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Abstract. We consider the paracomplex version of the notion of mixed
linear spaces introduced by M. Jurchescu in [4] by replacing the complex
unit i with the paracomplex unit j, j2 = 1. The linear algebra of these
spaces is studied with a special view towards their morphisms.

Introduction

It is well-known that up to isomorphisms there are three 2-dimensional real
algebras: C = R[X]/(x2 + 1), A = R[X]/(x2 − 1), D = R[X]/(x2). The theory
of the first algebra is richer than the other two, a fact corresponding to the
field property of C. Similar to the complex case, the paracomplex algebra A
has the basis {1, j} with j2 = 1; therefore the elements of A are z = x+ jy with
x and y real numbers. For historical details about the paracomplex algebra
please see the survey [3].

Similar to the linear complex geometry there exists a paracomplex version
as follows: let V be a real linear space. A paracomplex structure on V is an
involution J : V → V, J2 = 1V , such that the eigenspaces V± := ker(1V ± J)
have the same dimension. The pair (V, J) is then called a paracomplex linear
space. If the hypothesis regarding the eigenspaces is dropped then we obtain
the notion of almost paracomplex structure. An A-linear map between the
(almost) paracomplex linear spaces (V, J) and (V ′, J′) is a linear map T : V → V ′

2010 Mathematics Subject Classification: 15A03, 15A04
Key words and phrases: paracomplex structure, para-mixed linear space, morphism

275



276 M. Crasmareanu

satisfying T ◦ J = J′ ◦ T . Just like complex vector spaces are vector spaces over
the field C, the almost paracomplex linear spaces are free modules over A.

In a series of papers ([4]-[6]) M. Jurchescu defined and uses the notions of
mixed linear space and mixed manifold having as (local) model the direct prod-
uct Rm×Cn. The mixed manifolds as differentiable families of complex spaces
are useful at the cross-road of complex analysis and complex geometry, for
example regarding the smoothly parameterized Čech cohomology of complex
manifolds, [1]. Here, following his ideas and restricted at the linear level we
define the concept of para-mixed linear space by replacing C with A. A lot of
properties of algebraic nature are similar to these frameworks and we hope to
use further the notions considered now.

The paper is structured in two sections. The first one is devoted to the
general theory of para-mixed linear spaces including the adapted linear maps
between them and also their subspaces. A special attention is dedicated to the
finite-dimensional case. The second section treats special morphisms between
para-mixed linear spaces and the notion of paracomplexification of such spaces.

1 Para-mixed linear spaces and subspaces

Definition 1 A (almost) para-mixed linear space is a triple (E, Ep, P) where
E is a real linear space and Ep is a linear subspace of E endowed with an
(almost) paracomplex structure P. Then Ep is called the paracomplex part of
E while the quotient real linear space Er = E/Ep is the real part of E. The
para-mixed space is pure real if Ep = 0 (i.e. Er = E) and pure paracomplex if
Er = 0 (i.e. Ep = E). In the following we place always in the “almost” case
and for simplicity we will drop this epithet.

Example 1 i) The fundamental example is E = Ef = Rm × An with Ep = An
and Er = Rm. Hence, a para-mixed linear space can be thought as a (trivial)
vector bundle over Er with paracomplex fibres Ep; also, para-mixed linear spaces
can be though as linear families of paracomplex spaces. Let us point out that
vertical bundles endowed with paracomplex structures are recently studied in [2]
and the geometry of polynomial sub-endomorphisms on a pair of distributions
for a given manifold are studied in [7].

ii) The paracomplex linear spaces will be considered as pure paracomplex
para-mixed linear spaces while the real linear spaces will be considered as pure
real para-mixed linear spaces. A para-mixed linear space E is simultaneous pure
real and pure paracomplex if and only if E = {0}.
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Definition 2 A linear map T ∈ LR(E, F) := L(E, F) between two para-mixed
linear spaces is called a morphism if T(Ep) ⊆ Fp and the induced map Tp =
T |Ep : Ep → Fp is an A-linear map. T is called an antimorphism if T(Ep) ⊆ Fp
and Tp is an A-antilinear map: T(x + jy) = Tx − jTy. Tp is the paracomplex
part of T while Tr = T |Er : Er → Fr is the real part of T . Denotes by Hom(E, F)
the set of all morphisms from E to F and T ∈ Hom(E, F) is called isomorphism
if both Tp and Tr are bijective maps.

Remark 1 i) If E is a pure real para-mixed linear space and T ∈ L(E, F) then
T is both morphism and antimorphism. If F is a pure real para-mixed linear
space and T ∈ L(E, F) then T is a morphism if and only if Tp = 0. If E is a
general para-mixed linear space then (1Er , P) ∈ Hom(E, E) by considering the
decomposition E = Er ⊗ Ep (see also the Corollary 1 below).

ii) The class of para-mixed linear spaces with their morphisms defines a
category which contains the category of real linear spaces as well as the category
of paracomplex linear spaces. The consideration of the paracomplex part (for
spaces and morphisms) is a functor from the category of para-mixed linear
spaces to the category of paracomplex linear spaces and similar for the consi-
deration of the real part (for spaces and morphisms).

iii) Fix E and F two para-mixed linear spaces and T1, T2 ∈ L(E, F) two
(anti)morphisms. Consider also two real numbers α, β. It follows that αT1+βT2
is also an (anti)morphism with (αT1 + βT2)i = (αT1)i + (βT2)i for i ∈ {p, r}.

iv) The linear map (x, y) ∈ R2 → z = x + jy ∈ A is a bijective morphism
which is not an isomorphism.

v) Hom(E, F) is a para-mixed linear space with the paracomplex part
Hom(E, F)p = {T ∈ Hom(E, F); Tr = 0} and real part Hom(E, F)r = Hom(E, Fr)
' Hom(Er, Fr). The corresponding paracomplex structure is the map
T ∈ Hom(E, F) → T ◦ (1Er , P) ∈ Hom(E, F).

vi) Fix T ∈ Hom(E, F) and let H be another para-mixed linear space. Let
T∗ : Hom(H,E) → Hom(H, F) be the composition with T at left and T∗ :
Hom(F,H) → Hom(E,H) be the composition with T at right. Then T∗ and T∗

are morphisms with respect to the para-mixed structure from v).

A first structural result is provided by:

Proposition 1 In the category of para-mixed linear spaces a given para-mixed
linear space E is isomorphic with the direct product Er × Ep.

Proof. We have the canonical maps: i : Ep → E and π : E→ Er. There exists
the maps q : E→ Ep and ρ : Er → E such that: q◦ i = 1Ep , i◦q+ρ◦π = 1E. It
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follows that these maps i, π, q, ρ are morphisms of para-mixed linear spaces
and (ρ, i) : Er × Ep → E is an isomorphism. �

It follows directly:

Corollary 1 Let E = Er×Ep and F = Fr×Fp be para-mixed linear spaces and
T ∈ L(E, F). Then T ∈ Hom(E, F) if and only if it has the expression:

T =

(
T2 0

α T1

)
(1)

where T1 : Ep → Fp is a A-linear map while T2 : Er → Fr and α : Er → Fp are
real linear maps. In this decomposition, T1 is the paracomplex part of T and T2
is the real part of T .

A characterization of isomorphisms is provided by:

Proposition 2 Let E, F and T as above. Then the following statements are
equivalent:
i) T is an isomorphism,
ii) T , T1 and T2 are all bijective,
iii) two of the maps T , T1 and T2 are bijective.

A special study can be performed in finite-dimension:

Definition 3 Let E be a para-mixed linear space and m,n ∈ N. We say that
E is of (m,n)-type if Er is a real linear space of dimension m and Ep is a
paracomplex space of dimension n. A frame on E is a set of vectors B =
{e1, ..., em, em+1, ..., em+n} with {em+1, ..., em+n} a basis in Ep and {[e1], ..., [em]}
a basis in Er where [e] is the class of e ∈ E considered in Er.

A characterization of this notion is:

Proposition 3 Fix E a para-mixed linear space of (m,n)-type and
B = {e1, ..., em+n} ⊂ E with {em+1, ..., em+n} ⊂ Ep. Then B is a frame on E if
and only if the map:

T : (x1, ..., xm+n) ∈ Ef = Rm × An → x = xiei ∈ E (2)

belongs to Hom(Ef, E).

Definition 4 Let E be para-mixed linear space and W a subspace of E. Then
W is called para-mixed subspace of E if W ∩ Ep is a paracomplex subspace of
Ep which means that x ∈W ∩ Ep implies jx ∈ Ep.
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A para-mixed subspace W will be considered itself as a para-mixed linear
space with Wp = W ∩ E. Hence, the inclusion map i : W → E is a morphism
with ip and ir injective maps.

Example 2 i) For T ∈ Hom(E, F) the kernel ker T = T−1(0F) is a para-mixed
subspace of E.

ii) The intersection of an arbitrary family of para-mixed subspaces is again
a para-mixed subspace.

iii) Let E be a pure real para-mixed linear space and W ⊂ E a (real) subspace.
Then W is a para-mixed subspace. A similar property holds for the paracomplex
case.

2 Monomorphisms and epimorphisms

Definition 5 Let T ∈ Hom(E, F).
i) T is called monomorphism if there exists a para-mixed linear space G and
R ∈ Hom(G, F) such that the map (T, R) : E×G→ F is an isomorphism.

ii) T is called epimorphism if there exists a para-mixed linear space G and
R ∈ Hom(E,G) such that the map (R, T) : E→ F×G is an isomorphism.

A characterization of these types of morphisms is given by:

Proposition 4 Let T ∈ Hom(E, F) be given.
I) The following statements are equivalent:

a) T is a monomorphism,
b) T and Tr are injective maps,
c) Tp and Tr are injective maps,
d) T have an inverse morphism at left.

II) Also, the following statements are equivalent:
e) T is an epimorphism,
f) T and Tp are surjective maps,
g) Tp and Tr are surjective maps,
h) T have an inverse morphism at right.

Proof. a)⇒b). From hypothesis the maps (T, R) and (T, R)r : Er × Gr → Fr is
bijective and then T , Tr are injective. b)⇒c). It is obvious.
c)⇒d). Consider the decomposition (1) of T . Since Tp is injective it follows the
existence of R1 an A-linear map which is inverse at left. Similar, from Tr being
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injective it result the existence of R2 a R-linear map which is inverse at left.
The map R : F→ E given by:

R =

(
Rr 0

−RpαRr Rp

)
is a morphism from F to E with R ◦ T = IdE.
d)⇒a). Let R : F → E be the inverse at left of T and consider G = kerR
together with the inclusion i : G→ F. From R ◦ (1F − T ◦ R) = 0 it results the
existence of w ∈ Hom(F,G) such that T ◦ R+ i ◦w = 1F. Then w ◦ i = 1G and
w ◦ T = 0. Let A = (T, i) : E × G → F and B = (R,w) : F → E × G. With the
equations above it follows that A and B are isomorphisms with B = A−1.
The equivalences from II are analogous. �

Corollary 2 Fix T ∈ Hom(E, F). Then T is a monomorphism if and only if
T(E) is a para-mixed subspace of F and the induced map T ′ : E → T(E) is an
isomorphism. Also, T is an epimorphism if and only if the co-induced map
T ′′ : E/ ker T → F is an isomorphism.

Proof. Suppose that T is a monomorphism. Since Tr is injective it results
that T(E) ∩ Fp = Tp(Ep) and so, T(E) is a para-mixed subspace in F. It fol-
lows also that T ′ ∈ Hom(E, T(E)) and its paracomplex part T ′p is surjective.
From T=injective we get that T ′ and T ′p are bijective maps and then T ′ is an
isomorphism. Similar arguments hold for the second part. �

Let us remark that an injective T ∈ Hom(E, F) is not a-priori a monomor-
phism and the example is provided by the inclusion R → A. In order to include
this class we consider:

Definition 6 T ∈ Hom(E, F) is called cartesian monomorphism if it is injec-
tive and for every para-mixed linear space G and every map α : G → E we
have that T ◦ α is a morphism if and only if α is a morphism.

This notion is useful for another concept:

Definition 7 A paracomplexification of the para-mixed linear space E is a pair
(Ep, ρ) with Ep a paracomplex linear space and ρ ∈ Hom(E, Ep) injective and
satisfying ρ(E) + jρ(E) = Ep and ρ(E) ∩ jρ(E) = ρ(Ep).

A characterization of this notion is given by:
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Theorem 1 i) Every para-mixed linear space E have a paracomplexification.
ii) The morphism ρ is a cartesian monomorphism.
iii) A pair (Ep, ρ) is a paracomplexification of E if and only if Ep is a para-

complex linear space and the map ρ∗ : Hom(Ep, F) → Hom(E, F) given in
Remark 1(vi) is bijective for any paracomplex linear space F.

Proof. i) Let E = Er × Ep the canonical decomposition of E and consider the
space:

Ep = (Er ⊗R A)× Ep.

It results that Ep is a paracomplex linear space. One define the map ρ : E→ Ep

by ρ(x2, x1) = (x2⊗1, x1) and a straightforward computation gives that (Ep, ρ)
is a paracomplexification of E.
ii) Let G be a para-mixed linear space and α : G → E such that ρ ◦ α ∈
Hom(G,Ep). Fix z ∈ Gp; then:

ρ ◦ α(z) = j(ρ ◦ α)(jz) ∈ ρ(E) ∩ jρ(E) = ρ(Ep)

and the injectivity of ρ yields that α(z) ∈ Ep. Also, ρ ◦ α(jz) = j(ρ ◦ α(z)) =
ρ(jα(z)) and again the injectivity of ρ gives α(jz) = jα(z). These facts together
with the R-linearity means that α ∈ Hom(G,E).
iii) Fix (Ep, ρ) a paracomplexification of E, F a paracomplex linear space and
u ∈ Hom(E, F). Define then v : Ep → F:

v(ρ(x) + jρ(y)) := u(x) + ju(y)

for all x, y ∈ E. Since ρ(x) + jρ(y) = ρ(x′) + jρ(y′) if and only if y′ − y ∈ Ep
and x − x′ = j(y′ − y) it results that v is well defined. It follows that v is a
A-linear map and v ◦ ρ = u. We get also the uniqueness of v with these two
properties. �

Example 3 i) Let E be a real linear space endowed with the paracomplex struc-
ture J. Consider then Ep = (E, J) ⊕ (E,−J) and the diagonal map ρ : E → Ep.
Then (Ep, ρ) is a paracomplexification of E. Indeed, every vector (e1, e2) ∈ Ep
has a decomposition (e1, e2) = (x + Jy, x − Jy) with x, y ∈ E. More precisely,
x = 1

2(e1 + e2) and y = 1
2(Je1 − Je2).

Let now F be a paracomplex linear space and u : E → F a R-linear map. The
unique A-linear map v : Ep → F satisfying v ◦ ρ = u is:

v(e1, e2) =
1

2
(u(e1) − ju(Je1)) +

1

2
(u(e2) + ju(Je2)) .
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ii) Let E, F be para-mixed linear spaces and fix ρ : F → Fp a paracomplex-
ification of F. Then ρ∗ : Hom(E, F) → Hom(E, Fp) given in Remark 1(vi)
is a cartesian monomorphism. In general, (Hom(E, Fp), ρ∗) is not a para-
complexification of Hom(E, F) since Hom(E, Fp) is a paracomplex linear space
satisfying ρ∗(Hom(E, Fp)) ∩ jρ∗(Hom(E, Fp)) but generally it do not satisfies
ρ∗(Hom(E, Fp)) + jρ∗(Hom(E, Fp)) = (ρ∗(Hom(E, Fp)))p.
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Abstract. In this paper we give the best form of a strongly starlikeness
condition. Some consequences of this result are deduced. The basic tool
of the research is the method of differential subordinations.

1 Introduction

Let U = {z ∈ C : |z| < 1} be the open unit disk in the complex plane. Let A be
the class of analytic functions f, which are defined on the unit disk U and have
the properties f(0) = f ′(0) − 1 = 0. The subclass of A, consisting of functions
for which the domain f(U) is starlike with respect to 0 is denoted by S∗. An
analytic characterization of S∗ is given by

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0, z ∈ U

}
.

In connection with the starlike functions has been introduced the following
class

SS∗(α) =

{
f ∈ A :

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < απ2 , α ∈ (0, 1], z ∈ U
}
,
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which is the class of strongly starlike functions of order α.
Another subclass of A we deal with is the following

Gb =

f ∈ A :

∣∣∣∣∣∣∣∣
1+

zf ′′(z)

f ′(z)

zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ < b, z ∈ U

 , (1)

where b > 0.
The authors of [3] proved the following result:

Theorem 1 If the function f belongs to the class Gb(β) with

b(β) =
β√

(1− β)1−β(1+ β)1+β
,

where 0 < β ≤ 1, then f ∈ SS∗(β).

Let −1 ≤ B < A ≤ 1. The class S∗(A,B) is defined by the equality

S∗(A,B) =
{
f ∈ A :

zf ′(z)

f(z)
≺ 1+Az
1+ Bz

, z ∈ U
}
.

An other result regarding the class Gb is the following theorem published in
[4].

Theorem 2 Assume that −1 ≤ B < A ≤ 1 and b(1 + |A|)2 ≤ |A − B|. If
f ∈ Gb, then f ∈ S∗(A,B).

The aim of this paper is to prove the sharp version of Theorem 1, and an
improvement of Theorem 2.

In our work we need the following results.

2 Preliminaries

Let f and g be analytic functions in U. The function f is said to be subordinate
to g, written f ≺ g, if there is a function w analytic in U, with w(0) = 0,

|w(z)| < 1, z ∈ U and f(z) = g(w(z)), z ∈ U. Recall that if g is univalent,
then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).
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Lemma 1 [1] Let p(z) = a +
∞∑
k=n

akz
k be analytic in U with p(z) 6≡ a, n ≥ 1

and let q : U→ C be an analytic and univalent function with q(0) = a. If p is
not subordinate to q, then there are two points z0 ∈ U, |z0| = r0 and ζ0 ∈ ∂U
and a real number m ∈ [n,∞), so that q is defined in ζ0, p(U(0, r0)) ⊂ q(U),
and:

(i) p(z0) = q(ζ0),
(ii) z0p

′(z0) = mζ0q
′(ζ0),

(iii) Re
(
1+ z0p

′′(z0)
p ′(z0)

)
≥ mRe

(
1+ ζ0q

′′(ζ0)
q ′(ζ0)

)
.

We note that z0p
′(z0) is the outward normal to the curve p(∂U(0, r0)) at the

point p(z0), while ∂U(0, r0) denotes the border of the disc U(0, r0).

A basic result we need in our research is the following:

Lemma 2 If f ∈ A, b ∈ [0, 1), and p(z) =
zf ′(z)

f(z)
, then the inequality

∣∣∣zp ′(z)
p2(z)

∣∣∣ < b, z ∈ U, (2)

implies that

p(z) ≺ 1

1− bz
.

The result is sharp.

Proof. If the subordination p(z) ≺ q(z) = 1

1− bz
does not holds, then there

are two points z0 ∈ U, |z0| = r0 < 1 and ζ0 ∈ ∂U and a real numberm ∈ [1,∞),
so that q is defined in ζ0, p(U(0, r0)) ⊂ q(U), and:

p(z0) = q(ζ0) =
1

1− bζ0

z0p
′(z0) = mζ0q

′(ζ0) = m
bζ0

(1− bζ0)2
.

Thus we get
z0p

′(z0)

p2(z0)
= mbζ0. (3)

Since |mbζ0| ≥ b, it follows that the equality (3) contradicts (2), and the proof
is done. �
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3 Main results

The following theorem is the sharp version of Theorem 1.

Theorem 3 If α ∈ (0, 1), and f ∈ Gb(α), where b(α) = sin
(
α
π

2

)
, then f ∈

SS∗(α). The result is sharp.

Proof. If we denote p(z) =
zg ′(z)

g(z)
, then the condition f ∈ Gb(α) becomes

∣∣∣zp ′(z)
p2(z)

∣∣∣ < b(α), z ∈ U, (4)

and according to Lemma 2 we get

p(z) ≺ q(z) = 1

1− b(α)z
.

The domain D = q
(
U
)

is symmetric with respect to the real axis and the
boundary of D is the curve

Γ =

{
x(θ) = Re 1

1−b(α)eiθ
= 1−b(α) cos θ

1+b2(α)−2b(α) cos θ
,

y(θ) = Im 1
1−b(α)eiθ

= b(α) sin θ
1+b2(α)−2b(α) cos θ

,
θ ∈ [−π, π].

