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Abstract. Let R be a Noetherian integral domain which is also an
algebra over Q (Q is the field of rational numbers). Let σ be an endo-
morphism of R and δ a σ-derivation of R. We recall that a ring R is a
weak (σ, δ)-rigid ring if a(σ(a) + δ(a)) ∈ N(R) if and only if a ∈ N(R)
for a ∈ R (N(R) is the set of nilpotent elements of R). With this we prove
that if R is a Noetherian integral domain which is also an algebra over
Q, σ an automorphism of R and δ a σ-derivation of R such that R is a
weak (σ, δ)-rigid ring, then N(R) is completely semiprime.

1 Introduction and preliminaries

Throughout this paper R will denote an associative ring with identity 1 6= 0,
unless otherwise stated. The prime radical of a ring R denoted by P(R) is
the intersection of all prime ideals of R. The set of nilpotent elements of R is
denoted by N(R). The ring of integers, the field of rational numbers, the field

2010 Mathematics Subject Classification: 16N40, 16P40, 16W20
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of real numbers and the field of complex numbers are denoted by Z, Q, R and
C respectively, unless otherwise stated.

Krempa [4] introduced σ-rigid rings and proved that if σ is a rigid endomor-
phism of R, then it is a monomorphism preserving every minimal prime ideal
and annihilator in R. Several properties of σ-rigid rings have been studied in
[2, 3]. Weak σ-rigid rings were studied by Ouyang [7]. Bhat [1] gave a neces-
sary and sufficient condition for a commutative Noetherian ring to be weak
(σ, δ)-rigid ring.

In this article we investigate weak (σ, δ)-rigid rings over Noetherian rings.
Now let R be a ring, σ an endomorphism of R and δ a σ-derivation of R.

Recall that δ : R→ R an additive map such that

δ(ab) = δ(a)σ(b) + aδ(b), for all a, b ∈ R

is called a σ-derivation of R.

Example 1 Let F be a field, R = F[x] be the polynomial ring over F. Then
σ : R→ R defined as

σ(f(x)) = f(−x) is an automorphism.

Define δ : R→ R by

δ(f(x)) = f(x) − σ(f(x)).

Then δ is a σ-derivation of R.

1.1 σ-rigid ring

Recall that in Krempa [4], an endomorphism σ of a ring R is said to be rigid
if aσ(a) = 0 implies that a = 0, for all a ∈ R. A ring R is said to be σ-rigid if
there exists a rigid endomorphism σ of R.

Example 2 Let R =

[
F F

0 F

]
, where F is a field. Let σ : R→ R be defined by

σ

([
a b

0 c

])
=

[
a 0

0 0

]
for a, b, c ∈ F.

Then it can be seen that σ is an endomorphism of R.

Let 0 6= a ∈ F. Then

[
0 a

0 0

]
σ

([
0 a

0 0

])
=

[
0 0

0 0

]
.

But

[
0 a

0 0

]
6=
[
0 0

0 0

]
.
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Hence R is not a σ-rigid ring.

We recall that σ-rigid rings are reduced rings by Hong et. al. [3]. Recall
that a ring R is reduced if it has no non-zero nilpotent elements. Observe that
reduced rings are abelian.

1.2 Weak σ-rigid ring

Note that as in Ouyang [7], a ring R with an endomorphism σ is called a weak
σ-rigid ring if aσ(a) ∈ N(R) if and only if a ∈ N(R) for a ∈ R.

Example 3 (Example 2.1 of [7]) Let σ be an endomorphism of a ring R. Let

A =


a b c

0 a d

0 0 a

 | a, b, c, d ∈ R


be a subring of T3(R), the ring of upper triangular matrices over R. Now σ

can be extended to an endomorphism say σ of A by σ((aij)) = (σ(aij)). Then
it can be seen that A is a weak σ-rigid ring.

Example 4 Let F be a field and R = F(x), the field of rational polynomials in
one variable x over F. Then N(R) = {0}. Let σ : R → R be an endomorphism
defined by

σ(f(x)) = f(0).

Then R is not a weak σ-rigid ring. For let f(x) = xa, f(0) = 0 and f(x)σ(f(x)) =
xa.0 = 0 ∈ N(R). But 0 6= f(x) /∈ N(R).

Clearly the notion of a weak σ-rigid ring generalizes that of a σ-rigid ring.
Also in [5], it has been shown that if R is a weak σ-rigid ring, then N(R) is
completely semi-prime where R is a Noetherian ring and σ an automorphism
of R.The converse is not true.

Example 5 [6] Let F be a field, R = F×F and σ an automorphism of R defined
by

σ((a, b)) = (b, a), for a, b ∈ F.

Then R is a reduced ring and so N(R) = {0} is completely semi-prime. But R is
not a weak σ-rigid ring. Since (1, 0)σ((1, 0)) = (0, 0) ∈ N(R), but (1, 0) /∈ N(R).
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1.3 Weak (σ, δ)-rigid rings

We generalize the above mentioned notions by involving σ and δ together as
follows:

1.3.1 (σ, δ)-ring

Definition 1 (Definition 7 of [1]) Let R be a ring, σ an endomorphism of R
and δ a σ-derivation of R. Then R is said to be a (σ, δ)-rigid ring if

a(σ(a) + δ(a)) ∈ P(R) implies that a ∈ P(R) for a ∈ R.

Definition 2 Let R be a ring, σ an endomorphism of R and δ a σ-derivation
of R. Then R is said to be a (σ, δ)-rigid ring if

a(σ(a) + δ(a)) = 0 implies that a = 0 for a ∈ R.

Example 6 Let R = C and σ : R→ R be defined by

σ(a+ ib) = a− ib, for all a, b ∈ R.

Then σ is an automorphism of R.
Define δ a σ-derivation of R as

δ(z) = z− σ(z) for z ∈ R.

i.e., δ(a+ ib) = a+ ib− σ(a+ ib) = a+ ib− (a− ib) = 2ib.

Let A = a+ ib. Then A[σ(A) + δ(A)] = 0 implies that

(a+ ib)[σ(a+ ib) + δ(a+ ib)] = 0

i.e. (a + ib)[(a − ib) + 2ib] = 0 or (a + ib)(a + ib) = 0 which implies that
a = 0, b = 0. Therefore, A = a+ ib = 0. Hence R is a (σ, δ)-rigid ring.

1.3.2 Weak (σ, δ)-rigid rings

Definition 3 Let R be a ring. Let σ be an endomorphism of R and δ a σ-
derivation of R. Then R is said to be a weak (σ, δ)-rigid ring if a(σ(a)+δ(a)) ∈
N(R) implies and is implied by a ∈ N(R) for a ∈ R.

Example 7 Let R = Z[
√
2]. Then σ : R→ R defined as

σ(a+ b
√
2) = (a− b

√
2) for a+ b

√
2 ∈ R
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is an endomorphism of R.
For any s ∈ R. Define δs : R→ R by

δs(a+ b
√
2) = (a+ b

√
2)s− sσ(a+ b

√
2) for a+ b

√
2 ∈ R.

Then δs is a σ-derivation of R. Here N(R) = {0}.
Further,

(a+ b
√
2){σ(a+ b

√
2) + δs(a+ b

√
2)} ∈ N(R)

implies that

(a+ b
√
2){(a− b

√
2) + (a+ b

√
2)s− sσ(a+ b

√
2)} ∈ N(R)

or

(a+ b
√
2){a− b

√
2+ as+ bs

√
2− sa+ sb

√
2} ∈ N(R)

i.e.

(a+ b
√
2){a+ (2s− 1)b

√
2} ∈ N(R) = {0}

which gives a = 0, b = 0. Hence a+b
√
2 = 0+ 0

√
2 ∈ N(R). Thus R is a weak

(σ, δ)-rigid ring.

With this we prove the following:

Theorem A: Let R be Noetherian, integral domain which is also an algebra
over Q. Let σ be an automorphism of R and δ a σ-derivation of R. Then R a
weak (σ, δ)-rigid ring implies that N(R) is completely semi-prime.

The statement is proven in Theorem 1, to be found below.

2 Proof of the main result

We have the following before we prove the main result of this paper:

Recall that an ideal I of a ring R is called completely semi-prime if a2 ∈ I
implies that a ∈ I for a ∈ R.

Example 8 Let R =

[
Z Z
0 Z

]
. Then P1 =

[
Z Z
0 0

]
, P2 =

[
0 Z
0 Z

]
, P3 =

[
0 Z
0 0

]
are prime ideals of R.

It can be easily seen that P1, P2, P3 are completely semi-prime ideals.



10 V. K. Bhat, P. Singh, S. Sharma

Proposition 1 Let R be a ring, σ an automorphism of R and δ a σ-derivation
of R. Then for u 6= 0, σ(u) + δ(u) 6= 0.

Proof. Let 0 6= u ∈ R, we show that σ(u) + δ(u) 6= 0. Let for 0 6= u,
σ(u) + δ(u) = 0. This implies that

δ(u) = −σ(u), ∀0 6= u ∈ R. (1)

We know that for

0 6= a, 0 6= b ∈ R, δ(ab) = δ(a)σ(b) + aδ(b).

By using equation 1, we have

−σ(ab) = −σ(a)σ(b) + a(−σ(b))⇒ −σ(ab) = −[σ(a) + a]σ(b)⇒ σ(a)σ(b) = −[σ(a) + a]σ(b)⇒ σ(a) = σ(a) + a

Therefore, a = 0 which is not possible. Hence σ(u) + δ(u) 6= 0. �

We now prove the main result of this paper in the form of the following The-
orem:

Theorem 1 Let R be a Noetherian integral domain which is also an algebra
over Q. Let σ be an automorphism of R and δ a σ-derivation of R. Then R a
weak (σ, δ)-rigid ring implies that N(R) is completely semi-prime.

Proof.Let R be a weak (σ, δ)-rigid ring. Then we will show that N(R) is
completely semi-prime. Let a ∈ R. Since R is a weak (σ, δ)-rigid ring. Let

{a(σ(a) + δ(a))}2 ∈ N(R).

Then there exists a positive integer n such that [a2(σ(a)+ δ(a))2]n = 0 which
implies that a2n(σ(a) + δ(a))2n = 0. But by Proposition (1), σ(a) + δ(a) 6= 0.
Hence a2n = 0 which implies that an = 0, because R is an integral domain.
Therefore, an(σ(a) + δ(a))n = 0 or {a(σ(a) + δ(a))}n = 0. Thus a(σ(a) +
δ(a)) ∈ N(R). Hence N(R) is completely semi-prime. �

The converse is not true.

Example 9 Let F be a field. Let R = F × F and σ an automorphism of R
defined by
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σ((a, b)) = (b, a) for a, b ∈ F.

Then R is a reduced ring and so N(R) = {0} and therefore, it is completely
semi-prime. Let r ∈ F. Define δr : R→ R by

δr((a, b)) = (a, b)r− rσ((a, b)) for a, b ∈ F.

Then δr is a σ-derivation of R. Also R is not a weak (σ, δ)-rigid ring. For take
(1,−1) ∈ R, r = 1

2 . Then

δr((1,−1)) = (1,−1) 12 −
1
2σ((1,−1))

= (1,−1) and (1,−1)[σ(1,−1) + δr(1,−1)]
= (1,−1)[(−1, 1) + (1,−1)]
= (1,−1)(0, 0) = (0, 0) ∈ N(R).

But (1,−1) /∈ N(R).

Corollary 1 Let R be a commutative Noetherian, integral domain which is
also an algebra over Q. Let σ be an automorphism of R and δ a σ-derivation
of R. Then R a weak (σ, δ)-rigid ring implies that N(R) is completely semi-
prime.

Also we note that if R is a (σ, δ)-rigid ring then it is a weak (σ, δ)-rigid ring,
but the converse need not be true as in the following example:

Example 10 Let σ be an endomorphism of a ring R and δ a σ-derivation of
R. Let R be a (σ, δ)-rigid ring. Then

R3 =


a b c

0 a d

0 0 a

 : a, b, c, d ∈ R


is a subring of T3(R). The endomorphism σ of R can be extended to the endo-
morphism σ : R3 → R3 defined by σ((aij)) = (σ(aij)) and δ can be extended to
δ : R3 → R3 by δ((aij)) = (δ(aij)). Leta b c

0 a d

0 0 a

σ
a b c

0 a d

0 0 a

+ δ

a b c

0 a d

0 0 a

 ∈ N(R).

Then there is some positive integer n such thata b c

0 a d

0 0 a


σ(a) σ(b) σ(c)
0 σ(a) σ(d)
0 0 σ(a)

+

δ(a) δ(b) δ(c)
0 δ(a) δ(d)
0 0 δ(a)


n = 0
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which implies thata b c

0 a d

0 0 a


σ(a) + δ(a) σ(b) + δ(b) σ(c) + δ(c)

0 σ(a) + δ(a) σ(d) + δ(d)
0 0 σ(a) + δ(a)


n = 0

or[
a(σ(a) + δ(a)) a(σ(b) + δ(b)) + b(σ(a) + δ(a)) a(σ(c) + δ(c)) + b(σ(d) + δ(d)) + c(σ(a) + δ(a))

0 a(σ(a) + δ(a)) a(σ(d) + δ(d)) + d(σ(a) + δ(a))
0 0 a(σ(a) + δ(a))

]n
= 0, which gives

a(σ(a) + δ(a)) ∈ N(R).

Since R is reduced, we have

a(σ(a) + δ(a)) = 0

which implies that a = 0, since R is a (σ, δ)-rigid ring. Hence

a b c

0 a d

0 0 a

 =

0 b c

0 0 d

0 0 0

 ∈ N(R).

Conversely, assume that a b c

0 a d

0 0 a

 ∈ N(R).

Then there is some positive integer n such that

a b c

0 a d

0 0 a

n =

an ∗ ∗
0 an ∗
0 0 an

 = 0

which implies that a = 0, because R is reduced (Here ∗ are non-zero terms
involving summation of powers of some or all of a, b, c, d). So

a b c

0 a d

0 0 a

σ
a b c

0 a d

0 0 a

+ δ

a b c

0 a d

0 0 a





On weak (σ, δ)-rigid rings over Noetherian rings 13

=

0 b c

0 0 d

0 0 0


0 σ(b) σ(c)
0 0 σ(d)
0 0 0

+

0 δ(b) δ(c)
0 0 δ(d)
0 0 0


=

0 b c

0 0 d

0 0 0


0 σ(b) + δ(b) σ(c) + δ(c)
0 0 σ(d) + δ(d)
0 0 0


=

0 0 b(σ(d) + δ(d))
0 0 0

0 0 0

 ∈ N(R).

Therefore, R3 is a weak (σ, δ)-rigid ring. Also since R3 is not reduced, R3 is
not a (σ, δ)-rigid ring.
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Táncsics Mihály utca 1/A,
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Abstract. In this paper the conditions and the findings of a simulation
study is presented for assessing the effect size of users’ consciousness to
the computer network vulnerability in risky cyber attack situations at
a certain business. First a simple model is set up to classify the groups
of users according to their skills and awareness then probabilities are
assigned to each class describing the likelihood of committing dangerous
reactions in case of a cyber attack. To quantify the level of network
vulnerability a metric developed in a former work is used. This metric
shows the approximate probability of an infection at a given business
with well specified parameters according to its location, the type of the
attack, the protections used at the business etc. The findings mirror back
the expected tendencies namely if the number of conscious user is on the

2010 Mathematics Subject Classification: 60A99, 94C99
Key words and phrases: vulnerability, users’ awareness, computer networks, simulation
study, cyber security

14



Assessing the effect size of users’ consciousness for computer networks . . . 15

rise the “relative improvement of the cyber security” is increasing. The
tendencies in the change of this relative improvement are established,
different graphs and curves are constructed to give an overall view for
the influence of the different parameters. In addition to these general
conclusions assessments are made for the magnitude and for the range of
the relative cyber security improvement. An interesting findings that even
in the case of small differences in skills making the users more conscious
in their reactions can significantly enhance the level of cyber security at
a business.

1 Introduction

Assessing the extent of vulnerability of a net of computers against outer cyber
threats is of prime interest for both the IT experts sector and the businesses
using computer networks. Most of the IT solutions concentrate on different
hardware and software protections against the threats and little attention is
paid on the effect of the users’ behavior during their daily routine handling
potentially risky situations. Opening potentially dangerous websites, clicking
on links in emails from unknown source, downloading files to the computers
are typical “user tricks” which may raise the level of risk of infections.

Making the users more conscious in their computer usage is an evidential
tool for enhancing the cyber security of a business. However to give some
measure for the effectiveness of these kind of efforts (trainings for employees,
incentives, penalties, etc.) is essential for those offering these services and for
the managements of the businesses as well.

In this paper the findings of computer simulation studies are presented where
the users at a business are categorized according to their everyday computer
usage. The three categories (Naive, Typical, and Conscious) encompasses the
different types of user groups mainly reflecting their attitudes and behaviors
in risky cyber threat situations.

To make the influence of the different groups sensible the ps metric for mea-
suring cyber vulnerability developed in [4], [3], [2] and [1] is used. This ps
metric is the probability that at least one cyber malware (virus) can success-
fully go through the IT protections and infects a certain net of computers.

The features of the given net and the prevailing threats at the location
investigated are precisely characterized by different matrices describing the
presence or absence of the different types of protections, the relative frequen-
cies and the level of danger of different viruses and the level of danger of the
different user tricks (Simple, Moderate, Complex).
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This ps metric holds the intrinsic characteristic of being monotonously in-
creasing as the number of viruses, devices or users increases. In this study to
ensure getting such a ps metric which reflects the real differences of vulnerabil-
ity attributable exclusively to the different categories of users’ consciousness
(awareness) and excludes the effect of the business size the number of users,
devices, and threats are kept constant while the proportions of the different
types of users are changed.

Besides these kept-constant parameters other input values like probabilities
of occurrences of certain threats or probabilities of applying certain user tricks,
etc. were also temporarily fixed in the analysis (at the values which are typical
for the majority of businesses) but later the sensitivity of the ps value against
these varying input values is demonstrated.

The final goal was to illustrate the extent of changes in the value of ps
when the level of consciousness at a business increases due to some measures
introduced by the management. The increase of consciousness is embodied
in the increase of the proportion of Conscious users reevaluating some users’
status from Typical or Naive to Conscious or in the increase of the proportion
of Typical users reevaluating some users’ status from Naive to Typical.

The direct relationship between the ps value and some specific business
financial indicator is not investigated here.

2 The model for users classification

According to their consciousness there are three distinguished class of users

� Naive users,

� Typical users,

� Conscious users.

As the names of the categories suggest Naive users are assumed to commit dan-
gerous actions even in cases requiring very simple user tricks while Conscious
users are victims only of threats requiring more sophisticated user tricks.

Let v be  c

t

n


the vector where c (t, n reps.) is the number of the Conscious (Typical, Naive
resp.) users. Let r be the number of users. Observe c+ t+ n = r.
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There are three distinguished type of user tricks

� Simple user trick,

� Moderate user trick,

� Complex user trick.

The Simple (Complex resp.) user trick is the easiest (complicated resp.) trick
for the threat to attack a given device.

Let Pskills be the

Simple Moderate Complex

Conscious βC,1 βC,2 βC,3
Typical βT,1 βT,2 βT,3
Naive βN,1 βN,2 βN,3

3 × 3 matrix. The real number βC,1 (βC,2, βC,3 resp.) is the probability that
a Conscious user uses a Simple (Moderate, Complex resp.) user trick. The
real number βT,1 (βT,2, βT,3 resp.) is the probability that a Typical user uses a
Simple (Moderate, Complex resp.) user trick. The real number βN,1 (βN,2, βN,3
resp.) is the probability that a Naive user uses a Simple (Moderate, Complex
resp.) user trick. It is assumed that βi,1 < βi,2 < βi,3 and βC,j < βT,j < βN,j
for i = C, T,N and j = 1, 2, 3.

Combining v and Pskills let Puser−usertrick be the

Simple Moderate Comlex

u1 βC,1 βC,2 βC,3
...

...
...

...
uc βC,1 βC,2 βC,3
uc+1 βT,1 βT,2 βT,3

...
...

...
...

uc+t βT,1 βT,2 βT,3
uc+t+1 βN,1 βN,2 βN,3

...
...

...
...

uc+t+n βN,1 βN,2 βN,3

r × 3 matrix. Here u1, . . . , uc denote the users belonging to the group of
Conscious users, uc+1, . . . , uc+t denote the users in the Typical group and
uc+t+1, . . . , uc+t+n stand for the users in the Naive group.
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In this paper this Puser−usertrick matrix is the main tool to study the
effect of users’ behaviour at a business against different cyber threats. Chang-
ing the values of c, t, n within the fixed value of r (r = c+ t+n) or changing
the proportion (distribution) of probabilities in the rows/columns of this ma-
trix enables us to study different situations and give an overview about the
magnitude of the effect size of users’ consciousness to the cyber vulnerability.

3 The ps probability

In [2] the probability of infection ps was introduced which is the probability
that the investigated landscape will be infected by at least one malware. This
can be calculated in the following form

ps = 1−
∏

t=1,...,k;u=1,...,r;d=1,...,m

(1− puser(t, u) · pdevice(t, d) · pprev(t)) (1)

for any u ∈ U, t ∈ T and d ∈ D, where U (T and D resp.) symbolizes the
set of users (threats and devices resp.) at the landscape investigated. In (1)
puser(t, u) is the probability that the threat t infects the landscape using at
least one usertrick through the user u. In (1) pdevice(t, d) is the probability
of a successful attempts of the threat t through any protection protecting the
device d. In (1) pprev(t) is the probability that an attack is in the form of the
threat t.

In [2] and [1] it was shown how these probabilities can be computed using
several parameters describing the present state of the investigated landscape,
the prevailing threats, the devices, the state of protections etc.

Since the number of these parameters influencing the value of ps is numerous
it is not easy to see general tendencies due to some selected specific parameters
without keeping the others at constant values.

In this study where the aim was to get information about the effect of
users’ consciousness the parameter values referring to the other features of
the investigated business have been fixed. Hence two types of parameters have
been distinguished:

� kept-constant parameters and

� study parameters.

The kept-constant parameters are those which are not varied in the study
at all. They can simply be regarded as those specifying the basic unit of
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comparison. For example the total number of users is fixed to 100 since this
parameter can be regarded as the size of the users’ sample taken from the
population of all users at a given business.

The study parameters are being varied in the study. Since they are still
rather numerous it was practical to temporarily select and fix them at some
typical real world values (called ”typical study values”) and investigate the
sensitivity of ps to the deviation from these typical study values later.

4 The kept-constant parameters and their values in
the study

The values of the kept-constant parameters:

� the number of malwares: k = 10,

� the number of users: r = 100,

� the number of devices: m = 10,

� the number of protections: n = 10,

� the number of user tricks: i = 3,

� the number of groups of user skills: s = 3,

� the probability that an attacker will use a particular threat or class of
threats against the enterprise: Pprev =

[
1/k, 1/k, . . . , 1/k

]
,

� the Zdevice−elements matrix which describes that in this situation each
virus can work on each device:

Zdevice−elements =

1 . . . k

1 1 . . . 1
...

... . . .
...

m 1 . . . 1

,

� the Zdevice−prot−install matrix which describes that in this situation each
protection is installed on each device:

Zdevice−prot−install =

1 . . . n

1 0 . . . 0
...

... . . .
...

m 0 . . . 0

,
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� the Pprot matrix which describes that in this situation the probability of
a successful attempt of a given threat through at a given protection:

Pprot =

1 . . . n

1 1/(nk) . . . 1/(nk)
...

... . . .
...

k 1/(nk) . . . 1/(nk)

.

5 The study parameters and their “typical study
values”

The “typical study values”:

� The distribution of probabilities in the Pskills matrix:

Pskills =

Simple Moderate Complex

Conscious p0 3p0 6p0
Typical 3p0 9p0 18p0
Naive 6p0 18p0 36p0

, where p0 = 0.0001.

� The distribution of probabilities in the Pusertrick matrix:

Pusertrick =

Simple Moderate Complex

t1 α1 α2 α3
...

...
...

...
tk α1 α2 α3

, where
α1 = 0.6,
α2 = 0.3,
α3 = 0.1.

Here Pusertrick is a k × 3 matrix. The real number α1 (α2, α3 resp.) is the
probability that a threat uses a Simple (Moderate, Complex resp.) user trick.
The integer number k denotes the total number of threats involved in the
study.

The fact that each row of the Pusertrick matrix has the same values of α1, α2
and α3 tacitly assumes that each virus behaves similarly that is all viruses
involved in the analysis belong to the same group of viruses with respect to
their user tricks required to activate them. Obviously it does not hold for all
groups of viruses so later the effect of differently distributed α probabilities
will be investigated.
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6 The effect of users’ consciousness for the ps value
in the case of “typical study values”

To illustrate the magnitude of the effect size of users’ consciousness extreme
situations have been analyzed where first all users were assumed to belong to
one specific class of consciousness (“Original class”) and gradually each user
is trained to step up into a “higher” class of consciousness (“Improved class”).
Three extreme versions of this “class change” are detailed:

� from Naive to Typical,

� from Naive to Conscious,

� from Typical to Conscious.

Various graphs have been constructed to visualize the effect size.
On the first kind of graphs the change of the absolute value of ps probability

is depicted as the function of the number of “reevaluated” users. This proba-
bility is denoted by p(x) where x refers to the number of “reevaluated” users.
(Sometimes they are called to “reeducated” users.) Accordingly r − x refers
to the number of users still in the “Original class”. If r = 100, p(0) refers to
the case when all users are in their “Original class” while p(100) indicates the
situation when all users have been “reevaluated”.

On the second kind of graphs the ∆(x) function, the relative change of the
ps probability is illustrated

∆(x) =
p(0) − p(x)

p(0)
.

Since the absolute value of ps is very much dependent on the different “class
change” situations more practical to calculate the ratio of the probability
change to the ps value in the “Original class”. This change can be interpreted
as the “relative improvement of the defence”.

From business point of view this relative improvement can be the basis of any
management measures for the sake of improving cyber security through the
enhancement of users’ consciousness.

In Fig. 1(a) the p(x) curves are shown for the three extreme “class change”
situations. The changes of p(x) are almost linear in all three cases, naturally
the slope of the Naive 7→ Consious line is the steepest one.

On the Naive 7→ Consious curve in Fig. 1(a) it can be seen that the ini-
tial probability of the infection is p(0) = 0.01252 and if 50 Naive users
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are reeducated to Conscious users, then the probability of the infection is
p(50) = 0.00732.

(a) The p(x) curve (b) The ∆(x) curve

Figure 1: The “typical study values”.

The ∆(x) curves can be constructed from the corresponding p(x) curves hence
for all three “class change” situations these curves also show almost perfect
linearity. If 50 Naive users are reeducated to Conscious users, then the change
of the defence is p(0)−p(50) = 0.01252−0.00732 = 0.0052 and the normalized
change of defence with respect to the initial probability of the infection is
∆(50) = (p(0) − p(50))/p(0) = 0.41511 which can be seen in Fig. 1(b).

These ∆(x) curves can be regarded as the most important findings of the sim-
ulation studies. Even for those who are not very familiar with the issues of
cyber security the magnitude of the improvement can be convincing. Seeing
the different extreme situations of “class change” one can find that significant
improvement can be reached through the enhancement of the users’ conscious-
ness.

The range of this relative improvement for a specific x value can be assessed as
the difference of the ∆(x) values for the Naive 7→ Conscious and the Naive 7→
Typical “class change” situations. Both the magnitude and the range of the
improvement is monotonously increasing as the number of the “reevaluated”
users is increasing. For example the relative improvement of the defence can
vary from about 25 to 40 percent when half of the users’ status has been
changed. In Fig. 1(b) this range is indicated with a thick solid line.
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7 The sensitivity of the relative cyber security im-
provement to the deviations from the “typical
study values”

In the remaining sections the sensitivity of the relative security improvement
is investigated. As it was stated earlier the simulation studies were elaborated
for those “typical study values” of the study parameters which are believed to
be characteristic for real world average size businesses in every day cyber risk
situations.

However it is worth to check whether slight or moderate deviations from
these study values results in basically different conclusions or the findings are
rather insensitive to these deviations.

7.1 Varying p0

In the Fig. 2(a) - Fig. 4(b) the influence of the deviation from the p0 = 0.0001
study value is shown. The range of the p0 values goes from 0.00001 to 0.01.

(a) The p(x) curve (b) The ∆(x) curve

Figure 2: The value p0 = 0.00001.

The magnitude of the p(x) probabilities varies and the shape of the p(x)
and ∆(x) curves are slightly different from the almost linear “typical study
values” curves.

With the increase of the p0 probability the ∆(x) curves deviates from the
linear relationships and tend to be more “exponential-like”. At the same time
the ∆(x) values for a specific x value are typically less then those for the typical
p0 = 0.0001 study value.
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(a) The p(x) curve (b) The ∆(x) curve

Figure 3: The value p0 = 0.001.

(a) The p(x) curve (b) The ∆(x) curve

Figure 4: The value p0 = 0.01.

Besides these slight differences one can see that the range of the relative cyber
security improvement still remain similar to the previously investigated cases.
For example for the p0 = 0.01 value the range of ∆(x) is somewhere between
15 and 30 percent if half of the users’ status has been “reevaluated”. In Fig.
4(b) this range is indicated with a thick solid line.

7.2 Varying α1, α2 and α3

In the Fig. 5(a) - Fig. 5(b) the influence of the deviation from the α1 = 0.6,
α2 = 0.3, α3 = 0.1 study values is shown.
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The results are presented for the following sets of deviated α values:

• α1 = 0, α2 = 0, α3 = 1,

• α1 = 0, α2 = 1, α3 = 0,

• α1 = 1, α2 = 0, α3 = 0,

• α1 = 1/3, α2 = 1/3, α3 = 1/3.

These sets of α values can be regarded as the representations of different virus
groups requiring different user tricks to activate them.

(a) The p(x) curve (b) The ∆(x) curve

Figure 5: Varying α1, α2 and α3.

The ∆(x) curves practically coincide with each other convincingly demonstrat-
ing the insensitivity of the ∆(x) function to the deviations from the typical
α1, α2, α3 study values.

7.3 Varying the ratio of the columns of Pskills

To check the sensitivity of the relative improvement to the ratio of the values
in the columns of the Pskills matrix it is more convenient to rewrite the matrix
into the form:

Pskills =

Simple Moderate Complex

Conscious γ1p0 γ2p0 γ3p0
Typical ∗ ∗ ∗
Naive 6γ1p0 6γ2p0 6γ3p0
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Using these notations it is easy to express that the simulation studies covered
the following sets of γ parameters:

• γ1 = 6, γ2 = 3, γ3 = 1,

• γ1 = 1, γ2 = 3, γ3 = 6,

• γ1 = 1, γ2 = 1, γ3 = 1.

Having investigated all three cases one can establish that the ∆(x) function is
entirely insensitive to the different sets of γ values. The details are not shown
here.

7.4 Varying the ratio of the rows of Pskills

To check the sensitivity of the relative improvement to the ratio of the values
in the rows of the Pskills matrix it is more convenient to rewrite the matrix
into the form:

Pskills =

Simple Moderate Complex

Conscious p0 3p0 6p0
Typical ∗ ∗ ∗
Naive δp0 3δp0 6δp0

Using these notations it is easy to express that the simulation studies covered
the following set of δ values: δ = 1, 2, 4, 6, 12. In Fig. 6 the p(x) curves are
shown for the “Naive-Conscious” “class change” situation for this set of δ
values.

Figure 6: The p(x) curve.
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This sensitivity study when the effect of the varying δ value is being inves-
tigated is rather special. Since one specific δ value represents the differences
between the Conscious and the Naive users in their skills (more precisely the
ratio of the corresponding probabilities), it is straightforward that the effect
of “reeducation” is larger if this difference is larger. If this difference is zero
(the δ value is 1) the “reeducation” is obviously useless resulting in a ∆(x) = 0
value.

Hence this sensitivity study is mainly for learning the form of the curves
describing the relationship between the number of “reeducated” users and the
relative cyber security improvement and also learning the relationship between
the difference of skills and the relative cyber security improvement rather than
simply establishing the fact of the existence of this sensitivity for the varying
δ values.

In Fig. 7(a) the almost perfect linear association can be established be-
tween the number of “reeducated” users (x) and the relative cyber security
improvement (∆(x) values) for all δ values.

(a) The ∆(x) curve. (b) The curves ∆(25), ∆(50),
∆(75), ∆(100)

Figure 7: Varying δ.

In contrast the relationship between the difference in skills (δ) and the rela-
tive cyber security improvement (∆(x)) is far from linear. All curves for the
different selected x values show steep increase in the relative improvement as
the value of δ starts to depart from its initial value of 1 but later the slopes
of the curves are becoming smaller and smaller seemingly tending to a limit
value of ∆(x).
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From practical point of view the steep starting phase of the curves can be
of prime interest. It means that even in case of small differences between the
user groups’ skills it may be worth to take measures for enhancing the users
awareness since significant increase may happen in the level of cyber security.

8 Conclusion

In this paper the conditions and the findings of a simulation study was pre-
sented for assessing the effect size of users’ consciousness to the computer
network vulnerability in risky cyber attack situations at a certain business.

First a simple model was set up to classify the groups of users according
to their skills and awareness then probabilities were assigned to each class
describing the likelihood of committing dangerous reactions in case of a cyber
attack.

To quantify the level of danger a metric developed in a former work was
used. This ps metric shows the approximate probability of an infection at a
given business with well specified parameters according to its location, the
type of the attack, the protections used at the business etc.

To be able to see the tendencies in vulnerability exclusively attributable to
the users consciousness the set of the numerous parameters were grouped to
kept-constant and study parameters.

First the “typical study values” of the study parameters were used in the
simulations then the sensitivity of the findings was investigated to the devia-
tions from these typical values.

On one hand the findings mirrored back the straightforward and expected
tendencies namely either the number of “reeducated” user is increasing or
the surmounted difference of the users’ groups in their skills is increasing the
“relative improvement of the cyber security” is increasing.

On the other hand the tendencies in the change of this relative improvement
have been established, different graphs and curves have been constructed to
give an overall view for the influence of the different parameters.

In addition to these general conclusions assessments were made for the mag-
nitude and for the range of the relative cyber security improvement. Slight
sensitivity was experienced to the departures from the typical study values. It
was shown that even in the case of small differences in skills making the users
more conscious in their reactions can significantly enhance the level of cyber
security at a business.
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Abstract. In this paper we establish some trapezoid type inequalities
for the Riemann-Liouville fractional integrals of functions of bounded
variation and of Hölder continuous functions. Applications for the g-
mean of two numbers are provided as well. Some particular cases for
Hadamard fractional integrals are also provided.

1 Introduction

Let (a, b) with −∞ ≤ a < b ≤∞ be a finite or infinite interval of the real line
R and α a complex number with Re (α) > 0. Also let g be a strictly increasing
function on (a, b) , having a continuous derivative g′ on (a, b) . Following [18,

2010 Mathematics Subject Classification: 26D15, 26D10, 26D07, 26A33
Key words and phrases: Riemann-Liouville fractional integrals, functions of bounded
variation, Lipshitzian functions, trapezoid type inequalities

30



Trapezoid inequalities for Riemann-Liouville fractional integrals 31

p. 100], we introduce the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a, b]
by

Iαa+,gf(x) :=
1

Γ (α)

∫x
a

g′ (t) f (t)dt

[g (x) − g (t)]1−α
, a < x ≤ b

and

Iαb−,gf(x) :=
1

Γ (α)

∫b
x

g′ (t) f (t)dt

[g (t) − g (x)]1−α
, a ≤ x < b.

For g (t) = t we have the classical Riemann-Liouville fractional integrals

Jαa+f(x) :=
1

Γ (α)

∫x
a

f (t)dt

(x− t)1−α
, a < x ≤ b

and

Jαb−f(x) :=
1

Γ (α)

∫b
x

f (t)dt

(t− x)1−α
, a ≤ x < b,

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [18, p. 111]

Hαa+f(x) :=
1

Γ (α)

∫x
a

[
ln
(x
t

)]α−1 f (t)dt
t

, 0 ≤ a < x ≤ b

and

Hαb−f(x) :=
1

Γ (α)

∫b
x

[
ln

(
t

x

)]α−1
f (t)dt

t
, 0 ≤ a < x < b.

One can consider the function g (t) = −t−1 and define the “Harmonic frac-
tional integrals” by

Rαa+f(x) :=
x1−α

Γ (α)

∫x
a

f (t)dt

(x− t)1−α tα+1
, 0 ≤ a < x ≤ b

and

Rαb−f(x) :=
x1−α

Γ (α)

∫b
x

f (t)dt

(t− x)1−α tα+1
, 0 ≤ a < x < b.

Also, for g (t) = exp (βt) , β > 0, we can consider the “β-Exponential fractional
integrals”

Eαa+,βf(x) :=
β

Γ (α)

∫x
a

exp (βt) f (t)dt

[exp (βx) − exp (βt)]1−α
, a < x ≤ b
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and

Eαb−,βf(x) :=
β

Γ (α)

∫b
x

exp (βt) f (t)dt

[exp (βt) − exp (βx)]1−α
, a ≤ x < b.

In the recent paper [14] we obtained the following Ostrowski type inequali-
ties for functions of bounded variation:

Theorem 1 Let f : [a, b]→ C be a function of bounded variation on [a, b] and
g be a strictly increasing function on (a, b) , having a continuous derivative g′

on (a, b) . For any x ∈ (a, b) we have the inequalities∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − 1

Γ (α+ 1)

(
[g (x) − g (a)]

α
+ [g (b) − g (x)]

α)
f (x)

∣∣∣∣
≤ 1

Γ (α)

[∫x
a

g′ (t)
∨x
t (f)dt

[g (x) − g (t)]
1−α

+

∫b
x

g′ (t)
∨t
x (f)dt

[g (t) − g (x)]
1−α

]

≤ 1

Γ (α+ 1)

[
[g (x) − g (a)]

α
x∨
a

(f) + [g (b) − g (x)]
α
b∨
x

(f)

]

≤ 1

Γ (α+ 1)



[
1
2
(g (b) − g (a)) +

∣∣∣g (x) − g(a)+g(b)
2

∣∣∣]α∨ba (f) ;(
(g (x)−g (a))

αp
+ (g (b)−g (x))

αp)1/p((∨x
a (f)

)q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;(
(g (x) − g (a))

α
+ (g (b) − g (x))

α) [1
2

∨b
a (f) +

1
2

∣∣∣∨xa (f) −∨bx (f)∣∣∣] ,
and∣∣∣∣Iαx−,gf(a) + Iαx+,gf(b) − 1

Γ (α+ 1)

(
[g (x) − g (a)]

α
+ [g (b) − g (x)]

α)
f (x)

∣∣∣∣
≤ 1

Γ (α)

[∫x
a

g′ (t)
∨x
t (f)dt

[g (t) − g (a)]
1−α

+

∫b
x

g′ (t)
∨t
x (f)dt

[g (b) − g (t)]
1−α

]

≤ 1

Γ (α+ 1)

[
[g (x) − g (a)]

α
x∨
a

(f) + [g (b) − g (x)]
α
b∨
x

(f)

]

≤ 1

Γ (α+ 1)



[
1
2
(g (b) − g (a)) +

∣∣∣g (x)− g(a)+g(b)
2

∣∣∣]α∨ba (f) ;(
(g (x)−g (a))

αp
+ (g (b)−g (x))

αp)1/p((∨x
a (f)

)q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;(
(g (x) − g (a))

α
+ (g (b) − g (x))

α) [1
2

∨b
a (f) +

1
2

∣∣∣∨xa (f) −∨bx (f)∣∣∣] .
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two
numbers a, b ∈ I as

Mg (a, b) := g
−1

(
g (a) + g (b)

2

)
.

If I = R and g (t) = t is the identity function, then Mg (a, b) = A (a, b) :=
a+b
2 , the arithmetic mean. If I = (0,∞) and g (t) = ln t, then Mg (a, b) =

G (a, b) :=
√
ab, the geometric mean. If I = (0,∞) and g (t) = 1

t , then

Mg (a, b) = H (a, b) := 2ab
a+b , the harmonic mean. If I = (0,∞) and g (t) = tp,

p 6= 0, then Mg (a, b) =Mp (a, b) :=
(
ap+bp

2

)1/p
, the power mean with expo-

nent p. Finally, if I = R and g (t) = exp t, then

Mg (a, b) = LME (a, b) := ln

(
expa+ expb

2

)
,

the LogMeanExp function.
The following particular case for g-mean is of interest [14].

Corollary 1 With the assumptions of Theorem 1 we have∣∣∣∣Iαa+,gf(Mg (a, b)) + I
α
b−,gf(Mg (a, b)) −

[g (b) − g (a)]α

2α−1Γ (α+ 1)
f (Mg (a, b))

∣∣∣∣
≤ 1

Γ (α)

[∫Mg(a,b)
a

g′ (t)
∨Mg(a,b)
t (f)dt

[g (Mg (a, b))−g (t)]
1−α

+

∫b
Mg(a,b)

g′ (t)
∨t
Mg(a,b)

(f)dt

[g (t)−g (Mg (a, b))]
1−α

]

≤ 1

2αΓ (α+ 1)
(g (b)−g (a))α

b∨
a

(f) ;

and∣∣∣∣IαMg(a,b)−,gf(a) + IαMg(a,b)+,gf(b) − [g (b) − g (a)]α

2α−1Γ (α+ 1)
f (Mg (a, b))

∣∣∣∣
≤ 1

Γ (α)

[∫Mg(a,b)
a

g′ (t)
∨Mg(a,b)
t (f)dt

[g (t) − g (a)]1−α
+

∫b
Mg(a,b)

g′ (t)
∨t
x (f)dt

[g (b) − g (t)]1−α

]

≤ 1

2αΓ (α+ 1)
(g (b) − g (a))α

b∨
a

(f) .
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Remark 1 If we take in Theorem 1 x = a+b
2 , then we obtain similar mid-point

inequalities, however the details are not presented here. Some applications for
the Hadamard fractional integrals are also provided in [14].

For several Ostrowski type inequalities for Riemann-Liouville fractional in-
tegrals see [1]-[5], [16]-[27] and the references therein.

Motivated by the above results, in this paper we establish some trapezoid
type inequalities for the generalized Riemann-Liouville fractional integrals of
functions of bounded variation and of Hölder continuous functions. Applica-
tions for the g-mean of two numbers are provided as well. Some particular
cases for Hadamard fractional integrals are also provided.

2 Some identities

We have:

Lemma 1 Let f : [a, b] → C be Lebesgue integrable on [a, b], g be a strictly
increasing function on (a, b) , having a continuous derivative g′ on (a, b) and
λ, µ some complex parameters:

(i) For any x ∈ (a, b) we have the representation

Iαa+,gf(x) + I
α
b−,gf(x) =

1

Γ (α+ 1)
(λ [g (x) − g (a)]α + µ [g (b) − g (x)]α)

+
1

Γ (α)

[∫x
a

g′ (t) [f (t) − λ]dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t) [f (t) − µ]dt

[g (t) − g (x)]1−α

]
(1)

and

Iαx−,gf(a) + I
α
x+,gf(b) =

1

Γ (α+ 1)
(λ [g (x) − g (a)]α + µ [g (b) − g (x)]α)

+
1

Γ (α)

[∫x
a

g′ (t) [f (t) − λ]dt

[g (t) − g (a)]1−α
+

∫b
x

g′ (t) [f (t) − µ]dt

[g (b) − g (t)]1−α

]
. (2)

(ii) We have

Iαb−,gf(a) + I
α
a+,gf(b)

2
=

1

Γ (α+ 1)
[g (b) − g (a)]α

λ+ µ

2

+
1

2Γ (α)

[∫b
a

g′ (t) [f (t) − λ]dt

[g (b) − g (t)]1−α
+

∫b
a

g′ (t) [f (t) − µ]dt

[g (t) − g (a)]1−α

]
. (3)
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Proof. (i) We observe that

1

Γ (α)

∫x
a

g′ (t) [f (t) − λ]dt

[g (x) − g (t)]1−α
(4)

= Iαa+,gf(x) − λ
1

Γ (α)

∫x
a

g′ (t)dt

[g (x) − g (t)]1−α

= Iαa+,gf(x) −
[g (x) − g (a)]α

αΓ (α)
λ = Iαa+,gf(x) −

[g (x) − g (a)]α

Γ (α+ 1)
λ

for a < x ≤ b and, similarly,

1

Γ (α)

∫b
x

g′ (t) [f (t) − µ]dt

[g (t) − g (x)]1−α
= Iαb−,gf(x) −

[g (b) − g (x)]α

Γ (α+ 1)
µ (5)

for a ≤ x < b.
If x ∈ (a, b), then by adding the equalities (4) and (5) we get the represen-

tation (1).
By the definition of fractional integrals we have

Iαx+,gf(b) :=
1

Γ (α)

∫b
x

g′ (t) f (t)dt

[g (b) − g (t)]1−α
, a ≤ x < b

and

Iαx−,gf(a) :=
1

Γ (α)

∫x
a

g′ (t) f (t)dt

[g (t) − g (a)]1−α
, a < x ≤ b.

Then
1

Γ (α)

∫b
x

g′ (t) [f (t) − λ]dt

[g (b) − g (t)]1−α
= Iαx+,gf(b) −

[g (b) − g (x)]α

Γ (α+ 1)
λ (6)

for a ≤ x < b and

1

Γ (α)

∫x
a

g′ (t) [f (t) − µ]dt

[g (t) − g (a)]1−α
= Iαx−,gf(a) −

[g (x) − g (a)]α

Γ (α+ 1)
µ (7)

for a < x ≤ b.
If x ∈ (a, b), then by adding the equalities (6) and (7) we get the represen-

tation (1).
If we take x = b in (4) we get

1

Γ (α)

∫b
a

g′ (t) [f (t) − λ]dt

[g (b) − g (t)]1−α
= Iαa+,gf(b) −

[g (b) − g (a)]α

Γ (α+ 1)
λ (8)
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while from x = a in (5) we get

1

Γ (α)

∫b
a

g′ (t) [f (t) − µ]dt

[g (t) − g (a)]1−α
= Iαb−,gf(a) −

[g (b) − g (a)]α

Γ (α+ 1)
µ. (9)

If we add (8) with (9) and divide by 2 we get (3). �

Remark 2 If we take in (1) and (2) x = Mg (a, b) = g−1
(
g(a)+g(b)

2

)
, then

we get

Iαa+,gf(Mg (a, b)) + I
α
b−,gf(Mg (a, b))

=
1

2α−1Γ (α+ 1)
[g (b) − g (a)]α

(
λ+ µ

2

)
+

1

Γ (α)

[∫Mg(a,b)
a

g′ (t) [f (t) − λ]dt

[g (Mg (a, b))−g (t)]
1−α

+

∫b
Mg(a,b)

g′ (t) [f (t) − µ]dt

[g (t)−g (Mg (a, b))]
1−α

]

and

IαMg(a,b)−,gf(a) + I
α
Mg(a,b)+,g

f(b) =
1

2α−1Γ (α+ 1)
[g (b) − g (a)]α

(
λ+ µ

2

)
+

1

Γ (α)

[∫Mg(a,b)
a

g′ (t) [f (t) − λ]dt

[g (t) − g (a)]1−α
+

∫b
Mg(a,b)

g′ (t) [f (t) − µ]dt

[g (b) − g (t)]1−α

]
.

The above lemma provides various identities of interest by taking particular
values for the parameters λ and µ, out of which we give only a few:

Corollary 2 With the assumptions of Lemma 1 we have:
(i) For any x ∈ (a, b) ,

Iαa+,gf(x) + I
α
b−,gf(x) =

1

Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α) f (x)

+
1

Γ (α)

[∫x
a

g′ (t) [f (t) − f (x)]dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t) [f (t) − f (x)]dt

[g (t) − g (x)]1−α

]
(10)

and

Iαx−,gf(a) + I
α
x+,gf(b) =

1

Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α) f (x)
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+
1

Γ (α)

[∫x
a

g′ (t) [f (t) − f (x)]dt

[g (t) − g (a)]1−α
+

∫b
x

g′ (t) [f (t) − f (x)]dt

[g (b) − g (t)]1−α

]
. (11)

(ii) For any x ∈ [a, b] ,

Iαb−,gf(a) + I
α
a+,gf(b)

2
=

1

Γ (α+ 1)
[g (b) − g (a)]α f (x)

+
1

2Γ (α)

[∫b
a

g′ (t) [f (t) − f (x)]dt

[g (b) − g (t)]1−α
+

∫b
a

g′ (t) [f (t) − f (x)]dt

[g (t) − g (a)]1−α

]
. (12)

The proof is obvious by taking λ = µ = f (x) in Lemma 1. These identities

were obtained in [14]. If we take in (10)-(12) x =Mg (a, b) = g
−1
(
g(a)+g(b)

2

)
,

then we get the corresponding identities were obtained in [14].

Corollary 3 With the assumptions of Lemma 1 we have:

Iαa+,gf(x) + I
α
b−,gf(x)

=
1

Γ (α+ 1)
([g (x) − g (a)]α f (a) + [g (b) − g (x)]α f (b))

+
1

Γ (α)

[∫x
a

g′ (t) [f (t) − f (a)]dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t) [f (t) − f (b)]dt

[g (t) − g (x)]1−α

]
(13)

and

Iαx−,gf(a) + I
α
x+,gf(b)

=
1

Γ (α+ 1)
([g (x) − g (a)]α f (a) + [g (b) − g (x)]α f (b))

+
1

Γ (α)

[∫x
a

g′ (t) [f (t) − f (a)]dt

[g (t) − g (a)]1−α
+

∫b
x

g′ (t) [f (t) − f (b)]dt

[g (b) − g (t)]1−α

]
, (14)

for any x ∈ (a, b)
(ii) We also have

Iαb−,gf(a) + I
α
a+,gf(b)

2
=

1

Γ (α+ 1)
[g (b) − g (a)]α

f (b) + f (a)

2

+
1

2Γ (α)

[∫b
a

g′ (t) [f (t) − f (b)]dt

[g (b) − g (t)]1−α
+

∫b
a

g′ (t) [f (t) − f (a)]dt

[g (t) − g (a)]1−α

]
. (15)
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The proof of (13) and (14) are obvious by taking λ = f (a) , µ = f (b) in
Lemma 1. The proof of (15) follows by Lemma 1 on taking λ = f (b) and
µ = f (a) .

Remark 3 If we take in (13) and (14) x =Mg (a, b) = g
−1
(
g(a)+g(b)

2

)
, then

we get

Iαa+,gf(Mg (a, b)) + I
α
b−,gf(Mg (a, b))

=
1

2α−1Γ (α+ 1)
[g (b) − g (a)]α

(
f (a) + f (b)

2

)
+

1

Γ (α)

[∫Mg(a,b)
a

g′ (t) [f (t) − f (a)]dt

[g (Mg (a, b))−g (t)]
1−α

+

∫b
Mg(a,b)

g′ (t) [f (t) − f (b)]dt

[g (t)−g (Mg (a, b))]
1−α

]
and

IαMg(a,b)−,gf(a) + I
α
Mg(a,b)+,g

f(b)

=
1

2α−1Γ (α+ 1)
[g (b) − g (a)]α

(
f (a) + f (b)

2

)
+

1

Γ (α)

[∫Mg(a,b)
a

g′ (t) [f (t) − f (a)]dt

[g (t) − g (a)]1−α
+

∫b
Mg(a,b)

g′ (t) [f (t) − f (b)]dt

[g (b) − g (t)]1−α

]
.

3 Inequalities for bounded functions

Now, for φ, Φ ∈ C and [a, b] an interval of real numbers, define the sets of
complex-valued functions, see for instance [15]

Ū[a,b] (φ,Φ)

:=
{
f : [a, b]→ C|Re

[
(Φ− f (t))

(
f (t) − φ

)]
≥ 0 for almost every t ∈ [a, b]

}
and

∆̄[a,b] (φ,Φ) :=

{
f : [a, b]→ C|

∣∣∣∣f (t) − φ+Φ

2

∣∣∣∣≤ 12 |Φ− φ| for a.e. t ∈ [a, b]

}
.

The following representation result may be stated.

Proposition 1 For any φ, Φ ∈ C, φ 6= Φ, we have that Ū[a,b] (φ,Φ) and
∆̄[a,b] (φ,Φ) are nonempty, convex and closed sets and

Ū[a,b] (φ,Φ) = ∆̄[a,b] (φ,Φ) . (16)
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Proof. We observe that for any z ∈ C we have the equivalence∣∣∣∣z− φ+Φ

2

∣∣∣∣ ≤ 12 |Φ− φ|

if and only if
Re [(Φ− z) (z̄ − φ)] ≥ 0.

This follows by the equality

1

4
|Φ− φ|2 −

∣∣∣∣z− φ+Φ

2

∣∣∣∣2 = Re [(Φ− z) (z̄ − φ)]

that holds for any z ∈ C.
The equality (16) is thus a simple consequence of this fact. �

On making use of the complex numbers field properties we can also state
that:

Corollary 4 For any φ,Φ ∈ C, φ 6= Φ,we have that

Ū[a,b] (φ,Φ) = {f : [a, b]→ C | (ReΦ− Re f (t)) (Re f (t) − Reφ)

+ (ImΦ− Im f (t)) (Im f (t) − Imφ) ≥ 0 for a.e. t ∈ [a, b]} .

Now, if we assume that Re (Φ) ≥ Re (φ) and Im (Φ) ≥ Im (φ) , then we can
define the following set of functions as well:

S̄[a,b] (φ,Φ) := {f : [a, b]→ C | Re (Φ) ≥ Ref (t) ≥ Re (φ)

and Im (Φ) ≥ Imf (t) ≥ Im (φ) for a.e. t ∈ [a, b]} .

One can easily observe that S̄[a,b] (φ,Φ) is closed, convex and

∅ 6= S̄[a,b] (φ,Φ) ⊆ Ū[a,b] (φ,Φ) .

We have:

Theorem 2 Let f : [a, b] → C be a complex valued Lebesgue integrable func-
tion on the real interval [a, b] , g be a strictly increasing function on (a, b) ,
having a continuous derivative g′ on (a, b) and φ, Φ ∈ C, φ 6= Φ such that
f ∈ ∆̄[a,b] (φ,Φ) .

(i) For any x ∈ (a, b),∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − φ+Φ

2Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α)

∣∣∣∣ (17)
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≤ 1
2
|Φ− φ|

1

Γ (α+ 1)
[[g (x) − g (a)]α + [g (b) − g (x)]α]

and∣∣∣∣Iαx−,gf(a) + Iαx+,gf(b) − φ+Φ

2Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α)

∣∣∣∣ (18)

≤ 1
2
|Φ− φ|

1

Γ (α+ 1)
[[g (x) − g (a)]α + [g (b) − g (x)]α] .

(ii) We have∣∣∣∣Iαb−,gf(a) + Iαa+,gf(b)2
−

1

Γ (α+ 1)
[g (b) − g (a)]α

φ+Φ

2

∣∣∣∣ (19)

≤ 1
2
|Φ− φ|

1

Γ (α+ 1)
|Φ− φ| [g (b) − g (a)]α .

Proof. Using the identity (1) for λ = µ = φ+Φ
2 , we have

Iαa+,gf(x) + I
α
b−,gf(x)

−
1

Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α)

φ+Φ

2

=
1

Γ (α)

∫x
a

g′ (t)
[
f (t) − φ+Φ

2

]
dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t)
[
f (t) − φ+Φ

2

]
dt

[g (t) − g (x)]1−α

 (20)

for any x ∈ (a, b) .
Taking the modulus in (20), then we get∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − 1

Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α)

φ+Φ

2

∣∣∣∣
≤ 1

Γ (α)

∫x
a

g′ (t)
∣∣∣f (t) − φ+Φ

2

∣∣∣dt
[g (x) − g (t)]1−α

+

∫b
x

g′ (t)
∣∣∣f (t) − φ+Φ

2

∣∣∣dt
[g (t) − g (x)]1−α


≤ 1
2
|Φ− φ|

1

Γ (α)

[∫x
a

g′ (t)dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t)dt

[g (t) − g (x)]1−α

]

=
1

2
|Φ− φ|

1

Γ (α+ 1)
[[g (x) − g (a)]α + [g (b) − g (x)]α]

for any x ∈ (a, b) , which proves (17).
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The inequality (18) follows in a similar manner from the identity (2).
The inequality (19) follows by (3) for λ = µ = φ+Φ

2 . �

Corollary 5 With the assumptions of Theorem 2 we have∣∣∣∣Iαa+,gf(Mg (a, b)) + I
α
b−,gf(Mg (a, b)) −

φ+Φ

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ 1

2α
|Φ− φ|

1

Γ (α+ 1)
[g (b) − g (a)]α

and ∣∣∣∣IαMg(a,b)−,gf(a) + IαMg(a,b)+,gf(b) − φ+Φ

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ 1

2α
|Φ− φ|

1

Γ (α+ 1)
[g (b) − g (a)]α .

Remark 4 If the function f : [a, b] → R is measurable and there exists the
constants m, M such that m ≤ f (t) ≤ M for a.e. t ∈ [a, b] , then for any
x ∈ (a, b) we have by (17) and (18) that∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − m+M

2Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α)

∣∣∣∣
≤ 1
2
(M−m)

1

Γ (α+ 1)
[[g (x) − g (a)]α + [g (b) − g (x)]α]

and ∣∣∣∣Iαx−,gf(a) + Iαx+,gf(b) − m+M

2Γ (α+ 1)
([g (x) − g (a)]α + [g (b) − g (x)]α)

∣∣∣∣
≤ 1
2
(M−m)

1

Γ (α+ 1)
[[g (x) − g (a)]α + [g (b) − g (x)]α] .

In particular,∣∣∣∣Iαa+,gf(Mg (a, b)) + I
α
b−,gf(Mg (a, b)) −

m+M

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ 1

2α
(M−m)

1

Γ (α+ 1)
[g (b) − g (a)]α

and ∣∣∣∣IαMg(a,b)−,gf(a) + IαMg(a,b)+,gf(b) − m+M

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ 1

2α
(M−m)

1

Γ (α+ 1)
[g (b) − g (a)]α .
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4 Trapezoid inequalities for functions of bounded
variation

We have:

Theorem 3 Let f : [a, b]→ C be a complex valued function of bounded varia-
tion on the real interval [a, b] , and g be a strictly increasing function on (a, b) ,
having a continuous derivative g′ on (a, b) . Then we have the inequalities∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − [g (x) − g (a)]

α
f (a) + [g (b) − g (x)]

α
f (b)

Γ (α+ 1)

∣∣∣∣
≤ 1

Γ (α)

[∫x
a

g′ (t)
∨t
a (f)dt

[g (x) − g (t)]
1−α

+

∫b
x

g′ (t)
∨b
t (f)dt

[g (t) − g (x)]
1−α

]

≤ 1

Γ (α+ 1)

[
(g (x) − g (a))

α
x∨
a

(f) + (g (b) − g (x))
α
b∨
x

(f)

]

≤ 1

Γ (α+ 1)



[
1
2
(g (b)−g (a))+

∣∣∣g (x)− g(a)+g(b)
2

∣∣∣]α∨ba (f) ;(
(g (x)−g (a))

αp
+(g (b)−g (x))

αp)1/p((∨x
a (f)

)q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p+

1
q = 1;(

(g (x)−g (a))
α
+(g (b)−g (x))

α) [1
2

∨b
a (f)+

1
2

∣∣∣∨xa (f)−∨bx (f)∣∣∣]
(21)

and∣∣∣∣Iαx−,gf(a) + Iαx+,gf(b) − [g (x) − g (a)]
α
f (a) + [g (b) − g (x)]

α
f (b)

Γ (α+ 1)

∣∣∣∣
≤ 1

Γ (α)

[∫x
a

g′ (t)
∨t
a (f)dt

[g (t) − g (a)]
1−α

+

∫b
x

g′ (t)
∨b
t (f)dt

[g (b) − g (t)]
1−α

]

≤ 1

Γ (α+ 1)

[
(g (x) − g (a))

α
x∨
a

(f) + (g (b) − g (x))
α
b∨
x

(f)

]

≤ 1

Γ (α+ 1)



[
1
2
(g (b) − g (a)) +

∣∣∣g (x) − g(a)+g(b)
2

∣∣∣]α∨ba (f) ;(
(g (x)−g (a))

αp
+(g (b)−g (x))

αp)1/p ((∨x
a (f)

)q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;(
(g (x)−g (a))

α
+ (g (b)−g (x))

α) [1
2

∨b
a (f) +

1
2

∣∣∣∨xa (f) −∨bx (f)∣∣∣]
(22)

for any x ∈ (a, b)
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(ii) We also have∣∣∣∣Iαb−,gf(a) + Iαa+,gf(b)2
−

1

Γ (α+ 1)
[g (b) − g (a)]α

f (b) + f (a)

2

∣∣∣∣
≤ 1

2Γ (α)

[∫b
a

g′ (t)
∨b
t (f)dt

[g (b) − g (t)]1−α
+

∫b
a

g′ (t)
∨t
a (f)dt

[g (t) − g (a)]1−α

]

≤ 1

Γ (α+ 1)
[g (b) − g (a)]α

b∨
a

(f) .

(23)

Proof. Using the identity (13) and the properties of the modulus, we have∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − [g (x) − g (a)]α f (a) + [g (b) − g (x)]α f (b)

Γ (α+ 1)

∣∣∣∣
≤ 1

Γ (α)

[∫x
a

g′ (t) |f (t) − f (a)|dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t) |f (t) − f (b)|dt

[g (t) − g (x)]1−α

]
=: B (x)

for any x ∈ (a, b) .
Since f is of bounded variation on [a, b] , then we have

|f (t) − f (a)| ≤
t∨
a

(f) ≤
x∨
a

(f) for a ≤ t ≤ x

and

|f (t) − f (b)| ≤
b∨
t

(f) ≤
b∨
x

(f) for x ≤ t ≤ b.

Therefore

B (x) ≤ 1

Γ (α)

[∫x
a

g′ (t)
∨t
a (f)dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t)
∨b
t (f)dt

[g (t) − g (x)]1−α

]

≤ 1

Γ (α)

[
x∨
a

(f)

∫x
a

g′ (t)dt

[g (x) − g (t)]1−α
+

b∨
x

(f)

∫b
x

g′ (t) dt

[g (t) − g (x)]1−α

]

=
1

Γ (α)

[
(g (x) − g (a))α

α

x∨
a

(f) +
(g (b) − g (x))α

α

b∨
x

(f)

]

=
1

Γ (α+ 1)

[
(g (x) − g (a))α

x∨
a

(f) + (g (b) − g (x))α
b∨
x

(f)

]
,
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which proves the first two inequalities in (21).
The last part of (21) is obvious by making use of the elementary Hölder

type inequalities for positive real numbers c, d, m, n ≥ 0

mc+ nd ≤


max {m,n} (c+ d) ;

(mp + np)1/p (cq + dq)1/q with p, q > 1, 1
p +

1
q = 1.

The inequality (22) follows in a similar way by utilising the equality (14).
From the equality (15) we have∣∣∣∣Iαb−,gf(a) + Iαa+,gf(b)2

−
1

Γ (α+ 1)
[g (b) − g (a)]α

f (b) + f (a)

2

∣∣∣∣
≤ 1

2Γ (α)

[∫b
a

g′ (t) |f (t) − f (b)|dt

[g (b) − g (t)]1−α
+

∫b
a

g′ (t) |f (t) − f (a)|dt

[g (t) − g (a)]1−α

]

≤ 1

2Γ (α)

[∫b
a

g′ (t)
∨b
t (f)dt

[g (b) − g (t)]1−α
+

∫b
a

g′ (t)
∨t
a (f)dt

[g (t) − g (a)]1−α

]

≤ 1

2Γ (α)

[
b∨
a

(f)

∫b
a

g′ (t)dt

[g (b) − g (t)]1−α
+

b∨
a

(f)

∫b
a

g′ (t)dt

[g (t) − g (a)]1−α

]

=
1

2Γ (α)

[
b∨
a

(f)
[g (b) − g (a)]α

α
+

b∨
a

(f)
[g (b) − g (a)]α

α

]

=
1

Γ (α+ 1)
[g (b) − g (a)]α

b∨
a

(f) ,

which proves (23). �

Corollary 6 With the assumptions of Theorem 3 we have∣∣∣∣Iαa+,gf(Mg (a, b)) + I
α
b−,gf(Mg (a, b)) −

f (a) + f (b)

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ 1

Γ (α)

[∫Mg(a,b)
a

g′ (t)
∨t
a (f)dt

[g (Mg (a, b))−g (t)]
1−α

+

∫b
Mg(a,b)

g′ (t)
∨b
t (f)dt

[g (t)−g (Mg (a, b))]
1−α

]

≤ 1

2αΓ (α+ 1)
(g (b) − g (a))α

b∨
a

(f)



Trapezoid inequalities for Riemann-Liouville fractional integrals 45

and ∣∣∣∣IαMg(a,b)−,gf(a) + IαMg(a,b)+,gf(b) − f (a) + f (b)

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ 1

Γ (α)

[∫Mg(a,b)
a

g′ (t)
∨t
a (f)dt

[g (t) − g (a)]1−α
+

∫b
Mg(a,b)

g′ (t)
∨b
t (f)dt

[g (b) − g (t)]1−α

]

≤ 1

2αΓ (α+ 1)
(g (b) − g (a))α

b∨
a

(f) .

5 Inequalities for Hölder’s continuous functions

We say that the function f : [a, b]→ C is r-H-Hölder continuous on [a, b] with
r ∈ (0, 1] and H > 0 if

|f (t) − f (s)| ≤ H |t− s|r (24)

for any t, s ∈ [a, b] . If r = 1 and H = L we call the function L-Lipschitzian on
[a, b] .

Theorem 4 Assume that f : [a, b] → C is r-H-Hölder continuous on [a, b]
with r ∈ (0, 1] and H > 0, and g be a strictly increasing function on (a, b) ,
having a continuous derivative g′ on (a, b) . Then

∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − [g (x) − g (a)]α f (a) + [g (b) − g (x)]α f (b)

Γ (α+ 1)

∣∣∣∣
≤ H

Γ (α)

[∫x
a

g′ (t) (t− a)r dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t) (b− t)r dt

[g (t) − g (x)]1−α

]

≤ H

Γ (α+ 1)
[(g (x) − g (a))α (x− a)r + (g (b) − g (x))α (b− x)r]

≤ H

Γ (α+ 1)



[
1
2 (g (b) − g (a)) +

∣∣∣g (x) − g(a)+g(b)
2

∣∣∣]α [(x− a)r + (b− x)r] ;

((g (x)−g (a))αp+(g (b)−g (x))αp)
1/p

((x− a)rq+(b− x)rq)
1/q

with p, q > 1, 1
p + 1

q = 1;

((g (x) − g (a))α + (g (b) − g (x))α)
[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]r
(25)
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and∣∣∣∣Iαx−,gf(a) + Iαx+,gf(b) − [g (x) − g (a)]α f (a) + [g (b) − g (x)]α f (b)

Γ (α+ 1)

∣∣∣∣
≤ H

Γ (α)

[∫x
a

g′ (t) (t− a)r dt

[g (t) − g (a)]1−α
+

∫b
x

g′ (t) (b− t)r dt

[g (b) − g (t)]1−α

]

≤ H

Γ (α+ 1)
[(g (x) − g (a))α (x− a)r + (g (b) − g (x))α (b− x)r]

≤ H

Γ (α+ 1)



[
1
2 (g (b) − g (a)) +

∣∣∣g (x) − g(a)+g(b)
2

∣∣∣]α [(x− a)r + (b− x)r] ;

((g (x)−g (a))αp+(g (b)−g (x))αp)
1/p

((x− a)rq+(b− x)rq)
1/q

with p, q > 1, 1
p + 1

q = 1;

((g (x) − g (a))α + (g (b) − g (x))α)
[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]r
(26)

for any x ∈ (a, b)
(ii) We also have∣∣∣∣Iαb−,gf(a) + Iαa+,gf(b)2

−
1

Γ (α+ 1)
[g (b) − g (a)]α

f (b) + f (a)

2

∣∣∣∣
≤ H

2Γ (α)

[∫b
a

g′ (t) (b− t)r dt

[g (b) − g (t)]1−α
+

∫b
a

g′ (t) (t− a)r dt

[g (t) − g (a)]1−α

]

≤ H

Γ (α+ 1)
[g (b) − g (a)]α (b− a)r .

(27)

Proof. Using the identity (13) and the properties of the modulus, we have∣∣∣∣Iαa+,gf(x) + Iαb−,gf(x) − [g (x) − g (a)]α f (a) + [g (b) − g (x)]α f (b)

Γ (α+ 1)

∣∣∣∣
≤ 1

Γ (α)

[∫x
a

g′ (t) |f (t) − f (a)|dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t) |f (t) − f (b)|dt

[g (t) − g (x)]1−α

]
=: C (x)

for any x ∈ (a, b) .
Since f : [a, b] → C is r-H-Hölder continuous on [a, b] with r ∈ (0, 1] and

H > 0, hence

C (x) ≤ H

Γ (α)

[∫x
a

g′ (t) (t− a)r dt

[g (x) − g (t)]1−α
+

∫b
x

g′ (t) (b− t)r dt

[g (t) − g (x)]1−α

]
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≤ H

Γ (α)

[
(x− a)r

∫x
a

g′ (t)dt

[g (x) − g (t)]1−α
+ (b− x)r

∫b
x

g′ (t)dt

[g (t) − g (x)]1−α

]

=
H

Γ (α)

[
(x− a)r

(g (x) − g (a))α

α
+ (b− x)r

(g (b) − g (x))α

α

]
=

H

Γ (α+ 1)
[(x− a)r (g (x) − g (a))α + (b− x)r (g (b) − g (x))α] ,

for any x ∈ (a, b) , which proves the first two inequalities in (25). The rest is
obvious.

The inequality (26) follows in a similar way by utilising the equality (14).
The inequality (27) follows by utilising the equality (15). �

Corollary 7 With the assumptions of Theorem 4 we have∣∣∣∣Iαa+,gf(Mg (a, b)) + I
α
b−,gf(Mg (a, b)) −

f (a) + f (b)

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ H

Γ (α)

[∫Mg(a,b)
a

g′ (t) (t−a)r dt

[g (Mg (a, b))−g (t)]
1−α

+

∫b
Mg(a,b)

g′ (t) (b−t)r dt

[g (t)−g (Mg (a, b))]
1−α

]

≤ H

2αΓ (α+ 1)
(g (b) − g (a))α [(Mg (a, b) − a)

r + (b−Mg (a, b))
r]

and ∣∣∣∣IαMg(a,b)−,gf(a) + IαMg(a,b)+,gf(b) − f (a) + f (b)

2αΓ (α+ 1)
[g (b) − g (a)]α

∣∣∣∣
≤ H

Γ (α)

[∫Mg(a,b)
a

g′ (t) (t− a)r dt

[g (t) − g (a)]1−α
+

∫b
Mg(a,b)

g′ (t) (b− t)r dt

[g (b) − g (t)]1−α

]

≤ H

2αΓ (α+ 1)
(g (b) − g (a))α [(Mg (a, b) − a)

r + (b−Mg (a, b))
r] .

6 Applications for Hadamard fractional integrals

If we take g (t) = ln t and 0 ≤ a < x ≤ b, then by Theorem 3 for Hadamard
fractional integrals Hαa+ and Hαb− we have for f : [a, b] → C, a function of
bounded variation on [a, b] that∣∣∣∣∣Hαa+f(x) +Hαb−f(x) −

[
ln
(
x
a

)]α
f (a) +

[
ln
(
b
x

)]α
f (b)

Γ (α+ 1)

∣∣∣∣∣
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≤ 1

Γ (α)

[∫x
a

[
ln
(
x
t

)]α−1∨t
a (f)dt

t
+

∫b
x

[
ln
(
t
x

)]α−1∨b
t (f)dt

t

]

≤ 1

Γ (α+ 1)

[[
ln
(x
a

)]α x∨
a

(f) +

[
ln

(
b

x

)]α b∨
x

(f)

]

≤ 1

Γ (α+ 1)



[
1
2 ln

(
b
a

)
+
∣∣∣ln( x

G(a,b)

)∣∣∣]α∨ba (f) ;((
ln
(
x
a

))αp
+
(
ln
(
b
x

))αp)1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;((
ln
(
x
a

))α
+
(
ln
(
b
x

))α) [1
2

∨b
a (f) +

1
2

∣∣∣∨xa (f) −∨bx (f)∣∣∣]
(28)

and∣∣∣∣∣Hαx−f(a) +Hαx+f(b) −
[
ln
(
x
a

)]α
f (a) +

[
ln
(
b
x

)]α
f (b)

Γ (α+ 1)

∣∣∣∣∣
≤ 1

Γ (α)

[∫x
a

[
ln
(
t
a

)]α−1∨t
a (f)dt

t
+

∫b
x

[
ln
(
b
t

)]α−1∨b
t (f)dt

t

]

≤ 1

Γ (α+ 1)

[(
ln
(x
a

))α x∨
a

(f) +

(
ln

(
b

x

))α b∨
x

(f)

]

≤ 1

Γ (α+ 1)



[
1
2 ln

(
b
a

)
+
∣∣∣ln( x

G(a,b)

)∣∣∣]α∨ba (f) ;((
ln
(
x
a

))αp
+
(
ln
(
b
x

))αp)1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;((
ln
(
x
a

))α
+
(
ln
(
b
x

))α) [1
2

∨b
a (f) +

1
2

∣∣∣∨xa (f) −∨bx (f)∣∣∣]
(29)

for any x ∈ (a, b)
We also have∣∣∣∣Hαb−f(a) +Hαa+f(b)2

−
1

Γ (α+ 1)

[
ln

(
b

a

)]α
f (b) + f (a)

2

∣∣∣∣
≤ 1

2Γ (α)

[∫b
a

[
ln
(
b
t

)]α−1∨b
t (f)dt

t
+

∫b
a

[
ln
(
t
a

)]α−1
g′ (t)

∨t
a (f)dt

t

]

≤ 1

Γ (α+ 1)

[
ln

(
b

a

)]α b∨
a

(f) .
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If we take in (28) and (29) x = G (a, b) , then we get∣∣∣∣Hαa+f(G (a, b)) +Hαb−f(G (a, b)) −
f (a) + f (b)

2αΓ (α+ 1)

[
ln

(
b

a

)]α∣∣∣∣
≤ 1

Γ (α)

∫G(a,b)
a

[
ln
(
G(a,b)
t

)]α−1∨t
a (f)dt

t
+

∫b
G(a,b)

[
ln
(

t
G(a,b)

)]α−1∨b
t (f)dt

t


≤ 1

2αΓ (α+ 1)

[
ln

(
b

a

)]α b∨
a

(f)

and ∣∣∣∣HαG(a,b)−f(a) +HαG(a,b)+f(b) − f (a) + f (b)

2αΓ (α+ 1)

[
ln

(
b

a

)]α∣∣∣∣
≤ 1

Γ (α)

[∫G(a,b)
a

[
ln
(
t
a

)]α−1∨t
a (f)dt

t
+

∫b
G(a,b)

[
ln
(
b
t

)]α−1∨b
t (f)dt

t

]

≤ 1

2αΓ (α+ 1)

[
ln

(
b

a

)]α b∨
a

(f) .

Assume that f : [a, b]→ C is r-H-Hölder continuous on [a, b] with r ∈ (0, 1]
and H > 0. If we take g (t) = ln t and 0 ≤ a < x ≤ b in Theorem 4, then we
get∣∣∣∣∣Hαa+f(x) +Hαb−f(x) −

[
ln
(
x
a

)]α
f (a) +

[
ln
(
b
x

)]α
f (b)

Γ (α+ 1)

∣∣∣∣∣
≤ H

Γ (α)

[∫x
a

[
ln
(
x
t

)]α−1
(t− a)r dt

t
+

∫b
x

[
ln
(
t
x

)]α−1
(b− t)r dt

t

]

≤ H

Γ (α+ 1)

[[
ln
(x
a

)]α
(x− a)r +

[
ln

(
b

x

)]α
(b− x)r

]

≤ H

Γ (α+ 1)



[
1
2 ln

(
b
a

)
+
∣∣∣ln( x

G(a,b)

)∣∣∣]α∨ba (f) ;((
ln
(
x
a

))αp
+
(
ln
(
b
x

))αp)1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p +

1
q = 1;((

ln
(
x
a

))α
+
(
ln
(
b
x

))α) [1
2

∨b
a (f) +

1
2

∣∣∣∨xa (f) −∨bx (f)∣∣∣]
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and∣∣∣∣∣Hαx−f(a) +Hαx+f(b) −
[
ln
(
x
a

)]α
f (a) +

[
ln
(
b
x

)]α
f (b)

Γ (α+ 1)

∣∣∣∣∣
≤ H

Γ (α)

[∫x
a

[
ln
(
t
a

)]α−1
(t− a)r dt

t
+

∫b
x

[
ln
(
b
t

)]α−1
(b− t)r dt

t

]

≤ H

Γ (α+ 1)

[[
ln
(x
a

)]α
(x− a)r +

[
ln

(
b

x

)]α
(b− x)r

]

≤ H

Γ (α+ 1)



[
1
2 ln

(
b
a

)
+
∣∣∣ln( x

G(a,b)

)∣∣∣]α∨ba (f) ;((
ln
(
x
a

))αp
+
(
ln
(
b
x

))αp)1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;((
ln
(
x
a

))α
+
(
ln
(
b
x

))α) [1
2

∨b
a (f) +

1
2

∣∣∣∨xa (f) −∨bx (f)∣∣∣]
(30)

for any x ∈ (a, b) .
We also have∣∣∣∣Hαb−f(a) +Hαa+f(b)2

−
1

Γ (α+ 1)

[
ln

(
b

a

)]α
f (b) + f (a)

2

∣∣∣∣
≤ H

2Γ (α)

[∫b
a

[
ln
(
b
t

)]α−1
(b− t)r dt

t
+

∫b
a

[
ln
(
t
a

)]α−1
(t− a)r dt

t

]

≤ H

Γ (α+ 1)
(b− a)r

[
ln

(
b

a

)]α
.

(31)

If we take in (30) and (31) x = G (a, b) , then we get∣∣∣∣Hαa+f(G (a, b)) +Hαb−f(G (a, b)) −
f (a) + f (b)

2αΓ (α+ 1)

[
ln

(
b

a

)]α∣∣∣∣
≤ H

Γ (α)

∫G(a,b)
a

[
ln
(
G(a,b)
t

)]α−1
(t−a)rdt

t
+

∫b
G(a,b)

[
ln
(

t
G(a,b)

)]α−1
(b−t)rdt

t


≤ 1

2αΓ (α+ 1)

[
ln

(
b

a

)]α
(b− a)r

and∣∣∣∣HαG(a,b)−f(a) +HαG(a,b)+f(b) − f (a) + f (b)

2αΓ (α+ 1)

[
ln

(
b

a

)]α∣∣∣∣
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≤ 1

Γ (α)

[∫G(a,b)
a

[
ln
(
t
a

)]α−1
(t− a)r dt

t
+

∫b
G(a,b)

[
ln
(
b
t

)]α−1
(b− t)r dt

t

]

≤ 1

2αΓ (α+ 1)

[
ln

(
b

a

)]α
(b− a)r .
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[23] M. Tunç, On new inequalities for h-convex functions via Riemann-
Liouville fractional integration, Filomat, 27:4 (2013), 559–565.

[24] M. Tunç, Ostrowski type inequalities for m- and (α,m)-geometrically
convex functions via Riemann-Louville fractional integrals, Afr. Mat., 27
(2016), no. 5-6, 841–850.

[25] H. Yildirim and Z. Kirtay, Ostrowski inequality for generalized fractional
integral and related inequalities, Malaya J. Mat., 2 (3) (2014), 322-329.
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Abstract. Improving and extending some ideas of Gottlob Frege from
1874 (on a generalization of the notion of the composition iterates of a
function), we consider the composition iterates ϕn of a relation ϕ on X,
defined by

ϕ0 = ∆X, ϕn = ϕ ◦ϕn−1 if n ∈ N, and ϕ∞ =
∞⋃

n=0

ϕn.

In particular, by using the relational inclusion ϕn◦ϕm ⊆ ϕn+m with
n,m ∈ N0 = {0} ∪ N ∪ {∞}, we show that the function α, defined by

α(n) = ϕn for n ∈ N0,

satisfies the Cauchy problem

α(n) ◦ α(m) ⊆ α(n+m), α(0) = ∆X.

Moreover, the function f, defined by

f(n,A) = α(n)[A] for n ∈ N0 and A ⊆ X,
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satisfies the translation problem

f(n, f
(
m,A)

)
⊆ f(n+m,A), f(0,A) = A.

Furthermore, the function F, defined by

F(A,B) =
{
n ∈ N0 : A ⊆ f(n,B)

}
for A,B ⊆ X,

satisfies the Sincov problem

F(A,B) + F(B,C) ⊆ F(A,C), 0 ∈ F(A,A).

Motivated by the above observations, we investigate a function F on
the product set X2 to the power groupoid P(U) of an additively written
groupoid U which is supertriangular in the sense that

F(x, y) + F(y, z) ⊆ F(x, z)

for all x, y, z ∈ X. For this, we introduce the convenient notations

R(x, y) = F(y, x) and S(x, y) = F(x, y) + R(x, y),

and
Φ(x) = F(x, x) and Ψ(x) =

⋃
y∈X

S(x, y).

Moreover, we gradually assume that U and F have some useful additional
properties. For instance, U has a zero, U is a group, U is commutative, U
is cancellative, or U has a suitable distance function; while F is nonpartial,
F is symmetric, skew symmetric, or single-valued.

1 A few basic facts on relations

In [40], a subset F of a product set X×Y is called a relation on X to Y. In
particular, a relation on X to itself is called a relation on X. More specially,
∆X = {(x, x) : x ∈ X} is called the identity relation on X.

If F is a relation on X to Y, then by the above definitions we can also state
that F is a relation on X ∪ Y. However, for our present purposes, the latter
view of the relation F would also be quite unnatural.

If F is a relation on X to Y, then for any x ∈ X and A ⊆ X the sets
F(x) = {y ∈ Y : (x, y) ∈ F} and F[A] =

⋃
a∈A F(a) are called the images

of x and A under F, respectively.
If (x, y) ∈ F, then instead of y ∈ F(x), we may also write xFy. However,

instead of F[A], we cannot write F(A). Namely, it may occur that, in addition
to A ⊆ X, we also have A ∈ X.
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The sets DF = {x ∈ X : F(x) 6= ∅} and RF = F[X] are called the domain
and range of F, respectively. If in particular DF = X, then we say that F is a
relation of X to Y, or that F is a nonpartial relation on X to Y.

In particular, a relation f on X to Y is called a function if for each x ∈ Df
there exists y ∈ Y such that f(x) = {y}. In this case, by identifying singletons
with their elements, we may simply write f(x) = y instead of f(x) = {y}.

In particular, a function ? of X to itself is called a unary operation on X,
while a function ∗ of X2 to X is called a binary operation on X. In this case,
for any x, y ∈ X, we usually write x? and x ∗ y instead of ?(x) and ∗

(
(x, y)

)
.

If F is a relation on X to Y, then we can easily see that F =
⋃
x∈X {x}×F(x).

Therefore, the values F(x), where x ∈ X, uniquely determine F. Thus, a relation
F on X to Y can also be naturally defined by specifying F(x) for all x ∈ X.

For instance, the inverse F−1 can be defined such that F−1(y) = {x ∈ X : y ∈
F(x)} for all y ∈ Y. Moreover, if G is a relation on Y to Z, then the composition
G ◦ F can be defined such that (G ◦ F)(x) = G[F(x)] for all x ∈ X.

If F is a relation on X to Y, then a relation Φ of DF to Y is called a selection
relation of F if Φ ⊆ F, i.e., Φ(x) ⊆ F(x) for all x ∈ DF. By using the Axiom of
Choice, it can be seen that every relation is the union of its selection functions.

For a relation F on X to Y, we may naturally define two set-valued functions
ϕ of X to P(Y) and Φ of P(X) to P(Y) such that ϕ(x) = F(x) for all x ∈ X
and Φ(A) = F[A] for all A ⊆ X.

Functions of X to P(Y) can be identified with relations on X to Y, while
functions of P(X) to P(Y) are more powerful objects than relations on X to Y.
They were briefly called co-relations on X to Y in [40].

In particular, a relation R on X can be briefly defined to be reflexive if
∆X ⊆ R, and transitive if R ◦ R ⊆ R. Moreover, R can be briefly defined to be
symmetric if R−1 ⊆ R, and antisymmetric if R ∩ R−1 ⊆ ∆X.

Thus, a reflexive and transitive (symmetric) relation may be called a pre-
order (tolerance) relation, and a symmetric (antisymmetric) preorder relation
may be called an equivalence (partial order) relation.

For A ⊆ X, Pervin’s relation RA = A2 ∪ Ac×X, with Ac = X \ A, is an
important preorder on X. While, for a pseudometric d on X, Weil’s surrounding
Br = {(x, y) ∈ X2 : d(x, y) < r}, with r > 0, is an important tolerance on X.

Note that SA = RA∩R−1A = RA∩RAc = A2∩
(
Ac)2 is already an equivalence

on X. And, more generally if A is a partition of X, then SA =
⋃
A∈AA

2 is an
equivalence on X which can, to some extent, be identified with A.
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2 A few basic facts on ordered sets and groupoids

If ≤ is a relation on X, then motivated by Birkhoff [5, p. 1] the ordered pair
X(≤) = (X,≤) is called a goset (generalized ordered set) [39]. In particular, it
is called a proset (preordered set) if the relation ≤ is a preorder on X.

Quite similarly, a goset X(≤) is called a poset (partially ordered set) if the
relation ≤ is a partial order on X. The importance of posets lies mainly in the
fact that any family of sets forms a poset with set inclusion.

A function f of one goset X(≤) to another Y(≤) is called increasing if x1 ≤ x2
implies f(x1) ≤ f(x2) for all x1, x2 ∈ X. The function f can now be briefly called
decreasing if it is increasing as a function of X(≤) to the dual Y(≥).

An increasing function ϕ of the goset X = X(≤) to itself is called a projection
(involution) operation on X if it is idempotent (involutive) in the sense that
ϕ ◦ϕ = ϕ

(
ϕ ◦ϕ = ∆X

)
. Note that ϕ ◦ϕ = ∆X if and only if ϕ−1 = ϕ.

Moreover, a projection operation ϕ on a poset X is called a closure operation
on X if it is extensive in the sense that ∆X ≤ ϕ. That is, x ≤ ϕ(x) for all x ∈ X.
The interior operations can again be most briefly defined by dualization.

If f is a function of one goset X to another Y and g is a function of Y to X
such that, for any x ∈ X and y ∈ Y, we have f(x) ≤ y if and only x ≤ g(y),
then g is called a Galois adjoint of f [12, p. 155].

Hence, by taking ϕ = g ◦ f, one can easily see that, for any u, v ∈ X, we
have f(u) ≤ f(v) if and only if u ≤ ϕ(v). Moreover, if X and Y are prosets,
then it can be shown that f is increasing, ϕ is a closure and f = f ◦ϕ [39].

If + is a binary operation on a set X, then the ordered pair X(+) = (X,+)
is called an additive groupoid. Recently, groupoids are usually called magmas,
not to be confused with Brandt groupoids [6].

If X is a groupoid, then for any A,B ⊆ X we may also naturally define
A + B = {x + y : x ∈ A, y ∈ B}. Thus, by identifying singletons with their
elements, X may be considered as a subgoupoid of its power groupoid P(X).

In a groupoid X, for any n ∈ N and x ∈ X we may also naturally define
nx = x if n = 1, and nx = (n − 1)x + x if n > 1. Thus, for any n ∈ N and
A ⊆ X, we may also naturally define nA = {nx : x ∈ A}.

If X is a semigroup (associative groupoid), then we have (n+m)x = nx+mx
and (nm)x = n(mx) for all n,m ∈ N and x ∈ X. However, the equality
n(x+ y) = nx+ ny requires the elements x, y ∈ X to be commuting [19].

If the groupoid X has a zero element 0, then we also naturally define 0x = 0
for all x ∈ X. Moreover, if X is a group, then we also naturally define (−n)x =
n(−x) for all n ∈ N and x ∈ X. And thus also kA for all k ∈ Z and A ⊆ X.

Concerning the corresponding operations in P(X), we must be very careful.
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Namely, in general, we only have (n +m)A ⊆ nA +mA and nA ⊆
∑n
i=1A

for all n,m ∈ N and A ⊆ X. However, P(X) has a richer structure than X.
In particular, an element x of a groupoid X is called left-cancellable if x+y =

x + z implies y = z for all y, z ∈ X. Moreover, the groupoid X is called left-
cancellative if every element of X is left-cancellable.

“Right-cancellable” and “right-cancellative” are to be defined quite similarly.
Moreover, for instance, the groupoid X is to be called cancellative if it is both
left-cancellative and right-cancellative.

A semigroup X can be easily embedded in a monoid (semigroup with zero
element), by adjoining an element 0 not in X, and defining 0 + x = x + 0 = x
for all x ∈ X. Important monoids will be N0 = {0} ∪ N and N0 = N0 ∪ {∞}.

3 The finite composition iterates of a relation

Notation 1 In the sequel, we shall assume that X is a set, ∆ is the identity
function of X and ϕ is a relation on X.

Note that the family P
(
X2) of all relations on X forms a semigroup, with

identity element ∆, with respect to the composition of relations. Therefore, we
may naturally use the following

Definition 1 Define ϕ0 = ∆, and for any n ∈ N

ϕn = ϕ ◦ϕn−1.

Remark 1 Thus, for each n ∈ N0, ϕn is also a relation on X which is called
the nth composition iterate of ϕ.

Now, as a particular case of a more general theorem on monoids, we can
state the following theorem whose direct proof is included here only for the
reader’s convenience.

Theorem 1 For any n,m ∈ N0, we have

ϕn+m = ϕn ◦ϕm.

Proof. For fixed m ∈ N0, we shall prove, by induction, that

ϕm+n = ϕn ◦ϕm
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for all n ∈ N0. Hence, by the commutativity of the addition in N0, the assertion
of the theorem follows.

By Definition 1, we evidently have ϕm+0 = ϕm = ∆ ◦ ϕm = ϕ0 ◦ ϕm.
Therefore, the required equity is true for n = 0.

Let us suppose now that the required equality is true for some n ∈ N0. Then,
by Definition 1, the above assumption, and the corresponding associativities,
we have

ϕm+(n+1) = ϕ(m+n)+1 = ϕ ◦ϕm+n

= ϕ ◦ (ϕn ◦ϕm) = (ϕ ◦ϕn) ◦ϕm = ϕn+1 ◦ϕm.

Therefore, the required equality is also true for n+ 1. �

Remark 2 This theorem shows that the family {ϕn}∞n=0 also forms a semi-
group, with identity element ∆, with respect to composition.

By induction, we can also easily prove the less trivial part of the following

Theorem 2 The following assertions are equivalent:
(1) ∆ ⊆ ϕ; (2) ϕn ⊆ ϕn+1 for all n ∈ N0.

Remark 3 This theorem shows that the sequence
(
ϕn
)∞
n=0

is increasing, with
respect to set inclusion, if and only if the relation ϕ is reflexive on X.

Note that if in particular ϕ is reflexive on X and ϕ is a function, then we
necessarily have ϕ = ∆, and thus also ϕn = ∆ for all n ∈ N0.

Therefore, in the important particular case when ϕ is a function of X to
itself, Theorem 2 cannot have any significance.

4 The infinite composition iterate of a relation

In addition to Definition 1, we may also naturally use the following

Definition 2 Define

ϕ∞ =
∞⋃
n=0

ϕn.

Remark 4 Moreover, the relations

lim
n→∞ϕn =

∞⋃
n=0

∞⋂
k=n

ϕk and lim
n→∞ϕn =

∞⋂
n=0

∞⋃
k=n

ϕk
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may also be naturally investigated.
Note that if in particular the sequence

(
ϕn
)∞
n=0

is increasing with respect
to set inclusion, then these relations coincide with ϕ∞.

The relation ϕ∞ is called the preorder hull (closure) of ϕ. Namely, we have

Theorem 3 ϕ∞ is the smallest preorder relation on X containing ϕ.

Proof. By Definition 2, it is clear that ∆ ⊆ ϕ∞ and ϕ ⊆ ϕ∞. Thus, ϕ∞ is
reflexive and contains ϕ.

Moreover, if (x, y) ∈ ϕ∞ and (y, z) ∈ ϕ∞, then by Definition 2 there exist
m,n ∈ N0 such that (x, y) ∈ ϕm and (y, z) ∈ ϕn. Hence, by using Theorem
1, we can infer that (x, z) ∈ ϕn ◦ϕm = ϕn+m. Thus, by Definition 2, we also
have (x, z) ∈ ϕ∞. Therefore, ϕ∞ is also transitive.

On the other hand, if ψ is a relation on X such that ϕ ⊆ ψ, then we can note
that ϕn ⊆ ψn for all n ∈ N0, and thus by Definition 2 we have ϕ∞ ⊆ ψ∞.
Moreover, if ψ is reflexive, then ψ0 ⊆ ψ. And, if ψ is transitive, then ψn ⊆ ψ
for all n ∈ N. Therefore, if ψ is both reflexive and transitive, then by Definition
2 we have ψ∞ ⊆ ψ, and thus also ϕ∞ ⊆ ψ. �

Now, as an immediate consequence of this theorem, we can also state

Corollary 1 The following assertions are equivalent:
(1) ϕ∞ = ϕ; (2) ϕ is a preorder on X.

Remark 5 From the above results, it is clear that ∞ is a closure operation
on the poset P

(
X2
)
.

In general, it is not even finitely union preserving. However, it is compatible
with the inversion of relations [18].

Moreover, in addition to Theorem 1, we can also easily prove the following

Theorem 4 For any n,m ∈ N0, we have

ϕn ◦ϕm ⊆ ϕn+m.

Moreover, if ϕ is reflexive on X, then the corresponding equality is also true.

Proof. If in particular n,m ∈ N0, then by Theorem 1 the corresponding
equality is true even if ϕ is not assumed to be reflexive.

Moreover, by using Definition 2 and Theorem 3, we can see that

ϕn◦ϕ∞ ⊆ ϕ∞◦ϕ∞ ⊆ ϕ∞ = ϕn+∞.
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Furthermore, if ϕ is reflexive, then it is clear that we also have

ϕ∞ = ∆ ◦ϕ∞ ⊆ ϕn◦ϕ∞.
Therefore, in this case, ϕn◦ϕ∞ = ϕ∞ = ϕn+∞ also holds. The case “∞+m”
can be treated quite similarly. �

Remark 6 Now, in addition to Theorem 2, we can only state that ϕn ⊆ ϕ∞
for all n ∈ N0.

However, by [30], we may naturally say that ϕ is n-well-chained if ϕn = X2.
And, ϕ is n-connected if ϕ ∪ϕ−1 is n–well-chained.

Moreover, under the notation Tϕ = {A ⊆ X : ϕ[A] ⊆ A} of [24], we have
ϕ∞ =

⋂
A∈Tϕ RA. And, ϕ∞ is the largest relation on X such that Tϕ∞ = Tϕ.

5 From the composition iterates to a Cauchy inclu-
sion

Now, extending an idea of Frege [15, 16], we may also naturally introduce

Definition 3 For any n ∈ N0, define

α(n) = ϕn.

Thus, α may be considered as a relation on N0 to X2, or as a function of N0
to P

(
X2
)
, which can be proved to satisfy a Cauchy type inclusion.

First of all, by Theorem 1, we evidently have the following

Theorem 5 For any n,m ∈ N0, we have

α(n+m) = α(n) ◦ α(m).

Proof. By Definition 3 and Theorem 1, it is clear that

α(n+m) = ϕn+m = ϕn ◦ϕm = α(n) ◦ α(m).

�

Remark 7 In addition to this theorem, it is also worth noticing that α(0) = ∆.

Moreover, by Theorem 2, we can also at once state the following
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Theorem 6 The following assertions are equivalent:
(1) ∆ ⊆ ϕ; (2) α(n) ⊆ α(n+ 1) for all n ∈ N0.

Remark 8 Thus, the restriction of the set-valued function α to N0 is increas-
ing, with respect to set inclusion, if and only if the relation ϕ is reflexive
on X.

By using Theorem 4 instead of Theorem 1, we can also easily establish

Theorem 7 For any n,m ∈ N0 we have

α(n) ◦ α(m) ⊆ α(n+m).

Moreover, if ϕ is reflexive on X, then the corresponding equality is also true.

Remark 9 Now, in addition to Theorem 6, we can also state that α(n) ⊆
α(∞) for all n ∈ N0.

Thus, in particular, the set-valued function α is increasing, with respect to
set inclusion, if and only if the relation ϕ is reflexive on X.

6 From a Cauchy inclusion to a translation inclu-
sion

Now, as an extension of our former observations, we may naturally start with

Notation 2 Suppose that U is a additive groupoid and α is a relation on U
to X2 such that

α(u) ◦ α(v) ⊆ α(u+ v)

for all u, v ∈ U.

Thus, extending an idea of Frege [15, 16], we may also naturally introduce

Definition 4 For any u ∈ U and A ⊆ X, define

f(u,A) = α(u)[A].

Thus, f may be considered a relation on U×P(X) to X, or as a function of
U×P(X) to P(X), which can be proved to satisfy a translation inclusion.

Theorem 8 For any u, v ∈ U and A ⊆ X, we have

f
(
u, f(v,A)

)
⊆ f(u+ v,A).
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Proof. By Definition 4 and the assumed superadditivity property of α, we
have

f
(
u, f(v,A)

)
= α(u)

[
f(v,A)

]
= α(u)

[
α(v)[A]

]
=
(
α(u) ◦ α(v)

)
[A] ⊆ α(u+ v)[A] = f(u+ v,A).

�
Remark 10 Thus, by identifying singleton with their elements, we may also
write

f
(
u, f(v, x)

)
⊆ f(u+ v, x)

for all u, v ∈ U and x ∈ X.

Now, to illustrate the appropriateness of Definition 4, we can also state

Example 1 If in particular α is as in Definition 3, then by Definition 4 we
have

f(n,A) = α(n)[A] = ϕn[A]

for all n ∈ N0 and A ⊆ X. Thus, in particular f(0,A) = A for all A ⊆ X.

7 From a translation inclusion to a Sincov inclusion

Now, as an extension of our former observations, we may also naturally start
with the following

Notation 3 Suppose that U is an additive groupoid, X is a goset and f is a
function of U×X to X such that f is increasing in its second variable and

f
(
u, f(v, x)

)
≤ f(u+ v, x)

for all u, v ∈ U and x ∈ X.

Thus, improving an idea of Frege [15, 16], we may also naturally introduce

Definition 5 For any x, y ∈ X, define

F(x, y) =
{
u ∈ U : x ≤ f(u, y)

}
.

Thus, F may be considered as a relation on X2 to U, or as a function of X2

to P(U), which can be proved to satisfy a Sincov type inclusion.
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Theorem 9 For any x, y, z ∈ X, we have

F(x, y) + F(y, z) ⊆ F(x, z).

Proof. If
u ∈ F(x, y) and v ∈ F(y, z),

then by Definition 5 we get

x ≤ f(u, y) and y ≤ f(v, z).

Hence, by using the assumed increasingness and translation property of f, we
can infer that

x ≤ f(u, y) ≤ f
(
u, f(v, z)

)
≤ f(u+ v, z).

Therefore, by Definition 5, we have

u+ v ∈ F(x, z).

Thus, the required inclusion is true. �

Now, to illustrate the appropriateness of Definition 5, we can also state

Example 2 If f is as in Example 1, then by Definition 5 we have

F(A,B) =
{
n ∈ N0 : A ⊆ f(n,B)} =

{
n ∈ N0 : A ⊆ ϕn[B]}

for all A,B ⊆ X. Thus, in particular 0 ∈ F(A,A) for all A ⊆ X.

Remark 11 By Aczél [1, pp. 223, 303 and 353], Sincov’s functional equation
and its generalizations have been investigated by a surprisingly great number
of authors.

For some more recent investigations, see [4, 33, 38, 27, 34, 35, 7, 8, 3, 14, 13].
The most relevant ones are the set-valued considerations of Smajdor [38] and
Augustová and Klapka [3].

Moreover, it is noteworthy that, by using the famous partial operation

(x, y) • (y, z) = (x, z),

the above Sincov inclusion can be turned into a restricted Cauchy inclusion.
Therefore, some of the methods of the theory of superadditive functions and

relations [28, 17, 29, 19] can certainly be applied to investigate the correspond-
ing Sincov inequalities and inclusions.
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8 Some immediate consequences of a Sincov inclu-
sion

Now, motivated by our former observations, we may also naturally introduce
the following notations and definitions.

Notation 4 In what follows, we shall also assume that X is a set and U is an
additive groupoid. Moreover, we shall suppose that F is a relation on X2 to U.

Definition 6 The relation F will be called supertriangular if

F(x, y) + F(y, z) ⊆ F(x, z)

for all x, y, z ∈ X.

Remark 12 Now, the relation F may also be naturally called subtriangular if
the reverse inclusion holds. Moreover, F may be naturally called triangular if
it is both subtriangular and supertriangular.

Subtriangular relations are certainly more important than the supertrian-
gular ones. Namely, if a function d of X2 to [0, +∞] satisfies the triangle
inequality

d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ X, then the relation F, defined such that

F(x, y) =
[
0, d(x, y)

] (
F(x, y) = [−d(x, y), d(x, y)]

)
for all x, y ∈ X, can, in general, be proved to be only subtriangular [2].

The y = x, y = z and z = x particular cases of the inclusion considered in
Definition 6 strongly suggest the introduction of the following

Definition 7 For any x, y ∈ X, define

R(x, y) = F(y, x) and S(x, y) = F(x, y) + R(x, y).

Moreover, for any x ∈ X, define

Φ(x) = F(x, x) and Ψ(x) =
⋃
y∈X

S(x, y).

Thus, R and S may be considered as relations on X2 to U, and Φ and Ψ may
be considered as relations on X to U.

Concerning these relations, we can easily prove the following
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Theorem 10 For any x, y ∈ X we have
(1) Φ(x) +Φ(x) ⊆ Ψ(x);
(2) R(x, x) = Φ(x); (3) S(x, x) = Φ(x) +Φ(x).

Proof. By Definition 7, we evidently have

R(x, x) = F(x, x) = Φ(x),

and thus also
S(x, x) = F(x, x) + R(x, x) = Φ(x) +Φ(x).

Hence, by using the definition of Ψ, we can also easily note that

Φ(x) +Φ(x) = S(x, x) ⊆
⋃
y∈X

S(x, y) = Ψ(x).

Therefore, assertions (2), (3) and (1) are true. �

Now, as a counterpart of [38, Lemma 1] of Wilhelmina Smajdor, we can also
prove the following

Theorem 11 If F is supertriangular, then for any x, y ∈ X we have
(1) Ψ(x) ⊆ Φ(x);
(2) Φ(x) + F(x, y) ⊆ F(x, y); (3) F(x, y) +Φ(y) ⊆ F(x, y).

Proof. By using Definition 7 and the corresponding particular cases of the
inclusion considered in Definition 6, we can easily see that

Φ(x) + F(x, y) = F(x, x) + F(x, y) ⊆ F(x, y)

and
F(x, y) +Φ(y) = F(x, y) + F(y, y) ⊆ F(x, y).

Moreover,

S(x, y) = F(x, y) + R(x, y) = F(x, y) + F(y, x) ⊆ F(x, x) = Φ(x),

and thus also
Ψ(x) =

⋃
y∈X

S(x, y) ⊆
⋃
y∈X

Φ(x) ⊆ Φ(x).

Therefore, assertions (2), (3) and (1) are true even if only some consequences
of the assumed inclusion property of F are supposed to hold. �

Now, as an immediate consequence of the above two theorems, we can also
state



Sincov inclusions 67

Corollary 2 If F is supertriangular, then for any x, y ∈ X we have
(1) Φ(x) +Φ(x) ⊆ Φ(x); (2) Ψ(x) + Ψ(x) ⊆ Ψ(x);
(3) Ψ(x) +Φ(x) ⊆ Ψ(x); (4) Φ(x) + Ψ(x) ⊆ Ψ(x);
(5) Ψ(x) + F(x, y) ⊆ F(x, y); (6) F(x, y) + Ψ(y) ⊆ F(x, y).

Remark 13 By [8], in addition to Definition 6, the separability equation

F(x, y) + F(y, z) = F(x, z) +Φ(y)

may also be naturally investigated.
Moreover, if in particular U is a group, then in addition to Definition 7, the

disymmetry relation D of F, defined such that D(x, y) = F(x, y) − R(x, y) for
all x, y ∈ X, may also be naturally investigated.

9 The particular case when U has a zero element

Theorem 12 If F is supertriangular, U has a one-sided zero element 0 and
x ∈ X is such that 0 ∈ Φ(x), then

(1) Φ(x) = Ψ(x); (2) Φ(x) = Φ(x) +Φ(x).

Proof. If 0 is a right zero element of U, then by using Theorems 10 and 11
we can see that

Φ(x) = Φ(x) + {0} ⊆ Φ(x) +Φ(x) ⊆ Ψ(x) ⊆ Φ(x).

While, if 0 is a left zero element of U, then we can quite similarly see that

Φ(x) = {0}+Φ(x) ⊆ Φ(x) +Φ(x) ⊆ Ψ(x) ⊆ Φ(x).

Therefore, in both cases, the required equalities are true. �

Remark 14 Note that if in particular F is as in Example 2, then 0 ∈ Φ(A)
holds for all A ⊆ X. Therefore, the above theorem can be applied.

Now, by using a somewhat more complicated argument, we can also prove

Theorem 13 If F is supertriangular, U has a one-sided zero element 0 and
x, y ∈ X are such that

0 ∈ F(x, y) ∩ F(y, x),
then

(1) Φ(x) = Ψ(x) = F(x, y) = S(x, y); (2) Φ(x) = Φ(x) +Φ(y).
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Proof. If 0 is a right zero element of U, then by using Theorem 11 we can see
that

Φ(x) = Φ(x) + {0} ⊆ Φ(x) + F(x, y) ⊆ F(x, y) = F(x, y) + {0}

⊆ F(x, y) + F(y, x) = F(x, y) + R(x, y) = S(x, y) ⊆ Ψ(x) ⊆ Φ(x).

While, if 0 is a left zero element of U, then we can quite similarly obtain

Φ(x) = {0}+Φ(x) ⊆ F(y, x) +Φ(x) ⊆ F(y, x) = {0}+ F(y, x)

⊆ F(x, y) + F(y, x) = F(x, y) + R(x, y) = S(x, y) ⊆ Ψ(x) ⊆ Φ(x).

Therefore, in both cases, assertion (1) is true.
Now, assertion (2) can be easily derived from assertion (1), by noticing that

Φ(x) = S(x, y) = F(x, y) + R(x, y) = F(x, y) + F(y, x) = Φ(x) +Φ(y).

�

From this theorem, it is clear that in particular we also have the following

Corollary 3 If F is supertriangular and U has a one-sided zero element 0
such that 0 ∈ F(x, y) for all x, y ∈ X, then for any x, y ∈ X we have

(1) Φ(x) = Ψ(x) = F(x, y) = S(x, y); (2) Φ(x) = Φ(x) +Φ(y).

10 The particular case when U is a group

By using an argument of Frege [15, 16] and Sincov [36, 23], we can prove

Theorem 14 If F is a nonpartial, triangular function and U is a group, then
there exists a function ξ of X to U such that

F(x, y) = ξ(x) − ξ(y)

for all x, y ∈ X.

Proof. By choosing z ∈ X, and defining

ξ(x) = F(x, z)

for all x ∈ X, we can see that

F(x, y) + ξ(y) = F(x, y) + F(y, z) = F(x, z) = ξ(x),

and thus F(x, y) = ξ(x) − ξ(y) for all x, y ∈ X. �
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Remark 15 If F is nonpartial and supertriangular and U is a group, then by
using a similar argument we can only prove that

F(x, y) ⊆
⋂
z∈X

(
F(x, z) − F(y, z)

)
for all x, y ∈ X.

Now, analogously to [38, Theorem 1] of Wilhelmina Smajdor, we can also
prove

Theorem 15 If F is nonpartial and supertriangular, U is a commutative
group and φ is a triangular selection function of F, then

F(x, y) = φ(x, y) +Φ(x)

for all x, y ∈ X.

Proof. Define
G(x, y) = −φ(x, y) + F(x, y)

for all x, y ∈ X.
Then, because of φ(x, y) ∈ F(x, y), we evidently have

0 = −φ(x, y) + φ(x, y) ∈ −φ(x, y) + F(x, y) = G(x, y)

for all x, y ∈ X. Moreover, by using the assumed triangularity properties of φ
and F, we can easily see that

G(x, y) +G(y, z) = −φ(x, y) + F(x, y) − φ(y, z) + F(y, z) =

−
(
φ(x, y) + φ(y, z)

)
+ F(x, y) + F(y, z) ⊆ −φ(x, z) + F(x, z) = G(x, z)

for all x, y, z ∈ X.
Hence, by using Corollary 3 and the simple observation that

φ(x, x) + φ(x, x) = φ(x, x),

and thus φ(x, x) = 0 for all x ∈ X, we can already infer that

G(x, y) = G(x, x) = −φ(x, x) + F(x, x) = Φ(x),

and thus
−φ(x, y) + F(x, y) = Φ(x)

for all x, y ∈ X. Therefore, the required equality is also true. �
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Remark 16 It can be easily seen that a converse of Theorem 14 is also true.
Therefore, if F is nonpartial and U is a group, then to find a triangular selection
function φ of F, it is enough to find only a function ξ of X to U such that

ξ(x) − ξ(y) ∈ F(x, y)

for all x, y ∈ X.

11 The particular case when U is a commutative
groupoid

Theorem 16 If F is supertriangular and U is commutative, then R is also
supertriangular.

Proof. By Definitions 6 and 7 and the commutativity of U, we have

R(x, y) + R(y, z) = F(y, x) + F(z, y)

= F(z, y) + F(y, x) ⊆ F(z, x) = R(x, z)

for all x, y, z ∈ X. �

Theorem 17 If U is commutative, then for any x, y, z ∈ X we have
(1) S(x, y) = S(y, x); (2) S(x, y) ⊆ Ψ(x) ∩ Ψ(y).

Proof. By Definition 7 and the commutativity of U, we have

S(x, y) = F(x, y) + R(x, y) = R(y, x) + F(y, x)

= F(y, x) + R(y, x) = S(y, x).

Moreover, by the definition of Ψ, it is clear that S(x, y) ⊆ Ψ(x). Hence, by
using the above symmetry property of S, we can already infer that

S(x, y) = S(y, x) ⊆ Ψ(y),

and thus S(x, y) ⊆ Ψ(x) ∩ Ψ(y) also holds. �

Remark 17 Thus, if U is commutative, then S is already pointwise symmetric
in the sense that S(x, y) = S(y, x) for all x, y ∈ X.

Now, concerning the relation S, we can also prove the following
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Theorem 18 If F is supertriangular and U is a commutative semigroup, then
S is also supertriangular.

Proof. By using Definition 7, Theorem 16 and the commutativity and asso-
ciativity of U, we can see that

S(x, y) + S(y, z) = F(x, y) + R(x, y) + F(y, z) + R(y, z)

= F(x, y) + F(y, z) + R(x, y) + R(y, z)

⊆ F(x, z) + R(x, z) = S(x, z)

for all x, y, z ∈ X. �

12 The particular case when F is pointwise symmet-
ric

In addition to Theorem 17, we can also prove the following

Theorem 19 If x, y ∈ X such that F(x, y) = F(y, x), then
(1) R(x, y) = F(x, y);
(2) S(x, y) = S(y, x);
(3) S(x, y) = F(x, y) + F(x, y);
(4) 2F(x, y) ⊆ S(x, y) ⊆ Ψ(x) ∩ Ψ(y).

Proof. By Definition 7 and the assumed symmetry property of F, we have

R(x, y) = F(y, x) = F(x, y),

and thus also

S(x, y) = F(x, y) + R(x, y) = F(x, y) + F(x, y).

Thus, assertions (1) and (3) are true.
Now, we can also easily see that

S(y, x) = F(y, x) + F(y, x) = F(x, y) + F(x, y) = S(x, y).

Therefore, assertion (2) is also true.
Hence, as in the proof of Theorem 17, we can already infer that

S(x, y) ⊆ Ψ(x) ∩ Ψ(y).
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Therefore, to complete the proof of assertion (4), it remains to note only that
now

2F(x, y) ⊆ F(x, y) + F(x, y) = S(x, y)

is also true. �

Remark 18 Thus, not only the commutativity of U, but the pointwise
symmetry of F also implies the pointwise symmetry of S.

By [8], in addition to the pointwise symmetry of F, one may also naturally
investigate the case when F is only weightable in the sense that

w(x) + F(x, y) = R(x, y) +w(y)

for all x, y ∈ X and some function (or relation) w on X to U.

However, it is now more important to note that, as an immediate conse-
quence of our former results, we can also state

Corollary 4 If F is supertriangular and U is commutative, then for any
x, y ∈ X we have

2S(x, y) ⊆ S(x, y) + S(y, x) ⊆ S(x, x) ∩ S(y, y).

Remark 19 Note that the latter corollary only needs the important conse-
quence of the assumed inclusion property of F that F(x, y) + F(y, x) ⊆ F(x, x)
for all x, y ∈ X.

In Theorem 11, by using Definition 7, the latter property has been reformu-
lated in the shorter form that Ψ(x) ⊆ Φ(x) for all x ∈ X. Now, this already
implies that Ψ is a selection relation of Φ. Namely, if x ∈ X such that Φ(x) 6= ∅,
then because of Φ(x) +Φ(x) ⊆ Ψ(x), we also have Ψ(x) 6= ∅.

13 The particular case when U is a group and F is
pointwise skew symmetric

Analogously to Theorem 19, we can also prove the following

Theorem 20 If U is a group and x, y ∈ X such that F(x, y) = −F(y, x), then
(1) R(x, y) = −F(x, y); (2) S(x, y) = −S(y, x);
(3) S(x, y) = F(x, y) − F(x, y); (4) S(x, y) ⊆ Ψ(x) ∩

(
−Ψ(y)

)
.
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Proof. To prove (4), note that now, in addition to S(x, y) ⊆ Ψ(x), we also
have

S(x, y) = −S(y, x) ⊆ −Ψ(y),

and thus S(x, y) ⊆ Ψ(x) ∩
(
−Ψ(y)

)
also holds. �

Remark 20 If in addition to the assumptions of this theorem F(x, y) 6= ∅ also
holds, then from assertion (3) we can infer that 0 ∈ S(x, y).

Now, by using the corresponding definitions and Theorem 20, we can also
prove

Theorem 21 If U is a group and F is pointwise skew symmetric, then for any
x ∈ X we have

(1) Φ(x) = −Φ(x); (2) Ψ(x) = −Ψ(x).

Proof. To prove (2), note that by Definition 7 and Theorem 20 we have

Ψ(x) =
⋃
y∈X

S(x, y) =
⋃
y∈X

(
−S(x, y)

)
= −

⋃
y∈X

S(x, y) = −Ψ(x)

for all x ∈ X. �

Remark 21 If in addition to the assumptions of this theorem, Φ(x) 6= ∅ also
holds, then from the inclusion

Φ(x) −Φ(x) = Φ(x) +Φ(x) ⊆ Ψ(x),

we can infer that 0 ∈ Ψ(x). Therefore, if in addition F is supertriangular, then
because Theorem 11, we also have 0 ∈ Φ(x).

Thus, by Theorem 12, we can also state the following

Theorem 22 If U is a group and F is nonpartial, supertriangular and point-
wise skew symmetric, then for any x ∈ X we have

(1) Φ(x) = Ψ(x); (2) Φ(x) = Φ(x) +Φ(x).

Now, by Theorems 20 and 21, we can also state the following

Theorem 23 If U is a group and F is a nonpartial, pointwise skew symmetric
function, then for any x, y ∈ X we have

(1) S(x, y) = 0; (2) Φ(x) = Ψ(x) = 0.
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The following example shows the three important consequences of the in-
clusion considered in Definition 6 do not imply, even in a very simple case, the
validity of this inclusion itself.

Example 3 If

F(x, y) = sgn(x− y)

for all x, y ∈ R, then F is a skew symmetric function of R2 to R such that,
under the notation Φ(x) = F(x, x), for any x, y ∈ X we have

(1) F(x, y) + F(y, x) = Φ(x);
(2) Φ(x) + F(x, y) = F(x, y); (3) F(x, y) +Φ(y) = F(x, y).

However, F is not either supertriangular nor subtriangular in both functional
and relational sense.

Namely, for instance, we have

F(2, 1) + F(1, 0) = 2 and F(2, 0) = 1,

and

F(0, 1) + F(1, 2) = −2 and F(0, 2) = −1.

14 The particular case when U is cancellative

Definition 8 In what follows, we shall denote by lcan(U) and rcan(U) the
family of all left-cancellable and right-cancellable elements of the groupoid U,
respectively.

Moreover, we shall also write can(U) = lcan(U) ∩ rcan(U).

Remark 22 Thus, for any u ∈ U, we have u ∈ lcan(U) if and only if u+ v =
u+w implies u = w for all v,w ∈ U.

Moreover, for instance, we can state that U is left-cancellative if and only if
lcan(U) = U.

Lemma 1 For any V,W ⊆ U,
(1) card(V +W) ≤ 1 and V ∩ lcan(U) 6= ∅ imply that card(W) ≤ 1;
(2) card(V +W) ≤ 1 and W ∩ rcan(U) 6= ∅ imply that card(V) ≤ 1.

Proof. Assume that the conditions of (1) hold, v ∈ V ∩ lcan(U) and w1, w2 ∈
W. Then, we have v+w1, v+w2 ∈ V+W. Hence, by using that card(V+W) ≤
1, we can infer that v+w1 = v+w2. Moreover, since v ∈ lcan(U), we can also
state that w1 = w2. Therefore, card(W) ≤ 1, and thus (1) also holds.



Sincov inclusions 75

The proof of assertion (2) is quite similar. �

Now, by using this lemma, we can give some reasonable sufficient conditions
in order that a suppertriangular relation should be a function.

Theorem 24 If F is supertriangular and there exist x0, y0 ∈ X such that
(1) card

(
F(x0, y0)

)
≤ 1;

(2) F(x, y0) ∩ rcan(U) 6= ∅ for all x ∈ X;
(3) F(x0, y) ∩ lcan(U) 6= ∅ for all y ∈ X;

then card
(
F(x, y)

)
≤ 1 for all x, y ∈ X, and thus F is a function.

Proof. By the assumed inclusion property of F, we have

F(x0, x) + F(x, y0) ⊆ F(x0, y0)

for all x ∈ X. Hence, by using conditions (1) and (3) and Lemma 1, we can
infer that

(a) card
(
F(x, y0)

)
≤ 1 for all x ∈ X.

Now, by the assumed inclusion property of F, we also have

F(x, y) + F(y, y0) ⊆ F(x, y0)

for all x, y ∈ X. Hence, by using assertion (a) condition (2) and Lemma 1, we
can infer that

(b) card
(
F(x, y)

)
≤ 1 for all x, y ∈ X.

Thus, the required assertion is true. �

From this theorem, by using Theorem 14, we can immediately derive

Corollary 5 If F is nonpartial and supertriangular, U is a group and
card

(
F(x0, y0)

)
= 1 for some x0, y0 ∈ X, then there exists a function ξ of

X to U such that

F(x, y) = ξ(x) − ξ(y)

for all x, y ∈ X.

15 The particular case when U has a suitable dis-
tance function

Remark 23 A function d of X2 to [0,+∞] is usually called a distance function
on X.
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Moreover, the extended real number

d(X) = diam(X) = sup
{
d(x, y) : x, y ∈ X

}
is called the diameter of X.

Remark 24 Thus, we have d(X) = −∞ if X = ∅, and d(X) ≥ 0 if X 6= ∅.
Moreover, if X 6= ∅, then card(X) = +∞ may also hold even if X is finite.

Definition 9 A distance function d on X will be called admissible if
(a) d(X) < +∞;
(b) d(x, y) = 0 implies x = y for all x, y ∈ X.

Moreover, the distance function d will be called extremal if
(c) for any x, y ∈ X there exist c ∈ ]1,+∞[ and z,w ∈ X such that

cd(x, y) ≤ d(z,w).

Remark 25 If X is an additive groupoid, then to satisfy condition (c) we may
naturally assume that for any x, y ∈ X, there exists n ∈ N \ {1} such that

nd(x, y) ≤ d(nx, ny).

Namely, if X is a commutative abelian group and p is a function of U to [0,+∞]
such that

np(x) ≤ p(nx)

for all n ∈ N and x ∈ X, then by defining

d(x, y) = p(−x+ y)

for all x, y ∈ X, we have

nd(x, y) = np(−x+ y) ≤ p
(
n(−x+ y)

)
= p

(
n(−x) + ny

)
= p(−nx+ ny) = d(nx, ny)

for all n ∈ N and x, y ∈ U.

The introduction of Definition 9 can only be motivated by the following

Lemma 2 If there exists an extremal, admissible distance function d on X,
then card(X) ≤ 1.
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Proof. If X = ∅, then the required assertion trivially holds. Therefore, we may
assume that X 6= ∅, and thus d(X) 6= −∞. Now, by condition (a), we can state
that d(X) ∈ R. Moreover, since d is nonnegative, we can now also note that
d(X) ≥ 0.

Thus, for every ε > 0, we have

d(X) − ε < d(X).

Therefore, by the definition of d(X), there exist x, y ∈ X such that
d(X) − ε < d(x, y), and thus

d(X) < d(x, y) + ε.

Moreover, by condition (c), there exist c ∈ ]1,+∞[ and and z,w ∈ X such that

cd(xy) ≤ d(z,w).

Combining the above two inequalities, we can see that

cd(x, y) < d(z,w) ≤ d(X) < d(x, y) + ε,

and thus (c−1)d(x, y) < ε. Hence, by letting ε tend to zero, we can infer that
(c− 1)d(x, y) ≤ 0. Therefore, since c− 1 > 0, we necessarily have d(x, y) ≤ 0,
and hence d(x, y) ≤ 0 by the nonnegativity of d. Thus, we actually have

d(X) < d(x, x) + ε = ε.

Hence, by letting ε tend to zero, we can infer that d(X) ≤ 0, and thus also
d(X) = 0 by the nonnegativity of d(X).

This, by condition (b), already implies that card(X) = 1. Namely, if this
is not the case, then by the assumption X 6= ∅, there exist x, y ∈ X such
that x 6= y. Hence, by condition (b) and the nonnegativity of d, we can infer
that d(x, y) > 0, and thus also d(X) > 0 by the definition of d(X). This
contradiction proves that card(X) = 1. �

Remark 26 From condition (c), by induction, we can infer that there exist
sequences (cn)

∞
n=1 in ]1,+∞[ and (xn)

∞
n=1 and (yn)

∞
n=1 in X such that

d(x, y)
n∏
i=0

ci ≤ d(xn, yn)

for all n ∈ N. However, this fact cannot certainly be used to give a simpler
proof for Lemma 2.
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From Theorem 24, by using Lemma 2, we can immediately derive

Theorem 25 If F is supertriangular and there exist x0, y0 ∈ X, such that
(1) F(x, y0) ∩ rcan(U) 6= ∅; for all x ∈ X;
(2) F(x0, y) ∩ lcan(U) 6= ∅; for all y ∈ X;
(3) there exists an extremal, admissible distance function on F(x0, y0);

then card
(
F(x, y)

)
≤ 1 for all x, y ∈ X, and thus F is a function.

Proof. By assumption (3) and Lemma 2, we have card
(
F(x0, y0)

)
≤ 1. Hence,

by Theorem 24, we can see that the required assertion is also true. �

16 Contructions of supertriangular relations

Theorem 26 If V is a subgroupoid of U and

F(x, y) = V

for all x, y ∈ X, then F is a supertriangular relation on X to U.

Proof. We evidently have

F(x, y) + F(y, z) = V + V ⊆ V = F(x, z)

for all x, y, z ∈ X. �

Remark 27 Conversely, note that if F is a supertriangular relation on X2 to
U, then by Corollary 2 Φ(x) = F(x, x) is a subgroupoid of U for all x ∈ X.

Now, as a converse to Theorem 14, we can also easily prove the following

Theorem 27 If ξ is a function of X to U, U is a group and

F(x, y) = ξ(x) − ξ(y)

for all x, y ∈ X, then F is a triangular function of X2 to U.

Proof. We evidently have

F(x, y) + F(y, z) = ξ(x) − ξ(y) + ξ(y) − ξ(z) = ξ(x) − ξ(z) = F(x, z)

for all x, y, z ∈ X. �
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Remark 28 If ξ is only a relation of X to U, U is a group and F(x, y) =
ξ(x) − ξ(y) for all x, y ∈ X, then by using a similar argument we can only
prove that F is a subtriangular relation of X2 to U.

In addition to the above two theorems, it is also worth proving that the
family of all supertriangular relations is closed under the usual pointwise op-
erations.

Theorem 28 If F is a supertriangular relation on X2 to U and U is a com-
mutative semigroup, then nF is also a supertriangular relation on X2 to U for
all n ∈ N.

Proof. If n ∈ N, then by the corresponding definitions we have(
nF)(x, y) +

(
nF)(y, z) = nF(x, y) + nF(y, z)

= n
(
F(x, y) + F(y, z)

)
⊆ nF(x, z) =

(
nF)(x, z)

for all x, y, z ∈ X. �

Remark 29 If F is a supertriangular relation on X2 to U and U has a zero
element, then(

0F)(x, y) = ∅ if F(x, y) = ∅ and
(
0F)(x, y) = {0} if F(x, y) 6= ∅.

Therefore, 0F is a supertriangular function on X2 to U.

Now, analogously to Theorem 28, we can also prove the following

Theorem 29 If F is a supertriangular relation on X2 to U and U is a com-
mutative group, then kF is also a supertriangular relation on X2 to U for all
k ∈ Z.

Moreover, in addition to Theorems 28, we can also easily prove the following

Theorem 30 If F and G are supertriangular relations on X2 to U and U is
a commutative semigroup, then F+G is also a supertriangular relation on X2

to U.

Proof. By the corresponding definitions, it is clear that

(F+G)(x, y) + (F+G)(y, z) = F(x, y) +G(x, y) + F(y, z) +G(y, z)

= F(x, y) + F(y, z) +G(x, y) +G(y, z) ⊆ F(x, z) +G(x, z) = (F+G)(x, z)

for all x, y, z ∈ X. �
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17 An application of the above results

Now, by using Theorems 26, 27 and 30, we can also easily establish

Theorem 31 If ξ a function of X to U, U is a commutative group, V is a
subgroupoid of U and

F(x, y) = ξ(x) − ξ(y) + V

for all x, y ∈ X, then F is a supertriangular relation on X2 to U such that,
under the notations of Definition 7, for any x, y ∈ X we have:

(1) Φ(x) = V; (2) S(x, y) = V + V;
(3) Ψ(x) = ∅ if X = ∅ and Ψ(x) = V + V if X 6= ∅.

Proof. From Theorems 26, 27 and 30, it is clear that F is supertriangular.
Moreover, by the corresponding definitions, it is clear that

Φ(x) = F(x, x) = ξ(x) − ξ(x) + V = V,

S(x, y) = F(x, y) + F(y, x) = ξ(x) − ξ(y) + V + ξ(y) − ξ(x) + V = V + V

and

Ψ(x) =
⋃
y∈X

S(x, y) =
⋃
y∈X

(V + V) =

{
∅ if X = ∅,
V + V if X 6= ∅.

�

Moreover, for an easy illustration of this theorem, we can also state

Example 4 If r ≥ 0 and

F(x, y) = [x− y+ r, +∞[

for all x, y ∈ R, then F is a supertriangular relation of R2 to R such that, for
any x, y ∈ X, we have:

(1) Φ(x) = [r,+∞[; (2) Ψ(x) = S(x, y) = [2r,+∞[.
To check this, note that, by taking ξ = ∆R and V = [r,+∞[, we have

F(x, y) = [x− y+ r, +∞[ = x− y+ [r,+∞[ = ξ(x) − ξ(y) + V

for all x, y ∈ X. Therefore, Theorem 31 can be applied.
For instance, by assertion (2) of Theorem 31, we have

S(x, y) = V + V = [r,+∞[ +[r,+∞[ = [2r,+∞[

for all x, y ∈ X.
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Remark 30 Note that in the present particular case, for any x, y ∈ R, we
have:

(1) 0 ∈ Φ(x) ⇐⇒ r = 0;
(2) Φ(x) = Ψ(x) ⇐⇒ r = 0;
(3) x− y ∈ F(x, y) ⇐⇒ r = 0;
(4) 0 ∈ F(x, y) ⇐⇒ r ≤ y− x;
(5) 0 ∈ F(x, y) ∩ F(y, x) ⇐⇒ r = 0, x = y.
To prove (5), note that by (4) we have

0 ∈ F(x, y)∩ F(y, x) ⇐⇒ r ≤ y− x, r ≤ x−y ⇐⇒ r ≤ min{x−y, y− x}.

Moreover, recall that min{a, b} = 2−1
(
a + b − |a − b|

)
for all a, b ∈ R, and

thus in particular min{x− y, y− x} = −|x− y|. Therefore,

r ≤ min{x− y, y− x} ⇐⇒ r ≤ −|x− y| ⇐⇒ r = 0, x = y.
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Abstract. For the sequence of King operators, we establish a direct ap-
proximation theorem via the first order Ditzian-Totik modulus of smooth-
ness, and a converse approximation theorem of Berens-Lorentz-type.

1 Introduction

Studying the connection between regular summability matrices and convergent
positive linear operators, King [3] introduced an interesting Bernstein-type
operator defined as follows:

(Vnf)(x) ≡ Vn(f; x) =
n∑
k=0

pn,k(rn(x))f

(
k

n

)
, (1)

where x ∈ [0, 1], f ∈ C[0, 1], pn,k(x) =
(
n
k

)
xk(1− x)n−k and

rn(x) =

{
x2, if n = 1

− 1
2(n−1) +

√
n
n−1x

2 + 1
4(n−1)2

, if n = 2, 3, . . .
(2)
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For rn(x) = x, x ∈ [0, 1], we recover from (1) the classical Bernstein operator:

(Bnf)(x) ≡ Bn(f; x) =
n∑
k=0

pn,k(x)f

(
k

n

)
.

It is known that

(Bne0)(x) = 1, (Bne1)(x) = x and (Bne2)(x) = x
2 +

x(1− x)

n
, (3)

where ej(x) = xj, x ∈ [0, 1] and j ∈ {0, 1, 2, . . .}. In contrast with (3), we have
for Vn the relations (see [3, pp. 204-205]):

(Vne0)(x) = 1, (Vne1)(x) = rn(x) and (Vne2)(x) = x
2. (4)

The goal of the paper is to obtain direct and converse approximation theo-
rems for the operators given by (1)-(2). The direct result is established with
the aid of the first order Ditzian-Totik modulus of smoothness defined by

ω1ϕ(f; δ) = sup
0<h≤δ

sup
x± 1

2
hϕ(x)∈[0,1]

∣∣∣ f(x+ 1

2
hϕ(x)) − f(x−

1

2
hϕ(x))

∣∣∣, (5)

where ϕ(x) =
√
x(1− x), x ∈ [0, 1]. It is known [2, Theorem 2.1.1] that (5) is

equivalent with the K-functional

K1,ϕ(f; δ) = inf
g∈W(ϕ)

{‖f− g‖+ δ‖ϕg ′‖}, δ > 0,

where W(ϕ) = {g |g ∈ A.C.loc[0, 1], ‖ϕg ′‖ <∞}, i.e. there exists C1 > 0 such
that

C−1
1 ω

1
ϕ(f; δ) ≤ K1,ϕ(f; δ) ≤ C1ω1ϕ(f; δ). (6)

Finally, a converse result of Berens-Lorentz-type is established for the oper-
ators Vn (see [1, p. 312, Lemma 5.2] and Lemma 3 below). Throughout this
paper C1, C2, . . . , C13 denote absolute positive constants.

2 Direct theorem

We have the following result for the functions defined by (2).

Lemma 1 The functions rn, n = 1, 2, . . . , satisfy the properties
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a) 0 ≤ r′n(x) ≤ 2 for x ∈ [0, 1] and n = 1, 2, . . . ;

b) rn(0) = 0, rn(1) = 1 and rn is strictly increasing function on [0, 1] for
n = 1, 2, . . . ;

c) 0 ≤ rn(x) ≤ x ≤ 1 for x ∈ [0, 1] and n = 1, 2, . . . ;

d) 0 ≤ x− rn(x) ≤ 2
n(1− x) for x ∈ [0, 1] and n = 1, 2, . . . ;

e) x ≤ 2rn(x) for x ∈
[
1
n , 1
]

and n = 1, 2, . . .

Proof. a) Obviously r′1(x) = 2x, x ∈ [0, 1]. For n ≥ 2, by simple computations,
we obtain

r′n(x) =


lim
x↘0 rn(x) − rn(0)x− 0

= 0, if x = 0
n

n−1
x√

n
n−1

x2+ 1

4(n−1)2

, if 0 < x ≤ 1.

Hence 0 ≤ r′n(x) ≤
n
n−1x√
n
n−1x

=

√
n

n− 1
≤
√
2 for x ∈ (0, 1]. Thus 0 ≤ r′n(x) ≤ 2

for n = 1, 2, . . . and x ∈ [0, 1].
b) It follows from (2) and a).
c) It follows from (2) by direct computations.
d) Obviously 0 ≤ x − r1(x) = x(1 − x) ≤ 2(1 − x), x ∈ [0, 1]. Using b) and

c), we have 0 ≤ x− rn(x) ≤ 2
n(1− x) for x = 0 and n ≥ 2, and

0 ≤ x− rn(x) = x+
1

2(n− 1)
−

√
n

n− 1
x2 +

1

4(n− 1)2

=

x(1−x)
n−1

x+ 1
2(n−1) +

√
n
n−1x

2 + 1
4(n−1)2

≤
x(1−x)
n−1

x
=
1− x

n− 1
≤ 2

n
(1− x)

for x ∈ (0, 1] and n ≥ 2.
e) For n = 1 the statement is obvious. For n ≥ 2, we consider the function

h(x) = x
rn(x)

, x ∈
[
1
n , 1
]
. Then, by (2),

h ′(x) =
rn(x) − xr

′
n(x)

r2n(x)
= r−2n (x)

(
rn(x) +

1

2(n− 1)

)−1/2
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× 1

2(n− 1)

[
1

2(n− 1)
−

√
n

n− 1
x2 +

1

4(n− 1)2

]
< 0

for x ∈
[
1
n , 1
]
. Hence

h(x) ≤ h

(
1

n

)
=

1
n

− 1
2(n−1) +

√
n
n−1

1
n2 + 1

4(n−1)2

=
2(n− 1)√

n

1√
5n− 4−

√
n

=
1

2

√
5n− 4+

√
n√

n
≤ 2

for x ∈
[
1
n , 1
]
, which was to be proved. �

The operators Vn given by (1)-(2) are linear and positive. By Lemma 1, b),
we have

(Vnf)(0) = f(0) and (Vnf)(1) = f(1) (7)

for all f ∈ C[0, 1].
In the next theorem we establish the direct result.

Theorem 1 There exists C2 > 0 such that

‖Vnf− f‖ ≤ C2ω1ϕ
(
f;
1√
n

)
(8)

for all f ∈ C[0, 1] and n = 1, 2, . . .

Proof. Let x ∈ (0, 1) and t ∈ [0, 1]. Taking into account [2, Lemma 9.6.1], we
have ∣∣∣∣∣

∫ t
x

du

ϕ(u)

∣∣∣∣∣≤ ϕ−1(x)|t− x|1/2

∣∣∣∣∣
∫ t
x

du

|t− u|1/2

∣∣∣∣∣= 2ϕ−1(x)|t− x|. (9)

Further, for g ∈ W(ϕ), we have g(t) = g(x) +
∫t
x g
′(u)du, t ∈ [0, 1] and

x ∈ (0, 1). Hence, by (9), Hölder’s inequality, (4) and Lemma 1, d), we get

|Vn(g; x) − g(x)| =

∣∣∣∣∣ Vn
(∫ t

x

g ′(u)du; x

) ∣∣∣∣∣
≤ Vn

(∣∣∣ ∫ t
x

|g ′(u)|du
∣∣∣; x) ≤ ‖ϕg ′‖Vn(∣∣∣ ∫ t

x

du

ϕ(u)
du
∣∣∣; x)
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≤ 2ϕ−1(x)‖ϕg ′‖Vn (|t− x|; x) ≤ 2ϕ−1(x)‖ϕg ′‖
(
Vn((t− x)

2; x)
)1/2

= 2ϕ−1(x)‖ϕg ′‖
(
Vn(e2; x) − 2xVn(e1; x) + x

2Vn(e0; x)
)1/2

= 2ϕ−1(x)‖ϕg ′‖(x2 − 2xrn(x) + x2)1/2 = 2ϕ−1(x)‖ϕg ′‖(2x(x− rn(x)))1/2

≤ 2ϕ−1(x)‖ϕg ′‖
(
2x
2

n
(1− x)

)1/2
=

4√
n
‖ϕg ′‖. (10)

Due to (7), the estimation (10) is also valid for x ∈ {0, 1}.

On the other hand, by (4), we obtain |(Vnf)(x)| ≤
n∑
k=0

pn,k(rn(x))
∣∣∣ f(k

n

) ∣∣∣≤
‖f‖

n∑
k=0

pn,k(rn(x)) ≤ ‖f‖, therefore

‖Vnf‖ ≤ ‖f‖ (11)

for all f ∈ C[0, 1].
Now, in view of (4), (10) and (11), we find that

|Vn(f; x) − f(x)| ≤ |Vn(f− g; x)|+ |Vn(g; x) − g(x)|+ |g(x) − f(x)|

≤ 2‖f− g‖+ 4√
n
‖ϕg ′‖ ≤ 4

{
‖f− g‖+ 1√

n
‖ϕg ′‖

}
.

Taking the infimum on the right hand side over all g ∈W(ϕ), we obtain

‖Vnf− f‖ ≤ 4K1,ϕ
(
f;
1√
n

)
.

Hence, by (6), we arrive at (8), which completes the proof. �

3 Converse theorem

We begin with the following remark.

Remark 1 Due to (8), the condition ω1ϕ (f; δ) ≤ C3δ
α, δ > 0, 0 < α < 1

implies that ‖Vnf− f‖ ≤ C4n−α/2, n ≥ 1.

In what follows, we establish the converse result of the statement given in
Remark 1. To achieve this we need some lemmas.
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Lemma 2 We have

a) ‖ϕ(Vnf) ′‖ ≤ 8
√
n‖f‖ for f ∈ C[0, 1] and n = 1, 2, . . . ;

b) ‖ϕ(Vng) ′‖ ≤ 32‖ϕg ′‖ for g ∈W(ϕ) and n = 1, 2, . . .

Proof. a) Let x ∈ (0, 1). By [1, p. 305, (2.1)], we have for the derivatives of
pn,k that

p ′n,k(x) = n [pn−1,k−1(x) − pn−1,k(x)] = ϕ
−2(x)(k− nx)pn,k(x), (12)

where k = 1, 2, . . . , n and pn−1,−1(x) = pn−1,n(x) = 0. We distinguish two
cases: x ∈ (0, 1n ]. By (1), (12), Lemma 1, a) and (4), we get

|ϕ(x)(Vnf)
′(x)| = ϕ(x)r ′n(x)

∣∣∣∣∣
n∑
k=0

p′n,k(rn(x)) f

(
k

n

)∣∣∣∣∣
= nϕ(x)r′n(x)

∣∣∣∣∣
n∑
k=0

[pn−1,k−1(rn(x)) − pn−1,k(rn(x))] f

(
k

n

)∣∣∣∣∣
= nϕ(x)r′n(x)

∣∣∣∣∣
n−1∑
k=0

pn−1,k(rn(x))

[
f

(
k+ 1

n

)
− f

(
k

n

)] ∣∣∣∣∣
≤ nϕ(x)r′n(x)

n−1∑
k=0

pn−1,k(rn(x))

∣∣∣∣∣f
(
k+ 1

n

)
− f

(
k

n

)∣∣∣∣∣
≤ 2nϕ(x)r′n(x)‖f‖

n−1∑
k=0

pn−1,k(rn(x)) ≤ 4n
√
x(1− x)‖f‖

≤ 4
√
n‖f‖. (13)

x ∈ [ 1n , 1). Using (1), Lemma 1, a), (12), Hölder’s inequality, (4) and Lemma

1, c), d), e), we get

|ϕ(x)(Vnf)
′(x)| = ϕ(x)r′n(x)

∣∣∣∣∣
n∑
k=0

p′n,k(rn(x)) f

(
k

n

)∣∣∣∣∣
≤ 2ϕ(x)‖f‖

n∑
k=0

ϕ−2(rn(x))|k− nrn(x)|pn,k(rn(x))

≤ 2ϕ(x)ϕ−2(rn(x))‖f‖

(
n∑
k=0

(k− nrn(x))
2pn,k(rn(x))

)1/2
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= 2nϕ(x)ϕ−2(rn(x))‖f‖
(
Vn(e2; x) − 2rn(x)Vn(e1; x) + r

2
n(x)Vn(e0; x)

)1/2
= 2nϕ(x)ϕ−2(rn(x))‖f‖

(
x2 − 2r2n(x) + r

2
n(x)

)1/2
= 2nϕ(x)ϕ−2(rn(x))‖f‖(x+ rn(x))1/2(x− rn(x))1/2

≤ 2nϕ(x)ϕ−2(rn(x))‖f‖
√
2x

√
2

n
(1− x) = 4

√
n

ϕ2(x)

ϕ2(rn(x))
‖f‖

= 4
√
n

x

rn(x)

1− x

1− rn(x)
‖f‖ ≤ 4

√
n · 2 · 1 · ‖f‖ = 8

√
n‖f‖. (14)

Finally, by Lemma 1, a), we getϕ(0)(Vnf)
′(0) = ϕ(0)

n∑
k=0

pn,k(rn(0))r
′
n(0)f

(
k

n

)
= 0 and ϕ(1)(Vnf)

′(1) = ϕ(1)

n∑
k=0

pn,k(rn(1))r
′
n(1)f

(
k

n

)
= 0. Hence, due to

(13) and (14), we obtain ‖ϕ(Vnf) ′‖ ≤ 8
√
n‖f‖, which was to be proved.

b) The proof is similar to the above. Let x ∈
(
0, 1n

]
. Taking into account

(1), (12), Lemma 1, a), (9), Hölder’s inequality and (4), we get for g ∈W(ϕ)
that

|(Vng)
′(x)| = nr′n(x)

∣∣∣∣∣
n∑
k=0

[pn−1,k−1(rn(x)) − pn−1,k(rn(x))] g

(
k

n

)∣∣∣∣∣
= nr′n(x)

∣∣∣∣∣
n−1∑
k=0

pn−1,k(rn(x))

[
g

(
k+ 1

n

)
− g

(
k

n

)] ∣∣∣∣∣
≤ 2n

n−1∑
k=0

pn−1,k(rn(x))

∣∣∣∣∣g
(
k+ 1

n

)
− g

(
k

n

)∣∣∣∣∣
≤ 2n

n−1∑
k=0

pn−1,k(rn(x))

{∣∣∣∣∣g
(
k+ 1

n

)
− g(x)

∣∣∣∣∣+
∣∣∣∣∣g
(
k

n

)
− g(x)

∣∣∣∣∣
}

≤ 2n

n−1∑
k=0

pn−1,k(rn(x))

{∣∣∣∣∣
∫ k+1

n

x

|g ′(u)|du

∣∣∣∣∣+
∣∣∣∣∣
∫ k

n

x

|g ′(u)|du

∣∣∣∣∣
}

≤ 2n‖ϕg ′‖
n−1∑
k=0

pn−1,k(rn(x))

{∣∣∣∣∣
∫ k+1

n

x

du

ϕ(u)

∣∣∣∣∣+
∣∣∣∣∣
∫ k

n

x

du

ϕ(u)

∣∣∣∣∣
}

≤ 4nϕ−1(x)‖ϕg ′‖
n−1∑
k=0

pn−1,k(rn(x))

{∣∣∣∣∣k+ 1n − x

∣∣∣∣∣+
∣∣∣∣∣kn − x

∣∣∣∣∣
}
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≤ 4nϕ−1(x)‖ϕg ′‖


(
n−1∑
k=0

pn−1,k(rn(x))

(
k+ 1

n
− x

)2)1/2

+

(
n−1∑
k=0

pn−1,k(rn(x))

(
k

n
− x

)2)1/2 . (15)

Further, by (3), Lemma 1, c) and x ∈
(
0, 1n

]
, we obtain

n−1∑
k=0

pn−1,k(rn(x))

(
k

n
− x

)2
=

(
n− 1

n

)2 n−1∑
k=0

pn−1,k(rn(x))

(
k

n− 1

)2

−2x
n− 1

n

n−1∑
k=0

pn−1,k(rn(x))
k

n− 1
+ x2

n−1∑
k=0

pn−1,k(rn(x))

=

(
n− 1

n

)2 [
r2n(x) +

1

n− 1
rn(x)(1− rn(x))

]
− 2x

n− 1

n
rn(x) + x

2

=
(n− 1)(n− 2)

n2
r2n(x) +

n− 1

n

(
1

n
− 2x

)
rn(x) + x

2

≤ (n− 1)(n− 2)

n2
r2n(x) +

n− 1

n

(
1

n
+ 2x

)
rn(x) + x

2

≤ (n− 1)(n− 2)

n2
1

n2
+
n− 1

n

(
1

n
+
2

n

)
1

n
+
1

n2

≤ 1

n2
+
3

n2
+
1

n2
=
5

n2
. (16)

Using the inequality (a + b)2 ≤ 2(a2 + b2) with a and b real numbers, (16)
and (3), we obtain

n−1∑
k=0

pn−1,k(rn(x))

(
k+ 1

n
− x

)2

≤ 2

n−1∑
k=0

pn−1,k(rn(x))

(
k

n
− x

)2
+ 2

n−1∑
k=0

pn−1,k(rn(x))
1

n2

≤ 10

n2
+
2

n2
=
12

n2
. (17)

Combining (15), (16) and (17), we get

|ϕ(x)(Vng)
′(x)| ≤ 4n‖ϕg ′‖

(√
12

n
+

√
5

n

)
≤ 23‖ϕg ′‖. (18)
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Let x ∈ [ 1n , 1). For g ∈ W(ϕ), by (1), (4), (12), Lemma 1, a), (9), Hölder’s

inequality, (4) and Lemma 1, c), d), e), we find that

|ϕ(x)(Vng)
′(x)| = ϕ(x)|(Vng)

′(x) − g(x)(Vne0)
′(x)|

= ϕ(x)

∣∣∣∣∣
n∑
k=0

p ′n,k(rn(x))r
′
n(x)

[
g(
k

n
) − g(x)

] ∣∣∣∣∣
= ϕ(x)r′n(x)

∣∣∣∣∣
n∑
k=0

p ′n,k(rn(x))

∫ k
n

x

g ′(u)du

∣∣∣∣∣
≤ 2ϕ(x)

∣∣∣∣∣
n∑
k=0

ϕ−2(rn(x))(k− nrn(x))pn,k(rn(x))

∫ k
n

x

g ′(u)du

∣∣∣∣∣
≤ 2ϕ(x)ϕ−2(rn(x))

n∑
k=0

|k− nrn(x)|pn,k(rn(x))

∣∣∣∣∣
∫ k

n

x

|g ′(u)|du

∣∣∣∣∣
≤ 4ϕ−2(rn(x))‖ϕg ′‖

n∑
k=0

|k− nrn(x)|

∣∣∣∣kn − x

∣∣∣∣pn,k(rn(x))
≤ 4nϕ−2(rn(x))‖ϕg ′‖

(
n∑
k=0

(
k

n
− rn(x)

)2
pn,k(rn(x))

)1/2

×

(
n∑
k=0

(
k

n
− x

)2
pn,k(rn(x))

)1/2
= 4nϕ−2(rn(x))‖ϕg ′‖

(
Vn(e2; x) − 2rn(x)Vn(e1; x) + r

2
n(x)Vn(e0; x)

)1/2
×
(
Vn(e2; x) − 2xVn(e1; x) + x

2Vn(e0; x)
)1/2

= 4nϕ−2(rn(x))‖ϕg ′‖
(
x2 − r2n(x)

)1/2 (
2x2 − 2xrn(x)

)1/2
= 4

√
2nϕ−2(rn(x))‖ϕg ′‖ (x+ rn(x))1/2

√
x (x− rn(x))

≤ 4
√
2nϕ−2(rn(x))‖ϕg ′‖

√
2x
√
x
2

n
(1− x) = 16

ϕ2(x)

ϕ2(rn(x))
‖ϕg ′‖

= 16
x

rn(x)

1− x

1− rn(x)
‖ϕg ′‖ ≤ 32‖ϕg ′‖. (19)

Finally, we have ϕ(0)(Vng)
′(0) = 0 = ϕ(1)(Vng)

′(1). Hence, by (18) and (19),
we obtain ‖ϕ(Vng) ′‖ ≤ 32‖ϕg ′‖, which completes the proof. �

The next result is a weak-type version of the Berens-Lorentz lemma (see [1,
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p. 312, Lemma 5.2]).

Lemma 3 Let φ : [0, a] → [0,∞) be an increasing function with φ(0) = 0

and 0 < α < 1. If 0 < a ≤ 1, then the inequalities

φ(a) ≤ C5aα (20)

and

φ(x) ≤ C5
(
yα +

x

y
φ(y)

)
, 0 ≤ x ≤ y ≤ a (21)

imply for some C6 = C6(α) > 0 that

φ(x) ≤ C6C5xα, 0 ≤ x ≤ a. (22)

Proof. Following the proof of Lemma 5.2 in [1, p. 312], it is easy to prove our
result taking into account the slight modification on α. For completeness we
give the proof.

For 0 < q < 1, we define xk = qka, k = 0, 1, 2, . . . If we take C ≥ 1, then
(20) implies (22) for x = x0. We prove (22) for all x = xk by induction. Let
φ(xk) ≤ CC5xαk , then, by (21),

φ(xk+1) ≤ C5(xαk + qφ(xk)) ≤ C5(1+ qCC5)xαk ≤ C5Cxαk+1,

provided 1 + qCC5 ≤ Cqα. To achieve this, we first take q so small that
qα > C5q, because 0 < α < 1, and then C sufficiently large. After this, for
any 0 < x < a, we select a k with xk+1 ≤ x ≤ xk and get with C6 := Cq

−α the
estimations φ(x) ≤ φ(xk) ≤ CC5xαk ≤ C6C5xα. �

In the next theorem we establish the converse result. We set C01[0, 1] = {f ∈
C[0, 1] : f(0) = f(1)}.

Theorem 2 For f ∈ C01[0, 1], 0 < α < 1 and Vn defined by (1)-(2), the
estimation

‖Vnf− f‖ ≤ C7n−α/2, n = 1, 2, . . . (23)

implies ω1ϕ(f; δ) ≤ C8δα, 0 < δ ≤ 1.

Proof. The proof is based on Lemma 3 with φ(t) = ω1ϕ(f; t), t ∈ [0, 1]. For
f ∈ C01[0, 1], by Lemma 1, b), we have

(V1f)(x) = p1,0(r1(x))f(0) + p1,1(r1(x))f(1) = (1− x2)f(0) + x2f(1)

= f(0) + x2(f(1) − f(0)) = f(0).
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Therefore, by (5), ω1ϕ(f−V1f; t) = ω
1
ϕ(f; t), t > 0. Hence, due to (5) and (23),

ω1ϕ (f; 1) = ω1ϕ (f− V1f; 1) ≤ 2‖f− V1f‖ ≤ 2C7. (24)

Let x ∈ [0, 1] and h > 0 such that x± h
2 ∈ [0, 1], and let ∆1hf(x) = f(x+

h
2 )−

f(x− h
2 ). Then, by (23),

|∆1hf(x)| ≤ |∆1h(f− Vnf)(x)|+ |∆1h(Vnf)(x)|

≤ 2‖f− Vnf‖+ |∆1h(Vnf)(x)| ≤ 2C7n−α/2 + |∆1h(Vnf)(x)|. (25)

Using (6), we can choose g = gδ ∈ A.C.loc[0, 1] such that ‖f−g‖ ≤ C9ω1ϕ(f; δ)
and ‖ϕg ′‖ ≤ C10δ−1ω1ϕ(f; δ). Hence, in view of Lemma 2,

|(Vnf)
′(x)| ≤ |(Vn(f− g))

′(x)|+ |(Vng)
′(x)|

≤ 8
√
nϕ−1(x)‖f− g‖+ 32ϕ−1(x)‖ϕg ′‖

≤ 8
√
nC9ϕ

−1(x)ω1ϕ(f; δ) + 32C10δ
−1ϕ−1(x)ω1ϕ(f; δ)

≤ C11ϕ
−1(x)

(√
n+

1

δ

)
ω1ϕ(f; δ),

where C11 = 8C9 + 32C10. This implies that

|∆1h(Vnf)(x)| =

∣∣∣∣∣
∫x+h

2

x−h
2

(Vnf)
′(u)du

∣∣∣∣∣≤ C11
(√

n+
1

δ

)
ω1ϕ(f; δ)

∣∣∣∣∣
∫x+h

2

x−h
2

du

ϕ(u)

∣∣∣∣∣ .
Because of x± h

2 ∈ [0, 1], we have x ∈ (0, 1). Using (9), we obtain∣∣∣∣∣
∫x+h

2

x−h
2

du

ϕ(u)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫x+h

2

x

du

ϕ(u)

∣∣∣∣∣ +
∣∣∣∣∣
∫x−h

2

x

du

ϕ(u)

∣∣∣∣∣
≤ 2ϕ−1(x)

h

2
+ 2ϕ−1(x)

h

2
= 2ϕ−1(x)h.

Hence, by (25), we get

|∆1hf(x)| ≤ 2C7n
−α/2 + C11

(√
n+

1

δ

)
ω1ϕ(f; δ)2ϕ

−1(x)h

≤ C12

{
n−α/2 +

(
h
√
n+

h

δ

)
ϕ−1(x)ω1ϕ(f; δ)

}
.

Replacing h by hϕ(x) gives

|∆1hϕ(x)f(x)| ≤ C12
{
n−α/2 +

(
h
√
n+

h

δ

)
ω1ϕ(f; δ)

}
.
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Now we choose n ≥ 1 such that 1√
n
≤ δ ≤ 2√

n
, where 0 < δ ≤ 1. Then we find

that

|∆1hϕ(x)f(x)| ≤ C13
{
δα +

h

δ
ω1ϕ(f; δ)

}
for all x with x± h

2ϕ(x) ∈ [0, 1]. Taking supremum over all h with 0 < h ≤ t,
we obtain

ω1ϕ(f; t) ≤ C13
{
δα +

t

δ
ω1ϕ(f; δ)

}
, 0 < t ≤ δ. (26)

Now (24) and (26) yield the assertion of our theorem by Lemma 3. �
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Abstract. In this paper, we present some fixed point results satisfying
generalized contractive condition with new auxiliary function in complete
metric spaces. More precisely, the structure of the paper is the following.
In the first section, we present some useful notions and results. The main
aim of second section is to establish some new fixed point results in
complete metric spaces. Finally, in the third section, we show the validity
and superiority of our main results by suitable example. Also, as an
application of our main result, some interesting corollaries have been
included, which make our concepts and results effective. Our main result
generalizes some well known existing results in the literature.

1 Introduction and preliminaries

The Banach contraction principle [10] is one of the revolutionary results of the
fixed point theory, and it plays an imperative role to solve existence problems
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in many branches of nonlinear analysis. Inspired from the impact of this natu-
ral idea to functional analysis, a number of researchers have been extended and
generalized this principle for different kinds of contractions in various spaces.

Let us denote:
Ψ1 =

{
ψ1 : [0,∞) → [0,∞) is a continuous and non-decreasing function

such that ψ1(t) = 0 if and only if t = 0.
}

(Altering distance function)
Ψ2 =

{
ψ2 : [0,∞) → [0,∞) is a continuous function such that ψ2(0) ≥ 0

and ψ2(t) > 0, t > 0.
}

(Ultra-altering distance function)
Ψ3 =

{
ϕ : [0,∞) → [0,∞) is a Lebesgue-integrable function, summable

on each compact subset of R+, non-negative, and such that for each ε > 0,∫ε
0 ϕ(t)dt > 0.

}
In 2002, Branciari [3] introduced one of the genuine contraction, known as

integral type contraction, as an analogue of Banach contraction principle [10].

Theorem 1 [3] Let (E, d) be a complete metric space, k ∈ (0, 1), and A : E→
E is such that for each x, y ∈ E∫d(Ax,Ay)

0

ϕ(t)dt ≤ k
∫d(x,y)
0

ϕ(t)dt, (1)

where ϕ ∈ Ψ3. Then A has a unique fixed point of z ∈ E.

Rhoades [5], in 2003, gave an extension of the result of Branciari [3] and proved
following theorems.

Theorem 2 [5] Let (E, d) be a complete metric space and A : E → E be a
mapping such that, ∫d(Ax,Ay)

0

ϕ(t)dt ≤ β
∫M(x,y)

0

ϕ(t)dt,

where

M(x, y) = max

{
d(x, y), d(x,Ax), d(y,Ay),

d(x,Ay) + d(y,Ax)

2

}
(2)

for all x, y ∈ E, β ∈ [0, 1) and ϕ ∈ Ψ3. Then A has a unique fixed point z ∈ E.

Theorem 3 [5] Let us consider a complete metric space (E, d) and A : E→ E

is a mapping such that,∫d(Ax,Ay)
0

ϕ(t)dt ≤ β
∫N(x,y)

0

ϕ(t)dt,
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where

N(x, y) = max {d(x, y), d(x,Ax), d(y,Ay), d(x,Ay), d(y,Ax)} (3)

for each x, y ∈ E, β ∈ [0, 1) and ϕ ∈ Ψ3. Then there exist a unique fixed point
z ∈ E such that Az = z.

In 2010, Babu and Alemayehu [7] proved following theorem in complete metric
spaces by using generalized φ− weak contraction.

Theorem 4 [7] Let us consider a complete metric space (E, d) and A : E→ E

is such that for all x, y ∈ E it satisfies

d (Ax,Ay) ≤M (x, y) − φ(M (x, y)),

where

M(x, y) = max

{
d(x, y), d(x,Ax), d(y,Ay),

d(x,Ay) + d(y,Ax)

2

}
, (4)

and φ : [0,+∞)→ [0,+∞) such that φ(t) = 0 if and only if t = 0. Then there
is a unique fixed point of A in E.

In 2011, Samet and Yazidi [6] gave an extension of the result of Dass and
Gupta [4] in the sense of Branciari integral type contraction, as follows

Theorem 5 [6] Let (E, d) be a complete metric space and A be a self-map of
E such that for each x, y ∈ E,∫d(Ax,Ay)

0

ϕ(t)dt ≤ α
∫M(x,y)

0

ϕ(t)dt+ β

∫d(x,y)
0

ϕ(t)dt

and

M (x, y) =
d (y,Ay) [1+ d(x,Ax)]

[1+ d(x, y)]
,

where α,β > 0 are constants such that α+ β < 1 and ϕ ∈ Ψ3.
Then A admits a unique fixed point z ∈ E such that for each z ∈ E, Anx→ z

as n→∞.

In 2011, Gupta and Mani [14] proved a common fixed point theorem for two
weakly compatible mappings using control functions ψ1 and ψ2 satisfying a
contractive condition of integral type.
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Theorem 6 Let A and B be self compatible maps of a complete metric space
(E, d) satisfying the following conditions:

(i). A(E) ⊂ B(E)

(ii). ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ ψ1

(∫d(Bx,By)
0

ϕ(t)dt

)
−ψ2

(∫d(Bx,By)
0

ϕ(t)dt

)
,

where ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3. Then there exist a unique common fixed
point of A and B in E.

In 2013, Gupta and Mani [16] proved another generalization of the result of
Branciari [3] using real valued function.

Theorem 7 [16] Let A be a self map on complete metric space (E, d) such
that for each x, y ∈ E∫d(Ax,Ay)

0

ϕ(t)dt ≤ γ (d (x, y))
∫m(x,y)

0

ϕ(t)dt

and

m (x, y) = max

{
d(x,Ax)d(y,Ay)

d(x, y)
, d(x, y)

}
,

where ϕ ∈ Ψ3 and γ : R+ → [0, 1) is a function with

lim
δ→t supγ (δ) < 1, ∀ t > 0.

Then A has a unique fixed point in E.

Some other results in complete metric spaces satisfying integral type contrac-
tions are mentioned in [8, 9, 11, 12, 13, 17, 18]

In 2014-15, Ansari [1] introduced the notion of C -class function as a major
generalization of Banach contraction principle. Currently this finding is one of
the most attractive research topics in fixed point theory. Some other special
cases of C-class functions can be found in [2]. Ansari [1] gave the following
definitions and examples.

Definition 1 [1] A mapping F : [0,∞)2 → R is called C-class function if it is
continuous and satisfies following axioms:

1. F(r, t) ≤ r for all r, t ∈ [0,∞);
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2. F(r, t) = r implies that either r = 0 or t = 0;

Let us denote C the family of C-class functions.

Remark 1 Clearly, for some F we have F(0, 0) = 0.

Example 1 [1] The following functions F : [0,∞)2 → R are elements of C,
for all r, t ∈ [0,∞):

1. F(r, t) = r− t, F(r, t) = r⇒ t = 0;

2. F(r, t) = mr, 0<m<1, F(r, t) = r⇒ r = 0;

3. F(r, t) = r
(1+t)h

; h ∈ (0,∞), F(r, t) = r ⇒ r = 0 or t = 0;

4. F(r, t) = log(t+ ar)/(1+ t), a > 1, F(r, t) = r ⇒ r = 0 or t = 0;

5. F(r, t) = ln(1+ ar)/2, a > e, F(r, t) = r ⇒ r = 0;

6. F(r, t) = (r+ l)(1/(1+t)
p) − l, l > 1, p ∈ (0,∞), F(r, t) = r ⇒ t = 0;

7. F(r, t) = r logt+a a, a > 1, F(r, t) = r⇒ r = 0 or t = 0;

8. F(r, t) = r− ( 1+r2+r)(
t
1+t), F(r, t) = r⇒ t = 0;

9. F(r, t) = rβ(r), β : [0,∞)→ [0, 1), F(r, t) = r⇒ r = 0;

10. F(r, t) = r− t
k+t , F(r, t) = r⇒ t = 0;

11. F(r, t) = r − ϕ(r), F(r, t) = r ⇒ r = 0,here ϕ : [0,∞) → [0,∞) is a
continuous function such that ϕ(t) = 0⇔ t = 0;

12. F(r, t) = rh(r, t), F(r, t) = r⇒ r = 0,here h : [0,∞)× [0,∞)→ [0,∞) is
a continuous function such that h(r, t) < 1 for all t, s > 0;

13. F(r, t) = r− ( 2+t1+t)t, F(r, t) = r⇒ t = 0.

14. F(r, t) = n
√

ln(1+ rn), F(r, t) = r⇒ r = 0.

15. F(r, t) = φ(r), F(r, t) = r ⇒ r = 0,here φ : [0,∞) → [0,∞) is a upper
semi-continuous function such that φ(0) = 0, and φ(t) < t for t > 0,
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16. F(r, t) = r
(1+r)s ; s ∈ (0,∞), F(r, t) = r implies r = 0.

Remark 2 We assume that is F increasing with respect to the first variable
and decreasing with respect to the second variable.

The aim of this contribution is to investigate some fixed point results using
the concept of C -class function and control functions in the set up of complete
metric spaces satisfying a generalized weak contraction. Our result mainly
generalized the result of Rhoades [5] and Gupta and Mani [15].

2 Main result- fixed point results with auxiliary
functions

The main result of this paper is the following theorem.

Theorem 8 Let (E, d) be a complete metric space and A : E→ E be a mapping
such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ F

(
ψ1

(∫M(x,y)

0

ϕ(t)dt

)
, ψ2

(∫M(x,y)

0

ϕ(t)dt

))
,

(5)

where F is a C-class function, ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3 and

M(x, y) = max

{
d(x, y), d(x,Ax), d(y,Ay),

d(x,Ay) + d(y,Ax)

2

}
. (6)

Then A has a unique fixed point.

Proof. Let x0 ∈ E be an arbitrary point. Choose a point x1 in E such that
x1 = Ax0. In general, choose xn+1 such that xn+1 = Axn for n = 0, 1, 2 · · · .
Suppose that xn 6= xn+1 for each integer n > 1, then from (5)

ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
≤ F

 ψ1

(∫M(xn−1,xn)
0 ϕ(t)dt

)
,

ψ2

(∫M(xn−1,xn)
0 ϕ(t)dt

)  , (7)

where from (6),

M (xn−1, xn) =max

{
d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1) ,

d(xn−1,xn+1)+d(xn,xn)
2

}
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=max

{
d (xn−1, xn) , d (xn, xn+1) ,

d (xn−1, xn+1)

2

}
=max {d (xn−1, xn) , d (xn, xn+1)} . (8)

If d(xn, xn+1) ≥ d(xn−1, xn) for some n, then on combining equation (7) and
(8), we get

ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
≤ F

 ψ1

(∫d(xn,xn+1)
0 ϕ(t)dt

)
,

ψ2

(∫d(xn,xn+1)
0 ϕ(t)dt

)  . (9)

Thus by definition of F ∈ C, we get

either ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
= 0 or ψ2

(∫d(xn,xn+1)
0

ϕ(t)dt

)
= 0

From definition of ψ1 and ψ2, it is possible only if∫d(xn,xn+1)
0

ϕ(t)dt = 0.

This is a contradiction to our hypothesis . Thus d(xn, xn+1) < d(xn−1, xn),
this implies

ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
≤ F

(
ψ1

∫d(xn−1,xn)
0

ϕ(t)dt,ψ1

∫d(xn−1,xn)
0

ϕ(t)dt

)

≤ ψ1
∫d(xn−1,xn)
0

ϕ(t)dt

Since ψ1 is continuous and non-decreasing, therefore∫d(xn,xn+1)
0

ϕ(t)dt ≤
∫d(xn−1,xn)
0

ϕ(t)dt,

thus
{∫(d(xn,xn+1)

0 ϕ(t)dt
}

is monotone decreasing and lower bounded sequence.

Therefore there exist r ≥ 0 such that

lim
n→∞

∫d(xn,xn+1)
0

ϕ(t)dt = r. (10)
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Suppose that r > 0. Taking limit as n→∞ on both sides of eq. (9) and using
eq. (10), we get

ψ1(r) ≤ F (ψ1(r), ψ2(r)) ,

implies from definition of F ∈ C that

either ψ1(r) = 0 or ψ2(r) = 0.

Consequently, by definition of ψ1 and ψ2, we get r = 0.
Hence from eq. (10), we obtain

lim
n→∞

∫d(xn,xn+1)
0

ϕ(t)dt = 0, (11)

implies

lim
n→∞d(xn, xn+1) = 0. (12)

Next we prove that {xn} is a Cauchy sequence. Suppose it is not. Therefore
for an ε > 0 , there exists two sub-sequences

{
xm(p)

}
and
{
xn(p)

}
of {xn} with

m(p) < n(p) < m(p+ 1) such that

d
(
xm(p), xn(p)

)
≥ ε, d

(
xm(p), xn(p)−1

)
< ε. (13)

Consider

ψ1

(∫ε
0

ϕ(t)dt

)
≤ ψ1

(∫d(xm(p),xn(p))

0

ϕ(t)dt

)

≤ F


ψ1

(∫M(xm(p)−1,xn(p)−1)
0 ϕ(t)dt

)
,

ψ2

(∫M(xm(p)−1,xn(p)−1)
0 ϕ(t)dt

)
 . (14)

Using (6)

M
(
xm(p)−1, xn(p)−1

)
= max


d
(
xm(p)−1, xn(p)−1

)
, d
(
xm(p)−1, xm(p)

)
,

d
(
xn(p)−1, xn(p)

)
,

d(xm(p)−1,xn(p))+d(xn(p)−1,xm(p))
2


= max

{
d
(
xm(p)−1, xn(p)−1

)
, d
(
xm(p)−1, xm(p)

)
,

d
(
xn(p)−1, xn(p)

)
, z(m,n)

}
,

(15)
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where,

z(m,n) =
d
(
xm(p)−1,xn(p)

)
+ d

(
xn(p)−1,xm(p)

)
2

. (16)

Thus∫M(
xm(p)−1,xn(p)−1

)
0

ϕ(t)dt

=

∫max
{
d
(
xm(p)−1,xn(p)−1

)
,d
(
xm(p)−1,xm(p)

)
,d
(
xn(p)−1,xn(p)

)
,z(m,n)

}
0

ϕ(t)dt

= max


∫d(xm(p)−1,xn(p)−1

)
0 ϕ(t)dt,

∫d(xm(p)−1,xm(p)

)
0 ϕ(t)dt,∫d(xn(p)−1,xn(p))

0 ϕ(t)dt,
∫z(m,n)
0 ϕ(t)dt

 (17)

Using (13) and triangle inequality, we get

d
(
xm(p)−1, xn(p)−1

)
≤ d

(
xm(p)−1, xm(p)

)
+ d

(
xm(p), xn(p)−1

)
< d

(
xm(p)−1, xm(p)

)
+ ε.

Therefore,

lim
p→∞

∫d(xm(p)−1,xn(p)−1)

0

ϕ(t)dt ≤
∫ε
0

ϕ(t)dt. (18)

Also,

z(m,n) =
d
(
xm(p)−1, xn(p)

)
+ d

(
xn(p)−1, xm(p)

)
2

≤
d
(
xm(p)−1, xm(p)

)
+ 2d

(
xm(p), xn(p)−1

)
+ d

(
xn(p)−1, xn(p)

)
2

≤
d
(
xm(p)−1, xm(p)

)
+ d

(
xn(p)−1, xn(p)

)
2

+ ε.

Taking limit as p→∞ and using (12), we get

lim
p→∞

∫ z(m,n)
0

ϕ(t)dt ≤
∫ε
0

ϕ(t)dt (19)
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Taking limit as p → ∞ in equality (14) and using equations (15), (16), (17),
(18) and (19) all together in (14), we get

ψ1

(∫ε
0

ϕ(t)dt

)
≤ F

(
ψ1

(∫ε
0

ϕ(t)dt

)
, ψ2

(∫ε
0

ϕ(t)dt

))
.

Again from definition of F ∈ C we get,

either ψ1

(∫ε
0

ϕ(t)dt

)
= 0 or ψ2

(∫ε
0

ϕ(t)dt

)
= 0.

It is possible only if,
∫ε
0 ϕ(t)dt = 0. This is a contradiction to our hypothesis.

Therefore {xn} is a Cauchy sequence, call the limit α such that

lim
n→∞Axn−1 = α. (20)

Next we claim that α is the fixed point of map A.
That is Aα = α, suppose it is not. Then d(Aα,α) > 0.
Let δ = d(Aα,α).
Consider,

ψ1

(∫ δ
0

ϕ(t)dt

)
= ψ1

(∫d(Aα,α)
0

ϕ(t)dt

)

≤ F

 ψ1

(∫M(α,xn)
0 ϕ(t)dt

)
,

ψ2

(∫M(α,xn)
0 ϕ(t)dt

)  , (21)

where,

M(α, xn) = max

{
d(α, xn), d(α,Aα), d(xn, xn+1),

d(α,xn+1)+d(xn,Aα)
2

}
. (22)

Since,

lim
n→∞d(α, xn) = lim

n→∞d(xn, xn+1) = lim
n→∞d(α, xn+1) = 0. (23)

Taking limn→∞ in (21) and by using (20), (22), (23), we get

ψ1

(∫ δ
0

ϕ(t)dt

)
≤ F


ψ1

(∫max
{
d(α,Aα),

d(α,Aα)
2

}
0 ϕ(t)dt

)
,

ψ2

(∫max
{
d(α,Aα),

d(α,Aα)
2

}
0 ϕ(t)dt

)

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≤ F
{
ψ1

(∫ δ
0

ϕ(t)dt

)
, ψ2

(∫ δ
0

ϕ(t)dt

)}
(24)

Thus we obtain,

either ψ1

(∫ δ
0

ϕ(t)dt

)
= 0 or ψ2

(∫ δ
0

ϕ(t)dt

)
= 0

that is
∫δ
0 ϕ(t)dt = 0. Hence δ = 0 .

This implies d(Aα,α) = 0. Therefore α is the fixed point of map A. Uniqueness
of the fixed point can be easily obtain by using above inequality (21), (22),
(24). This proves the main result. �

3 Applications and example

Next we give several corollaries, as a application of our main result, in the
underlying spaces. Some of them are novel in literature

If we take ψ1(t) = t in Theorem 8, we get a new result.

Corollary 1 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,∫d(Ax,Ay)

0

ϕ(t)dt ≤ F

(∫M(x,y)

0

ϕ(t)dt,ψ2

(∫M(x,y)

0

ϕ(t)dt

))
for each x, y ∈ E, where M(x, y) is given in (6), F is a C-class function,
ψ2 ∈ Ψ2, ϕ ∈ Ψ3.
Then A has a unique fixed point.

If we take F(r, t) = r
(1+t)s and assume s = 1 in Theorem 8, we find a very

interesting novel result.

Corollary 2 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤

ψ1

(∫M(x,y)
0 ϕ(t)dt

)
1+ψ2

(∫M(x,y)
0 ϕ(t)dt

) ,
where M(x, y) is given in (6), ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3.
Then A has a unique fixed point.
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If we take F(r, t) = λr for 0 < λ < 1 and in Theorem 8, then we have following
corollary.

Corollary 3 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ λψ1

(∫M(x,y)

0

ϕ(t)dt

)
,

where M(x, y) is given in (6), ψ1 ∈ Ψ1, ϕ ∈ Ψ3.
Then A has a unique fixed point.

If we assume that ψ1(t) = t in Corollary 3 then we obtain the result of Rhoades
[5] (see Theorem 2 of [5]).

Corollary 4 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,∫d(Ax,Ay)

0

ϕ(t)dt ≤ λ
∫M(x,y)

0

ϕ(t)dt,

where M(x, y) is given in (6), ϕ ∈ Ψ3.
Then A has a unique fixed point.

If we take F(r, t) = r − t in Theorem 8, then we obtain the result of Gupta
and Mani [15].

Corollary 5 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ ψ1

(∫M(x,y)

0

ϕ(t)dt

)
−ψ2

(∫M(x,y)

0

ϕ(t)dt

)

where M(x, y) is given in (6), ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3.
Then A has a unique fixed point.

Remark 3 It should be noted that in [15], authors have considered an extra
condition on ψ2. But from above corollaries it is clear that we can deduce the
same result without that extra assumption. Also, the result obtained in [5] and
[15] are an element of C - class function as shown in Corollary 4 and Corollary
5. So the main result of this paper is more generalized than the other previously
proved results.
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Now, we gave a non trivial example to justify the importance of our result.

Example 2 Let E = N− {∞} and d is usual metric on E. Define a self maps
A on E such that

Ax =
x

3
, ∀ x ∈ E.

Define a function F : [0,∞)2 → R as

F(r, t) = mr, ∀ 0 < m =
2

3
< 1.

Then clearly, F is a C-class function.
Let us define ψ1, ϕ : [0,+∞)→ [0,+∞) as

ψ1(t) = t, ϕ(t) =
t

2
, ∀ t ∈ [0,+∞)

then for each ε > 0, clearly ∫ε
0

ϕ(t)dt =
ε2

4
> 0.

If x = y for all x, y ∈ E, then result holds trivially.
So suppose that x 6= y for all x, y ∈ E.
Since d is usual metric for all x, y ∈ E, then on careful calculation, we get

L.H.S. =
|x− y|

36

2

,

and

R.H.S. =
|x− y|

3

2

,

Then clearly, L.H.S ≤ R.H.S for all x, y ∈ E and, hence all conditions of
Theorem 8 are verified.
Clearly 0 ∈ E is the unique fixed point of A.
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Abstract. Collatz conjecture states that iterating the map that takes
even natural number n to n

2
and odd natural number n to 3n+ 1, will

eventually obtain 1. In this paper a new generalization of the Collatz
conjecture is analyzed and some interesting results are obtained. Since
Collatz conjecture can be seen as a particular case of the generalization
introduced in this articule, several more general conjectures are also pre-
sented.

1 Introduction

The Collatz conjecture remains today unsolved; as it has been for almost over
80 years. Although its statement is very simple and easy to understand, the
nature of the problem makes extremelly to demonstrate or refuse. Articles
such as [3] and [4] contain a huge amount of publications dealing with this
problem and somehow trying to solve it.

Although the Collatz conjecture can be stated in several ways, in this pa-
per we will use the following notation, i.e. modified Collatz function, that
represents a slightly modification of the traditional formulation

C(n) =


3·n+1
2 if n ≡ 1(mod 2)

n
2 if n ≡ 0((mod 2)
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By using the modified Collatz function, the Collatz conjecture can be stated
in the following way:

Conjecture 1 (Collatz) For every integer number n ∈ N, there exists k such
that C(k)(n) = 1.

In this sense, Terras [5] defined the total stopping time of an integer
n ∈ N, here we denote it by σ2(n), as the smallest integer k such that
C(k)(n) = 1 or σ2(n) = ∞ if no such k exists. For example, if n = 7, then
by successively applying C, we obtain the following sequence 7→ 11→ 17→
26 → 13 → 20 → 10 → 5 → 8 → 4 → 2 → 1, and then C11(7) = 1, so
σ2(7) = 11.

In this paper, we consider an elementary generalization of the Collatz prob-
lem. We also generalize the concept of total stopping time and, related with
this new approach, we obtain several results for some classes of integer num-
bers that generalize some well-known results on this topic. In the last section
of the paper, some calculations and new conjectures are introduced. These
conjectures try to illustrate the idea that traditional Collatz problem is just
a special case and that it can be seen as part of a more general point of view,
what we have called of Collatz numbers.

1.1 A more general b− Collatz function, Cb

For any natural number b ≥ 2, we define the following b − Collatz function
Cb : N→ N

Cb(n) =


(b+1)·n+(b−x)

b if n ≡ x(mod b), 1 ≤ x ≤ b− 1

n
b if n ≡ 0((mod b)

Clearly in the previous formula, if b = 2, we obtain the modified Collatz
function stated in section [1]. In this sense, we defined the b-total stopping
time of an integer n ∈ N, denoted σb(n), as the smallest integer k such that

C
(k)
b (n) = 1 or σb(n) = ∞ if no such k exists. For example, if b = 5 and
n = 7, then by successively applying C5, we obtain the following sequence
7 → 9 → 11 → 14 → 17 → 21 → 26 → 32 → 39 → 47 → 57 → 69 → 83 →
100→ 20→ 4→ 5→ 1, so C175 (7) = 1 and finally σ5(7) = 17

Theorem 1 Let b, k, r, s ∈ N, such that b ≥ 2, k, r ≥ 1, n = bk · r − s > 1
and 1 ≤ s ≤ b− 1. Then

C
(k)
b (n) = (b+ 1)k · r− s.
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Proof. We proceed by induction on t, 0 ≤ t ≤ k. Case t = 0.

C
(0)
b (bk · r− s) = bk · r− s = ((b+ 1)0 · bk−0) · r− s.

So, the initial case holds. Now let us assume that

C
(t)
b (bk · r− s) = ((b+ 1)t · bk−t) · r− s,

for some 0 ≤ t < k. Since t < k, then ((b+1)t·bk−t)·r−s ≡ −s ≡ b−s(mod b),
so

C
(t+1)
b (bk · r− s) = Cb(C

(t)
b (bk · r− s)) = Cb(((b+ 1)t · bk−t) · r− s)

=
(b+ 1) · ((b+ 1)t · bk−t) · r− s) + s

b
=

=
(b+ 1)(t+1) · bk−t · r− b · s

b
=

= (b+ 1)(t+1) · bk−(t+1) · r− s.

Thus,

C
(t+1)
b (bk · r− s) = (b+ 1)(t+1) · bk−(t+1) · r− s,

and the result follows. �

Corollary 1 If b, k, r, s ∈ N, such that b ≥ 2, k, r ≥ 1, n = bk · r− s > 1 and
1 ≤ s ≤ b− 1, then

σb(b
k · r− s) = σb((b+ 1)k · r− s) + k.

Corollary 2 If b ≥ 2, k, r ≥ 1, n = bk − 1 > 1, then

σb(b
k − 1) = σb((b+ 1)

k − 1) + k.

Corollary 3 If b = 2, k, r ≥ 1, n = 2k · r− 1, then

σ2(2
k · r− 1) = σ2(3k · r− 1) + k.

Theorem 2 If b, k, r, t, s ∈ N, such that b ≥ 2, k > t ≥ 1, r ≥ 1, and
1 ≤ s ≤ b− 1, then

C
(k)
b (bk · r− bt · s) = (b+ 1)k−t · r− s.
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Proof. Since bk · r− bt · s is divisible by bt, then C
(k)
b (bk · r− bt · s) = C(k−t)

b

(Ctb(b
k · r− bt · s)) = C(k−t)

b (bk−t · r− s) = (b+ 1)k−t · r− s, by Theorem 1. �

Corollary 4 If b, k, r, t, s ∈ N, such that b ≥ 2, k > t ≥ 1, r ≥ 1, and
1 ≤ s ≤ b− 1, then

σb(b
k · r− bt · s) = σb((b+ 1)k−t · r− s) + k.

Theorem 3 Let b ≥ 2, k > 2 and r ≥ 1, then
i) If b = 2 then σb(b

k · r− (2b− 1)) = σb((b+ 1)
k−2 · r− 1) + k.

ii) If b > 2 then σb(b
k · r− (2b− 1)) = σb((b+ 1)

k−1 · r− 2) + k.

Proof. Let n = bk · r− (2b− 1). Since n ≡ 1(mod b), then

C
(k)
b (n) = C

(k−1)
b (Cb(n)) = C

(k−1)
b (

(b+ 1) · (bk · r− 2b+ 1)) + b− 1
b

)

= C
(k−1)
b ((b+ 1) · bk−1 · r− 2b) = C(k−2)

b (Cb((b+ 1) · bk−1 · r− 2b))

= C
(k−2)
b ((b+ 1) · bk−2 · r− 2).

If b = 2, then C
(k)
b (n) = C

(k−2)
b (3·2k−2·r−2) = C(k−3)

b (2k−3·3·r−1) = 3k−2·r−1.
If b > 2, then by Theorem 1,

C
(k)
b (n) = C

(k−2)
b ((b+ 1) · bk−2 · r− 2) = (b+ 1)k−1 · r− 2.

