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Abstract. In this paper by using hereditary classes [6], we define the
notion of γ-Lindelöf modulo hereditary classes called γH-Lindelöf and
obtain several properties of γH-Lindelöf spaces.

1 Introduction

Let (X, τ) be a topological space and P(X) the power set of X. In 1991, Ogata
[13] introduced the notions of γ-operations and γ-open sets and investigated
the associated topology τγ and weak separation axioms γ-Ti (i = 0, 1/2, 1, 2).
In 2011, Noiri [10] defined an operation on an m-structure with property
B (the generalized topology in the sense of Lugojan [8]). The operation is
defined as a function γ : m→ P(X) such that U ⊆ γ(U) for each U ∈ m and
is called a γ-operation on m. Then, it terns out that the operation is an unified
form of several operations (for example, semi-γ-operation [7], pre-γ-operation
[4]) defined on the family of generalized open sets. Moreover, he obtained
some characterizations of γ-compactness and suggested some generalizations
of compact spaces by using recent modifications of open sets in a topological
space.
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Key words and phrases: γ-operation, m-structure, m-open, γ-open, hereditary class, H-
Lindelöf, γH-Lindelöf
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In this paper by using hereditary classes [6], we define the notion of γ-
Lindelöf modulo hereditary classes called γH-Lindelöf and obtain several prop-
erties of γH-Lindelöf spaces. Recently papers [1, 2, 3] have introduced some
new classes of sets via hereditary classes.

2 Preliminaries

First we state the following: in [11], a minimal structurem is defined as follows:
m is called a minima structure if ∅, X ∈ m. However, in this paper, we define
as follows:

Definition 1 Let X be a nonempty set and P(X) the power set of X. A sub-
family m of P(X) is called a minimal structure (briefly m-structure) on X if
m satisfies the following conditions:

1. ∅, X ∈ m.

2. The union of any family of subsets belonging to m belongs to m.

A set X with an m-structure is called an m-space and denoted by (X,m). Each
member of m is said to be m-open and the complement of an m-open set is
said to be m-closed.

Definition 2 [9] Let X be a nonempty set and m an m-structure on X. For
a subset A of X, the m-closure of A is defined as follows: mcl(A) = ∩{F : A ⊆
F, X \ F ∈ m}.

Lemma 1 [9] Let X be a nonempty set and m an m-structure on X. For the
m-closure, the following properties hold, where A and B are subsets of X:

1. A ⊆ mcl(A),

2. mcl(∅) = ∅, mcl(X) = X,

3. If A ⊆ B, then mcl(A) ⊆ mcl(B),

4. mcl(mcl(A)) = mcl(A).

Lemma 2 [14] Let (X,m) be an m-space and A a subset of X. Then x ∈
mcl(A) if and only if U ∩A 6= ∅ for every U ∈ m containing x.
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Lemma 3 [15] Let (X,m) be an m-space and A a subset of X. Then, the
following properties hold:

1. A is m-closed if and only if mcl(A) = A,

2. mcl(A) is m-closed.

Definition 3 [10] Let (X,m) be an m-space and γ an operation on m. A
subset A of X is said to be γ-open if for each x ∈ A there exists U ∈ m such
that x ∈ U ⊆ γ(U) ⊆ A. The complement of a γ-open set is said to be γ-closed.
The family of all γ-open sets of (X,m) is denoted by γ(X).

3 γH-Lindelöf spaces
First, we recall the definition of a hereditary class used in the sequel. A sub-
family H of the power set P(X) is called a hereditary class on X [6] if it
satisfies the following property: A ∈ H and B ⊆ A implies B ∈ H.

Definition 4 Let (X,m,H) be a hereditary m-space and γ an operation on
m, where H is a hereditary class on X. Then m-space (X,m) is said to be γH-
Lindelöf (resp. H-Lindelöf) if every cover {Uα : α ∈ ∆} of X by m-open sets,
there exists a countable subset ∆0 of ∆ such that X \ ∪{γ(Uα) : α ∈ ∆0} ∈ H
(resp. X \ ∪{Uα : α ∈ ∆0} ∈ H).

Theorem 1 Let (X,m,H) be a hereditary m-space and γ an operation on m,
where H is a hereditary class. Then the following properties are equivalent:

1. (X, γ(X)) is H-Lindelöf;

2. For every family {Fα : α ∈ ∆} of γ-closed sets such that ∩{Fα : α ∈ ∆0} /∈
H for every countable subfamily ∆0 of ∆, ∩{Fα : α ∈ ∆} 6= ∅.

Proof. (1) ⇒ (2): Let (X, γ(X)) be H-Lindelöf. Suppose that ∩{Fα : α ∈
∆} = ∅, where Fα is γ-closed set. Then X \ Fα is γ-open for each α ∈ ∆ and
∪α∈∆(X \ Fα) = X \ ∩α∈∆(Fα) = X. By (1), there exists a countable subfamily
∆0 of ∆ such that X \ ∪α∈∆0

(X \ Fα) = ∩{Fα : α ∈ ∆0} ∈ H. This is a contra-
diction.
(2) ⇒ (1): Suppose that (X, γ(X)) is not H-Lindelöf. There exists a cover
{Uα : α ∈ ∆} of X by γ-open sets such that X \ ∪{Uα : α ∈ ∆0} /∈ H for
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every countable subset ∆0 of ∆. Since X \ Uα is γ-closed for each α ∈ ∆ and
∩{(X \Uα) : α ∈ ∆0} /∈ H for every countable subset ∆0 of ∆. By (2), we have
∩{(X \ Uα) : α ∈ ∆} 6= ∅. Therefore, X \ ∪{Uα : α ∈ ∆} 6= ∅. This is contrary
that {Uα : α ∈ ∆} is a γ-open cover of X.

�

Lemma 4 [10] Let (X,m) be an m-space. For γ(X), the following properties
hold:

1. ∅, X ∈ γ(X),

2. If Aα ∈ γ(X) for each α ∈ Λ, then ∪α∈ΛAα ∈ γ(X),

3. γ(X) ⊆ m.

Definition 5 [10] An m-space (X,m) is said to be γ-regular if for each x ∈ X
and each U ∈ m containing x, there exists V ∈ m such that x ∈ V ⊆ γ(V) ⊆ U.

Lemma 5 [10] For an m-space (X,m), the following properties are equiva-
lent:

1. m = γ(X);

2. (X,m) is γ-regular;

3. For each x ∈ X and each U ∈ m containing x, there exists W ∈ γ(X)
such that x ∈W ⊆ γ(W) ⊆ U.

Theorem 2 Let (X,m,H) be a hereditary m-space and γ an operation on m,
where H is a hereditary class. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold.
If (X,m) is γ-regular, then the following properties are equivalent:

1. (X,m) is H-Lindelöf;

2. (X,m) is γH-Lindelöf;

3. (X, γ(X)) is H-Lindelöf;

4. (X, γ(X)) is γH-Lindelöf.

Proof. (1) ⇒ (2): Let (X,m) be H-Lindelöf. For any cover {Uα : α ∈ ∆} of X
by m-open sets, there exists a countable subset ∆0 of ∆ such that X\∪{γ(Uα) :
α ∈ ∆0} ⊆ X \ ∪{Uα : α ∈ ∆0} ∈ H. Therefore, (X,m) is γH-Lindelöf.
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(2) ⇒ (3): Let (X,m) be γH-Lindelöf and {Uα : α ∈ ∆} a cover of X by
γ-open sets. For each x ∈ X there exists α(x) ∈ ∆ such that x ∈ Uα(x). Since
Uα(x) is γ-open, there exists Vα(x) ∈ m such that x ∈ Vα(x) ⊆ γ(Vα(x)) ⊆ Uα(x).
Since the family {Vα(x) : x ∈ X} is a cover of X by m-open sets and (X,m) is
γH-Lindelöf, there exists a countable number of points, say, x1, x2, x3, · · · ∈ X
such that X \ ∪∞i=1γ(Vα(xi)) ∈ H and hence X \ ∪∞i=1Uα(xi) ∈ H. This shows that
(X, γ(X)) is H-Lindelöf.

(3) ⇒ (4): By Lemma 4, γ(X) is an m-structure and it follows that the
same argument as (1) ⇒ (2) that (X, γ(X)) is γH-Lindelöf.

(4) ⇒ (1): Suppose that (X,m) is γ-regular. Let (X, γ(X)) be γH-Lindelöf.
Let {Uα : α ∈ ∆} be any cover of X by m-open sets. For each x ∈ X, there
exists α(x) ∈ ∆ such that x ∈ Uα(x). Since (X,m) is γ-regular, by Lemma
5 there exists Vα(x) ∈ γ(X) such that x ∈ Vα(x) ⊆ γ(Vα(x)) ⊆ Uα(x). Since
{Vα(x) : x ∈ X} is a cover of X by γ-open sets and (X, γ(X)) is γH-Lindelöf,
there exist a countable number of points, say, x1, x2, x3, · · · ∈ X such that
X \ ∪∞i=1γ(Vα(xi)) ∈ H; and hence X \ ∪∞i=1Uα(xi) ∈ H. This shows that (X,m)
is H-Lindelöf. �

Definition 6 Let (X,m,H) be a hereditary m-space. A subset A of X is said
to be γH-Lindelöf relative to X if for every cover {Uα : α ∈ ∆} of A by m-open
sets of X, there exists a countable subset ∆0 of ∆ such that A \ ∪{γ(Uα) : α ∈
∆0} ∈ H.

Theorem 3 Let (X,m,H) be a hereditary m-space. If A is γ-closed and B
is γH-Lindelöf relative to X, then A ∩ B is γH-Lindelöf relative to X.

Proof. Let {Vα : α ∈ ∆} be a cover of A ∩ B by m-open subsets of X. Then
{Vα : α ∈ ∆} ∪ {X \ A} is a cover of B by m-open sets. Since X \ A is γ-
open, for each x ∈ X \ A, there exists an m-open set Vx such that x ∈ Vx ⊆
γ(Vx) ⊆ X \ A. Thus {Vα : α ∈ ∆} ∪ {Vx : x ∈ X \ A} is a cover of B by m-
open sets of X. Since B is γH-Lindelöf relative to X, there exist a countable
subset ∆0 of ∆ and a countable points, says x1, x2, · · · ∈ X \ A such that
B ⊆ [(∪α∈∆0

γ(Vα)) ∪ (∪∞i=1γ(Vxi))] ∪ H0 ∈ H, where H0 ∈ H. Hence A ∩
B ⊆ [(∪α∈∆0

γ(Vα) ∩A) ∪ (∪∞i=1γ(Vxi) ∩A)] ∪ (A ∩ H0) ⊆ ∪α∈∆0
γ(Vα) ∪ H0.

Therefore, A ∩ B \ (∪α∈∆0
γ(Vα)) ⊆ H0 ∈ H. Hence A ∩ B is γH-Lindelöf

relative to X. �

Corollary 1 If a hereditary m-space (X,m,H) is γH-Lindelöf space, then
every γ-closed subset of X is γH-Lindelöf relative to X.
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Proof. The proof is obvious by Theorem 3. �

Lemma 6 [12] For a hereditary m-space (X,m,H), the following properties
hold:

1. m∗H is an m-structure on X such that m∗H has property B and m ⊆ m∗H.

2. β(m,H) = {U \ H : U ∈ m,H ∈ H} is a basis for m∗H. such that m ⊆
β(m,H).

Theorem 4 Let (X,m,H) be a hereditary m-space. Then the following prop-
erties hold:

1. If (X,m∗H,H) is H-Lindelöf, then (X,m,H) is H-Lindelöf.

2. If (X,m,H) is H-Lindelöf and H is closed under countable union, then
(X,m∗H,H) is H-Lindelöf.

Proof. (1): The proof follows directly from the fact that every m-closed set
is m∗H-closed.

(2): Suppose that H is closed under countable union and X is H-Lindelöf.
Let {Uα : α ∈ ∆} be an m∗H-open cover of X, then for each x ∈ X, x ∈ Uα(x) for
some α(x) ∈ ∆. By Lemma 6 there exist Vα(x) ∈ m and Hα(x) ∈ H such that
x ∈ Vα(x)\Hα(x) ⊆ Uα(x). Since {Vα(x) : α(x) ∈ ∆} is anm-open cover of X, there
exists a countable subset ∆0 of ∆ such that X \ ∪{Vα(x) : α(x) ∈ ∆0} = H ∈ H.
Since H is closed under countable union, then ∪{Hα(x) : α(x) ∈ ∆0} ∈ H.
Hence, H∪

[
∪{Hα(x) : α(x) ∈ ∆0}

]
∈ H. Observe that X\∪{Uα : α ∈ ∆0} ⊆ H∪[

∪{Hα(x) : α(x) ∈ ∆0}
]
∈ H. By the heredity property of H we have X \∪{Uα :

α ∈ ∆0} ∈ H and therefore, (X,m∗H,H) is H-Lindelöf. �

4 Strongly H-Lindelöf spaces

Definition 7 A subset A of a hereditary m-space (X,m,H) is said to be:

1. Strongly H-Lindelöf relative to X if for every family {Vα : α ∈ ∆} of
m-open sets such that A \ ∪α∈∆Vα ∈ H, there exists a countable subset
∆0 of ∆ such that A \∪α∈∆0

Vα ∈ H. If A = X, then (X,m,H) is said to
be Strongly H-Lindelöf.



Generalizations of Lindelöf spaces via hereditary classes 287

2. Strongly γH-Lindelöf relative to X if for every family {Vα : α ∈ ∆} of
m-open sets such that A \ ∪α∈∆Vα ∈ H, there exists a countable subset
∆0 of ∆ such that A \∪α∈∆0

γ(Vα) ∈ H. If A = X, then (X,m,H) is said
to be Strongly γH-Lindelöf.

Theorem 5 Let (X,m,H) be a hereditary m-space. Then the following prop-
erties hold:

1. If (X,m∗H,H) is Strongly H-Lindelöf, then (X,m,H) is Strongly H-Lindelöf.

2. If (X,m,H) is Strongly H-Lindelöf and H is closed under countable
union, then (X,m∗H,H) is Strongly H-Lindelöf.

Theorem 6 Let (X,m,H) be a hereditary m-space. Then the following prop-
erties are equivalent:

1. (X,m,H) is Strongly H-Lindelöf;

2. If {Fα : α ∈ ∆} is a family of m-closed sets such that ∩{Fα : α ∈ ∆} ∈ H,
then there exists a countable subfamily ∆0 of ∆ such that ∩{Fα : α ∈
∆0} ∈ H.

Proof. Suppose that (X,m,H) is Strongly H-Lindelöf. Let {Fα : α ∈ ∆} be a
family of m-closed sets such that ∩{Fα : α ∈ ∆} ∈ H. Then {X \ Fα : α ∈ ∆}
is a family of m-open sets of X. Let H = ∩{Fα : α ∈ ∆} ∈ H. Let X \ H =
X \ ∩{Fα : α ∈ ∆} = ∪{X \ Fα : α ∈ ∆}. Since (X,m,H) is Strongly H-Lindelöf,
there exists a countable ∆0 of ∆ such that X \ ∪{X \ Fα : α ∈ ∆0} ∈ H. This
implies that ∩{Fα : α ∈ ∆} ∈ H.

Conversely, let {Vα : α ∈ ∆} be any family of m-open sets of X such that
X \ ∪α∈∆Vα ∈ H. Then {X \ Vα : α ∈ ∆} is a family of m-closed sets of X. By
assumption we have ∩{X\Vα : α ∈ ∆} ∈ H and there exists a countable subset
∆0 of ∆ such that ∩{X \ Vα : α ∈ ∆0} ∈ H. This implies that X \ ∪{Vα : α ∈
∆0} ∈ H. This shows that (X,m,H) is Strongly H-Lindelöf.

�

Definition 8 A subset A of a hereditary m-space (X,m,H) is said to be mHg-
closed if for every U ∈ m with A \U ∈ H, mcl(A) ⊆ U.

Proposition 1 Let (X,m,H) be a hereditary m-space. If (X,m,H) is Strongly
H-Lindelöf and A ⊆ X is mHg-closed, then A is Strongly H-Lindelöf relative
to X.
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Proof. Let {Vα : α ∈ ∆} be a family of m-open subsets of X such that A \

∪α∈∆Vα ∈ H. Since A is mHg-closed, mcl(A) ⊆ ∪α∈∆Vα. Then (X\mcl(A))∪
[∪α∈∆Vα] is an m-open cover of X and so X \ [(X \mcl(A)) ∪ [∪α∈∆Vα]] ∈ H.
Since X is Strongly H-Lindelöf, there exists a countable subset ∆0 of ∆ such
that X \ [(X \mcl(A)) ∪ [∪α∈∆0

Vα]] ∈ H. X \ [(X \mcl(A)) ∪ [∪α∈∆0
Vα]] =

mcl(A) ∩ (X \ ∪α∈∆0
Vα) ⊇ A \ ∪α∈∆0

Vα. Therefore, A \ ∪α∈∆0
Vα ∈ H. Thus,

A is Strongly H-Lindelöf relative to X. �

Theorem 7 Let (X,m,H) be a hereditary m-space. Let A be an mHg-closed
set such that A ⊆ B ⊆ mcl(A). Then A is Strongly H-Lindelöf elative to X if
and only if B is Strongly H-Lindelöf relative to X.

Proof.
Suppose that A is Strongly H-Lindelöf elative to X and {Vα : α ∈ ∆} is a

family ofm-open sets of X such that B\∪α∈∆Vα ∈ H. By the heredity property,
A \ ∪α∈∆Vα ∈ H and A is Strongly H-Lindelöf elative to X and hence there
exists a countable subset ∆0 of ∆ such that A \ ∪α∈∆0

Vα ∈ H. Since A is
mHg-closed, mcl(A) ⊆ ∪α∈∆0

Vα and so mcl(A) \ ∪α∈∆0
Vα ∈ H. This implies

that B \ ∪α∈∆0
Vα ∈ H.

Conversely, suppose that B is Strongly H-Lindelöf elative to X and {Vα : α ∈
∆} is a family of m-open subsets of X such that A\∪α∈∆Vα ∈ H. Given that A
is mHg-closed, mcl(A) \ ∪α∈∆Vα = ∅ ∈ H and this implies B ⊆ ∪α∈∆Vα ∈ H.
Since B is Strongly H-Lindelöf elative to X, there exists a countable subset ∆0
of ∆ such that B \ ∪α∈∆0

Vα ∈ H. Hence A \ ∪α∈∆0
Vα ∈ H. �

5 (γ, δ)-continuous functions

Definition 9 Let (X,m) and (Y, n) be minimal spaces and γ (resp. δ) be an
operation on m (resp. n). Then a function f : (X,m) → (Y, n) is said to be
(γ, δ)-continuous if for each x ∈ X and each V ∈ n containing f(x), there
exists U ∈ m containing x such that f(γ(U)) ⊆ δ(V).

Lemma 7 Let f : X→ Y be a function.

1. If H is a hereditary class on X, then f(H) is a hereditary class on Y.

2. If H is a hereditary class on Y, then f−1(H) is a hereditary class on X.

Proof. (1): This is due to Lemma 3.8 of [5].
(2): Let A ⊆ f−1(H), where H ∈ H. Then f(A) ⊆ f(f−1(H)) ⊆ H. Hence

f(A) ∈ H and A ⊆ f−1(f(A)) ∈ f−1(H) and hence A ∈ f−1(H). �
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Theorem 8 Let (X,m) and (Y, n) be minimal spaces and γ (resp. δ) be an
operation on m (resp. n) and H be a hereditary class on X. If (X,m,H) is
γH-Lindelöf and f : (X,m,H) → (Y, n) is a (γ, δ)-continuous surjection, then
(Y, n, f(H)) is δf(H)-Lindelöf.

Proof. Let {Vα : α ∈ ∆} be any cover of Y by n-open sets. For each x ∈ X, there
exists α(x) ∈ ∆ such that f(x) ∈ Vα(x). Since f is (γ, δ)-continuous, there exists
Uα(x) ∈ m containing x such that f(γ(Uα(x))) ⊆ δ(Vα(x)). Since {Uα(x) : x ∈ X}
is a cover of X by m-open sets and (X,m,H) is γH-Lindelöf, there exist a
countable points x1, x2, x3, · · · ∈ X such that X \ ∪∞i=1γ(Uα(xi)) = H0 , where
H0 ∈ H. Therefore, we have Y ⊆ f(∪∞i=1γ(Uα(xi))) ∪ f(H0) ⊆ ∪∞i=1δ(Vα(xi)) ∪
f(H0). Hence (Y, n, f(H)) is δf(H)-Lindelöf. �

Definition 10 [11] A function f : (X,m) → (Y, n) is said to be M-closed if
for each m-closed set F of X, f(F) is n-closed in Y.

Theorem 9 Let f : (X,m) → (Y, n,H) be an M-closed surjective function.
If for every y ∈ Y, f−1(y) is Strongly f−1(H)-Lindelöf in X, then f−1(A) is
Strongly f−1(H)-Lindelöf relative to X whenever A is Strongly H-Lindelöf rel-
ative to Y and A \U ∈ H for every U ∈ n.

Proof. Let {Vα : α ∈ ∆} be a family of m-open subsets of X such that f−1(A)\
∪{Vα : α ∈ ∆} ∈ f−1(H). For each y ∈ A there exists a countable subset ∆0(y)
of ∆ such that f−1(y) \ ∪{Vα : α ∈ ∆0(y)} ∈ f−1(H). Let Vy = ∪{Vα : α ∈
∆0(y)}. Each Vy is an m-open set in (X,m) and f−1(y) \ Vy ∈ f−1(H).

Now each set f(X − Vy) is n-closed in Y and hence, U(y) = Y − f(X − Vy)
is n-open in Y. Note that f−1(U(y)) ⊆ Vy. Thus, {U(y) : y ∈ A} is a family of
n-open subsets of Y such that A \ ∪{U(y) : y ∈ A} ∈ H. Since A is Strongly
H-Lindelöf relative to Y, there exists a countable subset {U(yi) : i ∈ N} such
that A \ ∪{U(yi) : i ∈ N} ∈ H and hence f−1[A \ ∪{U(yi) : i ∈ N}] = f−1(A) \
∪{f−1(U(yi)) : i ∈ N} ∈ f−1(H). Since f−1(A) \ ∪{Vyi : i ∈ N} ⊆ f−1(A) \
∪{f−1(U(yi)) : i ∈ N}, then f−1(A) \ ∪{Vyi : i ∈ N} = f−1(A) \ ∪{Vα : α ∈
∆0(yi), i ∈ N} ∈ f−1(H). Hence, f−1(A) is Strongly f−1(H)-Lindelöf relative to
X. �

A subset K of an m-space is said to be m-compact [14] if every cover of K
by m-open sets of X has a finite subcover.

Theorem 10 Let f : (X,m) → (Y, n,H) be an M-closed surjective function.
If for every y ∈ Y, f−1(y) is m-compact in X, then f−1(A) is f−1(H)-Lindelöf
relative to X whenever A is H-Lindelöf relative to Y.
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Proof. Let {Vα : α ∈ ∆} be a cover of f−1(A) by m-open sets of X. For
each y ∈ A there exists a finite subset ∆0(y) of ∆ such that f−1(y) ⊆ ∪{Vα :
α ∈ ∆0(y)}. Let Vy = ∪{Vα : α ∈ ∆0(y)}. Each Vy is an m-open set in
(X,m) and f−1(y) ⊆ Vy. Since f is M-closed, by Theorem 3.1 of [11] there
exists an n-open set Uy containing y such that f−1(Uy) ⊆ Vy. The collection
{Uy : y ∈ A} is a cover of A by n-open sets of Y. Hence, there exists a
countable subcollection {Uy(i) : i ∈ N} such that A \ ∪{Uy(i) : i ∈ N} ∈ H.

Then f−1(A \∪{Uy(i) : i ∈ N}) = f−1(A) \∪{f−1(Uy(i)) : i ∈ N} ∈ f−1(H). Since

f−1(A)\∪{Vy(i) : i ∈ N} ⊆ f−1(A)\∪{f−1(Uy(i)) : i ∈ N}), then f−1(A)\∪{Vy(i) :
i ∈ N} ∈ f−1(H). Thus, f−1(A) is f−1(H)-Lindelöf relative to X. �
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Abstract. We study the notion of expansive homeomorphisms on uni-
form spaces. It is shown that if there exists a topologically expansive
homeomorphism on a uniform space, then the space is always a Haus-
dorff space and hence a regular space. Further, we characterize orbit
expansive homeomorphisms in terms of topologically expansive home-
omorphisms and conclude that if there exist a topologically expansive
homeomorphism on a compact uniform space then the space is always
metrizable.

1 Introduction

A homeomorphism h : X −→ X defined on metric space X is said to be an ex-
pansive homeomorphism provided there exists a real number c > 0 such that
whenever x, y ∈ X with x 6= y then there exists an integer n (depending on
x, y) satisfying d(hn(x), hn(y)) > c. Constant c is called an expansive constant
for h. In 1950, Utz, [18], introduced the concept of expansive homeomorphisms
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with the name unstable homeomorphisms. The examples discussed in this pa-
per on compact spaces were sub dynamics of shift maps, thus one can say that
the theory of expansive homeomorphisms started based on symbolic dynamics
but it quickly developed by itself.

Much attention has been paid to the existence / non–existence of expansive
homeomorphisms on given spaces. Each compact metric space that admits
an expansive homeomorphism is finite-dimensional [13]. The spaces admitting
expansive homeomorphisms include the Cantor set, the real line/half-line, all
open n−cells, n ≥ 2 [12]. On the other hand, spaces not admitting expansive
homeomorphisms includes any Peano continuum in the plane [9], the 2-sphere
the projective plane and the Klein bottle [8].

Another important aspects of expansive homeomorphism is the study of its
various generalizations and variations in different setting. The very first of
such variation was given by Schwartzman, [16], in 1952 in terms of positively
expansive maps, wherein the points gets separated by non–negative iterates
of the continuous map. In 1970, Reddy, [14], studied point–wise expansive
maps whereas h−expansivity was studied by R. Bowen, [4]. Kato defined and
studied the notion of continuum–wise expansive homeomorphism [10]. Shah
studied notion of positive expansivity of maps on metricG−spaces [17] whereas
Barzanouni studied finite expansive homeomorphisms [2]. Tarun Das et al. [7]
used the notion of expansive homeomorphism on topological space to prove
the Spectral Decomposition Theorem on non–compact spaces. Achigar et al.
studied the notion of orbit expansivity on non–Hausdorff space [1]. Authors
in [3] studied expansivity for group actions. In this paper we study expansive
homeomorphisms on uniform spaces.

In Section 2 we discuss preliminaries regarding uniform spaces and expan-
sive homeomorphisms on metric /topological space required for the content of
the paper. The notion of expansive homeomorphisms on topological spaces was
first studied in [7] whereas on uniform spaces was first studied in [6] in the form
of positively topological expansive maps. In Section 3 of this paper we define
and study expansive homeomorphism on uniform spaces. Through examples it
is justified that topologically expansive homeomorphism is weaker than metric
expansive homeomorphism whereas stronger than expansive homeomorphism
defined on topological space. Further, we show that if a uniform space admits
a topologically expansive homeomorphism then the space is always a Haus-
dorff space and hence a regular space. The notion of orbit expansivity was
first introduced in [1]. A characterization of orbit expansive homeomorphism
on compact uniform spaces is obtained in terms of topologically expansive
homeomorphism. As a consequence of this we conclude that if there is a
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topologically expansive homeomorphism on a compact uniform space then
the space is always metrizable.

2 Preliminaries

In this Section we discuss basics required for the content of the paper.

2.1 Uniform spaces

Uniform spaces were introduced by A. Weil [19] as a generalization of metric
spaces and topological groups. Recall, in a uniform space X, the closeness of a
pair of points is not measured by a real number, like in a metric space, but by
the fact that this pair of points belong or does not belong to certain subsets
of the cartesian product, X×X. These subsets are called the entourages of the
uniform structure.

Let X be a non-empty set. A relation on X is a subset of X × X. If U is a
relation, then the inverse of U is denoted by U−1 and is a relation given by

U−1 = {(y, x) : (x, y) ∈ U}.

A relation U is said to be symmetric if U = U−1. Note that U∩U−1 is always
a symmetric set. If U and V are relations, then the composite of U and V is
denoted by U ◦ V and is given by

U ◦ V = {(x, z) ∈ X× X : ∃ y ∈ X such that (x, y) ∈ V & (y, z) ∈ U} .

The set, denoted by 4X, given by 4X = {(x, x) : x ∈ X} is called the identity
relation or the diagonal of X. For every subset A of X the set U[A] is a subset
of X and is given by U[A] = {y ∈ X : (x, y) ∈ U, for some x ∈ A}. In case
if A = {x} then we denote it by U[x] instead of U[{x}]. We now recall the
definition of uniform space.

Definition 1 A uniform structure (or uniformity) on a set X is a non–empty
collection U of subsets of X× X satisfying the following properties:

1. If U ∈ U , then 4X ⊂ U.

2. If U ∈ U , then U−1 ∈ U .

3. If U ∈ U , then VoV ⊆ U, for some V ∈ U .

4. If U and V are elements of U , then U ∩ V ∈ U .

5. If U ∈ U and U ⊆ V ⊆ X× X, then V ∈ U .
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The pair (X,U) (or simply X) is called as a uniform space.

Obviously every metric on a set X induces a uniform structure on X and
every uniform structure on a set X defines a topology on X. Further, if the
uniform structure comes from a metric, the associated topology coincides with
the topology obtained by the metric. Also, there may be several different uni-
formities on a set X. For instance, the largest uniformity on X is the collection
of all subsets of X×X which contains 4X whereas the smallest uniformity on X
contains only X×X. For more details on uniform spaces one can refer to [11].

Example 1 Consider R with usual metric d. For every ε > 0, let

Udε :=
{
(x, y) ∈ R2 : d(x, y) < ε

}
Then the collection

Ud =
{
E ⊆ R2 : Udε ⊆ E, for some ε > 0

}
is a uniformity on R. Further, let ρ be an another metric on R given by
ρ(x, y) = |ex − ey|, x, y ∈ R. If for ε > 0,

Uρε :=
{
(x, y) ∈ R2 : ρ(x, y) < ε

}
then the collection

Uρ =
{
E ⊆ R2 : Uρε ⊆ E for some ε > 0

}
is also a uniformity on R. Note that these two uniformities are distinct as the
set {(x, y) : |x− y| < 1} is in Ud but it is not in Uρ.

Let X be a uniform space with uniformity U . Then, the natural topology,
τU , on X is the family of all subsets T of X such that for every x in T , there is
U ∈ U for which U[x] ⊆ T . Therefore, for each U ∈ U , U[x] is a neighborhood
of x. Further, the interior of a subset A of X consists of all those points y of
X such that U[y] ⊆ A, for some U ∈ U . For the proof of this, one can refer
to [11, Theorem 4, P.178]. With the product topology on X × X, it follows
that every member of U is a neighborhood of ∆X in X× X. However, converse
need not be true in general. For instance, in Example 1 every element of Ud
is a neighborhood of ∆R in R2 but

{
(x, y) : |x− y| < 1

1+|y|

}
is a neighborhood

of ∆R but not a member of Ud. Also, it is known that if X is a compact



296 A. Barzanouni, E. Shah

uniform space, then U consists of all the neighborhoods of the diagonal ∆X [11].
Therefore for compact Hausdorff spaces the topology generated by different
uniformities is unique and hence the only uniformity on X in this case is the
natural uniformity. Proof of the following Lemma can be found in [11].

Lemma 1 Let X be a uniform space with uniformity U . Then the following
are equivalent:

1. X is a T1−space.

2. X is a Hausdorff space.

3.
⋂
{U : U ∈ U } = ∆X.

4. X is a regular space.

2.2 Various kind of expansivity on metric/topological spaces

Let X be a metric space with metric d and let f : X −→ X be a homeomorphism.
For x ∈ X and a positive real number c, set

Γc(x, f) = {y : d(fn(x), fn(y)) ≤ c,∀n ∈ Z} .

Γc(x, f) is known as the dynamical ball of x of size c. Note that for each c,
Γc(x, f) is always non–empty. We recall the definition expansive homeomor-
phism defined by Utz [18].

Definition 2 Let X be a metric space with metric d and let f : X −→ X be a
homeomorphism. Then f is said to be a metric expansive homeomorphism, if
there exists c > 0 such that Γc(x, f) = {x}, for all x ∈ X. Constant c is known
as an expansive constant for f.

In the following we give some known example of metric expansive homeo-
morphisms.

Example 2 1. Consider the set of real numbers R with usual metric d.
For α ∈ R \ {0, 1,−1}, define fα : R −→ R by fα(x) = αx. Then fα is a
metric expansive homeomorphism with any positive real number c as an
expansive constant.

2. Consider X =
{
± 1
n ,±

(
1− 1

n

)}
with the metric d given by d(x, y) =

|x − y|. Let f : X −→ X be a map which fixes 0, 1,−1 and takes any
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element x ∈ X \ {0, 1,−1} to its immediate right element. Then f is
a metric expansive homeomorphism with expansive constant c, where
0 < c < 1

6 .

The notion of metric expansive homeomorphism is independent of the choice
of metric if the space is compact but not the expansive constant. If the space
is non–compact, then the notion of metric expansivity depends on the choice
of metric even if the topology induced by different metrics are equivalent. For
instance, see Example 4. Different variants and generalizations of expansivity
are studied. We study few of them in this section.

Let (X, τ) be a topological space. For a subset A ⊆ X and a cover U of X
we write A ≺ U if there exists C ∈ U such that A ⊆ C. If V is a family of
subsets of X, then V ≺ U means that for each A ∈ V, A ≺ U . If, in addition
V is a cover of X, then V is said to be refinement of U . Join of two covers U
and V is a cover given by U ∧ V = {U ∩ V |U ∈ U , V ∈ V}. Every open cover U
of cardinality k can be refined by an open cover V =

∧k
i=1 U such that V ≺ U

and V
∧
V = V. The notion for orbit expansivity for homeomorphisms was

first defined in [1]. We recall the definition.

Definition 3 Let f : X −→ X be a homeomorphism defined on a topological
space X. Then f is said to be an orbit expansive homeomorphism if there is a
finite open cover U of X such that if for each n ∈ Z, the set {fn(x), fn(y)} ≺ U ,
then x = y. The cover U of X is called an orbit expansive covering of f.

It can be observed that if f is an orbit expansive homeomorphism on a
compact metric space and U is an orbit expansive covering of f, then U is a
generator for f and therefore f is an expansive homeomorphism. Conversely,
every expansive homeomorphism on a compact metric space has a generator
U , which is also an orbit expansive covering of f. Hence on compact metric
space expansivity is equivalent to orbit expansivity. Another generalization of
expansivity was defined and studied in [7]. We recall the definition.

Definition 4 Let X be a topological space. Then a homeomorphism f : X −→ X

is said to be an expansive homeomorphism if there exists a closed neighborhood
N of ∆X such that for any two distinct x, y ∈ X, there is n ∈ Z satisfying
(fn(x), fn(y)) /∈ N. Neighborhood N is called an expansive neighborhood for f.

Note that the term used in [7] is topologically expansive but we used the
term expansive in above definition to differentiate it from our definition of
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expansivity on uniform spaces. Obviously, metric expansivity implies expan-
sivity. Through examples it was justified in [7], that in general expansivity
need not imply metric expansivity. Also, similar to proof of [15, Theorem 4],
one can show that on a locally compact metric space X, if f is expansive with
expansive neighborhood N, then for every ε > 0 we can construct a metric
d compatible with the topology of X such that f is a metric expansive with
expansive constant ε > 0.

3 Topologically expansive homeomorphism

In this section we study expansive homeomorphisms on uniform spaces. The
notion was first defined in [6]. Let X be an uniform space with uniformity U
and f : X −→ X be a homeomorphism. For an entourage D ∈ U let

ΓD(x, f) = {y : (fn(x), fn(y)) ∈ D, ∀n ∈ Z} .

Definition 5 Let X be an uniform space with uniformity U . A homeomor-
phism f : X −→ X is said to be a topologically expansive homeomorphism, if
there exists an entourage A ∈ U , such that for every x ∈ X,

ΓA(x, f) = {x}

Entourage A is called an expansive entourage.

Since every entourage A ∈ U contains some closed neighborhood F of ∆X,
it follows that every topologically expansive homeomorphism is an expansive
homeomorphism. But in general converse need not be true as we can observe
from the following Example:

Example 3 Consider R with the uniformity Ud as given in Example 1. Then
the translation T defined on R by T(x) = x+1 is an expansive homeomorphism
with an expansive neighbourhood N = {(x, y) ∈ R2 : |x − y| ≤ e−x}. Note that
N /∈ U . In fact, it is easy to observe that T is not topologically expansive.

Example 4 Consider R with uniformities Uρ and Ud as given in Example 1.
Define a homeomorphism f : R −→ R by f(x) = x+ ln2. Then it can be easily
verified that f is topologically expansive for a closed entourage A ∈ Uρ but not
for any closed entourage D ∈ Ud. Further, observe that f is metric expansivity
with respect to metric ρ but is not metric expansive with respect to metric d.
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From Example 3, it can be observed that topologically expansivity is stronger
than expansivity whereas from Example 4, it can be concluded that it is weaker
than metric expansivity. Also, from Example 4, it can be concluded that the
notion of topological expansivity depends on the choice of uniformity on the
space and the notion of metric expansivity depends on the metric of the space.
In spite of expansivity, in the following Proposition we show that if a uniform
space admits a topologically expansive homeomorphism, the space is always
Hausdorff space.

Proposition 1 Let X be a uniform space with uniformity U and let f : X −→ X

be a topologically expansive homeomorphism. Then X is always a Hausdorff
space.

Proof. Let D be an expansive entourage of f. Since U is a uniformity on X
there exists a symmetric set E ∈ U , such that

EoE ⊆ D.

Given two distinct points x and y of X, by topological expansivity of f, there
exists n in Z, such that (fn(x), fn(y)) /∈ D. But this implies

(fn(x), fn(y)) /∈ E ◦ E.

Let U = f−n (E[fn(x)]) and V = f−n(E[fn(y)]). Then int(U) and int(V) are
open subsets of X with x ∈ int(U) and y ∈ int(V). Further, U ∩ V = ∅.
For, if t ∈ U ∩ V, then fn(t) ∈ E[fn(x)] ∩ E[fn(y)]. But this implies that
(fn(x), fn(y)) ∈ E◦E, which is a contradiction. Hence X is a Hausdorff space. �

Following Corollary is a consequence of just Proposition 1 and Lemma 1.

Corollary 1 If uniform space X admits a topological expansive homeomor-
phism then X is a regular space.

Recall, for a compact Hausdorff space X, all uniformities generates a same
topology on the space and therefore it is sufficient to work with the natural
uniformity on X. Hence as consequence of Proposition 1, we can conclude the
following:

Corollary 2 Topological expansivity on a compact Hausdorff uniform space
does not depend on choice of uniformity on the space.
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Since every compact metric space admits a unique uniform structure, it fol-
lows that on compact metric space: metric expansivity, topological expansivity
and expansivity are equivalent.

Let X be a uniform space with uniformity U . A cover A of a space X is a
uniform cover if there is U ∈ U such that U[x] is a subset of some member of
the cover for every x ∈ X, equivalently, {U[x] : x ∈ X} ≺ A. It is known that
every open cover of a compact uniform space is uniform cover. For instance,
see Theorem 33 in [11].

Let X be a topological space and f : X −→ X be an orbit expansive homeo-
morphism with an orbit expansive covering A. Equivalently, f is orbit expan-
sive if for every subset B of X, fn(B) ≺ A for all n ∈ Z, then B is singleton. In
the following we show that on compact uniform space, topological expansivity
is equivalent to orbit expansivity:

Theorem 1 Let X be a compact uniform space with uniformity U . Then f :
X −→ X is a topologically expansive homeomorphism if and only if it is an
orbit expansive homeomorphism.

Proof. Let f be a topologically expansive homeomorphism with an expansive
entourage D, D ∈ U . Choose E ∈ U such that EoE ⊆ D. Now, E ∈ U and
U is a uniformity. Therefore E contains diagonal and hence the collection
{E[x] : x ∈ X} is a cover of X by neighbourhoods. But X is compact. Let A be a
finite subcover of {E[x] : x ∈ X}. We show that A is an orbit expansive covering
for f. For x, y ∈ X suppose that for each n ∈ Z, {fn(x), fn(y)} ≺ A. But this
implies that for each n ∈ Z,

(fn(x), fn(y)) ∈ EoE ⊆ D.

Since D is expansive entourage, it follows that x = y. Hence A is an orbit
expansive covering.

Conversely, let A be an orbit expansive covering of f. Since X is a compact
uniform space, A is a uniform cover. Therefore there exists U ∈ U such that
{U[x] : x ∈ X} ≺ A. Since the family of closed members of a uniformity U is a
basis of U , there is a closed member D ∈ U such that D ⊆ U. We claim that
D is an expansive entourage of f. For x, y ∈ X and for all n ∈ Z, suppose

(fn(x), fn(y)) ∈ D.

Therefore, for each n ∈ Z,

{fn(x), fn(y)} ⊆ U[fn(x)].
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This further implies that

{fn(x), fn(y)} ≺ {U[t] : t ∈ X} ≺ A.

But A is an orbit expansive covering of f and therefore x = y. Hence f is
topologically expansive with expansive entourage D. �

In [1, Theorem 2.7] authors showed that if a compact Hausdorff topolog-
ical space admits an orbit expansive homeomorphism then it is metrizable.
Therefore by Proposition 1 and Proposition 1, we have:

Corollary 3 If a compact uniform space admits a topologically expansive home-
omorphism, then it is always metrizable.

Again as a consequence of Corollary 3, it follows that topological expansivity
is equivalent with metric expansivity and it does not depend uniformity. How-
ever the following example shows that Corollary 3, is false for non-compact
Hausdorff uniform spaces.

Example 5 Consider R with the topology τR whose base consists of all in-
tervals [x, r), where x is a real number, r is a rational number and x < r.
Then R with topology τR is a non–compact, paracompact, Hausdorff and not
metrizable space. Also, it is known that every paracompact Hausdorff space,
admits the uniform structure U , consisting of all neighborhood of the diagonal.
For instance, see [11, Page 208]. Hence if

D = {(x, y) ∈ R× R : |x− y| < 1},

then D ∈ U . Define f : R −→ R by f(x) = 3x. Then it is easy to see that f is
topologically expansive with expansive entourage D. Note that R with unifor-
mity U is a non-compact Hausdorff space.

In the following Remark, we observe certain results related to topological
expansivity as a consequence of expansivity.

Remark 1 Let X be a uniform space with uniformity U and let f : X −→ X be
a homeomorphism.

1. Suppose X is a locally compact, paracompact uniform space. Since every
topologically expansive homeomorphism is an expansive homeomorphism,
it follows from Lemma 9 of [7], that there is a proper expansive neighbor-
hood for f. Note that this neighborhood need not be an entourage. Recall,
a set M ⊆ X × X is proper if for every compact subset A of X, the set
M[A] is compact.
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2. Let f be topologically expansive homeomorphism. Then by Proposition
13 of [7], it follows that for each n ∈ N, fn is expansive. Note that
this fn need not be in general topologically expansive. For instance, let
U be the usual uniformity on [0,∞) and f : [0,∞) −→ [0,∞) be as
homeomorphism constructed by Bryant and Coleman in [5]. Then it is
easy to verify that f is topologically expansive but fn is not topologically
expansive, for any n > 1.

3. Let X be a uniform space with uniformity U and Y be a uniform space
with uniformity V. Suppose f : X −→ X is topologically expansive and
h : X −→ Y is a homeomorphism. Then by Proposition 13 of [7], it
follows that h ◦ f ◦h−1 is expansive on Y. However, the homeomorphism
h ◦ f ◦ h−1 need not be topologically expansive. For instance, let Uρ and
Ud be uniformities on R as defined in Example 1. Consider the identity
homeomorphism h : R −→ R, where the domain R is considered with
uniformity Uρ whereas co-domain R is considered with the uniformity
Ud. Then as observed in Example 4, f(x) = x + ln(2) is topologically
expansive with respect to Uρ but h ◦ f ◦h−1 is not topologically expansive
with respect to Ud.

Observe here that in each of the above Example, f is not uniformly con-
tinuous. In the following we show that Remarks above are true if the maps
are uniformly continuous. Recall, a map f : X −→ X is uniformly continuous
relative to the uniformity U if for every entourage V ∈ U , (f× f)−1(V) ∈ U .

Proposition 2 1. Let X be a uniform space with uniformity U . Suppose
both f and f−1 are uniformly continuous relative to U . Then f is topo-
logically expansive if and only if fn is topologically expansive, for all
n ∈ Z\{0}.

2. Let X be a uniform space with uniformity U and Y be a uniform space with
uniformity V. Suppose h : X −→ Y is a homeomorphism such that both
h and h−1 are uniformly continuous. Then f is topologically expansive
on X if and only if h ◦ f ◦ h−1 is topologically expansive on Y.

Since the proof of the Proposition 2 is similar to the proof of Proposition
13 in [7], we omit the proof.
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Abstract. In this note the convolved (u, v)-Lucas �rst kind and the con-

volved (u, v)-Lucas second kind p-polynomials are introduced and study

some of their properties. Several identities related to the common gener-

alization of convolved (u, v)-Lucas �rst and second kinds p-polynomials

are also presented.

1 Introduction

Buschman [2] introduced the homogeneous linear second order di�erence equa-
tion with constant coe�cients as

U0; U1; Un+1 = aUn + bUn−1, for n ≥ 1, (1)

that generalizes almost all numbers and polynomials sequences. The Lucas
sequence of �rst and second kinds U = U(a, b) and V = V(a, b) can be re-
covered from (1) by taking U0 = 0, U1 = 1 and V0 = 2, V1 = a respectively.
These two kinds sequences comprise Fibonacci numbers, generalized Fibonacci
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numbers, Lucas numbers, Pell numbers, Pell-Lucas numbers, balancing poly-
nomials, chebyshev polynomials etc. The interested reader may look [1, 3, 4, 5]
for a detail review.
�ahin and Ramírez [6] introduced the convolved (p, q)-Fibonacci polyno-

mials (convolved generalized Lucas polynomials) by g
(r)
p,q(t) =

(
1 − p(x)t −

q(x)t2
)−r

=
∑∞

n=0 F
(r)
p,q,n+1(x)t

n, r ∈ Z+. In [7], Ye and Zhang gave a common
generalization of convolved generalized Fibonacci and Lucas polynomials and

are given by
∑∞

n=0 T
(r,m)
h,n (x)tn =

(
h(x)+2t

)m(
1−h(x)t−t2

)r , r ≥ m and r,m ∈ Z+. They

obtained some recurrence relations and identities of these polynomials.
In this study we introduce convolved (u, v)-Lucas �rst kind and second kind

p-polynomials and derive some of their identities. Further the common gen-
eralization of these two polynomials is presented and some related results are
discussed.

2 Convolved (u, v)-Lucas �rst and second kinds

p-polynomials

In this section, we introduce convolved (u, v)-Lucas �rst kind p-polynomials
and convolved (u, v)-Lucas second kind p-polynomials and present some of
their properties.

De�nition 1 Let p be any non-negative integer. The (u, v)-Lucas �rst kind

p-polynomials {L
p
u,v,j(x)}j>p+1 are de�ned recursively by

L
p
u,v,j(x) = u(x)Lpu,v,j−1(x) + v(x)Lpu,v,j−p−1(x)

with initials Lpu,v,0(x) = 0 and L
p
u,v,j(x) = (u(x))j−1 for j = 1 . . . p and u(x) and

v(x) are polynomials with real coe�cients.

Let g
p
u,v(t) be the generating function of Lpu,v,j+1(x). Then it is easy to see

g
p
u,v(t) =

∑∞
j=0 L

p
u,v,j+1(x)t

j = 1
1−u(x)t−v(x)tp+1 . The �nding result is the criterion

to de�ne the convolved (u, v)-Lucas �rst kind p-polynomials.

De�nition 2 Let u(x) and v(x) be polynomials with real coe�cients. Then

the convolved (u, v)-Lucas �rst kind p-polynomials {L
(p,r)
u,v,j(x)}j∈N for p > 1 are

de�ned by

g
(p,r)
u,v (t) =

∞∑
j=0

L
(p,r)
u,v,j+1(x)t

j =
(
1− u(x)t− v(x)tp+1

)−r
, r ∈ Z+. (2)
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Further simpli�cation of relation (2) gives the following explicit formula

L
(p,r)
u,v,j+1(x) =

b j
p+1

c∑
k=0

(r)j−pk(
j− (p+ 1)k

)
!k!

uj−(p+1)k(x)vk(x). (3)

Consideration of formula (3) for di�erent measures of (p, r) with r = 4 yield
some values of convolved (u, v)-Lucas �rst kind p-polynomials which are listed
in Table 1.

Table 1: Convolved (u, v)-Lucas �rst kind p-polynomials
j (p, r) = (1, 4) (p, r) = (2, 4) (p, r) = (3, 4) (p, r) = (4, 4)

0 1 1 1 1
1 4u(x) 4u(x) 4u(x) 4u(x)
2 10u2(x) + 4v(x) 10u2(x) 10u2(x) 10u2(x)
3 20u3(x) +

20u(x)v(x)
20u3(x) + 4v(x) 20u3(x) 20u3(x)

4 35u4(x) +
60u2(x)v(x) +
10v2(x)

35u4(x) +
20u(x)v(x)

35u4(x) + 4v(x) 35u4(x)

5 56u5(x) +
140u3(x)v(x) +
60u(x)v2(x)

56u5(x) +
60u2(x)v(x)

56u5(x) +
20u(x)v(x)

56u5(x) + 4v(x)

6 84u6(x) +
280u4(x)v(x) +
210u2(x))v2(x)+
20v3(x)

84u6(x) +
140u3(x)v(x) +
10v2(x)

84u6(x) +
60u2(x)v(x)

84u6(x)) +
20u(x)v(x)

Theorem 1 The convolved (u, v)-Lucas �rst kind p-polynomials L
(p,r)
u,v,j+1(x)

satis�es the following relation

u(x)L
(p,r)
u,v,j−1(x) + v(x)L

(p,r)
u,v,j−p−1(x) + L

(p,r−1)
u,v,j (x) = L

(p,r)
u,v,j(x), (4)

with parameters r > 1 and j > 1.

Proof. Using the explicit formula (3) on the left-hand side of (4), we get

(r)j−2−pk(
j− 2− (p+ 1)k

)
!k!

uj−1−(p+1)k(x)vk(x) +
(r)j−p−2−pk(

j− p− 2− (p+ 1)k
)
!k!
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× uj−p−2−(p+1)k(x)vk+1(x) +
(r− 1)j−1−pk(

j− 1− (p+ 1)k
)
!k!

uj−1−(p+1)k(x)vk(x)

=
(r)j−2−pk(

j− 2− (p+ 1)k
)
!k!

uj−1−(p+1)k(x)vk(x) +
(r)j−2−pk(

j− 1− (p+ 1)k
)
!(k− 1)!