The subordination p(z) ≺ q(z) implies that | arg(p(z))| ≤ arctan(M), where
M is the slope of the tangent line to the curve Γ trough the origin.
The equation of the tangent line is

x− x(θ)

x ′(θ)
=
y− y(θ)

y ′(θ)
.

This tangent line crosses the origin if and only if

x(θ)

x ′(θ)
=
y(θ)

y ′(θ)
,

and this equation is equivalent to

2b(α) cos2 θ− (3b2(α) + 1) cos θ+ b(α)(b2(α) + 1) = 0.

After a short calculation we get cos θ = b(α) and this implies

M =
y ′(θ)

x ′(θ)
=
y(θ)

x(θ)
=

b(α) sin θ

1− b(α) cos θ
=

b(α)√
1− b2(α)

.
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Finally if we put b(α) = sin
(
απ2

)
, then it follows that | arg(p(z))|

< arctan(M) = arctan b(α)√
1−b2(α)

= απ2 , z ∈ U.
Thus we have proved the implication∣∣∣zp ′(z)

p2(z)

∣∣∣ < sin
(
α
π

2

) ⇒ | arg(p(z))| < arctan(M) = α
π

2
,

and the proof is done. �

Putting α = 1 in Theorem 3, we get the following starlikeness condition, which
is the sharp version of Corollary 1 from [3].

Corollary 1 If f ∈ A and∣∣∣∣∣∣∣∣
1+

zf ′′(z)

f ′(z)

zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ < 1, z ∈ U,

then f ∈ S∗.

For α =
1

2
, we get the sharp version of Corollary 2 from [3].

Corollary 2 If f ∈ A and∣∣∣∣∣∣∣∣
1+

zf ′′(z)

f ′(z)

zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ <
√
2

2
, z ∈ U,

then f ∈ SS∗
(
1

2

)
.

Theorem 4 If f ∈ Gb and b(1+A− B+ |B|) < A− B, then f ∈ S∗(A,B).

Proof. Let q, h : U→ C be the functions defined by

q(z) =
1

1− bz
, h(z) =

1+Az

1+ Bz
.

According to Lemma 2 we have p(z) =
zf ′(z)

f(z)
≺ q(z) which is equivalent to

p(U) ⊂ q(U). (5)
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We will prove that q(U) ⊂ h(U). A simple calculation shows that the domains
q(U) and h(U) are convex.
The border of the domain q(U) is the curve

Γ : q(eiθ) =
1

1− beiθ
, θ ∈ [0, 2π],

and the border of h(U) is the curve

∆ : h(eiη) =
1+Aeiη

1+ Beiη
, η ∈ [0, 2π].

The inequality b(1+A− B+ |B|) < A− B is equivalent to b
1−b <

A−B
1+|B|

.

This inequality implies

|q(eiθ) − 1| =
b

|1− beiθ|
≤ b

1− b
<
A− B

1+ |B|
≤ A− B

|1+ Beiη|
= |h(eiη) − 1|.

Thus we get

|q(eiθ) − 1| < |h(eiη) − 1|, for every θ, η ∈ [0, 2π]. (6)

Since 1 ∈ q(U) and 1 ∈ h(U), the inequality (6) implies that the curve Γ is
inside the curve ∆.
This means that

q(U) ⊂ h(U). (7)

For example if we consider

q(z) =
1

1− 0.6z
and h(z) =

1+ 0.3z

1− 0.5z

and the inequality b(1+A− B+ |B|) < A− B is satisfied for b = 0.6, A = 0.3
and B = −0.5 then we obtain the following graphics:
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which shows that q(U) ⊂ h(U). For b = 0.7, A = 0.3 and B = −0.5 the
inequality b(1 + A − B + |B|) < A − B is not satisfied and consequently we
obtain the following image:

which shows that q(U) 6⊂ h(U). Finally (5) and (7) implies p(U) ⊂ h(U) and

since h is univalent we infer
zf ′(z)

f(z)
= p(z) ≺ h(z), z ∈ U.

This subordination is equivalent to f ∈ S∗(A,B). �

If 0 ≤ B < A ≤1, then we get the following corollary, which improvs the result
of Theorem 2.

Corollary 3 Let 0 ≤ B < A ≤ 1 and b ∈ (0,+∞) such that b(1+A) ≤ 1+B.
If f ∈ Gb, then f ∈ S∗(A,B).

References

[1] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Appli-
cations, Marcel Dekker, New York, Basel 2000.

[2] S.S. Miller, P.T. Mocanu, The theory and applications of second-order
differential subordinations, Stud. Univ. Babeş-Bolyai Math., 34 (4) (1989),
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Abstract. In this paper we analyze the monotony of the function
ln Γ(x)

ln(x2+τ)−ln(x+τ)
, for τ > 0. Such functions have been used from different

authors to obtain inequalities concerning the gamma function.

1 Introduction

In [8] the author proved the following double inequality:

x2 + 1

x+ 1
≤ Γ(x+ 1) ≤ x

2 + 2

x+ 2
, x ∈ [0, 1]. (1)

In [12] the authors improved this inequality proving that(
x2 + 1

x+ 1

)2(1−γ)
≤ Γ(x+ 1) ≤

(
x2 + 1

x+ 1

)γ
, x ∈ [0, 1]. (2)

2010 Mathematics Subject Classification: 33B15
Key words and phrases: Gamma function, monotonic function
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Other improvements of (1) can be found in [9], [10] and [11]. The inequality
(2) is equivalent to

2(1− γ) >
ln Γ(x+ 1)

ln(x2 + 1) − ln(x+ 1)
> γ, x ∈ (0, 1).

The authors of [12] proved inequality (2) using the monotony of the function

g : (0,∞)→ R, g(x) =
ln Γ(x+ 1)

ln(x2 + 1) − ln(x+ 1)
.

In connection with this function they formulated the following conjecture:
if τ > 0, then the mapping uτ : (0,∞)→ R defined by

uτ(x) =

{
ln Γ(x)

ln(x2+τ)−ln(x+τ)
, x 6= 1

−(1+ τ)γ, x = 1
(3)

is strictly increasing. This conjecture was confirmed for τ ∈ (0, 1) in [6]. We
found a counterexample regarding this conjecture: if τ = 1000, then

uτ(11) =
ln Γ(11)

ln 1121
1011

=
ln 3628800

ln 1121
1011

<
ln 245

ln 1121
1011

=
ln 24

ln
(
1121
1011

) 1
5

=
ln Γ(5)

ln
(
1121
1011

) 1
5

<
ln Γ(5)

ln
(
1025
1005

) = uτ(5).

Numerical results suggest that there is a value τ0 ∈ (212, 213) such that if
τ ∈ (0, τ0) then uτ is strictly increasing. We will prove a partial result regarding
this question.

Theorem 1 The function uτ is strictly increasing on the interval (0,∞) for
all τ, 0 < τ ≤ 25.

2 Preliminaries

In order to prove our main results we need the following lemmas.

Lemma 1 [3] Let h, k : [a, b] → R be two continuous functions which are
differentiable on (a,b). Further let k ′(x) 6= 0, x ∈ (a, b). If h ′/k ′ is strictly
increasing (resp. decreasing) on (a, b), then the functions

x 7−→ h(x) − h(a)

k(x) − k(a)
x 7−→ h(x) − h(b)

k(x) − k(b)

are also strictly increasing (resp. decreasing) on (a, b).



A result regarding monotonicity of the Gamma function 293

Lemma 2 If τ > 1, then the function uτ : (0,∞)→ R defined by

uτ(x) =

{
ln Γ(x)

ln(x2+τ)−ln(x+τ)
, x 6= 1

−(1+ τ)γ, x = 1

is strictly increasing on the interval (0, x1), where x1 is the positive root of the
equation x2 + 2τx− τ = 0.

Proof. According to [4] we have ψ(x) = Γ ′(x)
Γ(x) = − 1

x − γ +
∑∞
n=1

x
n(n+x) . It is

easily seen that 1
2 > x1 = τ

τ+
√
τ2+τ

> 1
4 . If x ∈ (0, x1), then τ−2τx−x2

(x2+τ)(x+τ)
> 0,

1
x + γ−

∑∞
n=1

x
n(n+x) > 0, Γ(x) > 1, and this implies

u ′
τ(x) =

(
1
x + γ−

∞∑
n=1

x
n(n+x)

)
ln x+τ

x2+τ
+ τ−2τx−x2

(x2+τ)(x+τ)
ln Γ(x)

ln2
(
x2+τ
x+τ

) > 0.

Thus uτ is strictly increasing on the interval (0, x1). �

Lemma 3 The unique positive root of the equation ψ(x) = − 1
x−γ+

∞∑
n=1

x
(n+x)n =

0 is x2 = 1.4616 . . . . If τ > 1, then the function

v : (x1,∞)→ R, v(x) =

− 1
x − γ+

∞∑
n=1

x
(n+x)n

2x
x2+τ

− 1
x+τ

, (4)

is strictly increasing on the interval (x1, x2), where x1 is defined in Lemma 2.

Proof. We have v ′(x) = A(x)(
2x

x2+τ
− 1
x+τ

)2 , where

A(x) =

(
1

x2
+

∞∑
n=1

1

(n+ x)2

)(
2x

x2 + τ
−

1

x+ τ

)

+

(
1

x
+ γ−

∞∑
n=1

x

n(n+ x)

)(
−2x2 + 2τ

(x2 + τ)2
+

1

(x+ τ)2

)
.

(5)

Since 1
3 < x1, and the following inequalities hold

1

x2
+

∞∑
n=1

1

(n+ x)2
>
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)
> 0, x ∈ (

1

3
, x2),

and
2x

x2 + τ
−

1

x+ τ
=

x2 + 2τx− τ

(x+ τ)(x2 + τ)
> 0, x ∈ (x1, x2),
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it follows that

A(x) >

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
2x

x2 + τ
−

1

x+ τ

)

+

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
−2x3 + 2τx

(x2 + τ)2
+

x

(x+ τ)2

)

=

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
2x3 + 2τx

(x2 + τ)2
−

x+ τ

(x+ τ)2
+

−2x3 + 2τx

(x2 + τ)2
+

x

(x+ τ)2

)

=

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
4τx

(x2 + τ)2
−

τ

(x+ τ)2

)

= τ

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
x3(4− x) + 6τx2 + τ2(4x− 1)

(x2 + τ)2(x+ τ)2

)
> 0, x ∈ (x1, x2),

and we get v ′(x) > 0, x ∈ (x1, x2). Thus v is a strictly increasing function on
the interval (x1, x2). �

Lemma 4 Suppose τ > 1. The equation ψ(x) = ψ ′(x) has a unique positive
root x3 = 2.2324 . . . . The function v : (x1,∞) → R defined by (4) is strictly
increasing on the interval (x2, x3).

Proof. We will prove this lemma in two steps. We have x2 <
3
2 .

In the first step we discuss the case (x2,
3
2).

According to the mean value theorem for every x ∈ (x2,
3
2) there are the

values cx, dx ∈ (x2, x) such that ψ(x) = ψ(x) − ψ(x2) = ψ ′(cx)(x − x2) and
ψ ′(x2) −ψ

′(x) = −ψ ′′(dx)(x− x2). These two equalities imply

ψ(x) = ψ(x) −ψ(x2) = ψ
′(cx)(x− x2) < ψ

′(x2)

(
3

2
− x2

)
<

4

100
ψ ′(x2)

and

ψ ′(x2) −ψ
′(x) = −ψ ′′(dx)(x− x2) = 2(x− x2)

( ∞∑
n=0

1

(n+ dx)3

)
<

8

100
ψ ′

(
3

2

)
≤ 8

100
ψ ′(x).
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�

Thus we get 0 < ψ(x) < 4
100

(
1 + 8

100

)
ψ ′(x) < 1

12ψ
′(x), x ∈ (x2,

3
2) and conse-

quently

A(x) > ψ(x)

(
24x

x2 + τ
−

12

x+ τ
+
2x2 − 2τ

(x2 + τ)2
−

1

(x+ τ)2

)
= ψ(x)

B(x)

(x2 + τ)2(x+ τ)2
,

where B(x) = 12x5 + (1 + 36τ)x4 + 24τ2x3 + 4τx2(x − 1) + τ2x(26x − 16) +
24xτ3 − 14τ3 − τ2, and A is defined by (5). It is easily seen that if x ∈ (x2,

3
2),

then B(x) > 0, and consequently v ′(x) > 0, for x ∈ (x2,
3
2).

In the second step suppose x ∈ ( 32 , x3). We have in this case 0 < ψ(x) ≤ ψ ′(x),

where ψ(x) = Γ ′(x)
Γ(x) . A short calculation leads to

A(x) > ψ(x)

(
2x

x2 + τ
−

1

x+ τ
+
2x2 − 2τ

(x2 + τ)2
−

1

(x+ τ)2

)
= ψ(x)

C(x)

(x2 + τ)2(x+ τ)2
,

where C(x) = x5+(1+3τ)x4+4τx2(x−1)+τ2x(4x−5)+τ2(2x3−1)+τ3(2x−3) >
0, x ∈ ( 32 , x3). Consequently we obtain v ′(x) > 0, x ∈ ( 32 , x3), and the proof
is completed.

Lemma 5 If x ∈ [2, 3), then

6

7
(ln x−

7

25
) > ln Γ(x), (6)

and

−
1

x
− γ+

∞∑
n=1

x

n(n+ x)
> ln x−

7

25
. (7)

If τ = 25, then

ln
x2 + τ

x+ τ
≥ 6
7

(
2x

x2 + τ
−

1

x+ τ

)
, x ∈ [2.23, 3]. (8)

Proof. Let v5 : [2, 3] → R be the function defined by v5(x) =
6
7(ln x −

7
25) −

ln Γ(x). We have

v ′5(x) =
6

7x
−ψ (x) =

13

7x
+ γ−

∞∑
n=1

x

n(n+ x)
,
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and

v ′′5 (x) = −
6

7x2
−ψ ′ (x) = −

13

7x2
−

∞∑
n=1

1

(n+ x)2
< 0, x ∈ [2, 3].

The monotony of v ′5 and the inequalities v ′5(2) > 0, v
′
5(3) < 0 implies that the

equation v ′5(x) = 0 has exactly one root x1 ∈ (2, 3) and v ′5(x) > 0, x ∈ (2, x1),
and v ′5(x) < 0, x ∈ (x1, 3).
The monotony of v5 implies

v5(x) ≥ min{v5(2), v5(3)} > 0, x ∈ (2, 3),

and thus the inequality (6) holds.
In order to prove (7), we define the function v6 : [2, 3]→ R,

v6(x) = ψ (x) − ln x+
7

25
= −

1

x
− γ+

∞∑
n=1

x

n(n+ x)
− ln x+

7

25
.

We have v ′6(x) = − 1
x + ψ

′ (x) = − 1
x +
∑∞
n=0

1
(n+x)2

> 0, x ∈ [2, 3], and conse-

quently
v6(x) ≥ v6(2) > 0, x ∈ [2, 3].

Thus the inequality (7) holds.
The third inequality can be proved as follows.

Let v7 : [2.23,∞) → R be the function defined by v7(x) = ln x2+τ
x+τ − 6

7

(
2x
x2+τ

−

1
x+τ

)
.We have v ′7(x) =

D(x)
(x2+τ)2(x+τ)2

, where α = 6
7 andD(x) = x5+(3τ+3α)x4+

(2τ2 + 4ατ)x3 + 2(1 + α)τ2x2 + (2τ3 − (4α + 1)τ2)x − (2α + 1)τ3 + ατ2. A
suitable alignment in the numerator of v ′7 shows that v ′7(x) > 0, x ∈ [2.23, 3].
Thus we get

v7(x) ≥ v7(2.23) > 0, x ∈ [2.23, 3],

and the inequality (8) follows. �

Lemma 6 If x ∈ [3,∞), then

(x− 2)(ln x−
1

4
) > ln Γ(x). (9)

If x ∈ [3,∞), then

−
1

x
− γ+

∞∑
n=1

x

n(n+ x)
> ln x−

1

4
, x ∈ (3,∞). (10)
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If x ∈ [3,∞), and τ = 25, then

ln
x2 + τ

x+ τ
≥ (x− 2)

(
2x

x2 + τ
−

1

x+ τ

)
, x ∈ (3,∞). (11)

Proof. In order to prove inequality (9) we define the function v8 : [3,∞)→ R
by v8(x) = (x− 2)(ln x− 1

4) − ln Γ(x). We have

v ′8(x) = ln x−
1

4
+
x− 1

x
+ γ−

∞∑
n=1

x

n(n+ x)
,

and

v ′′8 (x) =
1

x
+
1

x2
−

∞∑
n=1

1

(n+ x)2
.

It is easily seen that

∞∑
n=1

1

(n+ x)2
<

∞∑
n=1

1

(n+ x)(n− 1+ x)
=
1

x
, x ∈ [3,∞).

Thus we have v ′′8 (x) > 0, x ∈ [3,∞), consequently v ′8 is strictly increasing
and

v ′8(x) > v
′
8(3) = ln 3+ γ− 1−

5

12
> 0, x ∈ (3,∞).

This means that v8 is strictly increasing too and

v8(x) > v8(3) = ln 3−
1

4
− ln 2 > 0, x ∈ (3,∞).

The inequality (10) can be proved as follows. Let the function v9 : [3,∞)→ R
be defined by v9(x) = − 1

x − γ+
∑∞
n=1

x
n(n+x) − ln x+ 1

4 . We have

v ′9(x) =

∞∑
n=0

1

(n+ x)2
−
1

x
.

Since ∞∑
n=0

1

(n+ x)2
>

∞∑
n=0

1

(n+ x)(n+ 1+ x)
=
1

x
, x ∈ [3,∞),

it follows that v ′9(x) > 0, x ∈ [3,∞), consequently v9 is strictly increasing
and

v9(x) > v9(3) = 1+
3

4
− γ− ln 3 > 0, x ∈ (3,∞).
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�

Finally, in order to prove (11), we define the function v10 : [3,∞) → R by

v10(x) = ln x2+τ
x+τ − (x− 2)

(
2x
x2+τ

− 1
x+τ

)
, where τ = 25. We have

v ′10(x) = (x− 2)

(
2x2 − 2τ

(x2 + τ)2
−

1

(x+ τ)2

)
= (x− 2)

x4 + 4τx3 + 2(τ2 − 2τ)x2 − 4τ2x− 2τ3 − τ2

(x2 + τ)2(x+ τ)2

= (x− 2)
x4 + 100x3 + 1150x2 − 2500x− 31875

(x2 + τ)2(x+ τ)2
.

The Descartes rule of signs implies that the equation x4 + 100x3 + 1150x2 −
2500x−31875 = 0 has no more than one positive root, thus it is easily seen that
the equation v ′10(x) = 0 has exactly one root x0 = 5.13 . . . . This means that v10
is stictly decreasing on the interval [3, x0] and strictly increasing on [x0,∞).
Consequently minx∈[3,∞) v10(x) = v10(x0) = 0.01 . . . > 0, and this implies

v10(x) > 0, for all x ∈ [3,∞).

3 Proof of the main result

In this section we shall prove the main theorems.

Theorem 2 Let the function gα,β : (0,∞)→ R be defined by

gα,β(x) =

{
ln(x2+α)−ln(x+α)
ln(x2+β)−ln(x+β)

, x ∈ (0, 1) ∪ (1,∞)
1+β
1+α , x = 1.

(12)

If α > β > 0, then the mapping gα,β is strictly increasing on the interval
(0,∞).

Proof. We will prove the theorem in two steps. Let x1 = β

β+
√
β2+β

be the

positive root of the equation x2 + 2βx − β = 0, and let x2 =
α

α+
√
α2+α

be the

positive root of x2 + 2αx− α = 0.

In the first step let x ∈ (0, 1). Since
(
x2+2αx−α
x2+2βx−β

) ′
= 2(α−β)(x−x2)

(x2+2βx−β)2
> 0, x ∈

(0, x1) ∪ (x2, 1), it follows that the function h : (0,∞)→ R defined by

h(x) =

(
ln(x2 + α) − ln(x+ α)

) ′(
ln(x2 + β) − ln(x+ β)

) ′ = x2 + β

x2 + α
· x+ β
x+ α

· x
2 + 2αx− α

x2 + 2βx− β
,
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is strictly increasing on the intervals (0, x1) and (x2, 1), (because h is a product
of positive strictly increasing functions). Now Lemma 1 implies that gα,β is
strictly increasing on (0, x1) and (x2, 1) too. On the other hand

g ′
α,β(x) =

D(x)

(ln(x2 + β) − ln(x+ β))2
,

where

D(x) =
x2 + 2αx− α

(x2 + α)(x+ α)
ln
x2 + β

x+ β
−

x2 + 2βx− β

(x2 + β)(x+ β)
ln
x2 + α

x+ α
.

Since x2+2αx−α
(x2+α)(x+α)

ln x2+β
x+β > 0, x ∈ (x1, x2), and x2+2βx−β

(x2+β)(x+β)
ln x2+α

x+α < 0, x ∈
(x1, x2), it follows that D(x) > 0, x ∈ (x1, x2), and consequently g ′(x) >
0, x ∈ (x1, x2).
We have deduced that gα,β is a strictly increasing function on the intervals
(0, x1), (x1, x2), and (x2, 1). The continuity of gα,β implies that this function
is strictly increasing on (0, 1).
In the second step we prove that gα,β is strictly increasing on (1,∞). We will
prove that

D(x) > 0, x ∈ (1,∞). (13)

Let k : (0,∞) → R be the function defined by k(τ) = ln(x2+τ)−ln(x+τ)
2x

x2+τ
− 1
x+τ

. The

following equivalence chain holds

g ′
α,β(x) > 0 ⇔ D(x) > 0 ⇔ k(β) > k(α), (14)

providing that x ∈ (1,∞), and α > β > 0.
Consequently in order to prove that gα,β is strictly increasing we have to show
that if x ∈ (1,∞) is a fixed number, then k is strictly decreasing on (0,∞).
We have

k ′(τ) =
E(τ)

( 2x
x2+τ

− 1
x+τ)

2
,

E(τ) =

(
1

x2 + τ
−

1

x+ τ

)(
2x

x2 + τ
−

1

x+ τ

)
+

(
2x

(x2 + τ)2
−

1

(x+ τ)2

)
ln
x2 + τ

x+ τ
.

It is easily seen that if τ ∈ (0,∞) and x ∈ (1,∞), then 1
x2+τ

− 1
x+τ < 0,

2x
x2+τ

− 1
x+τ > 0, ln x2+τ

x+τ > 0.

This second case has two sub-cases.
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First suppose that 2x
(x2+τ)2

− 1
(x+τ)2

≤ 0, for some x ∈ (1,∞), τ ∈ (0,∞). In this

case we have
(

1
x2+τ

− 1
x+τ

)(
2x
x2+τ

− 1
x+τ

)
< 0 and

(
2x

(x2+τ)2
− 1

(x+τ)2

)
ln x2+τ

x+τ ≤ 0.
Thus it follows E(τ) < 0, and so we get k ′(τ) < 0, and we are done.
Now we suppose 2x

(x2+τ)2
− 1

(x+τ)2
> 0.

In this case we use the well-known inequality t−1 ≥ ln t, t ∈ (0,∞). Putting

t = x2+τ
x+τ we get ln x2+τ

x+τ ≤
x2−x
x+τ , for every x ∈ (1,∞), τ ∈ (0,∞), and it follows

that

E(τ) =
( 1

x2 + τ
−

1

x+ τ

)(
2x

x2 + τ
−

1

x+ τ

)
+

(
2x

(x2 + τ)2
−

1

(x+ τ)2

)
ln
x2 + τ

x+ τ
≤

(
1

x2 + τ
−

1

x+ τ

)(
2x

x2 + τ
−

1

x+ τ

)
+

(
2x

(x2 + τ)2
−

1

(x+ τ)2

)
· x

2 − x

x+ τ

=
(x− x2)(x2 + 2τx− τ)

(x2 + τ)2(x+ τ)2
+

[2x(x+ τ)2 − (x2 + τ)2](x2 − x)

(x2 + τ)2(x+ τ)3

=
(x− x2)(x4 − x3 + τx2 − τx)

(x2 + τ)2(x+ τ)3
< 0.

Consequently, provided that x is fixed, x ∈ (1,∞), the inequality k ′(τ) < 0

holds for every τ ∈ (0,∞).According to (14) it follows g ′
α,β(x) > 0, x ∈ (1,∞),

and the proof is finished. �

Theorem 3 If τ = 25, then the mapping uτ is strictly increasing on the
interval (0,∞), where uτ is defined by (3).

Proof. Provided that τ = 25, Lemma 2 implies that the function uτ is strictly
increasing on the interval (0, x1), where x1 is the positive root of the equation
x2 + 2τx− τ = 0.
Let x2 = 1.4616 . . . be the positive root of the equation ψ(x) = − 1

x − γ +∑∞
n=1

x
(n+x)n = 0. If τ = 25, then Lemma 3 implies that the function

v : (x1,∞)→ R, v(x) =
− 1
x − γ+

∞∑
n=1

x
(n+x)n

2x
x2+τ

− 1
x+τ

,

is strictly increasing on the interval (x1, x2).
Let x3 = 2.2324 . . . be the positive root of the equation ψ(x) = ψ ′(x). Since
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Lemma 4 implies that v is strictly increasing on the interval (x2, x3), it follows
that v is strictly increasing on (x1, x3). Now this result and Lemma 1 imply
that the mapping uτ is also strictly increasing on the intervals (x1, 1) and
(1, x3).
Further we will prove that uτ is strictly increasing on (x3, 3). We observe that
if x ∈ (x3, 3) and τ = 25 we can multiply the inequalities (6), (7), (8) and it
follows that(

−
1

x
− γ+

∞∑
n=1

x

n(n+ x)

)
ln
x2 + τ

x+ τ
>

x2 + 2τx− τ

(x2 + τ)(x+ τ)
ln Γ(x), (15)

and consequently we obtain

u ′
τ(x) =

(
− 1
x − γ+

∑∞
n=1

x
n(n+x)

)
ln x2+τ

x+τ − x2+2τx−τ
(x2+τ)(x+τ)

ln Γ(x)

ln2
(
x2+τ
x+τ

) > 0, x ∈ (x3, 3).

Summarizing, if τ = 25, then we have proved that the function uτ is strictly
increasing on the intervals (0, x1), (x1, x3), (x3, 3). The continuity of uτ implies
that uτ is strictly increasing on the interval (0, 3).
We will prove in the followings that if τ = 25, then uτ is strictly increasing on
(3,∞).
It is easily seen that multiplying the inequalities (9), (10), and (11) the in-
equality (15) follows in case τ = 25 and x ∈ (3,∞). Thus we have u ′

25(x) >
0, x ∈ (3,∞), and so u25 is strictly increasing on (3,∞). The continuity of
u25 implies that this function is strictly increasing on (0,∞). �

Proof of Theorem 1.: From the equality

uτ(x) = u25(x) · g25,τ(x),

and from the results of Theorem 2. and Theorem 3. we infer that uτ is strictly
increasing on the interval (0,∞) in case of every given τ ∈ (0, 25]. �

Other interesting results regarding the Γ function can be found in [1], [2],
[5], [6] and [7].
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Abstract. Given an endofunctor F of an arbitrary category, any maxi-
mal element of the lattice of congruence relations on an F-coalgebra (A,a)
is called a coatomic congruence relation on (A,a). Besides, a coatomic
congruence relation K is said to be factor split if the canonical homomor-
phism ν : AK → A∇A

splits, where ∇A is the largest congruence relation
on (A,a). Assuming that F is a covarietor which preserves regular monos,
we prove under suitable assumptions on the underlying category that,
every quotient coalgebra can be made extensional by taking the regular
quotient of an F-coalgebra with respect to a coatomic and not factor split
congruence relation or its largest congruence relation.

1 Introduction

The study of coalgebras developed by J. J. M. M. Rutten [15] concerns the
particular case of Set-endofunctors. The author develops the theory of uni-
versal coalgebras with the assumption that the functors preserve weak pull-
backs. This property can see bisimulation equivalences corresponding notions
as of congruence relations in universal algebras. In the same context, the
largest bisimulation on any coalgebra is again the largest congruence on this
coalgebra.

Many theoretical computer science structures, including automata, transi-
tion systems, object oriented systems and lazy data types can be modeled with
a type functor preserving weak pullbacks. However there are viable examples
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Key words and phrases: bisimulation, congruence relation
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of coalgebras (topological spaces, for instance) whose type functors do not
obey such a restriction.

Certainly, the major advantage of coalgebras is that the theory can naturally
deal with nondeterminism and undefinedness, concepts which are hard, or even
impossible, to treat algebraically.

A universal algebra is called simple if it does not have any nontrivial con-
gruence relation. The notion of simple coalgebra is obtained by applying the
same definition. In other words, the largest congruence relation on a simple
coalgebra is its diagonal. An extensional coalgebra is a coalgebra on which the
largest bisimulation is its diagonal. Assuming the type functor preserves weak
pullbacks, every extensional coalgebra is simple (see [4]).

A quotient algebra also called a factor algebra, is obtained by partionning
the elements of an algebra into equivalence classes given by a congruence
relation, that is an equivalence relation compatible with all the operators of
the algebra. This is equivalent to consider the quotient of an algebra with
respect to a congruence relation. The quotient algebra A/θ is simple if and
only if θ is a maximal congruence on A or θ is the largest congruence relation
on A (see [3]).

The purpose of this paper is to give a characterization theorem for exten-
sional quotient coalgebras of an endofunctor, given an arbitrary underlying
category. To this end, let F denote an endofunctor of an arbitrary category.
Any maximal element of the lattice of congruence relations on an F-coalgebra
(A,a) is called a coatomic congruence relation on (A,a). Besides, a coatomic
congruence relation K is said to be factor split if the canonical homomorphism
ν : AK → A∇A

splits, where ∇A is the largest congruence relation on (A,a).
Suppose that the underlying category is regularly well powered, cocomplete,
exact and equipped with epi-(regular mono) factorizations. If more, F is a co-
varietor which preserves regular monos then, every quotient coalgebra can be
made extensional by taking the regular quotient of an F-coalgebra with respect
to a coatomic and not factor split congruence relation or its largest congruence
relation.

2 Basic notions

We recall here some definitions and usual properties for the following sections.

2.1 Factorization systems

They will be often used throughout this paper.
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A factorization system (F.S) for a category C consists of a pair (E ,M) of
classes of morphisms in C such that:

FS1. E andM contain all isomorphisms of C and are closed under composition.

FS2. Every morphism f of C can be factored as f = m ◦ e for some morphisms
e ∈ E and m ∈M.

FS3. For all commutative squares

• e //

u
��

•
wxx

v
��

•
m

// •

with e ∈ E and m ∈M, there is a unique arrow w making both triangles
commute.

2.2 Subobjects

Unions of regular subobjects are revisited (for more details, see [2]). Their
existence allows one to construct pullbacks.

Recall that a regular mono is a morphism in some category which occurs as
the equalizer of some parallel pair of morphisms. The dual concept is that of
regular epi.

Let A be an object of a category C. Denote by MA the class of all regular
monos of codomain A. Any member f : B → A of MA is written (B, f). The
relation ≤A defined on MA by (B, f) ≤A (C, g) iff there is h : B → C such
that f = g ◦ h is a preorder. This preorder induces an equivalence relation ∼A
in MA, where (B, f) ∼A (C, g) iff (B, f) ≤A (C, g) and (C, g) ≤A (B, f). Also,
the preorder ≤A in MA induces an order, again denoted ≤A, in the quotient
classMA =MA/ ∼A; more precisely [(B, f)] ≤A [(C, g)] iff (B, f) ≤A (C, g). A
member of an equivalence class is called a regular subobject of A.

Definition 1 A category C is said to be regularly well powered, if for each A
in C, MA is a set.

An equivalence class [(B, f)] will be also denoted by its representative f or
simply by the domain B; and in this case one also says that f or B is a regular
subobject of A.
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Definition 2 A regular image of a morphism f : A → C is a regular mono
m : B � C through which f factors, which is minimal in the sense that, if f
factors through any other regular mono B ′ � C, then B is a regular subobject
of B ′.

Suppose that C is a regularly well powered category admitting coproducts
and epi-(regular mono) factorizations. The regular image of a cospan (fα :
Aα −→ A)α in C is the smallest regular subobject E of A through which each
fα factors; that is, there exists a regular mono m : E → A and an epi sink
(gα : Aα −→ E)α such that (fα) = m ◦ (gα). It is constructed in two steps as
follows:

• By the universal property of coproducts, consider the unique morphism
f :
∐
αAα → A such that (fα) = f ◦ (µα), where (µα)α is the cospan of

structural injections.

• Consider the epi-(regular mono) factorization of f:
∐
αAα

e→ E
m
� A.

Hence, the collection of morphisms (e ◦ µα : Aα −→ E)α is an epi sink given
that e is an epimorphism and (µα)α is an epi sink. Particularly, the regular
image or union of a cospan (mα : Sα � A)α of regular subobjects in C is their
supremum in the ordered set (MA,≤A). It will be denoted

⋃
α∈λ Im(mα).

Definition 3 In a category with binary products, a binary relation from A

to B is a regular subobject of A × B. This is represented by a regular mono
m : R� A× B or equivalently, by a pair of arrows

A

R

r1 ;;

r2 ##
B

with the property that the induced arrow 〈r1, r2〉 : R → A × B is a regular
mono. Also, r1 and r2 form a mono source because r1 = p1 ◦ 〈r1, r2〉 and
r2 = p2 ◦ 〈r1, r2〉 with p1 and p2 which form a mono source as structural
morphisms of the product of A and B. A relation from A to A is called a
relation on A.

Binary relations are ordered (as regular subobjects of A × A) and can be
composed. The relational composition is defined by applying the standard
pullback construction as in the category of sets: given a binary relation R
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(represented by r1 : R → A and r2 : R → B) in a finitely complete category
with epi-(regular mono) factorizations, form the pullback of r1 and r2.

R×A R
t1 //

t2 ��

R
r1 //

r2
��

A

R
r1

//

r2 ��

A

A

Factorize 〈r1 ◦ t1, r2 ◦ t2〉 : R×A R→ A×A as an epimorphism followed by a
regular mono, then the latter represents the composite R ◦ R. R is said to be
transitive if R ◦ R is smaller than R. The relation R is called reflexive if the
diagonal map 〈1A, 1A〉 : A→ A×A factors through it and, symmetric if there
is an arrow τ : R → R such that r1 ◦ τ = r2 and r2 ◦ τ = r1. We say that R is
an equivalence relation if it is reflexive, symmetric and transitive.

Pullbacks are constructed in the presence of unions of regular subobjects as
follows.

Proposition 1 Suppose that C is a regularly well powered category with co-
products, finite products and admitting epi-(regular mono) factorizations. Then
it has pullbacks.

Proof. Consider a cospan (A
f1−→ C

f2←− B) in C.

A f1
$$

A f1
$$

C R

r1 ;;

r2 ##

C

B f2

::

B f2

::

Let us denote by Rel(A,B) the class of all binary relations R from A to B such
that f1 ◦ r1 = f2 ◦ r2. This class is nonempty as we are going to show. Let 0
be the initial objest of C (the coproduct in C over the empty index set). The
canonical arrow ! : 0 → A × B factorizes through a regular subobject 0 ′ of
A× B, which is a member of Rel(A,B). Since the category C is regularly well
powered, the class Rel(A,B) is a set. Let R denote again its supremum (the
union); this supremum exists since C has coproducts. Denote by u : R� A×B
the regular mono making R a binary relation.

Consider a span (Q, (gi)i=1,2) such that f1 ◦ g1 = f2 ◦ g2. By the universal
property of products, there is a unique arrow g : Q −→ A × B such that
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p1 ◦ g = g1 and p2 ◦ g = g2; p1 and p2 being the structural morphisms of
the product of A and B. Factorize g as an epimorphism followed by a regular
mono:

Q
g //

eg ��

A× B

W
mg

==

Then (W, (hi)i=1,2), with hi = pi ◦mg, is a binary relation from A to B such
that f1 ◦h1 = f2 ◦h2. Hence, there is an arrow s : W → R such that mg = u◦s.
As a result, gi = pi ◦g = pi ◦mg ◦eg = pi ◦u◦s◦g = ri ◦s◦eg with ri = pi ◦u;
i = 1, 2. This implies that for any arrow j : Q → R such that r1 ◦ j = g1 and
r2 ◦ j = g2, we have r1 ◦ j = r1 ◦ (s ◦ eg) and r2 ◦ j = r2 ◦ (s ◦ eg). Thereafter
s ◦ eg = j since the pair (r1, r2) is a mono source. Consequently, s ◦ eg is the
unique arrow from Q to R such that r1 ◦ (s ◦ eg) = g1 and r2 ◦ (s ◦ eg) = g2.
This proves that R together with arrows r1 = p1 ◦ u and r2 = p2 ◦ u is the

pullback of the cospan (A
f1−→ C

f2←− B). �

Under Proposition 1, the category C is finitely complete; this is because it
has finite products and pullbacks (see [14]).

2.3 Exact sequences

Set, the category of sets and mappings has exact sequences; this means that
every equivalence relation is a kernel pair of its coequalizer. In other words,
there is a ono-to-one correspondence between equivalence relations and regular
quotients.

Replacing Set by a finitely complete category C with coequalizers, an exact
sequence in C is a diagram

R
r1 //
r2
// A

e // B

where R is the kernel pair of e and e is the coequalizer of the parallel pair
(r1, r2). The category C is said to have exact sequences if every equivalence re-
lation in C is the kernel pair of its coequalizer. Every topos has exact sequences
(see [7]).

A category C will be called regular if every finite diagram has a limit, if every
parallel pair of morphisms has a coequalizer and if regular epis are stable under
pullbacks. A regular category with exact sequences is called exact.
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2.4 Kleisli categories

Only monads on Set will be considered.
A monad on Set consists of a Set-endofunctor T together with
• a unit natural transformation η : id ⇒ T ; that is, a function ηX : X → TX

for each set X satisfying a suitable naturality condition; and
• a multiplication natural transformation µ : T 2 ⇒ T , consisting of functions
µX : T 2X→ TX with X ranging over sets.
The unit and multiplication are required to satisfy the following compatibility
conditions.

TX
ηTX//

id ""

T 2X oo
TηX

µX��

TX

id}}

T 3X
TµX //

µTX ��

T 2X

µX��
TX T 2X

µX
// TX

The powerset functor P is a monad with a unit given by singletons and a mul-
tiplication given by unions. Every adjunction gives rise to a monad (see [10]).

Given any monad T , its Kleisli category Kl(T) is defined as follows. Its
objects are the objects of the base category, hence sets in our consideration.
An arrow X → Y in Kl(T) is the same thing as an arrow X → TX. Identities
and composition of arrows are defined using the unit and the multiplication
of T . Moreover, there is a canonical adjunction J a H, where the functor
J : Set → Kl(T) carries a mapping f : X → Y to ηY ◦ f : X → TY in Kl(T) (see
[10]). For instance, the Kleisli category Kl(P) of the powerset monad is up to
isomorphism the category Rel of sets and binary relations (see [5]).

A functor F̄ : Kl(T)→ Kl(T) is said to be a lifting of a Set-endofunctor F if
the following diagram commutes.

Kl(T) F̄ //
OO

J

Kl(T)
OO
J

Set
F

// Set

A lifting F̄ of a Set-endofunctor F is in bijective with a distributive law λ :
FT ⇒ TF (see [12]).

3 Coalgebras of an endofunctor

Let F be an endofunctor of a category C. An F-coalgebra or a coalgebra of type
F is a pair (A,a) consisting of an object A in C together with a C-morphism
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a : A → FA. A is called the carrier or the underlying object and the arrow a

the coalgebra structure of (A,a).
Given F-coalgebras (A,a) and (B, b), the arrow f : A→ B in C is called an

F-morphism, if the following diagram commutes

A
a //

f ��

FA

Ff��
B

b
// FB

It is straightforward to check that the F-morphisms are stable under com-
position. We write CF the category of F-coalgebras and their homomorphisms.

Throughout all that follows, unless otherwise stated,

• C is a regularly well powered category equipped with epi-(regular mono)
factorizations and admitting products;

• F denotes an endofunctor of C.

3.1 Congruences

Definition 4 Let (A,a) and (B, b) be F-coalgebras. A binary relation K from

A to B is a precongruence if for every cospan (A
i→ Z

j← B),

A
i
��

A
a // FA

Fi
""

if K

@@

��
Z commutes then so does K

@@

��
FZ

B j

@@

B
b
// FB Fj

<<

A congruence relation is a precongruence which is an equivalence relation.

Consider a Set-endofunctor F that preserves weak pullbacks. There exists a
distributive law λ : FP ⇒ PF given by

λX(u) = {v ∈ FX : (v, u) ∈ RelF(εX)}

where u ∈ FPX and RelF(εX) ⊆ FX × FPX is the F-relation lifting of the
membership relation εX (see [5]). The functor F̄ : Rel→ Rel induced by this
distributive law carries and arrow R : X→ Y in Kl(P) which is a binary relation
from X to Y to its F-relation lifting RelF(R). That is, F̄R = RelF(R) : FX→ FY

in Kl(P) ∼= Rel.
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Given F̄-coalgebras (A,a) and (B, a). Let K : A→ B be an F̄-morphism. The
following diagram commutes as F̄ and F coincide on objects.

