
Acta Universitatis Sapientiae

Informatica
Volume 7, Number 2, 2015

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

Gyöngyvér Kiss
A strategy for elliptic curve primality proving 125

Omar Akchiche, Omar Khadir
Factoring multi power RSA moduli with a class of secret
exponents . 143

Péter Fehér, Ágnes Fülöp, Gergely Debreczeni, Máté Nagy-Egri,
György Vesztergombi
Simple scalable nucleotic FPGA based short read aligner
for exhaustive search of substitution errors 151

Katalin Tünde Jánosi-Rancz, Zoltán Kátai, Roland Bogosi
Sapiness–Sentiment analyser .186

Shariefuddin Pirzada, Rameez Raja, Antal Iványi
On the scores and degrees in hypertournaments 200

Richárd Forster, Ágnes Fülöp
Chaotic behavior of the lattice Yang-Mills on CUDA 216

123

Acta Univ. Sapientiae, Informatica 7, 2 (2015) 125–142

DOI: 10.1515/ausi-2015-0015

A strategy for elliptic curve primality

proving

Gyöngyvér KISS
Eötvös Loránd University

Budapest
email: kissgyongyver@gmail.com

Abstract. This paper deals with an implementation of the elliptic curve
primality proving (ECPP) algorithm of Atkin and Morain. As the ECPP
algorithm is not deterministic, we are developing a strategy to avoid
certain situations in which the original implementation could get stuck
and to get closer to the situation where the probability that the algorithm
terminates successfully is 1. We apply heuristics and tricks in order to
test the strategy in our implementation in Magma on numbers of up to
7000 decimal digits and collect data to show the advantages over previous
implementations in practice.

1 Introduction

The elliptic curve primality proving (ECPP) algorithm of Atkin and Morain
[1] starts from an input probable prime n and is called recursively on probable
primes of decreasing size in order to reach a probable prime whose primality
can be easily verified. In the paper of Atkin and Morain an implementation
of the ECPP algorithm is described. Further descriptions can be found in the
work of Lenstra, Lenstra [6] and Morain [7]. The aim of one recursive step of
these implementations is to find a new probable prime: the input for the next
recursive step. As not all numbers are equally suitable, it is useful to produce

Computing Classification System 1998: F.2.1
Mathematics Subject Classification 2010: 11Y11, 11A51, 14H52
Key words and phrases: ECPP, elliptic curves, primality proving

125

http://www.math.ru.nl/~gykiss
http://www.elte.hu/
http://www.elte.hu/
mailto:kissgyongyver@gmail.com

126 Gy. Kiss

more than one probable prime in one step and select ‘the best one’. In this
paper we describe an implementation in the Computational Algebra System
Magma [2] that applies a strategy to control the selection of the input for the
next step. We refer to the original implementations (see in [7], [2]) as ECPP
and our modified implementation as Modified-ECPP in the rest of the paper.

This is the second implementation of Modified-ECPP within the confines
of a project that, besides investigating different strategies on the ’Downrun’,
deals with the heuristic running time, and questions and assumptions related
to this topic. The details of this project can be found in the work of Farkas,
Kallós, Kiss [4], Járai, Kiss [5] and Bosma, Cator, Járai and Kiss [3]. One goal
is to replace the actual ECPP implementation that is used in Magma.

In the rest of the paper lnk n shall denote (lnn)k, ln lnk n shall denote
(ln lnn)k, and so on.

2 Implementation of ECPP: details and tricks

The description, analysis, and implementation details of ECPP and the the-
oretical background of the statements below can be found in our paper [3].
Here we give a brief outline.

The input of the algorithm is a large probable prime n; this is a positive
integer that has passed some probabilistic primality tests. The aim is to provide
a proof for its primality.

Algorithm 1 : ECPP

(P) Starting with n0 = n, build up a sequence of probable primes n0, n1, . . . , nl,
such that nl is small enough for the primality of nl to be recognized eas-
ily.

(F) For each of the integers ni with i = 0, 1, . . . , l− 1, build up the elements
of the proof (consisting of pairs (Ei, Pi) of an elliptic curve and a point
on it).

(V) Verify that nl is prime and verify the other steps of the primality proof
(by showing that Pi has order ni+1 on Ei modulo ni and that ni+1 exceeds

(n
1
4

i + 1)2, for i = l− 1, l− 2, . . . , 0).

In this paper we only deal with stage (P). On one hand the other two stages
are not a risk in the sense that they always terminate successfully, on the other
hand the other stages can be highly parallelized.

A strategy for elliptic curve primality proving 127

Next we describe the stages of algorithm (D), with input set nij , j = 1 . . . t
briefly; this is part of stage (P), but the actual relation to it is described later
on.

Algorithm 2 : Downrun

(D) For each nij select a set of negative discriminants D that is suitable for
nij such that for integers u (determined by D), nij +1−u is the product

of small primes and a probable prime q that exceeds (4
√
nij + 1)

2. This
is done as follows:

(1) Find a list of discriminants D for each nij for which the binary

quadratic form nijx
2 +Bxy+ B2−D

4nij

y2, where B2 ≡ D mod nij, pro-

vides ν with ν ·ν = nij (cf. [3, 6]). Store the pairs (D,±u) for each
nij where u = ν+ ν.

(2) From the list of (D,±u) from the previous step, select those for
which m = nij +1−u can be factored as m = q ·f with q a probable

prime exceeding (n
1
4

ij
+ 1)2 and f is completely factored.

(3) Store the set of tuples (D,u, q) for each nij.

(4) From the possible choices of (D,u, q) select a subset that will be the
input for the next iteration.

An iteration step (D) in our Modified-ECPP differs slightly from an iteration
in the original ECPP.

In the original ECPP, in general the i-th iteration of (P) consists of run-
ning (D) with only one input ni and the outcome is just one q. At the first
successful q, the i-th iteration returns and q becomes ni+1, the input of the
(i + 1)-th iteration. If there is no new q after running through a predefined
discriminant set, it backtracks and returns ni−1 as ni+1. What actually hap-
pens after backtracking is that it goes further on the discriminants starting
(Di+1) right after the last successful D.

In the case of Modified-ECPP, the i-th iteration of (P) can have one or more
inputs nij . An initial (D) runs on the input set nij . This can result in zero,
one or more q-s. If there is at least one q, the iteration returns all of them and
they become the inputs of the (i + 1)-th iteration. If there is no new q after
processing the discriminants up to certain limits, we select the best from a list
of nk, the results of the previous iterations. The selected nk becomes the only
input of a new run of (D), running on a new set of discriminants, or factoring

128 Gy. Kiss

the existing m-s harder. Note that this is still the i-th iteration. The iteration
only returns when there is at least one new q produced. If not ambiguous, we
will denote nij with nk.

We have chosen this generic way above to describe (D), because it is appli-
cable to both Modified-ECPP that runs more (D)-s on a set of numbers and
returns a set of q-s and to ECPP that runs one (D) on one input and either
returns the first successful q or backtracks.

2.1 Parameters

There are three main parameters that we use in the algorithm to control the
Downrun, introduced in the work of Atkin and Morain [1]. As they play a
major role in our strategy we describe them here briefly.

Parameter d – In (D1) we select a set of fundamental discriminants D. In
order to control the size of this set, we apply an upper bound d on the size
of the discriminants. Unlike ECPP, an iteration of Modified-ECPP does not
stop at the first successful discriminant, but processes all of them up to d.
In stages (D1) and (D2) we need to perform a reduction for essentially every
discriminant that is suitable for the current input, as well as a factorization
and a primality test on each m and q that were produced processing the
suitable discriminants; thus the number of the selected discriminants has a
huge impact on the running time.

Parameter s – In stage (D1) we also have to extract the square root of
discriminants D modulo ni, which can be done faster if we extract the modular
square roots of all the prime divisors of the D-s instead. An upper bound s
on the size of the factors of the discriminants can control the size of the set
on which we have to perform the root extraction and the size of s also has an
effect on the number of the discriminants, as we throw away everything that
is not s-smooth.

Parameter b – One of the bottlenecks is factoring the m-s, performed in
stage (D2). There are two ways to control the running time of the factoring.
The first one, mentioned above, is to control the size of the discriminant set
through d and s; but we can also restrict the set of primes that we use to
factor the m-s. The bound on these primes is b.

Most of the ECPP implementations use these parameters as fixed limits.
For example in [1], d is taken to be 106, for practical purposes.

As we mentioned earlier, Modified-ECPP deals with a set of q-s during the
Downrun. In our case, we control the size of this set with the above parameters.

A strategy for elliptic curve primality proving 129

The parameters depend on nk; by our choice these parameters will all be taken
of the form

a lnc1 nk ln lnc2 nk.

For this reason, in the rest of the paper d(nk), s(nk) and b(nk) shall denote
them. Initially we provide the values a, c1 and c2 for them. Further on if an
iteration does not provide new q-s, backtracking and repetition (when we force
the same nk with bigger and bigger parameters) is also possible. In these cases
the parameters are increased by multiplying with a constant c, which is also
a parameter, while the exponents remain unchanged.

2.2 Tricks

Some data used in the algorithm is independent of the choice of nk, so it is
possible to collect it in advance.

In stage (D1) we need a list of the s(nk)-smooth discriminants up to d(nk),
that will be suitable for nk. We check two necessary but not sufficient condi-

tions; Jacobi symbols
(
D
nk

)
= 1 and

(
nk
p

)
= 1 for each prime divisor p of D,

cf. [1], in order to reduce the possibility of failure when reducing the quadratic
form in (D1). We will refer to this check further on as the Jacobi symbol filter.
We also have to extract the square root of the D-s mod nk; doing this for
the prime divisors of the discriminants will be more efficient as many primes
will occur for several discriminants. Both of these points suggest to store the
discriminants together with their prime factors and the primes themselves in
preprocessed files. For estimation purposes [3] we also need the class number
of the discriminants, which will be preprocessed too.

This way we can run through the prime file up to s(nk), checking
(
nk
p

)
= 1

and extract the square roots mod nk, and then collect those discriminants up
to d(nk) which have only appropriate prime divisors and build up the square

roots of them after checking
(
D
nk

)
= 1. We have such a file of discriminants

up to 109. As our initial value of d(nk) is

1

16e2·γ
ln2 nk ln ln−2 nk,

running out of discriminants should not be a problem. The primes are collected
up to 2.7 · 109.

In stage (D2) we have to factor the m-s in order to acquire the input for the
next iteration. In our implementation we use Batch Trial Division [3] up to
2.7 ·109 and the Pollard ρ method after that. In Batch Trial Division one takes

130 Gy. Kiss

GCDs of products of number that are to be factored with products of primes,
a list of prime products is stored to avoid the time consuming multiplication
of primes on the fly. We store pairs of prime products with size 2t · 106 where
t = 0, . . . , 12. If we use factorization limit b, the size of the product of the
primes up to b is around eb. As 22

t·106 � eb, we have b � 2t · 106 · ln 2. This
way we have a product from 0 up to around 2t · 106 · ln 2 and from around
2t · 106 · ln 2 up to around 2t+1 · 106 · ln 2 and they are both of size 2t · 106
bits. This is useful, because depending on b(nk), we just have to find the right
place in the file and get the appropriate product. We store pairs to have the
possibility to start from 0 if it is the first factoring attempt, or from 2t ·106 ·ln 2
if we have already tried to factor below that.

2.3 Strategy

The detailed theoretical background of the strategy that the program uses is
described in [3]. Here we list the most important notation and facts.

By ek = e
(
s(nk), d(nk)

)
we denote the number of m-s that we gain in stage

(D2) after processing a set of s(nk)-smooth discriminants up to d(nk). The
expected value of ek is

ē
(
s(nk), d(nk)

)
=

∑
D

1

h(D)
,

where h(D) denotes the class number of discriminant D.
After applying the Jacobi symbol filter, that uses arithmetic properties of

nk and its prime factors, this expected value changes to

ēk = ē
(
nk, s(nk), d(nk)

)
=

∑
D

2t

h(D)
,

where t is the number of different prime factors of D.
The expected number of m-s that split as required (that is, for which the

second largest prime divisor is less than b(nk)) is

λk = λ
(
s(nk), d(nk), b(nk)

)
= eγ

lnb(nk)

lnnk
ek.

The progress we make is measured by the size difference between nk and the
q that is produced by (D) with nk as input; the expected value of that ‘gain’
is

Gk = G
(
b(nk)

)
= lnb(nk).

A strategy for elliptic curve primality proving 131

In the rest of the paper we denote by q numbers that have been produced
already, and by q ′ we denote numbers that are not produced yet, but for
which an estimation has been made for the amount of work needed to produce
them for a given nk. Note that q-s become nk-s, when they become one of the
inputs of the next iteration.

As we already mentioned, a single iteration can have one or more inputs
and outputs. A larger number of inputs increases the probability of reaching
the small primes, but on the other hand, it slows down the computation. Our
aim is to find a balanced situation, where the implementation is reasonably
fast but we still have a good chance to terminate successfully.

Choosing the best q

We saw that λk is the expected number the successful m-s, so the expected
number of new q-s. From [3] we know that we are likely to succeed when λk
exceeds 1.

On the other hand all the new q-s become the input of the next iteration
and we run an initial (D) on them with certain (small) values of parameters
s, d and b. If this does not provide at least one new q, then we select the best
nk as the input of the next (D).

The reason why we cannot choose the best nk right away and have to run
an initial (D) on the newly produced numbers, lies in our definition of best.
There are two aspects to this.

First of all, we have to consider that the numbers are not equally appro-
priate. Applying the Jacobi symbol filters on nk1 could filter out more dis-
criminants than on nk2 , so to produce the same number of new q-s we would
have to process a larger number of discriminants or use bigger factoring bound
for nk1 . Higher bounds imply more execution time, as we need to deal with
bigger discriminants, primes. So the first aspect is the time it takes to produce
a given number of q-s on input nk.

The second aspect is the size of the produced q-s. The smaller they are, the
faster we get to the small primes.

The first aspect we can estimate with the help of λ; for estimating the
running time to produce certain amount of q-s, we collect some actual running
times to see how the numbers behave. This information can be collected from
the initial (D) runs. The parameters of these initial runs are chosen as follows:

s0(nk) = λ0 ·
1

2 · eγ
lnni ln ln−1 nk

132 Gy. Kiss

d0(nk) = λ
2
0 ·

1

4 · e2·γ
ln2 ni ln ln−2 nk

b0(nk) = ln2 nk

The choice for s0(nk) comes from taking λ = eγ
ln b(nk)
lnnk

ek if we suppose that

λ = λ0 is a parameter and s(nk) ≈ ek; we take d(nk) equal to s2(nk) despite
of [3], where we state that it is better to keep the value of s below

√
d, because

in practice, on small numbers, taking s <
√
d led to some difficulties.

During the initial runs we store the time needed for extracting the modular
square roots, for the reduction algorithm and for factoring, and we also see
how many new q-s are produced. With this information, we can estimate the
time needed when we increase s, d or b separately. For the first two we can
estimate the increment in the value of ēk when the smoothness bound for the
discriminants up to d0(nk) is increased from s0(nk) to c·s0(nk), and separately,
the effect of including the s0(nk)-smooth discriminants up to c ·d0(nk) rather
than d0(nk). We filter out the discriminants that are appropriate for nk and
determine ēk in both cases. We can directly determine the value of b(nk) using
the actual ek.

Now we can compute λk in all three cases and we can also estimate the time
tk it would take in all three cases to execute (D) with the estimated values of
one parameter while the other two remain unchanged. Then we can store the
different tk

λk
values.

We now know the expected number of q ′-s resulting from increasing one
of the parameters, but we do not know the expected size of them. This can
be determined with the help of the gain function Gk, which depends only on
b(nk), the factorization effort on m. From this we can see that we gain q ′-s
with the smallest expected size if we increase b, also if we increase s or d,
the expected size of the q ′ that we gain are the same. After incrementing s
or d, we want to know how much effort it takes to reduce q ′ further: what is
the average work per bit needed to decrease q ′? This we can estimate from
the previous iterations. After multiplication by the estimated size differences,
we obtain a value, ak-s for the expected effort of reducing q ′-s to the size of
the smallest one. Then compare the values tk

λk
+ak and select that parameters

for which this value is minimal. We denote this minimal value by mtk, for
the given nk. Now the best number is the nk for which this value mtk is the
smallest.

Note that the running time of the three bottleneck subroutines (extracting
square roots modulo nk, quadratic form reduction, integer factoring) depends

A strategy for elliptic curve primality proving 133

(via the three parameters) only on nk, so it is possible to express these running
time as a function of nk. Estimating the running time of square root extraction
modulo a prime and of form reduction is fairly easy, because we can measure
the running time of a single such operation and multiply by the number of
times we need to perform them (which is the number of primes in nk and
the number of successful discriminants, respectively). In the case of factoring
the running time of Batch Trial Division is linear neither to the number of
m-s nor to the number of primes used, but as we do not use huge amount
of m-s or primes simultaneously, linear approximation works well in practice.
For b(nk) = 2

t · 106 · ln 2 we double the expected time if we increase t to t+ 1
as we have to deal with products of twice the size.

If no new q-s are produced, we need to be able to backtrack. We keep a
window with a certain number of nk-s for which we store all the data that is
necessary to continue using this value of nk if turns out to be the best. Newly
found nk-s are always going to the window, and if the number of the nk-s in
the window exceeds a limit, we throw away the worst ones. It is not possible
to backtrack to a number that is not in the window anymore. We compute the
expected work to decrease one bit for values nk in this window and update it
after each iteration.

Note that while processing a number, the running times that are stored will
be updated with the new data; estimation takes place directly after processing,
so we can base our decision on an up-to-date set of data.

Resulting algorithm

Now we describe briefly how we make our estimates and decisions, followed by
the description of one iteration. For the notation used we refer to the previous
subsection.

Algorithm 3 : Estimation Algorithm

(E) The Estimation Algorithm determines the value of mtij for a value of nij.
The input is s(nij), d(nij) and b(nij), the values of the main parameters
of the previous call of (D) on nij as input.

(1) Determine the effect of increasing s or d by computing the values
of e

(
nij , c · s(nij), d(nij)

)
, and e

(
nk, s(nij), c · d(nij)

)
: collect the

c · s(nij)-smooth discriminants up to d(nij) and s(nij)-smooth dis-
criminants up to c · d(nij), that are appropriate for nij.

134 Gy. Kiss

(2) From the actual running times stored for nij, determine tij for c ·
s(nij), c · d(nij), 2t · b(nij).

(3) Compute the expected gain Gij, and compute the values aij for each
parameter.

(4) Determine and store the value of mtij together with the correspond-
ing lists of discriminants and primes.

Algorithm 4 : Modified-ECPP Iteration Step

(P) With a set of one or more nij-s as input, one iteration of the Modified-
ECPP Algorithm runs until it finds one ore more new q-s that become
the inputs for the next iteration. The following steps are carried out.

(1) Run (D) on each nij with s0(nij), d0(nij) and b0(nij).

(2) Run (E) on each nij in order to determine mtij, with the data
collected in the previous step on the running times. Add the nij-
s to the window. If we obtain new q-s go to (1), else to (3)

(3) Reorder the window by the values mtk (all of them are up to date).

(4) Pick the best as nij and run (D) on it.

(5) Run (E) on the selected nij with the data collected in the previous
step.

(6) If we have new q-s go to (1), else to (3)

We list the additional important parameters, besides the ones mentioned in
the previous sections.

Parameter λ0 – In (1) this parameter provides the initial value of λ. If it is
too big, (1) becomes too slow, and also the process would result in too many
new q-s and the tree of nk-s would expand too much. On the other hand if it
is too small, we cannot collect realistic data about the running time. It seems
to be appropriate to keep this value between 1/3 and 1/2.

Parameter c – In (E) we take c · s(nk), c · d(nk) as next values of these
parameters. If this is too big, running (D) becomes too slow, if it is too small,
we spend to much time on administration because we take too small steps.
The value seems to be appropriate between 3/2 and 3.

Parameter α – In (E) we increase the value of λ with δλ. We require
a certain lower bound on δλ, that is α. If δλ is above α the value of c is
acceptable, below it we have to multiply c with α/(δλ). We use α = 0.25;

A strategy for elliptic curve primality proving 135

Parameter wSize – This parameter denotes the size of the window, that
we have mentioned above. We have to be careful with it because if we store
too big window, the program becomes slow, otherwise, if it is too small, it is
possible that the strategy would select a node that is outside of the window,
so we restrain it. This parameter is of the form lnn/(c ln lnn).

3 Analysis of the strategy and running times

In the main experiment we tested the strategy with around 200 numbers each
for k·1000 decimal digits, with k = 1, 2, . . . , 7. We ran various other experiment
on running time and on the strategy. We have produced many graphs, but pre-
senting all of them here is impossible. They can be downloaded from the page
http://www.math.ru.nl/~gykiss. In case our graphs cannot present data
for different sizes of numbers, we will always display the graph for the largest
size for which data are available. The experiments were run on computers with
Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz processors and 8 GB memory.

Running times

Figure 1 shows the running times for the main experiment of the algorithm.
The number of decimal digits of the input numbers appears on the x-axis on
both graphs, while the y-axis indicates the running time in seconds on the first
graph, the average running times of the algorithm on the same numbers; for
k = 1, 2, 3, . . . , 7 vertically the average of the running times for the numbers
of k · 1000 digits is indicated as a single dot on the second graph.

Applying a Least Squares linear approximation method, we found that the
best fit for the running time on a logarithmic scale is given by the line y =
3.86 · x− 21.00. This is displayed in Figure 2.

It is possible to play around with the running time, for example by chang-
ing the parameter c that is responsible for the size of the increase of the
parameters s and d. We tested numbers from 1000 up to 3000 digits with
c = 1.5, 2, 2.5, 3, 3.5, 4.

The effect on the running time can be seen in Figure 3. On the x-axis the
different values of c are given, and on the y-axis the running time. We see that
effect of changing c in this range is insignificant.

The time spent in a single iteration can be separated into administration
time and the execution time. We consider filtering the discriminants for given
nk and the estimation process as part of the ‘administration’, and time spent
on extracting modular square roots mod nk, reduction of forms, factoring

http://www.math.ru.nl/~gykiss

136 Gy. Kiss

Figure 1: Running times

and Miller-Rabin tests on the new q-s as part of the ‘execution’. We have to
emphasize that in one iteration there will typically be several execution and
administration steps, and these experiments are not meant to measure the
time used in an iteration. Figure 4 shows the proportion of the total execution
time per run to the total running time per run. The total running times are
indicated on the x-axis, and on the y-axis the execution times for numbers
from 1000 digits up to 7000 digits are displayed (together with the line y = x,
for comparison). The clusters for the data for the numbers of the same size
are clearly visible. As expected, the time spent on administration rather than
execution is negligible.

Experiments on the strategy

In the analysis of the strategy we put emphasis on backtracks and repetitions.
Repetitions and backtracks are very similar and occur for the same reason:
they indicate that we could not provide a new q after executing the initial (D)
as well as a run of (D) on the best available input (the initial run of D is only
used to collect data on the number and is considered only as precomputation).
In both cases we have to select a new value of nk to continue on. The only
difference is that when we backtrack we select a different number, whereas in
a repetition the same number is selected again (because it is still ‘best’). It is
natural that repetitions occur frequently as we increase λ with around α = 0.25
instead of 1, which means that one may expect to repeat the procedure as much

A strategy for elliptic curve primality proving 137

Figure 2: Average Running times on logarithmic scale

Figure 3: Changes of the running time if we change parameter c on 3000 digit
numbers

as 4 times before producing a new q.
Note that when we backtrack, we may step either backwards or forward, as

the window may contain numbers for both situations.
Note that the length of the path is not equal to the number of iterations,

as we include each number on which (D) was ever called in the path, and in

138 Gy. Kiss

Figure 4: The proportion of the execution time compared to the total running
time

one iteration (D) may be called several times. However, the number of the
iterations is equal to the maximum level, as we consider numbers produced in
the same iteration to be on the same level.

Figure 5: The number of backtracks as a function of the length of the paths

Figure 5 show the proportion of the number of backtracks and repetitions
to the length of the path, for numbers of various sizes. On the x-axis the

A strategy for elliptic curve primality proving 139

path lengths are indicated, on the y-axis, the number of backtracks (on the
first graph) or repetitions (on the second graph). The length of the path is of
order O(ln(n)), and the graphs clearly show the 7 clusters corresponding to
numbers of size k · 1000, for k = 1, . . . , 7. From Figure 5 it is clear that we
need backtracks during the Downrun, and as a rule of thumb, approximately
once every 30 steps on the path. We can also see that around half of the path
is repetition.

Figure 6: The level and size differences of backtracks

Besides knowing how often we backtrack in a run, we would like information
on how far back we step (in terms of level or size) when backtracking. There
should not be too big size or level differences, as in this case the effort invested
in decreasing the size of the nk-s is lost. In Figure 6 we present the level and
size differences that occurred up to 7000 digits. The x-axis on both graphs
indicates the size of the numbers from which we backtracked. On the y-axis
on the graph on the left the level differences are indicated, and on the graph on
the right the size differences (in number of digits). A positive number means
that we stepped back, a negative number means that we stepped forward, 0
indicates that we stayed on the same level but we have selected a different
number. It is clearly suggested by these graphs that neither the level nor the
size differences depend on the size of the input; only for really small numbers,
when the work that we loose with backtracking is small, the size differences
can be relatively large. There are very few outliers for larger sizes.

