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(1962–2012)

Our colleague, friend, editor-in-chief of Acta Universitatis Sapientiae, asso-
ciate professor Antal Bege passed away unexpectedly on March 22, 2012. He
was only 49.

After finishing his studies in Mathematics at Babeş-Bolyai University in Cluj
he became a teacher in his former school in Miercurea Ciuc. After the regime
change in 1989 he joined the Faculty of Mathematics and Computer Science,
at Babeş-Bolyai University. He worked there for almost two decades, then went
over to Sapientia Hungarian University of Transylvania, Department of Math-
ematics and Informatics in Târgu-Mureş in 2008. This is where he became the
head of the department and the editor-in-chief of the academic journal Acta
Universitatis Sapientiae. Naturally, he did his best in all these qualities.

Among his research interests we can mention Number Theory (arithmetical
functions), Nonlinear Analysis and Discrete Mathematics. He published 13
textbooks and monographs both in Hungarian and Romanian, as well as a lot
of scientific papers.

He was extremely evenhanded person, appreciated by all his colleagues and
students, a man of poise and an eternal stayer. With a terrible feeling of pain
and loss, we say goodbye to our friend. We shall treasure his memory.

Editorial Board
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Efficient implementations of minimum-cost flow algorithms . . . . 67

P. Burcsi
Analysis of the picture cube puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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Concept of the abstract program

Tibor GREGORICS
Eötvös Loránd University, Faculty of Informatics

Budapest
email: gt@inf.elte.hu

Abstract. The aim of this paper is to alter the abstract definition of the
program of the theoretical programming model which has been devel-
oped at Eötvös Loránd University for many years in order to investigate
methods that support designing correct programs. The motivation of this
modification was that the dynamic properties of programs appear in the
model. This new definition of the program gives a hand to extend the
model with the concept of subprograms while the earlier results of the
original programming model are preserved.

1 Introduction

It is a well-known aspiration to exclusively use methods which guarantee the
correctness of the developed program with respect to the problem [1, 5, 6]
posed, that is, what makes it essential to find abstract mathematical def-
inition of programming notions. At Eötvös Loránd University, a relational
model of programming which treats the most important, fundamental notions
of programming—problem, program, state space, variable, data type, etc.—in
a uniform and consistent way [2, 3, 7] has been built for thirty years.

The base of the abstract definitions of programming notions is the state
space and their tool is the mathematical relation. The problem, for example,
is a homogeneous binary relation over the state space that maps from the pos-
sible initial states to the appropriate goal states. The program is defined as

Computing Classification System 1998: F.3.1
Mathematics Subject Classification 2010: 68N30
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all of its executions, so it can be described by the relation that maps from any
state to the executions starting from one, where an execution is the sequence
of the states concerned. The effect of a program is also a homogeneous binary
relation where its domain contains the states from which the program surely
terminates, i.e. the executions starting from these states are finite, and maps
to states where these executions stop. The definition of the solution (when a
program is said to solve a problem) establishes the main connection between
the relations of the problem and the effect of the program. This theoretical
approach makes it possible to investigate the concept and correctness of sev-
eral kinds of program-designer methods such as program synthesis, analogous
programming, etc.

The main characteristic of this relational model is the special static point
of view in which the concept of the program is a mapping and not a working,
nonetheless it is originally dynamic. The advantage of this static point of view
is the simple definition of the solution. Although it is not self-evident if the
number of the components of the state space of a problem and that of a
program are different. To prove the correctness, in this case, the program and
the problem must be transformed into a new common state space [4].

In the present model however, the state space is persistent, i.e. all variables
of the program are global and static (the scope and life time of the variables
involve the whole program), the so-called local variables cannot be created
and destroyed during an execution. In absence of local variables, the concept
of real subprograms cannot be introduced into our programming model. (Only
macros can be defined.) Namely, the power of a subprogram is what permits
creating new local auxiliary variables as well as parameter variables, and it is
not supported by the present concept of the program. It is not a serious prob-
lem if simply the correctness is wanted to be proved but it is a great difficulty
if our aim is to design a program. Unfortunately, the programming method,
which is based on our programming model to synthetize correct programs,
cannot produce subprograms with parameter variables, so their creation re-
mains in the sphere of the implementation instead of the designing. It is an
additional disadvantage that, without the concept of subprograms, recursive
calling cannot be used in our programming model.

The aim of this paper is to remedy this shortcoming of the definition of the
program, and to preserve the earlier results of the programming model.
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2 State space

All definitions of the programming model are based on the state space. The
concept of the state space has already been interpreted in several ways. For
many people, the state space is a model of a von Neumann type computer;
others, e.g. Dijkstra [1], associate this notion with the problem to be solved,
where a state is a compound of the values of the main data types. So, the
program is ”outside” of the state space operating on it. In our programming
model, this second meaning is used. In [2], the notion of the state space is
a Cartesian product of the value set of data types. The only mistake of this
obvious definition is that it imposes an order on the components. In [3], where
the state space is a direct product, this mistake is repaired.

Here it is the definition of the direct product and the notions related to it.
Let I be a finite set named as index set. Let Ai’s (i P I) be arbitrary sets.

The set
Ś

iPI

Ai ::“ tx : I Ñ
Ť

iPIAi|@i P I : xpiq P Aiu is the direct product of

the sets Ai (i P I).
The Ai’s are the components of the direct product

Ś

iPI

Ai. The number of

the components is finite. The direct product is the empty set if the set I is
empty.

Let A “
Ś

iPI

Ai and B “
Ś

jPJ

Bj be direct products where I and J are finite

sets, Ai’s (i P I) and Bj’s (j P J) are arbitrary sets. The A and B are equivalent
if there exists a bijection ν : IÑ J so that @i P I : Ai “ Bνpiq. In other words,
B is the renamed A.

If J Ď I and @j P J : Bj “ Aj then B is the subspace of A, i.e. B ď A.
The function prB : AÑ B is a projection if B ď A and @a P A : prBpaq “ a|J.

Not only one state but a set or sequence of states can also be projected if it is
done one by one. If J “ tju then the function prB is named as j variable and j
is the variable name.

3 The new concept of the program

The most important notion of the programming model is the program. In our
explanation, the program is not a collection of some statements that can be
executed on a computer. The statements could only describe a program but
the program is the complex of its executions. An execution is a sequence of
states. A program, by definition, can always begin, i.e. at least one execution
has to start from each state. If several executions start from the same start
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state, it means that the program is non-deterministic: nobody knows which
execution will happen.

In the original programming model, every state of the progam belongs to
the same state space. Now we are going to permit that the state space can
be permanently changed; the inner states of the executions may have got new
components.

The other novelty of our new definition is the idea of the base state space
of the program. The first state (start state) of all executions and the last, if
the execution is finite, are in this base state space.

Before giving the formal definition of the program, some notions must be
introduced. Let H˚˚ denote the set of all finite and infinite sequences of the
elements of set H. H8 includes the infinite sequences; H˚ contains the finite
ones. So, H˚˚ “ H˚ Y H8 and H˚ X H8 “ H. The length of the sequence
α P H˚˚ is |α|, the value of which is 8 if the sequence is infinite.

Definition 1 Let A be the so-called base state space and Ā be the set of all
states which belong to the state spaces B whose subspace is A, i.e. Ā “

Ť

AďB B.
The relation S Ď A

Ś

Ā˚˚ is a program over A, if

1. DS “ A (domain of S),

2. @α P RS X Ā
˚ : α|α| P A (the last state of the finite executions of the

range of S),

3. @a P A and @α P Spaq : |α| ě 1 and α1 “ a.

The variables of the base state space are the base variables; the other
variables are the auxiliary variables of the program.

The concept of the program allows to create and destroy new components
(variables) during an execution, so the state space changes dynamically. All
new components have to be destroyed at the termination, at the very latest,
but the base variables should never be removed. The current state always
contains the components of the base state space.

The following three definitions will outline that the base state space of any
program is denoted arbitrarily. The base variables of a program can be ex-
tended, restricted or renamed without changing the essence of the program.

The base variables of any program can be renamed easily without the exe-
cution of the program is changed. However, if the new name of a base variable
would be identical to an auxiliary variable’s name then this auxiliary variable
is given a new, unique name.
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Definition 2 Let the statespace A and B be equivalent, i.e. if A “
Ś

iPI

Ai and

B “
Ś

jPJ

Bj then there exists a bijection ν : IÑ J so that @i P I : Ai “ Bνpiq. Let

S be a program over the state space A. Let the name of the auxiliary variables
of S be K (KXI “ H) and a bijection µ : KÑ L so that LXJ “ H. The program
over B is called the variable renaming of S onto B if its executions are
identical to the executions of S, but in their all states, the variable name i P I
is replaced by νpiq and the variable name k P K is replaced by µpkq.

Not only can the name of the variables be changed but also the number of
the components of the base state space: this state space can be extended with
new variables, or some base variables can be degraded to auxiliary varibles.

The next definition shows that the base state space can be extended with a
new component. The states of the executions can be extended with this new
component if it is not the auxiliary variable of the original program. Otherwise
if this component was an auxiliary variable, then it becomes a base variable;
it should not be created and destroyed it, its life expands over the whole
execution.

Definition 3 Let S be a program over the state space A “
Ś

iPI

Ai and the vari-

able name k where k R I. (This k may denote one of the auxiliary variables of
S or a totally new variable.) Let C be the statespace

Ś

iPIYtku

Ai. The extension

of S onto C is the program (denoted by S 1) whose base state space is C and
for all c P C :

S 1pcq “ tγ P C
˚˚
| Dα P SpprApcqq : |α| “ |γ| ^ @i P r2..|γ|s :

if k R Dαi
then γi|I “ αi and γipkq “ γi´1pkq

if k P Dαi
then γi “ αiu.

It is easy to generalize this definition in case the state space A is a subspace
of the state space C.

The following definition shows how a base variable can be degraded to an
auxiliary variable: the first step creates it and the last step destroys it.

Definition 4 Let S be a program over the state space A “
Ś

iPI

Ai and let C be

the subspace of A. The restriction of S onto C is the program (denoted by
S) whose base state space is C and for all c P C:

Spcq = { ă c, α, prCpα|α|q ąP C
˚
|α P Spaq XA

˚
where c “ prCpaq }

Y { ă c, α ąP C8|α P Spaq XA8 where c “ prCpaq }.
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The base state space of a program can be renamed, extended or restricted
several times, thus the base state space can be totally transformed. But these
transformations can change only the base state space and not the program.
The essence of the executions of the program remains the same. The renamed,
extended and restricted program hardly differs from its original version.

Definition 5 Two programs are identical if they can transform into the same
program, using extensions, restrictions and renaming.

4 Conclusions

We have introduced a new concept of the program. Now let us observe what
kinds of effects this modification has on the original programming model.

4.1 Concept of dynamic program

The new concept of the program smuggles the dynamic property of the pro-
gram back to the static programming model [2, 3] developed at Eötvös Loránd
University. Certainly, the fact that a program can create and destroy auxiliary
variables is not a brilliant discovery. The difficulty of our investigation was to
find out how this dynamic property can be embedded into the programming
model described in the static point of view.

The most important element of our concept is the base state space. It can
be seen as the interface of the program. It determines the components through
which the program can communicate, and can make contact with its environ-
ment. Only the base variables can get value from outside before the program
starts, and their value can be asked after the termination.

The program becomes very flexible because its base state space can be
changed easily. This property is reflected in the fact that the same program
can possess different interfaces depending on the problem to be solved. The
aim of a program can be changed by altering its base state space whereas its
operation cannot be changed.

4.2 Concept of solution

Despite the above modification, the definition of the solution can be preserved
[2, 3, 7]. The only thing that must be done is to redefine the concept of the
effect of the program because the definition of the solution relies on it.

Now we will repeat all definitions that are important to describe the concept
of solution.
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Let the problem generally be a relation F Ď AˆA where A is a state space.
Let S be a program over A. The relation ppSq Ď A

Ś

A is the effect of S if

1. DppSq “ ta P A | Spaq Ď A
˚u

2. @a P DppSq : ppSqpaq “ tb P A | Dα P Spaq : α|α| “ bu.

The program S is said to solve the problem F if

1. DF Ď DppSq

2. @a P DF : ppSqpaq Ď Fpaq

The definition of the solution supposes that the state space of the problem
is identical to the base state space of the program. As the base state space can
be chosen arbitrarily, the program can be extended, restricted or renamed in
order that its base state space is identical to the state space of the problem.
Since programs of this kind are identical, if one of them can solve the problem,
so can the others.

Moreover, if the effects of the programs S1 and S2 are identical over all
common base state spaces (ppS1q “ ppS2q) and if one of them can solve a
problem, so can the others. In this case these programs are called equivalent.
This relation is reflexive, symmetrical and transitive, thus it is an equivalence
relation. Consequently, if one program belonging to an equivalence class can
solve a problem, then every program derived from this class can also solve it.

In the original programming model, the definition of the solution must be
generalized [4] when the state spaces of the problem and the program are
different. Now, our new concept is used to avoid this. It is enough to fit the
base state space of the program to the state space of the problem and transform
the program onto this common state space.

4.3 Earlier results

The original programming model contains many important results that can
be used in the verification of programs. It is apparent that these results are
not based directly on the concept of the program; except for the effect of the
program. The definition of the effect of the program has not been changed
because the new definition of the program fixes that the start state and the
end state of the finite execution are in the same state space (that is, the
base state space). Accordingly, all earlier results, namely Dijkstra’s weakest
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precondition [1], the theorem of the specification or the derivation rules [1, 3]
of the program constructions [3] are used in unalterable forms.

Certainly, in the definitions of program constructions, the components (pro-
grams and conditions) which are the parts of the construction have to be on the
same base state space. Accordingly, before making one of the constructions,
this common base state space has to be agreed on.

4.4 Subprograms

The concept of real subprograms, which have got parameter variables, could
not be introduced into the original programming model because the program
has got an unvarying state space, thus local variables cannot be created during
the execution, so parameter variables, which are local variables, cannot be
used. Now, the situation is changed. In our new programming model, the
concept of the subprograms may be defined.

First and foremost the subprogram is a program. It can be executed inde-
pendently; it has got own base state space. Its only speciality is that it can be
built into another program. (This is the host program.)

Each program, including subprograms, is equivalent to an assignment. This
assignment is appropriate to identify the subprogram that is equivalent to
it. Accordingly, in an arbitrary program description language, a subprogram
can be denoted with this assignment. The variables of this assignment, which
are the formal parameters, form the base state space of the subprogram. The
variables at the left-hand side of the assignment are the output parameter
variables; the ones at the right-hand side are the input parameter variables.
(For simplicity’s sake, we shall restrict our consideration to assignments where
a parameter variable does not occur more than once.)

This assignment can be also used as a calling statement in the description of
the host program. Certainly, in the calling statement, the parameter variables
can be substituted by actual parameters (arguments), which are the expres-
sions (often, they are only variables) of the host program. An output variable
cannot be changed by an expression more general than a variable. The num-
ber and the type of the formal and current parameters must be the same.
At this calling statement, the execution of the host program is interrupted,
the control switches over the subprogram, the values of current parameters
are given to the formal parameter variables, and the subprogram is executed.
After the termination of the subprogram, the values of the output parameter
variables are recopied to the appropriate current parameter variables. (Here,
two kinds of parameter passing have been defined: passing by value and passing
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by value-result but other passing methods may be introduced.)
The base state space of the subprogram is the interface between the subpro-

gram and the host program. At the beginning of the subprogram, the variables
of this base state space will get their initial values from the current state of the
host program. At the end of it these variables give their values to the variables
of the host program. The parameter variables and other local variables of the
subprogram are created when the subprogram is called and destroyed at the
termination of the subprogram.

In addition, the usage of subprograms permits recursive callings because
a subprogram can call itself. After each calling, the parameter and the local
variables of the subprogram are created again and again without the error
message ”out of memory” because the memory of the abstract program is
infinite.

During planning, it is convenient that all the current variables of the host
program are treated as global with respect to the subprogram that is called
by the host program. The applied programming style and the facilities of the
selected programming language determine if these global variables can be used
directly in the subprogram or not. Obviously, their use has to be forbidden if
we want to guarantee the independency of the subprogram.

We can make difference between the calling statement and the calling ex-
pression. In the latter case, only the right-hand side of the subprogram’s head
appears inside an expression of the host program, which contains actual pa-
rameters instead of formal parameter variables. After the termination, the
result value of the left-hand side of the head is given back to the place of the
calling expression in the host program.

Certainly, the abstract program description language which is used for plan-
ning has to be extended with the notation of the subprogram and of its calling
including the connection between the actual parameters and the parameter
variables.

To sum up the introduction of the concept of the subprograms makes it
possible to design subprograms during planning and not only during imple-
mentation.
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Sum of squares representation for the

Böttcher-Wenzel biquadratic form

Lajos LÁSZLÓ
Department of Numerical Analysis, Eötvös Loránd

University, Hungary
email: laszlo@numanal.inf.elte.hu

Abstract. We find the minimum scale factor, for which the nonnega-
tive Böttcher-Wenzel biquadratic form becomes a sum of squares (sos).
To this we give the primal and dual solutions for the underlying semi-
definite program. Moreover, for special matrix classes (tridiagonal, back-
ward tridiagonal and cyclic Hankel matrices) we show that the above form
is sos. Finally, we conjecture sos representability for Toeplitz matrices.

1 Introduction

The Böttcher-Wenzel inequality ([1], [2], [3], [7], [6]) states that for real square
matrices P,Q the biquadratic form

BW ≡ 2
(
||P||2||Q||2 − trace2(PTQ)

)
− ||PQ−QP||2 (1)

is nonnegative, with the Frobenius norm used. Replacing the factor 2 by 2+γn,
it is natural to ask for the minimum γn such that

(2+ γn)
(
||P||2||Q||2 − trace2(PTQ)

)
− ||PQ−QP||2

is a sum of (polynomial) squares. We answer this question in Theorem 1 by
showing that the minimum value is (n− 2)/2.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 90C22, 15A45, 65F15
Key words and phrases: sum of squares, Böttcher-Wenzel biquadratic form, semidefinite
programming, strict complementarity
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For simplicity, we use one-subscript notation for the entries of P and Q,
described by means of the ”small” index matrix

IND = ((i− 1)n+ j)ni,j=1.

Then P and Q can be generated by vectors p and q of dimension m = n2 as

P(i, j) = p (IND(i, j)), 1 ≤ i ≤ j ≤ n.

Introducing an index matrix will be especially useful in Sections 3 to 5, where
tridiagonal, backward tridiagonal, cyclic Hankel and general Toeplitz matrices
will be investigated. For these special cases we prove (for Toeplitz matrices:
conjecture) that the corresponding BW form is a sum of squares (sos).

It is quite odd that although (real) Hankel matrices are symmetric, thus
normal, hence nonnegativity easily follows [1], this does not imply that a sos
form also exists (except if n = 3, Example 9). On the other hand, Toeplitz
matrices are usually not normal, yet the corresponding BW form is sos, at
least according to our well-grounded Conjecture 15 at the end of the paper.

2 The case of general matrices

Let P,Q be arbitrary n× n real matrices with entries

P = (p(i−1)n+j)
n
i,j, Q = (q(i−1)n+j)

n
i,j,

as indicated above. (Notice that we use this indexing technique for simplicity.)
It turns out [5] that the above forms depend only on the variables

zi,j = piqj − qipj, 1 ≤ i < j ≤ n,

i.e. on the skew symmetric matrix

Z = pqT − qpT

of order n2, a benefit of including the term trace2(PTQ). Indeed, we have

||Z||2 = 2
(
||P||2||Q||2 − trace2(PTQ)

)
,

and all entries of the commutator [P,Q] obviously are linear forms of the zi,j-s.
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Let us formulate the primal and dual semi-definite programming problems
(see e.g. in [8]) for the eigenvalue optimization:

min {tr(CX) : X ≥ 0, tr(AiX) = 0, 1 ≤ i ≤M, tr(X) = 1} (Primal)

max {yM+1 : S ≡ C−

M∑
t=1

ytAt − yM+1I ≥ 0} (Dual)

where C, S, X, At and the identity I = IN are all real symmetric Nth order
matrices, C and (At)

M
1 are given, the primal matrix X, the dual (slack) matrix

S and vector y are the solutions of the program, tr(AB) ≡ trace(AB) denotes
the scalar product of the symmetric matrices A and B, and ≥ stands for the
semi-definite ordering: A ≥ B iff A− B is positive semi-definite.

The quantities zi,j will play the role of ’candidate monomials’ (better to say,
differences, and hereafter called candidates) with ordering

z = (z1,2, z1,3, z2,3, z1,4, . . . , z1,n, . . . , zn−1,n)
T .

The indices can be read from the ”big” index matrix

POS =


0 1 2 4 7 . . .

· 0 3 5 8 . . .

· · 0 6 9 . . .

· · · 0 10 . . .
...

...
...

...
...

. . .


of order n2 to be

(i, j) ∼ k ≡ i+ (j− 1)(j− 2)

2
, 1 ≤ i < j ≤ n2.

Note that zi,i = 0 for all i, and that the entries below the diagonal are omitted
due to zi,j = −zj,i, enabling us to reduce the number of unknowns. Also note
that IND is related to P and Q, while POS is connected with Z.

As an example, we give the biquadratic form BW as a quadratic form of the
quantities (zi,j) for n = 3. Observe that ‖Z‖2 = ‖Z‖2F = 2

∑
1≤i<j≤9 z

2
i,j.

Example 1. For n = 3 the objective takes the form

BW = ‖Z‖2 − (z2,4 + z3,7)
2 − (z1,2 + z2,5 + z3,8)

2 − (z1,3 + z2,6 + z3,9)
2

− (−z1,4 − z4,5 + z6,7)
2 − (−z2,4 + z6,8)

2 − (−z3,4 + z5,6 + z6,9)
2

− (−z1,7 − z4,8 − z7,9)
2 − (−z2,7 − z5,8 − z8,9)

2 − (−z3,7 + z6,8)
2.
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(Note that the form BW can be thought of as a function of the matrices
(P,Q), the vectors (p, q), the matrix Z, or of the vector z.) We give now all
the (quadratic) relations holding for the variables (zi,j)1≤i<j≤n2 as

zi,j zk,l + zi,l zj,k − zi,k zj,l = 0, 1 ≤ i < j < k < l ≤ n2. (2)

These easily checked relations define M =
(
n2

4

)
symmetric constraint matrices

At, each having exactly 6 nonzero (off-diagonal) entries. For instance, equation

z2,3 z4,5 + z2,5 z3,4 − z2,4 z3,5 = 0

defines an At with nonzero entries in positions (3, 10), (8, 6), (5, 9) and their
transposes, see the matrix POS. Now we can state our main theorem.

Theorem 1 The minimum value of γn, for which (1) is a sum of squares is

γn =
n− 2

2
.

Proof. We give the optimal primal and dual solutions and describe the main
characteristics of the optimal dual matrix. Since the objectives coincide, the
strong duality theorem yields the desired result.

By fixing the order of the variables (zi,j) above, matrix C is uniquely de-
termined. To get the (slack) matrix S = C −

∑
ytAt, we use the following

strategy. Note that we not only give the set (At) of active constraints (as e.g.
when taking the half Newton-polytope), but also give their coefficients (yt).

Strategy A. Assume the commutator [P,Q] contains an entry (zi,j+zk,l+. . . )
with i, j, k, l distinct and i < j, k < l. Then the quadratic form zTCz associated
with C necessarily contains a term 2 zi,j zk,l. We ’halve’ this term, and leave
one zi,j zk,l unchanged as is, while apply for the other term the basic quadratic
relation (2). By using the correct sign, this defines a constraint At and the
corresponding dual variable yt for some t. Finally, let ym+1 = −n−2

2 .

Now we give the obtained primal and dual solutions. In view of the quite
combinatorial character of the problem, we do not detail each block, instead
we give some explanations and important cross-references (control sums) and
for matrix S we provide Table 1. with all essential informations.

The Primal Problem

Before defining the optimal primal matrix X, we note that its rank is
(
n
2

)
.

For indices (i, j) : 1 ≤ i < j ≤ n we define the vectors vi,j of dimension
(
n2

2

)
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to have 4(n− 1) nonzero coordinates (four 2’s and 4(n− 2) ±1’s) using rowi,
rowj, columni and columnj of the index matrix IND, cf. Example 2 below.

Next we form the matrix of these vectors

V = [v1,2, v1,3, v2,3, . . . , vn−1,n],

and define matrix X0 = V V
T =
∑
vi,jv

T
i,j with the following properties:

X0 is a symmetric matrix of order N =
(
n2

2

)
and rank

(
n
2

)
. The v ′i,j’s are

orthogonal with norm square ‖vi,j‖2 = 4 · 4+ 4(n− 2) · 1 = 4(n+ 2). The trace
of X0 is

tr(X0) =
∑
i<j

tr(vi,jv
T
i,j) =

∑
i<j

‖vi,j‖2 = 4(n+ 2)

(
n

2

)
,

thus by defining

X =
(
4(n+ 2)

(
n

2

))−1
X0

we get a trace 1 matrix. The eigenvalues of X0 are 4(n + 2), those of X are(
n
2

)−1
(hence

(
n
2

)−1
X is a projection). The vi,j’s are also eigenvectors of C:

Cvi,j = (2− n)/2 vi,j.

Furthermore we have

tr(CX0) =
∑
i<j

tr(Cvi,jv
T
i,j) =

∑
i<j

vTi,jCvi,j =
2− n

2

∑
i<j

‖vij‖2,

and finally, the primal objective equals

tr(CX) =
tr(CX0)

tr(X0)
=
2− n

2
. (3)

The Dual Problem

The matrix S = C −
∑
ytAt resulting from Strategy A is positive semi-

definite and decomposes into some blocks given in Table 1. (Observe that all
eigenvalues and diagonal entries of 2S are integer – a reason for the factor 2.)

Here we list the important facts and control sums concerning the blocks of S,
and in Example (3) we give further hints for understanding the construction.

ROW-control: an element in the last column of row i is the scalar product
of row 1 and row i. For instance, the number of zero eigenvalues—the defect
of S—equals to

(
n
2

)
2+ 1(n− 1) = n2 − 1.
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1 No of blocks
(
n
2

)
1 3

(
n
4

) (
n
2

)
Total

2 Block sizes 6n− 8
(
n
2

)
4 1

3 Eig=0 2 n-1 – – n2 − 1
4 Eig=4 1 – – – n(n− 1)/2

5 Eig=n 2n− 4
(
n−1
2

)
1 – (n2 − 1)(n− 2)(n+ 4)/8

6 Eig=n+ 2 3n− 5 – 2 2 (n2 − 1)(n− 2)(n+ 4)/4
7 Eig=n+ 4 n− 3 – 1 – n(n− 1)(n2 + n− 2)/8
8 Eig=2n+ 2 1 – – – n(n− 2)/2

9 Diag n(+2) n− 2 n+ 2 n+ 2 (n3 − n)(n2 + 2n− 4)/2

Table 1: Decomposition of the matrix ”2S”

EIG-control: the last column (the number of eigenvalues, rows 3 to 8) sums

up to
(
n2

2

)
, the order of the matrix 2S.

DIAG-control: The sum of the elementwise products of row 1, 2 and 9,(
n

2

)(
2n∗n+4(n−2)(n+2)

)
+1

(
n

2

)
(n−2)+3

(
n

4

)
4(n+2)+

(
n

2

)
1(n+2)

equals to
(
n
2

)
(n+1)(n2+2n−4), the trace of 2S. (In the blocks of order 6n−8

there are 2n diagonal elements ”n”, and 4(n−2) diagonal elements ”(n+2)”.)
TRACE-control: the trace of the coefficient matrix C equals

tr(C) = 2

(
n2

2

)
− n(n− 1) − (n2 − n)n = n(n− 1)2(n+ 1).

The first subtrahend comes from the diagonal of the commutator [P,Q], the
second from their off-diagonal elements. Due to diag(S) = diag(C) + γnI, the
connection between the traces of matrices C and S is

tr(2S) = 2
(

tr(C) +
n− 2

2

(
n2

2

))
.

The number of all constraints is
(
n2

4

)
, while that of active constraints equals

n

(
n− 1

2

)
+ n(n− 1)

((n− 2

2

)
+ 2(n− 2)

)
=

(
n

2

)
(n2 − 4) ≡ 3(n+ 2)

(
n

3

)
.

Here the first term is associated with the main diagonal of R ≡ [P,Q] (by
virtue of zi,i = 0 there are only n − 1 terms in R(i, i)), while the rest comes
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from the off-diagonal of the commutator R (where there always are two terms
for which the basic relations do not apply, see the Example 2).

Thus S is positive semi-definite with defect n2−1, and its eigenvalues range
in the interval [0, n + 1]. To sum up, the primal objective (3) coincides with
the dual objective yM+1, the negative of γn, which proves the theorem. �

There holds no strict complementarity, for rank(X) =
(
n
2

)
< n2−1 = def(S).

Example 2 To define the primal matrix X take the four scalar products

〈rowi, colj〉, 〈coli, rowj〉, 〈rowi, rowj〉, 〈coli, colj〉

in the index matrix IND where each of the four products determine n coordi-
nates in vi,j as follows. If n = 3 and i = 1, j = 2, then row1 = [1, 2, 3], col2 =
[2, 5, 8]T which yields by (1, 2) ∼ 1, (2, 5) ∼ 8, (3, 8) ∼ 24 the coordinates
1, 8, 24, see also matrix POS. Similarly we calculate the other three triples,
giving together

1, 8, 24; 4, 10, 21 (!); 4, 8, 13; 1, 10, 28.

The repeated elements (1, 4, 8, 10) denote positions with value 2. The excla-
mation sign refers to an entry −1 (since (7, 6) must be inverted to (6, 7) ∼ 21).
To sum up, we get

v1,2 = (2, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0,−1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T .

Example 3 Hints for obtaining the dual matrix. We give some details for the(
n
2

)
most important blocks of order 6n−8. There is a one-to-one correspondence

between these blocks and ordered pairs (i, j), 1 ≤ i < j ≤ n. To collect the
indices for the block containing zi,j, we have to consider the 4(n− 1) terms in

〈rowi, colj〉, 〈coli, rowj〉, 〈rowi, rowj〉, 〈coli, colj〉

(the same as for vi,j above!) and further 2(n− 2) terms in the products

IND(i, j) ∗ diag(6= i, j), IND(j, i) ∗ diag(6= i, j).

Here diag(6= i, j) stands for the n− 2 entries of the diagonal of IND, differing
from i, j. As in Example 2, choosing n = 3, i = 1, j = 2, vector diag(6= 1, 2)
reduces to the (3, 3) entry 9, thus we get (using index matrices IND and POS)

((1, 2), (3, 3)) ∼ (2, 9) ∼ 30 and ((2, 1), (3, 3)) ∼ (4, 9) ∼ 32.
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Hence the diagonal block containing row 1 (related to z1,2) also contains rows
30 and 32. The whole index set at issue is [1, 4, 8, 10, 13, 21, 24, 28, 30, 32],
and the corresponding block is the 10× 10 (irreducible) matrix

3 0 −2 0 −1 0 −1 0 0 0

0 3 0 −2 0 1 0 −1 0 0

−2 0 3 0 0 0 −1 −1 0 0

0 −2 0 3 −1 1 0 0 0 0

−1 0 0 −1 5 0 0 −1 −1 1

0 1 0 1 0 3 −1 0 0 0

−1 0 −1 0 0 −1 3 0 0 0

0 −1 −1 0 −1 0 0 5 1 −1
0 0 0 0 −1 0 0 1 5 0

0 0 0 0 1 0 0 −1 0 5


with eigenvalues (0, 0, 3, 3, 4, 5, 5, 5, 5, 8).

3 Tridiagonal (and backward tridiagonal) matrices

In a former paper [4] we have shown that for nth order matrices P,Q with only
nonzero entries in row 1 and column n the BW form is sos, however in case of
(additional) main diagonal elements this is no more true. Therefore one would
guess that 3n+O(1) nonzero elements cannot be allowed, however the result
below shows that the answer depends on the position of these elements.

We shall use an index matrix given e.g. for n = 3 as IND =
(
1 2 0
3 4 5
0 6 7

)
.

Lemma 4 For tridiagonal P,Q the BW form is sos, especially we have

BW = 2
∑
i<j

z2i,j

−
∑

(z3i−4,3i−3 − z3i−1,3i)
2 −
∑

z23i−2,3i−1 −
∑

z23i,3i+3

−
∑

(z3i−2,3i−1 + z3i−1,3i+1)
2 −
∑

(z3i−2,3i + z3i,3i+1)
2

=
∑

(z3i−4,3i−1 + z3i−3,3i)
2 + (z3i−4,3i − z3i−3,3i−1)

2

+
∑

(z3i−2,3i−1 − z3i−1,3i+1)
2 +
∑

(z3i−2,3i − z3i,3i+1)
2

+
∑

z23i,3i+2 + 2
∑

z23i−2,3i+1 + 2
∑
i+5≤j

z2i,j −
∑

z23i−1,3i+3.

Remark 5 The first equality gives the biquadratic form at issue, the second
one is the claim: the sum of squares representation. (The negative terms in
the last row are evidently canceled.)
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n λ = 0 λ = 1 λ = 2 λ = 3 2-bl. act. rk(X)

2 3 0 3 0 2 0 3

3 7 1 12 1 6 1 7

4 11 2 30 2 10 2 11

5 15 3 57 3 14 3 15

6 19 4 93 4 18 4 19

7 23 5 138 5 22 5 23

8 27 6 192 6 26 6 27

Table 2: “Tridiagonal matrices”

Although SDP is not needed here, for the identity of the Lemma can be proved
directly, we yet give some facts. The eigenvalues of the dual matrix S for the
actual semidefinite programming problem are integers (0, 1, 2, 3) in this case,
too. This is so because matrix S decomposes into at most second order blocks
of the form ( 1 11 1 ) and ( 2 −1

−1 2 ).
Table 2 illustrates the main features of the underlying semidefinite program.

First the number of the eigenvalues of S are given, then the number of 2 × 2
blocks in S (the number of scalar blocks is not shown), the number of the active
(yt 6= 0) constraints, and finally, the rank of X. (The n − 2 active constraints
correspond to the positions (i− 1, i), (i, i− 1), (i, i+ 1) and (i+ 1, i) in IND.)

It is easy to get a formula for these quantities, e.g. the number of eigenvalues
λi = 2 can be determined by subtracting the number of all other eigenvalues
from the order (3n− 2)(3n− 3)/2 of S. The result is 3+ 9

(
n−1
2

)
.

Note that strict complementarity does hold: the number of zero eigenvalues
of S coincides with rank(X), the number of nonzero eigenvalues of X.

Backward tridiagonal matrices

They have many similar properties, except that the case n odd is worse:
while for n even all the eigenvalues of S are integers (lying in [0, 4]), for n odd
this does not hold, therefore we write ’–’ instead. Also, in this case there are
(apart from the scalar and 2× 2 blocks) 4× 4 blocks, too. All this information
is contained in Table 3 from where one can see that for n even we again have
strict complementarity, as in the tridiagonal case.
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n λ = 0 λ = 1 λ = 2 λ = 3 λ = 4 act 2-bl. 4-bl. rk(X)

2 3 0 3 0 0 2 0 0 3

3 8 - - - - 3 3 7 5

4 13 4 25 0 3 6 3 8 13

5 20 - - - - 11 6 17 18

6 25 6 81 2 6 14 6 18 25

7 32 - - - - 30 9 27 30

8 37 8 173 4 9 22 9 28 37

Table 3: ”Backward tridiagonal matrices”

Example 6 We calculate the number act of active constraints:

act =

{
5n− 12, n even

5n− 8, n odd

The number of terms in a typical row of the product of backward tridiagonal
matrices usually equals (0, . . . , 0, 1, 2, 3, 2, 1, 0, . . . , 0). However, in case of the
commutator PQ−QP there are some minor changes: for odd order 1, for even
order 2 main diagonal entries contain only two terms (instead of 3), due to the
identity zi,j + zj,i = 0. On the other hand, if n is even, there are two opposite
entries (with indices (k, k + 1) and (k + 1, k), where k = n/2) which do not
generate any constraint, for the corresponding indices are not distinct.

Now we easily calculate the number asked, which is e.g. for n = 6 equal to
5n− 12 = 18. To this consider the matrix



2 2 1 0 0 0

2 3 2 1 0 0

1 2 2 ∗ 1 0

0 1 ∗ 2 2 1

0 0 1 2 3 2

0 0 0 1 2 2


with the number of terms in a given position of [P,Q], and take

(
e
2

)
for any

entry e > 1. They sum up to 2∗
(
6
(
2
2

)
+
(
3
2

))
= 18. The general case is similar.
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4 Cyclic Hankel matrices

When investigating Hankel matrices, we find that – except for the case n = 3,
see below – they do not generate sos BW forms. However, cyclic ones behave

well. We make use of the small index matrix (given for n = 3): IND =
(
1 2 3
2 3 1
3 1 2

)
.

Theorem 7 For cyclic Hankel matrices P,Q the BW form is a sum of squares.

Proof. Using the above-defined index matrix with (1, 2, . . . , n) as first row
and (n, 1, . . . , n− 1)T as last column, we obtain

‖P‖2 = n‖p‖2, ‖Q‖2 = n‖q‖2, trace(PTQ) = npTq,

consequently

2
(
||P||2||Q||2 − trace2(PTQ)

)
= 2n2(‖p‖2‖q‖2 − (pTq)2).

The commutator [P,Q] is a skew symmetric cyclic Toeplitz matrix having

k = kn =
[n− 1

2

]
different entries ti = t

(n)
i with row one as

(0, t1, . . . , tk, −tk, . . . ,−t1) (n odd )
(0, t1, . . . , tk, 0,−tk, . . . ,−t1) (n even).

Thus the subtrahend is ‖R‖2 = 2n
∑
t2i , and the whole BW form equals

2n
(
n

n∑
i<j

z2i,j −

k∑
1

t2i

)
.

Observe now that all terms in

ti = t
(n)
i =

n−i∑
j=1

zj,i+j −

i∑
j=1

zj,n−i+j

are distinct (i = 1, . . . , k), hence the Cauchy-Schwarz inequality in conjunction

with nk = n
[
n−1
2

]
≤
(
n
2

)
imply

k∑
i=1

t2i ≤
k∑
i=1

n
( n−i∑
j=1

z2j,i+j +

i∑
j=1

z2j,n−i+j

)
≤ n
∑
i<j

z2i,j,

which proves the theorem. The last inequality turns into equality for n odd.
�
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Remark 8 The case n = 4 is especially interesting. Then the commutator is
0 t 0 −t

−t 0 t 0

0 −t 0 t

t 0 −t 0


with t = t1 = t

(4)
1 = z1,2 + z2,3 + z3,4 − z1,4, therefore the formula

4 (z21,2 + z
2
1,3 + z

2
2,3 + z

2
1,4 + z

2
2,4 + z

2
3,4) =

+ (z1,2 + z2,3 − z1,4 + z3,4)
2 + (z1,2 − z2,3 + z1,4 + z3,4)

2

+ (z1,2 + z1,3 − z2,4 − z3,4)
2 + (z1,2 − z1,3 + z2,4 − z3,4)

2

+ (z1,3 + z2,3 + z1,4 + z2,4)
2 + (z1,3 − z2,3 − z1,4 + z2,4)

2,

(a consequence of Eulers identity) yields the sos-representation needed.

Example 9 The case of (general) third order Hankel matrices. The index

matrix IND is now
(
1 2 3
2 3 4
3 4 5

)
, the order of C, S and the constraint matrices {At}

is
(
5
2

)
= 10, the number of the At-s is

(
5
4

)
= 5. By help of vector

z = (z1,2, z1,3, z2,3, z1,4, z2,4, z3,4, z1,5, z2,5, z3,5, z4,5)
T

and matrix C the objective can be written as BW = zTCz = tr(CzzT ), which
becomes – by means of a standard SDP relaxation – trace(CX). Our MATLAB
program yields y = (0, 0, 1, 0, 0, 0), i.e. only one constraint will be active, giving

S = C− y3A3 =



1 0 −1 0 0 −1 0 0 0 {1}

0 2 0 0 −1 0 0 0 −1 0

−1 0 4 0 0 −2 0 0 0 −1
0 0 0 2 0 0 0 {−1} 0 0

0 −1 0 0 3 0 {1} 0 −1 0

−1 0 −2 0 0 4 0 0 0 −1
0 0 0 0 {1} 0 1 0 0 0

0 0 0 {−1} 0 0 0 2 0 0

0 −1 0 0 −1 0 0 0 2 0

{1} 0 −1 0 0 −1 0 0 0 1


.

(In the original C the six entries in braces are zero.) The last zero in y indicates
the sos representability. To obtain the concrete sos form, we calculated the
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eigen-decomposition of the three blocks

B1 =


1 −1 −1 1

−1 4 −2 −1
−1 −2 4 −1
1 −1 −1 1

 , B2 =


2 −1 0 −1
−1 3 1 −1
0 1 1 0

−1 −1 0 2

 , B3 = ( 2 −1
−1 2

)

with integer eigenvalues

E1 :
(
0 0 4 6

)
, E2 :

(
0 1 3 4

)
, E3 :

(
1 3

)
and (unnormalized, integer, columnwise) eigenvectors

V1 :


2 −1 1 0

1 1 −1 1

1 1 −1 −1
0 3 1 0

 , V2 :


1 1 1 1

1 0 0 −3
−1 2 0 −1
1 1 −1 1

 , V3 : ( 1 1

1 −1

)
.

We sum up the result: with zi,j = piqj − qipj, 1 ≤ i < j ≤ 5 the following
identity holds for the BW form generated by two third order Hankel matrices:

2z21,2 + 3z
2
1,3 + 6z

2
2,3 + 2z

2
1,4 + 4z

2
2,4 + 6z

2
3,4 + z

2
1,5 + 2z

2
2,5 + 3z

2
3,5 + 2z

2
4,5

−(z1,3 + z2,4 + z3,5)
2 − (z1,2 + z2,3 + z3,4)

2 − (z2,3 + z3,4 + z4,5)
2 =

(z1,2 − z2,3 − z3,4 + z4,5)
2 + 3(z2,3 − z3,4)

2

+
1

6
(z1,3 + 2z1,5 + z3,5)

2 +
3

2
(z1,3 − z3,5)

2 +
1

3
(z1,3 − 3z2,4 − z1,5 + z3,5)

2

+
1

2
(z1,4 + z2,5)

2 +
3

2
(z1,4 − z2,5)

2.

5 Toeplitz matrices

In this section P and Q will be arbitrary real Toeplitz matrices. Observe that
the main diagonal entries don’t play any role (to prove this use temporarily
the more standard notation P = (pj−i) and Q = (qj−i), then the (i, j) entry in
R = [P,Q] equals

∑
zk−i,j−k, while z0,j−i+zj−i,0 = 0). Hence we can reduce the

number of variables to get e.g. for n = 3 the index matrix IND =
(
0 1 2
3 0 1
4 3 0

)
.

Another speciality is that now there occur repeated terms as well. To handle
these, introduce the multiplicity vector µ of dimension m by

µi = {the number of occurrences of pi in P, 1 ≤ i ≤ m}.

Then the following easily proved representation holds.
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Lemma 10

2
(
||P||2||Q||2 − trace2(PTQ)

)
= 2

m−1∑
i=1

m∑
j=i+1

µiµjz
2
i,j,

and (since the commutator is skew persymmetric), ‖R‖2 = 2
∑2
i=1

∑n−i
j=1 r

2
i,j.

In view of the lemma, we define the symmetric matrix C by help of equation
zTCz = 1

2 BW(p, q). Then there are m = 2(n − 1) possible nonzero elements,
the candidate vector z has dimension N =

(
m
2

)
, and the total number of

constraints (At) is M =
(
m
4

)
. For this problem we formulate a ’quasi-optimal’

strategy of choosing the dual variables.

Strategy B. Since the entries of [P,Q] are linear forms in (zi,j), their squares
figuring in ‖R‖2 involve some mixed products of the form ± 2 zi,jzk,l. Whenever
finding such a term with distinct {i, j, k, l}, we increase the actual value of y.

It turns out that Strategy B works for n, 3 ≤ n ≤ 7, however, for n ≥ 8 the
dual matrix S = C−

∑
ytAt will have (more and more) negative eigenvalues.

Lemma 11 For orders n not exceeding 7, the matrix S is p.s.d, i.e. for these
values the BW form is sos. Some further properties of S of arbitrary order n
are: the minimum off-diagonal entry of S is −bn−12 c; the defect of S, i.e. the
multiplicity of zero as eigenvalue is n−1; the maximal diagonal entry and also
the maximal eigenvalue is n(n − 2). Moreover, S is a direct sum of two types
of submatrices of the following order:
– type (a): 2, 4, 6, . . . , 2(n− 2); (denote by B the largest block here)
– type (b): 1, 1, 2, 2, . . . , n− 2, n− 2, n− 1.
The orders of these matrices sum up to (n− 1)(2n− 3), the order of S.

The largest block B of type (a) is crucial. It has a decomposition B =
(
D H
H D

)
,

with D diagonal, H Hermitian (i.e. symmetric), both of order n − 2. The
diagonal elements of D are (i(i+1)) in reverse order: ((n−2)(n−1), . . . , 6, 2).
Matrix H is also of a special structure: the elements on the border are −1,
those on the ’neighboring’ border are −2, and so on. This matrix is p.s.d. for
n ≤ 7, but has at least one negative eigenvalue for n ≥ 8.

Remark 12 The further submatrices of type (a) also are critical, e.g. the next
one (of order 2(n− 3)) has a similar form with diagonal elements (i(i+ 2)) in
D, while H is the same (of the appropriate size). Therefore there is a second
negative eigenvalue for n, 14 ≤ n ≤ 20, and so on. In general, the symmetric
matrices H are of the same form, and the diagonal entries of D are (i(i+k))i.
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Example 13 Matrices of order 5. In this case P and Q have m = 2(n−1) = 8
nonzero elements, the candidate vector z has dimension

(
m
2

)
= 28, the total

number of constraints is
(
m
4

)
= 70, and the number of active constraints is 14.

It always suffices to examine the first row and the first column of R, for all
other entries are contained in these, e.g. R(1, 1) = z1,5 + z2,6 + z3,7 + z4,8, and
R(2, 2) = z2,6 + z3,7. The number of the active constraints for n = 5, coming
from row 1 and column 1 is indeed 6 + 2 (3 + 1) = 14, as stated above. This
can be proved by induction, by noting that(
n− 1

2

)
+ 2
{(n− 2

2

)
+

(
n− 3

2

)
+ · · ·+

(
2

2

)}
=
1

6
(n− 1)(n− 2)(2n− 3).

As regards the y coordinates, since the product 2z2,6z3,7 occurs two times (as
the above formulae show), we write −2 in the suitable positions (overwriting
the −1-s) to get S(13, 17) = S(3, 21) = −2, and so on.

Now we give another example illustrating the role of the crucial block B.

Example 14 The case n = 8. The matrices D and H are now:

D =



42 0 0 0 0 0

0 30 0 0 0 0

0 0 20 0 0 0

0 0 0 12 0 0

0 0 0 0 6 0

0 0 0 0 0 2

 , H =



−1 −1 −1 −1 −1 −1
−1 −2 −2 −2 −2 −1
−1 −2 −3 −3 −2 −1
−1 −2 −3 −3 −2 −1
−1 −2 −2 −2 −2 −1
−1 −1 −1 −1 −1 −1

 .

The characteristic polynomial of the block B =
(
D H
H D

)
factorizes into p1p2,

where p1(x) = x
6−100x5+536x4−53472x3+327472x2−575680x−145152, and

p1 has a negative zero: – 0.2228. (All other zeroes of p1 and p2 are positive.)

Finally we mention that although the above strategy works only up to n = 7,
the standard semidefinite program yields results indicating that BW can be
sos for some larger orders, too, hence we guess that BW is sos in general. The
difficulty is that the corresponding dual variables (yt) of the program are not
recognizable real numbers. Nevertheless we formulate the following.

Conjecture 15 The Böttcher-Wenzel form (1) generated by two real Toeplitz
matrices is sos, i.e. a sum of squares of polynomials, now: quadratic forms.
Give – if possible – a rational certification, i.e. rational parameters (yt) such
that S = C−

∑
ytAt is positive semidefinite.
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[5] L. László, On a structured semidefinite program, Acta Univ. Sapientiae, Math.,
3, 1 (2011) 77–89. ⇒18

[6] Z. Lu, Normal scalar curvature conjecture and its applications, Funct. Anal. 261
(2011) 1284–1308. ⇒17
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Counting (k, l)-sumsets in groups of prime

order

Vahe SARGSYAN
Moscow State University

email: vahe sargsyan@ymail.com

Abstract. A subset A of a group G is called (k, l)-sumset, if A = kB−lB
for some B ⊆ G, where kB − lB = {x1 + · · · + xk − xk+1 − · · · − xk+l :
x1, . . . , xk+l ∈ B}. Upper and lower bounds for the number (k, l)-sumsets
in groups of prime order are provided.

1 Introduction

Let p be a prime number and k, l be nonnegative integers with k+l ≥ 2. Write
Zp for the group of residues modulo p. A subset A ⊆ Zp is called (k, l)-sumset,
if A = kB−lB for some B ⊆ Zp, where kB−lB = {x1+· · ·+xk−xk+1−· · ·−xk+l :
x1, . . . , xk+l ∈ B}. Write SSk,l(Zp) for the collection of (k, l)-sumsets in Zp.

B. Green and I. Ruzsa in [1] proved

p22p/3 � |SS2,0(Zp)| ≤ 2p/3+θ(p)

where θ(p)/p→ 0 as p→ ∞ and θ(p)� p(log log p)2/3(log p)−1/9 (hereafter
logarithms are to base two).

The aim of this work is to obtain bounds for the number |SSk,l(Zp)|. We
prove

Theorem 1 Let p be a prime number and k,l be nonnegative integers with
k+ l ≥ 2. Then there exists a positive constant Ck,l such that

Ck,l2
p/(2(k+l)−1) ≤ |SSk,l(Zp)| ≤ 2(p/(k+l+1))+(k+l−2)+o(p). (1)
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2 Definitions and auxiliary results

Let R be the set of real numbers, fi : Zp → R, i = 1, . . . ,m, and x ∈ Zp. We
set

(f1 ∗ · · · ∗ fm)(x) =

=
∑
x1∈Zp

· · ·
∑

xm−1∈Zp

f1(x1) . . . fm−1(xm−1)fm(x− x1 − · · ·− xm−1) (2)

and
f̂(x) =

∑
y∈Zp

f(y)e2πi
xy
p .

The function f̂(x) is called Fourier transform of f.

Lemma 2 We have

( ̂f1 ∗ · · · ∗ fm)(x) = f̂1(x) . . . f̂m(x). (3)

Proof. By definition

( ̂f1 ∗ · · · ∗ fm)(x) =
∑
y∈Zp

(f1 ∗ · · · ∗ fm)(y)e2πi
yx
p =

=
∑
y∈Zp

∑
y1∈Zp

· · ·
∑

ym−1∈Zp

f1(y1) . . . fm−1(ym−1)×

×fm(y− y1 − · · ·− ym−1) · e2πi
y1x

p . . . e
2πi

ym−1x

p · e2πi
(y−y1−···−ym−1)x

p =

=
∑
y1∈Zp

f1(y1) · e2πi
y1x

p · · ·
∑

ym−1∈Zp

fm−1(ym−1) · e2πi
ym−1x

p ×

×
∑
y∈Zp

fm(y− y1 − · · ·− ym−1) · e2πi
(y−y1−···−ym−1)x

p = f̂1(x) . . . f̂m(x).

�

Denote the characteristic function of a set A by χA(x). Let A1, . . . , Am be
non-empty subsets of Zp. Then (χA1

∗ · · · ∗ χAm)(x) will be the number of
vectors (x1, . . . , xm) ∈ A1×· · ·×Am such that x ≡ x1+ · · ·+xm (mod p). Set
A1 + · · · + Am = {x1 + · · · + xm (mod p) : x1 ∈ A1, . . . , xm ∈ Am}. We define
Sh,m(A1, . . . , Am) = {x ∈ Zp : (χA1

∗ · · · ∗ χAm)(x) ≥ h}, where h > 0. Further,
for any integer i and any A ⊆ Zp denote the set A+ · · ·+A︸ ︷︷ ︸

i

by iA, and the

set {p− x : x ∈ A} by −A.
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Theorem 3 (Cauchy-Davenport, [2]). Let A1, . . . , Am be non-empty subsets
of Zp. Then |A1 + · · ·+Am| ≥ min(p, |A1|+ · · ·+ |Am|− (m− 1)).

Theorem 4 (Pollard, [3]). Let A1, A2 be non-empty subsets of Zp. Then

|S1,2(A1, A2)|+ · · ·+ |St,2(A1, A2)| ≥ tmin(p, |A1|+ |A2|− t),

where t ≤ min(|A1|, |A2|).

Theorems 3, 4 imply the following two statements.

Lemma 5 Let A1, . . . , Am non-empty subsets of Zp. Then

|S1,m(A1, . . . , Am)|+ · · ·+ |St,m(A1, . . . , Am)| ≥

≥ tmin(p, |A1|+ · · ·+ |Am|− t−m+ 2),

where t ≤ min(|A1|, . . . , |Am|).

Proof. Without loss of generality we assume |A1| = min(|A1|, . . . , |Am|). By
Theorem 4 we have

|S1,2(A1, (A2 + · · ·+Am))|+ · · ·+ |St,2(A1, (A2 + · · ·+Am))| ≥

≥ tmin(p, |A1|+ |A2 + · · ·+Am|− t), (4)

where t ≤ |A1|.

On the other hand by Theorem 3 we have

|A2 + · · ·+Am| ≥ min(p, |A2|+ · · ·+ |Am|− (m− 2)). (5)

Substituting (5) in (4), we obtain

|S1,m(A1, . . . , Am)|+ · · ·+ |St,m(A1, . . . , Am)| ≥

≥ |S1,2(A1, (A2 + · · ·+Am))|+ · · ·+ |St,2(A1, (A2 + ...+Am))| ≥

≥ tmin(p, |A1|+ · · ·+ |Am|− t−m+ 2).

�

Lemma 6 Let A1, . . . , Am be non-empty subsets of Zp and h ≤ min (|A1|, . . . , |Am|).
Then

|Sh,m(A1, . . . , Am)| ≥ min(p, |A1|+ · · ·+ |Am|−m+ 2) − 2(hp)1/2.
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Proof. Note that |Si,m(A1, . . . , Am)| ≥ |Sj,m(A1, . . . , Am)| for i ≤ j. Choose
h ≤ t ≤ min (|A1|, . . . , |Am|). By Lemma 5 we have

tmin(p, |A1|+ · · ·+ |Am|− t−m+ 2) ≤

≤ |S1,m(A1, . . . , Am)|+ · · ·+ |St,m(A1, . . . , Am)| ≤
≤ hp+ t|Sh,m(A1, . . . , Am)|.

Putting t = (hp)1/2, we get

min(p, |A1|+ · · ·+ |Am|−m+ 2) − 2(hp)1/2 ≤

≤ min(p, |A1|+ · · ·+ |Am|−m− (hp)1/2 + 2) − (hp)1/2 ≤
≤ |Sh,m(A1, . . . , Am)|.

�

Lemma 7 Set Tr,s(Zp) = {A ⊂ Zp : |A| ≤ p/(r + 1)s}. Then there exists s
such that

|Tr,s(Zp)| ≤ 2p/(r+1). (6)

Proof. Let n,m be positive integers, 1 ≤ m ≤ n. Then (see Lemma 6.8, [4])∑
0≤i≤m

(
n

i

)
≤
(en
m

)m
. (7)

We choose s such that
es(r+ 1) ≤ 2s. (8)

Then by (7) we have (putting n = p and m = p/(r+ 1)s)

|Tr,s(Zp)| =
∑

0≤i≤p/(r+1)s

(
p

i

)
≤ (es(r+ 1))p/(r+1)s ≤ (2s)p/(r+1)s = 2p/(r+1).

�

Let L be a positive integer. For each y ∈ {0, . . . , p−1} we define a partition Ry,L

of Zp on the intervals of the form J
y
i = {(iL+1+y) (mod p), . . . , ((i+1)L+y)

(mod p)}, 0 ≤ i ≤ bp/Lc − 1. All intervals are Jyi of Ry,L have length L, and
the set Jy = Zp \

⋃
i J
y
i has cardinality p − Lbp/Lc < L. The set Jy is called

remainder partition Ry,L. In what follows we fix y ∈ {0, . . . , p−1} and consider
the corresponding partition Ry,L. For every A ⊆ Zp and any integer d define
d ? A = {da (mod p) : a ∈ A}. The set d ? A is called dilation of A. The set
A ⊆ Zp is called L-granular (see [1]), if some dilation of A is a union of some
of the intervals Jyi (other than remainder). We denote the family of L-granular
subsets of Zp by GL(Zp).
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Lemma 8 We have
|GL(Zp)| ≤ p2p/L. (9)

Proof. Denote the number of subsets of intervals (other than remainder) of
the partition Ry,L of Zp by g(Ry,L), and the number of different partitions Ry,L
of Zp by r(L). It is obvious that

|GL(Zp)| ≤ g(Ry,L)r(L). (10)

Note that the number of intervals (other than remainder) of the partition Ry,L

of Zp is equal to bp/Lc, and the number of different partitions Ry,L of Zp is
at most p. This and (10) imply the inequality (9). �

Lemma 9 Let A ⊆ Zp have size αp, and let ε1, ε2, ε3 be positive real numbers
and L > 0, k, l be nonnegative integers satisfying k+ l ≥ 2. Suppose that

p > (
√
8(k+ l)L)4

2(k+l)α2(k+l−1)ε
−2(k+l)
1 ε

−2(k+l−1)
2 ε−1

3 . (11)

Then there exists a set A ′ ⊆ Zp with the following properties:
(i) A ′ is L-granular;
(ii) |A \A ′| ≤ ε1p;
(iii) the set kA− lA contains all x ∈ Zp for which

(χA ′ ∗ · · · ∗ χA ′︸ ︷︷ ︸
k

∗χ−A ′ ∗ · · · ∗ χ−A ′︸ ︷︷ ︸
l

)(x) ≥ (ε2p)
k+l−1, with at most ε3p excep-

tions.

Proof. Let h ∈ {0, . . . , p− 1}, and Rh,L be partition of Zp.

(i) For given set A ⊂ Zp we define A ′ ⊂ Zp as the union of intervals Jhi of
the partition Rh,L, such that |A ∩ Jhi | ≥ ε1L/2. From the definition it follows
that A ′ is L-granular. It is easy to see that (−A) ′ = −(A ′).

(ii) Let x ∈ A\A ′. Then either x ∈ Jh or x ∈ A∩Jhi , (i = 0, . . . , bp/Lc−1),
and |A ∩ Jhi | ≤ ε1L/2. In the first case we have |Jh| < L, and inequality (11)
implies L ≤ ε1p/2. Thus,

|A \A ′| ≤ ε1L
2
· p
L
+ L ≤ ε1p.

(iii) Let χ̂A(x) be the Fourier transform of the characteristic function χA
of A, so that

χ̂A(x) =
∑
y∈Zp

χA(y)e
2πiyx

p =
∑
y∈A

e
2πiyx

p
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for all x ∈ Zp. Take δ = 4−(k+l)εk+l1 εk+l−12 ε
1/2
3 α−(k+l)+3/2, where ε1, ε2 and ε3

are from inequality (11). Set D = {x 6= 0 : |χ̂A(x)| ≥ δp}.We define the function
f(x) as follows:

f(x) =
1

2L− 1

L−1∑
j=−(L−1)

e
2πi jqx

p .

In the future we will show that there exists q ∈ Zp\{0} such that for all x ∈ Zp
it holds

|χ̂A(x)||1− f
k+l(x)| ≤ δp. (12)

The inequality (12) obviously holds for the case x = 0, since f(0) = 1, as well
as for the case |χ̂A(x)| ≤ δp, since f(x) ∈ [−1, 1]. Thus, it remains to show
the existence of q such that the inequality (12) holds for all x ∈ D. First we
estimate the value of 1−f(x). Denote by 〈x〉 the distance from x to the nearest
integer. We use the fact that 1− cos(2πx) ≤ 2π2〈x〉2. Then

1− f(x) =
2

2L− 1

L−1∑
j=1

(
1− cos

2πjqx

p

)
≤ 4π2

2L− 1

L−1∑
j=1

〈
jqx

p

〉2
≤

≤ 4π2

2L− 1

〈
qx

p

〉2 L−1∑
j=1

j2 ≤ 2π
2L2

3

〈
qx

p

〉2
. (13)

Recall that for |x| ≤ 1

1− xm = (1− x)(1+ x+ x2 + · · ·+ xm−1) ≤ m(1− x). (14)

From (13) and (14) it follows

|χ̂A(x)||1− f
k+l(x)| ≤ (k+ l)|χ̂A(x)||1− f(x)| ≤ 8(k+ l)L2〈qx/p〉2|χ̂A(x)|.

Note that if the inequality〈
qx

p

〉
≤ 1√

8(k+ l)L

(
δp

|χ̂A(x)|

)1/2
(15)

holds for some q ∈ Zp \ {0} and for all x ∈ D then the inequality (12) also
holds. Now we will prove that such q exists. By definition, we have

〈qx/p〉 = min{(qx (mod p))/p, (p− qx (mod p))/p}.
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Set |D| = d, D = {r1, . . . , rd}. We denote ai = (1/
√
8(k+ l)L)(δp/|χ̂A(ri)|)

1/2.
Then the inequality (15) can be rewritten as

min{qri (mod p), p− qri (mod p)} ≤ pai, where i = 1, . . . , d. (16)

Denote the set {(x1, . . . , xd) : x1, . . . , xd ∈ Zp} by Zdp. We split Zdp on disjoint
subsets

Zdp =
⋃

(i1,...,id)

Qi1,...,id
,

where

Qi1,...,id
= {(x1, . . . , xd) : ijpaj < xj ≤ (ij + 1)paj, j = 1, . . . , d}.

Let µd be number of different sets of Qi1,...,id
. Using the fact that 0 ≤ ij ≤

1/aj − 1, j = 1, . . . , d, we have

µd ≤
d∏
i=1

1

ai
.

Let us consider the following p− 1 elements of Zdp:

(qr1 (mod p), . . . , qrd (mod p)) , where r1, . . . , rd ∈ D, q = 1, . . . , p− 1.

We show that if

p >

d∏
i=1

1

ai
, (17)

then there exists q such that for all ri ∈ D, i = 1, . . . , d, the inequality (16)
holds. We consider two cases:
(A) If µd = p− 1, then we take q = q0, where q0 ∈ Zp \ {0} such that
(q0r1 (mod p), . . . , q0rd (mod p)) ∈ Q0,...,0.
(B) If µd < p−1, then by pigeonhole principle, there are q1, q2 ∈ Zp \ {0} such
that the vectors (q1r1 (mod p), . . . , q1rd (mod p)) and (q2r1 (mod p), . . . , q2rd
(mod p)) belong to the same set of Qi1,...,id

. Obviously, when q = q1 − q2 the
inequality (16) holds.

We now show that inequality (17) is a consequence of (11). Indeed, by the
Parseval’s identity, we have

p−1

∑
x∈D

|χ̂A(x)|
2 +

∑
x∈Zp\D

|χ̂A(x)|
2

 =
∑
x∈Zp

|χA(x)|
2 = αp. (18)
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From (18) it follows ∑
x∈D

|χ̂A(x)|
2 ≤ αp2. (19)

From (19) and the arithmetic and geometric mean inequality, we get(∏
x∈D

|χ̂A(x)|
2

)1/d
≤ 1

d

∑
x∈D

|χ̂A(x)|
2 ≤ αp

2

d
.

i.e. ∏
x∈D

|χ̂A(x)| ≤
(
αp2

d

)d/2
. (20)

From (20) we get

(
√
8(k+ l)L)

d

(∏
x∈D

|χ̂A(x)|

δp

)1/2
≤ (
√
8(k+ l)Lα1/4δ−1/2d−1/4)

d
. (21)

It is easy to see that the right-hand side of (21) is an increasing function of d
in the range d < 64(k+ l)2L4α/δ2e.
On the other hand, from (19) we have dδ2p2 ≤ αp2. Hence, d ≤ α/δ2. Conse-
quently

(
√
8(k+ l)Lα1/4δ−1/2d−1/4)

d
≤ (
√
8(k+ l)L)

α/δ2

.

Recall that δ = 4−(k+l)εk+l1 εk+l−12 ε
1/2
3 α−(k+l)+3/2. From this it follows that there

exists q such that the inequality (12) holds. Moreover, without loss of gener-
ality we can assume q = 1 (this can be achieved by selecting an appropriate
dilation of the set A).

Define two functions χ1(x) and χ2(x) as follows:

χ1(x) =
1

|J |
(χA ∗ χJ )(x),

χ2(x) =
1

|J |
(χ−A ∗ χJ )(x),

where J = {−(L− 1), . . . , L− 1}. From (2) it follows that

χ1(x) =
1

|J |
|A ∩ (J + x)|, (22)
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χ2(x) =
1

|J |
|(−A) ∩ (J + x)|, (23)

and from (3) we have χ̂1(x) = χ̂A(x)f(x) and χ̂2(x) = χ̂−A(x)f(x). Hence, by
Parseval’s identity and from (3) we get

∑
x∈Zp

∣∣∣∣∣∣(χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x) − (χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)

∣∣∣∣∣∣
2

=

=p−1
∑
x∈Zp

∣∣∣∣∣∣( ̂χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x)−( ̂χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)

∣∣∣∣∣∣
2

= p−1
∑
x∈Zp

∣∣∣χ̂Ak(x)χ̂−Al(x) − χ̂1k(x)χ̂2l(x)∣∣∣2 =
= p−1

∑
x∈Zp

|χ̂A(x)|
2k
|χ̂−A(x)|

2l
∣∣∣1− fk+l(x)∣∣∣2 ≤

≤ p−1
(

sup
x∈Zp

|χ̂A(x)|
k−1

|χ̂−A(x)|
l
∣∣∣1− fk+l(x)∣∣∣)2 ∑

x∈Zp

|χ̂A(x)|
2
. (24)

We have

|χ̂A(x)| =

∣∣∣∣∣∣
∑
y∈Zp

χA(y)e
2πiyx

p

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
y∈A

e
2πiyx

p

∣∣∣∣∣∣ ≤
∑
y∈A

∣∣∣e2πiyxp ∣∣∣ = αp, (25)

|χ̂−A(x)| =

∣∣∣∣∣∣
∑
y∈Zp

χ−A(y)e
2πiyx

p

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
y∈−A

e
2πiyx

p

∣∣∣∣∣∣ ≤
∑
y∈−A

∣∣∣e2πiyxp ∣∣∣ = αp. (26)

From (12), (18), (24), (25) and (26) it follows

∑
x∈Zp

∣∣∣∣∣∣(χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x) − (χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)

∣∣∣∣∣∣
2

≤

≤

(
sup
x∈Zp

|χ̂A(x)|
∣∣∣1− fk+l(x)∣∣∣)2α2(k+l)−3p2(k+l)−3 ≤
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≤ α2(k+l)−3δ2p2(k+l)−1. (27)

Suppose that x ∈ A ′ (x ∈ −A ′). Then there exists an interval I of length L
such that I ⊆ {x − (L − 1), . . . , x + (L − 1)} and x ∈ I. From definition of A ′

(−A ′) it follows that |I ∩A| ≥ ε1L/2 (|I ∩ (−A)| ≥ ε1L/2). From the definition
of χ1(x) (χ2(x)) it follows that χ1(x) ≥ ε1/4 (χ2(x) ≥ ε1/4). Observe, that
χ1(x) ≥ ε1χA ′(x)/4 and χ2(x) ≥ ε1χ−A ′(x)/4 hold for all x ∈ Zp . From this
and (2) it follows that

(χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x) ≥

≥ εk+l1 (χA ′ ∗ · · · ∗ χA ′︸ ︷︷ ︸
k

∗χ−A ′ ∗ · · · ∗ χ−A ′︸ ︷︷ ︸
l

)(x)/4k+l (28)

for all x ∈ Zp. In the case

(χA ′ ∗ · · · ∗ χA ′︸ ︷︷ ︸
k

∗χ−A ′ ∗ · · · ∗ χ−A ′︸ ︷︷ ︸
l

)(x) ≥ (ε2p)
k+l−1, (29)

by (28) we have

(χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x) ≥ ε1k+l(ε2p)k+l−1/4k+l. (30)

Now we show that the number of elements x ∈ Zp such that satisfying (29)
and (χA ∗ · · · ∗ χA︸ ︷︷ ︸

k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x) = 0, does not exceed ε3p. Denote the

set of such elements by F. Observe, that for every x ∈ F

|(χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x) − (χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)|2 ≥

≥ ε1
2(k+l)ε2

2(k+l−1)p2(k+l−1)

42(k+l)
. (31)

By (27) and (31)

α2(k+l)−3δ2p2(k+l)−1 ≥

≥
∑
x∈Zp

∣∣∣∣∣∣(χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x) − (χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)

∣∣∣∣∣∣
2

=
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=
∑
x∈F

∣∣∣∣∣∣(χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x)−(χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)

∣∣∣∣∣∣
2

+

+
∑

x∈(Zp\F)

∣∣∣∣∣∣(χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x)−(χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)

∣∣∣∣∣∣
2

≥ |F|
ε1
2(k+l)ε2

2(k+l−1)p2(k+l−1)

42(k+l)
+

+
∑

x∈(Zp\F)

∣∣∣∣∣∣(χA ∗ · · · ∗ χA︸ ︷︷ ︸
k

∗χ−A ∗ · · · ∗ χ−A︸ ︷︷ ︸
l

)(x)−(χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
k

∗χ2 ∗ · · · ∗ χ2︸ ︷︷ ︸
l

)(x)

∣∣∣∣∣∣
2

.

This implies

|F| ≤ 4
2(k+l)α2(k+l)−3δ2

ε12(k+l)ε22(k+l−1)
p ≤ ε3p.

�

3 The proof of Theorem 1

3.1 The upper bound

Let k,l be nonnegative integers with k+ l ≥ 2. Suppose that s satisfies es(k+
l+ 1) ≤ 2s. We divide a partition of SSk,l(Zp) into two parts:

SSk,l(Zp) = SS ′k,l,s(Zp) ∪ SS ′′k,l,s(Zp), (32)

where

SS ′k,l,s(Zp) = {B ∈ SSk,l(Zp) : B = kA− lA and |A| ≤ p/(k+ l+ 1)s},

SS ′′k,l,s(Zp) = {B ∈ SSk,l(Zp) : B = kA− lA and |A| > p/(k+ l+ 1)s}.

It is obvious that

|SSk,l(Zp)| ≤ |SS ′k,l,s(Zp)|+ |SS ′′k,l,s(Zp)|. (33)

Since every set A ⊆ Zp generates one set of the form kA− lA we obtain∣∣SS ′k,l,s(Zp)∣∣ ≤ |Tk+l,s(Zp)| . (34)
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By (7) and (34) we have ∣∣SS ′k,l,s(Zp)∣∣ ≤ 2p/(k+l+1). (35)

Now we prove an upper bound for |SS ′′k,l,s(Zp)|. Suppose that the cardinality
of A ⊆ Zp is larger than p/(k + l + 1)s. Let p be a prime number such that
for some nonnegative integers k, l, L > 0 and positive real numbers ε1, ε2 and
ε3 the condition (11) is fulfilled. By Lemma 9 there exists a subset A ′ with
properties (i) − (iii). We estimate the number of (k, l)-sumsets kA − lA by
counting pairs (A ′, kA− lA).

Now let A ′ ∈ GL(Zp) be given. For any subset C ⊆ Zp we denote by C the
complement of the subset C in Zp.

If |A ′| ≥ p/(k+ l+ 1), then from (iii) of Lemma 9 we obtain that kA− lA
is a subset of the union of the set S(ε2p)k+l−1,k+l(χA ′ , . . . , χA ′︸ ︷︷ ︸

k

, χ−A ′ , . . . , χ−A ′︸ ︷︷ ︸
l

)

and a set of cardinality not exceeding ε3p. By Lemma 6 we have

|S(ε2p)k+l−1,k+l(χA ′ , . . . , χA ′︸ ︷︷ ︸
k

, χ−A ′ , . . . , χ−A ′︸ ︷︷ ︸
l

)| ≥

≥ min(p, (k+ l)|A ′|− (k+ l) + 2) − 2((ε2p)
k+l−1p)1/2.

If |A ′| ≥ p/(k+ l+ 1), we obtain

|S(ε2p)k+l−1,k+l(χA ′ , . . . , χA ′︸ ︷︷ ︸
k

, χ−A ′ , . . . , χ−A ′︸ ︷︷ ︸
l

)| =

= p− |S(ε2p)k+l−1,k+l(χA ′ , . . . , χA ′︸ ︷︷ ︸
k

, χ−A ′ , . . . , χ−A ′︸ ︷︷ ︸
l

)| ≤

≤ p/(k+ l+ 1) + 2ε2(k+l−1)/2p(k+l)/2 + (k+ l− 2).

It is obvious that for any subset B ⊆ Zp the set kB−lB uniquely determines
the set kB− lB. From above it follows that the number of choices kA− lA for
given A ′ of cardinality exceeding p/(k+ l+ 1), is at most

2p/(k+l+1)+(k+l−2)+(2ε2
(k+l−1)/2p(k+l−2)/2+ε3)p. (36)

If |A ′| < p/(k+ l+ 1), then by (i) of Lemma 9 we have |A \A ′| ≤ ε1p . This
implies that |A| ≤ |A ′|+ ε1p. Since every set A ⊆ Zp generates exactly one set
of form kA − lA, we obtain that the number of choices kA − lA for given A ′

of cardinality not exceeding p/(k+ l+ 1), is at most

2p/(k+l+1)+ε1p. (37)
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From (36), (37), Lemma 8 by applying Lemma 9 with parameters ε1 = ε3 = ε,
L = 1+ b1/εc and ε2 = ε

2/(k+l−1)p(2−k−l)/(k+l−1), we obtain

|SS ′′k,l,s(Zp)| ≤ 2(p/(k+l+1))+(k+l−2)+o(p). (38)

From (33), (35) and (38) it follows that

|SSk,l(Zp)| ≤ 2p/(k+l+1) + 2(p/(k+l+1))+(k+l−2)+o(p) = 2(p/(k+l+1))+(k+l−2)+o(p).

3.2 The lower bound

Set SSk,l(Zp,P) = {A : P ⊆ A, A ∈ SSk,l(Zp)} and L = bp/(2(k+ l)− 1)c− 1.

Lemma 10 Let k,l be nonnegative integers with k+ l ≥ 2, and let P ⊆ Zp be
arbitrary arithmetic progression of length (k+ l)(L− 1) + 1. Then there exists
a positive constant Ck,l such that

|SSk,l(Zp,P)| ≥ Ck,l2
p/(2(k+l)−1).

Proof. Without loss of generality we assume P = {k − lL, . . . , kL − l}. All of
our sets will be of the form

A = A(B) = k(B ∪ {−(2L+ 1), 2L+ 1}) − l(B ∪ {−(2L+ 1), 2L+ 1}),

where B ⊆ {−L,−L+ 1, . . . , L} and −B = B. It is easy to see that different sets
B ⊆ {−L,−L+ 1, . . . , L} generate different sets A(B).

Set Nk,l = dlog (8(k+ l)2)/ log (4/3)e and

X = {0, 1, . . . ,Nk,l} ∪
k+l−1⋃
i=1

(b(i+ 1)L/(k+ l)c−Nk,l, . . . , d(i+ 1)L/(k+ l)e).

We define the set B ⊆ {−L,−L+ 1, . . . , L} as follows:

B = B(C) = −C ∪ C ∪ X ∪−X,

where elements of the set C are picked from the set {1, . . . , L} \ X randomly,
independently, with probability 1/2. Set

Y = {0} ∪ {k+ l, . . . , (k+ l)Nk,l} ∪
k+l−1⋃
i=1

{(i+ 1)L− (k+ l)Nk,l, . . . , (i+ 1)L}.
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It is obvious that −Y ∪Y ⊆ kB− lB. If x /∈ kB− lB, then in the representation
x in the form x = x1 + · · ·+ xk − xk+1 − · · ·− xk+l, there exists at least one xi
(i ∈ {1, . . . , k+ l}) such that xi /∈ B. Set

Q(x) = {(x1, . . . , xk+l) : x =

k∑
i=1

xi −

k+l∑
j=k+1

xj, x1, . . . , xk+l ∈ {−L, . . . , L}},

and suppose that |Q(x)| = q.
We say that the vectors (x1, . . . , xk+l) and (y1, . . . , yk+l) do not intersect, if

{x1, . . . , xk+l} ∩ {y1, . . . , yk+l} = ∅.
Set R0 = {(k+ l)Nk,l + 1, . . . , L}. We show that for every x ∈ −R0 ∪R0 the

following inequality

Pr(x /∈ kB− lB) ≤
(
3

4

)⌊
|x|
k+l

⌋
(39)

holds. We have

Pr(x /∈ kB− lB) =

= Pr((x11 + · · ·+ x1k − x1k+1 − · · ·− x1k+l /∈ kB− lB)& . . .

. . .&(xq1 + · · ·+ x
q
k − x

q
k+1 − · · ·− x

q
k+l /∈ kB− lB)) ≤

≤ Pr((x111 + · · ·+ x11k − x11k+1 − · · ·− x11k+l /∈ kB− lB)& . . .

. . .&(x1n1 + · · ·+ x1nk − x1nk+1 − · · ·− x1nk+l /∈ kB− lB)) =

= Pr
(
(x111 /∈ B∨ · · ·∨ x11k+l /∈ B)& . . .&(x1n1 /∈ B∨ · · ·∨ x1nk+l /∈ B)

)
=

= Pr
(
(x111 /∈ B)∨ · · ·∨ (x11k+l /∈ B)

)
· ... ·Pr

(
(x1n1 /∈ B)∨ · · ·∨ (x1nk+l /∈ B)

)
=

= Pr
(
(x111 ∈ B)& . . .&(x11k+l ∈ B)

)
× . . .

· · · ×Pr
(
(x1n1 ∈ B)& . . .&(x1nk+l ∈ B)

)
=

=
(
1−Pr

(
(x111 ∈ B)& . . .&(x11k+l ∈ B)

))
× . . .

· · · ×
(
1−Pr

(
(x1n1 ∈ B)& . . .&(x1nk+l ∈ B)

))
, (40)

where the vectors (xi1, . . . , x
i
k+l) ∈ Q(x), i = 1, . . . , q, and the vectors (x1j1 , . . . ,

x
1j
k+l), j = 1, . . . , n ≤ q, are pairwise disjoint.
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Note that the vectors (x−i(k+l−1), i, . . . , i︸ ︷︷ ︸
k−1

,−i, . . . ,−i︸ ︷︷ ︸
l

) are pairwise disjoint

for every x ∈ −R0, where − b|x|/(k+ l)c ≤ i ≤ −1, and x ∈ R0, where
1 ≤ i ≤ bx/(k+ l)c . From this and (40) we obtain the inequality (39).

Set Lj = {jL+ 1, . . . , (j+ 1)L−(k+ l)Nk,l− 1}, j = 1, . . . , k+ l− 1. Similarly
to the inequality (39) we have

Pr(x /∈ kB− lB) ≤
(
3

4

)⌊
(j+1)L−|x|

k+l

⌋
, (41)

where x ∈ −Lj ∪ Lj, j = 1, . . . , k+ l− 1.
From (39) and (41) it is easy to see that

Pr (P * kB− lB) ≤ (k+ l)
∑

x≥(k+l)Nk,l+1

(
3

4

)b x
k+lc

. (42)

Note that if Nk,l ≥ log (8(k+ l)2)/ log (4/3), the right-hand side of (42) does
not exceed 1/2. This leads that there exists at least 2L−(k+l)Nk,l−1 subsets
B ⊆ {−L,−L+ 1, . . . , L} such that P ⊆ kB− lB. �

Let k,l be nonnegative integers with k+ l ≥ 2, and let P ⊆ Zp be arbitrary
arithmetic progression of length (k+ l)(L− 1) + 1. By Lemma 10 we have

|SSk,l(Zp)| ≥ |SSk,l(Zp,P)| ≥ Ck,l2
p/(2(k+l)−1).
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Abstract. This paper explores fast, polynomial time heuristic approxi-
mate solutions to the NP-hard problem of scheduling jobs on N identical
machines. The jobs are independent and are allowed to be stopped and
restarted on another machine at a later time. They have well-defined
deadlines, and relative priorities quantified by non-negative real weights.
The objective is to find schedules which minimize the total weighted tar-
diness (TWT) of all jobs. We show how this problem can be mapped into
quadratic form and present a polynomial time heuristic solution based
on the Hopfield Neural Network (HNN) approach. It is demonstrated,
through the results of extensive numerical simulations, that this solution
outperforms other popular heuristic methods. The proposed heuristic is
both theoretically and empirically shown to be scalable to large problem
sizes (over 100 jobs to be scheduled), which makes it applicable to grid
computing scheduling, arising in fields such as computational biology,
chemistry and finance.
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1 Introduction

With the advent of grid computing, the classical science of scheduling the-
ory has gained a new sphere of applications. Methods which were originally
developed for decision making around limited resources in manufacturing and
service industries have been adopted in the areas of computer science, telecom-
munication and other computationally intensive disciplines such as computa-
tional biology, chemistry and finance [5, 22]. Specifically, in the area of com-
putational finance, where this paper sources its motivation, the problems of
portfolio selection, pricing and hedging of complex financial instruments re-
quires an enormous amount of computational resources whose optimal usage
is of utmost importance to investment banks. The prices and risk sensitiv-
ity measures of complex portfolios need to be reevaluated daily, for which an
overnight batch of calculations is scheduled and performed for millions of fi-
nancial transactions, utilizing thousands of computing nodes. Each job has a
well-defined priority and required completion time for availability of the re-
sulting figures to the trading desk, risk managers and regulators. The jobs can
generally be stopped and resumed at a later point on a different machine which
is referred to as preemption in scheduling theory. For simplicity of modeling
the problem, machines are generally assumed to be identical and there is a
known, constant number of machines available.

The problem of finding optimal schedules for jobs running on identical ma-
chines has been extensively studied over the last three decades. Sahni [25]
presents an O (n logmn) algorithm to construct a feasible schedule, one that
meets all deadlines, if one exists, for n jobs and m machines. The basic idea
of the algorithm is to schedule jobs with earliest due dates first, but fill up
machines with smaller jobs if possible. Note that this method allows the de-
velopment of an algorithm to compute the minimal amount of unit capacity
for which a feasible schedule exists. This result has been extended to machines
with identical functionality but different processing speed, termed uniform
machines, and jobs with both starting times and deadlines [19]. However, the
scheduling task becomes more difficult when a feasible schedule does not exist
and the goal is to minimize some measure of delinquency, often termed tardi-
ness. Tardiness of an individual job under a given schedule is defined as the
amount of time by which the job finishes after its prescribed deadline, and is
considered to be zero if the job finishes on or before the deadline.

In case of minimizing the maximum tardiness across all jobs, Lawler [14]
shows that the problem is solvable in polynomial time, even with some prece-
dence constraints. Martel [19] also used his construction to create a polynomial
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time algorithm to find the schedule which minimizes maximum lateness. How-
ever, if our measure concerns the total tardiness instead of the maximal one,
then even the single machine, total tardiness problem (without weights) was
proven to be NP-hard by Du et al. [7]. A pseudopolynomial algorithm has been
developed by Lawler [13] for this problem, using dynamic programming, but
this is for the 1-machine problem and does not have good practical runtime
characteristics.

In practical applications, jobs often have relative priorities associated with
them, represented by positive real weights and the objective becomes min-
imizing the total weighted tardiness (TWT). Once the NP-hardness of the
TWT problem was established, most of the research work on the problem
concerned the development of fast, heuristic algorithms. Dogramaci et al. [6]
propose a simple heuristic for the total (non-weighted) tardiness problem with-
out preemption. Rachamadugu et al. [23] then studied the identical machine,
total weighted tardiness problem without preemption. They proposed a myopic
heuristic and compared this to earliest due date (EDD), weighted shortest pro-
cessing time (WSPT) and Montagnes rule on small problem sizes (2 or 5 jobs
in total). Azizoglu et al. [3] worked on an algorithm to find optimal schedule for
the unweighted total tardiness problem without preemption, but their branch
and bound exponential algorithm is too slow, in practice, for problems with
more than 15 jobs. Armentano et al. [2] examined the non-weighted problem
without preemption, and starting from the KPM heuristic of Koulamas [11]
improved upon it, using tabu search. Guinet [8] applies simulated annealing to
solve the problem with uniform and identical machines and a lower bound is
presented in order to evaluate the performance of the proposed method. More
recently, Sen et al. [26] surveyed the existing heuristic algorithms for the single-
machine total tardiness and total weighted tardiness problems while Biskup
et al. [4] did this for the identical machines total tardiness problem and also
proposed a new heuristic. Akyol et al. [1] provide an excellent recent review
of artificial neural network based approaches to scheduling problems and pro-
poses a coupled gradient network to solve the weighted earliness plus tardiness
problem on multiple machines. The feasibility of the method is illustrated on
a single 8-job scheduling problem.

We suggest a novel heuristic for the TWT problem, based on the Hopfield
Neural Network approach which is shown to perform better than existing
simple heuristics and has desirable scaling characteristics. Maheswaran et al.
[16] applied a similar approach to the single machine TWT problem and their
results were encouraging for a specific 10-job problem.

In this paper, we first map the problem into quadratic optimization and then
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the Hopfield net is used to provide fast polynomial time, heuristic solution.
The topics are organized as follows: in Section 2, we present the problem
formulation and the model used, in Section 3 existing heuristics are defined
and explained, in Section 4 our novel HNN approach is introduced, in Section
5 numerical results are presented and finally in Section 6 some conclusions are
drawn and directions for future research are outlined.

2 Problem formulation

In this section, we give a formal presentation for the problem of optimally
scheduling jobs on finite number of identical processors under constraints on
the completion times. The basic formalism is the following:

• Given N jobs with sizes x = {x1, x2, x3, . . . , xN} ∈ NN. The processing of
the jobs can be stopped and resumed at any time, so the processing time
units of each job need not be contiguous. In the literature this condition
is known as preemption and also assumes a task started on one machine
can continue on another [5].

• For each job a cutoff time is prescribed by K = {K1, K2, K3, . . . , KN} ∈ NN.
This constraint defines the time within which the job is to be completed.

• The constant number of processors, the capacity of the system is denoted
by V ∈ N.

• We are also given a vector w = {w1, w2, w3, . . . , wN} ∈ RN,wi ≥ 0, ∀i =
1, . . . ,N denoting the relative priority (or weight) of each job, which can
be used in the definition of the objective function.

A schedule is represented by a binary matrix C ∈ {0, 1}N×L where Ci,j = 1

if job i is being processed at time slot j, and L denotes the length of the
schedule. An example is given in (1) where the parameters are the following:
V = 2, N = 3, x = {2, 3, 1}, K = {3, 3, 3}.

C =

 1 0 1

1 1 1

0 1 0

 (1)

The first row in (1) denotes the fact that under this schedule C, the first job is
processed in time steps 1 and 3 (note that preemption is used as the processing
of this job is not continuous) and therefore the prescribed size 2 of this job
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completes within the prescribed cutoff time of time step 3. Similarly, the 3
units of the second job complete within the cutoff time of 3 and the third job
is completed ahead of the cutoff time on time step 2. Summing the columns of
matrix C, we see that the maximal capacity of V = 2 is fully utilized on each
time step.

In order to evaluate the effectiveness of a given schedule C, we define tar-
diness of a job as follows:

Ti = max (0, Fi − Ki) , (2)

where Fi is the actual finish time of job i under schedule C: Fi =
arg max

j
{Ci,j = 1} (The position of the last 1 in the ith row in scheduling

matrix C.)
The problem can now be stated formally as follows:

Copt := arg min
C

N∑
i=1

wiTi. (3)

Under the following constraints:

• The sizes of the scheduled jobs in the scheduling matrix are equal to the
predefined amounts:

L∑
j=1

Ci,j = xi, ∀i = 1, . . . ,N. (4)

• The number of scheduled jobs at any given time instant does not exceed
the capacity of the system:

N∑
i=1

Ci.j ≤ V,∀j = 1, . . . , L. (5)

We revisit our previous example with a minor change: V = 2, N = 3,
x = {2, 3, 2}, K = {3, 3, 3} and a weight vector w = {3, 2, 1}. It can be observed
that there is no solution, in which all jobs are completed before their cutoff
times. A minimal weighted tardiness solution is the following:

C =

 1 0 1 0

1 1 1 0

0 1 0 1

 .
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3 Existing heuristic methods

Given the NP-hardness of the scheduling task as shown by Du et al. [7], and
therefore the amount of time it would take to find the exact, optimal solu-
tion, in most real-world settings the pragmatic approach of finding a fast,
sub-optimal, but good solution is followed. As outlined in the introduction,
this has been a very active field of research, and most studies use the Earliest
Due Date (EDD) and Weighted Shortest Process Time (WSPT) heuristics as
benchmarks for evaluating the proposed algorithms. In addition to these, we
also outline the recently developed Load Balancing Scheduling (LBS) heuris-
tic and a newly proposed Largest Weighted Process First (LWPF) heuristic.
Furthermore, we also outline a random processing method which is used as a
low benchmark for our testing results.

3.1 Earliest due date (EDD) heuristic

The EDD heuristic orders the sequence of jobs to be executed from the job with
the earliest due date to the job with the latest due date. Using the notation
of Section 2, we relabel the job indices so that the following inequality holds:

K1 ≤ K2 ≤ . . . ≤ KN.

Once this ordering is determined, the jobs are allocated to the machines in
this order, always utilizing the maximum available capacity. Once a job finishes
and capacity is freed up, the next job using the above ordering is scheduled
on the freed up machine. It has been shown in [22] that EDD finds the opti-
mal schedule when one wants to minimize the maximum tardiness on a single
machine. However, we note that when the objective function includes the rel-
ative priorities of jobs, EDD is at a severe disadvantage, as it does not include
consideration of the weights.

3.2 Weighted shortest processing time (WSPT) heuristic

The WSPT method is analogous to the EDD method in that it orders the
jobs according to well-defined criteria and then schedules the jobs according
to this ordering, utilizing the maximum available capacity available. Once a job
finishes and capacity is freed up, the next job using the ordering is scheduled.
Using the notation of Section 2, the jobs are ordered such that the below holds:

x1
w1
≤ x2
w2
≤ . . . ≤ xN

wN
.
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3.3 Largest weighted process first (LWPF) heuristic

This heuristic is analogous to the EDD and the WSPT heuristics with the jobs
ordered according to the following inequality:

w1 ≥ w2 ≥ . . . ≥ wN.

This is a simple heuristic which allows us get a sense of the importance of
considering the weights versus the cutoff times. We have not seen this simple
heuristic mentioned anywhere in the literature, but it turns out to have quite
good empirical characteristics which is one of the many contributions of this
paper.

3.4 Load Balancing Scheduling (LBS) algorithm

Laszlo et al. [12] suggest a novel deterministic, polynomial time algorithm for
scheduling jobs with cutoff times, in the context of load balancing for wireless
sensor networks. The basic idea of the algorithm is to start scheduling the
jobs backwards from the maximal cutoff time, in order of decreasing cutoff
times, always ensuring full capacity is utilized. For a more formal definition
of the algorithm see [12]. We note that whilst the algorithm has proven to
be extremely successful for load balancing, it does not take into account the
weights of the jobs and therefore will suffer from the same shortcomings in our
setting as EDD.

3.5 Random method

In this method, the jobs are ordered randomly and are scheduled in such a way
as to always fully utilize the maximum available capacity. This unsophisticated
heuristic is useful as a low benchmark by repeating it a number of times and
taking the best solution over the multiple repeats.

4 Novel Hopfield neural network (HNN) based ap-
proach

Since the number of possible binary matrices grows exponentially with the
number of nodes and the length of the schedule, exhaustive search with com-
plexity O

(
2N·L) is generally computationally infeasible to solve the optimiza-

tion problem at hand. Thus, our goal is to develop a polynomial time approxi-
mate solution by mapping the problem to an analogous quadratic optimization
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problem, similar to the approach of Levendovszky et al. [15] and Treplan et
al. [27].

We first review the methods available for optimizing equations in quadratic
form. Let us assume that matrix W is a symmetric matrix of size n× n and
vector b is of length n. We seek the optimal n dimensional vector y which
minimizes the following quadratic function [21]:

f (y) = −
1

2
yTWy + bTy, (6)

subject to one or more constraints of the form of

Ay ≤ v,
By = u.

If the problem at hand contains only linear constraints then it can be solved
as presented by Murty et al. [20]. In other cases, if the matrix W is positive
definite, then the function f (y) is convex and the problem can be solved with
the ellipsoid method presented by Zhi-Quan et al. [28]. When W is indefinite,
the problem is NP-hard (for details see [24]).

A frequently used powerful, heuristic algorithm to solve quadratic optimiza-
tion problems is the Hopfield Neural Network (HNN). This neural network is
described by the following state transition rule:

yi(k+ 1) = sgn

 N∑
j=1

Ŵijyj(k) − b̂i

 , i = modNk,

where
d = −diag (W) ,

Ŵ = −W − diag (d) ,

b̂ = b− 1
2d.

Using the Lyapunov method, Hopfield [10] proved that the HNN converges to
its fixed-point, as a consequence the HNN minimizes a quadratic Lyapunov
function:

L(y) := −
1

2

N∑
i=1

N∑
j=1

Ŵijyiyj +

N∑
i=1

yib̂i = −
1

2
yTŴy + b̂Ty.

Thus, the HNN is able to solve combinatorial optimization problems in polyno-
mial time under special conditions as it has been demonstrated by Mandziuk
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[18, 17]. Using this method in practice we have to handle the following prob-
lem: in some cases the HNN method may get stuck in local minimal point of
its Lyapunov function.

These methods motivate us to map the existing optimization problem into
quadratic form. First the binary scheduling matrix C is mapped into a binary
column vector y as follows:

C =


C1,1 C1,2 · · · C1,L
C2,1 C2,2 · · · C2,L

...
...

. . .
...

CN,1 CN,2 · · · CN,L

→
y = (C1,1, C1,2, · · · , C1,L, C2,1, · · · , C2,L, CN,1, · · · , CN,L)T .

The original objective function (3) is elaborated as follows:

min
C

N∑
i=1

wi

(
max

(
0, arg max

j
{Ci,j = 1}− Ki

))
.

This objective is equivalent to:

min
C

N∑
i=1

wi

 L∑
j=Ki+1

Ci,j

.
The minimization problem is thus equivalent to:

Copt := arg min
C

N∑
i=1

L∑
j=Ki+1

wiC
2
i,j.

Therefore the mapping required is:

−
1

2
yTWAy + bA

Ty =

N∑
i=1

L∑
j=Ki+1

wiC
2
i,j.

The solution is the following:

bA = 0NL×1,

WA = −2

 D1 0 · · · 0
0 D2 · · · 0
0 0 · · · DN

 ,
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where

Dj =

(
0Kj×Kj

0Kj×(L−Kj)
0(L−Kj)×Kj

wjI(L−Kj)×(L−Kj)

)
∈ RL×L.

Having transformed the objective function to a quadratic form, we now turn
our attention to doing the same with the two constraints outlined in (4) and
(5).

The constraints in (4) can be rewritten as follows:

∀i :
L∑
j=1

Ci,j = xi → min
C

N∑
i=1

 L∑
j=1

Ci,j

− xi

2.
This will lead to the following equation:

−
1

2
yTWBy + bB

Ty =

N∑
i=1

 L∑
j=1

Ci,j

− xi

2. (7)

The solution of equation (7) is:

bB = 2
(
x11×L

x21×L
· · · xJ1×L

)
,

WB = −2


1L×L 0 · · · 0
0 1L×L · · · 0
...

...
. . .

...
0 0 · · · 1L×L

 .
Another constraint ensures that the scheduling does not overload the process-
ing units, described in (5). The required transformation is as follows:

∀j :
N∑
i=1

Ci.j = V → min
C

L∑
i=1

 N∑
j=1

Ci,j

− V

2. (8)

Please note the technicality that this constraint may not be relevant for the
last few columns where only the remaining jobs have to be scheduled and
schedule matrices not exhausting the full capacity should not be penalized.
The total length of scheduling can be written as follows:

L̃ =


N∑
i=1

xi

V

 ,
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L = max

(
L̃,max

i
xi,max

i
Ki

)
.

The number of columns where capacity V needs to be fully utilized is the
following:

M = max

(
1,max

i
xi − L̂+ 1

)
. (9)

Taking into consideration (9) the mapping of (8) can be described by the
following equation:

−
1

2
yTWBy + bB

Ty =

M∑
i=1

 N∑
j=1

Ci,j

− V

2.
The solution of this equation is the following:

bC =
[
VM×1,0(L−M)×1,VM×1,0(L−M)×1, . . . ,VM×1,0(L−M)×1

]
,

WC = −2


D D · · · D
D D · · · D
...

...
. . .

...
D D · · · D

 ,
where

D =

(
IM×M 0M×(L−M)

0(L−M)×M 0(L−M)×(L−M)

)
.

We can combine these mappings into the form of equation (6) as follows:

W = αWA + βWB + γWC ∈ RNL×NL,

and
b = αbA + βbB + γbC ∈ RNL×1.

Note that the objectives can be controlled with heuristic constants α,β and
γ in order to strike an appropriate balance between the weights of different
requirements. Having this quadratic form at hand, we can apply the HNN to
provide an approximate solution to the optimization problem in polynomial
time.

5 Numerical results

In this section, the performance of the HNN approach is investigated and is
compared to the performance of other heuristics.
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5.1 Simulation method

Each method outlined in Section 3 and the HNN method outlined in Section
4 has been tested by simulation on a large and diverse set of input parameters
with the aim to characterize the algorithms empirically on scheduling prob-
lems of different size of jobs. The algorithms were implemented in MATLAB
and tests were run in this simulation environment with randomly generated
parameters such as size of jobs, cutoff times, and weights. The size of each job
and its cutoff time and corresponding weight are generated as follows:

xi = random ([1, c1]) , (10)

Ki = xi + random ([c1, 1.5 · c1]) , (11)

wi = random ([1, c2]) , (12)

where random (Θ) produces a uniformly distributed random integer value in
range Θ. In our simulations the constant c1 equals 10 and c2 equals 5. The
number of processors (V) is determined as follows:

V = 0.25 · J. (13)

The problem is expected to be solved without tardiness when the capacity
is V = J. Therefore (13) ensures that there is a high likelihood of tardiness
associated with the generated problem.

For each problem size, 100 different problems were generated randomly,
using (10)-(13) and the results of the methods were compared in each case.

The random method was repeated 1000 times for each problem and the best
solution was used. Furthermore, the HNN method was repeated 1000 times for
each problem with different random starting points and the best solution was
used. In addition, the heuristic parameters α,β, and γ were adjusted between
the simulations in order to provide a good balance between optimizing the
objective function, but also meeting the required constraints to produce a valid
scheduling matrix. To adjust the heuristical parameters we used Algorithm 1.

Even so, in some cases the HNN is unable to provide a valid solution, because
the prescribed constraints on job sizes and capacity are violated. Therefore,
we introduced an error correction function (see Algorithm 2) in order to cut
and replace the unnecessary 1’s in the scheduling matrix. In our simulations
parameter e equals 5. All of the results presented in the following sections
concern valid schedules meeting the required constraints.
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Algorithm 1 Algorithm for adjusting the heuristical parameters

Require: x,K, V, e
α← 0.1, β← 5, γ← 5

i← 0

repeat
i← i+ 1
Ci ← HNN (x,K, V, α, β, γ)
α← α+ 0.01

until errors (Ci) ≤ e
for k = 1→ i do
Ck ← correct (Ck)
Tk ← calculateTWT (Ck)

end for
return min (T)

Algorithm 2 Correction algorithm for the scheduling matrix produced by the
HNN
Require: x,w,K, V,C

for k = 1→ L do
while

∑N
i=1Ci,k > V do

Remove 1 from row j, where j is the row in column k with minimal
weight that has Cj,k = 1

end while
end for
for k = 1→ N do
while

∑L
i=1Ck,i > xk do

Remove 1 from row k from the column l, where l is the righternmost
column in row k such that Ck,l = 1

end while
while

∑L
i=1Ck,i < xk do

Add 1 to row k in column l where l is the lefternmost column where 1
can be added without violating the capacity constraint V.

end while
end for
return C
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5.2 Average total weighted tardiness of the different methods

The first simulation compares the average total weighted tardiness provided
by the algorithms for different problem sizes.
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Figure 1: Average TWT produced by each heuristic over randomly generated
problems depicted as a function of the number of jobs in the problem.

Figure 1 demonstrates that the best solution achieved by the HNN produces
better average TWT for all problem sizes than any of the other heuristics. The
performances of the EDD, LBS and random methods are, on average, worse
than the WSPT and LWPF heuristics and the HNN for all problem sizes.
This shows that consideration of the weights in the optimization problem is
critical to reach near-optimal TWT schedules. It is also clearly visible that the
HNN consistently outperforms all other methods for all problem sizes. Note
also that the simple LWPF heuristic, proposed by us, outperforms the WSPT
heuristic widely used as a benchmark in the literature.
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5.3 Detailed comparison of the HNN performance versus
other heuristics

In this section, we quantify how much better the solution provided by the
HNN is, in comparison to the EDD, WSPT and LWPF algorithms. Figure 2
depicts the ratio of average TWT produced by the HNN method versus the
other heuristics. We conclude that, on average, the best solution of the HNN
heavily outperforms the traditional solutions: the total weighted tardiness of
the best HNN solution is 25% − 56% of the EDD, 25% − 84% of the WSPT,
and 34% − 91% of the LWPF. As the problem size increases, the WSPT and
LWPF heuristics produce solutions which are closer to the HNN.
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Figure 2: Ratio of average TWT produced by the HNN versus EDD, WSPT
and LWPF as a function of the problem size

In order to verify that the HNN consistently outperforms the other heuris-
tics on a wide spectrum of problems, not just on a few selected problems
for each given problem size, we ran a more detailed experiment. In this case,
we investigated 500 randomly generated problems for each problem size and
computed the percentage of times the HNN produced a better solution than
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LWPF, the next best method. Table 1 shows the result which quite convinc-
ingly proves the general applicability of the HNN to different problem types.
Across the spectrum of problem domain, the ratio is higher than 98.5% for all
investigated job sizes.

Table 1: Percentage of problems in which the HNN provides an improved
solution over the next best heuristic, LWPF

Job size 5 10 20 25 50 75 100

99.9% 100% 99.5% 99.2% 99.3% 98.6% 98.8%

5.4 Runtime characteristics of the investigated algorithms

In this section, we summarize the runtime characteristics of the introduced
algorithms. Table 2 contains the theoretical order of convergence of the algo-
rithms as a function of the length of the input parameters.

Table 2: Theoretical order of convergence of the investigated algorithms
Algorithm Order of convergence Reference

Random strategy O (L ·N) [12]
EDD, WSPT, LWPF O (L ·N) [16]
LBS O

(
L ·N2

)
[12]

HNN O
(
L2 ·N2

)
[10], [9]

Exhaustive search O
(
2L·N

)
Note that this table shows the theoretical runtime for a single run of the

specified algorithm, whilst we need to run a constant number of the HNN
and random iterations. On the other hand, these independent runs can be
executed in parallel on several computers, multicore machines or even GPU-
based architectures, so the overall runtime should not be significantly different
due to the need to run multiple iterations.

Figure 3 depicts the empirical runtime comparison of the different heuristics
which confirm the theoretical limits. Although the HNN is the slowest method
of the investigated heuristics, in practice we see that near optimal solution of a
100 job problem takes only around 6 seconds / iteration (including the iterative
adjustment of the heuristic parameters as per Algorithm 1) on Core i7@3GHz
processor, running non-optimized MATLAB code, which is very promising as
far as its practical applicability in real life applications is concerned. With
further optimization and parallelization on multicore machines or GPGPU
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Figure 3: The average runtime of each algorithm per iteration (including the
iterative adjustment of the heuristic parameters as per Algorithm 1 for HNN),
depicted as a function of the number of jobs. Note that the vertical axis is
using a logarithmic scale

technology, the HNN method provides better quality solutions than the other
heuristics within acceptable runtimes.

6 Conclusions and directions of future research

In this paper, we studied the NP-hard problem of scheduling jobs with given
relative priorities (weights) and deadlines on identical machines, minimiz-
ing the TWT measure. We developed a novel heuristic approach, utilizing
quadratic programming and the Hopfield neural network and we showed that,
in general, it outperforms the EDD and WSPT methods. Furthermore, we
have shown that our approach can be applied in real-time settings for small
problem sizes and possesses scalability features which are acceptable for real
world applications.
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More formal methods for the selection of alpha, beta and gamma parameters
could be investigated in the future to further improve performance. Another
idea to explore is whether a more intelligent selection of the initial point for
the HNN algorithm (eg. the result of the LWPF or WSPT heuristics) would
improve the algorithms performance over the random starting point which was
used in our tests. Finally, the performance of the HNN algorithm needs to be
compared to more complex heuristic methods.
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Abstract. This paper presents efficient implementations of several algo-
rithms for solving the minimum-cost network flow problem. Various prac-
tical heuristics and other important implementation aspects are also dis-
cussed. A novel result of this work is the application of Goldberg’s recent
partial augment-relabel method in the cost-scaling algorithm. The pre-
sented implementations are available as part of the LEMON open source
C++ optimization library (http://lemon.cs.elte.hu/). The perfor-
mance of these codes is compared to well-known and efficient minimum-
cost flow solvers, namely CS2, RelaxIV, MCF, and the corresponding
method of the LEDA library. According to thorough experimental anal-
ysis, the presented cost-scaling and network simplex implementations
turned out to be more efficient than LEDA and MCF. Furthermore, the
cost-scaling implementation is competitive with CS2. The RelaxIV al-
gorithm is often much slower than the other codes, although it is quite
efficient on particular problem instances.

1 Introduction

Network flow theory comprises a wide range of optimization models, which
have countless applications in various fields. One of the most fundamental
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network flow problems is the minimum-cost flow (MCF) problem. It seeks
a minimum-cost transportation of a specified amount of a commodity from
a set of supply nodes to a set of demand nodes in a directed network with
capacity constraints and linear cost functions defined on the arcs. This problem
directly arises in various real-world applications in the fields of transportation,
logistics, telecommunication, network design, resource planning, scheduling,
and many other industries. Moreover, it also arises as a subproblem in more
complex optimization tasks, such as multicommodity flow problems. For a
comprehensive study of the theory, algorithms, and applications of network
flows, see the book of Ahuja, Magnanti, and Orlin [3].

The MCF problem and its solution methods have been the object of in-
tensive research for decades and they have enormous literature. Numerous
algorithms have been developed and studied both from theoretical and practi-
cal aspects (see the books [26, 13, 48, 3, 64, 52]). Efficient implementation and
profound experimental analysis of these algorithms are also of high interest to
the operations research community (for example, see [10, 41, 8, 57, 33, 11, 28]).
Nowadays, several commercial and non-commercial MCF solvers are available
under different license terms.

The primary goal of our research is to provide highly efficient and robust
open source implementations of different MCF algorithms and to compare
their performance in practice. Preliminary work was published in [49]. This
paper presents a more detailed discussion of our implementations along with
extensive benchmark testing on a wide range of problem instances.

In order to achieve a comprehensive study, the following algorithms were im-
plemented: SCC: a simple cycle-canceling algorithm; MMCC: minimum-mean
cycle-canceling algorithm; CAT: cancel-and-tighten algorithm; SSP: successive
shortest path algorithm; CAS: capacity-scaling algorithm; COS: cost-scaling al-
gorithm in three different variants; and NS: primal network simplex method
with five different pivot strategies. All of these methods are generally known
and well-studied algorithms, our contribution is their efficient implementation
with some new heuristics and practical considerations.

According to the authors knowledge, our implementation of the cost-scaling
algorithm is the first to apply Goldberg’s recent partial augment-relabel
method, which was originally developed to solve the maximum flow problem
efficiently [34]. Its utilization in MCF algorithms was also suggested, but was
not investigated by Goldberg. According to our tests, this new idea turned out
to be a considerable improvement in the cost-scaling MCF algorithm similarly
to Goldberg’s results on the maximum flow algorithm.

This paper also presents an empirical evaluation of our implementations and
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their variants. Numerous benchmark tests were performed on many kinds of
large-scale networks containing up to millions of nodes and arcs. These problem
instances were created either using well-known random generators, namely
NETGEN and GOTO, or based on networks arising in real-life problems. The
presented results demonstrate the relative performance of the solution methods
and give some guidelines for selecting an MCF algorithm that is suitable for
a desired application domain.

Our fastest implementations were also compared to four highly regarded
minimum-cost flow solvers: CS2 code of Goldberg and Cherkassky [33, 16],
an efficient authoritative implementation of the cost-scaling push-relabel algo-
rithm that has served as a benchmark for a long time; the LEDA library [54],
which also implements the cost-scaling algorithm; Löbel’s MCF code [57, 58],
which implements the network simplex algorithm; and RelaxIV [27], a C++
translation of the authoritative FORTRAN implementation of the relaxation
algorithm due to Bertsekas and Tseng [8, 7]. We henceforth refer to the MCF
code as MCFZIB in order to differentiate it from the problem itself. The ex-
periments we conducted show that our cost-scaling implementation is more
efficient than LEDA and performs similarly to or slightly slower than CS2.
Our network simplex code clearly outperforms MCFZIB and it is the fastest
implementation for solving relatively small problem instances (up to a few
thousands of nodes). For large networks, however, the cost-scaling codes are
usually more efficient than the network simplex algorithms. The performance
of RelaxIV turned out to be fluctuating: it is one of the fastest implemen-
tations for solving certain kinds of problem instances, but it is very slow for
other instances. The detailed experimental results can be found in Section 4.

The implementations presented in this paper are available with full source
codes as part of the LEMON optimization library [55]. LEMON is an ab-
breviation of Library for Efficient Modeling and Optimization in Networks.
It is an open source C++ template library with focus on combinatorial opti-
mization tasks related mainly to graphs and networks. It provides easy-to-use
and highly efficient implementations of graph algorithms and related data
structures, which help solving complex real-life optimization problems. The
LEMON project is maintained by the MTA-ELTE Egerváry Research Group
on Combinatorial Optimization (EGRES) [25] at the Department of Opera-
tions Research, Eötvös Loránd University, Budapest, Hungary. The library
is also a member of the COIN-OR initiative [14], a collection of open source
projects related to operations research. LEMON applies a very permissive li-
censing scheme that makes it favorable for commercial and non-commercial
software development as well as for research activities. For more information

http://lemon.cs.elte.hu
http://www.cs.elte.hu/egres
http://www.cs.elte.hu/egres
http://www.cs.elte.hu/index.html?lang=en
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about LEMON, the readers are referred to the introductory paper [21] and to
the web site of the library: http://lemon.cs.elte.hu/.

The rest of this paper is organized as follows. Section 2 briefly introduces the
MCF problem along with the used notations and theorems. Section 3 describes
the implemented algorithms and their variants. Section 4 presents the main
experimental results. Finally, the conclusions are drawn in Section 5.

2 The minimum-cost flow problem

2.1 Definitions and notations

The minimum-cost flow (MCF) problem is defined as follows. Let G = (V,A)
be a weakly connected directed graph consisting of n = |V | nodes and m = |A|

arcs. We associate with each arc (i, j) ∈ A a capacity (upper bound) uij ≥ 0
and a cost cij, which denotes the cost per unit flow on the arc. Each node i ∈ V
has a signed supply value bi. If bi > 0, then node i is called a supply node with
a supply of bi; if bi < 0, then node i is called a demand node with a demand
of −bi; and if bi = 0, then node i is referred to as a transshipment node. We
assume that all data are integer and we wish to find an integer-valued flow of
minimum total cost satisfying the supply-demand constraints at all nodes and
the capacity constraints on all arcs. The solution of the problem is represented
by flow values xij assigned to the arcs. Therefore, the MCF problem can be
stated as

min
∑

(i,j)∈A

cijxij (1a)

subject to ∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi ∀i ∈ V, (1b)

0 ≤ xij ≤ uij ∀(i, j) ∈ A. (1c)

We refer to (1b) as flow conservation constraints and (1c) as capacity con-
straints. A solution vector x is called feasible if it satisfies all constraints defined
in (1b) and (1c), and it is called optimal if it also minimizes the total flow cost
(1a) over the feasible solutions.

The flow conservation constraints (1b) imply that the sum of the node supply
values is required to be zero, that is,

∑
i∈V bi = 0, in order to have a feasible

solution to the MCF problem:∑
i∈V

bi =
∑
i∈V

( ∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji

)
=

∑
i∈V

∑
j:(i,j)∈A

xij −
∑
i∈V

∑
j:(j,i)∈A

xji = 0.

http://lemon.cs.elte.hu/
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Without loss of generality, we may further assume that all arc capacities are
finite, all arc costs are nonnegative, and the problem has a feasible solution [3].

There are several other problem formulations that are equivalent to the
above definition, for instance, the minimum-cost circulation problem, the unca-
pacitated minimum-cost flow problem, and the transportation problem. How-
ever, this definition is quite common in the literature.

Flow algorithms and related theorems usually rely on the concept of residual
networks [26, 13, 3, 64, 52]. For a given feasible flow x, the corresponding
residual network Gx is defined as follows. Let Gx = (V,Ax) be a directed graph
that contains forward and backward arcs on the original node set V. A forward
arc (i, j) ∈ Ax corresponds to each original arc (i, j) ∈ A for which the residual
capacity rij = uij − xij is positive. A backward arc (j, i) ∈ Ax corresponds to
each original arc (i, j) ∈ A for which the residual capacity rji = xij is positive.
The cost of a forward arc (i, j) is defined as cij, while the cost of a backward
arc (j, i) is −cij.

The concept of pseudoflows is also important for several flow algorithms.
A pseudoflow is a function x defined on the arcs that satisfies only the nonneg-
ativity and capacity constraints (1c) but might violate the flow conservation
constraints (1b). A feasible flow is also a pseudoflow. In case of a pseudoflow x,
a node might have a certain amount of undelivered supply or unfulfilled de-
mand, which is called the excess or deficit of the node, respectively. Formally,
the signed excess value of a node i with respect to a pseudoflow x is defined
as

ei = bi +
∑

j:(j,i)∈A

xji −
∑

j:(i,j)∈A

xij. (2)

If ei > 0, node i is referred to as an excess node with an excess of ei; and
if ei < 0, node i is called a deficit node with a deficit of −ei. Note that∑
i∈V ei =

∑
i∈V bi = 0, that is, the total excess of the nodes equals to the

total deficit. The residual network corresponding to a pseudoflow is defined in
the same way as in case of a feasible flow.

The running time of an MCF algorithm is measured as a function of the
size of the network and the magnitudes of the input data. Let U henceforth
denote the largest node supply or arc capacity:

U = max{max{|bi| : i ∈ V},max{uij : (i, j) ∈ A}} (3)

and let C denote the largest arc cost:

C = max{cij : (i, j) ∈ A}. (4)
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An algorithm is referred to as pseudo-polynomial if its running time is bounded
by a polynomial function in the dimensions of the problem and the magnitudes
of the numerical data, namely, n, m, U, and C. These algorithms technically
run in exponential time with respect to the size of the input and they are
therefore not considered polynomial. A (weakly) polynomial algorithm is one
that runs in time polynomial in the input size, namely, n, m, logU, and logC.
Furthermore, an algorithm is called strongly polynomial if its running time
depends upon only on the inherent dimensions of the problem, that is, it runs
in time polynomial in n and m regardless of the numerical input data.

2.2 Optimality conditions

In the followings, we formulate optimality conditions for the MCF problem
in terms of the residual network as well as the original network. These fun-
damental theorems are useful in several aspects. Not only do they provide
simple methods for verifying the optimality of a certain solution, but they
also suggest algorithms for solving the problem. These results are discussed in
[26, 13, 3, 64, 52].

Theorem 1 (Negative cycle optimality conditions) A feasible solution
x of the MCF problem is optimal if and only if the residual network Gx contains
no directed cycle of negative total cost.

This theorem is a consequence of the observation that any feasible flow can
be decomposed into a finite set of augmenting paths and cycles.

We also introduce two equivalent formulations of optimality conditions that
rely on the notions of node potentials and reduced costs. We associate with
each node i ∈ V a signed value πi, which is referred to as the potential of
node i. Actually, πi can be viewed as the linear programming dual variable
corresponding to the flow conservation constraint of node i (see [3]). With
respect to a given potential function π, the reduced cost of an arc (i, j) is
defined as

cπij = cij + πi − πj. (5)

Note that cπij measures the relative cost of the arc (i, j) with respect to the
potentials of its end-nodes.

This concept allows us to formulate the following optimality conditions.

Theorem 2 (Reduced cost optimality conditions) A feasible solution x
of the MCF problem is optimal if and only if for some node potential func-
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tion π, the reduced cost of each arc in the residual network Gx is nonnegative:

cπij ≥ 0 ∀(i, j) ∈ Ax. (6)

Note that the total reduced cost of a directed cycle with respect to any
potential function equals to the original cost of the cycle. Therefore, the con-
ditions of Theorem 2 obviously imply the negative cycle optimality conditions
defined in Theorem 1. Furthermore, a constructive proof exists for the con-
verse result. For an optimal flow x, corresponding optimal node potentials π
can be obtained by solving a shortest path problem in the residual network.

Theorem 2 can be restated in terms of the original network as follows.

Theorem 3 (Complementary slackness optimality conditions) A fea-
sible solution x of the MCF problem is optimal if and only if for some node
potential function π, the following complementary slackness conditions hold
for each arc (i, j) ∈ A of the original network:

if cπij > 0, then xij = 0; (7a)

if 0 < xij < uij, then cπij = 0; (7b)

if cπij < 0, then xij = uij. (7c)

In addition to these exact optimality conditions, the characterization of
approximate optimality is also of particular importance. Several algorithms
rely on the concept of ε-optimality. For a given ε ≥ 0, a feasible flow or a
pseudoflow x is called ε-optimal if for some node potential function π, the
reduced cost of each arc in the residual network Gx is at least −ε, that is,

cπij ≥ −ε ∀(i, j) ∈ Ax. (8)

These conditions are the relaxations of the reduced cost optimality conditions
defined in Theorem 2 and are equivalent to them when ε = 0. The ε-optimality
conditions can also be restated in terms of the original network to obtain the
relaxations of the complementary slackness optimality conditions defined in
Theorem 3.

The following lemma formulates two simple observations that are related to
ε-optimality.

Lemma 4 Any feasible solution x of the MCF problem is ε-optimal if ε ≥ C.
Moreover, if the arc cost are integer and ε < 1/n, then an ε-optimal feasible
flow is an optimal solution.
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Note that an ε-optimal flow is also ε ′-optimal for all ε ′ > ε and hence the
approximate optimality of x is best indicated by the smallest value ε ≥ 0 for
which x is ε-optimal. This minimum value is referred to as ε(x). The following
theorem reveals an inherent connection between ε(x) and the minimum-mean
cycles of the residual network. The mean cost of a directed cycle is defined as
its total cost divided by the number of arcs in the cycle.

Theorem 5 For a non-optimal feasible solution x of the MCF problem, ε(x)
equals to the negative of the minimum-mean cost of a directed cycle in the
residual network Gx. For an optimal solution x, ε(x) = 0.

Therefore, ε(x) can be computed by finding a directed cycle of minimum-
mean cost, which can be carried out in O(nm) time [46]. Another related
problem is to find an appropriate potential function π for an ε-optimal flow or
pseudoflow x so that they satisfy the ε-optimality conditions. Similarly to the
problem of finding optimal node potentials, this problem can also be solved
by performing a shortest path computation in Gx but with a modified cost
function c ′ for which c ′ij = cij + ε for each arc (i, j) in Gx. See, for example,
[3, 29] for the proof of all these results related to ε-optimality.

2.3 Solution methods

The MCF problem and its solution methods have a rich history spanning
more than fifty years. Researchers first studied a classical special case of the
MCF problem, the so-called transportation problem, in which the network
consists only of supply and demand nodes. Dantzig was the first to solve
the transportation problem by specializing his famous linear programming
method, the simplex algorithm. Later, he also applied this approach to the
MCF problem and developed a solution method that is known as the network
simplex algorithm. These results are discussed in Dantzig’s book [18].

Ford and Fulkerson developed the first combinatorial algorithms for the un-
capacitated and capacitated transportation problems by generalizing Kuhn’s
remarkable Hungarian Method [53]. Ford and Fulkerson later proposed a sim-
ilar primal–dual algorithm for the MCF problem, as well. Their results are
presented in the book [26].

In the next few years, other algorithmic approaches were also suggested,
namely, the successive shortest path algorithm, the out-of-kilter algorithm,
and the cycle-canceling algorithm. These methods, however, do not run in
polynomial time. Therefore, both theoretical and practical expectations moti-
vated further research on developing more efficient algorithms. Edmonds and
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Karp [24] introduced the scaling technique and developed the first weakly
polynomial-time algorithm for solving the MCF problem. Later, other re-
searchers also recognized the significant value of this approach and proposed
various scaling algorithms. The problem of finding a strongly polynomial-time
MCF algorithm, however, remained a challenging open question for several
years. Tardos [67] developed the first such algorithm, which was followed by
many other methods providing improved running time bounds.

Besides theoretical aspects, efficient implementation and computational
evaluation of MCF algorithms have also been an object of intensive research.
The network simplex algorithm became quite popular in practice when efficient
spanning tree labeling techniques were developed to improve its performance.
Later, other algorithms also turned out to be quite efficient. Implementations
of relaxation and cost-scaling algorithms were reported to be competitive with
the fastest network simplex codes.

Detailed discussion and complexity survey of MCF algorithms can be found
in, for example, [3, 64, 52]. Table 1 provides a brief summary of the MCF
algorithms having best theoretical running time. Recall from Section 2.1 that
n and m denote the number of nodes and arcs in the network, respectively;
U denotes the maximum of supply values and arc capacities; and C denotes the
largest arc cost. Furthermore, let SP+(n,m) denote the running time of any
algorithm solving the single-source shortest path problem in a directed graph
with n nodes, m arcs, and a nonnegative length function. Dijkstra’s algorithm
with Fibonacci heaps provides an O(m + n logn) bound for SP+(n,m) [64,
15, 52].

O(nU · SP+(n,m))
Edmonds and Karp [24]; Tomizawa [70]
successive shortest path

O(m logU · SP+(n,m))
Edmonds and Karp [24]
capacity-scaling

O(m logn · SP+(n,m))
Orlin [60]
enhanced capacity-scaling

O(nm log(n2/m) log(nC))
Goldberg and Tarjan [38]
generalized cost-scaling

O(nm log logU log(nC))
Ahuja, Goldberg, Orlin, and Tarjan [1]
double scaling

O((m3/2U1/2 +mU log(mU)) log(nC)) Gabow and Tarjan [30]

O((nm +mU log(mU)) log(nC)) Gabow and Tarjan [30]

Table 1: Best theoretical running time bounds for the MCF problem
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3 Implemented algorithms

This section discusses the algorithms we implemented as well as the most
important heuristics and other practical improvements. All of these methods
are well-studied in the literature. Their profound theoretical analysis with
the proof of correctness and running time can be found in [3] and in other
papers and books cited later in this section. The contribution of this paper is
the efficient implementation and empirical analysis of several variants of these
algorithms. For further details of our implementations, the readers are referred
to the documentation and the source code of the LEMON library [55].

Table 2 provides an overview of the implemented algorithms and their worst-
case running time. The same notations are used as in the previous section.
Two of these algorithms perform shortest path computations with nonnegative
length functions. Our implementations use Dijkstra’s algorithm with binary
heaps by default, hence SP+(n,m) = O((n+m) logn). Note that some of these
algorithms have other variants with better theoretical running time, but our
research especially focused on the practical performance of them. The given
running time bounds correspond to the actual implementations.

Alg. Name Running time

SCC simple cycle-canceling O(nm2CU)

MMCC minimum-mean cycle-canceling O(n2m2min{log(nC),m logn})

CAT cancel-and-tighten O(n2mmin{log(nC),m logn})

SSP successive shortest path O(nU · SP+(n,m))

CAS capacity-scaling O(m logU · SP+(n,m))

COS cost-scaling O(n2m log(nC))

NS network simplex O(nm2CU)

Table 2: Implemented algorithms and their worst-case running time

3.1 Cycle-canceling algorithms

Cycle-canceling is one of the simplest methods for solving the MCF problem.
This algorithm applies a primal approach based on Theorem 1. A feasible
flow x is first established, which can be carried out by solving a maximum
flow problem. After that, the algorithm throughout maintains feasibility of the
solution x and gradually decreases its total cost. At each iteration, a directed
cycle of negative cost is identified in the residual network Gx and this cycle
is canceled by pushing the maximum possible amount of flow along it. When
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the residual network contains no negative-cost directed cycle, the algorithm
terminates and Theorem 1 implies that the solution is optimal.

The cycle-canceling algorithm was proposed by Klein [50]. Its generic version
does not specify the order of selecting negative cycles to be canceled, but it
runs in pseudo-polynomial time for the MCF problem with integer data. Since
the total flow cost is decreased at each iteration and mCU is clearly an upper
bound of the flow cost, the algorithm performs O(mCU) iterations if all data
are integer. Klein used a label-correcting shortest path algorithm that iden-
tifies a negative cycle in O(nm) time, thus his algorithm runs in O(nm2CU)
time. Later, numerous other variants of the cycle-canceling method were also
developed by applying different rules for cycle selection, for example [4, 37, 66].
These algorithms have quite different theoretical and practical behavior. Some
of them run in polynomial or even strongly polynomial time.

We implemented three cycle-canceling algorithms, which are discussed in
the followings.

Simple cycle-canceling algorithm. This is a simple version of the cycle-
canceling method using the Bellman–Ford algorithm for identifying negative
cycles. We henceforth denote this implementation as SCC.

It is well-known that the Bellman–Ford algorithm is capable of detecting
a negative-cost directed cycle after performing n iterations or detecting that
such a cycle does not exist [15]. However, it is not required to perform n

iterations in most cases. If negative cycles exist in the graph, one or more of
them typically appear in the subgraph identified by the predecessor pointers
of the nodes after much less iterations. Unfortunately, we do not know the
sufficient limit for the number of iterations in advance and searching for cycles
using the predecessor pointers at an intermediate step of the algorithm is a
relatively slow operation. Therefore, our SCC implementation performs such
checking after a successively increasing number of iterations of the Bellman–
Ford algorithm. According to our tests, it turned out to be practical to search
for negative cycles after executing b2 · 1.5kc iterations for each k ≥ 0 until
this limit reaches n. It is also beneficial to cancel all node-disjoint negative
cycles that can be found at once when Bellman–Ford algorithm is stopped.
The worst case time complexity of the SCC algorithm is O(nm2CU).

Minimum-mean cycle-canceling algorithm. This famous special case
of the cycle-canceling method was developed by Goldberg and Tarjan [37]. It
selects a negative cycle of minimum mean cost to be canceled at each iteration,
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which yields the simplest MCF algorithm running in strongly polynomial time.
We denote this method and our implementation as MMCC.

Recall from Section 2.2 that the mean cost of a directed cycle is defined
as its total cost divided by the number of arcs in the cycle. The MMCC
algorithm iteratively identifies a directed cycleW of minimum-mean cost in the
current residual network. If the cost ofW is negative, then the cycle is canceled
and another iteration is performed, otherwise the algorithm terminates with
an optimal solution found. It has been proved that this algorithm performs
O(nm2 logn) iterations for arbitrary real-valued arc costs and O(nm log(nC))
iterations for integer arc costs. The proof of these bounds relies on the concept
of ε-optimality and is rather involved, see [37, 3, 52], although the algorithm
is very simple to state.

The MMCC algorithm relies on finding minimum-mean directed cycles in
a graph. This optimization problem has also been studied for a long time
and several efficient algorithms have been developed for solving it [46, 42, 20,
19, 31]. The best strongly polynomial-time bound for a minimum-mean cycle
algorithm is O(nm) and thus the overall running time of the MMCC algorithm
is O(n2m2 min{log(nC),m logn}) for the MCF problem with integer data.

We implemented three known algorithms for finding minimum-mean cycles:
Karp’s original algorithm [46]; an improved version of this method that is due
to Hartmann and Orlin [42]; and Howard’s policy-iteration algorithm [43, 19].
The first two methods run in strongly polynomial time O(nm). In contrast,
Howard’s algorithm is not known to be polynomial, but it is one of the fastest
solution methods in practice [20, 19].

Our experiments also verified that Howard’s algorithm is orders of mag-
nitude faster than the other two methods we implemented. This algorithm
gradually approximates the optimal solution by performing linear-time itera-
tions. Relatively few iterations are typically sufficient to find a minimum-mean
cycle, but no polynomial upper bound is known. Therefore, we developed a
combined method in order to achieve the best performance in practice while
keeping the strongly polynomial upper bound on the running time. Howard’s
algorithm is run with an explicit limit on the number of iterations. If this limit
is reached without finding the optimal solution, we stop Howard’s algorithm
and execute the Hartmann–Orlin algorithm. We set this iteration limit to n,
and hence the overall running time of this combined method is O(nm), which
equals to the best strongly polynomial bound. In our experiments, the iteration
limit was indeed never reached. Thus, the combined method was practically
identical to Howard’s algorithm but with a guarantee of worst-case running
time O(nm).
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Cancel-and-tighten algorithm. This algorithm can be viewed as an im-
proved version of the MMCC algorithm, which is also due to Goldberg and
Tarjan [37]. It is faster than MMCC both in theory and practice. This algo-
rithm is henceforth denoted as CAT.

The improvement of the CAT algorithm is based on a more flexible selection
of cycles to be canceled. The previously studied cycle-canceling algorithms are
pure primal methods in a sense that they do not consider the dual solution
at all. In contrast, the CAT algorithm explicitly maintains node potentials,
which make the detection of negative residual cycles easier and faster. The
key idea of the algorithm is to cancel cycles that consist entirely of negative-
cost arcs. Note that the sum of the reduced arc costs along a cycle with respect
to any potential function is exactly the same as the original cost of the cycle.
Therefore, the algorithm can consider the reduced costs with respect to the
current node potentials instead of the original costs. A residual arc is called
admissible if its reduced cost is negative; the subgraph of the residual network
consisting only of the admissible arcs is called the admissible network ; and a
directed cycle in the admissible network is referred to as an admissible cycle.

The CAT algorithm performs two main steps at every iteration until the
current solution becomes optimal. In the cancel step, admissible cycles are
successively canceled until such a cycle does not exist. In the tighten step, the
node potentials are modified in order to make more arcs admissible. Despite the
MMCC algorithm, this method explicitly utilizes the concept of ε-optimality.
Recall the corresponding definitions and theorems from Section 2.2. The CAT
algorithm ensures ε-optimality of the solution for successively smaller values
of ε ≥ 0. In the tighten step, the potentials are modified so as to satisfy the
ε-optimality conditions for a smaller ε that is at most (1 − 1/n) times its
former value.

The cancel step is the dominant part of the computation. We implemented
a straightforward method for this step based on a depth-first traversal of the
admissible network. This implementation runs in O(nm) time as canceling a
cycle takes O(n) time and at most O(m) admissible cycles can be successively
canceled without modifying the potential function. Goldberg and Tarjan [37]
also showed that using dynamic tree data structures [65], the running time
of this step can be reduced to O(m logn) (amortized time O(logn) per cycle
cancellation). However, we did not invest effort in implementing this variant
because the cycle-canceling algorithms turned out to be relatively slow in our
experimental tests (see Section 4).

The tighten step can be performed in O(m) time based on a topological
ordering of the nodes with respect to the admissible network. This implemen-
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tation, however, does not ensure that the overall running time of the algorithm
is strongly polynomial. To overcome this drawback, Goldberg and Tarjan [37]
suggested to carry out the tighten step in a stricter way after every O(n) it-
erations of the algorithm. In these cases, a minimum-mean cycle computation
is performed to exactly determine the smallest ε value for which the current
flow is ε-optimal (see Theorem 5). Node potentials are also recomputed to
correspond to this ε value. Note that the amortized running time O(m) of the
tighten step is not affected by this modification. Our implementation, how-
ever, performs this stricter tighten step more often, namely after every b

√
nc

iterations, because it turned out to be more efficient in practice. This means
that the amortized running time of the tighten step becomes O(m

√
n), but it

is still less than the O(nm) time of our implementation of the cancel step. The
minimum-mean cycle computations are carried out using the same combined
algorithm that was applied in the MMCC algorithm.

This algorithm is strongly polynomial. It runs in O(n2m2 logn) time for
the MCF problem with arbitrary arc costs and in O(n2m log(nC)) time for
integer arc costs, see [37].

The experimental results for these algorithms are presented in Section 4.
It turned out that their relative performance depends upon the problem in-
stance, but the CAT algorithm is usually much more efficient than both SCC
and MMCC. However, all three of these cycle-canceling algorithms turned out
to be slower than the cost-scaling and network simplex methods.

3.2 Augmenting path algorithms

Another fundamental approach for solving the MCF problem is the so-called
successive shortest path method. It is a dual ascent algorithm that successively
augments flow along shortest paths of the residual network to send the required
amount of flow from the supply nodes to the demand nodes. In this sense, this
method can be viewed as a generalization of the well-known augmenting path
algorithms solving the maximum flow problem, namely the Ford–Fulkerson
and Edmonds–Karp algorithms [26, 24, 3, 15].

The successive shortest path algorithm in its inital form was developed inde-
pendently by Jewell [45], Iri [44], and Busacker and Gowen [12]. They showed
that the MCF problem can be solved by a sequence of shortest path compu-
tations. Later, Edmonds and Karp [24] and Tomizawa [70] independently sug-
gested the utilization of node potentials in the algorithm to maintain nonneg-
ative arc costs for the shortest path problems. This technique greatly improves
both the theoretical and the practical performance of the algorithm. Edmonds
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and Karp [24] also developed a capacity-scaling variant of this method that
runs in polynomial time.

We implemented the standard successive shortest path algorithm applying
node potentials as well as the capacity-scaling method. These algorithms and
the most important aspects of their implementations are discussed below.

Successive shortest path algorithm. This algorithm is henceforth de-
noted as SSP. In contrast to the cycle-canceling method, which maintains a
feasible flow and attempts to achieve optimality, the SSP algorithm maintains
an optimal pseudoflow and node potentials and attempts to achieve feasibility.
Recall from Section 2.1 that a pseudoflow satisfies the nonnegativity and ca-
pacity constraints but might violate the flow conservation constraints at some
nodes. Such a node has a certain amount of excess or deficit.

The SSP algorithm begins with constant zero pseudoflow x and a constant
potential function π and proceeds by gradually converting x into a feasible
solution while throughout maintaining the reduced cost optimality conditions
defined in Theorem 2. At every iteration, the algorithm selects a node with
positive excess and sends flow from this node to an arbitrary deficit node along
a shortest path of the residual network with respect to the reduced arc costs.
After that, the node potentials are modified using the computed shortest path
distances to preserve the reduced cost optimality conditions. These conditions
not only verify the optimality of both the primal and the dual solutions, but
they also ensure nonnegative arc costs for the consecutive shortest path com-
putations. By sending flow from excess nodes to deficit nodes, the algorithm
iteratively decreases the total excess of the nodes until the solution becomes
feasible. At the beginning of the algorithm, the total excess is at most nU/2
and each iteration decreases this value by at least one (in case of integer data),
thus the SSP algorithm terminates after O(nU) path augmentations. The flow
conservation constraints are then satisfied at all nodes and hence the solution
is both feasible and optimal.

We implemented the SSP algorithm as follows. At each iteration, flow is
augmented from the current excess node v to a deficit node w whose shortest
path distance from v is minimal. The shortest path searches are carried out
using Dijkstra’s algorithm with a heap data structure. We experimented with
several heap variants provided by the LEMON library [56] and the standard
binary heap structure turned out to be one of the fastest and most robust
implementations. Therefore, our SSP implementation uses this data structure
by default. This means that a single iteration is performed in O((n+m) logn)
time and the overall complexity of the algorithm is O(nU(n+m) logn). How-
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ever, one can easily switch to other data structures (for instance, Fibonacci
heaps).

The practical performance of the SSP algorithm mainly depends on the
shortest path computations. We applied a significant improvement related to
these searches, which is discussed, for example, in [3]. At each iteration, it is
not necessary to compute the shortest paths to all nodes from the current ex-
cess node v, but the Dijkstra algorithm can be terminated once it permanently
labels a deficit node w. The node potentials can also be updated in an alterna-
tive way that does not require any modification for those nodes that were not
permanently labeled during the shortest path computation. This improvement
can be implemented quite easily, but it greatly improves the efficiency of the
SSP algorithm in practice.

The representation of the residual network is another important aspect of
the implementation. It is possible to implement the SSP algorithm using the
original representation of the input network, but in this case, all outgoing
and incoming arcs of the current node have to be checked at each step of
the shortest path computations. Another possibility is to explicitly maintain
the residual network containing only those arcs that have positive residual
capacity. However, this implementation would require the updating of the
graph structure after each path augmentations, which is time-consuming.

We applied an intermediate solution that turned out to be the most efficient.
We store an auxiliary graph G ′ that contains all possible forward and back-
ward arcs and also maintain their residual capacities explicitly. All shortest
path computations run on G ′ by skipping those arcs whose current residual
capacity is zero. The flow augmentations are carried out by decreasing the
residual capacities of the arcs on the path and increasing the residual capac-
ities of the corresponding reverse arcs. Therefore, we also store for each arc
an index to its reverse arc (often referred to as sister arc). The major benefit
of this implementation is that this auxiliary graph G ′ allows a quite efficient
representation. Note that using G ′, only the outgoing arcs of a node have to be
traversed during the shortest path searches and G ′ is not modified throughout
the algorithm. We can, therefore, represent the outgoing arcs of a node in G ′

by consecutive integers, which makes it possible to traverse these arcs quite
efficiently without iterating over the elements of an array or a linked list.

The reduced arc costs are also required in the shortest path computations.
Since these values are frequently modified by adjusting node potentials, it is
better to store only the potentials and recompute reduced costs whenever they
are needed. Furthermore, we also maintain a signed excess value for each node.
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Capacity-scaling algorithm. This algorithm, which we denote as CAS, is
an improved version of the SSP method. It uses a capacity-scaling scheme that
reduces the number of iterations from O(nU) to O(m logU). This algorithm
was devised by Edmonds and Karp [24] as the first weakly polynomial-time
solution method for the MCF problem. Our implementation is based on a
slightly modified variant that is due to Orlin [60] and also discussed in [3].

The SSP algorithm has a substantial drawback that the shortest path aug-
mentations might deliver relatively small amounts of flow, which results in a
large number of iterations. This is overcome in the CAS algorithm by ensur-
ing that each path augmentation carries a sufficiently large amount of flow
and hence the number of augmentations is often reduced. The CAS algorithm
performs scaling phases for successively smaller values of a parameter ∆. In a
∆-scaling phase, each path augmentation delivers exactly ∆ units of flow from
a node v with at least ∆ units of excess to a node w with at least ∆ units
of deficit. The shortest path searches are carried out in the so-called ∆-resid-
ual network, which contains only those arcs whose residual capacities are at
least ∆. When no such augmenting path is found, the value of ∆ is halved and
the algorithm proceeds with the next phase. Initially, ∆ is set to 2blog2 Uc and
the algorithm terminates at the end of the phase in which ∆ = 1.

The CAS algorithm maintains the reduced cost optimality conditions only
in the ∆-residual network. Each ∆-scaling phase begins with saturating those
newly introduced arcs of the current ∆-residual network that do not satisfy
the optimality conditions with respect to the current node potentials. The
saturations might increase the excess or deficit of some nodes, but these re-
quirements are satisfied in the subsequent phases. At the end of the last phase,
which corresponds to ∆ = 1, the solution becomes both feasible and optimal
since the ∆-residual network then coincides with the residual network.

In order to ensure the weakly polynomial running time of the CAS algo-
rithm, we need an additional assumption that a directed path of sufficiently
large capacity exists between each pair of nodes. This condition, however,
can easily be achieved by a simple extension of the underlying network as
follows. Let s denote a designated node of the network (or a newly intro-
duced artificial node). For each other node i, we can add new arcs (i, s) and
(s, i) to the graph with sufficiently large capacities and costs. Under this ad-
ditional assumption, the CAS algorithm is proved to solve the MCF problem
in O(m logU · SP+(n,m)) time [3].

We made some modifications to this version of the CAS algorithm in our
implementation. First, it is possible to avoid the above extension of the in-
put graph by allowing that more units of excess or deficit remain at the end
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of a ∆-scaling phase. In this case, the polynomial running time bound is not
proved, but our experiments show that this version does not perform more
path augmentations and runs significantly faster in practice. Therefore, our
implementation does not extend the input graph by default. Another modi-
fication utilizes that the path augmentations of each ∆-scaling phase might
be capable of delivering more than ∆ units of flow. We send the maximum
possible amount of flow along each path similarly to the SSP algorithm. Fur-
thermore, the scaling of the parameter ∆ can be carried out using a factor
other than two. Let α ≥ 2 denote an integer scaling factor. ∆ is initially set
to αblogα Uc and divided by α at the end of each phase. This means that more
path augmentations might be required for the same excess or deficit node in
a ∆-scaling phase, but the number of phases is reduced. In our experiments, a
factor of α = 4 turned out to provide the best overall performance, thus this
option is used by default.

The CAS algorithm has much in common with the SSP method, thus the
practical improvements of the SSP implementation also applies to this algo-
rithm. Our CAS code uses the same representations for the residual network
and the associated data. In a ∆-scaling phase, the ∆-residual network is not
constructed explicitly, but the arcs with residual capacity less than ∆ are
skipped during the path searches. Moreover, our CAS implementation also
terminates the shortest path computations once an appropriate deficit node is
permanently labeled and updates the node potentials accordingly. This idea
and the practical data representations substantially improve the performance
of the CAS algorithm similarly to the SSP method.

The computational results presented in Section 4 show that the augmenting
path algorithms, SSP and CAS, are not robust as their performance greatly
depends upon the characteristics of the input. On general problem instances,
these algorithms are typically slower than the cost-scaling and network sim-
plex methods, but in certain cases, they turned out to be quite efficient. For
example, if the total excess is relatively small and hence a few path augmen-
tations are sufficient to solve the problem, the SSP algorithm is usually the
fastest method.

3.3 Cost-scaling algorithm

The cost-scaling technique for the MCF problem was proposed independently
by Röck [63] and Bland and Jensen [9]. Goldberg and Tarjan [38] developed
an improved method based on these algorithms by also utilizing the concept
of ε-optimality, which is due to Bertsekas [6] and, independently, Tardos [67].
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The cost-scaling algorithm of Goldberg and Tarjan, which we henceforth refer
to as COS, can be viewed as a generalization of their well-known push-relabel
algorithm for the maximum flow problem [36]. The COS algorithm is one of
the most efficient solution methods for the MCF problem, both in theory and
practice.

The COS algorithm is a primal–dual method that applies a successive ap-
proximation scheme by scaling upon the costs. It iteratively produces ε-opti-
mal primal–dual solution pairs for successively smaller values of ε ≥ 0. (Recall
the definitions and results related to ε-optimality from Section 2.2.) Initially,
ε = C and each phase preforms a refine procedure to transform an ε-opti-
mal solution into an (ε/2)-optimal solution until ε < 1/n. At this stage, the
algorithm terminates and Lemma 4 implies that an optimal flow is found.

The refine procedure takes an ε-optimal primal–dual solution pair (x, π)
as input and improves the approximation as follows. First, it saturates each
residual arc whose current reduced cost is negative and thereby produces a
pseudoflow x that is 0-optimal. This means that x is also ε-optimal for any
choice of ε, but it is not necessarily feasible. After this step, the current approx-
imation parameter ε is halved and the pseudoflow x is gradually transformed
into a feasible solution again, but in a way that preserves ε-optimality for the
new value of ε. This is achieved by performing a sequence of push and rela-
bel operations similarly to the push-relabel algorithm for the maximum flow
problem.

Let rij denote the residual capacity of an arc (i, j) in the residual network Gx
corresponding to the current pseudoflow x and let ei denote the signed excess
value of node i. We call a node active if its current excess is positive. Fur-
thermore, a residual arc (i, j) is called admissible if its current reduced cost is
negative and the subgraph of the residual network consisting only of the ad-
missible arcs is called the admissible network. The refine procedure throughout
maintains ε-optimality and hence −ε ≤ cπij < 0 holds for each admissible arc
(i, j). A basic operation selects an active node i (i.e., ei > 0) and either pushes
flow on an admissible residual arc (i, j) or if no such arc exists, updates the
potential of node i, which is called relabeling.

A push operation on an admissible residual arc (i, j) is carried out by sending
δ = min{ei, rij} units of flow from node i to node j and thereby decreasing ei
and increasing ej by δ. This operation introduces the reverse arc (j, i) into the
residual network unless it already had positive residual capacity, but this arc
is not admissible since cπji = −cπij > 0. If an active node i has no admissible
outgoing arc, a relabel operation decreases its potential by ε. This means
that the reduced cost of each outgoing residual arc of node i is also decreased
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and the reduced cost of each incoming residual arc is increased by ε. Note
that this modification preserves the ε-optimality conditions while creating
new admissible outgoing arcs at node i and thus allowing subsequent push
operations to carry the excess of node i. Consequently, the only operation
that can introduce a new admissible arc (i, j) is the relabeling of node i. The
refine procedure terminates when no active node remains in the network and
hence an ε-optimal feasible solution is obtained.

It is proved that this generic version of the refine procedure performs O(n2)
relabel operations and O(n2m) push operations and hence runs in O(n2m)
time [38, 3]. Furthermore, the number of ε-scaling phases is O(log(nC)),
as ε is initially set to C and it is halved at each phase until it decreases
below 1/n. Consequently, the generic COS algorithm runs in weakly poly-
nomial time O(n2m log(nC)). Note, however, that the order in which the
basic operations are performed is not specified. Goldberg and Tarjan [38]
showed that applying particular selection rules and using complex data struc-
tures yield better theoretical running time. They also developed a general-
ized framework to obtain a strongly polynomial bound on the number of
ε-scaling phases by utilizing the same idea that is exploited in the MMCC
and CAT algorithms (see Section 3.1). The best variant they devised runs
in O(nm log(n2/m)min{log(nC),m logn}) time using dynamic trees [38, 65].
Moreover, the COS algorithm turned out to be quite efficient in practice
and several complicated heuristics were also developed to improve its per-
formance [33].

We implemented three variants of the COS method that perform the refine
procedure rather differently.

Push-relabel variant. This variant of the COS algorithm is based on the
generic version discussed above and hence performs local push and relabel
operations in the ε-scaling phases. We also applied several improvements and
efficient heuristics in this implementation according to the ideas found in [38,
3, 35, 33, 11]. In fact, most of these improvements and heuristics are analogous
to similar techniques devised for the push-relabel maximum flow algorithm.

The bottleneck of the COS algorithm corresponds to the searching of ad-
missible arcs for the basic operations. Therefore, we applied the same graph
representation that is used in the augmenting path algorithms (see Section 3.2)
as it is intended to minimize the time required for iterating over the outgoing
residual arcs of a node.

Similarly to the capacity-scaling algorithm, the COS method also allows us
to use an arbitrary scaling factor α > 1. We found that the optimal value de-
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pends on the problem, but it was usually between 8 and 24 and the differences
were moderate. The default scaling factor is α = 16 in our implementation,
which typically performed very well. Another practical modification targets
the issue that the generic COS algorithm performs internal computations with
non-integer values of ε and non-integer node potentials. This drawback can be
overcome by multiplying all arc costs by αn for a given integer scaling factor
α ≥ 2 and by scaling ε accordingly. Initially, ε is set to αdlogα(αnC)e and is
divided by α in each phase until ε = 1.

We applied some improvements in the implementation of the refine pro-
cedure, as well. For performing the basic operations, we need to check the
outgoing residual arcs of each active node for admissibility. These examina-
tions can be made more efficiently if we record a current arc for each active
node and continue the search for an admissible outgoing arc from this current
arc every time. If an admissible arc is found, we perform a push operation
and when we reach the last outgoing arc of an active node without finding
an admissible arc, the node is relabeled and its current arc is set to the first
outgoing residual arc again. (Recall that the definition of the basic operations
imply that only the relabeling of node i can introduce a new admissible arc
outgoing from node i.) Furthermore, the relabel operations are performed in
a stricter way. Instead of simply decreasing the potential of a relabeled node
by ε, we decrease the potential by the largest possible amount that does not
violate the ε-optimality conditions. A single relabel operation thereby usually
introduce more admissible arcs. This modification significantly improves the
overall performance of the algorithm (up to a factor of two).

The strategy for selecting an active node for the next basic operation is also
important. The number of active nodes is typically small, thus it is beneficial
to keep track of them explicitly. A particular variant of the COS algorithm,
known as the wave implementation, selects the active nodes according to a
topological ordering with respect to the admissible network. This choice is
proved to yield an O(n3)-time implementation of the refine procedure (instead
of O(n2m)). However, our experiments showed that a simple FIFO selection
rule using a queue data structure usually results in less basic operations and
better performance in practice, which is in accordance with [11] and [33].

In addition to the implementation aspects discussed so far, some effective
heuristics can improve the practical performance of the COS algorithm to
a higher extent. We implemented three such improvements out of the four
proposed by Goldberg [33]. These heuristics are also discussed in [35] along
with detailed experimental evaluation. Their practical effect depends on the
problem instances as well as the actual implementation and the parameter
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settings (for example, the scaling factor α).
The potential refinement (or price refinement) heuristic is based on the ob-

servation that an ε-scaling phase may produce a solution that is not only ε-op-
timal, but also (ε/α)-optimal or even optimal. Therefore, an additional step
is introduced at the beginning of each phase to check if the current solution is
already ε-optimal. This heuristic attempts to adjust the potentials to satisfy
the ε-optimality conditions, but without modifying the flow. If ε-optimality is
verified, the refine procedure is skipped and another phase is performed. We
implemented this potential refinement heuristic using an O(nm)-time scaling
shortest path algorithm [32] as suggested in [33]. Our experiments also verified
that this improvement usually eliminates the need for the refine procedure in
a few phases, especially the last ones. Furthermore, the potential updates per-
formed in this heuristic step typically reduce the number of basic operations
even in case the refine procedure can not be skipped. Consequently, this addi-
tional step significantly improves the overall performance of the algorithm in
most cases.

Another possible implementation of this heuristic performs a minimum-
mean cycle computation in each phase to determine the smallest ε for which
the current flow is ε-optimal and computes corresponding node potentials.
This computation may allow us to skip more than one phase at once, but it
is usually slower, even using Howard’s efficient algorithm. Furthermore, this
variant can be used to ensure a strongly polynomial bound on the number of
phases and thus on the overall running time, as well. However, our experiments
showed that the former variant of the potential refinement heuristic, which we
use in our final implementation, is clearly superior to this one. This result
contradicts the conclusions of [11].

The global update heuristic performs relabel operations on several nodes in
one step. It iteratively applies the following set-relabel operation. Let S ⊂ V
denote a set of nodes such that it contains all deficit nodes, but at least one
active node is in V \S. If no admissible arc enters S, then the potential of every
node in S can be increased by ε without violating the ε-optimality conditions.
Furthermore, it is also shown in [33] that the theoretical running time of the
COS algorithm remains unchanged if the global update heuristic is applied
only after every Ω(n) relabel operations. In practice, this modification turned
out to impose a huge improvement in the efficiency of the algorithm on some
problem classes, although it does not help to much or even slightly worsens the
performance on other instances. Our implementation of this heuristic follows
the instructions presented in [11].

The push-look-ahead heuristic is another practical improvement for the COS



Efficient implementations of minimum-cost flow algorithms 89

algorithm. Its goal is to avoid pushing flow from node i to node j when a sub-
sequent push operation is likely to send this amount of flow back to node i.
To achieve this, the maximum allowed amount of flow to be pushed into a
node i is limited by the sum of its deficit and the residual capacities of its ad-
missible outgoing arcs. However, this idea requires the extension of the relabel
operation to those nodes at which this limitation is applied regardless of their
current excess values. This heuristic is rather effective in practice, it usually
decreases the number of push operations significantly and hence the relabel
operations dominate the running time of the COS algorithm. For more details
about this heuristic, see [35, 33, 11].

Goldberg [33] also suggests an additional improvement, the arc fixing heuris-
tic. The best version of this method speculatively fixes the flow values for the
arcs on which it is not likely to be changed later in the algorithm. These arcs
are excluded from the subsequent arc examinations, but in certain cases, they
have to be unfixed again. We did not implement this heuristic yet, because it
seems to be rather involved and sensitive to parameter settings. However, it
would most likely improve the performance of our implementation.

We also remark that dynamic trees [65] can be used in the COS algorithm to
perform a number of push operations at once, which improves the theoretical
running time [38]. However, they are not likely to be practical due to the
computational overhead that these data structures usually impose and because
applying the above heuristics, the relabel operations become the bottleneck of
the algorithm instead of pushes (see [35, 33]). Therefore, we did not implement
this variant.

Augment-relabel variant. This variant of the COS algorithm performs
path augmentations instead of local push operations, but relabeling is heav-
ily used to find augmenting paths. At each step of the refine procedure, this
method selects an active node v and performs a depth-first search in the admis-
sible network to find an augmenting path to a deficit node. At an intermediate
stage, the algorithm maintains an admissible path from an active node v to the
current node i and attempts to extend this path. If node i has an admissible
outgoing arc (i, j), then the path is extended with this arc and node j becomes
the current node. Otherwise, node i is relabeled and if i 6= v, we step back
to the previous node by removing the last arc of the current path. When this
search process reaches a deficit node, an augmenting path is found.

The flow augmentation on these admissible paths can be performed in two
different ways. The first way is to push the same amount of flow on each arc
of an augmenting path, which is bounded by the smallest residual capacity
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on the path as well as the excess of the starting node v. The other apparent
implementation pushes the maximum possible amount of flow on every arc
of the path. That is, for each arc (i, j) of the path, δij = min{ei, rij} units of
flow is pushed on the arc, ei is decreased by δij, and ej is increased by δij.
According to our experiments, this variant is slightly superior to the former
one, thus it is applied in our implementation.

Note that these path search and flow augmentation methods correspond to
a particular sequence of local push and relabel operations. However, the actual
push operations are carried out in a delayed and more guided manner, in aware
of an admissible path to a deficit node. This helps to avoid such problems for
which the push-look-ahead heuristic is devised (see above), but a lot of work
may be required to find augmenting paths, especially if they are long.

Since this algorithm can be viewed as a special version of the generic COS
method, the same theoretical running time bound applies to it as well as
most of the practical improvements. We used the same data representation,
improvements and heuristics as for the push-relabel algorithm except for the
push-look-ahead heuristic, which is obviously incompatible with this variant.
These modifications provided similar performance gains to those measured for
the push-relabel variant.

Partial augment-relabel variant. The third variant of the COS algorithm
can be viewed as an intermediate approach between the other two variants.
It is based on the partial augment-relabel technique recently proposed by
Goldberg [34] as an improvement for the push-relabel maximum flow algo-
rithm. This method turned out to be more efficient and more robust than the
classical push-relabel algorithm and Goldberg also suggested the utilization of
the same idea in the MCF context. According to the authors knowledge, our
implementation of the COS algorithm is the first to incorporate this technique.

The partial augment-relabel algorithm is quite similar to the augment-
relabel variant, but it limits the length of the augmenting paths. The path
search process is stopped either if a deficit node is reached or if the length
of the path reaches a given parameter k ≥ 1. In fact, the push-relabel and
augment-relabel variants are special cases of this approach for k = 1 and
k = n, respectively. Goldberg [34] suggests small values for the parameter k in
the maximum flow context, which turned out to apply to the COS algorithm,
as well. In our experiments, the optimal value of this parameter was typically
between 3 and 8 and the differences were not substantial for such small values
of k. Our default implementation uses k = 4, just like Goldberg’s maximum
flow implementation, as it turned out to be quite robust.
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Apart from the length limitation for the augmenting paths, this variant is
exactly the same as the augment-relabel method. (Actually, they have a com-
mon implementation but with different values of the parameter k.) However,
the partial augment-relabel technique attains a good compromise between the
former two approaches and turned out to be clearly superior to them, thus it
is our default implementation of the COS algorithm. Unless stated otherwise,
we refer to this implementation as COS in the followings.

Section 4 provides experimental results for the COS algorithm and its vari-
ants compared to other methods. The classical push-relabel algorithm and es-
pecially the partial augment-relabel variant using such heuristics and improve-
ments are highly efficient and robust in practice. In contrast, the augment-
relabel variant is often significantly slower.

3.4 Network simplex algorithm

The primal network simplex algorithm, which we henceforth refer to as NS, is
one of the most popular solution methods for the MCF problem in practice.
It is a specialized version of the well-known linear programming (LP) simplex
method that exploits the network structure of the MCF problem and performs
the basic operations directly on the graph representation. The LP variables
correspond to the arcs of the graph and the LP bases are represented by
spanning trees.

The NS algorithm is devised by Dantzig, the inventor of the LP simplex
method. He first solved the uncapacitated transportation problem using this
approach and later generalized the bounded variable simplex method to di-
rectly solve the MCF problem [18]. Although the generic version of the NS
algorithm does not run in polynomial time, it turned out to be rather efficient
in practice. Therefore, subsequent research focused on efficient implementa-
tion of the NS algorithm [10, 5, 48, 41, 57] as well as on developing special
variants of both the primal and the dual network simplex methods that run
in polynomial time [68, 39, 62, 61, 69]. Detailed discussion of the NS method
considering both theoretical and practical aspects can be found in [3] and [47].

The fundamental concept on which the NS algorithm is based is the notion
of spanning tree solutions. Such a solution is represented by a partitioning of
the node set V into three subsets (T, L,U) such that each arc in L has flow
fixed at zero (lower bound), each arc in U has flow fixed at the capacity of
the arc (upper bound), and the arcs in T form an (undirected) spanning tree
of the network. The flow on these tree arcs also satisfy the nonnegativity and
capacity constraints, but they are not restricted to any of the bounds. It can
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easily be seen that the flow values on the tree arcs are uniquely determined by
the partitioning (T, L,U) since there is no cycle in T . Furthermore, it is proved
that if an instance of the MCF problem has an optimal solution, then it also
has an optimal spanning tree solution, which can be found by successively
transforming a spanning tree solution to another (see [3]). Actually, these
spanning tree solutions correspond to the LP basic feasible solutions of the
problem. This observation allows us to implement the simplex method by
performing all operations directly on the network, without maintaining the
simplex tableau, which makes this approach very efficient.

The standard simplex method maintains a basic feasible solution and grad-
ually improves its objective function value by small transformations, known
as pivots. Accordingly, the NS algorithm throughout maintains a spanning
tree solution of the MCF problem and successively decreases the total cost
of the flow until it becomes optimal. Furthermore, node potentials are also
maintained such that the reduced cost of each arc in the spanning tree equals
to zero. At each step, a non-tree arc violating its complementary slackness
optimality condition (see Theorem 3) is added to the current spanning tree,
which uniquely determines a negative cost residual cycle. This cycle is then
canceled by augmenting the maximum possible amount of flow on it and a
tree arc corresponding to a saturated residual arc is selected to be removed
from the tree. The node potentials are also adjusted to preserve the property
that the reduced costs of each tree arc is zero and finally, the tree structure
is updated. This whole operation transforming a spanning tree solution to an-
other is called pivot. If no suitable entering arc can be found, the current flow
is optimal and the algorithm terminates.

In fact, the NS algorithm can also be viewed as a particular variant of the
cycle-canceling method (see Section 3.1). Due to the sophisticated method of
maintaining spanning tree solutions, however, a negative cycle can be found
and canceled much faster (in linear time). On the other hand, an additional
technical issue, known as degeneracy, may arise in the NS algorithm. If the
spanning tree contains an arc whose flow value equals to zero or the capacity
of the arc, then a pivot step may detect a cycle of zero residual capacity. Such
degenerate pivots only modify the spanning tree, but the flow itself remains
unchanged. Consequently, it is possible that several consecutive pivots do not
actually decrease the flow cost (known as stalling) or, which is even worse, the
same spanning tree solution occurs multiple times and hence the algorithm
does not necessarily terminate in a finite number of iterations (known as cy-
cling). Experiments with certain classes of large-scale MCF problems showed
that more than 90% of the pivots may be degenerate.



Efficient implementations of minimum-cost flow algorithms 93

A simple and popular technique to overcome such difficulties is based on the
concept of strongly feasible spanning tree solutions. A spanning tree solution is
called strongly feasible if a positive amount of flow can be sent from each node
to a designated root node of the spanning tree along the tree path without
violating the nonnegativity and capacity constraints. Using an appropriate
rule for selecting the leaving arcs, the NS algorithm can throughout maintain
a strongly feasible spanning tree. This technique is proved to ensure that
the algorithm terminates in a finite number of iterations [3]. Furthermore, it
substantially decreases the number of degenerate pivots in practice and hence
makes the algorithm faster.

It can be shown, using a perturbation technique, that the NS algorithm
maintaining a strongly feasible spanning tree solution performs O(nmCU)
pivots for the MCF problem with integer data regardless of the selection rule
of entering arcs [2]. An entering arc can be found in O(m) time and using an
appropriate labeling technique, the spanning tree structure can be updated in
O(n) time. Therefore, a single pivot takes O(m) time and the total running
time of the NS algorithm is O(nm2CU). However, this bound does not reflect
to the typical performance of the algorithm in practice.

The implementation of the primal NS algorithm is based on a practical
storage scheme of the spanning tree solutions that makes it possible to perform
the basic operations of the algorithm efficiently. The book of Kennington and
Helgason [48] discusses several such spanning tree data structures along with
methods for updating them during the iterations of the algorithm. A quite
popular approach, sometimes referred to as the ATI (Augmented Threaded
Index ) method, represents a spanning tree as follows. The tree has a designated
root node and three indices is stored for each node in the tree: the depth of
the node (i.e., the distance from the root node in the tree), the parent of
the node in the tree, and a thread index which is used to define a depth-first
traversal of the spanning tree. This storage scheme and its update mechanism
are discussed in detail in [47] and [3]. The ATI technique has an improved
version, which is due to Barr, Glover, and Klingman [5] and is usually referred
to as the XTI (eXtended Threaded Index ) method. The XTI scheme replaces
the depth index by two indices for each node: the number of successors of the
node in the tree and the last successor of the node according to the traversal
defined by the thread index. Other approaches, for example the so-called API
and XPI methods, are also often applied.

We implemented the primal NS algorithm using both ATI and XTI tech-
niques. The latter one has two advantages over the ATI method. First, the
XTI indices can be updated more efficiently since a tree alteration of a single
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pivot usually modifies the depth of several nodes in subtrees that are moved
from a position to another, while the set of successors is typically modified
only for a much smaller number of nodes. In addition, the XTI method also
allow an improved updating process for the node potentials. Note that by re-
moving the leaving arc, the current spanning tree is divided into two subtrees,
which are then connected again by the entering arc. In order to preserve zero
reduced costs for the tree arcs, we have to increase the potential of each node
in one of the subtrees by a certain constant value λ or decrease the potential
of each node in the other subtree by λ. The XTI scheme makes it possible to
immediately determine which subtree is smaller and to perform the update
process on the smaller subtree.

Although the XTI labeling method is not as widely known and popular as
the simpler ATI method, our experiments showed that it is much more effi-
cient than ATI on all problem instances. Therefore, the final version of our
code only implements the XTI technique. The substantial performance gain of
this approach is due to the first advantage mentioned above. In contrast, we
found that the alternative potential update is not so important, because the
subtree containing the root node turned out to be the bigger one in virtually
all pivots. Moreover, we can easily avoid overflow problems related to node
potentials and reduced costs if the potential of the root node is not modified
throughout the algorithm. Therefore, we decided to update potentials in the
subtree not containing the root node in every step. We also applied an impor-
tant improvement in the implementation of the XTI method. An additional
reverse thread index is also stored for each node and hence the depth-first
traversal is represented by a doubly-linked list. This modification turned out
to substantially improve the performance of the update process. In fact, the
inventors of the XTI technique also discussed this improvement [5], but they
did not applied it to reduce the memory requirements of the representation.
(However, note that enormous progress has been made on the computers since
the time when that paper was written.)

Another interesting aspect of the data representation for the NS algorithm is
that we need not traverse the incident arcs of nodes throughout the algorithm,
although such examinations are crucial in other algorithms. Therefore, we
applied a quite simple and unusual graph representation to implement the NS
algorithm. The nodes and arcs are represented by consecutive integers and we
store the source and target nodes for each arc (in arrays), but we do not keep
track of the incident arcs of a node at all.

The NS algorithm also requires an initial spanning tree solution to start
with. It is possible to transform any feasible solution x to a spanning tree
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solution x ′ such that the total cost of x ′ is less than or equal to the total cost
of x. Furthermore, the required spanning tree indices can also be computed
by a depth-first traversal of the tree arcs. However, artificial initialization
techniques are much more common in practice. An artificial root node s with
zero supply is typically added to the network as well as artificial arcs with
sufficiently large capacities and costs. Recall that the signed supply value of
node i is denoted as bi. For each original node i, we add a new arc (i, s) to the
network if bi ≥ 0 and add a new arc (s, i) otherwise. We can set the capacity
of each new arc to nU and its cost to nC. In this extended network, we can
easily construct a strongly feasible spanning tree solution x as follows. For
each original arc (i, j), let xij = 0 and for each original node i, let xis = bi if
bi ≥ 0 and let xsi = −bi otherwise. The initialization of the tree indices and
the node potentials is straightforward in this case. Furthermore, note that an
optimal solution in the extended network does not send flow on artificial arcs
due to their large costs unless the original problem is infeasible.

We experimented with both ways of initialization and it turned out that the
artificial method usually provides better overall performance mainly because
of two reasons. First, the artificial spanning tree solution can be constructed
easily and quickly. Second, it allows efficient tree update for the first few piv-
ots as the depth of the tree is rather small. Therefore, we decided to use only
this variant in our final implementation. The strongly feasibility is preserved
throughout the algorithm by carefully selecting the leaving arc whenever mul-
tiple residual arcs are saturated by a pivot step (see [47, 3] for details).

One of the most crucial aspects of the NS algorithm, which is not considered
so far, is the selection the entering arcs. Recall that the reduced cost of each
tree arc is zero and each non-tree arc has a flow value fixed either at zero or the
capacity of the arc. Therefore, a non-tree arc (i, j) allows flow augmentation
only in one direction. If the reduced cost of the residual arc associated with
this direction is negative, the arc (i, j) can be selected to enter the tree. In
this case, a negative-cost residual cycle is formed by this arc and the unique
tree path connecting nodes i and j (these tree arcs have zero reduced costs).
To implement the NS algorithm, we require a method for selecting such an
entering arc at each iteration, which is usually referred to as pivot rule or
pricing strategy. The applied method affects the “goodness” of the entering
arcs and thereby the number of iterations as well as the average time required
for selecting an entering arc, which is a dominant part of each iteration. Con-
sequently, applying different strategies, we can obtain several variants of the
NS algorithm with quite different theoretical and empirical behavior.

We implemented five pivot rules, which are discussed in the followings. Four
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of them are widely known and well-studied rules [47, 3], while the fifth one is
an improved version of the candidate list rule. In the discussion of these meth-
ods, a non-tree arc is called eligible if it does not satisfy the complementary
slackness optimality condition and hence can be selected as an entering arc.
Let π denote the current set of node potentials and let cπij denote the reduced
cost of an arc (i, j). An eligible arc (i, j) either has zero flow and cπij < 0 or has
a flow equal to its capacity and cπij > 0. We refer to | cπij | as the violation of an
eligible arc (i, j).

Best eligible arc pivot rule. This is one of the simplest and earliest pivot
strategies, which was proposed by Dantzig and is also known as Dantzig’s pivot
rule. At each iteration, this method selects an eligible arc with the maximum
violation to enter the tree. This means that a residual cycle having the most
negative total cost is selected to be canceled, which causes the maximum de-
crease of the objective function per unit flow augmentation. Computational
studies showed that this selection rule usually results in fewer iterations than
other strategies. However, it has to consider all non-tree arcs and recompute
their reduced costs to select the best eligible arc at each iteration. Conse-
quently, the overall performance of the NS algorithm with this pivot rule is
rather poor despite the small number of iterations.

First eligible arc pivot rule. Another straightforward idea is to select the
first eligible arc at each iteration. The practical implementation of this rule
examines the arcs cyclically by starting each search process at the position
where the previous eligible arc is found. If we reach the end of the arc list, the
examination is continued from the beginning of the list again. If a pivot op-
eration examines all non-tree arcs without finding an eligible arc, the solution
is optimal and the algorithm terminates. This strategy represents the other
extreme way of selecting the entering arcs compared to the previous rule. It
rapidly finds an entering arc at each iteration, but these arcs typically have
relatively small violation and hence a lot of iterations are usually required.

Block search pivot rule. Since the previous two rules do not perform well
in practice, several other strategies have been devised to implement effective
compromise between them. A simple block search approach is proposed by
Grigoriadis [41]. This method cyclically examines blocks of arcs and selects
the best eligible candidate among these arcs at each iteration. The search
process starts from the position of the previous entering arc and checks a



Efficient implementations of minimum-cost flow algorithms 97

specified number of arcs by recomputing their reduced costs. If this block
contains eligible arcs, then the one with the maximum violation is selected to
enter the basis. Otherwise, we examine one or more subsequent blocks of arcs
until an eligible arc is found.

The block size B is an important parameter of this method. In fact, the
previous two rules are special cases of this one with B = m and B = 1. Several
sources suggest to set B proportionally to the number of arcs, for example,
between 1% and 10% [41, 47]. However, our experiments clearly showed that
much better overall performance can be achieved on virtually all problem
classes if we set B = α

√
m for small values of α (for example, between 0.5

and 2). In our implementation, B =
√
m is used, which results in a highly

efficient and robust pivot rule.
Similarly to the first eligible rule, this strategy also has the inherent advan-

tage that an arc is allowed to enter the basis only periodically, which usually
decreases the number of degenerate pivots in practice [17, 40].

Candidate list pivot rule. This is another classical pivot rule, which was
proposed by Mulvey [59]. It occasionally builds a list of eligible arcs and selects
the best arcs among these candidates at subsequent iterations. A so-called
major iteration examines the arcs in a wraparound fashion similarly to the
previous rules and builds a list containing at most L eligible arcs. After a
major iteration, we perform at most K minor iterations, each of which scans
this list and selects an eligible arc with maximum violation to enter the basis.
If an arc is not eligible any more, it is removed from the list. When K minor
iterations are performed or the list becomes empty, another major iteration
takes place.

This method is similar to the block search rule, but it considers the same
subset of the arcs in several consecutive pivots, while the previous rule con-
siders only the best arc of a block and then advances to the next block. We
obtained the best average running time for this rule using L =

√
m/4 and

K = L/10. However, this method usually performed worse than the simpler
block search strategy.

Altering candidate list pivot rule. This strategy was developed by us
as an improved version of the candidate list rule. There are various other
rules that exploit similar ideas, but the authors are not aware of another
implementation of this method. It maintains a candidate list similarly to the
previous rule, but it attempts to extend this list at each iteration and keeps
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only the several best candidates of the previous iterations. The candidate arcs
are collected with the search process used in the block search rule.

This method has two parameters: a block size B and the maximum length
of the altering candidate list, which is denoted by H. At the beginning of each
iteration, we check the current candidate list and remove all arcs that are not
eligible any more. After that, at least one arc block of size B is examined to
extend the candidate list with new eligible arcs. If a nonempty list is obtained,
then an arc of maximum violation is selected from the list to enter that basis.
The other arcs are then partially sorted and the list is truncated to contain at
most H of the best candidates in terms of their current violation. According to
our experiments, this method is very efficient using B =

√
m and H = B/100.

Numerous other rules have also been developed applying similar or more
complicated partial pricing techniques. We also implemented several variants,
but the block search pivot rule and the altering candidate list pivot rule turned
out to provide the best overall performance. Since the block search rule is sim-
pler and turned out to be slightly more robust, it is our default pivot strategy.
Unless stated otherwise, we refer to this variant as NS in the followings.

We also developed an additional heuristic based on the artificial initialization
procedure of the algorithm to make the first few pivots faster. The initialization
of node potentials implies that an arc (i, j) is eligible for the first pivot if and
only if bi ≥ 0 and bj < 0. After such an arc enters the basis, new arcs incident
to its source node may also become eligible. Therefore, we collect several arcs
using a partial traversal of the graph starting from the demand nodes and
using the reverse orientation of each arc. This arc list is then used by the
first few pivots to select entering arcs from. Our computational results showed
that this idea slightly improves the overall performance of the NS algorithm
by making these pivots substantially faster.

Section 4 provides experimental results comparing the different pivot rules as
well as comparing the NS algorithm to other solution methods. Our NS imple-
mentation turned out to be highly efficient, especially on relatively small and
medium-sized networks, but it is typically outperformed by the cost-scaling
codes on the largest problem instances.

4 Experimental study

This section presents an empirical study of the implemented algorithms and
also compares them to other efficient MCF solvers. The contribution of these
results is twofold. First, a great number of MCF algorithms are compared
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using the same benchmark suite, which provides insight into their relative
performance on different classes of networks. Second, larger problem instances
are also considered than that in previous experimental studies of MCF algo-
rithms, which turned out to be important to draw reliable conclusions related
to the asymptotic behavior of these algorithms.

The experiments were conducted on a machine with AMD Opteron Dual
Core 2.2 GHz CPU and 16 GB RAM (1 MB cache), running openSUSE 11.4
operating system. All codes were compiled with GCC 4.5.3 using -O3 opti-
mization flag.

4.1 Test instances

Our test suite contains numerous problem instances of variable size and char-
acteristics. Most of these instances were generated with standard random gen-
erators, NETGEN and GOTO, while the others are based on either real-life
road networks or maximum flow problems arising in computer vision applica-
tions. The largest networks contain millions of nodes and arcs.

NETGEN instances. NETGEN [51] is a classical generator that produces
random instances of the MCF problem and other network optimization prob-
lems. It is generally known to produce relatively easy MCF instances. The
source code of NETGEN is available at the FTP site of the First DIMACS
Implementation Challenge [22].

Our benchmark suite contains four problem families created with NETGEN.

• NETGEN-8. This family contains sparse networks, for which the av-
erage outdegree of the nodes is 8 (i.e., m = 8n). The arc capacities and
costs are selected uniformly at random from the ranges [1..1000] and
[1..10000], respectively. The number of supply and demand nodes are
both set to about

√
n and the average supply per supply node is 1000.

• NETGEN-SR. This family contains relatively dense networks, for
which the average outdegree is about

√
n (i.e., m ≈ n

√
n). The other

parameters are set the same way as for the NETGEN-8 family.

• NETGEN-LO-8. This family is similar to NETGEN-8 with the only
difference that the average supply per supply node is much lower, namely
10 instead of 1000. Therefore, the arc capacities incorporate only “loose”
bounds for the feasible solutions.
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• NETGEN-DEG. In these instances, the number of nodes is fixed to
n = 4096 and the average outdegree ranges from 2 to n/2. Other pa-
rameters are the same as of NETGEN-8 and NETGEN-SR instances.

GOTO instances. GOTO is another well-known random generator for the
MCF problem, which is intended to produce hard instances. It is developed
by Goldberg and is described in [35]. The name of the generator stands for
Grid On Torus, which reflects to the basic structure of the generated networks.
Each GOTO problem instance has one supply node and one demand node and
the supply value is adjusted according to the arc capacities. This generator is
also available at [22].

We used two GOTO families in our experiments, which differ only in the
density of the networks.

• GOTO-8. This family consists of sparse networks with an average out-
degree of 8. Similarly to the NETGEN families, the maximum arc ca-
pacity is set to 1000, while the maximum arc cost is set to 10000.

• GOTO-SR. This family consists of relatively dense networks with an
average outdegree of about

√
n. Other parameters are the same as of the

GOTO-8 family.

ROAD instances. We also experimented with MCF problems that are
based on real-world road networks. To generate such instances, we used the
TIGER/Line road network files of several states of the USA. These data files
are available at the web site of the Ninth DIMACS Implementation Chal-
lenge [23].

In our experiments, we selected seven states with road networks of increasing
size, namely DC, DE, NH, NV, WI, FL, and TX, and generated MCF problem
instances as follows. The original undirected graphs are converted to directed
graphs by replacing each edge with two oppositely directed arcs. The cost of
an arc is set to the travel time on the corresponding road section and the arc
capacities are uniformly set to one. This means that we are actually looking for
a specified number of arc-disjoint directed paths from supply nodes to demand
nodes having minimum total cost. The number of supply and demand nodes
are both b

√
n/10c. These nodes are selected randomly and the supply-demand

values are determined by a maximum flow computation that maximizes the
total supply with respect to the fixed set of supply and demand nodes.
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VISION instances. This family consists of MCF instances based on large-
scale maximum flow problems arising in computer vision applications. These
maximum flow data files were made available at http://vision.csd.uwo.ca/
data/maxflow/ by the Computer Vision Research Group at the University of
Western Ontario. They are intended to be used for benchmarking maximum
flow algorithms (for example, see [34]).

We used some of the segmentation instances related to medical image anal-
ysis. These instances are defined on three-dimensional grid networks. We se-
lected those variants in which the underlying networks are 6-connected and
the maximum arc capacity is 100 (namely, the bone sub* n6c100 files). These
maximum flow instances were converted to minimum-cost maximum flow prob-
lems using random arc costs selected uniformly from the range [1..100]. The
original networks also contain arcs of zero capacity, but we skipped these arcs
during the transformation and hence did not preserve the 6-connectivity.

We also experimented with several other problem instances and generator
parameters, but this collection turned out to be a representative benchmark
suite of reasonable size. For all problem families, we generated three instances
of each problem size with different random seeds. In all cases, we report the
average running time over such three instances to provide more relevant re-
sults.

4.2 Comparison of the implemented algorithms

This subsection presents benchmark results for the implemented algorithms
and their variants. Each table reports running time results in seconds. The size
of a problem instance is indicated by the number of nodes n and the average
outdegree deg (i.e., m = deg · n). The best running time is highlighted for
each problem size. The codes were executed with an explicit timeout limit
of one hour and a “−” sign denotes the cases when this timeout limit was
reached. Some charts are also presented showing running time as a function of
the number of nodes in the network (logarithmic scale is used for both axes).

Figure 1 and Tables 3 and 4 present the running time results in seconds
for NETGEN-8 and NETGEN-SR families. On these instances, the SCC al-
gorithm was about 3 times faster than MMCC, while the CAT algorithm
greatly outperformed both of them. It is quite interesting that the simple
SSP algorithm was an order of magnitude faster than its capacity-scaling vari-
ant, CAS. The CAT algorithm performed similarly to SSP on NETGEN-8
instances, but was significantly slower on NETGEN-SR networks. The COS
and NS algorithms were the most efficient on these instances. They turned out

http://vision.csd.uwo.ca/data/maxflow/
http://vision.csd.uwo.ca/data/maxflow/
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to be orders of magnitude faster than the other algorithms. COS showed bet-
ter asymptotic behavior than NS (see Figure 1) and was significantly faster on
the largest NETGEN-8 instances. On the other hand, NS was more efficient on
the relatively small sparse networks and on all NETGEN-SR instances despite
its worse asymptotic trends.
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Figure 1: Comparison of our implementations on NETGEN instances

n deg SCC MMCC CAT SSP CAS COS NS

210 8 4.81 11.85 0.19 0.12 0.19 0.02 0.01
212 8 112.40 347.47 2.14 1.50 3.15 0.13 0.05
214 8 1587.01 − 26.36 18.66 93.14 0.78 0.54
216 8 − − 295.05 298.95 2360.21 4.24 6.88
218 8 − − − 3514.72 − 22.40 104.69
220 8 − − − − − 103.83 799.26
222 8 − − − − − 615.42 −

Table 3: Comparison of our implementations on NETGEN-8 instances

n deg SCC MMCC CAT SSP CAS COS NS

210 32 34.03 90.82 0.74 0.33 1.79 0.06 0.01
211 45 224.79 1158.92 3.54 1.49 5.27 0.26 0.05
212 64 1592.62 − 16.36 6.77 70.35 0.83 0.21
213 91 − − 88.13 29.16 697.47 2.68 0.73
214 128 − − 353.23 136.17 − 8.28 3.55
215 181 − − 1419.60 535.57 − 25.74 14.90
216 256 − − − 2799.34 − 111.55 67.29

Table 4: Comparison of our implementations on NETGEN-SR instances
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Table 5 contains performance results for the NETGEN-LO-8 family. As one
would expect, these instances turned out to be easier to solve than NETGEN-8
instances of the same size. For this family, SSP was an order of magnitude
faster than CAT, while CAS was even more efficient than the SSP algorithm
by a factor between 2 and 3. Note that the relative performance of SSP and
CAS is entirely different compared to the NETGEN-8 results. Nevertheless,
the fastest methods were COS and NS just like for the NETGEN-8 family and
their relationship was similar.

n deg SCC MMCC CAT SSP CAS COS NS

210 8 0.82 2.52 0.14 0.02 0.01 0.01 0.00
212 8 8.49 79.93 1.88 0.13 0.06 0.07 0.02
214 8 73.83 1801.08 22.10 1.29 0.67 0.43 0.19
216 8 668.00 − 183.06 17.79 6.67 2.65 2.11
218 8 − − 2062.12 172.63 60.16 13.79 29.00
220 8 − − − 1342.73 519.06 68.41 293.49
222 8 − − − − − 457.02 2482.50

Table 5: Comparison of our implementations on NETGEN-LO-8 instances

Table 6 shows how the running time of the algorithms depends on the den-
sity of the network. NS was clearly the most efficient algorithm in these tests.
COS and SSP were also relatively fast, while CAT turned out to be signifi-
cantly slower and the other methods were not competitive. The CAS algorithm
performed much worse than SSP on the dense instances.

n deg SCC MMCC CAT SSP CAS COS NS

212 2 18.43 60.71 1.03 0.33 0.27 0.08 0.02
212 8 112.40 347.47 2.14 1.50 3.15 0.13 0.05
212 32 657.29 2655.80 7.41 4.40 35.54 0.43 0.13
212 128 3523.55 − 32.03 12.73 273.76 1.98 0.39
212 512 − − 147.58 35.58 2473.16 7.72 1.31
212 2048 − − 624.44 99.49 − 47.08 6.68

Table 6: Comparison of our implementations on NETGEN-DEG instances

Figure 2 and Tables 7 and 8 present the benchmark results for the GOTO
families. These problems indeed turned out to be much harder than the
NETGEN instances and the relative performance of the algorithms was also
rather different than in case of the NETGEN families. Generally, COS and NS
were the most efficient to solve these GOTO problems. COS was clearly the
best method for the largest instances, even for the relatively dense GOTO-SR
networks, which did not hold for the NETGEN-SR instances. Another notable
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difference compared to the NETGEN families is that CAS was orders of mag-
nitude faster than SSP. It was quite efficient on GOTO-8 instances, although
its performance was not stable. Among the cycle-canceling algorithms, CAT
was clearly the most efficient similarly to the NETGEN problems. However,
MMCC was 3-4 times faster than SCC, which is in contrast to the previous
results.
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Figure 2: Comparison of our implementations on GOTO instances

n deg SCC MMCC CAT SSP CAS COS NS

210 8 88.85 30.39 0.63 2.27 0.13 0.05 0.01
212 8 − 931.54 12.62 72.93 5.34 0.60 0.25
214 8 − − 253.54 971.03 14.87 4.43 6.11
216 8 − − − − 143.92 41.27 202.47
218 8 − − − − − 195.36 −
220 8 − − − − − − −

Table 7: Comparison of our implementations on GOTO-8 instances

n deg SCC MMCC CAT SSP CAS COS NS

210 32 2474.46 584.35 2.30 35.66 2.81 0.30 0.08
211 45 − − 13.08 393.00 22.20 1.36 0.41
212 64 − − 89.15 − 143.35 5.27 3.16
213 91 − − 415.69 − 1101.38 18.23 13.87
214 128 − − 2650.95 − − 69.37 163.37
215 181 − − − − − 358.44 1180.26
216 256 − − − − − 1279.72 −

Table 8: Comparison of our implementations on GOTO-SR instances
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Table 9 presents the results obtained for the ROAD family. As one would
expect, the SSP algorithm was by far the fastest on these special instances. Our
implementation of the CAS algorithm implies that it works exactly the same as
SSP on this family since all capacities are set to one. Therefore, CAS is skipped
in Table 9. The COS and NS algorithms performed an order of magnitude
worse than SSP, while the cycle-canceling algorithms were drastically slower.

n deg SCC MMCC CAT SSP COS NS

9 559 3.11 2.29 372.91 2.17 0.01 0.14 0.04
49 109 2.46 37.25 − 47.65 0.10 1.47 0.69

116 920 2.27 150.84 − 264.52 0.26 4.61 2.97
261 155 2.38 1984.30 − 1373.49 0.96 15.23 14.14
519 157 2.44 − − − 3.29 35.87 41.38

1 048 506 2.53 − − − 5.32 94.32 129.04
2 073 870 2.49 − − − 21.99 238.57 744.36

Table 9: Comparison of our implementations on ROAD instances

Finally, the performance results for the VISION family are presented in
Table 10. We do not report running time for SCC and MMCC as they could
not solve these problems within the timeout limit of one hour. COS performed
clearly the best in these tests with the only exception of the first instance.
Similarly to other families, the asymptotic behavior of NS was clearly worse
than that of COS. CAS was superior to SSP, while CAT was even slower than
SSP.

n deg CAT SSP CAS COS NS

245 762 5.82 630.25 265.25 124.89 23.96 21.06
491 522 5.85 2304.01 970.49 622.22 61.25 108.64
983 042 5.88 − − 1998.27 186.42 531.59

1 949 698 5.91 − − − 535.36 3420.76
3 899 394 5.92 − − − 1475.95 −

Table 10: Comparison of our implementations on VISION instances

Recall from Sections 3.3 and 3.4 that the COS and NS algorithms have sev-
eral variants. These variants were also compared systematically to determine
the default options. Here we only present a representative selection of these
results.

Tables 11 and 12 compare the variants of the COS algorithm on the
NETGEN-8 and GOTO-8 families, respectively. COS-PR denotes the push-
relabel variant, COS-AR denotes the augment-relabel variant, while COS de-
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notes the partial augment-relabel variant, which is the default implementa-
tion. This latter technique was clearly faster than the other two approaches
on all kinds of problem instances. The COS-AR variant performed similarly
to COS-PR on some easy instances, such as the NETGEN-8 family, but was
an order of magnitude slower on some other instances, such as the GOTO net-
works. These results show that COS-AR is not so robust than the other two
methods, which is in accordance with Goldberg’s experiments in the maximum
flow context [34].

n deg COS-PR COS-AR COS

210 8 0.03 0.02 0.02
212 8 0.17 0.14 0.13
214 8 0.94 1.11 0.78
216 8 6.37 5.72 4.24
218 8 35.17 28.00 22.40
220 8 176.87 179.13 103.83
222 8 1064.62 901.07 615.42

Table 11: Comparison of COS variants on NETGEN-8 instances

n deg COS-PR COS-AR COS

210 8 0.10 0.16 0.05
212 8 0.89 2.48 0.60
214 8 7.60 33.34 4.43
216 8 78.55 911.05 41.27
218 8 342.75 − 195.36

Table 12: Comparison of COS variants on GOTO-8 instances

We implemented five pivot rules for the NS method, which significantly
affect the efficiency of the algorithm. Tables 13 and 14 compare the overall
performance of these strategies on the NETGEN-8 and GOTO-8 families,
respectively. BE, FE, BS, CL, and AL denote the best eligible, first eligible,
block search, candidate list, and altering candidate list pivot rules, respectively.
These results and many other experiments show that the BS and AL rules are
generally the most efficient. On GOTO instances, the FE and CL rules also
performed similarly to these methods, but they were much slower in other
cases, for example, on NETGEN instances. Since the BS rule turned out to be
slightly more robust than AL, it was selected to be the default pivot strategy in
our implementation. The BE rule resulted in the worst performance although
it yielded less iterations than the other rules.
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n deg NS-BE NS-FE NS-BS NS-CL NS-AL

210 8 0.20 0.01 0.01 0.01 0.01
212 8 3.40 0.14 0.05 0.06 0.04
214 8 60.47 3.64 0.54 1.02 0.47
216 8 1285.91 117.99 6.88 27.68 6.41
218 8 − − 104.69 808.10 98.97
220 8 − − 799.26 − 800.36

Table 13: Comparison of NS pivot rules on NETGEN-8 instances

n deg NS-BE NS-FE NS-BS NS-CL NS-AL

210 8 0.50 0.01 0.01 0.01 0.02
212 8 9.59 0.43 0.25 0.25 0.28
214 8 151.92 6.84 6.11 5.90 6.16
216 8 3024.80 251.48 202.47 216.21 220.16

Table 14: Comparison of NS pivot rules on GOTO-8 instances

4.3 Comparison to other solvers

The implementations presented in this paper were also compared to the fol-
lowing widely known MCF solvers. These codes were compiled using the same
compiler and optimization level as we used for our implementations. The ex-
periments were conducted using the default options of these solvers.

• CS2. This is an authoritative implementation of the cost-scaling push-
relabel algorithm. It was written by A.V. Goldberg and B. Cherkassky
applying all improvements and heuristics described in [33]. CS2 has been
widely used as a benchmark for solving the MCF problem for a long
time. We used the latest version, CS2 4.6, which is available from the
IG Systems, Inc. [16].

• LEDA. This is a comprehensive C++ library [54], which also pro-
vides an MCF solver in its MIN COST FLOW() procedure. This method
implements the cost-scaling push-relabel algorithm, as well. We used
version 5.0 of the LEDA library in our experiments. In fact, LEDA 5.1.1
was also tested, but it turned out to be slower than version 5.0.

• MCFZIB. This is the MCF code written by A. Löbel [57] at the Zuse In-
stitute Berlin (ZIB). We denote this code as MCFZIB in order to differen-
tiate it from the problem itself (similarly to the MCFClass project [27]).
This solver features both a primal and a dual network simplex imple-
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mentation, from which the former one is used by default as it is usually
more efficient. We used the latest version 1.3, which is available at [58].

• RelaxIV. This is a C++ translation of an authoritative implementation
of the relaxation algorithm. The original FORTRAN code was written
by D.P. Bertsekas and P. Tseng [8] and is available at [7]. The C++
translation was made by A. Frangioni and C. Gentile at the University
of Pisa and is available as part of the MCFClass project [27]. This project
provides a common C++ interface for several MCF solvers. Apart from
RelaxIV, it also features CS2 and MCFZIB, but not their latest versions,
thus we used these two solvers directly.

Our codes are part of an open source C++ optimization library, LEMON,
which is available at http://lemon.cs.elte.hu/.

Tables 15, 16, 17, and 18 compare our implementations to the other four
solvers on the NETGEN instances. As before, all codes were executed with a
timeout limit of one hour and the average running time over three different
random instances is reported for each problem size (in seconds). Our COS
code performed similarly to CS2 on NETGEN-8 and NETGEN-SR families,
while it was slightly slower on the other two NETGEN families. The solver of
the LEDA library was about two times slower than these cost-scaling codes.
Furthermore, it failed to solve the largest instances due to a number overflow
error, which is denoted as “error” in the tables. Since LEDA has closed source,
we could not eliminate this problem by replacing the number types used by the
algorithm with larger ones. MCFZIB was typically slower than our NS code by
a factor between 2 and 10, but they performed similarly on the NETGEN-LO-8
instances. RelaxIV was very efficient on these families. It was typically faster
than all other codes for the largest instances, while NS was the most efficient
on the smaller networks and on the NETGEN-DEG family.

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 8 0.02 0.01 0.02 0.03 0.02 0.01
212 8 0.13 0.05 0.11 0.17 0.14 0.06
214 8 0.78 0.54 0.78 1.45 1.75 0.54
216 8 4.24 6.88 4.22 8.34 18.78 3.58
218 8 22.40 104.69 20.81 error 207.29 13.19
220 8 103.83 799.26 103.25 error 2985.08 89.90
222 8 615.42 − 566.32 error − 419.38

Table 15: Comparison to other solvers on NETGEN-8 instances

http://lemon.cs.elte.hu
http://lemon.cs.elte.hu/
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LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 32 0.06 0.01 0.05 0.08 0.05 0.03
211 45 0.26 0.05 0.18 0.38 0.20 0.26
212 64 0.83 0.21 0.59 1.41 0.68 1.30
213 91 2.68 0.73 2.04 5.07 3.28 1.94
214 128 8.28 3.55 7.86 19.61 21.68 4.53
215 181 25.74 14.90 29.00 72.48 111.74 13.98
216 256 111.55 67.29 104.25 274.06 634.38 44.37

Table 16: Comparison to other solvers on NETGEN-SR instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 8 0.01 0.00 0.01 0.02 0.01 0.01
212 8 0.07 0.02 0.07 0.11 0.06 0.04
214 8 0.43 0.19 0.42 0.93 0.62 0.57
216 8 2.65 2.11 2.26 6.48 4.09 2.67
218 8 13.79 29.00 10.56 error 28.31 18.73
220 8 68.41 293.49 54.48 error 258.99 62.23
222 8 457.02 2482.50 299.15 error 2309.26 229.67

Table 17: Comparison to other solvers on NETGEN-LO-8 instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

212 2 0.08 0.02 0.04 0.08 0.05 0.04
212 8 0.13 0.05 0.11 0.17 0.14 0.06
212 32 0.43 0.13 0.31 0.70 0.42 0.37
212 128 1.98 0.39 1.12 2.91 1.32 1.40
212 512 7.72 1.31 5.15 12.56 4.74 3.20
212 2048 47.08 6.68 32.72 69.55 18.52 12.81

Table 18: Comparison to other solvers on NETGEN-DEG instances

The performance results for the GOTO families are presented in Figure 3
and Tables 19 and 20. In these tests, COS and CS2 also performed similarly
and they were the most efficient on the largest instances of both families. LEDA
was also similarly efficient on GOTO-8 networks, but it was 2-3 times slower
than CS2 and COS on the GOTO-SR family. NS turned out to be orders of
magnitude faster than the other network simplex implementation, MCFZIB.
Similarly to the NETGEN families, NS was the most efficient algorithm on
the relatively small GOTO instances, but was substantially slower than the
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cost-scaling codes on the large networks. RelaxIV turned out to be very slow
on these hard instances, which is in sharp contrast to its efficiency on the
NETGEN instances.
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Figure 3: Comparison to other solvers on GOTO instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 8 0.05 0.01 0.06 0.08 0.21 0.81
212 8 0.60 0.25 0.69 0.62 4.94 21.29
214 8 4.43 6.11 5.23 5.24 239.67 487.23
216 8 41.27 202.47 54.05 58.50 − −
218 8 195.36 − 206.48 221.14 − −
220 8 − − − − − −

Table 19: Comparison to other solvers on GOTO-8 instances

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

210 32 0.30 0.08 0.28 0.38 0.70 8.81
211 45 1.36 0.41 1.23 1.83 4.70 60.89
212 64 5.27 3.16 4.78 9.57 50.65 492.38
213 91 18.23 13.87 19.16 44.24 246.38 −
214 128 69.37 163.37 89.32 184.97 2339.57 −
215 181 358.44 1180.26 385.14 973.49 − −
216 256 1279.72 − 1259.63 − − −

Table 20: Comparison to other solvers on GOTO-SR instances



Efficient implementations of minimum-cost flow algorithms 111

Table 21 presents the results for the ROAD family. In this case, we also
report the running time of our SSP implementation since it was by far the most
efficient method for this special family. Apart from SSP, CS2 was typically the
fastest to solve these instances. COS was slower than CS2 by a factor of at
most two, while LEDA failed to solve the large instances due to overflow
errors. NS and MCFZIB were significantly slower than CS2 and COS on the
large networks. RelaxIV performed much worse than the other algorithms.

LEMON Other implementations

n deg SSP COS NS CS2 LEDA MCFZIB RelaxIV

9 559 3.11 0.01 0.14 0.04 0.12 0.14 0.14 0.58
49 109 2.46 0.10 1.47 0.69 0.84 1.07 1.62 22.41

116 920 2.27 0.26 4.61 2.97 2.67 3.19 6.09 168.03
261 155 2.38 0.96 15.23 14.14 7.53 error 27.25 2051.20
519 157 2.44 3.29 35.87 41.38 19.26 error 81.07 −

1 048 506 2.53 5.32 94.32 129.04 49.73 error 197.54 −
2 073 870 2.49 21.99 238.57 744.36 131.90 error 992.32 −

Table 21: Comparison to other solvers on ROAD instances

The benchmark results for the VISION family are presented in Table 22.
In these tests, CS2 was clearly the most efficient and COS was about 1.5 times
slower than it. All other algorithms performed significantly worse, including
the third cost-scaling code, LEDA. NS was superior to MCFZIB and LEDA,
but was less efficient than CS2 and COS for the large networks. Similarly to
the GOTO and ROAD instances, RelaxIV was much slower than the other
solvers.

LEMON Other implementations

n deg COS NS CS2 LEDA MCFZIB RelaxIV

245 762 5.82 23.96 21.06 19.78 54.62 131.66 904.74
491 522 5.85 61.25 108.64 44.18 207.51 333.20 3518.20
983 042 5.88 186.42 531.59 139.05 1250.56 − −

1 949 698 5.91 535.36 3420.76 348.28 − − −
3 899 394 5.92 1475.95 − 916.47 − − −

Table 22: Comparison to other solvers on VISION instances

Finally, on behalf of a brief overview of our experiments, Table 23 presents
running time results for one representation of each problem family. Those in-
stances were selected that have about two million arcs. The first part of the
table contains running time in seconds, while the second part reports normal-
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ized time results. In the cases when the execution of an algorithm reached the
timeout limit of one hour, we report a lower bound on the ratio by which it
would have been slower than the fastest implementation.

Running time

LEMON Other implementations

Family m COS NS CS2 LEDA MCFZIB RelaxIV

NETGEN-8 2 097 152 22.40 104.69 20.81 error 207.29 13.19
NETGEN-SR 2 097 152 8.28 3.55 7.86 19.61 21.68 4.53
NETGEN-LO-8 2 097 152 13.79 29.00 10.56 error 28.31 18.73
NETGEN-DEG 2 097 152 7.72 1.31 5.15 12.56 4.74 3.20
GOTO-8 2 097 152 195.36 − 206.48 221.14 − −
GOTO-SR 2 097 152 69.37 163.37 89.32 184.97 2339.57 −
ROAD 2 653 624 94.32 129.04 49.73 error 197.54 −
VISION 2 877 382 61.25 108.64 44.18 207.51 333.20 3518.20

Normalized time

LEMON Other implementations

Family m COS NS CS2 LEDA MCFZIB RelaxIV

NETGEN-8 2 097 152 1.70 7.94 1.58 error 15.72 1.00
NETGEN-SR 2 097 152 2.33 1.00 2.21 5.52 6.11 1.28
NETGEN-LO-8 2 097 152 1.31 2.75 1.00 error 2.68 1.77
NETGEN-DEG 2 097 152 5.89 1.00 3.93 9.59 3.62 2.44
GOTO-8 2 097 152 1.00 > 18 1.06 1.13 > 18 > 18
GOTO-SR 2 097 152 1.00 2.36 1.29 2.67 33.73 > 52
ROAD 2 653 624 1.90 2.59 1.00 error 3.97 > 38
VISION 2 877 382 1.39 2.46 1.00 4.70 7.54 79.63

Table 23: Comparison of our implementations to other solvers on various prob-
lem instances with roughly the same number of arcs

Table 23 as well as the previous results clearly demonstrate that CS2 and
COS are the most robust implementations and NS is the third one in terms
of the overall performance. MCFZIB is considerably slower than NS, but it
is still robust. LEDA performed well in several cases, but it often failed to
solve the large instances due to numerical problems. RelaxIV is not robust at
all as it turned out to be much slower than the other implementations on all
problem families except for the NETGEN networks.

5 Conclusions

In this paper, we have considered the minimum-cost flow (MCF) problem and
various solution methods along with experiments with their efficient implemen-
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tations. The MCF problem plays a fundamental role in network flow theory
and has a wide range of applications. Therefore, efficient implementations of
MCF algorithms are essential in practice.

We implemented several algorithms for solving the MCF problem and thor-
oughly experimented with many variants of them as well as with various prac-
tical improvements and heuristics. This work provides insight into these de-
tails and gives some guidelines for implementing the considered algorithms
efficiently. An interesting novel result is the application of Goldberg’s recent
partial augment-relabel idea [34] in the cost-scaling algorithm, which turned
out to be a significant improvement. Another widely used efficient algorithm
is the network simplex method, which was implemented using a quite efficient
data structure and various pivot strategies. Moreover, three cycle-canceling
algorithms and two augmenting path algorithms were also implemented.

An extensive experimental evaluation was carried out to compare these al-
gorithms. In general, the cost-scaling (COS) and the network simplex (NS)
methods turned out to be the most efficient and the most robust. On relatively
small instances (up to a few thousands of nodes), NS was clearly the fastest
algorithm. However, COS significantly outperformed it on the largest networks
due to its better asymptotic behavior in terms of the number of nodes. We
also remark that NS usually performed better than other methods on rather
dense networks, most likely because it is based on maintaining a spanning tree
data structure and the tree update process depends only on the number of
the nodes. Apart from COS and NS, the other algorithms usually performed
worse and it turned out that their relative performance greatly depends on
the characteristics of the problem instance. In certain cases, if the flow need
not be split into many paths, however, the augmenting path algorithms are
superior to other methods.

The presented implementations were systematically compared to publicly
available efficient MCF solvers, as well. It turned out that our cost-scaling
code is substantially more efficient and more robust than that of the LEDA
library [54] and it performs similarly to or slightly slower than CS2 [33, 16],
which is an authoritative implementation of this algorithm. Our implemen-
tation of the network simplex method turned out to be significantly faster
than the other considered implementation of this algorithm, the MCF solver
[57, 58]. Furthermore, another well-known MCF solver, RelaxIV [8, 7, 27] was
also tested, but it did not turn out to be robust at all. It was orders of magni-
tude slower than the other codes on various problem families, although it was
rather efficient on particular instances (namely, the NETGEN problems).

Our implementations are not standalone solvers, but they are part of a ver-
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satile C++ network optimization library, LEMON [55, 21] (http://lemon.
cs.elte.hu/). Therefore, these codes have the additional advantage that they
can easily be combined with various practical data structures and powerful al-
gorithms related to network optimization. Furthermore, LEMON is an open
source library that can be used in both commercial and non-commercial soft-
ware development under a permissive license. The authors believe that this
library with its great variety of efficient algorithms is a viable alternative
to the MCFClass project [27], which features several publicly available MCF
solvers under a common C++ interface.

Finally, we remark some ideas for future work. First, our implementation of
the cost-scaling algorithm currently does not incorporate the speculative arc
fixing heuristic, which was suggested by Goldberg [33]. We believe that the
efficiency of this implementation could be further improved by also applying
this complicated technique. Furthermore, a more comprehensive experimen-
tal study could be carried out considering more problem families and more
publicly available implementations of MCF algorithms.
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[49] Z. Király and P. Kovács. An experimental study of minimum cost flow algo-
rithms. In Proc. 8th International Conference on Applied Informatics, Vol. 2.,
pages 227–235, Eger, Hungary, 2010. ⇒68

[50] M. Klein. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Manag. Sci., 14:205–220, 1967. ⇒77

[51] D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large
scale capacitated assignment, transportation, and minimum cost flow network
problems. Manag. Sci., 20:814–821, 1974. ⇒99

[52] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Algorithms and Combinatorics, Vol. 21. Springer-Verlag, Berlin, Germany, 5th
edition, 2012. ⇒68, 71, 72, 75, 78

[53] H. W. Kuhn. The Hungarian Method for the assignment problem. Naval Res.
Logist. Quart., 2:83–97, 1955. ⇒74

[54] The LEDA library, Version 5.0. Algorithmic Solutions Software GmbH, http:
//www.algorithmic-solutions.com/leda/, 2004. ⇒69, 107, 113

[55] LEMON – Library for Efficient Modeling and Optimization in Networks. http:
//lemon.cs.elte.hu/, 2012. ⇒69, 76, 114

[56] LEMON Documentation, Version 1.2.3. http://lemon.cs.elte.hu/pub/doc/

1.2.3/, 2012. ⇒81

http://www.avglab.com/andrew/
http://www.cs.princeton.edu/~ret/
http://mor.journal.informs.org/
http://www.columbia.edu/~goldfarb/
http://www.springerlink.com/content/100117/
http://www.columbia.edu/~goldfarb/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-NET.html
http://jorlin.scripts.mit.edu/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-NET.html
http://mitpress.mit.edu/main/home/default.asp
http://web.mit.edu/
http://www.eecs.berkeley.edu/~karp/
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://www.smu.edu/Lyle/AboutUs/ContactsandDirectories/KenningtonJeffery
http://www.smu.edu/Lyle/AboutUs/ContactsandDirectories/HelgasonRichard
http://eu.wiley.com/
http://www.cs.elte.hu/~kiraly/
http://people.inf.elte.hu/kpeter/
http://mansci.journal.informs.org/
http://mansci.journal.informs.org/
http://www.or.uni-bonn.de/
http://www.or.uni-bonn.de/index.eng.html
http://www.or.uni-bonn.de/home/vygen/
http://www.springer.com/
http://www.algorithmic-solutions.com/leda/
http://www.algorithmic-solutions.com/leda/
http://lemon.cs.elte.hu/
http://lemon.cs.elte.hu/
http://lemon.cs.elte.hu/pub/doc/1.2.3/
http://lemon.cs.elte.hu/pub/doc/1.2.3/
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Analysis of the picture cube puzzle

Péter BURCSI
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Abstract. In this paper we give a mathematical model for a game that
we call picture cube puzzle and investigate its properties. The central
question is the number of moves required to solve the puzzle. A mathe-
matical discussion is followed by the description of computational results.
We also give a generalization of the problem for finite groups.

1 Introduction

The picture cube puzzle1 is a puzzle that consists of usually 6, 9 or 12 painted
wooden cubes that can be arranged in a rectangular pattern to obtain six
different pictures (“the solutions”) seen on the top of the cubes. Each face of
the cubes contains one piece of one of the six pictures in such a way that the
position of that piece within the large picture is the same for all six faces.
Thus, for example, there is a cube whose faces contain the upper left corners
of the six pictures, another one that contains the lower right corners, etc.

The cubes are painted so that the solutions can easily be transformed into
each other: for each picture there are cube rotations whose simultaneous ap-
plication to all cubes transforms the picture to another one. For example,
imagine that the puzzle is solved and you can see the picture of the dog on
top. Pick up the first row of cubes holding them together and rotate the whole
row around the axis through the centers of the cubes in that row by 90 degrees.
Do this to all the rows and you obtain the picture of the bear. These row-wise
or column-wise rotations are our allowable moves for the puzzle, see Figure 1.

Computing Classification System 1998: G.2.0
Mathematics Subject Classification 2010: Primary: 05C25, secondary: 05C12
Key words and phrases: Cayley graph, diameter, combinatorial puzzle

1These puzzles are usually sold in Hungary under the name “mesekocka”, meaning fairy
tale cube.
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Figure 1: A picture cube puzzle. Rotating each row upwards transforms the
picture of the numbers into the picture of the letters. We count this as three
moves (there are three rows to rotate).

The number of allowable moves is twice the sum of the number of rows and
the number of columns in the configuration. No move changes the position of
the cubes within the picture but using the moves we can change which faces
are on top and the orientation of the top face. A natural question is if we are
given an arrangement of the cubes where the positions are correct but the
cubes are arbitrarily rotated in place, can we solve the puzzle?

For the rest of the paper, we will suppose that one of the solved pictures
is the solution configuration, and the cubes are somehow individually rotated
(but kept in place). There are several questions that can be raised about the
puzzle, we will formalize them in the following section. What are the config-
urations that can be reached from the solution configuration using allowable
moves? How many such configurations exist? How many moves are needed to
reach these configurations in the worst case/on average? We will address these
questions after introducing a mathematical model using groups for the puzzle.

These (and other) questions have been raised for more well-known puzzles,
notably Rubik’s Cube [3]. Answering some of them requires the combination
of non-trivial mathematical ideas with large-scale computer calculations. Di-
ameters for permutation groups have been investigated e.g. in [1, 2].

The present paper is built up as follows. Section 2 gives the mathematical
model and a generalization for the puzzle. In Sections 3 and 4 we discuss
solution methods for the cube puzzle. In Section 5, some computational results
are presented. We give further research directions and a short summary in
Section 6.

We refer to any standard textbook, e.g. [4], for basic facts about groups.
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2 Mathematical formulation of the puzzle

In order to formalize the puzzle, we need some notation. Let m and n be
two positive integers and imagine mn cubes arranged in an m by n matrix
form in front of us on a table. There is a solution configuration of the cubes
when a picture can be seen on the top faces that we will refer to as ”up” face,
following standard terminology for Rubik’s Cube. We will refer to the other
faces as down, left, right, front and back faces in the straightforward way.

There are 2(m+ n) moves that allow us to modify the configuration of the
cubes: upi and downi, (i = 1, . . . ,m) that rotate the cubes in row i along the
axis through their centers in such a way that their front faces move to the up
or down positions respectively; and leftj and rightj, (j = 1, . . . , n) that rotate
the cubes in column j along the axis through their centers in such a way that
their up faces move to the left or right positions respectively. We note that
two consecutive “up” rotations on the same row have the same effect as two
consecutive “down” rotations on that row (similarly for columns). We count
these as two moves—using Rubik’s Cube terminology, we use the quarter-turn
metric in the present paper. When these transformations are counted as one
move, we get the half-turn metric.

It is a classical observation in many similar puzzles that sequences of moves
form a group under composition. Allowable moves form a generator set for
that group and we identify the solution of the puzzle with the identity element.
Applying a move to a configuration is multiplication by a generator from the
right. Below we describe the group and the generators that we will use.

It is a well-known fact of group theory (seen most easily by observing how
the transformations act on the main diagonals) that the rotation group of
the cube is isomorphic to S4, the symmetric group of degree 4. Thus we can
represent any configuration (maybe not reachable by legal moves) of the puzzle
by a matrix T = (gij) ∈ Sm×n4 , where Sm×n4 is itself a group, being the direct
product of mn copies of S4. If we fix a way we represent rotations of a cube
by S4 then there are elements u, d, l, r ∈ S4 such that turning a single cube
up (resp. down/left/right) corresponds to multiplication (from the right) by u

(resp. d/l/r). Using cycle notation, one may choose for example u = (1423),
d = (1324), l = (1342), r = (1243). Note that all of them are odd permutations.
Then upi is the transformation that replaces gij by gij · u for j = 1, . . . , n, in
other words, upi is (coordinate-wise) multiplication in Sm×n4 by an element
that has n entries of u in the ith row and the identity element in every other
position, and similarly for the other moves. Thus we may identify upi and the
other moves by some elements in Sm×n4 . The set of moves in this group will be
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denoted by M. So M = {upi, downi | 1 ≤ i ≤ m} ∪ {leftj, rightj | 1 ≤ j ≤ n}

We may now formulate several questions.

• Reachability. What are the states from which the solution is reachable
using legal moves, or formally: what is the subgroup H of Sm×n4 gener-
ated by M? We are also interested in the order of this subgroup and
how membership in this subgroup (solvability of a configuration) can
be decided. Note that reachability between configurations is symmetric
since every sequence of moves can be executed ”backwards”.

• Solution. Given an element in H, what is a sequence of moves that
takes it to the identity (solve the puzzle). We are interested in human-
executable (”easy”) and computer-aided (”fast”) techniques as well. What
is the shortest sequence of moves, in other words, what is the shortest
product of moves that gives h ∈ H?

• Diameter. What is the maximum length, taken over elements h ∈ H,
of shortest sequences of moves taking h to the identity? In other words,
how many moves are required in the worst case for solving the puzzle?

These questions can be analized by using Cayley graphs that are defined as
follows.

Definition 1 Let H be a group generated by M. The Cayley graph for H and
M has H as the set of vertices and there is a directed edge from h1 to h2 iff
for some m ∈M, h1m = h2.

Solving the puzzle is the same as finding a path to the identity; and the
diameter of this graph is exactly the length of the longest of all shortest paths
from some h to the identity in the Cayley graph. We return to these questions
in the next section.

2.1 Generalization for arbitrary finite groups

The mathematical formulation above allows us to generalize the problem for
arbitrary finite groups. Let G be a finite group and let R,C ⊆ G (row and
column moves, respectively). Let n,m be positive integers and consider the
group Gm×n with pointwise multiplication. For each r ∈ R and 1 ≤ i ≤ m

let ri ∈ Gm×n be a matrix which has n entries equal to r in the ith row and
the identity element e ∈ G in other rows. (Here ’r’ stands for row, not to be
confused with the r for the original S4 puzzle, where it is short for right, and
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is a column move.) For each c ∈ C and 1 ≤ j ≤ n let cj ∈ Gm×n be a matrix
which has m entries c in the jth column and the identity element e ∈ G in
other columns:

ri =



e e e . . . . . . e e e

e e e . . . . . . e e e
...

...
...

...
. . .

...
...

...
e e e . . . . . . e e e

r r r . . . . . . r r r

e e e . . . . . . e e e
...

...
...

...
. . .

...
...

...
e e e . . . . . . e e e


cj =



e e . . . e c e . . . e

e e . . . e c e . . . e

e e . . . e c e . . . e
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
e e . . . e c e . . . e

e e . . . e c e . . . e

e e . . . e c e . . . e


Definition 2 Given G, R, C, m and n as above, the set of row moves is
{ri | r ∈ R, 1 ≤ i ≤ m}, the set of column moves is {cj | c ∈ C, 1 ≤ j ≤ n}.
The set of moves is their union M = M(G,R,C,m,n) = {ri | r ∈ R, 1 ≤ i ≤
m} ∪ {cj | c ∈ C, 1 ≤ j ≤ n}.

Definition 3 Given G, R, C, m and n as above, the set of reachable config-
urations is H = H(G,R,C,m,n) = 〈M〉 ≤ Gm×n.

We can ask what the subgroup H is, how we can give a product of moves for
an h ∈ H and what the diameter of the Cayley graph for H and M is. These
questions seem hard to answer in general, so we only focus on a few special
cases that will be useful in the S4 case which is a special case with G = S4,
R = {up, down}, C = {left, right}.

2.2 Abelian groups

If G is Abelian, then so is Gm×n, meaning that the order in which we perform
the moves has no effect on their product. Therefore, instead of sequences of
moves, we can speak of sets of moves. Denote by ai (resp. bj) the product
of moves performed on the ith row (resp. jth column). Note that ai is not
necessarily an element in R. Then the product of all the moves performed has
the matrix form T = (gij) where gij = aibj. We claim that the first row and
the first column determine all other elements in T . To see this, let i, j > 1,
then gij = aibj = (a1bj)(aib1)(a1b1)

−1 = g1jgi1g
−1
11 .

Consider the special case when R = C = G.
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Theorem 4 If G is Abelian, R = C = G and n,m ∈ N+, then the reachable
configurations are H = {(aibj)i=1,...,m,j=1,...,n | ai ∈ G, bj ∈ G}, and we have
|H| = |G|m+n−1.

Proof. For any configuration in Gm×n, we can solve the first row by using
column operations, then solve the remaining elements of the first column by
row operations. If the rest is not solved at this point, then the configuration
is not in H, because the remaining elements of the configuration are uniquely
determined by the first row and the first column for elements of H. Thus H

has configurations of the form (aibj)i=1,...,m,j=1,...,n if we let e.g. ai = gi1 and
bj = g1j/g11. It is also clear that H contains every element of this form. The
number of required moves to solve the puzzle is m + n − 1 in the worst case.
The order of H is |G|m+n−1, because that is the number of ways we can adjust
the elements in the first row and the first column. �

If we weaken the conditions but require that both R and C generate G, then
the solution method can be the same, but for solving the first row and column,
a sequence of moves is required for each element.

We note that at least one special case of this Abelian version is part of
mathematical folklore: when the group is the two-element group and the only
moves are multiplication by the generator. This is often told with coins (and
sometimes with lamps) arranged in a matrix form and allowed moves being
the simultaneous turning over of entire rows or columns. The question is how
we can tell if an initial configuration can be transformed into the ”all heads”
configuration.

The discussion gets more complicated when at least one of R and C generates
only a nontrivial subgroup of G, but since we do not need this for the cube
puzzle case, we omit the analysis of this case for brevity.

2.3 Simple groups

Another special case is when G is a non-abelian simple group. We investigate
this case because the method used for solving it – the method of commutators
– is also useful for the cube puzzle.

Definition 5 Let G be a group, g1, g2 ∈ G. The commutator of g1 and g2 is
[g1, g2] = g1g2g

−1
1 g−1

2 . This is the identity element if and only if g1 and g2
commute. Note that in some sources in the literature, the inverses come first
in the definition.

Lemma 6 Let G be a group, R,C ⊆ G and m,n as above, r ∈ R, c ∈ C,
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Figure 2: The figure illustrates how a commutator of a row move and a column
move modifies only one entry. The sequence of moves up1, left1, down1, right1
cancels for all entries except at position 1, 1.

1 ≤ i ≤ m, 1 ≤ j ≤ n. Then multiplying a configuration by [ri, cj] only affects
the entry at position i, j.

Proof. Denote the entries of the configuration by gi ′j ′ . The transformation
t = [ri, cj] = ricjr

−1
i c−1

j can only alter elements in the ith row and the jth
column. But if j ′ 6= j, then cj does not modify the elements in column j ′, hence
the effect of t on gij ′ is multiplication by rir

−1
i = e, the identity. Similarly, gi ′j

is left intact by t if i ′ 6= i. Thus, the only element that can be affected is gij.
The effect on this element is multiplication by [r, c] = rcr−1c−1. See Figure 2
for an illustration. �

Using this method we can individually modify the elements of (gij) by com-
mutators of the form [r, c] or [c, r]. More generally, using sequences of moves
we can individually modify gij by [r, c] or [c, r] for r ∈ 〈R〉, c ∈ 〈C〉. Hence we
have the following result.

Theorem 7 Let G be a finite non-abelian simple group, R = C = G, m,n ∈
N+. Then H = H(G,R,C,m,n) = Gm×n, in other words, every configuration
is solvable.

Proof. The commutator subgroup of G, denoted by G ′ is the subgroup gen-
erated by all commutators [g1, g2] for g1, g2 ∈ G. By the above lemma, we
can alter any individual entry of a configuration by any element in G ′. But G ′

is always normal in G, hence if G is a finite simple non-abelian group, then
G ′ = G. Therefore any configuration can be solved, by individually solving all
entries. �

Note that the theorem also holds if we only assume 〈R〉 = 〈C〉 = G – note
that for r ∈ R, r−1 ∈ 〈R〉 by the finiteness of G. Also note that for Abelian
groups, the commutator method is useless, since we have G ′ = {e}.

If G is a finite simple non-abelian group and 〈R〉 = 〈C〉 = G, then the
diameter of the Cayley graph can be bounded both from below and above for
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general m and n using constants that depend only on G,R,C. The number of
vertices of the graph is |G|mn, the graph is (m|R|+n|C|)-regular. From this we
get the lower bound log(|G|mn)/ log(m|R|+ n|C|) − 1 = const1mn/ log(m|R|+
n|C|). For the upper bound, note that we can solve each configuration in const2
moves. Thus the number of moves required is at most const2 ·mn:

const1 ·mn

log(m|R|+ n|C|)
≤ diam(Cayley(H,M)) ≤ const2 ·mn. (1)

The gap between the lower and upper bounds is logarithmic in m and n. It
would be interesting to reduce this gap. We conjecture that the diameter is
closer to the upper bound.

3 Local solution method for the cube puzzle

We return to the analysis of the original cube puzzle, where G = S4 and
the row moves are turning up and down (R = {u, d}), the column moves are
turning left and right (C = {l, r}). The subgroup in Sm×n4 generated by all
moves is again denoted by H. In this section we provide a decision method for
solvability and present a method for solving using commutators. The method
is simple and easy to perform for humans. We suppose that some configuration
s ∈ Sm×n4 is given and we want to decide if it is in H, and if it is, we want to
solve it.

We break the solution of the puzzle into two parts. First, we look for a
sequence of moves t that transforms s to st ∈ Am×n

4 , that is, we try to make
every entry in s into an even permutation. If this is impossible, then s 6∈ H. If
it is possible, we will solve the puzzle by using commutators.

For the first part note that since an up, down, left or right move toggles
the parity of the affected elements (seen as permutations in S4), the task of
making every entry an even permutation can be reduced to solving a puzzle for
the two-element multiplicative group {−1, 1} where the legal row and column
operations are multiplication of the row or column by −1. The Abelian analysis
in the previous section shows that this can be examined by solving the first
row and the first column and seeing if the rest is solved. If the rest is not
solved, there is no solution for the puzzle. If there is a solution, it is found in
at most m+n−1 steps. To perform the first part, the player has to remember
which rotations correspond to even and odd permutations, but this is not too
hard.

In the second part, we individually rotate all mn cubes to their solved
positions, using the method of commutators. One readily verifies that commu-
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tators of the form [ui, lj], [ui, rj] etc. (altogether 8 types for a fixed pair i, j)
are sufficient to transform any element of A4 to the identity in at most 8 steps
(two commutators suffice). This part then requires a worst case 8mn moves.
The overall number of steps needed to solve any solvable configuration using
this local method is thus at most m+ n− 1+ 8mn.

We summarize the above discussion in the following theorem.

Theorem 8 Let m,n ∈ N+. Then |H| = |H(S4, R, C,m,n)| = 2m+n−1 · 12mn.
The diameter of the Cayley graph of H and M is at most 8mn+m+ n− 1.

4 Solution method using subgroups

Another method borrowing ideas from the Rubik’s Cube literature [5, 6] is
the method of subgroups generated by restricted moves. The method of the
previous section can be considered as a special case of this method, but in
general, the method is not intended for human execution. The method is most
useful when the search space for finding the overall shortest path in the Cayley
graph is too large, but a computer-aided search using subgroups finds shorter
paths than the commutator-based method.

Take any nontrivial subgroup H1 of H, in practice a subgroup with compa-
rable index and order is preferable. Let the input for the method be an h ∈ H,
and we proceed in two parts. First find the shortest sequence of moves that
takes h into H1, then solve the problem for H1. One can also use a chain of
subgroups, but we only consider the case of one subgroup. The subgroups of
interest here can admit the following form. Let K be a subset of {1, . . . ,m}.
We allow transformations generated by all possible moves with the restriction
that for rows with index i ∈ K, only double moves u2

i = d2
i are allowed (in

the half-turn metric this is extremely useful, since these moves count as one
move). This method can be used to find a shorter move sequence than the
naive method that is not necessarily optimal. The optimal choice of K is a
nontrivial issue, in practice, computer experiments can be used to choose a
good size for K.

5 Computational results

For small values of m and n we can use a computer to determine the diameter
or other properties of the Cayley graph in our problem. The number of pos-
sible configurations grows exponentially in nm, so even for moderate values,
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Size Diameter Average Median Local est. Nr. of conf.

1× 1 4 2.17 2 9 24

2× 1 7 4.44 5 18 576

3× 1 10 6.59 7 27 13824

4× 1 12 8.59 9 36 331776

2× 2 12 7.82 8 35 16588

5× 1 15 10.69 11 45 7962624

6× 1 17 12.65 13 54 191102976

3× 2 14 10.54 11 52 47775744

Table 1: This table lists the maximal/average/median number of optimal
moves needed to solve a puzzle of the given size. It also lists the number of
moves that the local method from Section 3 takes and the number of reachable
configurations.

Distance 0 1 2 3 4

Number of points 1 10 69 456 2846

Distance 5 6 7 8 9

Number of points 16208 84428 395566 1622641 5536264

Distance 10 11 12 13 14

Number of points 13587945 17558644 8100138 843444 27084

Table 2: The number of reachable configurations that are 0, 1, . . . , 14 moves
away in the 3× 2 puzzle.

we quickly run into memory storage problems. We represented configurations
in a compact form using base 24 integer numbers. For the determination of
the diameter and average distances, a breadth-search is performed, where the
neighbors of a configuration are calculated using pre-stored 24-element rota-
tion arrays – we listed in advance how the moves transform cube positions.

The tables summarize the results. Table 1 lists the number of reachable
states, the average and median distance and the maximal distance for vari-
ous puzzle sizes. Table 2 has details about the 3 × 2 case, listing how many
configurations can be found on individual levels of the tree.
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6 Summary and further directions

We gave a model for the picture cube puzzle which allowed us to answer
some naturally arizing combinatorial questions. Mathematically, the study of
general G,R,C and the asymptotic analysis of the diameter is the planned
continuation of the present work. From a computational point of view, the
further investigation of the exact values of the diameter for small m,n in the
cube puzzle is our future plan.

Replacing the 2-dimensional configuration by higher dimensional ones is also
a possible extension.
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Abstract. An open problem posed by the first author [36, 53, 54, 59, 100]
is the complexity to decide whether a sequence of nonnegative integer
numbers can be the final score of a football tournament. In this paper
we propose polynomial time approximate and exponential time exact
algorithms which solve the problem.

1 Introduction

Let a, b and n be nonnegative integers (b ≥ a ≥ 0, n ≥ 1), T (a, b, n) be
the set of directed multigraphs T = (V, E), where |V | = n, and each pair of
different vertices u, v ∈ V are connected with at least a and at most b arcs
[56, 57]. T ∈ T (a, b, n) is called (a, b, n)-tournament. (1, 1, n)-tournaments
are the usual tournaments, and (0, 1, n)-tournaments are also called oriented
graphs or simple directed graphs [45, 93]. The set T is defined by

T =
⋃

b≥a≥0, n≥1
T (a, b, n).

The definition of (undirected) (a, b, n)-graphs is similar. The (0, 1, n)-graphs
are the usual simple graphs.

Computing Classification System 1998: G.2.2.
Mathematics Subject Classification 2010: 05C85, 68R10
Key words and phrases: tournament, score sequence, football tournament, polynomial
algorithm

130

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony&angolul=1
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:ivanyi.antal2@upcmail.hu
mailto:jonscho@hiwaay.net


Deciding football sequences 131

An (a, b, n)-tournament is called complete, if the set of permitted results is
{0 : c, 1 : c− 1, . . . , c : 0} for all possible c (a ≤ c ≤ b). If some of these results
are prohibited, then the tournament is called incomplete [55, 56, 57] .

For example football is an incomplete (2, 3, n)-tournament since the per-
mitted results are 0 : 3, 1 : 1 and 3 : 0, while 0 : 2, 1 : 2, 2 : 0, and 2 : 1 are
prohibited.

According to this definition T is the set of the finite directed loopless multi-
graphs. We remark, that if a ′ ≤ a ≤ b ≤ b ′ then an (a, b, n)-tournament is
also an (a ′, b ′, n)-tournament. The outdegree sequence of an (a, b, n)-tourna-
ment we call the score sequence of the tournament [45, 93, 95].

Let l, u, andm be integer numbers with u ≥ l andm ≥ 1. The sequence s =
(s1, . . . , sm) of integer numbers with l ≤ s1 ≤ · · · ≤ sm ≤ u is called (l, u,m)-
regular. It is well-known that the number of (l, u,m)-regular sequences is

R(l, u,m) =

(
u− l+m

m

)
. (1)

In this paper we consider only the graph theoretical aspects of the inves-
tigated problems, although they have many applications [1, 16, 17, 68, 76,
88, 108]. We analyze only sequential algorithms. The Reader can find parallel
results e.g. in [2, 29, 92, 102, 104].

The structure of the paper is as follows. After this introduction in Section
2 we deal with the filtering of potential complete sequences, then in Section
3 describe incomplete sequences. Section 4 contains filtering and Section 5
reconstruction algorithms of potential football sequences. Finally in Section 6
we deal with the enumeration of football sequences.

2 Filtering of potential complete sequences

We are seeking football sequences. Taking into account that a score sequence of
an incomplete (a, b, n)-tournament is at the same time a score sequence of the
complete (a, b, n)-tournament, the properties of score sequences of complete
tournaments allow some filtering among the regular sequences.

In 1953 Landau [75] proved the following popular theorem. About ten proofs
are summarized by Reid [95]. Further proofs are in [3, 18, 19, 20, 22, 44, 46,
101, 106, 110].

Theorem 1 (Landau [75]) A (0, n− 1, n)-regular sequence s = (s1, . . . , sn) is
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the outdegree sequence of some (1, 1, n)-tournament if and only if

k∑
i=1

si ≥
k(k− 1)

2
, 1 ≤ k ≤ n, (2)

with equality when k = n.

Proof. See [64, 75, 86]. �

Moon [85] proved the following generalization of Landau’s theorem (we
present it in reformulated form). Later Takahashi [107] reproved the theorem.

Theorem 2 (Moon [85]) A (0, b(n − 1), n)-regular sequence s = (s1, . . . , sn)
is the score sequence of some (b, b, n)-tournament if and only if

k∑
i=1

si ≥
bk(k− 1)

2
, 1 ≤ k ≤ n,

with equality when k = n.

Proof. See [85]. �

We define a point-loss function Pk (k = 0, . . . , n) by the following recursion:
P0 = 0 and if 1 ≤ k ≤ n, then

Pk = max

(
Pk−1,

bk(k− 1)

2
−

k∑
i=1

si

)
.

Now Pk gives a lower bound for the number of lost points in the matches
among the teams T1, . . . , Tk (not the exact value since the teams T1, . . . , Tk
could win points against Tk+1, . . . , Tn).

Theorem 3 (Iványi [56]) A (0, b(n− 1), n)-regular sequence s = (s1, . . . , sn)
is the score sequence of some complete (a, b, n)-tournament if and only if

ak(k− 1)

2
≤

k∑
i=1

si ≤
bn(n− 1)

2
− Pk − (n− k)sk (1 ≤ k ≤ n).

Proof. See [56]. �
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3 Incomplete tournaments

We know only the following three results on the score sequences of incomplete
tournaments.

Semicomplete digraphs (semicomplete tournaments) are defined as (1, 2, n)-
digraphs in which if two vertices are connected with two arcs then these arcs
have different directions.

Theorem 4 (Reid, Zhang [96]) A (0, n−1, n)-regular sequence s = (s1, . . . , sn)
is the score sequence of some semicomplete tournament if and only if

k∑
i=1

si ≥
k(k− 1)

2
and sk ≤ n− 1, 1 ≤ k ≤ n. (3)

Proof. See [96]. �

Antal Bege asked in 1999 [7] how many wins are necessary in a football
tournament of n teams to get a strictly monotone score sequence. If n = 2

then 1, if n = 3 then 1, and if n = 4 then 2 are sufficient and necessary. The
following assertion gives the general answer.

Theorem 5 (Iványi [55]) If N(n) denotes the minimal number of necessary
and sufficient wins for different scores in a football tournament of n teams
then

N(n) =

(
3

2
−
√
2

)
n2 +Θ(n). (4)

Recently Berger [10] published the following criterion for special incomplete
(0, 2, n)-tournaments.

Theorem 6 (Berger [10]) Sequence σ =
((
a1
b1

)
, . . . ,

(
an
bn

))
with a1 ≥ · · · ≥

an is the score sequence of special incomplete (0, 2, n)-tournaments—in which
0 : 0, 0 : 1, 1 : 0, and 1 : 1 are the permitted results—if and only if

k∑
i=1

ai ≤
k∑
i=1

min(bi,k− 1) +

n∑
i=k+1

min(bi, k) (5)

for all k = 1, . . . , n, with equality for n.

Proof. See [10]. �

Earlier (weaker) results can be found in [23, 41, 42, 99].
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4 Filtering of potential football sequences

There are many exact results deciding whether a given sequence is the de-
gree/outdegree sequence of a given type of undirected (e.g. [24, 25, 30, 31,
32, 33, 34, 35, 43, 46, 47, 48, 50, 51, 61, 69, 74, 83, 84, 90, 116, 118]) or di-
rected (e.g. [12, 13, 75, 85, 56, 57, 94, 115]) graphs. Several authors studied
the case when the indegree and outdegree sequences are together prescribed
[9, 10, 14, 33, 48, 91].

The score sequences of the football tournaments we call football sequences.
A (0, 3n − 3, n)-regular sequence s = (s1, . . . , sn) is called good if there exists
a football tournament whose score sequence is s, and s is called bad otherwise.
We denote the football sequences by f = (f1, . . . , fn).

In this section we present approximate algorithms which filter only some
part of the bad sequences. Since these filtering algorithms have short running
time they help to reduce the expected running time of the exact algorithms.

The filtering algorithms are classified according to their worst running time
as constant, linear, and other polynomial type ones.

4.1 Constant time filtering algorithms

The expected running time can be substantially decreased if we can filter some
part of the investigated sequences in constant time.

Let n ≥ 2 and f = (f1, . . . , fn) a football sequence.

Lemma 7 (C1 test) fn 6= 3n− 4.

Proof. If a team wins all matches then its score is 3n− 3. If not, then it loses
at least two points making a draw, so its score is at most 3n− 5. �

Lemma 8 (C2 test) If fn = 3n− 3 then fn−1 ≤ 3n− 6.

Proof. fn can be 3n − 3 only so, that Tn wins all matches. Then the score
Tn−1 is at most 3n− 6. �

Lemma 9 (C3 test) If f1 = 0 then f2 ≥ 3.

Proof. If f1 = 0 then T1 lost all matches therefore T2 has at least one win
and so f2 is at least 3. �

Lemma 10 (C4 test) If f1 = f2 = 1 then f3 ≥ 6.
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Proof. If f1 = f2 = 1 then the match of T1 and T2 ended with a draw implying
that T3 has at least two wins and so at least six points. �

Lemma 11 (C5 test) If fn = fn−1 = 3n− 5, then fn−2 ≤ 3n− 9.

Proof. If the joint score of Tn and Tn−1 is 3n − 5 then the result of their
match has to be a draw. In this case Tn−2 lost at least two matches and so
fn−2 ≤ 3n− 9. �

Lemma 12 (C6 test) If fn = 3n− 3 and fn−1 = 3n− 6, then fn−2 ≤ 3n− 9.

Proof. If fn = 3n − 3, then Tn won all matches. In this case the score of
Tn−1 can be 3n− 6 only then if Tn−1 loses against Tn but wins all remaining
matches. Then Tn−2 lost at least two matches and so fn−2 ≤ 3n− 9. �

Lemma 13 (C7 test) If f1 = 0 and f2 = 3 then f3 ≥ 6.

Proof. See the proof of Lemma 12. �

Lemma 14 (C8 test) If f1 = 1 and f2 = 2 then f3 ≥ 4.

Proof. Since T1 and T2 gathered points only with draws their match ended
with a draw. Therefore T3 won against T1 and either won against T2 or they
made a draw, so T3 has at least 4 points. �

Lemma 15 (C9 test) If fn = 3n− 5 and fn−1 = 3n− 7 then fn−2 ≤ 3n− 8.

Proof. If fn = 3n − 5 then Tn has a draw and n − 2 wins. If fn−1 = 3n − 7
then Tn−1 has two draws and n−3 wins, and the match between Tn and Tn−1
ended with a draw. In this case Tn−2 has at least a loss and a draw implying
fn−2 ≤ 3n− 8. �

The following program Constant realizes the tests of the previous 9 lem-
mas. This and later programs are written using the pseudocode conventions de-
scribed in [27]. In this and in the further pseudocodes input variables are n: the
length of the investigated sequence (n ≥ 3); s = (s1, . . . , sn): a (0, 3n − 3, n)-
regular sequence; output variable is L: L = 0 means that the investigated input
is bad, L = 1 means that it is good while L = 2 shows that the given algorithm
could not decide.
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Constant(n, s)

01 L = 0 // line 01: initialization of L
02 if sn == 3n− 4 // line 02–03: C1
03 return L
04 if sn == 3n− 3 and sn−1 ≥ 3n− 5 // line 04–05: C2
05 return L
06 if s1 == 0 and s2 ≤ 2 // line 06–07: C3
07 return L
08 if s1 == 1 and s2 == 1 and s3 ≤ 5 // line 08–09: C4
09 return L
10 if sn == 3n− 5 and sn−1 = 3n− 5 and sn−2 ≥ 3n− 8 // line 10–11: C5
11 return L
12 if sn==3n− 3 and sn−2==3n− 6 and sn−3 ≥ 3n− 8 // line 12–13: C6
13 return L
14 if s1 == 0 and s2 == 3 and s3 ≤ 5 // line 14–15: C7
15 return L
16 if s1 == 1 and s2 == 2 and s3 ≤ 3 // line 16–17: C8
17 return L
18 if sn== 3n− 5 and sn−1==3n− 7 and sn−2 ≥ 3n− 8 // line 18–19: C9
19 return L
20 L = 2 // line 20–21: these tests can not decide
21 return 2

Tables 1, 2, and 3 show the filtering results of Constant. The numbers in
the tables show how many sequences are accepted from the sequences accepted
by the previous filtering algorithm. The exact results in these tables are printed
with bold font (such emphasizing will be used in the later tables too).

The programs are written in C by Loránd Lucz and run on an Inter Core i7
processor (3.4 GHz) with optimization level O3. The running times are given
in seconds.

Table 2 shows the filtering results of C4, C5, C6 and C7.
Table 3 shows the filtering results of algorithms C8 and C9, further the

number of football sequences (F) and the running time of Linear for n =
1, . . . , 15 teams. Column R in Table 1 and column t in Table 3 show that the
running time is approximately proportional with the number of the regular
sequences.

For example if n = 2 then C1, C2 and C3 filter 80 % of the regular and
100 % of the bad sequences. If n = 3 then they filter 54 from the 84 regular
sequences while C1, . . . , C9 filter 70 sequences which represent 90.90 % of the
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n R C1 C2 C3

1 1 1 1 1

2 10 7 4 2

3 84 63 45 30

4 715 550 414 311

5 6 188 4 823 3 718 2 911

6 54 264 42 636 33 320 26 650

7 480 700 379 753 299 421 242 624

8 4 292 145 3 404 115 2 700 775 2 207 800

9 38 567 375 30 678 375 24 452 220 20 116 030

10 348 330 136 277 722 676 222 146 496 183 629 160

11 3 159 461 960 2 523 716 572 2 024 386 180 1 679 655 640

12 28 760 021 745 23 008 017 396 18 498 140 232 15 394 304 500

13 262 596 783 764 210 345 382 913 169 436 070 190 141 355 053 635

14 2 403 979 904 200 1 927 719 734 500 1 555 302 958 664 1 300 210 775 786

15 22 057 981 462 440 17 704 432 489 590 14 303 680 429 990 11 978 596 958 384

Table 1: Number of (0, 3n − 3, n)-regular sequences (R) accepted by C1, C2,
and C3 for n = 1, . . . , 15 teams.

n C4 C5 C6 C7

1 1 1 1 1

2 2 2 2 2

3 26 22 19 17

4 281 255 237 222

5 2 691 2 501 2 374 2 271

6 24 000 23 373 22 302 21 596

7 227 770 215 227 207 042 200 609

8 2 700 775 2 207 800 2 097 803 1 972 783

9 19 155 258 18 065 694 17 460 916 16 989 609

10 175 138 885 165 526 269 160 206 767 156 070 967

11 1 591 808 376 1 518 385 621 1 471 133 714 1 434 460 309

12 14 605 778 836 13 947 629 921 13 524 714 862 13 196 925 716

13 134 230 657 710 128 305 394 396 124 497 616 840 121 549 435 860

14 1 235 669 598 354 1 181 962 750 733 1 147 511 569 252 1 208 609 923 538

15 11 391 620 617 874 10 903 053 416 141 10 590 098 238 918 10 348 178 700 655

Table 2: Number of (0, 3n − 3, n)-regular sequences accepted by C4, C5, C6,
and C7 for n = 1, . . . , 15 teams.

bad sequences. If n = 15 then the nine constant time algorithms filter 54.73 %
of the bad sequences. This is surprisingly high efficiency but smaller than the
sum of the individual asymptotic efficiency of the 9 algorithms. The reason is
simple: e. g. the sequence s = (0, 0, 5) would be filtered by C1 and C3 too.
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n C8 C9 F t

2 2 2 2 0.000

3 15 14 7 0.000

4 209 203 40 0.000

5 2 175 2 133 355 0.000

6 20 039 20 510 3 678 0.000

7 194 333 191 707 37 263 0.016

8 1 795 074 1 772 842 361 058 0.062

9 16 524 335 16 332 091 3 403 613 0.499

10 154 361 149 150 288 309 31 653 777 4.602

11 1 398 051 547 1 383 099 467 292 547 199 41.771

12 12 870 899 770 12 737 278 674 2 696 619 716 380.984

13 118 612 802 828 117 411 184 292 3 489.299

14 1 094 282 911 155 1 083 421 567 482 34 079.254

15 10 106 678 997 431 10 008 094 941 133 316 965.954

Table 3: Number of (0, 3n − 3, n)-regular sequences accepted by C8 and C9,
the number of football sequences (F), and the running time (t) of C9 for
n = 1, . . . , 15 teams.

4.2 Efficiency of the constant time testing algorithms

Using (1) we give the efficiency of the nine constant time filtering algorithms.

Lemma 16 (efficiency of C1) The ratio of sequences with sn = 3n− 4 among
(0, 3n− 3, n)-regular sequences is(

4n−5
n−1

)(
4n−3
n

) =
n(3n− 3)

(4n− 4)(4n− 3)
=
3

16
+

9

16(4n− 3)
=
3

16
+ o(1). (6)

Proof. The sequences satisfying the given condition are such (0, 3n − 3, n)-
regular ones, whose lower bound is l = 0, upper bound is u = 3n − 4, and
contain m = n− 1 elements. So according to (1) the required ratio is

R(0, 3n− 4, n− 1)

R(0, 3n− 3, n)
=

n(3n− 3)

(4n− 4)(4n− 3)
=
3

16
+ o(1). (7)

�

Lemma 17 (efficiency of C2) The ratio of the sequences satisfying the condi-
tions sn = 3n−3 and sn−1 ≥ 3n−5 among the (0, 3n−3, n)-regular sequences
is

37

256
+ o(1). (8)
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Proof. Since R(0, 3n− 3, n− 2) sequences satisfy the conditions sn = 3n− 3
and sn−1 = 3n− 3, the corresponding ratio is

R(0, 3n− 3, n− 2)

R(0, 3n− 3, n)
=

n(n− 1)

(4n− 4)(4n− 3)
=
1

16
+ o(1). (9)

R(0, 3n − 4, n − 2) sequences satisfy sn = 3n − 3 and sn−1 = 3n − 4, so the
corresponding ratio is

R(0, 3n− 4, n− 2)

R(0, 3n− 3, n)
=

n(n− 1)(3n− 3)

(4n− 3)(4n− 4)(4n− 5)
=
3

64
+ o(1). (10)

R(0, 3n−5, n−2) sequences have the properties sn = 3n−3 and sn−1 = 3n−5,
so the corresponding ratio is

R(0, 3n− 5, n− 2)

R(0, 3n− 3, n)
=

n(n− 1)(3n− 3)(3n− 4)

(4n− 3)(4n− 4)(4n− 5)(4n− 6)
=

9

256
+ o(1). (11)

Summing up the right sides (9), (10), and (11) we get the value (8). �

Lemma 18 (efficiency of C3) The ratio of the sequences satisfying the condi-
tions s1 = 0 and s2 ≤ 2 among the (0, 3n− 3, n)-regular sequences is

37

256
+ o(1). (12)

Proof. Similar to the proof of Lemma 8. �

Lemma 19 (efficiency of C4) The ratio of the sequences satisfying the condi-
tions s1 = 1 and s2 = 1 and s3 ≤ 5 among the (0, 3n− 3, n)-regular sequences
is

2343

48
+ o(1). (13)

Proof. Since R(1, 3n − 3, n − 3) sequences satisfy the conditions s1 = s2 =
s3 = 1 the corresponding ratio is

R(1, 3n− 3, n− 3)

R(0, 3n− 3, n)
=

n(n− 1)(n− 2)(3n− 3)

(4n− 3)(4n− 4)(4n− 5)(4n− 6)
=
3

44
+ o(1). (14)

The sequences with s1 = s2 = 1 and s3 = 2, s1 = s2 = 1 and s3 = 3,

s1 = s2 = 1 and s3 = 4, and s1 = s2 = 1 and s3 = 5 have the asymptotic ratio
3/45, 3/46, 3/47, and 3/48 resp.
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The sum of the received five ratios is

3

44
+
32

45
+
33

46
+
34

47
+
35

47
=
2343

48
, (15)

implying (13). �

Lemma 20 (efficiency of C5) The ratio of the sequences satisfying the condi-
tions of sn = sn−1 = 3n−5 and sn−3 ≥ 3n−8 among the (0, 3n−3, n)-regular
sequences is

1575

48
+ o(1). (16)

Proof. We have to sum the contributions of R(0, 3n−5, n−2), R(0, 3n−6, n−
2), R(0, 3n− 7, n− 2), and R(0, 3n− 8, n− 2) sequences:

32

45
+
33

46
+
35

47
+
36

48
=
1575

48
, (17)

implying (16). �

Lemma 21 (efficiency of C6) The ratio of the sequences satisfying the condi-
tions of sn = 3n−3, sn−1 = 3n−6, and sn−2 ≥ 3n−8 among the (0, 3n−3, n)-
regular sequences is

999

48
+ o(1). (18)

Proof. In this case we sum the contributions of R(0, 3n− 6, n− 3), R(0, 3n−
7, n− 1), and R(0, 3n− 8, n− 1) sequences:

33

46
+
34

47
+
35

48
=
999

48
, (19)

implying (18). �

Lemma 22 (efficiency of C7) The ratio of the sequences satisfying the condi-
tions of s1 = 0, s2 = 3, and s3 ≤ 5 among the (0, 3n− 3, n)-regular sequences
is

999

48
+ o(1). (20)

Proof. Similar to the proof of Lemma 21. �
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Lemma 23 (efficiency of C8) The ratio of the sequences satisfying the condi-
tions of s1 = 1, s2 = 2, and s3 ≤ 3 among the (0, 3n− 3, n)-regular sequences
is

63

46
+ o(1). (21)

Proof. We sum the contributions of R(2, 3n− 3, n− 3) and R(3, 3n− 3, n− 3)
sequences:

32

45
+
33

46
=
63

46
, (22)

implying (21). �

Lemma 24 (efficiency of C9) The ratio of the sequences satisfying the condi-
tions of sn = 3n−5, sn−1 = 3n−7, and sn−2 ≥ 3n−7 among the (0, 3n−3, n)-
regular sequences is

34

47
+ o(1). (23)

Proof. Similar to the proof of Lemma 23. �

The cumulated asymptotic efficiency of the constant time algorithms is

3

16
+
2 · 37
44

+
2343

48
+
1575

48
+
2 · 999
48

+
63

46
+
34

47
=
38480

48
. (24)

The cumulated efficiency of the nine constant time algorithms is about
58.72 %. According to Table 1 the practical joint efficiency of C1, C2 and
C3 is 64.28 % for n = 3 and 45.91 % for n = 14. According to Table 3 the
total practical efficiency of the nine constant time algorithms is 91.67 % for
n = 3 and 54.93 % for n = 14.

The practical cumulated efficiency is smaller than the theoretical one, since
some part of the sequences is filtered by several algorithms: e.g. the sequence
s = (0, 0, 5) is filtered by C1 and C3 too.

We remark that the algorithms of Constant are sorted on the base of their
nonincreasing asymptotic efficiency. We get the same order of the practical
efficiency of these algorithms shown on the small values of n.

4.3 Filtering algorithms with linear running time

We investigate the following filtering algorithms whose worst running time is
linear: Complete = L1, Point-Losses = L2, Reduction0 = L3, Reduc-
tion1 = L4, Draw-Unique = L5, Balanced = L6, Draw-Uniform = L7,
Draw-Sorted-Unique = L8.
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4.3.1 Linear filtering algorithm L1 = Complete

The first linear time filtering algorithm L1 = Complete is based on the
following special case of Lemma 3 in [56].

Corollary 25 ((2,3,n)-complete test, [56]) If n ≥ 1 and (f1, . . . , fn) is a foot-
ball sequence then

2

(
k

2

)
≤

k∑
i=1

fi ≤ 3
(
n

2

)
− (n− k)fk (k = 1, . . . , n). (25)

Basic parameters of Complete are the usual ones, further S: the current
sum of the first i elements of s.

Complete(n, s)

01 S = 0 // line 01: initialization of S
02 for i = 1 to n // line 02–06: test
03 S = S+ si
04 if (S < 2

(
i
2

)
)∨ (S > 3

(
n
2

)
− (n− i)si) = true

05 L = 0
06 return L
07 L = 2 // line 07–08: s is undecided
08 return L

4.3.2 Linear filtering algorithm L2 = Point-Losses

The second linear time filtering algorithm L2 = Point-Losses is based on
the following assertion which is an extension of Lemma 3 in [56]. The basic
idea is, that the small sums of the prefixes of s and the mod 3 remainders of
the elements of s signalize lost points.

Lemma 26 If (f1, . . . , fn) is a football sequence then

2

(
k

2

)
≤

k∑
i=1

fi ≤ 3
(
n

2

)
− (n− k)fk − Pk (k = 1, . . . , n), (26)

where P0 = 0 and

Pk = max

(
Pk−1, 3

(
k

2

)
−

k∑
i=1

fi,

⌈∑k
i=1(fi − 3bfi/3c)

2

⌉)
. (27)
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Proof. The sum of the k smallest scores is at least 2
(
k
2

)
and at most 3

(
n
2

)
minus the following point-losses:

1. the sum of the remaining scores, which is at least (n− k)fk;

2. the point-losses due to draws documented by the mod 3 remainders;

3. the point-losses documented by differences 3
(
k
2

)
−
∑k
i=1 fi;

�

Basic parameters of Point-Losses are the usual ones, further S: the current
sum of the first i elements of s, and P: the current value of the point-losses.

Point-Losses(n, s)

01 S = P = L = 0 // line 01: initialization of S, P, and L
02 for k = 1 to n // line 02–06: filtering
03 S = S+ sk

04 P = max
(
Pk−1, 3

(
k
2

)
− S,

⌈∑k
i=1(si−3bsi/3c

2

⌉)
05 if S > 3

(
n
2

)
− (n− k)sk − P

06 return L
07 L = 2
08 return L // line 08: s is undecided

4.3.3 Linear filtering algorithm L3 = Reduction0

The third linear test is based on the observation that if the sum of the k
smallest scores is minimal then all matches among the first k teams ended by
a draw and if the sum of the k largest scores is maximal then the corresponding
scores are multiples of 3 and further if k < n then fn−k ≤ 3(n− k− 1).

Lemma 27 If n ≥ 2, 1 ≤ k ≤ n, and f = (f1, . . . , fn) is a football sequence
then

1) if the sum of the first k scores is k(k− 1) then f1 = · · · = fk = k− 1 and
if further k < n then fk+1 ≥ 3k;

2) if the sum of the last k scores is 3(n− k)k+ 3
(
k
2

)
then fn−k+1, . . . , fn are

multiples of 3 and if further k < n then fn−k ≤ 3(n− k− 1).

Proof. If f1 + · · · + fk = k(k − 1) then all matches among T1, . . . , Tk ended
with a draw and these teams lost all matches against the remaining teams
implying assertions 1).
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If fk+1 + · · · + fn = 3(n − k)k + 3
(
k
2

)
then Tk+1, . . . , Tn won all matches

against the remaining teams and have no draws implying assertion 2. �

Parameters of Reduction0 are the usual ones, further S: the current sum
of the i smallest scores; Q: the current sum of the i largest scores; B is a logical
variable characterizing the remainders mod 3 of the i largest scores.

Reduction0(n, s)

01 L = B = S = Q = 0 // line 01: initialization of L, B, S, and Q
02 for i = 1 to n− 1 // line 02–12: test of the small scores
03 S = S+ si
04 if S == i(i− 1)
05 if s1 < i− 1∨ si > i− 1
06 return L
07 if si+1 < 3i
08 return L
09 S = S+ sn
10 if S == n(n− 1)
11 if s1 < n− 1
12 return L
13 for i = n downto 2 // line 13–25: test of the large scores
14 Q = Q+ si
15 if si−1 > 3(n− i− 1)
16 return L
17 if si − 3bsi/3c > 0
18 B = 1
19 if B == 1
20 return L
21 Q = Q+ s1
22 if s1 − bs1/3c > 0
23 B = 1
24 if B == 1
25 return L
26 L = 2 // line 26–27: s is undecided
27 return L

Even this simple filtering algorithm finds a football sequence: if the condition
of line 11 does not hold then the sum of all scores is minimal therefore all
matches ended with draw. For the sake of the simplicity of the program we
left this sequence undecided.
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4.3.4 Linear filtering algorithm L4 = Reduction1

The fourth linear test is based on the observations that if the sum of the i
smallest scores is i(i − 1) + 1 then either zero or one match among the first
i teams ended with a win and if the sum of the i largest scores has near the
maximal 3i(n− i) + 3i(i− 1)/2 value then among the i maximal scores i− 2
are multiples of 3 and 2 give 1 as remainder mod 3.

Lemma 28 If n ≥ 3, f = (f1, . . . , fn) is a football sequence, 1 ≤ k ≤ n then
1) if

k∑
i=1

fi = k(k− 1) + 1 (28)

then
a) either f1 = · · · = fk−1 = k−1, fk = k, and if k+1 ≤ n, and fk+1 ≥ 3k−2;
b) or f1 = k− 2, f2, . . . , fk−1 = k− 1, fk = k+ 1, and fk+1 ≥ 3k;
2) if

k∑
i=1

fn−i+1 = 3k(n− k) + 3

(
k

2

)
− 1 (29)

then
a)
∑k
i=1, fi−3bfi/3c=0 1 = k− 2;

b)
∑k
i=1, fi−3bfi/3c=1 1 = 2;

c)
∑k
i=1, fi−3bfi/3c=2 1 = 0;

d) if n− k > 0 then fn−k ≤ 3(n− k− 1).

Proof. 1) If f1 + · · · + fk = k(k − 1) + 1 then either all matches among T1,
. . . , Tk ended with a draw and these teams lost all but one matches against
the remaining teams and Tk made a draw with one of the teams Tk implying
assertions a) or Tk won against T1, the remaining matches among T1, . . . ,
Tk ended with a draw and the teams Tk+1, . . . , Tn has no draw and won all
matches against the first n− k teams implying assertions b).

2) In case 2) of the lemma the teams Tk+1, . . . , Tn won all matches against
the first n− k teams, and made exactly one draw. �

Parameters of Reduction1 are the usual ones, further S: the current sum
of the first i scores; Q: the current sum of the last i scores; L1 and L2: logical
variables; B is the number of scores giving remainder 1 mod 3; C is the number
of scores giving remainder 0 mod 3.

Reduction1(n, s)

01 L = B = C = S = Q = 0 // line 01: initialization of L, B, C, S, and Q
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02 for i = 1 to n− 1 // line 02–12: test of the small scores
03 S = S+ si
04 if S == i(i− 1) + 1
05 L1 = (s1 == i− 1)∧ (si−1 == i− 1)∧ (si == i)∧ (si+1 ≥ 3i− 2)
06 L2 = (s1 == i− 2)∧ (s2 == i− 1)∧ (si−1 == i− 1)

∧ (si == i+ 1)∧ (si+1 ≥ 3i)
07 if (L1 == false)∧ (L2 == false) == true
08 return L // line 07–08: s is not good
09 S = S+ sn
10 if S == n(n− 1) + 1
11 if (s1 < n− 2)∧ (s2 == n− 1)∧ (sn−1 == n− 1)∧ (sn == n+ 1)

== false
12 return L
13 for i = n downto 2 // line 13–35: test of the large scores
14 Q = Q+ si
15 if si − 3bsi/3c == 2
16 return L
17 if si − 3bsi/3c == 1
18 B = B+ 1
19 if si − 3bsi/3c > 0
20 C = C+ 1
21 if Q == 3(n− i)i+ 3i(i− 1)/2− 1)
22 if sn−i > 3(n− i− 1)
23 return L
24 if (B == 2)∧ (C == i− 2) == false
25 return L
26 Q = Q+ s1
27 if si − 3bsi/3c == 2
28 return L
29 if si − 3bsi/3c == 1
30 B = B+ 1
31 if si − 3bsi/3c > 0
32 C = C+ 1
33 if Q == 3n(n− 1)/2− 1
34 if (B == 2)∧ (C == i− 2) == false
35 return L
36 L = 2 // line 36–37: s is undecided
37 return L
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4.3.5 Linear filtering algorithm L5 = Draw-Unique

A draw sequence d(s) = (d1, . . . , dn) belonging to a (0, 3(n − 1), n)-regular
sequence s accepted by L4 is defined as a sequence of nonnegative integers
having the following properties for i = 1, . . . , n:

1. 0 ≤ di ≤ 2;
2. di = si mod 3;

3. di ≤ min(si, n− 1);

4. di + 3(n− 1− di) ≥ si,

further
n∑
i=1

di = 2

(
3

(
n

2

)
−

n∑
i=1

si

)
. (30)

A draw sequence d = (d1, . . . , dn) is called (0, 1, n)-graphic (or simply
graphic or good), if there exists a (0, 1, n)-graph whose degree sequence is
d.

The fifth linear filtering algorithm is based on the following assertion.

Lemma 29 If a (2, 3, n)-regular sequence s has only a unique draw sequence
d(s) which is not graphical then s is not football sequence.

Proof. Since the football sequences have at least one graphical draw sequence,
the regular sequences without graphical draw sequence are not football se-
quences. �

Basic parameters of Draw-Unique are the usual ones, further S: ithe cur-
rent sum of the elements of s; R: the number of obligatory draws;Dn: the num-
ber of the draws in the investigated potential tournament; d = (d1, . . . , dn):
di is the number of draws allocated to Ti; r = (r1, . . . , rn): ri is the remainder
of si mod 3; y: is the current number of allocated draws; x: is the current
maximal number of draw packets acceptable by Ti.

Draw-Unique(n, s)

01 S = R = L = x = y = 0 // line 01: initialization of S, R, L, x and y
02 for i = 1 to n // line 02–03: computation of S
03 S = S+ si
04 Dn = 3

(
n
2

)
− S // line 04: computation of Dn

05 for i = 1 to n // line 05–17: allocation of draws
06 ri = si − 3b si3 c
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07 R = R+ ri

08 x = min
(
si−ri
3 , bn−1−ri3 c, b 3(n−1)−2ri−si6 c

)
09 di = ri + 3x
10 y = y+ di
11 if R > 2Dn
12 return L, d
13 if y < 2Dn
14 return L, d
15 if y ≥ 2Dn
16 L = 2
17 return L, d
18 sort d in decreasing order by Counting-Sort resulting d ′

19 HHL(d ′)
20 return L, d // line 20: s is undecided

Procedure HHL (Havel-Hakimi-Linear) is described in [60]. We remark
that the original Havel-Hakimi algorithm requires in worst case Θ(n2) time.
Recently Király [70] published a version which uses the data structure pro-
posed by van Emde Boas [71, 114] and requires O(n log logn) time. Our algo-
rithm is linear and works also for some multigraphs.

A natural requirement is di ≤ n − 1 but di > n − 1 can occur only in
the cases s = (0, 2) and s = (1, 2) which are filtered by the constant time
algorithms.

We get a stronger filtering algorithm Draw-Sorted-Unique using the def-
inition of the uniqueness of the sorted draw sequence. For example in the case
of the sequence s = (3, 3, 3, 5) we have three possibilities to allocate two draw
packets but only the teams having 3 points can accept a packet therefore we
get in each case the bad draw sequence (3, 3).

We remark that the problem of unicity of graphs determined in a unique
way by their degree sequences was studied for some graph classes (see e.g. the
papers of Tetali [109], Tyskevich [113], and Barrus [6]).

4.3.6 Linear filtering algorithm L6 = Balanced-Lin

The sixth linear filtering algorithm L6 = Balanced-Lin is based on the
observation that if the draw sequence is unique, then the victory sequence
w = (w1, . . . , wn) and the loss sequence l = (l1, . . . , ln) are also unique. The
following assertion gives a necessary condition for the reconstructability of the
sequence pair (w, l).
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Lemma 30 (Lucz [77]) If n ≥ 2, w = (w1, . . . , wn) is the win sequence and
l = (l1, . . . , ln) is the loss sequence of a football sequence f = (f1, . . . , fn) with∑n
i=1 fi > n(n− 1) then let

wi = max
1≤j≤n

wj and lj = max
1≤i≤n

li. (31)

In this case

wi ≤
i−1∑
j=1

⌈
lj

n− 1

⌉
+

n∑
j=i+1

⌈
lj

n− 1

⌉
(32)

and

lj ≤
j−1∑
i=1

⌈
wi
n− 1

⌉
+

n∑
i=j+1

⌈
wi
n− 1

⌉
(33)

for n = 1, . . . , n.

Proof. The wins (losses) of the team Ti (Tj) having the maximal number of
wins (losses) can be paired with losses (wins) only if there are at least wi (lj)
teams having at least one loss (win). �

4.3.7 Linear filtering algorithm L7 = Sport-Uniform

The seventh linear filtering algorithm L7 = Sport-Uniform is connected
with a popular concept called in the world of sport sport matrix. It is an n×5
sized matrix containing the basic data of the teams of a tournament. We use
the following formal definition of sport matrix for n teams.

Definition 31 Let n ≥ 1 and s = (s1, . . . , sn) be a (0, 3(n − 1), n)-regular
sequence. Then the sport matrices S(s) corresponding to s are defined by the
following properties:

1. the size of the matrix is n× 5, its elements are nonnegative integers;

2. wi + di + li = n− 1 for i = 1, . . . , n;

3. 3wi + di = si for i = 1, . . . , n;

4.
∑n
i=1wi =

∑n
i=1 li =

∑n
i=1 si − n(n− 1);

5.
∑n
i=1 di = 2

(
3
(
n
2

)
−
∑n
i=1 si

)
.
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We remark that the ith row of the sport matrices contains data of Ti for
i = 1, . . . , n: index i, number of wins wi, number of draws di, number of losses
li and number of points si (wi, di and li are estimated values). These formal
requirements are only necessary for S to contain the basic characteristics of
some football tournament.

A sequence s = (s1, . . . , sn) is called sport sequence if there exists at least
one sport matrix corresponding to s.

Another useful concept is the obligatory sport matrix belonging to given
regular sequence s.

Definition 32 Let n ≥ 1 be and s = (s1, . . . , sn) be a (0, 3(n − 1), n)-regular
sequence. Then the obligatory sport matrix O(s) corresponding to s is defined
by the following properties:

1. the size of the matrix is n× 5, its elements are nonnegative integers;

2. woi = max
(
0, d si−(n−1)

2 e
)

for i = 1, . . . , n;

3. doi = si − 3b si3 c for i = 1, . . . , n;

4. loi = max(0, n− 1− si) for i = 1, . . . , n. �

The i-th row of the matrix contains the (partially estimated) data of Ti for
i = 1, . . . , n: index i, number of obligatory wins woi, number of obligatory
draws doi, number of obligatory losses loi and number of points si (the oblig-
atory values are lower bounds for the correct values, the index and the number
of points are exact values).

Definition 33 We say that the obligatory sport matrix O(s) of s is extendable
to a sport matrix S(s) corresponding to s if

1. O(s) is a sport matrix belonging to s or

2. we can increase some wi, di and li values so that the result will be a
sport matrix S(s).

According to the following assertion we get a linear filtering algorithm using
the obligatory sport matrix.

Lemma 34 The obligatory sport matrix O(s) belonging to a (0, 3(n− 1), n)-
regular sequence s is unique. If O(s) is not extendable to a sport matrix S(s)
then s is not a football sequence.
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Proof. The obligatory sport matrix is defined by unique formulas therefore
it is unique. If s is a football sequence then its obligatory sport matrix O(s)
contains lower bounds for wi, di, and li of any sport matrix S(s) therefore
any sport matrix S(s) can be constructed by the extension of O(s). �

The following Sport-Uniform is a draw-based algorithm which at first
constructs the obligatory sport matrix belonging to s then tries to extend it
to a sport matrix so that it allocates the draw packets in a greedy way as
uniformly as possible. If the so received draw sequence is not graphic then the
investigated sequence is not good.

The base of the uniform allocation of the draws is the following assertion.

Lemma 35 If n ≥ 1, d = (d1, . . . , dn) is graphical and di < dj then the se-
quence d ′—received increasing di by 1 and decreasing dj by 1—is also graphi-
cal.

Proof. Let G be a (0, 1, n)-graph on vertices V1, . . . , Vn having the degree
sequence d = (d1, . . . , dn) in which di < dj. Then there exists a vertex Vk
which is connected with Vj and not connected with Vi. In G delete the edge
between Vj and Vk and add the edge between Vi and Vk. Then the received
new graph is graphical with the required degree sequence. �

This lemma has a useful corollary.

Corollary 36 If n ≥ 1, s = (s1, . . . , sn) is a (2, 3, n)-regular sequence, and
its uniform draw sequence u(s) = (u1, . . . , un) is not graphical, then s is not
a football sequence.

Proof. By the recursive application of Lemma 35 we get that if s has a graph-
ical draw sequence then its uniform draw sequence is also graphical. �

We remark that the problem of the pairing of the draws has a reach bibli-
ography as the problem of degree sequences of simple graphs [24, 32, 47, 50,
51, 62, 80, 89, 107, 110, 111, 112].

Basic parameters of Sport-Uniform are the usual ones further S: the sum
of the elements of s; S0: auxiliary variable; wo = (wo1, . . . , won): woi is the
number of obligatory wins of Ti; do = (do1, . . . , don): doi is the number of
obligatory draws of Ti; lo = (lo1, . . . , lon): loi is the number of obligatory
losses of Ti; WO = (WO0, . . . ,WOn): WOi is the total number of wins of the
first i teams; DO = (DO0, . . . , DOn). DOi is the total number of draws of
the first i teams; LO = (LO0, . . . , LOn). LOi is the total number of the first
i teams; wm = (wm1, . . . , wmn): wmi is the maximal number of wins of Ti;
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dm = (dm1, . . . , dmn): dmi is the maximal number of draw packets of Ti;
lm = (lm1, . . . , lmn): lmi is the maximal number of losses of Ti; Wn: the
number of the wins in the tournament; Ln: the number of the losses in the
tournaments; Dn: the number of draws in the tournament; D: the current
number of yet not allocated draws; da = (da1, . . . , dan): dai is the number
of allocated to Ti draw packets; wa = (wa1, . . . , wan): wai is the number of
allocated wins of Ti; la = (la1, . . . , lan): lai is the number of allocated losses
of Ti; R = (R0, R1, R2): Ri is the number of elements of s giving remainder i
mod 3; c: average number of draw packets to allocate for a team.

Sport-Uniform(n, s)

01 S0 =WO0 = DO0 = LO0 = R0 = R1 = R2 = L = 0 // line 01: initialization
02 for i = 1 to n // line 02–03: computation of the parameters
03 S = S+ si

04 woi = max
(
0, d si−(n−1)

2 e
)

05 WOi =WOi−1 +woi
06 doi = si − 3b si3 c
07 DOi = DOi−1 + doi
08 Rdoi = Rdoi + 1
09 loi = max(n− 1− si, 0)
10 LOi = LOi−1 + loi

11 dmi = min
(
si−doi
3 , n− 1− doi, b 3(n−1)−2doi−si6 c

)
12 wmi =

si−doi
3

13 lmi =
⌊
3(n−1)−si

3

⌋
14 Wn = Ln = Sn − n(n− 1) // line 14: computation of Wn, Ln
15 Dn = D = 3n(n− 1)/2− S // line 15: computation of Dn, D

16 if D−DOn
3 >

⌊
D−DOn

3

⌋
// line 16–43: allocation of draw packets

17 return L
18 while D > 0

19 c =
⌊

D
R0+R1+R2

⌋
20 while c ≥ 1
21 R0 = R1 = R2 = 0
22 for i = 1 to n

23 dai = min( si−di3 , c)
24 di = doi + 3dai
25 D = D− 3dai
26 if di < dmi
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27 Rdoi = Rdoi + 1

28 c =
⌊

D
R0+R1+R2

⌋
29 if 0 < D

3 ≤ R0
30 for i = 1 to n
31 if (D > 0∧ doi == 0) == true
32 di = di + 3
33 D = D− 3

34 if R0 <
D
3 ≤ R0 + R1

35 for i = 1 to n
36 if (D > 0∧ doi == 0∨ doi == 1) == true
37 di = di + 3
38 D = D− 3

39 if R0 + R1 >
D
3

40 for i = 1 to n
41 if D > 0
42 di = di + 3
43 D = D− 3
44 sort d in decreasing order resulting d ′

45 HHL(d ′) // line 44–45: sorting of the draw sequence
46 return L, d // line 46: s is undecided (if L = 2) or bad (if L = 0)

4.3.8 Linear filtering algorithm L8 = Draw-Sorted-Unique

The fifth linear filtering algorithm Draw-Unique exploits the fact that some
football sequences have unique sport matrix implying the uniqueness of the
draw sequence. The eighth linear algorithm L8 = Draw-Sorted-Unique
exploits that the uniqueness of the sport matrix is not necessary to have a
unique sorted draw sequence.

Sorted version of a sport matrix S(s) is denoted by S(s) and is defined by
the following property: if 1 ≤ i < j ≤ n then either d ′i < d

′
j or d ′i = d ′j and

w ′i < w
′
j or d ′i = d

′
j and w ′i = w

′
j and i ′ < j ′ (d ′i is the draw value in the i-th

row of the sorted matrix and i ′ is the original index belonging to d ′i).
Draw-Sorted-Unique is based on the following assertion.

Lemma 37 If n ≥ 1, s = (s1, . . . , sn) is a (2, 3, n)-regular sequence, the sorted
versions of the sport matrices S(s) are identical and their joint draw sequence
is not graphical, then s is not a football sequence.

Basic parameters of Draw-Sorted-Unique are the usual ones, further
S: the current sum of the elements of s; D: the number of the draws in
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the investigated potential tournament; d = (d1, . . . , dn): di is the number
of draws allocated to Ti; do = (do1, . . . , don): doi is the number of oblig-
atory draws of Ti; DO: the number of the obligatory draws in the tourna-
ment; lo = (lo1, . . . , lon): loi is the number of obligatory losses of Ti; LO
is the number of obligatory losses in the tournament; wo = (wo1, . . . , won):
woi is the number of obligatory wins of Ti; WO is the number of obliga-
tory wins in the tournament; dm = (dm1, . . . , dmn): dmi is the maximal
number of draw packets which can be accepted by Ti; DM: the sum of the
dmi’s; lm = (lm1, . . . , lmn): lmi is of the maximal number of losses of Ti;
LM: the sum of the lmi’s; wm = (wm1, . . . , wmn): wmi is the maximal
number of wins of Ti; WM: the sum of the wmi’s; Wn: the number of the
wins in the tournament; Ln: the number of the losses in the tournaments;
Dn: the number of draws in the tournament; D: the number of yet not allo-
cated draws; da = (da1, . . . , dan): dai is the number of allocated to Ti draw
packets; wa = (wa1, . . . , wan): wi is the number of allocated to Ti wins;
la = (la1, . . . , lan): lai is the number of allocated to Ti losses; h: the maxi-
mal number of draw packets assigned to a team; R = Ri,j: a 3×h sized matrix,
where Ri,j gives the number of teams which are able at most i draw packets
and having score of form 3k+ j; A = (A0, A1, A2): Aj is the number of scores
giving i mod (3; B = (B0, . . . , Bh): Bi is the number of teams which are able to
accept at most i draw packets; z: number of draw pockets which the program
tries to allocate to all teams; fs: first score among the scores receiving maximal
number of draw pockets; Rm: critical value of the remainder (mod 3) of the
scores.

