
Acta Universitatis Sapientiae

Informatica
Volume 8, Number 2, 2016

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

M. S. R. Wilkin, Stefan D. Bruda
Parallel communicating grammar systems with context-free com-
ponents are Turing complete for any communication model . . . 113

R. Forster, Á. Fülöp
Jet browser model accelerated by GPUs . 171

G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos
Monocular indoor localization techniques for smartphones 186

A. Kovács, K. Szabados
Internal quality evolution of a large test system—an industrial
study .216

S. Kumaraswamy, D. Srinivasa Rao, N. Naveen Kumar
Satellite image fusion using fuzzy logic .241

In memoriam Dumitru Dumitrescu . 255

111

Acta Univ. Sapientiae, Informatica 8, 2 (2016) 113–170

DOI: 10.1515/ausi-2016-0007

Parallel communicating grammar systems

with context-free components are Turing

complete for any communication model

Mary Sarah Ruth WILKIN
Department of Computer Science

Bishop’s University
Sherbrooke, Quebec J1M 1Z7, Canada

email: swilkin@cs.ubishops.ca

Stefan D. BRUDA
Department of Computer Science

Bishop’s University
Sherbrooke, Quebec J1M 1Z7, Canada

email: stefan@bruda.ca

Abstract. Parallel Communicating Grammar Systems (PCGS) were in-
troduced as a language-theoretic treatment of concurrent systems. A
PCGS extends the concept of a grammar to a structure that consists
of several grammars working in parallel, communicating with each other,
and so contributing to the generation of strings. PCGS are usually more
powerful than a single grammar of the same type; PCGS with context-free
components (CF-PCGS) in particular were shown to be Turing complete.
However, this result only holds when a specific type of communication
(which we call broadcast communication, as opposed to one-step com-
munication) is used. We expand the original construction that showed
Turing completeness so that broadcast communication is eliminated at
the expense of introducing a significant number of additional, helper com-
ponent grammars. We thus show that CF-PCGS with one-step commu-
nication are also Turing complete. We introduce in the process several
techniques that may be usable in other constructions and may be capable
of removing broadcast communication in general.

Computing Classification System 1998: F.1.1, F.4.2, F.4.3
Mathematics Subject Classification 2010: 68Q45, 68Q10, 68Q42, 68Q15
Key words and phrases: formal languages, theory of computation, formal grammar, par-
allel communicating grammar system, Turing completeness

113

http://cs.ubishops.ca
http://www.ubishops.ca
mailto:swilkin@cs.ubishops.ca
https://bruda.ca
http://cs.ubishops.ca
http://www.ubishops.ca
mailto:stefan@bruda.ca

114 M. S. R. Wilkin, S. D. Bruda

1 Introduction

Parallel Communicating Grammar Systems (PCGS for short) have been in-
troduced as a language-theoretic treatment of concurrent (or more general,
multi-agent) systems [19]. A PCGS extends the concept of a grammar to a
structure that consists of several grammars working in parallel and contribut-
ing to the generation of strings.

In a PCGS one grammar component is the master of the system and the
other components are called helpers or slaves; they all participate in the deriva-
tion but may or may not have a direct impact on the generation of the final
string produced by the system. The master grammar controls the derivation
which is considered complete as soon as it produces a string of terminals re-
gardless of the state of the strings in the other components (hence the name
helper or slave component). In order for the helper components to contribute
to the derivation, communication (or query) steps are required. In essence a
communication step allows the different components in the system to share
strings with one another: A grammar proceeds with a communication step by
introducing in its string a request for a string from another grammar. Once
a communication step has been introduced, all rewriting steps are put on
hold until the communication is complete, meaning they are put on hold until
the requesting grammar(s) receive the string from the queried component(s).
Grammars communicate in one of two ways: returning or non-returning. In
a returning system, once a communication request has been completed the
queried component returns to its original axiom and continues the derivation
from there; conversely if a system is non-returning the component string re-
mains intact and the derivation continues to rewrite that string [6, 21].

Our main area of interest in this paper is the generative capacity of PCGS. It
has been shown that a PCGS with components of a certain type are generally
more powerful than single grammars of the same type; we will summarize
some results in this respect in Section 3. There have also been other attempts
to associate the generative power of PCGS with additional representations,
including parse trees [1] and coverability trees [17, 22].

We focus on PCGS with context-free components (CF-PCGS for short).
Significant findings in this area include a proof that non-returning CF-PCGS
can generate all recursively enumerable languages [14]. Combined with the fact
that non-returning systems can be simulated by returning systems [8] based on
an earlier result [15], this establishes that returning PCGS with context-free
components are also computationally complete. An alternative investigation
into the same matter consists in the development of a returning PCGS with

Parallel communicating grammar systems . . . 115

context-free components that simulates an arbitrary 2-counter machine (yet
another complete model [9]), thus proving that this kind of PCGS are Turing
complete [4]. On close examination of the derivations of this PCGS simulating
a 2-counter machine [4] we noticed that the communication steps used are
of a particular kind [20]. In this PCGS multiple components query the same
component at the same time, and they all receive the same string; only then
does the queried component returns to its axiom. Throughout the document
we will refer to this style of communication as broadcast communication (also
called immediate communication [24], though we prefer the term broadcast as
being more intuitive). Later work uses a different definition, where the queried
component returns to its axiom immediately after it is communicated [6]; we
will refer to this type of communication as one-step communication. It follows
that one querying component would receive the requested string and all the
other components querying the same component would receive the axiom. One
consequence is that the CF-PCGS simulation of a 2-counter machine [4] will
not hold with one-step communication, for indeed the proposed system will
block after the first communication step.

In this paper we wonder whether the 2-counter machine simulation can be
modified so that it works with one-step communication. The answer turns out
to be affirmative. We present in Section 5.2 a PCGS that observes the one-step
communication definition and at the same time simulates a 2-counter machine
in a similar manner with the original construction [4]. The construction turns
out to be substantially more complex. We eliminate broadcast communica-
tion using extra components (so that the original broadcast communication is
replaced with queries to individual components), which increases the overall
number of components substantially. The number of components however re-
mains bounded. We thus conclude that CF-PCGS are indeed Turing complete
regardless of the type of communication used.

This work was first published in a preliminary form as a technical report
[25].

2 Preliminaries

The symbol ε will be used to denote the empty string, and only the empty
string; ω stands for |N|. Given a string σ and a set A we denote the length of
σ by |σ|, while |σ|A stands the length of the string σ after all the symbols not
in A have been erased from it. We often write |σ|a instead of |σ|{a} for singleton
sets A = {a}. The word “iff” stands as usual for “if and only if”.

116 M. S. R. Wilkin, S. D. Bruda

A grammar [13] is a quadruple G = (Σ,N, S, R). Σ is a finite nonempty set;
the elements of this set are referred to as terminals. N is a finite nonempty set
disjoint from Σ; the elements of this set are referred to as nonterminals. S ∈ N
is a designated nonterminal referred to as the start symbol or axiom. R is a
finite set of rewriting rules, of the form A→ u where A ∈ (Σ∪N)∗N(Σ∪N)∗

and u ∈ (Σ ∪ N)∗ (A and u are strings of terminals and nonterminals but
A has at least one nonterminal). Given a grammar G, the ⇒G (yields in
one step) binary operator on strings from the alphabet W = (Σ ∪ N)∗ is
defined as follows: T1AT2 ⇒G T1uT2 iff A → u ∈ R and T1 ,T2 ∈ (Σ ∪ N)∗.
We often omit the subscript from the yields in one step operator when there
is no ambiguity. The language generated by a grammar G = (Σ,N, S, R) is
L(G) = {w ∈ Σ∗ : S ⇒∗G w}, where ⇒∗G denotes as usual the reflexive and
transitive closure of ⇒G.

Unrestricted grammars generate recursively enumerable languages (RE).
Context-sensitive grammars (where each rule A→ u satisfies |A| ≤ |u|) gener-
ate context-sensitive languages (CS). Context-free languages (CF) are gener-
ated by context-free grammars, where each rule A→ u satisfies |A| = 1. Linear
grammars (for linear languages LIN) are context-free grammars in which no
rewriting rule is allowed to have more that one non-terminal in its right hand
side. A regular grammar has only rules of the form A→ cB, A→ c, A→ ε, or
A→ B where A,B are nonterminals and c is a terminal, and generates regular
languages (REG) [10, 12].

A Parallel Communicating Grammar System (or PCGS) consists of a num-
ber of grammars that work together and communicate with each other.

Definition 1 Parallel Communicating Grammar System [6]: A PCGS
of degree n, n ≥ 1 is an (n + 3) tuple Γ = (N,K, T,G1, . . . , Gn) where N is
a nonterminal alphabet, T is a terminal alphabet, and K is the set of query
symbols, K = {Q1, Q2, . . . , Qn}. The sets N, T , K are mutually disjoint; let
VΓ = N∪K∪ T . Gi = (N∪K, T, Ri, Si), 1 ≤ i ≤ n are Chomsky grammars. The
grammars Gi, 1 ≤ i ≤ n, represent the components of the system. The indices
1, . . . , n of the symbols in K point to G1, . . . , Gn, respectively.

A derivation in a PCGS consists of a series of communication and rewriting
steps. A rewriting step is not possible if communication is requested (which
happens whenever a query symbol appears in one of the components of a
configuration).

Definition 2 Derivation in a PCGS [6]: Let Γ = (N,K, T,G1, · · · , Gn) be a
PCGS, and (xi, x2, . . . , xn) and (yi, y2, . . . , yn) be two n-tuples with xi, yi ∈ V∗Γ ,

Parallel communicating grammar systems . . . 117

1 ≤ i ≤ n. We write (xi, . . . , xn) ⇒ (yi, . . . , yn) iff one of the following two
cases holds:

1. |xi|K = 0, 1 ≤ i ≤ n, and for each i, 1 ≤ i ≤ n, we have xi ⇒Gi yi (in
the grammar Gi), or xi ∈ T∗ and xi = yi.

2. |xi|K > 0 for some 1 ≤ i ≤ n; let xi = z1Qi1z2Qi2 . . . ztQitzt+1, with
t ≥ 1 and zj ∈ (N∪Σ)∗, 1 ≤ j ≤ t+ 1. Then yi = z1xi1z2xi2 . . . ztxitzt+1
[and yij = Sij, 1 ≤ j ≤ t] whenever |xij |K = 0, 1 ≤ j ≤ t. If on the other
hand |xij |K 6= 0 for some 1 ≤ j ≤ t, then yi = xi. For all 1 ≤ k ≤ n,
yk = xk whenever yk was not specified above.

The presence of “[and yij = Sij , 1 ≤ j ≤ t]” in the definition makes the PCGS
returning. The PCGS is non-returning if the phrase is eliminated.

In other words, an n-tuple (x1, . . . , xn) yields (y1, . . . , yn) if:

1. If there is no query symbol in x1,. . . ,xn, then we have a component-wise
derivation (xi ⇒Gi yi, 1 ≤ i ≤ n, which means that one rule is used
per component Gi), unless xi is all terminals (xi ∈ T∗) in which case it
remains unchanged (yi = xi).

2. If we have query symbols then a communication step is required. When
this occurs each query symbol Qj in xi is replaced by xj, iff if xj does
not contain query symbols. In other words, a communication step in-
volves the query symbol Qj being replaced by the string xj; the result
of this replacement is referred to as Qj being satisfied (by xj). Once the
communication step is complete the grammars Gj whose strings were
communicated to xi continue processing from its axiom, unless the sys-
tem is non-returning. Communication steps always have priority over
rewriting steps; if not all query symbols are satisfied during a commu-
nication step, they will be satisfied during the next communication step
(as long as the replacement strings do not contain query symbols).

We use ⇒ for both component-wise and communication steps, but we also

use (sparingly)
Λ⇒ for communication steps whenever we want to emphasize

that a communication takes place. A sequence of interleaved rewriting and
communication steps will be denoted by ⇒∗, the reflexive and transitive closure
of ⇒.

118 M. S. R. Wilkin, S. D. Bruda

The derivation in a PCGS can be blocked in two ways [6, 16, 18, 21]:

1. if some component xi of the current n-tuple (x1, . . . , xn) contains non-
terminals but does not contain any nonterminal that can be rewritten
in Gi, or

2. if a circular query appears; in other words if Gi1 queries Qi2 , Gi2 queries
Qi3 , and so on until Gik−1 queries Qik and Gik queries Qi1 , then a deriva-
tion will not be possible since the communication step always has prior-
ity, but no communication is possible because only strings without query
symbols can be communicated.

Definition 3 Languages Generated by PCGS [6]: The language gener-
ated by a PCGS Γ is L(Γ) = {w ∈ T∗ : (S1, S2, ..., Sn) ⇒∗ (w,σ2, ..., σn), σi ∈
V∗Γ , 2 ≤ i ≤ n}.

The derivation starts from the tuple of axioms (S1, S2, ..., Sn). A number
of rewriting and/or communication steps are performed until G1 produces a
terminal string (we do not restrict the form of, or indeed care about the rest
of the components of the final configuration).

A PCGS is called centralized if only G1 can introduce query symbols, oth-
erwise it is called non-centralized. A system can be synchronized whenever a
component grammar uses exactly one rewriting rule per derivation step (un-
less the component grammar is holding a terminal string, case in which it is
allowed to wait). If a system is non-synchronized then in any step that is not
a communication step the component may chose to rewrite or wait.

The family of languages generated by a non-centralized, returning PCGS
with n components of type X (where X is an element of the Chomsky hier-
archy) will be denoted by PCn(X). The language families generated by cen-
tralized PCGS will be represented by CPCn(X). The fact that the PCGS
is non-returning will be indicated by the addition of an N, thus obtain-
ing the classes NPCn(X) and NCPCn(X). Let M be a class of PCGS, M ∈
{PC,CPC,NPC,NCPC}; then we define:

M(X) =M∗(X) =
⋃
n≥1

Mn(X)

Parallel communicating grammar systems . . . 119

3 Previous work

Numerous results regarding the generative capacity of various kinds of PCGS
exist. We focus in this paper on synchronized PCGS with context-free com-
ponents.

First of all, in it immediate that the centralized variant is a particular case
of a non-centralized PCGS and so centralized PCGS are weaker than the non-
centralized ones. In particular we have CPC∗(CF) ⊆ PC∗(CF) [7]. It is not
known whether the inclusion is strict or not.

A way to increase the generative power of a system is to increase the number
of components in the system. Increasing the number of components to anything
larger than one in the RE and to some degree CS case (the CS result holds for
centralized systems only) does not increase the generative power, but when
the component grammars are weaker this is no longer the case. Indeed, both
the hierarchies CPCn(REG) and CPCn(LIN), n ≥ 1 are infinite [6].

Unsurprisingly, the context-free case is somewhere in the middle, in the sense
that the hierarchies PCn(CF) and NPCn(CF), n ≥ 1 do collapse, though not at
n = 1. Indeed, non-centralized CF-PCGS with 11 components can apparently
generate the whole class of RE languages [4]:

RE = PC11(CF) = PC∗(CF). (1)

We will discuss (and modify) this construction later, so we provide in Figure 1
the rewriting rules for the 11-component context-free PCGS that established
the result shown in Equation (1) [4].

A later paper found that a CF-PCGS with only 5 components can generate
the entire class of RE languages by creating a PCGS that has two components
that track the number of non-terminals and use the fact that for each RE
language L there exists and Extended Post Correspondence problem P [11]
such that L(P) = L. [2]:

RE = PC5(CF) = PC∗(CF). (2)

Other papers have examined the generative capacity of CF-PCGS base don
size complexity. It has been shown that every recursively enumerable language
can be generated by a returning CF-PCGS, where the number of nonterminals
in the system is less than or equal to a natural number k [3]. It has also been
shown that non-returning CF-PCGS can generate the set of recursively enu-
merable languages with 6 context free components by simulating a 2-counter
machine [5].

120 M. S. R. Wilkin, S. D. Bruda

Pm = {S→ [I], [I] → C,C→ Qa1 } ∪
{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,
x ∈ Σ, c ′1, c ′2 ∈ {Z, B}, e ′1, e

′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2], < x, qF, c

′
1, c
′
2, e
′
1, e
′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c ′1, c ′2 ∈ {Z, B},

e ′1, e
′
2 ∈ {−1, 0,+1}, x, y ∈ Σ},

P
c1
1 = {S1 → Qm, S1 → Q

c1
4 , C→ Qm} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC, [−1] ′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC},

P
c1
2 = {S2 → Qm, S2 → Q

c1
4 , C→ Qm, A→ A} ∪

{[x, q, Z, c2, e1, e2] → [x, q, Z, c2, e1, e2], [I] → [I]|x ∈ Σ, q ∈ E,
c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c1
3 = {S3 → Qm, S3 → Q

c1
4 , C→ Qm} ∪

{[x, q, Z, c2, e1, e2] → a, [x, q, B, c2, e1, e2] → [x, q, B, c2, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c1
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Q

c1
1 , A→ a}

P
c2
1 = {S1 → Qm, S1 → Q

c2
4 , C→ Qm} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

P
c2
2 = {S2 → Qm, S2 → Q

c2
4 , C→ Qm, A→ A} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2],

[I] → [I]|x ∈ Σ, q ∈ E,
c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c2
3 = {S3 → Qm, S3 → Q

C2
4 , C→ Qm} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c2
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Q

c2
1 , A→ a}

Pa1
= {S→ Qm, [I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I > |x ∈ Σ,
q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

Pa2
= {S→ S3, S(1) → S(2), S(2) → S(3), , S(3) → S(4),

S(4) → Q
c1
2 Q

c1
3 Q

c2
2 Q

c2
3 S

(1)
}.

Figure 1: A CF-PCGS with broadcast communication that simulates a 2-
counter machine.

Parallel communicating grammar systems . . . 121

We will show however in Section 4 that the above results regarding returning
CF-PCGS [2, 3, 4] use broadcast communication which modifies the power of
a system when compared to one-step communication (which is implied by
the original definition). We will also show (Section 5.2) that the hierarchy
PC∗(CF) does collapse irrespective of the communication model being used
(though not necessarily at n = 11 or n = 5).

Turing completeness was also shown for non-returning systems [5, 14]. Given
that non-returning systems can be simulated by returning systems with the
help of assistance grammars holding intermediate strings [8], these results
[5, 14] also apply to returning systems (though the number of components
necessary for this to happen does not remain the same).

4 One-step versus broadcast communication

Broadcast and one-step communication were introduced informally in Sec-
tion 1. The original definition of PCGS derivations (Definition 2) implies the
one-step communication model. Indeed, we note that Item 2 of the definition
specifies that some (one) component xi = z1Qi1z2Qi2 . . . ztQitzt+1 is chosen
and rewritten to yi = z1xi1z2xi2 . . . ztxitzt+1, and then the components i1, . . . ,
it are reduced to their respective axioms (namely, yij = Sij , 1 ≤ j ≤ t).

Under the one-step communication model a configuration such as (Q3, Q3, σ)
must perform a communication step in which the third component is com-
municated to either the first or the second component (chosen nondeter-

ministically). The possible derivations are thus (Q3, Q3, σ)
Λ⇒ (σ,Q3, S3) or

(Q3, Q3, σ)
Λ⇒ (Q3, σ, S3). In the next communication step the axiom will be

communicated to the remaining component instead of the original string σ. In
all, we end up nondeterministically with either (σ, S3, S3) or (S3, σ, S3).

By contrast, in the broadcast communication model the reduction to axiom
happens only after all the queries in all the components have been satisfied. A
configuration such as (Q3, Q3, σ) will have both query symbols satisfied before
the third component is reduced to the axiom, so that the following is the only

possible derivation starting from this configuration: (Q3, Q3, σ)
Λ⇒ (σ, σ, S3).

The following definition introduces the broadcast communication model for-
mally. The definition is an adaptation of the one provided elsewhere [24]; we
note that broadcast communication was called immediate communication ear-
lier, though we believe that our terminology conveys the phenomenon better.

122 M. S. R. Wilkin, S. D. Bruda

Definition 4 Derivation with broadcast communication in a PCGS:
Let Γ = (N,K, T,G1, · · · , Gn) be a returning PCGS, and (xi, x2, . . . , xn) and
(yi, y2, . . . , yn) be two n-tuples with xi, yi ∈ V∗Γ , 1 ≤ i ≤ n. We write (xi, . . . ,
xn) ⇒ (yi, . . . , yn) iff one of the following three cases holds:

1. |xi|K = 0, 1 ≤ i ≤ n. Then for each i, 1 ≤ i ≤ n, we have xi ⇒Gi yi (in
the grammar Gi), or xi ∈ T∗ and xi = yi.

2. The following set I is not empty: with J = ∅, I contains exactly all the
indices i such that:

(a) xi = z1Qi1z2Qi2 . . . ztQitzt+1 for some t ≥ 1,
(b) |xij |K = 0, 1 ≤ j ≤ t,
(c) either zj ∈ (N∪Σ)∗, or zj ∈ (N∪Σ∪K)∗ and for any query symbol

Qm appearing in zj we have |xm|K 6= 0, and

(d) let J be replaced by J ∪ {ij : 1 ≤ j ≤ t}.

Then for all i ∈ I we have yi = z1xi1z2xi2 . . . ztxitzt+1, and afterward for
all j ∈ J we have yj = Sj. For all 1 ≤ k ≤ n, yk = xk whenever yk was
not specified above.

The definition specifies that all the queries that can be satisfied in the cur-
rent communication step will be satisfied before any reduction to the axiom
happens. Note in passing that there might be query symbols that cannot be
satisfied because the requested strings contain query symbols themselves; if
so, then those queries will not be satisfied in the current step but will be left
instead for subsequent communication steps.

Evidently, the communication model (broadcast or one step) has a direct
impact on the generative power of a PCGS. Consider for example a PCGS
Γ with the following sets of rewriting rules for the master and the two slave
components, respectively:

{S→ aS, S→ Q2, S→ Q3, S1 → b, S2 → c, S→ ε}

{S1 → bS1, S1 → Q3, S2 → c}

{S2 → cS2, S2 → Q2, S1 → b}

The following is an example of a possible derivation with broadcast commu-
nication in Γ :

(S, S1, S2) ⇒ (aS, bS1, cS2,) ⇒ (aQ2, bbS1, cQ2)
Λ⇒

(abbS1, S1, cbbS1) ⇒ (abbb, bS1, cbbb)

Parallel communicating grammar systems . . . 123

We note that in this example the second component is queried by both the
other two components. Both querying components receive copies of the same
string and then the second component returns to its axiom.

By contrast, the above derivation but this time using one-step communica-
tion would go like this:

(S, S1, S2) ⇒ (aS, bS1, cS2,) ⇒ (aQ2, bbS1, cQ2)
Λ⇒

(aS1, S1, cbbS1) ⇒ (ab, bS1, cbbb)

In this last case the third component was nondeterministically chosen to be the
initial component to receive a string from the second component (bbS1). Once
communicated, the string of the second component was reset to the respective
axiom, which was then communicated to the first component (which thus
receives S1). The derivation that used broadcast communication generated the
string abbb, whereas the derivation that followed the one-step communication
model generated ab. The different strings were obtained despite the use of the
same rewriting rules, and same rewriting steps. It is therefore clear that the
use of different styles of communication has a direct impact on the strings
generated by a PCGS that is, the languages produced by the system.

In this particular case, we can modify the original system Γ so that it works
under the one-step communication model and yet generates the same language
as the broadcast communication operation of Γ . The key will be to ensure
that communication steps are monogamous, meaning that there are no two
components that query a third component at the same time. We accomplish
this in this particular case by duplicating the second component, so that the
other components have their individual component to query. We end up with
the PCGS Γ ′ with the following sets of rewriting rules for the master and now
three slave components (indeed, notice the addition of one component with
axiom S1copy):

{S→ aS, S→ Q2, S→ Q3, S1 → b, S2 → c, S→ ε}

{S1 → bS1, S1 → Q3, S2 → c}

{S1copy → bS1copy , S1copy → Q3, S2 → c}

{S2 → cS2, S2 → Q2, S1copy → b}

The following is an example of a possible derivation in Γ ′ that emulates the
rewriting steps used in the above broadcast derivation for Γ :

(S, S1, S1copy , S2) ⇒ (aS, bS1, bS1copycS2,) ⇒ (aQ2, bbS1, bbS1copy,cQS1copy)
Λ⇒ (abbS1, S1, S1copycbbS1copy) ⇒ (abbb, bS1, bS1copy , cbbb)

124 M. S. R. Wilkin, S. D. Bruda

The resulting string abbb matches that of the string generated above using
broadcast communication.

The above technique of providing “copycat” components is not accidental
and is not particular to this example. Indeed, we will use the same technique
on a larger scale (and in combination with other modifications) later.

5 Turing completeness of CF-PCGS

We are now ready to discuss the Turing completeness of CF-PCGS. We first
note that the previous results on the matter use broadcast communication,
which is in contradiction to the original definition [6]. However, we then show
that CF-PCGS are still Turing complete under the one-step communication
model.

5.1 Broadcast communication and the Turing completeness of
CF-PCGS

The existence of two communication models is what causes us to call into
question the result shown in Equation (1) [4]. Indeed, the proof that led to
this result hinges on the use of broadcast communication, in contrast with the
original PCGS definition. This approach to communication was also used in
other related papers [2, 3], though we will focus on what was chronologically
the first result in this family [4].

A derivation in the system [4] that shows Turing completeness for CF-PCGS
(shown in Figure 1) begins with the initial configuration and then takes its
first step which results in a nondeterministic choice.

(S, S1, S2, S3, S4, S1, S2, S3, S4, S, S) ⇒
([I], u1, u2, u3, S

(1)
4 , u

′
1, u

′
2, u

′
3, S4, Qm, S

(3))

As explained in the original paper u1, u2, u3 are eitherQm orQc14 and u ′1, u
′
2, u

′
3

are either Qm or Qc24 . At this stage if any of the symbols are Qc14 or Qc24 the
system will block, so the only successful rewriting step is:

(S, S1, S2, S3, S4, S1, S2, S3, S4, S, S) ⇒
([I], Qm, Qm, Qm, S

(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S

(3))

We have now a communication step, which proceeds as follows [4]:

([I], Qm, Qm, Qm, S
(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S

(3)) ⇒
(S, [I], [I], [I], S

(1)
4 , [I], [I], [I], S

(1)
4 , [I], S

(3))

Parallel communicating grammar systems . . . 125

Notice that all occurrences of the symbol Qm are replaced with the symbol
[I], and all of the components that receive [I] have a corresponding rewriting
rule for it. Should we have used one-step communication the behavior of the
system would have been quite different. Some Qm symbol (chosen nondeter-
ministically), would be replaced with the symbol [I] from the master grammar,
and all the other components that communicate with the master would receive
the axiom S since the master will return to the axiom before any of the other
components had a chance to query it.

([I], Qm, Qm, Qm, S
(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S

(3)) ⇒
(S, [I], S, S, S

(1)
4 , S, S, S, S

(1)
4 , S, S

(3))

We see again a notable difference in the different communication models. In-
deed, if broadcast communication steps are not used then the derivation blocks
since the returning communication step yields a configuration where all but
one of the components Pc11 , Pc12 , Pc13 , Pc14 , Pc21 , Pc22 , Pc23 , and Pc24 get a copy of
the master grammar axiom S, yet none of them have a rewriting rule for S.
Since we also know that if any of the components rewrite to Qc14 or Qc24 the
system will block, it becomes clear that broadcast communication steps are
essential for the original proof [4] to hold.

This all being said, we will discuss next how a form of this result does hold
even in the absence of broadcast communication.

5.2 CF-PCGS with one-step communication are Turing com-
plete

We are now to modify the original construction [4] and so eliminate the need for
broadcast communication. The resulting system is considerably more complex
and so our result is slightly weaker, but it shows that the result holds regardless
of the communication model used.

Overall we have the following:

Theorem 5 RE = L(PC95(CF)) = L(PC∗(CF)).

The remainder of this section is dedicated to the proof of Theorem 5. Specif-
ically, we show the inclusion RE ⊆ L(PC95(CF)). Customary proof techniques
demonstrate that L(PC∗(CF)) ⊆ RE and so L(PC95(CF)) ⊆ L(PC∗(CF)) ⊆
RE. We describe first informally a PCGS simulating an arbitrary 2-counter
machine (Section 5.2.1), then we present that PCGS in detail (Section 5.2.2),
and then we then describe how the simulation is carried out (Section 5.2.3).

126 M. S. R. Wilkin, S. D. Bruda

Let M = (Σ ∪ {Z,B}, E, R) be a 2-counter machine [9] that accepts some
language L. M has a tape alphabet Σ ∪ {Z,B}, a set of internal states E with
q0, qF ∈ E and a set of transition rules R. The 2-counter machine has a read
only input tape and two counters that are semi-infinite storage tapes. The
alphabet of the storage tapes contains two symbols Z and B, while the input
tape has the alphabet Σ ∪ {B}. The transition relation is defined as follows:
if (x, q, c1, c2, q

′, e1, e2, g) ∈ R then x ∈ Σ ∪ {B}, q, q ′ ∈ E, c1, c2 ∈ {Z,B},
e1, e2 ∈ {−1, 0,+1}, and g ∈ {0,+1}. The starting and final states of M are
denoted by q0 and qF, respectively.

Intuitively, a 2-counter machine has a read only and unidirectional input
tape as well as two read-write counter tapes (or just counters). The counters
are initialized with zero by placing the symbol Z on their leftmost cell, while
the rest of the cells contain B. A counter can be incremented or decremented
by moving the head to the right or to the left, respectively; it thus stores
an integer i by having the head moved i positions to the right of the cell
containing Z. It is an error condition to move the head to the left of Z. One
can test whether the counter holds a zero value or not by inspecting the symbol
currently under the head (which is Z for a zero and B otherwise).

A transition of the 2-counter machine (x, q, c1, c2, q
′, e1, e2, g) ∈ R is then

enabled by the current state q, the symbol currently scanned on the input
tape x, and the current status of the two counters (c1 and c2, which can
be either Z or B). The effect of such a transition is that the state of the
machine is changed to q ′; the counter k ∈ {1, 2} is decremented, unchanged,
or incremented whenever the value of ek is −1, 0, or +1, respectively; and the
input head is advanced if g = +1, and stays put if g = 0. The input string is
accepted by the machine iff the input head scans one cell to the right of the
last non-blank symbol on the input tape and the machine is in an accepting
state. L(M) be the language of exactly all the input strings accepted by M.

5.2.1 CF-PCGS simulation of a 2-counter machine: overall struc-
ture

We demonstrated in Section 4 (through the modification of the PCGS Γ to
obtain Γ ′) the “copycat” technique of duplicating a components to ensure
that all communication steps are monogamous. In a nutshell, we will apply
this technique on the CF-PCGS developed earlier [4].

We still provide a CF-PCGS that simulates an arbitrary 2-counter machine.
We use all of the components used originally, but we ensure that every gram-
mar that requests a string from the same component in the original system

Parallel communicating grammar systems . . . 127

can retrieve a similar string from it own exclusive copycat component. In
other words, our system includes copycat components (or helpers) which en-
sure that all the components can work under one-step communication without
stumbling over each other. For the most part the intermediate strings that
the copycat components hold are replicas of the original component strings,
which allows every component grammar to communicate with its own respec-
tive copycats, and so receive the same string as in the original construction
even under one-step communication.

We also need to add components to the system whose job is to fix syn-
chronization issues by resetting their matching helpers at specific points in
the derivation. This ensures that the one-step communication version of the
system remains in harmony with the broadcast communication system. Fi-
nally in order to avoid the generation of undesired strings we use blocking
to our advantage by ensuring that any inadvertent communication that does
not contribute to a successful simulation will introduce nonterminals that will
subsequently cause that derivation to block.