The length of repetition sequences and how long they take, is also interest-

140 Gy. Kiss

Figure 7: The length and proportion of the repetition sequences

Figure 8: The time of the repetition sequences

ing. The result of our experiments on this can be seen in Figure 7 and Figure 8.
In x-direction in each case the size of the number that is repeated is indicated.
The y-axis in the first graph of Figure 7 indicates the length of the repetition
sequence, in the second graph it indicates the percentage of the number of the
repetitions on numbers of a certain size compared to the total amount of rep-
etitions. In Figure 8 the y-axis indicates the time of the repetition sequences.

A strategy for elliptic curve primality proving 141

We see that the length of the repetition sequence does not really depend on
the size of the input, it never exceeds 13. The percentage of the number of
repetitions seems to be decreasing when the numbers are growing, though at
7000 digits the percentage is higher. The reason is that when we start on a
number with 7000 digits we have to increase our effort on it until there are new
q-s produced, as this is the only choice at that point. The time of course does
depend on the size of the numbers, as for bigger numbers (D) takes longer;
still the dependence is rather controlled with few outliers.

4 Conclusions and future improvements

To sum up the results from our experiments we make the following observa-
tions.

The evidence from experiments with numbers up to 7000 decimal digits is
that the running time is below o

(
ln4(n0)

)
. Of course there is no experimental

way to show that this is asymptotically correct.
The proportion of the running time needed for administration of the strategy

to be applied is small, which is necessary for the strategy to be useful.
Experiments show that in around half of the cases the strategy chooses to

increment d (meaning: allow the use of larger discriminants) and in almost
all other cases it chooses to increase s (that is: allow larger primes in the dis-
criminants). For bigger numbers enlarging d is a bit more frequent, for smaller
numbers enlarging s. Selection of b (that is: allow larger primes in the fac-
torization of the m-s) hardly ever happens. As we saw that the number of
repetitions does not exceed 13, the implementation should be able to work
with numbers up to 10000 digits without running out of discriminants. After
running out of discriminants it would be still possible to continue with increas-
ing b (there is no upper limit to that parameter). Of course testing such big
numbers would take very long.

The number of the backtracks and repetitions are proportional to the length
of the path and seems to be independent from the size of the input.

The maximum level of backtracks and the lengths of repetitions seem to be
the similar for different sizes of inputs. That is what we expect as the input
selection depends on the estimated running times + the work that we have to
do to reduce the new q-s to the same size. The work to reduce the new q-s; the
avgWork, is growing for bigger inputs, but also the estimated running times,
thus their relation should be the same. The size differences for backtracks are
growing with bigger inputs, but the differences are negligible.

142 Gy. Kiss

The time of the repetition sequences are growing also, but without too many
extreme cases and of course for bigger input the execution time grows.

The overall conclusion is that the implementation seems to be working as it
was intended, but there is still space for improvement. The goal is to provide an
optimized implementation of the ECPP algorithm written in C that combines
this strategy with a collection of highly optimized package written in C and
Assembly.

References

[1] A. O. L. Atkin, F. Morain, Elliptic curves and primality proving, Math. Comp.
61, 203 (1993) 29–68. ⇒125, 128, 129

[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: the user
language, J. Symbolic Comput., 24, 3 (1997) 235–265. ⇒126

[3] W. Bosma, E. Cator, A. Járai, Gy. Kiss, Primality proofs with elliptic curves:
heuristics and analysis, Ann. Univ. Sci. Budapest. Sect. Comput., in print ⇒
126, 127, 129, 130, 131, 132

[4] G. Farkas, G. Kallós, Gy. Kiss, Large primes in generalized pascal triangles, Acta
Univ. Sapientiae, Informatica 3, 2 (2011) 158–171. ⇒126

[5] A. Járai, Gy. Kiss, Finding suitable paths for the elliptic curve primality proving
algorithm, Acta Univ. Sapientiae, Informatica 5, 1 (2013) 35–52. ⇒126

[6] A. K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, in: Handbook
of Theoretical Computer Science, Vol. A. Algorithms and Complexity (ed. J. van
Leeuwen), Elsevier, 1990, pp. 673–716. ⇒125, 127

[7] F. Morain, Implementing the asymptotically fast version of the elliptic curve
primality proving algorithm, Math. Comp. 76, 257 (2007) 493–505. ⇒125, 126

Received: November 16, 2015 • Revised: December 13, 2015

http://www.lix.polytechnique.fr/Labo/Francois.Morain/
http://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1199989-X/S0025-5718-1993-1199989-X.pdf
http://www.math.ru.nl/~bosma/
http://ac.els-cdn.com/S074771719690125X/1-s2.0-S074771719690125X-main.pdf?_tid=e007bd8e-8c49-11e5-a500-00000aab0f27&acdnat=1447668642_c876e6a7b71181f8d89b0ff2aa0af0b1
http://www.math.ru.nl/~bosma/
http://www.ru.nl/science/as/personal-homepages/personal-homepages/prof-dr-cator/
http://compalg.inf.elte.hu/~ajarai/
http://www.math.ru.nl/~kiss/
http://ac.inf.elte.hu/
http://compalg.inf.elte.hu/~farkasg/
http://www.sze.hu/~kallos/
http://www.math.ru.nl/~kiss/
http://www.acta.sapientia.ro/acta-info/C3-2/info32-2.pdf
http://compalg.inf.elte.hu/~ajarai/
http://www.math.ru.nl/~kiss/
http://www.acta.sapientia.ro/acta-info/C5-1/info51-3.pdf
https://math.berkeley.edu/~hwl/
http://www.cs.uu.nl/staff/jan.html
https://www.elsevier.com/
http://www.lix.polytechnique.fr/Labo/Francois.Morain/
http://www.ams.org/journals/mcom/2007-76-257/S0025-5718-06-01890-4/S0025-5718-06-01890-4.pdf

Acta Univ. Sapientiae, Informatica 7, 2 (2015) 143–150

DOI: 10.1515/ausi-2015-0016

Factoring multi power RSA moduli with a

class of secret exponents

Omar AKCHICHE
Laboratory of Mathematics,

Cryptography and Mechanics, Fstm
University Hassan II of Casablanca,

Morocco
email: omar.akchiche@hotmail.com

Omar KHADIR
Laboratory of Mathematics,

Cryptography and Mechanics, Fstm
University Hassan II of Casablanca,

Morocco
email: khadir@hotmail.com

Abstract. In this paper, we consider the RSA variant based on the key
equation ed ≡ 1 (mod φ(N)) where N = prq, r ≥ 2. We show that if
the secret exponent d is close to any multiple of the prime factor p or its
powers, then it is possible to factor N in polynomial time in logN.

1 Introduction

Factoring large integers is a well established problem in number theory and
cryptography. The security of many cryptosystems such as RSA [15] is based
on its presumed difficulty. Fermat method is efficient to factor a product of
two numbers that are close one to another (see e.g. [4]). In 1931, the continued
fraction method was invented [5]. Pollard [11] described the p − 1 method in
1974. Some years later, he discovered the ρ algorithm [12]. The first is known
to be practical when the prime factors of p − 1 are small for some prime
divisor of N. The second applies a cycle detection technique. In [7], Lenstra
employed the elliptic curves properties to get prime factors of large numbers.

Computing Classification System 1998: F.2.1 E.3
Mathematics Subject Classification 2010: 11Y05 94A60
Key words and phrases: integer factorization problem, multipower RSA, public key cryp-
tography

143

http://www.univcasa.ma/
http://www.univcasa.ma/
mailto:omar.akchiche@hotmail.com
http://www.univcasa.ma/
http://www.univcasa.ma/
mailto:khadir@hotmail.com

144 O. Akchiche, O. Khadir

The Quadratic Sieve was published in 1980s by Pomerance [13]. Nowadays, the
most efficient factoring algorithm is the Number Field Sieve (NFS) [6, p. 103]
that was elaborated by Pollard in 1988. Since then, the NFS has been further
ameliorated.

In order to speed up the decryption/encryption time, it was suggested to
use RSA with moduli N = prq (see e.g. [2]). Numerous previous papers stud-
ied the security of such protocols. Boneh, Durfee, and Howgrave-Graham [1]

established that only
1

1+ r
fraction of the bits of p suffice to recover the entire

p. May [9] generalizes many cryptanalysis methods to schemes with N = prq.
Some of the work in [9] was improved in [16] for r ≤ 5. It was proved in [8] that
leaking the bits of some blocks of the prime factors of a modulus N = prq en-
ables its factorization under certain circumstances. All the previous researches
pointed out that integers N = prq are more vulnerable than a standard RSA
modulus, in particular, when r becomes large.

In this paper, the RSA variant based on the key equation ed ≡ 1 (mod φ(N))
where N = prq is considered. We show that using a secret exponent d which
is close to any multiple of p or its powers can lead to the factorization of the
public modulus.

The article is organized as follows. In section 2, we state our main result
after recalling the Coppersmith’s theorem for finding small roots of univariate
modular polynomials. In section 3, we generalize the method to other RSA-
type systems. Finally, we conclude in section 4.

Throughout the sequel, for integers a, b and c, we write a ≡ b (mod c) if
c divides the difference a − b, and a = b mod c if a is the remainder in the
division of b by c. We denote by gcd(a, b) the greatest common divisor of a
and b. All the logarithms should be interpreted as logarithms to the base 2.

2 Our contribution

In this section, we describe our main result. However, we start by presenting
the Coppersmith [3] result for computing small roots of modular polynomials.
In particular, we use the slight generalized version as was depicted by May in
[9, 10]. One can find in [10] a thorough treatment about the method and its
implementation. This technique will be needed in establishing our Theorem 2.

Theorem 1 ([10]) Let N be an integer of unknown factorization, which has
a divisor b ≥ Nβ, 0 < β ≤ 1. Furthermore, let f(x) be a univariate monic
polynomial of degree δ and let c ≥ 1. Then, we can find all solutions x0 for

Factoring multi power RSA moduli 145

the equation:

f(x0) ≡ 0 (mod b) with |x0| ≤ cN
β2

δ

in time T = O(cδ5 log9N).

Now, we state the main contribution:

Theorem 2 Let N = prq where r ≥ 2 is a given integer constant and p, q are
primes of the same bit-size. We denote by (e, d) the public-key/secret-key pair
satisfying ed ≡ 1 (mod φ(N)). Assume that there exist two integers i ≥ 1 and

j that verify |d−jpi| ≤ N
(

min(i,r−1)
r+1

)2
with (d−jpi) 6≡ e−1 (mod q). Parameters

i and j are not necessary known. Then, we can factor N in polynomial time
in logN.

Proof. The RSA equation is ed ≡ 1 (mod φ(N)). Hence, there exists an
integer k such that ed = 1+kpr−1(p− 1)(q− 1). Let d = jpi+∆ where ∆ ∈ Z
and put l = min(i, r − 1). Working modulo pl, it follows that e∆ − 1 ≡ 0

(mod pl). Setting the polynomial f(x) = x − (e−1 mod N), it is clear that
∆ is a root of f(x) modulo pl. We assume that the inverse of e modulo N
is well defined. Otherwise, we have already a non trivial divisor of N. When

q < p, N
l
r+1 < pl. By hypothesis, |∆| ≤ N(l

r+1)
2

. So, we can determine ∆ by

using Theorem 1 with b = pl, β =
l

r+ 1
, δ = 1 and c = 1. Since ∆ 6≡ e−1

(mod q), it is readily seen that gcd(|e∆− 1|, N) splits N as e∆− 1 and N are
both multiples of pl. If p < q, then q < 2p as p and q are of the same bit-

size. Thus,
N

l
r+1

2
< pl. Let β =

l

r+ 1
−

1

logN
. We have |∆| ≤ N

β2

δ whenever

|∆| ≤ N(l
r+1)

2

. This comes from observing that N(l
r+1)

2

= 4N(l
r+1)

2
− 2

logN <

4N
(l
r+1)

2
− 2l

(r+1) logN
+ 1

log2 N = 4N
β2

δ . Hence, we obtain ∆ by applying Theorem 1

with b = pl, β =
l

r+ 1
−

1

logN
, δ = 1 and c = 4. We then get the factorization

of N by computing gcd(|e∆− 1|, N).
The running time of our method is dominated by that of Theorem 1 which

is polynomial in logN. So, the result is proved.
�

Theorem 2 leads to the following algorithm:

Input: A public multi power RSA key (N, e) where N = prq for a given con-
stant r ≥ 2.

146 O. Akchiche, O. Khadir

Output: The prime decomposition of N or ”Failure”.

1. Set the modular polynomial f(x) = x− (e−1 mod N).
2. Apply Coppersmith method as presented in Theorem 1 to compute all the
integer roots of f(x) modulo pl where l ≤ r − 1 is a fixed integer. It is not
required to know the value of p.
3. Denote by xi, i = 1, 2, . . . , length, the solutions founded in step 2.
4. flag← 0, i← 0.
5. While flag = 0 and i ≤ length do:

5.1. i← i+ 1.
5.2. ∆← xi.
5.3. f← gcd(|e∆− 1|, N).
5.4. If 1 < f < N then:

5.4.1. flag← 1.

5.4.2. If f is not a prime power, then q← f, p← (
N

q

) 1
r

.

5.4.3. Else, determine the prime p that divides f, q← N

pr
.

5.4.4. Output (p, q).

6. If i > length, then output ”Failure”.

For a multi power RSA modulus N = prq, it is generally recommended to
choose a small value of r. Indeed, the more r is large, the less the cryptosystem
is secure, see e.g. [1, 9, 8, 16]. Setting r = 2, we obtain the next corollary:

Corollary 3 Let N = p2q where p and q are primes of the same bit-size. We
denote by (e, d) the public-key/secret-key pair satisfying ed ≡ 1 (mod φ(N)).

Assume that there are two integers i ≥ 1 and j such that |d − jpi| ≤ N
1
9 with

(d− jpi) 6≡ e−1 (mod q). Then, we can factor N in polynomial time in logN.

The bound N

(
min(i,r−1)

r+1

)2
in Theorem 2 is optimal for i ≥ r − 1. Under this

situation, it is roughly equal to N when r becomes larger.
In the next section, we investigate the threat of our method to other RSA

variants.

Factoring multi power RSA moduli 147

3 Extension of our result

The straightforward multi power RSA is obtained by taking N = prq in the
standard RSA key equation ed ≡ 1 (mod φ(N)). The Takagi crypotsystem
[17] is based on edp ≡ 1 (mod p − 1) and edq ≡ 1 (mod q − 1). For this
protocol, we have:

Proposition 4 Let N = prq where r ≥ 2 is a given integer constant and p, q
are primes of the same bit-size. We denote by (e, dp) the public-key/secret-key
pair satisfying edp = 1 + kp(p − 1), i.e. edp ≡ 1 (mod p − 1). Assume that

|dp − p| ≤ N
1

(r+1)2 with (dp − p) 6≡ (1− kp)e
−1 (mod q). Then, we can factor

N in time eO(log9N).

Proof. By definition, edp = 1 + kp(p − 1) for some integer kp. Put dp =
p + ∆. Hence e∆ + kp − 1 ≡ 0 (mod p). The parameter kp lands in the set

{1, 2, . . . , e−1}. Indeed, kp =
edp − 1

p− 1
< e. Put f(x) = x+(kp−1)(e

−1 mod N).

For the true guess for kp, ∆ is a root of the polynomial f(x) modulo p.

If q < p, then N
1
1+r < p. By hypothesis, |∆| ≤ N

1

(1+r)2 . So, it is possible

to find ∆ by applying Theorem 1 to f(x) with β =
1

1+ r
, δ = 1 and c = 1.

Moreover, ∆ 6≡ (1 − kp)e
−1 (mod q). Thus, gcd(|e∆ + kp − 1|, N) is a prime

power that divides N, since both e∆ + kp − 1 and N are multiples of p. The
most time consuming part is Coppersmith method which has a running time
O(log9N). All the steps must be repeated for each trial kp. Therefore, the
whole complexity is eO(log9N).

Now, suppose that p < q. The primes p and q are of the same bit-size,

so q < 2p. It follows that
N

1
1+r

2
< p. We have N

1

(r+1)2 = 4N(1
r+1)

2
− 2

logN <

4N
(1
r+1)

2
− 2

(r+1) logN
+ 1

log2 N = 4N
β2

δ . Using Theorem 1 with f(x) = x + (kp −

1)(e−1 mod N), β =
1

1+ r
−

1

logN
, δ = 1 and c = 4 leads to recovering ∆.

Like in the previous case, gcd(|e∆+ kp − 1|, N) is a prime power divisor of N
which achieves the proof.

�

For an RSA-type modulus N = prq, the primes p and q are not symmetric.
We can establish:

Proposition 5 Let N = prq where r ≥ 2 is a given integer constant and p, q
are primes of the same bit-size. We denote by (e, dq) the public-key/secret-key

148 O. Akchiche, O. Khadir

pair satisfying edq = 1 + kq(q − 1), i.e. edq ≡ 1 (mod q − 1). Assume that

|dq − q| ≤ N
1

(r+1)2 with (dq − q) 6≡ (1− kq)e
−1 (mod pu) for all u ≤ r. Then,

we can factor N in time eO(log9N).

Proof. The RSA key equation satisfies edq = 1 + kq(q − 1) for some integer
kq. The following process will be repeated for each candidate for kq. If dq =
q + ∆ where ∆ ∈ Z, then e∆ + kq − 1 ≡ 0 (mod q). We define the function

f(x) = x+ (kq − 1)(e
−1 mod N). Let p < q. Thus, N

1
1+r < q. By hypothesis,

|∆| ≤ N
1

(r+1)2 . Setting β =
1

1+ r
, δ = 1 and c = 1, we efficiently determine ∆

by Theorem 1. If q < p,
N

1
1+r

2
< q since p and q are of the same bit-size. One

shows that it suffices that |∆| ≤ N
1

(r+1)2 in order to use Coppermsith’s result

with β =
1

1+ r
−

1

logN
, δ = 1 and c = 4.

As both e∆ + kq − 1 and N are divided by q, the condition (dq − q) 6≡
(1− kq)e

−1 (mod pu) for all u ≤ r guarantees that gcd(|e∆+ kq − 1|, N) = q.
All the steps are executed at most e times given that kq < e. Hence, the
running time of the method is eO(log9N) which demonstrates the result.

�

Suppose that a private exponent dp or dq satisfies the hypothesis of Propo-
sition 4 or 5 respectively. It is clear that if there exists an oracle that outputs
the values of kp or kq such that edp = 1 + kp(p − 1) or edq = 1 + kq(q − 1),
then N can be factored in polynomial time in logN.

In the following proposition, we apply the technique for RSA systems that
use Chinese remainder theorem in decrypting, CRT-RSA (see e.g. [14] for an
explicit description). We obtain:

Proposition 6 Let N = pq an RSA modulus where p and q are primes of
the same bit-size. We denote by (e, dp) the public-key/secret-key pair satisfying

edp = 1+kp(p−1), i.e. edp ≡ 1 (mod p−1). Assume that |dp−p| ≤ N
1
4 with

(dp − p) 6≡ (1− kp)e
−1 (mod q). Then, we can factor N in time eO(log9N).

Proof. By the RSA key equation, edp = 1+kp(p−1) where kp ∈ N. It follows
that edp+ kp− 1 ≡ 0 (mod p). We know that dp = p+∆, so e∆+ kp− 1 ≡ 0
(mod p). The modulus N = pq is balanced. Consider the polynomial f(x) =
x + (kp − 1)(e

−1 mod N) whose degree is δ = 1. The value of |∆| is upper

bounded by N
1
4 . It is possible to compute efficiently ∆ by Theorem 1 with

Factoring multi power RSA moduli 149

β =
1

2
, c = 1 if q < p, and β =

1

2
−

1

logN
, c = 2 if not. By hypothesis,

∆ 6≡ (1− kp)e
−1 (mod q), so gcd(|e∆+ kp − 1|, N) = p. We must execute the

method for each candidate for kp. As kp =
edp − 1

p− 1
and dp < p − 1, kp < e.

So, the running time is eO(c log9N) where c = 1 if q < p and c = 2 otherwise.
�

Let dp a private exponent that fulfil the hypothesis of Proposition 6. If the
value of kp such that edp = 1 + kp(p − 1) is leaked, then we can efficiently
compute the prime decomposition of N.

4 Conclusion

In this paper, we proposed an attack against the RSA variant based on the
key equation ed ≡ 1 (mod φ(N)) where N = prq, r ≥ 2. We showed that if
d is close to any multiple of the prime factor p or its powers, then N can be
factored in polynomial time in logN, and thus the cryptosystem is completely
broken.

Acknowledgements

This work is supported by the MMSyOrientation project.

References

[1] D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = prq for large
r, Advances in Cryptology (CRYPTO’99), Lecture Notes in Computer Science
1666 (1999) 326–337. ⇒144, 146

[2] D. Boneh and H. Shacham, Fast variants of RSA, CryptoBytes 5, 1 (2002) 1–9.⇒144
[3] D. Coppersmith, Small solutions to polynomial equations, and low exponent

RSA vulnerabilities, J. Cryptology 10, 4 (1997) 233–260. ⇒144
[4] B. De Weger, Cryptanalysis of RSA with small prime difference, Appl. Algebra

Engrg. Comm. Comput. 13, 1 (2002) 17–28. ⇒143
[5] Derrick H. Lehmer and Richard E. Powers, On factoring large numbers, Bull.

Amer. Math. Soc. 37, 10 (1931) 770–776. ⇒143
[6] Arjen K. Lenstra, Hendrik W. Lenstra Jr., The development of the number field

sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, 1993. ⇒144
[7] Hendrik W. Lenstra Jr., Factoring integers with elliptic curves, Ann. of Math.