Draw-Sorted-Unique(n, s)

01 S =WO = DO = LO = A0 = A1 = A2 = L = 0 // line 01: initialization
02 for i = 1 to n // line 02–29: test of the obligatory sport matrix
03 S = S+ si
04 doi = si − 3bsi/3c
05 DO = DO+ doi

06 woi = max(0, d si−(n−1)
2 e

07 WO =WO+woi
08 loi = max(0, n− 1− si)
09 LO = LO+ loi

10 dmi = min
(
si−doi
3 , n−1−doi3 ,

3(n−1)−2di−si
6

)
11 DM = DM+ dmi

12 wmi = min
(
si−doi
3 , (N− 1) −DOi

)
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13 WM =WM+wmi

14 lmi = min
(
b 3(n−1)−si3 c, n− 1− doi

)
15 LM = LM+ lmi

16 Dn = 3
(
n
2

)
− S

17 Wn = Ln = S− 2
(
n
2

)
18 if DO > 2Dn
19 return L
20 if 3DM < 2Dn

21 return L
22 if WO > Wn
23 return L
24 if WM <Wn

25 return L
26 if LO > Ln
27 return L
28 if LM < Ln

29 return L
30 h = b(n− 1)/3c // line 30–45: preparation of the allocation
31 for i = 0 to h
32 Bi = 0
33 for j = 0 to 2
34 Rj,i = 0
35 for i = 1 to n
36 Rdoi,dmi

= Rdoi,dmi
+ 1

37 for i = 1 to h
38 for j = 0 to 2
39 Aj = Aj + Ri,j
40 Bi = Bi + Ri,j
41 q = 0
42 A = A0 +A1 +A2
43 D = 2Dn−DO

44 c = bDAc
45 q = q+ c
46 while c ≥ 1 // line 46–78: allocation of the draws
47 z = 0
48 for i = q− c+ 1 to q
49 z = z+ iBi
50 D = D− 3z
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51 for i = 0 to 2
52 for j = q− c+ 1 to q
53 Ai = Ai − Ri,j
54 A = A0 +A1 +A2
55 c = bDAc
56 if q > 0
57 for i = 1 to n
58 di = di − 3min(z, dmi)
59 if D == 0
60 go to 79
61 fs = −1
62 Rm = 2
63 if D ≤ A1 +A2
64 Rm = 1
65 if D ≤ A1
66 Rm = 0
67 for i = 1 to n
68 if (dmi > q)∧ (doi ≤ Rm) == true
69 if fs == −1
70 fs = si
71 else if si 6= fs
72 return L, d
73 if doi < Rm
74 di = di + 3
75 D = D− 3
76 if (doi == Rm)∧ (D > 0) == true
77 di = di + 3
78 D = D− 3
79 sort d in nonincreasing order resulting d ′ // line 79–80: sorting of d
80 HHL(d ′)
81 return L, d // line 81: return the result of HHL

Procedure HHL (Havel-Hakimi-Linear) is described in [60]. We remark
that the original Havel-Hakimi algorithm requires in worst case Θ(n2) time.
Recently Király [70] published a quicker algorithm which uses the data struc-
ture proposed by van Emde Boas [27, 71, 114] and requires only O(n log logn)
time. Our algorithm is linear and works also for some multigraphs.

A natural requirement is di ≤ n − 1 but di > n − 1 can occur only in
the cases s = (0, 2) and s = (1, 2) which are filtered by the constant time
algorithms.
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4.3.9 Efficiency of linear time filtering algorithms

Linear is the union of the described linear time algorithm.

Linear(n, s)
01 L = 0 // line 01: initialization of L
02 L1(n, s) // line 02–04: filtering by Complete
03 if L = 0
04 return L
05 L2(n, s) // line 05–07: filtering by Losses
06 if L = 0
07 return L
08 L3(n, s) // line 08–10: filtering by Reduction0
09 if L = 0
10 return L
11 L4(n, s) // line 11–13: filtering by Reduction1
12 if L = 0
13 return L
14 L5(n, s) // line 14–16: filtering by Draw-Unique
05 if L = 0
16 return L
17 L6(n, s) // line 17–19: filtering by Balanced
18 if L = 0
19 return L
20 L7(n, s) // line 20–22: filtering by Draw-Uniform
21 if L = 0
22 return L
23 L8(n, s) // line 23–25: filtering by Draw-Sorted-Unique
24 if L = 0
25 return L
26 L = 1 // line 26–27: the linear time algorithms can not decide
27 return L

Since all included algorithms have linear worst case running time, the total
running time of Linear is also O(n). Since the best running time of L1 is
O(1), therefore the best running time of Linear is also O(1).

Tables 4 and 5 show the concrete filtering results of the linear time filtering
algorithms. Table 4 contains the number of regular sequences (R), the number
of sequences, accepted by C9, L1 = Complete-Test, L2 = Losses and L3
= Reduction0.
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n C9 L1 L2 L3+ L4

1 1 1 1 1

2 2 2 2 2

3 14 12 10 10

4 203 134 94 87

5 2133 1230 901 814

6 20518 10947 8348 7526

7 191707 97427 76526 69349

8 1772842 872234 699344 637735

9 16332091 7851193 6387443 5859125

10 150288309 71001641 58367243 53817029

11 1383099467 644668154 538591486 494427384

12 12737278674 5873396400 4888701306 4544762304

13 117411184292 53669099755 44823480671 41804695971

14 1083421567402 491669304392 411496549436 384847810936

Table 4: Results of filtering by linear tests tests L1, L2, and L3 + L4 for
n = 1, . . . , 14 teams.

Table 5 contains the number of sequences accepted by L4 = Reduction1,
L5 = Draw-Unique, L6 = Balanced, L7 = Sport-Uniform and L8 =
Inner-Draw, further the number of the football sequences (F) and the cu-
mulated running time and (the exact values of L7 are bold).

4.4 Quadratic filtering algorithms

In this section the quadratic recursive filtering algorithms Q1 = Balanced-
Quad, Q2 = Reduction-Rec-Small, and Q3 = Reduction-Rec-Large
are described.

4.4.1 Quadratic filtering algorithm Q1 = Balanced-Quad

The filtering algorithm Q1 = Balanced-Quad is based on the observa-
tion that if the draw sequence is unique, then the victory sequence w =
(w1, . . . , wn) and the corresponding loss sequence l = (l1, . . . , ln) are also
unique, further that the wins (losses) of any subset of teams have to be paired
with inner and outer losses (wins). The following assertion gives a necessary
condition for the reconstructability of the sequence pair (v, l).
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n L5+ L6 L7+ L8 F t

1 1 1 1 0.000

2 2 2 2 0.000

3 7 7 7 0.000

4 46 40 40 0.000

5 475 365 355 0.000

6 4459 4086 3678 0.015

7 47867 44657 37263 0.047

8 460153 451213 361058 0.437

9 4371783 4348655 3403613 4.196

10 41261057 41166157 31653777 40.217

11 387821927 387416935 292547199 393.280

12 3635039265 3633749149 2696619716 3828.002

13 34011137972 33821636274 37611.185

14 317827900632 316291028902 364978.049

Table 5: Results of filtering by linear tests L5 + L6 and L7 + L8, further the
number of football sequences (F) and the running time of L8 (t) for 1, . . . , 14
teams.

Lemma 38 If (a1, . . . , an) is the monotone nonincreaing win sequence and
(b1, . . . , bn) is the corresponding loss sequence of a football tournament then

k∑
i=1

ai ≤
k∑
i=1

min(bi, k− 1) +

n∑
i=k+1

min(bi, k) (34)

for all k = 1, . . . , n, with equality for n.

Proof. The wins included in the sum of the left side of (34) have to be paired
with the ”inner losses“ (losses among T1, . . . , Tk) and ”outer losses“ (losses
of T1, . . . , Tk in the matches against the remaining teams). �

We remark that this lemma is a consequence of Theorem 3 of the recent
paper due to Berger [10] containing a necessary and sufficient condition for
some incomplete (0, 2, n)-tournaments. As the sequence (1, 1, 8, 9, 9) satisfying
34 shows, in our case (34) is only a necessary condition, since s has a unique
sport matrix shown in Table 6 which is not reconstructable.

The paper [33] contains an algorithm for our problem but the algorithm
does not terminate for some inputs.
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i wi di li si
1 0 1 3 1

2 0 1 3 1

3 2 2 0 8

4 3 0 1 9

5 3 0 1 9

Table 6: Unique sport matrix belonging to the sequence s = (1, 1, 8, 9, 9).

The following natural implementation Balanced-Quad of Lemma 38 re-
quires quadratic time.

Parameters of Balanced-Quad are the usual ones, further w = (w1, . . . ,
wn): wi is the number of wins allocated to Ti (0 ≤ wi ≤ n−1); l = (l1, . . . , ln):
li is the number of losses allocated to Ti (0 ≤ li ≤ n − 1); Sw: the current
number of the necessary wins; Ss: the maximal number of pairable losses of
teams having small indices; Sl: the maximal number of pairable losses of the
teams having large indices.

Balanced-Quad(n,w, l)

01 Sw = L = 0 // line 01: initialization of Sw and L
02 sort (w, l) nonincreasingly in w using Counting-Sort
03 for i = 1 to n // line 03–13: counting of wins and losses
04 Ss = Sl = 0
05 Sw = Sw = wi
06 for j = 1 to i // line 06–07: small indices
07 Ss = Ss+ min(wj, i− 1)
08 for j = i+ 1 to n // line 08–09: large indices
09 Sl = Sl+ min(wj, i)
10 if Sw > Ss+ Sl // line 10–13: (w, l) is not pairable
11 return L
12 if Sw < Ss+ Sl
13 return L
14 else L = 2 // line 14–15: s is undecided
15 return L

We yet did not implemented Balanced-Quad.
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4.4.2 Quadratic filtering algorithm Q2 = Reduction-Rec-Small

Algorithm Q2 = Reduction-Rec-Small is based on the recursive applica-
tion of Recursive0 and Recursive1. Using Q2 and the next Q3 we shorten
the input sequences and often can filter them.

Parameters are the usual ones, further e = (e1, . . . , eN): work version of the
investigated sequence; nl: smallest index of not deleted elements of s.

Reduction-Rec-Small(n, s)

01 L = S = 0 // line 01–04: initialization of L, S, nl, and e
02 for i = 1 to n
03 ei = si
04 nl = 1
05 while nl ≤ n
06 S = 0
07 for i = nl to n
08 S = S+ ei
09 if S == i(i− 1) // line 09–21: S is minimal
10 if i < n
11 if (enl

6= i− 1)∨ (enl+i−1 6= i− 1) == true
12 return L
13 if enl+i < 3i

14 return L
15 if i == n
16 if (enl

6= i− 1)∨ (en 6= i− 1) == true
17 return L
18 else L = 1
19 return L
20 nl = nl + i
21 for j = nl to n
22 ej = ej − 3i
23 go to 05
24 if S == i(i− 1) + 1 // line 22–35: S is minimum plus one
25 if i < n
26 L1 = (enl

= i− 1)∧ (enl+i−2 = i− 1)∧ (enl+i−1 = i)
∧(enl+i ≥ 3i− 2)

27 L2 = (enl
= i− 2)∧ (enl+i−2 = i− 1)∧ (enl+i−1 = i+ 1)

28 if (L1 == false)∧ (L2 == false) == true
29 return L // line 28–29: s is not football sequence
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30 if i == n
31 L2 = (enl

= n− 2)∧ (enl+1 = n− 1)∧ (en−1 = n+ 1)
32 if L2 == False // line 32–33: s is not football sequence
33 return L
34 nl = nl + i
35 for j = nl to n
36 ej = ej − 3i
37 go to 05
38 Reduction-Rec-Large(n− nl + 1, e)
39 if L == 0
40 return L
41 if nu > 0
42 Filter(nu, e)
43 if L == 0
44 return L
45 L = 2 // line 45–46: s is undecided
46 return L

Reduction-Rec-Small calls Filter which is a union of the constant and
linear time filtering algorithms and Reduction-Rec-Large which is the next
quadratic filtering algorithm.

Filter(n, e)

01 Constant(n, e) // line 01–03: filtering by the constant time algorithms
02 if L == 0
03 return L
04 Linear(n, e) // line 04–06: filtering by the linear time algorithms
05 if L == 0
06 return L
07 L = 2 // line 07–08: s is undecided
08 return L

4.4.3 Quadratic filtering algorithm Q3

Algorithm Q3 = Reduction-Rec-Large is based on the recursive applica-
tion of Recursive0 and Recursive1.

Parameters are the usual ones, further e = (e1, . . . , eN): work version of the
investigated sequence; nu: smallest index of the not deleted elements of s; Q:
the sum of the i largest scores; B: the number of investigated scores giving
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0 remainder mod 3; C: the number of investigated scores giving remainder 1
mod 3; D: the number of investigated scores giving remainder 2 mod 3.

Reduction-Rec-Large(n, e)

01 L = Q = B = C = D = 0 // line 01–02: initialization of L, Q, B, C, D, nu
02 nu = n
03 while nu ≤ 1 // line 03–25: recursive reduction
04 for i = nu downto 1 // line 04–09: preparing of the filtering
05 Q = Q+ ei
06 if ei − 3bei/3c == 0
07 B = B+ 1
08 if ei − 3bei/3c == 1
09 C = C+ 1
10 if ei − 3bei/3c == 2
11 D = D+ 1
12 if Q == 3i(nu − i) + 3i(i− 1)/2 // line 12–17: Q is maximal
13 if B 6= i
14 return L, nu
15 if i > 1
16 if enu−i > 3(nu − i− 1)
17 return L, nu
18 nu = nu − i
19 go to 03
20 if Q == 3i(nu − i) + 3i(i− 1)/2− 1
21 if (B == i− 2)∧ (C == 2) == false
22 return L, nu
23 if i > 1 // line 20–25: Q is maximum minus 1
24 if enu−i > 3(nu − i− 1)
25 return L, nu
26 L = 2 // line 26–27: s is not decided
27 return L, nu

The following Table 7 contains the results of quadratic filtering algorithms.

5 Reconstruction of potential football sequences

In this part we investigate polynomial reconstruction algorithms, as R1 =
Reduction, R2 = Draw-Uniform-Rec, and R3 = Draw-Inner-Rec.
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n Linear Q2+Q3 F t

1 1 1 1 0.000

2 2 2 2 0.000

3 7 7 7 0.000

4 40 40 40 0.000

5 365 355 355 0.000

6 4086 3760 3 678 0.015

7 44657 39417 37 273 0.109

8 451213 393072 361 058 1.264

9 4348655 3804485 3 403 613 15.226

10 41166157 36302148 31 653 777 179.249

11 387416935 344012885 292 547 199 2066.323

12 3633749149 3246651763 2 696 619 716 23429.877

13 33821636274 30405902165

Table 7: Results of filtering by Linear and quadratic algorithms Q2 + Q3,
further the number of football sequences (F) and the running time of Q3 (t)
for n = 1, . . . , 13 teams.

5.1 Reconstruction algorithm R1 = Reduction

R1 = Reduction is based on filtering algorithms Reduction0 and Reduc-
tion1.

5.2 Reconstruction algorithm R2 = Draw-Uniform-Rec

R2 = Draw-Uniform-Rec is based on filtering algorithms: it tries—using the
degree sequence d produced by Sport-Uniform or Draw-Sorted-Unique
and using a greedy pairing algorithm “largest wins with largest losses”—to
pair the wins and losses.

Parameters of R2 are the usual ones further S: sport matrix computed using
the output draw sequence d of Sport-Uniform or Draw-Sorted-Unique
and sorted its rows so that either wi > wi+1 or wi = wi+1 and li ≤ li+1; d =
(d1, . . . , dn): draw sequence of S; Mn×n (result matrix): Mi,j is the number
of points received by Ti in the match against Tj; w = (w1, . . . , wn): wi is the
number of wins of Ti; l = (l1, . . . , ln): li is the number of losses of Ti.

Draw-Uniform-Rec(n, s, d)

01 for i = 1 to n // line 01–03: initialization of M
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02 for j = 1 to n
03 Mi,j = 0
04 Havel-Hakimi-Draws(n, s, d,M) // line 04: HHD allocates the draws
05 for i = 1 to n // line 05–07: computation of w and l
06 wi = (si − di)/3
07 li = n− 1− di −wi
08 for i = n downto 1 // line 08–24: allocation of wins and losses
09 j = n
10 while (wi > 0)∨ (Mij 6= 1)∨ (j > 0)∨ (i 6= j)∨ (lj > 0) == true
11 Mij = 3
12 wi = wi − 1
13 lj = lj − 1
14 j = j− 1
15 if wi > 0 // line 15–17: s is undecided
16 L = 2
17 return L, M
18 L = 1 // line 18–19: s is a football sequence
19 return L, M

R2 uses a special version of Havel-Hakimi algorithm called Havel-Hakimi-
Draws (or shortly HHD). While for the classical Havel-Hakimi algorithm the
equal scores are equivalent, in this application we have to distinguish them.

Additional parameters are d = (d1, . . . , dn): a draw sequence produced by
Draw-Rec;M: n×n sized matrix whereMij is the number of points received
by Ti in the match with Tj; E = (E1, . . . , En) = ((e1, h1), . . . , (en, hn)): current
extended and sorted version of d; H = (h1, . . . , hn): hi is the index of ei in
d; nl: lower index of the essential part of E ; nu: upper index of the essential
part of E ; c = (c0, . . . , cn): ci is the number of i’s among enl

, . . . , enu ; C =
(C0, . . . , Cn): Ci is the cumulated number of i’s among enl

, . . . , enu .

Havel-Hakimi-Draws(n, d,M)

01 nl = 1 // line 01–05: initialization of nl, nu, and E ;
02 nu = n
03 for i = nl to nu // line 03–07: initialization of G and nu;
04 ei = di
05 hi = i
07 nu = n
08 for i = 1 to n // line 08–15: pairing of the draws;
09 Counting-Sort-Draws(n, i, nu, E) // line 09: sorting
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10 if ei = 0
11 return M
12 for k = 1 to ei
13 Mhi,hi+k =Mhi+k,hi = 1 // line 13: a draw is fixed
14 ei+k = ei+k + 1
15 while nu == 0
16 nu = nu − hi
17 return M // line 17: return the matrix containing the paired draws

Counting-Sort-Draws is a modified version of the well-known linear time
sorting algorithm Counting-Sort [27].

Additional parameters are d = (d1, . . . , dn): a draw sequence produced by
Draw-Uniform-Rec; nl: lower index of the essential part of E ; nu: upper
index of the essential part of E ; M: n × n sized matrix where Mij is the
number of points received by Ti in the match with Tj; E = (E1, . . . , En) =
((g11, g12), . . . , (g1n, g2n): current extended and sorted version of d with the
corresponding indices; G: the working version of E ; nl : lower index of the
essential part of E ; nu: upper index of the essential part of E ; c = (c0, . . . , cn−1):
ci is the number of i’s among g1,nl

, . . . , g1,nu ; Cn = 0 working variable; C =
(C0, . . . , Cn−1): Ci is the number of investigated scores larger or equal with i.

Counting-Sort-Draws(n, d, nl, nu, E)
01 for i = nl to nu // line 01–05: initialization of G and c;
02 g1,i = e1,i
03 g2,i = e2,i
04 for i = 0 to n− 1
05 ci = 0
06 for i = nl to nu // line 06-10: computation of the counters
07 cg1i = cg1i + 1
08 Cn = 1
09 for n− 1 downto 0
10 Ci = Ci+1 + ci
11 for i = nl to nu // line 11-16: computation of the new E
12 x = Cg1,i + 1
13 e1,x = g1,i
14 e2,x = g2,i
15 Cx = Cx + 1
16 return E

The running time of Counting-Sort-Draw is Θ(n), of Havel-Hakimi-
Draw is O(n2) and the one of Draw-Uniform-Rec is also O(n2).
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As an example let s = (1, 1, 7, 7). Then s has a unique draw sequence
(1, 1, 1, 1) and unique sport matrix shown in Table 8.

i wi di li si
1 0 1 2 1

2 0 1 2 1

3 2 1 0 7

4 2 1 0 7

Table 8: Unique sport matrix belonging to the sequence s = (1, 1, 7, 7).

According to the relatively quick version Havel-Hakimi-Shifting [62] T1
plays a draw with T4 and T2 with T3 resulting the partial result matrix shown
in Table 9.

i T1 T2 T3 T4 si
1 − ? ? 1 1

2 ? − 1 ? 1

3 ? 1 − ? 7

4 1 ? ? − 7

Table 9: Partial result matrix belonging to the draws of s = (1, 1, 7, 7).

The partial result matrix containing the draws in Table 9 is not recon-
structible since no acceptable result for the match between T1 and T2.

If we use the classical Havel-Hakimi algorithm then the draws are between
T1 and T2, further between T3 and T4 and our greedy algorithm Draw-
Uniform-Rec reconstructs the received partial result matrix.

Another example let s = (1, 1, 8, 8, 10, 13). Then s has a unique draw se-
quence (1, 1, 2, 2, 1, 1) and a unique sport matrix shown in Table 10.

i wi di li si
1 0 1 4 1

2 0 1 4 1

3 2 2 1 8

4 2 2 1 8

5 3 1 1 10

6 4 1 0 13

Table 10: Unique sport matrix belonging to the sequence s = (1, 1, 8, 8, 10, 13).
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In this case at first E = ((2, 3), (2, 4), (1, 1), (1, 2), (1, 5), (1, 6)). The draws
allocated by HHD are shown in Table 11.

i T1 T2 T3 T4 T5 T6 si
1 − ? 1 ? ? ? 1

2 ? − ? 1 ? ? 1

3 1 ? − 1 ? ? 8

4 ? 1 1 − ? ? 8

5 ? ? ? ? − 1 10

6 ? ? ? ? 1 − 13

Table 11: Partial result matrix belonging to the draws of s = (1, 1, 8, 8, 10, 13).

The partial result matrix in Table 11 is not reconstructible since no accept-
able result for the match between T1 and T2.

5.3 Reconstruction algorithm R3 = Draw-Inner-Rec

Reconstruction algorithm R3 = Draw-Inner-Rec is an improved version of
R2: it takes into account the obligatory inner draws.

The base of Inner-Draws is the following lemma.

Lemma 39 If n ≥ 1, f = (f1, . . . , fn) is a football sequence, 1 ≤ k ≤ n and

k∑
i=1

fi < 3

(
k

2

)
, (35)

then among the teams T1, . . . , Tk there are at least⌈(
3

(
k

2

)
−

k∑
i=1

fi

)
/2

⌉
(36)

draws.

Proof. If ⌈
2

(
3

(
k

2

)
−

k∑
i=1

fi

)
/2

⌉
= q > 0, (37)

then the first k teams lost at least q points due to inner draws (or even more,
if they gathered points in the matches against the remaining teams). �
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Trying to reconstruct the sequence s = (1, 1, 8, 8, 10, 13) which was the last
example of the previous Section 5.2 Draw-Inner-Rec (see Table 10 and 11)
recognizes that s1 + s2 = 2 therefore according to Lemma 39 the obligatory
result between T1 and T2 is a draw. Then Draw-Inner-Rec finishes the
allocation of the draws as it is shown in Table 12.

1 − 1 ? ? ? ? 1

2 1 − ? ? ? ? 1

3 ? ? − 1 1 ? 8

4 ? ? 1 − ? 1 8

5 ? ? 1 ? − ? 10

6 ? ? ? 1 1? − 13

Table 12: Partial result matrix belonging to the draws of s = (1, 1, 8, 8, 10, 13)
allocated by Draw-Inner-Rec.

Using the matrix of the allocated draws shown in Table 12 Draw-Uniform-
Rec produces the complete result matrix shown in Table 13. proving that
s = (1, 1, 8, 8, 10, 13) is a football sequence.

i T1 T2 T3 T4 T5 T6 si
i T1 T2 T3 T4 T5 T6 si
1 − 1 0 0 0 0 1

2 1 − 0 0 0 0 1

3 3 3 − 1 1 0 8

4 3 3 1 − 0 1 8

5 3 3 1 3 − 0 10

6 3 3 3 1 3 − 13

Table 13: Partial result matrix belonging to the draws of s = (1, 1, 8, 8, 10, 13)
allocated by Draw-Inner-Rec.

The algorithm based on this lemma yet is is not implemented.

6 Enumeration of football sequences

There are many publications connected with the generation [5, 52, 58, 100]
and enumeration of degree sequences of graphs, e.g. [4, 5, 8, 21, 26, 49, 62,
63, 67, 72, 78, 79, 81, 87, 92, 97, 98, 105, 117]. The problems connected with
directed graphs sometimes are considered as problems of orientation of undi-
rected graphs [37, 36, 38, 39].
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The enumeration of degree [4, 21, 40, 62, 63] and score [49, 53] sequences
also has a reach literature.

The first published enumeration results connected with football score se-
quences belong to Gábor Kovács, Norbert Pataki, Zoltán Hernyák and Tamás
Hegyessy [73] who computed F(n) for n = 1, . . . , 8 in 2002. N. J. A. Sloane
in May 2007 determined F(9), then in June 2008 Min Li computed F(10).
The newest results were received by J. E. Schoenfield who computed F(11) in
September of 2008 and F(12) in December of 2008 [100].

Connected problems are the listing of all degree sequences and sampling of
degree sequences [11, 15, 28, 65, 66, 82].

Our basic method is similar as we enumerated the degree sequences of simple
graphs [62, 103].

¿From one side we try to test the elements of the possible smallest set, and
from the other side we try to use quick as possible testing and reconstruction
algorithms.

A natural idea is to investigate only the nonincreasing sequences of integers
having 0 as lower bound and 3(n− 1) as upper bound. Paul Erdős and Tibor
Gallai called such sequences regular [32]. The number of such sequences is
given by (1).

6.1 Decreasing of the number of the investigated sequences

A useful tool of the enumeration of the number of football sequences is the
decreasing of the number of the considered sequences.

In Section 4 we proposed and analyzed filtering of regular sequences with
constant, linear and quadratic time algorithms. For 14 teams we excluded more
then the half of the regular sequences by the constant time algorithms. For
13 teams the linear and quadratic algorithms left less then 10.58 percent of
the regular sequences. In Section 5 the polynomial reconstruction algorithms
decreased the fraction of the undecided regular sequences to 4.68 percent of
the regular sequences.

6.2 Backtrack filtering and accepting test

This method is due to Antal Iványi [54, 73].
The results of the filtering algorithms are summarized in Table 14.
The running time of the filtering algorithms are presented in Table 15. The

times are cumulated and contain the time necessary for the generation of the
sequences too.
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n Constant Linear Quad Backtrack = F

1 1 1 1 1
2 2 2 2 2
3 14 7 7 7
4 203 40 40 40
5 2 133 365 355 355
6 20 518 4 086 3 760 3 678
7 191 707 44 657 39 417 27 263
8 1 772 442 451 213 393 072 361 058
9 16 332 091 4 348 655 3 804 485 3 403 613

10 150 288 309 41 166 157 36 302 148 31 653 777
11 1 383 099467 387 416 935 344 012 885 292 547 199
12 12 737 278 674 3 633 749 149 3 246 651 763 2 696 619 716
13 117 411 154 292 33 821 636 274 30 405 902 165
14 1 083 421 567 482

Table 14: Numbers of sequences accepted by constant, linear and quadratic
time and Backtrack filtering algorithms for n = 1, . . . , 14 teams.

n Constant Linear Quad Backtrack = F

1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.015
7 0.016 0.031 0.042 0.172
8 0.046 0.375 0.577 52.603
9 0.468 3.572 5.772

10 4.134 34.632 54.741
11 37.612 329.816 525.752
12 343.575 3 145.494 4 998.831
13 3 142.469 30 541.260 49 035.625
14 29 438.094

Table 15: Running times of constant, linear and quadratic time filtering algo-
rithms for n = 1, . . . , 14 teams.

The individual results of the reconstruction algorithms are summarized in
Table 16.

The running times of the reconstruction algorithms are shown in Table 17.



172 A. Iványi, J. E. Schoenfield

n R1 R2 + R3 Backtrack F

1 1 0 0 1

2 2 0 0 2

3 6 1 0 7

4 18 22 0 40

5 50 305 0 355

6 137 3 460 81 3 678

7 375 33 993 2 895 37 263

8 1 023 304 349 56 909 361 058

9 2 776 2 576 124 3 403 613

10 7 498 21 453 751 31 653 777

11 20 177 177 819 555 292 547 199

12 54 127 1 476 661 425 2 696 619 716

13 144 708 12 300 060 430

Table 16: Number of (0, 3n − 3, n)-regular sequences reconstructed by recon-
struction algorithms R1, R2 + R3 and Backtrack for n = 1, . . . , 14 teams.

n R1 R3 Backtrack

2 0.000 0.000 0.000

3 0.000 0.000 0.000

4 0.000 0.000 0.000

5 0.000 0.000 0.000

6 0.000 0.015 0.015

7 0.063 0.109 0.172

8 0.546 1.264 52.603

9 5.491 15.226

10 53.880 179.249

11 522.386 2 066.323

12 4 998.831 23 429.877

13 49 035.625 261 904.750

Table 17: Running times of the R1, R3 and Backtrack reconstructing algo-
rithms for n = 1, . . . , 13 teams.
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6.3 Recursive accepting test

This method is due to Schoenfield [100]. According to this method we compare
the sequences of length n passed through the filtering and accepting tests with
the good sequences of length n− 1 whether they can be derive from them.

Since if we omit a team with its results from a football matrix of size n×n,
then we get a football matrix of size (n− 1)× (n− 1), therefore we regularly
delete the first elements of the investigated n-length sequences.

Let n ≥ 2.We suppose that when we enumerate the n-length good sequences
then we know the F(n − 1)× (n − 1) sized matrix M containing the (n − 1)-
length good sequences in lexicographically increasing order, and also know
the vector (P0, . . . , Pk), where k = b3(n − 1)/2c and Pi gives the number of
(n− 1)-length good sequences starting with i.

Let start the recursion with n = 2. Matrix M1 contains only one row (0)
and P contains one element P(1) = 1.

The constant time filtering algorithms accept only the sequences (0, 3) and
(1, 1). At first we omit 0 from the first sequence and state that the remaining
sequence (3) can be derived from (0) only if the team having zero points in
the shorter sequence wins against the omitted player. So the omitted player
has to have zero points. Since the omitted score is exactly zero, (0,3) is a good
sequence.

Then we delete the first element from the sequence (1,1) and state that the
player having zero points has to play a draw with the omitted team. Since it
has exactly one point, therefore (1,1) is also a good sequence and so F(2) = 2.

Now let n = 3. Then M2 contains two rows: (0,3) and (1,1). In this case
the filtering algorithms accept only the seven good sequences: (0,3,6), (0,4,4),
(1,1,4), (1,2,4), (1,3,4), (2,2,2) and (3,3,3).

At first we delete 0 from (0, 3, 6) and compare the remaining (3, 6) with the
known good sequences. There are thee possibilities: the first team of the good
sequence received 3, 1 or 0 points against the omitted one. If 3, then the good
sequence has to start with 0. There is only one sequence (0, 3) requiring two
losses for the omitted team. Since the omitted element is exactly zero, (0, 3, 6)
is a good sequence.

The second accepted sequence is (0, 4, 4). Omitting 0 and comparing (4, 4)
with the good sequences we get, that (1, 1) is the only potential ancestor
requiring zero points for the deleted team. Since it has exactly zero points,
(0, 4, 4) is also a good sequence.

In a similar way we can prove that the remaining five accepted sequences
are also good.
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When n = 4 then M contains seven elements and P = (1, 3, 6, 7).
Reconstruct executes this recursive step. Its additional parameters are

F(n−1): the number of (n−1)-length good sequences;MF(n−1)×(n−1): matrix of
good sequences of length n−1 (this matrix consists of submatrices containing
the good sequences having identical first element; P = (P0, . . . , Pk), where k =
k = b3(n−1)/2cand Pi is the number of n−1 length football sequences starting
with i; NF(n)×n: matrix of good sequences of length n; m = (m1, . . . ,mn−1):
the current reduced version of s; d: the current score of the deleted team.

Reconstruct(n, s, F,M, P)

01 L = 1 line 01–02: initialization of L and u
02 u = b3(n− 1)/2c
03 if s2 ≤ u // line 03-21: omitted element starts with a loss
04 j← Ps2
05 while Mj,1 == s2
06 d← 0

07 k← 2

08 while k ≤ n
09 if sk −Mj,k == 3
10 d = d+ 0
11 go to 19
12 if sk −Mj,k == 1
13 d = d+ 1
14 go to 19
15 if sk −Mj,k == 0
16 d = d+ 3
17 go to 19
18 go to 22
19 k← k+ 1
20 if d == s1
21 return L
22 if 0 ≤ s2 − 1 // line 22-40: omitted element starts with a draw
23 j← Ps2−1
24 while Mj,1 == s2 − 1
25 d← 1

26 k← 2

27 while k ≤ n
28 if sk −Mj,k == 1
29 d = d+ 1
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30 go to 38
31 if sk −Mj,k == 1
32 d = d+ 1
33 go to 38
34 if sk −Mj,k == 1
35 d = d+ 1
36 go to 38
37 go to 39
38 k = k+ 1
39 if d == s1
40 return L
41 if 0 ≤ s2 − 3 // line 41-59: omitted element starts with a win
42 j← P[s2 − 3]
43 while Mj,1 == s2 − 3
44 d← 3

45 k← 2

46 while k ≤ n
47 if sk −Mj,k == 3
48 d = d+ 3
49 go to 57
50 if sk −Mj,k == 1
51 d = d+ 1
52 go to 57
53 if sk −Mj,k == 1
54 d = d+ 1
55 go to 57
56 go to 58
57 k← k+ 1
58 if d == s1
59 return L
60 L = 0
61 return L

Table 18 shows the number of regular sequences (R(n), the number of foot-
ball sequences (F(n), the ratio (R(n + 1)/R(n)), the ratio F(n + 1)/F(n), and
the ratio (F(n)/R(n) for n = 1, . . . , 12. In this table if n ≥ 2 then R(n) is
decreasing.

Lemma 40 If n tends to infinity then R(n+ 1)/R(n) tends to 256/27.
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n R(n) R(n+1)
R(n) F(n) F(n+1)

F(n)
F(n)
R(n)

1 1 10.000 1 2.000 1.0000

2 1 8.400 2 3.500 0.2000

3 84 8.512 7 5.714 0.0833

4 715 8.655 40 8.875 0.0559

5 6188 8.769 355 10.361 0.0574

6 54264 8.859 3678 10.131 0.0678

7 480700 8.929 37263 9.689 0.0775

8 4292145 8.986 361058 9.427 0.0841

9 38567100 9.032 3403613 9.300 0.0883

10 348330136 9.070 31653777 9.242 0.0909

11 3159461968 9.103 292547199 9.217 0.0926

12 28760021745 9.131 2696619716 0.0938

13 262596783864 9.155

14 240397990420

Table 18: Number of regular and football sequences and the ratio of these
numbers for neighboring numbers of teams

Proof. According to (1)

R(n+ 1)

R(n)
=

(4n+ 1)(4n)(4n− 1)(4n− 2)

(n+ 1)(3n)(3n− 1)(3n− 2)
=
256

27
+ o(1), (38)

implying the required limit. �

If n ≥ 1 then in Table 18 F(n+ 1)/F(n) is nondecreasing. We suppose that
it tends to 1.

If 5 ≤ n ≤ 12 then F(n)/R(n) is increasing. It is easy to see that

lim
n→∞ F(n+ 1)

F(n)
≤ R(n+ 1)

R(n)
. (39)

The behavior of F(n)/R(n) is a bit surprising since the similar relative den-
sity of tournaments score sequences tends to zero (see [21]). We suppose that
F(n)/R(n) also tends to zero but the convergence is slow.
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[17] Bozóki S., J. Fülöp, L. Rónyai, On optimal completion of incomplete pairwise
comparison matrices, Math. Comput. Modelling 52 (2010) 318–333. ⇒131

[18] A. Brauer, I. C. Gentry, K. Shaw, A new proof of a theorem by H. G. Landau
on tournament matrices. J. Comb. Theory 5 (1968) 289–292. ⇒131

[19] A. R. Brualdi, K. Kiernan, Landau’s and Rado’s theorems and partial tourna-
ments, Electron. J. Combin. 16, (#N2) (2009) 6 pages. ⇒131

[20] A. R. Brualdi, J. Shen, Landau’s inequalities for tournament scores and a short
proof of a theorem on transitive sub-tournaments, J. Graph Theory 38, 4 (2001)
244–254. ⇒131

[21] J. M. Burns: The number of degree sequences of graphs PhD Dissertation, MIT,
2007. ⇒169, 170, 176

[22] A. N. Busch, G. Chen, M. S. Jacobson, Transitive partitions in realizations of
tournament score sequences, J. Graph Theory 64, 1 (2010), 52–62. ⇒131

[23] W. Chen, On the realization of a (p,s)-digraph with prescribed degrees, J.
Franklin Institute 281, (5) 406–422. ⇒133

[24] S. A. Choudum, A simple proof of the Erdős-Gallai theorem on graph sequences,
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180 A. Iványi, J. E. Schoenfield

[53] G. Isaak, Tournaments and score sequences, in ed. by D. B. West REGS in
Combinatorics, 2010, No. 7,
http://www.math.uiuc.edu/ west/regs/fifa.html ⇒130, 170
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[64] A. Iványi, S. Pirzada, Comparison based ranking, in: ed. A. Iványi, Algorithms
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Technical Report of Egerváry Research Group, TR-2011-11, Budapest. Last mod-
ification 23 April, 2012. http://www.cs.elte.hu/egres/ ⇒148, 156
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182 A. Iványi, J. E. Schoenfield

[87] T. V. Narayana, D. H. Bent, Computation of the number of score sequences in
round-robin tournaments, Canad. Math. Bull. 7, 1 (1964) 133–136. ⇒169

[88] M. Newman, A. L. Barabási, D. J. Watts, The Structure and Dynamics of Net-
works. Princeton University Press, (2006). ⇒131
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[106] L. A. Székely, L. H. Clark, R. C. Entringer. An inequality for degree sequences.
Discrete Math. 103, 3 (1992) 293–300. ⇒131

[107] M. Takahashi, Optimization Methods for Graphical Degree Sequence Problems
and their Extensions, PhD thesis, Graduate School of Information, Production
and systems, Waseda University, Tokyo, 2007. http://hdl.handle.net/2065/28387⇒132, 151

[108] J. Temesi, Pairwise comparison matrices and the error-free property of the
decision maker, CEJOR Cent. Eur. J. Oper. Res. 19, 2 (2011) 239–249. ⇒
131

[109] P. Tetali, A characterization of unique tournaments. J. Combin. Theory Ser. B
72, 1 (1998) 157–159. ⇒148

[110] A. Tripathi, H. Tyagy, A simple criterion on degree sequences of graphs. Discrete
Appl. Math. 156, 18 (2008) 3513–3517. ⇒131, 151

[111] A. Tripathi, S. Vijay, A note on a theorem of Erdős & Gallai. Discrete Math.
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