A
a //

K ��

FA

F̄K��
B

b
// FB

Also, for every cospan (A
i→ Z

j← B), if j ◦ K = i then F̄(j) ◦ F̄K = F̄(i); hence
F̄(j) ◦ b ◦ K = F̄(j) ◦ F̄K ◦ a = F̄(i) ◦ a. This results the commutative diagram

A
a //

K
��

FA F̄i
##
FZ

B
b
// FB F̄j

;;

Then K is a precongruence. Consequently, any F̄-morphism is a precongruence.

Proposition 2 Assume the category C has colimits. Congruence relations on
an F-coalgebra (A,a) form a sup-complete lattice denoted Con(A,a). The
supremum is given by∨

α∈Λ
Kα = [∪{Im(mα : Kα → A×A);α ∈ Λ}]∗

the smallest congruence relation greater than the union of all mα.

Proof. Let (mα : Kα → A × A)α∈Λ be a nonempty family of congruences
on an F-coalgebra (A,a) with projections kα1 and kα2 given α ∈ Λ. Since the
category C is regularly well powered, this family of regular subobjects of A×A
is a set. Its supremum K exists therefore in C. This is equivalent to consider a
regular mono m : K→ A×A and an epi sink (eα)α such that (mα) = m◦ (eα).
Furthermore, the category C has pullbacks under Proposition 1. Given (A

u→
B

v← A) the pushout of the projections k1 and k2 of K. Denote by Pb(u, v)
the pullback of u and v. There is a unique arrow s : K → Pb(u, v) such that
w1 ◦ s = k1 and w2 ◦ s = k2; w1 and w2 being the structural morphisms of

Pb(u, v). Consider a cospan (A
i→ Z

j← A) such that the following diagram
commutes.

A
i
��

Pb(u, v)

w1
99

w2 %%

Z

A
j

@@
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Then i ◦ k1 = i ◦ w1 ◦ s = j ◦ w2 ◦ s = j ◦ k2. By the universal property of
pushouts, there is a unique arrow w : B→ Z such that w◦u = i and w◦v = j.
For each α ∈ Λ, i ◦ kα1 = j ◦ kα2 ; this follows from the fact that kα1 = k1 ◦ eα
and kα2 = k2 ◦ eα. Hence F(i) ◦ a ◦ k1 ◦ eα = F(j) ◦ a ◦ k2 ◦ eα, because Kα is a
precongruence. The equality F(i)◦a◦k1 = F(j)◦a◦k2 due to the collection (eα)α
is an epi sink. Particularly, the equality F(u)◦a◦k1 = F(v)◦a◦k2 holds. There
is therefore a unique arrow b : B→ FB turning u and v into F-morphisms. So,
we have F(i)◦a◦w1 = F(w◦u)◦a◦w1 = F(w)◦F(u)◦a◦w1 = F(w)◦b◦u◦w1 =
F(w) ◦b ◦ v ◦w2 = F(w) ◦ F(v) ◦a ◦w2 = F(w ◦ v) ◦a ◦w2 = F(j) ◦a ◦w2. This
proves that the following diagram commutes.

A
a // FA

Fi
""

Pb(u, v)

w1
88

w2 &&

FZ

A
a
// FA Fj

<<

Thus Pb(u, v) is a precongruence. Besides u = v given that K is reflexive.
That is, u is the coequalizer of the two projections k1 and k2. Consequently,
Pb(u, v) is an equivalence relation as the kernel pair of a regular mono. Hence
Pb(u, v) is a congruence relation on (A,a). It is easy to check that this is in
fact the supremum of the family (mα : Kα → A×A)α∈Λ.

The supremum of a family of congruences on an F-coalgebra (A,a) indexed
over the empty set is ∆A = ker(1A). It is the smallest congruence on (A,a). �

Write ∇A to denote the largest congruence relation on (A,a).

Proposition 3 Suppose that the category C is exact with colimits. For every
F-coalgebra (B, b), there is at most one F-morphism ϕ : (B, b)→ A∇A

.

Proof. By Proposition 1, the category C has pullbacks. Let us prove that there
is at most one F-morphism with codomain A∇A

. Assume there are two different
F-morphisms ϕ1, ϕ2 : (B, b) → A∇A

. Let ψ : A∇A
→ C be their coequalizer.

Then ker(ψ ◦ π∇A
) is an equivalence relation on A, where π∇A

: A→ A∇A
is

the coequalizer of ∇A. In addition, ker(ψ ◦ π∇A
) is a precongruence. Indeed,

consider a cospan (A
i→ Z

j← A) such that the following diagram commutes;
t1 and t2 being the projections of ker(ψ ◦ π∇A

).

A
i
��

ker(ψ ◦ π∇A
)

t1
66

t2 ((

Z

A
j

@@
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Then i = j given that ker(ψ◦π∇A
) is a reflexive relation on A. Also, ψ◦π∇A

is
the coequalizer of ker(ψ ◦ π∇A

) as the category C is regular. By the universal
property of coequalizers, there is a unique arrow u : C→ Z such that u ◦ (ψ ◦
π∇A

) = i. Furthermore, π∇A
is an F-morphism; this follows from the fact that

∇A is a congruence relation. Hence ψ ◦ π∇A
is an F-morphism. This implies

that F(i) ◦ a ◦ t1 = F(j) ◦ a ◦ t2; that is, the following diagram commutes.

A
a // FA

Fi
""

ker(ψ ◦ π∇A
)

t1
66

t2 ((

FZ

A
a
// FA Fj

<<

So, ker(ψ ◦ π∇A
) is a congruence relation on (A,a). Under condition that the

category C has exact sequences, ∇A is the kernel pair of π∇A
. Consequently,

∇A is properly smaller than ker(ψ◦π∇A
) because ϕ1 and ϕ2 are different. This

contradicts the fact that ∇A is the largest congruence relation on (A,a). �

Any maximal element of the lattice of congruence relations on (A,a) is
called a coatomic congruence relation on (A,a).

3.2 Bisimulations

In the coalgebraic context, there are four notions of bisimulation that gener-
alize the standard notion of bisimulation for labelled transition systems (i.e.,
coalgebras of the Set-endofunctor P(L × (−))), due to Milner [11] and Park
[13]. Further, the four notions are related under certain conditions (see [16]).
The definition we adopt here is a simplification of the bisimulation of Hermida
and Jacobs [6].

Definition 5 For any relation R from A to B in C, we define the relation
F̄R from FA to FB to be the regular image of the composite morphism FR →
F(A× B)→ FA× FB.

A bisimulation between F-coalgebras (A,a) and (B, b) is a binary relation
R from A to B such that there is a morphism R → F̄R making the following
diagram commute.

A oo

a

��

R //

��

B

b
��

FA oo F̄R // FB
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A bisimulation on (A,a) is a bisimulation between (A,a) and (A,a). Any
bisimulation on (A,a) which is an equivalence relation is called a bisimulation
equivalence.

Proposition 4 Suppose that the category C has coproducts and the endofunc-
tor F preserves regular monos. Then the union of any collection of bisimula-
tions is a bisimulation.

Proof. Given F-coalgebras (A,a) and (B, b). The class (Rt)t∈T of bisimulations
between (A,a) and (B, b) is nonempty, since the category C has coproducts.
Also, this class is a set because C is regularly well powered. Denote by (

∐
t∈T Rt,

(σt)t∈T ) the coproduct of Rt’s. Each Rt is a regular subobject of A× B repre-
sented by a regular mono mt : Rt → A × B. Let u :

∐
t∈T Rt → A × B be the

unique arrow such that u ◦ σt = mt, for all t ∈ T . Denote by F̄
∐
t∈T Rt the

regular image of the composite morphism F
∐
t∈T Rt → F(A× B)→ FA× FB.

The following diagram commutes.

FRt
ēt //

F(σt) ��

F̄Rt

d

||

m̄t

��

F
∐
t∈T Rt

v̄ ��
F̄
∐
t∈T Rt ū

// FA× FB

Under condition that the category C has epi-(regular mono) factorizations,
there is a unique arrow d : F̄Rt → F̄

∐
t∈T Rt making both triangles commute.

By the universal property of coproducts, there is a unique arrow ρ :
∐
t∈T Rt →

F̄
∐
t∈T Rt such that ρ ◦ σt = d ◦ rt, for all t ∈ T .

Factorize u as an epimorphism e followed by a regular mono m : R� A×B.
Consider m1 : R1 � A and m2 : R2 � B the respective regular images of the
morphisms p1 ◦ u and p2 ◦ u; p1 and p2 being structural morphisms of the
product of A and B. Then (pi ◦m) ◦ e = mi ◦ ei; i = 1, 2. Hence, there is a
unique arrow wi : R → Ri such that mi ◦ wi = pi ◦m and wi ◦ e = ei. The
morphisms w1 and w2 induce a unique arrow 〈w1, w2〉 : R → R1 × R2 such
that v1 ◦ 〈w1, w2〉 = w1 and v2 ◦ 〈w1, w2〉 = w2; v1 and v2 being the structural
morphisms of the product of R1 and R2. Let s : R1 × R2 → FA × FB be the
unique arrow such that h1 ◦ s = a ◦m1 ◦ v1 and h2 ◦ s = b ◦m2 ◦ v2; h1 and
h2 being the structural morphisms of the product of FA and FB. In addition,
consider the unique arrow k : F(A × B) → FA × FB such that h1 ◦ k = Fp1
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and h2 ◦ k = Fp2. So, ū ◦ v̄ = k ◦ F(u) = k ◦ F(m) ◦ F(e) = m̄ ◦ ē ◦ F(e).
Because v̄ is an epimorphism and m̄ is a regular mono, there is a unique
arrow z : F̄

∐
t∈T Rt → F̄R such that m̄ ◦ z = ū and z ◦ v̄ = ē ◦ F(e). Likewise,

F(mi) ◦ F(ei) = F(mi ◦ ei) = F(pi ◦u) = F(pi) ◦ F(u) = hi ◦k ◦ F(u) = hi ◦ ū ◦ v̄;
i = 1, 2. Since the endofunctor F preserves regular monos, there is a unique
arrow ci : F̄

∐
t∈T Rt → FRi such that F(mi) ◦ ci = hi ◦ ū and ci ◦ v̄ = F(ei);

i = 1, 2. It follows that for all t ∈ T , F(m1) ◦ c1 ◦ ρ ◦ σt = h1 ◦ ū ◦ ρ ◦ σt =
h1 ◦ ū◦d◦rt = h1 ◦m̄t ◦rt = a◦p1 ◦mt = a◦p1 ◦u◦σt and F(m2)◦c2 ◦ρ◦σt =
h2 ◦ ū ◦ ρ ◦ σt = h2 ◦ ū ◦ d ◦ rt = h2 ◦ m̄t ◦ rt = b ◦ p2 ◦mt = b ◦ p2 ◦ u ◦ σt.
Whence F(m1) ◦ c1 ◦ ρ = a ◦m1 ◦ e1 and F(m2) ◦ c2 ◦ ρ = b ◦m2 ◦ e2 as the
cospan (σt)t∈T is an epi sink.

These equalities are used to establish the following commutative diagram.∐
t∈T Rt

e //

ρ
��

R

r

||

〈w1,w2〉
��

F̄
∐
t∈T Rt

z ��

R1 × R2
s
��

F̄R
m̄

// FA× FB

Indeed, we have h1 ◦ s ◦ 〈w1, w2〉 ◦ e = a ◦m1 ◦ v1 ◦ 〈w1, w2〉 ◦ e = a ◦m1 ◦
w1 ◦ e = a ◦ m1 ◦ e1 = F(m1) ◦ c1 ◦ ρ = h1 ◦ ū ◦ ρ = h1 ◦ m̄ ◦ z ◦ ρ and
h2 ◦ s ◦ 〈w1, w2〉 ◦ e = b ◦m2 ◦ v2 ◦ 〈w1, w2〉 ◦ e = b ◦m2 ◦w2 ◦ e = b ◦m2 ◦ e2 =
F(m2)◦c2◦ρ = h2◦ū◦ρ = h2◦m̄◦z◦ρ. Since the pair (h1, h2) is a mono source,
the equality s ◦ 〈w1, w2〉 ◦ e = m̄ ◦ z ◦ ρ holds. Consequently, there is a unique
arrow r : R→ F̄R making both triangles commute. Furthermore, we have that
(h1◦m̄)◦r = h1◦s◦〈w1, w2〉 = a◦m1◦v1◦〈w1, w2〉 = a◦m1◦w1 = a◦(p1◦m)
and (h2 ◦ m̄) ◦ r = h2 ◦ s ◦ 〈w1, w2〉 = b ◦m2 ◦ v2 ◦ 〈w1, w2〉 = b ◦m2 ◦w2 =
b ◦ (p2 ◦ m). Subsequently, R is a bisimulation as union of a collection of
bisimulations. �

Any bisimulation equivalence is a congruence relation (see [16]). But the
converse is not true (see [1]). Now, we are going to investigate the relationship
between bisimulations and congruences.

The following fact is a generalization of the H. P. Gumm’s result presented
in [4].

Proposition 5 Assume the category C has colimits and exact sequences. For
every bisimulation R on an F-coalgebra (A,a) there is a smallest congruence
relation 〈R〉 greater than R provided that R is reflexive.
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Proof. According to Proposition 1, the category C has pullbacks. Consider
a bisimulation (R, (ri)i=1,2) on an F-coalgebra (A,a). Let (A

u→ B
v← A) be

the pushout of r1 and r2. Denote by Pb(u, v) the pullback of u and v. Then

Pb(u, v) is a precongruence. Indeed, given a cospan (A
i→ Z

j← A) such that
the following diagram commutes; t1 and t2 being the projections of Pb(u, v).

A
i
��

Pb(u, v)

t1
99

t2 %%

Z

A
j

@@

By the universal property of pullbacks, there is a unique arrow s : R→ Pb(u, v)
such that t1 ◦s = r1 and t2 ◦s = r2. This implies that i◦r1 = j◦r2. Hence there
is a unique arrow w : B → Z such that w ◦ u = i and w ◦ v = j. In addition,
F(u) ◦ a ◦ r1 = F(v) ◦ a ◦ r2 due to R is a precongruence as bisimulation (see
[16]). Thus B is equipped with a coalgebra structure turning u and v into
F-morphisms. For this reason, the equality F(i) ◦ a ◦ t1 = F(j) ◦ a ◦ t2 holds;
that is, the following diagram commutes.

A
a // FA

Fi
""

Pb(u, v)

t1 88

t2 &&

FZ

A
a
// FA Fj

<<

Also, Pb(u, v) is an equivalence relation on A because R is a reflexive bisim-
ulation. Finally, Pb(u, v) is a congruence relation on (A,a) which is greater
than R. Since the category C satisfies the exactness property, it is not hard to
see that Pb(u, v) is the smallest congruence relation with this property. �

Denote by R-Bis(A,a) the ordered set of reflexive bisimulations on (A,a).
The Proposition 5 yields a functorial correspondence

♦(A,a) : R-Bis(A,a) −→ Con(A,a)

R 7−→ 〈R〉

Otherwise, every congruence relation K on (A,a) is a reflexive relation on A
as equivalence relation. Then the diagonal map 〈1A, 1A〉 : A → A×A factors
through K. But the diagonal map is a split mono and therefore a regular
mono. Also, A is equipped with a bisimulation structure that comes from
its coalgebra structure by epi-(regular mono) factorization of the composite



Extensional quotient coalgebras 317

morphism FA → F(A × A) → FA × FA. Hence A is a bisimulation on (A,a)
smaller than K. If more, the endofunctor F preserves regular monos, there
exists under Proposition 4, a largest bisimulation on (A,a) smaller than K,
that we denote �(A,a)K. Since A is a bisimulation on (A,a) smaller than K, the
diagonal map factors through �(A,a)K. So �(A,a)K is a reflexive bisimulation
on (A,a). This defines a correspondence

�(A,a) : Con(A,a) −→ R-Bis(A,a)

K 7−→ �(A,a)K

which extends to a functor.
Given a reflexive bisimulation R and a congruence relation K on (A,a), the
following are equivalent:

(i) 〈R〉 is a regular subobject of K.

(ii) R is a regular subobject of �(A,a)K.

Hence, assuming that F preserves regular monos, the functor ♦(A,a) is the left
adjoint of the functor �(A,a).

Definition 6 An endofunctor F : C → C is called a covarietor, provided that
the forgetful functor UF : CF → C has a right adjoint.

Given a topos E with a natural number object (see [7]). The endofunctor
M : E → E that assigns to each object A in E , the free monoid generated by
A is a covarietor (see [8]).

The largest bisimulation on (A,a) which is denoted ∼A is a reflexive bisim-
ulation.

Proposition 6 Assume the category C has colimits with exact sequences and
the endofunctor F is a covarietor which preserves regular monos. A nontriv-
ial congruence relation K on (A,a) is coatomic or K = ∇A, provided that
�(A,a)K =∼A.

Proof. Let K be a nontrivial congruence relation on (A,a), different from ∇A
and satisfying the condition �(A,a)K =∼A. Suppose that there is a congruence
relation L on (A,a), greater than K and different from ∇A. By the universal
property of coequalizers, there is a unique factorization r : AK → AL such that
πL = r◦πK, where πK and πL are respectively the coequalizers of K and L. Under
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Proposition 1, the category C has pullbacks. Then the category CF has also
pullbacks, since the endofunctor F is a covarietor which preserves regular monos
(see [9]). Since the category C has exact sequences, every equivalence relation
in C is the kernel pair of its coequalizer. Furthermore, the coequalizer of any
congruence relation is an F-morphism. Thereafter, the canonical arrow from
the kernel pair of πK in CF to A×A factored through the largest bisimulation on
(A,a) smaller than K. Likewise, the canonical arrow from the kernel pair of πL
in CF to A×A factored through the largest bisimulation on (A,a) smaller than
L. Besides, �(A,a)L is a regular subobject of �(A,a)K, given that �(A,a)K =∼A.
As a consequence, there is a unique arrow s : AL → AK such that πK = s ◦ πL.
Then we get πK = (s ◦ r) ◦ πK; whence s ◦ r = 1AK

since πK is an epi. Thus r is
an epi from the fact of the equality πL = r ◦ πK, and a section; that is an iso.
Hence K is coatomic.

On the other hand, ∼A is the largest bisimulation on (A,a) smaller than
∇A. �

In general though 〈∼A〉 does not need to be the largest congruence on (A,a).
For illustration, denote by ()32 : Set → Set the functor defined on objects as
follows: for a set,

A32 = {(a1, a2, a3) ∈ A3/ | {a1, a2, a3} |≤ 2}

and for each mapping f : A −→ B,

f32(a1, a2, a3) = (f(a1), f(a2), f(a3))

Consider the ()32-coalgebra (A,a) with A = {0, 1, 2}, a(0) = (0, 0, 2), a(1) =
(1, 1, 2) and a(2) = (1, 2, 2). Since the singleton {0} can be provided with a
()32-coalgebra structure, the unique mapping !A : A → {0} is a ()32-morphism.
Its kernel pair is A×A and it is not a bisimulation on (A,a). This implies that
A × A is the largest congruence on (A,a). However the largest bisimulation
on (A,a) is the diagonal ∆A. It is easy to check that 〈∼A〉 = ∆A. Remark
that K = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)} is a coatomic congruence relation on
(A,a).

4 Simple and extensional coalgebras

The largest bisimulation on a final coalgebra is its diagonal. Coalgebras which
are not final but satisfy this condition are called extensional. They are said to
satisfy the weaker condition of simplicity.
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Definition 7 An F-coalgebra (S, s) is extensional, if ∆S is the largest bisimu-
lation on (S, s).

The definition of extensionality reformulates the coinduction proof principle:

x ∼ x ′

x = x ′

This means, in order to prove that two elements x and y are equal it is enough
to prove that there exists a bisimulation R under which x is related to y; i.e.,
(x, y) ∈ R.

A coalgebra is called simple if it does not have any nontrivial congruence
relation. Obviously every simple coalgebra is extensional, but the converse
holds whenever the endofunctor preserves weak pullbacks.

Proposition 7 For any F-coalgebra (S, s) the following are equivalent:

(i) (S, s) is extensional.

(ii) For every F-coalgebra (A,a), there is at most one F-morphism ψ : (A,a)→
(S, s).