Concretely, we now construct the following grammar system with 95 com-
ponents:

Γ = (N,K, Σ ∪ {a},

GGMOrig , G
c1
GMS1

, Gc1GMS1H2(S4) , G
c1
GMS1H3(S4)

, Gc1GMS1(S2) , G
c1
GMS1(S3)

,

Gc1GMS2 , G
c1
GMS3

, Gc1GMPA1S1 , G
c1
GMPA1S1H2

, Gc1GMPA1S1H3 , G
c1
GMPA1S1(S2)

,

Gc1GMPA1S1(S3) , G
c1
GMPA1S2

, Gc1GMPA1S3 , G
c2
GMS1

, Gc2GMS1H2(S4) , G
c2
GMS1H3(S4)

,

Gc2GMS1(S2) , G
c2
GMS1(S3)

, Gc2GMS2 , G
c2
GMS3

, Gc2GMPA1S1 , G
c2
GMPA1S1H2

, Gc2GMPA1S1H3 ,

Gc2GMPA1S1S2 , G
c2
GMPA1S1S3

, Gc2GMPA1S2 , G
c2
GMPA1S3

, Gc11OrigS1
, Gc11S1H2(S4)

,

Gc11S1H3(S4)
, Gc1

1S1 (S2)
, Gc1

1S1 (S3)
, Gc12OrigS2

, Gc13OrigS3 , G
c1
4OrigS4

,

Gc14S1H2(S4)
, Gc14S1H3(S4)

, Gc14S2
, Gc14S3

, Gc14SpecHelp1S1S2 , G
c1
4SpecHelp2S1S3

,

Gc21OrigS1
, Gc21S1H2(S4)

, Gc21S1H3(S4)
, Gc21S1(S2)

, Gc21S1(S3)
, Gc22OrigS2

, Gc23OrigS3 ,

Gc24OrigS4 , G
c2
4S1H2(S4)

, Gc24S1H3(S4)
, Gc24S2

, Gc24S3
, Gc24SpecHelp1S1S2 , G

c2
4SpecHelp2S1S3

,

Ga1Orig, G
c1
a1GMS1

, Gc1
a1GMS1H2(S4)

, Gc1
a1GMS1H3(S4)

, Gc1
a1GMS1(S2)

,

Gc1
a1GMS1(S3)

, Gc1a1GMS2 , G
c1
a1GMS3

, Gc2a1GMS1 , G
c2
a1GMS1H2(S4)

, Gc2
a1GMS1H3(S4)

,

Gc2
a1GMS1(S2)

, Gc2
a1GMS1(S3)

, Gc2a1GMS2 , G
c2
a1GMS3

, Ga2Orig , RGMc1Pa1S1
,

RGMc1Pa1S1H2(S4)
, RGMc1Pa1S1H3(S4)

, RGMc1Pa1S1(S2)
, RGMc1Pa1S1(S3)

, RGMc1Pa1S2
,

128 M. S. R. Wilkin, S. D. Bruda

RGMc1Pa1S3
, RGMc2Pa1S1

, RGMc2Pa1S1H2(S4)
, RGMc2Pa1S1H3(S4)

, RGMc2Pa1S1(S2)
,

RGMc2Pa1S1(S3)
, RGMc2Pa1S2

, RGMc2Pa1S3
, RPc11S1H2(S4)

, RPc11S1H3(S4)
, RPc21S1H2(S4)

,

RPc21S1H3(S4)
, RPc14S1H2(S4)

, RPc14S1H3(S4)
, RPc24S1H2(S4)

, RPc24S1H3(S4)
)

Gi = (N ∪ K,Σ ∪ {a}, Pi, Si)

Ri = (N ∪ K,Σ ∪ {a}, Reseti, Si)

N = {[x, q, c1, c2, e1, e2], [e1]
′, [e2]

′, [I], [I] ′, < I >,< x, q, c1, c2, e1, e2 > |

x ∈ Σ, q ∈ E,C1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{S, S1, S2, S3, S4, S

(1)
4 , S

(2)
4 , S

(1), S(2), S(3), S(4)} ∪ {A,C}

The rewriting rules will be formally defined later. As already mentioned, this
system is a simulation of the construction using broadcast communication and
described in Figure 1. All of the component definitions from the original system
have the marker Orig in their label in order to differentiate them from the
helper grammars that were added in order to accommodate the requirements of
a one step-communication system. In what follows we use x and y as wildcards,
which can be replaced by any string. For example the grammars Gc11OrigS1

,

Gc11S1H2(S4)
, Gc11S1H3(S4)

, Gc1
1S1 (S2)

, and Gc1
1S1 (S3)

will be referred to collectively as

Gc11x .
The above system Γ uses the following labeling: The grammars Gyx with

the set of rewriting rules Pyx are the “major” components, as opposed to the
grammars Rx (with Resetx as the set of rewriting rules) which are reset gram-
mars (used to reset to axiom various components throughout the derivation).
When we refer to a component grammar we will use interchangeably its name
or the name of its set of rewriting rules. GGMOrig is the master grammar of
the system, while GGMx are copycat grammars that replicate the steps of the
master. Gc1x and Gc2x indicates that the grammar works with counter c1 or c2,
respectively. Gy1x indicate that the grammar is either the original or a replica
of grammar P1 in the original system. G2OrigS2 and G3OrigS3 indicate that the

grammar is the original P2 and P3, respectively. Gy4x and Gya1x indicate that
the grammar is either the original or a replica of grammar P4 and Pa1 in the
original system, respectively, and so on.

It is no accident that the sub- and superscripts described above suggest
a grouping of most of the 95 components in classes that correspond to the
original components. Creating copycat grammars is the most basic tool used

Parallel communicating grammar systems . . . 129

in our construction, so it is inevitable to have several grammars playing a
similar role and being all roughly equivalent to one original component.

The new master GGMOrig contains the same rewriting rules and communi-
cations steps as it had in the original construction [4]. The primary role of the
master is to maintain its relationship with the Gya1x component grammars. The
other components GyGMx are copycat grammars designed to copy the function-
ality of the master; they have been added to the system to handle queries from
Gc11x , G

c1
2x

, Gc13x , G
c1
4x

, Gc21x , G
c2
2x

, Gc23x , and Gc24x (all described later). In essence
we ensure that every component grammar Gc11x , . . . , Gc24x that can query the
master grammar in the original broadcast construction has a matching helper
grammar that will exclusively handle their communication requests.
Gc11OrigS1

contains the same rewriting rules and communication steps as the

component Pc11 in the original system [4], though labels in the rewriting rules
have been modified to ensure that the components query their corresponding
helper grammars in the other sections of the system. There are 4 new helper
grammars to ensure that Gc12 , Gc13 , and Gc14 have their own unique component
grammars to communicate with.

ComponentGc14OrigS4 (equivalent to the original Pc14) needs extra helper gram-

mars to ensure that components defined in other sections have their own
unique Gc14x component to query. Similarly, Gc21OrigS1

is similar with the origi-

nal Pc21 and needs 4 new helper grammars; Gc24OrigS4 is equivalent to Pc24 and

requires 6 additional helpers.
The original Pa1 grammar remains as it was in the original system and is

now named Pa1Orig. In order for component grammars Gc11x , G
c1
2x

, Gc13x , G
c1
4x

,
Gc21x , G

c2
2x

, Gc23x , and Gc24x to derive correctly 14 additional Ga1x helpers have
been added to the system. Their names and labels reflect the components
they will work with during a derivation.

Finally, grammarsGc12x , G
c1
3x

, Gc22x , P
c2
3x

, and Pa2x are similar to the original Pc12 ,
Pc13 , Pc22 , Pc23 , and Pa2 , respectively without any additional helper grammars
(but with the usual label changes) and serve the same role as in the original
construction.

This all being said and done, the derivation in the new system is obviously
more complex than in the original. Several undesired side derivations become
possible and need to be eliminated. One mechanism used for this purpose is
the reset grammars Rx which are used to reset several major components at
strategic moments. Which reset grammar handles which major component is
given by the subscript x. Their use is illustrated in Section 5.2.3. Another
mechanism for eliminating undesired derivations is the existence of several

130 M. S. R. Wilkin, S. D. Bruda

additional rules that did not exist in the original system and that cause various
derivations to block. These extra rules are described in Section 5.2.2.

5.2.2 CF-PCGS simulation of a 2-counter machine: rewriting rules

We now describe the rewriting rules of the component grammars. We use the
symbols Ql as usual to identify communication requests, but for clarity the
label l will no longer be purely numerical. Most components are modifications
of components in the original 11-component construction, as outlined in the
previous section, but we also add new rules to some components. To emphasize
these additions we group the newly introduced rules into separate sets that are
underlined. In most cases the new rules have label(s) modified to match the
components they are designed to work with; in some cases the rewriting rule
themselves are changed. Those components that do not have an equivalent in
the original construction have all their rules in an underlined set.

PGMOrig = {S→ [I], [I] → C,C→ Qa1} ∪
{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, e ′1, e ′2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 5 helper grammars simulate rules from the new master but each
component is designed to work with different components in Pc11 , including the
Pc11OrigS1

grammar and its four newly defined helpers. The components below

work with the Pc11 grammars as the single grammar version would have in the
original construction but the labels of the query symbols have been modified
to reflect the labels of their matching component grammar.

Pc1GMS1 = {S→ [I], [I] → C} ∪ {C→ Qc1a1Pa1S1
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

Parallel communicating grammar systems . . . 131

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′,

e1, e2,+1) ∈ R, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following two grammars have new communication steps S→ QC1
a1Pa1S1H2(S4)

and S → QC1
a1Pa1S1H3(S4)

, respectively. In a successful derivation these compo-

nents will rewrite to this communication request in Step 13 of the deriva-
tion. If this rewriting rule is used in any other step the derivation will block;
more precisely if this rule is nondeterministically chosen in Step 1 it results
in a circular query and the derivation will block immediately. If it is used in
Step 3 it will receive the string < I > which will rewrite to [x, q, Z, Z, e1, e2]
or x[y, q, Z, Z, e1, e2]. We however have no rewriting rule for either of these
strings and so we will block. Finally, if these rules are used in Step 9 the com-
ponents will receive the string u[x ′, q, Z, Z, e1, e2], for which no rewriting rules
exist so once more the system will block.

Pc1GMS1H2(S4) = {S→ [I], [I] → C} ∪

{C→ Qc1
a1Pa1S1H2(S4)

, S→ Qc1
a1Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|x ∈ Σ, c ′1, c ′2 ∈

{Z,B}, (x, q, c1, c2, q
′, e1, e2, 0) ∈ R, e ′1, e ′2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS1H3(S4) = {S→ [I], [I] → C} ∪

{C→ Qc1
a1Pa1S1H3(S4)

, S→ Qc1
a1Pa1S1H3(S4)

} ∪

132 M. S. R. Wilkin, S. D. Bruda

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS1(S2) = {S→ [I], [I] → C} ∪ {C→ Qc1
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS1(S3) = {S→ [I], [I] → C} ∪ {C→ Qc1
a1Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

We only need one Pc12 component and one Pc13 component. These will simu-
late rules from the master grammar and will work directly with Pc12OrigS2 and

Parallel communicating grammar systems . . . 133

Pc13OrigS3 , respectively. The labels in the communication rules have been modi-

fied to ensure that the correct component grammars are queried.

Pc1GMS2 = {S→ [I], [I] → C} ∪ {C→ Qc1a1Pa1S2
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS3 = {S→ [I], [I] → C} ∪ {C→ Qc1a1Pa1S3
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e

′
2 ∈

{−1, 0,+1}} ∪ {< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 7 helper grammars imitate Pa1 . The first 5 work with Pc11Orig and

four of its helpers, while the remaining 2 work with Pc12Orig and Pc13Orig . The

new rule allows the grammars to reset their string by querying new helper
components (defined later).

Pc1GMPA1S1 = {S→ [I], [I] → C} ∪ {C→ QResetGM
Pa1

c1
S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈
Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

134 M. S. R. Wilkin, S. D. Bruda

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1H2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x,
y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1H3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1(S2) = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

Parallel communicating grammar systems . . . 135

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1(S3) = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈
Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈
Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

136 M. S. R. Wilkin, S. D. Bruda

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 5 helpers simulate rules from the new master. Each grammar
below is designed to work with a different component in the Pc21 family, in-
cluding Pc21OrigS1

and its 4 helpers. The first works directly with Pc21Orig as it did

originally, but communication labels have been modified to ensure that each
component queries the right grammar.

Pc2GMS1 = {S→ [I], [I] → C} ∪ {C→ Qc2a1Pa1S1
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0)

∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Note that the following two grammars have a new communication step S →
Qc2
a1Pa1S1H2(S4)

and S → Qc2
a1Pa1S1H3(S4)

respectively. In a successful derivation

this communication step will be used in Step 13 of the derivation. If this rule
is introduced in any other step the system will block. More specifically if this
rule is used in Step 1 it results in a circular query and blocks; if it is used in
Step 3 it will receive the string < I > which will rewrite to [x, q, Z, Z, e1, e2]
or x[y, q, Z, Z, e1, e2] for which no rewriting rule exists; finally if it is used
in Step 9 the Pc2GMS1H2(S4) or Pc2GMS1H3(S4) component will receive the string

u[x ′, q, Z, Z, e1, e2], for which it has no rewriting rule.

Pc2GMS1H2(S4) = {S→ [I], [I] → C} ∪

{C→ Qc2
a1Pa1S1H2(S4)

, S→ Qc2
a1Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

Parallel communicating grammar systems . . . 137

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMS1H3(S4) = {S→ [I], [I] → C} ∪

{C→ Qc2
a1Pa1S1H3(S4)

, S→ Qc2
a1Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMS1(S2) = {S→ [I], [I] → C} ∪ {C→ Qc2
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMS1(S3) = {S→ [I], [I] → C} ∪ {C→ Qc2
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

138 M. S. R. Wilkin, S. D. Bruda

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

There is only one Pc22 as in the original system and the below master helper
works directly with it. The query labels are modified to ensure that the correct
component grammars are queried during the derivation.

Pc2GMS2 = {S→ [I], [I] → C} ∪ {C→ Qc2a1Pa1S2
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2,

0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Similarly, there is only one Pc23 , as in the original system and the below
master helper will work directly with it. The labels of the query symbols have
been modified in order to ensure that the correct component grammars are
queried during the derivation.

Pc2GMS3 = {S→ [I], [I] → C} ∪ {C→ Qc2a1Pa1S3
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2,

0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 7 grammars work with the Pc2a1 components; the first 5 work with
the Pc21 helper grammars, and the other 2 work with Pc22OrigS2

and Pc23OrigS3
hold-

ing intermediate strings to ensure successful derivations. A new rule has been

Parallel communicating grammar systems . . . 139

added to these grammar components which allows them to reset themselves
by querying their matching reset component (defined later).

Pc2GMPA1S1 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1,

e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1H2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1,

e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1H3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

140 M. S. R. Wilkin, S. D. Bruda

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1S2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1S3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

Parallel communicating grammar systems . . . 141

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc11OrigS1
contains the same rewriting rules and communication steps as the

component Pc11 in the original system [4] with suitable modifications for labels.

Pc11OrigS1
= {S1 → Qc1GMS1

, S1 → Qc14S1original
, C→ Qc1GMS1

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC,

[−1] ′ → C|x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc11 helper grammars work with their respective helper gram-
mars as defined in their rewriting rules; their definition contains a rule C→W,
which will be used in Step 13 during successful derivations. If this rule is used
at any other step the system will block (just like in the similar situations
discussed earlier).

Pc11S1H2(S4)
= {S1 → Qc1GMS1H2(S4)

, S1 → Qc1
4S1H2(S4)

, C→ QGMS1H2(S4)
,

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e1]

′, [+1] ′ → AAC, [0] ′ → AC,

[−1] ′ → C|x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1} ∪
{[I] → [I] ′, [I] ′ → AC}

Pc11S1H3(S4)
= {S1 → Qc1GMS1H3(S4)

, S1 → Qc1
4S1H3(S4)

, C→ QGMS1H3(S4)
,

142 M. S. R. Wilkin, S. D. Bruda

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e1]

′, [+1] ′ → AAC, [0] ′ → AC,

[−1] ′ → C|x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc11 helpers will ensure the proper derivation of Pc12OrigS2
and Pc13OrigS3

. They work by communicating with their corresponding helper

grammars and their designated special helper in the Pc14 section.

Pc1
1S1 (S2)

= {S1 → Qc1GMS1(S2)
, S1 → Qc14SpecHelp1S1S2 , C→ QGMS1(S2)

,

S4 → S
(1)
4 , S

(1)
4 → QPc11S1H2(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC, [−1] ′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Pc1
1S1 (S3)

= {S1 → Qc1GMS1(S3)
, S1 → Qc14SpecHelp2S1S3 , C→ Qc1GMS1(S3)

,

S4 → S
(1)
4 , S

(1)
4 → QPc11S1H3(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC, [−1] ′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Component grammar Pc12 has been renamed and labels have been modified
to ensure that it works with its matching helper components, but is otherwise
unchanged from the original definition.

Pc12OrigS2
= {S2 → Qc1GMS2 , S2 → Qc14S2 , C→ Qc1GMS2 , A→ A} ∪

{[x, q, Z, c2, e1, e2] → [x, q, Z, c2, e1, e2], [I] → [I]|x ∈ Σ, q ∈ E,
c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component grammar Pc13 is again similar to the original definition (with
suitable label changes) and it does not need any helper grammars.

Pc13OrigS3 = {S3 → Qc1GMS3 , S3 → Qc14S3 , C→ Qc1GMS3} ∪

Parallel communicating grammar systems . . . 143

{[x, q, Z, c2, e1, e2] → a, [x, q, B, c2, e1, e2] → [x, q, B, c2, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component Pc14OrigS4 has the same rules as in the original system save for the

usual re-labeling.

Pc14OrigS4
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1P1S1} ∪ {A→ a}

A new nondeterministic step has been added to the following two helpers in

the P4 section, specifically: S
(2)
4 → S

(2)
4 . This rule was added to avoid a circular

query in Step 12 of the derivation. This being said this rule could be used

whenever the non terminal S
(2)
4 appears, but if it is used in any other step

there is a chance that the matching P1 component queries it and receives S
(2)
4 ,

but since P1 does not contain a rewriting rule for S
(2)
4 the derivation would

block. The only successful use of this rewriting rule is in Step 12.

Pc14S1H2(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1

P1S1H2(S4)
, S

(2)
4 → S

(2)
4 } ∪

{A→ a}

Pc14S1H3(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1

P1S1H3(S4)
, S

(2)
4 → S

(2)
4 } ∪

{A→ a}

Pc14S2
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1P1S2} ∪ {A→ a}

Pc14S3
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1P1S3} ∪ {A→ a}

Pc14SpecHelp1S1S2 = P
c1
4SpecHelp2S1S3

= {S4 → S4}

Pc21OrigS1
is similar to the original Pc21 . It also need 4 new helper grammars.

Pc21OrigS1
= {S1 → Qc2GMS1 , S1 → Qc2P4S1 , C→ Qc2GMS1} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc21 helpers have a new rule added to them that will be used
in Step 13 of the derivation: C→W. If this rule is used at any other step the
system will block for the same reason as above.

Pc21S1H2(S4)
= {S1 → Qc2GMS1H2(S4)

, S1 → Qc2
P4S1H2(S4)

, C→ Qc2GMS1H2(S4)
,

144 M. S. R. Wilkin, S. D. Bruda

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e2]

′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪ {[I] → [I] ′,

[I] ′ → AC}

Pc21S1H3(S4)
= {S1 → Qc2GMS1H3(S4)

, S1 → Qc2
P4S1H3(S4)

, C→ Qc2GMS1H3(S4)
,

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e2]

′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc21 helper grammars are components that will help ensure
the proper derivation of Pc22OrigS2

and Pc23OrigS3
by holding intermediate strings

throughout the derivation.

Pc21S1(S2)
= {S1 → Qc2GMS1(S2)

, S1 → Qc24SpecHelp1S1S2 , C→ Qc2GMS1(S2)
,

S4 → S
(1)
4 , S

(1)
4 → QPc21S1H2(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Pc21S1(S3)
= {S1 → Qc2GMS1(S3)

, S1 → Qc24SpecHelp2S1S3 , C→ Qc2GMS1(S3)
,

S4 → S
(1)
4 , S

(1)
4 → QPc21S1H3(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Component grammar Pc22 is the same as in the original system, except that it
has been renamed and the communication rewriting rules have been modified
to match the correct helper components.

Pc22OrigS2
= {S2 → Qc2GMS2 , S2 → Qc2P4S2 , C→ Qc2GMS2} ∪ {A→ A} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2],

Parallel communicating grammar systems . . . 145

[I] → [I]| x ∈ Σ, q ∈ E, c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component grammar Pc23 contains similar rules with the original construc-
tion. Similarly to Pc22OrigS2

it does not require any helper grammars, but the

labels have been changed as before.

Pc23OrigS3 = {S3 → Qc2GMS3 , S3 → Qc2P4S2 , C→ Qc2GMS3} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component Pc24OrigS4 , requires 6 additional components to ensure a successful

derivation. The name of the grammar has been modified and the rules in
the grammar have had their labeling updated to match the respective helper
grammars.

Pc24OrigS4 = {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc2P1S1} ∪ {A→ a}

A new nondeterministic step has been added to the following two helpers for

the original P4 component. The rule S
(2)
4 → S

(2)
4 was added specifically to

avoid a circular query in Step 12 of the derivation, but this rule could be used

whenever the non terminal S
(2)
4 appears. If it is used in any other step there

is a chance that the matching P1 component requests its string and receives

S
(2)
4 . Thankfully the matching P1 component does not have a corresponding

rewriting rule and thus the derivation will block. In a successful derivation this
rule will thus be used only in Step 12.

Pc24S1H2(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪

{S
(2)
4 → Qc2

P1S1H2(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A→ a}

Pc24S1H3(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪

{S
(2)
4 → Qc2

P1S1H3(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A→ a}

Pc24S2
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc2P1S2} ∪ {A→ a}

Pc24S3
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc2P1S3} ∪ {A→ a}

Pc24SpecHelp1S1S2 = P
c2
4SpecHelp2S1S3

= {S4 → S4}

146 M. S. R. Wilkin, S. D. Bruda

The original Pa1 grammar remains as it was in the original system and needs
14 additional helpers.

Pa1Orig = {S→ QGMOrig} ∪
{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I > |

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1a1GMS1 = {S→ Qc1GMPA1S1 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I > |

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1H2(S4)

= {S→ Qc1
GMPA1S1H2(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1H3(S4)

= {S→ Qc1
GMPA1S1H3(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1(S2)

= {S→ Qc1
GMS1(S2)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1(S3)

= {S→ Qc1
GMS1(S3)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→

Parallel communicating grammar systems . . . 147

< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1a1GMS2 = {S→ Qc1GMPA1S2 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1a1GMS3 = {S→ Qc1GMPA1S3 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2a1GMS1 = {S→ Qc2GMPA1S1 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1H2(S4)

= {S→ Qc2
GMPA1S1H2(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1H3(S4)

= {S→ Qc2
GMPA1S1H3(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1(S2)

= {S→ Qc2
GMS1(S2)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→

148 M. S. R. Wilkin, S. D. Bruda

< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1(S3)

= {S→ Qc2
GMS1(S3)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2a1GMS2 = {S→ Qc2GMPA1S2 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2a1GMS3 = {S→ Qc2GMPA1S3 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

The original component grammar Pa2 remains unchanged and works as it
did in the original system, but we will refer to it as Pa2Orig in order to remain
consistent with the naming of the other original components in the system.
The communication rule has also been modified to reflect the new names of
the component grammars.

Pa2Orig = {S→ S3, S(1) → S(2), S(2) → S(3), S(3) → S(4)} ∪
{S(4) → Qc1P2OrigS2

Qc1P3OrigS3
Qc2P2OrigS2

Qc2P3OrigS3
S(1)}.

Now we define the grammars that are used to reset the Pa1 helpers. They will
send the non-terminal < I > to their matching component grammar, which
will allow their derivation to restart. These components and their rewriting
rules are not part of the original system.

ResetGMc1Pa1S1
= ResetGMc1Pa1S1H2(S4)

= ResetGMc1Pa1S1H3(S4)
=

ResetGMc1Pa1S1(S2)
= ResetGMc1Pa1S1(S3)

= ResetGMc1Pa1S2
=

Parallel communicating grammar systems . . . 149

ResetGMc1Pa1S3
= ResetGMc2Pa1S1

= ResetGMc2Pa1S1H2(S4)
=

ResetGMc2Pa1S1H3(S4)
= ResetGMc2Pa1S1(S2)

= ResetGMc2Pa1S1(S3)
=

ResetGMc2Pa1S2
= ResetGMc2Pa1S3

= {S→< I >,< I >→< I >}
The components below will be used to reset Pc11S1H2(S4)

, Pc11S1H3(S4)
, Pc21S1H2(S4)

, and

Pc21S1H3(S4)
in Step 13 of the derivation. This reset allows queried components to

be reset to their axioms which in turn allows the derivation to restart. These
components were not part of the original system definition.

Us = { U→ U1, U1 → U2, U2 → U3, U3 → U4, U4 → U5, U6 → U7 }

ResetPc11S1H2(S4)
= Us ∪ {U7 → QPc11S1H2(S4)

U4}

ResetPc11S1H3(S4)
= Us ∪ {U7 → QPc11S1H3(S4)

U4}

ResetPc21S1H2(S4)
= Us ∪ {U7 → QPc11S1H2(S4)

U4}

ResetPc21S1H3(S4)
= Us ∪ {U7 → QPc11S1H3(S4)

U4}

The following, new grammars will be used to reset Pc14S1H2(S4)
, Pc14S1H3(S4)

, Pc24S1H2(S4)
,

and Pc24S1H3(S4)
in Step 14 of a successful derivation. The reset components al-

lows the system to restart the derivation process.

Ts = {T → T1, T1 → T2, T2 → T3, T3 → T4, T4 → T5, T6 → T7}

ResetPc14S1H2(S4)
= Ts ∪ {T7 → QPc14S1H2(S4)

T4}

ResetPc14S1H3(S4)
= Ts ∪ {T7 → QPc14S1H3(S4)

T4}

ResetPc24S1H2(S4)
= Ts ∪ {T7 → QPc24S1H2(S4)

T4}

ResetPc24S1H3(S4)
= Ts ∪ {T7 → QPc24S1H3(S4)

T4}

5.2.3 The CF-PCGS simulation of the 2-counter machine

In order for our construction to be valid it is enough for the grammars that
represent the original components to terminate the derivation with the same

150 M. S. R. Wilkin, S. D. Bruda

strings as in the original 11-component derivation. The components defined
as “original” will work with the 2-counter machine M simulating the steps
of M in their derivation. The system will change its configuration according
to the state of M and to the value of the string derived so far in the master
component (which will correspond at the end of the derivation with an input
accepted by M). Throughout the derivation strings of terminals will appear
in some components but will have no further role in the derivation; such oc-
currences have been silently replaced with generic symbols not appearing in
the description of the grammars or 2-counter machines (mostly α and β).

The master grammar will control the derivation. The string [x, q, c1, c2, e1, e2]
present in the master component, where x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B},
e1, e2 ∈ {−1, 0,+1} means that the 2-counter machine M is in state q, the
input head proceeds to scan x onto the input tape and c1, c2 on the two
storage (counter) tapes, respectively, and then the heads of the storage tapes
are moved according to values in e1, and e2. The number of A symbols in
the strings of the c1, c2 component grammars keep track of the value of the
counters of M, meaning that these numbers should always match the value
stored in the counters of M or else the system will block.

We used the “original” grammar system components Pc1i , Pc2i , 1 ≤ i ≤ 4 to
simulate the changes in the counters, as done in the original system [4]. All of
the other component grammars included in our construction enable the orig-
inal components to work correctly using one-step communication throughout
the derivation. This design ensures an exclusive communication relationship
between the the helper components that generate the same strings as the
grammar components they are copying which ensures the correct string gets
communicated to their corresponding original component at the right step.
This ensure that the 2-counter machine works as it did in the original con-
struction [4] because all of the strings generated in the original components
are the same.

The PCGS Γ first introduces [I] in the master grammar, then a number of
rewriting steps occur in a sequence that initializes Γ by setting the counters
to 0. Once these steps are completed Γ can then simulate the first transition
of M by rewriting [I] to u[x ′, q, Z, Z, e1, e2] where (x, q0, Z, Z, q, e1, e2, g) is a
rule of M. Here u = x if g = +1 and u = ε, x ′ = x if g = 0. In the case that
the input head moves (g = +1), the master grammar generates x followed
by [x ′, q, Z, Z, e1, e2] which shows that M is now scanning a new symbol. If
the input head does not move, the master grammar does not generate any
terminals and the string [x ′, q, Z, Z, e1, e2] indicates that M is still scanning
the same symbol. At this point Pc12 , Pc13 , Pc22 , and Pc23 verify the values stored

Parallel communicating grammar systems . . . 151

in the counters of M, and modify the values according to e1 and e2. Γ can
then determine if it can enter state q by verifying and updating the counters
before moving forward. In order to simulate the next step the master grammar
rewrites [x, q, c1, c2, e1, e2] to [x ′, q ′, c ′1, c

′
2, e
′
1, e
′
2], u ∈ {x, ε}, if M has a rule

(x, q, c ′1, c
′
2, q
′, e ′1, e

′
2, g). Here u = x if g = +1, and u = ε, x ′ = x if g = 0. Γ

then validates if c ′1, and c ′2 have been scanned on the counter tapes and then
updates these tapes to reflect the values in e ′1,and e ′2. If the input head moved
(g = +1), the symbol x is added to the string of the master component, and
so on.

We now present the process outlined above in more details. For the remain-
der of this section we use the a two-column layout to represent the configura-
tions of Γ . As mentioned earlier the 11 original grammars have the word “Orig”
in their names. We number the steps of the derivation so that we can refer to
them in a convenient manner. Such a numbering is shown parenthetically on
top of the =⇒ operator.

The initial configuration of Γ (having the respective axiom in each com-
ponent) is rewritten as follows. There are nondeterministic rewriting choices
in several components as shown in Figure 2. Here u1, u2, u3, represent the
original Pc11 , Pc12 , Pc13 components and their copycat grammars; they can either
rewrite to query components that simulate the rules in the master grammar
or they can rewrite to query a helper component in the Pc14 section. u ′1, u

′
2, u

′
3,

represent the original Pc21 , Pc22 , Pc23 components and their modified copy gram-
mars; they can either rewrite to query helper grammars that contain rules
similar to the master grammar or they can rewrite to query helpers in the
Pc24 group. In this case if any of the components rewrite to query the Pc14 or
Pc24 helpers the system will block because none of the components requesting
strings from Pc14 or Pc24 have a rewriting rule for S4. Therefore, the only first
step that will lead to a successful derivation is the one shown in Figure 3. We
then continue as shown in Figures 4 and 5.

Now we have yet another nondeterministic rewriting choice in several com-
ponents; please refer to Figure 6. Here u1, u2, u3, represent the original and
helper components for Pc11 , Pc12 , Pc13 ; they can rewrite and query their collabo-
rating grammars that mimic either the rules in the master or Pc14 components.
u ′1, u

′
2, u

′
3, represent the original and helper components for Pc21 , Pc22 , Pc23 ; they

can rewrite and query their matching component that simulate the master or
Pc24 rules. The master grammar and all of the helper components have only one
rewriting choice, to query their corresponding Pa1 component, or to rewrite
to the non-terminal C. Pc11 , Pc12 , Pc13 , Pc21 , Pc22 , and Pc23 , could have rewritten
to query their corresponding component grammars in the master grammar

152 M. S. R. Wilkin, S. D. Bruda



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
U U
U U
T T
T T



(1)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
u1 u1
u1 u1
u1 u2

u3 S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
u ′
1 u ′

1
u ′
1 u ′

1
u ′
1 u ′

2

u ′
3 S

(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMOrig

Q
c1
GMPa1

S1

Q
c1
GMPa1

S1H2(S4)
Q

c1
GMPa1

S1H3(S4)

Q
c1
GMPa1

S1(S2)
Q

c1
GMPa1

S1(S3)

Q
c1
GMPa1

S2

Q
c1
GMPa1

S3

Q
c2
GMPa1

S1

Q
c2
GMPa1

S1H2(S4)

Q
c2
GMPa1

S1H3(S4)
Q

c2
GMPa1

S1(S2)

Q
c2
GMPa1

S1(S3)
Q

c2
GMPa1

S2

Q
c2
GMPa1

S3

S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1


Figure 2: PCGS simulation of a 2-counter machine: Step 1 (nondeterministic).

Parallel communicating grammar systems . . . 153



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
U U
U U
T T
T T



(1)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

Q
c1
GMS1

Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

Q
c1
GMS1

S2

Q
c1
GMS1S3

Q
c1
GMS2

Q
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
Q

c2
GMS1

Q
c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

Q
c2
GMS1

S2

Q
c2
GMS1S3

Q
c2
GMS2

Q
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMOrig

Q
c1
GMPa1

S1

Q
c1
GMPa1

S1H2(S4)
Q

c1
GMPa1

S1H3(S4)

Q
c1
GMPa1

S1(S2)
Q

c1
GMPa1

S1(S3)

Q
c1
GMPa1

S2

Q
c1
GMPa1

S3

Q
c2
GMPa1

S1

Q
c2
GMPa1

S1H2(S4)

Q
c2
GMPa1

S1H3(S4)
Q

c2
GMPa1

S1(S2)

Q
c2
GMPa1

S1(S3)
Q

c2
GMPa1

S2

Q
c2
GMPa1

S3

S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1


Figure 3: PCGS simulation of a 2-counter machine: Step 1.

154 M. S. R. Wilkin, S. D. Bruda



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

Q
c1
GMS1

Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

Q
c1
GMS1

S2

Q
c1
GMS1S3

Q
c1
GMS2

Q
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
Q

c2
GMS1

Q
c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

Q
c2
GMS1

S2

Q
c2
GMS1S3

Q
c2
GMS2

Q
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMOrig

Q
c1
GMPa1

S1

Q
c1
GMPa1

S1H2(S4)
Q

c1
GMPa1

S1H3(S4)

Q
c1
GMPa1

S1(S2)
Q

c1
GMPa1

S1(S3)

Q
c1
GMPa1

S2

Q
c1
GMPa1

S3

Q
c2
GMPa1

S1

Q
c2
GMPa1

S1H2(S4)

Q
c2
GMPa1

S1H3(S4)
Q

c2
GMPa1

S1(S2)

Q
c2
GMPa1

S1(S3)
Q

c2
GMPa1

S2

Q
c2
GMPa1

S3

S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1



(2)
=⇒



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
[I] [I]
[I] [I]
[I] [I]

[I] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
[I] [I]
[I] [I]
[I] [I]

[I] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
[I]

[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

[I] S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1



(3)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U2 U2
U2 U2
T2 T2
T2 T2



Figure 4: PCGS simulation of a 2-counter machine: Steps 2 and 3.

Parallel communicating grammar systems . . . 155



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U2 U2
U2 U2
T2 T2
T2 T2



(4)
=⇒



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
AC AC
AC AC
AC [I]

[I] Q
c1
GMS1

Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

Q
c1
GMS2

Q
c1
GMS3

S4 S4
AC AC
AC AC
AC [I]

[I] Q
c2
GMS1

Q
c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

Q
c2
GMS2

Q
c2
GMS3

S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > Q
c1
S2
Q

c1
S3
Q

c2
S3
Q

c2
S3
S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U3 U3
U3 U3
T3 T3
T3 T3



(5)
=⇒



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U3 U3
U3 U3
T3 T3
T3 T3



Figure 5: PCGS simulation of a 2-counter machine: Steps 4 and 5.

