
Acta Universitatis Sapientiae

Informatica
Volume 6, Number 2, 2014

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

András London, József Németh, Tamás Németh, Áron Pelyhe
A new model for the linear 1-dimensional online clustering
problem . 163

Ismail Sahul Hamid, Mayamma Joseph
Induced label graphoidal graphs . 178

Tibor Gregorics
Remarks on the A∗∗ algorithm . 190

Dömötör Pálvölgyi
Partitioning to three matchings of given size is NP-complete
for bipartite graphs .206

Antal Iványi
Reconstruction of score sets . 210

Ágnes Fülöp
Statistical complexity and generalized number system 230

Bilal A. Chat, Shariefudddin Pirzada, Antal Iványi
Recognition of split-graphic sequences . 252

Zsolt T. Kardkovács, Gábor Kovács
Finding sequential patterns with TF-IDF metrics in health-
care databases . 287

161

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 163–177

A new model for the linear 1-dimensional

online clustering problem

András LONDON
University of Szeged

Institute of Informatics
email: london@inf.u-szeged.hu

József NÉMETH
University of Szeged

Institute of Informatics
email: nemjozs@inf.u-szeged.hu

Tamás NÉMETH
University of Szeged

Institute of Informatics
email: tnemeth@inf.u-szeged.hu

Áron PELYHE
University of Szeged

Institute of Informatics
email: pelyhe@inf.u-szeged.hu

Abstract. In this study, a mathematical model is presented for an on-
line data clustering problem. Data clustering plays an important role in
many applications like handling the data acknowledgment problem and
data stream management in real-time locating systems. The inputs in
these problems are data sequences, each containing several data elements.
Each data element has an arrival time and a weight that reflects its im-
portance. The arrival times are not known in advance, and some data
elements never arrive. Hence the system should decide which moment
is optimal for forwarding the collected data for processing. This requires
finding a good trade-off between the amount of collected information and
the waiting time, which may be regarded as a minimization problem.
Here, we investigate several online algorithms and present their compet-
itive analysis and average case studies. Experimental results, based on
simulations using artificially generated data, are also presented and they
confirm the efficiency of our methods.

Computing Classification System 1998: F.1.2
Mathematics Subject Classification 2010: 68W27
Key words and phrases: data clustering, online algorithms, learning algorithms, real-time
locating systems

163

http://www.inf.u-szeged.hu/~london/index-en.html
http://www.u-szeged.hu/english/
http://www.inf.u-szeged.hu/starten.xml
mailto:london@inf.u-szeged.hu
http://www.inf.u-szeged.hu/~nemjozs
http://www.u-szeged.hu/english/
http://www.inf.u-szeged.hu/starten.xml
mailto:nemjozs@inf.u-szeged.hu
http://www.inf.u-szeged.hu/~tnemeth
http://www.u-szeged.hu/english/
http://www.inf.u-szeged.hu/starten.xml
mailto:tnemeth@inf.u-szeged.hu
http://www.u-szeged.hu/english/
http://www.inf.u-szeged.hu/starten.xml
mailto:pelyhe@inf.u-szeged.hu

164 A. London, J. Németh, T. Németh, Á. Pelyhe

1 Introduction

Online optimization is concerned with the type of problems where decisions
should be made without knowing the whole input data. These class of problems
are usually called online problems (in contrary, the offline problems are those
problems where the whole input is available when the decision is made). In
several parts of computer science, economics and operational research many
problems can be solved only in an online manner. For some good discussions
of this see, for instance [2, 12, 14].

In online clustering problems the goal is the classification of points into sets
in an online fashion such that a given objective function, which depends on
the distance between any two points in the same cluster, is minimized. Points
that arrive consecutively have to be assigned to clusters at the time of arrival.
Previous results on the online data clustering problem for data sequences can
be found, for example, in [5, 11], with unit sized clusters and in [7, 8, 9] with
variable sized clusters.

The problem that is closely related to the data clustering problem examined
here first emerged during the study of a real-time locating system developed
by the Fraunhofer IIS and investigated and generalized by Németh et al. in
[17]. Below, we apply a different mathematical model for the problem, which
is a minimizing problem in contrast to the maximizing one defined in [17].

A real-time locating system (RTLS) serves to determine positions of objects
with high precision. It has various applications in transport and logistic, am-
bient assisted living, emergency mission support and also in sports, such as in
the so-called Chip-in-the-Ball technologies. As an example, the locating sys-
tem developed by the Fraunhofer IIS is a radio-based system operating with a
local positioning infrastructure using two measurements (the “angle of arrival”
and the “round trip time”) to detect the position of objects. For a detailed
description of RTLS systems see [3] and [4].

In such a system, an object (like the ball of a football game or the shin pad
of a player) is equipped with a tag which periodically broadcasts radio signals
to infrastructure nodes (such as receiver devices in the stadium). Besides the
positioning data, a radio signal also carries the user data and an ID. The
signals having the same ID belong to the same locating cycle, which we call a
burst. The measured parameters from a given burst data set are distributed
over the infrastructure nodes. After a measurement is made for the individual
parts of the burst data set, the data elements are forwarded to the central
positioning server (via a transport protocol). After receiving sufficient data
(ideally the total burst data set), the positioning server can determine the

On the linear 1-dimensional online clustering problem 165

positions of the objects by going through the following algorithmic steps in
the server: (1) data filtering, (2) data clustering (3) burst filtering (4) position
calculation (5) position filtering.

In this study, we focus on the second step. Our aim is to forward the data
as quickly as possible for burst filtering, and also minimize the number of un-
processed data elements to get more precise results in position calculations.
The nature of the problem requires that we work in an online manner. The
algorithm we designed also has to handle transmission errors and disturbances
like provisional coverage (screening) of an infrastructure node, network packet
losses and processing delays. Therefore, the data clustering algorithm can-
not simply wait for all elements of a burst; a more sophisticated approach is
needed! Evidently, the crucial point of the algorithm is to determine the time
when the collected data items have to be sent to the server for calculating the
positions. Two different objectives should be considered at the same time: (i)
the positioning server should receive as much available data from the infras-
tructure nodes as possible, and (ii) the system is not allowed to wait too long
for the incoming data, since the long delays decrease the relevance of the cal-
culated position. The usual principle in a real-time calculation of positions is
that a fairly-good position is better than a more accurate position determined
too late. We will define a minimization problem that takes into account both
goals. The second goal is considered directly, while the first goal appears in
the objective function in an indirect way.

Here, collecting the data and calculating the positions of several tags can be
done in parallel and independently of each other, hence we will assume that
there is only one tag in the system and the infrastructure nodes collect the data
only from this tag. We should also mention that this problem is similar to the
online data acknowledgment problem (see e.g. [15, 1, 10, 16, 18]). In a computer
network, from a communication aspect, data is sent by packets and in the data
acknowledgment problem, given a sequence X of packet arrival times, the goal
is to partition X into subsequences, where the end of a subsequence is defined
by an acknowledgment. One acknowledgment may acknowledge many packets,
but if an algorithm waits too long, the sender might resend the packets and this
would result in congestion of the packets in the network. Here, our methods
may also be applied to handle the data acknowledgment task.

Below, we present a mathematical model and describe the corresponding
objective function for the problem. In Section 3, we apply the method of
competitive analysis, which is often used to evaluate the quality of online
algorithms (see [14] for a nice summary on competitive analysis). We will prove
a result which states that there is no competitive algorithm for the problem.

166 A. London, J. Németh, T. Németh, Á. Pelyhe

The average case study is also presented for real-world situations, where arrival
times of the input elements follow a certain probability distribution. For some
discussions on the probabilistic analysis of algorithms see [6] and [13]. Lastly in
Section 4, we present experimental results got from using different algorithms
with artificially generated data which we used to verify the efficiency of our
algorithms.

2 The proposed mathematical model

The input of the data clustering problem is a sequence of cycles X=(X1, X2, . . .),
where each cycle Xk is a sequence of data elements (xk1 , . . . , x

k
m) where m is the

number of all possible incoming data elements (and it is equal to the number
of infrastructure nodes) in a cycle. The reception time of data xki is denoted
by tki (i = 1, 2, . . . ,m; k = 1, 2, . . .). Since there is no guarantee that all data
elements will arrive in each cycle, let tki = ∞ if xki does not arrive. The bursts
will be denoted by B1, B2, . . . where Bk = {xki ∈ Xk : tki < ∞}. The difference
between the reception times of the last and first data elements of the same
burst is called the length of the burst.

The exact time when an algorithm decides to send the collected data in
burst Bk to the server will be denoted by pk (k = 1, 2, . . .) and it is called the
positioning time. Let B̂k(t) = {xki : t

k
i < t}; thus, B̂k(pk) = B̂

k is the subset of
data elements in burst Bk which is sent to the computer for positioning.

Usually, the infrastructure nodes (wireless smart items, goniometers) have
different technical properties (type, position, accuracy), hence the data col-
lected may not all have the same importance. In our model, we assign a weight
wi to data xki (k = 1, 2, . . .), which denotes the importance of the data with
respect to the infrastructure node that collected it. Without loss of generality,

Figure 1: An example for the clustering of the input data signals

On the linear 1-dimensional online clustering problem 167

we may assume that
∑m
i=1wi = 1. Figure 1 shows an example of the input and

the notations. We should add that other attributes (i.e. more information) are
available in real-time locating systems like the type of the measurements (see
the AoA value and RTT value in [4]), which are essential for calculating the
positions, but are not needed in calculations using data clustering algorithms.

To evaluate the performance of the algorithms that we are going to devise,
first we have to define an objective function which measures their efficiency.
In our definition, we simultaneously take into account two objectives of the
algorithm, namely (i) the waiting time for the first input data element (which
is the time elapsed between the starting time of the burst and the positioning
time) should not be too long, and (ii) the amount of data that could be lost
(that is, |{xki ∈ Bk \ B̂k : i = 1, 2, . . . ,m}| for burst Bk) should be small. In
addition, the second objective is integrated over the time-dependency, meaning
that a data element arriving later carries less weight in the cost function. Let
rk = mini{t

k
i : xki ∈ Bk} be the reception time of the first incoming data in

burst Bk. For a given k, we will define the objective function fk for burst Bk,
which has to be minimized, as

fk(t) = λ(t− rk) + (1− λ)
∑

i:xki ∈Bk\B̂k(t)

1

1+ tki
wi, (1)

where λ ∈ [0, 1] is a constant parameter which measures the unit latency. Since
the functions f1, f2, . . . are independent (because each data element belongs
to exactly one burst), by summing them up, we can get the overall cost; that
is,

F(p1, p2, . . .) =
∑
k

fk(pk), (2)

where pk is the positioning time of burst Bk. Since minimizing F is equivalent
to minimizing all its terms, it is sufficient to consider a single term and solve
the problem for it, i.e. just consider burst B. Let us assume that the reception
time of the first input data element x1is t1 = 0 and denote the positioning
time in burst B by p. What we would like to do is to minimize the function f
with the form

f(p) = λp+ (1− λ)
∑

i:xi∈B\B̂(p)

1

1+ ti
wi. (3)

Here, the first term is viewed as the loss of latency of the first data element
to arrive (where λ ∈ [0, 1] is the cost of the unit latency), while the second
term is the sum of the weights of all data arriving after positioning. We shall
assume that the longer we have to wait for a data, the less important it is.

168 A. London, J. Németh, T. Németh, Á. Pelyhe

3 Analysis of the model

3.1 Competitive analysis

An online algorithm for a minimization problem is said to be c-competitive,
if the value of the cost function calculated by using this online algorithm is
not more than c times the optimum value of the cost function (obtained by
using the offline algorithm) and this holds for all possible input data streams.
Formally, for an arbitrary algorithm A and an input sequence X the value of
the cost function in the solution obtained by using A is A(X). Let OPT(X)
denote the optimal value of the cost function (offline optimum) for the input
X. The online algorithm A is c-competitive if A(X) ≤ c ·OPT(X).

3.1.1 Analysis without constraints

First, we will assume that there is no any restriction on the input data sequence
X. We will show that there exists no constant competitive algorithm for the
problem, as the following theorem states.

Theorem 1 There is no competitive online algorithm for the online data clus-
tering problem that uses the objective function defined by (3). More precisely,
for every constant K there exists an input sequence X such that the competitive
ratio is larger than K.

Proof. Let us consider the following input sequence. Let x1 be the first data
element of burst B, which arrives at the infrastructure node 1 at time t1 = 0.
If the online algorithm chooses p > 0 as the positioning time and if there are
no more data elements, the value of the cost function expressed in terms of p
is positive, while the offline optima is 0; thus the algorithm is not competitive.
If the online algorithm sends the first data element of the burst for positioning
immediately after it arrives (i.e. x1 in t1; we will call it No Waiting Time
Algorithm (NWT)), then in worst case, each other element arrives at time
δ > 0 and hence the competitive ratio of the NWT is

(1− λ)
∑

i:xi∈B\B̂(0)

1
1+δwi

λδ
=

1

δ(1+ δ)

1− λ

λ

∑
i:xi∈B\B̂(0)

wi ≈
(1− λ)

λδ2
,

which can be an arbitrary large constant if δ is set close to 0. �

On the linear 1-dimensional online clustering problem 169

3.2 Average case study

We have just found a negative result which states that there is no competitive
algorithm, meaning that any algorithm can be easily fooled by a “malicious”’
input data sequence. Although in general the input data sequences of real-time
positioning systems (or of a data acknowledgment problem) are not like the
worst case examples applied in the proof of Theorem 1, they can be modeled
by a series of reception times that follow a certain probability distribution.
Here, we will assume that the reception time ti of xi ∈ X is a random variable
with a given probability distribution F and we also assume that {ti : xi ∈ B},
i = 1, . . . ,m are independent. Furthermore we will assume that ti and wi are
independent of each other. Since the sum of the weights (of all data that may
ideally arrive) is 1, the expected value of wi is 1/m (i = 1, 2, . . . ,m) by using
the linearity property of the expected value.

3.2.1 Constant waiting time algorithm

Our goal is to minimize the expected cost of the online algorithm if the distri-
bution of ti’s is given in advance. As before, let p be the positioning time in
burst B. Let Ki = wi/(1 + ti) if ti > p and xi ∈ B, and let Ki = 0 otherwise.
Using this notation, we get the objective function f with the form

f(p) = λp+ (1− λ)

m∑
i=1

Ki. (4)

The expected value of Ki is

E[Ki] = E
[1

1+ ti
wi

]
Pr(ti > p) = (5)

= E[wi]E
[1

1+ ti

]
Pr(ti > p) =

1

m
E
[1

1+ ti

]
Pr(ti > p),

obtained by using the independency property of ti and wi. By using the lin-
earity property of the expected value and (5), we get that

E[f(p)] = λp+ (1− λ)E
[m∑
i=1

Ki

]
= (6)

= λp+ (1− λ)mE[K] =

= λp+ (1− λ)

∞∫
p

gF (t)dt

∞∫
0

1

1+ t
gF (t)dt.

170 A. London, J. Németh, T. Németh, Á. Pelyhe

Here, gF is the probability density function of the distribution F and t is a
random variable with distribution F . If F is given, then this formula can be
calculated numerically and then it can be optimized with respect to p in a
minimization problem.

3.2.2 Constant waiting time algorithm for data streams from nor-
mal distribution

Usually, the reception times of a data stream of a real-time positioning sys-
tem are considered to follow (or at least can be approximated by) a normal
distribution, since in such systems, the probability of having large differences
between the arrival times among the data elements is small in general. Now,
let t be a random variable with a normal distribution (t ∼ N (µ, σ2)) having
mean µ and variance σ2. Then the expected cost of f can be calculated as

E[f(p), t ∼ N (µ, σ2)] =

= λp+ (1− λ)
1

2πσ2
·

·
∞∫
p

exp
[
−

(t− µ)2

2σ2

]
dt

∞∫
0

1

1+ t
exp

[
−

(t− µ)2

2σ2

]
dt =

= λp+ c(1− λ)
1

2πσ

√
π

2
Erf

[µ− p√
2σ

]
, (7)

where

c =

∞∫
p

1

1+ t
exp

[
−

(t− µ)2

2σ2

]
dt ∈ [0, 1]

is a numerically computable constant and

Erf[x] =
2√
π

x∫
0

exp[−x]dx = 1−
2√
π

∞∫
x

exp[−x]dx.

By differentiating wrt p we find that the expression (7) achieves its maximum
value if the positioning time p is

p = µ+

√
2 log

[λ2πσ2
c(1− λ)

]
σ. (8)

On the linear 1-dimensional online clustering problem 171

In the case where we know (or we can estimate) the parameters of the normal
distribution (for each burst) of the arrival times, we get a constant waiting
time method (CWT), where the positioning time of a burst is given by (8).

4 Experimental evaluation

We saw above that in the worst case there is no efficient algorithm for posi-
tioning. Then we showed that in the average case (considering an arbitrary
probability distribution F of the reception times) a simple constant waiting
time algorithm can achieve the best possible (minimal) expected cost, but it
strongly depends on the expected value and variance of F , which is usually
not known. Below, we will define a more sophisticated algorithm that tries to
learn a fairly good value of the positioning time p (which is close to the online
optimum) by using the optimal values of the previous bursts. We should men-
tion here that similar parameter learning algorithms have also been designed
for the data acknowledgment problem and they are described in [16] and [18].

4.1 Variable waiting time algorithm

Now we will describe a variable waiting time algorithm for the data clustering
problem. In this algorithm, each burst Bk has a starting time rk, which is
the reception time of the first data element having burst ID k. As in the
description of the model, B̂k(p) ∈ Bk is the set of those data elements in Bk

that is sent to the computer for positioning. The set of data elements that
have arrived before the time t̂ in burst Bk, is denoted by B̂k(t̂). The algorithm
uses a variable t that denotes the waiting time for the data in each burst and
it tries to learn the best possible value of t. Let opt(k) be the online optimal
value of the cost function f for burst Bk calculated as follows: whenever a data
in burst k arrives at time tk, we calculate

fonline(tki) = λ(t
k
i − rk) + (1− λ)

[∑
i:xki ∈Bk(tk)

1

1+ tki
wi +

1

1+ tk

∑
i:xki ∈X\Bk(tk)

wi

]
,

(9)
for all tki ≤ tk by considering the worst case that can happen; that is, if all other
possible data elements arrive just after tk. Then, opt(k) = min{fonline(tk) :
tki ≤ tk}, which is the online optimum calculated by using the data elements
that had already arrived. Thus, pk = argmin{opt(k)} is the optimal positioning
time for the online algorithm. After, let p̂k = pk − rk. We note here that the
online optimum becomes equal to the offline optima when a burst is ended. The

172 A. London, J. Németh, T. Németh, Á. Pelyhe

Algorithm 1: Variable waiting time algorithm (VWT)

Data: sequence of burst B1, B2 . . .
Result: positioning time pk for each burst Bk (j = 1, 2, . . .)
Initialize pk = 0 (k = 1, 2, . . .);
foreach data element x with arrival time t do

if x ∈ Bk then
opt(k) = opt(Bk(t));

end
if t− rk ≥ (p̂j−1 + · · ·+ p̂j−`)/k && pk 6= 0 then
pk = rk + (p̂k−1 + · · ·+ p̂j−`)/` ;

end

end

simple idea behind the construction of the algorithm is to use the average of
the previously (and simultaneously) calculated positioning times for the actual
burst that we are optimizing. Algorithm 1 shows the details of the learning
process.

4.2 Empirical results

To analyze the performance of our algorithms, we generated the following in-
put data stream. The number of bursts is 1000, the arriving times in each
burst coming from a normal distribution with an expected value between
5 and 20 and a variance between 2 and 8. The input data can be found
in http://www.inf.u-szeged.hu/~london/1000burst_input.txt. Figure 2
shows a simple example of the construction of the input. The bursts follow each
other consecutively, such that the overlap between two bursts varies between
0 and 30 percent of the latter one. The average burst length is 20. In a burst,
optimally the number of data elements is 40 (which is the number of infras-
tructure nodes), but we randomly delete each data element with probability
0.1 (in reality it may happen that data does not arrive at an infrastructure
node). If a data item is deleted in a burst, the probability that it appears in the
next one is 0.3. The weights of the data elements (related to the importance
of the infrastructure nodes) lie between 0 and 50, assigned to each one with a
uniform probability at the beginning.

We also devised three constant waiting time algorithms (CWT) to handle
the data stream management task. CWT1 uses the time rk+ 5 for positioning
(in the jth burst), which is generally less than the middle of the burst (i.e.

http://www.inf.u-szeged.hu/~london/1000burst_input.txt

On the linear 1-dimensional online clustering problem 173

Figure 2: The structure of the input data sequence generated from a normal
distribution

the starting time plus the expected value of the distribution that generates
the arrival times of elements in the burst). CWT2 uses rk + 10 which is close
to the middle of the burst in most cases and CWT3 uses rk + 15, which is
generally close the the end of the burst. The learning (VWT) algorithm uses
the positioning times of the last 50 bursts to calculate the waiting time for
the current one. Figure 3 shows the aggregated cost of the different algorithms
after a given number of cycles. As can be seen, the calculated cost using the
learning algorithm approaches the offline optima after just a few cycles and
remains close to it, in contrast to the constant waiting time algorithms where
the aggregated costs progressively diverge farther from the offline optima.

Table 1 shows the performances values of the different algorithms, obtained
by dividing the value of the total cost function of the different algorithms
by the optimum value of the total cost function. The test results tell us that
the learning algorithm performs well in general and remains very close to
the offline optima regardless of the choice of λ (see Table 1 and Figure 4).
In contrast, the efficiency of the CWT algorithms strongly depends on the
choice of λ and the average length of the burst. It is not surprising that the
higher the value of λ, the better the constant time algorithm will be, which
chooses an earlier time for positioning, since if λ is bigger, the cost resulting
from latency is also higher. This observation also holds in the reverse case.
The NWT algorithm (which sends the first element that arrives in a burst for
positioning), in practice, performs poorly on data streams which are like those
that in real-world cases just as expected. Similar to CWT1, it only gives an
acceptable result when λ is high.

174 A. London, J. Németh, T. Németh, Á. Pelyhe

Figure 3: The aggregated cost of the different algorithms after 10 (left) and
200 (right) cycles

λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

NWT 31.693 8.715 4.225 2.398 1.377

CWT1 11.482 3.346 1.787 1.232 1.333

CWT2 6.127 2.042 1.301 1.151 1.844

CWT3 3.233 1.425 1.159 1.277 2.512

VWT 1.007 1.005 1.016 1.091 1.317

Table 1: The test results

It may be concluded that the VWT algorithm is useful in general and the
output values of it are close to the optimal values, even when the burst length
and the parameters of the distribution of the arriving times are unknown.
However, the efficiency of a constant time algorithm strongly depends on the
λ and time parameters of the objective function, the average burst length and
also on the distribution of the arrival times.

5 Summary

In this paper we defined an online optimization model for the data stream
management problem, which arises in real-time locating systems and in a
similar form in the data acknowledgment problems. We constructed different
algorithms to solve the problem and analyzed them with the tool of competi-

On the linear 1-dimensional online clustering problem 175

Figure 4: Total cost of the different algorithms after 1000 cycles for different
λ values

tive analysis and with expected value analysis. Although we showed, by using
the worst case study, that there is no competitive algorithm for this model,
the average case study confirmed the validity and applicability of our model
and algorithms for more realistic data streams. A more sophisticated variable
waiting time algorithm that uses the average of the optimal positional times
of some of the previous bursts was also created for position calculations of the
subsequent bursts. We showed empirically that this learning method is useful
and close to the global optimum, even when we have no a priori information
about the input data stream. Some outstanding questions remain that deserve
further examination. For instance if we use a more general objective function
like f(p) = λg(p) + (1 − λ)

∑
i:ti>p

h(ti)wi with any g and h, such that g is
non-decreasing and h is non-increasing, will we get better results? The analyt-
ical study that we have already done applies for the general case, but it would
be interesting to see more applications (besides the data stream management

176 A. London, J. Németh, T. Németh, Á. Pelyhe

and data acknowledgment problems) where we can apply this model with dif-
ferent suitable g and h functions. It is also an open question (mentioned by
the authors of [17]) of how should go about solving the problem when we do
not receive burst ID information. Lastly, it would be also interesting to use
and analyze this objective function in the data acknowledgment problem by
considering various probability distributions of the arrival times and find out
whether it will lead to good performance values.

Acknowledgement

This work was supported by the European Union and the European Social
Fund through project Telemedicina (Grant no.: TÁMOP-4.2.2.A-11/1/KONV-
2012-0073).

András London was supported by the European Union and the State of Hun-
gary, co-financed by the European Social Fund in the framework of TÁMOP-
4.2.4.A/2-11-1-2012-0001 ’National Excellence Program’.

The authors would like to thank Csanád Imreh for providing helpful com-
ments.

References

[1] S. Albers, H. Bals, Dynamic TCP acknowledgment: Penalizing long delays, SIAM
J. Discrete Math. 19, 4 (2005) 938–951. ⇒165

[2] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cam-
bridge University Press, 1998. ⇒164

[3] M. Brugger, T. Christ, F. Kemeth, S. Nagy, M. Schaefer, M. M.Pietrzyk, The
FMCW technology-based indoor localization system, in: Ubiquitous Positioning
Indoor Navigation and Location Based Services, 2010, pp. 1–6. ⇒164

[4] M. Brugger, F. Kemeth, Locating rate adaptation by evaluating movement spe-
cific parameters, in: Adaptive Hardware and Systems, 2010, pp. 127–131. ⇒164,
167

[5] T. M. Chan, H. Zarrabi-Zadeh, A randomized algorithm for online unit cluster-
ing, in: Approximation and Online Algorithms 2007, pp. 121–131. ⇒164

[6] E. G. Coffman, G. S. Lueker, Probabilistic Analysis of Packing and Partitioning
Algorithms, Wiley, New York, 1991. ⇒166

[7] J. Csirik, L. Epstein, C. Imreh, A. Levin, Online clustering with variable sized
clusters Algoritmica 65, 2 (2013) 251–274. ⇒164

[8] G. Divéki, Online clustering on the line with square cost variable sized clusters
Acta Cybernetica 21, 1 (2013) 75–88. ⇒164

http://www.siam.org/journals/sidma.php
http://www.siam.org/journals/sidma.php
http://www.cs.toronto.edu/~bor/
http://www.cs.technion.ac.il/~rani/
http://www.cambridge.org/
http://www.cambridge.org/
http://www.ee.columbia.edu/~egc/
http://eu.wiley.com/WileyCDA/Section/index.html
http://www.inf.u-szeged.hu/~csirik/
http://www.inf.u-szeged.hu/~cimreh/
http://ie.technion.ac.il/Home/Users/levinas0.html
http://link.springer.com/journal/453
http://www.inf.u-szeged.hu/actacybernetica/

On the linear 1-dimensional online clustering problem 177

[9] G. Divéki, C. Imreh, Online facility location with facility movements, CEJOR
Cent. Eur. J. Oper. Res. 19, 2 (2011) 191–200. ⇒164

[10] D. R. Dooley, S. A. Goldman, S. D. Scott, On-line analysis of the TCP ac-
knowledgment delay problem, Journal of the ACM 48, 2 (2001) 243–273. ⇒
165

[11] L. Epstein, R. Van Stee, On the online unit clustering problem, in: Approxima-
tion and Online Algorithms, 2008, pp. 193–206. ⇒164

[12] A. Fiat, G. Woeginger, Online Algorithms: The State of the Art, Springer, Hei-
delberg, 1998. ⇒164

[13] M. Hofri, Probabilistic Analysis of Algorithms: On Computing Methodologies for
Computer Algorithms Performance Evaluation, Springer-Verlag New York, 1987.⇒166

[14] C. Imreh, Competitive analysis, in: Algorithms of Informatics, Vol. 1. Founda-
tions (ed. A. Iványi), mondAt Kiadó, Budapest, 2007, pp. 395–428. ⇒ 164,
165

[15] C. Imreh, T. Németh, On time lookahead algorithms for the online data ac-
knowledgement problem, in: Mathematical Foundations of Computer Science,
2007, pp. 288–297. ⇒165

[16] C. Imreh, T. Németh, Parameter learning algorithm for the online data acknowl-
edgment problem, Optimization Methods and Software 26, 3 (2011) 397–404. ⇒
165, 171

[17] T. Németh, S. Nagy, C. Imreh, Online data clustering algorithms in an RTLS
system, Acta Univ. Sapientiae Informatica, 5, 1 (2013) 5–15. ⇒164, 176

[18] T. Németh, B. Gyekiczki, C. Imreh, Parameter learning in lookahead online
algorithms for data acknowledgment, Proc. 3th IEEE Symposium on Logistics
and Industrial Informatics, 2011, pp. 195–198. ⇒165, 171

Received: September 20, 2014 • Revised: October 26, 2014

http://www.inf.u-szeged.hu/~cimreh/
http://www.springer.com/business+% 26+management/operations+research/journal/10100
http://www.springer.com/business+% 26+management/operations+research/journal/10100
http://www.siam.org/journals/sidma.php
http://www.cs.le.ac.uk/people/rvs4/
http://www.win.tue.nl/~gwoegi/
http://www.springer.com/?SGWID=5-102-0-0-0
http://web.cs.wpi.edu/~hofri/
http://www.springer.com/?SGWID=5-102-0-0-0
http://www.inf.u-szeged.hu/~cimreh/
http://www.antoncom.hu/books.htm
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://mondat.hu
http://www.inf.u-szeged.hu/~cimreh/
http://www.inf.u-szeged.hu/~cimreh/
http://www.inf.u-szeged.hu/~cimreh/
http://www.inf.u-szeged.hu/~tnemeth/
http://www.tandfonline.com/toc/goms20/current
http://www.inf.u-szeged.hu/~tnemeth/
http://www.inf.u-szeged.hu/~cimreh/
http://acta.sapientia.ro/acta-info/C5-1/info51-1.pdf
http://acta.sapientia.ro/acta-info/C5-1/info51-1.pdf
http://acta.sapientia.ro/acta-info/informatica-main.htm
http://www.inf.u-szeged.hu/~tnemeth/
http://www.inf.u-szeged.hu/~cimreh/

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 178–189

Induced label graphoidal graphs

Ismail SAHUL HAMID
Department of Mathematics, The

Madura College, Madurai-11
email: sahulmat@yahoo.co.in

Mayamma JOSEPH
Department of Mathematics, Christ

University, Bangalore-29, India
email:

mayamma.joseph@christuniversity.in

Abstract. Let G be a non-trivial, simple, finite, connected and undi-
rected graph of order n and size m. An induced acyclic graphoidal de-
composition (IAGD) of G is a collection ψ of non-trivial and internally
disjoint induced paths in G such that each edge of G lies in exactly
one path of ψ. For a labeling f : V → {1, 2, 3, . . . , n}, let ↑ Gf be the
directed graph obtained by orienting the edges uv of G from u to v,
provided f(u) < f(v). If the set ψf of all maximal directed induced
paths in ↑ Gf with directions ignored is an induced path decomposi-
tion of G, then f is called an induced graphoidal labeling of G and G is
called an induced label graphoidal graph. The number ηil = min{|ψf| :
f is an induced graphoidal labeling of G} is called the induced la-
bel graphoidal decomposition number of G. In this paper we introduce
and study the concept of induced graphoidal labeling as an extension of
graphoidal labeling.

1 Introduction

By a graph G = (V, E), we mean a non-trivial, simple, finite, connected and
undirected graph. The order and size of G are denoted by n andm respectively.
For terms not defined here we refer to [7].

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C38
Key words and phrases: induced acyclic graphoidal decomposition, induced label gra-
phoidal graphs, induced label graphoidal decomposition number

178

http://www.researchgate.net/profile/Ismail_Sahul_Hamid2
http://www.maduracollege.org
http://www.maduracollege.org
mailto:sahulmat@yahoo.co.in
http://www.researchgate.net/profile/Mayamma_Joseph
http://www.christuniversity.in
http://www.christuniversity.in
mailto:mayamma.joseph@christuniversity.in

Induced label graphoidal graphs 179

A decomposition of a graph G is a collection ψ of its subgraphs such that
every edge of G lies in exactly one member of ψ. The significance of graph
decomposition problems arise from the rigor of their theoretical treatise as well
as their application to a variety of fields such as coding theory, bio-informatics
and various types of networks. Among the decomposition problems explored
by researchers we have path decomposition introduced by Harary [8], where
each element of ψ is a path and various types of path decompositions like un-
restricted path cover [9], graphoidal cover [1], simple graphoidal cover [4] and
so on. A detailed review of the results pertaining to graphoidal decomposition
along with an array of open problem is given in [3].

Definition 1 [1] A graphoidal decomposition (GD) of a graph G is a collec-
tion ψ of non-trivial paths and cycles of G such that

(i) Every vertex of G is an internal vertex of at most one member of ψ.

(ii) Every edge of G is in exactly one member of ψ.

Note that by an internal vertex of a path P we mean the vertices of P other
than its end vertices. A GD wherein no member is a cycle is called an acyclic
graphoidal decomposition (AGD) which was introduced by Arumugam and
Suresh Susheela [6]. By demanding the members of an AGD to be induced
paths, Arumugam [2] coined another variation namely induced acyclic gra-
phoidal decomposition (IAGD). The minimum cardinality of the respective
graphoidal decompositions are denoted by η, ηa and ηia. The study of the
parameter ηia initiated by Ratan Singh and Das [10] was further extended by
I. Sahul Hamid and M. Joseph [13].
Linking graphoidal decompositions and vertex labeling, Acharya and Sam-

pathkumar [1] conceptualized the idea of graphoidal labeling as follows.

Definition 2 [1] Let G = (V, E) be a graph with n vertices and let f : V →
{1, 2, . . . , n} be a labeling of the vertices of G. Orient the edges uv from u to v
provided f(u) < f(v). Such an orientation is called a low-to-high orientation
of G with respect to the given labeling f. By ↑ Gf we mean, G together with the
labeling f with respect to which the edges of G are oriented from low -to- high.
Let π∗(↑ Gf) be the set of all maximal directed paths in ↑ Gf and π(↑ Gf) be
the set of all members of π∗(↑ Gf) with directions ignored. We say that f is a
graphoidal labeling of G if π(↑ Gf) is a graphoidal decomposition of G and if
G admits such a labeling f of its vertices, then G is called a label graphoidal
graph (LGG).

180 I. Samul Hamid, M. Joseph

If G is a label graphoidal graph with a graphoidal labeling f, then the
graphoidal decomposition π(↑ Gf) is called the label graphoidal decomposition
of G with respect to the labeling f and is denoted by ψf.
The following result due to Acharya and Sampathkumar [1] gives a complete

characterization of label graphoidal graphs.
Recall that a vertex of a directed graph with in-degree zero is called a source

and a vertex of out-degree zero is called a sink.

Theorem 3 [1] Suppose G has a graphoidal labeling f. Then any vertex v of
G with degree > 2 is either a sink or a source in ↑ Gf.
Theorem 4 [1] A graph G is label graphoidal if and only if every odd cycle
in G has a vertex of degree 2.

Motivated by the observation that label graphoidal decompositions of a
given graph may vary according to the nature of the graphoidal labeling,
Arumugam and Sahul Hamid [5] defined the concept of label graphoidal de-
composition number and obtained some fundamental results.

Definition 5 [5] Let G be a label graphoidal graph. The label graphoidal
decomposition number ηl(G) is defined to be ηl(G) = min{|ψf| : f is a
graphoidal labeling of G}.

The following result obtained by Arumugam and Sahul Hamid [5] gives the
value of ηl for a tree T in terms of its size and the number of vertices of degree
2.

Theorem 6 [5] Let T be a tree with b vertices of degree 2. Then ηl(T) = m−b.

2 Induced label graphoidal graphs

In this section we introduce the concept of induced label graphoidal graph and
investigate its properties.

Definition 7 Let G = (V, E) be a graph of order n and size m and f : V →
{1, 2, . . . , n} be a labeling of the vertices of G. Let ↑ Gf be the oriented graph
obtained by orienting the edges uv from u to v, provided f(u) < f(v) (this
orientation given to the edges of G is called a low-high orientation). If the set
ψf of all maximal directed induced paths in ↑ Gf with directions ignored is an
induced path decomposition of G, then f is said to be an induced graphoidal
labeling of G and G is called an induced label graphoidal graph (ILGG).

Induced label graphoidal graphs 181

Example 8 Consider the cycle Cn = (v1, v2, . . . , vn, v1) where n ≥ 4. Define
f : V → {1, 2, . . . , n} by

f(v1) = 2,

f(v2) = 1,

f(vi) = i when 3 ≤ i ≤ n.

Then ψf = {(v2, v1, vn), (v2, v3, . . . , vn)} is an induced decomposition of G, prov-
ing that f is an induced graphoidal labeling and thus G is an induced label
graphoidal graph. Certainly, triangles are not induced label graphoidal graphs
and thus the cycle Cn is an induced label graphoidal graph only when n ≥ 4.

Lemma 9 If f is an induced graphoidal labeling of a graph G, then any vertex
of G with degree greater than two is either a sink or a source in ↑ Gf.
Proof. Suppose f is an induced graphoidal labeling of G. Assume if possible,
that there exists a vertex u in G with deg u > 2 such that both in-degree and
out-degree of u in ↑ Gf are positive. Consider three neighbors , say x, y and z
of the vertex u. Then the orientation of the edges xu, yu and zu will be one
of the following.

bb

bb

u

x y
b
z

bb

b bb

u

x y z

Figure 1

Concerning the first case, ψf will have a path P in which (x, u, z) is a section
and similarly, there exists a path Q in ψf such that (y, u, z) is a section. Hence
ψf is no longer a decomposition as the edge yu lies both in P and in Q. We will
arrive at a similar contradiction in the later case as well. Hence every vertex
of G with degree greater than two is either a sink or a source in ↑ Gf. �

Theorem 10 If f is an induced graphoidal labeling, then ψf is an induced
acyclic graphoidal decomposition.

Proof. Suppose f is an induced graphoidal labeling of G. By definition ψf is
an induced path decomposition of G and moreover no member of ψf is a cycle,
which implies that ψf is an induced acyclic path decomposition of G. Further

182 I. Samul Hamid, M. Joseph

it follows from Lemma 9 that every vertex v of G having degree at least three
is either a source or a sink in ↑ Gf so that the vertex v is exterior to ψf. Hence
every vertex v in G is an internal vertex of at most one path in ψf. Thus ψf
is an induced acyclic path decomposition of G such that every vertex of G is
an internal vertex of at most one path in ψf and so ψf is an IAGD of G. �

Remark 11 Since ψf is an induced acyclic graphoidal decomposition of a
graph G when f is an induced graphoidal labeling, ψf in particular is a gra-
phoidal decomposition of G. That is, induced label graphoidal graphs are label
graphoidal graphs. But a label graphoidal graph need not be induced (for exam-
ple consider the triangle). At the same time there are label graphoidal graphs
which are induced label graphoidal as well while a labeling which served as a
graphoidal labeling need not necessarily be an induced graphoidal labeling of
the graph.
For example, the labeling of cycle C4 as in Figure 2 is a graphoidal labeling,

but not an induced graphoidal labeling.

b b

b b

2 3

1 4

Figure 2

Theorem 12 Induced label graphoidal graphs are triangle-free.

Proof. If G is a graph of order n having a triangle C = (u, v,w, u), then
under any labeling f : V(G) → {1, 2, . . . , n} of G, the orientation of the edges
of C will be one of the forms given in Figure 3.

b

b b

u

v w

b

b b

u

v w

Figure 3

In the first case the path (u,w, v) is a section of a path in ψf and conse-
quently ψf cannot be an induced decomposition. Similarly in the second case

Induced label graphoidal graphs 183

also ψf contains a path having (u,w, v) as its section. Hence ψf will no longer
be an induced graphoidal decomposition of G so that G is not induced label
graphoidal. �

Corollary 13 Complete graphs and wheels are not induced label graphoidal.

Theorem 14 Bipartite graphs are induced label graphoidal.

Proof. Let G be a bipartite graph with the bipartition (X, Y) where X =
{x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys}. Define f : V(G) → {1, 2, . . . , (r+ s)} by
f(xi) = i; for all i = 1, 2, . . . , r and f(yj) = (j + r); for all j = 1, 2, . . . , s.
Then every vertex of X is a source and that of Y is a sink in ↑ Gf so that
ψf = E(G); which of course is an induced graphoidal decomposition and thus
f is an induced graphoidal labeling of G. �

Corollary 15 Every label graphoidal graph with δ ≥ 3 is an induced label
graphoidal graph.

Proof. Let G be a label graphoidal graph with δ ≥ 3 . Then Theorem 4 implies
that G does not contain any odd cycle. Hence G is bipartite and so the result
follows from Theorem 14. �

Theorem 16 Induced subgraph of an induced label graphoidal graph is induced
label graphoidal.

Proof. Let G be an induced label graphoidal graph and let H be an induced
subgraph of G. Let f be an induced graphoidal labeling of G. Let g be the
labeling of H obtained from f by assigning the label 1 to the vertex of H which
receives the minimum among the labels of the vertices of H under f and using
the label 2 to the vertex receiving the next minimum on the label under f
and so on. We claim that g is an induced graphoidal labeling of H. Since H is
an induced subgraph of G, any member of ψg is either a member of ψf or a
section of a member of ψf and so each member in ψg is an induced path in H.
Hence ψg is an induced graphoidal decomposition of H and consequently g is
an induced graphoidal labeling of H. �

Remark 17 It follows from Theorem 16 that a graph which is not induced
label graphoidal cannot be an induced subgraph of an induced label graphoidal
graph. Since triangles are not induced label graphoidal graphs, any induced
label graphoidal graph is triangle free which in fact is Theorem 12.

184 I. Samul Hamid, M. Joseph

The following theorem completely characterizes the induced label graphoidal
graphs.

Theorem 18 A graph G is induced label graphoidal if and only if G is triangle-
free such that every odd cycle of G contains a vertex of degree 2.

Proof. Suppose G is an induced label graphoidal graph. Remark 11 says then
that G is a label graphoidal graph and so the required conditions follow from
Theorem 12 and Theorem 4. Therefore, we need to verify only the converse.
Let G be a triangle-free graph such that every odd cycle in G contains a

vertex of degree two. Suppose G does not contain any odd cycle. Then G is a
bipartite graph and hence by Theorem 14, G is induced label graphoidal.

Now assume that G contains an odd cycle. Consider the collection
B = {b1, b2, . . . , bk} of vertices of degree two in G with minimum cardinality
whose removal results in a graph with no odd cycles. Let
H = < V(G) \ B >. Then H is a connected graph without any odd
cycles as the vertices of degree two lying on a cycle of G cannot be cut-
vertices of G. Hence H is a bipartite graph. Let (X, Y) be the bipartition of
H with X = {x1, x2, . . . , xn1

} and Y = {y1, y2, . . . , yn2
}. Now, define a labeling

f : V(G) → {1, 2, . . . , n} where n = n1 + n2 as follows.

f(xi) = i, for all i = 1, 2, . . . , n1

f(bi) = n1 + i for all i = 1, 2, . . . , k and

f(yi) = n1 + k+ i for all i = 1, 2, . . . , n2.

Then one can observe that in ↑ Gf the vertices in X are sources and the vertices

in Y are sinks. Also, every vertex in B is adjacent from exactly one vertex of X
and adjacent to exactly one vertex of Y. Hence ψf consists of the edges joining
a vertex of X and that of Y along with the paths of length two connecting a
vertex in X and a vertex of Y having a vertex of B as an internal vertex. Now,
as G is triangle-free, the initial and terminal vertices of a path of length two in
ψf are not adjacent which implies that such a path in ψf is an induced path in
G. Thus ψf is an IAGD of G proving that f is an induced graphoidal labeling
of G. �

Corollary 19 A label graphoidal graph G is induced label graphoidal if and
only if G is triangle-free.

Proof. Follows from Theorem 4 and Theorem 18. �

Induced label graphoidal graphs 185

3 Induced label graphoidal decomposition number

For a graph G admitting a graphoidal labeling f, the labeling function f need
not necessarily be unique; which in turn implies that G possesses more than
one graphoidal decomposition. Motivated by this observation, Arumugam and
Sahul Hamid [5] introduced the concept of label graphoidal decomposition
number. We extend this notion further with respect to induced graphoidal
decompositions.

Definition 20 Let G be an induced label graphoidal graph. Then the induced
label graphoidal decomposition number ηil(G) is defined to be

ηil(G) = min{|ψf| : f is an induced graphoidal labeling of G}.

Example 21 (i) A graph G is given in Figure 4 with two different la-
belings. Observe that the two different labelings of the graph G yield
two different induced acyclic graphoidal decompositions. For the first
labeling f1 we have ψf1 = E(G) whereas in the second case the de-
composition corresponding to the given labeling f2 is given by ψf2 =
{(1, 2), (1, 4, 6), (3, 6), (1, 5, 6)}. However, it can easily be verified that
ηil(G) = 4.

b b

b b

b

6

1 3

5

24

b

b b

b b

b

3

1 4

2

65

b

Figure 4

(ii) It follows immediately from the definition that ηil(Cn) = 2 for all n ≥ 4
and ηil(Pn) = 1 for all n ≥ 2.

(iii) If G is a graph with δ(G) ≥ 3, by Lemma 2.3 every vertex of G is either
a sink or a source in ↑ Gf under any induced graphoidal labeling f of G
and consequently ηil(G) = m.

186 I. Samul Hamid, M. Joseph

(iv) Consider the complete bipartite graph Kr,s where 2 ≤ r ≤ s, and let (X, Y)
be the bipartition where X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys}. If
r ≥ 3, then δ(Kr,s) = r ≥ 3 and so ηil(Kr,s) = rs as observed above.
When r = 2, define a labeling f : V(Kr,s) → {1, 2, . . . , (r+ s)} by

f(x1) = 1

f(x2) = s+ 2 and

2 ≤ f(yj) ≤ (s+ 1), for each j where 1 ≤ j ≤ s.

Certainly, f is an induced graphoidal labeling of Kr,s with ψf = {(x1, yi, x2) :
1 ≤ i ≤ s} and hence ηil(Kr,s) ≤ |ψf| = s. As for any induced graphoidal
labeling f of K2,s, the induced graphoidal decomposition ψf will consist
of just edges and paths of length two, which implies that ηil(K2,s) ≥ s.

Thus we have

ηil(Kr,s) =

{
s if r = 2
rs else

(v) As any path in a tree T is an induced path, from Theorem 6 we have
ηil(T) = ηl(T) = m−b, where b denotes the number of vertices of degree
2 in T.

Remark 22 It is possible to have two different labelings giving rise to the
same minimum induced label graphoidal decomposition. For example, consider
the graph G given in Figure 5(a) and the labeling f1 and f2 of G as given in
Figures 5(b) and 5(c) respectively. Certainly |ψf1 | = |ψf2 | = 7 = ηil(G).

b b

bb b

b

b3

v1

v2 v3
v4

v5 v6

bbbb1
b2

(a)

b b

bb b

b

5

7

1 2 3

8 9

bbb6
4

(b)

b b

bb b

b

8

1

6 5 4

2 3

bbb7
9
(c)

Figure 5

Let us now proceed to obtain some bounds for ηil. As seen earlier, by internal
vertices of a path P, we mean the vertices of P other than its end vertices. For
a graphoidal decomposition ψ of G, a vertex v is said to be interior to ψ if v
is an internal vertex of an element of ψ and is called exterior to ψ otherwise.

Induced label graphoidal graphs 187

Suppose G is an induced label graphoidal graph and let b denote number
of vertices of degree 2. If f is an induced graphoidal labeling of G, we use b ′

f

to denote the number of vertices of degree 2 which are exterior to ψf. Let
b ′ = minf{b

′
f} where the minimum is taken over all the induced graphoidal

labeling f of G.
The following theorem which is useful to estimate the value of ηil for a given

graph is analogous to a result for ηl given in [5].

Theorem 23 Let G be an induced label graphoidal graph. Then ηil(G) = m−
b+ b ′.

Proof. Consider a labeling f of G with respect to which G has an induced
graphoidal decomposition. Let ψf be the corresponding induced graphoidal
decomposition. Then obviously, the interior vertices of all the elements of ψf
are of degree 2. Therefore we have

m =
∑
P∈ψf

|E(P)|

=
∑
P∈ψf

(1+Number of vertices of degree 2 in ψf)

= |ψf|+ b− b
′

so that we get ηil(G) = m− b+ b ′. �

Corollary 24 For any induced graphoidal graph G, ηil(G) ≥ m−b. Further,
equality is obtained if and only if there exists an induced graphoidal labeling f
of G such that every vertex of G with degree 2 is interior to ψf.

Proof. The inequality follows from Theorem 23 as b ′ ≥ 0. The rest follows
from the fact that ηil = m− b if and only if b ′ = 0. �
Although A graph g is 23 gives a formula to determine the value of ηil in
terms of m and b ′, it is to be noted that determination of b ′ for a graph in
general is not easy.
The following theorem gives a necessary condition for a graph G with

ηil(G) = m− b.

Theorem 25 Let G be an induced label graphoidal graph which is not a cycle.
Then ηil(G) = m − b implies that G is graph such that every cycle of G
contains an even number of vertices of degree ≥ 3 of which at least one pair
of vertices are non-adjacent.

188 I. Samul Hamid, M. Joseph

Proof. Suppose G is an induced label graphoidal graph with ηil = m − b.
Then by virtue of Corollary 24, there exists an induced graphoidal labeling f
such that every vertex of degree 2 is interior to ψf and of course |ψf| = m−b.
If G does not contain any cycle, then G is a tree and the result is trivial.

Suppose G is not a tree and let C be a cycle in G. As any vertex of degree ≥ 3
is either a sink or a source in ψf and all the vertices of degree 2 are interior to
it, it follows that the vertices on C with degree ≥ 3 must alternatively be sinks
and sources. Hence C contains an even number of vertices of degree ≥ 3. Now,
what we need to verify is that at least one pair of vertices on C with degree
≥ 3 are non-adjacent. If not, every pair of vertices on C with degree ≥ 3 are
adjacent. As G is induced label graphoidal, it contains no triangles. Therefore,
C contains exactly two vertices of degree ≥ 3, say u and v. Obviously, one
of them, say u will be a source and the other is a sink. Then both the u − v
sections of C belong to ψf and at least one of them will not be induced which
is a contradiction and hence the result. �

Lemma 26 If G is an induced label graphoidal graph, there exists an induced
graphoidal labeling f such that every vertex of degree 2 not lying on any cycle
of G is interior to ψf.

Proof. Let G be an induced label graphoidal graph. Let vb be a vertex of
degree 2 not lying on any cycle in G. If G is a tree, then the result follows
from Remark 3.9 and Corollary 3.6. Suppose G is not a tree. Let w1 and w2
be vertices with degree ≥ 3 and nearest to vb. Since the distance between w1
and w2 is > 1, it is possible to obtain a labeling f for which w1 is a source
and w2 is a sink so that vb is internal to ψf. �

Acknowledgements

This research work is supported by the Department of Science and Technology,
New Delhi, India through a research project with No.SR/FTP/MS-002/2012
sanctioned to the first author.
The authors would like to thank the referee for the helpful comments and

suggestions.

Induced label graphoidal graphs 189

References

[1] B. D. Acharya, E. Sampathkumar, Graphoidal covers and graphoidal covering
number of a graph, Indian J. Pure Appl. Math., 18, 10 (1987) 882–890. ⇒179,
180

[2] S. Arumugam, Path covers in graphs, Lecture Notes of the National Workshop
on Decompositions of Graphs and Product Graphs held at Annamalai University,
Tamil Nadu, January 3–7, 2006. ⇒179

[3] S. Arumugam, B. D. Acharya, E. Sampathkumar, Graphoidal Covers of a Graph:
A Creative Review, Proc. National Workshop on Graph Theory and its Applica-
tions, Manonmaniam Sundaranar University, Tirunalveli, India, 1996, pp. 1–28.⇒179

[4] S. Arumugam, I. Sahul Hamid, Simple graphoidal covers in graphs, Journal of
Combin. Math. Combin. Comput., 64 (2008) 79–95. ⇒179

[5] S. Arumugam, I. Sahul Hamid, Label graphoidal covering number of a graph,
Proc. Group Discussion on Labeling of Discrete Structures and Applications,
Mary Matha Arts College, Mananthawady, Eds. B. D. Acharya, S. Arumugam
and A.Rosa, Narosa Publishing House, 2007, pp. 77–82. ⇒180, 185, 187

[6] S. Arumugam, J. Suresh Suseela, Acyclic graphoidal covers and path partitions
in a graph, Discrete Math., 190, 1–3 (1998), 67–77. ⇒179

[7] G. Chartrand, L. Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press,
Boca Raton, 2004. ⇒178

[8] F. Harary, Covering and packing in graphs I, Ann. N. Y. Acad. Sci., 175 (1970)
198–205. ⇒179

[9] F. Harary, A. J. Schwenk, Evolution of the path number of a graph, covering
and packing in graphs II, in: Graph Theory and Computing, Ed. R. C. Rad,
Academic Press, New York, 1972, pp. 39–45. ⇒179

[10] K. Ratan Singh, P. K. Das, Induced acyclic graphoidal covers in a graph, World
Academy of Science, Engineering and Technology, 68 (2010) 38–44. ⇒179

[11] I. Samul Hamid, A. Anitha, On the label graphoidal covering number-I, Trans.
on Combinatorics 1, 4 (2012) 25–33. ⇒

[12] I. Samul Hamid, A. Anitha, On the Label graphoidal covering number-II, Dis-
crete Math. Algorithms Appl. 3, 1 (2011) 1–7. ⇒

[13] I. Samul Hamid, M. Joseph, Further results on induced acyclic graphoidal de-
composition, Discrete Math. Algorithms Appl. 5, 1 (2013) 1350006 (11 pages).⇒179

Received: August 12, 2014 • Revised: September 8, 2014

https://en.wikipedia.org/wiki/E._Sampathkumar
http://www.ncardmath.com/CV.pdf
http://www.ncardmath.com/CV.pdf
https://en.wikipedia.org/wiki/E.Sampathkumar
http://www.ncardmath.com/CV.pdf
http://zenodo.org/record/9647/files/SimplePathCovers.pdf
http://www.ncardmath.com/CV.pdf
http://www.ncardmath.com/CV.pdf
http://www.sciencedirect.com/science/article/pii/S0012365X98000326
http://www.sciencedirect.com/science/journal/0012365X
https://en.wikipedia.org/wiki/Gary_Chartrand
http://www.users.drew.edu/~llesniak/
http://www.crcpress.com/
https://en.wikipedia.org/wiki/Frank_Harary
http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291749-6632
https://en.wikipedia.org/wiki/Frank_Harary
http://waset.org/publications/11912/induced-acyclic-graphoidal-covers-in-a-graph
http://www.gct.ac.in/users/anitha
http://combinatorics.ir/article_2271_97.html
http://www.gct.ac.in/users/anitha
http://www.worldscientific.com/doi/abs/10.1142/S179383091100095X
http://www.worldscientific.com/loi/dmaa
http://www.worldscientific.com/loi/dmaa

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 190–205

Remarks on the A∗∗ algorithm

Tibor GREGORICS
Eötvös Loránd University, Faculty of Informatics

Budapest
email: gt@inf.elte.hu

Abstract. The A∗∗ algorithm is a famous heuristic path-finding algo-
rithm. In this paper its different definitions will be analyzed firstly. Then
its memory complexity is going to be investigated. On the one hand, the
well-known concept of better-information will be extended to compare
the different heuristics in the A∗∗ algorithm. On the other hand, a new
proof will be given to show that there is no deterministic graph-search
algorithm having better memory complexity than A∗∗. At last the time
complexity of A∗∗ will be discussed.

1 Introduction

The A∗∗ algorithm is one of the graph-search algorithms that can be used to
solve path-finding problems.

Path-finding problems are the tasks that can be modeled by a directed arc-
weighted graph (this is the so-called representation graph). Let R = (N,A, c)
denote a directed arc-weighted graph where N is the set of nodes, A ⊆ N×N
is the set of directed arcs and c : A 7→ R is the weight function. The graphs
of our interest have got only finite outgoing arcs from their nodes and there
is a global positive lower limit (δ ∈ R) on the weights. These graphs are the
δ-graphs.[5] Thus a path-finding problem can be represented by the triple
(R, s, T) where R is a δ-graph, s denotes the start node and T denotes the set
of goal nodes. The solution of this problem is a path from the start node to
some goal node that can be denoted by s→ t where t ∈ T .

Computing Classification System 1998: I.2.8
Mathematics Subject Classification 2010: 68T20
Key words and phrases: path-finding problem, graph-search algorithms, heuristic func-
tion, A∗ algorithm, A∗∗ algorithm

190

http://people.inf.elte.hu/gt
http://people.inf.elte.hu/gt
http://people.inf.elte.hu/gt
mailto:gt@inf.elte.hu

Remarks on the A∗∗ algorithm 191

The cost of a path can be calculated as the summation of the cost of the
arcs on this path. We will denote the smallest cost path from n to m as
n→∗ m. This path is called as optimal path. In many path-finding problems
the optimal path from the start node to some goal node is needed to be found.
The value h∗(u) shows the optimal cost from the node u to any goal node.
The function h∗ : N 7→ R is called as optimal remaining cost function. The
value g∗(u) gives the optimal cost from the start node to the node u and the
function g∗ : N 7→ R is named as optimal leading up cost function. We can
calculate the optimal cost of the path going from the node s to any goal node
via the node u in the way f∗(u) = g∗(u) + h∗(u) where f∗ : N 7→ R is the
optimal cost function. We remark that the value f∗(s) denotes the cost of the
optimal solution.

Graph-search algorithms try to find a path from the start node to a goal node
and during their process they always record the sub-graph of the representation
graph that has been discovered. This is the search graph (G). The nodes of G
whose children are known are the so-called closed nodes. The other nodes of
G that wait for their expansion are the open nodes. Sometimes a node may
be open and closed at the same time if it has been expanded but its children
(more precisely the optimal paths form the start node to its children) are not
completely known. Let OPEN denote the set of the open nodes at any time.
In every step the most appropriate open node will be selected and expanded,
i.e. its children must be generated or regenerated. The general graph-search
algorithm [5, 2, 3] evaluates the open nodes with an evaluation function f :
OPEN 7→ R and chooses the open node with the lowest f value for expansion.

procedure Graph-search
G := ({s}, ∅) : OPEN := {s} : π(s) := nil : g(s) := 0
while OPEN 6= ∅ loop

n := minf(OPEN)
if goal(n) then return there is a solution endif
foreach m ∈ Children(n) loop

if m /∈ G or g(m) > g(n) + c(n,m) then
π(m) := n : g(m) := g(n) + c(n,m)
OPEN := OPEN ∪m

endif
endforeach
G := G ∪ {(n,m)|m ∈ Children(n)}
OPEN := OPEN ∪ {(n,m)|m ∈ Children(n)}

endwhile
return there is no solution

end

192 T. Gregorics

The cheapest paths from the start node to the nodes of G, which are found
so far, must be recorded with their cost. These costs are shown by the function
g ∈ N 7→ R. (It is clear that g(u) ≥ g∗(u) for all node u of N.) The algorithm
also maintains a pointer π ∈ N 7→ N that marks the best parent of each
discovered node (except the start node). The best parent of any node is the
one which is along the cheapest discovered path driving from s to that node.
The recorded paths form a directed spanning tree in the search graph where
the root node is the start node. We will denote a recorded path driving from
s to u as s→π u and cπ(s, u) will symbolize its cost.

The computation of the evaluation function of a graph-search algorithm
can contain some extra knowledge about the problem. This is the so-called
heuristic function h : N 7→ R that estimates the remaining optimal path cost
from a node to any goal node, i.e. h(u) ≈ h∗(u) for all nodes u of N.

The most famous heuristic graph-search algorithm is the A∗ algorithm. The
evaluation function of this algorithm is f = g + h where the cost function g
is calculated by the algorithm and the heuristic function h is derived from
the problem. The A∗ algorithm uses a nonnegative and admissible heuristic
function. The admissibility means that the heuristic function gives a lower
limit on the remaining optimal path cost from any node to a goal node, i.e.
h(u) ≤ h∗(u) for all node u of N.

2 Definitions of the A∗∗ algorithm

The A∗∗ algorithm can be treated as a modification of the A∗ algorithm.
During the execution of A∗, it can occur that the evaluation function value of
an open node n (g(n) + h(n)) might be smaller than the value g(u) + h(u)
of some node u on the recorded path from s to n. It signs that the estimation
h(n) is too low for the remaining path-cost hence

h(n) < g(u) + h(u) − g(n) = h(u) − cπ(u,n) ≤ h∗(u) − cπ(u,n) ≤ h∗(n).

The A∗∗ algorithm has been introduced by Dechter and Pearl to correct this
failure of the heuristic function.[1] Its evaluation function gives the maximum
of the value g(u) + h(u) for all node u on the recorded path s→π n, i.e.

f(n) = max
u∈{s→πn}

[g(u) + h(u)]

where h is a non-negative admissible heuristic function. Additionally, the se-
lection breaks ties arbitrarily but in favor of goal nodes.

Remarks on the A∗∗ algorithm 193

Corresponding to this definition, the evaluation function value of all open
nodes must be always recomputed after each expansion since the recorded
paths can be changed. However, the computational cost of the recalculation
of the evaluation function value of all open nodes with their recorded path
is too high. Russell and Norvig mention an alternative way to implement the
A∗∗ algorithm. [6] They suggest that the evaluation function value of u is
calculated by the following recursive formula:

f(u) := max(g(u) + h(u), f(v))

when a better path is found to a node u after the expansion of its parent
node v. Initially, f(s) := h(s). The next theorem shows that the original A∗∗

algorithm and this latter alternative one work in the same way.

Theorem 1 Both versions of the A∗∗ algorithm contain the same open nodes
with the same evaluation function values in each step.

Proof. We prove this result using induction on the number of the expansions.
Initially both versions add the start node into OPEN with the same evalu-

ation function value (f(s) = h(s)). Let us suppose that the statement of the
theorem is true in the ith step when the open node n is selected and expanded.
Let k be an arbitrary open node after this expansion. We will show that the
evaluation function value of k is independent of any version of A∗∗.

If there is no cheaper path from s to k via n, then the node k has to be
in OPEN before the expansion of n and neither of the versions modify its
evaluation function value.

Otherwise, we must distinguish two cases: either the node k or some of its
ancestor is a child of the node n.

If k is a child of n and either k is not in G or g(n) + c(n, k) < g(k) hold,
both versions recalculate the value f(k) after the expansion of n. According
to the original version,

f(k) = max
u∈{s→πk}

[g(u) + h(u)]

where s →π k is the new recorded path via the node n. According to the
alternative version,

f(k) = max(f(n), g(k) + h(k)).

But the recorded path s→π n is not changed during the expansion of n thus
the value f(n) remains the same, and, by the induction hypothesis, this values

194 T. Gregorics

in both versions are identical, i.e.

f(n) = max
u∈{s→πn}

[g(u) + h(u)].

Thus the new evaluation function values of k in both versions are identical
because of

max
u∈{s→πk}

[g(u) + h(u)] = max
(

max
u∈{s→πn}

[g(u) + h(u)], g(k) + h(k)
)
.

If k were in OPEN before the expansion of n, and one of its ancestors (let
m denote it) were a child of n, and a cheaper path were discovered form s

to this very ancestor via n, then the alternative version would not recalculate
f(k) but the original version would. Let fold(k) and fnew(k) be the earlier
and the new value of k maintained by the original version. By the induction
hypothesis, f(k) = fold(k). It should be shown that fnew(k) = fold(k) because
in this case f(k) = fnew(k) is followed. Let α denotes the recorded path from
s to m before the expansion of n. Let gα(u) denote the cost of α from s to
u before the expansion of n, and in this case g(n) + c(n,m) < gα(m). It is
obvious that

fold(k) = max
(

max
u∈{s→αm}\{m}

[gα(u) + h(u)], gα(m) + h(m),

max
u∈{m→πk}\{m}

[g(u) + h(u)]
)
,

fnew(k) = max
(

max
u∈{s→πn}

[g(u) + h(u)], g(n) + c(n,m) + h(m),

max
u∈{m→πk}\{m}

[g(u) + h(u)]
)
.

We know that f(n) = maxu∈{s→πn}[g(u)+h(u)] and the following inequations
hold:

• maxu∈{s→αm}\{m}[g
α(u) + h(u)] ≤ f(n) because the path s →α m was

discovered before the path s→π m,

• gα(m) + h(m) ≤ f(n) because the path s →α m was discovered before
the path s→π n,

• maxu∈{m→πk}\{m}[g(u) + h(u)] ≤ f(n) because the path m →π k was
discovered before the path s→π m.

Remarks on the A∗∗ algorithm 195

On the one hand, it follows from the above inequations that fold(k) ≤ f(n)
and since the algorithm selects n for expansion instead of k, the inequation
f(n) ≤ fold(k) must hold. Ergo, fold(k) = f(n). On the other hand, f(n) ≤
fnew(k) because n is on the recorded path s→π k, and f(n) ≥ fnew(k) is also
true because the path m →π k were discovered before the path s →π n. It
follows that fnew(k) = f(n). Thus fnew(k) = fold(k). �

The main consequence of this theorem is that the following lemmas and
theorems that are proved on only the original version of A∗∗ are valid for both
versions of A∗∗.

Lemma 2 The value f(m) calculated by the A∗∗ algorithm is proportional to
the depth of m.

Proof. Let d(m) denote the length of the recorded path from start node to
the node m. Let d∗(m) denote the length of the shortest path from start node
to the node m. It is obvious that d∗(m) ≤ d(m). By respecting the definition
of A∗∗, f(m) ≥ g(m) + h(m) for all open node m. We know that h(m) ≥ 0
and the cost of the arcs are greater and equal to a positive δ. Thus we have

f(m) ≥ g(m) + h(m) ≥ g(m) > d(m) · δ ≥ d∗(m) · δ.

�

From this lemma, it follows that the A∗∗ algorithm can find a solution if
there exists a solution even if the heuristic function is non-admissible and only
non-negative. This proof is analogous to the proof of the correctness of the A∗

algorithm. [5]

Lemma 3 When the A∗∗ algorithm selects a node n for expansion, the in-
equation f(n) ≤ f∗(s) holds.

Proof. If there is no solution, then f∗(s) can be considered infinite. If there
exists a solution, there must be a node m on the optimal solution path at the
time of the selection of n so that m is in OPEN and an optimal path from s

to m is recorded by algorithm, i.e. g(u) = g∗(u) for all nodes u of this path.
Let v denote the node of this path where

max
u∈{s→πm}

[g(u) + h(u)] = g(v) + h(v)

hold. The A∗∗ algorithm selects the node n instead of the node m, so f(n) ≤
f(m) must hold. Based on the admissible property of the heuristic function we

196 T. Gregorics

get

f(n) ≤ f(m) = max
u∈{s→πm}

[g(u) + h(u)] = g(v) + h(v) ≤ g∗(v) + h∗(v) = f∗(s).

�

The consequence of this lemma is that the A∗∗ algorithm can find optimal
solution if there exists a solution. This proof is analogous to the proof of the
optimality of the A∗ algorithm. [5]

At last an interesting property of the A∗∗ algorithm will be proved.

Theorem 4 If the A∗∗ algorithm selects the node m after the node n for
expansion, then f(n) ≤ f(m).

Proof. This statement is enough to prove with two nodes that are expanded
directly after each other: firstly the node n, then the node m.

If m has already been in OPEN just before n is expanded but this expansion
does not find a cheaper path from s to m, then the value of f(m) does not
change. But f(n) ≤ f(m) has to hold because the algorithm selects the node
n instead of the node m.

If m is not in OPEN before the expansion of n but it gets into there after
n is expanded, or if m has already been in OPEN just before n is expanded
and this expansion finds a cheaper path from s to m, then m must be a child
of n and the recorded path π from s to m drives via n. It is obvious that

max
u∈{s→πn}

[g(u) + h(u)] ≤ max
u∈{s→πm}

[g(u) + h(u)]

because n is on the path π. Thus, by respecting the definition of the evaluation
function of A∗∗, f(n) ≤ f(m) holds. �

An important consequence of this theorem is that if A∗∗ expands the same
node twice, its second evaluation function value will be greater than or equal
to the first one.

3 Memory complexity of the A∗∗ algorithm

The memory requirement of a graph-search algorithm depends basically on
the size of its search graph. This size can be mesuared by the number of the
expanded nodes of this search graph. These are the so-called closed nodes.
The size of the search graph is the biggest when the algorithm terminates
thus the memory requirement is given with the number of the closed nodes at

Remarks on the A∗∗ algorithm 197

termination. Because of this, we assume that the path-finding problems of our
focus has got a solution, thus most of the famous graph-search algorithms –
specially the A∗∗ algorithm – must terminate.

Let CLOSEDS denote the set of closed nodes of the graph-search algorithm
S at termination. Let X and Y be arbitrary graph-search algorithms. We can
say that X is better than Y in a given path-finding problem if CLOSEDX ⊂
CLOSEDY , and X is not worse than Y in a given path-finding problem if
CLOSEDX ⊆ CLOSEDY .

3.1 Comparison of different heuristics in the A∗∗ algorithm

At first we will compare two A∗∗ algorithms, namely A1 and A2 using different
heuristic funtions. Let h1 and h2 be admissible and non-negative heuristic
functions deriving from the same problem. We say – based on the work of
Nils Nilsson [5] – that the A2 algorithm using h2 is more informed than the
A1 algorithm using h1 if, for all nongoal nodes n, h2(n) > h1(n). We would
expect intuitively that the more informed algorithm would need to expand
fewer nodes to find a minimal cost path. Indeed, analogously to the similar
result of the A∗ algorithm, we can only prove that A2 does not expand a node
that A1 does not either.

Theorem 5 If A1 and A2 are two versions of A∗∗ such that A2 is more in-
formed than A1, then A2 is not worse than A1.

Proof. We prove this result, following to Nilsson [5], using induction on the
depth of a node in the spanning tree of the search graph of A2 at termination.

First, if A2 expands the node having zero depth, in this case this node must
be the start node, then so must A1. (If s is a goal node, neither algorithm
expand any nodes.)

Continuing the inductive argument, we assume (the induction hypothesis)
that A1 expands all the nodes expanded by A2 having depth d or less in the
A2 search graph. We must now prove that any node n expanded by A2 and of
depth d+1 in the A2 search graph is also expanded by A1. Let us suppose the
opposite of this, namely that there is a node m having depth d+ 1 expanded
by A2 but it is not expanded by A1. (We remark that this node m may not
be a goal node since it is expanded by a graph-search algorithm.)

It is trivial that m had to get into the OPEN for A2 if A2 expanded it.
According to Lemma 3, since A2 has expanded node m, we have f2(m) ≤ f∗(s)
where f2(m) is the evaluation function value of m at its expansion.

198 T. Gregorics

According to the induction hypothesis, since A2 has found a path from
s to m where all ancestors of m are below the level d, these ancestors are
also expanded by A1. Thus, firstly, node m must be in OPEN for A1. Let
f1(m) denote the evaluation function value of m at the termination of A1. It
is obvious that f1(m) ≥ f∗(s). Secondly, the recorded path from s to m in
the A1 search graph does not cost more than the path discovered by A2, that
is, g1(m) ≤ g2(m). Thirdly, for each ancestor v of node m on the recorded
path from s to m in the A1 search graph, f1(v) ≤ f∗(s) since they have been
expanded by A1. Thus, by respecting the definition of the evaluation function
of A∗∗, g1(v) + h1(v) ≤ f∗(s). Because of this, f1(m) = g1(m) + h1(m) follows
from the inequation f1(m) ≥ f∗(s).

Summarizing the consequences we get that

f2(m)≤f∗(s)≤f1(m)=g1(m)+h1(m)≤g2(m)+h1(m)<g2(m)+h2(m)≤f2(m),

but this is a contradiction. �

3.2 Comparison of the A∗∗ algorithm and other admissible
graph-search algorithms

In this analysis we will use the natural definition of ”equally informed” al-
lowing the algorithms compared to have access to the same heuristic infor-
mation while placing no restriction on the way they use it. Accordingly, we
assume that the heuristic function is a part of the parameters that specify
path-finding problem-instances and correspondingly, we will represent each
problem-instance by the quadruple P = (R, s, T, h) where R = (N,A, c) is the
representation δ-graph, s is the start node, T is the set of goal nodes, and h
is the heuristic function. If the heuristic function is non-negative and admis-
sible, then these problem-instances are called admissible problems. Moreover
we suppose that these problems have got solutions.

As the A∗∗ algorithm always finds the optimal solution in an admissible
problem, our aim is to compare the A∗∗ algorithm to other graph-search al-
gorithms that can also find optimal solution. These algorithms are called ad-
missible graph-search algorithms, or shortly admissible algorithms. Famous
graph-search algorithms, as the A∗ algorithm, the A∗∗ algorithm, the B algo-
rithm [4], or uniform-cost search [5], belong to this algorithm class.

In order to decide if an algorithm X dominates an algorithm Y, several
criteria can be used. According to one of these criteria, X dominates Y relative
to a set of problems if, in every problem, X is not worse than Y. Additionally,

Remarks on the A∗∗ algorithm 199

if Y does not dominate X, i.e. in at least one problem X is better than Y, then
we say that X strictly dominates Y relative to that set of problems.

However, now we do not have to compare two algorithms but two algorithm
classes. First, the A∗∗ algorithm is a non-deterministic algorithm because its
OPEN set can contain several nodes with the same evaluation function value
and in order to select the best one, we need some rules to break these ties.
By collecting all possible tie-breaking-rules we can get a set of deterministic
A∗∗ algorithms instead of the original non-deterministic one. In this sense
A∗∗ can be treated as an algorithm class. Secondly, we must compare this
algorithm class with all members of the admissible algorithms, i.e. the class of
the admissible algorithms. Thus we must extend the concept of the dominance
of algorithm to algorithm classes.

The algorithm class X is said to dominate the algorithm class Y relative to
a set of problems if in every problem for all deterministic versions y of Y there
exists a member x of X so that x is not worse than y. X strictly dominates Y
if X dominates Y and Y does not dominate X. (This definition corresponds to
the Type-1 criterion of the paper of Dechter and Pearl. [1])

Dechter and Pearl have thoroughly analyzed the memory complexity of the
A∗ algorithms and they have shown that neither algorithm A∗ nor any other
admissible graph-search algorithm dominate all admissible algorithms. They
have proven that the A∗∗ algorithm strictly dominates the A∗ algorithm rel-
ative to the admissible problems. Furthermore, they have mentioned the fol-
lowing theorem. (See it as Theorem 10 in Dechter and Pearl’s paper. [1])

Theorem 6 There is no admissible problem where all versions of A∗∗ expand
a node skipped by a deterministic admissible graph-search algorithm.

Unfortunately, the proof of this theorem has got a little mistake in Dechter
and Pearl’s paper. In their argumentation, a new admissible problem must be
constructed from an elder one but the cost of the new arc adding to the elder
one may be zero. In our assumption, however, all arc-costs of the problem of
interest must be greater than a positive real number. This condition guarantees
that the length of the optimal solution path is finite. At first I tried to improve
the original proof but I could not. A new proof is presented here.
Proof. Let us suppose indirectly that P1 is an admissible problem where all
versions of A∗∗ expand an extra node skipped by a given deterministic admis-
sible graph-search algorithm Y.

If n denotes the extra node expanded by a version of A∗∗ but skipped by Y
and C∗1 is the optimal solution cost in the problem P1, then it is obvious that

200 T. Gregorics

f(n) ≤ C∗1 at the time of the expansion of n (see Lemma 3). In addition, there
must be at least one version of A∗∗ (it will be called a∗∗) so that f(n) < C∗1.
If this version did not exist, the evaluation function value of each extra node
would be identical to C∗1. But it must be an optimal solution path found by
Y avoiding the extra nodes on order to Y could find optimal solution. The set
OPEN of all versions of A∗∗always records a node u from this optimal solution
path with f(u) ≤ C∗1. It means that a version of A∗∗ can be constructed in
a way that it always prefers the node u even its own extra node, but it is a
contradiction.

We are going to construct a new problem P2 from the search graph (G)
maintained by a∗∗ over the problem P1 at its termination appended by a
new arc (n, t) where t is a new goal node. (This graph contains all nodes of
P1 expanded by Y.) Let the cost of this new arc be (C∗1 − f(n))/2. This is
obviously a positive value. The start node of P2 is the same one of P1.The
heuristic function h is identical to the heuristic function of P1 except that
h(t) = 0. Let C∗2 denote the optimal cost from s to t.

It is easy to see that C∗2 ≤ g(n) + c(n, t) ≤ f(n) + c(n, t) < C∗1 (where g(n)
is the cost of the path from s to n, found by a∗∗) so that the only optimal
solution path of P2 goes through the node n to the node t.

Now we will show that P2 is an admissible problem. The heuristic function
was admissible in the problem P1 thus h(u) ≤ h∗1(u) for all node u of G where
h∗1(u) is the optimal path-cost from u to a goal node of G. Let h∗2(u) be the
optimal path-cost from the node u to a goal node of G∪ (n, t). Since only one
new goal node was added it is conceivable that h∗2(u) < h

∗
1(u) for a node u if

there is a path from the node u to the node t in P2. To discover this path, the
node u must have been expanded by algorithm a∗∗ during the solution of P1
so it must be expanded during the solution of P2. By respecting the definition
of A∗∗, f(u) ≥ g(u) + h(u) for all open node u. If h(u) > h∗2(u), then we
would have

f(u) ≥ g(u) + h(u) > g(u) + h∗2(u) ≥ g∗2(u) + h∗2(u) = f∗2(u) ≥ C∗2

but this contradicts that f(u) ≤ C∗2 (Lemma 3). Thus for all node u of G,
h(u) ≤ h∗2(u) as well for the new goal node t since h(t) = 0 by definition.

In searching P2, algorithm Y must behave in the same way as in problem
P1, it must avoid expanding n and halting with cost C∗1, which is higher than
that found by a∗∗. This contradicts Y being an admissible algorithm and it
should find the optimal solution. �

Remarks on the A∗∗ algorithm 201

Figure 1: Execution diagram and its thershold values

4 Time complexity of the A∗∗ algorithm

The running time of a graph-search algorithm depends on the number of its
iteration and on the time of one iteration. The latter factor can be estimated
on the basis of only the knowledge of the problem wanted to be solved, and the
first factor depends primaly on the strategy of the graph-search. Thus we will
analyze just this first factor. This will be given as a function of the number
of closed nodes at termination. (We suppose that the problems of our interest
have got a solution thus our algorithms terminate.) Hereinafter k will denote
the number of closed nodes at termination.

It is clear that the best running time is k since at least k iterations are
needed to expand k nodes if every node is expanded only once. But in many
problems a node may expand several times. It is known that, in the worst case,
the time complexity of the A∗ algorithm is 2k−1 but there is a modification of
A∗, this is algorithm B; its running time is at most 1

2k
2 in the worst case. [4]

An excellent tool to present the execution of a graph-search algorithm and to
calculate its time complexity is the execution diagram (Figure 1). This diagram
enumerates the expanded nodes with their current evaluation function values
in the order of their expansions (the same node may occur several times). It
is trivial that the first value is f(s) and the last one is the value of the goal
node found. (The goal node is selected for expansion but not expanded.) A
monotone increasing subsequence Fi (i = 1, 2, . . .) is constructed from the
values of the diagram so that it starts with the first value f(s) and then the
closest non less one must always be selected. The selected values are called
threshold values and the nodes belonging to these values are called threshold
nodes. Let ni denote the ith threshold node where Fi = f(ni) is its threshold
value. The set of nodes that are expanded between the ith and the (i + 1)th

threshold nodes is called the ith ditch.

202 T. Gregorics

Let us introduce some further notations:

• OPENi – the OPEN set just before the ith threshold node is expanded
by A∗

• gi(u) – the value g(u) just before the ith threshold node is expanded by
A∗

• fA∗
(u) – the evaluation function value f(u) according to A∗

• fA∗∗
(u) – the evaluation function value f(u) according to A∗∗

Theorem 7 Consider an admissible path-finding problem where the threshold
values of the execution diagram of the A∗ algorithm form a strictly monotone
increasing number sequence. Algorithm A∗∗ expands the threshold nodes of A∗

in the same order and with the same threshold values if these algorithms use
the same tie-breaking-rule.

Proof. We prove this theorem using induction on the threshold nodes of the
diagram of the A∗ algorithm. The first threshold node is the start node and this
same node is expanded by A∗∗ at first. It is clear that fA

∗
(s) = fA

∗∗
(s). Let us

suppose that until the ith threshold node the statement is true, that is, at the
expansion of ni both algorithms maintain the same search graphs, the same
sets OPEN, the same cost function (g) values, the same parent pointers (π)
and Fi = fA

∗
(ni) = fA

∗∗
(ni). (This is the induction hypothesis.) We will show

that between ni and ni+1, the A∗ algorithm and the A∗∗ algorithm expand
the same nodes. It follows that the induction statement is also true for the
(i+ 1)th threshold node.

Let us describe the nodes expanded by A∗ in the ith ditch. A nodem belongs
to this ditch if it gets into OPEN after the expansion of ni and fA

∗
(m) < Fi.

The condition of m getting into OPEN is that there exists a path s→ m via
the node ni so that it is found after the expansion of ni and all nodes on
this path between ni and m are also in this ditch and the cost of this path is
cheaper than all other path s → m discovered before. It also means that, for
all nodes u on that path between ni and m, g(u) + h(u) < Fi holds. [3]

On the one hand, if the node m of the ith ditch is put into OPEN by the
A∗∗ algorithm, then it must be expanded before the next threshold since

fA
∗∗
(m) = max

u∈s→πm
[g(u) + h(u)] =

= max
(

max
u∈s→πni

[g(u) + h(u)], max
u∈ni→πm

[g(u) + h(u)]
)
=

= max
(
fA

∗∗
(ni), max

u∈ni→πm
[g(u) + h(u)]

)
=

= Fi < Fi+1.

Remarks on the A∗∗ algorithm 203

On the other hand, let us suppose now indirectly that A∗∗ expands a node
before the expansion of ni+1 that does not belong to the ith ditch of A∗. Let us
take the first such node in the order of the expansions of A∗∗. This node will be
denoted bym. It is obvious thatmmust be put intoOPEN by A∗. If fA

∗∗
(m) <

Fi+1, then the node m should be expanded by the A∗ algorithm before ni+1,
thus m would belong to the ith ditch of A∗. If fA

∗∗
(m) ≥ Fi+1, then all nodes

of the ith ditch would precede the expansion of m, thus ni+1 would be put into
OPEN, too. The only chance of the expansion of m preceding the expansion
of ni+1 is that fA

∗∗
(m) = Fi+1. It is clear that fA

∗∗
(m) = g(m)+h(m). In this

case the node m would be put into OPEN by A∗ after the expansions of the
ith ditch and fA

∗
(m) = Fi would follow from fA

∗∗
(m) = g(m) + h(m). If the

tie-breaking-rule of A∗∗ selected the node m instead of ni+1, then A∗ would
do the same, that is ni+1 would not be the next threshold node of A∗. This is
a contradiction. �

There are two interesting side effects of this proof. First, the A∗ algorithm
and theA∗∗ algorithm expand the same nodes between two neighboring thresh-
old nodes. Secondly, the evaluation function values of the nodes expanded by
A∗∗ in the ith ditch are equal to the ith threshold value Fi.

We underline that the difference of execution diagrams of algorithms A∗

and A∗∗ under the constraints of the previous theorem is that how many
times a node is expanded between two neighboring thresholds and how much
its evaluation function value is. The number of the expansions of A∗∗ partly
depends on the order of the expansions of the nodes having the same evaluation
function value. If the version of A∗∗ is introduced, whose tie-breaking rule
prefers the node having less costly recorded path from s, it can be prevented
that the same node is expanded several times in one ditch because, after the
expansion of a node, algorithm cannot find a better path to this node in this
ditch. Thus the running time of this version is not worse than any version of
A∗.

But what can we say when the threshold values of the execution diagram of
A∗ is not strictly monotone but just monotone? In this case some neighboring
threshold values may be equal. In the ditches after these thresholds the A∗∗

algorithm expands the nodes with the same evaluation function value. Because
our tie-breaking-rule defined in the previous paragraph may prefer ni+1 for
expansion to some node of the ith ditch and this node will be expanded later
or never, thus the number of the expansions of this tie-breaking-rule may be
less than the number of the expansions of the best version of the A∗ algorithm.
On the Figure 2 our tie-breaking-rule of the A∗∗ algorithm expands every node

204 T. Gregorics

Figure 2: Example where the A∗∗ algorithm is faster than algorithm B

only once but the best version of the A∗ algorithm, this is algorithm B [4],
expands the node m twice.

5 Summary

The A∗∗ algorithm was defined by Dechter and Pearl [1] but it was introduced
in a bit different form by Russell and Norviq. [6] I have shown that these
versions do not differ (Theorem 1). The fact that the A∗∗ algorithm is an
admissible graph-search algorithm is a well-known property. But I have men-
tioned that, if the heuristic function applied by algorithm is not admissible
but only non-negative, then A∗∗ always finds a not necessarily optimal solution
(if there exists a solution). I have proved that the evaluation function values
of the nodes expanded by A∗∗ form a monotone increasing number sequence
(Theorem 4).

Then we have extended the the concept of ”better-informed” derived from
Nilsson [5] onto the A∗∗ algorithm. It allows us to compare the memory com-
plexity of two algorithms A∗∗ using different heuristics (Theorem 5). Perhaps it
is much more important to compare the memory requirement of A∗∗ with other
graph-search algorithm, especially the A∗ algorithm using the same heuristics.
All of this has been done in the excellent work of Dechter and Pearl. However
there is a statement in that paper about the A∗∗ algorithm whose proof has
got a mistake. I have given another proof of that statement (Theorem 6).

At last I have shown (Theorem 7) that the time complexity, more precisely,
the number of the expansions of a certain version of the A∗∗ algorithm is not
worse than the versions of A∗.

Remarks on the A∗∗ algorithm 205

References

[1] R. Dechter, J. Pearl, Generalized best-first search strategies and opti-
mality of A∗, Journal ACM , 32, 3, (1985) 505–536. ⇒192, 199, 204

[2] I. Fekete, T. Gregorics, L. Zs. Varga, Corrections to graph-search algo-
rithms. Proc. of the Fourth Conference of Program Designers, ELTE, Bu-
dapest, June 1–3, 1988. ⇒191

[3] T. Gregorics, Which of graphsearch versions is the best? Annales Univ.
Sci. Budapest., Sect. Comput. 15 (1995) 93–108. ⇒191, 202

[4] A. Martelli, On the complexity of admissible search algorithms. Artificial
Intelligence, 8, 1 (1977) 1–13. ⇒198, 201, 204

[5] N. J. Nilsson, Principles of Artificial Intelligence. Springer-Verlag, 1982.⇒190, 191, 195, 196, 197, 198, 204
[6] S. J. Russell, P. Norvig, Artificial Intelligence. A Modern Approach. Pren-

tice Hall Inc., 1995. ⇒193, 204

Received: October 7, 2014 • Revised: October 30, 2014

http://www.ics.uci.edu/~dechter/
http://bayes.cs.ucla.edu/jp_home.html
http://dl.acm.org/citation.cfm?id=3830&CFID=591508967&CFTOKEN=70720055
http://jacm.acm.org/
http://people.inf.elte.hu/fekete/
http://people.inf.elte.hu/gt
http://people.inf.elte.hu/lzvarga/
http://www.acta.sapientia.ro/PD/PD.htm
http://people.inf.elte.hu/gt
http://ac.inf.elte.hu/Vol_015_1995/093.pdf
http://ac.inf.elte.hu/
https://en.wikipedia.org/wiki/Alex_Martelli
http://www.journals.elsevier.com/artificial-intelligence/
http://www.journals.elsevier.com/artificial-intelligence/
http://ai.stanford.edu/~nilsson/
http://www.springer.com/computer/ai/book/978-3-540-11340-9
https://en.wikipedia.org/wiki/Stuart_J._Russell
http://www.norvig.com/
http://www.cs.berkeley.edu/~russell/aima1e.html

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 206–209

Partitioning to three matchings of given

size is NP-complete for bipartite graphs

Dömötör PÁLVÖLGYI
Eötvös Loránd University, Institute of Mathematics

email: dom@cs.elte.hu

Abstract. We show that the problem of deciding whether the edge set
of a bipartite graph can be partitioned into three matchings, of size k1,
k2 and k3 is NP-complete, even if one of the matchings is required to be
perfect. We also show that the problem of deciding whether the edge set
of a simple graph contains a perfect matching and a disjoint matching of
size k or not is NP-complete, already for bipartite graphs with maximum
degree 3. It also follows from our construction that it is NP-complete to
decide whether in a bipartite graph there is a perfect matching and a
disjoint matching that covers all vertices whose degree is at least 2.

Folkman and Fulkerson [2] described bipartite graphs whose edge set can
be partitioned into l1 matchings of size k1 and l2 matchings of size k2. We
complement this result by showing that it is NP-complete to decide whether
the edge set of a bipartite graph can be partitioned into three matchings, of
size k1, k2 and k3. This will follow from the NP-completeness of the following
“perfect matching + matching” problem.

Input: G bipartite graph with maximum degree 3, natural number k.
Goal: Decide whether G contains an edge-disjoint perfect matching and a

matching of size k.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C30, 05C50
Key words and phrases: NP-completeness, disjoint matchings, bipartite graphs, parti-
tioning

206

http://www.cs.elte.hu/~dom/
http://www.elte.hu/en
http://www.cs.elte.hu/home/contact.html?lang=en
mailto:dom@cs.elte.hu

Partitioning to three matchings of given size 207

Proof. First we show how the hardness of the partitioning problem follows
from the hardness of this problem. Notice that if G contains an edge-disjoint
perfect matching P and a matching M of size k, then it also contains another
matching M ′ which is also edge-disjoint from P, has size at least k and is such
that E(G)−P−M ′ is also a matching, as we can start alternating paths from
degree two vertices of E(G) − P −M. Therefore G contains an edge-disjoint
perfect matching and a matching of size k if and only if its edges can be
partitioned into three matchings, of size n, k ′ and |E(G)| − n − k ′ for some
k ′ ≥ k. (This was only a Cook reduction, but from our construction below it
can be easily made into a Karp reduction.)

Next we show that the “perfect matching + matching” problem is NP-
complete. The reduction is from MAX-2-SAT, in which the input is a con-
junctive normal form such that every clause contains at most 2 literals (2CNF)
and a number s and the question is whether at least s clauses are satisfiable.
This problem is well known to be NP-complete [3]. Let us denote the vari-
ables of our input Ψ by x1, . . . , xn and the clauses by C1, . . . , Cm. From this
we make a bipartite graph G of maximum degree 3 on N = 4mn+4m vertices
that will contain an edge-disjoint perfect matching P and a matching M of
size k = (N− 4m+ 2s)/2 if and only if at least s clauses of the input Ψ were
satisfiable.
G consists of several smaller parts, which we now describe. To every variable

xi we associate a cycle of length 4m, denoted by Xi. The vertices of Xi are
denoted (in cyclic order) by ai1, b

i
1, c

i
1, d

i
1, a

i
2, b

i
2, c

i
2, d

i
2, . . . , a

i
m, b

i
m, c

i
m, d

i
m. To

every clause Cj we associate four vertices, uj, vj, u
leaf
j , vleafj and two edges,

uju
leaf
j and vjv

leaf
j .

These parts are connected as follows. If xi is an unnegated variable of Cj,
then aij is connected to uj and bij is connected to vj, while if xi is a negated

variable of Cj, then cij is connected to uj and bij is connected to vj. There are
no other edges in the graph.

To see that G is bipartite, we can color all vertices uj, v
leaf
j , bij, d

i
j with one

color, and all vertices vj, u
leaf
j , aij, c

i
j with the other.

Notice that G has exactly 2n perfect matchings, as for each cycle Xi we can
choose whether we select its edges aijb

i
j and cijd

i
j or bijc

i
j and dija

i
j+1 for all j

(with circular indexing). The latter of these will correspond to xi being true,
the former to xi being false.

Now, suppose that s clauses of Ψ are satisfiable. First we select an assignment
of the variables satisfying s clauses and the corresponding perfect matching
P, then we will show that a disjoint matching M of size s exists. For every

208 Dömötör Pálvölgyi

satisfied clause Cj, we select a variable that satisfies it, some xf(j). Then the
edges of M will be the symmetric difference of the following three sets. For

all j where xf(j) is unnegated in Cj, take the path uja
f(j)
j b

f(j)
j vj. For all j where

xf(j) is negated in Cj, take the path ujc
f(j)
j b

f(j)
j vj. Finally, take

⋃
i Xi \ P. So

expressed with a formula

M =

 ⋃
xf(j)∈Cj

ujc
f(j)
j b

f(j)
j vj

∆
 ⋃
x̄f(j)∈Cj

uja
f(j)
j b

f(j)
j vj

∆(⋃
i

Xi \ P

)
.

The fact that P corresponds to the truth assignments of the variables guaran-
tees that aijb

i
j /∈ P if xi is true and bijc

i
j /∈ P if xi is false, so we indeed obtained

a matching covering all the vertices but the leafs and further the 2m − 2s
vertices that belong to unsatisfied clauses.

On the other hand, suppose that we have an edge-disjoint perfect matching
P and matching M covering 2k vertices. M must obviously miss the 2m leafs,
as it is disjoint from P. We can also suppose that M covers each vertex of each
Xi, as they can be covered by a matching even after the removal of P. Now we
claim that the truth assignment that corresponds to P will satisfy at least s
clauses of Ψ. Indeed, if uj is connected to a vertex from Xi, then vj must be
also connected to Xi and xi must satisfy Cj, or M would not be a matching
covering the vertices of Xi.

This finishes the proof. �

Note that if instead of MAX-2-SAT we use 3-OCC-MAX-2SAT where
every variable can appear in at most 3 clauses (total of unnegated and negated
occurrences), then the number of vertices is only 12n + 4m. This problem is
also known to be NP-complete, in fact even inapproximable for some small
constant, see [1].

A more interesting modification proves the NP-completeness of the following
problem.

Input: G bipartite graph with maximum degree 4.
Goal: Decide whether G contains two edge-disjoint matchings, P and M,

such that P is perfect and M covers every vertex whose degree is at least 2.

If in our construction instead of MAX-2-SAT we use 3-SAT, then such
perfect matching P and matching M, covering all but the uleafj , vleafj vertices,
exist if and only if the original formula is satisfiable, which proves the NP-
completeness. As in this reduction the maximum degree grows to 4, we leave
the maximum degree 3 case open.

Partitioning to three matchings of given size 209

Acknowledgement

I would like to thank András Frank and Attila Bernáth for calling my at-
tention to the problems, them and Csaba and Zoltán Király for several useful
comments, and Marzio De Biasi for pointing me to [1].

I thank also the moral support of Institute of Mathematics of Eötvös Uni-
versity, Budapest and the financial support of Hungarian National Science
Fund (OTKA), grant PD 104386 and the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences.

References

[1] P. Berman, M. Karpinski, ICALP, LNCS 1644 (1999) 200–209. ⇒208, 209
[2] J. H. Folkman, D. R. Fulkerson, Edge colorings in bipartite graphs. RAND Mem-

orandum RM-5061-PR, RAND Corporation, 1966. ⇒206
[3] M. R. Garey, D. S. Johnson, L. J. Stockmeyer, Some simplified NP-complete

graph problems, Theor. Comput. Sci. 1, 3 (1976) 237–267. ⇒207

Received: July 11, 2014 • Revised: October 31, 2014

http://www.cse.psu.edu/people/berman
http://theory.cs.uni-bonn.de/~marek/
http://en.wikipedia.org/wiki/Jon_Folkman
http://en.wikipedia.org/wiki/D._R._Fulkerson
http://en.wikipedia.org/wiki/Michael_Garey
http://en.wikipedia.org/wiki/David_S._Johnson
http://www.cstheory.com/stockmeyer@sbcglobal.net/
http://www.journals.elsevier.com/theoretical-computer-science/

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 210–229

Reconstruction of score sets

Antal IVÁNYI
Eötvös Loránd University,

Faculty of Informatics, 1117 Budapest,
Pázmány Péter sétány 1/C., Hungary

email: tony@inf.elte.hu

Abstract. The score set of a tournament is defined as the set of its
different outdegrees. In 1978 Reid [15] published the conjecture that for
any set of nonnegative integers D there exists a tournament T whose
degree set is D. Reid proved the conjecture for tournaments containing
n = 1, 2, and 3 vertices. In 1986 Hager [4] published a constructive proof
of the conjecture for n = 4 and 5 vertices. In 1989 Yao [18] presented an
arithmetical proof of the conjecture, but general polynomial construction
algorithm is not known. In [6] we described polynomial time algorithms
which reconstruct the score sets containing only elements less than 7. In
[5] we improved this bound to 9.

In this paper we present and analyze new algorithms Hole-Map,
Hole-Pairs, Hole-Max, Hole-Shift, Fill-All, Prefix-Deletion,
and using them improve the above bound to 12, giving a constructive
partial proof of Reid’s conjecture.

1 Introduction

We will use the following definitions [3]. A graph G(V,E) consists of two finite
sets V and E, where the elements of V are called vertices, the elements of E
are called edges and each edge has a set of one or two vertices associated to
it, which are called its endpoints (head and tail). An edge is said to join its
endpoints. A simple graph is a graph that has no self-loops and multi-edges.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C20, 68R10
Key words and phrases: score set, score sequence, approximation algorithms, Reid con-
jecture

210

http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:tony@inf.elte.hu

Reconstruction of score sets 211

A directed edge is said to be directed from its tail and directed to its head.
(The tail and head of a directed self-loop is the same vertex.)

A directed graph (shortly: digraph) is a graph whose edges are directed. If
in a directed graph (u, v) ∈ E, then we say that u dominates v. An oriented
graph is a digraph obtained by choosing an orientation (direction) for each
edge of a simple graph. A tournament is a complete oriented graph. That is,
it has no self-loops, and between every pair of vertices, there is exactly one
edge. Beside the terms of graph theory we will use the popular terms player,
score sequence, score set, point, win, loss etc.

A directed graph (so a tournament too) F = (E, V) is transitive, if (u, v) ∈ E
and (v, w) ∈ E imply (u,w) ∈ E.

The order of a tournament T is the number of vertices in T . A tournament
of order n will be called an n-tournament.

An (a, b, n)-tournament is a loopless directed graph, in which every pair of
distinct vertices is connected with at least a and at most b ≥ a edges. An
(a, b, n)-tournament is complete, if in the matches any integer partition of c
points is permitted for a ≤ c ≤ b.

The score (or out-degree) of a vertex v in a tournament T is the number of
vertices that v dominates. It is denoted by d+T (v) (shortly: d(v)).

The degree sequence (score sequence) of an n-tournament T is the ordered
n-tuple s1, s2, . . . , sn, where si is the score of the vertex vi, 1 ≤ i ≤ n, and

s1 ≤ s2 ≤ · · · ≤ sn. (1)

An n-regular sequence is an increasingly ordered n-length integer sequence,
that is an n-length score sequence is and n-regular sequence.

The score set of an n-tournament T is the ordered m-tuple D = (d1, d2,
. . . , dm) of the different scores of T , where

d1 < d2 < · · · < dm. (2)

Figure 1 shows a (1, 1, 4)-tournament with score sequence S = 0, 2, 2, 2
and score set D = {0, 2}.

Theorem Landau [8, 10, 16] allows to test potential score sequences in linear
time.

Theorem 1 (Landau [10]) A nondecreasing sequence of nonnegative integers
S = s1, s2, . . . , sn is a score sequence of an n-tournament if and only if

k∑
i=1

si ≥
k(k − 1)

2
, 1 ≤ k ≤ n, (3)

with equality when k = n.

212 A. Iványi

Figure 1: A tournament with score sequence 0, 2, 2, 2 and score set {0, 2}

Proof. See [10, 16]. �

To reconstruct a prescribed score set is much harder problem, then com-
puting the score set belonging to the score sequence of a given tournament.
Therefore surprising is the following conjecture published by Reid in 1978
[15]: if m ≥ 1, D = {d1, d2, . . . , dm} is a set of nonnegative integers, then there
exists a tournament whose score set is D.

In his paper Reid described the proof of his conjecture for score sets con-
taining 1, 2, and 3 elements, further for score sets representing an arithmetical
or geometrical series. In 1986 Hager [4] published a constructive polynomial
proof of the conjecture for m = 4 and m = 5.

In 2006 Pirzada and Naikoo gave a constructive proof of a special case of
Theorem 3.

Theorem 2 (Pirzada and Naikoo [14]) If s1, s2, . . . , sm are nonnegative inte-
gers with s1 < s2 < · · · < sm, then there exists such n ≥ m for which there
exists an n-tournament T with score set

D =

{
d1 = s1, d2 =

2∑
i=1

si, . . . , dm =

m∑
i=1

si

}
. (4)

Proof. See [14]. �

In 1976 Chartrand, Lesniak and Roberts [1] proved that for any finite set S
of nonnegative integers there exists an oriented graph whose score set is S.

In 1989 Yao proved the conjecture of Reid.

Theorem 3 (Yao [18]) If m ≥ 1, D = {d1, d2, . . . , dm} is a set of nonneg-
ative integers, then there exists a tournament T with score sequence S =
s1, s2, . . . , sn such, that the score set of T is D.

Reconstruction of score sets 213

Proof. See [18]. �

The proof of Yao uses arithmetical tools and only proves the existence of
the corresponding tournaments, but it does not give a construction.

In 1983 Wayland [17] proposed a sufficient condition for a set D of nonneg-
ative integers to be the score set of a bipartite tournament. This result was
improved to a sufficient and necessary condition in 1983 by Petrovič [12].

In [7] we proved that the extension of Yao’s theorem is not true for k-
tournaments (where every pair of vertices is connected with k ≥ 2 edges).

Now we present three lemmas allowing a useful extension of Theorem 3.

Lemma 4 If d1 ≥ 1, then the score set D = {d1} is realizable by the unique
score sequence S = d<2d1+1>

1 .

Proof. If |S| = n and S generates D then the sum of the elements of S
equals to nd1 and also to n(n−1)/2 implying n = 2d1 +1. Such tournament is
realizable for example so, that any player Pi gathers one points against players
Pi+1, . . . , Pi+(n−1)/2 and zero against the remaining players (the indices are
taken mod n). �

In this lemma and later a means a multiset, in which a is repeated
b times.The form of the score sequences using this notation is called power
form.

Lemma 5 If the score sequence S = s1, s2, . . . , sn corresponds to the score set
D = {d1, d2, . . . , dm}, then n ≥ dm + 1.

Proof. If the score of a vertex v is dm, then v dominates dm different vertices.
�

Lemma 6 If m ≥ 2 and the score sequence S = s1, s2, . . . , sn corresponds to
the score set D = {d1, d2, . . . , dm}, then

2d1 + 2 ≤ n ≤ 2dm, (5)
and both bounds are sharp.

Proof. Every element of D has to appear in S. Therefore the arithmetical
mean of the scores is greater, than d1, and smaller, than dm. From the other
side n-tournaments contain Bn =

(
n
2

)
edges, so the arithmetical mean of their

scores is Bn/n = (n− 1)/2, therefore

d1 <
n− 1

2
< dm, (6)

implying (5).

214 A. Iványi

For example if k ≥ 0 and D = {k, k + 1}, then according to (6) n = 2k + 2
imply the sharpness of both bounds. �

The next extension of Theorem 3 is based on Lemmas 4, 5, 6.

Theorem 7 (Iványi, Lucz, Matuszka, Gombos [6]) If m ≥ 1 and D = {d1, d2,
. . . , dm} is an increasingly ordered set of nonnegative integers, then

• there exist a tournament T , whose score sequence is S and score set is
D;
• if m = 1, then S = s<2d1+1>

1 ;
• if m ≥ 2, then

max(dm + 1, 2d1 + 2) ≤ n ≤ 2dm; (7)

• the bounds in (7) are sharp.

Proof. The assertion follows from the above lemmas (see [6]). �

Taking into account the remark of Beineke and Eggleton [16, page 180]
we can formulate Reid’s conjecture as an arithmetical statement without the
terms of the graph theory. Let D = {d1, d2, . . . , dm} be an increasingly ordered
set of nonnegative integers. According to the conjecture there exist positive
integer exponents x1, x2, . . . , xm such that

S = d<x1>
1 , d<x2>

2 , . . . , d<xm>
m (8)

is the score sequence of some (
∑m

i=1 xi)-tournament. Using Landau’s theo-
rem it can be easily seen that Reid’s conjecture is equivalent to the following
statement [13, 18].

For every set D = {d1, . . . , dm} with the property 0 ≤ d1 < d2 < · · · < dm
there exist positive integers x1, . . . , xm, such that

k∑
i=1

xidi ≥
(∑k

i=1 xi
2

)
, for k = 1, . . . , m− 1, (9)

and
m∑
i=1

xidi =

(∑m
i=1 xi
2

)
. (10)

Commenting Yao’s proof Qiao Li wrote in 1989 [11]: Yao’s proof is the first
proof of the conjecture, but I do not think it is the last one. I hope a shorter
and simpler new proof will be coming in the near future.

However, the constructive proof has not been discovered yet.
Our algorithms investigate only the zerofree score sets, The base of this

approach is the following lemma.

Reconstruction of score sets 215

Lemma 8 Let m ≥ 2. A sequence S = s<e1>
1 , s<e2>

2 , . . . , s
n is the score

sequence corresponding to the score set D = {0, d2, d3, . . . , dm} if and only
if the sequence S′ = (s2 − 1)<e2>, (s3 − 1)<e3>, . . . , (sn − 1)<en> is the score
sequence corresponding to D′ = {d2 − 1, d3 − 1, . . . , dm − 1}.

Proof. Part if of the proof: If S is the score sequence corresponding to D
then s1 = 0 and e1 = 1 that is all other players won against the player having
the score s1 = 0, so S′ corresponds to D′.

Part only if of the proof: If S′ corresponds to D′, then we add a new score
d1 = 0 to D′, increase the multiplicity of the other scores by 1 and get D
which correspond to S. �

2 Reconstruction of score sets of tournaments

Earlier [5, 6] we proposed polynomial approximate algorithms Balancing,
Shortening, and Shiftening.

By computer experiments we proved that they reconstruct all score sets
with dm < 9. We also described exact brute force algorithms Sequencing
and Diophantine [6].

The proposed algorithms reconstruct the majority of the score sets with
dm = 9. , but there are three exceptional sets with dm = 9. Exceptions are the
sets {2, 4, 5, 6, 7, 8, 9}, {1, 2, 5, 6, 7, 8, 9}, and {1, 2, 4, 7, 8, 9}.

In this paper we present new polynomial algorithms Hole-Pairs, Hole-
Max, Hole-Shift, Prefix-Shift, Fill-All and using these theorems we
improve the earlier bound to dm < 12. Our algorithms are based on Theorem 7.
Since there are quick (quadratic) algorithms to construct n-tournaments cor-
responding to a given score sequence, our algorithms construct only a suitable
score sequence.

If the score sequence of a tournament is S and its score set is D, then we
say, that S generates D, or D corresponds to S. If D is given, then we call the
corresponding score sequence good.

3 Hole-type algorithms

The Hole-type algorithms are based on the idea that we take the transitive
score sequence s = 0, 1, . . . , dm and gradually remove from it the elements
corresponding to the missing elements of the investigated score set.

In a score set D = {d1, d2, . . . , dm} there is a k-hole before element di (1 ≤
i ≤ m), if

216 A. Iványi

• d1 = k + 1, or

• 2 ≤ i ≤ m and di − di−1 = k.

In the first case the hole is outer, while in the second case it is an inner hole.
The missing elements are called hole elements, while the neighbors of a hole are
its lower, resp. upper bound. During the maintenance of the score set D a hole
is active, if the elements of the hole are present in s. At the beginning all holes
are active. A hole is passive, if its elements are missing from the actual score
sequence. During the reconstruction of D we gradually transform the active
holes to passive. The reconstruction process is finished, when D contains only
passive holes.

We prepare the work of the Hole-type algorithms with the construction of
a hole-map.

3.1 Algorithm Hole-Map

The hole map of a score set D = {d1, . . . , dm} is an (m × dm)-sized array
H(D) = H[1 . .m, 1 . .dm], where the j-th column of H(D) describes the j-
sized active holes: H[i, j] gives the beginning address of the i-th j-sized hole
in D (if there exists such hole, otherwise H[i, j] is undetermined).

The next algorithm Hole-Map generates the hole map H(D), further the
number of active holes N [0](D) and the number of active i-holes N [i](D)
(1 ≤ i ≤ dm) in D. N(D) is the frequency vector of the active holes.

The pseudocodes of this paper are written using the conventions proposed
in the textbook [2].

Input. m = m(D) (m ≥ 1): the number of the elements of D;
D = {d1, . . . , dm}: a score set containing m elements.

Global variables. D = {d1, . . . , dm}: score set;
m: the number of elements of D;
H: hole map of D.

Working variables. i, j: cycle variables.
Output : H[1 . . m, 1 . . dm]: the hole map of D;

N [0 . . m] = N(D): the hole frequency vector of D.

Hole-Map(m,D)

01 for i = 0 to dm // Line 01–03: initialization
02 N [i] = 0
03 if d1 > 0 // Line 03–06: is there an outer hole?
04 N [0] = 1
05 N [d1] = 1

Reconstruction of score sets 217

06 H[1, d1] = 0
07 for j = 1 to m− 1 // Line 07–11: investigation of the inner holes
08 if dj+1 − dj > 1
09 N [dj+1 − dj − 1] = N [dj+1 − dj − 1] + 1
10 N [0] = N [0] + 1
11 H[N [dj+1 − dj − 1], dj+1 − dj − 1] = dj + 1 + 1
12 H[N [0] = 0
13 ‘no inner hole’
14 return H,N // Line 13: return of the results

If we use algorithm Hole-map for the score set D = {2, 4, 6, 7}, then the
input is D and m = 4, the size of the vector N is 7. Table 1 contains H(D).

beginning/hole size 1 2 3 4 5 6 7

first hole 2 0 −− −− −− −− −−
second hole 4 −− −− −− −− −− −−

third hole −− −− −− −− −− −− −−
fourth hole −− −− −− −− −− −− −−

Table 1: Hole map H(D) of the score set D = {2, 4, 6, 7}

The running time of Hole-map is Ω(dm) in all cases.

3.2 Algorithm Hole-Pairs

Two i-sized holes form a hole pair. The hole which appear earlier in D is called
lower hole, while the other one is called upper hole.

Our algorithms do not change the result of the matches between players in
the active holes and any other player. Since for the initial transitive sequence
is it true that the players are defeated by any other player having larger score,
this property remains true (in such sense that there exists such tournament
which realizes the given score sequence and has this property) for the players
whose score is in an active hole after the application of Hole-Pairs and
Hole-Max. We can call the such sequences hole-transitive.

The next algorithm Hole-Pairs forms the maximal possible number, that
is bN [i]/2c, of pairs of i-holes of D for 1 ≤ i ≤ dm and removes the hole
elements from the corresponding sequence.

Input. N(D): the frequency vector of the active holes in D.
Global variables. D = {d1, . . . , dm}: score set;

m: the number of elements of D;

218 A. Iványi

H: hole map of D;
s = 0, 1, . . . , dm: the starting transitive score sequence;

Working variables. i, j: cycle variables.
Output. t = t0, t1, . . . , tdm : the sequence produced by Hole-Pairs;

M(D): the frequency vector of the active holes in D.

Hole-Pairs(N, s)

01 for i = 0 to dm // Line 01–03: initialization
02 M [i] = N [i]
03 t[i] = s[i]
04 for i = dm downto 1 // Line 04–11: processing of the hole pairs
05 while M [i] > 1
06 for j = H[M [i], i] to H[M [i], i] + i− 1

// Line 06–07: maintenance of the upper hole
07 t[j] = t[H[M [i], i]]− 1
08 for j = H[M [i]− 1, i] to H[M [i]− 1, i] + i

// Line 08–09: maintenance of the lower hole
09 t[j] = t[H[M [i− 1] + i, i]] + 1
10 M [i] = M [i]− 2 // Line 10: updating of M [i]
11 return t,M // Line 11: return of the results

If the input of Hole-Pairs is the hole map H(D) of the score set D =
{2, 4, 6, 7}, then the algorithm starts with the transitive score sequence t =
0, 1, . . . , 7, and processing the 1-holes at 3 and 5 gets the shortened sequence
t = 0, 1, 2, 43, 6, 7. The number of active holes in D is reduced to M [0] = 1.

The running time of Hole-Pairs is Θ(dm) in all cases.

3.3 Algorithm Hole-Max

If M [0](D) > 0, then we have at least one active hole and can simply eliminate
the largest one: if the largest hole is a c-hole, then we add the elements dm +
1, dm + 2, . . . , dm + c to t and reduction of these elements to dm allows us to
increase the elements of the c-hole to its upper bound, as the next algorithm
Hole-Max makes.

Input. M(D): the updated frequency vector of the active holes in D;
t = t0, t1, . . . , tdm : the reduced sequence produced by Hole-Pairs.

Global variables. D : score set;
m: the number of elements of D;
H: hole map of D.

Working variables. i, j, k: cycle variables.

Reconstruction of score sets 219

Output. u = u0, u1, . . . , udm+c: the reduced score sequence produced by
Hole-Max;
O(D): the updated frequency vector of the active holes in D;
c: the size of the largest active hole in t.

Hole-Max(M, t)

01 for i = 0 to dm // Line 01–02: initialization
02 O[i] = M [i]
03 c = dm // Line 03–14: elimination of the largest hole
04 while M [c] = 0 // Line 04–05: seeking of the largest hole
05 c = c− 1
06 for j = 0 to dm // Line 06–09: initialization u
07 uj = tj
08 for j = dm + 1 to dm + c
09 uj = j
10 for k = 1 to c // Line 10–12: maintenance of the lower hole
11 uH[1,c]+k = uH[1,c]+c

12 udm+k = udm
13 O[c] = O[c]− 1 Line 13–14: updating of number of active holes
14 O[0] = O[0]− 1
15 return u, c,O Line 15: return of the result

If D = {2, 4, 6, 7} and the input of algorithm Hole-Max is the sequence
t(D), then Hole-Max eliminates the remained hole and we get the score
sequence u = 23, 43, 6, 73 corresponding to D.

Running time of Hole-Max is Ω(dm) in all cases.

3.4 Algorithm Hole-Shift

After algorithm Hole-Pairs there is at most one i-hole for every i, that is
0 ≤ O[i] ≤ 1 for every 1 ≤ i ≤ dm. Algorithm Hole-Max eliminates the
largest hole by appending c scores dm + 1, . . . , dm + c to the input sequence
t and reducing these scores to dm.

Let the player having uj points be Tj (1 ≤ j ≤ dm + c). The following

algorithm Hole-Shift uses the power form w = w<e1>
1 , . . . , w

<eq>
q of the

input sequence u. An element wk of w is called point-sender if its exponent ek
is greater than 1. If wj and wk are upper bounds of active holes and j < k,
then Tk can send ek − 1 points—through the player Tj—to the players in the
lower active hole to increase their scores to wk.

220 A. Iványi

The hole list is a pair of vectors consisting of the begin vector b(D) =
b1, . . . , bO[0] and the length vector l(D) = l1, . . . , lO[0], where b contains the
beginning indices of the active holes in increasing order, while l contains the
length of the corresponding holes. E.g. if D = {2, 5, 9}, then b(d) = 0, 3, 6
and l(D) = 2, 2, 3.
Hole-Shift uses also the score sequence w = w<e1>

1 . . . w<en>
n which is

the power form of u. If 2 ≤ j ≤ q, ej > 1, and wj − wj−1 = 1, then ej − 1
players from the players having wj points can give one pointto any player
having smaller index. These ej − 1 points are called free points. The following
algorithm Hole-Shift extends this idea for the case wj − wj−1 > 1.

The next algorithm Hole-Shift finds the largest holes in the investigated
score sequence and tries to remove this hole by shifting of the points from the
point-sender scores to the scores in the given active hole.

Input. O(D): O[0] is the number of active holes in D, O[i] (1 ≤ i ≤ dm) is
the number of active i-holes in D;
V : the sum of the sizes of the active holes in D;
u = u0, u1, . . . , udm+c: the reduced sequence produced by Hole-Max.

Global variables. D : score set;
m: the number of elements of D;
H: hole map of D;
c: the length of largest hole removed by Hole-Shift.

Working variables. b(D) = b1, . . . , , bO[0]: the begin vector of the active holes
of D;
l(D) = l1, . . . , lO[0]: the length vector of the active holes of D;

w(D) = w<e1>
1 . . . w

<eq>
q : power form of u;

b(D) = b1, . . . , bO[0] q: the length of the power form of u;
g: size of the actual largest active hole;
a: the index of the investigated largest active hole;
h = O[0]: the number of active holes;
s: difference between two consecutive scores in w;
r: number of points required by the investigated active hole to shift scores in
an active hole to theirs upper bound;
i, j, k: cycle variables.

Output. v = v1, . . . , vdm+c: the reduced score sequence produced by Hole-
Shift;
P (D): the updated frequency vector of D.

Hole-Shift(O, u)

01 for i = 0 to dm // Line 01–02: initialization

Reconstruction of score sets 221

02 P [i] = O[i]
03 for i = 1 to dm + c
04 v[i] = u[i]
06 w1 = u1 // Line 06–14: computation of the power form of u
07 e1 = 1
08 q = 1
09 for k = 2 to dm + c
10 if uk = uk−1
11 eq = eq + 1
12 else q = q + 1
13 wq = uk
14 eq = 1
15 if d1 > 0 and u1 == 0 // Line 15–24: computation of b, l, and h
16 b1 = 0
17 l1 = d1
18 h = 1
19 else h = 0
20 for i = 1 to m + c− 1
21 if di+1 − di ≥ 2
22 h = h + 1
23 bh = di + 1
24 lh = di+1 − di − 1
25 while P [0] > 0 // Line 25: while is active hole
26 g = dm // Line 26–31: finding of the largest active hole
27 a = 1
28 for i = 1 to h
29 if li > la
30 a = i
31 g = la
32 r = g(g + 1)/2 // Line 32: number of the required points
33 while r > 0
34 j = 1 // Line 34–36: finding the starting score;
35 while wj < ba + la and ej = 1 and wj − wj−1 > r and j ≤ q
36 j = j + 1
37 if j > q // Line 37–38: defeat
38 return // ’Hole-Shift is not sufficient ’
39 y = br/(wj − wj−1)c
40 r = r −min(ej − 1, y)(wj − wj−1)
41 ej = ej −min(ej − 1, y)

222 A. Iványi

42 for i = 1 to la
43 wj−1 + 1 = wj−1 + la
44 q = q − la
45 return P,w, v

The running time of Hole-Shift is O(mdm), since it is determined by the
cycles in Lines 33–41, and there are at most m holes and for every hole at
most dm players can give a point.

3.5 Algorithm Fill-All

If dm < 10, then our previous algorithms can reconstruct all possible score set,
but if dm = 10, then there are two critical sets, and if dm = 11, then there are
three ones. If dm = 10, then the score sets {1, 3, 4, 5, 8, 10} and {1, 2, 3, 5, 8, 10},
while if dm = 11, then the score sets {2, 3, 4, 5, 6, 7, 8, 9, 11}, {1, 2, 3, 5, 7, 11},
and {1, 2, 3, 4, 5, 6, 7, 8, 11} are unsolvable for them.

The following Fill-All reconstructs these score sets. The basic idea of
Fill-All is that at first we add new elements to the starting sequences, suf-
ficient to cover the point requirements of all holes. If we are lucky then the
number the additional points is equal to the total point requirement. Other-
wise we gradually increase the number of additional scores and try to hide the
additional points.

Input. Q(D): Q[0] is the number of active holes in D, Q[i] (1 ≤ i ≤ dm) is
the number of active i-holes in D.

Global variables. D : score set;
m: the number of elements of D.

Working variables. T : the total point requirement of the holes;
a: the number of added new scores;
p = a(a− 1)2: the number of additional points;
q: the number of free additional points;
w(D) = w<e1>

1 . . . w
<eq>
q : power form of u;

e = e1, . . . , eq: ei (1 ≤ i ≤ q) is the exponent od wi;
i, j: cycle variables.

Output. e = e1, . . . , em: the exponents of the score sequence corresponding
to D.

Fill-All(m.D)

01 T = 0 // Line 01–06: computation of the point requirement of the holes
02 if d1 > 0
03 T = d1

Reconstruction of score sets 223

04 for i = 2 to m
05 if di − di−1 > 1
06 T = T + (di − di−1)(di − di−1 − 1)/2
07 e1 = 1 // Line 07–15: computation of the exponents
08 if d1 > 0
09 e1 = d1
10 for j = 2 to m− 1
11 ej = 1
12 if dj − dj−1 > 1
13 ej = dj − dj−1
14 a = min(k | k(k − 1)/2 ≥ T) // Line 14: first number of additional scores
15 for k = a to dm // Line 15–23: testing of the potential score sequences
16 p = k(k − 1)/2 // Line 16: number of additional points
17 q = p− T // Line 17: number of free additional points
18 for i = 1 to m− 1
19 if ei+1 − ei > 1 and di+1 − di ≤ q
20 f = min(bq/(di − di−1c, ei−1)
21 ei−1 = ei−1 − f
22 ei = ei + f
23 q = q − f(di − di−1)
24 if q == 0
25 return e
26 print ’algorithms are not sufficient’ // Line 26–27: algorithms
27 stop // could not reconstruct D

The running time of Fill-All is O(d2m) in all cases.

4 Algorithm Prefix-Deletion

The earlier algorithms can not reconstruct the score sets {1, 7, 10} and {1, 7, 11}.
Part of the earlier described algorithm Shortening [5, 6] is the deletion

of the leading zero element from a score set, and decreasing of the remaining
elements by 1.

Now we generalize this idea. If the score set D = {d1, . . . , dm} begins with 1,
then according to the theorem of Landau a corresponding score sequence can
contain one, two or three 1’s. If it contains exactly three 1’s, then each of the
corresponding players gathered one point in their minitournament, therefore
provisionally deleting them we get the smaller score set D′ = {d2 − 3, d3 −
3, . . . , dm − 3}. In the concrete case, when D = {1, 4, 7} Balancing results
the solution s(D′) = 46, 76, resulting s(D) = 13, 76, 106.

224 A. Iványi

In general case we have to investigate also the cases when the corresponding
sequence contains one or two 1’s.

It is a natural idea to extend the investigation to the general case 1 ≤ d1 ≤ k,
when according to Landau’s theorem the corresponding sequences can start
with 1 ≤ p ≤ 2d1 + 1 d1’s.

Since in the case dm < 12 it is sufficient to consider the case k = 1 and
p = 3, we present only pseudoprogram for this special case.

In the program we call the procedure Sequence-Base which handles the
results of the previous reconstruction algorithms for all score sets with dm <
12. If we wish to reconstruct a score set, whose largest element is dm, then the
corresponding data base has to contain 2dm−1 score sequence, but the search
in it requires only O(m) time.

Its input is the reduced variant of D (D′ = {d2 − 3, d3 − 3, . . . , dm − 3}),
and the output is the score sequence corresponding to D′ (w = w1, . . . , wy),
further its length (y).

Input. Q(D): the updated hole frequency vector;
v = v0, v1, . . . , vdm+c: the reduced sequence produced by Hole-Max.

Global variables. D : score set;
m: the number of elements of D;
H: hole map of D-

Working variables. D′ = {d′1, . . . , d′m−1} = {d2, . . . , dm}: the shortened
score set;
w(D) = w<e1>

1 . . . w
<eq>
q : power form of u;

i, j: cycle variables.
Output. x = x1, . . . , xy+3: the score sequence corresponding to D.

Prefix-Deletion(Q, v)

01 for i = 1 to dm // Line 01–05: initialization
02 R[i] = Q[i]
03 w[i] = v[i]
04 for i = dm + 1 to dm + c
05 w[i] = v[i]
06 if m < 4 or d1 6= 1 or d2 < 3 // Line 06–07: defeat
07 ’Prefix-Deletion is not sufficient’
08 for i = 1 to m− 1
09 d′i = di+1

10 Sequence-Base(D′) // Line 10: call of Sequence-Base
11 x1 = x2 = x3 = 1 // Line 11: reconstructed sequence begins with three 1’s
12 for j = 4 to y + 3 // Line 12–13: computation of the further elements of x

Reconstruction of score sets 225

13 xj = wj−3
14 return x // Line 14: return of the results

Running time of Prefix-Deletion is Ω(dm) in all cases.

5 The main program

The previous pseudocodes are procedures. These procedures are called by the
following main program Main.
Main(m,D)

01 Hole-Map(m,D) // Line 01: construction of the hole map
02 if N [0] = 0 // Line 02–04: printing the solution
03 print ’no hole in the score set’
04 stop
05 Hole-Pairs(N) // Line 05: construction of the hole pairs
06 if M [0] = 0 // Line 06–08: printing the solution
07 print t
08 stop
09 Hole-Max(M, t) // Line 09: filling of the longest hole
10 if O[0] = 0 // Line 10–12: printing the solution
11 print u
12 stop
13 Hole-Shift(P, u) // Line 13: shifting of the holes
14 if P [0] = 0 // Line 14–16: printing the solution
15 print v
16 stop
17 Prefix-Deletion(Q, v) // Line 17: shifting of the holes
18 if Q[0] = 0 // Line 18–20: printing the solution
19 print w
20 stop
21 Fill-All(N,w) // Line 21: filling of the holes
22 if q = 0 // Line 22–24: printing the solution
23 print e
24 stop
25 Prefix-Deletion(Q, v) // Line 25: deletion a prefix
26 if Q[0] = 0 // Line 26–28: printing the solution
27 print w
28 stop
29 print ’the algorithms are not sufficient’ // Line 29–30: defeat
30 stop

226 A. Iványi

In worst case the running time of Main is O(d2m).

6 Simulation results

Algorithm Balancing reconstructs all score sets with dm < 6, but can not
reconstruct the score sets {1, 3, 6} and {1, 2, 3, 5, 6} [6]. For these critical score
sets algorithm Shortening gives the solutions 13, 3, 65 and 12, 2, 32, 5, 6. These
algorithms can not reconstruct the score sets 1, 2, 3, 5, 7 and 1, 2, 3, 4, 6, 7. In
the first case algorithm Shiftening results a corresponding score sequence
12, 2, 32, 5, 73, while in the second case it gives 1, 2, 3, 42, 64, 7 [5].

n D s Algorithms Diophantine

1 {2, 4, 5, 6, 7, 8, 9, 10} 3, 2, 1, 1, 1, 1, 2, 2 M + S 4, 1, 1, 1, 1, 1, 2, 1
2 {2, 3, 5, 7, 9, 10} 3, 1, 2, 3, 2, 2 P + M + S 3, 2, 2, 2, 1, 1
3 {1, 7, 10} 3, 6, 6 X same
4 {1, 4, 5, 7, 9, 10} 2, 3, 1, 3, 2, 2 P + M + S 3, 1, 3, 2, 1, 1
5 {1, 3, 6, 8, 9, 10} 2, 2, 4, 1, 2, 2 P + M + S 1, 5, 2, 1, 1, 1
6 {1, 3, 6, 7, 8, 10} 2, 2, 3, 2, 1, 3 P + M + S 3, 1, 4, 1, 1, 1
7 {1, 3, 4, 7, 9, 10} 2, 2, 1, 4, 2, 2 P + M + S 3, 1, 4, 1, 1, 1
8 {1, 3, 4, 5, 8, 10} 2, 2, 1, 1, 3, 5 F 2, 2, 2, 1, 3, 1
9 {1, 2, 5, 7, 9, 10} 2, 1, 3, 3, 2, 2 P + M + S 2, 1, 5, 1, 1, 1
10 {1, 2, 5, 6, 7, 8, 10} 2, 1, 3, 1, 1, 2, 3 P + M 2, 2, 2, 1, 1, 2, 1
11 {1, 2, 4, 8, 9, 10} 2, 2, 1, 4, 1, 4 P + M 1, 3, 2, 4, 1, 1
12 {1, 2, 4, 6, 9, 10} 2, 1, 2, 2, 3, 4 P + M 2, 1, 2, 4, 1, 1
13 {1, 2, 3, 7, 8, 10} 2, 1, 1, 4, 2, 4 P + M 1, 1, 4, 2, 2, 1
14 {1, 2, 3, 5, 8, 10} 2, 1, 1, 2, 3, 5 F 1, 2, 2, 2, 3, 1
15 {1, 2, 3, 5, 8, 9, 10} 2, 1, 2, 1, 3, 1, 3 P + M 1, 2, 1, 4, 1, 1, 1
16 {1, 2, 3, 5, 7, 10} 2, 1, 1, 3, 1, 6 A 2, 1, 1, 2, 4, 1
17 {1, 2, 3, 5, 6, 9, 10} 2, 1, 2, 1, 1, 3, 3 P + M 2, 1, 1, 1, 4, 1, 1
18 {1, 2, 3, 4, 6, 7, 10} 2, 1, 1, 2, 1, 1, 5 P + M 2, 1, 1, 1, 1, 4, 1

Table 2: Reconstruction results of the critical score sets ending with dm = 10

Balancing, Shortening, and Shiftening reconstruct the majority of
score sets with dm < 9. Exceptions are the sets {1, 2, 3, 5, 7, 8} and {1, 2, 3, 4, 6,
7, 8}. In the first case Hole-Max gives a corresponding score sequence 12,
2, 32, 52, 7, 82, while in the second case algorithm Hole-Pairs presents the
solution 12, 2, 32, 4, 6, 7, 8.

If dm = 9, then for the first three algorithms the critical sets are {2, 4, 5, 6, 7, 8,
9}, {1, 2, 5, 6, 7, 8 9} and {1, 2, 4, 7, 8, 9}. Hole-Max solves these problems:

Reconstruction of score sets 227

corresponding sequences are in the first case 23, 42, 5, 6, 7, 8, 92, in the second
case 12, 2, 52, 6, 7, 8, 92, and in the third case 12, 22, 4, 73, 8, 93.

n D s Algorithms Diophantine

1 {3, 5, 6, 7, 8, 9, 10, 11} 4, 2, 1, 1, 1, 1, 2, 3 M + S 5, 1, 1, 2, 1, 1, 1, 1
2 {3, 4, 5, 6, 8, 9, 10, 11} 4, 1, 1, 1, 2, 1, 2, 3 M + S 5, 1, 1, 1, 1, 1, 2, 1
3 {3, 4, 5, 6, 7, 10, 11} 4, 1, 1, 1, 1, 6, 1 M + S 4, 2, 1, 1, 2, 1, 1
4 {2, 4, 5, 6, 7, 8, 9, 10, 11} 3, 2, 1, 1, 1, 1, 1, 2, 2 M + S 4, 1, 1, 1, 1, 1, 1, 2, 1
5 {2, 3, 5, 9, 10, 11} 3, 1, 2, 5, 3, 1 M + S 1, 3, 5, 1, 1, 1
6 {2, 3, 5, 7, 9, 10, 11} 3, 1, 2, 2, 2, 1, 4 P + M + S 3, 2, 2, 2, 1, 1, 1
7 {2, 3, 4, 8, 9, 11} 3, 1, 1, 4, 1, 6 M + S 3, 1, 3, 2, 2, 1
8 {2, 3, 4, 5, 6, 8, 9, 10, 11} 3, 1, 1, 1, 1, 2, 1, 2, 2 M + S 3, 1, 2, 1, 1, 1, 1, 1, 1
9 {2, 3, 4, 5, 6, 7, 8, 10, 11} 3, 1, 1, 1, 1, 1, 1, 3, 2 M + S 3, 1, 1, 1, 2, 1, 1, 1, 1
10 {2, 3, 4, 5, 6, 7, 8, 9, 11} 3, 1, 1, 1, 1, 1, 1, 2, 3 F 3, 1, 1, 1, 1, 2, 1, 1, 1
11 {1, 7, 11} 3, 2, 14 X 3, 1, 3, 2, 1, 1, 1
12 {1, 4, 5, 7, 9, 10, 11} 2, 3, 1, 3, 1, 2, 2 P + M + S 3, 1, 3, 2, 1, 1, 1
13 {1, 3, 5, 6, 7, 10, 11} 2, 2, 2, 1, 1, 3, 4 P + M + S 3, 1, 3, 2, 1, 1, 1
14 {1, 3, 4, 5, 8, 10, 11} 2, 2, 1, 1, 4, 2, 2 P + M + S 2, 2, 2, 1, 3, 1, 1
15 {1, 2, 6, 8, 9, 11} 2, 1, 4, 3, 1, 4 P + M + S 2, 2, 4, 2, 1, 1
16 {1, 2, 5, 9, 10, 11} 2, 1, 3, 4, 1, 5 P + M + S 2, 2, 3, 4, 1, 1
17 {1, 2, 4, 8, 10, 11} 2, 1, 2, 5, 2, 3 P + M + S 1, 2, 4, 3, 1, 1
18 {1, 2, 4, 8, 9, 11} 2, 1, 2, 5, 1, 4 P + M + S 1, 2, 4, 2, 2, 1
19 {1, 2, 4, 7, 9, 10, 11} 2, 1, 2, 4, 1, 2, 2 P + M + S 1, 3, 2, 3, 1, 1, 1
20 {1, 2, 4, 6, 9, 10, 11} 2, 1, 3, 1, 3, 2, 2 P + M + S 2, 1, 2, 4, 1, 1, 1
21 {1, 2, 4, 5, 7, 10, 11} 2, 1, 2, 1, 2, 3, 4 P + M + S 2, 1, 2, 1, 4, 1, 1
22 {1, 2, 3, 7, 8, 9, 10, 11} 2, 1, 1, 4, 1, 1, 2, 3 M + S 2, 1, 2, 3, 1, 2, 1, 1
23 {1, 2, 3, 6, 10, 11} 2, 1, 1, 3, 7, 1 M + S 1, 1, 2, 6, 1, 1
24 {1, 2, 3, 5, 8, 10, 11} 2, 1, 1, 2, 4, 2, 2 P + M + S 1, 2, 1, 4, 1, 1, 1, 1
25 {1, 2, 3, 5, 7, 11} 2, 1, 1, 2, 2, 7 F 1, 2, 1, 1, 6, 1
26 {1, 2, 3, 5, 7, 10, 11} 2, 1, 1, 2, 2, 3, 4 P + M + S 2, 1, 1, 2, 2, 3, 4
27 {1, 2, 3, 5, 7, 8, 11} 2, 1, 1, 2, 2, 1, 6 P + M + S 2, 1, 1, 2, 2, 3, 1
28 {1, 2, 3, 5, 6, 9, 11} 2, 1, 1, 2, 1, 3, 5 P + M + S 2, 1, 1, 3, 1, 3, 1
29 {1, 2, 3, 5, 6, 8, 11} 2, 1, 1, 2, 1, 2, 6 P + M + S 2, 1, 1, 2, 1, 4, 1
30 {1, 2, 3, 4, 9, 10, 11} 2, 1, 1, 1, 5, 2, 4 M + S 1, 1, 2, 3, 4, 1, 1
31 {1, 2, 3, 4, 5, 9, 10, 11} 2, 1, 1, 1, 1, 4, 2, 3 P + M 2, 1, 1, 1, 2, 4, 1, 1
32 {1, 2, 3, 4, 5, 6, 7, 8, 11} 2, 1, 1, 1, 1, 1, 1, 3, 4 F 1, 1, 2, 1, 1, 1, 1, 3, 1

Table 3: Reconstruction results of the critical score sets ending with dm = 11

If dm = 10, then there are 18 sequences which are not reconstructable if we
use only the algorithms Balancing, Shortening, and Shiftening. Table 2

228 A. Iványi

contains a possible reconstruction of these sequences. The used algorithms are
P = Hole-Pairs, M = Hole-Max, S = Hole-Shift, X = Prefix-Shift,
and F = Fit-All. The table contains also a shortest solution found by the
brute force algorithm Diophantine described in [6]. Diophantine uses the
algorithm described by Knuth [9, page 392].

If dm = 11, then there are 72 sequences which are not reconstructable if
we use only the algorithms Balancing, Shortening, and Shiftening. The
majority of these sets can be reconstructed adding only P = Hole-Pairs
and M = Hole-Max to the three basic algorithms. Table 3 is similar to
the previous Table 2, but it contains only those examples (32 sets), whose
reconstruction requires at least one of the algorithm Hole-Shift, Prefix-
Shift, and Fit-All.

It is interesting to analyze the length of the critical sets. According to The-
orem 7 for the length n of the score sequences corresponding to a score set
D = {d1, d2, . . . , dm} hold the bounds max(dm + 1, 2d1 + 2) ≤ n ≤ 2dm, and
these bounds are sharp.

According to the lower bound in the case dm = 10 we get n ≥ 11. The data
represented in Table 2 show, that Dophantine in 17 cases reaches this mini-
mal length (the exception is D = {2, 3, 5, 7, 9, 10}) the approximate algorithms
generate longer solutions in all cases.

If dm = 11, then in the case of the critical sets the lower bound is n ≥ 12.
In the majority of cases Diophantine founds solutions of length 12, while
the approximate algorithms never find a solution of length 12. The exact algo-
rithm Diophantine in 29 cases found shorter sequence than the polynomial
algorithms.

7 Summary

Checking all relevant score sets by polynomial time approximate algorithms
we proved Theorem 3 for score sets whose maximal element is less than 12.
Our proof is constructive, since we generated score sequences corresponding
to the investigated score sets.

Acknowledgement

The author thanks the unknown referee for the proposed useful corrections,
further PhD student of Eötvös Loránd University János Elek for making the
computer experiments with algorithm Diophantine

Reconstruction of score sets 229

References

[1] G. Chartrand, L. Lesniak, J. Roberts, Degree sets for digraphs, Periodica Math.
Hung., 7 (1976) 77–85. ⇒212

[2] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Al-
gorithms (third edition), The MIT Press/McGraw Hill, Cambridge/New York,
2009. ⇒216

[3] J. L. Gross, J. Yellen, P. Zhang, Handbook of Graph Theory, CRC Press, Boca
Raton, FL, 2013. ⇒210

[4] M. Hager. On score sets for tournaments, Discrete Math., 58 (1986) 25–34. ⇒
210, 212

[5] A. Iványi, J. Elek, Degree sets of tournaments, Studia Univ. Babeş-Bolyai, In-
formatica, 59 (2014) 150–164. ⇒210, 215, 223, 226

[6] A. Iványi, L. Lucz, T. Matuszka, G. Gombos, Score sets in multitournaments,
I. Mathematical results, Annales Univ. Sci. Budapest., Rolando Eötvös Nom.,
Sectio Comp., 40 (2013) 307–320. ⇒210, 214, 215, 223, 226, 228

[7] A. Iványi, B. M. Phong, On the unicity of the score sets of multitournaments, in:
Fifth Conference on Mathematics and Computer Science (Debrecen, June 9–12,
2004), University of Debrecen, 2006, 10 pages. ⇒213

[8] A. Iványi, S. Pirzada, Comparison based ranking, in: ed. A. Iványi, Algorithms
of Informatics, Vol. 3, mondAt, Vác, 2013, 1209–1258. ⇒211

[9] D. E. Knuth, The Art of Computer Programming, Volume 4A. Addison Wesley,
Upper Saddle River, NJ, 2011. ⇒228

[10] H. H. Landau, On dominance relations and the structure of animal societies.
III., Bull. Math. Biophysics, 15 (1953) 143–148. ⇒211, 212

[11] Q. Li, Some results and problems in graph theory, New York Academy of Science,
576 (1989) 336–343. ⇒214

[12] V. Petrović, On bipartite score sets, Zbornik Radova Prirodno-matematičkog
Fakulteta Ser. Mat., Universitat u Novom Sadu, 13 (1983) 297–303. ⇒213

[13] S. Pirzada, A. Iványi, M. A. Khan, Score sets and kings, in ed. A. Iványi, Algo-
rithms of Informatics, mondAt, Vác, 2013, 1337–1389. ⇒214

[14] S. Pirzada, T. A. Naikoo, On score sets in tournaments, Vietnam J. Math., 34
(2006) 157–161. ⇒212

[15] K. B. Reid, Score sets for tournaments, Congressus Numer., 21 (1978) 607–618.
⇒210, 212

[16] K. B. Reid, Tournaments: Scores, kings, generalizations and special topics, Con-
gressus Numer., 115 (1996) 171–211. ⇒211, 212, 214

[17] K. Wayland, Bipartite score sets, Canadian Math. Bull., 26 (1983) 273–279. ⇒
213

[18] T. X. Yao, On Reid conjecture of score sets for tournaments. Chinese Science
Bull., 34 (1989) 804–808. ⇒210, 212, 213, 214

Received: June 28, 2014 • Revised: September 29, 2014

http://homepages.wmich.edu/~zhang/gary.htm
http://users.drew.edu/llesniak/
http://www.springer.com/mathematics/journal/10998
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://www.mhprofessional.com/category/?cat=1012
http://www.cs.columbia.edu/~gross/
http://web.rollins.edu/~jyellen/
http://homepages.wmich.edu/~zhang/
http://www.crcpress.com/index.jsf
http://www.sciencedirect.com/science/journal/0012365X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://elekjani.web.elte.hu
http://www.cs.ubbcluj.ro/~studia-i/2014-macs/12Ivanyi.pdf
http://www.cs.ubbcluj.ro/~studia-i/contents.php
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
http://people.inf.elte.hu/tomintt/
http://people.inf.elte.hu/ggombos/
http://compalg.inf.elte.hu/annales/computatorica
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
mailto:bui@compalg.inf.elte.hu
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/Faculty5.aspx
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.tankonyvtar.hu/
http://www.antoncom.hu/books.htm
http://www-cs-faculty.stanford.edu/~uno/
http://www.springerlink.com/content/765042v152l07721/
http://www.springerlink.com/content/765042v152l07721/
http://www.springerlink.com/content/765042v152l07721/
http://www.nyas.org/Publications/Annals/Default.aspx
http://sites.dmi.rs/personal/petrovicv/
http://maths.uok.edu.in/Faculty5.aspx
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://faculty.kfupm.edu.sa/PYP/malikhan/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.mondat.hu/
http://maths.uok.edu.in/Faculty5.aspx
http://www.math.ac.vn/publications/vjm/VJM_38/toc_38_4.htm
http://www.csusm.edu/math/facultydescrips/kbreid.html
http://www.combinatorics.net/journals/congress.html
http://www.csusm.edu/math/facultydescrips/kbreid.html
http://www.combinatorics.net/journals/congress.html
http://www.combinatorics.net/journals/congress.html
http://cms.math.ca/cmb/v26/cmb1983v26.0273-0279.pdf
http://cms.math.ca/cmb/
http://www.springer.com/new+$%$26+forthcoming+titles+(default)/journal/11434

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 230–251

Statistical complexity and generalized

number system

Ágnes FÜLÖP
Loránd Eötvös University, Budapest

Faculty of Informatics
email: fulop@caesar.elte.hu

Abstract.We apply the concept of statistical complexity to understand
the dynamical behaviour of the time series by the probability distribu-
tion. This quantity allows to distinguish between the random, regular
motion and the structural complexity in finite systems. We determined
the numerical approximation of the statistical complexity of the Lozi
attractor and the generalized number system.

1 Introduction

In this article we discuss the statistical complexity [25], which provides a de-
scription of a finite measured sequence to specify more complicated dynamical
structures. It was extended on wide range of sciences [23, 1, 15].

The idea of complexity was introduced in different forms. We mention some
of them: algorithmic complexity (Kolmogorov) [22], amount of information
about the past required to predict the future (Crutchfield, Young) [7], com-
plexity of finite sequence (Lempel, Ziv) [24].

There are more questions in the real word, where the statistical complexity
is applied. We referred some example as more realistic gas of particles [4, 5],
the effective method in the hydrological systems [12], the statistical features

Computing Classification System 1998: J.2
Mathematics Subject Classification 2010: 68U20
Key words and phrases: statistical complexity, Shannon entropy, number theory, Lozi
map, chaos, strange attractor

230

http://compalg.inf.elte.hu/tanszek/fulop/oktato.php?oktato=fulop
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:fulop@caesar.elte.hu

Statistical complexity and generalized number system 231

of the behaviour for DNA [36], the earthquake magnitude time series [26],
chaotic motion in Logistic map [13], biological application [32].

The notion of statistical complexity is defined by the concept of the infor-
mation theory i.e. the entropy and the disequilibrium. The Shannon entropy
specifies the gain of the information storage in the disordered system and the
disequilibrium characterizes the amount of distance from the equiprobability
distribution.

While the entropy allows to describe the direction of flow and the Lyapunov
exponent characterizes the chaotic orbits, we can not specify the whole strange
attractor in the finite dimensional space. The statistical complexity enables to
determine the inner structure of the dynamical system and the location of the
strange attractor is shown in the parameter space. It is compared with the
complexity of generalized number system, which contains periodic paths.

The numerical simulation plays important role in the chaotic motion, be-
cause there are numerous problems, which can not be solved analytically.

We calculated the spectrum of statistical complexity of the two dimensional
piecewise Lozi map, which is not differentiable and contains chaotic region. It
is compared with the statistical complexity of the finite approximation of the
set Bγ on the lattice.

The structure of the article is the following:
Section 2 contains the introduction of the statistical complexity to con-

sider different measurement. The chaotic motion is described in Section 3.
The definition of the generalized number system and the fundamental set are
investigated in Section 4. The numerical results are displayed in Section 5.

2 Complexity

In this section we introduce the statistical complexity following the effective
entropy by P. Grassberger [16] and the main concept by R. López-Ruiz, H.
L. Manchini, X. Calbet (1995) [25, 28, 2]. This definition was extended to the
generalized statistical complexity measures by M. T. Martin et al. (2006) [29]
for different types of entropy and disequilibrium.

We investigate the notation of a measured sequence [14]. Let us denote
y1, . . . , yn the time series, where yi means the measurement of the quantity y
at time ti = t0 + i∆t, and the time interval ∆t > 0 ∈ R.

The x(n) denotes the trajectory of length n in Rd, which is a time sequent
of the measurement. The kth point of the path of length n is denoted by

x
(n)
k (k = 1, . . . , n). We will study the series of x

(n)
1 , x

(n)
2 , . . . , x

(n)
n as a time

232 Á. Fülöp

sequent. The set K contains the points of some orbits x
(n)
k (k = 1, . . . , n).

We will apply the notation of symbolic dynamics, because the idea of comp-
lexity is more general concept than this application.

There are M different values of measurements. Each path x(n) for a finite
n corresponds to symbolic sequence O(n) = (o1, o2, . . . , on), where the symbol
ok (k = 1, . . . , n) is chosen from the set {1, . . . ,M}. Let us consider a time
series of length N’, where N ′ >> n. Then a given sequent O(n) appears with
probability P(O(n)) along this long series of length N ′. The unit of the time
interval ∆t equals to a constant in this description.

2.1 Statistical complexity

The statistical complexity is based on the probabilistic description of a finite
time series, which provides a statistical approximation of the time sequent.
We introduce a measure of statistical complexity, which depends on the finite
discrete probability distribution.

We define N-system. Let us assume that there are N different symbol se-

quences of length n {O
(n)
1 , . . . O

(n)
N }, which correspond to the set of discrete

probability distribution P ≡ {p1, . . . pN}, where pi := P(O
(n)
i) (

∑N
i=1 pi = 1)

and pi > 0 for all i.
The first we have to consider the entropy i.e. some measure of the amount

of information stored H and the disequilibrium D, which corresponds to the
distance from the appropriate probability distribution to the equilibrium.

2.1.1 Measure of entropy and disequilibrium

The information measure was introduced as a quantity, which depends on a
probability distribution P = {pj, j = 1, . . . ,N}. In the information theory the
entropy was investigated as a unique function, which corresponds to the mea-
sure of the uncertainty. The statistical complexity is defined by the Shannon
entropy [33], therefore we will investigate this form in N-system:

H = −

N∑
i=1

pi log pi. (1)

This quantity H ∼ 0, if the symbol sequence O
(n)
c would be almost prob-

able (pc ∼ 1) and other O
(n)
i would be very improbable (pc ∼ 0). Hmax

notes the maximal value of H, which reaches the uniform probability dist-
ribution pe = {1/N, 1/N, . . . , 1/N} i.e. the equiprobability symbol sequence

Statistical complexity and generalized number system 233

O
(n)
e characterizes the maximum of information for the N systems. The nor-

malized quantity H is the following H = H/Hmax, then 0 ≤ H ≤ 1, where
Hmax = logN.

If the system is out of equilibrium, the entropy H can be expanded around
this maximum Hmax:

H(p1, p2, . . . , pN) = logN−
N

2

N∑
i=1

(
pi −

1

N

)2
+ · · · = Hmax −

N

2
D+ · · · ,

where the quantity D =
∑
i(pi − 1/N)2 denotes the disequilibrium.

Let us multiply this expansion by H in the following:

H2 = H · Hmax −
N

2
H ·D+ g(N,pi),

where g(N,pi) contains the entropy multiplied by the rest of Taylor expansion
terms, which presents the form 1

N

∑
i(Npi − 1)

m with m > 2. If we rename
C = H ·D:

C =
2

N
· H · (Hmax −H) + 2g/N.

This expression shows the connection among the entropy, disequilibrium and
complexity.

Let us define the function of disequilibriumD on the probability distribution
{pj : j = 1 . . . ,N} in N-system.

The Euclidean measure have been used i.e. the quadratic distances from the
probability distribution of each symbol sequences P(O(n)) to the equiproba-

bility P(O
(n)
e):

D =

N∑
i=1

(pi − pe)
2 , where pe =

1

N
. (2)

The maximum disequilibrium is reached for dominant symbol series O
(n)
c with

pc ∼ 1 and Dc → 1 for N is increasing, while the disequilibrium vanishes. i.e.
D ∼ 0 for pi ∼ 1/N. For any other probability distribution D will have value
between these two extrema. The normalized disequilibrium is D = D · De,
where De equals to N

N−1 .

2.1.2 Measure of statistical complexity

The family of the complexity measure contains the product of disorder H
and disequilibrium D for different type of the time series. This is interplay

234 Á. Fülöp

between the information stored in the system and its disequilibrium. We will
define the measure of statistical complexity C [25] in the following expression
in N-system:

C = H ·D = −

(
N∑
i=1

pi log pi

)(
N∑
i=1

(
pi −

1

N

)2)
. (3)

This quantity is larger or equals to zero, i.e. C ≥ 0. The normalized value of
C is C = H ·D = (H/ logN)(D · (N/(N− 1))).

The definition of statistical complexity measure can be divided into three
categories: (i) it is growing with increasing entropy, (ii) it is a convex function
and equals to minimum at the H = 0 total order and H = 1 total disperse
state and a maximum at transition level, where the probability distribution is
pe, (iii) it is decreasing with increasing entropy [29]. We will study the second
case in this article.

Because the statistical complexity was defined in a finite system, therefore
it depends on the scale. At each scale of observation a new set of accessible
symbol sequence O(n) appears with its corresponding probability distribution
P(O(n)) therefore the complexity changes.

The complexity C is finite and limiting but it is not necessary a unique
function of H, there exists a range of value between a minimal value Cmin
and a maximal value Cmax. Thus, evaluating the complexity provides more
important additional information regarding the peculiarities of a probability
distribution.

Two basic incidents are distinguished in the relationship between the en-
tropy H and complexity C. On the one hand the time sequence can be found
in any of its accessible symbol sequence O(n) with the same probability. All
of them contribute in equal measure to the information stored. On the other
hand, minimal information is enough to describe the system considering some
symmetries properties and distance.

It should be noticed that different measures for complexity employed for
different probability distribution. Tsallis suggested a generalisation of the
Shannon-Boltzmann-Gibbs entropic measure [34] and A. Rényi introduced a
definition of entropy for discrete probability distribution in 1950s [31].

The disequilibrium can be extended for various probability distribution.
Jensen-Kullback divergence was investigated for relative entropies [29] and
Wootters statistical distance was applied for two probability distributions [37],
which can be used in the quantum mechanic.

Statistical complexity and generalized number system 235

In Section 5 we study the statistical complexity on the system out of equi-
librium by numerical approximation.

3 Chaotic motion

In this section we introduce the Lyapunov exponent [8], which characterises
the chaotic behaviour of dynamical systems. This quantity is expressed by
probability density along the ergodic trajectory [6].

Let us introduce a map f : R → R, where xt+1 = f(xt), which (t =
0, 1, 2, 3 . . .) corresponds to the trajectory x0, x1, x2 . . . at the time series t =
0, 1, 2 This map contains stable or unstable fixpoints x∗ and it is differen-
tiable near to the fixpoints x∗. We can expanded the map f around the fixpoint
x∗ upto linear expression:

|xt+1 − x
∗|

|xt − x∗|
≈
∣∣∣∣∂f(x)∂x

∣∣∣∣
x∗
.

The solution of this equation is written by the next form |xt−x| ≈
∣∣∣∂f(x)∂x

∣∣∣
x∗

∣∣∣t =
ceλt, where c ∈ R is a constant value. If λ < 0, then the fixpoint x∗ becomes
stable. If λ > 0, then the fixpoint x∗ turns into unstable, and in the case of
λ = 0 the fixpoint x∗ is marginal stable.

The f(x) map was extended upto first order, therefore we can not determi-
nate the whole trapping region of the fixpoint x∗.

As a consequence we defined the Lyapunov exponent:

λ = lim
n→∞ 1

n

n∑
t=0

ln

∣∣∣∣∂f(x)∂x

∣∣∣∣
xt

,

along the trajectories, where these orbits converge to the fixpoint x∗.
The Lyapunov exponent λ depends on the initial condition of the tra-

jectories, therefore we denote xn(x0) ≡ fn(x0) and it can be used as λ =

limn→∞ 1
n ln

∣∣∣∂fn(x0)∂x0

∣∣∣.
If λ > 0, then the motion is chaotic. The Lyapunov exponent is sensitive

to the initial condition. The d distance of points of the trajectories increases
exponentially, where the x0 and x0+ ε points (ε > 0, ε ∈ R) were near to each
other around the unstable fixpoint x∗ at the first time step (t = 0).

Then the form of Lyapunov exponent is the following:

λ ≈ lim
n→∞ 1

n
ln

∣∣∣∣fn(x0 + ε) − fn(x0)ε

∣∣∣∣ ,

236 Á. Fülöp

where ε→ 0. This expression can be written |fn(x0 + ε) − f
n(x0)| ≈ |ε|enλ.

The ergodicity plays important role in the chaotic motion.
We consider the ergodic paths, where h(xt) means an absolute continuous

integrable function (h : R → R) along the trajectory. At almost all initial
conditions x0 the average of the function h(xt) is introduced as following:

lim
n→∞ 1

n

n∑
t=0

h(xt) =

∫ 1
0

h(x)P(x)dx ≡
∫ 1
0

h(x)dµ(x),

where µ(x) means some invariant measure, µ(x)dx = P(x) is a probability density
and the exact form is given by the map f(x). This expression is measure
invariant therefore:∫ 1

0

h(x)dµ(x) = lim
n→∞ 1

n

n∑
t=0

h(xt) = lim
n→∞ 1

n

n∑
t=0

h(f(xt)) =

∫ 1
0

h(f(x))dµ(x).

The Lyapunov exponent is defined by the P(x) probability density along the
ergodic orbit:

λ =

∫ 1
0

P(x) ln |f ′(x)|dx.

In the chaotic motion the strange attractor S plays similar role in the case
of aperiodic motion as the attractor in the periodic motion. Let us choose
that orbits, which are characterized by probability distribution P(x). The set F
contains the initial points of these trajectories and the set L is defined following
L = {x|P(x) > 0}. Then we take the union of the set L with its closure. If the
Lyapunov exponent is larger then zero on this set, than we gain the strange
attractor S and the trapping region corresponds to the closure of the set F. The
motion comes on this set S after finite iteration and the points of trajectory
follow one to the other randomly.

We study the time series of the measurement of length n x(n) and the error

of initial point x
(n)
0 is ε > 0. Let us suppose λ > 0, then the ε ′ ≈ |ε|ekλ at

the kth element of sequence x
(n)
k i.e. the error of time series is increasing as

k becomes larger, we can not predict the value x
(n)
k+1 more exactly than |ε ′|eλ.

Then the value of the ergodic time series becomes unpredictable. Therefore
we apply the statistical complexity to determine the location of the strange
attractor in the parameter space.

On a computer the study of the dynamical system appears in a finite m
dimensional space, then we have an m dimensional signal z(t). In a physical

Statistical complexity and generalized number system 237

experiment a single scalar variable u(t) is monitored for a system, which has
an infinite dimensional phase space M ′′.

In this case we restrict our attention to the dynamics on a finite dimension
attractor A in the space M ′′. Otherwise we generate several different scalar
values zi(t) i = 1 . . . ,N from the original u(t).

The only way to obtain several measurements from a single one is to use
time delays. We choose different delays T1 = 0, T2, . . . , TN and it can be written
zk(t) = u(t+ Tk). We can generate an N dimensional signal in this manner.

The successive time derivative of the signal is formed: zk+1(t) = d
kz1(t)/dt

k,
but the numerical differentiations produce high level of error. As usually we
should measure several experiment signal produce more exactly values.

The reconstruction of the dynamical process provides an N dimensional
image πA of an attractor A, which has finite Haussdorff dimension and it is
embedded in an infinite dimensional space M ′′. The projection will look dif-
ferent according to the choice of variables. Taken proved that theorem (1981):
If we use enough variables, typically about twice the Haussdorff dimension, we
shall generally get a good projection [8]. This method produces the attractor,
but the realisation is difficult.

In the next section we introduce the generalized number system and the
set Bγ, which is a fractal structure [11], but there are periodic motions on it,
therefore it is not chaotic.

4 Generalized number system

I. Kátai investigated the concept of generalized number systems [18] in the
1970s. This idea is developed on different algebraic structures expansively as
real quadratic fields [10], imaginary quadratic fields [19].

We introduce the basic definition in this section according to the literature
[20, 11].

Let Zk be a ring of integer vectorial in Rk (k ≥ 1). A k × k type matrix
with integer elements is noted by M, where L =MZk. Then L is a subgroup
in Zk, O(Zk/L) = t the order, where t = |detM|. We introduce the digit set
A in the following. Let A = {a0 = 0, a1, . . . , at−1} mean a complete set of the
representation of the residue classes mod M for (t ≥ 2). We define the number
system (A,M), if each n ∈ Zk can be written by uniqueness expansion form:

n = a0 +Ma1 + · · ·+Mh−1ah−1, aj ∈ A for h > 0. (4)

We define the function J : Zk → Zk, where the ring of integer vectorial is

238 Á. Fülöp

mapped to onto itself. There exists a unique a0 ∈ A and n1 ∈ Zk such that
n = a0 +Mn1 for every n ∈ Zk, i.e. let J(n) = n1 be.

The set H plays fundamental role in the number system (A,M). Let us
define H in the following:

H =
{
z
∣∣z = ∞∑

i=1

M−iai, ai ∈ A
}
. (5)

The set H is compact. If (A,M) is a number system, then

∪n∈Zk
(H+ n) = R. (6)

We say that (A,M) is just touching covering system (JTCS), if every n1, n2 ∈
Zk, n1 6= n2:

λ(H+ n1 ∩H+ n2) = 0, (7)

where λ is the Lebesques measure. Let B = A−A = {au−av|au, av ∈ A} hold.
We introduce a set S following. That element γ ∈ Zk is contained in the set
S, which fulfils γ 6= 0 and satisfies the following expression:

H ∩H+ γ 6= ∅. (8)

This set is assigned by Bγ and

B = ∪γBγ. (9)

More detailed, if z ∈ Bγ, then z can be extended by this form z =
∑∞
i=1M

−iai =
γ+
∑∞
i=1M

−ia ′i, where ai, a
′
i ∈ A and γ =

∑∞
i=1M

−iei, where ei = ai−a
′
i ∈ B.

We will determinate the statistical complexity of the finite approximation
set Bγ on the ring of quadratic integers at a given algebraic number fields in
Section 4.

In the next section we investigate a walk along the finite transition graph,
which is analogous to dynamical system.

4.1 Transition graph of number system

Let us produce a finite directed labeled graph G(S) according to the article
[35], where the function Q : S → S (S ⊆ Zk \ {0}) means a walk P along the
transition graph.

The elements of the set S correspond to vertices of the graph G(S) and the
edges can be defined as follows:

Statistical complexity and generalized number system 239

There exists a directed edge from γk to γk+1 and it is labeled by δ ∈ B, if
Q(γk) = γk+1, i.e. γk+1 = γkM− δ, k ∈ N.

Let us construct the graph G(S):
The elements γi of the set S can be computed by the following way:
◦ Initial condition: If the first element γ1 satisfies Q(γ1) = 0, then this

element γ1 = 0.
◦ If γ2 ∈ S and there exists en edge, which goes from γ1 to γ2, than γ1 ∈ S.
◦ Each element of the set S fulfils the next condition. That values of outgoing

and ingoing degree of the vertices γk are larger than zero i.e. deg+(γk) >
0, deg−(γk) > 0.
◦ The set S contains periodic points: Qr(γ1) = γ1.
The loop of the algorithm:
◦ From every γ1 ∈ S an edge fits to γ2, if γ2 = γ1M− δ for δ ∈ B.
◦ If deg+(γ1) = 0, than erase the vertices γ1 and all edges, which directed

to γ1.
Repeat these finite steps, until we delete all those nodes from which no edge

goes out i.e. deg−(γk) = 0 or ends, remove all coinciding edges as well.
We obtain the directed transition graph G(S).

Let P := γ1
δ1−→ γ2

δ2−→ γ3 . . . , γr−1
δr−1−−−→ γr be a walk of length r on the

graph G(S), it is labeled by (δ1, δ2, . . . , δr−1), i.e. for finite orbit of length r
Q(r)(γ1) = γr.

Because z ∈ Bγ was defined by expression (8):

z =

∞∑
i=1

M−ifi, fi ∈ A. (10)

Every infinitely long walk P is assigned by the series of labels: δ1, δ2, . . . , δr−1, . . . ,
where δi = fi− f

′
i with appropriate fi, f

′
i ∈ A. Therefore z ∈ Bγ can be labeled

by the sequence f1, f2

5 Numerical results

We introduce an appropriate measure of the time series and the statistical
complexity on lattice.

240 Á. Fülöp

5.1 Probability measure and euclidean distance on lattice

Let us consider a lattice C ′ in the Rd with linear size ε (ε > 0, ε ∈ R), where
C ′j assigns the elementary box of lattice C ′ in the following way:

C ′ = ∪jC ′j , and C ′j ∩ C ′i = ∅, where j, i ∈ {0, . . . ,N ′′d − 1}, (11)

where the set of C ′j is a partition of [0,N ′′ε[d⊂ Rd. Let K be a compact set,
which contains the measured value y:

Tj = K ∩ C ′j 6= ∅, where j = 1, . . . ,M ′ and K ∩ C ′j = ∅ for any other C ′j .

T = ∪M ′j=1Tj, where Tj ∩ Ti = ∅, i 6= j.

The compact set K ⊂ Rd consists of every points x
(n)
k (k = 1, . . . , n) of some

orbit of length n. Each path corresponds to the series of the indices j for which

x
(n)
k ∈ Tj and j ∈ {1, . . . ,M ′}.
The lattice size ε and the unit of the time interval ∆t equal to a constant.
We define the distance on this lattice, where a box of the linear size ε is

taken as the unit length. We introduce constant values, that is a, which means
the minimal distance between two points a = min{|x−y| : x 6= y, x, y ∈ K} and
L, which is the diameter of the set K i.e. L = max{|x− y| : x, y ∈ K}.

Let us introduce I ′, which contains all series of the indices n ′ = (n ′1, n
′
2 . . . , n

′
n),

where n ′1, n
′
2, . . . , n

′
n ∈ {1, . . . ,M ′}, and M ′ ∈ N. The elements of the set T

(n)
n ′

correspond to the path of length n. The set T
(n)
n ′ is the following:

T
(n)
n ′ =

{
(x

(n)
1 , x

(n)
2 . . . , x

(n)
n)
∣∣x(n)1 ∈ Tn ′1 , x(n)2 ∈ Tn ′2 , . . . , x(n)n ∈ Tn ′n}.

Analogously to the article [11] we define a measure by the map µ(T
(n)
n ′) on the

lattice:

µ(T
(n)
n ′) =

|T
(n)
n ′ |

|T (n)|
, where T (n) = ∪n ′∈I ′T (n)n ′ . (12)

We note T
(n)
m ′ ∩ T

(n)
n ′ = ∅, if n ′ 6= m ′, n ′,m ′ ∈ I ′ and 1 < |I ′| ≤Mn and

∑
n ′∈I ′

|T
(n)
n ′ |

|T (n)|
= 1. (13)

Statistical complexity and generalized number system 241

The measure of Shannon entropy is defined for finite time series on lattice:

H̃ = −
∑
n ′∈I ′

µ(T
(n)
n ′) lnµ(T

(n)
n ′). (14)

We investigate the measure of disequilibrium on grid:

D̃ =
∑
n ′∈I ′

(
µ(T

(n)
n ′) −

1

N

)2
. (15)

Let us introduce the measure of complexity is the following on the lattice:

C̃ = H̃D̃. (16)

In the next section we determine the statistical complexity C̃ for the Lozi map
on some range of parameter a, b and for the finite approximation of the set
Bγ.

5.2 Approximation of the statistical complexity

In this section we consider the indicator role of the statistical complexity i.e.

it enables to point out the nonlinearity on the time series x
(n)
1 , . . . , x

(n)
n . The

Lozi map possesses chaotic behaviour in some ranges of parameter and initial
condition, but it is not everywhere differentiable, therefore we perform numer-
ical approximation. These properties were discussed by bifurcations [3] and
the Lypunov exponents [9], but the statistical complexity can be determined
more easier than the other quantities.

We present the statistical complexity on the finite approximation of the set
Bγ, which is obtained for a generalized number system in quadratic integer.

5.2.1 Lozi map

R. Lozi introduced a two dimensional a piecewise linear map [27], which assigns
the plane into itself f : (R×R)→ (R×R), it is a homomorphism on a metric
space:

f(x, y) = (1+ y− a|x|, bx).

A numerical simulation is plotted on the Figure 1.
M. Misiurewicz [30] proved that Lozi map has a strange attractor on some set

of values a, b, which arises from the intersection of the images of the trapping
region. He supposed six conditions:

242 Á. Fülöp

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

X

Y

Figure 1: Lozi map (a = 1.7, b = 0.5,N ′ = 104 iteration)

1. 0 < b < 1, a > 0 2. a > b+ 1 3. 2a+ b < 4

4. a > 1
2

√
3b2 + 4+

√
(3b2 + 4)2 − 32b 5. b < a2−1

2a−1 6. a
√
2 > b+2.

His theorem was proven by the geometrical verification:
That set, which satisfies these assumptions (1-6) is open and non-empty.
If the parameters fulfil the first and a + b > 1 conditions, the map f has

two hyperbolic fixpoints: F1 = (1/(1+a−b), b/(1+a−b)) and F2 = (1/(1−
a− b), b/(1− a− b)),

The stable and unstable manifold of these points Wu
F1, W

s
F1, W

u
F2 and Ws

F2

located on the plane (X, Y) according to the eigenvectors of the map f. The
nonempty set, which satisfies the conditions 1–3 corresponds to the trapping
region. Because the strange attractor equivalents to closure of unstable man-
ifolds, he justified that subset of trapping regions, which fulfils the first and
3-5 criterion, suits to the strange attractor.

Let us consider the statistical complexity of Lozi map by numerical approx-
imation. Particularly we study the the strange attractor on the plane of the
parameter space (a, b), where a, b ∈ R and the relationship between H̃ and
C̃.

We applied the generalized partition of the Lozi map on the two dimensional

lattice (X, Y). The kth element x
(n)
k of time sequence of length n equals to 1,

if y > 0, otherwise x
(n)
k = 0.

Statistical complexity and generalized number system 243

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H̃

C̃

Figure 2: The points of the relationship H̃ × C̃ for the ideal gas with uniform
probability distribution (N = 3)

The time series of length N ′ (N ′ >> n) is generated by the iteration of the
Lozi map and we created an appropriateN-system according to the probability
distribution {p1, . . . , pN} of orbits of length n x(n). Then there are N different

paths of length n {x
(n)
1 , x

(n)
2 , . . . , x

(n)
N }, which corresponds to the set of the

probability distribution {p1, . . . , pN} , where pl := P(x
(n)
l) (l = 1, . . . ,N). It

is applied to calculate the entropy H̃, disequilibrium D̃ and the statistical
complexity C̃ by appropriate measure on lattice.

Before discussing for the statistical complexity of the Lozi map we should
mention that system, where the complexity does not have any intricately struc-
ture and C̃max 6= C̃min, i.e. all possible value of the discrete probability distri-
bution appears, then the points show uniformly dispersion on the plane H̃× C̃
between C̃min and C̃max (Figure 2).

In contract the structure of statistical complexity for the Lozi map is charac-
terized by the intricate dynamics on the plane H̃× C̃ in the range a ∈ (0 : 2.5)
and b ∈ (0 : 1) (Figure 3).

It suggests that the structure of relationship between the entropy H̃ and
complexity C̃ becomes more entanglement for chaotic dynamics.

We distinguish 3 different regions of the spectrum following:

244 Á. Fülöp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

III

III

H̃

C̃

Figure 3: The C̃(H̃) spectrum of the Lozi map (n = 10, N ′ = 1024)

I. The complexity C̃ ∼ 0, the entropy H̃ ∼ 1: This subset corresponds to
strange attractor. It is characterized by maximal entropy storage near to the
equiprobable distribution D̃ ∼ 0.

II. We distinguish that region, where the C̃ ∼ 0, H̃ ∼ 0,D ∼ 1, in this case
the value of entropy decreases to zero for the large amount of order.

III. Between the two extreme states (I), (II) the complexity satisfies the
maximal value, which corresponds to the transition states.

The statistical complexity C̃ is plotted on the plane of parameter space
(a, b) (Figures 4). Suitably for the case I. that region, where the value of the
complexity steeply decreases to C̃ ∼ 0, at the same time the entropy increases
to H̃ ∼ 1 and the disequilibrium becomes to D̃ ∼ 0, corresponds to strange
attractor i.e. this set is characterized by maximal entropy storage near to the
equiprobable distribution.

The result of M. Misiurewitz can be compare with numerical simulation of
Lozi map. These are equivalent to each other inside error.

Let us choose ∆C̃ ∼ ±0.01 then ∆a,∆b ∼ 0.03 holds i.e. the triangle, which
is bounded by the lines to suit the conditions 1, 3, 6. Then the measured
value C̃ ∼ 0, H̃ ∼ 1 corresponds to the theoretical consideration within a given
accuracy. This region equivalents to strange attractor (Figure 4.).

We study the finite N-system on lattice, therefore we need to discuss the ef-
fect of the scaling properties. If we increase the value ofN, then the complexity-

Statistical complexity and generalized number system 245

 0 0.5 1 1.5 2 2.5 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

a

b

C̃

Figure 4: The statistical complexity C̃ of the Lozi map on the parameter plane
(a, b)

curve peak goes to smaller entropy values in the numerical simulations. It
means that the biggest complexity can be reached for less entropy with larger
discrete probability distribution {p1, . . . , pN}.

5.2.2 Finite approximation of Bγ

We introduced the idea of the generalized number system for Zk in the Section
4. It can be extended to the ring of the integer Z[θ] in Q[θ], where θ is an
algebraic integer and the element of the set forms f(θ) = v0 + v1θ + · · · +
vn−1θ

n−1, vj ∈ Z. The equivalency between the Zk and Z[θ] was proven [18].
The digit set is denoted by A = {a0, a0, . . . , at−1} (⊂ Z[θ]).

The map J : Z[θ] → Z[θ] is introduced by J(α) = α1, where there exists a
unique b ∈ A in (A, θ) and a unique α1 ∈ Z[θ], where α = b+ θα1. It can be
extended for α by this expression αl = J

(l)(α).
Kátai I. and Szabó J proved that (θ,A) is a canonical number system if

and only if <θ < 0 and =θ = ±1, where θ is a Gaussian complex integer and
A = {0, 1, . . . ,N(θ) − 1} (N(θ) = θθ) [21].

According to the expression of the fundamental set H (5), it holds in this
extension field Z[θ]. Let ρ = 1/θ, where ρ ∈ C, 0 < |ρ| < 1 and A = {0, 1}.

246 Á. Fülöp

Then the analogue set H:

H =
{
z
∣∣z = ∞∑

i=1

ρifi, fi ∈ A
}
. (17)

Because Bγ = H ∩H+ γ,

Bγ =
{
z
∣∣z ∈ H, z− γ ∈ H}. (18)

Therefore all expansions of γ appear as

γ = ρ1e1 + ρ
2e2 . . . , (19)

where e1, e2 · · · ∈ B = A − A. Because ei = fi − f
′
i holds, where fi, f

′
i ∈ A,

(i = 1 . . .), we can determine all of possible values of the digit fi, which follows
from expressions (17), (18):

z = ρ1f1 + ρ
2f2 (20)

The elements of the set Bγ contains z over infinite sums, we will approximate

them with finite sums. This set is denoted by B̃γ, which contains these elements
for some fixed k and γ, it is written as

x =

k∑
i=1

ρifi, fi ∈ A. (21)

The Kolmogorov entropy and the fractal dimension of the finite approxima-
tion of the set Bγ were published [14] [11].

In the next section we will study the statistical complexity for the set B̃γ,
whose every element corresponds to a subset of Bγ.

5.2.3 Statistical complexity of the set B̃γ

In this section we present the numerical results, which is obtained for a gene-
ralised number system in quadratic integers.

In the article [17] it was proven that θ ∈ C is a root of the polynomial of
second-degree f(x), whose coefficients are a2 = 1, a1 = 0,±1,±2, a0 = 2. The
smallest ring is ∆ = {1,Θ}. Then

∪γ∈∆(H+ γ) = C (22)

Statistical complexity and generalized number system 247

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲

✛

�
�
�
�✒

❅
❅

❅
❅❅■

❄

✻

�
�

�
��✠

❅
❅
❅
❅❘

1
−1

1

0

0

−1

−1

1

[1, 0]

[0,−1]

[−1, 1] [−1, 0]

[1,−1]

[0, 1]

Figure 5: Transition graph for θ = −1− i and B = {−1, 0, 1}

λ((H+ γ1) ∩ (H+ γ2)) = 0, γ1 6= γ2, γ1, γ2 ∈ ∆ (23)

where γ =
∑l
ν=0 aνΘ

ν and aν ∈ A. Then (Θ,A) is a canonical number system
in a quadratic field extensions for all these Θ values.

We construct the transition graph G(S) (Figure 5) according to Section 4.1.
The base of the number system is chosen as θ = −1 − i and the digit set
A = {0, 1}. The edge is labeled by an element of the set B = {−1, 0, 1}.

The steps of graph construction are the following:
◦ Every γ ∈ Z[Θ] which satisfies the condition |γ| ≤

√
2+ 1, we determinate

η = γΘ− δ for δ ∈ B. A directed edge fits from γ to η, if |η| ≤
√
2+ 1 holds.

◦ That γ vertices is deleted, which has no edge from γ and remove all edges
which are directed to γ.

The process results the graph G(S).
Let us consider the process of the graph walking P.
◦ First step in the initial condition we choose one vertex along the graph

G(S) randomly.
◦ The basic concept of the graph walking P is the following. It contains all of

possible edges at least ones (δ1, δ2, . . . , δk), i.e. this step produces the minimal
length orbit.
◦ Let us take into consideration, that the outgoing degree of vertices q can

be larger than 1 and the graph walking need to contain all edges, therefore the
same node can appear more times resulting the perfect series of all directed
ones.

248 Á. Fülöp

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

H̃

D̃

C̃

Figure 6: The spectrum C̃(H̃, D̃) of the set B̃γ (N ′ = 8064, n = 50)

◦ We need to consider each of sequences f1, . . . , fr, (fi ∈ A) to the series of
labels of edges.

The N-system is determined by finite walk on the transition graph G(S).
The probability distribution {p1, p2, . . . , pN} is created according to the path
of length n x(n) along the walk of length N ′.

We determined the Shannon entropy H̃, the disequilibrium D̃ and the sta-
tistical complexity C̃ on lattice, which is plotted on the Figure 6.

The points of the curve in three dimensional space H̃×D̃×C̃ does not contain
any intrinsic structure i.e. any structural complexity and it is a unique convex
function C̃(D̃) respectively C̃(H̃). The curve corresponds to the maximal limit
of the statistical complexity C̃max of the curve in Figure 3. on the range H̃ ∈
[0, 1] and D̃ ∈ [0, 1].

The transition graph, which was introduced analogues to dynamical process
on the set B̃γ points to regular motion.

6 Summary

The statistical complexity is an indicator, which can be used to reveal the
dynamical behaviour of the finite system. We calculated the complexity C̃ of

Statistical complexity and generalized number system 249

Lozi map on the plane of parameter (a, b), this map has chaotic range, where
the strange attractors can be unique specified by complexity C̃, entropy H̃
and disequilibrium D̃ on lattice. Here the value of entropy becomes H̃ ∼ 1,
the quantity of disequilibrium is D̃ ∼ 0, therefore the value of C̃ changes to 0
sharply on the parameter space. Contrary to the statistical complexity C̃ of the
set B̃γ in the generalized number system corresponds to unique function of the
entropy H̃ and disequilibrium D̃ and it fits to the upper limit of the spectrum
C̃(H) for the Lozi map. Because the chaotic motion on the strange attractor
contains aperiodic orbits in contrast to the dynamical behaviour of the set
Bγ includes periodic paths, the statistical complexity is able to indicate the
different properties of time series and it is localised in the finite dimensional
space.

References

[1] C. Adami, N. T. Cerf, Physical complexity of symbolic sequences, Physica D
137, 1–2 (2000) 62–69. ⇒230

[2] C. Anteneodo, A. R. Plastino, Some features of the López-Ruiz-Manchini-Calbet
(LMC) statistical measure of complexity, Physics Letters A 223, 5 (1996) 348–
354, ⇒231

[3] V. Botella-Soler, J. M. Castelo, J. A. Oteo, J. Ros, Bifurcations in the Lozi map,
Journ. Phys. A: Math. Theor. 44, 30 (2011) 305101–305115. ⇒241

[4] X. Calbet, R. Lopez-Ruiz, Extremism complexity distribution of a monodimen-
sional ideal gas out of equilibrium, Physica A 382, 2 (2007) 523–530. ⇒230

[5] X. Calbet, R. Lopez-Ruiz, Extremum complexity in the monodimensional ideal
gas: The piecewise uniform density distribution approximation, Physica A 388,
20 (2009) 4364–4378. ⇒230

[6] P. Collet, J. P. Eckmann, Iterated maps in the interval as dynamical systems,
Birkhäuser, 1980. ⇒235

[7] J. P. Crutchfield, K. Young, Inferring statistical complexity, Phys. Rev. Lett. 63,
2 (1989) 105–108. ⇒230

[8] J. P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors, Rev.
of Modern Physics 57, 3 (1985) 617–656. ⇒235, 237

[9] Z. Elhadj, J. C. Sprott, A Unified Piecewise Smooth Chaotic Mapping that
Contains the Hénon and the Lozi Systems, Annual Review of Chaos Theory,
Bifurcations and Dynamical Systems 1 (2012) 50–60. ⇒241

[10] G. Farkas, Number systems in real quadratic fields, Annales Univ. Sci. Rolando
Eötvös Budapest. Sect. Comput. 18 (1999) 47–49. ⇒237

[11] G. Farkas, A. Fülöp, The sandbox method in quadratic fields, Annales Univ.
Sci. Rolando Eötvös Budapest. Sect. Comput. 28 (2008) 235–248. ⇒ 237, 240,
246

http://adamilab.msu.edu/wp-content/uploads/Reprints/2000/AdamiCerf2000.pdf
http://www.sciencedirect.com/science/journal/01672789/137/1-2
http://www.sciencedirect.com/science/journal/03759601/223/5
http://iopscience.iop.org/1751-8121/44/30/305101
http://www.sciencedirect.com/science/journal/03784371/382
http://www.sciencedirect.com/science/journal/03784371/388/20
http://en.wikipedia.org/wiki/Jean-Pierre_Eckmann
http://www.springer.com/
http://en.wikipedia.org/wiki/James_P._Crutchfield
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.63.105
http://journals.aps.org/rmp/issues/57/3
http://journals.aps.org/rmp/issues/57/3
http://www.arctbds.com
http://www.arctbds.com
http://ac.inf.elte.hu/Vol_018_1999/047.pdf
http://ac.inf.elte.hu/
http://ac.inf.elte.hu/Vol_028_2008/235.pdf
http://ac.inf.elte.hu

250 Á. Fülöp

[12] G. Feng, S. Song, P. Li, A statistical measure of complexity in hydrological
systems, Hydr. Eng. Chin. 11 (1998) 14. ⇒230

[13] G. L. Ferri, F. Pennini, A. Plastino, LMC-complexity and various chaotic regime,
Physics Letters A 373, 26 (2009) 2210–2214. ⇒231

[14] Á. Fülöp, Estimation of the Kolmogorov entropy in the generalized number
system, Annales Univ. Sci. Budapest Sect. Comp. 40 (2013) 245–256. ⇒ 231,
246

[15] C. M. Gonzalez, H. A Larrondo, O. A. Rosso, Statistical complexity measure of
pseudorandom bit generators, Physica A 354 (2005) 281–300. ⇒230

[16] P. Grassberger, Toward a Quantitative Theory of Self-Generated Complexity,
Int. Journ. Theor. Phys. 25, 9 (1986) 907–938. ⇒231

[17] K. H. Indlekofer, I. Kátai, P. Racskó, Some remarks in generalized number sys-
tems, Acta Sci. Math. 57 (1993) 543–553. ⇒246

[18] I. Kátai, Generalized number systems and fractal geometry, Univ. Janus Panno-
nius Pécs, 1995. ⇒237, 245

[19] I. Kátai, Number systems in imaginary quadratic fields, Annales Univ. Sci.
Roland Eötvös Budapest, Sect. Comput. 14 (1994) 91–103. ⇒237

[20] I. Kátai, Generalized number systems in Euclidean spaces, Math. and Computer
Modelling 38, 7–9 (2003) 883–892. ⇒237

[21] I. Kátai, J. Szabó, Canonical number systems for complex integers, Acta Sci.
Math. 37, 3–4 (1975) 255–260. ⇒245

[22] A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphism,
Doklady of Russian Academy of Sciences, 124 (1959) 754–755. ⇒230

[23] P. T. Landsberg, J. S. Shiner, Disorder and complexity in an ideal non-
equilibrium Fermi gas, Phys. Lett. A 245, 3–4 (1998) 228–232. ⇒230

[24] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform.
Theory 22, 1 (1976) 75–81. ⇒230

[25] R. López-Ruiz, H. L. Mancini, X. Calbet, A statistical measure of complexity,
Phys. Letters A 209, 5–6 (1995) 321–326. ⇒230, 231, 234

[26] M. Lovallo, V. Lapenna, L. Telesca, Transition matrix analysis of earthquake
magnitude sequences, Chaos, Soliton and Fractals 24, 1 (2005) 33–43. ⇒231

[27] R. Lozi, Un attracteur étrange du type attracteur de Hénon, Journal de Physique
39 (1978) C5–9. ⇒241

[28] M. T. Martin, A. Plastino, O. A. Rosso, Statistical complexity and disequilib-
rium, Physics Letters A 311, 2-3 (2003) 126–132. ⇒231

http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB811.013.htm
http://www.sciencedirect.com/science/journal/03759601/373/26
http://ac.inf.elte.hu/Vol_040_2013/245_40.pdf
http://www.sciencedirect.com/science/journal/03784371/354
http://en.wikipedia.org/wiki/Peter_Grassberger
http://link.springer.com
http://acta.fyx.hu/acta/home.action?noDataSet=true
http://corvina.tudaskozpont-pecs.hu/WebPac/CorvinaWeb?action=onelong&showtype=longlong&showmenu=yes&recnum=21754
http://corvina.tudaskozpont-pecs.hu/WebPac/CorvinaWeb?action=onelong&showtype=longlong&showmenu=yes&recnum=21754
http://corvina.tudaskozpont-pecs.hu/WebPac/CorvinaWeb?action=onelong&showtype=longlong&showmenu=yes&recnum=21754
http://ac.inf.elte.hu/Vol_014_1994/091.pdf
http://ac.inf.elte.hu/Vol_014_1994/091.pdf
http://www.sciencedirect.com/science/article/pii/S0895717703900732
http://www.sciencedirect.com/science/article/pii/S0895717703900732
http://www.sciencedirect.com/science/article/pii/S0895717703900732
http://acta.fyx.hu/acta/home.action?noDataSet=true
http://acta.fyx.hu/acta/home.action?noDataSet=true
http://www.scholarpedia.org/article/Kolmogorov-Sinai_entropy
http://www.telegraph.co.uk/news/obituaries/7741783/Professor-Peter-Landsberg.html
http://www.sciencedirect.com/science/journal/03759601/245/3--4
http://de.wikipedia.org/wiki/Abraham_Lempel
http://de.wikipedia.org/wiki/Jacob_Ziv
http://de.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://scholar.google.com/citations?user=9U2_0iEAAAA
http://www.sciencedirect.com/science/journal/03759601/209
http://www.sciencedirect.com/science/journal/09600779/24/1
http://jphyscol.journaldephysique.org/index.php?option=com_article&access=doi&doi=10.1051/jphyscol:1978505&lang=en
http://www.sciencedirect.com/science/journal/03759601/311/2-3

Statistical complexity and generalized number system 251

[29] M. T. Martin, A. Plastino, O.A. Rosso, Generalized statistical complexity mea-
sures: Geometrical and analytical properties, Physica A 369, 2 (2006) 439–462.⇒231, 234

[30] M. Misiurewicz, Strange attractors for the Lozi mappings, Annals of the New
York Academy of Sciences 357 (1980) 348–358. ⇒241

[31] A. Rényi, Probability Theory, North-Holland, Amsterdam, 1970. ⇒234
[32] P. T. Saunders, M. W. Ho, On the increase in complexity in Evolution II. The

relativity of complexity and the principle of minimum increase, Journ. Theor.
Biol. 90, 4 (1981) 515–530. ⇒231

[33] C. E. Shannon, The Mathematical Theory of Communication, Bell System Tech-
nical Journal 27 (1948) 379–423, 623–656. ⇒232

[34] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys.
52, 1–2 (1988) 479–487. ⇒234

[35] J. M. Thuswaldner, Fractal and number systems in real quadratic number fields,
Acta Math. Hungary 90, 3 (2001) 253–269. ⇒238

[36] Z. Yu, G. Chen Rescaled range and transition matrix analysis of DNA sequences,
Comm. Theor. Phys. 33, 4 (2000) 673–678. ⇒231

[37] W. K. Wooters, Statistical distance and Hilbert space, Phys. Rev. D 23, 2 (1981)
357–362. ⇒234

Received: August 28, 2014 • Revised: October 22, 2014

http://www.sciencedirect.com/science/journal/03784371/369
http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1980.tb29702.x/abstract
http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291749-6632/homepage/News.html
http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291749-6632/homepage/News.html
http://en.wikipedia.org/wiki/Alfréd_Rényi
http://www.sciencedirect.com/science/journal/00225193/90
http://www.sciencedirect.com/science/journal/00225193/90
http://en.wikipedia.org/wiki/Claude_Shannon
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://en.wikipedia.org/wiki/Tsallis_entropy
http://link.springer.com/
http://www.springer.com/mathematics/journal/10474
http://scholar.google.com/citations?user=sbT_OZsAAAAJ&hl=hu
http://iopscience.iop.org/0253-6102/
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.357

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 252–286

Recognition of split-graphic sequences

Bilal A. CHAT
University of Kashmir

Hazratbal Srinagar-190006, India
email: bilalchat99@gmail.com

Shariefudddin PIRZADA
University of Kashmir

Hazratbal Srinagar-190006, India
email:

pirzadasd@kashmiruniversity.ac.in

Antal IVÁNYI
Eötvös Loránd University

Faculty of Informatics, H-1011
Budapest, Pázmány s. 1/A, Hungary

email: tony@inf.elte.hu

Abstract. Using different definitions of split graphs we propose quick
algorithms for the recognition and extremal reconstruction of split se-
quences among integer, regular, and graphic sequences.

1 Basic definitions

In this paper a, b, l, m, n, p and q denote nonnegative integers with b ≥ a
and l +m ≥ 1. We follow the terminology of Handbook of Graph Theory [28]
written by Gross, Yellen and Zhang.

An (a, b, n)-graph is a loopless graph in which different vertices are con-
nected at least by a and at most by b edges [43, 44]. A (b, b, l)-graph is de-
noted by Kbl and is called a b-clique or b-complete graph . Clearly, K1l = Kl,
where Kl is the complete graph on l vertices. Its complement, Kl is called
independent graph on l vertices.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C30, 05C50
Key words and phrases: psplit graph, jsplit graph, bsplit graph, graphic sequence, linear
time algorithm, (a, b, n)-graph, potentially split sequence

252

http://www.kashmiruniversity.net/
mailto:bilalchat99@gmail.com
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.kashmiruniversity.net/
mailto:pirzadasd@kashmiruniversity.ac.in
http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://www.inf.elte.hu/english
mailto:tony@inf.elte.hu

Recognition of split-graphic sequences 253

The join [12, 28, 66] of two graphs G and H is denoted by G + H. It has
the following vertex set and edge set:

V(G+H) = V(G) ∪ V(H)

and
E(G+H) = E(G) ∪ E(H) ∪ {uv | u ∈ V(G) and v ∈ V(H)}.

A nonincreasing integer sequence σ = (s1, . . . , sn) with s1 ≤ b(n − 1) and
sn ≥ a(n − 1) is said (a, b, n)-regular [43, 44]. A (0, b, n)-regular sequence
shortly is said b-regular [17]. An integer sequence σ is said (a, b, n)-graphic,
if it is the degree sequence of an (a, b, n)-graph G [43, 44], and such a graph
G is referred to as a realization of σ. An integer sequence is called even, if
the sum of its elements is even.

In this paper we denote the integer sequences by σ and the degree sequences
by δ.

In 1965 Fulkerson, Hoffman and McAndrew [24] proposed the following
definition of (γ, δ)-multigraphs with capacity bounds. Let n ≥ 1, δ =
(d1, . . . , dn) and γ = (c11, . . . , c1n, c21 . . . , c2n, . . . , cn−1,n, cn,n) sequences of
nonnegative integers with cii = 0 and cij = cji for 1 ≤ i < j ≤ n. Fulkerson
and his coathors call δ degree vector, while γ is the capacity vector. Let Gγ
denote the graph in which there is an edge between the vertex with degree di
and vertex with degree dj, if cij = 1. The capacity vector γ has the odd-cycle
condition if the graph Gγ has the property that any two of its odd length
(simple) cycles either have a common vertices or there exists a pair of vertices,
one vertex from each cycle, which are connected with an edge.

With other words, the distance between two odd length cycles is at most 1.
In particular, if Gγ is bipartite (has no odd length cycle) or Gγ is complete
(all cij equals to 1) then γ obviously satisfies the odd-cycle condition.

An (a, b, n)-regular sequence is said potentially Kbl -graphic, if it has a
realization G containing Kbl as a subgraph. If b = 1, then we write simply Kl
instead of K1l .

An (a, b, n)-regular sequence σ = (s1, . . . , sn) is said potentially Abl -gra-
phic, if it has a realization G containing Jbl (definition see later) on vertices
having degrees s1, . . . , sl+m.

An (a, b, n)-regular sequence σ = (s1, . . . , sn) is said potentially Abl,m-
graphic, if it has a realization G containing Jbl,m (definition see later) on
vertices having degrees s1, . . . , sl+m.

A (0, b, n)-regular sequence σ = (s1, . . . , sn) is said potentially Jbl,m-graphic
if it has a realization G containing Jbl,m (definition see later) on vertices having

254 B. A. Chat, S. Pirzada, A. Iványi

degrees s1, . . . , sl+m. If b = 1, then we write simply Al insted A1b,, A
1
l,m instead

of Abl,m, Jl,m instead of J1l,m, and Jl,m instead of J1l,m.
Let n ≥ 2 and σ = (s1, . . . , sn) be a nonnegative integer sequence, and k be

any integer 1 ≤ k ≤ n. Let σ ′ = (s ′1, . . . , s
′
n) be the sequence obtained from s

by setting sk = 0 and s ′i = si − 1 for the sk largest elements of s other than
sk. Let Hk be the graph obtained on the vertex set V = {v1, . . . , vn} by joining
vk to the sk vertices corresponding to the sk elements used to obtain s ′. This
operation of getting s ′ and Hk is called laying off sk, s

′ is called residual
sequence, and Hk is called the subgraph obtained by laying off sk [51].

Now we formulate several definitions of split graphs.
The classical and most distributed definition of split graphs was introduced

by Földes and Hammer in 1977 [21, 22, 26, 28].

Definition 1 (Földes, Hammer [21, 22]) An (l,m)-partitioned split graph
(shortly: psplit graph) is one whose vertex set can be partitioned into two dis-
joint subsets spanning a clique Kl and an independent graph Km. It is denoted
by Sl,m.

It is worth to mention that one of l and m can be zero, that is if l ≥ 1, then
Sl,0 is also a psplit graph, and ifm ≥ 1, then S0,m is also a psplit graph, and the
independent graph K0,m = S0,m are also psplit graphs. For the number of edges
|E(Sl,m)| of an Sl,m hold the inequalities l(l−1)/2 ≤ |E(Sl,m)| ≤ l(l−1)/2+l·m
and between these bounds every integer value is realizable.

Consider the following example (Figure 1). Let G = (V, E), where V =
{v1, . . . , v5} and E = (v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}, that is G contains six
edges. Then G is S3,2 and also S4,1 due to the following two partitions of V:
{v1, v2, v3, v4} plus {v4, v5} (Figure 1a)) containing all six edges and also is S3,2
due to the partition {v1, v2, v3} plus {v4, v5} (Figure 1b)) containing only three
edges.

In 1996 Brandstädt introduced the following definition of (l,m)-multiparti-
tioned split graphs. Let G = (V, E) with |V | = n. V1, . . . , Vk is a partition of
V, if and only if for all u, v ∈ {1, . . . , k} with i < j Vi∩Vj = ∅ and

⋃k
i=1 Vi = V.

A partition C1, . . . , Cm, I1, . . . , Im, with cliques Ci, i ∈ {1, . . . , l} and
independent sets Ij, j ∈ {1, . . . , m} is an (l,m)-partition of V.

Definition 2 (Brandstädt [7, 8, 10]) A graph G = (V, E) is called an (l,m)-
split graph, if its vertex set has an (l,m)-partition.

In 1998 Gyárfás generalized (l,m)-psplit graphs to (l,m)-bsplit graphs.

Recognition of split-graphic sequences 255

u

u u

u

u

v1

v2 v3

v4

v5

(a)

uu
uu

u u

v1

v2
v3

v4

v5

(b)

Figure 1: Partition of a psplit graph is not unique.

Definition 3 (Gyárfás [30]) A graph G is called (l,m)-bounded split graph
(shortly: bsplit graph) if its vertex set can be partitioned into A and B so that
the order of the largest clique graph in A is l and the order of the largest
complete subgraph in B is m.

In 2001 Hell, Klein, Protti, and Tito [41] defined (k, l)-graphs so, that their
vertex set can be partitioned into k cliques and l independent sets.

In 2005 Bradstädt, Hammer, Le and Lozin studied bisplit graphs, defined
as follows.

Definition 4 (Brandstädt, Hammer, Le, Lozin [9]) A graph G is called (l,m)-
bisplit graph (shortly: bisplit graph) if its vertex set can be partitioned into a
complete bipartite graph and an independent graph. It is denoted by Bl,m.

For the number |E(Bl,m)| of edges of a bisplit graph Bl,m hold the inequalities
l2 ≤ |E(Bl,m)| ≤ l2 + 2lm.

In 2007 Le and Ritter [55] defined probe split graphs (modifying the defini-
tion of interval split graphs [61]).

Definition 5 (Le, Ritter [55]) A G(V, E) graph is probe split graphs, if V
can be partitoned into two parts N (nonprobes) and P (probes) where N is an
independent set and there exists E ′ ⊂ N × N such that G ′ = (V, E ∪ E ′) is a
psplit graph.

In 2009 [6] Boros, Gurvich and Zverovich [6] proposed the definition of
almost CIS-graphs.

The following simple definition appeared in 2011 and later in the papers of
different authors as Chat, Pirzada, and Yin [67, 86, 87].

256 B. A. Chat, S. Pirzada, A. Iványi

Definition 6 (Yin [86, 87]) An (l,m)-join split graph (shortly: jsplit graph)
is the join of Kl and Km. It is denoted by Jl,m.

It is worth to remark, that jsplit graphs are special cases of psplit graphs: if
G is a jsplit graph, then any vertex of Kl is connected with any vertex of Km,
while in the corresponding psplit graph even all such edges can be absent.

Consider the following example Let H = (V, E), where V = {v1, . . . , v5} and
E = (v1v2, v1v3, v1v4, v1v5, v2v3, v2v4, v2v5, v3v4, v3v5, v4v5}, that is H is a clique
on 5 vertices and so it contains ten edges. Then H is J5,0 and also J4,1 due to
the following partition of V: {v1, v2, v3.v4, v5} plus ∅ and is J4,1 for example due
to the partition {v1, v2, v3, v4} plus {v5}. We can remark that these partitions
at the same time give psplit graphs with the same size parameters.

Let Kbl and Kbm be b-cliques, and let K
b
m be the complement of Kbm, that

is an empty graph on m vertices. We propose the following generalization of
psplit-graphs.

Definition 7 A (b, l,m)-partitioned split graph (shortly: b-psplit graph)
is one whose vertex set can be partitioned into two disjoint subsets spanning a

b-clique Kbl and an empty graph K
b
m. It is denoted by Sbl,m.

Clearly, S1l,m = Sl,m.
In 2011 Yin extended the definition of the jsplit-graphs to b-jsplit graphs.

Definition 8 (Yin [87]) A (b, l,m)-join-split graph (shortly: b-jsplit graph)

is the join of Kbl and K
b
m. It is denoted by Jbl,m.

Clearly, J1l,m = Jl,m.
Figure 2 shows J3,2 (part a) and J23,2 (part b).
The structure of the paper is as follows. After the basic definition (Section

1) in Section 2, 3 and 4 the most important mathematical background results
connected with graphical, potentially graphical and potentially split graphical
sequences are reviewed, then in Sections 5, 6 the new mathematical results are
presented.

We review the known algorithms in Sections 7 and 8, while the now proposed
algorithms are presented in Section 9.

The main results of the paper are that using different definitions of split
graphs [4, 5, 7, 8, 9, 10, 21, 22, 23, 26, 28, 30, 67, 82, 86, 87, 88] we propose quick
algorithms for the recognition and extremal reconstruction of split sequences
among integer, regular [17, 45] and graphic [43, 45, 48] sequences.

Recognition of split-graphic sequences 257

u
u u

u

u

u

t u

u

a) b)

u

Figure 2: Jsplit graphs J3,2
(
a)
)

and J23,2
(
b)
)
.

2 Known results on graphic sequences

In 1955 Havel, in 1962 Hakimi proposed the following necessary and sufficient
condition for n-regular sequences to be graphic.

Theorem 9 (Havel [32], Havel [36]) Let n ≥ 2. An n-regular sequence σ =
(s1, . . . , sn) is graphical if and only if the sequence σ ′ = (s2−1, s3−1, . . . , ss1−
1, ss1+1 − 1, ss1+2, . . . , sn−1, sn) is graphical.

Proof. See Hakimi[32], Havel [36]. �

The recursive algorithm implementing this theorem requires in worst case
Θ(n2) time. It is worth to remark, that this algorithm not only tests the
sequences, but if they are graphic, the algorithm constructs a realization of
the tested sequence.

In 1973 Kleitman and Wang improved the Havel-Hakimi theorem: according
to their following theorem it is sufficient to test any nonzero element of the
input sequence. The central element of their proof is the laying off the tested
sequence.

Theorem 10 (Kleitman, Wang [51]) Let n ≥ 2. A nonnegative integer se-
quence σ is graphic if and only if the residual sequence obtained by laying off
any nonzero element of s is graphic.

Proof. See Kleitman [51]. �

In 1974 Chungphaisan [13] extended the definition of laying off and resid-
ual sequence to b-laying off and b-residual sequence as follows. Let σ =

258 B. A. Chat, S. Pirzada, A. Iványi

(s1, . . . , sn) be an n-regular sequence and 1 ≤ k ≤ n. Define σ
′
k = (s′1, . . . , s

′
n−1)

to be the nonincreasing rearrangement of the sequence obtained from (s1, . . . ,
sk−1, sk+1, . . . , sn) reducing by 1 the remaining largest term that has not al-
ready been reduced b times, and repeating the procedure sk times. s

′
k is called

the b-residual sequence obtained from σ by b-laying off sk.
Using the b-laying off operation Chungphaisan proved the following gener-

alization of Kleitman-Wang theorem.

Theorem 11 (Chungphaisan [13]) Let n ≥ 2. A nonnegative integer sequence
σ is b-graphic if and only if the b-residual sequence obtained by b-laying off
any nonzero element of σ is graphic.

Proof. See Chungphaisan [13]. �

In 1960 Erdős and Gallai gave the following necessary and sufficient condi-
tion.

Theorem 12 (Erdős, Gallai [17]) Let n ≥ 1. An n-regular even sequence
σ = (s1, . . . , sn) is graphical if and only if

k∑
i=1

di ≤ k(k− 1) +
n∑

i=k+1

min(di, k)

is satisfied for each integer k, 1 ≤ k ≤ n.

Proof. See Erdős, Gallai [17]. �

Later several new proofs of this theorem were published, among others by
to Gasharov in 1997, [25], by Tripathi and Tiagy in 2008 [77], by Tripathi,
Venugopalan and West in 2010 [78].

In 1974 Chungphaisan extended Erdős-Gallai theorems to (0, b, n)-graphs.

Theorem 13 (Chungphaisan [13]). Let σ = (s1, . . . , sn) be an (a, b, n)-regular
even sequence. Then σ is (0, b, n)-graphic if and only if for each positive inte-
ger t ≤ n,

t∑
i=1

si ≤ bt(t− 1) +
n∑

i=t+1

min(bt, si).

Proof. See Chungphaisan [13]. �

We remark then if we use the theorems of Erdős-Gallai [17], Havel-Hakimi
[32, 36], Kleitman-Wang [51] or Chungphaisan [13] to decide whether an inte-
ger sequence is graphic, the decision requires quadratic time. In 2012 Iványi

Recognition of split-graphic sequences 259

proposed an algorithm for (0, b, n) graphs, then in 2012 [45] for (a, b, n)-graphs
allowing the decision in worst case in O(n) time.

In the worst case the algorithm based on Theorem 13 requires quadratic
time, but the following assertion allows us to test the sequences in linear time.
Since this is an important result, we repeat its proof.

Theorem 14 (Iványi [45]) If n ≥ 1, then the σ = (s1, . . . , sn) (0, b, n)-regular
sequence is (0, b, n)-graphic if and only if

n∑
i=1

si is even

and

Hi > bi(yi − 1) +Hn −Hy (i = 1, . . . , n− 1), (1)

where

yi = max(i,wi) (i = 1, . . . , n− 1). (2)

Proof. This proof is an improved version of the proof of linearity of EGL in
[48] and was published in 2012 [45]

We exploit that s is monotone and determine the capacity estimations
ck = min(jb, sk) appearing in (1) in constant time. The base of the quick com-
putation is again the sequence of the weight points w(σ) = (w1, . . . , wn−1)
containing the weight points belonging to the elements of σ, and the sequence
y(σ) = (y1, . . . , yn) containing the cutting points of the elements of s. For
given si the weight point wi is the largest k (1 ≤ k ≤ n) having the property
sk ≥ i. . The cutting point yi belonging to si is the maximum of i and wi,
see (2).

During the testing of the elements of s there are two cases:
a) if i > wi, then the maximal contribution Ci =

∑n
k=i+1 min(i, sk) of the

actual tail of s is at most Hn − Hi, since the maximal contribution ck =
min(i, sk) of the element sk is only sk, and so

Ci =

n∑
k=i+1

ck = Hn −Hi,

implying the requirement

Hi ≤ bi(i− 1) +Hn −Hi; (3)

260 B. A. Chat, S. Pirzada, A. Iványi

b) if i ≤ wi, then the maximal contribution Ci of the actual tail of s consists
of contributions of two types: ci+1, . . . , cwi

are equal to bi, while cj = sj for
j = wi + 1, . . . , n, therefore we have

Ci = bi(wi − i) +Hn −Hwi
, (4)

implying the requirement

Hi = bi(i− 1) + bi(wi − i) +Hn −Hwi
. (5)

Transforming (5) we get

Hi = bi(wi − 1) +Hn −Hwi
. (6)

Considering the definition of yi given in (2), further (4) and (5) we get the
required (1). �

In 1981 Rao [69] analyzed the conditions for graphic sequences to be P-
graphic.

In 2009 Hell Hell and Kirkpatrick [40] extended the concept of graphic se-
quences defining quasi-graphic sequences and proposing a linear time algo-
rithm for their certifying. A state of art of certifying algorithms was published
in 2011 [59] by McConell, Mehlhorn, Näher and Schweitzer.

The following assertion is the base of the quick testing of integer sequences
whether they are (a, b, n)-graphic or not. In 2012 Iványi proved that theo-
rem of Chungphaisan has the following consequence allowing the quick test of
potential (a, b, n)-graphic sequences..

Corollary 15 (Iványi [45]) If n ≥ 2, then an (a, b, n)-regular sequence σ =
(s1, . . . , sn) is (a, b, n)-graphic if and only if the sequence s ′ = (s1 − a, s2 −
a, . . . , sn − a) is (0, b− a, n)-regular.

Proof. See [45] �

This corollary allows the testing of (a, b, n)-regular sequences in worst case
inO(n) time using algorithm Erdős-Gallai-Linear [48] or algorithm Havel-
Hakimi-Chungphaisan [45].

The following sources contain results on the enumeration of graphic and
b-graphic sequences [35, 45, 46, 47, 48, 49, 74].

3 Known results on A-graphic sequences

The following two results due to J. H. Yin are generalizations from 1-graphs
to b-graphs of two well-known results given by A. R. Rao [50, 68, 70]

Recognition of split-graphic sequences 261

Theorem 16 (Yin [84]). Let n ≥ l + 1 and σ = (s1, . . . , sn) be a b-graphic
sequence with sl+1 ≥ bl. Then σ is potentially Abl+1-graphic if and only if s′l+1
is b-graphic.

Proof. See [84]. �

Theorem 17 (Yin [84]) Let n ≥ l + 1 and σ = (s1, . . . , sn) be a b-graphic
sequence with sl+1 ≥ 2bl− 1, then s is potentially Abl+1-graphic.

Proof. See [84]. �

In 1978 Hakimi and Schmeichel [33] studied potentially and forcibly P-
graphic sequences.

In 2009 Yin generalized a result Gould, Jacobson and Lehel [27].

Theorem 18 (Yin [85]) If δ = (d1, . . . , dn) is is a b-graphic sequence with
a realization G containing a b-graph H as a subgraph, then there exists a
realization G ′ of δ so that the vertices of H have the largest degrees of δ.

Proof. See [85]. �

In 2009 Yin wrote [84] that the following assertion is a special case of The-
orem 18.

Corollary 19 A b-graphic sequence is potentially Kbl -graphic, if and only if
it is potentially Abl -graphic.

Proof. We prove a bit stronger assertion.
It is trivial, that if an integer sequence is Abl -graphic, then it is b-graphic.
The sufficiency can be proved following the proof of Lemma 2.1. in [85]. �

We remark, that Theorem 18 contains only a sufficient condition.
Let l,m, r and n be positive integers, n ≥ l+m, and let σ = (s1, . . . , sn)

be an n-regular sequence with sl ≥ l+m− 1 and sl+m ≥ l. We construct the
sequences σ1, . . . , σl as follows. At first we construct the sequence

σ1 = (s1 − 1, . . . , sl − 1, sm+1, sl+1, . . . , s
1
l+m+1, . . . , s

1
n)

from σ by deleting s1, reducing the first s1 remaining elements of σ by one, and
then reordering the last n− l−m elements to be nonincreasing. For 2 ≤ i ≤ l,
we recursive construct

σi = (si+1 − i, . . . , sl − i, sl+1 − i, . . . , sl+1 − i, s
i−1
l+m+1, . . . , s

i
n)

262 B. A. Chat, S. Pirzada, A. Iványi

from σi−1 by deleting si − i + 1, reducing the first si − i + 1 remaining ele-
ments of σi−1 by one, and then reordering the last n − l −m elements to be
nonincreasingIn 2012 Yin proved the two following theorems.

In 2012 Yin proved the following two theorems.

Theorem 20 (Yin [87]) σ is potentially Ab-graphic if and only if σb is graphic.

Proof. See [87]. �

Theorem 21 (Yin [87]) Let n ≥ l + m and let σ = (s1, . . . , sn) be a non-
increasing graphic sequence. If sl+m ≥ l +m − 2, then σ is potentially Al,m-
graphic.

Proof. See [87]. �

Using the algorithm Erdős-Gallai-Linear [48] or algorithm Havel-Ha-
kimi-Linear [45] we can decide in worst case in O(n) time whether π is
graphic.

The following theorem allows to decrease the expected running time of
Havel-Hakimi-Split.

Theorem 22 (Yin [87]). Let n ≥ l + m and let σ = (s1, . . . , sn) be an n-
regular sequence. If sr+s ≥ 2l+m− 2, then σ is Al+m-graphic.

Proof. See [87]. �

In the same paper Yin [87] published a Havel-Hakimi type algorithm which
constructs the corresponding Jl,m-graph.

Let An = (a1, . . . , an) be an n-regular sequence, and Bn = (b1, . . . , bn)
a sequence of nonnegative integers with ai ≤ bi and ai + bi ≥ ai+1 + bi+1
for i = 1, . . . , n − 1. (An;Bn) is said to be potentially Km+1-graphic (resp.
Am+1-graphic) if there exists a graph G with vertices v1, . . . , vn such that
ai ≤ vi(G) ≤ bi for i = 1, . . . , n and G contains Km+1 as a subgraph. In 2013
Yin [88] characterized (An;Bn) so, that it is potentially Am+1-graphic and
potentially Km+1-graphic.

In 2014 Yin [89] characterized the sequences having a realization containing
an arbitrary subgraph.

In 2014 Pirzada and Chat proved the following assertion.

Theorem 23 (Pirzada, Chat [67]) If G1 is a realization of σ1 = (s11, . . . , s
1
l),

containing Kl as a subgraph and G2 is a realization of σ2 = (s21, . . . , s
2
m) con-

taining Km as a subgraph, then the degree sequence σ = (s1, . . . , sl+m) of the
join of G1 and G2 is Kl+m-graphic.

Recognition of split-graphic sequences 263

Proof. See [67] �

4 Known results on split sequences

The girth g(G) of a graph G containing at last one cycle is the length of its
shortest cycle. The girth of an acyclic graph is infinite. A graph G is called
chordal, if it does not contain an induced subgraph with finite girth greater
then 3.

In 1977 Földes and Hammer gave the following characterization of psplit
graphs.

Theorem 24 (Földes, Hammer [22]) For any graph G the following three con-
ditions are equivalent:

(i) G and G both are chordal;
(ii) V(G) can be partitioned into a complete and an empty set;
(iii) G does not contain an induced subgraph isomorphic to 2K2, C4 or C5.

In 1993 Blázsik, Hujter, Pluhár and Tuza [5] characterized the pseudo split
graphs defined as graphs with no induced C4 and 2K2 (see also [2]). In 1998
Maffray and Preissmann [58] proved the following assertion.

Theorem 25 (Maffray, Preissmann [58]) G is a pseudo split graph with a
nonincreasing degree sequence δ = (d1, . . . , dn), then G is a pseudo split graph,
if G is a split graph or

q∑
i=1

di = q(q+ 4) +

n∑
i=m+1

di (7)

and
dq+1 = dq+2 = dq+3 = dq+4 = dq+5 = q+ 2, (8)

where q = max(i | di ≥ q+ 4).

Proof. See [58]. �

The following theorem allows to design a linear time algorithm recognising
the psplit graphs in linear time.

Theorem 26 (Golumbic [26]; Hammer, Simeone [34]; Tyshkevich [79]; Tyshke-
vich, Melnikow, Kotov [81], Wikipedia [82]) Let the nonincreasing degree se-
quence of a graph G be δ = (d1, . . . , dn), and let m be the largest value of i

264 B. A. Chat, S. Pirzada, A. Iványi

such that di ≥ i− 1. Then G is a psplit graph if and only if

m∑
i=1

di = m(m− 1) +

n∑
i=m+1

di. (9)

If this is the case, then the m vertices with the largest degrees form a maxi-
mum clique in G, and the remaining vertices constitute and independent set.

Proof. See [34]. �

An extremal problem for 1-graphic sequences to be potentially K1l -graphic
was considered by Erdős, Jacobson and Lehel [19], and solved by Gould et al.
[27] and Li et al. [56, 57]. Recently, Yin [85] generalized this extremal problem
and the Erdős-Jacobson-Lehel conjecture from 1-graphs to b-graphs.

Different split graphs are closely connected with the problems of colorings
of graphs, since the clique number gives a lower bound of coloring number.
E.g. Erdős and Gyárfás [18], Gyárfás and Lehel [29] deal with coloring of psplit
graphs. Yin and Li [90] gave sufficient conditions for graphic sequences to have
a realization with prescribed clique size.

There are many publications on the maximal clique algorithms. Recently
Zavalnij [91] analysed parallel algorithms for the the solution of the maximal
clique problem. This problem was earlier studied e.g. in [60, 63, 64, 75, 72, 73,
76].

In 2000 observed a bijection between nonisomorphic psplit graphs and min-
imal covers of a set by its subsets. Using the formula proved by Clarke [15]
for the number of minimal covers, Royle [71] proved the following assertion,
giving the number p(n) of the nonisomorphic psplit graphs on n vertices. This
result was published also by Tyshkevich and Chernak in 1990.

Theorem 27 (Royle [71], Tyshkevich, Chernak [80]) If n ≥ 1, then

p(n) =

n∑
k=1

t(n− k, k), (10)

where

t(n, k) =
1

n!k!

∑
α∈Pn,β∈Pk

(
n

α

)(
β

k

)∏
i

∏
j

2(αi,βj)

 , (11)

(
n

α

)
=

n!∏
i µi!i

µi
, (12)

Recognition of split-graphic sequences 265

where µi is the number of i’s in the partition α, (u, v) denotes the greatest
common divisor of u and v, Pn is the set of all partitions of n.

Figure 3 contains the values of p(n) for n = 1, . . . , 20. This data are taken
from Encyclopedia of Interger Sequences [39] containing the values of p(n) for
n = 1, . . . , 40 vertices.

n p(n) n p(n)

1 1 11 64 956

2 2 12 501 696

3 4 13 5 067 146

4 9 14 67 997 750

5 21 15 1 224 275 498

6 56 16 29 733 449 510

7 164 17 976 520 265 678

8 557 18 43 425 320 764 422

9 2 223 19 2 616 632 636 247 976

10 10 766 20 213 796 933 371 366 930

Figure 3: The number p(n) of nonisomorphic psplit graphs for n = 1, . . . , 20

vertices.

In 1995 Nikolopoulos proposed a constant-time parallel algorithm for the
recognition of psplit graphs.

Theorem 28 (Nikolopoulos [62]) Let G(V, E) be a graph with |V | = n and
|E| = m. Then algorithm Split-Recognition decides—using O(nm) proces-
sors— in O(1) time whether G is a psplit graph.

Proof. See [62]. �

Several papers deals with the hamiltonicity of split graphs. E.g. in 1980
Burkard and Hammer [11] gave a necessary condition of the hamiltonicity of
psplit graphs.

In 1988 Peemüller analyzed the condition of Burkard and Hammer and
proved new necessary conditions for hamiltonian psplit graphs.

Theorem 29 (Peemüller [65]) Let G = (C, I, E1, E2) be a psplit graph with
|C| < |I|. If G is hamiltonian, then

2|X ′|−m(X ′, Y ′) + f(X ′, Y ′) ≤ m(Y ′, Y) − fY ′, Y), (13)

for all X ′ ⊂ X, X ′ 6= ∅, , while m, f and N is defined in [65].

266 B. A. Chat, S. Pirzada, A. Iványi

Proof. See [65]. �

In 1998 Woeginger proved the following property of the taughness [14] of
psplit graphs solving a problem posed by Kratsch, Lehel and Müller in 1996
[53].

Theorem 30 (Woginger [83]) The toughness of psplit graphs can be computed
in polynomial time.

Proof. See [83]. �

It is worth to remark that in 1990 Burkard, Hakimi and Schmeichel [3] that
recognising of the toughness of a graph is NP-hard.

In 1999 Brandstädt, Le and Spinrad [10], in 2012 Almeida, Mello and Mor-
gana [1] studied the classification problem of split graphs.

In 2006 Kratsch, McConnell, Mehlhorn, and Spinrad [52] reviewed certifying
algorithms for recognizing interval graphs and permutation graphs

In 2008 Ibarra [42] studied fully dynamical algorithms of maintenance of
psplit graphs.

In 2009 Heggernes and Mancini [38] analysed the minimal completion of
psplit graphs.

In 2012 LaMar [54] defined directed psplit graphs and derived conditions
for integer sequences to be degree sequences of directed psplit graphs.

In 2014 Habib and Mamcarz [31] investigated split decompositions of graphs.

5 New results for A-graphic sequences

In the next result, we use the Havel-Hakimi procedure to test whether a b-
graphic sequence δ is potentially Abl,m-graphic.

Theorem 31 Let b ≥ 1 and n ≥ 1. A b-graphic sequence σ = (s1, . . . , sn) is
potentially Abl,m-graphic if and only if σl is b-graphic.

Proof. Assume that σ is potentially Abl,m-graphic. Then σ has a realization
G with the vertex set V(G) = {v1, ldots, vn} such that dG(vi) = si for (1 ≤
i ≤ n) and G contains Jbl,m on the vertices v1, . . . , vl+m, where l +m ≤ n, so

that Vb(Kl) = {v1, . . . , vl} and V(K
b
m) = {vl+1, . . . , vl+m}. We will show that

by applying a sequence of b-exchanges to G in order that there is one such
realization G

′
such that G

′
\ v1 has degree sequence σ1. If not, we may choose

such a realization H of b-graphic sequence σ such that the number of vertices
adjacent to v1 in {vl+m+1, . . . , vs1+1} is maximum. Let vi ∈ {vl+m+1, . . . , vs1+1}

Recognition of split-graphic sequences 267

and assume that there is no edge between v1 and vi and let vj ∈ {vs1+2, . . . , vn}

and there are b edges between v1vj. We may assume that si > sj, since the
order of i and j can be interchanged if si < sj. Hence there is a vertex vt, t 6= i, j
such that there are b edges between vi and vt and no edge between vj and
vt. Clearly G =

(
H \ {vb1vj, v

b
i vt}

)⋃
{vb1vi, v

b
j vt}—where vbi vj means that there

are b edges between vi and vj—is a realization of σ such that dG(vi) = si
for 1 ≤ i ≤ n, G contains Sbl,m on v1, . . . , vl+m with Vb(Kl) = {v1, . . . , vl}

and V(K
b
m) = {vl+1, . . . , vl+m} and G has the number of vertices adjacent to

v1 in {vl+m+1, . . . , vs1+1} larger than that of H. This contradicts the choice of
H. Repeating this procedure, we can see that σi is potentially Abl−i-graphic
successively for i = 2, . . . , l. In particular, σl is b-graphic.

Conversely suppose that σl is b-graphic and is realized by a graph Gl with a
vertex set V(Gl) = {vl+1, . . . , vn} such that dGl

(vi) = si for l+ 1 ≤ i ≤ n. For
i = l, . . . , 1 form Gi−1 from Gi by adding a new vertex vi that is adjacent to
each of vi+1, . . . , vl+m with b-edges and also to the vertices of Gi with degrees
si−1l+m+1 − b, . . . , s

i−1
di+1

− b. Then for each i, Gi has degrees given by πi and Gi
contains Jbl−i,m on l +m − i vertices vi+1, . . . , vl+m whose degrees are si+1 −

ib, . . . , sl+m−ib so that V(Kbl−i) = {vi+1, . . . , vl} and V(K
b
m) = {vl+1, . . . , vl+m}.

In particular, G0 has degrees given by σ and contains Sbl,m on l +m vertices
v1, . . . , vl+m whose degrees are s1, . . . , sl+m so that V(Kbl) = {v1, . . . , vl} and

V(K
b
m) = {vl+1, . . . , vl+m}. Hence the result follows. �

Now we prove a sufficient condition for a b-graphic sequence to be poten-
tially Abl -graphic.

Theorem 32 Let n ≥ l+m and let σ = (s1, . . . , sn) be a b-graphic sequence.

If sl+m ≥ 2bl+ bm− 2, then σi is potentially A
b
l,m-graphic.

Proof. Let n ≥ l +m and let σ = (s1, . . . , sn) be a nonincreasing b-graphic
sequence with sl+m ≥ 2bl+m−2. By Theorem 17, σ is potentially Kbl -graphic
and hence by Lemma 33, Abl -graphic. Therefore, we may assume that G is a
realization of σ with a vertex set V(G) = v1, . . . , vn such that dG(vi) = si,
(1 ≤ i ≤ n) and G contains Kbl on v1, . . . , vl, that is, V(Kbl) = {v1, . . . , vl} and
M = eG({v1, . . . , vl}, {vl+1, . . . , vl+m}) (that is, the number of edges between
{v1, . . . , vl} and {vl+1, . . . , vl+m}) is maximum. If M = blm, then G contains

S
b
l,m on v1, . . . , vl+m with V(K

r
m) = {vl+1, . . . , vl+m}. In other-words, sigma is

potentially A
b
l,m-graphic. Assume that M < blm. Then there exists a vk ∈

{v1, . . . , vl} and vm ∈ {vl+1, . . . , vl+m}, (i 6= j) such that eG(vk, vm) < b. Let

A = NG\{vl,...,vl+m}(vk) \NG\{v1,...,vl}(vm),

268 B. A. Chat, S. Pirzada, A. Iványi

B = NG\{v1,...,vl+m}(vk) ∩NG\{v1,...,vl}(vm).

Then eG(x, y) = b for x ∈ NG\{v1,...,vl}(vm) and y ∈ NG\{v1,...,vl+m}(vk). Oth-
erwise, if eG(x, y) < b, then G′ = (G \ {vy, vmx}) ∪ {vkvm, xy} is a realiza-

tion of π and contains J
b
l,m on v1, . . . , vl+m with V(Kbl) = {v1, . . . , vl} and

(K
b
m) = {vl+1, . . . , vl+m} such that

eG′({v1, . . . , vl}, {vl+1, . . . , vl+m}) > M,

which contradicts the choice of G. Thus B is b-complete. We consider the
following two cases.
Case 1. Let A = ∅. Then 2bl+ bm− 2 ≤ dk = dG(vk) < bl+ bm− 1+ b|B|,
and so |B| ≥ bl. Since each vertex in NG\v1,...,vl(vm) is adjacent to each vertex
in B by b edges and |NG\{v1,...,vl}(vm)| ≥ 2bl+bm− 2 = bl+bm− 1. It can be
easily seen that the b induced subgraph of NG\{v1,...,vl}(vm)∪{vm} in G contains

J
b
l,m as a subgraph. Thus π is potentially A

b
l,m- graphic.

Case 2. Let A 6= ∅. Let a ∈ A. If there are x, y ∈ NG\{v1,...,vl}(vm) such
that eG(x, y) < b then G′ = (G\{vmx,vmy,vka}) ∪ {vkvm, avm, xy} is a realiza-

tion of σ and contains J
b
l,m on v1, . . . , vl+m with V(Kbl) = {v1, . . . , vl} and

(K
r
m) = {vl+1, . . . , vl+m} such that eG′({v1, . . . , vl}, {vl+1, . . . , vl+m}) > M which

contradicts the choice of G. Thus NG\{v1,...,vl}(vm) is b-complete. Since

|NG\{v1,...,vl}(vm)| ≥ bl+ bm− 1 and eG(vm, z) = b

for any z ∈ NG\{v1,··· ,vl}(vm), it is easy to see that the induced b-subgraph of

NG\{v1,...,vl}(vm)∪{vm} in G is b-complete, and so contains J
b
l,m as a b-subgraph.

Thus σ is potentially A
b
l,m-graphic. �

6 New results for split sequences

Let n ≥ l +m and let σ = (s1, . . . , sn) be a nonincreasing sequence of non-
negative integers with sl ≥ b(l +m) − 1 and sl+m ≥ bl. We define sequences
σ1, . . . , σl as follows. We first construct the sequence

σ1 = (s2 − b, . . . , sl − b, sl+1 − b, . . . , sl+m − b, s1l+m+1, . . . , s
1
n)

from σ by reducing 1 the largest term that has not already been reduced b
times, and then reordering the last n − l −m terms to be nonincreasing. For
2 ≤ i ≤ b, we construct

σi = (si+1 − ib, . . . , sl − ib, sl+1 − br, . . . , sl+m − ib, sil+m+1, . . . , s
i
n)

Recognition of split-graphic sequences 269

from

σi−1 =(si − (i− 1)b, . . . , sl − (i− 1)b, sl+1 − (i− 1)b, . . . ,

sl+m − (i− 1)b, si−1l+m+1, . . . , s
i−1
n)

by deleting si − (i − 1)b, reducing the first si − (i − 1)b remaining terms of
si−1 by one that has not already been reduced b times, and then reordering
the last n− l−m terms to be nonincreasing.

We start with the following lemma.

Lemma 33 A nonincreasing integer sequence σ = (s1, . . . , sn) is potentially
Abl,m-graphic if and only if it is potentially Jbl,m-graphic.

Proof. We only need to prove that if σ = (s1, . . . , sn) is potentially Jbl,m-
graphic, then it is potentially Abl,m-graphic. We may choose a realization G
of σ with vertex set V(G) = {v1, . . . , vn} such that dG(vi) = si for 1 ≤ i ≤
n, the induced b-subgraph G[{v1, . . . , vl+m}] of {v1, . . . , vl+m} in G contains
Jbl,m as its b-subgraph and |V(Kbl) ∩ {v1, . . . , vl}| is maximum. Denote H =
G[{v1, . . . , vl+m}]. If |V(Kbl) ∩ {v1, . . . , dl}| = l, that is, V(Kbl) = {v1, . . . , vl},
then σ is potentially Abl,m-graphic. Assume that |V(Kbl) ∩ {v1, . . . , vl}| < l.
Then there exists vi ∈ {v1, . . . , vl} \ V(K

b
l) and a vj ∈ V(Kbl) \ {v1, . . . , vl}.

Let A = NH(vj) \ ({vi} ∪ NH(vi)) and B = NG(vi) \ ({vj} ∪ NG(vj)). Since
dG(vi) ≥ dG(vj). We have |B| ≥ |A|. Let us choose any subset C ⊆ B such that
|C| = |A|. Now form a new realization G′ of s by a sequence of b-exchanges
the b-edges of the star centralized at vj with end vertices in A with the non
b-edges of the star centralized at vj with end vertices in C, and by a sequence
of b-exchange the b-edges of the star centralized at vi with end vertices in C
with the non b-edges of the star centralized at vi with end vertices in A. It is
easy to see that G′ contains Jbl,m on {v1, . . . vl+m} so that |V(Kbl) ∩ {v1, . . . , vl}|

is larger than that of G, which contradicts to the choice of G. �

In the next result, we use the result of Fulkerson et al. [24] and prove a
necessary and sufficient condition for a b-graphic sequence s to be potentially
Jbl,m-graphic.

Theorem 34 Let n ≥ l + m and σ = (s1, . . . , sn) be a nonincreasing even
sequence of nonnegative integers, where sl ≥ b(l + m − 1) and sl+m ≥ lb.

270 B. A. Chat, S. Pirzada, A. Iványi

Then σ is potentially Jbl,m-graphic if and only if

p∑
i=1

(si − b(l+m− 1)) +

l+p′∑
i=b+1

(si − bl) +

l+m+q∑
i=l+m+1

si ≤

r(p+ p′ + q)(p+ p′ + q− 1) − rp(p− 1) − 2bpp′

+

r∑
i=p+1

min{bq, si − b(l+m− 1)}

+

l+m∑
i=l+p′+1

min{b(p′ + q), si − bl}+
n∑

i=l+m+q+1

min{b(p+ p′ + q), si}

for any 1 ≤ l ≤ n, 1 ≤ m ≤ n, for any p, p′ with 0 ≤ p ≤ l, 0 ≤ p′ ≤ m and
0 ≤ q ≤ n− l−m.

Proof. To prove the necessity, by Lemma 33, let G be a graph with vertex
set V(G) = {v1, . . . , vn} such that dG(vi) = si for 1 ≤ i ≤ n and G contains

Jbl,m on v1, . . . , vl+m with V(Kbl) = {v1, . . . , vl} and V(K
b
m) = {vl+1, . . . , vl+m}.

The removal of the b edges induced by {v1, . . . , vl} and the b-edges between
{v1, . . . , vl} and {vl+1, . . . , vl+m} results in a graph G′ in which all degrees in
{v1, . . . , vl} are reduced by b(l + m − 1) and all degrees in {vl+1, . . . , vl+m}

are reduced by lb. For 0 ≤ p ≤ l, 0 ≤ p′ ≤ m and 0 ≤ q ≤ n − l − m,
denote P = {vi|1 ≤ i ≤ p}, P′ = {vi|l + 1 leqi ≤ l + p′}, R = {vi|p + 1 ≤ i ≤
l}, R′ = {vi|l + p

′ + 1 ≤ i ≤ l +m}, Q = {vi|l +m + 1 ≤ i ≤ q + l +m} and
S = {vi|q + l +m + 1 ≤ i ≤ n}. The degree sum in the b-subgraph induced
by P ∪ P′ ∪Q is at most b(p + p′ + q)(p + p′ + q − 1) − bp(p − 1) − 2bpp′.
Therefore,

m =

p∑
i=1

(si − b(l+m− 1)) +

b+p′∑
i=r+1

(si − bl) +

l+m+q∑
i=l+m+1

si

− b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′

is the minimum number of edges of G′ with exactly one end vertex in P∪P′∪Q.
On the other hand, the maximum number of edges of G′ with exactly one end

Recognition of split-graphic sequences 271

vertex in R ∪ R′ ∪ S is

M =

b∑
i=p+1

min{bq, si − b(l+m− 1)}+

l+m∑
i=b+p′+1

min{b(p′ + q), si − bl}

+

n∑
i=l+m+q+1

min{b(p+ p′ + q), si}

We observe that in the graph G′, m ≤M is true. This proves the necessity.
To prove the sufficiency, we shall use the following well-known result of

Fulkerson et al. [24]. Let H be a b-graph on the vertex set V(H) = {v1, . . . , vn}.
There exists a b-subgraph G ⊆ H such that every vertex vi has degree si, if
and only if

n∑
i=1

si is even, (14)

and for every A,B ⊆ V(H) such that A ∩ B = s, we have∑
vi∈A

si ≤
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B

si. (15)

We now continue to proceed with the proof of sufficiency. Let n ≥ l +m
and σ = (s1, . . . , sn) be a nonicreasing sequence of nonnegative integers, where

sl ≥ l + m − 1, sl+m ≥ l and
n∑
i=1

si is even. Let s′ = (s′1, . . . , s
′
n), where

s′i = si − l−m+ 1 for 1 ≤ i ≤ l, s′i = si − b for l+ 1 ≤ i ≤ l+m and s′i = si
for l +m + 1 ≤ i ≤ n. Let H be the graph obtained from Kbn with vertex set
V(Kbn) = {v1, . . . , vn} by deleting all edges of the complete b-subgraph induced
by {v1, . . . , vl} and all edges between {v1, . . . , vl} and {v1+1, . . . , vl+m}. It is easy
to see that s is potentially Abl,m-graphic if and only if H has a subgraph G with
the degree sequence s′ such that every vertex vi has degree s′i. Observe that
between two disjoint odd cycles of H there is an edge. Therefore, H satisfies
the odd-cycle condition and we apply (14) and (15).

Let K = {v1, . . . , vl}, K
′ = {vl+1, . . . , vl+m} and A,B ⊆ V(H) such that A∩B =

s. Let A1 = A∩K,A′1 = A∩K′, A2 = A\ (K∪K′), B1 = B∩K,B′1 = B∩K, B2 =
B\ (K∪K′) and set p = |A1|, p

′ = |A′1|, q = |A2|, b1 = |B1|, b
′
1 = |B′1|, b2 = |B2|.

For convenience, we denote

L(p, p′, q) =

p∑
i=1

(si − b(l+m− 1)) +

r+p′∑
i=r+1

(si − bl) +

r+s+q∑
i=r+s+1

si, (16)

272 B. A. Chat, S. Pirzada, A. Iványi

R(p, p′, q) = b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′

+

b∑
i=p+1

min{bq, si − b(l+m− 1)}+

l+m∑
i=r+p′+1

min{b(p′ + q), si − bl}

+

n∑
i=l+m+q+1

min{b(p+ p′ + q), si},

L′(A,B) =
∑
vi∈A

s′i =
∑
vi∈A1

{si − b(l+m− 1)}+
∑
vi∈A′1

{si − bl}+
∑
vi∈A2

si,

R′(A,B) =
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B

s′i

=
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B1

(si − b(l+m− 1)) +
∑
vi∈B′1

(si − lb) +
∑
vi∈B2

si.

Clearly, L′(A,B) ≤ L(p, p′, q). Further
∑

vi∈A,vj∈V(H)\B
eH(vi, vj) is the number

of counting the edges of H between A and V(H)\ (A∪B) and double counting
the edges induced by A. Thus we get

∑
vi∈A,vj∈V(H)\B

eH(vi, vj)

= r(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′ + qb(l− p− b1)

+ b(p′ + q)(m− p′ − b′1) + b(p+ p
′ + q)(n− l−m− q− b2)

= b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′ +

l−b1∑
i=p+1

q

+

l+m−b′1∑
i=l+p′+1

(p′ + q) +

n−b2∑
i=l+m+q+1

(p+ p′ + q).

Recognition of split-graphic sequences 273

Therefore,

R′(A,B) =
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B1

(si − b(l+m− 1))

+
∑
vi∈B′1

(si − lb) +
∑
vi∈B2

si

≥ b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′ +

l−b1∑
i=p+1

q

+

l+m−b′1∑
i=l+p′+1

(p′ + q) +

n−b2∑
i=l+m+q+1+1

(p+ p′ + q)

+

l∑
i=l−b1+1

(si − b(l+m− 1)) +

l+m∑
i=l+m−b′1+1

(si − br) +

n∑
i=n−b2+1

si

≥ r(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′

+

l∑
i=p+1

min{bq, si − b(l+m− 1)}+

l+m∑
i=l+p′+1

min{b(p′ + q), si − bl}

+

n∑
i=l+m+q+1

min{r(p+ p′ + q), si}

= R(p, p′, q).

It follows from L(p, p′, q) ≤ R(p, p′, q) that L′(A,B) ≤ R′(A,B). By (14) and
(15) H is a b-subgraph G with the degree sequence s′ such that every vertex
vi has degree s′i. Hence s is potentially Abl,m-graphic. Thus the sufficiency is
proved. �

It is easy to enumerate the Jl,m-split graphs on n vertices.

Theorem 35 If l ≥ 0, m ≥ 1, l+m ≥ 1, and b ≥ 1, then

1. there are λ(b, l,m) =
(
l+m
l

)
labeled Jbl,m and they are isomorphic;

2. there are β(b, l,m) = l+m nonisomorphic Jbl,m.

Proof.

1. Since Jl,m has l+m vertices, therefore there are
(
l+m
l

)
ways to choose the

vertices of Kl. If we consider two different labeled Jl,m jsplit graphs, then

274 B. A. Chat, S. Pirzada, A. Iványi

the vertices of the clique parts correspond to each other, and the inde-
pendent vertices of these graphs also correspond to each other, therefore
these graphs are isomorphic.

2. Formally Jb0,l+m, J
b
1,l+m−1, . . . , J

b
0,l+m are l+m+ 1 different possibilities,

but the last two split graphs are isomorphic, therefore β(l,m) = l+m.

�

We can remark, that if m ≥ 1, then Jl,m is also a Jl+1,m−1 split graph.

7 Known algorithms for graphic sequences

In this section at first we present the classical Havel-Hakimi (HH) algorithm,
then its testing version (HHL), which even in the worts case in O(n) time
decides whether an integer sequence is (0, 1, n)-graphic. Then we describe al-
gorithm Havel-Hakimi-pqlm-Split which in O(n) time decides the similar

problem for potentially J
(p,q)
l,m -graphic sequences, further a Havel-Hakimi type

algorithm for recognition of (a, b, n).

7.1 Havel-Hakimi algorithm (HH)

If n = 1, then there exists one (0, 1, n)-graphic sequence: (0). If n ≥ 2, then
Havel-Hakimi theorem (Theorem 9) gives a necessary and sufficient condition.

Input. n: the length of the sequence s (n ≥ 2);
σ = (s1, . . . , sn): the investigated n-regular sequence.

Output. L: logical variable (L = 0 signalizes, that σ is not graphic, while
L = 1 means, that σ is (0, 1, n)-graphic).

Working variable. i: cycle variables.

Havel-Hakimi(n, σ)

01 L = 0 // line 01–07: test of the elements of s
02 for i = 1 to n− 1
03 if ssi+i == 0 // lines 03–04: s is not graphic
04 return L
05 for j = i+ 1 to si + i
06 sj = sj − 1
07 sort (si+1, . . . , sn) in decreasing order
08 L = 1 // lines 08–09: s is graphic
09 return L

Recognition of split-graphic sequences 275

7.2 Havel-Hakimi-Testing-Linear algorithm (HHTL)

The original Havel-Hakimi algorithm in worst case requires quadratic time to
test the (0, 1, n)-regular sequences. Using the concepts weight point, reserve
and cutting point we reduced the worst running time to O(n).

The definition of the weight point wi belonging to si was introduced in
[48] in connection with Erdős-Gallai-Linear and it is as follows. wi is the
largest k (1 ≤ k ≤ n) having the property sk ≥ i. But if s1 < i, then wi = 0.
EGL exploits the property wi ensuring that if i ≤ wi, then the key expression
min j, sk in the Erdős-Gallai theorem equals to i, otherwise equals to sk.

Here we extend the definition to be applicable also in the proof of the linear-
ity of Chungphaisan-Erdős-Gallai. Now let wi the largest k (1 ≤ k ≤ n)
having the property sk ≥ bi. But if s1 < bi, then let wi = 0. In the case b = 1
the new definition results the old one.

In HHL the weight point wi determines the increment of the tail capacity
when we switch to the investigation of the next element of σ.

The remainder ri belonging to si is defined as the unused part of the actual
tail capacity and can be computed by the formulas

ri = w1 − 1− s1

and

ri = wi − ri−1 − si for 1 ≤ i ≤ n− 1.

The cutting point yi belonging to si is max(i,wi).
The programs of this paper are written using the pseudocode conventions

descibed in [16].
Input. n: number of vertices (n ≥ 1);

σ = (s1, . . . , sn): the investigated n-graphic sequence.
Output. L: logical variable.
Work variables. i: cycle variable;

r = (r1, . . . , rn): ri the reserve belonging to si;
w = (w1, . . . , wn): wi the weight point belonging to si;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of s.

Havel-Hakimi-Testing-Linear(n, s)

01 L = 0 // lines 01: set the probable value
02 if s1 == 0 // lines 02–04: test of the sequence consisting of only zeros
03 L = 1
04 return L

276 B. A. Chat, S. Pirzada, A. Iványi

05 if ss1+1 == 0 // lines 05–06: test of ss1 in constant time
06 return L
07 H1 = s1 // line 07: initialization of H
08 for i = 2 to n // lines 08–09: further Hi’s
09 Hi = Hi−1 + si
10 if Hn is odd // lines 10–11: test of the parity
11 return L
12 w1 = n // lines 12–15: computation of the first weight point and reserve
13 while sw1

< 1

14 w1 = w1 − 1
15 r1 = w1 − 1− s1 // lines 15–24: testing of σ
16 sn+1 = 0
17 for i = 2 to n− 1
18 if si ≤ i or si+1 = 0
19 L = 1
20 return L
21 wi = wi−1
22 while swi

< i and wi > 0
23 wi = wi − 1
24 if si > wi − 1+ ri−1 // line 24: Is σ graphic?
25 return L // line 25: σ is not graphic
26 ri = wi + ri−1 − si
27 L = 1 // lines 27–28: σ is graphic
28 return L

Theorem 36 The running time of Havel-Hakimi-testing-Linear is in
best case Θ(1), and in worst case is Θ(n).

Proof. If the condition in line 2 holds, then the running time is Θ(1). If not,
then we reduce the actual w at most n times and the remaining operations
require O(1) operations for all reductions. �

7.3 Erdős-Gallai-Chungphaisan-Linear algorithm (EGChL)

The following algorithm tests the potential degree sequences of (0, b, n)-graphs.
It is based on Theorem 13.

Input. n: number of vertices (n ≥ 1);
σ = (s1, . . . , sn): a (0, b, n)-regular sequence;
b: the maximal permitted number of arcs between two vertices.

Recognition of split-graphic sequences 277

Output. 1 or 0: 1, if s is (0, b, n)-graphic and 0 otherwise.
Work variable. i: cycle variable;

r = (r1, . . . , rn): ri is the reserve belonging to si;
w = (w1, . . . , wn): wi is the weightpoint belonging to si.

Erdős-Gallai-Chungphaisan-Linear(n, σ, b)

01 H1 = s1 // line 01: initialization of H1
02 for i = 2 to n− 1 // line 02–03: computation of the elements of H
03 Hi = Hi−1 + si
04 if Hn is odd // line 04–05: test of the parity
05 return 0
06 w = n // lines 06: initialization of the first weight point
07 for i = 1 to n− 1 // lines 07–12: test of σ
08 while sw < ib and w > 0
09 w = w− 1
10 y = max(i,w)
11 if Hi > bi(y− 1) +Hn −Hy
12 return 0
13 return 1 // line 13: acceptance of σ

Theorem 37 The running time of Erdős-Gallai-Chungphaisan-Linear
is Θ(n) in all cases.

Proof. Lines 01–05 require Θ(n) time. Since the value of w is strictly decreas-
ing, lines 06–13 require O(n) time, therefore the running time is Θ(n) in all
cases. �

Let us consider two examples. Let b = 3 and σ ′ = (13, 10, 5, 5, 4, 1). H6 = 38
is even. If i = 1, then wi = y = 5 and the condition in line 11 is not satisfied
(13 ≤ 3 · 1 · (5 − 1)). If i = 2, then wi = y = 2 and the condition in line 11
holds (23 > 3 · 2 · (2− 1)) + 5+ 5+ 4+ 1, therefore σ is not (0, 3, 6)-graphic.

Let b remain 3, but change σ to σ ′ = (13, 10, 5, 5, 4, 3). The first difference
comparing with the previous example comes when i = 2. Now 23 ≤ 3 · 2 · (2−
1)) + 5 + 5 + 4 + 3, and the condition in line 11 holds for i = 3, 4 and 5 too,
therefore σ ′ is (0, 3, 6)-graphic.

Using Corollary 15 it is easy to test an (a, b, n)-regular sequence σ whether
it is (a, b, n)-graphic. We use EGChL with input sequence σ ′ = (s1 − a(n −
1), . . . , sn − a(n− 1)).

278 B. A. Chat, S. Pirzada, A. Iványi

8 Known algorithms for split sequences

In this section we describe the linear time algorithm proposed for the recog-
nition and reconstruction of potentially psplit and jsplit sequences.

8.1 Hammer-Simeone-PSplit algorithm (HSPS)

The following algorithms was proposed in 1981 by Hammer and Simeone [34].
Ist base is Theorem 26.

Let G be a graph with degree sequence d = (d1, . . . , dn).
Input. n: number of elements of δ;

δ = (d1, . . . , dn): a graphic sequence.
Output. 1 or 0: 1, if d is potentially psplit sequence.
Work variable. i, k: cycle variables;

Σ1, Σ2: actual sums of the degrees.

Hammer-Simeone-Linear(n, δ)
01 k = 0 // line 01–02: initialization of k and S
02 Σ1 = 0
03 while dk+1 ≥ k− 1 and k < n // line 03–07: computation of m
04 m = k+ 1
05 Σ1 = Σ1 + dk
06 k = k+ 1
07 Σ2 = m(m− 1)
08 for i = m+ 1 to n // lines 08–09: computation of Σ2
09 Σ2 = Σ2 + di
10 if Σ1 6= Σ2 // lines 10–11: G is not psplit graph
11 return 0
12 return G i’is psplit, maximal clique size is m // line 12: G is psplit graph

Theorem 38 Let G a graph with degree sequence δ. Algorithm Hammer-
Simeone-Linear decides, if G is a psplit graph and computes the maximal
clique size in Θ(n) time.

Proof. Lines 01–02 require O(1) time, lines 03–09 Θ(n) time and lines 10–12
O(1) time. �

8.2 Further linear algorithms for psplit sequences

In 1980 Golumbic [26], in 2003 Feder et al. [20], in 2007 Heggernes and Kratsch
[37] proposed linear time algorithm for the recognition of psplit graphs.

Recognition of split-graphic sequences 279

8.3 Havel-Hakimi-Testing-JSplit algorithm (HHJST)

In 2012 Yin [87] described HHJST, a Havel-Hakimi type linear algorithm for
the recognition of potentially jsplit sequences.

9 New algorithms

In this section we present two simple algorithms, which decide whether a se-
quence of nonnegative integers is Abl -graphic or Jbl,m-graphic, and if the answer
is yes, then they compute the maximal suitable l too.

These algorithms require in worst case only O(n) time even for (a, b, n)-
regular input, and are quicker for (a, b, n)-graphic input., since then the sort-
ing can be omitted.

We remark, that earlier only for pseudo-split graphs was published a linear
time testing algoritm [58].

9.1 Algorithm Ab-l-Max

For given sequence σ = (s1, . . . , sn) of nonnegative integers and given nonneg-
ative integer b algorithm A-b-l-Max computes the maximal l for which the
sequence s is Abl -graphic.

Input. n ≥ 1: the length of the sequence s;
σ = (s1, . . . , sn): a sequence of nonnegative integers;
b: the maximal permitted number of arcs between two different vertices.

Output. l: the maximal value for which d is Abl -graphic.
Work variable. i: cycle variable.

A-b-l-Max(n, σ, b)

01 Counting-Sort(n, σ) // line 01: sorting of σ
02 l = 1 // line 02: initialization of l
03 while sl+1 ≤ bl and l < n // line 03–04: computation of l
04 l = l+ 1
05 return l ’is the maximal value’ // line 05: return of the maximal l

Theorem 39 Let b, l and n be positive integers. Algorithm A-b-l-Max com-
putes the maximal l for which σ = (s1, . . . , sn) is Abl -graphic in Θ(n) time.

Proof. Let G be a b-graph and s ′ = (s ′1, . . . , s
′
n) be the nonincreasingly sorted

sequence consisting from the elements of s. Kbl contains l vertices whose degrees
are equal to b(l−1). Therefore to find the maximal size Kbl which is a subgraph

280 B. A. Chat, S. Pirzada, A. Iványi

of G it is sufficient to find the maximal j satisfying s ′j ≥ b(j−1). In lines 01–04
A-b-l-Max computes this maximal l.

Lines 01 of A-b-l-Max requires Θ(n) time, lines 02 and 05 O(1) time, and
lines 03–04 require O(n) time, so the best and worst running times of this
algorithm are both Θ(n). �

As an example consider the sequence σ = (6 6 1 6) and b = 2. Then
σ ′ = (6 6 6 1) and Ab-l-Max returns with l = 3. Indeed G contains K3 as
a subgraph but it does not contain K4 as a subgraph. Since the sum of the
elements of s is odd, according to theorem of Erdős and Gallai [17] s is not
graphic, that is an Abl -graphic sequences are not always graphic.

9.2 Algorithm J-b-l-Max

For given sequence σ = (s1, . . . , sn) of nonnegative integers and given nonneg-
ative integer b algorithm S-b-l-Max computes the maximal l for which the
sequence σ is Sbl,n−l-graphic.

If Kbl and Kbm are vertex disjoint and G is the join of Kbl and Km, then in G
the degrees of the vertices of Kl are equal to b(l − 1 +m), while the degrees
of the vertices of Km are equal to bm. This observation is the base of the
following algorithm S-b-l-Max.

Input. n: the length of the degree sequence s;
σ = (s1, . . . , sn): a sequence of nonnegative integers;
b: the maximal permitted number of edges between two different vertices.

Output. l: the maximal value for which σ is Sbl,n−l-graphic or the message ’σ
is not (b, l, n− l)-graphic’.

Work variable. i: cycle variable.

J-b-l-Max(n, σ, b)

01 if s1/b is not integer // line 01–02: constant time test
02 return ’σ is not (b, l, n− l)-graphic’ // line 02: σ is

not (b, l, n− l)-graphic
03 Counting-Sort(n, σ) // line 03: sorting of σ
04 l = 1 // line 04: initialization of l
05 while sl+1 == s1 and l < n // line 05–06: computation of l
06 l = l+ 1
07 if sl+1 6= bl // line 07–08: σ is not (b, l, n− l)-graphic
08 ’s is not (b, l, n− l)-graphic’
09 return l ’is the maximal value’

Recognition of split-graphic sequences 281

Theorem 40 Algorithm J-b-l-Max computes the maximal l for which σ =
(s1, . . . , sn) is Sb(l, n− l)-graphic in Θ(n) time.

Proof. Let b, l, m and n be positive integers. Let G be a b-graph and
σ = (s ′1, . . . , s

′
n) be the nonincreasingly sorted sequence consisting from the

elements of s ′.
The next part of the proof is similar to the corresponding part of Theorem

39.
Line 01 of J-b-l-Max requires Θ(n) time and lines 02-05 require O(n) time,

so the best running time is Θ(1) and the worst running time is Θ(n). �

We remark that if the input of J-b-l-Max is sorted, then we can omit lines
03 and 04, and using logarithmic search we can reduce the worst case running
time to Θ(logn).

Acknowledgement

The authors thank the useful remarks of the unknown referee and papers of
Professor Jian-Hua Yin (Hainan University).

References

[1] S. M. de Almeida, C. P. de Mello, A. Morgana, Classification problem for split
graphs, J. Brazilian Comp. Soc., 18, (2) (2012) 95–101. ⇒266

[2] M. D. Barrus, Hereditary unigraphs and Erdős-Gallai equalities, Discrete Math.,
313, (21) (2013) 2469–2481. ⇒263

[3] D. Bauer, S. L. Hakimi, E. Schmeichel, Recognising of tough graphs is NP-hard,
Discrete Appl. Math., 28 (1995) 191–195. ⇒266

[4] C. Benzaken, P. L. Hammer, D. De Werra, Split graphs of Dilworth number 2,
Discrete Math., 55, (2) (1985) 123–127. ⇒256

[5] Z. Blázsik, M. Hujter, A. Pluhár, Zs. Tuza, Graphs with no induced C4 and 2K2,
Discrete Math., 115 (1993) 51–55. ⇒256, 263

[6] E. Boros, V. A. Gurvich, I. Zverovich, On split and almost CIS-graphs, Australas.
J. Combin., 43 (2009) 163–180. ⇒255

[7] A. Brandstädt, Partitions of graphs into one or two stable sets and cliques,
Discrete Math., 152 (1996) 47–54. ⇒254, 256

[8] A. Brandstädt, Corrigendum, Discrete Math., 186 (1998) 295–295. ⇒254, 256
[9] A. Brandstädt, P. L. Hammer, V. B. Le, V. V. Lozin, Bisplit graphs, Discrete

Mathematics 299 (2005) 11–32. ⇒255, 256
[10] A. Brandstädt, V. B. Le, J. P. Spinrad, Graph Classes: A Survey, SIAM Mono-

graphs on Discrete Mathematics and Applications, SIAM, Philadelphia, PL,
1999. ⇒254, 256, 266

http://math.uri.edu/~barrus/
http://www.sciencedirect.com/science/journal/0012365X
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.sjsu.edu/people/edward.schmeichel/
http://www.sciencedirect.com/science/journal/0166218X
http://en.wikipedia.org/wiki/Peter_Hammer
http://www.sciencedirect.com/science/journal/0012365X
http://www.inf.u-szeged.hu/~blazsik/uj/
 http://www.math.bme.hu/diffe/staff/hujter.shtml
http://www.dcs.vein.hu/tuza/
http://www.sciencedirect.com/science/journal/0012365X
http://ajc.maths.uq.edu.au/pdf/43/ajc_v43_p163.pdf
http://ajc.maths.uq.edu.au/
http://www.informatik.uni-rostock.de/~ab/index_en.html
http://www.sciencedirect.com/science/journal/0012365X
http://www.informatik.uni-rostock.de/~ab/index_en.html
http://www.sciencedirect.com/science/journal/0012365X
http://www.informatik.uni-rostock.de/~ab/index_en.html
http://en.wikipedia.org/wiki/Peter_Hammer
http://www.sciencedirect.com/science/journal/0012365X
http://www.informatik.uni-rostock.de/~ab/index_en.html
http://www.vuse.vanderbilt.edu/~spin/persinfo.html

282 B. A. Chat, S. Pirzada, A. Iványi

[11] R. E. Burkard, P. L. Hammer, A note on Hamiltonian split graphs, J. Comb.
Graph Theory, Series B, 28 (1980) 245–248. ⇒265

[12] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, CRC Press, Boca
Raton, FL, 2011. ⇒253

[13] V. Chungphaisan, Conditions for a sequences to be r-graphic, Discrete Math., 7
(1974) 31–39. ⇒257, 258

[14] V. Chvátal, The toughness of graphs, Discrete Math., 5 (1973) 215–228. ⇒266
[15] R. J. Clarke, Covering a set by subsets, Discrete Math., 181 (1990) 147–152. ⇒

264
[16] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algo-

rithms Third edition, The MIT Press/McGraw Hill, Cambridge/New York, 2009.⇒275
[17] P. Erdős, T. Gallai, Gráfok elő́ırt fokú pontokkal (Graphs with given degrees of

vertices), Mat. Lapok, 11 (1960), 264–274. ⇒253, 256, 258, 280
[18] P. Erdős, A. Gyárfás, Split and balanced colorings of complete graphs, Discrete

Mathematics, 200, (1–3) (1999), 79–86. ⇒264
[19] P. Erdős, M. S. Jacobson, J. Lehel, Graphs realizing the same degree sequences

and their respective clique numbers, in: Y. Alavi (Ed.), Graph Theory, Combina-
torics and Applications, vol. 1, John Wiley and Sons, New York, 1991, 439–449.⇒264

[20] T. Feder, P. Hell, S. Klein, R. Motwani, List partitions, SIAM J. Discrete Math,
16 (2003) 449–478. ⇒278

[21] S. Földes, P. Hammer, Split graphs having Dilworth number two, Canad. J.
Math. 29, (3) (1977) 666–672. ⇒254, 256

[22] S. Földes, P. Hammer, Split graphs, in (ed. E. Hoffman et al.) Proc. 8th South-
Eastern Conf. Combinatorics, Graph Theory Comp. Congressus Num., XIX
(1977) 311–315. ⇒254, 256, 263

[23] S. Földes, P. Hammer, The Dilworth number of a graph, Annals Discrete Math.,
2 (1978) 211–219. ⇒256

[24] D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs
with multiple edges, Canad. J. Math., 17 (1965) 166–177. ⇒253, 269, 271

[25] V. Gasharov, The Erdős-Gallai criterion and symmetric functions, Europ. J.
Combinatorics, 18 (1997) 287–294. ⇒258

[26] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, 1980. ⇒254, 256, 263, 278

[27] R. J. Gould, M. S. Jacobson, J. Lehel, Potentially G-graphical degree sequences,
in: Y. Alavi (Ed.), Combinatorics, Graph Theory and Algorithms, vol. 1, New
Issues Press, Kalamazoo, Michigan, 1999, 451–460. ⇒261, 264

[28] J. L. Gross, J. Yellen, P. Zhang. Handbook of Graph Theory, CRC Press, Boca
Raton, FL, 2013. ⇒252, 253, 254, 256

[29] A. Gyárfás, J. Lehel, On-line and first fit colorings of graphs. J. Graph Theory,
12, (2) (1988) 217–227. ⇒264

[30] A. Gyárfás, Generalized split graphs and Ramsey numbers, J. Comb. Theory,
Series A 81, (2) (1998) 255–261. ⇒255, 256

http://www.opt.math.tugraz.at/burkard/
http://en.wikipedia.org/wiki/Peter_Hammer
http://www.sciencedirect.com/science/journal/00958956
http://homepages.wmich.edu/~zhang/gary.html
http://www.users.drew.edu/~llesniak/
http://www.users.drew.edu/~llesniak/
http://www.crcpress.com/index.jsf
http://www.sciencedirect.com/science/journal/0012365X
http://users.encs.concordia.ca/~chvatal/0
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://www.mhprofessional.com/category/?cat=1012
http://en.wikipedia.org/wiki/Paul_Erd$%$C5$%$91s
https://en.wikipedia.org/wiki/Tibor_Gallai
http://en.wikipedia.org/wiki/Paul_Erd$%$C5$%$91s
http://www.renyi.hu/~gyarfas/
http://www.sciencedirect.com/science/journal/0012365X
http://en.wikipedia.org/wiki/Paul_Erd$%$C5$%$91s
http://www.msci.memphis.edu/faculty/lehelj.html
http://en.wikipedia.org/wiki/Rajeev_Motwani
http://en.wikipedia.org/wiki/Peter_Hammer
http://cms.math.ca/cjm/
http://en.wikipedia.org/wiki/Peter_Hammer
http://en.wikipedia.org/wiki/Peter_Hammer
http://en.wikipedia.org/wiki/D._R._Fulkerson
http://cms.math.ca/cjm/v17/cjm1965v17.0166-0177.pdf
http://cms.math.ca/cjm/
http://www.sciencedirect.com/science/journal/01956698
http://www.msci.memphis.edu/faculty/lehelj.html
http://www.cs.columbia.edu/~gross/
http://web.rollins.edu/~jyellen/
http://homepages.wmich.edu/~zhang/
http://www.crcpress.com/index.jsf
http://www.renyi.hu/~gyarfas/
http://www.msci.memphis.edu/faculty/lehelj.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118
http://www.renyi.hu/~gyarfas/
http://www.sciencedirect.com/science/journal/00973165

Recognition of split-graphic sequences 283

[31] M. Habib, A. Mamcarz, Colored modular and split decompositions of graphs with
applications to trigraphs, in (ed. D. Kratsch and I. Todinca) Graph-Theoretic
Concepts in Computer Science (40th International Workshop, WG 2014, Nouan-
le-Fuzelier, France, June 25-27, 2014). Series: Lecture Notes in Computer Science,
8747, Springer Verlag, Berlin, 2014, 263–274. ⇒266

[32] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices
of a simple graph. J. SIAM Appl. Math., 10 (1962), 496–506. ⇒257, 258

[33] S. L. Hakimi, E. F. Schmeichel, Graphs and their degree sequences: A survey,
in: Theory and Applications of Graphs, Lecture Notes in Math. 642, Springer-
Verlag, Berlin 1978, 225–235. ⇒261

[34] P. L. Hammer, B. Simeone, The splittance of a graph, Combinatorica, 1, (3)
(1981) 275–284. ⇒263, 264, 278

[35] P. Hanion, Enumeration of graphs by degree sequence, J. Graph Theory, 3 (1979)
295–299. ⇒260

[36] V. Havel, A remark on the existence of finite graphs (Czech), C̆asopis Pĕst. Mat.,
80 (1955), 477–480. ⇒257, 258

[37] P. Heggerness, D. Kratsch, Linear-time certifying algorithms for recognizing split
graphs and related graph classes, Nordic J. Comp., 14 (2007) 87–108. ⇒278

[38] P. Heggernes, F. Mancini, Minimal split completions. Discrete Appl. Math., 157,
(12) (2009) 2659–2669. ⇒266

[39] A. P. Heinz, Total number of split graphs (chordal + chordal complement) on
n vertices. In: (ed. N. J. A. Sloane): The On-Line Encyclopedia of the Integer
Sequences. 2014. ⇒265

[40] P. Hell, D. Kirkpatrick, Linear-time certifying algorithms for near-graphical se-
quences, Discrete Math., 309, (18) (2009) 5703–5713. ⇒260

[41] P. Hell, S. Klein, F. Protti, L. Tito, On generalized split graphs, Electronic Notes
Disc. Math., 7 (2001) 98–101. ⇒255

[42] L. Ibarra, Fully dynamic algorithms for chordal graphs and split graphs, ACM
Trans. Algorithms, 4(4), (2008), Art. 40, 20 pages. ⇒266

[43] A. Iványi, Reconstruction of complete interval tournaments, Acta Univ. Sapien-
tiae, Inform., 1, (1) (2009) 71–88. ⇒252, 253, 256

[44] A. Iványi, Reconstruction of complete interval tournaments II, Acta Univ. Sapi-
entiae, Math., 2, (1) (2010) 47–71. ⇒252, 253

[45] A. Iványi, Degree sequences of multigraphs, Annales Univ. Sci. Budapest.,
Rolando Eötvös Nom., Sectio Comp., 37 (2012) 195–214. ⇒ 256, 259, 260,
262

[46] A. Iványi, Z. Kása, Parallel enumeration of graphical sequences (in Hungarian),
Alk. Mat. Lapok, 31, (2014) 1–58. ⇒260

[47] A. Iványi, L. Lucz, Degree sequences of multigraphs (in Hungarian), Alk. Mat.
Lapok, 29, (2012) 1–54. ⇒260

[48] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, On the Erdős-Gallai and Havel-Hakimi
algorithms. Acta Univ. Sapientiae, Inform. 3, 2 (2011) 230–268. ⇒ 256, 259,
260, 262, 275

http://en.wikipedia.org/wiki/S._L._Hakimi
http://en.wikipedia.org/wiki/S._L._Hakimi
http://en.wikipedia.org/wiki/Peter_Hammer
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0118
http://www.sciencedirect.com/science/journal/0166218X
http://www2.research.att.com/~njas/
http://oeis.org/A48194
http://www.cs.sfu.ca/~pavol/
http://www.ucl.ac.uk/mecheng/people/emeritus-professors-visitors-honoraries/prof-david-kirkpatrick
http://www.sciencedirect.com/science/journal/0012365X
http://www.cs.sfu.ca/~pavol/
http://www2.ic.uff.br/~fabio/
http://www2.ic.uff.br/~loana/
http://dl.acm.org/citation.cfm?id=J982
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-math/matematica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/annales/computatorica
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.ms.sapientia.ro/~kasa/
http://aml.math.bme.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
http://aml.math.bme.hu/wp-content/uploads/2012/06/29-Iv$%$C3$%$A1nyi-Lucz_szed_jav.pdf
http://aml.math.bme.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

284 B. A. Chat, S. Pirzada, A. Iványi

[49] A. Iványi, S. Pirzada. Comparison based ranking, in: ed. A. Iványi, Algorithms
of Informatics, Vol. 3, mondAt, Vác, 2013, 1209–1258. ⇒260

[50] A. E. Kézdy, J. Lehel, Degree sequences of graphs with prescribed clique size.
In: Y. Alavi et. al. (eds.) Combinatorics, Graph Theory, and Algorithms, vol. 2.,
Michigan, New Issues Press, Kalamazoo, 1999, 535–544. ⇒260

[51] D. J. Kleitman, D. L. Wang, Algorithm for constructing graphs and digraphs
with given valences and factors, Discrete Math., 6 (1973) 79–88. ⇒ 254, 257,
258

[52] D. Kratsch, R. M. McConnell, K. Mehlhorn, J. P. Spinrad, Certifying algorithms
for recognizing interval graphs and permutation graphs, SIAM J. Comput., 36,
(2) (2006) 326–353. ⇒266

[53] D. Kratsch, J. Lehel, H. Müller, Toughness, hamiltonicity and split graphs, Dis-
crete Math., 150 (1996) 231–245. ⇒266

[54] M. D. Lamar, Split digraphs, Discrete Math., 312, (7) (2012) 1314–1325. ⇒266
[55] V. B. Le, H. N. de Ridder, Probe split graphs, Discrete Math. Theor. Comput.

Sci., 9(1), (2007) 207–238. ⇒255
[56] J. S. Li, Z. X. Song, An extremal problem on the potentially pk-graphic sequence,

Discrete Math., 212 (2000) 223–231. ⇒264
[57] J. S. Li, Z. X. Song, R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially

pk-graphic sequences is true, Sci. China Ser. A, 41 (1998) 510–520. ⇒264
[58] F. Maffray, M. Preissmann, Linear recognition of pseudo-split graphs, Discrete

Appl. Math. 52 (1994) 307–312. ⇒263, 279
[59] R. M. McConnell, K. Mehlhorn, S. Näher, P. Schweitzer, Certifying algorithms,

Computer Science Review, 5, (2) (2011) 119–161. ⇒260
[60] C. McCreesh, Multi-threaded maximum clique, level 4 Project, School of Com-

puting Science, of Glasgow University, 2013, 38 pages. ⇒264
[61] F. R. McMorris, C. Wang, P. Zhang, On probe interval graphs, Discrete Appl.

Math., 88(1–3), (1998) 315–324. ⇒255
[62] S. D. Nikolopoulos, Constant-time parallel recognition of split graphs, Inf. Proc.

Letters, 54, (1) (1995) 1–8. ⇒265
[63] P. M. Pardalos, J. Rappe, M. G. S. Resende, An exact parallel algorithm for

the maximum clique problem, High Performance Algorithms and Software in
Nonlinear Optimization, Applied Optimization, 24 (1998) 279–300. ⇒264

[64] P. M. Pardalos, J. Xue, The maximum clique problem, J. Global Opt. (1994)
301–328. ⇒264

[65] J. Peemüller, necessary conditions for hamiltonian split graphs, Discrete Math.,
54 (1985) 45–57. ⇒265, 266

[66] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Black-
swan, India, 2012. ⇒253

[67] S. Pirzada, B. A. Chat, Potentially graphic sequences of split graphs, Kragujevac
J. Math., 38, (1) (2014) 73–81. ⇒255, 256, 262, 263

[68] A. R. Rao, The clique number of a graph with given degree sequence, in: A. R.
Rao (Ed.) Proc. Symp. on Graph Theory, MacMillan and Co. Limited, India,
ISI Lecture Notes Series, 4 (1979) 251–267. ⇒260

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/Faculty5.aspx
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.tankonyvtar.hu/
http://www.antoncom.hu/books.htm
http://www.msci.memphis.edu/faculty/lehelj.html
http://www.sciencedirect.com/science/journal/0012365X
http://lita.sciences.univ-metz.fr/~kratsch/
http://people.mpi-inf.mpg.de/~mehlhorn/
http://www.vuse.vanderbilt.edu/~spin/persinfo.html
http://epubs.siam.org/doi/abs/10.1137/S0097539703437855
http://epubs.siam.org/journal/smjcat
http://lita.sciences.univ-metz.fr/~kratsch/
http://www.msci.memphis.edu/faculty/lehelj.html
http://www.comp.leeds.ac.uk/hm/
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/713/1831
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/index
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science/journal/0166218X
http://people.mpi-inf.mpg.de/~mehlhorn/
http://www.dcs.gla.ac.uk/~pat/4yProjects/HallOfFame/reports2013/McCreeshC.pdf
http://www.sciencedirect.com/science/journal/0166218X
http://www.cs.uoi.gr/~stavros/
http://www.sciencedirect.com/science/journal/00200190
http://link.springer.com/chapter/10.1007/978-1-4613-3279-4_18
http://www.sciencedirect.com/science/journal/0012365X
http://maths.uok.edu.in/DrSPirzada.aspx
http://maths.uok.edu.in/DrSPirzada.aspx

Recognition of split-graphic sequences 285

[69] A. R. Rao, A survey of the theory of potentially P-graphic and forcibly P-graphic
degree sequences, Comb. Graph Theory, Proc. Symp. (Calcutta 1980), Lect.
Notes Math. 885 (1981) 417–440. ⇒260

[70] A. R. Rao, An Erdős-Gallai type result on the clique number of a realization of
a degree sequence (unpublished). ⇒260

[71] G. F. Royle, Counting set covers and split graphs, J. Integer Sequences, 3 (2000),
Article 00.2.6, 5 pages. ⇒264

[72] M. C. Schmidt, N. F. Samatova, K. Thomas, B.-H. Park, A scalable, parallel al-
gorithm for maximal clique enumeration, J. Parallel Dist. Comp., 69, (4) (2009)
417–428. ⇒264

[73] P. S. Segundo, D. Rodŕıguez-Losada, A. Jiménez, An exact bit-parallel algorithm
for the maximum clique problem, Computers & Operations Res., 38, (2) (2011)
571–581. ⇒264

[74] N. J. A. Sloane, The number of degree-vectors for simple graphs. In (ed.
N. J. A. Sloane): The On-Line Encyclopedia of the Integer Sequences. 2014,
http://oeis.org/A004251 . ⇒260

[75] S. Szabó, Parallel algorithms for finding cliques in a graph, J. Physics: Conf.
Series, 268, (1) (2011) 012030. ⇒264

[76] E. Tomita, A. Tanaka, H. Takahashi, The worst-case time complexity for gener-
ating all maximal cliques and computational experiments, Theoretical Computer
Science, 363, (1) (2006) 28–42. ⇒264

[77] A. Tripathi, H. Tyagi, A simple criterion on degree sequences of graphs. Discrete
Appl. Math., 156, 18 (2008) 3513–3517. ⇒258

[78] A. Tripathi, S. Venugopalan, D. B. West, A short constructive proof of the
Erdős–Gallai characterization of graphic lists, Discrete Math., 310, (4) (2010)
843–844. ⇒258

[79] R. I. Tyshkevich, The canonical decomposition of a graph, Doklady Akademii
Nauk SSSR (in Russian), 24 (1980) 677–679. ⇒263

[80] R. I. Tyshkevich, A. A. Chernyak, Yet another method of enumerating unmarked
combinatorial objects, Mathematical Notes, 48, (6) (1990) 1239–1245 and (in
Russian) Mat. Zametki, 48, (6) (1990) 98–105. ⇒264

[81] R. I. Tyshkevich, O. I. Melnikow, V. M. Kotov, On graphs and degree sequences:
the canonical decomposition (in Russian), Kibernetica, 6 (1981) 5–8. ⇒263

[82] Wikipedia, Split graph. http://en.wikipedia.org/wiki/Split graph, 2014. ⇒256,
263

[83] G. J. Woeginger, The taughness of split graphs, Discrete Math., 190 (1998)
195–197. ⇒266

[84] J.-H. Yin, Conditions for r-graphic sequences to be potentially K
(r)
m+1-graphic,

Discrete Math., 309 (2009) 6271–6276. ⇒261
[85] J.-H. Yin, A generalization of a conjecture due to Erdős, Jacobson and Lehel,

Discrete Math., 309 (2009) 2579–2583. ⇒261, 264
[86] J.-H. Yin, A Rao-type characterization for a sequence to have a realization con-

taining a split graph, Discrete Math., 311 (2011) 2485–2489. ⇒255, 256

https://cs.uwaterloo.ca/journals/JIS/
http://www2.research.att.com/~njas/
http://ac.els-cdn.com/S0304397506003586/1-s2.0-S0304397506003586-main.pdf?_tid=c2073cf4-5eb1-11e4-96 b7-00000aab0f01&acdnat=1414508008_b62d5d98334737c85cade25c470aa50e
http://www.sciencedirect.com/science/journal/03043975
http://web.iitd.ac.in/~atripath/
http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science/journal/0166218X
http://web.iitd.ac.in/~atripath/
http://www.math.illinois.edu/~dwest/
http://www.sciencedirect.com/science/journal/0012365X
http://en.wikipedia.org/wiki/Regina_Tyshkevich
http://en.wikipedia.org/wiki/Regina_Tyshkevich
http://en.wikipedia.org/wiki/Regina_Tyshkevich
http://en.wikipedia.org/wiki/Split_graph
http://www.win.tue.nl/~gwoegi/
http://www.sciencedirect.com/science/journal/0012365X
mailto:yinjh@ustc.edu
http://www.sciencedirect.com/science/journal/0012365X
mailto:yinjh@ustc.edu
http://www.sciencedirect.com/science/journal/0012365X
mailto:yinjh@ustc.edu
http://www.sciencedirect.com/science/journal/0012365X

286 B. A. Chat, S. Pirzada, A. Iványi

[87] J.-H. Yin, A Havel-Hakimi type procedure and a sufficient condition for a se-
quence to be potentially Sr,s-graphic, Czechoslovak Math. J., 62, (3) (2012)
863–867. ⇒255, 256, 262, 279

[88] J.-H. Yin, An extension of A. R. Rao’s characterization of potentially Km+1–
graphic sequences, Discrete Appl. Math., 161, (7–8) (2013) 1118–1127. ⇒256,
262

[89] J.-H. Yin, A Rao-type characterization for a sequence to have a realization con-
taining an arbitrary subgraph H, Acta Math. Sin., 30, (3) (2014) 389–394. ⇒
262

[90] J.-H. Yin, Y.-S. Li, Two sufficient conditions for a graphic sequence to have a
realization with prescribed clique size, Discrete Math., 209 (2005) 218–227. ⇒
264

[91] B. Zavalnij, Three versions of clique search parallelization, J. Comp. Sci. Inf.
Technology, 2(2), (2014) 9–20. ⇒264

Received: July 20, 2014 • Revised: November 16, 2014

mailto:yinjh@ustc.edu
http://ac.els-cdn.com/S0166218X11003908/1-s2.0-S0166218X11003908-main.pdf?_tid=cab494d6-253c-11e4-9da2-00000aab0f26&acdnat=1408190555_f555906329f0187476c81e0a5a03b185
mailto:yinjh@ustc.edu
http://www.sciencedirect.com/science/journal/0166218X
mailto:yinjh@ustc.edu
http://link.springer.com/journal/10255
mailto:yinjh@ustc.edu
http://www.sciencedirect.com/science/journal/0012365X
http://aripd.org/journals/jcsit/Vol_2_No_2_June_2014/2.pdf
http://aripd.org/jcsit

Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 287–310

Finding sequential patterns with TF-IDF

metrics in health-care databases

Zsolt T. KARDKOVÁCS
U1 Research

2 INFOPARK Gábor Dénes
Budapest, Hungary

email: kardkovacs@u1research.org

Gábor KOVÁCS
U1 Research

2 INFOPARK Gábor Dénes
Budapest, Hungary

email: kovacsg@u1research.org

Abstract. Finding frequent sequential patterns has been defined as find-
ing ordered list of items that occur more times in a database than a user
defined threshold. For big and dense databases that contain really long
sequences and large itemset such as medical case histories, algorithm pro-
posed on this idea of counting the occurrences output enourmous number
of highly redundant frequent sequences, and are therefore simply imprac-
tical. Therefore, there is a need for algorithm that perform frequent pat-
tern search and prefiltering simultaneously. In this paper, we propose an
algorithm that reinterprets the term support on text mining basis. Exper-
iments show that our method not only eliminates redundancy among the
output sequences, but it scales much better with huge input data sizes.
We apply our algorithm for mining medical databases: what diagnoses
are likely to lead to a certain future health condition.

1 Introduction

The main goal of any data mining process is to find novel, interesting pat-
terns. In the last two decades, data gathering has been accelerated, which
brought the attention of data scientists from pattern or association oriented

Computing Classification System 1998: H.2.8. H.3.3. I.1.2. I.5.3. J.3.
Mathematics Subject Classification 2010: 68P10, 68T30, 68W05
Key words and phrases: sequence mining, frequent sequential pattern, TF-IDF, health
care database

287

http://u1research.org
mailto:kardkovacs@u1research.org
http://u1research.org
mailto:kovacsg@u1research.org

288 Zs. T. Kardkovács, G. Kovács

knowledge discovery to transition analysis or sequential data mining, which
is a generalization of the former task. Sequential data mining has become an
important task in many real-life applications, e.g. real-time recommendation
systems, health care service optimization, fraud detection.

In the known data mining publications, absolute and relative frequencies
(called support) have been used as the sole criterion in selecting patterns,
while significance or interestingness have been addressed by different solu-
tions. Published solutions suggest to calculate frequent and interesting pat-
terns independently first, and to combine solutions into a resulting set later.
This approach implicitly states that frequency is more important than signif-
icance, or more accurately: significance is taken into account if and only if an
interesting pattern is frequent enough.

Note that, the two properties strongly correlate:

• if minimum frequency (threshold for support) is set too high, then in-
teresting patterns might be omitted

• if minimum frequency is set too low, then the most of the found patterns
are trivial, particular cases of others, or they are uninteresting otherwise

• there is no known golden rule how to set frequencies properly.

So independent processing guarantees information loss. Moreover, consider
the following situation: there are known transactions (baskets with purchased
goods) in a supermarket. Well-known pattern mining algorithms reveals fre-
quent patterns about beers, cheese, and dumpers, however, the real profit is
made from high-end products like branded whiskeys or top smart phones. Since
there are a relatively few number of most profitable customers who purchase
expensive goods, data mining algorithms do not discover the most significant,
profitable customer needs, because they focus on frequent, mass products only.

From another point of view, if we consider that the baskets are textual
documents and items are words, then well-known pattern mining algorithms
would identify the most frequent words in all documents, and later on they
would deal with those too frequent in all documents. As it is expected it
would find tons of uninteresting patterns extremely slowly, while significant
ones are completely missed. Since there are very efficient document indexing
methods like TF-IDF [12] to handle this problem properly, our approach aims
at adapting fundamental ideas from information retrieval techniques to boost
sequence mining algorithms’ performance.

Significance, interestingness, or relevance are vague notions. The most com-
mon definition is as follows:

Finding sequential patterns with TF-IDF metrics 289

Definition 1 (Absolute significance) A data mining pattern P is said to
be absolutely significant if P is previously unknown, and there exists a null
model Z for which Pr(P) is statistically relevant.

In this paper, we argue on that significance cannot be separated from the
item or itemset we are analyzing at the time, i.e. there is or at least there shall
be a fix point, a point of view to capture this notion properly.

Definition 2 (Relative significance) A data mining pattern P is said to be
relatively significant regarding an item I if I ∈ P, P is previously unknown, and
there exists a null model Z for which Pr(P|I) is statistically relevant.

While our approach is more restrictive, it is easy to prove that absolute
significance can be addressed by relative ones. In this paper, we introduce a
novel algorithm called REVIEW (RElevance from the items’ point of VIEW),
a point of view oriented sequence mining algorithm, which finds all frequent
and significant patterns in polynomial time. In addition, we also prove that
REVIEW finds the most likely anti-patterns in a hand, i.e. those items, which
tend to mutually exclude each other in itemsets. This property is beyond the
capabilities of state-of-the-art algorithms.

The paper is organized as follows. In Section 2, we review the most important
sequence mining algorithms and show an example of their scalability issues.
We also overview the alternative definitions of importance that exist in the
literature. Section 3 gives the elementary definitions of sequence mining: items,
itemsets, sequences, sequence databases, and gives illustrative examples for
the definitions. The algorithm we propose for finding frequent and important
patterns is defined in Section 4. Empirical comparison is given in Section 5,
our algorithm algorithm is tested on a real-life health care database against
PrefixSpan and SPADE, the two fastest algorithms in the literature. Finally
in Section 6 a brief summary is given.

2 Related work

In this section, we give an overview of the most important frequent sequential
pattern mining algorithms: GSP, PrefixSpan, SPADE and SPAM. In the liter-
ature several other algorithms exist as well, however, those can be considered
as the variants, extensions of the ones presented here. We also discuss the
performance problems that arises when the size of the input database grows.
In the literature, there are a lot of alternative definitions for importance, we
review these definitions.

290 Zs. T. Kardkovács, G. Kovács

2.1 GSP

The GSP algorithm proposed by Srikant and Agrawal in [13] is built on the
pattern of the a priori algorithm. First, it scans the database and counts the
support of each item, detects all single item frequent sequences. Then in each
subsequent pass a candidate generation and candidate counting takes place.
Candidate generation uses the frequent sequential patterns of the previous
pass: if removing the first element of a frequent sequence and removing the
last element of another frequent sequence are the same, then the two sequences
are joined and a new sequence with one more item is created. The candidate
counting scans for each new sequence in the database counting the occurrences,
and the ones with support greater than the user defined minimum support
are retained as frequent sequences of the pass. The candidate generation and
candidate counting are repeated until no frequent sequences are found.

2.2 PrefixSpan

PrefixSpan proposed by Pei et al. [8] is also based on the frequent pattern
growth principle like GSP, however, it does not perform the search on the entire
database for each candidate sequence, but on smaller projected databases.
The sequence database is partitioned based on the itemsets of each frequent
sequence of previous passes such that all sequences that support the frequent
sequence are within the partition and the sequences not supporting are not.
If several frequent sequences share the same itemset, then those use the same
database partition. The hypothesis is that the support of a frequent sequence
that is one item longer can be calculated on that partition as outside of that
partition it is not supported. New candidate sequences are generated only
locally by combining sequences that use the same partition. This method is
a significant speed improvement over GSP as database partitions are smaller
and because of the shared itemsets candidate counting does not need to be
performed for each frequent sequence, but only for shared prefixes.

2.3 SPADE

SPADE (Sequential PAttern Discovery using Equivalence Classes) proposed
by Zaki [15] aims to reduce the number of database scans and minimize com-
putational costs. During the database scans frequent sequences of length one
and two are searched for and their support is counted. The algorithm main-
tains an id-list for each item where each element of the id-list is a pointer to a
sequence id and an itemset the item occurs in. Candidate sequences with one

Finding sequential patterns with TF-IDF metrics 291

more item are generated with temporal joins or intersections on the id-lists of
frequent sequences of maximum length, the support is calculated in the mem-
ory, and the new sequence is frequent if the cardinality of the resulting id-list
is greater than the minimum support value. Frequent sequences are clustered
into smaller sub-lattices based on common prefixes that enables independent
processing.

2.4 SPAM

SPAM (Sequential PAttern Mining) proposed by Ayres et al. [3] assumes that
the entire sequential database can completely fit in the memory and no se-
quences are longer than 64. The hypothesis is that frequent sequences can be
found in the lexicographic tree with a simple depth-first search. Each sequence
is represented with a vertical bitmap, if an item appears in a sequence then
the corresponding element of the bitmap is set to one. Itemsets are generated
with a bitwise and operation on the vectors of the items. Candidate sequences
are generated with depth-first search from bitvectors of previous sequences
and the vector of a next item in the lexicographic tree such that a bitwise and
operation is performed on the two vectors, the candidate is frequent if it has
more ones in its bitvector than the minimum support. The algorithm is fast,
but very limited with regard to the input database.

2.5 Performance issues

In [7], Gouda and Hassaan argue that typical sequential pattern mining algo-
rithms tend to lose their efficiency when applied to a dense database. Their
experiments confirm that the execution time increases exponentially as the
number of frequent sequences increases even when the execution times in their
experiments remain in the order of a few hundred seconds.

We conducted similar experiments on a subset of a medical database cov-
ering 23856 out of 455514 that is about 5% of the patient data. The average
length of sequences related to a patient is 307 in that sample, the average
sequence size is 10.88 itemsets. The relative or absolute minimum support
thresholds were set so that the number of occurrences of a frequent sequence
were at least 30.

Figure 1 shows how PrefixSpan and SPADE that are the sequential pattern
mining algorithms considered to be the fastest in the literature scale as we
consider longer sequences from our sample set. In the experiments, we used the
reference implementations available in the SPMF library [4]. The horizontal

292 Zs. T. Kardkovács, G. Kovács

(a) Sequence length vs. execution time (b) Sequence length vs. frequent se-
quences

Figure 1: The maximum length in a sequence database vs. the execution time
and the number of frequent sequences for the two fastest sequential pattern
mining algorithms, PrefixSpan and SPADE

axes show the maximum length of sequences used in the mining process. The
sequence lengths considered in the experiment were 5, 10, 20, 40, 60 and
80. Note that these values are still far away from 300 that is the average
length in our dataset. In Figure 1a, the vertical axis is the execution time of
the algorithm in milliseconds in logarithmic scale. In Figure 1b the vertical
axis is the number of frequent sequences detected in logarithmic scale by the
algorithms that are proportional to their memory and disc space usages.

The results not surprisingly show that the algorithms fail to produce usable
results. The algorithms do not scale with the average length. The time, memory
and disk space requirements are exponentially proportional to the length of
the input sequences.

2.6 Significance

A general idea to find interesting patterns is widely discussed in the literature.
A very detailed description on different aspects of significance is found in
[10, 6]. According to Geng et al. [6] definition interestingness can be broken
down into the following categories:

• Conciseness. A pattern is concise if it contains relatively few attribute-
value pairs, while a set of patterns is concise if it contains relatively few
patterns.

Finding sequential patterns with TF-IDF metrics 293

• Generality/Coverage. A pattern is general if it covers a relatively large
subset of a dataset.

• Reliability. A pattern is reliable if the relationship described by the pat-
tern occurs in a high percentage of applicable cases.

• Peculiarity. A pattern is peculiar if it is far away from other discovered
patterns according to some distance measure.

• Diversity. A pattern is diverse if its elements differ significantly from
each other, while a set of pattern is diverse if the patterns in the set
differ significantly from each other.

• Novelty. A pattern is novel to a person if he did not know it before and
are not able to infer it from other known patterns.

• Surprisingness. A pattern is surprising (or unexpected) if it contradicts
a person’s existing knowledge or expectations.

• Utility. A pattern is of utility if its use by a person contributes to reaching
a goal.

• Actionability or Applicability. A pattern is actionable (or applicable) in
some domain if it enables decision making about the future actions in
this domain.

Some of these notions correlate, some are subjective, some are objective, and
some depends on the semantics, but they share a common feature: all of them
use some kind of statistical relevance metrics to describe a particular meaning
of interestingness. That is why we used the notion significance in Definition 1
as a union of these possible meanings where Pr(P) corresponds to the proper
relevance metrics depending on the use case. Note that, Pr(P) is a statistical
function but how to calculate is undetermined in general; it can be adapted to
the problem specific needs. Later on this paper, we use the term significance
measure for Pr(P). Table 1 summarizes the most common significance measure
in sequential pattern mining [6].

3 Preliminaries

In this section, we give preliminary definitions necessary for the formalization
of the problem statement: the definition of the frequent sequential pattern
discovery and the definition of relevant pattern discovery.

Throughout this paper, we use the following conventions:

• sets and elements of sets are denoted by capital letters and lower case
letters, respectively,

294 Zs. T. Kardkovács, G. Kovács

Measure Formula

Support Pr(AB)

Lift/Interest
Pr(B|A)

Pr(B)
or

Pr(AB)

Pr(A)Pr(B)

Interestingness Weighted Dependency

((
Pr(AB)

Pr(A)Pr(B)

)k
− 1

)
Pr(AB)m

Added value Pr(B|A) − Pr(B)

Relative risk
Pr(B|A)

Pr(B|¬A)

Mutual information
∑
i

∑
j Pr(AiBj) log2

Pr(AiBj)

Pr(Ai)Pr(Bj)

−
∑

i Pr(Ai) log2 Pr(Ai)

Certainty factor
Pr(B|A) − Pr(B)

1− Pr(B)

Conviction
Pr(A)Pr(¬B)

Pr(A¬B)

Odds ratio
Pr(AB)Pr(¬A¬B)

Pr(A¬B)Pr(¬AB)

Yule’s Q
Pr(AB)Pr(¬A¬B) − Pr(A¬B)Pr(¬AB)

Pr(AB)Pr(¬A¬B) + Pr(A¬B)Pr(¬AB)

Cosine
Pr(AB)√

Pr(A)Pr(B)

Table 1: Some probability based objective measures for data mining[6]

• itemset and items are taken from the beginning of the latin alphabet,

• |X| denotes the size of X where X is a set of attributes or itemsets,

• we use R, S symbols for database relations defined as subsets of a Carte-
sian products, and r, s . . . for tuples, records or elements of a relation. If
r ∈ R and R ⊆ A × B then r(a, b) is short form to say a ∈ A, b ∈ B,
and r[A] = a, r[B] = b where r[X] stands for the attribute values of r on
attribute set X (projection in relational database theory),

• identifiers are denoted by letters near I,

• > and ⊥ stand for logical values true and false, respectively,

• T, t are used for time related sets and variables, respectively,

Finding sequential patterns with TF-IDF metrics 295

patient 1 patient 2 patient 3 patient 4

I T A I T A I T A I T A

1 234 a 2 57 f 3 186 h 4 33 a
1 234 b 2 63 g 3 186 i 4 93 k
1 234 c 2 74 g 3 186 a
1 234 d 2 78 e 3 186 j
1 237 e 2 78 g 3 186 e

3 199 a
3 199 e

Table 2: A small anonymized piece of the database

• we also introduce the symbol DR(X), which denotes the domain of an
attribute set X in a relation R, i.e. DR(X) = {r[X]|r ∈ R}.

Let the input database be defined as follows, the definition is analogous to
the one in [15].

Definition 3 (Sequence database) Let A = {a1, a2, . . . , an} be a finite set
of items, where n ≥ 1, T is a non-empty set of timestamps, and I is a non-
empty set of unique identifiers. Let a relation R be defined over I × T × A,
i.e. R ⊆ I × T × A, then R is a sequence database. For simplicity and better
understanding, we use the notion R(ITA) to express R is determined by sets I,
T , and A, i.e. R ⊆ I × T × A in that order. If |I| = 1 in a sequence database
R(ITA), then R is called a sequence database.

Example Table 2 shows a small set of records from the anonymized health
care database we use in this paper. The columns of the table reflect relation
R. The twelve columns of the table are organized into four groups of three
columns. Each column group represents a patient. The first column in a group
is a patient identifier, the real identifier is replaced with an integer number.
The second column in a group is a timestamp, the real date is replaced with
an integer number. The third column in a group contains the items, the real
treatment codes are transformed to letters of the alphabet.

Definition 4 (Ordering of items) Let a binary relationship ≤: R × R →
{>,⊥} be defined on sequence databases such that the ordering of elements of
R is determined by the natural ordering over T . ≤ is an ordering, i.e. it is
transitive, antisymmetric, reflexive, and total. For simplicity, we also use ≤

296 Zs. T. Kardkovács, G. Kovács

on relations such that if S1, S2 ⊆ R and S1, S2 6= ∅, then S1 ≤ S2 if and only if
∀s1 ∈ S1∀s2 ∈ S2 : s1 ≤ s2.

In other words, ordering of items in sequence databases are based on time
related attributes. If time representation in sequence database does allow a
clear distinction between when two events have happened, then we assume
they are simultaneous events.

Definition 5 (Sequence) Let R(ITA) be a sequence database, and S =
< S1, S2, . . . Sn > be defined as an ordered set of relations where ∀i :
1 ≤ i ≤ n =⇒ Si ⊆ R such that

Si, Sj ∈ S : 1 ≤ i < j ≤ n =⇒ Si ≤ Sj,¬Sj ≤ Si.

We say S is a sequence if and only if

∀r, s : r ∈ Si, s ∈ Sj =⇒ r[I] = s[I]

∀r, s :
(
r ∈ Si, s ∈ Sj =⇒ r[T] = s[T]

) ⇐⇒ i = j

for all Si, Sj ∈ S. Since the identifiers are the same in the sequence, and
there are itemsets that share the same timestamps, we use the representation
S =< Atk , . . . , Atl > for better readability where ti ∈ T , where Ati ⊆ A is
a set of elements indexed by their shared timestamps. We also introduce the
following notions:

• |S | = n denotes the length (number of relations) of the sequence,

• U(S) stands for the shared identifier in S,

• and τ(Si) (or τ(Ai)) for the shared timestamp in Si where 1 ≤ i ≤ n.

This means that in sequence S all elements share the same identifier, and
within an Ati itemset the elements are unordered as they are considered to
have occurred simultaneously. If an itemset Ati precedes Atj in S (Ai ≤ Aj),
then all items in Ati precede any item in Atj . We also introduce operators on
sequences to deal with more complex problems.

Definition 6 (Operators on sequences) Let S1 =< Atk , . . . , Atl > and
S2 =< Atm , . . . , Atn > be two sequences defined on R(ITA). We say

• S1 is a proper subsequence of S2 denoted by S1 v S2 if and only if
U(S1) = U(S2) and ∀At1∃At2 : At1 ∈ S1, At2 ∈ S2 =⇒ At1 ⊆
At2, τ(At1) = τ(At2),

Finding sequential patterns with TF-IDF metrics 297

• S1 is a subsequence of S2 denoted by S1 � S2 if and only if for all a1,
a2, and t1, t2 ∈ T there exist t3, t4 ∈ T such that

a1 ∈ At1, a2 ∈ At2, t1 ≤ t2 =⇒ a1 ∈ At3, a2 ∈ At4, t3 ≤ t4

where At1, At2 ∈ S1, and At3, At4 ∈ S2,

• the union of sequences for which U(S1) = U(S2) denoted by S1 ∪ S2
is defined as an ≤-ordering preserving merge of these sets such that if
At1 ∈ S1, At2 ∈ S2 and τ(At1) = τ(At2) then the resulting At = At1∪At2,

• the intersection of sequences for which U(S1) = U(S2) denoted by S1∩S2
is defined as the largest possible subsequence S in number of items for
which S v S1 and S v S2,

• the difference of the sequences for which U(S1) = U(S2) denoted by S1\S2
is defined as the largest possible subsequence S in number of items for
which S v S1 and there is no S ′ such that S ′ v S and S ′ v S2 if
and only if S1 is not a subsequence of S2. The difference does not exist
otherwise.

• S2 is the prefix cut of S1 by an item a ∈ A denoted by ϕ(S1, a) if and
only if S2 v S1 and if there exists At ∈ S1 such that At is a set for which
a ∈ At then maxAi∈S2

(τ(Ai)) ≤ τ(At). In this paper, we call maximum
cut of S1 by a ∈ A (Φ(S1, a)) the union of all possible prefix cuts of S1
by a ∈ A.

Notice that, there can be many different sequences with the same identifier
according to Definition 5, and there is no sequence with the length of 0. It
is easy to prove that the maximal number of closed sequences in a sequence
database R(ITA) equals to DR(I), hence every closed sequence has a natural
identifier: the elements of set I in our database.

Definition 7 (Closed sequences) Let a sequence S =< S1, S2, . . . , Sn > be
defined on a sequence database R(ITA). We say S is a closed sequence and it
is denoted by S if and only if

∀r∃Si r ∈ R, Si ∈ S, r[I] = U(S) =⇒ r ∈ Si

for some 1 ≤ i ≤ n. The largest possible set of closed sequences in R(ITA) is
called macseq and it is denoted with Σ.

298 Zs. T. Kardkovács, G. Kovács

Example 8 Table 3 shows the records of Table 2 transformed into the form
used for representing sequence databases in the literature. The first column is
the sequence identifier, which comes from the patient identifying I attribute of
Table 2. The second column contains the sequences, where each sequence is a
comma separated list of itemsets shown in braces. The ordering of the itemsets
is determined by attribute T . If the T value is identical for two A items, then
those appear in the same itemset.

I Σ

1 <(a, b, c, d), (e)>

2 <(f), (g), (g), (e, g)>

3 <(h, i, a), (j, e)>

4 <(a), (k)>

Table 3: Relation R transformed to a sequence database

Sequence <(a), (e)> is a subsequence of both the sequence identified by I = 1
and I = 3. In both sequences itemset (a) is a subset of the first itemset, and
(e) is a subset of the second itemset.

The following terms are the foundations for capturing the proper concept
of frequent sequences:

Definition 9 (Support of sequences) We introduce the following support
metrics for a sequence S =< S1, S2, . . . , Sn > defined on R(ITA):

• the support of S denoted by supp : S → [0, 1]:

supp(S) = ||{Si | Si ∈ Σ,S � Si}||
||Σ||

,

where ||S|| stands for the number of elements in set S,

• the conditional support of S assuming there is a Si ∈ Σ, which has an
element containing a ∈ A is

supp(S |a) = ||{Si | Si ∈ Σ,S � Φ(Si, a)}||
||{Si | Si ∈ Σ, ∃At ∈ Si, a ∈ At}||

.

If there is no sequence in Σ that contains a, then let supp(S |a) = 0,

Finding sequential patterns with TF-IDF metrics 299

• the conditional unsupport of S assuming there is a Si ∈ Σ that contains
an item a ∈ A is

supp(S |¬a) = ||{Si | Si ∈ Σ,S � Si, ∀At ∈ Si : a /∈ At}||
||{Si | Si ∈ Σ, ∀At ∈ Si, a /∈ At}||

.

If each sequence in Σ contains a, then let supp(S |¬a) = 0.

Example 10 Table 4 show the support of sequences with length of one based
on Table 3. Items a and e occur in three different sequences. Though g has
three occurrences as well, those are limited to a single sequence.

Σ supp(S)
a 3
b 1
c 1
d 1
e 3
f 1
g 1
h 1
i 1
j 1
k 1

Table 4: Support of items

Theorem 11 Let S1 =< At1 , . . . , Atn >, and S2 =< At1 , . . . , Atn−1
> be two

sequences defined on R(ITA), then

∀a ∈ Atn : supp(S1) ≤ supp(S2|a).

Proof. According to Definition 9, supp(S) equals to number closed sequences
that contain S as a pattern divided by the number of all closed sets. Firstly,
let assume that Atn consists of a single item a. In that case, the numerator
of supp(S1) and supp(S2|a) is the same since S1 equals to S2 followed by
an a. The denominator is different: for supp(S2|a) it is the number of closed
sequences containing a in one of its elements, which must be less or equal than
the number of all closed sequences. As a consequence, supp(S1) ≤ supp(S2|a).

If Atn contains more than one element, then supp(S1) is determined by
the least frequent item in Atn . That is, the numerator of supp(S2|a) must be
greater or equal to one of supp(S1) also leads to supp(S1) ≤ supp(S2|a). �

300 Zs. T. Kardkovács, G. Kovács

4 Relevance base candidate selection

The problem of frequent sequential pattern discovery has been defined in [1]:
Given a set of sequences, where each sequence consists of a list of elements and
each element consists of a set of items, and given a user-specified min support
threshold, sequential pattern mining is to find all frequent subsequences, i.e.,
the subsequences whose occurrence frequency in the set of sequences is no less
than min support. This definition originally targeted the mining of database
transactions, however this very same definition can be applied to a much wider
range of problems. In our case, the set of sequences are identified by attribute
I in the elements of relation R. The elements of sequences are ordered by
attribute T , and hence form a list. As it is possible for elements of R to have
the same t ∈ T value, the elements of that list are not individual items, but a
set of items.

Frequent sequence construction is based on the hypothesis that all subse-
quences of a frequent sequence are frequent sequences themselves, formally if
µ ≤ supp(S), then ∀S ′ � S =⇒ µ ≤ supp(S ′) where µ ∈ [0, 1] stands for
min support. This assumption makes it possible to build a lattice of subse-
quences. The lattice can be constructed bottom-up with increasing length on
the pattern of the a priori algorithm or by combining frequent subsequences
already detected based on their prefixes.

4.1 Problem statement

Average Apriori like algorithms are quasi linear whenever the size of frequent
itemsets are small; polynomial in the sum of the size of the input (transactions)
plus output (frequent patterns) [11]. That is, if every shopper buys every item,
the algorithm must output each subset of A items. The basic characteristics
do not change for sequence mining using distributed Apriori-like algorithms
[2], however, the size of the input is multiplied by the length of sequences. In
other words, sequence mining algorithms are exponential for long sequences
or large inputs.

As Figure 1 indicates for the case of sequential databases that contain very
long sequences, an improvement is necessary in the candidate generation for
sequential pattern mining algorithms. Counting the number of occurrences
may be simply infeasible for mining some real life datasets, like in health care
database.

Moreover, interesting patterns are not necessarily frequent ones. If some
items are frequent enough among sequences by themselves independently from

Finding sequential patterns with TF-IDF metrics 301

others, then frequent pattern mining algorithms always include those in almost
all elements of the output, which increases the size of the output, and decreases
significantly the interestingness of such patterns. As a consequence, the prob-
lem is how to improve the computational performance with or by increasing
the interestingness of patterns, or to be more precise: how to improve the
overall performance by pruning non-relevant or independent consumptions.

Consider a database of medical diagnoses; anamneses can easily be con-
structed by building sequences joining diagnoses/treatment by patient iden-
tifiers. Almost all frequent sequences contain diagnoses frequent in the popu-
lation such as flu or hypertension that are not necessarily relevant in general
for the course of the main case. Such items should not be considered when
building frequent sequences and provide a basis for prefiltering. We call the
prefiltered set of frequent sequences frequent-and-relevant sequences.

In this section, we propose a new method for calculating importance metrics,
which combine relevance and support of a sequence when generating candidate
sequences. The basic idea is that candidate generation and prefiltering of the
sequences should take place at the same time to reduce the search space and
hence the computational complexity.

The idea for prefiltering in our support calculation method comes from text
mining where the TF-IDF [12] metric has been successfully used to connect
different documents based on their contents. The sequence metric is similar to
the SIF-IDF metric defined in [9] for protecting sensitive data in databases.

Importance metric of a pattern is derived from two values associated with
two sequences generated by the pattern. For a pattern we maintain two sets of
key-value pairs: one in which support values are calculated on closed sequences
of identifiers that appear in the pattern, and another one set of those that do
not. The former one is called frequent set, the latter is called inverse set. The
normalized rate of relative occurrences of an item in the frequent and inverse
sets is a suitable parameter for that item for filtering when generating a new
candidate sequence.

In the next section, we give the definitions necessary for formalizing this
idea.

4.2 Definitions

Definition 12 (Frequent set of a pattern) Let S be a pattern over a re-
lation R(ITA), and F be a function which maps sequences to a set of a set of
item-number pairs such that

F(S) = {(a, supp(S |a))| a ∈ A}.

302 Zs. T. Kardkovács, G. Kovács

Definition 13 (Inverse set of a pattern) Let S be a pattern over a rela-
tion R(ITA), and F be a function which maps sequences to a set of a set of
item-number pairs such that

F(S) = {(a, supp(S |¬a)) | a ∈ A}.

F(S) and F(S) contain information on each item, e.g. (a, n) ∈ F(S), and
(a,m) ∈ F(S). Notice that, a correlation between values n, m might indicate
relevance. If m ' 0 and n ≥ µ then S → a (i.e. S is followed by a) show high
correlation, which means that the presence of S as a series of events highly
suggests a to be happening. If m ≥ µ and n ' 0, then S and a show high
inverse correlation, i.e. the pattern of S almost always inhibits the event a to
happen.

Let F(S)[a] = n be a shorthand for the fact that (a, n) ∈ F(S). Let E(F(S)),
Var(F(S)), and Sum(F(S)) be the mean, deviation, and the sum of F(S)[a]
values, respectively, for all a ∈ A.

Definition 14 (Relevance measure) Let Imp be defined as an importance
measure on a sequence S, and a ∈ A item of a relation R(ITA) such that

Imp(S, a) =



0 if Sum(F(S))Sum(F(S)) = 0∣∣∣∣ F(S)[a]
Sum(F(S))

−
F(S)[a]

Sum(F(S))

∣∣∣∣
max

(
F(S)[a]

Sum(F(S))
;
F(S)[a]

Sum(F(S)]

) otherwise
,

where |n| stands for the absolute value of a number n. We say S is a relevant
antecedent of a if Imp(S, a) is greater or equal to a certain threshold.

Relevance measure indicates that there is a connection between the fre-
quency and rareness of an item, that is, if an item occurs in every sequence
or that item occurs in no sequences, then relevance is equally 0 according to
Definition 14. Nevertheless, if there is an item a which always appears be-
fore or together with an item b then relevance is 1 because F(S, b) = 1 and
F(S, b) = 0, where S consists of a single itemset that has a single value a
(S =< {a} > for short). By symmetry, if a never occurs together or before
b in any sequences then relevance is still 1 indicating some kind of rejection
or inhibition. For example, those who buy lactose free products will not buy
milk or cheese. Also notice that, relevance both measures frequencies and in-
frequences, which leads to a re-formulation how important an item a regarding

Finding sequential patterns with TF-IDF metrics 303

a preliminary series of events S. That is, it is a potential relative significance
measure (see Definition 2).

Definition 15 (Importance measure) Let Ind be defined as a measure on
S sequences, and a ∈ A items of a relation R(ITA) such that

Ind(S, a) = Imp(S, a) − Ea∈A(Imp(S, a))
Vara∈A(Imp(S, a))

We say S is an import antecedent of a if |Ind(S, a)| is greater or equal to a
certain threshold.

Importance is a normalized value of relevance to measure how much S → a

is unusual. In most of the cases, mean value of relevance shall be about 0,
i.e. occurrences of items are independent in general. Statistically, if absolute
value of the Ind(S, a) ≥ 3 (the triple of the variance), then it is an outlier value
that is usually a strong indicator for a deep connection between variables.

We propose Algorithm 1 for identifying important sequences in the sequence
database R. The inputs of the algorithm are the database R itself, a µminimum
support threshold, and a ν importance threshold. The output is the set of
frequent-and-relevant (important) sequences Σf. In the body of the algorithm,
a loop variable k, the frequent set F(S), the inverse set F(S), and the set of
new sequences Σc are used locally.

The algorithm works as follows. In the initialization phase (line 1), we add
items as sequences of length 1 to the Σf set, if their support is over the min-
imum threshold µ. The main loop iterates over the sequences of maximum
length. First, it removes all elements from the Σf new important sequence set
(line 8). It computes the frequent F(S) and the inverse F(S) sets for the current
S sequence (line 10). If there are candidate postfix items, then we iterate over
it, and filter the sequences with the formula of Definition 15. As threshold, we
utilize ν an importance threshold input parameter (line 11). If the importance
is over that threshold, then that item c is appended to the end of S (line 12),
and the new sequence is added to the important set of sequences (line 13).
The main loop is repeated until the Σc set generated is not an empty set. If
no further candidate sequences can be generated, the algorithm returns the
Σf set (line 17), otherwise the elements if Σc are added to Σf (line 18). If all
sequences are processed, the k maximum length loop variable is increased (line
20), and the main loop is restarted.

Lemma 16 Algorithm 1 identifies all frequent patterns, which have a support
greater or equal to a min support according to Definition 9, but the important
ones are returned.

304 Zs. T. Kardkovács, G. Kovács

input : R(ITA) database, µ minimum support threshold, ν
importance threshold

output: Σf set of important sequences
data : k cycle variable, Σc set of new sequences, F(S) frequent next

item set, F(S)
1 /* Initialization */

2 k := 1;
3 Σf = {S |a ∈ A,S =< {a}−∞ >, supp(S) ≥ µ };
4 /* Main loop */

5 while true :
6 do
7 foreach S ∈ Σf where len(S) = k do
8 Σc := ∅;
9 foreach a ∈ A do

10 Compute the sets F(S, a) and F(S, a);
11 if |Ind(R,S, c)| ≥ ν then
12 S ′ := concat(S, c);
13 Σc := Σc ∪ {S ′};

14 end

15 end
16 if Σc = ∅ then return Σf;
17 ;
18 Σf := Σf ∪ Σc;
19 end
20 k := k+ 1;

21 end

Algorithm 1: Importance based frequent sequential pattern genera-
tion

According to Theorem 11, conditional support supp(S |a) is greater or equal
to the supp(S → a). It means, that by generating F(S) Algorithm 1 finds
all candidates for which support is greater or equal to a certain threshold.
However, if either a or S is independent, or too frequent in general, it entails
F(S, a) ' F(S, a) and as such is omitted from the output. As a consequence,
Algorithm 1 is a one-step method to find frequent and relevant patterns.

Finding sequential patterns with TF-IDF metrics 305

Lemma 17 (Infrequent important candidate) Algorithm 1 can identify
important sequences with regard to the ν importance threshold that are not
frequent regarding a µ threshold.

Definition 15 is independent from the minimum support threshold µ, so
it is possible to construct an example, where the statement of Lemma 17
holds. If Σ = {< {a}, {b}, {c} >,< {c}, {d} >}, and µ = 60%, then subsequence
< {a}, {b} > can not be frequent as it occurs only in the first closed sequence.
However, it is important because |Ind(< {a}, b >)| ≥ ν for an appropriate ν
because b is always preceded by a.

Algorithm 1 builds important sequences on the pattern of GSP. The number
of database scans is two times the number of important sequences identified:
the computation of sets F(S) and F(S) requires a scan each. With regard to
candidate generation and data structure efficiency, there is a lot of room for
improvements.

Lemma 18 (Candidate generation) All subsequences of important sequences
generated by Algorithm 1 are important sequences.

Lemma 18 gives a property similar to that exists in case of sequential pattern
generation algorithms, and this way patterns can not only be grown, but joined
as well.

5 Empirical analysis

5.1 Application to medical data

In this section, we present the experiments we conducted on real-life clinical
data. The clinical database was anonymized [5] before use.

We defined one sequence for each unique patient identifier, i.e. the I set
comprises patient identifiers. Treatments and diagnoses have unique medical
codes that define the A itemset. Treatment and diagnosis timestamps are
aggregated on daily level, that is, two treatments that happened on the same
day are considered to be simultaneous and have the same t ∈ T element
associated with them.

The properties of the data set are shown in Table 5. The total number of
patient records is about 67 million, which is the size of the relation in the
context of this paper. The patient cases, which is equal to the number of
natural identifiers, is in the order of 105. The average number of examinations
of a patient is in the order of 102, this value is the average number of items in

306 Zs. T. Kardkovács, G. Kovács

a sequence. The average number of days when examinations are performed or
diagnoses are given on a patient is around 6, this value is the average number
of itemsets in the maximum sequences. The number of treatments, i.e. the
number of items is around 104.

Number of records in the database 66870306

Number of natural identifiers 455514

Average length of maximum sequences 146.8

Average size of maximum sequences 6.18

Number of items 9291

Table 5: Properties of the data set

5.2 Experimental results

The experiments we conducted on an Oracle Sun Server X3-2 with 256GB
RAM and 32 cores of 4 Intel Xeon E5-2660 CPUs. The mining processes were
allowed to use up to 48GB of RAM and 200GB of disk space.

As the experiments shown in Section 2.5 use the API of [4], where the
algorithms are implemented in Java, we used the Java implementation of our
method. We experimented with the implementation of PrefixSpan provided by
[14], however that run out of the 200GB disk space limit before finishing. The
minimum support threshold was set to the absolute value of 10 occurrences
in all cases. In REVIEW, we used a 3 as the importance threshold to provide
output sets of similar size as the other two algorithms for short sequences. User
time usage and memory usage were both measured with the UNIX command
time.

Since the preliminary experiments with PrefixSpan and SPADE have shown
that these algorithms are not able to process this amount of data within rea-
sonable time, once again we have used a random sample and limited the maxi-
mum length of sequences to 5, 10, 20, 40, 60, 80, 100, 120 and 140. The highest
value used is still below the average length of sequences in the whole database.
Table 6 shows the properties of these samples.

Figure 2 compares REVIEW with PrefixSpan and SPADE over the same
dataset with the same minimum support threshold settings. The figures show
how the execution time requirements and the disk space usage scale as the
maximum length of input sequences grows. The number shown is the average
of three runs. The algorithms are deterministic, so the number of frequent
sequences does not vary. We represent the output sequences in the same form

Finding sequential patterns with TF-IDF metrics 307

Max. length Sequences Length Itemsets

5 2150 5048 3441
10 4082 18064 28255
20 6416 50781 17379
40 8979 124289 36448
60 10499 197817 53894
80 11571 271818 71685
100 12263 333065 86099
120 12789 390307 100058
140 13186 441514 112012

Table 6: Properties of the sample data sets

on the disk, so we consider that the number of output sequences is proportional
to the disk usage.

REVIEW has been found to scale better as the length and number of input
sequences grow than Preview and PrefixSpan. The chart on the left shows
that though REVIEW has a high initial time requirement, however it does
have a much lower gradient on the log scale than the other two. Around the
sequence length of 60 REVIEW becomes quicker than PrefixSpan, and around
the sequence length of 120 it surpasses SPADE in speed. Though REVIEW
works over the same search space as shown in Theorem 11, it is more effective
in filtering frequent sequence candidates than the other algorithms, and yet it
keeps the relevant information.

There is no correlation between the memory consumption and the efficiency
of the algorithms in case of REVIEW and SPADE. The PrefixSpan implemen-
tation used up all of the available memory, while the other two remained well
below the limit. In the latter cases, memory consumption seems to depend
rather on the Java virtual machine, than the complexity of the algorithm.

6 Conclusions

Many studies have elaborated sequential pattern mining methods to improve
the overall performance because of the time complexity issues. However, a
problem arises when the length of the frequent sequences increases or the
number of apriori frequent items is high enough. The previously developed
sequential pattern mining algorithms address the performance issue only re-
gardless of whether a pattern with two or more items correlate somehow or

308 Zs. T. Kardkovács, G. Kovács

(a) Sequence length vs. execution time (b) Sequence length vs. frequent se-
quences

(c) Sequence length vs. memory con-
sumption

Figure 2: Performance of REVIEW against PrefixSpan and SPADE. The max-
imum length in a sequence database vs. the execution time, the number of
frequent sequences and memory consumption

they co-occurrence is frequent because their apriori frequencies are indepen-
dently high among customers. On the other hand, sequential pattern mining
algorithms often ignore niche segments’ patterns due to their relative infre-
quencies.

In this paper, we proposed REVIEW, a new approach how to deal with
frequent closed sequences. It iteratively calculates the conditional frequencies
of patterns and their possible follow-ups for those closed sequences in which a
follow-up appears, and those in which it does not. If measures show statistically
significant differences then pattern is extended by the follow-up item, and it
is found to be important, and a new cycle with the extended sequence begins.
The algorithm stops when there can be made no extensions.

Finding sequential patterns with TF-IDF metrics 309

We proved that this method finds all relevant and frequent sequential pat-
terns in linear time regarding the number of closed sequences. We demon-
strated by experiments that our method significantly improves performance of
those known from literature on a health care database where both indepen-
dent, apriori frequent items, and long sequences are both present at the same
time. Moreover, REVIEW also pointed out that not so frequent diagnoses
show strong correlation with others which would be missed by other methods.

Acknowledgement

Publishing of this work and the research project were funded by the Euro-
pean Union and co-financed by the European Social Fund under the name of
,,MEDICSPHERE – Complex, multipurpose, ICT technology driven medical,
economic, and educational use of clinical data” and grant number TÁMOP-
4.2.2.A-11/1/KONV-2012-0009.

References

[1] R. Agrawal, R. Srikant, Mining sequential patterns, Proc. Eleventh International
Conference on Data Engineering, Taipei, Taiwan, 1995, pp. 3–14. ⇒300

[2] L. M. Aouad, Nhien-An Le-Khac, T. M. Kechadi, Performance study of dis-
tributed apriori-like frequent itemsets mining, Knowledge and Information Sys-
tems, 23, 1 (2009) 55–72. ⇒300

[3] J. Ayres, J. Gehrke, T. Yiu, J. Flannick, Sequential pattern mining using
bitmaps, Proc. Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada, July 2002, pp. 429–435. ⇒291

[4] P. Fournier-Viger, SPMF – an open-source data mining library, 2014. ⇒ 291,
306

[5] T. Z. Gál, G. Kovács, Z. T. Kardkovács, Survey on privacy preserving data
mining techniques in health care databases, Acta Univ. Sapientiae, Informatica,
6, 1 (2014) 33–55. ⇒305

[6] L. Geng, H. J. Hamilton, Interestingness measures for data mining: A survey,
ACM Computing Surveys (CSUR), 38, 3 (2006) ⇒292, 293, 294

[7] K. Gouda, M. Hassaan, Mining sequential patterns in dense databases, Interna-
tional Journal of Database Management Systems (IJDMS), 3, 1 (2011) 179–194.⇒291

[8] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation,
Proc. International Conference Management of Data (ACM-SIGMOD ’00), Dal-
las, USA, May 2000, pp. 1–12. ⇒290

http://rakesh.agrawal-family.com
http://www.ifp.illinois.edu/~srikant/
http://rakesh.agrawal-family.com/papers/icde95seq.pdf
http://www.ucd.ie/cci/people/tahar_kechadi.html
http://www.springer.com/computer/information+systems+and+applications/journal/10115
http://www.springer.com/computer/information+systems+and+applications/journal/10115
http://www.cs.cornell.edu/johannes/
http://dx.doi.org/10.1145/775047.775109
http://dx.doi.org/10.1145/775047.775109
http://www.philippe-fournier-viger.com
http://www.philippe-fournier-viger.com/spmf/index.php
http://www.acta.sapientia.ro/acta-info/C6-1/info61-3.pdf
http://www.ucalgary.ca/wangx/people/liqiang_geng
http://www2.cs.uregina.ca/~hamilton/
http://csur.acm.org
http://airccse.org/journal/ijdms/papers/3111ijdms12.pdf
http://www.cs.sfu.ca/~jpei/
http://dx.doi.org/10.1145/342009.335372

310 Zs. T. Kardkovács, G. Kovács

[9] T. P. Hong, C. W. Lin, K. T. Yang, S. L. Wang, A heuristic data-sanitization
approach based on TF-IDF, Proc. 24th International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems, Lecture Notes
in Artificial Intelligence 6703 (2011) 156–164. ⇒301

[10] K. McGarry, A survey of interestingness measures for knowledge discovery, The
Knowledge Engineering Review, 20, 1 (2005) 39–61. ⇒292

[11] P. W. Purdom, D. Van Gucht , D. P. Groth, Average-case performance of the
apriori algorithm, SIAM Journal on Computing, 33, 5 (2004) 1223–1260. ⇒300

[12] G. Salton, E. A. Fox, H. Wu, Extended boolean information retrieval, Commu-
nications of ACM, 26, 12 (1983) 1022–1036. ⇒288, 301

[13] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and perfor-
mance improvements, Proc. 5th International Conference on Extending Database
Technology: Advances in Database Technology (EDBT ’96), Lecture Notes in Se-
curity and Cryptology 1057, (1996) 3–17. ⇒290

[14] Y. Tabei, An imprementation of PrefixSpan (prefix-projected sequential pattern
mining), 2008. ⇒306

[15] M. J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Ma-
chine Learning, 42, 1–2 (2001) 31–60. ⇒290, 295

Received: September 11, 2014 • Revised: November 10, 2014

http://www.csie.nuk.edu.tw/faculty.php?t=524
http://iiirc.hitsz.edu.cn/Faculty/Jerry%20Chun-Wei%20Lin.htm
http://dx.doi.org/10.1007/978-3-642-21822-4_17
http://dx.doi.org/10.1007/978-3-642-21822-4_17
http://www.springer.com/computer/ai/book/978-3-642-21821-7
http://www.sunderland.ac.uk/research/areasofresearch/healthsciencesandwell-beingbeacon/staffprofiles/drkenmcgarry/
http://journals.cambridge.org/action/displayJournal?jid=KER
http://journals.cambridge.org/action/displayJournal?jid=KER
http://www.cs.indiana.edu/~pwp/
http://epubs.siam.org/loi/smjcat
http://fox.cs.vt.edu/foxinfo.html
http://cacm.acm.org
http://cacm.acm.org
http://www.ifp.illinois.edu/~srikant/
http://rakesh.agrawal-family.com
http://link.springer.com/book/10.1007/BFb0014139
http://link.springer.com/book/10.1007/BFb0014139
http://www.springer.com/computer/security+and+cryptology/book/978-3-540-61057-1
http://www.springer.com/computer/security+and+cryptology/book/978-3-540-61057-1
https://code.google.com/p/prefixspan/
http://www.cs.rpi.edu/~zaki/
http://www.springer.com/computer/ai/journal/10994
http://www.springer.com/computer/ai/journal/10994

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
László DÁVID

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica
Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro

Editorial Board
Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Zoltán KÁTAI (Sapientia University, Romania)
Attila KISS (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Shariefudddin PIRZADA (University of Kashmir, India)
Ladislav SAMUELIS (Technical University of Košice, Slovakia)

Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)
Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

	1 Introduction
	2 The proposed mathematical model
	3 Analysis of the model
	3.1 Competitive analysis
	3.1.1 Analysis without constraints

	3.2 Average case study
	3.2.1 Constant waiting time algorithm
	3.2.2 Constant waiting time algorithm for data streams from normal distribution

	4 Experimental evaluation
	4.1 Variable waiting time algorithm
	4.2 Empirical results

	5 Summary
	1 Introduction
	2 Induced label graphoidal graphs
	3 Induced label graphoidal decomposition number
	1 Introduction
	2 Definitions of the A** algorithm
	3 Memory complexity of the A** algorithm
	3.1 Comparison of different heuristics in the A** algorithm
	3.2 Comparison of the A** algorithm and other admissible graph-search algorithms

	4 Time complexity of the A** algorithm
	5 Summary
	1 Introduction
	2 Reconstruction of score sets of tournaments
	3 Hole-type algorithms
	3.1 Algorithm Hole-Map
	3.2 Algorithm Hole-Pairs
	3.3 Algorithm Hole-Max
	3.4 Algorithm Hole-Shift
	3.5 Algorithm Fill-All

	4 Algorithm Prefix-Deletion
	5 The main program
	6 Simulation results
	7 Summary
	1 Introduction
	2 Complexity
	2.1 Statistical complexity
	2.1.1 Measure of entropy and disequilibrium
	2.1.2 Measure of statistical complexity

	3 Chaotic motion
	4 Generalized number system
	4.1 Transition graph of number system

	5 Numerical results
	5.1 Probability measure and euclidean distance on lattice
	5.2 Approximation of the statistical complexity
	5.2.1 Lozi map
	5.2.2 Finite approximation of B
	5.2.3 Statistical complexity of the set

	6 Summary
	1 Basic definitions
	2 Known results on graphic sequences
	3 Known results on A-graphic sequences
	4 Known results on split sequences
	5 New results for A-graphic sequences
	6 New results for split sequences
	7 Known algorithms for graphic sequences
	7.1 Havel-Hakimi algorithm (HH)
	7.2 Havel-Hakimi-Testing-Linear algorithm (HHTL)
	7.3 Erdos-Gallai-Chungphaisan-Linear algorithm (EGChL)

	8 Known algorithms for split sequences
	8.1 Hammer-Simeone-PSplit algorithm (HSPS)
	8.2 Further linear algorithms for psplit sequences
	8.3 Havel-Hakimi-Testing-JSplit algorithm (HHJST)

	9 New algorithms
	9.1 Algorithm Ab-l-Max
	9.2 Algorithm J-b-l-Max

	1 Introduction
	2 Related work
	2.1 GSP
	2.2 PrefixSpan
	2.3 SPADE
	2.4 SPAM
	2.5 Performance issues
	2.6 Significance

	3 Preliminaries
	4 Relevance base candidate selection
	4.1 Problem statement
	4.2 Definitions

	5 Empirical analysis
	5.1 Application to medical data
	5.2 Experimental results

	6 Conclusions

