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Abstract. In this paper authors propose algorithms for constructing so-
called automaton COM(L) and prove that this automaton coincides, up
to re-denoting states, with Conway’s universal automaton. We give some
algorithms of constructing this automaton and consider some examples.

1 Introduction

In this paper authors propose algorithms for constructing so-called automaton
COM(L). The definition of this automaton could be constructed by [8]. Below,
we shall consider this definition.We also prove that this automaton coincides,
up to re-denoting states, with Conway’s universal automaton U L ([4] etc.). We
hope that in future it will be possible to show that “in average” (for specially
defined “average” notion) this algorithms are more effective than algorithms
which construct U L by definition, i.e., using (sub)factorisations etc.

Although we do not consider classic complexity problems here, it is obvious
that for constructing U L (Section 5) complexity is proportional to the number
of grids, which is considered in Section 7.

The contents of this article is as follows.
In Section 2 we introduce some notions: binary relation #, pseudo-grid, grid,

covering subset of the grids. This notions appeared in [5, 6].
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In Section 3 we give definition of automaton COM(L) and prove that this
automaton coincides with U L.

In Section 4 we define “covering automata” by automaton COM(L).
In Section 5 we give two algorithms of constructing automaton U L, the

second of them being “the mirror image” of the first. This algorithms rely on
the algorithm, described in [6]. Also we give a simplified version of the first
algorithm.

In Section 6 we give a detailed example of the work of algorithms, described
in the previous section. An example of equivalent covering automaton is also
given.

In Section 7 we consider examples which shows how fast a number of grids
(i.e., the size of the universal automaton) can grow if we are given the sizes of

two canonical automata (i.e., L̃ and L̃R).
In Section 8 we give some ideas for further research.

2 Preliminaries

We shall use designations of [5, 6]. Let us repeat the main of them.
The language of nondeterministic finite automaton

K = (Q,Σ, δ, S, F )

will be defined by L(K). For a state q of this automaton, we shall denote the
language of automaton (Q,Σ, δ, S, {q}) by Lin

K (q). L̃ is the canonical automaton
defining regular language L, we shall consider canonical automata without the

useless (“dead”) state. Let automata L̃ and L̃R for the given language L be as
follows:

L̃ = (Qπ, Σ, δπ, {sπ}, Fπ) and L̃R = (Qρ, Σ, δρ, {sρ}, Fρ).

Binary relation # ⊆ Qπ × Qρ is defined in the following way. For some
states A ∈ Qπ and X ∈ Qρ, condition A#X holds if and only if there exist

some words u ∈ Lin
L̃
(A) and v ∈ Lout

L̃R
(X), such that uvR ∈ L(K). In [6], we

considered a simple algorithm for constructing this relation.
If for some pair P ⊆ Qπ and R ⊆ Qρ we have

(∀A ∈ P) (∀X ∈ R) (A#X),

then B = (P, R) is a pseudo-grid. For it, we shall write α(B) = P and β(B) = R.
If for some pseudo-grid B = (P, R), there exists
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• neither A ∈ Qπ \P such that
(
(P ∪ {A}), R

)
is also a pseudo-grid,

• nor X ∈ Qρ \R such that
(
P, (R ∪ {X})

)
is also a pseudo-grid,

then B is a grid.
For the given regular language L, we shall consider its set of grids; in the

next sections we shall denote it by QCOM . Some its subset Q ⊆ QCOM will be
called by covering subset of the grids, if for any A ∈ Qπ and X ∈ Qρ such that
A#X, there exists a grid B ∈ Q, such that A ∈ α(B) and X ∈ β(B).1

As we said before, we shall also use the universal automaton for the given
regular language L; by [4, Def. 2.4], we shall denote it by UL. However, its
elements we shall mark by subscripts U L ; e.g., its transition function will be
denoted by δU L .

3 Definition of automaton COM(L)

(an alternative definition of automaton U L)

Automaton COM(L) for the given regular language L has to be defined in the
usual way, i.e., by a quintet. For now, we only have the set of states QCOM (as
we said before, it is the set of grids for the given language) and alphabet Σ;
let us define sets of initial and final states and the transition function.

Thus, considering automata L̃ and L̃R, we define automaton

COM(L) = (QCOM , Σ, δCOM , SCOM , FCOM) ,

where:

• SCOM =
{
B ∈ QCOM

∣∣∣α(B) 3 sπ };

• FCOM =
{
B ∈ QCOM

∣∣∣β(B) 3 sρ };

• for some pair B1,B2 ∈ QCOM (condition B1 = B2 is possible) and some
a ∈ Σ, we set

δCOM(B1, a) 3 B2 ( i.e., B1
a−→

δCOM

B2 )

if and only if both the following conditions hold:(
∀A ∈ α(B1)

) (
(δπ(A,a) 6= 6o) & (δπ(A,a) ⊆ α(B2))

)
; (1)(

∀Y ∈ β(B2)
) (

(δρ(Y, a) 6= 6o) & (δρ(Y, a) ⊆ β(B1))
)
. (2)

1 We shall not consider algorithms for constructing such subsets.
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Let us remark, that considering canonical automaton having possible “dead”
state, we obtain the same values of ϕin and ϕout (because these values cannot
contain these “dead” states). Then the definition of COM(L) for the given
language L is independent of considering “dead” state.

Also let us remark, that we can write (1) in the following way:(
∀A ∈ α(B1)

) (
(δπ(A,a) = {B})& (B ∈ α(B2))

)
(similarly for (2)). But we cannot write it in the following way:(

∀A ∈ α(B1)
) (

δπ(A,a) ⊆ α(B2)
)

(3)

(because the value of δπ(A,a) can be 6o). But considering canonical automaton
having possible “dead” state (such an automaton is total) we can write it by
(3). And considering canonical automaton having transition function of the
type

δ : Q× Σ→ Q

(like, for example, [1]), we can write (3) in the following simple way:(
∀A ∈ α(B1)

) (
δπ(A,a) ∈ α(B2)

)
.

The following theorem formulates the correctness of both the definitions
given before.

Theorem 1 COM(L) = U L.2

Proof. Firstly, let us prove for each state B ∈ QCOM , that the pair(
Lin
COM(B) , Lout

COM(B)
)

(4)

is a factorization of L. For it let us suppose, that (4) is only a subfactorization
of L (not a factorization). Then we would have:

• either some word u ∈ Σ∗ (where u /∈ Lin
COM(B)), such that(

Lin
COM(B) ∪ {u} , Lout

COM(B)
)

is also a subfactorization (or a factorization) of L;

2 Up to re-denoting states.
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• or some word v ∈ Σ∗ (where v /∈ Lout
COM(B)), such that(

Lin
COM(B) , Lout

COM(B) ∪ {v}
)

is also a subfactorization (or a factorization) of L.

Without loss of generality, we shall consider the first case. 3

Besides, we would have a grid B ′ ∈ QCOM , for which

Lin
COM(B ′) 3 Lin

COM(B) ∪ {u} .

I.e., for the state A of automaton L̃, such that Lin
L̃
(A) 3 u, we would have

that

A#X for each X ∈ β(B) .

Then (α(B) ∪ {A}) × β(B) is a pseudo-grid (or a grid, see [6]), and for B, we
obtain a contradiction with the definition of the grid.

Vice versa, let (X ,Y) be a state of automaton U L. Consider the sets P ⊆ Qπ
and R ⊆ Qρ defined in the following way:

P =
{
A ∈ Qπ

∣∣∣ (∃u ∈ X ) (Lin
L̃
(A) 3 u)

}
,

and R =
{
X ∈ Qρ

∣∣∣ (∃v ∈ YR) (Lin
L̃R
(X) 3 v)

}
.

Since (X ,Y) is a factorization of L, then for each pair of states A ∈ P and
X ∈ Q, we have A#X. Therefore P ×Q is a pseudo-grid.

And if P×Q is not a grid, then we would add some words to X or Y satisfying
the definition of (sub) factorization; then (X ,Y) would be not a factorization.

Let us prove the coincidence of the sets of edges. By the definition of U L,

(X ′,Y ′) ∈ δU L((X ,Y), a) holds if X aY ′ ⊆ L .

The same condition holds also for δCOM , i.e.,

B ′ ∈ δCOM(B, a) holds if Lin
COM(B)aLout

COM(B ′) ⊆ L ,

where B ′ corresponds to (X ′,Y ′) and B corresponds to (X ,Y). �

3 (Sub) factorization
(
Lin

COM(B) ∪ {u} , Lout
COM(B) ∪ {v}

)
is also possible.
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4 Covering automata

Using automaton COM(L) and the given covering subset of the grids Q ⊆
QCOM , let us also define corresponding covering automaton. We define it in
the following way:

COMQ(L) = (Q, Σ, δQ, SQ, FQ) ,
where:

• SQ = Q∩ SCOM ;

• FQ = Q∩ FCOM ;

• δQ =
{
B1

a−→B2 ∣∣∣a ∈ Σ, B1,B2 ∈ Q, B1 a−→
δCOM

B2
}

.

For now, we do not consider the equivalence of automata COM(L) and
COMQ(L) (i.e., whether automaton COMQ(L) defines the given language L);
some examples will be considered in the next sections.

5 Algorithms for constructing automaton U L

In [6], we considered a possible algorithm of constructing automaton L̃R; using
this algorithm, we obtained at the same time values of functions ϕin and ϕout

and binary relation #. In this section, we shall obtain automaton U L using the
same algorithm.

Thus, let us suppose that we already have all these objects. Simply by
definitions of grids and automaton COM(L), and also by Theorem 1, we obtain
considering all the subsets of the set Qπ the following

Algorithm 1 (Constructing automaton U L)
Input: automata L̃, L̃R, binary relation #.
Output: automaton U L.
Step 1. Consider array U[index], where index can be each element of P(Qπ)
(except ∅), and its values can be elements of P(Qρ). For each possible index,
we set

U[index] :=
⋂

A∈index

{
X ∈ Qρ

∣∣∣A#X
}
.

Step 2. Consider Boolean array B[index], where index can be each element
of P(Qπ) (except ∅). For each possible index, we set

B[index] := (U[index] 6= ∅).



Some algorithms for Conway’s universal automaton 11

Step 3. For each possible index, such that condition B[index] holds, if

(∃ ind ∈ P(Qπ)) ((index ⊂ ind)& (U[ind] = U[index])),

then we set B[index]:=false.
Step 4. We select the following set of grids:

QCOM =
{
index× U[index]

∣∣∣ index ∈ P(Qπ))& B[index]
}
.

Step 5. δCOM, SCOM and FCOM are defined by definition of automaton COM(L)
given before.

Let us formulate the “mirror image” of this algorithm, where we at first
consider subsets of Qρ.

Algorithm 2 (Constructing automaton U L)
Input: automata L̃, L̃R, binary relation #.
Output: automaton U L.
Step 1. Consider array U[index], where index can be each element of P(Qρ)
(except ∅), and its values can be elements of P(Qπ). For each possible index,
we set

U[index] :=
⋂

X∈index

{
A ∈ Qπ

∣∣∣A#X
}
.

Step 2. Consider Boolean array B[index], where index can be each element
of P(Qρ) (except ∅). For each possible index, we set

B[index] := (U[index] 6= ∅).

Step 3. For each possible index, such that condition B[index] holds, if

(∃ ind ∈ P(Qρ)) ((index ⊂ ind)& (U[ind] = U[index])),

then we set B[index]:=false.
Step 4. We select the following set of grids:

QCOM =
{
U[index]× index

∣∣∣ index ∈ P(Qρ))& B[index]
}
.
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Step 5. δCOM, SCOM and FCOM are defined by definition of automaton COM(L)
given before.

Both these algorithms have evident simplified modifications. For obtaining
them, let us consider the following directed graph of subsets of the set Qπ:

• for each element Q̃ ⊆ Qπ except 6o, we have a vertex labeled by Q̃; this
label symbolizes the union of corresponding elements of Qπ;

• we have the edge from Q̃ ′ to Q̃ ′′ (we shall write Q̃ ′ −→
DG

Q̃ ′′) if and only

if for some A ∈ Qπ, we have Q̃ ′ = Q̃ ′′ ∪ {A}.

Let us denote this directed graph by DG(Qπ). For each its vertex Q̃ ∈ P(Qπ),
let us define its level by

|Qπ|− |Q̃|;

for example, vertex Qπ has level 0, and for each vertex A ∈ Qπ, vertex {A} has
level |Qπ|−1. Thus, by definitions of grids we obtain the following simplification
of Algorithm 2.

Algorithm 3 (Constructing automaton U L)
Step 1. Consider Boolean array B[index], where index can be each element
of P(Qπ) (except ∅). For each possible index, we set

B[index] :=(∃X ∈ Qρ)
(
index =

{
A ∈ Qπ

∣∣∣A#X
})
.

Step 2.
for i:=1 to |Qπ|− 1 do

for each vertex of level i (let this vertex be index)
execute following Step 3

Step 3.
if for there exist 2 (or more) vertices ind of level i-1,

such that condition B[ind] holds and ind−→
DG

index

then B[index]:=true

Step 4. We select the following set of grids:

QCOM =
{
index×

⋂
A∈index

{
X ∈ Qρ

∣∣∣A#X
} ∣∣∣ index ∈ P(Qπ)& B[index]

}
.
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Step 5. δCOM, SCOM and FCOM are defined by definition of automaton COM(L)
given before.

Let us remark, that considering subsets of Qπ and Qρ (as indexes of arrays),
we could consider also element 6o; in this case, 6o would correspond to the
possible “dead” state of the equivalent canonical automaton.

For Algorithm 3, we shall not formulate its “mirror image”.

6 The detailed example

Let us continue to consider the example of language of [6, Section 3]. For it,

let us depict once again automata L̃ and L̃R for that language (Figure 1 and 2):
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and also its binary relation (Table 1):

# X Y Z U

A – # # –

B # – # –

C # # # #

D # # # –

Table 1

Let us remark, that in [6, Section 3] we simply indicate the set of grids; and
in this paper, we use the algorithm of their constructing. Thus, consider using
Algorithm 3.

The directed graph DG for all nonempty subsets of Qπ is given in Figure 3
(the subsets are marked here simply by the strings consisting of their elements).
For this figure, we have the following comments. Sets marked by 3 ovals (i.e.,
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{A,B,C,D}, {A,C,D}, {B,C,D} and {D}) were selected by Step 1 of Algorithm
3.

Using Steps 2 and 3, we consider other subsets (i.e., vertices of graph DG).
Considering them, we have the only vertex (i.e., {C,D}), for which there exist
at least 2 vertices, such that we have edges from them in {C,D}; we marked
this “new suitable” vertex by many ovals. Thus, all the 5 mentioned vertices
(and only they) are elements α(B) for some grid B.
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By Step 4 of Algorithm 3, we select for them the following set of grids: 4

ζ = {A,C,D}× {Y, Z}, η = {A,B,C,D}× {Z}, ϑ = {B,C,D}× {X,Z},

ν = {C}× {X, Y, Z,U}, ξ = {C,D}× {X, Y, Z}.

These letters (i.e., ζ, η, ϑ, ν and ξ) will symbolize states of automaton U L.

4 Remark once again, that in [6] we simply indicate the set of grids. And in this section,
we used Algorithm 3 for their construction.
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By Step 5 of Algorithm 3, we simply obtain the following sets of inputs and
outputs of U L:

SCOM = {ζ, η} , FCOM = {ϑ, ν, ξ} .

And also by Step 5 of Algorithm 3 (i.e., by definition of automaton COM(L)
of Section 3), we obtain transition function δCOM in the following way.

First at all, consider the following Table 2:

grids (B) α(B) a−→
δπ

ζ η ϑ ν ξ

ζ ACD BC – + + – –

η ABCD – – – – – –

ϑ BCD – – – – – –

ν C C + + + + +

ξ CD BC – + + – –

Table 2

We use here simplified notation as we did before. I.e., elements of the 2nd and
the 3rd columns of this table are the sets of elements of Qπ. However, we have
to explain this notation detailed, because the symbol “–” in the 3rd column
does not symbolize the empty set.

Elements of the 2nd column are elements α(B) for the considered grid B
(which is in the 1-st column). If for each element of this subset (let this state

be A) there exists the transition A
a−→
δπ
B for some B ∈ Qπ, then in this line, the

corresponding set of the 3rd column is the union of all such B. 5 Otherwise, i.e.,
if for some element A (of the 2nd column) there exists no transition A

a−→
δπ
B

for some B ∈ Qπ, then in the 3rd column, we set the symbol “–”.
The right part of this table (i.e., since the 4th column) is a square matrix.

For each its element in the line marked ζ and in the column marked η, we set
+ if and only if:

• the set of 3rd column of the line ζ is not “–”;

• and, besides, is a subset of the set of the 3rd column of the line η;

otherwise we set “–”. 6 Thus, the right part of the table forms the square

5 Let us remind, that we consider the letter a. Remind also, that we consider canonical
automata without “dead” states.

6 Let us especially remark, that the symbol “–” in the 3rd column implies “–” in each cell
of this line in the right part of the table.
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matrix (i.e., matrix 
0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

0 1 1 0 0

 (5)

in the considered example), which formulates, in fact, the condition (1) for the
letter a.

And for this letter a and automaton L̃R, we obtain the following Table 3:

grids (B) β(B) a−→
δρ

ζ η ϑ ν ξ

ζ YZ YU – – – + –

η Z Y + – – + +

ϑ XZ Y + – – + +

ν XYZU YU – – – + –

ξ XYZ YU – – – + –

Table 3

Similarly, the right part of this table formulates, in fact, the condition (2) for
the same letter a.

Then the elementwise conjunction of the first matrix (in the considered
example, that is matrix (5)) and the transposed matrix of Table 3 gives the
matrix for the existence of a-transitions. Let us remark, that in the considered
examples two matrices for elementwise conjunction are the same; 7 however,
there exist examples where these matrices are different.

Let us consider such tables for letter b. For automaton L̃, we obtain the
following Table 4:

grids (B) α(B) b−→
δπ

ζ η ϑ ν ξ

ζ ACD C + + + + +

η ABCD CD + + + – +

ϑ BCD CD + + + – +

ν C C + + + + +

ξ CD C + + + + +

Table 4

And for automaton L̃R, we obtain the following Table 5:

7 For the letter b, two corresponding matrices also are the same. See below.
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grids (B) β(B) a−→
δρ

ζ η ϑ ν ξ

ζ YZ Z + + + + +

η Z Z + + + + +

ϑ XZ Z + + + + +

ν XYZU YZ + – – + +

ξ XYZ Z + + + + +

Table 5

Therefore, we obtain the following matrix of b-transitions for automaton
COM(L): 

1 1 1 1 1

1 1 1 0 1

1 1 1 0 1

1 1 1 1 1

1 1 1 1 1

 (6)

(the order of the grids is previous, i.e., ζ, η, ϑ, ν, ξ).
Using matrices (5) and (6), we simply obtain the following automaton
COM(L) for the considered language:

COM(L) a b→ ζ η, ϑ ζ, η, ϑ, ν, ξ→ η – ζ, η, ϑ, ξ← ϑ – ζ, η, ϑ, ξ← ν ζ, η, ϑ, ν, ξ ζ, η, ϑ, ν, ξ← ξ η, ϑ ζ, η, ϑ, ν, ξ

Table 6

For this automaton, let us also consider its covering subset of grids. One
of them 8 is the following one: {ζ, ϑ, ν}. And using definition of the covering
automaton (Section 3), we obtain the following corresponding covering au-
tomaton COM{ζ,ϑ,ν}(L) (i.e., the covering automaton for the set {ζ, ϑ, ν}, see
Table 7 and Figure 4). It is easy to prove, that the last automaton does define
the given language.

Thus, the considered example gives the equivalent covering automaton. How-
ever, there are examples of languages, where there exist covering automata
which does not define the given languages. We shall continue to consider such
examples in our following papers.

8 As we said before, we shall not consider algorithms of constructing such subsets for
arbitrary automaton. For our example there is evidently, that there exist the only covering
subset containing no more than 3 grids.
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COM{ζ,ϑ,ν}(L) a b→ ζ ϑ ζ, ϑ, ν← ϑ – ζ, ϑ← ν ζ, ϑ, ν ζ, ϑ, ν

Table 7 ��
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I
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?

�
�
�
��

a, b

�
�
�
��

b

A
A
A
AU

b

�
a, b

A
A
A
AK

a, b

Figure 4

7 A series of examples

In [4, Th. 5.1], tight upper bound D(k) on the size of the universal automaton
was obtained. D(k) happens to be the kth Dedekind number ([2] etc.), where
k is the number of states of automaton accepting given language L.

In this section we consider examples which shows how fast a number of grids
(i.e. the size of the universal automaton) can grow if we are given the sizes of

two canonical automata (i.e., L̃ and L̃R). Authors think that these examples
supplement the examples considered in [4].

First of all, let us consider the following matrix of dimension 12× 12:

1 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 1 1

1 1 1 1 0 1 0 0 1 1 1 1

1 1 1 1 0 0 1 0 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1 0 0 0 1



(7)

Evidently, we can consider such matrices for each x ≥ 2 (x×x is the dimensions
of the “block of zeros”) and each n ≥ 2, such that n mod x = 0 (n × n is
the dimensions of the matrix). In the above example (7) we have x = 4 and
n = 12. (Moreover, we can take blocks of zeros of different sizes, see below).
We shall not write the strict formulas for the elements of such matrices.
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For each matrix of this type we can consider corresponding automaton hav-
ing the same table of #-relation. And by [7], such an automaton always exists.

Constructing some grids for the example (7), we can select exactly one line
of {1, 2, 3, 4}, then exactly one line of {5, 6, 7, 8}, and also exactly one line of
{9, 10, 11, 12}; obviously, the numbers of columns must be the same as the
numbers of lines. Thus, in the example (7) we have at least 43 = 64 grids.

Next, let
n = a1 + a2 + . . .+ ak,

and we have blocks of zeros of the sizes a1, a2, . . ., ak; then corresponding
number of blocks (states of canonical automaton) will be no less than

a1 · a2 · . . . · ak
. Our task is to find the maximum value of this expression with fixed n. To
do so, we should take into account that

4 = 2+ 2, 2 · 2 = 4 ≥ 4;
5 = 2+ 3, 2 · 3 = 6 > 5;

6 = 2+ 2+ 2 = 3+ 3, 3 · 3 > 2 · 2 · 2 = 6 etc.

i.e. each summand, greater or equal 4, can be split into 2’s and 3’s, while
keeping the value of product at least as big. It is also obvious, that splitting
the summands we should prefer 3’s (see the last inequality).

So, the sought-for maximum has one of the following types:

3 · 3 · . . . · 3
3 · 3 · . . . · 3 · 2 · 2
3 · 3 · . . . · 3 · 2,

depending on the n modulo 3. For simplicity’s sake we shall limit ourselves
with the case n mod 3 = 0.

To sum up, our examples shows that the size of the universal automaton
can grow exponentially (with base 31/3) with regard to the size of canonical
automata, i.e. with regard to n = min(|Qπ|, |Qρ|). Let us repeat that our
examples do not give the exact number of blocks which may form if we are

given only the value of n = min(|Qπ|, |Qρ|) for automata L̃ and L̃R.
Note that we must not combine this examples with an obvious bound n = 2k

for the number of states of canonical automata, since the resulting function
3n/3 = 32

k/3 grows much faster than D(k). This only means that automata
with #-relation similar to (7) cannot have equivalent automata with number
of states much less then n.
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8 Conclusion

In the next paper we are going to consider:

• the loops of the basis automaton BA(L) and of automaton COM(L);

• the consideration of the covering automaton, does not define the given
language (unlike Section 6); i.e., in fact, the consideration of automaton
Waterloo ([3]) from the point of view of the basis automaton;

• the constructive proof of the following fact: examples like Waterloo can
be constructed for each table of relation # having the following addi-
tional property: there exists the proper covering subset.
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Abstract. H. G. Landau has characterized those integer-sequences S =
(s1, s2, . . . , sn) which can arise as score-vectors in an ordinary round-
robin tournament among n contestants [17]. If s1 ≤ s2 ≤ · · · ≤ sn, the
relevant conditions are expressed simply by the inequalities:

k∑
i=1

si ≥
(
k

2

)
, (1)

for k = 1, 2, . . . , n, with equality holding when k = n. The necessity of
these conditions is fairly obvious, and proofs of their sufficiency have been
given using a variety of different methods [1, 2, 4, 10, 22, 23]. The purpose
of this note is to exhibit Landau’s theorem as an instance of the ”duality
principle” of linear programming, and to point out that this approach
suggests an extension of Landau’s result going beyond the well-known
generalizations due to J. W. Moon [20, 19].

1 Background

In an ordinary round-robin tournament, there are n contestants, each of whom
plays exactly one game against each other contestant, and no game is permit-
ted to end in a tie. For a survey of results on tournaments and their general-
izations, the reader is referred to [12] and [21].
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The results in such a tournament can be represented by an n × n matrix
T = (tij) of zeros and ones, called a tournament matrix, in which tij = 1 if the
i-th contestant defeats the j-th contestant, and tij = 0 otherwise. It is easy to
see that the set of all n× n tournament matrices is identical to the set of all
integer solutions to the following system of linear relations (in which i and j

represent arbitrary distinct indices):

tij ≥ 0, (2)

tii = 0, (3)

and

tij + tji = 1. (4)

The i-th contestant’s score si is the total number of games played in which
the i-th contestant is the victor. Note that si may be obtained by summing
up the entries in the i-th row of the matrix T :

si =

n∑
j=1

tij. (5)

The sequence S = (s1, s2, . . . , sn) consisting of all the contestants’ scores is
called the score-vector for the tournament. Clearly, the sum of all the scores in
a score-vector must equal the total number of games played in the tournament:

n∑
i=1

si =

(
n

2

)
. (6)

Furthermore, any subset of the contestants taken together must score a total
number of wins at least as large as the number of games they play with each
other; hence, for k = 1, 2, . . . , n, the inequality

∑
i∈K

si ≥
(
k

2

)
(7)

must hold for each k-element subset K of {1, 2, . . . , n}.
Landau’s theorem, referred to in the introduction, asserts that these rela-

tions (6)–(7) completely characterize those integer-sequences which are score-
vectors.
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Theorem 1 (H. G. Landau [17]) For an arbitrary integer-sequence S = (s1, s2,
. . . , sn) to be the score-vector of some round-robin tournament among n con-
testants, it is necessary and sufficient that, for 1 ≤ k ≤ n, the inequality

∑
i∈K

si ≥
(
k

2

)
(8)

shall hold for each k-element subset K of {1, 2, . . . , n}, and moreover that strict
equality shall hold when k = n.

We remark that, in order to test a sequence S = (s1, s2, . . . , sn) according
to the criteria in Theorem 1, it might seem that a check of 2n inequalities is
required; but, as Landau himself pointed out, if the elements s1, s2, . . . , sn are
first arranged in nondescending order, then only n relations actually have to
be examined. Thus the crucial relations are indicated in the following

Corollary 2 (Landau [17]) For the integer-sequence S = (s1, s2, . . . , sn) to be
a score-vector, where s1 ≤ s2 ≤ · · · ≤ sn, it is both necessary and sufficient
that the inequality

k∑
i=1

si ≥
(
k

2

)
(9)

shall hold for each k ≤ n, with strict equality when k = n.

Since it is always possible, in at most
(
n
2

)
steps, to rearrange the elements

of any n-term sequence so that they appear in non-descending order, this
corollary provides the basis for an efficient algorithm to detect score-vectors.
To deduce Corollary 2 from Theorem 1 is easy: simply observe that the sum
of any k elements chosen from a finite set must be as least as large as the sum
of the k smallest elements in that set.1

J. W. Moon in [20] has extended Landau’s theorem by referring to arbitrary
real solutions of the system (2)–(4) as generalized tournaments. Scores for the
contestants in a generalized tournament are defined by (5) and need not be
integers, although such scores still must satisfy the relations (6)–(7), since
these relations actually are algebraic combinations of (2)–(5). Moon’s result,
which closely parallel’s Landau’s theorem, may be phrased as follows:

1For an interesting discussion of algorithmic efficiency, the reader may consult the popular
survey article [18].
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Theorem 3 ((J. W. Moon [20]) For an arbitrary real-sequence S = (s1, s2, . . . ,
sn) to be the score-vector of some generalized tournament of size n × n, it is
necessary and sufficient that, for 1 ≤ k ≤ n, the inequality

∑
i∈K

si ≥
(
k

2

)
(10)

shall hold for each k-element subset K of {1, 2, . . . , n}, and moreover that strict
equality shall hold when k = n.

Interestingly, from the point of view of linear programming, as we shall see,
Landau’s original theorem may be regarded as a somewhat deeper result than
the apparently more general theorem due to Moon. The explanation for this
opinion is that Landau’s theorem rests with greater weight upon a special prop-
erty of the linear constraint-system (2)–(5) known as ”total unimodularity”.
The significance of this property for integer linear programming is indicated
in the next section.

The structure of this paper is as follows: in Section 1 we present the termi-
nology and notation for restating the theorems of Landau (for tournaments)
and Moon (for generalized tournaments) which did not originally rely on linear
programming methods; in Section 2 we state the ”duality” and ”unimodular-
ity” principles which allow us to see afresh the theorems of Landau and Moon
as special instances of linear programming principles; in Section 3 we show how
proofs for their theorems can be given via ”duality” and ”unimodularity”; and
in Section 4 we point out the advantage of a linear programming perspective,
namely, a natural extension of their theorems to more general structures, called
C-tournaments, and we speculate that the linear programming point-of-view
offers a potential for discovering new results regarding other combinatorial ob-
jects. We conclude in Section 5 with a summary and some acknowledgements.

2 Duality and unimodularity

In the argument which follows we shall employ the so-called ”duality principle”
of linear programming. Complete discussions of this principle may be found
in most standard textbooks, such as [9] or [11]. The version needed for our
purposes relates the following pair of optimization problems built out of the
same data, namely, a p × q matrix A = (aij), a p-vector B = (bi), and a
q-vector C = (cj):
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Maximum problem Minimum problem

Maximize

q∑
j=1

cjxj Minimize

p∑
i=1

biyi

constrained by constrained by

xj ≥ 0

p∑
i=1

aijyi ≥ cj (1 ≤ j ≤ q)

q∑
j=1

aijxj ≤ bi yi ≥ 0 (1 ≤ i ≤ p).

The duality principle asserts that, if the maximum problem is solvable, then
the minimum problem also is solvable, and the constrained maximum of

∑
cjxj

equals the constrained minimum of
∑

biyi.
Besides the duality principle we shall also require certain further facts from

linear programming. As is well known, in any linear programming problem,
the optimal value of the objective function (if it exists) is attained at a vertex,
or ”extreme point,” of the polyhedral convex set of feasible solutions (see,
for example [9] or [11]). Each such vertex arises as a basic solution of the
linear inequalities which define the feasible region; that is, by choosing an
appropriate subset of the inequalities, and then solving these simultaneously
as if they were linear equations. Accordingly, as a consequence of Cramer’s
Rule, if the constraint-matrix A in the above pair of optimization problems
happens to be totally unimodular (i.e., every square submatrix of A of every
order has a determinant equal to 0, +1, or −1), and if the given vectors B and
C are composed of integers, then in both problems the optimal value of the
objective functions will be attained at integral solution-vectors X = (xj) and
Y = (yi) (see [14]).

In general, it is not easy to tell whether a given matrix A is totally uni-
modular, although an obvious requirement in view of the definition is that the
individual entries aij must themselves be equal to 0,+1, or −1. A complete
characterization of totally unimodular matrices (in terms of forbidden subma-
trices) has been given by P. Camion in [6]. A simpler criterion which is often
useful is the following sufficient condition due to Heller and Tompkins.

Theorem 4 (Heller and Tompkins [13]) In order for the matrix A = (aij) to
be totally unimodular, the following three conditions are sufficient:



26 Allan B. Cruse

(1) Each entry aij is 0,+1, or −1.
(2) At most two nonzero entries appear in any column of A.
(3) The rows of A can be partitioned into two subsets R1 and R2 such that:
(i) If a column contains two nonzero entries with the same sign, then one

entry is in a row of R1 and one entry is in a row of R2.
(ii) If a column contains two nonzero entries of opposite sign, then both

entries are in rows of R1 , or both entries are in rows of R2.

For later reference we note here, in stating this criterion, the words ”row”
and ”column” could be interchanged throughout, since it is obvious from the
definition that a matrix A is totally unimodular if and only if its transpose At

is also totally unimodular. With these results freshly in mind, we proceed to
our proof of the Moon and Landau theorems.

3 Proof of Landau’s theorem

Assume that S = (s1, s2, . . . , sn) is an arbitrary real sequence satisfying the
relations (6)–(7). We wish to show, first, that there exists a real n×n matrix
T = (tij) satisfying (2)–(5); and further, that if S happens to be composed
on integers, then T may be assumed to consist of integers as well. The first
statement yields Moon’s theorem (Theorem 3), while the second assertion
gives the original theorem of Landau (Theorem 1). To achieve their proofs, we
consider the following linear programming problem:

Maximize z =

n∑
i=1

n∑
j=1

xij (11)

subject to the constraints

xij ≥ 0, for 1 ≤ i, j ≤ n (12)

xii ≤ 0, for 1 ≤ i ≤ n (13)

xij + xji ≤ 1, for 1 ≤ i < j ≤ n (14)

n∑
j=1

xij ≤ si, for 1 ≤ i ≤ n. (15)

Notice that these constraints have at least one feasible solution (e.g., the zero
matrix) since the inequalities (7) imply that the numbers si are all nonnegative;
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and since the set of all feasible solutions is evidently closed and bounded, an
optimal solution must exist. Indeed, by adding all inequalities of type (15), we
can see from (6) that max z ≤

(
n
2

)
. Let us now show that in fact max z =

(
n
2

)
.

It is for this purpose that we utilize the principle of duality.
Consider the following minimum problem (which is the dual of the maximum

problem above):

Minimize

n∑
i=1

siui +
∑

1≤i<j≤n
vij (16)

subject to the constraints

ui ≥ 0, for 1 ≤ i ≤ n, (17)

vij ≥ 0, for 1 ≤ i ≤ j ≤ n, (18)

ui + vij ≥ 1, for 1 ≤ i < j ≤ n, (19)

uj + vij ≥ 1, for 1 ≤ i < j ≤ n, (20)

ui + vii ≥ 1, for 1 ≤ i ≤ n. (21)

By the fundamental duality principle of linear programming, we know that
min y = max z. So let us now show that min y <

(
n
2

)
is impossible.

Suppose, on the contrary, that we did have min y <
(
n
2

)
. Then there would

have to exist a solution-vector (ui, vij) satisfying the constraints (17)–(21) such
that

y =

n∑
i=1

siui +
∑

1≤i<j≤n
vij <

(
n

2

)
, (22)

and we may assume (as explained in the preceeding section) that this vector
(ui, vij) is an extreme point of the polyhedral convex set defined by the con-
straints (17)–(21). For this polyhedron, the extreme points are particularly
easy to describe.

Lemma 5 If (ui, vij) is any extreme point of the convex polyhedron defined
by (17)–(21), then:

(i) The components of (ui, vij) are zeros and ones.
(ii) If K = {i : ui = 1}, then vij = 0 if and only if i ∈ K and j ∈ K.

Proof. It is evident from an inspection of the constraints (17)–(21) that the
vector (ui, vij) cannot be extremal if it contains any entries larger than 1,
since all such entries can be either increased or decreased by a small amount
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without violating the constraints. Thus to prove (i) it suffices to show that
(ui, vij) cannot be extremal unless it is composed entirely of integers. But this
fact follows at once from Cramer’s Rule and the ”unimodular property” of the
constraints (17)–(21). (The criterion of Theorem 4 may be used to detect this
property.) Alternatively, a direct argument inspired by Hoffman and Kuhn [15]
may be given as follows.

Suppose (ui, vij) is a vector satisfying (17)–(21) which contains some non-
integer entries. Then for e 6= 0 let (u ′i, v

′
ij)

e be the vector defined by

u ′i =

{
ui if uij is an integer,

ui + e otherwise,
(23)

v ′ij =

{
vij if vij is an integer,

vij − e otherwise.
(24)

Evidently both (u ′i, v
′
ij)

e and (u ′i, v
′
ij)

−e will satisfy(17)–(21) for a sufficiently
small choice of e > 0, since the sum of two numbers cannot equal an integer
if exactly one of them is non-integer. Now since (ui, vij) can be written as

ui, vij) =
1

2
(u ′i, v

′
ij)

e +
1

2
(u ′i, v

′
ij)

−e,

we see that the vector (ui, vij) is not extremal, which proves (i).
Property (ii) is now apparent from an inspection of the constraints. �

From this Lemma we see that inequality (22) may be rewritten as

y =
∑
i∈K

si +

[(
n

2

)
−

(
k

2

)]
<

(
n

2

)
, (25)

where k denotes the cardinality of the set K = {i : ui = 1}. But this re-
lation is clearly inconsistent with our hypothesis that the given sequence
S = (s1, s2, . . . , sn) satisfies (7). This contradiction shows that min y ≥

(
n
2

)
,

and so we must indeed have min y = max z =
(
n
2

)
.

Having established the existence of an n × n matrix X = (xij) satisfying
(11)–(14) with

∑n
i=1

∑n
j=1 xij =

(
n
2

)
, we note that this matrix X must satisfy

all of the constraints (12)–(14) as actual equations. For otherwise, if any one
of the relations (12)–(14) holds for X as a strict inequality, then addition of
all of those constraints would yield the relation

2

 n∑
i=1

n∑
j=1

xij

 < n(n− 1),
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thereby contradicting the choice of X. Finally, since we may also assume that
the matrix X is an extreme point of the convex polygon defined by (11)–
(15), then in case the sequence S = (s1, s2, . . . , sn) was composed entirely of
integers, we may invoke the ”unimodular property” once again to infer that
X is actually a matrix of zeros and ones. This shows that X represents a
(generalized) tournament having the given sequence S as its score-vector. The
proof of Landau’s theorem is now complete, and with it the proof of Moon’s
generalization.2

4 Generalization to C-tournaments

The approach taken in the preceding argument may be followed in a more
general setting. Let C = (cij) be any upper-triangular n × n matrix of non-
negative integers, and consider the set of all integer solutions T = [tij] to the
following linear system:

tij ≥ 0, for 1 ≤ i, j ≤ n, (26)

tii = cii, for 1 ≤ i ≤ n, (27)

tij + tji = cij, for 1 ≤ i < j ≤ n. (28)

Such an integer solution-matrix T will be called a C-tournament since it
is plausible to interpret T as a record of the wins and losses in an expanded
type of tournament competition where the i-th contestant plays an arbitrarily
predetermined number of games against the j-th contestant. For example,
C-tournaments include the so-called ”n-partite tournaments” introduced by
Moon in [21]. (An n-partite tournament differs from an ordinary tournament
in that there are n nonempty sets of players P1, P2, . . . , Pn, and two of the
players compete if and only if they do not belong to the same set Pi.) Scores for
the contestants in a C-tournament are defined in the same way as for ordinary
tournaments, and it is clear that by modifying our proof of Landau’s theorem
in only a few details, we can immediately obtain a characterization for the
score-vectors which may arise from a given choice of the matrix C.

2The argument presented here is similar in spirit and in certain details to the proof via
linear programming of a theorem on systems of distinct representatives due to Hoffman and
Kuhn [15], and to a proof by the author of a theorem due to D. R. Fulkerson which charac-
terizes permutation matrices [7]. Still other combinatorial theorems whose proofs follow this
same pattern are treated by various authors in [16].
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Theorem 6 For an arbitrary integer sequence S = (s1, s2, . . . , sn) to be the
score-vector of some C-tournament among n contestants, where C is a given
n×n upper-triangular matrix of nonnegative integers, it is both necessary and
sufficient that the inequality

∑
i∈K

si ≥
∑
i∈K

∑
j∈K

ci,j

shall hold for each subset K of {1, 2, . . . , n}, and moreover that strict equality
shall hold when K = {1, 2, . . . , n}.

Since our proof of Theorem 6 is practically the same as the proof just given,
we do not repeat those details.

We remark that Theorem 6, which is the main new result of this note,
reduces to Landau’s theorem (Theorem 1) in case C is the upper-triangular
matrix of zeros and ones in which cij = 1 if and only if i < j. Theorem 6 also
encompasses the characterization of score-vectors for n-partite tournaments
which was obtained with different methods by Moon in [19]. Finally we mention
that Theorem 6 extends to ”generalized” C-tournaments simply by dropping
the requirement that the matrices C and T must be composed of integers.

It seems likely that several other problems which arise in the theory of
tournaments may be amenable to the methods of linear-programming illus-
trated here. One example which suggests itself is the problem of determining
the number of ”upsets” which can occur in a tournament having a prescribed
score-vector S. (An upset occurs when one contestant defeats another whose
record of wins is better (or at least no worse).) For ordinary tournaments this
problem was completely solved by D. R. Fulkerson in [10].

Earlier H. J. Ryser in [23] had obtained an explicit formula for the minimum
number of upsets that must occur in any tournament with score-vector S =
(s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn, namely,

∑
i∈J

[si − (i− 1)], (29)

where J = {i : si ≥ i − 1}. Although Ryser’s methods were completely combi-
natorial, one can hardly help noticing that this problem asks for the optimum
of a certain linear function defined over a convex polyhedron which, in view
of the ”unimodular property.” can have only integral vertices.
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5 Summary

Landau’s pioneering investigation of round-robin tournaments can be seen as
a special instance of linear programming constrained to integer variables, and
Moon’s generalization as a ”relaxation” of the integrality constraint. Plac-
ing combinatorial studies within that broader linear algebra setting not only
yields immediate new generalizations, such as our 6, where conditions for rec-
ognizing the score-vectors of C-tournaments are deduced as straightforward
consequences of ”duality” and ”unimodularity”, but suggest a tantalizing way
to explore various other seemingly unrelated questions.

In January 2014 we learned of the recent work by R. Brualdi and E. Fritscher
[5] in which an algorithm is presented for constructing one (or more) C-
tournaments having a prescribed score-vector in all cases where that is pos-
sible, or else exhibiting a specific constraint among those in our 6 which is
violated.
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Budapest, Hungary

email: kovacsg@u1research.org

Zsolt T. KARDKOVÁCS
U1 Research

2 INFOPARK Gábor Dénes
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1 Introduction

Databases that contain useful information about people have always been in
the focus of research. Researchers apply various methods to extract valuable in-
formation from data sets to understand people and make predictions for their
future behaviour. While legal systems may vary over countries, democratic
regulations protect privacy at the highest level, usually in their constutition.
Specially, a specific type of personal data called sensitive data, e.g. ethnicity,
religious affiliation, medical condition, can only be accessed, transfered or han-
dled by entities explicitly stated in regulations, and with the consent of the
data subject.

Health care databases have an especially strict regulation because of the
large number of sensitive data contained. For instance, pharmaceutical re-
search must work with accurate data, but that retains all sensitive patient
data as well, hence researchers working with such databases stumble very
early in the legal limitations. Records of health care databases hold sensitive
information from which one may be able to reveal medical condition of a per-
son. Medical conditions may relate to e.g. food consumption preferences, life
expectancy, drug taking habits, and other personal strengths or weaknesses.
In wrong hands, e.g. decisions over employments [27], or mortgages might de-
pend on such information which would be very unethical to use, and it must
be avoided at all costs. On the other hand, health care databases also serve as
the basis for better health care services, drug developments, and cost efficiency
which also are in the focus of public interests. Therefore before publishing any
piece of information from the database, it has to go through an anonymization
procedure to hide sensitive data. Hence researchers must be aware of the legal
requirements, the methods applicable to meet these requirements and the level
protection these techniques provide.

One may take into account that neither well-known personal identifiers like
birth name, social security number nor sensitive data on medical statements
on their own harm privacy; only making connections between these pieces
of information. That is, the main task called data anonymization is to pre-
vent from establishing of connection between individuals and their data. Data
anonymization can be forced by physically limit the data access by means of
security policies, deletion, data perturbations, or by guaranteeing that any
piece of data could be connected to more than one individual using repetition,
sampling, aggregations, etc. As a consequence, data quality is reduced.

Reduced data quality for data analysis means somekind of loss in useful-
ness which directly affects the performance of data analyis. For example, data
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mining procedures as the most commonly used data analysis tools aim at
discovering valid, previously unknown (novel or hidden), potentially useful,
understandable (actionable) patterns, information, or relationships in statis-
tically large databases [12]. Data mining tools highly dependent from data
quality, i.e., poor data quality may result in invalid, useless, empty or non-
comprehensible knowledge discovery. We propose a novel metric, the accuracy
to be used for evaluating the usefulness of the anonymized data instead of
information loss metrics.

The question arises how to enable the extraction of useful and beneficial
information from health care databases while maximizing the protection of
privacy. In this paper, we review different aspects of data mining related data
anonymization and privacy preserving data mining, and we analyze the ques-
tion from legalislative, privacy intruder, and data owner points of view. We
also investigate what level of protection existing health care anonymization
methods provide by comparing them to general techniques, and point out
their limitations showing additional aspects to be covered when protecting
health data.

The paper is organized as follows. Section 2 makes an overview of past
events, which helps to give and overview on the importance and motivations
of data anonymization. We discuss legal regulations and limitation regarding
sensitive data management in Section 3. Section 4 defines key terms used in this
article, and it presents a novel classification of the different approaches to data
anonymization by analyzing possible attacking techniques and motivations. We
make a short summary on the most analyzed data anonymization techniques
and illustrate them on example databases in Section 5. Section 6 gives a brief
introduction to theoretical indicators of privacy preservation and data utility
metrics. We also evaluate how data anonymization techniques perform on our
examples.

2 Leaking examples: threats and motivations

In theory, private data are the most protected, only those who have specific
permission can access them. Nevertheless, in United States the 35% of the
employers had a deep insight of health records of employees to make decisions
about them according to [27] made in the 1990’s [27]. There is also an urban
legend [13] about a bank officer in Maryland who cross-referenced a list of
patients with cancer against a list of people with recallable mortgages [27].
But health care practioners have many another ways to harm patients’ privacy
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even after several regulations on the topic [6].
The problem is not new, the first census in the United States faced similar

problems. For example, for electoral registry four typical data is given: sex,
date of birth, postal code, ethnicity. In Cambridge, MA in 1997 there were
54.804 voters, and 12% of whom was uniquely identified by date of birth,
29% by date of birth and sex, 69% by date of birth and not full postal code,
and 97% by date of birth and full length postal code [27]. Similar results are
observed in other countries, as well [18, 10].

But this is not the only way to get sensitive data. In 2005, Netflix published
a believed-to-be de-identified movie preference database of 480.000 customers.
Database contained information on pseudo-anonymized ids, movie ids and ti-
tles, dates, and preferences. For those who had more than eight evaluations
for movies there was a 99% match against publicly available IMDB (Internet
Movie Database) evaluations [25]. Login names and real names are overlap-
ping hence a huge number of customers could have been directly identified
using these information. In 2006, AOL published another database on pseudo-
anonymized web search queries. [4] found out that web search queries tend to
contain the surfers’ name, social security number, or other private information
about them. In this article, they retrieved a picture of a 62-year-old web surfer
believed to be anonym.

Obviously, storing, transferring, and handling private data is strictly for-
bidden in general. Nevertheless, it is unavoidable in many cases specially for
public services. This implies that unencrypted or decrypted personal data can
be accessed through hacking or other intrusion techniques.

For example, researchers fights for new discoveries as the basis of their pro-
motions and livelihood. They are sometimes careless on handling properly
personal data and it is not infrequent that data is not deleted after a research
is completed. Can personal data be provided or be available for research? If
ethical norms can be passed for some reasons there is no strict boundary which
leads to gradual destruction and degradation of privacy norms [7].

Sometimes, if data subjects give specific permission to an organization to
handle their private data could lead to privacy issues. For instance, customers
allow a supermarket to handle their data on custom behaviors. Data mining
on customer baskets, transactions are commonly used for data mining in order
to reveal customer preferences, and to increase revenue with proper marketing
communication and logistical strategies. Collected data may be shared legally
with suppliers to help product development. In this case, data sharing may
lead to revenue maximization on the supplier side only if data indicate clear
preference over the competitive products. In addition, shared data based mar-
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keting strategy could increase the profit in all but the data sharer company
[30].

People in democratic countries have a strong need for privacy which must be
protected at all costs. Researchers and other data consumers need a uniformly
available dataset for innovation, and obviously a clear, ethical way to acquire
those valueble information. What motivates data publishers in the use data
anonymization? Data sharing is essential in the information era for product
development, innovation and research, i.e. information and databases are just
another types of raw materials. Firstly, data sharers wants to comply with
regulations in order to re-sell databases. Secondly, they want to avoid respon-
sibility for non-intensional loss in privacy. Thirdly, they try to keep the balance
between revenues of data sharing and the risk of misuse. Finally, there are also
anti-trust worries, that is why data sharing among competitors is regulated.

These examples clearly illustrate that there is a strong need for data pub-
lishing, for protecting privacy and data providers in a hand.

3 Privacy, public interests and legal regulations

In order to understand, what may harm privacy, we need to defined the notion
privacy itself. In democratic countries, people have rights to be left alone,
their actions and data shall be handled confidentially unless other, higher or
public interests do not require otherwise. From this point of view, every action
against an individual’s specific will, or which disturbs private life including
unreasonable publicity harm privacy.

Nevertheless, boundaries of the term ,,public interest” may vary in countries
and it is hard to say where begins or ends private and social life. That is why
interpretation of the right to privacy is not straightforward. It is a fact that
birthday is a private event while wedding, hence marital status, is not because
there are public interests about this information, e.g. in case of conflicts of
interest, post incompatibility, bigamy. The right to health, and the right to
research are often constitutional rights as well and as such they are part of
the public interests, which may interfere with and limit the right to privacy
in a reasonable and a proportional way. Health information are sensitive data,
i.e., data which must be protected for privacy and they can only be handled
according to the the regulations of records. That is, the right to health may
require detailed analyis of health data while the right to privacy explicitly
forbids the access of data out of medical condition related health care services.

Legislative solution for this problem is data anonymization. What does data
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anonymization mean? In United States, the HIPAA (Health Insurance Porta-
bility and Accountability Act), in the European Community the EC/95/46
directive regulates data publishing, hence data anonymization policies. Ac-
cording to EC/95/46 directive, data is anonymized if data subject is no longer
identifiable and retained in a form in which identification of the data sub-
ject is no longer possible1. HIPAA’s approach is slightly different: anonymized
data ,,does not identify an individual and if the covered entity has no reason-
able basis to believe it can be used to identify an individual”2. The Hungar-
ian jurisdiction defines anonymization as ,,a technical procedure that ensures
connections between data and data subjects are no longer possible”3. Defi-
nition 1 extends legal definitions by combining their different approaches to
the problem. The definition means informally that any Φ transformation is an
anonymization function for a given database ∆, if the probability of finding a
Ψ inverse transformation, which may use background knowledge not present
in the original database, is close to zero.

Definition 1 (Data Anonymization) Let Φ : DB → DB be a database
transformation function, and ∆ ∈ DB be a database. We say the transformed
database Φ(∆) is anonymized if

∀Ψ∀∆1 . . . ∀∆N Pr(Ψ(Φ(∆), ∆1, . . . , ∆N) * ∆) ≈ 0, (1)

where Ψ : DBN+1 → DB (N = 0, . . . ,∞) is an arbitrary function, and ∆i, i =
1, . . . ,N are database representations of all available background knowledge. If
Φ(∆) is anonymized for any ∆ ∈ DB then we say Φ is a data anonymization
function.

Legal regulations explicitly state what is allowed and what is forbidden,
but with the exception of HIPAA’s Safe Harbour method they do not define
how to achieve anonymity. Safe Harbour is about to pseudonymize or com-
pletely remove the following values in databases: name; date different from
years including death, birth, discharge dates, etc., ages above 89 years; fax
numbers; social security numbers; medical record numbers; health plan ben-
eficiary numbers; account numbers; certificate/license numbers; vehicle iden-
tifiers and serial numbers, including license plate numbers; device identifiers
and serial numbers; URLs; IP addresses; biometric identifiers; full-face or com-
parable photos or images; and any other unique identifying number, codes. In

1Article 26 of EC/95/46
2Section 164.514(a) of HIPAA
3Act of 2003/III. 1.§.(2) and Act of 1995/CXIX. 2.§.(1)
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other words, Safe Harbour requires to eliminate direct and indirect identifiers,
and has no advice on unintentional or partial, i.e. non-unique identifiers. In
Section 5, we determine the level of anonymity Safe Harbour provides, and
show its relation to our definition.

4 Approaches to data anonymization

Section 3 points out that data anonymization is a challenge for research, busi-
ness and even for regulatory activities. Anonymization is a congitive process,
practitioners must understand what could lead to the identification of an in-
dividual besides the obvious; direct data access either phyisically or logically,
carelessness, etc.

Each person has some natural identifiers, i.e. data which characterizes an in-
dividual; name, social security number, passport number, cellular phone num-
ber, vehicle plate number, biometric identifiers etc. Some of them may not
identify a person uniquely, but in proper contexts they shall be assumed to be
unique identifiers. In this paper, we use the term direct identifiers for these
kinds of data. There are a set of natural identifiers called indirect identifiers
which together provide a unique identification, e.g. birth date, mother’s name,
address. One must notice that personal data and data which enable identi-
fication of a human being are not necessarily different things. For example,
thoughts, forms of expression, activities, friends, medical case history, etc.,
may also identify people as well; we call them unintentional identifiers.

In practice, direct and indirect identifiers are replaced with one-way hash
functions, i.e., functions that cannot allow original data to be restored since
they have no inverse. Such a non-reversible value replacement of direct iden-
tifiers is called de-identification method. De-identification not necessarily as-
sumes the complete removal of all but direct identifiers. If a de-identification
method maps every identical direct/indirect identifier into an identical (but
non-reversible) value then it is called pseudo-anonymization or pseudonymiza-
tion for short. Later on this paper, we use the term re-identification for a
procedure or method which processes one or more datasets to determine the
identify of data subjects.

To protect privacy one must understand the potential threats, i.e. possible
re-identification strategies:

• Direct re-identification. Data themselves without any further action re-
veal data subject identity.

• Re-identification through linking. Sometimes, data set is believed to be
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de-identified while using publicly available or legally accessible databases
enables re-identification of data subjects. For example, Netflix prize
award data set contained pseudonymized user ids and movie ratings.
Netflix ratings were easily correlated to IMDB ratings [25] where user
ids are often personal names; re-identification was made possible through
linking the preferences.

• Publishing anonymization algorithms, or settings for predictive algo-
rithms. Publishing always makes ways to de-construct or to invert ap-
plied functions using direct re-mapping, guessing, etc. If we are looking
for an information on an individual, one may deduce the future medi-
cal condition using medical predictive function based on their observed
symptoms.

• Re-identification through extremities. Outlier values, rare or very un-
usual behavior are specific by definition to a very limited number of
individuals, which may lead to re-identification. For example, if inhabi-
tants of a small town suffer from the same disease, it is easy to infer the
medical condition of an individual from that town.

• Background knowledge based re-identification. Sometimes, not struc-
tured, not stored, or single fact or knowledge known or accessed by
a limit number of individuals is applied to retrieve someone’s identity,
e.g. custom habits of neighbors when and how they leave, or activities
and photos published on a social network portal. Background knowledge
is one of the most probable attacking strategy in our social network era.

• Re-identification through event sequencing. Frequencies or the ordering
of data items also may uniquely identify certain individuals. A company
based on a sick-leave registry may easily reveal employee medical condi-
tion if published health care database contains only dates and medical
conditions.

• Information misuse. We are talking about information misuse whenever
published database makes alternative, possibly harmful use possible. See,
for example, the problem of sharing customer transactions in Section 2.

Anonymization techniques against these attacks get more complex in the
order above. A question may arise: is it possible to eliminate all threats by
a data anonymization algorithm while data still have enough value for data
analysis? The following strategies have been applied for anonymization in the
literature [30, 1, 31]:

1. Access limitations.
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(a) Limitation of data access. The most common procedure to limit
the number of queries and to be run over a controlled environment
through proper authentication and information hiding [24, 23].

(b) Ciphering algorithms. Change of data values in a way that makes
impossible to retrieve original values.

2. Obfuscation. These algorithms cut or aggregate parts of the database in
order to avoid re-identification.

(a) Dynamic sampling. Limited number of data elements are published,
which meet the functional anonymization criteria.

(b) Aggregation oriented anonymization. Enforcing data aggregations
and micro-aggregation (aggregation over a subset of data elements)
to achieve functional anonymization [29].

3. Functional anonymization. It aims at reducing the confidence about a
piece of information related to a specific individual. It is widely discussed
in the literature, there are several approaches to achieve this goal, e.g.
by adding random noise [3, 2], using random data permutation [11], or
by redundancy oriented data perturbations [29, 22, 14].

The first strategy is a very protective but not data publishing friendly so-
lution. The second one is efficient for data publishing, however, they reduce
dramatically data quality, which implies very limited use for data mining.
Functional anonymization is the most discussed solution in the literature and
it reveals the depth of data anonymization problems, as well. We make a brief
overview on these techniques in Section 5.

5 Functional data anonynimization techniques

Let us consider Table 1 as a database to illustrate anonymization and related
problems. The relation itself currently contains one sensitive information, the
list of the salaries. Additionally, it can be directly connected with individuals
as the ID attribute is present. Publishing such database could be strongly
resisted with respect to data protection. Although this database is not

The easiest de-identification is omitting ID column; the result can be seen
in Table 2. Note that, selecting any two of the Date of birth, Sex and Postal
code attributes can identify the set of individuals in that relation. In gen-
eral, these attribute pairs are not enough for unique identification, however,
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ID Date of birth Sex Postal code Salary

Annie 21-01-76 Female 1107 40 000

Bill 24-03-76 Male 1107 45 000

Cecile 27-02-76 Female 1117 50 000

Dennis 21-01-76 Female 1117 55 000

Elise 24-03-76 Male 1127 60 000

Fred 27-02-76 Male 1127 65 000

Table 1: Contents of the basictable relation

in different countries they can identify a very large percent of the whole pop-
ulation [29, 18, 10], i.e. they quasi identify people. In hungarian a health care
database, an individual who lives in a town with less than 50000 inhabitants
can be identified with this triple with 94.2% probability. With more than 50000
inhabitants this value falls to 40.4%, which is still an unacceptably high value.

Definition 2 ( [29] Quasi-identifier) Given a set of individuals I and re-
lation r(R) on the R(A1, . . . , An) schema, and let fc : t[Qr] → r(R) and let
fd : r(R) → I ′, where I ′ ⊆ I, t ∈ r(R) and Qr ⊆ {A1, . . . , An}. Qr is a
quasi-identifier in relation r(R), if ∃pi ∈ I such that ∃ti ∈ r[R] for which
fd(fc(ti)) = pi.

Sweeney’s definition means informally that any tuple t[Qr] of a relation r is
a quasi-identifier in that relation, if the subset of attributes Qr is unique for
some individuals pi.

Date of birth Sex Postal code Salary

21-01-76 Female 1107 40 000

24-03-76 Male 1107 45 000

27-02-76 Female 1117 50 000

21-01-76 Female 1117 55 000

24-03-76 Male 1127 60 000

27-02-76 Male 1127 65 000

Table 2: Contents of the de-identified relation

By using background knowledge on quasi-identifiers and by having infor-
mation about individuals from public sources, researchers can join records
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on quasi-identifiers to the sensitive data items. A solution for this problem
is to make data values ambiguous. Either one can delete some of the quasi-
identifiers and/or sensitive data values as shown in Table 3 or one can add
noise to data values as shown in Table 4.

Date of birth Sex Postal code Salary

* * 1107 40 000

24-03-76 Male 1107 45 000

27-02-76 Female 1117 50 000

* * * *

24-03-76 Male 1127 60 000

27-02-76 Male 1127 65 000

Table 3: Contents of the deleteddata relation

If one deletes some values then it can be overwritten with any (other) value
to inhibit data linking through external sources. This means, that if one finds
a possible data re-connection through quasi-identifier values, one cannot be
certain that quasi-identifier values or data linking restore any part of the
original database. On the other hand, a clear disadvantage of this approach
is that the usability for analysis is degrading fast with the number of data
perturbations.

Date of birth Sex Postal code Salary

21-01-76 Female 1107 50 000

24-03-76 Male 1107 35 000

27-02-76 Female 1117 50 000

21-01-76 Female 1117 55 000

24-03-76 Male 1127 65 000

27-02-76 Male 1127 60 000

Table 4: Contents of the noisytable relation

Another way is to add noise to sensitive data. In this case, the attacker can-
not be certain about the real data value in any but all particular record. This
solution inhibits exploring sensitive data thus linking external data sources
provide no further information. As a special case noise can be added by using
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microaggregation on data to lower the possibility of re-identification as shown
in Table 5. Nevertheless, noise specially aggregations significantly reduce data
quality.

Date of birth Sex Postal code Salary

**-**-76 Female 11** 40 000

**-**-76 Male 11** 45 000

**-**-76 Female 11** 50 000

**-**-76 Female 11** 55 000

**-**-76 Male 11** 60 000

**-**-76 Male 11** 65 000

Table 5: Contents of the aggregated relation

The concept of k-anonymity limits the applicability of attack using external
relationships. Instead of identifying individuals, for any key or keylike attribute
there must be at least k with the same quasi-identifier in the database. This is
usually achieved by generalizations, for instance deleting some numbers from
an IP address or a postal code.

Definition 3 ( [29] k-anonymity) Given a relation r(R) over the schema
R(A1, . . . , An), and Qr is a quasi-identifier in r(R), then r(R) is k-anonym if
for any Qr t[Qr] value occurs at least k times in r(R).

The relation in Table 5 is 3-anonym. In this case, the most concrete knowl-
edge of a record necessarily involves the uncertainity that for that record there
are at least 3 other candidates. However, in general it is quite difficult to de-
termine about a relation whether it is k-anonym.

The computational complexity has been shown to be at least of the order of
O(2|Qr|) [5, 28] independently from whether the model allows deletion or not.
If deletion, local rewrite and multidimensional partitioning is allowed, then
finding the minimal k-anonym is NP-hard [19, 20]. Generally, it has O(n2k)
complexity, but an O(n logn) approximation has also been proposed with
certain restrictions, assuming multidimensional clustering [18].

[22] has shown that k-anonymity is not sufficient hence re-identification is
also possible through sensitive data linking as well. In other words, not only the
entropy of quasi-identifiers, but the entropy of sensitive values should exceed a
particular threshold. The database shown in Table 6 is 2-anonym. Note that,
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there are no further constraints on sensitive data values, which are identical
for different birth dates. As a consequence, one can easily reveal sensitive data
in Table 6 database by knowing only birth dates.

Date of birth Sex Postal code Salary

21-01-76 * 11** 40 000

24-03-76 * 11** 45 000

27-02-76 * 11** 50 000

21-01-76 * 11** 40 000

24-03-76 * 11** 45 000

27-02-76 * 11** 50 000

Table 6: Contents of the diversity relation

Definition 4 ( [22] l-diversity) Given relation r(R) over the schema R(A1,
. . . , An), the relation r(R) is l-diversive, if for any attribute Ai to be protected
at least l different Ai values are assigned to any particular t[R \ {Ai}] value.
Formally l-diversity exists, if

−
∑
v∈t[Ai]

p(t, v) log p(t, v) ≥ log l, (2)

where

p(t, v) =
|t ′[R \ {Ai}] = t[R \ {Ai}]∧ t

′[Ai] = v|

|t ′[R \ {Ai}] = t[R \ {Ai}]|
, (3)

where p is the apriori probability of v value.

It’s important to see that l-diversity implies k-anonymity using k = l. Ac-
cording to Definiton 4 the 2-anonym relation shown in Table 7 is 2-diversive
at the same time. Computational complexity of l-diversity is greater than the
computation complexity of k-anonymity as additional attributes have to be
handled.

In addition, re-identification threats are still alive on an l-diversive microag-
gregated Table [21]. Consider the database represented in Table 8, which is
2-diversive. The exact sensitive data cannot be retrieved by linking quasi-
identifiers, however, the difference between data values within the same quasi-
identifier determined cluster is marginal. [21] therefore recommends to extend
k-anonymity criterion with a diversity related constraint. If distance between
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Date of birth Sex Postal code Salary

**-**-76 * 1107 40 000

**-**-76 * 1107 45 000

**-**-76 * 1117 50 000

**-**-76 * 1117 40 000

**-**-76 * 1127 45 000

**-**-76 * 1127 50 000

Table 7: Contents of the diversity2 relation

sensitive attribute values with the same quasi-identifier values and values of
the entire relation are very different then the sensitive attribute values can be
estimated with statistical probing. For simplicity, let us say that sensitive data
values that share the same quasi-identifier values are in the same equivalence
class. That is, there can be found several distributions of different equivalence
classes.

Date of birth Sex Postal code Salary

21-01-76 * 11** 40 000

24-03-76 * 11** 45 000

27-02-76 * 11** 50 000

21-01-76 * 11** 40 001

24-03-76 * 11** 45 001

27-02-76 * 11** 50 001

Table 8: Contents of the tclosed relation

The concept of t-closure investigates whether there is a t threshold, which
is not exceeded by a distance measure.

Definition 5 ( [21] t-closure) An equivalence class is t-closed, if the dis-
tance between the distribution of the sensitive data within that class and the
distribution of the entire relation within that class does not exceed a t threshold.
The relation is t-closed, if any equivalence class contained is t-closed.

Note that the definition does not define the distance function to be used;
that is, it can be applied for various data types including textual, categorical,
etc.
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It is practical to boost uncertainity with permutation of sensitive data in-
stead of modifying them. It has been already mentioned before that aggrega-
tion significantly degrades usability, based on Table 7 one can deduce almost
nothing from the data. A permutation approach is to put sensitive data with
the same quasi-identifier into hash buckets, then iteratively replacing the cur-
rent value with one from the bucket with the highest cardinality [32]. Another
approach [33] proposes the ordering of sensitive data and selecting the candi-
date for permutation from an e-wide interval with at least k cardinality.

Permutation provides the same level of privacy preservation as generaliza-
tion, however, aggregate values are accurate in this case. For instance, the
salary of individuals who work in a certain field, or were born in a certain
year is a valid and usable value. On the other hand, permutation changes
dramatically sensitive data and thus their hidden patterns, which leads to a
completely different or alternative result after an analysis. However, if there
is only one sensitive data attribute, permutation within the same equivalence
class does not pose this problem.

Date of birth Sex Postal code Salary

21-01-76 Female 1107 45 000

24-03-76 Male 1107 40 000

27-02-76 Female 1117 50 000

21-01-76 Female 1117 55 000

24-03-76 Male 1127 65 000

27-02-76 Male 1127 60 000

Table 9: Contents of the permuted relation

After reviewing theoretical anonymization techniques, we can see that the
Safe Harbour method of HIPAA does provide k-anonymity according to its
pseudonymization procedure as it eliminates all possible quasi-identifiers, how-
ever it does not modify data records themselves hence it can neither provide
l-diversity, nor give protection against t-closure based probing. This means
that additional measures have to be completed even after the Safe Harbour
method to achive the level of anonymity required by the legal environment.
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6 Metrics for privacy and data utility

Ethical data mining aims to meet legal requirements to meet privacy and elim-
inate stereotype conclusions. At the same time, any change of data decreases
the efficiency of data mining. Is privacy measureable?

Let PPi : DB → [0, 1] ∈ R be a membership function that maps to every
database a measure which proportional to privacy preservation, where 1 stands
for complete privacy protection, and 0 for no privacy. Assume that PPi(∅) = 1.

Let RVi : DB × A → [0, 1] ∈ R denote the relative usefulness (fitness,
accuracy, etc.) measure of applying data mining model on a database. The
value 0 indicates that the data cannot be used for data mining purposes, and
1 stands for model application is the best one can achieve on the database.
Assume that RVi(∅) = 1. Let κ, v denote the acceptable threshold for privacy
preservation measure, and relative usefulness, respectively. Anonymization as
an optimization problem for a database d ∈ DB, and for a data mining model
a can be formulated as follows:

∃?Φ : κ ≤ PPi(Φ(d)) ∧ v(a) ≤ RVi(Φ(d), a), (4)

whereΦ : DB → DB is data anonymization method. We call an anonymization
method Φ optimal for a database d and a data mining model a denoted by
Φ̂d,a, if and only if

1 = PPi(Φ̂d,a) ∧ 1 = RVi(Φ̂d,a(d), a), (5)

For research studies the following questions arise:

• Is there an optimal data anonymization for a given database and a given
data mining model?

• Is there an optimal data anonymization for any given database and data
mining model tuple?

• Is there an optimal data anonymization for a given database indepen-
dently for all data mining model?

• Is there an optimal data anonymization for all database and all data
mining model?

While research focuses on the last two questions, the former two may suffice
for industry applications.
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6.1 Privacy measurements

Note that, this paper does not introduce how to calculate PP or RV. In the
literature, there are several measures depending on the different aspects of the
problem. The simplest indicator is the ratio of the number of the identifiable
individuals and the number of the total individuals in the database [27].

In case of data perturbations, privacy can be described with an H(A|B)
conditional entropy variable, where A is the remaining protection after B has
been published [2]. Hence, the probability of correct data is leaking out is

Pr(A|B) = 1−
2H(A|B)

2H(A)
= 1− 2−I(A;B), (6)

where I(A;B) = H(A) − H(A|B) is the mutual information between variables
A and B. Similarly, [16, 8] adapt Shannon entropy to describe privacy:

Pr(A|B) = 2−
∫
fA,B(a,b) log2 fA|B=b(a)dadb. (7)

The two metrics above are essentially indentical. [26] simplifies these equations
so that privacy is defined with variance:

Pr(A|B) =
Var(A− B)

Var(A)
. (8)

The size of potential information leakage can be bounded using matrices.
Let [dij] be a Boolean matrix representing an initial database containing the

apriori probabilities pij0 = Pr[dij = 1]. Once an adversary asks Q queries to
the anonymized database as above, and all other values of the database are
provided, we can define the posterior probability pijQ of dij taking the value 1.

The change in belief is ∆ = |c(pijQ) − c(p
ij
0 )|, where c(x) = log(x/(1 − x)) is a

monotonically increasing function.
This model can be generalized by approximating dij = 1 with the Boole-

function f(di1, . . . , dik) = 1 with k arguments. In this case, the for any query
Q and all function f ∆ shall be minimal. It has been shown that O(

√
Q(n)/δ)

changes of data is sufficient for protection [1, 9], where δ is the maximum
change allowed, and Q(n) is the number of queries executed on the database
of size n.

The efficiency of privacy for a data set on i individuals with pi public, si
sensitive, ui unpublished data that can potentially be used for identifying si
can be interpreted as follows. Let C be a classifier on pi and ui data items,
and let C1 be a classifier built on the published data ti =< pi, si > with a1
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accuracy. Data protection damaged if for any C2 classifier with accuracy a2
that has access to C with regard to the ti data set a1 < a2 [15]. The same
statement is defined in [17] by means of the distance function δ over probability
distributions such that

δ(Prt(si = a),Prt(si = a|A(DB))) < κ, (9)

where κ ∈ R and Prt(si) is the apriori probability that the sensitive data item
si has a specific value. If this statement holds, then the database A(DB) is
anonym for the data item si.

6.2 Indicators of usability and loss of information

From the point of usability, three relevant aspects of data mining has to be
considered: accuracy, completeness and consistency [8]. Accuracy is a measure
of difference between the original and anonymized data items. Completeness
is the amount of data omitted in the process. Consistency measures the main-
tainability of inner relationships.

Accuracy can be defined as the difference between the real and the modi-
fied information by calculating the loss from the frequency of relative errors,
formally:

∆(r, r ′) =

n∑
i=1

|fr(i) − fr ′(i)|

n∑
i=1

fr(i)

, (10)

where i is a data item and fr(i) is the frequency of occurence of that data item
in the r relation. This formula is sufficiently general to cover not only data
modification, but data omission and the generation of new records.

When the anonymization process uses microaggregations, then the loss can
be modelled [28] alternatively with

∆(r, r ′) =

∑
A∈R

∑
t∈r

h
|DOM(hA)|

|r| · |A|
, (11)

where relation r fits the schema R(A1, . . . , An) and A is an attribute in that
schema, |A| = n is the number of the attributes in R, t is a record in r, |r| is
the size of the relation, and h means the measure of the microaggregation in
the domain DOM(hA), where DOM(hA) is the domain of a possible hierarchy
levels of an attribute A. Note that we can not assume the omission of data
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items in this case, the size of protected and anonynimized databases are es-
sentially the same. Also note that this formula does not calculate the concrete
measure of loss, it is only proportional to the possible microaggregation levels,
and additionally determining the size of the hierarchy is very promiscuous.

This concept can be generalized by taking interval frequencies used in the
tranformations into account:

∆(r, r ′) =

∑
A∈R

∑
t∈r

f(t[A])−1
g(A)−1

|r| · |A|
, (12)

where function f returns the number of different t[A] values from relation r
that can be mapped to the aggregated t ′[A] value from relation r ′, and g

gives the size of the codomain of A attribute. Note that, neither equations
above considers that changing two attributes properly the original value can
be restored, and whether there is a loss of information after the aggregation.

An alternative definition for accuracy is based on distribution functions [2].
Given two functions, f and g, where the domain of f is the original database
and the domain of g is the anonymized database, and the codomains of them
are the same. In this case the loss of information can be described with the
measure of mutual information:

I(f, g) =
1

2
E

[∫
|f(t) − g(t)|dx

]
. (13)

H(A|B) Pr(A|B) ∆(r, r ′)

r ′ =Table 2 0.232 80.4% 0

r ′ =Table 3 0.289 79.7% 0.00133

r ′ =Table 4 0.309 82.0% 0.00102

r ′ =Table 5 0.500 76.4% 0.00412

r ′ =Table 6 1.057 76.9% 0.00566

r ′ =Table 7 1.057 76.9% 0.00560

r ′ =Table 8 0.528 76.0% 0.00257

r ′ =Table 9 0.232 80.4% 0

Table 10: Data protection and information loss numerically using A = salary,
B = {date of birth, sex, postal code}, and r = Table 2

Table 10 summarizes the different metrics for sample databases presented
in this paper. It is easy to see that some of the quality metrics do not take into
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account quality changes using non-aggregating form of data replacements. For
example, permutation method seems to keep data quality which is only true
for calculating aggregating on equivalence classes. Moreover, it cannot capture
small semantic distance between different values, that is why t-closure seems to
have lower privacy preservation capability than k-anonymity. A comparable,
valid measurement for privacy or for data utility is still missing from the
literature.

7 Conclusions

This paper presents in very brief the depth, importance, and issues of data
anonymization. Data anonymization is one of the most imminent problems
which directly affects basic rights like the right to privacy, health, or research,
the innovation policy of organizations, and last but not least, the future com-
puting environments. Deconstruction and data linking are always possible in
our information era, but inhibiting such threats by data perturbation does not
help to exploit the values stored deeply inside the databases, specially health
care databases.

We demonstrated by examples and equations that maintaining data qual-
ity for data mining and preserving privacy has some limitations; there are too
many possibilities to reveal private information using public databases or back-
ground knowledge. We showed that legislation covers just parts of the problem
by stating what but how to do. Therefore, preserving privacy data mining on
health databases presents a new challenge for information engineers, hence the
possible number of linkable data is dramatically increasing, e.g. using photos,
personal data, activities, hobbies published in social networks.

We presented a well-known set of functional anonymization methods, which
aims at perturbing data only the least possible. We demonstrated that these
methods reduce data quality significantly. In order to measure such an in-
formation loss and privacy we briefly outlined the most discussed evaluation
metrics. This paper proved that those metrics cannot capture semantical dif-
ferences, which makes different anonymization methods incomparable. Open
questions still remain for the future: do there exist an optimal data anonymiza-
tion method for all databases and data mining models, how to compare dif-
ferent data anonymization methods, and how to measure the possible infor-
mation leakage of a published real-life database assuming excessive usage of
public databases and background knowledge.
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[26] S. R. M. Oliveira, O. R. Zäıane, A privacy-preserving clustering approach to-
ward secure and effective data analysis for business collaboration. Computers &
Security 26, 1 (2007) 81–93. ⇒49

http://bobgellman.com/rg-docs/rg-bankerstory.pdf
http://bobgellman.com/rg-docs/rg-bankerstory.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4497483
http://dx.doi.org/10.1145/1014052.1014126
http://dx.doi.org/10.1145/1014052.1014126
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1250908
http://dl.acm.org/citation.cfm?id=1559861
http://dare.uva.nl/record/366448
http://dare.uva.nl/record/366448
http://dl.acm.org/citation.cfm?id=1066164
http://dl.acm.org/citation.cfm?id=1066164
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1617393
http://doi.acm.org/10.1145/1244002.1244092
http://doi.acm.org/10.1145/1217299.1217302
http://doi.acm.org/10.1145/1217299.1217302
http://doi.acm.org/10.1145/1007568.1007633
http://doi.acm.org/10.1145/1007568.1007633
http://www.uow.edu.au/~jennie/ 
http://dl.acm.org/citation.cfm?id=79342.79346
http://dl.acm.org/citation.cfm?id=79342.79346
http://dx.doi.org/10.1109/SP.2008.33
http://dx.doi.org/10.1016/j.cose.2006.08.003
http://dx.doi.org/10.1016/j.cose.2006.08.003


Survey on privacy preserving health care data mining techniques 55

[27] L. Sweeney, Datafly: A system for providing anonymity in medical data. Proc
IFIP TC11 WG11.3 Eleventh International Conference on Database Securty
XI: Status and Prospects, pp. 356–381, 1997. ⇒34, 35, 36, 49

[28] L. Sweeney, Achieving k-anonymity privacy protection using generalization and
suppression. Intern. J. Uncertainty, Fuzziness and Knowledge-Based Systems
10, 5 (2002) 571–588. ⇒44, 50

[29] L. Sweeney, k-anonymity: A model for protecting privacy. Intern. J. Uncertainty,
Fuzziness and Knowledge-Based Systems 10, 5 (2002) 557–570. ⇒41, 42, 44

[30] J. Vaidya, Y. Zhu, C. W. Clifton, Privacy preserving data mining. Advances in
Information Security 19 (2006) 1–121. ⇒37, 40

[31] K. Wahlstrom, J. F. Roddick, R. Sarre, V. Estivill-Castro, D. de Vries, Encyclo-
pedia of Data Warehousing and Mining, volume 2, chapter Legal and technical
issues of privacy preservation in data mining, pp. 1158–1163. IGI Publishing,
2nd edition, 2008. ⇒40

[32] X. Xiao, Y. Tao, Anatomy: Simple and effective privacy preservation. Proc.
32nd International Conference on Very Large Data Bases (VLDB), pp. 139–150.
VLDB Endowment, 2006. ⇒47

[33] Q. Zhang, N. Koudas, D. Srivastava, T. Yu, Aggregate query answering on
anonymized tables. IEEE 23rd International Conference on Data Engineering,
2007. ICDE 2007, pp. 116–125, Istanbul, Turkey, 2007. IEEE Xplore. ⇒47

Received: October 9, 2013• Revised: March 4, 2014

http://dl.acm.org/citation.cfm?id=679937
http://dl.acm.org/citation.cfm?id=679937
http://dx.doi.org/10.1142/S021848850200165X
http://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
http://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
http://dl.acm.org/citation.cfm?id=1077115
http://dl.acm.org/citation.cfm?id=1077115
http://www.igi-global.com/chapter/encyclopedia-data-warehousing-mining-second/10968
http://dl.acm.org/citation.cfm?id=1164141
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4221660


Acta Univ. Sapientiae, Informatica, 6, 1 (2014) 56–70

Bluffing computer? Computer strategies to

the Perudo game

Norbert BOROS
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Abstract. In this paper we present the elaborated computer strategies
which we developed to a less-known dice game, Perudo. Moreover, the re-
lated analysis is presented, with the results of our machine players against
human players. The main contribution of our paper is a strategy which
involves bluffing. An important goal of this work is the remembrance to
John v. Neumann; with our means we pay a tribute to the activity of the
”founding father”; on the occasion of his 110th birthday.

1 Computer and human thinking

At the time of designing the first electronic calculators it came up as a straight-
forward possibility to try to copy/build in some—that time already known—
modus operandi of the human brain (John v. Neumann et al., about 1946). To
make the process operational it was necessary to prepare a simplified model
of the brain and to analyse several very important fields like data storage (ca-
pacity), data transfer, arithmetic precision, and error-free operation (in com-
puters and in brain); in wider meaning similarities and differences in human
and computer thinking, respectively.

John v. Neumann turned to this field from the 1940s with special interest.
He presented in this topic several memorable talks and published valuable
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papers. Unfortunately—because of his serious illness and early death—he was
not able to finish one of his most interesting books (The Computer and the
Brain [8]), but this work is even so extremely remarkable and can serve as a
source of interesting ideas even for today’s researchers.

The observations can be summarized in brief as follows. The human brain—
contrary to computers—does not use the ”language of mathematics”, its op-
eration is not digital, but essentially statistical; its important characteristic
is the lower arithmetic accuracy, and extremely high logical reliability ([8],
1959).

The examination of similarities and differences in human and computer
thinking is even today an actively investigated multidisciplinary top-field. In
this ”front” an interested researcher has obvious opportunities. In this paper
within the main trend we ”venture” to a smaller branch—which is proved to be
very interesting, however—we present the strategies (and the connected anal-
ysis) which were elaborated to a less-known dice game, Perudo (first related
publication by the first author: [2]).

2 Games and strategies

Playfulness has been always a characteristic of human nature. Challenge, vic-
tory, competition, tempting the fortune—these are factors which affect every
human. We can take it for granted that for achievement of victory an in-
terested, thinking player can take some theoretical considerations—over and
above the given game—, and of course, it was the situation even for cen-
turies/thousand years.

In this work we have not intended to describe the theory of games in detail;
we always present the necessary background to the chosen game(s) (and to
the problems which have actually arisen). For the readers interested in game
theory deeply a rich literature is available (e.g.: [5, 7]).

The world of the game-area—separated partly from the reality of the real
world—can be generally characterized as follows. A game ”consists of” players,
rules and results [6]. Usually we can assume that keeping the rules is obligatory
for every actor (i.e. deception is not allowed); and also that players know
the rules. The positive result (victory, winning the round or other favourable
outcome) involves for the players winning (money, token, other real or fictitious
objects); this is called simply payoff. So, the goal of the game is to reach the
most favourable payoff.

By evaluating the results the players—according to their knowledge/skills—



58 N. Boros, G. Kallós

set up a value order among the possible outcomes foreseen (step by step, on
longer run or even globally) and make decisions in this way. When a player
makes such a plan which prescribes the answer in every decision situation,
then we talk about strategy.

Formally, a game can be identified by a vector (or list) G = (S1, S2, . . . , Sn;
ϕ1, ϕ2, . . . , ϕn), where n is the number of players, S1, S2, . . . , Sn denote the
strategy-sets of the players, and ϕ1, ϕ2, . . . , ϕn are the payoff functions—here
the list above is called as the normal form representation [5]. The domain of
the payoff function is S1 × S2 × · · · × Sn, its range is a certain subset of real
numbers, so ϕi(x1, x2, . . . , xn) can be computed assuming that all players have
a fixed strategy. (It should be noted that a player usually does not know the
strategy of the others.)

The best possible strategy is the winning strategy. If in a particular game
such a strategy exists, and the player who moves first knows it and adheres
to it, then—regardless of the moves of the other players—he/she will always
win.1 The other extremity is given in games where we have no information
about the will of the other players; in this case obviously we cannot perform
any analysis. An example of such a game is rock-paper-scissors; in this case we
can trust essentially only in luck. Card games represent an interesting middle
course, where information is usually not complete, but we have possibility for
certain deductions.

While a lot of games can be described as deterministic processes, and can
be evaluated so, for economic processes this property usually does not hold.
The optimal solution here depends mostly on a series of external factors which
cannot be necessarily foreseen and we have to apply here certain simplifica-
tions in order to reach the good resolution [3]. Essentially, this is the main
problem of the game theory. The game theory science was established by John
v. Neumann, who realized the minimax theorem by analysing the two-player
zero-sum games, according to which with a reasonable game style of the play-
ers, one actor always gets an average v winning. The fact that game theory is
widely applicable was made clear by his book published with Oskar Morgen-
stern [6].2 3

1We note that in many ”complicated” deterministic classic games the winning strategy
is usually not known or—based on our knowledge for the time being—we are not able even
to decide if such exists [3] (chess, chequers).

2An excellent round-up was presented about the activity of John v. Neumann by L. Á.
Kóczy in [6].

3We note that in connection with the 2008 financial crisis it was heard from many experts
that economic game theory is essentially unusable. This is, of course, a strong exaggeration,
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3 Classification of games

Analysing well-known games we find that devising a strategy good enough is
usually not an easy task. At the beginning of this process we have to answer
e.g. the following questions:

• Do we know completely the standing of the other players, their move or
choice, and objective circumstances of their decisions?

• Does luck play a role in the given game?

• Is the collaboration of the players allowed?

We know that many times in the deterministic case the extremely compli-
cated game-space causes a big problem; while in games which comprise random
elements we cannot reach even theoretically the complete mastery (however,
some additional knowledge can help even in this case).

By an extensive analysis of the factors presented above, we can group the
games into the following categories (here we used the book [5] as a source):

• Strategy game: fortune plays no role in the game, the decisions of the
players can be analysed in a fully deterministic way (example: chess,
noughts and crosses);

• Game of chance (gamble): the result of the game is determined by pure
accidental factors; these games can be managed with the means of prob-
ability theory (example: lottery);

• Mixed game (partly strategy, partly gamble): between the two categories
listed above (example: poker);

• Zero-sum game: a given player can increase his/her winnings only to the
detriment of the other players (example: nim, noughts and crosses);

• Non zero-sum game: players can use even external sources to increase
their winnings (example: roulette);

• Cooperative game: players can cooperate in coalitions to reach a common
goal (example: monopoly);

• Non-cooperative game: keeping the game-rules players have no possibil-
ity to cooperate (example: chess);

• Game with complete information: players see the standing and the moves
of the opponent(s) exactly, and—assuming appropriate game skills and
knowledge—they can conclude precisely the reasons of the decisions of
the other actor(s) (namely the payoff function of every player is a com-
mon knowledge for all players; example: chess);

but it is a fact where lessons should be deducted.
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• Game with incomplete information: for one or more player(s) there exists
some kind of uncertainty about the payoff function of the other players—
standing, strategy (example: poker, rock-paper-scissors);

• Static game: the strategy of the players is fixed, does not change during
the game (example: lottery);

• Dynamic game: the momentary strategy of the players is an element of a
big strategy-set, the choice is determined by the current game-situation
(example: poker, chess).

The classification according to the categories—with possible connections—is
presented in Figure 1.

Figure 1: Classification of the games

4 Analysis of the game of poker

In the following—according to our game, Perudo—we will be interested in
games located on the borderline of strategy games and gambles which are
zero-sum, non-cooperative and dynamic with incomplete information. We will
use poker as a kind of standard which is similar to Perudo in several aspects,
but is better known and much more analyzed.

John v. Neumann liked to play poker himself, and he was deeply interested
in finding the way of reaching victory with a good chance—regardless of deal-
ing luck which cannot be influenced assuming a fair game style [6]. Achieving
this, bluff can help most of all and the understanding of the connected human
behaviour. He tried to describe the bluff methods with the means of math-
ematics and later he generalized this analysis into several directions (game
theory, machine and human thinking, see the introduction section).

Poker is a game which is even nowadays very actively analysed—because its
goal is essentially ”making money”. It is thought-provoking that some kinds
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of people are in this game more successful and the winners of big competi-
tions come from a well-limited group. About the theory of poker David Sklan-
sky published a ”bible-like” detailed writing [9] in which—among others—
he presents the mathematical background and the ”fundamental theorem of
poker” (not a real theorem, principle; it refers to strategy based gambles,
too), the good game strategies, and the possibilities of recognition and evasion
of bluff. The book was written mostly for professional players, it is not an
easy reading; but shows the enquiring reader ins and outs of the game with a
method of a high standard, trying to reach completeness.

In order to algorithmize the game of poker various approaches were applied;
adaptive learning-, probability-, deterministic rule-based- and balanced equi-
librium methods. The theory of the machine techniques is presented in detail
by Darse Billings in his interesting PhD thesis [1]. However, each method has
its shortcomings, too. In summary, we can say that for the time being there
is no chance for the best machine players to beat the best human players
(comparing with chess it can be a bit surprising).

For the implementation of the machine strategies for Perudo we took into
account mostly probability rules. It is important to emphasize that although
the algorithmization of Perudo (variants) was dealt with by other program-
mers already (example: online Perudo, http://www.perudo.com), but in these
realizations machine strategies have not been created (they have made online
games, where people can play against each other). So to the best of our knowl-
edge, the results published in this paper are new (stand: July 2013).

5 Presentation of the game of Perudo

The game of Perudo—as we know it today—derives from the pre-Columbian
South-America and was very popular among the Inca Indians. According to
tradition, emperor Atahualpa had taught Pizarro to play Perudo (during the
period of his imprisonment in 1532), and after it the game spread in Europe.4

Perudo can be characterized as the exciting game of logic, bluff and guess.
The game can be played by two or more players. Initially, all of the players

have 5 dices (under a cup). The game consists of rounds, and at the end of
each round some of the players lose one dice. Finally, the play is won by the
player, who has at least one dice at the end.

4We note that Perudo has several versions. Here we highlighted one version of them.

http://www.perudo.com
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In one round the players—hidden from each other—roll their dices and then
begins the continuous bid. Bidding consists of two parts; the number and the
value of the dice belonging to it. The player who moves first estimates at least
how many dices are on the table with that value. The number of ones is added
to the number of the pieces, because they are counted as joker. The value of
the bid is determined by the following formula:

L = number of the dice(s) · 10+ value of the dice(s).

The next player has two choices: he/she can overcall the bid (at such time
he/she can bluff, too), or says ”dudo” (in Spanish: I doubt)—in this case
he/she considers the former bid as a not real one. By the call of dudo, players
reveal their dices and determine the number of the dices with the given value
(including jokers). If the last bid was valid, then the player saying dudo has to
throw away one of his/her dices, while if the player with the last bid bluffed
then he/she looses one dice (Figure 2).

It is a twist in the game that the player whose turn it is can call a joker bid,
too. At such time he/she estimates the number of jokers in the play currently
(of course with this he/she can bluff, too). In a joker bid at least half of the
number of pieces appearing in the last bid must be called (rounded upwards).
The possibilities for the next player are: he/she can say dudo, can increase
the number of jokers in the bid, or can return to normal bid (in this case the
number of dices in the bid must be doubled and at least one additional dice
must be added). Using formulas (for the number of the dices, ND):

Joker bidND ≥ dNormal bidND/2e, and Normal bidND ≥ Joker bidND · 2+ 1.

6 The machine strategies implemented

It was our emphasized goal to create such machine strategies which possibly
can cope successfully with human players, too. The realization was accom-
plished step by step, from the simplest strategies toward the more sophisti-
cated ones. Machine and programming environment: table PC with Intel Core
2 Duo CPU and 4 GB RAM, Windows operating system, Netbeans integrated
development environment, JAVA language.

The first programmed method was named as basic strategy. This strategy
decides and says bid on the basis of analysing expected values. The strategy
has an adjustable parameter, the tolerance, with which we can set the upper
bound—exceeding the expected value—acceptable in bids. (In this case joker
bid is said.)
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Figure 3: The starting screen of the program

decision(bid got)

1 expected = expected value(bid dice value got)
2 if (bid dice number got < expected)
3 bid() // lines 2–3: normal bid
4 else if (bid dice number got <= expected+ tolerance)
5 joker bid() // lines 4–5: joker bid
6 else
7 dudo()

Following David Sklansky, the good player plays so that he/she would
know the cards/dices of the other player(s)/opponent(s) [9]. In the extended
strategy—based on basic strategy—this idea was applied: the code was sup-
plemented with a method which deduces back—from the initial bids—to the
dices of the players and stores them. The effect of this deduction resulted that
the extended strategy has won—using a 100 thousand-round test—6-times
more rounds than the basic strategy (Figure 4).

The reason for this is that basic strategy tried saying dudo roughly for half
of the times as the opponent, and almost the half of its trials were unsuccessful;
whilst the extended one said many times successful dudo, than unsuccessful.

The foreseeing strategy accomplished thirdly, —similarly to the extended
one—has a bidLoad() method using which it keeps the records of dices of the
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Figure 4: Basic vs. extended strategy

other players. However, by the deduction it takes into account all bids, so, it
can calculate more exactly.

bidLoad(bid[ ], number of bids)

1 player[bid[0].player id][bid[0].dice value− 1]
+ = number of dices(starting bid)

2 for(i = 1; i < number of bids; i++)
3 player[bid[i].player id][bid[i].dice value− 1]

+ = number of dices(bid[i], bid[i− 1])

It is true for the foreseeing strategy, too, that—due to the more refined
deduction—it plays better than the basic one. Interestingly, the basic strategy
against the extended one said only a little bit fewer successful dudos than un-
successful ones, on the other hand, against the foreseeing strategy the number
of saying unsuccessful dudos was definitely more (Figure 5).

Strategies were tested in various situations because we wanted to know
whether the result of the game is influenced by such factors as which strategy
starts the bid, how many times they can initiate a joker bid, or how the players
sit side by side (seating), respectively. The modification of the first two factors
had brought no change; however, we got surprising a result by altering the
seating.

In the following the result of two complex simulations will be presented. In
both examinations five machine players took part, four basic and one fore-
seeing. In the first case the seating changed randomly, in the second case it
was fixed. In both simulations the foreseeing strategy won mostly, but the
winning-distribution of the basic machines is interesting.
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Figure 5: Basic strategy vs. the foreseeing one

Figure 6: Displaying the result of a machine test (duel of strategies, program
window)

With fixed seating—gradually—the basic machine following the foreseeing
one won most often, and after it each less and less; the basic strategy right
before the foreseeing one the least. The reason for this is that the foreseeing
machine tends to say dudo at the right time to the strategy right before it, and
the basic machines before the foreseeing say—often—at the wrong time dudo
to the foreseeing strategy. So, the basic machine right before the foreseeing one
drops out of the competition first. With random seating every basic machine
won roughly the same number of rounds—this meets the expectations (Figure
7).
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Figure 7: Basic machines vs. the foreseeing one: winnings with fixed and chang-
ing seating

After this, the tests with human players were organized. In the course of
the trials 3 volunteers played 15 rounds against the machine players. The
scenario of the games was similar: at the beginning almost exclusively the
machine had won, later this equalized and slowly the human players gained
the dominance. The reason of this phenomenon is that human players came to
know the machine players. All three participants of the trial found out how the
machine gave the bid and exploiting this they bluffed. The machine players
played rationally, they believed the bluff and so finally lost.

7 Bluffing strategy

The parties against the human players have brought the clear experience that
in certain situations it is impossible to win with rational behaviour; so our
machine players—accomplished so far—has had a serious disability. As a ”the-
orem”, we can draw up that a good player has to be unrecognizable, because
if he/she decides to always use the same strategy, then after a while the others
saw through it and defeated him/her.

In the Perudo game bluff is an important factor since without it we would
have essentially a simple gamble which would be won by the player who throws
larger. Bluff is a form of inscrutableness, the ”allowed lie” in the game, the tool
of the deception of the opponent.5 To the success of deception it is indispens-
ably important to be disguised: in the behaviour of the player the ”deceitful
purpose” should not be visible. In the case of human players bluff should be
said with the same poker face as the other bids; besides this a good player has

5As it was already mentioned, John v. Neumann came to the mathematical establishment
of the game theory from the analysis of the bluff.
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to be able to detect the deception of the others. The one, who wants to be
really successful in this ”genre”, is worth getting to know thoroughly the psy-
chological background, too: which are the usual telling/revealing characteristic
of the lie [4].

Bluff must be set up by following a strategy, too (when and how we should
bluff; concerning the poker game: [9]), winning is not for one game, but in the
long run. Greedy strategy is not practical here: if a player always or almost
always bluffs then although in the first few rounds he/she will win with better
chance, but later when the opponents see through his/her habits, it is almost
sure that he/she will lose. Similarly to poker—possibly—it is practical to make
an analysis about the playmates: who in what manner reacts to the bluff, how
credulous or doubting he/she is.

In machine environment clearly it should be implemented otherwise (at least
partly) since—taking into account our current possibilities—considering the
behaviour, gestures and facial features bluff should not be found out because
a computer cannot recognize these, and such manifestations computer cannot
own.

By creating the bluffing strategy, our goal was to evolve such an algorithm
which can be efficient against both of the credulous and doubting player, too.
To make itself less predictable, strategy ”builds” from several elements. With
bluffing it considers not always its best theoretical bid: it can happen that
it bids with a dice from which it has minimum or just sends the value from
which it has maximum, but playing out not all of them. Occasionally it can
transmit a bid generated randomly which may not exist. In non-existing bids,
however, we made sure it should be believable to every opponent (strategy),
i.e. based upon probabilities theoretically it could be on the table.

By forming of the bids we have applied case separation, elaborating scenarios
for various situations. Such cases are, for example, when the player or the
opponent has only one dice; or the adversary has a lot of dices, but have told
only a one-valued bid, and so on.

Similarly to the extended and foreseeing strategies, the bluffing strategy
analyses the bids of the opponents and tries to deduce back to their dices.
However, it takes the deduction not for sure (assuming that the other players
can bluff, too). According to the current realization the strategy is efficient only
in the case when it has only one opponent, but we are planning to implement
the multi-opponent version, too.

With the bluffing strategy we performed three 100 000-round tests, against
the basic, extended and foreseeing strategies. The following result was arrived
at: the new method was successful against all of the older ones, however, in
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varying degrees; it won the most parties against the foreseeing strategy, and
the minimum against the basic strategy (Figure 8)!

Figure 8: The bluffing strategy vs. the basic and foreseeing strategies (”cred-
ulous” and ”doubting” opponents)

The reason for this—maybe surprising—result can be that foreseeing strat-
egy deduces back the better way to the dices of the opponents, that’s why it
can be cheated the most easily (so, the foreseeing machine can be considered
as a ”credulous” player). Basic strategy performs no such analysis, therefore
it is not gullible (so, it can be counted as a ”doubting” player). Analysis of
course helps without bluff, too: that’s why the bluffing strategy could won in
majority against the ”doubting” basic strategy.

The bluffing strategy was tested against human players, too. Several rounds
were played with three human players—the Perudo skills of whom could be
classified at average level. Now we cannot deduce how the human players
came to know the machine player. Results are rather scattered, almost random
(Table 1); definite superiority is not visible from either slide—so, the bluffing
strategy plays with a similar efficiency as a typical man/woman.

Player Winner

1 HHM MHM MMH MHM HMM
2 MMM HMH MMH MHH MHM
3 MHH MHH HHM HMM HHH

Table 1: Bluffing machine strategy (M) vs. human (H) players

We can conclude that predictability was removed from the machine play
with this strategy, but still, our bluffing strategy—implemented so far—cannot
be classified as a really successful and ”clever” player.
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We continue the work: our goal is to implement such a machine player that
will be able to defeat clearly an average human player, and with the hope of
success can enter the fight with real professional human players, too.
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Abstract. Several behavioral game theory models aim at explaining why
“smarter“ people win more frequently in simultaneous zero-sum games,
a phanomenon, which is not explained by the Nash equilibrium concept.
We use a computational model and a numerical simulation based on
Markov chains to describe player behavior and predict payoffs.

1 Introduction

Since the birth of experimental economics, thousands of experiments have been
conducted to observe the behavior of decision makers in different situations
(see e.g. [4]).

However, the most famous equilibrium concept—the Nash equilibrium [13]—
has proved to be unable to explain the outcome of several game theoretical
experiments, predicting that human thinking is more complicated than pure
rationality.

Game theory has also proved to be a useful modelling tool for network
situations, e.g. telecommunication problems. For a detailed survey in this field,
we refer the reader to [15]. An application can be found in [1].
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The phanomenon that human behavior is not purely rational in certain in-
teractive network situations led researchers to construct behavioral game the-
ory models. Recently, several models have been built to explain experimental
results (e.g. [2, 7]).

A popular model class aiming at explaining how players outguess each other
is the group of iterative reasoning models. Iterative reasoning has been applied
in many settings to the Rock-Paper-Scissors game or the Beauty contest-type
games ([3, 5, 8, 11, 12, 16]).

The concept of iterative reasoning and the corresponding main results are
presented in [4, pages 205–236]. A simplified concept for non-cooperative, two-
person, simultaneous games can be defined as follows. If Player A plays a
certain action, while Player B plays the best response to this action, then we
say that Player B outguessed Player A and played according to 1-reasoning.
If now Player A outguesses Player B, then Player A plays according to 2-
reasoning. Following this rule, the level of reasoning can be any k positive
integer, where the concept is defined as k-reasoning.

In this paper we investigate simultaneous, two-person, zero-sum, repeated
games that do not have a pure strategy Nash equilibrium and the players’
decisions depend only on their actions in the previous round of the game.
Here, the stochastic processes of the players’ decisions and their expected
payoffs can be described by Markov chains.

Our main goal is to point out why “smarter” people win more frequently in
some well-known zero-sum games. There are several ways to define smartness.
Our definition of smartness is connected to the concept of iterative reasoning
and is introduced later on in Section 3.

We focus on modelling players’ optimal strategy choices and expected pay-
offs. These are both stochastic processes given a certain bimatrix game and
the level of iterative reasoning according to which players make their decisions.

We constructed a Matlab script that carries out the requested numerical
analysis for any simultaneous, two-person bimatrix game. In our paper we
present the relating analytical results, describe our concept and recall some
numerical results and visualizations. Our Matlab script is also attached for
testing and experimental purposes.

The rest of the paper is organized as follows. Section 2 recalls some impor-
tant results in the field of Markov chains that are related to our topic. Section
3 describes our concept and provides numerical evidence. Section 4 describes
the Matlab script. Finally, Section 5 concludes.
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2 Markov chains—definitions and some important
results

It is necessary to recall some basic results from the field of Markov chains that
we use in the upcoming sections. For a more detailed analysis, we refer the
reader to [6, 9, 10, 14]. This section is a brief summary of Chapter 4 in [6,
pages 119–155], that is related to our concept. The proofs are always omitted.

Definition 1 Let S be a countable (finite or countably infinite) set. An S-
valued random variable X is a function from a sample space ω into S for
which {X = x} is an event for every x ∈ S.

Here S need not be a subset of R, so this extends the notion of a discrete
random variable (or vector). The concepts of distribution, jointly distributed
random variables, and so on, extend in the obvious way. The expectation of X,
however, is not meaningful unless S ⊂ R. On the other hand, the conditioning
random variables in a conditional expectation may be S-valued, and all of the
results about conditional expectation generalize without difficulty.

Definition 2 A matrix P = (P(i, j))i,j∈S with rows and columns indexed by
S is called a one-step transition matrix if P(i, j) ≥ 0 for all i, j ∈ S and∑
j∈S P(i, j) = 1 for all i ∈ S.

In particular, the row sums of a one-step transition matrix are equal to 1.
We call P(i, j), the entry in row i and column j of the matrix P, a one-step
transition probability.

Definition 3 We say that {Xn}n ≥ 0 is a Markov chain in a countable state
space S with one-step transition matrix P if X0, X1, . . . is a sequence of jointly
distributed S-valued random variables with the property that

P(Xn+1 = j|X0, . . . , Xn) = P(Xn+1 = j|Xn) = P(Xn, j) (1)

for all n ≥ 0 and j ∈ S.

We assume that the sequence X0, X1, . . . is indexed by time, and if we regard
time n as the present, the first equation in (1), known as the Markov property,
says that the conditional distribution of the state of the process one time step
into the future, given its present state as well as its past history, depends only
on its present state. The second equation in (1) tells us that P(Xn+1 = j|Xn =
i) = P(i, j) does not depend on n. This property is called time homogeneity.
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The distribution of X0 is called the initial distribution and is given by (i) :=
P(X0 = i), i ∈ S.

A Markov chain can be described by specifying its state space, its initial
distribution, and its one-step transition matrix.

Given a Markov chain {Xn}n ≥ 0 in the state space S with one-step transi-
tion matrix P, it can be shown that, for everym ≥ 1, i0, i1, . . . , im ∈ S, and n ≥
0, P(Xn+1 = i1, . . . , Xn+m = im|Xn = i0) = P(i0, i1)P(i1, i2) . . . P(im−1, im).

Definition 4 We define the m-step transition matrix Pm of the Markov chain
by

Pm(i, j) =
∑
· · ·
∑

i1,...,im−1∈S
P(i, i1)P(i1, i2)P(im−1, j) (2)

Notice that the superscript m can be interpreted as an exponent, this is, the
m-step transition matrix is the mth power of the one-step transition matrix.
This is valid both when S is finite and when S is countably infinite. It is easy to
check that this allows us to generalize (2), obtaining P(Xn+m = j|X0, . . . , Xn) =
P(Xn+m = j|Xn) = Pm(Xn, j) for all n ≥ 0, m ≥ 1, and j ∈ S.

Given i ∈ S, let us introduce the notation Pi(·) = P(·|X0 = i), with the
understanding that the initial distribution is such that P(X0 = i) > 0. It can
be shown that

Pi(X1 = i1, . . . , Xm = im) = P(i, i1)P(i1, i2) · · · P(im−1, im) (3)

for all i1, . . . , im ∈ S.
Given j ∈ S, let us introduce the notation Tj for the first hitting time of state

j (or first return time if starting in state j) and Nj for the number of visits to
state j (excluding visits at time 0). More precisely, Tj = min {n ≥ 1 : Xn = j}
and Nj =

∑∞
n=1 1{Xn=j}, where min ∅ =∞. If also i ∈ S, we define fij = Pi(Tj <∞) = Pi(Nj ≥ 1). This is the probability that the Markov chain, starting in

state i, ever visits state j (or ever returns to state i if j = i). We can now
define transient and recurrent states.

Definition 5 We define state j to be transient if fjj < 1 and to be recurrent
if fjj = 1.

Some important features are pointed out in the next propositions.

Theorem 6 Letting m→∞ it can be shown that

Pi(Nj =∞) =

{
0 if j is transient

fij if j is recurrent.
(4)
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Theorem 7 For a Markov chain in S with one-step transition matrix P, state
j ∈ S is

transient if
∞∑
n=1

Pnj,j <∞, (5)

recurrent if
∞∑
n=1

Pnj,j =∞. (6)

What is more, given that i, j ∈ S is distinct, if state i is recurrent and fij > 0,
then state j is also recurrent and fji = 1.

Let us define irreducible Markov chains.

Definition 8 A Markov chain in S with one-step transition matrix P to be
irreducible if fij > 0 for all i, j ∈ S.

By Proposition 2, if a Markov chain in S with one-step transition matrix P
is irreducible, then either all states in S are transient or all are recurrent.
This allows us to refer to an irreducible Markov chain as either transient or
recurrent.

Now we turn to the analysis of the asymptotic behavior of Markov chains.
Let π be a probability distribution on S satisfying

πj =
∑
i∈S
πiP(i, j), j ∈ S. (7)

Regarding π as a row vector, this condition is equivalent to π = πP. Iterat-
ing, we have

π = πP = πP2 = . . . = πPn, n ≥ 1. (8)

In particular, if {Xn}n ≥ 0 is a Markov chain in S with one-step transition
matrix P and if X0 has distribution π0, then Xn has distribution πn for each
n ≥ 1. For this reason, a distribution π satisfying (7) is called a stationary
distribution for the Markov chain.

We need one more definition to state an important result.

Definition 9 The period d(i) of state i ∈ S is defined to be d(i) = g.c.d.D(i),
D(i) = {n ∈ N : Pn(i, i) > 0}, where g.c.d. stands for greatest common divisor.

We first notice that every state of an irreducible Markov chain has the same
period.

Note that if i, j ∈ S are such that fij > 0 and fji > 0, then d(i) = d(j). This
allows us to speak of the period of an irreducible Markov chain.
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Definition 10 If the period is 1, we call the chain aperiodic.

We can now describe the asymptotic behavior of the n-step transition proba-
bilities of an irreducible aperiodic Markov chain.

Theorem 11 If an irreducible aperiodic Markov chain in S with one-step
transition matrix P has a stationary distribution π, then it is recurrent and

lim
n→∞Pn(i, j) = π(j) i, j ∈ S. (9)

Furthermore, π(i) > 0 for all i ∈ S.

It follows from the previous statement that if an irreducible aperiodic Markov
chain in S with one-step transition matrix P has no stationary distribution,
then

lim
n→∞Pn(i, j) = 0 i, j ∈ S. (10)

Thus, an irreducible aperiodic Markov chain in a finite state space S has a
stationary distribution.

Theorem 12 Let {Xn}n≥0 be an irreducible aperiodic recurrent Markov chain
in S with one-step transition matrix P. Then one of the following conclusions
holds:

(a) Ei[Ti] < ∞ for all i ∈ S, and P has a unique stationary distribution π
given by

π(i) =
1

Ei[Ti]
, i ∈ S. (11)

(b) Ei[Ti] =∞ for all i ∈ S, and P has no stationary distribution.

If (a) holds, then the chain is said to be positive recurrent, and Equation (9)
holds. If (b) holds, then the chain is said to be null recurrent, and Equation
(10) holds.

In the following section we define our concept and point out its relationship
with Markov chains.

3 The outguessing equilibrium

This section introduces our notion of outguessing equilibrium. We first define
the family of games we analyze.
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Definition 13 In a two person simultaneous normal form game we denote
the players by i = 1, 2. We denote by Si the pure strategy set of player i, where
si ∈ Si and S = "2i=1Si The utility (or payoff) of any player i is given by
ui(si, s−i) ∈ R, where s−i denotes the strategy chosen by the other player.

Our main assumptions are as follows.

Assumption 1 We restrict attention to generic games, i.e. where the best
response correspondance is a function. That means that there exists only one
best response for any action of any of the two players.

Assumption 2 The game does not have a pure strategy Nash equilibrium.

Notice that if the game had a pure strategy Nash equilibrium, mixed strategies
and probability distributions would not have to be dealt with.

Assumption 3 The game is repeated, the rounds are denoted by 1,2,. . . ,n,. . .

Assumption 4 The players are assumed to keep in mind the strategy profile
of the previous round (i.e. their own previous choice and their opponent’s
previous choice) and nothing else.

Assumption 5 Players are assumed to play according to 0-reasoning, 1-reaso-
ning, 2-reasoning, . . . , k-reasoning, or a according to a probability distribution
of the different reasoning levels. The distributions are exogenously given and
do not change among different rounds of the game.

The definition of the different reasoning levels are discussed in Section 1. Be-
sides, we define 0-reasoning by playing the same strategy as in the previous
round.

The exogenously given distribution over the set of reasoning levels is defined
as follows.

Definition 14 For any player i and any reasoning level k let Pik denote the
probability of acting according to k-reasoning.

A player is considered smarter than its opponent if his expected reasoning
level is higher than that of his opponent. This is how we grab the difference
in the complexity of human thinking and try to point out why smarter people
may win more frequently in several strategic interactions.

We begin the analysis with the description of the equilibrium concept for
the simplest case, where both players have two strategies each.
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3.1 The 2-by-2 model

Initially, we restrict attention to two-player 2x2 games with the following gen-
eral payoff matrix:

Player 2
q 1− q

Left Right

Player 1
p Top uTL; vTL uTR; vTR
1− p Bottom uBL; vBL uBR; vBR

Table 1: The 2-by-2 game

According to Table 1, Player 1’s strategies are Top and Bottom, while Player
2 can choose between Left and Right. p, 1−p, q, 1−q are the respective strategy
choice probabilities. Finally, uij, vij (where i ∈ {T, B} and j ∈ {L, R}) are the
two players’ payoff levels given a certain strategy pair.

According to Assumption 2, we assume that the game does not have a pure
strategy Nash-equilibrium. A necessary and sufficient condition for this is

uTL > uBL, uBR > uTR, vTR > vTL, vBL > vBR. (12)

This means that the best responses of both players are given for any action of
their opponent. E.g. if Player 1 chooses Top, then Player 2’s best response is
Right, as vTR > vTL.

For games that do not have a pure strategy Nash equilibrium, the classical
solution is the mixed strategy Nash equilibrium. As a reference point, we
provide the formulas for calculating the Nash-equlibrium mixing probabilities
of the two players for the game using the notations of Table 1:

pnash =
vBL − vBR

vBL − vBR + vTR − vTL
, (13)

qnash =
uBR − uTR

uBR − uTR + uTL − uTR
. (14)

However, the mixed strategy Nash equilibrium has been criticized, as several
experiments pointed out that it does not describe player behavior properly
(e.g. [2, 7]). As described in the introduction, these findings led researchers to
construct behavioral game theory models that may explain the way of strategic
thinking more precisely.

Our model tries to provide a mathematical framework for player behavior.
We introduce our concept of play history in the next definition.
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Definition 15 We use the notion history for the strategy profile of the previ-
ous round of the game.

The history of the game described by Table 1 can be the following: (Top;Left),
(Top;Right), (Bottom;Left) and (Bottom;Right).

Depending on the history, we can define four different games, where the
strategies and the payoffs are the same. The only difference is that both players
keep the history in mind and this has an influence on their decisions, i.e. their
strategy mixing probabilities.

The payoff and probability matrices with the four different histories are as
follows.

Player 2
qTL 1− qTL
Left Right

Player 1
pTL Top uTL; vTL uTR; vTR
1− pTL Bottom uBL; vBL uBR; vBR

Table 2: The game with (Top, Left) history

Player 2
qTR 1− qTR
Left Right

Player 1
pTR Top uTL; vTL uTR; vTR
1− pTR Bottom uBL; vBL uBR; vBR

Table 3: The game with (Top, Right) history

Player 2
qBL 1− qBL
Left Right

Player 1
pBL Top uTL; vTL uTR; vTR
1− pBL Bottom uBL; vBL uBR; vBR

Table 4: The game with (Bottom, Left) history
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Player 2
qBR 1− qBR
Left Right

Player 1
pBR Top uTL; vTL uTR; vTR
1− pBR Bottom uBL; vBL uBR; vBR

Table 5: The game with (Bottom, Right) history

An example for the game in Table 1 can be as follows.

Example 16 We assume that Player 1 chooses strategy Top, while Player
B chooses strategy Left in the first round of the game. Thus, for the second
round the history is (Top,Left). Let Player 1 play according to 0-reasoning with
certainty and Player 2 according to 1-reasoning with certainty. Thus, Player
1 will remain at strategy Top, while Player 2 will choose his best response
to Top with certainty, that is, Right. We arrived at the (Top, Right) strategy
pair with certainty. Using the notations of Table 2, this means that pTL = 1,
while qTL = 0. Clearly, even if the reasoning levels follow a more complicated
distribution, then pTL ∈ [0, 1] and qTL ∈ [0, 1]. As we arrived at (Top, Right)
with certainty, (Top, Right) becomes the history for the third round of the
game. Applying again that Player 1 plays according to 0-reasoning and Player
2 plays according to 1-reasoning with certainty, the (Top, Right) profile will
occur in the third round of the game. With the same logic, the process can be
continued till any kth round of the game.

If we consider any 2-by-2 game that satisfies our assumptions and a first-
round strategy profile and a distribution on the set of reasonng levels is given
for both players, there emerge the following questions:

1. What is the ex ante strategy choice distribution of the two players if the
number of rounds n→∞? Is there any limiting distribution?

2. What is the expected payoff of the players for each round if n→∞? Is
the series of expected payoffs convergent?

To answer these questions, we will apply the theory of Markov chains.

3.2 The Markov chain model of the 2-by-2 game

The outguessing model can be interpreted as a Markov chain. According to
Assumption 4, the players keep in mind only the actions of the previous round
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of the game. Let us define the Markov chain of the described 2-by-2 game.

Proposition 17 The strategy profile sequence of the repeated game represents
a Markov chain.

Proof. The proof comes directly from Definition 3 and Assumption 4 that
show that the strategy profile sequence {Xn} (n ≥ 1) has the Markov property.

�

In a 2-by-2 game we have 4 different strategy profiles, in our example these
are (Top;Left), (Top;Right), (Bottom;Left) and (Bottom;Right), or in a shorter
form: TL, TR, BL, BR. Thus, we can define the four states as follows:

State no. Strategy profile

1 (Top;Left)
2 (Top;Right)
3 (Bottom;Left)
4 (Bottom;Right)

Table 6: States of the Markov chain

The transition matrix of the Markov chain can be obtained by using the data
of the general payoff and probability matrices from the previous subsection.

Proposition 18 The 4-by-4 transition matrix can be written as follows:

T =


pTLqTL pTL(1− qTL) (1− pTL)qTL (1− pTL)(1− qTL)
pTRqTR pTR(1− qTR) (1− pTR)qTR (1− pTR)(1− qTR)
pBLqBL pBL(1− qBL) (1− pBL)qBL (1− pBL)(1− qBL)
pBRqBR pBR(1− qBR) (1− pBR)qBR (1− pBR)(1− qBR)

 .
Proof. The elements of the transition matrix are the probabilities of getting
into a given state from a given previous state, i.e. the probabilities that a
certain strategy profile will emerge given the strategy profile of the previous
round. Using the previously defined pij and qij probabilities, and knowing that
strategic decisions are independent from each other in a simultaneous game,
we obtain the formula in the statement. �

Clearly, the transition matrix depends directly only on the players’ prob-
abilities of choosing a certain strategy with a given history. The transition



82 T. L. Balogh, J. Kormos

matrix is independent from the construction of these probabilities. Thus, it
remains the same for all models where the players’ actions depend only on the
previous round and a probability distribution is exogenously given for both
players on the set of reasoning levels.

The following lemma indicates that only 0, 1, 2 and 3-reasoning levels are
relevant for the given 2-by-2 game.

Lemma 19 For 2-by-2 games and for all k ≥ 4, k-reasoning is equivalent to
(k− 4)-reasoning.

Proof. The proof comes directly from the inequalities in (12). �

We need one more definition to be able to state the key result of the paper.

Definition 20 Let us denote the initial strategy distribution of the players by
π0.

The distribution over the state space (the set of strategy pairs) in the nth
round can obviously be calculated as follows:

πn = Tnπ0. (15)

The key result states that under certain conditions there exists a limiting
distribution if n→∞.

Proposition 21 If Pik > 0 (see Definition 14) for every i ∈ {1, 2} and every
k ∈ {0, 1, 2, 3} and if n → ∞, then there exists a limiting distribution π over
the state space of the {Xn} (n ≥ 1) Markov chain.

Proof. If Pik > 0 for every i ∈ {1, 2} and every k ∈ {0, 1, 2, 3}, then it can
easily be verified according to Definitions 8 and 13 that {Xn} is an irreducible
aperiodic Markov chain. Thus, according to Theorem 11 it is recurrent and
has a limiting distribution. �

We arrived at our equilibrium concept. The outguessing equilibrium is de-
fined as the limiting distribution.

Definition 22 We call the limiting distribution π the outguessing equilibrium.

According to the proof of Proposition 21, the key result is supported by The-
orem 11: the strategy profile sequence of the repeated 2-by-2 game represents
a Markov chain that has a limiting distribution.
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As far as the players’ expected payoffs are concerned, they can easily be
determined by multiplying π ′ (π vector transposed) with the vector of the
corresponding payoff levels.

By running our script, the limiting distribution π and the long-term ex-
pected payoffs can be calculated and visualized. It becomes clear that the
player with the higher expected reasoning level has the higher expected payoff
on the long run.

3.3 Numerical experiment—the matching pennies

In the matching pennies game, both players have to announce ”heads” or
”tails” at the same time. If the announcements are the same, Player 1 wins 1
from Player 2, otherwise Player 2 wins 1 from Player 1. The payoff matrix of
the well-known zero-sum game is as follows:

Player 2
q 1− q

Left Right

Player 1
p Top 1; −1 −1; 1
1− p Bottom −1; 1 1; −1

The Nash-equilibrium mixing probabilities are 50%-50% for both players.

Let us assume that in our model the initial strategy choice probabilities are
0.5 each (in the first round when there is no history). For the distributions
over the set of reasoning levels (see Definition 14) let us assume that P10 = 0.4,
P11 = 0.2, P12 = 0.2, P13 = 0.2, while P10 = 0.2, P10 = 0.2, P10 = 0.4, P10 = 0.4.
Clearly, Player 2 is considered smarter due to his higher expected reasoning
level.

We ran our script and the process of the expected payoffs calculated from
(π1, π2, . . . , πn, . . .) and T is depicted in Figure 1.

It can easily be seen that these processes converge to certain limit values,
a numerical evidence for Proposition 21. It is also verified for the Matching
pennies that the smarter Player 2 (the above ”+” sequence) has a higher
expected payoff (0.232) than Player 1 (-0.232). According to the mixed strategy
Nash equilibrium concept, both players would have zero expected payoff.



84 T. L. Balogh, J. Kormos

Figure 1: Long-term expected payoffs of the two players depending on the
number of rounds; 2-by-2 case

3.4 The 3-by-3 case

If we consider a 3-by-3 game and keep all our assumptions, then the propo-
sitions trivially remain valid. The only exception is Lemma 19. The modified
version for 3-by-3 games is as follows.

Lemma 23 For 3-by-3 games and for all k ≥ 6, k-reasoning is equivalent to
(k− 6)-reasoning.

Proof. The proof comes directly from the modified version of inequalities in
(12) for 3-by-3 games. �

What is important is that Proposition 21 remains valid if k ∈ {0, 1, 2, 3, 4, 5}.
By running our script for 3-by-3 games, we can obtain numerical evidence for
the results.
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3.5 Numerical experiment—the Rock-paper-scissors game

The payoff matrix of the well-known Rock-paper-scissors game is as follows.

Player 2
q1 q2 q3

Rock Paper Scissors

Player 1
p1 Rock 0; 0 −1; 1 1; −1
p2 Paper 1; −1 0; 0 −1, 1
p3 Scissors −1; 1 1; −1 0; 0

We fixed the expected (average) reasoning level of Player 1 at 2.0 and that
of Player 2 at 2.5 (not violating the conditions of Proposition 7). The expected
payoffs are depicted in Figure 2 below.

Clearly, smarter Player 2 (crosses) ”beats” Player 1 (dotted crosses) on the
long run. Player 2’s long term expected payoff lies at 0.038, while Player 1’s
is -0.038.

4 Notes about the script

Our script was written in Matlab. Its inputs are the following values:

• the payoff matrix of the corresponding 2-by-2 or 3-by-3 game

• the players’ discrete probability distributions over the set of reasoning
levels

• initial strategies (i.e. player behavior in the very first round–either a
fixed strategy pair or an initial distribution)

The script works the following way. Firstly, from the given values the script
calculates the transition matrix of the Markov chain. Then, the outguessing
equilibrium (see Definition 13) and the long-term expected payoffs for both
players are also calculated. Proposition 3 suggests that the “smarter” player
(if there is one) beats its opponent on the long run.

Apart from the calculations, the power of the script is that the outguessing
equilibrium concept can be tested for any 2-by-2 or 3-by-3 bimatrix game that
does not have a Nash equilibrium on pure strategies.1

1Upon request, the authors provide the interested reader with the script with pleasure
for testing purposes.
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Figure 2: Long-term expected payoffs of the two players depending on the
number of rounds; 3-by-3 case

5 Conclusions

Behavioral game theory has been dealing with the understanding of human
behavior in strategic interactions. Among several different approaches, we have
developed a behavioral model that aims at showing why “smarter” people
outguess their opponents and win more frequently in some well-known zero-
sum games.

Game theory is a useful modeling tool for network problems. We defined a
behavioral model in a two-player non-cooperative network.

We used the concept of iterative reasoning to define smartness. The theory
of Markov chains has proved to be a very useful technical tool to prove the
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main result of the paper. Namely, an outguessing equilibrium according to our
definition exists and can even be calculated.

A Matlab script supports the calculations and provides numerical evidence
for our concept.

The authors wish to emphasize that the introduced model can not only be
applied for the games recalled in the examples, but for any conflict situation
that can be modeled by bimatrix games.

Although the theoretical results are proved, and numerical evidence is also
provided, there have remained some interesting questions which are out of the
scope of this paper. One of these questions is rather technical: what types of
Markov chains (e.g. periodic, absorbing etc. . . ) can emerge given a specific
bimatrix game and initial strategy profile? Another one deals with the game
theoretic assumptions: if either the number of players, or the simultanity of
decisions were altered, or we allowed for non-generic games, how would the
equilibrium outcome change? These problems are left for future research.
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Abstract. For a graph G with vertex set V(G) = {v1, v2, . . . , vn}, the
extended double cover G∗ is a bipartite graph with bipartition (X, Y),
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where two vertices xi and
yj are adjacent if and only if i = j or vi adjacent to vj in G. The double
graphD[G] of G is a graph obtained by taking two copies of G and joining
each vertex in one copy with the neighbors of corresponding vertex in
another copy. In this paper we study energy and Laplacian energy of the
graphs G∗ and D[G], L-spectra of Gk∗ the k-th iterated extended double
cover of G. We obtain a formula for the number of spanning trees of G∗.
We also obtain some new families of equienergetic and L-equienergetic
graphs.

1 Introduction

Let G be finite, undirected, simple graph with n vertices and m edges having
vertex set V(G) = {v1, v2, . . . , vn}. Throughout this paper we denote such a
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graph by G(n,m). The adjacency matrix A = (aij) of G is a (0, 1)-square
matrix of order n whose (i, j)-entry is equal to one if vi is adjacent to vj and
equal to zero, otherwise. The spectrum of the adjacency matrix is called the
A-spectrum of G. If λ1, λ2, . . . , λn is the adjacency spectrum of G, the energy
of G is defined as E(G) =

∑n
i=1 |λi|. This quantity introduced by I. Gutman

[16] has noteworthy chemical applications.
Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to G,

where di is the degree of vertex vi. The matrices L(G) = D(G) − A(G) and
L+(G) = D(G) + A(G) are called Laplacian and signless Laplacian matrices
and their spectras are respectively called Laplacian spectrum (L-spectrum)
and signless Laplacian spectrum (Q-spectrum) of G. Being real symmetric,
positive semi-definite matrices, let 0 = µn ≤ µn−1 ≤ · · · ≤ µ1 and 0 ≤ µ+n ≤
µ+n−1 ≤ · · · ≤ µ

+
1 be respectively the L-spectrum and Q-spectrum of G. It is

well-known that µn = 0 with multiplicity equal to the number of connected
components of G (see [11]). Fiedler [11] showed that a graph G is connected
if and only if its second smallest Laplacian eigenvalue is positive and called
it as the algebraic connectivity of the graph G. Also it is well-known [8] that
for a bipartite graph the L-spectra and Q-spectra are identical. The Laplacian
energy of a graph G as put forward by Gutman and Zhou [17] is defined as

LE(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ .
This quantity, which is an extension of graph-energy concept has found re-

markable chemical applications beyond the molecular orbital theory of conju-
gated molecules [22]. Both energy and Laplacian energy have been extensively
studied in the literature (see [1, 2, 5, 9, 10, 12, 13, 14, 15, 18, 19, 20, 24, 25,
26, 27, 29, 30] and the references in them). Based on the above definition, the
signless Laplacian energy of a graph G is defined as

LE+(G) =

n∑
i=1

∣∣∣∣µ+i −
2m

n

∣∣∣∣ ,
where µ+i (i = 1, 2, . . . , n)is the signless Laplacian spectra of G. It is easy to
see that

tr(L(G)) =

n∑
i=1

µi =

n−1∑
i=1

µi = 2m and tr(LE+(G)) =

n∑
i=1

µ+i = 2m,

where tr is the trace of the matrix.
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Two graphs G1 and G2 of same order are said to be equienergetic if E(G1) =
E(G2) [3, 23]. In analogy to this two graphs G1 and G2 of same order are
said to L-equienergetic if LE(G1) = LE(G2) and Q-equienergetic if LE+(G1) =
LE+(G2). Since cospectral (Laplacian cospectral) graphs are always equiener-
getic (L-equienergetic), the problem of constructing equienergetic (L-equiener-
getic) graphs is only considered for non-cospectral (non Laplacian cospectral)
graphs.

The extended double cover [6] of the graph G(n,m) with vertex set V(G) =
{v1, v2, . . . , vn} is a bipartite graph G∗ with bipartition (X, Y), X = {x1, x2, . . . ,

xn} and Y = {y1, y2, . . . , yn}, where two vertices xi and yj are adjacent if and
only if i = j or vi adjacent vj in G. It is easy to see that G∗ is connected if
and only if G is connected and a vertex vi is of degree di in G if and only if
it is of degree di + 1 in G∗. Also the extended double cover G∗ of the graph
G always contains a perfect matching. The double graph D[G] of G is a graph
obtained by taking two copies of G and joining each vertex in one copy with
the neighbors of corresponding vertex in another copy. The k-fold graph Dk[G]
[21] of the graph G is obtained by taking k copies of the graph G and joining
each vertex in one of the copy with the neighbors of the corresponding vertices
in the other copies. If Tn is the graph obtained from the complete graph Kn
by adding a loop at each of the vertex, it is easy to see that Dk[G] = G⊗ Tk.
In this paper we study energy, Laplacian energy of the graphs G∗ and D[G],
the L-spectra of Gk∗ the k-th iterated extended double cover of G and obtain
a formula for the number of spanning trees of G∗. We also obtain some new
families of the equienergetic and L-equienergetic graphs.

We denote the complement of graph G by G, the complete graph on n

vertices by Kn, the empty graph by Kn and the complete bipartite graph with
cardinalities of partite sets q and r by Kq,r. The rest of the paper is organized
as follows. In Section 2, energy of the graphs G∗ and Dk[G] are obtained and
some new families of equienergetic graphs are given, in Section 3 L-spectra of
Gk∗ and a formula for the number of spanning tress of G∗ is obtained and in
Section 4 Laplacian energy of the graphs G∗ and Dk[G] and the construction
of some new families of L-equienergetic graphs by using the graphs Gk∗ and
Dk[G] is presented.

2 Energy of double graphs

In this section we find the energy of the graphs G∗ and Dk[G]. We also con-
struct some new families of equienergetic graphs based on these graphs.

For the graphs G1 and G2 with disjoint vertex sets V(G1) and V(G2), the



92 H. A. Hilal, S. Pirzada, A. Iványi

Cartesian product is a graph G = G1×G2 with vertex set V(G1)×V(G2) and
an edge ((u1, v1), (u2, v2)) if and only if u1 = u2 and (v1, v2) is an edge of G2 or
v1 = v2 and (u1, u2) is an edge of G1. The following result gives the A-spectra
(L-spectra) of the Cartesian product of graphs.

Lemma 1 (Cvetkovic, Doob, Sachs, 1980 [7]) If G1(n1,m1) and G2(n2,m2)
are two graphs having A-spectra (L-spectra) respectively as, µ1, µ2, . . . , µn1

and
σ1, σ2, . . . , σn2

, then the A-spectra (L-spectra) of G = G1×G2 is µi+σj, where
i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.

The conjunction (Kronecker product) of G1 and G2 is a graph G = G1 ⊗G2
with vertex set V(G1) × V(G2) and an edge ((u1, v1), (u2, v2)) if and only if
(u1, u2) and (v1, v2) are edges in G1 and G2, respectively. The following result
gives the A-spectra (L-spectra) of the Kronecker product of graphs.

Lemma 2 (Cvetkovic, Doob, Sachs, 1980 [7]) If G1(n1,m1) and G2(n2,m2)
are two graphs having A-spectra (L-spectra) respectively as µ1, µ2, . . . , µn1

and
σ1, σ2, . . . , σn2

, then the A-spectra (L-spectra) of G = G1 ⊗ G2 is µiσj, where
i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.

The join product of G1 and G2 is a graph G = G1 ∨ G2 with vertex set
V(G1)∪V(G2) and an edge set consisting of all the edges of G1 and G2 together
with the edges joining each vertex of G1 with every vertex of G2. The L-spectra
of join product of graphs is given by the following result.

Lemma 3 (Cvetkovic, Doob, Sachs, 1980 [7]) If G1(n1,m1) and G2(n2,m2)
are two graphs having L-spectra respectively as µ1, µ2, . . . , µn1−1, µn1

= 0 and
σ1, σ2, . . . , σn2−1, σn2

= 0, then the L-spectra of G = G1 ∨G2 is n1 + n2, n1 +
σ1, n1 + σ2, . . . , n1 + σn2−1, n2 + µ1, n2 + µ2, . . . , n2 + µn1−1, 0.

The following result gives the A-spectra of G∗, the extended double cover
of the graph G.

Theorem 4 (Cvetkovic, Doob, Sachs, 1980 [7], Chen, 2004 [6]) If λ1, λ2, . . . , λn
is the A-spectra of a graph G, then the A-spectra of the graph G∗ is ±(λ1 +
1),±(λ2 + 1), . . . ,±(λn + 1).

If λ1, λ2, . . . , λn is the A-spectra of the graph G, then by Lemma 1, the A-
spectra of the graph G × K2 is λi + 1, λi − 1 for 1 ≤ i ≤ n. It is clear from
Theorem 4, that the graphs G × K2 and G∗ are cospectral if and only if G
is bipartite [6]. If Dk[G] is the k-fold graph of the graph G, the A-spectra of
Dk[G] is given by the following result.
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Theorem 5 (Cvetkovic, Doob, Sachs, 1980 [7], Marino, Salvi, 2007 [21]) If
λ1, λ2, . . . , λn is the A-spectra of a graph G, then the A-spectra of the graph
Dk[G] is kλ1, kλ2, . . . , kλn, 0 ((k− 1)ntimes).

If λ1, λ2, . . . , λn is the A-spectra of the graph G, then by Theorem 4, the A-
spectra of the graph G∗ is ±(λ1+1),±(λ2+1), . . . ,±(λn+1) and by Theorem
5, the A-spectra of Dk[G] is kλ1, kλ2, . . . , kλn, 0 ((k− 1)n times). Therefore,

E(G∗) =

n∑
i=1

|λi + 1|+

n∑
i=1

|− λi − 1| = 2

n∑
i=1

|λi + 1|,

and

E(Dk[G]) =

n∑
i=1

|2λi| = 2

n∑
i=1

|λ| = kE(G).

If λ1, λ2, . . . , λn is the A-spectra of a graph G, then the A-spectra of the
graph (G⊗ K2)× K2 is λi + 1, λi − 1,−λi + 1,−λi − 1, 1 ≤ i ≤ n. Therefore,

E((G⊗K2)×K2)=2
n∑
i=1

|λi + 1|+ 2

n∑
i=1

|λi − 1| = 2

(
n∑
i=1

|λi + 1|+

n∑
i=1

|λi − 1|

)
= 2E(G× K2) = E(2(G× K2)) = E((G× K2) ∪ (G× K2)).

From the above discussion, we observe that the graphs (G ⊗ K2) × K2 and
(G× K2) ∪ (G× K2) are equienergetic. Moreover, if the graph G is a bipartite
graph then the graphs (G⊗K2)×K2 and G∗∪G∗ are also equienergetic graphs.

As seen above E(Dk[G]) = k
∑n
i=1 |λi| = kE(G) = E(kG) = E(G∪G∪· · ·∪G)

(G is repeated k times). This shows that the graphs Dk[G] and (G∪G∪· · ·∪G)
(G is repeated k times) are non-cospectral equienergetic. However, we show
for any graph G the graphs D[G] and G ⊗ K2 are always equienergetic non-
cospectral graphs.

Theorem 6 If D[G] is the double graph of the graph G, then the graphs G⊗K2
and D[G] are non-cospectral equienergetic graphs.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G, then by Lemma 2,
the eigenvalues of the graph G⊗K2 are λi,−λi for 1 ≤ i ≤ n and by Theorem
5 (for k = 2), the eigenvalues of the graph D[G] are 2λi, 0 (n times) for
1 ≤ i ≤ n. Therefore,

E(G⊗ K2) =
n∑
i=1

|λi|+

n∑
i=1

|− λi| = 2

n∑
i=1

|λi|.
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Also,

E(D[G]) =

n∑
i=1

|2λi| = 2

n∑
i=1

|λi|.

Clearly these graphs are non-cospectral, so the result follows. �

In general, ifDk[G] be the k-fold graph of the graph G, we have the following
observation.

Theorem 7 If Dk[G] is the k-fold graph of the graph G, then the graphs Dk[G]
and G⊗ sK2 are non-cospectral equienergetic graphs if and only if k = 2s.

Proof. If λ1, λ2, . . . , λn are the eigenvalues of the graph, then by Lemma 2,
the eigenvalues of the graph G⊗ sK2 are λi (2s−1 times), −λi (2s−1 times) for
1 ≤ i ≤ n and by Theorem 5, the eigenvalues of the graph Dk[G] are kλi, 0

((k− 1)n times) for 1 ≤ i ≤ n. Therefore,

E(G⊗ sK2) = 2s−1
n∑
i=1

|λi|+ 2
s−1

n∑
i=1

|− λi| = 2
s
n∑
i=1

|λi|. (1)

Also,

E(Dk[G]) =

n∑
i=1

|kλi| = k

n∑
i=1

|λi|. (2)

From (1) and (2) it is clear that E(G⊗ sK2) = E(Dk[G]) if and only if k = 2s.
�

Let G∗∗ be the extended double cover of the graph G∗. We have the following
result.

Theorem 8 If G is an n-vertex graph, then E(G∗⊗K2) = E(G∗∗), if |λi| ≥ 2,
for all non-zero eigenvalues of G. Moreover these graphs are non-cospectral
with equal number of vertices.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G. By Theorem 4,
the eigenvalues of the graph G∗ are λi+1,−(λi+1) for 1 ≤ i ≤ n and so of G∗∗

are λi + 2, λi,−(λi + 2),−λi for 1 ≤ i ≤ n. Also by Lemma 2, the eigenvalues
of the graph G∗ ⊗ K2 are λi + 1,−(λi + 1), λi + 1,−(λi + 1) for 1 ≤ i ≤ n.
Assume that |λi| ≥ 2. Then

|λi + 1| =

{
|λi|+ 1, if λi ≥ 0
|λi|− 1, if λi < 0

, |λi + 2| =

{
|λi|+ 2, if λi ≥ 0
|λi|− 2, if λi < 0.
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Therefore,

E(G∗∗) = 2

n∑
i=1

|λi + 2|+ 2

n∑
i=1

|λi| = 2

∑
λi≥0

|λi + 2|+
∑
λi<0

|λi + 2|+

n∑
i=1

|λi|


= 2

∑
λi≥0

|λi|+ 2+
∑
λi<0

|λi|− 2+

n∑
i=1

|λi|


= 2

 n∑
i=1

|λi|+

n∑
i=1

|λi|+ 2(
∑
λi≥0

1−
∑
λi<0

1)


= 4

n∑
i=1

|λi|+ 4θ,

where θ is the difference between the number of nonnegative and negative
eigenvalues of G and

E(G∗ ⊗ K2) = 2

(
n∑
i=1

|λi + 1|+

n∑
i=1

|− (λi + 1)|

)
= 4

n∑
i=1

|λi + 1|

= 4

∑
λi≥0

|λi + 1|+
∑
λi<0

|λi + 1|

 = 4

∑
λi≥0

|λi|+ 1+
∑
λi<0

|λi|− 1|


= 4

n∑
i=1

|λi|+ 4

∑
λi≥0

1−
∑
λi<0

1

 = 4

n∑
i=1

|λi|+ 4θ.

Clearly these graphs are noncospectral with same number of vertices. �

Let G be a bipartite graph. It is well-known that the spectra of G is sym-
metric about the origin, so half of the nonzero eigenvalues of G lies to the left
and half lies to the right of origin. Therefore if G is a bipartite graph having
all its eigenvalues nonzero, the number of positive and negative eigenvalues of
G are same. Keeping this in mind we have the following result.

Theorem 9 If G∗ is the extended double cover of the bipartite graph G, then
the graphs G∗ and D[G] are noncospectral equienergetic if and only if |λi| ≥ 1
for all 1 ≤ i ≤ n.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G. By Theorem 4, the
eigenvalues of the graph G∗ are λi+1,−λi−1 for 1 ≤ i ≤ n and by Theorem 5,
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the eigenvalues of the graph D[G] are 2λi, 0 (n times) for 1 ≤ i ≤ n. Suppose
that |λi| ≥ 1 for i = 1, 2, . . . , n, then

|λi + 1| =

{
|λi|+ 1, if λi > 0
|λi|− 1, if λi < 0.

Therefore,

E(G∗) =

n∑
i=1

|λi + 1|+

n∑
i=1

|− λi − 1| = 2

n∑
i−1

|λi + 1|

= 2

∑
λi>0

|λi + 1|+
∑
λi<0

|λi + 1|

 = 2

∑
λi>0

(|λi|+ 1) +
∑
λi<0

(|λi|− 1)


= 2

(
∑
λi>0

|λi|+
∑
λ<0

|λi|) + (
∑
λi>0

1−
∑
λ<0

1)

 = 2

n∑
i=1

|λi| = E(D[G]).

Clearly these graphs are noncospectral with same number of vertices.
Conversely, suppose that the graphsG∗ andD[G] are noncospectral equiener-

getic. We will show that |λi| ≥ 1 for all 1 ≤ i ≤ n.
Assume to the contrary that |λi| < 1 for some i. Then for this i, |λi + 1| =

λi + 1. Without loss of generality, suppose that the eigenvalues of G satisfy
|λi| ≥ 1, for i = 1, 2, . . . , k and |λi| < 1, for i = k + 1, k + 2, . . . , n, since the
eigenvalues are real and reordering does not effect the argument. We have the
following cases to consider.
Case i. If λi > 0 for i = 1, 2, . . . , k and λi ≥ 0 for i = k + 1, k + 2, . . . , n,

then

E(G∗) = 2

(
k∑
i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
n∑
i=1

|λi|+ n

)
.

Case ii. If λi > 0 for i = 1, 2, . . . , k and λi ≤ 0 for i = k+ 1, k+ 2, . . . , n, then
if θ0 is the number of zero eigenvalues of G, we have

E(G∗) = 2

(
k∑
i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
k∑
i=1

(|λi|+ 1) +

n∑
i=k+1

(λi + 1)

)

> 2

(
k∑
i=1

(|λi|+ 1) +

n∑
i=k+1

(|λi|− 1)

)
= 2

(
n∑
i=1

|λi|− θ0

)
.
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Case iii. If λi < 0 for i = 1, 2, . . . , k and λi ≥ 0 for i = k+ 1, k+ 2, . . . , n, then

E(G∗) = 2

(
k∑
i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
k∑
i=1

(|λi|− 1) +

n∑
i=k+1

(|λi|+ 1)

)

= 2

(
n∑
i=1

|λi|+ θ0

)
.

Case iv. If λi < 0 for i = 1, 2, . . . , k and λi ≤ 0 for i = k+ 1, k+ 2, . . . , n, then

E(G∗) = 2

(
k∑
i=1

|λi + 1|+

n∑
i=k+1

|λi + 1|

)
= 2

(
k∑
i=1

(|λi|− 1) +

n∑
i=k+1

(λi + 1)

)

> 2

(
k∑
i=1

(|λi|− 1) +

n∑
i=k+1

(|λi|− 1)

)
= 2

(
n∑
i=1

|λi|− n

)
.

Clearly in all these cases, we obtain E(G∗) 6= E(D[G]), a contradiction. There-
fore the result follows. �

We can also prove Theorem 9 by using Theorem 6, the fact that the graphs
G∗ and G× K2 are cospectral if G is bipartite [6, Theorem 2] and the graphs
G× K2 and G⊗ K2 are equienergetic if an only if |λi| ≥ 1 [4, Theorem 8].

3 The Laplacian spectra of Gk∗

Let G∗ be the extended double cover of the graph G, define G∗∗ = (G∗)∗,
and in general Gk∗ = (G(k−1)∗)∗, k ≥ 1, called the k-qtextitth iterated double
cover graph of G. The A-spectra of Gk∗ is given in [6]. Here we obtain the
L-spectra of the k-th iterated extended double cover Gk∗ of the graph G. Since
the graph Gk∗ is always bipartite for k ≥ 1, therefore its Laplacian (L-spectra)
and signless Laplacian (Q-spectra) spectra are same.

For any complex square matrices A and B of same order, the following
observation can be seen in ([28, page 41]).

Theorem 10 If A and B are complex square matrices of same order, then∣∣∣∣A B

B A

∣∣∣∣ = |A+ B||A− B|,

where the symbol | | denotes the determinant of a matrix.

We first obtain the L-spectra of G∗, the extended double cover of the graph
G, in the following result.
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Theorem 11 Let G(n,m) be an n-vertex graph having Laplacian and signless
Laplacian spectra, respectively as 0 = µn < µn−1 ≤ . . . ≤ µ1 and 0 < µ+n <

µ+n−1 ≤ . . . ≤ µ
+
1 . Then the Laplacian spectra of G∗ is µ1, µ2, . . . , µn, µ+1 +

2, µ+2 + 2, . . . , µ+n + 2.

Proof. Let A(G) be the adjacency matrix of the graph G. By a suitable
relabelling of vertices it can be seen that the adjacency matrix A(G∗) of the
graph G∗ is

A(G∗) =

(
0 A(G) + In

A(G) + In 0

)
.

Let D(G) and D(G∗) be respectively the degree matrices of the graphs G and
G∗. It is easy to see that

D(G∗) =

(
D(G) + In 0

0 D(G) + In

)
.

Therefore, Laplacian matrix L(G∗) of G∗ is

L(G∗) = D(G∗) −A(G∗) =

(
D(G) + In −(A(G) + In)

−(A(G) + In) D(G) + In

)
.

So the Laplacian characteristic polynomial of G∗ is

CG∗(λ) = |λI2n − L(G
∗)| =

∣∣∣∣(λ− 1)In −D(G) A(G) + In
A(G) + In (λ− 1)In −D(G)

∣∣∣∣
= |((λ− 1)In −D(G)) − (A(G) + In)| |((λ− 1)In −D(G)) + (A(G) + In)|

= |(λ− 2)In − (D(G) +A(G))| |λIn − (D(G) −A(G))|

= QG(λ− 2)CG(λ).

From this the result follows. �

We now obtain the L-spectra of Gk∗ as follows.

Theorem 12 Let G(n,m) be a graph having L-spectra µi, and Q-spectra

µ+i , 1 ≤ i ≤ n. The L-spectra of the graph Gk∗ is µi

((
k
0

)
times

)
, µi +

2
((
k−1
1

)
times

)
, µ+i + 2

((
k−1
0

)
times

)
, µi + 4

((
k−1
2

)
times

)
, µ+i +

4
((
k−1
1

)
×
)
, . . . , µi + 2(k− 2)

((
k−1
k−2

)
times

)
, µ+i + 2(k− 2)

((
k−1
k−3

)
times

)
,

µi + 2(k− 1)
((
k−1
k−1

)
times

)
, µ+i + 2(k− 1)

((
k−1
k−2

)
times

)
, µ+i + 2k

((
k
k

)
times

)
, where 1 ≤ i ≤ n.
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Proof. We prove this result by induction and we use induction on k. For k = 1,
the result follows by Theorem 11. For k = 2, we have G2∗ = G∗∗. Let A(G∗)
and A(G∗∗) be the adjacency matrices respectively of the graphs G∗ and G∗∗.
It is not difficult to see that

A(G∗∗) =

(
0 A(G∗) + I2n

A(G∗) + I2n 0

)
.

Let D(G∗) and D(G∗∗) be respectively the degree matrices of G∗ and G∗∗. It
can be seen that

D(G∗∗) =

(
D(G∗) + I2n 0

0 D(G∗) + I2n

)
.

Therefore the Laplacian matrix of G∗∗ is

L(G∗∗) = D(G∗∗) −A(G∗∗) =(
D(G∗) + I2n −(A(G∗) + I2n)

−(A(G∗) + I2n) D(G∗) + I2n

)
.

So the Laplacian characteristic polynomial of G∗∗ is

CG∗∗(λ) = |λI4n − L(G
∗∗)| =

∣∣∣∣(λ−1)I2n−D(G∗) A(G∗)+I2n
A(G∗) + I2n (λ− 1)I2n −D(G∗)

∣∣∣∣
= |((λ−1)I2n−D(G∗)) − (A(G∗)+I2n)| |((λ−1)I2n −D(G∗)) + (A(G∗) + I2n)|

= |(λ− 2)I2n − (D(G∗) +A(G∗))| |λI2n − (D(G∗) −A(G∗))|

= QG∗(λ− 2)CG∗(λ).

From this it is clear that the L-spectra of G∗∗ is µi, µi + 2, µ
+
i + 2, µ+i + 4,

for 1 ≤ i ≤ n, that is L-spectra of G∗∗ is µi

((
2
0

)
times

)
, µi + 2

((
1
1

)
times

)
,

µ+i +2
((
1
0

)
times

)
, and µ+i +4

((
2
2

)
times

)
. Therefore the result is true in this

case. Assume that the result is true for k = s− 1. Then by induction hypoth-

esis the L-spectra of G(s−1)∗ is µi

((
s−1
0

)
times

)
, µi + 2

((
s−2
1

)
times

)
, µ+i +

2
((
s−2
0

)
times

)
, . . . , µi + 2(s− 2)

((
s−2
s−2

)
times

)
, µ+i + 2(s− 2)

((
s−2
s−3

)
times

)
,

µ+i + 2(s− 1)
((
s−1
s−1

)
times

)
. Now for k = s, it can be seen by proceeding as in

the case k = 2 the Laplacian matrix L(Gs∗) of the graph Gs∗ is

L(Gs∗)=D(Gs∗)−A(Gs∗)=

(
D(G(s−1)∗) + I2s−1n −(A(G(s−1)∗)+I2s−1n)

−(A(G(s−1)∗)+I2s−1n) D(G(s−1)∗) + I2s−1n

)
.
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Therefore, the Laplacian characteristic polynomial of Gs∗ is

CGs∗(λ) = |λI2sn − L(G
s∗)

=

∣∣∣∣(λ− 1)I2s−1n −D(G(s−1)∗) A(G(s−1)∗) + I2s−1n

A(G(s−1)∗) + I2s−1n (λ− 1)I2s−1n −D(G(s−1)∗)

∣∣∣∣
=
∣∣∣((λ− 1)I2s−1n −D(G(s−1)∗)) − (A(G(s−1)∗) + I2s−1n)

∣∣∣×∣∣∣((λ− 1)I2s−1n −D(G(s−1)∗)) + (A(G(s−1)∗) + I2s−1n)
∣∣∣

=
∣∣∣(λ− 2)I2s−1n − (D(G(s−1)∗) +A(G(s−1)∗))

∣∣∣
×
∣∣∣λI2s−1n − (D(G(s−1)∗) −A(G(s−1)∗))

∣∣∣
= QG(s−1)∗(λ− 2)CG(s−1)∗(λ).

Therefore, it follows that the L-spectra of the graph Gs∗ is µi

((
s−1
0

)
times

)
,

µi + 2
((
s−2
1

)
times

)
, µ+i + 2

((
s−2
0

)
times

)
, . . ., µi + 2(s − 2)

((
s−2
s−2

)
times

)
,

µ+i + 2(s− 2)
((
s−2
s−3

)
times

)
, µ+i + 2(s− 1)

((
s−1
s−1

)
times

)
, µi+ 2

((
s−1
0

)
times

)
,

µi + 4(
(
s−2
1

)
times), µ+i + 4(

(
s−2
0

)
times), . . ., µi + 2(s− 1)(

(
s−2
s−2

)
times), µ+i +

2(s− 1)(
(
s−2
s−3

)
times), µ+i + 2s(

(
s−1
s−1

)
times).

Using
(
k
r

)
+
(
k
r−1

)
=
(
k+1
r

)
, 0 ≤ r ≤ k and

(
s−1
0

)
=
(
s
0

)
=
(
s−1
s−1

)
=
(
s−2
s−2

)
= 1, we

see that the L-spectra of Gs∗ is µi(
(
s
0

)
times), µi+2(

(
s−1
1

)
times), µ+i +2(

(
s−1
0

)
times), µi+ 4(

(
s−1
2

)
times), µ+i + 4(

(
s−1
1

)
times), . . ., µi+ 2(s− 2)(

(
s−1
s−2

)
times),

µ+i + 2(s − 2)(
(
s−1
s−3

)
times), µi + 2(s − 1)(

(
s−1
s−1

)
times), µ+i + 2(s − 1)(

(
s−1
s−2

)
times), µ+i + 2s(

(
s
s

)
times). Thus the result is true in this case as well hence

by induction the result follows. �

If G is a bipartite graph, it is easy to see that under elementary transforma-
tion the Laplacian characteristic polynomial of G coincides with the signless
Laplacian characteristic polynomial of G. Therefore the Laplacian and signless
Laplacian spectra of G are same. We have the following observation.

Corollary 13 If G(n,m) is a bipartite graph having L-spectra µi, 1 ≤ i ≤ n,
then the L-spectra of k-th iterated double cover Gk∗ of G is µi

((
k
0

)
times

)
,

µi+2
((
k
1

)
times

)
, . . ., µi+2(k−2)

((
k
k−2

)
times

)
, µi+2(k−1)

((
k
k−1

)
times

)
,

µi + 2k
((
k
k

)
times

)
, where 1 ≤ i ≤ n.
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Proof. Since for a bipartite graph G the Laplacian and the signless Laplacian
spectra are same, we have µi = µ+i for all 1 ≤ i ≤ n. Using this in Theorem

21, we obtain the L-spectra of Gk∗ as µi

((
k
0

)
times

)
, µi + 2

((
k−1
1

)
times

)
,

µi+2
((
k−1
0

)
times

)
, µi+4

((
k−1
2

)
times

)
, µi+4

((
k−1
1

)
times

)
, . . ., µi+2(k−

2)
((
k−1
k−2

)
times

)
, µi+2(k−2)

((
k−1
k−3

)
times

)
, µi+2(k−1)

((
k−1
k−1

)
times

)
, µi+

2(k− 1)
((
k−1
k−2

)
times

)
, µi + 2k

((
k
k

)
times

)
. Now using the fact

(
t
r

)
+
(
t
r−1

)
=(

t+1
r

)
, 0 ≤ r ≤ t, the result follows. �

In [6] three formulae are given for the number of spanning trees of G∗ in
terms of A-spectra of the corresponding graph G. We now obtain a formula
for the number of spanning trees in terms of the L and Q-spectra of G∗.

Theorem 14 The number of spanning trees τ(G∗) of the graph G∗ is

τ(G∗) =
1

2
τ(G)

n∏
i=1

(µ+i + 2).

Proof. Let 0 = µn < µn−1 ≤ · · · ≤ µ1 and 0 < µ+n < µ+n−1 ≤ · · · ≤ µ
+
1 be

respectively the L-spectra and the Q-spectra of the graph G. By Theorem 3.2,
the L-spectra of the graph G∗ is µi, µ

+
i + 2 for i = 1, 2, . . . , n. By using the

fact that the number of spanning trees of a graph of order n is 1
n times the

product of (n− 1) largest Laplacian eigenvalues of the graph, we have

τ(G∗) =
1

2n

n−1∏
i=1

µi

n∏
i=1

(µ+i + 2) =
1

2
τ(G)

n∏
i=1

(µ+i + 2).

�

In case G is bipartite, µi = µ
+
i , so we have

τ(G∗) =
1

2n

n−1∏
i=1

µi

n∏
i=1

(µi + 2) = τ(G)

n−1∏
i=1

(µi + 2).

In [6] it is shown that the graphs G∗ and G × K2 are A-cospectral if and
only if G = K1 or G is bipartite. An analogous result holds for the L-spectra
and is given below.

Theorem 15 The graphs G∗ and G×K2 are L-cospectral if and only if G = K1
or G is bipartite.



102 H. A. Hilal, S. Pirzada, A. Iványi

Proof. If G = K1, the graphs G∗ and G × K2 are both isomorphic to K1, so
are L-cospectral. Now if G 6= K1, assume that G is bipartite. Then µi = µ+i
and so the L-spectra of G∗ is µi, µi + 2 for 1 ≤ i ≤ n which is same as the
L-spectra of G × K2. Conversely, suppose that the graphs G∗ and G × K2 are
L-cospectral. Then µi = µ

+
i , which is only possible if G is bipartite. Hence the

result. �

An integral graph is a graph all of whose eigenvalues are integers. Following
observation is a consequence of Theorem 12.

Theorem 16 A graph G is Laplacian integral if and only if the graph Gk∗ is
Laplacian integral graph.

It is clear from Theorem 16, that given a Laplacian integral G it is always
possible to construct an infinite sequence of Laplacian integral graphs. Indeed
the graph Gk∗ is Laplacian integral for all k ≥ 1.

Two graphs G1 and G2 are said to be co-spectral, if they are non-isomorphic
and have the same spectra. We have the following result, which follows by
Theorem 12.

Theorem 17 Two graphs G1 and G2 are Laplacian cospectral if and only if
the graphs Gk∗1 and Gk∗2 are Laplacian cospectral.

Thus given two Laplacian co-spectral graphs G1 and G2, it is always possible
to construct an infinite sequence of Laplacian co-spectral graphs. Indeed the
graphs Gk∗1 and Since the extended double cover G∗ of the graph G is always
bipartite, it follows by Theorem 6, the graphs G∗∗ and G∗×K2 are L-cospectral
and in general the graphs Gs∗ and G(s−1)∗×K2 are L-cospectral. Also it is easy
to see that the graphs (G×K2)∗ and G∗×K2 are L-cospectral and in general the
graphs (G×K2)s∗ and Gs∗×K2 are both L-cospectral as well as Q-cospectral.
Moreover, if G is bipartite then as seen in Theorem 6, the graphs G∗ and
G × K2 are L-cospectral. Using the same argument it can be seen that the
graphs G∗∗ and G × K2 × K2 are L-cospectral if and only if G is bipartite. A
repeated use of the argument as used in Theorem 6, gives the graphs Gs∗ and
G × K2 × K2 × · · · × K2 = G × sK2 = G ×Qs (where K2 is repeated s times)
are L-cospectral if and only if G is bipartite. From this discussion it follows
that the graphs Gs∗, G(s−1)∗ × K2, (G× K2)(s−1)∗ and G×Qs−1 are mutually
non-isomorphic L-cospectral graphs if and only G is bipartite, where Qn is the
hypercube.
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4 Laplacian energy of double graphs

In this section, we study the Laplacian energy of the graphs D[G], Dk[G]
and G∗. Using these graphs we obtain some new families of non Laplacian
cospectral L-equienergetic graphs. Let D[G] and G∗ be respectively the double
graph and the extended double cover of the graph G. Then the Laplacian
spectra of the graph G∗ is given by Lemma 2, and the Laplacian spectra of
Dk[G] is given by the following result.

Theorem 18 (Marino, Salvi, 2007 [21]) Let G be a graph with n vertices
having degrees d1, d2, . . . , dn and let µ1, µ2, . . . , µn be its Laplacian spectra.
Then the Laplacian spectra of Dk[G] is kµi, kdi ((k−1)n times) for 1 ≤ i ≤ n.

Let µi for 1 ≤ i ≤ n be the L-spectra of the graph G. Then by Theorem 11,
the L-spectra of the extended double cover G∗ of the graph G is µi, µ

+
i + 2 for

1 ≤ i ≤ n. Also the average vertex degree of G∗ is 2m
n + 1. Therefore,

LE(G∗) =

n∑
i=1

|µi −
2m

n
− 1|+

n∑
i=1

|µ+i −
2m

n
+ 1|.

Since average vertex degree of Dk[G] is k 2mn , we have

LE(Dk[G]) =

n∑
i=1

∣∣∣∣kµi − k2mn
∣∣∣∣+ (k− 1)

n∑
i=1

∣∣∣∣kdi − k2mn
∣∣∣∣

= k

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣+ k(k− 1) n∑
i=1

∣∣∣∣di − 2m

n

∣∣∣∣
= kLE(G) + k(k− 1)

n∑
i=1

∣∣∣∣di − 2m

n

∣∣∣∣ .
From this it is clear that LE(Dk[G]) = kLE(G), if G is regular. Also, since

the k-fold graph of a regular graph is regular, it follows, if G1 and G2 are
r-regular L-equienergetic graphs then their k-fold graphs Dk[G1] and Dk[G2]
are also L-equienergetic. Let £(G) be the line graph of the graph G. It is
shown in [23] that if G1 and G2 are r-regular graphs then their k-th (k ≥ 2)
iterated line graphs £k(G1) and £k(G2) are always equienergetic and so L-
equienergetic. Therefore it follows that given any two r-regular graphs, we can
always construct an infinite family of L-equienergetic graphs.

In case the given r-regular connected graphs are L-equienergetic, the k-fold
graph forms a larger family of L-equienergetic graphs than the k-th iterated
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line graph. As an example, consider the 4-regular graphs G1 and G2 shown
in Figure 1 on 9-vertices. It can be seen that the L-spectra of G1 and G2 are
respectively as 0, 34, 64 and 0, 2, 32, 52, 63 (where as means a occurs s times in
the spectrum). Therefore LE(G1) = 16 = LE(G2). This shows that the graphs
G1 and G2 are regular L-equienergetic graphs, so their k-fold graphs Dk[G1]
and Dk[G2] and their k-th (k ≥ 2) iterated line graphs are also L-equienergetic.
In fact the k-fold graph gives an infinite family of L-equienergetic graph pairs
of order n ≡ 0 (mod 9), whereas the k-th iterated line graph gives an infinite
family of L-equienergetic graph pairs of orders n = 542 702 430, and so on,
from this the assertion follows.
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We have seen that the Laplacian energy of the graph D[G] is twice the
Laplacian energy of G when G is regular. But this need not be true for the
graph G∗ as seen from the Laplacian energy of G∗ given above. However we
have the following observation.

Theorem 19 Let G∗ be the extended double cover of the bipartite graph G.
Then LE(G∗) = 2LE(G) if and only if

∣∣µi − 2m
n

∣∣ ≥ 1 for 1 ≤ i ≤ n.

Proof. Let µi for 1 ≤ i ≤ n be the L-spectra of the graph G. Then by Corollary
13, the L-spectra of G∗ is µi, µi+2 for 1 ≤ i ≤ n. Assume that

∣∣µi − 2m
n

∣∣ ≥ 1,
for all i = 1, 2, . . . , n. Then since average vertex degree of G∗ is 2m

n + 1, we
have ∣∣∣∣µi − 2m

n
+ 1

∣∣∣∣ = { ∣∣µi − 2m
n

∣∣+ 1, if µi ≥ 2m
n

|µi −
2m
n |− 1, if µi <

2m
n ,∣∣∣∣µi − 2m

n
− 1

∣∣∣∣ = { ∣∣µi − 2m
n

∣∣− 1, if µi ≥ 2m
n∣∣µi − 2m

n

∣∣+ 1, if µi <
2m
n .



Energy of double graphs 105

Therefore,

LE(G∗)

=

n∑
i=1

∣∣∣∣µi − 2m

n
− 1

∣∣∣∣+ n∑
i=1

∣∣∣∣µi − 2m

n
+ 1

∣∣∣∣
=

n∑
i=1

(∣∣∣∣µi − 2m

n
− 1

∣∣∣∣+ ∣∣∣∣µi − 2m

n
+ 1

∣∣∣∣)
=
∑
µi≥ 2m

n

(∣∣∣∣µi − 2m

n
− 1

∣∣∣∣+ ∣∣∣∣µi − 2m

n
+ 1

∣∣∣∣)

+
∑
µi<

2m
n

(∣∣∣∣µi − 2m

n
− 1

∣∣∣∣+ ∣∣∣∣µi − 2m

n
+ 1

∣∣∣∣)

=
∑
µi≥ 2m

n

(∣∣∣∣µi − 2m

n

∣∣∣∣− 1+ ∣∣∣∣µi − 2m

n

∣∣∣∣+ 1)

+
∑
µi<

2m
n

(∣∣∣∣µi − 2m

n

∣∣∣∣+ 1+ ∣∣∣∣µi − 2m

n

∣∣∣∣− 1)

= 2
∑
µi≥ 2m

n

∣∣∣∣µi − 2m

n

∣∣∣∣+ 2 ∑
µi<

2m
n

∣∣∣∣µi − 2m

n

∣∣∣∣ = 2LE(G).
Conversely, suppose that LE(G∗) = 2LE(G). We will show that

∣∣µi − 2m
n

∣∣ ≥ 1
for all 1 ≤ i ≤ n. We prove this by contradiction. Assume that

∣∣µi − 2m
n

∣∣ < 1,
for some λj. Putting βi = µi −

2m
n , and using the same argument as used in

the converse of Theorem 8 in [4] we arrive at a contradiction. �

If G is a graph satisfying the conditions of Theorem 19, then clearly the
graphs G∗ and G ∪ G are L-equienergetic. We now obtain some new families
of L-equienergetic graphs by means of the graphs G∗, Gk∗, D[G] and Dk[G].

Theorem 20 Let G1(n,m) be a graph having L-spectra and Q-spectra respec-
tively as µi and µ

+
i and let G2(n,m) be another graph having L-spectra and

Q-spectra respectively as λi and λ
+
i for i = 1, 2, . . . , n. Then for p ≥ 2n + k

and m ≤ (k−1)n
2 + k2

4 , k ≥ 3, we have LE(G∗1 ∨ K̄p) = LE(G
∗
2 ∨ K̄p).

Proof. LetG∗1 be the extended double cover of the graphG1. Then by Theorem
11, the L-spectra of G∗1 is µi, µ

+
i + 2 for 1 ≤ i ≤ n and so by Lemma 3, the

L-spectra of G∗1∨ K̄p is p+2n, p+µi(1 ≤ i ≤ n−1), p+µ+i +2(1 ≤ i ≤ n), 2n



106 H. A. Hilal, S. Pirzada, A. Iványi

((p− 1) times), 0, with average vertex degree

2m′

n′
=
4m+ 4pn+ 2n

p+ 2n
.

Therefore,

LE(G∗1 ∨ K̄p) =

∣∣∣∣p+ 2n−
2m′

n′

∣∣∣∣+ n−1∑
i=1

∣∣∣∣p+ µi − 2m′

n′

∣∣∣∣+ ∣∣∣∣0− 2m′

n′

∣∣∣∣
+

n∑
i=1

∣∣∣∣p+ µ+i + 2−
2m′

n′

∣∣∣∣+ (p− 1)

∣∣∣∣2n−
2m′

n′

∣∣∣∣ .
Now, if p ≥ 2n+ k and m ≤ (k−1)n

2 + k2

4 , k ≥ 3, we have for i = 1, 2, . . . , n,

p+µi−
2m′

n′
= p+µi−

4m+ 4pn+ 2n

p+ 2n
=
p(p− 2n) + (2n+ p)µi − 4m− 2n

p+ 2n

≥ k(2n+ k) − 2(k− 1)n− k2 − 2n

p+ 2n
= 0,

and

p+ µ+i + 2−
2m′

n′
= p+ µ+i + 2−

4m+ 4pn+ 2n

p+ 2n

=
p(p− 2n) + (2n+ p)µ+i + 2(p+ n) − 4m

p+ 2n

≥ k(2n+ k) − 2(k− 1)n− k2 + 2(3n+ k)

p+ 2n
=
8n+ 2k

p+ 2n
≥ 0.

So we have

LE(G∗1 ∨ K̄p) =

(
p+ 2n−

2m′

n′

)
+ (n− 1)

(
p−

2m′

n′

)
+ n

(
p+ 2−

2m′

n′

)
+ (p− 1)

(
2m′

n′
− 2n

)
+
2m′

n′
+ 4m = 6n+ (p− 2n)

2m′

n′
+ 4m.

From this it is clear that the Laplacian energy of G∗1 depends only on the
parameters p,m and n. Since these parameters are also same for G∗2, it follows
that LE(G∗1∨K̄p) = LE(G

∗
2∨K̄p). In fact all the graphs of the family (G∗i ∨K̄p),

i = 1, 2, . . ., having the same parameters n, p and m satisfying the conditions
in the hypothesis are mutually L-equienergetic. �

Let Gt∗ be the t-th iterated extended double cover of the graph G. We have
the following generalization of Theorem 20.
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Theorem 21 Let G(n,m) be a graph having L-spectra and Q-spectra respec-

tively as µi and µ
+
i for 1 ≤ i ≤ n. For p ≥ 2tn + k and m ≤ (k−t)n

2 + k2

2t+1 ,

k ≥ t+ 2, t ≥ 1, we have LE(Gt∗ ∨ K̄p) = 2
tn(t+ 2) + (p− 2tn) 2m

′

n′ + 2t(2m).

Proof. LetGt∗ be the t-th iterated extended double cover of the graphG. Then

by Theorem 12, the L-spectra of Gt∗ is µi
((
t
0

)
times

)
, µi + 2

((
t−1
1

)
times

)
,

µ+i + 2
((
t−1
0

)
times

)
, µi + 4

((
t−1
2

)
times

)
, µ+i + 4

((
t−1
1

)
times

)
, . . ., µi +

2(t−2)
((
t−1
t−2

)
times

)
, µ+i +2(t−2)

((
t−1
t−3

)
times

)
, µi+2(t−1)

((
t−1
t−1

)
times

)
,

µ+i + 2(t − 1)
((
t−1
t−2

)
times

)
, µ+i + 2t

((
t
t

)
times

)
, where 1 ≤ i ≤ n. So by

Lemma 2.3, the L-spectra of Gt∗∨K̄p is 0, p+2tn, 2tn (p−1 times), p+µi (
(
t
0

)
times) (1 ≤ i ≤ n − 1), p + µi + 2 (

(
t−1
1

)
times), p + µ+i + 2 (

(
t−1
0

)
times),

p+µi+ 4 (
(
t−1
2

)
times), p+µ+i + 4 (

(
t−1
1

)
times), . . ., p+µi+ 2(t− 2) (

(
t−1
t−2

)
times), p + µ+i + 2(t − 2) (

(
t−1
t−3

)
times), p + µi + 2(t − 1) (

(
t−1
t−1

)
times),

p+µ+i +2(t−1) (
(
t−1
t−2

)
times), p+µ+i +2t(

(
t
t

)
times), 1 ≤ i ≤ n, with average

vertex degree

2m′

n′
=
2t+1m+ 2ttn+ 2t+1pn

p+ 2tn
.

Therefore,

LE(Gt∗ ∨ K̄p)

=

n−1∑
i=1

∣∣∣∣p+ µi − 2m′

n′

∣∣∣∣+ t−1∑
r=1

n∑
i=1

(
t− 1

r

) ∣∣∣∣p+ µi + 2r− 2m′

n′

∣∣∣∣
+

t−1∑
r=1

n∑
i=1

(
t− 1

r− 1

) ∣∣∣∣p+ µ+i + 2r−
2m′

n′

∣∣∣∣+ n∑
i=1

∣∣∣∣p+ µi + 2t− 2m′

n′

∣∣∣∣
+ |p+ 2tn−

2m′

n′

∣∣∣∣+(p− 1)|2tn−
2m′

n′

∣∣∣∣+ ∣∣∣∣0− 2m′

n′

∣∣∣∣ .
Now, if p ≥ 2tn + k and m ≤ (k−t)n

2 + k2

2t+1 , k ≥ t + 2, t ≥ 1, we have for
i = 1, 2, . . . , n and r = 0, 1, . . . , t

p+ µi + 2r−
2m′

n′
= p+ µi + 2r−

2t+1m+ 2ttn+ 2t+1pn

p+ 2tn

=
p(p− 2tn) + 2r(p+ 2tn) + (p+ 2tn)µi − 2

t+1m− 2ttn

p+ 2tn
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≥ k(2
tn+ k) − k(2tn+ k) + 2ttn− 2ttn

p+ 2tn
= 0.

Similarly, it can be seen that p+ µ+i + 2r− 2m′

n′ ≥ 0. So we have

LE(Gt∗ ∨ K̄p)

= (n− 1)

(
p−

2m′

n′

)
+

t−1∑
r=1

(
n

(
p+ 2r−

2m′

n′

)
+ 2m

)[(
t− 1

r

)
+

(
t− 1

r− 1

)]
+

(
p+ 2tn−

2m′

n′

)
+ (p− 1)

(
2m′

n′
− 2tn

)
+

(
n

(
p+ 2t−

2m′

n′

)
+ 2m

)
+
2m′

n′
+ 2m

= 2t+1n− pn(2t − 1) + (p− n)
2m′

n′

+

t∑
r=1

(
t

r

)(
n

(
p+ 2r−

2m′

n′

)
+ 2m

)
+ 2m

= 2t+1n− pn(2t − 1) + (p− n)
2m′

n′
+ n(2t − 1)

(
p−

2m′

n′

)
+ (2t − 1)2m+ 2ttn+ 2m

= 2tn(t+ 2) + (p− 2tn)
2m′

n′
+ 2t(2m),

where we have made use of the fact
[(
t−1
r

)
+
(
t−1
r−1

)]
=
(
t
r

)
and

t∑
r=1

r
(
t
r

)
= t2t−1.

Clearly the Laplacian energy of the graph (Gt∗ ∨ K̄p) depends only on the
parameters p,m, t and n. Therefore all the graphs of the families (Gt∗i ∨ K̄p),
where t, i = 1, 2, . . . , with the same parameters p,m, t and n satisfying the
conditions in the hypothesis are mutually L-equienergetic. �

Theorem 21 gives an infinite family of L-equienergetic graphs in various
ways, firstly fix the value of t and allow p to vary we obtain families of L-
equienergetic graphs with same t, secondly fix the value of p and allow t to
vary we obtain families of L-equienergetic graphs with same p and so on.

Corollary 22 Let G(n,m) be a bipartite graph having L-spectra µi for 1 ≤
i ≤ n. For p ≥ 2tn + k and m ≤ (k−t)n

2 + k2

2t+1 , k ≥ t + 2, t ≥ 1, we have

LE(Gt∗ ∨ K̄p) = 2
tn(t+ 2) + (p− 2tn) 2m

′

n′ + 2t(2m).

Proof. The proof follows the proof of Corollary 13 and the same argument as
in the proof Theorem 21. �
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From Theorem 21, it is clear if G1 and G2 are any two graphs with the
same parameters, then we can always find tripartite graphs (G∗1 ∨ K̄p) and
(G∗2 ∨ K̄p) having the same Laplacian energy. Next we show the construction
of L-equienergetic graphs by means of graphs D[G] and Dk[G].

Theorem 23 Let D[G] be the double graph of the graph G. Then, for p ≥
2n+ k and m ≤ k(2n+k)

8 , k ≥ 4, we have

LE(D[G]∨ K̄p) = 4n+ (p− 2n)
2m′

n′
+ 8m.

Proof. Let µi and di for i = 1, 2, . . . , n be respectively the L-spectra and the
degree sequence of the graph G. Then by Theorem 21, the L-spectra of the
graph Dk[G] is kµi, kdi ((k − 1)n times) and so by Lemma 3, the L-spectra
of the graph Dk[G]∨ K̄p is p+ kn, p+ kµi (1 ≤ i ≤ n− 1), p+ kdi ((k− 1)n
times) (1 ≤ i ≤ n), kn ((p− 1) times), 0, with average vertex degree

2m′

n′
=
2k2m+ 2pkn

p+ kn
.

So, if p ≥ kn+ t and m ≤ t(kn+t)
2k2

, t ≥ 2k, k ≥ 2, we have for i = 1, 2, . . . , n

p+ kµi −
2m′

n′
= p+ kµi −

2k2m+ 2pkn

p+ kn

=
p(p− kn) − 2k2m+ k(p+ kn)µi

p+ kn

≥ t(kn+ t) − t(kn+ t)

p+ kn
= 0.

Similarly, we see that

p+ 2di −
2m′

n′
≥ 0.

Therefore,

LE(D[G]∨ K̄p)=

∣∣∣∣p+2µi− 2m′n′
∣∣∣∣+n−1∑

i=1

∣∣∣∣p+ 2µi − 2m′

n′

∣∣∣∣+ n∑
i=1

∣∣∣∣p+ 2di − 2m′

n′

∣∣∣∣
+ (p− 1

∣∣∣∣2n−
2m′

n′

∣∣∣∣+ ∣∣∣∣0− 2m′

n′

∣∣∣∣
= 4n+ (p− 2n)

2m′

n′
+ 8m.
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Clearly the Laplacian energy of the graph D[G] ∨ K̄p depends only on the
parameters p,m and n. Therefore all the graphs of the family (D[Gi] ∨ K̄p),
i = 1, 2, . . . with the same parameters p,m and n satisfying the conditions of
the theorem, are mutually L-equienergetic. �

If Dk[G] is the k-fold graph of the graph G, we have the following general-
ization of Theorem 23.

Theorem 24 Let Dk[G] be the k-fold graph of the graph G. Then for p ≥
kn+ t and m ≤ t(kn+t)

2k2
, t ≥ 2k, k ≥ 2, we have LE(Dk[G]∨ K̄p) = 2kn+ (p−

nk) 2m
′

n′ + 2mk2.

Proof. Let µi and di for i = 1, 2, . . . , n be respectively the L-spectra and the
degree sequence of the graph G. Then by Theorem 21, the L-spectra of the
graph Dk[G] is kµi, kdi ((k − 1)n times) and so by Lemma 3, the L-spectra
of the graph Dk[G]∨ K̄p is p+ kn, p+ kµi (1 ≤ i ≤ n− 1), p+ kdi ((k− 1)n
times) (1 ≤ i ≤ n), kn ((p− 1) times), 0, with average vertex degree

2m′

n′
=
2k2m+ 2pkn

p+ kn
.

So, if p ≥ kn+ t and m ≤ t(kn+t)
2k2

, t ≥ 2k, k ≥ 2, we have for i = 1, 2, . . . , n

p+ kµi −
2m′

n′
= p+ kµi −

2k2m+ 2pkn

p+ kn

=
p(p− kn) − 2k2m+ k(p+ kn)µi

p+ kn
≥ t(kn+ t) − t(kn+ t)

p+ kn
= 0.

Similarly, we see that

p+ kdi −
2k2m+ 2pkn

p+ kn
≥ 0.

Therefore,

LE(Dk[G]∨ K̄p)

=

∣∣∣∣p+kn−
2m′

n′

∣∣∣∣+ n−1∑
i=1

∣∣∣∣p+ kµi − 2m′

n′

∣∣∣∣+ (k− 1)

n∑
i=1

∣∣∣∣p+ 2di − 2m′

n′

∣∣∣∣
+ (p− 1)

∣∣∣∣kn−
2m′

n′

∣∣∣∣+ ∣∣∣∣0− 2m′

n′

∣∣∣∣ = 2kn+ 2mk2 + (p− nk)
2m′

n′
.
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From this it is clear the Laplacian energy of the graph (Dk[G]∨K̄p) depends on
the parameters p, k,m and n. Therefore all the graphs of the families (Dk[Gi]∨
K̄p) where i = 1, 2, . . ., and k = 2, 3, . . . having the same parameters p,m, k
and n satisfying the conditions of the Theorem, are mutually L-equienergetic.

�

Theorem 24 generates families of L-equienergetic graphs in various ways.
If we allow p to vary and keep k fixed, we obtain an infinite family of L-
equienergetic graphs with same k and if we allow k to vary and keep p fixed,
we obtain an infinite family of L-equienergetic graphs with same p and so on.

If D[G] and G∗ are respectively the double graph and the extended double
cover of the graph G, then the following result gives the construction of L-
equienergetic graphs with different number of edges.

Theorem 25 Let G1(n,m1) and G2(n,m2) be two graphs of order n ≡ 0

(mod 4) with m2 = m1+
n
4 . Then for p ≥ 4n+k and m2 ≤ n(k−2)

4 + k2

16 , k ≥ 4,
we have

LE(D(G∗1)∨ K̄p) = LE(D(G2)
∗ ∨ K̄p).

Proof. Let µi, di and µ+i for i = 1, 2, . . . , n be respectively the L-spectra,
degree sequence and Q-spectra of G1 and let λi, d

′
i and λ+i be the L-spectra,

degree sequence and Q-spectra of the graph G2. Then by Theorems 11 and
18 and Lemma 3, the L-spectra of the graphs D(G∗1) ∨ K̄p and D(G2)

∗ ∨ K̄p
are respectively as p+ 4n, p+ 2µi (1 ≤ i ≤ n− 1), p+ 2µ+i + 4, p+ 2di + 2
(2 times) (1 ≤ i ≤ n), 4n ((p − 1) times), 0 and p + 4n, p + 2λi (1 ≤ i ≤
n− 1), p+ 2λ+i + 4, p+ 2d′i + 2 (2 times) (1 ≤ i ≤ n), 4n((p− 1) times), 0,
with average vertex degrees

2m′1
n′

=
16m1 + 8n+ 8pn

p+ 4n
,

2m′2
n′

=
16m2 + 8n+ 8pn

p+ 4n
.

Now, if p ≥ 4n+ k and m2 ≤ n(k−2)
4 + k2

16 , k ≥ 4, we have for i = 1, 2, . . . , n

p+ 2µi −
2m′1
n′

= p+ 2µi −
16m1 + 8n+ 8pn

p+ 4n

=
p(p− 4n) + 2(p+ 4n)µi − 16m1 − 8n− 8pn

p+ 4n

≥ k(4n+ k) − 4n(k− 2) − k2 − 8n

p+ 4n
= 0.
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Similarly, we can show that

p+ 2µ+i + 4−
2m′1
n′
≥ 0, p+ 2di + 2−

2m′1
n′
≥ 0.

Therefore,

LE(D(G∗1)∨ K̄p) =

∣∣∣∣p+ 4n−
2m′1
n′

∣∣∣∣+ n−1∑
i=1

∣∣∣∣p+ 2µi − 2m′1
n′

∣∣∣∣
+

n∑
i=1

∣∣∣∣p+ 2µ+i + 4−
2m′1
n′

∣∣∣∣
+ 2

n∑
i=1

∣∣∣∣p+ 2di + 2− 2m′1
n′

∣∣∣∣
+ (p− 1)

∣∣∣∣4n−
2m′1
n′

∣∣∣∣+ ∣∣∣∣0− 2m′1
n′

∣∣∣∣
= 16n+ 16m1 + (p− 4n)

2m′1
n′

.

Proceeding similarly for the graph D(G2)
∗ ∨ K̄p it can be seen that

LE(D(G2)
∗ ∨ K̄p) = 12n+ 16m2 + (p− 4n)

2m′2
n′

.

Using the fact m2 = m1 +
n
4 , the result follows. �

Let D[G1] be the double graph of the graph G1(n,m1) and let G∗2 be the
extended double cover of the graph G2(n,m2), then for p ≥ 2n + k and

m1 ≤ k(2n+k)
8 , k ≥ 4, we have from Theorem 23

LE(D[G1]∨ K̄p) = 4n+ 8m1 + (p− 2n)
2m′1
n′

. (3)

Also, for p ≥ 2n+ k and m2 ≤ n(k−1)
2 + k2

4 , k ≥ 4, we have by Theorem 20

LE(G∗2 ∨ K̄p) = 6n+ 4m2 + (p− 2n)
2m′2
n′
. (4)

If we suppose that 4m1 = 2m2 + n, then it follows from (3) and 4 that

LE(D[G1]∨ K̄p) = LE(G
∗
2 ∨ K̄p).

This gives another construction of families of graphs with same Laplacian
energy, same number of vertices but different number of edges. Next we give
another way of constructing a family of graphs having same number of vertices,
same Laplacian energy but different number of edges.
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Theorem 26 Let G1(n,m1) and G2(n,m2) be two graphs with m2 = 2m1.

Then for p ≥ 4n+k and m2 ≤ k(4n+k)
8 −n, k ≥ 4, we have LE(D(G∗1)∨ K̄p) =

LE(G∗∗2 ∨ K̄p).

Proof. Let µi, µ
+
i and di for i = 1, 2, . . . , n be respectively the L-spectra,

Q-spectra and the degree sequence of the graph G1 and let λi and λ+i be
the L-spectra and Q-spectra of the graph G2. Then by Theorems 11 and 18
and Lemma 3, the L-spectra of D(G∗1) ∨ K̄p is p + 4n, p + 2µi (1 ≤ i ≤
n − 1), p + 2µ+i + 4, p + 2di + 2 (2 times) (1 ≤ i ≤ n), 4n ((p − 1) times),
0. Also by Theorem 12 and Lemma 3, the L-spectra of the graph G∗∗2 ∨ K̄p is
p+ 4n, p+ λi (1 ≤ i ≤ n− 1), p+ λi + 2, p+ λ

+
i + 2, p+ λ+i + 4 (1 ≤ i ≤

n), 4n((p− 1) times), 0, with average vertex degrees

2m′1
n′

=
16m1 + 8n+ 8pn

p+ 4n
,
2m′2
n′

=
8m2 + 8n+ 8pn

p+ 4n
.

So, if p ≥ 4n+ k and m2 ≤ k(4n+k)
8 − n, k ≥ 4, we have for i = 1, 2, . . . , n

p+ 2µi −
2m′1
n′

= p+ 2µi −
16m1 + 8n+ 8pn

p+ 4n

=
p(p− 4n) + 2(p+ 4n)µi − 16m1 − 8n− 8pn

p+ 4n

=
k(4n+ k) − k(4n+ k) + 8n− 8n

p+ 4n
= 0.

Similarly, we can show

p+ 2µ+i + 4−
2m′1
n′
≥ 0, p+ 2di + 2−

2m′1
n′
≥ 0.

Therefore,
LE(D(G∗1)∨ K̄p)

= |p+ 4n−
2m′1
n′

|+

n−1∑
i=1

|p+ 2µi −
2m′1
n′

|+

n∑
i=1

|p+ 2µ+i + 4−
2m′1
n′

|

+2

n∑
i=1

|p+ 2di + 2−
2m′1
n′

|+ (p− 1)|4n−
2m′1
n′

|+ |0−
2m′1
n′

|

= 16n+ (p− 4n)
2m′1
n′

+ 16m1.
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Proceeding similarly as above for the graph G∗∗2 ∨ K̄p, we can see that

LE(G∗∗2 ∨ K̄p) = 16n+ (p− 4n)
2m′2
n′

+ 8m2.

Using m2 = 2m1, the result follows. �

Theorem 26 generates L-equienergetic graphs with same number of vertices
but different number of edges, infact when one graph contains twice the num-
ber of edges as contained in other. Lastly we give the construction of family
of graphs with same number of vertices, edges and Laplacian energy by means
of Cartesian product and extended double cover.

Theorem 27 Let G1(n,m) and G2(n,m) be two connected non-bipartite
graphs. Then for p ≥ n+2, and min(µ+n , λ

+
n) ≥ 2m

n −2 we have LE(G∗1×Kp) =
LE(G∗2 × Kp) if and only if LE(G1) = LE(G2).

Proof. Let 0 = µn < µn−1 ≤ · · · ≤ µ1 and 0 < µ+n < µ+n−1 ≤ · · · ≤ µ+1
be respectively the L-spectra and the Q-spectra of the graph G1 and let 0 =
λn < λn−1 ≤ · · · ≤ λ1 and 0 < λ+n < λ+n−1 ≤ · · · ≤ λ+1 be respectively the
L-spectra and Q-spectra of the graph G2. Then by Theorem 11 and Lemma
1, the L-spectra of the graphs G∗1 ×Kp and G∗1 ×Kp are respectively as γi+qj
and θi + qj, i = 1, 2, . . . , 2n, j = 1, 2, . . . , n, where

γi =

{
µi, if i = 1, 2, . . . , n
µ+i + 2, if i = n+ 1, n+ 2, . . . , 2n,

θi =

{
λi, if i = 1, 2, . . . , n
λ+i + 2, if i = n+ 1, n+ 2, . . . , 2n

and p = q1 = q2 = · · · = qp−1, qp = 0 with average vertex degree

2m′

n′
=
2m

n
+ p.

Therefore,

LE(G∗1 × Kp) =
2n∑
i=1

n∑
j=1

∣∣∣∣γi + qj − 2m′

n′

∣∣∣∣
= (p− 1)

2n∑
i=1

∣∣∣∣p+ γi − 2m′

n′

∣∣∣∣+ n∑
i=1

∣∣∣∣γi − 2m′1
n′

∣∣∣∣
= (p− 1)LE(G1) + 4pn− 4n.
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Similarly it can be seen that

LE(G∗2 × Kp) = (p− 1)LE(G2) + 4pn− 4n.

It is now clear that LE(G∗1×Kp) = LE(G∗2×Kp) if and only if LE(G1) = LE(G2),
therefore the result follows. �

Since G∗ is always bipartite, Theorem 27 gives the construction of connected
graphs from a given pair of L-equienergetic bipartite graphs having same num-
ber of vertices, edges and Laplacian energy. Moreover if t is the first value of p
satisfying the conditions in Theorem 27, then every value greater than t also
satisfies this condition, therefore we obtain an infinite family of L-equienergetic
graph pairs.
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Abstract. It is an empirical fact that coloring the nodes of a graph can
be used to speed up clique search algorithms. In directed graphs tran-
sitive subtournaments can play the role of cliques. In order to speed up
algorithms to locate large transitive tournaments we propose a scheme
for coloring the nodes of a directed graph. The main result of the paper
is that in practically interesting situations determining the optimal num-
ber of colors in the proposed coloring is an NP-hard problem. A possible
conclusion to draw from this result is that for practical transitive tourna-
ment search algorithms we have to develop approximate greedy coloring
algorithms.

1 Introduction

Let G = (V, E) be a finite simple graph, that is, G has finitely many nodes and
G does not have any loop or double edge. A subgraph D is a clique in G if each
two distinct nodes of D are connected in G. If the clique D has k nodes, then
we say that D is a k-clique in G. The number of nodes of a clique sometimes
referred as the size of the clique. A k-clique in G is a maximum clique if G
does not have any (k + 1)-clique. The graph G may have several maximum
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cliques but their common size is a well defined number. This number is called
the clique number of the graph G and it is denoted by ω(G). The problem of
determining the clique number of a given graph is an important problem in
many areas of applied discrete mathematics. (For a list of applications see [1].)
It is known that the problem is NP-complete. (For proofs see [5] or [12].) The
most commonly used clique search algorithms employ coloring of the nodes
of a graph to speed up the computations. (See [2, 8, 9, 11, 14].) The coloring
of the nodes of the graph G with k colors assigns exactly one color to each
node of the graph such that adjacent nodes never receive the same color. This
type of coloring of the nodes sometimes referred as legal or well coloring of
the nodes. The minimum number of colors with which the nodes of G can be
legally colored is a well defined number. It is called the chromatic number of
G and it is denoted by χ(G). Determining the chromatic number of a given
graph is another important problem in the applied discrete mathematics with
many applications. It is known that the problem of deciding if a given graph
can be colored with k color is NP-complete for any fixed k, where k ≥ 3. (See
[5] or [12].) The problem for k = 2 belongs to the P (polynomial) complexity
class.

Let G = (V, E) be a finite simple directed graph. This means that G has
finitely many nodes and G does not have any loop or double edges directed in
parallel manner. In the particular case when there is exactly one directed edge
between any two distinct nodes, then G is called a tournament. Tournaments
can look back to a venerable history. (See [13, 3, 4, 10].) The directed graph
G is transitive if (x, y), (y, z) ∈ E implies (x, z) ∈ E. Motivated by applications
in information theory [7] introduced the problem of determining the size of a
maximum subtournament in a given finite simple directed graph. Since col-
oring proved to be advantageous in improving the efficiency of clique search
algorithms we address the problem if coloring can be exploited in the algo-
rithms locating maximum transitive tournaments in a given graph. We propose
a type of colorings of the nodes of a finite simple directed graph. We will show
that this coloring leads to an NP-hard problem. A practical implication of
the result is that for coloring we should rely on approximate greedy coloring
procedures instead of trying to compute the optimal number of colors.

Colorings are employed in at least two ways in clique search algorithms.
One can color the nodes of a graph G before the clique search starts. In these
cases the coloring is used as a possible preprocessing or preconditioning tool.
On the other hand if in the course of the clique search algorithm one recolors
the nodes of the subgraphs of G under consideration, then we call it an on-line
coloring.
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It must be ample clear that the requirements for preconditioning or for
on-line coloring algorithms are not necessarily the same. In the case of precon-
ditioning the graph coloring is a well separated phase of the computation. We
may afford to use more time and memory space. While in the case of on-line
coloring we have to trade speed for the quality of coloring.

By the main result of the paper determining the optimal number of colors
is not a practically recommended option. In the same time there is a real need
to introduce, implement and test various greedy coloring algorithms. We hope
that our paper will stimulate this activity.

2 Coloring the nodes

Let T be a tournament whose nodes are a1, . . . , ak, where k ≥ 2.

Lemma 1 If T is a transitive tournament, then there is a permutation
b1, . . . , bk of a1, . . . , ak such that

(1) (bi, bi+1), . . . , (bi, bk) are edges of T for each i, 1 ≤ i < k.

(2) The listed n(n− 1)/2 edges are all the edges of T .

(3) Each subgraph of T is a transitive tournament.

Proof. Statement (1) clearly holds for k = 2. We assume that k ≥ 3 and start
an induction on k.

If T has a vertex, say a1, such that each edge incident to a1 goes out of a1,
then a1 can be identified with b1 and the inductive assumption is applicable
to the graph whose nodes are a2, . . . , ak.

If T has a vertex, say ak such that each edge incident to ak goes into ak,
then ak can be identified with bk and the inductive assumption is applicable
to the graph whose nodes are a1, . . . , ak−1.

For the remaining part of the proof of statement (1) we may assume that
each vertex of T has an incident edge going in and has an incident edge going
out. In this case T contains a directed cycle. On the other hand a transitive
tournament cannot contain a directed cycle.

The reason why statement (2) holds is that a transitive tournament has
n(n− 1)/2 directed edges and we listed all of them in statement (1).

Statement (3) follows from the definition of the transitive tournament and
statement (1), as any subset of the nodes can be ordered the same way. �
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A finite simple directed graph G = (V, E) can be represented by an |V | by |V |

adjacency matrix. The rows and the columns are labeled by the nodes of G. If
the ordered pair (u, v) is an edge of G, then we put a bullet into the cell at the
intersection of row u and column v. The adjacency matrix of course has 0, 1
entries when stored in a computer. The practice of using bullets instead of 1’s
is taken from [6]. It seems that it has a good visual effect and the computations
are less prone to clerical errors when carried out using paper and pencil.

By Lemma 1, a tournament T is a transitive tournament if and only if the
rows and the columns of its adjacency matrix can be permuted such that
the adjacency matrix became an upper triangular matrix. A simple directed
graph H with r nodes has a transitive tournament of r nodes if the adjacency
matrix of H can be rearranged such that the upper triangular part is filled
with bullets.

Let G = (V, E) be a finite simple directed graph. Let U be a subset of V and
let s be an integer such that U 6= ∅ and s ≥ 3. The subset U of V is called an
s-free subset if U does not contain any transitive tournament with s nodes. A
partition of V into the subsets V1, . . . , Vk is called an s-free partition of V if
Vi is an s-free set for each i, 1 ≤ i ≤ k.

A coloring of the nodes of a finite simple directed graph G = (V, E) can be
described by means of an onto function f : V → {1, . . . , k}. Here the numbers
1, . . . , k are used as colors and node v receives color f(v). The c-level set Vc of
f is defined to be Vc = {v : f(v) = c, v ∈ V}.

The coloring f : V → {1, . . . , k} of the nodes of the finite simple directed
graph G = (V, E) is called an s-free coloring if the level sets V1, . . . , Vk form an
s-free partition of V. The name intends to express the fact that color classes
cannot contain any transitive tournament of size s. In other words color classes
are free of tournaments of size s.

In the s = 2 special case a color class of an s-free coloring cannot contain
any edge. ¿From this reason we will mainly deal with the s ≥ 3 case.

The number of the color classes of an s-free coloring of the graph G can
be used to establish an upper estimate of the size of a maximum transitive
tournament in G.

Lemma 2 If the finite simple directed graph G admits an s-free coloring with
k colors and G has a transitive tournament of size r, then r ≤ k(s− 1).

Proof. Suppose G has a transitive tournament T of size r. Let V1, . . . , Vk
be the color classes of the s-free coloring and let W be the set of nodes of
T . By Lemma 1, the subgraph of T with set of nodes Vi ∩W is a transitive
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tournament. Since the coloring is s-free, it follows that |Vi ∩W| ≤ s − 1. We
get that

r = |W| = |V1 ∩W|+ · · ·+ |Vk ∩W| ≤ k(s− 1),

as required. �

From Lemma 2 we can see that the smaller is k, the better is the upper
estimate of the size of the maximum transitive tournament in G. The following
problem comes to mind naturally.

Problem 3 Given a finite simple directed graph G = (V, E). Further given
integers r, s such that r ≥ 3, s ≥ 3. Decide if G has an s-free coloring with r
colors.

When we deal with coloring the nodes of a graph G we inevitably have to
deal with incomplete or partial colorings, where each of the nodes of G receives
at most one of the colors 1, . . . , r but some of the nodes of G are left uncolored.
Allocating color 0 for the uncolored nodes we can incorporate the incomplete
colorings into the family of complete colorings.

3 Two auxiliary graphs

In this section we describe two finite simple directed graphs. They will play
the roles of building blocks or switching devices in further constructions. Let
r, s be fixed integers such that r ≥ 3, s ≥ 3. Set

h = (s− 1)(r− 1) + (s− 2) + 2.

Let us consider the directed simple graph H = (V, E), where V = {1, . . . , h}.
Set W = {2, . . . , h− 1}. We draw directed edges between the nodes in W such
that the subgraph of H whose set of nodes is W forms a transitive tournament.
From the node 1 we direct edges towards each node of W. Similarly, from the
node h we direct edges towards each node of W.

For the sake of the illustration we worked out the special case r = 3, s = 3 in
details. The adjacency matrix of H is in Table 1. A geometric representation
of H is depicted in Figure 1.

We spell out the properties of the graph H we will use later as a Lemma.
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1 2 3 4 5 6 7

1 • • • • •
2 • • • •
3 • • •
4 • •
5 •
6
7 • • • • •

Table 1: The adjacency matrix of the graph H in the special case r = s = 3.

Lemma 4 (1) The nodes of the graph H have an s-free coloring with r col-
ors.

(2) In each s-free coloring of the nodes of H with r colors the nodes 1 and h
must receive the same colors.

(3) Each partial coloring of the nodes of H, where nodes 1, h receive the
same color (and the remainig nodes of of H are left uncolored) can be
extended to an s-free coloring of the nodes of H using r colors.

Proof. In order to prove statement (1) let us consider the subsets C1, . . . , Cr,
Cr+1 of V such that these subsets are pair-wise disjoint and

|C1| = · · · = |Cr−1| = s− 1, |Cr| = s− 2, Cr+1 = {1, h}.

Set W = {2, . . . , h − 1}. Clearly, C1, . . . , Cr form a partition of W. We use
C1, . . . , Cr as color classes to define a coloring of the subgraph L of H whose
set of nodes is W.

By Lemma 1, the subgraph of H whose set of nodes is Ci is a transitive
tournament for each i, 1 ≤ i ≤ r. As |Ci| ≤ s − 1, it follows that this graph
does not contain a transitive tournament with s nodes. Therefore the coloring
of L is an s-free coloring. The subgraph of H whose set of nodes is Ci ∪ {1} is a
transitive tournament with s nodes. Consequently, the node 1 cannot receive
color i for each i, 1 ≤ i ≤ r− 1. On the other hand node 1 can receive color r
since the subgraph of H whose set of nodes is Cr ∪ {1, h} is not an obstruction.
Similarly node h may receive color r. This completes the proof of statement
(1).

We can use the coloring constructed in the previous part and combine it
with the fact that the colors in an s-free coloring of the nodes of H can be
permuted among each other freely to settle statement (3).
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Figure 1: The auxiliary graph H in the special case r = s = 3. The numbers
in parentheses are the colors of the nodes.

To prove statement (2) let us suppose that f : V → {1, . . . , r} is an s-free
coloring of the nodes of H. Let us consider the subgraph L of H whose set of
nodes is W = {2, . . . , h − 1}. The restriction of f to W is an s-free coloring of
the nodes of L. Let C1, . . . , Cr be the colors classes of this coloring. We may
assume that |C1| ≥ · · · ≥ |Cr| since this is only a matter of exchanging the
colors 1, . . . , r among each other.

By Lemma 1, the subgraph of H whose set of nodes is Ci is a transitive
tournament for each i, 1 ≤ i ≤ r. It follows that |Ci| ≤ s− 1. Using

|C1|+ · · ·+ |Cr| = (s− 1)(r− 1) + (s− 2)

we get that |C1| = · · · = |Cr−1| = s − 1 and |Cr| = s − 2. The subgraph of H
whose set of nodes is Ci ∪ {1} is a transitive tournament with s nodes for each
i, 1 ≤ i ≤ r − 1. We get that the node 1 cannot receive color i and so node 1
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must receive color r. A similar reasoning gives that node h must receive color
r too. This completes the proof of statement (2). �

Let r, s ≥ 3 be fixed integers. We construct a new auxiliary directed graph
K. Let T be a transitive tournament with nodes 1, . . . , s. We consider s − 1
isomorphic copies H1, . . . , Hs−1 of H. We choose the notation such that H =
(V, E) with V = {1, . . . , h} and Hi = (Vi, Ei) with Vi = {(1, i), . . . , (h, i)}. The
correspondence

1←→ (1, i), . . . , h←→ (h, i)

defines the isomorphism between H and Hi.
Let us consider the nodes (1, 1), . . . , (1, s − 1) of H1, . . . , Hs−1, respectively

and solder these nodes together to form a node u of K. Let us consider the
nodes (h, 1), . . . , (h, s−1) of H1, . . . , Hs−1, respectively and solder these nodes
together with the nodes 1, . . . , s − 1 of the tournament T , respectively. We
rename node s of T to be v.

The graph K has

1+ (h− 2) + · · ·+ (h− 2)︸ ︷︷ ︸
(s−1) times

+s = 1+ (s− 1)(h− 2) + s

nodes. We set k = 1 + (s − 1)(h − 2) + s and rename the nodes of K by the
numbers 1, . . . , k such that 1 = u and k = v. We illustrated the construction
in the special cases s = 3 and s = 4. The geometric versions of K can be seen
in Figures 2 and 3.
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Figure 2: The auxiliary graph K in the special case s = 3. The double lines
represent isomorphic copies of H.
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Figure 3: The auxiliary graph K in the special case s = 4. The double lines
represent isomorphic copies of H.

The next lemma summarizes the essential properties of the graph K what
we need later.

Lemma 5 (1) The nodes of the graph K admit an s-free coloring with r
colors.

(2) In each s-free coloring of the nodes of the graph K with r colors the nodes
1 and k cannot receive the same colors.

(3) Each partial coloring of the nodes of K, where the nodes 1 and k are
colored with distinct colors (and the other nodes of K are left uncolored)
can be extended to an s-free coloring of the nodes of K using r colors.

Proof. By Lemma 4, the nodes of the graph H admit and s-free coloring with
r colors. Consequently, the nodes of each of the graphs H1, . . . , Hs−1 admit an
s-free coloring with r colors. These colorings provide the same fixed color for
s − 1 nodes of the tournament T . The uncolored node v of T can be colored
with any of the remaining r− 1 colors. This proves statement (1).

By Lemma 4, the node V cannot receive the same color as node u. This
settles statement (2).
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By Lemma 4, each partial coloring of the nodes of H can be extended to
an s-free coloring of the nodes of H using r colors. It follows that each partial
coloring of the nodes of Hi can be extended to an s-free coloring of the nodes
of Hi using r colors for each i, 1 ≤ i ≤ s − 1. This provides a partial coloring
of the nodes of the tournament T . In this partial coloring of the nodes of T
each node except node v receives the same color. Namely the color of node u.
The last uncolored node v clearly can be colored with any of the remaining
r− 1 colors. This proves statement (3). �

4 The main result

The main result of this paper is the following theorem

Theorem 6 Problem 3 is NP-hard for each r, s ≥ 3.

Proof. Let r, s ≥ 3 be fixed integers. Assume on the contrary that Problem
3 is not NP-hard, that is, there is an “efficient” (polynomial running time)
algorithm that solves Problem 3. Let G = (V, E) be a finite simple graph with
undirected edges. Using G and the auxiliary graphs H, K described in the
previous chapter we construct a finite simple directed graph G′ = (V ′, E′) such
that the following conditions hold.

(1) If the nodes of G′ have an s-free coloring with r colors, then the nodes
of G have a legal coloring with r colors.

(2) If the nodes of G have a legal coloring with r colors, then the nodes of
G′ have an s-free coloring with r colors.

(3) The number of nodes G′ can be upper bounded by a polynomial of the
number of the nodes of G.

Thus for each legal (edge free) coloring problem we can construct a directed
s-free coloring problem. If the second can be solved in polynomial time, it
means that the first one can be solved in polynomial time as well.

Let v1, . . . , vn be the edges of G. In other words let V = {v1, . . . , vn}. We
consider an isomorphic copy Ki,j = (Wi,j, Fi,j) of the auxiliary graph K = (W,F)
for each i, j, 1 ≤ i < j ≤ n. We recall that the nodes of K are labeled by
the numbers 1, . . . , k. The nodes of Ki,j will be labeled by the ordered triples
(i, j, 1), . . . , (i, j, k). Here the correspondence
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1←→ (i, j, 1), . . . , k←→ (i, j, k)

defines the isomorphism between K and Ki,j.
With each of the nodes v1, . . . , vn we associate a node v′1, . . . , v

′
n of the graph

G′. At this moment our only concern is that v′1, . . . , v
′
n are pair-wise distinct

points and they are nodes of G′. But G′ may have further nodes.
If the unordered pair {vi, vj} is an edge of G, then we add additional k − 2

nodes to G′. We identify the nodes (i, j, 1), (i, j, k) of Ki,j with the nodes v′i,
v′j of G′, respectively. Next, we add the remaining k − 2 nodes of Ki,j to the
nodes of G′. Finally, we add all the edges of Ki,j to the edges of G′.

If the unordered pair {vi, vj} is not an edge of G, then we do not add any
nodes and we do not add any edges to G′. Clearly, G′ has directed edges and it
has |V |+ |E|(k−2) nodes. Since r, s are fixed numbers, it follows that k−2 = c
is a constant and so |V ′| can be upper bounded by n+ cn(n− 1)/2 which is a
second degree polynomial in terms of n. This observation shows that condition
(3) is satisfied.

In order to show that condition (1) is satisfied let us assume that f′ : V ′ →
{1, . . . , r} is an s-free coloring of the nodes of G′. Using f′ we define a coloring
f : V → {1, . . . , r} of the nodes of G. We set f(vi) to be equal to f′(v′i).

We claim that f(vi) = f(vj) implies that the unordered pair {vi, vj} is not an
edge of G.

To verify the claim we assume on the contrary that f(vi) = f(vj) and {vi, vj}

is an edge of G. The restriction of f′ to Wi,j is an s-free coloring of the nodes
of the graph Ki,j. By Lemma 5, the nodes (i, j, 1) and (i, j, k) cannot receive
the same color. Using v′i = (i, j, 1), v′j = (i, j, k) we get the

f(vi) = f
′(v′i) 6= f′(v′j) = f(vj)

contradiction.
To demonstrate that condition (2) is satisfied let us suppose that f : V →

{1, . . . , r} is a legal coloring of the nodes of G. Using f we define a coloring
f′ : V ′ → {1, . . . , r} of the nodes of G′. We set f′(v′i) to be equal to f(vi).

Let us consider two distinct nodes v′i, v
′
j of G′. If the unordered pair {v′i, v

′
j} is

an edge of G′, then by the construction of G′ the nodes v′i, v
′
j are identical with

the nodes (i, j, 1), (i, j, k) of Ki,j, respectively. Thus v′i = (i, j, 1), v′j = (i, j, k).
Since f is a legal coloring of the nodes of G, it follows that f(vi) 6= f(vj) and
so by the definition of f′, we get that f′(v′i) 6= f′(v′j).

For the sake of definiteness let us suppose that f′(v′i) = 1 and f′(v′j) = 2. We
have a partial coloring of the nodes of Ki,j. Namely, the nodes (i, j, 1), (i, j, k)
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are colored with colors 1, 2, respectively. Other nodes of Ki,j are left uncolored.
By Lemma 5, this partial coloring of Ki,j can be extended to an s-free coloring
of Ki,j. Since this can be accomplished in connection with each adjacent nodes
v′i, v

′
j of G′, it follows that the nodes of G′ have an s-free coloring with r colors.

�

5 A second proof of the main result

In the proof of Theorem 6 we used only the auxiliary graph K. The auxiliary
graph H made an appearance only in the proof of Lemma 5 when we estab-
lished the key properties of the auxiliary graph K. In this section we present an
informal new proof where the graph H plays a more direct role. The node edge
incidence matrix M of a finite simple graph G = (V, E) is a |V | by |E| matrix.
The rows and the columns of M are labeled by the nodes and the edges of
G, respectively. If e = {u, v} is an edge of G, then we place two bullets into
M. We put one bullet into the cell at the intersection of row u and column e.
Then we put a bullet into the cell at the intersection of row v and column e.

�
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�
�
�@
@
@
@
@
@
@r r r

r r

v1 v2 v3

v5 v4

e1 e4

e7

e3 e5 e6e2

Figure 4: The toy example Γ .

e1 e2 e3 e4 e5 e6 e7
v1 • • •
v2 • • •
v3 • •
v4 • • • •
v5 • •

Table 2: The node edge incidence matrix of the toy example Γ .
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s s s
s s s

s s
s s s s

s s

v1

v2

v3

v4

v5

e1 e2 e3 e4 e5 e6 e7

Figure 5: The graph Γ∗ associated with the toy example Γ .

For the sake of illustration we included a toy example. The graph Γ can be
seen in Figure 4. The node edge incidence matrix of Γ is in Table 2.

Suppose we are given a finite simple undirected graphG = (V, E). UsingG we
construct a graph G∗ = (V∗, E∗). The construction is guided by the node edge
incidence matrix of G. Let V = {v1, . . . , vn}, E = {e1, . . . , em}. If et = {vi, vj},
then we add the ordered pairs (i, t), (j, t) to the set of nodes of G∗. Thus V∗

is a set whose elements are ordered pairs. Clearly |V∗| = 2|E| = 2m.
We can form a mesh consisting of n horizontal and m vertical lines. The

intersection of the horizontal and vertical lines form (n)(m) mesh points. The
nodes of G∗ can be identified with some of these mesh points.

Two distinct nodes (i, t) and (j, t) of G∗ on a vertical mesh line are connected
with a vertical undirected edge in G∗. Two distinct nodes (i, x) and (i, z) of
G∗ on a horizontal line are connected with a horizontal undirected edge in G∗

if there is no node in the form (i, y) such that x < y < z. Figure 5 depicts the
graph Γ∗ associated with the toy example Γ . The mesh lines are represented
by thin lines. Bold lines represent the edges of Γ∗.

We replace each horizontal edge of G∗ by an isomorphic copy of the auxiliary
graph H. Next we replace each vertical edge of G∗ by an isomorphic copy of
the auxiliary graph K. After all possible replacements we get a finite simple
directed graph G′.

Suppose that the nodes of G′ have an s-free coloring with r colors. The
isomorphic copies of the auxiliary graph H guarantee that the nodes of G′ on
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a fixed horizontal line all receive the same color. The isomorphic copies of the
auxiliary graph K make sure that the two nodes of G′ on a fixed vertical line
receive distinct colors. In this way we get a legal coloring of the nodes of G
with r colors.

Next suppose that the nodes of G have a legal coloring with r colors. This
coloring will provide partial colorings of the nodes of the isomorphic copies
of the graphs H and K. One can extend these partial colorings to a complete
s-free coloring of the nodes of G′ with r colors.
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Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

email: tony@inf.elte.hu

Abstract. Let H be an r-uniform hypergraph with r ≥ 2 and let α(H) be
its vertex independence number. In the paper bounds of α(H) are given
for different uniform hypergraphs: if H has no isolated vertex, then in
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and average degree.

1 Introduction to independence in graphs

Let n be a positive integer. A graph G on vertex set V = {v1, v2, . . . , vn} is a
pair (V, E), where the edge set E is a subset of V × V. n is the order of G and
|E| is the size of G.
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Let v ∈ V and N(v) be the neighborhood of v, namely, the set of vertices x
so that there is an edge which contains both v and x. Let U be a subset of
V, then the subgraph of G induced by U is defined as a graph on vertex set U
and edge set EU = {(u, v)|u ∈ u and v ∈ U}.

The degree d(v) of a vertex v ∈ V is the number of edges that contains v.
Let d(G) be the average degree of G, then nd(G) =

∑
v∈V d(v) = 2|E| for any

graph G. Let δ(G) be the minimal degree, ∆(G) the maximal degree of G A
graph G is regular, if ∆(G) = δ(G), and it is semi-regular, if ∆(G) − δ(G) = 1.

Three vertices v1, v2, v3 form a triangle in G if there are distinct verticess
e1, v2, v3 ∈ F such that {vi, vi+1} ⊆ E, where the indices are taken mod 3. If G
does not contain a triangle, then it is trianglefree.

A subset U ⊆ V of vertices in a graph G is called a vertex independent set
if no two vertices in U are adjacent. The maximum-size vertex independent
set is called maximum vertex independent set. The size of the maximum ver-
tex independent set is called vertex independence number and is denoted by
α(G). The problem of finding a vertex maximum independent set and vertex
independence number are NP-hard optimization problems [73, 167].

A maximal vertex independent set is a vertex independent set such that
adding any other vertex to the set forces the set to contain an edge. The prob-
lem of finding a maximal vertex independent set can be solved in polynomial
time (see e.g. the algorithms due to Tarjan and Trojanowski [155], Karp and
Widgerson [101], further the improved algorithms due to Luby [128] and Alon
[9].

There are exponential time exact (as Alon [9]) and polynomial time approxi-
mate algorithms (as Boppana and Haldórsson [30], Agnarsson, Haldórsson, and
Losievskaja [4, 5], Losievskaja [126]) determining α(G). Also there are known
algorithms producing the list of all maximum independent sets of graphs (see
e.g. Johnson and Yannakakis [93], Lawler, Lenstra, Rinnooy Kan [121]).

An independent edge set of a graph G is a subset of the edges such that no
two edges in the subset share a vertex of G [166]. An independent edge set of
maximum size is called a maximum independent edge set, and an independent
edge set that cannot be expanded to another independent edge set by addition
of any other edge in the graph is called a maximal independent edge set. The
size of the largest independent edge set (i.e., of any maximum independent
edge set) in a graph is known as its edge independence number (or matching
number), and is denoted by ν(G). The determination of ν(G) is an easy task
for bipartite graphs [49, 50], but it is a polynomially solvable problem for
general graphs too [10, 101, 161, 162].

Let G = (V, E) be an n-order graph. The classical Turán theorem [159] gives
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a simple lower bound for α(G).

Theorem 1 (Turán [159]) If n ≥ 1 and G is an n-order graph, then

α(G) ≥ n

d(G) + 1
. (1)

This result was strengthened independently in 1979 by Caro and in 1981 by
Wei.

Theorem 2 (Caro [36], Wei, [165]) If G(V, E) is a graph, then

α(G) ≥
∑
v∈V

1

d(v) + 1
. (2)

Proof. See [36, 165]. �

A nice probabilistic proof of the result can be found in the paper of Alon
and Spencer [11]. Since the function 1

x+1 is convex,
∑
v∈V

1
d(v)+1 ≥

n
d+1 [170].

Since this bound is the best-possible only for graphs which are unions of
cliques, additional structural assumptions excluding these graphs allow im-
provement of 2 [80, 81]. A natural candidate for such assumptions is connec-
tivity. In 2013 Angel, Campigotto, and Laforest [14] improved (2) for some
connected graphs. For locally sparse graphs Ajtai, Erdős, Komlós and Sze-
merédi improved Turán’s bound greatly.

Theorem 3 (Ajtai, Erdős, Komlós and Szemerédi [6, 7, 8]) If G is an n-order
triangle-free graph with average degree d, then

α(G) ≥ cn lnd

d+ 1
. (3)

Proof. See [6, 7, 8]. �

They conjectured that c = 1−o(1) when d tends to∞. Griggs [72] improved
that c can be 5

12 . Shearer [152] finally proved c = 1 − o(1), thus confirming
the conjecture. In 1994 Selkow improved the bound due to Caro and Wei
supposing that the degrees of the neighbors of the vertices are also known.

Theorem 4 (Selkow [150]) If G(V, E) is a graph, then

α(G) ≥
∑
v∈V

1

d(v) + 1

1+ max

0, d(v)

d(v) + 1
−
∑
u∈N(v)

1

d(u) + 1

 . (4)
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Proof. See [150]. �

The bound of Selkow is equal to Caro–Wei bound for regular graph and
always less then twice the Caro–Wei bound. A recent review on lower bounds
for 3-order graphs was published by Henning and Yeo [89].

Let j and k be a positive integers. A subset I ⊆ V(G) is a vertex -k-indepen-
dent set of G, if every vertex in I has at most k − 1 neighbors in I. The
vertex-k-independence number αk(G) of G is the cardinality of the largest
vertex-k-independent set of G.

A subset D ⊆ V(G) is a vertex-j-dominating set of G, if every vertex of D
has at least j− 1 neighbors in D. The vertex-k-independence number γj(G) of
G is the cardinality of the largest vertex-j-dominating set of G.

In 1991 Caro and Tuza [38] extended theorem of Turán to the estimation of
the maximal size of k-independent sets. Thiele [156] in 1999, Csaba, Pick, and
Shokoufandeh [44] in 2012 improved the bound due to Caro and Tuza. In 2008
Favoron, Hansberg and Volkmann [54] analyzed k-domination and minimum
degree in graphs. Harant, Rautenbach, and Schiermeier [81, 83, 84, 85] proved
different lower bounds on vertex independent number.

In 2012 Chellali and Rad [42] published a paper on k-independence criti-
cal graphs. In 2013 Caro and Hansberg [37] proposed a new approach to k-
independence of graphs. Recently Chellali, Favaron, Hansberg, and Volkmann
[41] published a review on k-independence.

Last year Hansberg and Pepper [79] investigated the connection between
αk(G) and γj(G). They proved the following theorems.

Theorem 5 (Hansberg, Pepper [79]) If Let G be an n-order graph, j, k and
m be positive integers such that m = j + k − 1 and let Hm and Gm denote,
respectively, the subgraphs induced by the vertices of degree at least m and the
vertices of degree at least m. Then

αk(Hm) + γj(Gm) ≤ n (5)

and
αk(G) + γj(G) ≤ n(Gm). (6)

Proof. See [79]. �

Theorem 6 (Hansberg, Pepper [79]) Let G be a connected n-order graph with
maximum degree ∆ and minimum degree δ ≥ 1. Then

αk(G) + γj(G) = n(G) and αk ′(G) + γj ′(G) = n(G) (7)
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for every pair of integers j, k and j ′, k ′ such that j+k−1 = δ and j ′+k ′−1 = ∆
if and only ig G is regular.

Proof. See [79]. �

Theorem 7 (Hansberg, Pepper [79]) For any graph G the following two state-
ments are equivalent:

γ(G) + αδ(G) = n(G) (8)

and
G is regular or γ(G) + γ2(G) = n(G). (9)

Proof. See [79]. �

Spencer [153] also published some extension of Turán theorem.
In 2014 Henning, Löwenstein, Southey and Yeo [87] proved the following

theorem, which is an improvement of the result due to Fajtlowicz [53].

Theorem 8 (Henning et al. [87]) If G is a graph of order n and p is an
integer, such that for every clique X in G there exists a vertex x ∈ X such, that
d(x) < p− |X|, then α(G) ≥ 2n/p.

There are results on the independence number of random graphs (e.g. Balogh,
Morris, Samotij [18] and Frieze [60], Henning, Löwenstein, Southey and Yeo
[87], on the weighted independence number (see e.g. Halldórsson [75], Kako,
Ono, Hirata, and Halldórsson [98], further Sakai, Mitsunori, and Yamazaki
[149]), and on the enumeration of maximum independent sets (see e.g. Gaspers,
Kratsch, and Liedloff [69].

Let G(n, p) = (V, E) the random graph with vertex set V = {v1, . . . , vn}, p,
α(Gn,p) denote the independence number of Gn,p. In 1990 Frieze [60] proved,
that if d = np and ε > 0 is fixed, then with probability going to 1 as n→∞∣∣∣∣α(Gn, p) − 2n(lnd− ln lnd− ln 2+ 1)

d

∣∣∣∣ ≤ εnd , (10)

provided dε ≤ d = o(n), where dε is some fixed constant and p is the join
probability for each edge to be included in E.

In 1983 Shearer proved the following lower bound.

Theorem 9 (Shearer [152]) If G is triangle-free, then

α(G) ≥ nf(d), (11)
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where

f(x) =
x ln x− x+ 1

(x− 1)2
, (12)

f(0) = 1 and f(1) = 1
2 .

According to the proof of Shearer for 0 < x <∞ hold 0 < f(d) < 1, f ′d) < 0
and f ′′(d) < 0. Further f(x) satisfies the differential equation

(x+ 1)f(x) = (x+ 1)d2f ′(x). (13)

It is easy to see that

lim
x→∞ f(x)

x
=
lnx

x
. (14)

In 1995 Füredi [62] determined the number of different vertex maximal
independent set in path graphs.

It is known [22] a minimum covering set of G is also a maximum vertex
independent set of G. Therefore we are interested in the results on dominating
sets (see e.g. [41, 54, 79, 82, 143].

The structure of the paper is as follows. After this introduction in Section 2
we present a review of results connected with th vertex and edge independence
number of hypergraphs, then in Section 3 a lower bound of α(H) is presented
for n-order r-uniform hipergraphs with average degree d(H), and finally in
Section 4 a similar bound is proved for hypergraphs not containing isolated
vertex.

2 Introduction to independence in hypergraphs

Let n ≥ 1 and W = {w1, w2, . . . , wn} be a finite set called vertex set. A
hypergraph H on vertex set W is a pair (W,F), where the edge set F is a family
of the elements of W. We always assume that distinct edges are distinct as
subsets. If each edge in F contains exactly r ≥ 2 vertices, then H is r-uniform.
So any graph G is a 2-uniform hypergraph.

Let w ∈W and N(w) be the neighborhood of w, namely, the set of vertices
x so that there is an edge which contains both w and x. Let U be a subset
of W. The sub-hypergraph of H induced by U is defined as a hypergraph on
vertex set U with edge set FU = {f ∈ F : f ⊆ U}.

The degree d(w) of a vertex w ∈ W is the number of edges that con-
tain w. Let d(H) = d be the average degree of an r-uniform H, then nd =∑
w∈W d(w) = r|F|.
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For the simplicity we usually omit G and H as arguments of d(H) and similar
notations.

A hypergraph H is linear, if any two edges of H have at most one vertex in
common. Note that a graph G is always linear. Three vertices w1, w2, w3 form
a triangle in H, if there are distinct edges f1, f2, f3 ∈ F such that {fi, fi+1} ⊆ F,
where the indices are taken mod 3.

A subset U ⊆W of vertices in a hypergraph H is called a vertex independent
set if no two vertices in U are adjacent. The maximum-size vertex independent
set of H is called maximum vertex independent set. The size of the maximum
vertex independent set is called vertex independence number and is denoted by
α(H). The problem of finding a maximum vertex -independent set and vertex
independence number are NP-hard optimization problems [73, 167].

There are exponential time exact (as Alon [9], Tarjan and Trojanowski [155])
and polynomial time approximate algorithms (as Boppana and Haldórsson
[30], Agnarsson, Haldórsson, and Losievskaja [4, 5], Losievskaja [126]). Also
there are known algorithms producing the list of all maximum independent
sets of graphs (see e.g. Johnson and Yannakakis [93], Lawler, Lenstra, Rinnooy
Kan [121]) and hypergraphs (see e.g. Kelsen [107]).

A maximal vertex independent set is a vertex independent set such that
adding any other vertex to the set forces the set to contain an edge. The prob-
lem of finding a maximal vertex independent set can be solved in polynomial
time (see e.g. the algorithms due to Tarjan and Trojanowski [155], Karp and
Widgerson [101], further the improved algorithms due to Luby [128] and Noga
[9]).

In 2012 Dutta, Mubayi, and Subramanian [48] gave new lower bond for the
vertex independence number of sparse hypergraphs.

In 2013 Eustis devoted a PhD dissertation to the problems of hypergraph
independence numbers [51, 52].

An independent edge set of a hypergraph H is a subset of the edges such
that no two edges in the subset share a vertex of H [136]. An independent
edge set of maximum size is called a maximum independent edge set, and
an independent edge set that cannot be expanded to another independent
edge set by addition of any other edge in the hypergraph is called a maximal
independent edge set. The size of the largest independent edge set (i.e., of
any maximum independent edge set) in a hypergraph is known as its edge
independence number (or matching number), and is denoted by ν(H). The
determination of ν(H) is an easy task for bipartite graphs [49, 50], but it is a
polynomially solvable problem for general graphs too [10].

There are many results on the characterization of hypergraph score se-
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quences and on their reconstruction (see e.g. [20, 110, 140, 171, 139, 164, 172]),
on the enumeration of different hypergraphs (see e.g. [21, 47, 138, 144, 145])
and directed hypergraphs (see e.g. [15]).

An r-uniform hypergraph with n vertices is called complete, if its set of
edges has the cardinality

(
n
2

)
. The complement of an r-uniform hypergraph H

is H = (W,F), if |F ∪ F| =
(
n
2

)
and |F ∩ F| = 0.

A set P ⊆ W is called an edge cover of H, if for any non-isolated vertex
x ∈ W there exists an edge fi ∈ P that x ∈ fi. The cardinality of a minimum
set which is an edge covering of H is called the edge covering number of H,
and is denoted by ν(H).

The following lemma, proved in [97], gives a relation between the edge cov-
ering number and the edge independence number in an r-uniform hypergraph
H without isolated vertices.

Lemma 10 (Jucovič, Olejńık [97]) For an r-uniform n-order hypergraph H
with n without isolated vertices the following inequalities hold:

α(H) ≤ n− (kr− 1)ν(H), (15)

α(H) + (r− 1)ν(H) ≤ n. (16)

ν(H) + (r− 1)r− 1ν(H) ≥ n, (17)

Proof. See [97]. �

This lemma generalizes the relations published by Gallai [67] in 1959. In
1991 Tuza [160] extended Gallai’s inequalty for uniform hypergraphs.

In 1989 Olejńık proved the following three theorems characterizing α(H)
and ν(H).

Theorem 11 (Olejńık [136]) For an r-uniform n-order hypergraph H = (W,F)
with n and its complement H = (W,F)⌊n

r

⌋
≤ ν(H) + ν(H) ≤ 2

⌊n
r

⌋
(18)

and

0 ≤ ν(H)ν(H) ≤
⌊n
r

⌋2
. (19)

Proof. See [136]. �

This bounds are direct generalizations of the bounds published by Chartrand
and Schuster in 1974 [40].
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Theorem 12 (Olejńık [136]) For an r-uniform n-order hypergraph H = (W,F)
and its complement H = (W,F), where neither H nor F have isolated vertices,⌊n

r

⌋
≤ ν(H) + ν(H) ≤ 2

⌊n
r

⌋
(20)

and

0 ≤ ν(H)ν(H) ≤
⌊n
r

⌋2
. (21)

Proof. See [136]. �

This result is an extension of the work of R. Laskar and B. Auerbach pub-
lished in 1978 [120].

Theorem 13 (Olejńık [136]) For an r-uniform n-order hypergraph H = (W,F)
and its complement H, F, where neither H nor H have isolated vertices and
n 6= 2r

2
⌊n
r

⌋
≤ αH+ αH ≤ 2n− (r− 1)

⌊n
r

⌋
− r+ 1 (22)

and ⌊n
r

⌋2
≤ α(H)α(H) ≤ 1

4

(
2n− (r− 1)

⌊n
r

⌋
− k+ 1

)2
. (23)

Proof. See [136]. �

In 1993 Gallo, Longo, Nguyen, and Pallottino [68] studied the applications
of directed hypergraphs. In 2004 Vietri [163] wrote on the complexity of the
arc-coloring of directed hypergraphs. In 2003 Frank, Király and Király [55]
analized the orientation of directed hypergraphs.

Let

B(p, q) =

∫ 1
0

(1− t)p−1tq−1dt (24)

denote the beta-function with p, q > 0. Set constants 0 < a ≤ 1, 0 < b ≤ 1,
and B = B(a, 1− b), and let

fr(x) =
1

B

∫ 1
0

1− t)a

(tb[1+ (x− 1)t]
dr. (25)

In 2004 Zhou and Li [170] proved the following theorem on sparse hyper-
graphs.

Theorem 14 (Zhou, Li [170]) Let H be a triangle-free, r-uniform (r ≥ 2)
n-order linear hypergraph with average degree d. Then its strong vertex inde-
pendence number αs(G) is at least nfr(d).
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Proof. See [170]. �

In 2004 Greenhill, Ruciński, and Wormald [71] analyzed random hyper-
graph processes with degree restrictions. In 2008 Plociennik [141] proposed an
approximation algorithm for the vertex maximum independence set problem
of uniform random hypergraphs. M. Halldórsson, and Losievskaja [4, 5] used
semidefinit programming to find maximum vertex independent set of hyper-
graphs.

Shearer’s result ([152], further (11) and (12)) was generalized in [170] with
the function gr(x) satisfying

(r− 1)2x(x− 1)g′r(x) + [(r− 1)x+ 1]gr(x) = 1 (26)

for r-uniform, triangle-free linear hypergraphs, with sparse neighborhood and
in [125] with the function gr,m(x) satisfying

(r− 1)2x(x−m)g′r,m(x) + [(r− 1)x+ 1]gr,m(x) = 1 (27)

for r-uniform, triangle-free, and double linear hypergraphs, in which each sub-
hypergraph induced by a neighborhood, has maximum degree less than m.
A linear hypergraph is called double linear if for any non-adjacent distinct
vertices w and z, each edge containing w has at most one neighbor of z.
From the uniqueness of solutions of the differential equations, we see that
g2(x) = g(x) and gr,1(x) = gr(x). It is shown [125] that g2,m(x) ∼ log x

x , and
for gr,m(x) ∼

c
d1/(r−1) for r ≥ 3, where c = c(r,m) > 0 is a constant without

knowing exact values.
Independent sets and numbers are studied in many papers (see e.g. the

papers of Abraham [1], Alon, Uri and Azar [12], Berger and Ziv [23], Bol-
lobás, Daykin and Erdős [27], Bonato, Brown, Mitsche and Pralat [28, 29],
Bordewich, Dyer and Karpiński [31], Boros, Gurvich, Elbassioni, Gurvich and
Khachiyan [32, 33], Borowiecki and Michalak [34], Cutler and Radcliffe [45],
Greenhill [70], Halldórson and Losievskaja [76], Hofmeister and Lehman [90],
Johnson and Yannakakis [93], Khachiyan, Boros, Gurvich, and Elbassioni
[108], Lepin [122], Li and Zhang [125], Losievskaja [126], Shachnai and Srini-
vasan [151], Tarjan and Trojanowski [155], Yuster [168]).

Since independence number and matching number are closely connected, we
are interested in the results on maximum matching algorithms too (see e.g.
[25, 26, 46, 47, 49, 50, 56, 57, 61, 65, 66, 77, 78, 86, 88, 89, 91, 92, 100, 104,
105, 109, 112, 113, 118, 119, 127, 131, 132, 133, 135, 137, 142, 146, 147, 148,
154, 157, 158, 169]).
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Minimum dominating set ofH and maximum vertex independent set ofH are
connected concepts, therefore we are interested in the results on dominating
sets of hypergraphs (see e.g. [2, 96]).

Further connected problems are also often analyzed (see e.g. e.g. in the pa-
pers of Agnarsson, Egilssson, and Halldórson [3], Alon, Frankl, Huan, Rödl,
Ruciński [10], Alon and Yuster [13], Baranyai [19], Balogh, Butterfield, Hu and
Lenz [17], Bertram-Kretzberg and Letzman [24], Bujtás and Tuza [35], Cock-
ayne, Hedetniemi, and Laskar [43], Frank, Király and Király [55], Frankl and
Rödl [58, 59], Füredi, Ruszinkó, and Selver [63, 64], Hán, Person and Schacht
[78], Henning and Yeo [89], Huang, Loh and Sudakov [92], Johnson and Yan-
nakakis [93], Johnston and Lu [94, 95], Jucovič and Olejńık [97], Karonśki
and Luczak [99], Katona [102, 103], Keevash and Sudakov [106], Kelsen [107],
Kohayakawa, Rödl, Skokan [111], Krivelevich [115], Kühn and Loose [117],
Kostochka, Mubayi, Verstraëte [114], Krivelevich, Nathaniel, and Sudakov
[116], Li, Rousseau and Zang [123, 124], Luczak and Szymańska [129, 134],
Szymańska [154], Treglown and Zhao [157, 158], Tuza [160], Yuster [169]).

Although hypergraphs are less often used in the practice than the graphs,
they also have different applications in the practice.

For example Bailey, Manoukian, Ramamohanaro [16], further Gunopolus,
Khardon, Mannila and Toivonen [74] reported on the applications in data
mining, Gallo, Longo, Nguyen, and Pallottino [68], further and Maier [130] in
relational databases.

In 2000 Carr, Lancia, Istrail, and Genomics [39] reported on Branch-and-
Cut algorithms for vertex independent set problem and on their application
to solve problems connected with protein structure alignment.

In this paper, we obtain α(H) ≥
∑
v∈V

1−1/r

d(v)1/(r−1) for any r-uniform hyper-

graph H without the condition of being triangle-free. The algorithm is naive:
it deletes a vertex of maximum degree repeatedly. In order to get a large in-
dependent set, a commonly used algorithm is to find a suitable vertex v, then
delete v and its neighbors, and then do the iterations. Deleting all neighbors
seems to be of no use for hypergraphs as in [125, 170]. After deleting a vertex
v, we delete only one vertex other than v from each edge containing v. Our
new function fr(x) satisfies

[(r− 1)x2 − x]f′r(x) + (x+ 1)fr(x) = 1. (28)

Then fr(x) ∼
c

x1/(r−1) as x→∞. We do not know the exact value of c = c(r).
However, when we run the algorithm, we note that for a vertex v, we delete
1+d(v) vertices instead of deleting 1+(r− 1)d(v) vertices as in [125, 170]. So
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if c is the constant such that gr(x) ∼
c

x1/(r−1) as x→∞, then the new constant

seems to be (r− 1)c, namely, fr(x) ∼
(r−1)c

x1/(r−1) .

3 Bound for uniform hypergraphs without isolated
vertex

The following Theorem 15 is a corollary of Theorem 18, but it has an easy
probabilistic proof.

Theorem 15 Let H = (V, E) be an r-uniform hypergraph of order n and av-
erage degree d ≥ 1, then

α(H) ≥
(
1−

1

r

)
n

d1/(r−1)
. (29)

Proof. Define a random subset U ⊆ V by Pr(v ∈ U) = p for some 0 ≤ p ≤ 1
with all these events being mutually independent over v ∈ V.

Let X(U) be the number of vertices in U and let Y(U) be the number of
edges in the subgraph induced by U. Note that for one of the edges of H, the
probability that all of its vertices belong to U is pr. By linearity of expectation,
we have

E(X− Y) = E(X) − E(Y) = np−
nd

r
pr. (30)

Thus there exists a set U satisfying

X(U) − Y(U) ≥ E(X) − E(Y). (31)

Note that U is not that we require, since the sub-hypergraph of H induced by
U may have edges. However, if we delete one vertex from each edge contained
in U, then at most Y(U) vertices are deleted, we thus obtain a new set with
at least E(X)−E(Y) vertices and whose induced sub-hypergraph has no edges.
The desired lower bound follows by taking p = 1

d1/(r−1) . �

For hypergraphs that are not regular, Theorem 18 is stronger than Theorem
15. We need two lemmas for the proof of Theorem 18.

Lemma 16 Let r ≥ 2 be an integer and define

hr(x) =

{
1− x/r if 0 ≤ x < 1
1−1/r

x1/(r−1) if x ≥ 1, (32)

then hr(x) is positive, decreasing and convex. Furthermore, for x ≥ 1, the
function hr(x) satisfies that (r− 1)xh′(x) + hr(x) = 0.
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Proof. It is easy to see that hr(x) is positive and

h′r(x) =

{
−1/r if 0 ≤ x < 1
−1/r

xr/(r−1) if x ≥ 1. (33)

So h′r(x) is continuous, negative and increasing, thus hr(x) is decreasing
and convex. The fact that hr(x) satisfies the mentioned differential equation
is straightforward. �

Let ∆ = ∆(H) denote the maximal degree in H and define

S(G) =
∑
x∈V

h(d(x)), S(H) =
∑
x∈W

h(d(x)). (34)

Lemma 17 If ∆(H) ≥ 1, w ∈ W, d(w) = ∆(H), and H1 = H − {w}, then
S(H1) ≥ S(G).

Proof. For each x ∈ V \ {v}, denote by nx the number of edges of H that
contain both x and v. Then nx = 0 if x and v are not adjacent, and nx ≥ 1
otherwise. It is easy to see ∑

x∈V\{v}

nx = (r− 1)∆ (35)

since H is r-uniform. On the other hand, we have

S(H1) = S(H) − h(∆) +
∑

x∈V\{v}

[h(d(x) − nx) − h(d(x))]. (36)

From the fact that h′(x) is negative and increasing, we have

h(d(x) − nx) − h(d(x)) = −h′(θx)nx ≥ −h′(∆)nx, (37)

where θx ∈ [d(x) − nx, d(x)], thus

S(H1) ≥ S(H) − h(∆) − h′(∆)
∑

x∈V\{v}

nx

= S(H) − h(∆) − (r− 1)∆h′(∆)

= S(H),

proving the claim. �
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Theorem 18 Let H = (V, E) be an r-uniform hypergraph without isolated
vertex, then

α(H) ≥
(
1−

1

r

)∑
v∈V

1

d(v)1/(r−1)
. (38)

Proof. We write hr(x) as h(x) for simplicity and define

S(H) =
∑
x∈V

h(d(x)). (39)

Repeat the algorithm by deleting the vertex of maximum degree if the degree
is at least one, terminate the algorithm if there are no edges. Denote by H0 =
H,H1, . . . , H` for the sequence of hypergraphs, where H` has no edge. We get
S(H`) = n− ` since h(0) = 1, where n− ` is the order of H`, and α(H) ≥ n− `.
So

α(H) ≥ S(H`) ≥ S(H`−1) ≥ · · · ≥ S(H0) = S(H), (40)

the assertion follows immediately. �

Since the function 1
x1/(r−1) is convex, Theorem 15 is truly a corollary of

Theorem 18.
Remark. Theorem 18 gives α(G) ≥

∑
v

1
2d(v) for a graph G with δ(G) ≥ 1,

which is weaker than α(G) ≥
∑
v

1
d(v)+1 . However, the later can be proved

similarly by replacing the function h(x) with 1/(x + 1). For details of this
algorithm, see Griggs [72].

4 Bound for uniform linear triangle-free
hypergraphs

In this section triangle-free hypergraphs are considered. To generalize Shearer’s
method [152] and to delete less vertices for a hypergraph, we have a definition
as follows.

Let H = (V, E) be an r-uniform hypergraph and let v be a vertex of H, denote
by Ev = {e ∈ E : v ∈ e} = {e1, e2, . . . , ed(v)} for the set of edges containing v.
A claw of v is a set of neighbors of v of the form {u1, u2, . . . , ud(v)} such that
each ui ∈ ei − v. For a claw T of v, we write as QT , the number of edges that
intersect T .

When we run the algorithm in each step, we will delete v and a claw T , so
QT edges will be deleted. The new function is as follows.
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Let r ≥ 2 be and integer and let b = r−2
r−1 . Define

fr(x) =
1

r− 1

∫ 1
0

1− t

tb[1+ ((r− 1)x− 1)t]
dt. (41)

Lemma 19 The function fr(x) satisfies the differential equation

[(r− 1)x2 − x]f′r(x) + (x+ 1)fr(x) = 1, (42)

and it is positive, decreasing and convex.

Proof. By differentiating under the integral and then integrating by parts, we
have

[(r− 1)x2 − x]f′r(x)

= −[(r− 1)x2 − x]

∫ 1
0

1− t

t1−b[1+ ((r− 1)x− 1)t]2
dt

= x

∫ 1
0

(1− t)t1−b
d

dt

(
1

1+ [(r− 1)x− 1]t

)
= −x

∫ 1
0

1

1+ [(r− 1)x− 1]t
[(1− t)(1− b)t−b − t1−b]dt

= −(r− 1)(1− b)xfr(x) + x

∫ 1
0

t1−b

1+ [(r− 1)x− 1]t
dt

= −xfr(x) +
1

r− 1

∫ 1
0

(
1

1− t
−

1

1+ [(r− 1)x− 1]t

)
(1− t)t−bdt

= −xfr(x) + 1− fr(x)

= 1− (x+ 1)fr(x)

which follows by the differential equation. The monotonicity and convexity of
fr(x) can be seen by repeated differentiation under the integral. �

Theorem 20 Let H be an r-uniform n-order hypergraph with average degree
d. If it is triangle-free and linear, then α(H) ≥ nfr(d).

Proof. We apply induction on |V |, the number of vertices of H. The result is
trivial for |V | = 1, since f(0) = 1. Since the case r = 2 is exactly what Shearer
has given, we suppose that r ≥ 3.
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For each v ∈ H, let T = {u1, u2, . . . , ud(v)} be a claw of v. Since H is r-
uniform, linear and triangle-free, we have

QT = d(v) +

d(v)∑
i=1

(d(ui) − 1) =

d(v)∑
i=1

d(ui). (43)

Let Tv be the set of all claws of v, then |Tv| = (r− 1)d(v). Therefore

∑
T∈Tv

QT =
∑
T∈Tv

d(v)∑
i=1

d(ui) =
∑
u∈n(v)

(r− 1)d(v)−1d(u), (44)

and
1

|Tv|
∑
T∈Tv

QT =
∑
u∈n(v)

d(u)

r− 1
. (45)

We write f(x) for fr(x) and set

RT (v) = 1− (d(v) + 1)f(d) + (dd(v) + d− rQT )f
′(d). (46)

Then the average of RT (v) among T ∈ Tv is

1

|Tv|
∑
T∈Tv

RT (v) = 1−(d(v)+1)f(d)+(dd(v)+d)f′(d)−r
∑
u∈n(v)

d(u)

r− 1
f′(d). (47)

Note that
1

n

∑
v∈V

∑
u∈N(v)

d(u)

r− 1
=
1

n

∑
v∈V

d2(v) ≥ d2 (48)

as x2 is a convex function. Since f′(x) < 0, we have

1

n

∑
v∈V

1

|Tv|
∑
T∈Tv

RT (v) ≥ 1− (d+ 1)f(d) + (d2 + d− rd2)f′(d) = 0. (49)

Hence there exists a vertex, say v, and a claw of v, say T = {u1, u2, . . . , ud(v)},
such that R(v) ≥ 0. Now by deleting v and u1, u2, . . . , ud(v), we obtain a new

hypergraph H ′ with n − d(v) − 1 vertices and nd
r −QT edges. For an edge e

containing v, it contains r ≥ 3 vertices, and we delete exactly two vertices from
e, so H ′ has some vertices. Note that the average degree d̄ of H ′ is nd−rQT

n−d(v)−1 .
By induction hypothesis, we have

α(H) ≥ (n− d(v) − 1)f(d̄) = (n− d(v) − 1)f

(
nd− rQT
n− d(v) − 1

)
. (50)
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Combining the facts that α(H) ≥ 1 + α(H ′) and f(x) ≥ f(d) + f′(d)(x − d)
for all x ≥ 0 as f(x) is convex, we obtain

α(H) ≥ 1+ (n− d(v) − 1)f

(
nd− rQT
n− d(v) − 1

)
≥ 1+ (n− d(v) − 1)f(d) + (dd(v) + d− rQT )f

′(d)

= nf(d) + R(v) ≥ nf(d)

completing the proof. �

We now get an asymptotic form of fr(x) as c
x1/(r−1) without knowing exact

expression of c = c(r) in hope of improving the old constant based on analysis
of the algorithm as mentioned.

Lemma 21 Let r ≥ 3 be an integer. Then

lim x→∞fr(x) = c

x1/(r−1)
, (51)

where c = c(r) is a positive constant.

Proof. Recall that a first order linear differential equation dy
dx = p(x)y+ q(x)

has the unique solution of the form

y = eφ(x)
(
y0 +

∫x
x0

q(t)e−φ(t)dt

)
(52)

satisfying y0 = y(x0), where φ(x) =
∫x
x0
p(t)dt. From the differential equation

that fr(x) satisfies, we set

p(x) = −
x+ 1

(r− 1)x2 − x
, and q(x) =

1

(r− 1)x2 − x
. (53)

For x0 = 2,

φ(x) = −

∫x
2

t+ 1

(r− 1)t2 − t
dt = ln

c1x

[(r− 1)x− 1]
r

r−1

(54)

Hence
eφ(x) =

c1x

[(r− 1)x− 1]
r

r−1

∼
c2

x1/(r−1)
. (55)

Then we have

q(t)e−φ(t) ∼
1

c2(r− 1)
x1/(r−1)−2, (56)
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implying that c3 =
∫∞
2 q(t)e

−φ(t)dt < ∞, and
∫x
2 q(t)e

−φ(t)dt = c3 + o(1) as
x→∞. Therefore,

fr(x) = e
φ(x) (y0 + c3 + o(1)) ∼

c

x1/(r−1)
, (57)

where c = c2(y0 + c3) and y0 = fr(2) are positive constants. �
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[4] G. Agnarsson, M. M. Halldórson, E. Losievskaja, SDP-based algorithms for max-
imum independent set problems on hypergraphs, in: Automata, Languages and
Programming. Part I, Lecture Notes in Comput. Sci. 5555, Springer, Berlin,
2009, 12–23. ⇒133, 138, 141
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[59] P. Frankl, V. Rödl, The uniformity lemma for hypergraphs, Graphs Combin. 8

(1992) 309–312. ⇒142
[60] M. Frieze, On the independence number of random graphs, Discrete Math. 81,

2 (1990) 171–175. ⇒136
[61] Z. Füredi, Matchings and covers in hypergraphs, Graphs Combin. 4 (1988) 115–

206. ⇒141
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[86] M. A. Henning, C. Löwenstein, D. Rautenbach, Independent sets and matchings
in subcubic graphs. Discrete Math., 312, 11 (2012) 1900–1910. ⇒141
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[131] K. Markström, A. Ruciński, Perfect matchings (and Hamilton cycles) in hyper-

graphs with large degrees, Europ. J. Combin. 32, 5 (2011) 677–687. ⇒141
[132] S. Micali, V.V. Vazirani, An O(

√
VE) algorithm for finding maximum match-

ing in general graphs, Proc. 21st Annual IEEE Symposium on Foundations of
Computer Science (1980) 17–27. ⇒141

[133] K. Mulmuley, U.V. Vazirani, V.V. Vazirani, Matching is as easy as matrix in-
version, Combinatorica 7, 1 (1987) 105–114. ⇒141

[134] V. Nikiforov, An analytic theory of extremal hypergraph problems,
arXiv:1305.1073, 2013, 31 pages. ⇒142
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Acta Universitatis Sapientiae, Informatica

Executive Editor
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ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