156 M. S. R. Wilkin, S. D. Bruda

helpers or could have rewritten to query Pc14 or Pc24 . The former choice would
result in a blocked derivation due to the introduction of circular queries. This
step makes use of reset queries; this ensures that all copy cat grammars that
are mimicking the functionality of the master grammar remain synchronized
with one another. Again, it is critical that all helper components that are
copying the tasks of the original system generate the same string at the same
time. The only possible step that will lead to a successful derivation is the one
in Figure 6.

It is at this point that Γ can start to simulate the 2-counter machine M. The
configuration described above represents the initial state of M with 0 stored
in both counters. If M has a rule (x, q0, Z, Z, q, e1, e2, g), and so can enter
the state q by reading input x and the counter symbols are both Z, then the
master grammar can chose to introduce the string u[x ′, q, Z, Z, e1, e2]. If the
input head of M changes to g = +1, then u = x and a new symbol x ′ gets
scanned onto the input tape, but if the input head does not move (g = 0),
then u = ε, x ′ = x, and the symbol x is scanned on the input tape. We thus
continue the derivation as shown in Figures 7 and 8.

The original Pc11 , Pc14 , Pc21 , and Pc24 , components modify the number of A
symbols in their respective strings according to e1 and e2. P

c1
1 and Pc21 introduce

AAC, AC, C whenever e1 and e2 are, +1, 0, or −1, respectively, while Pc14 and
Pc24 remove an A. The system thus adjusts the counters and if they decrement
below 0 the derivation blocks.

The original grammars Pc12 , Pc13 , Pc22 , and Pc23 verify the number of A sym-
bols in their respective strings to see if they agree with c1, c2. Γ now starts
to validate the value stored in the first counter (the second counter will be
verified in exactly the same way). If c1 = Z, then we have the following string
α[x ′, q, Z, c2, e1, e2] in Pc12 , Pc13 , which means the number of A symbols in α is 0.
If this is not true the system blocks because in the next step Pc13 would rewrite
[x ′, q, Z, c2, e1, e2] to a (a terminal symbol), and it does not have a rewriting
rule for A. If c1 = B then we have the following string α[x ′, q, B, c2, e1, e2],
where the there is at least one A in the string α. If there is no A then the
system will block because Pc22 does not have an applicable rewriting rule for
any other non-terminal.

In the following step (Figure 10) we use the new rule S1 → Q4SpecHelp1 so
its role in Pc11S1(S2)

, Pc11S1(S3)
Pc21S1(S2)

, and Pc21S1(S3)
components becomes apparent.

This step ensures that Pc12S2original , P
c1
2S3original

, Pc22S2original , P
c3
2S3original

receive

the correct strings in Step 14.
Similar to the first step in the derivation in Step 13 the P1, P2, and P3

Parallel communicating grammar systems . . . 157



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U3 U3
U3 U3
T3 T3
T3 T3



(6)
=⇒



QPa1
Orig

Q
c1
Pa1

S1
Q

c1
Pa1

S1H2(S4)

Q
c1
Pa1

S1H3(S4)
Q

c1
Pa1

S1(S2)

Q
c1
Pa1

S1(S3)
Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
Reset

c1
GMPa1

S1H2(S4)

Q
Reset

c1
GMPa1

S1H3(S4)

Q
Reset

c1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

Q
Reset

c1
GMPa1

S2

Q
Reset

c1
GMPa1

S3

Q
c2
Pa1

S1
Q

c2
Pa1

S1H2(S4)

Q
c2
Pa1

S1H3(S4)
Q

c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
Q

c2
Pa1

S2

Q
c2
Pa1

S3
Q

Reset
c2
GMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

QReset
GM

c2
Pa1

S3

u1 u1
u1 u1
u1 u2
u3 aC
aC aC
aC aC
S4 S4
u ′
1 u ′

1
u ′
1 u ′

1
u ′
1 u ′

2
u ′
3 aC
aC aC
aC aC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U4 U4
U4 U4
T4 T4
T4 T4


Figure 6: PCGS simulation of a 2-counter machine: Step 6.

158 M. S. R. Wilkin, S. D. Bruda



QPa1
Orig

Q
c1
Pa1

S1
Q

c1
Pa1

S1H2(S4)

Q
c1
Pa1

S1H3(S4)
Q

c1
Pa1

S1(S2)

Q
c1
Pa1

S1(S3)
Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
c1
ResetGMPa1

S1H2(S4)

Q
c1
ResetGMPa1

S1H3(S4)

Q
Reset

c1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

Q
Reset

c1
GMPa1

S2

Q
Reset

c1
GMPa1

S3

Q
c2
Pa1

S1
Q

c2
Pa1

S1H2(S4)

Q
c2
Pa1

S1H3(S4)
Q

c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
Q

c2
Pa1

S2

Q
c2
Pa1

S3
Q

Reset
c2
GMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

Q
Reset

c2
GMPa1

S3

u1 u1
u1 u1
u1 u2
u3 aC
aC aC
aC aC
S4 S4
u ′
1 u ′

1
u ′
1 u ′

1
u ′
1 u ′

2
u ′
3 aC
aC aC
aC aC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U4 U4
U4 U4
T4 T4
T4 T4



(7)
=⇒



< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S

S [I][I][I][I]S(2)

S S
S S
S S
S S
S S
S S
S S
U4 U4
U4 U4
T4 T4
T4 T4



Figure 7: PCGS simulation of a 2-counter machine: Step 7.

Parallel communicating grammar systems . . . 159



< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S

S [I][I][I][I]S(2)

S S
S S
S S
S S
S S
S S
S S
U4 U4
U4 U4
T4 T4
T4 T4



(8)
=⇒



u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

aQ
c1
GMS1

aQ
c1
GMS1H2(S4)

aQ
c1
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c1
GMS2

aQ
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
aQ

c2
GMS1

aQ
c2
GMS1H2(S4)

aQ
c2
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c2
GMS2

aQ
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMoriginal

Q
c1
GMS1(Pa1

Helper)

Q
c1
GMS1H2(S4)(Pa1

Helper)
Q

c1
GMS1H3(S4)(Pa1

Helper)

Q
c1
GMS1(S2)(Pa1

Helper)
Q

c1
GMS1(S3)(Pa1

Helper)

Q
c1
GMS2(Pa1

Helper)
Q

c1
GMS3(Pa1

Helper)

Q
c2
GMS1(Pa1

Helper)
Q

c2
GMS1H2(S4)(Pa1

Helper)

Q
c2
GMS1H3(S4)(Pa1

Helper)
Q

c2
GMS1(S2)(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
Q

c2
GMS2(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
[I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5


Figure 8: PCGS simulation of a 2-counter machine: Step 8.

160 M. S. R. Wilkin, S. D. Bruda



u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

aQ
c1
GMS1

aQ
c1
GMS1H2(S4)

aQ
c1
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c1
GMS2

aQ
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
aQ

c2
GMS1

aQ
c2
GMS1H2(S4)

aQ
c2
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c2
GMS2

aQ
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMoriginal

Q
c1
GMS1(Pa1

Helper)

Q
c1
GMS1H2(S4)(Pa1

Helper)
Q

c1
GMS1H3(S4)(Pa1

Helper)

Q
c1
GMS1(S2)(Pa1

Helper)
Q

c1
GMS1(S3)(Pa1

Helper)

Q
c1
GMS2(Pa1

Helper)
Q

c1
GMS3(Pa1

Helper)

Q
c2
GMS1(Pa1

Helper)
Q

c2
GMS1H2(S4)(Pa1

Helper)

Q
c2
GMS1H3(S4)(Pa1

Helper)
Q

c2
GMS1(S2)(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
Q

c2
GMS2(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
[I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5



(9)
=⇒



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S

au[x ′, q, Z, Z, e1, e2]au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
au[x ′, q, Z, Z, e1, e2]au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2] [I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5



Figure 9: PCGS simulation of a 2-counter machine: Step 9.

Parallel communicating grammar systems . . . 161



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S

au[x ′, q, Z, Z, e1, e2] au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
au[x ′, q, Z, Z, e1, e2] au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2] [I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5



(10)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

au[e1] ′ au[e1] ′

au[e1] ′ Q
c1
S1H2(S4)

Q
c1
S1H3(S4)

au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
au[e2] ′ au[e2] ′

au[e2] ′ Q
c2
S1H2(S4)

Q
c2
S1H3(S4)

au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > [I][I][I][I]S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U6 U6
U6 U6
T6 T6
T6 T6


Figure 10: PCGS simulation of a 2-counter machine: Step 10.

162 M. S. R. Wilkin, S. D. Bruda



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

au[e1] ′ S1
S1 au[e1] ′

au[e1] ′ au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
au[e2] ′ S1
S1 au[e2] ′

au[e2] ′ au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > [I][I][I][I]S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U6 U6
U6 U6
T6 T6
T6 T6



(11)
=⇒



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C

αC Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

αC

αC au[x ′, q, Z, Z, e1, e2]

aua Q
c1
S1

S4(2) S4(2)

Q
c1
S1(S2)

Q
c1
S1(S3)

S4 S4
βC Q

c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

βC

βC au[x ′, q, Z, Z, e1, e2]

aua Q
c2
S1

S4(2) S4(2)

Q
c2
S1(S2)

Q
S1(S3)c2

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γQ

c1
S2
Q

c1
S3
Q

c2
S2
Q

c2
S3
S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7


Figure 11: PCGS simulation of a 2-counter machine: Step 11.

Parallel communicating grammar systems . . . 163



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C

αC Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

αC

αC au[x ′, q, Z, Z, e1, e2]

aua Q
c1
S1

S4(2) S4(2)

Q
c1
S1(S2)

Q
c1
S1(S3)

S4 S4
βC Q

c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

βC

βC au[x ′, q, Z, Z, e1, e2]

aua Q
c2
S1

S4(2) S4(2)

Q
c2
S1(S2)

Q
c2
S1(S3)

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γQ

c1
S2
Q

c1
S3
Q

c2
S2
Q

c2
S3
S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7



(12)
=⇒



C
C S
S C
C C
C C
C C
C C
C S
S C
C C
C C
C C
C C
C C
C C
S1 C
C S1
S1 S2
S3 αC
S4(2) S4(2)
αC αC
S4 S4
S1 C
C S1
S1 S2
S3 βC
S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > γ ′S(1)
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7



Figure 12: PCGS simulation of a 2-counter machine: Step 12.

164 M. S. R. Wilkin, S. D. Bruda



C
C S
S C
C C
C C
C C
C C
C S
S C
C C
C C
C C
C C
C C
C C
S1 C
C S1
S1 S2
S3 αC
S4(2) §4(2)
αC αC
S4 S4
S1 C
C S1
S1 S2
S3 βC
S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > γ ′S(1)
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7



(13)
=⇒



QPa1

Q
c1
Pa1

S1
[I]

[I] Q
c1
Pa1

S1(S2)

QPa1
S1(S3) Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
Reset

c1
GMPa1

S1H2(S4)

Q
Reset

c1
GMPa1

S1H3(S4)

Q
Reset

C1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

QReset
GM

c1
Pa1S2

Q
Reset

c1
GMPa1

S3

Q
c2
Pa1

S1
W

W Q
c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
QA1C2S2

Q
c2
Pa1

S3
Q

c2
ResetGMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

Q
Reset

c2
GMPa1

S3

Q
c1
S4S1

W

W Q
c1
S4P4SpecHelp1S1S2

Q
c1
S4P4SpecHelp2S1S3

Q
c1
S4S2

Q
c1
S4S3

αC

S4(2) S4(2)
αC αC
S4 S4

Q
c2
S4S1

W

W Q
c2
S4P4SpecHelp1S1S2

Q
c2
S4P4SpecHelp2S1S3

Q
c2
S4S2

Q
c2
S4S3

βC

S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γ ′S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

Q
c1
S1S1H2(S4)

U4 Q
c1
S1S1H3(S4)

U4

Q
c2
S1S1H2(S4)

U4 Q
c2
S1S1H3(S4)

U4

Q
c1
S4S1H2(S4)

T4 Q
c1
S4S1H3(S4)

T4

Q
c2
S4S1H2(S4)

T4 Q
c2
S4S1H3(S4)

T4


Figure 13: PCGS simulation of a 2-counter machine: Step 13.

Parallel communicating grammar systems . . . 165

original and helper components have a nondeterministic choice. They could
rewrite to either the original, or helper forms of Qm, or Qc14 and Qc24 . If any of
these symbols is not Qm, then the system will block after the communication
step. The reset grammars now rewrite to request strings from there matching
helper grammars that simulate rules in the master grammar. During the next
step the query will reset the components that have GMPa1 in their labels (see
Figure 14).

The following step (Figure 11) is a communication step. It allows two of
the Pc11 and Pc21 helper grammars that are holding intermediate strings to
communicate with the components that will be used for the derivation of the
original Pc12 , Pc13 ,Pc22 , and Pc23 components. In the above step two of the Pc14 ,
and two of the Pc24 helpers use the new rewriting rule S2 → S2 in order to avoid
the introduction of a circular query. We continue as in Figures 12 and 13.

If αC and βC contain the same number of A symbols as stored in the
counters ofM, and ifM is in the accepting state (q = qF), then the system can
either rewrite to a terminal string by using the rule < x ′, qF, Z, Z, e1, e2 >→ x ′

in Gm, or continue; otherwise the system has no chance but to continue the
derivation. If the system continues the derivation then the input head ofM will
move to the right, and the symbol x ′ will be left behind. Then x ′ will become
part of the string generated by Γ by using the rule: < x ′, q, Z, Z, e1, e2 >→
x[y, q ′, c ′1, c

′
2, e
′
1, e
′
2]. If the scanned symbol does not change the input head

will not move, and Gm can then use the following rule: < x ′, q, Z, Z, e1, e2 >→
[x ′, q ′, c ′1, c

′
2, e
′
1, e
′
2]. The tuple (x, i, j) will represent the current state of the

storage tapes of M, where i and j are integers that correspond to the number
of A in the counters; these numbers will continue to increment and decrement
according to the values of e1 and e2. The system will continue to loop and
compare the number of A symbols in its counters to those in the grammar
system indefinitely or can chose to stop (when permitted) as described above.
We conclude that every successful computation ofM has a matching successful
derivation in Γ , and vice versa.

Note finally that this construction will not accept the empty string even if
this string is in L(M). In such a case Γ can be modified to accept the empty
string simply by adding the rule S→ ε to its master grammar.

6 Conclusion

PCGS offer an inherently concurrent model for describing formal languages.
It is precisely because of this inherent parallelism that one of our longer term

166 M. S. R. Wilkin, S. D. Bruda



QPa1

Q
c1
Pa1

S1
Q

c1
Pa1

S1H2(S4)

Q
c1
Pa1

S1H3(S4)
Q

c1
Pa1

S1(S2)

Q
c1
Pa1

S1(S3)
Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
Reset

c1
GMPa1

S1H2(S4)

Q
Reset

c1
GMPa1

S1H3(S4)

Q
Reset

c1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

Q
Reset

c1
GMPa1

S2

Q
Reset

C1
GMPa1

S3

Q
c2
Pa1

S1
Q

c2
Pa1

S1H2(S4)

Q
c2
Pa1

S1H3(S4)
Q

c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
Q

c2
Pa1

S2

Q
c2
Pa1

S3
Q

Reset
c2
GMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

Q
Reset

C2
GMPa1

S3

Q
c1
S4S1

W

W Q
c1
S4P4SpecHelp1S1S2

Q
c1
S4P4SpecHelp2S1S3

Q
c1
S4S2

Q
c1
S4S3

αC

S4(2) S4(2)
αC αC
S4 S4

Q
c2
S4S1

W

W Q
c2
S4P4SpecHelp1S1S2

Q
c2
S4P4SpecHelp2S1S3

Q
c2
S4S2

Q
c2
S4S3

βC

S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γ ′S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

Q
c1
S1H2(S4)

U4 Q
c1
S1H3(S4)

U4

Q
c2
S1S1H2(S4)

U4 Q
c2
S1H3(S4)

U4

Q
c1
S4S1H2(S4)

T4 Q
c1
P4S1H3(S4)

T4

Q
c2
P4S1H2(S4)

T4 Q
c2
P4S1H3(S4)

T4



(14)
=⇒



u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > < I >

< I > < I >
< I > < I >
< I > < I >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > < I >
< I > < I >
< I > < I >
< I > < I >

α ′C S1
S1 S4
S4 α ′C
α ′C S4
S4(2) S4(2)
S4 S4
S4 S4
βC [I]
[I] S4
S4 βC
βC S4
S4(2) S4(2)
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S

S γ ′S(2)
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
WU4 WU4
WU4 WU4

S
(2)
4

T4 S
(2)
4

T4

S
(2)
4

T4 S
(2)
4

T4



Figure 14: PCGS simulation of a 2-counter machine: Step 14.

Parallel communicating grammar systems . . . 167

interest is to exploit this model in general (and CF-PCGS in particular) in
formal methods. Before this can even begin however several formal language
questions need to be addressed. One of them is the generative power.

We first examined one system designed earlier (using broadcast communi-
cation) to show Turing completeness [4]. We explained that such an inter-
pretation of communication modifies the power of the PCGS and hence this
simulation does not work if one-step communication is used (Section 4). We
then proceeded to design a system that uses a similar approach, except that we
created an arrangement that would allow one component to be queried by one
and only one grammar during each communication step, thus eliminating the
need for broadcast communication. In order to do this we created a number
of helpers that act as support systems for the original component grammars;
the role of the helpers was to create and hold intermediate strings until they
were requested from their corresponding original grammar. In order to get the
construction to work we used a number of different strategies, as follows:

1. A number of copycat components were created. They contain rules simi-
lar to the original components. These components derive the same strings
during the same steps as the original components, which allows for each
of the original grammars to request the same string at the same time
without the need to query the same component.

2. We introduced reset components, whose purpose is to reset some of the
copycat grammars at precise steps in the derivation in order to fix syn-
chronization issues.

3. We used waiting rules to ensure that communication steps would only
be triggered at certain points in the derivation.

4. We used selective rewriting rules in conjunction with blocking, thus al-
lows certain rewriting rules to be successful only at specific steps and
ensures that no undesired strings are created.

Using these techniques we were able to construct a CF-PCGS capable of
simulating an arbitrary 2-counter machine, and so show that CF-PCGS are
indeed Turing complete using either style of communication (Theorem 5).
Admittedly our construction is not as compact or elegant as the ones used in
similar proofs [2, 3, 4], but it has the advantage of being correct according to
the one-step communication model.

True, the result established in this paper is already known. Indeed, one other
path of showing Turing completeness of returning CF-PCGS exists: one can

168 M. S. R. Wilkin, S. D. Bruda

take one of the constructions that show completeness of non-returning CF-
PCGS [5, 14] and then convert such a construction into a returning CF-PCGS
(a single construction for this conversion is known [8]).

Even so, our result has several advantages. For one thing we are doing it
more efficiently. Note first that the conversion from non-returning to returning
CF-PCGS [8] increases the number of components from n to 4n2−3n+1 [23].
One of the results showing Turing completeness of non-returning CF-PCGS
[14] uses a construction with an arbitrary number of components, so that
it proves that RE = L(PC∗(CF)) instead of our RE = L(PC95(CF)). The
other proof of Turing completeness for non-returning CF-PCGS [5] provides
a PCGS with 6 components, which is equivalent to 4× 62 − (3 ∗ 6) + 1 = 127
components for the returning case, so this shows RE = L(PC127(CF)) versus
our RE = L(PC95(CF)). In both cases our result is tighter.

It is apparent that broadcast communication allows for a more compact
CF-PCGS for certain languages. Indeed, one could compare our 2-counter
machine simulation (featuring as many as 95 components) with the broadcast
communication-enabled simulation [4] (with only 11 components). A further
study on simulating non-returning CF-PCGS using the returning variant [23]
also determined that the use of broadcast communication (called this time
“homogenous queries”) results in a PCGS with fewer components (though
this time the number of components remain of the same order of magnitude in
the general case). We now effectively showed that this (reducing the number
of components) is the sole advantage of broadcast communication, which does
not otherwise increase the power of CF-PCGS. It would be interesting to see
whether our construction can be made even more concise, which we believe
to be the case. Indeed, applying the techniques from this paper to another
proof using broadcast communication [2] (and resulting in a system with only
5 components) is very likely to result in a smaller PCGS. We believe that our
construction is general and so can be applied in this way with relative ease.

Indeed, the discussion above suggests that the techniques used in our ap-
proach are applicable not only to our construction but in a more general
environment. That is, they appear to be useful for eliminating broadcast com-
munication in general. Whether this is indeed the case and if so in what cir-
cumstances is an interesting open question.

Parallel communicating grammar systems . . . 169

References

[1] S. D. Bruda, M. S. R. Wilkin, Parse trees for context-free parallel communicat-
ing grammar systems, Proc. 13th International Conference on Automation and
Information (ICAI 12), Iasi, Romania, June 2012, pp. 144–149. ⇒114

[2] E. Csuhaj-Varjú, G. Paun, G. Vaszil, PC grammar systems with five context-free
components generate all recursively enumerable languages, Theoretical Computer
Science 299 (2003) 785–794. ⇒119, 121, 124, 167, 168

[3] E. Csuhaj-Varjú, On size complexity of context-free returning parallel communi-
cating grammar systems, in: Where Mathematics, Computer Scients, Linguistics
and Biology Meet, (ed. C. Martin-Vide and V. Mitrana), Springer, 2001, pp. 37–
49. ⇒119, 121, 124, 167

[4] E. Csuhaj-Varjú, G. Vaszil, On the computational completeness of context-free
parallel communicating grammar systems, Theoretical Computer Science, 215
(1999) 349–358. ⇒115, 119, 121, 124, 125, 126, 129, 141, 150, 167, 168

[5] E. Csuhaj-Varjú, G. Vaszil, On the size complexity of non-returning context-
free PC grammar systems, Proc. 11th International Workshop on Descriptional
Complexity of Formal Systems (DCFS 2009), Magdeburg, Germany, 2009, pp.
91–100. ⇒119, 121, 168

[6] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, G. Păun, Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation, Gordon and Breach, 1994.⇒114, 115, 116, 118, 119, 124

[7] J. Dassow, G. Păun, G. Rozenberg, Grammar systems, in: Handbook of Formal
Languages – Volume 2. Linear Modeling: Background and Applications, Springer,
1997, pp. 155–213. ⇒119

[8] S. Dumitrescu, Nonreturning PC grammar systems can be simulated by return-
ing systems, Theoretical Computer Science, 165 (1996) 463–474. ⇒ 114, 121,
168

[9] P. C. Fischer, Turing machines with restricted memory access, Information and
Computation, 9 (1966) 364–379. ⇒115, 126

[10] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Macmillan Higher Education, 1979. ⇒116

[11] V. Geffert, Context-free-like forms for the phrase-structure grammars, Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science,
324 (1988) 309–317. ⇒119

[12] G. Katsirelos, S. Maneth, N. Narodytska, T. Walsh, Restricted global grammar
contraints, Proc. Principles and Practice of Constraint Programming (CP 2009),
Lecture Notes in Computer Science, 5732 (2009) 501–508. ⇒116

[13] H. R. Lewis, C. H. Papadimitriou, Elements of the Theory of Computation,
Prentice Hall, 2nd edition, 1998. ⇒116

[14] N. Mandache, On the computational power of context-free PC grammar systems,
Theoretical Computer Science, 237 (2000) 135–148. ⇒114, 121, 168

https://bruda.ca
http://people.inf.elte.hu/csuhaj/
http://www.imar.ro/~gpaun/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://dx.doi.org/10.1016/S0304-3975(02)00852-6
http://www.journals.elsevier.com/theoretical-computer-science/
http://www.journals.elsevier.com/theoretical-computer-science/
http://people.inf.elte.hu/csuhaj/
http://www.springer.com/la/book/9780792366935
http://www.springer.com/la/book/9780792366935
http://people.inf.elte.hu/csuhaj/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://dx.doi.org/10.1016/S0304-3975(98)00193-5
http://www.journals.elsevier.com/theoretical-computer-science/
http://people.inf.elte.hu/csuhaj/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://theo.cs.ovgu.de/dcfs2009/
http://theo.cs.ovgu.de/dcfs2009/
http://people.inf.elte.hu/csuhaj/
http://theo.cs.ovgu.de/dassow_eng.html
http://www.imar.ro/~gpaun/
http://theo.cs.ovgu.de/dassow_eng.html
http://www.imar.ro/~gpaun/
http://www.springer.com/la/book/9783540606482
http://www.springer.com/la/book/9783540606482
http://www.ece.mcmaster.ca/~sorina/
http://dx.doi.org/10.1016/0304-3975(95)00258-8
http://www.journals.elsevier.com/theoretical-computer-science/
http://www.journals.elsevier.com/information-and-computation
http://www.journals.elsevier.com/information-and-computation
https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
http://link.springer.com/book/10.1007/BFb0017126
http://link.springer.com/book/10.1007/BFb0017126
http://link.springer.com/bookseries/558
http://www7.inra.fr/mia/T/katsirelos/
http://homepages.inf.ed.ac.uk/smaneth/
http://www.cse.unsw.edu.au/~tw/
http://www.springer.com/us/book/9783642042430
http://link.springer.com/bookseries/558
http://lewis.seas.harvard.edu/
https://www.cs.berkeley.edu/~christos/
http://imar.ro/~mandache/
http://dx.doi.org/10.1016/S0304-3975(98)00159-5
http://www.journals.elsevier.com/theoretical-computer-science/

170 M. S. R. Wilkin, S. D. Bruda

[15] V. Mihalache, On parallel communicating grammar systems with context-free
components, in: Mathematical Linguistics and Related Topics, The Publishing
House of the Romanian Academy of Science, 1994, pp. 258–270. ⇒114

[16] V. Mihalache, On the generative capacity of parallel communicating grammer
systems with regular components, Technical report, Turku Centre for Computer
Science, Turku, Finland, 1996. ⇒118

[17] V. Mihalache, On the expressiveness of coverability trees for PC grammar sys-
tems, in Grammatical Models of Multi-Agent Systems (Topics in Computer
Mathematics), Gordon and Breach, 1999. ⇒114

[18] D. Pardubska, M. Platek, Parallel communicating grammar systems and analy-
sis by reduction by restarting automata, Technical report, Deptartment of Com-
puter Science, Comenius University, Bratislava, Slovakia, 2008. ⇒118

[19] G. Păun, L. Sântean, Parallel communicating grammar systems: the regular case,
Analele Universitatii din Bucuresti, Seria Matematica-Informatica, 2 (1989) 55–
63. ⇒114

[20] G. Păun, L. Sântean, Further remarks on parallel communicating grammar sys-
tems, International Journal of Computer Mathematics, 34 (1990) 187–203. ⇒
115

[21] L. Sântean, Parallel communicating grammar systems, Bulletion of the EATCS
(Formal Language Theory Column), 1, 1990. ⇒114, 118

[22] F. L. Tiplea, C. Ene, C. M. Ionescu, O. Procopiuc, Some decision problems for
parallel communicating grammar systems. Theoretical Computer Science, 134
(1994) 365–385. ⇒114

[23] G. Vaszil, On simulating non-returning PC grammar systems with returning
systems, Theoretical Computer Science, 209 (1997) 319–329. ⇒168

[24] G. Vaszil, Various communications in PC grammar systems, Acta Cybernetica,
13 (1997) 173–196. ⇒115, 121

[25] M. S. R. Wilkin, S. D. Bruda, Parallel communicating grammar systems with
context-free components are Turing complete for any communication model,
Technical Report 2014-003, Department of Computer Science, Bishop’s Univer-
sity, 2014. ⇒115

Received: October 10, 2016 • Revised: November 3, 2016

http://www.dcs.fmph.uniba.sk/~pardubska/
http://ktiml.mff.cuni.cz/~platek/
http://www.dcs.fmph.uniba.sk/~Epardubska/publikacie/PCGS-RA-ForLing08-final.pdf
http://www.dcs.fmph.uniba.sk/~Epardubska/publikacie/PCGS-RA-ForLing08-final.pdf
http://www.imar.ro/~gpaun/
http://www.csd.uwo.ca/~lila/
http://www.imar.ro/~gpaun/
http://www.csd.uwo.ca/~lila/
http://www.tandfonline.com/doi/abs/10.1080/00207169008803876
http://www.tandfonline.com/doi/abs/10.1080/00207169008803876
http://www.tandfonline.com/loi/gcom20
http://www.csd.uwo.ca/~lila/
http://profs.info.uaic.ro/~fltiplea/
http://www-verimag.imag.fr/~ene/
http://dx.doi.org/10.1016/0304-3975(94)90243-7
http://dx.doi.org/10.1016/0304-3975(94)90243-7
http://www.journals.elsevier.com/theoretical-computer-science/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://dx.doi.org/10.1016/S0304-3975(97)00120-5
http://www.journals.elsevier.com/theoretical-computer-science/
https://arato.inf.unideb.hu/vaszil.gyorgy/
https://www.inf.u-szeged.hu/actacybernetica/edb/vol13n2/Vaszil_1997_ActaCybernetica.xml
https://www.inf.u-szeged.hu/kutatas/acta-cybernetica
https://bruda.ca
http://www.ubishops.ca/wp-content/uploads/bucstr-2014-003.pdf
http://cs.ubishops.ca/research

Acta Univ. Sapientiae, Informatica 8, 2 (2016) 171–185

DOI: 10.1515/ausi-2016-0008

Jet browser model accelerated by GPUs

Richárd FORSTER
Eötvös Loránd University

Faculty of Informatics
email: forceuse@inf.elte.hu

Ágnes FÜLÖP
Eötvös Loránd University

Faculty of Informatics
email: fulop@caesar.elte.hu

Abstract.
In the last centuries the experimental particle physics began to de-

velop thank to growing capacity of computers among others. It is allowed
to know the structure of the matter to level of quark gluon. Plasma in
the strong interaction. Experimental evidences supported the theory to
measure the predicted results. Since its inception the researchers are in-
terested in the track reconstruction. We studied the jet browser model,
which was developed for 4π calorimeter. This method works on the mea-
surement data set, which contain the components of interaction points in
the detector space and it allows to examine the trajectory reconstruction
of the final state particles. We keep the total energy in constant values
and it satisfies the Gauss law. Using GPUs the evaluation of the model
can be drastically accelerated, as we were able to achieve up to 223 fold
speedup compared to a CPU based parallel implementation.

1 Introduction

The huge measurement data is generated in the experiment of high energy
particle physics e.g. in the ATLAS experiment (CERN) ∼ 40 × 106 events
per second are detected which requires 64 TB/sec. Every year at about one

Computing Classification System 1998: I.1.4
Mathematics Subject Classification 2010: 58A20
Key words and phrases: jet, trajectory reconstruction algorithm, database of experimen-
thal particle physics parallel computing, GPU, CUDA

171

http://www.elte.hu
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:forceuse@inf.elte.hu
https://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://www.elte.hu
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:fulop@caesar.elte.hu

172 R. Forster, Á. Fülöp

milliard events are measured, this represents three milliard simulation of the
event each year and the number of detected particles is growing exponentially.
The evaluation requires large computer capacity. Many fundamental questions
raise in this research. One of these is the trajectory reconstruction. This process
contains more levels. The first is a clearing the pure measurement data. Next
process contains the path reconstruction. This method includes two types of
elaboration. One of them is an online process to apply the level of assembly
program. In the next step the valuable stored data is studied by high level
computer program in batch mode.

In our article we work on the first level to use directly measured data set.
A jet browser algorithm was published in [1] to study the particle orbit in 4π
calorimeter.

The GPUs are providing an easy to program parallel model [10] that makes
us capable to achieve higher precision in our computations, while also reach-
ing out for bigger datasets [5]. The ever evolving and increasingly efficient
architecture of the GPUs makes it also a viable option to run the applica-
tions even on a laptop these days without relying on supercomputers and very
special not consumer level hardwares. Thus we implement a CUDA based par-
allel implementation of the Jet browser to broaden the limit of the original
algorithm.

2 Jet physics

The jet physics [6] plays important role in the high energy physics. We present
the process from the collision of protons to observable particles by detector
(Figure 1).

It contains three different parts. The first range is the parton session, which
contains the quark gluon plasma with strong interaction on the distance 10−15m.
In the theoretical model the jet are produced in hard scattering processes gen-
erating high transverse momentum quarks or gluon. The next part of the pro-
cess is particle, where the constituents are formed from the quarks and gluon.
This is called hadronisation procedure. In the last phase we detect the final
state objects, which are the components of the electromagnetic and hadronic
showers. The theoretical studying applies the Monte Carlo simulations. At the
parton and particle process PYTHIA [8] software package is used to calculate
and at detector phase the final state particle is simulated by GEANT [11].

We mention that, there are more kind definitions of the jet, because the
laws of physics are different between short-range and the finale hadronisation.

Jet browser model accelerated by GPUs 173

Figure 1: The structure of jet

It is important, that the definition is adequate with both theoretically and
experimentally.

3 Jet algorithm

The experimental data which is contains of large number of particles to mea-
sure their four-momentum. The particle’s energy, impulses pT and position
retrieve from data set. Two main jet definitions [2] are being used. One of
them is Cone Jet and the other is the kT Jet algorithm. In the cone jet algo-
rithm we apply that the jet stays in circular range in the plain of the detector
to describe by angles to search the stable energy state. The kT algorithm
can be used, where the values and direction of particle’s momentum have the
same order of magnitude, therefore the finale state showers will be collinear.
These definitions fulfill both theoretical and experimental model also. Several
advanced procedures [4, 7, 3] has been developed in this research field.