126, 3 (1987) 649–673. ⇒143

http://crypto.stanford.edu/~dabo/
http://www.glenndurfee.com/
https://scholar.google.com/citations?user=ktCTwfIAAAAJ
http://link.springer.com/bookseries/558
http://crypto.stanford.edu/~dabo/
http://cseweb.ucsd.edu/~hovav/
http://www.emc.com/emc-plus/rsa-labs/historical/cryptobytes-technical-newsletter.htm
http://link.springer.com/journal/145
http://www.win.tue.nl/~bdeweger/
http://www.springer.com/computer/theoretical+computer+science/journal/200
http://www.springer.com/computer/theoretical+computer+science/journal/200
http://www.ams.org/publications/journals/journalsframework/bull
http://www.ams.org/publications/journals/journalsframework/bull
http://people.epfl.ch/arjen.lenstra
https://math.berkeley.edu/~hwl/
http://link.springer.com/bookseries/304
http://www.math.leidenuniv.nl/~hwl/
http://annals.math.princeton.edu/

150 O. Akchiche, O. Khadir

[8] Y. Lu, R. Zhang, and D. Lin, Factoring multi-power RSA modulus N = prq with
partial known bits, Information Security and Privacy (ACISP 2013), Lecture
Notes in Computer Science 7959 (2013) pp. 57–71. ⇒144, 146

[9] A. May, Secret exponent attacks on RSA-type schemes with moduli N = prq,
Public Key Cryptography (PKC 2004), Lecture Notes in Computer Science 2947
(2004) 218–230. ⇒144, 146

[10] A. May, Using LLL-reduction for solving RSA and factorization problems, The
LLL Algorithm, Phong Q. Nguyen and Brigitte Vallée, eds., Information Secu-
rity and Cryptography, Springer Berlin Heidelberg, (2010) 315–348. ⇒144

[11] John M. Pollard, Theorems on factorization and primality testing, Math. Proc.
Cambridge Philos. Soc. 76, 3 (1974) 521–528. ⇒143

[12] John M. Pollard, A monte carlo method for factorization, BIT 15, 3 (1975)
331–334. ⇒143

[13] C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology
(EUROCRYPT’84), Lecture Notes in Computer Science 209 (1985) 169–182.⇒144

[14] J.J. Quisquater and C. Couvreur, Fast decipherment algorithm for RSA public-
key cryptosystem, Electronics letters 18, 21 (1982) 905–907. ⇒148

[15] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems, Communications of the ACM 21, 2 (1978)
120–126. ⇒143

[16] S. Sarkar, Small secret exponent attack on RSA variant with modulus N = prq,
Des. Codes Cryptogr. 73, 2 (2014) 383–392. ⇒144, 146

[17] T. Takagi, Fast RSA-type cryptosystem modulo pkq, Advances in Cryptology
(CRYPTO’98), Lecture Notes in Computer Science 1462 (1998) 318–326. ⇒
147

Received: August 8, 2015 • Revised: October 26, 2015

http://link.springer.com/bookseries/558
http://www.cits.rub.de/personen/may.html
http://link.springer.com/bookseries/558
http://www.cits.rub.de/personen/may.html
http://www.springer.com/series/4752
http://www.springer.com/series/4752
http://journals.cambridge.org/action/displayJournal?jid=PSP
http://journals.cambridge.org/action/displayJournal?jid=PSP
http://link.springer.com/journal/10543
https://math.dartmouth.edu/~carlp/
http://link.springer.com/bookseries/558
http://www.uclouvain.be/crypto/people/show/2
http://www.theiet.org/resources/journals/eletters/
http://people.csail.mit.edu/rivest/
http://www.wisdom.weizmann.ac.il/profile/scientists/shamir-profile.html
http://www.usc.edu/dept/molecular-science/fm-adleman.htm
http://cacm.acm.org/
http://link.springer.com/journal/10623
http://imi.kyushu-u.ac.jp/~takagi/en/
http://link.springer.com/bookseries/558

Acta Univ. Sapientiae, Informatica 7, 2 (2015) 151–185

DOI: 10.1515/ausi-2015-0017

Simple scalable nucleotic FPGA based

short read aligner for exhaustive search of

substitution errors

Péter FEHÉR
Eötvös Loránd University

email: thepetest@gmail.com

Ágnes FÜLÖP
Eötvös Loránd University

email: fulop@caesar.elte.hu

Gergely DEBRECZENI
Wigner Institute

email: gergely.debreczeni@cern.ch

Máté NAGY-EGRI
Wigner Institute

email: nagy-egri.mate@wigner.mta.hu

György VESZTERGOMBI
Wigner Institute and Eötvös Loránd University

email: veszter@rmki.kfki.hu

Abstract. With the advent of the new and continuously improving tech-
nologies, in a couple of years DNA sequencing can be as commonplace
as a simple blood test. The growth of sequencing efficiency has a larger
exponent than the Moore’s law of standard processors, hence alignment
and further processing of sequenced data is the bottleneck. The usage of
FPGA (Field Programmable Gate Arrays) technology may provide an
efficient alternative. We propose a simple algorithm for DNA sequence
alignment, which can be realized efficiently by nucleotic principal agents
of Non.Neumann nature. The prototype FPGA implementation runs on
a small Terasic DE1-SoC demo board with a Cyclone V chip. We present
test results and furthermore analyse the theoretical scalability of this

Computing Classification System 1998: I.2.1, D.1.3
Mathematics Subject Classification 2010: 92D20
Key words and phrases: FPGA, parallel computing, DNA sequent

151

http://www.elte.hu/en
mailto:thepetest@gmail.com
https://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://www.elte.hu/en
mailto:fulop@caesar.elte.hu
http://wigner.mta.hu/pb_employee/14/26
http://wigner.mta.hu/
mailto:gergely.debreczeni@cern.ch
http://www.kfki.hu/~mnagy/rolunk.html
http://wigner.mta.hu/
mailto:nagy-egri.mate@wigner.mta.hu
https://fizika.elte.hu/hu/index.php?page=munkatars&tid=1&id=18
http://wigner.mta.hu/
mailto:veszter@rmki.kfki.hu

152 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

system, showing that the execution time is independent of the length of
reference genome sequences. A special advantage of this parallel algo-
rithm is that it performs exhaustive search producing all match variants
up to a predetermined number of point (mutation) errors.

1 Introduction

Revolution in microbiology and genetics are producing incredible amount of
data which calls for the application of the most modern tools of informatics
[1]. This may include analysis of sequences from related organisms, or from
apparently unrelated species. In order for a geneticist to perform analyses on
genomic data it has to be obtained through a process called genome sequenc-
ing. This task can be broken down into two main sub-processes, the first of
which involves extracting raw data from a sample using various instruments
and the second is short read alignment, which is a purely computational prob-
lem. Recently, several short read alignment applications have been developed.
The state of the art short read aligners (e.g. Bowtie[7], nvBowtie[17]) use the
the Burrows-Wheeler transform[4].

The problem is the following: For every short read find the position where it
best matches the reference, i.e. can be aligned to the reference sequence with
the lowest number of differences. Differences can be insertions, deletions or
substitution errors (also called point mutation errors). Insertions and deletions
are commonly referred to as indels.

In practice the percentage of substitution errors is much higher than that of
indels, therefore in this article we shall concentrate on the algorithms dealing
with only substitution errors. In special cases it will be specified if indels are
also taken into account.

Reference sequences are publicly available for a wide variety of species in-
cluding the human genome. Sometimes shorter fragments are used instead of
whole genomes in order to narrow down the search space and speed up the
process. Short read data is generally produced using special sequencing instru-
ments such as the Illumina HiSeq X Ten but it is also possible to find existing
data from previous experiments using public databases.

In practice there can be more than one reference sequence, which could
for example belong to different chromosomes of an organism. However, this
doesn’t alter the theoretical nature of the problem. So in our demonstration
we decided to use a single reference sequence as our input.

In the Section (2.1), (2.2) we reviewed the numeric algorithms of DNA
sequencing as Smith Waterman scosing system, Burrows-Wheeler transform.

Scalable FPGA based DNA sequencer 153

The basic idea of our model is introduced in the Section (2.3). The Local
Boolean alignment algorithms contains the Sliding windows sequential algo-
rithm in the Subsection (3.1), Coarse grain K parallelism in the Subsection
(3.2), Fine grain N-parallelism in the Subsection (3.3), these are close to hard-
ware application. In the Section (4.) we introduced the Nucleotic algorithms,
which is treating big-data strongly parallel on scalable way to realise by FPGA.
This is an effective method for DNA sequence alignment. In the Section (5.)
the FPGA implementation is shown on DE1-SoC Board to compare with GPU.
In the Section (5.5) we presented our method in the case of Lambda virus. We
compared these results with Bowtie method using a random and real sample
string of Lambda phage. The correlation coefficients show significant difference
between the faul and exacting matching result.

2 Numeric transformation algorithms

Traditionally the computers with the standard CPUs are ideal to perform
formula calculations therefore the alignment algorithms usually applied some
numerical or analytic transformation to the data which provided some compu-
tational procedure to reach the desired result. The sequence alignment in these
algorithms can be applied locally or globally. The Smith-Waterman algorithm,
the Burrows-Wheeler Transformation and circular convolution algorithms all
perform local alignments. The global approach shown by Figure 1 is used for
comparing sequences of similar length and is not discussed in this article.

Figure 1: Global and local alignment

Another important concept must be introduced before moving on to the
discussion of various algorithms. The DNA molecule consists of two strands:
5’→3’(forward) and 3’→5’(reverse). On the reverse strand every letter is de-
termined by the forward strand letter in the corresponding position and vice
versa (A is opposite of T and C is opposite of G). It is possible to ensure that
the sequencing instruments always reads in the 5’→3’ direction but it can hap-

154 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

pen on both the forward strand and the reverse strand. The direction of the
reference sequence is regarded as the forward strand direction. Since a short
read could have originated from the reverse strand a special transformation
must be performed in order to create a version that is suitable for alignment on
the forward strand. This transformed version is essentially the reverse of the
original sequence after replacing each letter with its opposite. Thus for every
short read we must run our alignment algorithm for the original version plus
this new version called the reverse complement. This is illustrated in Figure
2.

Figure 2: Forward and reverse strands of DNA

2.1 Smith-Waterman scoring system

The Smith-Waterman algorithm[10] performs local sequence alignment;
that is, for determining similar regions between two strings or nucleotide
or protein sequences. Instead of looking at the total sequence, the Smith-
Waterman algorithm compares segments of all possible lengths and optimizes
the similarity measure using the H scoring matrix. Backtracking starts at the
highest scoring matrix cell and proceeds until a cell with score zero is encoun-
tered, yielding the highest scoring local alignment.

The basic element of this universal method which is able to deal simultane-
ously with substitution, point errors and indels is the calculation of the H(i, j)
scoring matrix:
H(i, 0) = 0, 1 ≤ i ≤ m, H(0, j) = 0, 1 ≤ j ≤ n

H(i, j) = max

0

H(i− 1, j− 1) + s(ai, bj) Match/Mismatch
maxk≥1H(i− k, j) +Wk Deletion
max1≥1H(i, j− l) +Wl Insertion

where 1 ≤ i ≤ m, 1 ≤ j ≤ n

We use the next notation:
a, b = Strings over the alphabet , m = length(a), n = length(b),
s(a, b) is a similarity function on the alphabet Wi is the gap-scoring scheme.
We show one example:

Scalable FPGA based DNA sequencer 155

Sequence 1 = ACACACTA Sequence 2 = AGCACACA

s(a, b) =

{
+2, if a = b (match)
−1, if a 6= b (mismatch)

and Wi = −i.
The H matrix is the following

H =

− A C A C A C T A

− 0 0 0 0 0 0 0 0 0

A 0 2 1 2 1 2 1 0 2

G 0 1 1 1 1 1 1 0 1

C 0 0 3 2 3 2 3 2 1

A 0 2 2 5 4 5 4 3 4

C 0 1 4 4 7 6 7 6 5

A 0 2 3 6 6 9 8 7 8

C 0 1 4 5 8 8 11 10 9

A 0 2 3 6 7 10 10 10 12

The alignment is reconstructed as follows: one is starting with the highest

value stepping toward the next highest. A diagonal jump implies there is an
alignment (either a match or a mismatch=point error). A top-down jump
implies there is a deletion. A left-right jump implies there is an insertion.

For the example, the results are:
Sequence 1 = A-CACACTA
Sequence 2 = AGCACAC-A
The motivation for local alignment is the difficulty of obtaining correct

alignments in regions of low similarity between distantly related biological
sequences, because mutations have added too much ’noise’ over evolutionary
time to allow for a meaningful comparison of those regions. Local alignment
avoids such regions altogether and focuses on those with a positive score, i.e.
those with an evolutionary conserved signal of similarity.

The Smith-Waterman algorithm is fairly demanding of time: To align two
sequences of lengths m and n, O(mn) time is required. Smith-Waterman local
similarity scores can be calculated in O(m) (linear) space if only the optimal
alignment needs to be found, but naive algorithms to produce the alignment
require O(mn) space.

2.2 Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT)[4] is applied on blocks of input data
(symbols). It is usually the case that larger blocks result in greater compress-

156 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

ibility of the transformed data at the expense of time and system resources.
One of the effects of BWT is to produce blocks of data with more and longer

’runs’ (= strings of identical symbols) than those found in the original data.
The increasing the number of these ’runs’ and their lengths tends to improve
the compressibility of data.

The first step of BWT is to read the T string in a block of N symbols.
The second step is adding a $ character as ending symbol assigning the

lowest character value to it in the alphabetic order.

Figure 3: Burrows-Wheeler transformation steps, where red letterr are noted
by F, and green characters are correspond to green L

The next step is to think of the block as a cyclic buffer: N strings (rotations).
The rotation matrix may be constructed in such a way, containing the shifted
blocks line by line.

The fourth step of BWT is to lexicographically sort the matrix lines (Figure
3). The first column of the matrix is denoted by F, the last column L is defined
to be the Burrows-Wheeler transform of T:

L = BWT(T).

In short:

T = AGCAGTAA→ AGCAGTAA$→ L = AAT$CGAAG→ F = $AAAACGGT

It is a very remarkable mathematical fact that knowing only L one can restore
uniquely the original T string.

The first step of the reversing process is that one creates F from L by
lexicographical ordering.

The basic trick of the reverse transform is the Last-to-First-Mapping prop-

Scalable FPGA based DNA sequencer 157

erty of the L and F strings.
L→ F

A← $
A← A

T ← A

$← A

C← A

G← C

A← G

A← G

G← T

Each element of F is pointing to the symbol of L which is preceding it in T,
i.e. one has from the beginning the pair wise reconstruction of T in the
L(i)F(i) combinations. Thus one needs only to connect them in right order.

The symbols of the T string are produced in reverse order which means that
one should start from the ending character $.

Figure 4: BWT reverse, part b) with X in F for used characters

It is worth to mark the already selected pairs in F with an ’X’ as-shown in
Figure 4 (b).

158 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

The horizontal arrow in the first line from F to L provides the N-th, i.e. the
last symbol of T which is A.

In the next step one is jumping from the last L position (A in line #1) to the
nearest F position containing the same symbol, which ensures the piecewise
continuity. Thus in the above example one is ending in the second line of F.

The next horizontal arrow from F to L gives symbol A, which is really
identical with the (N− 1)-th character of T.

The procedure is repeated from the second line of L, selecting the nearest
A in F which is not in the same line. Thus we reach the A character in line
#3 of F.

And so on one can repeat the horizontal F → L and inclined L → F steps
until one gets the final AGCAGTAA (Figure 4).

Of course, the procedure can be formulated in a more exact way too, it is
based on two tables. The first is giving

Number of Preceding Symbols Matching Symbol in Current Position in L;
the second one is derived from F:
Number of Symbols Lexicographically Less Than Current Symbol
which are described in detail in ref [Burrows-Wheeler Transform Discussion

and Implementation, talk by Michael Dipperstein [13]]
How can one use BWT for alignment of short reads? One can prepare the

BWT of the known reference sequence containing of N characters. If the short
read with m characters is identical with some part of the reference sequence,
then one can assume that using the last character of the short read as starting
character in F one can execute a reverse transformation from this point. As a
simple test we can check in the above T as reference whether it contains the
CAG combination.

In general there is not a single solution. E.g. one finds 2 combinations for
CAG (Figure 5).

Try to find ACAG short read or TCAG. No way, because from the last
position where the C was found one cannot go further. Let us assume that due
to a point error the short read was recorded by a point error as ATCAGTAA,
which has no exact matching with the reference sequence. In this case one
can use some kind of heuristic method, the so called backtracking. In case
of unsuccessful search the program executes some backward steps and the
recorded character is changed to a new one. The selection of the position and
value of the new character is depends on the measured quality of the recorded
characters which is monitored during the measuring process. It is important to
remark, that if one can execute exhaustive research for point error cases, then
one doesnt need to apply such heuristic algorithms, which can be demonstrated

Scalable FPGA based DNA sequencer 159

Figure 5: BWT search for partial string ’CAG’, two possible solution

by the following algorithm.

2.3 Pseudo-binary circular convolution

The circular convolution is a frequently used reduced version of the general
convolution formula. One can define it in the following way:

y(n) = h(n)@u(n) =

N−1∑
i=0

h(i) · (u(n− i))N,

or:

y(n) = h(n)@u(n) =

N−1∑
i=0

h(i) · (u(n+ i))N,

where: (u(n))N ,N-point periodic extension of u(n). ’Cyclic’=’circular’.
Order: ’N-point’ or ’order N’, y(n); h(n); u(n) all have length N.
Here we want to specialize it further to accommodate the DNA alignment

case. It will be assumed that the u(n) function will correspond to the reference
genome sequence of length N, whereas the short reads will be represented by
h(i) having non-zero values only for 0 ≤ i ≤ m − 1, where m < N, h(i) is

160 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

equal to zero above this value till i = N. It is assumed that the characters of
u and h are written in binary form of 1s and 0s, thus the total length will be
increased from N to Nb = nbit ·N, where nbit is the number of bits required
to identify the character symbols.

This binary circular convolution can have a special physical meaning if one
applies and additional trick by converting the zero values to -1 in u and h

functions.
Example:
N = 5, m = 4 and nbit = 2
Symbols: a, b, c, d binary representation: 00, 01, 10, 11

pseudo binary: -1-1, -1 1, 1 -1, 11
Reference string: u bacad → binary: 0 1 0 0 1 0 0 1 1 1

bacad → pseudo-binary: -1 1 -1 -1 1 -1 -1 1 1 1
Short read string: h acad → binary: 0 0 1 0 0 1 1 1 0 0

acad → pseudo-binary: -1 -1 1 -1 -1 1 1 1 0 0
padding zeros at the end.

Binary convolution:

y(0) = h(0) · u(0) + h(1) · u(1) + h(2) · u(2) + · · ·+ h(9) · u(9)
= 0 · 0+ 0 · 1+ 1 · 0+ 0 · 0+ 0 · 1+ 1 · 0+ 1 · 0+ 1 · 1+ 0 · 1+ 0 · 1 = 1

y(1) = h(0) · u(1) + . . .

y(2) = h(0) · u(2) + h(1) · u(3) + h(2) · u(4) + · · ·+ h(9) · u(1)
= 0 · 0+ 0 · 0+ 1 · 1+ 0 · 0+ 0 · 0+ 0 · 0+ 1 · 1+ 1 · 1+ 0 · 1+ 0 · 1 = 3

y(3) = h(0) · u(3) + . . .
...

y(9) = h(0) · u(9) + . . .

Pseudo-binary convolution:

y(0) = h(0) · u(0) + h(1) · u(1) + h(2) · u(2) + · · ·+ h(9) · u(9)
= (−1) · (−1) + (−1) · 1+ 1 · (−1) + (−1) · (−1) + (−1) · 1+ 1 · (−1)+

1 · (−1) + 1 · 1+ 0 · 1+ 0 · 1 = −2

y(1) = h(0) · u(1) + . . .

y(2) = h(0) · u(2) + h(1) · u(3) + h(2) · u(4) + · · ·+ h(9) · u(1)
= (−1) · (−1) + (−1) · (−1) + 1 · 1+ (−1) · (−1) + (−1) · (−1)+

(−1) · (−1) + 1 · 1+ 1 · 1+ 0 · 1+ 0 · 1 = 8

y(3) = h(0) · u(3) + . . .
...

y(9) = h(0) · u(9) + . . .

Scalable FPGA based DNA sequencer 161

From this example it is obvious that the pseudo binary circular convolution
gives the exact number of bit matches between the reference sequence and the
short read and the y index provides the position for that number of matching.
Exact matching gives the value y(n) = Nb. It provides exhaustive search,
because if there are more than one exact matching position then for all the ni

values one gets Nb.
In general, an error decreases the sum by 2, thus the number of matches is

equal
M = (y(n) +m)/2.

The second remarkable feature of this formula is, that it works exactly in the
similar exhaustive way, if we allow a given number of mismatching bits.

The third interesting fact is that one can speed up the calculations, which
requires N ·N steps, by using Fast Fourier Transform of h and u. The calcu-
lation time of the convolution will be reduced to N · log(N) steps. In some
architecture this can be the optimal solution, but in the next we propose even
faster practical solutions.

3 Local Boolean alignment algorithms

From the definition it is obvious that the solution of the alignment problem
does not require intense numerical calculations, therefore in the next we con-
centrate on the bit-level or string character manipulating algorithms which
can be optimally executed in FPGA and ASIC systems.

3.1 Sliding window sequential algorithm

Let us assume that the reference genome has N base pair. One is looking for
the alignment of short reads with the length of m base pairs. For simplicity,
we assume that N = K ·m

The characters in reference genome and short read are compared individu-
ally within a sliding window (Figure 6). The number of sequential sliding steps
is equals to N−m+ 1.

.... A C GT A C GT

Reference sequence (shifting left
1 character at a time

Sliding window (static)

H
HHHj

�
���

Figure 6: Sliding window principle

162 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

If one takes into account that the sequencing instruments do not give an
exact copy of the measured specimen, in general there is no existing unique
solution for the alignment problem. Therefore one applies statistical multiple
measurement in the analysis as it is illustrated in Figure 7.

Figure 7: Statistical analysis

The base pair symbols can be converted to binary representation as it is
shown in some simple examples (Figure 8).

Scalable FPGA based DNA sequencer 163

Figure 8: Illustration for symbolic binary transition

Using a single processor it takes (N − m + 1) · m steps to check all the
combinations, which can be a very long time if N is large (Figure 9). It is not
worth to compare the last m − 1 positions because it is not possible to have
exact matching with the m-long short read.

3.2 Coarse grain K parallelism

If one applies K = N/m processors then one needs only m sliding steps which
reduces the execution time to m ·m steps (Figure 10) which can be a very
considerable speed up, because in general m << N.

The last processor will work only for the m = 0 case because the reference
genome runs out.

3.3 Fine grain N-parallelism

If one has enough money to buy N − m + 1 processors then the execution
will require only m steps which is very small relative to the sequential single
process (N−m+ 1) ·m case (Figure 11).

164 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

Figure 9: Single principle agent realization for serial matching search

Figure 10: Moderate number of principle agents realization for coarse grain
matching search

Scalable FPGA based DNA sequencer 165

Figure 11: Fine grain matching search

4 Nucleotic algorithms

The Von Neumann architecture, also known as the Von Neumann model and
Princeton architecture, is a computer architecture based on that described
in 1945 a mathematician an physicist John Von Neumann and others in the
First Draft of a Report on the EDVAC [9]. This describes a design architecture
for an electronic digital computer with parts consisting of a processing unit
containing an arithmetic logic unit and processor registers, a control unit con-
taining an instruction register and program counter, a memory to store both
data and instructions, external mass storage, and input and output mecha-
nisms. The meaning has evolved to be any stored-program computer in which
an instruction fetch and data operation cannot occur at the same time because
they share a common bus. This is referred to as the Von Neumann bottleneck
and often limits the performance of the system.

The proposed NON-Neumann architecture (NONN) is applying FPGA re-
configurable hardware realizing computation directly in the memory cells avoid-
ing the CPU-memory bottle-neck. This NONN approach can be applied only
for specific problems which are treating big-data massively parallel on SCAL-

166 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

ABLE way. The idea of massively parallel 1-bit CPU system is not new, e.g. a
special ASIC design existed already 25 years ago [11]. The interesting fact is
that large class of the presently unsolvable problems are falling in this category
in physics, chemistry, biology, life sciences, materials, climate, geosciences, etc.

Exascale computing in general is a very nice idea, but in practice it seems
to be a non realistic aim. Here we should like to reach this aim only in case of
a limited set of problems which are important enough to be worth to invest
into them. In the real physical world the matter is consisting from atoms, but
the dominant element is the atomic nucleus containing 99.95 % of the mass.
The solid structure of the objects is ensured by the crystal or amorphous ar-
rangements of the ionic nuclei. The single and double helix in biological system
is based on the nuclear acid base pairs. If one can follow the history of this
nucleotic agents one can control the system. In wider context in cosmology
stars and galaxies can play this nucleotic role. In general numerical solution of
theoretical partial differential equations is achieved by discretization of space
and time. The lattice nodes with definite calculation procedures can be re-
garded also as nucleotic objects. In a heuristic way one can define as nucleotic
system those arrangements which are consisting of elements with precisely
defined properties and are mainly in interaction only with other elements in
their neighbourhood. This definition gives rather wide set of possibilities, the
systems can have regular, amorphous, tree-like or general graph etc. structures.

According to the definition of nucleotic problems one can ensure ultrascal-
ability, if there is a possibility to identify the so-called principal agent [12].
The principle agent executes the universal activity at each nucleotic site driven
by the common Clock-signal. In more complex cases one can have several dif-
ferent types of different principal agents which are activated by special control
logic at appropriate times. The procedure executed by individual principal
agent can take T clock cycles corresponding to its type.

The principal agents can be regarded as vertices of a graph. The information
flow is indicated by directed edges.

4.1 Bit-serial principle agent

In all the above cases each processor executes character comparison which is a
two-by-two bit process, i.e. one evaluates a double-hit coincidence. Preliminary
step for coincidence matrix creation in DNA principal agent is shown in Figure
12. Thus the main algorithm will work on the N*m coincidence matrix, because
the two bit comparisons are restoring the symbol count length independently
the coding length of the characters to N and m.

Scalable FPGA based DNA sequencer 167

Figure 12: Preliminary step for coincidence matrix creation in DNA principal
agent

The above defined single processor serial matching search algorithm can be
realized in FPGA by 3 hardware elements: 2 shift-registers the first for the
reference genome with length N and the second for short reads of length m,
plus one principal agent.

The principal agent algorithm is extremely simple for each clock pulse the
bit from reference genome is compared to the corresponding bit of the short
read. The XOR logics provides output 1 in case of different inputs, thus the
counter will be incremented by 1 if there was a mismatch, i.e. a point-error
(Figure 13). The error counter is working in two-complement mode. Let us
define the allowable maximal number of errors as Maxerr. At the start of each
m-bits comparison cycle the error counter is set to -Maxerr, thus the positive
value in the error counter will indicate automatically if the number of errors
exceeded Maxerr.

The readout is organized through a so-called serializer to a FIFO trans-
mitting the number of errors not exceeding Maxerr and the actual number of
shifts in the reference genome to indicate the start of the matching section.

168 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

Figure 13: Bit-serial principal agent for DNA sequence alignment

One requires a serializer because due to the exhaustive search there can be
more than one solutions.

In case of K principal agents the 3 main FPGA processing elements are
the same. With this coarse grain design one observes a K = N/m fold speed-
up relative to the serial case (Figure 14). In this system each element of the
reference genome is wired to one principal agent.

Here the role of serializer is more emphasized because any pair of principal
agents can have simultaneous hits.

If one can afford N−m+ 1 number of principal agents then the processing
time will be independent from the length of the reference genome (Figure 15).
In this system each element of the reference genome is wired to m principal
agent.

It is important to remark that the 3 main FPGA elements are staying the
same in all the three cases. This scaling property is an essential element of the
nucleotic algorithms.