�

Corollary 5 [6] If k > 2 and r ≥ 1, then σ2(2
k · r− 3) = σ2(3k−2 · r− 1) + k.

Theorem 4 Let b ≥ 2, k > 2 and r, t ≥ 1, then
i) If b = 2, then σb(b

k · r− bt · (2b− 1)) = σb((b+ 1)(k−t−2) · r− 1) + k.
i) If b > 2, then σb(b

k · r− bt · (2b− 1)) = σb((b+ 1)(k−t−1) · r− 2) + k.

Proof. Let n = bk · r− bt · (2b− 1). Since n ≡ 0(mod bt), then

C
(k)
b (n) = C

(k−t)
b (

n

bt
) = Ck−tb (bk−t · r− (2b− 1)).

By Theorem 3, if b = 2, then

C
(k)
b (n) = Ck−tb (bk−t · r− (2b− 1)) = (b+ 1)(k−t−2) · r− 1
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and then

σb(b
k · r− bt · (2b− 1)) = σb((b+ 1)(k−t−2) · r− 1) + k.

In othen hand, if b > 2, then

C
(k)
b (n) = Ck−tb (bk−t · r− (2b− 1)) = (b+ 1)(k−t−1) · r− 2

and then σb(b
k · r− bt · (2b− 1)) = σb((b+ 1)(k−t−1) · r− 2) + k. �

Corollary 6 [6] If k > 2 and r ≥ 1, then σ2(2
k · r− 6) = σ2(3k−3 · r− 1) + k.

Theorem 5 Let b ≥ 2 and k ≡ 0(mod b), then
i) σb(b

k − 1) = σb(b
k−1 − 1) + 1.

ii) σb((b+ 1)
k − 1) = σb((b+ 1)

k−1 − 1).

Proof. i) It enough to proof that

C
(k+1)
b (bk−1 − 1) = C

(k+2)
b (bk − 1).

So, by Theorem 1, C
(k+1)
b (bk−1−1) = C

(2)
b ((b+1)k−1−1). Since (b+1)k−1−1 ≡

0(mod b), then

C
(2)
b ((b+ 1)k−1 − 1) = Cb(

(b+ 1)k−1 − 1

b
).

Finally, since k ≡ 0(mod b) and (b+1)k−1−1
b ≡ b− 1(mod b), then

C
(2)
b ((b+ 1)k−1 − 1) = Cb(

(b+ 1)k−1 − 1

b
) =

(b+ 1)k − 1

b2
.

In other hand, C
(k+2)
b (bk − 1) = C

(2)
b ((b+ 1)k − 1). So, since k ≡ 0(mod b),

then (b+ 1)k − 1 ≡ 0(mod b2). Therefore,

C
(k+2)
b (bk − 1) = C

(2)
b ((b+ 1)k − 1) =

(b+ 1)k − 1

b2
,

and equality holds.
ii) From previous result i) and Corollary 4, we have

σb((b+ 1)
k − 1) = σb(b

k − 1) − k = σb(b
k−1 − 1) + 1− k

= σb((b+ 1)
k−1 − 1) + (k− 1) + 1− k

= σb((b+ 1)
k−1 − 1).

�
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Corollary 7 [6] If k is even and k > 2, then

σ2(2
k · r− 1) = σ2(2k−1 · r− 1) + 1, and

σ2(3
k · r− 1) = σ2(3k−1 · r− 1).

3. Some empirical results on Cb and open problems

The behaviour of Cb has been intensively studied during last years when b = 2.
But, what can we state for Cb for other values of b ≥ 3?. Let us see some
examples for several values of b.
Case b = 3. Calculating C3(n) for some values of n

Iteration/n = 4 5 6 7 8 9 10 11 12

1 6 7 2 10 11 3 14 15 4
2 2 10 3 14 15 1 19 5 6
3 3 14 1 19 5 2 26 7 2
4 1 19 2 26 7 3 35 10 3
5 2 26 3 35 10 1 47 14 1
6 3 35 1 47 14 2 63 19 2
7 1 47 2 63 19 3 21 26 3
8 2 63 3 21 26 1 7 35 1
9 3 21 1 7 35 2 10 47 2
10 1 7 2 10 47 3 14 63 3
11 2 10 3 14 63 1 19 21 1
12 3 14 1 19 21 2 26 7 2
13 1 19 2 26 7 3 35 10 3
14 2 26 3 35 10 1 47 14 1
15 3 35 1 47 14 2 63 19 2
16 1 47 2 63 19 3 21 26 3
17 2 63 3 21 26 1 7 35 1
18 3 21 1 7 35 2 10 47 2
19 1 7 2 10 47 3 14 63 3

At first sight, there is no homogeneous behaviour for different values of n.
In this case, for n ∈ {4, 6, 9, 12} we found the cycle 2 → 3 → 1 that repeats
and contains the number 1.

In other hand, for n ∈ {5, 7, 8, 10, 11}, the behaviour is completely different
than the previous one. In this case, the cycle 7 → 10 → 14 → 19 → 26 →
35 → 47 → 63 → 21 repeats and does not contain the number 1. In fact, it
seems that these are the only two cycles one can find when iterating C3.
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Case b = 5. Calculating C5(n) for some values of n

Iteration/n = 6 7 8 9 10 11 12 13 14

1 8 9 10 11 2 14 15 16 17
2 10 11 2 14 3 17 3 20 21
3 2 14 3 17 4 21 4 4 26
4 3 17 4 21 5 26 5 5 32
5 4 21 5 26 1 32 1 1 39
6 5 26 1 32 2 39 2 2 47
7 1 32 2 39 3 47 3 3 57
8 2 39 3 47 4 57 4 4 69
9 3 47 4 57 5 69 5 5 83
10 4 57 5 69 1 83 1 1 100
11 5 69 1 83 2 100 2 2 20
12 1 83 2 100 3 20 3 3 4
13 2 100 3 20 4 4 4 4 5
14 3 20 4 4 5 5 5 5 1
15 4 4 5 5 1 1 1 1 2
16 5 5 1 1 2 2 2 2 3
17 1 1 2 2 3 3 3 3 4
18 2 2 3 3 4 4 4 4 5
19 3 3 4 4 5 5 5 5 1
20 4 4 5 5 1 1 1 1 2
21 5 5 1 1 2 2 2 2 3

At first sight, there is an homogeneous behaviour for different values of n.
Independently the value of n we select, we found the cycle 2→ 3→ 4→ 5→ 1

that repeats and contains the number 1.
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Case b = 6. Calculating C6(n) for some values of n

Iteration/ n = 7 8 9 10 11 12 13 14 15

1 9 10 11 12 13 2 16 17 18
2 11 12 13 2 16 3 19 20 3
3 13 2 16 3 19 4 23 24 4
4 16 3 19 4 23 5 27 4 5
5 19 4 23 5 27 6 32 5 6
6 23 5 27 6 32 1 38 6 1
7 27 6 32 1 38 2 45 1 2
8 32 1 38 2 45 3 53 2 3
9 38 2 45 3 53 4 62 3 4
10 45 3 53 4 62 5 73 4 5
11 53 4 62 5 73 6 86 5 6
12 62 5 73 6 86 1 101 6 1
13 73 6 86 1 101 2 118 1 2
14 86 1 101 2 118 3 138 2 3
15 101 2 118 3 138 4 23 3 4
16 118 3 138 4 23 5 27 4 5
17 138 4 23 5 27 6 32 5 6
18 23 5 27 6 32 1 38 6 1

By inspectioning this examples, it can be seen that there are two groups of
numbers. First, numbers such as n ∈ {7, 9, 11, 13} whose iterations contain the
cycle 23→ 27→ 32→ 38→ 45→ 53→ 62→ 73→ 86→ 101→ 118→ 138.
Secondly, numbers such as n ∈ {8, 10, 12, 14, 15} whose iterations contain the
cycle 2→ 3→ 4→ 5→ 6→ 1 that repeats and contains the number 1.
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Case b = 7. Calculating C7(n) for some values of n

Iteration/ n = 8 9 10 11 12 13 14 15 16

1 10 11 12 13 14 15 2 18 19
2 12 13 14 15 2 18 3 21 22
3 14 15 2 18 3 21 4 3 26
4 2 18 3 21 4 3 5 4 30
5 3 21 4 3 5 4 6 5 35
6 4 3 5 4 6 5 7 6 5
7 5 4 6 5 7 6 1 7 6
8 6 5 7 6 1 7 2 1 7
9 7 6 1 7 2 1 3 2 1
10 1 7 2 1 3 2 4 3 2
11 2 1 3 2 4 3 5 4 3
12 3 2 4 3 5 4 6 5 4
13 4 3 5 4 6 5 7 6 5
14 5 4 6 5 7 6 1 7 6
15 6 5 7 6 1 7 2 1 7
16 7 6 1 7 2 1 3 2 1
17 1 7 2 1 3 2 4 3 2
18 2 1 3 2 4 3 5 4 3

By inspectioning this examples, it can be seen that in all cases, iterations
contain the cycle 2→ 3→ 4→ 5→ 6→ 7→ 1 that repeats and contains the
number 1.
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Case b = 9. Calculating C9(n) for some values of n

Iteration/ n = 10 11 12 13 14 15 16 17 31 35

1 12 13 14 15 16 17 18 19 35 39
2 14 15 16 17 18 19 2 22 39 44
3 16 17 18 19 2 22 3 25 44 49
4 18 19 2 22 3 25 4 28 49 55
5 2 22 3 25 4 28 5 32 55 62
6 3 25 4 28 5 32 6 36 62 69
7 4 28 5 32 6 36 7 4 69 77
8 5 32 6 36 7 4 8 5 77 86
9 6 36 7 4 8 5 9 6 86 96
10 7 4 8 5 9 6 1 7 96 107
11 8 5 9 6 1 7 2 8 107 119
12 9 6 1 7 2 8 3 9 119 133
13 1 7 2 8 3 9 4 1 133 148
14 2 8 3 9 4 1 5 2 148 165
15 3 9 4 1 5 2 6 3 165 184
16 4 1 5 2 6 3 7 4 184 205
17 5 2 6 3 7 4 8 5 205 228
18 6 3 7 4 8 5 9 6 228 254
19 7 4 8 5 9 6 1 7 254 283
20 8 5 9 6 1 7 2 8 283 315
21 9 6 1 7 2 8 3 9 315 35
22 1 7 2 8 3 9 4 1 35 39
23 2 8 3 9 4 1 5 2 39 44
24 3 9 4 1 5 2 6 3 44 49
25 4 1 5 2 6 3 7 4 49 55

By inspectioning this examples, it can be seen that for n ∈ {10, 11, 12, 13, 14,

15, 16, 17}, iterations contain the cycle 2→ 3→ 4→ 5→ 6→ 7→ 8→ 9→ 1

that repeats and contains the number 1. In other hand, for n ∈ {31, 35}, for
example, interations contain the cycle 35 → 39 → 44 → 49 → 55 → 62 →
69 → 77 → 86 → 96 → 107 → 119 → 133 → 148 → 165 → 184 → 205 →
228→ 254→ 283→ 315.
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Case b = 10. Calculating C10(n) for some values of n. We compute the fisrt
30 interations for esch value of n,

Iteration/n = 11 12 13 14 15 16 17 18 34 38

1 13 14 15 16 17 18 19 20 38 42
2 15 16 17 18 19 20 21 2 42 47
3 17 18 19 20 21 2 24 3 47 52
4 19 20 21 2 24 3 27 4 52 58
5 21 2 24 3 27 4 30 5 58 64
6 24 3 27 4 30 5 3 6 64 71
7 27 4 30 5 3 6 4 7 71 79
8 30 5 3 6 4 7 5 8 79 87
9 3 6 4 7 5 8 6 9 87 96
10 4 7 5 8 6 9 7 10 96 106
11 5 8 6 9 7 10 8 1 106 117
12 6 9 7 10 8 1 9 2 117 129
13 7 10 8 1 9 2 10 3 129 142
14 8 1 9 2 10 3 1 4 142 157
15 9 2 10 3 1 4 2 5 157 173
16 10 3 1 4 2 5 3 6 173 191
17 1 4 2 5 3 6 4 7 191 211
18 2 5 3 6 4 7 5 8 211 233
19 3 6 4 7 5 8 6 9 233 257
20 4 7 5 8 6 9 7 10 257 283
21 5 8 6 9 7 10 8 1 283 312
22 6 9 7 10 8 1 9 2 312 344
23 7 10 8 1 9 2 10 3 344 379
24 8 1 9 2 10 3 1 4 379 417
25 9 2 10 3 1 4 2 5 417 459
26 10 3 1 4 2 5 3 6 459 505
27 1 4 2 5 3 6 4 7 505 556
28 2 5 3 6 4 7 5 8 556 612
29 3 6 4 7 5 8 6 9 612 674
30 4 7 5 8 6 9 7 10 674 742
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Then, we compute values for the rest of interations

Iteration/n = 11 12 13 14 15 16 17 18 34 38

31 5 8 6 9 7 10 8 1 742 817
32 6 9 7 10 8 1 9 2 817 899
33 7 10 8 1 9 2 10 3 899 989
34 8 1 9 2 10 3 1 4 989 1088
35 9 2 10 3 1 4 2 5 1088 1197
36 10 3 1 4 2 5 3 6 1197 1317
37 1 4 2 5 3 6 4 7 1317 1449
38 2 5 3 6 4 7 5 8 1449 1594
39 3 6 4 7 5 8 6 9 1594 1754
40 4 7 5 8 6 9 7 10 1754 1930
41 5 8 6 9 7 10 8 1 1930 193
42 6 9 7 10 8 1 9 2 193 213
43 7 10 8 1 9 2 10 3 213 235
44 8 1 9 2 10 3 1 4 235 259
45 9 2 10 3 1 4 2 5 259 285
46 10 3 1 4 2 5 3 6 285 314
47 1 4 2 5 3 6 4 7 314 346
48 2 5 3 6 4 7 5 8 346 381
49 3 6 4 7 5 8 6 9 381 420
50 4 7 5 8 6 9 7 10 420 42
51 5 8 6 9 7 10 8 1 42 47

In this case, for n ∈ {11, 12, 13, 14, 15, 16, 17, 18} there is a common cycle
2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 1 that repeats and con-
tains the number 1. In other hand, for numbers such as n ∈ {34, 38}, one can
find the large cycle 42 → 47 → 52 → 58 → 64 → 71 → 79 → 87 → 96 →
106→ 117→ 129→ 142→ 157→ 173→ 191→ 211→ 233→ 257→ 283→
312→ 344→ 379→ 417→ 459→ 505→ 556→ 612→ 674→ 742→ 817→
899→ 1088→ 1197→ 1317→ 1449→ 1594→ 1754→ 1930→ 193→ 213→
235 → 259 → 285 → 314 → 346 → 381 → 420 that repeats and does not
contain the number 1.
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Case b = 11. Calculating C11(n) for some values of n

Iteration/n = 12 13 14 15 16 17 18 19 20 21

1 14 15 16 17 18 19 20 21 22 23
2 16 17 18 19 20 21 22 23 2 26
3 18 19 20 21 22 23 2 26 3 29
4 20 21 22 23 2 26 3 29 4 32
5 22 23 2 26 3 29 4 32 5 35
6 2 26 3 29 4 32 5 35 6 39
7 3 29 4 32 5 35 6 39 7 43
8 4 32 5 35 6 39 7 43 8 47
9 5 35 6 39 7 43 8 47 9 52
10 6 39 7 43 8 47 9 52 10 57
11 7 43 8 47 9 52 10 57 11 63
12 8 47 9 52 10 57 11 63 1 69
13 9 52 10 57 11 63 1 69 2 76
14 10 57 11 63 1 69 2 76 3 83
15 11 63 1 69 2 76 3 83 4 91
16 1 69 2 76 3 83 4 91 5 100
17 2 76 3 83 4 91 5 100 6 110
18 3 83 4 91 5 100 6 110 7 10
19 4 91 5 100 6 110 7 10 8 11
20 5 100 6 110 7 10 8 11 9 1
21 6 110 7 10 8 11 9 1 10 2
22 7 10 8 11 9 1 10 2 11 3
23 8 11 9 1 10 2 11 3 1 4
24 9 1 10 2 11 3 1 4 2 5
25 10 2 11 3 1 4 2 5 3 6
26 11 3 1 4 2 5 3 6 4 7
27 1 4 2 5 3 6 4 7 5 8
28 2 5 3 6 4 7 5 8 6 9
29 3 6 4 7 5 8 6 9 7 10
30 4 7 5 8 6 9 7 10 8 11
31 5 8 6 9 7 10 8 11 9 1
32 6 9 7 10 8 11 9 1 10 2
33 7 10 8 11 9 1 10 2 11 3
34 8 11 9 1 10 2 11 3 1 4
35 9 1 10 2 11 3 1 4 2 5
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By inspectioning this examples, it can be seen that in all cases, iterations
contain the cycle 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 1 that
repeats and contains the number 1.

From previous empirical results, following definitions and conjectures can
be stated

Definition 1 For any b ≥ 2, set {2, 3, ..., b, 1} is called a b-trivial cycle.

Definition 2 Let b ≥ 2 an integer number. Then, for any n ∈ N, we define

Iterb(n) = {C
(k)
b (n) | k ≥ 1}.

Definition 3 An integer number b ≥ 2 is called Collatz number if for every
n ∈ N, Iterb(n) contains the b-trivial cycle.

Lemma 1 Let b ≥ 2 an integer number. Then, there exist numbers n ∈ N,
such that
i) 1 ∈ Iterb(n), and
ii) {2, 3, ..., b, 1} ⊂ Iterb(n).

Proof. Let n = 2 · b, then it is easy to verify that Cb(n) = 2, C
(2)
b (n) = 3, ...,

Cb−1b (n) = b, C
(b)
b (n) = 1 and C

(b+1)
b (n) = 2. Thus, both previous statements

can be easily checked. �

If we analyze the list of positive integers numbers lower than 20, then we
can see two completely different behaviour when iterating Cb function. In one
hand, we can find values for b, such as 2, 5, 7, 8, ..., in which interations of
Cb(n) on any integer number n, it seems, always end in 1, more concretely,
interations contain the b-trivial cycle. And in other hand, values of b, such as
3, 4, 6, 9, 10, ..., in which interations of Cb(n) on any integer number n either
end in 1 or in another non trivial cycle. Below you can find a table for different
values of b, where one can find the lowest value of n, for which Iterb(n) does
not contain 1, but however, it contains a non trivial cycle.
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b n

3 5
4 11
6 7
9 31
10 34
11 588
12 767
15 49
16 35
17 19

Conjecture 2 Let b ≥ 2 an integer number. Then, one can find only follow-
ing two possibilities

Case i) For all n ∈ N, Iterb(n) contains the b-trivial cycle, and then b is
a Collatz number, or

Case ii) There are n ∈ N, such that Iterb(n) contains a common non-trivial
cycle. There are also other values of n ∈ N, for which Iterb(n) contains the
b-trivial cycle.

Conjecture 3 Numbers 2, 5, 7, 8, 13, 14, 18 and 19 are Collatz numbers.

Conjecture 4 There are infinite Collatz numbers.
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1 Introduction

Fractional Brownian motion (fBm) is the most well-known and employed pro-
cess with a long dependency-property for many real world applications in-
cluding telecommunication, turbulence, finance, and so on. This process was
introduced by Kolmogorov [5], then studied by many researchers including
Mandelbrot and Van Ness [9] and Norros et al. [12].

The bifractional Brownian motion (bfBm) was introduced in Houdré and
Villa [3], and further studied by Russo and Tudor [14] and Tudor and Xiao
[16].

Nonparametric estimation of trend function for stochastic differential equa-
tions (SDEs) has caught the attention of different researchers. It was first
investigated by Kutoyants [7] for the stochastic differential equation driven
by a standard Brownian motion. After that, the problem was generalized
by Mishra and Rao [10] for the stochastic differential equation driven by a
fractional Brownian motion. Then, Mishra and Rao [11] presented nonpara-
metric estimation of linear multiplier for fractional diffusion processes. Later,
nonparametric inference for fractional diffusion were dealt by Saussereau [15].
Very recently, Prakasa Rao [13] investigated nonparametric estimation of trend
function for SDEs driven by mixed fractional Brownian motion.

In this paper, we use the method developed by Kutoyants [7] to construct
an estimate of the trend function St in a model described by stochastic dif-
ferential equations driven by a bifractional Brownian motion. For this, let
{Xt, 0 ≤ t ≤ T } be the process governed by the following equation:

dXt = S(Xt)dt+ εdB
H,K
t , X0 = x0, 0 ≤ t ≤ T,

where ε > 0 and BH,Kt is a bifractional Brownian motion of parameters H ∈
(0, 1), K ∈ (0, 1], and S(.) is an unknown function. In Kutoyants [7], the trend
coefficient in a diffusion process was estimated from the process {Xt, 0 ≤ t ≤ T } .
In this investigation, we use a similar approach and consider the estimate Ŝt
of St as follows:

Ŝt =
1

φε

∫ T
0

G

(
τ− t

φε

)
dXτ,

where G is a bounded kernel with finite support with φε −→ 0 as ε −→ 0.
Under some hypotheses, we firstly prove the mean square consistency of the
estimator. Then, we give a bound on the rate of convergence and prove the
asymptotic normality of the estimator Ŝt.

To the best of our knowledge, the problem of nonparametric estimation of
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trend function for stochastic differential equations driven by a bfBm has not
been considered in the literature.

The rest of the paper is structured as follows. In Section 2, the basic prop-
erties of bifractional Brownian motion are stated. Section 3 is devoted to the
preliminaries. Then, in Section 4, we give the main results; under some hy-
potheses, we establish the uniform consistency (Theorem 1), the rate of con-
vergence (Theorem 2) as well as the asymptotic normality (Theorem 3) of
the estimator. Further, in Section 5, a simulation example is carried out to
illuminate our theoretical study. Section 6 is devoted to the technical proofs.
Finally, we conclude the paper in Section 7.

2 Bifractional Brownian motion

Let (Ω,F , {Ft}t≥0,P) be a stochastic basis satisfying the habitual hypotheses,
i.e., a filtered probability space with a right continuous filtration {Ft}t≥0 and
F0 contains every P-null set.

Let {BH,Kt , t ≥ 0} be a normalized bifractional Brownian motion with pa-
rameters H ∈ (0, 1) and K ∈ (0, 1], that is, a Gaussian process with continuous
sample paths with BH,K0 = 0 and the covariance:

RH,K(t, s) = E
(
BH,Kt BH,Ks

)
=
1

2K

[
(t2H + s2H)K + |s− t|2HK

]
, t ≥ 0, s ≥ 0.

When K = 1, we retrieve the fractional Brownian motion while the case
K = 1 and H = 1/2 corresponds to the standard Brownian motion.

The bfBm is an extension of the fBm which preserves many properties of
the fBm, but not the stationarity of the increments. Russo and Tudor [14]
showed that the bfBm BH,K behaves as a fBm of Hurst parameter HK.

According to Houdré and Villa [3] and Tudor and Xiao [16], the bfBm has
the following properties:

1. E
(
BH,Ht

)
= 0 and Var

(
BH,Kt

)
= t2HK.

2. BH,Kt is said to be self-similar with index HK ∈ (0, 1), that is, for every
constant a > 0,{

BH,Kat , t ≥ 0
}
∆
=
{
aHKBH,Kt , t ≥ 0

}
, for each a > 0, (1)

in the sense that the processes, on both sides of the equality sign, have
the same finite dimensional distributions.
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3. The process BH,Kt is not Markov and it is not a semi-martingale if HK 6=
1/2.

4. The trajectories of the process BH,K are Hölder continuous of order δ for
any δ < HK and they are nowhere differentiable.

5. The bfBm BH,K is a quasi-helix in the sense of Kahane [4], for any t, s ≥ 0
we have

2−K (t− s)2HK ≤ E
[
BH,Kt − BH,Ks

]2
≤ 21−K (t− s)2HK .

The bfBm BH,K can be extended for K ∈ (1, 2) with H ∈ (0, 1) and HK ∈ (0, 1)
(see Bardina and Es-Sebaiy [1] and Lifshits and Volkova [8]).

The stochastic calculus with respect to the bifractional Brownian motion
has been recently developed by Kruk et al. [6]. More works on bifractional
Brownian motion can be found in Tudor and Xiao [16], Es-sabaiy and Tudor
[2], Yan et al. [17] and the references therein.

Fix a time interval [0, T ], we denote by E the set of step function on [0, T ].
Let HBH,K be the canonical Hilbert space associated to the bfBm defined as
the closure of E with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H

BH,K
= RH,K(t, s) =

∫ T
0

∫ T
0

1[0,t](u)1[0,s](v)
∂2RH,K(u, v)

∂u∂v
dudv,

where RH,K(t, s) is the covariance of BH,Kt and BH,Ks . The application ϕ ∈ E −→
BH,K(ϕ) is an isometry from E to the Gaussian space generated by BH,K and it
can be extended to HBH,K . In this study, as HK ∈ (1/2, 1) we will employ the
subspace |HBH,K | of HBH,K which is defined as the set of measurable function
ϕ on [0, T ] satisfying

‖ϕ‖|HBH,K |
:=

∫ T
0

∫ T
0

|ϕ(u)| |ϕ(v)|
∂2RH,K(u, v)

∂u∂v
dudv <∞, (2)

such that

∂2RH,K(u, v)

∂u∂v
= αH,K

(
t2H + s2H

)K−2
(ts)2H−1 + βH,K |t− s|

2HK−2 ,

where

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).
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Note that, if ϕ, ψ ∈ |HBH,K |, then their scalar product in HBH,K is given by

〈ϕ,ψ〉H
BH,K

=

∫ T
0

∫ T
0

ϕ(u)ψ(v)
∂2RH,K(u, v)

∂u∂v
dudv.

For ϕ, ψ ∈ |HBH,K |, we have

E
(∫ T

0

ϕ(u)dBH,Ku

)
= 0, E

(∫ T
0

ϕ(u)dBH,Ku

∫ T
0

ψ(v)dBH,Kv

)
= 〈ϕ,ψ〉H

BH,K
.

It is worth being pointed out that the canonical Hilbert spaceHBH,K associated
with BH,K satisfies:

L2([0, T ]) ⊂ L1/HK([0, T ]) ⊂ |HBH,K | ⊂ HBH,K , (3)

where H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1).

3 Preliminaries

Let {Xt, 0 ≤ t ≤ T } be a process governed by the following equation:

dXt = S(Xt)dt+ εdB
H,K
t , X0 = x0, 0 ≤ t ≤ T, (4)

where ε > 0, BH,Kt a bifractional Brownian motion, and S(.) is an unknown
function. We suppose that xt is a solution of the following equation

dxt

dt
= S(xt), x0, 0 ≤ t ≤ T. (5)

We also suppose that the function S : R −→ R satisfies the following assump-
tions:

(A1) There exists L > 0 such that

|S(x) − S(y)| ≤ L |x− y| , x, y ∈ R, (6)

(A2) There exists M > 0 such that

|S(x)| ≤M(1+ |x|), x ∈ R,

Then, the stochastic differential equation (4) has a unique solution {Xt, 0 ≤ t ≤ T }.

(A3) Assume that the function S(x) is bounded by a constant C.
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Since the function xt satisfies (5), it follows that

|S(xt) − S(xs)| ≤ L|xt − xs| = L
∣∣∣∣∫ t
s

S(xr)dr

∣∣∣∣ ≤ LC|t− s|, t, s ∈ [0, T ].

Let us define Σ0(L) as the class of all functions S(x) satisfying the assumption
(A1) and uniformly bounded by the same constant C. Further, we denote by
Σk(L) the class of all function S(x) which are uniformly bounded by the same
constant C and which are k-times differentiable with respect to x satisfying
the following condition∣∣∣Sk(x) − Sk(y)∣∣∣ ≤ L |x− y| , x, y ∈ R, (7)

where Sk(x) is the k-th derivative of S(x).

Lemma 1 Assume that hypothesis (A1) is verified. Let Xt and xt be the so-
lutions of the equations (4) and (5) respectively. Then, we have

sup
0≤t≤T

E (Xt − xt)
2 ≤ e2LTε2T 2HK. (8)

Proof of the Lemma 1

By (4) and (5), we have

Xt = x0 +

∫ t
0

S(Xr)dr+ εB
H,K
t ,

and

xt = x0 +

∫ t
0

S(xr)dr.

This implies

Xt − xt =

∫ t
0

(S(Xr) − S(xr))dr+ εB
H,K
t .

Thus
|Xt − xt| ≤

∫t
0 |S(Xr) − S(xr)|dr+ ε|B

H,K
t |

≤ L
∫t
0 |Xr − xr|dr+ ε|B

H,K
t |.

(9)

Putting ut = |Xt − xt|, we have

ut ≤
∫ t
0

urdr+ ε|B
H,K
t |.
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By using Grönwall’s inequality, we obtain

|Xt − xt| ≤ eLtε
∣∣∣BH,Kt ∣∣∣ .

Then, since E
(
BH,Kt

)2
= t2HK, we have

E|Xt − xt|2 ≤ e2Ltε2t2HK.

Finally, we find

sup
0≤t≤T

E (Xt − xt)
2 < e2LTε2T 2HK.

4 Main results

The main goal of this work is to build an estimator of the trend function
St in the model described by stochastic differential equation (4) using the
method developed by Kutoyants [7]. Then, we study its asymptotic properties
as ε −→ 0.

For all t ∈ [0, T ], the kernel estimator Ŝt of St is given by

Ŝt =
1

φε

∫ T
0

G

(
τ− t

φε

)
dXτ, (10)

where G(u) is a bounded function with finite support [A,B] satisfying the fol-
lowing hypotheses:

(H1) G(u) = 0 for u < A and u > B and

∫B
A

G(u)du = 1,

(H2)

∫+∞
−∞ G2(u)du <∞,

(H3)

∫+∞
−∞ u2(k+1)G2(u)du <∞,

(H4)

∫+∞
−∞ |G(u)|

1
HK du <∞,

Further, we suppose that the normalizing function φε satisfies:
(H5) φε −→ 0 and ε2φ−1

ε −→ 0 as ε −→ 0.

The following theorem gives the uniform convergence of the estimator Ŝt.

Theorem 1 Suppose that the assumptions (A1)-(A3) and (H1)-(H5) hold true.
Further, suppose that the trend function S(x) belongs to Σ0(L). Then, for any
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0 < c ≤ d < T and HK ∈ (1/2, 1), the estimator Ŝt is uniformly consistent,
that is,

lim
ε−→0 sup

S(x)∈Σ0(L)
sup
c≤t≤d

ES(|Ŝt − S(xt)|2) = 0. (11)

The following additional assumptions are useful for the rest of the theoret-
ical study. Assume that

(H6)

∫+∞
−∞ ujG(u)du = 0 for j = 1, 2, ..., k,

(H7)

∫+∞
−∞ uk+1G(u)du <∞ and

∫+∞
−∞ u2(k+2)G2(u)du <∞.

The rate of convergence of the estimator Ŝt is established in the following
theorem.

Theorem 2 Suppose that the function S(x) ∈ Σk(L), HK ∈ (1/2, 1) and φε =

ε
1

k−HK+2 . Then, under the hypotheses (A1)-(A3) and (H1)-(H7), we have

lim sup
ε−→0 sup

S(x)∈Σk(L)
sup
c≤t≤d

ES(|Ŝt − S(xt)|2)ε
−2(k+1)
k−HK+2 <∞. (12)

Finally, the following theorem presents the asymptotic normality of the ker-
nel type estimator Ŝt of S(xt).

Theorem 3 Suppose that the function S(x) ∈ Σk+1(L), HK ∈ (1/2, 1) and

φε = ε
1

k−HK+2 . Then, under the hypotheses (A1)-(A3) and (H1)-(H7), we have

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

) D−→ N (m,σ2H,K), as ε −→ 0,

where

m =
Sk+1(xt)

(k+ 1)!

∫+∞
−∞ G(u)uk+1du,

and

σ2H,K =

∫+∞
−∞
∫+∞
−∞ G(u)G(v)

[
αH,K

(
u2H + v2H

)K−2
(uv)2H−1

+βH,K |u− v|2HK−2
]
dudv,

with

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).
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5 Numerical example

The main objective of this part is to conduct a numerical study to illustrate our
theoretical result. We compare our kernel estimator for stochastic differential
equations driven by a bifractional Brownian motion to the kernel estimator for
stochastic differential equations driven by fractional Brownian motion given
in Mishra and Prakasa Rao [10]. We compare numerically the variance σ2H,K
of our estimator to σ2H.

Consider a function G which satisfies hypotheses (H1)-(H7):

G(t) =
15

128

(
63t4 + 70t2 + 15

)
, |t| ≤ 1.

− The variance of the kernel estimator for stochastic differential equations
driven by fractional Brownian motion given in Mishra and Prakasa Rao [10]
is given as:

For all H ∈ (1/2, 1),

σ2H = H(2H− 1)

∫+∞
−∞
∫+∞
−∞ G(u)G(v) |u− v|2H−2 dudv,

− Using the result given in Theorem 3, the variance of our estimator is
obtained as:

For all H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1), we have

σ2H,K =

∫+∞
−∞
∫+∞
−∞ G(u)G(v)

[
αH,K

(
u2H + v2H

)K−2
(uv)2H−1

+βH,K |u− v|2HK−2
]
dudv,

where

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).

Next, we compute the variances, the results are presented in the following
Tables
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Table 1: The variance values σ2H.

H 0.7 0.75 0.8 0.85 0.9 0.95

σ2H 1.1567 1.1900 1.1830 1.1506 1.1025 1.0452

Table 2: The variance values σ2H,K.

K \H 0.7 0.75 0.8 0.85 0.9 0.95

0.75 0.6006 0.9458 1.1647 1.2965 1.3709 1.4091

0.8 0.8733 1.1230 1.2696 1.3462 1.3774 1.3801

0.85 1.0362 1.2107 1.3019 1.3376 1.3378 1.3159

0.9 1.1227 1.2382 1.2873 1.2930 1.2712 1.2326

0.95 1.1570 1.2264 1.2437 1.2274 1.1901 1.1402

1 1.1567 1.1900 1.1830 1.1506 1.1025 1.0452

From the obtained results in Tables 1 and 2, we clearly see that the variance of
our estimator is less than that of the kernel estimator for stochastic differential
equations driven by fractional Brownian motion. We can conclude that our
kernel estimator for stochastic differential equations driven by a bifractional
Brownian motion is better than that given in Mishra and Prakasa Rao [10].

6 Proof of Theorems

6.1 Proof of Theorem 1

From (4) and (10), we can see that

Ŝt − S(xt) =
1

φε

∫ T
0

G

(
τ− t

φε

)
dXτ − S(xt)

=
1

φε

∫ T
0

G

(
τ− t

φε

)(
S(Xτ)dτ+ εdB

H,K
τ

)
− S(xt)

=
1

φε

∫ T
0

G

(
τ− t

φε

)
(S(Xτ) − S(xτ))dτ

+
1

φε

∫ T
0

G

(
τ− t

φε

)
S(xτ)dτ− S(xt)

+
ε

φε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ .
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Using the inequality (α+ β+ γ)2 ≤ 3α2 + 3β2 + 3γ2, it yields

ES
[
Ŝt − S(xt)

]2 ≤ 3ES [ 1
φε

∫ T
0

G

(
τ− t

φε

)
(S(Xτ) − S(xτ))dτ

]2
+ 3ES

[
1

φε

∫ T
0

G

(
τ− t

φε

)
S(xτ)dτ− S(xt)

]2
+ 3ES

[
ε

φε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ

]2
≤ I1 + I2 + I3.

(13)

• Concerning I1. Via inequalities (6) and (8) and hypotheses (H1)-(H2), we
get

I1 = 3ES
[
1

φε

∫ T
0

G

(
τ− t

φε

)
(S(Xτ) − S(xτ))dτ

]2
= 3ES

[∫+∞
−∞ G (u) (S(Xt+φεu) − S(xt+φεu))du

]2
≤ 3(B−A)ES

[∫+∞
−∞ G2 (u) (S(Xt+φεu) − S(xt+φεu))

2 du

]
≤ 3(B−A)L2ES

[∫+∞
−∞ G2 (u) (Xt+φεu − xt+φεu)

2 du

]
≤ 3(B−A)L2

[∫+∞
−∞ G2 (u) sup

0≤t+φεu≤T
ES (Xt+φεu − xt+φεu)

2 du

]
≤ 3(B−A)L2e2LTT 2HKε2

≤ C1ε2,

(14)

where C1 is a positive constant depending on T, L,H, K, and (B−A) .
• Concerning I2. Let

I2 = 3ES
[
1
φε

∫T
0 G

(
τ−t
φε

)
S(xτ)dτ− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u)S(xt+φεu)du− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du

]2
(15)
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Next, by using hypotheses (A3) and (H3), we have

I2 ≤ 3L2C22ES
[∫+∞

−∞ G (u) (φεu)du

]2
≤ 3 (B−A)L2C22

[∫+∞
−∞ G2 (u)u2du

]
φ2ε

≤ C3φ2ε,

where C3 is a positive constant depending on L and (B−A) .
• Concerning I3. Since HK ∈ (1/2, 1), we have

I3 = 3ES
[
ε

φε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ

]2
= 3

ε2

φ2ε
ES
[∫ T
0

G

(
τ− t

φε

)
dBH,Kτ

]2
≤ 3 ε

2

φ2ε

C(2,HK)(∫ T
0

∣∣∣∣G(τ− tφε

)∣∣∣∣ 1
HK

dτ

)2HK
≤ C4

ε2

φ2ε

[
φ2HKε

(∫+∞
−∞ |G (u)|

1
HK du

)2HK]

≤ C5
ε2

φε
φ2HK−1ε (using hypothesis (H4)),

(16)

where C5 is a positive constant depending on H and K.
Combining (13)-(16), we have

sup
S(x)∈Σ0(L)

sup
c≤t≤d

ES
[
Ŝt − S(xt)

]2 ≤ C6(ε2 + φ2ε + ε2

φε
φ2HK−1ε

)
.

Finally, under the assumption (H5), we obtain

lim
ε−→0 sup

S(x)∈Σ0(L)
sup
c≤t≤d

ES
[
Ŝt − S(xt)

]2
= 0.

6.2 Proof of Theorem 2

Using the Taylor formula, we get

S(xt) = S(xt0) +

k∑
j=1

Sj(xt0)
(t− t0)

j

j!
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+
(
Sk(xt+λ(t−t0)) − S

k(xt0)
) (t− t0)

k

k!
, λ ∈ (0, 1),

and

S (xt+φεu) = S (xt) +

k∑
j=1

Sj (xt)
(φεu)

j

j!

+
(
Sk(xt+λ(φεu)) − S

k(xt)
) (φεu)

k

k!
, λ ∈ (0, 1).

Then, by substituting this expression in I2, using inequality (7) and assump-
tions (H6)-(H7), we obtain

I2 = 3ES
[
1

φε

∫ T
0

G

(
τ− t

φε

)
S(xτ)dτ− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u)S(xt+φεu)du− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du

]2

= 3ES

∫+∞
−∞G(u)

 k∑
j=1

Sj(xt)
(φεu)

j

j!
+
(
Sk(xt+λ(φεu))−S

k(xt)
)(φεu)k

k!

du
2

= 3ES
[
φkε
k!

∫+∞
−∞ G (u)uk

(
Sk(xt+λ(φεu)) − S

k(xt)
)
du

]2
(by using (H6))

≤ 3C27L2
[
φk+1ε

k!

∫+∞
−∞ G (u)uk+1du

]2
≤ 3C27L2 (B−A)

φ
2(k+1)
ε

(k!)2

[∫+∞
−∞ G2 (u)u2(k+1)du

]
≤ C8φ

2(k+1)
ε ,

(17)

where C8 is a positive constant depending on L and (B−A) .
Next, from (14), (16), and (17), we find

sup
S(x)∈Σk(L)

sup
c≤t≤d

ES
∣∣Ŝt − S(xt)∣∣2 ≤ C9 (ε2φ2HK−2ε + φ

2(k+1)
ε + ε2

)
.
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Putting φε = ε
1

k−HK+2 , it yields

lim sup
ε−→0 sup

S(x)∈Σk(L)
sup
c≤t≤d

ES(|Ŝt − S(xt)|2)ε
−2(k+1)
k−HK+2 <∞.

This completes the proof of Theorem 2.

6.3 Proof of Theorem 3

From (4) and (10), we can see that

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

)
= ε

−(k+1)
k−HK+2

[
1
φε

∫T
0 G

(
τ−t
φε

)
(S(Xτ) − S(xτ))dτ

+ 1
φε

∫T
0 G

(
τ−t
φε

)
S(xτ)dτ− S(xt) + ε

φε

∫T
0 G

(
τ−t
φε

)
dBH,Kτ

]
.

Therefore

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

)
= ε

−(k+1)
k−HK+2

[∫+∞
−∞ G (u) (S(Xt+φεu) − S(xt+φεu))du

+
∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du+ ε

φε

∫T
0 G

(
τ−t
φε

)
dSHτ

]
.

Thus

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

)
= r1(t) + r2(t) + ηε(t).

Hence, by Slutsky’s Theorem, it suffices to show the following three claims:

r1(t)→ 0, as ε→ 0 in probability. (18)

r2(t)→ m, as ε→ 0 in probability. (19)

and

ηε(t)→ N (0, σ2H,K), as ε→ 0 in distribution. (20)

Proof of (18).
Let

r1(t) = ε
−(k+1)
k−HK+2

∫+∞
−∞ G (u) (S(Xt+φεu) − S(xt+φεu))du.

By applying the inequality (14), we have

0 ≤ E
[
r21(t)

]
≤ ε

−2(k+1)
k−HK+2 I1 ≤ C10ε

2(1−HK)
k−HK+2 .



142 A. Keddi, F. Madani, A. A. Bouchentouf

Therefore, using the Bienaymé-Tchebychev’s inequality, as ε −→ 0, we obtain,
for all α > 0

P (|r1(t)| > α) ≤
E
[
r21(t)

]
α2

≤ C10ε
2(1−HK)
k−HK+2

α2
−→ 0.

Proof of (19).

Let

r2(t) = ε
−(k+1)
k−HK+2

∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du.

By taking any t, u ∈ [0, T ] and b(x) ∈ Σk+1(L), via the Taylor expansion, we
get

S (xt+φεu) = S (xt) +
∑k
j=1 S

j (xt)
(φεu)

j

j! + Sk+1(xt)
(k+1)! (φεu)

k+1

+
(
Sk+1(xt+λ(φεu)) − S

k+1(xt)
) (φεu)

k+1

(k+1)! , λ ∈ (0, 1),

Making use of the conditions (H6), (H7), and choosing φε = ε
1

k−HK+2 , we
obtain

E [r2(t) −m]2 = E
[∫+∞

−∞ G (u)
(
Sk+1(xt+λ(φεu)) − S

k+1(xt)
) (u)k+1

(k+1)! du
]2

≤ C11L
2C2

(∫+∞
−∞ G(u)uk+2 φε

(k+1)!du
)2

≤ C12

(∫+∞
−∞ G2(u)u2(k+2)du

)
φ2ε

≤ C13φ
2
ε,

where C13 is a positive constant which depends on L and k, and

m =
Sk+1(xt)

(k+ 1)!

∫+∞
−∞ G (u)uk+1du.

Therefore,
E [r2(t) −m]2 −→ 0 as ε −→ 0.

Then
r2(t)

P−→ m.

Proof of (20).
Let

ηε(t) = ε
−(k+1)
k−HK+2 εφ−1

ε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ . (21)
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In fact, we have to evaluate the variance of (21). To this end, let

E [ηε(t)]
2 =

(
ε

1−HK
k−HK+2φ−1

ε

)2
E
(∫ T

0

G

(
τ− t

φε

)
dBH,Kτ

)2
.

Moreover, using equation (2), we have

E [ηε(t)]
2 =

(
ε

1−HK
k−HK+2φ−1

ε

)2 [
φ2HKε

∫+∞
−∞
∫+∞
−∞ G(u)G(v)

∂2RH,K(u, v)

∂u∂v
dudv

]
.

Then, by taking φε = ε
1

k−HK+2 , we get

E [ηε(t)]
2 =

∫+∞
−∞
∫+∞
−∞ G (u)G (v)

∂2RH,K(u, v)

∂u∂v
dudv,

with

∂2RH,K(u, v)

∂u∂v
= αH,K

(
u2H + v2H

)K−2
(uv)2H−1 + βH,K |u− v|2HK−2 ,

where

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).

Finally, this last equation allows us to achieve the proof of Theorem 3.

7 Conclusion

This paper considered a nonparametric estimation of trend function for stochas-
tic differential equations driven by a bifractional Brownian motion. We con-
structed an estimate of the trend function. Then, under some assumptions, we
established the uniform consistency, the rate of convergence and the asymp-
totic normality of the proposed estimator. Further, an numerical example is
provided. The present study has many applications in practical phenomena
including telecommunications and economics.
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Abstract. Let f : M → M be a diffeomorphism on a closed smooth
n(≥ 2) dimensional manifold M. We show that C1 generically, if a dif-
feomorphism f has the orbital shadowing property on locally maximal
chain transitive sets which admits a dominated splitting then it is hyper-
bolic.

1 Introduction

LetM be a closed smooth n(n ≥ 2)-dimensional Riemannian manifold, and let
Diff(M) be the space of diffeomorphisms of M endowed with the C1-topology.
Denote by d the distance on M induced from a Riemannian metric ‖ ·‖ on the
tangent bundle TM. For any δ > 0, a sequence {xi}i∈Z is called a δ-pseudo orbit
of f if d(f(xi), xi+1) < δ for all i ∈ Z. Let Λ be a closed f-invariant set. We say
that f has the shadowing property on Λ if for any ε > 0 there is δ > 0 such that
for any δ-pseudo orbit {xi}i∈Z ⊂ Λ there is y ∈ M such that d(fi(y), xi) < ε
for all i ∈ Z. If Λ = M then we say that f has the shadowing property.
The shadowing property is very useful notion to investigate for hyperbolic
structure. In fact, Robinson[22] and Sakai[24] proved that a diffeomorphism f

has the C1 robustly shadowing property if and only if it is structurally stable

2010 Mathematics Subject Classification: Primary 37C50; Secondary 34D10
Key words and phrases: shadowing; orbital shadowing, chain transitive set, homoclinic
class, chain recurrence class, hyperbolic, generic
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diffeomorphisms. Here, we say that f has the C1 robustly shadowing property
if there is a C1 neighborhood U(f) of f such that for any g ∈ U(f), g has
the shadowing property. From the property, a general shadowing property was
introduced by [20] which is called the orbital shadowing property. For the
orbital shadowing property, many results published by the various view points
(see [10, 13, 14, 15, 16, 17, 19]). We say that f has the orbital shadowing
property on Λ if for any ε > 0 there is δ > 0 such that for any δ pseudo orbit
ξ = {xi}∈Z ⊂ Λ such that there is a point y ∈M such that

Orb(y) ⊂ Bε(ξ) and ξ ⊂ Bε(Orb(y)).

If Λ = M then we say that f has the orbital shadowing property. Let Λ be
a closed f-invariant set. We say that Λ is hyperbolic if the tangent bundle
TΛM has a Df-invariant splitting Es⊕Eu and there exist constants C > 0 and
0 < λ < 1 such that

‖Dxfn|Esx‖ ≤ Cλ
n and ‖Dxf−n|Eux ‖ ≤ Cλ

n

for all x ∈ Λ and n ≥ 0. If Λ =M then we say that f is Anosov.
Pilyugin et al [20] proved that if a diffeomorphism f has the C1 robustly

orbital shadowing property then it is structurally stable diffeomorphisms. Lee
and Lee [10] proved that a volume preserving diffeomorphism f has the C1

robustly orbital shadowing property then it is Anosov. Moreover, we can find
similar results [12, 13, 14, 15]. We say that the set Λ is transitive if there is a
point x ∈ Λ such that ω(x) = Λ, where ω(x) is the omega limit set of x. An
invariant closed set C is called a chain transitive if for any δ > 0 and x, y ∈ C,
there is δ-pseudo orbit {xi}

n
i=0(n ≥ 1) ⊂ C such that x0 = x and xn = y. It is

clear that the transitive set Λ is the chain transitive set C, but the converse is
not true. We say that Λ is locally maximal if there is a neighborhood U of Λ
such that Λ =

⋂
n∈Z f

n(U). For the relation between chain transitive sets and
C1 robustly shadowing theories, In [16], Lee proved that if a robustly chain
transitive set with orbital shadowing then it is hyperbolic. We say that f has
the C1 stably shadowing property on Λ if there are a C1 neighborhood U(f) of
f and a neighborhood U of Λ such that for any g ∈ U(f), g has the shadowing
property on Λg(U), where Λg(U) is the continuation of Λ. For f ∈ Diff(M),
we say that a compact f-invariant set Λ admits a dominated splitting if the
tangent bundle TΛM has a continuous Df-invariant splitting E ⊕ F and there
exist C > 0, 0 < λ < 1 such that for all x ∈ Λ and n ≥ 0, we have

||Dfn|E(x)|| · ||Df−n|F(fn(x))|| ≤ Cλn.
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In [18], Lee proved that if a diffeomorphism f has the C1 stably shadowing
property on chain transitive set C then it admits a dominated splitting. Sakai
[23] proved that a diffeomorphism f has the C1 stably shadowing property on
chain transitive set C then it is hyperbolic.

We say that a subset G ⊂ Diff(M) is residual if G contains the intersection
of a countable family of open and dense subsets of Diff(M); in this case G is
dense in Diff(M). A property ”P” is said to be (C1)-generic if ”P” holds for
all diffeomorphisms which belong to some residual subset of Diff(M). For C1

generic differeomorphism f, Abdenur and Dı́az [3] suggested the problem : if a
C1 generic diffeomorphism f has the shadowing property then is it hyperbolic?

Unfortunately, this question still is open. For the problem, there are partial
results [4, 9, 11]. Ahn et al [4] proved that for C1 generic diffeomorphism f, if
f has the shadowing property on a locally maximal homoclinic class then it is
hyperbolic. Lee and Wen [11] proved that for C1 generic diffeomorphism f, if
f has the shadowing property on a locally maximal chain transitive set then it
is hyperbolic. Very recently, Lee and Lee [9] proved that for C1 generic diffeo-
morphism f, if f has the shadowing property on chain recurrence classes then
it is hyperbolic. From the results, we study the orbital shadowing property for
C1 generic diffeomorphisms. The following is the main theorem of the paper.

Theorem A For C1 generic f, if f has the orbital shadowing property on a
locally maximal C which admits a dominated splitting E⊕F then it is hyperbolic.

2 Proof of Theorem A

Let M be as before, and let f ∈ Diff(M). A periodic point for f is a point
p ∈M such that fπ(p)(p) = p, where π(p) is the minimum period of p. Denote
by P(f) the set of all periodic points of f. Let p be a hyperbolic periodic point
of f. A point x ∈M is called chain recurrent if for any δ > 0, there is a finite
δ-pseudo orbit {xi}

n
i=0(n ≥ 1) such that x0 = x and xn = x. Denote by CR(f)

the set of all chain recurrent points of f. We define a relation! on CR(f) by
x! y if for any δ > 0, there is a finite δ pseudo orbit {xi}

n
i=0 such that x0 = x

and xn = y and a finite δ pseudo orbit {wi}
n
i=0 such that w0 = y and wn = x.

Then we know that the relation ! is an equivalence relation on CR(f). the
equivalence classes are called the chain recurrence classes of f, denote by Cf.
Note that if the class Cf has a hyperbolic periodic point p then we denote as
C(p, f).

It is well known that if p is a hyperbolic periodic point of f with period k
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then the sets

Ws(p) = {x ∈M : fkn(x) → p as n→ ∞} and

Wu(p) = {x ∈M : f−kn(x) → p as n→ ∞}

are C1-injectively immersed submanifolds of M. The homoclinic class of a
hyperbolic periodic point p is the closure of the transverse intersection of the
Ws(p) and Wu(p), and it is denoted by H(p, f). It is clear that H(p, f) is
compact, transitive and invariant sets. Let q be a hyperbolic periodic point of
f. We say that p and q are homoclinically related, and write p ∼ q if

Ws(p)tWu(q) 6= ∅ and Wu(p)tWs(q) 6= ∅.

It is clear that if p ∼ q then index(p) = index(q), that is, dimWs(p) =
dimWs(q). By the Smale’s transverse homoclinic point theorem, Hf(p) coin-
cides with the closure of the set of hyperbolic periodic points q of f such that
p ∼ q. Note that if p is a hyperbolic periodic point of f then there is a neigh-
borhood U of p and a C1-neighborhood U(f) of f such that for any g ∈ U(f)
there exists a unique hyperbolic periodic point pg of g in U with the same pe-
riod as p and index(pg) = index(p). Such a point pg is called the continuation
of p = pf. The following are results for C1 generic diffeomorphisms (see [2]).

Lemma 1 There is a residual set G ⊂ Diff(M) such that if f ∈ G,

(a) H(p, f) = C(p, f), for some hyperbolic periodic point p (see [5]).

(b) A compact f-invariant set C is chain transitive if and only if C is the
Hausdorff limit of a sequence of periodic orbits of f (see [8]).

(c) A locally maximal transitive set Λ is a locally maximal H(p, f) for some
periodic point p ∈ Λ (see [1]).

(d) H(p, f) =Ws(p) ∩Wu(p) (see [7]).

Remark 1 Applying Pugh’s closing lemma, we know that any transitive set
Λ of a C1-generic diffeomorphism f is the Hausdorff limit of a sequence of
periodic orbits Orbf(pn) of f, that is, limn→∞Orbf(pn) = Λ. By Lemma 1
(b) and (c), a chain transitive set C is a transitive set Λ and so, a locally
maximal chain transitive set C = H(p, f) for some periodic point p.

Let Λ be a closed f-invariant set. We say that Λ is Lyapunov stable for f if
for any open neighborhood U of Λ there is a neighborhood V ⊂ U such that
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fj(V) ⊂ U for all j ∈ N. We say that the closed set is bi-Lyapunov stable if
it is Lyapunov stable for f and f−1. Potrie [21, Theorem 1.1] proved that C1

generically, if a homoclinic class H(p, f) is a bi-Lyapunov stable then it admits
a dominated splitting.

A diffeomorphism f has a heterodimensiional cycle associated with the hy-
perbolic periodic points p and q of f if (i) the indice of the points p and q
are different, and (ii) the stable manifold of p meets the unstable manifold of
q and the same holds for the stable manifold of p and the unstable manifold
of q (see [6]). We say that f has C1 robustly heterodimensional cycle if f has a
heterodiemnsional cycle associated with the hyperbolic periodic points p and
q of f and there is a C1 neighborhood U(f) of f such that for any g ∈ U(f), g
has a heterodimensional cycle associated with the hyperbolic periodic points
pg and qg, where pg and qg are the continuations of p and q for g.

Lemma 2 [6, Corollary 1.15] There is a residual set T ⊂ Diff(M) such that
for any f ∈ T and every locally maximal chain recurrence class Cf of f there are
two possibilities: either Cf is hyperbolic or it has a robustly heterodimensional
cycle.

Lemma 3 Let C(p, f) admits a dominated splitting E ⊕ F and let C(p, f) be
locally maximal. If a chain recurrence class C(p, f) has heterodimensional cycle
then f does not have the orbital shadowing property on C(p, f).

Proof. Suppose, by contradiction, that f has the orbital shadowing property
on C(p, f). Since C(p, f) has heterodimensional cycle, there is q a hyperbolic
periodic point in C(p, f) such that index(p) 6= index(q). Then we take x, y ∈
C(p, f) such that x ∈Ws(p)∩Wu(q) and y ∈Wu(p)∩Ws(q). By assumption,
x, y are not transverse intersection points. Since q is hyperbolic, TqM = Esq ⊕
Euq. Choose α > 0 sufficiently small such that Ws

α/4(q) = expq(E
s(α/4)) and

Wu
α/4(q) = expq(E

u(α/4)). Then we may assume that y ∈ Ws
α/4(q) and x ∈

Wu
α/4(q). Since y ∈Wu(p), there is η > 0 such that y ∈ Bη(y) ∩Wu(p). Take

a small arc Jy ⊂ Bη(y) ∩Wu(p) such that TyJy = TyW
u(p). Since C(p, f)

admits a dominated splitting E ⊕ F, we have TyJy = Fy = TyW
u(p), Fq ⊂ Euq

and Esq ⊂ Eq. Put Eu,1 = Eq ⊕ Euq and Eu,2 = Fq. Then Euq = Eu,1q ⊕ Eu,2q , and

Wu,1
α/4(q) = expq(E

u,1
q (α/4)),Wu,2

α/4(q) = expq(E
u,2
q (α/4)).

Let Pu : Bα/4(q) → Euq and Ps : Bα/4(q) → Esq be the projections paral-

lel to Esq and Euq, respectively. Then Pu(fn(Jy)) ∩ Bα/4(q) → Wu,1
α/4(q) and

Ps(fn(Jy)) ∩ Bα/4(q) → q as n→ ∞.
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Take ε = min{α/4, η, d(x,Wu,1
α/4(p))/2}, and let 0 < δ < ε be the num-

ber of the orbital shadowing property. Since y ∈ Ws(q) ∩ Wu(p) and x ∈
Wu(q)∩Ws(p), there are i1 > 0 and i2 > 0 such that (i) d(fi1(y), f−i1(x)) < δ
and d(f−i2(y), fi2(x)) < δ, (ii) max{dH(P

s(fi1+j(Jy), q), dH(Pu(fi1+j(Jy)) ∩
Bα/4(q),W

u,1
α/4(q))} < ε for all j ≥ 0, where dH is the Hausdorff metric. Then

we have a δ-pseudo orbit as follows:

ξ = {y, f(y), . . . , fi1−1(y), f−i1(x), . . . , f−1(x),

x, f(x), . . . , fi2−1(x), f−i2(y), . . . , f−1(y), y} ⊂ C(p, f).

Since f has the orbital shadowing property on C(p, f) and C(p, f) is locally
maximal, there is a point w ∈ C(p, f) such that

Orb(w) ⊂ Bε(ξ) and ξ ⊂ Bε(Orb(w)).

First, we assume that there is k > 0 such that fk(w) ∈ Jy \ {y}. Then if
fk(w) ∈ Pu(fn(Jy)) then since Pu(fn(Jy)) → Wu,1(q)(n → ∞), fk+n(w) →
Wu,1(q) as n → ∞. Thus there is j > 0 such that d(fk+j(w), fj(y)) > 8ε

and so, d(fk+j(w), q) > 2ε which is a contradiction. If fk(w) 6∈ Pu(Jy) then
by λ-lemma, fn(Jy) → Wu(q) as n → ∞. Then there is l > 0 such that
d(fk+l(w), q) > 4ε. Since x ∈Wu(q), there is m > 0 such that d(f−m(x), q) <
ε for somem < i2. Then we know that fk+l(w) 6∈ Bε(ξ) which is a contradiction
by the orbital shadowing property on C(p, f). Then for all i ∈ Z, fi(w) 6∈
Jy \ {y}.

We assume that there is k > 0 such that fk(w) = y. Since y ∈Ws(q)∩Wu(p)
and x ∈ Wu(q) ∩ Ws(p), we know Orb(x) ∩ Orb(y) = ∅. Then we have
ξ 6⊂ Bε(Orb(w)) which is a contradiction by the orbital shadowing property
on C(p, f). Thus we know Orb(w) ∩ Jy = ∅.

Finally, we assume that there is k > 0 such that fk(w) ∈ Bη(y) \ Jy. Then
for all z ∈ Bη(y) \ Jy, there is k > 0 such that d(f−k(x), fk(z)) > 2ε since
x ∈ Wu(q) and q is hyperbolic saddle. Then we have ξ 6⊂ Bε(Orb(w)) which
is a contradiction by the orbital shadowing property on C(p, f). Consequently,
if a locally maximal chain recurrence class C(p, f) admits a dominated split-
ting and f has the orbital shadowing property on C(p, f) then it does not the
heterodimensional cycle. �

Proof of Theorem A. Let f ∈ G ∩ T and let f has the orbital shadowing
property on a locally maximal chain transitive set C. Since f ∈ G, by Remark
1 C = C(p, f) for some hyperbolic periodic point p. Since chain transitive set C
admits a dominated splitting E⊕ F, and f has the orbital shadowing property
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on a locally maximal chain transitive C, by Lemma 3, C = C(p, f) does not
have the heterodimensional cycles. It is clear that a locally maximal C(p, f)
does not have the robustly hetrodimensional cycle. Thus by Lemma 2, a lo-
cally maximal chain transitive set C is hyperbolic. �

In Abdenur et al [2] the authors proved that every locally maximal homo-
clinic class with a non-empty interior is the whole space.

Corollary 1 Let f : M → M be a diffeomorphism with dimM = 3. For C1

generic f, if f has the orbital shadowing property on a locally maximal chain
transitive set C which admits a dominated splitting E⊕ F then it is Anosov.

The following was proved in [21, Proposition 1.2] which means that a ho-
moclinic class admits a codimension one dominated splitting then it has a
non-empty interior.

Lemma 4 There is a residual set R ⊂ Diff(M3) such that for any f ∈ R, if a
homoclinic class H admits a codimension one dominated splitting then it has
non-empty interior.

Proof of Corollary 1. Let f ∈ G ∩T ∩R and let f has the orbital shadowing
property on a locally maximal chain transitive set C which admits a dominated
splitting E⊕ F. By Remark 1, a locally maximal chain transitive C = H(p, f).
Since f ∈ R, by Lemma 4, a hoomoclinic class H(p, f) has nonempty interior.
Since H(p, f) is locally maximal, by [2, Thereom 3], H(p, f) =M. Since f has
the orbital shadowing property on a locally maximal chain transitive set C
which admits a dominated splitting E⊕F, by Theorem A, it is hyperbolic, and
so it is Anosov. �
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1 Introduction

Graphs used in this article, unless otherwise mentioned will be undirected,
simple and finite. For a graph G = (V, E), the degree of a vertex v, denoted
by deg(v) is the number of edges incident to the vertex v(loops counted twice
incase of multigraph). The maximum degree of G is denoted by ∆(G) and the
minimum degree of G is denoted by δ(G). If deg(v) = 1, then v is called a
pendant vertex. For all terminology and notation in graph theory, we refer the
reader to the text-book by Harary [1]. The graphs with positive or negative
signs attatched to each of its arcs are called signed graphs. Zaslavasky [2],
formally defines a signed graph as Σ = (G,σ), where G is the underlying
unsigned graph consisting of G = (V, E) and σ : E → {+,−} is the function
assigning signs to the edges of the graph. The edges which receive +(−) signs,
are called positive(negative) edges of Σ.

A signed graph Σ is all-positive(all-negative) if all its edges are positive
(negative). If it is an all-positive or all-negative, then it is said to be ho-
mogenous else heterogenous. Switching Σ with respect to a marking µ where
µ : V → {+1,−1} is the operation of negating every edge whose end vertices
are of opposite signs. Σ is said to be balanced if each of its cycle has an even
number of negative edges. Equivalently, a signed graph is balanced if it can
be switched to an all-positive signed graph. For further details on theory of
signed graphs, the reader is referred to [3, 2].

Domination in graph theory for unsigned graphs is one of the continuing
research of the well-researched region. Detailed survey of the same can be
found in the book by Haynes et al. [4]. In 2013, Acharya [5] introduced the
theory of dominance for signed graphs as well as signed digraphs. A subset
D ⊆ V of vertices of Σ = (G,σ) is a dominating set of Σ, if there exists a
marking µ : V → {+1,−1} of Σ such that every vertex not in D is adjacent to
at least one vertex in D and σ(uv) = µ(u)µ(v), ∀ u ∈ V \D. The minimum
cardinality of a dominating set in Σ is called its domination number, denoted
by γ(Σ). Germina and Ashraf [6, 7] gave characterization for open domination
and double domination in signed graphs. In 2015, Walikar et al. [8] introduced
the concept of signed domination for signed graphs.

In a social network, if all individuals are connected to at least one such
person who can be reached directly, an emergency message can easily be sent
to all participants in the network, thus reducing delay time. Nevertheless,
it is also important to examine positive and negative relationships between
individuals when examining social network interactions. This situation can be
modeled on what is known as the dominating set problem in signed graphs.
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In this paper, we introduce the concept of restrained domination for signed
graphs. In addition, we determine the best possible bounds on γr(G) for certain
classes of signed graphs.

2 Definitions and results

The concept of restrained domination in graphs was introduced by Domke et
al. [9] in 1999. A set D ⊆ V is a restrained dominating set of graph G = (V, E),
if every vertex in V \D is adjacent to a vertex in D as well as another vertex in
V \D. The restrained domination number of graph G denoted by γr(G) is the
smallest cardinality of a restrained dominating set of G. We will now define
the concept of restrained domination for signed graphs and then find the best
possible general bounds for some classes of signed graph. In this paper, we will
be using the notation Σ[D : V \D] when D ⊆ V, to denote the subgraph of Σ
induced by the edges of Σ with one end point in D and the other end point in
V \D. Induced subgraph in V \D is denoted by Σ[V \D].

Definition 1 A subset D ⊆ V of vertices of Σ = (V, E, σ) is a restrained
dominating set if there exists a marking µ : V → {+1,−1} of Σ such that every
vertex in V \D is adjacent to a vertex in D as well a vertex in V \D and for
every vertex u in V \D, σ(uv) = µ(u)µ(v) ∀ v ∈ D and v ∈ V \D.

The minimum cardinality of a restrained dominating set D is called re-
strained domination number of Σ denoted by γr(Σ). Every restrained domi-
nating set of a signed graph Σ of order n follows the inequality 1 ≤ γr(Σ) ≤ n.
As each vertex in V \D is adjacent to at least one other vertex in V \D, the
cardinality of the set V \ D is always greater than or equal to two. Hence,
γr(Σ) can never be equal to n − 1. Before proceeding further with results on
bounds for few classes of signed graphs, we state some important results used
for obtaining these bounds.

Proposition 1 Let G be any graph of order n with δ(G) = 1. Then, every
restrained dominating set of graph G must necessarily have all its pendant
vertices.

Switching Σ = (G,σ) with respect to µ means forming the switched graph
Σµ = (Σ, σµ), whose underlying graph is the same but whose sign function is
defined on an edge e : vw by Σµ(e) = µ(v)σ(e)µ(w). In case of balanced signed
graphs, when Σ is switched with respect to µ, we obtain an all-positive signed
graph. Hence, we can state the following lemma:
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Lemma 1 [2] A signed graph Σ is balanced if and only if it can be switched
to an all-positive signed graph.

Let, DrΣ be the set of all restrained dominating sets of signed graphs and Dr
|Σ|

be the set of all restrained dominating sets of its underlying graphs. Then, for
balanced signed graphs Σ,DrΣ = Dr

|Σ|. But, note that this equality does not hold
true for all unbalanced signed graphs. For example, consider a 6-cycle graph

Σ = C6 with three negative edges, denoted as C
(3)
6 . The underlying graph |Σ| =

C6 will have all independent vertices in its minimum restrained dominating
set. Whereas, in Σ there exists no such independent vertices in restrained
dominating set. This leads to the conclusion of following proposition:

Proposition 2 The set DrΣ of all restrained dominating sets of a signed graph
Σ is contained in the set Dr

|Σ| of all restrained dominating sets of its underlying

graph |Σ|.

Proposition 3 For any finite balanced signed graph, γr(Σ) = γr(| Σ |).

Clearly, from Lemma 1, we can conclude for balanced signed graphs DrΣ =
Dr

|Σ| and hence the result holds true.

Further, since DrΣ ⊆ Dr|Σ|, we can conclude γr(|Σ|) ≤ γr(Σ). In the following
results, we derive bounds for some classes of signed graphs.

Theorem 1 If P
(r)
n is a signed path with n vertices and r negative edges,

γr(P
(r)
n ) = γr(Pn) = n− 2b(n− 1)/3c for n ≥ 1 and 0 < r ≤ n− 1.

Proof. In the case of restrained dominating set of Pn, it is proved in [9] that
γr(Pn) = n− 2b(n− 1)/3c. Since signed paths are trivially balanced, then by
Proposition 3, the theorem follows. �

Theorem 2 If C
(r)
n is a signed cycle with n ≡ 1, 2 (mod 3) and 0 < r ≤ n,

then γr(C
(r)
n ) = γr(Cn) = n− 2bn/3c .

Proof. Let Σ be a signed cycle C
(r)
n with n ≡ 1, 2 (mod 3) and 0 < r ≤ n.

Restrained domination number as proved in [9] for Cn is n − 2bn/3c. We
consider following two different cases to derive bounds for γr(Cn):

Case 1 r ≡ 0(mod 2).
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Since, Σ has an even number of negative edges, therefore Σ is balanced. Thus
by Proposition 3, γr(Cn) = γr(Σ) = n− 2bn/3c.

Case 2 r ≡ 1(mod 2).

Let D be the minimum restrained dominating set of the underlying graph |Σ|.
We need to check if D is a minimum restrained dominating set of Σ also. Let
us suppose, D is restrained dominating set of Σ. Then, there exists at least
one pair of adjacent vertices in D. Thus, Σ[D : V \D] ∪ Σ[V \D] will always
be acyclic, which is trivially balanced. Since, set D satisfies the property given
in the definition, therefore it is a restrained dominating set of Σ. We know,
DrΣ ⊆ Dr|Σ| by Proposition 2. We can thus conclude, D is minimum restrained
dominating set of Σ and hence follows the theorem. �

Theorem 3 Let C
(r)
n be a signed cycle with n ≡ 0 (mod 3) and 0 < r ≤ n,

then

γr(C
(r)
n ) =

{
n− 2bn/3c if r is even

n− 2bn/3c+ 2 if r is odd

Proof. Let Σ be a signed cycle C
(r)
n with n ≡ 0 (mod 3) and 0 < r ≤ n.

Proceeding in a similar way as previous theorem, we form two cases for γr(Cn):

Case 1 r ≡ 0(mod 2)

Since, Σ has an even number of negative edges, therefore Σ is balanced. Thus
by Proposition 3, γr(Cn) = γr(Σ) = n− 2bn/3c.

Case 2 r ≡ 1(mod 2)

Let D be the minimum restrained dominating set of the underlying graph |Σ|.
We need to check, ifD is restrained dominating set of Σ. In this case we observe
that the set D has all vertices at a distance three from each other. Therefore,
Σ[D : V \D] ∪ Σ[V \D] will be a cycle with odd number of negative edges and
hence not balanced. Thus by definition, D will not be a restrained dominating
set of Σ. We now need to add more vertices to D. Suppose, a vertex v1 ∈ V \D

is added to the set D. The neighboring vertex of v1 in V \D, say v2 then has
no neighboring vertex in V \D and is not a restrained dominating set. Thus,
we will need to add more vertices to D. Let us add N(v1) ∈ V \D to the set
D. Then, there exists only signed paths in Σ[D : V \D] ∪ Σ[V \D], which is
trivially balanced . Since, we added two more vertices to the set D, therefore
γr(Σ) = γr(Cn) + 2 = n− 2bn/3c + 2. �
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Theorem 4 If K
(r)
1,n−1 is a star signed graph with n vertices and r negative

edges, then γr(K
(r)
1,n−1) = n.

Proof. Let Σ be a star signed graph K
(r)
1,n−1 with r negative edges. Since,

γr(K1,n−1) ≤ γr(K
(r)
1,n−1) ≤ n and γr(K1,n−1) = n, the theorem holds true. �

For complete signed graph Kn, n ≥ 5, we can derive a general bounds as

shown in Theorem 5 to obtain γr. But, K
(r)
4 doesnot satisfy this theorem.

Hence, we state the following proposition.
Note that, paw graph is the graph obtained by joining a vertex of cycle

graph C3 to a singleton graph K1 . In the following proposition, P2 ∪ P2 is the
union of two disconnected paths P2.

Proposition 4 Let Σ be a K
(r)
4 graph with r negative edges and r is even and

let 〈I〉 be all-negative edge induced subgraph of Σ. Then,

γr(Σ) =


1, if 〈I〉 ∼= C4
2, if 〈I〉 ∼= P3 or 〈I〉 is a paw graph

4, if 〈I〉 ∼= K(6)
4 or 〈I〉 ∼= P2∪ P2.

Theorem 5 If p is the order of the subgraph induced by negative edges of a
complete signed graph Kn with n vertices, n≥ 5, then

γr(K
(r)
n ) =

{
p if p < n− 1

n otherwise

Proof. Let Σ be any complete signed graph having r negative edges and n ≥ 5
and D be the minimum restrained dominating set of Σ. We need to show that
all the vertices incident to any negative edge in Σ belongs to the set D. We
prove this by contradiction. Suppose there exists at least one negative edge in
Σ with end vertices say v1 and v2, such that either both or one end vertex is
not in D. Then, the negative edge v1v2 will either be in Σ[V \D] or Σ[D : V \D].
Now, there exists at least one C3 in Σ[V \D] or Σ[D : V \D] ∪ Σ[V \D] having
odd number of negative edges, and thus Σ is not balanced. This implies, by
Definition 1 that D is not a minimum restrained dominating set. D satisfies
Definition 1 only when there does not exists any negative edge in Σ[V \D] or

Σ[D : V \ D], which contradicts our assumption. Therefore, γr(K
(r)
n ) = p, for

p < n− 1. By Definition 1, γr(K
(r)
n ) can never be equal to n− 1.
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Hence, γr(K
(r)
n ) > n−1 for p > n−1. But, we know γr(K

(r)
n ) ≤ n. Therefore,

γr(K
(r)
n ) = n. �

Restrained domination for complete bipartite signed graph Σ varies based on
the number of negative edges in Σ and hence, for large graphs it is difficult to
find exact restrained domination number. In the following theorems, we have

generalized some of those cases for complete bipartite signed graphs K
(r)
m,m

with 2m vertices and concluded by giving the bounds on γr for any complete
bipartite signed graph.

Theorem 6 Let K
(r)
m,m be a complete bipartite signed graph with 2m vertices

and r negative edges and 〈I〉 denote the subgraph induced by all negative edges,

then γr(K
(r)
m,m) = 2 in any one of the following conditions:

1. 〈I〉 ∼= K1,m−1 or 〈I〉 ∼= K1,m.

2. All the edges are negative, i.e. 〈I〉 ∼= K
(r)
m,m, where r = m

Proof. Let Σ be a complete bipartite graph K
(r)
m,m with 2m vertices and r

negative edges and D be the restrained dominating set of Σ. We denote 〈I〉 for
the subgraph induced by all negative edges of Σ.

Case 1 〈I〉 ∼= K1,m−1 or 〈I〉 ∼= K1,m

Any induced cycle in a complete bipartite graph is always even. Also, for
a signed graph to be balanced, every cycle in the graph must have an even
number of negative edges. Moreover, degree of every vertex in cycle is always 2.
Let u be the vertex to which all the negative edges are incident. All the induced
cycles of Σ not including vertex u are all positive and hence satisfy the marking
σ(vw) = µ(v)µ(w) ∀ v,w 6= u. Thus, we need to check for the induced cycles
in Σ containing the vertex u. In case of 〈I〉 ∼= K1,m, Σ can be switched to all

positive signed graph, and hence, by Proposition 3, γr(Km,m) = γr(K
(r)
m,m) = 2

for 〈I〉 ∼= K1,m. In case of 〈I〉 ∼= K1,m−1, every cycle incuding vertex u will either
have two negative edges incident to vertex u, which is always an even cycle
or it will have 1 negative and 1 positive edge incident to u, which is an odd
cycle. Hence, in case of odd cycle if we take the end vertices of the positive
edge incident to vertex u in the set D, we get the desired result.

Case 2 〈I〉 ∼= Km,m.
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This implies Σ is all negative and switching graph Σ, we obtain all positive
Km,m graph. Thus, by Lemma 1, γr(Σ) = 2. �

Theorem 7 Let Σ be a complete bipartite signed graph K
(r)
m,m with 2m vertices

and r negative independent edges with r ≤ m. Then

γr(Σ) =

{
2r, if r < m

2(r− 1), if r = m.

Proof. Let Σ be K
(r)
m,m with 2m vertices and r negative independent edges with

r ≤ m. Let D be the restrained dominating set of Σ. Since, all the negative
edges in Σ are independent, therefore no two negative edges have at least one
end point in common. In this case, there always exists at least one cycle in Σ
containing odd number of negative edges and hence Σ is not balanced. Thus,
to satisfy Definition 1 we will need to choose all the end points of the negative
edges in the set D such that Σ[D : V \D] ∪ Σ[V \D] is balanced.

Case 1 Suppose, there are r independent negative edges with r < m. Then,
number of vertices in D will be twice the number of negative edges and hence
γr(Σ) = 2r for r < m.

Case 2 Now, suppose that the number of independent negative edges r is
equal to m. Then, D must include all the vertices of Σ and hence, γr(Σ) must
be equal to 2r. But, this is not the minimum restrained domination number
and hence, we need to remove some vertices from the set D. Since, γr cannot
be equal to 2m− 1, we will remove two vertices from set D. The set D is now
minimum restrained dominating set. Thus, γr(Σ) = 2(r− 1).

�

Thus we can conclude with the following corollary:

Corollary 1 Let Σ be any complete bipartite signed graph K
(r)
m,m with 2m ver-

tices and r negative edges, then 2 ≤ γr(K(r)
m,m) ≤ 2(m− 1).

3 Conclusion

In this paper, we introduced the concept of restrained domination for signed
graphs and determined the bounds on γr(Σ) for certain classes of signed
graphs. As for further work, it can be extended in finding bounds for other
classes of derived signed graphs. Also, it would be interesting to study on
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the critical concepts of restrained domination in signed graphs. The above
concepts is very much useful in fault tolerence analysis of communication net-
works, social networks and security systems.
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Abstract. We develop a group graded Morita theory over a G-graded
G-acted algebra, where G is a finite group.

1 Introduction

Let G be a finite group. In this article we develop a group graded Morita theory
over a G-graded G-acted algebra, which is motivated by the problem to give a
group graded Morita equivalences version of relations between character triples
(see [11]) as in [9]. We will follow, in the development of graded Morita theory
over a G-graded G-acted algebra, the treatment of Morita theory given by C.
Faith in 1973 in [5]. Significant in this article is the already developed graded
Morita theory. Graded Morita theory started in 1980 when R. Gordon and E.
L. Green have characterized graded equivalences in the case of G = Z, in [6].
Furthermore, in 1988 it was observed to work for arbitrary groups G by C.
Menini and C. Năstăsescu, in [10]. We will make use of their results under the
form given by A. del Ŕıo in 1991 in [4] and we will also use the graded Morita
theory developed by P. Boisen in 1994 in [2].
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This paper is organized as follows: In Section §2, we introduce the general
notations. In Section §3, we recall from [9] the definition of a G-graded G-
acted algebra, we fix one to which we will further refer to by C , we recall the
definition of a G-graded algebra over said C , and we recall the definition of
a graded bimodule over C . Moreover, we will give some new examples, useful
for this article, for each notion. In Section §4, we construct the notion of a
G-graded Morita context over C and we will give an appropriate example. In
Section §5, we introduce the notions of graded functors over C and of graded
Morita equivalences over C and finally we state and prove two Morita-type
theorems using the said notions.

2 Notations and preliminaries

Throughout this article, we will consider a finite group G. We shall denote its
identity by 1.

All rings in this paper are associative with identity 1 6= 0 and all modules
are unital and finitely generated. We consider O to be a commutative ring.

Let A be a ring. We denote by A-Mod the category of all left A-modules.
We shall usually write actions on the left, so in particular, by module we
will usually mean a left module, unless otherwise stated. The notation MA
(respectively, MA A ′) will be used to emphasize that M is a left A-module
(respectively, an (A,A ′)-bimodule).

Let A =
⊕

g∈GAg be a G-graded O-algebra. We denote by A-Gr the cate-
gory of allG-graded leftA-modules. The forgetful functor fromA-Gr toA-Mod
will be denoted by U. For M =

⊕
g∈GMg ∈ A-Gr and g ∈ G, the g-suspension

of M is defined to be the G-graded A-module M(g) = ⊕h∈GM(g)h, where
M(g)h = Mgh. For any g ∈ G, TAg : A-Gr → A-Gr will denote (as in [4]) the

g-suspension functor, i.e. TAg (M) =M(g) for all g ∈ G. The stabilizer of M in
G is, by definition [7, §2.2.1], the subgroup

GM = {g ∈ G |M 'M(g) as G-graded left A-modules} .

Let M,N ∈ A-Gr. We denote by HomA(M,N), the additive group of all A-
linear homomorphisms from M to N. Because G is finite, E. C. Dade showed
in [3, Corollary 3.10] that HomA(M,N) is G-graded. More precisely, if g ∈ G,
the component of degree g (furthermore called the g-component) is defined as
in [7, 1.2]:

HomA(M,N)g := {f ∈ HomA(M,N) | f(Mx) ⊆ Nxg, for all x ∈ G} .
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We denote by idX the identity map defined on a set X.

3 Graded bimodules over a
G-graded G-acted algebra

We consider the notations given in Section §2. We recall the definition of a
G-graded G-acted algebra and an example of a G-graded G-acted algebra as
in [9]:

Definition 1 An algebra C is a G-graded G-acted algebra if

1. C is G-graded, i.e. C = ⊕g∈GCg;

2. G acts on C (always on the left in this article);

3. ∀h ∈ G, ∀c ∈ Ch we have that cg ∈ C hg for all g ∈ G.

We denote the identity component (the 1-component) of C by Z := C1, which
is a G-acted algebra.

Let A =
⊕

g∈GAg be a strongly G-graded O-algebra with identity compo-
nent B := A1. For the sake of simplicity, we assume that A is a crossed product
(the generalization is not difficult, see for instance [7, §1.4.B.]). This means
that we can choose invertible homogeneous elements ug in the component Ag.

Example 1 By Miyashita’s theorem [7, p.22], we know that the centralizer
CA(B) is a G-graded G-acted O-algebra: for all h ∈ G we have that

CA(B)h = {a ∈ Ah | ab = ba, ∀b ∈ B} ,

and the action is given by cg = ugcu
−1
g , ∀g ∈ G, ∀c ∈ CA(B). Note that

this definition does not depend on the choice of the elements ug and that
CA(B)1 = Z(B) (the center of B).

We recall the definition of a G-graded O-algebra over a G-graded G-acted
algebra C as in [9]:

Definition 2 Let C be a G-graded G-acted O-algebra. We say that A is a G-
graded O-algebra over C if there is a G-graded G-acted algebra homomorphism

ζ : C → CA(B),

i.e. for any h ∈ G and c ∈ Ch, we have ζ(c) ∈ CA(B)h, and for every g ∈ G,
we have ζ( cg ) = ζ(c)g .
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An important example of a G-graded O-algebra over a G-graded G-acted
algebra, is given by the following lemma:

Lemma 1 Let P be a G-graded A-module. Assume that P is G-invariant. Let
A ′ = EndA(P)

op be the set of all A-linear endomorphisms of P. Then A ′ is a
G-graded O-algebra over CA(B).

Proof. By [3, Theorem 2.8], we have that there exists some U ∈ B−mod such
that P and A⊗BU are isomorphic as G-graded left A-modules, henceforth for
simplicity we will identify P as A⊗B U.

Because G is finite, E. C. Dade proved in [3, Corollary 3.10 and §4] that
A ′ = EndA(P)

op is a G-graded O-algebra. Moreover, by [3, §4] we have that P
is actually a G-graded (A,A ′)-bimodule.

Now, the assumption that P is G-invariant, according to [3, Corollary 5.14]
and [7, §2.2.1], implies that A ′ = EndA(P)

op is a crossed product and that P is
isomorphic to its g-suspension, P(g), for all g ∈ G. Henceforth, we can choose
invertible homogeneous elements u ′g in the component A ′g, for all g ∈ G such
that

u ′g : P → P(g).

By taking the truncation functor (−)1 (more details are given in [3]) we
obtain the isomorphism:

(u ′g)1 : P1 → (P(g))1,

where P1 = B⊗BU ' U and (P(g))1 = Ag⊗BU = ugB⊗BU. We fix arbitrary
a ∈ A and u ∈ U. We have:

u ′g(a⊗B u) = au ′g(1A ⊗B u),

but 1A ⊗B u ∈ P1, henceforth:

u ′g(a⊗B u) = a(u ′g)1(1A ⊗B u),

but there exists an unique b ∈ B such that (u ′g)1(1A ⊗B u) = ugb ⊗B u =
ug ⊗B bu. Therefore, by defining ϕg(u) := bu, we obtain a map ϕg : U→ U,
which is clearly well-defined. Moreover, we have:

u ′g(a⊗B u) = aug ⊗B ϕg(u), for all a ∈ A and u ∈ U.

It is straightforward to prove that ϕg : U→ U admits an inverse and that

u ′−1g (a⊗B u) = au−1g ⊗B ϕ−1
g (u), for all a ∈ A and u ∈ U.
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We consider the G-graded algebra homomorphism from [8, Lemma 3.2.]:

θ : CA(B) → A ′ = EndA(P)
op, θ(c)(a⊗ u) = ac⊗ u,

where c ∈ CA(B), a ∈ A, and u ∈ U. First, we will prove that the image of θ
is a subset of CA ′(B ′). Indeed, consider b ′ ∈ B ′ and c ∈ CA(B). We want:

θ(c) ◦ b ′ = b ′ ◦ θ(c).

Consider a⊗ u ∈ A⊗U = P. We have:

(θ(c) ◦ b ′)(a⊗ u) = θ(c)(b ′(a⊗ u)) = aθ(c)(b ′(1A ⊗ u)),

because b ′ and θ(c) are A-linear. We fix b ′(1A ⊗ u) = a0 ⊗ u0 ∈ A⊗B U, but
because b ′ ∈ B ′ = A ′1 = EndA(P)

op
1 we know that b ′ preserves the grading, so

1A ∈ A1 implies that ao ∈ B. Hence:

(θ(c) ◦ b ′)(a⊗ u) = aθ(c)(a0 ⊗ u0) = aa0c⊗ u0 = aca0 ⊗ u0.

Following, we have that:

(b ′ ◦ θ(c))(a⊗ u) = (b ′(θ(c)(a⊗ u)) = b ′(ac⊗ u)
= acb ′(1A ⊗ u) = aca0 ⊗ u0.

Henceforth, the image of θ is a subset of CA ′(B ′). Second, we prove that θ is
G-acted, in the sense that:

θ( cg ) = (θ(c))g , for all g ∈ G.

Indeed, we fix g ∈ G, and a⊗ u ∈ A⊗B U = P. We have:

θ( cg )(a⊗ u) = θ(ugcu−1g )(a⊗ u) = augcu−1g ⊗ u

and

(θ(c))g (a⊗ u) = (u ′g · θ(c) · u ′−1g )(a⊗ u) = (u ′−1g ◦ θ(c) ◦ u ′g)(a⊗ u)
= u ′−1g (θ(c)(u ′g(a⊗ u))) = u ′−1g (θ(c)(aug ⊗ϕg(u)))
= u ′−1g (augc⊗ϕg(u)) = augcu−1g ⊗ϕ−1

g (ϕg(u))

= augcu
−1
g ⊗ u.

Finally, by taking ζ ′ : CA(B) → CA ′(B ′) to be the corestriction of θ to
CA ′(B ′), we obtain that A ′ is G-graded O-algebra over CA(B), via the G-
graded G-acted homomorphism ζ ′. �
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Let A ′ =
⊕

g∈GA
′
g be another strongly G-graded O-algebra with the iden-

tity component B ′ := A ′1. Again, we will consider that also A ′ is a crossed
product, hence we will choose invertible homogeneous elements u ′g in the com-
ponent A ′g, for all g ∈ G.

Now, we assume that A and A ′ are both strongly G-graded O-algebras over
a G-graded G-acted algebra C , each endowed with G-graded G-acted algebra
homomorphism ζ : C → CA(B) and ζ ′ : C → CA ′(B ′) respectively.

We recall the definition of a G-graded bimodule over C as in [9]:

Definition 3 We say that M̃ is a G-graded (A,A ′)-bimodule over C if:

1. M̃ is an (A,A ′)-bimodule;

2. M̃ has a decomposition M̃ =
⊕

g∈G M̃g such that AgM̃xA
′
h ⊆ M̃gxh, for

all g, x, h ∈ G;

3. m̃g · c = cg · m̃g, for all c ∈ C , m̃g ∈ M̃g, g ∈ G, where c · m̃ = ζ(c) · m̃
and m̃ · c = m̃ · ζ ′(c), for all c ∈ C , m̃ ∈ M̃.

Remark 1 Condition 3. of Definition 3 can be rewritten (see [9] for the proof)
as follows:

3’. m · c = c ·m, for all c ∈ C , m ∈ M̃1.

An example of a G-graded bimodule over a G-graded G-acted algebra is
given by the following proposition:

Proposition 1 Let C be a G-graded G-acted algebra and A a strongly G-
graded O-algebra over C . Let P be a G-invariant G-graded A-module. Let
A ′ = EndA(P)

op. Then the following statements hold:

1. A ′ is a G-graded O-algebra over C ;

2. P is a G-graded (A,A ′)-bimodule over C .

Proof. 1. By Lemma 1, we know that A ′ is G-graded O-algebra over CA(B)
and let θ : CA(B) → CA ′(B ′) to be its G-graded G-acted structure homo-
morphism. Now, given that A is a strongly G-graded O-algebra over C , we
have a G-graded G-acted algebra homomorphism ζ : C → CA(B) and by tak-
ing ζ ′ : C → CA ′(B ′) to be the G-graded G-acted algebra homomorphism
obtained by composing ζ with θ, we obtain that A ′ is also a G-graded O-
algebra over C , with its structure given by ζ ′. Hence, the first statement of
this proposition was proved.
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2. Without any loss in generality, we will identify P with A⊗B U, for some
U ∈ B−mod. Following the proof of Lemma 1 we know that P is a G-graded
(A,A ′)-bimodule. We now check that P is G-graded (A,A ′)-bimodule over C .
Indeed, we fix g ∈ G, pg = ag ⊗ u ∈ Pg and c ∈ C . We have:

pg · c = (ag ⊗ u) · c = (ag ⊗ u) · ζ ′(c) = agζ(c)⊗ u,

but ag ∈ Ag so there exists a b ∈ B such that ag = ugb, therefore:

pg · c = ugbζ(c)⊗ u = ugζ(c)b⊗ u
= ugζ(c)u

−1
g ugb⊗ u = ζ(c)g ag ⊗ u

= ζ( c)g ag ⊗ u = ζ( cg )(ag ⊗ u)
= ζ( cg ) · pg = cg · pg.

Henceforth, the last statement of this proposition has been proved. �

4 Graded Morita contexts over C

We consider the notations given in Section §2. Let C be a G-graded G-acted al-
gebra. We introduce the notion of a G-graded Morita context over C , following
the treatment given in [5, §12].

Definition 4 Consider the following Morita context:

(A,A ′, M̃, M̃ ′, f, g).

We call it a G-graded Morita context over C if:

1. A and A ′ are strongly G-graded O-algebras over C ;

2. M̃A A ′ and M̃
′

A ′ A are G-graded bimodules over C ;

3. f : M̃ ⊗A ′ M̃ ′ → A and g : M̃ ′ ⊗A M̃ → A ′ are G-graded bimodule
homomorphisms such that by setting f(m̃⊗m̃ ′) = m̃m̃ ′ and g(m̃ ′⊗m̃) =
m̃ ′m̃, we have the associative laws:

(m̃m̃ ′)ñ = m̃(m̃ ′ñ) and (m̃ ′m̃)ñ ′ = m̃ ′(m̃ñ ′),

for all m̃, ñ ∈ M̃, m̃ ′, ñ ′ ∈ M̃ ′.