4 Parallel graph based trajectory reconstruction

In [1] a graph based trajectory reconstructing method was introduced. As
all reconstruction algorithms, this is also very computation intensive, where
even if the input dataset isn’t very large, the combination of those inputs can
generate a lot of work. To effectively speed up the process now we introduce a

174 R. Forster, Á. Fülöp

CUDA based GPU implementation for the same problem, as the GPUs proved
to be a valuable device in parallel computations [5].

4.1 Jet browser model

The jet analysis and the jet reconstruction method are applied to study the
structure of jet in high energy physics. A shower is a narrow cone of hadrons
and other particles which are produced in detector phase. These constituents
are measured by detector to determine the trajectories and the type of con-
stituents [1].

In 2009 year Gy. Vesztergombi has presented a new idea of a 4π detector [9].
A few particle trajectories (e−, e+, γ) can be reconstructed by a model, which
was published [1]. The component of shower take part in the electromagnetic
and strong interaction, decaying in two or more particles, but we neglect the
strong interaction, because the cross section is very small. We can measure
the point of the elements (e−, e+), which consists of components of the three
dimensional Euclidean space. The jet reconstruction model involves the energy
and charge conservation. It has been proven that the orbits correspond to
weighted directed tree graph G(Ψ, E, V,w).

This method consists of three steps: We find all of neighbor detected points
and fit a straight line to them. Next we merge these small pieces for a long
orbit. At the end we determine the common points of the trajectories.

Let us denote the set of measured points by Vp in the Euclidean space.
The three-points-straight is accepted, if the fitting error is smaller then the
value of εY , εZ. These quantity depend on the experimental and theoretical
considerations. The set Sstp contains the three-point-straight. This can be
constructed by recursive using the set Vp with finite steps.

In the second part of the model we merge the short peaces for a long trajec-
tories. In this case we have taking into account the curvature of the orbits and
the distance between two different straights. The insertion was successfully, if
the peaces were very close to each other. The time sequence of the measured
points has strong consecutively, therefore the postfix and prefix map can be
defined unique on this set.

During the hadronisation we needed to find the decay points to develop an
algorithm, which can solve the original problem of this article.

Three types of decay point were introduced Children case, Parent-child cases
and Undetected parent. We study, when two or more orbits create from the
same points, it means the Children case. The Parent-child case continues the
building ChildStraights, then we study the energy dominant particle case to

Jet browser model accelerated by GPUs 175

construct a more complicated tree graph. At the end we need take into account
that situation, when a particle is not measured. In the experimental particle
physics there are a few particle which we can not detected by this type of the
calorimeter (i.e. γ). Then we apply that the energy is conservation during this
process.

The experiment consists of a beam (direction of the shoot is parallel with
Z axis). It interact with target due to result electromagnetic shower

In [1] a graph based trajectory reconstructing method was introduced. As
all reconstruction algorithms, this is also very computation intensive, where
even if the input dataset isn’t very large, the combination of those inputs can
generate a lot of work. As these ideas were proposed a couple of years ago,
the originally used architecture for the computation may not be so efficient
now. Back then a grid cluster was used to run the algorithm, but now the
GPUs have outgrown the performance of smaller CPU clusters with their much
more efficient design and seriously parallel architecture. Hence our current
implementation involves CPUs, running the algorithm in parallel and GPUs,
doing the computation in massively distributed manner, as they can effectively
speed up the process as we already shown it in [5].

4.2 Implementation

The machine used for implementation has a GeForce GTX 980M with ”com-
puting capability” 5.2 [10] and an Intel Core i7-4710HQ CPU (Table 1).

4.2.1 CUDA memory hierarchy

The threads running on a CUDA capable GPU can access data from multiple
memory spaces (Figure 2) [10]. Each thread has its own private local memory.
The blocks containing the threads has access to a shared memory that is visible
from all the contained threads. During the execution the whole set of threads
launched in the grid have access to the same global memory. Additionally
there are two read-only memory spaces, that can also be accessed by all the
threads. These are the constant and texture memories. The global, constant,
and texture memories are optimized for different usage scenarios.

176 R. Forster, Á. Fülöp

GeForce GTX 980M

Technical Specifications Compute Capabiliting 5.2

Transistors (Million) 5200

Memory (GB) 4

Memory Bandwidth (GB/s) 160

GFLOPs 3189

TDP (watts) 125

i7-4710HQ

Transistors (Million) 1400

Connected memory (GB) 24

Memory Bandwidth (GB/s) 25.6

GFLOPs 422

TDP (watts) 47

Table 1: GeForce GTX 980M and Core i7-4170HQ technical specifications

Figure 2: CUDA capable GPU’s memory hierarchy

Jet browser model accelerated by GPUs 177

4.2.2 Design choices

From the memory hierarchy (Section 4.2.1) our solution uses the global, shared
and local memory. For initialization we move the array storing the original de-
tected points to the GPU’s global memory. We process on this input to gener-
ate the required triplets, that will build up the trajectories. As for the triplets
we have to match the points of three consecutive detector layers, we can map
this to a 3 dimensional block to process on the GPU. As the maximum length
in the Z coordinate can be only 64, we decided to set it to it’s maximum value
and align the rest accordingly. As one block can have 1024 threads maximum,
we make our blocks to be (x = 4, y = 4, z = 64) in size. Because we would like
to check all points from one layer to all the others in the next and also on the
third one, this process will generate a huge number of read operations (1024
comparisons by each block) on the device’s global memory. While caching is
available [10] on the GPU used for implementation, it is still time consuming
to fetch all the data from the device memory. Hence at the beginning of the
computation we further push the data from the global memory into shared
memory, drastically decreasing the required time to proceed, considering it
can be 100 times faster [10] compared to the global memory. This is because
the global memory is on the card, while the shared memory and the registers
are on the chip. As a result of this, the triplets will be the generated online
and will be stored on the device. An example of block assignment is shown on
Figure 3.

The triplets stored in device memory contains a pointer to the possible next
part, the child element and there is also a pointer to the previous chunk, the
parent element, basically making a linked list at the end. The process on the
triplets is similar to the point matching done before in terms of block settings.
In this case we only need a two dimensional block as we only need to check the
triplets with each other, so we set the size of the block in the number threads
to be (x = 32, y = 32).

4.2.3 Algorithm

Following the stated principles in 4.2.1 and 4.2.2 the host side of the final
algorithm for the triplet generation is in Figure 4.

178 R. Forster, Á. Fülöp

Figure 3: The detector layers as they are represented in a three dimensional
CUDA block.

1: procedure makeTriplets(P, L,NP)
2: CudaMalloc(T)
3: DT,DP,DNP ← CudaMemcpyToDevice(T, P,NP)
4: start← 0

5: for each i ∈ 0..L− 2 do
6: x, y, z← NP[i]/4+ 1,NP[i+ 1]/4+ 1,NP[i+ 2]/64+ 1
7: threads(4, 4, 64)
8: blocks(x, y, z)
9: makeTripletsKernel(DT,DP,DNP, i, start)

10: start← start+NP[i]
11: end for
12: end procedure

Figure 4: The host part of the triplet generation, inputs are the points, the
number of layers and the number of points per layers.

Jet browser model accelerated by GPUs 179

The implemented kernel function, which needs to be called from the host side
to initiate the computations on the GPU is detailed in Figure 5. As this is the
most time consuming kernel, it incorporates the shared memory to compute
the triplets as fast as possible.

1: procedure makeTripletsKernel(DT,DP,DNP, i, start)
2: j← blockIdx.x ∗ blockDim.x+ threadIdx.x
3: k← blockIdx.y ∗ blockDim.y+ threadIdx.y
4: l← blockIdx.z ∗ blockDim.z+ threadIdx.z
5: SP ←Memcpy DP to shared memory

6: if Line found on (SP[j], SP[k], SP[l]) then
7: T [start+ j]← (SP[j], SP[k], SP[l])
8: end if
9: end procedure

Figure 5: Device kernel to generate triplets, inputs are the array for the triplets,
the detected points, the number of points per detector layer, the index of the
first layer being tested and the index, where the triplets are starting in the
array for the given layer.

The host side of the algorithm used to generated the lines in the trajectories
can be found in Figure 6.

1: procedure makeTriplets(T,NT)
2: x, y, z← NT/32+ 1, x, 1
3: threads(32, 32, 1)
4: blocks(x, y, z)
5: makeLinesKernel(T)
6: end procedure

Figure 6: The host side algorithm for the line generation, inputs are the triplets
in the device memory and the number of them.

The device function required for the line generation on GPU is in Figure 7.

180 R. Forster, Á. Fülöp

1: procedure makeLinesKernel(T)
2: i← blockIdx.x ∗ blockDim.x+ threadIdx.x
3: j← blockIdx.y ∗ blockDim.y+ threadIdx.y
4: if T[j].next == NULL then
5: if could fit line on (T[j], T[i]) then
6: T [j].next← T [i]
7: return
8: end if
9: end if

10: end procedure

Figure 7: The device function to generate the lines, input is the array allocated
in the device memory for the triplets.

4.3 Results

Because the problem at hand requires the comparison of all the possible com-
binations of the points in three consecutive layers and later the triplets are
checked in a similar fashion, there is plenty of room for parallelization. Also
the memory bound properties of the algorithm makes good use of the shared
memory on the GPU. As we will see, the GPUs memory hierarchy (Section
4.2.1) makes them more suitable for these kind of applications. First, we take
a look at the triplet generation using a CPU based parallel implementation
and the GPU specific solution, comparing how they fair to each other. Then
we do the same for the line generation.

The system used for development and testing is described in Table 2.

CPU GPU OS Compiler
CUDA
version

Intel Core
i7 4710HQ

GeForce
GTX 980M

Windows
10 Pro

Visual
C++ 2013

7.0

Table 2: The test system

To evaluate the performance of our algorithms running on both CPU and
GPU, we generated a dataset by simulating 2000, 4000, 8000, 16000 events
using Geant4, running it with 100 MeV as the energy. The number of detected
points were 19500, 38855, 77474, 154905 respectively (Figure 8). The simulated
detector had 9 layers, giving us 3 batch of layers containing points to check
for triplets.

Jet browser model accelerated by GPUs 181

Figure 8: Number of detected points on the different number of events

Evaluating the same dataset on a version of the implementation, that does
not use any of the shared memory on the GPU, the runtime is 5 times faster
compared to the parallel CPU implementation. By changing the algorithm
just slightly with moving the data to shared memory, we gain 27 times faster
performance compared to the previous GPU results, which means compared to
the CPU implementation the computation is up to 168 times faster in triplet
generation and 223 times faster in line generation.

The runtime (Figure 9) on CPU was timeTcpu = 226.627s, the same compu-
tation took timeTgpu = 44.083s on the GPU, while using the shared memory
it was just timeTgpush = 1.607s.

In the following we will keep using the GPU implementation using the shared
memory. In Figure 10 we can see as we increase the number of iterations the
difference between the CPU’s and GPU’s runtime is increasing, while the CPU
can take hours in some cases the GPU runs only for minutes.

As we already saw the results for 2000 events, here we describe the num-
bers for the other ones. As such on 4000 events the runtime on CPU was
timeTcpu4000 = 1817.95s, the same computation took timeTgpush4000

= 10.387s
on the GPU. On 8000 events the times were the following: on CPU we finished
in timeTcpu8000 = 13647.3s, while on the GPU in timeTgpush8000

= 80.998s.
For 16000 events on the CPU we could not finish in a reasonable time. The
computation was running for more than 15 hours and it still couldn’t finish. On
the other hand the GPU could give back results in timeTgpush16000

= 644.446s.

182 R. Forster, Á. Fülöp

Figure 9: Triplet generation time on 2000 events

Figure 10: Triplet generation time on CPU and GPU

Jet browser model accelerated by GPUs 183

In Figure 11 we can see that the performance difference is also very clear in
the generation of the lines. In this case while the CPU takes minutes to finish,
the GPU can be done in seconds. Also here we have a runtime value for CPU
under 16000 events, thanks to the lower number of combinations, that needs
to be computed.

Figure 11: Line generation time on CPU and GPU

Taking a closer look on the Figure: on 2000 events, the runtime on the
CPU is timeLcpu2000 = 12.685s and on the GPU timeLgpu2000 = 0.02s. While
on 4000 events the runtime on CPU was timeLcpu4000 = 26.027s, the same
computation took timeLgpu4000 = 0.071s on the GPU. On 8000 events the
times were the following: on CPU we finished in timeLcpu8000 = 53.566s, while
on the GPU in timeLgpu8000 = 0.247s. For 16000 events on the CPU we got
timeLcpu4000 = 204.694s, while on the other hand the GPU could give back
results in timeLgpu16000 = 0.916s.

184 R. Forster, Á. Fülöp

One reconstructed event can be seen on Figure 12.

Figure 12: Reconstructed event on the Geant event. Black crosses with the
noisy tail are the calculated points, while the full black parts are the Geant
generated points.

5 Summary

As the GPUs are evolving, introducing new, more efficient architectures, it be-
comes easier to modify the existing applications and algorithms to be parallel.
In this paper we were able to achive a 168 fold speed up compared to the CPU
version, while computing the triplets of the trajectories. When calculating the
full lines of the trajectories the system shows a 223 fold speed up in favor of
the GPU.

In all cases the performance was definitely better on the GPU. On triplets
timeTgpushi

<< timeTcpui and also for the lines timeLgpui << timeTcpui , i ∈
[2000, 4000, 8000, 16000].

Jet browser model accelerated by GPUs 185

The performance of the GPUs make it possible to reconstruct a high volume
of trajectories in parallel, finishing it in just a fraction on the runtime of the
CPU.

References

[1] A. Agocs, Á. Fülöp, Jet reconstruction of individual orbits at many parti-
cles problems, The 8th Joint Conference on Mathematics and Computer Sci-
ence:MACS 2010, Novadat Company, Komárno, Szlovákia 2011, pp. 123-138.⇒172, 173, 174, 175

[2] R. Atkin, Review of jet reconstruction algorithms, Journ. of Physics. Conf. Ser.
645 (2015) 012008. ⇒173

[3] S. Catani, Yu.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New
clustering algorithm for multijet cross sections in e+e− annihilation, Phys. Lett.,
B269, 3-4 (1991) 432-438. ⇒173

[4] S. D. Ellis, D. E. Soper, Successive combination jet algorithm for hadron colli-
sions, Phys. Rev. D 48, 7 (1993) 3160. ⇒173

[5] R. Forster, Á. Fülöp, Yang-Mills lattice on CUDA, Acta Univ. Sapientiae, Inf.,
5, 2 (2013) 184–211. ⇒172, 174, 175

[6] M. E. Peskin, D. V. Schroeder, Quantum Field Theory, Westview Press, 1995.⇒172
[7] S. Salur, Full Jet Reconstruction in Heavy Ion Collisions, Nuclear Physics A

830, 1-4 (2009) 139c-146c. ⇒173
[8] T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Com-

puter Physics Communications 178, 11 (2008) 852-867. ⇒172
[9] Gy. Vesztergombi, Reflections about EXChALIBUR, the Exclusive 4π Detector,

Conf. ”New Opportunities in the Physics Landscape at CERN”, 2009. ⇒174
[10] CUDA C Programming Guide, NVIDIA Corp., 2016. ⇒172, 175, 177
[11] GEANT Detector Description and Simulation Tool, CERN Program Library

Long Writeup, Geneva, 1993. ⇒172

Received: October 7, 2016 • Revised: November 9, 2016

https://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://www.novadat.hu/2-Info.pdf
http://iopscience.iop.org/article/10.1088/1742-6596/645/1/012008/pdf
http://www.sciencedirect.com/science/journal/03702693/269/3-4
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.48.3160
http://www.acta.sapientia.ro/acta-info
https://westviewpress.com/
http://www.sciencedirect.com/science/journal/03759474/830
http://www.sciencedirect.com/science/journal/00104655/178/11
http://www.sciencedirect.com/science/journal/00104655/178/11
http://indico.cern.ch/event/51128/other-view?view=standard
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://lambda.phys.tohoku.ac.jp/~kobayash/seminar/files/cern/geant.pdf

Acta Univ. Sapientiae, Informatica 8, 2 (2016) 186–215

DOI: 10.1515/ausi-2016-0009

Monocular indoor localization techniques

for smartphones

Gergely HOLLÓSI
Budapest University of

Technology and Economics
email: hollosi@tmit.bme.hu

Csaba LUKOVSZKI
Budapest University of

Technology and Economics
email: lukovszki@tmit.bme.hu

István MOLDOVÁN
Budapest University of

Technology and Economics
email: moldovan@tmit.bme.hu

Sándor PLÓSZ
Budapest University of

Technology and Economics
email: plosz@tmit.bme.hu

Frigyes HARASZTOS
Flaxcom Holding co. ltd.

email: harasztos.frigyes@flaxcom.hu

Abstract. In the last decade huge research work has been put to the in-
door visual localization of personal smartphones. Considering the avail-
able sensor capabilities monocular odometry provides promising solu-
tion, even reflecting requirements of augmented reality applications. This
paper is aimed to give an overview of state-of-the-art results regarding
monocular visual localization. For this purpose essential basics of com-
puter vision are presented and the most promising solutions are reviewed.

Computing Classification System 1998: F.1.1, G.1.3, I.2.10, I.4.1, I.4.8, I.4.9, K.8.1
Mathematics Subject Classification 2010: 68-02, 68U10, 68T45
Key words and phrases: computer vision, visual odometry, SLAM, indoor localization

186

http://www.tmit.bme.hu
http://www.tmit.bme.hu
mailto:hollosi@tmit.bme.hu
http://www.tmit.bme.hu/lukovszki.csaba?language=en
http://www.tmit.bme.hu
http://www.tmit.bme.hu
mailto:lukovszki@tmit.bme.hu
http://www.tmit.bme.hu/moldovan.istvan?language=en
http://www.tmit.bme.hu
http://www.tmit.bme.hu
mailto:moldovan@tmit.bme.hu
http://www.tmit.bme.hu/plosz.sandor?language=en
http://www.tmit.bme.hu
http://www.tmit.bme.hu
mailto:plosz@tmit.bme.hu
http://flaxcom.hu
mailto:harasztos.frigyes@flaxcom.hu

Monocular indoor localization techniques 187

1 Introduction

Due to the increasing capabilities and penetration, more and more applications
are available on smart-phones and assist our everyday activities. In the last
decade huge research work was put to the indoor location-based applications,
from which the augmented reality based applications demand the highest re-
quirements mostly expressed in accuracy, real-time and seamless localization.
Based on the sensors that are available in recent smartphones and their com-
putational and storage capabilities, a real-time implementation of monocular
visual relative pose estimation seems to be a key to achieve the overall goal.

Besides, this topic presents great research interest, and high effort has been
put on providing scalable and accurate solutions to satisfy the real-time re-
quirements. Traditionally, the problem of visual pose estimation is discussed
as Structure from Motion (SFM) [34] [17] problem, where the main goal is
the off-line reconstruction of a 3D structure from pictures taken from different
viewpoints. During the reconstruction process the viewpoints of the camera
are also calculated, but problem formulation does not focus on relative pose
estimation. The family of SLAM (Simultaneous Localization and Mapping)
algorithms focuses on the environment modelling (map building) and relative
camera pose estimation simultaneously [9]. To overcome the real time and
accuracy requirements these solutions induced the PTAM (Parallel Tracking
and Mapping) algorithm [22]. In the meantime, the problem also targeted
by another application field, the odometry. The original requirement of the
monocular Visual Odometry (VO) [50] [14] was to accurately determine the
relative pose of a rover.

In this paper authors attempt to give a theoretical overview of the monocular
odometry problem and its solutions. Also, some of the implementations are
emphasized that seem to able to cope with the strict requirements even in
mobile environments.

During the discussion, authors focus on capabilities of recent smartphones.
Common smartphones are equipped with a thin-lens perspective camera, which
can be modelled with an ideal pin-hole model [20], and they are also equipped
with IMU (Inertial Measurement Unit) integrating gyroscope and accelerome-
ter. Reasonable capacity for storage and processing. Regarding the motion of
the device the following discussion suggests 6DOF (degree-of-freedom).

2 Theoretical background

Monocular visual odometry tries to determine pose and location of a device
mostly using visual perception aided by couple of auxiliary sensors (e.g. gyro-

188 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

scope or acceleration sensor). The common implementation of visual percep-
tion is a monocular camera which provides continuous stream of frames at a
variable or uniform time instants.

2.1 Projection model

The camera has a couple of internal parameters which are typically fixed and
known a priori (e.g. by calibration). The most important characteristic of the
camera is the projection model which projects three dimensional world points
onto the image:

u = π(pC) (1)

where pC =
[
xC , yC , zC

]
is a three dimensional world point in the reference

frame of the camera, u =
[
x, y
]

is the projected point and π() is the projection
model. It is essential to mention that in case of monocular systems the π()
projection model is invertible only when the depth du of the model point is
known:

pC = π
−1(u, du) (2)

We can see that monocular systems have the big drawback of loosing the depth
information while recording frames.

In practice projection model is considered to be linear in homogeneous space
, i.e. it can be represented by a matrix product (commonly referred to the

pinhole camera model). Let XC =
[
X, Y, Z, 1

]T
be the homogeneous coordinates

of a three dimensional point in the reference frame of the camera. In this case
the projection model can be expressed with a K intrinsic camera matrix:

x = K(f)
[
I3×3|03×1

]
XC =

f 0 0

0 f 0

0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

XC (3)

where f is the focal length of the camera and x =
[
λx, λy, λ

]T
are the homo-

geneous coordinates of the two dimensional projection. It is easy to see that
the projection model is not invertible.

To represent camera movement in world frame we assign a Tk rigid-body
transformation to each frame Ik at k time instants which contains orientation
(Rk) and location (Ck) of the camera. The transformation can be expressed
as a 4× 4 matrix as

Tk =

[
Rk Ck

0 1

]
(4)

Monocular indoor localization techniques 189

A fixed world point X =
[
X, Y, Z, 1

]
can be projected at the k-th image

frame as

xk = K(f)
[
I|0
]
T−1k X = K(f)

[
R−1k |− R−1k Ck

]
X = K(f)PekX (5)

where Pek is commonly called as the extrinsic matrix describing the world-to-
camera transformation. Eq. (5) is the most basic and substantial constraint in
the monocular visual odometry systems.

The goal of the monocular visual odometry algorithms is to determine the
Pek extrinsic camera matrices or the Tk rigid-body transformation of the cam-
eras mainly based on (but not exclusively) the visual information encoded in
frames.

2.2 Projection distortion

An accurate algorithm must take into consideration that the projection model
of the classical pinhole camera is only an approximation. Real cameras always
have some non-linear distortion which is basically modelled as radial distor-
tion, however, other distortion models also exist (i.e. tangential distortion)[4].
Radial distortion depends on the radial distance from the radial distortion
centre (typically the principal point) and it is represented as an arbitrary
function:

x̂ = xc + L(r)(x− xc) ŷ = yc + L(r)(y− yc) (6)

where r2 = (x− xc)
2+(y−yc)

2 is the radial distance and xc, yc are the radial
centres (commonly considered as zero). In practice, L(r) is represented as a
Taylor-series

L(r) = 1+ κ1r+ κ2r
2 + κ3r

3 + · · · (7)

where κi are the radial distortion coefficients. In practice only the lower coef-
ficients (κ1, κ2, κ3) are used.

2.3 Visual information retrieval

Visual odometry solutions are based on visual information encoded in the se-
quence of image frames. We can distinguish two widespread methods: intensity
based direct methods and feature based methods.

2.3.1 Direct methods

In general, direct methods uses the Ik(u) intensity map of the image, which
represents the brightness of the image pixel coordinate or – rarely – the RGB

190 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

vector. The intensity map can be either quantized (i.e. pixel accuracy) or
continuous (i.e. sub-pixel accuracy), however, the latter requires some kind of
filtering or interpolating algorithm that in some cases can cause information
loss.

2.3.2 Feature detection

Feature based methods works on point projections using feature detection and
feature extraction algorithms that are able to detect and match the same points
on different images without preliminary geometric knowledge. This way, visual
odometry solutions are simplified to use only projections of real 3D landmarks.
The efficiency of these algorithms can be measured by their invariance and
speed. Invariance means that the detector can detect features which can be
successfully matched even if the feature is rotated, scaled or suffered other
transformations (e.g. affine transformation). There are a couple of such al-
gorithms overviewed in [5], from which the most widely used are the Harris
detector [18], the Scale-invariant feature transform (SIFT) that bases on Lapla-
cian of Gaussian filters [36], the Maximally stable extremal regions (MSER)
[37], the Features from accelerated segment test (FAST) and Oriented FAST
and Rotated BRIEF (ORB) [48]. Considering the overall requirements SIFT
is the most promising, however, due to its high complexity, strict constraints
should be taken into account during its application in mobile environments.

3 Feature based solutions

Feature based solutions have the attribute to detect features on the frames
first then match them to the previous frame resulting in projection tracks over
a couple of sequential frames. These tracks can then be used to compute the
geometry of the scene and to recover the camera translations and orientations.
This method utilizes only point geometry models and correspondences, this
way the well established framework of multiple view geometry can be applied
[20].

3.1 Theory

The most important term here is pose estimation, which is the process of
estimating the extrinsic (and sometimes the intrinsic) matrix from point cor-
respondences. Depending on the point pairs we can establish two types of pose
estimation: in case of 3D-2D point pairs (i.e. the world points and their pro-

Monocular indoor localization techniques 191

jections) it is called absolute pose estimation and in case of 2D-2D point pairs
(i.e. the projection pairs on two images) we call it relative pose estimation.

3.1.1 PnP problem

The absolute pose estimation problem is generally called Perspective-n-Point
(PnP) problem, which has a couple of methods presented. The classical method
for n > 6 point pairs is the DLT (Direct Linear Transform) method, but it is
known to be unstable and requires the camera calibration [1]. For 5 or 4 points
the [55] uses a polynomial technique which allows it to work well even in case
of coplanar points. The EPnP solution is accurate for an arbitrary n ≥ 4 point
pairs and can handle planar and non-planar cases [26]. The P3P leads to to
finite number of solutions using only three point pairs as the smallest subset
of points pairs [24]. The P3P solution has the advantage of using only three
points in a RANSAC framework to eliminate outlier point pairs decreasing
the required number of iterations.

3.1.2 Random Sample Consensus

Since feature matching is prone to result false matches, a method is required
to overcome this issue. It is common in image processing to use the minimal
sample set to recover model parameters and classify samples to inliers and out-
liers. The most noted algorithm is the Random Sample Consensus (RANSAC)
method, which is widely used in further solutions [12].

3.1.3 Relative pose estimation

The basic terms in relative pose estimation are the fundamental matrix and
the essential matrix, both can be computed from 3D feature projection pairs.
The fundamental matrix is a 3 × 3 matrix (F) satisfying x ′TFx = 0, where
projections (x and x ′) are of the same world point in two different images.
The essential matrix (E) uses normalized image coordinates, so it can be
computed from the intrinsic camera matrix (K) and the fundamental matrix
as E = K ′TFK. The essential matrix is applicable to recover the pose of the
cameras by decomposition [20]. A lot of methods are known to determine the
relative pose of the cameras: the 8 point algorithm [19], the 7 point algorithm
[20], 6 point algorithm [45] and 5 point algorithms [27][42]. It is essential to
mark that these algorithms differ in handling degenerate configurations (i.e.
coplanar objects or cylinder containing the projection centres) and are unable
to recover the scale of the set-up.

192 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

3.1.4 Bundle adjustment

The fundamental algorithms, like the relative and absolute pose estimation and
triangulation, find the right solution only in case of noiseless measurements.
Otherwise, they minimize the algebraic error which has no physical meaning. It
can be proven that the maximum likelihood (ML) solution of these problems
are the minimization of re-projection error. If we have N cameras and M

points in space, then we can assign a θn(Kn, Tn, πn) projection model to each
camera that contains the projection (πn), distortions (Kn) and rigid body
transformation (Tn) of the camera (i.e. intrinsic and extrinsic behaviour). For
a pm point in space the projection for the camera n yields to um,n = θn(pm).
If pixel measurements are un,m, then the optimization of re-projection error
equals the expression

arg min
θn,pm

∑
n,m

|un,m − θn(pm)|
2 (8)

meaning minimization of the euclidean-distance between the measurements
and the re-projected points.

As it is obvious from Eq. (8), the re-projection error is not linear so we
need an iterative Newton-like solution to solve the minimization problem. The
process of solving Eq. (8) with Levenberg-Marquardt iteration is specially
called bundle adjustment [56]. Bundle adjustment is widely used in SLAM,
SFM and odometry problems to refine a coarse solution or co-optimize the
map of landmarks and camera poses calculated before.

It is worth to mention that the special form of the projection equation yields
to a sparse matrix, which can be utilized to speed up the bundle adjustment
and relax the memory and processing requirements. This method is called
sparse bundle adjustment [35][20].

3.2 Implementations

The solutions and implementations use the algorithms shown above but com-
bine them in quite different ways.

3.2.1 PTAM

SLAM methods have the controversial problem of running at real-time speed
while building an accurate map by a slow non-linear optimization process
(i.e. bundle adjustment). Parallel Tracking and Mapping (PTAM) solves this
problem by running two threads: one for the real-time tracking and one for the

Monocular indoor localization techniques 193

map building [22]. PTAM was designed to work in small-scale, e.g. to provide
desk-scale augmented reality. PTAM has several extensions implemented, like
new initializer based on homography or a re-localiser [23].

PTAM detects FAST features on a scale pyramid to provide scale invari-
ance and uses these feature points to recover the geometry. PTAM applies the
5-point algorithm to recover the initial camera relative pose (i.e. the funda-
mental matrix) and to construct the initial map. Hence, the process of PTAM
odometry can be briefly described as follows:

• Tracking runs on its own thread and starts by detecting FAST features.
A motion model is used to estimate the camera a-priori pose followed
by projecting map points onto the image to detect feature matches and
finally camera pose is refined from all the matches.

• The mapping thread selects key-frames at regular intervals based on a
couple of conditions, then the thread triangulates new points and regis-
ters new projections. To refine the map, PTAM applies local and global
bundle adjustments periodically.

PTAM solution is capable to track the camera pose accurately and in real-
time thanks to the decoupled tracking and mapping processes, but its perfor-
mance is limited by the number of landmarks registered in the map. This way
PTAM is suitable only for small workspaces. One of the drawbacks of PTAM
is the simple initialization process of the 5-point algorithm which is sensitive
to planar degeneracy. It is worth to mention that PTAM does not employ any
methods to recover the accumulated odometry error (i.e. loop closing).

3.2.2 ORB-SLAM

ORB-SLAM realizes a rather complex visual odometry solution, however, it
is based basically on feature detection and point geometry [40]. As its name
suggests it uses ORB features to gather image information and provides odom-
etry and 3D reconstruction simultaneously. Besides, ORB-SLAM provides re-
localization and loop closing capabilities in order to make the process more
accurate.

ORB-SLAM works pretty much like PTAM by running three threads par-
allel to provide real-time odometry. The tracking thread is responsible for
real-time motion estimation by detecting ORB features and camera pose re-
covery. The local mapping thread calculates the 3D reconstruction of the map
in the background for every key-frame chosen by the tracking thread. The

194 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

loop closing thread is watching for map points to reoccur using bag of words
model, and when it finds one the loop closing corrects the loop by similarity
transformation.

ORB-SLAM applies ORB feature detection as it provides rotation and scale
invariance. It is fast enough to maintain real-time performance, while it is suit-
able for both large-scale (i.e. distant frames) and small-scale (i.e. subsequent
frames) matching. The great innovation in ORB SLAM is that it uses ORB
for every part of the process: tracking, mapping and loop closing are executed
on ORB features. ORB-SLAM system provides visual odometry as follows:

1. The ORB-SLAM starts with an automatic initialization method to re-
trieve the initial pose and map by extracting the ORB features, matching
them and computing corresponding fundamental matrix and homogra-
phy (i.e. the two dimensional projective transformation) in the same
time. It computes a score to both the homography and the fundamental
matrix as:

SM =
∑
i

(
ρM
(
d2cr(x

i
c,x

i
r,M)

)
+ ρM(d2rc

(
xic,x

i
r,M)

))
ρM(d2) =

{
Γ − d2 if d2 < TM

0 if d2 ≥ TM

(9)

whereM is the model (H for homography and F for fundamental matrix),
d2cr and d2rc are the symmetric transfer errors, TM is the outlier rejection
threshold based on the χ2 test at 95% (TH = 5.99, TF = 3.84, assuming
a standard deviation of 1 pixel in the measurement error). Γ is a score
compensating constant. ORB-SLAM recover initial pose and map from
homography if

SH
SH + SF

> 0.45 (10)

Otherwise, it uses the fundamental matrix. After recovering pose and
map, it starts a non-linear optimization (bundle adjustment) to refine
the initial model.

2. After map initialization tracking tries to match ORB features of the cur-
rent frame to the ORB features of the previous frame through a guided
search employing a constant velocity model. The pose is then refined
by non-linear optimization. After pose estimation ORB-SLAM tries to
re-project the map onto the frame recovering more feature matches. The

Monocular indoor localization techniques 195

last step is the key-frame decision which judges that the current frame
should be passed to the local mapping thread. This step utilizes a couple
of complex conditions.

3. Parallel to tracking, every key-frame is processed to provide a consistent
map that is able to refine the tracking process and provides input to
loop closing. Briefly, local mapping triangulates new point candidates
having passed a restrictive map point culling test and uses local bun-
dle adjustment to minimize re-projection error. To maintain compact
reconstruction ORB-SLAM removes redundant key-frames

4. Loop closing happens parallel to tracking and mapping and uses bag of
words representation and co-visibility information to detect loop can-
didates [43]. In case of loop detection it computes the similarity trans-
formation accumulated while tracking to distributes the error along the
whole path.

ORB-SLAM has been proven to be a robust and accurate solution even in
large-scale areas and can successfully track ad-hoc movements while providing
stable map initialization in case of a lost track. ORB-SLAM requires at least
20 frames per second to work well, which can hardly be satisfied using ORB
feature detection on embedded devices like smartphones without exploiting
massive GPU calculations.

4 Direct solutions

The principle behind direct solutions states that using the image intensities
results in better odometry accuracy because it exploits all the information
embedded in the frames while feature based solutions discard image informa-
tion over feature points. The most important term of direct solutions is the
photo-consistency discussed in the next section.

4.1 Photo-consistency theory

From a mathematical perspective, photo-consistency means that given two
images I1 and I2, an observed point p by the two cameras yields to the same
brightness in both images [21]:

I1(u) = I2(τ(ξ,u)) (11)

196 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

where u is the projection of p, τ(·) is the warping function, which depends on
π(·) (see Eq. (1)). The warping function maps a pixel coordinate from the first
image to the second one given the camera motion ξ. Here, the motion ξ can
be represented in any minimal representation (e.g. twist coordinates). Given
the residual function for any u point in the Ω image domain

r(ξ,u) = I2(τ(ξ,u)) − I1(u) (12)

which depends on ξ and assuming independent pixel noise, the Maximum
Likelihood (ML) solution is a classical minimization problem:

ξML = arg min
ξ

∫
Ω

r2(ξ,u) du (13)

The problem is obviously non-linear, so the common solution is to run it-
erative minimization algorithms like Newton-Gauss method over a discretised
image. To speed up the integration process, the integration can be run over a
couple of selected patches instead of every pixels in the images.

4.2 DTAM

Dense Tracking and Mapping (DTAM) uses the photo-consistency theory in
a special way to provide dense maps and real-time visual odometry [41]. The
main idea behind dense mapping is to sum the photometric error along a ray
from the camera centre and find the d distance that minimizes the sum, thus
finding the depth parameter for that pixel. The summing is made along a
couple of short baseline frames m ∈ I(r) for a r reference frame:

Cr(u, d) =
1

|I(r)|

∑
m∈I(r)

‖rr(Im,u, d)‖1 (14)

where ‖ · ‖1 is the L1 norm and the photometric error is

rr(Im,u, d) = Im(τ(d,ui)) − Ir(ui) (15)

Note that the only change in the equation is the parameter d. DTAM showed
that minimizing the cost yields to a correct estimation of pixel depth which
can be used to build dense maps.

The tracking part of the DTAM solution provides 6DOF estimation and ba-
sically happens the same way as shown in Eq. (13) with a couple of extensions
to provide robust tracking with occlusion detection.

Monocular indoor localization techniques 197

DTAM is robust and accurate visual odometry solution with excellent map-
ping capabilities. It is not only capable of handling occlusions but can track
the movements even in case of total lost in focus and keep on tracking even for
fast and random movements. The only drawback of the solution is real-time
performance requires huge computing capacity and massive GPU utilization.

4.3 LSD-SLAM

Large-Scale Direct Monocular SLAM (LSD-SLAM) uses direct methods com-
bined with a probabilistic approach to track camera movements and build
dense map real-time [10]. LSD-SLAM has scale-aware image alignment al-
gorithm which estimate directly the similarity transformation between two
key-frames to provide scale consistent maps and odometry.

The main process of the LSD-SLAM is as follows: at every new frame it tries
to estimate the movement relative to the current key-frame, then it decides
whether the actual key-frame should be replaced by the new frame. In case
of replacing, it initializes a new depth map, otherwise it propagates the depth
map of the current key-frame. At every key-frame replacement LSD-SLAM
runs map optimization, which is essential to create accurate dense maps.

LSD-SLAM uses image patches to recover pose around pixels with large
intensity gradients. The tracking process is composed of two steps: estimation
of rigid body transformation and depth map propagation. The former one is
a weighted optimization of the variance-normalized photometric error

Ep(ξj) =
∑
p∈ωDi

∥∥∥∥∥r2p(u, ξj)σ2
rp(u,ξj)

∥∥∥∥∥
δ

(16)

for an existing key-frame and the new frame Ij. In the equation rp(·) is the
photometric error, σrp is the variance of the photometric error and ‖·‖δ means
the Huber-norm. Apart from normalization by variance, this is a classical
photometric error based odometry solution as in Eq. (13).

The biggest difference to other direct solutions is that the depth information
for a key-frame is calculated in a probabilistic way, i.e. it is refined as new
frames received. An inverse depth map and a depth map variance map is
assigned to every key-frame selected by the LSD-SLAM process. The depth
map is initialized with the depth map of the previous key-frame or with a
random depth map if no key-frame exists. For each new frame the depth map
is propagated as in [11], namely if the inverse depth for a pixel was d0 then

198 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

for the new frame it is approximated as

d1 = (d−10 − tz)
−1

σ2d1 =

(
d1
d0

)4
σ2d0 + σ

2
p

(17)

where σp is the prediction uncertainty and tz is the camera translation along
the optical axis.

LSD-SLAM also contains solution for the problem of scale-drift over long
trajectories, which is the major source of error in the family of SLAM solutions.
LSD-SLAM thus aligns two differently scaled key-frames by incorporating the
depth residual into the error function shown above. This method penalizes de-
viations in inverse depth between key-frames and helps to estimate the scaled
transformation between them.

4.4 SVO

Fast Semi-Direct Monocular Odometry (SVO) is a great example of hybrid so-
lutions for visual odometry using direct and featured based algorithms as well
[13]. SVO combines the probabilistic approach of depth map with the com-
putationally attractive feature based concept as the name suggests providing
real-time odometry and sparse mapping.

The basic process of SVO is tracking and mapping that are implemented
on parallel threads, i.e. calculating the movement trajectory at each frame
real-time and select key-frames that can be used for mapping on the mapping
thread. As the mapping thread uses features, bundle adjustment can be used
to minimize re-projection error and construct accurate maps.

The tracking thread projects 3D points of the map onto the new frame and
uses the vicinity of the projected points in the image to estimate the motion
relative the previous frame by photometric error optimization. The pose is
refined by aligning the frame to the whole map (using Lucas-Kanade algorithm
[3]) then by local bundle adjustment to apply the epipolar constraints.

SVO is unique in the way that no depth map is computed but for each feature
point on a key-frame a depth-filter is assigned that estimates the feature depth
in a probabilistic way. First, the mapping thread decides whether a new frame
a key-frame or not. Feature extraction is executed on new key-frames and to
each feature a freshly initialized depth-filter is assigned. On inter-frames (i.e.
not key-frames) the feature depth-filters are updated until they converge to
the estimated value and the variance is small enough. Converged depth filter
are converted to map points by triangulation.

Monocular indoor localization techniques 199

Thanks to the feature based mapping process SVO has proven to be faster
than other direct solutions, however, the result is a sparse map rather than a
dense one. The depth filters are capable of detecting outlier measurement and
the map is always consistent and correct because triangulation happens only
when the filters converged. As the SVO uses couple of small patches around
features to estimate motion, it is capable of running real-time as well.

5 Filter-based solutions

In real applications relative pose estimation should be seamless, which cannot
be guaranteed by solutions based only on image processing. To overcome this
requirement motion models are applied to estimate the camera state between
visual pose estimations. The first reliable solution is MonoSLAM [8], which
introduces an extrapolated motion model. MonoSLAM is thus applicable for
smooth camera motion, but can cover only desk-scale local environment.

The most reasonable choice for motion estimation is to combine measure-
ments of IMU with projections of real 3D landmarks of the local environment.
The filter based family of visual odometry algorithms fuses inertial IMU mea-
surements with visual feature observations. In these methods, the current cam-
era pose and positions of visual landmarks are jointly estimated, sharing the
same basic principles with camera-only localizations. These combined tech-
niques can be categorized as loosely coupled and tightly coupled systems. In
loosely coupled systems [46] [54] [57] inertial and camera measurements are
processed separately before being fused as a single relative pose estimate, while
tightly coupled systems process all the information together [44] [25]. However,
loosely coupled systems limits computational complexity, in the following we
are focused on tightly coupled techniques due to its ability to reach higher
consistency between camera poses and map of landmarks.

5.1 Theory

The original relative pose estimation problem is hard due to its nature. The
algorithms use a map containing visual information to localize, while rela-
tive pose is necessary to construct and update the visual map. The prob-
lem becomes even harder to solve if we consider the noise of the sensors.
Various probabilistic methods are used to deal with the uncertainty intro-
duced by measurement noise, Extended Kalman Filter (EKF), Particle Filter
(PF), which are all based on Bayesian technique for random value estima-
tion of the system state parameters, including camera locations and orienta-

200 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

tions at discrete time instants (xk) based on observations of the landmarks
(zk = {zik}) from a given camera viewpoint, in other words the map points
(m = {m1,m2, ...,mn} = m1:n), while the camera location is controlled in-
dependently of the system state by control parameters (uk). The problem of
relative pose estimation is given then in the probabilistic form as follows [9].

P(xk,m|z0:k,u0:k,x0) (18)

The calculation of position probability distribution is done iteratively starting
from P(xk−1,m|z1:k−1,u1:k−1,x0) with input of the actual control uk and mea-
surement zk using Bayesian Theorem. The computation from one side requires
the state transition or motion model for the camera that describes the new
state regarding the control input.

P(xk|xk−1,uk) (19)

Secondly, the observation model describes the probability of making and ob-
servation zk when a camera and landmark locations are known.

P(zk|xk,m) (20)

The iteration is then implemented in a standard two-step recursive process.
The first step is the time update that propagates state in time according to
the control.

P(xk,m|z0:k−1,u0:k,x0) =∫
P(xk|xk−1,uk) · P(xk−1,m|z0:k−1,u0:k−1,x0) dxk−1 (21)

The second step conveys the measurement or update when based on the actual
state-dependent measurements correction is done on the actual state.

P(xk,m|z0:k,u0:k,x0) =
P(zk|xk,m)P(xk,m|z0:k−1,u0:k,x0)

P(zk|z0:k−1,u0:k)
(22)

The above principle is implemented in various ways assuming different terms
on the model and random value distributions.

5.2 The IMU model

In practice, gyroscope and accelerometer measurements can be used to esti-
mate actual relative pose based on the kinematic model. This is done during

Monocular indoor localization techniques 201

the timely filter state propagation. All these measurements are stressed with
local measurement noise, distortion and biases. The accelerometer measures
actual acceleration (am,I ∈ R3) in the IMU orientation frame (I) and its model
can be formulated as follows.

am,I(t) = TaRIG(t)(aG(t) − g) + ab(t) + an(t) (23)

where aG is the real acceleration in global orientation frame, g is gravitational
acceleration. RIG represents rotational transformation between IMU frame
(I) and global frame (G), while Ta shape matrix comprises gyroscope axis
misalignments and scale errors of bases. The measurement noise an is modelled
as a zero mean Gaussian random variable, an ∼ N (0,Na), and the bias ab
changes over the time and is modelled as a random walk process driven by its
own noise vector awn ∼ N (0,Nwa).

Regarding gyroscope, it measures rotational velocity (ωm,I ∈ R3) in IMU
orientation frame, its realistic model can be figured out as below.

ωm,I(t) = TgωI(t) +TsaI(t) +ωb(t) +ωn(t) (24)

where ωI is the real rotational velocity in IMU orientation frame, Tg is the
shape matrix, while TsaI represents influence of acceleration upon rotational
velocity.

In practice, due to their insignificant effects scale, misalignment and accel-
eration influence is considered idealistic (Ta = Tg = I,Ts = 0). Most of the
real implementations assume biases and noises during modelling.

5.3 Extended Kalman Filter (EKF)

The Bayesian technique can be solved by EKF, which is applicable for non-
linear systems, while noise is considered as Gaussian. In EKF, the motion or
state transition model Eq. (19) is formalized by the following equation.

xk = f(xk−1,uk) +wk (25)

where f function models vehicle kinematics in function of actual state xk−1
and actual control input uk and wk is an additive zero mean Gaussian noise
with covariance Qk (wk ∼ N (0,Qk)).

On the other side, EKF implements the generic observation model Eq. (20)
by the following equation.

zk = h(xk) + vk (26)

202 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

where h function describes relation between actual state xk and state-dependent
measurements zk. The vk is again an additive zero mean Gaussian error of ob-
servation with covariance R (vk ∼ N (0,R)).

The system state vector of filter-based visual odometry solutions can be di-
vided into the part related to the motion estimation (xbase) and the auxiliary
section related to the observation model related to the certain solution (xaux).
The base part xbase comprises parameters necessary to describe kinetic and
dynamic state it also contains parameters necessary for modelling gyroscope
and accelerometer. The auxiliary part xaux, in visual based systems, is neces-
sary to describe the visual observation model. In real implementations it can
contain real 3D positions or projected positions of map landmarks (m) or even
consecutive camera positions and orientations.

xk = [xbase,k,xaux,k] (27)

The related state covariance matrix (P) is also can be divided into parts related
to the motion model (Pbase), to the observation model (Paux), and describes
the relation between these parameters (Pbase,aux).

Pk =

[
Pbase,k Pbase,aux,k

PTbase,aux,k Paux,k

]
(28)

During time update the state vector estimate and related covariance matrix
are updated according to the following equations.

x̂k|k−1 = f(x̂k−1|k−1,uk)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

(29)

where the F is the Jacobian of f function and evaluated around at the state
estimate x̂k and actual control input uk,

∂f
∂x(x̂k,uk).

Based on the visual observations, correction is formulated according to fol-
lowing equations that describe the residual, the Kalman gain, respectively.

rk = zk − h(x̂k|k−1)

Kk = Pk|k−1H
T
k(HkPk|k−1H

T
k +Rk)

−1
(30)

According to the residual and the Kalman gain estimated state and covariance
matrix updates are defined as the followings.

x̂k|k = x̂k|k−1 +Kkrk

Pk|k = (I−KkHk)Pk|k−1
(31)

Monocular indoor localization techniques 203

Although, due to its flexibility and moderate complexity, EKF is the most
widely used Bayesian filter, during its application some of the drawbacks have
to be considered. Since EKF linearises the actual non-linear characteristics,
the choice of point of linearisation affects its stability, while special care has
to be taken to the estimation of noise variances.

Considering 6DOF kinematic properties of the smart-phone, application re-
quires from the filter state to store actual orientation, position, velocity and
gyroscope and accelerometer bias parameters, at least. According to this con-
sideration, kinematic part of the filter state is defined by the following vector.

x = [qGI ,pI,G ,vI,G ,ωb,ab]
T (32)

During state propagation using the gyroscope-accelerometer measurement pair,
the nominal values of kinetic part of the state should follow the kinetic equa-
tions below.

q̇GI =
1

2
qGI ⊗ (ωm −ωb), ṗI,G = vI,G ,

v̇I,G = RGI(am − ab) + g, ω̇b = 0, ȧb = 0
(33)

5.4 Particle filter

The Bayesian propagation and measurement equations (see Eq. (22) and Eq. (21))
cannot be solved in closed form for the SLAM problem. For Gaussian-distribution
the solution can be approximated with various Kalman-filters but the exact
solution for strongly non-linear models can only be found by numerical inte-
gration.

Given a g(x) : Rn −→ Rm function, the expectation over a posterior distri-
bution:

E[g(x)|z1:k] =

∫
g(x)P(x|z1:k) dx (34)

can be approximated by drawing N independent random samples x(i) form
the p(x|z1:k) distribution:

E[g(x)|z1:k] ≈
1

N

N∑
i=1

g(x(i)) (35)

This type of numerical calculation of integrals is called Monte Carlo method
[49]. However, in case of the Bayesian models it is not possible to draw samples
from P(x|z1:k), so we need to use importance sampling in order to approximate
the distribution.

204 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

5.4.1 Importance sampling

To overcome the issue of not having the P(x|z1:k) distribution, we can construct
an importance distribution Π(x|z1:k) from which it is easy to draw samples [33].
It is straightforward that∫

g(x)P(x|z1:k) dx =

∫ [
g(x)

P(x|z1:k)

Π(x|z1:k)

]
Π(x|z1:k) dx (36)

By using this form we can establish a Monte Carlo approximation of the
expectation by drawing samples from the importance distribution as x(i) ∼

Π(x|z1:k) and calculating the sum

E[g(x)|z1:k] ≈
1

N

N∑
i=1

P(x(i)|z1:k)

Π(x(i)|z1:k)
g(x(i))

=

N∑
i=1

w̃(i)g(x(i))

(37)

where w̃(i) is defined as

w̃(i) =
1

N

P(x(i)|z1:k)

Π(x(i)|z1:k)
(38)

By using normalized weights and applying Bayes-rule we can replace the pos-
terior distribution P(x(i)|z1:k) with the prior and the likelihood function. The
normalized weights w(i) can be written as

w∗(i) =
P(z1:k|x

(i))P(x(i))

Π(x(i)|z1:k)

w(i) =
w∗(i)∑N
j=1w

∗(j)

(39)

Finally, the posterior probability density function can be formed by using the
Dirac delta function δ(·):

p(x|z1:k) ≈
N∑
i=1

w(i)δ(x− x(i)) (40)

Monocular indoor localization techniques 205

5.4.2 Sequential importance sampling

Specifically, for state space models shown in Eq. (19) and Eq. (20), the mod-
ified version of the importance sampling algorithm can be used to calculate
the expectation and probability density efficiently. The sequential importance

sampling algorithm uses a weighted set of particles {(w
(i)
k ,x

(i)
k)}, which con-

tains samples from an importance distribution and their weights for every k
time instant. The distribution can be approximated with the particles as

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k) (41)

The weights can be calculated at every time instant with the equation

w
(i)
k ∝ w

(i)
k−1

P(zk|x
(i)
k)P(x

(i)
k |x

(i)
k−1)

Π(x
(i)
k |x

(i)
0:k−1, z1:k)

(42)

where w
(i)
k shall be normalized to sum to unity [49].

Sequential importance sampling still has the problem of having too many
particles with almost zero weights, thanks to the special properties of the distri-
butions used in SLAM techniques. This situation is called degeneracy problem
and has a great impact on using them in real applications. To avoid degen-
eracy problem a re-sampling method called sequential importance re-sampling
is used [16]. The main idea behind re-sampling is to draw new samples from
the discrete distribution defined by the weights and use them as new parti-
cles. This way particles with relevant weights get duplicated and particles with
small weights get removed. Commonly, the sequential importance re-sampling
algorithm is referred to as particle filter.

5.5 Solutions

5.5.1 EKF-SLAM

In EKF-SLAM algorithms filter state vector contains current IMU state xbase
and the observed feature 3D positions (pfi). Thus the filter state vector is
defined as follows.

xk = [xbase,k,p
T
f1,k
...pTfn,k

]T (43)

The 3D feature can be parametrized traditionally using (x, y, z) coordinates,
anchored homogeneous parametrization [52] or the inverse-depth parametriza-
tion [6]. However, the former one is straightforward the latter two increases
the consistency and accuracy.

206 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

EKF-SLAM uses ”standard” propagation method of states (xk) and covari-
ance matrix (Pk) based on the IMU inertial measurements as described above,
while the update process is calculated on the observed image features. Assum-
ing a calibrated perspective camera, observation of feature i on the actual
image at time step k is described by the following equation that describes the
actual observation.

zi,k = h(xIMU,k,pfi,k) =
1

zfi,Ck

[
xfi,Ck
yfi,Ck

]
+ ni,k (44)

where ni,k is the measurement noise, and pfi,Ck = [xfi,Ck , yfi,Ck , zfi,Ck] describes
observed position of feature fi in camera orientation frame Ck, and this position
is described by the following equation and the pI,C and RCI are the fixed
position and rotation transformations between the IMU (I) and the camera
(C) frames.

pfi,Ck = RCIRIkG(pfi,G − pIk,G) + pI,C (45)

Assuming that the actual position of the IMU frame is pIk,G , EKF-SLAM
defines a residual as the difference between the real observation zi,k of the
feature i and the projection of the estimated feature position (p̂fi,Ck), and
linearise it around the actual state (x̂IMU,k) as:

ri,k = zi,k − h(x̂IMU,k, p̂fi,Ck) ' Hi,k(x̂k)x̃k + ni,k (46)

The Hi,k(x̂k) is the Jacobian matrix of h with respect to the actual filter
state estimate (x̂k).

When ri,k and Hi,k are computed, the outlier detection is done using Maha-
lanobis gating. If it succeeds the test using residual and observation Jacobian,
Kalman gain and state innovation are computed according to basic EKF rules
(see Eq. (31)). For Mahalanobis gating we compute the following:

γi = rTi (HiPiH
T
i + σ

2I)−1ri (47)

Then it is compared to the threshold given by the 96 percent of the χ2

distribution of dimensions equal to the residual vector.
Observation update step requires that all landmarks and joint-covariance

matrix must be updated every time an image is registered by the camera.
Considering the complexity of the EKF-SLAM, it is straightforward that the
computational complexity is dominated by cubic of actual number of land-
marks, thus the complexity is O(n2). In practice, a map can consists of thou-
sands of features, thus the EKF-SLAM becomes computationally intractable
for large areas.

Monocular indoor localization techniques 207

To provide the first-aid to this problem Sola proposed a method, when state
and covariance matrices are updated by the actual observed feature numbers,
in this way making a step to cover the real-time requirements. [47]

5.5.2 MSCKF

The fundamental advantage of filter-based algorithms is that they account
for the correlations exist between pose of the camera and 3D positions of
the observed features. On the other hand, the main limitation is its high
computational complexity.

The motivation of Multi-State Constraint Filter (MSCKF) is the introduc-
tion of consecutive camera poses into state instead of observable feature land-
marks, as it is first introduced by Nister [43], however this method does not
incorporate inertial measurements. Sliding window-based solutions also appear
in other papers [7].

Assuming that, N of the camera poses are included in the EKF state vector
at time step k the MSCK state vector has the following form.

xk = [xbase,k,q
T
GC1 ,pC1,G ...q

T
GCN ,pCN,G]

T (48)

Since time update is common for EKF-based pose estimators, the difference
is maintained during measurement update step, when new image is arrived
and features are tracked among the last N camera poses. The update process
is based on each single feature fj that has been observed from the set of Nj
camera poses (qTGCi ,pCi,G) that has been also available in the state vector.

The estimated feature position p̂fj,G in the global frame is triangulated from
theseN camera poses using feature observations. During this process, usually, a
least-square minimization used with inverse-depth parametrization [6]. Then,
the residual is defined as the difference between re-projections of estimated
feature p̂fj,G to the Nj cameras and the real feature observation is defined as

r
(j)
j .

r
(j)
i = z

(j)
i − ẑ

(j)
i (49)

On the other hand, the residual can be approximated by linearising around
the estimates of the camera poses and the feature positions, where Hxi

and

H
(j)
fj

are the Jacobians of the measurement z
(j)
i with respect to the state and

the feature position, respectively. After stacking the residuals for each Nj mea-
surements of the fj features we get the following equation.

r(j) ' Hxx̃+H
(j)
f p̃fj,G (50)

208 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

Since actual state estimate x is used for estimation of p̂fj,G , the error of state
x̃ and of feature position p̃fj,G are correlated. The solution to this problem

is projecting r(j) on the left null-space of the matrix H
(j)
f . Define A(j) as the

unitary matrix whose columns form the basis of the left null-space of Hf, we
get:

r
(j)
o ' A(j)TH

(i)
x x̃(j) +A(j)Tn(j) = H

(j)
o x̃(j) + n

(j)
o (51)

By also stacking residuals into a single vector from observations from each fj
features, we obtain the following single form of equation.

ro = Hxx̃+ no (52)

To reduce the computational complexity during update QR decomposition is
applied of Hx [31]. After determining the TH upper triangular matrix and its
corresponding unitary matrix whose columns form bases for the null-space of
Hx, Q1. The residual is then reformulated as the following.

rn = QT
1ro = THx̃+ nn (53)

Based on the above measures, the residual rn and the measurement Jacobian
TH the basic EKF update is applied (see Eg. (31)).

The correct co-operation between image based relative observations and in-
ertial measurements requires to exactly know the transformation between cam-
era and IMU orientation frames. In most of the solutions this transformation
assumed to be known exactly, EKF is appropriate also to estimate these pa-
rameters. The improvements in MSCKF 2.0 [31] introduces these parameters
(qIC,pC,I) to the state parameters. Besides, in this paper global orientation
errors are considered and improved linearisation and calculation of Jacobians
are provided. These methods improve the observability and increase accuracy
and stability while estimating relative orientation and positions.

MSCKF model is also augmented with estimation of rolling shutter camera
properties [28] and temporal calibration [30], while algorithm is provided for
on-line self-calibration [32].

Regarding the computational complexity, it is easy to realize that instead of
EKF-SLAM, complexity fundamentally depends on the number of registered
camera states not on the number of observed features. However, calculation of
TH depends on the number of features (∼ d) and the columns of the Q1 (r).
Other crucial factor is determined by the computation of covariance matrix up-
date. The cost of MSCKF update is then determined by max(O(r2d),O(m3)),
where m is the size of the state vector.

Monocular indoor localization techniques 209

One can see that since MSCKF uses sliding window for camera states,
tracked features can be observed only for a time limited to window size. To
overcome this limitation the authors designed a hybrid MSCKF-EKF SLAM
solution, where the optimality found on using MSCKF for short features and
long feature track is inserted to the state as it is done in EKF SLAM [29].

5.5.3 FastSLAM

FastSLAM implements PF method, however, high dimensional state-space of
the SLAM problem makes it computationally infeasible to apply particle filters
on the Bayesian-equations directly. FastSLAM solves this problem by applying
a factorization to the posterior distribution as follows. [38]:

p(x1:k,m|z0:k,u0:k,x0) = p(x1:k|z0:k,u0:k,x0)
∏
k

p(mk|x1:k, z0:k,u0:k,x0) (54)

Estimation thus can be done in two steps: first we estimate the posterior
of path trajectories then – based on estimated trajectory – we estimate the
locations of the K landmarks independently. The path estimation is done by
a modified particle estimator using Monte Carlo method, while estimation of
landmarks is achieved by Kalman-filters. Because landmarks are conditioned
on path estimation, if M particle is used to estimate the trajectory, then KM
two dimensional Kalman-filters are required to estimate the landmarks.

FastSLAM runs time linear in the number of landmarks, however, the im-
plementation of FastSLAM uses a tree representation of particles to run in
O(M logK). This way, the re-sampling of particles can happen much faster
than using native implementation.

FastSLAM can handle huge amounts of landmarks – as extensive simulation
has shown – and is at least as accurate as EKF-SLAM. However, the biggest
problem of FastSLAM is the inability to forget the past (i.e. the pose and
measurement history) and this way the statistical accuracy is lost [2].

FastSLAM has a more efficient extension called FastSLAM 2.0, which uses
another proposal distribution including current landmark observations and
this way calculating importance weights differently [39].

6 Implementation aspects

It is essential for visual odometry and SLAM algorithms to run real-time.
Recent smartphones are equipped with a considerable amount of resources,

210 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

like multiple cores of CPU and GPU. To face to the real-time requirements
by utilizing parallel resources, a couple of algorithms decouple real-time and
background tasks. The computational burden is still really high for embedded
devices. Fortunately, these algorithms give way to a lot of parallelisation to
speed up computations.

Feature extraction is also much faster if done parallel, e.g. SiftGPU re-
ported to extract SIFT features at 27 FPS on a nVidia 8800GTX card [58].
The widespread OpenCV1 has also GPU support for various algorithms using
CUDA and OpenCL. Not only feature detection and extraction but bundle
adjustment can be parallelised to be ca. 30 times faster than native implemen-
tation as the Multi-core Bundle Adjustment project shows [59].

7 Evaluation

Beside the solutions described in this work, a huge amount of implementations
are available (see https://openslam.org). For the prudent comparison of
the methods, algorithms and real implementations, widely known datasets
are used. These datasets provide huge amount of video frames of different
trajectories with ground truth, containing mainly grayscale and RGB images
but often RGB-D and laser data is also accessible. The most widely used
datasets are the KITTI dataset [15], the RGB-D dataset [53] and New College
Data Set [51], from those the KITTI odometry dataset consists of 22 stereo
sequences (which can also be used as a monocular data) and a comprehensive
evaluation of different SLAM methods listing accuracy and speed.

Regarding the KITTI dataset a huge list about performance evaluation of
available implementations is published at http://www.cvlibs.net/datasets/
kitti/eval_odometry.php.

8 Conclusion

Huge variety of algorithms and solutions are currently available to tackle the
strict requirements of the accurate and real time visual indoor positioning that
augmented reality-based applications demand. These algorithms build on the
results of research work on computer vision from the last decades, which went
through big evolution, from SFM to the real-time SLAM approaches. However,
to face to real-time requirements filter-based solutions tightly coupling inertial
measurements with visual odometry are emerging. Through embedding inertial

1OpenCV can be found at http://opencv.org

https://openslam.org
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://opencv.org

Monocular indoor localization techniques 211

measurements from IMU for motion estimation to the projective geometry
principles, these approaches are promising for future implementations, however
they suffer from the capability of long-lasting state parameter estimations.

Acknowledgements

This publication and related research was supported by the PIAC-13-1-2013-
0226 (Organic Localization) project. The project is supported by the Hun-
garian Government, and financed by the Research and Technology Innovation
Fund.