Scalable FPGA based DNA sequencer 169

Figure 14: Coarse grain principal agents for DNA sequence alignment

4.2 ULTRASCALABILITY with bit-parallel principal agents

One can speed up the execution time and increase the efficiency of calculations
by applying more complex processors. So far it was assumed that the proces-
sors were comparing one character of the reference sequence to one character
of the given short read. One can perform in an FPGA (or ASIC) processor
more than one comparison simultaneously.

In a special case N = 24, m = 8 and K = 3 the serial, coarse and fine grain
systems with bit-serial principal agents are shown schematically in Figure 16.

One can apply however in the same structures instead of the bit-serial
PAs so-called bit-parallel PAs too. In this case the exact matching can be
achieved in a single clock cycle (Figure 17).

The new bit-parallel PA will have similarly simple structure, just the single
XOR gate will be replaced by m pieces of XNOR gates and a m-fold AND
gate to produce the exact matching trigger signal T .

This algorithm reserves the exhaustive feature of the bit-serial PA, but it

170 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

Figure 15: Fine grain principal agents for DNA sequence alignment

fails for point-errors, therefore the speed-up was traded for performance. One
can regain part of the losses with relatively small new investments.

Let us divide the short read e.g. into mreduce = 2 pieces and apply proces-
sors which compare m/mreduce characters simultaneously. This cutting into
half of the AND gate will produce m times gain is execution time and will
provide extremely important information for matchings with point errors. This
algorithm was proposed in [14] (Figure 18).

This simplified initial-model for DNA sequence alignment can illustrate how
can one build an ULTRASCALABLE computer system, where the pro-
cessing time is independent from the size of the problem if one pro-
vides the hardware which is proportional to the actual size.

In our specialized basic-model the alignment procedure can produce 3 dif-
ferent type of results:

a) Exact matching T=T1.AND.T2: provides the list of pointers pointing to
the position of the base pair in the reference genome from where the actual
short read is coinciding exactly with this part of reference genome.

Scalable FPGA based DNA sequencer 171

Figure 16: Summary of bit-serial principle agents

b) Half matching H=T1.XOR:T2 represents the list of exclusive OR cases,
where first or second half of the short read has complete match at least of
length m/2. If m >> 2 then this selection can be already very effective,
therefore it is worth to sort out these cases for second part of the aligner
algorithm. (If one can afford a bit more hardware for T1,T2,T3 and T4 logics
then one can ensure 75% matching, allowing mismatch only in one segment
shown in Figure 18 c.

c) No matching. This is the most frequent outcome. For illustration pur-
poses intentionally we selected a combination with absolute minimal number
of AND/OR gates, which simplifies the processing logics. One can easily create
systems looking for more than one substitution point-errors.

One can realize the m times speed-up in both K and N parallelism.
In the K parallelism case in one clock cycle one can test the short read

alignment only in those positions where the value of pointer index is a multiple

172 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

Figure 17: Summary of bit-parallel principal agents

of m, assuming that the starting index value is equal to 0. For the other values
from 0 to (m− 1) one should make m− 1 shifts in the reference genome and
check for alignment one-by-one.

Of course, in the N parallel case one assign to each N − m + 1 line this
complex processor. Then one can get all the exact matches in single step. As
additional bonus one will get a relatively short list for positions which contain
all the cases where exactly one error occurred. Unfortunately there can be more
than one mismatch in the indicated segment, therefore to fix this additional
information a second round of tests is required. It stays however on the O(1)
level, because with reasonable design one can limit the expected number of
multiple solutions below 10.

Scalable FPGA based DNA sequencer 173

Figure 18: a) Principal agent for DNA sequence alignment with m-fold coinci-
dence for T; b) m/2-fold coincidence + 2-fold AND for T=T1*T2; c) m/4-fold
coincidence + 4-fold AND for T=T1*T2*T3*T4

5 Practical demonstration

We looked at existing FPGA-based solutions for parallel short read alignment
but we did not find any that attempts ultrascalability of a system although
numerous papers concluded that FPGAs provide an excellent platform on
which to run sequence alignment, and that clusters of reconfigurable computers
will be able to cope far more easily with the vast quantities of data produced
by new ultra-highthroughput sequencers[5][6].

Some solutions use higher level languages (e.g. handel-C)[3][2] which makes
them easier to implement but in most cases leads to a significant decrease in ef-
ficiency. Several papers target slow but more accurate dynamic programming
approaches (e.g. Smith-Waterman algorithm)[3][6]. One particular paper[5]

174 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

discusses the implementation of a similar algorithm (Eland algorithm) on
very similar hardware (DE2-SoC) but the implementation takes a more con-
ventional approach involving hash functions and lookup tables which render
ultrascalability unfeasible.

In this section we discuss the implementation of the algorithm introduced
earlier. The source for the FPGA and the GPU implementation can be found
in our public repository:

https://bitbucket.org/exascalemultiscience/de1-soc-exaligner

The proposed simple point-error search algorithm was realized in two dif-
ferent hardwares:

• a GPU system using CUDA with an Intel Core i7 CPU 920 2.67GHz
processor and an NVIDIA GeForce GTX 980.

• an FPGA SoC(System on a chip) with a Dual-core ARM Cortex-A9
(HPS) processor and a Cyclone V SoC 5CSEMA5F31C6 Device with
85K Programmable Logic Elements

The performance as well as the result of the CUDA GPU system and the
FPGA system was compared to Bowtie, a public short read aligner.

Here is a concise version of the algorithm:

open reference_file

while not reached end of reference_file

reset hardware

read reference_segment from reference_file

write reference_segment to hardware

open reads_file

while not reached end of short_read_file

read short_read from short_read_file

write short_read to hardware

wait until hardware is finished

read and store results from hardware

end while

close short_reads_file

end while

close reference_file

open sam_output_file

Scalable FPGA based DNA sequencer 175

for all short_read

write alignment_data of short_read into sam_ouput_file

end for

close sam_ouput_file

5.1 FPGA implementation on DE1-SoC Board

The DE1-SoC Development Kit presents a robust hardware design platform
built around the Altera System-on-Chip (SoC) FPGA, which combines the lat-
est dual-core Cortex-A9 embedded cores with industry-leading programmable
logic for ultimate design flexibility. Alteras SoC integrates an ARM-based
hard processor system (HPS) consisting of processor, peripherals and memory
interfaces tied seamlessly with the FPGA fabric using a high-bandwidth inter-
connect backbone. The DE1-SoC development board includes hardware such
as high-speed DDR3 memory, video and audio capabilities, Ethernet network-
ing, and much more.The DE1-SOC Development Kit contains all components
needed to use the board in conjunction with a computer that runs the Mi-
crosoft Windows XP or later (64-bit OS and Quartus II 64-bit are required
to compile projects for DE1-SoC) [18].

The schematic diagram of the implementation can be seen in Figure 15. In
this figure the principal agents are handled as separate functional elements but
in reality it is much more efficient to implement them as part of a larger func-
tional element which carries out the computations on a large array of registers
in parallel. A single instance of the prinicpal agent is illustrated in Figure 19
in detail. Each principal agent has two bits for the reference nucleotide and
two bits for the short read nucleotide as input. If the output bit is 1, it means
there was a match. These output bits are produced in parellel and they must
be processed sequentially because the FIFO has only one input. Normally this
would cause a major bottleneck, however in this problem we can discard the
results with a 0 value because we don’t need to process mismatches at all.
This is performed by the serializers. The serializers in Figure 15 fig15(!!!!!!!!!)
can also be aggregated into a larger functional element. There is some com-
munication between the serializers in order to determine which result will be
propagated to the FIFO. The number of clock cycles required for processing
every principal agent output is the same as the number of matches. Most of
the time there will be zero or one match in the entire reference. The case of
more than one match is possible but fairly rare.

In this section ranges are always inclusive unless otherwise specified. For
the implementation of the FPGA design we used Qsys and the Quartus II

176 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

Figure 19: The single element of the fine grain principal agents

software. The HPS communicates with the FPGA fabric through a 32 bit AXI
bus. The communication protocol is built according to the Avalon Memory-
Mapped (Avalon MM) Interface. The interconnect between the HPS and the
FPGA design is generated using the Qsys system integration tool.

Essentially, what the Qsys tool does is creating glue code, also known as
interconnect, mostly consisting of buses and arbiters between the individual
components of the system. For example every component has a clock input
which is connected to the output of the Clock component. Another exam-
ple would be the master/slave relationship between the HPS and the on-chip
memory component.

There is a golden hardware reference design(GHRD) provided by the man-
ufacturer of the DE1-SoC, Terasic. In the GHRD project there is an existing
Qsys setup that was specifically designed for this device. This project per-
fectly matches the capabilities of the device and it can be easily extended
with additional functionality.

During Avalon MM transfers the processor takes the role of the master and

Scalable FPGA based DNA sequencer 177

the FPGA accelerator logic behaves as the slave. This means that transfers are
always initiated by the C program and the FPGA design reacts to it within a
few clock cycles.

In the C code Avalon MM transfers are simple read and write operations at
a virtual memory address, which can be calculated by adding the appropriate
offset to the virtual base memory address corresponding to the FPGA accel-
erator logic. The offset values and the virtual base memory addresses have to
be synchronised between the Qsys setup and the C code.

From the perspective of the FPGA design the memory ranges from 0 to 3
(4x32 bits). Values in this range can be encoded using a 2-bit wide value. In
the C code the virtual memory offset values range from 0x0 to 0xb (4x4 bytes).

According to the communication protocol it is the responsibility of the ac-
celerator logic to keep track of whether the next input is part of a short read or
the reference. Calculations start as soon as the loading of all necessary inputs
has finished. The results are then pushed into a FIFO. The C code uses polling
on a designated memory address to determine whether the FIFO holds some
data, i.e. a result is available to read. Reading the actual results takes place
on another memory address specifically allocated for the task. The FPGA can
also be reset from the C code using an Avalon MM transfer to the appropriate
memory address.

5.2 GPU implementation

In the GPU implementation most of the C code is the same as in the FPGA
implementation. The main difference is in the communication between the
two components (CPU and GPU). Instead of explicit transfers through an
interface the CPU has indirect access to the allocated memory where the
GPU calculations take place. Before and after a kernel call the data has to
be copied between the CPU memory and the GPU memory. Though it is
considered good practice to over-issue work to the GPU to help to the device
memory latency.

From an algorithmic perspective we can observe a correspondence between
principal agents in the FPGA and CUDA kernel threads. We applied the same
pseudo code (Section 5.) in both cases, despite the fact that the GPU would
be able to scan the entire string in the memory at one time.

5.3 Comparison

Bowtie numeric vs Boolean: There is no difficulty in finding one match if there

178 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

is any. The parallel nature of Boolean approach guarantees the exhaustive
search whereas in Bowtie it would need special effort to look for multiple
solutions. Of course, the existence of multiple solutions requires additional
programming to serialize the candidates.

In case of the heuristic Bowtie and its more advanced versions the processing
of almost good matchings with few number of errors is a real challenge. One
of the possible solutions is the backtracking in BWT which means a trial and
error procedure to look for exact matching artificially modifying characters in
the measured short reads assuming recording errors in the given position.
GPU vs FPGA: Programming in GPU and FPGA requires completely dif-

ferent methodology. One should learn new languages CUDA (or OpenCL).
Nucleotic nature of the problem: extreme simple algorithms.
Hardware difference: For the FPGA minimal resources are required and

calculations are executed in the memory cells, whereas in the GPU system
complete threads are sacrificed, essentially a small CPU is used for each PA.

GPU threads have separate local memory and a very much reduced but
still rather complex mini-CPU for real and integer operations. Few number of
threads per square cm of silicon.

In FPGA memory cells and logical gates are together in logical elements
ideal for bit level programming, one could say that calculation is performed
inside the memory cells. The logical elements are relatively universal, but
simple enough not to waste silicon surface for unused resources. One can have
millions of logical elements per square cm on silicon.

The use of ASIC hardware can be even more economical. One can design
only with the minimally necessary memory cells and gates, thus no unused
elements are sitting in reserve. Its density can reach billions per square cm on
silicon.

The scalability problem occurs for both architectures because the same sig-
nal should be delivered to more and more elements. FPGA and ASIC have
a much larger density per chip resulting in shorter transmitting routes!! Fur-
thermore the network topology of such a system can be very flexible as it can
conform to the custom data-flow of any algorithm while GPUs have a fixed
infrastructure for transmitting data.

In case of nucleotic problems the network consists of mainly two components:
In first case there are connections only between neighbouring principal

agents. This structure is ideal for ultrascalability, because one can increase
the network by simple connections at the edges.

The other part of network is given by a few global transmissions propa-
gating information to a large number of elements.It is not a problem to send

Scalable FPGA based DNA sequencer 179

signals on a single line to 10 destinations, but the signal propagation becomes
questionable if one aims for millions of destinations with a single signal. In
principle, one can use a binary tree instead of a single line with appropriate
amplifying elements. Of course, the expansion of this binary distribution tree
is much more complex between chips and boards than inside a chip. The same
logics can be applied in GPU, FPGA and ASIC principal agents, but it is
obvious that it costs practically nothing in energy and cost at ASIC, but can
be prohibitive in case of GPU boards.

The I/O capabilities in FPGAs are larger by several orders of magnitude
(due to the pin counts) making it easier to incorporate it into a larger system.

Longer clock cycles are a serious disadvantage in FPGA and ASIC systems
but as the technology is advancing they are approaching speed of traditional
CPUs. The clock frequency also depends on the timing constraints of the RTL
design.

The number of FPGA processing units can not be increased further (as
it was explained in Section 5.3) due to a hardware limit, over up to these
values we can extrapolate, assuming the same scale behaviour. GPU have
been possible to go further, but we did not want to compare the theoretical
values with the measured run time. We might expect that longer chains and
multi-thread processor, the GPU efficiency will grow roughly up to 4-8 times
of the processing units, which reaches its peak efficiency and run time does
not improve in the future.

The table below illustrates the difference between the running time of the
FPGA and GPU implementations. The first column contains the number of
principal agents/threads used in each run and the second and third columns
contain the running times for the Lambda phage example detailed in a later
section. It only takes 1024 principal agents to run faster than the GPU due
to the ultrascalability property of the FPGA implementation. In the GPU
implementation the more threads the longer it takes to evaluate the result
of every thread because it must be performed serially by the CPU. It would
be interesting to compare the two solutions using an even higher degree of
parallelization but due to the limited capacity, a design with more than 1024
principal agents doesn’t fit in the Altera Cyclone V FPGA.

The runtimes of introduced method on FPGA and GPU are shown in Table
1. In comparison if we run the algorithm sequentially it takes 147940.670
seconds (approximately 41 hours).

180 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

FPGA[s] GPU[s]

64 2427.410 2282.875

128 1214.420 1159.218

256 608.870 588.058

512 304.890 298.164

1024 154.280 157.256

Table 1: Runtime in FPGA and GPU

5.4 Simple example

In this section we describe the different implementations of the exaligner al-
gorithm.

Running the CUDA application is extremely simple. One should execute the
following command:

• exaligner-gpu example reference.fa example reads.fq example.sam

The FPGA application is very similar:

• exaligner-fpga example reference.fa example reads.fq example.sam

With Bowtie it is a little different:

• Command line for index creation:

bowtie2-build reference/example reference.fa example reference

• Command line for sequence alignment:

bowtie2 -x example reference -U reads/example reads.fq -S example.sam

Relevant positions in the output sam file:

Position #1.: short read ID
Position #2.: bitset, possible values in our case: 0,4,16; if 0, then forward
maching; if 16, then reverse matching; if 4, then no alignment found
Position #4.: aligned reference genome position, indexing starts with 1.
Position #10.: short read sequence
————————————————————————————————
The first few lines of the example.sam output file:

Scalable FPGA based DNA sequencer 181

————————————————————————————————
@HD VN:1.0 SO:unsorted
@SQ SN:example reference1 LN:420
@PG ID:Exaligner VN:1.0 CL:’./exaligner-fpga example reference.fa
example reads.fq example.sam’
example read1 0 example reference1 5 42 16M * 0

0 TGATGGTCGTCCATTA .:7@3<6&10EG2<7<
example read2 16 example reference1 4 42 16M * 0

0 TTGATGGTCGTCCATT <7<2GE01&6<3@7:.
————————————————————————————————
Below is the first matching short read from the example short reads.fq file.
The last row describes the sequencing quality and can be ignored.
————————————————————————————————
@example read1
TGATGGTCGTCCATTA
+
.:7@3<6&10EG2<7<
————————————————————————————————
In this example the following simple reference file was used:
————————————————————————————————
> example reference1

GCCTGTATGGTCGTCCATTAAGTACGCTAAGTCACAGCGCGCTGC

GCCAGGGCGTGGCAATGGTGCAGCAAGATCCGGTGGTGCTGGCGG

ATACCTTCCTCGCCAACGTGACGCTGGCACGTGATATCTCTGAAG

AACGCGTCTGGCAGGCGCTGGAAATCGTGCAGCTGGCGGAGCTGG

CGCGTAGCATGAGTGATGGTATTTACACGCCGCTTGGCGAGCAGG

GGATAAATCTCTCAGTCGGGCAAAAGCAACTGCTGGCACTGGCGC

GCGTGCTGGTGGAGACGCCGCAAATCCTGATCCTTGATGAGGCAA

CCGCCAGCATTGACTCCGGGACTGAATAGGCGATTCAACATGCTC

TGGCGGCGGTGCGTGAACATACTACGCTTGTGGTGATTGCTCACC
GCTTATCAACTATTG

The .sam output of the FPGA and GPU applications are identical. One
should not expect identical results from Bowtie because its algorithm uses
heuristics and the output is random. However, as the next section describes
the output files compare favourably.

182 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

5.5 Lambda virus

In this article we introduced an algorithm using the advantage of the FPGA op-
tions to determine the DNA sequences. We present below the case of Lambda
virus, because the DNA molecule of 48502 base-pairs is linear.

In 1950, Esther Lederberg an American microbiologist, who performed an
experiments on E.coli mixtures. His research led to employment of Lambda
phage as a model organism in microbial genetics as well as in molecular genetics
[8].

In this article we study the short reads each comparison performed by the
reference sequence, are determined for exact matching, 1, 2, and 3 cases of
error.

We ignore the indel ie. the insertion, when an extra element appears and
the deletion case, when an item is missing in the test sequent.

We calculated the distribution of short reads over Lambda virus, where the
length of short reads is 50. The number of short reads depends on the refer-
ence position, which was calculated by exaligner algorithm (5.5 Section). This
method is able to accurately determine individual cases of error occurrences.

The generated sample file is created by wgsim program [15]. The exact
matching and 1 cases of error have been shown in Figure 20. The 2 and 3
cases of error have been presented in Figure 21. The generated and real [16]
sample string of Lambda phage was studied by Bowtie algorithm also, which
was shown in Figure 22.

Since the set of measurements considered as random sequence, therefore we
can characterize this series with the expected value, standard deviation and
the correlation coefficient in the Table 2.

There are significant difference of frequency value between the faul (Fig-
ure 20 (a)) and the exact matching (Figure 20 (b)) release. The correlation
coefficient changes significantly in this case.

Scalable FPGA based DNA sequencer 183

0 1 2 3 B-g B-r

0 1 0.6144 0.4194 0.3792 0.4660 0.0241

1 0.6144 1 0.8215 0.7708 0.8502 0.0391

2 0.4194 0.8215 1 0.9854 0.9718 0.0218

3 0.3792 0.7708 0.9854 1 0.9612 0.0159

B-g 0.4660 0.8502 0.9718 0.9612 1 0.0227

B-r 0.0241 0.0391 0.0218 0.0159 0.0227 1

Table 2: Correlation coefficient (B-g: Bowtie alg. on generated string, B-r:
Bowtie alg. on real string)

The FPGA method is reconfigurable and scalable, so this algorithm can be
developed further to find the indels and more complicated and longer DNA
sequence.

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

b.
 o

f s
ho

rt
 r

ea
ds

Reference position

(a)

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

b.
 o

f s
ho

rt
 r

ea
ds

Reference position

(b)

Figure 20: The diagram for DNA sequence alignment, which consist of 0 (a)
resp. 1 (b) error

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

b.
 o

f s
ho

rt
 r

ea
ds

Reference position

(a)

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

b.
 o

f s
ho

rt
 r

ea
ds

Reference position

(b)

Figure 21: The diagram for DNA sequence alignment, which consist of 2 (a)
resp. 3 (b) errors

184 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

b.
 o

f s
ho

rt
 r

ea
ds

Reference position

(a)

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

b.
 o

f s
ho

rt
 r

ea
ds

Reference position

(b)

Figure 22: The diagram for DNA sequence alignment using Bowtie alg., which
consist of the generated sample resp. (a) real string (b)

6 Summarize

In this article, we introduced a new nucleotid method that is suitable for
processing large amounts of data, which is close to the hardware algorithms
(FPGA). We are shown in case of DNA sequenceces of lambda virus to use the
exaligner procedure. This method is reconfigurable and rescaling, therefore it
can be developed on the more effective tools to study much larger database as
the human genom sequence.

7 Acknowledgements

The authors thank prof. I. Csabai for useful discussions and valuable remarks.

References

[1] L. B. Alexandrov, Serena Nik-Zainal, et al., Signatures of mutational processes
in human cancer, Nature 500 (7463) (2013) 415-421. ⇒152

[2] J. Arram, K. H. Tsoi, Wayne Luk, P. Jiang, Hardware Acceleration of Genetic
Sequence, Chapter: Reconfigurable Computing: Architectures, Tools and Appli-
cations, Lecture Notes in Comp. Sci., 7806 13–24. ⇒173

[3] K. Benkrid, Liu Ying, A. Benkrid, A highly parameterized and efficient FPGA-
based skeleton for pairwise biological sequence alignment, very large scale inte-
gration (VLSI) systems, IEEE Transactions 17, 4 (2009) 561–570. ⇒173

[4] M. Burrows, D. J. Wheeler, 124 (1994), A block sorting lossless data compression
algorithm, Technical Report, Digital System Research Center. ⇒152, 155

http://cnls.lanl.gov/External/people/Ludmil_Alexandrov.php
http://www.nature.com/
http://link.springer.com
http://dblp.uni-trier.de/pers/hd/b/Benkrid:Khaled
http://ieeexplore.ieee.org
https://en.wikipedia.org/wiki/Michael_Burrows
https://en.wikipedia.org/wiki/David_Wheeler_%28British_computer_scientist%29
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

Scalable FPGA based DNA sequencer 185

[5] Y. S. Dandass, S. C. Burgess, M. Lawrence, S. M. Bridges, Accelerating string set
matching in FPGA hardware for bioinformatics research, BMC Bioinformatics
9 (2008) 197. ⇒173

[6] R. K. Karanam, A. Ravindran, A. Mukherjee, C. Gibas, A. B. Wilkinson, Us-
ing fpga-based hybrid computers for bioinformatics applications, Xilinx Xcell
Journal 58 (2006) 80–83. ⇒173

[7] B. Langmead, C. Trapnell, M. Pop, Sl. Salzberg, Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome Genome Biol. 10:R25.,⇒152

[8] E. Lederberg, Lysogenicity in Eescherichia coli strain K-12, Microbial Genetics
Bulletin, 1 (1950) 5–8. ⇒182

[9] J. von Neumann, First Draft of a Report on the EDVAC pp. 149. University of
Pennsylvania, June 30. 1945. ⇒165

[10] T. F. Smith, M. S. Waterman, Identification of common molecular subsequences,
Journal of Molecular Biology 147 (1981) 195-197. ⇒154

[11] G. Vesztergombi, ’Iconic’ tracking algorithms for high energy physics using the
trax-I massively parallel processor, CHEP, Computer Physics Communications,
57 (1989) 290–296. ⇒166

[12] G. Vesztergombi, One billion processors program’s demo on FPGA emulator
board, IEEEXplore, ReConFigurable Computing and FPGAs (ReConFig), (8–
10 Dec. 2014) International Conference, Cancun. ⇒166

[13] ∗ ∗ ∗ Burrows-Wheeler Transform Discussion and Implementation Homepage:
http://michael.dipperstein.com/bwt/ ⇒158

[14] ∗ ∗ ∗ EXAMS project submitted to EU call: FET-Proactive – towards exascale
high performance computing H2020-FETHPC-2014. Publication date 2013-12-
11 Deadline Date 2014-11-25 17:00:00. Specific challenge: The challenge is to
achieve, by 2020, the full range of technological capabilities needed for delivering
a broad spectrum of extreme scale HPC systems. (Private communication) ⇒
170

[15] ∗ ∗ ∗ Generated sample: https://github.com/lh3/wgsim. ⇒182
[16] ∗ ∗ ∗ Real Lambda phage Homepage: ftp://ftp.ncbi.nlm.nih.gov/genomes/

all/GCF_000840245.1_ViralProj14204/GCF_000840245.1_ViralProj14204_

genomic.fna.gz ⇒182
[17] ∗ ∗ ∗ NVBIO: nvBowtie, 2015,

Homepage: http://nvlabs.github.io/nvbio/nvbowtie page.html. ⇒152
[18] ∗ ∗ ∗ Terasic – DE Main Boards, datum, Homepage: http://de1-soc.terasic.com.⇒175

Received: September 15, 2015 • Revised: December 22, 2015

http://link.springer.com
http://www.cs.jhu.edu/~langmea/
http://www.genomebiology.com/2009/10/3/R25
https://en.wikipedia.org/wiki/Esther_Lederberg
https://en.wikipedia.org/wiki/John_von_Neumann
http://www.di.ens.fr/~pouzet/cours/systeme/bib/edvac.pdf
http://www.journals.elsevier.com/journal-of-molecular-biology/
https://fizika.elte.hu/hu/index.php?page=munkatars&tid=1&id=18
http://www.journals.elsevier.com/computer-physics-communications/
https://fizika.elte.hu/hu/index.php?page=munkatars&tid=1&id=18
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7032483
http://michael.dipperstein.com/bwt/
https://github.com/lh3/wgsim
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000840245.1_ViralProj14204/ GCF_000840245.1_ViralProj14204_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000840245.1_ViralProj14204/ GCF_000840245.1_ViralProj14204_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000840245.1_ViralProj14204/ GCF_000840245.1_ViralProj14204_genomic.fna.gz
http://nvlabs.github.io/nvbio/nvbowtie_page.html
http://de1-soc.terasic.com

Acta Univ. Sapientiae, Informatica 7, 2 (2015) 186–199

DOI: 10.1515/ausi-2015-0018

Sapiness–sentiment analyser

Katalin Tünde JÁNOSI-RANCZ
Sapientia Hungarian University of Transylvania

Dept. Mathematics and Informatics, Târgu-Mureş
email: tsuto@ms.sapientia.ro

Zoltán KÁTAI
Sapientia Hungarian University of

Transylvania
Dept. Mathematics and Informatics,

Târgu-Mureş
email: katai zoltan@ms.sapientia.ro

Roland BOGOSI
Sapientia Hungarian University of

Transylvania
Dept. Mathematics and Informatics,

Târgu-Mureş
email: root@rolisoft.net

Abstract.
In our ever-evolving world, the importance of social networks is big-

ger now than ever. The purpose of this paper is to develop a sentiment
analyzer for the Hungarian language, which we can then use to analyze
any text and conduct further experiments. One such experiment is an
application which can interface with social networks, and run sentiment
analysis on the logged-in users friends’ posts and comments, while the
other experiment is the use of sentiment analysis in order to visualize the
evolution of relationships between characters in a text.