Proof. (i) =⇒ (ii). Suppose that there are two different F-morphisms ϕ1, ϕ2 :
(A,a)→ (S, s). There is a unique arrow ϕ : A→ S× S such that p1 ◦ϕ = ϕ1
and p2 ◦ ϕ = ϕ2, with p1 and p2 the structural morphisms of the product of
S with itself. The arrow ϕ factorizes through a regular subobject R of S × S
which is a nontrivial bisimulation on (S, s).
(ii) =⇒ (i). Suppose that ∆S is not the largest bisimulation on (S, s). There

is a bisimulation (R, (ri)i=1,2) on (S, s) with r1 6= r2. �

Recall the set A = {0, 1, 2} together with the coalgebra structure a : A→ A32
such that a(0) = (0, 0, 2), a(1) = (1, 1, 2) and a(2) = (1, 2, 2), where K =
{(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)} is a coatomic congruence relation on (A,a).
In particular, K 6= ∇A = A × A, but the ()32-coalgebra on the quotient set
AK = {0̄, 2̄} is extensional; this is because the largest bisimulation on AK is the
diagonal ∆AK

(see [4]).

Definition 8 A coatomic congruence relation K on (S, s) is called factor split
if the canonical homomorphism ν : SK → S∇S

splits.

H = {(0, 0), (1, 1), (2, 2), (1, 2), (2, 1)} is an equivalence relation on the set
A = {0, 1, 2}. Let πH denote the canonical projection of A onto AH = {0̄, 1̄}, the
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quotient set with respect to H. Provide A with the ()32-coalgebra structure a
such that a(0) = (0, 0, 2), a(1) = (1, 1, 2) and a(2) = (1, 2, 2). Then πH is a ()32-
morphism given that AH is equipped with the coalgebra structure aH : AH →
(AH)

3
2 defined as aH(0̄) = (0̄, 0̄, 1̄) and aH(1̄) = (1̄, 1̄, 1̄). Consequently, H is a

congruence relation on (A,a). Also, H is coatomic as a maximal element of the
lattice of congruence relations on (A,a). Since aH(1̄) = (1̄, 1̄, 1̄), the canonical
homomorphism ν : AH → A∇A

= {0} has a right-sided inverse. Hence, H is
factor split.

For any coatomic and factor split congruence relation K on (S, s), denote by
τ : S∇S

→ SK the right-sided inverse of the canonical homomorphism ν : SK →
S∇S

. Then τ ◦ ν : SK → SK and 1SK : SK → SK are two different F-morphisms
with codomain SK. As a result, SK is not extensional due to Proposition 7.

Lemma 1 Suppose that the category C is exact with colimits. For any coatomic
congruence relation K on an F-coalgebra (S, s), the quotient coalgebra SK is ex-
tensional provided that K is not factor split.

Proof. Given K a coatomic and not factor split congruence relation on (S, s).
Suppose that the quotient coalgebra SK is not extensional. Then the largest
bisimulation on SK is nontrivial. By Proposition 3, the canonical homomor-
phism ν from SK to S∇S

coequalizes its projections. Let ϕ : SK → C denote
the coequalizer of the projections of ∼SK , the largest bisimulation on (S, s).
There is a unique arrow t : C → S∇S

such that t ◦ ϕ = ν. Hence, ker(ϕ) is
properly smaller than ker(ν). Also, K is properly smaller than ker(ϕ◦πK) and
ker(π∇SK

◦πK); πK and π∇SK
being respectively the coequalizer of the projec-

tions of K and the coequalizer of the projections of ∇SK , the largest congruence
relation on SK. But, ker(ϕ ◦ πK) and ker(π∇SK

◦ πK) are congruence relations
on (S, s). Consequently, ker(ϕ ◦πK) = ∇A = ker(π∇SK

◦πK) as K is coatomic.
Besides, ϕ ◦ πK and π∇SK

◦ πK are regular epis given that the category C is
regular. This implies that ϕ ◦ πK = π∇SK

◦ πK; that is, ϕ = π∇SK
due to πK

is an epi. Then ker(ϕ) = ∇SK because the category C has exact sequences. It
follows that ∇SK is properly smaller than ker(ν) which is a congruence relation
on SK. This is a contradiction. So, SK is extensional. �

A quotient coalgebra can be made extensional by taking a regular quotient
with respect to a coatomic and not factor split congruence relation or its
largest congruence relation as the following states.

Proposition 8 Assume the category C is exact with colimits and the endo-
functor F is a covarietor which preserves regular monos. For every F-coalgebra
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(S, s) and a congruence relation K on (S, s), the quotient coalgebra SK is ex-
tensional if and only if K is coatomic and not factor split or K = ∇S.

Proof. Suppose that SK is extensional. Let (Q, (qi)i=1,2) be a bisimulation on
(S, s). There is a unique arrow m : Q → S × S such that p1 ◦ m = q1 and
p2◦m = q2; p1 and p2 being the structural morphisms of the product of S with
itself. Let πK denote the coequalizer of K. The universal property of products
yields a unique arrow mK : Q→ SK × SK such that p1 ◦mK = πK ◦ p1 ◦m and
p2 ◦mK = πK ◦p2 ◦m, with p1 and p2 the structural morphisms of the product
of SK with itself. The arrow mK admits the epi-(regular mono) factorization

Q
mK //

u ��

SK × SK

R
vK

::

Let rK : S× S→ SK × SK be the unique arrow such that p1 ◦ rK = πK ◦ p1 and
p2 ◦ rK = πK ◦ p2. Then F(vK) ◦ F(u) = F(rK) ◦ F(m) due to vK ◦ u = rK ◦m.
Hence h ◦ F(vK) ◦ F(u) = h ◦ F(rK) ◦ F(m), where h : F(SK× SK)→ FSK× FSK is
the unique arrow such that t1 ◦ h = F(p1) and t2 ◦ h = F(p2); t1 and t2 being
the structural morphisms of the product of FSK with itself. Furthermore, there
is a unique arrow π : FS × FS → FSK × FSK such that t1 ◦ π = F(πK) ◦ t1 and
t2 ◦ π = F(πK) ◦ t2, with t1 and t2 the structural morphisms of the product
of FS with itself. Given k : F(S × S) → FS × FS the unique arrow such that
t1 ◦ k = F(p1) and t2 ◦ k = F(p2), we have that ti ◦ π ◦ k = F(πK) ◦ ti ◦ k =
F(πK)◦F(pi) = F(pi)◦F(rK) = ti◦h◦F(rK); i = 1, 2. The equality π◦k = h◦F(rK)
arises from the fact that the pair (t1, t2) is a mono source. One deduces the
following commutative diagram.

FQ
ē //

F(u)
��

F̄Q

w

}}

m̄��
FR

ū ��

FS× FS
π
��

F̄R
v̄K
// FSK × FSK

By the axiom FS3, there is a unique arrow w : F̄Q→ F̄R making both triangles
commute. In addition, there is a unique arrow z : SK × SK → FSK × FSK such
that t1 ◦ z = sK ◦ p1 and t2 ◦ z = sK ◦ p2, where sK : SK → FSK is the unique
arrow turning πK into an F-morphism. Denote by q : Q→ F̄Q the arrow such
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that s◦p1 ◦m = t1 ◦m̄◦q and s◦p2 ◦m = t2 ◦m̄◦q. For i = 1, 2; the following
holds:
t̄i ◦ z ◦ vK ◦ u = sK ◦ pi ◦ vK ◦ u

= sK ◦ pi ◦ rK ◦m
= sK ◦ πK ◦ pi ◦m
= F(πK) ◦ s ◦ pi ◦m
= F(πK) ◦ ti ◦ m̄ ◦ q
= ti ◦ π ◦ m̄ ◦ q
= ti ◦ v̄K ◦w ◦ q

Hence, z◦vK ◦u = v̄K ◦w◦q because the pair (t1, t2) is a mono source. Since u
is an epimorphism and v̄K a regular mono, there is a unique arrow r : R→ F̄R

such that v̄K ◦ r = z ◦ vK and r ◦ u = w ◦ q. In fact, R is a bisimulation on
SK. Thus R is a regular subobject of ∆SK which is the largest bisimulation on
SK. This implies that πK ◦ p1 ◦m = πK ◦ p2 ◦m. Consequently Q is a regular
subobject of K. Since Q is a bisimulation on (S, s), it is smaller than �(S,s)K.
Whence �(S,s)K is the largest bisimulation on (S, s). The Proposition 6 allows
to conclude.

Conversely SK is extensional arising from Propositions 3, 7 and Lemma 1.
�
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Abstract. In this paper by using the notion of sesquilinear form we
introduce a new class of numerical range and numerical radius in normed
space V , also its various characterizations are given. We apply our results
to get some inequalities.

1 Introduction and preliminaries

A related concept to our work is the notion of sesquilinear form. Sesquilinear
forms and quadratic forms were studied extensively by various authors, who
have developed a rich array of tools to study them; cf. [17, 19]. There is a
considerable amount of literature devoting to the study of sesquilinear form.
We refer to [1, 9, 22] for a recent survey and references therein.
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During the past decades, several definitions of the numerical range in various
settings have been introduced by many mathematicians. For instance, Marcus
and Wang [15] opened the concept of the rth permanent numerical range of
operator A. Furthermore, Descloux in [3] defined the notion of the essential
numerical range of an operator with respect to a coercive sesquilinear form.
In 1977, Marvin [16] and in 1984, independently, Tsing [23] introduce and
characterize a new version of numerical range in a space Cn equipped with
a sesquilinear form. Li in [14], generalized the work of Tsing and explored
fundamental properties and consequences of numerical range in the framework
sesquilinear form. We also refer to another interesting paper by Fox [10] of this
type.

The motivation of this paper is to introduce the notions of numerical range
and numerical radius without the inner product structure. In fact, the result
extends immediately to the case where the Hilbert space H and inner product
〈·, ·〉, replaced by vector space V and sesquilinear form ϕ, respectively. For the
sake of completeness, we reproduce the following definitions and preliminary
results, which will be needed in the sequel.

A functional ϕ : V ×V → C where V is complex vector space, is a sesquilin-
ear form if satisfying the following two conditions:

(a) ϕ (αx1 + βx2, y) = αϕ (x1, y) + βϕ (x2, y),

(b) ϕ (x, αy1 + βy2) = αϕ (x, y1) + βϕ (x, y2),

for any scalars α and β and any x, x1, x2, y, y1, y2 ∈ V .
We now recall that, two typical examples of sesquilinear forms are as follows:

(I) Let A and B be operators on an inner product space V . Then ϕ1 (x, y) =
〈Ax, y〉, ϕ2 (x, y) = 〈x, By〉, and ϕ3 (x, y) = 〈Ax,By〉 are sesquilinear
forms on V .

(II) Let f and g be two linear functionals on a vector space V . Thenϕ (x, y) =
f (x)g (y) is a sesquilinear form on V .

A sesquilinear form ϕ on vector space V is called symmetric if ϕ (x, y) =
ϕ (y, x), for all x, y ∈ V . We say a sesquilinear form ϕ on vector space V is
positive if ϕ (x, x) ≥ 0, for all x ∈ V . If V is a normed space, then ϕ is called
bounded if |ϕ (x, y)| ≤M ‖x‖ ‖y‖ , for some M > 0 and all x, y ∈ V .

It is worth to mention here that for a bounded sesquilinear form ϕ on V we
have

|ϕ (x, y)| ≤ ‖ϕ‖ ‖x‖ ‖y‖ ,
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for all x, y ∈ V .
For each positive sesquilinear form ϕ on vector space V ,

√
ϕ (x, x) is a

semi norm; since satisfied the axioms of a norm exept that the implication√
ϕ (x, x) = 0⇒ x = 0 may not hold; see [18, p. 52]. We notice that the norm

of V , will be denoted by ‖·‖ϕ.
The operator A on the space (V , ‖·‖ϕ) is called bounded (in short A ∈ B (V ))

if
‖Ax‖ϕ ≤M‖x‖ϕ,

for every x ∈ V . The operator A in B (V ) is called ϕ-adjointable if there exist
B ∈ B (V ) such that

ϕ (Ax, y) ≤ ϕ (x, By)

for every x, y ∈ V . In this case, B is ϕ-adjoint of A and it is denoted by A∗.
If A = A∗, then A is called self-adjoint (for more information on related ideas
and concepts we refer the reader to [21, p. 88-90]). Also, an operator A in
B (V ) is called ϕ-positive if it is self-adjoint and ϕ (Ax, x) ≥ 0 for all x ∈ V .
The set of all ϕ-adjointable operators will denote by L (V ).

In Section 2 we invoke some fundamental facts about the sesquilinear forms
in vector space that are used throughout the paper. Some famous inequalities
due to Kittaneh, Dragomir and Sándor are given. In Section 3 of this paper,
we introduce and study the numerical range and numerical radius by using
sesquilinear form ϕ in normed space V , which we call them ϕ-numerical range
and ϕ-numerical radius, respectively. Also some inequalities for ϕ-numerical
radius are extended. For this purpose, we employ some classical inequalities
for numerical radius in Hilbert space.

2 Some immediate results

We start our work by presenting some simple results. The following lemma is
known as Polarization identity for sesquilinear forms; see [2, Theorem 4.3.7].

Lemma 1 Let ϕ be a sesquilinear form on V , then

4ϕ (x, y) = ‖x+ y‖2ϕ − ‖x− y‖2ϕ + i ‖x+ iy‖2ϕ − i ‖x− iy‖2ϕ . (1)

The next lemma is known as the Cauchy-Schwarz inequality and follows from
Lemma 1.

Lemma 2 For any positive sesquilinear form ϕ on V we have

|ϕ (x, y)| ≤
√
ϕ (x, x)

√
ϕ (y, y).
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Lemma 3 The Schwarz inequality for ϕ-positive operators asserts that if A
is a ϕ-positive operator in L (V ), then

|ϕ (Ax, y)|2 ≤ ϕ (Ax, x)ϕ (Ay, y) , (2)

for all x, y in V .

The following lemma can be found in [13, Lemma 1].

Proposition 1 Let A, B and C be operators in L (V ), where A and B are

ϕ-positive. Then

[
A C∗

C B

]
is a ϕ-positive operator in L (V ⊕ V ) if and only

if
|ϕ (Cx, y)|2 ≤ ϕ (Ax, x)ϕ (By, y) , (3)

for all x, y in V .

Proof. First assume that

[
A C∗

C B

]
is a ϕ-positive operator in L (V ⊕ V ).

Then by (2) we have∣∣∣∣ϕ([A C∗

C B

] [
x

0

]
,

[
0

y

])∣∣∣∣2 ≤ ϕ([A C∗

C B

] [
x

0

]
,

[
x

0

])
ϕ

([
A C∗

C B

] [
0

y

]
,

[
0

y

])
,

for all x, y in V . A direct simplification of above inequality now yields (3).
Conversely, assume that (2) holds, then for every x, y in V ,

ϕ

([
A C∗

C B

] [
x

y

]
,

[
x

y

])
= ϕ (Ax, x) +ϕ (C∗y, x) +ϕ (Cx, y) +ϕ (By, y)

= ϕ (Ax, x) +ϕ (By, y) + 2Reϕ (Cx, y)

≥ 2(ϕ (Ax, x))
1
2 (ϕ (By, y))

1
2 + 2Reϕ (Cx, y)

≥ 2 |ϕ (Cx, y)|+ 2Reϕ (Cx, y)

≥ 2 |ϕ (Cx, y)|− 2 |ϕ (Cx, y)|

= 0.

This completes the proof of the theorem. �

Remark 1 If we put C = AB in (3), then we obtain

|ϕ (ABx, x)|2 ≤ ϕ
(
A2x, x

)
ϕ
(
B2y, y

)
.
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We will need the following definition to obtain our results. For more related
details see [4, p. 1-5].

Definition 1 A functional (·, ·) : V × V → C is said to be a Hermitian form
on linear space V , if

(a) (ax+ by, z) = a (x, z) + b (y, z), for all a, b ∈ C and all x, y, z ∈ V ;

(b) (x, y) = (y, x), for all x, y ∈ V .

Utilizing the Cauchy Schwarz inequality we can state the following result that
will be useful in the sequel (see [7, Theorem 2]).

Lemma 4 Let (V , ϕ (·, ·)) be a complex vector space, then(
‖a‖2ϕ ‖b‖

2
ϕ − |ϕ (a, b)|2

)(
‖b‖2ϕ ‖c‖

2
ϕ − |ϕ (b, c)|2

)
≥
∣∣∣ϕ (a, c) ‖b‖2ϕ −ϕ (a, b)ϕ (b, c)

∣∣∣2. (4)

Proof. Let us consider the mapping pb : V × V → C, with pb (a, c) =
ϕ (a, c) ‖b‖2ϕ − ϕ (a, b)ϕ (b, c), for each b ∈ V \ {0}. Obviously pb (·, ·) is a
non-negative Hermitian form and then writing Schwarz’s inequality

|pb (a, c)|
2 ≤ pb (a, a)pb (c, c) , (a, c ∈ V )

we obtain the desired inequality (4). �

The following refinement of the Schwarz inequality holds (see [8, Theorem 4]):

Theorem 1 Let a, b ∈ V and e ∈ V with ‖e‖ϕ = 1, then

‖a‖ϕ‖b‖ϕ ≥ |ϕ (a, b)ϕ (a, e)ϕ (e, b)|+ |ϕ (a, e)ϕ (e, b)| ≥ |ϕ (a, b)| . (5)

Proof. Applying the inequality (4), we can state that(
‖a‖2ϕ − |ϕ (a, e)|2

)(
‖b‖2ϕ − |ϕ (b, e)|2

)
≥ |ϕ (a, b) −ϕ (a, e)ϕ (e, b)|2. (6)

Utilizing the elementary inequality for real numbers(
m2 − n2

)(
p2 − q2

)
≤ (mp− nq)2,

we can easily see that

(‖a‖ϕ‖b‖ϕ − |ϕ (a, e)ϕ (e, b)|)2 ≥
(
‖a‖2ϕ − |ϕ (a, e)|2

)(∣∣∣‖b‖2ϕ − |ϕ (b, e)|2
∣∣∣) ,
(7)
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for any a, b, e ∈ V with ‖e‖ϕ = 1. Since, by the Schwarz’s inequality

|ϕ (a, e)ϕ (e, b)| ≤ ‖a‖ϕ‖b‖ϕ.

Hence, by (6) and (7) we deduce the first part of (5). The second part of (5)
is obvious. �

If ϕ (x, y) = 0, x is said to be ϕ-orthogonal to y, and notation x⊥ϕy is used.
If ϕ (x, x) = 0 implies x = 0, then the relation ⊥ϕ is symmetric. The notation
U ⊥ϕW means that x⊥ϕy when x ∈ U and y ∈ W . Also U ⊥ is the set of all
y ∈ V that are orthogonal to every x ∈ U . The following lemmas are known
in the literature (see [21, p. 307-308]).

Lemma 5 If x, y ∈ V , and ϕ (x, x) = 0 implies x = 0, then

‖y‖ϕ ≤ ‖λx+ y‖ϕ (λ ∈ C) ,

if and and only if x⊥ϕy.

Lemma 6 Every non empty closed convex set U ⊂ V contains a unique x of
minimal norm.

The next assertion is interesting on its own right.

Theorem 2 If M is a closed subspace of V , then

V = M ⊕M⊥.

3 ϕ-numerical range and ϕ-numerical radius

This section deals with the theory of sesquilinear forms, its generalizations
and applications to numerical range and numerical radius of operators. The
basic notions of numerical range and numerical radius can be found in [11].
Moreover, for a host of numerical radius inequalities, and for diverse applica-
tions of these inequalities, we refer to [6, 5, 20], and references therein. Before
stating the results, we establish the notation some results from the literature.

Definition 2 The ϕ-numerical range of an operator A on vector space V is
the subset of the complex numbers C, given by

Wϕ (A) = {ϕ (Ax, x) : x ∈ V ,‖x‖ϕ = 1} .
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Proposition 2 The following properties of Wϕ (A) are immediate.

(a) If ϕ is symmetric then, Wϕ (A∗) =
{
λ : λ ∈Wϕ (A)

}
.

(b) Wϕ (αI+ βA) = α+ βWϕ (A).

(c) Wϕ (U∗AU) =Wϕ (A), for any unitary operator U.

Further, we list some basic properties of Wϕ (A):

Proposition 3 Let A ∈ L (V ), ϕ be a sesqulinear form on vector space V ,
then

(a) Wϕ (A) is convex.

(b) Sp (A) ⊆Wϕ (A), where Sp (A) denotes the spectrum of A.

(c) If ϕ is symmetric then, A is real if and only if Wϕ (A) is real.