If f and g are isomorphisms, then (A,A ′, M̃, M̃ ′, f, g) is called a surjective
G-graded Morita context over C .



Graded Morita theory over a G-graded G-acted algebra 171

As an example of a G-graded Morita context over C , we have the following
proposition which arises from [5, Proposition 12.6].

Proposition 2 Let A be a strongly G-graded O-algebra over C , let P be a G-
invariant G-graded A-module, let A ′ = EndA(P)

op and let P∗ := HomA(P,A)
be the A-dual of P. Then

(A,A ′, P, P∗, (·, ·), [·, ·])

is a G-graded Morita context over C , where (·, ·) is a G-graded (A,A)-homo-
morphism, called the evaluation map, defined by:

(·, ·) : P ⊗A ′ P∗ → A,

x⊗ϕ 7→ ϕ(x), for all ϕ ∈ P∗, x ∈ P,

and where [·, ·] is a G-graded (A ′, A ′)-homomorphism defined by:

[·, ·] : P∗ ⊗A P → A ′,
ϕ⊗ x 7→ [ϕ, x], for all ϕ ∈ P∗, x ∈ P,

where for every ϕ ∈ P∗ and x ∈ P, [ϕ, x] is an element of A ′ such that

y[ϕ, x] = ϕ(y) · x, for all y ∈ P.

Proof. For the sake of simplicity, we will assume that A is a crossed product as
in Section §3. By Proposition 1, we have that A ′ is also a G-graded O-algebra
over C and that P is a G-graded (A,A ′)-bimodule over C . Now, it is known
that the A-dual of P, P∗ := HomA(P,A) is a (A ′, A)-bimodule, where for each
ϕ ∈ P∗ and for each p ∈ P, we have:

(a ′ϕa)(p) = (ϕ(pa ′))a,

for all a ′ ∈ A ′ and a ∈ A. By [7, §1.6.4.], we know that P∗ is actually a
G-graded (A ′, A)-bimodule, where for all g ∈ G, the g-component is defined
as follows:

P∗g = {ϕ ∈ P∗ | ϕ(Px) ⊆ Axg, for all x ∈ G} .

We prove that P∗ is a G-graded (A ′, A)-bimodule over C . Consider g, h ∈ G,
ϕg ∈ P∗g, c ∈ C and ph ∈ Ph. We have:

(ϕgc)(ph) = (ϕg)(ph)c.
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Because (ϕg)(ph) ∈ Ahg we can choose a homogeneous element uhg ∈ Ahg
and b ∈ B such that (ϕg)(ph) = uhgb. Henceforth,

(ϕgc)(ph) = uhgbc = uhgcb = uhgcu
−1
hguhgb = chg uhgb

= chg (ϕg)(ph) = (ϕg)( chg ph)
= (ϕg)(ph c

g ) = ( cg ϕg)(ph),

thus ϕgc = cg ϕg, therefore P∗ is a G-graded (A ′, A)-bimodule over C . Next,
following [5, §12], it is clear that (·, ·) and [·, ·] are an (A,A)-homomorphism
and an (A ′, A ′)-homomorphism, respectively. We now check if they are graded,
as in the sense of [2, §3]: Indeed, consider pg ∈ Pg and ϕh ∈ P∗h. We have:

(pg, ϕh) = ϕh(pg),

which is an element of Agh, given the gradation of P∗ := HomA(P,A). Also,
for every yk ∈ Pk, we have:

[ϕh, pg](yk) = ϕh(yk)pg,

which is an element of Akhg, given the gradation of P∗ and of P, therefore
[ϕh, pg] is an element of Ahg. Finally, we verify the associative law of the two
homomorphism: Let p, q ∈ P and ϕ,ψ ∈ P∗. We have:

(p,ϕ)q = ϕ(p)q and p[ϕ,q] = ϕ(p)q,

hence
(p,ϕ)q = p[ϕ,q];

and for all y ∈ P, we have:

([ϕ, p]ψ)(y) = ψ(y[ϕ, p]) = ψ(ϕ(y)p) = ϕ(y)ψ(p),

because ϕ(y) ∈ A and ψ is A-linear, and also we have

(ϕ(p,ψ))(y) = (ϕψ(p))(y) = ϕ(y)ψ(p),

because ψ(p) ∈ A, hence
[ϕ, p]ψ = ϕ(p,ψ).

Therefore (A,A ′, P, P∗, (·, ·), [·, ·]) is a G-graded Morita context over C . �

If (A,A ′, M̃, M̃ ′, f, g) is a surjective G-graded Morita context over C , then
by Proposition 12.7 of [5], we have that A ′ is isomorphic to EndA(M̃)op and
we have a bimodule isomorphism between M̃ ′ and M̃∗ = HomA(M̃,A). Hence-
forth, in this situation, the example given by Proposition 2 is essentially unique
up to an isomorphism.

Given Corollary 12.8 of [5], the example given by Proposition 2 is a surjective
G-graded Morita context over C if and only if PA is a progenerator.
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5 Graded Morita theorems over C

Consider the notations given in §2. Let C be a G-graded G-acted algebra. We
denote by A and A ′ two strongly G-graded O-algebras over C (with identity
components B := A1 and B ′ := A ′1), each endowed with G-graded G-acted
algebra homomorphism ζ : C → CA(B) and ζ ′ : C → CA ′(B ′) respectively.
According to [4] we have the following definitions:

Definition 5 1. We say that the functor F̃ : A-Gr → A ′-Gr is G-graded if
for every g ∈ G, F̃ commutes with the g-suspension functor, i.e. F̃ ◦ TAg
is naturally isomorphic to TA

′
g ◦ F̃ ;

2. We say that A and A ′ are G-graded Morita equivalent if there is a G-
graded equivalence: F̃ : A-Gr → A ′-Gr.

Assume that A and A ′ are G-graded Morita equivalent. Therefore, we can
consider the G-graded functors:

A-Gr
F̃ // A ′-Gr
G̃

oo

which give a G-graded Morita equivalence between A and A ′. By Gordon and
Green’s result [4, Corollary 10], this is equivalent to the existence of a Morita
equivalence between A and A ′ given by the following functors:

A-Mod
F // A ′-Mod;
G

oo

such that the following diagram is commutative:

A-Gr

U
��

F̃ // A ′-Gr

U ′

��

G̃
oo

A-Mod
F // A ′-Mod
G

oo

in the sense that:

U ′ ◦ F̃ = F ◦U, U ◦ G̃ = G ◦U ′,

where U ′ is the forgetful functor from A ′-Gr to A ′-Mod.
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Lemma 2 If P̃ is a G-graded A-module, then P̃ and F̃(P̃) have the same
stabilizer in G.

Proof. Let g ∈ GP̃. We have P̃ ' P̃(g) as G-graded A-modules. Because F̃ is a
graded functor, we have that it commutes with the g-suspension functor. Thus
F̃(P̃(g)) ' F̃(P̃)(g) in A ′-Gr. Henceforth, F̃(P̃) ' F̃(P̃)(g) in A ′-Gr, thus
g ∈ GF̃(P̃). Hence GP̃ ⊆ GF̃(P̃). The converse, GF̃(P̃) ⊆ GP̃, is straightforward,
thus GP̃ = GF̃(P̃). �

Consider P̃ and Q̃ two G-graded A-modules. We have the following mor-
phism:

HomA(P̃, Q̃)
F̃ // HomA ′(F̃(P̃), F̃(Q̃)). (∗)

By following the proofs of Lemma 1 and Proposition 1, we have a G-graded
homomorphism from C to EndA(P̃)

op (the composition between the structure
homomorphism ζ : C → CA(B) and the morphism θ : CA(B) → EndA(P̃)

op

from [8, Lemma 3.2.]) and that P̃ is a G-graded (A,EndA(P̃)
op)-bimodule.

Then, by the restriction of scalars we obtain that P̃ is a right C -module.
Analogously Q̃, F̃(P̃) and F̃(Q̃) are also right C -modules, thus HomA(P̃, Q̃)
and HomA(F̃(P̃), F̃(Q̃)) are G-graded (C ,C )-bimodules. This allows us to
state the following definition:

Definition 6 1. We say that the functor F̃ is over C if the morphism F̃
(see (∗)) is a morphism of G-graded (C ,C )-bimodules;

2. We say that A and A ′ are G-graded Morita equivalent over C if there is
a G-graded equivalence over C : F̃ : A-Gr → A ′-Gr.

Theorem 1 (Graded Morita I over C ) Let (A,A ′, M̃, M̃ ′, f, g) be a sur-
jective G-graded Morita context over C . Then the functors

M̃ ′ ⊗A − : A-Gr → A ′-Gr

M̃⊗A ′ − : A ′-Gr → A-Gr

are inverse G-graded equivalences over C .

Proof. Given [2, Theorem 3.2 (Graded Morita I) 6.] we already know that
the pair of functors M̃ ′⊗A− and M̃⊗A ′ − are inverse G-graded equivalences.
It remains to prove that they are also over C . We will only prove that the
functor M̃ ′ ⊗A − is over C because the proof for the latter functor is similar.
Consider P̃ and Q̃ two G-graded A-modules.
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First, we will prove that the morphism

M̃ ′ ⊗A − : HomA(P̃, Q̃) → HomA ′(M̃ ′ ⊗A P̃, M̃ ′ ⊗A Q̃) (∗∗)

is a (C ,C )-bimodule homomorphism. Indeed, consider ϕ ∈ HomA(P̃, Q̃), then
M̃ ′ ⊗A ϕ ∈ HomA ′(M̃ ′ ⊗A P̃, M̃ ′ ⊗A Q̃). Consider c, c ′ ∈ C . We only need to
prove that

M̃ ′ ⊗A (cϕc ′) = c(M̃ ′ ⊗A ϕ)c ′.

Let m̃ ′ ∈ M̃ ′ and p̃ ∈ P̃. We have:

(M̃ ′ ⊗A (cϕc ′))(m̃ ′ ⊗ p̃) = m̃ ′ ⊗ (cϕc ′)(p̃) = m̃ ′ ⊗ϕ(p̃c)c ′

and
(c(M̃ ′ ⊗A ϕ)c ′)(m̃ ′ ⊗ p̃) = ((M̃ ′ ⊗A ϕ)((m̃ ′ ⊗ p̃)c))c ′

= ((M̃ ′ ⊗A ϕ)(m̃ ′ ⊗ p̃c))c ′
= (m̃ ′ ⊗ϕ(p̃c))c ′
= m̃ ′ ⊗ϕ(p̃c)c ′.

Henceforth M̃ ′ ⊗A (cϕc ′) = c(M̃ ′ ⊗A ϕ)c ′, thus the morphism M̃ ′ ⊗A − (see
(∗∗)) is a (C ,C )-bimodule homomorphism.

Second, we will prove that the morphism M̃ ′ ⊗A − is a G-graded (C ,C )-
bimodule homomorphism, i.e. it is grade preserving. Consider g ∈ G and
ϕg ∈ HomA(P̃, Q̃)g. We want M̃ ′ ⊗A ϕg ∈ HomA ′(M̃ ′ ⊗A P̃, M̃ ′ ⊗A Q̃)g, i.e.
by [7, §1.2], if for some h ∈ G and m̃ ′ ⊗ p̃ ∈ (M̃ ′ ⊗A P̃)h, then we must have
(M̃ ′⊗Aϕg)(m̃ ′⊗p̃) ∈ (M̃ ′⊗AQ̃)hg. Beforehand, because m̃ ′⊗p̃ ∈ (M̃ ′⊗A P̃)h,
by [7, §1.6.4], there exists some x, y ∈ G with h = xy such that m̃ ′ ∈ M̃ ′x and
p̃ ∈ P̃y. We have:

(M̃ ′ ⊗A ϕg)(m̃ ′ ⊗ p̃) = m̃ ′ ⊗ϕg(p̃) ∈ M̃ ′x ⊗A ϕg(P̃y)
⊆ M̃ ′x ⊗A Q̃yg ⊆ (M̃ ′ ⊗A Q̃)xyg
= (M̃ ′ ⊗A Q̃)hg.

Henceforth, the morphism M̃ ′⊗A− : HomA(P̃, Q̃) → HomA ′(M̃ ′⊗A P̃, M̃ ′⊗A
Q̃) is a G-graded (C ,C )-bimodule homomorphism. �

By Proposition 2 and the observations made in Section §4, the following
corollary is straightforward.

Corollary 1 Let P be a G-invariant G-graded A-module and A ′ = EndA(P)
op.

If PA is a progenerator, then P ⊗A ′ − is a G-graded Morita equivalence over
C between A ′-Gr and A-Gr, with P∗ ⊗A − as its inverse.
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Theorem 2 (Graded Morita II over C ) Assume that A and A ′ are G-
graded Morita equivalent over C and let

A-Gr
F̃ // A ′-Gr
G̃

oo

be inverse G-graded equivalences over C . Then this equivalence is given by the
following G-graded bimodules over C : P = F̃(A) and Q = G̃(A ′). More exactly,
P is a G-graded (A ′, A)-bimodule over C , Q is a G-graded (A,A ′)-bimodule
over C and the following natural equivalences of functors hold:

F̃ ' P ⊗A − and G̃ ' Q⊗A ′ −.

Proof. By [4, Corollary 10 (Gordon-Green)], we know that P = F̃(A) is a
G-graded (A ′, A)-bimodule, Q = G̃(A ′) is a G-graded (A,A ′)-bimodule and
that that the following natural equivalences of functors hold: F̃ ' P⊗A− and
G̃ ' Q⊗A ′ −. Moreover, we have that PA is a progenerator.

It remains to prove that P and Q are G-graded bimodules over C . We will
only prove that P is G-graded bimodule over C , because for Q the reasoning
is similar.

By the hypothesis, A and A ′ are G-graded Morita equivalent over C , hence
F̃ and G̃ are over C . Therefore the function:

HomA( AA , AA )
F̃ // HomA ′( PA ′ , PA ′ )

is an isomorphism of G-graded (C ,C )-bimodules, where if f ∈ HomA( AA , AA ),
we have that (c1fc2)(a) = f(ac1)c2, for all a ∈ A, c1, c2 ∈ C . This means that
the function

α : A→ EndA ′(P)op, α(a) = F̃(ρ(a)), for all a ∈ A,

(where ρ(c) : a 7→ ac, for all a ∈ A) is an isomorphism of G-graded (C ,C )-
bimodules. Moreover, by the bimodule structure definition of P (see [1]), we
have that α(a)(p) = pa for all a ∈ A and for all p ∈ P.

It is clear that AA is G-invariant, hence by Lemma 2, P is also G-invariant.
Henceforth, by Proposition 1, P is a G-graded (A ′,EndA ′(P)op)-bimodule over
C . Consider the structural homomorphisms ζ : C → A, ζ ′ : C → A ′ and
ζ ′′ : C → EndA ′(P)op, thus for all a ∈ A and for all c1, c2 ∈ C we have:

α(ζ(c1)aζ(c2)) = ζ
′′(c1)α(a)ζ

′′(c2).



Graded Morita theory over a G-graded G-acted algebra 177

By taking a = 1A and c2 = 1C we obtain α ◦ ζ = ζ ′′.
Let g ∈ G, pg ∈ Pg and c ∈ C . We want pg · c = cg · pg. We have:

pg · c = pg · α(ζ(c)) = pg · ζ ′′(c) = ζ ′(c)g pg = cg pg.

Henceforth the statement is proved. �

6 Conclusion

We have developed a G-graded Morita theory over a G-graded G-acted algebra
for the case of finite groups.

In Section §3, we recalled from [9] the notions of a G-graded G-acted algebra,
of a G-graded algebra over a G-graded G-acted algebra and that of a G-graded
bimodule over a G-graded G-acted algebra and we gave some useful examples
for each notion.

In Section §4, we introduced the notion of a G-graded Morita context over
a G-graded G-acted algebra and gave a standard example.

The main results are in Section §5, where a notion of graded functors over
G-graded G-acted algebras and of graded Morita equivalences over G-graded
G-acted algebras are introduced and two Morita-type theorems are proved
using these notions: We proved that by taking a G-graded bimodule over a
G-graded G-acted algebra we obtain a G-graded Morita equivalence over the
said G-graded G-acted algebra and that by being given a G-graded Morita
equivalence over a G-graded G-acted algebra, we obtain a G-graded bimodule
over the said G-graded G-acted algebra, which induces the given G-graded
Morita equivalence.
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Galaţi, 800201, Romania

email: Alina.Patriciu@ugal.ro

Abstract. The purpose of this paper is to introduce a new type of φ -
implicit relation in S - metric spaces and to prove a general fixed point
for a pair of weakly compatible mappings, which generalize Theorems 1,
2, 4 [23], Theorems 1-7 [13], Corollary 2.19 [13], Theorems 2.2, 2.4 [19],
Theorems 3.2, 3.3, 3.4 [20] and other known results.

1 Introduction

Let X be a nonempty set and f, g : X → X two self mappings. A point x ∈ X
is said to be a coincidence point of f and g if fx = gx = w. The set of all
coincidence points of f and g is denoted C(f, g) and w is said to be a point of
coincidence of f and g.

In [8], Jungck defined f and g to be weakly compatible if fgx = gfx, for all
x ∈ C (f, g).
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The notion of weakly compatible mappings is used to proof the existence of
common fixed point for pairs of mappings.

A new class of generalized metric space, named D - metric space, is intro-
duced in [5, 6]. In [11, 12], Mustafa and Sims proved that most of the claims
concerning the fundamental topological structures on D - metric spaces are
incorrect and introduced a new generalized metric spaces, named G - metric
space. There exists a vast literature in the study of fixed points in G - metric
spaces.

In [10], Mustafa initiated the study of fixed points for weakly compatible
mappings in G - metric spaces.

Recently in [22], the authors introduced a new class of generalized metric
space, named S - metric space. Quite recently in [7], the authors proved that
the notions of G - metric spaces and S - metric space are independent.

Other results in the study of fixed points in S - metric space are obtained
in [13, 19, 20, 21] and in other papers. Some results of fixed points for weakly
compatible mappings in S - metric spaces are obtained in [23, 2].

In [14, 15], several classical fixed point theorems and common fixed point
theorems have been unified considering a general condition by implicit func-
tion.

The study of fixed point for mappings satisfying an implicit relation in G -
metric spaces is initiated in [16, 17] and in other papers.

The notion of φ - maps is introduced in [9]. In [3], Altun and Turkoglu
introduced a new class of implicit relation satisfying a φ - map.

A general fixed point theorem for mappings satisfying φ - implicit relations
in G - metric spaces is obtained in [18].

The purpose of this paper is to introduce a new type of φ - implicit relation
in S - metric spaces and to prove a general fixed point theorem for a pair of
weakly compatible mappings in S - metric spaces, generalizing Theorems 1, 2,
4 [23], Theorems 1-7 [13], Corollary 2.19 [13], Theorems 2.2, 2.4 [19], Theorems
3.2, 3.3, 3.4 [20] and other known results.

2 Preliminaries

Definition 1 ([21, 22]) A S - metric on a nonempty set X is a function
S : X3 → R+ such that for all x, y, z, a ∈ X:
(S1) : S (x, y, z) = 0 if and only if x = y = z;
(S2) : S (x, y, z) ≤ S (x, x, a) + S (y, y, a) + S (z, z, a).
The pair (X, S) is called a S - metric space.
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Example 1 Let X = R and S (x, y, z) = |x− z|+ |y− z|. Then, S (x, y, z) is a
S - metric on R and is named the usual S - metric on X.

Lemma 1 ([4, 5]) If S is a S - metric on a nonempty set X, then

S (x, x, y) = S (y, y, x) for all x, y ∈ X.

Definition 2 ([22]) Let (X, S) be a S - metric space. For r > 0 and x ∈ X we
define the open ball with center x and radius r, denoted BS (x, r), respectively
closed ball, denoted BS (x, r), the sets:

BS (x, r) = {y ∈ X : S (x, x, y) < r} ,

respectively,

BS (x, r) = {y ∈ X : S (x, x, y) ≤ r}

The topology induced by S - metric on X is the topology determined by the
base of all open balls in X.

Definition 3 ([22]) a) A sequence {xn} in a S - metric space (X, S) is con-
vergent to x, denoted xn → x or limn→∞ xn = x, if S (xn, xn, x) → 0 as
n → ∞, that is, for ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we
have S (xn, xn, x) < ε.

b) A sequence {xn} in (X, S) is a Cauchy sequence if S (xn, xn, xm)→ 0 as
n,m→∞, that is, for ε > 0, there exists n0 ∈ N such that for all m,n ≥ n0
we have S (xn, xn, xm) < ε.

c) A S - metric space (X, S) is complete if every Cauchy sequence is con-
vergent.

Example 2 (X, S) by Example 1 is complete.

Lemma 2 ([22]) Let (X, S) be a S - metric space. If xn → x and yn → y,
then S (xn, xn, yn)→ S (x, x, y).

Lemma 3 ([22]) Let (X, S) be a S - metric space and xn → x . Then limn→∞ xn
is unique.

Lemma 4 ([4]) Let (X, S) be a S - metric space and {xn} be a sequence in X
such that

lim
n→∞S (xn, xn, xn+1) = 0.
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If {xn} is not a Cauchy sequence, then there exists an ε > 0 and two sequences
{mk} and {nk} of positive integers with nk > mk > k such that

S (xmk
, xmk

, xnk
) ≥ ε, S

(
xmk−1

, xmk−1
, xnk

)
< ε

and

(i) limn→∞ S (xmk
, xmk

, xnk
) = ε,

(ii) limn→∞ S (xmk
, xmk

, xnk−1

)
= ε,

(iii) limn→∞ S (xmk−1
, xmk−1

, xnk

)
= ε,

(iv) limn→∞ S (xmk−1
, xmk−1

, xnk−1

)
= ε.

Definition 4 ([9]) Let Φ be the set of all functions such that φ : [0,∞) →
[0,∞) is a nondecreasing function satisfying limn→∞φn (t) = 0 for all t ∈
[0,∞). If φ ∈ Φ, then φ is called φ - mapping. Furthermore, if φ ∈ Φ, then:

(i) φ(t) < t for all t ∈ (0,∞),

(ii) φ(0) = 0.

The following theorems are recently published in [23].

Theorem 1 (Theorem 1 [23]) Let (X, S) be a S - metric space. Suppose
that the mappings f, g : X→ X satisfy

S (fx, fy, gz) ≤ φ (max {S (gx, gx, fx) , S (gy, gy, fy) , S (gz, gz, fz)}) (1)

for all x, y, z ∈ X.
If f (X) ⊂ g (X) and one of f (X) or g (X) is a complete subspace of X, then

f and g have a unique point of coincidence.
Moreover, if f and g are weakly compatible, then f and g have a unique

common fixed point.

Theorem 2 (Theorem 2 [23]) Let (X, S) be a S - metric space. Suppose
that the mappings f, g : X→ X satisfy

S (fx, fy, fz) ≤ max {φ (S (gx, gx, fx)) , φ (S (gy, gy, fy)) , φ (S (gz, gz, fz))}
(2)

for all x, y, z ∈ X.
If f (X) ⊂ g (X) and one of f (X) or g (X) is a complete subspace of X, then

f and g have a unique point of coincidence. Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point.
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Theorem 3 (Theorem 4 [23]) Let (X, S) be a S - metric space. Suppose
that the mappings f, g : X→ X satisfy

S (fx, fy, fz) ≤ k1φ (S (gx, gx, fx)) + k2φ (S (gy, gy, fy)) + k3φ (S (gz, gz, fz))
(3)

for all x, y, z ∈ X, k1 + k2 + k3 < 1.
If f (X) ⊂ g (X) and one of f (X) or g (X) is a complete subspace of X, then

f and g have a unique point of coincidence. Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point.

Remark 1 1) Since φ (t) is nondecreasing, then

φ (max {t2, t3, t4, t5, t6}) = max {φ (t2) , φ (t3) , φ (t4) , φ (t5) , φ (t6)} .

Hence, Theorem 2 is Theorem 1.
2) By (3) we obtain

S (fx, fy, fz) ≤ (k1 + k2 + k3)max {φ (S (gx, gx, fx)) ,

φ (S (gy, gy, fy)) , φ (S (gz, gz, fz))}

= (k1 + k2 + k3)φ (max {S (gx, gx, fx) , S (gy, gy, fy) ,

S (gz, gz, fz)})

≤ φ (max {max {S (gx, gx, fx) , S (gy, gy, fy) , S (gz, gz, fz)}}) .

Hence,

S (fx, fy, fz) ≤ φ (max {S (gx, gx, fx) , S (gy, gy, fy) , S (gz, gz, fz)}) ,

which is the inequality (1). Hence, Theorem 3 is a particular case of Theo-
rem 1.

3) In the proof of Theorem 1 is used x = y. Hence in Theorem 1 we
have a new form of inequality (1):

S (fx, fx, fy) ≤ φ (max {S (gx, gx, fx) , g (fy, gy, fy)}) .

3 φ - implicit relations

Let Fφ be the set of all lower semi - continuous functions F : R6+ → R such
that:
(F1) : F is nonincreasing in variable t6,
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(F2) : There exists φ ∈ Fφ such that for all u, v ≥ 0, F (u, v, v, u, 0, 2u+ v) ≤
0 implies u ≤ φ (v);
(F3) : F (t, t, 0, 0, t, t) > 0, ∀t > 0.
In all the following examples, (F1) is obviously.

Example 3 F (t1, ..., t6) = t1 − kmax {t2, t3, ..., t6}, where k ∈
[
0,
1

3

)
.

(F2) : Let u, v ≥ 0 and F (u, v, v, u, 0, 2u+ v) = u−k (u+ 2v) ≤ 0. If u > v,
then u (1− 3k) ≤ 0, a contradiction. Hence, u ≤ v, which implies u ≤ 3kv
and F satisfies (F2) for φ (t) = 3kt.
(F3) : F (t, t, 0, 0, t, t) = t (1− k) > 0, ∀t > 0.

Example 4 F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

t5 + t6
3

}
, where k ∈ [0, 1).

(F2) : Let u, v ≥ 0 and F (u, v, v, u, 0, 2u+ v) = u−kmax

{
u, v,

2u+ v

3

}
≤

0. If u > v, then u (1− k) ≤ 0, a contradiction. Hence, u ≤ v, which implies
u ≤ kv and F satisfies (F2) for φ (t) = kt.
(F3) : F (t, t, 0, 0, t, t) = t (1− k) > 0, ∀t > 0.

Example 5 F (t1, ..., t6) = t1−at2−bt3−ct4−dt5−et6, where a, b, c, d, e ≥ 0
and a+ b+ c+ 3e < 1 and a+ d+ e < 1.

(F2) : Let u, v ≥ 0 and F (u, v, v, u, 0, 2u+ v) = u − av − bv − cu −
e (2u+ v) ≤ 0. If u > v, then u [1− (a+ b+ c+ 3e)] ≤ 0, a contradiction.
Hence, u ≤ v, which implies u ≤ (a+ b+ c+ 3e) v and F satisfies (F2) for
φ (t) = (a+ b+ c+ 3e) t.
(F3) : F (t, t, 0, 0, t, t) = t [1− (a+ d+ e)] > 0, ∀t > 0.

Example 6 F (t1, ..., t6) = t
2
1 − t1 (at2 + bt3 + ct4) − dt5t6, where a, b, c, d ≥

0, a+ b+ c < 1 and a+ d < 1.

(F2) : Let u, v ≥ 0 and F (u, v, v, u, 0, 2u+ v) = u2 −u (av+ bv+ cu) ≤ 0.
If u > v, then u2 [1− (a+ b+ c)] ≤ 0, a contradiction. Hence, u ≤ v, which
implies u ≤ (a+ b+ c) v and F satisfies (F2) for φ (t) = (a+ b+ c) t.
(F3) : F (t, t, 0, 0, t, t) = t2 [1− (a+ d)] > 0, ∀t > 0.

Example 7 F (t1, ..., t6) = t
2
1−at

2
2−

bt5t6

1+ t23 + t
2
4

, where a, b ≥ 0 and a+b < 1.
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(F2) : Let u, v ≥ 0 and F (u, v, v, u, 0, 2u+ v) = u2−av2 ≤ 0, which implies
u ≤
√
av. Hence, F satisfies (F2) for φ (t) =

√
at.

(F3) : F (t, t, 0, 0, t, t) = t2 [1− (a+ b)] > 0, ∀t > 0.
In the following examples, if φ ∈ Φ, then F satisfy properties (F1) , (F2) , (F3).

Example 8 F (t1, ..., t6) = t1 − φ

(
max

{
t2, t3, t4,

t5 + t6
3

})
.

(F2) : Let u, v ≥ 0 and

F (u, v, v, u, 0, 2u+ v) = u− φ

(
max

{
u, v,

2u+ v

3

})
≤ 0.

If u > v, then u ≤ φ (u) < u, a contradiction. Hence, u ≤ v, which implies
u ≤ φ (v).
(F3) : F (t, t, 0, 0, t, t) = t− φ (t) > 0, ∀t > 0.

Example 9 F (t1, ..., t6) = t1 − φ

(
max

{
t2,
t3 + t4
2

,
t5 + t6
3

})
.

(F2) : Let u, v ≥ 0 and

F (u, v, v, u, 0, 2u+ v) = u− φ

(
max

{
u,
u+ v

2
,
2u+ v

3

})
≤ 0.

If u > v, then u ≤ φ (u) < u, a contradiction. Hence, u ≤ v, which implies
u ≤ φ (v).
(F3) : F (t, t, 0, 0, t, t) = t− φ (t) > 0, ∀t > 0.

Example 10 F (t1, ..., t6) = t1−φ (at2 + bmax {t3, t4}+ cmax {t5, t6}), where
a, b, c ≥ 0 and a+ b+ 3c < 1.

(F2) : Let u, v ≥ 0 and

F (u, v, v, u, 0, 2u+ v) = u− φ (av+ bmax {u, v}+ c (2u+ v)) ≤ 0.

If u > v, then u − φ ((a+ b+ 3c)u) ≤ 0, which implies u ≤ φ (u) < u, a
contradiction. Hence, u ≤ v and u ≤ φ (v).
(F3) : F (t, t, 0, 0, t, t) = t − φ (at+ ct) ≥ t − φ ((a+ b+ 3c) t) ≥ t −

φ (t) > 0, ∀t > 0.

Example 11 F (t1, ..., t6) = t1−φ
(
a
√
t1t2 + b

√
t3t4 + c

√
t5t6

)
, where a, b, c

≥ 0 and a+ b+ c < 1.
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(F2) : Let u, v ≥ 0 and F (u, v, v, u, 0, 2u+ v) = u−φ
(
a
√
uv+ b

√
uv
)
≤ 0.

If u > v, then u ≤ φ ((a+ b)u) < u, a contradiction. Hence, u ≤ v, which
implies u ≤ φ (v).
(F3) : F (t, t, 0, 0, t, t) = t − φ ((a+ c) t) ≥ t − φ ((a+ b+ c) t) ≥ t −

φ (t) > 0, ∀t > 0.

Example 12 F (t1, ..., t6) = t1 − φ

(
at2,

b
√
t5t6

1+ t3 + t4

)
, where a, b ≥ 0 and

a+ b < 1.

(F2) : Let u, v ≥ 0 and F (u, v, v, u, 0, 2u+ v) = u − φ (av) ≤ 0. If u > v,
then u − φ (av) ≤ 0 implies u ≤ φ (u) < u, a contradiction. Hence, u ≤ v,
which implies u ≤ φ (v).
(F3) : F (t, t, 0, 0, t, t) = t− φ ((a+ b) t) ≥ t− φ (t) > 0, ∀t > 0.
In the following examples, the proofs are similar to the proof of Example 12

and thus are omitted.

Example 13 F (t1, ..., t6) = t1 −at2 − bmax{t3, t4, t5, t6}, where a, b ≥ 0 and
a+ 3b < 1.

If F (u, v, v, u, 0, 2u+ v) ≤ 0, then we have u ≤ φ (v), where φ(t) = (a+ 3b)t.

Example 14 F (t1, ..., t6) = t1−at2−bt3−ct4−dmax {t5, t6}, where a, b, c, d ≥
0 and a+ b+ c+ 3d < 1.

If F (u, v, v, u, 0, 2u+ v) ≤ 0 then we have u ≤ φ (v), where φ (t) = (a+b+
c+ 3d)t.

Example 15 F (t1, ..., t6) = t1−at2−dmax {t3, t4}−bt5−ct6, where a, b, c, d ≥
0, a+ 3c+ d ≥ 0, a+ 3c+ d < 1 and a+ b+ c < 1.

If F (u, v, v, u, 0, 2u+ v) ≤ 0 then u ≤ φ (v), where φ (t) = (a+ 3c+ d) t.

Example 16 F (t1, ..., t6) = t1−at2−bt3−et4−ct5−dt6−fmax {t2, t3, ..., t6},
where a, b, c, d, e, f ≥ 0, a+ b+ e+ 3d+ 3f < 1 and a+ c+ e+ f < 1.

If F (u, v, v, u, 0, 2u+ v) ≤ 0 then u ≤ φ (v), where φ (t) = (a + b + e + 3d
+3f)t.

Example 17 F (t1, ..., t6) = t1−a (t5 + t6)−bt2−cmax {t3, t4}, where a, b, c ≥
0 and 3a+ b+ c < 1.
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If F (u, v, v, u, 0, 2u+ v) ≤ 0 then u ≤ φ (v), where φ (t) = (3a+ b+ c) t.

Example 18 F (t1, ..., t6) = t1−a (t3 + t4)−bt2−cmax {t5, t6}, where a, b, c ≥
0 and 2a+ b+ 3c < 1.

If F (u, v, v, u, 0, 2u+ v) ≤ 0 then u ≤ φ (v), where φ (t) = (2a+ b+ 3c) t.

Example 19 F (t1, ..., t6) = t1−amax {t4 + t5, t3 + t6}−bt2, where a, b, c ≥ 0
and 4a+ b < 1.

If F (u, v, v, u, 0, 2u+ v) ≤ 0 then u ≤ φ (v), where φ (t) = (4a+ b) t.

4 Main results

Lemma 5 ([1]) Let f and g be weakly compatible self mappings of a nonempty
set X. If f and g have a unique point of coincidence w = fx = gx for some
x ∈ X, then w is the unique common fixed point of f and g.

Theorem 4 Let (X, S) be a S - metric space and f, g : X→ X such that

F

(
S (fx, fx, fy) , S (gx, gx, gy) , S (gx, gx, fx) ,
S (gy, gy, fy) , S (gy, gy, fx) , S (gx, gx, fy)

)
≤ 0 (4)

for all x, y ∈ X and some F ∈ Fφ.
If f (X) ⊂ g (X) (or g (X) ⊂ f (X)) and g (X) (or f (X)) is a complete subspace

of (X, S), then f and g have a unique point of coincidence. Moreover, if f and
g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let x0 be an arbitrary point of X. Since f (X) ⊂ g (X), there exists
x1 ∈ X such that fx0 = gx1. Continuing this process we define the sequence
{xn} satisfying

fxn = gxn+1 for n ∈ N.

Then, by (4) for x = xn−1 and y = xn we have

F

(
S (fxn−1, fxn−1, fxn) , S (gxn−1, gxn−1, gxn) , S (gxn−1, gxn−1, fxn−1) ,

S (gxn, gxn, fxn) , S (gxn, gxn, fxn−1) , S (gxn−1, gxn−1, fxn)

)
≤ 0

F

(
S (gxn, gxn, gxn+1) , S (gxn−1, gxn−1, gxn) , S (gxn−1, gxn−1, gxn) ,

S (gxn, gxn, gxn+1) , 0, S (gxn−1, gxn−1, gxn+1)

)
≤ 0

(5)
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By (S2) and Lemma 1 we have

S (gxn−1, gxn−1, gxn+1) ≤ 2S (gxn, gxn, gxn+1) + S (gxn−1, gxn−1, gxn) .

By (5) and (F1) we obtain

F

(
S (gxn, gxn, gxn+1) , S (gxn−1, gxn−1, gxn) , S (gxn−1, gxn−1, gxn) ,
S (gxn, gxn, gxn+1) , 0, 2S (gxn, gxn, gxn+1) + S (gxn−1, gxn−1, gxn)

)
≤ 0.

By (F2) we obtain

S (gxn, gxn, gxn+1) ≤ φ (S (gxn−1, gxn−1, gxn)) , for n = 1, 2, ...

which implies

S (gxn, gxn, gxn+1) ≤ φn (S (gx0, gx0, gx1)) .

Letting n tend to infinity we obtain

lim
n→∞S (gxn, gxn, gxn+1) = 0.

We prove that {gxn} is a Cauchy sequence in g (X). Suppose that {gxn}

is not a Cauchy sequence. Then, by Lemma 4, there exists an ε > 0 and
two sequences mk and nk with nk > mk > k and S (xmk

, xmk
, xnk

) ≥ ε and
S (xmk−1, xmk−1, xnk

) < ε and satisfying the inequalities (i) - (iv) by Lemma
4.

By (4) for x = xmk−1 and y = xnk−1 we have

F

 S (fxmk−1, fxmk−1, fxnk−1) , S (gxmk−1, gxmk−1, gxnk−1) ,
S (gxmk−1, gxmk−1, fxmk−1) , S (gxnk−1, gxnk−1, fxnk−1) ,
S (gxnk−1, gxnk−1, fxmk−1) , S (gxmk−1, gxmk−1, fxnk−1)

 ≤ 0

F

 S (gxmk
, gxmk

, gxnk
) , S (gxmk−1, gxmk−1, gxnk−1) ,

S (gxmk−1, gxmk−1, gxmk
) , S (gxnk−1, gxnk−1, gxnk

) ,
S (gxnk−1, gxnk−1, gxmk

) , S (gxmk−1, gxmk−1, gxnk
)

 ≤ 0. (6)

By Lemma 1,

S (gxmk−1, gxmk−1, gxnk
) = S (gxnk

, gxnk
, gxmk−1)

and
S (gxnk−1, gxnk−1, gxmk

) = S (gxmk
, gxmk

, gxnk−1) .
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Letting n tend to infinity in (6) we obtain

F (ε, ε, 0, 0, ε, ε) ≤ 0,

a contradiction of (F3).
Hence, {gxn} is a Cauchy sequence in g (X). Since g (X) is complete, then

{gxn} is convergent to a point t ∈ g (X). Hence, there exists p ∈ X such that
gp = t and limn→∞ gxn = gp. We prove that fp = gp.

By (4) for x = xn and y = p we have

F

(
S (gxn, gxn, fp) , S (gxn, gxn, gp) , S (gxn, gxn, fxn) ,
S (gp, gp, fp) , S (gp, gp, fxn) , S (gxn, gxn, fp)

)
≤ 0.

Letting n tend to infinity we obtain

F (S (gp, gp, fp) , 0, 0, S (gp, gp, fp) , 0, S (gp, gp, fp)) ≤ 0.

By (F1) we have

F (S (gp, gp, fp) , 0, 0, S (gp, gp, fp) , 0, 2S (gp, gp, fp)) ≤ 0,

which implies S (gp, gp, fp) = 0. Hence gp = fp = t.
We prove that t is the unique point of coincidence of f and g. Suppose that

there exists z = fw = gw. By (4) we obtain

F

(
S (fp, fp, fw) , S (gp, gp, gw) , S (gp, gp, fp) ,
S (gw, gw, fw) , S (gw, gw, fp) , S (gp, gp, fw)

)
≤ 0,

F (S (t, t, z) , S (t, t, z) , 0, 0, S (z, z, t) , S (t, t, z)) ≤ 0.

By Lemma 1 we have

F (S (t, t, z) , S (t, t, z) , 0, 0, S (t, t, z) , S (t, t, z)) ≤ 0,

a contradiction of (F3) if S (t, t, z) > 0. Hence, z = t and t is the unique point
of coincidence of f and g.

Moreover, if f and g are weakly compatible, then by Lemma 5, f and g have
a unique common fixed point t. �

If φ (t) = kt, k ∈ [0, 1), by Example 8 and Theorem 4 we obtain

Corollary 1 Let (X, S) be a S - metric space and f, g : X→ X such that

S (fx, fx, fy) ≤ kmax

 S (gx, gx, gy) , S (gx, gx, fx) , S (gy, gy, fy) ,
S (gy, gy, fx) + S (gx, gx, fy)

3

 (7)
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where k ∈ [0, 1).
If f (X) ⊂ g (X) (or g (X) ⊂ f (X)) and g (X) (or f (X)) is a complete subspace

of (X, S), then f and g have a unique point of coincidence. Moreover, if f and
g are weakly compatible, then f and g have a unique common fixed point.

Example 20 Let X = R and S (x, y, z) = |x− z| + |y− z|. Then S (X) is a
complete S - metric space. Let fx = 2x − 2, gx = 3x − 4. Then f (X) = R,
g (X) = R and f (X) ⊂ g (X). If fx = gx, then x = 2 which implies C (f, g) = {2}

and fg2 = gf2 = 2 and x = 2 is the unique point of coincidence of f and g
and f and g are weakly compatible. On the other hand, S (fx, fx, fy) = 4 |x− z|
and S (gx, gx, gy) = 6 |x− y|. Hence, S (fx, fx, fy) ≤ kS (gx, gx, gy), for k ∈[
2

3
, 1

)
. This implies

S (fx, fx, fy) ≤ kmax

 S (gx, gx, gy) , S (gx, gx, fx) , S (gy, gy, fy) ,
S (gy, gy, fx) + S (gx, gx, fy)

3


for k ∈

[
2

3
, 1

)
. By Corollary 1, f and g have a unique common fixed point

x = 2.

If g(x) = x, then by Theorem 4 we obtain

Theorem 5 Let (X, S) be a complete S - metric space and f : X → X such
that

F (S (fx, fx, fy) , S (x, x, y) , S (x, x, fx) , S (y, y, fy) , S (y, y, fx) , S (x, x, fy)) ≤ 0,

for all x, y ∈ X and some F ∈ Fφ.
Then f has a unique fixed point.

Corollary 2 Let (X, S) be a complete S - metric space and f : X → X such
that

S (fx, fx, fy) ≤ kmax {S (x, x, y) , S (x, x, fx) , S (y, y, fy) , S (x, x, fy) , S (x, x, fy)} ,

for all x, y ∈ X and k ∈
[
0,
1

3

]
. Then f has a unique fixed point.

Proof. The proof follows by Theorem 5 and Example 4. �
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Remark 2 1) By Examples 13 - 19 and Theorem 4 we obtain Theorems 1-7
[13].
2) By Example 4 and Theorem 4 we obtain Corollary 2.19 [13].
3) By Example 5 and Theorem 4 we obtain Theorems 2.2, 2.4 [19] and The-
orems 3.2, 3.3, 3.4 [20].

References

[1] M. Abbas and B. E. Rhoades, Common fixed point results for noncom-
muting mappings without continuity in generalized metric spaces, Appl.
Math. Comput., 215 (5) (2009), 262–269.

[2] J. M. Afra, Fixed point theorems in S - metric spaces, Theory Approx.
Appl., 10 (1) (2014), 57–68.

[3] I. Altun and D. Turkoglu, Some fixed point theorems for weakly compat-
ible mappings satisfying an implicit relation, Taiwanesse J. Math., 13 (4)
(2009), 1291–1304.

[4] G. V. R. Babu and B. K. Leta, Fixed points of (α,ψ,ϕ) - generalized
weakly contractive maps and property (P) in S - metric spaces, Filomat,
31 (14) (2017), 4469–4481.

[5] B. C. Dhage, Generalized metric space and mappings with fixed point,
Bull. Calcutta Math. Soc., 84 (1992), 329–336.

[6] B. C. Dhage, Generalized metric space and topological structures I, An.
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[15] V. Popa, Some fixed point theorems for compatible mappings satisfying
an implicit relation, Demonstr. Math., 32 (1) (1999), 157–163.

[16] V. Popa, A general fixed point theorem for several mappings in G - metric
spaces, Sci. Stud. Res. Ser. Math. Inform., 32 (1) (2011), 205–214.

[17] V. Popa and A.-M. Patriciu, A general fixed point theorem for pairs of
weakly compatible mappings in G - metric spaces, J. Nonlinear Sci. Appl.,
5 (2) (2012), 151–160.

[18] V. Popa and A.-M. Patriciu, A general fixed point theorem for mappings
satisfying an φ - implicit relation in G - metric spaces, Gazi Univ. J. Sci.,
25 (2012), 401–408.

[19] K. Prudhvi, Fixed point results in S - metric spaces, Univer. J. Comput.
Math., 3 (2015), 19–21.

[20] K. Prudhvi, Some fixed point results in S - metric spaces, J. Math. Sci.
Appl., 4 (1) (2016), 1–3.

[21] S. Sedghi and N. V. Dung, Fixed point theorems on S - metric spaces,
Mat. Vesn., 66 (1) (2014), 113–124.

[22] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point
theorems in S - metric spaces, Mat. Vesn., 64 (3) (2012), 258–266.

[23] S. Sedghi, M. M. Rezaee, T. Došenović, S. Radenović, Common fixed
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On Euler products with smaller than one
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Abstract. Investigation has been made regarding the properties of the∏
p≤n (1± 1/ps) products over the prime numbers, where we fix the

s ∈ R exponent, and let the n ≥ 2 natural bound grow toward positive
infinity. The nature of these products for the s ≥ 1 case is known. We
get approximations for the case when s ∈ [1/2, 1), furthermore different
observations for the case when s < 1/2.

1 Introduction

In this article, we will investigate the asymptotical properties of Euler prod-
ucts. More precisely, we are going to look at how does the∏

p≤n

(
1± 1

ps

)
(1)

products over the prime numbers behave asymptotically, when we fix the s ∈ R
exponent, and let the n ≥ 2 natural bound grow toward positive infinity.

Due to the connection with the Riemann zeta function and Dirichlet se-
ries, the “classical” Euler products were and are the subject of a thorough
investigation. Some of the results concerning them can describe the nature of
the products which we will examine, so we are going to shortly sum up the
properties which can be already stated based on these results.

2010 Mathematics Subject Classification: 11M99
Key words and phrases: Euler product, Mertens’ theorem, Riemann zeta function, Abel
summation, Riemann hypothesis, prime number theorem, logarithmic integral
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First we concentrate on the negative case of expression (1). It is well known
that

lim
n→∞

∏
p≤n

(
1−

1

ps

)
=

1

ζ(s)

when s > 1, see [2] section 11.5. (This result dates back to Euler, who pointed
out this connection in [9] by using simple algebraic manipulations on - what
is now known as - the Dirichlet series form of the Riemann zeta function.) As
when s = 1, Mertens proved his infamous result in [12], stating that

lim
n→∞ lnn

∏
p≤n

(
1−

1

p

)
= e−γ

holds, which is usually referred to as Mertens’ third theorem. (To obtain this
result, one has to know how the ζ(s) Riemann zeta function behaves in the
neighbourhood of its pole at s = 1.) When s = 0, then the product is zero,
and when s is negative, then the product diverges.

Concerning the positive case of expression (1), one can use the(
1+

1

ps

)(
1−

1

ps

)
= 1−

1

p2s
(2)

equation when s ∈ R, to transform the results from the negative case. Because
of this, we get that

lim
n→∞

∏
p≤n

(
1+

1

ps

)
=
ζ(s)

ζ(2s)

when s > 1, and also that

lim
n→∞ 1

lnn

∏
p≤n

(
1+

1

p

)
=
6

π2
eγ

holds when s = 1. (These results are not new, see again section 11.5 in [2].)
When s is zero, the product grows as 2π(n), where π is the prime counting
function.

What remains in both cases is when s ∈ (0, 1), and s < 0 in the positive case
of expression (1). We are going to concentrate on the positive case, because
equation (2) can be applied to transform our results back to the negative case.
We will rely on the following theorem, see theorem 2.7.1 from [3].
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Theorem 1 Let f be continuously differentiable on an open interval contain-
ing [2,∞), and let π(x) = Li(x) + ε(x), where Li(x) =

∫x
2 dt/ ln(t) is the offset

logarithmic integral. Now if x ≥ 2, then∑
p≤x

f(p) =

∫x
2

f(t)

ln(t)
dt+ ε(x)f(x) −

∫x
2

ε(t)f′(t)dt.

The precision which we can achieve while applying this theorem depends
heavily on the applied ε error term. Most of the results in this area give
absolute bound to the π(x) − li(x) = ε(x) error term, where

li(x) = lim
h→0+

(∫ 1−h
0

dt

ln t
+

∫x
1+h

dt

ln t

)
is the logarithmic integral. Take note that the applied ε and the later ε differs;
we are going to use the later ε throughout the paper. Because of this, we have
to substitute the ε error term in theorem 1 as

ε(x) = π(x) − Li(x) = π(x) − li(x) + li(2) = ε(x) + li(2)

later on. Take note that the value of li(2) is 1.04516378 approximately. Regard-
ing the ε error term, Koch showed in [10], that if the Riemann hypothesis is
true, then ε(x) ∈ O(√x ln x). This has been made more precise by Schoenfeld
in [14], showing that

|ε(x)| <

√
x ln x

8π
(3)

holds for all x ≥ 2657. As of now, this is the best possible error bound de-
pending on the validity of the Riemann hypothesis. A weaker result from the
same article of Koch states that

|ε(x)| < O
(
x1/2+σ

)
for all σ > 0, if the Riemann hypothesis is true. Kotnik in his [11] article
improves this by conjecturing that even

|ε(x)| <
√
x (4)

holds for all x ≥ 2 according to his investigations. We will use this later
inequality in our calculations. Now we give our results for the s ∈ [1/2, 1)
case.
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Proposition 1 If the conjecture of Kotnik is true, then

lim
n→∞ e−li(n1−s)

∏
p≤n

(
1+

1

ps

)
= ϕ(s)eO(Γ(1−

1
2s)) (5)

holds when s ∈ (1/2, 1), where

ϕ(s) =

√
2s− 1

(1− s)
√

ln 2
(6)

furthermore ∏
p≤n

(
1+

1√
p

)
= eli(

√
n)+O(lnn) (7)

holds when s = 1/2.

In the case when Kotnik’s conjecture would turn out to be false, one could
fall back to using the result of Schoenfeld, see inequality (3), which would
yield similar results, but with a more complex right hand side in equation (5),
furthermore a much rougher asymptotic in place of equation (7). The plot of
the ϕ(s) function for s ∈ (1/2, 1) can be seen on figure 1.

Take note that the gamma function on the right hand side of equation (5)
goes to positive infinity as s approaches 1/2 from the right, and ϕ(s) goes to
positive infinity as s approaches 1 from the left. When s is not near 1/2 or 1,
the right hand side of equation (5) is smaller than a constant depending on
s, because next to the Γ function, we only have constant terms hidden behind
the asymptotic, see the proof in section 2.

It is noted that to obtain the third theorem of Mertens, one has to know
how the Riemann zeta function behaves in the neighbourhood of its pole. Here,
the Riemann hypothesis is a much stronger assumption, which relies on the
exact behaviour of the Riemann zeta function in the critical strip. (For more
information about the critical strip, see for example [7].)

As for the cases when s ∈ (0, 1/2) and when s < 0, we are going to get much
rougher results. These will be more like observations, and we are going to give
them in section 3, where we will state our remarks.
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Figure 1: Plot of the ϕ(s) function for s ∈ (1/2, 1) from equation (6). Take
note that ϕ(s) approaches positive infinity as s approaches 1 from the left.

Our results have strong connection with the logarithmic integral, which is
not so surprising due to the fact that we apply theorem 1 to obtain them. We
know, see either chapter 5, equation 5.1.3 and 5.1.10 in [1], or article [6], that

li(x) = γ+ ln ln x+
∞∑
k=1

lnk x

k!k
(8)

holds when x > 1. As one approaches x = 1 either from the left or the right,
the li(x) logarithmic integral grows toward negative infinity. Using similar
arguments as in [6], one can derive a formula, which is very similar to equation
(8), in the case when x ∈ (0, 1).

Lemma 1 When x ∈ (0, 1), then

li(x) = γ+ ln ln
1

x
+

∞∑
k=1

lnk x

k!k

holds.

Proof. Let x ∈ (0, 1). By substituting t with e−u, we get that

li(x) =

∫x
0

1

ln t
dt = −

∫∞
− ln x

e−u

u
du = −

∫∞
0

e−u

u
du+

∫− ln x

0

e−u

u
du
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equalities hold, because − ln x > 0 as x ∈ (0, 1). By splitting the first integral
on the right hand side, we get

−

∫ 1
0

e−u

u
du−

∫∞
1

e−u

u
du+

∫− ln x

0

e−u

u
du+

∫− ln x

ln x

1

u
du (9)

where one should observe that the last term which we have added is zero. We
want to introduce γ into this expression, and because

γ =

∫ 1
0

1− e−u

u
du−

∫∞
1

e−u

u
du

holds, see page 103 of [5], we want to “cut down”
∫1
0 1/udu from the last

term in expression (9). Two scenarios can occur based on the value of x. If
x ∈ (0, e−1), then − ln x ≥ 1, so one can do the∫− ln x

ln x

1

u
du =

∫ 0
ln x

1

u
du+

∫ 1
0

1

u
du+

∫− ln x

1

1

u
du

split, from which we get that expression (9) is equal to

γ+ ln ln
1

x
+

∫− ln x

0

e−u

u
du+

∫ 0
ln x

1

u
du

where interchanging the limits of the integration in the third term, and by
applying the u = −t substitution in the last term, one can get

γ+ ln ln
1

x
+

∫ 0
− ln x

1− e−u

u
du

where the integral can be exchanged with the sum given in the lemma, as in
article [6]. If x ∈ (e−1, 1), then 0 < − ln x < 1, so one can do the∫− ln x

ln x

1

u
du =

∫ 0
ln x

1

u
du+

∫ 1
0

1

u
du−

∫ 1
− ln x

1

u
du

split, which we can transform back to the previous case by interchanging the
limits of the integration in the last term. �

Take note that when x ∈ (0, 1), then li(x) is smaller than zero and monotone
decreases toward negative infinity, furthermore when x ∈ (1,+∞) then it
monotone increases from negative infinity to positive infinity, see figure 2.

The reason why we have given the results in proposition 1 by using the
logarithmic integral, and not dissecting it further is because it is hard to give
a concise and also precise approximation for the logarithmic integral with
elementary functions.
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Figure 2: Plot of the logarithmic integral. The curves between 0 and 1 cor-
respond to the truncated versions of the equation from lemma 1. (They get
darker as we take more terms from the sum.)

2 Proof of the proposition

As it is noted, from now on we are going to concentrate on the positive case
of expression (1), while s ∈ [1/2, 1) holds.
Proof. Changing the product into summation in expression (1), we get

exp

ln
∏
p≤n

(
1+

1

ps

) = exp

∑
p≤n

ln

(
1+

1

ps

) (10)

where we are going to apply theorem 1 on the argument of the exponential
function on the right hand side. According theorem 1 and our observations
after it, this sum is equal to∫n

2

ln
(
1+ 1

ts

)
ln t

dt+ (ε(n) + li(2)) ln

(
1+

1

ns

)
+ s

∫n
2

ε(t) + li(2)

t(ts + 1)
dt (11)

because there exists an open interval containing [2,∞) on which we can con-
tinuously differentiate ln (1+ 1/ts), furthermore

d

dt
ln

(
1+

1

ts

)
= −

s

t(ts + 1)
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holds in the said interval. In the following sections we will examine the terms
of expression (11) piecewise, then sum our results in section 2.4.

2.1 First term

Concerning the first term in expression (11), we are going to use a series
representation of the logarithmic function from [1], equation 4.1.24, which
goes as

ln(1+ x) = x−
1

2
x2 +

1

3
x3 + . . . =

∞∑
k=1

(−1)k+1xk

k
(12)

where |x| ≤ 1 and x 6= −1. So∫n
2

ln
(
1+ 1

ts

)
ln t

dt =

∫n
2

∞∑
k=1

(−1)k+1

ktks ln t
dt =

∫n
2

∞∑
k=1

fk,s(t)dt (13)

because |1/ts| ≤ 1 when t ∈ [2, n] and s ∈ [1/2, 1]. Now we are going to show
that the order of the integration and the summation can be interchanged in
equation (13). For every k > 0 and s ∈ [1/2, 1], we have that fk,s is continuous
on [2, n], which means that it is measurable on [2, n]. What we have to show
is that ∞∑

k=1

∫n
2

|fk,s(t)|dt =

∞∑
k=1

∫n
2

1

ktks ln t
dt <

1

ln 2

∞∑
k=1

∫n
2

1

tks
dt

converges. Because the integrand on the right hand side is a positive, measur-
able function on [2, n] for every k > 0 and s ∈ [1/2, 1], we can interchange the
order of the summation and the integration, which – based on the sum of the
geometric series – gives us

1

ln 2

∫n
2

∞∑
k=1

1

tks
dt =

1

ln 2

∫n
2

1

ts − 1
dt ≤ 1

ln 2

∫n
2

1√
t− 1

dt < +∞
because s ∈ [1/2, 1], so one can interchange the order of summation and inte-
gration in equation (13) as∫n

2

∞∑
k=1

(−1)k+1

ktks ln t
dt =

∞∑
k=1

(−1)k+1

k

∫n
2

1

tks ln t
dt (14)

where we have two cases during the evaluation of the integral inside the sum-
mation.
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1. If s = 1/m for some m > 0 integer, then the integral on the right side
in equation (14) will be simply ln lnn− ln ln 2 when k = m.

2. Otherwise, when s ∈ (1/2, 1) and there doesn’t exist an m integer such
that s = 1/m, then the integral can be treated as follows. Let us set
t = rλ, then we get that∫n

2

1

tks ln t
dt =

∫n1/λ
21/λ

rλ−ksλ−1

ln r
dr

where we want λ− ksλ− 1 to be zero, so we have to set λ = 1/(1− ks),
which gives us that∫n1/λ

21/λ

rλ−ksλ−1

ln r
dr =

∫n1−ks
21−ks

1

ln r
dr = li(n1−ks) − li(21−ks)

holds in this case.

Using these results, we get that when s = 1/m for some m > 0 integer, then
equation (14) is equal to

(−1)m+1

m
(ln lnn− ln ln 2) +

∑
k∈N+\{m}

(−1)k+1

k

(
li(n1−ks) − li(21−ks)

)
(15)

otherwise when s ∈ (1/2, 1) and there doesn’t exist an m integer such that
s = 1/m, then equation (14) is equal to the

∞∑
k=1

(−1)k+1

k

(
li(n1−ks) − li(21−ks)

)
(16)

sum. We are going to investigate these sums depending on the value of s
separately in the cases when s ∈ (1/2, 1), and when s = 1/2.

2.1.1 Above half

When s ∈ (1/2, 1), then there is surely no such m integer that s = 1/m, so we
are going to concentrate on expression (16) in this case. We will show that the
sum can be actually split into two sums; one which contains only the li(n1−ks)
terms, and another, which contains only the li(21−ks) terms. Considering the
members of the first sum, when 1− ks < 0, then

lim
n→∞ li(n1−ks) = 0
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holds. Because s ∈ (1/2, 1), this is true when k > 1. Regarding the members
of the second sum, because the logarithmic integral is negative on (0, 1), we
have that

0 <
−li(21−ks)

k
= −

1

k
lim
h→0+

∫ 21−ks
h

1

ln t
dt (17)

holds for k > 2 and s ∈ (1/2, 1). With these assumptions about k and s, we
have that the 1/ ln t function is continuous on [h, 21−ks] for every h ∈ (0, 21−ks),
so we can apply the mean value theorem and get that the right hand side of
equation (17) is smaller than

−
1

k
lim
h→0+

21−ks − h

ln 21−ks
=

21−ks

k(ks− 1) ln 2
(18)

because | ln t| increases as t approaches zero from the right. Take note that
the right hand side of equation (18) decreases monotonically to zero as k
approaches infinity when s ∈ (1/2, 1). To simplify the discussion, we introduce
the

αi,s(x) :=

∞∑
k=i

(−1)k+1

k
li(x1−ks)

notation. We have arrived at the conclusion that α2,s(n) converges to zero as n
approaches positive infinity, and α3,s(2) also converges based on the alternating
series test, so the sum in expression (16) can be split, and it is equal to

li(n1−s) + α2,s(n) − li(21−s) +
1

2
li(21−2s) +O(1)

when s ∈ (1/2, 1). Now we are going to bound the third and fourth terms in
this last expression. Using equation (8) for the third term, we have

li(21−s) = γ+ ln ln 21−s +O(1)

furthermore using the result of lemma 1 for the fourth term, we get

li(21−2s) = γ+ ln ln
1

21−2s
+O(1)

where the ∞∑
k=1

lnk x

k!k
<

∞∑
k=0

lnk x

k!
= x
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inequality was applied in both cases. Summing these results, we have that
expression (16) is equal to

li(n1−s) + α2,s(n) + ln

√
2s− 1

(1− s)
√

ln 2
+O(1) (19)

in this case. Now we keep the α2,s(n) term, because it will disappear when we
will let n approach positive infinity at the end.

2.1.2 At half

As we lower s from one toward zero, the s = 1/2 is the first case where we
have to use expression (15), which gives us

li(
√
n) − li(

√
2) −

1

2
(ln lnn− ln ln 2) +

∞∑
k=3

(−1)k+1

k

(
li(n1−k/2) − li(21−k/2)

)
where we can split the sum again, based on the arguments in section 2.1.1.
Summing the constants, we get that expression (15) is equal to

li(
√
n) + α3,1/2(n) −

1

2
ln lnn+O(1) (20)

when s = 1/2. Yet again, the α3,1/2(n) term will disappear when we will
approach positive infinity with n at the end.

2.2 Second term

As for the second term in expression (11), we are going to use the inequalities
4.1.33 from [1], which state that

x

1+ x
< ln (1+ x) < x

holds for every x > −1, x 6= 0, from which it follows that

1

xs + 1
< ln

(
1+

1

xs

)
<
1

xs

holds for every x ∈ (0,∞) and s ∈ R. Using the error term from inequality (4)
in the second term of expression (11), we get that∣∣∣∣(ε(n) + li(2)) ln

(
1+

1

ns

)∣∣∣∣ ≤ (|ε(n)|+ li(2)) ln

(
1+

1

ns

)
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<

√
n+ li(2)

ns
(21)

so if s > 1/2, then the absolute value of the second term converges to zero as
n goes to infinity. When s = 1/2, then its absolute value is smaller than

1+
li(2)√
n

(22)

otherwise, its absolute value behaves asymptotically as

O
(
n1/2−s

)
(23)

when s < 1/2.

2.3 Third term

For the third term in expression (11), we can assume without loss of generality
that ε and also |ε| is Riemann-integrable on [2, n], so we can write∣∣∣∣s ∫n

2

ε(t) + li(2)

t(ts + 1)
dt

∣∣∣∣ ≤ s ∫n
2

|ε(t)|+ li(2)

t(ts + 1)
dt < s

∫n
2

√
t+ li(2)

t(ts + 1)
dt (24)

where we have substituted the error term from inequality (4). This is equal to

βs(n) := 2s

[√
t · 2F1

(
1,
1

2s
; 1+

1

2s
; −ts

)]n
2

+ li(2)

[
ln

ts

ts + 1

]n
2

(25)

because the first part of the integral on the right hand side can be transformed
into the form of the 2F1 Gauss hypergeometric function, and the second part
can be decomposed into partial fractions. The transformation of the first part
can be done as∫

1√
x(xs + 1)

dx =

∫x
0

u−
1
2 (1+ us)−1 du+ C

=
1

s

∫xs
0

r
1
2s

−1(1+ r)−1 dr+ C

=

√
x

s

∫ 1
0

t
1
2s

−1(1+ xst)−1 dt+ C

where first we switched the indefinite integral into a definite one, then we have
applied the us = r substitution and finally the r = xst substitution. The Gauss
hypergeometric function can be written in the

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1
0

tb−1(1− t)c−b−1(1− tz)−a dt
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form, see equation 15.3.1 in [1]. Using this, we have that z = −xs, a = 1 and
b = 1/2s. Because c − b − 1 = 0 should hold, we get our missing c and with
it, the first part of expression (25). As for the second part, we have

li(2)

∫n
2

s

t(ts + 1)
dt = li(2)

∫n
2

s

t
−
sts−1

ts + 1
dt

where the second fraction is a logarithmic derivative. We are going to inves-
tigate the resulting expression (25) separately in the cases when s ∈ (1/2, 1),
and when s = 1/2.

2.3.1 Above half

First, we deal with the upper limit of the integration. Substituting n into
expression (25), we get

2s
√
n · 2F1

(
1,
1

2s
; 1+

1

2s
; −ns

)
+ li(2) ln

ns

ns + 1
(26)

which, by using the

2F1 (a, b; c; z) = (1− z)−b2F1

(
b, c− a; c;

z

z− 1

)
linear transformation formula, see equation 15.3.5 in [1], can be transformed
into the

2s

√
n

(ns + 1)1/2s
2F1

(
1

2s
,
1

2s
; 1+

1

2s
;
ns

ns + 1

)
+ li(2) ln

ns

ns + 1

form. Because s ∈ (1/2, 1), we get that

lim
n→+∞

√
n

(ns + 1)1/2s
2F1

(
1

2s
,
1

2s
; 1+

1

2s
;
ns

ns + 1

)
= 2F1

(
1

2s
,
1

2s
; 1+

1

2s
; 1

)
holds. When c is not zero or a negative integer, furthermore <(c−a− b) > 0
is true, then one can apply the

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

substitution, see equation 15.1.20 in [1]. Because s ∈ (1/2, 1), the conditions
are satisfied, and we can utilise the above mentioned formula to get

2s2F1

(
1

2s
,
1

2s
; 1+

1

2s
; 1

)
= 2sΓ

(
1+

1

2s

)
Γ

(
1−

1

2s

)
(27)
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which has an anomaly at s = 1/2. For the second term, observe that

lim
n→+∞ ln

ns

ns + 1
= 0

holds. Now we deal with the lower limit of the integral. By substituting 2 into
expression (25) we get

2s
√
2 · 2F1

(
1,
1

2s
; 1+

1

2s
; −2s

)
+ li(2) ln

2s

2s + 1
(28)

where the second term is a small constant, so we will concentrate on the value
of the hypergeometric function. Using another

2F1 (a, b; c; z) = (1− z)−a2F1

(
a, c− b; c;

z

z− 1

)
linear transformation formula, see equation 15.3.4 in [1], we get that the hy-
pergeometric function in expression (28) is equal to

1

2s + 1
2F1

(
1, 1; 1+

1

2s
;
2s

2s + 1

)
where the last argument is in (0, 1). We are going to give an upper bound for
this expression. If a ≤ 1 and 0 < b ≤ c, then

2F1 (−a, b; c; z)
1/a ≥

[(
1−

b

c

)
+
b

c
(1− z)a

]1/a
for all z ∈ (0, 1), see [8] furthermore [13] and [4]. Because s ∈ (1/2, 1), we can
apply this inequality, which means that

2F1

(
1, 1; 1+

1

2s
;
2s

2s + 1

)
≤
(
1−

1

1+ 1
2s

)
+

1

1+ 1
2s

(
1−

2s

2s + 1

)−1

which is just a small constant when s ∈ (1/2, 1). Joining our results so far,
we get that βs(n) from expression (25) then converges to the right hand side
of equation (27) plus some constant as n approaches positive infinity when
s ∈ (1/2, 1).
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2.3.2 At half

One of the special elementary cases of the hypergeometric function is the

2F1 (1, 1; 2; z) = −z−1 ln(1− z)

equality, see equation 15.1.3 in [1]. This means that when s = 1/2, then the
first part of expression (25) is equal to[

ln(
√
t+ 1)

]n
2
∈ O(lnn) (29)

and because we have tried to bound the absolute value of the third term from
above, this partial result already spoils our pursuit of reaching a constant
error term in this special case. Regarding the second part of expression (25),
what was said in the previous section still holds, meaning that the second part
converges to a small constant as n approaches infinty.

2.4 Summing the parts

Now we are going to sum our results. In the case when s ∈ (1/2, 1), the first
term of expression (11) is equal to expression (19), the absolute value of the
second term is smaller than the right hand side of inequality (21) and the
absolute value of the third term is smaller than expression (25). So expression
(11) is equal to

li(n1−s) + ln

√
2s− 1

(1− s)
√

ln 2
+O(1) +O

(
α2,s(n) +

√
n+ li(2)

ns
+ βs(n)

)
in this case. Reintroducing this into equation (10), we get that the positive
case of expression (1) is equal to

√
2s− 1

(1− s)
√

ln 2
exp

(
li(n1−s) +O(1) +O

(
α2,s(n) +

√
n+ li(2)

ns
+ βs(n)

))
where, after dividing with exp

(
li(n1−s)

)
and taking the limit in n, we get the

sought equality (5). As for the case when s = 1/2 the first term of expression
(11) is equal to expression (20), the absolute value of the second term is smaller
than expression (22), and the absolute value of the third term is smaller than
expression (29). By these, expression (11) is equal to

li(
√
n) +O(lnn)

and by reintroducing this into equation (10), we get equality (7). �
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3 Remarks

3.1 Below half

The problem in this region is that either when using expression (15) or ex-
pression (16) the result becomes more and more complicated as we approach
zero with s from the right. This happens mainly because the li(n1−ks) terms
only disappear when k > 1/s, but also because one has to pay close attention
to the li(21−ks) terms when 21−ks is close to one. (The li(n1−ks) terms behave
more nicely, because they avoid the anomaly at one.) Furthermore, without
taking the third term into consideration, the second term already contributes
a rough asymptotical term, see expression (23).

3.2 The case of negative exponents

When the s exponent is negative, instead of expression (11), the sum in equa-
tion (10) is equal to∫n

2

ln
(
1+ t|s|

)
ln t

dt+ (ε(n) + li(2)) ln
(
1+ n|s|

)
− |s|

∫n
2

ε(t) + li(2)

t1−|s|
(
1+ t|s|

) dt (30)

because there exists an open interval containing [2,∞) on which we can con-
tinuously differentiate ln

(
1+ t|s|

)
, furthermore

d

dt
ln
(
1+ t|s|

)
= |s|

t|s|−1

1+ t|s|

holds. We cannot apply equation (12) like in section 2.1. Instead, we will use
the following simple estimations, which can be shown using the properties of
the logarithmic function. For every s > 0 real number, there exists such cs > 1
constant, that

ln xs ≤ ln(1+ xs) ≤ cs ln xs

holds for every x > 1 real number. Applying these estimations on the first
term on expression (30), we get

|s|

∫n
2

dt ≤
∫n
2

ln
(
1+ t|s|

)
ln t

dt ≤ cs|s|
∫n
2

dt

which shows us that the first term grows as Θ(n). Proceeding to the second
term in expression (30), we have that its absolute value is smaller than

(|ε(n)|+ li(2)) ln
(
1+ n|s|

)
≤ cs|s|

(√
n+ li(2)

)
lnn
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which grows as O
(√
n lnn

)
. Still assuming that ε and also |ε| is Riemann-

integrable on [2, n], the absolute value of the third term in expression (30) is
smaller than or equal to

|s|

∫n
2

|ε(t)|+ li(2)

t1−|s|
(
1+ t|s|

) dt
which we can estimate from above by dropping the plus one from the denom-
inator. This way, we get

|s|

∫n
2

|ε(t)|+ li(2)

t
dt < |s|

∫n
2

√
t+ li(2)

t
dt = |s|

[
2
√
t+ li(2) ln t

]n
2

which grows as O
(√
n
)
. As it can be seen, when the s exponent is negative in

equation (10), then the first term dominates so the positive case of the product
in expression (1) grows as exp (Θ(n)).

3.3 Remark about the strength of the method

Finally, we are going to look at how the theorem performs in the s = 1 case.
Following the same path as in section 2, for the first term in expression (11)
we should use expression (15), which is equal to

ln lnn− ln ln 2+
∞∑
k=2

(−1)k+1

k

(
li(n1−k) − li(21−k)

)
in this case. As in section 2.1.1, we can deduce that this expression is equal to

ln lnn+ α2,1(n) +O(1) (31)

where the α2,1(n) term disappears as we approach positive infinity with n.
The absolute value of the second term in expression (11) is smaller than

√
n+ li(2)

n
(32)

which vanishes as n tends to positive infinity, so what remains is the absolute
value of the third term in the expression (11). Based on inequality (24) we get
that its absolute value is smaller than

β(n) :=

∫n
2

√
t+ li(2)

t(t+ 1)
dt = 2

[
arctan

√
t
]n
2
+

[
ln

t

t+ 1

]n
2

(33)
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which converges to a small constant when n approaches infinity. Using expres-
sion (31), expression (32), and finally expression (33), we get that equation
(10) is equal to

exp

(
ln lnn+O(1) +O

(
α2,1(n) +

√
n+ li(2)

n
+ β(n)

))
which in turn means that

lim
n→∞ 1

lnn

∏
p≤n

(
1+

1

p

)
= eO(1)

holds.
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Abstract. In this paper a new class of sets termed as ω∗
µ

-open sets has
been introduced and studied. Using these concept, a unified theory for
decomposition of (µ, λ)-continuity has been given.

1 Introduction

For the last one decade or so, the notion of generalized topological spaces
and several classes of generalized types of open sets are being studied by
different mathematicians. Our aim here is to study the notion of decomposition
of continuity by using the concept of generalized topology introduced by Á.
Császár [2]. On the otherhand the notion of decompositions of continuity was
first introduced by Tong [18, 19] by defining A-sets and B-sets. After then
decompositions of continuity and some of its weak forms have been studied by
Ganster and Reilly [7, 8], Yalvac [20], Hatir and Noiri [10, 11], Przemski [14],
Noiri and Sayed [13], Dontchev and Przemski [5], Erguang and Pengfei [6] and
many others. Decompositions of regular open sets and regular closed sets are
given by using PS-regular sets in [9]. Since then the notion of decompositions
of continuity is one of the most important area of research.
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We first recall some definitions given in [2]. Let X be a non-empty set and
expX denote the power set of X. We call a class µ j expX a generalized
topology (briefly, GT) [1, 2], if ∅ ∈ µ and µ is closed under arbitrary unions.
A set X, with a GT µ on it is said to be a generalized topological space (briefly,
GTS) and is denoted by (X, µ). A GT µ is said to be a quasi topology (briefly
QT) [3] if M,M

′ ∈ µ implies M∩M ′ ∈ µ. The pair (X, µ) is said to be a QTS
if µ is a QT on X. For a GTS (X, µ), the elements of µ are called µ-open sets
and the complements of µ-open sets are called µ-closed sets. A GTS (X, µ) is
called a µ-space [13] or a strong GTS [4] if X ∈ µ. A subset A of a topological
space (X, τ) is called ω-closed [12] if it contains all its condensation points.
The complement of an ω-closed set is called an ω-open set. It is well known
that a subset A of a space (X, τ) is ω-open if and only if for each x ∈ A, there
exists U ∈ τ containing x such that U \A is countable.

The purpose of this paper is to introduce the decomposition theorem for
the (µ, λ) continuous functions introduced in [1] which is a generalization of
continuity and different weak forms of continuity. Throughout the paper, by
(X, µ) and (Y, λ) we shall mean GTS unless otherwise stated.

2 ω∗
µ
-open sets and its properties

Definition 1 Let (X, µ) be a GTS. A subset A of X is called an ω∗
µ
-open

(ωµ-open [15]) set if for each x ∈ A, there exists a µ-open set U containing x
such that U\ iµ(A) (resp. U\A) is countable. The complement of an ω∗

µ
-open

(resp. ωµ-open) set is known as an ω∗
µ
-closed (resp. ωµ-closed [15]) set.

It follows from Definition 1 that everyω∗
µ
-open set is anωµ-open set and every

µ-open set is ω∗
µ
-open set but the converses are false as shown in Example 3.

Remark 1 Let µ be a GT on a topological space (X, τ). If τ j µ, then the
following relations hold:

ω-open set⇐ open set ⇒ µ-open set⇓ ⇓
ωµ-open set ⇐ ω∗

µ
-open set

Example 1 (a) Let X = R, τ be the usual topology on R. Let µ = {∅, X,Q}.
Then µ is a GT on the topological space (X, τ). It is easy to see that Q is an
ω∗
µ
-open set but not an ω-open set.
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(b) Let X = R and µ be the usual topology on R. Then µ is a GT on X. It is
easy to see that I, the set of irrationals is an ωµ-open set but not an ω∗

µ
-open

set.
(c) Let X = R and µ = {A j X : 0 ∈ A}∪ {∅}. Then µ is a GT on the set X.

It is easy to see that I, the set of irrationals is ωµ-open but not µ-open.
(d) Let X = R, µ = {A : A is uncountable} ∪ {∅} and τ = {∅, X,Q}. Then µ

is a GT on the topological space (X, τ). It can be easily verified that Q is an
ω-open set but not an ω∗

µ
-open set.

The family of all ω∗
µ
-open sets of a GTS (X, µ) is denoted by ω∗

µ
(X) or

simply by ω∗
µ
.

Proposition 1 (a) In a GTS (X, µ), the collection of all ω∗
µ
-open sets forms

a GT on X.
(b) If (X, µ) is a QTS, then the collection of all ω∗

µ
-open sets forms a QT on

X.

Proof. (a) It is obvious that ∅ is an ω∗
µ
-open set. Let {Aα : α ∈ Λ} be

a collection of ω∗
µ
-open subsets of X. Then for each x ∈ ∪{Aα : α ∈ Λ},

x ∈ Aα for some α ∈ Λ. Thus there exists U ∈ µ containing x such that
U \ iµ(Aα) is countable. Now as U \ iµ(∪{Aα : α ∈ Λ}) j U \ iµ(Aα), thus
U \ iµ(∪{Aα : α ∈ Λ}) is countable. Hence ∪{Aα : α ∈ Λ} is an ω∗

µ
-open set.

(b) It follows from (a) that (X,ω∗
µ
) is a GTS. Let A and B be two ω∗

µ
-open

sets and x ∈ A∩B. Then there exist µ-open sets U and V containing x such that
U \ iµ(A) and V \ iµ(B) are countable. Then U∩ V is a µ-open set containing
x and (U∩V) \ iµ(A∩B) = (U∩V) \ iµ(A)∩ iµ(B) j [U \ iµ(A)]∪ [V \ iµ(B)].
Thus (U ∩ V) \ iµ(A ∩ B) is countable so that ω∗

µ
is a QT on X. �

Theorem 1 A subset A of a GTS (X, µ) is an ω∗
µ
-open set if and only if for

each x ∈ A, there exist Ux ∈ µ containing x and a countable subset C such
that Ux \ C j iµ(A).

Proof. Let A be an ω∗
µ
-open set in X and x ∈ A. Then there exists Ux ∈ µ

containing x such that Ux \ iµ(A) is countable. Let C = Ux \ iµ(A) = Ux ∩ (X\
iµ(A)). Then Ux \ C j iµ(A).

Conversely, let x ∈ A and there exist Ux ∈ µ containing x and a countable
subset C such that Ux \C j iµ(A). Then Ux \ iµ(A) j C and hence Ux \ iµ(A)
is a countable set. Thus A is an ω∗

µ
-open set in X. �
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Theorem 2 Let (X, µ) be a GTS and C j X. If C is ω∗
µ
-closed, then C j K∪B

for some µ-closed set K and a countable subset B.

Proof. If C be ω∗
µ
-closed, then X\C is ω∗

µ
-open and hence for each x ∈ X\C,

there exist U ∈ µ containing x and a countable subset B such that U \ B j
iµ(X\C) = X\cµ(C). Thus cµ(C) j X\(U\B) = X\(U∩(X\B)) = (X\U)∪B.
Let K = X \U. Then K is µ-closed such that C j K ∪ B. �

Proposition 2 In a GTS (X, µ), ω∗
µ
= ω∗

ω∗
µ

, where ω∗
µ

denotes the family of

ω∗
µ
-open sets of the GTS (X, µ).

Proof. By Remark 1, we have ω∗
µ
j ω∗

ω∗
µ

. Let A ∈ ω∗
ω∗
µ

. Then for each

x ∈ A, there exist Ux ∈ ω∗
µ

with x ∈ Ux and a countable set Cx such that
Ux\Cx j iµ(A). Furthermore there exist a Vx ∈ µ with x ∈ Vx and a countable
set Dx such that Vx \Dx j iµ(Ux). Thus Vx \ (Cx ∪Dx) = (Vx \Dx) \ Cx j
Ux \ Cx j iµ(A). Since Cx ∪Dx is a countable set, we obtain A ∈ ω∗

µ
. �

Remark 2 If (X, µ) be a µ-space, then (X,ω∗
µ
) is an ω∗

µ
-space.

Definition 2 A subset A of a GTS (X, µ) is called an (i) (ωµ ,ω)-set if
i
ω∗
µ
(A) = iωµ (A).

(ii) (ωµ , µ)-set if i
ω∗
µ
(A) = iµ(A).

Remark 3 Every ω∗
µ
-open set is an (ωµ ,ω)-set and every µ-open set is an

(ωµ , µ)-set but the converses are usually not true.

Example 2 (a) Let X = R, µ = {∅, I, X}. Then µ is a GT on X. It can
be checked that N (= the set of natural numbers) is not an ω∗

µ
-open but an

(ωµ ,ω)-set.

(b) Let X = R, µ = {∅, (2, 3), X}. Then µ is a GT on X. The set (1, 32) is an
(ωµ , µ)-set but not a µ-open set.

Theorem 3 A subset A of a GTS (X, µ) is ω∗
µ
-open if and only if A is ωµ-

open and an (ωµ ,ω)-set.

Proof. Since every ω∗
µ
-open set is ωµ-open (from definition) and an (ωµ ,ω)-

set (by Remark 3), we have nothing to show.
Conversely, let A be an ωµ-open and an (ωµ ,ω)-set. Then A = iωµ (A) =

i
ω∗
µ
(A). Thus A is an ω∗

µ
-open set. �
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Theorem 4 A subset A of a GTS (X, µ) is µ-open if and only if A is ω∗
µ
-open

and an (ωµ , µ)-set.

Proof. One part follows from the fact that every µ-open set is ω∗
µ
-open and

(ωµ , µ)-set.
Conversely, let A be anω∗

µ
-open set and an (ωµ , µ)-set. Then A = i

ω∗
µ
(A) =

iµ(A). Thus A is µ-open. �

Definition 3 A GTS (X, µ) is called
(i) µ-locally countable if each x ∈ X is contained in a countable µ-open set.
(ii) anti µ-locally countable if each non-empty µ-open subsets are uncountable.

Theorem 5 Let (X, µ) be a µ-locally countable space. Then
(i) for any subset A of X, A is ω∗

µ
-open.

(ii) A is ω∗
µ
-open if and only if A is ωµ-open.

Proof. (i) Let A j X and x ∈ A. Then there is a countable µ-open set U
containing x. Then U \ iµ(A) is a countable set. Thus A is ω∗

µ
-open.

(ii) One part follows from the fact that every ω∗
µ
-open is ωµ-open.

Conversely, let A be ωµ-open. Then by (i), A is ω∗
µ
-open. �

Remark 4 Let (X, µ) be a countable GTS. Then for any subset A of X, A is
ω∗
µ
-open.

Theorem 6 (i) Let (X, µ) be a GTS and A j X. If (X, µ) is anti µ-locally
countable, then so is (X,ω∗

µ
).

(ii) Let (X, µ) be a QTS which is anti µ-locally countable. Then for any µ-open
subset A of X, cµ(A) = cω∗

µ
(A).

Proof. (i) Let A be an ω∗
µ
-open set and x ∈ A. Then there exist Ux ∈ µ

containing x and a countable subset C such that Ux \ C j iµ(A). Thus iµ(A)
is uncountable and hence A is uncountable.

(ii) Let x ∈ cµ(A) and G be an ω∗
µ
-open set containing x. Then there exist

Ux ∈ µ containing x and a countable subset C such that Ux \C j iµ(G). Then
(Ux \C)∩A j iµ(G)∩A i.e., (Ux ∩A) \C j iµ(G)∩A. Since Ux is a µ-open
set, Ux ∩ A 6= ∅ and thus Ux ∩ A is a non-empty µ-open set. Hence by anti
µ-locally countableness of (X, µ), it follows that Ux ∩ A is uncountable and
hence (Ux ∩A) \C is also uncountable. Thus iµ(G)∩A is uncountable. Hence
G ∩A 6= ∅. So x ∈ c

ω∗
µ
(A) i.e, cµ(A) j cω∗

µ
(A). The other part is obvious. �
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Definition 4 A µ-space (X, µ) is said to be µ-Lindelöf [17] if every cover of
X by µ-open sets has a countable subcover.

A subset A of a µ-space (X, µ) is said to be µ-Lindelöf relative to X [17] if
every cover of A by µ-open sets of X has a countable subcover.

Theorem 7 Let (X, µ) be a µ-Lindelöf GTS and A be a µ-closed, ω∗
µ
-open

subset of X. Then A \ iµ(A) is countable.

Proof. Clearly A is a µ-Lindelöf space (see Corollary 3.6 of [15]). For each
x ∈ A, there exist Ux ∈ µ containing x and a countable subset C such that
Ux \ C j iµ(A). Thus {Ux : x ∈ A} is cover of A by µ-open subsets of X.
Hence by µ-Lindelöfness of A, it has a countable subcover {Un : n ∈ N}. Since
A \ iµ(A) j ∪{Un \ iµ(A) : n ∈ N}, A \ iµ(A) becomes countable. �

3 Decomposition of continuity by ω∗
µ
-open sets

Definition 5 A function f : (X, µ)→ (Y, λ) is said to be ω∗
µ
-continuous (resp.

ωµ-continuous [15], (µ, λ)-continuous [1]) if for every x ∈ X and every λ-open
set V of Y containing f(x), there exists an ω∗

µ
-open (resp. ωµ-open, µ-open)

set U containing x such that f(U) j V.

Definition 6 A function f : (X, µ)→ (Y, λ) is said to be weakly ω∗
µ
-continuous

if for every x ∈ X and every λ-open set V of Y containing f(x), there exists an
ω∗
µ
-open set U containing x such that f(U) j c

λ
(V).

Theorem 8 For a function f : (X, µ) → (Y, λ) the following properties are
equivalent:
(i) f is ω∗

µ
-continuous;

(ii) f : (X,ω∗
µ
)→ (Y, λ) is (ω∗

µ
, λ)-continuous;

(iii) f−1(V) ∈ ω∗
µ

for every V ∈ λ.

Proof. Obvious. �

Remark 5 Let f : (X, µ) → (Y, λ) be a function. Then the following rela-
tions hold: (µ, λ)-continuity ⇒ ω∗

µ
-continuity ⇒ ωµ-continuity ⇒ weakly ω∗

µ
-

continuity.

Example 3 (a) Let X = {a, b, c}, µ = {∅, {b}, {a, c}, {b, c}, X} and λ = {∅, {a, c},
{a, b},
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X}. Then µ and λ are two GT’s on X. It can be verified that the identity
mapping f : (X, µ)→ (X, λ) is ω∗

µ
-continuous but not (µ, λ)-continuous.

(b) Let X = R, µ = the usual topology on R, Y = {a, b, c, d} and λ =
{∅, Y, {a}, {a, b}, {c, d}, {a, b, c}, Y}. Consider the mapping f : (X, µ) → (Y, λ)
defined by

f(x) =

{
a, if x ∈ I
b, if x 6∈ I

It can be checked that f is ωµ-continuous but not ω∗
µ
-continuous.

(c) Let X = R be the set of real numbers, µ = {∅,R, I}, Y = {a, b, c, d} and
λ = {∅, Y, {d}, {c, d}, {a, b, c}}. Consider the mapping f : (X, µ)→ (Y, λ) defined
by

f(x) =

{
a, if x ∈ I ∪ {0}

b, if x 6∈ I ∪ {0}

It can be verified that f is ωµ-continuous but not weakly ω∗
µ
-continuous.

Definition 7 A function f : (X, µ) → (Y, λ) is said to be (ω∗
µ
,ω)-continuous

(resp. (ω∗
µ
, µ)-continuous) if for every λ-open set A of Y, f−1(A) is an (ωµ ,ω)-

set (resp. an (ωµ , µ)-set).

Remark 6 Every (µ, λ)-continuous function is (ω∗
µ
, µ)-continuous and every

ω∗
µ
-continuous function is (ω∗

µ
,ω)-continuous but the converses are not true.

Example 4 (a) Let X = R, µ = {∅, (2, 3), X}. Then µ is a GT on X. Let
B = (1, 32) and λ = {∅, B, X \ B,X}. Consider the mapping f : (X, µ) → (X, λ)
defined by

f(x) =

{
5
4 , if x ∈ (1, 2)
4, if x 6∈ (1, 2)

It can be verified that f is (ω∗
µ
, µ)-continuous but not (µ, λ)-continuous.

(b) Let X = R, µ = {∅, I, X} where I is the set of irrationals. Then µ is a
GT on X. Consider the mapping f : (X, µ)→ (X, µ) defined by

f(x) =

{ √
2, if x ∈ N

1, if x 6∈ N

It can be verified that f is (ω∗
µ
,ω)-continuous but not ω∗

µ
-continuous.

Definition 8 For any subset A of a GTS (X, µ), the µ-frontier [16] of A is
denoted by Frµ(A) and defined by Frµ(A) = cµ(A) ∩ cµ(X \A).
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Definition 9 A function f : (X, µ) → (Y, λ) is said to be co-weakly (ω∗
µ
, λ)-

continuous if f−1(Fr
λ
(V)) is ω∗

µ
-closed in X for every λ-open set V in Y.

Theorem 9 For a function f : (X, µ)→ (Y, λ) the following are equivalent:
(i) f is ω∗

µ
-continuous.

(ii) f is ωµ-continuous and (ωµ ,ω)-continuous.

Proof. (i) ⇔ (ii) Follows from Theorem 3. �

Theorem 10 Let (X, µ) be a QTS. Then for a function f : (X, µ)→ (Y, λ) the
following are equivalent:
(i) f is ω∗

µ
-continuous.

(ii) f is co-weakly (ω∗
µ
, λ)-continuous and weakly ω∗

µ
-continuous.

Proof. (i) ⇒ (ii): Obvious.
(ii) ⇒ (i): Let f be a co-weakly (ω∗

µ
, λ)-continuous and weakly ω∗

µ
-continuous

function. Let x ∈ X and V be a λ-open set of Y containing f(x). As f is a
weakly ω∗

µ
-continuous function, there exists a ω∗

µ
-open set U containing x

such that f(U) j c
λ
(V). Since Fr

λ
(V) = c

λ
(V)∩c

λ
(X\V) = c

λ
(V)\V, we have

f(x) 6∈ Fr
λ
(V). Since f is co-weakly (ω∗

µ
, λ)-continuous, x ∈ U \ f−1(Fr

λ
(V)),

which is ω∗
µ
-open in X. Then for every y ∈ f(U \ f−1(Fr

λ
(V))), y = f(x

1
)

for a point x
1
∈ U \ f−1(Fr

λ
(V)). Thus we have f(x

1
) = y ∈ f(U) j c

λ
(V)

and y 6∈ Fr
λ
(V) with f(x

1
) ∈ V. Thus f(U \ f−1(Fr

λ
(V))) j V. Hence f is

ω∗
µ
-continuous. �

Theorem 11 For a function f : (X, µ)→ (Y, λ) the following are equivalent:
(i) f (µ, λ)-continuous.
(ii) f is ω∗

µ
-continuous and (ω∗

µ
, µ)-continuous.

Proof. Follows from Theorem 4. �
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