1 Introduction

Sentiment analysis [10] is a technique used to determine the amount of positive
and negative sentiment in a piece of text. Accurate opinion mining software

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 68R15
Key words and phrases: Social networks, sentiment analysis, semantic web, prediction,
classification

186

http://www.ms.sapientia.ro/en/departments/department-of-mathematics-informatics/dr-janosi-rancz-katalin-tunde
http://ms.sapientia.ro
http://ms.sapientia.ro
mailto:tsuto@ms.sapientia.ro
http://www.ms.sapientia.ro/en/departments/department-of-mathematics-informatics/dr-katai-zoltan
http://ms.sapientia.ro
http://ms.sapientia.ro
http://ms.sapientia.ro
http://ms.sapientia.ro
mailto:katai_zoltan@ms.sapientia.ro
https://rolisoft.net
http://ms.sapientia.ro
http://ms.sapientia.ro
http://ms.sapientia.ro
http://ms.sapientia.ro
mailto:root@rolisoft.net

Sapiness–sentiment analyser 187

is very desirable due to the many uses it can serve, however this is one of the
topics which does not easily carry over, as new parsers, dictionaries and neural
networks have to be developed, compiled and trained, all while accounting for
the features of the language.

Our sentiment analyzer targets the Hungarian language. Many challenges
have presented themselves during the development, one of the main challenges
was the handling of negation within a sentence. This is particularly hard, as
without understanding the meaning of the words, a language parser will have
a hard time deciding where to start and when to end a negation.

Suppose we are examining the following sentence:
“A kijelző minősége nem a legjobb és a kamerája is hagy ḱıvánnivalót maga
után, de ár/érték arányban verhetetlen a piacon!” (“The quality of the display
is not the best and its camera also leaves something to be desired, but in value
for the money it is unbeatable on the market!”)

When analyzed by a human, this sentence is mostly neutral, as the device
referred to in the sentence has both its ups and downs. However, an application
will have trouble deciding how does the negation apply in the sentence above.
Different implementation methods will yield different results. As described in
section 3.2, if we try to invert the polarity of a fixed number of subsequent
words, we will end up with a sentence which has a negative half, followed
by a positive half, yielding a neutral sentence overall. However, if we decide
to invert the polarity until the end of the sentence, we will get a negative
sentence as the overall score. Unfortunately this can go both ways, as there
are examples where the other implementation deems to be more accurate.

The Hungarian language (orthography) uses diacritics, and there are words
which can have different meanings when written with and without diacritics.
Throughout one of our experiments outlined in section 4.1, we have observed
that the majority of posts and comments do not use diacritics. In an even
worse situation, a sentence may contain mixed use of diacriticized and non-
diacriticized words that should have been written with diacritics. In a sentence
where diacritics are not used, and the word can have multiple meanings with-
out the possibility of us distinguishing between them, we have to average the
polarity of both meanings. However, in a mixed sentence, no averaging will be
done, and the essentially misspelled word’s meaning will be used, which may
erroneously impact the overall score of the sentence.

Ambiguous words end up in the same boat as words with diacritics that
were not diacriticized, however in this case it is not the user’s fault, it is the
fault of the language parser. Without knowing the proper meaning which the
author intended to use in case of ambiguous words, we will have to average the

188 Katalin Tünde Jánosi-Rancz, Zoltán Kátai, Roland Bogosi

polarity of the meanings, and use that. Unfortunately this is not an accurate
solution, but a better solution is not possible with our implementation at this
time.

Slang usage is another challenge, however this one can be solved by mapping
the slang words to their non-slang counterpart. While this solves the issue, this
also means an up-to-date database has to be kept with all the slangs, otherwise
meanings may be missed when assessing sentences from the Internet.

Different domains may use words as different technical terms, and may even
end up redefining the connotation of said words as a result. In order to correctly
assess the connotation of a sentence in a specific domain, the application needs
to be re-trained with regards to the connotation of the technical terms that it
may encounter.

Sentences containing sarcasm and irony cannot be accurately assessed with
simple language parsers. This results in a rather significant issue, as the use of
sarcasm generally means the connotation of the sentence is completely inac-
curate, as the meaning should have been negated, which is another challenge
in and of itself. The sentiment analyzer presented within this paper does not
address the use of sarcasm and irony.

2 Related work

In the field of Computer Science, Natural Language Processing is a wide sub-
ject, which has been broadly discussed. Most of the research done focuses on
the English language, however due to the difference between the languages, the
solutions proposed and implemented in those papers may not be easily applied
to languages they did not focus on, as such this subject is highly language-
dependent. The ascent of social media has attracted significant interest in
sentiment analysis [10] techniques such as opinion mining.

Experiments with sentiment analysis which also use SentiWordNet[1] as a
lexical resource, but focus on a language other than English have been con-
ducted. A paper which discusses opinion mining user-generated movie and
hotel reviews in the Portuguese language is [7], while a similar one exists for
evaluating French movie reviews in [6]. A paper comparing various methods
for sentiment analysis for the German language is in [12].

However, since opinion mining mainly targets user-generated content on
social media, the use of humor, sarcasm and irony is rampant[13]. A paper
targeting sentiment and irony analysis for the Italian language in [4] observes
how users of social media generally use humor and irony, and how this affects

Sapiness–sentiment analyser 189

methods used in sentiment analysis. In [14] a corpus of tweets is presented,
where every tweet is annotated with an associated emotion, and can be used
for further testing in this regard.

A publicly available corpus for the Hungarian language exists under the
name of OpinHuBank[11], however we saw it unfit for our purposes as we
are not doing entity-oriented analysis. The values assigned to sentences within
OpinHuBank are −1, 0 and 1, which does not fit into our use case, as we would
need to know the extent of positive and negative connotation. We ended up
building our own corpus, as described in section 3.2.

A number of papers have been published previously which discuss sentiment
analysis with a focus on the Hungarian language[16, 8]. In [3] the interaction
of users is being analyzed and used to enhance traditional language processing
techniques.

3 Methodology

3.1 Lexical approach

For the first version of the application, hereinafter referred to as v1.0, we took
a lexical approach, with a database where every word is associated with a
value representing its positive, negative and neutral connotations.

Since we were unable to find a fitting database openly available for the Hun-
garian language, but found enough for the English language, we decided to
adapt an existing English database to Hungarian as a start. SentiWordNet[1]
was ultimately found to be a fitting database whose structure suits our pur-
poses. Their database contains 117,659 words in English with thesaurus at-
tached and the words annotated with their polarity.

As we only had to do dictionary look-ups, we turned to Google Trans-
late’s API for translating the batch of words. Even though the translation was
successful, and in theory it should have worked fine, upon inspecting the end
result, we noticed multiple issues. The machine translation did not account for
the correct meaning of words with multiple meanings, and as such most syn-
onyms have been translated to the first Hungarian meaning, regardless what
the actual meaning would have been. In an extreme edge-case, 30 different
English words were translated to the same Hungarian word. To solve this, we
tried to find synonyms for these Hungarian words. The translator would also
ignore the part of speech of the translated word, for example the verb “(to)
duck” would be translated to the noun “kacsa”. In other cases, the assigned
polarity would get invalidated, as the translated word does not share the same

190 Katalin Tünde Jánosi-Rancz, Zoltán Kátai, Roland Bogosi

semantic orientation as the original, such as the relatively negative attribute
“cheesy” would get translated to the neutral word “sajtos” in Hungarian.

After the failed machine translation attempt, we decided to manually trans-
late the whole English database, carefully accounting for different meanings,
part of speech, synonyms, and so on. This was a long, tedious and time-
consuming operation, as even though we filtered the database to exclude words
without significant polarity attached, we still had to manually comb through
50,973 words. Second step in the process was the processing of the input text
we receive from the user, which we will query against the database. As we
needed a Hungarian word stemmer, we used a library called magyarlánc[18],
which was developed at the University of Szeged as a complete toolkit for
linguistic processing of Hungarian texts. The database of the library was not
complete at the time, and as such we had to extend it in order to support
many other words. One example would be the word “román” (adj. “Roma-
nian”) which was stemmed to “rom” (n. “ruin”) even though that is not the
correct stem.

The web application, whose backend was developed in PHP, would process
the input from the user, look up the polarities of the participating words,
and compute the final arithmetic mean from their sum, in order to determine
whether the specified text carried a predominantly positive, negative or neutral
connotation.

This version is rather primitive as far as what is possible in the field of
natural language processing. We compared it to several commercial products
in subsection 4.2.

3.2 Neural networks

For the second version of our application, henceforth referred to as v2.0, we
started from scratch as far as the algorithm is concerned, and ventured into
the field of neural networks.

We greatly improved the Hungarian translation of our database in the mean-
time between the two versions, and then we went on to experiment with train-
ing a supervised learning linear classifier. After a few trial and error runs, we
found the suitable configuration of the neural network to be consisting of 8
input values, 2 hidden layers and 1 output. The 8 input values are the positive
and negative sentimental values, separately, of the verbs, nouns, adjectives and
adverbs from the database. When given a sentence, we compute the sum of
the sentimental values of verbs, nouns, adjectives and adverbs in the sentence,
which is then fed to the input. The output of the neural network is a value

Sapiness–sentiment analyser 191

between [−1, 1] indicating the polarity of the specified sentence. For training,
we used an annotated dataset consisting of 500 sentences from the Sentiment
Treebank [15] which contains movie reviews.

While the initial results of the new application were promising, we set on
to fine-tune the neural network by feeding it further data. However, in order
to do this, first we had to compile another suitable training set.

In order to create a corpus in Hungarian for use as a training set for our sen-
timent analyzer application, we created a user-friendly web application whose
purpose was to let prospective visitors give their feedback with regards to
what level of positive, negative or neutral connotation they think each dis-
played sentence had. The sentences to be annotated consisted of user reviews
fetched from various web sites, including car and hotel reviews, as well as the
opinion of famous people about various topics. The sentences were stripped
of any names, including brands and personal names. The annotation is a 2-
way polarity with a numeric score for positive and negative sentimental value
each. A total of 70 students used the application. The list of sentences to be
annotated was generated in such a way, so as to always list the sentences with
the least amount of annotations first, out of the 500 total, in order to ensure
no sentences would be left without annotations. Students each annotated on
average 60 to 120 sentences, resulting in each sentence being annotated at
least 10 to 13 times.

The existing neural network was further trained with the 500 freshly anno-
tated sentences. The application featuring the improved version of the neural
network will be referred to as v2.1 in later benchmarks, so as to easily distin-
guish the progress and improvements between the two networks.

We also implemented negation in this version. While there is no agreed-upon
standard way to handle negation in a sentence, as described in papers [5, 9] the
typical way to handle it is by inverting the polarity of the words surrounding
the negation. As for the number of words to invert, aforementioned papers list
the following possibilities to consider:

• Negate the sentence until the end.

• Negate a fixed number of subsequent words.

• Invert the polarity of the first sentiment-carrying word.

• Invert the polarity of the next non-adverb word.

We have determined the best approach is to invert the polarity of a fixed
window of 3 words immediately following the negation, with the exclusion of

192 Katalin Tünde Jánosi-Rancz, Zoltán Kátai, Roland Bogosi

stop words, and thus this is the solution we have ended up implementing in
the application.

After much work on improving the efficiency of the sentiment analyzer, we
have heavily benchmarked the results, which are available in subsection 4.2.

4 Experiments

In order to use the sentiment analyzer, we have come up with a few experiments
which rely on real-world data and vary greatly in order to test all the edge-
cases and implementation difficulties outlined in section 1.

4.1 Social network analysis

The idea of this experiment is to provide a web interface, on which the users can
log in, and query a phrase they are interested in, after which the application
will use data from the user’s connected social networks, and determine the
sentiment of the user’s friends regarding the given query.

For the social network component, we have chosen to implement Facebook,
as after the user has authorized us to do so, we had the ability to fetch the
public posts and comments of the user’s friends. As a result, a user may log
in to our web interface, and they may search for a phrase, such as a movie
or brand name, and the application will determine whether the friends of the
user are mostly positive or negative with regards to it, if there are enough
posts available regarding the queried phrase.

A few of the issues we have faced included the language variety, as not all the
posts and comments of the examined users were in Hungarian. Secondly, the
posts which were in fact in Hungarian, varied greatly on the use of diacritics:
some were fully diacriticized, some were not at all, and some used diacritics
interchangeably. If a text did not contain any diacritics, it is assumed to have
been written without diacritics in the first place, and we implemented a special
handling for those. We did not try to restore diacritics into the words, instead
we generated a list from the database of the words which have the same let-
ters when written without diacritics, and took the average of their polarity.
In situations where diacritics were used interchangeably, the analyzer deter-
mined the sentence to have been written originally with diacritics due to the
occurrence of at least one diacritic. In such cases, words which had meanings
in both diacriticized and non-diacriticized forms were not properly accounted
for. Last but not least, a significant amount of posts contained misspellings or
unrecognized slang, which we had to try and solve by updating our synonyms

Sapiness–sentiment analyser 193

database. We ended up manually checking 17,759 words and assigning them
synonyms which were not yet in the database at that point.

We also implemented a complementary web browser extension for Google
Chrome, which allowed users to select any phrase from any web page and
perform sentiment analysis on it with our application, while also getting results
on the sentiment of the user’s friends regarding the queried phrase.

It should be noted that shortly after conducting the experiment, the API
version used by our application (v1.0) was deprecated by Facebook on April
30th of 2015, thus we would be forced to switch if we were to continue the ex-
periment. Newer versions of the Facebook API do not support the permissions
we require in order to fetch posts and comments.

4.2 Comparison results

In order to determine the precision of our sentiment analyzer and get a pro-
gression indicator of our improvements, we continually tested our application
against a few widely known existing implementations:

• Alchemy API [17] is a commercial product developed by IBM specializing
in providing natural language processing services to developers via an
API. The list of exposed services includes sentiment analysis.

• Sentiment Treebank [15] is a sentiment analysis application developed by
the Stanford University. Their approach is to train a recursive neural
network using a training set generated by users assigning a polarity to
movie reviews.

For testing, we used n = 100 sentences containing movie reviews from
imdb.com. After translating them to Hungarian we had two parallel sentence-
sequences to compare the three applications. We denote by ai, tbi, si, i = 1, n

(Alchemy, Sentiment Treebank, Sapiness) the resulted sentiment polarity se-
quences. The performance of our in-house application against the aforemen-
tioned services is outlined in table 1.

The mean of deviation sequence between the two tested applications (|ai −
tbi|, i = 1, n) is 32.29%, while the means of deviation sequences between our
application and tested ones (|ai − si|, |tbi − si|, i = 1, n) range from 27.31% to
33.66%, well within the range of comparable results.

We conducted an experiment in which we take a 100 random sentences and
their annotations from OpinHuBank’s[11] database, and consider them to be
the golden standard when testing against Sapiness. Out of the 100 sentences,

194 Katalin Tünde Jánosi-Rancz, Zoltán Kátai, Roland Bogosi

Comparison The means of deviation

Alchemy – Treebank 32.29

Alchemy – Sapiness v1.0 52.16
Alchemy – Sapiness v2.0 36.54
Alchemy – Sapiness v2.1 33.66

Treebank – Sapiness v1.0 40.51
Treebank – Sapiness v2.0 30.34
Treebank – Sapiness v2.1 27.31

Table 1: Comparison of Sentiment Analyzers

Sapiness computed a correct sentimental value for 72 sentences, resulting in
72% correctness.

4.3 Plot evolution analysis

The main goal of our project is to detect and examine the informal e-communication
network of the employees of Sapientia University (Faculty of Technical and Hu-
man Sciences), and to make organizational management suggestions based on
this analysis (including the sentiment analysis of the members’ e-messages).
Since the employees of our faculty are not significantly present on social net-
works and we have not yet received permission to their email communication
contents, we decided to test Sapiness by examining the relationship between
characters from the bible.

In this experiment we tried to aim for a more advanced use of the analyzer,
and made it our goal to analyze a character’s evolution within a story as the
plot progresses. We ran the analysis on a modern translation of the bible,
examining the relationship between the characters, their interactions and rel-
ative emotional trajectory. For the purposes of this paper, we are going to
present our findings when analyzing the relationship between David and God.

When preparing the text for processing, we removed all sentences which
were irrelevant. We define “irrelevant” in this case as a sentence which does
not have both the words “David” and “God” occurring in it. In such cases,
we cannot infer a sentimental connotation onto these characters. The selected
verses (containing the names of God and David and reflecting their relation-
ship) were arranged in chronological order to characterize the relationship of
the two characters over the time (horizontal axes). We assumed that the sen-

Sapiness–sentiment analyser 195

Figure 1: Relationship between David and God as determined by Sapiness

Figure 2: Comparison between Sapiness and Alchemy API

timent value sequence of these verses will model the analyzed relationship
appropriately. As we expected, negative sentiment value sub-sequences reflect
negative periods in the relationship between God and David. The analysis was
done on a verse-by-verse basis, meaning that we assigned a sentimental value
to each verse separately. If the verse contained multiple sentences, we calcu-
lated the sentimental value of each sentence, and then used the arithmetic
mean of these values as the final sentimental value of the verse.

After running the analysis, we plotted the initial results in figure 1.
In order to benchmark the precision of our sentiment analyzer, we tried to

re-run the analysis using a commercial application intended for this purpose,
namely Alchemy[17]. As the chosen web service did not support the Hungar-
ian language, we had to search for an English translation, which also used a
modern language.

196 Katalin Tünde Jánosi-Rancz, Zoltán Kátai, Roland Bogosi

F
ig

u
re

3
:

C
om

p
arison

b
etw

een
A

I
an

d
gold

stan
d

ard

Sapiness–sentiment analyser 197

The matches and discrepancies between our application and the commercial
one is visualized in figure 2:

As the two results in figure 2 are the results of two automated non-human
sentiment analyzers, we asked three independent person to provide their own
opinions on what positive, negative and neutral connotation each analyzed
sentence had.

The results of this manual analysis, overlapped with the previous two results,
are visible in figure 3:

We chose as gold standard (GS: gi, i = 1, n) the sentiment polarity sequence
that was given by the three independent person (gi = (e1i + e2i + e3i)/3, i =
1, n). The means of deviation sequences “GS vs. Sapiness” (|gi − si|, i = 1, n)
and “GS vs. Alchemy” (|gi − ai|, i = 1, n) were 23.82 and 36.77, respectively.
Applying a paired t-test we found that the Sapiness result was significantly
better than the Alchemy’s one (p = 0.005 < 0.05).

Analyzing the bible was our own idea, however after analysis we found
that similar experiments have already been conducted, but no paper has been
published on the subject.

5 Conclusions and future work

We took the idea of sentiment analysis, and implemented it using two different
methods, while testing it against existing commercial products and research
applications. We also conducted two experiments which mirrored practical ap-
plications and whose main building block was our sentiment analyzer. After
examining the results of our benchmarks in subsection 4.2, the results of the
experiment in subsection 4.3, we can conclude that we have significantly im-
proved our sentiment analyzer application with every iteration, and we are
currently at a point where our application produces results which are compa-
rable to commercial applications and research products.

Future work on the project may include a variety of objectives, but the main
goal is improving the accuracy of the analyzer. We may take multiple roads
to approach this goal, such as trying to compile better training sets, try to
tweak the configuration of the neural network, and even trying other types of
neural networks which can be used for our purposes, such as Support Vector
Machines and Näıve Bayes.

As for the experiment conducted in section 4.3, we may try to compile a
training set from a literature piece of an author, then try to use the newly
trained neural network on a different work of fiction from the same author,

198 Katalin Tünde Jánosi-Rancz, Zoltán Kátai, Roland Bogosi

and test how much improvement, if any of significance, can be had by training
the neural network to recognize connotations for a specific style of writing,
instead of generalizing it.

Further experimentation can be conducted in order to compare the accuracy
of different handling modes for negation, as listed in section 3.2.

We should also study the use of links between SentiWordNet[1] and wordnet
synsets in other languages, as presented in paper [2], in order to automatically
generate a corpus for any language, solving the issue presented in section 3.2
regarding words with multiple meanings.

We are planning to use the presented application (Sapiness – Sentiment
Analyser) for detecting, modeling and characterizing the informal network of
the Faculty of Technical and Human Sciences of Sapientia University (based on
the day-to-day electronic interactions of its members.) After the informal social
digraph has been established each arc will be characterized by the sentimental
content of the corresponding messages. We hope that the formal management
of our Faculty will take advantage of the expected results of this research.