Definition 3 The ϕ-numerical radius of an operator A on V given by

ωϕ (A) = sup {|ϕ (Ax, x)| : ‖x‖ϕ = 1} .

Note that, if ϕ (x, x) = 0 implies x = 0 then ωϕ (·) is a norm on the L (V ) of
all bounded linear operators A : V → V , that is

(a) ωϕ (A) ≥ 0 for any A ∈ L (V ) and ωϕ (A) = 0 if and only if A = 0;

(b) ωϕ (λA) = |λ|ωϕ (A) for any λ ∈ C and A ∈ L (V );

(c) ωϕ (A+ B) ≤ ωϕ (A) +ωϕ (B) for any A,B ∈ L (V ).

This norm is equivalent with the operator norm. In fact, the following more
precise result holds:

Proposition 4 For each A ∈ L (V )

ωϕ (A) ≤ ‖A‖ϕ ≤ 2ωϕ (A) , (8)

where
‖A‖ϕ = sup {|ϕ (Ax, y)| : ‖x‖ϕ = ‖y‖ϕ = 1} .

We are now ready to construct our main results of this section.

Theorem 3 Let ϕ be a symmetric sesquilinear form. Then A is self-adjoint
if and only if Wϕ (A) is real.
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Proof. If A is self-adjoint, we have, for all f ∈ V , ϕ (Af, f) = ϕ (f,Af) =
ϕ (Af, f), and henceWϕ (A) is real. Conversely, if ϕ (Af, f) is real for all f ∈ V ,
we have ϕ (Af, f) = ϕ (f,Af) = 0 = ϕ ((A−A∗) f, f) . Thus the operator
A−A∗ has only {0} in its ϕ-numerical range. So A−A∗ = 0 and A = A∗. �

Theorem 4 Let A ∈ L (V ). If R (A)⊥ϕR (A∗), then ωϕ (A) = 1
2‖A‖ϕ.

Proof. Let x ∈ V , ‖x‖ϕ = 1. We can write x = x1+x2, where x1 ∈ N (A), the

null space of A, and x2 ∈ R (A∗). Thus we have

ϕ (Ax, x) = ϕ (A (x1 + x2) , x1 + x2) = ϕ (Ax2, x1) .

Since Ax1 = 0 and ϕ (Ax2, x2) = ϕ (x2, A
∗x2) = 0. Thus

|ϕ (Ax, x)| ≤ ‖A‖ϕ ‖x1‖ ‖x2‖ ≤
1

2
‖A‖ϕ (‖x1‖+ ‖x2‖)

(by the inequality ‖a‖ ‖b‖ ≤ 1
2

(
‖a‖2 + ‖b‖2

)
)

=
1

2
‖A‖ϕ (since ‖x1‖+ ‖x2‖ = 1).

Since x is arbitrary, we have

ωϕ (A) ≤ 1
2
‖A‖ϕ ≤ ωϕ (A) .

This completes the proof. �

Our ϕ-numerical radius inequality for bounded operators can be stated as
follows.

Theorem 5 Let A,X ∈ L (V ), then

ωϕ (AXA∗) ≤ ‖A‖2ϕωϕ (X) . (9)

Proof. Let x ∈ V be a unit vector. Then

|ϕ (AXA∗x, x)| = |ϕ (XA∗x,A∗x)|

≤ ‖A∗x‖2ϕωϕ (x)

≤ ‖A∗‖2ϕωϕ (x)

= ‖A‖2ϕωϕ (x) .

Now the result follows immediately by taking supremum over all unit vectors
in V . �
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Remark 2 Let A,X ∈ L (V ), then

ωϕ (AXA∗) ≤ ‖A‖2ϕ ‖X‖ϕ. (10)

Note that, by (8) we can easily see that inequality (9) is sharper than inequality
(10).

The following result holds (see [12, Theorem 1], for the case of inner product):

Theorem 6 Let A,B ∈ L (V ) and ϕ is a bounded sesquilinear form, then

1

4
‖A∗A+AA∗‖ϕ ≤ (ωϕ (A))2 ≤ ‖A∗A+AA∗‖ϕ.

Proof. Let A = B + iC be the Cartesian decomposition of A. Then B and
C are self-adjoint, and A∗A + AA∗ = 2

(
B2 + C2

)
. Let x be any vector in V .

Then by the convexity of the function f (t) = t2, we have

|ϕ (Ax, x)|2 = (ϕ (Bx, x))2 + (ϕ (Cx, x))2

≥ 1
2
(|ϕ (Bx, x)|+ |ϕ (Cx, x)|)2

≥ 1
2
|ϕ ((B± C) x, x)|2.

Taking supremum over x ∈ V with ‖x‖ϕ = 1, produces

1

2
‖B± C‖2ϕ ≤ (ωϕ (A))2.

Since

2(ωϕ (A))2 ≥ 1
2

(
‖B+ C‖2ϕ + ‖B− C‖2ϕ

)
≥ 1
2

∥∥∥(B+ C)2 + (B− C)2
∥∥∥
ϕ

=
∥∥∥B2 + C2∥∥∥

ϕ

=
1

2
‖A∗A+AA∗‖ϕ,

and hence

(ωϕ (A))2 ≤ 1
4
‖A∗A+AA∗‖ϕ.

On the other hand

|ϕ (Ax, x)|2 = (ϕ (Bx, x))2 + (ϕ (Cx, x))2 ≤ 2
∥∥∥B2 + C2∥∥∥

ϕ
.
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Now by taking the supremum over x ∈ V , with ‖x‖ϕ = 1 in the above in-
equality we infer that Theorem 6. �

Now we state, another related ϕ-numerical radius inequality that has been
given in [6, Theorem 36], for Hilbert space case.

Theorem 7 Let A ∈ L (V ), then

ω2ϕ (A) ≤ 1
2

(
ωϕ

(
A2
)
+ ‖A‖2ϕ

)
. (11)

Proof. By Theorem 1 observing that

|ϕ (a, b) −ϕ (a, e)ϕ (e, b)| ≥ |ϕ (a, e)ϕ (e, b)|− |ϕ (a, b)| ,

hence by first inequality in (5) we deduce

1

2
(‖a‖ϕ‖b‖ϕ + |ϕ (a, b)|) ≥ |ϕ (a, e)ϕ (e, b)| . (12)

Choose in (12), e = x, ‖x‖ϕ = 1, a = Ax and b = A∗x to get

1

2
‖Ax‖ϕ‖A

∗x‖ϕ +
∣∣∣ϕ(A2x, x)∣∣∣ ≥ |ϕ (Ax, x)|2, (13)

for any x ∈ V with ‖x‖ϕ = 1. Taking the supremum in (13) over x ∈ V with
‖x‖ϕ = 1, we deduce the desired inequality (11). �

Remark 3 The concept of a sesquilinear form and quadratic form do not re-
quire the structure of an inner product space. They can be defined in any vector
space. Something to notice about the definition of a sesquilinear form is the
similarity it has with an inner product. In essence, a sesquilinear form is a
generalization of an inner product. (Note that the inner product is a sesquilin-
ear form but the converse is not true.)

With regard to the point mentioned above, we can say that all of the inequal-
ities which are obtained by Dragomir in [6] can be extended to vector space in
a similar way. The details are left to the interested readers.
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Abstract. The hyperbolic Pascal triangle HPT4,q (q ≥ 5) is a new
mathematical construction, which is a geometrical generalization of Pas-
cal’s arithmetical triangle. In the present study we show that a natural
pattern of rows of HPT4,5 is almost the same as the sequence consisting
of every second term of the well-known Fibonacci words. Further, we give
a generalization of the Fibonacci words using the hyperbolic Pascal tri-
angles. The geometrical properties of a HPT4,q imply a graph structure
between the finite Fibonacci words.

1 Introduction

The hyperbolic Pascal triangle HPT 4,q (q ≥ 5) is a new mathematical con-
struction, which is a geometrical generalization of Pascal’s arithmetical tri-
angle [1]. In the present article we discuss the properties of the patterns of
the rows of HPT 4,q, which patterns give a new kind of generalizations of the
well-known Fibonacci words. Our aim is to show the connection between the
Fibonacci words and the hyperbolic Pascal triangles.

After a short introduction of the hyperbolic Pascal triangles and the finite
Fibonacci words we define a new family of Fibonacci words and we present the
relations between the hyperbolic Pascal triangles and the newly generalized
Fibonacci words. Their connections will be illustrated by figures for better

2010 Mathematics Subject Classification: 05B30, 11B39
Key words and phrases: hyperbolic Pascal triangle, Fibonacci word
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comprehension. As the hyperbolic Pascal triangles are based on the hyperbolic
regular lattices, their geometrical properties provide a graph structure between
the generalized finite Fibonacci words. The extension of this connection could
provide a new family of binary words.

1.1 Hyperbolic Pascal triangles

In the hyperbolic plane there are infinite types of regular mosaics (or regular
lattices), that are denoted by the Schläfli symbol {p, q}, where (p−2)(q−2) > 4.
Each regular mosaic induces a so-called hyperbolic Pascal triangle, following
and generalizing the connection between classical Pascal’s triangle and the
Euclidean regular square mosaic {4, 4} (for more details see [1, 5, 6]).

The hyperbolic Pascal triangle HPT 4,q based on the mosaic {p, q} can be
depicted as a digraph, where the vertices and the edges are the vertices and
the edges of a well-defined part of the lattice {p, q}, respectively. Further, the
vertices possess a value each giving the number of the different shortest paths
from the base vertex. Figure 1 illustrates the hyperbolic Pascal triangle when
{p, q} = {4, 6}. Generally, for a {4, q} configuration the base vertex has two
edges, the leftmost and the rightmost vertices have three, the others have q
edges. The square shaped cells surrounded by appropriate edges correspond
to the regular squares in the mosaic. Apart from the winger elements, certain
vertices (called “Type A” for convenience) have two ascendants and q− 2 de-
scendants, the others (“Type B”) have one ascendant and q− 1 descendants.
In the figures of the present study we denote the type A vertices by red cir-
cles and the type B vertices by cyan diamonds, while the wingers by white
diamonds. The vertices which are n-edge-long far from the base vertex are in
row n.

Figure 1: Hyperbolic Pascal triangle linked to {4, 6} up to row 5
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The general method of deriving the triangle is the following: going along
the vertices of the jth row, according to the type of the elements (winger, A,
B), we draw the appropriate number of edges downwards (2, q − 2, q − 1,
respectively). Neighbour edges of two neighbour vertices of the jth row meet
in the (j + 1)th row, constructing a type A vertex. The other descendants of
row j are type B in row j + 1. Figure 2 also shows a growing algorithm of
the different types except the leftmost items, that are always types B and A.
(Compare Figure 2 with Figures 1 and 3.)

In the sequel, )nk ( denotes the kth element in row n, whose value is either the
sum of the values of its two ascendants or the value of its unique ascendant. We
note, that the hyperbolic Pascal triangle has the property of vertical symmetry.

In the following we generalize the Fibonacci word in a new (but not brand
new) way and show that this generalization is the same as the patterns of
nodes types A and B in rows of HPT 4,q.

Figure 2: Growing method in Pascal triangles (except for the two leftmost
items)

1.2 Fibonacci words

The most familiar and the most studied binary word in mathematics is the
Fibonacci word. The finite Fibonacci words, fi, are defined by the elements of
the recurrence sequence {fi}

∞
i=0 over {0, 1} defined as follows

f0 = 1, f1 = 0, fi = fi−1fi−2, (i ≥ 2).

It is clear, that |fi| = Fi+1, where Fi is the i-th Fibonacci number defined by
the recurrence relation Fi = Fi−1 + Fi−2 (i ≥ 2), with initial values F0 = 0,
F1 = 1. The infinite Fibonacci word is f = limi→∞ fi. Table 1 shows the first
few Fibonacci words. It is also well-known that the Fibonacci morphism (σ:
{0, 1}→ {0, 1}∗, 0→ 01, 1→ 0) acts between two consecutive finite Fibonacci
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words. For some newest properties (and further references) of Fibonacci words
see [2, 3, 4, 7, 8].

f0 = 1
f1 = 0
f2 = 01
f3 = 010
f4 = 01001
f5 = 01001010
f6 = 0100101001001
f7 = 010010100100101001010

Table 1: The first Fibonacci words

2 {4, q}-Fibonacci words

There are some generalizations of Fibonacci words, one of them is the biperi-
odic Fibonacci word [2, 8]. For any two positive integers a and b, the biperiodic
finite Fibonacci words sequence, say {f̂i}

∞
i=0, is defined recursively by

f̂0 = 1, f̂1 = 0, f̂2 = 0
a−11 = 00 . . . 01,

and

f̂i =

{
f̂ai−1f̂i−2, if i is even;

f̂bi−1f̂i−2, if i is odd;
(i ≥ 3).

It has been proved [8], that if i ≥ 1 then |f̂i| = F
(a,b)
i , where for any two pos-

itive integers a and b, the biperiodic Fibonacci sequence {F
(a,b)
i }∞i=0 is defined

recursively by

F
(a,b)
0 = 0, F

(a,b)
1 = 1, F

(a,b)
i =

{
aF

(a,b)
i−1 + F

(a,b)
i−2 , if i is even;

bF
(a,b)
i−1 + F

(a,b)
i−2 , if i is odd;

(i ≥ 2). (1)

The first few terms are 0, 1, a, ab+1, a2b+2a, a2b2+3ab+1, a3b2+4a2b+3a,
a3b3 + 5a2b2 + 6ab + 1. When a = b = k, this generalization gives the
k-Fibonacci numbers and in the case a = b = 1, we recover the original
Fibonacci numbers [2, 8].
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Now let us define the finite {4, q}-Fibonacci words sequence {f
[4,q]
i }∞i=0, shortly

{f
[q]
i }∞i=0, where q ≥ 5, a new family of generalized Fibonacci words, and

f
[q]
0 = 1, f

[q]
1 = 0, f

[q]
i =


(
f
[q]
i−1

)q−4
f
[q]
i−2, if i is even;

f
[q]
i−1f

[q]
i−2, if i is odd;

(i ≥ 2). (2)

These new {4, q}-Fibonacci words are almost the same as the biperiodic Pascal
words, f̂i, if a = 1 and b = q− 4. As the definitions for the second items vary,
the odd and even situations are reversing. If q = 5, then {4, q}-Fibonacci
words coincide with the classical Fibonacci words. (In Table 2 we list the first
few {4, 6}-Fibonacci words.) The infinite {4, q}-Fibonacci word is defined as

f[q] = limi→∞ f[q]i and f = f[5] (see Table 3).

f
[6]
0 = 1

f
[6]
1 = 0

f
[6]
2 = 001

f
[6]
3 = 0010

f
[6]
4 = 00100010001

f
[6]
5 = 001000100010010

f
[6]
6 = 00100010001001000100010001001000100010001

Table 2: The first few {4, 6}-Fibonacci words

f[5] = 01001010010010100101001001010010010100101001001010010100 . . .

f[6] = 00100010001001000100010001001000100010001001000100010010 . . .

f[7] = 00010000100001000010001000010000100001000010001000010000 . . .

f[8] = 00001000001000001000001000001000010000010000010000010000 . . .

Table 3: Some infinite {4, q}-Fibonacci words

In case of the extension of definition (2) to q = 4, the f
[4]
2k = 1, f

[4]
2k+1 = 1 . . . 10

(the number of 1’s is k) for any k ≥ 1 and there is no limit of f
[4]
i if i → ∞.

Therefore, we investigate the {4, q}-Fibonacci words, when q ≥ 5.
Let σ[q] be the {4, q}-Fibonacci morphism defined by

{0, 1}→ {0, 1}∗, 0→ 0q−410, 1→ 0q−41, (3)
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where q ≥ 5.

Theorem 1 The {4, q}-Fibonacci morphism, σ[q], acts between every second
words of {4, q}-Fibonacci words, so that

σ[q](f
[q]
i−2) = f

[q]
i , (i ≥ 2). (4)

Proof. We prove the assertion by induction on i. The statement is clearly true
for i = 2, 3. Now we assume, that the result holds for any j, when 4 ≤ j < i.
Let i be first even. Then

σ[q](f
[q]
i−2) = σ[q]

((
f
[q]
i−3

)q−4
f
[q]
i−4

)
=
(
σ[q](f

[q]
i−3)

)q−4
σ[q](f

[q]
i−4)

=
(
f
[q]
i−1

)q−4
f
[q]
i−2 = f

[q]
i

If i is odd the proof is similar, σ[q](f
[q]
i−2) = σ

[q]
(
f
[q]
i−3f

[q]
i−4

)
= · · · = f[q]i . �

Remark 1 σ[5] = σ2 and σ2(fi) = fi+2.

3 Connection between HPT 4,q and {4, q}-Fibonacci
words

We consider again the hyperbolic Pascal triangle HPT 4,q. Let us denote the
left and right nodes ’1’ by type B (compare Figures 1 and 4). Let an and bn
be the number of vertices of type A and B in row n, respectively. Further let

sn = an + bn, (5)

that gives the total number of the vertices in row n ≥ 0. Then the ternary
homogeneous recurrence relation

sn = (q− 1)sn−1 − (q− 1)sn−2 + sn−3 (n ≥ 4) (6)

holds with initial values s0 = 1, s1 = 2, s2 = 3, s3 = q (recall, that q ≥ 5). For
the explicit form see [1].

Lemma 1 If n ≥ 1, then
sn = un + 2, (7)

where u1 = 0, u2 = 1 and un = (q− 2)un−1 − un−2, if n ≥ 3.
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Proof. Let un = sn− 2, where n ≥ 1. Then u1 = 0, u2 = 1 and u3 = s3− 2 =
q− 2 = (q− 2)u2 − u1.

For general cases corresponding to n ≥ 4, firstly, we have

un = (q− 1)sn−1 − (q− 1)sn−2 + sn−3 − 2

= (q− 1)(sn−1 − 2) − (q− 1)(sn−2 − 2) + (sn−3 − 2)

= (q− 1)un−1 − (q− 1)un−2 + un−3.

This also means, that {sn} and {un} have the same ternary recurrence relation
(with different initial values).

Secondly, we show, that {un} can be described by a binary recurrence relation
too. (In contrast {sn} cannot.) Adding the equations un = (q− 2)un−1−un−2
and −un−1 = −(q−2)un−2+un−3, we obtain un = (q−1)un−1−(q−1)un−2+
un−3. �

The first few terms of {ui} are 0, 1, q− 2, q2 − 4q+ 3, q3 − 6q2 + 10q− 4,
q4 − 8q3 + 21q2 − 20q+ 5.

Lemma 2 Both of the sub-sequences consisting of every second term of {F
(a,b)
i }

satisfy the relation

xi = (ab+ 2)xi−2 − xi−4, (i ≥ 4). (8)

Moreover, if n ≥ 2 then

un = F
(1,q−4)
2n−2 . (9)

Proof. For the first few terms of {F
(a,b)
i } the equation (8) is clearly true. We

assume that for i− 1 (i ≥ 6) equation (8) also holds. Then if i is even,

F
(a,b)
i = aF

(a,b)
i−1 + F

(a,b)
i−2

= a
(
(ab+ 2)F

(a,b)
i−3 − F

(a,b)
i−5

)
+
(
(ab+ 2)F

(a,b)
i−4 − F

(a,b)
i−6

)
= (ab+ 2)

(
aF

(a,b)
i−3 + F

(a,b)
i−4

)
−
(
aF

(a,b)
i−5 + F

(a,b)
i−6

)
= (ab+ 2)F

(a,b)
i−2 − F

(a,b)
i−4 .

If i is odd, the proof is the same. For the case a = 1 and b = q− 4 we obtain
the equation (9). �

Let {h
[q]
n }∞0 be the sequence over {A,B}, where h

[q]
n equals to the concate-

nations of the type of the vertices of row n in HPT 4,q from left to the right.
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Further, we call the elements of this the {4, q}-hyperbolic Pascal words (shortly
q-hyperbolic Pascal words). For example in the case of q = 5 (see Figure 3),
we have

h
[5]
0 = B, h

[5]
1 = BB, h

[5]
2 = BAB, h

[5]
3 = BABAB, h

[5]
4 = BABABBABAB,

h
[5]
5 = BABABBABABBABBABABBABAB.