× uj−1−(p+1)k(x)vk(x) +
(r− 1)j−1−pk(

j− 1− (p+ 1)k
)
!k!

uj−1−(p+1)k(x)vk(x)

=
uj−1−(p+1)k(x)vk(x)(
j− 1− (p+ 1)k

)
!k!

[(
j− 1− (p+ 1)k

)
(r)j−1−pk

(r+ j− 2− pk)
+

k(r)j−1−pk

(r+ j− 2− pk)

+
(r− 1)(r)j−1−pk

(r+ j− 2− pk)

]
=

(r)j−1−pk(
j− 1− (p+ 1)k

)
!k!

uj−1−(p+1)k(x)vk(x)

=L
(p,r)
u,v,j(x).

This completes the proof. �

Theorem 2 The following relation

r∑
k=1

L
(p,k)
u,v,j (x) =

1

u(x)

[
L
(p,r)
u,v,j+1(x) − v(x)

r∑
k=1

L
(p,k)
u,v,j−p(x)

]
(5)

holds for j > 1 with L
(p,0)
u,v,j+1 = 0.

Proof. Taking summation over 1 to r in relation (4), we have

r∑
k=1

L
(p,k)
u,v,j (x) = u(x)

r∑
k=1

L
(p,k)
u,v,j−1(x) + v(x)

r∑
k=1

L
(p,k)
u,v,j−p−1(x) +

r∑
k=1

L
(p,k−1)
u,v,j (x)

= u(x)

r∑
k=1

L
(p,k)
u,v,j−1(x) + v(x)

r∑
k=1

L
(p,k)
u,v,j−p−1(x) +

r−1∑
k=1

L
(p,k)
u,v,j (x).

It follows that

L
(p,r)
u,v,j(x) = u(x)

r∑
k=1

L
(p,k)
u,v,j−1(x) + v(x)

r∑
k=1

L
(p,k)
u,v,j−p−1(x),

we get the desired result by replacing j+ 1 instead of j. �
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Theorem 3 For j > p+ 1 and L
(p,r)
u,v,−j(x) = 0, the polynomial L

(p,r)
u,v,j+1(x) holds

the following relation

u(x)

j−1∑
i=0

L
(p,r)
u,v,i+1(x) +

j∑
i=0

L
(p,r−1)
u,v,i+1(x)

=
(
1− v(x)

) j−p−1∑
i=0

L
(p,r)
u,v,i+1(x) +

j∑
i=j−p

L
(p,r)
u,v,i+1(x).

(6)

Proof. Consider j = 1, 2, . . . in relation (4), follows

u(x)L
(p,r)
u,v,0(x) + v(x)L

(p,r)
u,v,−p(x) + L

(p,r−1)
u,v,1 (x) = L

(p,r)
u,v,1(x)

u(x)L
(p,r)
u,v,1(x) + v(x)L

(p,r)
u,v,−p+1(x) + L

(p,r−1)
u,v,2 (x) = L

(p,r)
u,v,2(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u(x)L
(p,r)
u,v,p(x) + v(x)L

(p,r)
u,v,0(x) + L

(p,r−1)
u,v,p+1(x) = L

(p,r)
u,v,p+1(x)

u(x)L
(p,r)
u,v,p+1(x) + v(x)L

(p,r)
u,v,1(x) + L

(p,r−1)
u,v,p+2(x) = L

(p,r)
u,v,p+2(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u(x)L
(p,r)
u,v,j−1(x) + v(x)L

(p,r)
u,v,j−p−1(x) + L

(p,r−1)
u,v,j (x) = L

(p,r)
u,v,j(x)

u(x)L
(p,r)
u,v,j(x) + v(x)L

(p,r)
u,v,j−p(x) + L

(p,r−1)
u,v,j+1(x) = L

(p,r)
u,v,j+1(x).

Summation of these equalities yields the desired result. �

De�nition 3 Let p be any non-negative integer and u(x) and v(x) are poly-

nomials of real coe�cients. Then the (u, v)-Lucas second kind p-polynomials{
M

p
u,v,j(x)

}
j>p+1

are de�ned recursively by

M
p
u,v,j(x) = u(x)Mp

u,v,j−1(x) + v(x)Mp
u,v,j−p−1(x),

with initials M
p
u,v,0(x) = (p + 1)M1(x)

u(x) and M
p
u,v,j(x) = M1(x)u

j−1(x) for j =

1 . . . p and M1(x) is the �rst term of Lucas second kind like polynomial se-

quences.

Many well-known polynomial sequences are special cases of (u, v)-Lucas sec-
ond kind p-polynomials. For example, for p = 1, when

(
u(x), v(x)

)
= (x, 1)

and M1 = x,
(
u(x), v(x)

)
= (2x, 1) and M1 = 2x,

(
u(x), v(x)

)
= (6x,−1)

and M1 = 3x,
(
u(x), v(x)

)
= (1, 2x) and M1 = 1,

(
u(x), v(x)

)
= (3x,−2)
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and M1 = 3x etc. the (u, v)-Lucas second kind p-polynomials turn into classi-
cal Lucas polynomials, Pell-Lucas polynomials, Lucas-balancing polynomials,
Jacobsthal-Lucas polynomials, Fermat-Lucas polynomials respectively.
Let hp

u,v(t) denotes the generating function of Mp
u,v,j+1(x). Then

hp
u,v(t) =

∞∑
j=0

M
p
u,v,j+1(x)t

j =
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p

1− u(x)t− v(x)tp+1
.

The generating function h
p
u,v(t) is more precious to de�ne convolved (u, v)-

Lucas second kind p-polynomials.

De�nition 4 Let p be any positive integer. Then the convolved (u, v)-Lucas

second kind p-polynomials
{
M

(p,r)
u,v,j(x)

}
j∈N are de�ned by

h
(p,r)
u,v (t) =

∞∑
j=0

M
(p,r)
u,v,j+1(x)t

j =

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r , r ∈ Z+. (7)

Expression (7) reduces to the explicit formula

M
(p,r)
u,v,j+1(x) =

min{r,j}∑
k=0

b j−pk
p+1

c∑
i=0

(
r

k

)
(r)j−pk−pi

i!(j− pk− (p+ 1)i)!
Mr

1(x)(p+ 1)kvk+i(x)

× uj−(p+1)k−(p+1)i(x).

(8)

Consideration of formula (8) for di�erent measures of (p, r) gives some values
of convolved (u, v)-Lucas second kind p-polynomials which are listed in Table 2.

Theorem 4 The convolved (u, v)-Lucas second kind p-polynomials M
(p,r)
u,v,j+1(x)

satis�es following relation

M
(p,r)
u,v,j(x) =u(x)M

(p,r)
u,v,j−1(x) + v(x)M

(p,r)
u,v,j−1−p(x)

+M1(x)M
(p,r−1)
u,v,j (x) + (p+ 1)

v(x)

u(x)
M1(x)M

(p,r−1)
u,v,j−p(x),

(9)

with parameters r > 1 and j > 1.
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Table 2: Convolved (u, v)-Lucas second kind p-polynomials
j (p, r) = (2, 1) (p, r) = (2, 2) (p, r) = (2, 3) (p, r) = (2, 4)

0 M1(x) M2
1(x) M3

1(x) M4
1(x)

1 M1(x)u(x) 2M2
1(x)u(x) 3M3

1(x)u(x) 4M4
1(x)u(x)

2 M1(x)u
2(x) +

3M1(x)v(x)
u(x)

3M2
1(x)u

2(x) +
6M2

1(x)v(x)

u(x)

6M3
1(x)u

2(x) +
9M3

1(x)v(x)

u(x)

10M4
1(x)u

2(x)+
12M4

1(x)v(x)

u(x)

3 M1(x)u
3(x) +

4M1(x)v(x)
4M2

1(x)u
3(x) +

14M2
1(x)v(x)

10M3
1(x)u

3(x)+
30M3

1(x)v(x)
20M4

1(x)u
3(x)+

52M4
1(x)v(x)

4 M1(x)u
4(x) +

5M1(x)u(x)v(x)
5M2

1(x)u
4(x) +

24M2
1(x)u(x)v(x)

+
9M2

1(x)v
2(x)

u2(x)

15M3
1(x)u

4(x)+
66M3

1(x)u(x)v(x)

+
27M3

1(x)v
2(x)

u2(x)

35M4
1(x)u

4(x)+
140M4

1(x)u(x)
×v(x) +
54M4

1(x)v
2(x)

u2(x)

5 M1(x)u
5(x) +

6M1(x)u
2(x)v(x)

+ 3M1(x)v
2(x)

u(x)

6M2
1(x)u

5(x) +
36M2

1(x)u
2(x)

×v(x) +
30M2

1(x)v
2(x)

u(x)

21M3
1(x)u

5(x)+
120M3

1(x)u
2(x)

×v(x) +
108M3

1(x)v
2(x)

u(x)

56M4
1(x)u

5(x)+
300M4

1(x)u
2(x)

×v(x) +
264M4

1(x)v
2(x)

u(x)

Proof. Using (7) on the right-hand side of relation (9), we get

u(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r t2 + v(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r

× tp+2 +M1(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r−1(

1− u(x)t− v(x)tp+1
)r−1

t+ (p+ 1)
v(x)

u(x)
M1(x)

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r−1(

1− u(x)t− v(x)tp+1
)r−1

tp+1

=

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r t

[
u(x)t+ v(x)tp+1

]
+

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r−1(

1− u(x)t− v(x)tp+1
)r−1

t

[
M1(x) + (p+ 1)

v(x)

u(x)
M1(x)t

p

]

=

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r−1

t

[
u(x)t+ v(x)tp+1

1− u(x)t− v(x)tp+1
+ 1

]
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=

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r t,

which proves the result. �

Theorem 5 The polynomial M
(p,r)
u,v,j+1(x) obey the following relation

M
(p,r)
u,v,j(x) = u(x)

r∑
k=1

M
(p,k)
u,v,j−1(x) + v(x)

r∑
k=1

M
(p,k)
u,v,j−1−p(x)

+
(
M1(x) − 1

) r−1∑
k=1

M
(p,k)
u,v,j (x) + (p+ 1)

v(x)

u(x)
M1(x)

r−1∑
k=1

M
(p,k)
u,v,j−p(x),

(10)

with parameters r > 1, j > 2, p > 1 and M
(p,0)
u,v,j+1(x) = 0.

Proof. Consider r = 1, 2, . . . in relation (9) which follows

M
(p,1)
u,v,j (x) = u(x)M

(p,1)
u,v,j−1(x) + v(x)M

(p,1)
u,v,j−1−p(x) +M1(x)M

(p,0)
u,v,j (x)

+ (p+ 1)
v(x)

u(x)
M1(x)M

(p,0)
u,v,j−p(x)

M
(p,2)
u,v,j (x) = u(x)M

(p,2)
u,v,j−1(x) + v(x)M

(p,2)
u,v,j−1−p(x) +M1(x)M

(p,1)
u,v,j (x)

+ (p+ 1)
v(x)

u(x)
M1(x)M

(p,1)
u,v,j−p(x)

M
(p,3)
u,v,j (x) = u(x)M

(p,3)
u,v,j−1(x) + v(x)M

(p,3)
u,v,j−1−p(x) +M1(x)M

(p,2)
u,v,j (x)

+ (p+ 1)
v(x)

u(x)
M1(x)M

(p,2)
u,v,j−p(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M
(p,r)
u,v,j(x) = u(x)M

(p,r)
u,v,j−1(x) + v(x)M

(p,r)
u,v,j−1−p(x) +M1(x)M

(p,r−1)
u,v,j (x)

+ (p+ 1)
v(x)

u(x)
M1(x)M

(p,r−1)
u,v,j−p(x).

Summation of these bunch equalities yields the desired result. �

In order to verify the result (10), assume j = 5 with (p, r) = (2, 3), gives

M
(2,3)
u,v,5 = u(x)

3∑
k=1

M
(2,k)
u,v,4(x) + v(x)

3∑
k=1

M
(2,k)
u,v,2(x)
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+
(
M1(x) − 1

) 2∑
k=1

M
(2,k)
u,v,5(x) + 3

v(x)

u(x)
M1(x)

2∑
k=1

M
(2,k)
u,v,3(x).

Simpli�cation of right-hand side gives

u(x)
[
M

(2,1)
u,v,4(x) +M

(2,2)
u,v,4(x) +M

(2,3)
u,v,4(x)

]
+ v(x)

[
M

(2,1)
u,v,2(x) +M

(2,2)
u,v,2(x)

+M
(2,3)
u,v,2(x)

]
+
(
M1(x) − 1

)[
M

(2,1)
u,v,5(x) +M

(2,2)
u,v,5(x)

]
+ 3

v(x)

u(x)
M1(x)

[
M

(2,1)
u,v,3(x) +M

(2,2)
u,v,3(x)

]
= 15M3

1(x)u
4(x)

+ 66M3
1(x)u(x)v(x) + 27M3

1(x)
v2(x)

u2(x)
= M

(2,3)
u,v,5(x),

and the result is veri�ed.

3 Common generalization of convolved (u, v)-Lucas

�rst and second kinds p-polynomials

In this section we give the common generalization of convolved (u, v)-Lucas
�rst and second kinds p-polynomials and obtain some recurrence relations of
these polynomials.

De�nition 5 Let p, r and m be all positive integers. Then the common gen-

eralization of convolved (u, v)-Lucas �rst and second kinds p-polynomials{
E
(p,r,m)
u,v,j (x)

}
j∈N are de�ned by

∞∑
j=0

E
(p,r,m)
u,v,j (x)tj =

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r , r > m. (11)

Assumption of m = 0 and m = r reduces the expression (11) to convolved
(u, v)-Lucas �rst kind p-polynomials and convolved (u, v)-Lucas second kind
p-polynomials respectively.

Theorem 6 The common generalization of convolved (u, v)-Lucas �rst and

second kinds p-polynomials has the following explicit formula

E
(p,r,m)
u,v,j (x) =

min{m,j}∑
k=0

b j−pk
p+1

c∑
i=0

(
m

k

)
(r)j−pk−pi(

j− pk− (p+ 1)i
)
!i!

Mm
1 (x)(p+ 1)kvk+i(x)

× uj−(p+1)k−(p+1)i(x).
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Proof. We run the proof by taking right-hand side of the expression (11)(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r

=

m∑
k=0

(
m

k

)
Mm−k

1 (x)
(
(p+ 1)

v(x)

u(x)
M1(x)t

p
)k ∞∑

j=0

(
−r

j

)
(−t)j

(
u(x) + v(x)tp

)j
=

m∑
k=0

(
m

k

)
Mm−k

1 (x)(p+ 1)k
vk(x)

uk(x)
Mk

1(x)t
pk

∞∑
j=0

(r)j
j!

tj
j∑

i=0

(
j

i

)
uj−i(x)vi(x)tpi

=

∞∑
j=0

min{m,j}∑
k=0

b j−pk
p+1

c∑
i=0

(
m

k

)
Mm

1 (x)(p+ 1)k
vk(x)

uk(x)
tpk

(r)j−pk−pi

(j− pk− pi)!
tj−pk−pi

× (j− pk− pi)!(
j− pk− (p+ 1)i

)
!i!

uj−pk−(p+1)i(x)vi(x)tpi

=

∞∑
j=0

min{m,j}∑
k=0

b j−pk
p+1

c∑
i=0

(
m

k

)
Mm

1 (x)(p+ 1)kvk+i(x)uj−(p+1)k−(p+1)i(x)

×
(r)j−pk−pi(

j− pk− (p+ 1)i
)
!i!

tj.

Comparing the left-hand side of expression (11), we get the required result. �

Theorem 7 The common generalization of convolved (u, v)-Lucas �rst and

second kinds p-polynomials obeys the following relations

(i) E
(p,r,m)
u,v,j (x) = u(x)E

(p,r,m)
u,v,j−1(x) + v(x)E

(p,r,m)
u,v,j−(p+1)(x) + E

(p,r−1,m)
u,v,j (x);

(ii) E
(p,r,m+1)
u,v,j (x) = M1(x)E

(p,r,m)
u,v,j (x) + (p+ 1) v(x)

u(x)M1(x)E
(p,r,m)
u,v,j−p(x);

(iii) E
(p,r,m)
u,v,j (x) = 1

u(x)

{
j+1
r−1E

(p,r−1,m)
u,v,j+1 (x) − p(p+1)M1(x)m

r−1
v(x)
u(x)E

(p,r−1,m−1)
u,v,j+1−p (x)

− (p+ 1)v(x)E
(p,r,m)
u,v,j−p(x)

}
.

Proof. Using the expression (11), we have

∞∑
j=0

E
(p,r,m)
u,v,j (x)tj =

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r
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=

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

u(x)t+ v(x)tp+1
)(

1− u(x)t− v(x)tp+1
)r

+

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r−1

= u(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r t

+ v(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r tp+1

+

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r−1

,

and the expression (i) follows. The proof of (ii) is analogous to (i). In order to
proof (iii), we proceed as follows:
The common generalization of convolved (u, v)-Lucas �rst and second kinds

p-polynomials can be written undoubtedly as

(r− 1)
(
u(x) − (p+ 1)v(x)tp

)(M1(x) + (p+ 1) v(x)
u(x)M1(x)t

p
)m(

1− u(x)t− v(x)tp+1
)r

=
d

dt

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r−1

− p(p+ 1)
v(x)

u(x)
M1(x)m

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m−1(

1− u(x)t− v(x)tp+1
)r−1

tp−1,

and if and only if

(r− 1)
[
u(x)E

(p,r,m)
u,v,j (x) + (p+1)v(x)E

(p,r,m)
u,v,j−p(x)

]
= (j+ 1)E

(p,r−1,m)
u,v,j+1 (x)

− p(p+ 1)
v(x)

u(x)
M1(x)mE

(p,r−1,m−1)
u,v,j+1−p (x).

This follows the result. �

The following corollary is an immediate consequence of Theorem 7.

Corollary 1 Let r and m be any positive integers with r ≥ m. Then, the
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following relations

r−m∑
k=1

[
u(x)Ep,m+k,m

u,v,j−1 (x) + v(x)E
(p,m+k,m)
u,v,j−(p+1)(x)

]
= E

(p,r,m)
u,v,j (x) − E

(p,m,m)
u,v,j (x) (12)

and

m∑
k=0

Mk
1(x)E

(p,r,m−k)
u,v,j−p (x)

=
u(x)

v(x)(p+ 1)M1(x)

[
E
(p,r,m+1)
u,v,j (x) −Mm+1

1 (x)E
(p,r,0)
u,v,j (x)

] (13)

hold.

The following are some examples to understand the above corollary.

Example 1 Consider r = 4 and m = 3 on the left of relation (12), gives

1∑
k=1

[
u(x)E

(p,3+k,3)
u,v,j−1 (x) + v(x)E

(p,3+k,3)
u,v,j−(p+1)(x)

]
= u(x)E

(p,4,3)
u,v,j−1(x) + v(x)E

(p,4,3)
u,v,j−(p+1)(x)

= u(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)3(

1− u(x)t− v(x)tp+1
)4 t

+ v(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)3(

1− u(x)t− v(x)tp+1
)4 tp+1

=
(
u(x)t+ v(x)tp+1 − 1

)(M1(x) + (p+ 1) v(x)
u(x)M1(x)t

p
)3(

1− u(x)t− v(x)tp+1
)4

+

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)3(

1− u(x)t− v(x)tp+1
)4

=

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)3(

1− u(x)t− v(x)tp+1
)4 −

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)3(

1− u(x)t− v(x)tp+1
)3

= E
(p,4,3)
u,v,j (x) − E

(p,3,3)
u,v,j (x).
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Example 2 Consider r = 5 and m = 2 in relation (13), we have

2∑
k=0

Mk
1(x)E

(p,5,2−k)
u,v,j−p (x) =

u(x)

v(x)(p+ 1)M1(x)

[
E
(p,5,3)
u,v,j (x) −M3

1(x)E
(p,5,0)
u,v,j (x)

]
.

(14)
Expansion of left side of (14) gives

E
(p,5,2)
u,v,j−p(x) +M1(x)E

(p,5,1)
u,v,j−p(x) +M2

1(x)E
(p,5,0)
u,v,j−p(x)

=

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)2(

1− u(x)t− v(x)tp+1
)5 tp +M1(x)

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)

(
1− u(x)t− v(x)tp+1

)5 tp +M2
1(x)

1(
1− u(x)t− v(x)tp+1

)5 tp
=

3M2
1(x) + (p+ 1)2 v2(x)

u2(x)
M2

1(x)t
2p + 3(p+ 1) v(x)

u(x)M
2
1(x)t

p(
1− u(x)t− v(x)tp+1

)5 tp.

On the other hand, expansion of right side of (14) gives

u(x)

v(x)(p+ 1)M1(x)

[
E
(p,5,3)
u,v,j (x) −M3

1(x)E
(p,5,0)
u,v,j (x)

]
=

u(x)

v(x)(p+ 1)M1(x)

[(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)3(

1− u(x)t− v(x)tp+1
)5

−M3
1(x)

1(
1− u(x)t− v(x)tp+1

)5
]

=
3M2

1(x) + (p+ 1)2 v2(x)
u2(x)

M2
1(x)t

2p + 3(p+ 1) v(x)
u(x)M

2
1(x)t

p(
1− u(x)t− v(x)tp+1

)5 tp.

Theorem 8 The following identity

E
(p,r,m)
u,v,j+1−p(x) =

u(x)

v(x)(p+ 1)M1(x)(mp− j)

[
M1(x)(j+ 1)E

(p,r,m)
u,v,j+1(x)

−ru(x)E
(p,r+1,m+1)
u,v,j (x) − r(p+ 1)v(x)E

(p,r+1,m+1)
u,v,j−p (x)

]
holds for every non-negative integers r and m.
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Proof. It is observed that(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r =

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r

×
(
M1(x) + (p+ 1)

v(x)

u(x)
M1(x)t

p
)r−m

.

Di�erentiating both sides gives

d

dt

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r =

(
M1(x) + (p+ 1)

v(x)

u(x)
M1(x)t

p
)r−m

× d

dt

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r

+ (r−m)p(p+ 1)
v(x)

u(x)
M1(x)t

p−1

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r−1(

1− u(x)t− v(x)tp+1
)r ,

and we have

d

dt

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r = rp(p+ 1)

v(x)

u(x)
M1(x)

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r−1(

1− u(x)t− v(x)tp+1
)r tp−1

+ ru(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r+1

+ r(p+ 1)v(x)

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r+1

tp.

Now, we get

(
M1(x) + (p+ 1)

v(x)

u(x)
M1(x)t

p
)r−m d

dt

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r

+ (r−m)p(p+ 1)
v(x)

u(x)
M1(x)t

p−1

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r−1(

1− u(x)t− v(x)tp+1
)r
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= rp(p+ 1)
v(x)

u(x)
M1(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r−1(

1− u(x)t− v(x)tp+1
)r tp−1 + ru(x)

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r+1

+ r(p+ 1)v(x)

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)r(

1− u(x)t− v(x)tp+1
)r+1

tp.

It follows that(
M1(x) + (p+ 1)

v(x)

u(x)
M1(x)t

p
) d
dt

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r

−mp(p+ 1)
v(x)

u(x)
M1(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m(

1− u(x)t− v(x)tp+1
)r tp−1

= ru(x)

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m+1(

1− u(x)t− v(x)tp+1
)r+1

+ r(p+ 1)v(x)

×

(
M1(x) + (p+ 1) v(x)

u(x)M1(x)t
p
)m+1(

1− u(x)t− v(x)tp+1
)r+1

tp.

This implies(
M1(x) + (p+ 1)

v(x)

u(x)
M1(x)t

p
) d
dt

E
(p,r,m)
u,v,j (x) −mp(p+ 1)

v(x)

u(x)

×M1(x)E
(p,r,m)
u,v,j+1−p(x) = ru(x)E

(p,r+1,m+1)
u,v,j (x) + r(p+ 1)v(x)E

(p,r+1,m+1)
u,v,j−p (x).

Further simpli�cation gives

(p+ 1)
v(x)

u(x)
M1(x)(j−mp)E

(p,r,m)
u,v,j+1−p(x) = ru(x)E

(p,r+1,m+1)
u,v,j (x) + r(p+ 1)

× v(x)E
(p,r+1,m+1)
u,v,j−p (x) −M1(x)(j+ 1)E

(p,r,m)
u,v,j+1(x),

and the result follows. �
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Abstract. This paper is concerned with the existence and multiplicity
of solutions for p(x)-Laplacian equations with Robin boundary condition.
Our technical approach is based on variational methods.

1 Introduction

The purpose of this paper is to study the existence and multiplicity of solutions
for the following Robin problem involving the p(x)-Laplacian -div(|∇u|p(x)−2∇u) = f(x, u) in Ω

|∇u|p(x)−2∂u
∂ν

= β(x)|u|p(x)−2u on ∂Ω,
(1)
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Key words and phrases: p(x)-Laplacian, mountain pass theorem, multiple solutions, crit-
ical point theory

321



322 H. Belaouidel, A. Ourraoui, N. Tsouli

where Ω is an open bounded subset of RN(N ≥ 2), with smooth boundary,
∂u

∂ν
is the outer unit normal derivative on ∂Ω, β ∈ L∞(Ω), with ess inf

Ω
β > 0

and p ∈ C+(Ω) with

1 < p− := inf
Ω
p(x) ≤ p+ := sup

Ω

p(x) < +∞.
Recently, there has been an increasing interest in studying of problems (1).

This great interest may be justified by their various physical applications,
we can for example refer to [3, 2, 6, 9, 16, 19, 23, 24, 25, 27, 30, 32]. In
fact, there are applications concerning elastic mechanics [33], electrorheological
fluids [28, 29], image restoration [12], dielectric breakdown, electrical resistivity
and polycrystal plasticity and continuum mechanics [4]. We refer to [18] for
an overview of this subject and to [11, 14] for the p(x)−Laplacian equations.

From the variational point of view, by using a theorem obtained by B.
Ricceri in [5], the work [2] shows the existence of at least three solutions for a
Navier problem involving the fourth order operator.

The authors in [6] obtained the existence of three distinct weak solutions
of p(x)−Laplacian Dirichlet problems as applications of critical point theorem
obtained by G. Bonanno and S.A. Marano in [7]. In the same breath, the
authors in [30] consider the p(x)−Laplacian-like problem ( originated from a
capillary phenomenon) which the main tool is a general critical point theorem
in [8].

In the statement of problem (1), f : Ω×R→ R is a Carathéodory function
verifying (F0) such that

(F0) There exists a constant c1 ≥ 0 such that

| f(x, t) |≤ c1(1+ |t|q(x)−1),

for all (x, t) ∈ Ω× R where q ∈ C+(Ω), q(x) < p∗(x) for all x ∈ Ω.

Where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

Motivated by the references mentioned above, we establish the existence and
multiplicity of solutions for problem (1). It is known that the extension p(x)-
Laplace operator possesses more complicated structure than the p-Laplacian.
For example, it is inhomogeneous and usually it does not have the so-called
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first eigenvalue, since the infimum of its spectrum is zero. This provokes some
mathematical difficulties which makes the study of such a problems particulary
interesting.

Now, we formulate our main results as follows.

Theorem 1 Assume that (F0) and the following assumptions hold.

(F1) 0 < limt→0 F(x,t)|t|p
− < 1

p− , for |t| > δ, with δ > 0,

(F2) lim|t|→+∞ p(x)F(x,t)

|t|p
− ≤ 0 a.e x ∈ Ω,

(F3) lim|t|→+∞ ∫Ω F(x, t)dx = −∞,
Then the problem (1) has two weak solutions.

Theorem 2 Assume that (F0) and the following conditions hold.

(F4) lim|t|→+∞ F(x,t)

|t|p
− = 0,

(F5) f(x, t)t > 0 for all (x, t) ∈ Ω× R,

(F6) lim|t|→+∞ [f(x, t)t− p+F(x, t)] = −∞.
Then the problem (1) has at least one weak solution.

Through taking the same methods of this paper, results similar to Theorems
1–2 can also be proven for Neumann and Steklov problems.

Our paper is organized as follows. We first present some necessary prelim-
inary results on variable exponent Sobolev spaces. Next, we give the proof of
the main results about the existence of weak solutions.

2 Preliminaries

In the sequel, let p(x) ∈ C+(Ω), where

C+(Ω) =
{
h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
.

The variable exponent Lebesgue space is defined by

Lp(x)(Ω) = {u : Ω→ R measurable and

∫
Ω

|u(x)|p(x) dx < +∞}
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furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{σ > 0 :

∫
Ω

|
u(x)

σ
|p(x) dx ≤ 1},

and the variable exponent Sobolev space is defined by

W1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

equipped with the norm

‖u‖W1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Proposition 1 [21] The spaces Lp(x)(Ω) and W1,p(x)(Ω) are separable, uni-
formly convex, reflexive Banach spaces. The conjugate space of Lp(x)(Ω) is
Lq(x)(Ω), where q(x) is the conjugate function of p(x); i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have∣∣∣ ∫
Ω

u(x)v(x)dx
∣∣∣ ≤ ( 1

p−
+
1

q−

)
|u|p(x)|v|q(x).

Proposition 2 [21] For p, r ∈ C+(Ω) such that r(x) ≤ p∗(x) (r(x) < p∗(x))
for all x ∈ Ω, there is a continuous (compact) embedding

W1,p(x)(Ω) ↪→ Lr(x)(Ω),

where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

Proposition 3 [15] For p ∈ C+(Ω) and such r ∈ C+(∂Ω) that r(x) ≤ p∂(x)
(r(x) < p∂(x)) for all x ∈ Ω, there is a continuous (compact) embedding

W1,p(x)(Ω) ↪→ Lr(x)(∂Ω),

where

p∂(x) = (p(x))∂ :=

{
(N−1)p(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.



Existence of solutions 325

Proposition 4 [17], [Theorem 2.1] For any u ∈W1,p(x)(Ω), let

‖ u ‖∂:= |u|Lp(x)(∂Ω) + |∇u|Lp(x)(Ω).

Then ‖ u ‖∂ is a norm on W1,p(x)(Ω) which is equivalent to

‖u‖W1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Now, for any u ∈ X :=W1,p(x)(Ω) define

‖u‖ := inf
{
σ > 0 :

∫
Ω

(∣∣∣∇u(x)
σ

∣∣∣p(x)dx+ ∫
∂Ω

β(x)
∣∣∣u(x)
σ

∣∣∣p(x))dσx ≤ 1}.
Where β ∈ L∞(Ω) and dσx is the measure on the boundary ∂Ω.Then by (4),
‖.‖ is also a norm on W1,p(x)(Ω) which is equivalent to ‖.‖W1,p(x)(Ω) and ‖.‖∂.
Now, we introduce the modular ρ : X→ R defined by

ρ(u) =

∫
Ω

|∇u|p(x)dx+
∫
∂Ω

β(x)|u(x)|p(x)dσx

for all u ∈ X. Here, we give some relations between the norm ||.|| and the
modular ρ.

Proposition 5 [21] For u ∈ X we have

(i) ‖u‖ < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1);

(ii) If ‖u‖ < 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;
(iii) If ‖u‖ > 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ .

Lemma 1 [26] Let X = X1 ⊕ X2, where X is a real Banach space and X2 6= 0,
and is finite dimensional. Suppose that φ ∈ C1(X, R) satisfies Cerami condition
(C) with the following assertions:

(i) There is a constant α and a bounded neighborhood D of 0 in X2 such
that φ|∂D ≤ α.

(ii) There is a constant β > α such that φ|X1 ≥ β.
Then φ possesses a critical value c, moreover, c can be characterized as

c = inf
h∈Γ

max
u∈D

φ(h(u))

where
Γ = {h ∈ C(D,X)|h = id on ∂D}.
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Lemma 2 [10] Let X = X1 ⊕ X2, where X is a real Banach space and X2 6= 0,
and is finite dimensional. Suppose that φ ∈ C1(X, R) satisfies Palais-smalle
condition (PS) with the following assertions for some r > 0:

(i) φ(u) ≤ 0, for u ∈ X1, ‖u‖ ≤ r.

(ii) φ(u) ≥ 0, for u ∈ X2, ‖u‖ ≤ r.

Assume also that φ is bounded below and inf
X
φ < 0. Then φ has at least two

nonzero critical points.

Definition 1 We say that u ∈ X is a weak solution of (1) if∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx =

∫
Ω

f(x, u)vdx

for all v ∈ X.

The functional associated to (1) is given by

φ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
∂Ω

1

p(x)
β(x)|u|p(x)dx−

∫
Ω

F(x, u)dx (2)

It should be noticed that under the condition (F0) the functional φ is of class
C1(X,R) and

φ
′
(u).v =

∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx −

∫
Ω

f(x, u)vdx,

∀ u, v ∈ X.

Then, we can see that the weak solution of (1) corresponds to critical point of
the functional φ.

3 Proof of main result

We recall that φ satisfies Palais-smale condition (PS) in X, if any sequence
(un) such that φ(un) is bounded and φ

′
(un)→ 0 as n→ +∞, has convergent

subsequence.

Proof of Theorem 1
Let start by the following lemma.



Existence of solutions 327

Lemma 3 Any bounded sequence (PS) of φ has a strongly convergent subse-
quence.

Proof. Let (un) ⊂ X be a sequence bounded (PS) sequence of φ. Up to a
subsequence, we may find u ∈ X such that un ⇀ u.

From the growth condition (F0) and Sobolev embedding, we have that∫
Ω f(x, u)(un − u)dx→ 0, since φ

′
(un)(un − u)→ 0 then∫

Ω

|∇un|p(x)−2∇u∇((un − u))dx+
∫
∂Ω

β(x)|un|
p(x)−2un(un − u)dσx → 0.

As the mapping A :W1,p(x)(Ω)→ R defined by

〈Au, v〉 =
∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx

for all u, v ∈ X is of type (S+), so un → u in W1,p(x)(Ω). �

Lemma 4 The functional φ is coercive, that is, φ(u) → +∞ when ‖u‖ →
+∞.
Proof. Suppose that there exist (un) ⊂ X and a positive constant C such that

‖un‖→ +∞, φ(un) ≤ C.
Putting vn = un

‖un‖ , so we may find v ∈ X and a subsequence of (vn) still

denoted by (vn) such that vn ⇀ v in X and vn → v in Lp(x)(Ω).

By (F1), for any ε > 0, ∃L > 0 such that

F(x, t) ≤ ε

p(x)
|t|p

− ∀|t| > L a.e x ∈ Ω,

thus, we may find a positive constant C such that

F(x, t) ≤ ε

p(x)
|t|p

−
+ C ∀t ∈ R a.e x ∈ Ω.

Therefore,

C

‖un‖p−
≥ φ(un)

‖un‖p−
≥ 1

p+
1

‖un‖p−
[∫
Ω

|∇un|p(x)dx+
∫
∂Ω

β(x)|un|
p(x)dσx

]
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−
ε

p+

∫
Ω

|vn|
p−dx−

C|Ω|

‖un‖p−

≥ 1

p+
−
ε

p+

∫
Ω

|vn|
p−dx−

C|Ω|

‖un‖p−
.

Consequently, choosing ε, such that
∫
Ω |vn|

p−dx > C0, where C0 is the best

constant in the embedding W1,p(x)(Ω) ↪→ Lp
−
(Ω) .

On the other hand, because ‖v‖W1,p(x)(Ω) ≤ lim inf ‖vn‖ = 1 by∫
Ω

|∇v|p−dx+
∫
Ω

|v|p
−
dx ≤ C0,

so we get
∫
Ω∇|v|

p− dx = 0, which means that v = constant 6= 0.
We obtain

lim
|un|→∞

∫
Ω

F(x, un)dx→ −∞.
When ‖un‖→ +∞, |un|→ +∞, thereby,

C ≥ 1

p+

[∫
Ω

|∇un|p(x) dx+
∫
∂Ω

β(x)|un|
p(x)dσx

]
−

∫
Ω

F(x, un)dx

≥ ‖un‖p
−

p+
−
ε

p+

∫
Ω

|vn|
p−dx−

C|Ω|

‖un‖p−
,

which implies that φ is coercive and bounded from below.

Now verifying the conditions (i) and (ii) in Lemma 2.

The same idea from [1] and Chung [13],we have W1,p(x)(Ω) =W0 ⊕ R.
If u ∈ R, for ‖u‖ < ρ, ρ > 0 and by (2)

φ(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx+

∫
∂Ω

1

p(x)
β(x)|u|p(x)dσx −

∫
Ω

F(x, u)dx

= −

∫
Ω

F(x, u)dx

≤ 0

If u ∈W0 =
{
z ∈W1,p(x)(Ω)/

∫
Ω zdx = 0

}
, from (F0) and (F1)

F(x, t) ≤
(
1

p−
− ε

)
|u|p

−
+ C

∫
Ω

|u|q(x)dx.
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In virtue of the the continuous embedding X into Lp
−
(Ω) and Lp

+
(Ω),

φ(u) ≥ 1

p+
‖u‖p+ −

∫
Ω

F(x, u)dx

≥ 1

p+
‖u‖p+ −

1

p−

∫
Ω

|u|p
−
dx+ ε

∫
Ω

|u|p
−
dx− C

∫
Ω

|u|q(x)dx

≥ C(ε)‖u‖p+ − C‖u‖q+ − C‖u‖q− ,

for ‖u‖ = ρ small enough then φ(u) ≥ 0 for ‖u‖ ≤ ρ ∀u ∈ W0. On the other
side, when infXφ(u) = 0 then ∀u ∈ R is a minimum of φ, that means φ
admits infinite critical points.
When u ∈ X with infXφ(u) < 0, by applying Lemma 2, φ has at least two
nontrivial critical points, then the problem (1) has two nontrivial solutions in
X. �

Proof of Theorem 2 We recall the following important inequality (cf.[22])

Lemma 5 (Poincaré-Writingers inequality) There exists a positive constant
C such that for any u ∈W0 we have

|u|p(x) ≤ C|∇u|p(x).

Lemma 6 Suppose that the conditions (F0), (F4) and (F6) are hold. Then φ
verifies the Cerami condition (C)c.

Proof. Let K ∈ R such that

|φ(un)| ≤ K

and

(1+ ‖un‖)φ
′
(un)→ 0 in X∗. (3)

Suppose that ‖un‖→ +∞ as n→ +∞. Taking vn = un
‖un‖ , so

vn ⇀ v in X.

Thus,

vn(x)→ v(x) a.e x ∈ Ω

and

vn → v in Lp(x)(Ω).

Let h ∈ X, according to (3) we have that,
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∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

−

∫
Ω

f(x, un)hdx

∣∣∣∣∣ ≤ εn‖h‖
1+ ‖un‖

.

(4)

Dividing (4) by ‖un‖p
−−1 we have

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

−

∫
Ω

f(x, un)hdx

∣∣∣∣∣ ≤ εn‖h‖
(‖un‖p−−1)(1+ ‖un‖)

.

Then

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

−

∫
Ω

f(x, un)hdx

∣∣∣∣∣ ≤ εn‖h‖
1+ ‖un‖

.

(5)

Since ‖un‖p(x)−1 ≥ ‖un‖p
−−1 > 1,

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx

+

∫
∂Ω

β(x)|un|
p(x)−2unhdσx −

∫
Ω

f(x, un)hdx

∣∣∣∣∣
≥ 1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

∣∣∣∣∣
−

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

f(x, un)hdx

∣∣∣∣∣
≥

∣∣∣∣∣
∫
Ω

|∇vn|p(x)−2∇vn∇hdx+
∫
∂Ω

β(x)|vn|
p(x)−2vnhdσx

∣∣∣∣∣
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−
1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

f(x, un)hdx

∣∣∣∣∣.
Consequently∣∣∣∣∫

Ω

|∇vn|p(x)−2∇vn∇hdx+
∫
∂Ω

β(x)|vn|
p(x)−2vnhdσx

∣∣∣∣
−

1

‖un‖p−−1

∣∣∣∣∫
Ω

f(x, un)hdx

∣∣∣∣ ≤ εn‖h‖
1+ ‖un‖

,

(6)

with εn → 0 and h ∈ X.
By (F0), (F4) and (F6) we conclude that f(x,un)

‖un‖p−−1
is bounded in (Lp

−
(Ω))∗

which is separable and reflexive space, then up to a subsequence denoted also(
f(x,un)

‖un‖p−−1

)
, we have f(x,un)

‖un‖p−−1
⇀ f̃, in (Lp

−
(Ω))∗. Since f(x,un)

‖un‖p−−1
→ 0 a.e

x ∈ Ω, hence
f(x, un)

‖un‖p−−1
⇀ 0 in (Lp

−
(Ω))∗

Therefore, taking h = vn − v ∈ X, in (6)

∫
Ω

|∇vn|p(x)−2∇vn∇(vn − v)dx+
∫
∂Ω

β(x)|vn|
p(x)−2vn(vn − v)dσx → 0.

By (S+) type of the operator

L(u).v =

∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx,

we have vn → v in X, so v 6= 0. Since |φ(u)| ≤ K we obtain

p+φ(u) ≥ −p+K (7)

Taking h = un, in (4)

−

∫
Ω

|∇un|p(x)dx+
∫
∂Ω

β(x)|un|
p(x)dσx +

∫
Ω

f(x, un)undx ≥ −εn

Then

− p−
∫
Ω

|∇un|p(x)

p(x)
dx+

∫
∂Ω

β(x)
|un|

p(x)

p(x)
dσx +

∫
Ω

f(x, un)undx ≥ −εn. (8)
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Adding (7)to (8), we obtain∫
Ω

f(x, un)undx− p
+

∫
Ω

F(x, un)dx ≥ C (9)

Obviously, this is contradiction and then the proof of Lemma 6 is reached. �

Lemma 7 Suppose that the conditions (F5) and (F6) hold, then the function
φ/R is anti-coercive.

Proof. From (F6), for all K > 0 there exists R > 0 such that p+F(x, u) ≥
f(x, u)u ≥ K for a.e x ∈ Ω, u ∈ R and thus for all u ∈ R,∫

Ω

F(x, u)dx ≥ 1

p+
K|Ω|− c|Ω|,

hence ∫
Ω

F(x, u)dx→ +∞ when |u|→ +∞.
By (2) and K is arbitrary

φ(u) =

∫
∂Ω

β(x)
|u|p(x)

p(x)
dσx −

∫
Ω

F(x, u)dx ≥ −

∫
Ω

F(x, u)dx

Then
φ(u)→ −∞ when |u|→ +∞.

�

Lemma 8 Under the hypothesis (F4), we have inf
W0

φ > −∞ .

Proof. Let u ∈ W0 with ‖u‖ > 1 By (F5), for ε > 0, we may find K(ε) > 0
such that F(x, u) ≤ ε|u|p− + K(ε), for a.e x ∈ Ω and for all u ∈ R.Hence,

F(x, u) ≤ ε

∫
Ω

|u|p
−
+ K(ε)|Ω| (10)

≤ εC‖u‖p− + K(ε)|Ω|

Then, when u ∈W0 we have

φ(u) =

∫
Ω

1

p(x)
|∇u|p(x) +

∫
∂Ω

1

p(x)
β(x)|u|p(x)dσx −

∫
Ω

F(x, u)dx

≥ C‖u‖p+ − εC‖u‖p− − K(ε)|Ω|

≥ −K(ε)|Ω|.

(11)
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It follows that infW0
φ > −∞.

According to previous Lemmas 6, 7 and 8, the assumptions of Lemma 1 are
satisfied and then the proof of Theorem 2 is achieved. �
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Abstract. In this article, we consider a Lamé system with a delay term
in the internal fractional feedback. We show the existence and uniqueness
of solutions by means of the semigroup theory under a certain condition
between the weight of the delay term in the fractional feedback and the
weight of the term without delay. Furthermore, we show the exponential
stability by the classical theorem of Gearhart, Huang and Pruss.

1 Introduction

In this article, we consider the initial boundary value problem for the Lamé
system given by:

utt − µ∆u− (µ+ λ)∇(div u)
+a1∂

σ,κ
t u(x, t− τ) + a2ut(x, t) = 0 in Ω× (0,+∞),

u = 0 in Γ × (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),

(P)

2010 Mathematics Subject Classification: 35B40, 47D03, 74D05
Key words and phrases: Lamé system, fractional delay term, uniform stability, semigroup
theory
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where µ, λ are Lamé constants, u = (u1, u2, ..., un)
T . Here Ω is a bounded

domain in IRn with smooth boundary Γ = ∂Ω. Moreover, a1 > 0, a2 > 0

and the constant τ > 0 is the time delay. The notation ∂σ,κt stands for the
exponential fractional derivative operator of order σ. It is defined by

∂σ,κt w(t) =
1

Γ(1− σ)

∫ t
0

(t− s)−σe−κ(t−s)
dw

ds
(s)ds 0 < σ < 1, κ > 0.

Delay effects arise in many applications and pratical problems because, in most
instances, physical, chemical, biological, thermal, and economic phenomena
naturally depend not only on the present state but also on some past occur-
rences. In recent years, the control of PDEs with time delay effects has become
an active area of research, see for example [1], [17], and references therein. In
many cases it was shown that delay is a source of instability and even an
arbitrarily small delay may destabilize a system which is uniformly asymp-
totically stable in the absence of delay unless additional conditions or control
terms have been used.The stability issue of systems with delay is, therefore, of
theoretical and practical importance. In particular, consider the wave equation
with homogeneous Dirichlet boundary condition

u ′′(x, t) − ∆xu(x, t) + µ1u
′(x, t)

+µ2u
′(x, t− τ) = 0 in Ω× (0,+∞),

u(x, t) = 0 on Γ × (0,+∞),
u(x, 0) = u0(x), u

′(x, 0) = u1(x) in Ω,
u ′(x, t− τ) = f0(x, t− τ) in Ω× (0, τ).

(PW)

For instance in [13] the authors studied the problem (PW). They determined
suitable relations between µ1 and µ2, for which the stability or alternatively
instability takes place. More precisely, they showed that the energy is expo-
nentially stable if µ2 < µ1 and they also found a sequence of delays for which
the corresponding solution of (PW) will be instable if µ2 > µ1. The main ap-
proach used in [13] is an observability inequality obtained with a Carleman
estimate.

Noting that the case of the wave equation with internal fractional feedback
(without delay) have treated in [8] where it is proven global existence and
uniqueness results. As far as we are concerned, this is the first work in the
literature that takes into account the uniform decay rates for Lamé system
with delay term in the internal fractional feedback.

The remainder of the paper falls into five sections. In Section 2, we show
that the above system can be replaced by an augmented one obtained by cou-
pling an equation with a suitable diffusion, and we study of energy functional
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associated to system. In section 3, we state a well-posedness result for prob-
lem (P). In section 4, we prove the strong asymptotic stability of solutions. In
section 5 we show the exponential stability using the Gearhart-Huang-Pruss
theorem.

2 Preliminary

This section is concerned with the reformulation of the model (P) into an
augmented system. For that, we need the following claims.

Theorem 1 (see [12]) Let ω be the function:

ω(ξ) = |ξ|(2σ−1)/2, −∞ < ξ < +∞, 0 < σ < 1. (1)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tψ(ξ, t)+(ξ2+κ)ψ(ξ, t)−U(t)ω(ξ) = 0, −∞ < ξ < +∞, κ > 0, t > 0, (2)

ψ(ξ, 0) = 0, (3)

O(t) = (π)−1 sin(σπ)

∫+∞
−∞ ω(ξ)ψ(ξ, t)dξ (4)

is given by

O = I1−σ,κU = Dσ,κU, (5)

where

[Iσ,κf](t) =
1

Γ(σ)

∫ t
0

(t− s)σ−1e−κ(t−s)f(s)ds.

Proof. From (2) and (3), we have

ψ(ξ, t) =

∫ t
0

ω(ξ)e−(ξ2+κ)(t−s)U(s)ds. (6)

Hence, by using (4), we get

O(t) = (π)−1sin(σπ)e−κt
∫ t
0

[
2

∫+∞
0

|ξ|2σ−1e−ξ
2(t−s)dξ

]
eκsU(s)ds. (7)
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Thus,

O(t) = (π)−1sin(σπ)e−κt
∫ t
0

[
(t− s)−σΓ(σ)

]
eκsU(s)ds

= (π)−1sin(σπ)

∫ t
0

[
(t− s)−σΓ(σ)

]
e−κ(t−s)U(s)ds

(8)

which completes the proof. Indeed, we know that (π)−1sin(σπ) =
1

Γ(σ)Γ(1− σ)
. �

Lemma 1 (see [5]) If λ ∈ Dκ = IC\] −∞,−κ] then∫+∞
−∞

ω2(ξ)

λ+ κ+ ξ2
dξ =

π

sinσπ
(λ+ κ)σ−1.

We make the following hypotheses on the damping and the delay functions:

a1κ
σ−1 < a2. (9)

We are now in a position to reformulate system (P). As in [13], we introduce
the new variable

z(x, ρ, t) = ut(x, t− ρτ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then the above variable z satisfies

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0.

Consequently, by using Theorem 1, the system (P) is equivalent to

utt − µ∆u− (µ+ λ)∇(div u)

+ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ, t)dξ+ a2ut(t) = 0 in Ω× (0,+∞),

ψt(x, ξ, t) + (ξ2 + κ)ψ(x, ξ, t)
−z(x, 1, t)ω(ξ) = 0 in Ω× (−∞,∞)× (0,+∞),
τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),
u(x, t) = 0l on Γ × (0,+∞),
z(x, 0, t) = ut(x, t), in Ω× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,
ψ(x, ξ, 0) = 0 on Ω× (−∞,∞),
z(x, ρ, 0) = f0(x,−ρτ) in Ω× (0, 1),

(P ′)
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where ζ = (π)−1 sin(σπ)a1.
We define the energy of the solution by:

E(t) =
1

2

n∑
j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖

2
L2(Ω) + ζ

∫
Ω

∫+∞
−∞ |ψj(x, ξ, t)|

2 dξdx

)

+
ν

2

n∑
j=1

∫
Ω

∫ 1
0

|zj(x, ρ, t)|
2 dρdx+

(µ+ λ)

2
‖div u‖2L2(Ω).

(10)

where ν is a positive constant verifying

τζ

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

)
< ν < τ

(
2a2 − ζ

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

))
. (11)

Remark 1 Using Lemma 1, the condition (11) means that

τκσ−1 < ν < τ(2a2 − a1κ
σ−1).

Lemma 2 Let (u,ψ, z) be a regular solution of the problem (P ′). Then there
exists a positive constant C such that the energy functional defined by (10)
satisfies

E ′(t) ≤ −C

n∑
j=1

∫
Ω

(
u2t + z(x, 1, t)

2
)
dx. (12)

Proof. Multiplying the first equation in (P) by ujt, integrating over Ω and
using integration by parts, we get

1

2

d

dt
‖ujt‖22 − µ<

∫
Ω

∆ujujt dx− (µ+ λ)<

∫
Ω

∂

∂xj
(div u)ujt dx

+ζ

∫
Ω

ujt

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx+ a2

∫
Ω

|ujt(t)|
2 dx = 0.

Then

1

2

d

dt

n∑
j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖

2
L2(Ω)

)
+

(µ+ λ)

2
‖div u‖2L2(Ω)

+ a2

n∑
j=1

‖ujt‖2L2(Ω) + ζ<

n∑
j=1

∫
Ω

ujt

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx = 0.

