
Acta Universitatis Sapientiae

Informatica
Volume 2, Number 2, 2010

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

P. Jakubčo, S. Šimoňák, N. Ádám
Communication model of emuStudio emulation platform 117

A. Iványi, B. Novák
Testing of sequences by simulation . 135

N. Pataki
Testing by C++ template metaprograms . 154

M. Antal, L. Erős, A. Imre
Computerized adaptive testing: implementation issues 168

S. Pirzada, G. Zhou, A. Iványi
Score lists in multipartite hypertournaments 184

G. Horváth, B. Nagy
Pumping lemmas for linear and nonlinear context-free
languages .194

Z. Kátai
Modelling dynamic programming problems by generalized
d-graphs . 210

Contents Volume 2, 2010 . 231

115

Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 117–134

Communication model of emuStudio

emulation platform

Peter Jakubčo
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice

email: peter.jakubco@tuke.sk

Slavomı́r Šimoňák
Department of Computers and

Informatics
Faculty of Electrical Engineering and

Informatics
Technical University of Košice

email: slavomir.simonak@tuke.sk

Norbert Ádám
Department of Computers and

Informatics
Faculty of Electrical Engineering and

Informatics
Technical University of Košice

email: norbert.adam@tuke.sk

Abstract. Within the paper a description of communication model of
plug-in based emuStudio emulation platform is given. The platform men-
tioned above allows the emulation of whole computer systems, config-
urable to the level of its components, represented by the plug-in modules
of the platform. Development tasks still are in progress at the home in-
stitution of the authors. Currently the platform is exploited for teaching
purposes within subjects aimed at machine-oriented languages and com-
puter architectures. Versatility of the platform, given by its plug-in based
architecture is a big advantage, when used as a teaching support tool. The
paper briefly describes the emuStudio platform at its introductory part
and then the mechanisms of inter-module communication are described.

1 Introduction

Emulation is an imitation of internal structure of the system, by which we
simulate its behavior or functionality. An emulator can be implemented in

Computing Classification System 1998: D.0
Mathematics Subject Classification 2010: 68N01
Key words and phrases: emulation, plug-ins, communication

117

http://hron.fei.tuke.sk/~jakubco
http://dci.fei.tuke.sk/
http://www.fei.tuke.sk/en/faculty/
http://www.tuke.sk
mailto:peter.jakubco@tuke.sk
http://hornad.fei.tuke.sk/kpi/person/simonak/kpicard.php
http://dci.fei.tuke.sk/
http://dci.fei.tuke.sk/
http://www.fei.tuke.sk/en/faculty/
http://www.fei.tuke.sk/en/faculty/
http://www.tuke.sk
mailto:slavomir.simonak@tuke.sk
http://hornad.fei.tuke.sk/kpi/person/adam/kpicard.php
http://dci.fei.tuke.sk/
http://dci.fei.tuke.sk/
http://www.fei.tuke.sk/en/faculty/
http://www.fei.tuke.sk/en/faculty/
http://www.tuke.sk
mailto:norbert.adam@tuke.sk

118 P. Jakubčo, S. Šimoňák, N. Ádám

a form of software, which emulates computer hardware its architecture and
functionality as well.

Development of a fully-fledged emulator is connected with many areas of
computer science, like a theory of compilers (needed mainly at instructions
decoding in emulated processor), theory of emulation (includes different al-
gorithms of emulation, methods of abstraction of real hardware into its soft-
ware model), programming languages and programming techniques (required
for performance improvements) and obviously detailed knowledge of emulated
hardware.

The goal of our effort connected with the emuStudio was an emulation plat-
form able to emulate different computers, which are similar by their structure.
Such a tool was intended to be a valuable utility supporting the teaching pro-
cess in areas like machine-oriented languages and computer architectures, so
simplicity and configurability were the properties also considered. Thanks to
the universal model of plug-in communication, we were able to create emula-
tors of different computers like a real MITS Altair8800 [7] in two variations,
or an abstract RAM machine [6], and others. More information on this topic
can be found in [8, 4].

Not too much universal emulators are available nowadays. Partial success
with standardizing emulated hardware was achieved within a project M.A.M.E.
[2], which is oriented toward preserving historical games for video game con-
soles. In 2009 a medium scale research project co-financed by the European
Union’s Seventh Framework Programme started with the aim to develop an
Emulation Access Platform (KEEP) [3]. As far as we know, the ability provided
by the emuStudio platform to choose the configuration of emulated system by
the user dynamically is unique.

2 Architectures for emulation

Computer architecture is a system characteristic, which unifies the function
and the structure of its components [5]. Most widely known architectures are
Harvard architecture [9] and Princeton architecture (also known as von Neu-
mann architecture) [1], which is the core of most modern computers.

Versatility of the platform is oriented towards a liberty in choosing the
configuration, rather than architecture of emulated computer. Configuration
choice is given by the selection of components (plug-in modules) and their
connections (a way of communication).

As a basic architecture for emulation, the von Neumann architecture type

Communication model of emuStudio emulation platform 119

CPU OP. MEMORY

I/O DEVICES

Figure 1: Computer architecture of von Neumann type

was chosen (Figure 1). Communication model (methods, protocol) thus was
adapted for this type of architecture.

The core component of the architecture is a processor (CPU), which ex-
ecutes instructions, communicates with main memory, from which it fetches
instructions to execute. Main memory, except the instructions mentioned, also
stores data. CPU also communicates with peripheral devices. An extension of
the emulator, compared to a basic von Neumann concept is that peripheral
devices are allowed to communicate each other without the interaction of CPU
and also with main memory.

The selection of computer configuration to emulate is left to the user. Re-
quired configuration thus can be composed by picking and connecting available
components by the user. From the configuration composed a platform creates
an instance, when the one is selected at the startup. By this selection, the
virtual architecture arises, ready for emulation.

CPU

INSTRUCTIONS

I/O DEVICES

DATA

Figure 2: Computer architecture of Harvard type

120 P. Jakubčo, S. Šimoňák, N. Ádám

The fact that the communication model is adapted for configurations of von
Neumann type, does not guarantee any support for creating architectures of
different type, but also it does not exclude it. As an example can serve the
implementation of RAM machine emulator at our platform, which in fact uses
the architecture of Harvard type.

Main difference between the two architectures mentioned is, that computers
with Harvard architecture (Figure 2) use two types of memory first for storing
instructions, second for storing data.

3 The structure of the platform

Basic components of a computer from any of architecture types mentioned
above can be subdivided into three types:

• Processor (CPU),

• Operating memory,

• Input/output peripheral devices.

Particular components of real computers are interconnected by communi-
cation elements, like buses. Except that, components make use a number of
support circuits, performing auxiliary functions.

When abstractions of real computers are considered (what emulators surely
are), such elements usually are omitted, because they are not essential for
proper functionality at given level of abstraction. Although emulation of buses
would take us closer to real computer structure, the communication of compo-
nents emulated would be non-effective (bus as a useless component in between
other components) and can introduce possible difficulties (e.g. when data of
greater size than the bus width are to be transferred). That’s why buses are
not used and components emulated use different way of communication (e.g.
direct call of components’ operations). When identifying, what would be and
what would be not implemented in an emulator, it is necessary to take into
account the emulator properties required. When, for example, the communi-
cation path tracking is required, then emulation of buses and communication
elements is necessary.

The structure of emuStudio platform is depicted in Figure 3. Within the
scheme, the arrow direction has the following meaning: let’s have two objects
O1 and O2 from the scheme. When the arrow points from O1 to O2, (O1 →
O2), then object O1 is allowed to call operations of object O2, but not in the

Communication model of emuStudio emulation platform 121

Configuration

file

COMPILER

ARCHITECTURELOADER ARCHITECTUREEDITOR

ARCHITECTUREHANDLER SOURCECODEEDITOR

EMULATIONCONTROLLER

CPU

DEVICE1 DEVICE2

OP. MEMORY

MAIN MODULE

DEVICECONTEXTDEVICECONTEXT

MEMORYCONTEXTCPUCONTEXT

Figure 3: The structure of emuStudio platform

opposite direction (O2 only can return the result of an operation). According
to the scheme, four types of plug-in modules exist in the platform:

• Processors (CPU),
• Memories,
• Input/output peripheral devices,
• Compilers.

The emuStudio platform is implemented using the Java programming lan-
guage, so one of advantages is the portability at a machine-code (byte-code)
level. On the other side, Java programs itself are emulated too, by the Java
virtual machine, so the emulator performance is decreased by this choice.

122 P. Jakubčo, S. Šimoňák, N. Ádám

3.1 Context

As it can be seen in Figure 3, plug-in modules, except the compiler, contain
a special component called context. Lines connecting modules, start from the
edge of the module (e.g. Device2), but point to the context of another module
(CpuContext). It means that plug-in module, which requests another one,
has no full access to this module. It can access the context of this module only.

Reasons for creating a component context are three: safety, functionality
encapsulation and allowing for non-standard functionality of plug-in modules.

Plug-in module within the emuStudio platform is safe, if its functionality
cannot be abused. We mean by this the functionality of module itself (e.g.
unwanted change of internal parameters of the module, defined by the user),
but also the functionality of the platform as a whole (e.g. controlling the
emulation, terminating the application, or unwanted ”dynamic” changes in
virtual configuration).

For that reason the main module is the only one that has an access to all
plug-in operations, and plug-ins consider the main module to be trusted.

Besides, communication model and API (Application programming inter-
face) of plug-ins are open and free, so practically the plug-ins can be designed
by anyone, by what the credibility of plug-in decreases. The safe functionality
therefore should be separated, what has implied to context creation.

On the other hand, it is also not good idea if the plug-ins allow to use a
functionality by another plug-ins that the other side doesn’t need. The trans-
parency fades out and there again arises the risk of improper use of the op-
erations. The encapsulation principle used in Object oriented programming
paradigm therefore claims to hide such operations, what is solved by the use
of the context, too.

It is enough if the context will define only the standard functionality (in
the form of communication operations) for plug-ins of equal types. However a
situation can arise there, wherein this communication standard doesn’t have
to universally cover all the requirements of each concrete plug-in.

The context is therefore an ideal environment, where such non-standard
functionality can be implemented. The fact that the context is realized inside
a plug-in, enables to add operations that are not included in the standard
context, into the plug-in implementation. Plug-ins that use the non-standard
functionality have to know the form of a non-standard context - otherwise
they cannot use the non-standard functionality.

Communication model of emuStudio emulation platform 123

3.2 Main module

The core of the platform is the main module. It consists of several components:

ArchitectureLoader - the configuration manager. It manages configuration
file (stores and loads defined computer configurations), and creates an in-
stance of virtual configuration (through ArchitectureHandler com-
ponent).

ArchitectureEditor - configuration editor. The user uses this component
to choose and connect components of defined computer architecture.
This selection and connection is realized in a visual way by drawing of
abstract schemas. The component allows creating, editing and deleting
the abstract schemas, and it cooperates with ArchitectureLoader
component.

ArchitectureHandler - the virtual architecture instance manager. It offers
plug-ins instances to other components (other plug-ins) and implements
an interface for storing/loading of plug-ins’ settings.

SourceCodeEditor - the source code editor. It allows creating and editing
the source code for chosen compiler, it supports syntax highlighting,
rows labeling and directly communicates with the compiler (through
ArchitectureHandler component).

EmulationController - the emulation manager. It controls the whole em-
ulation process, and it stands in the middle of the interaction between
virtual architecture and the user.

3.3 Compiler

The compiler plug-in represents a translator of source code into a machine
code for concrete CPU. The structure of compiler’s language is not limited at
all, therefore the language doesn’t have to be an assembler.

The compiler is chosen by the user in the configuration design process of
emulated computer (such as other components are). The logical is a choice
of compiler that compiles the source code into machine code for a processor
chosen.

The output of the compiler should be a file with a machine code and op-
tionally the output is redirected into operating memory, too. It depends on a
concrete compiler, how the output will be realized.

124 P. Jakubčo, S. Šimoňák, N. Ádám

3.4 CPU

Central processing unit (CPU) is a component of digital computer that in-
terprets instructions of computer program and process data. CPU provides
fundamental computer property of programmability, and it is one of the most
significant components found in computers of each era, together with operating
memory and I/O devices.

CPU plug-in represents a virtual processor. It is a base for whole emulation,
because the control of emulation run in the main module actually means the
control of processor run. The main activity of a CPU is the instruction execu-
tion. These instructions can be emulated by arbitrary emulation technique [8]
(depending on implementation of a concrete plug-in).

The plug-in contains a special component called processor context, opera-
tions of what are specific for concrete CPU (besides the standard operations,
there can be specified more operations by the programmer). Devices that need
to have an access to the CPU get only its context available. Therefore the con-
text for devices represents a ”sandbox” that prohibits interfering with sensible
settings and the control of processor’s run. If such a device has to be connected
with CPU, the context should contain operations that allow device connec-
tions.

3.5 Operating memory

The operating memory (OP) represents a virtual main store (storage space
for data and instructions). Generally an OP consists from cells, where format,
type, size and value of cells are not closely defined. Cells are placed sequentially,
therefore it is possible to determine unique location of any cell in the memory
(the location is called an address).

OP contains a component called memory context that besides the standard
operations (reading from and writing to memory cells) can include specific
operations (e.g. support of segmentation, paging and other techniques), too,
of a concrete plug-in.

Devices (and a compiler) that need to have an access to OP (e.g. devices
that use direct access into memory), get only this memory context. Devices
get the context in a virtual architecture initialization process, and compiler
(when needs to write compiled code directly into memory) when calling the
compile method. Therefore operations in the context have to be safe (from
usability’s point of view) for other plug-ins.

Communication model of emuStudio emulation platform 125

3.6 Peripheral devices

Peripheral devices are virtual devices that emulate functionality of real devices.
Generally the purpose of the devices is not closely defined, nor standardized,
so plug-ins do not really need represent real devices.

The main idea of device communication is that all information within the
communication process go into the device though its input(s) and go out from
the device as one or more outputs. The devices then can be input, output, or
input/output.

In some detail (that detail is not limited), the devices can work indepen-
dently (and reacts to events of connected plug-ins), eventually interacts with
the user. Devices can communicate with CPU, and/or OP, and/or other de-
vices.

The communication model supports hierarchical device connections (the
devices are therefore enabled to communicate to each other without the CPU
attention/support).

Every device (following the Figure 3) contains one or more components,
called device context. The device context can be extended by a concrete plug-
in with non-standard operations. Other devices that need an access to this
device get one or more contexts of the device (that mechanism ensures that
one device can be connected to more devices). The operations available in the
context have to be safe (from usability’s point of view) for other plug-ins.

4 Communication realization in emuStudio
platform

As could be seen, plug-in contexts solve some concrete problems of communi-
cation module. In this section, communication model will be described in more
detail, and a way how the communication is realized between the main module
and plug-ins. The communication model represents a collection of standard-
ized methods, and by calling of them individual sides will communicate with
each other.

Let’s consider two objects that want to communicate with each other. In the
case when communication sides are independent and separated systems (one
side cannot directly call the other side), it is necessary to design a communica-
tion protocol and realization mechanism of the communication (e.g. medium)
that are somewhat ”bridge above the communication gap” (e.g. network) be-
tween the objects (Figure 4).

126 P. Jakubčo, S. Šimoňák, N. Ádám

Communication runs

using communication

protocol

Object 2Object 1

System1 System2

Figure 4: Communication realization between two independent and separated
objects

The other case arises if the first object can directly access to the second
object. The communication in this case will run directly, i.e. objects will di-
rectly call operations of the other objects. If the objects are separated and
independent, two questions can arise.

At first, how the objects get access to other objects? The solution is to
use another, third system, that will cover both subsystems (where the objects
reside), or if you like will have direct access to both communicating objects,
and the system will provide these objects each to another. Just in that way
the communication in emuStudio platform works (Figure 5).

ArchitectureHandler

Object 1 Object 2

Main module

Plug-in1 Plug-in2

Interface1Interface2

implements

implements

Library

Figure 5: Communication realization in emuStudio platform

The second question is, how can the objects communicate together, that
truly are of the same type, but belong to different systems with different
implementations?

Communication model of emuStudio emulation platform 127

The solution is to create a standard model of operations that all the ob-
jects of given type will implement and it will be well-known to all objects.
This model has to unify both the syntax and semantics of communication
operations.

The main module represents a system of higher level, covering subsystems
plug-ins. The objects of plug-ins the main module will get in virtual architec-
ture instance creation process.

Communication operations are well-known both by the main module and
by plug-ins. This is ensured by the fact that prototypes of the operations
lies in external library, where the access is granted to both the main module
and plug-ins. The operations are ordered according to the plug-in type into
interfaces (an interface is defined as a structure containing a list of operations
without their implementation). Each plug-in type has its own set of interfaces
that corresponding plug-in has to implement.

4.1 External library structure

Figure 6 shows the structure of the external library, and contains all the pro-
totypes (interfaces) for plug-ins.

Besides the packages and interfaces intended for the plug-ins to use, it con-
tains a class called runtime.StaticDialogs, too. The class contains static
methods that should disburden the plug-ins from common, fundamental and
very often used methods implementation.

4.2 Standard operations – Compiler

Every compiler generally consists of these parts:

• Lexical analyzer,
• Syntactic analyzer (parser) that builds abstract syntactic tree,
• Semantic analyzer that verifies types usage and other semantic informa-

tion,
• Code generator that generates a machine code using abstract syntactic

tree.

Only some of these parts are important for interaction with the main mod-
ule and plug-ins. Lexical and syntactic analyzer need to have the access to
the source code itself. Semantic analyzer can work with knowledge gained
from the phase of syntactic analysis (abstract syntactic tree), it means that

128 P. Jakubčo, S. Šimoňák, N. Ádám

plugins

runtime

memory device

StaticDialogs

+showErrorMessage(message:String):void

+showMessage(message:String):void

+getModelVersion():int

+getModelMinor():int

IMemory IMemoryContext IDevice IDeviceContext

ISettingsHandler IPlugin IContext

ILexer ICompiler ICPU ICPUContext

IDebugColumnIMessageReporterIToken

compiler cpu

Figure 6: Library structure

semantic analyzer won’t be in direct interaction with main module or other
plug-ins. Therefore it is possible to skip all considerations of assigning it into
a communication model.

Machine code generator can have an access to operating memory, too if the
user asks to redirect the compiler output into operating memory. On the other
hand, the main module needs to have an access to lexical analyzer, in order
to make possible to use syntax highlighting in source code editor. Finally, the
main module needs to call the compile operation itself.

Communication model of emuStudio emulation platform 129

In Table 1 basic standard operations are described that are important from
the communication point of view.

Operation Description
Compile Source code compiling
GetLexer Gets an lexical analyzer object
GetStartAddress Gets absolute starting address of compiled program.

The address can be later used as starting address for
the program counter after the CPU Reset signal.

Table 1: Standard compiler operations

4.3 Standard CPU operations

Processor, or if you like the CPU, is a core of the architecture. It realizes
the execution of the whole emulation, because its main activity is instruction
execution. It also interacts with peripheral devices and with operating memory.
Communication model does not limit the usage of the emulation technique for
the processor emulation.

The CPU plug-in in the emuStudio platform besides the emulation itself,
it has to co-operate with the user by the interaction using debugger and
status windows (however operations related to the interaction will not be de-
scribed here). In the status window the CPU should show the values of its
registers, flags, actual CPU’s running state and eventually other character-
istics. The plug-in includes complete status window implementation so with
different CPU the content of the status window will change accordingly.

Generally each CPU plug-in consists of following parts:

• The processor emulation implementation,
• Processor context that extends its functionality,
• Instruction disassembler,
• Status window GUI.

The CPU plug-in design demands the programmer to know the hardware
that he is going to implement and to ”answer the questions correctly” when
the interface methods implementation are considered.

The work-flow cycle of each processor plug-in for the emuStudio platform
is shown in Figure 7. As it can be seen from the figure, the processor can
be found in one of four states. The Reset state is that state in which the

130 P. Jakubčo, S. Šimoňák, N. Ádám

processor re-initializes itself and immediately after finishing that it sets itself
to the Breakpoint state.

For the processor execution only the three states are meaningful:

• Breakpoint - the processor is temporally inactive (paused)
• Running - the processor is running (executing instructions)
• Stopped - the processor is stopped (waits for Reset signal)

RESET

RUNNING

BREAKPOINT

STOPPED

Start

End

End of emulation?

[pause]

[stop]

[run]

[stop]

[yes]

[no]

Figure 7: Processor work-flow cycle

The Table 2 describes basic operations to control the processor execution in
the communication model. These operations tell how the CPU behavior can be
influenced. However all of the operations are not supported in the real CPU’s
world and by contrast there definitely exist some CPU control operations that
are not covered by the communication model. But mostly such operations are
not common for all CPUs; therefore their support is optional within the scope
of CPU context.

4.4 Standard operations – Operating memory

Operating memory (OP) is not a computer component that directly affects
other computer components. It means that the memory is not “demanding”
for services it is not acting like a communication initiator with the CPU, nor
with the other devices (according to von Neumann conception). This fact is
covered by the communication model all connections with the OP are one-
directional, and the OP is always plugged into the device (or into a processor),
and not in the other way. It means that the device (or processor) can use

Communication model of emuStudio emulation platform 131

Operation Description
Reset Re-initialization. The operation sets the CPU into a state in

which it should be right after CPU launch (Reset in
Figure 7).

Step Emulation step. The CPU executes one instruction and then
returns to the Breakpoint state.

Stop The operation stops running or paused emulation. The CPU
leads itself into a state in which it is not able to execute
instructions anymore, till its reset (Stopped in Figure 7).

Pause Block/pause running emulation. The CPU leads itself to a
state in which it stops to execute instructions, but its state
(register values, flags and other settings) is unchanged after
the last executed instruction (Breakpoint in Figure 7).
From this state the CPU can be launched again.

Execute The operation launches paused/blocked emulation. The CPU
leads itself to a state in which permanently executes instructions
(Running in Figure 7). The stop of the CPU in this state can
be activated by the user, otherwise the CPU stops spontaneously
(e.g. after the execution of halt instruction).

Table 2: Some of the standard CPU operations

services of OP, but the OP cannot use services of the device the OP doesn’t
need to have an access to any plug-in.

The programmers can use the memory context also for the implementation
of methods that allow attaching devices into operating memory. Such type of
connection can be useful, if a device needs to be informed of the OP changed
status (e.g. DMA technology).

Each OP implementation has to include a graphical user interface (GUI)
so each memory should provide a graphical view to its content for a user (the
content is represented by the values of its cells) and eventually to provide
another manipulation with memory (e.g. address or value searching, memory
content export into a file, etc.). Executed processor instructions description
and the graphical view of memory content are basic interaction resources that
the user has a contact with.

Summarizing previous paragraphs there can be named all components that
each OP plug-in must contain:

• Memory context,

132 P. Jakubčo, S. Šimoňák, N. Ádám

• Implementation of main interface - the memory functionality itself,

• Graphical user interface (GUI).

Basic operations that have to be implemented in each operating memory
are described in Table 3.

Operation Description
Read Reading from operating memory - either one or more cells at

once starting from given address.
Write Writing into operating memory - either one or more cells at

once starting from given address.
ShowGUI The operation shows graphical user interface (GUI) of

memory content.

Table 3: Some of the operating memory standard operations

4.5 Standard operations - Peripheral devices

There are known input, output and input-output devices. Their category can
be identified easily according to a way how they are connected with other com-
ponents of the configuration and to the direction of the connection (direction
of data flow).

It is possible to implement virtual devices that communicate with real de-
vices, but also fictive and abstract devices can be implemented. The device
can interact with the user through its own graphical interface (GUI). Not all
devices have to have GUI, but on the other hand there are such devices that
their input and/or output are realized using the user interaction (e.g. termi-
nals, displays). The devices can communicate with CPU, OP and with other
devices, too.

A single device can be connected multiple times with other components.
For this reason the devices can have several contexts, with possible different
implementations. For example a serial card can have several physical ports,
into which it is possible to plug in various devices (into each port can be
plugged a single device, and each port is represented by a single context).

Communication model solves the following problems:

• How to connect devices to each other,

• How to realize input/output.

Communication model of emuStudio emulation platform 133

The basic idea of interconnection of two devices in the meaning of implemen-
tation is their contexts exchange with each other. All input/output operations
that the devices will use for the communication resides in the context. In such
a way the bidirectional connection is realized. Each device contains an oper-
ation intended for attaching of another device (op. attachDevice), that as a
parameter takes the context of connecting device. This connection operation
does not reside in the context, in order to ensure that the plug-ins couldn’t
change the structure of the virtual architecture. The connection job itself does
the main module that performs the interconnection only in the virtual archi-
tecture creation process.

The input and output operations (in and out) reside in the device context,
because by calling them the communication is performed. Transferred data
type in these operations is not specified in the communication model, but it is
defined by the plug-ins. The java Objects are therefore transferred (they are
returned by the in method and the out method uses it as a parameter).

5 Conclusions

As far as we know, the emuStudio platform is the first attempt of the imple-
mentation of both the universal and interactive emulation platform with the
emulated components realized via plug-ins. In the present time the platform
is used as a teaching support tool for chosen subjects at the Department of
Computers and Informatics, Faculty of Electrical Engineering and Informat-
ics, Technical University of Košice, Slovakia, in its still expanding form for
more than two years.

The versatility and configurability allows creating plug-ins of various lev-
els of quality and purpose - they can be intended for pedagogic or even for
scientific purposes - e.g. the implementation of plug-ins that emulate the real
hardware with the support of measurement of various characteristics, or as
one of the phases of design of new hardware or for its testing, etc.

For ensuring the platform’s versatility it is important to stabilize the require-
ments, to standardize components and mainly to design a way of communica-
tion in the form of communication protocol, language or other mechanism.

The paper describes the mechanism of communication used in the emuStu-
dio platform at the basic level. The communication mechanism still is not in
its final form. Till the present time the 8-bit architectures (MITS Altair8800
and its modification) and two abstract machines (Random Access Machine,
BrainDuck - our own architecture) are implemented only.

134 P. Jakubčo, S. Šimoňák, N. Ádám

We believe that in the future the platform will be enhanced and the com-
munication model finished and formally verified. There still is a free space for
expanding the platform by adding new emulated computer architectures.

References

[1] J. von Neumann, First Draft of a Report on the EDVAC, 1945. ⇒118

[2] N. Salmoria et al., MAME. The official site of the MAME development
team. ⇒118

[3] E. Freyre et al., Keeping emulation environments portable (KEEP). ⇒
118

[4] P. Jakubčo, S. Šimoňák, emuStudio – a plugin based emulation platform,
J. Information, Control and Management Systems, 7, 1 (2009) 33–46. ⇒
118

[5] M. Jeľsina, Architectures of computer systems: principles, structuring or-
ganisation, function (in Slovak), Elfa, Košice, 2002, 567 p. ⇒118

[6] T. Kasai, Computational complexity of multitape Turing machines and
random access machines, Publ. Res. Inst. Math. Sci., 13, 2 (1977) 469–
496. ⇒118

[7] MITS, Inc., Altair 8080 Operators Manual , 1975. ⇒118

[8] S. Šimoňák, P. Jakubčo, Software based CPU emulation, Acta Electrotech-
nica et Informatica, 8, 4 (2008) 50–59. ⇒118, 124

[9] L. Vokorokos et al., Digital computer principles (in Slovak), Elfa, Košice,
2008, 322 p. ⇒118

Received: March 12, 2010 • Revised: June 25, 2010

http://en.wikipedia.org/wiki/John_von_Neumann
http://www.virtualtravelog.net/entries/2003-08-TheFirstDraft.pdf
http://mamedev.org/
http://cordis.europa.eu/fetch?CALLER=FP7_PROJ_EN&ACTION=D&DOC=1&CAT=PROJ&QUERY=011f37a73b31:61ba:091d22f8&RCN=89496
http://hron.fei.tuke.sk/~jakubco
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.prims/1195189815
http://www.kurims.kyoto-u.ac.jp/~prims/
http://www.classiccmp.org/dunfield/altair/d/88opman.pdf
http://hron.fei.tuke.sk/~jakubco

Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 135–153

Testing of sequences by simulation

Antal Iványi
Eötvös Loránd University

Department of Computer Algebra
H-1117, Budapest, Hungary

Pázmány sétány 1/C
email: tony@compalg.inf.elte.hu

Balázs Novák
Eötvös Loránd University

Department of Computer Algebra
H-1117, Budapest, Hungary

Pázmány sétány 1/C
email: psziho@inf.elte.hu

Abstract. Let ξ be a random integer vector, having uniform distribution

P{ξ = (i1, i2, . . . , in) = 1/nn} for 1 ≤ i1, i2, . . . , in ≤ n.

A realization (i1, i2, . . . , in) of ξ is called good, if its elements are dif-
ferent. We present algorithms Linear, Backward, Forward, Tree,
Garbage, Bucket which decide whether a given realization is good.
We analyse the number of comparisons and running time of these algo-
rithms using simulation gathering data on all possible inputs for small
values of n and generating random inputs for large values of n.

1 Introduction

Let ξ be a random integer vector, having uniform distribution

P{ξ = (i1, i2, . . . , in)} = 1/nn

for 1 ≤ i1, i2, . . . , in ≤ n.
A realization (i1, i2, . . . , in) of ξ is called good, if its elements are different.

We present six algorithms which decide whether a given realization is good.
This problem arises in connection with the design of agricultural [4, 5, 57, 72]

and industrial [34] experiments, with the testing of Latin [1, 9, 22, 23, 27, 32,

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 68M20
Key words and phrases: random sequences, analysis of algorithms, Latin squares, sudoku
squares

135

http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
mailto:tony@compalg.inf.elte.hu
http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
mailto:psziho@inf.elte.hu

136 A. Iványi, B. Novák

53, 54, 63, 64] and sudoku [3, 4, 6, 12, 13, 14, 15, 16, 17, 20, 21, 22, 26, 29,
30, 31, 41, 42, 44, 46, 47, 51, 55, 59, 61, 64, 66, 67, 68, 69, 70, 72, 74] squares,
with genetic sequences and arrays [2, 7, 8, 18, 24, 28, 35, 36, 37, 38, 45, 48,
49, 50, 56, 65, 71, 73, 75], with sociology [25], and also with the analysis of the
performance of computers with interleaved memory [11, 33, 39, 40, 41, 43, 52].

Section 2 contains the pseudocodes of the investigated algorithms. In Section
3 the results of the simulation experiments and the basic theoretical results
are presented. Section 4 contains the summary of the paper.

Further simulation results are contained in [62]. The proofs of the lemmas
and theorems can be found in [43].

2 Pseudocodes of the algorithms

This section contains the pseudocodes of the investigated algorithms Linear,
Backward, Forward, Tree, Garbage, and Bucket. The psudocode con-
ventions described in the book [19] written by Cormen, Leiserson, Rivest, and
Stein are used.

The inputs of the following six algorithms are n (the length of the sequence
s) and s = (s1, s2, . . . , sn), a sequence of nonnegative integers with 0 ≤ si ≤ n
for 1 ≤ i ≤ n) in all cases. The output is always a logical variable g (its value
is True, if the input sequence is good, and False otherwise).

The working variables are usually the cycle variables i and j.

2.1 Definition of algorithm Linear

Linear writes zero into the elements of an n length vector v = (v1, v2,

. . . , vn), then investigates the elements of the realization and if v[si] > 0

(signalising a repetition), then stops, otherwise adds 1 to v[s[i]].

Linear(n, s)

01 g← True
02 for i← 1 to n
03 do v[i]← 0

04 for i← 1 to n
05 do if v[s[i]] > 0
06 then g← False
07 return g
08 else v[s[i]]← v[s[i]] + 1

09 return g

Testing of sequences by simulation 137

2.2 Definition of algorithm Backward

Backward compares the second (i2), third (i3), . . . , last (in) element of the
realization s with the previous elements until the first collision or until the
last pair of elements.

Backward(n, s)

01 g← True
02 for i← 2 to n
03 do for j← i− 1 downto 1
04 do if s[i] = s[j]

05 then g← False
06 return g
07 return g

2.3 Definition of algorithm Forward

Forward compares the first (s1), second (s2), . . . , last but one (sn−1) element
of the realization with the following elements until the first collision or until
the last pair of elements.

Forward(n, s)

01 g← True
02 for i← 1 to n− 1

03 do for j← i+ 1 to n
04 do if s[i] = s[j]

05 then g← False
06 return g
07 return g

2.4 Definition of algorithm Tree

Tree builds a random search tree from the elements of the realization and
finishes the construction of the tree if it finds the following element of the
realization in the tree (then the realization is not good) or it tested the last
element too without a collision (then the realization is good).

Tree(n, s)

01 g← True
02 let s[1] be the root of a tree
03 for i← 2 to n

138 A. Iványi, B. Novák

04 if [s[i] is in the tree
05 then g← False
06 return
07 else insert s[i] in the tree
08 return g

2.5 Definition of algorithm Garbage

This algorithm is similar to Linear, but it works without the setting zeros
into the elements of a vector requiring linear amount of time.

Beside the cycle variable i Garbage uses as working variable also a vector
v = (v1, v2, . . . , vn). Interesting is that v is used without initialisation, that is
its initial values can be arbitrary integer numbers.

The algorithm Garbage was proposed by Gábor Monostori [58].

Garbage(n, s)

01 g← True
02 for i← 1 to n
03 do if v[s[i]] < i and s[v[s[i]]] = s[i]

04 then g← False
05 return g
06 else v[s[i]]← i

07 return g

2.6 Definition of algorithm Bucket

Bucket handles the array Q[1 : m, 1 : m] (where m = d
√
ne and puts the

element si into the rth row of Q, where r = dsi/me and it tests using linear
search whether sj appeared earlier in the corresponding row. The elements of
the vector c = (c1, c2, . . . , cm) are counters, where cj (1 ≤ j ≤ m) shows the
number of elements of the ith row.

For the simplicity we suppose that n is a square.

Bucket(n, s)

01 g← True
02 m← √n
03 for j← 1 to m
04 do c[j]← 1

05 for i← 1 to n
06 do r← ds[i]/mem

Testing of sequences by simulation 139

07 for j← 1 to c[r] − 1

08 do if s[i] = Q[r, j]

09 then g← False
10 return g
11 else Q[r, c[r]]← s[i]

12 c[r]← c[r] + 1

13 return g

3 Analysis of the algorithms

3.1 Analysis of algorithm Linear

The first algorithm is Linear. It writes zero into the elements of an n length
vector v = (v1, v2, . . . , vn), then investigates the elements of the realiza-
tion sequentially and if ij = k, then adds 1 to vk and tests whether vk > 0

signalizing a repetition.
In best case Linear executes only two comparisons, but the initialization of

the vector v requires Θ(n) assignments. It is called Linear, since its running
time is Θ(n) in best, worst and so also in expected case.

Theorem 1 The expected number Cexp(n,Linear) = CL of comparisons of
Linear is

CL = 1−
n!

nn
+

n∑
k=1

n!k2

(n− k)!nk+1

=

√
πn

2
+
2

3
+ κ(n) −

n!

nn
,

where

κ(n) =
1

3
−

√
πn

2
+

n∑
k=1

n!k

(n− k)!nk+1

tends monotonically decreasing to zero when n tends to infinity. n!/nn also
tends monotonically decreasing to zero, but their difference δ(n) = κ(n) −

n!/nn is increasing for 1 ≤ n ≤ 8 and is decreasing for n ≥ 8.

Theorem 2 The expected running time Texp(n,Linear) = TL of Linear is

TL = n+
√
2πn+

7

3
+ 2δ(n),

140 A. Iványi, B. Novák

n CL
√
πn/2+ 2/3 n!/nn κ(n) δ(n)

1 1.000000 1.919981 1.000000 0.080019 −0.919981

2 2.000000 2.439121 0.500000 0.060879 −0.439121

3 2.666667 2.837470 0.222222 0.051418 −0.170804

4 3.125000 3.173295 0.093750 0.045455 −0.048295

5 3.472000 3.469162 0.038400 0.041238 +0.002838

6 3.759259 3.736647 0.015432 0.038045 +0.022612

7 4.012019 3.982624 0.006120 0.035515 +0.029395

8 4.242615 4.211574 0.002403 0.033444 +0.031040

9 4.457379 4.426609 0.000937 0.031707 +0.030770

10 4.659853 4.629994 0.000363 0.030222 +0.029859

Table 1: Values of CL,
√
πn/2 + 2/3, n!/nn, κ(n), and δ(n) = κ(n) − n!/nn

for n = 1, 2, . . . , 10

where
δ(n) = κ(n) −

n!

nn

tends to zero when n tends to infinity, further

δ(n+ 1) > δ(n) for 1 ≤ n ≤ 7 and δ(n+ 1) < δ(n) for n ≥ 8.

Table 1 shows some concrete values connected with algorithm Linear.

3.2 Analysis of algorithm Backward

The second algorithm is Backward. This algorithm is a naive comparison-
based one. Backward compares the second (i2), third (i3), . . . , last (in)

element of the realization with the previous elements until the first repetition
or until the last pair of elements.

The running time of Backward is constant in the best case, but it is
quadratic in the worst case.

Theorem 3 The expected number Cexp(n,Backward) = CB of comparisons
of the algorithm Backward is

CB = n+

√
πn

8
+
2

3
− α(n),

where α(n) = κ(n)/2+ (n!/nn)((n+ 1)/2) monotonically decreasing tends to
zero when n tends to ∞.

Testing of sequences by simulation 141

Table 2 shows some concrete values characterizing algorithm Backward.

n CB n−
√
πn/8+ 2/3 (n!/nn)((n+ 1)/2) κ(n) α(n)

1 0.000000 1.040010 1.000000 0.080019 1.040010

2 1.000000 1.780440 0.750000 0.060879 0.780440

3 2.111111 2.581265 0.444444 0.051418 0.470154

4 3.156250 3.413353 0.234375 0.045455 0.257103

5 4.129600 4.265419 0.115200 0.041238 0.135819

6 5.058642 5.131677 0.054012 0.038045 0, 073035

7 5.966451 6.008688 0.024480 0.035515 0.042237

8 6.866676 6.894213 0.010815 0.033444 0.027536

9 7.766159 7.786695 0.004683 0.031707 0.020537

10 8.667896 8.685003 0.001996 0.030222 0.017107

Table 2: Values of CB, n−
√
πn/8+2/3, (n!/nn)((n+1)/2), κ(n), and α(n) =

κ(n)/2+ (n!/nn)((n+ 1)/2) for n = 1, 2, . . . , 10

The next assertion gives the expected running time of algorithm Back-
ward.

Theorem 4 The expected running time Texp(n,Backward) = TB of the al-
gorithm Backward is

TB = n+

√
πn

8
+
4

3
− α(n),

where α(n) = κ(n)/2+ (n!/nn)((n+ 1)/2) monotonically decreasing tends to
zero when n tends to ∞.

3.3 Analysis of algorithm Forward

Forward compares the first (s1), second (s2), . . . , last but one (sn−1) element
of the realization with the next elements until the first collision or until the
last pair of elements.

Taking into account the number of the necessary comparisons in line 04 of
Forward, we get Cbest(n,Forward) = 1 = Θ(1), and Cworst(n,Forward) =

B(n, 2) = Θ(n2).
The next assertion gives the expected running time.

142 A. Iványi, B. Novák

Theorem 5 The expected running time Texp(n,Forward) = TF of the algo-
rithm Forward is

TF = n+Θ(
√
n). (1)

Although the basic characteristics of Forward and Backward are iden-
tical, as Table 3 shows, there is a small difference in the expected behaviour.

n number of sequences number of good sequences CF CW
2 4 2 1.000000 1.000000

3 27 6 2.111111 2.111111

4 256 24 3.203125 3.156250

5 3 125 120 4.264000 4.126960

6 46 656 720 5.342341 5.058642

7 823 543 5 040 6.326760 5.966451

8 16 777 216 40 320 7.342926 6.866676

9 387 420 489 362 880 8.354165 7.766159

Table 3: Values of n, the number of possible input sequences, number of good
sequences, expected number of comparisons of Forward (CF) and expected
number of comparisons of Backward (CW) for n = 2, 3, . . . , 9

3.4 Analysis of algorithm Tree

Tree builds a random search tree from the elements of the realization and
finishes the construction of the tree if it finds the following element of the
realization in the tree (then the realization is not good) or it tested the last
element too without a collision (then the realization is good).

The worst case running time of Tree appears when the input contains
different elements in increasing or decreasing order. Then the result is Θ(n2).
The best case is when the first two elements of s are equal, so Cbest(n,Tree) =

1 = Θ(1).
Using the known fact that the expected height of a random search tree is

Θ(lgn) we can get that the order of the expected running time is
√
n logn.

Theorem 6 The expected running time TT of Tree is

TT = Θ(
√
n lgn). (2)

Testing of sequences by simulation 143

n number of good inputs number of comparisons number of assignments
1 100 000.000000 0.000000 1.000000

2 49 946.000000 1.000000 1.499460

3 22 243.000000 2.038960 1.889900

4 9 396.000000 2.921710 2.219390

5 3 723.000000 3.682710 2.511409

6 1 569.000000 4.352690 2.773160

7 620.000000 4.985280 3.021820

8 251.000000 5.590900 3.252989

9 104 6.148550 3.459510

10 33 6.704350 3.663749

11 17 7.271570 3.860450

12 3 7.779950 4.039530

13 3 8.314370 4.214370

14 0 8.824660 4.384480

15 2 9.302720 4.537880

16 0 9.840690 4.716760

17 0 10.287560 4.853530

18 0 10.719770 4.989370

19 0 11.242740 5.147560

20 0 11.689660 5.279180

Table 4: Values of n, number of good inputs, number of comparisons, number
of assignments of Tree for n = 1, 2, . . . , 10

Table 4 shows some results of the simulation experiments (the number of
random input sequences is 100 000 in all cases).

Using the method of the smallest squares to find the parameters of the
formula a

√
n log2 n we received the following approximation formula for the

expected number of comparisons:

Cexp(n,Tree) = 1.245754
√
n log2 n− 0.273588.

3.5 Analysis of algorithm Garbage

This algorithm is similar to Linear, but it works without the setting zeros
into the elements of a vector requiring linear amount of time.

Beside the cycle variable i Garbage uses as working variable also a vector

144 A. Iványi, B. Novák

v = (v1, v2, . . . , vn). Interesting is that v is used without initialisation, that is
its initial values can be arbitrary integer numbers.

The worst case running time of Garbage appears when the input con-
tains different elements and the garbage in the memory does not help, but
even in this case Cworst(n,Garbage) = Θ(n). The best case is when the
first element is repeated in the input and the garbage helps to find a repe-
tition of the firs element of the input. Taking into account this case we get
Cbest(n,Garbage) = Θ(1).

According to the next assertion the expected running time is Θ(
√
n).

Lemma 7 The expected running time of Garbage is

Texp(n,Garbage) = Θ(
√
n). (3)

3.6 Analysis of algorithm Bucket

Algorithm Bucket divides the interval [1, n] into m = d
√
ne subintervals

I1, I2, . . . , Im, where Ik = [(k − 1)m + 1, km)], and assigns a bucket Bk to
interval Ik. Bucket sequentially puts the input elements ij into the corre-
sponding bucket: if ij belongs to the interval Ik then it checks whether ij is
contained in Bk or not. Bucket works up to the first repetition. (For the
simplicity we suppose that n = m2.)

In best case Bucket executes only 1 comparison, but the initialization of
the buckets requires Θ(

√
n) assignments, therefore the best running time is

also
√
n. The worst case appears when the input is a permutation. Then each

bucket requires Θ(n) comparisons, so the worst running time is Θ(n
√
n).

Lemma 8 Let bj (j = 1, 2, . . . , m) be a random variable characterising the
number of elements in the bucket Bj at the moment of the first repetition. Then

E{bj} =

√
π

2
− µ(n)

for j = 1, 2, . . . ,m, where

µ(n) =
1

3
√
n

−
κ(n)√
n
,

and µ(n) tends monotonically decreasing to zero when n tends to infinity.

Table 5 contains some concrete values connected with E{b1}.

Testing of sequences by simulation 145

n E{b1}
√
π/2 1/(3

√
n) κ(n)/

√
n µ(n)

1 1.000000 1.253314 0.333333 0.080019 0.253314
2 1.060660 1.253314 0.235702 0.043048 0.192654
3 1.090055 1.253314 0.192450 0.029686 0.162764
4 1.109375 1.253314 0.166667 0.022727 0.143940
5 1.122685 1.253314 0.149071 0.018442 0.130629
6 1.132763 1.253314 0.136083 0.015532 0.120551
7 1.147287 1.253314 0.125988 0.013423 0.112565
8 1.147287 1.253314 0.117851 0.011824 0.106027
9 1.152772 1.253314 0.111111 0.010569 0.100542
10 1.157462 1.253314 0.105409 0.009557 0.095852

Table 5: Values of E{b1},
√
π/2, 1/(3

√
n), κ(n)/

√
n, and µ(n) = 1/(3

√
n) −

κ(n)/
√
n of Bucket for n = 1, 2, . . . , 10

Lemma 9 Let fn be a random variable characterising the number of compar-
isons executed in connection with the first repeated element. Then

E{fn} = 1+

√
π

8
− η(n),

where

η(n) =
1
3 +

√
π
8 −

κ(n)
2√

n+ 2
,

and η(n) tends monotonically decreasing to zero when n tends to infinity.

Theorem 10 The expected number Cexp(n,Bucket) = CB of comparisons
of algorithm Bucket in 1 bucket is

CB =
√
n+

1

3
−

√
π

8
+ ρ(n),

where

ρ(n) =
5/6−

√
9π/8− 3κ(n)/2√
n+ 1

tends to zero when n and tends to infinity.

146 A. Iványi, B. Novák

Index and Algorithm Cbest(n) Cworst(n) Cexp(n)

1. Linear Θ(1) Θ(n) Θ(
√
n)

2. Backward Θ(1) Θ(n2) Θ(n)

3. Forward Θ(1) Θ(n2) Θ(n)

4. Tree Θ(1) Θ(n2) Θ(
√
n lgn)

5. Garbage Θ(1) Θ(n) Θ(
√
n)

6. Bucket Θ(
√
n) Θ(n

√
n) Θ(

√
n)

Table 6: The number of necessary comparisons of the investigated algorithms
in best, worst and expected cases

Theorem 11 The expected running time TB(n,Bucket) = TB of Bucket is

TB =

(
3+ 3

√
π

2

)√
n+

√
25π

8
+ φ(n),

where

φ(n) = 3κ(n) − ρ(n) − 3η(n) −
n!

nn
−
3
√
π/8− 1/3− 3κ(n)/2√

n+ 1

and φ(n) tends to zero when n tends to infinity.

It is worth to remark that simulation experiments of B. Novák [62] show
that the expected running time of Garbage is a few percent better, then the
expected running time of Bucket.

4 Summary

Table 6 contains the number of necessary comparisons in best, worst and
expected cases for all investigated algorithms.
Table 7 contains the running time in best, worst and expected cases for all
investigated algorithms.

Acknowledgements. The authors thank Tamás F. Móri [60] for proving
Lemma 8 and 9 and Péter Burcsi [10] for useful information on references,
both are teachers of Eötvös Loránd University.

The European Union and the European Social Fund have provided finan-
cial support to the project under the grant agreement no. TÁMOP 4.2.1/B-
09/1/KMR-2010-0003.

Testing of sequences by simulation 147

Index and Algorithm Tbest(n) Tworst(n) Texp(n)

1. Linear Θ(n) Θ(n) n+Θ(
√
n)

2. Backward Θ(1) Θ(n2) Θ(n)

3. Forward Θ(1) Θ(n2) Θ(n)

5. Tree Θ(1) Θ(n2) Θ(
√
n lgn)

6. Garbage Θ(1) Θ(n) Θ(
√
n)

7. Bucket Θ(
√
n) Θ(n

√
n) Θ(

√
n)

Table 7: The running times of the investigated algorithms in best, worst and
expected cases

References

[1] P. Adams, D. Bryant, M. Buchanan, Completing partial Latin squares
with two filled rows and two filled columns, Electron. J. Combin. 15, 1
(2008), Research paper 56, 26 p. ⇒136

[2] M.-C. Anisiu, A. Iványi, Two-dimensional arrays with maximal complex-
ity, Pure Math. Appl. (PU.M.A.) 17, 3–4 (2006) 197–204. ⇒136

[3] C. Arcos, G. Brookfield, M. Krebs, Mini-sudokus and groups, Math. Mag.
83, 2 (2010) 111–122. ⇒136

[4] R. A. Bailey, R. Cameron, P. J. Connelly, Sudoku, gerechte designs, reso-
lutions, affine space, spreads, reguli, and Hamming codes, American Math.
Monthly 115, 5 (2008) 383–404. ⇒135, 136

[5] W. U. Behrens, Feldversuchsanordnungen mit verbessertem Ausgleich
der Bodenunterschiede, Zeitschrift für Landwirtschaftliches Versuchs- und
Untersuchungswesen, 2 (1956) 176–193. ⇒135

[6] D. Berthier, Unbiased statistics of a constraint satisfaction problem –
a controlled-bias generator, in: S. Tarek et al. (eds.), Innovations in
computing sciences and software engineering, Proc. Second International
Conference on Systems, Computing Sciences and Software Engineering
(SCSS’2009, December 4–12, 2009, Dordrecht). Springer, Berlin, 2010.
pp. 91–97. ⇒136

[7] S. Brett, G. Hurlbert, B. Jackson, Preface [Generalisations of de Bruijn
cycles and Gray codes], Discrete Math., 309, 17 (2009) 5255–5258. ⇒
136

http://www.uq.edu.au/uqresearchers/researcher/adamsp.html
http://www.uq.edu.au/uqresearchers/researcher/bryantde.html
http://www.combinatorics.org/
http://www.ad-astra.ro/whoswho/view_profile.php?user_id=1583
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.bke.hu/puma/Contents.htm
http://www.calstatela.edu/faculty/gbrookf/
http://www.calstatela.edu/faculty/mkrebs/
http://www.jstor.org/journals/0025570X.html
http://www.maths.qmul.ac.uk/~rab/
http://www.maths.qmul.ac.uk/~pjc/
http://www.math.cornell.edu/~connelly/
http://www.jstor.org/journals/00029890.html
http://www.springer.com/
http://mingus.la.asu.edu/~hurlbert/
http://www.sciencedirect.com/science/journal/0012365X

148 A. Iványi, B. Novák

[8] A. A. Bruen, R. A. Mollin, Cryptography and shift registers, Open Math.
J., 2 (2009) 16–21. ⇒136

[9] H. L. Buchanan, M. N. Ferencak, On completing Latin squares, J. Com-
bin. Math. Combin. Comput., 34 (2000) 129–132. ⇒136

[10] P. Burcsi, Personal communication. Budapest, March 2009. ⇒146

[11] G. J. Burnett, E. G. Coffman, Jr., Combinatorial problem related to
interleaved memory systems, J. ACM, 20, 1 (1973) 39–45. ⇒136

[12] P. J. Cameron, Sudoku – an alternative history, Talk to the Archimedeans,
Queen Mary University of London, February 2007. ⇒136

[13] A. Carlos, G. Brookfield, M. Krebs, Mini-sudokus and groups, Math.
Mag., 83, 2 (2010) 111–122. ⇒136

[14] J. Carmichael, K. Schloeman, M. B. Ward, Cosets and Cayley-sudoku
tables, Math. Mag., 83, 2 (2010) 130–139. ⇒136

[15] Ch.-Ch. Chang, P.-Y. Lin, Z.-H. Wang, M.-Ch. Li, A sudoku-based secret
image sharing scheme with reversibility, J. Commun., 5, 1 (2010) 5–12.⇒136

[16] Z. Chen, Heuristic reasoning on graph and game complexity of sudoku,
ARXIV.org, 2010. 6 p. ⇒136

[17] Y.-F. Chien, W.-K. Hon, Cryptographic and physical zero-knowledge
proof: From sudoku to nonogram, in: P. Boldi (ed.), Fun with Algorithms,
(5th International Conference, FUN 2010, Ischia, Italy, June 2–4, 2010.)
Springer, Berlin, 2010, Lecture Notes in Comput. Sci., 6099 (2010) 102–
112. ⇒136

[18] J. Cooper, C. Heitsch, The discrepancy of the lex-least de Bruijn sequence,
Discrete Math., 310, 6–7 (2010), 1152–1159. ⇒136

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, Third edition. The MIT Press, Cambridge, 2009. ⇒136

[20] J. F. Crook, A pencil-and-paper algorithm for solving sudoku puzzles,
Notices Amer. Math. Soc., 56 (2009) 460–468. ⇒136

[21] G. Dahl, Permutation matrices related to sudoku, Linear Algebra Appl.,
430 (2009), 2457–2463. ⇒136

http://www.bentham.org/open/tomatj/openaccess2.htm
http://compalg.inf.elte.hu/~bupe/oktatas.html
http://www.ee.columbia.edu/~egc/
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=ACM\&dl=ACM\&CFID=44551483\&CFTOKEN=28829082
http://www.maths.qmul.ac.uk/~pjc/
http://www.maths.qmul.ac.uk/~pjc/slides/beamer/sudoku31.pdf
http://www.calstatela.edu/faculty/gbrookf/
http://www.calstatela.edu/faculty/mkrebs/
http://www.maa.org/pubs/mag_apr10_toc.html
http://www.maa.org/pubs/mag_apr10_toc.html
http://www.wou.edu/~wardm/ward.html
http://www.maa.org/pubs/mag_apr10_toc.html
http://ojs.academypublisher.com/index.php/jcm/article/viewFile/05010512/1478
http://ojs.academypublisher.com/index.php/jcm/article/viewFile/05010512/1478
http://academypublisher.com/jcm/
http://arxiv.org/abs/0903.1659
http://www.springerlink.com/content/nh874m48341k761v/
http://www.springerlink.com/content/nh874m48341k761v/
http://www.springer.com/
http://www.springerlink.com/content/105633
http://www.math.sc.edu/~cooper/
http://www.sciencedirect.com/science/journal/0012365X
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu
http://www.ams.org/notices/200904/tx090400460p.pdf
http://www.sciencedirect.com/science/journal/00243795

Testing of sequences by simulation 149

[22] J. Dénes, A. D. Keedwell, Latin squares. New developments in the theory
and applications, North-Holland, Amsterdam, 1991. ⇒136

[23] T. Easton, R. G. Parker, On completing Latin squares, Discrete Appl.
Math., 113, 2–3 (2001) 167–181. ⇒136

[24] C. H. Elzinga, S. Rahmann, H. Wung, Algorithms for subsequence com-
binatorics, Theor. Comput. Sci., 409, 3 (2008) 394–404. ⇒136

[25] C. H. Elzinga, Complexity of categorial time series, Sociological Methods
& Research, 38, 3 (2010) 463–481. ⇒136

[26] M. Erickson, Pearls of discrete mathematics, Discrete Mathematics and
its Applications, CRC Press, Boca Raton, FL, 2010. ⇒136

[27] R. Euler, On the completability of incomplete Latin squares, European
J. Combin. 31 (2010) 535–552. ⇒136

[28] S. Ferenczi, Z. Kása, Complexity for finite factors of infinite sequences,
Theoret. Comput. Sci. 218, 1 (1999) 177–195. ⇒136

[29] R. Fontana, F. Rapallo, M. P. Rogantin, Indicator function and sudoku
designs, in: P. Gibilisco, E. Ricco-magno, M. P. Rogantin, H. P. Wynn
(eds.) Algebraic and Geometric Methods in Statistics, pp. 203–224. Cam-
bridge University Press, Cambridge, 2010. ⇒136

[30] R. Fontana, F. Rapallo, M. P. Rogantin, Markov bases for sudoku grids.
Rapporto interno N. 4, marzo 2010, Politecnico di Torino. ⇒136

[31] A. F. Gabor, G. J. Woeginger, How *not* to solve a Sudoku. Operation
Research Letters, 38, 6 (2010) 582–584. ⇒136

[32] I. Hajirasouliha, H. Jowhari, R. Kumar, R. Sundaram, On completing
Latin squares, Lecture Notes in Comput. Sci., 4393 (2007), 524–535.
Springer, Berlin, 2007. ⇒136

[33] H. Hellerman, Digital computer system principles. Mc Graw Hill, New
York, 1967. ⇒136

[34] A. Heppes, P. Révész, A new generalization of the concept of latin squares
and orthogonal latin squares and its application to the design of exper-
iments (in Hungarian), Magyar Tud. Akad. Mat. Int. Közl., 1 (1956)
379–390. ⇒135

http://www.surrey.ac.uk/maths/people/donald_keedwell/
http://www.elsevier.com/wps/find/homepage.cws_home
http://www.sciencedirect.com/science/journal/0166218X
http://home.fsw.vu.nl/ch.elzinga/
http://www.sciencedirect.com/science/journal/03043975
http://home.fsw.vu.nl/ch.elzinga/
http://smr.sagepub.com/content/38/3.toc
http://www.sciencedirect.com/science/journal/01956698
http://iml.univ-mrs.fr/~ferenczi/
http://www.ms.sapientia.ro/~kasa
http://www.sciencedirect.com/science/journal/03043975
http://people.unipmn.it/rapallo/
http://www.dima.unige.it/~rogantin/
http://www.economia.uniroma2.it/sefemeq/professori/gibilisco/
http://www.dima.unige.it/~rogantin/
http://www.cambridge.org/
http://www.cambridge.org/
http://people.unipmn.it/rapallo/
http://www.dima.unige.it/~rogantin/
http://www.polito.it/index.en.php
http://www.polito.it/index.en.php
http://www.springerlink.com/content/105633
http://www.springer.com/
 http://www.mhprofessional.com/

150 A. Iványi, B. Novák

[35] M. Horváth, A. Iványi, Growing perfect cubes, Discrete Math., 308, 19
(2008) 4378–4388. ⇒136

[36] A. Iványi, On the d-complexity of words, Ann. Univ. Sci. Budapest. Sect.
Comput. 8 (1987) 69–90 (1988). ⇒136

[37] A. Iványi, Construction of infinite de Bruijn arrays, Discrete Appl. Math.
22, 3 (1988/89), 289–293. ⇒136

[38] A. Iványi, Construction of three-dimensional perfect matrices, (Twelfth
British Combinatorial Conference, Norwich, 1989). Ars Combin. 29C
(1990) 33–40. ⇒136

[39] A. Iványi, I. Kátai, Estimates for speed of computers with interleaved
memory systems, Ann. Univ. Sci. Budapest. Sect. Math., 19 (1976) 159–
164. ⇒136

[40] A. Iványi, I. Kátai, Processing of random sequences with priority, Acta
Cybern. 4, 1 (1978/79) 85–101. ⇒136

[41] A. Iványi, I. Kátai, Quick testing of random variables, Proc. ICAI’2010
(Eger, January 27–30, 2010). To appear. ⇒136

[42] A. Iványi, I. Kátai, Testing of uniformly distributed vectors, in: Abstracts
János Bolyai Memorial Conference, (Budapest, August 28–30, 2010), p.
47. ⇒136

[43] A. Iványi, I. Kátai, Testing of random matrices, Ann. Univ. Sci. Budapest.
Sect. Comput. (submitted). ⇒136

[44] A. Iványi, B. Novák, Testing of random sequences by simulation, in: Ab-
stracts 8th MACS (Komárno, July 14–17, 2010). ⇒136

[45] A. Iványi, Z. Tóth, Existence of de Bruijn words, Second Conference
on Automata, Languages and Programming Systems (Salgótarján, 1988),
165–172, DM, 88-4, Karl Marx Univ. Econom., Budapest, 1988. ⇒136

[46] I. Kanaana, B. Ravikumar, Row-filled completion problem for sudoku,
Util. Math. 81 (2010) 65–84. ⇒136

[47] Z. Karimi-Dehkordi, K. Zamanifar, A. Baraani-Dastjerdi, N. Ghasem-
Aghaee, Sudoku using parallel simulated annealing, in: Y. Tan et al.

http://www.math.bme.hu/~mhorvath/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.sciencedirect.com/science/journal/0012365X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/$\sim $tony/Kutatas/PerfectArrays/On-the-d-complexity.pdf
http://compalg.inf.elte.hu/annales/computatorica/
http://compalg.inf.elte.hu/annales/computatorica/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.sciencedirect.com/science/journal/0166218X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://www.cs.elte.hu/~annalesm/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://www.inf.u-szeged.hu/actacybernetica/
http://www.inf.u-szeged.hu/actacybernetica/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://icai.ektf.hu/index.php?p=11
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://www.bolyai150.hu/eng/?page=page&name=Organizers
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://compalg.inf.elte.hu/tanszek/katai/oktato.php?oktato=katai
http://compalg.inf.elte.hu/annales/computatorica/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
mailto:psziho@gmail.com
http://www.selyeuni.sk/macs/MACS
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.sonoma.edu/users/k/kanaana/
http://ravi.cs.sonoma.edu/
http://www.bootcampcentral.com/content.cfm?pageid=26534
http://www.springerlink.com/content/47244n0g66552576/

Testing of sequences by simulation 151

(eds.), Advances in Swarm Intelligence (Proc. First International Con-
ference, ICSI 2010, Beijing, China, June 12–15, 2010, Part II. Lecture
Notes in Comput. Sci., 6146 (2010) 461–467, Springer, Berlin, 2010. ⇒
136

[48] Z. Kása, Computing the d-complexity of words by Fibonacci-like se-
quences, Studia Univ. Babeş-Bolyai Math. 35, 3 (1990) 49–53. ⇒136

[49] Z. Kása, Pure Math. Appl. On the d-complexity of strings, (PU.M.A.) 9,
1–2 (1998) 119–128. ⇒136

[50] Z. Kása, Super-d-complexity of finite words, Proc. 8th Joint Conference
on Mathematics and Computer Science, (Komárno, Slovakia, July 14–17),
2010, To appear. ⇒136

[51] A. D. Keedwell, Constructions of complete sets of orthogonal diagonal
sudoku squares, Australas. J. Combin. 47 (2010) 227–238. ⇒136

[52] D. E. Knuth, The art of computer programming, Vol. 1. Fundamental
algorithms (third edition). Addison–Wesley, Reading, MA, 1997. ⇒136

[53] J. S. Kuhl, T. Denley, On a generalization of the Evans conjecture, Dis-
crete Math. 308, 20 (2008), 4763–4767. ⇒136

[54] S. R. Kumar S., A. Russell, R. Sundaram, Approximating Latin square
extensions, Algorithmica 24, 2 (1999) 128–138. ⇒136

[55] L. Lorch, Mutually orthogonal families of linear sudoku solutions, J. Aust.
Math. Soc., 87, 3 (2009) 409–420. ⇒136

[56] M. Matamala, F. Moreno, Minimum Eulerian circuits and minimum de
Bruijn sequences, Discrete Math., 309, 17 (2009) 5298–5304. ⇒136

[57] H.-D. Mo, R.-G. Xu, Sudoku square – a new design in field, Acta Agro-
nomica Sinica, 34, 9 (2008) 1489–1493. ⇒135

[58] G. Monostori, Personal communication, Budapest, May 2010. ⇒138

[59] T. K. Moon, J. H. Gunther, J. J. Kupin, Sinkhorn solves sudoku,IEEE
Trans. Inform. Theory , 55, 4 (2009) 1741–1746. ⇒136

[60] T. Móri, Personal communication, Budapest, April 2010. ⇒146

http://www.springerlink.com/content/105633
http://www.springer.com/
http://www.ms.sapientia.ro/~kasa
http://www.ms.sapientia.ro/~kasa
http://www.bke.hu/puma/Contents.htm
http://www.ms.sapientia.ro/~kasa
http://www.selyeuni.sk/macs/
http://www.surrey.ac.uk/maths/people/donald_keedwell/
http://ajc.maths.uq.edu.au/
http://www-cs-faculty.stanford.edu/~knuth/
http://www.pearsonhighered.com/
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science/journal/0012365X
http://www.springerlink.com/content/1432-0541/
http://journals.cambridge.org/action/displayJournal?jid=JAZ
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.ece.usu.edu/files/resumes/abet/todd_k_moon.pdf
http://portal.acm.org/citation.cfm?id=1669471
http://www.math.elte.hu/~mori/index.m.html

152 A. Iványi, B. Novák

[61] P. K. Newton, S. A. deSalvo, The Shannon entropy of sudoku matrices,
Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 466 (2010) 1957-1975.⇒136

[62] B. Novák, Analysis of sudoku algorithms (in Hungarian), MSc thesis,
Eötvös Loránd University, Fac. of Informatics, Budapest, 2010. ⇒ 136,
146

[63] L.-D. Öhman, A note on completing Latin squares, Australas. J. Combin.,
45 (2009) 117–123. ⇒136

[64] R. M. Pedersen, T. L. Vis, Sets of mutually orthogonal sudoku Latin
squares. College Math. J., 40, 3 (2009) 174–180. ⇒136

[65] R. Penne, A note on certain de Bruijn sequences with forbidden subse-
quences, Discrete Math., 310, 4 (2010) 966–969. ⇒136

[66] J. S. Provan, Sudoku: strategy versus structure, Amer. Math. Monthly ,
116, 8 (2009), 702–707. ⇒136

[67] T. Sander, Sudoku graphs are integral, Electron. J. Combin., 16, 1 (2009),
Note 25, 7 p. ⇒136

[68] Y. Sato, H. Inoue, Genetic operations to solve sudoku puzzles, Proc.
12th Annual Conference on Genetic and Evolutionary Computation
GECCO’10, July 7–11, 2010, Portland, OR, pp. 2111–21012. ⇒136

[69] M. J. Soottile, T. G. Mattson, C. E. Rasmussen, Introduction to concur-
rency in programming languages, Chapman & Hall/CRC Computational
Science Series. CRC Press, Boca Raton, FL, 2010. ⇒136

[70] D. Thom, SUDOKU ist NP-vollständig, PhD Dissertation, Stuttgart,
2007. ⇒136

[71] O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, A. Bolshoy, Se-
quence complexity profiles of prokaryotic genomic sequences: A fast algo-
rithm for calculating linguistic complexity, Bioinformatics, 18, 5 (2002)
679–688. ⇒136

[72] E. R. Vaughan, The complexity of constructing gerechte designs, Electron.
J. Combin., 16, 1 (2009), paper R15, 8 p. ⇒135, 136

[73] X. Xu, Y. Cao, J.-M. Xu, Y. Wu, Feedback numbers of de Bruijn digraphs,
Comput. Math. Appl., 59, 4 (2010), 716–723. ⇒136

http://rspa.royalsocietypublishing.org/content/466/2119/1957
http://www.inf.elte.hu
http://www.lars-daniel.se/papers/index.htm
http://ajc.maths.uq.edu.au/
http://www-math.cudenver.edu/~tvis/Research/cmj174-181.pdf
http://www.sciencedirect.com/science/journal/0012365X
http://www.jstor.org/journals/00029890.html
http://www.combinatorics.org/
http://www.sigevo.org/gecco-2010
http://www.crcpress.com/
http://www.molbio.princeton.edu/index.php?option=content&task=view&id=243
http://bioinformatics.oxfordjournals.org/
http://www.maths.qmul.ac.uk/people/308
http://www.combinatorics.org/
http://www.sciencedirect.com/science/journal/08981221

Testing of sequences by simulation 153

[74] C. Xu, W. Xu, The model and algorithm to estimate the difficulty levels
of sudoku puzzles, J. Math. Res. 11, 2 (2009), 43–46. ⇒136

[75] W. Zhang, S. Liu, H. Huang, An efficient implementation algorithm for
generating de Bruijn sequences, Computer Standards & Interfaces, 31, 6
(2009) 1190–1191. ⇒136

Received: August 20, 2010 • Revised: October 15, 2010

http://www.ccsenet.org/journal/index.php/jmr/article/viewFile/3732/3336
http://www.sciencedirect.com/science/journal/0012365X

Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 154–167

Testing by C++ template metaprograms

Norbert Pataki
Dept. of Programming Languages and Compilers
Faculty of Informatics, Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest,
Hungary

email: patakino@elte.hu

Abstract. Testing is one of the most indispensable tasks in software en-
gineering. The role of testing in software development has grown signifi-
cantly because testing is able to reveal defects in the code in an early stage
of development. Many unit test frameworks compatible with C/C++
code exist, but a standard one is missing. Unfortunately, many unsolved
problems can be mentioned with the existing methods, for example usu-
ally external tools are necessary for testing C++ programs.

In this paper we present a new approach for testing C++ programs.
Our solution is based on C++ template metaprogramming facilities, so it
can work with the standard-compliant compilers. The metaprogramming
approach ensures that the overhead of testing is minimal at runtime. This
approach also supports that the specification language can be customized
among other advantages. Nevertheless, the only necessary tool is the
compiler itself.

1 Introduction

Testing is the most important method to check programs’ correct behaviour.
Testing can reveal many problems within the code in development phase. Test-
ing is cruicial from the view of software quality [5]. Many purposes of testing
can be, for instance, quality assurance, verification and validation, or reliability
estimation. Nonetheless, testing is potentially endless. It can never completely

Computing Classification System 1998: D.2.5
Mathematics Subject Classification 2010: 62N03
Key words and phrases: testing, C++, template metaprogramming

154

http://plcportal.inf.elte.hu/en/Pages/default.aspx
http://www.inf.elte.hu/english/Lapok/default.aspx
http://www.elte.hu/en
mailto:patakino@elte.hu

Testing by C++ template metaprograms 155

identify all the defects within the software. The main task is is to deliver
faultless software [20].

Correctness testing and reliability testing are two major areas of testing.
However, many different testing levels are used. In this paper we deal with
unit tests that is about correctness. The goal of unit testing is to isolate each
part of the program and to show that the individual parts are correct. A unit
test provides a strict, written contract that the piece of code must satisfy.
As a result, it affords several benefits. Unit tests find problems early in the
development phase. Unfortunately, most frameworks need external tools [10].

A testing framework is proposed in [3, 4] which is based on the C++0x – the
C++ forthcoming standard. The framework takes advantage of concepts and
axioms. These constructs support the generic programming in C++ as they
enable to write type constraints in template parameters. By now, these con-
structs are removed from the draft of the next standard. Metaprogram testing
framework has already been developed [16] too, but it deals with metaprogams,
it is just the opposite of our approach.

C++ template metaprogramming is an emerging paradigm which enables
to execute algorithms when ordinary C++ programs are compiled. The style
of C++ template metaprograms is very similar to the functional program-
ming paradigm. Metaprograms have many advantages that we can harness.
Metalevel often subserves the validation [8].

Template metaprograms run at compilation-time, whereupon the overhead
at runtime is minimal. Metaprograms’ “input” is the runtime C++ program
itself, therefore metaprograms are able to retrieve information about the host-
ing program. This way we can check many properties about the programs
during compilation [12, 14, 21, 22].

Another important feature of template metaprograms is the opportunity of
domain-specific languages. These special purpose languages are integrated into
C++ by template metaprograms [7, 9]. Libraries can be found that support the
development of domain-specific languages [11]. New languages can be figured
out to write C++ template metaprograms [18]. Special specification languages
can be used for testing C++ programs without external tools.

In this paper we present a new approach to test C++ code. Our framework
is based on the metaprogramming facility of C++. We argue for testing by
meta-level because of numerous reasons.

The rest of this paper is organized as follows. In Section 2 C++ template
metaprograms are detailed. In Section 3 we present the basic ideas behind our
approach, after that in Section 4 we analyze the advantages and disadvantages
of our framework. Finally, the future work is detailed in Section 5.

156 N. Pataki

2 C++ template metaprogramming

The template facility of C++ allows writing algorithms and data structures
parametrized by types. This abstraction is useful for designing general algo-
rithms like finding an element in a list. The operations of lists of integers,
characters or even user defined classes are essentially the same. The only dif-
ference between them is the stored type. With templates we can parametrize
these list operations by type, thus, we have to write the abstract algorithm
only once. The compiler will generate the integer, double, character or user
defined class version of the list from it. See the example below:

template<typename T>
struct list
{

void insert(const T& t);
// ...

};

int main()
{

list<int> l; //instantiation for int
list<double> d; // and for double
l.insert(42); // usage
d.insert(3.14); // usage

}

The list type has one template argument T. This refers to the parameter
type, whose objects will be contained in the list. To use this list we have
to generate an instance assigning a specific type to it. The process is called
instantiation. During this process the compiler replaces the abstract type T
with a specific type and compiles this newly generated code. The instantiation
can be invoked explicitly by the programmer but in most cases it is done
implicitly by the compiler when the new list is first referred to.

The template mechanism of C++ enables the definition of partial and full
specializations. Let us suppose that we would like to create a more space
efficient type-specific implementation of the list template for the bool type.
We may define the following specialization:

template<>
struct list<bool>

Testing by C++ template metaprograms 157

{
//type-specific implementation

};

The implementation of the specialized version can be totally different from
the original one. Only the names of these template types are the same. If during
the instantiation the concrete type argument is bool, the specific version of
list<bool> is chosen, otherwise the general one is selected.

Template specialization is an essential practice for template metaprogram-
ming too [1]. In template metaprograms templates usually refer to other tem-
plates, sometimes from the same class with different type argument. In this
situation an implicit instantiation will be performed. Such chains of recur-
sive instantiations can be terminated by a template specialization. See the
following example of calculating the factorial value of 5:

template<int N>
struct Factorial
{

enum { value=N*Factorial<N-1>::value };
};

template<>
struct Factorial<0>
{

enum { value = 1 };
};

int main()
{

int result = Factorial<5>::value;
}

To initialize the variable result here, the expression Factorial<5>::value
has to be evaluated. As the template argument is not zero, the compiler in-
stantiates the general version of the Factorial template with 5. The definition
of value is N * Factorial<N-1>::value, hence the compiler has to instan-
tiate Factorial again with 4. This chain continues until the concrete value
becomes 0. Then, the compiler chooses the special version of Factorial where
the value is 1. Thus, the instantiation chain is stopped and the factorial of

158 N. Pataki

5 is calculated and used as initial value of the result variable in main. This
metaprogram “runs” while the compiler compiles the code.

Template metaprograms therefore stand for the collection of templates, their
instantiations and specializations, and perform operations at compilation time.
The basic control structures like iteration and condition appear in them in
a functional way [17]. As we can see in the previous example iterations in
metaprograms are applied by recursion. Besides, the condition is implemented
by a template structure and its specialization.

template<bool cond,class Then,class Else>
struct If
{

typedef Then type;
};

template<class Then, class Else>
struct If<false, Then, Else>
{

typedef Else type;
};

The If structure has three template arguments: a boolean and two abstract
types. If the cond is false, then the partly-specialized version of If will be
instantiated, thus the type will be bound to Else. Otherwise the general
version of If will be instantiated and type will be bound to Then.

With the help of If we can delegate type-related decisions from design time
to instantiation (compilation) time. Let us suppose, we want to implement a
max(T,S) function template comparing values of type T and type S returning
the greater value. The problem is how we should define the return value.
Which type is “better” to return the result? At design time we do not know
the actual type of the T and S template parameters. However, with a small
template metaprogram we can solve the problem:

template <class T, class S>
typename If<sizeof(T)<sizeof(S),S,T>::type

max(T x, S y)
{

return x > y ? x : y;
}

Testing by C++ template metaprograms 159

Complex data structures are also available for metaprograms. Recursive
templates store information in various forms, most frequently as tree struc-
tures, or sequences. Tree structures are the favorite forms of implementation
of expression templates [24]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost::mpl library [11].

We define a typelist with the following recursive template:

class NullType {};

typedef Typelist<char,Typelist<signed char,
Typelist<unsigned char,NullType> > >

Charlist;

In the example we store the three character types in a typelist. We can use
helper macro definitions to make the syntax more readable.

#define TYPELIST_1(x)
Typelist< x, NullType>

#define TYPELIST_2(x, y)
Typelist< x, TYPELIST_1(y)>

#define TYPELIST_3(x, y, z)
Typelist< x, TYPELIST_2(y,z)>

// ...
typedef
TYPELIST_3(char,signed char,unsigned char)

Charlist;

Essential helper functions – like Length, which computes the size of a list
at compilation time – have been defined in Alexandrescu’s Loki library [2]
in pure functional programming style. Similar data structures and algorithms
can be found in the metaprogramming library [11].

The examples presented in this section expose the different approaches of
template metaprograms and ordinary runtime programs. Variables are rep-
resented by static constants and enumeration values, control structures are
implemented via template specializations, functions are replaced by classes.
We use recursive types instead of the usual data structures. Fine visualizer
tools can help a lot to comprehend these structures [6].

160 N. Pataki

3 Testing framework

In this section we present the main ideas behind our testing framework which
takes advantage of the C++ template metaprogramming.

First, we write a simple type which makes connection between the compilation-
time and the runtime data. This is the kernel of the testing framework. If the
compilation-time data is not equal to the runtime data, we throw an exception
to mark the problem.

struct _Invalid
{

// ...
};

template < int N >
class _Test
{

const int value;

public:

_Test(int i) : value(i)
{

if (value!=N)
throw _Invalid();

}

int get_value() const
{

return value;
}

};

Let us consider that a runtime function is written, that calculates the fac-
torial of its argument. This function is written in an iterative way:

int factorial(int n)
{

int f = 1;
for(int i = 1; i <= n; ++i)

Testing by C++ template metaprograms 161

{
f *= i;

}
return f;

}

It is easy to test the factorial function:

template <int N>
_Test<Factorial<N>::value> factorial_test(const _Test<N>& n)
{

return factorial(n.get_value());
}

When factorial test is called, it takes a compile-time and runtime pa-
rameter. The constructor of Test guarantees, that the two parameters are
equal. We take advantage of the parameter conversions of C++. When an
integer is passed as Test, it automatically calls the constructor of Test
which tests if the runtime and compilation time parameters are the same.
If the runtime and compilation time parameters disagree, an exception is
raised. The return type of factorial test describes that it must compute the
Factorial<N>. When it returns a value, it also calls the constructor of Test.
At compilation time it is computed what the return should be according to
the metaprogram specification – e.g. what the Factorial<N> is. Because the
factorial test takes a Test parameter, two parameters cannot be different.
When the factorial test returns it is also evaluates if the result of compi-
lation time algorithm is the same with the result of the runtime algorithm,
and an exception raised if it fails. So, we have a runtime and compilation time
input, first we calculate the result at compilation time from the compilation
time input. At runtime we have the very same input and a runtime function,
and evaluates if the runtime algorithm results in the very same output. If it
fails an exception is thrown.

Of course, we have to call the factorial test function:

int main()
{

factorial_test< 6 >(6);
}

In this case, we write Factorial metafunction that counts the factorial at
compilation time, but we do not have to write this metafunction with metapro-

162 N. Pataki

grams. This metaprogram can be generated by the compiler from a specifica-
tion that can be defined in EClean [18, 17], Haskell, or other domain-specific
language [15].

Instead of return value, references are often used to transmit data to the
caller:

void inc(int& i)
{

++i;
}

At this point, we cannot wrap the call of this function into a tester function.
Hence, in this case we deal with a new local variable to test.

template < int N >
_Test<N+1> inc_test(const _Test<N>& n)
{

int i = n.get_value();
inc(i);
return i;

}

Since doubles cannot be template arguments we have to map doubles to
integers. The natural way to do this mapping is the usage of the significand
and exponent. Here is an example, that presents this idea:

template <int A, int B>
struct MetaDouble
{
};

double f(double d)
{

return d*10;
}

template < int A, int B >
class _Test
{

Testing by C++ template metaprograms 163

const double d;
public:

_Test(double x): d(x)
{

if (get_value() != d)
throw _Invalid();

}

double get_value() const
{

return A * pow(10.0L, B);
}

};

template <int A, int B>
_Test<A,B+1> f_test(MetaDouble<A, B> d)
{

double dt = A*pow(10.0L, B);
return f(dt);

}

This framework can be easily extended in the way of C++ Standard Tem-
plate Library (STL) [19]. We may use functor objects instead of the equality
operator to make the framework more flexible because it can test more re-
lations. We can take advantage of default template parameters of template
classes. The following code snippet can be applied to the integers:

template <int N, class relation = std::equal_to<int> >
class _Test
{

const int value;
const relation rel;

public:
_Test(int i) : value(i)
{

if (rel(N, value))
throw _Invalid();

}

164 N. Pataki

int get_value() const
{

return value;
}

};

4 Evaluation

In this section we argue for our approach. We describe pros and cons and
present scenarios where our method is more powerful then the existing ones.

One the most fundamental advantages is that our framework does not need
external tools, the only necessary tool is the compiler itself. Nevertheless,
another important feature, that we compute the result at compilation time, so
the runtime overhead is minimal. Of course, the compilation time is increased.
The performance analysis of C++ template metaprograms is detailed in [13].

Our approach is able to detect and pursue the changes external APIs’ inter-
face. For instance, the type of return value has been changed, we do not need
to modify the specifications. Just like the max example in 2 section, metapro-
grams can determine the type of return values, etc.

Domain-specific languages can be developed with the assistance of template
metaprograms. Therefore, specification languages can be easily adopted to our
approach. Users can select a specification language from the exisiting ones or
develop new domain-specific languages for the specification [23]. The usual
specification methods support only one specification language at all.

Moreover, metaprograms are written in an functional way, but runtime C++
programs are written in an imperative way. Therefore, testing approach and
implementation is quite different. It is easy to focus on the results this way. A
very useful advantage is that that our framework can be used for legacy code
too.

Albeit there are some typical approaches which cannot be tested with our
method. For instance, metaprograms cannot access database servers and metapro-
grams cannot deal with other runtime inputs. Files and requests cannot be
managed with metaprograms. On the other hand, we can test the business
logic of the programs: is the result correct if the input would be the specifi-
cated one. Also, calls of virtual methods cannot be handled at compilation
time.

Our approach cannot facilitate the testing of multithreaded programs. Test-

Testing by C++ template metaprograms 165

ing concurrent programs is hard, but the compiler acts as a single-threaded
non-deterministic interpreter.

5 Conclusions and future work

Testing is one of the most important methods to ensures programs’ correctness.
In this paper we argue for a new approach to test C++ programs. Our solution
takes advantage of C++ template metaprogramming techniques in many ways.
We have examined the pros and cons of our method.

After all, the most important task is to work out a set of special specification
languages and generate standard compliant C++ metaprograms from these
specifications.

In this paper we argue for a method that manages runtime entities at com-
pilation time. With this method we tested runtime functions. Many other in-
teresting properties should be managed in this way, for instance, the runtime
complexity or the prospective exceptions.

Another important task is developing mapping between the runtime and
compile time advanced datastructures. Node-based datastructures (like trees,
linked lists) are also available in metalevel, but we have not mapped these
structures to runtime akins. User-defined classes also may be mapped to the
their compilation-time counterparts.

An other opportunity is that we take advantage of the metalevel and gen-
erate testcases at compilation time. In our approach the users specificate the
test cases. It would be more convenient if the compiler could generate testcases
which covers most of execution paths.

References

[1] D. Abrahams, A. Gurtovoy, C++ template metaprogramming, Addison-
Wesley, Reading, MA, 2004. ⇒157

[2] A. Alexandrescu, Modern C++ design: Generic programming and design
patterns applied, Addison-Wesley, Reading, MA, 2001. ⇒159

[3] A. H. Bagge, V. David, M. Haveraaen, The axioms strike back: Testing
with concepts and axioms in C++, Proc. 5th International Conference on
Generative Programming and Component Engineering (GPCE’09), Den-
ver, CO, 2009, The ACM Digital Library, 15–24. ⇒155

http://www.boost.org/users/people/aleksey_gurtovoy.html
http://www.pearsonhighered.com/
http://www.pearsonhighered.com/
http://erdani.com
http://www.pearsonhighered.com/
http://www.cs.uu.nl/research/techreps/aut/anya.html
http://www.ii.uib.no/~magne/
http://portal.acm.org/toc.cfm?id=1621607&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=110285001&CFTOKEN=19672991

166 N. Pataki

[4] A.H. Bagge, M. Haveraaen, Axiom-based transformations: Optimisation
and testing, Electronic Notes in Theoret. Comput. Sci., 238, 5 (2009)
17–33. ⇒155

[5] M. Biczó, K. Pócza, Z. Porkoláb, I. Forgács, A new concept of effective
regression test generation in a C++ specific environment, Acta Cybern.,
18 (2008) 481–512. ⇒154

[6] Z. Borók-Nagy, V. Májer, J. Mihalicza, N. Pataki, Z. Porkoláb, Visual-
ization of C++ template metaprograms, Proc. Tenth IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM
2010), Timişoara, Romania, 2010, pp. 167–176. ⇒159

[7] K. Czarnecki, J. T. O’Donnell, J. Striegnitz, W. Taha, DSL implementa-
tion in MetaOCaml, template Haskell, and C++, Lecture Notes in Com-
put. Sci., 3016 (2004) 51–72. ⇒155

[8] G. Dévai, Meta programming on the proof level, Acta Univ. Sapientiae
Inform., 1, 1 (2009) 15–34. ⇒155

[9] J. (Y). Gil, K. Lenz, Simple and safe SQL queries with C++ templates,
Science of Computer Programming, 75, 7 (2010) 573–595. ⇒155

[10] P. Hamill, Unit test frameworks, O’Reilly Media, Inc., Sebastopol, CA,
2004. ⇒155

[11] B. Karlsson, Beyond the C++ standard library: An introduction to boost,
Addison-Wesley, Reading, MA, 2005. ⇒155, 159

[12] J. Mihalicza, N. Pataki, Z. Porkoláb, Á. Sipos, Towards more sophisti-
cated access control, Proc. 11th Symposium on Programming Languages
and Software Tools and 7th Nordic Workshop on Model Driven Software
Engineering, Tampere, Finland, 2009, pp. 117–131. ⇒155

[13] Z. Porkoláb, J. Mihalicza, N. Pataki, Á. Sipos, Analysis of profiling tech-
niques for C++ template metaprograms, Ann. Univ. Sci. Budapest. Sect.
Comput. 30 (2009) 97–116. ⇒164

[14] Z. Porkoláb, J. Mihalicza, Á. Sipos, Debugging C++ template metapro-
grams, Proc. 5th International Conference on Generative Programming
and Component Engineering (GPCE’06), Portland, OR, 2006, The ACM
Digital Library, 255–264. ⇒155

http://www.cs.uu.nl/research/techreps/aut/anya.html
http://www.ii.uib.no/~magne/
http://www.entcs.org/
http://gsd.web.elte.hu/publications.html
http://www.inf.u-szeged.hu/actacybernetica/
http://gsd.web.elte.hu/publications.html
http://www2010.ieee-scam.org/
http://gsd.uwaterloo.ca/kczarnec
http://www.cs.rice.edu/~taha/
http://www.springer.com/series/558
http://www.springer.com/series/558
http://deva.web.elte.hu/index.eo.html
http://www.acta.sapientia.ro/acta-info/C1-1/info1-2.pdf
http://www.elsevier.com/wps/find/journaldescription.cws_home/505623/description#description
http://oreilly.com/
http://www.pearsonhighered.com/
http://gsd.web.elte.hu/publications.html
http://www.cs.tut.fi/ohj/splst09/
http://gsd.web.elte.hu/publications.html
http://compalg.inf.elte.hu/annales/computatorica/annales_oldalak.php?oldal=volumes
http://compalg.inf.elte.hu/annales/computatorica/annales_oldalak.php?oldal=volumes
http://gsd.web.elte.hu/publications.html
http://strategoxt.org/GPCE06/WebHome

Testing by C++ template metaprograms 167

[15] Z. Porkoláb, Á. Sinkovics, Domain-specific language integration with
compile-time parser generator library, Proc. 9th International Confer-
ence on Generative Programming and Component Engineering (GPCE’
10), Eindhoven, The Netherlands, 2010, The ACM Digital Library, pp.
137–146. ⇒162

[16] Á. Sinkovics, Unit testing of C++ template metaprograms, Abstracts 8th
Joint Conference on Mathematics and Computer Science (MACS’10),
Komárno, Slovakia, June 14–17, 2010. ⇒155

[17] Á. Sipos, Z. Porkoláb, N. Pataki, V. Zsók, Meta<Fun> - Towards a
functional-style interface for C++ template metaprograms, Proc. 19th In-
ternational Symposium of Implementation and Application of Functional
Languages (IFL 2007), Freiburg, Germany, 2007, 489–502. ⇒158, 162

[18] Á. Sipos, V. Zsók, EClean – An embedded functional language, Electronic
Notes in Theoret. Comput. Sci., 238, 2 (2009) 47–58. ⇒155, 162

[19] B. Stroustrup, The C++ programming language (Special edition),
Addison-Wesley, Reading, MA, 2000. ⇒163

[20] Cs. Szabó, L. Samuelis, Observations on incrementality principle within
the test preparation process, Acta Univ. Sapientiae Inform., 1, 1 (2009)
63–70. ⇒155

[21] Z. Szűgyi, N. Pataki, J. Mihalicza, Z. Porkoláb, C++ method utilities,
Proc. Tenth International Scientific Conference on Informatics (Infor-
matics 2009), Herl’any, Slovakia, pp. 112–117. ⇒155

[22] Z. Szűgyi, N. Pataki, Sophisticated methods in C++, Proc. International
Scientific Conference on Computer Science and Engineering (CSE 2010),
Kosice, Slovakia, pp. 93–100. ⇒155

[23] N. Vasudevan, L. Tratt, Comparative study of DSL tools, Proc. Workshop
on Generative Technologies 2010 (WGT 2010), Paphos, Cyprus, pp. 67–
76. ⇒164

[24] T. L. Veldhuizen, Expression templates, C++ Report, 7, 5 (1995) 26–31.⇒159

Received: August 5, 2010 • Revised: October 15, 2010

http://gsd.web.elte.hu/publications.html
http://abel.sinkovics.hu/?mod=oneletrajz
http://program-transformation.org/GPCE10
http://program-transformation.org/GPCE10
http://abel.sinkovics.hu/?mod=oneletrajz
http://www.selyeuni.sk/macs/abstracts.php
http://gsd.web.elte.hu/publications.html
http://zsv.web.elte.hu/
http://proglang.informatik.uni-freiburg.de/IFL2007/
http://proglang.informatik.uni-freiburg.de/IFL2007/
http://zsv.web.elte.hu/
http://www.entcs.org/
http://www2.research.att.com/~bs/
http://www.pearsonhighered.com/
http://kpi1.fei.tuke.sk/person/szabo/dcicard.php
http://kpi1.fei.tuke.sk/person/samuelis/dcicard.php
http://www.acta.sapientia.ro/acta-info/C1-1/info1-6.pdf
http://gsd.web.elte.hu/publications.html
http://informatika.kpi.fei.tuke.sk/
http://informatika.kpi.fei.tuke.sk/
http://cse.kpi.fei.tuke.sk/
http://www.cse.iitb.ac.in/~vasudevan/
http://tratt.net/laurie/
http://wgt2010.elte.hu/
http://pti.iu.edu/pubs/author/1201
http://en.wikipedia.org/wiki/C%2B%2B_report

Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 168–183

Computerized adaptive testing:

implementation issues

Margit Antal
Sapientia Hungarian University of

Transylvania, Department of
Mathematics and Informatics

T̂ırgu Mureş
email: manyi@ms.sapientia.ro

Levente Erős
Sapientia Hungarian University of

Transylvania, Department of
Mathematics and Informatics

T̂ırgu Mureş
email: ideges@gmail.com

Attila Imre
Sapientia Hungarian University of Transylvania,

Department of Human Sciences
T̂ırgu Mureş

email: imatex@ms.sapientia.ro

Abstract. One of the fastest evolving field among teaching and learn-
ing research is students’ performance evaluation. Computer based testing
systems are increasingly adopted by universities. However, the implemen-
tation and maintenance of such a system and its underlying item bank
is a challenge for an inexperienced tutor. Therefore, this paper discusses
the advantages and disadvantages of Computer Adaptive Test (CAT)
systems compared to Computer Based Test systems. Furthermore, a few
item selection strategies are compared in order to overcome the item
exposure drawback of such systems. The paper also presents our CAT
system along its development steps. Besides, an item difficulty estima-
tion technique is presented based on data taken from our self-assessment
system.

Computing Classification System 1998: K.3.1
Mathematics Subject Classification 2010: 97U50
Key words and phrases: computerized adaptive testing, item response theory

168

http://www.ms.sapientia.ro/~manyi/
http://www.emte.ro
http://www.emte.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
mailto:manyi@ms.sapientia.ro
http://www.emte.ro
http://www.emte.ro
http://www.ms.sapientia.ro
http://www.ms.sapientia.ro
file:ideges@gmail.com
http://www.emte.ro
http://www.ms.sapientia.ro
file:imatex@ms.sapientia.ro

Computerized adaptive testing: implementation issues 169

1 Introduction

One of the fastest evolving field among teaching and learning research is stu-
dents’ performance evaluation. Web-based educational systems with integrated
computer based testing are the easiest way of performance evaluation, so they
are increasingly adopted by universities [3, 4, 9]. With the rapid growth of com-
puter communications technologies, online testing is becoming more and more
common. Moreover, limitless opportunities of computers will cause the disap-
pearance of Paper and Pencil (PP) tests. Computer administered tests present
multiple advantages compared to PP tests. First of all, various multimedia can
be attached to test items, which is almost impossible in PP tests. Secondly, test
evaluation is instantaneous. Moreover, computerized self-assessment systems
can offer various hints, which help students’ exam preparation.

This paper is structured in more sections. Section 2 presents Item Response
Theory (IRT) and discusses the advantages and disadvantages of adaptive test
systems. Section 3 is dedicated to the implementation issues. The presentation
of the item bank is followed by simulations for item selection strategies in
order to overcome the item exposure drawback. Then the architecture of our
web-based CAT system is presented, which is followed by a proposal for item
difficulty estimation. Finally, we present further research directions and give
our conclusions.

2 Item Response Theory

Computerized test systems reveal new testing opportunities. One of them is
the adaptive item selection tailored to the examinee’s ability level, which is
estimated iteratively through the answered test items. Adaptive test adminis-
tration consists in the following steps: (i) start from an initial ability level, (ii)
selection of the most appropriate test item and (iii) based on the examinee’s
answer re-estimation of their ability level. The last two steps are repeated until
some ending conditions are satisfied. Adaptive testing research started in 1952
when Lord made an important observation: ability scores are test indepen-
dent whereas observed scores are test dependent [6]. The next milestone was
in 1960 when George Rasch described a few item response models in his book
[11]. One of the described models, the one-parameter logistic model, became
known as the Rasch model. The next decades brought many new applications
based on Item Response Theory.

In the following we present the three-parameter logistic model. The basic

170 M. Antal, L. Erős, A. Imre

component of this model is the item characteristic function:

P(Θ) = c+
(1− c)

1+ e−Da(Θ−b)
, (1)

where Θ stands for the examinee’s ability, whose theoretical range is from −∞
to ∞, but practically the range −3 to +3 is used. The three parameters are: a,
discrimination; b, difficulty; c, guessing. Discrimination determines how well
an item differentiates students near an ability level. Difficulty shows the place
of an item along the ability scale, and guessing represents the probability of
guessing the correct answer of the item [2]. Therefore guessing for a true/false
item is always 0.5. P(Θ) is the probability of a correct response to the item as
a function of ability level [6]. D is a scaling factor and typically the value 1.7
is used.

Figure 1 shows item response function for an item having parameters a =

1, b = 0.5, c = 0.1. For a deeper understanding of the discrimination pa-
rameter, see Figure 2, which illustrates three different items with the same
difficulty (b = 0.5) and guessing (c = 0.1) but different discrimination param-
eters. The steepest curve corresponds to the highest discrimination (a = 2.8),
and in the middle of the curve the probability of correct answer changes very
rapidly as ability increases [2].

The one- and two-parameter logistic models can be obtained from equation
(1), for example setting c = 0 results in the two-parameter model, while setting
c = 0 and a = 1 gives us the one-parameter model.

Compared to the classical test theory, it is easy to realize the benefits of
the former, which is able to propose the most appropriate item, based on item
statistics reported on the same scale as ability [6].

Another component of the IRT model is the item information function,
which shows the contribution of a particular item to the assessment of ability
[6]. Item information functions are usually bell shaped functions, and in this
paper we used the following (recommended in [12]):

Ii(Θ) =
P
′
i(Θ)2

Pi(Θ)(1− Pi(Θ))
, (2)

where Pi(Θ) is the probability of a correct response to item i computed by
equation (1), P

′
i(Θ) is the first derivative of Pi(Θ), and Ii(Θ) is the item infor-

mation function for item i.
High discriminating power items are the best choice as shown in Figure 3,

which illustrates the item information functions for the three items shown in

Computerized adaptive testing: implementation issues 171

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Item Response Function

Θ

P
(Θ

)

a = 1.0
b = 0.5
c = 0.1

Figure 1: A three-parameter logistic model item characteristic function

Figure 2. All three functions are centered around the ability Θ = 0.5, which is
the same as the item difficulty.

Test information function Irr is defined as the sum of item information
functions. Two such functions are shown for a 20-item test selected by our
adaptive test system: one for a high ability student (Figure 4) and another
for a low ability student (Figure 5). The test shown in Figure 4 estimates
students’ ability near Θ = 2.0, while the test in Figure 5 at Θ = −2.0.

Test information function is also used for ability estimation error computa-
tion as shown in the following equation:

SE(Θ) =
1√
Irr
. (3)

This error is associated with maximum likelihood ability estimation and is
usually used for the stopping condition of adaptive testing.

For learner proficiency estimation Lord proposes an iterative approach [10],
which is a modified version of the Newton-Raphson iterative method for solv-
ing equations. This approach starts with an initial ability estimate (usually a
random value). After each item the ability is adjusted based on the response

172 M. Antal, L. Erős, A. Imre

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Item Response Function

Θ

P
(Θ

)

a = 2.8

a = 1.0

a = 0.8

Figure 2: Item characteristic functions

given by the examinee. For example, after n questions the estimation is made
according to the following equation:

Θn+1 = Θn +

n∑
i=1

Si(Θn)

n∑
i=1

Ii(Θn)

(4)

where Si(Θ) is computed using the following equation:

Si(Θ) = (ui − Pi(Θ))
P
′
i(Θ)

Pi(Θ)(1− Pi(Θ))
. (5)

In equation (5) ui represents the correctness of the ith answer, which is 0 for
incorrect and 1 for correct answer. Pi(Θ) is the probability of correct answer
for the ith item having the ability Θ (equation (2)), and P

′
i(Θ) is its first

derivative.

Computerized adaptive testing: implementation issues 173

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Item Information Function

Θ

I(
Θ

)

a = 2.8

a = 1.0
a = 0.8

Figure 3: Item information functions

2.1 Advantages

In adaptive testing the best test item is selected at each step: the item having
maximum information at the current estimate of the examinee’s proficiency.
The most important advantage of this method is that high ability level test-
takers are not bored with easy test items, while low ability ones are not faced
with difficult test items. A consequence of adapting the test to the examinee’s
ability level is that the same measurement precision can be realized with fewer
test items.

2.2 Disadvantages

Along with the advantages offered by IRT, there are some drawbacks as well.
The first drawback is the impossibility to estimate the ability in case of all
correct or zero correct responses. These are the cases of either very high or
very low ability students. In such cases the test item administration must be
stopped after administering a minimum number of questions.

The second drawback is that the basic IRT algorithm is not aware of the
test content, the question selection strategy does not take into consideration

174 M. Antal, L. Erős, A. Imre

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8
Test Information Function

Θ

In
fo

rm
at

io
n

Figure 4: Test information function for a 20-item test generated for high ability
students

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

10
Test Information Function

Θ

In
fo

rm
at

io
n

Figure 5: Test information function for a 20-item test generated for low ability
students

Computerized adaptive testing: implementation issues 175

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30
Item Bank − Test Information Function

Θ

In
fo

rm
at

io
n

Figure 6: Test information function for all test items

to which topic a question belongs. However, sometimes this may be a require-
ment for generating tests assessing certain topics in a given curriculum. Huang
proposed a content-balanced adaptive testing algorithm [7]. Another solution
to the content balancing problem is the testlet approach proposed by Wainer
and Kiely [15]. A testlet is a group of items from a single curriculum topic,
which is developed as a unit. If an adaptive algorithm selects a testlet, then
all the items belonging to that testlet will be presented to the examinee.

The third drawback, which is also the major one, is that IRT algorithms
require serious item calibration. Despite the fact that the first calibration
method was proposed by Alan Birnbaum in 1968 and has been implemented
in computer programs such as BICAL (Wright and Mead, 1976) and LOGIST
(Wingersky, Barton and Lord, 1982), the technique needs real measurement
data in order to accurately estimate the parameters of the items. However, real
measurement data are not always available for small educational institutions.

The fourth drawback is that several items from the item bank will be over-
exposed, while other test items will not be used at all. This requires item
exposure control strategies. A good review of these strategies can be found
in [5], discussing the strengths and weaknesses of each strategy. Stocking [13]
made one of the first overviews of item exposure control strategies and clas-
sified them in two groups: (i) methods using a random component along the

176 M. Antal, L. Erős, A. Imre

Figure 7: Item information clusters and their size

item selection method and (ii) methods using a parameter for each item to
control its exposure. Randomization strategies control the frequency of item
administration by selecting the next item from a group of items (e.g. out of
the 5 best items). The second item exposure control strategy uses an exposure
control parameter. In case of an item selection—due to its maximum informa-
tion for the examinee’s ability level—, the item will be administered only if
its exposure control parameter allows it.

3 CAT implementation

3.1 The item bank

We have used our own item bank from our traditional computer based test
system ”Intelligent” [1]. The item bank parameters (a - discrimination, b -
difficulty, c - pseudo guessing) were initialized by the tutor. We used 5 levels
of difficulty from very easy to very difficult, which were scaled to the [-3,3]
interval. The guessing parameter of an item was initialized by the ratio of the
number of possible correct answers to the total number of possible answers.
For example, it is 0.1 for an item having two correct answers out of five possible
answers. Discrimination is difficult to set even for a tutor, therefore we used
a = 1 for each item.

Computerized adaptive testing: implementation issues 177

3.2 Simulations

In our implementation we have tried to overcome the disadvantages of IRT. We
started to administer items adaptively only after the first five items. Ability
(Θ) was initialized based on the number of correct answers given to these five
items, which had been selected to include all levels of difficulty.

We used randomization strategies to overcome item exposure. Two random-
ization strategies were simulated. In the first one we selected the top ten items,
i.e. the ten items having the highest item information. However, this is better
than choosing the single best item, thus one must pay attention to the selection
of the top ten items. There may be more items having the same item informa-
tion for a given ability, therefore it is not always the best strategy choosing
the first best item from a set of items with the same item information. To
overcome this problem, in the second randomization strategy we computed
the item information for all items that were not presented to the examinee
and clustered the items having the same item information. The top ten items
were selected using the items from these clusters. If the best cluster had less
than ten items, the remainder items were selected from the next best cluster.
If the best cluster had more than ten items, the ten items were selected ran-
domly from the best cluster. For example, Figure 7 shows the 26 clusters of
item information values constructed from 171 items for the ability of Θ = 0.5.
The best 10 items were selected by taking the items from the first two clusters
(each having exactly 1 item) and selecting randomly another 8 items out of
13 from the third cluster.

Figure 8 shows the results from a simulation where we used an item bank
with 171 items (test information function is shown in Figure 6 for all the 171
items), and we simulated 100 examinees using three item selection strategies:
(i) best item (ii) random selection from the 10 best items (iii) random selection
from the 10 best items and clustering. The three series in figure 8 are the
frequencies of items obtained from the 100 simulated adaptive tests. Tests
were terminated either when the number of administered items had exceeded
30 or the ability estimate had fallen outside the ability range. The latter were
necessary for very high and very low ability students, where adaptive selection
could not be used [2]. The examinee’s answers were simulated by using a
uniform random number generator, where the probability of correct answer
was set to be equal to the probability of incorrect answer.

In order to be able to compare these item exposure control strategies, we
computed the standard deviance of the frequency series shown in Figure 8.
The standard deviance is σ = 17.68 for the first series not using any item

178 M. Antal, L. Erős, A. Imre

20 40 60 80 100 120 140 160 180
0

50

100

Item identifier

F
re

qu
en

cy

Best item information

20 40 60 80 100 120 140 160 180
0

50

100

Item identifier

F
re

qu
en

cy

Randomly from 10 best item information

20 40 60 80 100 120 140 160 180
0

50

100

Item identifier

F
re

qu
en

cy

Randomly from item information clusters

Figure 8: Item exposure with or without randomization control strategies

exposure control, it is σ = 14.77 for the second one, whereas for the third one
is σ = 14.13. It is obvious that the third series is the best from the viewpoint
of item exposure. Consequently, we will adopt this strategy in our distributed
CAT implementation.

3.3 Distributed CAT

After the Matlab simulations we implemented our CAT system as a distributed
application, using Java technologies on the server side and Adobe Flex on the
client side. The general architecture of our system is shown in Figure 9. The
administrative part is responsible for item bank maintenance, test scheduling,
test results statistics and test termination criteria settings. In the near future
we are planning to add an item calibration module.

The test part is used by examinees, where questions are administered ac-

Computerized adaptive testing: implementation issues 179

Figure 9: CAT-architecture

cording to settings. After having finished the test, the examinee may view
both their test results and knowledge report.

3.4 Item difficulty estimation

Due to the lack of measurement data necessary for item calibration, we were
not able to calibrate our item bank. However, 165 out of 171 items of our item
bank were used in our self-assessment test system ”Intelligent” in the previous
term. Based on the data collected from this system, we propose a method for
difficulty parameter estimation. Although there were no restrictions in using
the self-assessment system, i.e. users could have answered an item several

180 M. Antal, L. Erős, A. Imre

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2
Item difficulty calibration

Item identifiers

S
ca

le
d

di
ffi

cu
lti

es

Original
First answers

Figure 10: Item difficulty calibration

times, we consider that the first answer of each user could be relevant to the
difficulty of the item.

Figure 10 shows the original item difficulty (set by the tutor) and the diffi-
culty estimated by the first answer of each user. The original data series uses 5
difficulty levels scaled to the [0, 1] interval. The elements of the “first answers”
series were computed by the equation: all incorrect answersall answers . We computed the
mean difficulty for both series, and we obtained 0.60 for the original one and
0.62 for the estimated one. Conspicuous differences were found at the very
easy and very difficult item difficulties.

4 Further research

At present we are working on the parameter estimation part of our CAT
system. Although there are several item parameter calibration programs, this
task must be taken very seriously because it influences measurement precision

Computerized adaptive testing: implementation issues 181

directly. Item parameter estimation error is an active research topic, especially
for fixed computer tests. For adaptive testing, this problem has been addressed
by paper [8].

Researchers have empirically observed that examinees suitable for item dif-
ficulty estimations are almost useless when estimating item discrimination.
Stocking [14] analytically derived the relationship between the examinee’s abil-
ity and the accuracy of maximum likelihood item parameter estimation. She
concluded that high ability examinees contribute more to difficulty estima-
tion of difficult and very difficult items and less on easy and very easy items.
She also concluded that only low ability examinees contribute to the esti-
mation of guessing parameter and examinees, who are informative regarding
item difficulty estimation, are not good for item discrimination estimation.
Consequently, her results seem to be useful in our item calibration module.

5 Conclusions

In this paper we have described a computer adaptive test system based on
Item Response Theory along its implementation issues. Our CAT system was
implemented after one year experience with a computer based self-assessment
system, which proved useful in configuring the parameters of the items. We
started with the presentation of the exact formulas used by our working CAT
system, followed by some simulations for item selection strategies in order to
control item overexposure. We also presented the exact way of item parameter
configuration based on the data taken from the self-assessment system.

Although we do not present measurements on a working CAT system, the
implementation details presented in this paper could be useful for small insti-
tutions planning to introduce such a system for educational measurements on
a small scale.

In the near future we would like to add an item calibration module to the
administrative part of the system, taking into account the limited possibilities
of small educational institutes.

182 M. Antal, L. Erős, A. Imre

References

[1] M. Antal, Sz. Koncz, Adaptive knowledge testing systems, Proc.
SZAMOKT XIX, October 8–11, 2009, T̂ırgu Mureş, Romania, pp. 159–
164. ⇒176

[2] F. B. Baker, The Basics of Item Response Theory, ERIC Clearinghouse
on Assessment and Evaluation, College Park, University of Maryland,
2001. ⇒170, 177

[3] M. Barla, M. Bielikova, A. B. Ezzeddinne, T. Kramar, M. Simko, O.
Vozar, On the impact of adaptive test question selection for learning
efficiency, Computers & Educations, 55, 2 (2010) 846–857. ⇒169

[4] A. Baylari, G. A. Montazer, Design a personalized e-learning system based
on item response theory and artificial neural network approach, Expert
Systems with Applications, 36, 4 (2009) 8013–8021. ⇒169

[5] E. Georgiadou, E. Triantafillou, A. Economides, A review of item expo-
sure control strategies for computerized adaptive testing developed from
1983 to 2005, Journal of Technology, Learning, and Assessment, 5, 8
(2007) 33 p. ⇒175

[6] R. K. Hambleton, R. W. Jones, Comparison of classical test theory and
item response theory and their applications to test development, ITEMS
– Instructional Topics in Educational Measurement, 253–262. ⇒169, 170

[7] S. Huang, A content-balanced adaptive testing algorithm for computer-
based training systems, in: Intelligent Tutoring Systems (eds. C. Frasson,
G. Gauthier, A. Lesgold), Springer, Berlin, 1996, pp. 306–314. ⇒175

[8] W. J. Linden, C. A. W. Glas, Capitalization on item calibration error in
computer adaptive testing, LSAC Research Report 98-04, 2006, 14 p. ⇒
181

[9] M. Lilley, T. Barker, C. Britton, The development and evaluation of a
software prototype for computer-adaptive testing, Computers & Educa-
tion, 43, 1–2 (2004) 109–123. ⇒169

[10] F. M. Lord, Application of item response theory to practical testing prob-
lems, Lawrence Erlbaum Publishers, NJ, 1980. ⇒171

http://www.ms.sapientia.ro/~manyi/
http://www.sciencedirect.com/science/journal/03601315
http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174
http://conta.uom.gr/conta/CV/EconomidesCV-en.pdf
http://escholarship.bc.edu/jtla/
http://www.labmeeting.com/papers/author/hambleton-rk
http://www.ncme.org/pubs/items/24.pdf
http://www.springer.com/?SGWID=0-102-0-0-0
http://www.utwente.nl/gw/omd/afdeling/vanderlinden/
http://lsac.biz/LSACResources/Research/CT/CT-98-04.pdf
http://www.sciencedirect.com/science/journal/03601315
http://www.sciencedirect.com/science/journal/03601315
http://www.erlbaum.com/

Computerized adaptive testing: implementation issues 183

[11] G. Rasch, Probabilistic models for some intelligence and attainment tests,
Danish Institute for Educational Research, Copenhagen, 1960. ⇒169

[12] L. M. Rudner, An online, interactive, computer adaptive testing tutorial,
1998, http://echo.edres.org:8080/scripts/cat/catdemo.htm ⇒170

[13] M. L. Stocking, Controlling item exposure rates in a realistic adaptive
testing paradigm, Technical Report RR 3-2, Educational Testing Service,
Princeton, NJ, 1993. ⇒175

[14] M. L. Stocking, Specifying optimum examinees for item parameter esti-
mation in item response theory, Psychometrika, 55, 3 (1990) 461–475. ⇒
181

[15] H. Wainer, G. L. Kiely, Item clusters and computerized adaptive testing:
A case for testlets, Journal of Educational Measurement, 24, 3 (1987)
185–201. ⇒175

Received: August 23, 2010 • Revised: November 3, 2010

http://echo.edres.org:8080/scripts/cat/catdemo.htm
http://apm.sagepub.com/content/31/3/167.extract
http://www.eric.ed.gov/PDFS/ED384663.pdf
http://apm.sagepub.com/content/31/3/167.extract
ttp://www.psychometrika.org/journal/Psychometrika.html
http://www.blackwellpublishing.com/journal.asp?ref=0022-0655

Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 184–193

Score lists in multipartite

hypertournaments

Shariefuddin Pirzada
Department of Mathematics, University

of Kashmir, India, and King Fahd
University of Petroleum and Minerals,

Saudi Arabia
email: sdpirzada@yahoo.co.in

Guofei Zhou
Department of Mathematics, Nanjing

University, Nanjing, China
email: gfzhou@nju.edu.cn

Antal Iványi
Department of Computer Algebra

Eötvös Loránd University, Budapest, Hungary
email: tony@inf.elte.hu

Abstract. Given non-negative integers ni and αi with 0 ≤ αi ≤ ni

(i = 1, 2, . . . , k), an [α1, α2, . . . , αk]-k-partite hypertournament on
∑k

1 ni

vertices is a (k+ 1)-tuple (U1, U2, . . . , Uk, E), where Ui are k vertex sets
with |Ui| = ni, and E is a set of

∑k
1 αi-tuples of vertices, called arcs, with

exactly αi vertices from Ui, such that any
∑k

1 αi subset ∪k
1U

′
i of ∪k

1Ui, E

contains exactly one of the
(∑k

1 αi

)
!
∑k

1 αi-tuples whose entries belong

to ∪k
1U

′
i. We obtain necessary and sufficient conditions for k lists of non-

negative integers in non-decreasing order to be the losing score lists and
to be the score lists of some k-partite hypertournament.

1 Introduction

Hypergraphs are generalizations of graphs [1]. While edges of a graph are pairs
of vertices of the graph, edges of a hypergraph are subsets of the vertex set,

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C65
Key words and phrases: hypergraph, hypertournament, multi hypertournament, score,
losing score.

184

http://www.dharwadker.org/pirzada/
http://www.kashmiruniversity.net/department.aspx?dept=22
http://www.kashmiruniversity.net/department.aspx?dept=22
http://www.kfupm.edu.sa/
http://www.kfupm.edu.sa/
mailto:sdpirzada@yahoo.co.in
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://njumaths.nju.edu.cn/
http://www.nju.edu.cn/cps/site/njueweb/fg/index.php
http://www.nju.edu.cn/cps/site/njueweb/fg/index.php
mailto:gfzhou@nju.edu.cn
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony&angolul=1
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1
http://www.elte.hu/en
mailto:tony@compalg.inf.elte.hu

Score lists in multipartite hypertournaments 185

consisting of at least two vertices. An edge consisting of k vertices is called
a k-edge. A k-hypergraph is a hypergraph all of whose edges are k-edges.
A k-hypertournament is a complete k-hypergraph with each k-edge endowed
with an orientation, that is, a linear arrangement of the vertices contained in
the hyperedge. Instead of scores of vertices in a tournament, Zhou et al. [13]
considered scores and losing scores of vertices in a k-hypertournament, and
derived a result analogous to Landau’s theorem [6]. The score s(vi) or si of a
vertex vi is the number of arcs containing vi and in which vi is not the last
element, and the losing score r(vi) or ri of a vertex vi is the number of arcs
containing vi and in which vi is the last element. The score sequence (losing
score sequence) is formed by listing the scores (losing scores) in non-decreasing
order.

The following characterizations of score sequences and losing score sequences
in k-hypertournaments can be found in G. Zhou et al. [12].

Theorem 1 Given two positive integers n and k with n ≥ k > 1, a non-
decreasing sequence R = [r1, r2, . . . , rn] of non-negative integers is a losing
score sequence of some k-hypertournament if and only if for each j,

j∑
i=1

ri ≥
(
j

k

)
,

with equality when j = n.

Theorem 2 Given positive integers n and k with n ≥ k > 1, a non-decreasing
sequence S = [s1, s2, . . . , sn] of non-negative integers is a score sequence of
some k-hypertournament if and only if for each j,

j∑
i=1

si ≥ j
(
n− 1

k− 1

)
+

(
n− j

k

)
−

(
n

k

)
,

with equality when j = n.

Some recent work on the reconstruction of tournaments can be found in
the papers due to A. Iványi [3, 4]. Some more results on k-hypertournaments
can be found in [2, 5, 9, 10, 11, 13]. The analogous results of Theorem 1 and
Theorem 2 for [h, k]-bipartite hypertournaments can be found in [7] and for
[α,β, γ]-tripartite hypertournaments in [8].

Throughout this paper i takes values from 1 to k and ji takes values from 1
to ni, unless otherwise stated.

186 S. Pirzada, G. Zhou, A. Iványi

A k-partite hypergraph is a generalization of k-partite graph. Given non-
negative integers ni and αi, (i = 1, 2, . . . , k) with ni ≥ αi ≥ 0 for each i, an
[α1, α2, . . . , αk]-k-partite hypertournament (or briefly k-partite hypertourna-
ment) M of order

∑k
1 ni consists of k vertex sets Ui with |Ui| = ni for each i,

(1 ≤ i ≤ k) together with an arc set E, a set of
∑k
1 αi-tuples of vertices, with

exactly αi vertices from Ui, called arcs such that any
∑k
1 αi subset ∪k1U′

i of

∪k1Ui, E contains exactly one of the
(∑k

1 αi

) ∑k
1 αi-tuples whose αi entries

belong to U′
i.

Let e = (u11, u12, . . . , u1α1
, u21, u22, . . . , u2α2

, . . . , uk1, uk2, . . . , ukαk
), with

uiji ∈ Ui for each i, (1 ≤ i ≤ k, 1 ≤ ji ≤ αi), be an arc in M and let h < t, we
let e(u1h, u1t) denote to be the new arc obtained from e by interchanging u1h
and u1t in e. An arc containing αi vertices from Ui for each i, (1 ≤ i ≤ k) is
called an (α1, α2, . . . , αk)-arc.

For a given vertex uiji ∈ Ui for each i, 1 ≤ i ≤ k and 1 ≤ ji ≤ αi, the score
d+
M(uiji) (or simply d+(uiji)) is the number of

∑k
1 αi-arcs containing uiji and

in which uiji is not the last element. The losing score d−
M(uiji) (or simply

d−(uiji)) is the number of
∑k
1 αi-arcs containing uiji and in which uiji is the

last element. By arranging the losing scores of each vertex set Ui separately
in non-decreasing order, we get k lists called losing score lists of M and these
are denoted by Ri = [riji]

ni
ji=1

for each i, (1 ≤ i ≤ k). Similarly, by arranging
the score lists of each vertex set Ui separately in non-decreasing order, we get
k lists called score lists of M which are denoted as Si = [siji]

ni
ji=1

for each i
(1 ≤ i ≤ k).

2 Main results

The following two theorems are the main results.

Theorem 3 Given k non-negative integers ni and k non-negative integers
αi with 1 ≤ αi ≤ ni for each i (1 ≤ i ≤ k), the k non-decreasing lists
Ri = [riji]

ni
ji=1

of non-negative integers are the losing score lists of a k-partite
hypertournament if and only if for each pi (1 ≤ i ≤ k) with pi ≤ ni,

k∑
i=1

pi∑
ji=1

riji ≥
k∏
i=1

(
pi

αi

)
, (1)

with equality when pi = ni for each i (1 ≤ i ≤ k).

Score lists in multipartite hypertournaments 187

Theorem 4 Given k non-negative integers ni and k non-negative integers
αi with 0 ≤ αi ≤ ni for each i (1 ≤ i ≤ k), the k non-decreasing lists
Si = [siji]

ni
ji=1

of non-negative integers are the score lists of a k-partite hyper-
tournament if and only if for each pi, (1 ≤ i ≤ k) with pi ≤ ni

k∑
i=1

pi∑
ji=1

siji ≥

(
k∑
i=1

αipi

ni

)(
k∏
i=1

(
ni

αi

))
+

k∏
i=1

(
ni − pi
αi

)
−

k∏
i=1

(
ni

αi

)
, (2)

with equality when pi = ni for each i (1 ≤ i ≤ k).

We note that in a k-partite hypertournamentM, there are exactly
∏k
i=1

(
ni
αi

)
arcs and in each arc only one vertex is at the last entry. Therefore,

k∑
i=1

ni∑
ji=1

d−
M(uiji) =

k∏
i=1

(
ni

αi

)
.

In order to prove the above two theorems, we need the following Lemmas.

Lemma 5 If M is a k-partite hypertournament of order
∑k
1 ni with score lists

Si = [siji]
ni
ji=1

for each i (1 ≤ i ≤ k), then

k∑
i=1

ni∑
ji=1

siji =

[(
k∑
1=1

αi

)
− 1

]
k∏
i=1

(
ni

αi

)
.

Proof. We have ni ≥ αi for each i (1 ≤ i ≤ k). If riji is the losing score of
uiji ∈ Ui, then

k∑
i=1

ni∑
ji=1

riji =

k∏
i=1

(
ni

αi

)
.

The number of [αi]
k
1 arcs containing uiji ∈ Ui for each i, (1 ≤ i ≤ k), and

1 ≤ ji ≤ ni is

αi

ni

k∏
t=1

(
nt

αt

)
.

188 S. Pirzada, G. Zhou, A. Iványi

Thus,

k∑
i=1

ni∑
ji=1

siji =

k∑
i=1

ni∑
ji=1

(
αi

ni

) k∏
1

(
nt

αt

)
−

(
ni

αi

)

=

(
k∑
i=1

αi

)
k∏
1

(
nt

αt

)
−

k∏
1

(
ni

αi

)

=

[(
k∑
1=1

αi

)
− 1

]
k∏
1

(
ni

αi

)
.

�

Lemma 6 If Ri = [riji]
ni
ji=1

(1 ≤ i ≤ k) are k losing score lists of a k-partite
hypertournament M, then there exists some h with r1h < α1

n1

∏k
1

(
np

αp

)
so that

R′
1 = [r11, r12, . . . , r1h+1, . . . , r1n1

], R′
s = [rs1, rs2, . . . , rst−1, . . . , rsns] (2 ≤ s ≤

k) and Ri = [riji]
ni
ji=1

, (2 ≤ i ≤ k), i 6= s are losing score lists of some k-partite
hypertournament, t is the largest integer such that rs(t−1) < rst = . . . = rsns.

Proof. Let Ri = [riji]
ni
ji=1

(1 ≤ i ≤ k) be losing score lists of a k-partite hyper-
tournament M with vertex sets Ui = {ui1, ui2, . . . , uiji} so that d−(uiji) = riji
for each i (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).

Let h be the smallest integer such that

r11 = r12 = . . . = r1h < r1(h+1) ≤ . . . ≤ r1n1

and t be the largest integer such that

rs1 ≤ rs2 ≤ . . . ≤ rs(t−1) < rst = . . . = rsns

Now, let
R′
1 = [r11, r12, . . . , r1h + 1, . . . , r1n1

],

R′
s = [rs1, rs2, . . . , rst − 1, . . . , rsns

(2 ≤ s ≤ k), and Ri = [riji]
ni
ji=1

, (2 ≤ i ≤ k), i 6= s.
Clearly, R′

1 and R′
s are both in non-decreasing order.

Since r1h < α1
n1

∏k
1

(
np

αp

)
, there is at least one [αi]

k
1-arc e containing both u1h

and ust with ust as the last element in e, let e′ = (u1h, ust). Clearly, R′
1, R

′
s

Score lists in multipartite hypertournaments 189

and Ri = [riji]
ni
ji=1

for each i (2 ≤ i ≤ k), i 6= s are the k losing score lists of
M′ = (M− e) ∪ e′. �

The next observation follows from Lemma 6, and the proof can be easily
established.

Lemma 7 Let Ri = [riji]
ni
ji=1

, (1 ≤ i ≤ k) be k non-decreasing sequences of
non-negative integers satisfying (1). If r1n1

< α1
n1

∏k
1

(
nt

αt

)
, then there exists s

and t (2 ≤ s ≤ k), 1 ≤ t ≤ ns such that R′
1 = [r11, r12, . . . , r1h + 1, . . . , r1n1

],
R′
s = [rs1, rs2, . . . , rst−1, . . . , rsns] and Ri = [riji]

ni
ji=1

, (2 ≤ i ≤ k), i 6= s satisfy
(1).

Proof of Theorem 3. Necessity. Let Ri, (1 ≤ i ≤ k) be the k losing score
lists of a k-partite hypertournament M(Ui, 1 ≤ i ≤ k). For any pi with αi
≤ pi ≤ ni, let U′

i = {uiji}
pi
ji=1

(1 ≤ i ≤ k) be the sets of vertices such that
d−(uiji) = riji for each 1 ≤ ji ≤ pi, 1 ≤ i ≤ k. Let M′ be the k-partite
hypertournament formed by U′

i for each i (1 ≤ i ≤ k).
Then,

k∑
i=1

pi∑
ji=1

riji ≥
k∑
i=1

pi∑
ji=1

d−
M′(uiji)

=

k∏
1

(
pt
αt

)
.

Sufficiency. We induct on n1, keeping n2, . . . , nk fixed. For n1 = α1, the
result is obviously true. So, let n1 > α1, and similarly n2 > α2, . . . , nk > αk.
Now,

r1n1
=

k∑
i=1

ni∑
ji=1

riji −

n1−1∑
j1=1

r1j1 +

k∑
i=2

ni∑
ji=1

riji


≤

k∏
1

(
nt
αt

)
−

(
n1 − 1

α1

) k∏
2

(
nt
αt

)

=

[(
n1
α1

)
−

(
n1 − 1

α1

)] k∏
2

(
nt
αt

)

=

(
n1 − 1

α1 − 1

) k∏
2

(
nt
αt

)
.

190 S. Pirzada, G. Zhou, A. Iványi

We consider the following two cases.

Case 1. r1n1
=

(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

)
. Then,

n1−1∑
j1=1

r1j1 +

k∑
i=2

ni∑
ji=1

riji =

k∑
i=1

ni∑
ji=1

riji − r1n1

=

k∏
1

(
nt
αt

)
−

(
n1 − 1

α1 − 1

) k∏
2

(
nt
αt

)

=

[(
n1
α1

)
−

(
n1 − 1

α1 − 1

)] k∏
2

(
nt
αt

)

=

(
n1 − 1

α1

) k∏
2

(
nt
αt

)
.

By induction hypothesis [r11, r12, . . . , r1(n1−1)], R2, . . . , Rk are losing score

lists of a k-partite hypertournament M′(U′
1, U2, . . . , Uk) of order

(∑k
i=1 ni

)
−

1. Construct a k-partite hypertournament M of order
∑k
i=1 ni as follows. In

M′, let U′
1 = {u11, u12, . . . , u1(n1−1)}, Ui = {uiji}

ni
ji=1

for each i, (2 ≤ i ≤
k). Adding a new vertex u1n1

to U′
1, for each

(∑k
i=1 αi

)
-tuple containing

u1n1
, arrange u1n1

on the last entry. Denote E1 to be the set of all these(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

) (∑k
i=1 αi

)
-tuples. Let E(M) = E(M′) ∪ E1. Clearly,

Ri for each i, (1 ≤ i ≤ k) are the k losing score lists of M.

Case 2. r1n1
<

(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

)
.

Applying Lemma 7 repeatedly on R1 and keeping each Ri, (2 ≤ i ≤ k) fixed
until we get a new non-decreasing list R′

1 = [r′11, r
′
12, . . . , r

′
1n1

] in which now

′
1n1

=

(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

)
. By Case 1, R′

1, Ri (2 ≤ i ≤ k) are the losing

score lists of a k-partite hypertournament. Now, apply Lemma 6 on R′
1, Ri

(2 ≤ i ≤ k) repeatedly until we obtain the initial non-decreasing lists Ri for
each i (1 ≤ i ≤ k). Then by Lemma 6, Ri for each i (1 ≤ i ≤ k) are the losing
score lists of a k-partite hypertournament. �

Proof of Theorem 4. Let Si = [siji]
ni
ji=1

(1 ≤ i ≤ k) be the k score lists of
a k-partite hypertournament M(Ui, 1 ≤ i ≤ k), where Ui = {uiji}

ni
ji=1

with

Score lists in multipartite hypertournaments 191

d+
M(uiji) = siji , for each i, (1 ≤ i ≤ k). Clearly,

d+(uiji) + d−(uiji) = αi
ni

∏k
1

(
nt
αt

)
, (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).

Let ri(ni+1−ji) = d−(uiji), (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).
Then Ri = [riji]

ni
ji=1

(i = 1, 2, . . . , k) are the k losing score lists of M. Con-
versely, if Ri for each i (1 ≤ i ≤ k) are the losing score lists of M, then
Si for each i, (1 ≤ i ≤ k) are the score lists of M. Thus, it is enough to
show that conditions (1) and (2) are equivalent provided siji + ri(ni+1−ji) =(
αi
ni

)∏k
1

(
nt
αt

)
, for each i (1 ≤ i ≤ k and 1 ≤ ji ≤ ni).

First assume (2) holds. Then,

k∑
i=1

pi∑
ji=1

riji =

k∑
i=1

pi∑
ji=1

(
αi

ni

)(k∏
1

(
nt
αt

))
−

k∑
i=1

pi∑
ji=1

si(ni+1−ji)

=

k∑
i=1

pi∑
ji=1

(
αi

ni

)(k∏
1

(
nt
αt

))
−

 k∑
i=1

ni∑
ji=1

riji −

k∑
i=1

ni−pi∑
ji=1

siji


≥

 k∑
i=1

pi∑
ji=1

(
αi

ni

)(k∏
1

(
nt
αt

))
−

[((
k∑
1

αi

)
− 1

)
k∏
1

(
ni
αi

)]

+

k∑
i=1

(ni − pi)

(
αi

ni

) k∏
1

(
nt
αt

)

+

k∏
1

(
ni − (ni − pi)

αi

)
−

k∏
1

(
ni
αi

)

=

k∏
1

(
ni
αi

)
,

with equality when pi = ni for each i (1 ≤ i ≤ k). Thus (1) holds.
Now, when (1) holds, using a similar argument as above, we can show that

(2) holds. This completes the proof. �

192 S. Pirzada, G. Zhou, A. Iványi

Acknowledgements

The research of the third author was supported by the European Union and
the European Social Fund under the grant agreement no. TÁMOP 4.2.1/B-
09/1/KMR-2010-0003.

References

[1] C. Berge, Graphs and hypergraphs, translated from French by E. Minieka,
North-Holland Mathematical Library 6, North-Holland Publishing Co.,
Amsterdam, London, 1973. ⇒184

[2] D. Brcanov, V. Petrovic, Kings in multipartite tournaments and hy-
pertournaments, Numerical Analysis and Applied Mathematics: Interna-
tional Conference on Numerical Analysis and Applied Mathematics 2009 :
1, 2, AIP Conference Proceedings, 1168 (2009) 1255–1257. ⇒185

[3] A. Iványi Reconstruction of complete interval tournaments, Acta Univ.
Sapientiae Inform., 1, 1 (2009) 71–88. ⇒185

[4] A. Iványi, Reconstruction of complete interval tournaments II, Acta Univ.
Sapientiae Math., 2, 1 (2010) 47–71. ⇒185

[5] Y. Koh, S. Ree, Score sequences of hypertournament matrices, On k-
hypertournament matrices, Linear Algebra Appl., 373 (2003) 183–195.⇒185

[6] H. G. Landau, On dominance relations and the structure of animal soci-
eties. III. The condition for a score structure, Bull. Math. Biophys., 15
(1953) 143–148. ⇒185

[7] S. Pirzada, T. A. Chishti, T. A. Naikoo, Score lists in [h, k]-bipartite
hypertournaments, Discrete Math. Appl., 19, 3 (2009) 321–328. ⇒185

[8] S. Pirzada, T. A. Naikoo, G. Zhou, Score lists in tripartite hypertourna-
ments, Graphs and Comb., 23, 4 (2007) 445–454. ⇒185

[9] S. Pirzada G. Zhou, Score sequences in oriented k-hypergraphs, Eur. J.
Pure Appl. Math., 1, 3 (2008) 10–20. ⇒185

[10] S. Pirzada, G. Zhou, On k-hypertournament losing scores, Acta Univ.
Sapientiae Inform., 2, 1 (2010) 5–9. ⇒185

http://en.wikipedia.org/wiki/Claude_Berge
http://tigger.uic.edu/~minieka/
http://sites.dmi.rs/personal/petrovicv/
http://www.icnaam.org/icnaam_2009/index.htm
http://proceedings.aip.org/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony&angolul=1
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony&angolul=1
http://www.acta.sapientia.ro/acta-math/matematica-main.htm
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Koh:Youngmee.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lee:Sang_Wook.html
http://www.sciencedirect.com/science/journal/00243795
http://www.dharwadker.org/pirzada/
http://www.reference-global.com/loi/dma
http://www.dharwadker.org/pirzada/
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.springerlink.com/content/101790/
http://www.dharwadker.org/pirzada/
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.ejpam.com/index.php/ejpam/issue/archive
http://www.dharwadker.org/pirzada/
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

Score lists in multipartite hypertournaments 193

[11] C. Wang, G. Zhou, Note on degree sequences of k-hypertournaments.
Discrete Math., 308, 11 (2008) 2292–2296. ⇒185

[12] G. Zhou, T. Yao, K. Zhang, On score sequences of k-tournaments. Euro-
pean J. Comb., 21, 8 (2000) 993–1000. ⇒185

[13] G. Zhou, On score sequences of k-tournaments. J. Appl. Math. Comput.,
27 (2008) 149–158. ⇒185

Received: June 23, 2010 • Revised: October 21, 2010

mailto:wangchao@nankai.edu.cn
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.sciencedirect.com/science/journal/0012365X
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://math.nju.edu.cn/~gfzhou/EnglishVersion.html
http://www.springerlink.com/content/1598-5865

Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 194–209

Pumping lemmas for linear and nonlinear

context-free languages

Dedicated to Pál Dömösi on his 65th birthday

Géza Horváth
University of Debrecen

email: geza@inf.unideb.hu

Benedek Nagy
University of Debrecen

email: nbenedek@inf.unideb.hu

Abstract. Pumping lemmas are created to prove that given languages
are not belong to certain language classes. There are several known pump-
ing lemmas for the whole class and some special classes of the context-free
languages. In this paper we prove new, interesting pumping lemmas for
special linear and context-free language classes. Some of them can be used
to pump regular languages in two place simultaneously. Other lemma can
be used to pump context-free languages in arbitrary many places.

1 Introduction

The formal language theory and generative grammars form one of the basics
of the field of theoretical computer science [5, 9]. Pumping lemmas play im-
portant role in formal language theory [3, 4]. One can prove that a language
does not belong to a given language class. There are well-known pumping lem-
mas, for example, for regular and context-free languages. The first and most
basic pumping lemma is introduced by Bar-Hillel, Perles, and Shamir in 1961
for context-free languages [3]. Since that time many pumping lemmas are in-
troduced for various language classes. Some of them are easy to use/prove,
some of them are more complicated. Sometimes a new pumping lemma is in-
troduced to prove that a special language does not belong to a given language

Computing Classification System 1998: F.4.3
Mathematics Subject Classification 2010: 68Q45
Key words and phrases: context-free languages, linear languages, pumping lemma, deriva-
tion tree, regular languages

194

http://www.inf.unideb.hu/~geza
http://www.unideb.hu/portal/en
mailto:geza@inf.unideb.hu
http://www.inf.unideb.hu/~nbenedek
http://www.unideb.hu/portal/en
mailto:nbenedek@inf.unideb.hu

Pumping lemmas for linear and nonlinear languages 195

class. Several subclasses of context-free languages are known, such as deter-
ministic context-free and linear languages. The linear language class is strictly
between the regular and the context-free ones. In linear grammars only the fol-
lowing types of rules can be used: A → w, A → uBv (A,B are non-terminals,
w,u, v ∈ V∗). In the sixties, Amar and Putzolu defined and analysed a special
subclass of linear languages, the so-called even-linear ones, in which the rules
has a kind of symmetric shape [1] (in a rule of shape A → uBv, i.e., with
non-terminal at the right hand side, the length of u must equal to the length
of v). The even-linear languages are intensively studied, for instance, they play
special importance in learning theory [10]. In [2] Amar and Putzolu extended
the definition to any fix-rated linear languages. They defined the k-rated linear
grammars and languages, in which the ratio of the lengths of v and u equals
to a fixed non-negative rational number k for all rules of the grammar contain-
ing non-terminal in the right-hand-side. They used the term k-linear for the
grammar class and k-regular for the generated language class. In the literature
the k-linear grammars and languages are frequently used for the metalinear
grammars and languages [5], as they are extensions of the linear ones (having
at most k nonterminals in the sentential forms). Therefore, for clarity, we pre-
fer the term fix-rated (k-rated) linear for those restricted linear grammars and
languages that are introduced in [2]. The classes k-rated linear languages are
strictly between the linear and regular ones for any rational value of k. More-
over their union the set of all fixed-linear languages is also strictly included in
the class of linear languages. In special case k = 1 the even-linear grammars
and languages are obtained; while the case k = 0 corresponds to the regular
grammars and languages. The derivation-trees of the k-rated linear grammars
form pine tree shapes. In this paper we investigate pumping lemmas for these
languages also. These new pumping lemmas work for regular languages as well,
since every regular language is k-rated linear for every non-negative rational
k. In this way the words of a regular language can be pumped in two places
in a parallel way. There are also extensions of linear grammars. A context-free
grammar is said to be k-linear if it has the form of a linear grammar plus one
additional rule of the form S → S1S2 . . . Sk, where none of the symbols Si may
appear on the right-hand side of any other rule, and S may not appear in any
other rule at all. A language is said to be k-linear if it can be generated by a
k-linear grammar, and a language is said to be metalinear if it is k-linear for
some positive integer k. The metalinear language family is strictly between
the linear and context-free ones. In this paper we also introduce a pumping
lemma for not metalinear context-free languages, which can be used to prove
that the given language belongs to the class of the metalinear languages.

196 G. Horváth, B. Nagy

2 Preliminaries

In this section we give some basic concepts and fix our notation. Let N denote
the non-negative integers and Q denote the non-negative rationals through the
paper.

A grammar is an ordered quadruple G = (N,V, S,H), where N,V are the
non-terminal and terminal alphabets. S ∈ N is the initial letter. H is a finite
set of derivation rules. A rule is a pair written in the form v → w with
v ∈ (N ∪ V)∗N(N ∪ V)∗ and w ∈ (N ∪ V)∗.

Let G be a grammar and v,w ∈ (N∪V)∗. Then v ⇒ w is a direct derivation
if and only if there exist v1, v2, v

′, w ′ ∈ (N ∪ V)∗ such that v = v1v
′v2, w =

v1w
′v2 and v ′ → w ′ ∈ H. The transitive and reflexive closure of ⇒ is denoted

by ⇒∗.
The language generated by a grammar G is L(G) = {w|S ⇒∗ w∧w ∈ V∗}.

Two grammars are equivalent if they generate the same language modulo the
empty word (λ). (From now on we do not care whether λ ∈ L or not.)

Depending on the possible structures of the derivation rules we are interested
in the following classes [2, 5].
• type 1, or context-sensitive (CS) grammars: for every rule the next scheme
holds: uAv → uwv with A ∈ N and u, v,w ∈ (N ∪ V)∗, w 6= λ.
• type 2, or context-free (CF) grammars: for every rule the next scheme holds:
A → v with A ∈ N and v ∈ (N ∪ V)∗.
• linear (Lin) grammars: each rule is one of the next forms: A → v, A → vBw;
where A,B ∈ N and v,w ∈ V∗.
• k-linear (k-Lin) grammars: it is a linear grammar plus one additional rule
of the form S → S1S2 . . . Sk, where S1, S2, . . . , Sk ∈ N, and none of the Si may
appear on the right-hand side of any other rule, and S may not appear in any
other rule at all.
• metalinear (Meta) grammars: A grammar is said to be metalinear if it is
k-linear for some positive integer k.
• k-rated linear (k-rLin) grammars: it is a linear grammar with the following
property: there exists a rational number k such that for each rule of the form:
A → vBw: |w|

|v| = k (where |v| denotes the length of v).
Specially with k = 1:
• even-linear (1-rLin) grammars.

Specially with k = 0:
• type 3, or regular (Reg) grammars: each derivation rule is one of the following
forms: A → w, A → wB; where A,B ∈ N and w ∈ V∗.

The language family regular/linear etc. contains all languages that can be

Pumping lemmas for linear and nonlinear languages 197'

&

$

%

'

&

$

%

'

&

$

%
�
�
�
�
�
�	

Context-free languages
Metalinear languages
Linear languages
Fix-rated linear languages
Regular languages

Figure 1: The hierarchy of some context-free language classes

generated by regular/linear etc. grammars. We call a language L fix-rated
linear if there is a k ∈ Q such that L is k-rated linear. So the class of fix-rated
linear languages includes all the k-rated linear language families. Moreover it
is known by [2], that for any value of k ∈ Q all regular languages are k-rated
linear.

The hierarchy of the considered language classes can be seen in Fig. 4.
Further, when we consider a special fixed value of k, then we will also use it
as k = g

h , where g, h ∈ N (h 6= 0) are relatively primes.
Now we present normal forms for the rules of linear, k-rated linear and so,

even-linear and regular grammars.
The following fact is well-known: Every linear grammar has an equivalent

grammar in which all rules are in forms of A → aB,A → Ba,A → a with
a ∈ V,A, B ∈ N.

Lemma 1 (Normal form for k-rated linear grammars) Every k-rated
(k = g

h) linear grammar has an equivalent one in which for every rule of
the form A → vBw: |w| = g and |v| = h such that g and h are relatively
primes and for all rules of the form A → u with u ∈ V∗: |u| < g+ h holds.

Proof. It goes in the standard way: longer rules can be simulated by shorter
ones by the help of newly introduced nonterminals. �

As special cases of the previous lemma we have:

Remark 2 Every even-linear grammar has an equivalent grammar in which
all rules are in forms A → aBb,A → a, A → λ (A,B ∈ N,a, b ∈ V).

Remark 3 Every regular language can be generated by grammar having only
rules of types A → aB,A → λ (A,B ∈ N,a ∈ V).

198 G. Horváth, B. Nagy

Derivation trees are widely used graphical representations of derivations in
context-free grammars. The root of the tree is a node labelled by the initial
symbol S. The terminal labelled nodes are leaves of the tree. The nonterminals,
as the derivation continues from them, have some children nodes. Since there
is a grammar in Chomsky normal form for every context-free grammar, every
word of a context-free language can be generated such that its derivation tree
is a binary tree.

In linear case, there is at most one non-terminal in every level of the tree.
Therefore the derivation can go only in a linear (sequential) manner. There is
only one main branch of the derivation (tree); all the other branches terminate
immediately. Observing the derivations and derivation trees for linear gram-
mars, they seem to be highly related to the regular case. The linear (and so,
specially, the even-linear and fixed linear) languages can be accepted by finite
state machines [1, 7, 8]. Moreover the k-rated linear languages are accepted
by deterministic machines [8].

By an analysis of the possible trees and iterations of nonterminals in a
derivation (tree) one can obtain pumping (or iteration) lemmas.

Further in this section we recall some well-known iteration lemmas.
The most famous iteration lemma works for every context-free languages [3].

Lemma 4 (Bar-Hillel lemma) Let a context-free language L be given. Then
there exists an integer n ∈ N such that any word p ∈ L with |p| ≥ n, admits a
factorization p = uvwxy satisfying

1. uviwxiy ∈ L for all i ∈ N
2. |vx| > 0

3. |vwx| ≤ n.

Example 5 Let L = {aibici | i ∈ N}. It is easy to show with the Bar-Hillel
lemma that the language L is not context-free.

The next lemma works for linear languages [5].

Lemma 6 (Pumping lemma for linear languages) Let L be a linear lan-
guage. Then there exists an integer n such that any word p ∈ L with |p| ≥ n,
admits a factorization p = uvwxy satisfying

1. uviwxiy ∈ L for all integer i ∈ N
2. |vx| > 0

3. |uvxy| ≤ n.

Example 7 It is easy to show by using Lemma 6 that the language
L = {aibicjdj|i, j ∈ N} is not linear.

Pumping lemmas for linear and nonlinear languages 199

In [6] there is a pumping lemma for non-linear context-free languages that
can also be effectively used for some languages.

Lemma 8 (Pumping lemma for non-linear context-free languages) Let
L be a non-linear context-free language. Then there exist infinite many words
p ∈ L which admit a factorization p = rstuvwxyz satisfying

1. rsituivwjxyjz ∈ L for all integer i, j ≥ 0
2. |su| 6= 0

3. |wy| 6= 0.

Example 9 Let
H ⊆ {12, 22, 32, . . .}

be an infinite set, and let

LH = {akbkalbl} | k, l ≥ 1; k ∈ H or l ∈ H} ∪ {ambm | m ≥ 1}.

The language LH satisfies the Bar-Hillel condition. Therefore we can not
apply the Bar-Hillel Lemma to show that LH is not context-free. However the
LH language does not satisfy the condition of the pumping lemma for linear
languages. Thus LH is not linear. At this point we can apply Lemma 8, and the
language LH does not satisfy its condition. This means LH is not context-free.

Now we recall the well-known iteration lemma for regular case (see, for
instance, [5]).

Lemma 10 (Pumping lemma for regular languages) Let L be a regular
language. Then there exists an integer n such that any word p ∈ L with |p| ≥ n,
admits a factorization p = uvw satisfying

1. uviw ∈ L for all integer i ∈ N
2. |v| > 0

3. |uv| ≤ n.

Example 11 By the previous lemma one can easily show that the language
{anbn|n ∈ N} is not regular.

Pumping lemmas are strongly connected to derivation trees, therefore they
works for context-free languages (and for some special subclasses of the context-
free languages).

In the next section we present pumping lemmas for the k-rated linear lan-
guages and for the not metalinear context-free languages.

200 G. Horváth, B. Nagy

3 Main results

Let us consider a k-rated linear grammar. Based on the normal form (Lemma
1) every word of a k = g

h -rated linear language can be generated by a ‘pine-
tree’ shape derivation tree (see Fig. 2).

��
�
��

�
��
�
���

�
��

�
��
�
���

��
�
��
�
��
�

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@@

�
�
��

B
B
BB

v2 w2

vn wn

v1 w1

u

S

A1

A2

:

An

Figure 2: A ‘pine-tree’ shape derivation tree in a fix-rated linear grammar

Now we are ready to present our pumping lemmas for these languages.

Theorem 12 Let L be a (g
h = k)-rated linear language. Then there exists

an integer n such that any word p ∈ L with |p| ≥ n, admits a factorization
p = uvwxy satisfying

1. uviwxiy ∈ L for all integer i ∈ N
2. 0 < |u|, |v| ≤ n h

g+h

3. 0 < |x|, |y| ≤ n g
g+h

4. |x|
|v| =

|y|
|u| = g

h = k.

Proof. Let G = (N,V, S,H) be a k-rated linear grammar in normal form that
generates the language L. Then let n = (|N|+1) · (g+h). In this way any word
p with length at least n cannot be generated without any repetition of a non-
terminal in the sentential form. Moreover, by the pigeonhole principle, there
is a nonterminal in the derivation which occurs in the sentential forms during
the first |N| steps of the derivation and after the first occurrence it occurs also

Pumping lemmas for linear and nonlinear languages 201

��
���

���
���

H
HH

H
H

���
���

���
��

HH
H

HH

HH
HH

H

���
���

���
��v x

w

u y

S

A

A

:

:

:

Figure 3: Pumping the subwords between the two occurrences of the non-
terminal A.

in the next |N| sentential forms. Considering the first two occurrences of this
nonterminal A in the derivation tree, the word p can be partitioned to five
parts in the following way. Let u and y be the prefix and suffix (respectively)
generated by the first steps till the first occurrence of A. Let v and x be the
subwords that are generated from the first occurrence of A till it appears sec-
ondly in the sentential form. Finally let w be the subword that is generated
from the second occurrence of A in the derivation. (See also Fig. 3.) In this
way the conditions 2, 3 and 4 of the theorem are fulfilled for the lengths of
the partitions. Now let us consider the derivation steps between the first two
occurrences of A. They can be omitted from the derivation; in this way the
word uwy is obtained. This sequence of steps can also be repeated any time,
in this way the words of the form uviwxiy are obtained for any i ∈ N. Thus
the theorem is proved. �

Theorem 13 Let L be a (g
h = k)-rated linear language. Then there exists

an integer n such that any word p ∈ L with |p| ≥ n, admits a factorization
p = uvwxy satisfying

1. uviwxiy ∈ L for all integer i ∈ N
2. 0 < |v| ≤ n h

g+h

3. 0 < |x| ≤ n g
g+h

4. 0 < |w| ≤ n
5. |x|

|v| =
|y|
|u| = g

h = k.

Proof. Let G = (N,V, S,H) be a k-rated linear grammar in normal form that

202 G. Horváth, B. Nagy

generates the language L. Then let n = (|N| + 1) · (g + h). In this way any
word p with length at least n cannot be generated without any repetition of
a nonterminal in the sentential form. Moreover there is a nonterminal A in
the derivation which occurs twice among the non-terminals of the last |N+ 1|

sentential forms of the derivation. Considering these last two occurrences of
A in the derivation tree the word p can be partitioned to five parts in the
following way. Let u and y be the prefix and suffix (respectively) generated
from the first steps till that occurrence of A which is the last but one during
the derivation. Let v and x be the subwords that are generated by the steps
between the last two occurrences of A. Finally let w be the subword that is
generated from the last occurrence of A in the derivation. In this way the
conditions 2, 3, 4 and 5 are fulfilled for the lengths of the partitions. Now let
us consider the derivation steps between the these two occurrences of A. They
can be omitted from the derivation; in this way the word uwy is obtained.
This sequence of steps can also be repeated any time, in this way the words of
the form uviwxiy are obtained for any i ∈ N. Thus the theorem is proved. �

Remark 14 In case of k = 0 the previous theorems give the well-known pump-
ing lemmas for regular languages.

Now we are presenting an iteration lemma for another special subclass of
the context-free language family.

Theorem 15 Let L be a context-free language which does not belong to any
k-linear language for a given positive integer k. Then there exist infinite many
words w ∈ L which admit a factorization w = uv0w0x0y0 . . . vkwkxkyk satis-
fying

1. uvi0
0 w0x

i0
0 y0 . . . v

ik
k wkx

ik
k yk ∈ L for all integer i0, . . . , ik ≥ 0

2. |vjxj| 6= 0 for all 0 ≤ j ≤ k.

Proof. Let G = (N,V, S,H) be a context-free grammar such that L(G) = L,
and let GA = (N,V,A,H) for all A ∈ N. Because L is not k-linear, there exists
A0, . . . , Ak ∈ VN and α,β0, . . . , βk ∈ V∗ such that S ⇒∗ αA0β0 . . . Akβk,
where all of the languages L(GAl

), 0 ≤ l ≤ k are infinite. Then the words
{α}L(GA0

){β0} . . . L(GAk
){βk} ⊆ L, and applying the Bar-Hillel Lemma for

all L(GAl
) we receive αa0b

i0
0 c0d

i0
0 e0β0 . . . akb

ik
k ckd

ik
k ekβk ⊆ L for all i0 ≥

0, . . . , ik ≥ 0. Let u = αa0, vl = bl, wl = cl, xl = dl, yl = elβl, and we have
the above form. �

Pumping lemmas for linear and nonlinear languages 203

Remark 16 With k = 1 we have a pumping lemma for non-linear context-free
languages.

Knowing that every k-linear language is metalinear for any k ∈ N, we have:

Proposition 17 Let L be a not metalinear context-free language. For all in-
tegers k ≥ 1 there exist infinite many words w ∈ L which admit a factorization
w = uv0w0x0y0 . . . vkwkxkyk satisfying

1. uvi0
0 w0x

i0
0 y0 . . . v

ik
k wkx

ik
k yk ∈ L for all integer i0, . . . , ik ≥ 0

2. |vjxj| 6= 0 for all 0 ≤ j ≤ k.

4 Applications of the new iteration lemmas

As pumping lemmas are usually used to show that a language does not belong
to a language class, we present an example for this type of application.

Example 18 The DYCK language (the language of correct bracket expres-
sions) is not k-linear for any value of k over the alphabet {(,)}. Let k 6= 1 be
fixed as g

h . Let us consider the word of the form ((g+h)(n+2))(g+h)(n+2). Then
Theorem 12 does not work (if k 6= 1), the pumping deletes or introduces dif-
ferent number of (’s and)’s. To show that the DYCK language is not 1-rated
(i.e., even-)linear let us consider the word (2n)2n(2n)2n. Using Theorem 13 the
number of inner brackets can be pumped. In this way such words are obtained
in which there are prefixes with more letters) than (. Since these words do not
belong to the language, this language is not k-linear.

In the previous example we showed that the DYCK language is not fixed
linear.

In the next example we consider a deterministic linear language.

Example 19 Let L = {ambm|m ∈ N} ∪ {amcb2m|m ∈ N} over the alphabet
{a, b, c}. Let us assume that the language is fixed linear. First we show that this
language is not fixed linear with ratio other than 1. On the contrary, assume
that it is, with k = g

h ∈ Q such that k 6= 1. Let n be given by Theorem 12.
Then consider the words of the form am(g+h)bm(g+h) with m > n. By the
theorem any of them can be factorized to uvwxy such that |uv| ≤ 2nh

g+h . Since
g + h > 2 (remember that g, h ∈ N, relatively primes and g 6= h), |uv| < nh,
and therefore both u and v contains only a’s. By a similar argument on the
length of xy, x and y contains only b’s. Since the ratio |x|

|v| (it is fixed by the

204 G. Horváth, B. Nagy

theorem) is not 1, by pumping we get words outside of the language. Now we
show that this language is not even-linear. Assume that it is 1-rated linear
(g = h = 1). Let n be the value from Theorem 12. Let us consider the words of
shape amcb2m with m > n. Now we can factorize these words in a way, that
|uv| ≤ n and |xy| ≤ n and |v| = |x|. By pumping we get words am+jcb2m+j

with some positive values of j, but they are not in L. We have a contradiction
again. So this language is not fixed linear.

In the next example we show a fixed-linear language that can be pumped.

Example 20 Let L be the language of palindromes, i.e., of the words over
{a, b} that are the same in reverse order (p = pR). We show that our pumping
lemmas work for this language with the value k = 1. Let p ∈ L, then p =

uvwxy according to Theorem 12 or Theorem 13, such that |u| = |y| and |v| =

|x|. Therefore, by applying the main property of the palindromes, we have u =

yR, v = xR and w = wR. By i = 0 the word uwy is obtained which is in L
according to the previous equalities. By further pumping the words uviwxiy

are obtained, they are also palindromes. To show that this language cannot
be pumped with any other values, let us consider words of shape ambam. By
Theorem 12 it can be shown in analogous way that we showed in Example 19
that enough long words cannot be pumped with ratio k 6= 1.

Besides our theorems work for regular languages with k = 0 there is a non-
standard application of them. As we already mentioned, all regular languages
are k-rated linear for any values of k ∈ Q. Therefore every new pumping
lemma works for any regular language with any values of k. Now we show
some examples.

Example 21 Let the regular language (ab)∗aa(bbb)∗a be given. Then we
show, that our theorems work for, let us say, k = 1

2 . Every word of the lan-
guage is of the form (ab)naa(bbb)ma (with n,m ∈ N). For words that are
long enough either n or m (or both of them) are sufficiently large. Now we
detail effective factorizations p = uvwxy of the possible cases. We give only
those words of the factorization that have maximized lengths due to the ap-
plied theorem, the other words can easily be found by the factorization and,
at Theorem 13, by taking into account the fixed ratio of some lengths in the
factorization.

• Theorem 12 for k = 1
2 :

if n > 3 and m > 0 : let u = ab, v = ababab, x = bbb, y = a,
if m = 0 : let u = ababab, v = abab, x = ab, y = aaa,

Pumping lemmas for linear and nonlinear languages 205

if n = 3 : let u = abababaa, v = bb, x = b, y = bbba,
if n = 2 : let u = ababaa, v = bb, x = b, y = bba,
if n = 1 : let u = abaa, v = bb, x = b, y = ba,
if n = 0 : let u = aa, v = bb, x = b, y = a.

• Theorem 13 for k = 1
2 :

if n ≤ 3m− 4 : let v = bb, w = b x = b,
if n = 3m− 3 : let v = ababab, w = aabbbb x = bbb,
if n = 3m− 2 : let v = ababab, w = abaabbbb x = bbb,
if n = 3m− 1 : let v = ababab, w = ababaabbbb x = bbb,
if n = 3m : let v = ababab, w = aab x = bbb,
if n = 3m+ 1 : let v = ababab, w = abaab, x = bbb,
if n = 3m+ 2 : let v = ababab, w = ababaab, x = bbb,
if n = 3m+ 3 : let v = ababab, w = abababaab, x = bbb,
if n = 3m+ 4 : let v = ababab, w = ababababaab, x = bbb,
if n = 3m+ 5 : let v = ababab, w = abababababaab, x = bbb,
if n ≥ 3m+ 6, n ≡ 0(mod3) : let v = abab, w = λ, x = ab,
if n ≥ 3m+ 7, n ≡ 1(mod3) : let v = abab, w = ab, x = ab,
if n ≥ 3m+ 8, n ≡ 2(mod3) : let v = abab, w = abab, x = ab.

In similar way it can be shown that pumping the words of a regular language
in two places simultaneously with other values of k (for instance, 1, 5, 7

3 etc.)
works.

In the next example we show that there are languages that can be pumped
by the usual pumping lemmas for regular languages, but they cannot be regular
since we prove that there is a value of k such that one of our theorems does
not work.

Example 22 Let L = {arbaqbm|r, q,m ≥ 2, ∃j ∈ N : q = j2}. By the usual
pumping lemmas for regular languages, i.e., by fixing k as 0, one cannot infer
that this language is not regular. By k = 0, x = y = λ and so p = uvw. Due
to the a’s in the beginning, Theorem 12 works: u = a, v = a; and due to the
b’s in the end Theorem 13 also works: v = b,w = b.
Now we show that L is not even-linear. Contrary, let us assume that Theorem
13 works for k = 1. Let n be the value for this language according to the
theorem. Let p = a2ba(2n+5)2

b3. By the conditions of the theorem, it can be
factorized to uvwxy such that |v|, |w|, |x| ≤ n and |u| = |y|. In this way vwx
must be a subword of a(2n+5)2

, and so, the pumping decreases/increases only
q. Since |v|, |x| ≤ n in the first round of pumping p ′ = a2ba(2n+5)2+|vx|b3 is

206 G. Horváth, B. Nagy

obtained. But (2n + 5)2 < (2n + 5)2 + |vx| ≤ (2n + 5)2 + 2n < (2n + 6)2,
therefore p ′ 6∈ L.
Thus L is not even-linear, and therefore it cannot be regular. Our pumping
lemma was effective to show this fact.

Usually pumping lemmas can be used only to show that some languages
do not belong to the given class of languages. One may ask what we can say
if a language satisfy our theorems. Now we present an example which shows
that we cannot infer about the language class if a language satisfies our new
pumping lemmas.

Example 23 Let L = {0j1m0r1i0l1i0r1m0j|j,m, i, l, r ≥ 1, r is prime}. One
can easily show that this language satisfies both Theorem 12 and Theorem 13
with k = 1: one can find subwords to pump in the part of outer 0’s or 1’s
(pumping their number form a given j or m to arbitrary high values), or in
the middle part 0’s or 1’s (pumping their number from i or l to arbitrary
high values), respectively. But this language is not even context-free, since
intersected by the regular language 010∗1010∗10 a non semi-linear language
is obtained. Since context-free languages are semi-linear (due to the Parikh
theorem) and the class of context-free languages are closed under intersection
with regular languages, we just proved that L cannot be linear or fix-rated linear.

It is a more interesting question what we can say about a language for
which there are values k1 6= k2 such that all its enough long words can be
pumped both as k1-rated and k2-rated linear language. We have the following
conjecture.

Conjecture 24 If a language L satisfies any of our pumping lemmas for two
different values of k, then L is regular.

If the previous conjecture is true, then exactly the regular languages form the
intersection of the k-rated linear language families (for k ∈ Q).

Regarding iteration lemma for the not metalinear case, we show two exam-
ples.

Example 25 This is a very simple example, we can use our lemma to show
that the language

L1 = {alblambmanbn | l,m,n ≥ 0}

is metalinear.

Pumping lemmas for linear and nonlinear languages 207

First of all, it is easy to show that L1 is context-free. The language L1 does
not satisfy the condition of the pumping lemma for not metalinear context-free
languages, (Proposition 17,) so L1 must be a metalinear context-free language.

In our next example we show a more complicated language which satisfies
the Bar-Hillel condition, and we use our pumping lemma to show that the
language is not context-free.

Example 26 Let
H ⊆ {2k | k ∈ N}

be an infinite set, and let

L2 = {alblambmanbn | l,m, n ≥ 1; l ∈ H or m ∈ H or n ∈ H}∪

∪{aibiajbj | i, j ≥ 1}.

L2 satisfies the Bar-Hillel condition. Therefore we can not apply the Bar-
Hillel Lemma to show that L2 is not context-free. However it is easy to show
that L2 is not 3-linear language. Now we can apply Theorem 15, and the lan-
guage L2 does not satisfy its condition with k = 3. This means L2 does not
belong to the not 3-linear context-free languages, so the language L2 is not
context-free.

5 Conclusions

In this paper some new pumping lemmas are proved for special context-free
and linear languages. In fix-rated linear languages the lengths of the pumped
subwords of a word depend on each other, therefore these pumping lemmas
are more restricted than the ones working on every linear or every context-free
languages. Since all regular languages are k-rated linear for any non-negative
rational value of k, these lemmas also work for regular languages. The question
whether only regular languages satisfy our pumping lemmas at least for two
different values of k (or for all values of k) is remained open as a conjecture. We
also investigated a special subclass of context-free language family and intro-
duced iteration conditions which is satisfied only not metalinear context-free
languages. These conditions can be used in two different ways. First they can
be used to proove that a language is not context-free. On the other hand, we
can also use them to show that the given language is belong to the metalinear
language family.

208 G. Horváth, B. Nagy'

&

$

%

'

&

$

%

'

&

$

%
�
�
�
�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�
��

���
���
�
���

Context-sensitive languages
Context-free languages
Metalinear languages
Fix-rated linear languages

Figure 4: The target language classes of the new iteration lemmas

Acknowledgements

The work is supported by the Czech-Hungarian bilateral project (TéT) and the
TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project. The project is implemented
through the New Hungary Development Plan, co-financed by the European
Social Fund and the European Regional Development Fund.

References

[1] V. Amar, G. R. Putzolu, On a family of linear grammars, Information
and Control, 7, 3 (1964) 283–291. ⇒195, 198

[2] V. Amar, G. R. Putzolu, Generalizations of regular events, Information
and Control, 8, 1 (1965) 56–63. ⇒195, 196, 197

[3] Y. Bar-Hillel, M. Perles, and E. Shamir, On formal properties of simple
phrase structure grammars, Z. Phonetik. Sprachwiss. Komm., 14 (1961)
143–172. ⇒194, 198

[4] P. Dömösi, M. Ito, M. Katsura, C. Nehaniv, New pumping property of
context-free languages, Combinatorics, Complexity an Logic, Proc. Inter-
national Conference on Discrete Mathemtics and Theoretical Computer
Science – DMTCS’96, Springer, Singapore, pp. 187–193. ⇒194

[5] J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, languages,
and computation, (2nd edition), Addison-Wesley, Reading, MA, 1979. ⇒
194, 195, 196, 198, 199

[6] G. Horváth, New pumping lemma for non-linear context-free languages,
Proc. 9th Symposium on Algebras, Languages and Computation, Shimane
University, Matsue, Japan, 2006, pp. 160–163. ⇒199

http://www.sciencedirect.com/science/journal/00199958
http://www.sciencedirect.com/science/journal/00199958
http://en.wikipedia.org/wiki/Yehoshua_Bar-Hillel
http://www.inf.unideb.hu/~domosi/
http://www.springer.com/
http://www.cs.cornell.edu/Info/Department/Annual95/Faculty/Hopcroft.html
http://infolab.stanford.edu/~ullman/
http://www.pearsonhighered.com
http://www.inf.unideb.hu/~geza/

Pumping lemmas for linear and nonlinear languages 209

[7] R. Lokunova, Linear context free languages, Proc. ICTAC 2007, Lecture
Notes in Comput. Sci., 4711 (2007) 351–365. ⇒198

[8] B. Nagy, On 5 ′ → 3 ′ sensing Watson-Crick finite automata, DNA 13,
Revised selected papers, Lecture Notes in Comput. Sci., 4848 (2008)
256–262. ⇒198

[9] G. Rozenberg, A. Salomaa, (eds.) Handbook of formal languages, Springer,
Berlin, Heidelberg, 1997. ⇒194

[10] J. M. Sempere, P. Garćıa, A characterization of even linear languages
and its application to the learning problem, Proc. Second International
Colloquium, ICGI-94, Lecture Notes in Artificial Intelligence, 862 (1994)
38–44. ⇒195

Received: October 5, 2010 • Revised: November 2, 2010

http://www.springer.com/series/558
http://www.inf.unideb.hu/~nbenedek/
http://www.springer.com/series/558
http://www.liacs.nl/~rozenber/
http://en.wikipedia.org/wiki/Arto_Salomaa
http://www.springer.com/
http://www.springer.com/series/1244

Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 210–230

Modelling dynamic programming problems

by generalized d-graphs

Zoltán Kátai
Sapientia Hungarian University of Transylvania
Department of Mathematics and Informatics,

Tg. Mureş, Romania
email: katai zoltan@ms.sapientia.ro

Abstract. In this paper we introduce the concept of generalized d-graph
(admitting cycles) as special dependency-graphs for modelling dynamic
programming (DP) problems. We describe the d-graph versions of three
famous single-source shortest algorithms (The algorithm based on the
topological order of the vertices, Dijkstra algorithm and Bellman-Ford
algorithm), which can be viewed as general DP strategies in the case of
three different class of optimization problems. The new modelling method
also makes possible to classify DP problems and the corresponding DP
strategies in term of graph theory.

1 Introduction

Dynamic programming (DP) as optimization method was proposed by Richard
Bellman in 1957 [1]. Since the first book in applied dynamic programming
was published in 1962 [2] DP has become a current problem solving method
in several fields of science: Applied mathematics [2], Computer science [3],
Artificial Intelligence [6], Bioinformatics [4], Macroeconomics [13], etc. Even
in the early book on DP [2] the authors drew attention to the fact that some
dynamic programming strategies can be formulated as graph search problems.
Later this subject was largely researched. As recent examples: Georgescu and
Ionescu introduced the concept of DP-tree [7]; Kátai [8] proposed d-graphs

Computing Classification System 1998: D.1
Mathematics Subject Classification 2010: 68W40, 90C39, 68R10, 05C12
Key words and phrases: dynamic programming, graph theory, shortest path algorithms

210

http://www.ms.sapientia.ro/~katai_zoltan/
http://www.emte.ro
http://www.ms.sapientia.ro
mailto:katai_zoltan@ms.sapientia.ro

Dynamic programming and d-graphs 211

as special hierarchic dependency-graphs for modelling DP problems; Lew and
Mauch [14, 15, 16] used specialized Petri Net models to represent DP problems
(Lew called his model Bellman-Net).

All the above mentioned modelling tools are based on cycle free graphs.
As Mauch [16] states, circularity is undesirable if Petri Nets represent DP
problem instances. On the other hand, however, there are DP problems with
“cyclic functional equation” (the chain of recursive dependences of the func-
tional equation is cyclic). Felzenszwalb and Zabih [5] in their survey entitled
Dynamic programming and graph algorithms in computer vision recall that
many dynamic programming algorithms can be viewed as solving a shortest
path problem in a graph (see also [9, 11, 12]. But, interestingly, some shortest
path algorithms work in cyclic graphs too. Kátai, after he has been analyz-
ing the three most common single-source shortest path algorithms (The algo-
rithm based on the topological order of the vertices, Dijkstra algorithm and
Bellman-Ford algorithm), concludes that all these algorithms apply cousin DP
strategies [10, 17]. Exploiting this observation Kátai and Csiki [12] developed
general DP algorithms for discrete optimization problems that can be mod-
elled by simple digraphs (see also [11]). In this paper, modelling finite discrete
optimization problems by generalized d-graphs (admitting cycles), we extend
the previously mentioned method for a more general class of DP problems. The
presented new modelling method also makes possible to classify DP problems
and the corresponding DP strategies in term of graph theory.

Then again the most common approach taken today for solving real-world
DP problems is to start a specialized software development project for every
problem in particular. There are several reasons why is benefiting to use the
most specific DP algorithm possible to solve a certain optimization problem.
For instance this approach commonly results in more efficient algorithms. But
a number of researchers in the above mentioned various fields of applications
are not experts in programming. Dynamic programming problem solving pro-
cess can be divided into two steps: (1) the functional equation of the problem is
established (a recursive formula that implements the principle of the optimal-
ity); (2) a computer program is elaborated that processes the recursive formula
in a bottom-up way [12]. The first step is reachable for most researchers, but
the second one not necessary. Attaching graph-based models to DP problems
results in the following benefits:

• it moves DP problems to a well research area: graph theory,
• it makes possible to class DP strategies in terms of graph theory,
• as an intermediate representation of the problem (that hides, to some

212 Z. Kátai

degree, the variety of DP problems) it enables to automate the program-
ming part of the problem-solving process by an adequately developed
software-tools [12],

• a general software-tool that automatically solves DP problems (getting
as input the functional equation) should be able to save considerable
software development costs [16].

2 Modelling dynamic programming problems

DP can be used to solve optimization problems (discrete, finite space) that
satisfy the principle of the optimality: The optimal solution of the original
problem is built on optimal sub-solutions respect to the corresponding sub-
problems. The principle of the optimality implicitly suggests that the problem
can be decomposed into (or reduced to) similar sub-problems. Usually this
operation can be performed in several ways. The goal is to build up the optimal
solution of the original problem from the optimal solutions of its smaller sub-
problems. Optimization problems can often be viewed as special version of
more general problems that ask for all solutions, not only for the optimal one
(A so-called objective function is defined on the set of sub-problems, which
has to be optimized). We will call this general version of the problem, all-
solutions-version.

The set of the sub-problems resulted from the decomposing process can
adequately be modelled by dependency graphs (We have proposed to model
the problem on the basis of the previously established functional equation
that can be considered the output of the mathematical part and the input
of the programming part of the problem solving process). The vertices (con-
tinuous/dashed line squares in the optimization/all-solutions version of the
problem; see Figures 2.a,b,c) represent the sub-problems and directed arcs the
dependencies among them. We introduce the following concepts:

• Structural-dependencies: We have directed arc from vertex A to vertex
B if solutions of sub-problem A may directly depend on solutions of sub-
problem B (dashed arcs; see Figure 2.a).

• Optimal-dependencies: We have directed arc from vertex A to vertex B
if the optimal solution of sub-problem A directly depends on the optimal
solution of the smaller (respect to the optimization process) sub-problem
B (continuous arcs; see Figure 2.b).

• Optimization-dependencies: We have directed arc from vertex A to ver-
tex B if the optimal solutions of sub-problem A may directly depend on

Dynamic programming and d-graphs 213

the optimal solution of the smaller (respect to the optimization process)
sub-problem B (dotted arcs; see Figure 2.c).

Since structural dependencies reflect the structure of the problem, the struc-
tural-dependencies-graph can be considered as input information (It can be
built up on the basis of the functional equation of the problem). This graph
may contain cycles (see Figure 2.a). According to the principle of the optimal-
ity the optimal-dependencies-graph is a rooted sub-tree (acyclic sub-graph) of
the structural-dependencies-graph. Representing the structure of the optimal
solution the optimal-dependencies-graph can be viewed as output informa-
tion. Since optimization-dependencies are such structural-dependencies that
are compatible with the principle of the optimality, the optimization-dependen-
cies-graph is a maximal rooted sub-tree of the structural-dependencies-graph
that includes the optimal-dependencies-tree. Accordingly, the vertices of the
optimization-dependencies-graph (and implicitly the vertices of the optimal-
dependencies-graph too) can be arranged on levels (hierarchic structure) in
such a way that all its arcs are directed downward. The original problem (or
problem-set) is placed on the highest level and the trivial ones on the lowest
level. We consider that a sub-problem is structurally trivial if cannot be de-
composed into, or reduced to smaller sub-sub-problems. A sub-problem is con-
sidered to be trivial regarding the optimization process if its optimal solution
trivially results from the input data. If the structural-dependencies-graph con-
tains cycles, then completing the hierarchic optimization-dependencies-graph
to the structural-dependencies-graph some added arcs will be directed upward.

Let us consider, as an example, the following problem: Given the weighted
undirected triangle graph OAB determine

• all paths from vertex O (origin) to the all vertices (O, A, B) of the graph
(Figure 1.a),

• the maximal length paths from vertex O (origin) to the all vertices of
the graph (|OA| = 10, |OB| = 10, |AB| = 100) (Figure 1.b),

• the minimal length paths from vertex O (origin) to the all vertices of the
graph (|OA| = 100, |OB| = 10, |AB| = 10) (Figure 1.c).

Since path (O,A,B) includes path (O,A) and, conversely, path (O,B,A) in-
cludes path (O,B) the structural-dependencies-graph that can be attached to
the problem is not cycle free (Figure 2.a). We have bidirectional arcs between
vertices representing sub-problems A (determine all paths to vertex A) and B
(determine all paths to vertex B). Since the maximizing version of the prob-
lem does not satisfy the principle of the optimality (the maximal path (O,B,A)

214 Z. Kátai

uA uB
@
@
@
@@u

O

�
�
�
��

(a)

uA uB
@
@
@
@@u

O

�
�

�
��

100

10 10

(b)

uA uB
@
@
@
@@u

O

�
�
�

��

10

100 10

(c)

Figure 1: The triangle graph

includes path (O,B) that is not a maximal path too), in case b the optimal-
dependencies-tree and the optimization-dependencies-tree are not defined. Fig-
ures 2.b and 2.c present the optimal- and optimization-dependencies-graphs
attached to the minimizing version of the problem.

Figure 2: Structural/Optimal/Optimization-dependencies-graphs

3 d-graphs as special dependency graphs

Since decomposing usually means that the current problem is broken down
into two or more immediate sub-problems (1 → N dependency) and since
this operation can often be performed in several ways, Kátai [8] introduced
d-graphs as special dependency graphs for modelling such problems. In this
paper we define a generalized form of d-graphs as follows:

Dynamic programming and d-graphs 215

Definition 1 The connected weighted bipartite finite digraph Gd(V, E, C) is a
d-graph if:

• V = Vp
⋃

Vd and E = Ep
⋃

Ed, where

– Vp is the set of the p-vertices,

– Vd is the set of the d-vertices,

– all in/out neighbours of the p-vertices (excepting the source/sink
vertices) are d-vertices; each d-vertex has exactly one p-in-neighbour;
each d-vertex has at least one p-out-neighbour,

– Ep is the set of p-arcs (from p-vertices to d-vertices),

– Ed is the set of d-arcs (from d-vertices to p-vertices),

• function C : Ep → R associates a cost to every p-arc. We consider d-arcs
of zero cost.

If a d-graph is cycle-free, then its vertices can be arranged on levels (hi-
erarchic structure) (see Figure 3). In [8] Kátai defines, respect to hierarchic
d-graphs, the following related concepts: d-sub-graph, d-tree, d-sub-tree, d-
spanning-tree, optimal d-spanning-tree and optimally weighted d-graph.

4 Modelling optimization problems by d-graphs

According to Kátai [8] a hierarchic d-graph can be viewed as representing the
optimization-dependences-graph corresponding to the original problem and d-
sub-graphs to the sub-problems. Since there is a one-to-one correspondence
between p-vertices and d-sub-graph [8], these vertices also represent the sub-
problems. The source p-vertex (or vertices) is attached to the original problem
(or original problem-set), and the sink vertices to the structurally trivial sub-
problems. A p-vertex has as many d-sons as the number of possibilities to
decompose the corresponding sub-problem into its smaller immediate sub-
sub-problems. A d-vertex has as many p-sons as the number of immediate
smaller sub-problems (N) resulted through the corresponding breaking-down
step (1 → N dependency between the p-grandfather-problem and the corre-
sponding p-grandson-problems). We will say that a grandfather-problem is
reduced to its grandson-problem if the intermediary d-vertex has a single p-
son (1 → 1 dependency). Parallel decomposing processes may result in iden-
tical sub-problems, and, consequently, the corresponding p-vertex has multi-
ple p-grandfathers (through different d-fathers). Due to this phenomenon the

216 Z. Kátai

Figure 3: Hierarchic d-graph. p- and d-vertices are represented by rectangles
and circles, respectively (We used bolded lines to emphasize the optimal d-
spanning-(sub)trees)

number of the sub-problems may depend on the size of the input polynomi-
ally. The d-spanning-trees of the d-(sub)graphs represent the corresponding
(sub)solutions, more exactly their tree-structure. The number of all solutions
of the problem usually depends on the size of the input exponentially.

For example, if a p-vertex has n d-sons, these d-sons have m1, m2, . . . , mn p-
sons, and these p-son-problems have (r1,1, r1,2, . . . , r1,m1), (r1,1, r1,2, . . . , r1,m2),

(r1,1, r1,2, . . . , r1,mn) solutions, respectively, then from the
∑ ∑

rij solution of
the p-grandson-problems results

∑ ∏
rij solution for the common p-grandfa-

ther-problem. The number of solutions exponentially exceeds the number of
sub-problems. The

∑
-operator reflects the OR-connection between d-brothers

and the
∏

-operator the AND-connection between p-brothers.

5 Dynamic programming strategy on the
optimization-dependencies d-graph

In the case of optimization problems we are interested only in the optimal
solution of the original problem. Dynamic programming means building up

Dynamic programming and d-graphs 217

the optimal solutions of the larger sub-problems from the optimal solution
of the already solved smaller sub-problems (starting with the optimal solu-
tion of the trivial sub-problems). Accordingly, (1) DP works on the hierarchic
optimization-dependencies d-graph that can be attached to the problem, and
(2) it deals with one solution per sub-problem, with the optimal one (DP
strategies usually result in polynomial algorithms).

In line with this Kátai [8] defines two weight-functions (wp : Vp → R, wd :

Vd → R) on the sets of p- and d-vertices of the attached hierarchic d-graph.
Whereas the weight of a p-vertex is defined as the optimum (minimum/maxi-
mum) of the weights of its d-sons, the weight of a d-vertex is a function (de-
pending on the problem to be modelled) of the weights of its p-sons. We con-
sider the weight of a d-vertex to be optimal if is based on optimal the weights
of its p-sons. The optimal weight of a p-vertex (excluding the sink vertices)
is equal with the minimum/maximum of the optimal weights of its d-sons.
The optimal weights of the p-sinks trivially result from the input data of the
problem. Accordingly: the optimal weights of the p-vertices are computed (1)
in optimal way, (2) on the basis of the optimal weights of their p-descendents.
This means bottom-up strategy. Computing the optimal weights of the p-
vertices we implicitly have their optimal d-sons (It is characteristic to DP
algorithms that during the bottom-up building process it stores the already
computed optimal p-weights in order to have them at hand in case they are
needed to compute further optimal p-weights. If we also store the optimal d-
sons of the p-vertices, then this information allows a quick reconstruction of
the optimal d-spanning-tree in top-down way [17, 18]).

Defining the costs of the p-arcs as the absolute value of the weight-difference
of its endpoints we get an optimally weighted d-graph with zero-cost mini-
mal d-spanning-tree. We denote these kinds of p-arc-cost-functions by C∗ [8].
Modelling optimization problems by a d-graphs Gd(V, E, C∗) includes choosing
functions wp and wd in such a way as the optimal weights of the p-vertices to
represent the optimum values of the objective function respect to the corre-
sponding sub-problems (These functions can be established on the basis of the
functional equation of the problem; input information regarding the modelling
process).

Proposition 2 If an optimization problem can be modelled by a hierarchic
d-graph Gd(V, E, C∗) (as we described above), then it can be solved by dynamic
programming.

Proof. Since in an optimally weighted d-graph d-sub-trees of an optimal d-
spanning-tree are also optimal d-spanning-trees respect to the d-sub-graphs

218 Z. Kátai

defined by their root-vertices, computing the optimal p- and d-weights ac-
cording to a reverse topological order of the vertices (based on optimization-
dependencies) implicitly identifies the optimal d-spanning-tree of the d-graph.
This bottom-up strategy means DP and the optimal solution of the original
problem will be represented by the weight of the source vertex (as value) and
by the minimal d-spanning-tree (as structure). �

Computing the optimal weight of a p-vertex (expecting vertices representing
trivial sub-problems) can be implemented as a gradual updating process based
on the weights of its d-sons. The weights of p-vertices representing trivial
sub-problems receive as starting-value their input optimal value. For other
p-vertices we choose a proper starting-value according to the nature of the
optimization problem (The weights of d-vertices are recomputed before every
use). We define the following types of updating operations along p-arcs (if the
weight of a certain d-son is “better” than the weight of his p-father, then the
father’s weight is replaced with the son’s weight):

• Complete: based on the optimal value of the corresponding d-son.
• Partial: based on an intermediate value of the corresponding d-son.
• Effective: effectively improves the weight of the corresponding p-vertex.
• Null: dose not adjusts the weight of the corresponding p-vertex.
• Optimal: sets the optimal weight for the corresponding p-vertex. Optimal

updates are complete and effective too.

6 d-graph versions of three famous single-source
shortest-path algorithms

As we mentioned above, Kátai concludes that the three famous single-source
shortest-path algorithms in digraphs (The algorithm based on the topological
order of the vertices, Dijkstra algorithm and Bellman-Ford algorithm) apply
cousin DP strategies [10, 17]. The common representative core of these DP
algorithms is that the optimal weights (representing the optimal lengths to
the corresponding vertices) are computed on account of updating these values
along the arcs of the shortest-paths-tree according to their topological order
(optimal-updating-sequence). Since this optimal tree is unknown (it repre-
sents the solution of the problem) all the three algorithms generate updating-
sequences which contain, as subsequence, an optimal-updating-sequence nec-
essary for the dynamic programming building process. The basic difference

Dynamic programming and d-graphs 219

4(4)
1(1)

2(2)

3(3)

5(6) 6(5)

50(1)
100(4)

10(7)

40(8)

80(11)

50(5)
150(9) 60(6)

120(3) 30(10)

110(2) [0]

[50]

[110] [100]

[150]

[160]

4(6)
1(1)

2(2)

5(3) 6(4)

50(1)

100(4)

10(8)

40(9)

80(7)

50(5)
150(10)

60(6)

120(3) 30(11)

110(2) [0]

[50]

[110] [100]

[150]

[160]

4(6):2
1(1):0

2(2):1

3(4):2

5(5):2 6(3):2

50(9):1

100(5):2

10(8):2

40(7)

80(4)

50(6):2
150(10)

60(1):2

120(3) 30(11)

110(2) [0]

[50]

[110] [100]

[150]

[160]

(1,2), (1,5), (1,6), (2,3), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (6,5)

(1,2), (1,5), (1,6), (2,3), (2,5), (2,6), (6,5), (3,4), (3,5), (3,6), (4,5)

1: (2,6), (1,5), (1,6), (6,5), (2,3), (2,5), (3,5), (3,4), (1,2), (3,6), (4,5)

2: (2,6), (1,5), (1,6), (6,5), (2,3), (2,5), (3,5), (3,4), (1,2), (3,6), (4,5)

3(5)

Figure 4: The strategies of the (a) Topological, (b) Dijkstra and (c) Bellman-
Ford algorithms (we bolded the optimal-arc-subsequence of the generated arc-
sequences)

220 Z. Kátai

among the three algorithms is the way they generate a proper arc-sequence
and the corresponding updating-sequence.

In case the input digraph is acyclic we get a proper arc-sequence by ordering
all the arcs of the graph topologically (this order can even be determined in
advance). Dijkstra algorithm (working in cyclic graphs too, but without neg-
ative weighted arcs) determines the needed arc-sequence on the fly (parallel
with the updating process). After the current weight of the next closest vertex
has been confirmed as optimal value (greedy decision), the algorithm performs
updating operations along the out-arcs of this vertex (This greedy choice can
be justified as follows: if other out-neighbours of the growing shortest-paths-
tree are farther - from the source vertex - than the currently closest one, then
through these vertices cannot lead shortest paths to this). Bellman-Ford algo-
rithm (working in cyclic graphs with negative weighted arcs too, but without
feasible negative weighted cycles) goes through (in arbitrary order) all the
arcs of the graph again and again until the arc-sequence generated in this way
finally will contains, as sub-sequence, an optimal-updating-sequence (see Fig-
ure 4, [10]). The following d-graph algorithms implement DP strategies that
exploit the core idea behind the above described single-source shortest-paths
algorithms.

6.1 Building-up the optimization-dependencies d-graph in
bottom-up way

Our basic goal is to perform updating operation along the p-arcs of the
optimal-dependencies-tree according to their reverse topological order. We will
call such arc sequences optimal-arc-sequence and the corresponding updating
sequences optimal-updating-sequence. An optimal-updating-sequence surely
results in building up the optimal value representing the optimal solution of
the problem. Since the optimal-dependencies-tree is unknown (it represents
the structure of the optimal solution to be determined), we should try to
elaborate complete arc sequences that includes the desired optimal-updating-
sequence (gratuitous updating operations have, at the worst, null effects).

We introduce the following colouring-convention:

• Initially all vertices are white.
• A p-vertex changes its colour to grey after the first attempt to update

its weight. d-vertices automatically change their colour to grey if they
do not have any more white p-sons.

• When the weight of a vertex riches its optimal value its colour is auto-
matically changed to black.

Dynamic programming and d-graphs 221

We are facing a gratuitous updating operation if:

• along the corresponding p-arc was previously performed a complete up-
date,

• the corresponding p-father is already black,
• the corresponding d-son is still grey or white.

Since the optimal values of trivial sub-problems automatically results from
the input data of the problem, the corresponding p-vertices are automatically
coloured with black.

The following propositions can be viewed as theoretical support for the be-
low strategies that build up the optimal-dependencies d-graph (on the basis of
the structural-dependencies-graph that can be considered input information)
level-by-level in bottom-up way (At the beginning all p-vertices are places at
level 0. All effective updates along the corresponding p-arcs move their p-end
to higher level than the highest p-son of their d-end.).

Proposition 3 If the structural-dependencies d-graph attached to an opti-
mization problem that satisfies the principle of the optimality has no black
p-sources, then there exists at least one p-arc corresponding to an effective
complete updating operation.

Proof. Since the optimization problem satisfies the principle of the optimality
the optimal-updating-sequence there exists and continuously warrants (while
no black p-sources still exist) the existence of optimal updating operations,
which are effective and complete too. �

Proposition 4 Any p-arcs sequence (of the structural-dependencies d-graph
attached to an optimization problem that satisfies the principle of the optimal-
ity) that continuously applies non-repetitive complete updates (while such up-
dating operations still exist) warrants that all p-sources become black-coloured.
These p-arcs sequences contain arcs representing optimization-dependencies
and surely include an optimal-arc-sequence.

Proof. Since the optimization problem satisfies the principle of the optimal-
ity the optimal-updating-sequence there exists and warrants the continuous
existence of optimal updating operations (which are also effective and com-
plete) while no black p-sources still exist. Accordingly any p-arcs sequence that
continuously applies non-repetitive complete updates includes an optimal-arc-
sequence, and consequently results in colouring all p-sources with black. �

222 Z. Kátai

Proposition 5 If the structural-dependencies d-graph attached to an opti-
mization problem that satisfies the principle of the optimality is cycle-free,
then any reverse topological order of the all p-arcs continuously applies non-
repetitive complete updates, and consequently, results in building up the optimal
solution of the problem.

Proof. Since the colours of the d-vertices surely become black after all their p-
sons have already become black, any reverse topological order of all p-arcs con-
tinuously applies non-repetitive complete updates. According to the previous
proposition these arc-sequences surely include an optimal-arc-sequence, and
consequently results in building up the optimal solution of the problem. �

Proposition 6 If an optimization problem satisfies the principle of the op-
timality, then there exists a finite multiple complete arc-sequence of the at-
tached structural-dependencies d-graph that includes an optimal-arc-sequence,
and consequently, the corresponding updating-sequence results in building up
the optimal solution of the problem.

Proof. The existence of such an arc-sequence immediately results from the
facts that: (1) Any complete arc-sequence contains all arcs of the optimal-
dependencies-tree; (2) The optimal-dependencies-tree is finite. If we repeat a
complete arc-sequence that includes the arcs of the optimal-dependencies-tree
according to their topological order (worst case), then we need as many upda-
ting-tours as the number of the p-arcs of the optimal-dependencies-tree is.
�

6.1.1 Algorithm d-TOPOLOGICAL

If the structural-dependencies d-graph attached to the problem is cycle free
(called: structurally acyclic DP problems), then this input graph can also be
viewed as optimization-dependencies-graph. Considering a reverse topological
order of the all vertices, all updating operations (along the corresponding p-
arc-sequence) will be complete (see Proposition 5). Additionally, along the
arcs of the optimal d-spanning-tree we have optimal updates. Accordingly,
this algorithm (called d-TOPOLOGICAL) results in determining the optimal
solution of the problem.

6.1.2 Algorithm d-DIJKSTRA

If the structural-dependencies d-graph contains cycles a proper vertices or-
der involving complete updates along the corresponding p-arc-sequence can-

Dynamic programming and d-graphs 223

not be structurally established. In this case we should try to build up the
optimization-dependencies d-graph (more exactly a reverse topological order
of its all p-arcs) on the fly, parallel with the bottom-up optimization process.

Implementing a sequence of continuous complete updates presumes to iden-
tify at each stage of the building process the black d-vertices based on which
we have not performed complete updating operations (Proposition 3 guar-
anties that such d-vertices exist continuously). A d-vertex is black only if
all its p-sons are already black. Consequently, the basic question is: Can we
identify the black p-vertices at each stage of the building process? As we men-
tioned above a p-vertex is certainly black after we have performed complete
updates based on all its d-sons (The last effective update was performed on
the basis of optimal d-son). Algorithms based on the topological order of the
all arcs exploit this structural condition. However, a p-vertex may have be-
come black before we have performed complete updating operation along all
its p-out-arcs. Conditions making perceptible such black p-vertices may also
be deduced from the principle of the optimality. For example, if the DP prob-
lem has a greedy character too, then it may work the following condition: the
“best” d-vertex (having relatively optimal weight) among those based on which
we have not performed complete updating operations can be considered black
(Called: Cyclic DP problems characterized by greedy choices). Since Dijkstra
algorithm applies this strategy, we call this algorithm: d-DIJKSTRA.

6.1.3 Algorithm d-BELLMAN-FORD

If we cannot establish one complete arc-sequence including an optimal-arc-
sequence (we will call such problems: DP problems without ’negative cycles’),
we are forced to repeat the updating-tour along a complete (even arbitrary)
arc-sequence of the input graph (structural-dependencies d-graph) until this
multiple arc-sequence will include the desired optimal updating sequence (see
Proposition 6). An extra tour without any effective updates indicates that
the optimal solution has been built up. If the arbitrary arc-sequence we have
chosen includes the arcs of the optimal-dependencies-tree in topological order
(worst case), then we need as many updating-tours as the number of the p-arcs
of the optimal-dependencies-tree is. Since Bellman-Ford algorithm applies this
strategy, we call this algorithm: d-BELLMAN-FORD.

224 Z. Kátai

Figure 5: (a) Acyclic digraph; (b) Structural-dependencies d-graph; (c) Opti-
mally weighted optimization-dependencies d-graph (bolded lines represent the
arcs of the optimal-dependencies d-graph)

(a)

(b)

Dynamic programming and d-graphs 225

Figure 6: (a) Cyclic digraph without negative weighted arcs; (b) Cyclic
structural-dependencies d-graph; (c) The bottom-up building-up process of
the optimally weighted optimization-dependencies d-graph (bolded lines rep-
resent the arcs of the optimal-dependencies d-graph)

226 Z. Kátai

Dynamic programming and d-graphs 227

Figure 7: (a) Cyclic digraph with negative weighted arcs, but without negative
cycles; (b) Cyclic structural-dependencies d-graph; The bottom-up building-up
process of the optimally weighted optimization-dependencies d-graph (bolded
lines represent the arcs of the optimal-dependencies d-graph): (c1–c4) first
updating-tour, (d) second updating-tour

228 Z. Kátai

6.1.4 A relevant sample problem

As an example we consider the single-source shortest problem: Given a weighted
digraph determine the shortest paths from a source vertex to all the other
vertices (destination vertices). The attached figures (see Figures 5, 6, 7) il-
lustrate the level by level building process of the optimization-dependencies
d-graph concerning to the algorithms d-TOPOLOGICAL, d-DIJKSTRA and
d-BELLMAN-FORD (Regarding this problem we have only 1 → 1 dependen-
cies between neighbour p-vertices).

7 Conclusions

Introducing the generalized version of d-graphs we received a more effective
tool for modelling a larger class of DP problems (Hierarchic d-graphs intro-
duced in [8] and Petri-net based models [14, 15, 16] work only in the case of
structurally acyclic problems; Classic digraphs [11, 12] can be applied when
during the decomposing process at each step the current problem is reduced
to only one sub-problem). The new modelling method also makes possible
to classify DP problems (Structurally acyclic DP problems; Cyclic DP prob-
lems characterized by greedy choices; DP problems without ’negative cycles’)
and the corresponding DP strategies (d-TOPOLOGICAL, d-DIJKSTRA, d-
BELLMAN-FORD) in term of graph theory.

If we have proposed to develop a general software-tool that automatically
solves DP problems (getting as input the functional equation) we should com-
bine the above algorithms as follows:

• We represent explicitly the d-graph described implicitly by the functional
equation.

• We try to establish the reverse topological order of the vertices by a DFS
like algorithm (d-DFS). This algorithm can also detect possible cycles.

• If the graph is cycle free, we apply algorithm d-TOPOLOGICAL, else
we try to apply algorithm d-DIJKSTRA.

• If no mathematical guarantees that we reached the optimal solution, then
choosing as complete arc-sequence for algorithm d-BELLMAN-FORD
the arc-sequence generated by algorithm d-DIJKSTRA (completed with
unused arcs) in the first updating-tour we verify the d-DIJKSTRA result.
We repeat the updating tours until no more effective updates.

Such a software-application should be able to save considerable software
development costs.

Dynamic programming and d-graphs 229

8 Acknowledgements

This research was supported by the Research Programs Institute of Sapientia
Foundation, Cluj, Romania.

References

[1] R. Bellman, Dynamic programming, Princeton University Press, Prince-
ton, NJ, 1957. ⇒210

[2] R. Bellman, S. Dreyfus, Applied dynamic programming, Princeton Uni-
versity Press, Princeton, NJ, 1962. ⇒210

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
algorithms, 3rd edition, The MIT Press, Cambridge, MA, USA, 2009. ⇒
210

[4] R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological sequence analysis,
Cambridge University Press, Cambridge, UK, 1998. ⇒210

[5] P. F. Felzenszwalb, R. Zabih, Dynamic programming and graph algo-
rithms in computer vision, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Preprint, 19 July 2010, 51 p.
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.135 ⇒211

[6] Z. Feng, R. Dearden, N Meuleau, R. Washington, Dynamic programming
for structured continuous Markov decision problems, Proc. 20th Confer-
ence on Uncertainty in Artificial Intelligence, ACM International Con-
ference Proceeding Series, AUAI Press, 70 (2004) pp. 154–161. ⇒210

[7] H. Georgescu, C. Ionescu, The dynamic programming method, a new
approach, Studia Univ. Babeş-Bolyai Inform., 43, 1 (1998) 23–38. ⇒210

[8] Z. Kátai, Dynamic programming and d-graphs, Studia Univ. Babeş-Bolyai
Inform., 51, 2 (2006) 41–52. ⇒210, 214, 215, 217, 228

[9] Z. Kátai, Dynamic programming strategies on the decision tree hidden
behind the optimizing problems, Informatics in Education, 6, 1 (2007)
115–138. ⇒211

[10] Z. Kátai, The single-source shortest paths algorithms and the dynamic
programming, Teaching Mathematics and Computer Science, 6, Special
Issue (2008) 25–35. ⇒211, 218, 220

http://en.wikipedia.org/wiki/Richard_E._Bellman
http://press.princeton.edu/
http://en.wikipedia.org/wiki/Richard_E._Bellman
http://www.ieor.berkeley.edu/People/Faculty/dreyfus.htm
http://press.princeton.edu/
http://en.wikipedia.org/wiki/Thomas_H._Cormen
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu
http://www.cambridge.org/
http://www.cs.cornell.edu/~rdz/index.htm
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.135
http://www.acm.org/publications
http://www.acm.org/publications
http://fmi.unibuc.ro/ro/georgescu_horia/
http://cs.ubbcluj.ro/~clara/
http://cs.ubbcluj.ro/~studia-i/
http://www.ms.sapientia.ro/~katai_zoltan/
http://cs.ubbcluj.ro/~studia-i/
http://www.ms.sapientia.ro/~katai_zoltan/
http://www.mii.lt/informatics_in_education/
http://www.ms.sapientia.ro/~katai_zoltan/
http://tmcs.math.klte.hu/

230 Z. Kátai

[11] Z. Kátai, Dynamic programming as optimal path problem in weighted
digraphs, Acta Math. Acad. Paedagog. Nyházi, 24, 2 (2008) 201–208. ⇒
211, 228

[12] Z. Kátai, A. Csiki, Automated dynamic programming, Acta Univ. Sapi-
entiae Inform., 1, 2 (2009) 149–164. ⇒211, 212, 228

[13] I. King, A simple introduction to dynamic programming in macroeco-
nomic models, 2002.
http://researchspace.auckland.ac.nz/bitstream/handle/2292/190/230.pdf⇒210

[14] A. Lew, A Petri net model for discrete dynamic programming, Proc. 9th
Bellman Continuum: International Workshop on Uncertain Systems and
Soft Computing, Beijing, China, July 24–27, 2002, pp. 16–21. ⇒211, 228

[15] A. Lew, H. Mauch, Bellman nets: A Petri net model and tool for dy-
namic programming, Proc. 5th Int. Conf. Modelling, Computation and
Optimization in Information Systems and Management Sciences (MCO),
Metz, France, 2004, pp. 241–248. ⇒211, 228

[16] H. Mauch, DP2PN2Solver: A flexible dynamic programming solver soft-
ware tool, Control Cybernet., 35, 3 (2006) 687–702. ⇒211, 212, 228

[17] M. Sniedovich, Dijkstra’s algorithm revisited: the dynamic programming
connexion, Control Cybernet., 35, 3 (2006) 599–620. ⇒211, 217, 218

[18] D. Vagner, Power programming: dynamic programming, The Mathemat-
ica Journal, 5, 4 (1995) 42–51. ⇒217

Received: September 1, 2010 • Revised: November 10, 2010

http://www.ms.sapientia.ro/~katai_zoltan/
http://www.emis.de/journals/AMAPN/index.html
http://www.ms.sapientia.ro/~katai_zoltan/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://researchspace.auckland.ac.nz/bitstream/handle/2292/190/230.pdf
http://www2.hawaii.edu/~icl/
http://www2.hawaii.edu/~icl/
http://www.lita.univ-metz.fr/~mco04/
http://control.ibspan.waw.pl
http://www.moshe-online.com/
http://control.ibspan.waw.pl
http://www.mathematica-journal.com/
http://www.mathematica-journal.com/

Contents

Volume 2, 2010

S. Pirzada, G. Zhou
On k-hypertournament losing scores . 5

P. Burcsi, A. Kovács, A. Tátrai
Start-phase control of distributed systems written in
Erlang/OTP . 10

Š. Korečko, B. Sobota
Using Coloured Petri Nets for design of parallel raytracing
environment . 28

P. Václav́ık, J. Porubän, M. Mezei
Automatic derivation of domain terms and concept location
based on the analysis of the identifiers . 40

Á. Achs
A multivalued knowledge-base model . 51

P. Fornai, A. Iványi
FIFO anomaly is unbounded . 80

B. Sobota, M. Guzan
Macro and micro view on steady states in state space 90

Gy. Márton
Public-key cryptography in functional programming context . . . 99

P. Jakubčo, S. Šimoňák, N. Ádám
Communication model of emuStudio emulation platform 117

231

A. Iványi, B. Novák
Testing of sequences by simulation . 135

N. Pataki
Testing by C++ template metaprograms . 154

M. Antal, L. Erős, A. Imre
Computerized adaptive testing: implementation issues 168

S. Pirzada, G. Zhou, A. Iványi
Score lists in multipartite hypertournaments 184

G. Horváth, B. Nagy
Pumping lemmas for linear and nonlinear context-free
languages .194

Z. Kátai
Modelling dynamic programming problems by generalized
d-graphs . 210

232

Acta Universitatis Sapientiae
The scientific journal of Sapientia University publishes original papers and surveys

in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief
Antal BEGE

abege@ms.sapientia.ro

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica
Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro

Editorial Board
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Antal IVÁNYI (Eötvös Loránd University, Hungary)
Attila PETHŐ (University of Debrecen, Hungary)

Ladislav SAMUELIS (Technical University of Košice, Slovakia)

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica

RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

http://www.acta.sapientia.ro
mailto:abege@ms.sapientia.ro
mailto:kasa@ms.sapientia.ro
mailto:acta-inf@acta.sapientia.ro
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals. The
corresponding author is responsible for obtaining the permission of coauthors and of
the authorities of institutes, if needed, for publication; the Editorial Board disclaims
any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address: http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is needed too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors found
at the address: http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Publication supported by

Printed by Gloria Printing House
Director: Péter Nagy

http://www.acta.sapientia.ro/acta-info/informatica-main.htm
mailto:acta-inf@acta.sapientia.ro
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.acm.org/about/class/1998
http://www.ams.org/msc/
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

	INFO22-0.pdf
	info22c.pdf
	INFO22-1.PDF
	1 Introduction
	2 Architectures for emulation
	3 The structure of the platform
	3.1 Context
	3.2 Main module
	3.3 Compiler
	3.4 CPU
	3.5 Operating memory
	3.6 Peripheral devices

	4 Communication realization in emuStudio platform
	4.1 External library structure
	4.2 Standard operations -- Compiler
	4.3 Standard CPU operations
	4.4 Standard operations -- Operating memory
	4.5 Standard operations -Œ Peripheral devices

	5 Conclusions

	info22-2.pdf
	1 Introduction
	2 Pseudocodes of the algorithms
	2.1 Definition of algorithm Linear
	2.2 Definition of algorithm Backward
	2.3 Definition of algorithm Forward
	2.4 Definition of algorithm Tree
	2.5 Definition of algorithm Garbage
	2.6 Definition of algorithm Bucket

	3 Analysis of the algorithms
	3.1 Analysis of algorithm Linear
	3.2 Analysis of algorithm Backward
	3.3 Analysis of algorithm Forward
	3.4 Analysis of algorithm Tree
	3.5 Analysis of algorithm Garbage
	3.6 Analysis of algorithm Bucket

	4 Summary

	info22-3.pdf
	1 Introduction
	2 C++ template metaprogramming
	3 Testing framework
	4 Evaluation
	5 Conclusions and future work

	info22-4.pdf
	1 Introduction
	2 Item Response Theory
	2.1 Advantages
	2.2 Disadvantages

	3 CAT implementation
	3.1 The item bank
	3.2 Simulations
	3.3 Distributed CAT
	3.4 Item difficulty estimation

	4 Further research
	5 Conclusions

	info22-5.pdf
	1 Introduction
	2 Main results

	info22-6.pdf
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Applications of the new iteration lemmas
	5 Conclusions

	INFO22-7.PDF
	1 Introduction
	2 Modelling dynamic programming problems
	3 d-graphs as special dependency graphs
	4 Modelling optimization problems by d-graphs
	5 Dynamic programming strategy on the optimization-dependencies d-graph
	6 d-graph versions of three famous single-source shortest-path algorithms
	6.1 Building-up the optimization-dependencies d-graph in bottom-up way
	6.1.1 Algorithm d-TOPOLOGICAL
	6.1.2 Algorithm d-DIJKSTRA
	6.1.3 Algorithm d-BELLMAN-FORD
	6.1.4 A relevant sample problem

	7 Conclusions
	8 Acknowledgements

	COVER1.pdf
	COVER2.pdf