Figure 3: Pattern of HPT 4,5 up to row 5 and some Fibonacci words

Let us consider the bijection

φ : {0, 1}→ {A,B}, φ(1) = A, φ(0) = B. (10)

Let the words u and v be over {0, 1} and {A,B}, respectively. If φ(u) = v,
then we say that u is equivalent to v and we denote u ≡ v. For example from
Figure 3 we have

f1 = 0 ≡ B = h
[5]
0 , 0f1 = 00 ≡ BB = h

[5]
1 ,

f3 = 01f1 = 010 ≡ BAB = h
[5]
2 , 01f3 = 01010 ≡ BABAB = h

[5]
3 . (11)

Examining Figure 3 we can recognise that every second Fibonacci word
is almost equivalent to the patterns of the rows in HPT 4,5. (Compare the

patterns of rows in Figure 4 and f
[6]
2n−3, n = 2, 3, 4.) The following theorem

gives the exact relationship between HPT 4,q and {4, q}-Fibonacci words.
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Figure 4: Pattern of HPT 4,6 up to row 4 and some Fibonacci words

Theorem 2 If n ≥ 2, then

01f
[q]
2n−3 ≡ h

[q]
n (12)

and

|f
[q]
2n−3| = F

(1,q−4)
2n−2 ,

where 1 ≡ A, 0 ≡ B and |h
[q]
n | = sn.

Proof. If n = 2, then 01f
[q]
1 = 010 ≡ BAB = h

[q]
2 . For higher values of n,

examining the growing method of the hyperbolic Pascal triangles row by row
based on Figure 2, we can recognise that except for the first two elements it
can be described by the morphism

λ : {A,B}→ {A,B} ∗ λ(A) = (B)q−4A, λ(B) = (B)q−4AB. (13)

After comparing λ with the {4, q}-Fibonacci morphism σ[q] between every sec-

ond f
[q]
i according to Theorem 1, we can recognize that the growing methods

(see Figure 2, (3) and (13)) are the same. This proves the equation (12), be-
cause the first two elements of all rows (n ≥ 2) in HPT 4,q are B and A.

The second statement is a consequence of Lemma 2. �
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4 Some properties of {4, q}-Fibonacci words

Presumably, the connection between the {4, q}-Fibonacci words and the hy-
perbolic Pascal pyramids can open new opportunities for examining the Fi-
bonacci words. We show some properties of {4, q}-Fibonacci words in which
we use these connections.

Let a binary word u be the concatenation of the words v andw, thus u = vw.
If we delete w from the end of u, we get v. Let us denote it by v = u	w. In
words, the sign 	 acts so, that the word after the sign is deleted from the end of
the word before the sign (if it is possible). For example f4 = f5	f3 = 01001��HH010 ,

f6 = f5f5 	 f3 = 01001010 · 01001��HH010 or f
[6]
4 = (f

[6]
3 )3 	 f[6]5 = 0010 · 0010 · 001�A0.

Theorem 3 All {4, q}-Fibonacci words with (k ≥ 2) can be given in terms of
the previous two odd indexed ones, namely

f
[q]
2k =

(
f
[q]
2k−1

)q−3
	 f[q]2k−3,

f
[q]
2k+1 =

((
f
[q]
2k−1

)q−3
	 f[q]2k−3

)
f
[q]
2k−1.

Proof. Applying f
[q]
2k−1 = f

[q]
2k−2f

[q]
2k−3 we can easily see that f

[q]
2k−2 = f

[q]
2k−1	f

[q]
2k−3.

Furthermore, we can also see that f
[q]
2k =

(
f
[q]
2k−1

)q−4
f
[q]
2k−2 =

(
f
[q]
2k−1

)q−4
f
[q]
2k−1	

f
[q]
2k−3 =

(
f
[q]
2k−1

)q−3
	 f[q]2k−3. The second equation is the corollary of the first

one. �

If q tends to infinity, then the numbers of ’0’ in infinite {4, q}-Fibonacci
words are relatively fast growing (see Table 3). Now let us derive these ratios.

Let d
[q]
i , d

[q]
i,0 and d

[q]
i,1 denote the numbers of all, ’0’ and ’1’ digits in the finite

{4, q}-Fibonacci words, respectively. Then, let the limit r
[q]
0 = limi→∞(d

[q]
i /d

[q]
i,0)

be the inverse density of ’0’ digits in the infinite {4, q}-Fibonacci word. Simi-

larly, we denote the same density by r
[q]
1 = limi→∞(d

[q]
i /d

[q]
i,1) in the case of ’1’

digits.

Theorem 4 The inverse density of ’0’ and ’1’ digits in the infinite {4, q}-
Fibonacci words are

r
[q]
0 =

q− 4+
√
q(q− 4)

2(q− 4)
,

r
[q]
1 =

q− 2+
√
q(q− 4)

2
,
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where q ≥ 5. Moreover

lim
q→∞ r[q]0 = 1 and lim

q→∞ r[q]1 =∞.
Proof. Firstly, let i be odd and large enough, so that i = 2n−3. As 01f

[q]
2n−3 ≡

h
[q]
n from Theorem 2, we consider the ratio sn/an from the hyperbolic Pas-

cal triangle instead of the corresponding ratio d
[q]
2n−3/d

[q]
2n−3,0. Not only the

sequence {sn} can be described by the ternary recurrence relation (6) but also
the sequences {an} and {bn} (more details in [1]). The solutions of the char-
acteristic equations of their recurrence relations are positive real numbers.
Moreover, it is well-known that the limit of sn/an is the density of the coeffi-
cients of the largest solutions (all solutions are positive), i.e. αs = −1/2+(q−
2)
√
q2 − 4q/(2q(q−4)), αa = (2−q)(1/2)+(q2−4q+2)

√
q2 − 4q/(2q(q−4))

and αb = (q− 3)(1/2) + (1− q)
√
q2 − 4q/(2q). Thus,

lim
n→∞

d
[q]
2n−3

d
[q]
2n−3,0

= lim
n→∞ sn

bn
= lim
n→∞ αs

αb
=

q− 4+
√
q2 − 4q

2(q− 4)
,

lim
n→∞

d
[q]
2n−3

d
[q]
2n−3,1

= lim
n→∞ sn

an
= lim
n→∞ αs

αa
=

q− 2+
√
q2 − 4q

2
.

Secondly, let i be even. According to Theorem 3 all the even indexed {4, q}-
Fibonacci words can be derived in terms of the previous two elements. We also

obtain, that d
[q]
2k = (q − 3)d

[q]
2k−1 − d

[q]
2k−3, d

[q]
2k,0 = (q − 3)d

[q]
2k−1,0 − d

[q]
2k−3,0 and

d
[q]
2k,1 = (q− 3)d

[q]
2k−1,1 − d

[q]
2k−3,1. From it we have

lim
n→∞ d

[q]
2k

d
[q]
2k,0

= lim
n→∞

(q− 3)d
[q]
2k−1 − d

[q]
2k−3

(q− 3)d
[q]
2k−1,0 − d

[q]
2k−3,0

= lim
n→∞

d
[q]
2k−1

d
[q]
2k−1,0

,

and the case for digits ’1’ is similar. For the limits of r
[q]
0 and r

[q]
1 , the statement

is obviously true. �

Naturally, if q = 5 the results of Theorem 4 give the known r
[5]
0 = ϕ and

r
[5]
1 = 1+ϕ values, where ϕ is the golden ratio.

Finally, here are some properties, which can directly be obtained from the
properties of HPT 4,q:

• The words 01f
[q]
2n−3 (n ≥ 2) are palindromes.
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• The subword 11 never occurs in {4, q}-Fibonacci words.

• The subword 00 . . . 0 (q− 2 digits 0) never occurs in words f
[q]
i .

• The last two digits of finite {4, q}-Fibonacci words are alternately 01 and
10.

• The infinite {4, q}-Fibonacci word has n+ 1 distinct subwords of length
n, where n ≤ q − 2. In case n = q − 2, they are 100 . . . 01 with q − 4
digits 0 and the others are with only one digit 1, in case n < q − 2 the
subwords have at most one digit 1.
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Abstract. In the paper, the authors derive an explicit formula for
derivative polynomials of the tangent function, deduce an explicit for-
mula for tangent numbers, pose an open problem about obtaining an
alternative and explicit formula for derivative polynomials of the tan-
gent function, and recommend some papers closely related to derivative
polynomials of other elementary and applicable functions.

1 Introduction

It is not difficult to see that if f is a function whose derivative is a polynomial
in f, that is, f ′(x) = P1(f(x)) for some polynomial P1, then all the higher order
derivatives of f are also polynomials in f, so we have a sequence of polynomials
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Pn defined by f(n)(x) = Pn(f(x)) for n ≥ 0. As usual, we call Pn(u) the
derivative polynomials of f. In fact, the polynomials Pn are determined by

P0(u) = u, Pn+1(u) = P
′
n(u)P1(u), n ∈ N.

For detailed information, please refer to [8, Section 2].
In 1945, Morley [10] observed that

(tan x) ′ = 1+ tan2 x, (tan x) ′′ = 2 tan x+ 2 tan3 x,

(tan x) ′′′ = 2+ (2+ 2 · 3) tan2 x+ 2 · 3 tan4 x,
(1)

a term ak tank x in (tan x)(n) gives (tan x)(n+1) kak tank−1 x+kak tank+1 x, and
then concluded that the coefficient of tank−1 x in (tan x)(n+1) is (k− 2)ak−2 +
kak, with ak−2 = 0 when k ≤ 1, and ak = 0 when k ≥ n+ 2.

In 1995, Hoffman [8, p. 25, (5)] obtained that the derivative polynomials Pn
for the tangent function tan x defined by

dn(tan x)

d xn
= Pn(tan x)

for n ≥ 0 are polynomials of degree n+ 1 and satisfy the recurrence relation

Pn+1(u) =

n∑
k=0

(
n

k

)
Pk(u)Pn−k(u) + δ0n,

where

P0(u) = u, P1(u) = 1+ u
2, and δij =

{
0, i 6= j;
1, i = j.

In [1, 9, 12, 26, 27, 32, 36], there are some explicit formulas and recurrence
relations for the nth derivatives of trigonometric functions and other elemen-
tary functions. In [3, 4, 5, 20, 21, 26, 30, 33], there are some inequalities for
trigonometric functions and other elementary functions. Specially, there are
some explicit formulas and many other results on the nth derivative of the
tangent function tan x in [11, 14].

Motivated by those results in [8, 10] and other references mentioned above,
we are interested in the question: can one find explicit formulas for coefficients
ak of the derivative polynomials Pn(u) for the tangent function tan x?

The aim of this paper is to answer the above question. Our main results can
be stated as the following theorem.
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Theorem 1 For n ≥ 0, the derivative polynomials Pn(u) of the tangent func-
tion u = tan x can be explicitly computed by

Pn(u) =

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n+1−2ku
n+1−2k (2)

with

a2m−1,0 = (−1)m
2m∑
`=1

(−1)`22m−`(`− 1)!S(2m, `) (3)

for m ≥ 1 and

an,n+1−2k = (−1)k−1
n+1∑

`=n+1−2k

(−1)n−`2n+1−`(`− 1)!

(
`

n+ 1− 2k

)
S(n+ 1, `)

for 0 ≤ k ≤ 1
2

[
n− 1−(−1)n

2

]
, where S(n, k) for n ≥ k ≥ 1 stand for the Stirling

numbers of the second kind which can be generated by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
, k ∈ N.

In Section 3 of this paper, we will pose an open problem about obtaining
an alternative and explicit formula

an,n−2m+1 = (n+1)!

m−1∑
`=0

(−1)m−1−`bm,`n
`, n ≥ 2, 1 ≤ m ≤ 1

2

[
n−

1− (−1)n

2

]
(4)

for derivative polynomials Pn(x) of the tangent function tan x, where bm,` is a
sequence to be determined.

In the final section of this paper, we give a consequence of Theorem 1 and
recommend some papers closely related to derivative polynomials of other
elementary and applicable functions.

2 Proof of Theorem 1

Now we start out to simply prove our Theorems 1 as follows.
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In [36, Theorem 2.1] and [36, Corollaries 2.1 and 2.2], it was obtained that

(tan x)(n) = (−i)n+1
n+1∑
k=1

2n+1−k(k− 1)!S(n+ 1, k)(i tan x− 1)k,

(tan x)(n) = (tan x+ i)
n∑
k=1

(2i)n−kk!S(n, k)(tan x− i)k,

and

(tan x)(n) =
n+1∑
k=0

[
(−1)k+1 cos

(
n+ 1+ k

2
π

)

×
n+1∑

`=max{1,k}

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

(
`

k

)]
tank x. (5)

The identity (5) can be reformulated as

(tan x)(n) = − cos

(
n+ 1

2
π

) n+1∑
`=1

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

+

n+1∑
k=1

[
(−1)k+1 cos

(
n+ 1+ k

2
π

) n+1∑
`=k

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

(
`

k

)]
tank x.

Consequently, we arrives at

a2m−1,0 = − cos

(
2m

2
π

) 2m∑
`=1

(−1)2m−`−122m−`(`− 1)!S(2m, `)

= (−1)m
2m∑
`=1

(−1)`22m−`(`− 1)!S(2m, `)

for m ≥ 1 and

an,n+1−2m = (−1)n cos((n+ 1−m)π)

n+1∑
`=n+1−2m

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

(
`

n+ 1− 2m

)

= (−1)m−1
n+1∑

`=n+1−2m

(−1)n−`2n+1−`(`− 1)!S(n+ 1, `)

(
`

n+ 1− 2m

)
for 0 ≤ m ≤ 1

2

[
n− 1−(−1)n

2

]
. The proof of Theorem 1 is thus complete.
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3 An open problem

Now we would like to propose an open problem as follows.
The equation (2) means that

(tan x)(n) =

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1 tann−2k+1 x. (6)

Differentiating with respect to x on both sides of (6) gives

(tan x)(n+1) =

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k x
(
1+ tan2 x

)

=

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k x

+

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k+2 x

=

1
2

[
n+

1−(−1)n

2

]
+1∑

k=1

an,n−2k+3(n− 2k+ 3) tann−2k+2 x

+

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k+2 x

=

1
2

[
n+

1−(−1)n

2

]∑
k=1

[an,n−2k+3(n− 2k+ 3) + an,n−2k+1(n− 2k+ 1)] tann−2k+2 x

+an,n+1(n+ 1) tann+2 x+ a
n,

1+(−1)n

2

1+ (−1)n

2
tan

(−1)n−1
2 x.

Comparing this with

(tan x)(n+1) =

1
2

[
n+1+

1+(−1)n

2

]∑
k=0

an+1,n−2k+2(tan x)n−2k+2
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yields

an+1,n+2 = an,n+1(n+ 1), (7)

a
n+1,

1−(−1)n

2

tan
1−(−1)n

2 x = a
n,

1+(−1)n

2

1+ (−1)n

2
tan

(−1)n−1
2 x, (8)

and
an+1,n−2k+2 = an,n−2k+3(n− 2k+ 3) + an,n−2k+1(n− 2k+ 1) (9)

for n ≥ 1 and 1 ≤ k ≤ 1
2

[
n+ 1−(−1)n

2

]
.

The derivatives of the tangent function tan x in (1) means that a0,1 = 1,
a1,2 = 1, a2,3 = 2, and a3,4 = 2 · 3. Combining these values with (7) reveals
that an,n+1 = n! for all n ≥ 0.

The derivatives of the tangent function tan x in (1) also means that a1,0 = 1,
a2,1 = 2, and a3,0 = 2. When n = 2` for ` ≥ 0, the recurrence relation (8)
becomes

a2`+1,0 = a2`,1.

When k = 1, the recurrence relation (9) can be simplified as

an+1,n = an,n+1(n+ 1) + an,n−1(n− 1) = an,n−1(n− 1) + (n+ 1)!

for n ≥ 2. From this recurrence relation, we acquire

an,n−1 =
1

3
(n+ 1)!, n ≥ 2. (10)

When k = 2, by (10), the recurrence relation (9) can be rearranged as

an+1,n−2 = an,n−1(n− 1) + an,n−3(n− 3) = an,n−3(n− 3) + (n− 1)
(n+ 1)!

3

for n ≥ 4. Accordingly, it follows that

an,n−3 =
5n− 8

90
(n+ 1)!, n ≥ 4. (11)

When k = 3, by (11), the recurrence relation (9) can be rewritten as

an+1,n−4 = an,n−3(n−3)+an,n−5(n−5) = an,n−5(n−5)+(n−3)
5n− 8

90
(n+1)!

for n ≥ 6. Therefore, it follows that

an,n−5 =
35n2 − 203n+ 264

5670
(n+ 1)!, n ≥ 6. (12)
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Similarly as above processing, we can procure that

an,n−7 =
175n3 − 2205n2 + 8654n− 10272

340200
(n+ 1)!, n ≥ 8, (13)

an,n−9 =
385n4 − 8470n3 + 66539n2 − 217910n+ 244704

11226600
(n+ 1)!, n ≥ 10,

(14)

and the like. Accordingly, from (10), (11), (12), (13), and (14), we can conclude
that

an,n−2m+1 = (n+ 1)!

m−1∑
`=0

(−1)m−1−`bm,`n
`,

n ≥ 2, 1 ≤ m ≤ 1
2

[
n−

1− (−1)n

2

]
.

(15)

Substituting this conclusion into (9) leads to

(n+ 2)!

k−1∑
`=0

(−1)k−1−`bk,`(n+ 1)` = (n− 2k+ 3)(n+ 1)!

k−2∑
`=0

(−1)k−2−`bk−1,`n
`

+(n− 2k+ 1)(n+ 1)!

k−1∑
`=0

(−1)k−1−`bk,`n
`,

k−1∑
`=0

(−1)`+1
[
(n+ 2)(n+ 1)` − (n− 2k+ 1)n`

]
bk,`

= (n− 2k+ 3)

k−2∑
`=0

(−1)`n`bk−1,`,

where n ≥ 4 and 2 ≤ k ≤ 1
2

[
n − 1−(−1)n

2

]
. Note that the sequence bk,` are

independent of n.
To the best of our knowledge, we think that it is much difficult to explicitly

determine the sequence bm,` in (15). Can one present a closed form for the
sequence bm,` in (15)?

4 Remarks

Finally we comment on Theorem 1 and recommend some references closely
related to derivative polynomials of other elementary and applicable functions.
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Remark 1 The expression (3) implies an explicit formula

T2m−1 = (−1)m
2m∑
`=1

(−1)`22m−`(`− 1)!S(2m, `), m ≥ 1

for tangent numbers T2m−1 which can be generated by

tan x =

∞∑
k=1

T2k−1
x2k−1

(2k− 1)!
, |x| <

π

2
.

For more information on tangent numbers T2m−1, please refer to [1, 11, 14, 36]
and the closely related references therein.

Remark 2 It is worthwhile to recommending the paper [2] which was found
on 3 March 2017 by the authors.

Remark 3 Except the above-mentioned literature, there are other papers such
as [6, 7, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 31, 34, 35, 36, 37] and
the closely related references therein to discuss derivative polynomials of other
elementary and applicable functions.

Acknowledgements

The authors are grateful to the anonymous referees for their careful corrections
to the original version of this paper.

References

[1] L. C. Bouvier, Analise transcendante. Loi du développement de la tan-
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Abstract. Having in mind a well-known connection between norms and
metrics on vector spaces, for an additively written group X, we establish
a natural Galois connection between functions of X to R and X2 to R .

1 Introduction

In this paper, for an additively written group X, we shall consider the sets

N = N (X) = RX and M =M(X) = RX
2

.

to be equipped with the usual pointwise inequality of real-valued functions.

Moreover, having in mind a well-known connection between norms and
metrics on vector spaces, for any p ∈ N , d ∈ M and x, y ∈ X we
define

pd (x) = d (0, x) and dp (x, y) = p (−x+ y) .

Thus, it can be easily seen that, for any p ∈ N and d ∈M ,

(1) dp ≤ d =⇒ p ≤ pd , (2) p ≤ pd =⇒ dp ≤ dpd .
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Moreover, if in particular

d (x, y) = |ϕ(x) −ϕ(y) | , with ϕ (x) = x/(1+ | x | ) ,

for all x, y ∈ R , then d is a metric on R such that dpd 6≤ d , despite that
p = pdp for all p ∈ N .

Therefore, by defining

M∧ =M∧ (X) =
{
d ∈M (X) : dpd ≤ d

}
,

we can note that the functions, defined by

f (p) = dp and g (d) = pd

for all p ∈ N and d ∈M∧, establish an increasing Galois connection [21, 24]
between the posets N and M∧ in the sense that, for any p ∈ N and
d ∈M∧, we have

f (p) ≤ d ⇐⇒ p ≤ g (d) .

Some very particular Galois connections have also been investigated in
Lambek [12] and our former papers [17, 18, 20, 3, 23, 25, 26] . However,
to get a proper overview on Galois connections, the interested reader must
consult most of the books [1, 2, 9, 7, 4, 5] .