(13)
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Multiplying the second equation in (P ′) by ζψj and integrating over Ω ×
(−∞,+∞), we obtain:

ζ

2

d

dt

n∑
j=1

‖ψj‖2L2(Ω×(−∞,+∞)) + ζ

n∑
j=1

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dξdx

− ζ<

n∑
j=1

∫
Ω

zj(x, 1, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx = 0.

(14)

Multiplying the third equation in (P ′) by νzj and integrating over Ω× (0, 1),
we get:

1

2

d

dt

n∑
j=1

‖zj‖2L2(Ω×(0,1)) +
τ−1

2

n∑
j=1

∫
Ω

(
z2j (x, 1, t) − u

2
jt(x, t)

)
= 0. (15)

From (10), (13) and (15) we get

E ′(t) = − a2

n∑
j=1

‖ujt‖2L2 − ζ
n∑
j=1

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dξdx

− ζ<

n∑
j=1

∫
Ω

ujt

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

+ ζ<

n∑
j=1

∫
Ω

zj(x, 1, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

+
ντ−1

2

n∑
j=1

∫
Ω

u2t(x, t)dx −
ντ−1

2

n∑
j=1

∫
Ω

z2j (x, 1, t)dx.

(16)

Moreover, we have∣∣∣∣∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξ

∣∣∣∣ ≤ (∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

) 1
2
(∫+∞

−∞ (ξ2 + κ)|ψj(x, ξ, t)|
2 dξ

) 1
2

.

Then∣∣∣∣∫
Ω

zj(x, 1, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

∣∣∣∣
≤
(∫+∞

−∞
ω2(ξ)

ξ2 + κ
dξ

) 1
2

‖zj(x, 1, t)‖L2(Ω)

(∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dxdξ

) 1
2
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and∣∣∣∣∫
Ω

ujt(x, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

∣∣∣∣
≤
(∫+∞

−∞
ω2(ξ)

ξ2 + κ
dξ

) 1
2

‖ujt(x, t)‖L2(Ω)

(∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dxdξ

) 1
2

.

Applying the Cauchy-Schwarz inequality we obtain

E ′(t) ≤
(
−a2 +

ζI

2
+
ντ−1

2

) n∑
j=1

∫
Ω

u2jt(x, t)dx

+

(
ζI

2
−
ντ−1

2

) n∑
j=1

∫
Ω

z2j (x, 1, t)dx,

where I =

∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ, which implies

E ′(t) ≤ −C

n∑
j=1

∫
Ω

(
u2jt(x, t) + z

2
j (x, 1, t)

)
dx

with

C = min

{(
a2 −

ζI

2
−
ντ−1

2

)
,

(
−
ζI

2
+
ντ−1

2

)}
.

Since ν is chosen satisfying assumption (11), the constant C is positive. This
completes the proof of the lemma. �

3 Well-posedness

In this section, we give the existence and uniqueness result for system (P ′)
using the semigroup theory. Let us denote U = (u, v,ψ, z)T , where v = ut.
The system (P ′) can be rewrite as follows:{

U ′ = AU, t > 0,

U(0) = (u0, u1, ψ0, f0),
(17)

where A : D(A) ⊂ H→ H is the linear operator defined by

A


u

v

ψ

z

 =


v

µ∆u+ (µ+ λ)∇(div u) − ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ− a2v

−(ξ2 + κ)ψ+ z(x, 1)ω(ξ)
−τ−1zρ(x, ρ)

 (18)
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and H is the energy space given by

H =
(
H10(Ω)

)n
×
(
L2(Ω)

)n
×
(
L2(Ω× (−∞,+∞))

)n
×
(
L2(Ω× (0, 1))

)n
.

For any U = (u, v,ψ, z)T ∈ H, Ũ = (ũ, ṽ, ψ̃, z̃)T ∈ H, we equip H with the
inner product defined by

< U, Ũ >H=

n∑
j=1

∫
Ω

(
vjṽj + µ∇uj∇ũj

)
dx+ (µ+ λ)

∫
Ω

(div u)(div ũ)dx

+ ζ

n∑
j=1

∫
Ω

∫+∞
−∞ ψj(x, ξ)ψ̃j(x, ξ)dξdx+ ζ

n∑
j=1

∫
Ω

∫ 1
0

z(x, ρ)z̃j(x, ρ)dρdx.

The domain of A is given by

D(A) =


(u, v,ψ, z)T in H : u ∈

(
H2(Ω) ∩H10(Ω)

)n
, v ∈

(
H1(Ω)

)n
,

−(ξ2 + κ)ψ+ z(x, 1, t)ω(ξ) ∈
(
L2(Ω× (−∞,+∞))

)n
,

z ∈
(
L2
(
Ω;H1(0, 1)

))n
,

|ξ|ψ ∈
(
L2(Ω× (−∞,+∞))

)n
, v = z(., 0) in Ω

 . (19)

We show that the operator A generates a C0 semigroup in H. We prove that A
is a maximal dissipative operator. For this we need the following two Lemmas.

Lemma 3 The operator A is dissipative and satisfies for any U ∈ D(A),

<〈AU,U〉H ≤ −C

n∑
j=1

∫
Ω

(
v2 + z(x, 1)2

)
dx. (20)

Proof. For any U = (u, v,ψ, z) ∈ D(A), using (17), (12) and the fact that

E(t) =
1

2
‖U‖2H, (21)

estimate (20) easily follows. �

Lemma 4 The operator (λ̃I−A) is surjective for λ̃ > 0.

Proof. For any G = (G1, G2, G3, G4)
T ∈ H, where Gi = (g1i , g

2
i , ..., g

n
i )
T , we

show that there exists U ∈ D(A) satisfying

(λ̃I−A)U = G. (22)
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Equation (22) is equivalent to
λ̃u− v = G1(x),

λ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2(x),

λ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3(x, ξ),

λ̃z(x, ρ) + τ−1zρ(x, ρ) = G4(x, ρ)

(23)

Suppose u is found with the appropriate regularity. Then, (23)1 and (23)3
yield

v = λ̃u−G1(x) ∈
(
H1(Ω)

)n
(24)

and

ψ =
G3(x, ξ) +ω(ξ)z(x, 1)

ξ2 + κ+ λ̃
. (25)

We note that the last equation in (23) with z(x, 0) = v(x) has a unique solution
given by

z(x, ρ) = v(x)e−λ̃ρτ + τe−λ̃ρτ
∫ρ
0

G4(x, r)e
λ̃rτdr. (26)

Inserting (24) in (26), we get

z(x, ρ) = λ̃u(x)e−λ̃ρτ−G1(x)e
−λ̃ρτ+τe−λ̃ρτ

∫ρ
0

G4(x, r)e
λ̃rτdr, x ∈ Ω,ρ ∈ (0, 1).

(27)
In particular,

z(x, 1) = λ̃u(x)e−λ̃τ + z0(x), x ∈ Ω (28)

with z0 ∈ L2(Ω) defined by

z0(x) = −G1(x)e
−λ̃τ + τe−λ̃τ

∫ 1
0

G4(x, r)e
λ̃rτdr, x ∈ Ω. (29)

Inserting (24) in (23)2, we get

(λ̃2 + λ̃a2)u− µ∆u− (µ+ λ)∇(div u) + γa1

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ

= G2(x) + (λ̃+ a2)G1(x).

(30)
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Solving system (30) is equivalent to finding u ∈
(
H2 ∩H10(Ω)

)n
such that

n∑
j=1

∫
Ω

(
(λ̃2 + λ̃a2)ujwj − µ∆ujwj

)
dx− (µ+ λ)

∫
Ω

∂

∂xj
(div u)wjdx

+ ζ

n∑
j=1

∫
Ω

wj

∫+∞
−∞ ω(ξ)ψj(x, ξ)dξdx =

n∑
j=1

∫
Ω

(gj2(x) + (λ̃+ a2)g
j
1(x))wjdx

(31)

for all w ∈
(
H10(Ω)

)n
. Inserting (25) in (31) and using (28), we obtain that

n∑
j=1

∫
Ω

(
(λ̃2 + λ̃a2)ujwj+µ∇uj∇wj dx

)
+ (µ+ λ)

∫
Ω

(div u)(div w)dx

+λ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx =

n∑
j=1

∫
Ω

(
g
j
2(x) + (λ̃+ a2)g

j
1(x)

)
wj dx

−ζ

n∑
j=1

∫
Ω

wj

(∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ+ λ̃
dξ

)
dx− θ

n∑
j=1

∫
Ω

wjz0(x)dx.

(32)

where θ = ζ

∫+∞
−∞

ω2(ξ)

ξ2 + κ+ λ̃
dξ. Problem (32) is of the form

B(u,w) = L(w), (33)

where B :
(
H10(Ω)

)n × (H10(Ω)
)n → IC is the sesquilinear form defined by

B(u,w) =
n∑
j=1

∫
Ω

(
(λ̃2 + λ̃a2)ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫
Ω

(div u)(div w)dx+ λ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx

and L :
(
H10(Ω)

)n → IC is the antilinear functional given by

L(w) =
n∑
j=1

∫
Ω

(
g
j
2(x) + (λ̃+ a2)g

j
1(x)

)
wj dx

− ζ

n∑
j=1

∫
Ω

wj

(∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ+ λ̃
dξ

)
dx− θ

n∑
j=1

∫
Ω

wjz0(x)dx.
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It is easy to verify that B is continuous and coercive, and L is continu-
ous. Consequently, by the Lax-Milgram theorem, we conclude that for all
w ∈

(
H10(Ω)

)n
, the system (33) has a unique solution u ∈

(
H10(Ω)

)n
. By the

regularity theory for the linear elliptic equations, it follows that u ∈
(
H2(Ω)

)n
.

Therefore, the operator (λ̃I−A) is surjective for any λ̃ > 0. Consequently, us-
ing Hille-Yosida theorem, we have the following existence result:

Theorem 2 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (17) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (17) has a unique weak solution

U ∈ C0(IR+,H).

�

4 Strong stability

One simple way to prove the strong stability of (17) is to use the following
theorem due to Arendt-Batty and Lyubich-Vũ (see [2] and [10]).

Theorem 3 ([2]-[10]) Let X be a reflexive Banach space and (T(t))t≥0 be a
C0−semigroup generated by A on X. Assume that (T(t))t≥0 is bounded and
that no eigenvalues of A lie on the imaginary axis. If r(A) ∩ iR is countable,
then (T(t))t≥0 is stable.

Our main result is the following theorem

Theorem 4 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H,
the solution of (17) satisfies

lim
t→∞ ‖etAU0‖H = 0.

For the proof of Theorem 4, we need the following two lemmas.
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Lemma 5 A does not have eigenvalues on iIR.

Proof.
Case 1: We will argue by contraction. Let us suppose that there λ̃ ∈ IR, λ̃ 6= 0
and U 6= 0, such that

AU = iλ̃U. (34)

Then, we get

iλ̃u− v = 0,

iλ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = 0,

iλ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = 0,

iλ̃z(x, ρ) + τ−1zρ(x, ρ) = 0.

(35)

Then, from (20) we have

v = 0, z(x, 1) = 0. (36)

Hence, from (35)3 and (36) we obtain

u ≡ 0, ψ ≡ 0. (37)

Note that (35)4 gives us z = ve−iλ̃ρτ = 0 as the unique solution of (35)4. Hence
U ≡ 0.

Now if λ̃ = 0, inserting (35)1 into (35)2, we deduce that

{−µ∆u− (µ+ λ)∇(div u) = 0, u = 0 in Γ. (38)

Multiplying by u, integrating over Ω we have

‖∇u‖2L2(Ω) + ‖div u‖2L2(Ω) = 0. (39)

Hence u = 0. Then U ≡ 0. �

Lemma 6 We have

iIR ⊂ ρ(A).
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Proof. We will prove that the operator iλ̃I − A is surjective for λ̃ 6= 0. For
this purpose, let G = (G1, G2, G3, G4)

T ∈ H, we seek X = (u, v,ψ, z)T ∈ D(A)
of solution of the following equation

(iλ̃I−A)X = G. (40)

Equivalently, we have
iλ̃u− v = G1,

iλ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2,

iλ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3,

iλ̃z(x, ρ) + τ−1zρ(x, ρ) = G4.

(41)

From (41)1 and (41)2, we have

− λ̃2u−µ∆u−(µ+λ)∇(div u)+ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+a2v(t) = (G2+ iλ̃G1)

(42)
with u|Γ = 0. Solving system (42) is equivalent to finding u ∈ (H2 ∩H10(Ω))n

such that

n∑
j=1

∫
Ω

(
−(λ̃2 + iλ̃a2)ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫
Ω

(div u)(div w)dx

+iλ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx =

n∑
j=1

∫
Ω

(
g
j
2(x) + (iλ̃+ a2)g

j
1(x)

)
wj dx

−ζ

n∑
j=1

∫
Ω

wj

(∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ+ iλ̃
dξ

)
dx− θ

n∑
j=1

∫
Ω

wjz0(x)dx

(43)
for all w ∈ (H10(Ω))n. We can rewrite (43) as

− (Lλ̃u,w)((H1
0(Ω))n,((H1

0(Ω)) ′)n) + a(H1
0(Ω))n(u,w) = l(w) (44)

with the sesquilinear form defined by

a(H1
0(Ω))n(u,w) = µ

n∑
j=1

∫
Ω

∇uj∇wj dx+ iλ̃a2
n∑
j=1

∫
Ω

uj wj dx

+ iλ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx
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and

(Lλ̃u,w)((H1
0(Ω))n,((H1

0(Ω)) ′)n) =

n∑
j=1

∫
Ω

λ̃2ujwj dx.

Using the compactness of the embedding from L2(Ω) into H−1(Ω) and from
H10(Ω) into L2(Ω) we deduce that the operator Lλ̃ is compact from (L2(Ω))n

into (L2(Ω))n. Consequently, by the Fredholm alternative, proving the exis-
tence of a solution u of (44) reduces to proving that there is not a nontrivial
solution for (44) for l ≡ 0. Indeed if there exists u 6= 0, such that

(Lλu,w)((H1
0(Ω))n,((H1

0(Ω)) ′)n) = a(H1
0(Ω))n(u,w) ∀w ∈ (H10(Ω))n, (45)

then iλ̃ is an eigenvalue of A. Therefore from Lemma 5 we deduce that u = 0.
Now, if λ̃ = 0, the system (41) is reduced to the following system

v = −G1,

−µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2,

(ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3,
τ−1zρ(x, ρ) = G4.

(46)

Solving system (46) is equivalent to finding u ∈ (H2 ∩H10(Ω))n such that

µ

n∑
j=1

∫
Ω

∇uj∇wj dx+ (µ+ λ)

∫
Ω

(div u)(div w)dx =

n∑
j=1

∫
Ω

g
j
2wj dx

+

(
ζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ+ a2

) n∑
j=1

∫
Ω

g
j
1wj dx

− τζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ

n∑
j=1

∫
Ω

∫ 1
0

g
j
4(x, s)dswj dx

− ζ

n∑
j=1

∫
Ω

wj

∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ
dξdx.

(47)

for all w ∈ (H10(Ω))n. Consequently, problem (47) is equivalent to the problem

B(u,w) = L(w), (48)

where the sesquilinear form B : (H10(Ω))n × (H10(Ω))n → IC and the antilinear
form L : (H10(Ω))n → IC are defined by

B(u,w) = µ
n∑
j=1

∫
Ω

∇uj∇wj dx+ (µ+ λ)

∫
Ω

(div u)(div w)dx (49)
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and

L(w) =
n∑
j=1

∫
Ω

g
j
2wj dx+

(
ζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ+ a2

) n∑
j=1

∫
Ω

g
j
1wj dx

− τζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ

n∑
j=1

∫
Ω

∫ 1
0

g
j
4(x, s)dswj dx

− ζ

n∑
j=1

∫
Ω

wj

∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ
dξdx.

(50)

It is easy to verify that B is continuous and coercive, and L is continuous.
So applying the Lax-Milgram theorem, we deduce that for all w ∈ (H10(Ω))n

problem (48) admits a unique solution u ∈ (H10(Ω))n. Applying the classical
elliptic regularity, it follows from (47) that u ∈ (H2(Ω))n. Therefore, the
operator A is surjective. �

5 Exponential stability

The necessary and suficient conditions for the exponential stability of the C0-
semigroup of contractions on a Hilbert space were obtained by Gearhart [7]
and Huang [9] independently, see also Pruss [15]. We will use the following
result due to Gearhart.

Theorem 5 ([15]- [9]) Let S(t) = eAt be a C0-semigroup of contractions on
Hilbert space H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR (51)

and

lim
|β|→∞‖(iβI−A)−1‖L(H) <∞. (52)

Our main result is as follows.

Theorem 6 The semigroup SA(t)t≥0 generated by A is exponentially stable.

Proof. We will need to study the resolvent equation (iλ̃−A)U = G, for λ ∈ IR,
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namely
iλ̃u− v = G1,

iλ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2,

iλ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3,

iλ̃z(x, ρ) + τ−1zρ(x, ρ) = G4,

(53)

where G = (G1, G2, G3, G4)
T . Taking inner product in H with U and using

(20) we get
|Re〈AU,U〉| ≤ ‖U‖H‖G‖H. (54)

This implies that
n∑
j=1

∫
Ω

v2j (x)dx,

n∑
j=1

∫
Ω

z2j (x, 1)dx ≤ C‖U‖H‖G‖H. (55)

From (53)3, we obtain

ψ =
z(x, 1)ω(ξ) +G3

iλ̃+ ξ2 + κ
. (56)

Then

‖ψ‖L2(Ω×(−∞,+∞)) ≤
∥∥∥∥ ω(ξ)

iλ̃+ ξ2 + κ

∥∥∥∥
L2(−∞,+∞)

‖z(x, 1)‖L2(Ω)

+

∥∥∥∥ G3

iλ̃+ ξ2 + κ

∥∥∥∥
L2(Ω×(−∞,+∞))

≤
(
2(1− σ)

π

sinσπ
(|̃λ|+ κ)σ−2

) 1
2 ‖z(x, 1)‖L2(Ω)

+

√
2

|̃λ|+ κ
‖G3‖L2(Ω×(−∞,+∞)).

(57)

Similarly, we have

‖ξψ‖L2(Ω×(−∞,+∞)) ≤
∥∥∥∥ ξω(ξ)

iλ̃+ ξ2 + κ

∥∥∥∥
L2(−∞,+∞)

‖z(x, 1)‖L2(Ω)

+

∥∥∥∥ ξG3

iλ̃+ ξ2 + κ

∥∥∥∥
L2(Ω×(−∞,+∞))

≤
(
2σ

π

sinσπ
(|̃λ|+ κ)σ−1

) 1
2 ‖z(x, 1)‖L2(Ω)

+

√
2√

|̃λ|+ κ
‖G3‖L2(Ω×(−∞,+∞)).

(58)
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Let us introduce the following notation

Iu(x) =
n∑
j=1

(
|vj(x)|

2 + µ|∇uj(x)|2
)
+ (µ+ λ)|div u(x)|2

and

Eu =

∫
Ω

Iu(x)dx.

�

Lemma 7 We have that

Eu ≤ c‖G‖2H + c ′‖G‖H‖U‖H. (59)

for positive constants c and c ′.

Proof. Multiplying the equation (53)2 by ū, integrating on Ω we obtain

−

∫
Ω

vj(iλ̃uj)dx+ µ

∫
Ω

|∇uj|2 dx+ (µ+ λ)

∫
Ω

(div u)
∂ūj

∂xj
dx

+ ζ

∫
Ω

ūj

( ∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx+ a2

∫
Ω

ūjvj dx =

∫
Ω

ūg
j
2 dx.

(60)

From (53)1, we have iλ̃uj = vj + g
j
1. Then

−

∫
Ω

|vj|
2 dx+ µ

∫
Ω

|∇uj|2 dx+ (µ+ λ)

∫
Ω

(div u)
∂ūj

∂xj
dx

+ ζ

∫
Ω

ūj

( ∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx+ a2

∫
Ω

ūjvj dx

=

∫
Ω

ūjg
j
2 dx+

∫
Ω

vj
¯
g
j
1 dx.

(61)

Hence

−

n∑
j=1

∫
Ω

|vj|
2 dx+ µ

n∑
j=1

∫
Ω

|∇uj|2 dx+ (µ+ λ)

∫
Ω

|div u|2 dx

+ ζ

n∑
j=1

∫
Ω

ūj

( ∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx+ a2

n∑
j=1

∫
Ω

ūjvj dx

=

n∑
j=1

∫
Ω

ūjg
j
2 dx+

n∑
j=1

∫
Ω

vj
¯
g
j
1 dx.

(62)
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We can estimate∣∣∣∣∫
Ω

ūj

(∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx

∣∣∣∣
≤ ‖uj‖L2(Ω)

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

) 1
2
(∫

Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ)|

2 dξdx

) 1
2

≤ ε
2

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

)
‖uj‖2L2(Ω) +

1

2ε

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ)|

2 dξdx

≤ ε
2
C(Ω)

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

)
‖∇uj‖2L2(Ω) +

1

2ε

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ)|

2 dξdx,∣∣∣∣∫
Ω

ūjvj dx

∣∣∣∣ ≤ ‖uj‖L2(Ω)‖vj‖L2(Ω) ≤
ε

2
C(Ω)‖∇uj‖2L2(Ω) +

1

2ε
‖vj‖2L2(Ω),∣∣∣∣∫

Ω

ūjg
j
2 dx

∣∣∣∣ ≤ ε2C(Ω)‖∇uj‖2L2(Ω) +
1

2ε
‖gj2‖

2
L2(Ω),∣∣∣∣∫

Ω

vj
¯
g
j
1 dx

∣∣∣∣ ≤ ε2‖vj‖2L2(Ω) +
1

2ε
‖gj1‖

2
L2(Ω).

Choosing ε small enough, we conclude (59).
Moreover, the equation (53)4 has a unique solution

z(x, ρ) = e−iτλ̃ρz(x, 0) + τe−iτλ̃ρ
∫ρ
0

e−iτλ̃rG4(x, r)

= e−iτλ̃ρv(x) + τe−iτλ̃ρ
∫ρ
0

e−iτλ̃rG4(x, r)dr.

Then
‖z(x, ρ)‖L2(Ω×(0,1)) ≤ ‖v(x)‖L2(Ω) + τ‖G4(x, ρ)‖L2(Ω×(0,1)). (63)

Finally, (57), (59) and (63) imply that

‖U‖H ≤ C‖G‖H

for a positive constant C. The conclusion then follows by applying Theorem
5. �

Remark 2 We can extend the results of this paper to more general measure
density instead of (1), that is ω is an even nonnegative measurable function
such that ∫∞

−∞
ω(ξ)2

1+ ξ2
dξ <∞. (64)
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Federal do Rio de Janeiro and University of Rochester, North-Holland,
Amsterdam, (1973).

[7] L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces,
Trans. Amer. Math. Soc. 236 (1978), 385–394.

[8] H. Haddar, J. R Li and D. Matignon, Efficient solution of a wave equa-
tion with fractional-order dissipative terms, J. Comput. Appl. Math., 234
(2010)-6, 2003–2010.

[9] F. Huang, Characteristic conditions for exponential stability of linear dy-
namical systems in Hilbert spaces, Ann. Differ. Equ., 1 (1985), 43–55.
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Abstract. In this short note we consider the oriented vertex Turán
problem in the hypercube: for a fixed oriented graph

−→
F , determine the

maximum cardinality exv(
−→
F ,
−→
Qn) of a subset U of the vertices of the

oriented hypercube
−→
Qn such that the induced subgraph

−→
Qn[U] does not

contain any copy of
−→
F . We obtain the exact value of exv(

−→
Pk,
−→
Qn) for the

directed path
−→
Pk, the exact value of exv(

−→
V2,
−→
Qn) for the directed cherry

−→
V2 and the asymptotic value of exv(

−→
T ,
−→
Qn) for any directed tree

−→
T .

1 Introduction

One of the most studied problems in extremal combinatorics is the so-called
Turán problem originated in the work of Turán [15] (for a recent survey see
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[9]). A basic problem of this sort asks for the maximum possible number of
edges ex(F,G) in a subgraph G ′ of a given graph G that does not contain F as
a subgraph.

Much less attention is paid to the vertex version of this problem. This
problem can be formalized as follows: what is the the maximum cardinal-
ity exv(F,G), of a subset U of vertices of a given graph G such that G[U] does
not contain F as a subgraph.

We will consider Turán type problems for the n-dimensional hypercube Qn,
the graph with vertex set Vn = {0, 1}n corresponding to subsets of an n-element
set and edges between vertices that differ in exactly one coordinate.

Edge-Turán problems in the hypercube have attracted a lot of attention.
This research was initiated by Erdős [6], who conjectured that ex(C4, Qn) =
(1+ o(1))n2n−1, i.e., any subgraph of Qn having significantly more than half
of the edges of Qn must contain a copy of C4. This problem is still unsolved.
Conlon [5] showed, extending earlier results due to Chung [3] and Füredi and
Özkahya [7, 8], that ex(C2k, Qn) = o(n2

n) for k 6= 2, 3, 5.
Concerning the vertex Turán problem in the hypercube Qn, it is obvious

that we can take half of the vertices of Qn such that they induce no edges.
Kostochka [14] and later, independently, Johnson and Entringer [12] showed
exv(C4, Qn) = maxj{

∑
i6≡j mod 3

(
n
i

)
}. Johnson and Talbot [11] proved a local

stability version of this result. Chung, Füredi, Graham, Seymour [4] proved
that if U contains more than 2n−1 vertices, then there is a vertex of degree at
least 1

2 logn− 1
2 log logn+ 1

2 in Qn[U]. This shows that for any star Sk with k
fixed, we have exv(Sk, Qn) = 2

n−1 for large enough n. Alon, Krech, and Szabó
[1] investigated the function exv(Qd, Qn).

Let us note that there is a simple connection between the edge and the
vertex Turán problems in the hypercube.

Proposition 1 exv(F,Qn) ≤ 2n−1 + ex(F,Qn)
n .

Proof. If a subgraph G of Qn contains more than 2n−1 + ex(F,Qn)
n vertices,

then it contains more than ex(F,Qn)
n edges in every direction, thus more than

ex(F,Qn) edges altogether, hence G contains a copy of F. �

For every tree T , this observation implies that exv(T,Qn) =
(
1
2 +O

(
1
n

))
2n,

using the well-known result from Turán theory which states that ex(n, T) =
O(n) (and so ex(F,Qn) = O(2n)). Also, together with Conlon’s result on the
cycles mentioned earlier, we obtain exv(Ck, Qn) =

(
1
2 + o(1)

)
2n for k 6= 2, 3, 5.
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In this paper, we consider an oriented version of this problem. There is a
natural orientation of the edges of the hypercube. An edge uv means that u
and v differ in only one coordinate; if u contains 1 and v contains 0 in this
coordinate, then we direct the edge from v to u. We denote the hypercube

Qn with this orientation by
−→
Qn. With this orientation it is natural to forbid

oriented subgraphs. We will denote by exv(
−→
F ,
−→
Qn) the maximum number of

vertices that an
−→
F -free subgraph of

−→
Qn can have. As vertices of the hypercube

correspond to sets, instead of working with subsets of the vertices of
−→
Qn we

will consider families G ⊆ 2[n] of sets. We will say that G ⊆ 2[n] is
−→
F -free if for

the corresponding subset U of vertices of
−→
Qn the induced subgraph

−→
Qn[U] is

−→
F -free.

For example, there is only one orientation of C4 that embeds into the hy-

percube, we will denote it by
−→
C4. Hence we have exv(

−→
C4,
−→
Qn) = exv(C4, Qn),

which is known exactly, due to the above mentioned result of Kostochka and
Johnson and Entringer. However, there are three different orientations of P3,

according to how many edges go towards the middle vertex:
−→
V2 denotes the

orientation with a source (i.e.,
−→
V2 is the path abc such that the edge ab is

directed from b to a and the edge bc is directed from b to c). The directed

path
−→
Pk is a path on k vertices v1, . . . , vk with edges going from vi to vi+1 for

every i < k. The height of a directed graph is the length of a longest directed
path in it.

If we consider the hypercube as the Boolean poset, then each edge of the
hypercube goes between a set A and a set A ∪ {x} for some x 6∈ A. Then

in
−→
Qn the corresponding directed edge goes from A to A ∪ {x}. A directed

acyclic graph
−→
F can be considered as a poset F; we will say that F is the poset

of
−→
F . The poset corresponding to a directed tree is said to be a tree poset.

Forbidding copies of a poset in a family of sets in this order-preserving sense
has an extensive literature (see [10] for a survey on the theory of forbidden
subposets). We say P ⊂ 2[n] is a copy of P if there exists a bijection f : P → P
such that p < p ′ implies f(p) ⊂ f(p ′). We say that F ⊂ 2[n] is P-free, if there
is no P ⊂ F that is a copy of P. Observe that if P is the poset of the directed

acyclic graph
−→
F , then any P-free family is

−→
F -free.

The oriented version of the vertex Turán problem in the hypercube corre-
sponds to the following variant of the forbidden subposet problem. We say
P ⊂ 2[n] is a cover-preserving copy of P if there exists a bijection f : P → P
such that if p covers p ′ in P, then f(p) covers f(p ′) in the Boolean poset. Thus
it is not surprising that we can use techniques and results from the theory of



Vertex Turán problems 359

forbidden subposet problems in our setting.
In this paper, we consider Vertex Turán problems for directed trees. Our

main result determines the asymptotic value of the vertex Turán number

exv(
−→
T ,
−→
Qn) for any directed tree

−→
T .

Theorem 1 For any directed tree
−→
T of height h, we have

exv(
−→
T ,
−→
Qn) =

(
h− 1

h
+ o(1)

)
2n.

Below we obtain the exact value of the vertex Turán number for some special

directed trees (namely
−→
V2 and

−→
Pk).

Theorem 2
exv(
−→
V2,
−→
Qn) = 2

n−1 + 1.

It would be natural to consider the following generalization of
−→
V2: let

−→
Vr

denote the star with r leaves all edges oriented towards the leaves. Note that
if one takes the elements of the r highest levels of the Boolean poset and

every other level below them, then the corresponding family in
−→
Qn will be

−→
Vr-

free. Computing the cardinality of this family we have exv(
−→
Vr,
−→
Qn) = 2n−1 +

Ω(nr−2). We conjecture that exv(
−→
Vr,
−→
Qn) = 2n−1 + Θ(nr−2) holds for every

r ≥ 3.

Theorem 3 For any pair k, n of integers with k ≤ n we have

exv(
−→
Pk,
−→
Qn) = max

j∈[k]

 ∑
i6≡j mod k

(
n

i

) .
After submitting this paper we learned that the above theorem was proved

in a different context by Katona [13].

2 Proofs

2.1 Proof of Theorem 1

We follow the lines of a proof of Bukh [2] that shows that if T is a tree
poset with h(T) = k and F ⊆ 2[n] is a T -free family of sets, then |F | ≤
(k − 1 + O( 1n))

(
n
bn/2c

)
holds. The proof of this theorem consists of several
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lemmas. Some of them we will state and use in their original form, some
others we will state and prove in a slightly altered way so that we can apply
them in our setting. First we need several definitions. For a family F ⊆ 2[n],
its Lubell-function

λn(F) =
∑
F∈F

1(
n
|F|

) =
1

n!

∑
F∈F

|F|!(n− |F|)!

is the average number of sets in F that a maximal chain C in 2[n] contains. A
poset P is called saturated if all its maximal chains have length h(P). For any
poset T its opposite poset T ′ consists of the same elements as T with t ≤T ′ t ′

if and only if t ′ ≤T t. For a family F ⊆ 2[n] of sets, its complement family is
F = {[n] \ F : F ∈ F }. Clearly, F contains a copy of P if and only if F contains
a copy of P ′ and λn(F) = λn(F).

Lemma 1 (Bukh [2]) Every tree poset T is an induced subposet of a satu-
rated tree poset T ′ with h(T) = h(T ′).

An interval in a poset P is a set of the form [x, y] = {z ∈ P : x ≤ z ≤ y}.

Lemma 2 (Bukh [2]) If T is a saturated tree poset that is not a chain, then
there exists t ∈ T that is a leaf in H(T) and there exists an interval I ⊂ T

containing t such that |I| < h(T) holds, and T \ I is a saturated tree poset with
h(T) = h(T \ I).

From now on we fix a tree poset T and we denote its height by k. We say
that a chain in 2[n] is fat if it contains k members of F .

Lemma 3 If F ⊆
⋃i+k−1
j=i

([n]
j

)
is a family with λ(F) ≥ (k− 1+ ε), then there

are at least (ε/k)n! fat chains.

Proof. Let Ci denote the number of maximal chains that contain exactly i
sets from F . As F ⊆

⋃i+k−1
j=i

([n]
j

)
, we have Ci = 0 for all i > k. Then counting

the number of pairs (F, C) with C being a maximal chain and F ∈ F ∩C, in two
different ways, we obtain

n∑
i=0

iCi = λ(F)n! ≥ (k− 1+ ε)n!.

This, and
∑
iCi = n! imply

kCk =
∑
i≥k

iCi ≥
n∑
i=0

iCi − (k− 1)
∑
i<k

Ci ≥ εn!.
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Therefore the number of fat chains in F is Ck ≥ (ε/k)n!. �

Lemma 4 Let T be a saturated tree poset of height k. Suppose F ⊆ ∪i+k−1j=i

([n]
j

)
is a family with n/4 ≤ i ≤ 3n/4. Moreover, suppose L is a family of fat chains

with |L| > 4(|T |+1
2 )
n n!. Then there is a copy of T in F that contains only sets

that are contained in some fat chain in L.

Proof. We proceed by induction on |T |. If T is a chain, then the k sets in
any element of L form a copy of T . In particular, it gives the base case of the
induction. So suppose T is not a chain. Then applying Lemma 2, there exists
a leaf t in T and interval I ⊆ T containing t such that h(T \ I) = k and T \ I is
a saturated tree poset. Our aim is to use induction to obtain a copy of T \ I in
F that can be extended to a copy of T . Finding a copy of T \ I is immediate,
but in order to be able to extend it, we need a copy satisfying some additional
properties, described later.

By passing to the opposite poset T ′ of T and considering F , we may assume
that t is a minimal element of T . There exists a maximal chain C in T that
contains I, and we have |C| = k as T is saturated. Then s := |C\I| = k− |I| ≥ 1.

We need several definitions. Let F1 ⊃ F2 ⊃ · · · ⊃ Fs be a chain with |Fj| =
i + k − j for j = 1, . . . , s. Then this chain is a bottleneck if there exists a
family S ⊂ F with |S | < |T | such that for every fat chain F1 ⊃ F2 ⊃ · · · ⊃
Fs ⊃ Fs+1 ⊃ · · · ⊃ Fk in L we have S ∩ {Fs+1, . . . , Fk} 6= ∅. Such an S is a
witness to the fact that F1, . . . , Fs is a bottleneck (and we assume all sets of
the witness are contained in Fs). We say that a fat chain is bad if its top s
sets form a bottleneck. A fat chain is good if it is not bad. Observe that if
there is a copy FT\I of T \ I consisting of sets of good fat chains, then we can
extend FT\I to a copy of T . Indeed, as the sets F ′1, . . . , F

′
s representing C \ I

in FT\I do not form a bottleneck and |FT\I| < |T |, there must be a good fat
chain F ′1 ⊃ · · · ⊃ F ′s ⊃ F ′s+1 ⊃ · · · ⊃ F ′k such that F ′s+1, . . . , F

′
k /∈ FT\I, therefore

FT\I∪ {F ′s+1, . . . , F ′k} is a copy of T . Therefore all we need to prove is that there
are enough good fat chains to obtain a copy of T \ I by induction.

Let us bound the number of bad fat chains. If |C ∩F | < s, then C cannot be
bad. We partition maximal chains in 2[n] according to their sth largest set Fs
from F . As the top s sets must form a bottleneck, there is a witness S to this
fact. This means that if C is bad, then C must meet S whose elements are all
contained in Fs. But as |S | < |T | and all sets of 2Fs ∩ F have size between n/4
and 3n/4, the proportion of those chains that do meet S is at most 4|T |/n
(any proper non-empty subset of FS is contained in at most 1/|Fs| proportion
of chains going through Fs). This holds independently of the choice of Fs, thus
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the number of bad fat chains is at most 4|T |
n n!. So the number of good fat

chains is at least

|L|− 4|T |

n
n! ≥

4(
(
|T |+1
2

)
− |T |)

n
n! =

4
(
|T |
2

)
n

n!.

As |T \ I| < |T |, the induction hypothesis implies the existence of a copy of T \ I
among the sets contained in good fat chains, as required. �

The next lemma essentially states that if a a T -free family is contained in the
union of k consecutive levels, then its cardinality is asymptotically at most the
cardinality of the k− 1 largest levels. Formally, let b(i) = bk,n(i) = max{

(
n
j

)
:

i ≤ j ≤ i+ k− 1}. So if i ≤ n/2− k+ 1, then b(i) =
(

n
i+k−1

)
, if i ≥ n/2, then

b(i) =
(
n
i

)
, while if n/2− k+ 1 < i < n/2, then b(i) =

(
n
bn/2c

)
.

Lemma 5 If T is a tree poset of height k, then there exists n0 such that for
n > n0, n/4 ≤ i ≤ 3n/4 − k any F ⊂

⋃i+k−1
j=i

([n]
j

)
of cardinality at least(

k− 1+ k4|T |2

n

)
b(i) contains a copy of T .

Proof. By Lemma 1 we may suppose that T is a saturated tree poset. Assume

F ⊆
⋃i+k−1
j=i

([n]
j

)
is a T -free family that contains at least

(
k− 1+ k4|T |2

n

)
b(i)

sets. Then F ⊆
⋃i+k−1
j=i

([n]
j

)
implies that λn(F) ≥ k− 1+ k4|T |2

n .

Let ε = 4k|T |2/n. Then we can apply Lemma 3 to find 4|T |2n!/n fat chains.
Then we can apply Lemma 4 with k = h(T) to obtain a copy of T in F ,
contradicting the T -free property of F . �

With Lemma 5 in hand, we can now prove Theorem 1. Let us consider a−→
T -free family F . Let T be the poset of

−→
T and let T∗ be the saturated poset

containing T with h(T) = h(T∗) = k - guaranteed by Lemma 1. For any integer
0 ≤ i ≤ n − k + 1, let Fi = {F ∈ F : i ≤ |F| ≤ i + k − 1}. Observe that the
−→
T -free property of F implies that Fi is T∗-free for every i. Note that every
F ∈ F belongs to exactly k families Fi unless |F| < k− 1 or |F| > n− k+ 1. It

is well-known that
∣∣∣( [n]
≤n/4

)
∪
( [n]
≥3n/4

)∣∣∣ = o ( 1n2n), therefore using Lemma 5 we

obtain

k|F |− o
(
1

n
2n
)
≤

3n/4∑
i=n/4

|Fi| ≤
(
k− 1+

k4|T |2

n

) 3n/4∑
i=n/4

b(i)

≤
(
k− 1+

k4|T |2

n

)(
2n + k

(
n

bn/2c

))
.
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After rearranging, we get |F | ≤
(
k−1
k + o(1)

)
2n.

2.2 Proof of Theorem 2

To prove the lower bound, we show a
−→
V2-free family in

−→
Qn of cardinality

2n−1 + 1. Simply take every second level in the hypercube starting from the
(n− 1)st level and also take the vertex corresponding to [n].

We prove the upper bound by induction on n (it is easy to see the base case
n = 2). We will need the following simple claim.

Lemma 6 Let F ⊂ 2[n] is a maximal
−→
V2-free family, then F contains the set

[n] and at least one set of size n− 1.

Proof.[Proof of lemma] First note that [n] can be added to any
−→
V2-free family

as there is only one subset of [n] of size n. Also, if F does not contain any set
of size n− 1, then one such set S can be added to F . Indeed, if we add S, no

copy of
−→
V2 having sets of size n − 1 and n will be created because [n] is the

only set of size n in F ∪ {S}. Furthermore, no copy of
−→
V2 having sets of size

n− 2 and n− 1 will be created as S is the only set of size n− 1 in F ∪ {S}. �
Now we are ready to prove Theorem 2. Let F ⊂ 2[n] be a

−→
V2-free family. For

some x ∈ [n], define

F−
x = {F | F ∈ F , x 6∈ F} and F+

x = {F\{x} | F ∈ F , x ∈ F}.

Then F−
x ,F+

x ⊂ 2[n]\{x} and they are also
−→
V2-free. By induction, we have

|F | = |F−
x |+ |F+

x | ≤ 2n−2 + 1+ 2n−2 + 1 = 2n−1 + 2.

Assume that |F | = 2n−1 + 2. Then |F−
x | = |F+

x | = 2n−2 + 1 must hold for
all x ∈ [n]. By Lemma 6, |F−

x | = 2n−2 + 1 implies that [n]\{x} and at least
one set of size n − 2 are in F . This holds for all x ∈ [n], so all sets of size
n− 1, and at least one set of size n− 2 are in F . However, these would form

a forbidden
−→
V2 in F , contradicting our original assumption on F . This proves

that |F | ≤ 2n−1 + 1.

2.3 Proof of Theorem 3

Let U be a set of vertices in Qn such that the subgraph of Qn induced by U

(i.e., Qn[U]) is
−→
Pk-free. Let F ⊂ 2[n] be a family of subsets corresponding to U.
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First, we will introduce a weight function. For every F ∈ F , let w(F) =
(
n
|F|

)
.

For a maximal chain C, let w(C) =
∑
F∈C∩F w(F) denote the weight of C. Let

Cn denote the set of all maximal chains in [n]. Then

1

n!

∑
C∈Cn

w(C) = 1

n!

∑
C∈Cn

∑
F∈C∩F

w(F) =
1

n!

∑
F∈F

|F|!(n− |F|)!w(F) = |F |.

This means that the average of the weights of the full chains equals the
cardinality of F . Thus, if we can find an upper bound that is valid for the
weight of any chain, then this will be an upper bound on |F | too.

Our assumption that there is no
−→
Pk means that there are no k neighboring

members of F in a chain. For a given chain C, let a1, a2, . . . at denote the sizes
of those elements of C that are not in F . Then 0 ≤ a1 < a2 < · · · < at ≤ n,
a1 ≤ k − 1, n − k + 1 ≤ at and ai+1 − ai ≤ k for all i = 1, 2, . . . t − 1. The
weight of the chain C is

w(C) = 2n −
t∑
i=1

(
n

ai

)
.

We claim that this is maximized when the numbers {a1, a2, . . . at} are all
the numbers between 0 and n which give the same residue when divided by k.

Assume that w(C) is maximized by a different kind of set {a1, a2, . . . at}.
Then there is an index i such that ai+1 − ai < k.

If ai ≤ n
2 then we can decrease the numbers {a1, a2, . . . ai} by 1. (If a1

becomes -1 then we simply remove that number.) The resulting set of numbers
will still satisfy the conditions and w(C) increases. Otherwise, ai+1 >

n
2 must

hold. Similarly, we can increase the numbers {ai+1, ai+2, . . . an} by 1 to achieve
the same result. We proved that

w(C) ≤ 2n − min
j∈[k]

∑
i≡j mod k

(
n

i

)
= max

j∈[k]

 ∑
i6≡j mod k

(
n

i

)
holds for any full chain C. Therefore the same upper bound holds for |F | as
well.
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[1] N. Alon, A. Krech, and T. Szabó, Turán’s theorem in the hypercube,
SIAM Journal on Discrete Mathematics, 21(1):66–72, 2007.

[2] B. Bukh, Set families with a forbidden subposet, The Electronic Journal
of Combinatorics, 16(1):142, 2009.

[3] F. R. Chung, Subgraphs of a hypercube containing no small even cycles,
Journal of Graph Theory, 16(3):273–286, 1992.
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[7] Z. Füredi and L. Özkahya, On 14-cycle-free subgraphs of the hypercube,
Combinatorics, Probability & Computing, 18(5):725, 2009.

[8] Z. Füredi and L. Özkahya, On even-cycle-free subgraphs of the hypercube,
Journal of Combinatorial Theory Series A, 118(6):1816–1819, 2011.
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Abstract. In this investigation, we establish a steady-state solution of
an infinite-space single-server Markovian queueing system with working
vacation (WV), Bernoulli schedule vacation interruption, and impatient
customers. Once the system becomes empty, the server leaves the sys-
tem and takes a vacation with probability p or a working vacation with
probability 1−p, where 0 ≤ p ≤ 1. The working vacation period is inter-
rupted if the system is non empty at a service completion epoch and the
server resumes its regular service period with probability 1−q or carries
on with the working vacation with probability q. During vacation and
working vacation periods, the customers may be impatient and leave the
system. We use a probability generating function technique to obtain the
expected number of customers and other system characteristics. Stochas-
tic decomposition of the queueing model is given. Then, a cost function
is constructed by considering different cost elements of the system states,
in order to determine the optimal values of the service rate during regular
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busy period, simultaneously, to minimize the total expected cost per unit
time by using a quadratic fit search method (QFSM). Further, by taking
illustration, numerical experiment is performed to validate the analytical
results and to examine the impact of different parameters on the system
characteristics.

1 Introduction

Queueing modeling is being employed in a large variety of day-to-day con-
gestion problems as well as in industrial scenarios, such as computer systems,
call centers, web services, communication/telecommunication systems, etc. For
nearly a century, many queueing models have been developed to analyze the
characteristics of many systems and recommendations have been issued to
suggest how to deal with congestion situations. In many queueing scenarios,
when there is no job present in the system, the server may take a vacation
(V) or may provide a service for a secondary job, known as working vacation
(WV). Queueing systems with vacation and working vacation have been the
subject of interest for the queueing theorists. A detailed surveys of the litera-
ture devoted to vacation queues are found in [9], [26], [27], and the references
therein. Working vacation queue was first introduced by [24] in an M/M/1
queueing system. [17] analyzed a single server queue with batch arrivals and
general service time distribution. [28] provided the analysis for an M/G/1

queueing model with multiple vacations and exhaustive service discipline at
which the server works with different rate rather than completely stopping
the service during vacation. [15] provided performance analysis of GI/M/1
queue with working vacations. Then, [23] analyzed the M/M/1 queue with
single and multiple working vacation and impatient customers. They com-
puted closed form solution and various performance measures with stochastic
decomposition for both the working vacation policies. After that, a Markovian
queueing system with two-stage working vacations has been considered by [25].
Recently, [18] examined an infinite-buffer multiserver queue with single and
multiple synchronous working vacations.

In this investigation, we considered vacation interruption policy at which
during working vacation period, the server may come back to the regular
working period without completing the ongoing working vacation. The con-
cept of vacation interruptions was introduced by [13]. After that, [14], [16], and
[31] generated the vacation interruption model for GI/Geo/1, GI/M/1, and
M/G/1 queueing models, respectively. Working vacation queueing system with
service interruption and multi-optional repair was considered by [11]. Then,
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[10] examined system performance measures for an M/G/1 queueing model
with single working vacations and a Bernoulli interruption schedule. [29] stud-
ied the strategic behaviour in a discrete-time working vacation queue with
a Bernoulli interruption schedule. [22] investigated a single server queueing
model with multiple working vacations and vacation interruption where an
arriving customer can balk the system at some particular times. Recently, a
study of an infinite-space single server Markovian queue with working vacation
and vacation interruption was established by [20].

Over recent decade, customer’s impatience becomes the burning issue of pri-
vate and government sector businesses. Thus, an increasing attention has been
seen in queueing systems with impatient customers due to the absence (vaca-
tion) of the server. [1] gave the analysis of customers’ impatience in different
queues with server vacation. Then, vacation queueing models with impatient
customers and a waiting server have been examined by [21]. [30] analyzed
an M/M/1 queue with vacations and impatience timers which depends on
the server’s states. [8] examined a queueing model with feedback, reneging
and retention of reneged customers, multiple working vacations and Bernoulli
schedule vacation interruption. Further, performance and economic analyzes
of different queueing models with vacation/working vacation and customer’s
impatience have been treated by [5, 6], [2, 3], [4], [19, 7], and the references
therein.

In this work, the main objective is to analyze the queueing performance of an
infinite-space single-server working vacation queueing system with Bernoulli
schedule vacation interruption at which whenever the system becomes empty,
the server switches to the vacation period with a certain probability p and
to the working vacation with a complementary probability 1 − p. During the
vacation period, the customers are served at a lower service rate. During this
period, at each service completion instant, if there are customers in the queue,
the server either remains in the working vacation status with probability q, or
switches to the regular service status with probability 1− q. During vacation
and working vacation periods, the customers may get impatient with different
rates and leave the system . In this study, the probability generating function
(PGF) is used to determine the stationary system and queue lengths. The
stochastic decomposition of the queueing model is also provided. Further, the
cost optimization analysis of the system is carried out using quadratic fit search
method (QFSM) in order to minimize the total expected cost of the system
with respect to the service rate during normal busy period.

The rest of the paper is organized as follows. Section 2 describes the queue-
ing system by stating the requisite hypotheses and notations which are needed
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to develop the model. Section 3 is devoted to a practical application of the
proposed queueing model. In Section 4, the steady-state equations governing
the queueing model are constructed and the steady-state solution of the con-
sidered queueing system is obtained, using the probability generating function
technique. In the Section 5, we focus on useful system characteristics in terms
of state probabilities. Section 6 is devoted to the stochastic decomposition of
the queueing system. In Section 7, we construct a cost function. Numerical
analysis has been carried out in Section 8. Finally, we ended the paper with a
conclusion in Section 9.

2 Model description

Consider an infinite-buffer single server Markovian queueing system where the
arriving customers follow Poisson process with rate λ. During the regular ser-
vice period, the customers are served with an exponential rate µb. The server
begins a vacation with probability p or a working vacation with probability
1− p, where 0 ≤ p ≤ 1, at the instant when he finds the system empty. Dur-
ing the working vacation period, the server renders service to the customers
with a lower rate µv(µv < µb). A new busy period starts if the system is non
empty after the end of vacation period or working vacation period. Further,
it is assumed that the working vacation period is interrupted if the system is
non empty at a service completion instant and the server resumes the regular
service period with probability 1 − q or carries on with the working vacation
with probability q. Vacation and working vacation periods are assumed to be
exponentially distributed with rates θ and φ respectively.

Whenever a customer arrives to the system and realizes that the server is
on vacation (resp. working vacation) he activates an exponentially distributed
impatience timer T1 (resp. T2) with parameter ξ (resp. α), where α < ξ. If the
server comes back from his vacation or working vacation before the timer T1
or T2 expires, the customer remains in the system till the completion of his
service. The customer leaves the system and never returns if T1 or T2 expires
while the server is still on vacation or working vacation.

At time t, let L(t) denote the total number of customers in the system and
J(t) denotes the state of the server with

J(t) =


0, when the server is in working vacation period,

1, when the server is in vacation period,

2, when the server is in regular service period.
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Then, the pair {L(t), J(t), t ≥ 0} defines a two dimensional continuous time
discrete state Markov chain with state space E = {((0, 0) ∪ (0, 1)) ∪ (i, j), i =
1, 2, ..., j = 0, 1, 2}. Let Pij = lim

t→∞P {L(t) = i, J(t) = j} denote the stationary

probabilities of the Markov process {L(t), J(t), t ≥ 0}.

Figure 1: State-transition-rate diagram.
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3 Practical application of the queueing model

Reducing energy costs is a major problem in modern information and com-
munication technology (ICT) systems, as the inactive devices in modern ICT
systems consume a significant amount of energy. We consider a ICT system
with a single device, wherein jobs arrive according to a Poisson process with
rate λ. The job processing time is exponentially distributed with rate µb.When
the system work has been done, to reduce energy costs, the device switches
either to off state with probability p or to a lower energy state with a compli-
mentary probability 1 − p wherein it keeps part of its capacity and processes
the incoming jobs with a lower rate µv (µb > µv), which is also exponentially
distributed. The lower energy state can be considered as the working vaca-
tion status of the device. In order to avoid the increasing workload and the
prolonged job sojourn time, once a job arrives at an empty device, the device
processes the job with the rate µv, and begins to move to the regular service
period. The switching process takes time and the processing of the current job
can not be interrupted. Then, at each time of service completion during the
working vacation period, the device can remain in the working vacation period
with probability q or switch to the regular service period with probability1−q.

If the device successfully switches to the regular service period and finds
jobs online, it will process them with rate µb (the working vacation period is
interrupted).

Moreover, we suppose that whenever a customer arrives to the system and
finds that the device is on vacation (resp. working vacation) he activates an im-
patience timer T1, (resp. T1) exponentially distributed with parameter ξ (resp.
α). If the device returns from its vacation/working vacation before the time
expires, the customer stays in the system until his service is completed. How-
ever, if impatience timer expires while the server is still on vacation/working
vacation, the customer abandons the queue, never to return.

4 Stationary Solution of the Model

Using the theory of Markov process, the stationary equations governing the
system are as follows

λP01 = ξP11 + pµbP12, (1)

(λ+ θ+ nξ)Pn,1 = λPn−1,1 + (n+ 1)ξPn+1,1, n ≥ 1, (2)

λP00 = µvP10 + (1− p)µbP1,2, (3)
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(λ+ µv + φ+ (n− 1)α)Pn,0 = λPn−1,0 + (qµv + nα)Pn+1,0, n ≥ 1, (4)

(λ+ µb)P12 = µbP2,2 + θP1,1 + φP1,0 + (1− q)µvP2,0, (5)

(λ+µb)Pn2 = λPn−1,2+θPn,1+φPn,0+µbPn+1,2+(1−q)µvPn+1,0, n ≥ 2. (6)

Define the Probability generating functions (PGFs) as

P0(z) =

∞∑
n=0

Pn,0z
n,

P1(z) =

∞∑
n=0

Pn,1z
n,

P2(z) =

∞∑
n=1

Pn,2z
n,

with P0(1) + P1(1) + P2(1) = 1, P
′
0(z) =

∑∞
n=1 nz

n−1Pn,0, and P ′1(z) =
∑∞
n=1 n

zn−1Pn,1 .
Multiplying equation (2) by zn and summing over n, we get after using equa-
tion (1)

ξ(1− z)P ′1(z) − [λ(1− z) + θ]P1(z) + pµbP12 + θP01 = 0. (7)

Multiplying equation (4) by zn and summing over n, we get after using equa-
tion (3)

αz(1− z)P ′0(z) − [(1− z)(λz− µv + α) + µv(1− q) + zφ]P0(z)
+[zφ− (1− z)(µv − α) + (1− q)(λz+ µv)]P00 + q(1− p)zµbP12 = 0.

(8)

Remark 1 If p = 1, equation (7) becomes

ξ(1− z)P ′1(z) = [λ(1− z) + θ]P1(z) − (µbP12 + θP01),

which matches with the result given in [1].

Remark 2 If q = 1 and p = 0, equation (8) becomes

αz(1−z)P ′0(z)−[(1−z)(λz−µv+α)+zφ]P0(z)+[zφ−(1−z)(µv−α)]P00+µbP12z = 0.

This matches with the result done in [23].
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Remark 3 If q = 1, p = 0 and α = 0, then equation (8) reduces to

P0(z) =
µv(1− z)P00 − z(µbP12 + φP00)

λz2 − z(λ+ µv + φ) + µv
,

which is same as in [24].

Multiplying equation (6) by zn and summing over n, we get after using equa-
tion (5)

(1− z)(λz− µb)P2(z) = (zφ+ (1− q)µv)P0(z) + θzP1(z)

− [(φ+ (λ+ µv)(1− q))P00 + q(1− p)µbP12]z

− µv(1− q)(1− z)P00 − (θP01 + pµbP12).

(9)

Putting z = 1 into equations (7) and (8), we respectively get

θP1(1) = pµbP12 + θP01, (10)

and

[φ+ µv(1− q)]P0(1) = [φ+ (1− q)(λ+ µv)]P00 + (1− p)qµbP12. (11)

4.1 Solution of differential equations

Equation (7) can be rewritten as

P ′1(z) −

[
λ

ξ
+

θ

ξ(1− z)

]
P1(z) +

pµbP12 + θP01
ξ(1− z)

= 0, (12)

for ξ 6= 0 and z 6= 1.
To solve the linear differential equation (12), we multiple both sides of the

equation by I.F = e−
λ
ξ
z(1− z)

θ
ξ and integrating from 0 to z, we have

P1(z) = e
λ
ξ
z(1− z)−

θ
ξ

[
P1(0) −

(
pµbP12 + θP01

ξ

)
K(z)

]
, (13)

where

K(z) =

∫ z
0

e−
λ
ξ
x(1− x)

θ
ξ
−1dx.

Then, by letting z→ 1, we obtain

P1(1) = e
λ
ξ

[
P1(0) −

(
pµbP12 + θP01

ξ

)
K(1)

]
lim
z→1(1− z)−

θ
ξ .
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Since 0 ≤ P1(1) =
∑∞
n=0 Pn,1 ≤ 1 and lim

z→1(1− z)−(θ
ξ
) →∞,we must have

P01 = P1(0) =

(
pµbP12 + θP01

ξ

)
K(1), (14)

which gives
P12 = T0P01, (15)

where T0 =
ξ−θK(1)
pµbK(1)

.

Then, substituting equation (15) into equations (10) and (13), we respectively
get

P1(1) =
ξ

θK(1)
P01, (16)

and

P1(z) = e
λ
ξ
z(1− z)−

θ
ξ

[
1−

K(z)

K(1)

]
P00. (17)

From equations (1) and (15), we get

P11 = U1P01, (18)

where U1 =
λ−pµbT0

ξ .

From equations (2) (for n = 1) and (18), we get

P21 = U2P01, (19)

where U2 = g1U1 −
λ
2ξU0, g1 =

λ+φ+ξ
2ξ and U0 = 1.

From equations (2) (for n = 2) and (18)-(19), we get

P31 = U3P01, (20)

where U3 = g2U2 −
λ
3ξU1 and g2 =

λ+φ+2ξ
3ξ .

Then, recursively, it yields
Pn1 = UnP01,

where

Un =

{
λ−pµbT0

ξ , if n = 1,

gn−1Un−1 −
λ
nξUn−2, if n ≥ 2,

with

gn−1 =
λ+ θ+ (n− 1)ξ

nξ
.
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Next, equation (8) can be expressed as

P ′0(z) −

{
λz−µv+α

zα + φ
α(1−z) +

µv(1−q)
αz(1−z)

}
P0(z) +

{
φ

α(1−z)−
µv−α
zα + (1−q)(zλ+µv)

αz(1−z)

}
P00

+q(1−p)µb
α(1−z) P12 = 0,

for α 6= 0, z 6= 0, and z 6= 1.
Now, in order to solve the above differential equation we multiply it both

sides by I.F = e
−λ
α
zz

(
µvq
α

−1
)
(1−z)

φ+µv(1−q)
α and integrating from 0 to z, we get

P0(z) = z
−
(
µvq
α

−1
)
(1− z)−

(
φ+µv(1−q)

α

){(µv
α

− 1
)
P00A(z)

−
µv(1− q)

α
P00B(z) −

(
φ+ (1− q)λ

α
P00 +

q(1− p)µb
α

P12

)
C(z)

}
,

(21)

where

A(z) =

∫ z
0

e
λ
α
(z−x)x

µvq
α

−2(1− x)
φ+µv(1−q)

α dx,

B(z) =

∫ z
0

e
λ
α
(z−x)x

µvq
α

−2(1− x)
φ+µv(1−q)

α
−1dx,

C(z) =

∫ z
0

e
λ
α
(z−x)x

µvq
α

−1(1− x)
φ+µv(1−q)

α
−1dx.

Taking limit z→ 1 in equation (21), we get

P0(1) =

{(µv
α

− 1
)
A(1)P00 −

µv(1− q)

α
B(1)P00

−

[
(φ+ (1− q)λ)

α
P00 +

q(1− p)µbP12
α

]
C(1)

}
lim
z→1(1− z)−(

φ+µv(1−q)
α

).

Since 0 ≤ P0(1) =
∑∞
n=0 Pn,0 ≤ 1 and lim

z→1(1 − z)−(
φ+µv(1−q)

α
) → ∞,we must

have
P12 = S1P00, (22)

where

S1 =

(µv − α)A(1)C(1) − µv(1− q)
B(1)
C(1) − (φ+ (1− q)λ)

q(1− p)µb

 .
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Substituting equation (22) into equation (21), we get

P0(z) = P00

{(
µv
α − 1

) [
A(z) − A(1)

C(1)C(z)
]

−µv(1−q)
α

[
B(z) − B(1)

C(1)C(z)
]}
z−(µv

α
q−1)(1− z)−(

φ+µv(1−q)
α

).

Substituting equation (22) into equation (11), we obtain

P0(1) = HP00, (23)

where

H =

(µv − α)A(1)C(1) + µv(1− q)
(
1− B(1)

C(1)

)
φ+ µv(1− q)

 .
From equations (15), (16), and (22), we find

P1(1) =
ξS1

θK(1)T0
P00. (24)

From equations (3) and (22), we get

P10 = V1P00. (25)

where V1 =
λ− (1− p)µbS1

µv
.

From equations (4)(for n = 1) and (25), we obtain

P20 = V2P00, (26)

where V2 = f0V1 −
λ

qµv+α
V0, f0 =

λ+µv+φ
qµv+α

and V0 = 1.

From equations (4) (for n = 2) and (25)-(26), we get

P30 = V3P00, (27)

where V3 = f1V2 −
λ

qµv+2α
V1 and f1 =

λ+µv+φ+α
qµv+2α

.

From equations (4)(for n = 3) and (26)-(27), we get

P40 = V4P00, (28)
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where V4 = f2V3 −
λ

qµv+3α
V2 and f2 =

λ+µv+φ+2α
qµv+3α

.

Then, recursively, it yields
Pn0 = VnP00,

where

Vn =


1, if n = 0,
λ−(1−p)µbS1

µv
, if n = 1,

fn−2Vn−1 −
λ

qµv+(n−1)αvn−2, if n ≥ 2,

with

fn−2 =
λ+ µv + φ+ (n− 2)α

qµv + (n− 1)ξ
.

Next, substituting equations (10) and (11) into equation (9), we get

P2(z) =
(zφ+(1−q)µv)P0(z)+θzP1(z)−z(φ+µv(1−q))P0(1)−zθP1(1)

(1−z)(λz−µb)
− µv(1−q)

λz−µb
P00. (29)

Applying L’Hospital’s rule to equation (29), we get

P2(1) =
(φ+ µv(1− q))P

′
0(1) + θP

′
1(1) − µv(1− q)P0(1)

µb − λ
+
µv(1− q)

µb − λ
P00. (30)

This implies

P ′0(1) =
(µb − λ)P2(1) + µv(1− q)(P0(1) − P00) − θP

′
1(1)

φ+ µv(1− q)
. (31)

Equation (7) can be rewritten as

P ′1(z) =
[λ(1− z) + θ]P1(z) − pµbP12 − θP01

ξ(1− z)

Applying L’Hospital’s rule, we have

P ′1(1) =
λ

θ+ ξ
P1(1). (32)

Further, equation (8) can be rewritten as

P ′0(z) =
1

αz(1− z)
([(1− z)(λz− µv + α) + µv(1− q) + zφ]P0(z)

−[zφ− (1− z)(µv − α) + (1− q)(λz+ µv)]P00 − q(1− p)zµbP11) .
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Applying L’Hospital’s rule, we have

P ′0(1) =
(λ+ α− µv − φ)P0(1) + (µv + φ− α+ λ(1− q) + qµb(1− p)S1)P00

α+ φ+ µv(1− q)
.

(33)
Next, substituting equations (32) and (33) into (30), we obtain

P2(1) =

[
(φ+ µv(1− q))(λ+ α− µv − φ)

(α+ φ+ µv(1− q))(µb − λ)
−
µv(1− q)

µb − λ

]
P0(1)

+
λθP1(1)

(θ+ ξ)(µb − λ)
+ (φ+ µv(1− q))[

µv + φ− α− λ(1− q) + qµb(1− p)S1
(α+ φ+ µv(1− q))(µb − λ)

+
µv(1− q)

µb − λ

]
P00.

(34)

Using equations (23)-(24) and (34), and normalization condition, we can get
the value of P00. Next, we need to write Pn,2 in terms of P0,0.
Substituting equations (15), (18), (22), and (25)-(26) into equation (5), we get

P22 = S2P00, (35)

where S2 = (1+ ρ)S1 −
θS1
µbT0

U1 −
φV1+V2µv(1−q)V1

µb
, ρ = λ

µb
.

Substituting equations (15), (19), (22), and (26)-(27) into equation (6) (for
n = 2), we obtain

P32 = S3P00, (36)

where S3 = (1+ ρ)S2 − ρS1 −
θS1
µbT0

U2 −
φV2+µv(1−q)V3

µb
.

Substituting equations (15), (20), (27)-(28), and (35)-(36) into equation (6)
(for n = 3), we find

P42 = S4P00,

where S4 = (1+ ρ)S3 − ρS2 −
θS1
µbT0

U3 −
φV3+µv(1−q)V4

µb
.

Then, recursively, it yields
Pn2 = SnP00,

where

Sn =

{
1, if n = 1,

(1+ ρ)Sn−1 − ρSn−2 −
θS1
µbT0

Un−1 −
φVn−1+µv(1−q)Vn

µb
, if n ≥ 2,

with S0 = 0.
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5 Performance measures

As the steady-state probabilities are obtained one can easily derive the various
performance measures of the model.
− The probability that the system is in working vacation (P0(1)).

P0(1) =

(µv − α)A(1)C(1) + µv(1− q)
(
1− B(1)

C(1)

)
φ+ µv(1− q)

P00.
− The probability that the system is in vacation period (P1(1)).

P1(1) =
ξS1

θK(1)T0
P00.

− The probability that the system is in busy period (P2(1)).

P2(1) =

[
(φ+µv(1− q))(λ+α− µv−φ)

(α+φ+µv(1− q))(µb−λ)
−
µv(1− q)

µb − λ

]
P0(1)+

λθP1(1)

(θ+ ξ)(µb − λ)

+ (φ+µv(1−q))

[
µv+φ−α−λ(1− q)+qµb(1− p)S1

(α+φ+µv(1− q))(µb−λ)
+
µv(1− q)

µb − λ

]
P00

Substituting equation (23) into equation (33), we get the expected number of
customers when the system is on working vacation period (E(L0)).

E(L0)=P
′
0(1)=

[
(λ+α−µv−φ)H+µv+φ−α+λ(1− q)+qµb(1− p)S1

α+ φ+ µv(1− q)

]
P00.

Substituting equation (24) into equation (32), we get the expected number of
customers when the system is on vacation period (E(L1)).

E(L1) = P
′
1(1) =

λξS1
θ(θ+ ξ)K(1)T0

P00.

Equation (9) can be rewritten as

P2(z) =
(zφ+ (1− q)µv)P0(z) + θzP1(z) − z(φ+ µv(1− q))P0(1) − zθP1(1)

((1− z)(λz− µb)

−
µv(1− q)

λz− µb
P00.

Differentiating the above equation and applying L’Hospital’s rule, we get

E(L2) = P
′
2(1) =

φ+µv(1−q)
2(µb−λ)

P ′′0 (1) +
(λµv(1−q)+µbφ)

(µb−λ)2
P ′0(1) +

θ
2(µb−λ)

P ′′1 (1)

+ (λµv(1−q)+µbφ)
(µb−λ)2

P ′0(1) +
λµv(1−q)
(µb−λ)2

(P00 − P0(1)) +
λµv(1−q)
(µb−λ)2

P00.
(37)
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Differentiating equation (7) twice with respect to z and letting z = 1, we obtain

P ′′1 (1)

2
=

λ

θ+ 2ξ
P ′1(1). (38)

Differentiating equation (8) twice with respect to z and letting z = 1, we obtain

P ′′0 (1)

2
=

(λ− µv − φ)P
′
0(1) + λP0(1)

φ+ 2α+ µv(1− q)
. (39)

Substituting equations (38) and (39) into equation (37), we get the expected
number of customer when the server is busy (E(L2)).

E(L2) =
1

µb−λ

[
(φ+µv(1−q))(λ−µv−φ)

φ+2α+µv(1−q)
+ λµv(1−q)+φµb

µb−λ

]
P ′0(1) +

1
µb−λ

×
[
λθ
θ+2ξ+

φµb
µb−λ

]
P ′1(1)+

λµv(1−q)
(µb−λ)2

P00+
λ

µb−λ

[
φ+µv(1−q)

φ+2α+µv(1−q)
− µv(1−q)

µb−λ

]
P0(1).

The expected number of customers in the system can be computed as E(L) =
E(L0) + E(L1) + E(L2).
− The average rate of abandonment of customers due to impatience (Ra).

Ra = α

∞∑
n=0

(n− 1)Pn,0 + ξ

∞∑
n=0

nPn,1 = α(E[L0] − (P0(1) − P00)) + ξE[L1].

6 Stochastic decomposition of the model

The stochastic decomposition structures for the mean queue length and mean
waiting times at stationary state are expressed in the following Theorems.

Theorem 1 If λ < µb, the stationary queue length L can be decomposed into
the sum of two independent random variables as L = L0 + Ld, where L0 is the
stationary queue length of a classical M/M/1 queue without vacations and Ld
is the additional queue length due to the effect of working vacation or vacation
with its pgf as

Ld(z) =
(

1
1−ρ

){[
1− ρz− (φz+µv(1−q))

µb(1−z)

]
P0(z) + z

[
φ+µv(1−q)
µb(1−z)

]
P0(1)

+
[
1− ρz− θz

µb(1−z)

]
P1(z) +

θz
µb(1−z)

P1(1) +
µv(1−q)
µb

P00

}
.

(40)
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Proof. Consider

L(z) = P0(z) + P1(z) + P2(z)

=

[
1+

φz+ µv(1− q)

(1− z)(λz− µb)

]
P0(z) +

[
1+

θz

(1− z)(λz− µb)

]
P1(z)

− z

[
φ+ µv(1− q)

(1− z)(λz− µb)

]
P0(1) −

[
θz

(1− z)(λz− µb)

]
P1(1)−

µv(1− q)

λz− µb
P00

=

(
µb − λ

µb − λz

){[
µb − λz

µb − λ
−

(φz+ µv(1− q))

(µb − λ)(1− z)

]
P0(z)

+ z

[
φ+ µv(1− q)

(1− z)(µb − λ)

]
P0(1) +

[
µb − λz

µb − λ
−

θz

(µb − λ)(1− z)

]
P1(z)

+

[
θz

(1− z)(µb − λ)

]
P1(1) +

µv(1− q)

µb − λ
P00

}
=

(1− ρ)

1− ρz
× Ld(z),

where Ld(z) can be expressed in series expansion as

Ld(z) =

(
1

1− ρ

){[
1− ρz−

(φz+ µv(1− q))

µb(1− z)

]
P0(z) + z

[
φ+ µv(1− q)

µb(1− z)

]
P0(1)

+

[
1− ρz−

θz

µb(1− z)

]
P1(z) +

θz

µb(1− z)
P1(1) +

µv(1− q)

µb
P00

}

=
1

1− ρ

{ ∞∑
n=0

Pn,0z
n − ρ

∞∑
n=0

Pn,0z
n+1 +

φ

µb

∞∑
n=1

∞∑
k=0

Pn+k,0z
n

+
µv(1− q)

µb

∞∑
n=1

∞∑
k=0

Pn+k+1,0z
n +

∞∑
n=0

Pn,1z
n − ρ

∞∑
n=0

Pn,1z
n+1

+
φ

µb

∞∑
n=1

∞∑
k=0

Pn+k,1z
n

}
=

∞∑
n=0

tnz
n,

such that t0 =
1

1− ρ
(P00 + P01), and

tn =
1

1− ρ

{
Pn,0 − ρPn−1,0 +

φ

µb

∞∑
k=0

Pn+k,0 +
µv(1− q)

µb

∞∑
k=0

Pn+k+1,0

+Pn,1 − ρPn−1,1 +
φ

µb

∞∑
k=0

Pn+k,1

}
, n ≥ 1.
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Now, we show that
∑∞
n=0 tn = 1 for tn ∈ [0, 1].

∞∑
n=0

tn =
1

1− ρ

{
(1− ρ)

∞∑
n=0

Pn,0 +
φ

µb

∞∑
n=1

nPn,0 +
(1− q)µv
µb

∞∑
n=1

(n− 1)Pn,0

+ (1− ρ)

∞∑
n=0

Pn,1 +
θ

µb

∞∑
n=1

nPn,1

}

=
1

1− ρ

{
(1− ρ)

∞∑
n=1

Pn,0 +

(
φ+ µv(1− q)

µb

) ∞∑
n=1

nPn,0

−
µv(1− q)

µb

∞∑
n=1

(n− 1)Pn,0 + (1− ρ)

∞∑
n=0

Pn,1 +
θ

µb

∞∑
n=1

nPn,1

}
.

Applying equation (31), we get

∞∑
n=0

tn=
1

1−ρ

{
(1−ρ)

∞∑
n=1

Pn,0 −
µv(1−q)

µb

∞∑
n=1

Pn,0+(1−ρ)

∞∑
n=0

Pn,1+
θ

µb

∞∑
n=1

nPn,1

+

(
φ+ µv(1− q)

µb

)[
(µb − λ)P2(1) + µv(1− q)(P0(1) − P00) − θP

′
1(1)

φ+ µv(1− q)

]}
+

=

∞∑
n=0

Pn,0 + 1− P0(1) − P1(1) −
(1− q)µv
µb(1− ρ)

P00 +
(1− q)µv
µb(1− ρ)

P00 +

∞∑
n=0

Pn,1 = 1.

Hence, Ld(z) is a PGF of the additional queue length due to the Bernoulli
schedule vacation interruption. �

Theorem 2 If λ < µb, the stationary waiting time can be decomposed into
the sum of two independent random variables as W =W0 +Wd, where W0 is
the waiting time of a customer corresponding to classical M/M/1 queue which
has an exponential distribution with the parameter µb(1 − ρ) and Wd is the
additional delay due to due to the effect of working vacation or vacation with
its Laplace-Stieltjes transform (LST).

W∗d(s) =
1

(µb − λ)s

{
[(µb − λ+ s)s− φ(λ− s) − λ(1− q)µv]P0

(
1−

s

λ

)
+ [(µb − λ+ s)s− θ(λ− s)]P1

(
1−

s

λ

)
+(λ− s)(φ+ µv(1− q))P0(1) + (λ− s)θP1(1) + (1− q)µvsP00

}
.
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Proof. The relationship between the probability generating function L and
LST of waiting time [12] is given by

L(z) =W∗(λ(1− z)).

Assume that s = λ(1− z), so z = 1− s
λ and 1− z = s

λ . Applying the relations
in equation (40), we obtain the desired result. �

7 Cost model

Practically, queueing managers are interested in minimizing operating cost
of unit time. In this part of paper, we first formulate a steady-state expected
cost function per unit time, where the service rate (µb) is the decision variable.
Our main goal is to determine the optimum value of µb in order to minimize
the expected cost function. To this end, we have to define the following cost
elements:

� C1 : Cost per unit time when the server is on working during regular
busy period.

� C2 : Cost per unit time when the server is on vacation period.

� C3 : Cost per unit time when the server is on busy period.

� C4 : Cost per service per unit time during regular busy period.

� C5 : Cost per service per unit time during working vacation period.

� C6 : Cost per unit time when a customer reneges.

� C7 : Holding cost per customer per unit time.

Let Tc be the total expected cost per unit time of the system:

Tc = C1P0(1) + C2P1(1) + C3P2(1) + µbC4 + µvC5 + C6Rren + C7E[L].

7.1 The optimization study

In this subsection we focus on the optimization of the service rate (µb) in
different cases in order to minimize the cost function Tc. We solve the stated
optimization problem using QFSM method.
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Given a 3-point pattern, we can fit a quadratic function through correspond-
ing functional values that has a unique minimum, xq, for the given objective
function Tc(x). Quadratic fit uses this approximation to improve the current
3-point pattern by replacing one of its points with optimum xq. The unique
optimum xq of the quadratic function agreeing with Tc(x) at 3-point operation
(xl, xm, xu) is given by

xq ∼=
1

2

[
Tc(xl)((xm)2−(xu)2)+Tc(xm)((xu)2 − (xl)2)+Tc(xu)((xl)2 − (xm)2)

Tc(xl)(xm − xu)+Tc(xm)(xu − xl) + Tc(xu)(xl − xm)

]
.

The optimization problem can be illustrated mathematically as:

Minimize: Tc(µb) = C1P0(1)+C2P1(1)+C3P2(1)+µbC4+µvC5+C6Rren+C7E[L].

Suppose that all system parameters have fixed values, and the only con-
trolled parameter is the service rate (µb).

8 Numerical results

In this section, we provide numerical experiments to illustrate how different
system parameters affect some system characteristics.

The system parameters chosen are presented in Tables and Figures given in
the following items:

� Table 1 and Figure 2 : λ = 2.4, µv = 3.0, p = 0.3, q = 0.8, θ = 1.8, φ =
0.8, α = 0.1, and ξ = 1.9.

� Table 2 : µv = 2.6, p = 0.4, θ = 1.4, φ = 0.8, α = 0.1, and ξ = 1.2.

� Table 3 : λ = 3.2, q = 0.6, θ = 1.1, φ = 0.7, α = 0.3, and ξ = 1.7.

� Table 4 : λ = 3.0, q = 0.7, θ = 0.8, φ = 0.2, µv = 2.4, and p = 0.4.

� Table 5 : λ = 2.8, q = 0.8, α = 0.2, ξ = 1.5, µv = 2.2, and p = 0.4.

� Figure 3 : µb = 4.5, µv = 2.6, α = 0.1, ξ = 1.2, φ = 0.8, p = 0.4, and
θ = 1.4.

� Figure 4 : λ = 3.4, µv = 2.6, α = 0.1, ξ = 1.2, φ = 0.8, and θ = 1.4.
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� Figure 5 : µb = 4.7, q = 0.9, α = 0.2, ξ = 1.2, φ = 0.3, θ = 0.7, and
p = 0.4.

� Figures 6-8 : λ = 3.0, µb = 4.5, µv = 2.6, q = 0.7, ξ = 1.2, θ = 1.4, and
p = 0.4.

� Figures 7-9 : λ = 3.0, µb = 4.5, µv = 2.6, q = 0.7, α = 0.4, φ = 0.6, and
p = 0.5.

Table 1: Search for the optimum service rate µ∗b during regular busy period.
µl µm µu Tc(µl) Tc(µm) Tc(µu) µq Tc(µq)
5.100000 5.400000 5.700000 410.484439 394.420852 391.963589 5.604179 391.910733
5.400000 5.604179 5.700000 394.420852 391.910733 391.963589 5.645648 391.857148
5.604179 5.645648 5.700000 391.910733 391.857148 391.963589 5.643959 391.856942
5.604179 5.643959 5.645648 391.910733 391.856942 391.857148 5.643089 391.856912
5.604179 5.643089 5.643959 391.910733 391.856912 391.856942 5.643048 391.856912
5.604179 5.643048 5.643089 391.910733 391.856912 391.856912 5.643033 391.856912
5.604179 5.643033 5.643048 391.910733 391.856912 391.856912 5.643032 391.856912
5.604179 5.643032 5.643033 391.910733 391.856912 391.856912 5.643031 391.856912
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Figure 2: Effect of µb on Tc.
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Table 2: Optimal values of µ∗b and Tc(µ∗b) for different values of λ and q̄.

λ = 3.5 λ = 4.5 λ = 5.5

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
q̄ = 0.3 4.862986 352.655384 6.012295 410.465278 7.138987 466.276595
q̄ = 0.6 4.589849 333.020545 5.717871 387.784157 6.829078 440.910714
q̄ = 0.9 4.449532 323.932229 5.563229 377.161323 6.663980 429.046786

Table 3: Optimal values of µ∗b and Tc(µ∗b) for different values of µv and p.

µv = 2.2 µv = 2.5 µv = 2.8

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
p = 0.3 3.607634 279.308457 3.600697 286.217326 3.593235 293.371886
p = 0.6 3.313594 257.348468 3.310018 265.481915 3.306657 273.738369
p = 0.9 3.134604 243.821124 3.133657 252.623948 3.132829 261.457645

Table 4: Optimal values of µ∗b and Tc(µ∗b) for different values of α and ξ.

α = 0.1 α = 0.4 α = 0.7

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
ξ = 0.5 4.101791 324.408533 4.026891 319.266445 3.961865 315.540988
ξ = 1.0 4.126021 322.687741 4.045522 317.026212 3.975738 312.850216
ξ = 1.5 4.139667 322.657325 4.056594 316.842638 3.984583 312.525274

Table 5: Optimal values of µ∗b and Tc(µ∗b) for different values of θ and φ.

θ = 0.8 θ = 1.4 θ = 2.0

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
φ = 0.4 4.026534 307.781311 4.023896 302.709691 4.020944 300.922353
φ = 0.8 4.114485 312.824843 4.078663 302.785848 4.071751 298.539176
φ = 1.2 4.228526 319.734187 4.143652 305.561523 4.112019 299.095820
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Figure 3: Effect of λ and q̄ on E[L].
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Figure 7: Effect of θ and ξ on E[L1].
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8.1 Discussion

− From Table 1 and Figure 2, we easily observe that the curve is convex.
This proves that there exists some value of the service rate µb that minimizes
the total expected cost function for the chosen set of model parameters. By
adopting QFSM and choosing the initial 3-point pattern as (µl, µm, µu) =
(5.10, 5.40, 5.70), and after finite iterations, we see that the minimum expected
operating cost per unit time converges to the solution Tc = 391.856912 at
µ∗b = 5.643031.
− From Tables 2-5, we have:
− As intuitively expected, the optimum cost function Tc(µ∗b) increases with

(λ), (µv), and (φ) and decreases with (q), (p), (ξ), (α), and (θ). With the
increasing of the arrival rate, the mean system size increases significantly.
This increases significantly the optimum cost function Tc(µ∗b). Obviously, the
increasing of the vacation rate increases the probability of the regular busy
period which in turns decreases the mean system size. This results in the de-
creasing of the minimum expected cost. Further, the impatience rates either
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during vacation or working vacation periods lead to the decreasing of the mean
number of customers in the systems which implies a decreasing in the opti-
mal expected cost. Then, when the probability with which the server resumes
its service during working vacation period to the regular service increases the
customers are served faster. Consequently, Tc(µ∗b) decreases. The same when
the probability that the server switches to the vacation period at which the
customers may get impatient and leave the system. This yields to the decreas-
ing of the mean number of customers in the system and consequently the total
expected cost decreases accordingly. In addition, the decreasing of the opti-
mum cost function Tc(µ∗b) with (φ) can be due to the choice of the system
parameters.
− The average rate of abandonment (Ra) increases with (ξ) and (α) and

decreases with (θ) and (φ). This is quite reasonable; the higher the impa-
tience rate (resp. vacation and working vacation rate), the greater (resp. the
lower) the average rate of reneging (Ra) and the smaller the mean number of
customers in the system (E(L0)) and (E(L1)).
− With the increasing of (µb) and (q̄), the mean number of customers in

the system decreases. Obviously, the smaller (resp. greater) the mean service
rate during regular busy period (resp. the probability that the server switches
to the regular busy period), the higher the mean number of customers served
and the smaller the mean system size during this period (E(L2)).
− As it should be, the service rate (µv) decreases the probability that the

server is in regular period (P2(1)) and increases the probabilities that the server
is on vacation and working vacation periods (P1(1)) and (P0(1)) respectively.
Further, obviously, the increasing of the arrival rate (λ) increases (P0(1)),
(P1(1)), and (P2(1)).

9 Conclusion

The steady-state solution of an infinite-space single-server Markovian queueing
system with working vacation (WV), Bernoulli schedule vacation interruption,
and impatient customers has been presented. The proposed queueing system
can be applied in diverse real life situations of day-to-day as well as indus-
trial congestion problems including call centers, telecommunication networks,
manufacturing system, and so on. The analytical results using probability
generating function (PGF) technique are obtained. The performance indices
derived may be helpful to the decision makers for improving the availability
of the server.
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Abstract. The goal of this paper is to generalize and refine some pre-
vious inequalities between the LP- norms of the sth derivative and of the
polynomial itself, in the case when the zeros are outside of the open unit
disk.

1 Introduction

Let Pn be the class of polynomials P(z) :=
n∑
v=0

avz
v of degree n and P(s)(z) is

its sth derivative. For P ∈ Pn, we have

max
|z|=1

|P′(z)| ≤ nmax
|z|=1

|P(z)| (1)

and for every r ≥ 1,{∫ 2π
0

∣∣∣P′(eiθ)∣∣∣rdθ} 1
r

≤ n

{∫ 2π
0

∣∣∣P(eiθ)∣∣∣rdθ} 1
r

. (2)

The inequality (1) is a classical result of Bernstein [10], where as the inequality
(2) is due to Zygmund [14] who proved it for all trigonometric polynomials of
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degree n and not only for those of the form P(eiθ). Arestov [1] proved that (2)
remains true for 0 < r < 1 as well. If we let r→∞ in (2) we get (1).

The above two inequalities (1) and (2) can be sharpened if we restrict our-
selves to the class of polynomials having no zeros in |z| < 1. In fact, if P ∈ Pn
and P(z) 6= 0 in |z| < 1, then (1) and (2) can be respectively replaced by

max
|z|=1

|P′(z)| ≤ n
2

max
|z|=1

|P(z)| (3)

and {∫ 2π
0

∣∣∣P′(eiθ)∣∣∣rdθ} 1
r

≤ nCr

{∫ 2π
0

∣∣∣P(eiθ)∣∣∣rdθ} 1
r

, (4)

where

Cr =

{
1

2π

∫ 2π
0

∣∣∣1+ eiγ∣∣∣rdγ}−1
r

. (5)

The inequality (3) was conjectured by Erdös and later verified by Lax [9],
where as (4) was proved by De-Bruijn [6] for r ≥ 1. Further, Rahman and
Schmeisser [12] have shown that (4) holds for 0 < r < 1 as well. If we let
r→∞ in inequality (4), we get (3).

In the literature, there already exists various refinements and generalisations
of (3) and (4), for example see Aziz [2], Aziz and Dawood [3], Mir and Baba
[11], Zireh [13] etc.

2 Main results

In this paper, we shall use a parameter β and obtain certain generalisations
and refinements of inequalities (3) and (4).

Theorem 1 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every β ∈ C with
|β| ≤ 1, 1 ≤ s ≤ n and γ ≥ 1,{ 2π∫

0

∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣γdθ} 1
γ

≤ n(n− 1)...(n− s+ 1)Eγ

(
1+

|β|

2s−1

){ 2π∫
0

|P(eiθ)|γdθ

} 1
γ

,

(6)



398 A. Mir

where

Eγ =

{
1

2π

∫ 2π
0

∣∣∣1+ eiα∣∣∣γdα}−1
γ

. (7)

Instead of proving Theorem 1, we prove the following more general result
which includes not only Theorem 1 as a special case, but also leads to several
interesting generalisations and refinements of (3) and (4).

Theorem 2 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every β, δ ∈ C with
|β| ≤ 1, |δ| ≤ 1, 1 ≤ s ≤ n and γ ≥ 1,

{ 2π∫
0

∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

+
δmn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)∣∣∣∣γdθ

} 1
γ

≤ n(n− 1)...(n− s+ 1)Eγ

(
1+

|β|

2s−1

){ 2π∫
0

|P(eiθ)|γdθ

} 1
γ

,

(8)

where m= min|z|=1|P(z)| and Eγ is defined by (7).

Now we present and discuss some consequences of these results. First, we point
out that inequalities involving polynomials in the Chebyshev norm on the unit
circle in the complex plane are a special case of the polynomial inequalities
involving the integral norm. For example if we let γ→∞ in (6), noting that
Eγ → 1

2 we get the following result.

Corollary 1 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every β ∈ C with
|β| ≤ 1 and 1 ≤ s ≤ n,

max
|z|=1

∣∣∣∣zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣
≤ n(n− 1)...(n− s+ 1)

2

(
1+

|β|

2s−1

)
max
|z|=1

|P(z)|.

(9)

If we take s = 1 in (9), we get the following generalization of (3).
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Corollary 2 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every β ∈ C with
|β| ≤ 1 ,

max
|z|=1

∣∣∣∣zP ′(z) +
βn

2
P(z)

∣∣∣∣ ≤ n2 (1+ |β|)max
|z|=1

|P(z)|. (10)

Remark 1 For β = 0, (10) reduces to (3). It should be noted that inequality
(10) can also be obtained by simply applying the triangle inequality to the
left hand side of it and estimating the first of the resulting terms directly by
inequality (3).

Next, we show that Theorem 2 implies other inequalities in the Chebyshev
norm on the unit circle of a polynomial. If we let γ → ∞ in (8) and choose
the argument of δ suitably with |δ| = 1, we get the following result.

Corollary 3 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every β ∈ C with
|β| ≤ 1 and 1 ≤ s ≤ n,

max
|z|=1

∣∣∣∣zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣
≤ n(n− 1)...(n− s+ 1)

2

{(
1+

|β|

2s−1

)
max
|z|=1

|P(z)|

−

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)
m

}
,

(11)

where m= min|z|=1|P(z)|.
Taking s = 1 in inequality (11), we get the following refinement of (10).

Corollary 4 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every β ∈ C with
|β| ≤ 1,

max
|z|=1

∣∣∣∣zP ′(z)+
βn

2
P(z)

∣∣∣∣ ≤ n2
{
(1+ |β|)max

|z|=1
|P(z)|−

(∣∣∣∣1+ β2
∣∣∣∣− ∣∣∣∣β2

∣∣∣∣
)
m

}
, (12)

where m= min|z|=1|P(z)|.
When β = 0, the above inequality (12) recovers a result of Aziz and Dawood

[1]. Several other interesting results easily follow from Theorem 2 and here, we
mention a few of these. Taking β = 0 in (8), we immediately get the following
result.
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Corollary 5 c2.5 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every δ ∈ C
with |δ| ≤ 1, 1 ≤ s ≤ n and γ ≥ 1,

{ 2π∫
0

∣∣∣eisθP(s)(eiθ) + δmn(n− 1)...(n− s+ 1)

2

∣∣∣γdθ} 1
γ

≤ n(n− 1)...(n− s+ 1)Eγ

{ 2π∫
0

|P(eiθ)|γdθ

} 1
γ

,

(13)

where m= min|z|=1|P(z)| and Eγ is defined by (7).
For s = 1 and δ = 0, inequality (13) reduces to inequality (4).
Letting γ → ∞ in (13) and choosing the argument of δ with δ = 1, we get

the following interesting generalization of a result of Aziz and Dawood [1].

Corollary 6 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for 1 ≤ s ≤ n, we have

max
|z|=1

|P(s)(z)| ≤ n(n− 1)...(n− s+ 1)

2

(
max
|z|=1

|P(z)|− min
|z|=1

|P(z)|

)
. (14)

For the proof of Theorem 2, we need the following lemmas.

3 Lemmas

Lemma 1 Let F ∈ Pn and F(z) has all its zeros in |z| ≤ 1. If P(z) is a
polynomial of degree n such that

|P(z)| ≤ |F(z)| for |z| = 1,

then for any β ∈ C with |β| ≤ 1 and 1 ≤ s ≤ n,∣∣∣∣zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣
≤
∣∣∣∣zsF(s)(z) + βn(n− 1)...(n− s+ 1)

2s
F(z)

∣∣∣∣ for |z| ≥ 1.

The above lemma is due to Hans and Lal [8].
By applying Lemma 1 to polynomials P(z) and zn min|z|=1 |P(z)|, we get the

following result.
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Lemma 2 If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for every β ∈ C
with |β| ≤ 1, 1 ≤ s ≤ n,∣∣∣∣zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣
≥ n(n− 1)...(n− s+ 1)|z|n

∣∣∣∣1+ β

2s

∣∣∣∣min
|z|=1

|P(z)| for |z| ≥ 1.

Lemma 3 If P ∈ Pn and P(z) 6= 0 in |z| < 1, then for every β ∈ C with
|β| ≤ 1, 1 ≤ s ≤ n and |z| = 1,∣∣∣∣zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣
≤
∣∣∣∣zsQ(s)(z) +

βn(n− 1)...(n− s+ 1)

2s
Q(z)

∣∣∣∣
− n(n− 1)...(n− s+ 1)

{∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
}
m,

where Q(z) = znP( 1z̄ ) and m = min|z|=1 |P(z)|.

Proof of Lemma 3.3. If P(z) has a zero on |z| = 1, then m = 0 and the
result follows by Lemma 1. Henceforth, we suppose that all the zeros of P(z) lie
in |z| > 1 and so m > 0, we have |λm| < |P(z)| on |z| = 1 for any λ with |λ| < 1.

It follows by Rouche’s theorem that the polynomial G(z) = P(z) − λm has

no zeros in |z| < 1. Therefore, the polynomial H(z) = znG( 1z̄ ) = Q(z) −mλ̄zn

will have all its zeros in |z| ≤ 1. Also |G(z)| = |H(z)| for |z| = 1. On applying
Lemma 1, we get for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n and |z| ≥ 1,∣∣∣zsG(s)(z)+

βn(n− 1)...(n− s+ 1)

2s
G(z)

∣∣∣
≤
∣∣∣zsH(s)(z) +

βn(n− 1)...(n− s+ 1)

2s
H(z)

∣∣∣.
Equivalently∣∣∣zsP(s)(z)+βn(n− 1)...(n− s+ 1)

2s
(P(z) − λm)

∣∣∣
≤

∣∣∣∣∣(zsQ(s)(z) − λ̄mn(n− 1)...(n− s+ 1)zn
)
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+
βn(n− 1)...(n− s+ 1)

2s
(Q(z) − λ̄mzn)

∣∣∣∣∣.
This implies that∣∣∣∣(zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

)
−
βn(n− 1)...(n− s+ 1)

2s
λm

∣∣∣∣
≤
∣∣∣∣(zsQ(s)(z) +

βn(n− 1)...(n− s+ 1)

2s
Q(z)

)
− λ̄mn(n− 1)...(n− s+ 1)zn

(
1+

β

2s

)∣∣∣∣.
(15)

Since Q(z) has all its zeros in |z| ≤ 1, therefore, by Lemma 3.2 we have for
every β ∈ C with |β| ≤ 1 and |z| ≥ 1,∣∣∣∣zsQ(s)(z) +

βn(n− 1)...(n− s+ 1)

2s
Q(z)

∣∣∣∣
≥ n(n− 1)...(n− s+ 1)|z|n

∣∣∣∣1+ β

2s

∣∣∣∣min
|z|=1

|Q(z)|

= n(n− 1)...(n− s+ 1)|z|n
∣∣∣∣1+ β

2s

∣∣∣∣m.
(16)

Now choosing a suitable argument of λ in the left-hand side of (15), in view
of (16), we get for |z| = 1,∣∣∣∣zsP(s)(z)+βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣− |λ|n(n− 1)...(n− s+ 1)

∣∣∣∣ β2s
∣∣∣∣m

≤
∣∣∣∣zsQ(s)(z)+

βn(n− 1)...(n− s+ 1)

2s
Q(z)

∣∣∣∣
− n(n− 1)...(n− s+ 1)

∣∣∣∣1+ β

2s

∣∣∣∣|λ|m.
Equivalently ∣∣∣∣zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣
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≤
∣∣∣∣zsQ(s)(z)+

βn(n− 1)...(n− s+ 1)

2s
Q(z)

∣∣∣∣
− n(n− 1)...(n− s+ 1)

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣)|λ|m.

Letting |λ|→ 1, we get for every β ∈ C with |β| ≤ 1 and |z| = 1,∣∣∣∣zsP(s)(z) + βn(n− 1)...(n− s+ 1)

2s
P(z)

∣∣∣∣
≤
∣∣∣∣zsQ(s)(z)+

βn(n− 1)...(n− s+ 1)

2s
Q(z)

∣∣∣∣
− n(n− 1)...(n− s+ 1)

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣)m,

which completes the proof of Lemma 3
The following lemma is due to Aziz and Rather [5].

Lemma 4 If A,B,C are non-negative real numbers such that B+C ≤ A, then
for every real number α,∣∣(A− C)eiα + (B+ C)

∣∣ ≤ ∣∣Aeiα + B∣∣.
Lemma 5 If P ∈ Pn and Q(z) = znP( 1z̄ ), then for each α, 0 ≤ α < 2π and
γ > 0, we have

2π∫
0

2π∫
0

∣∣P′(eiθ) + eiαQ′(eiθ)
∣∣γdθdα ≤ 2πnγ 2π∫

0

∣∣P(eiθ)∣∣γdθ.
The above lemma is due to Aziz and Rather [4].

4 Proof of the Theorem

Proof of Theorem 2.2. Since P ∈ Pn, P(z) 6= 0 in |z| < 1 and Q(z) = znP( 1z̄ ),
therefore, for each α, 0 ≤ α < 2π, F(z) = P(z) + eiαQ(z) ∈ Pn and we have

F(s)(z) = P(s)(z) + eiαQ(s)(z),
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which is clearly a polynomial of degree n − s, 1 ≤ s ≤ n. By the repeated
application of inequality (2), we have for each γ ≥ 1,

2π∫
0

∣∣P(s)(eiθ) + eiαQ(s)(eiθ)
∣∣γdθ

≤ (n− s+ 1)γ
2π∫
0

∣∣P(s−1)(eiθ) + eiαQ(s−1)(eiθ)
∣∣γdθ

...

≤ (n− s+ 1)γ(n− s+ 2)γ...(n− 1)γ
2π∫
0

∣∣P′(eiθ) + eiαQ′(eiθ)
∣∣γdθ.

(17)

Integrating (17) with respect to α on [0, 2π] and using Lemma 4 we get

2π∫
0

2π∫
0

∣∣P(s)(eiθ) + eiαQ(s)(eiθ)
∣∣γdθdα

≤ 2π(n− s+ 1)γ(n− s+ 2)γ...(n− 1)γnγ
2π∫
0

|P(eiθ)|γdθ.

(18)

Now by Lemma 3 for each θ, 0 ≤ θ < 2π, β ∈ C with |β| ≤ 1 and 1 ≤ s ≤ n,∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣
+
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)

≤
∣∣∣∣eisθQ(s)(eiθ) +

βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣
−
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)
.

(19)

Taking

A =

∣∣∣∣eisθQ(s)(eiθ) +
βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣,
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B =

∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣
and

C =
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)

in Lemma 3.4, so that by (19),

B+ C ≤ A− C ≤ A,

we get for every real α,∣∣∣∣∣
{∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣
+
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)}

+ eiα

{∣∣∣∣eisθQ(s)(eiθ) +
βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣
−
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)}∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣
+ eiα

∣∣∣eisθQ(s)(eiθ) +
βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣∣∣∣∣.
This implies for each γ ≥ 1,

2π∫
0

∣∣∣∣F(θ) + eiαG(θ)∣∣∣∣γ ≤
2π∫
0

∣∣∣∣∣
∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

+ eiα
∣∣∣∣eisθQ(s)(eiθ) +

βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣
∣∣∣∣∣
γ

dθ,

(20)
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where

F(θ) =

∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣
+
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)
,

and

G(θ) =

∣∣∣∣eisθQ(s)(eiθ) +
βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣
−
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)
.

Integrating both sides of(20) with respect to α from 0 to 2π, we get for each
γ ≥ 1,

2π∫
0

2π∫
0

∣∣∣F(θ) + eiαG(θ)∣∣∣γdθdα
≤

2π∫
0

{ 2π∫
0

∣∣∣∣∣
∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣
+ eiα

∣∣∣∣eisθQ(s)(eiθ) +
βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣
∣∣∣∣∣
γ

dα

}
dθ

=

2π∫
0

{ 2π∫
0

∣∣∣∣∣
(
eisθP(s)(eiθ) +

βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

)

+ eiα

(
eisθQ(s)(eiθ) +

βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

)∣∣∣∣∣
γ

dα

}
dθ

=

2π∫
0

{ 2π∫
0

∣∣∣∣∣eisθ(P(s)(eiθ) + eiαQ(s)(eiθ)
)

+
βn(n− 1)...(n− s+ 1)

2s

(
P(eiθ) + eiαQ(eiθ)

)∣∣∣∣∣
γ

dα

}
dθ.
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Therefore, it follows by Minkowski’s inequality that for γ ≥ 1,

{ 2π∫
0

2π∫
0

∣∣∣F(θ) + eiαG(θ)∣∣∣γdθdα} 1
γ

≤

{ 2π∫
0

2π∫
0

∣∣∣eisθ(P(s)(eiθ) + eiαQ(s)(eiθ)
)

+
βn(n− 1)...(n− s+ 1)

2s

(
P(eiθ) + eiαQ(eiθ)

)∣∣∣γdθdα} 1
γ

≤

{ 2π∫
0

2π∫
0

∣∣∣P(s)(eiθ) + eiαQ(s)(eiθ)
∣∣∣γdθdα} 1

γ

+
|β|n(n− 1)...(n− s+ 1)

2s

{ 2π∫
0

2π∫
0

∣∣∣P(eiθ) + eiαQ(eiθ)
∣∣∣γdθdα} 1

γ

.

(21)

For 0 ≤ θ < 2π, it can be easily verified that

nP(eiθ) − eiθP′(eiθ) = ei(n−1)θQ′(eiθ)

and

nQ(eiθ) − eiθQ′(eiθ) = ei(n−1)θP′(eiθ).

Hence

nP(eiθ) + eiαnQ(eiθ) = eiθP′(eiθ) + ei(n−1)θQ′(eiθ)

+ eiα
(
eiθQ′(eiθ) + ei(n−1)θP′(eiθ)

)
,

which gives

n|P(eiθ) + eiαQ(eiθ)| ≤ |P′(eiθ) + eiαQ′(eiθ)|+ |Q′(eiθ) + eiαP′(eiθ)|

= 2|P′(eiθ) + eiαQ′(eiθ)|.
(22)
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Using (18), (22) and Lemma in (21), we get for every γ ≥ 1, β ∈ C with |β| ≤ 1
and 1 ≤ s ≤ n,{ 2π∫

0

2π∫
0

∣∣∣F(θ) + eiαG(θ)∣∣∣γdθdα} 1
γ

≤ (2π)
1
γn(n− 1)...(n− s+ 1)

(
1+

|β|

2s−1

){ 2π∫
0

|P(eiθ)|γdθ

} 1
γ

.

(23)

Now for every real α and t ≥ 1, it is easy to verify that

|t+ eiα| ≥ |1+ eiα|.

Observe that for every γ ≥ 1 and a, b ∈ C such that |b| ≥ |a|, we have

2π∫
0

|a+ beiα|γdα ≥ |a|γ
2π∫
0

|1+ eiα|γdα. (24)

Indeed, if a = 0, the above inequality (24) is obvious. In case of a 6= 0, we get

2π∫
0

∣∣∣∣1+ eiαba
∣∣∣∣dα =

2π∫
0

∣∣∣∣1+ eiα∣∣∣∣ba
∣∣∣∣∣∣∣∣dα =

2π∫
0

∣∣∣∣∣∣∣∣ba
∣∣∣∣+ eiα∣∣∣∣dα

≥
2π∫
0

∣∣∣∣1+ eiα∣∣∣∣γdα.
If we take

a = F(θ),

b = G(θ),

because |b| ≥ |a| from (19), we get from (24) that

2π∫
0

|F(θ) + eiαG(θ)|γdα ≥ |F(θ)|γ
2π∫
0

|1+ eiα|γdα. (25)
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Integrating both sides of (25) with respect to θ from 0 to 2π, we get from (23),
that{ 2π∫

0

|1+ eiα|γdα

2π∫
0

(∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣
+
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
))γ

dθ

} 1
γ

≤ (2π)
1
γn(n− 1)...(n− s+ 1)

(
1+

|β|

2s−1

){ 2π∫
0

|P(eiθ)|γdθ

} 1
γ

.

(26)

Now using the fact that for every δ ∈ C with |δ| ≤ 1,∣∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

+
δmn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)∣∣∣∣∣ ≤

∣∣∣∣∣eisθP(s)(eiθ)
+
βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣∣
+
mn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)
,

we get from (26) that for every γ ≥ 1,{ 2π∫
0

∣∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

+
δmn(n− 1)...(n− s+ 1)

2

(∣∣∣∣1+ β

2s

∣∣∣∣− ∣∣∣∣ β2s
∣∣∣∣
)∣∣∣∣∣

γ

dθ

} 1
γ

≤ (2π)
1
γn(n− 1)...(n− s+ 1){
2π∫
0

|1+ eiα|γdα

} 1
γ

(
1+

|β|

2s−1

){ 2π∫
0

|P(eiθ)|γdθ

} 1
γ

,

which is equivalent to (8) and this completes the proof of Theorem 2
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Note. Given a polynomial P(z) =
n∑
v=0

avz
v ∈ Pn, we associate with it the

polynomial

P̄(z) := P(z̄) =

n∑
v=0

avz
v

and

Q(z) := znP(
1

z̄
) =

n∑
v=0

an−vz
v.

If P(z) ≡ αQ(z), where |α| = 1, then P(z) is said to be self-inversive.
It was shown by Dewan and Govil [7] that the inequality (4) is still valid
if the condition that P(z) 6= 0 in |z| < 1 is replaced by the condition that
P(z) = αQ(z), |α| = 1. Here we present the following result for self-inversive
polynomials.
Preposition. If P ∈ Pn is self-inverse, then for every β ∈ C, 1 ≤ s ≤ n and

γ ≥ 1, { 2π∫
0

∣∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣∣
γ} 1

γ

≤ n(n− 1)...(n− s+ 1)Eγ

(
1+

|β|

2s−1

){ 2π∫
0

|P(eiθ)|γdθ

} 1
γ

,

where Eγ is defined by (7).
Proof. Since P ∈ Pn is a self-inversive polynomial, therefore, P(z) ≡ αQ(z),

where |α| = 1 and Q(z) = znP( 1z̄ ) ∈ Pn. This implies for every β ∈ C and
1 ≤ s ≤ n, ∣∣∣∣eisθP(s)(eiθ) + βn(n− 1)...(n− s+ 1)

2s
P(eiθ)

∣∣∣∣
=

∣∣∣∣eisθQ(s)(eiθ) +
βn(n− 1)...(n− s+ 1)

2s
Q(eiθ)

∣∣∣∣ ,
for all z ∈ C so that∣∣∣eisθP(s)(eiθ) + βn(n−1)...(n−s+1)

2s P(eiθ)
∣∣∣∣∣∣eisθQ(s)(eiθ) + βn(n−1)...(n−s+1)

2s Q(eiθ)
∣∣∣ = 1.
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Now proceeding similarly as in the proof of Theorem 2, the preposition
follows.
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Abstract. The bucket recursive tree is a natural multivariate struc-
ture. In this paper, we apply a trivariate generating function approach
for studying of the depth and distance quantities in this tree model with
variable bucket capacities and give a closed formula for the probability
distribution, the expectation and the variance. We show as j→∞, lim-
iting distributions are Gaussian. The results are obtained by presenting
partial differential equations for moment generating functions and solving
them.

1 Introduction

Trees are defined as connected graphs without cycles, and their properties are
basics of graph theory. For example, a connected graph is a tree, if and only
if the number of edges equals the number of nodes minus 1 [5]. Furthermore,
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Key words and phrases: bucket recursive trees, trivariate generating function, partial
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each pair of nodes is connected by a unique path. A rooted tree is a tree
with a countable number of nodes, in which a particular node is distinguished
from the others and called the root node. A recursive tree with n nodes is an
unordered rooted tree, where the nodes are labelled by distinct integers from
{1, 2, 3, ..., n} in such a way that the sequence of labels lying on the unique path
from the root node to any node in the tree are always forming an increasing
sequence. Call a random recursive tree a tree chosen uniformly at random from
the (n− 1)! possible recursive trees on n nodes. A random recursive tree can
also be constructed as follows. The node 1 is distinguished as the root. We
imagine the nodes arriving one by one. For k ≥ 2, node k attaches itself to
a node chosen uniformly at random from 1, 2, ..., k − 1 (for more information
and applications, see [11]) .

Mahmoud and Smythe introduced bucket recursive trees as a generalization
of random recursive trees [10]. In this model the bucket is a node that can hold
up to b ≥ 1 labels. The capacity of a bucket v (c = c(v)) is defined by the num-
ber of its labels. They applied a probabilistic analysis for studying the height
and depth of the largest label in these trees. Kuba and Panholzer analyzed
these trees as a special instance of bucket increasing trees which is a family of
some combinatorial objects [8]. They obtained exact and limiting distribution
results for the parameters depth of a specified label, descendants of a specified
label and degree of a specified label. A (probabilistic) description of random
bucket recursive trees is given by a generalization of the stochastic growth rule
for ordinary random recursive trees (which are the special instance b = 1),
where a tree grows by progressive attraction of increasing integer labels: when
inserting element n+1 into an existing bucket recursive tree containing n ele-
ments (i.e., containing the labels {1, 2, ..., n}) all n existing elements in the tree
compete to attract the element n + 1, where all existing elements have equal
chance to recruit the new element. If the element winning this competition
is contained in a node with less than b elements (an unsaturated bucket or
node), element n + 1 is added to this node, otherwise if the winning element
is contained in a node with already b elements (a saturated bucket or node),
element n+1 is attached to this node as a new bucket containing only the ele-
ment n+1. Starting with a single bucket as root node containing only element
1 leads after n − 1 insertion steps, where the labels 2, 3, ..., n are successively
inserted according to this growth rule, to a so called random bucket recursive
tree with n elements and maximal bucket-size b. In this paper we consider
a model of bucket trees where the nodes are buckets with variable capacities
labelled with integers 1, 2, · · · , n (not the same capacities as bucket recursive
trees).
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Definition 1 [6] A size-n bucket recursive tree Tn with variable bucket ca-
pacities and maximal bucket size b starts with the root labelled by 1. The tree
grows by progressive attraction of increasing integer labels: when inserting label
j+ 1 into an existing bucket recursive tree Tj, except the labels in the non-leaf
buckets with capacity < b all labels in the tree (containing label 1) compete to
attract the label j+1. For the root node and buckets with capacity b, we always
produce a new bucket j+ 1. But for a leaf with capacity c < b, either the label
j+ 1 is attached to this leaf as a new bucket containing only the label j+ 1 or
is added to that leaf and make a bucket with capacity c+ 1. This process ends
with inserting the label n (i.e., the largest label) in the tree.

Figure 1 illustrates such a tree of size 19 with b = 3.

Figure 1: A bucket recursive tree with variable capacities of buckets with 19
elements and b = 3.

Bucket recursive trees with variable capacities of buckets are appeared in
chemistry, social science, in some computer science applications and further-
more. They are appeared as a model for the spread of epidemics, for pyramid
schemes, for the family trees of preserved copies of ancient texts. In the family
trees, suppose males with the same ethical traits come together in each gener-
ation. Suppose up to 3 people are matched with the same attributes. Then a
bucket recursive trees with variable capacities of buckets with maximal bucket
size 3 is formed. In this case, and in a genealogy of n people, the distance
between two specific individuals is the quantity examined in this article. For
another example, if n atoms in a branching molecular structure are stochasti-
cally labelled with integers 1, 2, ..., n, then atoms in different functional groups
can be considered as the labels of different buckets of a bucket recursive tree
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(the size of the largest functional group is b).
In passing, we give the combinatorial description of our model. Let d(v) be

the out-degree of node v. It will be convenient to define for trees the size |T |

of a tree T via |T | =
∑
v c(v). An increasing labelling of an ordered tree T

is then a labelling of T , where the labels {1, 2, ..., |T |} are distributed amongst
the nodes of T . Then a class T of a new family of bucket-increasing trees can
be defined in the following way: A sequence of non-negative numbers (αk)k≥0
with α0 > 0 and a sequence of non-negative numbers β1, β2, ..., βb−1 is used
to define the weight w(T) of any ordered tree T by w(T) := Πvw(v), where v
ranges over all nodes of T . It is natural that w(v) must be dependent on c(v)
and d(v). Thus the weight w(v) of a node v is given as follows:

w(v) :=

{
αd(v), v is root or complete (c(v) = b)

βc(v), v is incomplete (c(v) < b).
(1)

The above definition is reasonable because the root is the only incomplete
node that has outdegree ≥ 1. Thus for complete nodes and root, the weight is
dependent on the out-degree and described by the sequence αk, whereas for
incomplete nodes except of root the weights are dependent on the capacities.

Furthermore, L(T ) denotes the set of different increasing labelings of the
tree T with distinct integers {1, 2, ..., |T |}, where L(T) := |L(T )| denotes its car-
dinality. Then the family T consists of all trees T together with their weights
w(T) and the set of increasing labelings L(T). For a given degree-weight se-
quence (αk)k≥0 with a degree-weight generating function ϕ(t) :=

∑
k≥0 αkt

k

and a bucket-weight sequence β1, β2, ..., βb−1, we define the exponential gen-
erating function

Tr,k1,...kr(z) :=

∞∑
n=1

Tn,b,r,k1,...kr
zn

n!
, (2)

where Tn,b,r,k1,...kr :=
∑

|T |=nw(T) · L(T) is the total weights. For this model,

Tn,b,r,k1,...kr =
(n− 1)!(b!)n(1−

∑r
i=1 |Pki |)

b
, n ≥ 1

ϕ(Tr,k1,...kr(z)) =
(b− 1)!

1− b!1−
∑r
i=1 |Pki |z

, (3)

where Pki is the set of all trees of size ki and r is the degree of root node [6].
For simplicity, we set Tn,b := Tn,b,r,k1,...,kr and T(z) := Tr,k1,...,kr(z).

Various studies are devoted to a distributional analysis of distances between
random nodes in a lot of tree families of interest. For example, Mahmoud and
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Neininger [9] for binary search trees, Christophi and Mahmoud [1] for the
digital data structure, and Panholzer [13] for simply generated trees. Fewer
studies are made to reveal the distribution of distances between specified nodes
in labelled tree structures. Dobrow [3] and Dobrow and Smythe [4] have shown
a central limit theorem for the distance between the nodes labelled by j and n,
respectively, in a random recursive tree of size n and Devroye and Neininger
[2] have shown a central limit theorem for the distance between the nodes
labelled by j1 and j2 in a random binary search tree of size n. Panholzer and
Prodinger have studied the level of nodes in increasing trees [14]. Kuba and
Panholzer have studied the distribution of distances between specified nodes in
increasing trees [7]. Also Moon studied the distance between nodes in recursive
trees [12].

If we denote by Dn,n the random variable which measures the depth of node
containing label n in the our tree model of size n, then it was shown in [6]

that Dn,n satisfies a central limit law with mean and variance b!
∑r
i=1 |Pki | logn.

More precisely,

P(Dn,n = m) = b!
∑r
i=1 |Pki |

S(n− 1,m)

(n− 1)!
,

E(Dn,n) = Var(Dn,n) = b!
∑r
i=1 |Pki | logn+O(1), (4)

where S(m1,m2) are the signless Stirling numbers of first kind. We study the
random variable level of label j, i.e., the number of edges from the root node
to the bucket containing label j denoted by Dn,j in tree T of size n ≥ j.
In this paper we extend the above results for Dn,n to Dn,j. In passing, we
study the random variable Hn,j, which counts the distance, measured by the
number of edges lying on the connecting path, between bucket containing label
j and bucket containing label n. Finally, we extend our results to the random
variable Hn,i,j which counts the distance between the bucket containing label
i and bucket containing label j in our random tree of size n.

2 The depth of label j

We can to sketch a combinatorial approach to obtain the differential equation
on the trivariate generating function related to the level of an arbitrary label j.
It is better to think of specifically tricolored trees, where the coloring is as fol-
lows: one bucket is colored white (containing label j), all buckets with smaller
labels than the all labels in white bucket are colored black, and all buckets
with larger labels than the white bucket are colored red. We are interested in
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the level of the white bucket. Assume that the out-degree of the root node is
r ≥ 1 and the white bucket of T is not the root node (the case that the white
bucket is the root of the tree corresponds to the initial condition, but does not
appear explicitly in the differential equation itself). Then the white bucket is
located in one of the r subtrees of the root of T ; let us assume that it is in
the first subtree. After order preserving relabellings, each subtree T1, ..., Tr is
a bucket recursive tree with variable capacities of buckets by itself. The first
subtree is again a tricolored increasing tree with one white, j1 black and k1 red
buckets, whereas the remaining r−1 subtrees are only bicolored. For a proper
description of this combinatorial decomposition we use generating functions
which are exponential in both variables z and u, where z marks the black
buckets and u marks the red buckets, i.e.,∑

j≥0

∑
k≥0

fj,k
zj

j!

uk

k!

for sequences fj,k and ∑
j≥0

∑
k≥0

∑
m≥0

fj,k,m
zj

j!

uk

k!
vm

for sequences fj,k,m, where v marks the level of the white bucket. Set fj,k =
Tk+j,b and fj,k,m = P(Dk+j+1,j+1 = m)Tk+j+1,b. Thus the r − 1 bicolored trees
and the tricolored tree lead to

α
−
∑r
i=1 |Pki |

1 Tn,b(z+ u)
r−1L(z, u, v), (5)

just similar to [6] where

L(z, u, v) =
∑
k≥0

∑
j≥0

∑
m≥0

P(Dk+j+1,j+1 = m)Tk+j+1,b
zj

j!

uk

k!
vm.

We recall that the total weights of the r subtrees is

α
−
∑r
i=1 |Pki |

1 Tk1,b · · · Tkr,b.

The level of the white bucket in the tree is one more than the level of the
white bucket in the subtree. This fact leads to a factor v. We additionally get
a factor r, since the white bucket can be in the first, second, ..., r-th subtree.
Furthermore, the root has out-degree r that leads to a factor αr. Thus by
summing over r ≥ 1, (5) leads to

α
−
∑r
i=1 |Pki |

1 vϕ ′(Tn,b(z+ u))L(z, u, v).
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Since the root node labelled by 1 is colored black,

∂

∂z
L(z, u, v) = α

−
∑r
i=1 |Pki |

1 vϕ ′(Tn,b(z+ u))L(z, u, v). (6)

Equation (6) has the general solution

L(z, u, v) = c(u, v) exp

{
α
−
∑r
i=1 |Pki |

1 v

∫ z
0

ϕ ′(Tn,b(t+ u))dt

}
,

with a function c(u, v). Evaluating at z = 0 and adapting to the initial condi-

tion gives now c(u, v) = L(0, u, v) = T ′n,b(u) = α
−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u)). Thus

L(z, u, v) = α
−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u)) exp

{
α
−
∑r
i=1 |Pki |

1 v

∫ z
0

ϕ ′(Tn,b(t+ u))dt

}
= α

−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u))

× exp

α−
∑r
i=1 |Pki |

1 v

∫ z
0

ϕ ′(Tn,b(t+ t))T
′
n,b(t+ u)

α
−
∑r
i=1 |Pki |

1 ϕ(Tn,b(t+ u))
dt


= α

−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u))

(
ϕ(Tn,b(z+ u))

ϕ(Tn,b(u))

)v
= T ′n,b(u)

(
T ′n,b(z+ u)

T ′n,b(u)

)v
. (7)

In the next results we use from the following facts [5]:

[zn]f(qz) = qn[zn]f(z), (8)∑
n≥0

n∑
m=0

S(n,m)
zn

n!
vm =

1

(1− z)v
, (9)

[zn] log

(
1

1− z

)
(1− z)−1 = Hn, (10)

[zn] log2
(

1

1− z

)
(1− z)−1 = H2n −H

(2)
n , (11)

where Hn, the n-th harmonic number and H
(2)
n is the n-th harmonic number of

order 2. In the following lemma we see that distribution of Dn,j is independent
of n.
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Lemma 1 The probabilities P(Dn,j = m) are given by the following formula:

P(Dn,j = m) = b!
∑r
i=1 |Pki |

S(j− 1,m)

(j− 1)!
, j ≤ n (12)

and

E(Dn,j) = b!
∑r
i=1 |Pki |Hj−1,

Var(Dn,j) = b!
∑r
i=1 |Pki |H2j−1(1− b!

∑r
i=1 |Pki |)

+ b!
∑r
i=1 |Pki |(Hj−1 −H

(2)
j−1). (13)

Proof. By (3), (7) and (10),

E(Dn,j) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂L(z, u, v)

∂v

∣∣∣
v=1

= b!
∑r
i=1 |Pki |Hj−1

and by (11),

E(Dn,j(Dn,j − 1)) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂2L(z, u, v)

∂v2

∣∣∣
v=1

= b!
∑r
i=1 |Pki |(H2j−1 −H

(2)
j−1).

Proof of (13) is completed, since Var(Dn,j) = E(Dn,j(Dn,j − 1)) + E(Dn,j) −
E2(Dn,j). By (8), the probability generating function

p(v) =
∑
m≥0

P(Dk+j,j = m)vm =
(j− 1)!k!

Tk+j,b
[zj−1uk]L(z, u, v)

= b!
∑r
i=1 |Pki |

{
(j− 1)!k!

(k+ j− 1)!

(
v+ j− 2

j− 1

)(
k+ j− 1

k

)}
= b!

∑r
i=1 |Pki |

(
v+ j− 2

j− 1

)
.

Thus one gets (12). Therefore the probability generating function and thus
the distribution of Dk+j,j is independent of k. �

As an example, in the a tree family with 100 individuals, the probability
that the distance from the ancestor to the 45th individual is equal to 10 is
calculated from relation (12) under specific conditions. Also, if the ancestor
has 5 children, then the average distance to the 45th individual is

E(D100,45) = H44 =
5884182435213075787

1345655451257488800
.
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Corollary 1 For j = n,

E(Dn,n) = b!
∑r
i=1 |Pki |Hn−1,

Var(Dn,n) = b!
∑r
i=1 |Pki |H2n−1(1− b!

∑r
i=1 |Pki |)

+ b!
∑r
i=1 |Pki |(Hn−1 −H

(2)
n−1).

Theorem 1 As j→∞,

E(Dn,j) = Var(Dn,j) = b!
∑r
i=1 |Pki | log j+O(1), j ≤ n

and

sup
x∈R

∣∣∣∣∣∣P
Dn,j − b!

∑r
i=1 |Pki | log j√

b!
∑r
i=1 |Pki | log j

≤ x

−Φ(x)

∣∣∣∣∣∣ = O
(

1√
log j

)
.

Proof. This is a direct application of the quasi power theorem for v = exp(s)
in probability generating function p(v) [5]. �

3 Distances

In this section we study the random variable Hn,j, which counts the distance,
measured by the number of edges lying on the connecting path, between bucket
containing label j and bucket containing label n in a random bucket recursive
tree T with variable capacities of buckets of size n. Let

W(z, u, v) =
∑
k≥1

∑
j≥1

∑
m≥0

P(Hk+j,j = m)Tk+j,b
zj−1

(j− 1)!

uk−1

(k− 1)!
vm.

Again we apply a combinatorial description involving the counting of 4-colored
bucket recursive tree with variable capacities of buckets. Since the arguments
are very similar to [7] we just sketch the derivation. The combinatorial objects
considered are all possible 4-colored trees of size≥ 2 with a coloring as specified
next. In each tree T the bucket containing the largest label (i.e., n) is colored
green. From the remaining buckets exactly one bucket is colored red (bucket
containing label j), all buckets with smaller labels than the red bucket are
colored black, and all remaining buckets containing labels larger than the red
bucket are colored white. We are interested in the distance between the red
bucket and the green bucket. Finally

∂W(z, u, v)

∂z
= b!−

∑r
i=1 |Pki |ϕ ′(Tn,b(z+ u))W(z, u, v)
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+ b!−
∑r
i=1 |Pki |

v2ϕ ′′(Tn,b(z+ u))(T
′
n,b(z+ u))

2v

(T ′n,b(u)α0)
v−1

(14)

with initial condition

W(0, u, v) = b!−
∑r
i=1 |Pki |

∂

∂u
L(u, 0, v)

= b!−
∑r
i=1 |Pki |vT ′′n,b(u)

(
T ′n,b(u)

α0

)v−1
,

where z counts the black nodes, u the white nodes, and v the distance between
the red and the green label.

Lemma 2 The probabilities P(Hn,j = h) are given by the following formula:

P(Hn,j = h) =
b!

∑r
i=1 |Pki |

(n− 1)
(
n−2
j−1

){ n−j−1∑
`=0

(
n− `− 2

j− 1

)
1

`!
S(`, h− 1)

+

n−j−1∑
k=0

(
n− k− 2

j− 1

) h−2∑
`=0

2`

k!
S(k, h− `− 2)

}
, 1 ≤ j < n.(15)

Proof. The equation (14) has the following consequence:

W(z, u, v) = b!−
∑r
i=1 |Pki |

vT ′′n,b(u)T
′
n,b(z+ u)

T ′n,b(u)

(
T ′n,b(u)

α0

)v−1
+ b!−

∑r
i=1 |Pki |

v2T ′n,b(z+ u)

(T ′n,b(u)α0)
v−1

×
∫ z
0

ϕ ′′(Tn,b(t+ u)(T
′
n,b(t+ u))

2v−1dt. (16)

By (3),

W(z, u, v) =
v

b
.

b!1+v+mv

(1− b!1−mu)v(1− b!1−m(z+ u))

+
v2

bv
b!1−m+v+mv(b− 1)!1−v

(2v− 1)(1− b!1−mu)1−v(1− b!1−m(z+ u))2v

−
v2

bv
b!1−m+v+mv(b− 1)!1−v

(2v− 1)(1− b!1−mu)v(1− b!1−m(z+ u))
,

where m =
∑r
i=1 |Pki |. Thus

P(Hn,j = h) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1vh]W(z, u, v),
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and proof is completed (since these computations are essentially straightfor-
ward, but quite lengthy computations, they are omitted here. Similar consid-
erations are done in [7] where the somewhat simpler recurrences appearing
there are treated analogously). �

Theorem 2 For 1 ≤ j < n,

E(Hn,j) = b!
∑r
i=1 |Pki |

(
Hn−1 +Hj +

1

j
− 2

)
,

Var(Hn,j) = b!
∑r
i=1 |Pki |Hn−1

(
1

j
− 1−

b!
∑r
i=1 |Pki |

j
+ 2b!

∑r
i=1 |Pki |

)
− b!

∑r
i=1 |Pki |Hj

(
3

j
+ 1+

b!
∑r
i=1 |Pki |

j
− 2b!

∑r
i=1 |Pki |

)
+
b!

∑r
i=1 |Pki |

j
(4b!

∑r
i=1 |Pki | − 1) + 4b!

∑r
i=1 |Pki |(2− b!

∑r
i=1 |Pki |)

− b!
∑r
i=1 |Pki |H

(2)
n−1−3b!

∑r
i=1 |Pki |H

(2)
j +b!

∑r
i=1 |Pki |H2n−1(1−b!

∑r
i=1 |Pki |)

+ b!
∑r
i=1 |Pki |H2j (1− b!

∑r
i=1 |Pki |)+2b!

∑r
i=1 |Pki |HjHn−1(1−b!

∑r
i=1 |Pki |)

−
b!2

∑r
i=1 |Pki |

j2
.

Proof. By (10),

E(Hn,j) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂W(z, u, v)

∂v

∣∣∣
v=1

= b!
∑r
i=1 |Pki |

(
Hn−1 +Hj +

1

j
− 2
)
,

and by (11),

E(Dn,j(Dn,j − 1)) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂2W(z, u, v)

∂v2

∣∣∣
v=1

= b!
∑r
i=1 |Pki |Hn−1

(
1

j
− 2

)
− b!

∑r
i=1 |Pki |Hj

(
3

j
+ 2

)
− 2

b!
∑r
i=1 |Pki |

j
+ 10b!

∑r
i=1 |Pki | − b!

∑r
i=1 |Pki |H

(2)
n−1

− 3b!
∑r
i=1 |Pki |H

(2)
j + b!

∑r
i=1 |Pki |H2n−1 + b!

∑r
i=1 |Pki |H2j

+ 2b!
∑r
i=1 |Pki |HjHn−1.
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Proof is completed just similar to the Lemma 1. �

Corollary 2 For 1 ≤ j < n,

E(Hn,j) = Var(Hn,j) = b!
∑r
i=1 |Pki |(logn+ log j) +O(1).

Theorem 3 As n→∞,

Z =
Hn,j − b!

∑r
i=1 |Pki |(logn+ log j)√

b!
∑r
i=1 |Pki |(logn+ log j)

d→N(0, 1),

for arbitrary sequences (n, j(n))n∈N.

Proof. Let m =
∑r
i=1 |Pki | and

ψn,j(v) = E(vHn,j) =
∑
h≥0

vhP(Hn,j = h),

be the probability generating function of Hn,j. Thus

ψn,j(v) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]W(z, u, v)

= v
b!

∑r
i=1 |Pki |

(
n+v−2
n−j−1

)
(n− 1)

(
n−2
j−1

)
+

v2

2v− 1

b!
∑r
i=1 |Pki |

(
n+v−2
n−j−1

)
(n− 1)

(
n−2
j−1

) (
2v+ j− 2

j− 1

)

−
v2

2v− 1

b!
∑r
i=1 |Pki |

(
n+v−2
n−j−1

)
(n− 1)

(
n−2
j−1

) .

Let

µn,j := b!
∑r
i=1 |Pki |(logn+ log j),

σ2n,j = b!
∑r
i=1 |Pki |(logn+ log j),

and

Mn,j(t) = E(etZ) =
∑
z≥0

etzP(Z = z),
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be the moment generating function of

Z = σn,j
−1(Hn,j − µn,j).

Then

Mn,j(t) = e
−
µn,j
σn,jψn,j(e

t
σn,j ).

Now we split the region 1 ≤ j < n into two cases: j big and j ≥ logn, and j
small and j ≤ logn. With the same consideration of [7] proof is completed. �

We get also as a corollary similar results for the random variable Hn,i,j, which
counts the distance between the bucket containing label i and bucket contain-
ing label j in our random tree of size n.

Corollary 3 For 1 ≤ i < j < n,

E(Hn,i,j) = Var(Hn,i,j) = b!
∑r
i=1 |Pki |(log i+ log j) +O(1).

If µn,i,j := b!
∑r
i=1 |Pki |(log i+ log j), σ2n,i,j = b!

∑r
i=1 |Pki |(log i+ log j), then

Z =
Hn,i,j − b!

∑r
i=1 |Pki |(log i+ log j)√

b!
∑r
i=1 |Pki |(log i+ log j)

d→N(0, 1)

for arbitrary sequences (n, i(n), j(n))n∈N.

4 Conclusion

In this paper, we studied the random variable depth of label j in a bucket re-
cursive tree with variable bucket capacities and maximal bucket size b (n ≥ j).
We obtained a closed formula for the probability distribution, the expectation
and the variance. We showed as j→∞, limiting distributions are Gaussian. In
passing, we studied the random variable Hn,j, which counts the distance, mea-
sured by the number of edges lying on the connecting path, between bucket
containing label j and bucket containing label n. Finally, we extend our results
to the random variable Hn,i,j which counts the distance between the bucket
containing label i and bucket containing label j in our random tree of size
n. We obtained this results by presenting partial differential equations for
moment generating functions and solving them.
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Abstract. We give a new solution to the Rhoades’ open problem on the
discontinuity at fixed point via the notion of an S-metric. To do this, we
develop a new technique by means of the notion of a Zamfirescu mapping.
Also, we consider a recent problem called the “fixed-circle problem” and
propose a new solution to this problem as an application of our technique.

1 Introduction and preliminaries

Fixed-point theory has been extensively studied by various aspects. One of
these is the discontinuity problem at fixed points (see [1, 2, 3, 4, 5, 6, 24, 25, 26,
27] for some examples). Discontinuous functions have been widely appeared in
many areas of science such as neural networks (for example, see [7, 12, 13, 14]).
In this paper, we give a new solution to the Rhoades’ open problem (see [28]
for more details) on the discontinuity at fixed point in the setting of an S-
metric space which is a recently introduced generalization of a metric space.
S-metric spaces were introduced in [29] by Sedgi et al., as follows:

Definition 1 [29] Let X be a nonempty set and S : X × X × X → [0,∞) a
function satisfying the following conditions for all x, y, z, a ∈ X :
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S1) S(x, y, z) = 0 if and only if x = y = z,
S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then S is called an S-metric on X and the pair (X,S) is called an S-metric

space.

Relationships between a metric and an S-metric were given as follows:

Lemma 1 [9] Let (X, d) be a metric space. Then the following properties are
satisfied:

1. Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.

2. xn → x in (X, d) if and only if xn → x in (X,Sd).

3. {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).

4. (X, d) is complete if and only if (X,Sd) is complete.

The metric Sd was called as the S-metric generated by d [17]. Some examples
of an S-metric which is not generated by any metric are known (see [9, 17] for
more details).

Furthermore, Gupta claimed that every S-metric on X defines a metric dS
on X as follows:

dS(x, y) = S(x, x, y) + S(y, y, x), (1)

for all x, y ∈ X [8]. However, since the triangle inequality does not satisfied
for all elements of X everywhen, the function dS(x, y) defined in (1) does not
always define a metric (see [17]).

In the following, we see an example of an S-metric which is not generated
by any metric.

Example 1 [17] Let X = R and the function S : X×X×X→ [0,∞) be defined
as

S(x, y, z) = |x− z|+ |x+ z− 2y| ,

for all x, y, z ∈ R. Then S is an S-metric which is not generated by any metric
and the pair (X,S) is an S-metric space.

The following lemma will be used in the next sections.

Lemma 2 [29] Let (X,S) be an S-metric space. Then we have

S(x, x, y) = S(y, y, x).
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In this paper, our aim is to obtain a new solution to the Rhoades’ open
problem on the existence of a contractive condition which is strong enough to
generate a fixed point but which does not force the map to be continuous at
the fixed point. To do this, we inspire of a result of Zamfirescu given in [33].

On the other hand, a recent aspect to the fixed point theory is to consider
geometric properties of the set Fix(T), the fixed point set of the self-mapping
T . Fixed-circle problem (resp. fixed-disc problem) have been studied in this
context (see [6, 18, 19, 20, 21, 22, 23, 26, 27, 30, 31]). As an application,
we present a new solution to these problems. We give necessary examples to
support our theoretical results.

2 Main results

From now on, we assume that (X,S) is an S-metric space and T : X → X is a
self-mapping. In this section, we use the numbers defined as

Mz (x, y) = max

{
ad (x, y) ,

b

2
[d (x, Tx) + d (y, Ty)] ,

c

2
[d (x, Ty) + d (y, Tx)]

}
and

MS
z (x, y) = max

{
aS (x, x, y) , b2 [S (x, x, Tx) + S (y, y, Ty)] ,

c
2 [S (x, x, Ty) + S (y, y, Tx)]

}
,

where a, b ∈ [0, 1) and c ∈
[
0, 12

]
.

We give the following theorem as a new solution to the Rhoades’ open
problem.

Theorem 1 Let (X,S) be a complete S-metric space and T a self-mapping on
X satisfying the conditions

i) There exists a function φ : R+ → R+ such that φ(t) < t for each t > 0
and

S (Tx, Tx, Ty) ≤ φ
(
MS
z (x, y)

)
,

for all x, y ∈ X,
ii) There exists a δ = δ (ε) > 0 such that ε < MS

z (x, y) < ε + δ implies
S (Tx, Tx, Ty) ≤ ε for a given ε > 0.

Then T has a unique fixed point u ∈ X. Also, T is discontinuous at u if and
only if lim

x→uMS
z (x, u) 6= 0.
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Proof. At first, we define the number

ξ = max

{
a,

2

2− b
,

c

2− 2c

}
.

Clearly, we have ξ < 1.
By the condition (i), there exists a function φ : R+ → R+ such that φ(t) < t

for each t > 0 and

S (Tx, Tx, Ty) ≤ φ
(
MS
z (x, y)

)
,

for all x, y ∈ X. Using the properties of φ, we obtain

S (Tx, Tx, Ty) < MS
z (x, y) , (2)

whenever MS
z (x, y) > 0.

Let us consider any x0 ∈ X with x0 6= Tx0 and define a sequence {xn} as
xn+1 = Txn = Tnx0 for all n = 0, 1, 2, 3, .... Using the condition (i) and the
inequality (2), we get

S (xn, xn, xn+1) = S (Txn−1, Txn−1, Txn) ≤ φ
(
MS
z (xn−1, xn)

)
(3)

< MS
z (xn−1, xn)

= max


aS (xn−1, xn−1, xn) ,

b
2 [S (xn−1, xn−1, Txn−1) + S (xn, xn, Txn)] ,
c
2 [S (xn−1, xn−1, Txn) + S (xn, xn, Txn−1)]


= max


aS (xn−1, xn−1, xn) ,

b
2 [S (xn−1, xn−1, xn) + S (xn, xn, xn+1)] ,
c
2 [S (xn−1, xn−1, xn+1) + S (xn, xn, xn)]


= max


aS (xn−1, xn−1, xn) ,

b
2 [S (xn−1, xn−1, xn) + S (xn, xn, xn+1)] ,

c
2S (xn−1, xn−1, xn+1)

 .
Assume that MS

z (xn−1, xn) = aS (xn−1, xn−1, xn). Then using the inequality
(3), we have

S (xn, xn, xn+1) < aS (xn−1, xn−1, xn) ≤ ξS (xn−1, xn−1, xn) < S (xn−1, xn−1, xn)

and so

S (xn, xn, xn+1) < S (xn−1, xn−1, xn) . (4)
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Let MS
z (xn−1, xn) =

b
2 [S (xn−1, xn−1, xn) + S (xn, xn, xn+1)] . Again using the

inequality (3), we get

S (xn, xn, xn+1) <
b

2
[S (xn−1, xn−1, xn) + S (xn, xn, xn+1)] ,

which implies (
1−

b

2

)
S (xn, xn, xn+1) <

b

2
S (xn−1, xn−1, xn)

and hence

S (xn, xn, xn+1) <
b

2− b
S (xn−1, xn−1, xn) ≤ ξS (xn−1, xn−1, xn) .

This yields
S (xn, xn, xn+1) < S (xn−1, xn−1, xn) . (5)

Suppose that MS
z (xn−1, xn) = c

2S (xn−1, xn−1, xn+1) . Then using the in-
equality (3), Lemma 2 and the condition (S2), we obtain

S (xn, xn, xn+1) <
c

2
S (xn−1, xn−1, xn+1) =

c

2
S (xn+1, xn+1, xn−1)

≤ c

2
[S (xn−1, xn−1, xn) + 2S (xn+1, xn+1, xn)]

=
c

2
S (xn−1, xn−1, xn) + cS (xn+1, xn+1, xn)

=
c

2
S (xn−1, xn−1, xn) + cS (xn, xn, xn+1) ,

which implies

(1− c)S (xn, xn, xn+1) <
c

2
S (xn−1, xn−1, xn) .

Considering this, we find

S (xn, xn, xn+1) <
c

2 (1− c)
S (xn−1, xn−1, xn) ≤ ξS (xn−1, xn−1, xn)

and so
S (xn, xn, xn+1) < S (xn−1, xn−1, xn) . (6)

If we set αn = S (xn, xn, xn+1), then by the inequalities (4), (5) and (6), we
find

αn < αn−1, (7)
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that is, αn is a strictly decreasing sequence of positive real numbers whence
the sequence αn tends to a limit α ≥ 0.

Assume that α > 0. There exists a positive integer k ∈ N such that n ≥ k
implies

α < αn < α+ δ(α). (8)

Using the condition (ii) and the inequality (7), we get

S (Txn−1, Txn−1, Txn) = S (xn, xn, xn+1) = αn < α, (9)

for n ≥ k. Then the inequality (9) contradicts to the inequality (8). Therefore,
it should be α = 0.

Now we prove that {xn} is a Cauchy sequence. Let us fix an ε > 0. Without
loss of generality, we suppose that δ (ε) < ε. There exists k ∈ N such that

S (xn, xn, xn+1) = αn <
δ

4
,

for n ≥ k since αn → 0. Using the mathematical induction and the Jachymski’s
technique (see [10, 11] for more details), we show

S (xk, xk, xk+n) < ε+
δ

2
, (10)

for any n ∈ N. At first, the inequality (10) holds for n = 1 since

S (xk, xk, xk+1) = αk <
δ

4
< ε+

δ

2
.

Assume that the inequality (10) holds for some n. We show that the inequality
(10) holds for n+ 1. By the condition (S2), we get

S (xk, xk, xk+n+1) ≤ 2S (xk, xk, xk+1) + S (xk+n+1, xk+n+1, xk+1) .

From Lemma 2, we have

S (xk+n+1, xk+n+1, xk+1) = S (xk+1, xk+1, xk+n+1)

and so it suffices to prove

S (xk+1, xk+1, xk+n+1) ≤ ε.

To do this, we show
MS
z(xk, xk+n) ≤ ε+ δ.
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Then we find

aS(xk, xk, xk+n) < S(xk, xk, xk+n) < ε+
δ

2
,

b

2
[S(xk, xk, xk+1) + S(xk+n, xk+n, xk+n+1)]

<S(xk, xk, xk+1) + S(xk+n, xk+n, xk+n+1)

<
δ

4
+
δ

4
=
δ

2

and

c

2
[S(xk, xk, xk+n+1) + S(xk+n, xk+n, xk+1)]

≤ c
2
[4S(xk, xk, xk+1) + S(xk+1, xk+1, xk+1+n) + S(xk, xk, xk+n)]

= c

[
2S(xk, xk, xk+1) +

S(xk+1, xk+1, xk+1+n)
2

+
S(xk, xk, xk+n)

2

]
< c

[
δ

2
+ ε+

δ

2

]
< ε+ δ.

(11)

Using the definition of MS
z(xk, xk+n), the condition (ii) and the inequalities

(10) and (11), we obtain

MS
z(xk, xk+n) ≤ ε+ δ

and so
S (xk+1, xk+1, xk+n+1) ≤ ε.

Hence we get

S(xk, xk, xk+n+1) < ε+
δ

2
,

whence {xn} is Cauchy. From the completeness hypothesis, there exists a point
u ∈ X such that xn → u for n→∞. Also we get

lim
n→∞Txn = lim

n→∞xn+1 = u.

Now we prove that u is a fixed point of T . On the contrary, assume that u is
not a fixed point of T . Then using the condition (i) and the property of φ, we
obtain

S(Tu, Tu, Txn) ≤ φ(MS
z(u, xn)) < M

S
z(u, xn)
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= max

{
aS(u, u, xn), b2 [S(u, u, Tu) + S(xn, xn, Txn)] ,

c
2 [S(u, u, Txn) + S(xn, xn, Tu)]

}
.

Using Lemma 2 and taking limit for n→∞, we find

S(Tu, Tu, u) < max

{
b

2
S(u, u, Tu), c

2
S(u, u, Tu)

}
< S(Tu, Tu, u),

a contradiction. It should be Tu = u. We show that u is the unique fixed point
of T . Let v be another fixed point of T such that u 6= v. From the condition
(i) and Lemma 2, we have

S(Tu, Tu, Tv) = S(u, u, v) ≤ φ(MS
z(u, v)) < M

S
z(u, v)

= max

{
aS(u, u, v), b2 [S(u, u, Tu) + S(v, v, Tv)] ,

c
2 [S(u, u, Tv) + S(v, v, Tu)]

}
= max {aS(u, u, v), cS(u, u, v)} < S(u, u, v),

a contradiction. So it should be u = v. Therefore, T has a unique fixed point
u ∈ X.

Finally, we prove that T is discontinuous at u if and only if lim
x→uMS

z(x, u) 6=
0. To do this, we can easily show that T is continuous at u if and only if
lim
x→uMS

z(x, u) = 0. Suppose that T is continuous at the fixed point u and

xn → u. Hence we get Txn → Tu = u and using the condition (S2), we find

S(xn, xn, Txn) ≤ 2S(xn, xn, u) + S(Txn, Txn, u)→ 0,

as xn → u. So we get lim
xn→uMS

z(xn, u) = 0. On the other hand, assume

lim
xn→uMS

z(xn, u) = 0. Then we obtain S(xn, xn, Txn) → 0 as xn → u, which

implies Txn → Tu = u. Consequently, T is continuous at u. �

We give an example.

Example 2 Let X = {0, 2, 4, 8} and (X,S) be the S-metric space defined as in
Example 1. Let us define the self-mapping T : X→ X as

Tx =

{
4 ; x ≤ 4
2 ; x > 4

,

for all x ∈ {0, 2, 4, 8}. Then T satisfies the conditions of Theorem 1 with a =
3
4 , b = c = 0 and has a unique fixed point x = 4. Indeed, we get the following
table :

S (Tx, Tx, Ty) = 0 and 3 ≤MS
z (x, y) ≤ 6 when x, y ≤ 4

S (Tx, Tx, Ty) = 4 and 6 ≤MS
z (x, y) ≤ 12 when x ≤ 4, y > 4

S (Tx, Tx, Ty) = 4 and 6 ≤MS
z (x, y) ≤ 12 when x > 4, y ≤ 4

.
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Hence T satisfies the conditions of Theorem 1 with

φ(t) =

{
5 ; t ≥ 6
t
2 ; t < 6

and

δ (ε) =

{
6 ; ε ≥ 3

6− ε ; ε < 3
.

Now we give the following results as the consequences of Theorem 1.

Corollary 1 Let (X,S) be a complete S-metric space and T a self-mapping
on X satisfying the conditions

i) S (Tx, Tx, Ty) < MS
z (x, y) for any x, y ∈ X with MS

z (x, y) > 0,
ii) There exists a δ = δ (ε) > 0 such that ε < MS

z (x, y) < ε + δ implies
S (Tx, Tx, Ty) ≤ ε for a given ε > 0.

Then T has a unique fixed point u ∈ X. Also, T is discontinuous at u if and
only if lim

x→uMS
z (x, u) 6= 0.

Corollary 2 Let (X,S) be a complete S-metric space and T a self-mapping
on X satisfying the conditions

i) There exists a function φ : R+ → R+ such that φ(S(x, x, y)) < S(x, x, y)
and S(Tx, Tx, Ty) ≤ φ(S(x, x, y)),

ii) There exists a δ = δ (ε) > 0 such that ε < t < ε+ δ implies φ(t) ≤ ε for
any t > 0 and a given ε > 0.

Then T has a unique fixed point u ∈ X.

The following theorem shows that the power contraction of the typeMS
z (x, y)

allows also the possibility of discontinuity at the fixed point.

Theorem 2 Let (X,S) be a complete S-metric space and T a self-mapping on
X satisfying the conditions

i) There exists a function φ : R+ → R+ such that φ(t) < t for each t > 0
and

S (Tmx, Tmx, Tmy) ≤ φ
(
MS∗
z (x, y)

)
,

where

MS∗
z (x, y) = max

{
aS (x, x, y) , b2 [S (x, x, T

mx) + S (y, y, Tmy)] ,
c
2 [S (x, x, T

my) + S (y, y, Tmx)]

}
for all x, y ∈ X,
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ii) There exists a δ = δ (ε) > 0 such that ε < MS∗
z (x, y) < ε + δ implies

S (Tmx, Tmx, Tmy) ≤ ε for a given ε > 0.
Then T has a unique fixed point u ∈ X. Also, T is discontinuous at u if and

only if lim
x→uMS∗

z (x, u) 6= 0.

Proof. By Theorem 1, the function Tm has a unique fixed point u. Hence we
have

Tu = TTmu = TmTu

and so Tu is another fixed point of Tm. From the uniqueness of the fixed point,
we obtain Tu = u, that is, T has a unique fixed point u. �

We note that if the S-metric S generates a metric d then we consider The-
orem 1 on the corresponding metric space as follows:

Theorem 3 Let (X, d) be a complete metric space and T a self-mapping on X
satisfying the conditions

i) There exists a function φ : R+ → R+ such that φ(t) < t for each t > 0
and

d(Tx, Ty) ≤ φ (Mz (x, y)) ,

for all x, y ∈ X,
ii) There exists a δ = δ (ε) > 0 such that ε < Mz (x, y) < ε + δ implies

d(Tx, Ty) ≤ ε for a given ε > 0.
Then T has a unique fixed point u ∈ X. Also, T is discontinuous at u if and

only if lim
x→uMz (x, u) 6= 0.

Proof. By the similar arguments used in the proof of Theorem 1, the proof
can be easily obtained. �

3 An application to the fixed-circle problem

In this section, we investigate new solutions to the fixed-circle problem raised
by Özgür and Taş in [19] related to the geometric properties of the set Fix(T)
for a self mapping T on an S-metric space (X,S). Some fixed-circle or fixed-
disc results, as the direct solutions of this problem, have been studied using
various methods on a metric space or some generalized metric spaces (see
[15, 16, 20, 21, 22, 23, 26, 27, 30, 31, 32]).

Now we recall the notions of a circle and a disc on an S-metric space as
follows:

CSx0,r = {x ∈ X : S(x, x, x0) = r}
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and
DSx0,r = {x ∈ X : S(x, x, x0) ≤ r} ,

where r ∈ [0,∞) [20, 29].
If Tx = x for all x ∈ CSx0,r (resp. x ∈ DSx0,r) then the circle CSx0,r (resp. the

disc DSx0,r) is called as the fixed circle (resp. fixed disc) of T (for more details
see [15, 20]).

We begin with the following definition.

Definition 2 A self-mapping T is called an S-Zamfirescu type x0-mapping if
there exist x0 ∈ X and a, b ∈ [0, 1) such that

S(Tx, Tx, x) > 0 =⇒ S(Tx, Tx, x) ≤ max

{
aS(x, x, x0),

b
2 [S(Tx0, Tx0, x) + S(Tx, Tx, x0)]

}
,

for all x ∈ X.

We define the following number:

ρ := inf {S(Tx, Tx, x) : Tx 6= x, x ∈ X} . (12)

Now we prove that the set Fix(T) contains a circle (resp. a disc) by means of
the number ρ.

Theorem 4 If T is an S-Zamfirescu type x0-mapping with x0 ∈ X and the
condition

S(Tx, Tx, x0) ≤ ρ

holds for each x ∈ CSx0,ρ then CSx0,ρ is a fixed circle of T , that is, CSx0,ρ ⊂ Fix(T).

Proof. At first, we show that x0 is a fixed point of T . On the contrary, let Tx0 6=
x0. Then we have S(Tx0, Tx0, x0) > 0. By the definition of an S-Zamfirescu type
x0-mapping and the condition (S1), we obtain

S(Tx0, Tx0, x0) ≤ max

{
aS(x0, x0, x0),

b

2
[S(Tx0, Tx0, x0) + S(Tx0, Tx0, x0)]

}
= bS(Tx0, Tx0, x0),

a contradiction because of b ∈ [0, 1). This shows that Tx0 = x0.
We have two cases:
Case 1: If ρ = 0, then we get CSx0,ρ = {x0} and clearly this is a fixed circle

of T .
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Case 2: Let ρ > 0 and x ∈ CSx0,ρ be any point such that Tx 6= x. Then we
have

S(Tx, Tx, x) > 0
and using the hypothesis we obtain,

S(Tx, Tx, x) ≤ max

{
aS(x, x, x0),

b

2
[S(Tx0, Tx0, x) + S(Tx, Tx, x0)]

}
≤ max {aρ, bρ} < ρ,

which is a contradiction with the definition of ρ. Hence it should be Tx = x

whence CSx0,ρ is a fixed circle of T . �

Corollary 3 If T is an S-Zamfirescu type x0-mapping with x0 ∈ X and the
condition

S(Tx, Tx, x0) ≤ ρ
holds for each x ∈ DSx0,ρ then DSx0,ρ is a fixed disc of T , that is, DSx0,ρ ⊂ Fix(T).

Now we give an illustrative example to show the effectiveness of our results.

Example 3 Let X = R and (X,S) be the S-metric space defined as in Example
1. Let us define the self-mapping T : X→ X as

Tx =

{
x ; x∈ [−3, 3]

x+ 1 ; x/∈ [−3, 3] ,

for all x ∈ R. Then T is an S-Zamfirescu type x0-mapping with x0 = 0, a = 1
2

and b = 0. Indeed, we get

S(Tx, Tx, x) = 2 |Tx− x| = 2 > 0,

for all x ∈ (−∞,−3) ∪ (3,∞). So we obtain

S(Tx, Tx, x) = 2 ≤ max

{
aS (x, x, 0) ,

b

2
[S(0, 0, x) + S(x+ 1, x+ 1, 0)]

}
=

1

2
.2 |x| .

Also we have
ρ = inf {S(Tx, Tx, x) : Tx 6= x, x ∈ X} = 2

and
S(Tx, Tx, 0) = S(x, x, 0) ≤ 2,

for all x ∈ CS0,2 = {x : S(x, x, 0) = 2} = {x : 2 |x| = 2} = {x : |x| = 1}. Conse-
quently, T fixes the circle CS0,2 and the disc DS0,2.
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[17] N. Y. Özgür and N. Taş, Some new contractive mappings on S-metric
spaces and their relationships with the mapping (S25), Math. Sci.
(Springer), 11 (1) (2017), 7–16.
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point, Bull. Malays. Math. Sci. Soc., 43 (1) (2020), 499–517.
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Abstract. In the paper, by a general and fundamental, but non-extensively
circulated, formula for derivatives of a ratio of two differentiable functions
and by a recursive relation of the Hessenberg determinant, the author
finds a new determinantal expression and a new recursive relation of the
Delannoy numbers. Consequently, the author derives a recursive relation
for computing central Delannoy numbers in terms of related Delannoy
numbers.

1 Motivations

The Delannoy numbers, denoted by D(p, q) for p, q ≥ 0, form an array of
positive integers which are related to lattice paths enumeration and other
problems in combinatorics. For more information on their history and status
in combinatorics, please refer to [1] and closely related references therein.
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In [1, Section 2] and [7], the explicit formulas

D(p, q) =

p∑
i=0

(
p

i

)(
q

i

)
2i and D(p, q) =

q∑
i=0

(
q

i

)(
p+ q− i

q

)
were given. It is well known [7] that the Delannoy numbers D(p, q) satisfy a
simple recurrence

D(p, q) = D(p− 1, q) +D(p− 1, q− 1) +D(p, q− 1)

and can be generated by

1

1− x− y− xy
=

∞∑
p,q=0

D(p, q)xpyq.

When taking n = p = q, the numbers D(n) = D(n,n) are known [7] as central
Delannoy numbers which have the generating function

1√
1− 6x+ x2

=

∞∑
n=0

D(n)xk = 1+ 3x+ 13x2 + 63x3 + · · · . (1)

In [6, Theorems 1.1 and 1.3], considering the generating function (1), among
other things, the authors expressed central Delannoy numbers D(n) by an
integral

D(n) =
1

π

∫ 3+2√2
3−2
√
2

1√(
t− 3+ 2

√
2
)(
3+ 2

√
2 − t

) 1

tn+1
dt (2)

and by a determinant

D(n) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0 0 0

a2 a1 1 · · · 0 0 0

a3 a2 a1 · · · 0 0 0
...

...
...

. . .
...

...
...

an−2 an−3 an−4 · · · a1 1 0

an−1 an−2 an−3 · · · a2 a1 1

an an−1 an−2 · · · a3 a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for n ∈ N, where

an =
(−1)n+1

6n

n∑
`=1

(−1)`62`
(2`− 3)!!

(2`)!!

(
`

n− `

)
.
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Making use of the integral expression 2, the authors derived in [5, 6] some new
analytic properties, including some product inequalities and determinantal
inequalities, of central Delannoy numbers D(n).

In this paper, by a general and fundamental, but non-extensively circulated,
formula for derivatives of a ratio of two differentiable functions in [2, p. 40]
and by a recursive relation of the Hessenberg determinant in [3, p. 222, Theo-
rem], we find a new determinantal expression and a new recursive relation of
the Delannoy numbers D(p, q). Consequently, we derive a recursive relation
for computing central Delannoy numbers D(n) in terms of related Delannoy
numbers D(p, q).

2 A determinantal expression of the Delannoy num-
bers

In this section, by virtue of a general and fundamental, but non-extensively
circulated, formula for derivatives of a ratio of two differentiable functions
in [2, p. 40], we find a new determinantal expression of the Delannoy numbers
D(p, q).

Theorem 1 For p, q ≥ 0, the Delannoy numbers D(p, q) can be determinan-
tally expressed by

D(p, q) =
(−1)q

q!

∣∣L(q+1)×1(p) M(q+1)×q(p)
∣∣
(q+1)×(q+1) , (3)

where

L(q+1)×1(p) =
(
〈p〉0, 〈p〉1, . . . , 〈p〉q

)T
,

M(q+1)×q(p) =
(
(−1)i−j

(
i−1
j−1

)
〈p+ 1〉i−j

)
1≤i≤q+1
1≤j≤q

,

〈z〉n =

{
z(z− 1) · · · (z− n+ 1), n ≥ 1;
1, n = 0

is known as the n-th falling factorial of the number z ∈ C, and T denotes
the transpose of a matrix. Consequently, central Delannoy numbers D(n) for
n ≥ 0 can be determinantally expressed as

D(n) =
(−1)n

n!

∣∣L(n+1)×1(n) M(n+1)×n(n)
∣∣
(n+1)×(n+1) . (4)
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Proof. We recall a general and fundamental, but non-extensively circulated,
formula for derivatives of a ratio of two differentiable functions. Let u(t) and
v(t) 6= 0 be two n-th differentiable functions for n ∈ N. Exercise 5) in [2, p. 40]

reads that the n-th derivative of the ratio u(t)
v(t) can be computed by

dn

dxn

[
u(t)

v(t)

]
= (−1)n

∣∣W(n+1)×(n+1)(t)
∣∣

vn+1(t)
, (5)

where U(n+1)×1(t) is an (n + 1) × 1 matrix whose elements satisfy uk,1(t) =

u(k−1)(t) for 1 ≤ k ≤ n + 1, V(n+1)×n(t) is an (n + 1) × n matrix whose

elements meet vi,j(t) =
(
i−1
j−1

)
v(i−j)(t) for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n, and

|W(n+1)×(n+1)(t)| is the determinant of the (n+ 1)× (n+ 1) matrix

W(n+1)×(n+1)(t) =
(
U(n+1)×1(t) V(n+1)×n(t)

)
(n+1)×(n+1) .

It is easy to see that

∂p

∂xp

(
1

1− x− y− xy

)
=

p!(1+ y)p

[1− x− (1+ x)y]p+1
.

Making use of the formula (5) gives

∂p+q

∂yq∂xp

(
1

1− x− y− xy

)
= p!

∂q

∂yq
(1+ y)p

[1− x− (1+ x)y]p+1

= p!
(−1)q

[1− x− (1+ x)y](p+1)(q+1)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1+ y)p [1− x− (1+ x)y]p+1

〈p〉1(1+ y)p−1 (−1)1〈p+ 1〉1(1+ x)1[1− x− (1+ x)y]p

〈p〉2(1+ y)p−2 (−1)2〈p+ 1〉2(1+ x)2[1− x− (1+ x)y]p−1

〈p〉3(1+ y)p−3 (−1)3〈p+ 1〉3(1+ x)3[1− x− (1+ x)y]p−2

...
...

〈p〉q−2(1+ y)p−q+2 (−1)q−2〈p+ 1〉q−2(1+ x)q−2[1− x− (1+ x)y]p−q+3

〈p〉q−1(1+ y)p−q+1 (−1)q−1〈p+ 1〉q−1(1+ x)q−1[1− x− (1+ x)y]p−q+2

〈p〉q(1+ y)p−q (−1)q〈p+ 1〉q(1+ x)q[1− x− (1+ x)y]p−q+1
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0(
1
1

)
[1− x− (1+ x)y]p+1(

2
1

)
(−1)1〈p+ 1〉1(1+ x)1[1− x− (1+ x)y]p(

3
1

)
(−1)2〈p+ 1〉2(1+ x)2[1− x− (1+ x)y]p−1

...(
q−2
1

)
(−1)q−3〈p+ 1〉q−3(1+ x)q−3[1− x− (1+ x)y]p−q+4(

q−1
1

)
(−1)q−2〈p+ 1〉q−2(1+ x)q−2[1− x− (1+ x)y]p−q+3(

q
1

)
(−1)q−1〈p+ 1〉q−1(1+ x)q−1[1− x− (1+ x)y]p−q+2

0 · · ·
0 · · ·(

2
2

)
[1− x− (1+ x)y]p+1 · · ·(

3
2

)
(−1)1〈p+ 1〉1(1+ x)1[1− x− (1+ x)y]p · · ·

...
. . .(

q−2
2

)
(−1)q−4〈p+ 1〉q−4(1+ x)q−4[1− x− (1+ x)y]p−q+5 · · ·(

q−1
2

)
(−1)q−3〈p+ 1〉q−3(1+ x)q−3[1− x− (1+ x)y]p−q+4 · · ·(

q
2

)
(−1)q−2〈p+ 1〉q−2(1+ x)q−2[1− x− (1+ x)y]p−q+3 · · ·

0

0

0

0
...(

q−2
q−2

)
[1− x− (1+ x)y]p+1(

q−1
q−2

)
(−1)〈p+ 1〉1(1+ x)[1− x− (1+ x)y]p(

q
q−2

)
〈p+ 1〉2(1+ x)2[1− x− (1+ x)y]p−1

0

0

0

0
...
0(

q−1
q−1

)
[1− x− (1+ x)y]p+1(

q
q−1

)
(−1)〈p+ 1〉1(1+ x)[1− x− (1+ x)y]p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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→ (−1)qp!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈p〉0 (−1)0〈p+ 1〉0 0

〈p〉1 (−1)1〈p+ 1〉1
(
1
1

)
(−1)0〈p+ 1〉0

〈p〉2 (−1)2〈p+ 1〉2
(
2
1

)
(−1)1〈p+ 1〉1

〈p〉3 (−1)3〈p+ 1〉3
(
3
1

)
(−1)2〈p+ 1〉2

...
...

...

〈p〉q−2 (−1)q−2〈p+ 1〉q−2
(
q−2
1

)
(−1)q−3〈p+ 1〉q−3

〈p〉q−1 (−1)q−1〈p+ 1〉q−1
(
q−1
1

)
(−1)q−2〈p+ 1〉q−2

〈p〉q (−1)q〈p+ 1〉q
(
q
1

)
(−1)q−1〈p+ 1〉q−1

0 · · · 0 0

0 · · · 0 0(
2
2

)
(−1)0〈p+ 1〉0 · · · 0 0(

3
2

)
(−1)1〈p+ 1〉1 · · · 0 0

...
. . .

...
...(

q−2
2

)
(−1)q−4〈p+ 1〉q−4 · · ·

(
q−2
q−2

)
(−1)0〈p+ 1〉0 0(

q−1
2

)
(−1)q−3〈p+ 1〉q−3 · · ·

(
q−1
q−2

)
(−1)1〈p+ 1〉1

(
q−1
q−1

)
(−1)0〈p+ 1〉0(

q
2

)
(−1)q−2〈p+ 1〉q−2 · · ·

(
q
q−2

)
(−1)2〈p+ 1〉2

(
q
q−1

)
(−1)1〈p+ 1〉1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
as x, y→ 0. Consequently, we have

D(p, q) =
1

p!q!

∂p+q

∂yq∂xp

(
1

1− x− y− xy

)
=

(−1)q

q!

∣∣∣∣(〈p〉ij)0≤i≤qj=1

(
(−1)i−j

(
i−1
j−1

)
〈p+ 1〉i−j

)
1≤i≤q+1
1≤j≤q

∣∣∣∣
(q+1)×(q+1)

.

The determinantal expression (3) is thus proved.
From (3), we readily see that, when n = p = q, central Delannoy numbers

D(n) for n ≥ 0 can be expressed as (4). The proof of Theorem 1 is complete. �

3 A recursive relation of the Delannoy numbers

In this section, by virtue of a recursive relation of the Hessenberg determinant
in [3, p. 222, Theorem], we find a recursive relation of the Delannoy numbers
D(p, q).

Theorem 2 For p, q ≥ 0, the Delannoy numbers D(p, q) satisfy the recursive
relation

D(p, q) =

(
p

q

)
+ (−1)q−1

q−1∑
r=0

(−1)r
(
p+ 1

q− r

)
D(p, r). (6)
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Consequently, central Delannoy numbers D(n) for n ≥ 0 satisfy

D(n) = 1+ (−1)n+1
n−1∑
r=0

(−1)r
(
n+ 1

r+ 1

)
D(n, r). (7)

Proof. Let Q0 = 1 and

Qn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1,1 e1,2 0 . . . 0 0

e2,1 e2,2 e2,3 . . . 0 0

e3,1 e3,2 e3,3 . . . 0 0
...

...
...

...
...

...
en−2,1 en−2,2 en−2,3 . . . en−2,n−1 0

en−1,1 en−1,2 en−1,3 . . . en−1,n−1 en−1,n
en,1 en,2 en,3 . . . en,n−1 en,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for n ∈ N. In [3, p. 222, Theorem], it was proved that the sequence Qn for
n ≥ 0 satisfies Q1 = e1,1 and

Qn =

n∑
r=1

(−1)n−ren,r

(
n−1∏
j=r

ej,j+1

)
Qr−1 (8)

for n ≥ 2, where the empty product is understood to be 1. Replacing the
determinant Qr by (−1)r−1(r − 1)!D(p, r − 1) in (3) for 1 ≤ r ≤ n in the
recursive relation (8) and simplifying give

D(p, n− 1) =
〈p〉n−1
(n− 1)!

+ (−1)n
n∑
r=2

(−1)r
〈p+ 1〉n−r+1
(n− r+ 1)!

D(p, r− 2)

which is equivalent to the recursive relation (6).
When n = p = q in (6), we can see that central Delannoy numbers D(n)

satisfy the recursive relation (7). The proof of Theorem 2 is complete. �

Remark 1 This paper is a shortened version of the electronic preprint [4].
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Abstract. For a simple connected graph G of order n having distance
signless Laplacian eigenvalues ρQ1 ≥ ρ

Q
2 ≥ · · · ≥ ρ

Q
n , the distance signless

Laplacian energyDSLE(G) is defined asDSLE(G) =
∑n
i=1

∣∣∣ρQi − 2W(G)
n

∣∣∣,
where W(G) is the Weiner index of G. We show that the complete split
graph has the minimum distance signless Laplacian energy among all
connected graphs with given independence number. Further, we prove
that the graph Kk∨ (Kt∪Kn−k−t), 1 ≤ t ≤ bn−k2 c has the minimum dis-
tance signless Laplacian energy among all connected graphs with vertex
connectivity k.

1 Introduction

A simple and finite graph is denoted by G(V(G), E(G)) (or simply by G when
there is no confusion), where V(G) = {v1, v2, . . . , vn} is its vertex set and E(G)
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Key words and phrases: distance signless Laplacian matrix; independence number; vertex
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is its edge set. The cardinality of V(G) and E(G) are respectively the order
and size of G, and are denoted by n and m. The neighborhood N(v) of a vertex
v is the set of vertices adjacent to v ∈ V(G), and its cardinality is the degree
of v, denoted by dG(v) (we simply write dv if it is clear from the context).
Throughout this paper, G will be connected. The adjacency matrix A = [aij]
of G is a (0, 1)-square matrix of order n whose (i, j)-entry is equal to 1, if vi is
adjacent to vj and equal to 0, otherwise. The diagonal matrix of vertex degrees
di = dG(vi), i = 1, 2, . . . , n associated to G is Deg(G) = diag[d1, d2, . . . , dn].
The real symmetric and positive semi-definite matrices L(G) = Deg(G)−A(G)
and Q(G) = Deg(G) + A(G) are respectively the Laplacian and the signless
Laplacian matrices and their spectrum are respectively the Laplacian spec-
trum and signless Laplacian spectrum of the graph G. Recent work on signless
Laplacian spectrum can be seen in [11, 20, 21, 22]. We use standard terminol-
ogy, Kn denotes a complete graph, Ka,n−a is a complete bipartite graph with
partite sets of cardinality a and n − a. For other undefined notations and
terminology, the readers are referred to [5, 13, 15, 16, 23].

In a connected graph G, the distance between two vertices v1, v2 ∈ V(G),
denoted by d(v1, v2), is the length of a shortest path between v1 and v2. The
diameter of G is the maximum distance between any two pair of vertices of G.
The distance matrix of G, denoted by D(G), is defined as D(G) = [d(vi, vj)]
where vi, vj ∈ V(G). The transmission TrG(v) (or simply by Tr(v), when graph
under consideration is clear) of a vertex v is defined to be the sum of the
distances from v to all other vertices in G, that is, Tr(v) =

∑
u∈V(G)

duv. The

transmission number or Wiener index of a graph G, denoted by W(G), is
the sum of distances between all unordered pairs of vertices in G. Clearly,

W(G) = 1
2

∑
v∈V(G)

Tr(v). For any vertex vi ∈ V(G), the transmission Tr(vi)

is called the transmission degree, shortly denoted by Tri and the sequence
{Tr1, Tr2, . . . , Trn} is called the transmission degree sequence of the graph G.

If Tr(G) = diag[Tr1, Tr2, . . . , Trn] is the diagonal matrix of vertex transmis-
sions of G, the matrices DL(G) = Tr(G) −D(G) and DQ(G) = Tr(G) +D(G)
are respectively called as the distance Laplacian matrix and the distance sign-
less Laplacian matrix of G [3].

If λ1 ≥ λ2 ≥ · · · ≥ λn are the adjacency eigenvalues of a graph G, the energy

of G [12], denoted by E(G), is defined as E(G) =
n∑
i=1

|λi|. The reader is referred

to the book [15] and for some recent work to [4, 9, 10].
Let ρD1 ≥ ρD2 ≥ . . . ≥ ρDn and ρQ1 ≥ ρ

Q
2 ≥ . . . ≥ ρ

Q
n be respectively, the
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distance, and distance signless Laplacian eigenvalues of the graph G. The dis-
tance energy [14] of a graph G is the sum of the absolute values of the distance

eigenvalues of G, that is, DE(G) =

n∑
i=1

|ρDi |. For some recent works on distance

energy, we refer to [2, 6, 8, 18] and the references therein. The distance signless
Laplacian energy DSLE(G) [6] of a connected graph G is defined as

DSLE(G) =

n∑
i=1

|ρ
Q
i −

2W(G)

n
|.

Let σ
′

be the largest positive integer such that ρQ
σ
′ ≥ 2W(G)

n and let BQb (G) =
b∑
i=1

ρ
Q
i be the sum of b largest distance signless Laplacian eigenvalues of G.

Then, using

n∑
i=1

ρ
Q
i = 2W(G), in [6], it is shown that

DSLE(G) = 2

(
B
Q

σ
′ (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

= 2 max
1≤j≤n

(
B
Q
j (G) −

2jW(G)

n

)
.

For some recent works on DSLE(G), see [6, 8, 19].
In the next section, we show that the complete split graph has the minimum

distance signless Laplacian energy among all connected graphs with given
independence number. Further, we show that among all connected graphs
with given vertex connectivity k, the graph Kk∨ (Kt ∪Kn−k−t), 1 ≤ t ≤ bn−k2 c
has the minimum distance signless Laplacian energy.

2 Distance signless Laplacian energy of graphs with
given independence number and connectivity

Let e = vivj be an edge of a graph G such that G − e is connected. Then re-
moving the edge e increases the distance by at least one unit. Similarly adding
an edge decreases the distance by at least one unit. By Perron-Frobenius the-
orem, if each entry of the first non negative matrix majorizes the second non
negative matrix, then their spectrum is also majorized. This is summarized in
next useful result, which can be found in [3].
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Lemma 1 Let G be a connected graph of order n and size m, where m ≥ n
and let G

′
= G− e be a connected graph obtained from G by deleting an edge.

Let ρQ1 (G) ≥ ρ
Q
2 (G) ≥ · · · ≥ ρ

Q
n (G) and ρQ1 (G

′
) ≥ ρQ2 (G

′
) ≥ · · · ≥ ρQn (G

′
)

be respectively, the distance signless Laplacian eigenvalues of G and G
′
. Then

ρ
Q
i (G

′
) ≥ ρQi (G) holds for all 1 ≤ i ≤ n.

Motivated by Lemma 1, we have the following observation, which says that
the complete graph has minimum distance signless Laplacian energy among
all graphs of order n.

Theorem 1 Let G be a connected graph of order n. Then

DSLE(G) ≥ 2
(
n+ b(n− 2) −

2W(G)

n

)
,

equality occurs if and only if G ∼= Kn.

Proof. By Lemma 1, ρQi (G) ≥ ρ
Q
i (Kn) for each i = 1, 2, . . . , n. So using the

definition of BQb (G), we have

B
Q
b (G) ≥ B

Q
b (Kn) = 2n− 2+ (b− 1)(n− 2), (1)

with equality if and only if G ∼= Kn. Let σ
′

be the positive integer such that
ρ
Q

σ
′ ≥ 2W(G)

n . Then using (1) and the definition of distance signless Laplacian
energy, we have

DSLE(G) = 2

(
σ ′∑
i=1

ρ
Q
i (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kn) −

2jW(G)

n

)
= 2

(
n+ b(n− 2) −

2(b− 1)W(G)

n

)
.

By Lemma 1 and Inequality (1), equality holds if and only if G ∼= Kn. �

A graph is complete split, denoted by CSn,α, if it can be partitioned into an
independent set (a subset of vertices of a graph is said to be an independent
set if the subgraph induced by them is an empty graph) on α vertices and
a clique on n − α vertices, such that each vertex of the independent set is
adjacent to every vertex of the clique.

The following result [17] gives the distance signless Laplacian spectrum of
CSn,α.



454 S. Pirzada, B. A. Rather, Rezwan Ul Shaban, Merajuddin

Lemma 2 Let CSn,α be the complete split graph with independence num-
ber α. Then the distance signless Laplacian spectrum of CSn,α is given by{
3n+2α−6±

√
n2+12α2−α(4n+16)+4n+4

2 , (n+ α− 4)[α−1], (n− 2)[n−α−1]
}
.

Since independence number of the complete graph Kn is 1 and its distance
signless Laplacian energy is discussed in Theorem 1, so we assume 2 ≤ α ≤
n − 2, and discuss α = n − 1 separately. The following theorem shows that
among all connected graphs with given independence number α, the complete
split graph CSn,α has the minimum distance signless Laplacian energy.

Theorem 2 Let G be a connected graph of order n ≥ 3 having independence

number α, where n+1−
√
n2+1−10n
2 < α < n+1+

√
n2+1−10n
2 . Then

DSLE(G) ≥

{
2
(
2n+ α(n− 3) + α2 − 2− 2(α+1)W(G)

n

)
, if α ≤ n

2 ,

n+
√
θ+ α(2n− 8) + 2α2 + 2− 4αW(G)

n , if α > n
2 ,

where θ = n2 + 12α2 + 4n − α(4n + 16) + 4. Equality occurs in each of the
inequalities if and only if G ∼= CSn,α.

Proof. Let G be a connected graph of order n ≥ 3 having independence
number α. Let CSn,α be the complete split graph having independence number
α. Clearly, G is a spanning subgraph of CSn,α. Therefore, by Lemma 1, we
have ρQi (G) ≥ ρ

Q
i (CSn,α). Let σ

′
be the largest positive integer such that

ρ
Q

σ
′ (G) ≥ 2W(G)

n . With this information, and using the equivalent definition of
distance signless Laplacian energy, we have

DSLE(G) = 2

(
σ ′∑
i=1

ρ
Q
i (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (CSn,α) −

2jW(G)

n

)
. (2)

By using Lemma 2, the trace is n2+α2−n−α and the average Wiener index is
2W(CSn,α)

n = n2+α2−n−α
n . Therefore, it follows that

3n+2α−6+
√
n2+12α2−α(4n+16)+4n+4

2

is the distance signless Laplacian spectral radius of CSn,α. Next, for the eigen-
value n+ α− 4, we have

n+ α− 4 <
2W(CSn,α)

n
=
n2 + α2 − n− α

n
,
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provided

α2 − (n+ 1)α+ 3n > 0. (3)

Consider the polynomial f(t) = t2 − (n + 1)t + 3n, for 1 ≤ t ≤ n − 1. The
zeros of this polynomial are

x1 =
n+ 1−

√
n2 + 1− 10n

2
and x2 =

n+ 1+
√
n2 + 1− 10n

2
.

This implies that f(t) > 0 for all t < x1 and f(t) > 0 for all t > x2. From this,
for

n+ 1−
√
n2 + 1− 10n

2
< α <

n+ 1+
√
n2 + 1− 10n

2
,

we have n + α − 4 ≥ 2W(CSn,α)
n . Similarly, for the second smallest distance

signless Laplacian eigenvalue, we have

3n+ 2α− 6−
√
n2 + 12α2 − α(4n+ 16) + 4n+ 4

2
<
2W(CSn,α)

n
,

which after simplification implies that

(12−8α)n3+(−12−4α+12α2)n2+(16α−24α2+8α3)n+8α3−4α2−4α4 > 0.
(4)

Inequality (4) is a function of two variables, and putting conditions on the
independence number α we have verified that (4) holds true for α ≤ n

2 . Also,
the smallest distance signless Laplacian eigenvalue n − 2 is always less than
2W(CSn,α)

n . Therefore, we have the following cases to consider.

Case (i). If α ≤ n
2 , then σ

′
= α. Thus, from (2), it follows that

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (CSn,α) −

2jW(G)

n

)

≥ 2

(
α∑
i=1

ρ
Q
i (CSn,α) −

2αW(G)

n

)

= 2

(
3n+ 2α− 6+

√
θ

2
+ (α− 1)(n+ α− 4) −

2αW(G)

n

)

= n+ α(2n− 8) + 2α2 + 2+
√
θ−

4αW(G)

n
,
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where θ = n2 + 12α2 + 4n− α(4n+ 16) + 4.
Case (ii). If α > n

2 , then σ
′
= α+ 1. So, from (2), it follows that

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (CSn,α) −

2jW(G)

n

)

≥ 2

(
α+1∑
i=1

ρ
Q
i (CSn,α) −

2(α+ 1)W(G)

n

)

= 2

(
3n+ 2α− 6+ (α− 1)(n+ α− 4) −

2(α+ 1)W(G)

n

)
= 2

(
2n+ α(n− 3) + α2 − 2−

2(α+ 1)W(G)

n

)
.

Equality occurs in all the inequalities above if and only if equality occurs in
Inequality (2). It is clear that equality occurs in (2) if and only if G ∼= CSn,α.
This shows that equality occurs in all the inequalities above if and only if
G ∼= CSn,α. This completes the proof. �

When order n of graph G increases, we observe that n+1−
√
n2+1−10n
2 ≈ 3 and

n+1+
√
n2+1−10n
2 ≈ n− 2. These remaining cases of independence are discussed

as follows.

Proposition 1 Let G be a graph of order n ≥ 3 with independence number
α ∈ {2, 3}. Then

DSLE(G) ≥

 2
(
3n− 2− 4W(G)

n

)
, if α = 2,

2
(
3n− 4W(G)

n

)
, if α = 3,

equality occurs in first and second inequality if and only G ∼= CSn,2 and CSn,3
respectively.

Proof. By substituting α = 2 in Lemma 2, the distance signless Laplacian

spectrum of CSn,2 is given by
{
1
2(3n− 2±

√
n2 − 4n+ 20), (n− 2)[n−2]

}
and

the Wiener index can be calculated to be 2W(G)
n = n2−n+2

n . Clearly, 1
2(3n −

2 +
√
n2 − 4n+ 20) is the spectral radius and it is always greater or equal

to Wiener index. Next 1
2(3n − 2 −

√
n2 − 4n+ 20) < n2−n+2

n implies that
n2(n2 − 4n + 20) − 16 > 0 which is true for each n ≥ 1. Also, the smallest

distance signless Laplacian eigenvalue is always strictly less than 2W(G)
2 . Thus,
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we have σ
′
= 2 and the distance signless Laplacian energy is given by

DSLE(G) ≥ 2

(
2∑
i=1

ρ
Q
i (G) −

4W(G)

n

)
= 2

(
3n− 2−

4W(G)

2

)
. (5)

By using similar arguments, we can easily prove the second inequality. Equality
holds as in Theorem 2. �

Now, we obtain a lower bound for the distance signless Laplacian energy
when independence number is α = n− 2, or n− 1.

Proposition 2 Let G be a graph of order n ≥ 6 with independence number
α ∈ {n− 2, n− 1}. Then

DSLE(G) ≥

{
n(4n− 19) +

√
9n2 − 52n+ 84+ 26− 4W(G)

n , if α = n− 2,

5n+
√
9n2 − 32n+ 32− 8− 4W(G)

n , if α = n− 1,

equality occurs in first and second inequality if and only G ∼= CSn,n−2 and
CSn,n−1 respectively.

Proof. From Lemma 2, the distance signless Laplacian spectrum of CSn,n−2
with independence number n− 2 is given by{

1

2
(5n− 10±

√
9n2 − 52n+ 84), (2n− 6)[n−3], n− 2

}
and Wiener index is 2W(G)

n = 2n2−6n+6
n . Now, it is clear that 1

2(5n − 10 +√
9n2 − 52n+ 84) is the spectral radius and is always greater or equal to 2W(G)

n .

Also, 2n− 6 < 2W(G)
n implies that 6 > 0, which is always true. For the second

smallest distance signless Laplacian eigenvalue 1
2(5n−10−

√
9n2 − 52n+ 84),

we have 1
2(5n − 10 −

√
9n2 − 52n+ 84) < n2−n+2

n , which implies that n4 −
7n3 + 13n2 + 6n − 18 > 0, and is true for each n ≥ 2. Also, the smallest
distance signless Laplacian eigenvalue is always strictly less than 2W(G)

2 . Thus,

we have σ
′
= n− 2 and the distance Laplacian energy is given by

DSLE(G) ≥ 2

(
n−2∑
i=1

ρ
Q
i (G) −

2(n− 2)W(G)

n

)

=2

(
5n− 10+

√
9n2 − 52n+ 84

2
+ (n− 3)(2n− 6) −

2(n− 2)W(G)

2

)
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=n(4n− 19) + 26+
√
9n2 − 52n+ 84−

4(n− 2)W(G)

2

By using similar arguments, we can easily prove the second inequality. By
Lemma 1, equality holds as in Theorem 2. �

The vertex connectivity of a graph G, denoted by κ(G), is the minimum
number of vertices of G whose deletion disconnects G. Let Fn be the family
of simple connected graphs on n vertices and let

Vkn = {G ∈ Fn : κ(G) ≤ k},

that is, Vkn is the family of graphs with vertex connectivity at most k.

Let G1(V1, E1) and G2(V2, E2) be two graphs on disjoint vertex sets V1
and V2 with orders n1 and n2, respectively. Then their union is the graph
G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The join of graphs G1 and G2, denoted by
G1 ∨G2, is the graph consisting of G1 ∪G2 and all edges joining the vertices
in V1 and the vertices in V2. In other words, the join of two graphs G1 and G2,
denoted by G1 ∨ G2, is the graph obtained from G1 and G2 by joining each
vertex of G1 to every vertex of G2.

The following result [17] gives the distance signless Laplacian spectrum of
the join of a connected graph G1 with the union of two connected graphs G2
and G3, in terms of the adjacency spectrum of the graphs G1, G2 and G3.

Theorem 3 Let Gi be ri regular graphs of orders ni, having adjacency eigen-
values λi,1 = ri ≥ λi,2 ≥ · · · ≥ λi,ni, for i = 1, 2, 3. Then the distance signless
Laplacian eigenvalues of G1∨ (G2∪G3) are (n+n1− r1−λ1,k−4)

[n1−1], (2n−
n1 − r2 − λ2,k − 4)

[n2−1], (2n− n1 − r3 − λ3,k − 4)
[n3−1], where k = 2, 3, . . . , ni,

for i = 1, 2, 3 and n = n1+n2+n3. The remaining three eigenvalues are given
by the equitable quotient matrixn+ 3n1 − 2r1 − 4 n2 n3

n1 2n+ 2n2 − n1 − 2r2 − 4 2n3
n1 2n2 2n+ 2n3 − n1 − 2r3 − 4

 .
Corollary 1 Let G = Kk ∨ (Kt ∪ Kn−t−k), where ∨ is the join and ∪ is the
union, be the connected graph with connectivity k. Then the distance signless

Laplacian spectrum of G consists of the eigenvalue 4n−k−4±
√
k2+16nt−16kt−16t2

2 ,
the eigenvalue (2n−k−t−2) with multiplicity t−1, the eigenvalue (n+t−2)
with multiplicity n− k− t− 1 and the eigenvalue (n− 2) with multiplicity k.
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Proof. Let G1 = Kk, G2 = Kt and G3 = Kn−t−k. Then substituting r1 =
k − 1, r2 = t − 1, and r3 = n − k − t − 1 and noting that the adjacency
spectrum of Kω is {n− 1, (−1)[ω]}, the result follows by Theorem 3. �

The following lemma says that for each G ∈ Vkn, the graph Kk∨(Kt∪Kn−t−k)
has the minimum value of BQi , 1 ≤ i ≤ n − 1, that is, the sum of ith largest
distance signless Laplacian eigenvalues.

Lemma 3 Let G be a connected graph of order n with vertex connectivity k,
1 ≤ k ≤ n− 1. Then

B
Q
i (G) ≥ B

Q
i (Kk ∨ (Kt ∪ Kn−t−k)),

with equality if and only if G ∼= Kk ∨ (Kt ∪ Kn−t−k).

Proof. Let G be a connected graph of order n with vertex connectivity k,
1 ≤ k ≤ n − 1. We first show that BQi (G) ≥ B

Q
i (Kk ∨ (Kt ∪ Kn−t−k)), for all

i = 1, 2, . . . , n. Suppose that 1 ≤ k ≤ n − 2. Then G is the connected graph
of order n with vertex connectivity k for which the spectral parameter BQi (G)

has the minimum possible value. It is clear that G ∈ Vkn and BQi (G) attains the
minimum value for G. Let U ⊆ V(G) be such that G−U is disconnected and
has r connected components, say G1, G2, . . . , Gr. We are required to show that
r = 2. For if, r > 2, then we can construct a new graph G

′
= G+ e by adding

an edge between any two components, say G1 and G2 of G− S, which is such
that G

′ ∈ Vkn. By Lemma 1, we have BQi (G) > B
Q
i (G

′
). This is a contradiction

to the fact BQi (G) attains the minimum possible value for G. Therefore, we
must have r = 2. Further, we claim that each of the components G1, G2 and
the vertex induced subgraph 〈U〉 are cliques. For if one among them say G1
is not a clique, then adding an edge between the two non adjacent vertices of
G1 gives a graph H ∈ Vkn and by Lemma 1, we have BQi (G) > B

Q
i (H). This is

again a contradiction, as BQi (G) attains minimum possible value for G. Again
|U| ≤ k, and we prove that |U| = k. Assume that |U| < k. In a similar way, we
can form a new graph G + e = L ∈ Vkn, where e is adjacent to a vertex of G1
with a vertex of G2. Thus, by Lemma 1, BQi (G) > B

Q
i (H), which is not true.

Hence G must be of the form G = Kk ∨ (Kt ∪ Kn−k−t), 1 ≤ t ≤ bn−k2 c. This

shows that for all G ∈ Vkn, the spectral parameter BQi (G) has the minimum
possible value for the graph Kk ∨ (Kt ∪ Kn−k−t). �

As 1 ≤ k =≤ n− 1 and t ≤ n−k− t, we have t ≤ bn−k2 c. Also, the distance
signless Laplacian energy for k = n − 1 is given by Theorem 1, so we avoid
the case k = n− 1, and thus 1 ≤ t ≤ bn−k2 c makes sense.
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Now, we prove that among all connected graphs with given vertex connec-
tivity k, the graph Kk ∨ (Kt ∪ Kn−k−t) has the minimum distance signless
Laplacian energy.

Theorem 4 Let G ∈ Vkn be a connected graph of order n ≥ 4 with vertex
connectivity number k satisfying a2 ≤ k ≤ a1. Then

DSLE(G) ≥

{ √
D+ 2t(2n− k− t− 1) + k− 4tW(G)

n ,√
D+ 2n2 + n(4t− 2k− 6) − 4kt− 4t2 + 5k+ 4− 4(n−k−1)W(G)

n ,

according as k < n(t+1)
2t − t or k ≥ n(t+1)

2t − t, where

ai =
n2(10t+1)−n3−n(10t2+4t)+8t3±

√
n4−n3(12t+2)+n2(40t2+12t+1)+n(8t3−36t2)+4t4

4(nt−2t2)
and

D = k2 + 16nt − 16kt − 16t2. Equality occurs in each of these inequalities if
and only if G ∼= Kk ∨ (Kt ∪ Kn−k−t) with 1 ≤ t ≤ bn−k2 c.

Proof. Let G be a connected graph of order n with vertex connectivity k,
2 ≤ k ≤ n − 2. Then, by Lemma 3, for each G ∈ Vkn, the spectral parameter
B
Q
i (G) has the minimum possible value for the graph Kk∨ (Kt∪Kn−k−t). That

is, for all G ∈ Vkn, we have BQi (G) ≥ B
Q
i (Kk ∨ (Kt ∪ Kn−t−k)). With this, from

the definition of distance signless Laplacian energy, it follows that

DSLE(G) = 2

(
Bσ ′ (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2jW(G)

n

)
. (6)

By Corollary 1, the distance signless Laplacian spectrum of the graph Kk ∨
(Kt ∪ Kn−t−k) is{
4n−k−4±

√
k2+16nt−16kt−16t2

2 , (2n− k− t− 2)[t−1], (n+ t− 2)[n−k−t−1], (n− 2)k
}

.

Let σ
′

be the number of distance signless Laplacian eigenvalues of Kk ∨

(Kt ∪ Kn−t−k) which are greater than or equal to that 2W(Kk∨(Kt∪Kn−t−k))
n =

n2−n+2nt−2t2−2kt
n . Clearly, 4n−k−4+

√
k2+16nt−16kt−16t2

2 is the distance signless
Laplacian spectral radius of the graph Kk∨(Kt∪Kn−t−k) and is always greater

than 2W(Kk∨(Kt∪Kn−t−k))
n . Now, for the eigenvalue 2n− k− t− 2, we have

2n− k− t− 2 ≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))
n

=
n2 − n+ 2nt− 2t2 − 2kt

n
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which implies that

2t2 − (3n− 2k)t+ (n2 − n− kn) ≥ 0. (7)

The roots of the polynomial g1(t) = 2t
2 − (3n− 2k)t+ (n2 − n− kn) = 0 are

r1 =
3n− 2k+

√
(n− 2k)2 + 8n

2
and r2 =

3n− 2k−
√
(n− 2k)2 + 8n

2
.

This shows that g1(t) ≥ 0, for all t ≤ r2 and t ≥ r1. Since,

t =
n− k

2
<
3n− 2k−

√
(n− 2k)2 + 8n

2
= r2

gives k ≤ n−2, which is the maximum value for connectivity. Thus, g1(t) ≥ 0,
for all t ≤ n−k

2 . For the eigenvalue n+ t− 2, we have

n+ t− 2 ≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))
n

=
n2 − n+ 2nt− 2t2 − 2kt

n

which implies that k ≥ n(t+1)
2t − t. This shows that

n+ t− 2 ≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))
n

,

for all k ≥ n(t+1)
2t − t and

n+ t− 2 <
2W(Kk ∨ (Kt ∪ Kn−t−k))

n
,

for all k < n(t+1)
2t − t. For the second smallest distance signless Laplacian

eigenvalue
4n− k− 4−

√
k2 + 16nt− 16kt− 16t2

2
,

we have

4n− k− 4+
√
k2 + 16nt− 16kt− 16t2

2
≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))

n

=
n2 − n+ 2nt− 2t2 − 2kt

n

implying that

f(k) = k2(16t2 − 8nt) + k(4n2 − 4n3 − 16nt+ 40n2t− 40nt2 + 32t3)

− 8n3 + 4n4 + 4n2 + 16n2t− 32n3t− 16nt2 + 48n2t2 − 32nt3 + 16t4

≥ 0.
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which in turn implies that

4n− k− 4−
√
k2 + 16nt− 16kt− 16t2

2
<
2W(Kk ∨ (Kt ∪ Kn−t−k))

n

for a2 < k < a1, where

ai =
n2(10t+1)−n3−n(10t2+4t)+8t3±

√
n4−n3(12t+2)+n2(40t2+12t+1)+n(8t3−36t2)+4t4

4(nt−2t2)
,

i = 1, 2, are the zeros of f(k). From these calculations it follows that, if k <
n(t+1)
2t − t, then σ

′
= t, and if k ≥ n(t+1)

2t − t, then σ
′
= n − k − 1. Therefore,

for k < n(t+1)
2t − t, it follows from Inequality (6) that

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2jW(G)

n

)

≥ 2
( t∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2tW(G)

n

)

= 2

(
4n− k− 4+

√
k2 + 16nt− 16kt− 16t2

2

+ (t− 1)(2n− k− t− 2) −
2tW(G)

n

)
=
√
k2 + 16nt− 16kt− 16t2 + 2t(2n− k− t− 1) + k−

4tW(G)

n
.

If k ≥ n(t+1)
2t − t, from (6), we have

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2jW(G)

n

)

≥ 2

(
n−k−1∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2(n− k− 1)W(G)

n

)

= 2

(
4n− k− 4+

√
D

2
+(t− 1)(2n− k− t− 2)+(n− k− t− 1)(n+ t− 2)

)

−
4(n− k− 1)W(G)

n
=
√
D+ 2n2 + n(4t− 2k− 6) − 4kt− 4t2 + 5k+ 4

−
4(n− k− 1)W(G)

n
,

where D = k2+ 16nt− 16kt− 16t2. By Lemmas 1 and 3, equality holds if and
only if G ∼= Kk ∨ (Kt ∪ Kn−t−k). This completes the proof. �
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The next result is the special case of G ∈ Vkn, for t = 1.

Proposition 3 Let G ∈ Vkn and t = 1. Then

DSLE(G) ≥ 2
(
4n− k− 4−

8W(G)

n

)
with equality if and only if G ∼= Kk ∨ (K1 ∪ Kn−1−k).

Proof. By letting t = 1 in Corollary 1, the distance signless Laplacian spec-
trum of Kk ∨ (K1 ∪ Kn−1−k) is given by{

4n− k− 4±
√
k2 − 16k+ 16n− 16

2
, (n− 1)[n−k−2], (n− 2)[k]

}
.

Clearly, the distance signless Laplacian eigenvalue 4n−k−4+
√
k2−16k+16n−16
2 is

the distance signless spectral radius and is always greater than

2W(Kk ∨ (K1 ∪ Kn−1−k))
n

=
n2 + n− 2k− 2

n
.

For the eigenvalue n− 1, we have

n− 1 <
2W(Kk ∨ (K1 ∪ Kn−1−k))

n

if n+ k > 1, which is always true as n ≥ 4 and k ≥ 2.
Lastly, for the eigenvalue 4n−k−4−

√
k2−16k+16n−16
2 , we see if

4n− k− 4−
√
k2 − 16k+ 16n− 16

2
<
2W(Kk ∨ (K1 ∪ Kn−1−k))

n
,

then after simplification, we have

h(k) = k2(8n−16)−k(44n3−4n3−56n+32)−4n4+40n3−68n2+48n−16 < 0.

The zeros of h(k) are n− 1 and 9n2−n3−8n+4
2(n−2) . This implies that

4n− k− 4−
√
k2 − 16k+ 16n− 16

2
≥ 2W(Kk ∨ (K1 ∪ Kn−1−k))

n

for
9n2 − n3 − 8n+ 4

2(n− 2)
≤ k ≤ n− 1.
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Thus, from (6), we have

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (K1 ∪ Kn−1−k)) −

2jW(G)

n

)

≥ 2

(
2∑
i=1

ρ
Q
i (Kk ∨ (K1 ∪ Kn−1−k)) −

2jW(G)

n

)

= 2

(
4n− k− 4−

4W(G)

n

)
.

Clearly, equality occurs by Lemma 1. �

For G ∈ Vkn, with k = t = 1, we have the following observation.

Corollary 2 Let G ∈ V1n. Then, for t = 1, we have

DSLE(G) ≥ 2
(
4n− k− 4−

8W(G)

n

)
with equality if and only if G ∼= K1 ∨ (K1 ∪ Kn−2).

Proof. From Corollary 1, the distance signless Laplacian spectrum of K1 ∨
(K1 ∪ Kn−2) is given by{

4n− 5±
√
16n− 31

2
, (n− 1)[n−3], n− 2

}
.

It can be easily seen that 4n−5+
√
16n−31
2 is the distance signless spectral radius

and is always greater than 2W(Kk∨(K1∪Kn−t−k))
n = n2+n−4

n . For the eigenvalue

n− 1, we have n− 1 < 2W(Kk∨(K1∪Kn−t−k))
n if n > 2, which is always true. Next

for the eigenvalue 4n−5−
√
16n−31
2 , we see that 4n−5−

√
16n−31
2 ≥ n2+n−4

n , which
after simplification gives n4 − 11n3 + 28n2 − 28n + 16 ≥ 0, which is true for
n ≥ 8. Thus, from (6), we have

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (K1 ∨ (K1 ∪ Kn−2)) −

2jW(G)

n

)

≥ 2

(
2∑
i=1

ρ
Q
i (K1 ∨ (K1 ∪ Kn−2)) −

2jW(G)

n

)

= 2

(
4n− 5−

4W(G)

n

)
.

�
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Conclusions

We observe that the investigation of the graph invariant BQb (G) =

b∑
i=1

ρ
Q
i , 1 ≤

b ≤ n − 1, that is, the sum of the b ≥ 1 largest signless Laplacian eigen-
values is an interesting problem. By Lemma 1, Theorem 2, Lemma 3 and
Theorem 4, we see that CSn,α and Kk ∨ (Kt ∪ Kn−t−k) have minimum value
of BQb among the graphs with independence α and connectivity k. In a simi-

lar manner, it can be shown that Kn and Ka,n−a have minimum value of BQb
among all graphs and among all the bipartite graphs. In [1], upper bounds for
B
Q
b were discussed for graphs with diameter 1 and 2, split graphs, threshold

graphs and a conjecture was also put forward. It will be interesting to find
the lower bounds for BQb for an arbitrary graph G and characterization of the
extremal graphs. By using Lemma 1 and proceeding as in Theorems 2 and 4,
we can show that Ka,n−a has the minimum distance signless Laplacian energy
among all graphs bipartite graphs. A difficult problem is to investigate the
graphs with maximum distance signless Laplacian energy. In particular, it will
be interesting to study the graphs with maximum signless Laplacian energy
among bipartite graphs, split graphs, graphs with fixed connectivity, perfect
matching and other families. The graph invariant σ

′
, that is, the number of

distance signless Laplacian eigenvalues which are greater or equal to 2W(G)
n is

an interesting graph invariant. Several papers exist in the literature in this
direction and various open problems were asked in case of Laplacian [7] and
signless Laplaian matrices. The same is true for distance signless Laplacian
matrix and attractive problems of σ

′
can be investigated, like characterization

of graphs having σ
′
= 1, 2, n2 and σ

′
= n− 1.
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Abstract. The object of the present paper is to study para-Kenmotsu
manifolds satisfying different conditions of semi-symmetric type.

1 Introduction

Recently, A. A. Shaikh and H. Kundu [8] studied the equivalency of various
geometric structures. They have proved that the conditions

i) R · R = 0, R · C̃ = 0 and R · P = 0 are equivalent and we call such a class
G1;

ii) C · R = 0, C · C̃ = 0 and C · P = 0 are equivalent and we call such a class
G2;

iii) C̃ · R = 0, C̃ · C̃ = 0 and C̃ · P = 0 are equivalent and we call such a class
G3;

2010 Mathematics Subject Classification: 53C15, 53C25
Key words and phrases: para-Kenmotsu manifold, semi-symmetric type, Einstein mani-
fold, η-Einstein manifold

468
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iv) H ·R = 0, H · C̃ = 0 and H ·P = 0 are equivalent and we call such a class
G4;

v) R · C = 0 and R ·H = 0 are equivalent and we call such a class G5;
vi) C ·H = 0 and C · C = 0 are equivalent and we call such a class G6;
vii) C̃ ·H = 0 and C̃ · C = 0 are equivalent and we call such a class G7;
viii) H ·H = 0 and H · C = 0 are equivalent and we call such a class G8,

where R, C, C̃, H and P are the Riemannian, conformal, concircular, conhar-
monic and projective curvature tensors, respectively.

In an n-dimensional Riemannian manifold (Mn, g) (n > 3), the conformal
curvature tensor C [2], conharmonic curvature tensor H [3], concircular curva-
ture tensor C̃ [13] and projective curvature tensor P [7] are defined respectively
by

C(X, Y)Z = R(X, Y)Z−
1

n− 2
[S(Y, Z)X− S(X,Z)Y (1)

+ g(Y, Z)QX− g(X,Z)QY]

+
r

(n− 1)(n− 2)
[g(Y, Z)X− g(X,Z)Y],

H(X, Y)Z = R(X, Y)Z−
1

n− 2
[S(Y, Z)X− S(X,Z)Y (2)

+ g(Y, Z)QX− g(X,Z)QY],

C̃(X, Y)Z = R(X, Y)Z−
r

n(n− 1)
[g(Y, Z)X− g(X,Z)Y], (3)

P(X, Y)Z = R(X, Y)Z−
1

n− 1
[S(Y, Z)X− S(X,Z)Y], (4)

where Q, S and r are the Ricci operator, the Ricci curvature tensor and the
scalar curvature of Mn. The Ricci operator Q and the (0, 2)-tensor S2 are
defined as

S(X, Y) = g(QX, Y) and S2(X, Y) = S(QX, Y) = g(Q2X, Y).

The present paper is structured as follows. In Section 2, we briefly recall
some known results for para-Kenmotsu manifolds. In Section 3, we study para-
Kenmotsu manifolds belonging to the class Gi (i = 1, 2, ..., 8) and we prove
that a para-Kenmotsu manifold belonging to the class G1 is Einstein, whereas
such a manifold belonging to the class G5 is η-Einstein.
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2 Para-Kenmotsu manifolds

The notion of almost paracontact structure was introduced by I. Sato. Ac-
cording to his definition [9], an almost paracontact structure (Φ, ξ, η) on an
odd-dimensional manifold Mn consists of a (1, 1)-tensor field Φ, called the
structure endomorphism, a vector field ξ, called the characteristic vector field
and a 1-form η, called the contact form, which satisfy the following conditions:

Φ2 = I− η⊗ ξ, (5)

η(ξ) = 1, (6)

Φξ = 0, η ◦Φ = 0, rank Φ = n− 1. (7)

Moreover, if g is a pseudo-Riemannian metric satisfying

g(ΦX,ΦY) = −g(X, Y) + η(X)η(Y), (8)

for any vector fields X and Y on Mn, then the manifold Mn [9] is said to
admit an almost paracontact Riemannian structure (Φ, ξ, η, g). Remark that
from the above conditions we get

g(X, ξ) = η(X), (9)

for any vector field X onMn. Examples of almost paracontact metric structures
are given in [4, 1].

An analogue of the Kenmotsu manifold [5] in paracontact geometry will be
further considered.

Definition 1 [6] The almost paracontact metric structure (Φ, ξ, η, g) is called
para-Kenmotsu if the Levi-Civita connection ∇ of g satisfies

(∇XΦ)Y = g(ΦX, Y)ξ− η(Y)ΦX,

for any vector fields X and Y on Mn.

The para-Kenmotsu structure was also considered by J. Welyczko in [12] for
3-dimensional normal almost paracontact metric structures. A similar notion
called P-Kenmotsu structure appears in the paper of B. B. Sinha and K. L. Sai
Prasad [11]. We shall further give some immediate properties of this structure.
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Proposition 1 If (Mn, Φ, ξ, η, g) is a para-Kenmotsu manifold, then [11]:

S(X, ξ) = −(n− 1)η(X), (10)

R(X, Y)ξ = η(X)Y − η(Y)X, (11)

η(R(X, Y)Z) = g(X,Z)η(Y) − g(Y, Z)η(X), (12)

where S is the Ricci curvature tensor and R is the Riemannian curvature ten-
sor.

In view of (12), one can easily bring out the followings:

g(C(X, Y)Z, ξ) = η(C(X, Y)Z)) (13)

=
1

n− 2

[(
r

n− 1
+ 1)(g(Y, Z)η(X) − g(X,Z)η(Y)

)
−

(
S(Y, Z)η(X) − S(X,Z)η(Y)

)]
,

g(H(X, Y)Z, ξ) = η(H(X, Y)Z)) (14)

=
1

n− 2
[g(Y, Z)η(X) − g(X,Z)η(Y)

− (S(Y, Z)η(X) − S(X,Z)η(Y))],

g(C̃(X, Y)Z, ξ) = η(C̃(X, Y)Z)) (15)

=

(
r

n(n− 1)
+ 1

)
[g(X,Z)η(Y) − g(Y, Z)η(X)],

g(P(X, Y)Z, ξ) = η(P(X, Y)Z) (16)

= g(X,Z)η(Y) − g(Y, Z)η(X)

−
1

n− 1
[S(Y, Z)η(X) − S(X,Z)η(Y)].

Definition 2 [10] An almost paracontact Riemannian manifold Mn is said to
be an η-Einstein manifold if the Ricci curvature tensor S is of the form

S = ag+ bη⊗ η,

where a and b are smooth functions on Mn and η is a 1-form.

In particular, if b = 0, then Mn is said to be an Einstein manifold.
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3 Main results

In this section we consider different types of semi-symmetric para-Kenmotsu
manifolds, namely, para-Kenmotsu manifolds belonging to the classes Gi (i =
1, 2, ..., 8).

3.1 Para-Kenmotsu manifolds belonging to the class G1

We consider para-Kenmotsu manifolds admitting the condition

(R(X, Y) · R)(Z,U)V = 0,

which implies

g(R(ξ, Y)R(Z,U)V, ξ) − g(R(R(ξ, Y)Z,U)V, ξ) (17)

−g(R(Z, R(ξ, Y)U)V, ξ) − g(R(Z,U)R(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (17), where {e1, e2, e3, ..., en−1, en = ξ} is an orthonormal
basis of the tangent space at each point of the manifold Mn and taking the
summation over i, 1 ≤ i ≤ n, we get

n∑
i=1

g(R(ξ, ei)R(ei, U)V, ξ) −

n∑
i=1

g(R(R(ξ, ei)ei, U)V, ξ) (18)

−

n∑
i=1

g(R(ei, R(ξ, ei)U)V, ξ) −

n∑
i=1

g(R(ei, U)R(ξ, ei)V, ξ) = 0

Using (10)-(12) we obtain

n∑
i=1

g(R(ξ, ei)R(ei, U)V, ξ) = −g(U,V) + η(U)η(V) − S(U,V), (19)

n∑
i=1

g(R(R(ξ, ei)ei, U)V, ξ) = −(n− 1)[−g(U,V) + η(U)η(V)], (20)

n∑
i=1

g(R(ei, R(ξ, ei)U)V, ξ) = −g(U,V) + η(U)η(V), (21)

n∑
i=1

g(R(ei, U)R(ξ, ei)V, ξ) = (n− 1)η(U)η(V). (22)
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By virtue of (19), (20), (21) and (22), the equation (18) yields

S(U,V) = −(n− 1)g(U,V). (23)

Thus, we state the following theorem.

Theorem 1 A para-Kenmotsu manifold belonging to the class G1 is always
an Einstein manifold with the Ricci curvature tensor given by (23).

3.2 Para-Kenmotsu manifolds belonging to the class G2

We consider para-Kenmotsu manifolds admitting the condition

(C(X, Y) · R)(Z,U)V = 0,

which implies

g(C(ξ, Y)R(Z,U)V, ξ) − g(R(C(ξ, Y)Z,U)V, ξ) (24)

−g(R(Z,C(ξ, Y)U)V, ξ) − g(R(Z,U)C(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (24) and taking the summation over i, 1 ≤ i ≤ n, we
get

n∑
i=1

g(C(ξ, ei)R(ei, U)V, ξ) −

n∑
i=1

g(R(C(ξ, ei)ei, U)V, ξ) (25)

−

n∑
i=1

g(R(ei, C(ξ, ei)U)V, ξ) −

n∑
i=1

g(R(ei, U)C(ξ, ei)V, ξ) = 0.

Using (10)-(12) and (1) we obtain

n∑
i=1

g(C(ξ, ei)R(ei, U)V, ξ) =
1

n− 2

[(
r

n− 1
+ 1

)
S(U,V) − S2(U,V)(26)

−

(
r

n− 1
+ n

)
η(R(ξ,U)V)

]
,

n∑
i=1

g(R(C(ξ, ei)ei, U)V, ξ) = 0, (27)

n∑
i=1

g(R(ei, C(ξ, ei)U)V, ξ) =
1

n− 2

[
−

(
r

n− 1
+ 1

)
η(R(ξ,U)V) (28)

− S(U,V) − (n− 1)η(U)η(V)

]
,
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n∑
i=1

g(R(ei, U)C(ξ, ei)V, ξ) = 0. (29)

By virtue of (26), (27), (28), (29) and using (12), the equation (25) yields(
r

n− 1
+ 2

)
S(U,V) = −(n− 1)g(U,V) + S2(U,V). (30)

Thus, we state the following theorem.

Theorem 2 The Ricci curvature tensor of a para-Kenmotsu manifold belong-
ing to the class G2 satisfies (30).

3.3 Para-Kenmotsu manifolds belonging to the class G3

We consider para-Kenmotsu manifolds admitting the condition

(C̃(X, Y) · R)(Z,U)V = 0,

which implies

g(C̃(ξ, Y)R(Z,U)V, ξ) − g(R(C̃(ξ, Y)Z,U)V, ξ) (31)

−g(R(Z, C̃(ξ, Y)U)V, ξ) − g(R(Z,U)C̃(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (31) and taking the summation over i, 1 ≤ i ≤ n, we
get

n∑
i=1

g(C̃(ξ, ei)R(ei, U)V, ξ) −

n∑
i=1

g(R(C̃(ξ, ei)ei, U)V, ξ) (32)

−

n∑
i=1

g(R(ei, C̃(ξ, ei)U)V, ξ) −

n∑
i=1

g(R(ei, U)C̃(ξ, ei)V, ξ) = 0.

Using (10)-(12) and (3) we obtain

n∑
i=1

g(C̃(ξ, ei)R(ei, U)V, ξ) =

(
r

n(n− 1)
+1

)
[−g(U,V)+η(U)η(V)−S(U,V)],

(33)
n∑
i=1

g(R(C̃(ξ, ei)ei, U)V, ξ) =

(
r

n(n− 1)
+ 1

)
(n− 1)[g(U,V) − η(U)η(V)],

(34)
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n∑
i=1

g(R(ei, C̃(ξ, ei)U)V, ξ) =

(
r

n(n− 1)
+ 1

)
[−g(U,V) + η(U)η(V)], (35)

n∑
i=1

g(R(ei, U)C̃(ξ, ei)V, ξ) =

(
r

n(n− 1)
+ 1

)
(n− 1)η(U)η(V). (36)

By virtue of (33), (34), (35) and (36), the equation (32) yields(
r

n(n− 1)
+ 1

)
[S(U,V) + (n− 1)g(U,V)] = 0. (37)

Thus, we state the following theorem.

Theorem 3 The Ricci curvature tensor of a para-Kenmotsu manifold belong-
ing to the class G3 satisfies (37).

3.4 Para-Kenmotsu manifolds belonging to the class G4

We consider para-Kenmotsu manifolds admitting the condition

(H(X, Y) · R)(Z,U)V = 0,

which implies

g(H(ξ, Y)R(Z,U)V, ξ) − g(R(H(ξ, Y)Z,U)V, ξ) (38)

−g(R(Z,H(ξ, Y)U)V, ξ) − g(R(Z,U)H(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (38) and taking the summation over i, 1 ≤ i ≤ n, we
get

n∑
i=1

g(H(ξ, ei)R(ei, U)V, ξ) −

n∑
i=1

g(R(H(ξ, ei)ei, U)V, ξ) (39)

−

n∑
i=1

g(R(ei, H(ξ, ei)U)V, ξ) −

n∑
i=1

g(R(ei, U)H(ξ, ei)V, ξ) = 0.

Using (10)-(12) and (2) we obtain

n∑
i=1

g(H(ξ, ei)R(ei, U)V, ξ) =
1

n− 2
[ng(U,V) − nη(U)η(V) (40)

+ S(U,V) − S2(U,V)],
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n∑
i=1

g(R(H(ξ, ei)ei, U)V, ξ) =
1

n− 2
[rg(U,V) − rη(U)η(V)], (41)

n∑
i=1

g(R(ei, H(ξ, ei)U)V, ξ) =
1

n− 2
[g(U,V) − nη(U)η(V) − S(U,V)], (42)

n∑
i=1

g(R(ei, U)H(ξ, ei)V, ξ) =
1

n− 2
rη(U)η(V). (43)

By virtue of (40), (41), (42) and (43), the equation (39) yields

S(U,V) = −
n− r− 1

2
g(U,V) +

1

2
S2(U,V). (44)

Thus, we state the following theorem.

Theorem 4 The Ricci curvature tensor of a para-Kenmotsu manifold belong-
ing to the class G4 satisfies (44).

3.5 Para-Kenmotsu manifolds belonging to the class G5

We consider para-Kenmotsu manifolds admitting the condition

(R(X, Y) · C)(Z,U)V = 0,

which implies

g(R(ξ, Y)C(Z,U)V, ξ) − g(C(R(ξ, Y)Z,U)V, ξ) (45)

−g(C(Z, R(ξ, Y)U)V, ξ) − g(C(Z,U)R(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (45) and taking the summation over i, 1 ≤ i ≤ n, we
get

n∑
i=1

g(R(ξ, ei)C(ei, U)V, ξ) −

n∑
i=1

g(C(R(ξ, ei)ei, U)V, ξ) (46)

−

n∑
i=1

g(C(ei, R(ξ, ei)U)V, ξ) −

n∑
i=1

g(C(ei, U)R(ξ, ei)V, ξ) = 0.

Using (10)-(12) and (1) we obtain

n∑
i=1

g(R(ξ, ei)C(ei, U)V, ξ) = η(C(ξ,U)V), (47)
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n∑
i=1

g(C(R(ξ, ei)ei, U)V, ξ) = −(n− 1)η(C(ξ,U)V), (48)

n∑
i=1

g(C(ei, R(ξ, ei)U)V, ξ) = η(C(ξ,U)V), (49)

n∑
i=1

g(C(ei, U)R(ξ, ei)V, ξ) = 0. (50)

By virtue of (47), (48), (49), (50) and using (13), the equation (46) yields

S(U,V) =

(
r

n− 1
+ 1

)
g(U,V) −

(
r

n− 1
+ n

)
η(U)η(V). (51)

Thus, we state the following theorem.

Theorem 5 A para-Kenmotsu manifold belonging to the class G5 is always
an η-Einstein manifold with the Ricci curvature tensor given by (51).

3.6 Para-Kenmotsu manifolds belonging to the class G6

We consider para-Kenmotsu manifolds admitting the condition

(C(X, Y) ·H)(Z,U)V = 0,

which implies

g(C(ξ, Y)H(Z,U)V, ξ) − g(H(C(ξ, Y)Z,U)V, ξ) (52)

−g(H(Z,C(ξ, Y)U)V, ξ) − g(H(Z,U)C(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (52) and taking the summation over i, 1 ≤ i ≤ n, we
get

n∑
i=1

g(C(ξ, ei)H(ei, U)V, ξ) −

n∑
i=1

g(H(C(ξ, ei)ei, U)V, ξ) (53)

−

n∑
i=1

g(H(ei, C(ξ, ei)U)V, ξ) −

n∑
i=1

g(H(ei, U)C(ξ, ei)V, ξ) = 0.

Using (10)-(12), (1) and (2) we obtain

n∑
i=1

g(C(ξ, ei)H(ei, U)V, ξ) (54)
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=
1

(n− 2)2

[
− r

(
r

n− 1
+ 1

)
g(U,V) − nS2(U,V) + rS(U,V)

+ ‖ Q ‖2 g(U,V) − (n− 2)

(
r

n− 1
+ n

)
η(H(ξ,U)V)

]
,

n∑
i=1

g(H(C(ξ, ei)ei, U)V, ξ) = 0, (55)

n∑
i=1

g(H(ei, C(ξ, ei)U)V, ξ) (56)

=
1

(n− 2)2

[
− (n− 2)

(
r

n− 1
+ 1

)
η(H(ξ,U)V) − S2(U,V)

+ S(U,V) + n(n− 1)η(U)η(V)

]
,

n∑
i=1

g(H(ei, U)C(ξ, ei)V, ξ) (57)

= −
1

(n− 2)2

[
r2

n− 1
+ 2r− ‖ Q ‖2 +n(n− 1)

]
η(U)η(V).

By virtue of (54), (55), (56), (57) and using (14), the equation (53) yields

(n+ r− 2)S(U,V) (58)

=

[
r

(
r

n− 1
+ 1

)
+ n− 1− ‖ Q ‖2

]
g(U,V)

+

[
‖ Q ‖2 −r

(
r

n− 1
+ 2

)
− n(n− 1)

]
η(U)η(V) + (n− 1)S2(U,V).

Thus, we state the following theorem.

Theorem 6 The Ricci curvature tensor of a para-Kenmotsu manifold belong-
ing to the class G6 satisfies (58).

3.7 Para-Kenmotsu manifolds belonging to the class G7

We consider para-Kenmotsu manifolds admitting the condition

(C̃(X, Y) ·H)(Z,U)V = 0,
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which implies

g(C̃(ξ, Y)H(Z,U)V, ξ) − g(H(C̃(ξ, Y)Z,U)V, ξ) (59)

−g(H(Z, C̃(ξ, Y)U)V, ξ) − g(H(Z,U)C̃(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (59) and taking the summation over i, 1 ≤ i ≤ n, we
get

n∑
i=1

g(C̃(ξ, ei)H(ei, U)V, ξ) −

n∑
i=1

g(H(C̃(ξ, ei)ei, U)V, ξ) (60)

−

n∑
i=1

g(H(ei, C̃(ξ, ei)U)V, ξ) −

n∑
i=1

g(H(ei, U)C̃(ξ, ei)V, ξ) = 0.

Using (10)-(12), (2) and (3) we obtain

n∑
i=1

g(C̃(ξ, ei)H(ei, U)V, ξ) =

(
r

n(n− 1)
+ 1

)[
η(H(ξ,U)V) +

r

n− 2
g(U,V)

]
,

(61)
n∑
i=1

g(H(C̃(ξ, ei)ei, U)V, ξ) = −

(
r

n(n− 1)
+ 1

)
(n− 1)η(H(ξ,U)V), (62)

n∑
i=1

g(H(ei, C̃(ξ, ei)U)V, ξ) =

(
r

n(n− 1)
+ 1

)
η(H(ξ,U)V), (63)

n∑
i=1

g(H(ei, U)C̃(ξ, ei)V, ξ) =

(
r

n(n− 1)
+ 1

)
r

n− 2
η(U)η(V). (64)

By virtue of (61), (62), (63), (64) and using (14), the equation (60) yields(
r

n(n− 1)
+1

)
[S(U,V)−

(
r

n− 1
+1

)
g(U,V)−

(
r

n− 1
−n

)
η(U)η(V)] = 0.

(65)
Thus, we state the following theorem.

Theorem 7 The Ricci curvature tensor of a para-Kenmotsu manifold belong-
ing to the class G7 satisfies (65).
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3.8 Para-Kenmotsu manifolds belonging to the class G8

We consider para-Kenmotsu manifolds admitting the condition

(H(X, Y) ·H)(Z,U)V = 0,

which implies

g(H(ξ, Y)H(Z,U)V, ξ) − g(H(H(ξ, Y)Z,U)V, ξ) (66)

−g(H(Z,H(ξ, Y)U)V, ξ) − g(H(Z,U)H(ξ, Y)V, ξ) = 0.

Putting Y = Z = ei in (66) and taking the summation over i, 1 ≤ i ≤ n, we
get

n∑
i=1

g(H(ξ, ei)H(ei, U)V, ξ) −

n∑
i=1

g(H(H(ξ, ei)ei, U)V, ξ) (67)

−

n∑
i=1

g(H(ei, H(ξ, ei)U)V, ξ) −

n∑
i=1

g(H(ei, U)H(ξ, ei)V, ξ) = 0.

Using (10)-(12) and (2) we obtain

n∑
i=1

g(H(ξ, ei)H(ei, U)V, ξ) (68)

=
1

(n− 2)2
[−n(n− 2)η(H(ξ,U)V) − nS2(U,V) + rS(U,V)

+ ‖ Q ‖2 g(U,V) − rg(U,V)],
n∑
i=1

g(H(H(ξ, ei)ei, U)V, ξ) = −
r

n− 2
η(H(ξ,U)V), (69)

n∑
i=1

g(H(ei, H(ξ, ei)U)V, ξ) (70)

=
1

(n− 2)2
[−(n− 2)η(H(ξ,U)V) − S2(U,V)

+S(U,V) + n(n− 1)η(U)η(V)],

n∑
i=1

g(H(ei, U)H(ξ, ei)V, ξ) = −
1

(n− 2)2
[2r− ‖ Q ‖2 +n(n− 1)]η(U)η(V).

(71)
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By virtue of (68), (69), (70), (71) and (14), the equation (67) yields

(n− 2)S(U,V) =
[
(n− 1)− ‖ Q ‖2

]
g(U,V) (72)

−
[
n(n− 1) − (n− 2)r − ‖ Q ‖2

]
η(U)η(V) + (n− 1)S2(U,V).

Thus, we state the following theorem.

Theorem 8 The Ricci curvature tensor of a para-Kenmotsu manifold belong-
ing to the class G8 satisfies (72).

We can conclude the followings.

Remark 1 Let Mn be a para-Kenmotsu manifold of dimension n > 3.
i) If Mn belongs to the class G1, then Mn is an Einstein manifold of constant

negative scalar curvature r = −n(n− 1).
ii) If Mn belongs to the class G2, then the Ricci operator satisfies

‖ Q ‖2≥ (n− 1)2.

iii) If Mn belongs to the class G3, then Mn is of constant negative scalar
curvature r = −n(n− 1).

iv) If Mn belongs to the class G4, then the scalar curvature satisfies

r =
n(n− 1)

n− 2
−

1

n− 2
‖ Q ‖2≤ n(n− 1)

n− 2
.

v) If Mn belongs to the class G5, then Mn is an η-Einstein manifold.
vi) If Mn belongs to the class G7, then Mn is of vanishing or constant

negative scalar curvature r = −n(n− 1).
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Abstract. In this paper our main interest is to introduce a new type of
generalized open sets defined in terms of an operation on a generalized
topological space. We have studied some properties of this newly defined
sets. As an application, we have introduced some weak separation axioms
and discussed some of their properties. Finally, we have studied some
preservation theorems in terms of some irresolute functions.

1 Introduction

In 1979, Kasahara [5] introduced the notion of an operation on a topological
space and introduced the concept of α-closed graph of a function. After then
Janković defined [4] the concept of α-closed sets and investigated some prop-
erties of functions with α-closed graphs. On the other hand, in 1991 Ogata
[7] introduced the notion of γ-open sets to investigate some new separation
axioms on a topological space. The notion of operations on the family of all
semi-open sets and pre-open sets are investigated by Krishnan et al. [6] and
Van An et al. [11]. Recently, the concept of γµ-Lindelöf spaces was studied by
Roy and Noiri in [9, 10].
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In this paper our aim is to study an operation based on generalized γµ-
closed like sets, where the operation is defined on the collection of generalized
open sets. The most common properties of different open like sets or weakly
open sets are that they are closed under arbitary unions and contain the
null set. Observing these, Császár introduced the concept of generalized open
sets. We now recall some notions defined in [1]. Let X be a non-empty set.
A subcollection µ j P(X) (where P(X) denotes the power set of X) is called
a generalized topology [1], (briefly, GT) if ∅ ∈ µ and any union of elements
of µ belongs to µ. A set X with a GT µ on the set X is called a generalized
topological space (briefly, GTS) and is denoted by (X, µ). If for a GTS (X, µ),
X ∈ µ, then (X, µ) is known as a strong GTS. Throughout the paper, we
assume that (X, µ) and (Y, λ) are strong GTS’s. The elements of µ are called
µ-open sets and µ-closed sets are their complements. The µ-closure of a set
A j X is denoted by cµ(A) and defined by the smallest µ-closed set containing
A which is equivalent to the intersection of all µ-closed sets containing A. We
use the symbol iµ(A) to mean the µ-interior of A and it is defined as the union
of all µ-open sets contained in A i.e., the largest µ-open set contained in A
(see [3, 2, 1]).

2 γ
µ
g-closed sets and their related properties

Definition 1 [9] Let (X, µ) be a GTS. An operation γµ on a generalized topol-
ogy µ is a mapping from µ to P(X) (where P(X) is the power set of X) with
G j γµ(G), for each G ∈ µ. This operation is denoted by γµ : µ→ P(X). Note

that γµ(A) and A
γµ

are two different notations for the same set.

Definition 2 [9] Let (X, µ) be a GTS and γµ be an operation on µ. A subset
G of (X, µ) is called γµ-open if for each point x of G, there exists a µ-open set
U containing x such that γµ(U) j G.

A subset of a GTS (X, µ) is called γµ-closed if its complement is γµ-open in
(X, µ). We shall use the symbol γµ to mean the collection of all γµ-open sets
of the GTS (X, µ).

Definition 3 [9] Let (X, µ) be a GTS and γµ : µ→ P(X) be an operation. It
is easy to see that the family of all γµ-open sets forms a GT on X. The γµ-
closure of a set A of X is denoted by cγµ (A) and is defined as cγµ (A) = ∩{F : F
is a γµ-closed set and A j F}.
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It is easy to check that for each x ∈ X, x ∈ cγµ (A) if and only if V ∩A 6= ∅,
for any V ∈ γµ with x ∈ V. Note that if γµ = idµ , then cγµ (A) = cµ(A).

Definition 4 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. A
subset A of X is said to be γµg-closed if cγµ (A) j U, whenever A j U and U

is a γµ-open set in (X, µ).

Every γµ-closed set is γµg-closed but the converse is not true as shown in
the next example. Also note that if γµ = idµ , then γµg-closed set reduces to
a µg-closed set [8].

Example 1 Let X = {1, 2, 3} and µ = {∅, {1}, {1, 2}, {2, 3}, X}. Then (X, µ) is a
GTS. Now γµ : µ→ P(X) defined by

γµ(A) =

{
A, if 1 ∈ A

{2, 3}, otherwise

is an operation. It can be easily checked that {1, 3} is a γµg-closed set but not
a γµ-closed set.

Theorem 1 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. A
subset A of X is γµg-closed if and only if cγµ ({x}) ∩ A 6= ∅, holds for every

x ∈ cγµ (A).

Proof. First let the given condition hold and let U be a γµ-open set with
A j U and x ∈ cγµ (A). As cγµ ({x}) ∩A 6= ∅, there exists a z ∈ cγµ ({x}) such

that z ∈ A j U. Thus U ∩ {x} 6= ∅. Hence x ∈ U. Thus cγµ (A) j U, proving
A to be a γµg-closed set.

Conversely, let A be a γµg-closed subset of X and x ∈ cγµ (A) with cγµ ({x})∩
A = ∅. Then A j X \ cγµ ({x}) which implies that cγµ (A) j X \ cγµ ({x}) (as

A is γµg-closed), which is a contradiction to the fact that x ∈ cγµ ({x}). Thus

cγµ ({x}) ∩A 6= ∅. �

Theorem 2 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. If
cγµ ({x}) ∩A 6= ∅ for every x ∈ cγµ (A), then cγµ (A) \A does not contain any
non-empty γµ-closed set.

Proof. If possible, let there exist a non-empty γµ-closed set F such that F j
cγµ (A) \A. Let x ∈ F. Then x ∈ cγµ (A). Since ∅ 6= cγµ ({x}) ∩A j F ∩A, we
have F ∩A 6= ∅, which is a contradiction. �



486 R. Sen

Corollary 1 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. A
subset A of a GTS (X, µ) is γµg-closed if and only if A = F \ N, where F is
γµ-closed and N contains no non-empty γµ-closed subset of X.

Proof. One part of the theorem follows from Theorems 1 and 2 by taking
F = cγµ (A) and N = cγµ (A) \A.

Conversely, suppose that A = F \N and A j U, where U is γµ-open. Then
F ∩ (X \ U) is a γµ-closed subset of N and hence it must be empty. Thus
cγµ (A) j F j U. �

Theorem 3 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. Let A
be a γµg-closed subset of X and A j B j cγµ (A). Then B is also γµg-closed.

Proof. Let A be a γµg-closed set such that A j B j cγµ (A) and U be a γµ-

open set with B j U. Then A j U and hence cγµ (A) j U. Thus cγµ (B) j U.
Thus B is γµg-closed. �

Theorem 4 Let (X, µ) be a strong GTS and γµ : µ→ P(X) be an operation.
For each x ∈ X, either {x} is γµ-closed or X \ {x} is a γµg-closed set in (X, µ).

Proof. If {x} is γµ-closed, then we have nothing to prove. Suppose that {x} is
not γµ-closed. Then X\{x} is not γµ-open. Let U be any γµ-open set such that
X \ {x} j U. Hence U = X. Thus cγµ (X \ {x}) j U. Thus X \ {x} is a γµg-closed
set. �

Definition 5 Let (X, µ) be a GTS and γµ : µ→ P(X) be an operation. Then
(X, µ) is said to be γµ-T 1

2
if every γµg-closed set is γµ-closed.

Theorem 5 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. Then
(X, µ) is γµ-T 1

2
if and only if {x} is either γµ-closed or γµ-open.

Proof. Suppose that (X, µ) be a γµ-T 1
2

space and {x} is not γµ-closed. Then

by Theorem 4, X \ {x} is a γµg-closed set and hence a γµ-closed set. So {x} is
a γµ-open set.

Conversely, suppose that F be a γµg-closed set in (X, µ). Let x ∈ cγµ (F).

Then {x} is either γµ-open or γµ-closed. If {x} is γµ-open, then {x} ∩ F 6= ∅.
Hence x ∈ F. Thus cγµ (F) j F, which implies that F is γµ-closed. If {x} is

γµ-closed, suppose that x 6∈ F. Then x ∈ cγµ (F) \ F, which is impossible by

Theorem 2. Thus x ∈ F. Hence cγµ (F) j F, so that F is γµ-closed. �



On generalized γµ-closed sets and related continuity 487

Definition 6 Let (X, µ) be a GTS and γµ : µ→ P(X) be an operation. Then
(X, µ) is said to be

(i) γµ-T
0

if for any two distinct points x and y of X, there exists a γµ-open
set U containing x but not containing y or a γµ-open set V containing
y but not containing x.

(ii) γµ-T
1

if for any two distinct points x and y of X, there exist two γµ-open
sets U and V such that x ∈ U, y 6∈ U and y ∈ V, x 6∈ U.

(iii) γµ-T
2

if for any two distinct points x and y of X, there exist two disjoint
γµ-open sets U and V such that x ∈ U and y ∈ V.

Definition 7 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. A
subset A of (X, µ) is said to be a γµ-Dµ set if there exist two γµ-open sets U
and V such that U 6= X and A = U \ V.

It follows from the definition that every γµ-open set (other than X) is a
γµ-Dµ set.

Definition 8 Let (X, µ) be a GTS and γµ : µ→ P(X) be an operation. Then
(X, µ) is said to be a

(i) γµ-D
0

space if for any pair of distinct points, there exists a γµ-Dµ set
containing x but not containing y or a γµ-Dµ set containing y but not
containing x.

(ii) γµ-D
1

space if for any pair of distinct points x and y of X, there exist a
γµ-Dµ set containing x but not y and a γµ-Dµ set containing y but not
containing x.

(iii) γµ-D
2

space if for any two two distinct points x and y of X, there exist
disjoint γµ-Dµ sets U and V containing x and y respectively.

Remark 1 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. Then
the following hold:

(i) If (X, µ) is γµ-T
i
, then it is γµ-T

i−1
for i = 1, 2.

(ii) If (X, µ) is γµ-T
i
, then it is γµ-D

i
for i = 0, 1, 2.

(iii) If (X, µ) is γµ-D
i
, then it is γµ-D

i−1
for i = 1, 2.

Proposition 1 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation.
Then (X, µ) is γµ-T

1
if and only if every singleton is γµ-closed.
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Proof. Obvious. �

Definition 9 Let (X, µ) be a GTS and γµ : µ→ P(X) be an operation. Then
(X, µ) is said to be γµ-symmetric if for x, y ∈ X, x ∈ cγµ ({y})⇒ y ∈ cγµ ({x}).

Proposition 2 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation.
Then (X, µ) is a γµ-symmetric space if and only if {x} is a γµg-closed set, for
each x ∈ X.

Proof. Assume that {x} j U, where U is a γµ-open set. If possible, let
cγµ ({x}) * U. Then cγµ ({x})∩(X\U) 6= ∅. Let y ∈ cγµ ({x})∩(X\U) 6= ∅. Then

by hypothesis, x ∈ cγµ ({y}) j X\U and hence x 6∈ U, which is a contradiction.

Therefore {x} is a γµg-closed set.
Conversely, assume that x ∈ cγµ ({y}) but y 6∈ cγµ ({x}). Then y ∈ X\cγµ ({x}).

Thus cγµ ({y}) j X\cγµ ({x}). Thus x 6∈ cγµ ({x}), which is a contradiction. Thus

(X, µ) is γµ-symmetric. �

Corollary 2 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. If
(X, µ) is γµ-T

1
, then it is γµ-symmetric.

Proof. It follows from Proposition 1 that in a γµ-T
1

space every singleton is
γµ-closed and hence γµg-closed. �

Corollary 3 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. Then
(X, µ) is γµ-T

1
if and only if it is γµ-T

0
and γµ-symmetric.

Proof. One part of the theorem follows from Remark 1 and Corollary 2. Let
(X, µ) be a γµ-T

0
and γµ-symmetric space and x, y be any two distinct points

of X. We may assume that x ∈ U but y 6∈ U, for some γµ-open set U of X.
Thus x 6∈ cγµ ({y}) and hence y 6∈ cγµ ({x}). Thus there exists a γµ-open set V

containing y such that x 6∈ V. Thus (X, µ) is γµ-T
1
. �

Proposition 3 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation.
Then

(a) Every γµ-T
1

space is γµ-T
1
2

and every γµ-T
1
2

space is γµ-T
0
.

(b) For a γµ-symmetric space the following are equivalent:

(i) (X, µ) is a γµ-T
0

space.
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(ii) (X, µ) is a γµ-T
1

space.
(iii) (X, µ) is a γµ-T

1
2

space.

(iv) (X, µ) is a γµ-D
1

space.

Proof. (a) Follows from Theorem 5 and Proposition 1.
(b) If (X, µ) is γµ-symmetric and a γµ-T

0
space, then by Corollary 3, (X, µ)

is a γµ-T
1

space and hence (by (a) above) (X, µ) is γµ-T
1
2

and again by (a)

above, (X, µ) is γµ-T
0
. Thus (i), (ii) and (iii) are equivalent.

Again by Remark 1, (ii) ⇒ (iv) is obvious.
(iv)⇒ (i) : Let (X, µ) be a γµ-D

1
space. Hence (X, µ) is a γµ-D

0
space. Thus

for each pair of distinct points x, y ∈ X, at least one of x, y, say x, belongs to
a γµ-Dµ set S but y 6∈ S. Let S = U

1
\U

2
, where U

1
and U

2
are γµ-sets and

U
1
6= X. Then x ∈ U

1
. If y 6∈ U

1
, then the proof is complete. If y ∈ U

1
∩ U

2
,

then y ∈ U
2

but x 6∈ U
2
. Thus (X, µ) is γµ-T

0
. �

Theorem 6 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation. Then
(X, µ) is γµ-D

2
if and only if it is γµ-D

1
.

Proof. One part follows from Remark 1. Conversely, let x and y be two distinct
points of X. Then there exist γµ-Dµ sets G

1
and G

2
in X such that x ∈ G

1
,

y 6∈ G
1

and y ∈ G
2
, x 6∈ G

2
. Let G

1
= U

1
\ U

2
and G

2
= U

3
\ U

4
, where U

1
,

U
2
, U

3
and U

4
are γµ-open sets in X and U

1
6= X, U

3
6= X. From x 6∈ G

2
,

it follows that either x ∈ U
3
∩ U

4
or x 6∈ U

3
. We will discuss the two cases

separately.
Case - 1: x ∈ U

3
∩U

4
: Then y ∈ G

2
and x ∈ U

4
, with G

2
∩U

4
= ∅.

Case - 2: x 6∈ U
3

: By y 6∈ G
1

the following two cases may arise. If y 6∈ U
1
, as

x ∈ U
1
\ U

2
, it follows that x ∈ U

1
\ (U

2
∪ U

3
) with y ∈ U

3
\ (U

1
∪ U

4
) and

(U
1
\ (U

2
∪U

3
)) ∩ (U

3
\ (U

1
∪U

4
)) = ∅. In the case if y ∈ U

1
∩U

2
, we have

x ∈ U
1
\U

2
and y ∈ U

2
such that (U

1
\U

2
) ∩U

2
= ∅. �

Definition 10 Let (X, µ) be a GTS and γµ : µ→ P(X) be an operation. Then
the γµ-kernel of a subset A of X is denoted by kerγµ (A) = ∩{U : A j U and

U is γµ-open}.

Proposition 4 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation.
Then y ∈ kerγµ ({x}) if and only if x ∈ cγµ ({y}).

Proof. Suppose that y 6∈ kerγµ ({x}). Then there exists a γµ-open set V con-

taining x such that y 6∈ V. Therefore we have, x 6∈ cγµ ({y}). The other part
can be done in the similar manner. �
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Proposition 5 Let (X, µ) be a GTS and γµ : µ → P(X) be an operation.
Then for any subset A of X, kerγµ (A) = {x : cγµ ({x}) ∩A 6= ∅}.

Proof. Let x ∈ kerγµ (A) and cγµ ({x})∩A = ∅. Then A j X \ cγµ ({x}), where

X \ cγµ ({x}) is a γµ-open set not containing x.

Conversely, let x ∈ X and cγµ ({x})∩A 6= ∅, with x 6∈ kerγµ (A). Then there

exists a γµ-open set V containing A such that x 6∈ V. Let y ∈ cγµ ({x}) ∩ A.

Then V is a γµ-open set containing y (as A j V), but not containing x. �

Proposition 6 Let (X, µ) be a GTS and γµ : µ→ P(X) be an operation. If a
singleton set {x} is a γµ-Dµ set of X, then kerγµ ({x}) 6= X.

Proof. Let {x} be a γµ-Dµ set. Then there exist two γµ-open sets V
1

and V
2

such that {x} = V
1
\ V

2
and V

1
6= X. Thus kerγµ ({x}) j V1 6= X. �

Proposition 7 Let (X, µ) be a γµ-T
1
2

GTS having at least two points, where

γµ : µ→ P(X) be an operation. Then (X, µ) is γµ-D
1

if and only if kerγµ ({x}) 6=
X, for every point x ∈ X.

Proof. Let x ∈ X and X be γµ-D
1
. For any point y other than x, there exists

a γµ-Dµ set V such that x ∈ V and y 6∈ V. Then V = V
1
\ V

2
, where V

1
and

V
2

are γµ-open sets such that V
1
6= X. Thus {x} j V

1
and V

1
6= X, where V

1
is

a γµ-open set. Hence kerγµ ({x}) 6= X.
Conversely, let x and y be two distinct points of X. Using Theorem 5, we

have the following cases :
Case -1 : {x} and {y} both are γµ-open : Then the case is obvious, as every
γµ-open set is a γµ-Dµ set.
Case -2: {x} and {y} both are γµ-closed : In this case x ∈ X \ {y}, y ∈ X \ {x},
y 6∈ X \ {y}, x 6∈ X \ {x} and X \ {x}, X \ {y} both are γµ-Dµ sets.
Case-3: {x} is γµ-open and {y} is γµ-closed : Since kerγµ ({y}) 6= X, there exists

a γµ-open set V containing y such that V 6= X. Clearly {y} = V \ (X \ {y}),
showing {y} to be a γµ-Dµ set. Thus {x} and {y} are the two γµ-Dµ sets such
that y 6∈ {x} and x 6∈ {y}.
Case-4 : {x} is γµ-closed and {y} is γµ-open : Can be proved as in case 3. Thus
(X, µ) is a γµ-D

1
space. �

3 (γ
µ
, β

λ
)-irresolute functions

Throughout the rest of the paper, (X, µ) and (Y, λ) will denote GTS’s and γµ :
µ→ P(X) and β

λ
: λ→ P(Y) will denote operations on µ and λ respectively.
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Definition 11 A function f : (X, µ) → (Y, λ) is said to be (γµ , βλ)-irresolute
if for each x ∈ X and each β

λ
-open set V containing f(x), there is a γµ-open

set U containing x such that f(U) j V.

Theorem 7 Let f : (X, µ) → (Y, λ) be a function. Then the following are
equivalent:

(i) f is (γµ , βλ)-irresolute.

(ii) f(cγµ (A)) j cβλ
(f(A)), holds for every subset A of X.

(iii) f−1(B) is γµ-closed, for every β
λ
-closed set B of Y.

Proof. Obvious. �

Definition 12 A mapping f : (X, µ) → (Y, λ) is said to be (γµ , βλ)-closed if
for any γµ-closed set A of (X, µ), f(A) is β

λ
-closed in Y.

Theorem 8 Suppose that f : (X, µ)→ (Y, λ) is (γµ , βλ)-irresolute and (γµ , βλ)-
closed.

(i) If A is γµg-closed, then f(A) is β
λ
g-closed.

(ii) If B be any β
λ
g-closed set of Y, then f−1(B) is a γµg-closed set in X.

Proof. (i) Let V be any β
λ
-open set such that f(A) j V. Then by Theorem

7, f−1(V) is γµ-open in X. Since A j f−1(V) and A is γµg-closed, cγµ (A) j

f−1(V) and hence f(cγµ (A)) j V. Now by the assumption, f(cγµ (A)) is a β
λ
-

closed set in Y. Thus c
β
λ
(f(A)) j c

β
λ
(f(cγµ (A))) = f(cγµ (A)) j V. Hence

f(A) is β
λ
g-closed.

(ii) Let U be any γµ-open set of X with f−1(B) j U. Let F = cγµ (f
−1(B)) ∩

(X \ U). Then F is a γµ-closed set in X. Since f is (γµ , βλ)-closed, f(F) is β
λ
-

closed. Since f(F) j f(cγµ (f
−1(B))) ∩ f(X \ U) j c

β
λ
(f(f−1(B))) ∩ f(X \ U) j

c
β
λ
(B)∩ (Y \B) = c

β
λ
(B)\B by Corollary 1, it then follows that f(F) = ∅ and

hence F = ∅. �

Theorem 9 Suppose that f : (X, µ)→ (Y, λ) is (γµ , βλ)-irresolute and (γµ , βλ)-
closed.

(i) If f is injective and (Y, λ) is βλ-T 1
2
, then (X, µ) is γµ-T 1

2
.

(ii) If f is surjective and (X, µ) is γµ-T 1
2
, then (Y, λ) is β

λ
-T 1
2
.
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Proof. (i) Let A be a γµg-closed set of (X, µ). Then by the last theorem, f(A)
is β

λ
g-closed in Y and hence f(A) is β

λ
-closed. Since f is (γµ , βλ)-irresolute,

by Theorem 7, A = f−1(f(A)) is γµ-closed and hence (X, µ) is γµ-T 1
2
.

(ii) Let B be any β
λ
g-closed set in (Y, λ). It is sufficient to show that B is a β

λ
-

closed set. By Theorem 8, f−1(B) is a γµg-closed set in X. Since (X, µ) is a γµ-
T 1
2
, f−1(B) is γµ-closed. Since f is surjective and (γµ , βλ)-closed, f(f−1(B)) = B

is a β
λ
-closed set. �

Theorem 10 Let f : (X, µ) → (Y, λ) be a surjective (γµ , βλ)-irresolute func-
tion. If E be a β

λ
-D

λ
set in Y, then f−1(E) is a γµ-Dµ set in (X, µ).

Proof. Let E be a β
λ
-D

λ
set in Y. Then there exist two β

λ
-open sets U

1
and

U
2

in Y such that E = U
1
\U

2
and U

1
6= Y. Now by Theorem 7, f−1(U

1
) and

f−1(U
2
) are γµ-open and f−1(U

1
) 6= X (as f is surjective and U

1
6= Y). Thus

f−1(E) = f−1(U
1
) \ f−1(U

2
) is a γµ-Dµ set. �

Theorem 11 If (Y, λ) is β
λ
-D

1
and f : (X, µ)→ (Y, λ) is a (γµ , βλ)-irresolute

bijective function, then (X, µ) is γµ-D
1
.

Proof. Suppose that (Y, λ) is a β
λ
-D

1
space. Let x and y be any two distinct

points of X. Since f is injective and Y is β
λ
-D

1
, there exist β

λ
-D

λ
sets Gx and

Gy of Y containing f(x) and f(y) respectively such that f(x) 6∈ Gy and f(y) 6∈
Gx . Thus by Theorem 10, f−1(Gx) and f−1(Gy) are γµ-Dµ sets containing x
and y respectively such that x 6∈ f−1(Gy) and y 6∈ f−1(Gx). Thus X a γµ-D

1

space. �

Theorem 12 A GTS (X, µ) is γµ-D
1

if for each distinct points x and y in X,
there exists a (γµ , βλ)-irresolute surjective function f : (X, µ) → (Y, λ), where
(Y, λ) is a β

λ
-D

1
space such that f(x) and f(y) are distinct.

Proof. Let x and y be two distinct points of X. By hypothesis, there exists a
(γµ , βλ)-irresolute function f on X onto a β

λ
-D

1
space Y such that f(x) 6= f(y).

Then there exist β
λ
-D

λ
sets Gx and Gy containing f(x) and f(y) respectively

such that f(x) 6∈ Gy and f(y) 6∈ Gx . As f is surjective and (γµ , βλ)-irresolute,
f−1(Gx) and f−1(Gy) are γµ-Dµ sets in X (by Theorem 10) containing x and
y respectively such that x 6∈ f−1(Gy) and y 6∈ f−1(Gx). Hence X is a γµ-D

1

space. �

Conclusion: If we replace µ by different GT’s or γµ by different operators,
we can obtain various forms of generalized closed sets and related continuous
functions.
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Abstract. In the present paper we introduce the sequence spaces c0{M, Λ, p, q},
c{M, Λ, p, q} and l∞{M, Λ, p, q} defined by a Musielak-Orlicz function
M = (Mk). We study some topological properties and prove some inclu-
sion relations between these spaces.

1 Introduction and preliminaries

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as
x −→∞.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to define the
following sequence space,

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|

ρ

)
<∞}

which is called as an Orlicz sequence space. Also `M is a Banach space with
the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|

ρ

)
≤ 1
}
.
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quence space
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Also, it was shown in [3] that every Orlicz sequence space `M contains a sub-
space isomorphic to `p(p ≥ 1). The ∆2- condition is equivalent to M(Lx) ≤
LM(x), for all L with 0 < L < 1. An Orlicz function M can always be repre-
sented in the following integral form

M(x) =

∫x
0

η(t)dt

where η is known as the kernel of M, is right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t)→∞ as t→∞.

A sequenceM = (Mk) of Orlicz function is called a Musielak-Orlicz function
(see [4], [8]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For
a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM
and its subspace hM are defined as follows

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =

∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1
k

(
1+ IM(kx)

)
: k > 0

}
.

Let w, l∞, c and c0 denote the spaces of all, bounded, convergent and null
sequences x = (xk) with complex terms respectively. The zero sequence (0,0,...)
is denoted by θ and p = (pk) is a sequence of strictly positive real numbers.
Further the sequence (p−1k ) will be represented by (tk).



496 S. K. Sharma

Mursaleen and Noman [6] introduced the notion of λ-convergent and λ-
bounded sequences as follows :
Let λ = (λk)

∞
k=1 be a strictly increasing sequence of positive real numbers

tending to infinity i.e.

0 < λ0 < λ1 < · · · and λk →∞ as k→∞
and said that a sequence x = (xk) ∈ w is λ-convergent to the number L, called
the λ-limit of x if Λm(x) −→ L as m→∞, where

λm(x) =
1

λm

m∑
k=1

(λk − λk−1)xk.

The sequence x = (xk) ∈ w is λ-bounded if supm |Λm(x)| <∞. It is well known
[6] that if limm xm = a in the ordinary sense of convergence, then

lim
m

(
1

λm

( m∑
k=1

(λk − λk−1)|xk − a|

)
= 0.

This implies that

lim
m

|Λm(x) − a| = lim
m

∣∣∣∣ 1λm
m∑
k=1

(λk − λk−1)(xk − a)

∣∣∣∣ = 0
which yields that limmΛm(x) = a and hence x = (xk) ∈ w is λ-convergent to
a.

Let X be a linear metric space. A function p : X→ R is called paranorm, if

1. p(x) ≥ 0 for all x ∈ X,

2. p(−x) = p(x) for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a
sequence of vectors with p(xn−x)→ 0 as n→∞, then p(λnxn−λx)→
0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X, p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [14],
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Theorem 10.4.2, pp. 183). For more details about sequence spaces (see [1], [2],
[5], [7], [9], [10], [11], [12], [13]) and references therein.

Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be a bounded
sequence of positive real numbers and let (X, q) be a seminormed space semi-
normed by q. In the present paper, we define the following sequence spaces:

c0{M, Λ, p, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk → 0, as k→∞,

for some ρ > 0

}
,

c{M, Λ, p, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk → 0, as k→∞,

for some L ∈ X and for some ρ > 0

}
and

l∞{M, Λ, p, q} =

{
x = (xk) ∈ w : sup

k

[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk <∞,

for some ρ > 0

}
.

If we take p = (pk) = 1, we have

c0{M, Λ, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x)

)
ρ

)]→ 0, as k→∞,
for some ρ > 0

}
,

c{M, Λ, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x) − L

)
ρ

)]→ 0, as k→∞,
for some L ∈ X and for some ρ > 0

}
and

l∞{M, Λ, q} =

{
x = (xk) ∈ w : sup

k

[
Mk

(
q
(
Λk(x)

)
ρ

)]
<∞, for some ρ > 0

}
.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤
suppk = K, D = max(1, 2K−1) then

|ak + bk|
pk ≤ D{|ak|

pk + |bk|
pk} (1)
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for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|K) for all a ∈ C.
The main aim of this paper is to study some toplogical properties and prove

some inclusion relation between these spaces.

2 Main results

Theorem 1 If M = (Mk) be a Musielak-Orlicz function and p = (pk) be
a bounded sequence of positive real numbers, then the spaces c0{M, Λ, p, q},
c{M, Λ, p, q} and l∞{M, Λ, p, q} are linear spaces over the field of complex
numbers C.

Proof. Let x = (xk), y = (yk) ∈ c{M, Λ, p, q} and α,β ∈ C. Then there exist
positive real numbers ρ1 and ρ2 such that[

Mk

(
q
(
Λk(x) − L

)
ρ1

)]pk
tk → 0, as k→∞

and [
Mk

(
q
(
Λk(y) − L

)
ρ2

)]pk
tk → 0, as k→∞.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since (Mk) is non-decreasing and convex by
using inequality (1.1), we have[
Mk

(
q
(
(αΛk(x) + βΛk(y)) − 2L

)
ρ3

)]pk
tk

≤
[
Mk

(
q
(
αΛk(x) − L

)
ρ3

+
q
(
βΛk(y) − L

)
ρ3

)]pk
tk

≤ D
1

2pk

[
Mk

(
q
(
Λk(x) − L

)
ρ1

)]pk
tk +D

1

2pk

[
Mk

(
q
(
Λk(y) − L

)
ρ2

)]pk
tk

≤ D

[
Mk

(
q
(
Λk(x) − L

)
ρ1

)]pk
tk +D

[
Mk

(
q
(
Λk(y) − L

)
ρ2

)]pk
tk→ 0 as k→∞.

Thus, αx+βy ∈ c{M, Λ, p, q}. Hence c{M, Λ, p, q} is a linear space. Similarly,
we can prove c0{M, Λ, p, q} and l∞{M, Λ, p, q} are linear spaces over the field
of complex numbers C. �
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Theorem 2 M = (Mk) be a Musielak-Orlicz function and p = (pk) be a
bounded sequence of positive real numbers, then l∞{M, Λ, p, q} is a paranormed
space with the paranorm defined by

g(x) = q(x1) + inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x))

ρ

)
tk

1
pk

}
≤ 1, ρ > 0bigg},

where H = max(1, K).

Proof. (i) Clearly, g(x) ≥ 0 for x = (xk) ∈ l∞{M, Λ, p, q}. Since Mk(0) = 0,
we get g(θ) = 0.
(ii) g(−x) = g(x)
(iii) Let x = (xk), y = (yk) ∈ l∞{M, Λ, p, q}, then there exist ρ1, ρ2 > 0 such
that

sup
k≥1

{
Mk

(
q
(
Λk(x)

)
ρ1

)
tk

1
pk

}
≤ 1

and

sup
k≥1

{
Mk

(
q
(
Λ(y)

)
ρ2

)
tk

1
pk

}
≤ 1.

Let ρ = ρ1 + ρ2, then by Minkowski’s inequality, we have

sup
k≥1

{
Mk

(
q
(
Λk(x+ y)

)
ρ

)
tk

1
pk

}
= sup
k≥1

{
Mk

(
q
(
Λk(x+ y)

)
ρ1 + ρ2

)
tk

1
pk

}
≤

(
ρ1

ρ1 + ρ2

)
sup
k≥1

[
Mk

(
q
(
Λk(x)

)
ρ1

)
tk

1
pk

]
+

(
ρ2

ρ1 + ρ2

)
sup
k≥1

[
Mk

(
q
(
Λk(y)

)
ρ2

)
tk

1
pk

]
≤ 1

and thus

g(x+ y) = q(x1 + y1)

+ inf

{
(ρ1 + ρ2)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x) +Λk(y)

)
ρ

)}
tk

1
pk ≤ 1, ρ > 0

}
≤ q(x1) + inf

{
(ρ1)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x)

)
ρ1

)}
tk

1
pk ≤ 1, ρ > 0

}
+ q(y1) + inf

{
(ρ2)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(y)

)
ρ2

)}
tk

1
pk ≤ 1, ρ > 0

}
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≤ g(x) + g(y)

(iv) Finally, we prove that the scalar multiplication is continuous. Let µ be
any complex number. By definition,

g(µx) = q(µx1) + inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q
(
µΛk(x)

)
ρ

)}
tk

1
pk ≤ 1, ρ > 0

}
= |µ|q(x1) + inf

{
(|λ|r)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x)

)
r

)}
tk

1
pk ≤ 1, r > 0

}
,

where r = ρ
|µ|

. Hence l∞{M, Λ, p, q} is a paranormed space. �

Theorem 3 For any Musielak-Orlicz functionM = (Mk) and p = (pk) ∈ l∞,
then the spaces c0{M, Λ, p, q}, c{M, Λ, p, q} and l∞{M, Λ, p, q} are complete
paranormed spaces paranormed by g.

Proof. Suppose (xn) is a Cauchy sequence in l∞{M, Λ, p, q}, where xn =
(xnk )

∞
k=1 for all n ∈ N. So that g(xi − xj) → 0 as i, j → ∞. Suppose ε > 0 is

given and let s and x0 be such that ε
sx0

> 0 and Mk

(
sx0
2

)
≥ sup

k≥1
(pk)

tk . Since

g(xi − xj)→ 0, as i, j→∞ which means that there exists n0 ∈ N such that

g(xi − xj) <
ε

sx0
, for all i, j ≥ n0.

This gives g(xi1 − x
j
1) <

ε
sx0

and

inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x

i − xj)
)

ρ

)
tk

1
pk

}
≤ 1, ρ > 0

}
<

ε

sx0
. (2)

It shows that (xi1) is a Cauchy sequence in X. Therefore (xi1) is convergent in

X because X is complete. Suppose lim
i→∞ xi1 = x1 then lim

j→∞g(xi1 − xj1) < ε

sx0
, we

get

g(xi1 − x1) <
ε

sx0
.

Thus, we have

Mk

(
q
(
Λk(x

i − xj)
)

g(xi − xj)

)
tk

1
pk ≤ 1.

This implies that

Mk

(
q
(
Λk(x

i − xj)
)

g(xi − xj)

)
≤ (pk)

tk ≤Mk(
sx0
2

)
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and thus

q(Λk(x
i − xj)) <

sx0
2
.
ε

sx0
<
ε

2

which shows that (Λk(x
i)) is a Cauchy sequence in X for all k ∈ N. Therefore,

(Λk(x
i)) converges in X. Suppose lim

i→∞Λk(xi) = y for all k ∈ N. Also, we

have lim
i→∞Λk(xi2) = y1 − x1. On repeating the same procedure, we obtain

lim
i→∞Λk(xik+1) = yk−xk for all k ∈ N. Therefore by continuity of (Mk), we get

lim
j→∞ sup

k≥1
Mk

(
q
(
Λk(x

i − xj)
)

ρ

)
t

1
pk

k ≤ 1,

so that

sup
k≥1

Mk

(
q
(
Λk(x

i − xj)
)

ρ

)
t

1
pk

k ≤ 1.

Let i ≥ n0 and taking infimum of each ρ’s, we have

g(xi − x) < ε.

So (xi − x) ∈ l∞{M, Λ, p, q}. Hence x = xi − (xi − x) ∈ l∞{M, Λ, p, q}, since
l∞{M, Λ, p, q} is a linear space. Hence, l∞{M, Λ, p, q} is a complete para-
normed space. Similarly, we can prove the spaces c0{M, Λ, p, q} and c{M, Λ, p, q}

are complete paranormed spaces. �

Theorem 4 If 0 < pk ≤ rk <∞ for each k, then

Z{M, Λ, p, q} ⊆ Z{M, Λ, r, q}

for Z = c0 and c.

Proof. Let x = (xk) ∈ c{M, Λ, p, q}. Then there exists some ρ > 0 and L ∈ X
such that

Mk

(
q
(
Λk(x) − L

)
ρ

)pk
tk → 0 as k→∞.

This implies that

Mk

(
q
(
Λk(x) − L

)
ρ

)
< ε, (0 < ε < 1)
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for sufficiently large k. Hence we get

Mk

(
q
(
Λk(x) − L

)
ρ

)rk
tk ≤ Mk

(
q
(
Λk(x) − L

)
ρ

)pk
tk → 0 as k→∞.

This implies that x = (xk) ∈ c{M, Λ, r, q}. This completes the proof. Similarly,
we can prove for the case Z = c0. �

Theorem 5 SupposeM ′ = (M ′k) andM ′′ = (M ′′k ) are Musielak-Orlicz func-
tions satisfying the ∆2-condition then we have the following results:

(i) if (pk) ∈ l∞ then Z{M ′, Λ, p, q} ⊆ Z{M ′′ ◦ M ′, Λ, p, q} for Z = c, c0
and l∞.

(ii) Z{M ′, Λ, p, q} ∩ Z{M ′′, Λ, p, q} ⊆ Z{M ′ +M ′′, Λ, p, q} for Z = c, c0
and l∞.

Proof. If x = (xk) ∈ c0{M, Λ, p, q} then there exists some ρ > 0 such that{
M ′k

(
q
(
Λk(x)

)
ρ

)}pk
tk → 0 as k→∞.

Suppose

yk =M
′
k

(
q
(
Λk(x)

)
ρ

)
for all k ∈ N.

Choose δ > 0 be such that 0 < δ < 1, then for yk ≥ δ we have yk <
yk
δ < 1+

yk
δ .

Now (M ′′k ) satisfies ∆2-condition so that there exists J ≥ 1 such that

M ′′k (yk) <
Jyk
2δ
M ′′k (2) +

Jyk
2δ
M ′′k (2) =

Jyk
δ
M ′′k (2).

We obtain[
(M ′′k ◦M ′k)

(
q
(
Λk(x)

)
ρ

)]pk
tk =

[
M ′′k

{
M ′k

(
q
(
Λk(x)

)
ρ

)}]pk
tk =

[
M ′′k (yk)

]pk
tk

≤ max

{
sup
k

(
[M ′′k (1)]

pk

)
, sup
k

(
[kM ′′k (2)δ

−1]pk
)}

[yk]
pktk → 0, as k→∞.

Similarly, we can prove the other cases.
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(ii) Suppose x = (xk) ∈ c0{M
′
k, Λ, p, q} ∩ c0{M ′′k , Λ, p, q}, then there exist

ρ1, ρ2 > 0 such that{(
M ′k

(
q
(
Λk(x)

)
ρ1

))pk
tk

} → 0, as k→∞
and {(

M ′′k

(
q
(
Λk(x)

)
ρ2

))pk
tk

} → 0, as k→∞.
Let ρ = max{ρ1, ρ2}. The remaining proof follows from the inequality{[

(M ′k +M
′′
k )

(
q
(
Λk(x)

)
ρ

)]pk
tk

}
≤ D
{[
M ′k

(
q
(
Λk(x)

)
ρ1

)]pk
tk

+

[
M ′′k

(
q
(
Λk(x)

)
ρ2

)]pk
tk

}
.

Hence c0{M
′
k, Λ, p, q} ∩ c0{M ′′k , Λ, p, q} ⊆ c0{M ′k +M ′′k , Λ, p, q}. Similarly we

can prove the other cases. �

Theorem 6 (i) If 0 < inf pk ≤ pk < 1, then l∞{M, Λ, p, q} ⊂ l∞{M, Λ, q}.

(ii) If 1 ≤ pk ≤ suppk <∞, then l∞{M, Λ, q} ⊂ l∞{M, Λ, p, q}.

Proof. (i) Let x = (xk) ∈ l∞{M, Λ, p, q}. Since 0 < inf pk ≤ 1, we have

sup
k

{[
Mk

(
q
(
Λk(x)

)
ρ2

)]}
≤ sup

k

{[
Mk

(
q
(
Λk(x)

)
ρ2

)]pk
tk

}
and hence x = (xk) ∈ l∞{M, Λ, q}.
(ii) Let pk ≥ 1 for each k and sup

k
pk < ∞. Let x = (xk) ∈ l∞{M, Λ, q}, then

for each ε, 0 < ε < 1, there exists a positive integer n0 ∈ N such that

sup
k

{
Mk

(
q
(
Λk(x)

)
ρ

)}
≤ ε < 1.

This implies that

sup
k

{[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk

}
≤ sup

k

{
Mk

(
q
(
Λk(x)

)
ρ

)}
.

Thus x = (xk) ∈ l∞{M, Λ, p, q} and this completes the proof. �



504 S. K. Sharma

References

[1] T. Bilgin, Some new difference sequences spaces defined by an Orlicz
function, Filomat, 17 (2003), 1–8.

[2] A. Esi, Some new paranormed sequence spaces defined by Orlicz function,
International Journal of Science, Environment and Technology, 1 (2012),
49–55.

[3] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J.
Math., 10 (1971), 379–390.

[4] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics
5, Polish Academy of Science, 1989.

[5] M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal.
Appl., 203 (1996), 738–745.

[6] M. Mursaleen and A. K. Noman, On some new sequence spaces of non
absolute type related to the spaces lp and l∞ I, Filomat, 25 (2011), 33–51.

[7] M. Mursaleen and A. K. Noman, On some new sequence spaces of non
absolute type related to the spaces lp and l∞ II, Math. Commun., 16
(2011), 383–398.

[8] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathe-
matics, 1034 (1983).

[9] K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by
Musielak-Orlicz functions, Int. J. Pure Appl. Math., 67 (2011), 475–484.

[10] K. Raj, S. K. Sharma and A. K. Sharma, Some difference sequence spaces
in n-normed spaces defined by Musielak-Orlicz function, Armenian J.
Math., 3 (2010), 127–141.

[11] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces de-
fined by Musielak-Orlicz function, Acta. Univ. Saprientia Math., 3 (2011),
97–109.

[12] K. Raj and S. K. Sharma, Some multiplier sequence spaces defined by a
Musielak-Orlicz function in n-normed spaces, New Zealand J. Math., 42
(2012), 45–56.



Some classes of sequence spaces defined by a Musielak-Orlicz function 505

[13] B. C. Tripathy and B. Sarma, Some Some classes of difference paranormed
sequence spaces defined by Orlicz function, Thai J. Math., 3 (2005), 209–
218.

[14] A. Wilansky, Summability through Functional Analysis, North- Holland
Math. Stud. 85 (1984).



Acta Univ. Sapientiae, Mathematica, 13, 2 (2021) 506–518

DOI: 10.2478/ausm-2021-0032

Fixed point and a Cantilever beam

problem in a partial b-metric space

Anita Tomar
†Government Degree College Thatyur
(Tehri Garhwal), Uttarakhand, India

email: anitatmr@yahoo.com

Meena Joshi
S. G. R. R. (P. G.) College Dehradun,

Uttarakhand, India
email: joshimeena35@gmail.com

Venkatesh Bhatt
PET Research Foundation, Mandya,

Karnataka, India-571401
email: bhatt.venkatesh@gmail.com

Abstract. We determine the common fixed point of two maps satisfy-
ing Hardy-Roger type contraction in a complete partial b-metric space
without exploiting any variant of continuity or commutativity, which is
indispensable in analogous results. Towards the end, we give examples
and an application to solve a Cantilever beam problem employed in the
distortion of an elastic beam in equilibrium to substantiate the utility of
these improvements.

1 Introduction and preliminaries

Fixed point theory is a major tool in nonlinear analysis, having applications in
many real-world problems, which emerged in 1837 with the article of Liouville
[10] on solutions of differential equations. In 1890, Picard [13] developed it
further as a process of successive approximations which were conceptualized
and extracted by Banach [2] as a fixed point result in a complete normed space
in 1922. On the other hand, Shukla [16] familiarized partial b-metric blending
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partial metric (Matthews [11]) and b-metric (Bakhtin [1] and Czerwik [6]) to
establish a fixed point via Banach contraction [2] and Kannan contraction [9].

The aim of the current work is to demonstrate the survival of one and
only one common fixed point of two maps satisfying classical Hardy-Rogers
type contraction [7] in a complete partial b-metric space without exploiting
any variant of continuity [17] or commutativity [18], which is indispensable
in analogous results. We support our theoretical consequences by illustrative
examples and conclude the paper by giving an application to solve a Cantilever
beam problem employed in the distortion of an elastic beam in equilibrium to
substantiate the utility of these improvements.

It is worth mentioning here that in numerous cable-driven docile mecha-
nisms, like a fixed pulley or a cable routing channel in a segmented disk, the
need for controlled motion in the flexible frameworks often mandates the actua-
tion cables to pass through a fixed point to compel the force angle on the cable.
This situation may be modeled as the large deflection problem of a cantilever
beam with two parameters. Recently Zeng et al. [19] emphasized the numer-
ical analysis of the large deflection problem of the cantilever beam subjected
to a constraint force pointing at a fixed point which permitted widespread
analysis of the impact of diverse factors, including the fixed point position,
the force magnitude, and the beam length, on the behaviour of the cantilever
beam put to a constraint force pointing at a fixed point. This work permitted
mathematical model-based design optimization of docile frameworks in areas
such as soft robotics and smart materials.

Definition 1 [16] A function pb : X ×X → [0,∞) on a nonempty set X is a
partial b-metric if ∀u, v,w ∈ X ,

1. u = v iff pb(u, v) = pb(u, u) = pb(v, v);

2. pb(u, u) ≤ pb(u, v);

3. pb(u, v) = pb(v, u);

4. pb(u, v) ≤ s[pb(u,w) + pb(w, v)] − pb(w,w).

The pair (X , pb) is a partial b-metric space and s ≥ 1 is the coefficient of
(X , pb).

Example 1 Let X = [0, 10] and pb : X × X −→ [0,∞) be defined as:
pb(u, v) = |u − w|2 + 2. By routine calculation, one may verify that (X , pb)
is a partial b-metric space for s = 2. However, (X , pb) is not a partial metric
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space. Since for u = 0, v = 10 and w = 5, we obtain
pb(0, 10) = |0− 10|2 + 2 = 102,
pb(0, 5) + pb(5, 10) − pb(5, 5) = |0− 5|2 + 2+ |5− 10|2 + 2− 2

= 25+ 2+ 25
= 52.

Therefore, pb(0, 10) > pb(0, 5) + pb(5, 10) − pb(5, 5). Noticeably, (X , pb) is
also not a b-metric space.

Definition 2 [12] A sequence {un} in a partial b-metric space (X , pb) is

1. convergent to u ∈ X if pb(u, u) = limn→∞ pb(u, un).
2. Cauchy sequence if limn→∞ pb(un, um) exists and is finite.

A partial b-metric space (X , pb) is complete [16] if each pb-Cauchy sequence
in X converges to u ∈ X , i.e., pb(u, u) = limn→∞ pb(u, un) = limn,m→∞ pb
(un, um).
One may notice that the limit of a convergent sequence is not essentially unique
in a partial b-metric space.

2 Main results

Theorem 1 Let S, T : X → X be self maps of a complete partial b-metric
space (X , pb) so that T (X ) ⊆ S(X ) and

pb(Su, T v) ≤ apb(u,Su)+bpb(v, T v)+cpb(u, T v)+dpb(v,Su)+epb(u, v), (1)

∀ u, v ∈ X and a, b, c, d, e are positive reals satisfying a+b+c+e+d(2s−1) ≤ 1
and s > 1. Then S and T have a unique common fixed point in X .

Proof. Assume u0 ∈ X and since T (X ) ⊆ S(X ), so we may inductively define
a sequence {un}

∞
n=1 in X as

un = T un−1 and un+1 = Sun, (2)

for n = 0, 1, 2, . . . . If un = un+1, i.e., un = Sun, i.e., un is a fixed point of S.
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Since, un = un+1 =⇒ un+1 = Sun = Sun+1. So

pb(un+1, un+2) = pb(Sun+1, T un)
≤ apb(un+1,Sun+1) + bpb(un, T un) + cpb(un+1, T un)
+ dpb(un,Sun+1) + epb(un+1, un)

= apb(un+1, un+2) + bpb(un, un+1) + cpb(un+1, un+1)

+ dpb(un, un+2) + epb(un+1, un)

≤ apb(un+1, un+2) + bpb(un, un+1) + cpb(un+1, un+1)

+ ds[pb(un, un+1) + pb(un+1, un+2)] − dpb(un+1, un+1)

+ epb(un+1, un),

i.e., (1− a − ds)pb(un+1, un+2) + dpb(un+1, un+1) ≤ (b + ds+ e)pb(un, un+1)

+ cpb(un+1, un+1),

i.e., (1− a − ds)pb(un+1, un+2) + dpb(un+1, un+2) ≤ (b + ds+ e)pb(un, un+1)

+ cpb(un, un+1),

i.e., (1+ d − a − ds)pb(un+1, un+2) ≤ (b + ds+ e + c)pb(un, un+1),

i.e., (1+ d − a − ds)pb(un+1, un+2) ≤ (b + ds+ e + c)pb(un+1, un+2),

i.e., (1− a − b − c − e − d(2s− 1))pb(un+1, un+2) ≤ 0,
i.e., pb(un+1, un+2) ≤ 0 =⇒ pb(un+1, un+2) = 0,

i.e., T un = un+1 = un+2 and un = un+1 =⇒ T un = un, i.e., un is a fixed point
of T .
Also, un = un+1 = un+2 = . . . , i.e., un is a common fixed point of S and T .
So, presume that for even n, un 6= un+1. Then

pb(un+1, un) = pb(Sun, Tun−1)

≤ apb(un, Sun) + bpb(un−1, Tun−1) + cpb(un, Tun−1)

+ dpb(un−1, Sun) + epb(un, un−1)

≤ apb(un, un+1) + bpb(un−1, un) + cpb(un, un)

+ dpb(un−1, un+1) + epb(un, un−1)

≤ apb(un, un+1) + bpb(un−1, un) + cpb(un, un) + ds[pb(un−1, un)

+ pb(un, un+1)] − dpb(un, un) + epb(un, un−1)

≤ apb(un, un+1) + bpb(un−1, un) + cpb(un, un) + dspb(un−1, un)

+ dspb(un, un+1) − dpb(un, un) + epb(un, un−1),
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i.e., (1− a − ds)p(un, un+1) ≤ (b + ds+ e)pb(un−1, un) + (c − d)pb(un, un),

i.e., (1− a − ds)p(un, un+1) + dpb(un, un) ≤ (b + ds+ e)pb(un, un−1)

+ cpb(un, un),

i.e., (1− a − ds)p(un, un+1) + dpb(un, un+1) ≤ (b + ds+ e)pb(unun−1)

+ cpb(un, un−1)

(1+ d − a − ds)pbun, un+1) ≤ (b + c + e + ds)pb(un, un+1),

i.e., pb(un, un+1) ≤
b + c + e + ds

1+ d − a − ds
pb(un, un+1),

i.e., pb(un, un+1) ≤ kpb(un, un−1), where, k =
b + c + e + ds

1+ d − a − ds
≤ 1. (3)

If n is odd, the same inequality (3) can be obtained analogously.
Continuing this process, we attain
pb(un, un+1) ≤ knpb(u0, u1).
We assert that {un}is a Cauchy sequence in X . For m > n and m,n ∈ N,
consider

pb(un, um) ≤ s[pb(un, un+1) + pb(un+1, um)] − pb(un+1, un+1)
≤ s[pb(un, un+1) + pb(un+1, um)]
≤ spb(un, un+1) + s[s{pb(un+1, un+2)

+ pb(un+2, um)}− pb(un+2, un+2)]

≤ spb(un, un+1) + s[s{pb(un+1, un+2) + pb(un+2, um)}]
≤ sknpb(u0, u1) + s2kn+1pb(u0, u1) + ....
≤ sknpb(u0, u1)[1+ sk+ (sk)2 + ....]

≤ skn

1− sk
pb(u0, u1) −→ 0 as n −→∞,

i.e., {un} is a Cauchy sequence. Using completeness of X , {un} converges to u∗ ∈
X and we have limn,m−→∞ pb(un, um) = limn−→∞ pb(un, u∗) = pb(u∗, u∗) = 0.
Further, we assert that u∗ is a fixed point of S. Let {uni

}∞i=1 be a subsequence
of {un}.

So,

pb(u
∗,Su∗) ≤ s[pb(u∗, uni

) + pb(uni
,Su∗)] − pb(uni

, uni
)

≤ spb(u∗, uni
) + spb(T un−1i ,Su

∗)

≤ spb(u∗, uni
) + s[pb(Su∗, T un−1i)]

≤ spb(u∗, uni
) + s[apb(u

∗, Su∗) + bpb(un−1i , T un−1i)
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+ cpb(u
∗, T un−1i) + dpb(un−1i ,Su

∗) + epb(u
∗, un−1i)]

≤ spb(u∗, uni
) + s[apb(u

∗,Su∗) + bpb(un−1i , uni
)

+ cpb(u
∗, uni

) + dpb(un−1i ,Su
∗) + epb(u

∗, un−1i)].

(4)

As n→∞, pb(u
∗,Su∗) ≤ s(a+d)pb(u

∗, Su∗), which gives a contradiction. So,
u∗ = Su∗ ⇒ u∗ is fixed point of S.
Furthermore, we assert that u∗ is a fixed point of T . Let {un+1i}

∞
i=1 be a sub-

sequence of {un}.
So,

pb(u
∗, T u∗) ≤ s[pb(u∗, un+1i) + pb(un+1i , T u

∗)] − pb(un+1i , un+1i)

≤ spb(u∗, un+1i) + spb(Suni
, T u∗)

≤ spb(u∗, un+1i) + s[apb(uni
,Suni

) + bpb(u
∗, T u∗)

+ cpb(uni
, T u∗) + dpb(u

∗,Suni
) + epb(uni

, u∗)]

≤ spb(u∗, un+1i) + s[apb(uni
, un+1i) + bpb(u

∗, T u∗)
+ cpb(uni

, T u∗) + dpb(u
∗, un+1i) + epb(uni

, u∗)].

As n→∞, pb(u
∗, T u∗) ≤ s(b + c)pb(u

∗, T u∗), which gives a contradiction.
Therefore, u∗ = T u∗ ⇒ u∗ is a fixed point of T .
If u and u∗ are two different common fixed points of S and T , then we have
Su = T u = u and Su∗ = T u∗ = u∗. Consider

pb(u, u
∗) = pb(Su, T u∗)
≤ apb(u,Su) + bpb(u

∗, T u∗) + cpb(u, T u∗) + dpb(u
∗,Su) + epb(u, u

∗)

≤ apb(u, u) + bpb(u
∗, u∗) + cpb(u, u

∗) + dpb(u
∗, u) + epb(u, u

∗)

≤ (c + d + e)pb(u, u
∗),

a contradiction, i.e., u = u∗ ⇒ S and T has a unique common fixed point in
X . �

Next, we provide a non-trivial illustration to exhibit the significance of Theo-
rem 1.

Example 2 Let X = [−10, 10] and pb : X × X −→ [0,∞) be defined as:
pb(u, v) = (|u| + |v| + 2)2. Then (X , pb) is a complete partial b-metric space
and s = 2. Define S, T : X −→ X as: Su = u

6 and T u = u
10 . Let u ≥ v. Then

pb(Su, T v) = pb
(
u

6
,
v

10

)
=

(
|u|

6
+

|v|

10
+ 2

)2
=

(
10|u|+ 6|v|+ 120

60

)2
and

(5)
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apb(u,Su) + bpb(v, T v) + cpb(u, T v) + dpb(v,Su) + epb(u, v)

= apb(u,
u

6
) + bpb(v,

v

10
) + cpb(u,

v

10
) + dpb(v,

u

6
) + epb(u, v)

= a
(
|u|+ |

u

6
|+ 2

)2
+ b
(
|v|+ |

v

10
|+ 2

)2
+ c
(
u +

v

10
+ 2
)2

+ d
(
v +

u

6
+ 2
)2

+ e
(
u + v + 2

)2
= a

(
7|u|+ 12

6

)2
+ b

(
11|v|+ 20

10

)2
+ c

(
10|u|+ |v|+ 20

10

)2
+ d

(
6|v|+ |u|+ 12

6

)2
+ e(|u|+ |v|+ 2)2.

(6)

From equations (5) and (6) it is clear that for a = b = e = 1
6 , c = 1

3 , and

d = 1
9 ,

pb(Su, T v) ≤ apb(u,Su) + bpb(v, T v) + cpb(u, T v) + dpb(v,Su) + epb(u, v).

Consequently, all postulates of Theorem 1 are verified, and 0 is the unique
common fixed point of S and T .

Corollary 1 Inference of Theorem 1 is valid if c = d = 0.

Proof. The proof follows the pattern of Theorem 1. �

Next, we present two examples to understand and support the result proved
herein. In one example involved maps are continuous and commutative and in
another maps are discontinuous and noncommutative. It is worth mentioning
that continuity is difficult to be fulfilled in some daily life applications and is
an ideal property.

Example 3 Let X = R+ and pb : X × X −→ [0,∞) be defined as: pb(u, v) =
max{u, v}2 + |u − v|2. Then (X , pb) is a complete partial b-metric space and
s = 4. Define S, T : X −→ X as: Su = u

4 and T u = u
5 . Let u ≥ v. Then

pb(Su, T v) = pb
(
u

4
,
v

5

)
= max

{
u

4
,
v

5

}2
+

∣∣∣∣u4 −
v

5

∣∣∣∣2
=

u2

16
+

∣∣∣∣5u − 4v25

∣∣∣∣2 and

(7)
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apb(u,Su) + bpb(v, T v) + cpb(u, v) = apb

(
u,

u

4

)
+ bpb

(
v,

v

5

)
+ cpb(u, v)

= a

[
max

{
u,

u

4

}2
+
∣∣∣u − u

4

∣∣∣2]+ b

[
max

{
v,

v

5

}2
+
∣∣∣v − v

5

∣∣∣2]
+ c
[

max{u, v}2 + |u − v|2
]

= a

[
u2 +

9

16
u2
]
+ b

[
v2 +

16

25
v2
]
+ c

[
u2 + |u − v|2

]
=
25

16
au2 +

41

25
bv2 + c[u2 + |u − v|2].

(8)

From Equations (7) and (8) it is clear that for a = 1
3 , b = c = 1

9 ,

pb(Su, T v) ≤ apb(u,Su) + bpb(v, T v) + epb(u, v).

Hence, all postulates of Corollary 1 are verified, and 0 is the unique common
fixed point of S and T .

Example 4 Let X = R+ and pb : X × X −→ [0,∞) be defined as: pb(u, v) =
max{u, v}+|u−v|2. Then (X , pb) is a complete partial b-metric space and s = 4.

Define S, T : X −→ X as: Su =

{
u
2 , u ∈ [0, 1]

0, otherwise
and T u =

{
u2−u
2 , u ∈ [0, 1]

0, otherwise
.

Let u, v ∈ [0, 1] and u ≥ v. Therefore,

pb(Su, T v) = pb
(u
2
,
v2 − v

2

)
= max

{u
2
,
v2 − v

2

}
+
∣∣∣u
2
−

v2 − v

2

∣∣∣2
=

u

2
+
∣∣∣u + v − v2

2

∣∣∣2 and

(9)

apb(u,Su) + bpb(v, T v) + cpb(u, v) = apb

(
u,

u

2

)
+ bpb

(
v,

v2 − v

2

)
+ cpb(u, v)

= a

[
max

{
u,

u

2

}
+
∣∣∣u − u

2

∣∣∣2]+ b

[
max

{
v,

v2 − v

2

}
+
∣∣∣v − v2 − v

2

∣∣∣2]
c
[

max{u, v}+
∣∣u − v

∣∣2]
= a
[
u +

1

4
u2
]
+ b
[
v +

1

4
(3v − v2)] + c[u + |u − v|2

]
.

(10)
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Next, if u ≤ v and u, v ∈ [0, 1],

pb(Su, T v) =
u

2
+
∣∣∣u + v − v2

2

∣∣∣2 and (11)

apb(u,Su) + bpb(v, T v) + cpb(u, v) = a
[
u +

1

4
u2
]
+ b
[
v +

1

4
(3v − v2)

]
+ c[v + |u − v|2].

(12)

From Equations (9), (10), (11), and (12) it is clear that for a = 1
3 , b = 1

4 and

c = 1
7

pb(Su, T v) ≤ apb(u,Su) + bpb(v, T v) + epb(u, v), u, v ∈ [0, 1]. (13)

Hence, all postulates of Corollary 1 are verified, and 0 is the unique common
fixed point of S and T .

Remark 1

(i) Above results are also true if T (X ) is a complete subspace instead of
completeness of X .

(ii) Above results become more fascinating if we appraise a better natural
postulate of closures of range space, i.e., T (X ) ⊆ S(X ).

(iii) Suitably choosing the values of constants a, b, c, d, and e, we get the exten-
sions, improvements, generalizations of Bakhtin [1], Banach [2], Chat-
terjea [3], Kannan [9], Reich [14], and so on to a partial b-metric space
for a noncommutative discontinuous pair of maps.

(iv) In Theorem 1 and Corollary 1 (see, Example 4), a unique common fixed
point exists for a pair of discontinuous self maps which does not sat-
isfy even commutativity ([8], [15], [17]) and thereby extend, generalize
and improve the comparable theorems present in the literature (for in-
stance, Banach [2], Chatterjea [3], Ćirić [4], Czerwik [6], Hardy-Rogers
[7], Kannan [9], Reich [14], and references therein).

(v) Following arguments of Theorem 1, we may relax continuity, commuta-
tivity, and completeness of numerous celebrated and contemporary results
existing in different spaces.
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3 Solution of Cantilever beam problem

Motivated by the fact that the Cantilever structure permits overhanging con-
structions deprived of peripheral bracing, we solve a system of fourth-order
differential equations arising in the two-point boundary value problem of bend-
ing of an elastic beam as an application of Corollary 1. Suppose X = C[I,R]
denotes the set of all continuous functions on I = [0, 1]. Define a partial b-
metric pb : X × X −→ R+ as:

pb(u(t), v(t)) = maxt∈[0,1]

(
|u(t)|+|v(t)|

2

)2
with s = 3.

Theorem 2 The equations of deformations of an elastic beam, one of whose
end-point is free while the other is fixed, in its equilibrium state is:

d4u

dt4
= ψ(t, u(t), u ′(t), u ′′(t), u ′′′(t)),

u(0) = u ′(0) = u ′′(1) = u ′′′(1) = 0, t ∈ [0, 1],

(14)

and

d4v

dt4
= φ(t, v(t), v ′(t), v ′′(t), v ′′′(t)),

v(0) = v ′(0) = v ′′(1) = v ′′′(1) = 0, t ∈ [0, 1],

(15)

where, ψ, φ : [0, 1]× R3 −→ R are continuous functions satisfying:
maxt∈[0,1](|ψ(t, u(t), u

′(t), u ′′(t))|+|φ(t, v(t), v ′(t), v ′′(t))|)2 ≤ exp−α maxt∈[0,1] |

u(t) + v(t)|2 + exp−β maxt∈[0,1] |u(t)|
2 + exp−γ maxt∈[0,1] |v(t)|

2, u, v ∈ X , λ ∈
[1,∞), t ∈ [0, 1).
Then, the Cantilever beam problem (14-15) has a solution in X .

Proof. The Cantilever beam problem (14-15) is identical to solving the system
of integral equations

u(t) =

∫ 1
0

G(s, t)ψ(s, u(s), u ′(s), u ′′(s))ds (16)

and

v(t) =

∫ 1
0

G(s, t)φ(s, v(s), v ′(s), v ′′(s))ds, t ∈ [0, 1], u ∈ X . (17)

Here,

G(s, t) =

{
1
6s
2(3t− s) , 0 ≤ t ≤ s ≤ 1

1
6t
2(3s− t) , 0 ≤ s ≤ t ≤ 1

, (18)
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is a continuous Green function on [0, 1] . Define maps S : X −→ X and
T : X −→ X as:

Su(t) =
∫1
−0G(s, t)ψ(s, u(s), u

′(s), u ′′(s))ds

and

T u(t) =
∫1
0 G(s, t)φ(s, v(s), v

′(s), v ′′(s))ds.

Then u is a solution of (14-15) iff u is a single common fixed point of S and T
respectively.
Clearly, S, T : X −→ Xare well defined, so

pb(Su(t), T v(t)) =
( |Su(t)|+ |T v(t)|

2

)2
=


∣∣∣∫10 G(s, t)ψ(s, u(s), u ′(s), u ′′(s))ds∣∣∣+∣∣∣∫10 G(s, t)φ(s, v(s), v ′(s), v ′′(s))ds∣∣∣

2

2

≤

(∫1
0 G(s, t) |ψ(s, u(s), u

′(s), u ′′(s))|ds+
∫1
0 G(s, t) |φ(s, v(s), v

′(s), v ′′(s))|ds

2

)2

=
1

4

( ∫ 1
0

G(t, s)
( ∣∣ψ(s, u(s), u ′(s), u ′′(s))∣∣+ ∣∣φ(s, v(s), v ′(s), v ′′(s))∣∣ )ds)2

≤ 1
4

max(
∣∣ψ(s, u(s), u ′(s), u ′′(s))∣∣+ ∣∣φ(s, v(s), v ′(s), v ′′(s))∣∣)2(∫ 1

−1
G(t, s)ds

)2
≤ 1
4
[exp−α max

t∈[0,1]
|u(t) + v(t)|2 + exp−β max

t∈[0,1]
|u(t)|2 + exp−γ max

t∈[0,1]
|v(t)|2]( ∫ 1

−1
G(t, s)ds

)2
≤ 1
4

[
exp−α max

t∈[0,1]
|u(t) + v(t)|2 + exp−β max

t∈[0,1]
|u(t)|2 + exp−γ max

t∈[0,1]
|v(t)|2

] 5
12

≤ exp−α pb(u(t), v(t)) + exp−β pb(u(t),Su(t)) + exp−γ pb(v(t), T v(t)).
(19)

Hence all the postulates of Corolarry 1 are verified for a = exp−α, b =
exp−β, f = exp−γ and the Cantilever beam problem has one and only one
solution. �
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4 Conclusion

We have established a common fixed point of non-continuous maps exploit-
ing partial b-metric and without exploiting commutativity or its weaker form
([17]), which is indispensable for the survival of one and only one common fixed
point in analogous theorems present in the literature. Consequently, our theo-
rems are sharpened versions of the well-known results, wherein any variant of
continuity [18] or commutativity is not essentially required for the survival of
a single common fixed point. Examples and applications to solve a Cantilever
beam problem employed in the distortion of an elastic beam in equilibrium
substantiate the utility of these improvements and extensions.
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[4] Lj. B. Ćirić, Generalised contractions and fixed-point theorems, Publ.
Inst. Math., 12 (26) (1971), 9–26.

[5] M. Cosentino, P. Salimi, P. Vetro, Fixed point results on metric-type
spaces, Acta Math. Sci., 34 (4) (2014), 1237–1253.

[6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ.
Ostrav., 1 (1993), 5–11.

[7] G. E. Hardy, T. D., Rogers, A generalisation of fixed point theorem of
Reich, Canad. Math. Bull., 16 (1973), 201–206.

[8] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly,
83 (4) (1976), 261–263.

[9] R. Kannan, Some Results on Fixed Points—II., Math. Notes, 76 (4)
(1969), 405–408.



518 A. Tomar, M. Joshi, V. Bhatt
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Abstract. In the paper, Lp-harmonic addition, p-harmonic Blaschke
addition and Lp-dual mixed volume are improved. A new p-harmonic
Blaschke mixed quermassintegral is introduced. The relationship between
p-harmonic Blaschke mixed volume and Lp-dual mixed volume is shown.

1 Notation and preliminaries

The setting for this paper is n-dimensional Euclidean space Rn. Let Kn de-
note the subset of all convex bodies (compact, convex subsets with non-empty
interiors) in Rn. We reserve the letter u for unit vectors, and the letter B
is reserved for the unit ball centered at the origin. The surface of B is Sn−1.
We write V(K) for the (n-dimensional) Lebesgue measure of K and call this
the volume of K. Associated with a compact subset K of Rn, which is star-
shaped with respect to the origin and contains the origin, its radial function
is ρ(K, ·) : Sn−1 → [0,∞), defined by (see e. g. [1] and [2] )

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}.
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If ρ(K, ·) is positive and continuous, K will be called a star body. Let Sn denote
the set of star bodies in Rn. We write S(K) for the surface area of star body
K. If k > 0, then for all u ∈ Rn\{0}

ρ(kK, u) = kρ(K,u). (1)

Let δ̃ denote the radial Hausdorff metric, as follows, if K, L ∈ Sn, then (see e.
g. [1])

δ̃(K, L) = |ρ(K,u) − ρ(L, u)|∞.
1.1 Dual mixed volume

The radial Minkowski linear combination, λ1K1+̃ · · · +̃λrKr, defined by (see [3])

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki, i = 1, . . . , r},

for K1, . . . , Kr ∈ Sn and λ1, . . . , λr ∈ R. It has the following important property:

ρ(λK+̃µL, ·) = λρ(K, ·) + µρ(L, ·),

for K, L ∈ Sn and λ, µ ≥ 0.
If Ki ∈ Sn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real

numbers, then of fundamental importance is the fact that the dual volume of
λ1K1+̃ · · · +̃λrKr is a homogeneous polynomial in the λi given by (see e. g. [3])

V(λ1K1+̃ · · · +̃λrKr) =
∑
i1,...,in

λi1 . . . λinṼi1...in , (2)

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not
exceeding r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . , Kin
and is uniquely determined by (2), it is called the dual mixed volume of
Ki1 , . . . , Kin , and is written as Ṽ(Ki1 , . . . , Kin). Let K1 = . . . = Kn−i = K

and Kn−i+1 = . . . = Kn = L, then the mixed volume Ṽ(K1 . . . Kn) is written
as Ṽi(K, L). If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = B, then the mixed

volumes Vi(K,B) is written as W̃i(K) and is called the dual quermassintegral

of star body K and (n−i)W̃i+1 is written as Si(K) and called the mixed surface
area of K. The dual quermassintegral of star body K, defined as an integral by
(see [4])

W̃i(K) =
1

n

∫
Sn−1

ρ(K,u)n−idS(u). (3)
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It is convenient to write relation (2) in the form (see [5, p.137])

Ṽ(λ1K1+̃ · · · +̃λsKs)

=
∑

p1+···+pr=n

∑
1≤i1<···<ir≤s

n!

p1! · · ·pr!
λ
p1
i1
· · · λprir Ṽ(Ki1 , . . . , Ki1︸ ︷︷ ︸

p1

, . . . , Kir , . . . , Kir︸ ︷︷ ︸
pr

).

(4)

Let s = 2, λ1 = 1, K1 = K,K2 = B, we have

V(K+̃λB) =

n∑
i=0

(ni )λ
iW̃i(K),

known as formula “Steiner decomposition”. Moreover, for star bodies K and
L, (4) can show the following special case:

W̃i(K+̃λL) =

n−i∑
j=0

(n−ij )λjṼ(K, . . . , K︸ ︷︷ ︸
n−i−j

, B, . . . , B︸ ︷︷ ︸
i

, L, . . . , L︸ ︷︷ ︸
j

). (5)

1.2 The p-radial addition and p-dual mixed volume

For any p 6= 0, the p-radial addition K+̃pL defined by (see [6] and [7])

ρ(K+̃pL, u)
p = ρ(K,u)p + ρ(L, u)p, (6)

for u ∈ Sn−1 and K, L ∈ Sn. When p = ∞ or −∞, the p-radial addition is
interpreted as ρ(K+̃∞L, u) = K ∪ L or ρ(K+̃−∞L, u) = K ∩ L (see e. g. [8]).

The following result follows immediately from (6).

p

n
lim
ε→0+

V(K+̃pε · L) − V(L)
ε

=
1

n

∫
Sn−1

ρ(K.u)n−pρ(L.u)pdS(u).

Let K, L ∈ Sn and p 6= 0, the p-dual mixed volume of star K and L, Ṽp(K, L),
defined by

Ṽp(K, L) =
1

n

∫
Sn−1

ρ(K.u)n−pρ(L.u)pdS(u). (7)

The Minkowski inequality for the p-radial addition stated that: If K, L ∈ Sn
and 0 < p ≤ n, then (see [7])

Ṽp(K, L)
n ≤ V(K)n−pV(L)p, (8)

with equality if and only if K and L are dilates.
The inequality is reversed for p > n or p < 0
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2 The Lp-dual mixed volume for 0 < p < 1

For p ≥ 1, Lutwak defined the Lp-harmonic addition of star bodies K and L,
K+̌pε � L, defined by (see [9])

ρ(K+̌pε � L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p. (9)

As defined in (9), K+̌pε � L has a constant coefficient p restricted to p ≥ 1.
We now extend the definition so that K+̌pL is defined for 0 < p < 1.

Definition 1 (The Lp-harmonic addition for 0 < p < 1) If K, L ∈ Sn and
0 < p < 1, the Lp-harmonic addition of star bodies K and L, K+̌pε �L, defined
by

ρ(K+̌pε � L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p. (10)

From (10), it is easy that for 0 < p < 1 (and p ≥ 1)

−
p

n
lim
ε→0+

V(K+̌pε � L) − V(K)
ε

=
1

n

∫
Sn−1

ρ(K,u)n+pρ(L, u)−pdS(u).

Definition 2 If K, L ∈ Sn and 0 < p < 1, the Lp-dual mixed quermassintegral

of K and L, Ṽ−p(K, L), defined by

Ṽ−p(K, L) :=
1

n

∫
Sn−1

ρ(K,u)n+pρ(L, u)−pdS(u). (11)

Theorem 1 (Lp-Minkowski inequality) If K, L ∈ Sn and 0 < p < 1, then

Ṽ−p(K, L)
n ≥ V(K)n+pV(L)−p, (12)

with equality if and only if K and L are dilates.

Proof. This integral representation (11) and together with Hölder integral
inequality, this yields (12). �

The case p ≥ 1, please see literatures [10] and [11].

Theorem 2 (Lp-Brunn-Minkowski inequality) If K, L ∈ Sn and 0 < p < 1,
then

Ṽ(K+̌pε � L)−p/n ≥ V(K)−p/n + V(L)−p/n, (13)

with equality if and only if K and L are dilates.

Proof. This follows immediately from (10) and (12). �
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3 The p-harmonic Blaschke addition for 0 < p < 1

Let us recall the concept, the harmonic Blaschke addition, defined by Lutwak
[12]. Suppose K and L are star bodies in Rn, the harmonic Blaschke linear
addition, K+̂L, by

ρ(K+̂L, ·)n+1

V(K+̂L)
=
ρ(K, ·)n+1

V(K)
+
ρ(L, ·)n+1

V(L)
. (14)

Lutwak’s Brunn-Minkowski inequality for the harmonic Blaschke addition was
established (see [12]). If K, L ∈ Sn, then

V(K+̂L)1/n ≥ V(K)1/n + V(L)1/n, (15)

with equality if and only if K and L are dilates. More generally, for any p ≥ 1,
the p-harmonic Blaschke addition K+̂pL defined by (see [13] and [14]).

ρ(K+̂pL, ·)n+p

V(K+̂pL)
=
ρ(K, ·)n+p

V(K)
+
ρ(L, ·)n+p

V(L)
. (16)

The Lp Brunn-Minkowski inequality for the p-harmonic Blaschke addition was
established ( see [13]). If K, L ∈ Sn and p ≥ 1, then

V(K+̂pL)
p/n ≥ V(K)p/n + V(L)p/n, (17)

with equality if and only if K and L are dilates.
As defined in (16), K+̂pL has a constant coefficient p restricted to p ≥ 1.

We now extend the definition so that K+̂pL is defined for 0 < p < 1.

Definition 3 (The p-harmonic Blaschke addition for 0 < p < 1) If K, L ∈
Sn, 0 ≤ i < n and 0 < p < 1, the p-harmonic Blaschke addition of K and L,
K+̂pL, defined by

ρ(K+̂pL, ·)n−i+p

W̃i(K+̂pL)
=
ρ(K, ·)n−i+p

W̃i(K)
+
ρ(L, ·)n−i+p

W̃i(L)
. (18)

Obviously, the case i = 0 and p ≥ 1, is just (16), and the case of p = 1 and
i = 0, is just (14).

Definition 4 Let K, L ∈ Sn, 0 ≤ i < n, 0 < p < 1, and α,β ≥ 0 (not both
zero), the p-harmonic Blaschke liner combination of K and L, α�K+̂pβ�L,
defined by

ρ(α�K+̂pβ�L, u)n−i+p

W̃i(α�K+̂pβ�L)
= α

ρ(K,u)n−i+p

W̃i(K)
+ β

ρ(L, u)n−i+p

W̃i(L)
. (19)
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From (19) with β = 0 and (1), it is easy that

ρ(α�K,u)n−i+p

W̃i(α�K)
= α

ρ(K,u)n−i+p

W̃i(K)
=
ρ(α1/pK,u)n−i+p

W̃i(α1/pK)
.

Hence

α�K = α1/pK. (20)

4 Inequalities for p-harmonic Blaschke mixed quer-
massintegral for 0 < p < 1

In order to define the p-harmonic Blaschke mixed quermassintegral for 0 <
p < 1 with respect to p-harmonic Blaschke addition, we need the following
lemmas.

Lemma 1 ([15] and [16, p.51]) If a, b ≥ 0 and λ ≥ 1, then

aλ + bλ ≤ (a+ b)λ ≤ 2λ−1(aλ + bλ). (21)

Lemma 2 Let 0 < p < 1, 0 ≤ i < n and ε > 0. If K, L ∈ Sn, then

lim
ε→0+

ρ(K+̂pε�L, u)n−i − ρ(K,u)n−i

ε

≥ n− i

n− i+ p

(
Si(K)

W̃i(K)
ρ(K,u)n−i +

W̃i(K)

W̃i(L)
ρ(K,u)−pρ(L, u)n−i+p

)
.

(22)

Proof. From (19) and in view of the L’Hôpital’s rule, we obtain

lim
ε→0+

ρ(K+̂pε�L, u)n−i − ρ(K,u)n−i

ε

= lim
ε→0+

((
ρ(K,u)n−i+p

W̃i(K)
+ ερ(L,u)

n−i+p

W̃i(L)

)
W̃i(K+̂pε�L)

)n−i/(n−i+p)
− ρ(K,u)n−i

ε

= lim
ε→0+

n− i

n− i+ p

((
ρ(K,u)n−i+p

W̃i(K)
+ ε

ρ(L, u)n−i+p

W̃i(L)

)
W̃i(K+̂pε�L)

)−p/(n−i+p)

×

(
W̃i(K+̂pε�L)

′

(
ρ(K,u)n−i+p

W̃i(K)
+ ε

ρ(L, u)n−i+p

W̃i(L)

)
+ W̃i(K+̂pε�L)

ρ(L, u)n−i+p

W̃i(L)

)
.

(23)
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In the following, we estimate the value of the derivative W̃i(K+̂pε�L) ′. Let

fi(t) = W̃i(K+̂pt�L) and from (5), (20) and (21), we obtain

fi(t+ ε) = W̃i(K+̂p(t+ ε)�B)

= W̃i(K+̂p(t+ ε)
1/pB)

≥ W̃i(K+̂p(t
1/p + ε1/p)B)

≥ W̃i((K+̂pt�B) + εB)

=

n−i∑
j=0

(n−ij )εjW̃i+j(K+̂pt�B)

= fi(t) + ε(n− i)W̃i+1(K+̂pt�B) + o(ε
2).

Further

V(K+̂pt�L)
′ = lim

ε→0+
f(t+ ε) − f(t)

ε
≥ (n− i)W̃i+1(K+̂pt�B). (24)

From (23) and (24) and in view of (n− i)W̃i+1(K) = Si(K), we obtain

lim
ε→0+

ρ(K+̂pε�L, u)n−i − ρ(K,u)n−i

ε

≥ n− i

n− i+ p

(
Si(K)

W̃i(K)
ρ(K,u)n−i +

W̃i(K)

W̃i(L)
ρ(K,u)−pρ(L, u)n−i+p

)
.

�

Theorem 3 Let 0 < p < 1, 0 ≤ i < n and ε > 0. If K, L ∈ Sn, then

n− i+ p

n− i
lim
ε→0+

W̃i(K+̂pε�L, u) − W̃i(K)

ε

≥

(
Si(K) +

W̃i(K)

W̃i(L)

1

n

∫
Sn−1

ρ(K,u)−pρ(L, u)n−i+pdS(u)

)
.

(25)

Proof. This follows immediately from Lemma 2 and (3). �

Definition 5 Let K, L ∈ Sn, 0 ≤ i < n and 0 < p < 1, we define the p-ith
harmonic Blaschke mixed quermassintegral of star bodies K and L, denoted by
Ŵp,i(K, L), defined by

Ŵp,i(K, L) =
n− i+ p

n− i
lim
ε→0+

W̃i(K+̂pε�L, u) − W̃i(K)

ε
. (26)
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When i = 0, the p-harmonic Blaschke mixed quermassintegral Ŵp,i(K, L)

becomes the p-harmonic Blaschke mixed volume V̂p(K, L) and

V̂p(K, L) =
n+ p

n
lim
ε→0+

V(K+̂pε�L, u)n − V(K)n

ε
. (27)

Theorem 4 (Lp-Minkowski type inequality) If K, L ∈ Sn, 0 ≤ i < n and
0 < p < 1, then

(Ŵp,i(K, L) − Si(K))
n−i ≥ W̃i(K)

n−i−pW̃i(L)
p (28)

Proof. This follows immediately from Theorem 3, (27) and Hölder integral
inequality. �

Corollary 1 If K, L ∈ Sn and 0 < p < 1, then

(V̂p(K, L) − S(K))
n ≥ V(K)n−pV(L)p. (29)

Proof. This follows immediately from Theorem 4 with i = 0. �

5 The relationship between the two mixed volumes

In the following, we give a relationship between the p-harmonic Blaschke mixed
volume V̂p(K, L) and the Lp-dual mixed volume Ṽ−p(K, L).

Theorem 5 If K, L ∈ Sn and 0 < p < 1, then

V̂p(K, L)

V(K)
≥ Ṽ−p(L, K)

V(L)
. (30)

Proof. This follows immediately from (11), (27) and Theorem 3 with i = 0.
�

We give also a relationship between the p-harmonic Blaschke mixed volume
V̂p(K, L) and the p-dual mixed volume Ṽp(K, L).

Theorem 6 If K, L ∈ Sn and 0 < p < 1, then

V̂p(K, L) ≥ Ṽp(K, L). (31)
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Proof. From (11), (12), (8), (25) and (27), we obtain

V̂p(K, L) ≥
V(K)

V(L)

1

n

∫
Sn−1

ρ(L, u)n+pρ(K,u)−pdS(u)

=
V(K)

V(L)
Ṽ−p(L, K)

≥ V(K)
V(L)

V(L)(n+p)/nV(K)−p/n

= V(K)(n−p)/nV(L)p/n

≥ Ṽp(K, L).

�

Finally, we establish the Brunn-Minkowski inequality for the p-ith harmonic
Blaschke addition.

Theorem 7 If K, L ∈ Sn, 0 ≤ i < n, 0 < p < 1 and λ, µ ≥ 0, then

W̃i(λ�K+̂pµ�L)
p/(n−i) ≥ λW̃i(K)

p/(n−i) + µW̃i(L)
p/(n−i), (32)

with equality if and only if K and L are dilates.

Proof. This follows immediately from (3), (19) and Minkowski integral in-
equality. �

This case of λ = µ = 1, p ≥ 1 and i = 0 is just (17). This case of p = 1,
λ = µ = 1 and i = 0 is just (15).
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Emil HOROBEŢ (Sapientia Hungarian University of Transylvania, Romania)
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Zoltán MAKÓ (Sapientia Hungarian University of Transylvania, Romania)
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