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Abstract. In the present paper we give an elementary and illustrative
proof that in E4, the complete surfaces with constant positive curvature
are not isomorphic. It is well-known, if two surfaces in E3 are complete
with the same positive curvature they are global isomorphic. The same
statement is not true in E4, although these surfaces remain global iso-
metric. We will illustrate our proof with some nice examples.

1 Introduction

Many articles [9, 17, 18] presented the techniques of drawing objects in higher
dimension than three, and they also highlighted the educational importance
of them.

The subject of this paper is related to these drawing techniques and we want
to state that the drawings should reflect the fact that the closed, compact,
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126 R. Oláh-Gál, L. Pál

smooth surfaces in three dimensions will remain closed, compact and smooth
in four dimensions too.

In the 4-dimensional Euclidean space there is an unsolved problem, namely
whether there exists a complete analytical hyperbolic plane in E4. We know
that there is no surface having this property in E3 (Hilbert theorem), but in E5

[6, 10, 15] and in E6 [1] it is possible. Thus the question is more exciting in E4

and proving either the existence or the non-existence would be an important
result.

There is another interesting question: what is the graphical image in E4

for a compact, complete analytical surface which has negative constant curva-
ture? Such a surface exists because it was given by Ōtsuki [13]. The surface
constructed by him in E4 has negative curvature but it is not constant. On
the other hand, with the constructed surface Ōtsuki [12] demonstrated that
there are compact and complete surfaces with negative curvature in E4.

Furthermore, we are studying only the surfaces with positive constant cur-
vature. It is well-known from Cohn-Vossen and Herglotz theorem [3, 8] that
if two surfaces are complete with the same positive curvature, they are global
isomorphic. Our aim is to give an elementary proof that in higher dimension
than three, the complete surfaces with constant positive curvature will not
remain rigid. Here rigid means that a complete surface with constant positive
curvature could not be transformed into itself by one parameter movement.
We also illustrate the proof with some examples using different drawing tech-
niques.

2 The basic idea

It is well-known that a surface of revolution is a surface generated by rotating a
plane curve about an axis. By definition, the axis of the surface of revolution
is a straight line, although the axis of rotation can be imagined as a space
curve. In the latter case we find a generalization of the surface of revolution,
called canal surface. In other words, the canal surface is a surface formed
as the envelope of a family of spheres whose centers lie on a space curve. If
the sphere centers lie on a straight line, the channel surface is a surface of
revolution. For example, the sphere is a special canal surface, whose axis is a
straight line.

In the next part we use a simple mathematical deduction to prove that
complete surfaces with constant positive curvature are not global isomorphic.

Let p(u) = (x(u), y(u)) be a planar curve, parameterized by arc length.
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The corresponding Frenet formulas have the following form:

p′(u) = e(u),

e′(u) = κ(u)n(u),

n′(u) = −κ(u)e(u),

where the tangent vector for the curve p is e = e(u), the normal vector is
n = n(u) and the binormal vector is b = b(u). We suppose b ′(u) = 0, which
means that p is a planar curve. The canal surface of the planar curve p has
the following form:

f(u, v) = p(u) + r(u)(n(u)cos(v) + b(u)sin(v)),

where r(u) is the radius of the spheres from the definition of the canal surface.
According to our aim, we put the condition that the surface has positive

Gaussian curvature. This means that

G(u) = +1 (1)

equation must hold, where G is the curvature of the surface. In order to solve
this equation first we try to calculate the curvature of the canal surface using
the next fundamental forms of it:

g11 = r′2(u) + (1 − κ(u)r(u)sin(v))2,

g12 = 0,

g22 = r2(u).

Furthermore, if we put the condition κ(u) = 0, then we get the Gauss
curvature:

G(u) = −
r′′(u)

r(u)(1 + r′2(u))2
. (2)

By replacing the found expression into formula (1), we get the following
equation:

r′′(u) = −r(u)(1 + r′2(u))2. (3)

Equation (3) can be solved by integrating elementary, but we are interested
in a result, which gives us the sphere as solution, so we get the next particular
result: r(u) =

√
2u − u2, where u ∈ [0, 2].
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Furthermore, we repeat the previous sequence of ideas in 4 dimensions, and
we choose a space curve in E3 with this form: p(u) = (x(u), y(u), z(u)). Then
we get by Frenet formulas in E4:

p′(u) = e1(u),

e′1(u) = κ(u)e2(u),

e′2(u) = −κ(u)e1(u) + τ(u)e3(u),

e′3(u) = −τ(u)e2,

e′4(u) = 0,

where {e1, e2, e3, e4} is the Frenet orthonormal basis. The canal surfaces in E4

have the following form:

f(u, v) = p(u) + r(u)(e3(u)cos(v) + e4(u)sin(v))

The Gauss fundamental forms for the surface f are the following equations:

g11 = r′2(u) + 1 + r2(u)τ2(u)cos2(v),

g12 = 0,

g22 = r2(u).

Furthermore, we put the condition that the torsion of the space curve has
null value. This means that the space curve is a plane curve. By continuing
the calculations, we get the curvature formula (2) for the surface and we are
again interested in those solutions of equation (1), which give us complete
surfaces.

The calculations reflect the fact that the curvature for these surfaces is
independent of the form of the planar curve in E4, which is the axis of the
surface. In other words, the axes of the canal surface can be chosen in many
ways, hence there is an infinite number of surfaces with positive constant
curvatures. To summarize our results, we state the following theorem:

Theorem 1 For each surface of revolution with positive constant curvature
in E3 there are corresponding infinite number of canal surfaces with positive
constant curvature in E4.

These results have a geometric interpretation, too. For example, let us
consider the 3-dimensional sphere. It is well-known that we get it from the
rotation of the circle around its diameter. If we take the sphere by its north and
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(a) (b)

Figure 1: The Ōtsuki sphere.

south pole and if we “bend” the rotation axis towards the fourth dimension, the
surface will still have a constant curvature which is reflected in the calculations,
but we get spheres which will not be isomorphic in the 4-dimensional space.
If the shape of the rotation axis is a quarter of the asteroid then we get the
famous sphere of Ōtsuki [11] (see Fig. 1) represented by the (4)–(7) equations:

x1(u, v) =
4

3
cos3 u

2
, (4)

x2(u, v) =
4

3
sin3 u

2
, (5)

x3(u, v) = sin(u) cos(v), (6)
x4(u, v) = sin(u) sin(v), (7)

where u ∈ [0, π], v ∈ [0, 2π].

Furthermore, we give three other examples of complete surfaces with con-
stant positive curvature in E4:

Example 1

x1(u, v) = x1(u) = 2 arcsin(u/2) +
√

4 − u2,

x2(u, v) = x2(u) =
√

2
√

(2 + u)u −
√

2 ln(1 + u +

√
(2u + u2),

x3(u, v) =
√

u(2 − u) sin v,

x4(u, v) =
√

u(2 − u) cos v, u ∈ [0, 2], v ∈ [0, 2π].
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(a) (b)

Figure 2: Drawings for Example 1: (a) Intersection with a hyperplane. (b)
Axonometric mapping from E4 into E2.

Example 2

x1(u, v) = x1(u) = sinu,

x2(u, v) = x2(u) = cosu,

x3(u, v) =
√

u(1 − u) sin v,

x4(u, v) =
√

u(1 − u) cos v, u ∈ [0, 1], v ∈ [0, 2π].

Example 3

x1(u, v) = x1(u) = 2 sin(u/2),

x2(u, v) = x2(u) = 2 cos(u/2),

x3(u, v) =
√

u(2 − u) sin v,

x4(u, v) =
√

u(2 − u) cos v, u ∈ [0, 2], v ∈ [0, 2π].

3 The used drawing technigues

We have drawn two kinds of figures using MATLAB programming language.
The first type of drawings are intersections in E4 with a hyperplane. This
means that we omit one of the four coordinates from the surface representation,
and after that we apply an axonometry by mapping the three-dimensional
figure onto the plane (see Fig. 1(a), 2(a), 3(a), 4(a)).



Some notes on drawing four dimensional surfaces 131

(a) (b)

Figure 3: Drawings for Example 2: (a) Intersection with a hyperplane. (b)
Axonometric mapping from E4 into E2.

(a) (b)

Figure 4: Drawings for Example 3: (a) Intersection with a hyperplane. (b)
Axonometric mapping from E4 into E2.
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The second type of figures are axonometric mappings from E4 into E2 (see
Fig. 1(b), 2(b), 3(b), 4(b)). The transformation has the following form:

(
x

y

)
=

(
a11 a12 a13 a14

a21 a22 a23 a24

)



x1(u, v)

x2(u, v)

x3(u, v)

x4(u, v)


 ,

where the rank of the transformation matrix [aij]2×4 is equal to 2. These
kinds of mapping techniques were studied by Szabó [17, 18], and he proved
that the objects can be also represented in Rn, both in axonometric and
perspective way. These mappings keep their straight lines and proportion in
case of axonometry and in case of perspective, they keep their straight lines
and cross-ratio.

On the other hand, Stiefel [16] showed that in E4 the Pohlke’s theorem (i.e.
the axonometric image of a shape is similar to the parallel projection of the
shape) is not valid. Nevertheless, some properties remain valid. For example
the close parameter lines on the surfaces in E4 are transformed into closed
curves as you can see in the figures.

4 Conclusions

In this paper we considered constant positive curvature surfaces from the 4-
dimensional Euclidean space. Many surfaces with constant positive curvature
have the interesting property that they are not global isomorphic in E4, while
in E3 the same property is not true. We have proved this property mathemat-
ically and also illustrated with some nice examples.
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[9] Z. Kovács, L. Kozma, Assimilation of mathematical knowledge using
Maple, Teaching Mathematics and Computer Science 1, 2 (2003) 321–331.
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[17] J. Szabó, Die Verallgemeinerung des Eckhartschen Einschneiderfahrens
auf den n-dimensionalen Fall, Publ. Math. Debrecen, 15 (1968) 181–187.
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Abstract. Confluent drawing is a technique that allows visualizing
non-planar graphs in a crossing-free manner. Its central idea is very sim-
ple: subsets of graph’s edges are merged into confluence points and drawn
as smooth curved lines, similar to train tracks. This approach eliminates
edge crossings and offers an aesthetically pleasant representation for the
initial graph. This article presents the ortho-confluence technique, which
introduces the idea of local orthogonal system relative to a graph’s node.
The concept of ortho-confluence was successfully implemented in our ap-
plication named ConfluentViz, and the results are presented in the final
part of this article.

1 Introduction

In 2003, Dickerson, Eppstein, Goodrich and Meng introduced confluent draw-
ing, and with it a heuristic that is able to generate confluent drawings for
some graphs [4]. The problem of finding a proper representation without edge
crossings for a non planar graph is not very straight forward. But there are
heuristics that determine whether a non-planar graph can be efficiently drawn
in a confluent way.

A particular approach in confluent drawings is ortho-confluence. This rep-
resents a way of drawing a graph in a confluent manner, such that some edges
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of the initial graph are merged with a horizontal or vertical track correspond-
ing to a local cartesian coordinate system that has its origin in another node
called parent. The parent of a node in a confluent representation is, in general,
the parent node given by the BFS order. Depending on the graph structure,
a parent node in the confluent representation can also be a node that has a
very large degree or a node that is connected with other nodes by a long edge.
This article offers a close look on ortho-confluence technique as it is success-
fully implemented in the ConfluentViz application. This is a graph editor tool
that enables the user to create and manage ortho-confluent representations
for various graph categories: trees, forests, graphs containing circuits, graphs
containing large cliques (bicliques).

The first sections of this paper present the context of the topic and the
existing work including some important results. The following sections are
related to the ortho-confluence concept. Furthermore, the implementation
results and issues are explained in detail. At the end of our paper, we present
some conclusions and further work.

2 Motivation and problem description

Graph visualization is a vast area of research [1, 11, 12, 13, 14]. Developing
an intelligent tool that produces visual representations for different graph cat-
egories is a challenging process; it implies finding a suitable algorithm that
takes a graph as an input and outputs an equivalent representation. This final
representation must satisfy some aesthetic criteria in order to be relevant. It
is highly desired to have less crossing edges, a good positioning for the vertices
and edges, optimal angles, all these on a minimum of drawing area. Perhaps
the most important criteria is edge crossings minimization, because crossed
edges make the relations in the representation difficult to identify. The ideal
output would be the one with no edge crossings at all.

Graphs that can be represented in a standard way on a plane surface with
no edge crossings are called planar graphs [15]. There are efficient algorithms
that produce representations with no edge crossings for planar graphs [1].
Unfortunately, most of the graphs that appear in real life models are not
planar. Thus, most of these graphs cannot be represented in a standard way
without edge crossings. There are algorithms for minimizing edge crossings
in non planar graphs, but the general problem of representing a non-planar
graph in a standard way that minimizes edge crossings is NP-hard [7].

However, representing non planar graphs nicely is a common problem in
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many domains. For example, in software visualization there are diagrams for
representing application architecture, class diagrams, method calls, data flow
processes, object interactions. In these diagrams the components, the entities
or the objects are drawn as simple shapes: circles, squares, triangles, etc.

An important advantage of confluent representations is that in such di-
agrams we can easily identify source and destination nodes for the edges
that share a common portion. These common structures could indicate in
a method-call diagram separate methods that can be joined together for ef-
ficiency. Similarly, structures in which many sources communicate all with
many destinations could indicate the need for refactoring or could offer new
perspectives for changing the software design.

The navigation rules in a web application are represented in Fig. 1 in a
standard way and in a confluent manner.

(a) in a standard way (b) in a confluent way

Figure 1: Two representations of a web site navigation rules

Other applications for graph visualization also include different airline maps,
subway maps, social networks, genealogy. We want to obtain this kind of
representations automatically. Thus, we need efficient algorithms to generate
software diagrams or maps that preserve the relations in the model and at the
same time the output is pleasant for the human eye.

3 Existing work

M. Dickenson, D. Eppstein, M. Goodrich, and J. Meng introduced [4] the con-
cept of confluent representations as a way of visualizing non planar diagrams
in a planar way and presented algorithms that output confluent representa-
tions for both directed and undirected graphs, mainly for graphs that appear
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frequently in software visualizations.
The concept is quite simple: some edges are merged together forming “tracks”

so that their intersections become overlapping paths. The resulting graphs are
easier to comprehend, yet keeping a high degree of connectivity information.
Some airline companies already use these confluent representations for dis-
playing route maps. Also, similar diagrams are present in surface topology.

It is well-known that every non-planar graph contains a subgraph homeo-
morphic to the complete graph of five vertices, K5, or the complete bipartite
graph between two sets of three nodes, K3,3 [15]. On the other hand, every Kn

or Kn,m admits a confluent representation as it is indicated in Fig. 2.

Figure 2: Confluent representations for K3,3 and K5

A curve is locally-monotone if it contains no self intersections and no sharp
turns. Confluent representations are a way of drawing graphs on a plane
surface by merging edges into paths that are unions of locally-monotone curves.
An undirected graph G is confluent if and only if there exists a drawing A such
that:

• There is a one-to-one mapping between the vertices in G and A, so that,
for each vertex v ∈ V(G), there is a corresponding vertex v

′ ∈ A, which
has a unique point placement in the plane. In other words, there is a
bijective function between the vertices in G and A.

• There is an edge (vi, vj) ∈ E(G) if and only if there is a locally-monotone
curve e

′
connecting v

′
i and v

′
j in A.

• A is planar. That is, while locally-monotone curves in A can share
overlapping portions, no two of them can cross.

In a confluent representation A, a confluence point is defined as the point
in plane, where two or more locally-monotone curves are merged together.

Directed confluent representations are defined similarly, except that in such
drawings the locally-monotone curves are directed and the tracks formed by
union curves must be oriented consistently.
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There are two important visual elements that are used in confluent repre-
sentations: traffic circles and switches. A switch is a common point for two
or more curves or a point in which these curves change direction. A traffic
circle could be defined as a confluent representation of a clique so that all the
locally-monotone curves share a common portion with a circular track. This
way, the clique property is preserved, that is any node is reachable from any
other node (Fig. 3). Traffic circles partially solve the crossing edges prob-
lem, offering a simplified view of the representation and also a suggestive way
of representing multiple connections between nodes. For example, many im-
portant cities reduced the traffic problems by eliminating cross intersections,
replacing them with traffic circles.

Figure 3: A switch and a traffic circle (representing K5)

Although testing the planarity of a graph can be done in linear time, the
problem of deciding whether a graph has a confluent representation is quite
difficult. The main idea of the algorithm that outputs a confluent represen-
tation for a graph G is to find all the clique and biclique subgraphs of G and
replace them with traffic circles. This algorithm applies especially on sparse
graphs. It has been shown that the time complexity of this algorithm is O(n).

Another important result is that there are large classes of non-planar graphs
that can be drawn in a planar way using the confluent approach. These classes
are:

• interval graphs;

• complements of trees;

• cographs;

• complements of n-cycles.

For example, a complement of a tree or an interval graph admits a confluent
representation even though they are non planar graphs. The proof for each
confluence theorem for the graph classes above is done especially by construc-
tion. Still, it has been demonstrated that there are some graphs that cannot
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be drawn in a confluent way [4]. Among these we have the 4-dimensional cube,
a certain subgraph of the Petersen graph and the Petersen graph itself. The
subgraph obtained by eliminating a node from the Petersen graph is the small-
est non-confluent graph we know. Also, if we divide each edge of a graph by
adding a new node, the resulted graph is non-confluent. Similarly, by adding a
node on each edge of a non-planar graph and connecting it to both endpoints
of that edge, the result is also non-confluent. In general, all the chordal graphs
are not confluent.

In 2005, David Eppstein, Michael Goodrich and Jeremy Yu Meng introduced
delta-confluent drawings [6]. Delta-confluent graphs are a generalization of
tree-confluent graphs. These classes of graphs and distance-hereditary graphs,
a well-known class of graphs, coincide. The idea of tree-confluent graphs was
published by Hui, Schaefer and Štefankovič [10]. A graph is tree-confluent if
and only if it is represented by a train track system which is topologically a
tree. It is also shown in their paper that the class of tree-confluent graphs is
equivalent to the class of chordal bipartite class.

• A ∆-junction is a structure where three paths are united in three distinct
points. Each of these points is called a junction port.

• A Λ-junction is a structure where two of the three paths in a ∆-junction
are disconnected. The two paths that are disconnected are called tails
and the remaining one is called head.

Figure 4: A ∆-junction (left) and a Λ-junction (right)

A ∆-confluent drawing is a confluent drawing in which each junction is either
a ∆-junction or a Λ-junction and if we replace every junction in the drawing
with a new vertex, the result is a tree.

4 Ortho-confluence

We can define ortho-confluence similarly to confluent representations. We say
that a graph G is ortho-confluent if and only if there is a representation A
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such that:

• There is a one-to-one mapping among the vertices in G and A, so that,
for each vertex v ∈ V(G), there is a corresponding vertex v

′ ∈ A, which
has a unique point placement in the plane. In other words, there is a
bijective function between the vertices in G and A.

• There is an edge (vi, vj) ∈ E(G) if and only if there is a locally-monotone
curve e

′
connecting v

′
i and v

′
j in A.

• A is planar. That is, while locally-monotone curves in A can share
overlapping portions, no two of them can cross.

• The confluence points from any subset of curves in A must be positioned
on either a vertical or a horizontal axe.

The graph classes that can be drawn both simply confluently and ortho-
confluently are those in which the confluence points can be positioned on
a grid. The distance between grid lines is the smallest distance between con-
fluence points for the represented graph. Graph classes such as n-cycles com-
plements, path complements, tree complements and interval graphs can all be
represented ortho-confluently. Also, ∆-confluent graphs can be represented in
an ortho-confluent manner. In general, any non-planar graph that admits a
confluent representation can also be drawn ortho-confluently by applying some
minor modifications:

• Traffic circles, ∆-junctions, Λ-junctions and other predefined confluence
structures should be treated as nodes on a grid when representing them.

• The tangents in the endpoints of each smooth curve should form a 90
degrees angle.

However, there are some important elements that define an ortho-confluent
representation. We can consider nodes in an ortho-confluent representation
as being parent nodes and son nodes. The parent nodes are traversed by
two tracks: a vertical track and a horizontal track that together form a local
coordinate system. These tracks separate the drawing surface in four distinct
quadrangles. Depending on the positioning of the son node in one of these
four quadrates, there are 8 cases in which the son node can be confluently
connected with its parent (Fig. 5(a)). In order to represent the tracks we used
Bézier curves like in Fig. 5(b) (the control points are chosen at three quarters
from the son-track distance).
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(a) confluently attaching son to par-
ent

(b) horizontal confluence (left) and verti-
cal confluence (right)

Figure 5: The ortho-confluent system

Having a graph that does not contain large cliques, the algorithm that
outputs an ortho-confluent representation has the following steps:

1. Find a parent node. This node is one of the two endpoints of the longest
edge in the graph.

2. Apply a BFS on the graph and maintain an order list (the node’s order
given by the BFS) and a parent list (containing for each node his parent
in BFS).

3. Confluently attach each node to his parent, in the order given at step 2.

4. Maintain two lists – processed and confluencePoints – that contain, for
each node in the graph, whether it was included in the ortho-confluent
representation and its confluence point with the vertical or the horizontal
track of the parent.

5 Implementation issues

At the moment, there is no commercial graph editor to offer the possibility
of representing graphs in a confluent layout. The application we developed in
order to illustrate ortho-confluence representation is called ConfluentViz. The
main purpose of this tool is to enable users to edit graphs and also to generate
aesthetically pleasant representations for different graph classes: trees, graphs
that contain circuits, graphs that contain large cliques and bicliques.
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The application is developed in C# programming language and uses a free,
open source system for designing diagrams and 2D user interface applica-
tions – Piccolo.NET. This has monolithic [3] class architecture: it primarily
uses compile-time inheritance to extend functionality instead of using run-
time composition to extend functionality. It offers the possibility of designing
applications that require Zoomable User Interface (ZUI) and animations. It
is developed for the .NET framework 2.0 and it is based on the classes and
methods collection in GDI+ (Graphics Device Interface) for representing geo-
metric shapes in .NET. We extended this system obtaining a graph editor with
confluent layout creation support. The main functionalities of ConfluentViz
are:

• graph editing;
• ortho-confluent representation;
• XML storage for graphs;
• obtaining JPEG or PostScript images from the actual representations.

The graph classes that can be represented confluently using ConfluentViz are:
trees, forests, graphs containing circuits, graphs containing large cliques or
bicliques. Moreover, this application offers the possibility to create a confluent
layout automatically, after editing the graphs, or in an assisted manner.

An example of an ortho-confluent representation for an ordinary graph is
presented below in Fig. 6. The second graph is a valid confluent representa-
tion of the first one, because the connections between nodes (represented by
straight lines in the first case and smooth curves in the second case) are pre-
served. We can see that we can reach nodes 6 and 3 from node 5, by traversing
the horizontal track that connects parent node with son nodes. The same is
for nodes 4, 6 and 3. Similarly, node 5 cannot be reached from node 4 because
the track that connects them is not a smooth one. All the curves are locally
monotone, that is they do not have sharp turn backs or crossings.

(a) the standard representation (b) the ortho-confluent representation

Figure 6: A graph represented in a standard way and in an ortho-confluent
way
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Algorithm 1 offers an ortho-confluent representation for trees and forests
and it also uses BFS. We can mention that trees are planar graphs, thus they
admit a confluent representation. The complexity of the algorithm is O(n),
where n is the number of nodes in the graph, and this is because we use BSF
and adjacency lists. An example of an ortho-confluent representation for a tree
is given in Fig. 7. We obtained good results using this algorithm especially on
trees that have large degree nodes: the incident edges are better distinguished
when they are represented as Bézier curves and merged together in confluence
points.

Algorithm 1 ConfluentComponentTree(g)
1. rootIndex <- MaxDegreeNode(g) //keep the max. degree vertex
2. bfs <- BreadthFirstSearch(g, rootIndex)
3. orderBFS<- bfs.order // keep the order of the nodes in BFS
4. parentsBFS<-bfs.parents // keep the parent of each node in

the BFS
5. foreach i=0,VerticesCount
6. parentIndex <- orderBFS[i]
7. node <- editor.nodeLayer[orderBFS[i]];
8. if (parentIndex >= 0) then
9. parent <- editor.nodeLayer[parentIndex];
10. Merge(parent, node);
11. endif
12. end foreach

(a) the standard representation (b) the ortho-confluent represen-
tation

Figure 7: A tree represented in a standard way and in an ortho-confluent way

Cliques are complete subgraphs of a graph. In order to obtain a confluent
representation for cliques we have to:
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1. place each vertex of the clique on the support circle, so that we obtain
a regular polygon,

2. in the middle of this support circle represent a traffic circle,

3. determine the confluence points coordinates (the intersection of the lines
that unite the middle of each polygon edge and the center of the support
circle with the traffic circle),

4. draw the tracks (connect each node with the closest confluence point
determined at step 3).

In Fig. 8(b) we can see a traffic circle in the middle that replaces a part of
the crossing edges. This traffic circle in not an actual node in the graph, it
is a structure that has a visual role, facilitating the confluent representation.
Bicliques are other structures that can be represented confluently. Similar
to clique’s case, their usual representation can have many edge crossings that
make the relation in the drawing hard to identify. In order to obtain a confluent
representation for bicliques we have to follow the next set of steps:

1. identify the 2 partition sets of the biclique subgraph using BFS,

2. determine the largest partition set and the node that has the highest y

coordinate in this partition,

3. align the centers of the nodes in the largest partition vertically,

4. determine the middle nodes of the two partitions,

5. align the middle nodes horizontally,

6. align the nodes vertically in the smallest partition,

7. connect each vertex in the two partition sets with the middle of the line
that unites the nodes determined at step 4.

An example of a biclique that was represented in a confluent manner using
the above set of steps is given in Fig. 9.
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(a) the standard representa-
tion

(b) the ortho-
confluent representa-
tion

Figure 8: K5 represented in a standard way and in an ortho-confluent way

(a) the standard repre-
sentation

(b) the ortho-confluent
representation

Figure 9: K4,4 represented in a standard way and in an ortho-confluent way

Having an algorithm that outputs a confluent representation for structures
like cliques and bicliques, we can easily obtain a confluent representation for
a non-planar graph that contains large cliques or bicliques.

6 Further work

At the moment, ConfluentViz application does not use a planarity test. This
would be a nice feature to have if we want to implement a general algorithm
that outputs a confluent representation for any non-planar graph, similarly to
HeuristicDrawUndirected algorithm presented previously.

Related to ortho-confluence, we saw that this is a particular type of conflu-
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ent representation that introduces the notion of local orthogonal coordinate
system. It would be interesting to determine which type of confluent repre-
sentation produces better results for different graph classes. Moreover, having
a very large graph, with a very complicated structure, we could use together
different confluent techniques to produce a confluent representation.

There are also other types of graphs on which we can successfully apply
confluent techniques. For example, directed hypergraphs [8] are a general-
ization for directed graphs and they can model binary relations among the
subsets of a given set. These types of relations are common in different ar-
eas in Computer Science such as: data base systems, expert systems, paral-
lel programming, scheduling, routing in dynamic networks, data mining and
bioinformatics. The edges of the directed graph are called hyperarcs and they
connect distinct subsets of nodes. A solution for visualizing the hypergraphs
could be confluent representation. In this case, the arcs that form a hyperarc
are merged together in a confluence point (grouping origin and destination of
a hyperarc).

7 Conclusion

In this article, we presented a new method of visualizing different graph cat-
egories called confluent representation. This can be very useful in software
visualization, topology, airline maps and subway maps or in designing site
navigation rules. We introduced ortho-confluence and we identified some effi-
cient algorithms that output aesthetic drawings for different classes of graphs.
The results obtained with ConfluentViz application satisfy the main aesthetic
criteria for graph visualization.
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Abstract. Since the first book in dynamic programming was published
in 1957, this algorithm design strategy has become a current problem
solving method in several fields of science. The dynamic programming
problem solving process can be divided into two steps. Firstly, we estab-
lish the functional equation of the problem, a recursive formula that im-
plements the principle of the optimality (mathematical part). Secondly,
a computer program is elaborated that processes the recursive formula
in bottom-up way (programming part). In this paper we are going to
present a method and a software tool that automates the programming
part of the dynamic programming process in case of several problems.

1 Introduction

Dynamic programming as optimizing method was proposed by Richard Bell-
man. Since the first book [1] in dynamic programming was published in 1957,
this algorithm design strategy has become a current problem solving method
in several fields of science (Applied mathematics [2], Computer sciences [3],
Artificial Intelligence [5], Bioinformatics [4], Macroeconomics [9], etc.). The
dynamic programming problem solving process can be divided into two steps.
Firstly, we establish the functional equation of the problem, a recursive for-
mula that implements the principle of the optimality. Secondly, a computer
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program is elaborated that processes the recursive formula in bottom-up way.
We will refer to these two steps as mathematical and programming parts of the
dynamic programming. Numerous researchers in the above mentioned various
fields of applications are not experts in programming. In this paper we are go-
ing to present a method and a software tool that automates the programming
part of the dynamic programming process in case of several problems.

2 The mathematical part

Dynamic programming is often used to solve optimizing problems. The prob-
lem usually consists of a target function, which has to be optimized through
an optimal sequence of decisions. The dynamic programming is built on the
principle of optimality: the optimal solution is built by optimal sub-solutions.
This principle is expressed by a recursive formula (functional equation), which
describes mathematically the way the more and more complex optimal sub-
solutions are built from the simpler ones. Obviously, this is a formula where
the way of the optimal (minimum or maximum) decision making has been built
in. Once the functional equation is established, the problem can be considered
mathematically solved.

We assume that the recursive branches of the functional equation have the
following general form: c(A) = min /max{fA(c(Bi))|i = 1, 2, ..., n}, where c

denotes the target function. c(A) represents the optimum value attached to
sub-problem A. This optimum directly depends on the optimum value of the
one of sub-problems Bi. More exactly, it depends on c(Bi), which optimizes
(minimizes or maximizes) function fA. Function fA depends on the problem
to be solved.

3 The programming part

The programming part of the problem solving process is built on another
principle of the dynamic programming: the optimal values of the target func-
tion concerning the already solved sub-problems are stored (often in an array
that we denote by C). According to the principle of the optimality we are
interested only in the optimal solutions of the sub-problems. This technique,
often called memoization or result catching, makes it possible to avoid the
repeating computation for overlapped sub-problems, which are also character-
istic for dynamic programming problems. The core of the computer program
that implements the dynamic programming algorithm consists in computing
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7 

5 9

10 1 4

2 7 3 1

2 5 8 3 1

Figure 1: Array A associated to Triangle problem.

the corresponding elements of the array C in bottom-up way according to the
strategy given by the recursive formula. An efficient strategy solves each sub-
problem before its optimum value is needed by any other sub-problem. The
complexity of this programming task varies from problem to problem. It is
often nontrivial to write a code that evaluates the sub-problems in the most
efficient order.

In [7] we presented three examples; since the computer program works on
the elements of the array C, the recursive formula is generally drafted for these
elements:

1. Triangle (International Olympiad in Informatics, Sweden, 1994): On
and under the main diagonal of a square matrix with n rows there are natural
numbers. We assume that the matrix is stored in the bi-dimensional array A.
Determine the longest path from peak (element a11) to the base (n-th row),
considering the following:

• On a certain path element aij can be followed either by element ai+1,j

(down), or by element ai+1,j+1 (diagonally to the right), where 1 ≤ i < n

and 1 ≤ j ≤ i.

• By the length of a path we mean the sum of the elements to be found
along the path.

For example, should for n = 5 the matrix be the following (see Fig. 1.),
then the longest path from the peak to the base is the shaded one and its
length is 37.

2. Office-building 1: Let A be a matrix whose elements aij (i = 1, . . . , n, j =

1, . . . ,m) represent an one-storied rectangular office building. The elements of
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the matrix represent the offices and they store the taxes to be paid by anyone
who enters the respective room. There is a door between any two neighbour-
ing elements. You can enter the building only at office with position (1, 1) and
leave it only at position (n,m). Which is the minimal loss of money you can
get through the building with?

For example, see Fig. 2 (n = 5, m = 4). The minimal loss of money is 14,
which we got by following the shaded path.

Figure 2: Array A associated to Office-building 1.

3. Office-building 2: The same problem with the following differences:

• There are offices where they do not take money, but they give a certain
amount of money (”negative tax”).

• There are one-way doors (with one-side door-handles). Array B, whose
elements bij (i = 1, . . . , n, j = 1, . . . , m) are binary strings with 4 char-
acters ( ′0 ′ or ′1 ′), stores the door-codes of the offices. The first binary
character of the code represents the up-door, the second the right-door,
the third the down-door and the fourth the left-door. For example, code
"0101" means that we can leave the office only to right and left directions.

• We assume that there is no such office-tour of the building, going along
which we could increase our amount of money.

Determine the most favorable way of getting through the building. For
example, see Fig. 3 (n = 5, m = 4) and Fig. 4. The most favorable path goes
through the same offices this time too, and means a loss of money of 7.

In the case of all the above-presented problems the array C is bi-dimensional,
and the recursive formulas that implement the principle of optimality have the
following forms:
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 1  1  1  1 0111  0111  0111  0011 

19 19 19  1 1110  1111  1111  1011 

 3  1  3  1 1110  1111  1111  1011 

-2 19 19  1 0110  1111  1111  1011 

-6 -2  3  1 0100  1100  1101  1101 

Figure 3: Array A and B associated to Office-building 2 problem.

0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1

1 1 1 1

0 19 1 1 19 1 1 19 1 1 1 0

1 1 1 1

1 1 1 1

0 3 1 1 1 1 1 3 1 1 1 0

1 1 1 1

0 1 1 1

0 -2 1 1 19 1 1 19 1 1 1 0

1 1 1 1

0 1 1 1

0 -6 1 0 -2 1 1 3 1 1 1 1

0 0 0 0

Figure 4: The Office-building.

Problem 1 (Triangle): (Element cij stores the length of the longest path
from the position (i, j) to the nth row; The trivial sub-problems are represented
by the cells from the n-th row, and the optimal value of the original problem
is going to be stored in cell c11.)

cnj = anj, 1 ≤ j ≤ n

cij = aij + max(ci+1,j, ci+1,j+1), 1 ≤ i < n, 1 ≤ j ≤ i

Problems 2 and 3 (Office-buildings): (Element cij stores the length of
the optimal path between the offices from the positions (1, 1) and (i, j); The
trivial sub-problem is represented by cell c11, and the optimal value of the
original problem is going to be stored in cell cnm).)
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c11 = a11,

otherwise
cij = aij + min(ci−1,j, ci,j+1, ci+1,j, ci,j−1)

(assuming that the rooms with the respective positions exist,
and they have “proper doors”)

In the first example (the triangle problem) the chain of the recursive calls
is cycle-free. In such a situation, there is an elegant technique that does not
require the programmer to establish the evaluation order of the sub-problems:
recursion with result catching [11]. By catching the results of all recursive calls,
the second and subsequent evaluations of any sub-problem become constant-
time operations, reducing the overall running time considerably. Recursion
with result catching is very easy to implement in softwares like Maple, Mat-
lab, Mathematica, etc. (In Maple we use the option remember instruction.)
These softwares and the recursion with result catching technique are within
the programming reach of most of the researchers, even if they are not experts
in programming.

For instance: On the one hand, procedure triangle A is an immediate
transcription of the recursive formula, but, unfortunately, this algorithm has
exponential time complexity (inefficient divide and conquer strategy). On the
other hand procedure triangle B differs from triangle A only in one line
(option remember;) and it has polynomial complexity (dynamic program-
ming technique).

triangle A := proc(n, a, i, j)
if i<n then

return a[i,j]+max(triangle A(n,a,i+1,j),
triangle A(n,a,i+1,j+1));

else return a[i,j];
end if;

end proc:

triangle B := proc(n, a, i, j)
option remember;
if i<n then

return a[i,j]+max(triangle B(n,a,i+1,j),
triangle B(n,a,i+1,j+1));
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else return a[i,j];
end if;

end proc:

In the case of the second and third sample-problems the chain of the recur-
sive calls is circular. For example, the optimal value of cell c23 may depend
on the optimal value of cell c33, and, conversely, c33 may also depend on c23.
In such situation, the recursive approach is excluded (to avoid infinite recur-
sive call). Furthermore, there are no easy dynamic programming solutions for
these type of problems (for more details, see [7]). The method and software
tool presented in this paper are especially useful in case of such problems.

4 Dynamic programming as optimal path algorithm
in weighted digraphs

In the followings we are going to consider the recursive formula as an implicit
description of a weighted digraph. By this approach several dynamic pro-
gramming problems can be interpreted as optimal path problems between two
specific vertices of this graph [8].

• The vertices of the graph represent the sub-problems. Thus, we can
consider the used elements of array C storing the optimal values of the
sub-problems as such ones, which represent the vertices of the graph.

• The arcs of the graph represent possible choices (optimize means here
the choice of optimal). The graph has an arc from vertex B to vertex
A if, the optimum value of the array-element corresponding to vertex A

may directly depend on the optimum value of the array-element corre-
sponding to vertex B, according to the recursive formula. For example, if
cA = min/max{fA(cBi

)|i = 1, . . . , n}, then there are arcs from vertices
Bi to vertex A.

• The weights of the arcs reflect the weights of choices.

• The optimal sequence of decisions is represented by the optimal path
between the vertex representing the trivial sub-problem and the vertex
that represents the original problem. If the problem has more than
one trivial sub-problem, we introduce a dummy trivial-node, which is
connected to all trivial vertices.
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25 16 15

7 15 11 4

2 5 8 3 1

Figure 5: Cycle free digraph attached to the Triangle problem.

Figures 5 and 6 show the graphs behind the sample-problems. The big black
node represents the original problem and the gray one the trivial sub-problem.
In the case of the triangle problem we introduced a dummy trivial-node. The
optimal paths are represented by thick arrows. The cells of array C store the
optimum values of the corresponding sub-problems.

We distinguish three cases [8]:

• 1. The attached graph is cycle free. In this case the most efficient
optimal path algorithm is based on the topological order of the vertices.
The time complexity of this algorithm is O(N + M) (N and M are the
numbers of the vertices and arcs, respectively) [3].

• 2. The graph contains cycles, but there are no negative weight arcs.
For this case the best choice is Dijkstra’s shortest path algorithm. The
time complexity of the most efficient implementation of this algorithm
is O(NlogN + M) [3].

• 3. The graph has negative arcs, but it has no negative weight cycles.
This shortest path problem is solved by the Belmann-Ford algorithm
(O(NM)) [3].

The optimal (shortest) path problem to be solved is the following. Given
a weighted digraph (G(V, E,w), V: set of vertices, E: set of arcs, w : E → R
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weight function) with N vertices 1, 2, . . . ,N and M arcs, determine the shortest
paths from the vertex s (source) to all the other vertices (destinations).

We denote with c(v) (the optimum value attached to vertex v) the weight
of the shortest path from the source (s) to vertex v. (c(s) = 0, c(u) = ∞ for
all vertices u that are not reachable from vertex s)

The above mentioned shortest path algorithms are based on the following
lemmas and propositions: (For proofs and further details see [3] and [6])

Lemma 1. Parts of any shortest path are also shortest paths. (Principle of
optimality)

Lemma 2. All s-source shortest paths constitute an s-rooted tree called
optimal-paths-tree.

Lemma 3. The optimal-paths-tree can be built progressively starting with
vertex s. At each step the tree is extended with a new arc that attaches to
the tree a new vertex. (Implementation of the principle of optimality)

Lemma 4. If vertex u is the immediate predecessor of vertex v on the
optimal path from s to v, then: c(v) = c(u) + w(u, v). (The optimum value
of vertex v is based on the optimum value of vertex u, and can be computed
on the basis of the weight of arc (u, v))

Corollary 1. The optimum values of all vertices that are reachable from s

depend on the optimum value of the one of their in-neighbours.
Lemma 5. The optimum values have to be computed according to a topo-

logical order of the vertices with respect to the optimal-paths-tree.
Lemma 6. Assuming c(s) = 0, the building process of the optimal-paths-tree

consist in applying the formula from Lemma 4 on all arcs of the optimal-paths-
tree in their topological order.

Assuming that the optimum values attached to the vertices are going to be
generated in array C, we define the following updating operation (operator
update) on the basis of arc (u, v) ∈ E:

update(u,v)
if cv > cu + w(u, v) then cv = cu + w(u, v)

end if
end update

Corollary 2. If cs = 0 and cu = ∞ for all u ∈ V\{s}, then applying operator
update on all arcs of the optimal-paths-tree in their topological order results
in cu = c(u) for all u ∈ V .

Lemma 7. For all arcs (u, v) ∈ E it is true that: cv ≤ cu + w(u, v).
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Lemma 8. If cs = 0 and cu = ∞ for all u ∈ V\{s}, then applying operator
update on any arc-sequence that includes as sub-sequence the arc-sequence
required by Lemma 6 results in cu = c(u) for all u ∈ V .

All the three shortest path algorithms mentioned above apply the following
strategy:

• it generates such an arc-sequence that includes as sub-sequence the arc-
sequence required by Lemma 6,

• it applies operator update on all arcs of the generated sequence.

Lemma 9. If G is cycle free, then the topological-sequence of all arcs of G

includes as sub-sequence the arc-sequence required by Lemma 6.
Proposition 1. If G is cycle free, cs = 0 and cu = ∞ for all u ∈ V\{s},

then applying operator update on all arcs in their topological order results in
cu = c(u) for all u ∈ V.

Lemma 10. If all arcs in G have non negative weights and vertex u is a
predecessor of vertex v on the optimal path from s to v, then: c(u) ≤ c(v).

Corollary 3. If all arcs in G have non negative weights, then the optimum
values of all vertices v that are reachable from s may only depend on in-
neighbours that have optimum values less or equal than c(v).

According to Lemma 10 and Corollary 3 Dijkstra’s algorithm determines
the shortest paths according to the ascending order of their weights.

Proposition 2. (Dijkstra’s algorithm) If all arcs in G have non negative
weights, cs = 0 and cu = ∞ for all u ∈ V\{s}, then the algorithm that

• starts with vertex s,

• in each step attaches the arc that links to the tree the vertex that is
’closest’ to root s (according to the current values stored in array C) to
the growing optimal-paths-tree,

• applies operator update on all out-arcs of the currently attached vertex,

results in cu = c(u) for all u ∈ V .
Proposition 3. (Bellman-Ford algorithm) If G has no negative cycles, cs = 0

and cu = ∞ for all u ∈ V\{s}, then the algorithm that

• chooses an arbitrary sequence of all arcs in G,

• applies operator update to the chosen sequence, again and again, until
no more changes in array C,

results in cu = c(u) for all u ∈ V .



Automated dynamic programming 159

1 2 3 4

10 11 12 5

9 8 7 6

10 17 16 15

11 12 13 14

1 2 3 4

20 21 22 5

13 10 9 6

11 22 25 7

5 3 6 7

Figure 6: Digraphs (without negative arcs/without negative cycles) attached
to the Office-buildings problems.

5 The method and the software tool

The core idea of the algorithm behind the software is that we represent ex-
plicitly the graph described implicitly by the recursive formula. Since the
dimension of the array C varies from problem to problem we treat it as one-
dimensional (row-major-index). The used cells (the vertices) of array C are
going to store the optimum values of the corresponding sub-problems and
pointers to their out-neighbour cells.

There are two strategies to transpose the functional equation of dynamic
programming into an algorithm: the direct method (direct-conversion of the
functional equation into an iterative/recursive procedure) and the successive
approximation methods (after an initial approximation, the cells that are going
to store the optimum values are successively updated –improved– either by the
functional equation itself or by an equation related to it) [10].

Another classification of the dynamic programming strategies is based on
the way the optimum values of the sub-problems are computed. The so-called
pull-approach computes directly (not by an updating process) the optimum
value of the current node on the basis of the already computed optimum values
of its immediate predecessors. This approach is an immediate application of
the functional equation, and can be used only for the acyclic graphs. The
recursion with result catching technique applies this approach [10].
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The key idea in the case of the push-approach (adaptable to all three cases)
is to propagate any improvement that has been made in the current vertex u to
its out-neighbors. More exactly, if v is an out-neighbor of the current vertex u,
then cell cv (the cell corresponding to the sub-problem that is represented by
the vertex v) is updated on the basis of the arc (u, v). In other words, if value
fv(cu) ’is better’ than the current value of the cell cv, then cv is updated with
the value fv(cu). The algorithm ends when any other improvements cannot
be performed [10]. All the three optimum path algorithms we are using in the
software apply successive approximation and push-approach.

The topological algorithm traverses the vertices of the graph (starting with
the (dummy)trivial-node) according to their topological order, and updates
the cv value of all out-neighbors of the current vertex u on the basis of the arc
(u, v). At the moment we have arrived to a vertex, the corresponding element
in array C already stores the optimum value. The algorithm only confirms this
optimum. The succession the optimum values of the vertices are determined is
predestinated by the topological order of these vertices. The topological order
of the vertices can be established by a Depth First Search (DFS) procedure.
The algorithm attempts to approximate with each arc at most once [6].

If the graph has no negative weight arcs, then it can be observed that the
optimum values of the vertices are in ascending order along the shortest paths.
Consequently, the Dijkstra algorithm traverses the vertices according to this
order, and updates the cv values of all out-neighbors of the current vertex u

on the basis of the arc (u, v). It is evident that in this case the order the
optimum values of the vertices are determined is unpredictable. Therefore,
Dijkstra’s algorithm determines this order on the fly (during the algorithm); if
the vertex v is the closest (according to the current values of the array C) out-
neighbour of the already confirmed shortest-path-tree, then cv is confirmed as
the optimum value of node v. The algorithm attempts to approximate with
each arc at most once [6].

The Bellman–Ford algorithm goes through (in arbitrary order) all the arcs
of the graph (and attempts to approximate with them) again and again. It
needs at most (N − 1) tours. During a last extra-tour the algorithm realizes
that all elements of the array C have reached their optimal values. (There
were not any updates) [6].
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Figure 7: The Input-interface.

The algorithm is:

1. Input:

(a) The recursive formula is introduced.

(b) The index-limits (along every dimension) of the array C are intro-
duced.

(c) The indexes of the cell that represents the original problem are
introduced.

2. The recursive formula is analyzed:

(a) The software asks for the input data.

(b) The digraph is built.

3. The type of the digraph is determined. (A DFS algorithm tests if the
graph is acyclic or not, has negative arcs or not, and whether it contains
negative cycles or not.)
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4. The proper optimal path algorithm is applied.

5. The solution (the optimum value corresponding to the original problem,
and the cell-indexes along the optimal path) is printed.

Fig. 7 shows the input interface that implements steps 1/a, 1/b and 1/c of
the algorithm. As a sample problem we have:

Given two sequences in arrays a[1..4] and b[1..5], determine the longest
common subsequence.

Fig. 8 shows the output interface that presents a simulation of the dynamic
programming solution building process. The optimum value of sub-problem
(3, 3) is computed on the basis of the optimum values of sub-problems (2, 3)

and (3, 2).

2.0

Figure 8: The Output-interface.
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6 Conclusions

The above presented method treats different dynamic programming problems
uniformly and in such a way that it makes possible the automation of the
programming part of the problem solving process. The software is a very
useful tool for all researchers who have to deal with dynamic programming
problems, especially for those who are not experts in programming.
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Abstract. In this paper we describe a simulation of a practically im-
portant fragment of XPath 1.0 [16] and XSLT 1.0 [17] with extended
structural recursions, which in turn immediately offers us a top-down
implementation strategy working in time O(|D|2|Q|). Here, |D|, |Q| re-
spectively denote the size of the data and the query. However, if the size
of the variables is restricted with a constant, then the evaluation works in
O(|D||Q|) time. Structural recursions are insensitive to the order of the
edges (in our XML model instead of nodes, edges represent elements);
hence, in this respect, they are of a weaker expressive power than the
more usual models of XML query languages [14]. Still, a large fragment
of the most frequent scenarios appearing in practice can be captured with
them, which underlines their importance.

1 Introduction

Structural recursion is a graph traversing and restructuring operation applied
in many fields of computer science including syntax analysis, code generation

AMS 2000 subject classifications: 68U99
CR Categories and Descriptors: H.2.3 [Database Management]: Languages – XPath,
XSLT; D.3.3 [Programming Languages]: Language Constructs and Features – Recursion
Key words and phrases: XML, XPath, XSLT, structural recursion
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and program transformation. In the context of databases it was already recom-
mended as a query language alternative in the early 90’s to be able to overstep
the limitations of the relational data model [6]. The rising of semistructured
databases and XML [15] put structural recursions again in the limelight. It
formed the basis of UnQL [7] and the core of XSLT [17], where in each step
the children of the current node are selected to be processed in the next step.
In [11] structural recursions were examined in the context of the typechecking
problem. However, in all of these works only a simpler version of the operation
was considered.

In [2] we offered a new way of defining the semantics using a special kind of
intersection similar to its counterpart in automata theory. We also showed how
this new approach intertwines with simple “typing systems” of semistructured
data, where simulations are used to prescribe the structure of the data. In
[3] we introduced not-isempty conditions in if. . . then. . . else. . . statements to
be able to define different behaviours depending on the underlying subtree
of the processed edge. We analyzed the complexity of the satisfiability and
containment problem of such structural recursions.

In this paper going further we extend our model with registers, with which
the results of different structural functions called on the same data fragment
are connected (structural recursions consist of structural functions). To un-
derpin the usefulness of this extension, we simulate a fragment of XPath 1.0
[16] (XPath0) and XSLT 1.0 (XSLT0 [5]).

In XPath0 only the use of location paths with predicates is supported (i.e.
there are no arithmetical or string operations). In the predicates the non-
emptiness of such paths, the equality of their results with a constant using
existential semantics can be checked and the Boolean combinations of such
conditions can be taken. The simulation immediately offers us an implemen-
tation strategy in worst case working in time O(|D|2|Q|). However, if the size
of variables, i.e., the size of the list of edges which the variable is equal to, is
restricted with a constant, then the implementation works in time O(|D||Q|)

both for XPath0 and XSLT0. This means that our approach has the same
efficiency as the method developed by Gottlob et al. in [8]. Here, |D|, |Q|

respectively denote the size of the data and query.
In this paper, we only consider axes child, parent, ancestor, descendant,

but it is not difficult to extend the model to be able to handle the rest of the
axes. We process XML trees in a top-down manner and we argue that our
approach only processes those elements that are inevitably processed by such
an evaluation strategy.

Structural recursions are insensitive to the order of the edges (in our XML
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model instead of nodes, edges represent elements), hence in this respect they
are of a weaker expressive power than the more usual models of XML query
languages [14]. Still, a large fragment of the most frequent scenarios appearing
in practice can be captured with them, which underlines their importance. For
example in [5] three important features of XSLT0 are highlighted, which are
very useful in practical applications. Firstly, one can use variables to “look
forward” in the document. Secondly, variables can be passed as parameters
between templates. Thirdly, using modes one can process the same data frag-
ment with different templates.

In Section 2 we introduce our data model, XPath0 and XSLT0. In the
latter two descriptions we heavily rely on the results of [5, 9]. In Section 3 the
syntax and semantics of structural recursions are given. The rewriting method
of XPath0 is presented in Section 4, while in Section 5 XSLT0 is modelled.

2 Preliminaries

Data model

We consider XML documents as rooted, ordered, directed, unranked trees.
However, in our setting, since it is more natural to define structural recursions
in edge-labelled trees, we assume that instead of nodes, edges with labels
represent tags. It is very easy to rewrite a node-labelled tree into an edge-
labelled one and vice versa [1]. In the sequel we refer to these trees as document
trees. In accordance with [15], we also assume that each document tree has a
distinguished document edge, the only outgoing edge of the root, with label
/. Furthermore, the document edge is followed by the root edge representing
the first element of the corresponding document. The document tree of XML
document

<a><b>xy</b><c>wz</c></a>

can be found in Fig. 2(a).
Formally, we introduce three constructors: the empty tree {} consisting of a

node only, the singleton set {l : t}, which is a directed l edge with subtree t in
its end node, and the append operation @. In t1@t2 the roots of t1 and t2 are
pulled together. It is not difficult to see that by using these constructors every
document tree can be built up [7]. For example {a : {c : {}}@{d : {}}}@{b : {e : {}}}

stands for the tree of Fig. 2(b). Furthermore, this construction also gives us
a notation to represent document trees. These representations are said to
be ssd-expressions [1] (ssd: semistructured data). An edge e1 precedes e2 if
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Figure 1: (a) The document tree of the XML document on Page 167. (b) The
tree represented by the ssd-expression on Page 167. (c) Elimination of an ε

edge. (d) Substitution of a local configuration with the appropriate subtree.

in the corresponding ssd-expression e1 is written first. Note that this order
corresponds to the document order of an XML document [15].

Now, let Σ be a finite alphabet. In what follows, we denote T Σ the set
of document trees with edge-labels from Σ. A finite sequence of such trees:
t1, . . . , tm constitutes a forest, their set is denoted FΣ. With T Σ(B),FΣ(B)

we denote that the leaves are labelled with labels from set B. In the following,
for graph G we denote with V.G, E.G its node and edge set respectively. For
a document tree t lab(u) we will give the label of node u, lab : E.t → Σ.
On the other hand T : Σ ∪ {∗} → E (E ⊆ E.t) is defined s.t. T(σ) = {e | e ∈
E.t ∧ lab(e) = σ} and T(∗) = E.t.

We are to concentrate mainly on the graph traversing nature of XPath and
XSLT, hence, except for the document edge, we suppose that all edges are
of the same type. This means that we do not deal with attribute, processing
instruction edges, etc. [16]. Our methods can be extended in a straightforward
manner to handle edges with types. Furthermore, we assume that every edge
has an associated value. Again, we suppose that these values are of the same
type, and in contrast to [15] we do not specify how they are obtained. We
denote their recursively enumerable set with D. For a given edge in t, function
val : E.t → D gives its associated value. In accordance with [18], we assume
that in a document tree every edge e has a unique identifier, id(e) in notation.

For intermediate results of the constructions we shall consider forests from
F∆∪ε. Here, ∆ denotes the set of output symbols. The role of an ε edge will be
similar to the role of silent transitions in automata, and they will be eliminated
similarly. Formally, for edges (u, a, v), (v, ε, w) in tree t, an (u, a,w) edge is
added to t, and the former two edges are deleted (cf. Fig. 2(c)).
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e: Expression, p: Predicate, χ: Axis
e ::= χ :: τ[p1] . . . [pn] | e1/e2

χ ::= child | descendant | parent | ancestor | self
p ::= e | e = d | e = $X | (p1 ∧ p2) | (p1 ∨ p2) | ¬(p) | [p]

d ∈ D, X ∈ V, τ ∈ Σ ∪ {∗}
ε: Expression→ (E.t → 2E.t), εp :Predicate→ (E.t → {true, false}),
ρ : V → 2E.t, where ρ(x) is a finite set, V is the set of variables
εJχ :: τ[p1] . . . [pn]K(x) = {y | xχy ∧ y ∈ T(τ) ∧ εpJp1K(y) = true ∧ . . . ∧

εpJpnK(y) = true}

εJe1/e2K(x) = ∪y∈εJe1K(x)εJe2K(y)

εpJeK(x) = true iff εJeK(x) is not empty
εpJe = dK(x) = true iff ∃y, y ∈ εJeK(x) ∧ val(y) = d

εpJe = XK(x) = true iff ∃y, z s.t. y ∈ εJeK(x) ∧ z ∈ ρ(X)∧

val(y) = val(z)

εpJ(p1θp2)K(x) = true iff εpJp1K(x)θ εpJp2K(x) is true θ ∈ {∧, ∨}

εpJ¬(p)K(x) = true iff εpJpK(x) is false
εpJ[p]K(x) = true iff εpJpK(x) is true

x, y, z ∈ E.t, d ∈ D, X ∈ V

Figure 2: The syntax (first table) and semantics (second table) of XPath0.

XPath0

XPath has already grown to be a widely known and applied language, thus we
restrict ourselves to give only the syntax and semantics rules of the fragment
we are going to examine (Fig. 2) with a short explanation. For a more formal
and exhaustive presentation, consider [9].

We assume that axis names: child, descendant, parent, ancestor,
self are self-describing. The basic building blocks of XPath expression are
location steps: χ :: τ[p1] . . . [pn]. Here, χ is an axis, τ is called edge test (node
test in [16]), which is from Σ ∪ {∗}, while pi-s are predicates that are used to
filter the returned set of edges. As an example, consider location step

child::a[child::b=5],

which returns those a children of the actual edge that have a b child.
In [9, 16] the semantics are given in terms of contexts. A context consists

of a context-edge, a context-position and a context-size. However, here, owing
to the restricted use of functions, e.g. in XPath0 we do not use functions
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position(), first() and last(), it is enough to consider the context-edge
or actual edge, as it is frequently called. First, we assume there is a given
edge on which the evaluation of the expression starts. This edge is usually
determined by the host language. Then each location step selects a set of
edges, which in turn serve as starting edges of the next location step. This
mechanism is explained formally in Fig. 2 (second table).

Note the use of a variable assignment in the semantics. Usually, this is also
given by the host environment. Here, V denotes the recursively enumerable
set of variables. In accordance with the syntax of XPath instead of X we refer
to a variable as $X. Finally, note also the use of brackets in predicates. These
may be omitted, when the precedence rules among Boolean operators give the
same evaluation order.

XSLT0

Again, we do not explain XSLT in detail, but rather give an informal overview
and a concise formal definition of the semantics. For a more detailed explana-
tion, consider [5]. There, three important features of XSLT0 are highlighted.
Firstly, by means of variables one can “look forward” in the document. Sec-
ondly, variables can be passed as parameters between templates. Thirdly,
using nodes one can process the same data fragment with different templates.
All of these properties appear in the XSLT program of Fig. 3, which is called
on XML documents of Fig. 4. The program firstly selects the id-s of those
groups whose top manager is John. Then it selects the id-s of the “subgroups”
of the former groups, in which an employee with name Ann works.

In T1 we store in variable X the id-s of those groups that have an employee
with name Ann. In T2 groups with John as top manager are selected. Finally,
in T3 using variable X subgroups having an employee named Ann are chosen.
Note that in the XPath expressions we have used the abbreviated syntax [16].
Rewriting the XPath0 expressions with the syntax of Fig. 2 is straightforward.

An XSLT program consists of templates, i.e., xsl:template elements. At
a given step, we assume that there is a list of edges, E, which has been chosen
at the former step. At the beginning of the evaluation this set consists of the
document edge of the document. We process the edges of E in document order.
Suppose that the actual edge is e. First, we select that template, which fits
e, i.e., e satisfies the condition given by the XPath expression of the match
attribute of the xsl:template element. According to the specification of [17],
this template should be unambiguous. Then e is processed by this template
(it serves as the actual edge for the XPath0 expressions), and another list of
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<xsl:template match="/"> (T1)
<xsl:variable name="X" select="//group[emp/name=’Ann’]/id"/>
<result>

<xsl:apply-templates select="//group" mode="top">
<xsl:with-param name="X" select="$X"/>

</xsl:apply-templates>
</result>

</xsl:template>

<xsl:template match="group" mode="top"> (T2)
<xsl:param name="X"/>
<xsl:if test="topMgr/name=’John’">

<topGroup>
<id>

<xsl:value-of select="id"/>
</id>

</topGroup>
<xsl:apply-templates select="//group" mode="Ann">

<xsl:with-param name="X" select="$X"/>
</xsl:apply-templates>

</xsl:if>
</xsl:template>

<xsl:template match="group" mode="Ann"> (T3)
<xsl:param name="X"/>
<xsl:if test="id=$X">

<id>
<xsl:value-of select="id"/>

</id>
</xsl:if>

</xsl:template>

Figure 3: An XSLT program.

edges is selected by the xsl:apply-template element for further processing.
When these edges are all processed, then the edge after e in E is considered.
Note that in our example T2 and T3 may be called on the same elements.

Syntax. For the formal definition of semantics we use a more abstract
representation of an XSLT0 program [5]. A template is formalized as an (m,σ)-
rule as follows:
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<groups>
<group>

<id>G01</id>
<name>sales</name>
<topMgr>

<id>03</id>
<name>John</name>

</topMgr>
<emp>

<id>04</id>
<name>Tom</name>

</emp>...
<emp>...</emp>
<group>

<id>G02</id>
<name>PR</name>
<emp>

<id>05</id>
<name>Steven</name>

</emp>
</group>...
<group>...</group>

</group>
</groups>

Figure 4: A fragment of an XML document.

template m(σ, x1, . . . , xn)

vardef

y1 := r1; . . . ;ys := rs;

return

if c1 then z1; . . . if ck then zk; else zk+1;

end.

Here, m is a mode, σ ∈ Σ, the latter element shows that the template is
called on σ elements (in our data model on σ edges). As it has been shown in
[5] we may suppose that only XPath expressions comprising a single element
name appear as values of match attributes of xsl:template elements. σ gives
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<xs:schema>
<xs:element name="groups" type="groupsType"/>
<xs:element name="group" type="groupType"/>
<xs:element name="topMgr" type="empType"/>
<xs:element name="emp" type="empType"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="id" type="xs:string"/>
<xs:complexType name="groupsType">

<xs:sequence>
<xs:element ref="group" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="groupType">

<xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" ref="id"/>
<xs:element maxOccurs="1" minOccurs="1" ref="name"/>
<xs:element maxOccurs="1" minOccurs="0" ref="topMgr"/>
<xs:element maxOccurs="unbounded" minOccurs="1" ref="emp"/>
<xs:element maxOccurs="unbounded" minOccurs="0" ref="group"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="empType">

<xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" ref="id"/>
<xs:element maxOccurs="1" minOccurs="1" ref="name"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

Figure 5: The XML Schema which the XML document fragment of Fig. 4
conforms to.

this element name. x1, . . . , xn are the parameters, while y1, . . . , ys are local
variables. ri is either a constant in D, or it is an XPath0 expression (1 ≤ i ≤ s).
Here, yj may appear in ri, if j < i. cj-s are conditions that are either constants
(true, false), or Boolean combinations of atomic conditions: x = d, e, e = d,
e = x (1 ≤ j ≤ k, x ∈ V, d ∈ D, e is an XPath0 expression). Note that all
of these tests may appear in XPath0 expressions (Fig. 2), and their meaning
is the same as there. For instance the single condition e becomes true iff e
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results a non-empty edge set. Finally, zs-s are all forests in F∆(AT ), i.e., their
edge-labels are from ∆ (the alphabet of output symbols), and the leaves may
be labelled with elements of AT , where AT denotes the set of apply-template-,
or shortly at-expressions.

An at-expression is of the form m(p, x̄, ρ), where m is mode, p is an XPath0

expression, with which the next list of edges is selected for processing; x̄ is
the set of variables that are passed as parameters to the next instantiated
template, and ρ : V → 2E.t is a variable assignment.

Example 1 Consider the rewriting of the XSLT0 program of Fig. 3.

template st(/, ε) (T1)

vardef

x :=//group[emp/name=’Ann’]/id;
return

if true then {result : {}}; at-expr: top(//group, x, ρ)

end.

template top(group, x) (T2)

return

if topMgr/name=’John’ then {topGroup : {id : {}}@{}};
at-expr1: val(id, ε, ε), at-expr2: Ann(//group, x, ρ)

end.

template Ann(group, x) (T3)

return

if id= x then {id : {}}; at-expr1: val(id, ε, ε)

end.

template val(id, ε) (T4)

return

if true then {val(id) : {}};

end.

Here, T1 is called on the document edge /, in mode st with no parameters.
z1 consists of a single node, whose at-expression label is top(//group, x, ρ),
where ρ assigns to x the result of the XPath expression of the vardef part.
We return to the special role of the (st, /)-rule soon. In T2 the at-expressions
after at-expr1, at-expr2 respectively belong to the leaf of the id edge and the
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leaf appended to this edge. Note the superficial nature of this construction.
Furthermore, the xsl:value-of element returning the value of id children
is represented here as a special template T4 also returning the value of id
elements. The at-expression of T3 invokes T4 on the id children of the actual
edge. It is easy to verify that with this rewriting we simulate correctly the
functioning of the former xsl:value-of element.

As we have already mentioned, according to [17], the conflict of templates
should be avoided, hence only one (m,σ)-rule is allowed to give for each (m,σ)-
pair. Furthermore, we assume that there is a distinguished start mode, st,
which is only used with the document edge. For sake of simplicity, we also
assume that (st, /) is the only rule, where variable definitions are allowed to
give. It has only one condition, where c1 is true, and z1 constructs a result

edge as the root edge of the output. (With this, we guarantee that the output
is always a tree.) In the XSLT program of Fig. 3 (T1) stands for this rule.
Note that according to [17] it is not allowed to be given a mode to a template
instantiated on the document edge. Nevertheless, this slight deviation carries
no importance.

Semantics. A run of a program on t is given in terms of trees in T ∆(LC(t)∗).
Here, LC(t) = E.t ×M × Ψ denotes the set of local configurations, where M

is the set of modes and Ψ is the set of partial variable assignments from V to
2E.t with a finite domain. (e, m, ρ) = ϑ ∈ LC(t) represents that case, when
(m,σ)-rule T is to be applied on e, where lab(e) = σ, and the parameters of
T are in the domain of ρ. Here, e is the edge whose endnode is labelled with
ϑ. For a tree in T ∆(LC(t)∗), a leaf may be labelled with a sequence of local
configurations.

Informally, suppose that a subtree of the result t̂ ∈ T ∆(LC(t)∗) has been
already constructed. For sake of transparency we consider a leaf labelled with
a single local configuration ϑ = (e,m, ρ). This defines an (m,σ)-rule T to be
applied. Here, e will be used as the actual edge of the XPath0 expressions
of T . When T(e) is evaluated, the result (in F∆(LC(t)∗)) should be added
to the leaf and ϑ should be deleted. If the leaf is labelled with a sequence
containing more local configurations, the former method should be applied to
each of them consecutively (cf. Fig. 2(d)).

The process starts with t0, where t0 consists of an edge with label /, and
with leaf label (/, st, ε) (this guarantees that the (st, /)-rule is called first), and
it stops, when there is no LC(t)∗ label in the constructed output to process
further. We shall assume that, if (m,σ)-rule T has been already applied to an
edge e, then T is not allowed to be applied on e again. Thus, we avoid infinite
loops. This feature is guaranteed when XSLT0 programs are simulated with
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structural recursions.
Formally, an XSLT0 program is a tuple P = (Σ,∆,M, st, R), where Σ and ∆

are the labeling alphabets of the input and output respectively. M is the set
of modes disjunct from Σ and ∆. st is the start mode and R is a finite set of
(m,σ)-rules.

We define a rewrite relation induced by P on t, →P,t. Here

→P,t: T ∆(LC(t)∗) → T ∆(LC(t)∗).

For ξ, ζ ∈ T ∆(LC(t)∗), first we explain the simpler case, when a leaf labelled
with a single local configuration is considered. Then ξ →P,t ζ, if ξ has a
leaf edge e with leaf label (e,m, ρ), where lab(e) = σ, and the parameters of
(m,σ)-rule T are all included in the domain of ρ. ζ is constructed by substi-
tuting e with fo, the result of T instantiated on e with variable assignment
ρ.

To understand the construction of fo, remember the syntax of T . First we
evaluate ri-s taking e as the actual edge to get the possible values of yi-s
(1 ≤ i ≤ s). Denote Ei the result of ri. Then, assuming that cj is the first con-
dition becoming true, zj ∈ F∆(AT ) is transformed into fo, where we substitute
each at-expression leaf label with a sequence of local configurations. Namely, a
leaf label m ′(p, z̄, ρ ′) is substituted with sequence (e1,m

′, ρ ′), . . . , (el,m
′, ρ ′).

Here z̄ ⊆ {x1, . . . xn, y1, . . . ym}, ρ ′(xi) = ρ(xi) and ρ ′(yj) = Ej, p(e) =

{e1, . . . , el} (p is the XPath0 expression of the at-expression in question, while
e is the actual edge on which T is instantiated). Furthermore, er precedes eo

in document order, if r < o (1 ≤ i ≤ n, 1 ≤ j ≤ s, 1 ≤ r, o ≤ l).
If e is labelled with a sequence local configurations, then ζ should be ob-

tained by applying the former method to each local configuration one after
the other.

The initial local configuration is defined to be t0. With this the transfor-
mation realized by P, is the (partial) function τP : T Σ → T ∆, with τP(t) = s,
if t ∈ TΣ, s ∈ T∆, and t0 →∗

P,t s.

3 Structural recursions

Syntax

A structural recursion f is constituted by structural functions, in notation
f = (f1, . . . , fn), which can call each other. In the definition of a structural
function we consider inputs given with ssd-expressions and specify what should
happen for the different constructors. For the syntax of a row of a structural
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SR: structural recursion, Reg: registers, r(fi): a row of fi,
C: condition, Cd: condition for the default, Sf = {f1(t), . . . , fn(t)},

a ∈ Σ,α ∈ D, y ∈ V, t ∈ T Σ, n.i. stands for not isempty
SR ::= S, Reg

S ::= fi : r(fi), (1 ≤ i ≤ n)

r(fi) ::= (t1@t2) = fi(t1)@fi(t2) | ({}) = {} | ({a : t}) = R |

({∗ : t}) = Rd |

({a : t}) = if C1 then R1 else R2 |

({∗ : t}) = if Cd
1 then Rd

1 ; else Rd
2

R ::= fo, where fo ∈ F∆(Sf)

Rd ::= fo, where fo ∈ F∆∪{∗}(Sf)

C ::= n.i.(fj(t)) | val(a) = α | val(a) = y | (C1 ∧ C2) |

(C1 ∨ C2) | ¬(C)

Cd ::= n.i.(fj(t)) | val(∗) = α | val(∗) = y | (C1 ∧ C2) |

(C1 ∨ C2) | ¬(C)

Reg ::= Xb
fi

= Xb
fj

| (Reg1 ∧ Reg2) | (Reg1 ∨ Reg2) | ¬(Reg)

εC : condition → (E.t → {true, false}), θ ∈ {a, ∗}, ρ : V → 2D

εpJval(θ) = αK(e) = true iff lab(e) = θ, val(e) = α

εpJval(θ) = yK(e) = true iff lab(e) = θ,∃e ′ ∈ ρ(y) s.t. val(e) = val(e ′)

Figure 6: The syntax rules of structural recursion f = (f1, . . . , fn) (first table).
The semantics of a subset of conditions (second table).

function, consider the r(fi) row of the first table of Fig. 6. Here, it turns
out that for constructors t1@t2, {} structural functions always work in the
same manner, hence they are not given in the definition. For t1@t2 they call
themselves both on t1 and t2, and at the end append the results. For {}, they
construct a single node.

Example 2 As an example, we give structural recursion f = (f1, f2, f3), which
copies a subtree {a : t} if the a edge has an Ann child.

f1 : ({a : t})= if n.i.(f2(t)) then {a : f3(t)} f2 : ({Ann : t})= {ψ : {}}

({l : t}) = f1(t) ({l : t}) = {}

f3 : ({∗ : t})= {∗ : f3(t)}
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Example 3 As another example we give the rewriting of XPath0 expression:

q1 = self::a[par::c=5]/child::b/desc::d/par::a,

where desc, par are abbreviations of axes descendant, parent respectively.

fa1
: ({a : t})= fb(t) fb : ({b : t})= f1

d(t)

({∗ : t})= fa1
(t) ({∗ : t})= fa1

(t)

f1
d : ({d : t})= {ψ : {}}@ f1

d(t)

({∗ : t})= f1
d(t)

fa2
: ({a : t})= if n.i.(f2

d(t)) then {ψ : {}}@ fa2
(t) f2

d : ({d : t})= {ψ : {}}

else fa2
(t) ({∗ : t})= {}

({∗ : t})= fa2
(t)

f
pr1
c : ({c : t})= if val(c) = 5 then f

pr1
a1

(t) f
pr1
a1

: ({a : t})= {ψ : {}}@ f
pr1
c (t)

else f
pr1
c (t) ({∗ : t})= f

pr1
c (t)

({∗ : t})= f
pr1
c (t)

Xd
fd1 = Xd

fd2, Xa
f
pr1
a1

= Xa
fa1

Here, pr1 = self::a/par::c=5. f
pr1
c checks whether the value of the actual c

edge is equal to 5, then calls f
pr1
a1

, which constructs a ψ edge as a result of an
a edge, if it immediately follows the aforementioned c edge.

self::a/child::b/desc::d, desc::d/par::a

are simulated with fa1
, fb, f1

d, fa1
, f2

d, respectively. The connection is given
with the register restriction Xd

f1
d

= Xd
f2
d
, whose intended meaning is that the

d edges processed by f1
d should also be processed by f2

d and vice versa. Thus
these d edges both have a b ancestor with an a parent, and an a parent. One
may consider Xd

fi
d
-s as registers containing the id-s of the d edges processed by

fi
d (i = 1, 2). Note the similar role of Xa

f
pr1
a1

= Xa
fa1

. In fa2
n.i. stands for the

not-isempty condition. The {∗ : t} rows represent the default cases.
Note that only ψ (ψ ∈ ∆) edges are constructed here. This is understand-

able, since we simulate an XPath0 expression. In the output, only ψ edges
constructed by fa2

representing the last location step parent::a will be con-
sidered. Thus we get a star as a result, i.e., a single node with outgoing ψ
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edges. If for document tree t and e0 as context edge q1 selects e1, . . . , es, then
the star consists of s ψ edges, the first constructed as a result of processing e1

according to the a row of fa2
, the second as processing e2, etc.

Now, consider the syntax rules in the first table of Fig. 6. Note that one
may construct forests in F∆(Sf), i.e., the leaves of these forest may be labelled
with fi(t)-s. The intended meaning of such a label is that the result of fi called
on t is to be connected to the leaf in question. In the previous example with
fb(t) on the right hand side of a row we denoted a node labelled with fb(t).

Semantics

Operational graphs. As in [2], in order to define the semantics, we introduce
operational graphs, which will represent the “relationships” among structural
functions. For structural recursion f = (f1, . . . , fn), we denote its operational
graph with Uf.

In the construction, for each fi we assign a node with name fi (1 ≤ i ≤ n).
The edges of Uf are given with respect to the rows of fi-s. As a warm-up we
consider a simple row:

({a : t}) = {b : fj(t)}.

Here, we add an a(x) edge from fi to fj. The intended meaning is obvious, we
represent that as a result of singleton {a : t} fi calls fj. For

({a : t}) = if n.i.(fj(t)) then fk(t) else fl(t),

we add an a(x) edge with an additional pr (predicate) label to fj and two
other a(x) edges with labels th, el (then, else) to fk and fl respectively. If no
structural function is called, we use an additional node w. Formally, for row:

• ({θ : t}) = fo (fo ∈ F∆∪{∗}(Sf), θ ∈ {a, ∗}):
(fi, p, fj) ∈ E.Uf, if fj(t) is among the labels of leaves of fo, i.e., fj is
called by fi as a result of a θ edge. If fj(t) appears more than once
among the labels, still only one (fi, p, fj) edge is added. Here, if θ = a,
then p = a(x). Otherwise, if θ = ∗, p = ¬a1(x) ∧ . . . ∧ ¬al(x), where
a1, . . . , al are the symbols appearing in the singleton sets on the left side
before the default case in the definition of fi. If there are no such rows
in the definition, then p = >(x). a(x) is a predicate symbol, which we
always interpret over Σ s.t. a(x) becomes true iff x = a, while >(x) is
satisfied by all constants of Σ. As an example, consider the operational
graph of (fa1

, fb, f1
d) of Example 3 in Fig. 7(b) (the leftmost graph).

Here and in the rest of the examples we abbreviate a(x) with a.
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If fo has no leaf labels, i.e., no structural function is called, then an
(fi, p,w) edge is added instead of an (fi, p, fj) edge.

• ({θ : t}) = if C then fo1 else fo2:

(fi, p, fj) is in E.Uf with an additional label pr, if n.i.(fj(t)) appears in
C. Such an edge will be called premise. The meaning of θ and p is the
same as in the previous case.

Furthermore, (fi, p, fk) is in E.Uf with label th if fk(t) appears among
the labels of leaves of fo1. If fk(t) appears as a leaf label in fo2, an el

label is added. These edges are called then-, else-edges respectively. The
premise, then- and else-edges together will be called conditional edges.
If fk(t) appears more than once in fos, still only one (fi, p, fk) edge is
added (s = 1, 2). However, if it appears in fo1 and also in fo2, then this
edge is labelled with both th and el. Again, an (fi, p, w) edge is added
with the appropriate th, el label, if the leaves of fos are not labelled.
As an example, consider the outgoing a edges of fa2

and the outgoing c

edges of f
pr1
c of Example 3 in Fig. 7(b).

An edge of Uf is called constructor edge, if it results a construction, i.e., the
forest on the right side of the corresponding row is not a single node.

The corresponding operational graph of fq1
in Example 3 can be found in

Fig. 7(b). Note that operational graphs are not necessarily connected.
Process of an input. Next, we show how a document tree is processed by

an operational graph. For this we introduce a new operation, which is very
similar to the intersection operation in automata theory.

Definition 1 Let Uf, t be an operational graph and a document tree (f =

f1, . . . , fn). Then the intersection of Uf and t, in notation Uf u t, is defined
as follows: V.Uf u t := {(ϕ, u) | ϕ ∈ V.Uf, u ∈ V.t}, (ϕ ∈ {f1, . . . , fn, w}).
E.Ufut := {((fi, u), p(x)∧a(x), (ϕ, v)) | (fi, p(x), ϕ) ∈ E.Uf, (u, a, v) ∈ E.t, Σ ²
p(a)}.

The intuition behind this definition is clear. For instance an ((fi, u), p ∧

a, (fj, v)) edge means that (u, a, v) is processed by fi, and then fj is called.
Note that we have slightly blurred the distinction between predicates and
constants. An edge-label a (a ∈ Σ) of a document tree is considered as
predicate a(x). Also note that if p(x) ∧ a(x) is satisfiable, then only a ∈ Σ

satisfies it, hence sometimes we shall write a instead of p(x) ∧ a(x) as edge
label.
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u t. (d) A fragment of Gf,t.
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In most cases only a subset of structural functions fi1 , . . . , fik is allowed to
be called on the document edge. In this case we only consider (fij , u0) as
elements of V.Uf u t, where u0 is the root of t (1 ≤ j ≤ k). Such structural
functions will be called upper structural functions. In fq1

of Example 3 the
upper structural functions are fa1

, fa2
and f

pr1
c . An example for intersection

can be seen in Fig. 7(c)-(d).
In the sequel, sometimes (eUf

, et) will denote an edge in E.Uf u t. Here,
eUf

, et are called ancestor images. (eUf
, et) is a premise (constructor, then-,

else-edge), if its ancestor image in Uf is also a premise (constructor, then-,
else-edge).

Deletion of the unnecessary conditional edges. In the next step, in
Uf u t we delete the premises and those then- and else-edges, whose condition
is not satisfied. First, we have to note that for

Cond = if C then fo1 else fo2

and for an edge et of t, if (eUf
, et) is in E.Uf u t s.t. eUf

is a conditional edge
of Cond, then et form pairs with the rest of the conditional edges of Cond.
The set of these edges of Uf u t will be referred as Condet . In order to be
able to decide whether C is satisfied by et and the subtree under et, we take a
copy of C, which we denote Cet . The algorithm eliminating the unnecessary
conditional edges consists of three steps.

Equality conditions. First, the val(θ) = α conditions are considered (θ ∈
Σ ∪ {∗}). In Fig. 7(e) we have supposed that val((1, c, 2)) 6= 5, hence then-
edge ((f

pr1
c , 1), c, (f

pr1
a1

, 2)) is deleted. On the other hand, for (2, c, 7) we have
assumed that its value is 5, thus we delete else-edge ((f

pr1
c , 2), c, (f

pr1
c , 7)).

Formally, in this step, the val(θ) = α, val(θ) = x conditions of Cet are
considered. We assume that there is a given variable assignment ρ. With this
and the value of et we substitute the preceding equality conditions with their
truth values (cf. the second table of Fig. 6).

If Cet becomes true, then clearly, the then-branch should be executed, hence
except for the then-edges, we delete all other conditional edges belonging to
Condet . If an edge is a then- and else-edge at the same time, it is also
kept. These and the remaining then-edges are considered as normal (non-
conditional) edges in further steps of the algorithm. We refer to this method
in the sequel as deletion with respect to the then-branch.

On the other hand, if Cet becomes false, then, for obvious reasons, we delete
with respect to the else branch, i.e. edges with label el are kept, and considered
as normal edges further on. Note that owing to the presence of n.i. conditions,
we may not be able to determine the truth value of Cet .
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The result of this step is denoted Ĝf,t.
Registers. Second, we consider the constraints given by the registers. For an

edge ((fi, u), b, (ϕ1, v)) ∈ Ĝf,t and a restriction of registers Reg, an atomic con-
dition, Xb

fi
= Xb

fj
, becomes true, if there exists another edge ((fj, u), b, (ϕ2, v)) ∈

Ĝf,t (ϕ1, ϕ2 ∈ {f1, . . . , fn, w}). In other words, the b rows of fi and fj should
be called on (u, b, v). Otherwise, Xb

fi
= Xb

fj
becomes false. If at the end,

Reg becomes false, then ((fi, u), b, (ϕi, v)) should be deleted from Ĝf,t. The
result after the evaluation of register restrictions is denoted Ǧf,t. Again, an
example can be found in Fig. 7.(e). Here, Xd

f1
d

= Xd
f2
d

is not satisfied by

((f2
d, 8), d, (w, 9)), since (8, d, 9) has not got any b ancestor, f1

d is not called on
it. On the other hand, ((f1

d, 5), d, (f1
d, 6)) and ((f2

d, 5), d, (w, 6)) satisfies this
register restriction.

Not-isempty conditions. Third, the n.i. conditions are evaluated. (i) If from
a premise of Ǧf,t a constructor edge is reachable through a path not contain-
ing any conditional edges, then the n.i. condition in question, n.i.(fj(t)), is
satisfied, thus we substitute n.i.(fj(t)) in Cet with a true constant. If Cet

becomes true, then we delete with respect to the then-branch. In Fig. 7(e)
the n.i. condition of ((fa2

, 4), a, (f2
d, 5)) is satisfied.

(ii) If there are neither constructor, nor conditional edges reachable from
the premise in question, then there is no further possibility to satisfy the
corresponding n.i.(fj(t)) condition, hence we substitute it with constant false.
If Cet becomes false, then we delete with respect to the else-branch. Again, in
Fig. 7(e) the n.i. condition represented by premise ((fa2

, 2), a, (f2
d, 3)) is not

satisfied.
The algorithm stops, when there are no premises left. Suppose now that

there are still premises, nevertheless steps (i)-(ii) cannot be applied. This
means that each path from a premise to a constructor edge contains at least
one conditional edge e beside the premise in question. If e is a then-, or an
else-edge, since the equality conditions are all checked, we know that there is
also a premise belonging to e. Hence, at the end we conclude that some of the
premises form cycles, whereas, clearly, Uf u t is a tree. Thus, the algorithm
surely stops. Denote Gf,t the result.

Construction of the result.

Example 4 To describe the construction of the output we use another struc-
tural recursion f = (f1, f2, f3) as an example, where f1 is the upper structural
function. (The operational graph of f can be found in Fig. 8(a).)

f1 : ({a : t})= {b : {{a : f2(t)}@{c : f3(t)}}} f2 : ({∗ : t})= {∗ : f2(t)}
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Figure 8: (a) The operational graph of f = (f1, f2, f3). (b) An input. (c)
The intersection of the operational graph of (a) and the input of (b). (d)
Construction and connection of the basic forests. (e) The final result.

({∗ : t})= f1(t) f3 : ({∗ : t})= {c : {}}

If an edge et = (u, a, v) of a document tree t is processed according to the
a row of f1, i.e., ((f1, u), a, (fj, v)) is in E.Uf u t (j = 1, 2), then we take a tree
t̂ = {b : {{a : {}}@{c : {}}}}, and we label its root with (f1, u) and the leaves of
the b and c edges with (f2, v), (f3, v), respectively. The labels of the leaves
indicate that the results of f2 and f3 applied on the subtrees under et should be
“connected” to t̂. Similarly, the label of the root shows that which fragment of
the result t̂ should be connected to. The connection is accomplished through
ε edges. As an example, consider Fig. 8(a)-(e). Note that here, when f1 is
applied to (1, d, 2), only a node is constructed with two labels (cf. Fig. 8(d)).

Formally, denote E(fi, et) the set of neighbouring edges in Gf,t, whose labels
are the same, and whose ancestor image is et = (u, a, v) in t. Such a set may
consists of only one edge. The ancestor images in Uf are all of the form
(fi, p, ϕ), ϕ ∈ {f1, . . . , fn, w}, i.e., they belong to the same condition. In
accordance with the previous observation, the edges of E(fi, et) represent that
in the process of t, fi is called on et, as a consequence, forest fo should be
constructed, and the structural functions appearing as leaf labels should be
called. To represent this, for E(fi, et) we take a copy of fo, we substitute the
∗ labels with a (the label of et), we label the root with (fi, u), and if a leaf
has label fj(t), then we change it to (fj, v). These new labels will be used to
establish the connection between these forests. Denote fo(fi, et) the result,
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Figure 9: (a) The operational graph of f = (f1). (b) An input. (c) The inter-
section of the operational graph of (a) and the input of (b). (d) Construction
and connection of the basic forests. (e) The final result.

which we call basic forest in the sequel.
The output should be constructed from the basic forests. For this, first, add

ε edges from the (fj, v) leaves to the (fj, v) roots. Second, if there are more
than one (fj, v) roots, then choose one, and add ε edges to the rest of these
roots. At the last step the ε edges should be eliminated.

In most cases we get forests as results instead of trees. Hence, one may
choose a root structural function fk among the upper structural functions
(1 ≤ k ≤ n). This means that in the output only the tree reachable from the
root of fo(fk, /) (fk called on the document edge) should be considered.

Example 5 The next example in Fig. 9(a)-(e) with structural recursion f =

(f1) shows how our semantics avoids outputs of exponential size.

f1 : ({a : t})= {a : {{a : f1(t)}@{a : f1(t)}}}

({∗ : t})= f1(t)

Note that the result in Fig. 9(e) does not fit our data model, since it cannot
be constructed by using constructors: @, {l : t}, {}. However, it “encodes” all
necessary information, and it is easy to unfold it to a tree in our data model.

Order of the result. As a consequence of rule

fi : ({t1@t2}) = fi(t1)@fi(t2),

for a structural recursion f and document tree t, if e1 precedes e2 in doc-
ument order (e1, e2 ∈ E.t), then the edges of the fragment constructed by
calling f on e1 and the subtree under e1 precedes the edges of the fragment
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resulted from the process of e2 and the subtree under e2. In the simulation of
XPath0 expressions the aforementioned fragments are single ψ edges, hence
the document order straightforwardly defines the order of the result.

When XSLT0 is considered, for each input, the simulated program will define
the order among the basic forests.

Number of steps. If we consider the size of f, |f|, as the number of
equality conditions, structural functions appearing on the right sides of rows
(each appearance of fj counts one) and atomic conditions of registers, and
the size of t as |V.t| + |E.t|, then the size of Uf u t is O(|f||t|). The equality
constraints can be checked in O(K|f||t|) steps, where K = max{|ρ(x)| | x is
used in f}. Clearly, K ≤ |t|. Note that if there are no variables, then the
equality conditions can be checked in O(|f||t|). For the register restrictions, we
suppose that for each edge (u, a, v) = e ∈ E.t, we have an array that stores
fi, if ((fi, u), a, (ϕ, v)) ∈ Ĝf,t (ϕ ∈ {f1, . . . fn, w}, 1 ≤ i ≤ n). With this, the
register restrictions, satisfied by e, can be found in O|f| steps. Hence register
restrictions can be checked in O(|t||f|) steps. Since a path from a premise
to a constructor edge contains at most |f| different conditional edges, Gf,t

can be constructed in O(|f|2|t|) steps. All in all, supposing that |f| < |t|, we
get that f(t) can be constructed in O(|t|2|f|) time. If variables are not used,
then f(t) can be constructed in O(|t||f|2) time. Furthermore, if the number
of embedded n.i. conditions is limited with a constant, as in the case of the
following simulations of XPath0 expressions and XSLT0 programs, then f(t)

can be computed in O(|t||f|) time.

4 Rewriting of XPath0

First of all, we have to define formally the equivalence of an XPath0 expression
and a structural recursion. For this, let

q = χ1 :: τ1[p11
] . . . [pm1

]/ . . . /χn :: τn[p1n ] . . . [pmn ]

be an XPath0 expression. Then for a document tree t, e0 ∈ E.t, a sequence
of edges e0, e1, . . . , en is called a result-chain (of q), if ei ∈ E.t, eiχi+1ei+1,
val(ei+1) = τi+1, and pji+1

(ei+1) is true (0 ≤ i ≤ n − 1, 1 ≤ j ≤ m). If we
denote

χ1 :: τ1[p11
] . . . [pm1

]/ . . . /χj :: τj[p1j
] . . . [pmj

]

with qτj
, then ej ∈ qτj

(e0), i.e., ej is selected by qτj
initialized on e0 (1 ≤

j ≤ n). Furthermore, we say that an edge e is touched, if there exists a j s.t.
e ∈ qj(e0), or e is touched in one of the prij-s. A touched edge e is uppermost,
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if there is not any edge e ′ ∈ E.t s.t. e ′ is also touched, and e ′ is an ancestor
of e.

Lemma 1 Let q be an XPath0 expression without predicates, t a document
tree, e0 ∈ E.t. Then, there exists at most one uppermost node for t and e0.

Proof. Suppose that q(e0) is not empty, i.e., there exists at least one result
chain, and there are two uppermost nodes e and e ′. Then neither e is the
ancestor of e ′, nor e ′ is the ancestor of e. However, since t is a tree, they have
at most one common ancestor e ′′. As we only use axes self, child, desc,
par, anc, it is easy to see, that e ′′ is touched, thus we get a contradiction.

If q(e0) is empty, then let i be that maximal number, to which qτi
(e0) is

not empty. Then, the previous reasoning can be applied to qτi
. If qτi

(e0) is
empty for all i (1 ≤ i ≤ n), then e0 is defined to be the uppermost node. ¥

Now, denote t
e0
q the subtree of t containing all of the touched edges. From

the lemma straightforwardly follows that t
e0
q is rooted. Now, for simulating

XPath0 expressions we shall use special structural recursions constructing only
ψ edges.

Definition 2 Let f = f1, . . . , fn be a structural recursion constructing only ψ

edges and t a document tree. For an edge (u, a, v) ∈ E.t we say that f stops on
(u, a, v), if there is an edge (fi, p, ϕ) ∈ E.Uf, s.t. ((fi, u), p∧a, (ϕ, v)) ∈ Gf,t,
and as a result of this edge a ψ edge is constructed (ϕ ∈ {f1, . . . , fn, w}).

Definition 3 Let q be an XPath0 expression and f a structural recursion.
Then f is equivalent with q, in notation f ' q, if for all document tree t and
e0, e ∈ E.t, e ∈ q(e0) iff f called on t

e0
q stops on e.

Note that the definition still makes sense, when q(e0) is empty.

XPath0 without predicates

In this subsection, when we talk about an XPath0 expression q, we always
assume that it is without predicates. Consider the following expression

q2 := self::a/child::b/desc::d/anc::c,

where anc is an abbreviation of ancestor. Here we do not know whether a

or b is an ancestor or a descendant of c. Hence when we are to simulate q2,
we have to construct structural recursions checking only whether an a edge
has a b child, having a descendant d edge etc.
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Furthermore, structural recursions run in a top-down manner, thus if a
structural recursion simulating q2 stops on appropriate c edges, it should
have already checked whether there are d edges below these c edges, not to
mention other relations among other edges.

Finally, we should keep in mind that if for x, y, z ∈ E.t, lab(y) = lab(z),
xχy, xχz both holds, where χ, again, denotes an axis, then the corresponding
simulation should both return y and z. That is, in the document

<a><b><b>...</b></b></a>

there are two descendant b elements, and both should be returned in a simu-
lation of self::a/desc::b.

From now on, we assume that axis self only appears as the first axis of an
expression. Since subexpression a/self::b is unsatisfiable, while in subex-
pressions a/self::a, a/self::*, self::a, self::* can be omitted, our as-
sumption is justified.

XPgraphs. Let q be an XPath0 expression. An edge test a precedes edge
test b in q, if a is written first in left-to-right order. The last edge test is called
aim. If there are more than one a edge test in q, then the first occurrence
is indexed a1, the second a2 etc. Thus, in the rest of this section we shall
assume that all edge tests are different.

For representing the relations between edge tests we construct an auxiliary
graph, XPgraph. We denote the XPgraph of q with XPq. The nodes of XPq are
labelled with edge tests of q. There is an edge from a to b, if either a/desc::b,
or b/anc::a is a subexpression of q. In case of a/child::b, b/par::a this
edge is labelled with ch, par respectively. Clearly, XPq is without cycles. The
representation of the aim is called aim node. In XPq node a precedes node b,
if edge test a precedes edge test b. A node a in XPq is an upper node, if it
has no ingoing edges.

Example 6 For q3 = self::a/child::b/desc::d/par::a, XPq3
is given in

Fig. 10(a).

XPgraphs with one upper node. For the simulation of q we use XPq.
First we suppose that it has only one upper node. First we illustrate the
method with an example.

Example 7 The representation of q4 :=self::a/anc::b/child::d/child::c,
fq4

= (fa, fb, fc, fd), is the following (XPq4
can be found in Fig. 10(b)):
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Figure 10: (a) XPq3
. (b) XPq4

. (c) The XPgraph of Example 8 (d) The doc-
ument tree of Example 8. (e) The XPgraph of Example 9. (f) The document
tree of Example 9. (g) A document tree.

fb : ({b : t})= if n.i.(fa(t)) then fd(t) fa : ({a : t})= {ψ : {}}

else fb(t) ({∗ : t})= fa(t)

({∗ : t})= fb(t)

fd : ({d : t})= fc(t)

fc : ({c : t})= {ψ : {}} ({∗ : t})= fb(t)

({∗ : t})= fb(t)

In the simulation to each a ∈ V.XPq we assign a structural function fa.
Each such function contains two rows: the default case and another row cor-
responding to its label. With the latter we specify what should happen, when
the “desired label” is reached. For instance, the function representing the aim
node, in accordance with the definition of the equivalence of XPath0 expres-
sions and structural recursions, should construct a ψ edge. In the default
case, we can control whether we are to simulate a desc, anc axis, or a child,
par. In our example, fc calls fb in the default case, since the b edge should
be followed by a c edge immediately. For similar reasons, fd also calls fb in
its default case. On the other hand, fa should call itself, since there may be
arbitrary number of edges between b and a.

The upper node of XPq4
is b, hence the process of an input should start
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with fb, thus it is defined to be the upper structural function. With the
n.i.(fa(t)) condition we check whether the examined b edges have an a de-
scendant. Note that in functions representing a leaf different from the aim
node, in the non-default row we should also construct a ψ edge, since the
check of a n.i. condition ends there.

Formally, for edges (a, b) ∈ E.XPq in the default case fa calls itself. For
edges (a, par, b) ∈ E.XPq, in the default case the process should stop with
{}. On the other hand, in case of (b, ch, a) ∈ E.XPq, first we have to find the
maximal child-chain, u1, . . . , um s.t. ui ∈ V.XPq, (ui, ch, ui+1) ∈ E.XPq, um =

a, (um−1 = b). Then, in the default case fa should call fu1
.

In the a row (({a : t}) = . . . ), (i) if a is a leaf, or the aim node, a ψ edge
should be constructed. If there is a condition (see below), then this ψ edge
should be constructed in the then-branch.

(ii) If (a, b) or (a, ch, b) or (a, par, b) is the only outgoing edge of a, then, if
a is the aim node, then n.i.(fb(t)) is called, and a ψ edge should be constructed
in the then-branch. In the else branch fa should call itself. In case of edge
(a, par, b) and for edge (a, b), if a is the ancestor of b, a is surely the aim
node. Otherwise, if a is not the aim node, fb should be called. Again, in case
of edge (a, ch, b) and for edge (a, b), if b is the descendant of a, a is surely
not the aim node.

(iii) If a has another outgoing edge beside (a, b), (a, par, b) or (a, ch, b),
then if the aim node is not reachable through b on a directed path, then fb

should be called in a n.i. condition. Otherwise, it should be called in the
then-branch. In the else-branch, again, fa should call itself. Note that in this
case a is an upper node.

Denote f̃q the result structural recursion. Here, the only upper structural
function is the structural function of the upper node. In order to describe the
connection between q and f̃q, we introduce two notions.

Definition 4 For an XPath0 expression q = χ1 :: τ1/ . . . /χn :: τn, document
tree t, e0 ∈ E.t, e ∈ E.t is an uppermost result element of qτi

(e0), if (i)
e ∈ qτi

(e0), e is in a result chain, (ii) there does not exist any e ′ ∈ E.t s.t. e ′

is an ancestor of e, e ′ ∈ qτi
(e0), and e ′ is also in a result chain.

Definition 5 Let q be an XPath0 expression without predicates, t a document
tree, (u, a, v) = e ∈ E.t. Then, we say that the a row of fa in f̃q is called
successfully on e, if (i) ((fa, u), a, (θ, v)) ∈ E.Ufu t, (ii) if there is a condition
in the a row, it is satisfied (θ ∈ {fσ, w}, σ ∈ Σ).

With e ∈ Rt(a, fa), or shortly e ∈ R(a, fa), if the input is clear from the
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context, we denote that the a row of fa is called successfully on e.

Lemma 2 Let q = χ1 :: τ1/ . . . /χn :: τn be an XPath0 expression s.t. XPq

has only one upper node. Let t be a document tree, e0 ∈ E.t. Consider τj, and
e ∈ E.t s.t. lab(e) = τj, and e does not have any ancestor e ′ s.t. e ′ is an
uppermost result element of qτj

(e0). Then e ∈ qτj
(e0) iff e ∈ R(τj, fτj

) (fτj
is

in f̃q, 1 ≤ j ≤ n).

Proof. Suppose that (u, τi, v) = e1 is the uppermost element of t
e0
q . From this

it follows that τi is the upper node of XPq, and ((fτi
, u), τi, (θ, v)) ∈ E.Uf u t

(θ ∈ {fσ, w}, σ ∈ Σ).
(a) If e1 ∈ qτi

(e0), then there exists a sequence of edges e0, . . . , ei s.t.
ei = e1, ejχj+1, ej+1 (0 ≤ j ≤ i − 1). Since τi is the upper node, fτi

calls fτi−1

on e in a n.i. condition. Now, suppose that χi−1 is anc. Then the τi−1 row
of fτi−1

is only instantiated when the first edge under e1 with label τi−1 is
reached. If τi−1 is a leaf in XPq, a ψ edge is constructed, and the n.i.condition
is satisfied, consequently, e1 is in R(τi, fτi

).
If χi−1 is par, the reasoning is similar. The proof can be continued in-

ductively on the rest of the edge tests before τi. At the end we get that
e1 ∈ R(τi, fτi

)

For the other direction, if e1 ∈ R(τi, fτi
), and there is no condition in the

τi row, then τi is not preceded by any edge test in q, hence i = 1. Obviously,
e1 ∈ qτi

(e0). Otherwise, the condition is satisfied. Again, if τi−1/anc::τi

(τi−1/par::τi) is a subexpression of q, then a trivial analysis of fτi−1
shows

that it is guaranteed that e1 has a descendant (child) with label τi−1. The
proof can be continued inductively. At the end we get that e1 ∈ qτi

(e0).
Hence, the statement of the lemma holds for e1.

Beside the supposition that e1 ∈ qτi
(e0), assume further that τi−1/anc::τi

is a subexpression of q. Let e2 be a descendant of e1 s.t. lab(e2) = τi−1, and
there is not any ancestor e3 of e2 s.t. e3 is a descendant of e1, lab(e3) = τi−1.
Such edges will be called first τi−1 descendants. The previous reasoning shows
that the τi−1 row of fτi−1

is called on e2. Furthermore, from the rewriting rules
we also know that this τi−1 row does not contain any condition. Consequently,
e2 ∈ R(τi−1, fτi−1

). Additionally, since e1 ∈ qτi
(e0), e2 ∈ qτi−1

(e0). Hence,
the statement also holds for e2. The proof is similar, when τi−1/par::τi is a
subexpression of q. Thus, it can be shown inductively that the lemma holds
for all edge tests before τi in q.

If τi/desc::τi+1 is a subexpression, then fτi
calls fτi+1

, which again finds
the first τi+1 descendants of e1. Again in its τi+1 row fτi+1

, even if τi+1 is the
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aim node, does not have any condition. Consequently, the lemma also holds
for these edges.

In case of τi/child::τi+1, if e2 is a child of e1 with label τi+1, then the
statement is true for e2. Otherwise, fτi+1

calls fτi
in its default case, and the

whole previous reasoning can be applied to the first τi descendants of e2.
(b) If e1 /∈ qτi

(e0), then the condition of the τi row of fτi
is not satisfied,

hence fτi
is called again in the else branch. Again, the reasoning is similar for

the first τi descendants.
Furthermore, if edge e is an uppermost result element of qτj

(e0), then it is
easy to show, that fτj

is not instantiated on any descendants of e. ¥
In other words the lemma says that f̃q, for an arbitrary input tree and a

fixed edge e0, finds all of those “uppermost” edges that may be touched, or
may be elements of a result chain of q called on e0.

Corollary 1 Keeping the assumptions of Lemma 2, for document tree t, edge
test τj, e ∈ E.t, where lab(e) = τj, and for an arbitrary edge ē of t, if e

does not have any ancestor e ′ s.t. e ′ is an uppermost result element of qτj
(ē).

Then e ∈ qτj
(ē) iff e ∈ R(τj, fτj

) (fτj
is in f̃q, 1 ≤ j ≤ n).

Note that the only difference between Lemma 2 and Corollary 1 is that in
the latter case we do not fix edge e0, where the evaluation of q should start.

A document tree t is called simple, if for an arbitrary edge e, where lab(e) =

σ, e does not have any σ ancestor in t.

Corollary 2 Keeping the above assumptions and notations, if t is simple,
then q is equivalent with f̃q.

Corollary 2 shows that f̃q simulates q correctly for a large and practically
the most important class of document trees.

To establish the equivalence for all document trees, we have to develop a
modified version of function fσ to be able to process σ edges that are in a
descendant-ancestor relationship. For this we introduce a method called the
repetition of σ. Informally, in the σ row we call fσ or the appropriate struc-
tural function again. As an example of repetition, consider f = (fa1

, fb, f1
d)

of Example 3 that simulates self::a/child::b/desc::d. There, we have
repeated d in f1

d.
Formally, in the repetition of τi, if neither the ingoing, nor the outgoing edge

of τi is labelled with ch or par, then in its τi row fτi
should also call itself.

This means that on the right side (in the then branch, if it exists) instead of
{ψ : {}} or fτi+1

(t), {ψ : {}}@fτi
(t) or fτi+1

(t)@fτi
(t) should be written.
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If τi is in a path pa = u1 . . . um in XPq s.t. pa has either solely ch, or
solely par edges, then (suppose that pa is maximal in terms subsumption
with respect to this property), then in the repetition of τi fu1

should call itself
in its u1 row.

In order to describe why we have chosen this construction we show two
examples.

Example 8 First, consider the XPgraph of Fig. 10(c), and suppose that we
are to repeat b, but here fb calls itself in its b row. (According to our definition
fa should call itself in its a row.)

fa : ({a : t})= fb(t) fb : ({b : t})= fc(t)@fb(t)

({∗ : t})= fa(t) ({∗ : t})= fa(t)

fc : ({c : t})= fd(t) fd : ({d : t})= {ψ : {}}

({∗ : t})= fa(t) ({∗ : t})= fa(t)

It is not difficult to see that for the document tree of Fig. 10(d) this struc-
tural recursion constructs a ψ-edge, though it should not. Here the problem is
that it is not checked whether the second b edge has an a parent. This shows
that in the repetition the whole check should start from the beginning, hence
fu1

should be called.

Example 9 Secondly, for the XPgraph of Fig. 10(e) we repeat a2, but fa1
is

called in the a row of fa2
instead of the a row of fa1

.

fa1
: ({a : t})= fb1

(t) fb1
: ({b : t})= fa2

(t)

({∗ : t})= fa1
(t) ({∗ : t})= fa1

(t)

fa2
: ({a : t})= fb2

(t)@fa1
(t) fb2

: ({b : t})= {ψ : {}}

({∗ : t})= fa1
(t) ({∗ : t})= fa1

(t)

Again, for the document tree of Fig. 10(f) only one ψ edge is constructed
as a result of the second b edge, though as a result of the third b edge another
ψ edge should also be constructed. This is because fa1

is not called on the
second a edge. This shows that in the repetition fu1

should be called in its
own u1 row.
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Suppose now that in Example 9 we call fa1
in its a row. Then for the

document tree of Fig. 10(g) after the c edge two “instances” of fa1
are called

on b, although only one should process this edge. Hence, we should slightly
change the rewriting rules, when a node of a child-chain is to be repeated. In
this case, in the default cases fu2

, . . . , fum instead of calling fu1
the empty

graph should be constructed. With this the XPgraph of Fig. 10(e) should be
rewritten as follows.

fa1
: ({a : t})= fb1

(t)@fa1
(t) fb1

: ({b : t})= fa2
(t)

({∗ : t})= fa1
(t) ({∗ : t})= {}

fa2
: ({a : t})= fb2

(t) fb2
: ({b : t})= {ψ : {}}

({∗ : t})= {} ({∗ : t})= {}

Finally, if we are to repeat τi = uk and τj = ur, (1 ≤ k, l ≤ m), then it is
enough to call fu1

in its u1 row once.

Lemma 3 For a given XPath0 expression q = χ1 :: τ1/ . . . /χn :: τn, where
XPq has only one upper node, document tree t and e0 ∈ E.t, e ∈ E.t is in
qτi

(e0) iff e ∈ R(τi, fτi
), where we have repeated τi in f̃q.

Proof. The statement straightforwardly follows from the proof of Lemma 2
and from the previous consideration. ¥

Now, repeat τn in f̃q. We denote the result with fq.

Corollary 3 Keeping the above notations, q ' fq.

Note that from Lemma 2 and Lemma 3 it also turns out that, when we sim-
ulate q with fq, and traverse t top-down, in most cases we only look for the
first elements that are in a result chain. When we find one, the correspond-
ing part of the process stops. It seems hard to find such an implementation
strategy that would not process these elements in a top-down traverse. Thus,
we can say that we only process those edges that are necessary to process.

XPgraphs with several upper nodes. Unfortunately, till now, we have
not found any rewriting technique with which we could simulate an XPath0

expression, whose XPgraph has several upper nodes, with a structural recur-
sion not using registers. However, with registers, the simulation is almost
straightforward.
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Let u1, . . . um be the upper nodes of XPq. For ui denote XP
ui
q the subtree

reachable from ui in XPq (1 ≤ i ≤ m). Clearly, each XP
ui
q represents a

“subquery” of q. For

q3 = self::a/child::b/desc::d/par::a

these subqueries are self::a/child::b/desc::d and desc::d/par::a (cf.
XPq3

in Fig. 10(a)). With the results of the previous paragraphs, the corre-
sponding structural recursion, f

ui
q , can be given. Note that a leaf a of XPq may

appear in both XP
ui
q and XP

ui+1
q (1 ≤ i ≤ m−1). To differentiate between the

appropriate structural functions, we denote them fi
a, fi+1

a , respectively. With
this for such leaves we require Xa

fi
a

= Xa
fi+1
a

. The intuition is clear, simply, we

are to connect structural recursions f
ui
q and f

ui+1
q .

However, here, in the structural recursion we have to repeat the preceding
a leaves as well, otherwise it is not difficult to see, we may lose elements of the
result. We denote these new structural recursions f

ui
q and f

ui+1
q again. fq is

constituted by the structural functions of f
ui
q -s (1 ≤ i ≤ n). fu1

, . . . , fum are
the upper structural functions and, since the aim node is reachable from um,
we designate fum to be the root structural function of fq. It is important to
note that the size of fq is linear in the size of q.

As an example, consider fq3
= (fa1

, fb, f1
d, fa2

, f2
d) of Example 3 with register

restriction Xd
f1
d

= Xd
f2
d
. Here, the root structural function is fa2

.

Theorem 1 Let q be an XPath0 expression without predicates. Then fq ' q.

Proof. For e ∈ E.t with e ∈ Rt
reg(a, fa), or shortly e ∈ Rreg(a, fa), we are to

indicate that (i) e ∈ Rt(a, fa) (ii) e satisfies all register restrictions Xa
fa

= Xa
fσ

σ ∈ Σ. (For fi
a, register restrictions Xa

fi
a

= Xa
fi+1
a

should also be satisfied.)
Assume now that q = χ1 :: τ1/ . . . /χn :: τn, XPq has two upper nodes,

u1, u2, and the common leaf represents τi (1 ≤ i ≤ n − 1). q ′ := χi+1 ::

τi+1/ . . . /χn :: τn. Clearly, for an arbitrary document tree t, e0 ∈ E.t, e ∈
q(e0) iff there exists ē ∈ E.t, ē ∈ qτi

(e0) s.t. e ∈ q ′(ē). Hence, using the
results of Corollary 1 and Lemma 3 e ∈ q(e0) iff e ∈ Rt

reg(τn, fτn). Since the
root structural function is fu2

, fq may only stop on edges in Rt
reg(τn, fτn). (If

there was not any root structural function, since τi is the aim node of XP
u1
q , fq

would also stop on edges in Rt
reg(τi, f

1
τi

), thus q and fq would not be equivalent
(see Definition 3)). All in all, we get that e ∈ q(e0) iff fq stops on e. The
proof can be continued inductively on the number of upper nodes of XPq in
the same way. ¥
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Now, one may find too costly that for example in fq3
we traverse the whole

input with (fa2
, f1

d), with which, remember, we seek for a edges with d chil-
dren. There may be too many of such a edges that are not included in the
result, and another implementation would not take care of them, since in the
previous steps it has already found the appropriate d edges with a b ancestor,
whose parent is a. On the reverse side of the coin, in most cases elements
do not have descendants with the same name, in these scenarios it is enough
to check the first a elements. This information can be obtained when the
structure of the input is given by an XML Schema or a DTD. In [4] we show
how DTDs and extended DTDs work together with our methods and handle,
among other things, the preceding problem.

XPath0 with predicates

In order to ease the notation, we shall assume that

q = χ1 :: τ1[p1]/ . . . /χn :: τn[pn].

Here, τi is called the base of pri-s (1 ≤ i ≤ n), while

qsk = χ1 :: τ1/ . . . /χn :: τn

is called the skeleton (of q). First, we suppose that each pi consists of a single
atomic condition, qpi = c or qpi = x. Furthermore, for a moment, we also
assume that all qpi-s are of the form self::* or self::τi.

Then, when we construct fq, the τi row of fτi
should be completed with

val(τi) = c or val(τi) = x condition in accordance with the conditions of pi-s.
(If there is already a condition, then the conjunction of the conditions should
be taken.) In the else branch (if it has not given previously) fτi

should call
itself.

Lemma 4 Keeping the previous notation q ' fq.

Proof. The statement trivially follows from Theorem 1 and of the additional
rule of construction. ¥
XPath0 without embedded predicates. Loosening our restrictions, we
only assume now that the predicates consist of a single atomic condition,
whose XPath0 expression does not contain predicates. Using the indexing of
edge tests of the previous subsection, again, we shall assume that the edge
tests of q are all different from each other. Straightforwardly, the XPath0
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expression of a predicate qp = χ1 :: τ1/ . . . /χk :: τk can be rewritten as
self::τ0/χ1 :: τ1/ . . . /χk :: τk, where τ0 is the base of qp. Similarly, condition
qp = θ means the same as

self::τ0/χ1 :: τ1/ . . . /χk :: τk[self::*=θ] (θ ∈ {c, x}),

consequently qp can be simulated using the technique of the previous para-
graph. In what follows, we shall always use this rewriting.

Next, by means of register restrictions, we are to “join” the structural re-
cursions of predicates with the structural recursion of the skeleton using bases
as connection points. Hence, when we rewrite qp, we should take the base as
the aim node, which was the starting point of qp originally. This means that
we move in the opposite direction. Consequently, if in qp χj is ch or par, then
in the XPgraph of qp we should change the ch labels to par labels and vice
versa (1 ≤ j ≤ k). With this fqpi , or shortly fpi

, can be constructed. The
structural function corresponding for the predicate of base τi will be denoted
f
pi
τi

.
In the structural recursion of the skeleton, fsk, we repeat each base (remem-

ber that in a child- or parent-chain u1 . . . um, if we are to repeat uk, us, then
fu1

is called in its u1 row only once (1 ≤ k, s ≤ m)). Again, if we did not do
so, we may lose elements of the result.

To use bases as connection points, we add the restrictions X
τi
fτi

= X
τi

f
pi
τi

. fq is

constituted by the structural functions of fpi
-s, fsk and the preceding register

restrictions. Its upper structural functions are the structural functions of
upper nodes. Moreover, suppose that XPu is the XPgraph containing the aim
node of the skeleton. Then fu is designated to be the root structural function.
As an example consider the rewriting of q1, f = (fa1

, fb, f1
d, fa2

, f2
d, f

pr1
c , f

pr1
a1

)

of Example 3.

Theorem 2 Let q be an XPath0 expression s.t. each edge test has at most
one predicate, and the XPath0 expressions of these predicates do not contain
predicates, then q ' fq.

Proof. The theorem straightforwardly follows from the previous considera-
tions. ¥

Corollary 4 Let q be an XPath0 expression without variables. Then for an
arbitrary document tree t, fq(t) can be constructed in O(|f||t|) time. If the size
of variables, i.e., the size of the list of edges which the variable is equal to, is
restricted with a constant, the evaluation of fq(t) still works in linear time. In
worst case scenarios the construction can be accomplished in O(|f||t|2) time.
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General case. Firstly, we allow Boolean combinations of atomic conditions
in the predicates. Without loss of generality, we may suppose that base τr has
predicate (¬)(qp1 = b1)θ1 . . . θk(¬)(qpk = bk); with (¬) we indicate that there
may be a negation (θi ∈ {∧,∨}, 1 ≤ i ≤ k). Then the corresponding register
restriction is of the form: R̂eg1θ1 . . . θkR̂egk, where R̂egi ∈ {Regi,¬Regi}, and
Regi is Xτr

fτr
= Xτr

f
pri
τr

. In R̂egi Regi is negated if the corresponding qpi = bi

condition is negated.
Secondly, if we allow predicates in the XPath0 expressions of predicates,

then the rewriting algorithm can be continued recursively. Again, the size of
the result structural recursion is linear in the size of the simulated XPath0

expression.

5 Rewriting of XSLT0

As in the previous section, first we have to define the equivalence of an XSLT0

program and a structural recursion.

Definition 6 Let t, t ′ be document trees. Then t is equivalent with t ′, if
there is a one-to-one mapping φ : V.t → V.t ′ s.t. (i) φ(u0) = u ′0, where
u0, u

′
0 denote the roots of t and t ′, respectively. (ii) For e = (u, a, v) ∈ E.t,

e ′ = (φ(u), a, φ(v)) is also in E.t ′, and val(e) = val(e ′). (iii) If for e1 =

(u1, a1, v1), e2 = (u2, a2, v2) ∈ E.t, e1 precedes e2, then (φ(u1), a1, φ(v1)) also
precedes (φ(u2), a2, φ(v2)).

Definition 7 For an arbitrary XSLT0 program P and structural recursion f,
P is equivalent with f, if for all document tree t, τP(t) is equivalent with f(t).

Rewriting of (m,σ)-rules

First, we are to simulate a single (m,σ)-rule, T , with a given variable assign-
ment. For this we assume that T does not construct anything just selects a
list of edges for further processing in mode r. An instantiated template then
simply constructs a ψ edge and stops. Furthermore, remember that each pro-
gram contains a special (st, /)-rule, which is called on the document edge and
constructs a result edge as the document edge of the output. Here, we also
suppose that this rule invokes the next template in σ descendants in mode
m, i.e., T is called. The corresponding program is denoted PT . With these
suppositions we get that PT constructs a star of ψ edges.
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Example 10 Consider this rather artificial example, where T is called on a

edges, and if the edge in question has a c ancestor with value 5, the next
template is invoked on parent b, otherwise on children c.

template st(/, ε) (Tst)

return

if true then {result : {}} at-expr: m(desc::a, ε, ε);

end.

template m(a, ε) (T)

return

if anc:c= 5 then {} at-expr: r(par::b, ε, ε);

if true then {} at-expr: r(child::c, ε, ε);

end.

template r(b, ε) (T1) template r(c, ε) (T2)

return return

if true then {ψ : {}} if true then {ψ : {}}

end. end.

Remember that an (m,σ)-rule contains conditions of the form: if ci then
zi; where zi ∈ F∆(AT ) (forests with edge labels from ∆ and with possible
at-expression leaf labels) (1 ≤ i ≤ k). Since T constructs nothing, each zi is a
node with at-expression r(p, ε, ε), where, remember, p is an XPath0 expres-
sion, the first ε means T has no parameters, the second ε indicates that there
is not any variable assignment. In the sequel p will be referred as xp(zi).

It is easy to see now that such a condition works in the same way as qi :=

self::σ[ci]/xp(zi). Denote XPi the XPgraph of qi. Then we may speak
of the aim node of the ith condition. Clearly, the corresponding structural
recursion of qi, T fqi

can be constructed (here T in the subindex implies that
the structural recursions simulates a condition in template T). Remember that
T fqi

is divided into two structural recursions representing

self::σ/ci (predicate) and self::σ/xp(zi) (skeleton).

Denote them T fci
and T fzi

, respectively.
Owing to its distinguished role, the representation of σ will be called match-

ing node. Since we are to call structural recursion T fqi
on every possible sub-

tree {σ : t} of the input, σ should also be repeated. If ci is a real condition,
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then σ is also a base, and according to the rewriting rules of XPath0 expression
with predicates, every base should be repeated. However, if ci is constant true,
then we should repeat σ explicitly. In the rewriting of the program of Example
10, in order to be able to simulate PT , we introduce two new constructions.

Tstf/ :({/ : t})= {result : {z1
T fb(t),z2

T fa(t)}}

c1
T fc : ({c : t})= if val(c) = 5 then c1

T fa(t)

else c1
T fc(t)

({∗ : t})= c1
T fc(t)

c1
T fa : ({a : t})= {ψ : {}}@c1

T fa(t)

({∗ : t})= c1
T fa(t)

z1
T fb : ({b : t})= if n.i.(z1

T fa)(t)) then {ψ : {}}@z1
T fb(t)

else z1
T fb(t)

({∗ : t})= z1
T fb(t)

z1
T fa : ({a : t})= {ψ : {}}

({∗ : t})= {}, Xa
c1
T fa

= Xa
z1
T fa

z2
T fa : ({a : t})= z2

T fc(t)@
z2
T fa(t) z2

T fc : ({c : t})= {ψ : {}}

({∗ : t})= z2
T fa(t) ({∗ : t})= {}

if e ∈ X̃a
c1
T fa

then delete z2
T fa(e)

else if true then delete z1
T fa(e)

The first of these new constructions is in the right side of the / row of
Tstf/. Namely, the leaf of {result : {}} is labelled with a set of structural
functions z1

T fb(t),z2
T fa(t) instead of a single structural function (cf. Fig. 6),

in notation {result : {
z1
T fb(t),z2

T fa(t)}}. With this we indicate that both the
results of z1

T fb,
z2
T fa called on t should be appended to the result edge. Here,

z1
T fb,

z2
T fa(t) are the root structural functions of T fz1

,T fz2
. Note that the root

structural function c1
T fc of T fc1

is not called anywhere, however, in order to be
able to construct the result of T fz1

, T fc1
should also be evaluated, thus when

we call z1
T fb, implicitly we also call c1

T fc.
The second condition is introduced so as to be able to simulate conditions

if ci then zi;. The meaning of
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if e ∈ X̃a
c1
T fa

then delete z2
T fa(e)

else if true then delete z1
T fa(e),

is that if edge e = (u, a, v) of document tree t is processed by the a row of
c1
T fa (e ∈ Xa

c1
T fa

) and this edge does not become unreachable in Uf u t after

the evaluation of n.i. conditions (this is denoted with (e ∈ X̃a
c1
T fa

)), then

edge ((z2
T fa, u), a, (z2

T fc, v)) (z2
T fa called on e) should be deleted from Uf u t.

Otherwise edge ((z1
T fa, u), a, (w, v)) (z1

T fa called on e) should be deleted. Since
c1
T fa represents the aim of the XPath0 expression of c1, if e is in Xa

c1
T fa

, and the

corresponding edge is kept, then c1 is satisfied by the appropriate subgraph
of e, hence this branch of the condition is to be executed. (Note that as a
result of an {a : t} singleton z2

T fa calls z2
T fc, while z1

T fa calls no other structural
function, thus the corresponding node is linked to w in UfT

. Consequently,
edges ((z2

T fa, u), a, (z2
T fc, v)), ((z1

T fa, u), a, (w, v)) are surely in Uf u t.)
As we have already indicated the matching nodes of XP1, XP2 should be

repeated, which is the a node in both XPgraphs. In the first case a is a child
of b, hence according to the rules of repetition z1

T fb should call itself in its b

row. Note that b is also the aim node of XP1, and the aim node should also
be repeated. However, according to the rules of repetition, it is enough to call
z1
T fb only once.

In the second case z2
T fa calls itself in the a row. Note that according to

the rewriting rules of XPath0 expressions, since it is the aim node, again, we
should also repeat c.

In the general case in its / row Tstf calls all of the root structural functions
of T fqi

-s, i.e., {result : {
z1
T fσ1

, . . . ,
zk
T fσk

}} should be constructed on the right
side of the / row, where zi

T fσi
denotes the root structural function of T fqi

(1 ≤ i ≤ k). (Remember that T fqi
represents condition if ci then zi of T .)

Furthermore, when we are to simulate conditions:

if c1 then z1; . . . if ck then zk;

then the following should be written:

if e ∈ X̃c1
T fa

then delete z2
T fa(e), . . . ,zk

T fa(e)

if e ∈ X̃c2
T fa

then delete z1
T fa(e),z3

T fa(e) . . . ,
zk
T fa(e)

...
...

if e ∈ X̃ck
T fa

then delete z1
T fa(e),z1

T fa(e) . . . ,
zk−1

T fa(e)
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Here, the evaluation ci
T fa is independent from the evaluation z1

T fa, . . . ,
zk
T fa.

Thus, first ci
T fa-s should be evaluated and then only the remaining z1

T fa should
be called on e (1 ≤ i ≤ k).

Theorem 3 Keeping the above notation and suppositions, PT is equivalent
with fT .

Proof. Let t be a document tree. Suppose that T is called on edges ê1, . . . , êr,
for êi the sth condition is satisfied, and the (r, σs)-rule is called on edges
e1, . . . , ek. Remember that this rule constructs a single ψ edge. Hence as
a result of êi P constructs a node with k outgoing ψ edges. Denote ψei

the ψ edge constructed on ei (1 ≤ i ≤ k). From Theorem 2 we know that
when T fzs starts on êi and it stops on e1, . . . , ek. Furthermore, for each ei

it constructs a ψ edge (1 ≤ i ≤ k). Hence, as a result êi T fqs constructs
a node with k outgoing ψ edges. Additionally, in both cases ψei

precedes
ψej

, if ei precedes ej in document order. With this, the construction of the
corresponding mapping φ (Definition 6) is trivial. ¥

Rewriting of programs with several rules

Programs with a given variable assignment. Now, we consider an XSLT0

program P with rules T1, . . . , Tm. Again, we assume that there is a given
variable assignment ρ. We do not assume that zi-s are single at-expressions,
but for the sake of transparency, we suppose that they contain only one at-
expression as a leaf label. This leaf will be referred as at-leaf. This means that
in its ith condition Tj may call at most one Tk (1 ≤ j, k ≤ m). The XPath0

expression of this at-expression is still denoted xpj(zi) or xp(zi), if j is clear
from the context. We also assume that the edge tests of aim nodes of xp(zi)-s
are all different from ∗-s (except for (st, /)-rule). From this, it follows that in
all cases Tj in its ith condition calls the same Tk.

To delineate the relationships among the templates, we define an auxiliary
graph, the precedence graph (of rules of P). Its nodes are labelled with Ti-s.
There is an edge from Ti to Tj labelled with k, if the kth condition of Ti calls
Tj (1 ≤ i, j ≤ m).

Example 11 As an example of simulation, consider the following program
P = (T1, T2, T3) and its rewriting. In P T2 is called on b descendants of the
document edge. It constructs a b edge and calls T3 on c parents. T3 constructs
a tree {a : {b : {}}@{c : {}}} and stops.
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template st(/, ε) (T1)

return

if true then {result : {}} at-expr: m(desc::b, ε, ε);

end.

template m(b, ε) (T2)

return

if true then {b : {}} at-expr: m(par::c, ε, ε);

end.

template m(c, ε) (T3)

return

if true then {a : {b : {}}@{c : {}}}

end.

T1
f/ : ({/ : t}) = {result :z1

T1
fb(t)}

({∗ : t}) = {}

z1
T1

fb : ({b : t}) = z1
T1

fb(t)

({∗ : t}) = z1
T1

fb(t)

z1
T2

fc : ({c : t}) = if n.i.(z1
T2

fb(t)) then {b : {}}@z1
T2

fc(t)

({∗ : t}) = z1
T2

fc(t)

z1
T2

fb : ({b : t}) = {ψ : {}}

({∗ : t}) = {}, Xb
z1
T1

fb
= Xb

z1
T2

fb

z1
T3

fc : ({c : t}) = {a : {b : {}}@{c : {}}}@z1
T3

fc(t)

({∗ : t}) = z1
T3

fc(t), Xc
z1
T2

fc
= Xc

z1
T3

fc

The rewriting works similarly as in the previous subsection. The main
difference is that here, instead of a star of ψ edges an arbitrary document tree
is constructed. In order to properly simulate this construction, first, we have
to note that constructions should be accomplished, when the matching node
is reached. In other words this means that in most cases the construction
should take place in the µi row of zj

Ti
fµi

, where µi denotes the matching node
of template Ti (1 ≤ i ≤ m) (here, we have also assumed that the jth condition
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is satisfied first). This is the case in T1 and T3 in our example, where the
matching nodes are b and c.

It may happen, however, that zj

Ti
fµi

is called in the check of a not-isempty
condition, thus its construction does not appear in the result. This is the case
in T2. It is easy to see now that in this case the first axis in xp(zj) is either
par, or anc. (Remember that the jth condition, if cj then zj, is considered
as self::µi[cj]/xp(zj).) Denote u1 the upper node of the first XPgraph of
self::µi/xp(zj). (This means that there is a directed path w1 . . . ws in this
XPgraph, where w1 = u1, ws = µi and the edges are not labelled or they
are labelled with par.) Construction should take place in the u1 row of zj

Ti
fu1

.
More accurately, in the then-branch of zj

Ti
fu1

.
Now, suppose that the construction takes place in the ϕ row of zj

Ti
fϕ and

let zj

Ti
fσ(t) be the structural function to be called there. Then (in the then-

branch) we construct zj changing its at-expression label to zj

Ti
fσ(t). In our

example in T1, this new forest is {result :z1
T1

fb(t)}. (In T3 z1 does not have any
at-expression leaf label, hence it should be used without changes.)

Furthermore, in fP we have to connect the structural recursions of (m,σ)-
rules using the precedence graph. For edge (Ti, s, Tj) we add restriction, X

αi
s

f
αi

s

=

X
µj

fµj
(1 ≤ i, j ≤ m), here αi

s denotes the aim node of xpi(zs).
Note that fP does not specify how the basic forests constructed by struc-

tural recursions of templates should be connected. Consequently, it does not
guarantee any order among the basic forests. In what follows, we show how
the output should be constructed and how the order of the basic forests should
be defined. Meanwhile, we also establish the equivalence of P and fP.

Instantiation of an (m,σ)-rule by another. As a first step, recall the
semantics of XSLT0. Remember that if (e,m, ρ) is a local configuration, then
e ∈ E.t, m is a mode, ρ is a given variable assignment, and it shows that
(m,σ)-rule T is to be applied on e (here lab(e) = σ and the parameters of
T are in the domain of ρ). Now, let Tj, Tk be (mj, σj)-, (mk, σk)-rules and
e1, e2 ∈ E.t. We say that (Tj, e

1) instantiates (Tk, e2) in its sth condition, if
there is a ξ ∈ T ∆(LC∗(t)) (LC∗(t) denotes sequences of local configurations)
s.t. in a former step, location configuration (e1,mj, ρ) was substituted with
the result of Tj called on e1, fo, where the sth condition of Tj was satisfied,
and as a result we get ξ. Furthermore, in fo there is a leaf label (e2,mk, ρ),
which is to be substituted with the result of Tk called on e2 (1 ≤ j, k ≤ m).
Here, lab(e1) = σj and lab(e2) = σk.

Belonging to the same calling of fTj
. To catch this notion with struc-
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tural functions we introduce two notions. Suppose that GfP,t has already been
constructed. For a moment, however, suppose that we rewrite the premises
that have already been deleted. For edges e1, e2 ∈ E.t, e1 ∈ Rreg(µj, fµj

),
e2 ∈ Rreg(α

j
s, fα

j
s), we are to define and check when e1, e2 belong to the same

call of fTj
. Here, remember that e1 ∈ Rreg(µj, fµj

), e2 ∈ Rreg(α
j
s, fα

j
s) mean

that structural functions respectively representing the matching node of Tj

and the aim node of its sth condition are called successfully on e1 and e2.
Intuitively, e1 and e2 belong to the same of fTj

, if there is a path from e1 to
e2 specified by xpj(zs) in GfP,t with the rewritten premises, which shows that
Tj was instantiated on e1, and e2 was selected for further processing.

Formally, consider the XPgraph of the skeleton of the sth condition of Tj.
Suppose that u1, . . . , ur are the upper nodes. Suppose also that each XPu

i

has two leaves v2i−1, v2i (1 ≤ i ≤ r) (Fig. 10(d)). Denote evi
∈ E.UfP

the
edge corresponding to the then-branch of the vi row of fvi

(1 ≤ i ≤ 2r). e1

and e2 belong to the same call of fTj
, in notation (fTi

(e1, e2)), if there exist
edges in E.t e0, . . . , er s.t. e0 = e1, er = e2, (i) ei ∈ Rreg(v2i, f2i), and ei ∈
Rreg(v2i+1, f2i+1) (1 ≤ i ≤ r − 1). (ii) for (ev2j+1

, ej), (ev2j+2
, ej+1) ∈ E.UfP

u t,
(ev2j+2

, ej+1) is reachable from (ev2j+1
, ej) through a path containing exactly

one neighbouring premise and then-edge pairs (the ancestor images of these
conditional edges correspond to the u2j+1 row of fu2j+1

) (0 ≤ j ≤ r). (Consider
Fig. 10(d) again.) Here, (i) means that ei satisfies the corresponding register
restriction X

v2i
fv2i

= X
v2i+1

fv2i+1
. On the other hand, condition (ii) says that ej, ej+1

“correspond” to the two leaves of XPuj+1.
Note that, an algorithm that takes Ti and edges e1 ∈ R(µi, fµi

) as input
and finds all those edges e2 to which (fTi

(e1, e2)) holds, uses only the edges of
paths from (ev2j+1

, ej) to (ev2j+2
, ej+1) of condition (ii). Thus, it is possible to

develop such an algorithm working in O(|t||f|) time.
Instantiation of structural functions. With Inst(fTi

, e1, s, fTj
, e2) we

denote that e1 ∈ Rreg(µi, fµi
), e2 ∈ R(αi

s, fα
i
s), e2 ∈ Rreg(µj, fµj

), and
(fTi

(e1, e2)). Clearly, with this definition we are to simulate the instantiation
of Tj by Ti in the sth condition. Note that, here e2 also satisfies restriction

X
αi

s
f
αi

s

= X
µj

fµj
.

Note also that, when for e1 we have found an edge e2 s.t. fTi
(e1, e2), then

the appropriate Tj, to which Inst(fTi
, e1, s, fTj

, e2) holds, can be found using
the precedence graph.

In what follows, the template to be called on the document edge is denoted
Tst.
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Definition 8 Keeping the above notations, we say that fTr is called on e via
the document edge (in the kth step), if there exists a sequence of edges of
E.t e1, . . . , ek, and fTi1

, . . . , fTik
, s.t. fTi1

, fTik
are respectively the same as

fTst , fTr, and Inst(fTij
, ej, sj, fTij+1

, ej+1) (1 ≤ j ≤ k − 1).

Note that register restrictions connecting matching nodes and aim nodes
of different templates guarantee that if a subgraph of the input is processed
by fTi

, then the result is only included in the output, if fTi
is called via the

document edge.

Lemma 5 For given XSLT0 program P = (T1, . . . , Tm), document tree t,
e1, e2 ∈ E.t, (Ti, e

1) instantiates (Tj, e
2) in its sth condition iff fTi

is called
on e1 via the document edge, and Inst(fTi

, e1, s, fTj
, e2).

Proof. We use induction on the number of steps k in which fTi
has been

called on e1 via the document edge. First suppose that k = 0, i.e., fTi
is fTst

and e1 is the document edge.
⇒: Clearly, in this case fTi

is called on e1 via the document edge. Suppose
now that Ti, Tj are (mi, σi)-, (mj, σj)-rules. Then (Ti, e

1) instantiates (Tj, e
2)

in its sth condition, if there is a ξ ∈ T ∆(LC∗(t)) s.t. in a former step, location
configuration (e1,mi, ρ) was substituted with the result, fo, of the sth con-
dition of Ti called on e1. Furthermore, in fo there is a leaf label (e2,mj, ρ),
which is to be substituted with the result of Tj called on e2 (1 ≤ j, k ≤ m).

The fact that Ti has been called on e1 means that e1 ∈ R(µi, fµi
). Note

that, since this instantiation of Ti does not depend on any other instantiation
of Tj-s, here e1 should not satisfy any rule register restrictions (1 ≤ j ≤ m).
Hence e1 ∈ Rreg(µi, fµi

). Since the sth condition is of the form:

qs = self::σ[cs]/xpi(zs),

the fact that the sth condition of Ti has been satisfied guarantees that e2 ∈
qs(e

1) (Theorem 2), which means that e2 ∈ R(αi
s, fαi

s
). Since Tj is called on e2,

we know that e2 ∈ R(µj, fµj
). It is also obvious that (fTi

(e1, e2)). Consequently
Inst(fTi

, e1, s, fTj
, e2). Furthermore, it has also turned out that fτj

is called
on e2 via the root.

The general step of this direction is similar.
⇐: The proof is similar to the proof of the other direction. In this case, we

only have to change the “direction” of the reasoning. ¥
Connection of the basic forests. Finally, we should connect the basic

forests in an order corresponding to the order given by the simulated XSLT0
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program. Here, the fact that Inst(fTi
, e1, s, fTj

, e2) holds means that a basic
forest fo belonging to the sth condition of Ti is constructed. Label its root
and at-leaf with (fTi

, e1), (fTj
, e2) respectively. (Remember that the at-leaf is

the leaf previously labelled by an at-expression.) The result forest is denoted
fo(fTi

, e1). Afterwards, we connect the basic forests with ε edges. Namely, we
add ε edges from leaf labels of (fTj

, e2) to root labels (fTj
, e2). At the end these

ε edges should be eliminated. Note that, with the connection of the at-leaf
(fTj

, e2) of fo(fTi
, e1) and the root of fo(fTj

, e2), we simulate that moment,
when in the instantiation of Tj by Ti, the leaf with location configuration label
(e2,mj, ρ) is substituted with the result of Tj called on e2.

Order of the result. In order to define an order in the result, we first give
an order among the basic forests. We construct an auxiliary graph, InstP,t,
whose nodes are labelled with (fTi

, e)-s. We add an edge from (fTi
, e1) to

(fTj
, e2) with label s, if Inst(fTi

, e1, s, fTj
, e2).

Now, fo(fTi
, e1) precedes fo(fTj

, e2), (i) if (fTi
, e1) and (fTj

, e2) have a com-
mon parent (fTs , e) in InstP,t, and e1 precedes e2 in the document order
(1 ≤ i, j ≤ m). Clearly, this case represents that, when Ts has been in-
stantiated on e and both e1 and e2 have been chosen for further processing.
Thus e1 and e2 have been selected by the same XPath0 expression and in the
same mode, consequently i = j holds.

(ii) Denote (fTs , e) the first common ancestor of (fTi
, e1) and (fTj

, e2) in
InstP,t. Suppose that (fTk

, e3), (fTk
, e4) are children of (fTs , e), and (fTi

, e1),
(fTj

, e2) are reachable through (fTk
, e3), (fTk

, e4) respectively. Then fo(fTi
, e1)

precedes fo(fTj
, e2), if fo(fTk

, e3) precedes fo(fTk
, e4).

Now, if fo(fTi
, e1) precedes fo(fTj

, e2), then the edges of fo(fTi
, e1) precedes

the edges of fo(fTj
, e2). The order of the edges in fo(fTi

, e1) is given by the
corresponding ssd-expression.

Theorem 4 Let P an XSLT0 program without variables, then fP is equivalent
with P.

Proof. Let t be a document tree. Clearly, the construction of τP(t) can
be described as a sequence of (m,σ)-rules Ti1 , . . . , Tik s.t. in the jth step Tij

instantiates Tij+1
(1 ≤ j ≤ k − 1). Here, Ti1 is the (st, /)-rule, and there may

exist several such sequences for the same construction of τP(t), but they are
all of the same length.

Now, we prove the theorem using induction on this length. If k = 2, the
statement follows from Lemma 5.

Next, suppose that the statement holds for all document trees, where the
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aforementioned sequences have length ≤ k. Let t be such a document tree,
where this length is k + 1. Suppose that, in the last step Tik+1

is called on
location configuration (e,m, ρ). Trivially, if the corresponding leaf did not
have any location configuration label, i.e., the construction stopped before the
call of Tik+1

, then, according to our assumptions, the appropriate mapping φ1

(Definition 6) would exist between V.τP(t) and V.fP(t). We also know that
there is an edge e ′ and number s s.t. Inst(fTik

, e ′, s, fTik+1
, e). Furthermore,

using again Lemma 5, the result, tT , of Tik+1
called on e is equivalent with

the result, tf, of fTik+1
called also on e (e ∈ R(τ

ik+1
m , f

τ
ik+1
m

)). Hence, the

appropriate mapping φ2 can be given between V.tT and V.tf.
Now, we only have to extend φ1 with φ2. Denote φ this new mapping.

Obviously, condition (i)-(ii) of Definition 6 holds for φ. The truthfulness of
condition (iii) can be proven easily with the use of the rules of defining an
order among the connected basic forests. ¥

Infinite loops. It is not difficult to see that how our method avoids infinite
loops. Consider the following program P and its rewriting fP:

template st(/, ε) (T1)

return

if c1 = true then {c : {}}; at-expr: m(child::*, ε, ε)

end.

template m(a, ε) (T2)

return

if c1 = true then {a : {}}; at-expr: m(desc::b, ε, ε)

end.

template m(b, ε) (T3)

return

if c1 = true then {b : {}}; at-expr: m(anc::a, ε, ε)

end.

z1
T2

fa : ({a : t})= {a :z1
T2

fb(t)}@z1
T2

fa(t) z1
T2

fb : ({b : t})= z1
T2

fb(t)

({∗ : t})= z1
T2

fa(t) ({∗ : t})= z1
T2

fb(t)

z1
T3

fa : ({a : t})= if n.i.(z1
T3

fb(t)) then {b : {}}@z1
T3

fa

else z1
T3

fa(t)

({∗ : t})= z1
T3

fa(t)
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z1
T3

fb : ({b : t})= {ψ : {}}

({∗ : t})= z1
T3

fb(t)

T2
fs : ({/ : t})= if true then z1

T2
fa(t) T3

fs : ({/ : t})= if true then z1
T3

fa(t)

Pfs : ({/ : t})= {/ : (T2
fs({/ : t}),T3

fs({/ : t}))},

Xa
z1
T2

fa
= Xa

z1
T3

fa
, Xb

z1
T2

fb
= Xb

z1
T3

fb

Clearly, for document trees t with root edge a having a b descendant, P

enters into an infinite loop. On the other hand, as fP traverses t top-down,
every edge is “considered” at most once. If an a edge has a b descendant,
then z1

T2
fa constructs an a edge, to which a b edge is connected constructed by

z1
T3

fa.
How variable assignment can be obtained. Till now, we have always

assumed the existence of a given variable assignment. In what follows, we
are to show, how this assignment, ρ, can be given. Remember that variable
definitions are only allowed to appear in the (st, /)-rule. Consider now variable
definition x = r. Here r is an XPath0 expression. Denote fro

x the root structural
function of the structural recursion fx representing r. Then, for an XSLT0

program P with templates T1, . . . , Tm, variables x1, . . . , xn, the {/ : t} row of
Pfs should extended with these root structural functions.

fs : ({/ : t}) = fro
x1

, . . . , fro
xn

, . . . , {/ : (T1
fs({/ : t}), . . . ,T1

fs({/ : t}))}

First, for a given document tree t, the results of fx1
should be constructed.

The edge-set on which fx1
stops gives ρ(x1). Next, ρ(x2) is calculated. Here,

we may have to use the result of ρ(x1). After the construction of ρ(xn) we
get ρ, and the construction of fP(t) should be continued with this variable
assignment. As an example, we give the rewriting of Example 1.

Tstf/ : ({/ : t}) = x
Tst

fgr(t), {result :z1
Tst

fgr(t)}

({∗ : t}) = {}

z1
Tst

fgr : ({group : t}) = z1
Tst

fgr(t)

({∗ : t}) = z1
Tst

fgr(t)
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x
Tst

fgr : ({group : t}) = x
Tst

fid(t) x
Tst

fid(t) :({id : t})= x
Tst

fid(t)

({∗ : t}) = x
Tst

fgr(t) ({∗ : t}) = x
Tst

fgr(t)

x
Tst

f
pr
gr : ({group : t}) = if n.i.( x

Tst
f
pr
emp(t)) then xf

pr
gr(t)

else x
Tst

f
pr
gr(t)

({∗ : t}) = x
Tst

f
pr
gr(t)

x
Tst

f
pr
emp :({emp : t}) = x

Tst
f
pr
na(t)

({∗ : t}) = {}

x
Tst

f
pr
na : ({name : t}) = if val(name) = Ann then {ψ : {}}

({∗ : t}) = {}, X
gr

x
Tst

fgr
= X

gr
x

Tst
fpr
gr

c1
T1

fgr : ({group : t}) = if n.i.(c1
T1

fto(t)) then c1
T1

fgr(t)

else c1
T1

fgr(t)

({∗ : t}) = c1
T1

fgr(t)

c1
T1

fto : ({topMgr : t})= c1
T1

fna(t)

({∗ : t}) = {}

c1
T1

fna : ({name : t}) = if val(name) = John then {ψ : {}}

({∗ : t}) = {}

z1
T1

fgr : ({group : t}) = {topGroup : {id :z1
T1

fval
id (t)}}@z1

T1
fAnn
gr (t)@z1

T1
fgr(t)

({∗ : t}) = z1
T1

fgr(t), X
gr
c1
T1

fgr
= X

gr
z1
T1

fgr
, X

gr
z1
Tst

fgr
= X

gr
z1
T1

fgr

z1
T1

fval
id : ({id : t}) = {}

z1
T1

fAnn
gr :({group : t})= z1

T1
fAnn
gr (t)

({∗ : t}) = {} ({∗ : t}) = {}

c1
T2

fgr : ({group : t}) = if n.i.(c1
T2

fid(t)) then c1
T2

fgr(t)

else c1
T2

fgr(t)

({∗ : t}) = c1
T2

fgr(t)

c1
T2

fid : ({id : t}) = if val(id) = x then {ψ : {}}

({∗ : t}) = {}



Extended Structural Recursion and XSLT 211

z1
T2

fgr : ({group : t}) = {id :z1
T2

fval
id (t)}}

({∗ : t}) = z1
T1

fgr(t), X
gr
c1
T2

fgr
= X

gr
z1
T2

fgr
, X

gr
z1
Tst

fgr
= X

gr
z1
T2

fgr

z1
T2

fval
id : ({id : t}) = {}

z1
T3

fid :({id : t})= {val(id) : {}}@z1
T3

fid(t)

({∗ : t}) = {} ({∗ : t}) = z1
T3

fid

6 Conclusions

In this paper we have introduced a new version of structural recursions, where
we have added registers to be able to connect the results of structural func-
tions called on the same XML document. To underpin the usefulness of this
extension, we have showed how a practically important fragment of XPath and
XSLT can be implemented with these structural recursions. As it has turned
out, our technique has the same efficiency as the fastest implementation algo-
rithm [8] known by the authors of this paper.

In the near future we shall work out how schema information given in the
form of extended DTD-s [12] can be incorporated into our model. Looking for
further optimization possibilities, we also plan to implement our techniques in
a software and compare its speed with the existing XPath and XSLT imple-
mentations.
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1 Introduction

The Web makes it easy for words to be copied and spread from one page
to another, and the same content may be found at more than one web site,
regardless of whether its author intended it to be or not. Duplicate and near-
duplicate web pages are creating large problems for web search engines: they
increase the space needed to store the index, either slow down or increase the
cost of serving results, and annoy the users. This requires the creation of
efficient algorithms for computing clusters of duplicates [4, 6, 7, 10, 11, 16, 21,
22, 30, 29].

A naive solution is to compare all pairs to documents. The first algorithms
for detecting near-duplicate documents with a reduced number of comparisons
were proposed by Manber [25] and Heintze [17]. Both algorithms work on se-
quences of adjacent characters. Brin [3] started to use word sequences to detect
copyright violations. Shivakumar and Garcia-Molina [31] continued this re-
search and focused on scaling it up to multi-gigabyte databases. Broder [5] also
used word sequences to efficiently find near-duplicate web pages. Charikar [9]
developed an approach based on random projections of the words in a docu-
ment. Hoad and Zobel [19] developed and compared methods for identifying
versioned and plagiarised documents. Henzinger [18] tests and explores how
some different existing methods (Broder’s [5] and Charikar’s [9]) for detecting
near-duplicate content could be used together to try to identify near-duplicates
on the Web. A good overview of approaches to detect exact duplicates and
near-duplicates of web pages can be found in [15].

We define duplicates in terms of similarity. We say that two documents are
duplicates, if a numerical measure of their similarity exceeds a given thresh-
old [7]. This can be represented by a graph, where nodes correspond to docu-
ments and the edges of the graph represent the pairs of the similarity relation.
From this similarity graph we can compute the clusters of similar documents
by counting the number of connected components of the graph. The main
steps in finding clusters of duplicates are: representing documents by sets of
attributes, making solid document images and computing clusters of similar
documents. First of all, we have to remove the HTML markup and punctua-
tion marks of the web documents. After this, as the first step, we turn these
documents into strings of words, which are represented by sets of attributes.
We have two options of doing this: from a syntactical approach or from a
lexical approach.

In the syntactical approach we define binary attributes that correspond to
each fixed length substring of words (or characters). These substrings are
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called shingles. We can say that a shingle is a sequence of words. A shingle
has two parameters: the length and the offset. The length of the shingle is the
number of the words in a shingle and the offset is the distance between the
beginnings of the shingles. We assign a hash code to each shingle, so equal
shingles have the same hash code and it is improbable that different shingles
would have the same hash codes (this depends on the hashing algorithm we
use). After this we randomly choose a subset of shingles for a concise image
of the document [4, 6, 7]. An approach like this is used in AltaVista search
engine [29]. There are several methods for selecting the shingles for the image:
a fixed number of shingles, a logarithmic number of shingles, a linear number
of shingle (every nth shingle), etc. In lexical methods, representative words
are chosen according to their significance. Usually these values are based on
frequencies: those words whose frequencies are in an interval (except for stop-
words from a special list of about 30 stop-words with articles, prepositions
and pronouns) are taken: words with high frequency can be non informative
and words with low frequencies can be misprints or occasional words.

In lexical methods, like I-Match [11], a large text corpus is used for generat-
ing the lexicon. The words that appear in the lexicon represent the document.
When the lexicon is generated the words with the lowest and highest fre-
quencies are deleted. I-Match generates a signature and a hash code of the
document. If two documents get the same hash code it is likely that the sim-
ilarity measures of these documents are equal as well. I-Match is sometimes
instable to changes in texts [22]. In lexical method [21] the focus is towards the
construction of a lexicon, a set of descriptive words, which should be concise,
but cover well the collection. The occurrence of a word in a document image
is robust with respect to small changes in the document. When we define
document images, we define a similarity relation on documents starting from
a similarity measure, which takes to two documents to a number into the [0,1]
interval, depending on the amount of their common description units. Then
we choose a threshold. If this threshold is exceeded, it means that there is a
large similarity between the documents (the two documents are very close to
being duplicates). The metrics and the threshold define similarity relation on
document pairs. The similarity relation on document pairs determines clusters
of near-duplicates. There are several possible definitions for a cluster, but one
of them often used in practice is as follows: Consider a graph, in which nodes
represent the Internet documents and edges correspond to similarity relations.
Then a cluster of near-duplicates is a connected component of this graph. The
advantage of this definition is in the efficiency of computation: a connected
component of a graph can be computed in linear time in the number of edges.
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A drawback of the definition is also obvious: the relation to be near-duplicates
is not transitive, so absolutely different documents can occur in a cluster. The
strongest definition of a cluster is based on a graph clique, but it is much
harder computationally, because generation of maximal cliques is a classical
problem. We can use an intermediate formulation, which is between these two
extreme definitions, and this way make a trade-off between the precision and
the complexity of the cluster computation.

In this paper we consider similarity as an operation taking two documents
to the set of all common elements of their concise description. Description
elements can be syntactical units (shingles) or lexical units (representative
words). A cluster of similar documents is defined as a set of all documents
with a certain set of common description units. A cluster of duplicates is
defined as a set of documents, where the number of common description units
exceeds a given threshold. In this article we compare results of its application
with the list of duplicates obtained by applying other methods to the same
collection of documents. We examined the impact of the following parameters
on the result:

• The use of the syntactical or lexical methods for representing documents

• the use of method “n minimal elements in a permutation” or “minimal
elements in n permutations” [4, 6, 7] (the second method, having better
probability-theoretical properties, has worse computational complexity)

• shingling parameter

• threshold value of similarity of document images.

We used a definition based on formal concepts for a cluster: clusters of
documents are given by formal concepts of the context where objects corre-
spond to description units and attributes are document names. So a cluster
of very similar documents corresponds to a formal concept so that the size of
the extent exceeds the threshold given by a parameter. In this approach, the
problem of generating very similar documents is reduced to the problem of
data mining, known as generating frequent closed item sets.

There are many web services, such as web search engines, which use near-
duplicate detection techniques. These techniques are also useful for plagia-
rism detection in R&D reports and scientific articles [20]. To the best of our
knowledge, there is no freely available framework with implementation of basic
methods of near-duplicate detection. We made a first attempt to develop such
a system with taking into account researcher’s needs. Potthast and Stein [28]
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note that there are no public collections suited for the analysis and evalu-
ation of near-duplicate detection algorithms. Then they propose to use the
Wikipedia Revision Corpus for the task. Our solution of this problem is a tool
for generating near-duplicate collections based on one’s own corpus of texts.
We give a detailed description of our system in section 3.

2 Computational model

2.1 Document image

We used standard syntactical and lexical approaches with different parameters,
for creating document images. Within syntactical approach we realized the
shingling scheme and computing document image (sketch) with the method
“n minimal elements in a permutation” and the method “minimal elements
in n permutations”, a detailed description of which can be found in [4, 6, 7].
For each text the program shingle with two parameters (length and offset)
generates contiguous subsequences of size length so that the distance between
the beginnings of two subsequent substrings is offset. The set of sequences
obtained in this way is hashed so that each sequence receives its own hash
code. From the set of hash codes that corresponds to the document a fixed
size (given by parameter) subset is chosen by means of random permutations
described in [4, 6, 7]. The probability of the fact that minimal elements in
permutations on hash code sets of shingles of documents A and B (these sets
are denoted by FA and FB, respectively) coincide, equals to the similarity
measure of these documents sim(A,B):

sim(A, B) = P[min{π(FA)} = min{π(FB)}] =
|FA ∩ FB|

|FA ∪ FB|

Permutations (that can be represented by renumbering of shingles) are re-
alized by multiplying binary vectors that represent document images (each
component of such a vector corresponds to the hash code of a particular shin-
gle from the image) on random binary matrices. For each hash code from the
set of hash codes of a document its number in each random permutation is
computed as a product of the hash code given in the form of binary vector on
the randomly generated binary matrix that corresponds to the permutation.
The number of permutations is also a parameter. For each permutation (given
by a binary matrix) the minimal element (i.e., hash code of a shingle that be-
came the first after the permutation) is chosen. The image of a document in
the method “n minimal elements in a permutation” is the set of n minimal
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(first) hash codes in a permutation. The image of a document in the method
“minimal elements in n permutations” is the set consisting of minimal (first)
hash codes in n independent permutations. In both methods the images of
all documents have fixed length n. The second approach has better random-
ization properties (see [4, 6, 7] for details), although it needs more time for
computations (n times more than in the first approach).

2.2 Definition of similarity and similarity clusters by means of
frequent concepts

First, we briefly recall the main definitions of Formal Concept Analysis (FCA)
[12]. Let G and M be sets, called the set of objects and the set of attributes,
respectively. Let I be a relation I ⊆ G ×M between objects and attributes:
for g ∈ G, m ∈ M, gIm holds iff the object g has the attribute m. The triple
K = (G,M, I) is called a (formal) context. Formal contexts are naturally given
by cross tables, where a cross for a pair (g,m) means that this pair belongs
to the relation I. If A ⊆ G, B ⊆ M are arbitrary subsets, then derivation
operators are given as follows:

A ′ := {m ∈ M | gIm for all g ∈ A},

B ′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A, B), where A ⊆ G, B ⊆ M, A ′ = B, and B ′ = A is called a
(formal) concept (of the context K) with extent A and intent B.

The operation (·) ′′ is a closure operator, i.e., it is idempotent (X ′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G,
B ⊆ M are called closed if A ′′ = A and B ′′ = B. Obviously, extents and
intents are closed sets. Formal concepts of context are ordered as follows:
(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2(⇔ B1 ⊇ B2). With respect to this order the
set of all formal concepts of the context K makes a lattice, called a concept
lattice B(K) [12].

Now we recall some definitions related to association rules in data mining.
For B ⊆ M the value |B ′| = |{g ∈ G | ∀m ∈ B(gIm)}| is called support of B and
denoted by sup(B). It is easily seen that set B is closed if and only if for any
D ⊃ B one has sup(D) < sup(B). This property is used for the definition of a
closed itemset in data mining. A set B ∈ M is called k-frequent if |B ′| ≤ k (i.e.,
the set of attributes B occurs in more than k objects), where k is parameter.
Computing frequent closed sets of attributes (or itemsets) became important
in data mining since these sets give the set of all association rules [27]. For our
implementation where contexts are given by set G of description units (e.g.,
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shingles), set M of documents and incidence (occurrence) relation I on them,
we define a cluster of k-similar documents as intent B of a concept (A,B)

where |A| ≥ k. Although the set of all closed sets of attributes (intents) may
be exponential with respect to the number of attributes, in practice contexts
are sparse (i.e., the average number of attributes per object is fairly small).
For such cases there are efficient algorithms for constructing all most frequent
closed sets of attributes (see also survey [23] on algorithms for constructing all
concepts). Recently, competitions in time efficiency for such algorithms were
organized in a series of workshops on Frequent Itemset Mining Implementa-
tions (FIMI). By now, a leader in time efficiency is the algorithm FPmax* [14].
We used this algorithm in order to find similarities of documents and generate
clusters of very similar documents. As mentioned before, objects are descrip-
tion units (shingles or words) and attributes are documents. For representa-
tions of this type frequent closed itemsets are closed sets of documents, for
which the number of common description units in document images exceeds a
given threshold. Actually, FPmax* generates frequent itemsets (which are not
necessarily closed) and maximal frequent itemsets, i.e., frequent itemsets that
are maximal by set inclusion. Obviously, maximal frequent sets of attributes
are closed.

3 Program implementation

Software for experiments with syntactical representation comprise the units
that perform the following operations:

1. XML Parser (provided by Yandex): it parses XML packed collections of
web documents,

2. removing html-markup of the documents,

3. generating shingles with given parameters length-of-shingle, offset,

4. hashing shingles,

5. composition of document image by selecting subsets (of hash codes) of
shingles by means of n minimal elements in a permutation and minimal
elements in n permutations methods,

6. composition of the inverted table, the list of identifiers of documents
shingle, thus preparing data to the format of programs for computing
closed itemsets,
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7. computation of clusters of k-similar documents with FPmax* algorithm:
the output consists of strings, where the first elements are names (ids)
of documents and the last element is the number of common shingles for
these documents,

8. comparing results with the existing list of duplicates (in our experiments
with the ROMIP collection of web documents, we were supplied by a
precomputed list of duplicate pairs),

9. generation of test collections of near-duplicate documents.

Unit 8 (for evaluation of results) outputs five values: 1) the number of
duplicate pairs in the ROMIP collection, 2) the number of duplicate pairs
for our realization, 3) the number of unique duplicate pairs in the ROMIP
collection, 4) the number of unique duplicate pairs in our results, 5) the number
of common pairs for the ROMIP collection and our results. For the lexical
method, the description units are words (not occurring in the stop list) the
frequencies of which lie in a certain interval. The amount of words in the
dictionary is controlled by placing closer the extreme points of the interval.

3.1 GUI

The application has a Graphical User Interface similar to a setup application.

Figure 1: Input form for a duplicate search

In Fig. 1 the user specifies the shingling method and the following param-
eters: input path, output path, shingle length, offset, size of document image
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Figure 2: Input form for FIMI algorithm.

Figure 3: The output of the duplicates

and an option to strip the HTML or not. With the ‘Next’ button we can
advance to the next form (Fig. 2).

On the next form the user has to choose the FIMI algorithm to be used and
specify the parameters of the chosen algorithm: the input and output path of
the algorithm and the number of common shingles. The ‘Start’ button starts
the algorithm, the ‘View results’ button shows the results, see Fig. 3. With
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the ‘Previous’ and ‘Next’ buttons we can either return to the previous form
or advance to the next form. On the ’Clusters of duplicates’ form we can see
the results of the FIMI algorithm, shown in a grid view. On the last form
the user can compare the results. The user has to specify the path of the list
of duplicate pairs and the path of the log file. With the ‘Start’ button the
user can start the comparison. With the ‘Previous’ button the user can return
to the previous form. With the ‘Close’ button the application will exit. The
screenshots of the GUI can be seen in the Fig. 1, 2, 3.

3.2 Tool for construction of near-duplicate test collection

The technique of generating test collection for near-duplicates proposed below
uses the editing styles of near-duplicates: Block Edit (add or delete several
paragraphs), Key Block (contains one or more well-known paragraphs), Minor
Change (small editing changes), Block Reordering (reorder known paragraphs)
and their combinations. Short description of these methods with indication of
parameters is given in Table 1.

Operation Parameter(s)
1 Reordering of existing paragraphs Percentage of reordering paragraphs
2 Deletion of existing paragraphs Percentage of deleting paragraphs
3 Addition of existing paragraphs Percentage of deleting paragraphs
4 Replacement of existing words Percentage of replacing words
5 Addition of repeated paragraphs Amount of paragraphs and

number of paragraph repeats
6 replacement of characters Set of character pairs:

(initial character, new character)

Table 1: Operations for generation of test near-duplicate collection

We note that any of these operations use random number generator to con-
struct the set of editable elements. For example, any reordering of paragraphs
is random. This gives us more precise results than the use of manual edition
of documents. By the way, stemming and finding synonyms of words require
significant computational resources. We use simple replacement of exciting
words chosen randomly from a dictionary; this makes no difference to find
near-duplicate by non semantic methods. The user can apply a sequence of
editing operations choosing an item from Table 1. During the loading process
each document splits into paragraphs, each paragraph splits into sentences,
and each sentence splits into words. As a result the user can see the statistics
for each document (number of paragraphs, sentences and words). The tool



A framework for near-duplicate detection 225

produces a log file in an output folder with names of input and generated files,
number of sentences and words of input file, and parameters of the changes
made. For example, for paragraph deletion the operation system saves the
number of deleted words and characters. This information will be used to
compare the results with those of the tested methods.

4 Experiments

As experimental data we used ROMIP collection of URLs (see www.romip.ru)
consisting of 52 files of 4.04 GB general size. For experiments the collection was
partitioned into several parts consisting of three to 24 files (from 5% to 50%
percent of the whole collection). Shingling parameters used in experiments
were as follows: the number of words in shingles was 10 and 20, the offset was
always taken to be 1 (which means that the initial set of shingles contained
all possible contiguous word sequences of a given length). Two methods of
composing document image described in Section 2.1 were studied: n minimal
elements in a permutation and minimal elements in n permutations.

The sizes of resulting document images were taken in the interval of 100 to
200 shingles. In case of the lexical representation described in Section 2.1, only
words from the resulting dictionary were taken in the document image (the
set of descriptive words). As thresholds defining frequent closed sets (i.e., the
numbers of common shingles in document images from one cluster) we experi-
mentally studied different values in intervals, where the maximal value is equal
to the number of shingles in the document image, e.g., [85, 100] for document
images with 100 shingles, the interval [135, 150] for document images of size
150, etc. Obviously, choosing the maximal value in the interval, we obtain
clusters where document images coincide completely. For parameters taking
values in these intervals we studied the relation between resulting clusters of
duplicates and ROMIP collection of duplicates (computed by other methods).
The ROMIP collection of duplicates consists of pairs of web documents that
are considered to be duplicates. For each such pair we sought an intent, which
contains both elements of the pair, and vice versa, for each cluster of very
similar documents (i.e., for each corresponding closed set of documents with
more than k common description units) we took each pair of documents in the
cluster and looked for the corresponding pair in the ROMIP collection. The
output of this unit is the table with the number of common number of dupli-
cate pairs found by our method (denoted by HSE) and those in the ROMIP
collection, and the number of unique pairs of HSE duplicates (document pairs



226 D. Ignatov, K. Jánosi-Rancz, S. Kuznetsov

occurring in a cluster of ”very similar documents” and not occurring in the
ROMIP collection). The results of our experiments showed that the ROMIP
collection of duplicates, considered to be a bench-mark, is far from being per-
fect. First, we detected that there is a large number of false duplicate pairs
in this list due to similar framing of documents. For example the pages with
the following information about historical personalities Garibald II, Duke of
Bavaria and Giovanni, Duke of Milan were declared to be duplicates.

However these pages, as well as many other analogous false duplicate pairs in
ROMIP collection do not belong to concept-based (maximal frequent) clusters
generated in our approach.

In our study we also looked for false duplicate clusters in the ROMIP collec-
tion, caused by transitive closure of the binary relation ”X is a duplicate of Y”
(as in the typical definition of a document cluster in [7]). Since the similarity
relation is generally not transitive, the clusters formed by transitive closure
of the relation may contain absolutely nonsimilar documents. Note that if
clusters are defined via maximal frequent itemsets there cannot be effects like
this, because documents in these clusters share necessarily large itemsets.

4.1 Performance of algorithms and their comparison

We measured the elapsed time on the shingling stage, composing document
images and generating clusters of similar documents (by algorithms for com-
puting frequent closed itemsets). In the last stage we used and compared
various algorithms: several well-known algorithms from data mining [13] and
AddIntent, an algorithm which proved to be one of the most efficient algo-
rithms for constructing the set of all formal concept and concept lattices [26]

Experiments were carried out on a PC P-IV HT with 3.0 MHz frequency,
1024 MB RAM under Windows XP Professional. Experimental results and
the elapsed time are partially represented in Tables 2, 3, and 4.

In our experiments the best performance is attained by Fpmax* algorithm,
followed by the AFOPT algorithm [24]. These two algorithms proved to be the
fastest in FIMI competitions [13]. AddIntent* (AddIntent modified for maxi-
mal frequent itemsets) lags behind these two, although it performs much better
than MAFIA [8]. Optimized implenations of APRIORI and ECLAT [2] failed
to compute the output even in the case of small subcollections of documents
(about 10% of the whole collection). This relative behavior of algorithms is
similar to that observed in [13] in experiments with low support. In the fol-
lowing table we present running times in a typical experiment with different
algorithms on a subcollection of about 10% of the whole collection.
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FPmax All Pairs of
Duplicates

Unique pairs
of duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE

b 1 20 s 100 n1-12.txt 100 105570 15072 97055 6557 8515
b 1 20 s 100 n1-12.txt 95 105570 20434 93982 8846 11588
b 1 20 s 100 n1-12.txt 90 105570 30858 87863 13151 17707
b 1 20 s 100 n1-12.txt 85 105570 41158 83150 18738 22420

b 1 20 s 100 n1-24.txt 100 191834 41938 175876 25980 15958
b 1 20 s 100 n1-24.txt 95 191834 55643 169024 32833 22810
b 1 20 s 100 n1-24.txt 90 191834 84012 155138 47316 36696
b 1 20 s 100 n1-24.txt 85 191834 113100 136534 57800 55300

b 1 10 s 150 n1-6.txt 150 33267 6905 28813 2451 4454
b 1 10 s 150 n1-6.txt 145 33267 9543 27153 3429 6114
b 1 10 s 150 n1-6.txt 140 33267 13827 24579 5139 8688
b 1 10 s 150 n1-6.txt 135 33267 17958 21744 6435 11523
b 1 10 s 150 n1-6.txt 130 33267 21384 19927 8044 13340
b 1 10 s 150 n1-6.txt 125 33267 24490 19236 10459 14031

Table 2: Results of the method n minimal elements in a permutation.

FPmax All Pairs of Du-
plicates

Unique pairs of
duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE

m 1 20 s 100 n1-3.txt 100 16666 4409 14616 2359 2050
m 1 20 s 100 n1-3.txt 95 16666 5764 13887 2985 2779
m 1 20 s 100 n1-3.txt 90 16666 7601 12790 3725 3876
m 1 20 s 100 n1-3.txt 85 16666 9802 11763 4899 4903

m 1 20 s 100 n1-6.txt 100 33267 13266 28089 8088 5178
m 1 20 s 100 n1-6.txt 95 33267 15439 26802 8974 6465
m 1 20 s 100 n1-6.txt 90 33267 19393 24216 10342 9051

m 1 20 s 100 n1-12.txt 100 105570 21866 95223 11519 10347
m 1 20 s 100 n1-12.txt 95 105570 25457 93000 12887 12570

Table 3: Results for the methodminimal elements in n permutations.
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Algorithm Dataset Threshold Time elapsed
sec

Fpmax* b 1 20 s 100 n1-6.txt 95 2,0
b 1 20 s 100 n1-6.txt 90 3,1
b 1 20 s 100 n1-6.txt 85 5,3
b 1 20 s 100 n1-12.txt 100 3,0
b 1 20 s 100 n1-12.txt 95 9,0
b 1 20 s 100 n1-12.txt 90 14,2
b 1 20 s 100 n1-12.txt 85 25,7
b 1 20 s 100 n1-24.txt 100 16,1
b 1 20 s 100 n1-24.txt 95 120,0
b 1 20 s 100 n1-24.txt 90 590,4
b 1 20 s 100 n1-24.txt 85 1710,6

Afopt b 1 20 s 100 n1-6.txt 100 1,39
b 1 20 s 100 n1-6.txt 95 1,984
b 1 20 s 100 n1-6.txt 90 2,359
b 1 20 s 100 n1-6.txt 80 3,078

Mafia b 1 20 s 100 n1-6.txt 100 123
b 1 20 s 100 n1-6.txt 95 584
b 1 20 s 100 n1-6.txt 90 1160
b 1 20 s 100 n1-6.txt 80 2186
b 1 20 s 100 n1-12.txt 100 1157

apriori borgelt b 1 20 s 100 n1-6.txt 100 - 85 failed
eclat apriori b 1 20 s 100 n1-6.txt 100 - 85 failed
AddIntent* b 1 20 s 100 n1-6.txt 100 177,64

b 1 20 s 100 n1-6.txt 95 186,765
b 1 20 s 100 n1-6.txt 90 192,765
b 1 20 s 100 n1-6.txt 85 204,031

Table 4: Performance of FIMI algorithms

In the contexts corresponding to these subcollections, the number of ob-
jects is relatively large compared to the threshold minsup value defined by
parameters in the definition of duplicates. Thus, these are typical problems of
generating frequent itemsets in low-support data and relative performance of
data mining algorithms in our experiments is similar to that in survey [13].

5 Conclusions and further work

We propose a framework to detect near-duplicate documents in large text
collections. Analyzing the results of our experiments with concept-based def-
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inition of clusters of similar documents with ROMIP data collection we can
draw the following conclusions:

• ROMIP collection of URLs is a good testbed for comparing performance
of FCA and data mining algorithms in generating (maximal frequent)
closed sets of attributes.

• The list of ROMIP duplicates contains many false duplicates, which are
not detected as such by the methods based on closed itemsets.

• Approaches based on closed sets of attributes propose adequate and ef-
ficient techniques for both determining similarity of document images
and generating clusters of very similar documents. They can be effi-
ciently used on the stage of outputting documents relevant to a query,
when the number of all found relevant documents does not exceed sev-
eral thousands (around 10,000 documents). However, this algorithm
may encounter major difficulties in treating larger collections of docu-
ments due to intrinsic exponential worst-case complexity of the problem
of computing maximal frequent itemsets.

• For our datasets (which are very “column-sparse”), the best data mining
algorithms for computing frequent closed itemsets, FPmax* and Afopt,
outperform AddIntent, one of the best algorithm for constructing con-
cept lattice, adapted for computing maximal frequent itemset.

• The results of syntactical methods essentially depend on the shingle
length parameter. Thus, in our experiments, for the shingle length 10
the results (pairs of duplicates) were much closer to those in the ROMIP
list as for the lengths of shingles equal to 20, 15, and 5.

• In our experiments the results obtained by different methods of docu-
ment representation – n minimal elements in a permutation and minimal
elements in n permutations – did not differ much, which testifies in favor
of the first, faster method.

We would also like to create a site of our project on SourceForge.net with freely
available sources of the framework. In further developments, we are going to
release implementation of other methods for near-duplicate detection (NDD)
like I-match, super shingling, and so on. Development of complex techniques
for testing NDD methods and creation of testing collections seems to be quite
of interest for computer scientists in this field.
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Abstract. This paper provides a comparison between two automatic
systolic array design methods: the so called space-time transformation
methodology (a unifying approach to the design of VLSI algorithms [14],
[15]), and a functional–based design method (see [6], [9], [10]).

The advantages (and possible disadvantages) of each method are
pointed out by representative case studies (variants of systolic arrays
generated with both design methods).

Many algorithms were already parallelised using the efficient tech-
nique of space-time transformations. However, it also has some draw-
backs. It may be hard to formulate the problem to be solved in the form
of a system of uniform recurrence equations, which is the usual starting
point for this method. On the other hand, the space-time transformation
method depends heavily on finding an affine timing function, which can
also lead to complex computations.

The functional-based method exploits the similarity between the in-
ductive structure of a systolic array and the inductive decomposition of
the argument by a functional program. Although it is less general in
the sense that it generates systolic arrays with certain properties, its
most significant advantage is that it needs to investigate the behaviour
of only the first processor of the systolic array, while other methods (as
the space-time transformation method, too) must work with an array of
processors. Moreover, the method is based on rewriting of terms (ac-
cording to certain equations, which are general for function definitions
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and systolic arrays), thus the resulting systolic algorithm is certified to
be correct, and the method itself is relatively easy to automatize.

1 Introduction

The first examples of systolic arrays (very efficient special purpose parallel
computing devices) and the systolic algorithms running on them were con-
ceived in an ad–hoc manner, requiring a great amount of intuition and cre-
ativity from their inventors.

Later several [semi]automatic systolic array design methods were proposed
(a short survey can be found in [16]). Most of these systematic methods
use an iterative view of systolic arrays: the arrays (and the computations)
are represented as multidimensional matrices of a certain size (in fact some
methods only work for a fixed size, the problem cannot be parametrized). This
kind of representation leads to complex operations over the multidimensional
index space, on the other hand, due to the symmetric organisation of systolic
structures, there are many repetitions in the design process.

The most widespread and also the most general method is referred to as the
space-time transformation method. This is in fact a unifying approach to the
design of systolic arrays, which incorporates the main ideas used in several
automatic synthesis methods. The work of many researchers like Quinton,
Robert, Van Dongen [12, 14, 13], Delosme and Ipsen [1], Nelis and Depret-
tere [8] relies on it. A review of the main ideas involved in the space-time
transformation method is presented by Song in [15].

Many algorithms were already parallelised with this efficient method, how-
ever it also has its drawbacks.

The problem to be solved should be formulated as a uniform recurrence
equation system, which is sometimes not an easy task. The uniformisation of
linear recurrence equations was tackled by Quinton and Dongen [13], Fortes
and Moldovan [3] and others but it is still not definitely solved.

The space-time transformation method heavily depends on finding an ade-
quate affine timing function. The problem with finding such a function is that
one needs to solve a linear equation system, which is usually a tedious and
difficult task, on the other hand it is only possible for systems having certain
properties.

As we already mentioned, the most design methods, thus the space-time
transformation method, too, uses an iterative approach to the problem. In
contrast, our design method presented in [6] follows a functional view: a linear
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systolic array is composed of a head processor and an identical tail array.
Similarly, functional programs for list operations describe how to compute the
head and the tail of the result in function of the head and the tail of the
arguments.

Our design method exploits this similarity, thus the synthesis problem can
be solved by [essentially] rewriting of the functional programs.

In this paper we compare this functional-based method with the space-time
transformation method using some representative case studies. Our purpose
is not the detailed presentation of the two methods (one can find such descrip-
tions in [14, 15] –about the space-time transformation method–, respectively
in [6, 9, 10] –about the functional/based method–). However, we would like
to point out the advantages (or disadvantages) of the two distinct methods
through some practical examples.

2 Systolic array design for polynomial multiplica-
tion

We start with a simple problem, the polynomial multiplication.
Let A and B two univariate polynomials of degree n−1 and m−1, respectively:

A = a0 + a1 ∗ x + a2 ∗ x2 + . . . + an−1 ∗ xn−1

B = b0 + b1 ∗ x + b2 ∗ x2 + . . . + bm−1 ∗ xm−1

We denote the product of A and B with C (polynomial of degree n + m − 2):

C = A ∗ B = c0 + c1 ∗ x + c2 ∗ x2 + . . . + cm+n−2 ∗ xn+m−2,

where

ck =
∑

i+j=k

ai ∗ bj, ∀k, 0 ≤ k ≤ m + n − 2; 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1 (1)

2.1 Solutions to the problem using the space-time transforma-
tion method

In order to be able to apply the space-time transformation methodology to the
problem, the coefficients of C should be given in a recursive way, thus (1) is
not an adequate formulation to start up with. We need a uniform recurrence
equation system which is a subclass of linear recurrence equation systems. Only
such systems are suitable for being directly mapped onto systolic architectures,
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as they require local data and local interconnections between the processing
elements (PEs).

Definition 1 Uniform recurrence equation system
A system of uniform recurrence equations (SURE) is a collection of s ∈ N

equations of the form (2) and input equation of the form (3):

Vi(z) = fi(V1(z − θi1), . . . , Vk(z − θik)) (2)

Vi(z
j
i) = v

j
i, j ∈ {1, ..., li} (3)

where

– Vi : D → R. Vi, i ∈ {1, . . . , s} are variable names belonging to a finite set
V. Each variable is indexed with an integral index, whose dimension, n

(called the index dimension), is constant for a given SURE (in practice
this is usually 2 or 3).

– z ∈ D, where D ⊆ Zn is the domain of the SURE.
– v

j
i is a scalar constant (input), z

j
i ∈ Dinp, where Dinp ⊆ Zn is the

domain of the inputs.
– θi1 , . . . , θik are vectors of Zn and are called dependence vectors of the

SURE.
– Vi(z) does not appear on the right-hand side of the equation.
– fi : Rs → R.

Informally, a SURE (as well as the associated dependence graph) can be
seen as a multidimensional systolic array, where the points of the domain D

are the PEs of the array and the communication channels are determined by
the dependencies. In this context, a transformation applied to the system
which preserves the number of domain points and the dependencies leads to
a computationally equivalent system. The goal of such a transformation is to
obtain a system where one of the indices can be interpreted as the time index
and the others as space-indices.

The form of the SURE, used as a starting point, has a considerable impact
on the result of the design.

If we start for example with the following algorithm:

cj = 0, ∀j, 0 ≤ j≤ m + n − 2

for i = 0 to n − 1

for j = i to i + m − 1

cj = cj + ai ∗ bj−i,
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then we can formulate the uniform recurrence equation system (4)-(5). We
mention that there are well-known uniformisation techniques (see [13]) to de-
duce the SURE from the given algorithm, but unfortunately they cannot be
applied in a fully automatic way. Let us therefore consider the system (4)-(5)
as starting point.
Equations: 




Ci,j = Ci−1,j + Bi−1,j−1 ∗Ai,j−1

Bi,j = Bi−1,j−1

Ai,j = Ai,j−1,

(4)

where 0 ≤ i ≤ n − 1, i ≤ j ≤ i + m − 1.
Input equations:





B−1,i = bi+1, −1 ≤ i ≤ m − 2

C−1,i = 0, 0 ≤ i ≤ m − 1

Ci−1,i+m−1 = 0, 1 ≤ i ≤ n − 1

Ai,i−1 = ai, 0 ≤ i ≤ n − 1.

(5)

The results are considered to be the values of the following variables:

ci =

{
Ci,i, 0 ≤ i ≤ n − 2

Cn−1,i, n − 1 ≤ i ≤ n + m − 2.

Fig. 1 presents the dependence graph associated to the SURE (4)-(5), when
n = 3,m = 4.

Each of the points of the domain D = {(i, j)|0 ≤ i ≤ 2, i ≤ j ≤ i + 3} corre-
sponds to a computation, while the arrows represent the data dependencies.
The placement of the input values can also be read from the figure, although
this was determined after the computation of the timing function. The small
dots between the points (i, j), (i+1, j+1) of the domain D indicate a delay, that
is, the b values need two time steps to move from point (i, j) to (i + 1, j + 1).
Now we have the dependencies shown in Table 1.
The space-time transformation method consists basically of four main steps:

1. the formulation of the problem as a system of uniform recurrence equa-
tions,

2. finding one (ore more) adequate timing function(s)
– the timing function determines the time instant when the computation
takes place,

3. finding one (ore more) adequate allocation function(s) corresponding to
a certain timing function



240 L. Ruff

s
s
s
s

s
s
s
s

s
s
s
s

i
-

j 6

p
p
p

p
p
p
p
p

p p p p

p p
p p p

p p p p
p p p p p

p p p p p p

¡
¡µ

¡
¡µ

¡
¡µ

¡
¡µ

¡
¡µ

¡
¡µ

¡
¡µ

¡
¡µ

6

6

6

6

6

6

6

6

6

-

- -

- -

-

a0

a1

a2

b0b1b2b3

c0

c1

c2

c3

c4

c5

6

¡µ

-

q
q
q
q

q
q
q
q

1

1

¡µ
t

@
@

Figure 1: Dependence graph for polynomial multiplication (n = 3,m = 4):
data dependencies, placement of input data

– the allocation function determines the place (that is the processor)
where the computation is performed,

4. application of the space-time transformation.

Linear (and affine) transformations are most commonly used for both, the
timing and the allocation function, because thus we obtain a linear space-time
transformation, which preserves the dependencies between the computations.
Moreover, if the transformation is unimodular, then it has the advantage that
it preserves the number of points in the domain, and in addition it admits an
integral inverse. However, it is not mandatory to use unimodular transforma-
tions.

Given a SURE, the next step is to obtain a possible linear (or affine) timing
function, which should be positive and should preserve the data dependencies.
A natural requirement is that in order to be able to perform the computations
of Vi(z), its arguments should have been computed before. If such a function
exists, then we say that the SURE is computable.
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Equation lhs rhs Dependence vector
(14) Ci,j Ci+1,j−1 (−1, 1)

(16) A1i,j A1i,j−1 (0, 1)

(18) B1i,j B1i,j−1 (0, 1)

(20) A2i,j A2i−1,j (1, 0)

(22) B2i,j B2i−1,j (1, 0)

Table 1: Dependence vectors

The previously mentioned constraints build a system of inequalities. Any
of its solutions gives an adequate timing function.

We might also want to minimise the computation time of the system. In
this case, we obtain the timing function:

t(i, j) = i + j.

The timing function was determined according to the method described in
[14, 2] (we avoid to detail the computations here).

In order to get an adequate allocation function for a given timing function,
the condition that should hold (we also call it general constraint) can be intu-
itively expressed in the following way: two different computations performed
at the same time-step should not be mapped onto the same processor. This
means that the linear part P of the allocation function should not be parallel
to the direction T corresponding to the timing function (in our case T = (1, 1)).

For the previously obtained timing function, we get the following alloca-
tion functions, which satisfy the above-mentioned condition, moreover, the
resulting space-time transformation is unimodular:

p(i, j) = j − i

p(i, j) = i

p(i, j) = j.

If we choose the allocation function p(i, j) = j − i, after the application of
the space-time transformation we obtain the linear systolic array depicted in
Fig. 2.

With the allocation function p(i, j) = i, we get the systolic array from Fig. 3,
while with p(i, j) = j the array from Fig. 4 is obtained. The placement of the
inputs is also depicted in the figures. In case of Fig. 3, the structure of the
array respectively the transition function is also shown.
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Figure 2: Systolic array for polynomial multiplication (the allocation function
p(i, j) = j − i was used)

a)

- -
- -cI cQ

bI bQ

a

db

b) Computations:
cQ = cI + a ∗ bI

bQ = db

db = bI

c)

- - - -
- - - -a0 a1 a2. . .b0b1b2b3

c0c1c2c3c4c5

Figure 3: Unidirectional systolic array for polynomial multiplication (the al-
location function p(i, j) = i was used for the projection) a) structure of a PE,
b) transition function, c) structure of the array and placement of the input
values

The data-flow in the arrays of Fig. 3 and Fig. 4 is unidirectional. In the
case of the array of Fig. 3 the elements of the result appear after n time steps
(where n is the number of PEs) as the output of the PE on the right edge of
the array, while in the case of the array from Fig. 4 the results are computed
in the local memories of the PEs.

The systolic array depicted in Fig. 2 is bidirectional, but the PEs work
alternately and they only perform useful computation at each second time
step. There are some well-known techniques to transform such arrays into a
more efficient one. Some ideas are presented in [11].

2.2 Functional approach

We have seen that the space-time transformation methodology works with the
whole index space. Due to the symmetric structure of the systolic array, this
leads to many repetitions in the design process. In case of our functional-based
approach to the systolic array design, however, we only have to analyse the
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Figure 4: Systolic Array for Polynomial Multiplication (the allocation function
p(i, j) = j was used)

behaviour of the first processor, exploiting the idea that the tail-array works
in the same way as the original one, solving actually the same kind of problem
of a smaller size.

The functional view (or inductive view) of systolic arrays is shown in Fig. 5:
informally, a linear systolic array with n PEs can be seen as a device, that
is composed of a head processor (PE0), connected to a tail-array, which is an
identical array of size n − 1.

Array of size n

- -

¾ ¾

-

¾

Array of size
n − 1

LRI LRQ

R

RLQ RLI
PE0

Figure 5: Informal view of a linear systolic array – functional approach

The arrows indicate the direction of the data-flow, from left to right (LR)
or from right to left (RL). The letter I stands for input channels, Q indicates
the output channels and R stands for the internal state registers (also called
local memory).

At each time step the PEs update their internal state (the values of the
output channels, respectively that of the internal registers) in function of the
input, respectively the value of the internal state registers in the previous
time step. The computations performed by a PE are given by the so called
transition function.

The global input is fed step by step into the array through the input channels
of the PEs on the edge, while the result appears at one or more output channels
of the marginal PEs (in some cases the result may be computed in the internal
state registers as in the case of the systolic array in Fig. 4).
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A fundamental step of the design method is the formal analysis of the differ-
ent systolic array types. In case of each class of systolic arrays, we characterise
by a recursive description the class of functions which can be realised by such
type of arrays.

Then, by equational rewriting, the expression of the list function which
must be realised is transformed into an expression having the required struc-
ture. The resulting expression reveals the scalar function, which must be
implemented by each individual processor.

The linear systolic arrays can be one- or bidirectional, depending on the
direction of the data-flow. A typical subclass of systolic arrays is that, where
the input data passes through the array unchanged.

The input or the output data-flow can be delayed or not, the arrays may
have more simple building blocks, that is PEs without internal state (also
called combinatorial PEs), or PEs having constant or variable internal state
registers (local memory).

Let us consider for example unidirectional systolic arrays with constant in-
ternal state registers and delayed input. An example for such an array is
depicted in Fig. 3.

We use the following notations (same as in [6, 9]):

• We denote by Xi (where i ∈ Z) the infinite list 〈xi, xi+1, xi+2 . . .〉. X

stands for X0. Xn,n+m (where n ∈ Z and m ∈ N) denotes the finite list
having m + 1 elements: 〈xn, xn+1, . . . xn+m〉.

• We will denote by an the list of n elements all equal to a and by a∞

the infinite constant list with all elements equal to a.
• For any list X = 〈x0, x1, . . . , xn, . . .〉, we denote by H[X] = x0 the head of

it, and by T [X] = 〈x1, . . . , xn, . . .〉 the tail of it.
• The kth tail respectively head of X:

Tk[X] = 〈xk, xk+1, . . . , xn, . . .〉, for k ≥ 0 is obtained by iterating T k

times. Note that T1 = T . By convention T0[X] = X.
Tk, for k < 0 is obtained by iterating T−1 |k| times,
where T−1[Xi] = Xi−1

Hk[X] = H[Tk[X]] gives the (k + 1)th element of X (thus H0 = H).
• The prefix of order n of a list is Pn[X] = 〈x0, . . . , xn−1〉 = X0,n−1.
• The concatenation of two lists is denoted by “^”:
〈a0, a1, . . . , ak〉 ^X = 〈a0, a1, . . . , ak, x0, x1, . . .〉.
The first operand must be finite, but the second may also be infinite.
We also use “ ¦̂ ” for prepending a scalar to a (finite or infinite) list:
a

¦̂
X = 〈a〉^X.
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• We use (as in the theory of cellular automata) a special quiescent symbol
“$” in order to encode the “blank” values.

The list function ~f in (6) is the list extension of the scalar function f (we
obtain ~f[X] by applying the function f onto the elements of X). In the same
time the expression (6) characterizes the transition function of one PE [10].

~f[x
¦̂

X] = f[x]
¦̂ ~f[X] (6)

Note that the syntactic restriction to one argument (and one value) is not
essential. X could also represent a multiple list (composed of a finite k number
of lists):

X = 〈w1 ¦̂
W1, w2 ¦̂

W2, . . . wk ¦̂
Wk〉T =

= 〈w1, w2, . . . wk〉T ¦̂ 〈W1,W2, . . .Wk〉T .

Thus a function having multiple list arguments can be seen as a function with
one single list-argument (even if we do not mention it explicitly).

The functioning of unidirectional systolic arrays with constant local memory
and delayed input is characterised by (7)-(8) (see [10]), where n is the number
of PEs (the size-parameter of the problem), X is the input list, the values of
U0,n−1 correspond to the constant values of the local memory variables and
can be considered as parameters of the problem. Y denotes the global output-
list which collects the (partial) results, while Y0 = (y0)∞ gives the list of initial
values, which contribute to the computation of the results (usually the same
y0 value is introduced repeatedly).

FQ0,n−1
[n,X] = ~fqn−1

[X−(n−1), X−n, FQ0,n−2
[n − 1, X]] (7)

Fq0
[1, X] = ~fq0

[X,X−1, Y
0], (8)

where the list function ~fq[〈X,X ′, Y〉] satisfies property (6).
Given FU0,n−1

[n,X], our task is to find Q0,n−1, which is a permutation of
U0,n−1, y0 (such that Y0 = (y0)∞) and the transition function, denoted by f

such that (7)-(8) should hold.
Let us consider again the problem of polynomial multiplication. The coef-

ficients of one polynomial will be matched with the finite list of parameters
(let us choose for this purpose the n coefficients of polynomial A, that is the
list A0,n−1), while the coefficients of the other polynomial will form the input
list. We get an infinite input list by adding an infinite number of 0 elements
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to the list of coefficients (B0,m−1^0∞). We will also insert a number of n − 1

elements of 0 in front of the list in order to describe the problem according to
the idea depicted in Fig. 6.

bm−1 ∗ xm−1 + . . . + b1 ∗ x + b0 ∗ an−1 ∗ xn−1 + . . .

+a1 ∗ x + a0

a0 ∗ B +

(a1 ∗ x) ∗ B 0
...

(an−2 ∗ xn−2) ∗ B 0 . . . 0

(an−2 ∗ xn−2 + . . . + a0) ∗ B

(an−1 ∗ xn−1) ∗ B 0 . . . 0

cm+n−2 ∗ xm+n−2 + . . . + c0

Figure 6: Polynomial multiplication

The coefficients of the product will be the first n + m − 1 elements of the
list C:
C = 〈c0, c1, . . .〉, where

ci =

n−1∑

j=0

aj∗bi−j, ∀i, i = 0, 1, . . . n + m − 2, ci = $, ∀i, i ≥ n + m − 1

Using the more concise list notation this means:

C =

n−1∑

j=0

aj∗B−j (9)

(where a∗(b ¦̂
B) = 〈a∗b〉 ¦̂

(a∗B))
We can write that

FA0,n−1
[n,B] =

∑n−1
j=0 aj∗B−j = an−1∗B−(n−1) +

∑n−2
j=0 aj∗B−j =

= an−1∗B−(n−1) + FA0,n−2
[n − 1, B],

which is of the form (7). We get by simple projection the part of the tran-
sition function corresponding to the computation of the c (partial) results:
f[b, db, a, c] = a∗b + c. The rest of the transition function is already known.
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By analysing condition (8) we get: Fa0
[1, B] = ~f[a0, X, X−1, C

0], that is
a0∗B = a0∗B + C0 ⇒ c0 = 0 and C0 = 0∞.

We got the solution of Fig. 3 with much less effort than in the case of
the space-time transformation method. The systolic array obtained is also
appropriate for integer multiplication, only a local memory register of variable
value should be added to each PE, in order to preserve the carry [10].

The automatic synthesis of the arrays shown in Fig. 2 and Fig. 4 is similarly
simple. However, because these have a different structure, we have to start
from another description of the problem, while in the case of the space-time
transformation method we obtained the three different solutions starting from
the same recurrence equation. However, if we would like to design a systolic
array with predefined properties, this is not a drawback at all.

3 Online systolic multiplication

In this section we describe an online systolic array, the functional-based design
of which was detailed in a former paper [6]. After outlining the results, we
present how such an array could have been synthesized using the space-time
transformation methodology.

Online arrays are an important special subclass of bidirectional arrays. They
are characterised by the fact that they begin to provide the first result after a
constant number of time steps (regardless of the number of PEs). This feature
make them very useful for solving real time problems, where the response time
is a critical factor.

The array receives the input data through the first PE and the elements of
the result leave the array through the same PE.

3.1 Solutions obtained using the functional approach

We have presented the design of such systolic arrays in [6], and we used as case
study the design of online arrays for polynomial multiplication, respectively
the multiplication of multiple precision integers. That is why we do not detail
the design process here; in the sequel, we will only outline its main steps.

Step 0: formal analysis of the systolic array with the given properties
We have analysed the behaviour of specific online systolic arrays with input
list X, where the input X ′ of the tail-array is Tk[X] for some fixed k, thus if the
array computes the function F[X], then the tail-array will compute F[Tk[X]].

Such a behaviour of the input can be achieved by including into the internal
state a “state variable” s with values from {0 = $, 1, 2, . . . , k + 2}, and the
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following assignments for s:

s :=

{
s, x = $ ∨ s = k + 2

s + 1, x 6= $ ∧ s < k + 2

The PE will send the x values to the next PE if s ≥ k, otherwise a $ value
will be passed.

The functioning of such an array (for k = 2) is characterised by (10), where
G denotes the function which computes the internal state of the array (the
internal state includes besides the computation of the output values the values
of the local memory variables, too), and fy is the part of the transition function
which computes the (partial) results:

T4[F[X]] = ~fy[T4[X], T3[G[X]], F[T2[X]]]. (10)

Step 1: formulation of the problem as a functional program
The two polynomials are represented by the list of coefficients completed with
an infinite number of redundant zeroes. The input list is the multiple list
compound of these two lists.

We assume as known the scalar operations “
¦ ¦
+ ” and “

¦ ¦∗ ” in the ring of
the coefficients. We will use the functional definition of the simple operations
to unfold the expression “A ∗ B”, until we get an equation of the form (10).

Some definitions (we transformed the notations used in mathematics to our
list-notation in a very simple, natural way):

• addition of a scalar with a polynomial: a
¦
+ (b

¦̂
B) = (a

¦ ¦
+ b)

¦̂
B

• addition of polynomials: (a
¦̂

A) + (b
¦̂

B) = (a
¦ ¦
+ b)

¦̂
(A + B)

• multiplication of a scalar with a polynomial:
a

¦∗ (b
¦̂

B) = (a
¦ ¦∗ b)

¦̂
(a

¦∗ B)

• multiplication of polynomials:
(a

¦̂
A) ∗ (b

¦̂
B) = (a

¦ ¦∗ b)
¦̂

((a
¦∗ B) + (b

¦∗ A) + (0
¦̂

(A ∗ B))).

Step 2: unfolding
Unfolding consists in extracting repetitively the elements of the result list,
beginning with the first one, by using the functional definitions of the list
functions and a few simple unfolding rules, presented in [6].

After the unfolding of the first four elements of the expression A ∗B, we get
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the following result:

A ∗ B =

= . . .

= 〈 a0
¦ ¦∗ b0,

a0
¦ ¦∗ b1

¦ ¦
+ b0

¦ ¦∗ a1,

a2
¦ ¦∗ b0

¦ ¦
+ a1

¦ ¦∗ b1

¦ ¦
+ a0

¦ ¦∗ b2),

a3
¦ ¦∗ b0

¦ ¦
+ a2

¦ ¦∗ b1

¦ ¦
+ a1

¦ ¦∗ b2

¦ ¦
+ a0

¦ ¦∗ b3 〉^
^ ((a0

¦∗ B4) + (b0
¦∗ A4)+

+(a1
¦∗ B3) + (b1

¦∗ A3) + (A2 ∗ B2))

From here we can write the equality of the form (10):

T4[A ∗ B] = +





H0[A]
¦∗ T4[B]

H0[B]
¦∗ T4[A]

H1[A]
¦∗ T3[B]

H1[B]
¦∗ T3[A]

T2[A] ∗ T2[B] ,

respectively the first four elements of the output.
Step 3: the elements of the resulted expression are associated to the corre-

sponding elements of the systolic array (using already specified rewrite rules).
The head and tail functions Hi and Ti are realised by adding some suitable
static respectively transition variables to the internal state. The list having
(almost) all elements equal to Hi is realized by a “static” variable hi having

the assignment: hi :=

{
x, if s = i

hi, if s 6= i
Let us also consider the “transition” variables z0, z1, z2, z3 having the as-

signments: z0 = z1, z1 = z2, z2 = z3, z3 = x . In the expression of T4[F[X]],
the subexpression T4[X] will be realized by the expression x, and each Ti[X]

will be realized by the expression zi (for 0 ≤ i ≤ 3).
We denote the input channels by xa and xb, and the corresponding static

and transition variables by hai, hbi, respectively zai, zbi, as shown in Fig. 7.
According to the rules mentioned above, the expression on the right–hand

side is projected into:

(ha0
¦ ¦∗ xb)

¦ ¦
+ (hb0

¦ ¦∗ xa)
¦ ¦
+

¦ ¦
+ (ha1

¦ ¦∗ zb3)
¦ ¦
+ (hb1

¦ ¦∗ za3)
¦ ¦
+ y ′
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s

za0 . . . za3

zb0 . . . zb3

ha0 ha1

hb0 hb1

- -

- -

¾ ¾

. . .

xa xa ′

xb xb ′

y y ′

Figure 7: Online systolic array for polynomial multiplication

The expressions representing the computation of the first 4 elements are found
in the same way.

Thus, the part of the transition function describing the assignment for the
output channel y (that is, the computation of the result) is:





$ s = $ = xa

xa
¦ ¦∗ xb s = $ 6= xa

hb0
¦ ¦∗ xa

¦ ¦
+ ha0

¦ ¦∗ xb s = 1

ha1
¦ ¦∗ hb1

¦ ¦
+

¦ ¦
+ hb0

¦ ¦∗ xa
¦ ¦
+ ha0

¦ ¦∗ xb s = 2

hb1
¦ ¦∗ za3

¦ ¦
+ ha1

¦ ¦∗ zb3

¦ ¦
+

¦ ¦
+ hb0

¦ ¦∗ xa
¦ ¦
+ ha0

¦ ¦∗ xb s = 3

hb1
¦ ¦∗ za3

¦ ¦
+ ha1

¦ ¦∗ zb3

¦ ¦
+

¦ ¦
+ hb0

¦ ¦∗ xa
¦ ¦
+ ha0

¦ ¦∗ xb
¦ ¦
+ y ′ s = 4

The rest of the transition function, containing the computation of variables
s, hai, hbi, zai, zbi, xa ′, xb ′ is known.

We can use the same kind of array for the multiplication of arbitrary large
integers again, by adding a register of variable value to each PE [6].

3.2 Solution using the space-time transformation method

None of the systolic arrays obtained from the SURE (4)–(5) is an online one.
As we already mentioned, the result is significantly influenced by the form of
the SURE used as starting point. Consequently, we need another formulation
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of the problem, which again requires some intuition. We use the following
notation:
In the sequel let the values of Ai be equal to ai if 0 ≤ i ≤ n − 1, otherwise 0.
In the same way Bj = bj, if 0 ≤ j ≤ m − 1, otherwise 0.

A∗B = A0 ∗ B0︸ ︷︷ ︸
C0,0

+(A0 ∗ B1 + A1 ∗ B0︸ ︷︷ ︸
C0,1

)∗x+(A0 ∗ B2 +

C1,1︷ ︸︸ ︷
A1 ∗ B1 +A2 ∗ B0︸ ︷︷ ︸

C0,2

)∗x2 +

+ (A0 ∗ B3 +

C1,2︷ ︸︸ ︷
A1 ∗ B2 + A2 ∗ B1 +A3 ∗ B0︸ ︷︷ ︸

C0,3

) ∗ x3 + . . .

Generally:
∀i, j : 0 ≤ i ≤ j; i + j ≤ m + n − 2

Ci,j =





Ai ∗ Bi i = j

Ai ∗ Bj + Aj ∗ Bi j = i + 1

Ai ∗ Bj + Aj ∗ Bi + Ci+1,j−1 j > i + 1

(11)

The result: ck = C0,k, ∀k, 0 ≤ k ≤ m + n − 2.

3.2.1 Uniformisation of the recurrence equation

In equation (11), Ai is needed in the computation of Ci,j for all values of j,
i ≤ j ≤ m + n − 2 − i, this means a broadcast of Ai. Similarly, Aj is needed
in the computation of Ci,j, ∀i, 0 ≤ i ≤ m + n − 2 − j. A common method to
eliminate broadcast is to pipeline the given value through the nodes where it is
needed (see [13]). Thus, we replace Ai with a new variable A1i,i, and pipeline
it in the direction (i, j) → (i, j + 1). Aj will be replaced by the variable A20,j

and pipelined through the direction (i, j) → (i+1, j). Bi and Bj will be replaced
in the same way with B1 and B2, respectively.

We obtain the following uniform recurrence equation:

∀i, j : 0 ≤ i ≤ j; i + j ≤ m + n − 2

A2i,j ∗ B2i,j j = i (12)
A1i,j ∗ B2i,j + A2i,j ∗ B1i,j j = i + 1 (13)Ci,j =





A1i,j ∗ B2i,j + A2i,j ∗ B1i,j + Ci+1,j−1 j > i + 1 (14)

Ai j = i (15)
A1i,j =

{

A1i,j−1 j > i (16)



252 L. Ruff

Bi j = i (17)
B1i,j =

{

B1i,j−1 j > i (18)

Aj i = 0 (19)
A2i,j =

{

A2i−1,j i > 0 (20)

Bj i = 0 (21)
B2i,j =

{

B2i−1,j i > 0 (22)

Note that equations (15), (17), (19), (21) are input equations of the form (3).
Now the input Ai appears in input equation (15) and (19), too. Bi also

appears in two input equation. This would mean that we have to input the
coefficients of the polynomials A and B twice.

This can be avoided by changing input equation (15) with

A1i,j = A2i,j j = i. (23)

In the same way, we change (17) by:

B1i,j = B2i,j j = i. (24)

Table 2. shows the dependencies of the SURE.

Equation lhs rhs Dependence vector
(14) Ci,j Ci+1,j−1 (−1, 1)

(16) A1i,j A1i,j−1 (0, 1)

(18) B1i,j B1i,j−1 (0, 1)

(20) A2i,j A2i−1,j (1, 0)

(22) B2i,j B2i−1,j (1, 0)

(14) Ci,j A1i,j, A2i,j, B1i,j, B2i,j (0, 0)

(23) A1i,j A2i,j (0, 0)

(24) B1i,j B2i,j (0, 0)

Table 2: Dependence vectors

Note that the dependencies for A1 and B1 respectively A2 and B2 are the
same. In the following we will only reason about A1 and A2; B1, respectively
B2, can be handled similarly.
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3.2.2 Finding an adequate timing function

According to the method presented in [2], we are looking for affine timing
functions with the same linear part for each variable V of the SURE (12)–(22)
of the form tV = x ∗ i + y ∗ j + zV .

For each dependence of Table 2 of the form Vi(z) ← Vj(z
′), we are writing

the dependency constraint of the form tVi
(z) > tVj

(z ′). We get:

Ci,j ← A1i,j ⇒ tC(i, j) > tA1(i, j)

Ci,j ← A2i,j ⇒ tC(i, j) > tA2(i, j)

Ci,j ← Ci+1,j−1 ⇒ tC(i, j) > tC(i + 1, j − 1)

A1i,j ← A1i,j−1 ⇒ tA1(i, j) > tA1(i, j − 1)

A2i,j ← A2i−1,j ⇒ tA2(i, j) > tA2(i − 1, j)

A1i,j ← A2i,j ⇒ tA1(i, j) > tA2(i, j)

(25)

From the conditions marked with (25) and the computation time minimiza-
tion condition we get the following system of inequalities:





zc > zA1

zc > zA2

y − x > 0

y > 0

x > 0

zA1 > zA2

x + y + zC + zA1 + zA2 → minimal

(26)

We also need the constraint that the time function is positive on the domain.
Then from (26) we get the solution:





x = 1

y = 2

zA2 = 0

zA1 = 1

zC = 2

The time functions are the following:

tC(i, j) = i + 2j + 2

tA1(i, j) = tB1(i, j) = i + 2j + 1

tA2(i, j) = tB2(i, j) = i + 2j

(27)

The common linear part of the time functions is T = (1, 2).
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3.2.3 Possible allocation functions

Given the timing functions found in section 3.2.2, we are looking for affine
allocation functions with the same linear part for each variable V of the SURE

(12)–(22) of the form pV = α ∗ i + β ∗ j + γV . The common linear part of the
allocation functions is P = (α,β). The general constraint in our case is:

α

β
6= 1

2
. (28)

In Table 2 one can look for the dependence vector corresponding to a cer-
tain variable. That is (−1, 1), (0, 1) and (1, 0) for variables C, A1 and A2,
respectively.

For a variable V and a corresponding dependence vector θV , the dataflow-
direction is (T ∗ θV , P ∗ θV) = ((1, 2) ∗ θV , (α,β) ∗ θV), where the component
T ∗ θV indicates the “speed” of variable V , while the component P ∗ θV shows
the direction of the V values.

According to the weak conditions (only for dependencies of the form V(z) ←
V(z ′)), the node z ′ should be “close enough” to z, such that V(z ′) can arrive
to the required place in tV(z) − tV(z ′) steps. The conditions are:

Ci,j ←Ci+1,j−1⇒ |pC(i, j) − pC(i + 1, j − 1)|≤tC(i, j) − tC(i + 1, j − 1)

A1i,j←A1i,j−1 ⇒ |pA1(i, j) − pA1(i, j − 1)| ≤tA1(i, j) − tA1(i, j − 1)

A2i,j←A2i−1,j ⇒ |pA2(i, j) − pA2(i − 1, j)| ≤tA2(i, j) − tA2(i − 1, j)

(29)

In the case of dependencies of the form Vi(z) ← Vj(z
′), i 6= j, we can write

the so-called strong dependencies of the form (30).

‖pVi
(z) − pVj

(z ′)‖ =

⌊
tVi

(z) − tVj
(z ′)

T ∗ θVj

⌋
P ∗ θVj

(30)

In our case, these are:

Ci,j ← A1i,j ⇒ pC(i, j) − pA1(i, j) =
⌊

1
2(tC(i, j) − tA1(i, j))

⌋
β

Ci,j ← A2i,j ⇒ pC(i, j) − pA2(i, j) = (tC(i, j) − tA2(i, j))α

A1i,j ← A2i,j ⇒ pA1(i, j) − pA2(i, j) = (tA1(i, j) − tA2(i, j))α

(31)

From (29) we get: 



|β − α| ≤ 1

|β| ≤ 2

|α| ≤ 1

(32)
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From (31) we get: 



γC − γA1 = 0

γC − γA2 = α

γA1 − γA2 = α

(33)

From conditions (28) and (32) we get the set of solutions for α and β:

(α,β) ∈ {(−1, −1), (−1, 0), (0, −1), (0, 0), (0, 1), (1, 0), (1, 1)} (34)

In (34) the first and the last three solutions are symmetric and the solution

(α,β) = (0, 0) can be excluded because the transformation matrix
(

T

P

)

would be then singular (that means that it would transform some points of D

lying on a line into a single point, which is not admitted). Thus we have only
three different results:

P ∈ {(0, 1), (1, 0), (1, 1)} (35)

From (35) and (33) we get three different solutions for adequate allocation
functions corresponding to the given timing functions:

pC(i, j) = pA1(i, j) = pB1(i, j) = pA2(i, j) = pB2(i, j) = j (36)
{

pC(i, j) = pA1(i, j) = pB1(i, j) = i

pA2(i, j) = pB2(i, j) = i − 1
(37)

{
pC(i, j) = pA1(i, j) = pB1(i, j) = i + j

pA2(i, j) = pB2(i, j) = i + j − 1
(38)

3.2.4 Mappings to different systolic arrays

We apply the space-time transformation onto the SURE (12)–(22) according
to the timing functions from (27) and allocation functions from (37). That is:

tC(i, j) = i + 2j + 2 pC(i, j) = i

tA1(i, j) = tB1(i, j) = i + 2j + 1 pA1(i, j) = pB1(i, j) = i

tA2(i, j) = tB2(i, j) = i + 2j pA2(i, j) = pB2(i, j) = i − 1

We have chosen this transformation, because this is the one the application of
which results in an online array. The transformed SURE:

∀t, p : p ≥ 0; 3p + 2 ≤ t ≤ −p + 2(m + n) − 2;
t − p

2
∈ Z
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A2t−2,p−1 ∗ B2t−2,p−1 t = 3p + 2 (39)

A1t−1,p ∗ B2t−2,p−1 + A2t−2,p−1 ∗ B1t−1,p t = 3p + 4 (40)

A1t−1,p ∗ B2t−2,p−1 + A2t−2,p−1 ∗ B1t−1,p+
Ct,p =





+ Ct−1,p+1 t > 3p + 4 (41)

A2t−1,p−1 t = 3p + 2 (42)
A1t,p =

{

A1t−2,p t > 3p + 2 (43)

B2t−1,p−1 t = 3p + 2 (44)
B1t,p =

{

B1t−2,p t > 3p + 2 (45)

A t
2

p = 0 (46)
A2t,p =

{

A2t−1,p−1 p > 0 (47)

B t
2

p = 0 (48)
B2t,p =

{

B2t−1,p−1 p > 0 (49)

Note that this transformation is not unimodular, for this reason the domain
of the system (39)-(49) is sparse (see the (t−p)/2 ∈ Z condition). The resulted
array can be optimised: by merging two neighbouring PEs, we get the online
array presented in Section 3.1.

As a conclusion, in this case it is obvious that we have succeeded to de-
sign the same systolic array in a more “elegant” and efficient way using the
functional approach.

4 Conclusions

In this paper we have compared two automatic systolic array design methods:
the space-time transformation methodology and the functional-based method.

We presented different solutions of a representative problem, using both
methods, in order to demonstrate the main characteristics, differences, advan-
tages and eventual disadvantages of the two design methods.

The space-time transformation method is obviously the most widespread
methodology, and also the most complex one. However, besides its numerous
advantages it also has some drawbacks, too: the formulation of the problem as
a SURE may be sometimes of serious difficulty, complex computations on the
whole index space (repetitions), in order to find an adequate timing function,
a complex linear programming problem has to be solved.
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Other methods that imply more simple computations (for example concern-
ing the computation of the timing function [7]) only work for a fixed size.

The most relevant advantage of our functional-based method is, that ex-
ploiting the symmetric structure of the systolic array, in fact we only have to
analyse the behaviour of the first PE. The method also works for parametrized
problems (the size of the problem does not have to be fixed in advance). More-
over, the design process consists basically in the application of rewrite rules,
thus its implementation is relatively simple.

For the moment, the method is applicable only to linear systolic arrays; this
is, however, for practical reasons (efficiency, reliability and ease of implemen-
tation) the most popular class of systolic arrays. It relies on a formal analysis
performed in advance, thus it is less general than the space-time transforma-
tion method.

The considerations above make us believe that it is worth working on the
improvement of the functional-based design method by analysing other classes
of systolic arrays, too.
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Abstract. Ants, which have a sensitive reaction to pheromone, are con-
sidered to be agents for the metaheuristic called Sensitive ACS (SACS).
Within SACS model, each ant is endowed with a pheromone sensitivity
level, which allows certain types of responses to pheromone trails. Such
an artificial system, based on emergent behavior promise to generate
engineering solutions to distributed systems management problems, for
example, in telecommunication networks. A Sensitive Ants Algorithm for
Routing (SAR), based on SACS model is developed for solving networks
communication problems. The aim of this is to provide a comparison
between AntNet Algorithm, based on ACO model and SAR, by giving a
formal and comprehensive systematization of the subject.

1 Introduction

Ants are social insects, which have captured the attention of many scientists
because of the high structuration level from their colonies. Ant as a single
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individual has a very limited effectiveness. But as a part of a well-organised
colony, it becomes a powerful agent. Taking into account that a human brain
has about 10 billion neurons and ants only have 250, 000, one may ask how they
can perform such amazing tasks when they are in a collective body. Their real
power resides in their colony brain. Even though the individuals are limited
in number of neurons, a collective of 40, 000 would have approximately the
number of neurons that a human brain has [9].

Stigmergy is defined as a particular form of indirect communication in a self-
organizing emergent system used by social insects to coordinate their activities
[8]. Stigmergic information is local: it can only be accessed by those insects
that visit the place in which it was released. In many ant species, ants walking
from or to a food source, deposit on the ground a substance called pheromone.
Generally, insects are known to make more use of pheromones for diverse tasks
such as reproduction, alert, identification, navigation and aggregation [8,9].

Sensitive ants have different degrees of perceiving the presence of
pheromone. This is suggested by the Pheromone Sensitivity Level (PSL),
whose value is between 0 and 1 [2,3,4]. The idea of using ants for solving
routing problems is not new: for instance, the ACO metaheuristic provides
good results in this area [5]. The paper aims to provide an algorithm where
sensitive ants can be used for routing. Numerical experiments indicate the
potential of the proposed algorithm.

2 Routing information

Routing can be characterized by the following general way. Let the network
be represented in terms of directed, weighted graph: G = (V, E), where each
node in the set V represents a processing and forwarding unit and each edge
in E is a transmission system with some capacity/bandwidth and propagation
characteristics.

Data traffic originates from one node and can be directed to another node
(unicast traffic) or to a set of nodes (multicast traffic) and/or to all the other
nodes (broadcast traffic). The nodes between sources and destinations are
called intermediate or relay nodes. The node, from where the traffic flow
originates is also called source, while the nodes to which traffic is directed are
the final end-points, or destinations [1,5,6].

The characteristics of the routing problem make it well suited to be solved by
a mobile multi-agent approach. The ideea of using ants in routing problems
is not new, i.e. M. Dorigo and G. Di Caro originally proposed four ACO
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algorithms for adaptive agent-based routing. They are the following: AntNet,
and some improvements of it: AntNet-FA, AntNetSELA and AntHoc Net
[5,6,7].

3 Sensitive ants model used for routing in telecom-
munication networks

The Sensitive ACS metaheuristic (SACS) [4] uses different reactions of sensi-
tive ants to the pheromone trail. The model implements both exploration and
exploitation search for solving problems with a high degree of complexity.

Within the proposed model, each agent is endowed with a pheromone sen-
sitivity level (PSL), which is expresed by a real number in the unit interval
[0, 1]. Agents with low PSL values will normally choose very high pheromone
levels moves. They are more independent and they are very good environment
explorers [4,5]. Agents with high PSL value will follow any pheromone trail.
They are able to exploit the already indentified paths.

The ACS and SACS models were implemented for solving the Generalized
Traveling Salesman Problem (GTSP). The search space was an n-node, undi-
rected graph, G = (V, E) [4]. To favour the selection of an edge, (i, j) with a
high pheromone value, τ, and a high visibility value, η = 1

cij
, the transition

probability, pk
iu is considered:

pk
iu =

[τiu(t)] · [ηiu(t)]β∑
o∈Jk

i
[τio(t)] · [ηio(t)]β

, (1)

where β is a parameter used for tuning the relative importance of edge cost
(cij) in selecting the next node.

The main purpose of Sensitive Ants Algorithm for Routing (SAR) is to
point out a comparison between multi-agents with random PSL and multi-
agents with a fixed (global) PSL. The algorithm refers to finding a minimum-
cost path from a certain source to a randomly chosen destination, by using
sensitive ants.

The model’s main purpose is to improve routing in telecommunication net-
works. The network is represented by a weighted graph G = (V, E), where each
node represents a processing and forwarding unit for every ant passing by, and
each edge in E is a transmission system with propagation characteristics. Ants
are used to explore the search space so that data packets can reach the desti-
nation taking into account the improvements made by the ants. When all the
routing tables are updated with the minimum costs, the algorithm stops.
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Two classes of ants are used for this purpose: the first one is the manage-
ment ants. Here, three types of ants are considered: exploration ants, which
have the role to explore the unoriented graph and find more candidate routes
between the nodes. Another type of ants are the message ants or response

ants (they work as backward ants). Error ants appear if one node or edge is
deleted. The second class are the exploitation ants, which only take into ac-
count the improvements made by management ants, and because of this, they
only choose the edges with the low cost. They are also called data packets
[5,6].

At iteration t+1 every ant moves to a new node and the parameters control-
ling the algorithm are updated. Each edge is labelled by a trail intensity; let
τij(t) be the trail intensity for the edge (i, j) at iteration t. At each time unit
evaporation takes place and its value is between 0 and 1. Every ant decides
which node is the next move with a probability, which is based on the distance
to that node and on the amount of trail intensity on the edge connecting the
nodes. The inverse of distance from a node to the next node is called visibility
and is denoted by the formula: η = 1

cij
, where cij is the cost on the edge (i, j).

To favour the selection of an edge that has a high pheromone value, τ, and
high visibility value, η, a transition probability is proposed:

pk
iu =

[τiu(t)] · ηiu(t)PSL

∑
o∈Jk

i
[τio(t)] · ηio(t)PSL

. (2)

(2) expresses the probability of ant k from the node i to choose the next node
u; PSL represents the pheromone sensitivity level for an ant. It is used for
tuning the relative importance of the quantity of pheromone on the edge. Jk

i

are the unvisited neighbors of node i.
The algorithm can be resumed as follows: from each network node, ants are

randomly launched towards specific destination nodes. The agent generation
processes happen concurrently and asyncronously; the best (minimum) path
is searched from a certain source to a randomly chosen destination, using
ants. Destination is chosen randomly. The agents moving from their source
to destination node are called forward ants. Every forward ant has a taboo
list: where it has the source node, the destination node, the PSL value and
the intermediate nodes, between its source and destination; the pheromone
trail is updated on every edge taking into account the evaporation rate and
the number of ants which pass on the edge in that moment of time. When an
ant arrives at destination it is deleted and a backward ant (response ant) is
created, which goes back following the same path as before, but in the opposite
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direction. If an ant does not reach the destination and the maximum Time-
To-Live (TTL) has expired, then it is also destroyed. The pheromone on the
trail is updated as follows:

τi,j(t + 1) = (1 − ρ) · τi,j(t) + ln(Ni,j(t) + 1), (3)

where Ni,j is the number of ants which pass on the edge (i, j) at iteration t; ρ

represents the evaporation rate; if an ant arrives at destination, it is deleted
and a backward ant (response ant), Bd→s, is created and goes back to the
same path Ps→d = [s, v1v2 . . . , d] as before, but in the opposite direction.

In AntNet technique [6], the routing decision policy is adopted by forward
ants in choosing the next node (hop). Therefore, the ant’s decision is influenced
by the entries in the pheromone table, the status of the local link queues
(heuristic values), and it depends on the memory of the already visited nodes.
At each intermediate node k, the forward ant Fs→d heading to its destination
d must select the neighbor node n ∈ Nk to move to. The probability pnd

assigned of each neighbor n of being selected as next hop is:

y =

{
pnd = τnd+α·ln

1+α(|Nk|−1) if ∀n ∈ Nk ∧ n /∈ Vs→k

pnd = 0 otherwise,
(4)

where τnd are the values of the pheromone stochastic matrix τk corresponding
to the estimated goodness of choosing n as the next hop for destination d; ln
is a [0, 1] normalised value proportional to the length qn ′ ; Vs→d is the list
of the nodes visited so far and α ∈ [0, 1] weighs the relative importance of
the heuristic correction with respect to the pheromone values stored in the
pheromone matrix [5].

4 Numerical experiments

SAR paradigm presents a simulation on a routing network, which is repre-
sented by a connection-less graph G = (V, E). The number of nodes is denoted
by N, where N ⊆ V . NFSNet, one of the graphs used for the simulation, is a
WAN composed of 14 nodes and 21 bi-directional links with a bandwidth of
1.5 Mbit/s [5].

SAR showed good performance under the NSFNet graph. All reported
data are averaged over 10 trials. The best results were rather obtained using
sensitive ants, with a random PSL, than ants with a global PSL. Costs on
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PSL No of steps No of ants No of packets No of delivered
packets

random 2524.8 274.5 277.8 255.4
0.2 2653.4 291 290.7 266.9
0.5 2795.8 304.6 306.8 283.8
0.7 2781.5 302.8 306 282.3
0.9 2912.2 316.8 323.1 300.1
1 3024.8 335.3 327.5 304.9

Table 1: NFSNet: Comparative results for different PSL values in SAR

the edges were computed taking into account only the propagation delays:
costs range from 4 to 20 msec. TTL was set at 255 sec. As it can be seen
from Table 1, better results were obtained using a random PSL value, so
sensitive ants (with PSL values between 0 and 1) are better than ants which
have a global PSL value, i.e., 0.2, 0.5, 0.7, 0.9 or 1. In ACO metaheuristic,
every ant has the same global value for the PSL. Time of the simulation is
proportional with the number of steps; a step occurs at every 15 msec. As it
can be seen from Table 3 the percentage of delivered packets obtained using
the SAR paradigm is bigger than the percentage of delivered packets from
the AntNet results. From this point of view, SAR obtained better results.
However, AntNet was always, within the statistical fluctuations, among the
best performing algorithms. AntNet showed a robust behaviour, being able
to rapidly reach a good stable level in performance. Moreover, the proposed
algorithm has a negligible impact on network resources and a small set of
robustly tuneable parameters. Its features make it an interesting alternative
to classical shortest path algorithms.

PSL No of Steps Time (sec)
random 2524.8 37.8

0.2 2653.2 39.7
0.5 2795.8 41.9
0.7 2781.5 41.7
0.9 2912.2 43.6
1 3024.8 45.3

Table 2: Time results of SAR on NSFNet WAN
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Figure 1: NFSNet: A comparison between different PSL values

Application Percentage of delivered packets
SAR 92.25 %

AntNet 90 %

Table 3: Delivered packets on SAR vs AntNet

5 Conclusions and future work

The Sensitive Ants Paradigm for Routing (SAR), based on the model SACS
is presented. SAR obtained good results in routing taking into account the
NSFNet graph which was also used by M. Dorigo et al. in AntNet paradigm.
From AntNet statistics some numerical results can be pointed out: the number
of generated ants is 567, 000, the number of received ants is 107, 000 and
number of dropped ants is 429, 000 [9]. The computational results concerning
the SAR model show that sensitive ants achieve better results than ants with
global PSL because ants with a random PSL value are able to make a more
efficient exploration of the proposed WAN. These results may be improved by
considering different parameter settings.

Future work focuses on the improvement of the proposed SAR model, by
quantifying specific roles of the stigmergetic communication in ant colonies in
order to bring better results in routing research.
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Abstract. Based on strategic games, a new type of dynamic game has
been introduced, the n-period cumulated game (n-PCG), where players
engage in a repetitive play of a constituent strategic game for n number
of times (an accumulation period), without receiving their payoff after
each stage of the game, but only the cumulated payoffs of all the stages of
the game at the end of the accumulation period. Some solution concepts
for n-PCGs are discussed, namely subgame perfect equilibria and Nash
equilibria. Then a two-population based genetic algorithm is introduced
in order to find these equilibria in 2-period cumulated games.

1 Introduction

Genetic algorithms are a well-known optimization method introduced by John
Holland in the early 1970s [3]. Nash strategy [4, 5] is the most commonly en-
countered solution concept in game theory. The idea to use genetic algorithms
together with the Nash strategy concept, such that the algorithm searches for
the Nash equilibrium, belongs to Sefrioui [10]. As described in [7] at each
generation a player improves its strategy with respect to the other players’
best strategies of the previous generation: Nash equilibrium is reached when
no player can improve its strategy. Based on this, NCA (Nash Coevolution
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Algorithm), a two population based genetic algorithm, finds subgame perfect
equilibria in 2-period cumulated games interpreted as extensive games with
imperfect information.

2 n-period cumulated game (n-PCG)

The notion of cumulated game basically means that, for instance, having two
individuals playing a number of strategic games, there exists a mechanism that
sums and withholds the benefits until the players have completed n plays of
the strategic game; n is called the length of the accumulation period. Their
accumulated benefits are reported only after n stage games. Our goal is to
model the situations where players engage in games, in which they have dif-
ferent knowledge of the previous plays, and in which they receive their payoff
after different accumulation periods. For example, consider the model of the
relation between an employer and an employee where the employer agrees to
pay the employee a small amount of money every two weeks even though he
may gain benefits from the employee’s work at every two months. The accu-
mulation period of the employee is two weeks and the accumulation period of
the employer is two months. However, here the focus is on the notion of n-
period cumulated games (i.e. equal accumulation periods), and on the analysis
of four models of 2-PCGs distinct by their elementary game.

The notion of cumulative benefit game already appeared in [11]. There the
author argued that in the context of repetitive games and a strong temporal
discounting, accumulation can promote a cooperative strategy. However, an
n-PCG is a not a repetitive game even though it is a dynamic one.

2.1 n-period cumulated games as strategic games

An n-PCG can be described as a strategic game. Take for example the strate-
gic game in Fig. 1(a) and an accumulation period of two, i.e., after the first
stage of the game no payoff is reported, and after the second stage of the game
the players receive their cumulated payoffs over the two plays.

This 2-PCG can be viewed as a strategic game, as depicted in Table 1. In
this game the pure strategies for Player 1 (AA, AB, BA , BB) and Player 2
(CC, CD, DC, DD) are composed by the pure strategies of the initial strategic
game. The payoffs are the cumulated payoffs over a period of the cumulated
game. For example, if the first player (the row player) chooses AB and the
second player chooses DD, then the payoff is 2 for the first player and 6 for the
second player, i.e., in the first stage of the game they play AD, which has an
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unreported payoff of (1, 5), and in the second stage they play BD, which has
an unreported payoff of (1, 1), thus having an accumulated reported payoff of
(2, 6).

CC CD DC DD
AA 6,6 4,8 4,8 2,10
AB 8,4 4,4 6,6 2,6
BA 8,4 6,6 4,4 2,6
BB 10,2 6,2 6,2 2,2

Table 1: A 2-PCG based on the strategic game from Fig. 1(a)

2.2 n-period cumulated games as dynamic games

An image of the described game is that of a dynamic game. A dynamic game
captures the idea that players act sequentially and can incorporate information
about earlier moves in the game in choosing their next move. Even though a
stage game (called constituent game) is being repeatedly played, the difference
between an n-Period Cumulated Game and a finitely repeated game is that
the benefit/payoff is reported only after an accumulation period.

The n-PCG can be represented as an extensive game. For instance, the
static game in Fig. 1(a) is equivalent to the dynamic game represented in Fig.
1(b). The dashed line between some nodes means that the current decision
maker does not know in which state she is at. Therefore, the extensive game
can be viewed as a 2×2 strategic game where players act simultaneously. This
is the case of extensive games with imperfect information, i.e., each player,
when making a decision, is not perfectly informed about the events that have
previously occurred [9, 6].

3 Solution concepts for n-period cumulated games

Interpreting the n-period cumulated game as a new strategic game, the apro-
priate solution concept is that of Nash equilibrium [4, 5], the most commonly
encountered solution concept in game theory. The Nash equilibrium and most
of its variants express the idea that each player individually maximizes its
utility [1].

Interpreting the n-period cumulated game as an extensive game, the ade-
quate solution concept is that of subgame perfect equilibrium. A subgame is
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(a) the game in its
normal form

(b) the game in its
extensive form

Figure 1: Views of the same 2× 2 strategic game

a subtree from a game’s directed tree that has the properties: it begins at a
decision node, it gives the initial player all the decisions that have been made
until that time, and it contains all the decision nodes that follow the initial
node. The subgame perfect equilibrium (or subgame perfect Nash equilibrium)
is a refinement of Nash equilibrium (NE) that induces a NE in every subgame
(subtree) of that game. In an n-PCG there are subgames with simultaneous
decisions, therefore all possible Nash equilibria of that subgames may appear
in a subgame perfect Nash equilibrium.

3.1 Numerical experiments

After excluding the games that are strategically trivial in the sense of hav-
ing equilibrium points that are uniquely Pareto-efficient, there remain four
archetypal 2 × 2 games: prisoner’s dilemma, chicken (Hawk-Dove), battle of
the sexes, and leader [8]. These games where taken as constituent games for
2-PCGs. The theoretical solving of these 2-PCGs is described by solving the
2-PCG based on the Hawk-Dove Game.

3.1.1 Hawk-Dove game

The strategic form of this game depicted in Table 2 has two Nash equilibria:
DH and HD. The game tree from Fig. 2 represents the 2-PCG based on this
Hawk-Dove game. It has five subgames, four of them are the extensive form of
the strategic constituent game (Table 2), and one is the whole tree. Working
through backwards induction, the four subgame perfect equilibria are found.
These are the dotted paths from root to leaves in Fig. 2.

An n-PCG can be described as a strategic game, hence the 2-PCG depicted
in Fig. 2 can be represented as the strategic game in Table 3. Using the
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best response strategy, the Nash equilibria of this strategic game are found.
They are the same with those of the subgame perfect equilibria found before.
Certainly, this is due to the manner in which the game was constructed, but
nevertheless, this gives us a static insight of a dynamic process.

D H
D 3,3 1,5
H 5,1 0,0

Table 2: The Hawk-Dove game

Figure 2: Game tree for a 2-PCG based on the Hawk-Dove game from Table
2. The Nash equilibria of every subgame are marked with dots. The dotted
paths from root to leaves are the subgame perfect equilibria

CC CD DC DD
AA 6,6 4,8 4,8 2,10
AB 8,4 3,3 6,6 1,5
BA 8,4 6,6 3,3 1,5
BB 10,2 5,1 5,1 0,0

Table 3: A 2-PCG based on the strategic game from Table 2

Similar with the Hawk-Dove game based 2-PCG the solutions for the 2-
PCGs with the constituent strategic games prisoner’s dilemma, battle of the
sexes and leader are found.
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4 NCA (Nash coevolution algorithm)

A coevolution algorithm for finding subgame perfect equilibria in 2-period
cumulated games is proposed. This algorithm is called Nash coevolution al-
gorithm (NCA).

4.1 Encoding a strategy

With NCA, a chromosome represents a strategy that is a function of the state
of the game: every possible state (history) has one slot i,0 ≤ i < s, in the
sm string that codes the move the player will take if she uses that strategy
and she encounters the history with index i; s is the number of states of the
constituent strategic game (stage game), m is the length of the history (the
number of stage games that the player recalls) and the hypothetical game is
there to induce the first actions that the player will take. The difference from
[2] is that here there is no restriction for m.

4.2 Fitness assignment

Every player is represented by a population, which maximizes the player’s
payoff at every generation. The populations evolve by optimizing at each step
their chromosomes using the other population’s best q chromosomes from the
previous generation [7], i.e. each player has a population that tries to maximize
its payoff using the best solutions found by the other player’s population one
generation before. The fitness of each chromosome will be the mean payoff it
receives after playing with each of the other player’s best chromosomes from
the previous generation.

In games with imperfect information the notion of subgame perfect equilib-
rium may require mixed strategies, for instance the game of matching pennies.
This implementation does not support these types of strategies.

5 Convergence, stability and more

NCA was tested using fixed and variable parameters. The fixed one where:

• population size = 40 strategies for each player;
• a number of 700 to 1000 generations for each run;
• recombination probability = 0.2% ;
• accumulation period = 2 for both players.
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The other parameters were:

• exchange ∈ {5, 20, 40}, where exchange is the number of individuals used
to evaluate a strategy;

• probability of mutation, p.m. ∈ {0.1%, 0.2%, 0.3%};
• history length ∈ {1, 2}.

They varied one at a time, thus allowing an objective impact analysis.
Different parameters configuration gave an insight into the stability of NCA

and proved empirically that

stability ≈ 1

exchange× p.m.
.

The convergence time to an equilibrium is between 40 and 60 generations
for all the configurations of the Leader game. For the Battle of sexes, for the
test configurations 1 to 9 (history length of 1 ) an equilibrium was found in
less than 70 generations in more than 90% of the cases; for the last three test
configurations (history length of 2 ), the convergence time to an equilibrium
is under 40 generations. For the Prisoner’s dilemma game, it needs less than
30 generations to achieve its equilibrium in all the configurations. For the
Hawk-Dove game the algorithm achieves an equilibrium under 70 generations
with a probability of 87%.

6 Conclusion and future work

Based on strategic and repetitive games, a new dynamic game called n-period
cumulated game has been introduced. Solution concepts for these n-PCGs,
namely subgame perfect equilibria and Nash equilibria, were analyzed. Then
2-PCGs were tested in a coevolutionary environment (provided by the devel-
oped NCA) based on archetypal 2×2 games. The main result was that players
eventually play a Nash equilibrium in every subgame, thus a subgame perfect
equilibrium, even though they are not aware of their payoff until a certain
number of stage games are played.

An interesting focus for future work is that of working with different levels
of accumulation periods, testing the outcome of having the players engage in
these basically different games. Another challenging issue can be that of letting
two players play a number of games between themselves, thus transforming
the n-PCG into a repetitive one; for instance, preliminary tests show that in
the repetitive 2-PCG based on the prisoner’s dilemma the players start by
cooperating.



274 R. M. Berciu

References

[1] R. Aumann, What is game theory trying to accomplish? Frontiers in
Economics (1985) 909–924.

[2] R. Axelrod, The evolution of strategies in the iterated prisoner’s dilemma,
Genetic Algorithms and Simulated Annealing (1985) 32–41.

[3] J. H. Holland, Adaptation in natural and artificial systems, The MIT
Press, Cambridge, MA, USA, 1992.

[4] J. F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci.
36 (1950) 48–49.

[5] J. F. Nash, Noncooperative games, PhD Thesis, Princeton University,
1951.

[6] N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani, Algorithmic Game
Theory, Cambridge University Press, 2007.

[7] J. Periaux, M. Sefrioui, Nash genetic algorithms: examples and applica-
tions, Proc. of the 2000 Congress on Evolutionary Computation, 1999,
pp. 509–516.

[8] A. Rapoport, Exploiter, leader, hero, and martyr: the four archetypes of
the 2x2 game, Behavioral Science 12, 2 (1967) 81–84.

[9] A. Rubinstein, M. J. Osborne, A course in game theory, The MIT Press,
Cambridge, MA, USA, 1994.

[10] M. Sefrioui, Algorithmes evolutionnaires pour le calcul scientifique: Ap-
plication a l’electromagnetisme et a la mecanique des fluides, PhD Thesis,
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Sudden cardiac death, mostly caused by ventricular fibrillation, is responsible
for at least five million deaths in the world each year. Despite several years
of research, the responsible mechanisms for ventricular fibrillation are not yet
well understood.

As most simulation studies are limited to planar simulations, the responsi-
ble mechanisms for the spatial phenomenon of ventricular fibrillations are not
elucidated by far. It would be important to know how the most important
heart parameters, such as the heart’s size, geometry, mechanical and electrical
state, tissue homogeneity and fiber structure, affect the development of ven-
tricular fibrillation. The main difficulty in the development of a quantitatively
accurate simulation of an entire three-dimensional human heart consists in
the limited number of heart models, and the rapidly varying, highly localized
fronts produced within the human heart muscle. Moreover, in pathological
cases, the most relevant parameters of the conduction properties are signifi-
cantly altered and they can produce spiral, self-inducing depolarization waves,
which often transform into ventricular fibrillation. These regional alterations
of the conduction properties are mostly patient-specific. To approach towards
the solution of these problems, a complex modeling of the heart is necessary.

This book focuses on the adaptive ECG analysis and heart modeling. In the
first chapter, a detailed ECG processing method is presented, which uses an
iterative filtering and parameter estimation technique to obtain the aimed re-
sults. This algorithm is capable of properly adapting itself to patient-specific
demands. Instead of the direct or transformation based processing meth-
ods, which cannot cover the uncommon waveforms even if using large sample
databases, this feature-specific ECG estimation method can handle almost all
perturbed waveforms. The signal estimation and efficient compression pro-
cesses are highly correlated by the a priori determined medical parameters.
The advanced distortion analysis allows to adaptively modify the compression
rate, assuring a predefined quality of the biological parameters.

In the second chapter a dynamic heart model is presented, which is capa-
ble OF simulate almost all important pathological cases. The depolarization
waveform is simulated at a dynamically, locally and temporally variable resolu-
tion that yields a fast simulation, keeping the estimation error at a reasonable
level. The adaptive mesh refinement algorithm establishes the proper local res-
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olution based on the first derivative of the intracellular potential. The whole
method is highly parallelized, so video cards can efficiently perform the bulk
of the calculation.

In the third chapter the simultaneous processing of the ECG signal and
echocardiography image sequence determines the latent connection between
the heart’s electrical and mechanical properties. This connection stands at the
basis of the electro-mechanical model of the heart. The massive amount of a
priori medical information can be used to determine the spatial coordinates
of the heart walls. Using a time-dependent surface model, the 4D model of
the heart can be determined. This spatio-temporal model was determined for
normal and ectopic beats.

In the fourth chapter an advanced accessory pathway localization method
is presented using the standard 12-lead ECG record. Although the published
localization methods yield an almost 90% recognition rate, the weak points of
the Arruda localization method can be exploited partially by the replacement
of some decision criteria using a heart model simulation. The obtained clinical
data evaluation supported the author’s heart model based considerations.
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