References

[1] S. Baccianella, A. Esuli, F. Sebastiani, SentiWordNet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining, LREC 2010, Seventh In-
ternational Conference on Language Resources and Evaluation, Valetta, Malta,
May 17–23, 2010, pp. 2200–2204. ⇒188, 189, 198

[2] V. Basile, M. Nissim, Sentiment analysis on Italian tweets, Proc. 4th Work-
shop on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis, June 14, 2013, Atlanta, Georgia, USA, pp. 100–107. ⇒198

[3] G. Berend, R. Farkas, Opinion mining in Hungarian based on textual and graph-
ical clues, Proc. 8th WSEAS International Conference on Simulation, Modelling
and Optimization, September 23–25, 2008, Santander, Spain. ⇒189

[4] C. Bosco, V. Patti, A. Bolioli, Developing corpora for sentiment analysis: The
case of Irony and SentiTUT, Intelligent Systems, IEEE 28, 2 (2013) 55–63. ⇒
188

[5] M. Dadvar, C. Hauff, F. de Jong, Scope of negation detection in sentiment analy-
sis, DIR 2011: the eleventh Dutch-Belgian information retrieval workshop, 2011,
pp. 16–19. ⇒191

[6] H. Ghorbel, D. Jacot, Sentiment analysis of french movie reviews, Advances in
Distributed Agent-Based Retrieval Tools, Vol. 361, 2011, pp 97–108. ⇒188

[7] L. A. Freitas, R. Vieira, Ontology based feature level opinion mining for por-
tuguese reviews, Proc. WWW ’13 Companion Proceedings of the 22nd Interna-
tional Conference on World Wide Web, Rio de Janeiro, May 13–17, 2013, pp.
367–370. ⇒188

https://scholar.google.com/citations?user=2f9Zj68AAAAJ
https://scholar.google.com/citations?user=WZBcZV4AAAAJ&hl=en
http://sentiwordnet.isti.cnr.it/
http://www.lrec-conf.org/proceedings/lrec2010/
https://valeriobasile.github.io/
http://corpora.dslo.unibo.it/People/Nissim/index.html
https://www.aclweb.org/anthology/W/W13/W13-1600.pdf
https://www.aclweb.org/anthology/W/W13/W13-1600.pdf
http://www.inf.u-szeged.hu/~berendg/?pp=publ
http://www.inf.u-szeged.hu/~rfarkas/pubs.html
http://www.inf.u-szeged.hu/~rfarkas/dmiipOM.pdf
http://www.di.unito.it/~bosco/
http://www.di.unito.it/~patti/
https://www.researchgate.net/profile/Andrea_Bolioli
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?reload=true&punumber=9670
http://hmi.ewi.utwente.nl/Member/maral_dadvar
http://www.st.ewi.tudelft.nl/~hauff/
http://edgar.meij.pro/dir-2011-dutch-belgian-information-retrieval-workshop/
http://www.springer.com/us/book/9783642213830
http://www2013.org/companion/p367.pdf
http://www2013.org/companion/p367.pdf
http://dl.acm.org/citation.cfm?id=2487788
http://dl.acm.org/citation.cfm?id=2487788

Sapiness–sentiment analyser 199

[8] V. Hangya, R. Farkas, G. Berend, Entitásorientált véleménydetekció webes
h́ıranyagokból, In: Tanács, A., Varga V., Vincze V. (eds.) XI. Magyar
Számı́tógépes Nyelvészeti Konferencia (MSZNY 2015), Szeged, Jan. 14–15, 2015.
Univ. Szeged, pp. 227–234. ⇒189

[9] A. Hogenboom, P. van Iterson, B. Heerschop, F. Frasincar, U. Kaymak, Deter-
mining Nnegation scope and strength in sentiment analysis, 2011 IEEE Inter-
national Conference on Systems, Man and Cybernetics – SMC, October 9–12,
2011, Hilton Anchorage, Anchorage, AK, USA, pp. 2589–2594. ⇒191

[10] B. Liu, Sentiment analysis and opinion mining, Synthesis Lectures on Human
Language Technologies 5, 1 (2012) 1–167 ⇒186, 188

[11] M. Miháltz, OpinHuBank: szabadon hozzáférhető annotált korpusz magyar
nyelvű véleményelemzéshez. IX. Magyar Számı́tógépes Nyelvészeti Konferencia,
2013, pp. 343–345. ⇒189, 193

[12] S. Momtazi, Fine-grained German sentiment analysis on social media, Proc.
LREC’12 Eighth International Conference on Language Resources and Evalua-
tion, Istanbul, Turkey, May 21–27, 2012, pp. 1215–1220. ⇒188

[13] A. Reyes, Paolo Rosso, D. Buscaldi, From humor recognition to irony detection:
The figurative language of social media. Data & Knowledge Eng. 74 (2013) 1–12.⇒188

[14] K. Roberts, M. A. Roach, J. Johnson, J. Guthrie, S. M. Harabagiu, Empatweet:
Annotating and detecting emotions on Twitter. Proc. LREC’12 Eighth Inter-
national Conference on Language Resources and Evaluation, Istanbul, Turkey,
May 21–27, 2012,pp. 3806–3813. ⇒189

[15] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, Ch. D. Manning, A. Y. Ng; Ch.
Potts, Recursive deep models for semantic compositionality over a sentiment
treebank Proc. EMNLP 2014: Conf. on Empirical Methods in Natural Language
Processing, October 25–29, 2014, Doha, Qatar, vol. 1631, p. 1642. ⇒191, 193

[16] M. K. Szabó, V. Vincze, Egy magyar nyelvű szentimentkorpusz l etrehozásának
tapasztalatai, XI. Magyar Számı́tógépes Nyelvészeti Konferencia (MSZNY
2015), Szeged, Jan. 14–15, 2015. Univ. Szeged, pp. 219–226 ⇒189

[17] J. Turian, Using AlchemyAPI for Enterprise-Grade Text Analysis. Technical
Report, AlchemyAPI, August 2013. ⇒193, 195

[18] J. Zsibrita, V. Vincze, R. Farkas, Magyarlanc: A Toolkit for Morphological and
Dependency Parsing of Hungarian, Proc. RANLP 2013, September 7–17, Hissar,
Bulgaria, pp. 763–771. ⇒190

Received: November 5, 2015 • Revised: December 30, 2015

http://www.inf.u-szeged.hu/~rfarkas/pubs.html
http://www.inf.u-szeged.hu/~berendg/?pp=publ
https://www.researchgate.net/profile/Bas_Heerschop
http://people.few.eur.nl/frasincar/
http://is.ieis.tue.nl/staff/ukaymak/
http://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=15399
http://www.nytud.hu/oszt/korpusz/Mihaltz_Marton.html
https://www.ukp.tu-darmstadt.de/people/postdoctoral-researchers/dr-saeedeh-momtazi
http://www.lrec-conf.org/proceedings/lrec2012/index.html
https://scholar.google.com/citations?user=jFxhxe4AAAAJ&hl=en
http://users.dsic.upv.es/~prosso/
https://sites.google.com/site/davidebuscaldi/
http://www.sciencedirect.com/science/article/pii/S0169023X12000237
http://www.journals.elsevier.com/data-and-knowledge-engineering/
http://www.hlt.utdallas.edu/~kirk/publications/
https://scholar.google.com/citations?user=fkyBx9EAAAAJ&hl=en
http://www.hlt.utdallas.edu/~kirk/publications/robertsLREC2012_2.pdf
http://www.lrec-conf.org/proceedings/lrec2012/index.html
http://www.socher.org/
https://tltl.stanford.edu/people/alex-perelygin
http://emnlp2014.org/
https://www.researchgate.net/profile/Martina_Szabo
http://www.inf.u-szeged.hu/~vinczev/index_en.html
https://scholar.google.com/citations?user=eQ1uJ6UAAAAJ
http://www.alchemyapi.com/
http://www.inf.u-szeged.hu/~rfarkas/pubs.html
http://aclweb.org/anthology//R/R13/R13-1099.pdf
http://aclweb.org/anthology//R/R13/R13-1099.pdf
http://lml.bas.bg/ranlp2013/start.php

Acta Univ. Sapientiae, Informatica 7, 2 (2015) 200–215

DOI: 10.1515/ausi-2015-0019

On the scores and degrees in

hypertournaments

Shariefuddin PIRZADA
University of Kashmir

Srinagar, India
email:

mailto:pirzadasd@kashmiruniversity.ac.in

Rameez RAJA
University of Kashmir

Srinagar, India
email: rameeznaqash@gmail.com

Antal IVÁNYI
Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

email: tony@inf.elte.hu

Abstract. A k-hypertournament H = (V,A), where V is the vertex set
and A is an arc set, is a complete k-hypergraph with each k-edge endowed
with an orientation, that is, a linear arrangement of the vertices contained
in the edge. In a k-hypertournament, the score si(losing score ri) of a
vertex is the number of edges containing vi in which vi is not the last
element(in which vi is the last element) and the total score of a vertex vi
is ti = si − ri. For v ∈ V we denote d+H =

∑
a∈H

ρ(v, a) (or simply d+(v))

the degree of a vertex where, ρ(v, a) is k − i if v ∈ a ∈ A and v is the
ith entry in a, otherwise zero. In this paper, we obtain necessary and
sufficient conditions for a k-hypertournament to be degree regular. We
use the inequalities of Holder and Chebyshev from mathematical analysis
to study the score and degree structure of the k-hypertournaments.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C30, 05C50
Key words and phrases: tournaments, hypertournaments, score, losing score, degree

200

http://maths.uok.edu.in/DrSPirzada.aspx
http://www.kashmiruniversity.net/
mailto:pirzadasd@kashmiruniversity.ac.in
https://www.researchgate.net/profile/Rameez_Raja5
http://www.kashmiruniversity.net/
mailto:rameeznaqash@gmail.com
http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:tony@inf.elte.hu

Scores and degrees in hypertournaments 201

1 Introduction

Hypertournaments which are the generalizations of tournaments, have been
studied by number of authors like R. Assous [1], Barbut and Bialostocki [2], P.
Frank [4] and Gutin and Yeo [5]. These authors raise the problem of extending
the most important results on tournaments to hypertournaments. G. Zhou et
al. [26] extended the concept of scores in tournaments to that of scores and
losing scores in hypertournaments, and derived various results [6, 14, 15, 16,
17, 18, 19, 21, 10, 11, 12, 13, 22, 23, 25].

Given two non-negative integers n and k with n ≥ k > 1, a k-hypertour-
nament H on n vertices is a pair (V,A), where V is the set of vertices with
| V |= n, and A is the set of k-tuples of vertices called arcs, such that for any
k-subset S of V, A contains exactly one of the k! k tuples whose entries belong
to S.

Zhou et al. [26] extended the concept of scores in tournaments to that of
scores and losing scores in hypertournaments, and derived a result analogous
to Landau’s theorem [9] on tournaments. The score s(vi) or si of a vertex vi
is the number of arcs containing vi in which vi is not the last element and the
losing score r(vi) or ri of a vertex vi is the number of arcs containing vi in which
vi is the last element. The score sequence (losing score sequence) is formed by
listing the scores(losing scores) in non-decreasing order. A k-hypertournament
is said to be regular if the scores of each vertex (equivalently the losing scores)
are same.

Let H be a k-hypertournament and let v ∈ V be any vertex and a =
(v1, v2, . . . , vn) ∈ A be an arc of H. We denote by d+H =

∑
a∈H

ρ(v, a) (or simply

d+(v)) the degree of a vertex v ∈ V where,

ρ(v, a) =

{
k− i, if v ∈ a and v is the ith entry of a,

0, if v /∈ a.

A hypertournament is said to be degree regular if all the vertices have the
same degree. The degree sequence of a k-hypertournament in non-decreasing
order is a sequence of non-negative integers [d1, d2, . . . , dn], where each di is
the degree of some vertex in V.

The following characterizations of losing score sequences of k-hypertourna-
ments can be found in [26], and a new short proof is given by Pirzada et al.
in [20].

202 S. Pirzada, R. Raja, A. Iványi

Theorem 1 Given two non-negative integers n and k with n ≥ k > 1, a
non-decreasing sequence R = [r1, r2, . . . , rn] of non-negative integers is a losing
score sequence of some k-hypertournament if and only if for each 1 ≤ j ≤ n,

j∑
i=1

ri ≥
(
j

k

)
, (1)

with equality when j = n.

Theorem 2 Given two integers n and k with n ≥ k > 1, a non-decreasing
sequence S = [s1, s2, . . . , sn] of non-negative integers is a score sequence of
some k-hypertournament if and only if for each 1 ≤ j ≤ n,

j∑
i=1

si ≥ j
(
n− 1

k− 1

)
+

(
n− j

k

)
−

(
n

k

)
, (2)

with equality when j = n.

Koh and Ree [7] defined the k-hypertournament matrix M =M(H) associ-
ated with a k-hypertournament H = (V,A) as the incidence matrix M = [mij]
of size n×

(
n
k

)
of H, where for 1 ≤ i ≤ n and 1 ≤ j ≤

(
n
k

)
, mij is given by

mij =

1, if vi ∈ ej and vi is not the last element of ej,

−1, if vi ∈ ej and vi is the last element of ej,

0, if vi /∈ ej.

Since si + ri =
(
n−1
k−1

)
for each i, then clearly a given sequence s1 ≥ s2 ≥ . . . ≥

sn ≥ 0 is a score sequence of a k-hypertournament.

Theorem 3 A non-increasing sequence of non-negative integers s1 ≥ s2 ≥
. . . ≥ sn ≥ 0 is a score sequence of a k-hypertournament H if and only if

l∑
i=1

si ≤ l
(
n− 1

k− 1

)
− l

(
l

k

)
,

for l = {1, 2, . . . , n} with equality when l = n.

Scores and degrees in hypertournaments 203

Theorem 4 Sequences 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ and r1 ≥ r2 ≥ . . . ≥ rn ≥ 0
are the score and losing score sequence of a k-hypertournament H if and only
if they satisfy si + ri =

(
n−1
k−1

)
for all i = {1, 2, . . . , n},

l∑
i=1

si ≥ l
(
n− 1

k− 1

)
+ l

(
n− l

k

)
−

(
n

k

)
,

and
l∑
i=1

ri ≤
(
n

k

)
−

(
n− l

k

)
,

for l = {1, 2, . . . , n} with equality when l = n.

The following result [7] gives the condition for a sequence to be the total
score sequence of a k-hypertournament matrix.

Theorem 5 A non-increasing sequence of integers T = [t1, t2, . . . , tn] is the
total score sequence of a k-hypertournament matrix M on n vertices if and
only if ti has the same parity as that of

(
n−1
k−1

)
, for all i = {1, 2, . . . , n} and

l∑
i=1

ti ≤ l
(
n− 1

k− 1

)
− 2

(
l

k

)
,

for l = {1, 2, . . . , n} with equality when l = n.

Khan, Pirzada and Kayibi [8] applied the inequalities from mathematical
analysis like Holder’s, Minkowski’s and Mahler’s inequalities to the powers
of scores and losing scores of k-hypertournaments and obtained the following

results. The result below [8] gives a lower bound on
j∑
i=i

r
g
i , where 1 < g < ∞

is a real number.

Theorem 6 [8]. Let n and k be two non-negative integers with n ≥ k > 1.
If [r1, r2, . . . , rn] is a losing score sequence of a k-hypertournament, then for
1 < g <∞

j∑
i=i

r
g
i ≥

j

kg

(
j− 1

k− 1

)g
,

where 1 ≤ j < n. In particular, for j = n

n∑
i=i

r
g
i ≥

n

kg

(
n− 1

k− 1

)g
, (3)

204 S. Pirzada, R. Raja, A. Iványi

with equality in (3) holds if and only if the hypertournament is regular.

The next result [8] gives an upper bound for the inner product of score and
losing score vectors in Rn. The bound given in Theorem 7 is best possible in
the sense that it is realized by regular hypertournaments. It should also be
noted that Theorem 7 does not depend on the order of si and ri, and holds
for any arbitrary ordering of scores and losing scores.

Theorem 7 Let n and k be two non-negative integers with n ≥ k > 1. If
S = [s1, s2, . . . , sn] and R = [r1, r2, . . . , rn] are respectively the score and losing
score sequence of a k-hypertournament, then

〈S, R〉 =
n∑
i=1

siri ≤
k− 1

k

(
n

k

)(
n− 1

k− 1

)
,

with equality holds if and only if the hypertournament is regular.

For k = 2 the degree sequence is identical to the score sequence given
in [9]. In [27] Zhou and Zhang conjectured that a nondecreasing sequence
D = [d1, d2, . . . , dn] of nonnegative integers is a degree sequence of some k-
hypertournament under some conditions, and proved for the case k = 3.

The conjecture raised by Zhou and Zhang in [27] was settled by Chao and
Zhou [24] and was obtained the following result.

Theorem 8 Given two positive integers n and k with n > k > 1, a nonde-
creasing sequence [d1, d2, . . . , dn] of nonnegative integers is a degree sequence
of some k-hypertournament if and only if

r∑
i=1

di ≥
(
r

2

)(
n− 2

k− 2

)
,

for all 1 ≤ r ≤ n with equality for r = n.

Let H be a an r-uniform hypergraph with r ≥ 2 and let α(H) be the vertex
independence number of H. In 2014 Chisthi, Zhou, Pirzada and Iványi [3] gave
bounds for α(H) for different uniform hypergraphs.

2 On stronger bounds in hypertournaments

The following result is an equivalent form of Theorem 7 for scores and losing
scores in a k-hypertournament. Here we give a different proof of this result.

Scores and degrees in hypertournaments 205

Theorem 9 Given two nonnegative integers n and k with n ≥ k > 1, if
S = [s1, s2, . . . , sn] of nonnegative integers in nonincreasing order is a score
sequence and R = [r1, r2, . . . , rn] in non-decreasing order is the losing score
sequence of some k-hypertournament, then

j∑
i=1

siri ≤
(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
, (4)

with equality holds if and only if the hypertournament is regular.

Proof. Let S = [s1, s2, . . . , sn] and R = [r1, r2, . . . , rn] be respectively the score
sequence and losing score sequence of a k-hypertournament H, with S being
non-increasing and R being nondecreasing. Then as a consequence of Cauchy-
Schwartz inequality, we have(

r1 + r2 + . . .+ rn
n

)(
s1 + s2, . . .+ sn

n

)
≥ r1s1 + r2s2 + . . .+ rnsn

n
,

or
1

n

n∑
i=1

siri ≤
1

n2

n∑
i=1

ri

n∑
i=1

si,

or
n∑
i=1

siri ≤
1

n

n∑
i=1

ri

n∑
i=1

si. (5)

Now,
n∑
i=1

(si + ri)ri =

n∑
i=1

siri +

n∑
i=1

r2i .

This gives,
n∑
i=1

(
n− 1

k− 1

)
ri =

n∑
i=1

siri +

n∑
i=1

r2i ,

(because si + ri =
(
n−1
k−1

)
, 1 ≤ i ≤ n).

So, (
n− 1

k− 1

) n∑
i=1

ri =

n∑
i=1

siri +

n∑
i=1

r2i ,

or (
n− 1

k− 1

)(
n

k

)
=

n∑
i=1

siri +

n∑
i=1

r2i , (6)

206 S. Pirzada, R. Raja, A. Iványi

(by the equality in Theorem 1).
Further, by the Chebyshev’s inequality, we have,

n∑
i=1

siri ≥
1

n

n∑
i=1

si

n∑
i=1

ri.

Using this in (6), we get(
n− 1

k− 1

)(
n

k

)
≥ 1

n

n∑
i=1

si

n∑
i=1

ri +

n∑
i=1

r2i . (7)

Since the arithmetic mean of n non-negative real numbers never exceeds their
root mean square, that is, √∑n

i=1 r
2
i

n
≥
∑n
i=1 ri

n
,

with equality if and only if r1 = r2 = . . . = rn,
or

n∑
i=1

r2i ≥
(
∑n
i=1 ri)

2

n
. (8)

Using (8) in (7) we get(
n− 1

k− 1

)(
n

k

)
≥ 1

n

n∑
i=1

si

n∑
i=1

ri +
(
∑n
i=1 ri)

2

n
.

Therefore, (
n− 1

k− 1

)(
n

k

)
≥ 1

n

n∑
i=1

si

n∑
i=1

ri +

(
n

k

)2
1

n
,

or

1

n

n∑
i=1

si

n∑
i=1

ri ≤
(
n− 1

k− 1

)(
n

k

)
−
1

n

(
n

k

)2
=

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
.

Using this in (5), we get

n∑
i=1

siri ≤
(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
. (9)

Scores and degrees in hypertournaments 207

Now we show that the equality in (9) holds if and only if the hypertourna-
ment is regular, that is, if and only if r1 = r2 = . . . = rn = r.

Let r1 = r2 = . . . = rn = r in (9).
Then equality holds if and only if

r

n∑
i=1

si =

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
.

That is, if and only if

1

n

(
n

k

) n∑
i=1

si =

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
,

(because by the equality in Theorem 1).
That is, if and only if

1

n

(
n

k

){
n

(
n− 1

k− 1

)
+ 0−

(
n

k

)}
=

(
n

k

){(
n− 1

k− 1

)
−

(
n

k

)
1

n

}
,

(because by the equality in Theorem 2).
Therefore,

1

n

{
n

(
n− 1

k− 1

)
−

(
n

k

)}
=

(
n− 1

k− 1

)
−
1

n

(
n

k

)
,

or (
n− 1

k− 1

)
−
1

n

(
n

k

)
=

(
n− 1

k− 1

)
−
1

n

(
n

k

)
,

which is true. Hence the equality in (9) holds, if and only if the hypertourna-
ment is regular. �

The next result gives stronger bound for the total scores in k-hypertourna-
ments.

Theorem 10 If S = [s1, s2, . . . , sn] is a score sequence in non-decreasing or-
der, R = [r1, r2, . . . , rn], is a losing score sequence in non-increasing order
and T = [t1, t2, . . . , tn] is the total score sequence in non-increasing order of a
k-hypertournament H, then for 1 < p <∞

l∑
i=1

t
p
i ≥ l

{(
n− 1

k− 1

)
+
2

l

(
n− l

k

)
−
2

l

(
n

k

)}p
,

with equality holds if and only if t1 = t2 = . . . = tn and l = n.

208 S. Pirzada, R. Raja, A. Iványi

Proof. Since the total score is ti = si − ri, then

l∑
i=1

ti =

l∑
i=1

si −

l∑
i=1

ri.

Therefore, by using Theorem 4 we obtain,

l∑
i=1

ti ≥ l
(
n− 1

k− 1

)
+

(
n− l

k

)
−

(
n

k

)
−

(
n

k

)
+

(
n− l

k

)
,

or
l∑
i=1

ti ≥ l
(
n− 1

k− 1

)
− 2

(
n

k

)
+ 2

(
n− l

k

)
. (10)

But by the Holder’s inequality with 1
p +

1
q = 1 we have,

l∑
i=1

ti ≤

(
l∑
i=1

t
p
i

) 1
p
(

l∑
i=1

t
q
i

) 1
q

.

Using in (10), we get

l
1
q

(
l∑
i=1

t
p
i

) 1
p

≥ l
(
n− 1

k− 1

)
+ 2

(
n− l

k

)
− 2

(
n

k

)
,

or (
l∑
i=1

t
p
i

) 1
p

≥ l−
1
q

(
l

(
n− 1

k− 1

)
+ 2

(
n− l

k

)
− 2

(
n

k

))
.

This implies(
l∑
i=1

t
p
i

) 1
p

≥ l−
1
q l

(
n− 1

k− 1

)
+
2

l
l
− 1

q l

(
n− l

k

)
−
2

l
l
− 1

q l

(
n

k

)
≥ l1−

1
q

(
n− 1

k− 1

)
+
2

l
l
1− 1

q

(
n− l

k

)
−
2

l
l
1− 1

q

(
n

k

)
= l1−

1
q

((
n− 1

k− 1

)
+
2

l

(
n− l

k

)
−
2

l

(
n

k

))
= l

1
p

((
n− 1

k− 1

)
+
2

l

(
n− l

k

)
−
2

l

(
n

k

))
,

Scores and degrees in hypertournaments 209

(because 1
p +

1
q = 1 or 1

p = 1− 1
q),

which gives,

l∑
i=1

t
p
i ≥ l

((
n− 1

k− 1

)
+
2

l

(
n− l

k

)
−
2

l

(
n

k

))p
. (11)

Now, we show that the equality in (11) holds, if and only if t1 = t2 = . . . =
tn = t and l = n. That is, the equality in (11) holds if and only if

ntp = n

((
n− 1

k− 1

)
+
2

n

(
n− n

k

)
−
2

n

(
n

k

))p
.

That is, if and only if

tp =

((
n− 1

k− 1

)
+
2

n
(0) −

2

n

(
n

k

))p
,

or

t =

(
n− 1

k− 1

)
−
2

n

(
n

k

)
,

or

t =
k

n

(
n

k

)
−
2

n

(
n

k

)
=
1

n

(
n

k

)
(k− 2), (12)

which is the total score of a vertex in a regular k-hypertournament, because
of the following fact.

By Theorem 5, we have for l = n, and t1 = t2 = ... = tn = t

n∑
i=1

t = n

(
n− 1

k− 1

)
− 2

(
n

k

)
.

This implies,

nt = n

(
n− 1

k− 1

)
− 2

(
n

k

)
,

or

t =

(
n− 1

k− 1

)
−
2

n

(
n

k

)
.

Further, we can write

t =
k

n

(
n− 1

k− 1

)
−
2

n

(
n

k

)
=
1

n

(
n

k

)
(k− 2), (13)

which shows that, (12) and (13) are same. �

210 S. Pirzada, R. Raja, A. Iványi

3 Degrees in hypertournaments

It is evident from Theorem 8 that inequalities on degrees play important role
in the study of hypertournaments. We shall use the classical inequalities to
provide more insight into the behavior of degrees in hypertournaments and
hence the structure of hypertournaments. We also discuss the case of equality
in detail for the inequalities derived and prove the equality holds if and only
if the hypertournament is degree regular. We also obtain the necessary and
sufficient conditions for the existence of a degree regular hypertournament.

Theorem 11 Let n and k be two positive integers with n > k > 1. If D =
[d1, d2, . . . , dn] is a degree sequence of some k-hypertournament, then for a
real number p with 1 < p <∞

r∑
i=1

d
p
i ≥

r

2p
(r− 1)p

(
n− 2

k− 2

)p
, (14)

where 1 ≤ r ≤ n. In particular, for r = n

n∑
i=1

d
p
i ≥

n

2p
(n− 1)p

(
n− 2

k− 2

)p
, (15)

with equality in (15) holds if and only if the hypertournament is degree regular.

Proof. By Theorem 8, we have

r∑
i=1

di ≥
(
r

2

)(
n− 2

k− 2

)
,

or (
r

2

)(
n− 2

k− 2

)
≤

r∑
i=1

di.

But,
r∑
i=1

di =

r∑
i=1

di.1 ≤ (

r∑
i=1

d
p
i)

1
p (

r∑
i=1

1q)
1
q ,

(because by Holder’s inequality with, 1p +
1
q = 1).

Hence, (
r

2

)(
n− 2

k− 2

)
≤

(
r∑
i=1

d
p
i)

) 1
p
(

r∑
i=1

1q

) 1
q

,

Scores and degrees in hypertournaments 211

(for, 1 ≤ r ≤ n and 1
p +

1
q = 1).

That is, (
r

2

)(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i)

1
p r

1
q ,

or

r
− 1

q

(
r

2

)(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i)

1
p ,

or

r
− 1

q r(r− 1)(r− 2)!

2(r− 2)!
(
n−2
k−2

) ≤ (

r∑
i=1

d
p
i)

1
p ,

or

r
1− 1

q
(r− 1)

2

(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i)

1
p .

This gives,

r
1
p
(r− 1)

2

(
n− 2

k− 2

)
≤ (

r∑
i=1

d
p
i)

1
p ,

(because 1
p +

1
q = 1 or 1

p = 1− 1
q).

Hence,
r∑
i=1

d
p
i ≥

r(r− 1)p

2p

(
n− 2

k− 2

)p
. (16)

For r = n, we have by the equality in Theorem 8

n∑
i=1

di =

(
n

2

)(
n− 2

k− 2

)
.

So, inequality (16) now becomes

n∑
i=1

d
p
i ≥

n

2p
(n− 1)p

(
n− 2

k− 2

)p
. (17)

Further, we show that the equality in (17) holds if and only if d1 = d2 =
... = dn = d, that is, if and only if the hypertournament is degree regular.

Suppose d1 = d2 = ... = dn = d in (17). Then equality holds if and only if

n∑
i=1

d
p
i =

n

2p
(n− 1)p

(
n− 2

k− 2

)p
.

212 S. Pirzada, R. Raja, A. Iványi

That is, if and only if

ndp =
n

2p
(n− 1)p

(
n− 2

k− 2

)p
,

or

dp =
(n− 1)p

2p

(
n− 2

k− 2

)p
.

That is, if and only if

d =
(n− 1)

2

(
n− 2

k− 2

)
, (18)

which clearly is the degree of a vertex in a regular k-hypertournament, verified
as follows. We know by the equality in Theorem 8

n∑
i=1

di =

(
n

2

)(
n− 2

k− 2

)
.

Since d1 = d2 = . . . = dn = d.

nd =

(
n

2

)(
n− 2

k− 2

)
,

which gives,

nd =
n(n− 1)!

2(n− 2)!

(
n− 2

k− 2

)
,

or

d =
(n− 1)

2

(
n− 2

k− 2

)
. (19)

Clearly (18) is same as (19). �

The following result gives the conditions for the existence of a degree regular
k-hypertournament on n vertices.

Theorem 12 Let n and k be two positive integers. For n > 2 and n > k > 1,
there exists a degree regular k-hypertournament on n vertices if and only if n
divides

(
k
2

)(
n
k

)
.

Proof. Suppose there exists a degree regular k-hypertournament with its de-
gree sequence [d1, d2, · · · , dn]. Then by the inequality (16), we have

n∑
i=1

d2 =
n

22
(n− 1)2

(
n− 2

k− 2

)2
,

Scores and degrees in hypertournaments 213

(case of equality with p = 2, where d1 = d2 = . . . = dn = d).
Thus,

nd2 =
n

22
(n− 1)2

(
n− 2

k− 2

)2
,

or

d2 =
(n− 1)2

22

(
n− 2

k− 2

)2
.

This gives,

d =
(n− 1)

2

(
n− 2

k− 2

)
,

(because degree cannot be negative).
Now,

2d = (n− 1)

(
n− 2

k− 2

)
,

or
2d

k(k− 1)
=

(n− 1)(n− 2)!

k(k− 1)(k− 2)!(n− k)!
,

or

2nd =
k(k− 1)n!

k!(n− k)!
,

or

nd =
k(k− 1)

2

(
n

2

)
.

Conversely, suppose that n divides
(
k
2

)(
n
k

)
.

Set for each 1 ≤ i ≤ n,

di =
1

n

(
k

2

)(
n

k

)
=
k(k− 1)

2n

(
n

k

)
.

Then,

di =
k(k− 1)

2n

n!

k!(n− k)!

=
k(k− 1)n(n− 1)(n− 2)!

2nk(k− 1)(k− 2)!(n− k)!

=
(n− 1)

2

(
n− 2

k− 2

)
.

214 S. Pirzada, R. Raja, A. Iványi

Therefore,
r∑
i=1

di =

r∑
i=1

{
n− 1

2

(
n− 2

k− 2

)}
,

which implies, for 1 ≤ r ≤ n

r∑
i=1

di =
r(n− 1)

2

(
n− 2

k− 2

)
≥ r(r− 1)

2

(
n− 2

k− 2

)
=
r(r− 1)(r− 2)!

2(r− 2)!

(
n− 2

k− 2

)
,

(because n ≥ r implies (n− 1) ≥ (r− 1)).
Hence,

r∑
i=1

di ≥
(
r

2

)(
n− 2

k− 2

)
,

with equality when r = n.
Thus by Theorem 8, D = [d1, d2, . . . , dn] is the degree sequence of a degree

regular k-hypertournament. �

References

[1] R. Assous, Enchainabilite et seuil de monomorphie des tournois n-aires, Discrete
Math. 62 (1986), 119–125. ⇒201

[2] E. Barbut, A. Bialostocki, A generalization of rotational tournaments, Discrete
Math. 76 (1989), 81–87. ⇒201

[3] T. A. Chisthi, G. Zhou, S. Pirzada, A. Iványi, On independence numbers of
uniform hypergraphs, Acta Univ. Sapientiae, Informatica 6, 1 (2014) 132–158.⇒204

[4] P. Frankl, What must be contained in every oriented k-uniform hypergraph,
Discrete Math. 62 (1986), 311–313. ⇒201

[5] G. Gutin, A. Yeo, Hamiltonian paths and cycles in hypertournaments, J. Graph
Theory 25 (1997), 277–286. ⇒201

[6] K. K. Kayibi, M. A. Khan, S. Pirzada, Uniform sampling of k-hypertournaments,
Linear and Multilinear Algebra 61, 1 (2013), 123–138. ⇒201

[7] Y. Koh, S. Ree, On k-hypertournament matrices, Lin. Alg. Appl. 373 (2002)
183–195. ⇒202, 203

http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://www.hindawi.com/54815064/
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://maths.uok.edu.in/Faculty5.aspx
https://compalg.inf.elte.hu/tanszek/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.sciencedirect.com/science/journal/0012365X
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118
http://esd.sutd.edu.sg/faculty/anders-yeo/
http://http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118
http://http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118
http://maths.uok.edu.in/Faculty5.aspx
http://www.journals.elsevier.com/linear-algebra-and-its-applications/

Scores and degrees in hypertournaments 215

[8] M. A. Khan, S. Pirzada, K. K. Kayibii, Scores, Inequalities and regular
hypertournaments, J. Math. Inequal. Appl. 15, 2 (2012) 343–351. ⇒203, 204

[9] H. G. Landau, On dominance relations and the structure of animal societies, III,
The condition for a score structure, Bull. Math. Biophys. 15 (1953) 143–148.⇒201, 204

[10] S. Pirzada, On scores in multipartite hypertournaments, Eurasian Math. Jour-
nal, 2, 1 (2011) 112–119. ⇒201

[11] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Black-
swan, 2012. ⇒201

[12] S. Pirzada, Score lists in bipartite multi hypertournaments, Math. Vesnik 64, 4
(2012) 286–296. ⇒201

[13] S. Pirzada, hypertournaments-Scores, losing scores, total scores and degrees, J.
Comp. Math. Comb. Comp. 84 (2013) 95–108. ⇒201

[14] S. Pirzada, T. A. Naikoo, Score sets in tournaments, Vietnam J. Math. 34, 2
(2006) 157–161. ⇒201

[15] S. Pirzada, U. Samee, Mark sequences in digraphs, Seminaire Lotharingien de
Combinatoire 55 (2006) B55c. ⇒201

[16] S. Pirzada, T. A. Naikoo, N. A. Shah, Score sequences in oriented graphs, J.
Appl. Math. Comp. 23, 1–2 (2007) 257–268. ⇒201

[17] S. Pirzada, G. Zhou, Score lists in (h,k)-bipartite hypertournaments, Appl. Math.
J. Chinese Universities, Series B 22, 4 (2007) 485–489. ⇒201

[18] S. Pirzada,, T. A. Naikoo, G. Zhou, Score lists in tripartite hypertournaments,
Graphs and Combinatorics 23, 4 (2007) 445–454. ⇒201

[19] S. Pirzada, T. A. Naikoo, Score sets in oriented graphs, Appl. Analysis and
Discrete Math. 2, 1 (2008) 107–113. ⇒201

[20] S. Pirzada, G. Zhou, On k-hypertournament losing scores, Acta Univ. Sapientiae,
Informatica 2, 1 (2010) 5–9. ⇒201

[21] S. Pirzada, G. Zhou, A. Iványi, Score lists in multipartite hypertournaments,
Acta Univ. Sapientiae, Informatica 2, 2 (2010) 184–193. ⇒201

[22] S. Pirzada, G. Zhou, Degree lists in k-bipartite hypertournaments, TWMS J.
Pure and Appl. Math. 5, 2 (2014), 89–116. ⇒201

[23] S. Pirzada, M. A. Khan, G. Zhou, K. K. Kayibi, On scores, losing scores and
total scores in hypertournaments, Electronic J. Graph Theory Appl. 3, 1 (2015)
8–21. ⇒201

[24] C. Wang, G. Zhou, Note on the degree sequences of k-hypertournaments, Dis-
crete Math. 308, 11 (2008) 2292–2296. ⇒204

[25] G. Zhou, S. Pirzada, Degree sequences in oriented k-hypergraphs, J. Appl. Math.,
Comp. 27, 1-2 (2008) 149–158. ⇒201

[26] G. Zhou, Y. Tianxing, Z. Kemin, On score sequences of k-hypertournament,
Europ. J. Comb. 21 (2000), 993–1000. ⇒201

[27] G. Zhou, K. Zhang, On the degree sequences of k-hypertournaments, Chinese
Annals of Math., Series A 22, 1 (2001) 115–120. ⇒204

Received: November 4, 2015 • Revised: December 22, 2015

http://contacts.ucalgary.ca/info/math/profiles/1-4118959
http://maths.uok.edu.in/Faculty5.aspx
http://www.iamresearcher.com/publication/pubs/koko.kalambay-kayibi/?grouptag=coauthor
http://link.springer.com/journal/11538/15/2/page/1
http://maths.uok.edu.in/Faculty5.aspx
http://emj.enu.kz/
http://emj.enu.kz/
http://maths.uok.edu.in/Faculty5.aspx
http://maths.uok.edu.in/Faculty5.aspx
http://www.emis.de/journals/MV/mv.html
http://maths.uok.edu.in/Faculty5.aspx
http://www.combinatorialmath.ca/jcmcc/
http://maths.uok.edu.in/Faculty5.aspx
http://maths.uok.edu.in/Faculty5.aspx
http://www.emis.de/journals/SLC/
http://maths.uok.edu.in/Faculty5.aspx
http://link.springer.com/journal/volumesAndIssues/12190
http://maths.uok.edu.in/Faculty5.aspx
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://link.springer.com/journal/volumesAndIssues/11766
http://maths.uok.edu.in/Faculty5.aspx
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://link.springer.com/journal/373
http://maths.uok.edu.in/Faculty5.aspx
http://pefmath.etf.rs/
http://maths.uok.edu.in/Faculty5.aspx
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://acta.sapientia.ro/acta-info/informatica-main.htm
http://maths.uok.edu.in/Faculty5.aspx
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://acta.sapientia.ro/acta-info/informatica-main.htm
http://maths.uok.edu.in/Faculty5.aspx
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://iam.bsu.edu.az/en/content/twms_journal_of_pure_and_applied_mathematics15102009091142
http://maths.uok.edu.in/Faculty5.aspx
http://contacts.ucalgary.ca/info/math/profiles/1-4118959
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.iamresearcher.com/publication/pubs/koko.kalambay-kayibi/?grouptag=coauthor
http://www.ejgta.org/index.php/ejgta
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://maths.uok.edu.in/Faculty5.aspx
http://www.springer.com/mathematics/computational+science+$%$26+engineering/journal/12190
http://www.springer.com/mathematics/computational+science+$%$26+engineering/journal/12190
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.sciencedirect.com/science/journal/01956698
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.oriprobe.com/journals/sxnk/2001_1.html

Acta Univ. Sapientiae, Informatica 7, 2 (2015) 216–238

DOI: 10.1515/ausi-2015-0020

Chaotic behavior of the lattice Yang-Mills

on CUDA

Richárd FORSTER
Eötvös University

Faculty of Informatics
email: forceuse@inf.elte.hu

Ágnes FÜLÖP
Eötvös University

Faculty of Informatics
email: fulop@caesar.elte.hu

Abstract.
The Yang-Mills fields plays important role in the strong interaction,

which describes the quark gluon plasma. The non-Abelian gauge the-
ory provides the theoretical background understanding of this topic.The
real time evolution of the classical fields is derived by the Hamiltonian
for SU(2) gauge field tensor. The microcanonical equations of motion is
solved on 3 dimensional lattice and chaotic dynamics was searched by
the monodromy matrix. The entropy-energy relation was presented by
Kolmogorov-Sinai entropy. We used block Hessenberg reduction to com-
pute the eigenvalues of the current matrix. While the purely CPU based
algorithm can handle effectively only a small amount of values, the GPUs
provide enough performance to give more computing power to solve the
problem.

1 Introduction

In particle physics there are more fundamental questions which demand the
GPU, both of theoretical and experimental point of view.

Computing Classification System 1998: I.1.4
Mathematics Subject Classification 2010: 81T25
Key words and phrases: lattice gauge field, chaos in Hamiltoinan systems, parallel com-
puting, GPU, CUDA

216

http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:forceuse@inf.elte.hu
https://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:fulop@caesar.elte.hu

Chaoticity of the lattice Yang-Mills on CUDA 217

In the CERN NA61 collaboration one of most important research field is
the quark-gluon examination. The aspects of theoretical physics includes the
next current topics in the lattice field theory using GPU: strongly interacting
Higgs sector, QCD hadron spectrum (eigenvalue distribution of he overlap
Dirac operator).

We present a parallel algorithm, which enables to study the chaotic be-
haviour as Lyapunov spectrum of SU(2) Yang-Mills fields and the entropy-
energy relation utilizing the Kolmogorov-Sinai entropy. We uses this method
for large number of element of matrices to apply the CUDA platform particu-
larly the eigenvalue of the monodromy matrix, which is an fx×f sparse matrix
(f = 24N).

The first step the non-Abelian gauge fields equation of motions is written by
the lattice Hamiltonian SU(2) [2]. This system was solved by lattice process
developed on the GPU [5]. The algorithm satisfies the constraint of the total
energy and the unitarity, orthogonality of the suitable link variable on the 3
dimensional space.

In the next step we use the block Hessenberg reduction [11] to compute the
required eigenvalues to determine the chaotic behaviour [8]. As it is described
in [10] we are working with a hybrid system, that utilizes both the CPU and
GPU for the most optimal performance. Thanks to this system it is possible
to reach 2-3 times higher performance compared to the simple CPU based
implementation of the same block Hessenberg reduction.

In the section 2 we introduce the basic concept of the non-Abelian gauge
field. We describe the lattice regularization of Yang-Mills fields and SU(2)
Hamiltonian to achieve the equations of motion in the section 3. We consider
the chaotic description of the dynamics in the section 4, which contains chaos
in the Hamiltonian systems and the lattice monodromy matrix method. The
Hessenberg method is introduced in the section 5 to determine the eigenval-
ues of the monodromy matrix. The parallel hyprid Hessenberg algorithm is
investigated in the section 6. The eigenvalue spectrum is determined by this
parallel method and the numerical result is summarized in this section.

2 Gauge fields

The non-Abelian gauge[13] field plays important role in the theoretical particle
physics. This theory based on principles of gauge invariance, which is derived
from the Abelian gauge field to consider the principle of invariance under local
gauge transformation.

218 R. Forster, Á. Fülöp

In the electrodynamics field of charge e undergoes the local gauge transfor-
mation but derivative of this field does not transform like as the field itself,
therefore we must introduce a field Aµ(x) (µ = 0, 1, 2, 3) with gauge trans-
formation property Aµ(x) → Aµ(x) + ∂µΛ(x), with arbitrary Λ(x) then we
use it to construct a gauge invariant derivative of the original field of e, which
transform just like this field. The gauge-invariant Lagrange can be constructed
by these quantities. A dynamics for the gauge field is introduced by means of
the Yang-Mills action:

SYM =
1

4

∫
d4xFaµνF

a
µν, (1)

where the Faµν form is a component of an antisymmetric gauge field tensor in
Minkowski space:

Faµν = ∂µA
a
ν − ∂νA

a
µ + gf

abcAbµA
c
ν, (2)

where µν = 0, 1, 2, 3 are space-time coordinates, the symmetry generators are
labeled by a, b, c = 1, 2, 3 and g is the bare gauge coupling constant and fabc

are the structure constants of the continuous Lie group. The generators of
this group fulfill the following relationship [Tb, T c] = ifbcdTd. The equation of
motion can be expressed by covariant derivative in the adjoint representation:

∂µFaµν + gf
abcAbµFcµν = 0. (3)

The Yang-Mills action contains cubic and quartic self-interaction terms. The
original article[14] was published by Yang and Mills in 1954.

3 Lattice Yang-Mills fields

We will describe the lattice regularization on the Euclidean continuum to the
hyper-cubic lattice [9].

The shortest non-zero distance on a hyper-cubic lattice is the lattice spacing
a.

These are group elements which are related to the Yang-Mills potential Aci :

Ux,i = exp(aAci (x)T
c), where T c is a group generator. (4)

For SU(2) symmetry group these links are given by the Pauli matrices τ,
where T c = −(ig/2)τc. The indices x, i denote the link of the lattice which
starts at the 3 dimensional position x and pointing into the nearest neighbour
in direction i, x+i. We consider the collection of all link variables as the lattice
gauge field.

Chaoticity of the lattice Yang-Mills on CUDA 219

3.1 Wilson action

We consider the construction of a gauge invariant action for the gauge field.
The non-Abelian gauge field strength can be expressed by the oriented pla-

quette i.e. product of four links on an elementary box with corners (x, x+ i,
x+ i+ j, x+ j):

Ux,ij = Ux,iUx+i,jUx+i+j,−iUx+j,−j, (5)

where Ux,−i = U
†
x−i,i and we will use this notation Up ≡ Ux,ij.

The Wilson action is defined for pure lattice gauge theory [4]

S[U] =
∑
p

Sp(Up) (6)

with the plaquette term:

Sp(U) = β(1−
1

N
ReTrU), (7)

for SU(2) and β is a constant. Here the sum over all plaquettes p is meant to
include every plaquette only with one orientation.

The Wilson action is gauge invariant since TrU ′p = TrUp and it is real and
positive.

We consider the question, in which sense Wilson action for SU(2) is related
to the Yang-Mills action for gauge fields on the continuum. Because Aµ(x) a
Lie algebra values vector field. The expression (4) is extended by a, then the
Wilson action is the following:

S = −
β

4N

∑
x

a4TrFµν(x)F
µν(x) +O(a5). (8)

Thus the leading term for small ’a’ coincidences with the Yang-Mills action
if we set β = 2N

g2
, where g identifies the bare coupling constant of the lattice

theory.
The coupling on space-like and time-like plaquettes are no longer equal in

the action:

S =
2

g2

∑
pt

(N− tr(Upt)) −
2

g2

∑
ps

(N− tr(Ups)). (9)

The time like plaquette is denoted by Upt and space like Ups .

220 R. Forster, Á. Fülöp

Consider the path is a closed contour i. e. Wilson loop, it is invariant under
gauge changes and independent of the starting point. The product of such
group elements along the closed line is a gauge covariant quantity, the trace
over such products are invariant. Because the Upt can be series expansion by
at:

Upt = U(t)U
†(t+ at) = UU

† + atUU̇
† +

a2t
2
UÜ† + ... (10)

N− tr(Upt) = −
a2t
2
tr(UÜ†) up to O(a3t) correction, where UU† = 1.

Therefore the homogenous non-Abelian gauge action:

∆SH =
2

g2

a2t
2

∑
i

tr(U̇iU̇
†
i) −

∑
ij

(N− tr(Uij))

 . (11)

The Scaled Hamiltonian was derived in the next form:

atH =
2

g2

a2t
2

∑
i

tr(U̇iU̇
†
i) +

∑
ij

(N− tr(Uij))

 . (12)

The indices x, i denotes the link of the lattice starting at the 3 dimensional
position x and pointing into the i-th direction.

3.2 SU(2) Hamiltonian

We study the real time classical evolution of the next Hamiltonian for SU(2)
[3] [2]:

H =
∑
x,i

(
1

2
〈U̇x,i, U̇x,i〉+

(
1−

1

4
〈Ux,i, Vx,i〉

))
. (13)

The complement variable Vx,l(U) is constructed from triple product of links,
which is complete to considere every link x, i to an elementary plaquette:

Vx,l =
1

4

∑
((l,s):{(i,j),(k,j),(−i,j),(−k,j)})

Ux+l,sU
†
x+l+s,−lU

†
x+l,−l, where (14)

Chaoticity of the lattice Yang-Mills on CUDA 221

i, j, k note the unit vectors of three dimensional lattice. The canonical variable
assigns by Px,i = U̇x,i. We will denote the single link Ux,i with U. Quaternion
representation (for one link):

U = u0 + iτ
aua U =

(
u0 + iu3, iu1 + u2
iu1 − u2, u0 − iu3

)
, (15)

where, τa is the Pauli matrix. The lattice equation of motion is derived by
canonical variable from this Hamiltonian.

3.3 Lattice equations of motion

The Hamiltonian equation of motion is solved with dt discrete time steps.
This algorithm satisfies the Gauss law and the constraint of total energy[1].
We will denote single link Ux,i in time t with Ut.

Ut+1 −Ut−1 = 2∆t(Pt − εUt)
Pt+1 − Pt−1 = 2∆t(V(Ut) − µUt + εPt), where

(16)

ε =
〈Ut, Pt〉
〈Ut, Ut〉

, µ =
〈V(Ut), Ut〉+ 〈Pt, Pt〉

〈Ut, Ut〉
(17)

The ε, µ means the Lagrange multipliers and the symmetry SU(N) is fulfilled
by the next expressions: 〈Ut, Ut〉 = 1 (unitarity) and 〈Ut, Pt〉 = 0 (orthogo-
nality).

3.3.1 Implicit-Explicit-Endpoint algorithm

We apply these notions

P
′
= Pt+1 P = Pt.

The Implicit-Explicit-Endpoint recursion algorithm:

P
′

= P + (V − µU+ εP
′
) (18)

U
′

= U+ (P
′
− εU), (19)

where µ, ε are the Lagrange multipliers.
In the next section we study the nonlinearity of the Yang-Mills fields, which

is described by the chaotic theory[12]. Instead of the classical rescaling solution
we apply the monodromy matrix method, which can describe the gauge field
evolution, in this case the short and long time behaviour. The question of
ergodization is addressed via the Kolmogorov-Sinai entropy.

222 R. Forster, Á. Fülöp

4 Measurement of chaos

We consider the description of dynamical systems. One of these is the Poencare
map.

xi+1 = P(xi) i = 0, 1, 2 . . ., (20)

where we assign a hyper-surface n−1 dimension in the phase space n dimension
and the trayectories are cutting it. The successive points of intersection can
be given by this expression (20). Lyapunov exponent is defined by the next
form:

d

dt
xi = Fi(x1 . . . xn) i = 1 . . .N. (21)

Let us introduce the quantity δxi(t):

δxi(t) = xi − x̃i, (22)

where δxi(t) means the distance between the two paths. The evolution of this
notion is the following:

d

dt
(δxi) =

N∑
i=1

δxk(t)

(
∂Fi
∂xi

)
xi=x̃k(t)

. (23)

The value of the distance δxi(t) is calculated by this expression:

D(t) =

(
N∑
i=1

δ(xi(t))
2

) 1
2

. (24)

This quantity indicates the changing of the track distance δx̃i(t), where the
paths were near at the beginning (t = 0). The maximal Lyapunov exponent
follows:

L = lim
t→∞ lim

d(0)→0
1

t
ln
D(t)

D(0)
. (25)

If L > 0, then the motion becomes chaoticity. We mention the rescaling method
[7] briefly. Let us suppose there is a point q(0) in the phase space and the vec-
tors vi, i = 1 . . . νK in the tangent space Tq(0), we solve the equations of motion
in phase space. We obtain q(t) and vi ∈ Tq(t) under the parallel evolution
of the paths for a small perturbation of the initial condition in the tangent

Chaoticity of the lattice Yang-Mills on CUDA 223

space. The Gram-Schmidt ortogonalisation is applied to determinate the tan-
gent vector vi on the interval kτ. The scaling vectors si are obtained by this
procedure to calculate the Lyapunov exponents:

Li = lim
n→∞

n∑
k=1

ln ski
τ
, (26)

where n is the number of iterations. One condition is to determine the tangent
space at different points of phase space in this procedure. It is easy in the
Euclidean space, but more difficult on the lattice gauge theory, because we
need to perform the rescaling frequently.

The monodromy matrix method follows only one gauge field path for a long
time evolution. This matrix is a linear stability matrix along a trayectory,
which is solved by classical equation of motion and it provides the Lyapunov
spectrum in the time evolution of field configuration on lattice.

4.1 Chaos in Hamiltonian system

An important part of the dynamical process is to provide the Hamiltonian
function. This depends on the coordinate of space and momentumH(qi, pi), i =
1 . . . n. The canonical conjugates variables are following

ṗi = −
∂H

∂qi
q̇i =

∂H

∂pi
. (27)

Let us given qi+νi, pi+ζi nearby trajectories up to the linear approximation.
Then the modified Hamilton function:

H
′
= H+

(
ζj
∂H

∂pj
+ νj

∂H

∂qj

)
. (28)

The canonical variables are introduced:

ζ̇i = −
∂

∂qi

(
ζj
∂H

∂pj
+ νj

∂H

∂qj

)
, (29)

ν̇i =
∂

∂pi

(
ζj
H

pj
+ νj

∂H

∂qj

)
. (30)

The equations of motion can be written in the next form:(
ζ̇

ν̇

)
=

(
−∂2pqH −∂2qH

∂2pH ∂2pqH

)(
ζ

ν

)
. (31)

224 R. Forster, Á. Fülöp

If there exist at least one positive eigenvalue of this stability matrix, then the
(ξ, ν) distance grows exponentially and the system is chaoticity.

The Lyapunov spectrum Li is expressed in terms of the monodromy matrix’s
eigenvalues Λi [6]:

Li = lim
T→∞

∫T
0 Λi(t)dt

T
, i = 1, . . . , f, (32)

where Λi(t) are the solutions of the characteristic equation:

det[Λi(t)1−M(t)] = 0.

(33)

at a given time t. Here M is the linear stability matrix, and f is the number
of degrees of freedom. The discrete definition of the Lyapunov spectrum:

L ′i = 〈Λi〉 =
1

n

n∑
j=1

lnΛi(tj−1), i = 1, . . . , f, (34)

where tj’s are subsequent times along an evolutionary path of the gauge field
configurations. In the conservative dynamics the Liouville’s theorem is fulfilled:

f∑
i=0

Li = 0. (35)

In the Hamiltonian system due to the conservation of the energy Li = −Lf−i+1
is satisfied for every i. The Kolmogorov-Sinai entropy is expressed by Pesins
formula:

hKS =
∑
i

LiΘ(Li), (36)

where Θ(x) being 1 for positive arguments and 0 otherwise. The dimension of
hKS is a rate (1/time) estimating the entropy:

S =
hKS

Re(L0)N3
. (37)

4.2 Lattice monodromy matrix

We explain the elements of the matrix in this section. The monodromy matrix
is the following:

M(t) =

(
∂U̇
∂U

∂U̇
∂P

∂Ṗ
∂U

∂Ṗ
∂P

)
. (38)

Chaoticity of the lattice Yang-Mills on CUDA 225

The matrix’s elements of the lattice Hamiltonian for SU(2) are expounded:

∂U̇a

∂Ub
= 0, (39)

∂U̇a

∂Pb
= δab, (40)

∂Ṗa

∂Ub
= ∂Va

∂Ub
− (

∑N
c=1Uc

∂Vc

∂Ub
)Ua − VbUa −

∑N
c=1(UcV

c + PcP
c)δab, (41)

∂Ṗa

∂Pb
= −2PbUa, where (42)

∂V
αq
k

∂Uβq
=

∑N
l=1

∂V
αq
k (U1,...,UN)

∂U
βq
l

, ahol N = 12, αq, βq = 0, 1, 2, 3. (43)

The over-dots assign the derivative with respect to the scaled time t/a. They
are providing information about the stability of trajectories in the neighbour-
hood of any point of an orbit in the (U, P) phase space. A small perturbation
(δU, δP), evolves in time governed by the monodromy matrix M. It is written
by this form:

M(t) =

(
0 1
∂Ṗ
∂U

∂Ṗ
∂P

)
. (44)

The eigenvalues of this matrix can be classified as follows: for real and positive
eigenvalues, neighbouring trajectories part exponentially and the motion is
unstable. In the limit of large time we obtain the Lyapunov components from
these eigenvalues to use the expression (34).

5 The eigenvalues of the monodromy matrix

The stability matrix is very rare and the number of element of matrix is very
large. We applied the Hessenberg method [11] for the determination of the
eigenvalues of the monodromy matrix, because the convergence of this method
is very fast.

226 R. Forster, Á. Fülöp

5.1 Balancing

The balancing procedure enables to take into account the sensitivity of the
eigenvalues to rounding errors. The errors is proportional to the Euclidean
norm of the matrix. The idea of balancing applies the similarity transforma-
tions to make corresponding rows and columns of the matrix have comparable
norms, while leaving the eigenvalues unchanged. Balancing is a procedure of
order N2 operations.

We used the algorithm of Osborn. This process contains a sequence of sim-
ilarity transformations by diagonal matrices D. The rounding errors was in-
vestigated during the balancing method, the elements of D are restricted to
the powers of the radix, which base applied for floating-point arithmetic (i.e.
2 for most machines). The output is a matrix that is balanced in the norm,
which is given by summing the absolute magnitudes of the matrix elements.

5.2 Reduction to Hessenberg form

First we reduced the matrix to a simplified form, it is called Hessenberg form,
and the we applied an iterative procedure on the simpler matrix. Such struc-
ture can be accomplished by a sequence of Householder transformations, or
other method, which is similar to Gaussian elimination with pivoting. Accord-
ingly, the actual elimination procedure used is little bit different from Gauss
elimination process.

Before the r-th stage, the original matrix A ≡ A1 has become Ar, which
was upper Hessenberg form in its first r− 1 rows and columns. The r-th stage
then contained the following operations:

• Search for the element of maximum magnitude in the r-th column below
the diagonal. If it is zero, drop the next two ”bullets” and the stage is
done. Otherwise, suppose the maximum element was in row r ′.

• The rows r ′ and r+1 are swapped (the pivoting procedure). To perform
the permutation a similarity transformation, also swapped columns r ′

and r+ 1.

• For i = r+ 2, r+ 3, . . .N compute the multiplier

ni,r+1 ≡
air
ar+1,r

.

Subtract ni,r+1 times row r + 1 from row i. To perform the elimination
of the similarity transformation, we also add ni,r+1 times column i to
column r+ 1.

Chaoticity of the lattice Yang-Mills on CUDA 227

A total of N− 2 such stages are carried out.
When the magnitudes of the matrix elements changed by many orders, we

rearranged the matrix so that the largest elements is situated in the top left-
hand corner. This decreased the roundoff error (the reduction proceeds from
left to right). The operation count is about 5N3/6 for large N.

5.3 The QR algorithm for real Hessenberg matrices

We took the following relations for the QR algorithm with shifts:

Qs · (As − ks1) = Rs (45)

where Q is orthogonal and R is upper triangular matrix, and

As+1 = Rs ·QTs + ks1 = Qs ·As ·QTs . (46)

The QR transformation keeps the upper Hessenberg form of the original matrix
A ≡ A1 and the workload is O(n2) per iteration on such matrix. As s→ ∞, As
converges to a term, where the eigenvalues are either isolated on the diagonal
elements or they are eigenvalues of 2 × 2 submatrix on the diagonal. This
shows a rapid convergence. The basic difference in this situation is that a
nonsymmetric real matrix can have complex eigenvalues. This means that the
eigenvalues may be complex for a good choices of the shifts ks.

The complex arithmetic can be used in this process. We need here states
that if B is a nonsingular matrix such that

B ·Q = Q ·H, (47)

where Q is orthogonal and H is upper Hessenberg, then Q and H are fully
determined by the first column of Q.

We used two step of the QR algorithm, either with two real shifts ks and
ks+1, or with complex conjugate values ks and ks+1 = k∗. This gives a real
matrix As+2, where

As+2 = Qs+1 ·Qs ·As ·QTs ·QTs+1. (48)

The Q’s are calculated by the next expression:

As − ks1 = QTs · Rs (49)

As+1 = Qs ·As ·QTs (50)

228 R. Forster, Á. Fülöp

As+1 − ks+11 = QTs+1 · Rs+1. (51)

Let us used the equation (50), and the expression (51) can be written:

As − ks+11 = QTs ·QTs+1 · Rs+1 ·Qs. (52)

Therefore, if we define

M = (As − ks+11) · (As − ks1) (53)

equations (49) and (52) give

R = Q ·M, (54)

where

Q = Qs+1 ·Qs (55)

R = Rs+1 · Rs. (56)

The equation (48) can be rewritten:

As ·QT = QT ·As+2. (57)

We search for an upper Hessenberg matrix H such that

As ·Q
T
= Q

T ·H, (58)

where Q is orthogonal. If Q
T

has the same first column as QT , then Q = Q

and As+2 = H.
The first row of Q is determined as follows. The equation (54) presents

that Q is orthogonal matrix and it triangularizes the real matrix M. Any real
matrix can be triangularized with a sequence of Householder matrices P1, P2,
... Pn−1. Thus the matrix Q can expressed by Q = Pn−1 . . . P2 · P1.

We need search for Q, which is satisfying equation (58) whose first row is
that of P1. The Householder matrix P1 is determined by the first column of
M. Because As is upper Hessenberg, the equation (53) presents that the first
column of M has the form [p1, q1, r1, 0, . . . 0]

T , where

p1 = a211 − a11(ks + ks+1) + ksks+1 + a12a21

q1 = a21(a11 + a22 − ks − ks+1)

r1 = a21a32. (59)

Chaoticity of the lattice Yang-Mills on CUDA 229

Therefore
P1 = 1− 2w1 ·wT1 ,

where w1 has only its first 3 elements nonzero. Proceeding in this way up to
Pn−1, we can see that at each stage the Householder matrix Pr has a vector
wr, which is nonzero only in elements r, r + 1 and r + 2. These elements are
calculated by the elements r, r + 1, and r + 2 in the (r − 1)-st column of the
current matrix.

The result is the next

Pn−1 · · ·P2 · P1 ·As · PT1 · PT2 · · ·PTn−1 = H,

where H is upper Hessenberg matrix. Thus

Q = Q = Pn−1 · · ·P2 · P1

and
As+2 = H.

The shifts of the beginning at each stage are formed to the eigenvalues of the
2× 2 matrix in the bottom right-hand corner of the current As.

This gives

ks + ks+2 = an−1,n−1 + ann

ksks+1 = an−1,n−1ann − an−1,nan,n−1. (60)

Substituting the expression (60) in the equation (59) we get

p1 = a21 {[(ann − a11)(an−1,n−1 − a11) − an−1,nan,n−1]/a21 + a12}

q1 = a21[a22 − a11 − (ann − a11) − (an−1,n−1 − a11)]

r1 = a21a32. (61)

We reduce possible roundoff, when there are small off-diagonal elements. Fi-
nally, we perform a double QR step we constructed the Householder matrices
Pr r = 1, . . . n− 1.

For P1 we applied p1, q1 and r1, which were given by expressions (61). The
remaining matrices, pr, qr and rr were calculated by the (r, r−1), (r+1, r−1),
and (r + 2, r − 1) elements of the current matrix. The number of arithmetic
operations can be decreased by writing the nonzero elements of the 2w · wT
part of the Householder matrix in the form

2w ·wT =

 (p± s)/(±s)
q/(±s)
r/(±s)

 · [1 q/(±s) r/(p± s)],

230 R. Forster, Á. Fülöp

where

s2 = p2 + q2 + r2.

If we proceed in this way, convergence is usually very fast, which is need to
control from step to step. There are two possible ways of terminating the
iteration for an eigenvalue. First, if an,n−1 becomes ’negligible’, then ann is
an eigenvalue. We can then delete the n-th row and column of matrix and
find the next eigenvalue. Otherwise an−1,n−2 may become negligible. Then the
eigenvalues of the 2 × 2 matrix in the lower right-hand corner may be taken
to be eigenvalues. We delete the n-th and (n − 1)-th rows and column of the
matrix and continue the process. The operation count for the QR algorithm
described here is ∼ 5k2 per iteration, where k is the current size of the matrix.

In the next (6.) Section the significant question is the parallelisation of the
Hessenberg method in rare matrix.

6 Parallel hybrid Hessenberg method

In [5] we used the CUDA platform to develop a parallel version of the Yang-
Mills algorithm for lattice calculations. Here we give the details how we have
moved forward from there by applying parallelism to calculate the eigenvalues
of the monodromy matrix (4.1. subsection), which helps to show the chaos in
the non-Abelian gauge field theory.

6.1 Main idea

Examining the Hessenberg method we can easily differentiate parts that has
more computational intensive tasks, while others are not so performance sen-
sitive. Hence the Block Hessenberg Algorithm is used. In this instead of taking
the whole matrix as the input of the transformation process we divide it into
smaller blocks. We take these blocks and calculate the Householder vector for
each column in that block and with it update the consecutive columns. When
finished we use the accumulated Householder transformations to update the
rest of the whole matrix. We repeat this until we update all the blocks. This
way with the accumulated Householder transformations in overall less matrix
multiplications will be used compared to the original Hessenberg Algorithm
in which case we always have to update every column with the calculated
Householder vector.

Chaoticity of the lattice Yang-Mills on CUDA 231

6.1.1 Block householder algorithm

To calculate the Householder vectors we use the following [10]:

ν = (
1

Ak+1,k+σ
) (62)

σ = sign(Ak+1,k‖x‖2) (63)

Vk = [ν1, ν2, ..., νk] (64)

Compact-WY representation of the k Householder transformations:

(I− ν1ν
T
1)...(I− νkν

T
k) = I− VkTkV

T
k

A := A(I− VLTLV
T
L) = A− YLV

T
L

A := (I− VLTLV
T
L)A

Tk =

[
Tk−1 −τkTk−1V

T
k−1νk

0T τk

]
(65)

Yk = AVkTk =
[
Yk−1 τk(−Yk−1V

T
k−1νk +Aνk)

]
(66)

We initialize V,T and Y as follows:

V1 = [ν1]

T1 = [τ1]

Y1 = [AV1T1]

Update formula for one column of a block

A∗,k := A∗,k − Yk((Vk)k,∗)
T (67)

A∗,k := (I− VkT
T
kV

T
k)A∗,k (68)

Update formula for the rest of the matrix

A∗,L+1:n := A∗,L+1:n − YL((VL)L+1:n,∗)
T (69)

A∗,L+1:n := (I− VLT
T
LV

T
L)A∗,L+1:n (70)

232 R. Forster, Á. Fülöp

With the hybrid implementation we extend the algorithm to the GPU as
much as reasonably possible. The GPU will need a high amount of data to be
able to achieve high utilization [15] and thus high performance, so the low on
data parts of the calculation are kept on the CPU while the intensive matrix
multiplications are pushed to the GPU.

Before commencing any calculations we upload the matrix into the GPUs
memory, after that we follow the next steps for the kth block:
For every column (i) in the block:

1. Compute the Householder vector (v), the ith column of V (CPU) [eq.
62,63,64]

2. Update T and Y matrices (CPU) [eq. 65,66]

3. Update the next column (CPU) [eq. 67,68]

After updating the block:

4. Update the rest of the matrix with V,Y,T (GPU) [eq. 69,70]

5. Copy over the next block to the CPU as it has been updated on the
GPU

6. Continue the reduction

6.2 Restrictions

The monodromy matrix can become very big as we increase the N parameter
of the lattice, thus requiring a lot of memory, which can go up to the TB
range. Because of this right now reasonable results can be achieved only up to
N = 6.

6.3 Implementation

For implementation and testing we have used a GeForce GTX 980M with
compute capability 5.2 (Table 1) and an Intel Core i7-4710HQ CPU that does
not have an IGP (Table 2).

As the starting point the original matrix for which we would like to compute
the Hessenberg form will be uploaded to the GPU. After this as we compute
the new Hessenberg vectors in the V matrix trough the blocks and update
the T, Y matrices we are providing every element for the GPU to update our

Chaoticity of the lattice Yang-Mills on CUDA 233

GeForce GTX 980M

Technical Specifications Compute Capability 5.2

Transistors (Million) 5200

Memory (GB) 4

Memory Bandwidth (GB/s) 160

GFLOPs 3189

TDP (watts) 125

Table 1: GeForce GTX 980M technical specifications.

i7-4710HQ

Transistors (Million) 1400

Connected memory (GB) 24

Memory Bandwidth (GB/s) 25.6

GFLOPs 422

TDP (watts) 47

Table 2: Core i7-4170HQ technical specifications.

original matrix. We copy the V, T, Y matrices to the GPU and using matrix-
matrix multiplication we do the update. After this as the matrix has been
changed the next block will be copied over to the CPU side. We choose the
blocks to be 32 columns wide.

For doing the matrix multiplications in parallel on the GPU we use the
NVIDIA developed CUBLAS library’s cublasdgemm function, while on the
CPU we use LAPACK with Intel MKL BLAS.

6.3.1 Comparison of the theoretical performance

Here we provide a comparison between the GPU’s and CPU’s achievable per-
formance based on the GFLOPS and TDP values.

If we look at the computational power of the used processors we can see that
the GPU is 7.5 times higher than what the CPU can provide. The GFLOPS
of the CPU was calculated using the following formula:

GFLOPS = cores ∗ clock ∗ FLOPs
cycle

/1000

The clock rate of a Core i7-4710HQ on full load with all 4 cores activated is

234 R. Forster, Á. Fülöp

3.3 GHz and the maximum FLOPs/cycle is 32 [16], thus the maximum per-
formance number in Table 2. If we would like to reach the GPU’s performance
with the actual CPU architecture, this means we will need 7.5 times more
power. This means if we stay on the Haswell architecture and we will just try
to increase the throughput we will reach a TDP of 352.5 watts. This leads us
to the conclusion if we would like to have the same performance on the CPU
that we have on the GPU will need 2.82 times more power for the CPU. This
will also mean that the physical limitations will not hold back the increase
of clock rate and power which can never be true, leaving the GPUs the most
efficient processors.

6.4 Numerical results

To calculate the eigenvalues of the monodromy matrix we used the Hessenberg
method. To make the process more efficient we applied the block Hessenberg
model to be able to utilize parallelization.

For overall testing the following system was used (Table 3):

CPU GPU OS Compiler
CUDA
version

Intel Core
i7 4710HQ

GeForce
GTX 980M

Windows
10 Pro

Visual
C++ 2013

7.0

Table 3: The used system’s specification.

The numerical results fulfill the physical principle, the constraint value of the
physical quantity remains constant during the time evolution of the equation
of motion. The Lyapunov Spectrum (Figure 2) justifies the existence of the
chaotic motion in the Yang-Mills fields.

We compared the runtime of the CPU to the GPU (Figure 1), the GPU gives
substantially better results as we increase the available work. Evaluating the
same lattice size the runtime on the GPU shows acceleration of a magnitude
of 3.

The Kolmogorov-Sinai entropy (Figure 3) is obtained from the evolution
eigenvalues of the monodromy matrix as functions of the scaled energy. These
results gives good approximation for an ideal gas (S logE).

Chaoticity of the lattice Yang-Mills on CUDA 235

Figure 1: Runtime on the CPU and on the GPU with N = 2, 3, 4, 5, 6.

236 R. Forster, Á. Fülöp

Figure 2: The Lyapunov spectrum on N=6.

Figure 3: The Kolmogorov-Sinai entropy on N=6.

Chaoticity of the lattice Yang-Mills on CUDA 237

7 Summary

As the GPUs are becoming more powerful with each new architecture it be-
comes easier to modify the existing applications and algorithms to be parallel.
In our case the Block Hamilton algorithm was able to achieve a 3 fold speed
up compared to the CPU version, while computing the eigenvalues of the
monodromy matrix.

By moving from CPU to GPU the eigenvalues are the same, thus keeping
the physical principles valid. Physical constant quantities remains constraint
while solving the equation of motion by parallel algorithm, such as the total
energy.

The performance of the GPUs make it possible to calculate eigenvalues of
the monodromy matrix to evince the chaotic behaviour of Yang-Mills system.

References

[1] T. S. Biró, Conserving algorithms for real-time non-Abelian lattice gauge theo-
ries, Int. Journ. of Modern Phys. C 6 (1995) 327–344. ⇒221

[2] T. S. Biró, A. Fülöp, C. Gong, S. Matinyan, B. Müller, A. Trajanov, Chaotic
dynamics in classical lattice field theories,165th WE-Heraeus Seminar on The-
ory of Spin Lattices and Lattice Gauge Models, 14–19 Oct 1996. Bad Honnef,
Germany, Lec. Notes in Physics 494 (1997) 164–176. ⇒217, 220

[3] T. S. Biró, C. Gong, B. Müller, A. Trayanov, Hamiltonian dynamics of Yang-
Mills fields on a lattice, Int. Journ. of Modern Phys. C 5 (1994) 113–149. ⇒
220

[4] M. Creutz, Quarks, Gluons and Lattices, Cambridge University Press, Cam-
bridge CB2 1RP, 1983. ⇒219

[5] R. Forster, A. Fülöp, Yang-Mills lattice on CUDA, Acta Univ. Sapientiae, In-
formatica, 5, 2 (2013) 184–211. ⇒217, 230

[6] A. Fülöp, T. S. Biró, Towards the equation of state of a classical SU(2) lattice
gauge theory, Phys. Rev. C 64 (2001) 064902(5). arxiv.org. ⇒224

[7] C. Gong, Lyapunov spectra in SU(2) lattice gauge theory, Phys. Rev D 49 (1994)
2642–2645. ⇒222

[8] B. Müller, A. Trayanov, Deterministic chaos on non-abelian lattice gauge theory,
Phys. Rev. Letters 68, 23 (1992) 3387–3390. ⇒217

[9] I. Montvay, G. Münster, Quantum fields on a lattice, Cambridge University
Press, Cambridge CB2 1RP, 1994. ⇒218

[10] J. Muramatsu, T. Fukaya, S. Zhang, Acceleration of Hessenberg Reduction for
Nonsymmetric Eigenvalue Problems in a Hybrid CPU-GPU Computing Envi-
ronment, Intern. J. of Networking and Computing 1, 2 (2011) 132–143. ⇒217,
231

http://www.world scientific.com/doi/abs/10.1142/S0129183194000106
http://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://link.springer.com/content/pdf/bfm%3A978-3-540-69211-9%2F1.pdf
http://www.world scientific.com/doi/abs/10.1142/S0129183194000106
http://thy.phy.bnl.gov/~creutz/resume.html
http://www.cambridge.org/
http://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://acta.sapientia.ro/acta-info/informatica-main.htm
http://acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://prc.aps.org/abstract/PRC/v64/i6/e064902
http://arxiv.org/pdf/hep-ph/0107008.pdf
http://prl.aps.org/abstract/PRL/v68/i23/p3387_1
http://dblp.uni-trier.de/pers/hd/m/Muramatsu:Jun=ichi
http://dblp.uni-trier.de/pers/hd/f/Fukaya:Takeshi
http://dblp.uni-trier.de/pers/hd/z/Zhang:Shao=Liang
http://www.ijnc.org/index.php/ijnc/issue/archive

238 R. Forster, Á. Fülöp

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Re-
cipies in C, Cambridge University Press, 2002. ⇒217, 225

[12] L. E. Reichl, The Transition to Chaos, Springer-Verlag, 1992. ⇒221
[13] S. Weinberg, The Quantum Theory of Fields, Cambridge University Press CB2

1RP, 1996 ⇒217
[14] C. N. Yang, R. Mills, Conservation of isotropic spin and isotopic gauge invari-

ance, Phys. Rev. 96 (1954) 191–195. ⇒218
[15] CUDA C Programming Guide NVIDIA Corp., 2013, http://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html. ⇒232
[16] Technology Insight: Intel Next Generation Microarchitecture Code Name

Haswell, IDF2012. ⇒234

Received: September 30, 2015 • Revised: December 29, 2015

http://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf
http://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf
http://order.ph.utexas.edu/people/Reichl.htm
http://www.springer.com/de/
https://en.wikipedia.org/wiki/Steven_Weinberg
https://en.wikipedia.org/wiki/Chen-Ning_Yang
https://en.wikipedia.org/wiki/Robert_Mills_%28physicist%29
http://journals.aps.org/pr/abstract/10.1103/PhysRev.96.191
http://journals.aps.org/pr/issues/96#v96
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
László DÁVID

Main Editorial Board

Zoltán KÁSA András KELEMEN Laura NISTOR
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica
Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro
Assistent Editor

Dávid ICLANZAN (Sapientia University, Romania)

Editorial Board
Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Horia GEORGESCU (University of Bucureşti, Romania)
Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)

Zoltán KÁTAI (Sapientia University, Romania)
Attila KISS (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Shariefudddin PIRZADA (University of Kashmir, India)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Idea Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
acta-inf@acta.sapientia.ro
http://www.acta.sapientia.ro
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro

