
Acta Universitatis Sapientiae

Informatica
Volume 7, Number 1, 2015

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

Csanád Imreh, Judit Nagy-György
Online hypergraph coloring with rejection . 5

Zalán Bodó, Lehel Csató
A note on label propagation for semi-supervised learning 18

Attila Bódis
Bin packing with directed stackability conflicts31

Kristóf Ábele-Nagy
Minimization of the Perron eigenvalue of incomplete pairwise
comparison matrices by Newton iteration . 58

Antal Iványi, Shariefuddin Pirzada, Farooq A. Dar
Tripartite graphs with given degree set . 72

Pál Pusztai, Tamás Hajba
Empirical study of the greedy heuristic as applied to the link
selection problem .107

3

Acta Univ. Sapientiae, Informatica 7, 1 (2015) 5–17

DOI: 10.1515/ausi-2015-0009

Online hypergraph coloring with rejection

Csanád IMREH
University of Szeged

Institute of Informatics
email: cimreh@inf.u-szeged.hu

Judit NAGY-GYÖRGY
University of Szeged

Bolyai Institute
email: Nagy-Gyorgy@math.u-szeged.hu

Abstract. In this paper we investigate the online hypergraph coloring
problem with rejection, where the algorithm is allowed to reject a ver-
tex instead of coloring it but each vertex has a penalty which has to be
paid if it is not colored. The goal is to minimize the sum of the num-
ber of the used colors for the accepted vertices and the total penalty
paid for the rejected ones. We study the online problem which means
that the algorithm receives the vertices of the hypergraph in some order
v1, . . . , vn and it must decide about vi by only looking at the subhyper-
graph Hi = (Vi, Ei) where Vi = {v1, . . . , vi} and Ei contains the edges
of the hypergraph which are subsets of Vi. We consider two models: in
the full edge model only the edges where each vertex is accepted must
be well-colored, in the trace model the subsets of the edges formed by
the accepted vertices must be well colored as well. We consider proper
and conflict free colorings. We present in each cases optimal online algo-
rithms in the sense that they achieve asymptotically the smallest possible
competitive ratio.

1 Introduction

A coloring of a hypergraph is an assignment of positive integers to the ver-
tices of the hypergraph so that every edge satisfy some property. We consider

Computing Classification System 1998: F.1.2
Mathematics Subject Classification 2010: 68W27
Key words and phrases: online algorithms, hypergraph coloring, competitive ratio

5

http://www.inf.u-szeged.hu/~cimreh
http://www.u-szeged.hu
http://www.inf.u-szeged.hu
mailto:cimreh@inf.u-szeged.hu
http://www.math.u-szeged.hu/~ngyj
http://www.u-szeged.hu
http://www.math.u-szeged.hu
mailto:Nagy-Gyorgy@math.u-szeged.hu

6 Cs. Imreh, J. Nagy-György

two different versions of coloring. In proper hypergraph coloring each edge
must contain vertices having different colors. In conflict free (we will use the
abbreviation cf) coloring each edge must contain a unique vertex which has
different color to the other vertices of the edge. In the online hypergraph col-
oring problem the algorithm receives the vertices of the hypergraph with n
vertices in some order v1, . . . , vn and it must color vi by only looking at the
subhypergraph Hi = (Vi, Ei) where Vi = {v1, . . . , vi} and Ei contains the edges
of the hypergraph which are subsets of Vi.

We will evaluate the efficiency of the online algorithms by the competitive
ratio (see [4, 10]) where the online algorithm is compared to the optimal offline
algorithm. We say that an online algorithm is C-competitive if its cost is at
most C times larger than the optimal cost.

Online proper coloring of hypergarphs first was studied in [9] where it was
proven that no online algorithm exists for 2-colorable k-uniform hypergraphs
which can color them with less colors than dn/(k−1)e, and it was proved that
algorithm FF colors these hypergraphs with this much colors. This means that
the best possible competitive ratio is dn/(k − 1)e/2 for this class of hyper-
graphs. Furthermore some special classes were also studied: the hypergraphs
with given matching number and projective planes. Later randomized algo-
rithms were studied for online proper coloring of hypergarphs in [8] where the
deterministic Ω(n/k) lower bound was extended to randomized algorithms.
This lower bound was also proved in the case of a more general transparent
model. In [11] the online and quasionline hypergraph proper coloring problem
was studied for intervals and wedges.

Online cf-coloring of hypergraph was defined in [5] where the authors con-
sidered the case where the input is a set of n points on the line, and R is the set
of the intervals of the line. They present an algorithm which uses O(log2(n))
colors and also prove a matching lower bound. Online cf-coloring of intervals
was further studied in [2] where several coloring models were defined and com-
pared. The online cf-coloring of other more general hypergraphs was studied
in [3] and [6].

In [7] the graph coloring problem with rejection was investigated. In this
model a penalty value is assigned to each vertex and the algorithm has to
choose a subset of vertices, and find a proper coloring of the induced subgraph
defined by this subset. The elements of the subset are called accepted vertices
the other ones are called rejected. The goal is to minimize the sum of the
number of colors used to color the accepted vertices and the total penalty
paid for the rejected vertices. In [7] both the online and the offline versions of
the problems are investigated.

Online hypergraph coloring with rejection 7

In this paper we extend graph coloring with rejection into hypergraph col-
oring with rejection. There are two ways to extend the model. In the full
edge model we have to color correctly only the edges where each vertices are
accepted from the edge. In the trace model we have to color correctly the
subhypergraph which consists of the accepted vertices and the edges which
are the accepted subsets of the original edges. Note that in the special case of
graphs the two models are identical. We consider both proper and cf-coloring
in both models.
Main results: We studied four models since we had two possibilities for

the coloring (proper and cf) and two possibilities to handle rejection (full
edge, trace). In the full edge model with proper coloring we present for every
ε > 0 an online algorithm Aε and nε such that Aε is at most dn/(k− 1)e/2+
ε competitive on k-uniform hypergraphs with at least nε vertices for k ≥
3. This competitive ratio is asymptotically the best possible since it follows
from online hypergraph coloring that no online algorithm exists with smaller
competitive ratio than dn/(k − 1)e/2 for k-uniform hypergraphs. In case of
full edge model and cf-coloring we present an ((n − 1)/ϕ + ϕ)-competitive
algorithm for hypergraphs of n-vertices where ϕ = (1 +

√
5)/2. In the trace

model we present an algorithm which is (2+ (n− 2)/ϕ)-competitive for both
the proper and cf coloring models. All of these algorithms are asymptotically
optimal since we prove that no online algorithm exists which is (Cn + D-
competitive) in any these models for hypergraphs containing n vertices and
some constants C < 1/ϕ, D.

2 Notation

In this paper on hypergraph we mean the structure H = (V, E) where V is the
finite set of the hypergraph’s vertices and E ⊆ ρ(V) is the set of the edges
where ρ(V) is the set of the nonempty subsets of V. We suppose that each
edge has at least two elements.

We consider the following two colorings. A proper coloring of a hypergraph
is an assignment of positive integers (called colors) to the vertices of the hy-
pergraph so that each edge contains at least two vertices with different colors.
For a hypergraph H the minimum number of colors which is enough to color
the hypergraph is called the proper chromatic number of the hypergraph and
denoted by χP(H). A conflict free (cf for short) coloring of a hypergraph is an
assignment of positive integers (called colors) to the vertices of the hypergraph
so that each edge contains a unique color, a vertex which has different color

8 Cs. Imreh, J. Nagy-György

to the other vertices of the edge. For a hypergraph H the minimum number
of colors which is enough to cf-color the hypergraph is called the cf-chromatic
number of the hypergraph and denoted by χcf(H).

We will consider the hypergraph coloring with rejection. This means that
we can reject the coloring of some vertices, but each vertex v has a penalty
denoted by p(v) and our goal is to minimize the sum number of used colors
for the accepted vertices and the total penalty paid for the rejection of the
other ones. We consider two rejection models. In the full edge model we have
to color correctly only the edges where each vertices are accepted from the
edge. This means that rejecting some vertex of an edge ensures that it is well
colored. We also consider a different model called trace model. In this new
model we consider the subhypergraph which consists of the accepted vertices
and the edges which are the accepted subsets of the original edges. And this
subhypergraph must to be well-colored in each step. Therefore in the trace
model the rejection of some vertices of an edge does not ensure that it is well
colored we have to take care of the remaining vertices. We can define the
problem for both the proper and the conflict free coloring.

We consider the online problem. An online hypergraph (defined first in [1]) is
a structure H< = (H,<) where H is a hypergraph and < is a linear ordering of
its vertices. We call a vertex the first, second,..., and ending vertex of an edge
according to the ordering <. An online hypergraph coloring algorithm has to
color the i-th vertex only knowing the subhypergraph Hi = (Vi, Ei) where Vi
contains the first i vertices and Ei contains the edges of the hypergraph which
are subsets of Vi. This means that the online algorithm receives information
about the edges only when the last vertex of the edge arrives. We will use
the well-known greedy algorithm FF (First Fit) to color the accepted vertices
of the online hypergraphs. FF uses the smallest color for each vertex which
does not hurt the rule of the coloring. In case of proper coloring it uses the
smallest color which does not cause a monochromatic edge. In the case of cf-
coloring it uses the smallest color which does not yield an edge where none of
the colors is unique. We note that in the trace model it might happen that
the online algorithm is forced to accept some vertices. If it has accepted and
colored two vertices by the same colors then a further vertex which forms an
edge with these vertices must be accepted since otherwise the remaining edge
of the subhypergraph is not well-colored. In this situation when the rejection
of a vertex causes an incorrect coloring of the remaining edges we say that the
vertex is forced to be accepted.

Usually in the theory of online computation the efficiency of the online
algorithms is measured by the competitive ratio (see [4, 10]) where the online

Online hypergraph coloring with rejection 9

algorithm is compared to the optimal offline algorithm. We denote the cost of
the online algorithm A on an online hypergraph H< and penalty function p by
A(H<, p) and we will denote the optimal cost by opt(H<, p). An algorithm is
called c-competitive if A(H<, p) ≤ c · opt(H<, p) for every H and p. Since no
constant competitive online algorithm exists we will consider the competitive
ratio as a function of the number of vertices, denoted by n.

We also use the following notion from the theory of hypergraphs. A hyper-
graph is called k-uniform if each edge contains k vertices.

3 Online coloring hypergraphs with rejection in the
full edge model

3.1 Proper coloring

Note that a lower bound of dn/(k − 1)e/2 on k-uniform 2-proper-colorable
hypergraphs for k ≥ 3 comes from the case without rejection. Surprisingly,
the following theorem shows that one can reach this competitive ratio in the
asymptotical sense for the more general case where rejection is also allowed.

Theorem 1 If k ≥ 3, then for every ε < 1/8 there is an online algorithm Aε
and nε, such that Aε is at most dn/(k − 1)e/2 + ε competitive on k-uniform
hypergraphs with at least nε vertices.

Proof. Let δε = 2ε/(k − 2), nε =
2k− 2

δε − δ2ε(2k− 2)
. Define the following algo-

rithm:

Algorithm Aε: If the penalty of the next vertex is less then δε reject it, otherwise
color it by algorithm FF.

Denote by A the set of the colored and by B the set of the rejected vertices
by Aε, and χAε(A) the number of colors used by Aε. Let n = |A| + |B|. Then
the cost of Aε is χAε(A) + p(B) ≤ d|A|/(k− 1)e+ δε|B|.

We have three cases.

Case 1. Suppose that the optimal algorithm uses at least 2 colors. In this case
its cost is at least 2. Therefore we obtain that

10 Cs. Imreh, J. Nagy-György

costAε(H<, p)

opt(H<, p)
≤ costFFε(H<, p)

2
≤ 1
2

⌈
n

k− 1

⌉
.

Case 2. Suppose that the optimal algorithm uses one color. We state that in
this case it must reject at least χAε(A)− 1 vertices from A. First observe that
FF uses color j for a new vertex only when the vertex ends for each i < j

and edge containing k − 1 vertices colored by i. Therefore for each pair of
color classes of A there exists an edge which contains only vertices from these
color classes. This means that the optimal algorithm cannot accept all vertices
from two different color classes of A since it could not color them correctly
by 1 color. Thus it follows that the optimal algorithms must reject at least
χAε(A) − 1 vertices from A.

If |A| > 0 then

costAε(H<, p)

opt(H<, p)
≤ χAε(A) + p(B)

1+ δε(χAε(A) − 1)

≤ χAε(A)

δε(χAε(A))
+ p(B)

≤ 1

δε
+ δε|B|

≤ 1

δε
+ δεn

≤ n

2(k− 1)

where the last inequality comes from the definition of nε.
If |A| = 0 then

costAε(H<, p)

opt(H<, p)
≤ p(B) ≤ δεn ≤

n

2(k− 1)
.

Case 3. Suppose that the optimal algorithm uses no colors, i.e. it rejects all
vertices. If |A| = 0 then Aε optimal. Otherwise

Online hypergraph coloring with rejection 11

costAε(H<, p)

opt(H<, p)
≤ χAε(A) + p(B)

p(A) + p(B)

≤ χAε(A)

p(A)

≤
|A|
k−1 +

k−2
k−1

δε|A|

≤ 1

δε(k− 1)
+

k− 2

δε(k− 1)
=
1

δε

≤ n

2(k− 1)

where the first and third inequality come from the definition of the algorithm
and the case, the fourth one by |A| ≥ 1, the last two come from the definition
of nε. �

3.2 Conflict-free coloring

In the full edge model for cf coloring we considered the following algorithm.

Algorithm B: If the penalty of the next vertex is less then 1/ϕ reject it, other-
wise color it by FF.

Theorem 2 Algorithm B is (n − 1)/ϕ + ϕ-competitive on hypergraphs on n
vertices where ϕ = (1+

√
5)/2.

Proof. Consider an input hypergraph denoted by H<. Denote A the set of the
colored and B the set of the rejected vertices by B, and χB(A) the number of
colors used by B. Let n = |A|+ |B|. Then the cost of B is

χB(A) + p(B) ≤ |A|+ |B|/ϕ.

We have three cases.
Case 1. Suppose that the optimal algorithm uses at least 2 colors. In this case
the optimal cost is at least 2, therefore

12 Cs. Imreh, J. Nagy-György

costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)

2
≤ |A|+ |B|/ϕ

2

≤ n

2
≤ n− 1

ϕ
+ϕ.

Case 2. Suppose that the optimal algorithm uses one color. If the input hy-
pergraph has edges colored by B then the optimal algorithm have to reject at
least one vertex with penalty at least 1/ϕ. Therefore the optimal cost is at
least 1+ 1/ϕ, thus we obtain that

costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)

1+ 1/ϕ

≤ |A|+ |B|/ϕ

ϕ
≤ n

ϕ
.

If the input hypergraph has no edge colored by B then the optimal cost is
at least 1 but in this case χB(A) ≤ 1 thus

costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)

1
≤ 1+ (|B|)/ϕ ≤ 1+ n− 1

ϕ
.

Case 3. Suppose that the optimal algorithm uses no colors, i.e. it rejects all
vertices. Then

costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)
p(A) + p(B)

≤ χB(A)
p(A)

≤ |A|

|A|/ϕ
= ϕ ≤ n− 1

ϕ
+ϕ.

�

Note that considering the online cf-coloring without rejection of 2-cf-colorable
hypergraphs we can obtain the following result.

Lemma 3 No online cf-coloring algorithm uses less then n − 1 colors on 2-
cf-colorable hypergraphs on n vertices.

Proof. Give vertices until two of them are colored by the same color. Suppose
that online algorithm colors vi and vj with the same color. Then reveal edges
in the m-th phase {vi, vj, vm} and {vi, vj, v`, vm} for all ` < m, ` 6= i, j. Then
the online algorithm must use a new color for each new vertex.

Online hypergraph coloring with rejection 13

This hypergraphs is 2-cf-colorable: vi is in the first color class and the other
vertices are in the second. �

This observation proves that no online algorithm can be better than (n−1)/2
competitive for online cf-coloring of hypergraphs, and this bounds holds as well
for the model with rejection since we can use penalty ∞ for all vertices.

On the other hand we can extend the idea of this lower bound to the model
with rejection and prove that the competitive ratio of B is the best possible
in the asymptotical sense as the following theorem shows.

Theorem 4 No online algorithm exists which is Cn + D-competitive in the
problem of conflict free coloring with rejection in the full edge model for hy-
pergraphs containing n vertices for some constants C < 1/ϕ and D.

Proof. Suppose that, on the contrary, there exist constants C < 1/ϕ and
D and an online algorithm C which is Cn + D-competitive. First we present
vertices with penalty 1/ϕ and no edge until two of them are colored by the
same color or the number of vertices reaches a number n1 > D/(1/ϕ − C).
If none of these vertices received the same color then the sequence ends, the
optimal algorithm colors these vertices by one color and its cost is 1. The
online algorithms pays at least 1/ϕ for each of them thus the online cost is
at least n1/ϕ and we obtain a contradiction since n1/ϕ > Cn1 + D by the
definition of n1.

Now suppose that the online algorithm colors two accepted vertices by the
same colors. Let these vertices be vi and vk, where i < k. Note that the first
phase of the inputs ends by vertex vk. In this case we continue the sequence
with the points vk+1, . . . , vn where n > (D + k/ϕ)/(1/ϕ − C). Each such
vertex vq has penalty ∞, and each of them ends the edges (vi, vk, vq) and
(vi, vk, vs, vq) for s < q and s 6= i, k. Then each such vertex must be accepted,
and these edges force a new color for each of them. Therefore, vi and vk have
the same color and the other accepted vertices are colored by different colors.
Thus the cost of the online algorithm is m/ϕ + n −m − 1, where m is the
number of rejected vertices in the first phase. Therefore its cost is at least
(k − 2)/ϕ + n − k + 1. On the other hand an optimal algorithm rejects vi
and accepts all the other vertices and colors them by color 1. Then its cost is
1+ 1/ϕ. Therefore the ratio of the online and offline costs is at least

(k− 2)/ϕ+ n− k+ 1

1+ 1/ϕ
>
n

ϕ
−
k

ϕ
> Cn+D,

and the theorem follows. �

14 Cs. Imreh, J. Nagy-György

4 The trace model

In the trace model we analyze the following online algorithm. The same algo-
rithm is defined for both the proper and cf-colorings, the difference comes from
the fact that the algorithm uses FF to color the vertices, and it might assign
different colors in the two models. Moreover the set of the accepted vertices
might be different in the models since it depends on the previous vertices and
also on the model whether a vertex is forced to be accepted or not.
D: If the penalty of the next vertex is less then 1/ϕ and the vertex is not forced
to be accepted then reject it. Otherwise color the first accepted vertex by color
1, the second one by color 2 and the further accepted vertices by algorithm FF.

Theorem 5 Algorithm D is 2+ (n− 2)/ϕ-competitive in both trace coloring
models (proper and cf), where n is the number of vertices.

Proof. Consider an input hypergraph by H<. Again we have three cases.
Case 1. First suppose that the optimal algorithm uses at least two colors to
color its accepted subhypergraph. In this case opt(H<, p) ≥ 2. On the other
hand costD(H<, p) ≤ n is obviously valid since the algorithm pays less than
1 penalty for the rejected vertices and uses at most one color for the accepted
ones. Therefore in this case the theorem follows by ϕ < 2.
Case 2. Now suppose that the optimal algorithm uses one color to color its
accepted subhypergraph. Denote the set of its rejected vertices by ROPT . Then
the optimal cost is 1+ p(ROPT).

If D rejects all of the vertices from ROPT then its accepted vertices are colored
by at most 2 colors. Thus the cost of the algorithm is at most 2 + (n − 2)/ϕ
and the results follows since the optimal cost is at least 1.

Suppose ROPT contains some vertex which is accepted by D. The first such
vertex is not forced to be accepted by D, since otherwise the optimal algorithm
could not color its accepted vertices by one color. Thus its penalty is at least
1/ϕ. This yields that opt(H<, p) ≥ 1 + 1/ϕ and by costD(H<, p) ≤ n we
obtain that

costD(H<, p)

opt(H<, p)
≤ n

1+ 1/ϕ
=
n

ϕ
≤ 2+ (n− 2)/ϕ.

Case 3. Finally, suppose that the optimal algorithm uses 0 color which means
that it rejects all vertices. Then its cost is the sum of the penalties of the
vertices. No consider the following two subcases.

First suppose that some forced vertex is colored by D. To have a forced
vertex it needs at least two accepted vertices with the same color which means

Online hypergraph coloring with rejection 15

that it has accepted at least 3 unforced vertices. On the other hand each of
these vertices has penalty at least 1/ϕ. This yields that the total penalty of
the vertices thus the optimal cost is at least 3/ϕ > 1 + 1/ϕ and we obtain
again that

costB(H<, p)

opt(H<, p)
≤ n

1+ 1/ϕ
=
n

ϕ
≤ 2+ (n− 2)/ϕ.

Finally suppose that the optimal algorithm uses 0 color and there exists no
forced vertex accepted by D. Then let A be the set of the vertices accepted by
D and B be the set of vertices rejected by D. We obtain that

costB(H<, p)

opt(H<, p)
≤ |A|+ p(B)

p(A) + p(B)
≤ |A|

|A|/ϕ
= ϕ ≤ 2+ n− 2

ϕ
.

�

Now we prove that the bound is tight in the sense that no asymptotically
better online algorithm exists. We use a similar construction as we did in the
case of cf coloring in the full edge model. The lower bound is again true for
both the proper and cf colorings.

Theorem 6 No online algorithm exists which is Cn + D-competitive in the
trace model for proper or cf-coloring with rejection for hypergraphs containing
n vertices and some constants C < 1/ϕ and D.

Proof. Suppose that we have an online algorithm which has better competitive
ratio, denote it by E . First we present vertices with penalty 1/ϕ and no edge
until two of them are not colored by the same color or the number of vertices
reaches n1 > D/(1/ϕ − C). If none of these vertices received the same color
then the sequence ends the optimal algorithm colors these vertices by one color
and its cost is 1. The online algorithms pays at least 1/ϕ for each of them
thus the online cost is at least n1/ϕ and we obtain a contradiction.

Now suppose that the online algorithm colors two accepted vertices by the
same colors. Let these vertices be vi and vk where i < k. Note that the first
phase of the inputs ends by vertex vk. In this case we continue the sequence
with the points vk+1, . . . , vn where n > (D+k/ϕ)/(1/ϕ−C). Each such vertex
vq has penalty 0, and each of them ends the edges (vi, vk, vq) and (vp, vq) for
p = 1, . . . , q − 1. Then the first edge forces the acceptance of the vertex
(otherwise the remaining edge (vi, vk) would not be well-colored). Moreover
the other edges ensures that each vertex must receive a new color. Therefore,
vi and vk have the same color and the other accepted vertices are colored by

16 Cs. Imreh, J. Nagy-György

different colors. Thus the cost of the online algorithm is m/ϕ + n −m − 1,
where m is the number of rejected vertices in the first phase. This yields that
its cost is at least (k−2)/ϕ+n−k+1. On the other hand an optimal algorithm
accepts the vertices v1, . . . , vk−1 colors them by color 1 and rejects the further
vertices. Then its cost is 1+ 1/ϕ. Therefore the ratio of the online and offline
costs is at least

(k− 2)/ϕ+ n− k+ 1

1+ 1/ϕ
>
n

ϕ
−
k

ϕ
> Cn+D

and the theorem follows. �

Acknowledgements

This work was supported by the European Union and the European Social
Fund through project Telemedicina (Grant no.: TÁMOP-4.2.2.A-11/1/KONV-
2012-0073). Cs. Imreh was supported by the return fellowship of the Alexander
von Humboldt Foundation. J. Nagy-György was supported by the European
Union and the State of Hungary, co-financed by the European Social Fund
in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 National Excellence
Program.

References

[1] N. Alon, U. Arad, Y.Azar, Independent Sets in Hypergraphs with Applications
to Routing Via Fixed Paths, Proc. 2nd International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems (APPROX99), Lec-
ture Notes in Computer Science 1671 (1999) 16–27. ⇒8

[2] A. Bar-Noy, P. Cheilaris and S. Smorodinsky, Conflict-free coloring for intervals:
from offline to online, Proc. 18th Annual ACM Parallelism Algorithms Architec-
tures (SPAA06), 2006, pp. 128–137. ⇒6

[3] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and S. Smorodinsky, Online conflict-free
colorings for hypergraphs, Proc. 34th International Colloquium on Automata,
Languages and Programming (ICALP07), Lecture Notes in Computer Science
4596 (2007) 219–230. ⇒6

[4] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cam-
bridge University Press, 1998. ⇒6, 8

[5] K. Chen, A. Fiat, H. Kaplan, M. Levy, J. Matousek, E. Mossel, J. Pach, M.
Sharir, S. Smorodinsky, U. Wagner and E. Welzl, Online conflict-free coloring
for intervals, SIAM J. Computing 36 (2006) 1342–1359. ⇒6

http://www.tau.ac.il/~nogaa/
http://www.cs.tau.ac.il/~azar/
http://www.springer.com/gp/book/9783540663294
http://www.sci.brooklyn.cuny.edu/~amotz/
http://compgeom.inf.usi.ch/philaris/
http://www.math.bgu.ac.il/~shakhar/
http://www.sci.brooklyn.cuny.edu/~amotz/
http://compgeom.inf.usi.ch/philaris/
http://www.cs.tau.ac.il/~olonetsk/
http://www.math.bgu.ac.il/~shakhar/
http://link.springer.com/book/10.1007/978-3-540-73420-8
http://www.cs.toronto.edu/~bor/
http://www.cs.technion.ac.il/~rani/
http://www.cambridge.org/
http://www.cambridge.org/
http://www.cs.tau.ac.il/~haimk/
http://kam.mff.cuni.cz/~matousek/
http://www.stat.berkeley.edu/~mossel/
https://www.math.nyu.edu/~pach/
http://www.math.tau.ac.il/~michas/
http://www.math.bgu.ac.il/~shakhar/
http://www.inf.ethz.ch/personal/wagneru/
http://www.inf.ethz.ch/personal/emo/
https://www.siam.org/journals/sicomp.php

Online hypergraph coloring with rejection 17

[6] K. Chen, H. Kaplan, M. Sharir, Online CF coloring for halfplanes, congruent
disks, and axis-parallel rectangles, ACM Trans. Algorithms 5 (2009) Article
No. 16. ⇒6

[7] L. Epstein, A. Levin, G. J. Woeginger, Graph coloring with rejection, J. Comput.
System Sci., 77, 2 (2011) 439–447. ⇒6

[8] M. M. Halldorsson, Online coloring of hypergraphs, Inform. Process. Lett. 110,
10 (2010) 370–372. ⇒6

[9] Cs. Imreh, J. Nagy-György, Online hypergraph coloring, Inform. Process. Lett.
109, 4 (2008) 23–26. ⇒6

[10] Cs. Imreh, Competitive analysis, in: Algorithms of Informatics, Vol. 1. Foun-
dations (ed. A. Iványi), mondAt Kiadó, Budapest, 2007, pp. 395–428. ⇒ 6,
8

[11] B. Keszegh, N. Lemons, D. Pálvölgyi, Online and quasi-online colorings of wedges
and intervals, Proc. 39th International Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM 2013), Lecture Notes in Computer
Science 7741 (2013) 292–306. ⇒6

Received: August 11, 2014 • Revised: April 7, 2015

http://www.cs.tau.ac.il/~haimk/
http://www.math.tau.ac.il/~michas/
http://talg.acm.org/
http://math.haifa.ac.il/lea/
http://ie.technion.ac.il/Home/Users/levinas.html
http://www.win.tue.nl/~gwoegi/
http://www.journals.elsevier.com/journal-of-computer-and-system-sciences/
http://www.journals.elsevier.com/journal-of-computer-and-system-sciences/
http://www.ru.is/~mmh/
http://www.journals.elsevier.com/information-processing-letters/
http://www.inf.u-szeged.hu/~cimreh/
http://www.math.u-szeged.hu/~ngyj/
http://www.journals.elsevier.com/information-processing-letters/
http://www.inf.u-szeged.hu/~cimreh/
http://www.antoncom.hu/books.htm
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://mondat.hu
http://www.renyi.hu/~keszegh/
http://cnls.lanl.gov/External/people/Nathan_Lemons.php
http://www.cs.elte.hu/~dom/
http://www.springer.com/series/1244
http://www.springer.com/series/1244

Acta Univ. Sapientiae, Informatica 7, 1 (2015) 18–30

DOI: 10.1515/ausi-2015-0010

A note on label propagation for

semi-supervised learning

Zalán BODÓ
Babeş–Bolyai University

email: zbodo@cs.ubbcluj.ro

Lehel CSATÓ
Babeş–Bolyai University

email: lehel.csato@cs.ubbcluj.ro

Abstract. Semi-supervised learning has become an important and thor-
oughly studied subdomain of machine learning in the past few years, be-
cause gathering large unlabeled data is almost costless, and the costly hu-
man labeling process can be minimized by semi-supervision. Label prop-
agation is a transductive semi-supervised learning method that operates
on the—most of the time undirected—data graph. It was introduced in
[8] and since many variants were proposed. However, the base algorithm
has two variants: the first variant presented in [8] and its slightly modified
version used afterwards, e.g. in [7]. This paper presents and compares the
two algorithms—both theoretically and experimentally—and also tries to
make a recommendation which variant to use.

1 Introduction

Label propagation is a transductive graph-based method for semi-supervised
classification. It is transductive because the algorithm can predict the labels
of the points included in the unlabeled learning dataset, it does not output an
inductive classifier applicable for a new point. However, it is true that using a
simple trick one can obtain a formula for calculating the label of an unknown
point without re-learning [1]. We call it graph-based, because it is interpreted

Computing Classification System 1998: I.1.2, I.2.6
Mathematics Subject Classification 2010: 68W40, 68T10
Key words and phrases: label propagation, semi-supervised learning

18

http://www.cs.ubbcluj.ro/~zbodo
http://www.cs.ubbcluj.ro
mailto:zbodo@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro/~csatol
http://www.cs.ubbcluj.ro
mailto:lehel.csato@cs.ubbcluj.ro

A note on label propagation for semi-supervised learning 19

as building a graph connecting the data points and assigning weights to these
edges according to some similarity measure, and then propagating the labels
from the labeled points towards the unlabeled ones. It is semi-supervised, since
some labeled points are needed—usually a small number of such points, and
can have a much larger set of unlabeled ones—which direct the algorithm
towards a stable labeling configuration.

The aim of this short paper is to analyze two variants of the label propa-
gation algorithm proposed for semi-supervised learning: the first variant that
appeared in [8] and its sightly modified version used afterwards. An interesting
fact is that there is an unmentioned minor modification in the second variant
that alters the problem and produces slightly different outputs. Most of the
researchers use the second variant of the basic label propagation algorithm as
appeared in [7], without any reference to the discrepancy.

We study the differences between the two methods by analyzing the labels
output by the algorithms, as well as the underlying optimization problems, and
show this on some benchmark datasets. Other variants of label propagation
and related methods that will not be discussed here can be found in [1, ch.11].

Section 2 presents the generic algorithm, while Subsections 2.1 and 2.2
present the above-mentioned variants of it. Section 3 analyzes and compares
the different outputs of the two variants, while in Section 4 the optimization
problems corresponding to the variants of label propagation are examined. In
Section 5 the algorithms are compared experimentally on various datasets and
the results of the comparison are discussed.

2 Label propagation

The iterative algorithm of label propagation is shown in Alg. 1. The matrix Y
is an N×k matrix, where N = `+u (` denotes the number of labeled and u the
number of unlabeled points) and k represent the size of the dataset and the
number of classes, respectively. Later we will split the dataset into labeled and
unlabeled parts, putting the labeled examples at the beginning of the dataset

and use the notation Y =

[
YL

YU

]
, where YL denotes the known and YU the

unknown labels. This is a matrix with rows containing the probabilities that
a point belongs to a given class.

The matrix T is an N × N transition matrix realizing the propagation of
the labels. The construction of this matrix will be detailed in the following
subsections. Step 3 is optional in the algorithm—only the first version requires

20 Z. Bodó, L. Csató

Algorithm 1 Label propagation
1: repeat
2: Y = TY
3: (Row-normalize Y.)
4: Clamp the labeled data.
5: until convergence

it—this is the reason why this operation is put in paranthesis.
Label propagation is not necessarily an iterative method: the output labels

of the unlabeled points can be expressed analytically.1 First we partition the
multiplication operation in step 2 of the algorithm:[

YL

YU

]
=

[
TLL TLU
TUL TUU

] [
YL

YU

]
, (1)

from which we can express the recursive formula for the unknown labels, that
is

YU = TULYL +TUUYU.

The labels output by label propagation then can be expressed as

YU = (I−TUU)
−1TULYL.

Obviously, in order to be able to solve the problem, I−TUU must be invertible,
but we assume this is the case.2

2.1 The first variant

The subtle—but unmentioned in the literature and undiscussed—difference
between the two variants lies in the construction of the transition matrix T.
This matrix is based on the graph built to represent data similarities. First
we define the matrix W containing the similarities. In [8] this is constructed
using the Gaussian similarity,

Wij = exp

(
−
‖xi − xj‖22
2σ2

)
, i, j = 1, 2, . . . ,N, (2)

1As will be shown in Section 4, the label propagation algorithms presented in this paper
have corresponding optimization problems, that can be solved in many different ways.

2A detailed analysis of the convergence of label propagation can be found in [8].

A note on label propagation for semi-supervised learning 21

but other similarities can be used as well, provided that I − TUU remains
invertible. The similarity matrix can also be sparse—the description of some
useful matrix construction techniques can be found in [5].

We also introduce here the diagonal degree matrix defined as

D = diag(W1).

Based on the similarities we can define the transition probability matrix,

P = D−1W,

in which Pij contains the probability—based on data similarities—that from
point i we transition to point j.

The first variant propagates the labels from the labeled points towards the
unlabeled points, thus T := P ′, that is the label is determined by

Yij = P1iY1j + P2iY2j + · · ·+ PNiYNj.

Similarly to the partitioning of Y into labeled and unlabeled parts, we can
also split W, D and P, thus obtaining

YU =
(
I−P ′UU

)
P ′LUYL

= DU (DU −WUU)
−1WULD

−1
L YL. (3)

In this case re-normalization of the rows of Y is needed in the iterative
algorithm, because

k∑
j=1

Yij = P1i

k∑
j=1

Y1j + · · ·+ PNi
k∑
j=1

YNj

= P1i + P2i + · · ·+ PNi

does not sum to one. However, steps 2 and 3 of Alg. 1 can be combined into
Y = TY, where T is the row-normalized matrix of T, T ij = Tij/

∑N
k=1 Tik, ∀i, j.

Thus, it is sufficient to perform row-normalization once, right before starting
to propagate the labels.

2.2 The second variant

In the second variant the labels are propagated “backwards”, that is T := P is
used for the transition matrix, resulting in the following label determination:

Yij = Pi1Y1j + Pi2Y2j + · · ·+ PiNYNj.

22 Z. Bodó, L. Csató

In this case we can say that the label of a point is defined as the convex com-
bination of its forward neighbors’ labels. The analytic formula for calculating
the labels becomes

YU = (I−PUU)
−1PULYL

= (DU −WUU)
−1WULYL. (4)

This version of label propagation appeared in [7] and in papers published after-
wards, without mentioning the minor modification to the original algorithm.
In this variant re-normalization is not needed, since the rows of Y sum to one:

k∑
j=1

Yij = Pi1

k∑
j=1

Y1j + · · ·+ PiN
k∑
j=1

YNj

= Pi1 + Pi2 + · · ·+ PiN = 1.

All the formulae used in label propagation can be rewritten using the graph
Laplacian [2, 5], a central concept of graph-based learning methods, defined
as

L = D−W.

The Laplacian possesses some interesting and advantageous properties [5], and
will be used in Section 4 mostly to simplify the expressions.

3 Analysis of the outputs

Let us denote the u×` matrix (DU −WUU)
−1WUL appearing in both analyt-

ical formulae by A, which is a matrix with stochastic vectors in its rows. The
matrix A equals (I−PUU)

−1PUL and we will use this to prove our previous
statement (i.e. stochastic rows property). Using this notation we can write the
recursive formula of the two methods as

YU = DUAD−1
L YL (5)

YU = AYL. (6)

We can prove that the rows of A are stochastic in two steps: (i)
∑`
j=1Aij =

1, i = 1, 2, . . . , u, (ii) Aij ≥ 0, i = 1, 2, . . . , u, j = 1, 2, . . . , `. For the first
property we use eq. (6) and check the sum of the i-th row of YU, for which it
is easy to see that∑̀

j=1

(YU)ij = Ai1

k∑
j=1

Y1j + · · ·+Ai`
k∑
j=1

Y`j

= Ai1 +Ai2 + · · ·+Ai`,

A note on label propagation for semi-supervised learning 23

and since this is the second variant, we know that the rows of Y sum to one,
therefore the rows of A sum to one as well.

For the second property we consider the definition of A as (I−PUU)
−1PUL

and use the Neumann series to rewrite it as

A =

∞∑
i=0

PiUUPUL. (7)

Since both PUU and PUL contain only nonnegative values, A also contains
only nonnegatives.

From (7) the value Aij can be interpreted as the probability that the first
labeled node of a random walk starting at unlabeled node i is j.

In the first variant we can leave out the multiplication with DU, observing
that it does not influence the result. Therefore we are left with the following
two very similar formulae:

YU = AD−1
L YL (8)

YU = AYL. (9)

4 Analysis of the optimization problems

The outputs of the presented methods can be viewed as solutions of specific
(semi-supervised) optimization problems. In this section we present and ana-
lyze the corresponding problems. We start with the second variant, because
the optimization problem of the first label propagation variant can be viewed
as a special case of the second variant’s minimization problem.

Statement 1 The output labels (4) in the second variant of label propagation
are also a solution of the following optimization problem:

min
yi,i=`+1,...,N

1

2

N∑
i,j=1

Wij‖yi − yj‖2, (10)

where yi denotes the i-th row of Y, that is the probabilistic vector assigned to
the i-th data point.

24 Z. Bodó, L. Csató

Proof. The minimizable expression can be written as tr(YY ′L) = tr(Y ′LY),
because

1

2

N∑
i,j=1

Wij‖yi − yj‖2 =
1

2

∑
i

y ′iyi
∑
j

Wij +
1

2

∑
j

y ′jyj
∑
i

Wij −
∑
i,j

Wijy
′
iyj

=
∑
i,j

y ′iyiDii −
∑
i,j

Wijy
′
iyj = tr(Y ′DY) − tr(Y ′WY)

= tr(Y ′LY).

Hence we can rewrite the optimization problem (10) in the more compact form
of

min
YU

tr(Y ′LY). (11)

The YU that minimizes the above expression can be found by taking the
derivative of the trace with respect to YU and setting it equal to zero. First we
partition L and Y into labeled and unlabeled blocks, similarly to the matrices
in (1), and expand our formula

Y ′LY = Y ′LLLLYL +Y ′ULULYL +Y ′LLLUYU +Y ′ULUUYU.

Applying the trace operator we get

tr(Y ′LY) = tr(Y ′LLLLYL + 2Y
′
ULULYL +Y ′ULUUYU).

Then we take the derivative of the trace with respect to YU and set it equal
to zero, thus obtaining

YU = −L−1
UULULYL = (DU −WUU)

−1WULYL. (12)

as in (4).3 �

Statement 2 The output labels (3) of the first variant of label propagation
minimize the following expression:

min
yi,i=`+1,...,N

1

2

N∑
i,j=1

Wij

∥∥∥∥ yi
Dii

−
yj
Djj

∥∥∥∥2 , (13)

where Dii is the i-th diagonal element of D.

3In the derivation we used the following properties of the trace [4]: tr(A + B) = tr(A) +

tr(B), tr(A ′) = tr(A), ∂ tr(X ′A)
∂X

= A, ∂ tr(X ′AX)
∂X

= (A + A ′)X.

A note on label propagation for semi-supervised learning 25

Proof. By using the substitution zi := yi/Dii (or Z := D−1Y) we arrive to
the following optimization problem

min
yi,i=`+1,...,N

1

2

N∑
i,j=1

Wij ‖zi − zj‖2 .

Similarly to our previous proof, we can write this as tr(Z ′LZ), which equals
tr(Y ′D−1LD−1Y), where for simplicity we use the substitution G := D−1LD−1.
Thus our optimization problem becomes

min
YU

tr(Y ′GY).

Apart from the middle square matrix, this problem is identical to (11), there-
fore we can apply the same derivation. Using the results from (12) and sub-
stituting L back we obtain

YU = −G−1
UUGULYL = DU(DU −WUU)

−1WULDL
−1YL,

as in (3). �

The optimization problem in (10) can be explained as follows: we want to
determine the stochastic vectors yi, belonging to the unlabeled points, so that
to minimize the distance between these class membership vectors depending
on, i.e. weighted by the similarities of the neighboring points. The first variant
is a normalized version of the second: here, instead of L we use D−1LD−1,
a normalized graph Laplacian.4 By dividing yi by the degree of the point a
greater weight is assigned to points having fewer or distant neighbors. This,
as will be shown in the experiments, can yield a more balanced solution.

5 Experimental results and discussion

In the experiments we used 7 benchmark datasets from [1].5 The main prop-
erties of these sets are summarized in Table 1. Every set has 2× 12 splits: 12
random splits with 10 labeled points and 12 splits with 100 labeled points. In
our experiments we used only the first split of the datasets with 10 labeled
data.

4This Laplacian is the normalized version of the symmetric normalized Laplacian from
[5].

5The datasets can be downloaded from http://olivier.chapelle.cc/ssl-book/

benchmarks.html.

http://olivier.chapelle.cc/ssl-book/benchmarks.html
http://olivier.chapelle.cc/ssl-book/benchmarks.html

26 Z. Bodó, L. Csató

Dataset Classes Dimension Points Note

g241c 2 241 1500 artificial
g241n 2 241 1500 artificial
Digit1 2 241 1500 artificial
USPS 2 241 1500 imbalanced
COIL2 2 241 1500

BCI 2 117 400

Text 2 11 960 1500 sparse discrete

Table 1: Properties of the datasets used in the experiments.

Dataset σ E ∆E ∆YU Iterations

g241c 5.8845 0.5013 0 5.1548 1219 1066

g241n 5.8914 0.5020 0 1.1718 1191 1133

Digit1 0.3941 0.2409 0 0.0334 7235 7270

USPS∗ 0.9 0.1906 0 0.7705 1 1

COIL2
∗ 400 0.4993 0 3.12 · 10−13 932 839

BCI 1.7296 0.5333 0 0.0378 3060 3083

Text∗ 1.3 0.4987 0 0.0045 780 781

Table 2: Experimental results obtained using Gaussian similarity with the
indicated parameter: E – error, ∆E – error difference, ∆YU – norm of the
difference vector of the outputs.

Besides these we experimented with other two sets for visually demonstrat-
ing the difference between the analyzed methods. The first of these is the
2moons dataset containing 2 labeled and 383 unlabeled points, while the sec-
ond simple dataset contains 2 labeled and 8 unlabeled points.6

The results obtained are shown in Table 2. In all the experiments we used
the Gaussian similarity (2) where the parameter was set using the procedure
described in [8]. The minimum spanning tree of the data was constructed using
Kruskal’s algorithm [3]. The process of building the tree, i.e. connecting the
points proceeds until the components being connected contain opposite labels;
the length of this peculiar edge is denoted by d0. Then—following the three-
sigma or 68−95−99.7 rule of the normal distribution [6]—the σ parameter of
the Gaussian similarity is set to d0/3. In this way it is expected that the “local
propagation is mostly within classes” [8]. In four cases this method provided

6The datasets can be downloaded from http://www.cs.ubbcluj.ro/~zbodo/datasets.

html.

http://www.cs.ubbcluj.ro/~zbodo/datasets.html
http://www.cs.ubbcluj.ro/~zbodo/datasets.html

A note on label propagation for semi-supervised learning 27

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) (b)

−10 −5 0 5 10 15 20

−5

0

5

10

−10 −5 0 5 10 15 20

−5

0

5

10

(c) (d)

Figure 1: The output of (the first and second variant of) label propagation for
the (a), (b) simple and (c), (d) 2moons datasets.

acceptable values, but for the remaining sets (marked with a star in Table 2)
resulted in ill-conditioned (nearly singular) (DU −WUU) matrices. For these
datasets the indicated parameters were set by investigating the histogram of
the kernel values.

We list four values: (i) the error, (ii) the error difference ∆E, that is ∆E =
|E1−E2|, where Ei is the error obtained by the i-th method, (iii) the Frobenius
norm of the difference vector of the outputs, ∆YU =

∥∥Y1
U −Y2

U

∥∥
F

and (iv) the
number of iterations. The first three of these are calculated using the analytical

28 Z. Bodó, L. Csató

formulae (3) and (4). In the last two columns of the table we show the number
of iterations required for the iterative algorithms to converge; convergence was
reached when the Frobenius norm of the difference matrix obtained from two
consecutive steps did not exceed 10−3. The initial matrix of YU was set to[
1 0

]
.7

In the contour plots of Figure 1 the outputs of label propagation are shown
for two datasets: (a) and (b) show the results of the first and second variant of
label propagation for the simple dataset, while (c) and (d) present the assigned
labels for the 2moons dataset. In both cases the Gaussian similarity was used
with parameter σ = 3. The encircled points denote the labeled data and the
thicker black curves show the decision boundaries of the classifier.8 These were
determined using the following methodology. Considering the optimization
problems (10) and (13) one can determine the label of a newly arrived point
by taking the derivative of the new objective functions with respect to y (y
denoting the new, unknown label of the new point x):

C1 +

N∑
i=1

w(x,xi)

(
y

d
−
yi
Dii

)2

C2 +

N∑
i=1

w(x,xi)(y− yi)
2,

where C1 and C2 denote the unchanged parts of the objective functions and
w(x,xi) is the similarity of points x and xi. Setting the derivatives equal to
zero and expressing the label we obtain

y =

N∑
i=1

w(x,xi)∑N
j=1Wij

yi

y =

N∑
i=1

w(x,xi)∑N
j=1w(x,xj)

yi

for the two variants. For the labels of the unlabeled points (yi) in the dataset
the labels given by the algorithms were used in the above formulae (not the
true labels).

7We also experimented with class mass normalization [9] that uses the prior class distri-
bution to influence the predictions, but no significant differences were observed in the results,
therefore these results are not divulged here.

8We used here the binary version of label propagation, where Y is an N × 1 vector,
YL ∈ {−1,+1}`; yi ≥ 0 denotes a positive class assignment and yi < 0 a negative label.

A note on label propagation for semi-supervised learning 29

Examining the ∆E, ∆YU values and the iteration counts in Table 2 we can-
not notice considerable differences. The error values show the inadequacy of
the learning algorithm or its parameters.9 We obtained seemingly acceptable
error rates for two datasets, but the only set where label propagation per-
formed well was Digit1, taking into account the imbalanced class distribution
in the USPS dataset. In order to somehow experimentally compare the two
variants we decided to use some toy datasets where the results can be easily
visualized. Comparing the results in Figure 1 one can see that the normal-
ization included in the first variant resulted in more balanced (and correct)
solutions. We saw that (8) and (9) only differ by the inverse of the diagonal
degree matrix DL, a neglectable computational load from a complexity point
of view. The iterative algorithms differ in no steps, since in the first variant it is
sufficient to perform row-normalization only once, as discussed in Section 2.1.
Normalizing the labels by the points’ degree, however, can result in a more
natural, more balanced labeling. Therefore, concluding the theoretical analysis
and the experiments performed, we recommend to prefer the first variant of
label propagation over the second variant, where possible.

Acknowledgement

The authors acknowledge the support of the Romanian Ministry of Education
and Research via grant PN-II-RU-TE-2011-3-0278.

References

[1] O. Chapelle, B. Schölkopf, A. Zien, Semi-Supervised Learning, The MIT Press,
Cambridge, 2006. ⇒18, 19, 25

[2] F. Chung, Spectral Graph Theory, volume 92 of Regional Conference Series in
Mathematics, AMS, Philadelphia, 1997. ⇒22

[3] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Amer. Math. Soc., 7, 1 (1956) 48–50. ⇒26

[4] H. Lütkepohl, Handbook of Matrices, John Wiley & Sons, Chichester, 1996. ⇒
24

[5] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17, 4 (2007)
395–416. ⇒21, 22, 25

[6] M. W. Trosset, An Introduction to Statistical Inference and Its Applications with
R, Chapman & Hall/CRC Texts in Statistical Science, CRC Press, Boca Raton,
2009. ⇒26

9By parameters we refer both to the similarity function and its parameters.

http://olivier.chapelle.cc/
http://www.is.tuebingen.mpg.de/employee/details/bs.html
http://www.raetschlab.org/members/zien
http://olivier.chapelle.cc/ssl-book/
http://mitpress.mit.edu/
http://www.math.ucsd.edu/~fan/
http://www.math.ucsd.edu/~fan/research/revised.html
http://en.wikipedia.org/wiki/Joseph_Kruskal
http://www.ams.org/publications/journals/journalsframework/proc
http://www.wiwiss.fu-berlin.de/fachbereich/vwl/luetkepohl/MitarbeiterNeu/Luetkepohl.html
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488[0].pdf
http://www.springer.com/statistics/computational+statistics/journal/11222
http://mypage.iu.edu/~mtrosset/

30 Z. Bodó, L. Csató

[7] X. Zhu, Semi-supervised learning with graphs, PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, USA, 2005. ⇒18, 19, 22

[8] X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with label
propagation, Technical Report CMU-CALD-02-107, Carnegie Mellon University,
2002. ⇒18, 19, 20, 26

[9] X. Zhu, Z. Ghahramani, J. D. Lafferty, Semi-supervised learning using gaussian
fields and harmonic functions, Proc. 20th ICML, 2003. pp. 912–919. ⇒28

Received: August 11, 2014 • Revised: January 23, 2015

http://pages.cs.wisc.edu/~jerryzhu/
https://www.lti.cs.cmu.edu/research/thesis/2005/xiaojin_zhu.pdf
http://www.cmu.edu/
http://pages.cs.wisc.edu/~jerryzhu/
http://mlg.eng.cam.ac.uk/zoubin/
http://www.cs.cmu.edu/~zhuxj/pub/CMU-CALD-02-107.pdf
http://www.cmu.edu/
http://pages.cs.wisc.edu/~jerryzhu/
http://mlg.eng.cam.ac.uk/zoubin/
http://galton.uchicago.edu/~lafferty/
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

Acta Univ. Sapientiae, Informatica 7, 1 (2015) 31–57

DOI: 10.1515/ausi-2015-0011

Bin packing with directed stackability

conflicts

Attila BÓDIS
University of Szeged

email: bodis.attila@gmail.com

Abstract. The Bin Packing problem is a well-known and highly investi-
gated problem in the computer science: we have n items given with their
sizes, and we want to assign them to unit capacity bins such, that we use
the minimum number of bins.

In this paper, some generalizations of this problem are considered,
where there are some additional stackability constraints defining that
certain items can or cannot be packed on each other. The correspond-
ing model in the literature is the Bin Packing Problem with Conflicts
(BPPC), where this additional constraint is defined by an undirected
conflict graph having edges between items that cannot be assigned to
the same bin. However, we show some practical cases, where this conflict
is directed, meaning that the items can be assigned to the same bin, but
only in a certain order. Two new models are introduced for this problem:
Bin Packing Problem with Hanoi Conflicts (BPPHC) and Bin Packing
Problem with Directed Conflicts (BPPDC). In this work, the connection
of the three conflict models is examined in detail.

We have investigated the complexity of the new models, mainly the
BPPHC model, in the special case where each item have the same size.
We also considered two cases depending on whether re-ordering the items
is allowed or not.

We show that for the online version of the BPPHC model with unit
size items, every Any-Fit algorithm gives not better than 3

2
-competitive,

Computing Classification System 1998: F.2.2
Mathematics Subject Classification 2010: 68R05
Key words and phrases: Bin Packing Problem, conflicts, directed conflicts, Hanoi conflicts,
unit size items, dynamic programming

31

http://www.u-szeged.hu
mailto:bodis.attila@gmail.com

32 A. Bódis

when it is forbidden for the optimum to re-order the items, even if only
2 stackability classes, called Hanoi classes, are applied. This lower bound
is generalized for arbitrary number of Hanoi classes. However, we also
prove, that asymptotically the First-Fit algorithm is 1-competitive for
this case.

Finally, we introduce an algorithm for the offline version of the BP-
PHC model with unit size items, which has polynomial time complexity,
if the number of the Hanoi classes and the capacity of the bins are con-
stant.

1 Introduction

The Bin Packing Problem is one of the most known and investigated fields of
the computer science, probably because it has several practical applications
such as filling up boxes with certain products, loading trucks, etc. The problem
is that we have n items given with their sizes, and we want to assign them to
unit capacity bins so, that we use the minimum number of bins.

More formally, we have a set N = {1, 2, . . . , n} of items, each item i has a
size si, the bins have a capacity c, and we want to assign each item to one bin
such that the total size of items in each bin is not exceeding c, and we use the
minimum number of bins.

There are several variants of this problem in the literature including multi-
dimensional cases, fragile objects, class-constrained items, coloured items, etc.
We will summarize these models in Section 2.

In this work, we investigate a variant of the Bin Packing Problem, where
additional constraints are occurred because of practical directed stackability
conflicts, like some items are fragile and others are too heavy to pack them on
each other. This kind of conflicts are quite common in industrial applications,
especially in logistical ones.

After a short summary of the relevant existing variants of the Bin Packing
Problem in Section 2, two new models are introduced for the mentioned di-
rected stackability conflicts in Section 3. Then, the new models are compared
with the corresponding model from the literature in Section 4.

We examined the complexity of a special case of the new models, where each
item has unit size. This case is described, and the complexities are investigated
for the two new models in Section 5.

Bin packing with directed stackability conflicts 33

2 Previous results

Unfortunately, in the real world applications the bin packing problem, just like
a lot of computational problems, rarely happens in a pure way. Usually, there
are additional constraints permitting or forbidding the assignment of specific
items to specific bins based on the content of the bins, or determining the
order of items in the bins. Various models are published for the Bin Packing
Problem handling different kind of additional constraints mostly inspired by
some kind of practical application. In this section, we will overview some of
the existing models, especially the ones that are created for a similar approach
to the current work.

First of all, we recall some definitions in connection with the approximation
algorithms. For an algorithm A, the solution of A for a given input X is de-
noted by A (X), and the optimal offline solution is usually denoted by OPT (X).
The approximation ratio (called also competitive ratio in online cases) for a
minimization problem is the minimal C value such that A (X) ≤ C ·OPT (X)
is true for any X input. The asymptotic approximation (or competitive) ratio
is defined similarly, but with OPT (X) approaching infinity.

Our first discussed generalization is the Bin Packing Problem with Fragile
Objects, where each item have a fragility value in addition to its size, and
the corresponding constraint is that the sum of the item sizes in a bin cannot
exceed the fragility of any item in that bin. This problem is studied by for
example Bansal et al. [2] and Clautiaux et al. [4]. The idea of handling the
fragile objects is similar to the practical applications inspiring the current
work, but we believe this model is quite difficult to extend to more than only
one special object type, meaning the fragile ones.

In the Class Constrained Bin Packing problem, proposed by Shachnai and
Tamir [22, 23], we have an additional parameter for every items defining the
class of that item, and each bin has a storage capacity beside the load capacity,
meaning that the number of different classes in the bins cannot exceed this
storage capacity. In their paper, Shachnai and Tamir introduced a PTAS for
the offline version of this problem. The online version was first investigated in
a paper of the same authors [21]. Xavier and Miyazawa published results of
application of this problem to Video-on-Demand services [26]. Further research
on approximation algorithms for special cases of the problem was presented
by Epstein et al. [11].

The class-constraint is limiting the number of different items in each bins,
but this does not say anything about the order of the items in the bins. The
next studied variant is exactly a constraint specifying this order. This is the

34 A. Bódis

Colored Bin Packing problem studied recently in some papers [1, 3, 7]. In this
model, the items have a color value, and the additional constraint is that one
cannot put two items with the same color successively in the same bin. Böhm
et al. [3] showed that the classical algorithms First-Fit, Best-Fit and Worst-Fit
are not constant competitive. A special case is investigated by Balogh et al.
[1], when there are only two colors, black and white, and they have shown a
lower bound about 1.7213 on the asymptotic competitive ratio for any online
algorithm.

There is a model which is more similar to the one discussed in this work,
than the above ones, this is the Bin Packing Problem with LIB (’Largest
In Bottom’) constraints, which has been also investigated by several authors
[10, 9, 16, 17]. This additional constraint means that one cannot put an item
on another one with smaller size. Epstein [10] proved that First-Fit gives not
better than 2.5 competitive for the online case, which was improved by Dósa
et al. [9] to about 2.1666, and they also mentioned a model of Generalized LIB
constraint, where the constraint is defined by an undirected incompatibility
graph based on the sizes of the items, and adjacent items cannot be packed
into the same bin.

The Bin Packing Problem with Conflicts (BPPC) model, investigated by
several authors, like Jansen and Öhring [14], Jansen [13], Sadykov and Van-
derbeck [20] etc., is very similar to the Generalized LIB constraint in the sense
that both models use a conflict graph G = (V, E), where E is the set of edges
so, that if (i, j) ∈ E, then the items i and j cannot be packed into the same
bin.

The Bin Packing Problem with Conflicts model is very general as basically
any kind of graph can be used as a valid conflict graph. There are papers also
about special conflict graphs, for example McCloskey and Shankar published
results for the case of clique-graphs [19], Jansen and Öhring [14], and also
Epstein and Levin [12] studied perfect conflict graphs, and bipartite graphs.
Khanafer et al. [15] investigated the two-dimensional variant of this problem.

Finally, our contribution to the field of constrained bin packing is that, in
this work, we will introduce a new stackability constraint considering the order
of the items, and we will generalize the BPPC model with directed edges.

3 Model definition

In this section, we show some of the real world applications where the undi-
rected conflict graph of the BPPC model is not appropriate, and we define a

Bin packing with directed stackability conflicts 35

new model, which is partly based on the practical solutions, handling these
special stackability constraints. Then, we introduce another model, which is
generalizing all of the mentioned conflict models.

3.1 Problem definition

As we already mentioned, the computational problems rarely happen purely
in the real-world applications, and this is true for the Bin Packing Problem
as well. At several fields of the everyday life, we want to assign our items into
bins such that some items cannot be packed on each other. This problem is
partly handled by the existing BPPC model, but this is not able to handle
the case where the conflict is directed. This direction means that the conflict
occurs only when the items are packed into the same bin in a given order.
For example, there are some fragile products, and we do not want to put
them at the bottom of the bins, but we can put them on the top of the bins
independently from the content of the bins.

These stackability problems are present in several logistical approaches, like
palletisation, when heterogeneous unit loads are expected to be stable enough
for transportation, or truck loading, where we want to consider the unload-
ing order. This also occurs in the everyday life, when we want to pack into
minimum number of bags at the shop, such that we do not want to put the
milk carton on the tomatoes but it can be packed on the potatoes, or even the
tomatoes can be placed on the cartons.

Many other examples could be written for the practical applications, where
the conflicts are directed. However, this kind of constraints is not handled in
the BPPC. Actually, when we have a fixed order of the items, then we can
define the edges such that this constraint is taken into consideration, as we
will show this in Section 4., but this is not the case for the general problem.

3.2 Bin packing problem with hanoi conflicts (BPPHC)

What is common in the mentioned applications is that there are constraints
between the items specifying the order of the items in the bins. These con-
straints are describing some kind of stackability between the items, which can
be defined by precedences or stability expectations, but in either cases it means
that some items can or cannot be put on other ones. This definition is very
similar to the one appearing at the mathematical game called Tower of Hanoi,
in the sense that there are also specific items that cannot be put on other ones.
So we will name these restrictions to Hanoi conflicts in this work.

36 A. Bódis

Based on the observation of the real-world approaches, we introduce a gen-
eralized bin packing problem handling these stackability constraints. The gen-
eralization appears in the description of the items. In our model, each item i is
described not only by its size si, but also by an additional value determining
its Hanoi property.

Definition 1 The Hanoi property of an item i is hi ∈ H = {1, . . . ,m}, where
H is the set of possible Hanoi properties.

Definition 2 The Hanoi conflict is that one cannot put any item on another
one with higher Hanoi property. More formally, if item i is assigned to a bin
earlier than item j, then one can put item j into the same bin as item i if and
only if hi ≤ hj.

Using the definition of the Hanoi conflict, the Bin Packing Problem with
Hanoi Conflicts is defined as following. We have a set N = {1, 2, . . . , n} of
items, each item i has a size si and a Hanoi property hi, the bins have a
capacity c, and we want to assign each item to one bin such that the total size
of items in each bin is not exceeding c, the Hanoi conflicts are considered, and
we use the minimum number of bins.

In order to describe a possible mathematical formulation for this model, we
have to introduce some indicator variables, based on the formulation for the
standard BPP by Martello and Toth [18]. Let denote xi,j if item j is assigned
to the bin i, or not, and let yi denote if the bin j is used or not. More precisely:

xi,j =

{
1 if item j is assigned to bin i,

0 otherwise,
(1)

yi =

{
1 if bin i is used,

0 otherwise.
(2)

Then the model for the BPPHC can be defined as the following.

Bin packing with directed stackability conflicts 37

minimize z =

n∑
i=1

yi (3)

subject to

n∑
j=1

sixi,j ≤ cyi i ∈ N = {1, . . . , n} (4)

n∑
i=1

xi,j = 1 j ∈ N (5)(
n∑

k=1

xk,i · xk,j

)
(i− j) (hi − hj) ≥ 0 i ∈ N, j ∈ N (6)

yi ∈ {0, 1} i ∈ N (7)

xi,j ∈ {0, 1} i ∈ N, j ∈ N. (8)

This formulation differs from the one for the standard Bin Packing Problem
only in the extra constraint (6). The sum is defining that item i and j are
assigned to the same bin taking the value of either 1 or 0. The second and
the third factors are assuring the consideration of Hanoi conflict between the
two items: the sign of them must be the same, meaning that the item assigned
later to the bin must have the higher Hanoi property.

We note that this formulation is not linear, because we take the product
of variables in the constraint (6). We also mention that this constraint is
assuming that item i is the ith item being assigned to a bin, which means that
re-ordering the items is not allowed. We will discuss this additional assumption
in detail in Subsection 5.2.

3.3 Bin packing problem with directed conflicts (BPPDC)

Obviously, our Bin Packing Problem with Hanoi Conflicts model is somehow
connected to the BPPC model, as the Hanoi constraints can be represented
as a conflict graph. However, while in the BPPC an edge (i, j) means item i

and item j cannot be assigned to the same bin, in the BPPHC model this edge
means only that item j cannot be assigned to the same bin as item i later than
item i, but it can be assigned to that bin earlier. Thus, in our model the graph
is directed according to the Hanoi conflicts.

Since the Hanoi conflicts imply a directed conflict graph, let introduce the
Bin Packing Problem with Directed Conflicts (BPPDC) model. We have the
set of items N = {1, 2, . . . , n}, each item i has a size si, the bins have a capacity

38 A. Bódis

c, and we have a directed conflict graph G = (V, E), where E is the set of edges
so, that if (i, j) ∈ E, then the item i cannot be packed on top of item j in
the same bin. We want to assign each item to one bin considering this conflict
graph such that the total size of items in each bin is not exceeding c, and we
use the minimum number of bins.

The mathematical formulation of this model can be created using the idea
of the BPPHC model.

minimize z =

n∑
i=1

yi (9)

subject to

n∑
j=1

sjxi,j ≤ cyi i ∈ N = {1, . . . , n} (10)

n∑
i=1

xi,j = 1 j ∈ N (11)(
n∑

k=1

xk,i · xk,j

)
(i− j) ≥ 0 (i, j) ∈ E (12)

yi ∈ {0, 1} i ∈ N (13)

xi,j ∈ {0, 1} i ∈ N, j ∈ N (14)

The notes for the model of the BPPHC are relevant for this model as well:
this is not a linear formulation, and re-ordering the items is not allowed.

4 Connection to the bin packing problem with con-
flicts

In this section, firstly, we will show the connections between the mentioned
three conflict models. Then, we will show the importance of the order of the
input items, and we will analyse the models considering this order.

The connection of the models is briefly visualized, and also the theorems
describing that certain connection is shown, on Figure 1.

4.1 Connections between the three conflict models

In this subsection, we will show that the BPPDC model is the most general
among the three models, and that the BPPDC and the BPPHC models are
equivalent under certain conditions.

Bin packing with directed stackability conflicts 39

BPPC

BPPDC

BPPHC

T
heorem

3

T
heorem

9

T
he

or
em

4

T
he

or
em

8

T
he

or
em

13

Theorem 11

Figure 1: The connection of the three models and the corresponding theorems

First, we present a theorem about the connection of the BPPC and the
BPPDC models.

Theorem 3 The BPPDC model is a generalization of the BPPC model.

Proof. We show that for any G = (V, E) undirected conflict graph, we can
create a G′ = (V, E′) directed conflict graph so, that the corresponding BPPC
and BPPDC models are equivalent.

This can be achieved quite simply by generating E′ from E in the following
way: E′ = {(i, j) , (j, i) | (i, j) ∈ E}, which means that we take two directed
edges for each undirected edge. It can be easily seen that this will result
exactly the same problem, because, if item i and j cannot be assigned to the
same bin in the BPPC model, then one cannot pack them into the same bin
in any order, so we have to take two directed conflicts. �

Now, let investigate the connection of the two new models: the BPPHC and
the BPPDC models.

Theorem 4 The BPPDC model is a generalization of the BPPHC model.

40 A. Bódis

Proof. We show that we can create a G = (V, E) directed conflict graph so,
that each of the Hanoi conflicts are covered by the edges meaning that, two
items are in Hanoi conflict if, and only if, there is an edge between them with
proper direction in the resulting G graph.

Let the Hanoi constraint be given by item i and j, and hi < hj, then we
take an edge (i, j) into the directed conflict graph. It is trivial, that with this
transformation we get an equivalent BPPDC model for any BPPHC input,
because the Hanoi conflict of the item i and j represents that the item i

cannot be assigned to the same bin as the item j later, than the item j, and
the taken edge denotes exactly the same in the BPPDC model. �

Our next theorem will be about the equivalency of the BPPHC and the
BPPDC models, but this is realized only under some certain conditions for
the type of the directed conflict graph. So before saying that theorem, we
have to recall some definitions in connection with the directed graphs.

Definition 5 If in a directed graph G = (V, E) having edges (u, v) ∈ E and
(v,w) ∈ E implies also having the edge (u,w) ∈ E, then the graph is called
transitive.

We also have to define a special type of the graphs, for which the equivalency
will occur.

Definition 6 A directed graph G = (V, E) is called a transitive path, if it is a
path with additional edges such that G is transitive.

Definition 7 A directed graph G = (V, E) is called a Hanoi graph, if the
graph containing its independent sets as vertices is a transitive path. With
other words, G is a Hanoi graph if it can be generated from a transitive
path G′ = (V ′, E′) in the following way. We create an independent set of
vertices Vi′ ⊆ V for every vertex i′ ∈ V ′, and we take the edges such that
E =
{
(i, j) : i ∈ Vi′ , j ∈ Vj′ , (i′, j′) ∈ E′

}
.

Now, we can present our equivalency theorem.

Theorem 8 A directed conflict graph is generated by Hanoi conflicts, if and
only if, it is a Hanoi graph.

Proof. First, we prove that the directed conflict graph generated by Hanoi
conflicts must be a Hanoi graph.

Bin packing with directed stackability conflicts 41

It is easy to see by the definition of Hanoi conflicts (Definition 2), that if
we consider the directed conflict graph G = (V, E), created with the algorithm
described in the proof of Theorem 4 from the Hanoi properties themselves,
meaning we have exactly one item for every property, then G is a transitive
path. Then, based on the definition of the Hanoi graph (Definition 7), we only
have to create the independent sets of vertices from the items with equal Hanoi
property, which is possible because there is not conflict between these items.
So, we get a Hanoi graph G′ = (V ′, E′). This means that we can always create
a directed conflict graph from the Hanoi conflicts so, that it is a Hanoi graph.

Now, we have to prove that this directed conflict graph is unique. This is
proved indirectly. Let assume that there is another directed conflict graph
G′′ = (V ′′, E′′), which defines exactly the same conflicts as the Hanoi conflicts,
and which is different from G′. As the items are the same, V ′ = V ′′ must occur,
so the difference can appear only in the edges, which is possible in two cases:

1. If there is an edge e such that e ∈ E′, but e /∈ E′′, then G′′ skips a
conflict, which is defined by the Hanoi conflicts, so it is not valid. This
is a contradiction.

2. If there is an edge e such that e /∈ E′, but e ∈ E′′, then G′′ has an extra
conflict, which is not defined by the Hanoi conflicts, so it is also not
valid. This is a contradiction, as well.

So we get, that the generated directed conflict graph is unique and it is
Hanoi graph indeed.

Secondly, we prove that any G = (V, E) Hanoi graph can be generated by
Hanoi conflicts. For this, we show that one can set the Hanoi properties of
the items such that, the resulting BPPHC model is equivalent to the original
BPPDC model.

We can give an algorithm for this transformation. First, we create the tran-
sitive path G′ = (V ′, E′) from the independent sets of vertices of G. Actually,
we make this inversely as in the definition of the Hanoi graph (Definition 7).
Then we have to set the Hanoi properties for every vertices in G′ according to
the edges. For this, we define for every vertex i′ ∈ V ′ the set of predecessors
Pi′? {j

′ | (j′, i′) ∈ E′}. Then for every item i′ with |Pi′ | = 0, actually there is only
1 such item because G′ is a transitive path, let hi′ = 1, and for every item i′

with |Pi′ | > 0 let hi′ = 1 + maxj′∈Pi′ hj′ . The resulting Hanoi properties are
correct, because any item can be packed on the items without predecessors,
and the other items cannot be packed below their predecessors, because of the
definition of the Hanoi conflicts (Definition 2). With this algorithm, we set

42 A. Bódis

the Hanoi properties only for the independent sets, but we need them for all
items. As the items in the same independent sets are not in conflict, we can
set the same Hanoi property for every item in the same independent set. So,
we managed to show that G can be generated by Hanoi conflicts. �

So, we have proved, that the equivalency between the BPPHC and the
BPPDC models is really existing under the quite strict condition of having a
Hanoi graph.

4.2 Importance of the order of the items

By definition, the effect of the Hanoi conflicts are highly dependent on the
order of the items. For example, given an item i and j, if hi < hj and item i is
assigned earlier to a bin, then item j can be assigned to the same bin. However,
if item j is arrived earlier, then item i cannot be assigned to the same bin as
item j. This means, that one can change if two items are assigned to the same
bin by changing only the order of the items. This kind of importance of the
input order is not apply in the BPPC model, because the conflict graph defines
the conflicts independently from the order.

In this section, we will show that for a fixed order of the items, any directed
conflict graph has an equal undirected conflict graph. Also, we will show that
with fixed order of items there is a special type of the directed conflict graphs
that can be transformed into Hanoi conflicts.

Theorem 9 Let be given a fixed order of the input items. Then for any di-
rected conflict graph one can find an undirected conflict graph defining exactly
the same conflicts.

Proof. Let (i, j) be an edge in the directed graph, which means that the item i

cannot be assigned to the same bin as the item j later, than item j. Considering
the given order of the items, there are two cases we have to investigate.

If item i is arrived earlier, then there is no way to assign this to a bin later,
than the item j, which is still not arrived. This means, that we can ignore this
edge, so there will not be (i, j) edge in the undirected graph.

If item j is arrived earlier, then item i definitely cannot be assigned to the
same bin as item j, because of the (i, j) directed edge. Thus, we have to add
an (i, j) edge to the undirected graph, and, according to the given order, this
has exactly the same meaning as the directed edge. �

Now, we observe the general and the acyclic directed conflict graphs for this
case. For this, we need the definition of the directed acyclic graph.

Bin packing with directed stackability conflicts 43

Definition 10 A directed acyclic graph (DAG) is a directed graph without
directed cycles, meaning that there is no way to get back to a vertex through a
path following the directed edges [24].

Theorem 11 Let be given a fixed order of the input items. Then for any
directed conflict graph G = (V, E) one can find an acyclic directed conflict
graph G′ = (V, E′) defining exactly the same conflicts.

Proof. Let C be a cycle in G. Considering the first vertex of C in the order, we
get that the edge starting from this vertex must go to a vertex arrived later,
so we can ignore this edge, because having a conflict with an item not arrived
yet is irrelevant.

This means, that, according to the given input order, we can ignore at least
one of the edges from any cycle. Thus, there exists an acyclic directed conflict
graph for any directed conflict graph. �

Before we can introduce our theorem about under which conditions is it
possible to transform a BPPDC model to a BPPHC model for a given order of
the input items, we still have to recall the definition of the (weakly) connected
directed graphs.

Definition 12 A directed graph is called (weakly) connected, if removing the
directions of the edges and considering them as undirected ones, results to a
connected undirected graph.

Theorem 13 Let be given a fixed order of the input items and a directed
conflict graph. Assuming that the items of each (weakly) connected components
of the graph is arrived in continuous blocks, meaning there is no item from
another component between any two items of the same component, and every
such component is a Hanoi graph, one can set the Hanoi properties for the
items such that, according to the given order, the resulting BPPHC model is
equivalent to the original BPPDC model.

Proof. In the second part of the proof of Theorem 8, we have shown that any
directed conflict graph, which is a Hanoi graph, can be generated by Hanoi
conflicts, and we described an algorithm to set the Hanoi properties based on
that graph. To prove the current theorem, we have to expand that algorithm
so, that it can handle multiple (weakly) connected components.

Let denote the (weakly) connected components of G = (V, E) by G1 =
(V1, E1) , G2 = (V2, E2) , . . . , Gm = (Vm, Em). Without loss of generality, we
can assume that the components are arriving in the order of their indices. We

44 A. Bódis

note, that we use here the fact that the items of each components are arrived in
a continuous block. This is important, because, if the components are merged
in the order, then we cannot disjoin them to set the Hanoi properties correctly.

Using this notation, we can define Algorithm 1, which makes the necessary
transformation. The set properties for Hanoi graph(Gi, start) function is
actually the algorithm in the second part of the proof of Theorem 8 with a
little change, that the lowest Hanoi property set for any item of Gi is at least
start, and it also updates the value of globalmax by the maximal property
appearing in Gi.

Algorithm 1: Algorithm setting the Hanoi properties for the items ac-
cording to a directed conflict graph and a fixed input order

1 globalmax := 0 ;
2 foreach Gi in G do // in the fixed input order

3 start := globalmax;
4 set properties for Hanoi graph (Gi, start);

5 end

Now, we have to prove the correctness of this algorithm. Obviously, the
Hanoi properties are set correctly inside each components as shown in the proof
of Theorem 8. We have to prove only that the Hanoi properties are appropriate
between the components, as well. In this case, appropriateness means that for
any two items from two different components, the item arrived later has the
greater Hanoi property. More formally, ∀i ∈ Gt, ∀j ∈ {G\Gt} : hi ≤ hj if and
only if item i is arrived earlier than item j. This is ensured by the usage of the
globalmax variable so, that the items of the currently visited components get
the greatest Hanoi properties, and we are visiting the components in the fixed
order. So, the items of the earlier components get the lower Hanoi properties.

�

4.3 Summary of the connections of the models

In this section, we reported our results on investigating the connections be-
tween the Bin Packing Problem with Conflicts (BPPC) from the literature,
and our two proposed models: the Bin Packing Problem with Hanoi Conflicts
(BPPHC) and the Bin Packing Problem with Directed Conflicts (BPPDC).
We have shown that the last one is the most general as the other two models
can be reduced to this one. Then we proved an equivalency theorem about BP-

Bin packing with directed stackability conflicts 45

PHC and BPPDC stating that a directed conflict graph is generated by Hanoi
conflicts, if and only if, it is a Hanoi graph. This theorem actually characterizes
the BPPHC model compared to the BPPDC model.

Then we discussed the importance of the order of the items, because, unlike
the BPPC model, this is essential for the two new models. We examined pos-
sible transformations between the models for fixed order. We pointed out that
for a fixed order, a directed conflict graph can be transformed into an undi-
rected conflict graph. Furthermore, we presented an algorithm transforming a
’special type’ of BPPDC input into BPPHC input that is this algorithm can
set the Hanoi properties for the items based on the directed conflict graph.
The ’special type’ means here that the (weakly) connected components of the
directed conflict graph must arrive in continuous blocks, meaning separately
from the other components, in the fixed order, and each of these components
must be a Hanoi graph.

5 Variants with unit size items

In this section, we will consider the above described models with a further
assumption that each item have the same unit size. This case is also investi-
gated for other variants of the Bin Packing Problem and other packing prob-
lems as well. Several authors, like Coffman et al. [5, 6], studied the ordinary
Bin Packing Problem with discrete item sizes, which is a similar, but weaker
assumption for the sizes. Shachnai and Tamir [21] proposed algorithms for the
Class-Constrained Bin Packing Problem with unit sizes.

This case has practical applications, too, mainly in logistics. For example,
we have to load truck with equal size pallets and we have to consider the order
of unloading, meaning we cannot put some pallets in front of others. Also,
this case can occur in several approaches, where different products have boxes
with same size and the conflicts are based on some logical conditions such as
one item has to be used earlier than others.

For this variant, we slightly modify our models such that si = 1 for every
item i, and c > 1 that is the capacity of the bins is higher than 1. We will call
the modified versions of the BPPHC and the BPPDC models BPPHCU and
BPPDCU models respectively, adding the ’and Unit size items’ suffix for the
names of the models.

As shown in the Subsection 4.2, the order of the items is crucial, so we will
consider two cases based on whether the algorithm can or cannot change the
order of the items.

46 A. Bódis

5.1 Ordering is allowed

If one can change the order of the input, then the problems usually becomes
easier, and this is the case for our problems, as well. In this, part, we will
introduce algorithms for both new models, when it is allowed to change the
input order.

5.1.1 BPPHCU with ordering

For the case of Hanoi conflicts, if one can re-order the items, the problem
becomes absolutely easy. Actually, in this case, there is no real effect of the
Hanoi conflicts for the result, because we can always sort the items per bin
such that we get a valid solution. This is concluded in the next theorem, where
we define an algorithm based on Next Fit giving optimal solution.

Theorem 14 The following algorithm gives optimal solution for the BPPHCU
model.

Firstly, we pack the items into bins using the Next-Fit algorithm not con-
sidering the Hanoi conflicts at all. Then we sort the items inside each bins
separately such that the Hanoi conflicts do not occur, meaning the items with
lower Hanoi property will be the earlier in the item-list of each bin.

Proof. Obviously, Next-Fit gives optimal solution for the ordinary Bin Pack-
ing Problem with Unit sizes. Then, we have to prove only, that we can sort
the items in each bins such that the Hanoi conflicts are avoided. This is also
quite trivial, because one can always sort positive integers, that is the Hanoi
properties, into non-decreasing order. �

5.1.2 BPPDCU with ordering

The BPPDCU model usually also becomes relatively easy, if we can re-order
the items, because we can make a topological order of the items resolving
exactly the directed conflicts. However, the topological sort is possible only,
if the graph is acyclic, meaning if there are items that cannot be packed into
the same bin, independently from their order in the bin, then the problem is
still not trivial.

In this work, we consider only the acyclic graphs for this problem, and the
next theorem defines an efficient algorithm, similar to the one described in
Theorem 14, to find the optimal solution in this case.

Bin packing with directed stackability conflicts 47

Theorem 15 The following algorithm gives optimal solution for the BPPDCU
model.

Firstly, we pack the items into bins using the Next-Fit algorithm not consid-
ering the directed conflict graph at all. Then we sort the items inside each bins
separately corresponding to the topological order, meaning the items appearing
earlier in the topological order will be the earlier in the item-list of each bin.

Proof. The correctness of this algorithm trivially comes from the proof of
Theorem 14 and the definition of the topological order. �

5.2 Ordering is forbidden (BPPHCU)

As we already described in Section 4.2, the order of the items is crucial in
connection with the directed conflicts including the Hanoi conflicts as well.
We have seen in the previous subsection that the problem becomes kind of
easy if we have the ability to re-order the input items. However, this is not
possible in several cases. In logistics, this is forbidden usually because of lack
of puffer spaces. For example, we have to put the pallets on a truck when it is
ready for transport, because we do not have enough space in the warehouse to
wait all the pallets. This is similar to the definition of the online problems, but
sometimes the full list of pallets is available, so the online and offline variants
of the problem is also interesting.

In this subsection, we will first investigate the online case, meaning we get
each item one-by-one, and we do not know anything about the later ones. We
show a lower-bound on the approximation ratio of the Any-Fit algorithms.
Then, we will prove that asymptotically the First-Fit algorithm, modified for
Hanoi conflicts, is 1-approximation. Finally, we will show an offline optimal
algorithm with polynomial time complexity if the number of different Hanoi
properties and the capacity of the bins are considered to be constants.

5.2.1 Online case

In this part, we investigate the online algorithms for the BPPHCU model,
when the offline optimum is restricted such that the offline algorithm can
neither re-order the items, so it has to pack the items in their incoming order.

First-Fit algorithm is widely investigated for different variants of the Bin
Packing Problem. For the standard version, it was proved by Ullman [25]
that its asymptotic approximation ratio is 1.7, and Dósa and Sgall [8] proved,
that the absolute approximation ration is the same. We have to modify this
algorithm to handle the Hanoi conflicts: the current item is assigned to the

48 A. Bódis

first not-filled bin, where the top-item, meaning the last item packed into that
bin has a lower or equal Hanoi property.

First-Fit is a member of a group of algorithms, called Any-Fit algorithms
defined by a general idea. Any-Fit algorithms always assign the current item
to any of the already open, incomplete bins, if it is possible, otherwise they
open a new bin for this item.

In the next theorem, we present a lower-bound for the Any-Fit algorithm,
when m = 2, meaning there are only 2 Hanoi classes.

Theorem 16 Every Any-Fit algorithm gives not better than 3
2 -approximation

for the BPPHCU model with m = 2.

Proof. To prove this theorem, we show an example, where the approximation
ratio of the Any-Fit algorithm is 3

2 .
Let I = [1, 1, 1, 2, 2, 2, 2, 1] be the list of input items, where the items are

given only with their Hanoi properties because we have unit sizes, and the
capacity of the bins is 4.

This is packed by Any-Fit as follows:

AF (I) = {1, 1, 1, 2} , {2, 2, 2} , {1} .

OPT can pack the items, like following:

OPT (I) = {1, 1, 1, 1} , {2, 2, 2, 2} .

We can see, that Any-Fit packed the items into 3 bins, while the optimum
can solve that problem instance with only 2 bins. So, the approximation ratio
in this case is AF(I)

OPT(I) =
3
2 �

This lower bound can be generalized to arbitrary number of Hanoi classes
using the same structured of input. This result is stated in the next theorem.

Theorem 17 Let assume m is the number of Hanoi classes, c is the capacity
of the bins, and bxc denotes the integer part of x. If c is a divisor of m, then ev-

ery Any-Fit algorithm gives not better than

⌊
m
c

⌋
(c− 1) +m

m
-approximation,

otherwise they are not better than
2m−

⌊
m
c

⌋
− 1

m
-approximation for the BP-

PHCU model.

Proof. To prove this theorem, we show an input structure for arbitrary m

and c, where the approximation ratio of the Any-Fit algorithms is exactly the
one mentioned in the theorem.

Bin packing with directed stackability conflicts 49

Let I be the list of input items as follows:

I = [1, 1, . . . , 1; ; 2, 2, . . . , 2; ; . . . ; ;m,m, . . . ,m; ;m,m− 1, . . . , 2, 1] .

Where the items are given only with their Hanoi properties because we have
unit sizes, and the capacity of the bins is c. In the input above, the semicolons
denote a separator of input blocks such that, the number of items in each
block, except the last one, is c− 1.

As the last block contains exactly one item for each Hanoi property, an
optimal solution, denoted by OPT (I), is to fill 1 bin for each Hanoi property,
because there are exactly c items for each of them, thus OPT (I) = m.

Now, let consider how the Any-Fit algorithms work on such an input. As the
items can be packed on each other in the order of input until the last block,
Any-Fit packs these items on each other until the bin is filled, then open a new
bin and do the same, which is basically a simple Next-Fit method. However,
when the algorithm reaches the last block, then it has to pack each item into
a new bin, so we get a lot of bins with only 1 item.

Firstly, let investigate the blocks containing c− 1 items. As the capacity of
the bins is c, every bin will contain items from the consecutive blocks so, that,
when we iterate through the input, the packed bins will always contain one
more item from the next block, than the previous bin. This is clearly seen on
an example, where c = 4. In this case, Any-Fit packs these input-blocks as
following:

AF (I) = {1, 1, 1, 2} , {2, 2, 3, 3} , {3, 4, 4, 4} , {5, 5, 5, 6} , {6, 6, 7, 7} , . . .

This means that after c blocks c−1 bins, called bin-block, are filled and the
next block starts with a new empty bin. Based on this property of Any-Fit, we
can divide into 3 groups the packed bins according to which part of the input
items are packed into them. The bins that are packed with items from the
blocks containing c − 1 items have 2 groups: the bins that are in a complete
bin-block, meaning having exactly c − 1 bins, and the ones that are in the
remainder bin-block. The third group of bins contains the ones being packed
with items from the last block. We note, that the first item of the last block
can be packed on the items of the previous block, and, in this case, this bin is
also in the third group.

So, to determine the bins used by the Any-Fit algorithms, we have to count
them in each groups. The number of bins in the first groups is quite trivial
considering the already mentioned fact, that after every c blocks c − 1 bins
are filled. As the number of such input blocks is m, the number of bins in the
first groups is

⌊
m
c

⌋
(c− 1).

50 A. Bódis

The third group contains exactly m bins, because every item in the last
block is placed into a new bin. We note again, that the first item is possibly
packed into the same bin as the last item of the previous block, and we count
this bin also for the third group.

The second group, that is the remainder bin-block, is a bit more complicated.
We have to consider two cases. If c is a divisor of m, then there are not any
bin in the remainder block, so the number of bins in the second group is 0.
Otherwise, let denote r the number of remained input blocks for this part.
Then r = m − 1 −

⌊
m
c

⌋
c, which is similar to the definition of the remainder

of the division m
c , except we decrease this by one, because the last block is

counted in the third group. As r < c, the number of bins used to pack these
items is exactly r, because we should have at least c blocks to save one bin.

So by summarizing the number of bins in the 3 groups, we get that if c is a
divisor of m, then the approximation ratio is the following:

AF (I)

OPT (I)
=

⌊
m
c

⌋
(c− 1) +m

m
if c is a divisor of m⌊

m
c

⌋
(c− 1) +m− 1−

⌊
m
c

⌋
c+m

m

=
2m−

⌊
m
c

⌋
− 1

m
otherwise.

�

Although, we have seen that Any-Fit has at least 3
2 -approximation ratio even

for m = 2, asymptotically the situation is much better for the First-Fit algo-
rithm. Before we show our results about this, firstly we have to introduce an
intermediate result about the incomplete bins (the ones that are not filled up
totally) during the execution of this algorithm.

Theorem 18 There are no two incomplete bins having top-items with the
same Hanoi property at any time during the execution of the First-Fit algo-
rithm.

Proof. This is proved by induction on the number of items arrived (let denote
this by i, and the Hanoi property of the last item by hi):

1. If i = 1, then we have only one item, and we have to put it into a bin,
which is incomplete, but there cannot be any other incomplete bins, so
the statement is true.

2. Let assume, we have i = k and the statement is true.

Bin packing with directed stackability conflicts 51

3. If we have i = k+1, meaning we get another item, then we have 2 cases:

(a) We can put the new item into an already incomplete bin. Then, we
have to investigate 2 sub-cases:

i. If there is not any incomplete bin with top-item having Hanoi
property hi, then we put this item into the first incomplete bin
with top-item with Hanoi property less, than hi. Thus, we have
only 1 bin with this Hanoi property on the top after assigning
this item, so the statement is true.

ii. If there is already a bin b with top-item having Hanoi property
hi, then we have to prove that the ith item is assigned to this bin
by First-Fit. We show this indirectly. Let suppose, that First-
Fit packs this item into a bin b′ such that b′ 6= b. This can
happen only if b′ is earlier, than b, but in this case, the top-item
of b would have been assigned to b′, which is a contradiction.
So the statement is true.

(b) We cannot put the new item into any of the incomplete bins because
of the Hanoi conflicts. In this case, there is not any bin with top-item
having Hanoi property hi, so, when we open a new bin to assign
the ith item, then this will be the only bin with such top-item. So
the statement is true in this case, too.

�

We note, that, although it might looks like Theorem 18 is true for the
optimal solution, this is not the case. This is shown by the following example:

Let I = [1, 2, 2, 4, 4, 4, 3, 3, 3, 3] be the list of input items, where each item is
given by its Hanoi property, and the capacity of the bins is 5.

The optimal solution for this instance is:

OPT (I) = {1, 2, 4, 4, 4} , {2, 3, 3, 3, 3} .

However, if we want to keep true for every step, that there are no two incom-
plete bins having top-items with the same Hanoi property, then we get the
following:

A (I) = {1, 2, 2, 4, 4} , {4} , {3, 3, 3, 3} .

Now, using this theorem for First-Fit, we can introduce our main result
about the asymptotical approximation ratio of this algorithm.

52 A. Bódis

Theorem 19 First-Fit algorithm is 1-approximation asymptotically for the
BPPHCU model.

Proof. The proof is based on the idea that First-Fit algorithm uses at most
OPT (I) + m bins, where OPT(I) is the number of used bins in the optimal
solution and m is the number of Hanoi classes. Consequently, we get that
lim|I|→∞ OPT(I)+m

OPT(I) = 1. To prove this, we have to consider only the incomplete
bins, because these are the ones making difference to the optimum, as even
the optimum cannot put more items to the complete bins. As we have seen in
Theorem 18, there are no two incomplete bins with top-item having the same
Hanoi property, which implies that there are at most as many incomplete bins
as Hanoi classes, that is m. Thus, we get that FF (I) − OPT (I) ≤ m, which
implies the statement. �

5.2.2 Offline case

As we already mentioned, there are some practical applications, when, despite
the fact that all the items are known in advance, we cannot sort them arbi-
trarily, for example because of lack of space or other resources. In this part, we
investigate this case: we have a full list of unit size items with Hanoi conflicts,
and we want to assign them into minimum number of bins. We propose an
offline algorithm giving optimal solution and we examine its complexity.

In the BPPHCU model, we have finite number of Hanoi properties, thus we
can define a finite number of patterns representing the possible loads of the
bins. Each pattern p looks like the following:

p =

p1,1 p1,2 · · · p1,c

p2,1 p2,2 · · · p2,c
...

...
. . .

...
pm,1 pm,2 · · · pm,c

 .

Here pi,j is the number of the used bins for the bin-pattern with load j and
top-item with Hanoi property i. This implies, that there are nc·m different
possible patterns, where n is the number of input items, c is the capacity of
each bin and m is the number of Hanoi classes, because there are c·m different
bin-patterns, and we can have n used bins from any of them.

Considering these patterns, we can introduce an algorithm, giving optimal
solution using a dynamic programming approach represented by the Algorithm
2. Before explaining this method, we have to introduce some notations.

Bin packing with directed stackability conflicts 53

Let P be the set of possible patterns, that is P ⊆ NH×{1,2,...,c}. We will
generate a matrix A ⊆ P (P)P×H, giving the set of possible patterns reached
from a specific pattern through a transition generated by an item with a
specific Hanoi property. This means, that A [p, h] is the set of patterns that
can be reached from the pattern p by assigning an item with Hanoi property
h to a bin. Furthermore, we will handle a set Ri of possible patterns for each
item i in the input, that is Ri ⊆ P (P).

Now, with these notations we can describe our algorithm finding optimal
solution for the sort-restricted BPPHCE model. Firstly, we open the first bin
for the first item by adding a pattern to R1. The added pattern pstart is defined
as follows:

pstarti,j =

{
1 if i = h1 and j = 1

0 otherwise.

Algorithm 2: Dynamic programming algorithm solving the BPPHCU
model for fixed order

1 R1.add(pstart) ; // initialize with the first item

2 for i := 1 to n− 1 do // iterate through the items

3 foreach p ∈ Ri do
4 foreach q ∈ A [p, hi+1] do
5 Ri+1.add(q);
6 S[i+ 1, q] := p;

7 end

8 end

9 end

// find the optimum;
10 min := inf;
11 min p := nil;
12 foreach p ∈ Rn do
13 x := sumi∈H,j∈{1,2,··· ,c} pi,j;

14 if x < min then
15 min := x;
16 min p := p;

17 end

18 end

54 A. Bódis

Then, we iterate through the items, and meanwhile we add the possible pat-
terns to Ri+1. This is done such that for every item i the elements of A [p, hi+1],
that is the possible patterns reached from the pattern p through a transition
generated by the item i+ 1, are inserted. Furthermore, the algorithm creates
backward pointers for every added pattern to help determine the assignments
for the optimal solution. This is handled by the matrix S ⊆ PN×P containing
a pointer to source pattern in Ri.

At the end of this loop, the set Rn contains the possible patterns after every
item is assigned, so we only have to count the used items in each patterns
and choose the minimal one. The optimal assignment of items into bins can
be retrieved by following the pointers of the matrix S.

To determine the running time of this algorithm, we have to find out the
sizes of the sets in the matrix A. As each item i can be assigned to any bin
having a top-item with Hanoi property less or equal than hi, and the elements
of matrix A contains exactly these successors, we get that for any pattern p

and Hanoi property h, |A [p, h]| = c · h, because there are c different loads for
every top-item, which means, that c ·h different patterns can be reached from
p through a transition generated by an item with Hanoi property of h. As
h ≤ m, we can say that c ·m is an upper-bound on the sizes of the sets in the
matrix. Then, we have to specify the size of the Ri sets for every item i, which
is clearly upper-bounded by the number of all possible patterns, that is nc·m,
as shown earlier. So the time complexity of the algorithm is O

(
nc·m+1 · c ·m

)
.

We can see that in this time complexity only c and m occur in exponent,
meaning that the running time of the algorithm is polynomial, if we consider
c, the capacity of the bins, and m, that is the number of Hanoi classes, as
constants, meaning these are independent from the input. This consideration
is not uncommon in practical applications, because in several fields fix Hanoi
classes are used, such as fragile, or heavy products, so the number of these
classes is really independent from the current input items, and the capacity of
the containers are also often fix.

6 Conclusion

As conclusion, we can say that we have found some practical applications of
the Bin Packing Problem that are not fully handled by the already existing
models, so we introduced two relevant variants: the Bin Packing Problem
with Hanoi Conflicts (BPPHC) and the Bin Packing Problem with Directed
Conflicts (BPPDC).

Bin packing with directed stackability conflicts 55

We deeply investigated the connection of the new models to the Bin Packing
Problem with Conflicts (BPPC), which exists in the literature. We pointed out
some important connections depending on the type on the conflict graphs. We
also examined the importance of the order of the input items. We found that
our BPPDC model is the most general one.

Furthermore, we presented results about the complexity of the problems
if all the items have unit size. We showed that in this case every Any-Fit
algorithm gives not better than 3

2 -approximation for the online version of the
Hanoi Conflicts model even for only 2 Hanoi classes, if re-ordering the input is
forbidden for the optimum. This lower bound is also generalized for arbitrary
number of Hanoi classes. However, we proved that the First-Fit algorithm is
asymptotically 1-approximation for this case.

Last, but not least, we proposed an offline algorithm giving optimal solution
for the sort-restricted Hanoi Conflicts model with unit size items which has
polynomial time complexity, if the capacity and the number of the Hanoi
classes are considered as constants.

We believe this work introduced practically important models for the Bin
Packing Problem, and further research will be useful to help solving industrial
problems.

Acknowledgements

I am very grateful to Csanád Imreh for his sustained help and the useful
comments.

References

[1] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, H. Kellerer, Zs. Tuza, Online results
for black and white bin packing, Theory Comput. Syst., 56, 1 (2015) 137–155.⇒34

[2] N. Bansal, Z. Liu, A. Sankar, Bin-packing with fragile objects and frequency
allocation in cellular networks, Wireless Networks, 15, 6 (2009) 821–830. ⇒33

[3] M. Böhm, J. Sgall, P. Vesely, Online colored bin packing, arXiv:1404.5548
[cs.DS] (2014) ⇒34

[4] F. Clautiaux, M. Dell’Amico, M. Iori, A. Khanafer, Lower and upper bounds
for the Bin Packing Problem with Fragile Objects, Discrete Appl. Math., 163, 1
(2014) 73–86. ⇒33

http://www.jgypk.u-szeged.hu/~balogh/
http://www.jgypk.u-szeged.hu/~bekesi/
http://math.uni-pannon.hu/~dosa/
http://math.haifa.ac.il/lea/
http://www.uni-graz.at/sor/Mitarbeiter/Kellerer.htm
http://www.dcs.vein.hu/tuza/
http://www.springer.com/computer/theoretical+computer+science/journal/224
http://www.win.tue.nl/~nikhil/
http://www.springer.com/engineering/signals/journal/11276
http://iuuk.mff.cuni.cz/~sgall/
http://arxiv.org/pdf/1404.5548.pdf
http://arxiv.org/pdf/1404.5548.pdf
http://www.math.u-bordeaux1.fr/~fclautia/
http://www.or.unimore.it/dellamico/
http://www.or.unimore.it/iori/iori.htm
http://www.journals.elsevier.com/discrete-applied-mathematics

56 A. Bódis

[5] Jr., E. G. Coffman, C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor,
R. R. Weber, M. Yannakakis, Bin packing with discrete item sizes part I: Perfect
packing theorems and the average case behavior of optimal packings, SIAM J.
Discrete Math., 13, 3 (2000) 384–402 ⇒45

[6] Jr., E. G. Coffman, D. S. Johnson, L. A. McGeoch, R. R. Weber, Bin packing
with discrete item sizes part II: tight bounds on First Fit, Random Structures
Algorithms, 10, 1–2 (1997) 69–101. ⇒45

[7] Gy. Dósa, L. Epstein, Colorful bin packing, Algorithm Theory – SWAT 2014,
Lecture Notes in Comput. Sci., 8503 (2014) 170–181. ⇒34

[8] Gy. Dósa, J. Sgall, First Fit bin packing: a tight analysis, 30th International
Symposium on Theoretical Aspects of Computer Science: STACS, Dagstuhl, Ger-
many, 2013, pp. 538–549. ⇒47

[9] Gy. Dósa, Zs. Tuza, D. Ye, Bin packing with ’Largest In Bottom’ constraint:
tighter bounds and generalizations, J. Comb. Optim., 26, 3 (2013) 416–436. ⇒
34

[10] L. Epstein, On online bin packing with LIB Constraints, Naval Res. Logist., 56,
8 (2009) 780–786. ⇒34

[11] L. Epstein, Cs. Imreh, A. Levin, Class constrained bin packing revisited, Theoret.
Comput. Sci., 411, 34–36 (2010) 3073–3089. ⇒33

[12] L. Epstein, A. Levin, On bin packing with conflicts, Approximation and Online
Algorithms, Lecture Notes in Comput. Sci. 4368 (2007) 160–731. ⇒34

[13] K. Jansen, An approximation scheme for bin packing with conflicts, J. Comb.
Optim., 3, 4 (1999) 363–377. ⇒34

[14] K. Jansen, S. Öhring, Approximation algorithms for time constrained scheduling,
Inform. and Comput., 132, 2 (1997) 85–108. ⇒34

[15] A. Khanafer, F. Clautiaux, E. G. Talbi, Tree-decomposition based heuristics for
the two-dimensional bin packing problem with conflicts, Computers and Opera-
tions Research, 39, 1 (2012) 54–63. ⇒34

[16] P. Manyem, Uniform sized bin packing and covering: Online version, Topics in
industrial mathematics, Springer US, 2000. ⇒34

[17] P. Manyem, R. L. Salt, M. S. Visser, Approximation lower bounds in online LIB
bin packing and covering, J. Autom. Lang. Comb., 8, 4 (2003) 663–674 ⇒34

[18] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implemen-
tations, John Wiley and Sons, 1990. ⇒36

[19] B. McCloskey, A. Shankar, Approaches to bin packing with clique-graph con-
flicts, EECS Department, University of California, Berkeley (2005) ⇒34

[20] R. Sadykov, F. Vanderbeck, Bin packing with conflicts: a generic branch-and-
price algorithm, INFORMS J. Comput., 25, 2 (2013) 244–255. ⇒34

[21] H. Shachnai, T. Tamir, Tight bounds for online class-constrained packing, The-
oret. Comput. Sci., 321, 1 (2004) 103–123. ⇒33, 45

[22] H. Shachnai, T. Tamir, Polynomial time approximation schemes for class-
constrained packing problems, Journal of Scheduling, 4, 6 (2001) 313–338. ⇒
33

http://www.ee.columbia.edu/~egc/
http://www.aueb.gr/users/courcou/
http://cm.bell-labs.com/cm/ms/former/mrg/
http://davidsjohnson.net/
http://www-math.mit.edu/~shor/
http://www.statslab.cam.ac.uk/~rrw1/
http://www.cs.columbia.edu/~mihalis/
http://www.siam.org/journals/sidma.php
http://www.siam.org/journals/sidma.php
http://www.ee.columbia.edu/~egc/
http://davidsjohnson.net/
https://www.amherst.edu/people/facstaff/lamcgeoch
http://www.statslab.cam.ac.uk/~rrw1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1098-2418
http://math.uni-pannon.hu/~dosa/
http://math.haifa.ac.il/lea/
http://www.springer.com/computer/theoretical+computer+science/book/978-3-319-08403-9
http://www.springer.com/series/558
http://math.uni-pannon.hu/~dosa/
http://iuuk.mff.cuni.cz/~sgall/
http://drops.dagstuhl.de/opus/volltexte/2013/3963/pdf/51.pdf
http://math.uni-pannon.hu/~dosa/
http://www.dcs.vein.hu/tuza/
http://www.cs.zju.edu.cn/people/yedeshi/
http://www.springer.com/new+%26+forthcoming+titles+%28default%29/journal/10878
http://math.haifa.ac.il/lea/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1520-6750
http://math.haifa.ac.il/lea/
http://www.inf.u-szeged.hu/~cimreh/
http://ie.technion.ac.il/Home/Users/levinas0.html
http://www.journals.elsevier.com/theoretical-computer-science
http://math.haifa.ac.il/lea/
http://ie.technion.ac.il/Home/Users/levinas0.html
http://www.springer.com/gp/book/9783540695134
http://www.springer.com/series/558
http://www.informatik.uni-kiel.de/en/theory-of-parallelism/staff/prof-dr-klaus-jansen/
http://www.springer.com/new+%26+forthcoming+titles+%28default%29/journal/10878
http://www.springer.com/new+%26+forthcoming+titles+%28default%29/journal/10878
http://www.informatik.uni-kiel.de/en/theory-of-parallelism/staff/prof-dr-klaus-jansen/
http://www.journals.elsevier.com/information-and-computation
http://www.math.u-bordeaux1.fr/~fclautia/
http://www.lifl.fr/~talbi/
http://www.journals.elsevier.com/computers-and-operations-research
http://www.journals.elsevier.com/computers-and-operations-research
http://math.shu.edu.cn/teacher/PrabhuManyem/
http://www.springer.com/gp/book/9780792364177
http://math.shu.edu.cn/teacher/PrabhuManyem/
http://www.jalc.de/
http://www.or.deis.unibo.it/martello.html
http://www.or.deis.unibo.it/toth.html
http://www.or.deis.unibo.it/kp.html
http://65.54.113.239/Author/1131299/ajeet-shankar
http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/CSD-05-1378.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/CSD-05-1378.pdf
http://www.math.u-bordeaux1.fr/~rsadykov/
http://www.math.u-bordeaux1.fr/~fvanderb/
http://pubsonline.informs.org/journal/ijoc
http://www.cs.technion.ac.il/~hadas/
http://www.faculty.idc.ac.il/tami/
http://www.journals.elsevier.com/theoretical-computer-science
http://www.journals.elsevier.com/theoretical-computer-science
http://www.cs.technion.ac.il/~hadas/
http://www.faculty.idc.ac.il/tami/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1425

Bin packing with directed stackability conflicts 57

[23] H. Shachnai, T. Tamir, On two class-constrained versions of the multiple knap-
sack problem, Algorithmica, 29, 3 (2001) 442–467. ⇒33

[24] K. Thulasiraman, M. N. S. Swamy, 5.7 Acyclic Directed Graphs, Graphs: Theory
and Algorithms, John Wiley and Sons, 1992. 118. ⇒43

[25] J. D. Ullman, The performance of a memory allocation algorithm., Princeton
University, Department of Electrical Engineering, Computer Science Laboratory,
(1971) ⇒47

[26] E. C. Xavier, F. K. Miyazawa, The class constrained bin packing problem with
applications to video-on-demand, Theoret. Comput. Sci., 393, 1–3 (2008) 240–
259. ⇒33

Received: January 24, 2015 • Revised: May 2, 2015

http://www.cs.technion.ac.il/~hadas/
http://www.faculty.idc.ac.il/tami/
http://www.springer.com/computer/theoretical+computer+science/journal/453
http://www.cs.ou.edu/~thulasi/
https://www.iitm.ac.in/info/fac/swamy
http://onlinelibrary.wiley.com/book/10.1002/9781118033104
http://infolab.stanford.edu/~ullman/
http://findingaids.princeton.edu/collections/ENG027
http://findingaids.princeton.edu/collections/ENG027
http://www.ic.unicamp.br/~eduardo/
http://www.ic.unicamp.br/~fkm/
http://www.journals.elsevier.com/theoretical-computer-science

Acta Univ. Sapientiae, Informatica 7, 1 (2015) 58–71

DOI: 10.1515/ausi-2015-0012

Minimization of the Perron eigenvalue of

incomplete pairwise comparison matrices

by Newton iteration

Kristóf ÁBELE-NAGY
Department of Operations Research and Actuarial

Sciences, Corvinus University of Budapest, Hungary
email: kriszo 5@yahoo.de

Abstract. Pairwise comparison matrices are of key importance in multi-
attribute decision analysis. A matrix is incomplete if some of the elements
are missing. The eigenvector method, to derive the weights of criteria,
can be generalized for the incomplete case by using the least inconsistent
completion of the matrix. If inconsistency is indexed by CR, defined by
Saaty, it leads to the minimization of the Perron eigenvalue. This problem
can be transformed to a convex optimization problem. The paper presents
a method based on the Newton iteration, univariate and multivariate.
Numerical examples are also given.

1 Introduction

When faced with a multi-attribute decision problem, where all alternatives are
already evaluated with respect to all relevant criteria, one has to determine
the subjective weights of criteria to rank the alternatives. When a decision
maker is asked to determine his own subjective weights of criteria, it is often
impossible to determine them directly. However, it may be simpler to tell

Computing Classification System 1998: G.1.6
Mathematics Subject Classification 2010: 91B06, 49M15, 90B50
Key words and phrases: incomplete pairwise comparison matrix, Perron eigenvalue, New-
ton iteration

58

http://www.uni-corvinus.hu/index.php?id=30487
http://www.uni-corvinus.hu/index.php?id=30487
http://portal.uni-corvinus.hu/?id=44509
mailto:kriszo_5@yahoo.de

Eigenvalue minimization by Newton iteration 59

how many times more important a criterion is compared to another. Ratios
are arranged in a positive n × n matrix A = [aij]i,j=1,...,n, which is called a
pairwise comparison matrix (PCM), where n is the number of criteria. For
a PCM aij =

1
aji

holds for all i, j = 1, . . . , n, thus every element is 1 in the

diagonal. A PCM is consistent, if the cardinal transitivity property aikakj = aij
holds for all i, j, k = 1, . . . , n, otherwise it is called inconsistent. The aim is
to derive weight vector w = (w1, w2, . . . , wn)

T from a PCM that includes the
decision maker’s subjective judgments.

PCMs can also be used to rank alternatives with respect to a given criterion.
Another application of PCMs is to determine the voting power of each decision
maker in a group decision problem.

There are several methods for deriving the weight vector [4], we however
use the so called eigenvector method proposed by Saaty [14, 15]. For a con-
sistent PCM the following eigenvector equation holds: Aw = nw, where
wi/wj = aij, wi > 0,

∑
wi = 1. However, PCMs given by real decision makers

are rarely consistent. Following the previous equation, Saaty proposed the fol-
lowing method (called the eigenvector method), to gain a weight vector, and
also to measure inconsistency. Applying the Perron-Frobenius theorem to a
(consistent or inconsistent) PCM, it yields that there is a unique positive Per-
ron eigenvalue λmax, and the corresponding right eigenvector is also positive. It
is also known that λmax = n. Weights can be approximated even in the incon-
sistent case by the right eigenvector corresponding to λmax (normalizing such
that the sum of the weights equal 1), also denoted w. The eigenvector method
provides the weights as the normalized right eigenvector corresponding to the
Perron eigenvalue of the PCM.

There are several inconsistency indices in the literature [4], but in the paper
we will only discuss one of them: Saaty defined [14] inconsistency index CR =
CI
ACI , where CI = λmax−n

n−1 , and ACI denotes the mean value of CI calculated
from randomly generated PC matrices of size n × n. Saaty also proposed
that PCMs below the threshold CR = 0.1 are to be considered acceptably
inconsistent. CR is a positive linear transformation of λmax: the higher λmax
is, the more inconsistent the given PCM is.

In some cases, not all elements of a PCM can be or are desired to be filled in.
It can take a lot of effort to obtain all n(n−1)2 pairwise comparisons, especially
for large PCMs. In this case, missing elements are allowed in the matrix. Such
a matrix is called an incomplete pairwise comparison matrix [7, 9], and has
the following general form:

60 K. Ábele-Nagy

A =

1 a12 ∗ . . . a1n

1/a12 1 a23 . . . ∗
∗ 1/a23 1 . . . a3n
...

...
...

. . .
...

1/a1n ∗ 1/a3n . . . 1

 ,
where ∗ stands for missing elements. They can be in any position except the
diagonal, and are symmetric in the sense that if aij is missing, then aji is
missing, too.

Substitute a variable for each missing element while keeping the reciprocal
symmetry rule in mind, and let M denote the number of missing elements
above the main diagonal:

A(x) = A(x1, x2, . . . , xm, . . . , xM) =

1 a12 x1 . . . a1n

1/a12 1 a23 . . . xM
1/x1 1/a23 1 . . . a3n

...
...

...
. . .

...
1/a1n 1/xM 1/a3n . . . 1

 .

The aim is still to obtain a weight vector from the matrix. To facilitate this,
the eigenvector method can be generalized to the incomplete case, as pro-
posed by Shiraishi, Obata and Daigo [16, 17]. The solution to the eigenvector
method shall be the Perron eigenvector corresponding to the least inconsistent
completion of the incomplete PCM. Let inconsistency index CR be applied,
therefore, the aim is to minimize CR, or equivalently, the Perron eigenvalue
λmax:

min
x∈RM

+

λmax(A(x)), (1)

where RM+ denotes the positive orthant of the M-dimensional Eucledian space.
This will be our basic problem from now on.

Key to the existence of the minimum of λmax is that problem (1) can
be transformed into a convex optimization problem [2], using the following
method: Parametrize incomplete PCM A(x) = A(x1, x2, . . . , xm, . . . , xM) such
that xm = etm , (m = 1, 2, . . . ,M). This way we gain matrix B:

A(x) = B(t) = B(t1, t2, . . . , tm, . . . , tM) = A(et1 , et2 , . . . , etm , . . . , etM).

λmax(B(t)) is now a convex function of t [2].

Eigenvalue minimization by Newton iteration 61

Bozóki et al. [2] characterized when a unique solution exists to problem
(1). The graph corresponding to an incomplete pairwise comparison matrix is
defined as follows: G = (V, E), V = 1, 2, . . . , n (vertices correspond to criteria),
E = {e(i, j) | aij is given in the matrix, i < j} (edges correspond to pairwise
comparisons). In other words, two vertices are connected by an edge if the
element corresponding to their pairwise comparison is not missing.

Theorem 1 [2] There exists a unique solution to minx∈RM
+
λmax(A(x)) if and

only if the graph corresponding to matrix A is connected.

We will also need the partial derivatives of λmax with respect to the elements
of the PCM. According to Harker’s formulas [8] both the first and second
derivatives can be calculated. These formulas can be found in the Appendix.

In the next section three methods are presented to solve problem (1). First
one is the method used by Bozóki et al. [2], which is based on the method
of cyclic coordinates, and uses Matlab’s fminbnd function to solve univariate
problems. Second and third ones are the main contributions of the paper. Both
methods apply Newton iteration, univariate (Section 2.1.2) and multivariate
(Section 2.2). The univariate method is similar to the method using fminbnd.
It also uses cyclic coordinates, but the inner univariate problem is solved by
Newton iteration. The multivariate method is based on the multivariate New-
ton iteration. A numerical example is presented in section 3. Some of the issues
presented in the paper have already been considered, in Hungarian, in [1].

2 Algorithms for optimal completion

2.1 Cyclic coordinates

Let us consider an incomplete pairwise comparison matrix A with a connected
graph. Let d denote the number of missing elements from the upper triangle
of A, so A = A(x1, . . . , xM). Bozóki et al. [2] proposed a completion method
based on cyclic coordinates, as follows. Every variable is given a starting value

of x
(0)
m ,m = 1, 2, . . . ,M. Every iteration is composed of M steps. In the first

step of the first iteration, let x1 be the only free variable, while the others are

fixed at their starting values x
(0)
m ,m = 2, 3, . . . ,M. Let the single optimum of

this single variable optimization problem (minx1λmax) be x
(1)
1 . In the second

step of the first iteration, let x1 be fixed at the value of x
(1)
1 , and let x2 be

the free variable, while all other variables are fixed at their value of x
(0)
m ,m =

3, 4, . . . ,M. Again, from optimizing λmax in x2, we obtain the optimum x
(1)
2 .

62 K. Ábele-Nagy

Continue these steps, until we obtain x
(1)
M . In the second iteration the starting

values are x
(1)
m ,m = 1, 2, . . . ,M. So the mth step of the kth iteration is as

follows:

x
(k)
m = arg min

xm
λmax

(
A(x

(k)
1 , . . . , x

(k)
m−1, xm, x

(k−1)
m+1 , . . . , x

(k−1)
M)

)
,m = 1, 2, . . . ,M.

For the stopping criteria they propose the following: the algorithm stops at
the end of the kth iteration if k is the smallest integer for which

max
m=1,2,...,M

|x
(k)
m − x

(k−1)
m | < T, (2)

where T is the tolerance threshold (T = 10−4 is chosen for their and our tests
as well).

Another important question is the choice of the starting values. Bozóki et

al. [2] in their numerical example used x
(0)
m = 1,m = 1, 2, . . . ,M. In the paper

we will use values based on the solution of the incomplete logarithmic least
squares method (ILLSM) [11]. This method determines weight vector w by
minimizing

min
n∑

i,j=1
aij is given

[
logaij − log

(
wi
wj

)]2
, (3)

where
∑n
i=1wi = 1 and wi > 0 i = 1, . . . , n. Solving this problem is based

on solving a system of linear equations [2]. Although the ILLSM method can
generate ordering different from that of the eigenvector method, it provides
reasonable starting values for our iteration [10]. Therefore, the solution of
the ILLSM problem will be used for the starting values for x. Let wLi , i =
1, . . . , n denote the ith component of the weight vector derived from solving
the ILLSM problem, and let xm be in position (i, j). The starting values will

be x
(0)
m = wLi /w

L
j ,m = 1, 2, . . . ,M.

Again, in order to transform problem (1) to a convex optimization problem,
rescaling xm = etm ,m = 1, . . . ,M is done [2]. Let L(tm) = λmax(e

tm).
The global convergence of cyclic coordinates is stated and proved in [12,

pages 253–254].
The cyclic coordinates method presented above will be the framework for the

single variable method presented here as well, with the fundamental difference
being in how we obtain the optimum.

Eigenvalue minimization by Newton iteration 63

2.1.1 Cyclic coordinates with Matlab’s fminbnd

Bozóki et al. [2] used a general optimization function in Matlab (fminbnd) for
obtaining mintmλmax. Function fminbnd uses an algorithm which combines
golden section search and parabolic interpolation [3, 5, 13]. A method tailored
for this problem and based on the Newton iteration is presented next.

2.1.2 Cyclic coordinates with univariate Newton iteration

Using the method of cyclic coordinates, we are optimizing in only one variable
at a time. Let us denote this variable by x, while the other variables are fixed
while the minimization occurs. Our goal is to write the Newton iteration of
this optimization. Let x = et (similarly x(r) = et

(r)
) and L(t) = λmax(e

t). With
these notions, we are searching for t where L ′(t) = 0. Because of this, the rth
iteration of Newton’s method can be written as

t(r+1) = t(r) −
L ′(t(r))

L ′′(t(r))
.

According to Harker [8] the derivatives ∂λmax(x)
∂x and ∂2λmax(x)

(∂x)2
are known,

and depend on the position (i, j) of x in of the matrix.

To write the Newton iteration we need ∂L(t)
∂t and ∂2L(t)

(∂t)2
.

∂L(t)

∂t
=
∂λmax(e

t)

∂t
=
∂λmax(x)

∂x
· ∂e

t

∂t
=
∂λmax(x)

∂x
· et. (4)

Similarly

∂2L(t)

(∂t)2
=
∂2λmax(e

t)

(∂t)2
=

∂λmax(x)
∂x · et

∂t
=

=
∂λmax(x)

∂x

∂t
· et + ∂λmax(x)

∂x
· ∂e

t

∂t
=
∂2λmax(x)

(∂x)2
· e2t + ∂λmax(x)

∂x
· et.

(5)

Newton iteration can now be written as

t(r+1) = t(r) −
L ′(t(r))

L ′′(t(r))
= t(r) −

∂λmax(x)
∂x (x(r)) · et(r)

∂2λmax(x)
(∂x)2

(x(r)) · e2t(r) + ∂λmax(x)
∂x (x(r)) · et(r)

=

= t(r) −
∂λmax(x)

∂x (x(r))
∂2λmax(x)

(∂x)2
(x(r)) · et(r) + ∂λmax(x)

∂x (x(r))
.

(6)

64 K. Ábele-Nagy

As mentioned,
∂λmax(x)

∂x
and

∂2λmax(x)

(∂x)2
depend on the position of the el-

ement x in the matrix (i, j). In a particular step of an iteration all the other
variables are temporarily fixed, as described earlier.

A full step of the Newton iteration (which is only a subroutine of a step of
the cyclic coordinate iteration) consists of the following steps, where x is in
position (i, j):

1. t(r) = ln x(r),

2. Apply (6),

3. x(r+1) = et
(r+1)

, 1/x(r+1) = e−t
(r+1)

.

With this algorithm we managed to apply the Newton iteration specifically
for the problem of minimizing the Perron eigenvalue of incomplete PCMs.

2.2 Multivariate Newton iteration

Instead of using the method of cyclic coordinates and optimizing in one vari-
able at a time, one can optimize in all of the variables at the same time, using
the multivariate Newton iteration. Let L(t) = λmax(e

t1 , . . . , etM). We want to
minimize L, so we need:

t(r+1) = t(r) − γ[HL(t(r))]−1∇L(t(r)), (7)

where HL(t(r)) is the Hessian matrix of L(t), and ∇L(t(r)) is the gradient
vector of L(x) (both in the rth Newton iteration), and γ is the step size as
usual in multivariate Newton iteration. Again, because of the parametrization
x = et, we have to adapt this formula for our case. All of the elements of

the gradient vector ∇L(t) =
(
∂L(t)

∂t1
, . . . ,

∂L(t)

∂tM

)
can be calculated with the

method described earlier, namely (4).
Now let us write the Hessian matrix:

HL(t) =

∂2L(t)

∂t21

∂2L(t)

∂t1∂t2
. . .

∂2L(t)

∂t1∂tM

∂2L(t)

∂t2∂t1

∂2L(t)

∂t22
. . .

∂2L(t)

∂t2∂tM
...

...
. . .

...
∂2L(t)

∂tM∂t1

∂2L(t)

∂tM∂t2
. . .

∂2L(t)

∂t2M

.

Eigenvalue minimization by Newton iteration 65

Diagonal elements are calculated by (5). We still need to reformulate the off-
diagonal elements of the Hessian matrix, where we differentiate with respect
to different variables. From now on, xp = e

tp is in position (i, j) and xq = etq

is in position (u, v).

∂2L(t)

∂tp∂tq
=
∂2λmax(e

t1 , . . . , etM)

∂tp∂tq
=
∂
(
∂λmax(et1 ,...,etM)

∂tq

)
∂tp

.

We can apply (4), and get ∂λmax(et1 ,...,etM)
∂tq

= ∂λmax(x)
∂xq

· etq . Including the case
p = q as well,

∂2L(t)

∂tp∂tq
=
∂
(
∂λmax(x)
∂xq

· etq
)

∂tp
=
∂
(
∂λmax(x)
∂xq

)
∂tp

· etq +
∂λmax(x)

∂xq
· ∂e

tq

∂tp
. (8)

Here
∂etq

∂tp
= etq · χ{p=q}, (9)

where

χ{p=q} =

{
1 if p = q
0 if p 6= q .

On the other hand,

∂
(
∂λmax(x)
∂xq

)
∂tp

=
∂
(
∂λmax(x)
∂xq

)
∂xp

· ∂xp
∂tp

=
∂
(
∂λmax(x)
∂xq

)
∂tp

· ∂e
tp

∂tp
=
∂2λmax(x)

∂xp∂xq
· etp ,

(10)
which also includes the case p = q. Writing (9) and (10) back into (8) we get
the final form of

∂2L(t)

∂tp∂tq
=
∂2λmax(x)

∂xp∂xq
· etp+tq +

∂λmax(x)

∂xp
· etp · χ{p=q}. (11)

Note that (5) is a special case of (11) with p = q. In (11) we can calculate
∂2λmax(x)
∂xp∂xq

and ∂λmax(x)
∂xp

according to Harker’s formulas [8], and they depend on
the positions of the variables in the matrix.

Using these formulas, and given a starting value of t0 for t, we can calculate
the gradient vector and Hessian matrix for every iteration of the multivariate
Newton’s method (7). Again, the iteration continues while (2) is satisfied. The
stopping criteria is determined for x (not t), because a small difference in t
can lead to large differences in x.

66 K. Ábele-Nagy

3 Numerical example

Let us consider the following incomplete pairwise comparison matrix:

1 5 3 7 6 6 1/3 1/4

1/5 1 x1 5 x2 3 x3 1/7

1/3 1/x1 1 x4 3 x5 6 x6
1/7 1/5 1/x4 1 x7 1/4 x8 1/8

1/6 1/x2 1/3 1/x7 1 x9 1/5 x10
1/6 1/3 1/x5 4 1/x9 1 x11 1/6

3 1/x3 1/6 1/x8 5 1/x11 1 x12
4 7 1/x6 8 1/x10 6 1/x12 1

.

This is an incomplete version of Saaty’s ”buying a house” example matrix
[15]. Further, it is the same incomplete PCM which was used as an example
by Bozóki et al. [2], where it is shown that the graph corresponding to this
matrix is connected.

In Tables 1 and 2 the values of each variable in each iteration are shown
using the univariate Newton iteration and the multivariate Newton iteration,
respectively. However, iteration does not mean the same thing in these cases.
For the univariate Newton method, an iteration k is the outer iteration which
contains m = 12 complete univariate Newton iterations for each k. For the
multivariate Newton iteration, an iteration r is one iteration of the multivariate
Newton method itself.

As mentioned earlier, T = 10−4 in (2), and the starting values x
(0)
m are

chosen to be equal to the optimal solution of the ILLSM problem (3). For
the multivariate case, several γ values have been experimented with. γ =
0.45 yielded the lowest number of iterations, therefore this value was used for
the results in Table 2. The number of iterations required was k = 14 in the
univariate case, and r = 14 in the multivariate case.

Tests were also done for starting values x
(0)
m = 1,m = 1, . . . ,M (again with

γ = 0.45 in the multivariate case). The univariate method required k = 15

iterations, while the multivariate method required r = 26 iterations.

E
ig

en
valu

e
m

in
im

iza
tio

n
b
y

N
ew

ton
iteration

67

k x
(k)
1 x

(k)
2 x

(k)
3 x

(k)
4 x

(k)
5 x

(k)
6 x

(k)
7 x

(k)
8 x

(k)
9 x

(k)
10 x

(k)
11 x

(k)
12

0 0.3823 1.8430 0.4758 8.9920 4.2690 0.5228 0.5361 0.1384 0.8855 0.1085 0.2916 0.4200
1 0.3460 1.7620 0.4699 9.6590 4.7370 0.5667 0.5320 0.1434 0.9206 0.1091 0.2932 0.4008
2 0.3338 1.7320 0.4690 9.8410 4.8230 0.5671 0.5283 0.1431 0.9270 0.1088 0.2924 0.4016
3 0.3315 1.7270 0.4678 9.8840 4.8370 0.5681 0.5271 0.1428 0.9283 0.1090 0.2919 0.4023
4 0.3308 1.7240 0.4671 9.9000 4.8440 0.5687 0.5264 0.1427 0.9295 0.1091 0.2916 0.4026
5 0.3305 1.7220 0.4668 9.9090 4.8470 0.5691 0.5259 0.1426 0.9302 0.1092 0.2914 0.4028
6 0.3303 1.7210 0.4666 9.9140 4.8500 0.5693 0.5256 0.1425 0.9306 0.1093 0.2913 0.4029
7 0.3302 1.7210 0.4665 9.9170 4.8510 0.5694 0.5255 0.1425 0.9309 0.1093 0.2913 0.4030
8 0.3301 1.7200 0.4664 9.9180 4.8520 0.5695 0.5254 0.1425 0.9310 0.1093 0.2913 0.4030
9 0.3301 1.7200 0.4664 9.9190 4.8520 0.5696 0.5253 0.1425 0.9311 0.1093 0.2912 0.4031
10 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9311 0.1093 0.2912 0.4031
11 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
12 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
13 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
14 0.3300 1.7200 0.4664 9.9210 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

Table 1: Univariate Newton

6
8

K
.

Á
b

ele-N
a
g
y

r x
(r)
1 x

(r)
2 x

(r)
3 x

(r)
4 x

(r)
5 x

(r)
6 x

(r)
7 x

(r)
8 x

(r)
9 x

(r)
10 x

(r)
11 x

(r)
12

0 0.3823 1.8430 0.4758 8.9920 4.2690 0.5228 0.5361 0.1384 0.8855 0.1085 0.2916 0.4200
1 0.3385 1.7160 0.4484 9.7830 4.7170 0.5786 0.5006 0.1276 0.9592 0.1221 0.2739 0.4427
2 0.3430 1.7540 0.4707 9.5490 4.6180 0.5500 0.5368 0.1446 0.9082 0.1087 0.2946 0.4040
3 0.3285 1.7070 0.4581 9.9020 4.8210 0.5755 0.5169 0.1376 0.9436 0.1149 0.2848 0.4172
4 0.3323 1.7260 0.4672 9.8070 4.7800 0.5640 0.5297 0.1435 0.9243 0.1096 0.2924 0.4035
5 0.3287 1.7140 0.4637 9.9140 4.8430 0.5715 0.5234 0.1412 0.9349 0.1112 0.2894 0.4074
6 0.3302 1.7200 0.4664 9.8880 4.8320 0.5682 0.5268 0.1428 0.9294 0.1096 0.2916 0.4034
7 0.3295 1.7180 0.4656 9.9170 4.8490 0.5702 0.5251 0.1422 0.9322 0.1099 0.2908 0.4043
8 0.3299 1.7200 0.4664 9.9110 4.8470 0.5693 0.5258 0.1426 0.9308 0.1094 0.2913 0.4033
9 0.3298 1.7190 0.4662 9.9190 4.8520 0.5698 0.5253 0.1424 0.9315 0.1095 0.2911 0.4035
10 0.3300 1.7200 0.4664 9.9180 4.8510 0.5696 0.5255 0.1425 0.9311 0.1094 0.2913 0.4032
11 0.3299 1.7200 0.4663 9.9200 4.8520 0.5697 0.5253 0.1424 0.9313 0.1094 0.2912 0.4032
12 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1425 0.9312 0.1093 0.2912 0.4031
13 0.3300 1.7200 0.4663 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
14 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

Table 2: Multivariate Newton

Eigenvalue minimization by Newton iteration 69

4 Conclusions

When using the generalized eigenvector method for incomplete pairwise com-
parison matrices, the matrix is to be completed optimally with regard to its
inconsistency, or equivalently minimizing its Perron eigenvalue λmax. Although
eigenvalue minimization problems are generally difficult due to nonconvexity,
the special case of incomplete PCMs proves to be convex. In order to solve
the problem, a method based on the Newton iteration (both univariate and
multivariate) is presented in the paper.

Future research can be focused on the choice of γ in case of the multivariate
method. Fülöp [6] has recently proposed an alternative method for minimizing
λmax, further research includes a comparative analysis of the algorithms.

Acknowledgements

The author thanks János Fülöp (Institute for Computer Science and Con-
trol, Hungarian Academy of Sciences – MTA SZTAKI; Óbuda University)
for his remarks. The author thanks his PhD supervisor Sándor Bozóki (In-
stitute for Computer Science and Control, Hungarian Academy of Sciences
– MTA SZTAKI; Corvinus University of Budapest) for valuable discussions.
The support of OTKA grant K 111797 is gratefully acknowledged.

References

[1] K. Ábele-Nagy, Incomplete pairwise comparison matrices in multi-attribute
decision making (In Hungarian, Nem teljesen kitöltött páros összehasonĺıtás
mátrixok a többszempontú döntésekben), Master’s Thesis, Eötvös Loránd Uni-
versity, Budapest, 2010. ⇒61

[2] S. Bozóki, J. Fülöp, L. Rónyai, On optimal completion of incomplete pairwise
comparison matrices, Math. Comput. Modelling 52, 1–2, (2010) 318–333. ⇒60,
61, 62, 63, 66

[3] R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall,
Englewood Cliffs, NJ, 1973. ⇒63

[4] M. Brunelli, Introduction to the Analytic Hierarchy Process, SpringerBriefs in
Operations Research, Springer, New York, 2015. ⇒59

[5] G. E. Forsythe, M. A. Malcolm, C. B. Moler, Computer Methods for Mathemat-
ical Computations, Prentice-Hall, Englewood Cliffs, NJ, 1976. ⇒63

[6] J. Fülöp, An optimization approach for the eigenvalue method, IEEE 8th In-
ternational Symposium on Applied Computational Intelligence and Informatics
(SACI 2013), Timişoara, Romania, 23–25 May 2013. ⇒69

https://www.cs.elte.hu/blobs/diplomamunkak/alkmat/2010/abele_nagy_kristof.pdf
http://www.elte.hu/en
http://www.elte.hu/en
http://www.sztaki.mta.hu/%7Ebozoki
http://www.oplab.sztaki.hu/cv_fj_en.htm
http://www.sztaki.mta.hu/%7Eronyai
http://www.sciencedirect.com/science/article/pii/S0895717710001159
http://www.journals.elsevier.com/mathematical-and-computer-modelling
http://maths-people.anu.edu.au/~brent
http://maths-people.anu.edu.au/~brent/pub/pub011.html
http://prenticehall.com/
http://sal.aalto.fi/en/personnel/matteo.brunelli
http://link.springer.com/book/10.1007%2F978-3-319-12502-2
http://www.springer.com/gp/
http://en.wikipedia.org/wiki/George_Forsythe
http://en.wikipedia.org/wiki/Cleve_Moler
http://onlinelibrary.wiley.com/doi/10.1002/zamm.19790590235/abstract
http://prenticehall.com/
http://www.oplab.sztaki.hu/cv_fj_en.htm
http://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=30412

70 K. Ábele-Nagy

[7] P. T. Harker, Alternative modes of questioning in the Analytic Hierarchy Pro-
cess. Math. Model. 9, 3 (1987) 353–360. ⇒59

[8] P. T. Harker, Derivatives of the Perron root of a positive reciprocal matrix: with
application to the Analytic Hierarchy Process. Appl. Math. Comput. 22, 2–3
(1987) 217–232. ⇒61, 63, 65, 70

[9] P. T. Harker, Incomplete pairwise comparisons in the Analytic Hierarchy Pro-
cess. Math. Model. 9, 11 (1987) 837–848. ⇒59

[10] A. Ishizaka, M. Lusti, How to derive priorities in AHP: a comparative study.
Cent. Eur. J. Oper. Res., 14, 4 (2006) 387–400. ⇒62

[11] M. Kwiesielewicz, The logarithmic least squares and the generalised pseudoin-
verse in estimating ratios. European J. Oper. Res. 93, 3 (1996) 611–619. ⇒
62

[12] D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming (3rd Edition),
Series: International Series in Operations Research & Management Science, 116,
Springer, New York, 2008. ⇒62

[13] Matlab Documentation: fminbnd http://www.mathworks.com/help/matlab/

ref/fminbnd.html. ⇒63
[14] T. L. Saaty, A scaling method for priorities in hierarchical structures. J. Math.

Psych., 15, 3 (1977) 234–281. ⇒59
[15] T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980. ⇒

59, 66
[16] S. Shiraishi, T. Obata, M. Daigo, Properties of a positive reciprocal matrix and

their application to AHP. J. Oper. Res. Soc. Jpn. 41, 3 (1998) 404–414. ⇒60
[17] S. Shiraishi, T. Obata, On a maximization problem arising from a positive re-

ciprocal matrix in AHP. Bull. Inform. Cybernet. 34, 2 (2002) 91–96. ⇒60

Received: January 24, 2015 • Revised: April 29, 2015

Appendix

Harker’s [8] formulas for the derivatives of the Perron eigenvalue are presented
in the appendix.

Let A denote a PCM, and let x = x(A) and y = y(A) denote its right
and left Perron eigenvectors, and λmax = λmax(A) its Perron eigenvalue, so
Ax = λmaxx and yTA = λmaxy

T . The normalization for the eigenvectors in

this case is yTx = 1. Let Q = λmaxI−A. Also let Q+ denote the pseudoinverse
of Q, which satisfies the following properties: QQ+Q = Q, Q+QQ+ = Q+,
Q+Q = QQ+. Finally, ∂aij denotes differentiation with respect to the element
in position (i, j) in A, and similarly ∂akl denotes differentiation with respect
to the element in position (k, l). Using these notations, the formulas are as
follows:

http://www.lerner.udel.edu/faculty-staff/patrick-t-harker
http://www.sciencedirect.com/science/article/pii/0270025587904921
http://www.sciencedirect.com/science/journal/02700255
http://www.lerner.udel.edu/faculty-staff/patrick-t-harker
http://www.sciencedirect.com/science/article/pii/0096300387900439
http://www.journals.elsevier.com/applied-mathematics-and-computation/
http://www.lerner.udel.edu/faculty-staff/patrick-t-harker
http://www.sciencedirect.com/science/article/pii/0270025587905033
http://www.sciencedirect.com/science/journal/02700255
http://www.port.ac.uk/operations-and-systems-management/staff/alessio-ishizaka.html
http://link.springer.com/article/10.1007/s10100-006-0012-9
http://www.springer.com/business+%26+management/operations+research/journal/10100
http://www.ely.pg.gda.pl/~mkwies/Publ.html
http://www.sciencedirect.com/science/article/pii/0377221795000798
http://www.journals.elsevier.com/european-journal-of-operational-research/
https://profiles.stanford.edu/david-luenberger
http://web.stanford.edu/~yyye
http://www.springer.com/mathematics/applications/book/978-0-387-74502-2
http://www.springer.com/gp/
http://www.mathworks.com/help/matlab/ref/fminbnd.html
http://www.mathworks.com/help/matlab/ref/fminbnd.html
http://www.business.pitt.edu/katz/faculty/saaty.php
http://www.sciencedirect.com/science/article/pii/0022249677900335
http://www.journals.elsevier.com/journal-of-mathematical-psychology
http://www.business.pitt.edu/katz/faculty/saaty.php
http://www.mhprofessional.com/
http://www3.u-toyama.ac.jp/shira
http://web.csis.oita-u.ac.jp/~t-obata/index-e.html
http://helios.doshisha.ac.jp/~mdaigo/indexEng.html
http://ci.nii.ac.jp/naid/110001183848/
http://www.orsj.or.jp/english/
http://www3.u-toyama.ac.jp/shira
http://web.csis.oita-u.ac.jp/~t-obata/index-e.html
http://ci.nii.ac.jp/naid/120001151164/
http://bic.math.kyushu-u.ac.jp

Eigenvalue minimization by Newton iteration 71

The first derivatives:

∂λmax

∂aij
= yixj −

yjxi

a2ij
, if i > j.

The second derivatives:

∂2λmax

∂aij∂akl
=

(xyT)liQ
+
jk + (xyT)jkQ

+
li −

(xyT)kiQ
+
jl+(xyT)jlQ

+
ki

a2kl
−

−
(xyT)ljQ

+
ik+(xyT)ikQ

+
lj

a2ij
+

(xyT)klQ
+
il+(xyT)ilQ

+
kj

a2ija
2
kl

if i > j, k > l, (i, j) 6= (k, l)

2
(xyT)ij

a3ij
+ 2(xyT)jiQ

+
ji−

−2
(xyT)iiQ

+
jj+(xyT)jjQ

+
ii

a2ij
+ 2

(xyT)ijQ
+
ij

a4ij

if i > j, (i, j) = (k, l).

Acta Univ. Sapientiae, Informatica 7, 1 (2015) 72–106

DOI: 10.1515/ausi-2015-0013

Tripartite graphs with given degree set

Antal IVÁNYI
Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

email: tony@inf.elte.hu

Shariefuddin PIRZADA
University of Kashmir, Srinagar, India

email:
pirzadasd@kashmiruniversity.ac.in

Farooq A. DAR
University of Kashmir

Srinagar, India
email: sfarooqdar@yahoo.co.in

Abstract. If k ≥ 1, then the global degree set of a k-partite graph G =
(V1, V2, . . . , Vk, E) is the set of the distinct degrees of the vertices of G,
while if k ≥ 2, then the distributed degree set of G is the family of the
k degree sets of the vertices of the parts of G. We propose algorithms
to construct bipartite and tripartite graphs with prescribed global and
distributed degree sets consisting from arbitrary nonnegative integers.
We also present a review of the similar known results on digraphs.

1 Introduction

In this paper we follow the terminology used in the monography of Chartrand,
Lesniak and Zhang [5] and the handbook of Gross, Yellen and Zhang [11].

Let m ≥ 0 and n ≥ 1 be integers, G = (V, E) be a finite, simple graph
with vertex set V(G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}. The

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C07
Key words and phrases: global degree set, distributed degree set, bipartite graph, tripar-
tite graph

72

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:tony@inf.elte.hu
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.kashmiruniversity.net/
mailto:pirzadasd@kashmiruniversity.ac.in
http://www.kashmiruniversity.net/
mailto:sfarooqdar@yahoo.co.in

Tripartite graphs with prescribed degree set 73

degree di of a vertex vi is the number of edges of G which are incident on vi.
The degree sequence d = [d1, d2, . . . , dn] of G is the sequence of degrees of G,
usually put in nonincreasing or nondecreasing order. The number of vertices
is called the order of G, while the number of edges is called the size of G. A
degree sequence d is said to be graphic if it is the degree sequence of some
finite graph. The set of the disjoint degrees γ = {g1, g2, . . . , gp} of the vertices
of G is called its degree set. If k ≥ 2 is an integer and G = (V1, V2, . . . , Vk, E)
is a k-partite graph, then the degree set of the vertex set Vi (1 ≤ i ≤ k) is
called the global degree set of the i-th part of G and is denoted by γi(Vi); the
union

∏k
i=1 γi is called the global degree set of G and is denoted by γ(G).

In the literature instead of the global degree set usually the shorter degree
set expression is used, but we wish to underline the difference between the
simple and multipartite graphs. The family of the degree sets γi is called the
distributed degree set of G and is denoted by δ(G).

The papers of Tyshkevich and Chernyak [55, 56, 57, 58] contain a review on
the different generalizations of score sequences.

Some early results on degree sets of simple graphs and trees (acyclic con-
nected graphs) were published in 1977 by Kapoor, Polimeni and Wall. They
introduced the concept of degree set and proved the following theorem

Theorem 1 (Kapoor, Polimeni, Wall [25]) If p is a positive integer, then any
set γ = {g1, g2, . . . , gp} of positive integers with g1 < g2 < · · · < gp is the
degree set of a connected graph G and the minimum order of such a graph is
gp + 1.

Proof. See [25, 37, 54]. �

In 1979 Koukichi and Katsuhiro [28] reproved Theorem 1. They defined
(n, k)-sets as sets of integers {h1, . . . , hk} with n−1 ≥ h1 > h2 > · · · > hk ≥ 0.
Further they defined DGn(k) for any positive n and k with 1 ≤ k ≤ n− 1 as
the set of all degree sets D of graphs G of order n with |D| = k, and Fn(k)
as the set of all (n, k)-sets D = {d1, . . . , dk} satisfying: (i) if d1 = n − 1, then
dk > 0 and (ii) if n = 1 (mod k) then D contains at least one even number..
Among others they expressed DGn(2) in terms of Fn(2), and proved DGn(3)
= Fn(3) and DGn(n− 2) = Fn(n− 2) for n > 2.

A short proof of this result is due to Tripathi and Vijay [54].
A simple consequence of Theorem 1 is the following assertion allowing 0 ∈ γ

and not containing the condition of sorted γ.

Corollary 2 If p ≥ 1 is an integer, then any set γ = {g1, g2, . . . , gp} of non-
negative integers is the degree set of a graph G and if 0 /∈ γ, then the minimum

74 A. Iványi, S. Pirzada, F. A. Dar

order of such graphs is max(γ) + 1, otherwise max(γ) + 2.

Proof. If 0 /∈ γ, then we can use the proof of Theorem 1, otherwise we can
add an isolated vertex to the minimal size graph corresponding to γ \ 0. �

In 2006 Ahuja and Tripathi investigated the possible sizes of graphs having
prescribed degree set and extended Theorem 1 giving all possible size of graphs
having a prescribed degree set. We say, that a graph G is a (p, γ)-graph, if its
size is p and its degree set is γ.

Theorem 3 (Ahuja, Tripathi [1]) Let γ = {g1, g2, . . . , gp} be any finite, non-
empty set of positive integers and let m = max(γ). If all members of γ are odd,
then there exists a (p, γ)-graph if and only if p > m and p is even; otherwise
there exists a (p, γ)-graph if and only if p > m, provided also that p 6= m+ 2
in the special case, where γ = {1,m} for any even integer m ≥ 4.

Proof. See [1]. �

One can ask, what is the answer, if we allow 0 ∈ γ? Using Theorem 3 it is
easy to show, that in this case all sizes greater than p are possible.

In 1980 Sipka investigated the problem or the possible orders of graphs
having a prescribed global degree set γ = {g1, g2, . . . , gn} of integers with
1 ≤ g1 < g2 < · · · < gn. His results are summarized in the following theorem.

Theorem 4 (Sipka [52]) Let γ = {g1, g2, . . . , gp} be a nonempty set of positive
integers with g1 < g2 < · · · < gp.

(i) If p is even, gi is odd for all 1 ≤ i ≤ p, p > gp, then there exists a graph
G of order p with γ(G) = γ.

(ii) If gi is even for some 1 ≤ i ≤ p, t ≥ 2 and γ 6= {1, 2, . . . , 2t}, then there
exists a graph G of order p such that γ(G) = γ for all positive p > gn, then
there exists a graph G of order p such that γ(G) = γ.

(iii) If t ≥ 2 is an integer, γ = {1, 2, . . . , 2t}, then there exists a graph G of
order p for all positive p exceeding gp, with the exception of gn + 2.

Proof. See [52]. �

Let p ≥ 1 be an integer, further let γ = {g1, g2, . . . , gp} be a set of integers
with 0 ≤ g1 < g2 < · · · < gp. Then µdc(γ) = µdc{g1, g2, . . . , gp} denotes the
minimum order of disconnected graphs G for which γ(G) = γ.

In 2004 Manoussakis et al. investigated disconnected graphs. Let γ = {g1, g2,

. . . , gp} be a nonempty set of nonnegative integers with 0 ≤ g1 < g2 < · · · <
gp} and let µdc(γ) = µdc{g1, g2, . . . , gp} denote the minimum order of a dis-
connected graph G for which γ(G) = γ.

Tripartite graphs with prescribed degree set 75

Manoussakis, Patil and Sankar assert [32], that if g is a nonnegative integer,
then µ(g) = 2(g+1). This assertion is not correct. We give the correct formula.

Theorem 5 If g is a nonnegative integer, then µ(g) = g+ 2.

Proof. If G is disconnected and has a vertex with degree g, then it has at
least (g+1)+1 = g+2 vertices. But a star with g+1 vertices plus an isolated
vertex form a corresponding graph. �

For the case p ≥ 2 Manoussakis et al. proved the following assertion.

Theorem 6 (Manoussakis, Patil, Sankar [30, 31, 32]). Let p ≥ 2 be an integer
and γ = {g1, g2, . . . , gp} be a set of nonnegative integers with g1 < g2 < · · · <
gp. Then there exists a disconnected graph G such that γ(G) = γ. Further,
µdc = g1 + gp + 2.

Proof. See [31, 32]. �

Manoussakis, Patil and Sankar [30, 32] also investigated degree sets for k-
connected graphs, k-edge connected graphs, unicyclic graphs and maximal
k-degenerate graphs.

Let m be a positive integer. An (m,γ)-graph has m edges and degree set γ.
We denote by e(γ) the least m, for which there exists an (m,γ)-graph, and
by le(γ) this least e(γ).

In 2006 Tripathi and Vijay determined le(γ) in the following cases:
a) |γ| ≤ 3;
b) t ≥ 1 is an integer and γ = {1, 2, . . . , t};
c) min(γ) ≥ |γ|.
Further, they gave lower and upper bounds for le(γ) in all cases and exhib-

ited the cases, when the bounds are tight.
In their paper Tripathi and Vijay use the following notations. If s = [d1, d2,

. . . , dn] is an increasing degree sequence, then its short form is s = [dm1

1 , dm2

2 ,

. . . , d
mp
p], where dmi

i denotes mi copies of di.

Theorem 7 (Tripathi, Vijay [53]). Let g be a nonnegative integer. If γ = {g},
then there exists a (q, γ)-graph if and only if

e ∈

{
mg : m ≥ g+ 1

2

}
if g is odd,{

m
g

2
: m ≥ g+ 1

}
if g is even.

In particular, le({g}) =
1
2g(g+ 1).

76 A. Iványi, S. Pirzada, F. A. Dar

Theorem 8 (Tripathi, Vijay [53]). Let a and b be positive integers with a > b
and let γ = {a, b}. Then there exists a (q, γ)-graph if and only if q has the
form 1

2(ma+mb), where m and n are positive integers, m+ n ≥ a+ b, and

1 ≤ m ≤ b or m ≥ a+ 1 or m(a+ 1−m) ≤ mb with b+ 1 ≤ m ≤ a.

In particular,

lq({a, b}) =

a(b+ 1)

2
if a is even or b is odd,

a(b+ 1) + (a− b)

2
if a is odd or b is even.

Theorem 9 (Tripathi, Vijay [53]). Let t be a positive integer and let γ =
{1, 2, . . . , t}. Then there exists an (e, α)-graph if and only if

e ≥
⌈
t

2

⌉
+ 1).

In particular, le(γ = d t2e(b
t
2c+ 1).

In their paper Tripathi and Vijay constructed a special γ = {g1, g2, . . . , gt}

and determined its l(γ) as follows:

l(γ) =

1
2p0(γ) if p0(γ) is even

(12p0(γ) + gr − gp) if p0(γ) is odd and gp is even

min(12p0(α) + ar − at,
1
2(p0(α) + ap)) if both p0(γ) and gp are odd.

Their following result shows that the above bounds are achieved for infinite
number of sets.

Theorem 10 (Tripathi, Vijay [53]). Let γ be a finite set of positive integers
such that min(γ) ≥ |γ|. Then le(γ) = l(γ).

The proofs of these theorems due to Tripathi and Vijay can be found in [53].
In 2011 Volkmann extended Theorem 1 to multigraphs, proving the follow-

ing assertion.

Theorem 11 (Volkmann [59]) Let p ≥ 1 and integer and and γ = {g1, g2, . . . ,

gp} be a set of integers such that

g1 > g2 > · · · > gp ≥ 1.

Tripartite graphs with prescribed degree set 77

(i) If k = 1, then γ is the degree set of a multigraph of order two.
Assume now that k ≥ 2 and g1 ≤

∑p
i=2 gi.

(ii) If
∑p
i=2 gi is even, then γ is the degree set of a multigraph of order k.

(iii) If If
∑p
i=2 gi is odd, then γ is the degree set of a multigraph of or-

der k+ 1.
Next assume that k ≥ 2 and g1 >

∑p
i=2 gi.

(iv) If g1 +
∑k
i=1 gi even, then γ is the degree set of a multigraph of order

k+ 1.
In addition, assume in the following that g1 +

∑p
i=1 gi is odd.

(v) Let
∑k
i=1 gi be even. If there exists an index 2 ≤ k such that gj is even

and g1 ≤ gj+
∑k
i=2 gi, then δ is the degree set of a multigraph of order k+1. If

there is no such index, then γ is the degree set of a multigraph of order k+ 2.
(vi) Let

∑k
i=1 gi be odd. If there exists an index 2 ≤ j ≤ k such that gj is

odd and g1 +
∑k
i=2 gi, then γ is the degree set of a multigraph of order k+ 2.

In all cases of the multigraph is the least possible one.

Proof. See [59]. �

The girth of a graph is defined as the length of a shortest cycle in the graph.
For integers r ≥ 2 and g ≥ 3 f(r, g) is defined as the smallest order of an
r-regular graph, having girth g. Such graphs are called cages [5, 37]. In 1963
Erdős and Sachs [5, 10] not only proved the existence of all cages but gave an
upper bound for their order.

Theorem 12 (Erdős, Sachs [10]). If r ≥ 2 and g ≥ 3, then

1+ r

d(g−3)/2e∑
t=0

(r− 1)t ≤ f(r, g) ≤ 4
g∑
t=1

(r− 1)t.

Proof. See [10]. �

Erdős and Sachs remarked that Theorem 12 can be improved using the
method proposed by Ferenc Kárteszi [26].

For k ≥ 1, n ≥ 3 and a set of integers γ = {g1, g2, . . . , gk} with 2 ≤ g1 <
· · · < gk we define

f(γ, g) = f(g1, g2, . . . , gk;g)

to be the smallest order of graph having girth g and degree set D.
In 1981 Chartrand, Gould and Kapoor proved the following four theorems

on the values of f(D,g).

78 A. Iványi, S. Pirzada, F. A. Dar

Theorem 13 (Chartrand, Gould, Kapoor [3]) If n ≥ 1 and γ = {g1, g2, . . . ,

gn} is a set of integers with 2 ≤ g1 < g2 < · · · < gn, then f(γ; 3) = 1+ an.

Theorem 14 (Chartrand, Gould, Kapoor [3]) For m ≥ 3 and n ≥ 3

f(2,m;n) =

m(n− 2) + 4

2
if n is even,

m(n− 1) + 2

2
if n is odd.

Theorem 15 (Chartrand, Gould, Kapoor [3]) If 2 ≤ s, then

f(r, s; 4) = s.

Theorem 16 (Chartrand, Gould, Kapoor [3]) f(3, 4; 5) = 13, f(3, 4; 6) = 18.

In 1982 Wang published a survey [61] on the results connected with cages.
In 1988 Chernyak [6] continued the investigation of f(r, g).
A graph having the minimum number of vertices in the class of graphs with

degree set γ = {g1, g2, . . . , gp} and girth m is called a (γ;p)-cage; the order
of a (γ;p)-cage is denoted by f(γ;p). In this paper some new values of the
function f are determined constructively: f(3, 4, r; 5) = 3k + 1 for k = 5 and
r = 4, as well as for k ≥ 6 and 4 ≤ r ≤ 3+ 2d(k− 5/3)/2e; f(3, 4, k; 6) = 4k+ 1
for k ≥ 5; f(3, k; 6) = 4k + 2 for k ≥ 4; f(3, 4, k; 7) = 7k + 1 for k ≥ 4, and
f(3, 4; 8) = 39.

In 1985 Mynhardt [34] determined the condition of the existence of a degree
uniform graph having prescribed global degree set.

A signed graph G is a graph in which to each edge is assigned a positive
or negative sign. The set of distinct signed degrees D of a signed graph G is
called its global signed degree set.

The concept of signed graphs was introduced and firstly characterized by
Harary in 1953 [15]. In the first paper he proved the following assertions.
According to his paper a signed graph, G = (V, L+, L−) consists of a vertex set
V = {V1, V2, . . . , Vn}, and two disjoint sets of edges L+ and L−.

Theorem 17 (Harary [15]) A complete signed graph is balanced if and only
if its vertex set V can be partitioned into two disjoint subsets V1 and V2, one
of which may be empty, such that all edges between the vertices of the same
subset are positive, and all edges between vertices of the two different subsets
are negative.

Tripartite graphs with prescribed degree set 79

Proof. See [15]. �

Theorem 18 (Harary [15]) A signed graph is balanced if and only if for each
pair of distinct vertices A and B all paths joining A and B are positive.

Proof. See [15]. �

Theorem 19 (Harary [15]) A signed graph is balanced if and only if its vertex
set can be partitioned into two disjoint subsets V1 and V2 in such a way that
eachl positive edge of G joins two vertices of different subsets.

Proof. See [15]. �

In 1955 Harary [16] presented enumeration results on the different types of
graphs including also signed graphs.

A sequence σ = (d1, d2, . . . , dn) of integers is standard, if it is nonincreasing,
the sum of its element is even, d1 > 0, each |di| < n, and |d1| ≥ |dn|.

In 1968 Chartrand et al. published the following assertion, similar to the
well-known theorem of Hakimi [13] for the degree sets of graphs.

Theorem 20 (Chartrand, Gavlas, Harary, Schulz [2]) If γ = (g1, g2, . . . , gp)
is a standard sequence, then there exists a signed graph G with global signed
degree set γ if and only if there exists a signed graph G ′ with signed global
degree set

σ ′ = (g2−1, g3−1, . . . , gg1+s+1−1, gg1+s+2, . . . , gp−s, . . . , gp−s+1+1, . . . , gp+1)

for some s, 0 ≤ s ≤ p−1−g1
2 .

Theorem 21 (Yan, Lih, Kuo, Chang [62]) let γ be a standard sequence. There
exists a signed graph with global signed degree sequence γ if and only if there
exist integers r and s with g1 = r − s, 0 ≤ s ≤ p−1−g1

2 such that there exist a
a isigned graph G ′ with global signed score set

γ ′ = {g2 − 1, g3 − 1, . . . , gg1+m+1 − 1, gg1+m+2, . . . , gp−m, gp−m+1 + 1, gp + 1}.

In 2007 Pirzada et al. improved Theorem 1 proved by Kapoor, Polimeni and
Wall in 1977.

Theorem 22 (Pirzada, Naikoo, Dar [47]) Let p be a positive integer and γ =
{g1, g2, . . . , gp} be a set of integers with g1 < g2 < · · · < gp. Then γ is the
signed global score set of some connected signed graph G and the minimal order
of such signed graphs is gp + 1.

80 A. Iványi, S. Pirzada, F. A. Dar

Proof. See [47] �

In 2013 Kumar, Sarma, and Sawlami [29] studied the number of vertices
and multiplicity of degrees as parameters of directed and undirected tree re-
alizations of prescribed degree sets.

2 Bipartite graphs with prescribed global degree
sets

A graph B(V, E) is said to be bipartite (or bigraph or 2-partite graph) if its
vertex set V can be partitioned into two disjoint sets V1 and V2 with V = V1∪V2
so that if uv ∈ E, then u and v belong to different vertex sets. We will use
the notation B(V1, V2, E). A bipartite graph is complete if uv ∈ E for every
u ∈ V1 and every v ∈ V2. If |V1| = n1 and |V2| = n2, then the complete bipartite
graph is denoted by Kn1,n2

. Examples of bipartite graphs are trees, cycle graphs
with even number of vertices, planar graphs whose faces all have even length
(special cases of this are grid graphs and square graphs), hypercube graphs,
partial cubes and median graphs. Bipartite graphs can be characterized in
several different ways such as (i) A graph is bipartite if and only if it does not
contain an odd cycle, (ii) A graph is bipartite if and only if it is 2-colorable.

The set of distinct degrees {g1, g2, . . . , gp} of B = (V1, V2, E) is called the
global degree set of B and is denoted by γ(B) (or simply by γ). For any non-
empty subset U of V1 ∪ V2 γ(U) denotes the set of degrees of vertices in U.
Then, the global degree set of a bipartite graph B with a bipartition (V1, V2)
is the set γ(B) which is the union of the sets of degrees in V1 and in V2, i.e.
γ(B) = γ(V1) ∪ γ(V2).

In 1977 Kapoor et al. proved the following assertion on the existence of trees
(ie., connected, bipartite acyclic graphs) having prescribed global degree set.

Theorem 23 (Kapoor, Polimeni, Wall [25]) Let γ = {g1, g2, . . . , gp} be a non-
empty set of positive integers. Then there exists a nontrivial tree T (i.e. a con-
nected, acyclic bipartite graph) with global degree set γ(T) = γ if and only if
1 ∈ γ. Further, if 1 ∈ γ, then the minimum order of a nontrivial tree T with
γ(T) = γ is

∑n
i=1(gi − 1) + 2.

Proof. See [25]. �

If q ≥ 2, then every even cycle C2q is bipartite with γ(C2q) = {2} and
moreover, µ(C2q) = 4.

In 1979 Kapoor and Lesniak [24] studied the minimal order of bipartite
graphs, having a prescribed global degree set. They received partial results: in

Tripartite graphs with prescribed degree set 81

some special cases determined the minimal order of triangle-free graphs having
prescribed degree set.

In 1994 Ellis [9] published a paper on layered graphs called by him (k, 2)-
partite graphs in which he proposed effective sequential and parallel algorithms
to decide whether a given graph is (k, 2)-layered, and also for the effective
solution of several connected problems.

In 2007 Pirzada, Naikoo and Dar proved the following assertion.

Theorem 24 (Pirzada, Naikoo, Dar [48]) Every set of positive integers is the
global degree set of some connected bipartite graph.

Proof. See [48]. �

Recently Manoussakis and Patil determined the families of connected uni-
cyclic bipartite graphs having prescribed global degree set.

Theorem 25 (Manoussakis, Patil [33]). Let p ≥ 2 be an integer and γ =
{g1, g2, . . . , gp} be a set of positive integers with g1 < g2 < · · · < gp. Then
there exists a connected unicyclic bipartite graph B with γ(B) = γ if and only
if either (a) or (b) below holds:

a) p = 2, g1 = 1 and g2 ≥ 3. In this case µ(γ) = 4(g2 − 1).
b) p ≥ 3 and g1 = 1. In this case

µ(γ) =

3g2 + g3 − 4, if p = 3,
2g2 + g3 + g4 − 4, if p = 4,∑n
i=2(gi − 1), if p ≥ 5.

Proof. See [33]. �

The paper of Manoussakis and Patil contains the following lemma too.

Lemma 26 (Manoussakis, Patil [33]). For any given positive integer n, there
exists a complete bipartite graph B with bipartition (X, Y) such that γ(B) = {n}

if and only if n = |X| = |Y|.

Proof. See [33]. �

Here we prove that every finite set of positive integers is the global degree
set of some connected bipartite graph. Our approach is constructive and is
different from that used in [33, 48, 39].

At first we prove a useful lemma.

Lemma 27 If g1, g2, . . . , gp is a nonempty set of nonnegative integers with
0 ≤ g1 < g2 < · · · < gp}, then there exists a bipartite graph B = (V1, V2, E)

with global degree set γ(B) =
{
g1,

2∑
i=1

gi, . . . ,
p∑
i=1

gi

}
.

82 A. Iványi, S. Pirzada, F. A. Dar

Proof. We consider two cases, (a) when g1 = 0 and (b) g1 > 0.
Case (a). Let g1 = 0. We have three subcases to consider.

(i) Suppose p = 1. We choose the null bipartite graph G(V1, V2, E) with |V1| =
|V2| = 1 and E = ∅. In this case the degrees of the vertices v1 ∈ V1 and v2 ∈ V2
are gv1 = gv2 = 0 = g1. So degree set of G(V1, V2, E) is γ = g1.
(ii) Now let n = 2. We construct a bipartite graph G(V1, V2, E) as follows.

Let V1 = X1 ∪ X2, V2 = Y1 with X1 ∩ X2 = φ, |X1| = 1, |X2| = |Y1| = g2.
Take an edge from each vertex of X2 to every vertex of Y1. The degrees of the
vertices of G(V1, V2, E) are as follows.

For x1 ∈ X1, gx1 = 0 = g1 and for all x2 ∈ X2, gx2 = |Y1| = g2 = g1 + g2;
and for all y1 ∈ Y1, gy1 = |X2| = g2 = g1 + g2.

Thus the degree set of G(V1, V2, E) is γ = {g1, g1 + g2}.
(iii) For n ≥ 3, we construct a bipartite graph G(V1, V2) whose

V1 =
(p⋃
i=1

Xi
)⋃(n⋃

i=3

X′i
)

and V2 =
(n−1⋃
i=1

Yi
)⋃(n−1⋃

i=2

Y′i
)
,

where for all i 6= j, Xi ∩ Xj = φ,Xi ∩ X′j = φ, Yi ∩ Y′j = φ, Y′i ∩ X′j = φ;
for all i, 2 ≤ i ≤ p, |X1| = 1, |Xi| = |Yi−1| = di;

for all i, 3 ≤ i ≤ p, |X′1| = |Y′i−1| =
i−1∑
r=2

gr.

We choose an edge from each vertex of Xi to every vertex of Yj whenever
i ≥ j; an edge from each vertex of X′i to every vertex of Yi−1 for all i, 3 ≤ i ≤ p;
and an edge from each vertex of X′i to every vertex of Y′i−1 for all i, 3 ≤ i ≤ p.

The degrees of the vertices of the bipartite graph G(V1, V2.E) constructed
above are as follows.

For x1 ∈ X1, gx1 = 0 = g1 and for 2 ≤ i ≤ p, for all xi ∈ Xi,

gxi =

i−1∑
j=1

|Yj| =

i−1∑
j=1

|gj+1|

= g2 + g3 + · · ·+ gi = g1 + g2 + · · ·+ gi;

for 3 ≤ i ≤ n, for all x′i ∈ X′i,

d(x′i) = |Yi−1|+ |Y′i−1|

= gi + g2 + g3 + · · ·+ gi−1
= g1 + g2 + g3 + · · ·+ gi;

Tripartite graphs with prescribed degree set 83

for all y1 ∈ Y1,

d(y1) =

n∑
i=2

|Xi| =

p∑
i=2

gi

= g2 + g3 + · · ·+ gn
= g1 + g2 + g3 + · · ·+ gn;

for 2 ≤ i ≤ n− 1, for all yi ∈ Yi

d(yi) =

p∑
j=i+1

|Xj|+ |X′i+1| =

p∑
j=i+1

gj + (g2 + · · ·+ gi)

= gi+1 + gi+1 + · · ·+ gp + g2 + g3 + · · ·+ gi
= g1 + g2 + · · ·+ gp;

for 2 ≤ i ≤ p− 1, for all y′i ∈ Y′i

d(y′i) = |X′i+1| = g2 + · · ·+ gi
= g1 + g2 + g3 + · · ·+ gi.

Therefore we see that the degree set of G(V1, V2) is

γ = {g1,

2∑
i=1

gi, . . . ,

p∑
i=1

gi}.

Case (b) Now let g1 > 0. We have two subcases.
(i) Let p = 1. We consider the bipartite graph G(V1, V2) with V1| = |V2| = g1
in which there is an edge from each vertex of V1 to every vertex of V2. Here
the degrees of the vertices of G(V1, V2) are given as d(v1) = |V2| = g1 and
d(v2) = |V1| = g1, for all v1 ∈ V1, v2 ∈ V2. Thus the degree set of G(V1, V2) is
D = g1.
(ii) Let p ≥ 2. Consider the bipartite graph G(V1, V2) whose

V1 =
(n⋃
i=1

Xi
)⋃(n⋃

i=2

X′i
)
,

V2 =
(p⋃
i=1

Yi
)⋃(p⋃

i=2

Y′i
)
,

84 A. Iványi, S. Pirzada, F. A. Dar

where (for i 6= j) each Xi ∩ Xj, Xi ∩ X′j, X′i ∩ X′j, Yi ∩ Yj, Yi ∩ Y′j and Y′i ∩ Y′j are
empty, for all i, 1 ≤ i ≤ p, |Xi| = |Yi| = gi. Also for all i, 2 ≤ i ≤ p, we have
|X′i| = |Y′i| = g1 + g2 + · · ·+ gi−1.

Take an edge from each vertex of Xi to every vertex of Yj whenever i ≥ j;
an edge from each vertex of X′i to every vertex of Yi for all i, 2 ≤ i ≤ n and
an edge from each vertex of X′i to every vertex of Y′i for all i, 2 ≤ i ≤ p.
The following are the degrees of the vertices of the bipartite graph G(U,V)
constructed above.

For 1 ≤ i ≤ p, for all xi ∈ Xi,

d(xi) =

i−1∑
j=1

|Yj| =

i∑
j=1

gj = g1 + g2 + · · ·+ gi.

For 2 ≤ i ≤ p, for all x′i ∈ X′i,

d(x′i) = |Yi|+ |Y′i| = gi + (g1 + g2 + · · ·+ gi−1) = g1 + g2 + · · ·+ gi.

For 1 ≤ i ≤ p, for all yi ∈ Yi,

d(yi) =

n∑
j=1

|Xj|+ |X′i|

=
(n∑
j=1

gj
)
+ (g1 + g2 + · · ·+ gi−1)

= (gi + gi+1 + · · ·+ gn) + (g1 + g2 + · · ·+ gi−1)
= g1 + g2 + · · ·+ gp.

For 2 ≤ i ≤ p, for all y′i ∈ Y′i,

d(y′i) = |X′i| = g1 + g2 + · · ·+ gi−1.

Therefore the degree set of the bipartite graph G(U,V) constructed above

is D = {g1,
2∑
i=1

gi, . . . ,
p∑
i=1

gi}. �

Using Lemma 27, we can prove the following assertion.

Theorem 28 Every set of nonnegative integers is the global degree set of some
bipartite graph.

Tripartite graphs with prescribed degree set 85

Proof. Let γ = {a1, a2, . . . , an} be any set of distinct nonnegative integers.
We choose

b1 = a2 − a1, b2 = a3 − a2, · · · , bp−1 = ap − ap−1.

Now γ can be rewritten as

γ = {a1, a2 − b1 + b1, a3 − b2 + b2, · · · , ap − bp−1 + bp−1}
= {a1, a1 + b1, a2 + b2, . . . , ap−1 + bp−1}

= {a1, (a1 + b1), (a1 + b1 + b2), . . . , (a1 + b1 + b2 + · · ·+ bp−1)}.

As seen in Theorem 1, the set γ = {a1, (a1 + b1), (a1 + b1 + b2), . . . , (a1 +
b1 + b2 + · · · + bp−1)} is the global degree set of some bipartite graph which
is equivalent to say that the set γ = {a1, a2, . . . , ap} is the global degree set of
some bipartite graph. �

Example 29 Consider γ = {0, 5, 7}. We can rewrite γ as γ = {0, 5+0, 5+0+2}
and apply Corollary 2, then we get the bipartite graph with degree set γ. In
case γ = {3, 5, 10, 12}, we write γ as γ = {3, 3+ 2, 3+ 2+ 5, 3+ 2+ 5+ 2}.

From case (b) of Lemma 27, we have the following assertion.

Theorem 30 Every set of positive integers is the global degree set of some
connected bipartite graph.

The following algorithm Global-Bipartite is based on Theorem 41. There-
fore the algorithm is a sligtly modified version of Distributed-Bipartite.
Global-bipartite constructs a bipartite graph having prescribed global de-
gree set.

Input. p: the number of elements in the prescribed degree set γ;
γ = {g1, g2, . . . , gp}: the prescribed degree set for B(V1, V2, E).

Output. M(B): the incidence matrix of the constructed bipartite graph
(V1, V2, B).
n1: the number of lines of M, that is the size of the vertex set V1;
n2: the number of columns of M, that is the size of the vertex set V2.

Work variables. i, j: cycle variables.
The pseudocodes of this paper are written using the conventions described

in the textbook written by Cormen, Leiserson, Rivest, and Stein [7].

86 A. Iványi, S. Pirzada, F. A. Dar

Global-Bipartite(p, γ)
01 α = 0 // lines 01–03: computation of α
02 for i = 1 to p
03 α = α+ gi
04 ν = α2

08 n1 = ν/p
09 n2 = ν/p
10 for i = 1 to ν // lines 10–12: initialization of M
11 for j = 1 to ν
12 Mij = 0
13 i = 1
14 j = 1
15 x = n1
16 y = n2
17 while j < ν
18 while x > 0 and y > 0
19 Mij = 1
20 x = x− 1
21 y = y− 1
22 j = j+ 1
23 if x == 0
24 x = n1
25 i = i+ 1
26 if y == 0
27 y = n2
28 return µ,M

Theorem 31 Let
∑p
i=1 gi = s. Then the running time of Global-Bipartite

is Θ(s2/p2) in all cases.

Proof. See the proof of Theorem 43. �

Let m and n be positive integers. A signed bipartite graph B = (U,V, E)
with U = {u1, u2, . . . , un1

} and V = {v1, v2, . . . , vn2
} is a bipartite graph in

which to each edge is assigned a positive or negative sign. The signed degree
of a ui is defined as gui = gi = g+i − g−i , where 1 ≤ i ≤ n1 and g+i (g−i) is
the number of positive (negative) edges incident to ui, and the signed degree
of a vj is defined as gvj = gj = g+j − g−j , where 1 ≤ j ≤ n2 and g+j g

−
j) is the

number of positive (negative) edges incident to vj. The global degree set γ of
a signed bipartite graph is the set of its distinct signed degrees.

Tripartite graphs with prescribed degree set 87

In 2006 Pirzada et al. proved the following properties of signed bipartite
graphs.

Theorem 32 (Pirzada, Naikoo, Dar [46, 49]) Let γ = {g1, g2, . . . , gp} be a
nonempty set set of positive (or negative) integers.Then γ is the signed global
degree set of some signed bipartite graph, and the minimal order of such graphs
is 1+ max1≤i≤p |gi|.

Proof. See [49]. �

Theorem 33 (Pirzada, Naikoo, Dar [46, 49]) Let p be a positive integer and
γ = {g1, g2, . . . , gp} be a set of negative integers. Then γ is the signed global
degree set of some signed bipartite graph, and the minimal order of such graphs
is |min(γ)|.

Proof. See [46, 49]. �

As the following assertion shows, the requirement of the identical sign of the
elements of the score set can be removed.

Theorem 34 (Pirzada, Naikoo, Dar [46, 49]) Let γ be a set of integers. Then
γ is the signed global degree set of some signed bipartite graph.

Proof. See [46, 49]. �

In 2008 Pirzada et al. published the followig result.

Theorem 35 (Pirzada, Naikoo, Dar [46, 49]) Let p be a positive integer and
γ = {g1, g2, . . . , gp} be a set of positive integers. Then

∑1
i=1 gi,

∑2
i=1 gi, . . . ,∑p

i=1 gi is the signed global degree set of some signed bipartite graph, and the
minimal order of such graphs is |min(γ)|.

Proof. See [49]. �

3 Bipartite graphs with prescribed distributed de-
gree set

Let p be a positive integer and B = (V1, V2, E) a bipartite graph, where δ(V1) =
{a1, a2, . . . , ap}, and δ(V2) = {b1, b2, . . . , bp}. Then the pair (δ1, δ2) is called
the distributed degree set of B.

Given a pair (δ1, δ2) of finite, nonempty sets of positive integers, let µ(δ1 ∪
δ2) = min{|B| : B ∈ B, where B is the family of all bipartite graphs B with

88 A. Iványi, S. Pirzada, F. A. Dar

δ(B) = (δ1∪δ2). Manoussakis and Patil [33] have shown for a given pair (δ1, δ2)
of finite, nonempty sets of positive integers of same cardinality the existence of
a bipartite graph B(V1, V2) such that δ(V1) = δ1 and δ(V2) = δ2 and obtained
the minimum orders of different types of such graphs.

Theorem 36 (Manoussakis, Patil [33]) Let δ1 = {a1, a2, . . . , ap} and δ2 =
{b1, b2, . . . , bp} be nonempty sets of positive integers with a1 < a2 < · · · < ap,
and b1 < b2 < · · · < bp. Then there exists a bipartite graph B = (V1, V2, E)
with distributed score set (δ1, δ2). Furthermore, B is connected if and only if
the minimum order µ(δ1 ∪ δ2) = ap + bp, where |V1| = ap, and |V2| = bp.

Proof. See [33]. The proof of 36 begins with the interesting remark that
B =

⋃
(Kai + Kbi) satisfies the required property. Then comes an inductive

proof which is not correct. For example on page 387 in 6th and 5th lines from
below if n = 3, then 3 ≤ m < n is meaningless. On the next page in the third
line a1u is also an error. �

Manoussakis and Patil published also the following corollaries of Theorem
36 (the proofs can be seen in the same paper [33]).

Corollary 37 Let δ1 = {a1, a2, . . . , ap}, and δ2 = {b1, b2, . . . , bp} be nonempty
sets of different positive integers such that a1 < a2 < · · · < ap, and b1 < b2 <
· · · < bp}. Then there exists a connected, bipartite graph B(V1, V2, E) of order
ap + bp such that δ(V1) = δ1 and δ(V2) = δ2, where |V1| = ap and |V2| = bp.

Corollary 38 Let δ = {a1, a2, . . . , ap} be nonempty set of positive integers
with a1 < a2 < · · · < ap. Then there exists a connected, bipartite graph B
with bipartition (V1, V2) such that the global degree sets δ(V1) and δ(V2) are
different, and the global degree set δ(B) is δ. Moreover, the minimum order of
B with δ(B) = δ is

µ(δ) =

{
ap/2 + ap if p is even,

adp/2e + ap if p is odd.

Corollary 39 Let δ = {a1, a2, . . . , ap} be a nonempty set of positive integers
with 1a1 < a2 < · · · < ap. Then there exists a bipartite graph B = (V1, V2, E)
such that δ(B) = δ. Furthermore, B(V1, V2, E) is a connected, bipartite graph
such that δ(V1) = δ(V2) if and only if its minimum order is 2ap so that
|V1| = |V2| = ap.

Corollary 40 Let δ1 = {a1, a2, . . . , ap} be a nonempty set of positive inte-
gers with a1 < a2 < · · · < ap. Then there exists a connected bipartite graph
B(V1, V2, E) of order 2ap, such that δ(V1) = δ(V2) = δ, where |V1| = |V2| = ap.

Tripartite graphs with prescribed degree set 89

It is worth to mention, that this corollary is not true: e.g. if δ1 = {−5,−3},
then ”order 2an” is meaningless, therefore in the lemma we substituted ”the
set of integers” with ”a set of positive integers”.

Manoussakis and Patil finished their paper so: ”For arbitrary sets δ1 and δ2
of positive integers with different cardinalities, the problem of determining a
bipartite graph that holds the property in Theorem 36 is open.”

Our next theorem shows, that the existence of a bipartite graph having
prescribed distributed degree set does not require the condition |δ1| = |δ2|.

Theorem 41 Let δ1 = {a1, a2, . . . , ap} and δ2 = {b1, b2, . . . , bq} be nonempty
sets of nonnegative integers. Then there exists a bipartite graph B = (V1, V2, E)
such that δ(V1) = δ1 and δ(V2) = δ2.

Proof. If a1 = 0, then we delete a1 from δ1 resulting δ
′
1 = {c1, c2, . . . , cp−1}.

If b1 = 0, then we delete b1 from δ2 resulting δ
′
2 = {d1, d2, . . . , dq−1}.

Let α =
∑p
i=1 ai, β =

∑q
j=1 bj, µ = αβ, V1 = {u1, u2, . . . , uµ} and V2 =

{v1, v2, . . . , vµ}. Let the multiplication factor of V1 be m1 = µ/p, the multipli-
cation factor of V2 be m2 = µ/q, the degree sequence of V1 be σ1 = [cn1

1]
Now let consider the bipartite graph B(V1, V2, E), where |V1| = pβ, and

|V2| = qα, the degree sequence of V1 is σ1 = (aβ1 , a
β
2 , . . . , a

β
p } = (e1, e2, . . . , , eµ),

and the degree sequence of V2 is σ2 = (bα1 , b
α
2 , . . . , b

α
p) = (f1, f2, . . . , fµ). Let

V1 = {u1, u2, . . . , uµ} and V2 = {v1, v2, . . . , vµ}.
We construct the edge set of B as follows. We connect in cyclical order u1

with the next e1 vertices in V2 (that is with v1, v2, . . . , ve1), then connect u2
with the next e2 vertices in V2 (that is with ve1+1, ve1+2, . . . , ve1+e2) and so on.

�

It is a simple observation, that if 0 ∈ δ1∪δ2, then the graphs with distributed
degree set (δ1, δ2) are never connected.

The following example shows that the absence of zero in the prescribed
distributed degree set is not sufficient to guarantee the existence of a corre-
sponding connected bipartite graph.

Example 42 Let δ1 = {1} and δ2 = {1, 2}. In all construction we have to
connect vertices whose degree is 1, and so this pair of vertices will not be
connected with the remaining part of the constructed graph.

The following program constructs a bipartite graph having a prescribed
distributed degree set.

Input. p: the number of elements in the prescribed degree set δ1 of V1;
q: the number of elements in the prescribed degree set δ2 of V2;

90 A. Iványi, S. Pirzada, F. A. Dar

δ1 = {a1, a2, . . . , ap}: prescribed degree set for V1
δ2 = {b1, b2, . . . , bq}: prescribed degree set for V2.

Output. µ = αβ: the number of rows and columns of M, that is the common
length of the degree sequence of V1 and V2;
M: the incidence matrix of the constructed bipartite graph B = (V1, V2, E).

Work variables. i, j: cycle variables;
α: the sum of the elements of δ1;
β: the sum of the elements of δ2;
ν: the common length of the degree sequence of V1 and V2, and so the common
number of rows and columns in the incidence matrix M;
n1 = ν/p: the multiplication factor of the degree sequence of V1;
n2 = ν/q: the multiplication factor of the degree sequence of V2.

Distributed-Bipartite(p, q, δ1, δ2)

01 α = 0 // lines 01–03: computation of α
02 for i = 1 to p
03 α = α+ ai
04 β = 0 // lines 04–06: computation of β
05 for i = 1 to q
06 β = β+ bi
07 ν = αβ // lines 07–09: computation of β,n1 and n2
08 n1 = ν/p
09 n2 = ν/q
10 for i = 1 to ν // lines 10–12: initialization of M
11 for j = 1 to ν
12 Mij = 0
13 i = 1 // lines 13–16: initialization of i, j, x, and y
14 j = 1
15 x = n1
16 y = n2
17 while j ≤ ν // lines 17–27: connecting of the vertices
18 while x > 0 and y > 0
19 Mij = 1
20 x = x− 1
21 y = y− 1
22 j = j+ 1
23 if x == 0
24 x = n1
25 i = i+ 1

Tripartite graphs with prescribed degree set 91

26 if y == 0
27 y = n2
28 return µ,M

Theorem 43 The running time of Distributed-Bipartite is in all cases
Θ(ν).

Proof. The deciding parts of the running time are required by lines 10–12 and
by lines 17–27 and both parts requires Θ(ν) time. �

Comparing with the algorithm proposed by Manoussakis and Patil disadvan-
tage of Distributed-Bipartite is that it constructs usually larger solution.

4 Tripartite graphs with prescribed global degrees

A graph T(V, E) is said to be tripartite graph (or trigraph or 3-partite graph)
if its vertex set V can be partitioned into three disjoint sets V1, V2, and V3
with V = V1 ∪ V2 ∪ V3 such that if uv ∈ E, u ∈ Vi and v ∈ Vj, then i 6= j. A
tripartite graph is complete if there is edge from each v ∈ Vi to every v ∈ Vj
with i 6=, 1 ≤ i, j ≤ 3. If |V1| = n1, |V2| = n2 and |V3| = n3, then the complete
bipartite graph is denoted by Kn1,n2,n3

.

The set of distinct degrees of T is called its global degree set and is denoted
by γ(T) (or simply γ).

In 2007 Pirzada, Naikoo and Dar proved the following assertions.

Theorem 44 (Pirzada, Naikoo, Dar [48]) Let γ{g1, g2, . . . , gp} be a nonempty
set of nonnegative integers. Then there exists a tripartite graph T = (V1, V2, V3,
E) with global degree set γ.

Proof. See [48] �

Theorem 45 (Pirzada, Naikoo, Dar [48]). Let γ = {g1, g2, . . . , gp} be a non-
empty set of nonnegative integers with g2g3 · · ·gp > 0. Then there exists a

tripartite graph whose global degree set is γ = {g1,
∑2
i=1 gi, . . . ,

∑p
i=1 gi}.

Proof. To prove the existence of such tripartite graphs, we consider two cases,
(a) when g1 = 0 and (b) g1 > 0.

Case (a) Let g1 = 0. We consider three subcases.
(i) Suppose n = 1. We choose the null tripartite graph G(V1, V2, V3, E) with

|V1| = |V2| = |V3| = 1. Here the degrees of the vertices v1 ∈ V1, v2 ∈ V2

92 A. Iványi, S. Pirzada, F. A. Dar

and v3 ∈ V3 are dv1 = dv2 = dv3 = 0 = g1. So the global degree set of
G(V1, V2, V3, E) is γ = {g1}.

(ii) We now take n = 2. Consider a tripartite graph G(V1, V2, V3, E) with
|V1| = 1, |V2| = |V3| = d2. Suppose there is an edge from each vertex of V2 to ev-
ery vertex of V3. We observe that the degrees of the vertices of G(V1, V2, V3, E)
are as under.
For v1 ∈ V1, dv1 = 0 = g1; for all v2 ∈ V2, dv2 = |V3| = g2 = g1 + g2; and for
all v3 ∈ V3, dv3 = |V2| = g2 = g1 + g2.

Thus the degree set of G(V1, V2, V3, E) is D = {g1, g1 + g2}.
(iii) Now let p ≥ 3. We construct a tripartite graph G(V1, V2, V3, E) whose

V1 =

n⋃
i=1

Xi, V2 =

n−2⋃
i=1

Yi and V3 = Z1
⋃(n−1⋃

i=2

Zi
)⋃(p−1⋃

i=2

Z′i
)
,

where for all i 6= j, Xi ∩ Xj = φ, Yi ∩ Yj = φ, Zi ∩ Zj = φ, Zi ∩ Z′j = φ,
Z′i ∩ Z′j = φ;

for all i, 2 ≤ i ≤ p, |X1| = 1, |Xi| = |Zi−1| = di;

for all i, 1 ≤ i ≤ p− 2, |Yi| = |Z′i+1| =
i+1∑
r=2

gr = g2 + g3 + · · ·+ gi+1.

We choose an edge from each vertex of Xi to every vertex of Zj whenever
i ≥ j; an edge from each vertex of Yi to every vertex of Zi+1 for all i, 1 ≤
i ≤ p− 2; and an edge from each vertex of Yi to every vertex of Z′i+1 for all i,
1 ≤ i ≤ p− 2.

The degrees of the vertices of the tripartite graph G(V1, V2, V3, E) con-
structed above are as follows.

For x1 ∈ X1, dx1 = 0 = g1;
and for 2 ≤ i ≤ n, for all xi ∈ Xi,

dxi =

i−1∑
j=1

|Zj| =

i−1∑
j=1

|gj+1|

= g2 + g3 + · · ·+ gi = g1 + g2 + · · ·+ gi;

for 1 ≤ i ≤ n− 2, for all yi ∈ Yi,

d(yi) = |Zi+1|+ |Z′i+1|

= gi+2 + g2 + g3 + · · ·+ gi+1
= g1 + g2 + g3 + · · ·+ gi+2;

Tripartite graphs with prescribed degree set 93

for all z1 ∈ Z1,

d(z1) =

n∑
i=2

|Xi| =

n∑
i=2

gi

= g2 + g3 + · · ·+ gn
= g1 + g2 + g3 + · · ·+ gn;

for 2 ≤ i ≤ n− 1, for all zi ∈ Zi

d(zi) =

n∑
j=i+1

|Xj|+ |Yi−1| =

n∑
j=i+1

gj + (g2 + · · ·+ gi

= gi+1 + gi+2 + · · ·+ gn + g2 + g3 + · · ·+ gi
= g1 + g2 + · · ·+ gn;

for 2 ≤ i ≤ n− 1, for all z′i ∈ Z′i

d(z′i) = |Y′i−1| = g2 + g3 + · · ·+ gi
= g1 + g2 + g3 + · · ·+ gi.

Thus we see that the degree set of G(V1, V2, V3) is

D = {g1,

2∑
i=1

gi, . . . ,

p∑
i=1

gi}.

Case (b) Assume g1 > 0. We have two subcases.
(i) Let p = 1. We consider the tripartite graph G(V1, V2, V3, E) with V1 = X1,

V2 = Y1, V3 = Z1
⋃
Z2 and Z1

⋂
Z2 = φ, |X1| = |X2| = |X3| = 1. In this graph,

let there be an edge from each vertex of X1 to every vertex of Z1, and from
each each vertex of Y1 to every vertex of Z2. Then the degrees of the vertices
of G(V1, V2) are given as d(v1) = |V2| = g1 and d(v2) = |V1| = g1, for all
v1 ∈ V1, v2 ∈ V2. Thus the degree set of G(V1, V2, V3, E) is γ = g1.

Now, let p = 1 and g1 > 1. Consider the tripartite graph G(V1, V2, V3, E)
with |V1| = 1, |V2| = g1 − 1, |V3| = g1, and let there be an edge from each
vertex of V1 to every vertex of V3, and from each vertex of V2 to every vertex
of V3. The degrees of the vertices of this graph are as follows.

For v1 ∈ V1, we have d(v1) = |V3| = g1; for all v2 ∈ V2, we have d(v2) =
|V3| = g1; and for all v3 ∈ V3, we have d(v3) = |V1| + |V2| = 1 + g1 − 1 = g1.
Therefore the degree set of G(V1, V2, V3, E) is γ = g1.

94 A. Iványi, S. Pirzada, F. A. Dar

(ii) Let p ≥ 2. Consider the tripartite graph G(V1, V2, V3, E) whose

V1 =

n⋃
i=1

Xi, V2 =

n−1⋃
i=1

Yi, and V3 = Z1
⋃(p⋃

i=2

Zi
)⋃(p⋃

i=2

Z′i
)
,

where for all i 6= j, Xi ∩ Xj = φ, Yi ∩ Yj = φ, Zi ∩ Zj = φ, Zi ∩ Z′j = φ,
Z′i ∩ Z′j = φ for all i, 1 ≤ i ≤ p, |Xi| = |Zi| = gi. Also for all i, 1 ≤ i ≤ p − 1,
we have |Yi| = |Zi+1| = g1 + g2 + · · ·+ gi.

Take an edge from each vertex of Xi to every vertex of Zj whenever i ≥ j; an
edge from each vertex of Yi to every vertex of Zi+1 for all i, 2 ≤ i ≤ n−1, and an
edge from each vertex of Yi to every vertex of Z′i+1 for all i, 1 ≤ i ≤ p−1. The
following are the degrees of the vertices of the tripartite graph G(V1, V2, V3, E)
constructed above.

For 1 ≤ i ≤ p, for all xi ∈ Xi,

d(xi) =

i∑
j=1

|Zj| =

i∑
j=1

vj = v1 + v2 + · · ·+ vi.

For 1 ≤ i ≤ n− 1, for all yi ∈ Yi,

d(yi) = |Zi+1|+ |Z′i+1| = gi+1 + (g1 + g2 + · · ·+ gi+1) = g1 + g2 + · · ·+ gi+1.

For all z1 ∈ Z1, we have

d(z1) =

p∑
i=1

|Xi| =

p∑
i=1

gi = g1 + g2 + · · ·+ gp.

For 2 ≤ i ≤ p, for all zi ∈ Zi,

d(zi) =

p∑
j=1

|Xj|+ |Yi−1|

=
(p∑
j=1

dj
)
+ (g1 + g2 + · · ·+ gi−1)

= (gi + gi+1 + · · ·+ gp) + (g1 + g2 + · · ·+ gi−1)
= g1 + g2 + · · ·+ gp.

For 2 ≤ i ≤ p, for all z′i ∈ Z′i,

d(z′i) = |Yi−1| = g1 + g2 + · · ·+ gi−1.

Tripartite graphs with prescribed degree set 95

Therefore the degree set of the tripartite graph G(V1, V2, V3, E) constructed
above is γ = {g1,

∑2
i=1 gi, . . . ,

∑p
i=1 gi}. �

Corollary 46 (Pirzada, Naikoo, Dar [48]). Every nonempty set of positive
integers, except {1}, is the global degree set of some connected tripartite graph.

Proof. Here we give a new, correct proof. In case g1 > 0 in the proof of
Theorem 44, the construction gives a connected tripartite graph.

If the global degree set of a tripartite graph is γ = {1}, then let u and v
be two connected vertices. If we connect one of these vertices with any other
vertex, then the degree of this vertex will be at least 2. �

The following algorithm Global-Tripartite is based on Theorem 44. It
constructs a tripartite graph having prescribed global degree set.

Input. p: the number of elements in the prescribed degree set γ;
γ = {g1, g2, . . . , gp}: the prescribed degree set for B(V1, V2, E).

Output. M(B): the incidence matrix of the constructed tripartite graph
(V1, V2, V3, E);
n1: the number of lines of M, that is the size of the vertex set V1;
n2: the number of columns of M, that is the size of the vertex set V2.

Work variables. i, j: cycle variables;
n ′1 =

⋃
i = 1

p|Xi|;
n ′1 =

⋃
i = 1

p|Xi|;

n ′2 =
⋃p−1
i=1 |X

′
i |;

n ′′2 =
⋃p−1
i=3 |X

′′
i |.

Global-Tripartite(p, q, r, δ1, δ2, δ3)

01 if a1 == 0 // lines 01–06: the case a1 = 0
02 if p == 1 // lines 02–06: the subcase a1 = 0 and p = 1
03 n1 = 1
04 n2 = 1
05 Mn1,n2

= 1
06 return M
07 if p == 2 // lines 7–16: the subcase a1 = 0 and p = 2
08 n1 = a2 + 1
09 n2 = a2
10 for i = 1 to n1 // lines 10–12: initialization of M
11 for j = 1 to n2
12 Mij = 0
13 for i = 2 to n1

96 A. Iványi, S. Pirzada, F. A. Dar

14 for j = 1 to n2
15 Mij = 1
16 return M
17 if p == 3 // lines 17–33: the subcase a1 = 0 and p = 3
18 n ′1 =

∑p
i=2 ai // lines 18–23: computation of n1 and n2

19 n ′′1 =
∑p
i=3

∑i
j=2−1ai

20 n1 = n
′
1 + n

′′
1

21 n ′2 =
∑n−1
i=1 ai

22 n ′′2 =
∑n
i=3

∑i−1
j=2 aj

23 n2 = n
′
2 + n

′′
2

24 for i = 1 to n1 // lines 24–26: initialization of M
25 for j = 1 to n2
26 Mij = 0
27 for i = 2 to n1 // lines 27–32: drawing of the edges of M
28 for j = 1 to i
29 Mij = 1
30 for i = n ′1 + 1 to n1
31 for j = n ′2 to n2
32 Mij = 1
33 return n1, n2, M // line 33: return of the result

Theorem 47 The running time of Global-Bipartite is Θ(1) in best case
and Θ(n1n2) in worst case.

Different authors proved that signed tripartite graphs have similar proper-
ties, then tripartite graphs.

Theorem 48 (Pirzada, Dar [38]) Let γ = {g1, g2, . . . , gp} be a nonempty set
of positive integers. Then there exists a connected signed tripartite graph with

signed global degree set
{∑1

i=1 gi,
∑2
i=1 gi, . . . ,

∑p
i=1 gi

}
.

Proof. See [38]. �

The next result follows from Theorem 48 by interchanging positive edges
with negative ones.

Corollary 49 (Pirzada, Dar [38]) Every set of negative integers is the global
degree set of some connected signed tripartite graph.

Proof. See [38] �

Pirzada and Dar proved the following stronger assertion too.

Tripartite graphs with prescribed degree set 97

Theorem 50 (Pirzada, Dar [38]) Let γ = {g1, g2, . . . , gp} be a nonempty set
of positive integers. Then there exists a connected signed tripartite graph with
signed global degree set γ.

Proof. See [38]. �

5 Tripartite graphs with prescribed distributed de-
gree set

As the following theorem shows, the existence of a corresponding tripartite
graph do not require the condition |γ1| = |γ2|, |γ3|.

Theorem 51 Let δ1 = {a1, a2, . . . , an1
}, δ2 = {b1, b2, . . . , bn2

}, and δ3 =
{c1, c2, . . . , cn3

} be nonempty sets of positive integers. positive integers with
a1 < a2 < · · · < an1

, b1 < b2 < · · · < bn2
and c1 < c2 < · · · < cn3

. Then there
exists a tripartite graph B = (V1, V2, E) such that δ(V1) = δ1, and δ2(V2) = δ2
and δ3(V3) = δ3.

Proof. Let A =
∑n1

i=1 ai and B =
∑n
i=1 bi and C =

∑n3

i=1 ci. �

The following programDistributed-Tripartite constructs a tripartite graph
having a prescribed distributed degree set.

Input. p: the number of elements in the prescribed degree set for V1;
q: the number of elements in the prescribed degree set for V2;
r: the number of elements in the prescribed degree set for V3;
δ1 = {a1, a2, . . . , ap}: prescribed degree set for V1;
δ2 = {b1, b2, . . . , bq}: prescribed degree set for V2;
δ3 = {c1, c2, . . . , cr}: prescribed degree set for V3.

Output. n1: the size of vertex set V1;
n2: the size of vertex set V2;
n2: the size of vertex set V3;
M1: the incidence matrix of the constructed bipartite graph with distributed
degree set δ1, δ2;
M2: the incidence matrix of the constructed bipartite graph with distributed
degree set δ1, δ3;
M3: the incidence matrix of the constructed bipartite graph with distributed
degree set δ2, δ3;
M: the incidence matrix of the constructed tripartite graph B = (V1, V2, V3, E).

Work variables. i, j: cycle variables;
α: the sum of the elements of δ1;

98 A. Iványi, S. Pirzada, F. A. Dar

β: the sum of the elements of δ2;
τ: the sum of the elements of δ3;
σ1α: the least common multiple of α and β;
n1 = σ/α: the number of rows of M, that is the size of V1;
n2 = σβ: the number of columns of M, that is the size of V2;;
φ = (p1, p2, . . . , pβ): the degree vector of V1;
ρ = (r1, r2, . . . , rα: the degree vector of V2.

Distributed-Tripartite(p, q, r, δ1, δ2, δ3)

01 Distributed-Bipartite(p, q, δ1, δ2) // lines 01–03: computation of M1

02 N =M
03 µ2 = µ
04 Distributed-Bipartite(p, r, δ1, δ3) // lines 04–06: computation of M2

05 P =M
06 µ2 = µ
07 Distributed-Bipartite(q, r, δ2, δ3) // lines 07–09: computation of M3

08 Q =M
09 µ3 = µ
10 for i = 1 to µ1 + µ2+ µ3 // lines 10–11: initialization of M
11 Mij = 0
12 for i = 1 to µ1 // lines 12–20: computation of M
13 for j = 1 to µ1
14 Mij = Nij
15 for i = 1 to µ2
16 for j = 1 to µ2
17 Mµ1+i,µ1+j = Pij
18 for i = 1 to µ3
19 for j = 1 to µ3
20 Mµ1+µ2+i,µ1+µ2+j = Qij
21 Σ = µ1 + µ2 + µ3 // lines 21–21: computation of Σ
22 return Σ,M // lines 22–22: return of the results

Theorem 52 The running time of Distributed-Triipartite is in all cases
cases Θ(Σ2) .

Proof. The deciding part of the running time is required by lines 10–12. �

In 2007 Pirzada and Dar proved the following result on the global degree
set of signed tripartite graphs.

Tripartite graphs with prescribed degree set 99

Theorem 53 (Pirzada, Dar [38]) Let γ = {g1, g2, . . . , gp} be a nonempty set
of positive integers. Then there exists a connested signed tripasrtite graph G
whose global degre set is

∑1
i=1 gi,

∑2
i=1 gi, . . . ,

∑p
i=1 gi.

Proof. See [38]. �

Corollary 54 (Pirzada, Dar [38]) Every set of negative integers is the global
degree set of a connected tripartite signed graph.

Proof. See [38]. �

Theorem 55 (Pirzada, Dar [38]) Every set of integers is the global signed
degree set of some connected signed tripartite graph.

Proof. See [38]. �

6 Simple, bipartite and tripartite digraphs with pre-
scribed global score sets

For directed graphs there are similar results as for undirected graphs.

6.1 Simple digraphs with prescribed score sets

The following papers contain the known results on the simple digraphs having
a prescribed score set: [3, 12, 18, 19, 20, 23, 22, 35, 37, 40, 44, 50, 51, 63].

A directed graph is called asymmetric or oriented, if whenever a vertex
uv ∈ E, then vu /∈ E. A complete asymmetric graph is called tournament. The
outdegrees of the vertices of a tournament are called scores, and the sequence
of the scores is called score sequence, the set of scores is called score set.

Reid in 1978 proved the following sufficient conditions for a tournament T
to have a prescribed score set.

Theorem 56 (Reid [50])

1. Every singleton and doubleton set of positive integers is the score set of
a tournament.

2. Let a ≥ 1, d ≥ 2 and n ≥ 0 be integers and γ = {a, ad, ad2, . . . , adn}.
Then there exists a tournament T whose score set is γ.

3. Let a ≥ 1, d ≥ 1 and n ≥ 0 be integers and γ = {a, a+d, a+2d, . . . , a+
nd}. Then there exists a tournament T whose score set is γ.

100 A. Iványi, S. Pirzada, F. A. Dar

Proof. See [50] �

Since a single vertex is also a tournament, therefore S = 0 is also the score
set of a tournament. If a ≥ 1 and T is the union of of T1, consisting of a single
vertex and T2 is such (2a+1)-regular tournament, that the elements of T2 win
against the players in T1, then the score set of T is {0, a},that is the first part
of Theorem 56 is true not only for positive, but also for nonnegative elements.

In the same paper [50] Reid formulated the conjecture, that any set of
nonnegative integers is a score set of some tournament.

In 1986 Hager [12] continued the researches of Reid proving that any set of
3, 4 or 5 nonnegative elements are also the score sets of some tournament.

Finally in 1989 Yao [63] proved the conjecture of Reid.

Theorem 57 (Yao [63]) Any set of nonnegative integers is the global degree
set of some tournament.

Proof. See [63]. �

Let n ≥ 1 a positive integer and µo(γ) be the minimal order of oriented
graphs having score set γ = {g1, g2, . . . , gn}. In 1976 Chartrand, Lesniak and
Roberts proved the following assertions.

Lemma 58 (Chartrand, Lesniak and Roberts [4]). If a is a nonnegative in-
teger, then µo({a}) = 2a+ 1.

Lemma 59 (Chartrand, Lesniak and Roberts [4]). If γ is a finite, nonempty
set of nonnegative integers and p is an integer such that p ≥ µo(γ), then there
exists an asymmetric digraph D of order p such that γ(D) = γ.

As a simple consequence of Lemma 59, we have the following result.

Lemma 60 (Chartrand, Lesniak and Roberts [4]). If γ is a finite, nonempty
set of nonnegative integers and p is an integer such that p ≥ µ0(γ), then there
exists an asymmetric digraph D of order p such that D(D) = γ.

Corollary 61 (Chartrand, Lesniak and Roberts [4]). If p is a positive integer
and γ = {a1, a2, . . . , ap} is a set of nonnegative integers with a1 < a2 < · · · <
ap and a1 = 0, then µ0(γ) = ap + 1.

Lemma 62 (Chartrand, Lesniak and Roberts [4]). If n ≥ 2 and 1 ≤ a1 <
· · · < an, then µ0(a1, a2, . . . , an) ≥ 2a1+ t, where t > 1 is the least integer for
which (n+ t− 2)a1 +

(
t
2

)
≥
∑p
i=1 ai.

Tripartite graphs with prescribed degree set 101

The main result of Chartrand, Lesniak and Roberts is the following theorem.

Theorem 63 (Chartrand, Lesniak and Roberts [4]). Let p ≥ 2 be an integer
γ = (a1, a2, . . . , ap) be a sequence of positive integers, and let t be the least
integer exceeding one for which (p+ t− 2)a1 +

(
t
2

)
≥
∑n
i=1 ai. Then

µ0(a1, a2, . . . , ap) =

{
ap + 1 if ap ≥ µ0(a1, a2, . . . , ap−1),
2a1 + 1 if ap < µ0(a1, a2, . . . , ap−1).

Proof. The proofs of Lemma 60, Corollary 61, Lemma 62, Lemma ?? are in
[4]. �

In 1983 Harary and Harzheim [17] investigated the degree sets of infinite
connected graphs.

Im 2006 Pirzada and Naikoo proved the following assertion on the score sets
of k-partite tournaments.

Theorem 64 (Pirzada, Naikoo [43]) Let k ≥ 1, d1, d2, . . . , dk be nonnega-
tive integers with d2d3 ldotsdk > 0. Then there exists a tripartite tournament
with global score set {

∑1
i=1 d1,

∑2
i=1 di, . . . ,

∑k
i=1 di} except for p = 1, d1 = 0,

and p = 2, d1 = 0, d2 = 2.

Proof. See [43]. �

Theorem 65 (Pirzada, Naikoo [43]) Let d1, d2, . . . , dp be nonnegative in-
tegers with d2, d3, . . . , dp > 0. Then for every p ≥ k ≥ 2 then there exists a

k-partite tournament with global score set {
∑1
i=1 di,

∑2
i=1 di, . . . ,

∑k
i=1 di}.

Proof. See [43]. �

In 2006 Dziechcińska-Halamoda, Majcher, Michael, and Skupień [8] studied
the properties of sets of pairs of scores in oriented graphs.

In 2006 Pirzada, Naikoo and Chishti proved the following conditions which
are sufficient for an oriented graph to have special degree sets.

Theorem 66 (Pirzada, Naikoo, Chishti [45]) If γ contains one, two or three
positive integers, then there exists an oriented graph whose global degree set is
γ.

Proof. See [45]. �

It is also a sufficient condition, if γ contains an arithmetical or geometrical
sequence.

In 2008 Pirzada and Naikoo gave the following sufficient conditions for an
oriented graph G to have the global degree set γ.

102 A. Iványi, S. Pirzada, F. A. Dar

Theorem 67 (Pirzada, Naikoo [44]). Let Let a > 0, d > 1 and n ≥ 0 be
integers and A = {a, ad, ad2, . . . , adn}. Then there exists an oriented graph
with degree set A except for a = 1, d = 2, n > 0 and for a = 1, d = 3, n > 0.

Theorem 68 (Pirzada, Naikoo [44]) Let If n ≥ 1 and a1, a2, . . . , an are non-
negative integers with a1 < a2 < · · · < an, then there exists an asymmetric
graph with an + 1 vertices and global degree set a ′1, a

′
2, . . . , a

′
n, where

a ′i =

{
ai for i = 1,
ai−1 + ai + 1 for i > 1.

In 2014 Khan [27] proved, that the problem of construction of a tournament
having prescribed imbalance set is weakly NP-complete.

6.2 Bipartite digraphs with prescribed score sets

A bipartite tournament is a complete asymmetric bipartite graph. Let δ1 =
{a1, a2, . . . , ap = a} and δ2 = {b1, b2, . . . , bq = b} be finite, nonempty, in-
creasingly ordered sets, containing nonnegative integers, whose elements are
nonnegative integers with a1 + b1 > 0.

In 1983 Wayland proved the following assertion.

Theorem 69 (Wayland [60]). There exists a bipartite tournament T = (V1,
V2, E) with distributed score set (δ1, δ2), if and only if

p∑
i=1

si + (t− p+ 1)q+

q∑
j=1

+bj + 1− q(bq + 1)

is positive.

Proof. See [60]. �

Corollary 70 If s > m + 1, then there exists a bipartite tournament with
distributed score set (δ1, δ2).

Proof. See [60]. �

Also in 1983 Petrović published the following assertion.

Theorem 71 (Petrović [36]) The set of nonnegative integers δ1 = {a} and
δ2 = {b1, b2, . . . , bn} form a distributed score set for some bipartite tournament
if and only if one of the following conditions are satisfied:

a) b1 + b+ 2+ . . .+ bn = b(n− a− 1)bn;
b) b1 + b+ 2+ . . .+ bn > (n− a+ 1)bn;
c) b1 + b+ 2+ . . .+ bn = (n− a+ 1)bn + d, 1 ≤ d ≤ n− a− 1.

Tripartite graphs with prescribed degree set 103

Proof. See [36]. �

Corollary 72 (Petrović [36], Wayland [60]). Any nonempty set of nonnega-
tive integers except {0} is the global degree set of some bipartite tournament.

Proof. See Petrović [36], Wayland [60]. �

6.3 Tripartite digraphs with prescribed global score sets

Let k be a positive integer and D = (V1, V2, . . . , Vk, E) be a k-partite ori-
ented graph. In 2006 Pirzada, and Naikoo [42]—using an unusual definition
of score sets—published sufficient conditions of the existence of 3-partite ori-
ented graphs having special singleton sets, arithmetical and geometrical series
as their prescribed global score set.

In 2007 Pirzada et al. [41] gave further sufficient conditions for the existence
of oriented tripartite graphs having prescribed global score set.

Acknowledgement. The authors thank the useful remarks of the unknown
referee.

References

[1] T. S. Ahuja, A. Tripathi, On the order of a graph with a given degree set. J.
Comb. Math. Comb. Comput., 57 (2006) 157–162. ⇒74

[2] G. Chartrand, H. Gavlas, F. Harary, M. Schultz, On signed degrees in signed
graphs, Czechoslovak Math. J., 44, 4 (1994) 677–690. ⇒79

[3] G. Chartrand, R. J. Gould, S. F. Kapoor, Graphs with prescribed degree sets
and girth, Periodica Math. Hung., 12, 4 (1981) 261–266. ⇒78, 99

[4] G. Chartrand, L. Lesniak, J. Roberts, Degree sets for digraphs, Periodica Math.
Hung., 7, 1 (1976) 77–85. ⇒100, 101

[5] G. Chartrand, L. Lesniak, P. Zhang, Graphs & Digraphs, CRC Press, Boca
Raton, 2011. ⇒72, 77

[6] A. A. Chernyak, Minimal graphs with a given degree set and girth (Russian),
Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1988, 2 21–25, 123. ⇒78

[7] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Al-
gorithms (third edition), The MIT Press/McGraw Hill, Cambridge/New York,
2009. ⇒85

[8] Z. Dziechcińska-Halamoda, Z. Majcher, J. Michael, Z. Skupień, Extremum de-
gree sets of irregular oriented graphs and pseudodigraphs, Discussiones Math.
Graph Theory,, 26, 2 (2006) 317–333. ⇒101

http://web.iitd.ac.in/~atripath/
http://www.combinatorialmath.ca/jcmcc/
http://homepages.wmich.edu/~zhang/gary.html
http://en.wikipedia.org/wiki/Frank_Harary
http://link.springer.com/journal/10587
http://homepages.wmich.edu/~zhang/gary.html
http://wikibin.org/articles/s.-f.-kapoor.html
http://www.springer.com/mathematics/journal/10998
http://homepages.wmich.edu/~zhang/gary.html
http://wmich.edu/pbk/officers
http://www.springer.com/mathematics/journal/10998
http://homepages.wmich.edu/~zhang/gary.html
http://wmich.edu/pbk/officers
http://homepages.wmich.edu/~zhang/Zhang
http://www.crcpress.com/index.jsf
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://www.mhprofessional.com/category/?cat=1012
http://home.agh.edu.pl/~skupien/menueng.htm
http://www.discuss.wmie.uz.zgora.pl/gt/

104 A. Iványi, S. Pirzada, F. A. Dar

[9] J. A. Ellis, M. Mate-Montero, H. Müller, Serial and parallel algorithms for (k, 2)-
partite graphs, J. Parallel Dist. Comp., 22 (1994) 129–137. ⇒81

[10] P. Erdős, H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler
Knotenzahl. Wiss. Z. Martin-Luther-Univ. Halle–Wittenburg, Math.-Natur.
Reihe, 12 (1963) 251–258. ⇒77

[11] J. L. Gross, J. Yellen, P. Zhang. Handbook of Graph Theory (second editionI,
CRC Press, Boca Raton, FL, 2014. ⇒72

[12] M. Hager. On score sets for tournaments, Discrete Math., 58 (1986) 25–34. ⇒
99, 100

[13] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices
of a simple graph. J. SIAM Appl. Math. 10 (1962) 496–506. ⇒79

[14] S. L. Hakimi, On the degrees of the vertices of a graph, F. Franklin Institute,
279, (4) (1965) 290–308. ⇒

[15] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2, 2
(1953), 143–146. ⇒78, 79

[16] F. Harary, The number of linear, directed, rooted and connected graphs, Trans.
Amer. Math. Soc, 78, 2 (1955) 445–463. ⇒79

[17] F. Harary, E. Harzheim, The degree sets of connected infinite graphs. Fund.
Math., 118, 3 (1983) 233–236. ⇒101

[18] A. Iványi, Reconstruction of score sets, Acta Univ. Sapientiae, Informatica, 6,
2 (2014) 210–229. ⇒99

[19] A. Iványi, J. Elek, Reconstruction of tournaments using the set of outdegrees
(in Russian), Heuristic Algorithms and Distributed Computations, 1, 4 (2014)
46–70. ⇒99

[20] A. Iványi, J. Elek, Degree sets of tournaments, Studia Univ. Babeş-Bolyai, In-
formatica, 59 (2014) 150–164. ⇒99

[21] A. Iványi, L. Lucz, T. Matuszka, G. Gombos, Score sets in multitournaments,
I. Mathematical results, Annales Univ. Sci. Budapest., Sectio Comp., 40 (2013)
307–320. ⇒99

[22] A. Iványi, B. M. Phong. On the unicity of the score sets of multitournaments, in:
Fifth Conference on Mathematics and Computer Science (Debrecen, June 9–12,
2004), University of Debrecen, 2006, 10 pages. ⇒99

[23] A. Iványi, S. Pirzada, N. A. Shah, Imbalances of bipartite multitournaments,
Annales Univ. Sci. Budapest., Sectio Comp., 37 (2012) 215–238. ⇒99

[24] S. F. Kapoor, L. Lesniak, Degree sets for triangle-free graphs. In Second Int.
Conf. Comb. Math. (New York, 1978), pp. 320–330, Ann. New York Acad. Sci.,
319, New York Acad. Sci., New York, 1979. ⇒80

[25] S. F. Kapoor, A. D. Polimeni, C. E. Wall, Degree sets for graphs, Fund. Math.,
95, 3 (1977) 189–194. ⇒73, 80

[26] F. Kárteszi, Ciclici come risoluzionidi un certoproblema di minimo, Bol. Un. Mat.
Ital., 15 (1960) 522–528, or Mat. Lapok, 11 (1960) 323–329 (in Hungarian). ⇒
77

[27] M. A. Khan, Equal sum sequences and imbalance sets of tournaments, arXiv,
arXiv:1402.2456v1 [math.CO] 11 Feb 2014. ⇒102

http://www.sciencedirect.com/science/journal/07437315
http://www-history.mcs.st-and.ac.uk/history/Biographies/Erdos.html
http://en.wikipedia.org/wiki/Horst_Sachs
http://www.cs.columbia.edu/~gross/
http://web.rollins.edu/~jyellen/
http://homepages.wmich.edu/~zhang/
http://www.crcpress.com/index.jsf
http://www.sciencedirect.com/science/journal/0012365X
http://en.wikipedia.org/wiki/S._L._Hakimi
http://en.wikipedia.org/wiki/S._L._Hakimi
http://en.wikipedia.org/wiki/Frank_Harary
http://projecteuclid.org/euclid.mmj/1028989917
http://projecteuclid.org/euclid.mmj
http://en.wikipedia.org/wiki/Frank_Harary
http://www.jstor.org/discover/10.2307/1993073?sid=21106346369183&uid=2&uid=4
http://www.jstor.org/action/showPublication?journalCode=tranamermathsoci
http://en.wikipedia.org/wiki/Frank_Harary
http://journals.impan.gov.pl/fm/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://elekjani.web.elte.hu
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://elekjani.web.elte.hu
http://www.cs.ubbcluj.ro/~studia-i/2014-macs/12Ivanyi.pdf
http://www.cs.ubbcluj.ro/~studia-i/contents.php
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
http://people.inf.elte.hu/tomintt/
http://people.inf.elte.hu/ggombos/
http://compalg.inf.elte.hu/annales/computatorica
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
mailto:bui@compalg.inf.elte.hu
http://www.unideb.hu/portal/en
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/DrSPirzada.aspx
http://compalg.inf.elte.hu/annales/computatorica
http://wikibin.org/articles/s.-f.-kapoor.html
http://wmich.edu/pbk/officers
http://wikibin.org/articles/s.-f.-kapoor.html
http://journals.impan.gov.pl/fm/
http://tudosnaptar.kfki.hu/k/a/karteszi/karteszipant.html
https://eudml.org/doc/195996Piani finiti

Tripartite graphs with prescribed degree set 105

[28] S. Koukichi, H. Katsuhiro, Some remarks on degree sets for graphs. Rep. Fac.
Sci. Kagoshima Univ. No. 32 (1999), 9–14. ⇒73

[29] P. Kumar, M. N. J. Sarma, S. Sawlani, On directed tree realization of degree
sets, in: ed. by S. K. Ghost, T. Tokuyama, WALCOM 2013, Lecture Notes in
Computer Sciemce, 7748, 2013, 274–285. ⇒80

[30] Y. Manoussakis, H. P. Patil, Bipartite graphs and their degree sets, Electron.
Notes on Discrete Math., (Proceedings of the R. C. Bose Centenary Symposium
on Discrete Mathematics and Applications,) 15 (2003) 125–125. ⇒75

[31] Y. Manoussakis, H. P. Patil, V. Sankar, Further results on degree sets for graphs,
Mano I. J. M. S., 1, 2 (2001) 1–6. ⇒75

[32] Y. Manoussakis, H. P. Patil, V. Sankar, Further results on degree sets for graphs,
AKCE J. Graphs Combin., 1, 2 (2004) 77–82. ⇒75

[33] Y. Manoussakis, H. P. Patil, On degree sets and the minimum orders in bipartite
graphs, Discussiones Math. Graph Theory, 34, 2 (2014) 383–390. ⇒81, 88

[34] C. M. Mynhardt, Degree sets of degree uniform graphs, Graphs Comb., 1 (1985)
183–190. ⇒78

[35] S. Osawa, Y. Sabata, Degree sequuences related to degree sets, Kokyuroki, 1744
(2011) 151–158. ⇒99

[36] V. Petrović. On bipartite score sets, Zbornik radova Prirodno-matematičkog
Fakulteta Universitetr u Novom Sadu, Ser. Mat., 13 (1983) 297–303. ⇒ 102,
103

[37] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad,
India, 2012. ⇒73, 77, 99

[38] S. Pirzada, F. A. Dar, Signed degree sets in signed tripartite graphs, Matematicki
Vesnik, 59, 3 (2007) 121–124. ⇒96, 97, 99

[39] S. Pirzada, F. A. Dar, A. Iványi, Existence of bipartite and tripartite graphs
with prescribed degree sets, Heuristic Alg. Dist. Comp., 1, 1 (2015) 62–72. ⇒
81

[40] S. Pirzada, A. Iványi, M. A. Khan. Score sets and kings, in ed. A. Iványi, Algo-
rithms of Informatics, Vol. 3, mondAt, Vác, 2013, 1337–1389. ⇒99

[41] S. Pirzada, Merajuddin, T. A. Naikoo, Score sets in oriented 3-partite graphs,
Analysis Theory Appl., 4 (2007) 363–374. ⇒103

[42] S. Pirzada, T. A. Naikoo, Score sets in oriented k-partite graphs, AKCE J.
Graphs Combin., 3, 2 (2006) 135–145. ⇒103

[43] S. Pirzada, T. A. Naikoo, Score sets in k-partite tournaments, J. Appl. Math.
Comp. 22, 1–2 (2006) 237–245. ⇒101

[44] S. Pirzada, T. A. Naikoo, Score sets in oriented graphs, Appl. Anal. Discrete
Math., 2, 1 (2008) 107–113. ⇒99, 102

[45] S. Pirzada, T. A. Naikoo, T. A. Chishti, Score sets in oriented bipartite graphs,
Novi Sad J. Math, 36, 1 (2006) 35–45. ⇒101

[46] S. Pirzada, T. A. Naikoo, F. A. Dar, Signed degree sets in signed bipartite graphs,
arXiv, arXiv/math0609129v1 [math.CO], 5 September 2006, 5 pages. ⇒87

[47] S. Pirzada, T. A. Naikoo, F. A. Dar, Signed degree sets in signed graphs,
Czechoslovak Math. J., 57, 3 (2007) 843–848. ⇒79, 80

https://www.lri.fr/~yannis/
http://www.pondiuni.edu.in/profile/dr-hp-patil
https://www.lri.fr/~yannis/
http://www.pondiuni.edu.in/profile/dr-hp-patil
https://www.lri.fr/~yannis/
http://www.pondiuni.edu.in/profile/dr-hp-patil
http://www.akcejournal.org/
https://www.lri.fr/~yannis/
http://www.pondiuni.edu.in/profile/dr-hp-patil
http://www.discuss.wmie.uz.zgora.pl/gt/
http://link.springer.com/journal/373
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1744-21.pdf
http://sites.dmi.rs/personal/petrovicv/
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.universitiespress.com/
http://maths.uok.edu.in/Faculty5.aspx
mailto:sfarooqdar@yahoo.co.in
http://www.emis.de/journals/MV/073/5.html
http://maths.uok.edu.in/Faculty5.aspx
mailto:sfarooqdar@yahoo.co.in
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/Faculty5.aspx
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://faculty.kfupm.edu.sa/PYP/malikhan/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.mondat.hu/
http://maths.uok.edu.in/Faculty5.aspx
http://link.springer.com/search?query=Pirzada&search-within=Journal&facet-journal-id=10496
http://link.springer.com/journal/10496
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.akcejournal.org/
http://maths.uok.edu.in/DrSPirzada.aspx
http://maths.uok.edu.in/DrSPirzada.aspx
http://pefmath.etf.rs/component/content/32.html?task=view
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.dmi.pmf.uns.ac.rs/nsjom/framepaper.htm
http://maths.uok.edu.in/DrSPirzada.aspx
mailto:sfarooqdar@yahoo.co.in
http://maths.uok.edu.in/DrSPirzada.aspx
mailto:sfarooqdar@yahoo.co.in
http://link.springer.com/journal/10587

106 A. Iványi, S. Pirzada, F. A. Dar

[48] S. Pirzada, T. A. Naikoo, F. A. Dar, Degree sets in bipartite and 3-partite graphs,
Oriental J. Math. Sciences, 1, 1 (2007) 47–53. ⇒81, 91, 95

[49] S. Pirzada, T. A. Naikoo, F. A. Dar, A note on signed degree sets in signed
bipartite graphs, Appl. Anal. Discrete Math., 2, 1 (2008) 114–117. ⇒87

[50] K. B. Reid. Score sets for tournaments, Congressus Numer., 21 (1978) 607–618.⇒99, 100
[51] K. B. Reid. Tournaments: Scores, kings, generalizations and special topics, Con-

gressus Numer., 115 (1996) 171–211. ⇒99
[52] T. A. Sipka, The orders of graphs with prescribed degree sets, J. Graph Theory,

4, 3 (1980) 301–307. ⇒74
[53] A. Tripathi, S. Vijay, On the least size of a graph with a given degree set, Discrete

Appl. Math., 154 (2006) 2530–2536. ⇒75, 76
[54] A. Tripathi, S. Vijay, A short proof of a theorem on degree sets of graphs,

Discrete Appl. Math., 155 (2007) 670–671. ⇒73
[55] R. I. Tyshkevich, A. A. Chernyak, Decomposition of graphs, Cybernetics Syst.

Anal. 21, (1985) 231–242. In Russian: Kibernetika, 2 (1985) 65–74. ⇒73
[56] R. I. Tyshkevich, A. A. Chernyak, Zh. A. Chernyak, Decomposition of graphs, I,

Cybernetics Syst. Anal., 23, 6 (1987), 734–745. In Russian: Kibernetika, 6 (1987)
12–19. ⇒73

[57] R. I. Tyshkevich, A. A. Chernyak, Zh. A. Chernyak, Decomposition of graphs,
II, Cybernetics Syst. Anal., 24, 2 (1988), 137–152. In Russian: Kibernetika, 2
(1988) 1–12. ⇒73

[58] R. I. Tyshkevich, A. A. Chernyak, Zh. A. Chernyak, Decomposition of graphs,
III, Cybernetics Syst. Anal., 24, 5 (1988), 539–550. In Russian: Kibernetika, 5
(1988) 1–8. ⇒73

[59] L. Volkmann, Some remarks on degree sets of multigraphs, J. Combin. Math.
Combin. Comput., 77 (2011) 45–49. ⇒76, 77

[60] K. Wayland, Bipartite score sets, Canadian Math. Bull., 26 (1983) 273–279. ⇒
102, 103

[61] P. K. Wong, Cages—a survey, J. Graph Theory, 6, 1 (1982) 1–22. ⇒78
[62] Y. H. Yan, K. W. Lih, D. Kuo, G. J. Chang, Signed degree sequences in signed

graphs, J. Graph Theory, 26, 1 (1977) 111–117. ⇒79
[63] T. X. Yao. On Reid conjecture of score sets for tournaments. Chinese Science

Bull., 34 (1989) 804–808. ⇒99, 100

Received: March 8, 2015 • Revised: May 1, 2015

http://maths.uok.edu.in/DrSPirzada.aspx
mailto:sfarooqdar@yahoo.co.in
http://maths.uok.edu.in/DrSPirzada.aspx
mailto:sfarooqdar@yahoo.co.in
http://pefmath.etf.rs/component/content/32.html?task=view
http://www.csusm.edu/math/facultydescrips/kbreid.html
http://www.combinatorics.net/journals/congress.html
http://www.csusm.edu/math/facultydescrips/kbreid.html
http://www.combinatorics.net/journals/congress.html
http://www.combinatorics.net/journals/congress.html
http://www.alma.edu/live/profiles/182-timothy-sipka
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118/issues
http://web.iitd.ac.in/~atripath/
http://www.math.uiuc.edu/~sujith/
http://www.sciencedirect.com/science/journal/0166218X
http://web.iitd.ac.in/~atripath/
http://www.math.uiuc.edu/~sujith/
http://www.sciencedirect.com/science/journal/0166218X
http://www.math2.rwth-aachen.de/volkmann
http://www.combinatorialmath.ca/jcmcc/
http://cms.math.ca/cmb/v26/cmb1983v26.0273-0279.pdf
http://cms.math.ca/cmb/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118/issues
http://www.springer.com/new+$%$26+forthcoming+titles+(default)/journal/11434

Acta Univ. Sapientiae, Informatica 7, 1 (2015) 107–120

DOI: 10.1515/ausi-2015-0014

Empirical study of the greedy heuristic as

applied to the link selection problem

Pál PUSZTAI
Széchenyi István University

email: pusztai@sze.hu

Tamás HAJBA
Széchenyi István University

email: hajbat@sze.hu

Abstract. Behind the link selection problem there is a practical problem
that aims to check efficiently the vehicles on a road network. The checking
process is to be realized with license plate reading cameras for checking
the valid vignette of vehicles using that part of the network. However
this problem should be defined generally and the methods of obtaining
a solution can be applied to a wider range of problems independent of
the original problem. This paper defines the link selection problem with
directed graph, it shows the NP-hard complexity and it gives a heuristic
and binary integer programming models to solve the problem. These two
kinds of approaches allow us to examine and qualify the heuristic. The
computational results of the methods are compared with different sizes
of problems.

1 Introduction

The problem of link selection as an effective traffic check was introduced in [6].
The input data of a real life situation were produced with a traffic assignment
model [5], and the problem was solved with an algorithm that is based on the
greedy heuristic of set cover [1, 2, 3]. It was focused on the efficiency of the

Computing Classification System 1998: G.2.3
Mathematics Subject Classification 2010: 90B20, 90C10, 90C59
Key words and phrases: link selection, greedy algorithm, binary integer programming,
traffic check

107

http://uni.sze.hu
mailto:pusztai@sze.hu
http://uni.sze.hu
mailto:hajbat@sze.hu

108 P. Pusztai, T. Hajba

monitoring when the checking process has no influence on the flow of traffic,
i.e. it does not stop nor slow down the vehicles. Present work is also related
to this case, the loads of the network are given.

2 The link selection problem

The link selection problem has got two similar but slightly different optimiza-
tion tasks. We define the problem and its heuristic more generally than it was
described in [6].

Let us suppose that G is a directed graph and P is a finite, nonempty set
that contains acyclic paths in G. Every path has got a positive integer number
called weight.

Task 1: For a given ratio r ∈ (0, 1] let us select minimal number of edges from
G so that x/y ≥ r satisfied, where x is the sum of the weights of the
paths that contain at least one selected edge, and y is the sum of the
weights of all paths.

Task 2: For a given integer k > 0 let us select k edges from G so that the sum
of the weights of the paths that contain at least one selected edge is
maximum.

The first task is a special set cover problem in case of r = 1. The speciality
comes from the data. Let us consider the weights of the paths as the same
number of vehicles that are using the related paths. All vehicles are considered
as the set to cover and the vehicles that use an edge are considered as a subset.
The second task is a max k-cover problem with the same subsets of vehicles.
The set cover problem and the max k-cover problem are NP-hard [2].

The link selection problem is a special case of them, where the weights of
the paths of P correspond to the set to cover, the edges correspond to the
subsets, and the paths make a kind of relationship between the subsets.

3 The complexity of the link selection problem

It is shown that the 3-SAT problem can be reduced to the Task 1 and Task 2
problem as well, thus the link selection problem is NP-hard. For an arbitrary
3-SAT problem we give a proper Task 1 and Task 2 link selection problem such
that the solution of the 3-SAT problem can be obtained from the solution of
the link selection problem.

Empirical study of the greedy heuristic 109

a1 b1 a2 b2 a3 b3

c1 d1 c2 d2 c3 d3

Figure 1: The G graph constructed for a three variable 3-SAT problem

a1 b1 a2 b2 a3 b3

c1 d1 c2 d2 c3 d3

Figure 2: The 3 edge paths related to the three variables

110 P. Pusztai, T. Hajba

a1 b1 a2 b2 a3 b3

c1 d1 c2 d2 c3 d3

Figure 3: The 5 edge path related to the x1 ∨ x2 ∨ x3 clause

Construction: Let us suppose that there is a given 3-SAT problem with n

variables and m clauses. Let x1, x2, · · · , xn be the variables of the 3-SAT prob-
lem. Construct the G = (V, E) directed graph as follows: for every xi variable
add 4 vertices ai, bi, ci, di into V (so V will contain 4n vertices); for every
i (i = 1, · · · , n) add an edge from ai to bi (this edge corresponds to xi) and
add an edge from ci to di (this corresponds to xi) into E; in addition, for every
i, j, i 6= j add (bi, aj) and (di, cj) edges into E, and for every (i, j) add (bi, cj)
and (di, aj) edges as well. Note that in this G graph there is exactly one edge
from every ai and ci vertices (see Fig. 1).

Now we make P, a set of directed paths in G. For every xi variable add the
ai −bi − ci −di 3 edges path into P (see Fig. 2). In addition, for every clause
of the 3-SAT problem relate a 5 edges path as follows: let (X ∨ Y ∨ Z) be an
arbitrary clause of the 3-SAT problem; add into P the path in which the 1st
edge corresponds to X, the 3rd corresponds to Y, the 5th corresponds to Z, and
the 2nd and 4th ones are the edges between the proper vertices. For example
for the x1 ∨ x2 ∨ x3 clause the c1 − d1 − a2 − b2 − c3 − d3 path is related (see
Fig. 3). After this P will contain n+m directed paths.

Lemma 1 Let it be given an arbitrary 3-SAT problem and let G and P be the
graph and the set of paths constructed before. The 3-SAT problem is satisfiable
if and only if there exists a set of edges C ⊆ E, |C| = n such that every path of
P contains at least one edge from C (shortly C covers P).

Empirical study of the greedy heuristic 111

Proof. ⇒ If the 3-SAT problem is satisfiable then we give a set of edges
C ⊆ E, |C| = n that covers P. If an xi variable of the 3-SAT problem is true
then add the (ai, bi) edge into C, otherwise (if xi is false) add the (ci, di) edge
into C (thus |C| = n is satisfied). Let us notice that C contains exactly one
edge from every 3 edge paths and at least one edge from every 5 edge paths
(as every clause has got at least one true literal and the edge related to this
literal is in C), thus C covers P.

⇐ Let us suppose that there exists C ⊆ E, |C| = n that covers P. As P has
got all 3 edges ai − bi − ci − di (i = 1, · · · , n) paths and these paths are edge
disjunct (they have no common edges), so every 3 edges path has got exactly
one edge in C. On the other hand all paths of P start from an ai or ci vertex,
furthermore only one edge goes to every bi vertex, so if there is a (bi, ci) edge
in C then replacing it with the (ai, bi) edge we get such a set of n edges that
still covers P. Therefore it can be supposed that every edge in C is (ai, bi) or
(ci, di) type, and for every i there is exactly one edge from these (ai, bi) and
(ci, di) edges in C. Let xi be true if the (ai, bi) edge is in C, otherwise (if the
(ci, di) edge is in C) let it be false. For these variables the 3-SAT problem will
be satisfiable because every path of the 5 edge paths of the clauses contains at
least one edge from C (due to the assumption) that is (ai, bi) or (ci, di) type
edge, thus the literal related to this edge (and the clause itself) will be true.

�

Theorem 2 Task 1 of the link selection problem is NP-hard.

Proof. Let it be given an arbitrary 3-SAT problem. Let G and P be the graph
and the set of paths constructed before, let the weights of all paths equal to
1, and let r = 1 (i.e. we want to cover all paths of P). Due to the lemma if
the solution of this link selection problem contains n edges then the 3-SAT
problem is satisfiable, otherwise it is not. �

Theorem 3 Task 2 of the link selection problem is NP-hard.

Proof. Let it be given an arbitrary 3-SAT problem. Let G and P be the graph
and the set of paths constructed before, let the weights of all paths equal to
1, and let k = n (i.e. we want to cover with n edges as much as possible paths
of P). Due to the lemma if the solution of this link selection problem covers
all paths of P then the 3-SAT problem is satisfiable, otherwise it is not. �

112 P. Pusztai, T. Hajba

4 The greedy heuristic

A greedy algorithm can be used to solve the link selection problem.

GREEDY(G, P, task, r, k)

1. L← {}
2. if task = 1

3. y← sum up the weights of paths of P

4. repeat

5. For every edge e of G sum up the weights of paths of P that contain e

6. Select the edge e that has got the maximum weight

7. L← L ∪ {e}
8. P ← P \ {paths that contain edge e}
9. /* Stopping criteria */

10. if task = 1 /* reaching r ratio */

11. u← sum up the weights of paths of P

12. x← y− u

13. stop← x/y ≥ r

14. else /* selecting k number of edges */

15. stop← |L| = k

16. until stop

17. return L

Describing the complexity of the algorithm let G = (V, E) graph be given
and n = |V |. Let us suppose that |P| = O(n2). In this case we can handle
all the paths between all different origin-destination pairs. If G represents a
road network, the degree of vertices is limited with a small constant, thus
|E| = O(n). The lengths of the (acyclic) paths of P are O(n). The algorithm
repeats a greedy selection (line 6) until the stopping criteria becomes true. This
iteration (line 4–16) runs O(n) times. The most complex step of the iteration
is in line 5. Based on the previous assumptions this step can be done in O(n3)
time, thus we get O(n4) complexity in both cases (task = 1, task = 2).

Unfortunately this polynomial time algorithm does not guarantee the opti-
mal solution. The greedy algorithm is an H(d)-approximation algorithm for
the set cover problem, where H(d) =

∑d
i=1

1
i , and d is the size of the largest

subset [3, 4]. It means that the solution of the greedy algorithm (the number
of the selected subsets) is at most H(d) times larger than the optimum (the
number of subsets selected by the optimal solution).

Empirical study of the greedy heuristic 113

The ratio of the greedy algorithm is 1−(1− 1
k)

k ≥ 1− 1
e ≈ 0.632 for the max

k-cover problem [2], which means that the number of elements covered by the
greedy algorithm divided by the number of elements covered by the optimal
solution is at least 0.632.

These general approximation ratios are valid for our algorithm too, namely
it is H(d) approximation algorithm for Task 1 with r = 1, and it is 0.632

approximation algorithm for Task 2.
Because of the speciality of the link selection problem, the greedy algorithm

gives much better solution than it is guaranteed by these ratios. In section 6
it will be shown that the greedy heuristic produces close to optimal solution
for the link selection problem.

5 Binary integer programming models

The link selection problem can be solved with binary integer programming
models too.

List of symbols

Parameters
n number of the edges of G
m number of the paths of P
wj weight of the path j (j = 1, 2, . . . ,m)
nj number of the edges of path j (j = 1, 2, . . . ,m)
jl the index of the lth edge of path j (j = 1, 2, . . . ,m; l = 1, 2, . . . , nj)
r the required checking rate for Task 1 (r ∈ (0, 1])
k the number of required edges for Task 2 (k > 0)

Binary variables
xi = 1, if edge i is selected (0, otherwise) (i = 1, 2, . . . , n)
yj = 1, if at least one edge of path j is selected (0, otherwise)

(j = 1, 2, . . . ,m)

The following models can be given according to the tasks. Both models
contain n + m binary variables and m + 1 equations. Equations (1) and (4)
express that a path will be selected if an edge of that path is selected. Equation
(2) ensures that it reaches the required monitoring rate. Equation (5) ensures
that it selects the given number of edges.

114 P. Pusztai, T. Hajba

Model 1: checking with a given ratio

yj ≤
nj∑
l=1

xjl (j = 1, . . . ,m) (1)

r ·
m∑
j=1

wj ≤
m∑
j=1

wjyj (2)

z =

n∑
i=1

xi −→ min (3)

Model 2: checking with a given number of edges

yj ≤
nj∑
l=1

xjl (j = 1, . . . ,m) (4)

n∑
i=1

xi ≤ k (5)

z =

m∑
j=1

wjyj −→ max (6)

6 Computational outcomes

To compare the solution of our algorithm with the optimal solution we used
three test networks with 10, 20 and 80 junctions (vertices) (see Fig. 4, where
the thickness of the links (e-dges) corresponds to their total weights). The
greedy heuristic and Model 2 were compared for all possible values of k.

The results are shown in the figures, where the values of the X axes are
the number of selected links. The checked rates of the optimal solution are
shown in Fig. 6, 8, 10 corresponding to the test networks. The checked rates
are given in percentage of all traffic (the sum of the weights of all paths).
The differences between the checked rate of the approximate and the optimal
solution are given in percentage too and shown in Fig. 5, 7, 9.

We used all shortest paths between all different junctions of the networks.
The weights of the paths were generated in two different ways. In the first case
the weights were the demands of travel and in the second case the weights were
calculated by the demands of travel multiplied by the lengths of the paths (that
resulted larger weights and larger differences between them). In the first case
the weights give the traffic (see Traffic data in the figures) and in the second

Empirical study of the greedy heuristic 115

Figure 4: Test networks (10, 20 and 80 vertices) with loaded links

case the weights give the traffic performance (see Traf. Perf. data in figures).
With using traffic performance we prefer to check those vehicles that travel
longer distances on the networks (as it has been done in [6]).

In our tests the demands of travel were a random integer number in [1, 10].
The largest test network models a small part of the downtown of Budapest.
It contains 80 junctions (vertices), 244 links (edges), 6320 (80*79) paths, i.e.
6564 binary variables. We used GAMS software and CPLEX solver on an
average PC to solve Model 2. On our largest test network the solver required
about 2 hours to compute the optimal solution for all 244 values of k, while
the heuristic ran only 1 second.

10 junctions 20 junctions 80 junctions

Difference Traffic Traf.Perf. Traffic Traf.Perf. Traffic Traf.Perf.

Maximum 1.879 1.442 2.477 2.247 1.819 2.394

Average 1.037 0.671 0.587 0.596 0.397 0.250

Table 1: The maximum and the average differences between the solutions

116 P. Pusztai, T. Hajba

Figure 5: The difference of the solutions on a network with 10 junctions

Figure 6: The optimal solution on a network with 10 junctions

Empirical study of the greedy heuristic 117

Figure 7: The difference of the solutions on a network with 20 junctions

Figure 8: The optimal solution on a network with 20 junctions

118 P. Pusztai, T. Hajba

Figure 9: The difference of the solutions on a network with 80 junctions

Figure 10: The optimal solution on a network with 80 junctions

Empirical study of the greedy heuristic 119

The results show that:

• The maximum difference between the solution of the greedy algorithm
and the optimal solution was below 2.5%, but the average difference was
usually below 1% (see Tab. 1).

• Increasing the size of the problem or the weights of the paths, the func-
tions of the optimal solution became steeper (see Fig. 6, 8, 10). It means
that we need proportionally less number of links to reach the same
checked ratio.

• Selecting one or all links obviously gives optimal solution, so it is ex-
pected that selecting some or almost all links also results good solution.
The shapes of the functions of the maximum difference have proved this
idea. Additionally it can be seen that the parts of the worst cases are
not too long and they occurred earlier with increasing the size of the
problem.

7 Conclusion

The link selection problem is an NP-hard optimization problem. The goal of
the original real life problem was to check efficiently the vehicles on a road
network. The checking process is realized in such way that it does not change
the flow of traffic. A greedy heuristic was applied to solve a large size problem,
but the qualification of this heuristic was demonstrated only on small (10
loaded links) networks [6].

The optimal solution of the link selection problem can be calculated with
binary integer programming models as well. With this method the size of the
investigated problems could be increased, but it is bounded by the capability
of the applied solver contrary to the heuristic that is always usable.

In this study the greedy heuristic has been described generally for the link
selection problem and it was tested on different sized problems. The results
were compared with the optimal solutions that were calculated with binary
integer programming models presented here. The comparison shows that the
solution of this fast heuristic is much closer to the optimal solution than it is
guaranteed by the general approximation ratio.

120 P. Pusztai, T. Hajba

References

[1] V. Chvátal, A greedy heuristic for the set-covering problem, Math. Oper. Res.,
4, 3, (1979) 233–235. ⇒107

[2] D. S. Hochbaum (Ed.), Approximation Algorithms for NP-hard Problems, PWS
Publishing Company, Boston, Mass., 1997. ⇒107, 108, 113

[3] D. B. Johnson, Approximation algorithms for combinatorial problems, J. Comp.
System Sci., 9, 3 (1974) 256–278. ⇒107, 112

[4] L. Lovász, On the ratio of optimal integral, and fractional covers Discrete Math.,
13, 4 (1975) 383–390. ⇒112

[5] L. Marton, P. Pusztai, On modelling and computing traffic assignment, Proc.
EURO XVII. European Conf. Operational Research, Budapest, Hungary, 2000,
pp. 114. ⇒107

[6] P. Pusztai, An application of the greedy heuristic of set cover to traffic checks,
CEJOR Cent. Eur. J. Oper. Res., 16, 4 (2008) 407–414 ⇒107, 108, 115, 119

Received: January 9, 2015 • Revised: May 1, 2015

https://en.wikipedia.org/wiki/V%C3%A1clav_Chv%C3%A1tal
http://pubsonline.informs.org/doi/abs/10.1287/moor.4.3.233
http://www.jstor.org/action/showPublication?journalCode=mathoperrese
http://www.sciencedirect.com/science/article/pii/S0022000074800449?np=y
http://www.sciencedirect.com/science/journal/00220000
https://en.wikipedia.org/wiki/L%C3%A1szl%C3%B3_Lov%C3%A1sz
http://www.sciencedirect.com/science/article/pii/0012365X75900588?np=y
http://www.sciencedirect.com/science/journal/0012365X
http://link.springer.com/article/10.1007/s10100-008-0067-x
http://link.springer.com/journal/10100

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
László DÁVID

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica
Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro

Editorial Board
Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Zoltán KÁTAI (Sapientia University, Romania)
Attila KISS (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Shariefudddin PIRZADA (University of Kashmir, India)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

