 Detection of Copy-Move Forgery in Im-

ages Using Segmentation and SURF
656

10.1162/jocn a 00880 The Role of Dopamine in Temporal Un-
certainty

457

10.1109/ACCESS. 2014.2362522 Information Security in Big Data: Pri-
vacy and Data Mining

451

10.1016/j.comnet .2010.05.010 The Internet of Things: A survey 343
10.1109/CTS .2014.6867550 Defining architecture components of the

Big Data Ecosystem
307

10.1109/TMI .2013.2265603 Deformable medical image registration: a
survey

307

10.1016/j.neunet .2014.09.003 Deep Learning in Neural Networks: An
Overview

305

10.1137/0217022 How to Construct Pseudorandom Permu-
tations from Pseudorandom Functions

301

10.1109/JIOT .2014.2306328 Internet of Things for Smart Cities 291
10.1007/978-3-642-55032-4 6 Do Personality Traits Work as Modera-

tor on the Intention to Purchase Mobile
Applications Work? - A Pilot Study

288

10.1109/COMST .2015.2444095 Internet of Things: A Survey on En-
abling Technologies, Protocols, and Ap-
plications

281

10.1109/MobileCloud .2015.40 Cloud Computing for Emerging Mobile
Cloud Apps

281

10.1002/asi.23445 Bibliogifts in LibGen? A study of a text-
sharing platform driven by biblioleaks
and crowdsourcing

271

10.1016/j.future .2013.01.010 Internet of Things (IoT): A vision, archi-
tectural elements, and future directions

259

10.1109/TIE .2006.878356 Power-Electronic Systems for the
Grid Integration of Renewable Energy
Sources: A Survey

227

10.1109/JPROC .2014.2371999 Software-Defined Networking: A Com-
prehensive Survey

224

10.1109/JIOT .2014.2312291 Research Directions for the Internet of
Things

214

Table 2: Twenty most downloaded computer science papers

only DOIs, so the Java program was created to parse the DBLP text file to
extract all DOIs of the mentioned authors and to create SQL query to check
how many times these articles where downloaded from SciHub during time
period of publicly available SciHub’s log data. The analysis have shown that
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other articles of the same authors were not downloaded in great numbers.
So, the SciHub users mostly search for a particular article, not all papers of
the particular author. The most downloaded are articles from the following
authors: Xindong Wu (1280 downloads), Timothy N. Miller (1124), Jeff Bush
(1118), Philip Dexter (1118), Aaron Carpenter (1118), Xingquan Zhu (944),
Wei Ding (865), Rajkumar Buyya (795), Gong-Qing Wu (776), Dragan Djuric
(760), V. T. Manu (672), B. M. Mehtre (656), Lei Xu (519), Jian Wang (513),
etc. Most of the authors have small number of papers, and one paper (the one
from the list of the 20 most downloaded articles) has more the 90% of authors’
total SciHub’s downloads. If we look at Google Scholar’s citations (on 14th
February 2017) of the mentioned authors there is also no correlation: some
authors are often cited (e.g. Rajkumar Buyya - 56076 citations and Xindong
Wu - 15611 citations), and some have low number of citations (e.g. V. T.
Manu - 11 citations). Of course, some authors are junior researchers with
small number of recent publications, and the high number of citations of their
works cannot be expected yet.

Next analysis, the list of twenty top countries per Sci-Hub downloads of
computer science papers is presented in Table 3. The top five countries with
the most downloads were India, Iran, China, the United States and Indonesia.
Most of the countries on this list are developing countries, but the OECD
countries are also there.

To get more insight, the countries’ download data was normalized by down-
loads per 100,000 population. The population was obtained from Wikipedia
data (last estimated value) on 9 September 2016. The results are shown in
Table 4. In this case, the top five countries include Tunisia, Iran, Greece, Mo-
rocco and Jordan. The only European country in top five is Greece, a country
that has been in serious financial crisis for many years now. The reason why
Sci-Hub is so popular in Greece could be that the access to scientific database
is worse than it was before the country started to experience serious finan-
cial crisis. Also, some central European countries such as Serbia, Croatia and
Slovenia are high on the list. Mapping IP addresses to real-world locations can
paint a false picture if people hide behind web proxies or anonymous routing
services. But according to Elbakyan, fewer than 3% of Sci-Hub users are using
those [6].

Next, the detailed information of computer science papers was retrieved by
their DOIs. For this purpose, a Java class was developed which invokes Cross-
Ref DOI REST application programming interface. The CrossRef REST call
returns JSON information about a specific resource (paper identified by its
DOI), e.g. for the identified most downloaded paper (Nyami: a synthesizable
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Country Downloads

India 424,652

Iran 231,691

China 94,422

The United States 67,336

Indonesia 56,751

Egypt 52,264

Morocco 51,326

Russia 46,659

Pakistan 45,859

Germany 43,332

Tunisia 33,917

Vietnam 26,913

Brazil 26,255

France 25,640

Malaysia 21,596

Greece 19,783

Algeria 17,405

Canada 13,677

Jordan 11,553

The Netherlands 10,513

Table 3: Top downloads per country

GPU architectural model for general-purpose and graphics-specific workloads).
In total, 607,023 computer science papers were downloaded from Sci-Hub web-
site in a six-month period, so the invocation of the CrossRef REST web service
took some time. The list of DOIs was split into six partitions, and the Java
class was executed during several nights to retrieve and parse all the data. The
JSON response was parsed with the aim to receive publication date, publisher
and paper type information. The results were stored in CSV files and imported
into single Microsoft Excel file for further analysis. First, the analysis by pub-
lishers of computer science papers downloaded at Sci-Hub site was performed.
The results are shown in Figure 1. The most downloaded publishers were In-
stitute of Electrical and Electronics Engineers (IEEE) with 169,313 papers,
Elsevier BV with 132,098, and Springer Nature with 109,586 papers. These
results can be compared with Bohannon’s general (all scientific fields) analysis
[6] where he concluded that three most downloaded publishers were Elsevier,
Springer and IEEE. The fact that IEEE is the most downloaded publisher in
computer science field is expected, because the computer science and electrical
engineering is its main focus.

The next analysis involves downloaded papers by years. The results in Figure
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Country Downloads Population Normalized

Tunisia 33,917 10,982,754 308.8205381

Iran 231,691 79,200,000 292.5391414

Greece 19,783 10,955,000 180.5842081

Morocco 51,326 33,848,242 151.6356448

Jordan 11,553 9,710,752 118.9712187

Switzerland 7,968 8,341,000 95.52811413

Portugal 9,136 10,341,330 88.34453595

Serbia 4,889 7,041,599 69.43025299

Malaysia 21,596 31,192,000 69.23570146

Croatia 2,672 4,190,700 63.76023099

Singapore 3,513 5,535,000 63.46883469

The Netherlands 10,513 17,000,059 61.84096185

Lithuania 1,765 2,866,935 61.56400476

Latvia 1,177 1,973,700 59.63418959

Ireland 3,676 6,378,000 57.63562245

Egypt 52,264 91,688,000 57.00200681

Hong Kong 3,907 7,234,800 54.00287499

Germany 43,332 82,175,700 52.7309168

Slovenia 1,022 2,063,077 49.53765662

Algeria 17,405 40,400,000 43.08168317

Table 4: Countries’ downloads normalized per population

2 show that the most recently published papers were the most popular to
download from Sci-Hub site. Most papers were downloaded in 2015, which
is not surprising since the available Sci-Hub dataset spans downloads from
September 2015 till February 2016.

Finally, the types of downloaded papers were analysed (Figure 3). Journal
papers were dominant (58% of computer science papers downloaded from Sci-
Hub website were journal papers). The reason for this can be seen in limited
accessibility of researchers to chosen journals and perceived quality of papers
published in established journals. The next types of papers are conference
proceeding articles (31%) and book chapters (10%).

5 Conclusion

Many scientists, especially from developing countries, cannot access the re-
search papers they need. Researchers who fail to retrieve articles through
publisher’s paywalls, use other, possibly illegal methods to get the needed
materials. One of them is Sci-Hub website, hosting more than 47 million pi-
rated research papers. In this work, publicly available data of a six-month
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Figure 1: Downloaded papers by publishers

server log data was used to analyse the most downloaded computer science
papers in this period with the aim to identify the most important reposito-
ries and journals for computer science community. To achieve this task, the
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Figure 2: Downloaded computer science papers per publication year

DOIs from the available Sci-Hub log server data were intersected with the
DOIs from DBLP (computer science bibliography of the University of Trier),
to analyse only log entries of computer science papers. It was assumed that
all main computer science works are included in DBLP. The limitation of this
study is that some works may not be in DBLP catalogue, but the situation is
worse in other science fields because there are no meta-indices for most areas
of science. In total, 607,023 computer science papers were downloaded from
Sci-Hub in the six-month period.

Table 2 of this work shows the twenty most downloaded computer science pa-
pers from Sci-Hub. Next, the top five countries with the most downloads were
India, Iran, China, the United States and Indonesia. If the data is normalized
by downloads per population, then the ranking of the countries is different and
top five countries include Tunisia, Iran, Greece, Morocco and Jordan. Next,
the detailed information of computer science papers was retrieved by their
DOIs and CrossRef DOI API. The most downloaded publishers were Institute
of Electrical and Electronics Engineers (IEEE) with 169,313 papers, Elsevier
BV with 132,098 and Springer Nature with 109,586 papers. If the countries,
institutions or libraries tried to improve computer scientists’ work conditions,
they should consider enabling access to repositories or journals of the men-
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Figure 3: Types of downloaded papers

tioned publishers first. Furthermore, the most recently published computer
science papers were the most popular to be downloaded from Sci-Hub site. If
the types of computer science papers downloaded from Sci-Hub were observed,
the journal papers were dominant (58%), followed by conference proceeding ar-
ticles (31%) and book chapters (10%). The conclusion can be made that access
to quality journal papers is the most important for computer scientists. The
findings of this paper show who Sci-Hub users that download computer sci-
ence research papers are and where they are from; and what computer science
research papers the mentioned users downloaded. This information is useful
for libraries and policies that make decisions on the most important sources
(online repositories and journals) for computer science community. It is also
important for publishers who can consider new methods how to make access
to the most wanted content more accessible and cheaper for their end-users.
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Attila KISS (Eötvös Loránd University, Hungary)
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