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Abstract. We give a new and short proof of a theorem on k-hypertournament
losing scores due to Zhou et al. [8].

1 Introduction

An edge of a graph is a pair of vertices and an edge of a hypergraph is a subset
of the vertex set, consisting of at least two vertices. An edge in a hypergraph
consisting of k vertices is called a k-edge, and a hypergraph all of whose edges
are k-edges is called a k-hypergraph.

A k-hypertournament is a complete k-hypergraph with each k-edge endowed
with an orientation, that is, a linear arrangement of the vertices contained in
the hyperedge. In other words, given two non-negative integers n and k with
n ≥ k > 1, a k-hypertournament on n vertices is a pair (V,A), where V is
a set of vertices with |V | = n and A is a set of k-tuples of vertices, called
arcs, such that any k-subset S of V, A contains exactly one of the k! k-tuples
whose entries belong to S. If n < k, A = φ and this type of hypertournament
is called a null-hypertournament. Clearly, a 2-hypertournament is simply a
tournament. Let e = (v1, v2, . . . , vk) be an arc in a k-hypertournament H.
Then e(vi, vj) represents the arc obtained from e by interchanging vi and vj.

The following result due to Landau [5] characterises the score sequences in
tournaments.
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Theorem 1 A sequence of non-negative integers [s1, s2, . . . , sn] in non-decrea-
sing order is a score sequence of some tournament if and only if for 1 ≤ j ≤ n

j∑
i=1

si ≥
(
j

2

)
,

with equality when j = n.

Now, there exist several proofs of Landau’s theorem and a survey of these
can be found in Reid [6]. Brualdi and Shen [1] obtained inequalities on the
scores in tournaments which are individually stronger than that of Landau, but
collectively the two are equivalent. Although tournament theory has attracted
many graph theorists and much work has been reported in various journals,
the latest can be seen in Iványi [2].

Instead of scores of vertices in a tournament, Zhou et al. [8] considered
scores and losing scores of vertices in a k-hypertournament, and derived a
result analogous to Landau’s theorem [5]. The score s(vi) or si of a vertex vi is
the number of arcs containing vi and in which vi is not the last element, and
the losing score r(vi) or ri of a vertex vi is the number of arcs containing vi

and in which vi is the last element. The score sequence (losing score sequence)
is formed by listing the scores (losing scores) in non-decreasing order.

For two integers p and q, (
p

q

)
=

p!

q!(p− q)!

if p ≥ q and (
p

q

)
= 0

if p < q.
The following characterisation of losing score sequences in k-hypertournaments

is due to Zhou et al. [8].

Theorem 2 Given two non-negative integers n and k with n ≥ k > 1, a non-
decreasing sequence R = [r1, r2, . . . , rn] of non-negative integers is a losing
score sequence of some k-hypertournament if and only if for each j,

j∑
i=1

ri ≥
(
j

k

)
, (1)

with equality when j = n.
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2 New proof

Koh and Ree [4] have given a different proof of Theorem 2. Some more results
on scores of k-hypertournaments can be found in [3, 7]. The following is the
new and short proof of Theorem 2.
Proof. The necessity part is obvious.

We prove sufficiency by contradiction. Assume all sequences of non-negative
integers in non-decreasing order of length fewer than n, satisfying conditions
(1) are losing score sequences. Let n be the smallest length and r1 be the
smallest possible with that choice of n such that R = [r1, r2, . . . , rn] is not a
losing score sequence.

Consider two cases, (a) equality in (1) holds for some j < n, and (b) each
inequality in (1) is strict for all j < n.
Case (a). Assume j (j < n) is the smallest such that

j∑
i=1

ri =

(
j

k

)
.

By the minimality of n, the sequence [r1, r2, . . . , rj] is the losing score se-
quence of some k-hypertournament H1. Also

m∑
i=1

[rj+i −
1

m

k−1∑
i=1

(
j

i

)(
n− j

k− i

)
] =

m+j∑
i=1

ri −

(
j

k

)
−

k−1∑
i=1

(
j

i

)(
n− j

k− i

)

≥
(
m+ j

k

)
−

(
j

k

)
−

k−1∑
i=1

(
j

i

)(
n− j

k− i

)
=

(
m

k

)
,

for each m, 1 ≤ m ≤ n− j, with equality when m = n− j.
Let

1

m

k−1∑
i=1

(
j

i

)(
n− j

k− i

)
= α.

Therefore, by the minimality of n, the sequence

[rk+1 − α, rk+2 − α, . . . , rn − α]

is the losing score sequence of some k-hypertournament H2. Taking disjoint
union of H1 and H2, and adding all mα arcs between H1 and H2 such that



8 S. Pirzada, G. Zhou

each arc among mα has the last entry in H2 and each vertex of H2 gets equal
shares from these mα last entries, we obtain a k-hypertournament with losing
score sequence R, which is a contradiction.
Case (b). Let each inequality in (1) is strict when j < n, and in particular
r1 > 0. Then the sequence [r1 − 1, r2, . . . , rn + 1] satisfies (1), and therefore
by minimality of r1, is the losing score sequence of some k-hypertournament
H, a contradiction. Let x and y be the vertices respectively with losing scores
rn + 1 and r1 − 1. If there is an arc e containing both x and y with y as the
last element in e, let e′ = (x, y). Clearly, (H−e)∪e′ is the k-hypertournament
with losing score sequence R, again a contradiction. If not, since r(x) > r(y)
there exist two arcs of the form

e1 = (w1, w2, . . . , wl−1, u,wl, . . . , wk−1)

and
e2 = (w′

1, w
′
2, . . . , w

′
k−1, v),

where (w′
1, w

′
2, . . . , w

′
k−1) is a permutation of (w1, w2, . . . , wk−1),

x /∈ {w1, w2, . . . , wk−1} and y /∈ {w1, w2, . . . , wk−1}. Then, clearly R is the
losing score sequence of the k-hypertournament (H − (e1 ∪ e2)) ∪ (e′

1 ∪ e′
2),

where e′
1 = (u,wk−1), e′

2 = (w′
t, v) and t is the integer with w′

t = wk−1. This
again contradicts the hypothesis. Hence, the result follows. �
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Abstract. This paper presents a realization for the reliable and fast
startup of distributed systems written in Erlang. The traditional startup
provided by the Erlang/OTP library is sequential, parallelization usually
requires unsafe and ad-hoc solutions. The proposed method calls only
for slight modifications in the Erlang/OTP stdlib by applying a system
dependency graph. It makes the startup safe, quick, and it is equally easy
to use in newly developed and legacy systems.

1 Introduction

A distributed system is usually a collection of processors that may not share
memory or a clock. Each processor has its own local memory. The processors
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in the system are connected through a communication network. Communi-
cation takes place via messages [11]. Forms of messages include function in-
vocation, signals, and data packets. Computation based models on message
passing include the actor model and process algebras [4]. Several aspects of
concurrent systems written in message passing languages have been studied in-
cluding garbage collection [2], heap architectures [7], or memory management
[8]. Startup concurrency is an area not fully covered yet.

Why is the investigation of the startup phase important?

• During system and performance testing, when the system is frequently
started and stopped, fast startup might be beneficial.
• Critical distributed systems often have the maintainability requirement

of 99.999 availability, also known as the “five nines”. In order to comply
with the “five nines” requirement over the course of a year, the total
boot time could not take more than 5.25 minutes. In practice, due to
the maintenance process, every system has a planned down time. In this
case a fast and reliable startup is a must.
• The startup time is not the only reason to study the startup phase.

In most product lines the requirements (and therefore the code) alter
continuously. The changes may influence the code structure, which may
affect the execution order of the parts. Although the code can often be
reloaded without stopping the system, the changes may influence the
startup. The challenge is to give a generic solution which supports reli-
able, robust and fast startup even when some software and/or hardware
parts of the system had been changed.

In this paper we focus on the distributed programming language Erlang.
Erlang was designed by the telecommunication company Ericsson to support
fault-tolerant systems running in soft real-time mode. Programs in Erlang con-
sist of functions stored in modules. Functions can be executed concurrently in
lightweight processes, and communicate with each other through asynchronous
message passing. The creation and deletion of processes require little memory
and computation time. Erlang is an open source development system having
a distributed kernel [6].

The Erlang system has a set of libraries that provide building primitives
for larger systems. They include routines for I/O, file management, and list
handling. In practice Erlang is most often used together with the library called
the Open Telecom Platform (OTP). OTP consists of a development system
platform for building, and a control system platform for running telecommu-
nication applications. It has a set of design principles (behaviours), which
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together with middleware applications yield building blocks for scalable ro-
bust real time systems. Supervision, restart, and configuration mechanisms
are provided. Various mechanisms, like an ORB, facilitate the development of
CORBA based management systems. Interfaces towards other languages in-
clude a Java interface, an interface allowing Erlang programs to call C modules,
etc. These interfaces are complemented with the possibility of defining IDL in-
terfaces, through which code can be generated. The number of Erlang/OTP
applications and libraries is continuously increasing. There are for example
SNMP agents, a fault tolerant HTTP server, a distributed relational database
called Mnesia, etc. One of the largest industrial applications developed in Er-
lang/OTP is the AXD 301 carrier-class multi-service (ATM, IP, Frame-relay,
etc.) switching system of Ericsson. It is a robust and flexible system that can
be used in several places of networks. It has been developed for more than 10
years (for an early announcement of the product, see [5]), resulting in a long
product line. It contains several thousand Erlang modules and more than a
million lines of code.

How is the startup of an Erlang application performed? The traditional
startup provided by the Erlang/OTP library is sequential. It was not designed
to start as quickly as possible, no special attention was paid to the possi-
bility of parallelizing the different operations performed during startup. The
only order imposed is due to the explicit dependencies described in the ap-
plication configuration files. Technically, the reason of the sequential startup
is that each process performing an OTP behaviour sends an ACK (acknowl-
edge) signal to its parent only after the whole initialization process is finished.
It means that each process has implicit preconditions. In the concurrent case,
maintaining these preconditions is a fundamental problem. The proposed so-
lution enables the concurrent startup and provides an Erlang/OTP extension
for describing and realizing preconditions between behaviour processes. Hence
the startup will not only be fast but remains reliable as well. The use of condi-
tions to construct dependency graphs to manage the order of startup bears a
resemblance to the mechanism used by Apple’s MacOSX StartupItems. Each
StartupItem includes a properties list of items that provides/requires/uses o-
ther items, which are used by the SystemStarter to build a soft dependency
graph controlling the order of starting items [10]. There does not exist any
such mechanism in Erlang/OTP.

Of course, the startup times do not only depend upon the dependencies
among the applications and the degree to which these startup activities can
be parallelized. The startup times are affected by several other factors, prob-
ably the most significant being disk I/O times and latencies, the time spent
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unnecessarily searching for hardware elements, disks, appropriate files to load,
etc. In a particular system measurements are needed to find where the time
goes on for startup. In this paper we do not focus on a particular system,
we give instead a general solution for performing fast and reliable startup in
any Erlang/OTP systems. It means that dependencies among the applications
must be given in advance. These can be determined by the system designers.

The paper is structured as follows. For completeness, Section 2 contains the
basic description of Erlang/OTP features and concepts. In Section 3 the basic
idea of the concurrent startup of Erlang applications is presented. Section 4

deals with the details of the proposed solution presenting a prototype. The
measurements of the performance of our prototypes are written in Section 5

and finally the authors write a show conclusion in Section 6.

2 Erlang/OTP

In this section a short description of Erlang/OTP concepts is given. The
overview begins with a few Erlang language features, then OTP design princi-
ples and the startup mechanism are discussed. For a full description of Erlang
with many examples the authors refer to the books [1, 3] and to the on-line
documentation [6].

2.1 Code structure and execution

The code written in Erlang is structured as follows:

• Functions are grouped together in source files called modules. Functions
that are used by other modules are exported, modules that use them
must import them. Or alternatively, have to use the apply(Mod, Fun,
Arg) built-in function, or the module name:function name (args) form.
• Modules that together implement some specific functionality, form an

application. Applications can be started and stopped separately, and
can be reused as parts of other systems. Applications do not only pro-
vide program or process structure but usually a directory structure as
well. There is a descriptor file for each application containing the mod-
ule names, starting parameters and many other data belonging to the
application.
• A release, which is the highest layer, may contain several applications.

It is a complete system which contains a subset of Erlang/OTP ap-
plications and a set of user-specific applications. A release is described
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by a specific file, called release resource file. The release resource file
can be used for generating boot scripts for the system, and creating
a package from it. After creating a boot script, the system is able to
start. First, the Erlang kernel is loaded. Then, a specific gen server
module (application controller) is started. This module reads the
application descriptor files sequentially, and creates a process called
application master for each application. The application master
starts the corresponding application, and sends an ACK signal back
when the start is finished. Thus, as it was mentioned earlier, the Er-
lang/OTP startup is sequential.

The central concept of the execution is the process. As Erlang is message-
oriented, executing Erlang code means creating strongly isolated processes
that can only interact through message passing. Process creation, which is a
lightweight operation, can be performed using the spawn family of functions.
These functions create a parallel process and return immediately with the
process ID (Pid). When a process is created in this way, we say that it is
spawned. Erlang messages are sent in the form Pid!Msg and are received using
receive.

2.2 Design principles

One of the most useful features in OTP is to have a pre-defined set of design
patterns, called behaviours. These patterns were designed to provide an easy-
to-use application interface for typical telecommunication applications such
as client-server connections or finite state machines. In order to realize highly
available and fault-tolerant systems, OTP offers a possibility to structure the
processes into supervision trees.

2.2.1 Supervision trees

A principal OTP concept is to organize program execution into trees of pro-
cesses, called supervision trees. Supervision trees have nodes that are either
workers (leaves of the tree) or supervisors (internal nodes). The workers are
Erlang processes which perform the functionality of the system, while supervi-
sors start, stop, and monitor their child processes. Supervisor nodes can make
decisions on what to do if an error occurs. Supervision tasks have a generic
and a specific part. The generic part is responsible e.g. for the contact with
the children, while the specific part defines (among other things) the restarting
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strategy. It is desirable that workers have a uniform interface, therefore OTP
defines several behaviours with the same communication interface.

2.2.2 Behaviours

Behaviours, like every design pattern, provide a repeatable solution to com-
monly occurring problems. For example, a large number of simple server ap-
plications share common parts. Behaviours implement these common parts. A
server code is then divided into a generic and a specific part. The generic part
might contain the main loop of the server that is waiting for messages, and the
specific part of the code contains what the server should do if a particular mes-
sage arrives. In practice, only a callback module has to be implemented. OTP
expects the existence of some functions (e.g. handle call) in this module. As
an example, several callback functions can be implemented for the complete
functionality of an application, but the most important ones are: start/2,
stop/1.

Let us summarize the most significant OTP behaviours: gen server,
gen fsm, gen event and supervisor. Each of them implements a basic pat-
tern. The gen server is the generic part of a server process, the gen event
is the generic part of event handling, the gen fsm is the generic part of finite
state machines. The supervisor behaviour is the generic part of the supervisor
nodes of the supervision tree. Its callback module only contains the function
init(Arg), in which the children and the working strategy of the node can
be specified. The gen server behaviour also defines higher level functions for
messaging, such as the synchronous (call) or asynchronous (cast) messages.

3 The basic idea of the solution

Let us suppose that we have an Erlang system and we plan to make the
startup concurrent. If we use the spawn function instead of the built-in meth-
ods of supervisor child-starting then the spawned processes run parallelly, but
the Erlang/OTP supervisor monitoring mechanism – one of the strongest Er-
lang/OTP features – is lost. Omitting the ACK mechanism from the built-in
child-starting process would mean a deep redesign and reimplementation of
the OTP (the ACK mechanism corresponds to sequential child-starting). Also,
sequential start determines an order between processes, which would vanish
using a too naive way of parallelization. Therefore an alternative parallel or-
dering is required to avoid dead-locks and startup crashes.

In the light of the previously mentioned properties we define our guidelines:
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• The supervision tree structure, as well as other functionalities, must be
preserved.

• The startup must be reliable and fast (faster than sequential).

• Only “small” modifications are permitted in the Erlang/OTP stdlib.

3.1 The dependency graph

In this subsection we consider dependence relations between modules and in-
troduce the notion of dynamic dependency graphs.

In order to preserve the supervisor tree structure, we define conditions.
Conditions represent the startup state of modules. A condition related to a
module is false while the module’s startup is being processed (or has yet to
begin) and set to true when the corresponding startup has been finished. At the
beginning of the startup all conditions are false. Conditions that the startup
of another module depends on are called the preconditions of that module. A
process can only start if all its preconditions are true. We can represent these
relations in a dependency graph. Modules (or corresponding conditions) are
the vertices, dependence between modules (or preconditions) are the directed
edges in this graph.

When a behaviour module starts instruction defined by the first user (which
is also the first that can imply preconditions) is the first instruction of the
module’s init function. Therefore the verification of the preconditions and
setting up the completed conditions to true have to insert immediately before
and after executing the init function.1

Dependency graphs are widely used in computer science. For example, de-
pendency graphs are applied in the startup of the Mac OSX operating system
[10] or in compiler optimization [9]. Moreover, a dependency graph is created
when the Erlang boot script is generated from a given application.

However, there is a significant difference between the graphs above and
our graph. The same Erlang software start up in different ways in different
environments, therefore module parameters, execution and dependencies can
vary and should be handled dynamically for full performance. In order to keep
Erlang’s robustness, we add one more guideline to the above:

• The dependency graph should be dynamic.

1We remark that during the sequential startup there exist implicit preconditions which
are described in the hierarchy of the supervisor trees.
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Figure 1: Inserting a dummy supervisor node for (1) preserving the supervisor’s
restarting behaviour, and (2) enabling fast parallel start-up. Supervisors are
denoted by squares, permanent processes by continuous border, and temporary
processes by dashed border. In the middle of the tree one can see the living
processes (s2, w2) after termination of the dummy functions.

3.2 Concurrent startup of a supervisor’s children

We also propose an Erlang trick that enables starting processes in a concur-
rent way. Here we can set which nodes should start concurrently. When a
supervisor process s starts a child process w1, the system starts a dummy (or
wrapper) node s1 instead. Then, the dummy process s1 starts a simple func-
tion s1,f (which just calls a spawn function) and sends an ACK message back
immediately to its parent s. Consequently, the next child w2 of the supervisor
node s can start. So far function s1,f has spawned function f. The spawned
function f starts process w1 and attaches it into the dummy process s1 using
the supervisor::start child function2. The already started dummy process
s1 runs independently (parallel) from the other parts of the system. The ad-

2The supervisor::start child function takes effect just after the ACK message has
been sent back.
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vantage of this method is that if process w1 has a blocking precondition then
only w1 is waiting instead of the whole system. Figure 1 shows the described
supervision hierarchy after start. The dummy supervisor node’s restart strat-
egy can be set in such a way that a crashing child results in the termination of
the dummy supervisor. Thus the connection between s and w1 is preserved.

The following code fragment shows the concurrent startup of a supervisor’s
children.

-module(dummy_sup_tree).

dummy_child({Tree_id, Child_spec}) ->
spawn(dummy_sup_tree, child_starter, [{Tree_id, Child_spec}]),
{ok, self()}.

child_starter({Tree_id, Child_spec}) ->
supervisor:start_child(Tree_id, Child_spec),
ok.

start_link({Child_spec}) ->
supervisor:start_link(dummy_sup_tree, [{Child_spec}]).

init([{Child_spec}]) ->
Sup_flags = {one_for_one, 0, 1},
{ok,
{Sup_flags,
[
{dummy_child_id, {dummy_sup_tree, dummy_child,

[{self(), Child_spec}]}, temporary, brutal_kill,
worker, [dummy_sup_tree, generic_server]}

]
}
}.

4 The solution’s prototype

In this section we give the details of our solution by describing the skeleton
of a prototype. We discuss the implementation of the dependency graph and
how the Erlang boot script, the supervisors’ init function, stdlib modules,
etc. should be modified.
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4.1 Realization of the dependency graph

The dependency graph is implemented as a module called release graph.
This module implements and exports the following functions: get conditions,
get preconditions and get condition groups.

The get conditions function returns a list of pairs. Each pair consists of
a module name (with parameters) and a condition name.
{ {Mod, Args} , condition name } .

We note that the function tag of the MFA (Module-Function-Arguments triplet)
may be omitted, since it is always the init function of the module. The func-
tion get conditions corresponds to the vertices of the dependency graph.
Observe that a condition corresponds to a module together with parameters
rather than a module, in accordance with our dynamic dependency graph
guideline. In general, the Args parameter can be an actual parameter value
or undefined. In the latter case the condition describes the module’s startup
with arbitrary parameters.

The get preconditions function also gives a list. The elements of the list
have the following structure:
{ { Mod, Args } , [ condition names ] } .

The function corresponds to the edges of the dependency graph. When a mod-
ule’s init function is called then the validity of the conditions in the list must
be tested. Once again, the Args parameter can be undefined meaning that
the startup of this module with any parameters has to wait until all conditions
in the list become true.

The third function facilitates the management of dependence relations. Huge
systems are likely to have many conditions and these conditions can be orga-
nized into groups. The get condition groups function returns a list of pairs
of the form
{condition group name , [ conditions ] } .

One can use the condition group name instead of the conditions defined in
the list.

We remark that the dependency graph is not necessarily connected. Some
modules are not preconditions of any other modules. In this case the definitions
of the corresponding conditions are superfluous. Other modules do not have
any preconditions, consequently they can be omitted from the return value of
the get precondition function.

Let’s see an example. Let two applications app1 and app2 be given. The first
has 3 server nodes that are controlled by a supervisor node. There is another
server in the second application which has to wait for the complete startup of
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the first application. A possible implementation of the above functions might
be:

...
get_conditions() ->
[
{ {app1_rootsup , undefined } , cond_app1_rootsup },
{ {generic_server , [{app1_server1}]} , cond_app1_server1 },
{ {generic_server , [{app1_server2}]} , cond_app1_server2 },
{ {generic_server , [{app1_server3}]} , cond_app1_server3 }
].

get_condition_groups() ->
[
{ group_app1_app , [ cond_app1_server1,

cond_app1_server2,
cond_app1_server3,
cond_app1_rootsup ] }

].

get_preconditions() ->
[
{ {generic_server , [{app2_server1}] } , [group_app1_app] }
].

4.2 The condition server

The startup is controlled by a special server, called condition server, which
is started during the Erlang main system start. It stores and handles the depen-
dency graph of the user programs. It also finds and loads the release graph
module and checks the validity of the data in it (checks for mistypes, not
existing condition names, etc.). Clearly, any error in the Args fields remains
undiscovered. If the Args tags are all undefined then the dependency graph
is independent from the dynamic data. In this case, an acyclic dependency
graph assures dead-lock free structure if each node that has preconditions is
started in a concurrent way.

The condition server performs the following two tasks based on the de-
pendency graph. (1) First, sets the conditions belonging to the {M,A}s to true.
This is implemented in the set condition({M,A}) function. (2) Second, it
blocks the caller process until all its preconditions are satisfied. This is imple-
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mented in the wait for conditions({M,A}) function. These functions have
to be called by the generic parts of the behaviours (independently of the users’
programs). Consequently, the condition server must be implemented with-
out the gen server behaviour.

We remark that for those modules which don’t have any preconditions or
don’t belong to any other module’s precondition, the corresponding function
call has no effect.

The condition server module has to be a part of the Erlang kernel mod-
ules, since during the Erlang system’s startup several event handler and server
modules are started, and they require access to the condition storage system.

4.3 Modification of the supervisor behaviour

During the startup of a concurrent system, execution fork points must be
named. In our case, these places are in the supervisor nodes. We modified
the supervisor behaviour so that it accepts extended child specifications. The
extension holds an additional field which can be sequential or concurrent.
In the former case, the meaning of the child specification is equivalent with
to original one. In the latter case, the supervisor node starts the child con-
currently (fork point). We remark that the modification of the supervisor be-
haviour clearly accepts the original child specifications. The following example
shows an extended child specification:

{app2_server1, {generic_server, start_link, [app2_server1]},
permanent, 10, worker, [generic_server], concurrent}.

If the generic part of supervisors interprets a concurrent child specification it
starts a dummy supervisor node with the proper parameters instead of the
original child.

4.4 Further modifications of the Erlang system

It is also necessary to modify each Erlang behaviour before the callback init
function is called, and after it returns successfully. We put these modifi-
cations into the gen server, gen event, gen fsm, supervisor bridge and
supervisor behaviour.

The built-in utilities create boot scripts which do not start the condi-
tion server automatically. In order to start the server, a new line has to be
inserted into the boot script. The second line of the following code segment
shows this:
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...
{kernelProcess,heart,{heart,start,[]}},
{kernelProcess,condition_server,{condition_server,start,[]}},
{kernelProcess,error_logger,{error_logger,start_link,[]}},

...

5 Implementation and measurements

We fully implemented the prototype described in the previous sections. The
implementation can be used as an OTP extension. This extension is based
on Erlang/OTP R11B version and the modifications affected the stdlib’s (v.
1.14.1) behaviour modules (namely: gen server, gen fsm, gen event, super-
visor bridge, supervisor). You can download the prototype from the fol-
lowing url: http://compalg.inf.elte.hu/projects/startup .

Up to now, we described a parallel and reliable solution of the concurrent
startup. Our solution gives a well-defined interface for handling the depen-
dency problems among the concurrent starting modules. Therefore it preserves
the reliability. It means that reliability of the concurrent startup is based on
the dependency graph description of the users’ programs. In the following we
focus on the running time of the start-up.

We lack access to large industrial applications therefore we created programs
for measuring the start-up time in several cases. For simplicity, no depen-
dence conditions were defined, but concurrent supervisor child starting was
performed. The measured programs use our modified Erlang/OTP libraries
for making fast startup. The tested systems have some gen server and some
supervisor nodes. The gen server nodes perform time-consuming, resource-
intensive computations in their init functions. Each measured system has
been started both sequentially and concurrently, the time is given in seconds.
Each measurement has been performed five times and the figures show the
average measured values. The measurements were performed on an SMP 4
machine with 2 AMD Dual Core Opteron, 2GHz, 16 GB RAM, Linux, Erlang
5.5, OTP R11B.

Three different system topologies were measured, a system with (1) deep
process tree, (2) wide process tree, and (3) random process tree. The deep
process tree was a 3-regular tree of depth 6, the wide process tree was a
10-regular tree of depth 2, and the random process tree was generated using
uniform distribution from the range [1, 5] for the number of children of a node,
then truncating the tree at level 5.
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Figure 2: Start-up speed of the sequential and concurrent versions (in seconds).
In concurrent case we can put different number of fork points into different
places in the process tree. The authors created several concurrent cases for
each kind of trees. The worst and best case values represent the slowest and
the fastest concurrent start-up time in the proper kind of trees.

We measured the time that is needed for the system start-up as all servers
and supervisors were started. The timer started when the erl shell was called
and stopped when the last server or supervisor started. For this purpose we
created a special application which starts just after all other servers or super-
visors, and then immediately performs an illegal statement. Since this node
crashes at once, consequently erl terminates. In other words, we measured
the time between the starting and crashing of the Erlang shell.

There are several ways to make a system’s process tree concurrent. We
tagged the modules which have to start parallel. The speed of the startup
depends on the number of the concurrent processes. The deeper the position of
the fork point in the tree, the more parallel threads are created (more dummy
supervisors). Therefore we show the running times as a function of the number
of concurrent threads and as a function of the depth of fork points.

Figure 2 shows that the concurrent versions (not surprisingly) are always
faster than the sequential ones. In some cases however, the concurrent start-up
was two times faster than the sequential one.



24 P. Burcsi, A. Kovács, A. Tátrai

Figure 3: Start-up speed (in seconds) depending on the number of running
processes, which can be set by the fork points. The levels show the depth of
the fork points.

Figure 3 shows the startup speed as a function of the number of fork points.
Since there were 4 processors (2 dual core) in the testbed, it is not surprising
that 4-fold parallelism yields the best results. When only 3 parallel processes
were started, one processor did not work, and 3 processors performed the whole
startup. In case of more than 4 active processes, the processors had to switch
between the active processes resulting in a serious overhead. Note however,
that the most significant overhead in our measurements comes from the time
consuming part of the servers’ init functions.

Figure 4 shows how the results depend on the depth of the fork points. We
measured a fall back performance when all nodes in a given level were started
parallel. In this case the system had more concurrent processes in the deeper
levels. One can also observe that the version of 4 active process forking is
the most resistant to the depth. In this case the only overhead comes from
the number of dummy supervisor trees. The measurement suggests that the
system should be forked as close to the root as possible.
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Figure 4: Start-up speed (in seconds) depending on the depth of the fork
points.

6 Conclusions

In this paper we presented a solution for the parallel start-up of Erlang sys-
tems. We gave a general description of the solution and we measured the
start-up time in several cases. Our measurements show that the parallel start-
up can be much faster than the sequential. On the other hand our solution
provides a well-defined mechanism for controlling the dependency relations
among processes resulting reliable systems. The main advantages of our solu-
tion are:

• Precise and concise dependency handling.
• Preserving the supervision tree structures.
• The dependency graph is an Erlang module.
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• The dependency graph is dynamic.
• Less than 150 lines modification in the stdlib.

Disadvantage of our solution is that bad dependency graph could result dead-
lock or system crash. We conclude that our solution is highly capable for the
parallelization of Erlang systems’ startup in case of legacy systems and new
developments as well.
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Abstract. This paper deals with the parallel raytracing part of virtual-
reality system PROLAND, developed at the home institution of authors.
It describes an actual implementation of the raytracing part and intro-
duces a Coloured Petri Nets model of the implementation. The model
is used for an evaluation of the implementation by means of simulation-
based performance analysis and also forms the basis for future improve-
ments of its parallelization strategy.

1 Introduction

During the past several years, high-performance and feature-rich PC graph-
ics interfaces have become available at low cost. This development enables
us to build clusters of high-performance graphics PCs at reasonable cost.
Then photorealistic rendering methods like raytracing or radiosity can be com-
puted faster and inexpensively. Raytracing is one of computer graphics tech-
niques used to produce accurate images of photorealistic quality from complex
three-dimensional scenes described and stored in some computer-readable form
[1, 2, 9]. It is based on a simulation of real-world optical processes. One great
disadvantage of such techniques is that they are computationally very expen-
sive and require massive amounts of floating point operations [4, 6]. Parallel
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raytracing takes advantage of parallel computing, cluster computing in partic-
ular, to speed up image rendering, since this technique is inherently parallel.
The use of clusters [8] for computationally intensive simulations and applica-
tions has lead to the development of interface standards such as the MPI and
OpenPBS.

This paper provides insight into various means of decomposing the raytrac-
ing process (based on the free raytracer Pov-ray [12]) and describes a parallel
raytracing process management simulation. We decided to use Coloured Petri
Nets (CPNs) and CPN tools software for the simulation and a performance
analysis based on it. The CPNs and CPN tools were chosen because of good
simulation-based performance analysis support, familiar formalism and the
fact that the tools are available for free. The other reason was that in the case
of some more complicated raytracing process management design we can spec-
ify its analytical model using low-level Petri nets and use analytical “tools”
of Petri nets, such as invariants, and others, including our own results in the
field of formal methods, for a verification of the model. After that, the analyt-
ical model can be transformed to the CPN model suitable for a performance
analysis.

2 Raytracing and its computation model

In nature, light sources emit rays of light, which travel through space and
interact with objects and environment, by which they are absorbed, reflected,
or refracted. These rays are then received by our eyes and form a picture.

Raytracing produces images by simulating these processes, with one signif-
icant modification. Emitting rays from light sources and tracking them would
be very time-consuming and inefficient, because only a small fraction ends up
in the eye/camera, the rest is irrelevant. So instead of this, raytracing works by
casting rays from camera through image plane (for each pixel of final image)
into the scene and tracking these rays. It computes the intersection of the ray
with the first surface it collides with, examines the material properties (cast-
ing additional rays for refraction/reflection if necessary) and incoming light
from light sources in the scene (by casting additional rays from intersection to
each source) and then computes the colour of the pixel in the final image [12].
Raytracing belongs to a set of problems that utilize parallel computing very
well, since it is computationally expensive and can be easily decomposed. The
two main factors influencing the design and performance of parallel raytracing
systems, are the computation model and the load-balancing mechanism [4].
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There are two principal methods of decomposing a raytracing computation:
demand-driven and data-driven (or data-parallel), and there are research activ-
ities focused on developing a hybrid model trying to combine the best features
of the two models [6]. The final product of raytracer by demand-driven parallel
raytracing is an image of m×n pixels, and since each pixel is computed inde-
pendently, the most obvious way of decomposition is to divide the image into
p parts, where p is a number of processors available and each processor would
compute m×n/p pixels and ideally, the computation would be p times faster.
This approach is called demand-driven parallel raytracing. A number of jobs
are created each containing different subset of image pixels and these jobs are
assigned to processors. Input scene is copied to local memory of each proces-
sor. Processors render their parts, return computed pixels, get another job if
there is any, and in the end the final image is composed from these parts [1].

Main benefits of this approach are easy decomposition and implementation,
simple job distribution and control and the fact that a general raytracing
algorithm remains unchanged and scales well. The main disadvantage is that
the input scene has to be copied to local memory of each processor, which
poses a problem if the scene is very large.

Data-driven parallel raytracing approach, also called data-parallel raytra-
cing, splits the input scene into a number of sections (tiles) and assigns these
sections to processors [1, 2]. Each processor is responsible for all computations
associated with objects in this particular section, no matter where the ray
comes from. Only rays passing through the processor’s section are traced. If a
ray spawned at one processor needs data from another processor, it is trans-
ferred to that processor. The way the scene is divided into section determines
the efficiency of parallel computation. Determining the number of rays that
will pass through a section of the scene in order to estimate the sections re-
quiring the most processing is one of the hardest problems to overcome. Using
the cost function can be helpful. Main benefit of this approach is that the
input scene doesn’t have to be copied entirely to each processor, but it is split
into sections, so even very large scenes can be processed relatively easy. Main
disadvantage is that this approach doesn’t scale very well with growing scene
complexity and cluster size, because of task communication overhead and ray
transfers [6].

2.1 Parallelization implementation

For parallel implementation a cluster-based computing system is used. Cluster-
based rendering [8] in general can be described as the use of a set of computers
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Figure 1: Basic structure for parallel raytracing implementation

connected via a network for rendering purposes, ranging from distributed non-
photorealistic volume rendering over raytracing and radiosity-based rendering
to interactive rendering using application programming interfaces like OpenGL
or DirectX.

For the raytracing itself, a freeware program Pov-ray is used [7], and atop of
Pov-ray, a front-end performing parallel decomposition and job control is built.
Pov-ray is able to render only a selected portion of the picture, so it’s very
convenient for naive parallelization. Implementation is limited by Pov-ray’s
capabilities:

• only contiguous rectangular section of image can be rendered in one job,
• each job requires parsing the scene and initial computations all again,
• each Pov-ray job requires whole scene and
• program should be able to handle failures of individual nodes.

Because of these facts, the program implements demand-driven computa-
tion model. For a load balancing, static or dynamic load balancing by tiling
decomposition seems to be the best choice. Implementation uses the Message
Passing Interface and SPMD program model.

Fig. 1 shows the basic used structure. It isn’t a typical master/slave scenario,
here all nodes are equal, with the exception of the root node, which also
controls the whole operation, allocates jobs and interacts with the user. That
allows us to utilize massive parallelism. User puts in the scene to be rendered
and additional control information. Root (master) node partitions the final
image plane into sections (tiles) and allocates them to nodes. On each node,
the process forks and executes Pov-ray to render its part of the image. When
finished, it returns the rendered pixels and waits for another job, if required. At
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the end, the root node puts the whole image together and returns it to the user.
It is a simple algorithm. We need to develop a better strategy for distribution of
a scene section of rendered image. Better node, time and memory management
is necessary. Because the development of an improved strategy using “real”
hardware and software is expensive and very time-consuming, we decided to
use formal CPN models and an appropriate simulation on them instead.

3 Coloured Petri Nets

Coloured Petri Nets (CPNs) [3] is a discrete-event formal modelling language,
able to express properties such as non-determinism and concurrency. It com-
bines a well-known Petri nets formalism with an individuality of tokens to
enhance its modelling power and the CPN ML functional programming lan-
guage to handle data manipulation and decision procedures.

A CPN model has a form of digraph with two types of vertices: places
(ellipses) and transitions (rectangles).

Each place holds tokens of some type. In CPNs types are called colour sets.
Colour sets range from simple ones as UNIT (with the only value “()”), INT,
BOOL, to compound sets such as List, Record or Product. An example of
user-defined colour sets (record and timed list) can be seen in Fig. 5. Tokens in
places define state of CPN, which is called marking. Markings are represented
as multisets, i.e. marking “1‘1 + +7‘2” of the place p1 from Fig. 2 means that
p1 holds one token of value 1 and seven tokens of value 2. If there is only one
token in a place, we can omit a number of tokens (for example we can write
“4” instead of “1‘4”).

Transitions of CPN represent events that change the state (marking) of the
net. A transition t can be executed, or fired, when there are enough tokens of
corresponding value in places from which there is an arc to t. These tokens are
removed when t is fired and new tokens are generated in places to which there
is an arc from t. A number and values of removed and created tokens are
determined by corresponding guarding predicates (guards), associated with
transitions, and arc expressions. A small example in Fig. 2 illustrates the
behaviour of CPN. The net in Fig. 2 has 3 places (p1, p2, p4) of colour set
INT and one place of colour set UNIT. Initially the net is in the (initial)
marking with “1‘1 + +7‘2” in p1 and 4 tokens of value 1 in p2 (Fig. 2(a)). An
actual marking is shown in boxes left to the places. The transition t with the
guard “x > y” can be fired only for x = 2 and y = 1 now. The net after the
firing is shown in Fig. 2(b).
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(a) (b)

Figure 2: CPN fragment before (a) and after (b) the firing of the transition t

3.1 Performance analysis with CPNs

To broaden the scope of CPNs usage, facilities allowing simulation-based per-
formance analysis have been added to both the CPNs language and its sup-
porting tool, called CPN tools [11]. These facilities include time concept for
CPNs (timed CPNs), random distribution functions for CPN ML and data
collecting and simulation control monitors for CPN tools.

A (model) time in CPNs and CPN tools is represented as an integer value.
There are also values, called time stamps, associated with tokens, representing
a minimal time when the tokens are ready for firing. Colour sets of such tokens
must be timed. In our models we distinguish timed colour sets by a postfix
“tm” or “Tm”. The model time doesn’t change while there is some transition
that can be fired. When there is no transition to fire, the time advances to the
nearest time value with some transitions to fire. All time-related information
in markings, expressions and guards is prefixed by “@”. A small example of
timed CPN can be seen in Fig. 3(a). Both places can hold timed integers. In
the initial marking we have one token of value 1 and timestamp 0 in tp1. So,
tt1 can fire in time = 0. After firing of tt1 one token of value 1 and time
stamp = firing time +10 appears in tp2 (Fig. 3(b)). In addition, the model
time advances to 10, because there is nothing to be fired in time = 0 and the
token in tp2 will not be available (ready) before time = 10.

Because of space limitations we described CPNs very briefly here. An inter-
ested reader can find more information in [3, 10] or at [11].
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(a) (b)

Figure 3: Timed CPN fragment before (a) and after (b) the firing of tt1

4 CPN model for parallel raytracing

A timed CPN specification of our current implementation of distributed ray-
tracing, as described in section 2.1, can be seen in Fig. 4. The time in our
model is measured in milliseconds.

In the initial marking there are tokens in places newScene, nodesNo,
freeNodes, scStartTime and preparedTiles. The place newScene holds one
token with randomly chosen value from interval 10000 to 70000 (computed by
the function discrete). This value characterizes a complexity of a scene to be
raytraced and its range is based on our practical experience. In general the
scene complexity depends on its size, number of objects, objects complexity
(number of polygons), objects material (opacity, mirrors, . . . ), illumination
model and camera parameters. The place nodesNo holds a token with num-
ber of computers in our cluster (8 computers) and freeNodes has one token
for each node, where its value designates a type of the node. Albeit all the
nodes are equal we have to distinguish between the client nodes (type 2 ) and
the master node (type 1 ) that also manages the whole process. So, only about
70% of master performance is used for raytracing. The preparedTiles holds
one token with empty list of tiles, because the scene is not divided yet.

Only the transition sendScene can be fired in the initial marking, in time =

0. Its firing represents sending of the whole scene to each client node. Sending of
the scene is a sequential process and its duration is computed by an expression

(nNo − 1) ∗ rnNormal int(20000, 10000)
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Figure 4: Timed CPN model of distributed raytracing in 8 computers cluster

where nNo is a number of all nodes and the function rnNormal int(m,v) re-
turns a value from the exponential random distribution with mean m and
variance v. The firing also divides the scene into the list of tiles with (almost)
constant width and height and saves the starting time point of scene raytrac-
ing as a token in scStartTime. To store information about a tile the colour
set TILE is used (Fig. 5), where fields wdt and hgt store tile dimensions, com-
plxt stores tile complexity, cSuc determines whether tile raytracing will be
successful and ndType is a type of node where the tile will be raytraced. The
list is generated by the function getTileList and is stored as a single token in
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colset TILE = record wdt:INT * hgt:INT * complxt:INT
* cSuc: BOOL* ndType:INT;

colset TILElistTm = list TILE timed;

Figure 5: Declarations of some colour sets

fun tileCopml(0, remCmpl) = 0 |
tileCopml(1, remCmpl) = remCmpl |
tileCopml(remTiles, 0) = 0 |
tileCopml(remTiles, remCmpl) =

let
val tCmp = (Real.fromInt remCmpl /

Real.fromInt remTiles)
val cmpl=rnNormalr_int(tCmp*0.8,tCmp *0.7)

in
if (remCmpl>cmpl) then cmpl else remCmpl

end;

Figure 6: Definition of tileCopml function

the place preparedTiles. The function also distributes the scene complexity
randomly among the tiles. This random distribution is computed by the func-
tion tileCopml (Fig. 6), that is called within getTileList. Its first argument,
remTiles, is a number of remaining tites to be added to the generated list and
remCmpl is a complexity to be distributed among remaining tiles.

A firing of the transition selectTile means an assignment of raytracing job to
a free node nt. The selected tile t is removed from the list in preparedTiles and
moves to prepTile. In addition, the function setSuc nTp assigns a node type
(field ndType) to t and randomly chooses a raytracing job success (cSuc) for t.
We assume that 90% of all jobs on client nodes will be successful and that the
master node never fails. If the field cSuc of t is true (i.e. “#cSuc t = true” in
CPN ML), then a firing of sucRtrStart moves t to raytrTiles. The timestamp
of t is also increased by raytracing time and a communication delay. The
raytracing time is computed by raytrTm from all fields of t except cSuc. The
communication delay, computed by commTime, is taken from an exponential
random distribution and represents the time needed to contact the master
node, which can be busy performing other tasks, and to send the raytraced
tile to it. After raytracing sendRtrTile moves the tile into already computed
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ones (computedTiles) and frees the node used.
The path of a fallen one begins with a firing of unsucRtrStart, which moves

t to unsrRaytrTiles. The delay computed by failcheckTm is a time needed
to detect that a given node failed and is not responding. The response of
nodes is checked regularly in our implementation, so the delay computed is a
randomly chosen multiple of checking period (chckPer) with some upper limit.
Next, a firing of returnTile moves t back to the list in preparedTiles and the
failed node to invalidNodes, where it waits for recovery. We optimistically
suppose that each node recovers within one day. Finally the node is returned
to freeNodes by a firing of recoverNode.

After successful processing of all tiles the scene can be finalized and the tran-
sition completeScene fired. Its firing removes all tokens from computedTiles

and generates a new one in newScene, so a raytracing process can start over
again. There is a data collecting monitor, which saves information about ray-
tracing duration and number of used nodes into the text file for further pro-
cessing when completeScene is fired.

5 Simulation experiments

To evaluate our implementation of parallel raytracing under various conditions
we carried out several simulation experiments on the CPN model created. Here
we present results concerning the relation between number of nodes in the
cluster and duration of scene raytracing. In these experiments we fixed the
scene complexity to 36500 and used a big scene with 30000× 22500 pixels and
a small one with 10000× 7500 pixels. Tile dimensions were 1000× 750 pixels
in both cases. We considered two scenarios:

• an ideal scenario, where all nodes are equal (i.e. the master can use all
of its performance for raytracing) and no computation fails and

• a real scenario, with conditions as described in Section 4.

Number of nodes ranged from 2 to 25. The results obtained are depicted in
Fig. 7. As a reference we also included the raytracing duration when only one
node is used. The values used in graphs are averages from multiple simulation
runs. Of course, in the real scenario, the raytracing time is longer and the
curve is not so “smooth” as in the ideal scenario. This is because in the real
scenario some nodes can be invalid and raytracing time can be equal or even
longer as in the cluster with fewer nodes. The results also reveal that it is not
effective to use more than ten nodes in our current implementation of parallel
raytracing environment.
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Figure 7: Number of nodes to raytracing duration ratio for 10000×7500 pixels
scene (left) and 30000× 22500 scene (right)

6 Conclusion

In this paper we presented our current implementation of distributed ray-
tracing in a cluster environment. We also introduced a CPN model of the
implementation, which has been used to evaluate a performance of the im-
plementation and will be used as a basis for the development of an improved
parallelization strategy. Our intention is to evaluate possible improvements on
corresponding CPN models and choose the best with respect to the perfor-
mance analysis. In the case of some more complicated strategy we can specify
an analytical model using low-level Petri nets first and use analytical facilities
of Petri nets, such as invariants and others, including our own theoretical and
practical results [5], for a verification of the model.
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Abstract. Developers express the meaning of the domain ideas in specifi-
cally selected identifiers and comments that form the target implemented
code. Software maintenance requires knowledge and understanding of the
encoded ideas. This paper presents a way how to create automatically
domain vocabulary. Knowledge of domain vocabulary supports the com-
prehension of a specific domain for later code maintenance or evolution.
We present experiments conducted in two selected domains: application
servers and web frameworks. Knowledge of domain terms enables easy
localization of chunks of code that belong to a certain term. We consider
these chunks of code as “concepts” and their placement in the code as
“concept location”. Application developers may also benefit from the ob-
tained domain terms. These terms are parts of speech that characterize a
certain concept. Concepts are encoded in “classes” (OO paradigm) and
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the obtained vocabulary of terms supports the selection and the compre-
hension of the class’ appropriate identifiers. We measured the following
software products with our tool: JBoss, JOnAS, GlassFish, Tapestry,
Google Web Toolkit and Echo2.

1 Introduction

Program comprehension is an essential part of software evolution and software
maintenance: software that is not comprehended cannot be changed [5, 6, 7, 8].

Among the earliest results are the two classic theories of program com-
prehension, called top-down and bottom-up theories [9]. Bottom-up theory:
Consider that understanding a program is obtained from source code reading
and then mentally chunking or grouping the statements or control structures
into higher abstract level, i.e. from bottom up. Such information is further ag-
gregated until high-level abstraction of the program is obtained. Chunks are
described as code fragments in programs. Available literature shows chunks to
be used during the bottom-up approach of software comprehension. Chunks
vary in size. Several chunks can be combined into larger chunks [1]. On the
other hand, the top-down approach starts the comprehension process with a
hypothesis concerning a high-level abstraction, which then will be further re-
fined, leading to a hierarchical comprehension structure. The understanding of
the program is developed from the confirmation or refutation of hypotheses.

An important task in program comprehension is to understand where and
how the relevant concepts are located in the code. Concept location is the start-
ing point for the desired program change. Concept location means a process
where we assume that programmer understands the concept of the program
domain, but does not know where is it located within the code. All domain
concepts should map onto one or more fragments of the code. In other words,
process of concept location is the process that finds that code-fragment [5].

Developers who are new to a project know little about the identifiers or
comments in the source code, but it is likely that they have some knowledge
about the problem domain of the software. In this paper, we present a new
way of program comprehension that is based on naming of identifiers. When
trying to understand the source code of a software system, developers usually
start by locating familiar concepts in the source code. Keyword search is one
of the most popular methods for this kind of task, but the success is strictly
tied to the quality of the user queries and the words used to construct the
identifiers and comments.

We present a way how to create a domain vocabulary automatically as a
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result of source code analysis. We classify the parts of speech and measure
their occurrence in the source code.

2 Motivation

Domain level knowledge is important when programmers attempt to under-
stand a program. Programmer inspects source code structure that is directed
by identifiers. The quality and the “orthogonality” of the identifiers in the
source code affects the time of program comprehension. Next kinds of quality
could be measured:

1. percentage of fullword identifiers,
2. percentage of abbreviations and unrecognized identifiers,
3. percentage of domain terms identified in the application.

Percentage of full word identifiers is very important in the case of absence
of documentation. The first two qualities could be derived directly from the
source code toward common vocabulary. We don’t need any additional domain
data source to get relevant results. The third quality is not derived directly.
We need to make measurements in order to obtain domain vocabulary.

Usually we don’t have domain terms of the analysed software product. The
question is: How can we create the vocabulary of terms for a particular domain?
In this paper we propose a way to derive it automatically.

Nowadays, the companies are affected by employee fluctuation, especially in
the IT sector. Each company has ongoing projects in the phase of developing
or maintenance. New developer participating in the project has to understand
project to solve the assigned task. Domain terms are usually in the specifica-
tion. The transition from specification to implementation is bound usually to
the transformation of terms. For example, if the specification contains word
car, that word could be changed to word vehicle in the implementation phase.
In spite of the fact that the word vehicle is a hypernym of the word car, we
cannot find the word “vehicle” by brute force through searching by keywords.
That is the reason for looking for some statistical evidence that car is a vehicle.
It means that there exists “gap” in the meanings between the words used in
specification and implementation. Our goal is to eliminate partly “this kind”
of gap.

Developers of new software products may put another question: What kind
of parts of speech is usually used for a particular category of identifiers? We
can measure it directly from the source code. We can also find, if the rules are
domain specific or generally applicable.
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3 Methodology of programm inspection

Full word identifiers provide better comprehension then single letters or ab-
breviations [3]. It is the reason why we want to provide a tool for measurement
of this aspect of program quality. We use the WordNet database of words to
identify the potential domain terms.

Source
files

Words
table

Project
Statistics for
whole project

Measurement
result

Statistics for
the source file

Tree structure
with nodesJava compiler

parsing

Figure 1: The methodology of program inspection

We apply our tool to well-known open-source projects. They belong to two
domains: domain of application servers and domain of web frameworks. Each
project consists of a set of source code files. We examine every source file
separately. Based on information we have got by source files analysis we make
measurements for the whole project. Our measurements follow the scheme
shown on the Fig. 1.

1. First, we parse every source file using Java compiler. We build a tree
structure of nodes. Each node belongs to one of the next types: class,
method, method parameter or class variable. Then we process the names
of each identified node. Name processing consists of splitting the name
according to common naming conventions. For example, “setValue” is
split into “set” and “value” words. After then we put all identified words
into a table.

2. As a second step, we produce statistics for the source file. We examine
which word belongs to class variable, method parameter, method or class
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and also we try to assign part of speech to the words.

After source files analysis mentioned in previous steps we produce statistics
for the whole project: we build a set of words containing all words used in
the source files, and also we build a set of words used in the variables (class
variables and method parameters), methods and classes. The set of words used
in project will represent the software vocabulary for the particular project.

The software domain vocabulary represents the intersection of all software
vocabularies of all software products of the same domain. Not all identified
words are suitable candidates for the inclusion into software domain vocabu-
lary. It is expected to apply filters in a process of source code analysis. So, the
reason behind filtering is to eliminate terms that are irrelevant regarding the
domain. As a final result we obtain a set of words ordered by occurrence. We
obtain domain vocabulary as well as potential domain vocabulary (words are
not identified in all measured software products).

As was mentioned in the previous section, the categorization in accordance
to the parts of speech is expected in the experiment. It induces another prob-
lem: one word can belong to more parts of speech (e.g. “good” is adjective as
well as noun). WordNet provides help in disambiguation and classification of
words.

4 Experiments based on word analysis

WordNet provides a database of the most used words in the parts of speech.
As was mentioned earlier, we have developed a tool to measure results in
the graph, tabular and textual form. The tool’s input is the project’s source
code. To present it we decide to inspect software products of two application
domains:

• Java EE application server,
• Web framework.

We have selected next Java EE application servers:

• JOnAS 4.10.3 (http://jonas.ow2.org/),
• JBoss 5.0.1.GA (http://www.jboss.org/jbossas),
• GlassFish Server v2.1 (https://glassfish.dev.java.net/).

and web frameworks:

• Google Web Toolkit 1.5.3 (GWT) (http://code.google.com/intl/sk/webtoolkit/),

http://jonas.ow2.org/
http://www.jboss.org/jbossas
https://glassfish.dev.java.net/
http://code.google.com/intl/sk/webtoolkit/
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• Echo2 v2.1 (http://echo.nextapp.com/site/echo2),

• Tapestry 5.0.18 (http://tapestry.apache.org/).

Glass. JOnAS JBoss Echo2 GWT Tap.
Number of source 10553 3611 6448 402 593 1707
files
Number of words 10229 4502 5055 1044 2584 2154
Number of 4297 2140 2932 903 1582 1714
recognized words (42%) (48%) (58%) (86%) (61%) (80%)
Number of not 5932 2362 2123 141 1002 440
recognized words (58%) (52%) (42%) (14%) (39%) (20%)
Number of nouns 2361 1311 1687 537 839 913

(55%) (61%) (58%) (60%) (53%) (54%)
Number of verbs 1259 542 842 229 484 526

(29%) (25%) (29%) (25%) (31%) (30%)
Number of 549 235 330 117 213 226
adjectives (13%) (11%) (11%) (13%) (13%) (13%)
Number of 128 52 73 20 46 49
adverbs (3%) (3%) (2%) (2%) (3%) (3%)

Table 1: The number of recognized domain-terms for application servers and
web frameworks

Table 1 summarizes data for the selected products. Other kind of results
obtained from our tool in tabular form gives us information about identified
words that are parts of software vocabulary. Now, each domain has three sets
of software vocabulary. In our measurement we have selected the 50 most used
words of each software vocabulary for further analysis. Their intersection is a
set of terms belonging to the domain vocabulary. Table 2 presents the most
used words and their occurrence. Words identified as domain terms are em-
phasized with bold letters. Potential domain terms recognized in two software
products are emphasized with italic. Words that belong to only one software
vocabulary are typed ordinary. Thanks to WordNet we can also identify se-
mantically similar (synonyms, homonyms, hypernyms, and so on) words as a
domain or potential domain term.

http://echo.nextapp.com/site/echo2
http://tapestry.apache.org/
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Glass. JBoss JOnAS GWT Echo2 Tap.
name name name type action name
(28727) (11774) (6950) (1774) (801) (1653)
value test ejb name property value
(9067) (7332) (2570) (1168) (506) (1140)
type id test method value type
(7550) (3169) (2179) (540) (475) (970)
class bean id class test class
(6953) (3154) (1602) (466) (395) (936)
object ejb home logger component field
(5277) (2962) (1437) (353) (369) (798)
id value server value element page
(4266) (2885) (1379) (344) (347) (778)
key type type info id component
(4641) (2473) (1251) (254) (331) (776)

Table 2: Application server and web framework domain terms recognition

5 An experiment on concept location

Within the next step we locate concepts encoded in keywords of the product.
We use again WordNet for searching keywords. Programmers knows only the
domain the software product it belongs to. They do not need to use exact
words used in source code.

We present here an example of concept location. Lets suppose that some-
body wants to change the algorithm for determining the parts of speech in our
program. S/he needs to locate the concept of determining the parts of speech
in the source code of the examined program. It is known that programmers
and maintainers use different words to describe essentially the same or similar
concepts [5]. Therefore the use of full-text search for concept location is very
limited. We will try to find concepts based on semantic search.

In our example we assume that a concept is the identifier of a method or
a class. We want to find a fragment in the source code where the parts of
speech are located. We will try to find this code fragment based on this key-
phrase: “find word form”. For every keyword in our key-phrase we will make
a database of related words – words that are in some semantic relationship to
the keyword. Then, we will try to locate code fragment in our source code,
where at least 1 occurrence for every keyword is found. This process is shown
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on the Fig. 2. However we are not looking only for the keywords itself, but also
for semantically related words. In our example, as a result we find a method
with this definition:

public String getType(String word) {
//Method source code

}

Keyword

Set of semantically
similar words

Searching
in WordNet

Searching
in the nodes of
source files

Source files
representation

Searched
results

Figure 2: Process of concept location

We found the three keywords in this method definition based on these se-
mantic relations:

1. find–get : “get” is a hypernym of “find”. We found the word “get” in the
method name.

2. word : we found the term “word” itself in the parameter name.

3. form–type: “type” is a hyponym of “form”. We found the word “type”
in the method name.

We can see on this example that we could not locate this concept easily using
fulltext search, but we can locate it using search based on semantic relations.
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6 Related and further steps

The study of software vocabularies. This study is focused on three re-
search questions: (1) to what degree relate terms found in the source code to
a particular domain?; (2) which is the preponderant source of domain terms:
identifiers or comments?; and (3) to what degree are domain terms shared be-
tween several systems from the same domain? Within the studied software, we
found that in average: 42% of the domain terms were used in the source code;
23% of the domain terms used in the source code are present in comments
only, whereas only 11% in the identifiers alone, and there is a 63% agreement
in the use of domain terms between any two software systems. They manu-
ally selected the most common concepts, based on several books and online
sources. They chose 135 domain concepts. From the same resources, for each
of these concepts one or more terms and standard abbreviations that describe
the concept were manually selected and included in the domain vocabulary
[2].

Our aim was to define the domain vocabulary automatically. Results from the
experiments will be used to build domain vocabularies for other domains too.
These vocabularies support more detailed automatic classification of software
products. Our next experiments will include inspection of comments in the
source code. This stream of research is strongly promoted by [2, 10, 11].

Concept location. One of the experiments in the area of mapping between
source code and conceptualizations shared as ontology has been published in
[4]. The programs regard themselves as knowledge bases built on the pro-
grams’ identifiers and their relations implied by the programming language.
This approach extracts concepts from code by mapping the identifiers and the
relations between them to ontology. As a result, they explicitly link the sources
with the semantics contained in ontology. This approach is demonstrated us-
ing on the one hand the relations within Java programs generated by the type
and the module systems and on the other hand the WordNet ontology.

We are locating concepts by keywords specified by programmers. Concept
location is based on searching names in the identifiers that are in some rela-
tion to the specified keywords. This approach supports easier understanding of
higher-level abstractions within the inspected application. We will work further
on the concept visualization as well as on concept location refinement issues.

7 Conclusions

We can conclude the experiment results briefly as follows:
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• In general, the most used parts of speech for all inspected element types
are nouns (57%).

• Application servers as well as GWT use a lot of not recognized words
due to different identifiers.

• The most number of recognized words is used in Tapestry (80%) and
Echo2 (86%) web frameworks. We can assume that the source code of
both products could be well understandable.

• From the comprehension point of view the application servers are more
complex than web frameworks.

• In spite of application servers’ complexity, they are using more common
domain terms. Application server domain vocabulary consists of other
well-known terms like: “context”, “session”, “service”, and so on.

• Concept location gives us opportunity to find source code fragments
more efficiently and with better results than using classical keyword
search.
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[7] L. Samuelis, Cs. Szabó, On the role of the incrementality principle in
software evolution, Egyptian Comput. Sci. J., 29, 2 (2007) 107–112. ⇒
41
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Abstract. The basic aim of our study is to give a possible model for han-
dling uncertain information. This model is worked out in the framework
of DATALOG. At first the concept of fuzzy Datalog will be summarized,
then its extensions for intuitionistic- and interval-valued fuzzy logic is
given and the concept of bipolar fuzzy Datalog is introduced. Based on
these ideas the concept of multivalued knowledge-base will be defined
as a quadruple of any background knowledge; a deduction mechanism;
a connecting algorithm, and a function set of the program, which help
us to determine the uncertainty levels of the results. At last a possible
evaluation strategy is given.

1 Introduction

The dominant portion of human knowledge can not be modelled by pure in-
ference systems, because this knowledge is often ambiguous, incomplete and
vague. Several and often very different approaches have been used to study
the inference systems. When knowledge is represented as a set of facts and
rules, this uncertainty can be handled by means of fuzzy logic.

A few years ago in [1, 2] a possible combination of Datalog-like languages
and fuzzy logic was presented. In these works the concept of fuzzy Datalog has
been introduced by completing the Datalog-rules and facts by an uncertainty
level and an implication operator. The level of a rule-head can be inferred
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from the level of the body and the level of the rule by the implication operator
of the rule. Based upon our previous works, later on a fuzzy knowledge-base
was developed, which is a possible background of an agent-model [3]. In the
last years new steps were taken into the direction of multivalued knowledge-
base: the fuzzy Datalog was extended to intuitionistic- and interval-valued
fuzzy logic and the concept of bipolar fuzzy Datalog was introduced [4, 6]. In
this year the concept of fuzzy knowledgebase was generalized into multivalued
direction [7]

This paper wants to give an overview of the knowledge-bases based on
fuzzy- or multivalued Datalog. In the first part the fuzzy, the intuitionistic,
the interval-valued and the bipolar extensions of Datalog will be summarized.
In the second part the concept of a possible multivalued knowledge-base will
be discussed. This knowledge-base is a quadruple of a deduction mechanism; a
background knowledge; an algorithm connecting the deduction and the knowl-
edge; and a decoding set computing the uncertainty levels of the consequences.
At last a possible evaluation of knowledge-bases will be shown.

2 Extensions of Datalog

Datalog is a logical programming language designed for use as a data-base
query language.

A Datalog program consists of facts and rules. Using these rules new facts
can be inferred from the program’s facts. It is very important that the solution
of a program be logically correct. This means that evaluating the program,
the result be a model of the first order logic formulas, being its rules. On the
other hand it is also important that this model would contain only those true
facts which are the consequences of the program, that is the minimality of this
model is expected, i.e. in this model it is impossible to make any true fact false
and still have a model consistent with the database. An interpretation assigns
truth or falsehood to every possible instance of the program’s predicates. An
interpretation is a model, if it makes the rules true, no matter what assignment
of values from the domain is made for the variables in each rule. Although
there are infinite many implications, it is proved that it is enough to consider
only the Herbrand interpretation defined on the Herbrand universe and the
Herbrand base.

The Herbrand universe of a program P (denoted by HP) is the set of all
possible ground terms constructed by using constants and function symbols
occurring in P. The Herbrand base of P (BP) is the set of all possible ground
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atoms whose predicate symbols occur in P and whose arguments are elements
of HP.

In general a term is a variable, a constant or a complex term of the form
f(t1, . . . , tn), where f is a function symbol and t1, . . . , tn are terms. An atom
is a formula of the form p(t), where p is a predicate symbol of a finite arity
(say n) and t is a sequence of terms of length n (arguments). A literal is either
an atom (positive literal) or its negation (negative literal). A term, atom or
literal is ground if it is free of variables. As in fuzzy extension we did not deal
with function symbols, so in our case the ground terms are the constants of
the program.

In the case of Datalog programs there are several equivalent approaches to
define the semantics of the program. In fuzzy extension we mainly rely on
the fixed-point base aspect. The above concepts are detailed in classical works
such as [15, 20, 21].

2.1 Fuzzy Datalog

In fuzzy Datalog (fDATALOG) we can complete the facts with an uncertainty
level, the rules with an uncertainty level and an implication operator. We can
infer for the level of a rule-head from the level of the rule-body and the level of
the rule by the implication operator of the rule. As in classical cases, the logical
correctness is extremely important as well, i.e., the solution would be a model
of the program. This means that for each rule of the program, evaluating the
fuzzy implication connecting to the rule, its truth-value has to be at least as
large as the given uncertainty level. More precisely, the notion of fuzzy rule is
the following:

An fDATALOG rule is a triplet r;β; I, where r is a formula of the form

A← A1, . . . , An(n ≥ 0),

A is an atom (the head of the rule), A1, . . . , An are literals (the body of the
rule); I is an implication operator and β ∈ (0, 1] (the level of the rule).

For getting a finite result, all the rules in the program must be safe. An
fDATALOG rule is safe if all variables occurring in the head also occur in the
body, and all variables occurring in a negative literal also occur in a positive
one. An fDATALOG program is a finite set of safe fDATALOG rules.

There is a special type of rule, called fact. A fact has the form A ←;β; I.
From now on, we refer to facts as (A,β), because according to implication
I, the level of A can easily be computed and in the case of the implication
operators detailed in this paper it is β.
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For defining the meaning of a program, we need again the concepts of Her-
brand universe and Herbrand base. Now a ground instance of a rule r;β; I in
P is a rule obtained from r by replacing every variable in r with a constant
of HP. The set of all ground instances of r;β; I is denoted by ground(r);β; I.
The ground instance of P is ground(P) = ∪(r;β;I)∈P(ground(r);β; I).

An interpretation of a program P is a fuzzy set of the program’s Herbrand
base, BP, i.e. it is: ∪A∈BP

(A,αA). An interpretation is a model of P if for each
(ground(r);β; I) ∈ ground(P), ground(r) = A← A1, . . . , An

I(αA1∧...∧An , αA) ≥ β

A model M is least if for any model N, M ≤ N. A model M is minimal if
there is no model N, where N ≤M.

To be short we sometimes denote αA1∧...∧An , by αbody and αA by αhead.
In the extensions of Datalog several implication operators are used, but in

all cases we are restricted to min-max conjunction and disjunction, and to the
complement to 1 as negation. So: αA∧B = min(αA, αB), αA∨B = max(αA, αB)

and α¬A = 1− αA.
The semantics of fDATALOG is defined as the fixed points of consequence

transformations. Depending on these transformations, two semantics can be
defined [1]. The deterministic semantics is the least fixed point of the de-
terministic transformation DTP, the nondeterministic semantics is the least
fixed point of the nondeterministic transformation NTP. According to the de-
terministic transformation, the rules of a program are evaluated in parallel,
while in the nondeterministic case the rules are considered independently and
sequentially. These transformations are the following:

The ground(P) is the set of all possible rules of P the variables of which
are replaced by ground terms of the Herbrand universe of P. |Ai| denotes the
kernel of the literal Ai, (i.e., it is the ground atom Ai, if Ai is a positive literal,
and ¬Ai, if Ai is negative) and αbody = min(αA1

, . . . , αAn).

Let BP be the Herbrand base of the program P, and let F(BP) denote the
set of all fuzzy sets over BP. The consequence transformations DTP : F(BP)→
F(BP) and NTP : F(BP)→ F(BP) are defined as

DTP(X) = (∪RA∈ground(P){(A,αA)}) ∪ X (1)

and
NTP(X) = {(A,αA)} ∪ X, (2)

where RA : (A ← A1, . . . , An;β; I) ∈ ground(P), (|Ai|, αAi
) ∈ X, 1 ≤ i ≤ n;

αA = max (0,min {γ | I(αbody, γ) ≥ β}) . |Ai| denotes the kernel of the literal
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Ai, (i.e., it is the ground atom Ai, if Ai is a positive literal, and ¬Ai, if Ai is
negative) and αbody = min(αA1

, . . . , αAn).

In [1] it is proved that starting from the set of facts, both DTP and NTP
have fixed points which are the least fixed points in the case of positive P.
These fixed points are denoted by lfp(DTP) and lfp(NTP). It was also proved,
that lfp(DTP) and lfp(NTP) are models of P, so we could define lfp(DTP) as
the deterministic semantics, and lfp(NTP) as the nondeterministic semantics
of fDATALOG programs. For a function- and negation-free fDATALOG, the
two semantics are the same, but they are different if the program has any
negation. In this case the set lfp(DTP) is not always a minimal model, but
the nondeterministic semantics – lfp(NTP) – is minimal under certain condi-
tions. These conditions are referred to as stratification. Stratification gives an
evaluating sequence in which the negative literals are evaluated first [2].

To compute the level of rule-heads, we need the concept of the uncertainty-
level function, which is:

f(I, α, β) = min({γ | I(α, γ) ≥ β}).

According to this function the level of a rule-head is: αhead= f(I, αbody, β).
In the former papers [1, 2] several implications were detailed (the operators

treated in [17]), and the conditions of the existence of an uncertainty-level
function was examined for all these operators. For intuitionistic cases three of
them is extended in this paper. They are the following:

Gödel IG(α, γ) =

{
1 α ≤ γ
γ otherwise f(IG, α, β) = min(α,β)

Lukasiewicz IL(α, γ) =

{
1 α ≤ γ

1− α+ γ otherwise f(IL, α, β) = max(0, α+ β− 1)

Kleene-Dienes IK(α, γ) = max(1− α, γ) f(IK, α, β) =

{
0 α+ β ≤ 1
β α+ β > 1
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Example 1 Let us consider the next program:

(p(a), 0.8).

(r(b), 0.6).

s(x) ← q(x, y); 0.7; IL.

q(x, y) ← p(x), r(y); 0.7; IG.

q(x, y) ← ¬q(y, x); 0.9; IK.

As the program has a negation, so according to the stratification the right
order of rule-evaluation is 2.,3,.1. Then

lfp(NTP) =

{(p(a), 0.8); (r(b), 0.6); (q(a, b), 0.6);

(q(b, a), 0.9); (s(a), 0.3); (s(b), 0.6)}.

2.2 Multivalued extensions of fuzzy Datalog

In fuzzy set theory the membership of an element in a fuzzy set is a single value
between zero and one, and the degree of non-membership is automatically just
the complement to 1 of the membership degree. However a human being who
expresses the degree of membership of a given element in a fuzzy set, very often
does not express a corresponding degree of non-membership as its complement.
That is, there may be some hesitation degree. This illuminates a well-known
psychological fact that linguistic negation does not always correspond to logical
negation. Because of this observation, as a generalization of fuzzy sets, the
concept of intuitionistic fuzzy sets was introduced by Atanassov in 1983 [9, 11].
In the next paragraphs some possible multivalued extensions will be discussed.

2.2.1 Intuitionistic and interval-valued extensions of fuzzy Datalog

While in fuzzy logic the uncertainty is represented by a single value (µ), in
intuitionistic-(IFS) and interval-valued (IVS) fuzzy logic it is represented by
two values, ~µ = (µ1, µ2). In the intuitionistic case the two elements must satisfy
the condition µ1 + µ2 ≤ 1, while in the interval-valued case the condition is
µ1 ≤ µ2. In IFS µ1 is the degree of membership and µ2 is the degree of non-
membership, while in IVS the membership degree is between µ1 and µ2. It is
obvious that the relations µ ′1 = µ1, µ ′2 = 1 − µ2 create a mutual connection
between the two systems. (The equivalence of IVS and IFS was stated first in
[10].) In both cases an ordering relation can be defined, and according to this
ordering a lattice is taking shape:
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LF and LV are lattices of IFS and IVS respectively, where:

LF = {(x1, x2) ∈ [0, 1]2 | x1 + x2 ≤ 1},
(x1, x2) ≤F (y1, y2)⇔ x1 ≤ y1, x2 ≥ y2

LV = {(x1, x2) ∈ [0, 1]2 | x1 ≤ x2},
(x1, x2) ≤V (y1, y2)⇔ x1 ≤ y1, x2 ≤ y2.

It can be proved that both LF and LV are complete lattices [16]. In both
cases the extended fDATALOG is defined on these lattices and the necessary
concepts are generalizations of the ones presented above.

Definition 2 The i-extended fDATALOG program (ifDATALOG) is a finite
set of safe ifDATALOG rules (r; ~β;~IFV);

• the i-extended consequence transformations iDTP and iNTP are formally
the same as DTP and NTP in (1), (2) except:
~αA = max(~0FV ,min{~γ |~IFV(~αbody,~γ) ≥FV ~β}) and

• the i-extended uncertainty-level function is
f(~IFV , ~α, ~β) = min({~γ |~IFV(~α,~γ) ≥FV ~β}),

where ~α, ~β, ~γ are elements of LF, LV respectively, ~IFV = ~IF or ~IV is an im-
plication of LF or LV , ~0FV is ~0F = (0, 1) or ~0V = (0, 0) and ≥FV is ≥F or
≥V .

As iDTP and iNTP are inflationary transformations over the complete lat-
tices LF or LV , thus according to [15] they have an inflationary fixed point
denoted by lfp(iDTP) and lfp(iNTP). If P is positive (without negation), then
iDTP = iNTP is a monotone transformation, so lfp(iDTP) = lfp(iNTP) is the
least fixed point.

The fixed point is an interpretation of P, which is a model, if for each

(A← A1, . . . , An; ~β;~IFV) ∈ ground(P), ~IFV(~αbody, ~αA) ≥FV ~β.

It can easily be proved that these fixed points are models of the program.

Proposition 3 lfp(iDTP) and lfp(iNTP) are models of P.

Proof. For T = iDTP or T = iNTP there are two kinds of rules in ground(P):
a/ A← A1, . . . , An; ~β;~IFV ; (A, ~αA) ∈ lfp(T); (|Ai|, ~αAi

) ∈ lfp(T), 1 ≤ i ≤ n.
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b/ A← A1, . . . , An; ~β;~IFV ; ∃i : (|Ai|, ~αAi
) /∈ lfp(T).

In the first case according to the construction of ~αA, ~IFV(~αbody, ~αA) ≥FV ~β

holds, in the second case Ai is not among the facts, so ~αAi
= ~0FV , therefore

~αbody = ~0FV and ~IFV(~αbody, ~αA) = ~1FV ≥FV ~β. That is lfp(T) is a model. �

According to the above statements the next theorem is true:

Theorem 4 Both iDTP and iNTP have a fixed point, denoted by lfp(iDTP)
and lfp(iNTP). If P is positive, then lfp(iDTP) = lfp(iNTP) and this is the
least fixed point. lfp(iDTP) and lfp(iNTP) are models of P; for negation-free
ifDATALOG this is the least model of the program.

As the intuitionistic or interval-valued extension of Datalog has no influ-
ence on the stratification, the propositions detailed in the case of stratified
fDATALOG programs are true in the case of i-extended fuzzy Datalog pro-
grams as well:

Proposition 5 For stratified ifDATALOG program P, there is an evaluation
sequence, in which lfp(iNTP) is a unique minimal model of P.

After defining the syntax and semantics of i-extended fuzzy Datalog, it is
necessary to examine the properties of possible implication operators and the
i-extended uncertainty-level functions. A number of intuitionistic implications
are established in [16, 12, 13] and other papers, four of which are the ex-
tensions of the above three fuzzy implication operators thus chosen for now.
For these operators the suitable interval-valued operators will be decided, and
for both kinds of them we will deduce the uncertainty-level functions. Now
the computations will not be shown, only the starting points and results are
presented.

The coordinates of intuitionistic and interval-valued implication operators
can be determined by each other. The uncertainty-level functions can be com-
puted according to the applied implication. The connection between IF and IV
and the extended versions of uncertainty-level functions are given below:

~IV(~α,~γ) = (IV1, IV2) where

IV1 = IF1(~α
′,~γ ′), ~α ′ = (α1, 1− α2),

IV2 = 1− IF2(~α
′,~γ ′)); ~γ ′ = (γ1, 1− γ2).
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f(~IF, ~α, ~β) = (min({γ1 | IF1(~α,~γ) ≥ β1}),max({γ2 | IF2(~α,~γ) ≤ β2}));

f(~IV , ~α, ~β) = (min({γ1 | IV1(~α,~γ) ≥ β1}),min({γ2 | IV2(~α,~γ) ≥ β2})).

The studied operators and the related uncertainty-level functions are the
following:

Extension of the Kleene-Dienes implication

One possible extension of the Kleene-Dienes implication for IFS is:

~IFK(~α,~γ) = (max(α2, γ1),min(α1, γ2)).

The appropriate computed elements are:

~IVK(~α,~γ) = (max(1− α2, γ1),max(1− α1, γ2));

f1(~IFK, ~α, ~β) =

{
0 α2 ≥ β1
β1 otherwise

, f1(~IVK, ~α, ~β) =

{
0 1− α2 ≥ β1
β1 otherwise

,

f2(~IFK, ~α, ~β) =

{
1 α1 ≤ β2
β2 otherwise

, f2(~IVK, ~α, ~β) =

{
0 (1− α1 ≤ β2
β2 otherwise

.

Extension of the Lukasiewicz implication

One possible extension of the Lukasiewicz implication for IFS is:

~IFL(~α,~γ) = (min(1, α2 + γ1),max(0, α1 + γ2 − 1)).

The appropriate computed elements are:

~IVL(~α,~γ) = (min(1, 1− α2 + γ1),min(1, 1− α1 + γ2));

f1(~IFK, ~α, ~β) = min(1− α2,max(0, β1 − α2)),

f2(~IFK, ~α, ~β) = max(1− α1,min(1, 1− α1 + β2));

f1(~IVK, ~α, ~β) = max(0, α2 + β1 − 1),

f2(~IVK, ~α, ~β) = max(0, α1 + β2 − 1).



60 Á. Achs

Extension of the Gödel implication

There are several alternative extensions of the Gödel implication, now we
present two of them:

~IFG1(~α,~γ)=


(1, 0) α1 ≤ γ1,
(γ1, 0) α1 > γ1, α2 ≥ γ2,
(γ1, γ2) α1 > γ1, α2 < γ2,

~IFG2(~α,~γ) =

{
(1, 0) α1 ≤ γ1, α2 ≥ γ2,
(γ1, γ2) otherwise.

The appropriate computed elements are:

~IVG1(~α,~γ)=


(1, 1) α1 ≤ γ1,
(γ1, 1) α1 > γ1, α2 ≥ γ2,
(γ1, γ2) α1 > γ1, α2 < γ2,

~IVG2(~α,~γ) =

{
(1, 1) α1 ≤ γ1, α2 ≤ γ2,
(γ1, γ2) otherwise,

f1(~IFG1, ~α, ~β) = min(α1, β1), f1(~IFG2, ~α, ~β) = min(α1, β1),

f2(~IFG1, ~α, ~β) =

{
1 α1 ≤ β1,

max(α2, β2) otherwise;
f2(~IFG2, ~α, ~β) = max(α2, β2),

f1(~IVG1, ~α, ~β) = min(α1, β1), f1(~IVG2, ~α, ~β) = min(α1, β1),

f2(~IVG1, ~α, ~β) =

{
0 α1 ≤ β1,

min(α2, β2) otherwise;
f2(~IVG2, ~α, ~β) = min(α2, β2).

An extremely important question is whether the consequences of the pro-
gram remain within the scope of intuitionistic or interval-valued fuzzy logic.
That is if the levels of the body and the rule satisfy the conditions referring to
intuitionistic or interval-valued concepts, does the resulting level of the head
also satisfy these conditions?

Unfortunately for implications other than G2, the resulting degrees do not
fulfill these conditions in all cases. For example in the case of the Kleene-Dienes
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and the Lukasiewicz intuitionistic operators the condition of intuitionism satis-
fies for the levels of the rule-head, only if the sum of the levels of the rule-body
is at least as large as the sum of the levels of the rule:

f1(~IF, ~α, ~β) + f2(~IF, ~α, ~β) ≤ 1 if α1 + α2 ≥ β1 + β2.

That is the solution is inside the scope of IFS, if the level of the rule-body is
less “intuitionistic” than the level of the rule.

In the case of the first Gödel operator the condition is simpler:

f1(~IF, ~α, ~β) + f2(~IF, ~α, ~β) ≤ 1 if α1 > β1,

i.e. the solution is inside the scope of IFS, only if the level of the rule-body is
more certain than the level of the rule.

Maybe in practical cases these conditions are satisfied, but the examination
of this question may be the subject of further research. For now the next
proposition can easily be proved:

Proposition 6 For ~α = (α1, α2), ~β = (β1, β2)

if α1 + α2 ≤ 1, β1 + β2 ≤ 1 then f1(~IFG2, ~α, ~β) + f2(~IFG2, ~α, ~β) ≤ 1;
if α1 ≤ α2, β1 ≤ β2 then f1(~IVG2, ~α, ~β) ≤ f2(~IVG2, ~α, ~β).

A further important question is whether the fixed-point algorithm termi-
nates or not, that is whether or not the consequence transformations reach
the fixed point in finite steps. As P is finite, the fixed point contains only finite
many elements. The only problem may occur with the uncertainty levels of re-
cursive rules. It can be seen that the recursion terminates if ~f(~IFV , ~α, ~β) ≤FV ~α
for each ~α ∈ LFV . As

~f(~IFG2, ~α, ~β) = (min(α1, β1),max(α2, β2)) ≤F ~α

and
~f(~IVG2, ~α, ~β) = (min(α1, β1),min(α2, β2)) ≤V ~α

G2 satisfies this condition, so:

Proposition 7 In the case of G2 operator the fixed-point algorithm termi-
nates.
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2.2.2 Bipolar extension of fuzzy Datalog

The above mentioned problem of extended implications other than G2 and
the results of certain psychological researches have led to the idea of bipo-
lar fuzzy Datalog. The intuitive meaning of intuitionistic degrees is based on
psychological observations, namely on the idea that concepts are more natu-
rally approached through separately envisaging positive and negative instances
[14, 18, 19]. Taking a further step, there are differences not only in the instances
but also in the way of thinking as well. There is a difference between positive
and negative thinking, between deducing positive or negative uncertainty. The
idea of bipolar Datalog is based on the previous observation: we use two kinds
of ordinary fuzzy implications for positive and negative inference, namely we
define a pair of consequence transformations instead of a single one. Since in
the original transformations lower bounds are used with degrees of uncertainty,
therefore starting from IFS facts, the resulting degrees will be lower bounds
of membership and non-membership respectively, instead of the upper bound
for non-membership. However, if each non-membership value µ is transformed
into membership value µ ′ = 1 − µ , then both members of head-level can
be inferred similarly. Therefore, two kinds of bipolar evaluations have been
defined.

Definition 8 The bipolar fDATALOG program (bfDATALOG) is a finite set
of safe bfDATALOG rules (r; (β1, β2); (I1, I2));

• in variant “a” the elements of bipolar consequence transformations:
~bDTP = (DTP1, DTP2) and ~bNTP = (NTP1, NTP2) are the same as DTP

and NTP in (1), (2),

• in variant “b” in DTP2 and NTP2 the level of rule’s head is:
α ′A2 = max(0,min{γ ′2|I2(α

′
body2, γ

′
2) ≥ β ′2}); where

α ′body2 = min(α ′A12
, . . . , α ′AN2

)

According to the two variants the uncertainty-level functions are:

~fa = (fa1, fa2); ~fb = (fb1, fb2);

fa1 = fb1 = min{γ1 | I1(α1, γ1) ≥ β1};
fa2 = min{γ2 | I2(α2, γ2) ≥ β2};
fb2 = 1− min{1− γ2 | I2(1− α2, 1− γ2) ≥ 1− β2}.

It is evident, that applying the transformation µ ′1 = µ1, µ ′2 = 1 − µ2, for
each IFS levels of the program, variant “b” can be applied to IVS degrees as
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well. Contrary to the results of ifDATALOG, the resulting degrees of most
variants of bipolar fuzzy Datalog satisfy the conditions referring to IFS and
IVS respectively. A simple computation can prove the next proposition:

Proposition 9 For ~α = (α1, α2), ~β = (β1, β2) and for (I1, I2) = (IG, IG);
(I1, I2) = (IL, IL); (I1, I2) = (IL, IG); (I1, I2) = (IK, IK); (I1, I2) = (IL, IK)

if α1 + α2 ≤ 1, β1 + β2 ≤ 1 then fa1(I1, ~α, ~β) + fa2(I2, ~α, ~β) ≤ 1
and fb1(I1, ~α, ~β) + fb2(I2, ~α, ~β) ≤ 1;

further on

fa1(IG, ~α, ~β) + fa2(IL, ~α, ~β) ≤ 1; fa1(IG, ~α, ~β) + fa2(IK, ~α, ~β) ≤ 1;

fa1(IK, ~α, ~β) + fa2(IG, ~α, ~β) ≤ 1; fa1(IK, ~α, ~β) + fa2(IL, ~α, ~β) ≤ 1.

Although there are more results for variant “a”, it seems that the model
realised by variant “b” is more useful.

Because of the construction of bipolar consequence transformations the fol-
lowing proposition is evident:

Proposition 10 Both variations of bipolar consequence transformations have
a least fixed point, which are models of P in the following sense:
a/ for each

(A← A1, . . . , An; ~β;~I) ∈ ground(P) I(αbody1, αA1) ≥ β1; I(αbody2, αA2) ≥ β2,

b/ for each

(A← A1, . . . , An; ~β;~I) ∈ ground(P) I(αbody1, αA1) ≥ β1; I(α ′body2, α ′A2) ≥ β ′2.

Proof. The termination of the consequence transformations based on these
three implication operators was proved in the case of fDATALOG, and since
this property does not change in bipolar case, the bipolar consequence trans-
formations terminate as well. �

As the bipolar extension of Datalog has no influence on the stratification,
therefore the propositions detailed in the case of stratified fDATALOG pro-
grams are true in the case of bipolar fuzzy Datalog programs as well:

Proposition 11 For stratified bfDATALOG program P, there is an evaluation
sequence, in which lfp( ~bNTP) is a unique minimal model of P.
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Example 12 Let us consider the next program:

(p(a, b), (0.6, 0.2)). (p(a, c), (0.7, 0.3)).

(p(b, d), (0.5, 0.3)). (p(d, e), (0.8, 0.1)).

q(x, y)← p(x, y); ~I1; (0.75, 0.2).

q(x, y)← p(x, z), q(z, y); ~I2; (0.7, 0.2).

According to it uncertainty levels this program can be evaluated in intuition-
istic or bipolar manner. At first let us see the intuitionistic evaluation.

Let ~I1 =~I2 =~IFG2(~α,~γ) =

{
(1, 0) α1 ≤ γ1, α2 ≥ γ2

(γ1, γ2) otherwise
.

Then f1(~IFG2, ~α, ~β) = min(α1, β1), f2(~IFG2, ~α, ~β) = max(α2, β2).

Without regarding all of the details only three computations will be shown:
from the first rule the uncertainty of q(a, b) and q(b, d) and from the second
one the uncertainty of q(a, d).

The uncertainty of q(a, b) is: (min(0.6, 0.75),max(0.2, 0.2)) = (0.6, 0.2).
Similarly the uncertainty of q(b, d) is (0.5, 0.3).

In the case of q(a, d) its uncertainty can be computed from the appropri-
ate (ground(r);β; I), where r is the second rule, that is ground(r) is q(a, d)←
p(a, b), q(b, d). The uncertainty of the rule-body is minF((0.6, 0.2), (0.5, 0.3)) =

(min(0.6, 0.5),max(0.2, 0.3)) = (0.5, 0.3). According to the uncertainty func-
tion the level of q(b, d) is: (min(0.5, 0.7),max(0.3, 0.2)) = (0.5, 0.3).

Computing the other atoms, the fixed point is:

{(p(a, b), (0.6, 0.2)), (p(a, c), (0.7, 0.3)), (p(b, d), (0.5, 0.3)), (p(d, e), (0.8, 0.1)),

(q(a, b), (0.6, 0.2)), (q(a, c), (0.7, 0.3)), (q(b, d), (0.5, 0.3)), (q(d, e), (0.75, 0.2),

(q(a, d), (0.5, 0.3)), (q(b, e), (0.5, 0.3)), (q(a, e), (0.5, 0.3))}.

Now let the program be evaluated in bipolar manner according to variant “b”
and let ~I1 = (IL, IK),~I2 = (IG, IG), i.e.

f(IG, α, β) = min(α,β),

f(IL, α, β) = max(0, α+ β− 1),

f(IK, α, β) =

{
0 α+ β ≤ 1,
β α+ β > 1.
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Then the first coordinates of the computed uncertainties are:

(q(a, b), (max(0, 0.6+ 0.75− 1) = 0.35, )), (q(a, c), (0.45, )),

(q(b, d), (0.25, )), (q(d, e), (0.55, )),

(q(a, d) : as min(0.6, 0.25) + 0.7 ≤ 1 so (q(a, d), (0, )),

(q(b, e), (0.7, )), (q(a, e), (0.7, )).

The second coordinates are computed after the appropriate transformation
α ′2 = 1− α2. So

(q(a, b), ( , 1−min(1− 0.2, 1− 0.2) = 0.2)), (q(a, c), ( , 0.3)), (q(b, d), ( , 0.3)),

(q(d, e), ( , 0.2), (q(a, d), ( , 0.3)), (q(b, e), ( , 0.3)), (q(a, e), ( , 0.3)).

So the fixed point is:

{(p(a, b), (0.6, 0.2)), (p(a, c), (0.7, 0.3)), (p(b, d), (0.5, 0.3)),

(p(d, e), (0.8, 0.1)), (q(a, b), (0.35, 0.2)), (q(a, c), (0.45, 0.3)),

(q(b, d), (0.25, 0.3)), (q(d, e), (0.55, 0.2), (q(a, d), (0, 0.3)),

(q(b, e), (0.7, 0.3)), (q(a, e), (0.7, 0.3))}.

2.3 Evaluation of programs

The above examples show that the fixed point-query – that is the bottom-up
evaluation – may involve many superfluous calculations, because sometimes
we want to give an answer to a concrete question, and we are not interested
in the whole sequence. If a goal is specified together with an fDATALOG (or
ifDATALOG, bfDATALOG) program, it is enough to consider only the rules
and facts necessary to reaching the goal.

Generally by the top down evaluation the goal is evaluated through sub-
queries. This means that all the possible rules whose head can be unified with
the given goal are selected and the atoms of the body are considered as new
sub-goals. This procedure continues until the facts are obtained. The evalua-
tion of a fuzzy Datalog or multivalued Datalog program does not terminate by
obtaining the facts, because we need to determine the uncertainty level of the
goal. The evaluation has a second part; it calculates this level in a bottom-up
manner: starting from the leaves of the evaluating graph, going backward to
the root, and applying the uncertainty-level functions along the suitable path
of this graph, finally we get the uncertainty level of the root.

For a fuzzy Datalog program a goal is a pair (Q;αQ), where Q is an atom,
αQ is the uncertainty level of the atom. Q may contain variables, and its level
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may be known or unknown value. An fDATALOG program enlarged with a
goal is a fuzzy query.

For a multivalued Datalog program the goal is very similar, except instead
of one level, the goal-atom’s belonging level is a pair of levels. An ifDATALOG
or a bfDATALOG program enlarged with a goal is an intuitionistic-, interval-
valued- or bipolar-query. As the evaluating algorithm applies the uncertainty
level function independently of its meaning, therefore this algorithm is suitable
for all discussed type of fuzzy Datalog or extended Datalog.

Now the evaluating algorithm of the queries will not be detailed because
the aim of this paper is to build a knowledge-base system and the evaluation
of a knowledgebase differs from the evaluation of a program. The evaluation
algorithm of multivalued Datalog programs is discussed in [8].

3 Multivalued knowledge-base

As fuzzy Datalog is a special kind of its each multivalued extension, so further
on both fDATALOG and any of above extensions will be called multivalued
Datalog (mDATALOG).

3.1 Background knowledge

The facts and rules of an mDATALOG program can be regarded as any kind
of knowledge, but sometimes we need some other information in order to get
an answer for a query. In this section we give a possible model of background
knowledge. Some kind of synomyms will be defined between the potential
predicates and between the potential constans of the given problem, so it
can be examined in a larger context. More precisely a proximity relation will
be defined between predicates and between constants and these structures of
proximity will serve as a background knowledge.

Definition 13 A multivalued proximity on a domain D is an IFS or IVS val-
ued relation ~RFVD

: D×D→ [~0FV ,~1FV ] which satisfies the following properties:

~RFD
(x, y) = ~µF(x, y) = (µ1, µ2), µ1 + µ2 ≤ 1

~RVD
(x, y) = ~µV(x, y) = (µ1, µ2), 0 ≤ µ1 ≤ µ2 ≤ 1

~RFVD
(x, x) = ~1FV ∀x ∈ D (reflexivity)

~RFVD
(x, y) = ~RFVD

(y, x) ∀x, y ∈ D (symmetry).
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A proximity is similarity if it is transitive, that is

~RFVD
(x, z) ≥ min(~RFVD

(x, y),~RFVD
(y, z)) ∀x, y, z ∈ D.

In the case of similarity equivalence classifications can be defined over D al-
lowing to develop simpler or more effective algorithms, but now we deal with
the more general proximity.

In our model the background knowledge is a set of proximity sets.

Definition 14 Let d ∈ D any element of domain D. The proximity set of d
is an IFS or IVS subset over D:

RFVd
= {(d1,~λFV1

), (d2,~λFV2
), . . . , (dn,~λFVn)},

where di ∈ D and ~RFVD
(d, di) = ~λFVi

for i = 1,. . . , n.

Based on proximities a background knowledge can be constructed which
signify some information about the proximity of terms and predicate symbols.

Definition 15 Let G be any set of ground terms and S any set of predicate
symbols. Let RGFV and RSFV be any proximity over G and S respectively. The
background knowledge is:

Bk = {RGFVt | t ∈ G} ∪ {RSFVp | p ∈ S}

3.2 Computing of uncertainties

So far two steps was made on the way leading to the concept of multival-
ued knowledge-base: the concept of a multivalued Datalog program and the
concept of background knowledge was defined. Now the question is: how can
we connect this program with the background knowledge? How can we de-
duce to the “synonyms”? For example if (r(a), (0.8, 0.1)) is an IFS fact and
RSF(r, s) = (0.6, 0.3), RGF(a, b) = (0.7, 0.2) then what is the uncertainty of
r(b), s(a) or s(b)?

To solve this problem a new extended uncertainty function will be intro-
duced. According to this function the uncertainty levels of synonyms can be
computed from the levels of original fact and from the proximity values of ac-
tual predicates and its arguments. It is expectable that in the case of identity
the level must be unchanged, but in other cases it is to be less or equal then
the original level or then the proximity values. Furthermore we require this
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function to be monotonically increasing. This function will be ordered to each
atom of a program.

Let p be a predicate symbol with n arguments, then p/n is called the functor
of the atom characterized by this predicate symbol.

Definition 16 A kb-extended uncertainty function of p/n is:

~ϕp(~α,~λ, ~λ1, . . . , ~λn) : (~0FV ,~1FV ]n+2 → [~0FV ,~1FV ]

where

~ϕp(~α,~λ, ~λ1, . . . , ~λn) ≤ min(~α,~λ, ~λ1, . . . , ~λn),

~ϕp(~α,~1FV ,~1FV , . . . ,~1FV) = ~α

and ~ϕp(~α,~λ, ~λ1, . . . , ~λn) is monoton increasing in each argument.

It is worth to mention that any triangular norm is suitable for kb-extended
uncertainty function, for example

~ϕp1
(~α,~λ, ~λ1, . . . , ~λn) = min(~α,~λ, ~λ1, . . . , ~λn),

~ϕp2
(~α,~λ, ~λ1, . . . , ~λn) = min(~α,~λ, ~λ1 · · · ~λn),

where the product is:
(µ1, µ2) · (λ1, λ2) = (µ1 · λ1, µ2 · λ2),

are kb-extended uncertainty functions, but

~ϕp3
(~α,~λ, ~λ1, . . . , ~λn) = ~α ·~λ · ~λ1 · · · ~λn

is a kb-extended uncertainty function only in the interval valued case.

Example 17 Let (r(a), (0.8, 0.1)) be an IFS fact and RSF(r, s) = (0.6, 0.3),

RGF(a, b) = (0.7, 0.2) and ~ϕr(~α,~λ, ~λ1) = min(~α,~λ, ~λ1) then the uncertainty
levels of r(b), s(a) and s(b) are:

(r(b), (min(0.8, 1, 0.7),max(0.1, 0, 0.2))) = (r(b), (0.7, 0.2)),

(s(a), (min(0.8, 0.6, 1),max(0.1, 0.3, 0))) = (s(a), (0.6, 0.3)),

(s(b), (min(0.8, 0.6, 0.7),max(0.1, 0.3, 0.2))) = (s(b), (0.6, 0.3)).

We have to order kb-extended uncertainty functions to each predicate of the
program. The set of these functions will be the function-set of the program.

Definition 18 Let P be a multivalued Datalog program, and FP be the set of
the program’s functors. The function-set of P is:

ΦP = {~ϕp(~α,~λ, ~λ1, . . . , ~λn) | ∀ p/n ∈ FP.}
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3.3 Connecting algorithm

Let P be a multivalued Datalog program, Bk be any background knowledge
and ΦP be the function-set of P. The deducing mechanism consist of two
alternating part: starting from the fact we determine their “synonyms”, then
applying the suitable rules another facts are derived, then their “synonyms”
are derived and again the rules are applied, etc. To define it in a precise manner
the concept of modified consecution transformation will be introduced.

The original consequence transformation is defined over the set of all mul-
tivalued sets of P’s Herbrand base, that is over F(BP). To define the modified
transformation’s domain, let us extend P’s Herbrand universe with all possi-
ble ground terms occurring in background knowledge: this way, we obtain the
modified Herbrand universe modHP. Let the modified Herbrand base modBP
be the set of all possible ground atoms whose predicate symbols occur in P∪Bk
and whose arguments are elements of modHP. This leads to

Definition 19 The modified consequence transformation

modNTP : FV(modBP)→ FV(modBP)

is defined as

modNTP(X)= {(q(s1, . . . , sn), ~ϕp( ~αp,~λq,~λs1 , . . . ,
~λsn) |

(q,~λq) ∈ RSFVp ;

(si,~λsi) ∈ RGti , 1 ≤ i ≤ n} ∪ X,

where

(p(t1, . . . , tn)← A1, . . . , Ak;~I; ~β) ∈ ground(P),

( |Ai|, αAi
) ∈ X, 1 ≤ i ≤ k, (|Ai| is the kernel of Ai)

and ~αp is computed according to the actual extension of (1).

It is obvious that this transformation is inflationary over FV(modBP) and
it is monotone if P is positive.
(A transformation T over a lattice L is inflationary if X ≤ T(X) ∀X ∈ L. T is
monotone if T(X) ≤ T(Y) if X ≤ Y.)

According to [15] an inflationary transformation over a complete lattice has
a fixed point moreover a monotone transformation has a least fixed point, so

Proposition 20 The modified consequence transformation modNTP has a
fixed point. If P is positive, then this is the least fixed point.
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It can be shown that this fixed point is a model of P, but lfp(NTP) ⊆
lfp(modNTP), so it is not a minimal model.

As the modifying of original transformation that is the modifying algorithm
has no effect on the order of rules, therefore it does not change the stratifica-
tion. Therefore we can state

Proposition 21 In the case of stratified program P, modNTP has least fixed
point as well.

Now we have all components together to define the concept of a multivalued
knowledge-base. But before doing it, it is worth mentioning that the above
modified consequence transformation is not the unique way to connect the
background knowledge with the deduction mechanism, there could be other
possibilities as well.

Definition 22 A multivalued knowledge-base (mKB) is a quadruple

mKB = (Bk, P,ΦP, cA),

where Bk is a background knowledge, P is a multivalued Datalog program, ΦP
is a function-set of P and cA is any connecting algorithm.

The result of the connected and evaluated program is called the consequence
of the knowledge-base, denoted by

C(Bk, P,ΦP, cA).

So in our case C(Bk, P,ΦP, cA) = lfp(modNTP).

Example 23 Let the IVS valued mDATALOG program and the background
knowledge be as follows

lo(x, y) ← gc(y),mu(x); (0.7, 0.9);~IVG.

(fv(V), (0.85, 0.9).

(mf(M), (0.7, 0.8).

B V M
B (1, 1) (0.8, 0.9)

V (0.8, 0.9) (1, 1)

M (1, 1)
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lo li gc fv mu mf
lo (1, 1) (0.7, 0.9)

li (0.7, 0.9) (1, 1)

gc (1, 1) (0.8, 0.9)

fv (0.8, 0.9) (1, 1)

mu (1, 1) (0.6, 0.7)

mf (0.6, 0.7) (1, 1)

According to the connecting algorithm, it is enough to consider only the ex-
tended uncertainty functions of head-predicates. Let these functions be as fol-
lows:

~ϕlo(~α,~λ, ~λ1, ~λ2) := min(~α,~λ, ~λ1 · ~λ2),
~ϕfv(~α,~λ, ~λ1) := min(~α,~λ, ~λ1),

~ϕmf(~α,~λ, ~λ1) := ~α ·~λ · ~λ1.

The modified consequence transformation takes shape in the following steps:

X0 = {(fv(V), (0.85, 0.9)), (mf(M), (0.7, 0.8))}

⇓ (according to the proximity)

X1 = modNTP(X0) = X0∪
{(gc(V), ~ϕfv((0.85, 0.9), (0.8, 0.9), (1, 1)) =

(min(0.85, 0.8, 1),min(0.9, 0.9, 1)) = (0.8, 0.9)),

(fv(B), ~ϕfv((0.85, 0.9), (1, 1), (0.8, 0.9)) = (0.8, 0.9)),

(gc(B), ~ϕfv((0.85, 0.9), (0.8, 0.9), (0.8, 0.9)) = (0.8, 0.9)),

(mu(M), ~ϕmf((0.7, 0.8), (0.6, 0.7), (1, 1)) =

(0.7 · 0.6 · 1, 0.8 · 0.7 · 1) = (0.42, 0.56))}

⇓ (applying the rules)

lo(M,V) ← gc(V),mu(M); (0.7, 0.9);~IVG.

lo(M,B) ← gc(B),mu(M); (0.7, 0.9);~IVG.

here : fV(~IVG, ~α, ~β) = min(~αbody, ~β), so

X2 = modNTP(X1) = X1∪
{(lo(M,V), (0.42, 0.56)), (lo(M,V), (0.42, 0.56))}
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⇓ (according to the proximity)

X3 = modNTP(X2) = X2∪
{(li(M,V), (min(0.42, 0.7, 1 · 1),min(0.56, 0.9, 1 · 1))),
(li(M,B), (min(0.42, 0.7, 1 · 1),min(0.56, 0.9, 1 · 1)))}∪
{(li(M,V), (min(0.42, 0.7, 0.64),min(0.56, 0.9, 0.81))),

(li(M,B), (min(0.42, 0.7, 0.64),min(0.56, 0.9, 0.81)))}

X3 is a fixed point, so the consequence of the knowledge-base is:

C(Bk, P,ΦP, cA) =

{(fv(V), (0.85, 0.9)), (mf(M), (0.7, 0.8)),

(gc(V), (0.8, 0.9)), (fv(B), (0.8, 0.9)),

(gc(B), (0.8, 0.9)), (mu(M), (0.42, 0.56)),

(lo(M,V), (0.42, 0.56)), (lo(M,V), (0.42, 0.56))

(li(M,V), (0.42, 0.56)), (li(M,B), (0.42, 0.56))}

To illustrate our discussion with some realistic content, in the above exam-
ple the knowledge-base could have the following interpretation. Let us suppose
that music listeners “generally” (level between 0.7, 0.9) are fond of the great-
est composers. Assume furthermore that Mary is a “rather devoted” (level be-
tween 0.7, 0.8) fan of classical music (mf), and Vivaldi is “generally accepted”
(level between 0.85, 0.9) as a “great composer”. It is also widely accepted that
the music of Vivaldi and Bach are fairly “similar”, being related in overall
structure and style. On the basis of the above information, how strongly state
that Mary likes Bach? To continue with this idea, next we can assume that an
internet agent wants to suggest a good CD for Mary, based on her interests
revealed through her actions at an internet site. A multivalued knowledge-base
could help the agent to get a good answer. As some of the readers may well
know, similar mechanisms – but possibly based on entirely different modelling
paradigms – are in place in prominent websites such as Amazon and others.

4 Evaluation strategies

As the above example shows (especially in the case of enlarging the program
with other facts and rules), the fixed point-query may involve many superfluous
calculations, because sometimes we want to give an answer for a concrete
question, and we are not interested in the whole sequence.
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If a goal (query) is specified together with the multivalued knowledge-base,
then it is enough to consider only the rules and facts being necessary to reach
the goal. In this section we deal with a possible evaluation of knowledge-base,
which is a combination of top-down and bottom-up evaluation.

A goal is a pair (q(t1, t2, . . . tn), ~α), where (q(t1, t2, . . . tn) is an atom, ~α is
the fuzzy, the intuitionistic, the interval-valued or the bipolar level of the atom.
q may contain variables, and its levels may be known or unknown values.

According to the top down evaluation a goal is evaluated through sub-
queries. This means that there are selected all possible rules, whose head can
be unified with the given goal, and the atoms of the body are considered as
new sub-goals. This procedure continues until the facts are obtained.

The top-down evaluation of a multivalued Datalog program does not ter-
minate by obtaining the facts, because we need to determine the uncertainty
levels of the goal. The algorithm given in [5, 8] calculates this level in a bottom-
up manner: starting from the leaves of the evaluating graph, going backward
to the root, and applying the uncertainty-level functions along the suitable
path of this graph, finally we get the uncertainty level of the root.

In the case of knowledge-base, we rely on the bottom-up evaluation, but the
selection of required starting facts takes place in a top-down fashion. Since only
the required starting facts are sought, in the top-down part of the evaluation
there is no need for the uncertainty levels. Hence, we search only among the
ordinary facts and rules. To do this, we need the concept of substitution and
unification which are given for example in [8, 15, 21], etc.

But now sometime we also need other kinds of substitutions: to substitute
some predicate p or term t for their proximity sets Rp and Rt, and to substitute
some proximity sets for their members.

Next, for the sake of simpler terminology, we mean by goal, rules and facts
these concepts without uncertainty levels. An AND/OR tree arises during the
evaluation, this is the searching tree. Its root is the goal; its leaves are either
YES or NO. The parent nodes of YES are the required starting facts. This
tree is build up by alternating proximity-based and rule-based unification.

The proximity-based unification unifies the predicate symbols of sub-goals
by the members of its proximity set, except the first and last unification. The
first proximity-based unification unifies the ground terms of the goal with
their proximity sets, and the last one unifies the proximity sets among the
parameters of resulting facts with their members.

The rule-based unification unifies the sub-goals with the head of suitable
rules, and continues the evaluating by the bodies of these rules. During this
unification the proximity sets of terms are considered as ordinary constants,
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and a constant can be unify with its proximity set. The searching graph ac-
cording to its depth is build up in the following way:

If the goal is on depth 0, then every successor of any node on depth 3k+2(k =

0, 1, . . .) is in AND connection, the others are in OR connection. In detail:
The successors of a goal q(t1, t2, . . . tn) will be all possible q ′(t ′1, t

′
2, . . . , t

′
n),

where q ′ ∈ Rq; t ′i = ti if ti is some variable and t ′i = Rti if ti is a ground term.
If the atom p(t1, t2, . . . tn) is in depth 3k(k = 1, 2, . . .), then the successor

nodes be all possible p ′(t1, t2, . . . tn), where p ′ ∈ Rp.
If the atom L is in depth 3k+ 1(k = 1, 2, . . .), then the successor nodes will

be the bodies of suitable unified rules, or the unified facts, if L is unifiable
with any fact of the program, or NO, if there is not any unifiable rule or fact.
That is, if the head of rule M←M1, . . . ,Mn, (n > 0) is unifiable with L, then
the successor of L be M1θ, . . . ,Mnθ, where θ is the most general unification
of L and M.

If n = 0, that is in the program there is any fact with the predicate symbol
of L, then the successors be the unified facts. If L = p(t1, t2, . . . , tn) and in the
program there is any fact with predicate symbol p, then the successor nodes
be all possible p(t ′1, t

′
2, . . . , t

′
n), where t ′i ∈ Rti if ti = Rti or t ′i = tiθ, if ti is a

variable, and θ is a suitable unification.
According the previous paragraph, there are three kinds of nodes in depth

3k + 2(k = 1, 2, . . .): a unified body of a rule; a unified fact with ordinary
ground term arguments; or the symbol NO.

In the first case the successors are the members of the body. They are in
AND connection, which is not important in our context, but maybe important
for possible future development. If the body has only one literal, then the
length of evaluating path would be reduced to one, but it would “damage”
the view of homogeneous treatment. In the second case the successors are
the symbol YES or NO, depending on whether the unified fact is among the
ground atoms of the program. The NO-node has not successor.

From the construction of searching graph, we conclude

Proposition 24 Let X0 be the set of ground facts being in parent-nodes of
symbols YES. Starting from X0, the fixed point of mNTP contains the answer
for the query.

From the viewpoint of the query, this fixed point may contain more su-
perfluous ground atom, but generally it is smaller then the consequence of
knowledge-base. More reduction of the number of superfluous resulting facts
is the work of a possible further development.
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Example 25 Let us consider the knowledge-base of example 23. (Now it is
enough to consider only the program and the background knowledge.)
Let the goal be:

a/ li(M,B).
b/ li(M,x), where x is a variable.

Then the searching graphs are:

According to the above construction, the searching algorithm is the follow-
ing alternation of proximity-based and rule-based unification.

Algorithm

procedure evaluation(g(t)) /* g(t) is the goal */
Heads := {the heads of the program’s rules}
Facts := {the facts of the program}
Resulting Facts := ∅ /* the set of resulting starting facts */
for all t ∈ t do

if is variable(t) then s := t

else s := St /* St is the proximity set of t */
end if

end for

Nodes := {g(s)} /* Nodes is the set of evaluable nodes,
s is the vector of elements s
in the original order */
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New nodes := ∅ /* the successor nodes of Nodes */
while not empty(Nodes) do
p(t) := element(Nodes)
Spnodes := ∅ /* the successor nodes of p(t) */
proximity evaluation(p(t),Spnodes)
New nodes := New nodes ∪ Spnodes
Nodes := Nodes – {p(t)}

end while
Nodes := New nodes
New nodes := ∅
while not empty(Nodes) do
p(t) := element(Nodes)
Spnodes := ∅ /* the successor nodes of p(t) */
rule evaluation(p(t),Spnodes)
New nodes := New nodes ∪ Spnodes
Nodes := Nodes – {p(t)}

end while
return Resulting Facts

end procedure

procedure proximity evaluation(p(t),Spnodes)
for all q ∈ Sp do /* Sp is the proximity set of p */

Spnodes := Spnodes ∪ {q(t)}
end for

end procedure

procedure rule evaluation(p(t),Spnodes)
for all p(v) ∈ Heads do

if is unifiable(p(t),p(v)) then
Spnodes := Spnodes ∪

{unified predicates of the body belonging to p(vθ)}
/* θ is the suitable unifier */

end if
end for
for all p(v) ∈ Facts do

if is unifiable(p(t),p(v)) then
for all St ∈ vθ do /* θ is the suitable unifier */

if is variable(St) then
t := Stτ /* τ is the suitable unifier */
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else if is proximity set(St) then
t := element(St)
end if

end for
end if
for all possible t do

/* t is the vector of elements t in the right order */
if p(t) ∈ Facts then

Resulting Facts := Resulting Facts ∪ {p(t)}
end if

end for
end for

end procedure

This algorithm can be applied for stratified multivalued Datalog too by
determining the successor of a rule-body without negation.

5 Conclusions

In this paper we have presented a model of handling uncertain information by
defining the multivalued knowledge-base as a quadruple of background knowl-
edge, a deduction mechanism, a decoding set and a modifying algorithm which
connects the background knowledge to the deduction mechanism. We also have
presented a possible evaluation strategy. To improve upon this strategy and/or
the modifying algorithm and/or the structure of background knowledge will
be the subject of further investigations. An efficient multivalued knowledge
base could be the basis of decisions based on uncertain information, or would
be a possible method for handling argumentation or negotiation of agents.
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[5] Á. Achs, Computed answer from uncertain knowledge: A model for han-
dling uncertain information, Comput. Inform., 26, 1 (2007) 298–306. ⇒
73
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Abstract. Virtual memory of computers is usually implemented by de-
mand paging. For some page replacement algorithms the number of page
faults may increase as the number of page frames increases. Belady, Nel-
son and Shedler [5] constructed reference strings for which page replace-
ment algorithm FIFO [10, 13, 36, 40] produces near twice more page
faults in a larger memory than in a smaller one. They formulated the
conjecture that 2 is a general bound. We prove that this ratio can be
arbitrarily large.

1 Introduction

Let us consider a computer with two-level virtual memory [12, 26, 38]. Physical
and secondary memory are divided into equal-sized blocks called frames. The
processes reside in secondary memory and are broken into fixed-sized blocks
called pages (the sizes of the frames and pages are the same). The run of the
processes is described by reference strings.

According to the pure demand paging the execution of a process starts
with empty physical memory (in the following simply memory) and a page is
brought into the memory only when it is necessary. If a new page is demanded
when the memory is full, the page replacement algorithm [38] chooses a page
being in memory to be replaced by the demanded one.
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We use the formal model proposed by P. Denning [12]. Let m, M, n, and
p be positive integers (1 ≤ m ≤ M ≤ n < ∞), k a nonnegative integer,
A = {a1, a2, . . . , an} a finite alphabet, Ak the set of k-length words and A∗

be the set of finite words over A, where n is the number of pages, m is the
number of frames in the small and M is the number of frames in the large
memory, A is the set of pages.

Page replacement algorithms [38] are handled as automata having a memory
of size m (or M), set of input signals X = A, set of output signals Y = A∪ {ε}

and processing the sequence of input symbols R = (r1, r2, . . . , rp) or R =

(r1, r2, . . . ). Memory state St (t = 1, 2, . . .) is defined as a set of symbols
stored in memory at the given moment t (after the processing of reference rt).
Any page replacement algorithm starts with an empty memory that is S0 = {}.
A concrete page replacement algorithm P is defined as a triple P = (QP, q0, gP),
where QP is the set of control states, q0 ∈ QP is the initial control state and gP

is the transition function determining the new memory state S ′, new control
state q ′ and output symbol y using the old memory state S, old control state
q and input symbol x.

We consider three page replacement algorithms: FIFO (First In First Out)
[10, 13, 36, 40], LRU (Least Recently Used) [8, 10, 19, 26, 37] and MIN (Min-
imal) [1, 2, 5, 28, 29, 32, 34].

FIFO is defined by q0 = () and

gFIFO(S, q, x) =


(S, q, ε), if x ∈ S,
(S ∪ {x}, q ′, ε), if x /∈ S and |S| < m,

(S ∩ {y1} ∪ {x}, q", y1), if x /∈ S and |S| = m,

where q = (y1, y2, . . . , yk), q ′ = (y1, y2, . . . , yk, x), and q ′′ = (y2, y3, . . . ,

ym, x).
LRU replaces the least recently used page of the memory, MIN replaces the

page having maximal distance up to its next occurrence in the reference string.
The number of page faults (number of changes of the memory states) is

denoted by fP(R,m). If M > m and fP(R,M) > fP(R,m), then we have
an anomaly and the ratio fP(R,M)/fP(R,m) is called anomaly ratio. The
first anomaly was observed in the practice [4, 5, 34] and is called Belady’s
anomaly [28, 35]. Later other examples of unexpected events were described
[6, 9, 14, 17, 18, 20, 21, 22, 23, 25, 27, 31, 33].

Stack algorithms [28, 30, 39] do not suffer from anomaly.
Mihnovskiy and Shor [24] and Gecsei et al. [15] proved independently that

MIN guarantees the minimal number of page faults at a fixed size of the
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memory.
Arató [3] and Benczúr et al. [7] proved that LRU is optimal in statistical

sense among the algorithms having no concrete information on the continua-
tion of the reference string.

A possible measure of the efficiency EP(R,m) of P is called paging rate
and is defined by fP(R,m)/p for finite R = (r1, r2, . . . , rp) and by

EP(R,m) = lim inf
k→∞ fP(Rk,m)

k

for an infinite reference string R, where Rk = (r1, r2, . . . , rk).

Let 1 ≤ m < n and C = (1, 2, . . . , n)∗ be an infinite cyclical reference string.
Then the paging rates of FIFO and MIN are given in [16] EFIFO(C,m) = 1

and EMIN(C,m) = (n−m)/(n− 1).

2 Classical example and results

If we execute the reference string R = (1,2,3,4,1,2,5,1,2,3,4,5) [5] having 3
frames in the memory (for the simplicity natural numbers are used to de-
note the pages), then FIFO results the control state sequence q0 = (), q1 =

(1), q2 = (1, 2), q3 = (1, 2, 3), q4 = (2, 3, 4), q5 = (3, 4, 1), q6 = (4, 1, 2), q7 =

(1, 2, 5), q8 = (1, 2, 5), q9 = (1, 2, 5), q10 = (2, 5, 3), q11 = (5, 3, 4), q12 =

(5, 3, 4) and 9 page faults occurred.
The execution of R using 4 frames will end in the control state (2,3,4,5) and

10 page faults occurred, so fFIFO(R,M)/fFIFO(R,m) = 10/9.
Belady, Nelson and Shedler [5] gave a necessary and sufficient condition for

the existence of anomaly and constructed reference strings resulting anomaly
ratio which is close to 2.

Theorem 1 [5] Let m and M be positive integers (1 ≤ m < M) and let A
be a finite alphabet of cardinality at least M+ 1. Then there exists a reference
string R ∈ A∗ which produces an anomaly if and only if M < 2m− 1.

Theorem 2 [5] If m and M are positive integers satisfying the relations m <

M < 2m − 1, then for sufficiently large p there exists a reference string R =

(r1, r2, . . . , rp) resulting anomaly ratio fFIFO(R,M)/fFIFO(R,m) arbitrarily
close to 2.
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Belady, Nelson and Shedler [5] formulated the following conjecture.

Conjecture [5] If m and M are positive integers and R is a reference string,
then fFIFO(R,M)/fFIFO(R,m) ≤ 2.

3 Disprove of the conjecture

Let m = 5, M = 6, n = 7, k ≥ 1 and R = UVk, where U = (1,2,3,4,5,6,7,1,2,
4,5,6,7,3,1,2,4,5,7,3,6,2,1,4,7,3,6,2,5,7,3,6,2,5) and V = (1, 2, 3, 4, 5, 6, 7)3.

Now execution of U using m frames results the control state (7,3,6,2,5) and
29 page faults. After this each execution of V results 7 new faults and the
same control state. Execution of U using M frames results the control state
(2,3,4,5,6,7) and 14 page faults. After this each execution of V results 21 new
page fault and the same control state.

Choosing k = 7 we get an anomaly ratio (14+7×21)/(29+7×7) = 161/78 >

2. If the number of repetitions of V grows, then the anomaly ratio tends to 3.

4 Anomaly is unbounded

We start with a well-known assertion of the number theory. Let [a]n be the
equivalence class modulo n containing the number a and let Zn be the set of
all equivalence classes modulo n:

[a]n = {a+ kn : k ∈ Z} and Zn = {[a]n : 0 ≤ a ≤ n− 1}.

Lemma 3 [16] If the set c1, c2, . . . , cn is a complete residue system Zn (mod n),
the greatest common divisor of a and n equals 1, then the set {ac1 + d, ac2 +

d, . . . , acn +d} is also a complete residue system (mod n) for arbitrary integer
d.

Let a (mod b) denote the smallest positive representative of the residue class
of numbers congruent with a (mod b).

Lemma 4 Let n be an odd positive integer. Then the elements of the se-
quence W = (w1, w2, . . . , wn) =

(
1 (mod n), 1+(n− 1)/2 (mod n), 1+ 2(n−

1)/2 (mod n), . . . , 1+ (n− 1)(n− 1)/2 (mod n)
)

have the following proper-
ties.
a) They form a complete system of residues (mod n).
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b) If Wk = s1, s2, . . . , sk×n is the concatenation of k copies of W, then any n
neighbouring elements of Wk form a complete residue system (mod n).

c) If j ≥ 1, then sj+n+1 ≡ sj+1 (mod n).

Proof. It is sufficient to use Lemma 3 and some elementary calculations. �

Lemma 5 Let n be an odd number (n ≥ 5), M = n − 1 and m = n − 2.
If the small memory starts with control state (w3, w4, . . . , wn) and the large
memory starts with control state (2, 3, . . . , n), then the reference string R =

(1, 2, . . . , n)n−1)/2 results n page faults in the small memory, n(n−1)/2 page
faults in the large memory and the initial control states in both memories.

Proof. This is a consequence of Lemma 4. �

Lemma 6 Let 1 ≤ m < M < n and b1, b2, . . . , bm be arbitrary different
elements of A = {1, 2, . . . ,M + 1}. Then algorithm ANOMALY constructs a
reference string resulting q = (b1, b2, . . . , bm) in the small memory of size m
while the pages are loaded into the large memory of size M in cyclical order
1, 2, . . . , n.

The next algorithm is written in PASCAL-like pseudocode [11].
Construction algorithm ANOMALY(m,M,q,U).

Input : m size of the small memory; M size of the large memory; q = (b1, b2,

. . . , bm) the required control state of the small memory.
Output : U = (u1, u2, . . .) reference string.
Working variables: S actual state of the small memory; t index of the next
reference; A = {1, 2, . . . ,M,M+ 1} the set of pages.

1. for k← 1 to M

2. do uk ← k

3. t←M+ 1

4. i← 0

5. while i < m do
6. if bi+1 ∈ S
7. then while bi+1 ∈ S do
8. ut ← min{k|k ∈ A and k /∈ S}
9. t← t+ 1

10. while b1 ∈ S(m) do
11. uk ← min{k|k ∈ A and k /∈ S and k 6= bi+1}

12. t← t+ 1
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13. j← 1

14. while j < i+ 1 do
15. ut ← bj

16. t← t+ 1

17. j← j+ 1

18. ut ← bi+1

19. t← t+ 1

20. i← i+ 1

Instead of a long proof of correctness of ANOMALY we explain how this
algorithm generates U of the example used to disprove the conjecture. The
input of the algorithm is m = 5, M = 6 and q = (7,3,6,2,5). Lines 1–2 result
the references 1, 2, 3, 4, 5, 6 and control state q = (2,3,4,5,6) in the small
memory. Now line 3 results t = 7, line 4 gives i = 0 and we start the while
cycle in line 5. Since b1 = 7 is missing from the small memory, we add u7 = 7

to U (lines 18–20) changing the control state to q = (3, 4, 5, 6, 7), increment
t and i and return to line 5 where we observe that b2 = 3 is in the memory.
Therefore we continue with the while cycle in line 7 and add the minimal
missing page to the reference string resulting control state (4,5,6,7,1). Since
page 1 replaced b2, we go to the next cycle in lines 10–12 and add the minimal
missing pages differing from b2 = 3 (that is 2, 4, 5, and 6) to U changing the
control state to (1,2,4,5,6). Now this while cycle ends and using lines 13–17
we add 7 then using lines 18–20 add 3 to U ending in control state (4,5,6,7,3).

Now we return to line 5 and using lines 7-9 add 1 to U, then using lines 10–12
add 2, 4 and 5 to U changing the control state to (3,1,2,4,5). Now using lines
14–18 we add 7 and 3, then using lines 19–21 add 6 to U changing the control
state to (4,5,7,3,6). Now lines 5–6 send us to lines 14–18 resulting reference
u22 = 2 and control state (5,7,3,6,2).

We observe in lines 5–6 that b5 is in the memory therefore we add 1 to U
and so remove 2 from the memory. Now we continue U with 4 resulting the
control state (3,6,2,1,4). Finally lines 14–18 add 7, 3, 6 and 2 and lines 19–21
add 5 to U implying the required control state.

Lemma 7 Let n be an odd positive integer (n ≥ 5) and let M = n− 1, m =

n−2. Then there exists a reference string R resulting anomaly ratio arbitrarily
close to (n− 1)/2.

Proof. This assertion is a consequence of Lemma 5 and Lemma 6. �

Main Theorem For any large number L there exist parameters m, M, and
R such that the anomaly ratio fFIFO(R,M)/fFIFO(R,m) > L.
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Proof. Let n be an odd integer satisfying n > 2L + 1 (and n ≥ 5). Then the
parameters m,M and R in Lemma 5 result an anomaly ratio greater than L.

�

5 Summary

If the memory parameters m and M are fixed, then the anomaly is bounded.
We suppose that the maximal anomaly occurs at cyclical reference strings,

similar memory sizes, FIFO-like replacement in the large memory and MIN-
like replacement in the small memory. If so then for fixed odd n our con-
struction results the maximal possible anomaly ratio. We remark that there is
a similar construction for even n resulting anomaly ratio arbitrarily close to
(n− 2)/2.

Acknowledgements
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Abstract. This paper describes visualization of chaotic attractor and
elements of the singularities in 3D space. 3D view of these effects enables
to create a demonstrative projection about relations of chaos generated
by physical circuit, the Chua’s circuit. Via macro views on chaotic at-
tractor is obtained not only visual space illustration of representative
point motion in state space, but also its relation to planes of singularity
elements. Our created program enables view on chaotic attractor both in
2D and 3D space together with plane objects visualization – elements of
singularities.

1 Introduction

The visualization is good idea to show imagines, ideas, design, construction,
realization or effects. It is also one way of verification before realization our
goals. Computer based visualization brings utilization of physical, or simu-
lated electric parameters course graphical interpretation in non-linear circuit
theory together with other fields. From beginning it was used 2D visualization
with possibility of color utilization to be more illustrative or to explain actions
proceeding in non-linear circuits [1, 9, 13, 15]. High-performance or parallel
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computers enable to take advantage of 3D state space axonometry [14]. Ac-
tual available solutions provide high performance visualization suitable for 3D
interactive presentation of processes and effects with support for over million
saturated colors in hi-resolution mode and for use in all graphics-intensive ap-
plications. This paper describes actual possibilities of PC for visualization of
steady states of chaos generating circuit.

2 Methods used for trajectory visualization

In last 24 years there was intensive interest of scientific community to analyse
and applied Chua’s circuit generating chaos. Presentation of trajectories needs
to solve system (1) describing physical Chua’s circuit.

C1(du1/dt) = G(u2 − u1) − g(u1) − I = Q1

C2(du2/dt) = G(u1 − u2) + i = Q2 (1)
L(di/dt) = −u2 − ρi = Q3

where

g(u1) = m2u1 + 1/2(m1 −m0)(|u1 − BP | − |u1 + BP |) +

+1/2(m2 −m1)(|u1 − B0| − |u1 + B0|) (2)

Next we consider control pulse I = 0, the resistance of the inductance ρ = 0.
For parameters (3) in [5] there were found chaotic attractors showed in Fig. 1

in Monge projection.

C1 = 1/9, C2 = 1, L = 0.142857,G = 0.7,

m0 = −0.8,m1 = −0.5,m2 = 5, Bp = 1, B0 = 14 (3)

Computer program was designed in C language by author of [2] and used
for clarifying of place in state space where chaos originates [3]. It is only short
segment of intersection two surfaces related to circuit singularities P+ and
0, or 0 and P−. In despite of explaining with help of tables and 2D presen-
tation was definite, 3D visualization provides faster and lighter illustration of
actions which proceed in specific non-linear circuit. Therefore 3D visualization
is valued as from scientific as from edifying point of view [4].

3 Visualization in 3-dimensional space

Chaos visualizing system was designed for visualization Chua’s attractor in
3D space in real time and it is based on visualizing kernel developed on DCI
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Figure 1: Monge projection of chaotic attractor system (1), for parameters (3)
to plane: a) i− u1, b) i− u2

FEEI TU Košice [6]. An application is implemented in C++ language using
OpenGL graphics library. The application can work with I-V characteristics,
Chua’s attractor trajectory, or limit cycle and it can visualize elements of the
singularity planes. Additionally this visualization depicts representative point
movement and it creates chaotic attractor using two basic modes (continuous
and sequential). This application can be used not only for concrete Chua’s
circuit. It is usable also for Chua’s circuit like structures analyzed in [7, 8].

Chaos visualizing system provides three basic visualizing modes: continu-
ous mode, sequential mode and I-V characteristics visualization mode. System
allows using four projection types (3D u1 − i − u2 projection (see Fig. 5),
2D i − u2 projection, 2D i − u1 projection and 2D u2 − u1 projection) for
better-examined circuit understanding. Settable basic visualizing parameters
for chaotic attractor visualization are: drawing speed, points omission, chaotic
attractor point size, comet length and attractor colour. The combination of
these parameters defines final visualization form of chaotic attractor. In case
of 3D graphic accelerator supported acceleration of graphic interface OpenGL
is drawing of 3D primitives accelerated by graphic card. It enables increasing
performance and using some graphical improvements cannot be used without
acceleration in real time. Second way is use of parallel computational sys-
tem [10, 11] for faster or better visualization.
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3.1 Visualization program utilization

3D visualization of chaotic attractor for parameters (3) is shown in Fig. 2. To
next manipulation with chaotic attractor as 3D object is necessary to fulfill
the following steps:

• Load input file – chaotic attractor. Input file size is above 500 MB,
therefore program enables to choose number of trajectory points, which
is loaded from file and consequently displayed.

• Load I-V characteristics G(u1) and g(u1) from files.
• Set background color for scene displaying and
• Set colors and line-width of I-V characteristics and chaotic attractor.

Figure 2: Chaotic attractor depicted in continuous mode

Views on chaotic attractor from various sides can be obtained by rotation
of camera position horizontally and also vertically around visualized object.
Fig. 2a and b show horizontal camera swing out, while Fig. 2c, d show vertical
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camera swing out to chaotic attractor. In this way top view on observed object
can be obtained. On Fig. 3 are displayed different looks to the same chaotic

Figure 3: Chaotic attractor depicted in sequential mode with comet effect

attractor. It is visualizing in sequential mode with comet effect [12]. The comet
length is adjustable from 512 to 16384 bits. Fig. 2 and also Fig. 3 show that
left and right discs of chaotic attractor are situated in plane. It is possible
to display this plane in the program. Mathematical description of this plane
presented in [3] is outlined by the following equation:

y1 = α11∆u1 + α12∆u2 + α13∆i. (4)

It is available to define in application menu input parameters for appropriate
planes as e.g.: singularity coordinates (i, u1, u2), eigenvectors (α11, α12, α13),
width, length and planes colors. The elements of the singularity planes are
displayed by application using of selected colors. Fig. 4a shows these elements
of the singularities EP+ and EP− representation as parallel planes getting
across singularities P+ and P−. Fig. 4b shows also the third singularity el-
ement 0, called E0. Fig. 4b shows, that plane E0 is not parallel with EP+
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and EP−. Via macro views on chaotic attractor showed in Fig. 2– 4 we ob-
tain not only visual space illustration of representative point motion in state
space, but also its relation to planes of singularity elements. Vertical camera

Figure 4: Visualization of singularity elements in state space: a) EP− and EP+
b) E0, EP− and EP+

swing round with regard to Fig. 4 enables to see such a part of state space,
where chaos arises in Chua’s circuit. It is intersection of two planes EP+ and
E0 or E0 and EP−. This situation is displayed in macro view on Fig. 5a.
Marking of conjunction region of mentioned elements E0 and EP− enables to
obtain micro view to just site of state space, where chaos originates. Website
http://kteem.fei.tuke.sk/guzan/ausi09 contains dynamic versions of some pic-
tures mentioned in this article. Video appears jerky. This is caused by camera
position rotation around object (usually 5◦). Program enables to set angle step
of camera position rotation. It was used when Fig. 5 was generated.

4 Conclusion

The 3D visualization brings new dimensions to the visualization of physical
or electric effects. Visualization of chaotic attractor and elements of the sin-
gularities provides better understanding of representative point movement in
state space, what was still possible only with help of representation in projec-
tion planes. From computer graphics point of view are produced big data-sets.
Possible parallel processing (e.g. on multi-core or multi-computers platform)
shortens computational time. Big-screen display solutions increase quality and
ability of immersion into 3D space. It is possible to use finer integration step for
better quality and more detailed visualization output (continuous trajectory

http://kteem.fei.tuke.sk/guzan/ausi09
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Figure 5: 3D view on intersection of singularity elements EP− and E0 (view
on place of chaos origination in Chua’s circuit)
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displaying) in this case. Generally, there are two important application areas
in physical or electric effects visualization where big-display environments are
used: displaying images at very high resolution in real time exceeding those
of available screens (monitors) and/or graphics cards and providing a larger
field-of-view and better immersion into the explored attractor‘s space. Whole
system enables visualization for user defined Chua‘s attractor where user has
in standard visualizing mode (3D projection) 6 degrees of freedom for motion
in explored attractor‘s space, which mean translation in 3 axis and rotating
around them. It means that system is capable to visualize the Chua’s attrac-
tor from any point and from any angle. Actual available solution provide so
unique big wide-screen high performance visualization solution suitable for 3D
interactive presentation of attractor‘s space. Input devices are standard key-
board and mouse generally, but space mouse or other specialized input device
can be also used.
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ics, TU Košice, January 2006. ⇒94
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[15] V. Špány, L. Pivka, Boundary surfaces in sequential circuits, Internat. J.
Circuit Theory Appl., 18, 4 (1990) 349–360. ⇒90

Received: July 15, 2009 • Revised: February 28, 2010

http://www.radioeng.cz/info/about_journal.php
http://www.worldscinet.com/jcsc/
http://www.aei.tuke.sk/index_en.html
http://www3.interscience.wiley.com/journal/113516028/issue
http://www3.interscience.wiley.com/journal/113516028/issue


Acta Univ. Sapientiae, Informatica, 2, 1 (2010) 99–112

Public-key cryptography in functional

programming context
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Abstract. Cryptography is the science of information and communica-
tion security. Up to now, for efficiency reasons cryptographic algorithm
has been written in an imperative language. But to get acquaintance
with a functional programming language a question arises: functional
programming offers some new for secure communication or not? This ar-
ticle investigates this question giving an overview on some cryptography
algorithms and presents how the RSA encryption in the functional lan-
guage Clean can be implemented and how can be measured the efficiency
of a certain application.

1 Functional programming

Functional programming is based on the lambda-calculus, with its main prin-
ciple developed in 1930, by Alonzo Church and Stephen Cole Kleene. With
lambda-calculus we can define the notion of computable function, and using
the rules defined by lambda-calculus we can express and evaluate any com-
putable function. But in the early development stage of computer science the
computer calculating mechanisms were based on another calculating model,
such as a Turing machine’s. The Turing machine functioning mechanism was
described in 1936 by the mathematician Alan Turing, in the same time as
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lambda calculus. The Turing machine was the base of Neumann’s architecture
computer model and determined the developmental direction of programming
language. In consequence most of the real-world applications was based on
imperative programming language.

Only with the development of software technologies it became possible to
design programming languages based on stable mathematics like functional
programming language and declarative programming language: Lisp (1958),
Prolog (1970), Haskell (1990), Clean (1995) and so on. But the usage of these
languages in the real-world applications is still very little. Some well-known
applications of functional languages are the Yahoo shopping engine and the
telecommunication software design by Ericsson.

A program in a functional programming language consists of a collection of
function definition and an initial expression. So the basic method of computa-
tion is the application of functions to arguments with the goal to evaluate the
initial expression. The basic concepts and the basic elements of a functional
programming language can be defined as follows:

• persistent data structures: data once built never changes
• recursion: primary control structure
• high-order functions: functions that take functions as argument and in

case return function as result.

By contrary to functional programming in the imperative programming style
the main goal is to follow the changes of the states. The basic concepts of an
imperative language are:

• mutable data structures: with assignment statement we can change the
value of some data
• looping: the primary control structure
• first-order programming: we cannot operate with function as first-class

entities.

The Clean programming language, that we are use for implementing the RSA
file encryption scheme is a pure and lazy functional language, with a fast
compiler. Was developed on the University of Nijmegen, Netherlands. The first
version was released in 1995. This language has most of the characteristic that
a functional language must to have, some of them: isn’t allowed the destructive
updates; has the referential transparency property; the basic computation form
is the recursion; we can use high order functions; it is strongly typed; list
comprehension is allowed; polymorphism is allowed too and so on.
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In the real world one of the most known software for cryptography, writ-
ing in functional programming language is Cryptol [3]. It was designed by
Galois Connections Inc. in consultation with expert cryptographers between
2003-2008. As developers say Cryptol is a high-level specification language
for cryptography that means programmers who use Cryptol can focus on the
cryptography itself, and are not attended by machine-level details. In the same
time they can deal with low-level problems, namely it can work with low level
data, such as array of bits. The code written in Cryptol can be converted to
other languages such as Haskell, VHDL and C. It can use with various platform
such as embedded systems, smart cards and FPGAs.

Another well-known software package in this field is the RSA-Haskell, [11],
which was published in 2007, by David Sankel. It is written in Haskell and
as the author says it is a ”collection of command-line cryptography tools and
a cryptography library”. With RSA-Haskell using command-line tools users
can do secure communication: encrypt/decrypt some message, can identify
the sender and authenticate the message. The crypto library is licensed under
the GPL (General Public License), and allowed for users to access some cryp-
tography algorithms to incorporate these in their application. The size of the
RSA-key is 2048 bit, and SHA512 hash algorithm is used in conjunction with
OAEP (Optimal Asymmetric Encryption Padding), [12].

2 Cryptography

In the past Cryptography was the science of secret codes. Today due to the
electronic world the data security is in the center of the attention. This means
that it became more than producing secrete code. The topmost tasks are
privacy, integrity, authentication, and nonrepudiation.

Cryptography algorithms can be classified in two groups such as symmetric-
key cryptography and public-key cryptography according to what kind of keys
are in use in the system: secret or public keys. In the case of symmetric-key
cryptography the processes of encrypting and decrypting are coming to pass
with the same secret key, in contrast to public-key cryptography where the
encrypting are coming to pass with public key, and the decrypting with an
other key, with private key. Besides encryption schemes more other schemes
belong to the public-key cryptography such as digital signatures schemes, au-
thentications schemes, and so on [10]. But on backwards our attention will
focus only on public-key encryption schemes. So, now we will give the formal
definition of the public-key encryption scheme, [4]:
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Definition 1 A public-key encryption scheme with message space M can be
define with three algorithms: PKC = (GEN,ENC,DEC), where

• GEN is the key generation algorithm, which determines in a random
way the public and secret key-pairs: (pk, sk) = GEN(ε), where pk is the
public key and sk is the secret key,
• ENC is the encryption algorithm, which encrypts a message M, produc-

ing the ciphertext: C = ENCpk
(M), where M ∈M,

• DEC is the decryption algorithm, which decrypts the ciphertext C, M =

DECsk
(C).

For the correctness of the system we require that DECsk
(ENCpk

(M)) = M.
For the security of the system the corresponding requirements can not be
claim so easy. One of them is that the public key inversion problem (finding
the secret key for a given public key) must be based on a hard mathematical
problem, in average case of the problem instances. Another requirement is
that the ciphertext inversion problem (finding the encrypted M message for a
given C ciphertext and pk public key) must be hard. But very few problems
we are known that achieves these requirements, thus not surprising that in a
real word application the most of the cryptography systems are based on the
following mathematical problems:

• factoring large integers, for instance the RSA cryptosystem
• computing discrete logarithms, for instance the ElGamal cryptosystem.

For these problems no one knows polynomial time algorithms, moreover these
problems are those scarce problems that are not classify between the P and
NP-complete classes, [10].

Because in our implementation we concern on RSA file encryption scheme,
first we will present the basic RSA encryption scheme, [8]. This scheme consists
in three steps, corresponding to the 3 algorithms specified in the formal defini-
tion of public-key encryption scheme: key generation, encryption, decryption.
The message space is the M = Z∗

m, where m is an integer number, calculated
in the key generation step. The value of m determines the order of magnitude
of the RSA-key.

• Generating the RSA keys consists on the following steps, where φ is the
Euler function, and gcd is the greatest common divisor of the arguments,
[6]:

– generating two big random prime numbers: p, q,
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– calculates the productm = p·q, henceforthm we will call modulus,
– selects randomly e, where 1 ≤ e ≤ φ(m) and gcd (e,φ(m)) = 1,

henceforth e we will call encryption exponent,
– computes d, where: 1 ≤ d ≤ φ(m), d · e = 1 (mod φ(m)), hence-

forth d we will call decryption exponent,
– the public key consist: (e,m),
– the private key consist: (d,m).

• For encryption of M ∈ Z∗
m we do: C = Me (mod m).

• For decryption of C ∈ Z∗
m we do: M = Cd (mod m).

3 Algorithms in Clean

Now we shall present the implementation details of the RSA file encryption.
Firstly we mention that arithmetic with large numbers is quite easy in Clean,

through importing the BigInt library, [5]. Henceforth we give the definition of
this importing as well as the definitions of constants, are used several times in
the system to be realized.

import BigInt
my_one :== toBigInt 1
my_two :== toBigInt 2
my_zero:== toBigInt 0
alph :== toBigInt 256

By the way of implementing RSA file encryption system, several questions
are coming up: to find the modular multiplicative inverse; to perform the
modular exponentiation; to generate big (more than 100 digit) random prime
number; to convert the number from the base p in the base pk and inverse;
to perform the RSA encryption on numbers; do the file I/O task; create a
graphical interface.

In the following sections, one after another we will briefly present how we
are resolved this questions in the Clean programming language.

3.1 Multiplicative inverse

In order to find the multiplicative inverse of an integer a (mod b) we need to
resolve the congruence: a · x1 = 1 (mod b) with the unknown coefficient x1.
This congruence can be solved by using the extended Euclid’s algorithm, [2].
For this we write two functions:
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• an auxiliary function: seuclid, with the role of doing the proper compu-
tation, namely to calculate the coefficient of a,
• the main function meuclid doing the necessary initialization and the

first call of seuclid.

The Clean code that do this is the following:

seuclid :: BigInt BigInt BigInt BigInt->BigInt
seuclid a b x1 x2

|b==my_zero = x2
|otherwise = seuclid b (a rem b) (x2-(a/b)*x1) x1

meuclid :: BigInt BigInt -> BigInt
meuclid a b

#res = seuclid a b my_zero my_one
|res<my_zero = (res+b) rem b
|otherwise = res rem b

3.2 Modular exponentiation

The modular exponentiation calculates the value of xp (mod m) using the fast
exponentiation technique, [9]. For this purpose we write the function, mexp.

The Clean code that do this is the following:

mexp :: BigInt BigInt BigInt-> BigInt
mexp x n m

|n == my_zero = my_one
#x1 = (x*x) rem m
|isOdd n = (x * mexp x1 (n/my_two) m) rem m
= mexp x1 (n/my_two) m

3.3 Random prime number generation

To set the RSA-key we need prime random numbers. For testing if a random
number with the right size is prime or not we use probabilistic primality test
which quickly eliminates the composite numbers. For this test we use the
Miller-Rabin primality test [9].

The formal definition of this test is the following:

Definition 2 Let the odd number q and j such that n − 1 = 2jq. If the odd
number n is prime, then for all numbers x, where gcd (x, n) = 1 one of the
following statements is true:
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• xq = 1 (mod n),
• for one of the i: x2iq = n− 1 (mod n), where 0 ≤ i ≤ j− 1.

For that in the Clean programming language we write the function mfind
which determines the value j and q in the exponent n−1 by calling the sfind
function. To test the second statement of the above definition we write the
subtest function. The validity of the first statement is tested by the main
function millerrabin. For this purpose we calculate the value xq (mod n)

with the modular exponentiation algorithm.
The Clean code that do this is the following:

millerrabin :: BigInt BigInt -> Bool
millerrabin n x

#(q, j) = mfind n
#y = mexp x q n
|y == my_one = True
= subtest n y j

mfind :: BigInt -> (BigInt, BigInt)
mfind n = sfind (n - my_one)my_zero

sfind :: BigInt BigInt -> (BigInt, BigInt)
sfind q k

|isEven q = sfind (q / my_two) (k + my_one)
= (q, k)

subtest :: BigInt BigInt BigInt -> Bool
subtest n y j

|j < my_one = False
|y == (n - my_one) = True
|y == my_one = False
= subtest n ((y * y) rem n) (j - my_one)

For generating random number we use the algorithm of linear congruential
generator [9].

To be certain of that an odd number n is prime, we must have the result
’True’ in the millerrabin function, for more, different x random numbers.
For that we examine the number n if it is odd or it is even, and in the case
it is odd we generate t bit random number and test t times for these x, if the
millerarbin function is ’True’ or not.
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3.4 Base expansion

In the RSA encryption scheme we can encrypt only a single large number. In
RSA file encryption we must to encrypt many bytes. To achieve this we do
a pre-processing on bytes that we want to encrypt. We choose k bytes, that
corresponds to the size of the block that we are encrypt all at once. We see these
bytes as digits in base 256 and we make a conversion from 256 to base 256k

[6]. After that we have a single big number which we encrypt corresponding
the scheme presented in section 2. The Clean function which resolves this
conversion is myconvert1 by the help of auxiliary function subconvert1.

The Clean code that do this is the following:

myconvert1 :: BigInt BigInt BigInt-> [Char]
myconvert1 nr p pk = subconvert1 nr p pk my_one []

subconvert1 :: BigInt BigInt BigInt BigInt [Char] -> [Char]
subconvert1 nr p pk nr1 tomb

| nr1 >= pk = tomb
| otherwise = [(toChar (toInt (nr rem p))) :

(subconvert1 (nr/p) p pk (nr1+my_one) tomb )]

After encryption in the process of decryption we must do the inverse con-
version, so we need an algorithm that makes the conversion from pk to p.

The Clean code that do this is the following:

myconvert :: [Char] BigInt BigInt -> BigInt
myconvert n p pk = subconvert n p pk my_zero my_one

subconvert :: [Char] BigInt BigInt BigInt BigInt -> BigInt
subconvert [] p pk nr exp = my_zero
subconvert [kezd : veg] p pk nr exp

| pk == nr = my_zero
= (toBigInt (toInt kezd)) * exp +

(subconvert veg p pk (nr+my_one) (exp*p) )

3.5 RSA encryption on numbers

To attain the RSA encryption first we generate the private, secret key-pairs,
after that we perform encryption/decryption with this keys. For efficiency rea-
son, but without loss of security we have choose e as a constant: 65537 to be
encryption exponent in the public key pair. This choice is commonly used in



PKC in functional programming context 107

practice to speed up encryption. In contrast, for security issues, to avoid the
small decryption exponent attack, decryption exponent can not be too small.
d must have approximately the same size as modulus m, [7]. These choices de-
termine the encryption and decryption time, so decryption time always will be
much longer than encryption time. Several technics were developed to shorten
the decryption time, one of them is using the Chinese remainder theorem. But
even with these technics RSA encryption/decryption is much slower than the
commonly used symmetric-key encryptions methods.

After that we generate two big prime numbers and calculate their product
m. Now using the multiplicative inverse function we can calculate the private
key d as an inverse of integer e modulo (mod φ(m)).

The Clean code that do this is the following:

privatk :: BigInt BigInt BigInt -> BigInt
privatk e p q

#pq = (p - my_one)*(q - my_one)
|gcd e pq <> my_one = abort "not relative prime"
= meuclid e pq

To encrypt a number x, where 1 < x < (m − 1) and gcd (x,m) = 1 we
can do one modular exponentiation: c = xe (mod m). So the magnitude of
the modulus m determines the magnitude of the number that we can encrypt
at one go, and in the same time basically determines the running time of the
application.

The Clean code that do this is the following:

rsacrypt :: BigInt BigInt BigInt -> BigInt
rsacrypt x e m = mexp x e m

For decryption we do the same computation, the differences consist in the
value of actual parameter, we use the decryption exponent d instead of e.

3.6 File I/O

Because the Clean is a pure functional language the destructive updates are
not admissible, but when we dealt with a file I/O we must to have the pos-
sibility to destructively update the file. In Clean this situation was resolved
by introducing a new type, for which we use the * notation in the type name.
With this type we can restrict the references of some date structure, and when
the reference is unique, the update of date structure is allowed [5]. Using this
technics the file I/O is quite simple in Clean.
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To obtain more security in file encryption, several block cipher technics can
be use. The most common block ciphers are the ECB (electronic codebook),
CBC (cipher-block chaining), CFB (cipher feedback) and OFB (output feed-
back) modes. In our implementation we use the ECB mode, and we use the
same key for every block encryption/decryption.

As long as we want to use the RSA file encryption as a block cipher we
must set k, the size of the blocks. We assume that the plain text is a binary
file so the alphabet size that we are using is 256, corresponding to possible
byte values, thus the size of a block is log256m, where m is the RSA modulus.

Now we present the function filecrypt which has the role: testing if we are
at the end of the plain text file; reading k− 1 bytes from this file; calculating
k2, the number of bytes that were effectively read; converting these bytes from
base pk to base p; encrypting the result; converting the result to base pk+1;
writing in an encrypted file the number k2; writing the k+1 bytes in an output
file, that will be the encrypted file.

The Clean code that do this is the following:

filecrypt :: *File *File (BigInt, BigInt) -> (*File, *File)
filecrypt inf outf (e, n)

#! (atEnd, inf) = fend inf
|atEnd = (inf, outf)
# k = nrblok n alph
# (inf, res) = mread (k-my_one) inf
# (k2, cr) = filecrypt‘ res k e n
# outf = fwritec (toChar k2) outf
# outf = mwrite cr outf
= filecrypt inf outf (e, n)

filecrypt‘ :: [Char] BigInt BigInt BigInt -> (Int, [Char])
filecrypt‘ res k e n

#k2 = length res
#nr = myconvert res alph (toBigInt k2)
#scr = rsacrypt nr e n
#cr = myconvert1 scr alph (k+my_one)
= (k2, cr)

The function mread used in above code has the role to read a given number
of bytes from a file while the function mwrite has the role to write a list of
bytes in a file.
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Figure 1: The graphical interface

3.7 The graphical interface

In Clean using the Object I/O library we can write flexible, platform inde-
pendent programs, with a well designed graphical user interface, [1]. For ob-
taining an easy method to manipulate our input/output, such as generating
public/secret key; showing the key generation time; selecting input/output file;
doing the encryption/decryption; showing the encryption/decrytion time we
design a graphical interface with different dialog items such as button controls,
edit controls, text controls.

Our application graphical interface, for a certain jpg files with 48.9 KB
size, and for 1024 bit key size have the following appearance, where we made
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out the value of public, secret keys (do this only for testing case), the key
generation time for these values in seconds, and the encryption/decryption
times in seconds are given in Fig. 1.

To measure the running time of certain function we got the computer tick,
and determined the difference between two ticks. For this we have the following
built in functions:

getCurrentTick :: !*env -> (!Tick, !*env)
tickDifference :: !Tick !Tick -> Int

To measure the performance of an application we have another possibility
that Clean offers: we can enable Time Profiling option insight in the Clean
environment, which means that after the execution the program will write a
profile file. For our application the generated profile file is given in Fig. 2.

This profile file is overwritten after every program execution and will consist
the real time measurements of each function in seconds, the number of bytes
allocated in the heap by the function an so on.

4 Conclusions

Most of cryptography applications assure security on hardware and software
level too. The main disadvantage using functional programming in cryptog-
raphy is that applications written in functional programming language can
guarantee security principally on software level. This fact constrains the appli-
cability of functional programming language in area of cryptography. Another
reason withdrawal in usage of functional programming in range of security
is that the community of programmers who use functional programming lan-
guage for building their cryptography’s software is relatively small, and the
available documentation is still very scarce.

Our program vulnerability is the usage of linear congruential generator for
generating random number, which is known as not very safe. But our pur-
pose not was to study the complex area of pseudorandom number generator
algorithms.

Our experience shows that cryptography algorithms coded in a functional
programming language are much shorter than those coded in C, Java, Maple.
It is relatively easy to test the functional programming function independently
from the entire program. The syntax ”forces” the programmer to write more
modular codes, so it is simple to locate and correct errors in these modules.
Type errors are much easier to prevent and in case, to correct. We can easy
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Figure 2: The content of profile file

issue efficiency in time and space. The process of the file I/O are relatively
simple. It has a built-in library for large numbers, which means that working
with large numbers becomes quite simple. The concept and syntax are permit-
ting the correct use of necessary mathematics, so the programmer can focus
on these, and not loosing time on circumstance of implementations. For those
who know functional language it is easy to read and understand Clean code.

Taking account of our algorithms time consuming and correctness, and con-
sidered the capacity of software package presented in the first section we can
establish that the usage of functional programming language can’t be consid-
ered inconvenient. So we can conclude that functional programming is a very
useful tool to write stable an efficient cryptography applications.
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