References

[1] Y. I. Abdel-Aziz, H. M. Karara, M. Hauck, Direct linear transformation from
comparator coordinates into object space coordinates in close-range photogram-
metry, Photogrammetric Engineering and Remote Sensing 81, 2 (2015) 103–107.⇒191

[2] T. Bailey, J. Nieto, E. Nebot, Consistency of the fastslam algorithm, Proc. of
IEEE International Conference on Robotics and Automation (ICRA’06), Or-
lando, FL, USA, 2006, pp. 424–429. ⇒209

[3] S. Baker, I. Matthews, Lucas-kanade 20 years on: A unifying framework, Inter-
national Journal of Computer Vision (IJCV) 56, 3 (2004) 221–255. ⇒198

[4] S. S. Beauchemin, R. Bajcsy, Modelling and removing radial and tangential dis-
tortions in spherical lenses, Proc. of International Workshop on Theoretical Foun-
dations of Computer Vision (TFCV’00), Multi-Image Analysis, Lecture Notes in
Computer Science, Dagstuhl Castle, Germany, 2000, pp. 1–21. ⇒189

[5] J. Chao, A. Al-Nuaimi, G. Schroth, E. Steinbach, Performance comparison of var-
ious feature detector-descriptor combinations for content-based image retrieval
with jpeg-encoded query images, Proc. of International Workshop on Multimedia
Signal Processing (MMSP’13), Pula, Sardinia, Italy, 2013, pp. 29–34. ⇒190

[6] J. Civera, A. J. Davison, J. M. M. Montiel, Inverse depth parametrization for
monocular slam, IEEE Transactions on Robotics 24, 5 (2008) 932–945. ⇒205,
207

[7] L. E. Clement, V. Peretroukhin, J. Lambert, J. Kelly, The battle for filter
supremacy: A comparative study of the multi-state constraint kalman filter and
the sliding window filter, Proc. of Conference on Computer and Robot Vision
(CRV’15), Halifax, Nova Scotia, 2015, pp. 23–30. ⇒207

[8] A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse, Monoslam: Real-time single
camera slam, IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 29, 6 (2007) 1052–1067. ⇒199

[9] H. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping: part i,
IEEE Robotics & Automation Magazine 13, 2 (2006) 99–110. ⇒187, 200

http://www.asprs.org/a/publications/pers/2015journals/PE&RS%20February%202015/HTML/files/assets/common/downloads/page0021.pdf
http://www.asprs.org/a/publications/pers/2015journals/PE&RS%20February%202015/HTML/files/assets/common/downloads/page0021.pdf
http://www.asprs.org/a/publications/pers/2015journals/PE&RS%20February%202015/HTML/files/assets/common/downloads/page0021.pdf
http://www.asprs.org/a/publications/pers/2015journals/PE&RS%20February%202015/HTML/files/assets/common/downloads/page0021.pdf
http://www.asprs.org/a/publications/pers/2015journals/PE&RS%20February%202015/HTML/files/assets/common/downloads/page0021.pdf
http://www.asprs.org/a/publications/pers/2015journals/PE&RS%20February%202015/HTML/files/assets/common/downloads/page0021.pdf
http://www.sciencedirect.com/science/journal/00991112/81/2
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10932
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10932
https://www.cs.cmu.edu/afs/cs/academic/class/15385-s12/www/lec_slides/Baker&Matthews.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15385-s12/www/lec_slides/Baker&Matthews.pdf
http://dl.acm.org/citation.cfm?id=964568&picked=prox&cfid=789257182&cftoken=45186019
http://dl.acm.org/citation.cfm?id=964568&picked=prox&cfid=789257182&cftoken=45186019
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.6080&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.6080&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.6080&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.6080&rep=rep1&type=pdf
http://link.springer.com/book/10.1007/3-540-45134-X
http://link.springer.com/book/10.1007/3-540-45134-X
http://link.springer.com/book/10.1007/3-540-45134-X
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6646364
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6646364
https://www.doc.ic.ac.uk/~ajd/Publications/civera_etal_tro2008.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/civera_etal_tro2008.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/civera_etal_tro2008.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/civera_etal_tro2008.pdf
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4663225
http://leeclem.net/assets/docs/crv2015_battle_paper.pdf
http://leeclem.net/assets/docs/crv2015_battle_paper.pdf
http://leeclem.net/assets/docs/crv2015_battle_paper.pdf
http://leeclem.net/assets/docs/crv2015_battle_paper.pdf
http://leeclem.net/assets/docs/crv2015_battle_paper.pdf
http://leeclem.net/assets/docs/crv2015_battle_paper.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7158225
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7158225
https://www.doc.ic.ac.uk/~ajd/Publications/davison_etal_pami2007.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/davison_etal_pami2007.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/davison_etal_pami2007.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/davison_etal_pami2007.pdf
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4160941
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4160941
http://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
http://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34338&punumber=100

212 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

[10] J. Engel, T. Schöps, D. Cremers, Lsd-slam: Large-scale direct monocular slam,
Proc. of 13th European Conference on Computer Vision (ECCV’14), volume 2,
Springer International Publishing, Zurich, Switzerland, 2014, pp. 834–849. ⇒
197

[11] J. Engel, J. Sturm, D. Cremers, Semi-dense visual odometry for a monocular cam-
era, Proc. of IEEE International Conference on Computer Vision (ICCV’13),
Sydney, Australia, 2013, pp. 1449–1456. ⇒197

[12] M. A. Fischler, R. C. Bolles, Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography, Commu-
nications of the ACM 24, 6 (1981) 381–395. ⇒191

[13] C. Forster, M. Pizzoli, D. Scaramuzza, Svo: Fast semi-direct monocular visual
odometry, Proc. of IEEE International Conference on Robotics and Automation
(ICRA’14), Hong Kong, China, 2014, pp. 15–22. ⇒198

[14] F. Fraundorfer, D. Scaramuzza, Visual odometry, part ii: Matching, robustness,
optimization, and applications, IEEE Robotics & Automation Magazine 19, 2
(2012) 78–90. ⇒187

[15] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? the kitti
vision benchmark suite, Proc. of Conference on Computer Vision and Pattern
Recognition (CVPR’12), IEEE, Providence, RI, USA, 2012, pp. 3354–3361. ⇒
210

[16] N. Gordon, Novel approach to nonlinear/non-gaussian bayesian state estimation,
IEE Proceedings F (Radar and Signal Processing) 140 (1993) 107–113(6). ⇒205

[17] C. Harris, J. Pike, 3d positional integration from image sequences, Proc. of the
Alvey Vision Conference, Manchester, UK, 1987, pp. 87–90. ⇒187

[18] C. Harris, M. Stephens, A combined corner and edge detector, Proc. of the 4th
Alvey Vision Conference, Manchester, UK, 1988, pp. 147–151. ⇒190

[19] R. I. Hartley, In defense of the eight-point algorithm, IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI’97) 19, 6 (1997) 580–593.⇒191

[20] R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, (2nd
edition), Cambridge University Press, Cambridge, England, UK, 2004. ⇒ 187,
190, 191, 192

[21] C. Kerl, J. Sturm, D. Cremers, Robust odometry estimation for rgb-d cameras,
Proc. of IEEE International Conference on Robotics and Automation (ICRA’13),
Karlsruhe, Germany, 2013, pp. 3748–3754. ⇒195

[22] G. Klein, D. Murray, Parallel tracking and mapping for small ar workspaces,
Proc. of 6th IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR 2007), Nara, Japan, 2007, pp. 225–234. ⇒187, 193

[23] G. Klein, D. Murray, Improving the agility of keyframe-based SLAM, Proc. of
10th European Conference on Computer Vision (ECCV’08), Marseille, France,
2008, pp. 802–815. ⇒193

[24] L. Kneip, D. Scaramuzza, R. Siegwart, A novel parametrization of the
perspective-three-point problem for a direct computation of absolute camera
position and orientation, Proc. of IEEE Conference on Computer Vision and

http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://link.springer.com/book/10.1007%2F978-3-319-10590-1
https://vision.in.tum.de/_media/spezial/bib/engel2013iccv.pdf
https://vision.in.tum.de/_media/spezial/bib/engel2013iccv.pdf
https://vision.in.tum.de/_media/spezial/bib/engel2013iccv.pdf
https://vision.in.tum.de/_media/spezial/bib/engel2013iccv.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6750807
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
http://dl.acm.org/citation.cfm?id=358669&picked=prox&cfid=789257182&cftoken=45186019
http://dl.acm.org/citation.cfm?id=358669&picked=prox&cfid=789257182&cftoken=45186019
http://rpg.ifi.uzh.ch/docs/ICRA14_Forster.pdf
http://rpg.ifi.uzh.ch/docs/ICRA14_Forster.pdf
http://rpg.ifi.uzh.ch/docs/ICRA14_Forster.pdf
http://rpg.ifi.uzh.ch/docs/ICRA14_Forster.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895053
http://dx.doi.org/10.1109/MRA.2012.2182810
http://dx.doi.org/10.1109/MRA.2012.2182810
http://dx.doi.org/10.1109/MRA.2012.2182810
http://dx.doi.org/10.1109/MRA.2012.2182810
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=100
http://www.cvlibs.net/publications/Geiger2012CVPR.pdf
http://www.cvlibs.net/publications/Geiger2012CVPR.pdf
http://www.cvlibs.net/publications/Geiger2012CVPR.pdf
http://www.cvlibs.net/publications/Geiger2012CVPR.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6235193
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6235193
http://www.bmva.org/bmvc/1987/avc-87-032.pdf
http://www.bmva.org/bmvc/1987/avc-87-032.pdf
http://www.bmva.org/bmvc:1987
http://www.bmva.org/bmvc:1987
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.231.1604&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.231.1604&rep=rep1&type=pdf
http://www.bmva.org/:bmvc:1988
http://www.bmva.org/:bmvc:1988
http://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
http://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
http://dl.acm.org/citation.cfm?id=262631&picked=prox&cfid=789257182&cftoken=45186019
http://dl.acm.org/citation.cfm?id=262631&picked=prox&cfid=789257182&cftoken=45186019
https://vision.in.tum.de/_media/spezial/bib/kerl13icra.pdf
https://vision.in.tum.de/_media/spezial/bib/kerl13icra.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6615630
http://www.robots.ox.ac.uk/~gk/publications/KleinMurray2007ISMAR.pdf
http://www.robots.ox.ac.uk/~gk/publications/KleinMurray2007ISMAR.pdf
http://dl.acm.org/citation.cfm?id=1514339&picked=prox&cfid=789257182&cftoken=45186019
http://dl.acm.org/citation.cfm?id=1514339&picked=prox&cfid=789257182&cftoken=45186019
http://www.robots.ox.ac.uk/~gk/publications/KleinMurray2008ECCV.pdf
http://www.robots.ox.ac.uk/~gk/publications/KleinMurray2008ECCV.pdf
http://link.springer.com/book/10.1007/978-3-540-88688-4
http://link.springer.com/book/10.1007/978-3-540-88688-4
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5968010

Monocular indoor localization techniques 213

Pattern Recognition (CVPR’11), Colorado Springs, USA, 2011, pp. 2969–2976.⇒191
[25] K. Konolige, M. Agrawal, J. Solà, Large-scale visual odometry for rough terrain,

Proc. of International Symposium on Robotics Research, Hiroshima, Japan, 2007,
pp. 201–212. ⇒199

[26] V. Lepetit, F.Moreno-Noguer, P.Fua, Epnp: An accurate o(n) solution to the pnp
problem, International Journal Computer Vision 81, 2 (2009) 155–166. ⇒191

[27] H. Li, R. Hartley, Five-point motion estimation made easy, Proc. of 18th Inter-
national Conference on Pattern Recognition (ICPR’06), volume 1, Hong Kong,
China, 2006, pp. 630–633. ⇒191

[28] M. Li, B. H. Kim, A. I. Mourikis, Real-time motion tracking on a cellphone
using inertial sensing and a rolling-shutter camera, Proc. of IEEE International
Conference on Robotics and Automation (ICRA’13), Karlsruhe, Germany, 2013,
pp. 4712–4719. ⇒208

[29] M. Li, A. I. Mourikis, Optimization-based estimator design for vision-aided iner-
tial navigation, Proc. of the Robotics: Science and Systems Conference, Sydney,
NSW, Australia, 2012, pp. 504–509. ⇒209

[30] M. Li, A. I. Mourikis, 3-d motion estimation and online temporal calibration for
camera-imu systems, Proc. of IEEE International Conference on Robotics and
Automation (ICRA’13), Karlsruhe, Germany, 2013, pp. 5709–5716. ⇒208

[31] M. Li, A. I. Mourikis, High-precision, consistent ekf-based visual-inertial odom-
etry, International Journal of Robotics Research 32, 6 (2013) 690–711. ⇒208

[32] M. Li, H. Yu, X. Zheng, A. I. Mourikis, High-fidelity sensor modeling and self-
calibration in vision-aided inertial navigation, Proc. of IEEE International Con-
ference on Robotics and Automation (ICRA’14), Hong Kong, China, 2014, pp.
409–416. ⇒208

[33] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Publishing
Company, Incorporated, 2008. ⇒204

[34] H. Longuet-Higgins, A computer algorithm for reconstructing a scene from two
projections, Nature 293, 10 (1981) 133–135. ⇒187

[35] M. A. Lourakis, A. Argyros, SBA: A software package for generic sparse bundle
adjustment, ACM Transactions on Mathematical Software (TOMS) 36, 1 (2009)
1–30. ⇒192

[36] D. G. Lowe, Object recognition from local scale-invariant features, Proc. of IEEE
International Conference on Computer Vision (ICCV’99), volume 2, Kerkyra,
Greece, 1999, pp. 1150–1157. ⇒190

[37] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide-baseline stereo from
maximally stable extremal regions, Image and Vision Computing 22, 10 (2004)
761–767. ⇒190

[38] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, Fastslam: A factored solution
to the simultaneous localization and mapping problem, Proc. of National Con-
ference on Artificial Intelligence, American Association for Artificial Intelligence
(AAAI), Edmonton, Alberta, Canada, 2002, pp. 593–598. ⇒209

[39] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, FastSLAM 2.0: An improved

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5968010
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5968010
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.3605&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.3605&rep=rep1&type=pdf
http://link.springer.com/book/10.1007/978-3-642-14743-2
http://cvlabwww.epfl.ch/~lepetit/papers/lepetit_ijcv08.pdf
http://cvlabwww.epfl.ch/~lepetit/papers/lepetit_ijcv08.pdf
http://cvlabwww.epfl.ch/~lepetit/papers/lepetit_ijcv08.pdf
http://cvlabwww.epfl.ch/~lepetit/papers/lepetit_ijcv08.pdf
http://link.springer.com/journal/11263/81/2/page/1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11159
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11159
http://www.ee.ucr.edu/~mourikis/papers/Li2013ICRA_b.pdf
http://www.ee.ucr.edu/~mourikis/papers/Li2013ICRA_b.pdf
http://www.ee.ucr.edu/~mourikis/papers/Li2013ICRA_b.pdf
http://www.ee.ucr.edu/~mourikis/papers/Li2013ICRA_b.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6615630
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6615630
http://www.roboticsproceedings.org/rss08/p31.pdf
http://www.roboticsproceedings.org/rss08/p31.pdf
http://www.roboticsproceedings.org/rss08/p31.pdf
http://www.roboticsproceedings.org/rss08/p31.pdf
http://www.roboticsproceedings.org/rss08/index.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.391.145&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.391.145&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.391.145&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.391.145&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6615630
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6615630
http://ijr.sagepub.com/content/32/6.toc
http://www.ee.ucr.edu/~mourikis/papers/Li2014ICRA.pdf
http://www.ee.ucr.edu/~mourikis/papers/Li2014ICRA.pdf
http://www.ee.ucr.edu/~mourikis/papers/Li2014ICRA.pdf
http://www.ee.ucr.edu/~mourikis/papers/Li2014ICRA.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6895053
https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
http://www.nature.com/nature/journal/v293/n5828/abs/293133a0.html
http://users.ics.forth.gr/~lourakis/sba/sba-toms.pdf
http://users.ics.forth.gr/~lourakis/sba/sba-toms.pdf
http://users.ics.forth.gr/~lourakis/sba/sba-toms.pdf
http://users.ics.forth.gr/~lourakis/sba/sba-toms.pdf
http://dl.acm.org/citation.cfm?id=1486525&picked=prox&cfid=789257182&cftoken=45186019
http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6412
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6412
https://dspace.cvut.cz/bitstream/handle/10467/62602/2004-Matas-IVC-2004.pdf?sequence=30&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/62602/2004-Matas-IVC-2004.pdf?sequence=30&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/62602/2004-Matas-IVC-2004.pdf?sequence=30&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/62602/2004-Matas-IVC-2004.pdf?sequence=30&isAllowed=y
http://www.sciencedirect.com/science/journal/02628856/22/10
http://www.cs.cmu.edu/~./mmde/mmdeaaai2002.pdf
http://www.cs.cmu.edu/~./mmde/mmdeaaai2002.pdf
http://www.cs.cmu.edu/~./mmde/mmdeaaai2002.pdf
http://www.cs.cmu.edu/~./mmde/mmdeaaai2002.pdf
http://www.aaai.org/Conferences/AAAI/aaai02.php
http://www.aaai.org/Conferences/AAAI/aaai02.php
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf

214 G. Hollósi, Cs. Lukovszki, I. Moldován, S. Plósz, F. Harasztos

particle filtering algorithm for simultaneous localization and mapping that prov-
ably converges, Proc. of International Joint Conference on Artificial Intelligence
(IJCAI-03), Acapulco, Mexico, 2003, pp. 1151–1156. ⇒209

[40] R. Mur-Artal, J. M. M. Montiel, J. D. Tardós, ORB-SLAM: a versatile and
accurate monocular SLAM system, IEEE Transactions on Robotics 31, 5 (2015)
1147–1163. ⇒193

[41] R. A. Newcombe, S. J. Lovegrove, A. J. Davison, Dtam: Dense tracking and
mapping in real-time, Proc. of International Conference on Computer Vision
(ICCV’11), IEEE Computer Society, Washington, DC, USA, 2011, pp. 2320–
2327. ⇒196

[42] D. Nistér, An efficient solution to the five-point relative pose problem, IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI’04) 26, 6
(2004) 756–777. ⇒191

[43] D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’06), vol-
ume 2, IEEE Computer Society, Seattle, WA, USA, 2006, pp. 2161–2168. ⇒195,
207

[44] T. Oskiper, Z. Zhu, S. Samarasekera, R. Kumar, Visual odometry system using
multiple stereo cameras and inertial measurement unit, Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’07), Minneapolis, MN,
USA, 2007, pp. 1–8. ⇒199

[45] O. Pizarro, R. Eustice, H. Singh, Relative pose estimation for instrumented,
calibrated imaging platforms, Proc. of Digital Image Computing Techniques and
Applications, Sydney, Australia, 2003, pp. 601–612. ⇒191

[46] S. I. Roumeliotis, A. E. Johnson, J. F. Montgomery, Augmenting inertial naviga-
tion with image-based motion estimation, Proc. of IEEE International Confer-
ence on Robotics and Automation (ICRA’02), volume 4, Washington, DC, USA,
2002, pp. 4326–4333. ⇒199

[47] C. Roussillon, A. Gonzalez, J. Solà, J.-M. Codol, N. Mansard, S. Lacroix,
M. Devy, Rt-slam: A generic and real-time visual slam implementation, Proc. of
International Conference of Computer Vision Systems (ICVS’11), Lecture Notes
in Computer Science 6962 (2011) 31–40. ⇒207

[48] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Orb: An efficient alternative to
sift or surf, Proc. of International Conference on Computer Vision (ICCV’11),
Barcelona, Spain, 2011, pp. 2564–2571. ⇒190

[49] S. Särkkä, Bayesian Filtering and Smoothing , (1st edition), Cambridge Univer-
sity Press, New York, NY, USA, 2013. ⇒203, 205

[50] D. Scaramuzza, F. Fraundorfer, Visual odometry, part i: The first 30 years and
fundamentals, IEEE Robotics & Automation Magazine 18, 4 (2011) 80–92. ⇒
187

[51] M. Smith, I. Baldwin, W. Churchill, R. Paul, P. Newman, The new college vision
and laser data set, The International Journal of Robotics Research 28, 5 (2009)
595–599. ⇒210

[52] J. Solà, Consistency of the monocular ekf-slam algorithm for three different land-

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.6159&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=1630659&picked=prox&cfid=789257182&cftoken=45186019
http://dl.acm.org/citation.cfm?id=1630659&picked=prox&cfid=789257182&cftoken=45186019
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7274528
https://www.doc.ic.ac.uk/~ajd/Publications/newcombe_etal_iccv2011.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/newcombe_etal_iccv2011.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/newcombe_etal_iccv2011.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/newcombe_etal_iccv2011.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6118259
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6118259
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.8769&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.8769&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28729
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28729
http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf
http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34373
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34373
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34373
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4269955
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4269955
http://robots.engin.umich.edu/publications/opizarro-2003a.pdf
http://robots.engin.umich.edu/publications/opizarro-2003a.pdf
http://robots.engin.umich.edu/publications/opizarro-2003a.pdf
http://robots.engin.umich.edu/publications/opizarro-2003a.pdf
http://www-users.cs.umn.edu/~stergios/papers/imu_vision_icra02.pdf
http://www-users.cs.umn.edu/~stergios/papers/imu_vision_icra02.pdf
http://www-users.cs.umn.edu/~stergios/papers/imu_vision_icra02.pdf
http://www-users.cs.umn.edu/~stergios/papers/imu_vision_icra02.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7916
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7916
http://homepages.laas.fr/nmansard/article/2011_icvs_rtslam.pdf
http://homepages.laas.fr/nmansard/article/2011_icvs_rtslam.pdf
http://link.springer.com/book/10.1007/978-3-642-23968-7
http://link.springer.com/book/10.1007/978-3-642-23968-7
http://link.springer.com/book/10.1007/978-3-642-23968-7
https://www.willowgarage.com/sites/default/files/orb_final.pdf
https://www.willowgarage.com/sites/default/files/orb_final.pdf
https://www.willowgarage.com/sites/default/files/orb_final.pdf
https://www.willowgarage.com/sites/default/files/orb_final.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6118259
https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf
http://dx.doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1109/MRA.2011.943233
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=100
http://dl.acm.org/citation.cfm?id=1529951&picked=prox&cfid=789257182&cftoken=45186019

Monocular indoor localization techniques 215

mark parametrizations, Proc. of IEEE International Conference on Robotics and
Automation (ICRA’10), Anchorage, Alaska, 2010, pp. 3513–3518. ⇒205

[53] J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cremers, A benchmark
for the evaluation of rgb-d slam systems, Proc. of International Conference on
Intelligent Robot Systems (IROS’12), Vilamoura, Algarve, Portugal, 2012, pp.
573–580. ⇒210

[54] J. Tardif, M. G. M. Laverne, A. Kelly, M. Laverne, A new approach to vision-
aided inertial navigation, Proc. of International Conference on Intelligent Robots
and Systems (IROS’10), Taipei, Taiwan, 2010, pp. 4161–4168. ⇒199

[55] B. Triggs, Camera pose and calibration from 4 or 5 known 3d points, Proc.
of IEEE International Conference on Computer Vision (ICCV’99), volume 1,
Kerkyra, Greece, 1999, pp. 278–284. ⇒191

[56] B. Triggs, P. F. McLauchlan, R. I. Hartley, A. W. Fitzgibbon, Bundle adjustment
— a modern synthesis, Proc. of International Workshop on Vision Algorithms:
Theory and Practice, Springer Berlin Heidelberg, Corfu, Greece, 1999, pp. 298–
372. ⇒192

[57] S. Weiss, R. Siegwart, Real-time metric state estimation for modular vision-
inertial systems, Proc. of IEEE International Conference on Robotics and Au-
tomation (ICRA’11), Shanghai, China, 2011, pp. 4531–4537. ⇒199

[58] C. Wu, SiftGPU: A GPU implementation of scale invariant feature transform
(SIFT), http://cs.unc.edu/~ccwu/siftgpu, 2007. ⇒210

[59] C. Wu, S. Agarwal, B. Curless, S. M. Seitz, Multicore bundle adjustment, Proc. of
Conference on Computer Vision and Pattern Recognition (CVPR’11), Colorado
Springs, USA, 2011, pp. 3057–3064. ⇒210

Received: May 17, 2016 • Revised: November 11, 2016

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5501116
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5501116
http://ais.informatik.uni-freiburg.de/publications/papers/sturm12iros.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/sturm12iros.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/sturm12iros.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/sturm12iros.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6363628
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6363628
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5639431
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5639431
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1528&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1528&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6412
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6412
https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf
https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf
https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf
https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf
http://www.springer.com/us/book/9783540679738
http://www.springer.com/us/book/9783540679738
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5967842
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5967842
http://cs.unc.edu/~ccwu/siftgpu
http://grail.cs.washington.edu/projects/mcba/pba.pdf
http://grail.cs.washington.edu/projects/mcba/pba.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5968010
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5968010

Acta Univ. Sapientiae, Informatica 8, 2 (2016) 216–240

DOI: 10.1515/ausi-2016-0010

Internal quality evolution of a large test

system–an industrial study

Attila KOVÁCS
Eötvös Loránd University

email: attila.kovacs@inf.elte.hu

Kristóf SZABADOS1

Eötvös Loránd University
email:

kristof.szabados@ericsson.com

Abstract.

This paper presents our empirical observations related to the evolu-
tion of a large automated test system. The system observed is used in
the industry as a test tool for complex telecommunication systems, it-
self consisting of more than one million lines of source code. This study
evaluates how different changes during the development have changed
the number of observed Code Smells in the test system. We have moni-
tored the development of the test scripts and measured the code quality
characteristics over a five years period.

The observations show that the introduction of continuous integra-
tion, the existence of tool support for quality improvements in itself,
changing the development methodologies (from waterfall to agile), chang-
ing technical and line management structure and personnel caused no
measurable change in the trends of the observed Code Smells. Inter-
nal quality improvements were achieved mainly by individuals intrinsic
motivation. Our measurements show similarities with earlier results on
software systems evolutions presented by Lehman.

Computing Classification System 1998: D.2.2, D.2.9
Mathematics Subject Classification 2010: 68N99
Key words and phrases: code smells; empirical study; software evolution; test systems;
Lehman’s laws; TTCN-3

1Corresponding author

216

http://compalg.inf.elte.hu/~attila/
http://www.elte.hu/
mailto:attila.kovacs@inf.elte.hu
http://www.elte.hu/
mailto:kristof.szabados@ericsson.com

Internal quality evolution of a large test system–an industrial study 217

1 Introduction

Do we really know how to build large test sets? Do we really know how test
systems evolve, how can their development be managed, their quality ensured?

Nowadays the usage of software systems belongs to the everyday life of the
society, yet testing these systems is still a challenging and not really understood
activity. Software helps in navigating to locations, supports communication
with other people, drives the production, distribution and consumption of
energy resources. Software controls companies, trades on the markets, takes
care of people’s health.

To support the testing these systems need, ETSI2 developed the TTCN-33

language, which can be used in testing of reactive systems. By now test systems
developed by ETSI, 3GPP4 and in the industry, have evolved to be comparable
to the tested systems in both size and complexity ([26]). Standardized test
systems were shown to contain design problems similar to those present in
other (C / C++ / Java) systems ([29, 28]).

In this paper we show empirical observations on the evolution of two large
test systems developed in the industry and our measurements on the number
of code smells in them. We ask the following research questions: Was the
number of measured code smells affected by the introduction of Continuous
Integration (RQ1), by tool support for detecting code smells (RQ2), by the
merging of 2 test systems (RQ3), by doing the development using different
methodologies (RQ4), by changing leaders on the project (RQ5) ? Our final
research question is: Do code smells in test systems follow predictable patterns
during the system’s evolution (RQ6) ?

In this study we examine the evolution of TTCN-3 test systems from a soft-
ware quality point of view. In our research we treat test systems as software
products used for testing, rather than tests. We present historical information
on changes in line and project management, development practices, organiza-
tional and technical structures, tool support that happened during their five
years development period. By comparing our measurements with historical in-
formation we show how the evolution could affect the quality of the observed
large scale test system.

2European Telecommunication Standardization Institute
3Testing and Test Control Notation Version 3
43rd Generation Partnership Project

218 A. Kovács, K. Szabados

1.1 Structure of this paper

This paper is organized as follows. In Section 2 we present earlier results re-
lated to this subject. Section 3 contains the history of the studied projects and
the measurement environment. In Section 4 we analyze the measured data and
correlate the measurements to publicly known items. Section 5 presents the
measured results from the enterprise’ point of view (significance of develop-
ment methods, leadership styles, tool support) to emphasize their influences.
Section 6 lists the factors that might be a threat to the validity of our results.
Finally, Section 7 summarizes our findings.

2 Previous work

Before presenting our findings it is necessary to understand the importance
and limitations of code smells, software evolution and the state of how this
knowledge is translated to testing.

2.1 Code smell studies

Code smells were introduced by Fowler [4] as issues that are not necessarily
technically incorrect codes and do not disable the program from functioning,
but might indicate architectural problems or misunderstandings, issues which
are very hard to detect. Since then, the initial list of 22 code smells has been
extensively extended (see e.g. [33, 19, 21]), and code smells have become a
metaphor for software design aspects that may cause problems during further
development and maintenance of software systems.

Empirical work on code smells revealed that smelly codes in software sys-
tems are changed more frequently than other codes ([9, 22]). Moser at al.
found [20] that in the context of small teams working in volatile domains (e.g.
mobile development) correcting smelly code increased software quality, and
measurably increased productivity.

On the other hand the value of code smells has been questioned by many.
Yamashita et al. found [37] that only 30% of the maintenance problems were
related to files containing code smells. Sjøberg at al. found [25] that none of the
code smells they investigated was significantly associated with increased main-
tenance effort when adjusted by file size. Macia et al. observed [18] that more
than 60% of the automatically detected code anomalies were not correlated
with architectural problems.

In order to understand software aging better the lifespan of code smells was

Internal quality evolution of a large test system–an industrial study 219

studied by many (see e.g. [23]). Chatzigeorgiou et al. published [1] that code
smells are usually introduced with new features, accumulating as the project
matures, persisting up to the latest examined version. The disappearance of
smell instances was usually the side effect of maintenance works, not the re-
sult of targeted correcting activities. Peters and Zaidman concluded [24] that
developers might be aware of code smells, but are usually not concerned by
their presence. In each system inspected there were only one or two developers
who resolved code smell instances intentionally, or resolved significantly more
instances than others (possibly unintentionally).

In their 2013 paper Yamashita et al. [35] conducted a survey on 85 soft-
ware professionals in order to understand the level of knowledge about code
smells and their perceived usefulness. They found that 32% of the respondents
did not know about code smells, nor did they care. Those who were at least
somewhat concerned about code smells indicated difficulties with obtaining
organizational support and tooling. In their empirical studies ([34, 36]) they
observed that code smells covered only some of the maintainability aspects
considered important by developers. They also observed, that developers did
not take any conscious action to correct bad smells that were found in the
code.

2.2 Software evolution studies

Lehman [14] described the evolution of software as the study and management
of repeatedly changing software over time for various reasons.

Out of Lehman’s laws of software evolution the following are the most rel-
evant for this study [16]:

• Law 2: “As an E-type5 system is evolved its complexity increases unless
work is done to maintain or reduce it”

• Law 4: “Unless feedback mechanisms are appropriately adjusted, average
effective global activity rate in an evolving E-type system tends to remain
constant over product lifetime”

• Law 5: “In general, the incremental growth and long term growth rate
of E-type systems tend to decline”

• Law 8: “E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems”

Lehman and Ramil [15], and Lawrence [10] found that commercial systems
have a clear linear growth, viewed over a number of releases. Izurieta and

5systems actively used and embedded in a real world domain.

220 A. Kovács, K. Szabados

Bieman found [6] that Open Source Software products FreeBSD and Linux
also appear to grow at similar rates.

Turski showed ([32]) that the gross growth trends can be predicted, with a
mean absolute error of order 6%, with

Si+1 = Si + ê/S2i , (1)

where Si is the system size at the i-th measurement, and ê can be calculated
as (Si−1 − S1)/(

∑i−1
k=1 1/S

2
k).

There are plenty of researches ([17, 13, 8, 7, 5]) in which the authors show
that the laws seem to be supported by solid evidence. But applying them
currently requires the understanding of human, technical, usage and organi-
zational contexts of the measures, they were derived from.

2.3 Test quality and evolution studies

Deursen at al. [3] noticed while working on a Java project that tests in their
test system have their own set of problems and repertoire of solutions, which
they translated into code smells and refactorings for the JUnit framework.

Zaidman et al. [38] witnessed both phased and synchronous co-evolution of
tests and production codes.

Zeiss et al. [39] published a model for TTCN-3 test specification derived
from ISO 9126, by translating the quality standard for testing.

2.4 Our contributions

In our long term research we explore similarities between systems of tests and
software systems. We look at tests as software systems, re-interpreting test
systems and script as software products.

In [26] we have shown that automated test systems written in TTCN-3 can
grow large and complex similar to the structures studied in [31]. In [29] we
have defined 86 code smells for TTCN-3 and their relations to international
software quality standards. In order to understand the quality of such huge
test systems 35 selected code smells were implemented and measured on 16

projects.
The updated list of code smells, used in this measurement, can be found at

[30].
To the best of our knowledge the evolution of code smells in test systems

was not yet studied in the domain of testing communication systems. We have
also not found any work presenting the relation between real world events and
what effects they had on the quality of test suites.

Internal quality evolution of a large test system–an industrial study 221

3 History of the studied systems

3.1 Background

Current test systems have grown large with many different parts, which might
be developed separately in different organizations. Although these parts are
designed to become test suites or serve as components of test suites, most
of them can not be called tests (ex. the software layer converting between
abstract TTCN-3 messages and actual bit stream messages). For this reason
in this article we use the term “test system” to describe software components
of test suites and the test suites built of them.

We have studied two test systems developed and used at our industry part-
ner. The history of these systems goes back to 2005. We started to analyze
them in 2012. At the end of 2012 the two systems were merged to form a single
solution.

Both test systems are built on a set of libraries and tools in a hierarchical
structure. We will call this set of systems Common. Parts of Common in the lower
abstraction layers support (1) sending and receiving messages of a specific
protocol, (2) the protocol logic (3) and the forming of a glue layer between a
generic product and some specific usage.
System-1 was originally designed for demonstrating and testing the features

of Common, containing a set of project independent, reusable data structures
and algorithms that can be used for creating high levels of load in TTCN-3.
System-2 was aimed at testing IMS6 products. At the end of 2012 these two

test systems were merged into one, which we will call the Merged System.
System-1, System-2 and Merged offer complex and computationally inten-

sive functionalities. They are used to test if the System Under Test is able to:
(1) handle large amount of users, (2) handle large data traffic coming in a mix
of several supported traffic type and (3) stay stable for long durations (days
or even weeks).

Titanium is our open source ([27]), static code analyzer, developed as part
of our research to support detecting issues in TTCN-3 source codes.

3.2 History of the tracked systems

In this section we provide a list of the most important events which could have
influenced the quality of the studied systems.

6IP Multimedia Core Network Subsystem is an architectural framework designed by 3GPP
for evolving mobile networks beyond GSM

222 A. Kovács, K. Szabados

• 2005 - 2006: The development on Core Library started.

• Mid. 2007: First Core Library release.

• Early 2008: System-1 was born. Developers were dedicated to indepen-
dent customers with little coordination among them.

• Mid. 2009: A team in System-1 switched to Scrum methodology for
development, led by an experienced Scrum Master. Strong coordination
appeared for the teams but there were still external developers working
on the same source codes.

• End of 2009: The Scrum Master moved to a different unit inside the
company. Her place was filled with people she trained earlier.

• 2010: System-2 was moved from abroad to in-house. The in-house team
decided to rewrite the code from ground up.

• 2010 - 2011: The team of System-1 was experimenting with Kanban and
custom methodologies designed specifically for the project.

• February 2012: Work starts on Titanium.

• 2012 beginning: System-2 changed to a new version handling repository.
This was the first version of its source code available for us to study.

• 2012 first half year: New Scrum Master and Product Owner were se-
lected for System-1. One system architect was selected from each team
to analyze requirements, write implementation studies and guidelines.
A System Architect Forum was created, fostering information sharing
between system architects.

• 2012 second half year: The organizational structure of System-1 was
changed. The Scrum Master and the Product Owner were replaced. From
this point in time there were no external developers changing the source
code in parallel with the team.

• Dec. 2012: System-1 and System-2 were merged forming the Merged

System. The source codes were stored in a new source code repository.

• May 2013: during a “Boost day” event Titanium is integrated into the
continuous integration server of Merged. The effect of every change is
measured and displayed on web pages accessible by all developers and
managers in the project.

• 11 July 2013: “Titanium Quest” was organized. Among others, the par-
ticipants removed 10% of fixme and todo comments, reduced the number
of “circular importations” by 57% and the number of “unused imports”
by 50%. The removal of the circular imports enabled a 3% improvement
in the build time of the Merged System.

Internal quality evolution of a large test system–an industrial study 223

• 2014 first half year: All of the system architects of the Merged System
are replaced by a single System Architect.

• 17 July 2014: The “Green Day” event is organized. Among others, most
of the remaining “unused imports” were removed.

• 4th December 2014: the “Black Thursday” event is organized. Partici-
pants removed 0.6% of the code, reviewing readonly variables, inout and
out parameters, unused local definitions

“Titanium Quest”, “Green Day” and “Black Thursday” were 24 hour code
fixing challenges.

3.3 Subjective information

From organizational point of view these systems were developed by several
teams. The size, structure and responsibilities of the teams changed with time.
All teams were working within the same organizational unit, sitting together
in the same part of the building. Communication among members of teams
and among teams was not obscured.

Developers of System-1, System-2 and Merged have mentioned that be-
tween 2008 and 2011 the system architect was always available for questions
but it was not mandatory to ask him. Members of the System Architect Fo-
rum mentioned that they had no tools to enforce their proposals as the teams
were following agile methodologies (particularly Scrum) where reviewing and
accepting the implementations of features/requirements was the responsibility
of the PO role.

3.4 Trainings on Code Smells and usage of Titanium

Between 22 July 2013 and 17th July 2014 there were 73 issues reported for
the Merged System. These issues range from product and structural issues via
performance and code duplications to code complexity and inefficient variable
scoping. All reports contained the location and a description of the specific
defect. Some reports contain advises for possible corrections as well.

During 2014 we organized trainings to spread knowledge about code smells
with the following agendas:

• January: Handling lists efficiently in TTCN-3,

• Mids of February: Introduction to code smells and their relevance,

• End of February: Advanced uses of Altsteps

224 A. Kovács, K. Szabados

• March: How to efficiently assign a value?

• April: Parameter passing in TTCN-3 in theory and practice.

3.5 Effort

Table 1 shows the actual efforts (in ratios of man-hours) reported for the test
systems at different points in time. For each year we show data for the months
January and October7 to represent the starting and closing of the year.

Name
2009 2010 2011 2012 2013 2014

Jan Oct Jan Oct Jan Oct Jan Oct Jan Oct Jan Oct

Common 1.00 2.06 1.70 1.92 1.54 1.97 1.90 1.56 1.30 1.50 1.39 1.36
System-1 1.20 0.52 0.64 0.76 0.76 0.78 0.81 1.14
System-2 0.68 0.42 1.07 1.06 1.13
Merged 2.63 2.65 3.35 3.51

Table 1: The actual effort (ratios of man-hours) reported on the investigated
systems at different points in time. The values are shown as ratios compared
to the effort reported for Common in January, 2009.

The efforts invested into the products show a growing trend with some
fluctuations. Since the work started in 2009 the number of Man-Hours reported
for the project have almost doubled by the end of 2014.

After the merge all previous efforts invested into System-1 and System-2

were redirected to Merged taking away some resources from Common.

4 Code smell measurements

In this section we present our measurements. For each day in the investigated
range we checked out the source code in the state it was at midnight and
measured the number of code smells (listed at [30]) present.

4.1 Size

We analyzed the size growth of System-1 and Merged systems measured in
LOC. Figure 1 shows the measured data8 and a quadratic trend line fitted.

7In November and December employees tend to go on vacations, significantly changing
the amount of work reported on each project.

8Measuring the lines of code was an afterthought in our case. For System-1 we measured
the lines of code of released software versions, for Merged we show monthly measurement

Internal quality evolution of a large test system–an industrial study 225

Figure 1: Size evolution of the System-1 and Merged systems.

When we used the Lehman’s prediction according to equation (1) on the
lines of code in Merged, we measured a maximal absolute error between the
measured data and the predicted model is about 3%.

4.2 Correlations among code smells

For each possible pair of code smells we calculated the Pearson correlation
between the data series of the code smells ([30]) on the Common + System-1 +
Merged system evolution (Table 2). We excluded code smells having less than
50 occurrences at every measurement point during the development of the
systems, as even small changes can appear to break trends using such small
numbers. Based on the correlation values the code smells could be separated
into 3 groups:

1. In the largest group, the correlation was at least 0.95 between the smell
pairs. These are exactly the code smells that have never been addressed
during special events: FIXME tags, TODO tags, empty statement block,
if instead altguard, magic numbers, magic strings, logic inversion, def-
inition should be private, readonly inout formal parameter, size check
in loop, switch on boolean, too complex expression, too many parame-
ters, uncommented function, uninitialized variable, unused function re-
turn values, visibility in definition.

226 A. Kovács, K. Szabados
C
o
d
e

S
m
e
l
l
s

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
1
6

1
7

1
8

1
9

2
0

2
1

22
23

2
4

2
5

2
6

27

1
F
I
X
M
E

t
a
g
s

1.
00

2
T
O
D
O

t
a
g
s

0.
98

1.
00

3
C
i
r
c
u
l
a
r

i
m
p
o
r
t
a
t
i
o
n

0.
42

0.
40

1.
00

4
E
m
p
t
y

s
t
a
t
e
m
e
n
t

b
l
o
c
k

0.
99

0.
98

0.
43

1.
00

5
I
f

i
n
s
t
e
a
d

a
l
t
g
u
a
r
d

0.
99

0.
97

0.
43

0.
98

1.
00

6
I
f

w
i
t
h
o
u
t

e
l
s
e

0.
87

0.
87

0.
44

0.
91

0.
87

1.
00

7
M
a
g
i
c

n
u
m
b
e
r
s

0.
98

0.
96

0.
47

0.
99

0.
96

0.
90

1.
00

8
M
a
g
i
c

s
t
r
i
n
g
s

0.
99

0.
98

0.
42

0.
99

0.
98

0.
90

0.
99

1.
00

9
M
o
d
u
l
e

n
a
m
e

i
n

d
e
f
i
n
i
t
i
o
n

0.
86

0.
85

0.
39

0.
90

0.
86

0.
99

0.
89

0.
90

1.
00

10
L
o
g
i
c

i
n
v
e
r
s
i
o
n

0.
97

0.
97

0.
43

0.
99

0.
95

0.
92

0.
98

0.
99

0.
93

1.
00

11
D
e
f
i
n
i
t
i
o
n

s
h
o
u
l
d

b
e

p
r
i
v
a
t
e

0.
98

0.
96

0.
45

0.
99

0.
96

0.
89

0.
99

0.
99

0.
90

0.
98

1.
00

12
R
e
a
d
o
n
l
y

l
o
c
a
l

v
a
r
i
a
b
l
e

0.
68

0.
69

0.
35

0.
72

0.
67

0.
67

0.
72

0.
68

0.
66

0.
74

0.
67

1.
00

13
R
e
a
d
o
n
l
y

o
u
t

f
o
r
m
a
l

p
a
r
a
m
e
t
e
r

-0
.4

2
-0

.4
5

-0
.3

1
-0

.4
9

-0
.4

4
-0

.7
9

-0
.4

7
-0

.4
7

-0
.7

4
-0

.5
1

-0
.4

3
-0

.3
7

1.
00

14
R
e
a
d
o
n
l
y

i
n
o
u
t

f
o
r
m
a
l

p
a
r
a
m
e
t
e
r

0.
97

0.
97

0.
46

0.
98

0.
96

0.
86

0.
98

0.
97

0.
85

0.
97

0.
97

0.
75

-0
.4

2
1.

0
0

15
S
i
z
e

c
h
e
c
k

i
n

l
o
o
p

1.
00

0.
98

0.
41

0.
99

0.
98

0.
86

0.
98

0.
99

0.
86

0.
98

0.
98

0.
67

-0
.4

0
0.

9
8

1
.0

0
16

S
w
i
t
c
h

o
n

b
o
o
l
e
a
n

0.
98

0.
97

0.
39

0.
98

0.
95

0.
81

0.
97

0.
97

0.
81

0.
97

0.
97

0.
68

-0
.3

3
0.

9
7

0
.9

9
1
.0

0
17

T
o
o

c
o
m
p
l
e
x

e
x
p
r
e
s
s
i
o
n

0.
99

0.
98

0.
42

0.
99

0.
98

0.
90

0.
99

1.
00

0.
90

0.
99

0.
99

0.
67

-0
.4

7
0.

9
7

0
.9

9
0
.9

7
1
.0

0
18

T
o
o

m
a
n
y

p
a
r
a
m
e
t
e
r
s

0.
99

0.
98

0.
41

0.
99

0.
98

0.
85

0.
98

0.
99

0.
85

0.
97

0.
98

0.
68

-0
.3

9
0.

9
7

0
.9

9
0
.9

8
0
.9

9
1
.0

0
19

T
y
p
e
n
a
m
e

i
n

d
e
f
i
n
i
t
i
o
n

0.
94

0.
93

0.
42

0.
93

0.
95

0.
80

0.
92

0.
95

0.
80

0.
92

0.
96

0.
56

-0
.3

2
0.

9
3

0
.9

6
0
.9

3
0
.9

5
0
.9

3
1
.0

0
20

U
n
c
o
m
m
e
n
t
e
d

f
u
n
c
t
i
o
n

0.
97

0.
95

0.
47

0.
98

0.
96

0.
95

0.
98

0.
98

0.
95

0.
98

0.
98

0.
68

-0
.5

7
0.

9
5

0
.9

7
0
.9

4
0
.9

8
0
.9

6
0
.9

2
1
.0

0
21

U
n
i
n
i
t
i
a
l
i
z
e
d

v
a
r
i
a
b
l
e

0.
99

0.
99

0.
41

0.
99

0.
98

0.
87

0.
98

0.
99

0.
86

0.
98

0.
98

0.
70

-0
.4

2
0.

9
8

1
.0

0
0
.9

8
0
.9

9
0
.9

9
0
.9

5
0
.9

6
1
.0

0
22

U
n
n
e
c
e
s
s
a
r
y

c
o
n
t
r
o
l

0.
86

0.
87

0.
44

0.
91

0.
88

1.
00

0.
89

0.
90

0.
98

0.
92

0.
88

0.
67

-0
.8

0
0.

8
6

0
.8

6
0
.8

2
0
.9

0
0
.8

5
0
.8

0
0
.9

4
0
.8

7
1
.0

0
23

U
n
u
s
e
d

f
u
n
c
t
i
o
n

r
e
t
u
r
n

v
a
l
u
e
s

0.
97

0.
94

0.
40

0.
96

0.
97

0.
91

0.
96

0.
98

0.
90

0.
95

0.
96

0.
57

-0
.5

3
0.

9
2

0
.9

7
0
.9

3
0
.9

8
0
.9

6
0
.9

3
0
.9

7
0
.9

6
0
.9

0
1
.0

0
24

U
n
u
s
e
d

g
l
o
b
a
l

d
e
f
i
n
i
t
i
o
n

0.
91

0.
92

0.
38

0.
93

0.
89

0.
79

0.
93

0.
92

0.
80

0.
95

0.
91

0.
82

-0
.3

2
0.

9
3

0
.9

2
0
.9

4
0
.9

2
0
.9

3
0
.8

4
0
.8

9
0
.9

3
0
.7

9
0
.8

3
1.

00
25

U
n
u
s
e
d

i
m
p
o
r
t

-0
.7

2
-0

.7
2

-0
.4

3
-0

.7
5

-0
.7

5
-0

.8
7

-0
.7

4
-0

.7
5

-0
.8

4
-0

.7
3

-0
.7

4
-0

.3
4

0.
79

-0
.7

0
-0

.7
2

-0
.6

4
-0

.7
6

-0
.7

0
-0

.7
3

-0
.8

1
-0

.7
1

-0
.8

7
-0

.8
4

-0
.4

9
1
.0

0
26

U
n
u
s
e
d

l
o
c
a
l

d
e
f
i
n
i
t
i
o
n

0.
04

0.
05

-0
.1

1
0.

01
-0

.0
1

-0
.3

2
0.

02
0.

00
-0

.2
8

0.
02

0.
01

0.
34

0.
69

0.
09

0.
05

0
.1

4
-0

.0
1

0
.0

9
0
.0

1
-0

.1
1

0.
0
7

-0
.3

2
-0

.1
7

0.
3
1

0.
6
1

1
.0

0
27

V
i
s
i
b
i
l
i
t
y

i
n

d
e
f
i
n
i
t
i
o
n

0.
98

0.
97

0.
38

0.
97

0.
95

0.
83

0.
97

0.
98

0.
83

0.
96

0.
97

0.
64

-0
.3

6
0.

9
6

0
.9

9
0
.9

8
0
.9

8
0
.9

9
0
.9

4
0
.9

5
0
.9

8
0
.8

2
0
.9

4
0.

93
-0

.6
7

0
.1

0
1
.0

0

T
ab

le
2:

T
h

e
P

ea
rs

on
co

rr
el

at
io

n
b

et
w

ee
n

th
e

d
at

a
se

ri
es

of
th

e
co

d
e

sm
el

ls
.

T
o

sa
ve

on
sp

ac
e

th
e

n
u

m
b

er
s

in
th

e
h

ea
d

er
re

p
re

se
n
t

th
e

co
d

e
sm

el
ls

,
n
u

m
b

er
ed

in
th

e
fi

rs
t

co
lu

m
n

.

Internal quality evolution of a large test system–an industrial study 227

2. Code smells with correlation values related to the first group, lying be-
tween 0.3 and 0.95, were addressed during special events, but only a
fraction of their appearances were removed: Module name in definition,
If without else, Unnecessary control, readonly local variable, typename in
definition, unused global definition, circular importation.

3. Three code smells have zero or negative medium correlation values (−0.42,
−0.72 and 0.04) compared to the members of the first group. Most of the
occurrences of these code smells were addressed during special events or
in personal efforts: readonly out formal parameter, unused import, Un-
used local definition.

4.3 Code smell trends

In this section we show how the different events in the history of the test
systems have correlated with the changes in the number of code smells.

4.3.1 First correlation group

Figure 2: Number of magic string issues and its linear approximations.

From the first correlation group we present the magic strings code smell.
The data series of other code smells from this group have high correlation with
this data series, hence, we omit to show them.

In both systems the cumulative number of magic strings was increasing
following a nearly linear trend (Figure 2). Before the merge the number of

228 A. Kovács, K. Szabados

magic strings was growing by 5152/7923/7027 instances in System-1 and by
4225 instances in System-2 per year. Directly after the merge the growth
dropped to 2378 instances per year for most of the year 2013. The growth
speed reached 4733 instances per year in 2014.

It is interesting to point out that the reduction of growth after the merge,
lasted approximately until the numbers were fitting to the original growth
trend of System-1. From 2014 the growth of Merged followed a trend much
closer to that of System-2 than to System-1.

The sudden increases in the measured data in System-1 till the middle
of 2011 indicates 3 months development cycles and developers working on
branches separate from the main development branch. Later in System-1 and
System-2 these increases are not present, indicating frequent changes to the
main development branch. This fits to the part of the history: the development
was not done as a team, but rather individuals serving the needs of separate
customers.

Between April and May 2011 the number of most code smells in this group
temporarily dropped. The project descriptor was corrupted in both cases. The
build system used a forgiving way for extracting information from the project
descriptor, but for our tool this made the project appear as if large amounts
of files were removed. At the end of 2013, already after agile and continuous
integration was introduced, the same problem reappeared while code quality
measurements were displayed in publicly available places.

4.3.2 Second correlation group

From the second correlation group we show each code smell separately.
In case of the Module name in definition code smell (Figure 3) the trends of

System-1 and System-2 seems to be added together, and following the growth
trend of System-2. After the merge the smell occurences of Merged followed
the growth of System-2.

In case of the Readonly local variable code smell (Figure 4) the growth
trend slowed down after the merge, creating a different trend from that of its
source systems. In System-1 the growth was 118 instances in 2012, and 89 in
System-2. The trend continued by 9 in 2013 and 11 in 2014 after the merge
until the occurrences were greatly decreased at the “Black Thursday” event.

The Typename in definition trends (Figrure 5) also slowed down after the
merge. The reason behind the drop in System-1 from around mid 2010 till
mid 2011 was a naming convention change.

In the case of the Unused global definition code smell the trends in System-1

Internal quality evolution of a large test system–an industrial study 229

Figure 3: Module name in definition smell trends

Figure 4: Readonly local variable smell trends

continued in Merged (Figure 6) also slowed down after the merge. Several
instances of this code smell were handled during the “Green Day” and “Black
Thursday” events. The corruption of the project descriptor caused a temporal
drop in April 2011, and a temporal increase at the end of 2013. In the first case
files containing unused global definitions disappeared from our measurements,
in the second case the files disappearing caused the increase in the number of
unused global definitions.

230 A. Kovács, K. Szabados

Figure 5: Typename in definition smell trends

Figure 6: Unused global definition smell trends

Circular importation followed a different behavior. In System-1 the occur-
rences were rare and stable. In System-2 their occurrences were higher and
changing frequently (this smell is reported for every module in the circle in-
dividually in our tool, allowing for small changes in the source leading to
large changes in reported numbers of this smell). After the merge the trend
stabilized.

In System-1 the growth was 4 instances in 2012, in System-2 chaotic till

Internal quality evolution of a large test system–an industrial study 231

Figure 7: Circular importation smell trends

Figure 8: Number of unused imports smell trends.

the half of that year. Which continued with 2 in 2013 and 7 in 2014 after the
merge. When two libraries developed on separate branches were merged in
February and March 2014, the numbers increased to 351 and 566. Only to be
reduced to 45 during the “Green Day” event.

The code smells Readonly local variable, Circular importation and Unused
global definition were addressed on special events, but only a portion of their
numbers could have been corrected.

232 A. Kovács, K. Szabados

4.3.3 Third correlation group

From this group we show only the unused imports smell trends.
The occurrences of this smell in System-1 drops from 1717 to 1398 between

June and July and to 215 till the end of December 2012 (Figure 8). In System-2

the occurrences of unused imports falls from 420 to 298 on October and to 215

on December, 2012. We found that all of these code quality improvements
were related to one employee. After learning that Titanium had support for
detecting unused imports she/he decided to clean up some of the code.

Shortly after July 2013 the occurrences of unused imports drops from 329

to 84 during the “TitaniumQuest” event.
The large fallback at end of 2013 appeared as an increment of issue numbers.

The imports to missing modules were reported as unused.

5 Analysis of our research questions

5.1 Was the number of measured code smells affected by the
introduction of Continuous Integration (RQ1)?

Continuous Integration was introduced together with the Agile methodology.
As many systems had to adapt to it the process took months, with fine tuning
happening even at the time of writing this article. Quality checking was intro-
duced into continuous integration during the “Boost day” (May 2013), with
the integration of Titanium.

We found no direct connection between the number of code smells present
in the source code and the introduction of quality checking to continuous
integration, or continuous integration itself.

Most of the observed code smell occurrences followed the same or similar
trends after continuous integration was introduced.

We also observed two cases when project descriptors were corrupted (one
before, one after continuous integration was introduced). In neither of the
cases did the build and test system notice the corruption. Although during
the second case, the code quality displays, driven by continuous integration,
showed the changes, they did not evoke immediate action.

Our experience on the influence of using continuous integration aligns with
earlier published results of others ([1, 24, 35]).

Internal quality evolution of a large test system–an industrial study 233

5.2 Was the number of measured code smells affected by the
introduction of tool support for detecting Code Smells
(RQ2) ?

We have created Titanium to detect and report internal quality issues. Tita-
nium was integrated into the continuous integration system during the “Boost
day” (May 2013). We have organized tutorials: we explained (1) the usage
of the tool, (2) the meaning of the reported code smells and (3) what kind
of problems the smells can create. In order to reduce the entry barrier of
correction we analyzed the observed systems and reported some issues found
together with a guide on what to correct, where and how. 73 issues were re-
ported between July 2013 and July 2014 (one year interval) as improvement
proposals.

We have found no evidence, breaks in the trends, showing that tool support
in itself motivates project members to clean up their code.

Yet, measurements show that, when personal motivation is present, or spe-
cial events are organized, tool support increases productivity. One person can
review and correct numerous of instances of issues otherwise unnoticed.

These results align with the earlier results of others ([24]).

5.3 Was the number of measured code smells affected by the
merging of 2 test systems (RQ3) ?

We measured that the merge increased the amount of code smells present and
also decreased their previous growth rate.

These results align with the 5th law of software evolution ([16]) and other
earlier results ([1, 24, 35]).

It is interesting to note, that the growth of the merged system is between
the original growths of the two systems it consists of. At the time of writing,
we do not know whether this growth rate will stay longer or will follow one of
the original system’s growth rate.

5.4 Was the number of measured code smells affected by the
different development methodologies (RQ4) ?

During the history of the observed projects the development was performed
sometimes by individuals, sometimes by teams. Teams used company specific
methods in the beginning, Scrum and Kanban for some time, tailored Agile-
like methods for other periods of time.

We have seen that before the middle of 2011 the changes in the numbers

234 A. Kovács, K. Szabados

of code smells indicated 3 month development period. After this time the
changes became smaller and more frequent. Although this might indicate an
effect custom methodologies or maturing in agile methodologies might have
had, there was no change in the general trend lines. The changes became more
frequent, but followed the same trends in their effects.

Other than the changes becoming more frequent we were not able to find
any change correlating to the methodologies, or lack of in our measurements.

5.5 Was the number of measured code smells affected by chang-
ing leaders of the projects (RQ5) ?

Conway’s law [2] suggests that there is a mirroring effect between the structure
of an organization and the structure of the product it creates. In our case there
were several organizational changes on the lower levels: teams were formed,
team internal processes were changed, system architects were appointed, prod-
uct ownership changed.

In the measured data we were not able to find any evidence that could be
related to these changes. We assume that changes in the immediate leadership
were not able to affect the systems. The reason for this is not clear: there could
be higher-level organizational structures that binded the immediate leaders,
or code smells and lines of code might not correlate with such structures.

Based on the information we collected from the system architects and devel-
opers we believe the former assumption. There were no organizational tools in
place for enforcing the system architect’s guides. Tasks were selected for imple-
mentation and prioritized for dedicated developers by the distinct customers
they support. This relation might have circumvented the power of technical
and managerial leaders.

5.6 Do code smells in test systems follow predictable patterns
during the system’s evolution (RQ6) ?

In this section we show how our findings detailed in section 4 relate to Lehman’s
laws of Software Evolution ([16]).

• Our measurements support the 2nd law: in all examined test systems all
code smells measured followed an increasing trend unless work was done
to reduce them.

• Our measurements support the 4th law: the work rate in each test sys-
tem studied stayed approximately the same during their whole lifetime.

Internal quality evolution of a large test system–an industrial study 235

The invariant work rate was not significantly affected by the changes in
history. Lehman showed [12] that although corporate and local manage-
ment certainly has control over resource allocation and activity targets
their ability to do this was constrained by external forces, like the avail-
ability of personnel with appropriate skills and trade unions.

• Our measurements support the 5th law: the average incremental growth
of successive releases was largely invariant. This property was not af-
fected by most of the changes in history. Only individual efforts and the
merge of the two systems has disturbed the trends. Lehman conjectured
[17] that this effect is caused by the rate of acquisition of the necessary
information by the participants.

• The 8th law is usually proved with showing ripples in the measured
data, which are believed to reflect self-stabilization through positive and
negative feedback. We believe that the slowdown right after the merge
was the result of this feedback mechanism. The merge of the test systems
increased the amount of code to be maintained and developed further,
but at the same time, the growth trends were somewhat decreased.

6 Threats to validity

This study might suffer from the usual threats to external validity. There
might be limits to generalizing our results beyond our settings (programming
language used, project setups and possible industry specific effects).

This study was performed on two test systems, developed at the same organi-
zation. The field of software evolution studies has limited information sources.
Publications in the field analyze only a few open source systems ([6, 10]) and
few commercial systems ([11, 17]). Our efforts are an addition to the growing
body of knowledge to this field.

To the best of our knowledge these are the first results for the evolution of
test systems from software quality point of view, and also the first observation
of the effects of products merging. Although it is a valid question if our results
can be generalized to other testing languages and domains of software devel-
opment, we believe this to be true as our results align with previous results in
the field of software evolution ([5, 6, 7, 8, 10, 11, 13, 15, 16, 17, 32]).

The study might suffer from not measuring the metrics which were changed
by the historical happenings. We have measured several code smells and pre-
sented our observations of their changes in this article. These code smells were
either collected from a wide range of tools supporting other languages and

236 A. Kovács, K. Szabados

adapted to TTCN-3, or defined by us based on our earlier observations related
to the language ([29]). We believe that these metrics are correctly measuring
internal quality and exhaustive for the TTCN-3 language.

This study also faces the threat of delayed influence: as the work on the
studied systems is still going on, it could happen that the influence of some
change in the past, will only appear after the publication of this paper. We
don’t believe this to be a big threat, as the projects studied have been in
development for 5 years, our tool support appeared 3 years ago and we have
organized several code improvement special events in the last 2 years.

It is an unlikely but theoretically possible scenario that all changes happened
at the right time: the changes were necessary to keep the rate of growth; all
transitions were smooth and all changes stack up to keep up the same rate of
growth.

7 Summary

We have previously defined ([29]) several code smells for test systems written in
TTCN-3 and have shown ([28]) that publicly available TTCN-3 test systems
have room for improvement. We have also already shown ([26]), that test
systems written in TTCN-3, can become large and complex structures. In this
article we studied the long term evolution of a large test system in the industry.

We have monitored the development of a test system and measured the code
quality characteristics for a five years period at our industry partner. Changing
the development processes, project leaders, team and technical leaders, intro-
ducing Continuous Integration and automated quality checks did not cause
significant difference in the number of code smell instances present. We can
conclude that the development of the observed test system follows predictable
tendencies.

Just like Lehman’s law predicted and observed in [1, 35].
The presence of tool support only made a difference when code smell reduc-

tions were the target of personal motivations. According to our observations
the best way to improve a software’s internal quality is to provide people
with dedicated time and tools. This way people, who were already motivated
[34, 24, 36, 35], could focus on a few lines of the source code instead of ana-
lyzing all of it by hand. This phenomenon was also observed in [24].

Our observation on the evolution of the studied test systems show similarity
with the evolution of software systems. This is the main conclusion of the
paper.

Internal quality evolution of a large test system–an industrial study 237

Acknowledgements

We thank the referee for providing constructive comments and help in improv-
ing the contents of this paper.

The authors would like to thank the Faculty of Informatics of Eötvös Loránd
University for supporting this research.

We would also like to thank Gábor Jenei, Dániel Poroszkai and Dániel Góbor
for their help in implementing features that were crucial to our investigation.
Their work allowed us to quickly process large amount of data.

References

[1] A. Chatzigeorgiou, A. Manakos, Investigating the evolution of bad smells in
object-oriented code, Proc. 2010 Seventh International Conference on the Qual-
ity of Information and Communications Technology, QUATIC’10, pp. 106–115,
Washington, DC, USA, 2010. IEEE Computer Society. ⇒219, 232, 233, 236

[2] M. E. Conway, How do committees invent?, Datamation, 14 ,5 (1968) 28–31.
http://www.melconway.com/research/committees.html [accessed 26-Aug-2015].⇒234

[3] A. v. Deursen, L. Moonen, A. v. d. Bergh, G. Kok, Refactoring test code, Proc.
2nd International Conference on Extreme Programming and Flexible Processes
(XP2001), pp. 92–95. University of Cagliari, 2001. ⇒220

[4] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999. ⇒218

[5] A. Israeli, D. G. Feitelson, The linux kernel as a case study in software evolution,
J. Syst. Softw., 83, 3 (2010) 485–501. ⇒220, 235

[6] C. Izurieta, J. Bieman, The evolution of freebsd and linux, Proc. 2006
ACM/IEEE International Symposium on Empirical Software Engineering,
ISESE’06, pp. 204–211, New York, NY, USA, 2006. ACM. ⇒220, 235

[7] K. Johari, A. Kaur, Effect of software evolution on software metrics: An open
source case study, SIGSOFT Softw. Eng. Notes, 36, 5 (2011) 1–8. ⇒220, 235

[8] C. F. Kemerer, S. Slaughter, An empirical approach to studying software evolu-
tion, IEEE Trans. Softw. Eng., 25, 4, (1999) 493–509. ⇒220, 235

[9] F. Khomh, M. Di Penta, Y.-G. Gueheneuc, An exploratory study of the impact
of code smells on software change-proneness, Proc. 16th Working Conference on
Reverse Engineering, WCRE’09, pp. 75–84, Washington, DC, USA, 2009. IEEE
Computer Society. ⇒218

[10] M. J. Lawrence, An examination of evolution dynamics, Proc. 6th International
Conference on Software Engineering, ICSE’82, pp. 188–196, Los Alamitos, CA,
USA, 1982. IEEE Computer Society Press. ⇒219, 235

[11] M. M. Lehman, The programming process, 1969. IBM Research Report RC 2722.⇒235

http://users.uom.gr/~achat/index_en.html
https://www.researchgate.net/researcher/75023620_Anastasios_Manakos
http://www.melconway.com/Home/Home.html
http://www.melconway.com/research/committees.html
http://www.st.ewi.tudelft.nl/~arie/
http://swerl.tudelft.nl/leon/
https://www.researchgate.net/researcher/33420727_Alex_Bergh
https://www.researchgate.net/researcher/9099094_Gerard_Kok
http://www.unica.it/pub/english/
http://www.martinfowler.com/
http://www.pearsoned.co.uk/imprints/addison-wesley/
http://www.pearsoned.co.uk/imprints/addison-wesley/
https://www.researchgate.net/profile/Ayelet_Israeli
http://www.cs.huji.ac.il/~feit/
http://www.journals.elsevier.com/journal-of-systems-and-software/
http://www.cs.montana.edu/izurieta/
http://www.cs.colostate.edu/~bieman/
https://www.acm.org/
https://www.researchgate.net/profile/Kalpana_Johari
http://ipu.ac.in/usitnweb/faculty/arvinder-kaur.htm
http://www.sigsoft.org/SEN/
http://www.pitt.edu/~ckemerer/kemerer.htm
https://www.researchgate.net/profile/Sandra_Slaughter
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=17384
http://www.khomh.net/
http://www.ing.unisannio.it/mdipenta/
http://www.yann-gael.gueheneuc.net/
https://www.computer.org/
https://www.computer.org/
https://www.researchgate.net/researcher/69536200_M_J_Lawrence
https://www.computer.org/web/cspress
https://www.researchgate.net/researcher/7544482_M_M_Lehman

238 A. Kovács, K. Szabados

[12] M. M. Lehman, Laws of software evolution revisited, Proc. 5th European Work-
shop on Software Process Technology, EWSPT ’96, pp. 108–124, London, UK,
UK, 1996, Springer-Verlag. ⇒235

[13] M. M. Lehman, Feast/2 final report – grant number gr/m44101, 2001. ⇒ 220,
235

[14] M. M. Lehman, J. F. Ramil, Towards a theory of software evolution - and its
practical impact (working paper), Proc. Intl. Symposium on Principles of Softw.
Evolution (invited talk), ISPSE 2000, 1-2 Nov, pp. 2–11. Press, 2000. ⇒219

[15] M. M. Lehman, J. F. Ramil, Evolution in software and related areas, Proc. 4th
International Workshop on Principles of Software Evolution, IWPSE’01, pages
1–16, New York, NY, USA, 2001, ACM. ⇒219, 235

[16] M. M. Lehman, J. F. Ramil, Rules and tools for software evolution planning and
management, Ann. Softw. Eng., 11, 1 (2001) 15–44. ⇒219, 233, 234, 235

[17] M. M. Lehman, J. F. Ramil, D. E. Perry, On evidence supporting the feast
hypothesis and the laws of software evolution, Proc. 5th International Symposium
on Software Metrics, METRICS ’98, pp. 84 –, Washington, DC, USA, 1998. IEEE
Computer Society. ⇒220, 235

[18] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, A. von Staa, Are
automatically-detected code anomalies relevant to architectural modularity?: An
exploratory analysis of evolving systems, Proc. 11th Annual International Con-
ference on Aspect-oriented Software Development, AOSD ’12, pp. 167–178, New
York, NY, USA, 2012, ACM. ⇒218

[19] N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, Decor: A method for
the specification and detection of code and design smells, IEEE Trans. Softw.
Eng., 36, 1 (2010) 20–36. ⇒218

[20] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, A case study on the
impact of refactoring on quality and productivity in an agile team, in Balancing
Agility and Formalism in Software Engineering, pp. 252–266, Springer-Verlag,
Berlin, Heidelberg, 2008. ⇒218

[21] H. Neukirchen, M. Bisanz, Utilising code smells to detect quality problems in
ttcn-3 test suites, Proc. 19th IFIP TC6/WG6.1 International Conference, and
7th International Conference on Testing of Software and Communicating Sys-
tems, TestCom’07/FATES’07, pp. 228–243, Berlin, Heidelberg, 2007, Springer-
Verlag. ⇒218

[22] S. Olbrich D. S. Cruzes, V. Basili, N. Zazworka, The evolution and impact of code
smells: A case study of two open source systems, Proc. 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, ESEM ’09,
pp. 390–400, Washington, DC, USA, 2009. IEEE Computer Society. ⇒218

[23] D. L. Parnas, Software aging, Proc. 16th International Conference on Software
Engineering, ICSE ’94, pp. 279–287, Los Alamitos, CA, USA, 1994. IEEE Com-
puter Society Press. ⇒219

https://www.researchgate.net/researcher/7544482_M_M_Lehman
http://www.springer.com/gp/
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
https://www.acm.org/
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
http://users.ece.utexas.edu/~perry/
https://www.computer.org/
https://www.computer.org/
http://www.les.inf.puc-rio.br/opus/members/members_isela.html
https://www.researchgate.net/researcher/70830475_Joshua_Garcia
http://www.popescu.de/
http://www-di.inf.puc-rio.br/~afgarcia//
http://csse.usc.edu/~neno/
http://www-di.inf.puc-rio.br/~arndt//
https://www.acm.org/
http://www.naouelmoha.net/
http://www.yann-gael.gueheneuc.net/
http://www.lifl.fr/~duchien/
https://www.researchgate.net/researcher/18308472_Anne-Francoise_Le_Meur
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5401361
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5401361
https://www.researchgate.net/researcher/70937792_Raimund_Moser
https://www.researchgate.net/researcher/69623447_Pekka_Abrahamsson
http://www.ece.ualberta.ca/~pedrycz/
https://www.researchgate.net/profile/Alberto_Sillitti
http://www.giancarlosucci.org/
http://www.springer.com/gp/
https://uni.hi.is/helmut/
https://www.researchgate.net/researcher/2015212731_Martin_Bisanz
http://www.springer.com/gp/
http://www.springer.com/gp/
https://www.researchgate.net/researcher/70696211_Steffen_M_Olbrich
https://www.sintef.no/en/all-employees/?EmpId=4504
https://www.cs.umd.edu/users/basili/
http://www.nicozazworka.com/
https://www.computer.org/
https://www.researchgate.net/profile/David_Parnas
https://www.computer.org/web/cspress
https://www.computer.org/web/cspress

Internal quality evolution of a large test system–an industrial study 239

[24] R. Peters, A. Zaidman, Evaluating the lifespan of code smells using software
repository mining, Proc. 2012 16th European Conference on Software Mainte-
nance and Reengineering, CSMR’12, pp. 411–416, Washington, DC, USA, 2012.
IEEE Computer Society. ⇒219, 232, 233, 236

[25] D. I. K. Sjoberg, A. Yamashita, B. Anda, A. Mockus, T. Dyba, Quantifying
the effect of code smells on maintenance effort, IEEE Trans. Softw. Eng., 39, 8
(2013) 1144–1156. ⇒218

[26] K. Szabados, Structural analysis of large ttcn-3 projects. Proc. 21st IFIP WG 6.1
International Conference on Testing of Software and Communication Systems
and 9th International FATES Workshop, TESTCOM ’09/FATES ’09, pp. 241–
246, Berlin, Heidelberg, 2009, Springer-Verlag. ⇒217, 220, 236

[27] K. Szabados, Titanium, https://projects.eclipse.org/proposals/titan, 2015. [On-
line; accessed 26-Aug-2015]. ⇒221

[28] K. Szabados, A. Kovács, Advanced ttcn-3 test suite validation with titan, Proc.
9th Conference on Applied Informatics, pp. 273–281, 2014. ⇒217, 236

[29] K. Szabados, A. Kovács, Test software quality issues and connections to interna-
tional standards, Acta Universitatis Sapientiae, Informatica, 5, 1 (2014) 77–102.⇒217, 220, 236

[30] K. Szabados and A. Kovács, Up-to-date list of code smells, http://compalg.
inf.elte.hu/~attila/TestingAtScale.htm, 2015. [Online; accessed 26-Aug-
2015]. ⇒220, 224, 225

[31] C. Taube-Schock, R. J. Walker, I. H. Witten, Can we avoid high coupling?,
Proc. 25th European Conference on Objectoriented Programming, ECOOP’11,
pp. 204–228, Berlin, Heidelberg, 2011, Springer-Verlag. ⇒220

[32] W. M. Turski, The reference model for smooth growth of software systems re-
visited, IEEE Trans. Softw. Eng., 28, 8, (2002) 814–815. ⇒220, 235

[33] E. Van Emden, L. Moonen, Java quality assurance by detecting code smells,
Proc. Ninth Working Conference on Reverse Engineering (WCRE’02) pp. 97–
106, Washington, DC, USA, 2002. IEEE Computer Society. ⇒218

[34] A. Yamashita, L. Moonen, Do code smells reflect important maintainability as-
pects?, Proc. 2012 IEEE International Conference on Software Maintenance,
ICSM ’12, pp. 306–315,Washington, DC, USA, 2012. IEEE Computer Society.⇒219, 236

[35] A. Yamashita, L. Moonen, Do developers care about code smells? an exploratory
survey, Proc. 20th Working Conference on Conference: Reverse Engineering, pp.
242–251. IEEE Computer Society, 2013. ⇒219, 232, 233, 236

[36] A. Yamashita, L. Moonen, Exploring the impact of inter-smell relations on soft-
ware maintainability: An empirical study, Proc. 2013 International Conference
on Software Engineering, ICSE ’13, pp. 682–691, Piscataway, NJ, USA, 2013.
IEEE Computer Society Press. ⇒219, 236

[37] A. Yamashita, L. Moonen, To what extent can maintenance problems be predicted
by code smell detection? - an empirical study, Inf. Softw. Technol., 55, 12 (2013)
2223–2242. ⇒218

https://www.researchgate.net/researcher/81208731_Ralph_Peters
http://www.st.ewi.tudelft.nl/~zaidman/
https://www.computer.org/
http://heim.ifi.uio.no/~dagsj/
https://www.hioa.no/tilsatt/aikyam
https://www.researchgate.net/profile/Bente_Anda
http://web.eecs.utk.edu/~audris/
http://folk.uio.no/toredy/
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6568862
https://www.researchgate.net/profile/Kristof_Szabados
http://link.springer.com/chapter/10.1007%2F978-3-642-05031-2_19
http://link.springer.com/chapter/10.1007%2F978-3-642-05031-2_19
http://www.springer.com/gp/
https://www.researchgate.net/profile/Kristof_Szabados
https://projects.eclipse.org/proposals/titan
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://icai.ektf.hu/icai2014/papers/ICAI.9.2014.2.273.pdf
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://www.acta.sapientia.ro/acta-info/C5-1/info51-6.pdf
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://compalg.inf.elte.hu/~attila/TestingAtScale.htm
http://compalg.inf.elte.hu/~attila/TestingAtScale.htm
https://www.researchgate.net/profile/Craig_Taube-Schock
http://lsmr.org/walker
http://www.cs.waikato.ac.nz/~ihw/
http://www.springer.com/gp/
https://www.researchgate.net/researcher/2005596445_Wladyslaw_M_Turski
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=22077
https://www.researchgate.net/researcher/29428783_Eva_Van_Emden
https://leonmoonen.com/
https://www.computer.org/
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/
https://www.computer.org/
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/
https://www.computer.org/
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/
https://www.computer.org/web/cspress
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/

240 A. Kovács, K. Szabados

[38] A. Zaidman, B. Rompaey, A. Deursen, S. Demeyer, Studying the co-evolution of
production and test code in open source and industrial developer test processes
through repository mining, Empirical Softw. Engg., 16, 3 (2011) 325–364. ⇒
220

[39] B. Zeiß, D. Vega, I. Schieferdecker, H. Neukirchen, J. Grabowski, Applying the
ISO 9126 Quality Model to Test Specifications–Exemplified for TTCN-3 Test
Specifications, Software Engineering 2007, Lecture Notes in Informatics, Copy-
right Gesellschaft für Informatik, Mar. 2007. ⇒220

Received: June 9, 2016 • Revised: August 20, 2016

http://www.st.ewi.tudelft.nl/~zaidman/
https://www.uantwerpen.be/nl/personeel/bart-vanrompaey/
http://www.st.ewi.tudelft.nl/~arie/
http://win.ua.ac.be/~sdemey/
https://www.researchgate.net/researcher/69979642_Benjamin_Zeiss
https://www.researchgate.net/researcher/14906223_Diana_Vega
https://www.fokus.fraunhofer.de/usr/ina.schieferdecker
https://uni.hi.is/helmut/
https://www.swe.informatik.uni-goettingen.de/staff/jens-grabowski

Acta Univ. Sapientiae, Informatica 8, 2 (2016) 241–253

DOI: 10.1515/ausi-2016-0011

Satellite image fusion using fuzzy logic

Suda KUMARASWAMY
Department of IT, VNRVJIET, Hyderabad, India

email: kumaraswamy it@vnrvjiet.ac.in

Dammavalam SRINIVASA
RAO

Department of IT, VNRVJIET,
Hyderabad, India

email:
srinivasarao d@vnrvjiet.ac.in

Nuthanapati NAVEEN
KUMAR

CSE department, SIT,JNTU
Hyderabad, India

email: naveen.cse.mtech@jntuh.ac.in

Abstract. Image fusion is a method of combining the Multispectral (MS)
and Panchromatic (PAN) images into one image contains more informa-
tion than any of the input. Image fusion aim is to decrease unknown
and weaken common data in the fused output image at the same time
improving necessary information. Fused images are helpful in various
applications like, remote sensing, computer vision, biometrics, change
detection, image analysis and image classification. Conventional fusion
methods are having some side effects like assertive spatial information
and uncertain color information is an usually the problem in PCA and
wavelet transform based fusion is a computationally in depth process. In
order to overcome these side effects and to propose alternative soft com-
puting fusion approach for conventional fusion methods we exploit image
fusion using fuzzy logic technique to fuse two source images obtained from
different sensors to enhance both spectral and spatial information. The
proposed work here further compared with two common fusion methods
like, principal component analysis (PCA) and wavelet transform along
with quality assessment metrics. Exploratory outputs demonstrated in

Computing Classification System 1998: I.4.3, I.4.9
Mathematics Subject Classification 2010: 68U10
Key words and phrases: Fusion, MS, PAN, Fuzzy Logic, PCA, Wavelet Transform

241

http://www.vnrvjiet.ac.in/
mailto:kumaraswamy_it@vnrvjiet.ac.in
https://scholar.google.co.in/citations?user=Y7ChvVsAAAAJ&hl=en
https://scholar.google.co.in/citations?user=Y7ChvVsAAAAJ&hl=en
http://www.vnrvjiet.ac.in/
http://www.vnrvjiet.ac.in/
mailto:srinivasarao_d@vnrvjiet.ac.in
http://jntuh.ac.in/new/academic/academics_sit.html
http://jntuh.ac.in/new/academic/academics_sit.html
mailto:naveen.cse.mtech@jntuh.ac.in

242 S. Kumaraswamy, D. Srinivasa Rao, N. Naveen Kumar

order that fuzzy based image fusion technique can actively retains more
information compared to PCA and wavelet transform approaches while
enhancing the spatial and spectral resolution of the satellite images.

1 State-of-the art

The coordinates in the small frequency region with high incisiveness core di-
mensions are chosen as coefficients of the output image, and a most adjacent
intensity stationed fusion method is presented to choose giant frequency coor-
dinates [3]. In [15], novel image fusion approach for confining image sensor net-
work is presented where the sharpen density of the fresh compressive value are
not acquired from the arbitrary specimen data still in distinction to the cho-
sen Hadamard conjoined with whatever can additionally be generated against
constrict imaging process adequately. Fuzzy based fusion approach compared
with discrete wavelet transform (DWT) and weighted average DWT using
Genetic algorithm (GA) approaches and shown that fuzzy based image fusion
technique out performs DWT and DWT using GA approaches. Image fusion
using Pulse-Coupled Neural Network (PCNN) is proposed where input im-
ages are flattened through scrambled block Hadamard ensemble (SBHE) in
compressed domain and local standard variance is input to drive PCNN and
coefficients with huge ignited times are chosen as the fusion coefficients. Later
fusion coefficients are whipped by sliding window in order to avoid blocking
effect [16]. In [10], image fusion using fuzzy logic and neuro fuzzy logic ap-
proaches are compared and concluded that in some cases fuzzy based fusion
results gave better results in some other cases neuro fuzzy based fusion gener-
ated better results. . A new method of satellite image fusion have been build
on Otsu’s Multi-thresholding approach in two stages, i) shearlet transform
is used Panchromatic and multi-spectral image distinctly, ii) the revised low
frequency sub-band shearlet coefficients obtained from shearlet transform are
composed by the Otsu’s Multi-thresholding approach and choose most low-
pass band naturally [2]. A innovative multifocus image fusion approach [17]
built on human visual system and neural network back propagation given with
three facets which echo brightness of a pixel are extracted first and used to
train a BP neural network to decide the clarity pixel. Those pixels are then
used to build the initial fused image. Later the focused regions are identified
by calculating the coincidence in mid of satellite images and the first time
fused image proceed by morphological operations and the final fused image is
attained by applying a fusion rule for those concentrated regions. In [8], novel

Satellite image fusion using fuzzy logic 243

fusion method is introduced to invent full utilization of structural compactness
for fusion of the common and structured layers. In [4], authors demonstrated a
new fusion technique where it separates the input image decomposition tech-
nique into two consecutive filtrated activities by applying spectral factorization
filter. The concrete image fusion attain after involution along with the early
filter couple. Its important lower guide volume directed to the miniaturize of
the undesirable expansion of conjoined values about overlaying image peculiar-
ities. In [6], a technique proposed for straight virtue evaluation of fusion process
placed on the assessment of triple major elements of output image quality like
diversity storage, incisiveness and anatomy preservation. Intuitive analysis is
postured to construct a database with fusion to evaluate the achievement of
the fusion process.

2 Wavelet transform based image fusion

In [7], wavelet transform applied a structure in which a input image is de-
composed, where individual plain correlating to a mean decision, or reduced
periodicity strip. Fusion using this methodology is a category of input model
that can allow the density contended about the input at appropriate moment.
The framework for wavelt based fusion illustrated in Fig. 1.

Algorithm for wavelet based image fusion [5]
1. Take two input images, K1 and K2 to be fused.
2. Apply the wavelet decomposition process on the two input images.
3. Employ the pixel based approach for similarity whatever contain fusion

situated on considering the higher valued image pixels from likeness of source
images K1and K2.

4. Placed on higher valued image pixels ,a binate determination map is
produced and it gives the decision rule for the conduction fusion of two input
images K1and K2.

5. The output fused transform interrelated to similarity over higher selection
pixel rule is generated.

6. Connecting of fused resemblance and particulars produces the new coef-
ficient matrix.

7. Execute the inverse wavelet transform process to build the output fused
image.

244 S. Kumaraswamy, D. Srinivasa Rao, N. Naveen Kumar

Figure 1: The generic structure for wavelet transform based image fusion

3 Principal component analysis based image fusion

A numerical concept that transforms a number of correlated input variables
into a numeral unassociated variables through the Principal Component Anal-
ysis (PCA). Algorithm steps in PCA concept is as follows

Algorithm steps:
1. Input image are transformed in to column vectors initially.
2. Covariance matrix is calculated from two column vectors.
3. Compute eigenvalues and the corresponding eigenvectors.
4. Normalize both the characteristic values and characteristic vectors.
5. Through fusion process on two scaled matrices, final fused image matrix

is generated.
We consider the input images denoted by A(i, j) and B (i, j) and convert

these images in to equivalent dual column vectors and means are subtracted.
The dimension of the output is m x 2, here m is the magnitude of the image.
The eigenvalues and conform eigenvectors considering output is calculated
also compute the eigenvectors correlated to the greater eigenvalues. P1 and
P2 are normalized components computed from covariance matrix to obtain
eigenvector and the fused image is obtained from it [12].

4 Fuzzy logic based image fusion

Two registered input images are used in the fusion process. Fuzzy logic proper-
ties are utilized to perform fusion. An innovative image fusion for in multi-view
over the-wall radar imaging system to compute the variation among pixels us-

Satellite image fusion using fuzzy logic 245

ing a local operator and concluded that method performs well compared to
conventional fusion approaches [13]. A different method is proposed to fuse
images by utilizing maximum, minimum operations in intuitionist fuzzy sets
(IFSs). Entropy metric is used to generate the most favorable value of the
parameter in membership functions. Later resulting IFIs are decomposed into
image sections and the correlated sections of the images are combined by
computing blackness and whiteness of the blocks [1]. An algorithm for image
fusion is conferred stands on fuzzy logic and wavelet transform and evaluate
the pixel-level image fusion approaches, and focus on a technique based on the
discrete wavelet transform and fuzzy logic approaches. As part of the fusion
process two fuzzy relations are determined and predicted the essence of each
one wavelet coefficient with fuzzy hypothesis. Based on the priority of coef-
ficients, the weighting average coefficients were computed. Finally the fused
image is obtained through inverse wavelet transform operation [18]. A new
image fusion technique based on fuzzy logic and Discrete Wavelet Transform
(DWT). The fuzzy membership functions and fuzzy rules are composed prop-
erly to perfect adaption for the fusion of multifocus images. DWT has been
utilized to enhance the attainment as fuzzy logic is practiced at every stage of
DWT to perform fusion on similar coefficients [9].

4.1 Image processing with fuzzy logic

Image processing with fuzzy approach has triple essential steps. The encoding
of input image and decoding the fused image are important stages that are get
ready to operate the original image using fuzzy techniques. After the inputs
are converted to the associates uniform adapted procedures update the fellows
weights [11].

4.2 Procedure for fuzzy based image fusion

Fuzzy rules, Membership Functions (MSF) are utilized in the fusion process
[12]

Axiom-1: [I/P1isMSF3]or[I/P2isMSF3]→ [O/P1isMSF2]

Axiom-2: [I/P1MSF1]or[I/P2isMSF3]→ [O/P1isMSF1]

Axiom-3: [I/P1MSF3]or[I/P2isMSF2]→ [O/P1isMSF3]

246 S. Kumaraswamy, D. Srinivasa Rao, N. Naveen Kumar

Figure 2: Block diagram for fuzzy image processing

Axiom-4: [I/P1MSF2]or[I/P2isMSF2]→ [O/P1isMSF2]

Axiom-5: [I/P1MSF2]or[I/P2isMSF2]→ [O/P1isMSF2]

Axiom-6: [I/P1MSF1]or[I/P2isMSF2]→ [O/P1isMSF1]

Sequence of steps in fuzzy logic based image fusion as follows [15].

1. Get the first image in K1 and its size (rows: row1, columns: col1).

2. Get the second image in K2 and its size (rows:row2, columns: col2).

3. Images K1 and K2 are in matrix form and each pixel value is in between
0-255. Apply Grey Colormap.

4. Select two input images which are in same size.

5. Transform two input images in column matrix which has S= rowl*coll
entries.

6. Prepare a fis (Fuzzy) file, which has two input images.

7. Determine fuzzy membership functions for input images to be fused by
adapting the membership functions

8. Prepare fuzzy rules for the fusion process

9. For num=l to S in steps of one, utilize fuzzification step by employing
the fuzzy rules on input images

Satellite image fusion using fuzzy logic 247

10. Transform the column form to matrix form and display the output fused
image.

5 Quality metrics

Quality assessment parameters are applied to assess the fused image obtained
from the fusion operation.

5.1 Quality index (QI)

QI calculates the affinity between two images (A & B) and QI is equivalent to
1 if both the images are exact [11]

QI =
mab 2xy 2ma 2mb

mambx2 + y2m2
a + m2

b

(1)

where input images (A & B) mean values are denoted by x, y and variance, co-
variance of images are denoted by , M2

a ,M
2
b , and Mab,QI indicates the amount

of the information presented in reference image has been converted into the
output fused image. The ideal value 1 indicates fused image and reference
images are similar.

5.2 Mutual information measure (MIM)

MIM contains the mutual information between A (i, j) and B (i, j) input
images,

IAB =
∑
x,y

PAB(x, y)log
PAB(x, y)

PA(x), PB(y)
(2)

where, PA (x) and PB (y) are the probability in the individual images, and
PAB (x, y)) is joint probability, higher value indicates better fused image
quality.

5.3 Fusion factor (FF)

Two input images are A,B and F is their fused image [14], then

FF = IAF + IBF (3)

where MIM values between input images and used image are denoted by IAF

and IBF respectively. Maximum value of FF denotes that output fused image

248 S. Kumaraswamy, D. Srinivasa Rao, N. Naveen Kumar

consists of reasonably superior amount of information existent in both the
images.

5.4 Fusion symmetry (FS)

FS is a notion of the intensity of equivalence in the image content of two
images.

IAB = abs

(
IAF

IAF + IBF
− 0.5

)
(4)

Lower FS value indicates that the fused image obtains features from both
source images.

5.5 Fusion index (FI)

Based on two fusion metrics, fusion symmetry and fusion factor the fusion
index, FI is calculated as

FI =
IAF

IBF
(5)

where IAF denotes mutual information between MS image and fused image
and IBF is the mutual information between PAN image and fused image. The
quality of fusion approach indicated by the degree of fusion indEx.

5.6 Root mean square error (RMSE)

The RMSE calculates the intensity of the pixel difference obtained from the
fusion process.

RMSE =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(R(i, j)− F (i, j)) (6)

lower RMSE value indicates better fusion approach.

5.7 Peak signal to noise ratio (PSNR)

PSNR can be determined by

PSNR = 20 log10

(
G2

MSE

)
(7)

where G is the intensity of gray in the fused image, maximum PSNR value
denotes better fused image quality.

Satellite image fusion using fuzzy logic 249

Table 1: Quality metrics for outputs obtained from conventional and proposed
approaches

Approach QI FF FS FI MIM RMSE PSNR E

Wavelet
(Ex. 1)
(Ex. 2)
(Ex. 3)
(Ex. 4)

0.9463
0.8550
0.9358
0.9425

3.7629
3.7832
0.9278
1.2222

0.0529
0.0218
0.0128
0.0391

1.0779
0.8938
1.0527
1.0882

1.6554
1.9775
0.4520
0.5848

62.5529
18.8999
20.7690
13.8566

11.2425
22.3648
21.7825
25.2977

7.3415
7.1134
7.1454
7.2511

PCA
(Ex. 1)
(Ex. 2)
(Ex. 3)
(Ex. 4)

0.9450
0.9876
0.9353
0.9397

1.5650
1.5890
1.2194
1.5546

2.7964
3.2885
0.0149
0.0402

0.0765
0.0110
0.9422
1.1749

1.2913
0.7932
0.8341
1.3800

9.4765
17.440
25.0039
25.6658

27.9806
19.9290
20.2047
13.3336

7.2721
7.3228
7.4532
7.4213

Fuzzy
(Ex. 1)
(Ex. 2)
(Ex. 3)
(Ex. 4)

0.9689
0.9955
0.9470
0.9431

5.5324
8.6207
1.2919
1.5948

0.2552
0.0498
0.0092
0.0384

3.2875
1.2826
1.3133
1.2404

4.3345
3.8823
0.9870
1.4086

12.2001
16.8785
20.3423
21.7479

23.8336
23.2336
21.8432
20.0220

7.3865
7.3577
7.4322
7.4391

5.8 Entropy (E)

Entropy represents the quality of the source image. Entropy is a amount of
volatility that can be used to discrminate the texture of the input image

E = −
∑

p ∗ log2(p) (8)

where p represents the scatter diagram count.

6 Results analysis

In this paper, we fused a MS and PAN images using our fuzzy based fusion
algorithm. Ex. 1, Ex. 2 MS and PAN images, Hyderabad captured from LISS
III. Ex. 2 images are collected from http://www.metapix.de/examples r.htm
[8], Ex. 3 images are taken from the NRSC test samples.

The fuzzy logic based image fusion process has been carried out using Matlab
10.0. In order to implement fuzzy based image fusion required fuzzy member-
ship functions and fuzzy rules are tuned and determined precisely. Because of
the potentiality of the fuzzy logic, similarity between fused image and refer-
ence image denoted by IQI value (0.9689, 0.9955, 0.9470 and 0.9431) obtained

250 S. Kumaraswamy, D. Srinivasa Rao, N. Naveen Kumar

Figure 3: Case study: (a), (b), (f), (g),(k),(l),(p),(q): input images; (c),
(h),(m),(r) are output images from wavelet transform and (d), (i),(n),(s) are
fused from PCA and (e), (j),(o) and (t) fused images obtained from proposed
fuzzy approach.

Satellite image fusion using fuzzy logic 251

from fuzzy based fusion having better values compared to IQI values (0.9463,
0.8850, 0.9358 and 0.9425) from wavelet based fusion and IQI values (0.9450,
0.9876, 0.9353 and 0.9357) obtained from PCA based fusion approaches re-
spectively. Typical assessment parameters like fusion factor values (5.5324,
8.6207, 1.2919 and 1.5948) and fusion index values (3.2875, 1.2826, 1.3133
and 1.2404) are also having better values indicates that proposed fuzzy based
image fusion approach enhanced the fusion quality compared to traditional fu-
sion methods. Higher values for FF obtained from proposed method indicates
that information contained in the fuzzy based fused image is more possess-
ing extremely good quality results compared with the wavelet transform and
PCA based fusion approaches. Higher values for FI metric generated from the
fuzzy based fusion approach indicates that fusion degree is higher for proposed
method compared to other methods mentioned. Higher value for PSNR and
Entropy obtained from proposed fuzzy based fusion method indicates that
amount of information in the fused image is high compared to wavelet and
PCA based fusion approaches respectively. Table 1 demonstrated that pro-
posed fuzzy based fusion approach has exhibited conditionally more effective
in QI, MIM and Entropy values while improving spectral and spatial informa-
tion as well. Substantial variances are generated through fuzzy based fusion
with lower values for RMSE, FS and having greater values for FF, FI and
PSNR assessment metrics. Hence it is concluded from experimentation out-
puts that image fusion using fuzzy logic scheme out performs conventional
wavelet transform and PCA based fusion approaches.

7 Conclusion and future work

In this paper, fuzzy logic based image fusion for satellite images obsolete con-
ferred. The result analysis certainly proves that the proposed fuzzy logic based
fusion provides a huge progress on the attainment of the process. The proposed
approach can be applied iteratively and also applied to all categories of images
and to integrate conclusive assessment parameter of different image fusion ap-
proaches. Classification of fused images may also improve accuracy in remote
sensing objectives. So it has been examined from experimental outcomes that
proposed fuzzy based image fusion algorithm conserve superior spatial and
spectral information and also improved visual essence compared to conven-
tional fusion methods, wavelet trans from and PCA methods.

252 S. Kumaraswamy, D. Srinivasa Rao, N. Naveen Kumar

References

[1] P. Balasubramaniam, V. P. Ananthi: Image fusion using intuitionistic fuzzy sets,
Elsever Journal of Information Fusion 20 (2014) 21–30. ⇒245

[2] B. Biswas, K. N. Dey, A. Chakrabarti, Remote sensing image fusion using mul-
tithreshold Otsu method in Shearlet domain, Procedia Computer Science 57,
(2015) 554–562. ⇒242

[3] Y. Chen, Z. Qin, PCNN-based image fusion in compressed domain, Mathematical
Problems in Engineering, Vol. 2015. ⇒242

[4] A. Ellmauthaler, C. L. Pagliari, E. A. B. da Silva, Multiscale image fusion using
the undecimated wavelet transform with spectral factorization and nonorthog-
onal filter banks, IEEE Transactions on Image Processing, 22, 3 (2013) 1005–
1017. ⇒243

[5] D. L. A. Godse, D. S. Bormane, Wavelet based image fusion using pixel based
maximum selection rule, International Journal of Engineering Science and Tech-
nology , 3, 7, (2011) 5572–5557. ⇒243

[6] R. Hassen, Z. Wang, M. M. A. Salama, Objective quality assessment for multi-
exposure multifocus image fusion, IEEE Transactions on Image Processing 24,
9 (2015) 2712–2724. ⇒243

[7] K. Kannan, S. A. Perumal, K. Arulmozhi, Performance comparision of various
levels of fusion of multi-focused images using wavelet transform, I. J. Computer
Applications, 1, 6 (2010) 71–78. ⇒243

[8] S. Li, X. Kang, J. Hu, Image fusion with guided filtering, IEEE Transactions on
Image Processing, 22, 7 (2013) 2864–2875. ⇒242, 249

[9] A. N. Myna, J. Prakash, A novel hybrid approach for multi-focus image fusion
using fuzzy logic and wavelets, International Journal of Emerging Trends and
Technology in Computer Science, (IJETTCS), 3, (2014) 131–138. ⇒245

[10] D. S. Rao, M. Seetha, M. H. M. Krishna Prasad, Comparison of fuzzy and
neuro fuzzy image fusion techniques and its applications, International Journal
of Computer Applications, 43, 20 (2012) 31–37. ⇒242

[11] D. S. Rao, M. Seetha, M. H. M. Krishna Prasad, Quality assessment of pixel-
level image fusion using fuzzy logic, International Journal on Soft Computing,
3, 1, (2012) 13–25. ⇒245, 247

[12] D. S. Rao, M. Seetha, M. H. M. Krishna Prasad, Novel approach for iterative
image fusion using fuzzy and neuro fuzzy logic, International Journal of Geoin-
formatics 11, 2 (2015) 29–39. ⇒244, 245

[13] C. H. Seng, A. Bouzerdoum, F. H. C. Tivive, M. G. Amin, Fuzzy logic-based
image fusion for multi-view through-the-wall radar, Int. Conf. Digital Image
Computing: Techniques and Applications (DICTA), 2010, pp. 423–428. ⇒245

[14] M. Seetha, I. V. Murali Krishna, B. L. Deekshatulu, Data fusion performance
analysis based on conventional and wavelet transform techniques, IEEE Pro-
ceedings on Geoscience and Remote Sensing Symposium 4 (2005) 2842–2845.
⇒247

http://www.sciencedirect.com/science/article/pii/S1566253513001401
http://cucse.org/faculty/cucse/kashi-nath-dey
http://caluniv.academia.edu/DrAmlanChakrabarti
http://www.sciencedirect.com/science/article/pii/S1877050915019171
http://www.sciencedirect.com/science/article/pii/S1877050915019171
http://www.hindawi.com/search/all/pcnn-based+image+fusion+in+compressed+domain/
https://www.ncbi.nlm.nih.gov/pubmed/23144033
http://ieeexplore.ieee.org/document/7745929/
http://connection.ebscohost.com/c/articles/66135255/wavelet-based-image-fusion-using-pixel-based-maximum-selection-rule
http://connection.ebscohost.com/c/articles/66135255/wavelet-based-image-fusion-using-pixel-based-maximum-selection-rule
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7097711
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.4137&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.4137&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6423909
http://www.ijettcs.org/Volume3Issue2/IJETTCS-2014-04-07-069.pdf
http://vnrvjiet.ac.in/Department_FacultyProfile.aspx?nDeptID=124
.http://www.gnits.ac.in/?q=csestaff
http://www.jntucek.ac.in/facultyProfile.php?value=krishnaprasad.mhm@gmail.com
http://www.ijcaonline.org/archives/volume43/number20/6222-8800
http://vnrvjiet.ac.in/Department_FacultyProfile.aspx?nDeptID=124
http://www.gnits.ac.in/?q=csestaff
https://sites.google.com/site/munaga71/
http://airccse.org/journal/ijsc/cited.html
http://vnrvjiet.ac.in/Department_FacultyProfile.aspx?nDeptID=124
http://www.gnits.ac.in/?q=csestaff
http://www.jntucek.ac.in/facultyProfile.php?value=krishnaprasad.mhm@gmail.com

Satellite image fusion using fuzzy logic 253

[15] C. Yang, B. Yang, Efficient compressive multi-focus image fusion, Journal of
Computer and Communications, 2 (2014) 78–86. ⇒242, 246

[16] Y. Yang, S. Huang, J. Gao, Z. Qian: Multi-focus image fusion using an effective
discrete wavelet transform based algorithm, Measurement Science Review, 14,
2 (2014) 102–108. ⇒242

[17] Y. Yang, W. Zheng, S. Huang, Effective multifocus image fusion based on HVS
and BP neural network, The Scientific World Journal, 2014, Article ID 281073,
10 pages. ⇒242

[18] M. Zhu, Y. Yang, A new image fusion algorithm based on fuzzy logic, Inter-
national Conference on Intelligent Computation Technology and Automation,
(ICICTA) 2008, pp. 83–86. ⇒245

Received: July 8, 2016 • Revised: November 27, 2016

http://www.scirp.org/journal/jcc/
http://econ.jxufe.cn/ShiZiDuiWu_detail_eng.php?Id=96
http://loop.frontiersin.org/people/68634/bio
http://www.scuec.edu.cn/s/50/t/1310/a/91454/info.jspy
http://www.measurement.sk/indEx. htm
http://www.hindawi.com/journals/tswj/2014/281073/abs/
http://ieeexplore.ieee.org/document/4659727/

Dumitru Dumitrescu
(1949–2016)

Our colleague, friend, editor of Acta Universitatis Sapientiae, Informatica,
professor Dumitru Dumitrescu passed away after a long illness on October 14,
2016. He was 67.

Professor Dumitrescu obtained his MSc degree in Theoretical Physics in 1972,
MSc degree in Mathematics in 1979, then PhD in Mathematics in 1990 from
Babeş-Bolyai University, Cluj, where he worked until his death as professor in
Informatics.

Among his research interests in Artificial Intelligence we can mention: fuzzy
systems and fuzzy logic, neural networks, fuzzy clustering and pattern recog-
nition, evolutionary computation, intelligent control, non-standard logics and
their application in AI, cognitive sciences, biologically inspired systems.

In the last part of his life he worked on Complex Systems at CONEURAL
(Centre for Cognitive and Neural Studies), Romanian Institute of Science and
Technology, Cluj-Napoca.

With a terrible feeling of pain and loss, we say goodbye to our friend. We shall
treasure his memory.

The Editorial Board

http://www.coneural.org/dumitrescu/

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
László DÁVID

Main Editorial Board

Zoltán KÁSA András KELEMEN Laura NISTOR
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica
Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro

Editorial Board
Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Zoltán KÁTAI (Sapientia University, Romania)
Attila KISS (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Shariefudddin PIRZADA (University of Kashmir, India)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University De Gruyter Open Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Idea Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
acta-inf@acta.sapientia.ro
http://www.acta.sapientia.ro
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro

