
Acta Universitatis Sapientiae

Informatica
Volume 4, Number 2, 2012

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

A. Miller, P. Prosser
Diamond-free degree sequences . 189

S. Szabó
The complexity of an exotic edge coloring of graphs 201

M. Peczarski
Towards optimal sorting of 16 elements . 215

Z. Kása, Z. Kátai
Scattered subwords and composition of naturals 225

N. Gaskó, M. Suciu, R. I. Lung, D. Dumitrescu
Pareto-optimal Nash equilibrium detection using an
evolutionary approach . 237

T. Gregorics
Abstract levels of programming theorems . 247

A. Iványi, L. Lucz, T. Matuszka, S. Pirzada
Parallel enumeration of degree sequences of simple graphs 260

Book review
S. Pirzada: An introduction to graph theory 289

Contents Vol. 4. 291

187

Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 189–200

Diamond-free degree sequences

Alice MILLER
School of Computing Science

University of Glasgow, Scotland
email: alice.miller@glasgow.ac.uk

Patrick PROSSER
School of Computing Science

University of Glasgow, Scotland
email: pat@dcs.gla.ac.uk

Abstract. While attempting to classify partial linear spaces produced
during the execution of an extension of Stinson’s hill-climbing algorithm
a new problem arises, that of generating all graphical degree sequences
that are diamond-free (i.e. have no diamond as subgraph) and satisfy ad-
ditional constraints. We formalize this new problem, propose a constraint
programming solution and list all satisfying degree sequences of length 8
to 16 inclusive.

1 Introduction

We introduce a new problem, CSPLib number 50 [1], to generate all degree
sequences that have a corresponding diamond-free graph with secondary prop-
erties. This arises naturally from a problem in mathematics to do with partial
linear spaces; we devote Section 2 to this. The motivation described in Sec-
tion 3 is the challenge of the necessary computational effort arising from the
large number of symmetries within the models (see Section 4). We introduce
two constraint programming models. The second model is an improvement on
the first, and this improvement largely consists of breaking the problem into
three stages: the first stage produces degree sequences that satisfy arithmetic
constraints, the second stage tests that a given degree sequence is graphical
and if it is the third stage determines if there exists a graph with that degree
sequence that is diamond-free. We now present the problem in detail and give

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 68R10
Key words and phrases: diamond-free graphs, degree sequences, constraint programming,
BIBD, hill-climbing algorithm

189

http://www.gla.ac.uk/schools/computing/staff/alicemiller/
http://www.gla.ac.uk/schools/computing/
http://www.gla.ac.uk
http://en.wikipedia.org/wiki/Scotland
maito:alice.miller@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~pat
http://www.gla.ac.uk/schools/computing/
http://www.gla.ac.uk
http://en.wikipedia.org/wiki/Scotland
maito:pat@dcs.gla.ac.uk

190 A. Miller, P. Prosser

motivation for it. In Section 4 two models, in Section 5 a list of solutions are
presented. Finally in Section 6 we conclude and suggest future work.

2 Problem definition

Given a simple undirected graph G = (V, E), V is the set of vertices and E the
set of undirected edges. The edge {u, v} ∈ E if and only if vertex u is adjacent
to vertex v in G. The graph is simple in that there are no loop edges, i.e.
∀v∈V [{v, v} /∈ E]. Each vertex v in V has a degree δ(v) = |{{v,w} : {v,w} ∈ E}|,
i.e. the number of edges incident on that vertex. A diamond is a set of four
vertices in V such that there are five edges between those vertices (see the
diamond in Figure 1).

Figure 1: The diamond graph (four vertices and five edges)

Conversely, a graph is diamond-free if it has no diamond as a subgraph, i.e.
for every set of four vertices the number of edges between those vertices is
at most four. Determining whether a graph is diamond-free is a polynomial-
time problem. E.g. checking every four vertices for a diamond is at worst case
Θ(n4). Note that a diamond is sometimes referred to as a K4 − e graph. Our
definition of a diamond-free graph agrees with that of [14] which addresses a
different, but related problem. That is, identifying degree sequences for which
there is a realisation containing a diamond as a subgraph. Others [6, 7] use
the term diamond-free to denote a graph which has no diamond as an induced
subgraph (in which case a K4 is an allowable subgraph, unlike in our case). A
further definition of a diamond-free graph [2] is a graph G with no diamond as
a minor, i.e. a graph (isomorphic to one that can be) obtained from a subgraph
of G by zero or more edge contractions.

In our problem we have additional properties required of the degree se-
quences of the graphs, in particular that the degree of each vertex is greater
than zero (i.e. isolated vertices are disallowed), the degree of each vertex is
divisible by 3 and the sum of the degrees is divisible by 12 (i.e. |E| is divisible
by 6).

Diamond-free degree sequences 191

The problem is then for a given value of n, such that |V | = n, produce all
degree sequences δ(1) ≥ δ(2) ≥ ... ≥ δ(n) such that there exists a diamond-
free graph with that degree sequence, each degree is non-zero and divisible by
3, and the number of edges is divisible by 6. In Figure 2 we give as an example
the unique degree sequence for n = 8 that satisfies our arithmetic constraints,
a corresponding diamond-free graph and its adjacency matrix.

3 3 3 3 3 3 3 3

0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
0 0 1 1 0 1 0 0
1 1 0 0 1 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0

0

1 2

3

4

5 6

7

Figure 2: Unique degree sequence for n = 8 with a corresponding diamond-free
graph and its adjacency matrix

3 Motivation

The problem is a byproduct of attempting to classify partial linear spaces that
can be produced during the execution of an extension of Stinson’s hill-climbing
algorithm [3, 4, 5, 15] for block designs with block size 4. First we need some
definitions.

Definition 1 A Balanced Incomplete Block Design (BIBD) is a pair (V,B)
where V is a set of n points and B a collection of subsets of V (blocks) such
that each element of V is contained in exactly r blocks and every 2-subset of
V is contained in exactly λ blocks.

Variations on BIBDs include Pairwise Balanced Designs (PBDs) in which
blocks can have different sizes, and linear spaces which are PBDs in which
every block has size at least 2. It is usual to refer to the blocks of a linear
space as a line. A partial linear space is a set of lines in which every pair
appears in at most λ blocks. Here we refer to a BIBD with λ = 1 as a block
design and to a partial linear space with λ = 1, having si lines of size i, where

192 A. Miller, P. Prosser

i ≥ 3 and si > 0 as a 3s34s4 . . . structure. For example, a block design on 7
points with block size 3 is given by the following set of blocks:

{(1, 2, 3), (1, 6, 7), (1, 4, 5), (2, 5, 6), (3, 4, 6), (3, 5, 7), (2, 4, 7)}

and a 3441 structure on 8 points by the following set

{(1, 2, 3, 4), (1, 5, 6), (1, 7, 8), (2, 5, 7), (2, 6, 8)}

Note that in the latter case we do not list the lines of size 2. Block designs with
block size 3 are known as Steiner Triple Systems (STSs). These exist for all n
for which n ≡ 1, 3 (mod 6) [12]. For example the block design given above is
the unique STS of order 7 (STS(7)). Similarly block designs with block size 4
always exist whenever n ≡ 1, 4 (mod 12).

Stinson(n)
1 LivePairs← {(i, j) : 1 ≤ i < j ≤ n}
2 Blocks← ∅
3 while LivePairs 6= ∅
4 choose pairs (x, y) and (y, z) from LivePairs

5 LivePairs← LivePairs \ {(x, y)}
6 LivePairs← LivePairs \ {(y, z)}
7 if (x, z) ∈ LivePairs
8 LivePairs← LivePairs \ {(x, z)}
9 else Blocks← Blocks \ {(w, x, z) : (w, x, z) ∈ Blocks}

10 LivePairs← LivePairs ∪ {(w, x)}
11 LivePairs← LivePairs ∪ {(w, z)}
12 Blocks← Blocks ∪ {(x, y, z)}
13 return Blocks

Algorithm Stinson above allows us to generate an STS for any n and is due
to Stinson [13]. This algorithm always works, i.e. it never fails to terminate
due to reaching a point where the STS is not created and there are no suitable
pairs (x, y) and (y, z).

A natural extension to this algorithm, for the case where block size is 4, is
proposed in algorithm Stinson4. Note that the triples in setWeightedTriples
are all initially assigned weight 0 in line 1. Triples can only be selected to make
a new block if they have weight zero. If S is a set of triples and X a set of points
then the algorithms IncreaseWeight(X, S) and DecreaseWeight(X, S)
(lines 6 and 9) increment (decrement) the weight of every element of S that
contains π, for all pairs π of distinct points from X.

Diamond-free degree sequences 193

Stinson4(n)
1 WeightedTriples← {〈(i, j, k), 0〉 : 1 ≤ i < j < k ≤ n}
2 Blocks← ∅
3 while 〈(w, x, y), 0〉 ∈WeightedTriples ∧ 〈(x, y, z), 0〉 ∈WeightedTriples
4 choose 〈(w, x, y), 0〉 and 〈(x, y, z), 0〉 from WeightedTriples

5 for (u, v,w, z) ∈ Blocks
6 DecreaseWeight({u, v,w, z},WeightedTriples)
7 Blocks← Blocks \ {(u,w, x, z)}
8 Blocks← Blocks ∪ {(w, x, y, z)}
9 IncreaseWeight({w, x, y, z},WeightedTriples)

10 return Blocks

Algorithm Stinson4 does not always work. It is possible for a situation
to be reached from which one pair of triples is constantly swapped with an-
other, in which case the algorithm fails to terminate. It is also possible for
the algorithm to terminate but fail to create a block design due to reaching
a point at which WeightedTriples contains elements of weight zero but does
not contain suitable triples (w, x, y) and (x, y, z) with weight zero. In this case
the algorithm produces a 4s4 structure (where s4 is less than the number of
blocks in the corresponding block design) for which the complement has no
pair of triples (w, x, y), (x, y, z), with weight zero. I.e. the complement graph is
diamond-free. When n = 13 the algorithm either produces a block design or a
48 structure whose complement graph consists of 4 non-intersecting triangles.

The next open problem therefore is for n = 16. If the algorithm terminates
but does not produce a block design, what is the nature of the structure it does
produce? To do this, we need to classify the 4r4 structures whose complement
graph is diamond-free.

The cases for which the 4s4 structure has at least 2 points that are in the
maximum number of blocks (5) are fairly straightforward. (There are fewer
cases as this number increases.). However if the number of such points is 0 or
1, there is a large number of sub-cases to consider. The problem is simplified if
we can dismiss potential 4s4 structures because the degree sequences of their
complements can not be associated with a diamond-free graph. This leads
us to the problem outlined in this report: to classify the degree sequences of
diamond-free graphs of order 15 and 16. Note that each point that is not in 5
blocks is either in no blocks or is in blocks with some number of points, where
that number is divisible by 3. Thus for every point there is a vertex in the
complement graph whose degree is also divisible by 3. In addition, since the
number of pairs in both a block design on 16 points and a 4s4 structure are

194 A. Miller, P. Prosser

divisible by 6, the number of edges in the complement graph must be divisible
by 6. We can immediately eliminate some cases via the following lemmas. In
all cases G is a diamond-free graph with n vertices for which every vertex has
degree greater than 0 and divisible by 3.

Lemma 2 If n = 16 then no vertex has degree 15.

Proof. Suppose that u be a vertex that has degree 15. Then all other vertices
are adjacent to u. Let v be such a vertex. Since v has degree at least 3, there are
two vertices, w and x that are adjacent to both u and v. There is a diamond
on vertices u, v, w and x. This is a contradiction. �

Lemma 3 If n = 15 and δ(1) = 12 then the degree sequence is either

1. (12, 12, 12, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), or

2. (12, 6, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3).

Proof. Let u be a vertex that has degree 12 and N(u) the set of vertices
that are in the neighbourhood of (i.e. adjacent to) u. Then there are two
vertices, v and w that are not u and are not in N(u). No element of N(u)
can have degree greater than 3, for then it would have degree at least 6 and
must be adjacent to at least two other elements of N(u), and we would have
a diamond. Let δ(v) and δ(w) be the degrees of v and v respectively. Without
loss of generality we can assume that δ(v) ≥ δ(w). Then G has degree sequence
(12, δ(v), δ(w), 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), where δ(v)+δ(w) is divisible by 12.
Hence (δ(v), δ(w)) is (12, 12), (9, 3) or (6, 6).

If (δ(v), δ(w)) = (12, 12) there is a solution. In this case every element of
N(u) is adjacent to both v and w.

If (δ(v), δ(w)) = (9, 3), then suppose that v and w are adjacent. None of
the 8 vertices in N(u) that are adjacent to v can be adjacent to w (or we have
a diamond), so they must all be adjacent to one of the 4 remaining vertices
in N(u). Hence some vertices in N(u) are adjacent to more than one other
vertex in N(u), and there is a diamond. A similar argument holds if v and w
are not adjacent.

If (δ(v), δ(w)) = (6, 6) there is a solution and it can be constructed as
follows. Divide the 12 vertices inN(u) into two disjoint sets of equal cardinality
α = {a1 . . . a6} and β = {b1 . . . b6}. Connect vertex ai to bi for 1 ≤ i ≤ 6. Now
connect vertex v to all vertices in α and connect w to all vertices in β. Such
a graph is shown in Figure 3. �

Diamond-free degree sequences 195

Figure 3: A diamond-free graph with 15 vertices and degree sequence (12, 6,
6, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

Lemma 4 If n = 16 and δ(1) = 12 then the degree sequence is either

1. (12, 12, 9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), or

2. (12, 12, 6, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), or

3. (12, 9, 9, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), or

4. (12, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3).

Proof. Let u and N(u) be defined as above, and let v, w and x be vertices that
are not u and are not in N(u), with corresponding degrees δ(v) ≥ δ(w) ≥ δ(x).
By an argument similar to the above, G has degree sequence

(12, δ(v), δ(w), δ(x), 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

where δ(v)+δ(w)+δ(x) is divisible by 12. Then we must have (δ(v), δ(w), δ(x)) =
(12, 12, 12), (12, 9, 3), (12, 6, 6) or (9, 9, 6) or (6, 3, 3). If (δ(v), δ(w), δ(x)) =
(12, 12, 12) then there are at least 3 vertices in N(u) that are adjacent to all
of u, v, w and x, which is impossible since, as before, vertices in N(u) must
have degree 3. In all other cases there are solutions (which we do not include
here). �

4 Constraint programming models

We present two constraint models for the diamond-free degree sequence prob-
lem. The first model we call model A, the second model B. In many respects
the two models are very similar but what is different is how we solve them. In
the subsequent descriptions we assume that we have as input the integer n,

196 A. Miller, P. Prosser

where |V | = n and vertex i ∈ V. All the constraint models were implemented
using the choco toolkit [9]. Further we assume that a variable x has a domain
of values dom(x).

4.1 Model A
Model A is based on the adjacency matrix model of a graph. We have a 0/1
constrained integer variable Aij for each potential edge in the graph such that
Aij = 1 ⇐⇒ {i, j} ∈ E. In addition we have constrained integer variables deg1
to degn corresponding to the degrees of each vertex, such that

∀i∈[1..n] dom(degi) = [3 .. n− 1]. (1)

We then have constraints to ensure that the graph is simple:

∀i∈[1..n]∀j∈[i..n] Ai,j = Aj,i (2)

∀i∈[1..n] Ai,i = 0. (3)

Constraints are then required to ensure that the graph is diamond-free:

∀i<j<k<l∈[1..n][Ai,j +Ai,k +Ai,l +Aj,k +Aj,l +Ak,l ≤ 4]. (4)

Finally we have constraints on the degree sequence:

∀i∈[1 .. n] degi =
j=n∑
j=1

Ai,j (5)

∀i∈[1 .. n−1] degi ≥ degi+1 (6)

∀i∈[1 .. n] degi mod 3 = 0 (7)(
i=n∑
i=1

degi

)
mod 12 = 0. (8)

The vertex degree variables deg1 to degn are the decision variables. The con-
straint model uses O(n2) constrained integer variables and O(n4) constraints.

4.2 Model B
Model B is essentially model A broken into three parts, each part solved sepa-
rately. The first part is to produce a degree sequence that meets the arithmetic
constraints. The second part tests if that degree sequence is graphical and if
it is the third part determines if there exists a diamond-free graph with that
degree sequence. Therefore solving proceeds as follows.

Diamond-free degree sequences 197

Step 1 Generate the next degree sequence π = d1, d2, . . . , dn that meets the
arithmetical constraints. If no more degree sequences exist then termi-
nate the process.

Step 2 If the degree sequence π is not graphical return to Step 1.

Step 3 Determine if there is a diamond-free graph with degree sequence π.

Step 4 Return to Step 1.

The first part of model B is then as follows. Integer variables deg1 to degn
correspond to the degrees of each vertex and satisfy constraints (1), (6), (7),
and (8) to generate a degree sequence.

Each valid degree sequence produced is then tested to determine if it is
graphical (Step 2 above) using the Havel-Hakimi algorithm. We have used
the Θ(n2) algorithm [8] although the linear Erdős–Gallai type [10] or linear
Havel–Hakimi type [11] algorithms could equally well be used and would have
been more efficient.

If the degree sequence is graphical (Step 3) we create an adjacency matrix
with properties (2) and (3) and post the constraints (4) and (5) (diamond
free with given degree sequence) where the variables deg1 to degn have al-
ready been instantiated (in Step 1). Finally we are in a position to post static
symmetry breaking constraints. If we are producing a graph and degi = degj
then these two vertices are interchangeable. Consequently we can insist that
row i in the adjacency matrix is lexicographically less than or equal to row j.
Therefore we post the symmetry breaking constraints:

∀i∈[1 .. n−1][degi = degi+1 ⇒ Ai � Ai+1] (9)

where � means lexicographically less than or equal. In this second stage of
solving the variables A1,1 to An,n are the decision variables.

5 Solutions

Our results are tabulated in Table 1 for 8 ≤ n ≤ 16. All our results are
produced using model B run on a machine with 8 Intel Zeon E5420 processors
running at 2.50 GHz, 32Gb of RAM, with version 5.2 of linux. The longest
run time was for n = 16 taking about 5 minutes cpu time. Included in Table
1 is the cpu time in seconds to generate all degree sequences for a given value
of n.

All our results were verified. For each degree sequence the corresponding
adjacency matrix was saved to file and verified to correspond to a simple

198 A. Miller, P. Prosser

n time degree sequence
8 0.1 3 3 3 3 3 3 3 3
9 0.1 6 6 6 3 3 3 3 3 3
10 0.5 6 6 3 3 3 3 3 3 3 3
11 0.8 6 3 3 3 3 3 3 3 3 3 3
12 1.4 3 3 3 3 3 3 3 3 3 3 3 3

6 6 6 6 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 6 6 6 6
9 6 6 3 3 3 3 3 3 3 3 3

13 3.7 6 6 6 3 3 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 3 3 3 3 3 3
6 6 6 6 6 6 6 6 6 6 6 3 3
9 6 3 3 3 3 3 3 3 3 3 3 3

14 14.0 6 6 3 3 3 3 3 3 3 3 3 3 3 3
6 6 6 6 6 6 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 6 6 3 3 3 3
6 6 6 6 6 6 6 6 6 6 6 6 6 6
9 3 3 3 3 3 3 3 3 3 3 3 3 3
9 6 6 6 6 3 3 3 3 3 3 3 3 3
9 9 6 6 3 3 3 3 3 3 3 3 3 3
9 9 9 3 3 3 3 3 3 3 3 3 3 3

15 107.7 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3
6 6 6 6 6 3 3 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 6 3 3 3 3 3 3
6 6 6 6 6 6 6 6 6 6 6 6 6 3 3
9 6 6 6 3 3 3 3 3 3 3 3 3 3 3
9 6 6 6 6 6 6 6 3 3 3 3 3 3 3
9 6 6 6 6 6 6 6 6 6 6 6 3 3 3
9 9 6 3 3 3 3 3 3 3 3 3 3 3 3
9 9 6 6 6 6 6 3 3 3 3 3 3 3 3
9 9 6 6 6 6 6 6 6 6 6 3 3 3 3
9 9 9 6 6 6 3 3 3 3 3 3 3 3 3
9 9 9 9 9 9 6 6 6 6 6 6 6 6 6
12 6 6 3 3 3 3 3 3 3 3 3 3 3 3
12 12 12 3 3 3 3 3 3 3 3 3 3 3 3

16 339.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
6 6 6 6 3 3 3 3 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 6 6 6 6 3 3 3 3
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
9 6 6 3 3 3 3 3 3 3 3 3 3 3 3 3
9 6 6 6 6 6 6 3 3 3 3 3 3 3 3 3
9 6 6 6 6 6 6 6 6 6 6 3 3 3 3 3
9 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3
9 9 6 6 6 6 3 3 3 3 3 3 3 3 3 3
9 9 6 6 6 6 6 6 6 6 3 3 3 3 3 3
9 9 6 6 6 6 6 6 6 6 6 6 6 6 3 3
9 9 9 6 6 3 3 3 3 3 3 3 3 3 3 3
9 9 9 6 6 6 6 6 6 6 6 6 6 3 3 3
9 9 9 9 3 3 3 3 3 3 3 3 3 3 3 3
9 9 9 9 6 6 6 6 6 6 6 6 3 3 3 3
9 9 9 9 6 6 6 6 6 6 6 6 6 6 6 6
9 9 9 9 9 6 6 6 6 6 6 6 6 6 6 3
9 9 9 9 9 9 6 6 6 6 6 6 6 6 3 3
12 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3
12 9 9 6 3 3 3 3 3 3 3 3 3 3 3 3
12 12 6 6 3 3 3 3 3 3 3 3 3 3 3 3
12 12 9 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 1: Degree sequences, of length n, that meet the arithmetic constraints
and have a simple diamond-free graph. Tabulated is n, cpu time in seconds to
generate all sequences of length n and those sequences.

Diamond-free degree sequences 199

diamond-free graph that matched the degree sequence and satisfied the arith-
metic constraints and this is an Θ(n4) process. The verification software did
not use any of the constraint programming code.

6 Conclusion

We have presented a new problem, the generation of all degree sequences for
diamond free graphs subject to arithmetic constraints. Two models have been
presented, A and B. Model A is impractical whereas model B is two stage and
allows static symmetry breaking.

There are two possible improvements. The first is to model A. We might
add the lexicographical constraints, as used in model B, conditionally during
search. The second improvement worthy of investigation is to employ a mixed
integer programming solver for the second stage of model B.

We are currently using the lists of feasible degree sequences for diamond-free
graphs with 15 or 16 vertices to simplify our proofs for the classification of 4s4

structures with diamond-free complements, when the number of points in the
maximum number of blocks is 1 or 0 respectively. The degree sequence results
for a smaller number of points will also help to simplify our existing proofs for
cases where more points are in the maximum number of blocks. Ultimately
we would like to use our classification to modify the extension of Stinson’s
algorithm for block size 4 to ensure that a block design is always produced.

In the more distant future, we would like to analyse the structures pro-
duced using our algorithm when n > 16. The next case is n = 25 and the
corresponding diamond-free graphs would have up to 25 vertices.

Acknowledgements
We would like to thank Ian Miguel for his help in setting up the original
CSPLib problem [1], and Mike Codish and Brendan McKay for pointing out
errors in an earlier draft of this paper.

References

[1] CSPLib: a problem library for constraints. ⇒189, 199
[2] J. Barát, M. Stojaković, On winning fast in avoider-enforcer games. Electron. J.

Comb., 17 (2010) #56. ⇒190
[3] C. J. Colbourn, J. H. Dinitz (eds.), Handbook of Combinatorial Designs. CRC

Press, New York, USA, 1996. ⇒191

http://www.cs.st-andrews.ac.uk/~ianm/
http://www.cs.bgu.ac.il/~mcodish/
http://cs.anu.edu.au/~bdm/
http://www.csplib.org
http://www.math.u-szeged.hu/~barat/
http://www.inf.ethz.ch/personal/smilos/
http://www.combinatorics.org/
http://www.combinatorics.org/
http://www.public.asu.edu/~ccolbou/
http://www.emba.uvm.edu/~jdinitz/
http://www.cems.uvm.edu/~jdinitz/hcd.html
http://www.crcpress.com/

200 A. Miller, P. Prosser

[4] J. H. Dinitz, D. R. Stinson, A fast algorithm for finding strong starters, SIAM J.
Alg. Discrete Math., 2, 1 (1981) 50–56. ⇒191

[5] J. H. Dinitz, D. R. Stinson, A hill-climbing algorithm for the construction of one-
factorizations and room squares, SIAM J. Alg. Discrete Math., 8 (1987) 430–438.⇒191

[6] E. Eschen, C. Hoànga, J. Spinrad, R. Sritharan, On graphs without a C4 or a
diamond, Discrete Appl. Math., 159, 7 (2011) 581–587. ⇒190

[7] J.-L. Guo, T.-M. Wang, Y.-L. Wang, Unique intersectability of diamond-free
graphs, Discrete Appl. Math., 159, 8 (2011) 774–778. ⇒190

[8] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of
a simple graph, J. SIAM Appl. Math., 10 (1962) 496–506. ⇒197

[9] Intellij IDEA, JProfiler, CHOCO Solver. Current version: Choco-2.1.5. Down-
loaded: October 14, 2012. ⇒196

[10] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, On the Erdős-Gallai and Havel-Hakimi
algorithms, Acta Univ. Sapientiae, Inform. 3, 2 (2011) 230–268. ⇒197

[11] A. Iványi, Degree sequences of multigraphs. Annales Univ. Sci. Budapest., Sect.
Comp. 37 (2012) 195–214. ⇒197

[12] T. P. Kirkman, On a problem in combinatorics, Cambridge Dublin Math. J., 2
(1847) 191–204. ⇒192

[13] D. L. Kreher, D. R. Stinson, Combinatorial Algorithms, The CRC Press Series
on Discrete Mathematics and its Applications, CRC Press, Boca Raton, Florida,
USA, 1999. ⇒192

[14] C. Lai, A note on potentially K4 − e graphical sequences. Australas. J. Comb.,
24 (2001) 123–127. ⇒190

[15] D. R. Stinson, Hill-climbing algorithms for the construction of combinatorial
designs, Annals of Discrete Math. (Algorithms in Combinatorial Design Theory,
Vol. 26) 114 (1985) 321–334. ⇒191

Received: September 6, 2012 • Revised: December 7, 2012

http://www.emba.uvm.edu/~jdinitz/
http://cacr.uwaterloo.ca/~dstinson/
http://ftp.math.utah.edu/pub/tex/bib/toc/siamjalgdiscmeth.html
http://www.emba.uvm.edu/~jdinitz/
http://cacr.uwaterloo.ca/~dstinson/
http://ftp.math.utah.edu/pub/tex/bib/toc/siamjalgdiscmeth.html
http://www.csee.wvu.edu/~eeschen/
http://www.wlu.ca/homepage.php?grp_id=510&f_id=1
http://www.vuse.vanderbilt.edu/~spin/persinfo.html
http://homepages.udayton.edu/~rsritharan1/
http://www.journals.elsevier.com/discrete-applied-mathematics/
http://web.thu.edu.tw/wang/www/acheng.htm
http://star7.cs.ntust.edu.tw/global/academic/teacher_technology.asp
http://www.journals.elsevier.com/discrete-applied-mathematics/
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.siam.org/journals/siap.php
http://www.jetbrains.com/idea/features/code_analysis.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.emn.fr/x-info/choco-solver/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu/volumes.html
http://ac.inf.elte.hu/volumes.html
http://en.wikipedia.org/wiki/Thomas_Kirkman
http://www.math.mtu.edu/~kreher/
http://cacr.uwaterloo.ca/~dstinson/
http://www.math.mtu.edu/~kreher/cages.html
http://www.crcpress.com/
http://ajc.maths.uq.edu.au/
http://cacr.uwaterloo.ca/~dstinson/
http://www.sciencedirect.com/science/bookseries/01675060

Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 201–214

The complexity of an exotic edge coloring

of graphs

Sándor SZABÓ
University of Pécs, Hungary

email: sszabo7@hotmail.com

Abstract. Coloring the nodes of a graph is a commonly used prepro-
cessing method to speed up clique search procedures. For the very same
purpose we propose coloring the edges of the graph. It will be shown that
the recommended type of edge coloring leads to an NP-complete problem.
Therefore in practical computations we should rely on some approximate
algorithm.

1 Introduction

Let G = (V, E) be a finite simple graph. In other words G has finitely many
nodes and G does not have any double edge or loop. In this situation an edge
of G can be identified with a two element subset of V. Consequently the set
of edges E of G forms a family of two element subsets of V. A subgraph ∆
of G is a clique if each two distinct nodes in ∆ are adjacent. A clique with
k nodes is called a k-clique. The number of the nodes of a clique sometimes
referred as the size of the clique. A k-clique in G is a maximal clique if it is
not a subgraph of any (k + 1)-clique in G. A k-clique ∆ in G is a maximum
clique if G does not have any (k+ 1)-clique. The size of a maximum clique in
G is called the clique size of G and it is denoted by ω(G).

Computing the clique size of a given graph has many important applications
inside and outside of mathematics. Many of these applications are described
in [1]. It was pointed out in [2] that the performance of their algorithms to

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C15, 03D15
Key words and phrases: maximal clique, maximum clique, k-clique, graph coloring,
coloring the nodes, coloring the edges, NP-complete problems

201

http://www.domain.edu
http://www.domain.edu
mailto:sszabo7@hotmail.com

202 S. Szabó

determine the clique size of a given graph is critically depend on efficiently
computable upper estimates of clique sizes. The most commonly used method
to estimate clique size is via coloring the nodes of the graph. Although there is
an interesting additional technique based on dynamic programming presented
in [5] and further developed in [4] in this paper we will restrict our attention
to the coloring idea.

Suppose that the nodes of a finite simple graph G are colored using k given
colors such that

(1) each node of G receives exactly one color,

(2) adjacent nodes never receive the same color.

This type of coloring is the most commonly encountered coloring of the nodes
of a graph. We will refer to it saying that the vertices of G have an L type
coloring with k colors. The letter L stands for the expression legal coloring.
The connection between the coloring and the clique size is the following. If the
nodes of the graph G have an L type coloring with k colors then ω(G) ≤ k.

It should not came to us as a surprise that coloring the edges of a graph
can provide upper estimates for the clique size. We color the edges of a graph
G with k colors such that

(1) each edge of G receives exactly one color,

(2) if x, y, z are nodes of a 3-clique in G, then the edges {x, y}, {x, z}, {y, z}
receive three distinct colors.

For the sake of easier reference we call this type of coloring of the edges of a
graph an S type edge coloring. The coloring could be called a rainbow triangle
coloring. (The letter S stands for the initial letter of the word “rainbow” in
Hungarian.) The minimum number of colors k for which the edges of an n-
clique have an S type coloring is denoted by χS(n). A possible connection
between the edge coloring and the clique size of a graph is the following. If the
edges of a graph G have an S type coloring with k colors and ω(G) = t, then
χS(t) ≤ k must hold. In other words if the edges of G have an S type coloring
with k colors and χS(t) > k, then ω(G) < t.

It is not hard to construct an S type coloring of the edges of a given graph
in greedy fashion. A greedy S type edge coloring together with the next lemma
provide a practical way to estimate the clique size.

Lemma 1 χS(n) ≥ n− 1 for each positive integer n.

The complexity of an exotic edge coloring of graphs 203

Proof. Let ∆ = (V, E) be an n-clique and suppose that the edges of ∆ have an S
type coloring with k colors. Let f : E→ {1, . . . , k} be the coloring of the edges of
∆. Finally let v1, . . . , vn be all the vertices of ∆. Note that f({v1, vi}) 6= f({v1, vj})
holds for each i, j, 1 ≤ i < j ≤ n since the edges {v1, vi}, {v1, vj}, {vi, vj} receive
three distinct colors. In particular the edges {v1, vi}, 2 ≤ i ≤ n receive distinct
colors. It follows that χS(n) ≥ k ≥ n− 1, as required. �

The reader will notice that the exact value of χS(n) can be determined.
Namely,

χS(n) =
{
n, if n is odd,
n− 1, if n is even

holds for each n ≥ 2. Suppose that the edges of an n-clique ∆ have an S
type coloring. The edges of ∆ receiving color c form the c-color class of the
coloring. Notice that the edges in the c-color class must form a matching in ∆.
A maximum matching is a 1-factor of ∆. It is a known result that an n-clique
can be decomposed into n−1 1-factors if n is even. Further, an n-clique cannot
be decomposed into n− 1 1-factors when n is odd. In the next section we will
see that the cruder result stated in Lemma 1 will suffice for our purposes.

By Lemma 1, if the edges of a given graph G have an S type coloring with
k colors and n − 1 > k, then ω(G) < n. By the main result of this note
the problem to decide if the edges of a given graph have an S type coloring
with k colors is an NP-complete problem for k ≥ 3. This result loosely can be
interpreted such that determining the minimum value of k for which the edges
of G have an S type coloring with k colors is a computationally demanding
problem.

2 Numerical experiments

The main motivation of this paper is to explore the possibility of utilizing
edge coloring in clique search algorithms. It is relatively straightforward to
construct S type edge coloring for a given graph in a greedy fashion. The
greedy algorithm does not provide the optimum number of colors but it is
computationally feasible.

Let G = (V, E) be a given graph and suppose that we want to find an S
type coloring of the edges of G. We locate a clique ∆ in G. The clique ∆ is
not necessarily a largest clique in G. For our purposes any suboptimal clique
is suitable. Let e1, . . . , em be a fixed list of the edges of the given graph G
such that we list first the edges of ∆ then we list the remaining edges of G.
Decomposing ∆ into 1-factors and using the 1-factors as color classes we can

204 S. Szabó

Name |V | |E| L S

MON03 27 189 6 9
MON04 64 1296 12 20
MON05 125 5500 20 35
MON06 216 17550 30 57
MON07 343 46305 42 79
MON08 512 106624 56 108
MON09 729 221616 72 141
MON10 1000 425250 90 178
MON11 1331 765325 110 218
MON12 1728 1306800 132 261
MON13 2197 2135484 156 309
MON14 2744 3362086 182 361
MON15 3375 5126625 210 418

Table 1: Graphs associated with monotonic matrices.

color the edges of ∆ and we end up with a partial coloring of the edges of G.
Suppose C1, . . . , Cr are the existing color classes and ei is the first uncolored
edge of G. The edge ei can be placed into the colors class C1 if C1 does not
contain any edge ej such that ei and ej are edges of a 3-clique in G. If ei can
be placed into C1, then we put ei into C1. If ei does not fit into C1, then we
try to place it into C2. Continuing in this way either ei fits into one of the
colors classes C1, . . . , Cr or we open a new color class Cr+1 for ei. When all
the edges on the list e1, . . . , em are colored, then we have an S type coloring
of the edges of G.

We carried out a large scale numerical experiment to compare the upper
estimates for the clique size of the given graph G provided by the ordinary L
type node coloring and the proposed S type edge coloring of G. The results
are summarized in Tables 1, 2, and 3. We considered 13+10+13 = 36 graphs.
These graphs are coming from coding theory. They are related to monotonic
matrices, deletion error detecting, and error correcting codes, respectively.
Using sequential greedy coloring algorithms we constructed an L type coloring
of the nodes and an S type coloring of the edges for each graph. In the tables
we listed the number of colors, the number of nodes and the number of edges
of the graphs. From the results it is fairly clear that the greedy node coloring
provides tighter estimates for the clique sizes of the graphs than the edge
coloring does. Therefore in a clique search algorithm we do not recommend to

The complexity of an exotic edge coloring of graphs 205

Name |V | |E| L S

DEL03 8 9 2 1
DEL04 16 57 4 4
DEL05 32 305 8 11
DEL06 64 1473 14 24
DEL07 128 6657 26 53
DEL08 256 28801 50 114
DEL09 512 121089 101 236
DEL10 1024 499713 199 492
DEL11 2048 2037761 395 995
DEL12 4096 8247297 782 2024

Table 2: Graphs associated with deletion error correcting codes.

Name |V | |E| L S

JOHNSON06 15 45 4 3
JOHNSON07 35 385 10 11
JOHNSON08 70 1855 20 26
JOHNSON09 126 6615 35 52
JOHNSON10 210 19425 56 85
JOHNSON11 330 49665 84 131
JOHNSON12 495 114345 120 197
JOHNSON13 715 242385 165 279
JOHNSON14 1001 480480 220 377
JOHNSON15 1365 900900 286 496
JOHNSON16 1820 1611610 364 646
JOHNSON17 2380 2769130 455 813
JOHNSON18 3060 4594590 560 1008

Table 3: Graphs associated with Johnson error correcting codes.

206 S. Szabó

replace greedy sequential L type coloring of the nodes by greedy sequential S
type coloring of the edges. We suggest to use the edge coloring in a different
fashion. It can be used as a preconditioning tool.

We color the edges of the given graph G before the clique search starts. One
can store the colors of the edges of G in an n by n matrixM conveniently. Here
n is the number of the nodes of G. The rows and columns of M are labeled by
the nodes of G and mu,v is the entry of M in the row labeled by node u and
column labeled by node v. If c is the color of the edge {u, v}, then we set mu,v

to be c. In the course of a clique search we can read off the colors of the edges
from the matrix M with relatively low cost. Let H be a subgraph of G and
suppose we are looking for a k-clique ∆ in H. Note that if the edges of G have
an S type coloring, then by inheritance the edges of H have an S type coloring
too. The edges joining to a node v of ∆ must have pair-wise distinct colors.
Therefore if the edges of H joining to the node v are colored with less than
k−1 colors, then v can be deleted from H. Deleting nodes from H reduces the
size of the search space and might help in speeding up the computation.

3 A complexity result

Let Γ = (V, E) be a finite simple graph. Using Γ we construct a new graph
G′ = (V ′, E′). We try to establish the following facts.

(1) If the nodes of Γ have an L type coloring with 3 colors, then the edges
of G′ have an S type coloring with 3 colors.

(2) If the edges of G′ have an S type coloring with 3 colors, then the nodes
of Γ have an L type coloring with 3 colors.

Let v1, . . . , vn be all the nodes of Γ . We assign a graph Hi to vi for each i,
1 ≤ i ≤ n. The constructions of Hi and G′ are guided by the structure of the
incidence matrix of Γ . The incidence matrix of Γ has n = |V | rows and m = |E|

columns. The rows are labeled by the nodes v1, . . . , vn and the columns are
labeled by the edges of Γ . If ek = {vi, vj} is an edge of Γ , then the two cells at
the intersection of rows vi, vj and column ek both contain a bullet.

We illustrate the construction working out the details in connection with
a toy example. The graph Γ in the example can be seen in Figure 1 and the
incidence matrix of this graph is in Table 4.

To vertex vi of Γ we assign a graph Hi which has 4m nodes, where m =
|E|. Let K = (V ′′, E′′) be a 4-clique such that V ′′ = {a, b, c, d}. We take m
isomorphic copies Ki,1, . . . , Ki,m of K. We choose the notation such that Ki,j =

The complexity of an exotic edge coloring of graphs 207

e1 e2 e3 e4 e5
v1 • • •
v2 • •
v3 • • •
v4 • •

Table 4: The node edge incidence matrix of of the graph Γ in the toy example.

�
�
�
�
�
�
�

r r

r rv4 v3

v2v1

e5

e1

e2
e3 e4

Figure 1: A geometric representation of the graph Γ in the toy example.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�@

@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@r

r

r r

r

r

r rai,j bi,j ai,j+1

di,j+1ci,jdi,j

bi,j+1

ci,j+1

Figure 2: A step of the construction of Hi. The 1st square is Ki,j and the 3rd
square is Ki,j+1.

208 S. Szabó

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��@

@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��@

@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��@

@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��@

@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

�
��
�

��
��

�
��
�

v4

v3

v2

v1

e1 e2 e3 e4 e5

H4

H3

H2

H1

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

r
rr
rr
rr
r

Figure 3: The graphs H1, . . . , H4 in the toy example.

(V ′′
i,j, E

′′
i,j) and V ′′

i,j = {ai,j, bi,j, ci,j, di,j}. We add the edges

{bi,j, ai,j+1}, {bi,j, di,j+1}, {ci,j, ai,j+1}, {ci,j, di,j+1},

for each j, 1 ≤ j ≤ m − 1. This step of the construction is depicted in Figure
2. Finally we add the edges

{bi,m, ai,1}, {bi,m, di,1}, {ci,m, ai,1}, {ci,m, di,1}.

We encourage the reader to visualize Hi as a long narrow paper strip divided
into 2m squares. The two opposite short sides of the rectangle are united
to form a closed strip. However, we draw Hi as an open flattened strip in
Figure 3 in order not to clutter the diagram. Figure 3 exhibits the geometric
representations of the graphs H1, . . . , H4 associated with the vertices v1, . . . , v4
of the toy example Γ .

If vi and vj are adjacent edges in Γ such that i < j, then to represent the
edge ek = {vi, vj} of Γ in G′ we add the edges

{aj,k, ci,k}, {aj,k, di,k}, {dj,k, ci,k}, {dj,k, di,k}

to G′. (The reader may follow the flow of the argument in Figure 6.) If vi and
vj are not adjacent edges in Γ , then we do not add any extra edges to G′. The

The complexity of an exotic edge coloring of graphs 209

�
�
��@
@
@@r r

r r
�
�
��

�
�
��@

@
@@

@
@
@@r r r

r r r
�
�
��

�
�
��@

@
@@

@
@
@@r r r

r r r r
r

��
��

��

��
��

��

PPPPPP

Figure 4: The subgraphs spanned by N(u, v) in the proof of Lemma 2.

�
�
�
�
�
�
�@

@
@
@
@
@
@r r

r rx y

uv

1

2
3

Figure 5: Coloring the edges of a 4-clique in the proof of Lemma 3.

toy example Γ has five edges

e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v1, v4},

e4 = {v2, v3}, e5 = {v3, v4}.

The reader can spot five modifications corresponding to these edges in Figure
3.

When we analyze the graph G′ we will use the following two lemmas.

Lemma 2 If Γ has at least one edge, then the clique number of G′ is equal to
4. In symbols ω(G′) = 4.

Proof. Since Γ has an edge, it follows that G′ contains a 4-clique. Consequently
ω(G′) ≥ 4. It remains to show that ω(G′) ≤ 4.

Let ∆ be a maximum clique in G′ and let {u, v} be an edge in ∆. Let N(u, v)
be the set of the next nodes of G′.

(1) The nodes u and v.

(2) All the nodes adjacent to both u and v.

We call N(u, v) the neighborhood set of the edge {u, v}.

210 S. Szabó

�
�
�
�
�
�
�@

@
@
@
@
@
@

�
�
�
�
�
�
�@

@
@
@
@
@
@

r r

r r
r r

r r

dj,k cj,k

aj,k bj,k

di,k ci,k

ai,k bi,k

���
����

Figure 6: The connecting device in the first construction.

An inspection shows that the subgraph of G′ spanned by the neighborhood
setN(u, v) can only be one of the three graphs shown in Figure 4. Since ∆must
be a subgraph of the graph spanned by N(u, v), it follows that ω(G′) ≤ 4. �

Lemma 3 Let ∆ be a 4-clique with nodes x, y, u, v. If the edges of ∆ have an
S type coloring with 3 colors, then the “opposite” edges {x, y} and {u, v} must
receive the same color.

Proof. The edges of the 3-clique whose nodes are x, y, u must receive three
distinct colors. We may assume that the edges {x, y}, {y, u}, {x, u} receive colors
1, 2, 3 respectively since this is only a matter of rearranging the colors 1, 2, 3
among each other. Edge {x, v} cannot receive color 1 because {x, v} and {x, y}

are edges of the 3-clique with nodes x, y, v. Edge {x, v} cannot receive color 3
since {x, v} and {x, u} are edges of the 3-clique with nodes x, u, v. Thus edge
{x, v} must receive color 2. Finally, edge {y, v} has to be colored with color 3
and edge {u, v} must be colored with color 1. (The reasoning can be followed
in Figure 5.) �

Suppose now that the nodes of Γ have an L type coloring with 3 colors. Let
f : V → {1, 2, 3} be the coloring. Let us consider the subgraph Hi of G′ assigned
to node vi of Γ . We color the edge {ai,1, di,1} of G′ with color f(vi). We know
from Lemma 3 that the edge {bi,1, ci,1} must be colored with color f(vi) in

The complexity of an exotic edge coloring of graphs 211

order to define an S type coloring of the edges of G′ with 3 colors. Therefore
we color all the “vertical” edges

{ai,j, di,j}, {bi,j, ci,j}, 1 ≤ j ≤ m

of Hi with color f(vi). In a fixed 4-clique in Hi we color the opposite “hori-
zontal” edges with the same color. Similarly in a fixed 4-clique in Hi we color
the “diagonal” edges with the same color. If the colors used for the vertical,
horizontal, and diagonal edges are pair-wise distinct, then the edges of Hi have
an S type coloring with 3 colors.

There are further edges in G′ which play the role of connecting devices
between Hi and Hj when vi and vj are adjacent nodes of Γ . Let ek = {vi, vj} be
the edge of Γ connecting the vertices vi and vj. The color of the edge {aj,k, dj,k}

has already been assigned to be f(vj). This forces us to color the edge {di,k, ci,k}

with color f(vj). But in the 4-clique Ki,k with edges ai,k, bi,k, ci,k, di,k only the
color of the vertical edges are fixed to be f(vi) and so we have a freedom to
choose the color of the horizontal edges.

Summing up our considerations we may say that the edges of the graph G′

have an S type coloring with 3 colors provided that the nodes of Γ have an L
type coloring with 3 colors.

Suppose now that the edges of G′ have an S type coloring with 3 colors. Let
f′ : E′ → {1, 2, 3} be this coloring. In particular the edges of the subgraph Hi
of G′ have an S type coloring with 3 colors for each i, 1 ≤ i ≤ n. By Lemma
3, in an S type coloring of the edges of Hi the vertical edges must receive the
same color. This colors is f′({ai,1, di,1}). We color the node vi of Γ with this
color. In other words we define a map f : V → {1, 2, 3} by setting f(vi) to be
f′({ai,1, di,1}).

We claim that f(vi) = f(vj) implies that vi and vj are not adjacent nodes of
Γ .

In order to verify the claim assume on the contrary that vi and vj are
adjacent nodes of Γ and f(vi) = f(vj) holds. Let ek = {vi, vj} be the edge of
Γ that connects the nodes vi and vj. Let us consider the 4-clique Ki,j,k of G′

whose vertices are ci,k, di,k, aj,k, dj,k. Since the edges of G′ have an S type
coloring with 3 colors, it follows that the edges of the 4-clique Ki,j,k have an S
type coloring with 3 colors. Lemma 3 is applicable to Ki,j,k and gives that the
edge {aj,k, dj,k} of Hj and the edge {di,k, ci,k} of Hi are colored with the same
color. This common color is f(vj). The vertical edge {ai,k, di,k} of Hi is colored
with color f(vi). This implies f(vi) = f(vj). From f(vi) = f(vj), it follows that
two edges of the 3-clique with nodes ai,k, di,k, ci,k are colored with the same

212 S. Szabó

��
��

H
HHHr

r

r
r
r

rr
rr

�
�
��

@
@
@@�

��
�

HHHH

vj

vi

yj

yi

ci,j

xj

xi

ai,j

bi,j

Figure 7: The graph assigned to the edge {vi, vj}.

color. Namely the edges {ai,k, di,k} and {ci,k, di,k} are receiving the same color.
This contradiction proves our claim.

Theorem 4 The problem to decide if the edges of a finite simple graph have
an S type coloring with 3 colors is an NP-complete problem.

Proof. For the proof we should recall the known result that the problem of
deciding if the nodes of a finite simple graph have an L type coloring with 3
colors is an NP-complete problem. The result on the coloring of the nodes can
be found for example in [3] or [6]. �

4 An alternative construction

In this section we give a second proof for Theorem 4 using a new construction.

Proof. Let Γ = (V, E) be a finite simple graph. Using Γ we construct a new
graph G′ = (V ′, E′). We try to show that the following requirements hold.

(1) If the nodes of Γ have an L type coloring with 3 colors, then the edges
of G′ have an S type coloring with 3 colors.

(2) If the edges of G′ have an S type coloring with 3 colors, then the nodes
of Γ have an L type coloring with 3 colors.

Let v1, . . . , vn be all the nodes of Γ . We assign two points xi and yi to node
vi for each i, 1 ≤ i ≤ n. We choose the points x1, . . . , xn, y1, . . . , yn to be
pair-wise distinct. We connect the nodes xi and yi in G′ with an edge.

The complexity of an exotic edge coloring of graphs 213

�
�
��

�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

@
@
@@

@
@
@@

��
��

H
HHH

�
�
��

A
A
AA

�
�
��

A
A
AA

��
��

HHHHPPPPPP

B
B
B
B
BB

r

r

r

r

r
r

r

r

r

r r

r

r r

r

r

r

r

r
r

r

r

r

r
v4 v3

v2v1

Figure 8: The graph G′ associated with the toy example.

If vi and vj are adjacent nodes in Γ , then we add three new nodes ai,j, bi,j,
ci,j and eleven new edges

{xi, ai,j}, {xi, ci,j}, {yi, ai,j}, {yi, ci,j},

{xj, bi,j}, {xj, ci,j}, {yj, bi,j}, {yj, ci,j},

{ai,j, bi,j}, {ai,j, ci,j}, {bi,j, ci,j}.

If vi and vj are not adjacent in Γ , then we do not add any new node or new
edge to G′. This step of the construction is illustrated in Figure 7. The graph
G′ associated with the toy example is in Figure 8.

Suppose first that the nodes of Γ have an L type coloring with 3 colors. Let
f : V → {1, 2, 3} be such a coloring. We define an edge coloring f′ : E′ → {1, 2, 3}

of G′. To do so we set f′({xi, yi}) to be f(vi) and we set

f′({ai,j, ci,j}) = f(vi), f
′({bi,j, ci,j}) = f(vj).

Let us consider the 3-clique ∆ in G′ whose nodes are ai,j, bi,j, ci,j. Two edges
of ∆ has already been colored. So we color the edge {ai,j, bi,j} with the only
color in the set {1, 2, 3} \ {f(vi), f(vj)}. We color the edges {xi, ai,j}, {yi, ci,j} with

214 S. Szabó

one of the colors in the set {1, 2, 3} \ {f(vi)} and we color the edges {xi, ci,j},
{yi, ai,j} with the remaining last color. Similarly, we color the edges {xj, bi,j},
{yj, ci,j} with one of the colors in the set {1, 2, 3} \ {f(vj)} and we color the edges
{xj, ci,j}, {yj, ci,j} with the remaining last color.

An inspection shows that the coloring f′ : E′ → {1, 2, 3} is an S type coloring
of the edges of G′.

Next suppose that the edges of G′ have an S type coloring with 3 colors. Let
f′ : E′ → {1, 2, 3} be such a coloring. Using the edge coloring f′ of G′ we define
a coloring f : V → {1, 2, 3} of the nodes of Γ by setting f(vi) to be f′({xi, yi}).
We claim that f(vi) = f(vj) implies that vi and vj are not adjacent in Γ .

In order to prove the claim assume on the contrary that f(vi) = f(vj) and
the nodes vi and vj are adjacent in Γ . Since f′ is an S type coloring of the edges
of G′, it follows that

f′({ai,j, ci,j}) = f′({xi, yi}) = f(vi),
f′({bi,j, ci,j}) = f′({xj, yj}) = f(vj).

Let us watch the 3-clique ∆ in G′ whose nodes are ai,j, bi,j, ci,j. (The reader
may consult with Figure 7.) We get the contradiction that two edges of ∆ are
colored with the same color. �

References

[1] I. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The Maximum Clique Prob-
lem, in: Handbook of Combinatorial Optimization Vol. 4 (eds. D.-Z. Du and P.
M. Pardalos), Kluwer Academic Publisher, Boston, MA 1999, pp. 1–74. ⇒201

[2] R. Carraghan, P. M. Pardalos, An exact algorithm for the maximum clique
problem, Oper. Res. Lett. 9 (1990) 375–382. ⇒201

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman, New York, NY, 2003. ⇒212

[4] D. Kumlander, Some Practical Algorithms to Solve the Maximal Clique Problem,
PhD. Thesis, Tallin University of Technology, 2005. ⇒202

[5] P. R. J. Österg̊ard, A fast algorithm for the maximum clique problem, Discrete
Appl. Math. 120, 1-3 (2002) 197–207. ⇒202

[6] C. H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing
Company, Inc., Reading, MA 1994. ⇒212

Received: October 5, 2012 • Revised: November 5, 2012

http://homepage.univie.ac.at/immanuel.bomze/
http://www.ise.ufl.edu/pardalos/
http://www.dsi.unive.it/~pelillo/
http://vlib.ustu.ru/storon/kluwer/index.html
http://www.ise.ufl.edu/pardalos/
http://www.journals.elsevier.com/operations-research-letters/
http://en.wikipedia.org/wiki/Michael_Garey
http://www2.research.att.com/~dsj/
http://www.whfreeman.com/college/order.html
http://kumlander.eu/
http://users.tkk.fi/pat/
http://www.journals.elsevier.com/discrete-applied-mathematics/
http://www.cs.berkeley.edu/~christos/
http://www.pearsoned.co.uk/Imprints/Addison-Wesley/

Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 215–224

Towards optimal sorting of 16 elements

Marcin PECZARSKI
Institute of Informatics, University of Warsaw,

ul. Banacha 2, 02-097 Warszawa, Poland
email: marpe@mimuw.edu.pl

Abstract. One of the fundamental problem in the theory of sorting is to
find the pessimistic number of comparisons sufficient to sort a given num-
ber of elements. Currently 16 is the lowest number of elements for which
we do not know the exact value. We know that 46 comparisons suffices
and that 44 do not. There is an open question if 45 comparisons are suf-
ficient. We present an attempt to resolve that problem by performing an
exhaustive computer search. We also present an algorithm for counting
linear extensions which substantially speeds up computations.

1 Introduction

We consider sorting by comparisons. One of the fundamental problem in that
area is to find the pessimistic number S(n) of comparisons sufficient to sort n

elements. Steinhaus posed this problem in [8]. Knuth considered it in [4]. From
the information-theoretic lower bound, further denoted by ITLB, we know
that S(n) ≥ dlog2 n!e = C(n). Ford and Johnson discovered [2] an algorithm,
further denoted by FJA, which nearly and sometimes even exactly matches
C(n). Let F(n) be the worst case number of comparisons in the FJA. It holds
S(n) = F(n) = C(n) for n ≤ 11 and n = 20, 21. The FJA does not achieve the
ITLB for 12 ≤ n ≤ 19 and infinitely many n ≥ 22. Carrying an exhaustive
computer search, Wells discovered in 1965 [9, 10] that the FJA is optimal for
12 elements and S(12) = F(12) = C(12) + 1 = 30. Kasai et al. [3] computed
S(13) = F(13) = C(13) + 1 = 34 in 1994, but that result was not widely

Computing Classification System 1998: F.2.2
Mathematics Subject Classification 2010: 06A07, 68P10
Key words and phrases: optimal sorting, poset, computer aided proof

215

http://www.mimuw.edu/~marpe
http://www.domain.edu
http://www.domain.edu
mailto:marpe@mimuw.edu.pl

216 M. Peczarski

known. It was discovered again a few years later [5], independently, extending
the Wells method. Further improvement of the method led to show in years
2003–2004 [6, 7] that it holds S(n) = F(n) = C(n) + 1 for n = 14, 15, 22,
similarly.

In this paper we consider the case n = 16. This is now the lowest number
of elements for which we do not know the exact value of S(n). The previous
results could suggest that S(16) = F(16) = C(16) + 1 = 46. However Knuth
conjectures that S(16) = C(16) = 45. He does not believe that the FJA is
optimal for 16 elements. He wrote [4]: “There must be a way to improve upon
this!” We present recently obtained results1 aiming to compute the value of
S(16). It is very unlikely that someone will find it by pure theoretical consider-
ation. It seems that the only promising way leads by performing an exhaustive
computer search supported by cleaver heuristics.

The paper is organized as follows. In Section 2 we introduce notation used
throughout the paper. In Section 3 we briefly describe the algorithm we use
to resolve if there exists a sorting algorithm for a given number of elements
and comparisons. We analyse why the ITLB is not achieved for 13, 14 and 15
elements in Section 4. We present the newest results for 16 elements in Section
5. In Section 6 we compare the computation complexity of the previous cases
and the case of 16 elements. Finally, in Section 7, we present the algorithm for
counting linear extensions which substantially improves the algorithm from
Section 3.

2 Notation

We denote by U = {u0, u1, . . . , un−1} an n-element set to be sorted. Sorting of
the set U is represented as a sequence of posets (Pc = (U,Rc))c=0,1,...,C, where
Rc is a partial order relation over a set U. Sorting starts from the total disorder
P0 = (U,R0), where R0 = {(u, u) : u ∈ U}. After performing c comparisons
we obtain a poset Pc = (U,Rc). Sorting should end with a linear order PC.

Assume that elements uj and uk are being compared in step c. Without loss
of generality we can assume that (uj, uk) 6∈ Rc−1 and (uk, uj) 6∈ Rc−1. Suppose
the answer to the comparison is that element uj is less than element uk. Then
we obtain the next poset Pc = (U,Rc), where the relation Rc is the transitive
closure of the relation Rc−1 ∪ {(uj, uk)}. We denote this by Pc = Pc−1 + ujuk.

By e(P) we denote the number of linear extensions of a poset P = (U,R).

1The results presented in this paper are obtained using computer resources of the In-
terdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of
Warsaw.

Towards optimal sorting of 16 elements 217

We assume that e(P + ujuk) = e(P) and e(P + ukuj) = 0 if elements uj, uk

are in relation, i.e., if (uj, uk) ∈ R.

3 The algorithm

In this section we remember briefly the algorithm which answers if sorting of a
given poset P0 can be finished in C comparisons. The algorithm was invented
in [9, 10] and improved in [5] and later in [6]. We present the next improvement
to the algorithm in Section 7. The algorithm has two phases: forward steps
and backward steps.

In the forward steps we consider a sequence of sets (Sc)c=0,1,...,C. The set S0
contains only the poset P0. In step c we construct the set Sc from the set Sc−1.
Every poset P ∈ Sc−1 is examined for every unrelated pair (uj, uk) in order
to verify whether it can be sorted in the remaining C − c + 1 comparisons.
As the result of the comparison of uj and uk one can get one of two posets
P1 = P + ujuk or P2 = P + ukuj. If the number of linear extensions of P1 or
P2 exceeds 2C−c then by the ITLB it cannot be sorted in the remaining C− c

comparisons. It follows that in this case, in order to finish sorting in C− c+ 1

comparisons, elements uj and uk should not be compared in step c. If the
number of linear extensions of both P1 and P2 do not exceed 2C−c then we
store one of them in the set Sc, namely that with greater number of linear
extensions. If both have the same number of linear extensions we choose P1
arbitrarily. We do not store isomorphic posets or a poset which dual poset is
isomorphic to some already stored poset.

If some set Sc in the sequence appears to be empty then we conclude that
the poset P0 cannot be sorted in C comparisons. Such results are received for
12 and 22 elements and C = C(n) [6], where the set S23 and S40 is empty,
respectively. Wells reported [10] that for n = 12 only the set S24 is empty.
Those results mean that S(n) > C(n) for n = 12, 22. If the set SC is not
empty after performing forwards steps, we cannot conclude about sorting of
the poset P0. In that case we continue with backward steps.

In the backward steps we consider the sequence of sets (S∗c)c=0,1,...,C. We
start with the set S∗C = SC which contains only a linear order of the set U.
In step c, where c = C − 1, C − 2, . . . , 0, we construct the set S∗c from the
set S∗c+1. The set S∗c is a subset of the set Sc and contains only posets which
can be sorted in the remaining C − c comparisons. Poset P ∈ Sc is stored in
S∗c iff there exists in P a pair of unrelated elements (uj, uk) such that poset
P1 = P+ujuk or poset P2 = P+ukuj belongs to the set S∗c+1 (as previously we
identify isomorphic and dual posets) and both posets are sortable in C− c− 1

218 M. Peczarski

comparisons. Therefore we store the poset P in the set S∗c iff both P1, P2 ∈ S∗c+1

or P1 ∈ S∗c+1 and P2 is sortable in C− c− 1 comparisons or P2 ∈ S∗c+1 and P1
is sortable in C − c − 1 comparisons. Sortability of P1 or P2 can be checked
recursively using the same algorithm.

If some set S∗c in the sequence appears to be empty then we conclude that
the poset P0 cannot be sorted in C comparisons. On the other hand, if the set
S∗0 is not empty, it contains the poset P0 and we conclude that the poset P0 can
be sorted in C comparisons. For n = 13, 14, 15 and C = C(n) we received that
the set S∗15 is empty [5, 6, 7], which means that S(n) > C(n) for n = 13, 14, 15.

We analyze those results in detail in the next section.

u0

u1

u2

u3

u4

u5

u6

u7u8

u9

u10

u11

u12

Figure 1: The poset P16, e(P16) = 113400

4 The previous cases

The computer experiment for n = 13 and C = C(n) returns that the set
S∗15 is empty, which means that S(13) = F(13) = C(13) + 1 = 34 [5]. In that
experiment the set S∗16 contains only one poset P16, whose Hasse diagram is
shown in Figure 1. The poset P16 can be obtained from a poset contained in
the file S15 in two ways:

• we compare elements u0 and u10 in the poset P ′15 ∈ S15 shown in Figure
2(a); if u0 > u10 we obtain the poset P16; if u0 < u10 we obtain the poset
Q ′16 shown in Figure 3(a);

• we compare elements u0 and u6 in the poset P ′′15 ∈ S15 shown in Figure
2(b); if u0 < u6 we obtain the poset P16; if u0 > u6 we obtain the poset
Q ′′16 shown in Figure 3(b).

Towards optimal sorting of 16 elements 219

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11 u12

(a) e(P ′15) = 222750

u0

u1

u2

u3

u4

u5

u6

u7u8

u9

u10

u11

u12

(b) e(P ′′15) = 238140

Figure 2: The posets P ′15 and P ′′15

Neither the poset P ′15 nor the poset P ′′15 can be stored in the file S∗15, because
neither the poset Q ′16 nor the poset Q ′′16 can be sorted in the remaining C−16 =
17 comparisons. It is quite surprising that the posets Q ′16, Q ′′16 cannot be
sorted. The poset Q ′16 has less linear extensions than the poset P16, which
intuitively should make it easier to sort. Indeed, the poset Q ′′16 has more linear
extensions than the poset P16, which intuitively makes it harder to sort. On the
other hand, there are known the two largest elements of the poset Q ′′16, which
intuitively makes it easier to sort. The poset P16 is sortable in 17 comparisons
because of its symmetry.

Similar results were received in the computer experiments for n = 14, 15 and
C = C(n), i.e., S(14) = F(14) = C(14) + 1 = 38 and S(15) = F(15) = C(15) +
1 = 42. In both cases the file S∗16 contains only one poset, namely the poset
P16 extended by one isolated element u13 (for n = 14) or two isolated elements
u13, u14 (for n = 15), respectively. In both cases the file S∗15 is empty and the
reason is the same. The posets P ′15, Q

′′
15, Q

′
16, Q

′′
16 extended by u13 or u13, u14

are observed, respectively, and neither Q ′16 nor Q ′′16 is sortable in the remaining
C − 16 comparisons. Note that for n = 14 we have C − 16 = C(n) − 16 = 21

and for n = 15 we have C− 16 = C(n) − 16 = 25.

5 The case of 16 elements

In this section we describe an attempt to find for n = 16 a sorting algo-
rithm better than the FJA or to exclude the existence of such algorithm.
Before starting a long time computation it was checked if the scenario from

220 M. Peczarski

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

(a) e(Q ′16) = 109350

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

(b) e(Q ′′16) = 124740

Figure 3: The posets Q ′16 and Q ′′16

the previous section repeats for n = 16. The posets Q ′16, Q
′′
16 were extended by

three isolated elements u13, u14, u15. As previously, the experiment returned
that neither the poset Q ′16 nor the poset Q ′′16 can be sorted in the remaining
C− 16 = C(n) − 16 = 29 comparisons. Of course, this result does not exclude
the existence of the desired algorithm.

To find the exact value of S(16) the algorithm from Section 3 with improve-
ment from Section 7 is applied. Because the search space is very reach, the
problem is divided into smaller subproblems. Let T(k) be the number of el-
ements which were compared (touched) by a sorting algorithm in the first k

comparisons. Observe that T(k1) ≤ T(k2) for k1 < k2. A sorting algorithm for
16 elements, using at most C(16) = F(16) − 1 = 45 comparisons, is examined
for possible values of T(k).

The first experiment returned that if S(16) = 45 then it holds T(15) < 16.

Note that for the FJA we have T(k) = 16 for k ≥ 8. Hence a hypothetical
algorithm, using for 16 elements pessimistically less comparisons than the
FJA, must be complete different from the FJA. It must differ from the FJA
already before the 9th comparison. This is quite surprising, when we look at
regular structure of the first 15 comparisons in the FJA. The next experiment
showed that if S(16) = 45 then T(15) > 11, which is already not surprising.

Towards optimal sorting of 16 elements 221

n Pentium II Pentium III Opteron 246 Core 2 Duo
233 MHz 650 MHz 2 GHz 2.13 GHz
2002 2003 2004 2007

13 10 hr. 30 min. 41 min. 10 min. 44 sec. 46 sec.
14 391 hr. 37 min. 44 hr. 10 min. 4 hr. 31 min.
15 17554 hr.

Table 1: Computation times

6 Computation complexity

Computation complexity of the method groves exponentially. The case S(13)
needed in year 2002 [5] more than 10 hours of CPU time. The value of S(14)
was computed one year later (published in 2004 [5]) and took about 392 hours
on faster computer and using improved algorithm, which could solve S(13)
in about 40 minutes. Further progress in hardware allowed to compute the
value of S(15) in year 2004 (published only in 2007 [7]) using about 17500
hours of CPU time. Each next case required significant improvements in the
algorithm or hardware. The progress is presented in Table 1. One can argue
that the comparison is not fair, because the machines used in the experiments
are different. The purpose of this table is to show an overall improvement
in software and hardware, and to give a filling, how difficult the case of 16
elements could be. The about 10 times improvement observed between the
second last and the last column is due mainly to the algorithm described in
the next section. Note that for Core 2 Due processor both cores were used
in parallel. A few years of CPU time was used up to now to search for an
algorithm achieving the ITLB for n = 16. The computation that T(15) < 16

and T(15) > 11 took about 20000 and 7000 hours, respectively. Computation
for the next case T(15) = 12 is currently in progress. It used up to now more
than 25000 hours.

7 Counting linear extensions

The most time consuming part of the algorithm presented in Section 3 is count-
ing linear extensions of a given poset. In this section we describe the algorithm
for counting linear extensions which is inspired by [1] and which substantially
improves computations. For a given poset P = (U,≺) the algorithm computes
e(P) and the table t[j, k] = e(P + ujuk) for j 6= k.

222 M. Peczarski

u0 u1

u2 u3

∅

{u1} {u0}

{u1, u3} {u0, u1}

{u0, u1, u3} {u0, u1, u2}

{u0, u1, u2, u3}

Figure 4: A poset and the graph of its downsets

Let P = (U,≺) be a poset. A subset D ⊆ U is called a down set of the poset
P if for each x ∈ D all elements y ∈ U preceding x (i.e., y ≺ x) also belong to
D. We consider a directed acyclic graph G whose nodes are all downsets of P.
For two nodes D1 and D2 there is an edge (D1, D2) if there exists x ∈ U \D1

such that D2 = D1 ∪ {x}. An example of a poset and its graph of downsets is
shown in Figure 4, where U = {u0, u1, u2, u3}.

Let d(D) denote the number of linear extensions of the poset (D,≺) which
is the poset P reduced to the down set D. Let u(D) denote the number of
linear extensions of the poset (U \D,≺) which is the poset P reduced to the
complementary set of the down set D. We have [1]

d(D) =
∑
(X,D)

d(X), (1)

where the sum is taken over all edges (X,D) in the graph G incoming to the
node D. We assume d(∅) = 1. Observe that d(U) = e(P). All values of d(D)
are computed using the DFS in the graph G, starting at the node U and going
down, i.e., in the opposite direction to the edges. Similarly, it holds [1]

u(D) =
∑
(D,X)

u(X), (2)

where the sum is taken over all edges (D,X) in the graph G outgoing from the
node D. We assume u(U) = 1. Observe that u(∅) = e(P). All values of u(D)
are computed using the second DFS in the graph G, starting at the node ∅

Towards optimal sorting of 16 elements 223

d(∅) = 1, u(∅) = 5

d(u1) = 1, u(u1) = 3 d(u0) = 1, u(u0) = 2

d(u1, u3) = 1, u(u1, u3) = 1 d(u0, u1) = 2, u(u0, u1) = 2

d(u0, u1, u3) = 3,

u(u0, u1, u3) = 1

d(u0, u1, u2) = 2,

u(u0, u1, u2) = 1

d(U) = 5, u(U) = 1

Figure 5: The numbers of linear extensions of the downsets and they comple-
mentary sets

k

0 1 2 3

j

0 – 2 5 4
1 3 – 5 5
2 0 0 – 2
3 1 0 3 –

Table 2: The values of t[j, k]

and going up. Values of d(D) and u(D) for the graph in Figure 4 are shown
in Figure 5. The curly braces are omitted for clarity, e.g., instead of d({u0})
we write d(u0). The table t can be computed from the equation

t[j, k] =
∑
(V,W)

d(V)u(W), (3)

where the sum is taken over all edges (V,W) in the graph G such that W =
V∪{uj} and uk ∈ U\W. For a proof see [1]. This computation is done altogether
with the second DFS. For the graph in Figure 4 the values t[j, k] are included
in Table 2.

For a given poset on an n-element set its graph of downsets can have up
to 2n nodes. We implemented the graph as a table of the size 2n. The table
is indexed by downsets. The index is the characteristic function of the set D,

224 M. Peczarski

i.e., the index is the n-bit number, where bit j is set iff uj ∈ D. Graph G
is not constructed explicitly. When we proceed a node D all incoming and
outgoing edges are easily computable from a poset representation. We hold at
position D in the table only two numbers d(D), u(D) and visited time stamp
v(D) needed to implement the DFS. We initialize the table only once at the
beginning of the program by setting all v(D) = 0. We also hold the global
visited time stamp vt initialized to 0. Starting a new DFS we increment the
time stamp vt. If we proceed a node D and vt > v(D) then it means that the
node D was not yet visited in the current DFS run. If vt = v(D) then the
node was already visited. We do not need to reinitialize the table before the
next DFS. This is very important and decreases running time. The algorithm
is very efficient for small n, because with a high probability the whole graph
resides in a processor cache memory.

References
[1] K. De Loof, H. De Meyer, B. De Baets, Exploiting the lattice of ideals represen-

tation of a poset, Fund. Inform. 71 (2006) 309–321. ⇒221, 222, 223
[2] L. Ford, S. Johnson, A tournament problem, Amer. Math. Monthly 66 (1959)

387–389. ⇒215
[3] T. Kasai, S. Sawato, S. Iwata, Thirty four comparisons are required to sort 13

items, in: Logic, Language, and Computation: Festschrift in Honor of Satoru
Takasu (eds. N. D. Jones, M. Hagiya, M. Sato), Lecture Notes in Comput. Sci.
792 (1994) 260–269. ⇒215

[4] D. E. Knuth, The Art of Computer Programming. Vol. 3. Sorting and Searching
(second edition), Addison–Wesley, Reading, MA, 1998. First edition: Addison–
Wesley, Reading, MA, 1973. ⇒215, 216

[5] M. Peczarski, Sorting 13 elements requires 34 comparisons, in: Proceedings of the
10th Annual European Symposium on Algorithms (eds. R. Möhring, R. Raman),
Lecture Notes in Comput. Sci. 2461 (2002) 785–794. ⇒216, 217, 218, 221

[6] M. Peczarski, New results in minimum-comparison sorting, Algorithmica 40
(2004) 133–145. ⇒216, 217, 218

[7] M. Peczarski, The Ford–Johnson algorithm still unbeaten for less than 47 ele-
ments, Inform. Process. Lett. 101 (2007) 126–128. ⇒216, 218, 221

[8] H. Steinhaus, Mathematical Snapshots, Dover Publications, Mineola, NY, 1981.
First edition: Oxford University Press, New York, NY, 1950. ⇒215

[9] M. Wells, Applications of a language for computing in combinatorics, in: Pro-
ceedings of the 1965 IFIP Congress, Information Processing 65, North-Holland,
Amsterdam, 1966, 497–498. ⇒215, 217

[10] M. Wells, Elements of Combinatorial Computing, Pergamon Press, Oxford, 1971.⇒215, 217

Received: November 22, 2012 • Revised: December 9, 2012

http://users.ugent.be/~kdeloof/
http://fi.mimuw.edu.pl/index.php/FI
http://en.wikipedia.org/wiki/L._R._Ford,_Jr.
http://en.wikipedia.org/wiki/Selmer_M._Johnson
http://www.maa.org/pubs/monthly.html
http://www.kurims.kyoto-u.ac.jp/~iwata/
http://nicosia.is.s.u-tokyo.ac.jp/members/hagiya.html
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www-cs-faculty.stanford.edu/~uno/
http://www.pearsonhighered.com/
http://www.pearsonhighered.com/
http://www.pearsonhighered.com/
http://www.mimuw.edu.pl/~marpe
http://link.springer.com/chapter/10.1007$%$2F3-540-45749-6_68
http://www.coga.tu-berlin.de/v-menue/mitarbeiter/prof_dr_rolf_h_moehring/prof_dr_rolf_h_moehring/
http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://www.mimuw.edu.pl/~marpe/
http://link.springer.com/article/10.1007$%$2Fs00453-004-1100-7
http://www.mimuw.edu.pl/~marpe
http://www.sciencedirect.com/science/journal/00200190
http://en.wikipedia.org/wiki/Hugo_Steinhaus
http://store.doverpublications.com/
http://www.oup.com/us/corporate/contact/?view=usa

Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 225–236

Scattered subwords and composition of

natural numbers

Zoltán KÁSA
Sapientia Hungarian Univerity of

Transylvania
Department of Mathematics and

Informatics, Târgu Mureş
email: kasa@ms.sapientia.ro

Zoltán KÁTAI
Sapientia Hungarian Univerity of

Transylvania
Department of Mathematics and

Informatics, Târgu Mureş
email: katai zoltan@ms.sapientia.ro

Abstract. Special scattered subwords in which the length of the gaps
are bounded by two natural numbers are considered. For rainbow words
the number of such scattered subwords is equal to the number of special
restricted compositions of natural numbers in which the components are
natural numbers from a given interval. Linear algorithms to compute
such numbers are given. We also introduce the concepts of generalized
scattered subword (duplex-subword) and generalized composition.

1 Introduction

We define a special scattered subword [5] as a generalization of the d-subword
[2] and supper-d-subword [4].

Definition 1 Let n, d1 ≤ d2 and s be positive natural numbers, and let
u = x1x2 . . . xn ∈ Σn be a word over an alphabet Σ. A word v = xi1xi2 . . . xis,
where
i1 ≥ 1,
d1 ≤ ij+1 − ij ≤ d2, for j = 1, 2, . . . , s− 1,
is ≤ n,

is a (d1, d2)-subword of length s of u.

Computing Classification System 1998: G2.1, F2.2, F2.1
Mathematics Subject Classification 2010: 68R15, 05A17, 05A05
Key words and phrases: scattered subwords, composition of integers, complexity of words

225

http://www.ms.sapientia.ro/~kasa
http://www.sapientia.ro
http://www.sapientia.ro
http://www.ms.sapientia.ro/hu/tanszekek/matematika-informatika-tanszek
http://www.ms.sapientia.ro/hu/tanszekek/matematika-informatika-tanszek
mailto:kasa@ms.sapientia.ro
http://www.ms.sapientia.ro/~katai_zoltan
http://www.sapientia.ro
http://www.sapientia.ro
http://www.ms.sapientia.ro/hu/tanszekek/matematika-informatika-tanszek
http://www.ms.sapientia.ro/hu/tanszekek/matematika-informatika-tanszek
mailto:katai_zoltan@ms.sapientia.ro

226 Z. Kása, Z. Kátai

For example, in the word aabcade the subwords abd, ace, ad are (2, 4)-sub-
words.

Definition 2 The number of different (d1, d2)-subwords of a word w is the
(d1, d2)-complexity of w.

The (1, d)-complexity was studied in [2] and [3], the (d, n)-complexity in [4],
while the (d1, d2)-complexity in [5].

2 Computing the (d1, d2)-complexity by digraphs

The graph method was defined for the general case of scattered subwords in
[5], and for this particular case can be used as follows to compute the (d1, d2)-
complexity of a rainbow word.

Let G = (V,E) be a digraph attached to the rainbow word a1a2 . . . an and
positive integers d1 ≤ d2, where
V =

{
a1, a2, . . . , an

}
,

E =
{

(ai, aj) | d1 ≤ j − i ≤ d2, i = 1, 2, . . . , n, j = 1, 2, . . . , n
}

.
The adjacency matrix A =

(
aij
)

i=1,n
j=1,n

of the digraph is defined by:

aij =

{
1, if d1 ≤ j − i ≤ d2,
0, otherwise,

i = 1, 2, . . . , n, j = 1, 2, . . . , n.

To compute the (d1, d2)-complexity we use a Floyd-Warshall-type algorithm
[5]:

FW(A,n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do wij ← wij + wikwkj

6 return W

If R = I + W , where I is the unity matrix, then the (d1, d2)-complexity is:

K(n; d1, d2) =
n∑

i=1

n∑
j=1

rij .

Scattered subwords and composition of naturals 227

a b c d e f g

Figure 1: Graph for n = 7, d1 = 2, d2 = 4.

Example 3 For digraph in Figure 1 we have the following adjacency matrix:

A =

0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

.

The above algoithm give us the matrix W , and by completing with 1’s on the
first diagonal we obtain the corresponding matrix R:

W =

0 0 1 1 2 2 4
0 0 0 1 1 2 2
0 0 0 0 1 1 2
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

, R =

1 0 1 1 2 2 4
0 1 0 1 1 2 2
0 0 1 0 1 1 2
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

.

The complexity K(7; 2, 4) = 30 (the sum of all entries of the matrix R). The
corresponding (2,4)-subwords are:

{a} {ac} {ad} {ace,ae} {adf,acf} {aeg,aceg,adg,acg}

{b} {bd} {be} {bdf,bf} {beg,bdg}

{c} {ce} {cf} {ceg,cg}

{d} {df} {dg}

{e} {eg}

{f}

{g}.

228 Z. Kása, Z. Kátai

a b c d e f g h

Figure 2: Graph for n = 8, d1 = 3, d2 = 7.

The Floyd–Warshall-type algorithm combined with the Latin square method
can be used to obtain all nontrivial (with length at least 2) (d1, d2)-subwords
of a given rainbow word a1a2 . . . an of length n [5]. Let us consider a matrix A
with entries Aij which are sets of words. Initially this entries are defined as:

Aij =

{
{aiaj}, if d1 ≤ j − i ≤ d2,
∅, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

If A and B are sets of words, AB is the set of concatenation of each word from
A with each word from B:

AB =
{
ab
∣∣ a ∈ A, b ∈ B}.

If s = s1s2 . . . sp is a word, let us denote by ′s the word obtained from s by
erasing the first character: ′s = s2s3 . . . sp. Let us denote by ′Aij the set Aij

in which we erase from each element the first character. In this case ′A is a
matrix with elements ′Aij .

Starting with the matrix A defined as before, the algorithm to obtain all
nontrivial (d1, d2)-subwords is the following [5]:

FW-Latin(A, n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do if Wik 6= ∅ and Wkj 6= ∅
6 then Wij ←Wij ∪Wik

′Wkj

7 return W

Scattered subwords and composition of naturals 229

The set of (d1, d2)-subwords is
⋃

i,j∈{1,2,...,n}

Wij .

Example 4 For the digraph in Figure 2, when n = 8, d1 = 3, d2 = 7, the
initial matrix A is:

∅ ∅ ∅ {ad} {ae} {af} {ag} {ah}
∅ ∅ ∅ ∅ {be} {bf} {bg} {bh}
∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}
∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

.

The result of the algorithm is:

∅ ∅ ∅ {ad} {ae} {af} {ag, adg} {ah, adh, aeh}
∅ ∅ ∅ ∅ {be} {bf} {bg} {bh, beh}
∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}
∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

.

3 Linear algorithm for the (d1, d2)-complexity

In this section linear algorithms to obtain (d1, d2)-complexity and (d1, d2)-
subwords of rainbow words are given.

The following dynamic programming algorithm Complexity computes the
(d1, d2)-complexity of rainbow word a1a2 . . . an. The element xi (i = 1, 2, . . . , n)
of the array X stores the number of (d1, d2)-subwords ending in letter ai. Let-
ter ai can be added to all (d1, d2)-subwords ending in letters from interval
ai − d1 . . . ai − d2 (assuming that this interval exists). Consequently, value xi
can be computed as the sum of values xi−d1, . . . , xi−d2. (lines 4, 5, 6) Since
letter ai itself is considered as a (d1, d2)-subword, element xi is initialized with
1 (line 3). The (d1, d2)-complexity of a rainbow word of length n is the sum of
values xi (i = 1, 2, . . . , n) (lines 1 and 7).

230 Z. Kása, Z. Kátai

Complexity(n, d1, d2)

1 k ← 0
2 for i← 1 to n
3 do xi ← 1
4 for j ← i− d2 to i− d1
5 do if j > 0
6 then xi ← xi + xj
7 k ← k + xi
8 return X, k

Time complexity of this algorithm is Θ(n), because the inner loop is executed
n(d2 − d1 + 1) times.

The following algorithm generates the (d1, d2)-subwords of rainbow word
a1a2 . . . an. Bidimensional array (of strings) Y stores the generated (d1, d2)-
subwords. Array yi has xi element and stores the (d1, d2)-subwords ending in
letter ai. Operation s ◦ l (line 8) means that letter l is added to the end of
string s.

Subwords(n, d1, d2, A,X)

1 for i← 1 to n
2 do yi1 ← ai
3 p← 1
4 for j ← i− d2 to i− d1
5 do if j > 0
6 then for k ← 1 to xj
7 do p← p + 1
8 yip ← yjk ◦ ai
9 return Y

The inner loop is executed n(d2 − d1 + 1) max
i

xi times, so this is a pseudo-

linear algorithm.

4 Generalized scattered subwords

Definition 1 can be generalized for rainbow words as we choose letters not only
going ahead in the word, but back too at every step.

Definition 5 Let n, d1 ≤ d2 and s be positive natural numbers, and let

Scattered subwords and composition of naturals 231

u = x1x2 . . . xn ∈ Σn be a rainbow word over an alphabet Σ. A rainbow word
v = xi1xi2 . . . xis, where
i1 ≥ 1,
d1 ≤ |ij+1 − ij | ≤ d2, for j = 1, 2, . . . , s− 1,
is ≤ n,

is a duplex (d1, d2)-subword of length s of u.

It is worth to note that the definition is given only for rainbow words, and
the duplex subwords are rainbow words too.

For example acfbe and beadfc both are duplex (2,4)-subwords of the word
abcdef .

Definition 6 The number of all duplex (d1, d2)-subwords of a word is the
duplex (d1, d2)-complexity of that rainbow word.

We denote the duplex (d1, d2)-complexity of a rainbow word of length n by
D(n; d1, d2), and let xi, yi and zi be the numbers of subwords starting, ending
and starting or ending in letter ai, respectively. Notice that 0 ≤ d2−d1 ≤ n−1.
For the minimum cases, d2 − d1 = 0 (d1 = d2 = d, d = 1, . . . , n − 1) we have
the following recursive formulas (where the sequences X and Y are identical):

xi = 1, if 0 < i ≤ d
xi = xi−d + 1, if d < i ≤ n
yi = 1, if 0 < i ≤ d
yi = yi−d + 1, if d < i ≤ n
vi = xi + yi − 1.

The duplex complexity D(n; d, d) is

D(n; d, d) =

n∑
i=1

vi.

By a simple computation we can obtain the generating functions Fd(z) =∑
n≥1

xnz
n, Gd(z) =

∑
n≥1

vnz
n, Hd(z) =

∑
n≥1

D(n; d, d)zn:

Fd(z) =
z

(1− z)(1− zd)
, Gd(z) =

z(1 + zd)

(1− z)(1− zd)
,

Hd(z) =
1

1− z
Gd(z) =

z(1 + zd)

(1− z)2(1− zd)
.

Based on Proposition 4 in [5] it is easy to prove the following

232 Z. Kása, Z. Kátai

Proposition 7 For integers n, d ≥ 1, where n = hd + m, 0 ≤ m < d,

D(n; d, d) = hn + (h + 1)m.

The graph method for the case of duplex (d1, d2)-subwords can be defined
as follows. Let G = (V,E) be a graph (with V the set of vertices, E the set of
edges) attached to the rainbow word a1a2 . . . an and integers d1, d2, where
V =

{
a1, a2, . . . , an

}
,

E =
{
{ai, aj} | d1 ≤ |j − i| ≤ d2, i = 1, 2, . . . , n, j = 1, 2, . . . , n

}
.

Using the attached graph, we can prove the following

Proposition 8

D(n; 1, n− 1) = n!

n−1∑
k=0

1

k!
.

Proof. In this case the attached graph is a complete graph on n vertices, and
D(n; 1, n − 1) − n is equal to the number of all paths in this graph. In [9]
the sequence A007526 is defined by the formula an = n

(
an−1 + 1

)
, and “for

n ≥ 1, a(n) is the number of non-empty sequences with n or fewer terms, each
a distinct element of {1, 2, . . . , n}”. So, a(n) is the sum of the number of all
paths and the number of all vertices. For an in [9] the following formula is

given too: an = n!
n−1∑
k=0

1

k!
. From this:

D(n; 1, n− 1) = n!

n−1∑
k=0

1

k!
.

�

The duplex (d1, d2)-complexity of a rainbow word of length n is equal to
the number of paths in the attached graph (NumberOfPaths). The following
modified DFS algorithm (based on [8]) generates all paths in the attached
graph G and prints the corresponding duplex subwords. Global arrays DE-
GREE, PREVIOUS and COLOR have elements indexed from 1 to n. Element
degreei stores the degree of vertex i (corresponding to letter i). Arrays PRE-
VIOUS and COLOR are initiated with zero. Element previousi stores the
previous vertex of vertex i on the current path. We use array COLOR to
avoid cycles. Bi-dimensional array NEIGHBOUR stores the neighbor-lists of
the vertices of graph G. Element neighborik stores the k-th neigbour of vertex
i. Procedure DFS(i) prints all distinct paths starting with root-vertex ai (line

Scattered subwords and composition of naturals 233

n
d1 d2 2 3 4 5 6 7 8 9 10
1 1 4 9 16 25 36 49 64 81 100
1 2 15 42 101 224 469 944 1849 3552
1 3 64 227 716 2111 6058 16971 46546
1 4 325 1434 5707 21244 76487 273580
1 5 1956 10437 50624 229541 1000106
1 6 13699 86114 495161 2662784
1 7 109600 794607 5299996
1 8 986409 8110482
1 9 9864100
2 2 5 8 13 18 25 32 41 50
2 3 16 45 106 225 474 983 2000
2 4 69 264 853 2432 6683 18560
2 5 378 1855 7708 28209 97200
2 6 2497 14832 75865 343674
2 7 19184 133497 812746
2 8 167513 1334960
2 9 1635970
3 3 6 9 12 17 22 27 34
3 4 17 36 91 194 389 756
3 5 62 243 912 2783 7390
3 6 345 1914 9405 37448
3 7 2524 17295 103560
3 8 21901 174694
3 9 214930
4 4 7 10 13 16 21 26
4 5 18 37 64 153 306
4 6 63 186 699 2580
4 7 290 1559 8832
4 8 2075 15794
4 9 19660
5 5 8 11 14 17 20
5 6 19 38 65 100
5 7 64 187 482
5 8 291 1204
5 9 1722
6 6 9 12 15 18
6 7 20 39 66
6 8 65 188
6 9 292

Table 1: Duplex (d1, d2)-complexity for rainbow words of length n

234 Z. Kása, Z. Kátai

3). Procedure PrintCurentPathTo(i) prints the currently generated path
from the current root-vertex to vertex ai (line 8).

DuplexSubwords()

1 NumberOfPaths← 0
2 for i← 1 to n
3 do DFS(i)
4 PRINT(NumberOfPaths)

DFS(i)

1 colori ← 1
2 for k ← 1 to degreei
3 do j ← neighborik
4 if colorj = 0
5 then previousj ← i
6 DFS(j)
7 NumberOfPaths← NumberOfPaths + 1
8 PrintCurrentPathTo(i)
9 colori ← 0

10 previousi ← 0

PrintCurrentPathTo(i))

1 if previousi ← 0
2 then PrintCurrentPathTo(previousi)
3 PRINT(ai)

5 (d1, d2)-complexity and (d1, d2)-compositions

Compositions [1, 6, 7] are partitions in which the order of the summands
(components) does matter. A (d1, d2)-composition is a restricted composition
in which the components are natural numbers from the interval [d1, d2].

For example, for the word abcdefg the (2,4)-subwords, which begin in a and
end in g are: aeg, aceg, adg, acg, which correspond to the following compo-
sitions in which the components are the distances between the letters in the
original word:

6 = 4 + 2 = 2 + 2 + 2 = 3 + 3 = 2 + 4.

Scattered subwords and composition of naturals 235

In general, if a1ai1 · · · aisan+1 is a (d1, d2)-subword of the rainbow word
a1a2 · · · an+1, then this subword corresponds to a composition:

n = (i1 − 1) + (i2 − i1) + . . . + (is − is−1) + (n + 1− is).

Let us consider the following (2,4)-subwords: a1a5a7, a1a3a5a7, a1a4a7, and
a1a3a7 of the word a1a2a3a4a5a6a7. Then the corresponding (2,4)-compositions
are

6 = 4 + 2 = 2 + 2 + 2 = 3 + 3 = 2 + 4.

So, each (d1, d2)-subword of a rainbow word of length n + 1, which begins
by the first, and ends by the last letter of the rainbow word, corresponds to a
(d1, d2)-composition of n.

By a simple reasoning we can obtain a formula between the (d1, d2)-comple-
xity and (d1, d2)-compositions. Let us denote the (d1, d2)-composition of n by
C(n; d1, d2).

Proposition 9 If n ≥ 1, then

K(n; d1, d2) = n +
n−1∑
i=1

iC(n− i; d1, d2)

Example 10 If n = 7, d1 = 2 and d2 = 4, then K(7; 2, 4) = 30.
C(6; 2, 4) = 4, because 6 = 2 + 2 + 2 = 2 + 4 = 3 + 3 = 4 + 2.
C(5; 2, 4) = 2, because 5 = 2 + 3 = 3 + 2.
C(4; 2, 4) = 2, because 4 = 2 + 2 = 4.
C(3; 2, 4) = 1, because 3 = 3.
C(2; 2, 4) = 1, because 3 = 2.
C(1; 2, 4) = 0,

and K(7; 2, 4) = 7 + 1 · 4 + 2 · 2 + 3 · 2 + 4 · 1 + 5 · 1 + 6 · 0 = 30.

Similarly, if we extend the compositions to the case when instead of the
natural numbers, we consider nonzero integers, a relation with the duplex
subwords can be given.

Definition 11 A generalized composition of a natural number is one way
of writing this number as an ordered sum of nonzero integers, such that all par-
tial sums1 are positive and different. If the absolute value of the summands are
from an interval [d1, d2], we call this a generalized (d1, d2)-compositions.

1Partial sums are

k∑
i=1

si.

236 Z. Kása, Z. Kátai

Example 12 The generalized (2,4)-compositions of 6 are:
2 + 2− 3 + 2 + 3
2 + 2− 3 + 4− 2 + 3
2 + 2 + 2
2 + 3− 4 + 2 + 3
2 + 3− 4 + 2 + 2
2 + 3− 2− 2 + 3 + 2
2 + 3− 2 + 3
2 + 4
3− 2 + 3− 2 + 4
3− 2 + 3 + 2
3− 2 + 4− 3 + 2 + 2
3− 2 + 4− 3 + 4
3 + 2− 4 + 3− 2 + 4

3 + 2− 4 + 3 + 2
3 + 2− 3 + 2 + 2
3 + 2− 3 + 4
3 + 3
4− 3 + 2 + 2− 3 + 4
4− 3 + 2 + 3
4− 3 + 4− 3 + 4
4− 3 + 4− 2 + 3
4− 2 + 3− 4 + 2 + 3
4− 2 + 3− 2 + 3
4− 2 + 4
4 + 2.

If a1ai1 · · · aisan+1 is a duplex (d1, d2)-subword of the rainbow word
a1a2 · · · an+1, then this subword corresponds to a generalized (d1, d2)-compo-
sition:

n = (i1 − 1) + (i2 − i1) + . . . + (is − is−1) + (n + 1− is).

References

[1] S. Heubach, A. Knopfmacher, M. E. Mays, A. Munagi, Inversions in compositions
of integers, Quaest. Math. 34, 2 (2011) 187–202. ⇒234

[2] A. Iványi, On the d-complexity of words, Ann. Univ. Sci. Budapest. Sect. Com-
put., 8 (1987) 69–90. ⇒225, 226

[3] Z. Kása, On the d-complexity of strings, Pure Math. Appl., 9, 1–2 (1998) 119–128.
⇒226

[4] Z. Kása, Super-d-complexity of finite words, 8th Joint Conf. on Math. and Com-
put. Sci., Selected Papers, Komárno, July 14–17, 2010. Novodat, 2011 (eds. H. F.
Pop, A. Bege), pp. 257–266. ⇒225, 226

[5] Z. Kása, On scattered subword complexity, Acta Univ. Sapientiae, Inform. 3, 1
(2011) 127–136. ⇒225, 226, 228, 231

[6] C. Kimberling, Enumeration of paths, compositions of integers, and Fibonacci
numbers, Fibonacci Quart. 39, 5 (2001) 430–435. ⇒234

[7] C. Kimberling, Path-counting and Fibonacci numbers, Fibonacci Quart. 40, 4
(2002) 328–338. ⇒234

[8] R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, Addison Wesley Pro-
fessional, 3rd ed., 2001. ⇒232

[9] N. J. A. Sloane, The on-line encyclopedia of integer sequences,
http://www.research.att.com/~njas/sequences/. ⇒232

Received: March 31, 2012 • Revised: November 30, 2012

http://www.math.wvu.edu/~mays/Papers/HeubachKnopfmacherMaysMunag.pdf
http://libra.msra.cn/Journal/7357/quaest-math-quaestiones-mathematicae
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu/Vol_008_1987/069.pdf
http://ac.inf.elte.hu/
http://ac.inf.elte.hu/
http://www.ms.sapientia.ro/~kasa
http://homelinux.capitano.unisi.it/~puma/
http://www.ms.sapientia.ro/~kasa
http://www.selyeuni.sk/macs/pdf/MaCS_compsci2010.pdf
http://www.ms.sapientia.ro/~kasa
http://www.acta.sapientia.ro/acta-info/C3-1/info31-6.pdf
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.fq.math.ca/Scanned/39-5/kimberling.pdf
http://www.fq.math.ca/
http://www.fq.math.ca/Scanned/40-4/kimberling.pdf
http://www.fq.math.ca/
http://www.cs.princeton.edu/~rs/
http://www.informit.com/imprint/index.aspx?st=61085
http://www2.research.att.com/~njas/
http://www.research.att.com/~njas/sequences/

Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 237–246

Pareto-optimal Nash equilibrium detection

using an evolutionary approach

Noémi GASKÓ
Babes-Bolyai University

email: gaskonomi@cs.ubbcluj.ro

Mihai SUCIU
Babes-Bolyai University

email: mihai.suciu@ubbcluj.ro

Rodica Ioana LUNG
Babes-Bolyai University

email: rodica.lung@econ.ubbcluj.ro

D. DUMITRESCU
Babes-Bolyai University

email: ddumitr@cs.ubbcluj.ro

Abstract. Pareto-optimal Nash equilibrium is a refinement of the Nash
equilibrium. An evolutionary method is described in order to detect
this equilibrium. Generative relations induces a non-domination concept
which is essentially in the detection method. Numerical experiments with
games having multiple Nash equilibria are presented. The evolutionary
method detects correctly the Pareto-optimal Nash equilibria.

1 Introduction

Equilibrium detection in non-cooperative games is an essential task. Decision
making processes can be analysed and predicted using equilibrium detection.
The most known equilibrium concept is the Nash equilibrium [9]. Unfortu-
nately this equilibrium has some limitations: if a game has multiple Nash
equilibria, a selection problem can appear. Solution to this problem are the
refinements of Nash equilibria such as: Aumann equilibrium [1], coalition proof
Nash equilibrium [2], modified strong Nash equilibrium [6],[10] (detection of
this equilibrium is described in [5]), etc.

Computing Classification System 1998: I.2.8
Mathematics Subject Classification 2010: 91A10
Key words and phrases: game theory, Pareto-optimal Nash equilibrium, evolutionary
algorithm

237

http://www.cs.ubbcluj.ro/~gaskonomi
http://www.cs.ubbcluj.ro
mailto:gaskonomi@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro
mailto:mihai.suciu@ubbcluj.ro
http://www.econ.ubbcluj.ro/~rodica.lung/
http://www.cs.ubbcluj.ro
mailto:rodica.lung@econ.ubbcluj.ro
http://www.cs.ubbcluj.ro/~ddumitr
http://www.cs.ubbcluj.ro
mailto:ddumitr@cs.ubbcluj.ro

238 N. Gaskó, M. Suciu, R. I. Lung, D. Dumitrescu

The Pareto-optimal Nash equilibrium is one of the most important re-
finements of the Nash equilibrium that selects the NE that is Pareto non-
dominated with respect to the other NE’s of the game. The evolutionary
method, presented in this paper is the first one, for the best of our knowl-
edge.

In the next part of the paper some basic notions from game theory and a
computationally method are described in order to detect the Pareto-optimal
Nash equilibrium. The advantage of the proposed method is that the equi-
librium can be obtained in one step, and there is no need for two different
selection steps.

A finite strategic game is a system G = ((N, Si, ui), i = 1, . . . , n), where:

• N represents a set of players, and n is the number of players;

• for each player i ∈ N, Si is the set of available actions,

S = S1 × S2 × · · · × Sn

is the set of all possible situations of the game and s ∈ S is a strategy
(or strategy profile) of the game;

• for each player i ∈ N, ui : S→ R represents the payoff function (utility)
of the player i.

One of the most important solving concept in non-cooperative game theory is
the Nash equilibrium [9]. The Nash equilibrium (NE) of the game G means
that no player can increase his/her payoff by unilateral deviation.

Let us denote by (si, s
∗
−i) the strategy profile obtained from s∗ by replacing

the strategy of player i with si :

(si, s
∗
−i) = (s∗1, . . . , si,, s

∗
n).

Formally we have the next definition:

Definition 1 A strategy profile s∗ ∈ S is a Nash equilibrium if the inequality

ui(si, s
∗
−i) ≤ ui(s∗),

holds ∀i = 1, . . . , n,∀si ∈ Si, si 6= s∗i .

2 Pareto-optimal Nash equilibrium

To describe the Pareto-optimal Nash equilibrium first we introduce the notion
of the Pareto optimality:

Pareto-optimal Nash equilibrium detection by evolutionary approach 239

Definition 2 A strategy profile s∗ ∈ S is Pareto efficient when it does not
exist a strategy s ∈ S, such that

ui(s) ≥ ui(s∗), i ∈ N,

with at least one strict inequality.

Pareto-optimal Nash equilibrium [8] is a refinement of the Nash equilibrium.
The Pareto-optimal Nash equilibrium is a Nash equilibrium for which there is
no other state in which every player is better off.

Formally:

Definition 3 Let s∗ ∈ S be a Nash equilibrium. s∗ is a Pareto-optimal Nash
equilibrium, there exists no s ∈ S such that:

ui(s) ≥ ui(s∗), ∀i ∈ N.

Let us denote the Pareto-optimal Nash equilibrium by PNE.

Remark 4 The Pareto-optimal Nash equilibrium is a subset of the Nash equi-
librium:

PNE ⊆ NE.

3 Generative relation for Pareto-optimal Nash equi-
librium

Generative relations are used for equilibrium detection by inducing a domi-
nation concept. Two strategy profiles can be dominated, non-dominated, or
indifferent with respect to a generative relation. An evolutionary algorithm
with a generative relation will approximate a certain equilibrium type.

First generative relation has been introduced in [7] for detecting the Nash
equilibrium.

To obtain the Pareto-optimal Nash equilibrium a new generative relation is
introduced next.

Consider two strategy profiles s∗ and s from S. Denote by pn(s∗, s) the
number of strategies, for which some players can benefit deviating.

We may express pn(s∗, s) as:

pn(s∗, s) = card{i ∈ N, ui(s) > ui(s∗), s 6= s∗}
+ card{i ∈ N,ui(si, s∗−i) > ui(s∗)), s∗i 6= si},

where card{R} denotes the cardinality of the set R.

240 N. Gaskó, M. Suciu, R. I. Lung, D. Dumitrescu

Definition 5 Let s∗, s ∈ S. We say the strategy s∗ is better than the strategy
s with respect to Pareto-optimal Nash equilibrium, and we write s∗ ≺PN s, if
the inequality

pn(s∗, s) < pn(s, s∗)

holds.

Definition 6 The strategy profile s∗ ∈ S is a Pareto-optimal Nash non-domi-
nated strategy, if there is no strategy s ∈ S, s 6= s∗ such that s dominates s∗

with respect to ≺PN i.e.
s ≺PN s∗.

Denote by PNS the set of all non-dominated strategies with respect to the
relation ≺PN .

We may consider relation ≺PN as a candidate for generative relation of the
Pareto-optimal Nash equilibrium. This means the set of the non-dominated
strategies with respect to the relation ≺PN equals to the set of Pareto-optimal
Nash equilibria.

It can be considered that the set of all Pareto-optimal Nash equilibrium
strategies as representing the Pareto-optimal Nash equilibrium (PNE) of the
game.

4 Evolutionary equilibria detection

Differential Evolution [11] is an evolutionary algorithm designed for continuous
function optimization. It is a simple but very efficient algorithm, these two
advantages have made DE one of the most popular optimization technique for
real value single objective optimization. It has also been extended to multi-
objective optimization. For the trial vector generation we use the strategy
rand/1/bin proposed in [11]. This version of DE has only four parameters:
n – population size, stopping criterion – number of generations, F ∈ [0, 1] –
mutation factor, and Cr ∈ [0, 1] – crossover rate. High values for F assure
the exploration of the search space while high Cr values assure the space
exploitation. The DE procedure is given by Algorithm 1.

Pareto-optimal Nash equilibrium detection by evolutionary approach 241

9.7 9.75 9.8 9.85 9.9 9.95 10 10.05
9.7

9.75

9.8

9.85

9.9

9.95

10

10.05

s1

s2

Nash
Pareto
PON

Figure 1: Detected Pareto front, Nash equilibrium, and Pareto-optimal Nash
equilibrium strategies for Game 1

Algorithm 1: DE/rand/1/bin

1: Evaluate fitness
2: for i = 0→ max− iterations do
3: Create difference offspring by mutation and recombination
4: Evaluate fitness
5: if the offspring is better than the parent then
6: Replace the parent by offspring in the next generation
7: end if
8: end for

242 N. Gaskó, M. Suciu, R. I. Lung, D. Dumitrescu

106.5 107 107.5 108 108.5 109 109.5 110
106.5

107

107.5

108

108.5

109

109.5

110

f1

f2

Nash
Pareto
PON

Figure 2: Detected Pareto front, Nash equilibrium, and Pareto-optimal Nash
equilibrium payoff for Game 1

5 Numerical experiments

Parameter settings used in numerical experiments are the following: population
size n = 100, number of generation =1000, Cr = 0.7, F = 0.25.

5.1 Game 1

Let us consider the two person game G1 [4], having the following payoff func-
tions:

u1(s1, s2) = s1(10− sin(s
2
1 + s

2
2)),

u2(s1, s2) = s2(10− sin(s
2
1 + s

2
2)),

s1, s2 ∈ [0, 10].

Pareto-optimal Nash equilibrium detection by evolutionary approach 243

0 1 2 3 4 5 6
0

1

2

3

4

5

6

s1

s2

Nash
Pareto
PON

Figure 3: Detected Pareto front, Nash equilibrium, and Pareto-optimal Nash
equilibrium strategies for the two-player version of Game 2

Obtained strategies are depicted in Figure 3, obtained payoffs are depicted
in Figure 2. The Pareto-optimal Nash equilibrium reduces the set of Nash
equilibria.

5.2 Game 2

Let us consider the Bryant game [3], where the payoff function is the following:

ui(s) = ci − si,

where ci = αmin{s1, s2, . . . , sn}, α = 2, and si ∈ [0, 5], i = 1, . . . , n.
Experiments with the two-person version of the game are presented in Fig-

ure 3 (strategies) and 4 (corresponding payoff). The set of the Nash equilib-
rium is the whole interval s∗ = (s∗1, s

∗
2) ∈ [0, 5] , but the Pareto-optimal Nash

equilibrium is only the point (5, 5).

244 N. Gaskó, M. Suciu, R. I. Lung, D. Dumitrescu

0 1 2 3 4 5 6
0

1

2

3

4

5

6

f1

f2

Nash
Pareto
PON

Figure 4: Detected Pareto front, Nash equilibrium, and Pareto-optimal Nash
equilibrium payoff for the two-player version of Game 2

Figure 5 presents the same game with three players. The results are the
same, the algorithm approximates well the Pareto-optimal Nash equilibrium.
Numerical experiments were also conducted for 4, 5 players, and the algorithm
finds correctly the Pareto-optimal Nash equilibrium of the game.

6 Conclusions

Nash equilibrium is not always the best solution in all non-cooperative games.
In games having several Nash equilibria a selection problem can appear, which
Nash equilibrium is best from the detected equilibria.

Pareto-optimal Nash equilibrium is a refinement of the Nash equilibrium.
An evolutionary method based on generative relations is considered in order
to detect this equilibrium. For the best of our knowledge this is the first evo-
lutionary method for detecting the Pareto optimal Nash equilibrium.

Pareto-optimal Nash equilibrium detection by evolutionary approach 245

0

2
4

6

0

2

4

6
0

1

2

3

4

5

f1f2

f3

Nash
Pareto
PON

Figure 5: Detected Pareto front, Nash equilibrium, and Pareto-optimal Nash
equilibrium payoff for the three-player version of Game 2

Numerical experiments show the potential of the proposed method. The
method can deal with continuous and also discrete games. Further work will
address games with multiple players.

Acknowledgements

This project was supported by the national project code TE 252 financed
by the Romanian Ministry of Education and Research CNCSIS-UEFISCSU.
The first author wishes to thank for the support of ”Collegium Talentum”.
The second author wishes to thank for the financial support of the Sec-
toral Operational Programme for Human Resources Development 2007-2013,
co-financed by the European Social Fund, under the project number POS-
DRU/107/1.5/S/76841 with the title Modern Doctoral Studies: Internation-

246 N. Gaskó, M. Suciu, R. I. Lung, D. Dumitrescu

alization and Interdisciplinarity. This publication was made possible through
the support of a grant from the John Templeton Foundation. The opinions
expressed in this publication are those of the authors and do not necessarily
reflect the views of the John Templeton Foundation. This research is sup-
ported by Grant TE 320 - Emergence, auto-organization and evolution: New
computational models in the study of complex systems, funded by CNCSIS,
Romania.

References

[1] R. Aumann, Acceptable points in general cooperative n person games, Contri-
butions to the theory of games, Vol IV, Ann. of Math. Stud., 40 (1959) 287–324.⇒237

[2] B. D. Bernheim, B. Peleg, M. D. Whinston, Coalition-proof equilibria. I. Con-
cepts., J. Econ. Theory 42, 1 (1987) 1–12. ⇒237

[3] J. Bryant, A simple rational expectations Keynes type model, Quarterly J. Eco-
nomics, 98, (1983) 525-529. ⇒243

[4] D. Dumitrescu, R. I. Lung, N. Gaskó, T. D. Mihoc, Evolutionary detection of Au-
mann equilibrium, Genetic and Evolutionary Computation Conference, GECCO
2010, pp. 827–828, 2010. ⇒242

[5] N. Gaskó, R. I. Lung, D. Dumitrescu, Modified strong and coalition proof Nash
equilibria. An evolutionary approach, Studia Univ. Babeş-Bolyai, Inform. 61, 1
(2011) 3–10. ⇒237

[6] J. Greenberg, The core and the solution as abstract stable sets, Mimeo, University
of Haifa, 1987. ⇒237

[7] R. I. Lung, D. Dumitrescu, Computing Nash equilibria by means of evolutionary
computation, Int. J. Comput., Comm. & Control, 3, Suppl.(2008) 364–368. ⇒
239

[8] K. Mordecai, S. Hart, Pareto-optimal Nash equilibria are competitive in a re-
peated economy, J. Econ. Theory, 28, (1982) 320–346. ⇒239

[9] J. F. Nash, Non-cooperative games, Ann. of Math., 54, (1951) 286–295. ⇒237,
238

[10] D. Ray, Credible coalitions and the core, Internat. J. Game Theory, 18, 2 (1989)
185–187. ⇒237

[11] R. Storn, K. Price, Differential evolution – A simple and efficient adaptive scheme
for global optimization over continuous spaces, J. Global Optim., 11, (1997) 341–
359. ⇒240

Received: November 1, 2012 • Revised: December 18, 2012

http://www.ma.huji.ac.il/raumann/
http://press.princeton.edu/catalogs/series/am.html
http://www.stanford.edu/~bernheim/
http://faculty.wcas.northwestern.edu/~mdw054/
http://www.sciencedirect.com/science/journal/00220531
http://economics.rice.edu/~bryant/
http://www.hss.caltech.edu/~akwas/bryantqje83.pdf
http://qje.oxfordjournals.org/
http://qje.oxfordjournals.org/
http://www.coneural.org/dumitrescu/
http://scholar.google.ro/citations?user=eYjCi00AAAAJ&hl=ro
http://www.cs.ubbcluj.ro/~gaskonomi
http://www.cs.ubbcluj.ro/~gaskonomi
http://scholar.google.ro/citations?user=eYjCi00AAAAJ&hl=ro
http://www.coneural.org/dumitrescu/
http://www.cs.ubbcluj.ro/~studia-i/
http://www.haifa.ac.il/index_eng.html
http://scholar.google.ro/citations?user=eYjCi00AAAAJ&hl=ro
http://www.coneural.org/dumitrescu/
http://journal.univagora.ro/
http://www.stanford.edu/~mordecai/
http://www.ma.huji.ac.il/hart/papers/opt-nash.pdf
http://www.sciencedirect.com/science/journal/00220531
http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.
http://annals.math.princeton.edu/
http://www.econ.nyu.edu/user/debraj/
http://www.springer.com/economics/economic+theory/journal/182
http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www.springer.com/business+26+management/operations+research/journal/10898

Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 247–259

Abstract levels of programming theorems

Tibor GREGORICS
Eötvös Loránd University, Faculty of Informatics

Budapest
email: gt@inf.elte.hu

Abstract. In this paper three abstract levels of programming theorems
are introduced. These levels depend on the form of the sequence of the
elements that are produced by a programming theorem. We are going
to investigate the difference between the solutions of the same problem
if these solutions are derived from altering abstract levels of the same
programming theorem. One of the famous programming theorems, the
maximum selection, is chosen as an example, all of its three versions will
be presented, and their usage will be shown in a case study.

1 Introduction

Programming theorems are used frequently to plan algorithms. A program-
ming theorem is a pattern, a problem-program (task-algorithm) pair where
a program can solve the problem. All the tasks that are similar to the prob-
lem of a theorem can be solved on the basis of the algorithm of the theorem.
Programming theorems (summation, counting, maximum selection, and linear
search, etc.) [2, 4] are well-known by all programmers but only a few of them
know that these theorems can be expressed in multiple ways. Most program-
mers consider programming theorems as sample solutions. When they want to
solve a task that is similar to the problem of a theorem, they try to repeat the
same activities that created the program of the theorem. Thus programming
theorems support their algorithmic way of thinking that is used to construct

Computing Classification System 1998: F.3.1
Mathematics Subject Classification 2010: 68N30
Key words and phrases: analogous programming, programming theorem, enumerator,
object-oriented programming

247

http://people.inf.elte.hu/gt
http://people.inf.elte.hu/gt
http://people.inf.elte.hu/gt
mailto:gt@inf.elte.hu

248 T. Gregorics

the algorithm of their task. However, there exists another method to create
programs. This is derivation [1, 4]. Starting from the exact comparison of the
task to be solved and of the problem of the candidate programming theorem,
the program of the theorem has to be updated according to the differences be-
tween the task and the problem. Thus, without algorithmic way of thinking,
the program by which the new task is solved can be produced almost auto-
maticly. This method is faster and guarantees the correctness of the algorithm
but it requires the formal description of the task. The whole of this paper can
be articulated from this single point of view, i.e. when algorithms are planned
with derivation.

The quality (efficiency and compactness) and, very often, the success of the
solution depend on the degree of the universality of the programming theorem.
According to the way that the problem of the theorem is generalized, different
versions of the theorem can be obtained. It is obvious that a good programming
theorem should be adequately universal so that the class of the tasks to be
solved is wide enough. But the theorem must preserve some specialty in order
that it can be identified in a simple way. The reason for this, for example,
is that counting is a separate theorem; nevertheless, it is a special case of
summation.

One of the common properties of programming theorems is that they process
a sequence of elementary values. The way these values are produced may differ.
Programming theorems may be distinguished according to these three levels.
Henceforth these levels are going to be defined, the versions of maximum
selection are going to be fully given, and various solutions of the same task
are going to be produced by using different levels of the same programming
theorem.

2 Different forms of the sequence of elements are
processed

A sequence of elementary values can be placed into a container such as a
sequential file or a linked list. The most widely-known container, however, is
the one-dimensional array. Most programmers use the programming theorems
processing the elements of an array. This is the lowest level of the programming
theorems.

A higher level is the one when an appropriate function gives the elements
that must be proccessed. The domain of this function is always an interval
of integers. (Hereafter [n..m] denotes the integer interval [n,m] ∩ Z for all

Abstract levels of programming theorems 249

n,m ∈ Z.) This function is more universal than an array: each array can be
interpreted as a function over integer interval.

The third level is when the elements are provided by a special activity, an
enumeration. The enumerator is an object that disposes the four enumeration
operators: First(), Next(), End(), Current() [5]. These operators permit
iterating the elements that must be processed. The elements of an array can
be iterated like the proper divisors of a natural number. This point of view
gives more universal definitions of programming theorems.

3 Different levels of the programming theorems

Now the maximum selection is going to be defined in three different forms.
Other programming theorems can be defined in this same way.

3.1 Maximum selection in an array

An array over the non-empty integer interval [m..n] is given where the ele-
ments on the array form a totally ordered set, set H (notation: Hm..n). The
greatest element of the array is sought, and one of the indexes should also be
given where this element occurs.

Specification:
In the formal specification used below the letter A denotes the state space

that enumerates the variables of the problem with their types. The letter Q is
the precondition and R is the postcondition of the problem. If v is a variable
of the state space, then the notation v ′ is an arbitrary, initial value of the
variable v. The variable i is the index variable of the for statement.

A = (x : Hm..n,max : H, ind : Z)
Q = ((x = x ′)∧ (n ≤ m))

R = ((x = x ′)∧ (ind ∈ [m..n])∧ (max = x[ind] =
n

MAX
i=m

x[i]))

Algorithm:

max, ind := x[m],m;
for i = m+1 . . . n do

if x[i] > max then
max, ind := x[i], i;

endif
endfor

250 T. Gregorics

3.2 Maximum selection over interval

There are many problems, the solution of which can not be derived from a
programming theorem in an array but from the same programming theorem
over an interval. For example, suppose the average temperatures of successive
days are fixed in an array (its elements are indexed by the integer interval
[1..n]) and the neighboring pairs of temperature must be counted where the
first value of the pair is under freezing point and the second one is above
it. This task cannot be derived from the counting in an array because the
elements that must be checked in the counting are not elements of an array.
These elements are logical values provided by a logical function (condition)
that is defined over the integer interval [2..n], and these values depend on
the pairs of the original array of the task. Sometimes there is no array at all
in a problem. For example, if the proper divisors of a given natural number
have to be counted, then the function f(i) = i can divide n (which is defined
over the integer interval [2..n/2]) should be checked. Anyway programming
theorems on array are looked upon as special cases of programming theorems
over interval because each array can be interpreted as a function over integer
interval.

There is a non-empty integer interval [m..n] and a function f : [m..n]→ H,
where H is a totally ordered set. The greatest value of the function is sought,
and one of its arguments should also be given.

Specification:

A = (m : Z, n : Z,max : H, ind : Z)
Q = ((m = m ′)∧ (n = n ′)∧ (n ≤ m))
R = ((m = m ′)∧ (n = n ′)∧ (ind ∈ [m..n])

∧(max = f(ind) =
n

MAX
i=m

f(i)))

The postcondition can be written in a shorter form. In this notation, MAX is
a multi-valued function mapping from an interval to H and Z.

R = ((m = m ′)∧ (n = n ′)∧ ((max, ind) =
n

MAX
i=m

f(i)))

Algorithm:

max, ind := f(m),m;
for i = m+1 . . . n do

if f(i) > max then
max, ind := f(i), i;

endif
endfor

Abstract levels of programming theorems 251

3.3 Maximum selection on enumerator

There is an enumerator that can iterate the elements of a finite non-empty
sequence which belongs to set E (enor(E) notates the type of this enumer-
ator). A function is given f : E → H where H is a totally ordered set. The
greatest value over the values mapped from the elements of the enumerator
by the function f is sought, and one element should also be given where this
value occurs.

Specification:
A = (t : enor(E),max : H, ind : E)
Q = ((t = t ′)∧ (|t| 6= 0))

R = ((e ∈ t ′)∧ (max = f(ind) = MAX
e∈t ′

f(e)))

Algorithm:

t.First();
max, ind := f(t.Current()), t.Current();
t.Next();
while ¬t.End() do

if f(t.Current()) > max then
max, ind := f(t.Current()), t.Current();

endif
endwhile

4 Case study

Let us solve the following problems. There is a plan where n points are given.
Which is the greatest distance between pairs of points?

The points on the plan can be represented by their coordinates if there is a
fixed coordinate system. These coordinates are saved in two one-dimensional
arrays: x and y. The coordinates of the ith point are x[i] and y[i]. The distance
between the ith and jth points is

√
(x[i] − x[j])2 + (y[i] − y[j])2 but the greatest

distance is not wanted, so it will be enough to use their squares.
Let d(i, j) denote the square distance (x[i] − x[j])2 + (y[i] − y[j])2 (i = 1..n,

j = 1..n). These values can be arranged in an n× n symmetrical matrix. Our
task is to select the maximal element of the lower triangular part of this matrix
without its diagonal.

It seems that the solution can be created with a maximum selection but
the theorem of maximum selection can investigate only one-dimensional forms

252 T. Gregorics

and here the values of d(i, j)
(
i, j ∈ [1..n]

)
are in a two-dimensional shape.

4.1 First solution: numerous maximum selections in an array

The rows of the virtual lower triangular matrix can be seen as many one-
dimensional arrays with increasing size. If the greatest element is selected
from every row and put into an auxiliary array, then a new maximum selec-
tion in this array can solve the original problem. More precisely, this auxiliary
array indexed by the interval [2..n] (denoted by z) should store value-index
pairs (rec(m : R, k : N)) and the ith element of this array can show the great-
est value and its index in the ith row. By definition z[i] > z[j] if z[i].m > z[j].m.

Specification:

A = (x, y : Rn, z : rec(m : R, k : N)2..n,max : R, ind, jnd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ (∀i ∈ [2..n] : z[i] =
i−1

MAX
j=1

d(i, j))

∧((max, jnd), ind) =
n

MAX
i=2

z[i]))

This problem can be solved with n maximum selections. The first n–1 max-
imum selections fill an auxiliary array z and the last one selects the maximal
elements of this array.

Each of the first n–1 maximum selections works in one of the rows of the
virtual lower triangular matrix. The ith row of this matrix is considered as
an array indexed by the interval [1..i–1], and the jth element of this array
is the value d(i, j). Obviously these maximum selections can be derived from
the programming theorem in an array. The assignment z[i] := (d(i, j), j) is a
shorter form of the assignments z[i].m, z[i].k := d(i, j), j

for i = 2 . . . n do
z[i] := (d(i, 1), 1);
for j = 2 . . . i–1 do

if d(i, j) > z[i].m then
z[i] := (d(i, j), j);

endif
endfor

endfor

The last maximum selection is also derived from the programming theorem
in an array because it uses the auxiliary array z. The variables i and j are the

Abstract levels of programming theorems 253

index-variables of the for statements.

(max, jnd), ind := z[2], 2;
for i = 3 . . . n do

if z[i].m > max then
(max, jnd), ind := z[i], i;

endif
endfor

Finally, the whole solution is repeated with minor modifications. Hence the
second row of the lower triangular matrix contains only one element, this is the
z[2] which can be calculated without maximum selection: z[2] := (d(2, 1), 1).
Moreover the assigment (max, jnd) := z[i] is equivalent to the assigment
max, jnd := z[i].m, z[i].k, and the value of the variable jnd is enough to
be set at the end of the algorithm. At the end the local auxiliary variable s is
introduced to contain the value of d(i, j).

z[2] := (d(2, 1), 1);
for i = 3 . . . n do

z[i] := (d(i, 1), 1);
for j = 2 . . . i–1 do

s := d(i, j);
if s > z[i].m then

z[i] := (s, j);
endif

endfor
endfor
max, ind := z[2].m, 2;
for i = 3 . . . n do

if z[i].m > max then
max, ind := z[i].m, i;

endif
endfor
jnd := z[ind].k;

Note that the auxiliary array can be eliminated from this program if the
two outsider loops (where i goes from 3 to n) are combined. However, this
solution can be produced in a simpler way if a more generalized programming
theorem is used.

254 T. Gregorics

4.2 Second solution: several maximum selections over interval

Let us follow the previous line of thought but instead of the auxiliary array, a
function is going to be defined which gives the greatest element and its index
from every row of the virtual lower triangular matrix.

Specification:
A = (x, y : Rn,max : R, ind, jnd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ ((max, jnd), ind) =
n

MAX
i=2

g(i)))

where g : [2..n]→ R× N and g(i) =
i−1

MAX
j=1

d(i, j))

This problem can be solved with the maximum selection over interval 2..n
with the function g. By definition, g(i) > g(j) if g(i)1 > g(j)1. The variable
i is the index-variable of the for statement, the variable m and k are local
auxiliary variables.

(max, jnd), ind := g(2), 2;
for i = 3 . . . n do

(m,k) := g(i);
if m > max then

max, jnd, ind := m,k, i;
endif

endfor

The subproblem (m,k) := g(i) is also a maximum selection but its interval
is [1..i–1] and its function is d(i, j). The variable j is the index-variable of the
for statement. The variable s is a local auxiliary variable. The main program
calls this subprogram twice.

m,k := d(i, 1), 1;
for j = 2 . . . i–1 do

s := d(i, j);
if s > m then

m,k := s, j;
endif

endfor

We can compare this solution with the previous one if this program is com-
bined. The value of g(2) can be calculated as d(2, 1) and 1; hence, the initial
assignment will be max, jnd, ind := d(2, 1), 1, 2.

Abstract levels of programming theorems 255

max, jnd, ind := d(2, 1), 1, 2;
for i = 3 . . . n do

m,k := d(i, 1), 1;
for j = 2 . . . i–1 do

s := d(i, j);
if s > m then

m,k := s, j;
endif

endfor
if m > max then

max, jnd, ind := m,k, i;
endif

endfor

4.3 Third solution: one maximum selection over interval

Let us imagine that the elements of the lower triangular matrix are in a se-
quence. The first element of this sequence is the single element of the second
row (it is indexed with (2, 1)), the 2nd element is the one on the (3, 1) posi-
tion, the 3rd is the (3, 2), 4th is (4, 1)] and so on. The size of this sequence is
n(n–1)/2. How can the ith element of this sequence be found in the matrix?

It is easy to see that the (i, j)th element of the lower triangular matrix (j < i)
is the ((i–1)(i–2)/2 + j)th element of the sequence because there are (i–1)(i–
2)/2 elements in front of the ith row in the lower triangular matrix. But where
can the kth element of the sequence be found in the matrix?

Lemma 1 The kth element of the sequence is the (i, j)th element of the matrix
where j = 2k−(i−1)(i−2) and if 2k > d

√
2ke(d

√
2ke−1), then i = d

√
2ke+1,

otherwise i = d
√
2ke.

Proof. Because of k = (i− 1)(i− 2)/2+ j(j < i), we get

(i− 1)(i− 2) < 2k ≤ i(i− 1). (1)

It follows that (i − 2) <
√
2k < i, so the value d

√
2ke (upper integer part)

may be i or i − 1. If 2k > d
√
2ke(d

√
2ke − 1), then d

√
2ke = i − 1 because

supposing d
√
2ke = i we get 2k > i(i − 1) that is a contradiction of (1). If

2k ≤ d
√
2ke(d

√
2ke − 1), then i = d

√
2ke because supposing d

√
2ke = i − 1,

we get 2k ≤ (i− 1)(i− 2) that is also a contradiction. �

Based on this lemma, the following function can be defined:

256 T. Gregorics

h : [1..n(n–1)/2]→ N× N

h(k) =

{
(d
√
2ke+ 1, 2kd

√
2ke(d

√
2ke− 1)) if 2k > (d

√
2ke− 1)d

√
2ke

(d
√
2ke, 2k(d

√
2ke− 1)(d

√
2ke− 2) if 2k ≤ (d

√
2ke− 1)d

√
2ke

Now the problem can be re-specified. We introduce the auxiliary variable
knd.

A = (x, y : Rn,max : R, ind, jnd, knd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ ((max, knd) =
n(n−1)/2

MAX
k=1

d(h(k)))

∧((ind, jnd) = h(knd)))

This problem can be derived to the maximum selection over the interval
[1..n(n–1)/2] with the function h. In the initial assignment, the expression
d(h(1)) can be changed to d(2, 1). The variable k is the index-variable of the
for statement, the variable s is a local auxiliary variable.

max, knd := d(2, 1), 1;
for k = 2 . . . n(n–1)/2 do

if d(h(k)) > max then
max, knd := s, k;

endif
endfor
(ind, jnd) := h(knd)

Let us take some minor modifications. The knd auxiliary variable can be
eliminated but the local auxiliary variables i, j and s are introduced.

max, ind, jnd := d(2, 1), 2, 1;
for k = 2 . . . n(n–1)/2 do

(i, j) := h(k);
s := d(i, j);
if s > max then

max, ind, jnd := s, i, j;
endif

endfor

Abstract levels of programming theorems 257

4.4 Fourth solution: one maximum selection on enumerator

The specification of the problem can be rewritten:
A = (x, y : Rn,max : R, ind, jnd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ ((max, (ind, jnd)) =
n

MAX
i=2

(
i−1

MAX
j=1

d(i, j))))

= ((x = x ′)∧ (y = y ′)∧ ((max, (ind, jnd)) =
n,j−1

MAX
i=2,j=1

d(i, j))).

The last expression of this specification resembles a two-dimensional enu-
meration [5]. This enumeration should traverse the elements of a virtual lower
triangular matrix, i.e. the sequence of index pairs (2, 1), (3, 1), (3, 2), (4, 1), . . . ,
(n, 1), (n, 2), . . . , (n,n–1) should be enumerated. Let us take this enumerator
into the state space.

A = (t : enor(N× N),max : R, ind, jnd : N)
Q = ((t = t ′)∧ (|t| 6= 0))

R = ((max, (ind, jnd)) = MAX
(i,j)∈t ′

d(i, j))).

The enumerator handles two indexes: i and j. The operator First() set them
to the pair (2, 1), the operator Next() increases the variable j if j < i–1,
otherwise (j = i–1) increases the variable i and set j to 1. The operator End()
gives true if i > n. (This process produces the same sequence of index pairs as
in the previous solution.) This enumeration can be implemented with a double
loop and can be combined with the maximum selection [5]. The local auxiliary
variable s is also introduced.

max, ind, jnd := d(2, 1), 2, 1;
for i = 3 . . . n do

for j = 2 . . . i–1 do
s := d(i, j);
if s > max then

max, ind, jnd := s, i, j;
endif

endfor
endfor

5 Discussion

The first two solutions in the case study are very similar. It is easy to see
that the second algorithm can be received from the first one through applying

258 T. Gregorics

equivalent transformations [3]. But the second solution, which is based on a
more universal programming theorem, avoids these transformations. We em-
phasize that using a more universal programming theorem results in a more
efficient algorithm (it does not require an auxiliary array, so its memory space
is smaller).

The second and third solutions are based on the programming theorem over
interval but the third one uses a function abstraction. Therefore, in the third
solution, it is enough to apply the theorem of maximum selection only once.
Here the structure of the solving algorithm is simpler than the algorithm of
the second solution; moreover, it is the simplest structure among all solutions.

The relationship between the third and fourth algorithm can be seen clearly.
Both of them are founded on the same idea, that is, they traverse the elements
of the lower triangular matrix row by row. Actually the third solution is com-
plicated. It uses a function abstraction but this function is not trivial. The
fourth solution uses a data abstraction when it defines and implements an
appropiate enumerator. The structure of the algorithm of the fourth solution
is a loop in the loop which is more difficult than the single loop of the third
algorithm, but this double loop is the routine algorithm among matrices. Nev-
ertheless, the enumeration could have been implemented in other ways (as we
have pointed out) and in this case the algorithm would be a simple loop. The
cost of the production of the fourth solution is surely cheaper than that of the
third one.

On the whole we can deduct that the more universal programming theorem
is used the cheaper the solution is. The cost of production may be cheaper, the
structure of the result algorithm may be simpler or its efficient may be better.
Then again, to learn and to use an advanced tool is always more difficult than
a simple one. Bescause of this in the teaching of programming, gradation must
be followed: firstly, programming theorems in an array are to be taught, then
the ones over interval, and at the end the theorems on enumerator.

Acknowledgements

This paper is supported by the European Union and co-financed by the Eu-
ropean Social Fund (grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-
0003).

Abstract levels of programming theorems 259

References

[1] T. Gregorics, S. Sike, Generic algorithm patterns, Proc. Formal Methods in Com-
puter Science Education FORMED 2008, Satellite workshop of ETAPS 2008,
Budapest, Hungary, March 29, 2008, 141–150. ⇒248

[2] Á. Fóthi, Bevezetés a programozáshoz, ELTE Eötvös Kiadó. 2005. (Introductory
programming, in Hungarian) ⇒247

[3] Á. Fóthi, Z. Horváth, J. Nyéky-Gaizler, A relational model of transformation in
programming, Proc. 3th International Conference on Applied Informatics, Eger-
Noszvaj, Hungary, August 24–28. 1997. ⇒258

[4] Sz. Csepregi, A. Dezső, T. Gregorics, S. Sike, Automatic implementation of ser-
vice required by components, PROVECS’2007 Workshop, Zurich, Switzerland,
ETH Technical Report, 567. 2007. ⇒247, 248

[5] T. Gregorics, Programming theorems on enumerator, Proc. Teaching Mathemat-
ics and Computer Science, Debrecen, Hungary, 8/1 (2010), 89–108. ⇒249, 257

Received: August 29, 2012 • Revised: November 30, 2012

http://people.inf.elte.hu/gt
 http://www.eotvoskiado.hu/
http://aszt.inf.elte.hu/~hz/
http://aszt.inf.elte.hu/~nyeky/
http://people.inf.elte.hu/gt
http://e-collection.library.ethz.ch/eserv/eth:4900/eth-4900-01.pdf
http://people.inf.elte.hu/gt

Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260–288

Parallel enumeration of degree sequences

of simple graphs

Antal IVÁNYI
Eötvös Loránd University,

Faculty of Informatics
email: ivanyi.antal2@upcmail.h

Loránd LUCZ
Eötvös Loránd University,

Faculty of Informatics
email: lorand.lucz@gmail.com

Tamás MATUSZKA
Eötvös Loránd University,

Faculty of Informatics
email: matuszka1987@gmail.com

Shariefuddin PIRZADA
Kashmir University,

Department of Mathematics
email: sdpirzada@yahoo.co.in

Abstract. The problem of testing, reconstruction and enumeration of
the degree sequences of simple graphs has rich bibliography. In this paper
we report on the parallel enumeration of the degree sequences of simple
graphs resulting the number of sequences for n = 24, . . . , 29 vertices.
We also present the linear test version of Havel-Hakimi algorithm and
compare it with the earlier linear testing algorithms.

1 Introduction

In the practice an often appearing problem is the ranking of different objects
(examples can be found e.g. in [13]), assignment of points to the objects and
ranking of the objects on the base of the sum of the received points.

Especially great bibliography has the case when the results are represented
by a simple graph and the problem is the test, reconstruction and enumeration
of the degree sequences. Havel in 1955 [8], Erdős and Gallai in 1960 [5], Hakimi

Computing Classification System 1998: G.2.2.
Mathematics Subject Classification 2010: 05C85, 68R10
Key words and phrases: simple directed graphs, approximate filtering algorithms, ap-
proximate reconstruction algorithms, linear Havel-Hakimi algorithm

260

http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
mailto:ivanyi.antal2@upcmail.hu
http://people.inf.elte.hu/lulsaai
http://www.elte.hu/en
mailto:lorand.lucz@gmail.com
http://people.inf.elte.hu/tomintt/
http://www.elte.hu/en
mailto:matuszka1987@gmail.com
http://maths.uok.edu.in
http://maths.uok.edu.in/Faculty5.aspx
mailto:sdpirzada@yahoo.co.in

Parallel enumeration of degree sequences of simple graphs 261

in 1962 [7], Tripathi et al. in 2010 [36] proposed a method to decide, whether
a sequence of nonnegative integers can be the degree sequence of a simple
graph. The running time of their algorithms in worst case is Ω(n2). In 2007
Takahashi [32], in 2009 Hell and Kirkpatrick [9] and in 2011 Iványi et al. [13]
independently proposed an algorithm, whose worst running time is Θ(n).

There are several new proofs for the classical Havel-Hakimi and Erdős-Gallai
theorems [2, 18, 22, 34, 35, 36].

Extensions for (0, b)-graphs [3, 22] and (a, b)-graphs [10, 11, 12, 15, 24] are
also known.

There are earlier parallel results, e.g. in [23, 31, 28]. As an application of our
linear time algorithm we describe Erdős-Gallai-Enumerative algorithm and its
parallel version used to enumerate the different degree sequences of simple
graphs for 24, . . . , 29 vertices. We also present the linear test version of
Havel-Hakimi algorithm and compare it with the earlier linear algorithms.

Let n ≥ 1. We call a sequence s = (s1, . . . , sn) (l, u, n)-bounded, if 0 ≤ si ≤ n
for i = 1, . . . , n, n-bounded, if it is (0, n − 1, n)-bounded, n-regular, if the
conditions n − 1 ≥ s1 ≥ · · · ≥ sn ≥ 0 hold, and n-even, if the sum of the
elements of s is even. If there exists a graph with n vertices which has the
degree sequence s, then we say that s is n-graphical. If such graph does not
exist, then we say that s is nongraphical. If n is not necessary, then we omit it in
the terms n-bounded, n-regular, n-even and n-graphical. The first i elements
of an n-regular s are called the head, and the last n− i elements are called the
tail, belonging to the element i of s.

The main aim of this paper is to report on the parallel realization of the
linear Erdős-Gallai algorithm. Although this problem is interesting in itself,
for us the main motivation was our wish to answer the question formulated in
the recent monograph [6, Research problem 2.3.1] of András Frank: ”Decide
if a sequence of n integers can be the final score of a football tournament of n
teams.” During testing and reconstructing of potential football sequences im-
portant subproblem is the handling of sequences of draws. Since the questions
”Is this sequence graphical?” and ”Is this sequence a football draw sequence?”
are equivalent (see [12, 16, 17, 19, 27]), the quick answer is vital for us.

The structure of the paper is as follows. After the introductory Section 1
in Section 2 we describe the linear test version of the classical Havel-Hakimi
algorithm, then in Section 3 we present the enumerating version of the linear
Erdős-Gallai algorithm. In Section 4 the parallel version of the enumerating
Erdős-Gallai algorithm is analyzed, and finally in Section 5 we summarize the
results.

262 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

2 Linear Havel-Hakimi algorithm (HHL)

In a previous paper [13] we described the classical Havel-Hakimi [7, 8] and
Erdős-Gallai [5] algorithms and their some improvements as linear Erdős-
Gallai (EGL) and jumping Erdős-Gallai (EGLJ) algorithms.

Here we present the linear version of Havel-Hakimi algorithm (HHL) [12]
and compare it with the previous linear algorithms EGL and EGLJ [13]. It is
important to remark that this linear version of HH only tests the investigated
sequences without their reconstruction.

In the worst case the original Havel-Hakimi algorithm requires quadratic
time to test the (0, 1, n)-regular sequences. Using the new concepts weight
point and reserve we reduced the worst running time to O(n).

Let s = (s1, . . . , sn) be a potential graphical sequence. The definition of
the weight point wi belonging to si was introduced in [13] in connection with
Erdős-Gallai-Linear: if s1 ≥ i, then wi is the largest k (1 ≤ k ≤ n) having
the property sk ≥ i. But if s1 < i, then wi = 0. EGL exploits the property wi
ensuring that if i ≤ wi, then the key expression min j, sk in the Erdős-Gallai
theorem equals i, otherwise equals sk.

In HHL the weight point wi determines the increment of the tail capacity
when we switch to the investigation of the next element of s.

The reserve ri belonging to si is defined as the unused part of the actual
tail capacity and can be computed by the formulas

r1 = w1 − 1− s1 (1)

and

ri = wi + ri−1 − si for 2 ≤ i ≤ n− 1. (2)

The programs of this paper are written using the pseudocode described in
[4].

Input. n: number of vertices (n ≥ 4);
s = (s1, . . . , sn): the investigated regular sequence.

Output. 0 or 1.
Work variable. i: cycle variable;

r = (r1, . . . , rn): ri the reserve belonging to si;
w = (w1, . . . , wn): wi the weight point belonging to si;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of s.

Havel-Hakimi-Linear(n, s)

01 if ss1+1 == 0 // lines 01–02: test of s1 in constant time

Parallel enumeration of degree sequences of simple graphs 263

02 return 0
03 if s1 == 0 // lines 03–04: test of the sequence consisting of only zeros
04 return 1
05 H1 = s1 // line 05: initialization of H
06 for i = 2 to n // lines 06–07: further Hi’s
07 Hi = Hi−1 + si
08 if Hn is odd // lines 08–09: test of the parity
09 return L
10 w1 = n // lines 10–13: computation of the first weight point and reserve
11 while sw1

< 1

12 w1 = w1 − 1
13 r1 = w1 − 1− s1
14 for i = 2 to n− 1 // lines 14–21: testing of s
15 if si ≤ i or si+1 = 0
16 return 1
17 wi = wi−1
18 while swi

< i and wi > 0
19 wi = wi − 1
20 if si > wi − 1+ ri−1 // line 20: Is s graphical?
21 return 0 // line 21: s is not graphical
22 ri = wi + ri−1 − si // line 22: update of the reserve
23 return 1 // line 23: s is graphical

Theorem 1 The running time of Havel-Hakimi-Linear is in best case
Θ(1), and in worst case it is Θ(n).

Proof. If the condition in line 1 or 3 holds, then the running time is Θ(1).
If not, then we decrease the actual w at most n times and the remaining
operations require O(1) operations for all reductions. �

The C++ code of HHL is as follows (in the original code [20] every & is
substituted by \&, every by \ , every < by $<$, every > by $>$.

//Linear Havel-Hakimi algorithm (HHL)
bool HHL(const int& n, const int s[], vector<vector<int> >& ops) {

if (F[1] < 0) { return false; }
vector<int>& v = ops.at(n);
v.push back(0);

int w[n], r[n], H[n];
++v.back();

264 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

if (s[0] == 0) { // line 1 of the pseudocode
return true; // line 2 of the pseudocode
}
++v.back(); // if (s[s[0]+1] == 0)
if (s[s[0]] == 0) { // line 3 of the pseudocode

return false; // line 4 of the pseudocode
}
H[0] = s[0]; // line 5 of the pseudocode
++v.back(); // since H[0] = s[0]; miatt
++v.back(); // int i=1 miatt
for (int i=1; i¡n; ++i) { // line 6 of the pseudocode

H[i] = H[i-1] + s[i]; // line 7 of the pseudocode
v.back() += 4; // i¡n, ++i, H[i] = H[i-1] + s[i] (2 operations)
}

v.back() += 2;
if (H[n-1] %2 == 1) { // line 8 of the pseudocode

return false; // line 9 of the pseudocode

w[0] = n-1; // line 10 of the pseudocode
++v.back();
while (s[w[0]] ¡ 1) { // line11 of the pseudocode

—w[0]; // line 12 of the pseudocode
v.back() += 2;
}
r[0] = w[0] - s[0]; // line 13 of the pseudocode
v.back() += 2;

++v.back(); // i=1 miatt
for (int i=1; i¡n-2; ++i) { // line 14 of the pseudocode

v.back() += 2;
v.back() += 3;
if (s[i]¡=i+1 —— s[i+1] == 0) { // line 15 of the pseudocode

return true; // line 16 of the pseudocode
}
w[i] = w[i-1]; // line 17 of the pseudocode
++v.back();
while (s[w[i]]¡i+1 && w[i]¿0) { // line 18 of the pseudocode
–w[i]; // line 19 of the pseudocode

Parallel enumeration of degree sequences of simple graphs 265

v.back() += 4;
}
if (s[i]¿w[i]+r[i-1]) { // line 20 of the pseudocode

v.back() += 2;
return false; // line 21 of the pseudocode

}
r[i] = w[i] + r[i-1] - s[i]; // line 22 of the pseudocode
v.back() += 3;

}
return true; // line 23 of the pseudocode
}

An even sequence s = (s1, . . . , sn) is called zerofree, if sn > 0. Table 1 shows
the number (Ez(n)) of the tested zerofree sequences, further the average test-
ing time of one zerofree sequence in microseconds for EGL (TEGL(n)/Ez(n)),
EGLJ (TEGLJ(n)/Ez(n)), and HHL (THHL(n)/Ez(n)), when n = 10, . . . , 19.

The values n = 1, . . . , 9 are omitted from the table since our program rounds
the running time to zero.

n Ez(n)
TEGL(n)
Ez(n)

TEGLJ(n)
Ez(n)

THHL(n)
Ez(n)

10 21 942 0.683620 0.000000 0.000000
11 83 980 0.369136 0.190521 0.381083
12 323 554 0.336883 0.194712 0.287433
13 1 248 072 0.299662 0.213128 0.237967
14 4 829 708 0.319895 0.226101 0.222788
15 18 721 080 0.338281 0.241371 0.226643
16 72 714 555 0.348197 0.251665 0.233406
17 282 861 360 0.379355 0.255846 0.240789
18 1 101 992 870 0.377512 0.267014 0.249460
19 4 298 748 300 0.394319 0.281491 0.261416

Table 1: Number of zerofree sequences, further the average running time for a
zerofree sequence in the case of EGL, EGLJ and HHL algorithms in microsec-
onds.

Figure 1 shows the running times of EGL, EGLJ and HHL as the function
of the number of vertices. On the figure (green) triangles show the (n, T(n))
pairs for the linear Erdős-Gallai algorithm (EGL), (red) squares for the linear
jumping Erdős-Gallai algorithm (EGLJ) and (blue) diamonds for the linear
Havel-Hakimi algorithm (HHL).

266 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Figure 1: Average running time of EGL, EGLJ, and HHL.

Table 2 shows the average number of operations used to test one zerofree se-
quence in microseconds for EGL (OEGL(n)/Ez(n)), EGLJ (OEGLJ(n)/Ez(n)),
and HHL (OHHL(n)/Ez(n)), when n = 10, . . . , 19. The values n = 1, . . . , 9 are
omitted from the table since our program rounds the corresponding running
time to zero.

Figure 2 shows the running times of EGL, EGLJ and HHL as the function
of the number of vertices. On the figure (green) triangles show the (n, T(n))
pairs for the linear Erdős-Gallai algorithm (EGL), (red) squares for the lin-
ear jumping Erdős-Gallai algorithm (EG) and (blue) diamonds for the linear
Havel-Hakimi algorithm (HHL). The lines are drawn using the method of least
squares.

As operations we counted comparisons, additions, subtractions, multiplica-
tions, divisions, residual divisions and assignments. The operations with in-
dices are exceptions. For example the command H[i] − i · (i− 1) > R requires
three operations: the subtraction H[i] − i · (i− 1), the multiplication i · (i− 1),
and the comparison H[i] − i · (i − 1) > R. The subtractions of type i − 1 are
not counted when i is a cycle variable in the body of a cycle.

As an example we consider in details the testing of the zerofree input se-

Parallel enumeration of degree sequences of simple graphs 267

n
OEGL(n)
Ez(n)

OEGLJ(n)
Ez(n)

OHHL(n)
Ez(n)

2 35.000 13.000 14.000
3 55.000 26.500 18.000
4 73.000 37.667 29.889
5 91.000 51.429 39.357
6 101.609 61.473 48.591
7 123.495 72.480 57.553
8 139.162 82.042 66.123
9 154.944 91.751 74.552

10 170.421 100.929 82.749
11 185.885 110.047 90.824
12 201.209 118.930 98.758
13 212.177 124.720 106.591
14 231.659 136.373 114.739
15 246.785 144.939 121.976
16 261.846 153.411 129.552

Table 2: The average number of operations for a zerofree sequence in the case
of EGL, EGLJ and HHL algorithms.

quence (1, 1). This example is based on the C++ codes of the algorithms [20].
HHL (its pseudocode and C++ code see in this paper too) requires 14

operations: 1 comparison in line 1, 1 comparison in line 3, 1 assignment in line
5, 5 operations in lines 6 and 7 (1 assignment i = 1, 1 addition increasing i, 2
comparison i < n, 1 assignment H1 = s1), 1 residual division and 1 comparison
in line 8, 1 assignment in line 10, 2 subtractions and 1 assignment in line 13
and 1 comparison in lines 14–22.

EGLJ requires 13 operations: 1 assignment in line 1, 5 operations in lines
2–3 (1 initialization of the cycle variable, 1 increasing of the cycle variable,
1 comparison, 2 assignment for Hi), 1 residual division and 1 comparison in
lines 5–8, 1 assignment in line 9, 4 operations in lines 10–28 (1 initialization
of the cycle variable, 1 increasing of the cycle variable, 1 comparison in line
11 and 1 comparison in line 17).

EGL requires 35 operations: 1 assignment in line 1, 9 operations in lines
2–3 (1 initialization of the cycle variable, 2 increasings of the cycle variable, 2
testing of the cycle variable, 2 additions for Hi, 2 assignments for Hi, 1 residual
division and 1 comparison in line 4, 1 assignment in line 7, 7 operations in

268 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Figure 2: Amortized number of operations for EGL, EGLJ, and HHL.

lines 8–12 (1 initialization of the cycle variable, 2 increasings of the cycle
variable, 2 comparisons, 2 tests of the branching), 4 operations in lines 13–
14 (1 initialization of the cycle variable, 1 decreasing of the cycle variable, 1
comparison, 1 assignment), 11 operations in lines 15–23 (1 initialization of the
cycle variable, 9 comparisons,1 increasing of the cycle variable).

Table 3 shows the number of the tested zerofree sequences (Ez(n)), fur-
ther the average testing time of one tested sequence in microseconds for EGL
(oEGL(n)/Ez(n)), EGLJ (oEGLJ(n)/Ez(n)), and HHL (oHHL(n)/Ez(n)), when
n = 10, . . . , 19. The values n = 1, . . . , 9 are omitted from the table since our
computer rounds the running times to zero.

Figure 3 shows the running times of EGL, EGLJ and HHL as the function
of the number of vertices. On the figure (green) triangles show the (n, T(n))
pairs for the linear Erdős-Gallai algorithm (EGL), (red) squares for the lin-
ear jumping Erdős-Gallai algorithm (EG) and (blue) diamonds for the linear
Havel-Hakimi algorithm (HHL).

The most interesting data of Figure 3 are in the last three columns: they
show that our algorithm is a CAT (Constant Time Amortized) algorithm (see
[26]). In this columns the data show slowly decreasing character. The bases of

Parallel enumeration of degree sequences of simple graphs 269

n Gz(n)
OEGL(n)
Ez(n)

OEGLJ(n)
Ez(n)

OHHL(n)
Ez(n)

2 1 17.500 6.500 7.000
3 2 18.333 8.833 6.000
4 7 18.250 9.417 7.472
5 20 18.200 10.286 7.781
6 71 16.935 10.246 8.099
7 240 17.642 10.154 8.222
8 871 17.395 10.255 8.265
9 3 148 17.216 10.195 8.284

10 11 655 17.042 10.093 8.275
11 43 332 16.899 10.004 8.257
12 162 769 16.767 9.911 8.230
13 614 718 16.321 9.593 8.199
14 2 330 537 16.547 9.741 8.196
15 8 875 768 16.452 9.663 8.132
16 33 924 858 16.365 9.588 8.097

Table 3: Number of zerofree graphical sequences (Gz(n)), further average num-
ber of operations for an element of a zerofree sequence in the case of EGL,
EGLJ and HHL algorithms.

this decreasing tendency are Lemma 13 and Theorem 22 in [13]. According to
these assertions E(n) = Θ(4n/

√
n) and G(n) = O(4n/((logn)C

√
n)), where C

is a positive constant. These assertions imply that G(n)/E(n) tends to zero,
when n tends to infinity, and so the limits of the sequences in the last three
columns are determined by the average numbers of operations necessary to
exclude the nongraphical sequences.

3 Enumerating Erdős-Gallai algorithm (EGE)

A classical problem of the graph theory is the enumeration of the degree se-
quences of different graphs—among others of simple graphs. For example The
On-Line Encyclopedia of Integer Sequences [29] contains for n = 1, . . . , 29

vertices the number of degree sequences of simple graphs (the values for
n = 20, . . . , 23 were set in July of 2011 by Nathann Cohen, and in November
15, 2011 for 24, . . . , 29 by us [13]).

We applied the new quick EGL to get these numbers for larger values of n.

270 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Figure 3: Average number of operations used for one element of zerofree se-
quences by EGL, EGLJ, and HHL.

Our starting point was to test all regular sequences and so enumerate the
graphical ones. It is easy to see that there are

R(n) =

(
2n− 1

n

)
(3)

regular sequences. In 1987 Ascher derived the following explicit formula for
the number of even sequences E(n).

Lemma 2 (Ascher [1], Sloane, Pfoffe [30]) If n ≥ 1, then the number of even
sequences E(n) is

E(n) =
1

2

((
2n− 1

n

)
+

(
n− 1

bn/2c

))
. (4)

Proof. See [1]). �

Using (3) and (4) we computed R(n) and E(n) for i = 1, . . . , 100. The results
for n = 1, . . . , 38 were published in [13], for n = 39, . . . , 60 are presented in
Table 4, and all values and the corresponding program can be found in [20].

Parallel enumeration of degree sequences of simple graphs 271

n R(n) E(n)

39 13608507434599516007800 6804253717317430635800
40 53753604366668088230810 26876802183368505747610
41 212392290424395860814420 106196145212266853671620
42 839455243105945545123660 419727621553107337030440
43 3318776542511877736535400 1659388271256207997204920
44 13124252690842425594480900 6562126345421738821981380
45 51913710643776705684835560 25956855321889404891899640
46 205397724721029574666088520 102698862360516845690726160
47 812850570172585125274307760 406425285086296679352517680
48 3217533506933149454210801550 1608766753466582789006321550
49 12738806129490428451365214300 6369403064745230349484448700
50 50445672272782096667406248628 25222836136391079936354733752
51 199804427433372226016001220056 99902213716686176213303828904
52 791532924062974587678774064068 395766462031487417819020269060
53 3136262529306125724764953838760 1568131264653063110341743393432
54 12428892245768720464809261509160 6214446122884360719139487166608
55 49263609265046928387789436527216 24631804632523465167364431087664
56 195295022443578894680165266232892 97647511221789449252255283306556
57 774327632846470705223111406467256 387163816423235356435901003613848
58 3070609578529107968988200404956360 1535304789264553992010916827363440
59 12178349853827309571919303301013360 6089174926913654800993284900277200
60 48307454420181661301946569760686328 24153727210090830680539430271558520

Table 4: Number of regular and even sequences for n = 39, . . . , 60.

The values of R(n) for n = 1, . . . , 100 are also contained in OEIS as sequence
A001700 [21].

Due to the following lemma it is enough to test only the zerofree sequences.

Lemma 3 (Iványi, Lucz, Móri, Sótér [13]) If n ≥ 2, then the number of n-
graphical sequences G(n) can be computed from the number of (n−1)-graphical
sequences G(n− 1) and the number of n-graphical zerofree sequences Gz(n):

G(n) = G(n− 1) +Gz(n),

and if n ≥ 1 then

G(n) = 1+

n∑
i=2

Gz(i).

Proof. See [13]. �

Taking into account these results we have to test only about one fourth of
the regular sequences. Table 5 shows the number of the zerofree sequences,

272 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

n Gz(n) Ez(n)/R(n) Gz(n)/R(n) G(n)/R(n)

1 0 0.000000 0.000000 1.000000

2 1 0.333333 0.333333 0.666667

3 2 0.200000 0.200000 0.400000

4 7 0.257143 0.200000 0.314286

5 20 0.222222 0.158730 0.246032

6 71 0.238095 0.153680 0.220779

7 240 0.230769 0.139860 0.199301

8 871 0.236053 0.135454 0.188500

9 3 148 0.235294 0.129494 0.179391

10 11 655 0.237524 0.126166 0.173375

11 43 332 0.238095 0.122852 0.168260

12 162 769 0.239188 0.120384 0.164278

13 614 198 0.245769 0.118108 0.160821

14 2 330 537 0.240783 0.116188 0.157882

15 8 875 768 0.241379 0.114439 0.155271

16 33 924 859 0.241946 0.112880 0.152950

17 130 038 230 0.242424 0.111448 0.150844

18 499 753 855 0.242860 0.101137 0.148926

19 1 924 912 894 0.243243 0.108920 0.147158

20 7 429 160 296 0.243590 0.107789 0.145521

21 28 723 877 732 0.106729 0.143997

22 111 236 423 288 0.105733 0.142569

23 431 403 470 222 0.104793 0.141228

24 1 675 316 535 350 0.103903 0.139961

25 6 513 837, 679 610 0.103058 0.138762

26 25 354 842 100 894 0.102254 0.137625

27 98 794 053 269 694 0.101486 0.136542

28 385 312 558 571 890 0.100752 0.135509

29 1 504 105 116 253 904 0.100049 0.134521

Table 5: The number of zerofree graphical sequences, further the number of ze-
rofree, of zerofree graphical and of graphical sequences, divided by the number
of regular sequences.

further the number of the zerofree, zerofree graphical and graphical sequences
divided with the number of regular sequences.

Using the parallel version EGP (see the next section) of EGE we computed
Gn till n = 29. These numbers can be found in Table 2 of [13].

We remark that Gz(n) gives the number of degree sequences of simple

Parallel enumeration of degree sequences of simple graphs 273

graphs, not containing isolated vertex. In 2006 Gordon Royle [25] posed the
following problem: is it true that Gz(n+ 1)/Gz(n) tends to 4?

Using the results of Tripathi and Vijay [13, Lemma 6 and Theorem 7] we can
substantially decrease the average testing time of the zerofree even sequences.
It is known that the expected number of checking points proposed by Tripathi
and Vijay is about n/2 [13].

Using the following Lemma 4 later we will further fasten EGE. If b =
(b1, . . . , bn) is a regular sequence, then c = (c1, . . . , cn) is called lexicographi-
cally i-smaller, than b if

cj = bj for j = 1, . . . , i,

and
n∑

j=i+1

cj <

n∑
j=i+1

bj.

Lemma 4 If b = (b1, . . . , bn) is a nongraphical sequence and c = (c1, . . . , cn)
is lexicographically i-smaller than b, then c is also nongraphical.

The following algorithm Erdős-Gallai-Enumerating (EGE) is an enu-
merative version of EGL. This algorithm investigates the zerofree even se-
quences in lexicographical order, allowing to execute the majority of the basic
operations in O(1) average time.

• Hi (cumulated degrees): most of the time the only thing that is changing
is the last element of the sequence b, so it is enough to update the last
H value, according to the change of the value of b.

• Ci (checkpoints): if we modify the ith element of a sequence then the
values before that point remain the same so all of the checkpoints before
that remain the same, so we update only the first one before the ith
index and all of them after it.

• Wi (weight points): every time the checking algorithm got a sequence to
check we update the weight points, but we never start from 1 or n. We
use the last value we used when we checked the sequence in that index.
We have a distinct weight point for every i index and we just shift the
value to left or right.

We suppose that n, b, H, c, C, and W are global variables, therefore their
return does not require additional time.

Important property of EGE is that it solves in Θ(1) average time

274 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

• the generation of one zerofree even sequence;

• the updating of the sequence of the cumulated degrees H;

• the updating of the sequence of the checking points C;

• the updating of the sequence of the weight points W.

Although EGE solves the majority of the subproblems in Θ(1)/sequence
time, the work in the checking points requires more time, therefore the total
running time Θ(E(n)).

The following program is based on Theorem 9 of [13] and the properties just
listed.

Input. n: number of vertices (n ≥ 4);
b = (b1, . . . , bn): n-regular sequence.

Output. Gz: the number of n-length zerofree graphical sequences.
Work variables. i and j: cycle variables;

H = (H1, . . . , Hn): Hi is the cumulated degree of the first i elements of the
tested b;
W = (W1, . . . ,Wn): Wi the weight point of the actual bi, that is the maximum
of the indices of such elements of b, which are not smaller than i;
y: the cutting point of the actual bi that is the maximum of i and w.

Erdős-Gallai-Enumerating(n,Gz)

01 for i = 1 to n // lines 01–09: initialization
02 bi = n− 1
03 Hi = i(n− 1)
04 Wi = n
06 Ci = 0
07 Gz = 1
08 c = 0
09 bn+1 = −1
10 while b2 ≥ 2 or b1 ≥ 3 // line 10: last sequence was?
11 if bn ≥ 3 // lines 11–15: generating the next sequence
12 New3(n, b,H, c, C,W)
13 else if bn = 2
14 New2(n, b,H, c, C,W)
15 else New1(n, b,H, c, C,W)
16 Check(n, b,H, c,W, L) // line 16: checks and updates the parameters

17 Gz = Gz + L // line 17: increasing of Gz

Parallel enumeration of degree sequences of simple graphs 275

18 print Gz // line 18: final result

This algorithm uses four procedures. New1, New2, and New3 generate a
new sequences (when bn is 1, 2, resp. 3) and update the key parameters, while
Check decides whether the actually investigated sequence is graphical or not.

In Check we use Theorem 8 of [13].

Check(n, b,H, c, C,W)

01 for i = 1 to c // lines 01–07: checking in checkpoints
02 y = max(WCi

, i) // line 02: computation of the actual cutting point
03 if Hi > i(y− 1) +Hn −Hy // line 03–05: EG checking
04 L = 0
05 return L
06 L = 1 // line 06–07: b is graphical
07 return L

New3(n, b,H, c, C,W)

01 bn = bn − 2 // line 01–10: generation if bn = 3
02 Hn = Hn − 2
03 if bn == bn−1 − 2
04 c = c+ 1
05 Cc = n− 1
06 Wbn =Wbn − 1
07 if bn ≤ bn−1
08 Wbn+1 = n+ 1
09 Wbn = n+ 1
10 return H, c,C,W

New2(n, b,H, c, C,W)

01 if bn−1 == 2 // line 01–53: generation if bn = 2
02 bn = 1 // line 01–09: generation if bn−1 = 2
03 bn−1 = 1
04 Hn−1 = Hn−1 − 1
05 Hn = Hn − 2
06 W2 = n− 2
07 if bn−2 == 2 // line 07–09: generation if bn−2 = 2
08 c = c+ 1

276 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

09 Cc = n− 1
10 else if bn−1 == 3 // line 10–16: generation if bn−1 = 3
11 bn−1 = 2
12 bn = 1
13 Hn−1 = Hn−1
14 Hn = Hn − 2
15 W3 = n− 2
16 W2 = n− 1
17 else Hn−1 = Hn−1 − 1
18 if bn−2 == bn−1 and bn−1 is odd
19 bn−1 = bn−1 − 1
20 bn = bn−1
21 Hn = Hn + bn−1 − bn − 1
22 Cc = Cc − 1
23 Wbn−2

= n− 2
24 for i = 1 to bn−2
25 Wi = n
26 if bn−2 == bn−1 and bn − 1 is even
27 bn−1 = bn−1 − 1
28 bn = bn−1 − 1
29 Hn = Hn + bn−1 − bn − 1
30 Cc = Cc − 1
31 c = c+ 1
32 Cc = n− 1
33 Wbn−2

= n− 2
34 Wbn−1

= n− 1
35 for i = 1 to bn−2 − 2
36 Wi = n
37 if bn−2 > bn−1 and bn−1 is odd
38 bn−1 = bn−1 − 1
39 bn = bn−1
40 Hn = Hn + bn−1 − bn − 1
41 c = c− 1
42 Wbn−2−1 = n− 2
43 Wbn−2−1 = n− 1
44 for i = 1 to bn−1 − 1
45 Wi = n
46 if bn−2 > bn−1 and bn − 1 is even
47 bn−1 = bn−1 − 1

Parallel enumeration of degree sequences of simple graphs 277

48 bn = bn−1 − 1
49 Hn = Hn + bn−1 − bn − 1
50 Wbn−1+1 = n− 1
51 for i = 1 to bn−1 − 1
52 Wi = n
53 return H, c,C,W

New1 is similar to New2 (although more complicated, see Generate-
New-Sequence in the following section), therefore it is omitted.

4 Parallel Erdős-Gallai algorithm (EGP)

The computing of G(n) values lasts for a long time if we use a sequential
program, so we used an accelerateded parallel version of EGE. The number
of the used processors and the time we need to compute Gz(n) are in inverse
proportionality, therefore if we use more processors then we need less time.

In order to be able to use our new linear time algorithm on a bunch of
sequences, we need an algorithm that can work on a part of all series we need
to check.

Using our Erdős-Gallai-Parallel algorithm we computed this number
till n = 29. These numbers can be found in Table 2 of [13].

Our application consists of two parts: server and client. The server has all the
information to distribute jobs between client machines and to collect results
from them. The client has the IP address and the PORT of the server too to
ask for a job.

One of the most critical parts of the parallel algorithm is dividing the prob-
lem into jobs having almost the same sizes. The next equation helps us to give
an approximation about the number of sequences starting with a fixed head.
By knowing these numbers we can generate jobs with limited size, in other
words, no job is largler than the given maximum.

It is easy to show that the number Q(l, u,m) of the (l, u,m)-regular se-
quences is

Q(l, u,m) =

(
u− l+m

m

)
. (5)

Based on (5) we get the next algorithm to generate jobs.

Input. n: the length of the sequences;
ms: maximal size of a job.

Output. M: the matrix containing the parameters of the jobs.

278 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Working variables. i, j cycle variables;

Generate-Matrix(n,ms,M)

01 for i = n downto 2 // lines 01–03: filling up the matrix
02 for j = 1 to n− 1

03 Mi,j =
(
i+j−2
i−1

)
04 for j = n− 1 downto 1 // lines 04–05: filling up the first line in matrix
05 M1,j = 1
06 Generate-New-Sequences(M,n,n, 1, n− 1,ms, 0) // line 06: new job

This algorithm gives us a matrix filled up with values computed by using the
equation. Now, we can generate the sequences by reading out the last row from
the matrix from left to right. In case of a value is too big and does not fit into
a job, then we move one line above and read that line from the first column
until the one that was too big we jumped here from and we can continue this
technique until we get the size of parts we need. The next (recursive) algorithm
reads out the last row with this method.

Input. n: the length of the sequences;
ms: maximal size of a job.

Output. M: the matrix containing the parameters of the jobs.
Working variables. i, j: cycle variables.

Generate-New-Sequence(M,n, i, j, jm,ms, J)

01 S = 0 // line 01: setting the size of actual job
02 while j < jm + 1
03 if S+Mi,j ≤ ms // line 03: if we can add more sequences
04 S = S+Mi,j // line 04: add more sequences
05 if j ≤ jm // lines 05–06: line: move to next column in matrix
06 j = j+ 1
07 else if S 6= 0 // line 07: job is not empty
08 for k = 2 to size(J, 2) // lines 08–13: print result
09 print(Jk)
10 for k = 1 to n− size(J, 2) + 1
11 print(j− 1)
12 print newline // line 13: new line
13 S = 0
14 if Mi,j > ms and j ≤ jm // line 14: if decomposable
15 Generate-New-Sequence(M,n, i− 1, 1, j,ms, [J, j])

Parallel enumeration of degree sequences of simple graphs 279

16 j = j+ 1
17 if S 6= 0 // line 18: last job is non empty
18 for k = 2 to size(J, 2) // lines 18–22: print last job
19 print (Jk)
20 for k = 1 to n− size(J, 2) + 1
21 print (J(size(J, 2)))
22 print newline

Now we have divided the problem into smaller parts. So we can distribute
them between multiple computers using our server program. In our next al-
gorithm called Distributing-Jobs we show how the server sends the jobs to
the clients. In the algorithm we concentrate only on distributing the jobs so it
does not contain code dealing with network communication, except for some
very important network primitives (more on computer networks can be found
in [33]).

Input. n: the length of the sequence;
N: estimated number of jobs;
M: matrix containing the parameters of jobs.

Output. Gz: number of n-regular zerofree graphical sequences.
Working variables. S = (S0, . . . , Sn): vector containing the status of jobs;

fj: number of finished jobs;
aj: number of last job we sent to a client;
ji: index of job from incoming result;
cl: client identifier (used in network communication);
msg : message coming from client (important from network communication
only);
S: the size of the actual job;
time: running time of the actual job in seconds;
al : lower bound;
upper bound : upper bound.

Distributing-Jobs(n,N,M,Gz)

01 S0 = true // lines 01–04: initializing job status vector
02 SN+1 = true
03 for j = 1 to N+ 1
04 Sj = false
05 Gz = 0 // lines 05: initializing Gz
06 while fj < N // line 06: until all jobs are finished

280 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

07 accept(cl) // line 07: accept client connection
08 recv(cl,msg) // line 08: receive message from client
09 if msg == 0 // line 09: client asks for a job
10 aj = aj+ 1 // line 10: increase index of last sent job
11 for i =Maj−1,0 to n // lines 11–12: update initial sequences
12 bi = n+Maj−1,1

13 while Saj == true or aj > N // lines 13–22: unfinished job?
14 aj = aj+ 1
15 if aj > N // line 14: we are over the maximal index
16 aj = 1 // line 15: set index to 1
17 for i =Maj−1,0 to n // line 19–21: update initial sequence
18 bi = n+Maj−1,1

19 if aj < N // line 19–30: set parameters identifying last sequence
20 al =Maj,0

21 b = n+Maj,1

22 else al = 1
23 bu = 1
24 send(c, b, al, bu) // line 24: send job to client
25 else recv(c, ji, Finit, Flast, Zn,m, time) // line 25: receiving results
26 if Sji == false // line 26: new result
27 Sj = true // line 27: set jobs status to finished
28 fj = fj+ 1 // line 28: increase number of finished jobs
29 Gz = Gz + Zn,m // line 29: update Gz
30 close(cl) // line 30: close network connection
31 return Gz // line 31: return result

Our objective during implementing the client program was simplicity. We
wanted to create a program the does not need any interaction from users.
It is enough if the user starts it once and from that moment the program
can work independently in the background. This is important because we
wanted to distribute the program into as many parts as we can and use it in
computer labs, where we do not have enough time and people to operate with
the programs.

Another important idea was that we did not want to restart the programs
when we change from computing Gz(n) to Gz(n+ 1). When the clients finish
their jobs and the server cannot give them more, clients start to wait in the
background—until they get new jobs—without using any significant resources.

A client program work as a thread. The reason for this is simple: we uploaded
our program to a public homepage and anybody could join our computations.

Parallel enumeration of degree sequences of simple graphs 281

By this our aim was to avoid loosing users only because our program use all
the resources making the PC unable to respond their commands.

Our third objective was that we wanted to create a real fast program, be-
cause the running time can be really huge depending on the value of n. Because
of this reason we used ANSI C language to implement our program. According
to our experiments the ANSI C version of our program was one hundred times
quicker, than our program written in MATLAB. For the network communica-
tion we used the Berkeley Sockets.

The client works as follows:

• After we create the network socket, we try to connect to the server. If
it is not possible then we wait for an amount of time, and we double
this amount every time we cannot connect and set to a default value
when our attempt succeed. It is easy to see that the time we wait grows
exponentially.

• After we connected to the server we ask for a job and disconnect after
we got it.

• We compute a partial result of Gz(n) and we send it back to the server
using the same connection method as in the first step.

The program runs in clients called Parallel-Erdős-Gallai algorithm
consisting of two parts: Check and Enumerating. The first one does the
check of the sequences, but nothing else. The second generates sequences, H
values and check points.

In Check we use a modified version of the linear Erdős-Gallai algorithm.

Input. b: input sequence;
H = (H1, . . . , Hn): sums of the elements of b;
c: number of check points;
C = (C1, . . . , Cn−1): check points.

Output. L: Logical value. If the investigated sequence is graphical, then L =
1, otherwise L = 0.

Working values. p: actual checking point.

282 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Check(b,H, c, C)

01 i = 1 // line 01: initialization of i
02 while i ≤ c and HCi

> Ci(Ci − 1) // lines 02–11: check sequences
03 p = Ci // line 03: initial p value
04 while Jp < n and bJp+1

> p // lines 04–08: actualize p

05 Jp = Jp + 1
07 while Jp > p and bJp ≤ p
08 Jp = Jp−1
09 if Hp > Hn −HJp + p(Jp − 1) // line 09: check
10 L = 0 // line 10: nongraphical sequence
11 return L
12 i = i+ 1
13 L = 1 // lines 13–14: b is graphical
14 return L

In our checking algorithm we do not use the cases we proposed in the original
algorithm. The reason is the following: if we don’t let the weight points run
under the current i index, then the second case will work fine and we do not
need an additional condition to check if the weight point is smaller than the
current index.

Input. n: length of sequences;
b: first sequence;
last index: index of element we’ll check if we reached the last sequence we
need to check;
last value: value of element we’ll check if we reached the last sequence we
need to check.

Output. Gpz : number of n-regular zerofree graphical sequences between the
first and the last checked sequences.

Enumerating(n, b, last index, last value)

01 H1 = b1 // line 01: set H1
02 for i = 2 to n // lines 02–03: calculation of H
03 Hi = Hi−1 + bi
04 if bn 6= n− 1 // line 04: if it is not the full graph
05 if Hn odd // lines 05–10: actualize series
06 bn = bn − 3
07 Hn = Hn − 3

Parallel enumeration of degree sequences of simple graphs 283

08 else bn = bn − 2
09 Hn = Hn − 2
10 for i = 1 to n // lines 10–11: initialize weight points
11 Ji = n− 1
12 for i = 1 to n− 2 // lines 12–15: calculate check points
13 if bi 6= bi+1 and bi 6= bn
14 c = c+ 1
15 Cc = i
16 L = Check(b,H, c, C) // line 16: check first sequence
17 Gpz = G

p
z + L

18 while blast index > last value // line 18: till the last sequence in job
19 k = n // line 19: initialize working variable
20 if bk == 1 // line 20: if the last element of series is 1
21 j = n− 1
22 while bj ≤ 1
23 j = j− 1
24 if bj == 2 // line 24: if the 1 free part’s last value is 2
25 bj−1 = bj−1 − 1 // line 25: update sequence
26 Hj−1 = Hj−1 − 1 // line 26: update H
27 if j > 2 // line 27–36: update check points
28 if (c ≤ 2 or (c > 2 and Cc−2 6= j− 2)) and

(c > 1 and Cc−1 6= j− 2)
29 if c > 1 and Cc−1 > j− 2
30 Cc+1 = Cc
31 Cc = Cc−1
32 Cc−1 = j− 2
33 c = c+ 1
34 else Cc+1 = Cc
35 Cc = j− 2
36 c = c+ 1
37 for k = j to n
38 bk = bj−1 // line 39: update the last part of b
39 Hk = Hk−1 + bk // line 40: update H
40 while c > 1 and Cc > j− 1 // lines 42–43: update check points
41 c = c− 1
42 if Hn odd // line 42: if parity is odd
43 bn = bn−1 − 1 // line 43: update b
44 Hn = Hn−1 + bn // line 44: update H
45 c = c+ 1 // lines 45–46: update check points

284 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

46 Cc = n− 1
47 else bj = bj − 1 // line 47: update b
48 Hj = Hj − 1 // line 48: update H
49 if j > 1 // line 49–50: update check points
50 if (c == 1 and Cc 6= j− 1) or (c > 1 and Cc−1 6= j− 1)
51 if c > 0 and Cc > j− 1
52 Cc+1 = Cc
53 Cc = j− 1
54 c = c+ 1
55 for k = j+ 1 to n
56 bk = bj // line 56: update b
57 Hk = Hk−1 + bk // line 57: update H
58 while c > 1 and Cc > j− 1

// lines 58–59: update check points
59 c = c− 1
60 if Hn odd // line 60: parity check
61 bn = bn − 1 // line 61: update b
62 Hn = Hn − 1 // line 62: update H
63 c = c+ 1 // line 63: update check points
64 Cc = n− 1 // line 64: add new check point
65 else if bk == 2
66 bk−1 = bk−1 − 1 // line 66: update b
67 Hk−1 = Hk−1 − 1 // line 67: update H
68 if (c == 1 and Cc 6= n− 2)

or (c > 1 and Cc−1 6= n− 2 and Cc 6= n− 2)
// lines 68–73: update check points

69 if c > 0 and Cc > n− 2
70 Cc+1 = Cc
71 Cc = n− 2
72 else c = c+ 1
73 Cc = n− 2
74 if bk−1 odd // line 74: parity check
75 bk = bk−1 // line 75: update b
76 if c > 0 and Cc == n− 1
77 c = c− 1 // line 77: update checkpoints
78 else bk = bk−1 − 1 // line 78: update b
79 Hk = Hk−1 + bk // line 79: compute H
80 else bk = bk − 2 // line 80: update b
81 Hk = Hk − 2 // line 81: compute H

Parallel enumeration of degree sequences of simple graphs 285

82 if c < 1 or Cc 6= n− 1
// lines 82–84: update check points

83 c = c+ 1
84 Cc = n− 1
85 G

p
z = G

p
z + Check(b,H, c, C) // line 85: update Gpz

In The On-Line Encyclopedia of Integer Sequences [29] you can find numbers
of degree sequences for simple graphs consisting of n vertices, that we uploaded
G(n) values from n = 24 to 29 on 16th of November.

To carry out the calculations we used more than two hundred computers
and our theoretical maximal performance was over 6 TFLOPS based on the
processors information we found on the home pages of the manufacturers.

The running time of computing the number of graphical series can be seen
in Table 6. It is easy to see that the growing of the running time does not have
the same ratio between the different n values. The reason for this is the type
of processors we used. In our earlier computations (eg. when we considered
n = 25 vertices) we had a few powerful machines, but as the complexity was
larger in every time we increased n we had to use some less powerful machines.
The total time of the calculations would be less if we used the more powerful
machines, but the real running time would be more, because in total we had
more than two hundred machines when we was working on G29, so the real
running time was under two weeks.

5 Summary

The paper reports on a linear version of the Erdős-Gallai testing algorithm
[13], on its enumerative and parallel versions, further on enumerative results
received using the new algorithms.

n Running time (day) Number of jobs

25 26 435
26 70 435
27 316 435
28 1130 2 001
29 6733 15 119

Table 6: Sum of running times measured during our calculations and number
of jobs.

286 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

The number of different degree sequences of simple graphs on n vertices for
n = 24, . . . , 29 were accepted as new records by The On-Line Encyclopedia
of Integer Sequences in November 15, 2011 [14].

The paper contains also the description and analysis of the linear test version
of Havel-Hakimi algorithm which is about 10 percent quicker than the best
version of the Erdős-Gallai algorithm.

The log files and source codes of our programs can be found at

http://people.inf.elte.hu/lulsaai/Holzhacker

and

http://people.inf.elte.hu/tomintt/DegreeSeq

Acknowledgements. The authors are indebted to Antal Sándor and his
colleagues (Eötvös Loránd University, Faculty of Informatics), Ádám Mányoki
(TFM World Kereskedelmi és Szolgáltató Kft.) and Zoltán Kása (Sapientia
Hungarian University of Transylvania) for their help in running of our time-
consuming programs.

References

[1] M. Ascher (1987) Mu torere: an analysis of a Maori game, Math. Mag. 60, 2 1987
90–100. ⇒270

[2] S. A. Choudum, A simple proof of the Erdős-Gallai theorem on graph sequences,
Bull. Austral. Math. Soc. 33 (1986) 67–70. ⇒261

[3] V. Chungphaisan, Conditions for sequences to be r-graphic, Discrete Math. 7
(1974) 31–39. ⇒261

[4] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
Third edition, The MIT Press/McGraw Hill, Cambridge/New York, 2009. ⇒262

[5] P. Erdős, T. Gallai, Graphs with vertices having prescribed degrees (Hungarian),
Mat. Lapok 11 (1960) 264–274. ⇒260, 262

[6] A. Frank, Connections in Combinatorial Optimization, Oxford University Press,
Oxford, 2011. ⇒261

[7] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of
a simple graph, J. SIAM Appl. Math. 10 (1962) 496–506. ⇒261, 262

[8] V. Havel, A remark on the existence of finite graphs (Czech), C̆asopis Pĕst. Mat.
80 (1955), 477–480. ⇒260, 262

[9] P. Hell, D. Kirkpatrick, Linear-time certifying algorithms for near-graphical se-
quences, Discrete Math. 309, 18 (2009) 5703–5713. ⇒261

[10] A. Iványi, Reconstruction of complete interval tournaments, Acta Univ. Sapien-
tiae, Inform. 1, 1 (2009) 71–88. ⇒261

http://people.inf.elte.hu/lulsaai/Holzhacker
http://people.inf.elte.hu/tomintt/DegreeSeq/
http://journals.cambridge.org/action/displayJournal?jid=BAZ
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://www.mhprofessional.com/category/?cat=1012
http://www-history.mcs.st-and.ac.uk/Mathematicians/Erdos.html
http://hu.wikipedia.org/wiki/Gallai_Tibor
http://www.renyi.hu/~p_erdos/1961-05.pdf
http://www.cs.elte.hu/~frank/
http://oup.com/
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.jstor.org/action/showPublication?journalCode=jsociinduapplmat
http://www.cs.sfu.ca/~pavol/
https://www.cs.ubc.ca/people/david-kirkpatrick
http://www.sciencedirect.com/science/journal/0012365X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

Parallel enumeration of degree sequences of simple graphs 287

[11] A. Iványi, Reconstruction of complete interval tournaments. II, Acta Univ. Sapi-
entiae, Math. 2, 1 (2010) 47–71. ⇒261

[12] A. Iványi, Degree sequences of multigraphs, Annales Univ. Sci. Budapest., Sect.
Comp. 37 (2012) 195–214. ⇒261, 262

[13] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, On the Erdős-Gallai and Havel-Hakimi
algorithms, Acta Univ. Sapientiae, Inform. 3, 2 (2011) 230–268. ⇒260, 261, 262,
269, 270, 271, 272, 273, 274, 275, 277, 285

[14] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, The number of degree-vectors for simple
graphs, in: ed. by N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
2011. http://oeis.org/A004251 ⇒286

[15] A. Iványi, S. Pirzada, Comparison based ranking, in: Algorithms of Informatics,
Vol. 3 (ed. A. Iványi), AnTonCom, Budapest 2011, 1209–1258. ⇒261

[16] A. Iványi, J. E. Schoenfield, Deciding football sequences. Acta Univ. Sapientiae,
Inform. 4, 1 (2012) 130–183. ⇒261

[17] G. Zs. Kovács, N. Pataki, Analysis of Ranking Sequences (in Hungarian), Sci-
entific student paper, Eötvös Loránd University, Faculty of Sciences, Budapest
2002. ⇒261

[18] M. D. LaMar, Algorithms for realizing degree sequences of directed graphs, arXiv,
2010. http://arxiv.org/abs/0906.0343. ⇒261

[19] L. Lucz, Analysis of degree sequences of graphs (Hungarian), MSc Thesis, Eötvös
Loránd University, Faculty of Informatics, Budapest, 2012.
http://people.inf.elte.hu/lulsaai/diploma. ⇒261

[20] T. Matuszka, Programs and Results Connected with Degree Sequences,
http://people.inf.elte.hu/tomintt/DegreeSeq. ⇒263, 267, 270

[21] Noe, T. D., Table of n a(n) for n = 1, . . . , 100, in (ed. N. J. A. Sloane): The
On-Line Encyclopedia of the Integer Sequences, 2010. http://oeis.org/A001700.⇒271

[22] S. Özkan, Generalization of the Erdős-Gallai inequality, Ars Combin. 98 (2011)
295-302. ⇒261

[23] G. Pécsy, L. Szűcs, Parallel verification and enumeration of tournaments, Stud.
Univ. Babeş-Bolyai, Inform. 45, 2 (2000) 11–26. ⇒261

[24] S. Pirzada, An Introduction to Graph Theory , Orient BlackSwan, Hyderabad,
2012. ⇒261

[25] G. Royle, Is it true that a(n+ 1)/a(n) tends to 4? in (ed. N. J. A.) Sloane): The
On-Line Encyclopedia of the Integer Sequences, 2012. http://oeis.org/A095268⇒273

[26] F. Ruskey, F. R. Cohen, P. Eades, A. Scott, Alley CATs in search of good homes,
Congr. Numer. 102 (1994) 97–110. ⇒268

[27] J. E. Schoenfield, The number of football score sequences, in: ed. by N. J. A.
Sloane, The On-Line Encyclopedia of Integer Sequences, 2012.
http://oeis.org/A064626. ⇒261

[28] B. Siklósi, Comparison of Sequential and Parallel Algorithms Solving Sport Prob-
lems (in Hungarian). Master thesis. Eötvös Loránd University, Faculty of Sciences,
Budapest, 2001. ⇒261

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-math/matematica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www2.research.att.com/~njas/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/Faculty5.aspx
http://www.tankonyvtar.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.antoncom.hu/books.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
mailto:jonscho@hiwaay.net
http://www.elte.hu/en
http://science.elte.hu/
http://arxiv.org/abs/0906.0343
http://people.inf.elte.hu/lulsaai
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://people.inf.elte.hu/lulsaai/diploma
http://people.inf.elte.hu/tomintt/
http://people.inf.elte.hu/tomintt/DegreeSeq
http://www2.research.att.com/~njas/
http://oeis.org/A004251
http://bkocay.cs.umanitoba.ca/arscombinatoria/
http://www.cs.ubbcluj.ro/~studia-i/2000-2/2-Pecsy.pdf
http://www.cs.ubbcluj.ro/~studia-i/contents.php
http://maths.uok.edu.in/Faculty5.aspx
http://www.orientblackswan.com/display.asp?categoryID=0&isbn=978-81-7371-760-4
http://www.orientblackswan.com/
http://school.maths.uwa.edu.au/~gordon/
http://www2.research.att.com/~njas/
http://oeis.org/A095268
http://webhome.cs.uvic.ca/~ruskey/
mailto:jscho@hiwaay.net
http://www2.research.att.com/~njas/
http://oeis.org/A064626
http://www.elte.hu/en
http://science.elte.hu/

288 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

[29] N. J. A. Sloane, Number of graphical partitions (degree-vectors for simple graphs
with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix
with diagonal values 0), in: The On-Line Encyclopedia of the Integer Sequences
(ed. by N. J. A. Sloane). http://oeis.org/A004251. ⇒269, 285

[30] N. J. A. Sloane, S. Plouffe, The Encyclopedia of Integer Sequences, Academic
Press, 1995. ⇒270

[31] D. Soroker, Optimal parallel construction of prescribed tournaments, Discrete
Appl. Math. 29, 1 (1990) 113–125. ⇒261

[32] M. Takahashi, Optimization Methods for Graphical Degree Sequence Problems
and their Extensions, PhD thesis, Graduate School of Information, Production
and systems, Waseda University, Tokyo, 2007. http://hdl.handle.net/2065/28387.⇒261

[33] A. S. Tanenbaum, D. J. Wetherall, Computer Networks (5th edition), Prentice
Hall, 2010. ⇒279

[34] A. Tripathi, H. Tyagy, A simple criterion on degree sequences of graphs, Discrete
Appl. Math. 156, 18 (2008) 3513–3517. ⇒261

[35] A. Tripathi, S. Vijay, A note on a theorem of Erdős & Gallai, Discrete Math.
265, 1-3 (2003) 417–420. ⇒261

[36] A. Tripathi, S. Venugopalan, D. B. West, A short constructive proof of the Erdős-
Gallai characterization of graphic lists, Discrete Math. 310, 4 (2010) 833–834. ⇒
261

Received: October 2, 2012 • Revised: Decembet 30, 2012

http://www2.research.att.com/~njas/
http://www2.research.att.com/~njas/
http://oeis.org/A004251
http://www2.research.att.com/~njas/
http://www.sciencedirect.com/science/journal/0166218X
http://www.waseda.jp/top/index-e.html
http://hdl.handle.net/2065/28387
http://www.cs.vu.nl/~ast/
http://djw.cs.washington.edu/
http://prenticehall.com/
http://prenticehall.com/
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.sciencedirect.com/science/journal/0166218X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.illinois.edu/~sujith/
http://www.sciencedirect.com/science/journal/0012365X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.uiuc.edu/~west/
http://www.sciencedirect.com/science/journal/0012365X

Book review 289

AN INTRODUCTION TO GRAPH THEORY
Shariefuddin Pirzada

Universities Press, Hyderabad (India), 2012
ISBN: 978 81 7371 760 4

The book is primarily intended for use as textbook at the graduate level,
but the first eight chapters can be used as a one-semester course in the under-
graduate level for students of mathematics and engineering.

The final sections of several chapters introduce advanced topics and unsolved
problems that are the object of current research in graph theory. Thus, the
book can also be used by students pursuing research work in PhD programs.

The book consists of preface, 12 chapters, references, and index, the total
size is 6+396 pages. The first chapter (Introduction) contains the basic defi-
nitions and theorems of graph theory. The second chapter (Degree Sequences)
deals with degree sequences. The chapter contains much more results as other
textbooks of graph theory. The following 6 chapters (Eulerian and Hamilto-
nian Graphs, Trees, Connectivity, Planarity, Colourings, Matchings and Fac-
tors) contain the basic results of the given topic. The last four chapters (Edge
Graphs and Eccentricity Sequences, Graph Matrices, Digraphs, Score Struc-
tures in Digraphs) deals with advanced topics of graph theory. Especially rich
material is gathered on score structures including many recent results of the
author of the book and his coauthors.

The book is closed by 266 references on papers and books which appeared
between 1736 and 2010 and by index.

In the textbook is disturbing the inconsistent notation of mathematical sym-
bols in the text and in the figures: instead of italic they are often written by
normal letters.

We recommend author to follow the authors (as D. E. Knuth, T. H. Cormen,
N. A. Lynch) of popular American textbooks: to assemble and maintain on his
homepage a list of errors of the book and later to publish corrected editions.
Another proposition is to extend the material with the performance analysis
of the described algorithms to make the textbook more informative for the
students of computer science.

Despite of the errors the book contains valuable material therefore we rec-
ommend it to undergraduate, graduate and PhD students.

http://maths.uok.edu.in/Faculty5.aspx
http://www.universitiespress.com/

Contents

Volume 4, 2012

T. Gregorics
Concept of the abstract program .7

L. László
Sum of squares representation for the Böttcher-Wenzel
biquadratic form .17

V. Sargsyan
Counting (k, l)-sumsets in groups of a prime order22

N. Fogarasi, K. Tornai, J. Levendovszky
A novel Hopfield neural network approach for minimizing
total weighted tardiness of jobs scheduled on identical
machines . 48

Z. Király, P. Kovács
Efficient implementations of minimum-cost flow algorithms 67

P. Burcsi
Analysis of the picture cube puzzle . 119

A. Iványi, J. E. Schoenfield
Deciding football sequences .128

A. Miller, P. Prosser
Diamond-free degree sequences . 189

S. Szabó
The complexity of an exotic edge coloring of graphs 201

291

M. Peczarski
Towards optimal sorting of 16 elements . 215

Z. Kása, Z. Kátai
Scattered subwords and composition of naturals 225

N. Gaskó, M. Suciu, R. I. Lung, D. Dumitrescu
Pareto-optimal Nash equilibrium detection using an
evolutionary approach . 237

T. Gregorics
Abstract levels of programming theorems . 247

A. Iványi, L. Lucz, T. Matuszka, S. Pirzada
Parallel enumeration of degree sequences of simple graphs 260

Book review
S. Pirzada: An Introduction to Graph Theory 289

292

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
László DÁVID

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica

Executive Editor
Zoltán KÁSA (Sapientia University, Romania)

kasa@ms.sapientia.ro

Editorial Board
Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Ladislav SAMUELIS (Technical University of Košice, Slovakia)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

	Info42_cut.pdf
	info42-0.pdf
	info42-1.pdf
	1 Introduction
	2 Problem definition
	3 Motivation
	4 Constraint programming models
	4.1 Model A
	4.2 Model B

	5 Solutions
	6 Conclusion

	info42-2.pdf
	1 Introduction
	2 Numerical experiments
	3 A complexity result
	4 An alternative construction

	info42-3.pdf
	1 Introduction
	2 Notation
	3 The algorithm
	4 The previous cases
	5 The case of 16 elements
	6 Computation complexity
	7 Counting linear extensions

	info42-4.pdf
	1 Introduction
	2 Computing the (d1,d2)-complexity by digraphs
	3 Linear algorithm for the (d1,d2)-complexity
	4 Generalized scattered subwords
	5 (d1,d2)-complexity and (d1,d2)-compositions

	info42-5.pdf
	1 Introduction
	2 Pareto-optimal Nash equilibrium
	3 Generative relation for Pareto-optimal Nash equilibrium
	4 Evolutionary equilibria detection
	5 Numerical experiments
	5.1 Game 1
	5.2 Game 2

	6 Conclusions

	info42-6.pdf
	1 Introduction
	2 Different forms of the sequence of elements are processed
	3 Different levels of the programming theorems
	3.1 Maximum selection in an array
	3.2 Maximum selection over interval
	3.3 Maximum selection on enumerator

	4 Case study
	4.1 First solution: numerous maximum selections in an array
	4.2 Second solution: several maximum selections over interval
	4.3 Third solution: one maximum selection over interval
	4.4 Fourth solution: one maximum selection on enumerator

	5 Discussion

	info42-7.pdf
	1 Introduction
	2 Linear Havel-Hakimi algorithm (HHL)
	3 Enumerating Erdos-Gallai algorithm (EGE)
	4 Parallel Erdos-Gallai algorithm (EGP)
	5 Summary

	info42-8.pdf
	info42-9.pdf

