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Reconstruction of complete interval tournaments . . . . . . . . . . . . . . . 71
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Rényi Institute of Mathematics), Semistructured Data Bases (Attila Kiss,
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Schiller University), and Computer Graphics (László Szirmay-Kalos, Budapest
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The book contains verbal description, pseudocode and analysis of over 200
algorithms, and over 350 figures and 120 examples illustrating how the algo-
rithms work. Each section ends with exercises and each chapter ends with
problems. The book contains over 330 exercises and 70 problems.

The book has a web site: http://elek.inf.elte.hu/EnglishBooks, which can
be used to obtain a list of known errors, report errors, or make suggestions.
The website contains the maintaned PDF version of the bibliography in which
the names of the authors, journals and publishers are usually active links to
the corresponding web sites.

INSIGHT INTO COMPUTER SCIENCE WITH MAPLE

Zoltán Benyó, Béla Paláncz, László Szilágyi
Scientia Publishing House (http://www.scientiakiado.ro), Cluj-Napoca, 2005.

ISBN: 978-973-7953-56-8

The purpose of the book is to provide a systematic overview of the different
areas of computer science with the help of integrated systems like Maple,
Mathematica and Mathcad. These are popular representatives of integrated
systems providing a new philosophy for using computers in teaching, research
and industry. Definitions, principles, methods, techniques and applications
illustrated by interactive examples are presented.

Contents: Problems, algorithms and programs, Data structures, Numerical
algorithms, Simulation (of the dynamical performance of linear and non-linear
syustems), Control (for linear and non-linear systems), Graphs and their ap-
plications, Neural networks, Computer graphics, Computer animation, Image
processing.

Most of the chapters conclude with exercises.
The book is written basically as a second year text for students in science and

engineering, who already have some knowledge of programming and in working
with Maple, Mathematica or Mathcad. However, it could be a first year
text for mathematics students or students in computer science, who generally
acquire skills in these type of packages (early computing/electronics courses
that traditionally use C, C++, Java) or some other high level languages in
their first year, and could easily acquire the required level of skill in one of
these systems in their second year.

This book can also be a helpful source of reference for postgraduate students.
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Abstract. In the paper [10] we analyzed how it is possible to approxi-
mate spatial points which mark real methane probes. The origin of the
discussed problem is the modelling of real geological reserve calculating.
In most of the cases the specialists consider that the contact points of
borings to the envelope surface are stationary points. In this paper we
will study an interesting feature of the Shepard’s interpolation method
in m dimensional space, where the control points are stationary and the
interpolation function is continuous derivable. Using this interpolation in
the real three dimensional space, we will show that the envelope surface
may be approximated with this interpolation function.

AMS 2000 subject classifications: 65D05, 65D17
CR Categories and Descriptors: G.1.1. [Interpolation]: Subtopic - Interpolation formu-
las.
Key words and phrases: interpolation methods, geological reserve calculating
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1 Introduction

In the paper [10] we analyzed how it is possible to approximate spatial points
which mark real methane probes. The origin of the discussed problem is the
modelling of real geological reserve calculating ([5], [8]).

There are given planar, spatial or m dimensional points and we are looking
for a smooth hypersurface which could interpolate so that these points are
stationary.

The classical methods are the Lagrange interpolation method and Gauss’
least square method. Both of them have applicable features but there are also
disadvantages. The Lagrange interpolation method may fluctuate between
two points while with the Gauss method we must choose the desired hiper-
surface in advance. None of them is natural because the points provide the
only piece of information that we have. There is no rule which could describe
the mathematical instruments that we must use with the interpolation and
approximation methods. Therefore in most of the cases people choose poly-
nomials of 1, 2, 3, ..., n degrees because they can solve them more easily. Thus
the modern graphical computing evolved and it has the most flexible methods
such as the Bezier curves and the B-splines.

Our task comes from a practical problem: how can we reconstruct the
methane reserve samples provided by the probes? We partially solved this
problem and the results ware published in our paper [10]. Therefore we an-
alyzed the raised question and mathematically rephrased the problem. Thus
we came to the conclusion that we must search for a hypersurface to which
the given points are stationary.

During the the examination of the literature we found out that in the papers
[1], [9] approximation-interpolation methods were presented to terrain models.
This is called the calculating of the arithmetic mean weighted by the inverse

of distance interpolation function (4).
We have tested and compared the Shepard’s interpolation method ([2], [3],

[6], [7], [4], [11]) given by the functions (5), (7) in two and three dimensions:
arithmetic mean weighted by the distance approximation (1), with the arith-

metic mean weighted by the square of the distance approximation (2), with
Lagrange interpolation (3), with the arithmetic mean weighted by the inverse

of distance interpolation (4). These comparisons we summarized in Figure 1
and Figure 2. These figures show with the enumerated methods the evolu-
tion of the discrete approximation-interpolation in the two respectively three
dimensional space.

We can observe that the first two methods (1), (2) – first two rows from
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Figure 1 and Figure 2 – only approximate the control points and the curve or
surface is determined by these points. The third method (3) – third row from
Figure 1 and Figure 2 – interpolate the control points but these points are not
stationary. The fourth method (4)-fourth row from Figure 1 and Figure 2-
also interpolates, the control points are extremely, but the curve and surface
are not smooth in the control points. In the second section, we will show that
the Shepard’s method (5), (7) – fifth row from Figure 1 and Figure 2 – also
interpolates, the control points are stationary, and the curve and surface are
smooth.

In the m dimensional space different Ai, i = 1, n points are given. We denote
by ri the positional vector of Ai. For every point Ai we assign a zi scalar
value. Let us define the interpolation functions of the enumerated methods in
the following manner:

E1(r) =

n
∑

i=1

dizi

n
∑

i=1

di

; (1)

E2(r) =

n
∑

i=1

d2

i
zi

n
∑

i=1

d2

i

; (2)

L(r) =
n

∑

i=1

zi

n
∏

k=1
k 6=i

(r − rk)

n
∏

k=1
k 6=i

dki

; (3)

E3(r) =















n∑

i=1

zi

di

n∑

i=1

1

di

, if r 6= ri,

zi, if r = ri,

(4)

where di is the length of the vector r − ri and dki is the distance between
points Ak and Ai.
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2 The stationary points of the Shepard’s interpola-

tion

2.1 Curve interpolation in the plane

Theorem 1 Given (xi, yi), i = 1, n points in the real plane where xi 6= xj if

i 6= j. Let us define the G : R → R function where

G(x) =















n∑

i=1

yi

(x−xi)
2

n∑

i=1

1

(x−xi)
2

if x 6= xi,

yi if x = xi.

(5)

The G is continuous derivable and G′(xi) = 0 for all i = 1, n.

The theorem is a particular case of the Theorem 2 in one dimensional space.

2.2 Hypersurface interpolation in the m dimensional space

We can generalize the G function in the m dimensional space.

Theorem 2 Given Ai, i = 1, n different points in the m dimensional space.

We denote by ri the positional vector of Ai. For every point Ai we assign a

zi scalar value. Let us define the function F : Rm → R, where

F (r) =















n∑

i=1

zi

d2

i
n∑

i=1

1

d2

i

if r 6= ri,

zi if r = ri,

(6)

where di is the length of the vector r − ri. The F function is continuous

derivable and F ′(ri) = 0 for all i = 1, n.

Proof. From the definition we get:

F (r) =

n
∑

i=1

zi

d2

i

n
∑

i=1

1
d2

i

=

z1

d2

1

+
n
∑

i=2

zi

d2

i

1
d2

1

+
n
∑

i=2

1
d2

i

=

1
d2

1

(

z1 +
n
∑

i=2

(

d1

di

)2
zi

)

1
d2

1

(

1 +
n
∑

i=2

(

d1

di

)2
)

and
lim
r→r1

F (r) = lim
d1→0

F (r) = z1.
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Consequently F is continuous. Furthermore if x is one of the coordinates of
r then

∂F (r)

∂x
=

∂

∂x











n
∑

j=1

zj

d2

j

n
∑

i=1

1
d2

i











=

−

n
∑

i=1

1
d2

i

·

n
∑

j=1

2zj ·(x−xj)

d4

j

+
n
∑

j=1

zj

d2

j

·

n
∑

i=1

2·(x−xi)
d4

i

(

n
∑

i=1

1
d2

i

)2

=

2
n
∑

i=1

n
∑

j=1

(x−xj)(zi−zj)

d4

j
d2

i

(

n
∑

i=1

1
d2

i

)2

If r → r1 then x → x1, d1 → 0 and

lim
r→r1

∂F (r)

∂x
= 2 · lim

r→r1

n
∑

i=1

[

(x−xj)

d4

j

(

n
∑

i=1

zi−zj

d2

i

)]

(

n
∑

i=1

1
d2

i

)2

= 2 · lim
r→r1

(x−x1)
d4

1

·

n
∑

i=2

zi−z1

d2

i

+
n
∑

j=2

[

(x−xj)

d4

j

(

n
∑

i=1

zi−zj

d2

i

)]

(

n
∑

i=1

1
d2

i

)2

= 2 · lim
r→r1

(x−x1)
d4

1

·

n
∑

i=2

zi−z1

d2

i

(

1
d1

)4
·

(

n
∑

i=1

(

d1

di

)2
)2

+ 2 · lim
r→r1

n
∑

j=2

[

(x−xj)

d4

j

(

z1−zj

d2

1

+
n
∑

i=2

zi−zj

d2

i

)]

(

1
d1

)4
·

(

n
∑

i=1

(

d1

di

)2
)2

= 0.
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Consequently F is derivable and

F ′(ri) = 0, for all i = 1, n.

¥

2.3 Surface interpolation in the space

There is a special case. If m = 2 we will get the H function in the real space:

H(x, y) =















n∑

i=1

zi

d2

i

n∑

i=1

1

d2

i

if x 6= xi or y 6= yi,

zi if x = xi and y = yi,

(7)

where di =

√

(x − xi)
2 + (y − yi)

2 is the euclidean distance and (xi, yi, zi) , i =

1, n are the points we want to interpolate.

3 Conclusions

The F function it is like the (4) but here the weights are the inverse of the
distance’s square. This function has the properties of Lagrange’s interpolation
method and those of the arithmetic mean weighted by the inverse of distance
method, because it interpolates the control points. The F function also has
an important property. It is continuous derivable and the control points are
stationary. We illustrate these features in the fifth row of the Figure 1 and
Figure 2.

Consequently, with the Shepard’s interpolation function we can derive smooth
curves, surfaces and it allows the making of beautiful and aesthetic drawings
in computer graphics.

Furthermore it is an important geological requirement and an empirical fact
that methane and petrol have the shape of a mushroom. They cannot have
a polyhedron like, plicate surface. In most of the cases when people make
borings, first they find the maximum points of the methane. Therefore if
we want to appreciate the volume of the methane we need a surface which
crosses the maximum point and it has the form of a mushroom. On Figure
2 is visible that the Shepard’s function has approximately this form in the
maximum points, but the other functions do not have this feature. Naturally
we have tested this function with higher powers of distance but we didn’t get
better interpolations.
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Figure 1: Approximation-interpolation in two dimension
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Figure 2: Approximation-interpolation in three dimension
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Meta programming on the proof level
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Abstract. Computer aided proof generation is used for many reasons
from formalization of mathematics to formal computer program develop-
ment. Our research concentrates on completely declarative style proofs
used to develop imperative programs in a refinement-based model (i.e.
deriving the algorithm from the specification).

In this paper we investigate why and how to use meta programming
techniques for proof development. We examine techniques already used in
programming languages if they are applicable for proof construction and
point out the specialities caused by the different application area. It is
also shown that while meta programming techniques are often dangerous
when used to develop programs, they are safe tools for proof development.

1 Introduction

1.1 Human-readable proofs

There is a wide range of theorem provers from completely automatic ones to
proof checkers. Examining the history of formal program development and
automatic theorem proving, it seems hopeless to create a system that proves
the correctness of industrial sized programs without considerable human effort.
It is crucial that users of a proof system can easily understand the given proof
situations if the machine is not able to complete the proof automatically. For

AMS 2000 subject classifications: 68Q60
CR Categories and Descriptors: F.3.1. [Specifying and Verifying and Reasoning about
Programs]
Key words and phrases: formal program verification, meta programming, proof genera-
tion
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true() => abs(x) >= 0

select

{
x >= 0 => abs(x) >= 0

{
x >= 0 => x = abs(x);

x = abs(x) & x >= 0 => abs(x) >= 0;

}
!(x >= 0) => abs(x) >= 0

{
!(x >= 0) => 0-x = abs(x);

!(x >= 0) => 0-x >= 0;

0-x = abs(x) & 0-x >= 0 => abs(x) >= 0;

}
}

Figure 1: The non-negativity of the absolute value function

that reason, there is a growing interest in human-readable proof languages.
The proof language of the Mizar proof assistant [1] was designed to be similar
to textbook proofs. Similar style is used in the Isar [2] language for Isabelle

[3] and in a declarative style proof language for Coq [4].
In our case proofs are used mainly to specify the behaviour of imperative

programs and to develop the algorithm by refining the original specification.
When refining a specification statement, one gives a set of more detailed state-
ments. The refinement is sound, if every program that corresponds to the
detailed specification also fulfils the requirements of the original one. We can
say that the original specification is a theorem about the behaviour of the
resulting program and the refinement steps are the proof. In this proof style,
instead of indicating the proof actions, one breaks up the original theorem into
several smaller theorems.

As an example we show a toy proof about the non-negativity of the absolute
value function on figure 1. The first line states the theorem to prove. The
select keyword indicates case-distinction, the cases x ≥ 0 and ¬(x ≥ 0) are
inside the pair of curly braces. Each case is refined further: In the case where
x ≥ 0 holds we first conclude that x = abs(x) and from this (and the previous
knowledge x ≥ 0) we get that abs(x) ≥ 0. The second case is similar. The
unrefined statements are accepted by the proof checker based on previously
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defined axioms and tactics.
In this system there are two ways to refine a statement (both shown in

the previous example): sequence and case-distinction. Sequence introduces
intermediate steps in the reasoning, while case-distinction splits up the proof
into several cases. For more information on the refinements and the techniques
to check them the reader is referred to [5].

1.2 Programming by proof

According to the programming paradigm we use, one first writes the specifi-
cation of the program, then refines the specification in several steps. Unlike
traditional refinement systems [6], during the refinement process we do not
introduce program fragments. The proof tree (consisting of the specification
as the theorem and the refinements as the proof steps) is complete when one
reaches specifications of primitive instructions in the leaves.

In the following example on figure 2, the specification states that the pro-
gram swaps the values of the two variables x and y. Instead of the operator
=> that we used for classical logic statements in the previous example, here
we use the >> temporal operator to express that the program proceeds from
the first condition to the second one. We use the parameters xVal and yVal

to denote the values of x and y respectively in the pre-state. The variable
ip (instruction pointer or program counter) is used explicitly in specification
statements. (This makes the specification of control statements, like jumps
and procedure calls, much easier.)

The specification is refined by a sequence of three statements that describes
how do the values of variables change during the execution of the program.

The compiler of this proof language has two tasks: it first checks the sound-
ness of the proof, then it collects the primitive instructions whose specifications
are used in the proof, and generates the program in the target language. In
case of the current example the following instructions are extracted from the
proof.

A: t = x;

B: x = y;

C: y = t;

D:

The resulting program is guaranteed to be correct with respect to the spec-
ification, provided that the specifications of the primitive instructions were
sound.



18 G. Dévai

variable(x,Integer);

variable(y,Integer);

parameter(xVal,Integer);

parameter(yVal,Integer);

ip = A & x=xVal & y=yVal > > ip = D & x=yVal & y=xVal

{
variable(t,Integer);

ip = A & x = xVal > > ip = B & t = xVal;

ip = B & y = yVal > > ip = C & x = yVal;

ip = C & t = xVal > > ip = D & y = xVal;

}

Figure 2: Swapping the values of two variables

The system is independent of the target language. One can add support for
a new programming language by specifying (part of) its instruction set in the
system and writing a code generator module for that language.

This paradigm differs from the classical program extraction from proofs [7].
In that case by developing a constructive proof for the existence of a mathe-
matical object M, one can extract a program that evaluates M. In our case the
program is extracted from its own correctness proof and there is no restriction
on the logic used.

2 Meta programming

2.1 Minimal trusted base

Is the output program really sound? It depends on the correctness of the
proof checking algorithm used by the compiler and on the correctness of the
specifications of primitive instructions. This is called the trusted base of the
system. To reduce the risk of errors in it, the trusted base should be minimal.

Our currently supported target language is C++, a language that is ex-
tremly rich in high level language construts like different kinds of loops, vari-
able scopes, argument passing modes, classes, inheritance and a lot more. If
we wanted a formal system supporting all these features using built-in rules,
the programming model would be very complex, harly exendable and target
language dependent.
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In order to keep the trusted base of our system minimal and general, we
elected to reduce the programming model as much as possible. We consider
a program as a set of simple state transitions. Instructions that perform a
simple state transition are easy to specify.

Although this programming model is very simple, it is expressive enough.
We were able to specify for example pointer instructions [8] and vector oper-
ations [9] of C++ in it.

2.2 Motivation for meta programming

Formal program development in the model presented above is like program-
ming in assembly languages: No high-level language constructs are available,
only a set of elementary instructions. We have discussed above that hard-
wiring the verification conditions for high level constructs in the system is
not desirable. The questions is, how to enable the user to extend the system
with these high level constructs without affecting the minimality of the trusted
base?

A possible answer is meta programming, which was already used in case of
assembly languages in the form of macros. For assembly programmers macros
are useful to emulate instructions that are not part of the instruction set,
generalize often-used program fragments using arguments and emulate high-
level language constructs (loops, conditional branching, etc.). We use meta
programming techniques for the same reasons on the proof level : We generalize
often used proof parts. We call these proof fragments proof templates and
they may be both classical logic proofs (like the schema of indirect proofs) or
temporal logic proofs (like the schema of proving the correctness of a loop).

While meta programming techniques in assembly languages are quite low
level features (simple text-based replacement of arguments, for example), the
techniques we use are more sophisticated. We apply type checking for ar-
guments and perform their substitutions in the syntax tree instead of the
error-prone text-based replacement.

The user is also allowed to define own proof templates and it is possible to
build libraries of them to help the work of other users. In traditional program
development, a library consisting of a great number of functions can help the
developer to make the code shorter and more understandable while it also
rises the efficiency of the development process. The same is true for proof
development: It is a general observation that proof systems with a huge set of
tactics are more efficient.

If the user defines a proof template, it does not become part of the trusted



20 G. Dévai

base. The compiler checks the proofs inside templates. This check occurs
either when the template is defined or when it is instantiated depending on
the type of the template. If the template was wrong or was used in an inap-
propriate situation, an error report is generated during proof checking.

2.3 Naming conventions

Meta programming is a general notion. In this paper we use it to name
techniques to define meta language entities that are transformed to object level
entities during a preprocessing phase after which some kind of compilation of
the object language entities takes place. In case of traditional programming,
assembly macros or C++ templates (meta language) are first transformed to
pure assembly or C++ (object language) and compiled further by an assembler
or a C++ compiler. In our case, the meta language consists of proof templates.
Template calls are transformed to pure proofs which are then checked and
compiled to a traditional programming language.

In the literature the terms proof schema, proof sketch, proof template are
used in various senses. In [10] formal proof sketches are defined to be short-
ened formal proofs which have gaps from the point of view of mechanical proof
checking but are easier to understand. In formal program verification it hap-
pens quite often that the proof attempt fails because the program is wrong.
In that case, after correcting the program, one can reuse parts of the previous
proof attempt. In [11] these reused proofs are called proof templates and in
[12] generalized proofs to replay are called proof schemas. Our proof tem-
plates are similar to these techniques in the sense that they are generalized
and reusable proof fragments with the goal making proofs shorter and more
understandable, but are completely different in the way of their definition and
application.

2.4 Overview of techniques

In the following we examine the meta programming techniques that we have
found useful for the purposes of proof-development.

2.4.1 Arguments

We can generalize a proof fragment by giving it a name and replacing parts of
it by arguments. This way we obtain a meta-proof that we call a template. It
turned out to be useful to syntactically distinguish formal template arguments
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from program variables and parameter variables. (We start them by a sharp
symbol: #.)

To define a template called example having two arguments of types Integer
and Character we write:

template example( Integer #arg1, Character #arg2 )

{
// template body

}

In the body of the template we can write a proof fragment containing the for-
mal template arguments. We instantiate the template using actual arguments
in the following way:

example( x+2, ’a’ );

The template call is type checked. The compiler instantiates the template by
replacing the formal arguments in the body by the actual ones.

Simple text-based replacement of arguments would lead to surprising re-
sults in some cases. A well-known example of low level macros is the expres-
sion #arg1*3 which becomes x+2*3 in the previous template call. By the
precedence rules of operators this means x+(2*3) instead of (x+2)*3 which,
supposedly, was the intention of the programmer. To avoid this pitfall in our
system, instantiation of templates takes place after parsing. As shown in the
figure below, the replacement is done in the syntax tree of the expression and
produces the correct result.

expr

expr

#arg1

* expr

3

 

expr

expr

expr

x

+ expr

2

* expr

3

An other common feature of low level macros is that symbols used inside
the macro may not be declared at the point of the macro definition. The
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meaning of the symbols depend on the declarations visible at the point of the

instantiation. This can induce many errors that are hard to recover. In case of

our templates any symbol inside the template body must be declared and they

are bound to the declaration visible at the point of the template definition.

Even if an other declaration hides the original declaration of the symbol at

the point where one calls the template, the symbol in the instantiated proof

will belong to the original declaration.

It is quite important that the proofs obtained by instantiating a template

may not be sound in general. Templates should be thought of as proof at-

tempts or proof schemas instead of theorems with their proofs. That is, when

a template is defined, the soundness of its body is not checked. But, each

time the template is called, the resulting proof is verified and the errors are

reported. In section 2.4.5 we introduce a special kind of template that is ver-

ified as soon as it is defined, so that there is no need for further checks when

one instantiates it.

2.4.2 Compile time conditions

Meta programming makes it possible to perform computations in compile time.

The result of the meta-level computations can influence the generated object-

level code. For example, conditions expressed in the meta language can decide

whether a piece of code is included or omitted. These techniques turned out

to be useful also in case of proof generation.

A common situation is that different proofs are needed depending on the

form of a template argument. In the following example the argument of the

template is examined by compile time conditions. These conditions decide

which variant of the proof should be used.

template variants( Integer #arg )

{
constant( #arg ) :

// proof in case of a constant argument

variable( #arg ) :

// proof in case of a variable argument

}

In case the template call is variants( 2 ), the first proof is the result of the

instantiation, while the call variants( x ) results in the second one.

We can increase the expressive power of these conditions if we enable pattern

matching for their arguments. In the following example, the condition checks
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whether the argument is a compound expression with addition as the top level
operator and bounds the two sub-expressions to the arguments #left and
#right. These can be used in the proof.

template patternMatcher( Integer #arg )

{
equals( #arg, #left + #right ) :

// proof that can use #left and #right

}

In case of the template call patternMatcher( x+2 ), the compiler replaces
#arg, #left and #right by x+2, x and 2 respectively in the proof.

In the current implementation of our system there is a fixed set of such
conditions. We have noticed that it would be useful to give the user the
ability to define new conditions based on the old ones. We plan to carry out
a Prolog-style implementation of this feature.

2.4.3 Axioms and instruction specifications

It seems natural to use the template features of the language to define the
axioms that are used to close the branches of proof trees. We mark these
templates with special keywords so that the compiler accepts the statements
obtained by instantiating these templates without any further refinement.

There are two kinds of axioms in the system: One states properties of
mathematical functions used in specifications and the other describes temporal
properties of instructions in the target language. We call the former ones
axioms and the latter ones atoms.

For example we show the temporal axiom of the instruction incrementing
a variable. The arguments of the template will be the variable to increment
(#var), an expression describing the value of the variable before the instruction
(#val), and the labels before and after the instruction (#before and #after).
The temporal axiom is basically the following:

ip = #before & #var = #val & #val < maxInt()

> > ip = #after & #var = #val + 1;

But this statement is not sound for all the possible combinations of the tem-
plate arguments. For example, if we instantiate the template using the variable
x both for the arguments #var and #val, the statement becomes invalid. The
following conditions should be checked: the labels #before and #after have
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atom increment( Integer #var, spec Integer #val,

Label #before, Label #after )

{
constant(#before) & constant(#after) & variable(#var)

& independent(#var,#val) & independent(ip,#val) :

ip = #before & #var = #val & #val < maxInt()

> > ip = #after & #var = #val + 1;

}

Figure 3: Specification of the increment operation

to be label constants (this is needed for code generation), #var must be a
variable and #val must not depend on ip and #var. These checks can be
easily implemented using compile time conditions introduced in the previous
section. The definition of the temporal axiom1 is on figure 3.

There is one more thing to mention about this template: The spec keyword
before the template argument #val. This marking informs the compiler that
#val is not used for code generation, it is needed for specification purposes
only. This means that the generated instruction does not depend on the actual
expression provided for the argument #val in the template call. In section
2.4.5 we will see that it is sometimes important for the compiler to know
which arguments does and which does not affect the generated instructions.

2.4.4 Proof fragments as arguments

Arguments of macros or templates are usually expressions or types in most
systems using meta programming. In this section we show that allowing com-
plete chunks of object level code (proofs in our case) as arguments rises the
flexibility of the meta language.

To demonstrate this feature we construct a template that generates indirect
proofs. To prove P ⇒ Q by induction, we have to show P ∧ ¬Q ⇒ false().
In our system, indirect proof is not a refinement possibility, we have sequence
and case distinction only. We have to implement the indirect proof with these
tools.

1Here we give only a progress property of this instruction. To make the axiom more useful,

we could add a safety property describing which variables are affected by this operation. As

the formal programming model behind this specification is not the main topic of this paper,

we elected to simplify the example by omitting the safety property.
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P => Q

select

{
Q & P => Q

{}
!(Q) & P => Q

{
!(Q) & P => false()

{
// proof of contradiction

}
}

}

Figure 4: An indirect proof

The trick, shown on figure 4, is to perform a case distinction on Q. The
case where Q holds is trivial, so an empty refinement is enough to complete it.
In the second case we can use the proof of contradiction. As soon as false()

is proved, the compiler also accepts Q.
As any indirect proof can be transformed to the same form, it is worth

creating a template that does this transformation. Such a template must get
the proof of contradiction as an argument. We use the block keyword in the
argument list of a template to denote that a proof fragment has to be passed
for that argument. Using this feature we can write our template shown on
figure 5.

The proof inside the template is organised as we have discussed above. The
argument marked by the block keyword can appear in any position where a
proof is needed.

We also need a bit of special syntax to pass these special arguments when
the template is called. It is done by writing the proof fragment to pass between
curly braces after the template call (which is not terminated by a semicolon).
The indirect proof calling the template we have just constructed is on figure
6. This template call results in the same proof shown on figure 4, but this
variant is shorter and easier to understand.

In section 2.1 we have mentioned the advantages of the minimalistic pro-
gramming model without built-in rules for programming constructs like con-
ditional branching or loops. As a result, a simple if-then-else construct consist
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template indirect( Boolean #hypothesis, Boolean #goal,

block #proof )

{
#hypothesis => #goal

select

{
#goal & #hypothesis => #goal

{}
!(#goal) & #hypothesis => #goal

{
!(#goal) & #hypothesis => false()

{
#proof;

}
}

}

Figure 5: Template for indirect proofs

of several instructions: First the condition is to be evaluated, then a condi-
tional jump instruction follows to jump to the label of the then-branch if the
condition was true or to continue at the label of the else-branch otherwise. At
the end of both branches an instruction is needed to jump to the instruction
that follows the branching.

It is possible to prove the correctness of such a low-level branching algorithm
in the system, however, it is not desirable to force the programmer to develop
a rather complex proof each time when using an if-then-else construct. Fortu-
nately it is possible to generalise the proof and hide the details (that are same
for every conditional branch) using a template. The condition of the branch
and the proofs for the branches will be the arguments of the template, which
can be called in the following way.

if( condition )

{
// proof of the then-branch

}
{
// proof of the else-branch

}
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P => Q

{
indirect( P, Q )

{
// proof of contradiction

}
}

Figure 6: Indirect proof calling the indirect template

This means that there is no need to hard-wire techniques like indirect proofs

or verification conditions for programming constructs into the system core.

It is possible to define templates that provide the same convenience, without

making the kernel of the proof system unnecessarily complex.

2.4.5 ’Check once, use many times’

The templates we have seen so far could generate completely different proofs

for different actual arguments and there was no guarantee that these proofs

were sound. That is why the compiler had to instantiate and check the tem-

plates every time. If a template can be checked independently of the actual

arguments, it is possible to validate it when it is defined. When such a template

is called, the compiler can accept its top-level statement without instantiating

and re-validating the whole proof inside it. Practically, a template of this kind

contains a theorem and its proof.

As these templates are not dynamically instantiated and checked at every

call, we call them static templates, and use the static keyword to introduce

them. Arguments of static templates are not allowed to appear in compile

time conditions, because that would make it impossible to validate the proof

regardless of the actual arguments.

No matter how many times we call a static template, it is validated only

once, and this is not only an efficiency issue. We can use it to implement

induction: If a static template calls itself recursively, the recursive call is not

expanded and checked, but its specification is used as an induction hypothesis.

The well-foundness of the induction is ensured by the first argument of the

recursive call: It must be an integer expression proved to be non-negative and

strictly less then the first argument of the template containing the recursive

call.
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axiom p0( Integer #n )

{
#n = 0 => p(#n);

}

axiom pNext( Integer #n )

{
#n > 0 & p(#n-1) => p(#n);

}

Figure 7: Axioms for an inductive proof

For showing this recursive schema, let us have a logical function p on integers
with the axioms on figure 7.

The static template on figure 8 proves p for all non-negative integers by
induction. As in a usual induction proof, we have a base case (#n=0, solved by
the first axiom) and an inductive case (#n>0). In the inductive case we first
make it explicit that the induction is well-founded, then use the induction
hypothesis by calling the template recursively with the argument #n-1. Then,
by the second axiom we complete the proof.

Static templates are meaningful also for temporal logic proofs. In this case,
not only the soundness of the refinements inside the template has to be inde-
pendent of the actual template arguments, but also the instructions extracted
from the proof. This additional condition practically means, that arguments
of static templates must not be passed as arguments to atoms, if that argu-
ment influences the generated instruction. In section 2.4.3 we have introduced
the spec keyword to denote that an argument of an atom is not used for code
generation. That is, static template arguments are allowed to be passed to
atoms only in spec arguments.

When should one place a piece of temporal proof into a static template?
Every time the specification of that code is used more that once. For example,
the proof of a procedure should be implemented in a static template. Each
time the procedure is called, one can call the static template to use the specified
properties of the procedure. An other example is the proof of a loop, as we
usually need induction for that. The refinements describing the loop body
form the static template, and when the program jumps back to the beginning
of the loop, we call the template recursively.
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static pAll( Integer #n )

{
#n >= 0 => p(#n)

select

{
#n = 0 => p(#n)

{
p0( #n );

}
#n > 0 => p(#n)

{
#n > 0 => #n-1 >= 0 & #n-1 < #n;

pAll( #n-1 );

p(#n-1) & #n-1 >= 0 => p(#n)

{
pNext( #n );

}
}

}
}

Figure 8: A template implementing an inductive proof

2.4.6 Templates defined in templates

In section 2.4.4 we have seen a template that generates indirect proofs. We

want to create a similar one for inductive proofs by generalising the example

in the previous section. That is, we will pass the function p, the proof of

the base case as well as the proof of the inductive case as arguments to that

template, and it will generate the inductive proof seen in the previous section.

Our template will generate a name for the static template to define, using

the compile time condition templatename(#name). When evaluating this con-

dition, the compiler will bound a fresh templatename to #name. The static

template defined inside our template is the same as in the previous section,

except the proofs of the base and the inductive cases, because these are argu-

ments.
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block( Integer #x )

{
p0( #x );

}

Figure 9: An unnamed proof accepting an argument

Let us have a look on these proofs, that should now be passed as arguments.

In the previous section we used

p0( #n );

as the base case and

pNext( #n );

as the inductive case. Notice that we use the argument #n of the static tem-

plate in these proofs. That is, we can not pass these proofs ’as is’, because the

argument #n is not usable outside the static template. A solution is to pass

these proofs accepting an argument. The syntax for this2 is shown on figure

9. We will pass this block as an argument to our template and that will use

it inside the static template and pass #n to it as an argument.

When the static template is defined, our template should also immediately

call it to use the theorem just proved in the static template. This template-

defining-template, called induction, can be seen on figure 10.

Having the induction template defined, we can write our inductive proof

in a much more elegant way. For arbitrary parameter value k, we can prove

p(k) as on figure 11.

3 Safety considerations

There are several programming errors that make the careless application of

meta programming techniques dangerous, when the object-level code is a tra-

ditional programming language. This is especially true for low-level meta

programming features.

A common example is, when one repeats a piece of code many times in the

program using meta programming techniques instead of writing a loop. This

2The ability to write proofs accepting arguments (i.e. unnamed templates) is currently
under development.



Meta programming on the proof level 31

template induction( Integer --> Boolean #fun, Integer #arg

block(Integer #p) #base,

block(Integer #p) #induct )

{
templatename( #name ) :

block

{
static #name( Integer #n )

{
#n >= 0 => #fun(#n)

select

{
#n = 0 => #fun(#n)

{
#base( #n );

}
#n > 0 => #fun(#n)

{
#n > 0 => #n-1 >= 0 & #n-1 < #n;

#name( #n-1 );

#fun(#n-1) & #n-1 >= 0 => #fun(#n)

{
#induct( #n );

}
}

}
}
#name( #arg );

}
}

Figure 10: Template for induction
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k >= 0 => p(k)

{
induction( p )

block( Integer #x )

{
p0( #x );

}
block( Integer #x )

{
pNext( #x );

}
}

Figure 11: An inductive proof using the induction template

can result in an extremely large program. The same happens when the pro-

grammer inserts the same instructions at several points in the code instead of

defining a procedure and calling that each time it is needed. Confusing pro-

cedures with syntactically similar meta programming features can also mess

up the code so that it produces erroneous behaviour. Compilers of traditional

programming languages does not complain on these errors or inefficient solu-

tions, because the program is syntactically correct.

After all this, is it safe to use meta programming techniques for proof gen-

eration? Using the techniques presented in this paper carelessly can lead to

erroneous proofs. But all the errors in the proof are reported by the proof

checker, and in that case, there is no program generated that could be com-

piled further to an executable. That is, each time the checker accepts the

proof, the generated program conforms to its specification.

The difference between traditional program development and programming

by proofs is that in the latter case the compiler can check also the behavioural

semantics of our program, not just the syntax and static semantics. This

additional check makes meta programming a safe tool for proof development.

In addition to this, our meta programming features are high level language

constructs. As we have already discussed in section 2.4.1, instantiation of

templates is not text-based, but uses the syntax tree provided by the parser.

Visibility of arguments, variables and parameter variables are also correctly

handled in conformation with the block structure of the proof. Compile time

conditions use techniques usually applied in high-level declarative languages.
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These features help avoiding the common pitfalls of low level meta program-
ming and makes construction of sound proofs easier.

4 Conclusions and future work

We can conclude, that meta programming techniques are applicable for con-
struction of declarative style proofs. They make the proofs considerably
shorter and easier to understand and to maintain. A great advantage of this
solution is that there is no need to make the proof system complex in order
to provide rules for common proof patterns. Techniques like indirect prov-
ing, induction, or temporal logic patterns like proofs for loops or conditional
branches can be implemented using templates instead of hard-wiring them
into the system core. This improves the reliability of the proof system.

We have also shown that the dangers of meta programming are not a real
risk in case of proof development, as proofs are checked anyway and the errors
are discovered already in compile time.

We have implemented the features described in this paper, except the pos-
sibility of writing unnamed templates (see the footnote in section 2.4.6). The
current implementation is done in C++. We use the system to specify instruc-
tions of imperative programming languages (including more complex ones, like
vector or pointer operations) and to develop verified program code using the
refinement techniques of the system. The library of tactics is not yet compa-
rable with that of leading theorem provers available [3, 13], but the templates
of our language turned out to be useful techniques in building such libraries.

Our plans include further development of the language and to experiment
with refinement techniques not only for imperative programs, but also for
functional ones. We also intend to use our system to specify and to formally
develop DFA-s3 or Petri-nets.
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Abstract. Syntax trees are commonly used by compilers to represent
the structure of the source code of a program, but they are not convenient
enough for other tasks. One such task is refactoring, a technique to
improve program code by changing its structure [7].

In this paper, we shortly describe a representation of the abstract
syntax tree (AST), which is better suited for the needs of refactoring.
This is achieved by contracting nodes and edges in the tree. The rep-
resentation serves as the basis of the back-end of a prototype Erlang
refactoring tool [8], however, it is adaptable to languages different than
Erlang [2].

We introduce a method that helps us automatically generate syntac-
tically correct subtrees. Since refactorings often have to create new parts
of the tree, it is essential to make this task as convenient as possible.

1 Introduction

Syntax trees are usually created by parsers, which operate on tokens that
are produced by a scanner directly from the source code, with possibly a
preprocessing phase inserted. Most of the time, these syntax trees are used
once – possibly the syntax tree is never constructed in its entirety, as is the
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case with top-down and bottom-up parsers. However, in some cases the full
syntax tree is needed. One such example is refactoring.

Refactoring is the systematic changing of source files while retaining the se-
mantics of the code. Some refactorings, e.g. renaming a variable or a function,
do not change the shape of the syntax tree, only update the information in the
nodes, while others, e.g. extracting a function, do delete, move or insert new
nodes or subtrees in the syntax tree. Since deletion does not pose a problem,
and moving a subtree is equivalent to its removal and reinsertion, the most
intriguing question of the above is the creation and insertion of new subtrees.

In addition to the above, refactorings have to gather additional informa-
tion about semantic aspects of the source code as well. Since these bits of
information can only be collected by visiting diverse parts of a syntax tree,
syntax trees make inappropriate and inefficient representations for refactor-
ings. A graph representation is proposed by the Erlang refactoring group at
the university ELTE (Budapest, Hungary). The ELTE group proposed this
representation after previous experience with refactoring [5, 8]. Details about
the representation and the refactoring tool are found in [4].

The structure of the paper is as follows. In section 2, the graph represen-
tation is described to such depth as is necessary for understanding the rest
of the paper. Section 3 describes a method that facilitates the creation and
insertion of new subtrees. This method is the main contribution of the paper.
Section 4 lists related work, and section 5 gives acknowledgements.

2 Representation structure

2.1 Node and edge contractions

ASTs built on top of source codes are typically created by compilers in com-
pilation time. Such syntax trees are discarded after they have been used, and
their construction does not involve complex traversals: they follow the con-
struction of the tree. There are, however, applications in which the role of
ASTs are augmented. In refactoring, for example, tree traversals are exten-
sively used, because a lot of information is required that can be acquired from
different locations.

In order to facilitate these traversals, a new representation of the AST was
introduced, which is described in detail in [4]. Here we give an overview of the
relevant parts of the representation.

ASTs inherently involve parts that are unnecessary for information collec-
tion, or are structured so that they make it more tedious. One obvious case
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if

X == 1 -> Y = 2;

true -> Y = 3

end

Figure 1: If clauses in Erlang.

to_list(Text) when is_atom(Text) -> atom_to_list(Text);

to_list(Text) when is_integer(Text) -> integer_to_list(Text);

to_list(Text) when is_float(Text) -> float_to_list(Text);

to_list(Text) when is_list(Text) -> Text.

Figure 2: Function clauses with guards.

is that of chain rules: the information contained in them could be expressed

as a single node, yet the traversing code has to be different for each node that

occurs on the way.

Another case can be described by their functionality: the edges of the nodes

can be grouped so that one traversal should follow exactly those that are in one

group. To give a concrete example, clauses in Erlang have parameters, guard

expressions and a body, and there are associated tokens: parentheses and an

arrow. Yet the actual appearance of the clauses can be vastly different, see

Figures 1 and 2. When collecting information, often either all parameters or

all guard expressions are required at a time during a traversal pass, but seldom

both at the same time of the traversal. Therefore, it is natural to partition

the edges into groups along their uses. Since the partitions depend on the

traversals used, the programmer has to decide by hand how groups should be

made. This way, only as few groups have to be introduced as needed in a

given application.

Another way to make the representation more compact is to contract repe-

titions. Repetitions are common constructs in programming languages: they

are repeated uses of a rule with intercalated tokens as separators. Instead

of having a slanted tree as constructed by an AST, it is more convenient for

traversal purposes to represent them by a parent node with all of the repeated

nodes and the intermediate tokens as its children. As a matter of fact, in the

example in the above paragraph the parameters and guard expressions are
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already a result of such a contraction.
Having done the above contractions has two main advantages. One is that

much fewer cases have to be considered. In the case of Erlang, the gram-
mar contained 69 nonterminals, which was reduced to three contracted node
groups: forms, clauses and expressions.

Expr

Expr

1
Rest

Token

comma

Expr

2
Rest

Token

comma

Expr

3

(a) AST.

expr

Token

comma

elex/1

Token

comma

elex/2

expr

1

sub/1

expr

2

sub/2

expr

3

sub/3

(b) Contracted AST.

Figure 3: Repetition in the expression 1+2+3.

A further advantage of contractions is that they enable introducing queries,
which makes traversals even more effective. Queries can be further optimised
by automatically adding semantic nodes and edges to the contracted AST,
which make it a graph. In addition, the prototype tool also supports pre-
processor constructs. Queries, semantic nodes and edges and preprocessor
handling are described in detail in [4].

Since the contraction groups are different for each language (and may even
differ in each application, depending on the needed level of detail), it is impor-
tant that the approach should be adaptable to a wide range of grammars. For
this reason, an XML representation was chosen for describing the grammar
rules, the contraction groups and the edge labels. The scanner and parser are
automatically generated from this file. The contracted structure is immedi-
ately constructed during parse time, and not converted from an AST.
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2.2 Representation of the contracted AST

The inner nodes of the contracted AST are the contracted nodes, which also
contain the originating nonterminal as information. The leaf nodes of the con-
tracted AST are the tokens, which contain the token text and the whitespace
before and after the token. The nodes are connected by labelled edges; the
labels determine the contraction classes they can connect.

Contractions do not fully preserve edge ordering: order is preserved only
between the edges with the same label, not between different labels. This is
why the original AST cannot be restored easily: in Figure 4 it is not possible
to determine whether the tokens of the clause come before, after or in between
the expressions. To make it possible, more information about the structure of
the contracted nodes is needed.

The lack of order between label groups is the result of using a database for
storage, which is required for fast queries. However, it is expected to be a
good trade-off, since the exact AST order of the nodes is seldom needed (most
importantly, when reprinting the contents of the graph into a file), while it
provides queries in linear time of their length. The order of the links with the
same label, which is important during queries, is retained.

3 Construction of new AST subtrees

One possible solution for constructing AST subtrees would be to use the parser
itself by providing the source code of the desired subtree – effectively, its front.
This approach would require the user to manually fill in all the punctuation,
and would require separate grammars for each nonterminal to be generated.

In this section, a different method is presented that makes constructing
syntactically correct AST subtrees comfortable for the user. In section 3.1,
structures are defined that describe the expected structure of a node (the node
skeleton). The method itself is described in section 3.2.

3.1 Node structure skeletons

The grammar description chosen is close to a BNF description. In it, the
grammar rules are grouped by what contraction group their head belongs to.
Rules, of course, may have more alternatives. The right hand sides of rules
consist of a sequence of the following:

• tokens that contain the token node label,
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clause
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token

(

clex/1
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)

clex/2
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clex/3
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1
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1

elex/1
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f
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(a) Part of an automatically printed contracted AST. The
order of the edges between groups in unknown.
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clex/2
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clex/3
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f
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1

elex/1

integer

1

elex/1

(b) The nodes rearranged in the right order. The order
within the groups is retained. The tokens read: f(1) ->

1.

Figure 4:

• symbols that contain the child symbol’s nonterminal and the edge label,

• optional constructs, sequences that either appear or not in a concrete

instance and

• repeat constructs that contain a symbol and a token; its instances are
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several (at least one) symbols with tokens intercalated.

We will such sequences node structure skeletons. Since optionals and repeats
may contain one another, we shall refer to the number of contained nestings
as the depth of the construct.

As an example that contains both constructs described above, let us examine
the structure of lists. The structure of lists is described as follows. Lists start
with an opening bracket token and end with a closing bracket token. Between
them is an optional construct. The optional part consists of a repeat construct.
The repeat construct uses comma tokens to separate symbols that are linked
using “sub” edges from the parent node. The portion of the actual Erlang
code that shows the above structure is shown in figure 5 in order to have a
more concise overview.

[{token,"op_bracket"},

{optional,[{repeat,"comma","sub"}]},

{token,"cl_bracket"}];

Figure 5: The structure of lists as an Erlang structure used in the actual
implementation. Slightly abridged.

Lists can be empty lists, or lists containing expression symbols separated
by comment tokens. In the first case, the optional part is not present. In
the second case, the optional is present. If there is one element in the re-
peat construct, there is exactly one symbol element present which denotes the
expression.

[
︸︷︷︸

token

︸︷︷︸

empty optional

]
︸︷︷︸

token

[
︸︷︷︸

token

1
︸︷︷︸

repeat in optional

]
︸︷︷︸

token

[
︸︷︷︸

token

1, 2, 3, 4, 5, 6, 7, 8 + 9, f()
︸ ︷︷ ︸

repeat in optional

]
︸︷︷︸

token
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3.2 Automated subtree construction

From the XML grammar description, node structure skeletons are automati-
cally generated for each node type.

The user has to supply two pieces of information for the node creation
algorithm. One is the contents of the newly created node, which also contains
its type. By supplying the type of the node, the relevant node structure
skeleton can be determined. The other piece of information to be supplied is
a description of the desired actual content of the new node. This parallels the
structure of the skeleton in the following way.

1. Almost all tokens are automatically created; these tokens are not in-
cluded in the description. Information about tokens that cannot be
automatically created, e.g. names of functions, have to be present.

2. Symbol, optional and repeat descriptions are at corresponding positions
with the skeleton.

3. Symbol descriptions contain the actual node to be incorporated as a
child. As stated before, they are either created before or moved from a
different position in the tree.

4. Repeat descriptions contain the actual symbol nodes. The tokens of
repeat constructs are always autocreated, therefore they need not be
specified in the description.

5. Optional descriptions are either no optional, or they contain sequential
content that parallels that of the optional in the skeleton.

The algorithm used to construct a contracted node processes the sequence
in the skeleton along with the one in the description.

1. If the next construct is an autocreated token, it does not appear in the
description, because it can be automatically created. The created token
link from the parent to the depends only on the contracted type of the
parent node. Note that all other constructs have to be present both in
the skeleton and the description.

2. If the next construct is a (not autocreated) token or a symbol, the cor-
responding description item contains the node itself to be linked from
the parent.
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3. If the next construct is a repeat, the token nodes are autocreated and
linked as above, and the symbols to be linked are listed in the repeat
description. Since the representation is contracted, the insertions of the
symbols and tokens below the parent do not have to be intercalated, as
their connecting edges are in different label groups.

4. If the next construct is an optional, but the description contains
no optional, it is skipped.

5. If the next construct is an optional, and the description has actual con-
tent, the contentsof the optional skeleton and description are processed.

Subtrees can be created by repeated use of the above algorithm. When
constructing a new node, previously created nodes can be used as well as
nodes that were already present in the graph. Practically, for each common
subtree type, a function has to be created in order to facilitate the use of the
algorithm. The function itself invokes the algorithm with the contents of the
created node and the appropriate parameters.

4 Related work

The design of the representation was shaped through years of experimentation
and experience with refactoring functional programs. The first refactoring
tools produced at ELTE [5, 8] used standard ASTs for representing the syntax.
It became evident that such a representation is not convenient enough for
refactoring purposes, and a new design was needed. The resulting design [4]
already used the contracted graph described in section 2 as representation of
the syntax tree.

The Java language tools srcML [9], JavaML [3] and JaML [1] use XML
to model Java source code. XML documents can be equipped with schema
information against which they can be checked. If the schema is formulated
in XML itself, subtree construction algorithms similar to the one presented in
this paper can be devised.
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Abstract. Nowadays, the cost of software system is one of the most im-
portant factors for choice of certain system by customer. Recent trends
in software and system development have revealed the asset of usage of
the abstract models through the software life cycle’s phases. Abstract
models streamline and speed up not only development but suitable mod-
els can also improve maintenance process to be more effective and safe.
Presented paper briefly analyses SysML, which supports development
process of complex systems. Main part is oriented to new approach
to model driven system development supporting SysML concept named
System Development Unified Process (SDUP) extended by concept of
Model-Driven Maintenance.

1 Introduction

These days, models present one of the most important considerations of system
and software development. Model-based design supports exploratory design

AMS 2000 subject classifications: 68N99
CR Categories and Descriptors: K.6.3 [Software Management]: Software maintenance
Key words and phrases: software maintenance, software system life cycle, system mod-
eling language (SysML)
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and analysis by allowing designers to effectively represent and investigate their
knowledge about the system during the decomposition and definition process.
Additionally, experiments can be performed on models to eliminate poor de-
sign alternatives and to ensure that a preferred alternative meets stakeholder
objectives. This modeling concept stays at the core of Model Driven Archi-
tecture (MDA). However, one of the most important factors of modeling, in
order to support the MDA development process, is the choice of modeling
language. To support model-based design and to overcome some limitations
related to Unified Modeling Language (UML) strict software focus, the Object
Management Group (OMG) has developed the Systems Modeling Language
(SysML) [1].
In this paper, a methodology for model-based system development using the
SysML is presented with emphasis on Model-Driven Maintenance (MDM)
which utilizes development models for improving software maintenance.

2 Model-driven system development and modeling

languages

Model-driven architecture [2], defined and supported by the OMG, defines an
approach to IT system specifications that separates the system functionalities
from the implementation details on a particular technological platform. The
MDA [1] is a framework for model driven software development defined by the
OMG which has elevated the software development to the next step. Using
MDA, it is possible to have an architecture that will be language, vendor and
middleware neutral.
One of the key standards that make up the MDA is the UML [1]. UML has
proved immensely popular with software engineers, but its software focus has
discouraged many system engineers from adopting it earnest. The OMG cus-
tomization of UML for systems engineering in form of new modeling language
called SysML is intended to support modeling of a broad range of systems,
which may include hardware, software, data, personnel, procedures, and facil-
ities.

2.1 SysML

OMG SysML is a visual modeling language for systems engineering that ex-
tends UML 2 in order to analyze, specify, design and verify complex systems,
intended to enhance systems quality, improve the ability to exchange systems
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engineering information amongst tools and help bridge the semantic gap be-
tween systems, software and other engineering disciplines [1]. OMG SysML
reuses a subset of UML 2 concepts and diagrams and augments them with
some new diagrams and constructs appropriate for systems modeling. The
benefits of using SysML in system development process are following [1], [3]:

- SysML semantics are better suited for systems engineering. SysML re-
duces UML software-centric restrictions and adds two new diagram types
for requirements engineering and performance analysis.

- SysML allocation tables support various kinds of allocations. These
tables support requirement, functional and structural allocation, thereby
facilitating automated verification and validation and gap analysis.

- SysML’s requirement modeling support provides the ability to assess the
impact of changing requirements to a system’s architecture.

- SysML is a precise language, including support for constraints and para-
metric analysis which allows models to be analyzed and simulated.

- SysML is an open standard and supports XMI and ISO 10303-303 (AP233)
allowing for information interchange to other systems engineering tools.

OMG SysML includes diagrams that can be used to specify system require-
ments, behavior, structure and parametric relationships. These are known as
the four pillars of OMG SysML [1]:
I. Structure. The block is the basic unit of structure in SysML and can be
used to represent hardware, software, facilities, personnel, or any other system
element. The system structure is represented by block definition and internal
block diagrams.
II. Behavior. The behavior diagrams include the use case diagram, activity
diagram, sequence diagram, and state machine diagram. The extensions made
to standard UML activity diagrams support the compatibility with widely
used EFFBD notation that will facilitate and improve interaction between
SysML and traditional software engineering tools and facilitate the migration
to SysML [3].
III. Requirements. The requirement diagram is a new SysML diagram type
that captures requirements hierarchies and the derivation, satisfaction, verifi-
cation and refinement relationships. This diagram provides a bridge between
typical requirements management tools and the system models [3]. Hence re-
quirements become an integral part of the product architecture [1].
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IV. Parametrics. The parametric diagram is a new SysML diagram type
that describes the constraints among the system’s properties associated with
blocks. This diagram is used to integrate behavior and structure models with
engineering analysis models such as performance, reliability, and mass prop-
erty models.

3 System development unified process

Presented model of system development life cycle includes all phases typical
for the most of common life cycle models. However, within this model, the
modifications regarding the MDA development approach using SysML were
required. The model emphasizes the maintenance phase and its impact on the
whole system development process (Section 4).

Figure 1: System development unified process

In general, the presented model (Figure 1) may be considered as having five
distinct phases, described below:
1. Integrated phase that includes phases of requirements specification and
design of the system. By means of using SysML as modeling language, it is
possible to integrate these two previously distinct phases into one using the
parametric, requirement and design models [1], [3]. This step involves gather-
ing and defining the system’s requirements that are directly related to design
models with a high level of abstraction that is independent of any implemen-
tation technology (platform independent models).
2. Model testing. This phase consists of using the models created in pre-
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vious step to be methodically verified to ensure that they are error-free and
fully meet the specified requirements. This testing can be processed in form
of simulation using the properties of SysML parametrics.
3. Implementation. In this step, the platform independent models are
transformed into system’s platform specific models that are linked to spe-
cific technological platforms (e.g. programming language, operating system or
database) [2], [4]. These models are afterwards transformed into implementa-
tion artifacts as executable code and database schemas.
4. Integration and system testing. In this stage, both individual system
components and the integrated whole are methodically tested and evaluated
regarding to technological platforms and quality and reliability of system’s
performance.
5. Installation and Maintenance. This step involves preparing the system
for installation and use at the customer site. A maintenance part involves mak-
ing modifications to the system or individual component to alter attributes or
improve performance. These modifications arise either due to change of re-
quirements, or defects uncovered during system’s testing. The main difference
compared to standard system maintenance is that no change in system can
be processed without accordant modification in design/requirement models
(Section 4).

4 Model-driven maintenance

Program comprehension, impact analysis and regression testing are the most
challenging problems of software maintenance in the present [5]. An inconsis-
tent state of the software artifacts markedly contributes to all three mentioned
problems. Each software system consists of artifacts (e.g. source code, doc-
umentation, makefile, models of system) which describe only a limited part
of the software and the actual system is their composite. If all system arti-
facts are’t in consistent state, they can’t be used together as the source of
knowledge about the system. This rapidly decreases the ease with which a
software system or its component can be modified during its operation – the
maintainability of software system.

4.1 Model-driven maintenance process

Model-driven maintenance process is one useful aspect of knowledge-based
software life cycle oriented to better usability of all analysis, design and im-
plementation models in maintenance of systems [6]. MDM is based on uti-
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lization of knowledge from the system models and dependences among them
for improving maintenance process. Inspiration for MDM is the MDA. MDA
concentrates on development of software system using UML as programming
language. The direction of progress is from models to application’s code. If
the change of the system needs to be done according the consistency rules of
SDUP (Section 3), it is important to come back to system models, so reverse
engineering needs to be used.
In MDM, models of system are the basis for whole maintenance process and
therefore there is a requirement to preserve essential models together with the
code of application. These essentials models are taken from project database
and joined to conjunctive preservation during the installation phase.
Knowledge from essential models, which is element of application, allows us to
go cyclically through the phases of life cycle during the maintenance process
without the need of browsing project database.

4.2 Model-driven maintenance life cycle

The main difference between the life cycle of normal software maintenance
and MDM is in the phase of software system life cycle where the maintenance
starts. Normal maintenance life cycle starts with the operation of software
system. As system is used, requirements for error correction or requirements
(user defined or as a consequence of environment change) for change of the
system are detected. The last phase of maintenance life cycle is modification
of the system itself. After modification, the system returns to the operation
again.
The view that maintenance is strictly a post-delivery activity is one of the
reasons that make maintenance hard. According to Pigoski’s definition of
software maintenance [7], it is very important to prepare software system for
its modifications still during the development of the system and not only after
delivery. Therefore MDM starts as early as during the system development by
conjunction of essential models to application’s code. MDM life cycle has the
same phases like mentioned normal maintenance life cycle. The difference is in
the way how the changes are performed at the basis of the user’s requirements.
On Figure 2 is displayed the modification process in accord with MDM.
As a first step, the requirements need to be well specified because it is very
important to avoid the misunderstandings between users of the system and
maintenance programmer. In here, active user participation is very important.
Unfortunately most users don’t understand the complex diagrams preferred by
many traditional modelers. Solution presents the adoption of inclusive models
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Figure 2: Modification of software system during MDM

which are used to help capture and analyze requirements for certain system
[8]. The maintainer can build the requirements diagram after all requirements
were exactly specified by users.
After requirements are well specified, maintainer can modify essential models
which are part of application. The use of extern CASE system for visualization
and applying of changes is useful in this phase. The changes of models can
be done without modification of working software system. In this way, the
maintenance programmer is able to discover impacts of required changes before
they are really implemented to the code of system. When a programmer knows
about all required changes he can implement them all in one step, without
impacts to unchanged part of the system.
After all, when required modifications are implemented to the code and to the
models of application, the consistency control needs to be done. If all changes
done in models were processed also in the code, they both describe the same
system - they are in consistent state.

5 Conclusions and future work

This paper presents the SDUP, which support the concepts of MDM. This
approach based on the conjunctive preservation of program code and mod-
els, supports consistency between the essential models and code, as no change
in code can be processed without accordant modification in system’s mod-
els. MDM utilizes knowledge acquired from system’s abstract models for un-
covering the unwanted side effects of required changes before they are really
performed to the system’s code. Utilization of system’s models streamlines
maintenance process and also helps to system comprehension.
In our next research we want to complete realization of proposed MDM. We
will work on the proper format of knowledges acquired from essential models.
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We will also perform an experimental confirmation of contribution of proposed
approach to software maintenance.
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Abstract. The central question of this paper is: “How the concept
of reusability influences the research in automatic programming?” After
discussing briefly the historical background of the question we analyze
the research of automatic programming from the software reuse point
of view. We try to show the presence of the reusability concept in the
automatic programming research throughout its relatively short history.
Based on observations, we argue that the concept of software reuse is
an inherent idea of the automatic programming research. Finally, we
stress the necessity to introduce the historical view into the curricula of
teaching informatics at universities.

1 Introduction

The motif of automatic programming is spreading over the history of software
engineering in various dimensions. It has been a moving target, which is
constantly shifting to reflect increasing expectations. We observe recently the
incredible increase in power of the hardware. This increase is itself the reason
for the incredible growth of the software complexity. The Wirth’s [1] “law”:
Software is getting slower, faster than hardware is getting faster, allegorically
points to this fact.

The big challenges for automatic program construction are presented (e.g.)
by Laurianne McLaughlin [2] in the following manner:
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• To produce good runtime performance;

• To produce code that someone can look at, deal with, and understand;

• To ensure that the code is provably correct.

The aim of this contribution is highlighting the role of the reusability con-
cept within the automatic program construction efforts in the emergent science
of software engineering. In particular, to show how the concept of reuse is in-
terwoven into the automatic programming research. We demonstrate selected
research ideas in automatic programming in chronological order.

In order to address the question: “How the concept of reusability influences
the research in automatic programming?”, we have collected several leading
ideas, which are grouped around the term of automatic program construction

or program synthesis. This selection is in no way a complete and representative
survey of the field. We hope that the reflections and discussions to the selected
concepts will attract minds and in this way enable more deep comprehension
of the notion of automatic program construction.

We believe that students studying informatics have to study the history of
software engineering very seriously. In particular they have to study deeply the
intellectual movements and to read the original works of informaticians whose
ideas mostly influenced the field. Students may observe the blind alleys in the
history, steps backward, and to follow the evolution of ideas. Pondering and
discussions about the ideas could encourage students to create their own ideas,
standpoints, and in this way to join the community of educated informaticians.
This historical view should be also an essential part of teaching informatics at
the universities. This is considered as nutriment that is a necessity for being
educated and later being expert in informatics.

This paper begins with a brief history of the idea of automatic programming
in Chapter 2. It continues by discussing the reusability principle in the era
before object-oriented programming, in Chapter 3. Obstacles to software reuse
are referred in Chapter 4 and finally we make conclusions in Chapter 5.

2 Where does the idea of automatic program con-

struction come from?

Looking backward into the history, we observe that the first mentioning and
the first discussions around the industrial production of software appeared
formally in 1968 and were presented at a NATO conference by McIlroy [3].
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Many expert-like papers and books concerning automatic software construc-
tion have been already presented. However, only few of them tried to discover
“laws” which are beyond the software construction or program synthesis along
the history of computing [4].

This is an exciting story to follow the interpretations of the notion of auto-
matic program construction and to observe the interleaving of the more-less
well-known ideas. This endeavor involves also an attempt to untangle ideas
and concepts, which appear suddenly in various contexts.

The term “automated programming” (automatic program construction or
program synthesis) is used to refer to the study and implementation of methods
for automating a significant part of the process of creating and enhancing
software. Its meaning somewhat varies, but often includes several aspects of
the programming processes.

A broader goal of this field is to make computer programs much easier by
means of automation of the software creation process. More particular goals
include increasing software productivity, lowering costs, increasing reliability,
making more complex systems tractable, as mentioned in the Introduction.

The theoretical question addressed in research in program synthesis is the
discovery and articulation of the principles (or appropriate programming lan-
guages) underlying the creation of software. The important practical question
addressed is how to implement systems that embodies a particular knowledge
and applying it to assist the programmer or end user.

The history shows us that there is freedom toward the use of more declar-
ative and less procedural specification where appropriate. Another way of
description is that the specification is closer to what than to the how end of
the spectrum. The implementation is closer to the how end.

Methods for automated program synthesis vary. One approach is to view
synthesis as a set of transformations that perform the steps of successive re-
finement of the specification into the implementation, performing data struc-
ture refinement and control structure refinement of the program into the final
implementation. Other methods of program synthesis focus more on theorem
proving, where an inference engine derives the steps of the program and proves
the necessary facts along the way, e.g. the PROLOG program is such a set
of declarations. In particular, a prover proves that an implementation exists,
and the proof is made constructive, that is, it constructs the implementation
that exists. We note, that both of the above mentioned formulations describe
the same goal: to allow users focusing more on solving problems than on the
details of implementation.

We have to be aware that programming cannot be fully automated since the
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computer must at least be told what to do. There is no way for a computer “to
invent an idea”. The automation may refer only to the way how “to execute
an idea”.

3 Automatic program construction before the ob-

ject-oriented programming

Nowadays it is almost forgotten that before the object oriented approach,
within the frame of the classical procedural programming, the automatic pro-
gram construction was associated (e.g.) with the “construction of programs
by examples” or with the “construction of loops”.

In the 1950s, the term “automatic computing” referred to almost anything
related to computing with a computer. The biggest problem of automatic
coding systems was efficiency, or the lack of it. Human-computer interaction
was very inefficient. This resulted in an atmosphere in which the idea of auto-
matic coding was conceived as fundamentally wrong: “efficient programming
was something that could not be automated” was an often-heard statement.

In the period of “structured programming tide” (1967-1977) the optimizers
mattered because they free programmers from the need to deal with specific
details to focus on larger issues. In this way developers are able to do more
important things. One research stream was dedicated to the loop optimizers.
Typical representative of the loop optimizer is the programming by example
approach. This technology is based on the induction principle.

In the next section we outline the idea, which represents the automatic
program construction efforts in the 1980th. In other words, how the au-
tomatic programming by example was perceived before the object orienta-
tion [5], [6], [7]. The research before the object-orientation was influenced in
great extent by the results gained in the artificial intelligence research. Algo-
rithm described below was discussed in detail by the author elsewhere [8].

The principle of programming by examples

There exist many areas when the demonstration is a suitable tool for au-
tomating tasks. For example, paths of robots represent linear plans and the
task is to construct program; or the sequence of learning objects represent the
progress of the student in the learning material and the task is to construct
the navigation plan (learning by watching). The structures of the systems
devoted to synthesis of programs by examples are similar also to the structure
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of linguistic pattern recognition systems.
In the next paragraphs we describe formally the idea of synthesis the loops

from examples [9]. The aim of the synthesis is to construct a minimal final
deterministic automaton with branches and loops, which are expressed as:

1. I1

c1→ I2

2. I2

c1→ I3

where I1, I2 and I3 are the instructions of the trace and c1 and c2 represent
the conditions for the execution of the respective instructions. In this model
the program equals to the regular grammar:

• (Vn, Vt, D, I0)

where

• Vn - is the set of program instructions (non terminal symbols),

• Vt - is set of conditions, which belong to the appropriate transitions
between the program instructions (set of terminal symbols),

• D - is set of rules, which does not contain 2 or more rules with the same
left side,

• I0 - is the start non terminal symbol.

The algorithm for building the model is summarized as follows. Let the sym-
bol P be a set of available instructions, which are necessary for constructing
the example.

P = (I1, I2, . . . , IK) (1)

We introduce notation [Ij ], for the set of equal instructions Ij |1 ≤ j ≤ K.
We introduce, that

[Ij ] = 1Ij , 2Ij , . . . , XjIj (2)

where the integers in front of Ij are called labels. Let the overall number of
Ijs in the model equal to |[Ij ]| and the [Ij ]

∗ is the actual number of [Ij ] . The
number of the total instructions c2 in the model is:

L =
K∑

j=1

|[Ij ]| (3)
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where the number of various types of instructions is K. Because the value of
the L is varying during the synthesis, we introduce the L∗ for the actual value
of L. Then

L∗ =
K∑

j=1

|[Ij ]
∗| (4)

“Step”in the example is defined as a pair of (cp, Iq). Different steps (l) may
contain the same pairs, i.e. the same condition cp and same instruction Iq.
That is why we introduce the notion of Nl for the condition and Ol for the
instruction in certain step l. The u(l) will denote the label of the instruction
O(l). The principle of the program synthesis is in searching the value of u(l),
which will fulfill the following conditions:

1. The number of instructions L in the program is minimal and it is true
that K ≤ L ≤ M , where M is the maximum number of instructions of
the example.

2. If the M is the maximum number of instructions of the example, then
during the synthesis it is necessary to assign a label u(l) to every in-
struction O(l) of the example and at the same time to achieve de-
terministic flow of control. I.e. for every step i where i ≤ l, and
O(i − 1) = O(l − 1), u(i − 1) = u(l − 1) and N(i) = N(l), then either

• O(l) = O(i) and in this case it is possible to provide merging, i.e.
u(l) = u(i) or

• the above-mentioned conditions are not true and O(l) = O(i), then
new node has to be created, i.e. u(l) 6= u(i) for the respective
instructions in O(i) and O(l). This creation of the new node has
to be done in order to secure the deterministic control of flow.

It is evident that when there does not exist a node in the model, which is
merge-able with the given instruction in the example, then new node has to
be created.

4 Obstacles to software reuse

The book H. Mili et. al. [12] defines the reusability as follows: Software reuse

is the process whereby an organization defines a set of systematic operating
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procedures to specify, produce, classify, retrieve, and adapt software artifacts

for the purpose of using them in its development activities.

Software reusability is an attribute of software that facilitates its incorpora-
tion into new application programs. Reusable software shares many attributes
in common with “good software” (i.e. transportability, maintainability, flexi-
bility, understandability, usability and reliability).

The status and the future of the software reuse research is described ex-
haustly in the paper of W.B.Frakes [11]. The work of Z.Porkoláb [13] points
to the relation between metaprogramming and reusability. Interesting fact
(or friction) is that “reusability” is not usually a distinguished attribute of
artifacts in other engineering disciplines. This induces the following question:
“Why do we emphasize so intensively reusability in software engineering?”

If we follow the idea of W. Wang [10] “The key reason is that software is a

tangible form of mathematics that lends itself to being engineered....This tan-

gibility is both software’s strength and Achilles heel.”, then it is clear that this
“executability” feature is the driving force behind the “software engineering”
activities (e.g. software testing).

It is also often argued that the reusable software assets are “information
rich”. What does it mean that “information rich”? In fact it means that:
software assets represent written ideas and the “customization” of these rep-
resentations within other context requires excessive mental effort. This idea is
valid also for other kinds of representations, as software patterns and models.

The history shows that all contemporary techniques always contained some
mechanism of reusability. For example: data encapsulation, information hid-
ing, polymorphism, abstract data types, classes and methods, pipes and filters,
inheritance, parametrization and generality, etc. All these techniques could
help in certain implementations and domains. More detailed analysis on these
issues is out of scope of this contribution.

5 Conclusion

We have discussed some selected ideas around the notion of automatic pro-
gramming research. We tried focusing on the importance of raising students’
awareness to sustainable ideas, which are beyond the “fashionable” ones. This
paper could be a basis for formulating further questions in this direction. We
expect that the formulation of adequate questions is the first step toward dis-
covery of relevant knowledge in the emergent science of software engineering.
We think that this approach could support more thorough understanding of
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other software engineering principles too.
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Abstract. This paper deals with the abilities of consolidating the sys-
tem design and test planning phases of the software life cycle (SWLC).
We present our observations on the presence of evolution-like features
inside test plans during design and development of the application. We
focus on the role of incrementality principle within the test preparation
process. The presence of this principle is not evoked by the planning pro-
cess itself, but is inherent in the development stream that incrementally
interferes the software design. We analyze this feature and give explana-
tion. Finally, we discuss the impacts of the incrementality principle on
management and improvement of software processes.

1 Motivation

Nowadays, a lot of software development methods is available for use in SWLC
implementations to achieve the best fit to users’ requirements [1]. The main
task of each one of them is to deliver faultless software.

When software reliability, safety, stability and overall applicability are ques-
tioned, software engineers use testing methods to satisfy and prove these fea-
tures.
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Test method selection and execution (i.e. the realization of proofs) strictly
depend on the characteristics of the used development method and on the
overall SWLC management strategy. Even if no strategy is present, there is
no strictly meant freedom in testing process selection. No classical testing is
needed in case of mathematically proven algorithm implementation [2] if there
is used an also proven implementation technique. (S-type software according
to Lehman’s laws [3].)

The connection between development and testing does not end by strategy
selection and SWLC principles definition. The final verification method of
the software depends on the software itself, on its architecture and aim. The
most of SWLC models propose test preparation as a separate process that
might be executed parallel to or immediately after the design/implementation
processes.

On other hand, any interconnection between two models indicates depen-
dencies between them and this is the basis of change propagation across these
models [4, 5, 6]. This propagation preserves the actual state of each one ac-
cording to the development stage and requirements. The mentioned intercon-
nection might be tight or loose depending on the SWLC, but will be present,
due to the main principles of software development and testing.

In our paper, we present three observations that highlight change propaga-
tion across the whole SWLC, especially on test preparation. Section 2 deals
with so-called old school SWLCs based on top-down or bottom-up develop-
ment strategies. Section 3 is denoted to agile processes of SWLC. In Section 4,
we show an example development method called cowboy coding, where might
be neither SWLC nor development practices considered. Section 5 concludes
our observations and points out more issues to take into consideration in the
future.

2 Observation one: old school techniques

Old school methodologies include the waterfall, spiral, staged, iterative, incre-
mental strategies [1]. We classify classical model-driven development (MDD)
[7], component based development and the Unified Process (UP) [8] as belong-
ing to this group as well.

Within these methodologies, test preparation is a separate process running
parallel divided into smaller activities or sequentially after implementation of
software is done.

Having a parallel process implementation, development and test prepara-
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tion processes operate the same requirements, functions and interfaces. These
techniques principle is to prepare test right after a component interface and/or
implementation is finished. Any incremental change of those components hav-
ing tests already prepared is propagated across these tests as well as across
all other affected interfaces/implementations within the same design model.
Figure 1 shows a typical example of such a SWLC, where the software reached
a specific development level (i.e. can be tested), but there are still parts of it
that are not implemented yet.

Running make test

Prepending /root/.cpan/build/ExtUtils-MakeMaker-6.46/blib/arch

/root/.cpan/build/ExtUtils-MakeMaker-6.46/blib/lib to PERL5LIB.

PERL_DL_NONLAZY=1 /usr/local/bin/perl "-MExtUtils::Command::MM"

"-e" "test_harness(0, ’blib/lib’, ’blib/arch’)" t/*.t

t/00-load..............1/1 # Testing Test::Pod 1.26, Perl 5.008

008, /usr/local/bin/perl

t/00-load..............ok

t/all_pod_files........ok

t/cut-outside-block....ok

t/good.................ok

t/item-ordering........ok

t/load.................ok

t/missing-file.........ok

t/pod..................ok

t/selftest.............ok

t/spaced-directives....skipped: Not written yet

t/unknown-directive....ok

All tests successful.

Files=11, Tests=19, 1 wallclock secs ( 0.11 usr 0.05 sys + 0

.84 cusr 0.18 csys = 1.17 CPU)

Result: PASS

Figure 1: Example test execution upon a module still being developed

Sequential processes do not share any resources during their execution,
therefore change propagation might not affect the other process’ results. Incre-
mentality is observable e.g. in MDD [7], where test case skeletons are created
first, then these skeletons are processed mostly separately. This process in-
cludes more detailed specification of test cases. Using independent test cases,
the incrementality principle appears only in the phase of their specification.
In the case of hierarchical test structure, the dependencies are active through
the whole preparation and execution process.

Non-incremental software processes use always sequential execution that



66 Cs. Szabó, L. Samuelis

induces a less complicated first-time test preparation but a more complicated
regression testing during maintenance. Maintenance is the life-cycle phase
when the regression test selection and test review and modification appear to
be incremental. Figures 1 and 2 present practical examples of test grouping
to ease test selection and regression testing.

Running make test

PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e"

"test_harness(0, ’blib/lib’, ’blib/arch’)" t/*.t

t/00-load.........1/3 # Testing LaTeX::Parser 1.00, Perl 5.0080

06, /usr/local/bin/perl

t/00-load.........ok

t/01-html.........ok

t/pod-coverage....ok

t/pod.............ok

All tests successful.

Files=4, Tests=20, 0 wallclock secs ( 0.05 usr 0.03 sys + 0.

23 cusr 0.14 csys = 0.45 CPU)

Result: PASS

Figure 2: Example test execution upon a final version of a program that was
developed using processes of the waterfall SWLC

3 Observation two: agile processes

Agile software development methods use best practices of software develop-
ment to improve old school methods in selected areas. Extreme programming
focuses on rapid delivery and high frequency of iterations with customers in-
volved into the development process, feature and behavior driven programming
emphasize on requirement tracing and fulfillment [9]. The test driven devel-
opment (TDD) [10] approach uses tests as requirement representation and the
logical interconnection between tests and program code is very tight. There-
fore, changes are propagated across all code not only in the case of intended
intervention, but due to the test refactoring as well.

Figure 3 shows a test case reflecting functionality and architecture of the
designed implementation. The test case says Address should contain Street,

Number, City, PostalCode attributes; Street should be changeable. After the
implementation of a program that satisfies this requirement, the test case will
be extended by other requirements on Address one-by-one that incrementally
changes it. After any change within the tests, these tests are run to check
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public class AddressTest extends TestCase {

public void testStreet() {

Address address = new Address("Letna","9","Kosice","04200");

assertTrue(address.getStreet().compareTo("Letna") == 0);

address.setStreet("Main");

assertTrue(address.getStreet().compareTo("Letna") == 0);

}

protected void runTest() throws Throwable {

testStreet();

}

}

Figure 3: Example code snippet of JUnit test for TDD

implementation consistency. I.e. changes are propagated from tests to imple-
mentation. Considering the next requirement as requesting Street must not

return bad value, after extending the test case, probably no change within the
implementation will be needed.

4 Observation three: cowboy coding

Cowboy coding technique is an approach, where the emphasis is on writing
code. It is a term used to describe software development where the devel-
opers have autonomy over the development process. This includes control of
the project’s schedule, algorithms, tools, and coding style. A cowboy coder
can be a lone developer or part of a group of developers with either no exter-
nal management or management that controls only non-development aspects
of the project, such as its nature, scope, and feature set. (The what, but
not the how.) An example is the .NET environment where source code in
C#, Visual Basic and other languages are used together in programming task
solutions. These sources are mostly translated into Common Intermediate
Language (CIL) that allows besides bytecode execution a good analysis of the
program [11] due to the meta-data that are stored within that bytecode.

In such a case, testing is covered within the project goals as satisfying the
requirement of producing a “deliverable” product, or final product evaluation.

For the evaluation phase, acceptance tests are weighted before any other
kind of tests. Acceptance test failures are reflected into functional test cre-
ation. Functional test failures indicate coding failures that should be detected
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by writing and running test case code. Figure 4 reflects relations between the
mentioned activities. Incrementality within tests occurs in unit testing phase
where old tests are revised and modified.

acceptance testing

funcional testing

code review

&

unit testing

sw release

code

modification

implementation
failed unit

selection

divided into

functions

divided into

units

any failure

detected?

Y

N

Figure 4: Example testing activities of cowboy coding

5 Conclusion

We highlighted the presence of incrementality principle in software projects
and proved that it is a not replaceable feature of test preparation.

Summarizing observations gained with old school techniques, test prepara-
tion is distributed across more phases and runs in parallel to other streams
of development. Communication between these streams is one-way: changes
in the design and/or implementation indicate changes within test plan and/or
test cases.It happens because of the main top-down development principle that
introduces changes in the way of refinements at current or next (lower) levels
of abstraction. On the other hand, the bottom-up strategy needs more inde-
pendent tests first at implementation level of components. The upper (more
abstract) level tests are a kind of an incomplete set of integration tests con-
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sidering all possible integrations and all reachable interfaces of components.
Change propagation can be observed in cases, when changes are introduced
at bottom (or any other low) level.

The second group of observations tells us about the incrementality principle
within projects being solved agile. Extreme programming focuses on rapid
delivery of software products, iterations incrementally extend the software
solution that implicitly starts change propagation. This is propagation in
both ways, test might influence the design (the main principle of test driven
development), and design/implementation tasks might result into changes in
test plan structure or test case behavior.

The third case studies cowboy coding and points to the presence of incre-
mentality principle even in this strategy. Test preparation is based on require-
ments, these requirements build the main bridge for change propagation. At
the highest level, incrementality shows up in the way changed requirements
effect the implementation and test cases. At lower level, when a change on
the code is made, tests are created/changed only in the case of failure of tests
from higher level. Cowboy coding is a fast development technique omitting the
most things that are not strictly needed for successful delivery of the software
product. Even testing is intended to be as independent from the application
implementation as possible, but there are observations presenting some depen-
dencies defined at top level through requirements and at lower levels by failure
removal. Cowboy coding was the only methodology allowing less incremental-
ity within our observations, but even there are maintenance and development
tasks that indicate change propagation in the indirect way – by making tests
fail.

The future of this research might be focused on selection and specification
of common parameters to create meta-level descriptions of these dependencies
that, in further, might lead to rule discovery by abstraction on these depen-
dencies.

Recently, we run a few projects of quite simple programming tasks being
different in the type of used SWLC and being common in the goal to collect test
preparation incrementality characteristics. These characteristics will provide
attributes and numerical values for further analysis and metrics definition [11].
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Abstract. Let a, b and n be nonnegative integers (b ≥ a, b > 0, n ≥

1), Gn(a, b) be a multigraph on n vertices in which any pair of vertices is
connected with at least a and at most b edges and v = (v1, v2, . . . , vn)

be a vector containing n nonnegative integers. We give a necessary and
sufficient condition for the existence of such orientation of the edges of
Gn(a, b), that the resulted out-degree vector equals to v. We describe
a reconstruction algorithm. In worst case checking of v requires Θ(n)

time and the reconstruction algorithm works in O(bn3) time. Theorems
of H. G. Landau (1953) and J. W. Moon (1963) on the score sequences
of tournaments are special cases b = a = 1 resp. b = a ≥ 1 of our result.

1 Introduction

Ranking of objects is a typical practical problem. One of the popular ranking
methods is the pairwise comparison of the objects. If the result of a compar-
ison is expressed by dividing points between the corresponding objects, then
directed graphs serve as natural tools to represent the results: vertices cor-
respond to the objects, arcs to the points and out-degrees serve as basis for
ranking. Another natural tool to represent the results is a point table.

In this paper the terminology of D. E. Knuth [9] and the pseudocode of T.
H. Cormen and his coauthors [2] are used.
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CR Categories and Descriptors: F.2 [Theory of Computation]: Subtopic – Analysis of
algorithms and problem complexity
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Let a, b and n be nonnegative integers (b ≥ a, n ≥ 1), Tn(a, b) be a
directed multigraph on n vertices in which any pair of vertices is connected
with at least a and at most b arcs. Then Tn(a, b) is called interval or
(a, b)-tournament, its vertices are called players, the out-degree sequence
v = (v1, v2, . . . , vn) is called score vector and the comparisons are called
matches.

For the simplicity we suppose that v1 ≤ v2 ≤ · · · ≤ vn. The increas-
ingly ordered score vector is called score sequence and is denoted by s

= (s1, s2, . . . , sn).
If any integer partition of the points is permitted, then the tournament is

complete, otherwise incomplete [7].
If a = b ≥ 1, then we get multitournaments Tn(a) and if a = b = 1, then

we get the well-known concept of tournaments Tn.
In 1953 H. G. Landau [10] proved the following popular theorem. About

ten proofs are summarised by K. B. Reid [14] and two recent ones are due
to J. Griggs and K. B. Reid [4], resp. to K. B. Reid and C. Q. Zhang [15].
Pirzada, Shah and Naikoo investigated similar problems [13]. Several exercises
on tournaments can be found in the recent book of D. E. Knuth [8].

Theorem 1 A sequence (s1, s2, . . . , sn) satisfying 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn is

the score sequence of some tournament Tn(1) if and only if

k∑

i=1

si ≥ Bk, 1 ≤ k ≤ n, (1)

with equality when k = n.

In 1963 J. W. Moon in [11] proved the following generalisation of the Lan-
dau’s theorem.

Theorem 2 A sequence (s1, s2, . . . , sn) satisfying 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn is

the score sequence of some a-tournament Tn(a) if and only if

k∑

i=1

si ≥ aBk, 1 ≤ k ≤ n, (2)

with equality when k = n.

Figure 1 shows the point table of a tournament T6(2, 10). The score sequence
of this tournament is s = (9,9,19,20,32,34).
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Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 1 5 1 1 1 9

P2 1 — 4 2 0 2 9

P3 3 3 — 5 4 4 19

P4 8 2 5 — 2 3 20

P5 9 9 5 7 — 2 32

P6 8 7 5 6 8 — 34

Figure 1: The results of the matches of six players.

We wish to decide whether there exist tournaments with a given score se-
quence and if yes, then we wish to reconstruct one of them.

Our problems can be formulated also as follows [3]. Let Gn be a multi-
graph in which the number of connecting edges lies between a and b for any
pair of vertices. Design effective algorithms to decide whether there exist an
orientation of the edges guaranteeing a prescribed out-degree sequence and to
reconstruct a corresponding digraph.

We remark that Gyárfás et al. [5] and Brualdi [1] published quick algorithms
for 1-tournaments.

Also it is worth to remark that many enumeration type results are known.
In connection with classical tournaments it is known due to P. Tetali [16] that
only a few score sequences permit the reconstruction in a unique way: typical
is the large number of nonisomorph reconstructions. G. Péchy and L. Szűcs
[12] proposed a parallel algorithm for generation of all possible score sequences
of the 1-tournaments of n players.

The aim of this paper is to solve the decision and reconstruction problems
[6] for complete (a, b)-tournaments.

2 Necessary conditions for (a, b)-tournaments

It is easy too see the following necessary condition, where Bn is the binomial
coefficient n over 2 for n = 1, 2, . . . .

Lemma 1 If (s1, s2, . . . , sn) is the score sequence of some (a, b)-tournament

Tn(a, b), then
k∑

i=1

si ≥ aBk (1 ≤ k ≤ n) (3)
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and
n∑

i=1

si ≤ bBn. (4)

If a = 2 and b = 10, then the sequence s= (1, 1, 21) shows that the require-
ments of Lemma 1 are not sufficient. Since P1 and P2 divided only 2 points,
they lost at least 8 points and so the sum of the scores can be at most 22
instead of bB3 = 30. This remark can be extended to a general condition.

We define a loss function Lk (k = 0, 1, 2, . . . , n) by the following recursion:
L0 = 0 and if 1 ≤ k ≤ n, then

Lk = max

(

Lk−1, bBk −

k∑

i=1

si

)

. (5)

Now Lk gives a lower bound for the number of lost points in the matches
among the players P1, P2, . . . , Pk (not always the exact value since the
players P1, P2, . . . , Pk could win points against Pk+1, . . . ,Pn).

Lemma 2 If (s1, s2, . . . , sn) is the score sequence of some (a, b)-tournament

Tn(a, b), then

k∑

i=1

si + (n − k)sk ≤ bBn − Lk (1 ≤ k ≤ n). (6)

Proof. The member (n−k)sk of the left side is due to the monotonicity of s.
The loss function Lk takes into account the lost points of the matches among
the players P1, . . . ,Pk. ¥

These lemmas imply the following assertion.

Lemma 3 If (s1, s2, . . . , sn) is the score sequence of some (a, b)-tournament

Tn(a, b), then

aBk ≤

k∑

i=1

si ≤ bBk − Lk − (n − k)sk (1 ≤ k ≤ n). (7)

Proof. (7) is an algebraic consequence of (3) and (6). ¥
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3 Definition of the algorithms

We describe the proposed new algorithms in words, by examples and by the
pseudocode used in [2].

Algorithm ScoreCheck uses Lemma 3. Algorithm ScoreSlicing is an
extended version of Ryser’s construction method [14], and algorithm Main

organises the work of ScoreSlicing.
At first let’s consider the small tournament T3(2, 10) whose point table is

shown in Figure 2. The score sequence of this tournament is s = (3,4,5).

Player/Player P1 P2 P3 Score

P1 — 3 0 3

P2 0 — 4 4

P3 4 1 — 5

Figure 2: The results of the matches of three players.

According to (5) we have L0 = 0, L1 = 0, L2 = bB2−S2 = 3, and L3 = bB3−

S3 = 18. The requirements of Lemma 3 are aB1 = 0 ≤ S1 ≤ bB3 − 2s1 = 24,
aB2 = 2 ≤ S2 ≤ bB3−L2−s2 = 23 and aB3 = 6 ≤ S3 ≤ bB3−L3 = 12. These
inequalities hold.

Let’s try to construct a possible point table. The number of points of
Pi against Pj is denoted by ri,j (1 ≤ i, j ≤ n). Provisionally we suppose
ri,j = b = 10, if j > i, and ri,j = 0 otherwise (in the main diagonal of the table
rij = 0 is represented by –).

We begin with the possible results of the player P3 having the largest number
of points. We fix such results for P3 that after removing of its results from the
point table the score sequence (s ′

1, s
′

2) of the remaining players is monotone
and satisfies (7).
P3 has only s3 = 5 points instead of the possible maximum (n − 1)b = 20,

so M3 = 20−5 = 15 points are missing. These points are win by other players
or are lost. At first we determine the points win by other players, then the
points lost by P3.

How many is the maximal permitted value of r2,3? Since we investigate
a (2,10)-tournament, r2,3 ≤ b = 10. P1 and P2 play a match where they
together have to win at least a = 2 points, therefore they can win against P3

at most A2 = s1+ s2−aB1 = 5 additional points, so r2,3 ≤ A2 = 5. A natural
requirement is r2,3 ≤ s2 = 4. The monotonicity requires r2,3 ≤ s2 − s1 = 1.
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The strongest requirement is r2,3 ≤ 1, therefore let r2,3 = 1. So we founded
place for 1 point from the 15 missing points of P3, the score sequence of the
modified T2 is (3,3), P1 and P2 have A ′

2 = s ′

1 + s ′

2 − aB1 = 4 additional points
and M ′

3 = 14.
We divide these additional points between P1 and P2 and get r ′′2,3 = 1+2 = 3,

r ′′1,3 = 0 + 2 = 2 and M ′′

3 = 10. These numbers imply r ′3,2 = b − r ′′2,3 = 7 and
r ′3,1 = b− r ′′1,3 = 8. Since A2 = 0, that is P1 and P2 have no further additional
points, they can not win further points from P3. P3 lost r2,3+ r1,3 = 3+2 = 5

points, so we found 5 of the missing M3 = 15 points. Now we determine r ′3,2

trying to decrease M ′′

3 as possible. Since r ′′2,3 is large enough to guarantee
r2,3 + r3,2 ≥ a and M ′′

3 = 10 is also large enough, let r ′3,2 = 0 implying
M ′′′

3 = 10 − 7 = 3. The next step is to fix r ′′3,1 = r ′3,1 − M ′′′

3 = 8 − 3 = 5. Now
P3 has the obligatory 5 points, and P1 needs further s ′′

1 = s ′

1 − r ′′1,3 = 1 point,
and P2 needs further s ′′

2 = s ′

2 − r ′′2,3 = 1 point. So we can remove P3 receiving
a tournament T2(2, 10) with a score sequence s

′′ = (1, 1) and we can finish the
construction setting r1,2 = 1 and r2,1 = 1.

The following Figure 3 shows the reconstructed tournament.

Player/Player P1 P2 P3 Score

P1 — 1 2 3

P2 1 — 3 4

P3 5 0 — 5

Figure 3: The reconstructed results of the matches of three players.

In this simple example we can answer the question: how many possible
reconstructions are possible? Since r1,2 and s1 determine r1,3, r2,1 and s2

determine r2,3, r3,1 and s3 determine r3,2, we have at most (s1 + 1) × (s2 +

1) × (s3 + 1) = 120 reconstructions.
The exact value of the number of the possible reconstructions is smaller.

For example the permitted values of r1,2 are 0, 1, 2, and 3. But if r1,2 = 2,
then r1,3 = s1 − r1,2 = 1. Now r3,1 + r1,3 ≥ a = 2 and r3,1 ≤ s5 allow only 1,
2, 3, 4 and 5 for s3,1, that is there are only 5 possibilities instead of 6.

3.1 Definition of the checking algorithm

Input. a and b: minimal and maximal number of points divided after each
match;
n =: the number of players (n ≥ 2);
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s = (s1, s2, . . . , sn): a nondecreasing sequence of integers.
Output. One of the following messages:

i”-th score is too small”;
i”-th score is too large”;
”the sequence satisfies both necessary conditions”;
B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;
L = (L0, L1, . . . , Ln): the sequence of the values of the loss function;
S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores.

Working variables. i: cycle variable.

ScoreCheck(n, a, b,B,L, s,S)

01 L0 ← 0

02 S0 ← 0

03 B0 ← 0

04 for i ← 1 to n

05 do Si ← Si−1 + si

06 Bi ← Bi−1 + i − 1

07 Li ← max(Li−1, bBi − Si)

08 if Si < aBi

09 then return i”-th score is too small”
10 if Si > bBn − Li − si(n − i)

11 then return i”-th score is too large”
12 return ”the sequence satisfies both necessary conditions”

Figure 1 shows the point table of a tournament of 6 players. In this case
the score sequence is s = (9, 9, 19, 20, 32, 34), L0 = 0, L1 = 0, L2 = 0, L3 =

0, L4 = 3, L5 = 11, and L6 = 27. The requirements of (7) are fulfilled: 0 ≤

S1 = 9 ≤ 105, 2 ≤ S2 = 18 ≤ 114, 6 ≤ S3 = 37 ≤ 93, 12 ≤ S4 = 57 ≤ 107,
20 ≤ S5 = 89 ≤ 107, 30 ≤ S6 = 123 ≤ 123. Therefore the conditions in lines
08 and 10 of this program never hold, so the algorithm returns the message of
line 12.

3.1.1 Complexity analysis of the checking algorithm

The running time of ScoreCheck is Θ(n) in worst case.
For incorrect sequences the running time of ScoreCheck can be small.

For example if s1 = s2 = (n − 1)b or a > 0 and s1 = s2 = 0, then the running
time is O(1).

We remark that adding a linear time sorting algorithm [2] ScoreCheck

can be extended for score vectors too (saving the linear running time).
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The memory requirement of ScoreCheck is Θ(n). If the stepwise input
of the scores is permitted, then we can implement this algorithm using only
O(1) memory.

3.2 Definition of the main algorithm

The work of the slicing program is managed by the following program Main.
Input. a and b: minimal and maximal number of points divided after each

match;
B = B0, B1, . . . , Bn): the sequence of the binomial coefficients;
L = (L0, L1, . . . , Ln): the values of the loss function;
n: the number of players (n ≥ 2);
s = (s1, s2, . . . , sn): a nondecreasing sequence of integers satisfying (7);
S = (S1, S2, . . . , Sn): the sums of the scores.

Output. R = [ri,j]n×n: point table of the reconstructed tournament Tn(a, b).
Working variables. g, i, k: cycle variables;

p = (p1, p2, . . . , pn): a provisional score sequence;
pk = (p1, p2, . . . , pk) (k = 1, 2, . . . , n): prefixes of the provisional score se-
quence p;
q = (q1, q2, . . . , qk−1) = (r1,k, r2,k, . . . , rk−1,k);
r = (r1, r2, . . . , rk−1) = (rk,1, rk,2, . . . , rk,k−1).

During the reconstruction process we have to take into account the following
bounds:

a ≤ ri,j + rj,i ≤ b (1 ≤ i, j ≤ n, i 6= j); (8)

modified scores have to satisfy (7); (9)

ri,j ≤ pi (1 ≤ i, j ≤ n, i 6= j); (10)

the monotonicity p1 ≤ p2 ≤ . . . ≤ pk has to be saved (1 ≤ k ≤ n). (11)

Main(a, b, n,B,L,p,R)

01 for i ← 1 to n

02 do Ri,i ← 0

03 pi ← si
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04 if n ≥ 3

05 then for k ← n downto 3

06 do ScoreSlicing(a, b,B,L,k,pk−1,pk)

07 for g ← 1 to k − 1

08 do Rg,k ← qg

09 Rk,g ← rg

10 r1,2 ← ⌊(p1 + p2)/2⌋
11 r2,1 ← ⌈(p1 + p2)/2⌉
12 return R

3.3 Definition of the slicing algorithm

The key part of the reconstruction is the following algorithm ScoreSlicing.
Input. a, b: minimal and maximal number of points divided after each

match;
B = (B1, B2, . . . , Bn): the sequence of the binomial coefficients;
L = (L1, L2, . . . , Lk): the values of the loss function;
k: the number of the actually investigated players (k > 2);
pk = (p1, p2, . . . , pk): provisional score sequence;
s = (s1, s2, . . . , sk): a nondecreasing sequence of integers satisfying (7);
S = (S1, S2, . . . , Sk): the sums of the scores.

Output: pk−1 = (p1, p2, . . . , pk−1): a provisional score sequence;
q = (q1, q2, . . . , qk−1) = (r1,k, r2,k, . . . , rk−1,k);
r = (r1, r2, . . . , rk−1) = (rk,1, rk,2, . . . , rk,k−1).

Working variables. A = (A1, A2, . . . , An) the number of the additional
points;
d: difference of the maximal increasable scores and the following largest score;
e: number of sliced points per player;
f: frequency of the number of maximal values among the scores p1, p2, . . . , pk−1;
g, h, i: cycle variables;
m: maximal amount of sliceable points;
M: missing points: the difference of the number of actual points and the num-
ber of maximal possible points of Pk;
p0: number of points of the hypothetical ”negative player“ P0 used in line 15;
P = (P1, P2, . . . , Pn): the sums of the provisional scores;
x: the maximal index i with i < k and ri,k < b.
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ScoreSlicing(a, b,B,L,n,pk−1,pk)

01 p0 ← 0

02 P0 ← 0

03 for i ← 1 to k − 1

04 do Pi ← Pi−1 + pi

05 Ai ← Pi − aBi

06 for g ← 1 to k − 1

07 do rg,k ← 0;
08 rk,g ← b;
09 M ← (k − 1)b − pk

10 while M > 0 and Ak−1 > 0

11 do x ← k − 1

12 while rx,k = b

13 do x ← x − 1

14 f ← 1

15 while px−f+1 = px−f

16 do f = f + 1

17 d ← px−f+1 − px−f

18 m ← min(b, d, ⌈Ax/f⌉, ⌈M/f⌉)
19 for g ← f downto 1

20 do y ← min(b − rx+1−g,k,m,M,Ax+1−g, px+1−g)

21 rx+1−g,k ← rx+1−g,k + y

22 px+1−g ← px+1−g − y

23 rk,x+1−g ← b − rx+1−g,k

23 M ← M − y

24 for h ← g downto 1

25 Ax+1−h ← Ax+1−h − y

26 if M = 0

27 then for g ← 1 to k − 1

28 do rg,k ← max(rg,k, 0)

29 rk,g ← min(rk,g, b)

30 go to 41
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31 if Ax = 0

32 then for g ← k − 1 downto 1

33 do rg,k ← max(rg,k, 0)
34 for g ← k − 1 downto 1

35 do y ← max(a − rg,k, 0)

36 if M ≥ b − y

37 then rk,g ← y

38 M ← M − (b − y)

39 else rk,g ← b − M

40 M ← 0

41 for g ← 1 to 1

42 do qg ← rg,k

43 rg ← rk,g

44 return p, q, r

Let’s demonstrate the work of Main and ScoreSlicing by the reconstruc-
tion of the tournament whose point table is shown in Figure 1.

The basic idea is that Main slices (partitions) the points of P6,P5, . . . ,P1

by repeated calls of ScoreSlicing.
The details are as follows. After assigning zeros to the elements of the main

diagonal of R (in lines 01–03) Main calls ScoreSlicing with k = 6. Then
ScoreSlicing computes the sequence of the additional points A, further the
provisional last column and the provisional last row of R (lines 03-09). The
results of the execution of lines 03–08 of ScoreSet are represented in Fi-
gure 4.

Player/Player P1 P2 P3 P4 P5 P6 p6 A

P1 — 0 9 9

P2 — 0 9 16

P3 — 0 19 31

P4 — 0 20 45

P5 — 0 32 69

P6 10 10 10 10 10 — 34 93

Figure 4: The results of lines 04–08 of ScoreSlicing.

Line 09 yields the actual number of the missing points M, then in the lines
10–43 the sequences pk−1, q, and r are determined.
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The steps of the reconstruction of the tournament are shown in Figure 5 in
digital form. The second column of the figure contains the starting state of
the reconstruction — the score sequence p6 = (9, 9, 19, 20, 32, 34).

p6 p6 p6 p6 p5 p5 p5 p4 p3 p2

P1 9 9 9 9 9 9 9 8* 2* 1*

P2 9 9 9 9 9 9 9 8* 2* 1*

P3 19 19 19 16* 16 16 9* 8* 2* –

P4 20 20 19* 17* 17 16* 9* 9 – –

P5 32 22* 22 22 22 22 22 – – –

P6 34 34 34 34 – – – – – –

Figure 5: Steps of the reconstruction (stars denote changes).

The second column of Figure 6 contains the actual parameters k, x, Ax, M,
f, d, m, and y.

Parameter/k 6 6 6 6 5∗ 5 5 5 4∗ 3∗ 2∗

x 5 4* 4 4 4 4 4 4 3* 2* –

Ax 69 59* 58* 53* 39* 38* 24* 12* 18* 2* –

M 16 6* 5* 0* 18* 17* 3* 0* 21* 18* –

f 1 1 2* – 1* 2* 4* – 3* 2* –

d 12 1* 10* – 1* 9* 9* – 8* 2* –

m 10 1* 3* – 1* 7* 1* – 6* 0* –

y 10 1* 2* – 1* 7* 1* – 6* 0* –

Figure 6: Parameters of the reconstruction (stars denote changes).

P5 has A5 = 69 > 0 additional points (computed in line 05) and P6 has
M = 16 > 0 missing points (computed in line 9), therefore ScoreSlice

executes lines 10–25. The algorithm determined in lines 11–13 that Px = P5

is the first player who can get from the missing points of P6. The frequency
of players having px points is f = 1 (computed in lines 14–16). The difference
p6,5 − p6,4 = 12 (computed in line 17). At the moment we can slice at most
m = 10 points per player (computed in line 18). Since A5 is large enough
we get y = 10 (computed in line 20), and decrease the number of points
of P5 by y = 10 points (in line 21). Therefore the updated new values are
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r5,6 = 10, r6,5 = 0, M = 6 and A5 = 59. The new score vector p6 =

(9, 9, 19, 20, 22∗, 34) is in the third column of Figure 5 (stars denote changes).
Since M = 6 > 0 and A5 = 59 > 0, we use again lines 11–25 and since

r5,6 = 10, we get a new, smaller value x = 4. f remains 1, d = 1, m = y = 1,
so r4,6 = 1, p4 = 19, r6,4 = 9, M = 5, A4 = 58. The new parameters are in
the third column of Figure 6, the new score vector p6 = (9, 9, 19, 19∗, 22, 34)

appears in the fourth column of Figure 5.
Now M = 5 > 0 and A5 = 58 > 0, so continuing with lines 10–25 x

remains 4 but the frequency is now f = 2, the difference d = 10, the small
M allows only m = 3 and y = 3 (see fourth column of Figure 6). So it
follows r3,6 = 3, p3 = 16, r4,6 = 1 + 2 = 3, p4 = 17, M = 0, A5 = 53, and
p6 = (9, 9, 16∗, 17∗, 22, 34) is shown in the fifth column of Figure 5. Since M

decreased to zero, ScoreSlicing continues in line 26 and executing line 44
returns to Main the sequences p5 = (9, 9, 16∗, 17∗, 22), q = (10, 10, 7, 7, 0),
and r = (0, 0, 3, 3, 10) shown in the sixth column of Figure 5, resp. in seventh
line and seventh column of Figure 7.

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 0 0 0 0 0 9

P2 10 — 0 0 0 0 9

P3 10 10 — 0 0 3 19

P4 10 10 10 — 0 3 20

P5 10 10 10 10 — 10 32

P6 10 10 7 7 0 — 34

Figure 7: The partially reconstructed results of the matches of six players of
the given tournament T6(2, 10) after determining of the results of P6, where
bold numbers denote final values.

After updating R Main calls SliceScoring with the parameter k = 5.
The parameters determined in lines 11–16 are shown in the sixth column of

Figure 6. Since M = 18 > 0 and A4 = 39 > 0, the algorithm executes lines
11–25 and gets r4,5 = 1, p4 = 16, r5,4 = 9,M = 17, and A4 = 38. The new
score vector p4 = (9, 9, 16∗, 16, 22) is shown in the seventh column of Figure
6.

Since M = 17 > 0 and A4 = 38 > 0, the algorithm in lines 11–16 computes
the values shown in the seventh column of Figure 6 and then in lines 18–23 gets
r3,6 = 1 + 7 = 8, p3 = 9, r6,3 = 2, r4,6 = 0 + 7 = 7, p4 = 9, r6,4 = 3, M = 3,
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and A4 = 24. The new score vector p5 = (9∗, 9∗, 9, 9, 22) is shown in the tenth
column of Figure 6.

Now M = 3 > 0 and A4 = 24 > 0, therefore the algorithm continues
in line 11 and gets the parameter values contained in the eighth column of
Figure 6. These values imply in lines 18–25 r1,5 = 1, p1 = 8, r2,5 = 1, p2 =

8, r3,5 = 1, p3 = 8, p4 = (8, 8, 8, 9) and M = 0. Since M = 0, the algorithm
continues in line 26 and in lines 26–30 gets q = (1, 1, 8, 8) and r = (9, 9, 2, 2).
ScoreSlicing returns these vectors to Main and it finishes the filling of the
sixth line and sixth column of R. The resulted R is shown in Figure 8.

Main continues by calling ScoreSlicing for k = 4. Since M = 21 > 0 and
A3 = 18 > 0, the algorithm gets in lines 11–16 the parameters shown in the
ninth column of Figure 6. Line 20 results y = 6 due to the small amount of
additional points of P3. So we get r1,4 = 6, p1 = 2, r4,1 = 4, r2,4 = 6, p2 =

2, r4,2 = 4, r3,4 = 6, p3 = 2, r4,3 = 4, M = 0, then p = (2, 2, 2), q = (6, 6, 6)

and r = (3, 3, 3). Using the returned vectors Main fills the fifth row and the
fifth column of R as Figure 9 shows.

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 0 0 0 1 0 9

P2 10 — 0 0 1 0 9

P3 10 10 — 0 8 3 19

P4 10 10 10 — 8 3 20

P5 9 9 2 2 — 10 32

P6 10 10 7 7 0 — 34

Figure 8: The partially reconstructed results of the matches of six players of
the given tournament T6(2, 10) after determining of the results of P5, where
bold numbers denote final values.

Main continues by calling ScoreSlicing for k = 3. Since now M = 18 > 0,
and A2 = 2 > 0, the algorithm gets in lines 11–16 the parameters shown in
the tenth column of Figure 6. So lines 18-25 give the results r1,3 = 1, p1 =

1, r2,3 = 1, p2 = 1, and M = 0. Then we get in lines 26–29 that q = (1, 1)

and r = (1, 1). Using the returned vectors Main fills the fifth row and the
fifth column of R, then in lines 10–11 determines r1,2 and r2,1.

Figure 10 shows the point table of the reconstructed tournament.
Figure 11 shows the rounds of the reconstruction in graphical form.
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Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 0 0 6 1 0 9

P2 10 — 0 6 1 0 9

P3 10 10 — 6 8 3 19

P4 3 3 3 — 8 3 20

P5 9 9 2 2 — 10 32

P6 10 10 7 7 0 — 34

Figure 9: The partially reconstructed results of the matches of six players of
the given tournament T6(2, 10) after determining of the results of P4, where
bold numbers denote final values.

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 1 1 6 1 0 9

P2 1 — 1 6 1 0 9

P3 1 1 — 6 8 3 19

P4 3 3 3 — 8 3 20

P5 9 9 2 2 — 10 32

P6 10 10 7 7 0 — 34

Figure 10: The fully reconstructed results of the matches of players of the
given tournament T6(2, 10).

3.3.1 Complexity analysis of ScoreSlicing and Main

The running time of this algorithm equals to O(bn3), since the sum of the
missing points Mk is O(bk2), and the sum of the additional points Ak is
O(bk2), and the sum of the scores si is O(bn2), and the processing of a
missing point, of an additional point and also of a win point requires O(n)

steps.
The memory requirement of ScoreSlicing equals to Θ(n2).
The running time of lines 01–03 of Main is Θ(n). In lines 04–09 algorithm

Scoreslicing is executed Θ(n) times, so the running time of Main depends
on the running time of Scoreslicing and is O(bn3).
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Figure 11: The staircase functions of the score sequences p6 =

(9, 9, 19, 20, 32, 34), p5 = (9, 9, 16, 17, 22), p4 = (8, 8, 8, 9), p3 = (2, 2, 2), and

p2 = (1, 1).

4 Necessary and sufficient condition

for (a, b)-tournaments

Theorem 3 A sequence (s1, s2, . . . , sn) satisfying 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn is

the score sequence of some tournament Tn(a, b) if and only if

aBk ≤
k∑

i=1

si ≤ bBn − Lk − (n − k)si (1 ≤ k ≤ n).

Proof. Lemma 3 implies the necessity of these inequalities.

The sufficiency of these inequalities can be shown by induction based on the

correctness of the reconstruction algorithm.

If n = 2, then a ≤ s1 + s2 ≤ b due to 6 and then the scores r1,2 ← ⌊S2/2⌋
and r2,1 ← ⌈S2/2⌉ received by lines 10 and 11 of Main are correct values.
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Let now n > 2. It is sufficient to show that ScoreSlicing reduces the
input problem of size n to the reconstruction of the scores of n − 1 players.

Ak = Sk − aBk ≤ bBk − aBk and M = b(n − 1) imply min(Ak,M) ≤

min((b − a)Bk, b(n − 1)) ≤ bn(n − 1)/2. This minimum decreases at least
by 1 in each execution of the while cycle in lines 23 and 25 – or at least one
of M and Ak becomes to zero (if f = 1, then Ak > 0 due to line 10, and if
f ≥ 2, then Ax+1−g > 0, since otherwise Ax−g < 0, what is impossible) and
ScoreSlicing ends quickly in lines 26–30 or in lines 31-40.

The inequality (8) is guaranteed by lines 18, 20, and 35.
The inequality (9) is guaranteed by lines 18 and 20.
The inequality (10) is guarantedd by line 20.
The inequality (11) is guaranteed by line 19–23. ¥
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University of Budapest) for their interest and useful comments.

References

[1] A. R. Brualdi, J. Shen, Landau’s inequalities for tournament scores and a
short proof of a theorem on transitive sub-tournaments, J. Graph Theory

38, 4 (2001) 244–254.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to

Algorithms. Eleventh corrected printing, MIT Press/McGraw Hill, Cam-
bridge/New York, 2008.
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Abstract. According to the literature, the Towers of Hanoi puzzle is a
classical divide et conquer problem. This paper presents different ways
to solve this puzzle. We know that the time-complexity of the puzzle is
2n − 1. However, the question is how much time is needed to run each
implementation.

1 The legend

Once upon in time, in India, in the reign of Fo Hi, , monks in the Siva-temple
of Banares (which marks the center of the world) have to move a pile of 64
sacred golden disks from one diamond peg to another. The disks are fragile;
only one can be carried at a time. A disk may not be placed on top of a
smaller, less valuable disk. And, there is only one other diamond peg in the
temple (besides the source and destination pegs) sacred enough that a pile of
disks can be placed there. So, the monks start moving disks back and forth,
between the original pile, the pile at the new location, and the intermediate
location, always keeping the piles in order (largest on the bottom, smallest on
the top) [9]. The legend claims that once the monks are finished, the world
will end. So we need to figure out how long it is going to take the monks to
finish the puzzle. How many moves will it take to transfer n disks from the
source peg to the destination peg?

AMS 2000 subject classifications: 68W40
CR Categories and Descriptors: D.1 [Programming Techniques]
Key words and phrases: Towers of Hanoi, programming techniques, backtracking, greedy,
divide and conquer, dynamic programing, recursive, iterative
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The puzzle was introduced in 1883 by N. Claus (de Siam) Professor at Uni-
versity of Li-Sou-Stian, an anagram pseudonym for douard Lucas (D’Ameins)
Professor at Lyce Saint-Louis [1].

According to the literature – as we can see in the proof –, the Towers of
Hanoi puzzle is a classical divide et conquer problem. The puzzle can be solved
by reducing the problem to smaller, but similar sub-problems; the key-move
is the transfer of the largest disc.

In this train of thought we must to transfer n − 1 discs from the first peg
to the third, than we can move the largest disc to the second peg, finally we
must to transfer n − 1 discs from the third peg to the second. According to
this recursive move-sequence, it is easy to see, that we need 2n − 1 steps to
solve the n-discs puzzle.

So, the monks needs to make 264 − 1 (= 18 446 744 073 709 551 615) moves
to solve the puzzle. Assuming, that they are capable to move one disc per
second, the end of the world comes approximately in 590 000 000 000 years
(according to estimations the Universe is 13,7 billion years old!).

2 The min/max problem

The Tower of Hanoi problem has four parameters: H(n, s, d, h)

• n: the number of discs
• s: source peg
• d: destination peg
• d: h: “helping peg”
Move n discs from peg s to peg d using the peg h. Initially the source peg

is a, the destination peg is b, and the helping peg is c.
The problem, as optimization task, has two versions (Hmin(n, a, b, c) /

Hmax(n, a, b, c)): find the shortest/longest moves-sequence. (Target function:
minimize/maximize the number of the moves). In the case of the “maximum
version”, obviously, we are interested only in cycle free solutions.

We introduce the following notations:
‘→’: this symbol shows a direct move (one-step move) of a given disc be-

tween to pegs (a → b: move a given disc from peg a to peg b directly).
‘>>’: this symbol represents a move-sequence that transposes a disc-tower

between to pegs (a >> b: transpose a given disc-tower from peg a to peg b).
The key idea behind both solutions is to focus on the largest disc. In case

of the “minimum version” the largest disc is moved from peg a to peg b in
one (minimum) step (a → b). This action supposes that, previously, the other
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(n−1) discs have already been transposed from peg a to peg c (a >> c). After
the largest disc has made the move (a → b), the other (n−1) discs have to be
transposed again, but at this time from peg c to peg b (c >> b). Naturally,
in order to achieve the optimal solution, the two moves of the (n − 1) discs
have to also be performed in minimum number of steps. Consequently, we get
the following recursive formula (fmin) for the minimum version of the problem
(the optimisation is present in the formula only implicitly):
• if n = 1, then Hmin(n, a, b, c) = a → b

• if n > 1, then Hmin(n, a, b, c) = Hmin(n − 1, a, c, b), a → b,Hmin(n −

1, c, b, a)

Denoting with mn the number of moves needed to solve the minimum ver-
sion of the n-size problem, we have:
mn = 2mn−1 + 1, m1 = 1

mn = 2(2mn−2 + 1) + 1 = 22mn−2 + 2 + 1

mn = 2(2(2mn−3 + 1) + 1) + 1 = 23mn−3 + 22 + 2 + 1

. . .
mn = 2n−1m1 + 2n−2 + ... + 22 + 2 + 1 = 2n−1 + 2n−2 + ... + 22 + 2 + 1

mn = 2n − 1

In case of the maximum version of the problem, the largest disc is moved
from peg a to peg b in two (maximum) steps (a → c, c → b). As we exposed
above, these moves entail that before, between and after them the other (n−1)

discs are transposed in optimal way from peg a to peg b (a >> b), from peg
b to peg a (b >> a), and again, from peg a to peg b (a >> b). The recursive
formula (fmax) that describes the optimal solution for the maximum version
of the problem is the following:
• if n = 1, then Hmax(n, a, b, c) = a → c, c → b

• if n > 1, then Hmax(n, a, b, c) = Hmax(n − 1, a, b, c), a → c,Hmax(n −

1, b, a, c), c → b,Hmax(n − 1, a, b, c)

Denoting with Mn the number of moves needed to solve the maximum
version of the n-size problem, we have:

Mn = 3Mn−1 + 2,M1 = 2

Mn = 3(3Mn−2 + 2) + 2 = 32Mn−2 + 2.3 + 2

Mn = 3(3(3Mn−3 + 2) + 2) + 2 = 33Mn−3 + 2.32 + 2.3 + 2

. . .
Mn = 3n−1M1+2.3n−2+ ...+2.32+2.3+2 = 2(3n−1+3n−2+ ...+32+3+1)

Mn = 2((3n − 1)/(3 − 1))

Mn = 3n − 1

Notice that there are only these two possibilities: the largest disc is moved
from the source peg to the destination peg in one or two steps. If we always
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Figure 1: The n=3 case.

choose the one-step solution, we get the minimum-solution. Choosing always
the second possibility we have the maximum-solution. If we combine the two
possibilities we receive the other solutions. All these can be represented by
a rooted tree (see Figure 1). The root-node represents the n-size problem
that can be reduced in two ways (“minimum-branch”/“maximum-branch”) to
two or three (n − 1)-size sub-problems, together to five sub-problems. This
means, that we have a complete n-level tree with 5k−1 node at each level k

(k = 1, 2, . . . , n). This tree has 5n − 1 nodes. On the one hand, the complete
n-level sub-tree that contains only “minimum-branches” (dotted-arcs) corre-
spond to the optimal solution of the minimum version of the problem. On
the other hand, the complete n-level sub-tree with only “maximum-branches”
(dashed-arcs) represents the maximum-solution of the problem. Notice that
the “minimum sub-tree” (bold-line rectangles) has 2n−1 nodes, and the max-
imum one (filled rectangles) 3n − 1 nodes. Furthermore, since each complete
n-level sub-tree represents a solution, the problem has as many solutions as
such sub-trees exist. For n = 3 there are one minimum, one maximum and
1870 other solutions.

The recursive formulas can be seen as the ones that describe the structure of
the optimal solutions. These structures can be represented with rooted trees,
which correspond to the “minimum sub-tree” and “maximum sub-tree” of the
tree shown in Figure 1. Figure 2 shows the tree attached to the minimum
version of the 3-size problem (Hmin(3, a, b, c)). The sub-trees represent the
optimal sub-solutions. The leaves correspond to the moves. The leaf-sequence
represented by dotted arcs corresponds to the optimal move-sequence. The
root-node (white-filled rectangles) of each sub-tree has its “own leaf“ (dashed-
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Figure 2: The Hmin(3, a, b, c) problem.

line rectangles) that represent the move of the largest disc of the corresponding
“tower”. We consider that these leaves are at the same level with their par-
ent nodes (the “root-nodes” “assimilate” their “own leaves”). If we denote
the discs (from bottom to top) and the tree-levels (from root to leaves) with
1, 2, 3, . . . , n, respectively, then it can be observed that leaves from a given
level k correspond to the moves of disc k. Disc k makes 2k−1 moves. Since
every second leaf (bolded-line rectangles) of the leaf-sequence is placed on the
nth level, these moves are performed by the smallest disc.

3 The recursive implementation

The below recursive procedures (P recursive min, P recursive max) are direct
transcriptions of the recursive formulas.

void P recursive min(int k, char s, char d, char h)
{

if(k==1)
printf(”%c –> %c\n”, s, d);

else

{
P recursive min(k-1, s, h, d);
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printf(”%c –> %c\n”, s, d);
P recursive min(k-1, h, d, s);

}
}

void P recursive max(int k, char s, char d, char h)
{

if(k==1)
printf(”%c –> %c\n%c –> %c\n”, s, h, h, d);

else

{
P recursive max(k-1, s, d, h);
printf(”%c –> %c\n”, s, h);
P recursive max(k-1, d, s, h);
printf(”%c –> %c\n”, h, d);
P recursive max(k-1, s, d, h);

}
}

What programming technique(s) applies these implementations?

4 Divide and conquer or greedy?

At the first sight the above implementations are pure divide and conquer algo-
rithms: the problem to be solved is divided in two/three simpler, similar sub-
problems. However, why is the problem divided in sub-problems even in these
specific ways? These are direct consequences of the decision we are made with
respect to the largest disc, decisions that are greedy choices. (The largest disc
is moved from the source peg to the destination peg in minimum/maximum
steps) Consequently, from this point of view, the recursive implementations are
such divide and conquer strategies that apply greedy decisions in the dividing
stage of the method.

On the other hand it can be stated that the “principle solving” of each sub-
problem starts with a greedy decision (relative to the largest disc) that reduces
the current sub-problem to two/three simpler, similar sub-sub-problems. Par-
ticularly in the case of this problem (Tower of Hanoi) the two (minimum
version) sub-sub-problems have to be solved before, and after (respectively)
the greedy decision is implemented. As a consequence, the order the greedy
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decisions have to be implemented follows a kind of in-order traverse of the
tree representing the optimal solution (see figure 2). Accordingly, from this
point of view, the recursive implementations are greedy strategy that use di-
vide and conquer like methods (in-order DFS algorithm) in order to establish
the implementation order of the greedy decisions.

The standard greedy algorithm first implements the greedy decision and
after this it solves the “reduced sub-problem(s)”. The pre-order DFS and the
BFS traverses of the “solution-tree” allow of such a greedy strategy. In order
to establish the proper move-order, these implementations need to store the
moves. Unfortunately, there is a major concern relating this idea. The size
of the solution-code depends exponentially on the problem-size (n). Coding
the six possible moves a → b, a → c, b → c, c → b, c → a, b → a with
digits 0, 1, 2, 3, 4, 5 the code of the optimal solution of a 64-size problem has
264 − 1 digits. No computer capable to store that huge amount of data. As-
suming that n takes moderate-values the optimal move-sequence can be stored
in array moves[0..(2n-1)-1]. Bi-dimensional array code stores the move-codes.
Procedure P greedy min determines the elements of array moves according to
the BFS traverse of the tree. Array q[0..(2n-1)-1] implements the queue nec-
essary for the BFS. Variables first and last indicate the beginning and the end
of the queue. The items of the queue q store the source (s), destination (d)
and helping (h) pegs of the corresponding sub-problem, and the left (l) and
right (r) margins of the current segment in array moves. The array-segment
[0..(2n-1)-1] (the whole array moves) is attached to the original problem. At
each step procedure P greedy min stores the greedy-move (s→d) correspond-
ing to the sub-problem from the front of the queue in the middle element
(m = (q[first].l+q[first].r)>>1) of the corresponding array-segment ([q[first].l ..
q[first].r]). The array-sub-segments [q[first].l .. m-1] and [m+1 .. q[first].r] are
attached to the left and right son-sub-problems.

void P greedy min(int n, char a, char b, char c, int* moves, item* q,
int(*code)[3])
{

int min step nr =(1<<n)–1;
int first = 0;
q[0].s = a; q[0].d = b; q[0].h = c;
q[0].l = 0; q[0].r = min step nr – 1;
int last = 1;
int m;
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while (first < last)
{

m = (q[first].l + q[first].r) >> 1;
moves[m] = code[q[first].s–’a’][q[first].d–’a’];
if (q[first].l < q[first].r)
{

q[last].s = q[first].s; q[last].d = q[first].h; q[last].h = q[first].d;
q[last].l = q[first].l; q[last].r = m – 1;
++last;
q[last].s = q[first].h; q[last].d = q[first].d; q[last].h = q[first].s;
q[last].l = m + 1; q[last].r = q[first].r;
++last;

}
++first;
}
for(i = 0; i < min step nr; ++i)

printf(”%d, ”, moves[i]);
}

5 Dynamic programming

The recursive formulas can be interpreted as the ones that describe the way
the optimal solution is built by optimal sub-solutions (principal of the opti-
mality). The principle of the optimality was introduced by Richard Bellman
[10], who called the corresponding recursive formulas as the functional equa-
tions of the problem. Dynamic programming follows this strategy: it starts
from the optimal solutions of the trivial sub-problems and builds the optimal
solutions of the more and more complex sub-problems and eventually of the
original problem. In case of this problem the bottom-up way means that we
solve the problem for k=1, 2, 3, . . . , n. Although for a specific k there are
six different k-size sub-problems (P(k, a, b, c), P(k, a, c, b), P(k, b, c, a),
P(k, b, a, c), P(k, c, a, b), P(k, c, b, a)), their solutions can be obtained
from one another by simple letter-changing. For instance, the move-sequence
that solves optimally the Hmin(k, c, a, b) sub-problem can be obtained from
the optimal solution of the Hmin(k, a, b, c) sub-problem by changing letter a

with c, letter b with a and letter c with a. Accordingly, for each k=1, 2, 3,
. . . , n only one “variant” of the k-size sub-problems would be enough to be
solved.
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The main difficulty of dynamic programming is that it is often nontrivial
to establish what sub-problems in what order have to be solved. In Figure
2 the imbricated ellipses illustrate the bottom-up strategy the dynamic pro-
gramming follows. Notice, that the optimal solution of the Hmin(3, a, b, c)

problem implies only two 2-size and five 1-size optimal sub-solutions. The
“dynamic programming order” the sub-problems (for n=3) have to be solved
is the following: 1. Hmin(1, a, b, c); 2. Hmin(2, a, c, b) (built up from the opti-
mal solutions of the Hmin(1, a, b, c) and Hmin(1, b, c, a) 1-size “variants”); 3.
Hmin(3, a, b, c) (built up from the optimal solutions of the Hmin(2, a, c, b) and
Hmin(2, c, b, a) 2-size “variants”). The growing sub-tree sequence included
in the imbricated ellipse-sequence represents the “increasing” sub-problem se-
quence that, according to the dynamic programming strategy, has to be solved.
In this sequence the current sub-problem succeeds its left-son-sub-problem,
and precedes its father-sub-problem. For n odd/even these sub-problem se-
quences are the followings (in case of the minimum version of the problem):

Hmin(1, a, b, c), Hmin(2, a, c, b), Hmin(3, a, b, c), Hmin(4, a, c, b), . . . ,
Hmin(n, a, b, c).
Hmin(1, a, c, b), Hmin(2, a, b, c), Hmin(3, a, c, b), Hmin(4, a, b, c), . . . ,
Hmin(n, a, b, c).
If it is difficult to build an iterative algorithm that determines this “dy-

namic programming order”, than, it is advisable to try to use the recursive
formula dictated order. Unfortunately the direct transcription of the recursive
formula into recursive procedure usually results in inefficient divide and con-
quer algorithm. Since dynamic programming problems are often characterized
by overlapping sub-problems, the standard divide and conquer approach com-
monly results in repeated evaluation of the identical sub-problems. To avoid
this ingredient the so-called “recursion with result caching” (memoization)
technique can be applied. According to this technique ones a sub-problem has
been solved its optimal solution (often the optimal value of the target func-
tion) is stored (memorized), and whenever later the recursive algorithm meets
again the same sub-problem its stored solution is simply retrieved.

As specificness, in case of Towers of Hanoi problem solving a sub-problem
means to solve its son-sub-problems effectively. Consequently, all sub-problems
have to be solved as many times as the algorithm meets them (as in case of
divide and conquer problems). Nevertheless we could do to store the code of
the optimal solutions of the solved sub-problems. (This method also works
only for moderate values of parameter n) Moreover, as we pointed out above,
it would be enough to store the code of the optimal solution of only one vari-
ant for each k=1, 2, 3, . . . , n. Unfortunately, managing (storing, retrieving,
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generating from one another, printing) these exponential-size move-sequences
has the same time-complexity as generating them again (The optimal solu-
tion of the k-size problem has the same number of moves as the number of
nodes of the corresponding k-level binary tree). Consequently, the memoiza-
tion technique, in this case, do not decrease (compared to the direct, divide
and conquer like implementations of the formulas fmin and fmax) the time
complexity of the algorithms.

Returning to the “recursion with result caching” technique, notice that
in the sub-problem sequence to be solved there are only to type of prob-
lems: Hmin(k, a, b, c) and Hmin(k, a, c, b). In case of first-type sub-problems
(Hmin(k, a, b, c)) the move of the largest disc is a → b (coded with 0). Fur-
thermore, after the optimal solution of the left-son-sub-problem (Hmin(k −

1, a, c, b)) has been stored, the optimal move-sequence for the right-son-sub-
problem (Hmin(k − 1, c, b, a)) is generated by the following letter-changes: a

is changed with c, b is changed with a and c is changed with b. According
to these letter-changes we have the following move-changes: change move 0
with move 4, move 1 with move 3, move 2 with move 0, move 3 with move
5, move 4 with move 2, move 5 with move 1. For the second type problems
(Hmin(k, a, c, b)) the largest-disc-move is a → c (coded with 1). The corre-
sponding move-changes are the followings: change move 0 with move 2, move
1 with move 5, move 2 with move 4, move 3 with move 1, move 4 with move
0, move 5 with move 3.

Procedure P memoization min applies the memoization technique. Rows 0
and 1 of array move changing[0..1][0..5] store the two move-changing patterns
to be applied (alternatively). (Binary variable pattern indicates the largest-
disc-move and the move-changing-pattern to be applied)

void P memozation min(int k, char s, char d, char h, int n, int *moves)
{

int i, p, pattern;
pattern = ((n+k)&1);
if(k==1)

moves[0]=pattern;
else

{
P memozation min(k-1, s, h, d, n, moves);
p=(1<<(k-1))-1; //the number of moves in the son-sub-problems
moves[p]=pattern; //the move of the largest disc
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for(i=0;i<p;++i) //generating the right-son-solution
moves[p+1+i] = move changing[pattern][moves[i]];

}
}

What can we say as a conclusion for this ? Since the recursive formulas im-
plemented by procedures P recursive min (P recursive max) and P memoization min
are direct materializations of the principle of the optimality, and what is more,
they accomplish (along the back-way of the recursion) the bottom-up building
process prescribed by this principle, the strategy these procedures implement
can be considered dynamic programming. More exactly: recursive dynamic
programming. Most exactly (especially in case of procedures P recursive min
and P recursive max): divide and conquer like recursive dynamic programming
algorithms.

Remark: If we analyse the recursive formulas in top-down direction, then
they describe the way the greedy decisions reduce the problem to similar,
simpler sub-problems. The bottom-up analysis of the same formulas shows
the way the optimal solution (of the problem) is built on the score of the
optimal sub-solutions (of the sub-problems). This is why the algorithm can
be seen both greedy and dynamic programming strategy.

6 Backtracking

According to the backtracking strategy, we try to find the optimal solution as
a move-sequence. At each stage of the problem-solving process there are three
possible moves. Considering the three pegs “large”, “medium” and “small” ac-
cording to the size of their top-disc, the three moves are: “small”→“medium”,
“small”→“large”, “medium”→“large”. The solution-space of the problem can
also be represented by a rooted-tree. The nodes correspond to the stages of
the problem. Each stage can be characterised by a set-triplet. The sets of a
give triplet contain the discs from the corresponding pegs. Since at each stage
there are three possible moves, all nodes (expecting the leaves) have three
son-nodes. The root-node represents the initial stage of the problem when
all discs are on peg a: {(1, 2, . . . , n);();()}. In the final stage, correspond-
ing to the solution-leaves, all discs are on peg b: {();(1, 2, . . . , n);()}. The
shortest/longest root – ,,solution-leaf” path, represents the optimal solution.

The backtracking algorithms apply depth-first search (usually implemented
recursively), and choose the optimal solution by the standard minimum-/maxi-
mum-search method. In case of the Towers of Hanoi problem the backtracking
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strategy, in its primitive form, avoids only the loops and it is very inefficient.
For example, the tree representing the structure of the optimal solution of
the minimum version of the problem (Figure 2) has 2n − 1 nodes (supposing
that “root-nodes” assimilate their “own leaves”), equal with the numbers of
the moves along the optimal move-sequence. In case of the solution-space-
tree, only its shortest root – “solution-leaf” path contains so many nodes.
Furthermore, since the backtracking algorithm also needs to store the code of
the current move-sequence, this algorithm also works only for moderate-values
of parameter n.

The elements of array pegs[0..2] store the number of discs on the corre-
sponding peg (pegs[i].nr), and the discs themselves (pegs[i].discs[0..(n-1)]). The
source and destination pegs corresponding to the six possible moves are mem-
orized in array move types[0..5]. Arrays moves and states store the current
moves- and state-sequence. (In a given stage of the solution building process
the state of the problem can be described by the peg-sequence corresponding
to the positions the discs occupy) Function valid verifies if move i is valide as
next step (k). Procedures move forward and move backward move and remove
the current disc.

void P backtrack min(int k, ITEM P*pegs, ITEM MT*move types,
int*moves, ITEM ST*states)
{

if (states[k]==ENDSTATE)
{if(k<kmin){kmin=k; copy(opt solution, moves, kmin);}}
else

{
for(i=0; i<6;++i)
{

if(valid(i, k, pegs, move types, states))
{

move forward(i, k, pegs, move types, states, moves);
P backtrack min(k+1, pegs, move types, moves, states);
move backward(i, k, pegs, move types, states);

}
}

}
}

To optimise a backtracking algorithm means to reduce the traversed part of
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the solution-space-tree. An utterly optimised backtracking algorithm traverses
only the optimal root – “solution-leaf” path. This means that we are able to
establish at each stage the optimal move. However such an algorithm would be
rather greedy or dynamic programming than backtracking. (See “The iterative
implementation” section.)

7 The iterative implementation

In the literature [6], [7], [8] and others debates on non-recursive dynamic pro-
gramming algorithms, as solutions of the Towers of Hanoi puzzle. The ideas
analysed in previous sections raise the following question: Is it possible to gen-
erate the move-sequence that represents the optimal solution iteratively? It is
not hard to realize that procedure P memozation min can be easily transcribed
to an iterative dynamic programming algorithm.

According to the “dynamic programming order” presented above, the algo-
rithm advances from father to father. The optimal solution of any father-sub-
problem can be determined on the score of the optimal solution of its left-
son-sub-problem. If the current sub-problem in the bottom-up building pro-
cess is Hmin(k, x, y, z), then Hmin(k, y, z, x) is its right-brother-sub-problem,
Hmin(k + 1, x, z, y) is its father-sub-problem, and the move the largest disc
of the father-sub-problems has to perform is x → z. As we previously men-
tioned, the optimal solution of the right-brother-sub-problem can be found
from the solution of the left-brother-sub-problem by simply letter changing.
To solve the Hmin(k + 1, x, z, y) father-sub-problem means, that, after the
current left-son-sub-problem (Hmin(k, x, y, z)) has been solved, we move disc
(k + 1) from peg x to peg z, and than we generate the solution of the right-
son-sub-problem (Hmin(k, y, z, x)). The starting problem is Hmin(1, a, b, c) or
Hmin(1, a, c, b) depending if n is odd or even. Procedure P iterative DP min
follows this iterative dynamic programming strategy.

void P iterative DP min(int n, int *moves)
{

int i, k, pattern, p;
moves[0] = pattern = !(n&1); //the first move
for(k=2;k<=n;++k)
{

p=(1<<(k–1))–1;
pattern ^ = 1; //we change the pattern
moves[p]=pattern; //the move of the largest disc
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//corresponding to the father problem
for(i=0;i<p;++i) //generating the righ-brother-solution

moves[p+1+i] = move changing[pattern][moves[i]];
}

}

The main concern about procedure P iterative DP min is related (as we de-
scribed above) with the limited memory capacity of the computers. How can
we eliminate this ingredient? The solution is based on the following observa-
tions (We have considered the minimum version of the problem; We consider
the three pegs “large”, “medium” and “small” according to the size of their
top-disc):
• In any intermediate state of the problem solving process there are three

possible moves: “small”→“medium”, “small”→“large”, “medium”→“large”.
• The top-disc of the “small-peg” is always the smallest disc. It is not

allowed two consecutive moves with the smallest disc. (To avoid the loops,
and to maintain the minimal character of the move-sequence). So, the smallest
and the medium-size top-discs move alternatively.
• If the next to move is the medium-size top-disc, than it is clear that

the “medium”→“large” move has to be performed. The ,,own leaves” of the
root-nodes represent these moves. (Figure 2)
• The smallest disc (disc n) moves according to the patterns (a, b, c, a, b, c,

...) or (a, c, b, a, c, b, ...) depending on the odd or even character of param-
eter n. Consequently, the moves of the smallest-disc are also unambiguously.
(There is only one optimal-size solution)

What reasoning lies behind the last remark? These move-patterns can be
established by a careful analysis of the bottom-up building process, and the
correctness of them is proved by mathematical induction. We assume that the
problem to be solved is Hmin(n, a, b, c), and n is odd. We will prove that in
this case the smallest disc follows the (a, b, c, a, b, c, ..., c, a, b) 2n−1 long
move-sequence.

For n=1 we have only the smallest disc and its move is a → b. Assume
that for a given odd n > 1 the 2n−1 long move-sequence of the smallest disc
is: a, b, c, a, b, c, ..., c, a, b. The right-brother sub-problem of problem
Hmin(n, a, b, c) is Hmin(n, b, c, a). The corresponding move-sequence for the
smallest disc is: b, c, a, b, c, a, ..., a, b, c. Concating these patterns,
we get the 2n long move-sequence corresponding to the father-sub-problem
Hmin(n + 1, a, c, b): a, b, c, a, b, c, ..., a, b, c. Repeating this procedure we
get for the Hmin(n + 2, a, b, c) grandfather-sub-problem the 2n+1 long a, b,
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c, a, b, c, ..., c, a, b move-sequence-pattern. We can use the same train of
thought for n even.

Hmin(1,a,b,c): (a b) 

Hmin(2,a,c,b): {(a b)}, [a c], {(b c)} 

Hmin(3,a,b,c): {(a b), [a c], (b c)}, [a b], {(c a), [c b], (a b)} 

a, b, c, a, b 

Figure 3: We used round brackets for the moves of the smallest disc and square
brackets for the moves of the largest disc of the corresponding sub-problem
(k > 1). The curly brackets-pairs represent the brother sub-problems.

Consequently: the strategy applied by this iterative algorithm is mainly
dynamic programming due two the following reasons:
• The algorithm generates the move-sequence that implements the bottom-

up solution-building process of the dynamic programming strategy.
• The way the move-sequence is established is rooted in optimalisations

included in the principal of the optimality.
• The move-pattern the smallest disc follows can be determined by bottom-

up analyses of the recursive formulas.
Interestingly, the move-patters the smallest disc has to follows can also be

determined by a greedy approach of the problem. Solving the Hmin(n, a, b, c)

problem we have the following moving-patterns:
• all n discs get from peg a to peg b: a >> b; (between stages a and b may

also be other stages)
• disc 1 moves: a → b (disc 1 moves directly from peg a to peg b; greedy-

move)
• top (n-1) discs: a >> c >> b (top (n-1) discs pass through stages a, c,

b)
• disc 2 moves: a → c → b, greedy-moves
• top (n-2) discs: a >> b >> c >> a >> b;
• disc 3 moves: a → b → c → a → b, greedy-moves
• top (n-3) discs: a >> c >> b >> a >> c >> b >> a >> c >> b;
• disc 4 moves: a → c → b → a → c → b → a → c → b, greedy-moves
• . . .
Since for all k > 1 sub-problem Hmin(k, x, y, z) is reduced to sub-problems

Hmin(k − 1, x, z, y) and Hmin(k − 1, z, y, x) the next moving-pattern is gener-
ated from the current one by intercalating between all consecutive stages the
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“third stage”. Notice that there are only two patters, one for odd-discs (a, b,
c, a, b, c, ...) and one for even-discs (a, c, b, a, c, b, ...).

The fact that the p1 >> p2 >> . . . >> pm stage-sequence of the k-size tower
in case of its largest disc means p1 → p2 → . . . → pm direct move-sequence is
based on greedy decisions. Furthermore, the above-presented “pattern gener-
ating process” is hand-by-hand with the top-down greedy strategy described
previously. Accordingly, we can state, that (form this point of view) the move-
patterns the iterative algorithm follows, can also be established in greedy way.

Procedure P iterative min implements the above-presented iterative algo-
rithm. The current values in array state[1..n] represent the current state of
the problem. Element state[i] store the peg corresponding to the position of
disc i. Variable i represents the current disc that moves. During odd steps
(k is odd) disc n moves. At even steps (k is even) the smallest disc, that is
on different peg than disc n, moves. For odd i disc i follows the “increasing
circular pattern”: a, b, c, a, b, c,... In cases when i is even disc i has to move
according to the “decreasing circular pattern”: c, b, a, c, b, a, ...

void P iterative min(int n, char a, char b, char c)
{

char p = (char*)calloc(n+1, sizeof(char));
for(i=1;i<=n;++i) p[i] = a;
int nr=(1<<n)–1;
int k=1;
while(k<=nr)
{

if(k&1) i=n; //the smalest disc moves
else

for(i=n-1;p[i]==p[n];−−i);
//the smallest disc, that is on different peg than disc n, moves

printf(”%c − > ”,p[i]); //move from peg p[i]
p[i]+=1-((i&1)<<1);
// according to the odd/even character of i,
// the ,,increasing/decreasing” pattern is followed
if(p[i]==c+1) p[i]=a;
elseif(p[i]==a-1) p[i]=c; // circular pattern are followed
printf(” %c\n”,p[i]); //move to peg p[i]
++k;

}
}
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8 Analysis of programs

The Towers of Hanoi puzzle was analyzed in the literature in many ways,
such [2], [3], [4], [5]. In this paper we solved the problem according to the
principles of the four major programming techniques. Including the iterative
solution we have got 5 programs (P recursive min – divide and conquer solution,
P greedy min – greedy solution, P memozation min – dynamic programming,
P backtrack min – backtracking solution, and P iterative min – the iterative
solution).

Greedy

Backtracking Divide and conquer 

Dynamic programming 

Figure 4: Towers of Hanoi – where programming techniques blend.

In the above mentioned programs, we used a time measuring sequence, as
follows:

#include <windows.h>

int64 freq, tStart, tStop;
unsigned long TimeDiff;
QueryPerformanceFrequency((LARGE INTEGER*)&freq);
QueryPerformanceCounter((LARGE INTEGER*)&tStart);
With this sequence we started the timer, then we called the program solving

sequence. At the end, we calculate the time difference:
QueryPerformanceCounter((LARGE INTEGER*)&tStop);
TimeDiff = (unsigned long)(((tStop − tStart) ∗ 1000000) / freq);
Using the 1 000 000 multiplier, we got the time in microsecond – a very

precise chronometer. Because of the time sharing algorithm of the operating
system, we did execute 20 times each program, and calculate an average of
time-need.

We tested the programs for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20 discs.
During the tests we disabled any I/O operation (ex. printf).

Table 1 concludes the tests, and the time-needs.
Technical information: We measured the time in microsecond. The com-

puter: Intel Pentium 4; 2,40 GHz CPU; 1,50 GB RAM; the programs: Mi-
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n steps 2n−1 recursive greedy backtracking dynamic iterative

1 1 1 1 5 1 1

2 3 1 1 15 1 1

3 7 1 1 143 1 1

4 15 2 2 29 022 2 2

5 31 3 3 1 791 167 126 2 2

6 63 5 5 ,,∞” 2 2

7 127 8 8 ,,∞” 3 3

8 255 14 15 ,,∞” 4 4

9 511 27 30 ,,∞” 6 6

10 1023 51 63 ,,∞” 10 11

15 32 767 1599 2071 ,,∞” 250 320

20 1 048 575 52 080 70 112 ,,∞” 10 511 10 849

Table 1: Comparative analysis of programs.

crosoft Visual C++ 6.0, Win32 Console Application.
According to the comparative analysis, we can conclude that the dynamic

programming and the iterative solutions are the fastest (aprox. 5-times faster
than the recursive, divide and conquer solution), the classic backtracking is
the slowest. There is a very small difference between the iterative solution and
the recursive dynamic programming solution.

9 Conclusions

As we pointed out in this paper the principle solving process of Towers of
Hanoi problem mainly follows a greedy strategy. Then again, the way the op-
timal solution is built mostly follows the dynamic programming “way of think-
ing”. The greedy algorithms produce only one decision-sequence, a sequence
of greedy decisions. The dynamic programming strategies usually generate
several optimal sub-sequences. The fact, that both the recursive and iterative
algorithms generate only one decision-sequence is another reason why these
solutions can be considered as greedy strategies implemented in dynamic pro-
gramming way.

The recursive formulas are born in top-down greedy way, but they are im-
plemented in bottom-up way as dynamic programming strategies. Further-
more, considering them in top-down / bottom-up way, they are materializa-
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tions of the principal of greedy-chooses / optimality. Although the current
sub-problem at each step is reduced to two/three sub-sub-problems (that is
characteristic to divide and conquer strategies) the problem solving processes
(both the principle and the implementation) are directed by greedy and dy-
namic programming optimalisations included in the recursive formulas. The
fact that the problem solving process pretends the repeated “evaluation” of the
overlapping sub-problems is also a divide and conquer feature of the problem.

With respect to the time complexity of the implementations, they are ex-
ponential, since the size of the optimal solutions depends exponentially on the
size of the input. All algorithms traverse the same optimal-solution-tree with
(2n−1) or (3n−1) nodes (expecting the backtracking algorithm that traverses
the whole solution-space-tree). The running time differences between the re-
cursive and iterative implementations can mainly be explained by the loss of
time that arises due to the recursive calls. Whereas procedure P recursive min
implements the bottom-up building process on the back-way of the recursion,
procedure P iterative min performs this directly. Since the optimal solution has
exponential size, even minor variances between implementations are reflected
in exponential way with respect to the running time of the algorithms.
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Târgu Mureş
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Abstract. A new algorithm to generate all Dyck words is presented,
which is used in ranking and unranking Dyck words. We emphasize the
importance of using Dyck words in encoding objects related to Catalan
numbers. As a consequence of formulas used in the ranking algorithm
we can obtain a recursive formula for the nth Catalan number.

1 Introduction

Let B = {0, 1} be a binary alphabet and x1x2 . . . xn ∈ Bn. Let h : B→ {−1, 1}

be a valuation function with h(0) = 1, h(1) = −1, and h(x1x2 . . . xn) =
n∑

i=1

h(xi).

A word X = x1x2 . . . x2n ∈ B2n is called a Dyck word [4] if it satisfies the
following conditions:

h(x1x2 . . . xi) ≥ 0, for 1 ≤ i ≤ 2n − 1

h(x1x2 . . . x2n) = 0.

n is the semilength of the word.
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algorithms.
Key words and phrases: Dyck words, generating and ranking algorithms, Catalan num-
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2 Lexicographic order

The algorithm that generates all Dyck words in lexicographic order is obvious.
Let us begin with 0 in the first position, and add 0 or 1 each time the Dyck-
property remains valid. In the following algorithm 2n is the length of a Dyck
word, n0 counts the 0s, and n1 the 1s.
There are the following cases :
Case 1: (n0 < n) and (n1 < n) and (n0 > n1) (We can continue by adding 0 and 1.)
Case 2: (n0 < n) and (n1 < n) and (n0 = n1) (We can continue by adding 0 only.)
Case 3: (n0 < n) and (n1 = n) (We can continue by adding 0 only.)
Case 4: (n0 = n) and (n1 < n) (We can continue by adding 1 only.)

Case 5: (n0 = n1 = n) (A Dyck word is obtained.)

Let us use the following short notations:

Dyck 0 for
xi← 0

n0← n0 + 1

LexDyckWords(X, i, n0, n1)

n0← n0 − 1

Dyck 1 for
xi← 1

n1← n1 + 1

LexDyckWords(X, i, n0, n1)

n1← n1 − 1

The algorithm is the following:

LexDyckWords(X, i, n0, n1)

1 if Case 1
2 then i← i + 1

3 Dyck 0

4 Dyck 1

5 if Case 2 or Case3
6 then i← i + 1

7 Dyck 0

8 if Case 4
9 then i← i + 1

10 Dyck 1

11 if Case 5
12 then Visit x1x2 . . . xn

13 return

The recursive call:
x1← 0, n0← 1, n1← 0

LexDyckWords(X, 1, n0, n1)
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For n = 4 we obtain:

00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101,
00110011, 00110101, 01000111, 01001011, 01001101, 01010011, 01010101.

This algorithm obviously generates all Dyck words.

3 Generating the positions of 1s

Let b1b2 . . . bn be the positions of 1s in the Dyck word x1x2 . . . x2n. E.g. for
x1x2 . . . x8 = 01010011 we have b1b2b3b4 = 2478.

To be a Dyck word of semilength n, the positions b1b2 . . . bn of 1s of the
word x1x2 . . . x2n must satisfy the following conditions:

2i ≤ bi ≤ n + i, for 1 ≤ i ≤ n.

Following the idea of generating combinations by positions of 0s in the
corresponding binary string [5] we propose a similar algorithm that generates
the positions b1b2 . . . bn of 1s.

PosDyckWords(n)

1 for i← 1 to n

2 do bi← 2i

3 repeat
4 Visit b1b2 . . . bn

5 IND← 0

6 for i← n − 1 downto 1
7 do if bi < n + i

8 then bi← bi + 1

9 for j← i + 1 to n − 1

10 do bj← max(bj−1 + 1, 2j)

11 IND← 1

12 break (for)
13 until IND = 0

14 return

For n = 4 we obtain:

2468, 2478, 2568, 2578, 2678, 3468, 3478, 3568, 3578, 3678, 4568, 4578, 4678,
5678.
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The corresponding Dyck words are:

01010101, 01010011, 01001101, 01001011, 01000111, 00110101, 00110011,
00101101, 00101011, 00100111, 00011101, 00011011, 00010111, 00001111.

Because all values of positions that are possible are taken by the algorithm, it
generates all Dyck words. Words are generated in reverse lexicographic order.

4 Generating by changing 10 in 01

The basic idea [2] is to change the first occurence of 10 in 01 to get a new
Dyck word. We begin with 0101 . . . 01.

DyckWords(X, k)

1 i← k

2 while i < 2n

3 do Let j be the position of the first occurence of 10 in xixi+1 . . . x2n,
or 0 if such a position doesn’t exist.

4 if j > 0

5 then Let Y ← X

6 Change yi with yi+1.

7 Visit y1y2 . . . y2n

8 DyckWords(Y, j − 1)
9 i← j + 2

10 return

The first call is DyckWords(X, 1), if X = 0101 . . . 01.

For X = 01010101, the algoritm generates:

01010101, 00110101, 00101101, 00011101, 00011011, 00010111, 00001111,
00101011, 00100111, 00110011, 01001101, 01001011, 01000111, 01010011.

Can this algorithm always generate all Dyck words? To prove this we show
that any Dyck word can be tranformed to (01)n by several changing of 01 in
10. Let us consider the leftmost subword of the form 0i1, for i > 0. Changing
01 in 10 (i − 1) times, we will obtain a leftmost subword of the form 0i−11.
So, all subwords of this form can be avoided.
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5 Ranking Dyck words

Ranking Dyck words means [6] to determine the position of a Dyck word in a
given ordered sequence of all Dyck words.

Algorithm PosDyckWords generates all Dyck word in reverse lexico-
graphic order. For ranking these words we will use the following function
[7], where f(i, j) represents the number of paths between (0,0) and (i, j) not
crossing the diagonal x = y of the grid.

f(i, j) =






1, for 0 ≤ i ≤ n, j = 0

f(i − 1, j) + f(i, j − 1), for 1 ≤ j < i ≤ n

f(i, i − 1), for 1 ≤ i = j ≤ n

0, for 0 ≤ i < j ≤ n

(1)

Some values of this function are given in the following table.

j

9 4862
8 1430 4862
7 429 1430 3432
6 132 429 1001 2002
5 42 132 297 572 1001
4 14 42 90 165 275 429
3 5 14 28 48 75 110 154
2 2 5 9 14 20 27 35 44
1 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 i

It is easy to prove that if Cn is the nth Catalan number then

Cn+1 = f(n + 1, n) =

n∑

i=0

f(n, i), n ≥ 0 (2)

f(n + 1, k) =

k∑

i=0

f(n, i), n ≥ 0, n ≥ k ≥ 0.

Using this function the following ranking algorithm results.
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Ranking(b1b2 . . . bn)

1 c1← 2

2 for j← 2 to n

3 do cj← max(bj−1 + 1, 2j)

4 nr← 1

5 for i← 1 to n − 1

6 do for j← ci to bi − 1

7 do nr← nr + f(n − i, n + i − j)

8 return nr

For example, if b =4 5 8 9 10, we get c =2 5 6 9 10, and nr = 1 + f(4, 4) +

f(4, 3) + f(2, 2) + f(2, 1) = 1 + 14 + 14 + 2 + 2 = 33.

This algorithm can be used for ranking in lexicographic order too.

6 Unranking Dyck words

The unranking algorithm for a given n will map a number between 1 and Cn

to the corresponding Dyck word represented by positions of 1s. Here the Dyck
words are considered in reverse lexicographic order too.

Unranking(nr)

1 b0← 0

2 nr← nr − 1

3 for i← 1 to n

4 do bi← max
(

bi−1 + 1, 2i
)

5 j← n + i − bi

6 while
(

nr ≥ f(n − i, j)
)

and
(

bi < n + i
)

7 do nr← nr − f(n − i, j)

8 bi← bi + 1

9 j← j − 1

10 return b1b2 . . . bn

If n = 6 and nr = 93, we will have: 92 − f(5, 5) − f(5, 4) − f(3, 3) − f(2, 2) −

f(1, 1) = 92 − 42 − 42 − 5 − 2 − 1, so the corresponding Dyck word represented
by positions of 1’s is: b = 4 5 7 9 11 12. Are changed from the initial values
2i the following: position 1 by 2, position 3 by 1, position 4 by 1 and position
5 by 1.
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7 Applications of Dyck words

If O is a set of Cn objects, Dyck words can be used for encoding the objects of
O. The importance of such an encoding currently is not suitably accentuated.
We present here an encoding and decoding algorithms for binary trees, based
on [1].

Algorithm for encoding a binary tree

Let BL be the left and BR the right subtree of the binary tree B. w01 means
the concatenation of word w with 01, and w is considered a global variable.

EncodingBT(B)

1 if BL 6= ∅ and BR = ∅

2 then w← w01

3 EncodingBT(BL)
4 if BL = ∅ and BR 6= ∅

5 then w← w10

6 EncodingBT(BR)
7 if BL 6= ∅ and BR 6= ∅

8 then w← w00

9 EncodingBT(BL)
8 w← w11

9 EncodingBT (BR)
10 return

Call:
w← 0

EncodingBT(B)
w← w1

For all trees of n = 4 vertices the result of the algorithm is given in Fig. 1.

Algorithm to decode a Dyck word into a binary tree

At the beginning the root of the generated binary tree is the current vertex.
When an edge is drawn, its endvertex becomes the current vertex.
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Figure 1: Encoding of binary trees for n = 4.

DecodingBT(w)

1 Let ab be the first two letters of w.
2 Delete ab from w.
3 if ab = 01

4 then draw a left edge from the current vertex
5 DecodingBT(w)
6 if ab = 10

7 then draw a right edge from the current vertex
8 DecodingBT(w)
9 if ab = 00

10 then put in the stack the position of the current vertex
11 draw a left edge from the current vertex
12 DecodingBT(w)
13 if ab = 11

14 then get from the stack the position of the new current vertex
15 draw a right edge from the current vertex
16 DecodingBT(w)
17 return

Call:
delete 0 from the beginning and 1 from the end of the input word w

draw a vertex (the root of the tree) as current vertex
DecodingBT(w)
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For some other objects related to Catalan numbers the corresponding coding
can be found in [1] and at http://www.ms.sapientia.ro/˜kasa/CodingDyck.pdf.

8 A consequence

As a consequence of formulas (1) and (2) the following formula for the (n+1)th
Catalan number results:

Cn+1 = 1 +
∑

k≥0

(−1)k

(

n − k

k + 1

)

Cn−k. (3)

We can prove that

f(n, n − k) =

n∑

i=0

(−1)i

(

k − i

i

)

Cn−i

for appropriate n and k, using mathematical induction on n and k, and formula
(1) in the form

f(n, n − k) = f(n, n − k + 1) − f(n − 1, n − k + 1).

Now, from (2)

Cn+1 =

n∑

i=0

f(n, i) = f(n, 0) +

n∑

i=1

f(n, i) = 1 +

n−1∑

i=0

f(n, n − i)

= 1 +

n−1∑

i=0

(

n∑

k=0

(−1)k

(

i − k

k

)

Cn−k

)

= 1 +

n∑

k=0

(−1)kCn−k

(

n−1∑

i=0

(

i − k

k

)

)

= 1 +

n∑

k=0

(−1)k

(

n − k

k + 1

)

Cn−k.

In the last line
(

k
k

)

+
(

k+1
k

)

+ · · · +
(

n−1−k
k

)

=
(

n−k
k+1

)

was used.
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Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)

Horia GEORGESCU (University of Bucureşti, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)
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A. Hajnal, V. T. Sós, Paul Erdős is seventy, J. Graph Theory, 7, 4 (1983) 391–393.
For books:

D. Stanton, D. White, Constructive Combinatorics, Springer, New York, 1986.
For papers in contributed volumes:

Z. Csörnyei, Compilers in Algorithms of Informatics, Vol. 1. Foundations (ed. A.
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