To feel the importance of our present Galois connection, note that if in
particular p ∈ N is a preseminorm [16, 28] on X in the sense that

(1) p(0) ≤ 0 , (2) p (−x ) ≤ p (x) , (3) p (x+ y) ≤ p (x) + p (y)

for all x, y ∈ X, then dp is a left-invariant semimetric on X such that

d (p (x), p (y)) = |p (x) − p (y) | ≤ dp (x, y)

for all x, y ∈ X.

Conversely, if d is a left-invariant semimetric on X, then pd is a presemi-
norm on X such that d = dpd . Therefore, preseminorms and left-invariant
semimetrics are equivalent tools in a group. However, in contrast to the
opinions of several authors, the former ones, being a function of only one
variable, are certainly more convenient tools than the latter ones.

In this respect, it is also worth mentioning that if in particular d is the
postman metric [22] on C , i. e.,

d (x, y) = 0 if x = y and d (x, y) = | x | + |y | if x 6= y .

for any x, y ∈ C , then d is a metric on C such that d ∈ M∧(C) , but
d 6= dpd .
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2 Generalized norms and metrics

Notation 1 In the sequel, we shall assume that X is an additively written
group, and we shall write

N = N (X) = RX and M =M(X) = RX
2

.

Moreover, on the sets N and M we shall consider the usual pointwise
inequality of real-valued functions.

Remark 1 Thus, for instance, N is the space of all functions of X to R .
Moreover, since X2 is also a group, we can note that M(X) = N (X2) .

The members of the families N and M may be considered as certain
generalized norms and metrics on X, respectively. They can be easily con-
nected by the following

Definition 1 For any d ∈M, p ∈ N and x, y ∈ X, we define

pd (x) = d (0, x) and dp (x, y) = p (−x+ y) .

Remark 2 Moreover, for any p ∈ N and d ∈M , we also define

f (p) = dp and g (d) = pd .

Thus, the functions f and g establish a natural connection between N
and M.

By Definition 1, we evidently have the following

Theorem 1 For any p, q ∈ N and d, ρ ∈M,

(1) p ≤ q =⇒ dp ≤ dq , (2) d ≤ ρ =⇒ pd ≤ pρ .

Remark 3 Thus, by Remark 2, for any p, q ∈ N and d, ρ ∈M

(1) p ≤ q =⇒ f(p) ≤ f(q) , (2) d ≤ ρ =⇒ g(d) ≤ g(ρ) .

Therefore, the functions f and g are increasing.

Moreover, by using Definition 1, we can also easily prove the following

Theorem 2 For any p ∈ N , we have

(1) p = pdp , (2) dp = dpdp
.
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Proof. For any x ∈ X, we have

pdp(x) = dp (0, x) = p (−0+ x) = p (x) .

Therefore, dpdp
= p , and thus (1) is true. Assertion (2) follows from (1). �

Remark 4 By Theorem 2 and Remark 2, for any p ∈ N we have

(1) p = g
(
f(p)

)
, (2) f (p) = f

(
g
(
f(p)

))
.

Hence, we at once see that f is injective and g maps the range of f onto
N . Moreover, g ◦ f and f ◦ g are the identity functions of N and f [N ] ,
respectively.

Now, as an immediate consequence of Theorems 1 and 2, we can also state

Theorem 3 For any p ∈ N and d ∈M,

(1) dp ≤ d =⇒ p ≤ pd , (2) p ≤ pd =⇒ dp ≤ dpd .

Proof. To prove (1), note that if dp ≤ d holds, then by Theorem 1 we
also have pdp ≤ pd . Moreover, by Theorem 2, we have pdp = p . Therefore,
p ≤ pd also holds. �

Remark 5 By Theorem 3 and Remark 2, for any p ∈ N and d ∈ M

(1) f (p) ≤ d =⇒ p ≤ g (d) , (2) p ≤ g (d) =⇒ f (p) ≤ f
(
g(d)

)
.

3 Three important subfamilies of M

Because of Theorem 3, we may naturally introduce the following

Definition 2 Define

M∗ =M∗ (X) =
{
d ∈M (X) : d = dpd

}
,

M∧ =M∧ (X) =
{
d ∈M (X) : dpd ≤ d

}
,

M∨ =M∨ (X) =
{
d ∈M (X) : d ≤ dpd

}
.
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Remark 6 Thus, by Remark 2, we have

M∗ =M∗ (X) =
{
d ∈M : d = f

(
g (d)

)
} ,

M∧ =M∧ (X) =
{
d ∈M : f

(
g (d)

)
≤ d
}
,

M∨ =M∨ (X) =
{
d ∈M : d ≤ f

(
g (d)

)
} .

The importance of the family M∧ is already quite obvious from the follo-
wing

Theorem 4 For any d ∈M, the following assertions are equivalent :

(1) d ∈M∧ , (2) p ≤ pd =⇒ dp ≤ d for all p ∈ N .

Proof. If p ∈ N and p ≤ pd , then by Theorem 1 we have dp ≤ dpd .
Moreover, if in particular (1) holds, then by Definition 2 we have dpd ≤ d .
Therefore, if (1) holds, then dp ≤ d , and thus (2) also holds.

Conversely, if (2) holds, the from the trivial inequality pd ≤ pd we can
already infer that dpd ≤ d . Thus, by Definition 2, (1) also holds. �

Remark 7 By Theorem 4 and Remark 2, for any d ∈ M the following
assertions are equivalent :

(1) d ∈M∧ , (2) p ≤ g (d) =⇒ f (p) ≤ d for all p ∈ N .

Now, as an immediate consequence of Theorems 3 and 4, we can also state

Theorem 5 For any p ∈ N and d ∈M∧, we have

dp ≤ d ⇐⇒ p ≤ pd .

Remark 8 Thus, by Remark 2, for any p ∈ N and d ∈M∧ we have

f (p) ≤ d ⇐⇒ p ≤ g (d) .

This shows that the function f and the restriction of g to M∧ form an
increasing Galois connection [19, 21, 24] between the posets N and M∧.

Thus, several consequences of Definition 1 can be immediately derived from
the theory of Galois connections [1, 2, 9, 7, 4] .

However, because of the simplicity of Definition 1, it seems now more con-
venient to apply some direct proofs.
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For instance, by using Definition 2 and Theorem 2, we can easily prove

Theorem 6 For any d ∈M, the following assertions are equivalent :

(1) d ∈M∗ , (2) d = dp for some p ∈ N .

Proof. If (1) holds, then by Definition 2 we have d = dpd . Therefore, (2) also
holds with p = pd .

Moreover, by Theorem 2, we have dp = dpdp
, and thus by Definition 2

dp ∈M∗ for all p ∈ N . Therefore, if (2) holds, then (1) also holds. �

Remark 9 From Theorem 6, by Remark 2, we can see that M∗ = f [N ] .

4 Some further characterizations of M∧ and M∗

In addition to Theorem 4, we can also prove the following

Theorem 7 For any d ∈M, the following assertions are equivalent :

(1) d ∈M∧,

(2) d (0, y) ≤ d ( x, x+ y ) for all x, y ∈ X,

(3) d (0, −x+ y) ≤ d (x, y) for all x, y ∈ X.

Proof. By Definition 2, (1) means only that dpd ≤ d . That is,

dpd (x, y) ≤ d (x, y)

for all x y ∈ X. Hence, by using that

dpd
(x, y) = pd (−x+ y) = d (0, −x+ y )

for all x, y ∈ X, we can see that (1) and (3) are equivalent.

Moreover, if (3) holds, then by writing x+y in place of y , we can see that
(2) also holds. While, if (2) holds, then by writing −x + y in place of y we
can see that (3) also holds. �

Analogously to Theorem 7, we can also prove the following

Theorem 8 For any d ∈M, the following assertions are equivalent :

(1) d ∈M∨,

(2) d ( x, x+ y ) ≤ d (0, y) for all x, y ∈ X,

(3) d (x, y) ≤ d (0, −x+ y) for all x, y ∈ X.
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Now, by using that M∗ =M∧ ∩ M∨ , we can also prove the following

Theorem 9 For any d ∈M, the following assertions are equivalent :

(1) d ∈M∗ ,
(2) d (0, y) = d ( x, x+ y ) for all x, y ∈ X,

(3) d (x, y) = d (0, −x+ y) for all x, y ∈ X,

(4) d (x, y) = d (z+ x, z+ y) for all x, y, z ∈ X,

(5) d (x, y) ≤ d (z+ x, z+ y) for all x, y, z ∈ X,

(6) d ( z+ x, z+ y ) ≤ d ( x, y ) for all x, y, z ∈ X.

Proof. By Theorems 7 and 8, it is clear that (1), (2) and (3) are equivalent.
Moreover, if (4) holds, then by writing −x in place of z we can see that (3)
also holds.

While, if (3) holds, then we have

d ( z+ x, z+ y ) = d
(
0, −(z+ x) + z+ y

)
= d

(
0, −x− z+ z+ y

)
= d (0, −x+ y) = d (x, y)

for all x, y, z ∈ X. Therefore, (4) also holds.

Now, since (4) trivially implies (5) and (6), it remains to show only that
that (5) and (6) also imply (4). For this, note that if for instance (6) holds,
then by writing −z+ x in place of x and −z+ y in place of y, we obtain

d (x, y) ≤ d (−z+ x, −z+ y )

for all x, y, z ∈ X. Hence, by writing −z in place of z , we can see that (5)
also holds. Therefore, we actually have (4). �

Remark 10 The above theorem shows that M∗ is just the family of all
left-invariant members of M .

Moreover, by using Theorem 9, we can also prove the following

Theorem 10 For a symmetric member d of M, the following assertions are
also equivalent :

(1) d ∈M∗ , (2) d (x, 0) = d (z+ x, z) for all x, z ∈ X.
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Proof. If (1) holds, then from (4) in Theorem 9, by taking y = 0 , we can at
once see that (2) also holds even if d is not assumed to be symmetric.

While, if (2) holds, then by using the symmetry of d , we can see that

d (0, y) = d (y, 0) = d ( x+ y, x) = d (x, x+ y)

for all x, y ∈ X. Therefore, by Theorem 9, assertion (1) also holds. �

5 Two illustrating particular metrics

Theorem 11 Suppose that X is a normed space such that

‖u+ v ‖ < ‖u ‖ + ‖ v ‖

for some u, v ∈ X with u+ v 6= 0 . And, for any x, y ∈ X, define

d (x, y) = 0 if x = y and d (x, y) = ‖ x ‖ + ‖y ‖ if x 6= y .

Then, d is a metric on X such that

d ∈M∧(X) \M∨(X).

Proof. To prove the latter statement, note that, for any x, y ∈ X with y 6= 0 ,
we have

d (0, y) = ‖y ‖ = ‖ − x + x+ y ‖ ≤ ‖ x ‖ + ‖ x+ y ‖ = d (x, x+ y) .

Hence, since d (0, 0) ≤ d (x, x) trivially holds, by Theorem 7 we can see that
d ∈M∧(X) .

Moreover, note that for x = −u and y = u+ v we have

d (0, y) = ‖y ‖ = ‖u+ v ‖ < ‖u ‖ + ‖ v ‖ = ‖ x ‖ + ‖ x+y ‖ = d ( x, x+y ) .

Therefore, by Theorem 8, d /∈M∨(X) also holds. �

Remark 11 To be more concrete, note that if for instance X = R2, and
moreover u = (1, 0) and v = (0, 1) , then

u+ v = (1, 1) 6= (0, 0) and ‖u+ v ‖ =
√
2 < 2 = ‖u ‖ + ‖ v ‖ .
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Theorem 12 Suppose that ϕ is an injective function of a group X to a
normed space Y. And, for any x, y ∈ X, define

d (x, y) =
∥∥ϕ(x) −ϕ(y)

∥∥ .
Then, d is a metric on X such that

(1) d ∈M∧(X) if and only if ‖ϕ(y)−ϕ(0)‖ ≤ ‖ϕ (x+y)−ϕ(x) ‖ for
all x, y ∈ X,

(2) d ∈M∨(X) if and only if ‖ϕ (x+y)−ϕ(x)‖ ≤ ‖ϕ(y)−ϕ(0)‖ for
all x, y ∈ X.

Proof. To prove (1), note that by Theorem 7 and the definition of d we have
d ∈M∧(X) if and only if

d (0, y) ≤ d ( x, x+y ) , i. e.,
∥∥ϕ(0)−ϕ(x)

∥∥ ≤ ∥∥ϕ (x)−ϕ(x+y)
∥∥

for all x, y ∈ X. Therefore, (1) is true. �

Now, as an immediate consequence of this theorem, we can also state

Corollary 1 Under the assumptions of Theorem 12, we have d ∈ M∗(X) if
and only if ‖ϕ(x+ y) −ϕ(x) ‖ = ‖ϕ(y) −ϕ (0)‖ for all x, y ∈ X.

Remark 12 Note that in the above results, because of

d (x, y) =
∥∥ϕ(x) −ϕ(y)

∥∥ =
∥∥ϕ(x) −ϕ(0) −

(
ϕ(y) −ϕ(0)

)∥∥ ,
we may assume, without a genuine loss of generality, that ϕ (0) = 0 .

Moreover, by using the notation

∆yϕ (x) = ϕ (x+ y) −ϕ (x)

for all x, y ∈ X, the definition of d and the condition of Corollary 1 can be
reformulated in the forms that

d (x, y) =
∥∥ ∆xϕ(0)−∆yϕ (0)

∥∥ and
∥∥ ∆yϕ (0)

∥∥ = min
x∈X

∥∥ ∆yϕ (x)
∥∥

for all x, y ∈ X.

From Corollary 1, it is clear that in particular we also have
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Corollary 2 If in addition to the assumptions of Theorem 12, the function
ϕ is additive, then d ∈M∗(X) .

Remark 13 In this respect, it is noteworthy that if ϕ is a function of a group
X to a normed space Y such that

‖ϕ (x+ y) −ϕ(x)‖ ≤ ‖ϕ(y)‖

for all x, y ∈ X, then by writing −u in place of x and u + v in place of y
we obtain

‖ϕ (v) −ϕ(−u)‖ ≤ ‖ϕ(u+ v)‖

for all u, v ∈ X.

Therefore, if in particular ϕ is odd, then we have

‖ϕ (u) +ϕ(v)‖ ≤ ‖ϕ(u+ v)‖

for all u, v ∈ X. ( Note that the latter property already implies that ϕ(0) = 0
and ϕ is odd.)

Moreover, if in particular Y is an inner product space, then by a basic
theorem of Maksa and Volkmann [14] , we can state that ϕ is additive. ( For
some closely related results, see [6, 11, 15, 29, 30, 8, 27, 28] .)

Concerning Theorem 12, it is also worth mentioning that Makai [13] proved
that there exists a nowhere continuous additive function ϕ of R to itself such
that ϕ = ϕ−1. ( For a more general result, see Kuzcma [10, p. 293] .)

However, it is now more important to note that, by using Theorem 12, we
can also prove the following

Theorem 13 If ϕ is an injective function of R to a normed space Y such
that

lim
x→−∞ ϕ(x) = α and lim

x→+∞ ϕ(x) = β

with α, β ∈ Y such that ‖α−ϕ(0) ‖ < ‖α− β ‖ , and

d (x, y) =
∥∥ ϕ(x) −ϕ(y)

∥∥
for all x, y ∈ R , then d is a metric on R such that

d /∈M∧(R) ∪ M∨(R) .
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Proof. To prove the latter statement, note that if d ∈ M∧(R) , then by
Theorem 12 we have∥∥ϕ(y) −ϕ(0)

∥∥ ≤ ∥∥ϕ (x+ y) −ϕ(x)
∥∥

for all x, y ∈ R. Hence, by letting x tend to +∞ , we can infer that∥∥ϕ(y) −ϕ (0)
∥∥ ≤ 0 ,

and thus ϕ(y) = ϕ(0) for all y ∈ R. This contradiction proves that d /∈
M∧(R).

While, if d ∈M∨(R) , then by Theorem 12 we have∥∥ϕ (x+ y) −ϕ(x)
∥∥ ≤ ∥∥ϕ(y) −ϕ(0)

∥∥
for all x, y ∈ R. Hence, by letting y tend to −∞ , we can infer that∥∥α−ϕ(x)

∥∥ ≤ ∥∥α−ϕ(0)
∥∥ ,

for all x ∈ R. Hence, by letting x tend to +∞ , we can infer that∥∥α− β
∥∥ ≤ ∥∥α−ϕ(0)

∥∥ .
This contradiction proves that d /∈M∨(R). �

Remark 14 To be more concrete, note that if for instance

ϕ (x) = x/(1+ | x | )

for all x ∈ R , then ϕ is a strictly increasing function of R to itself such that
ϕ(0) = 0 ,

α = lim
x→−∞ ϕ(x) = −1 and β = lim

x→+∞ ϕ(x) = 1 .

Therefore, |α−ϕ(0) | = 1 < 2 = |α− β | .
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Abstract. It is shown that for the question of the title the answer is
yes. We construct a plane in the hyperbolic space which is Euclidean.

Let us use the symbols on the Figure 9. of Bolyai’s Appendix [1] and take a
fourth plane (more precisely a half plane) which intersects the ABNM plane
at an angle of π2 and intersects the APM and the BND half planes.

According to the proof of Bolyai, the half planes APM resp. BND are inter-
secting each other if the angle between the APM and ABNM planes is π

2 and
the angle between BND and ABNM (half) planes is arbitrarily less than π

2 .
Then it follows that the intersection lines of the fourth plane with the APM
and BND half planes, respectively, are also intersecting each other. This means
that in the fourth plane the Euclidean geometry is valid.

To describe the above construction in more detail, let us take a point R on
theAM line and a point Z on the BN line such that the RZ line is perpendicular
to BN.
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Take a plane containing the RZ line, which intersects the ABNM plane at
π
2 angle (δ plane). Take a half plane containing AM intersecting the ABNM
plane at π

2 angle (this will be denoted as AMP plane or β plane), and a half
plane containing BN, which intersects the ABNM plane at an angle less than π

2

(BND plane or α plane). Then, according to Bolyais proof, the two half planes
(α and β half plane) intersect each other and the plane through RZ (δ plane)
intersects the other two, and the intersection lines of δ plane with the β plane
and α plane, respectively, also intersect each other while the α half planes
dihedral angle with the AMBN plane less then π

2 . (As Bolyai has proven, if
the α half plane intersects the ABNM plane at an angle arbitrarily smaller
than π

2 , then the half planes α and β intersect each other.) Then it follows: in
the δ plane the Euclidean geometry seems to be valid. The intersection line of
the α and β half planes does not intersect the ABNM plane, because the AM
and BN lines are parallel.

Let us denote the intersection line of α and β half planes by K. The intersec-
tion lines of δ plane with the α and β half planes, respectively, both intersect
K, because as Bolyai implicitly uses the statement: if there are two parallel
lines in a plane and from one of the two we draw a perpendicular line in the
plane, this latter line will intersect the other line. Also, K is parallel with AM
and BN. If K would intersect AM or BN, then these two latter lines would
also intersect each other.
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Similar results were published recently by Miroslava Antic [2].
A very interesting related paper is published by Zoltán Győrfy [3].
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iif.hu/visontay/ponticulus/rovatok/limes/gyorfi-saccheri.html

Received: April 2, 2017

http://members.iif.hu/visontay/ponticulus/rovatok/limes/gyorfi-saccheri.html
http://dide.ker.sch.gr/emekerkyra/books/Bolyai,J%20Theory%20of%20Space.pdf
http://dide.ker.sch.gr/emekerkyra/books/Bolyai,J%20Theory%20of%20Space.pdf
http://members.iif.hu/visontay/ponticulus/rovatok/limes/gyorfi-saccheri.html


Acta Univ. Sapientiae, Mathematica, 9, 2 (2017) 377–390

DOI: 10.1515/ausm-2017-0029

Uniqueness of polynomial and differential

monomial

Harina P. Waghamore
Department of Mathematics,

Jnanabharathi Campus,
Bangalore University, India

email: harinapw@gmail.com,
harina@bub.ernet.in

V. Husna
Department of Mathematics,

Jnanabharathi Campus,
Bangalore University, India

email: husnav43@gmail.com,
husnav@bub.ernet.in

Abstract. In this paper, we discuss the problem of meromorphic func-
tions sharing small function and present one theorem which extend a
result of K. S. Charak and Banarasi Lal [16].

1 Introduction and main results

In this paper, a meromorphic function always mean a function which is mero-
morphic in the whole complex plane.

Definition 1 Let f(z) and g(z) be nonconstant meromorphic functions, a ∈
C ∪ {∞}. We say that f and g share the value a CM if f − a and g − a have
the same zeros with the same multiplicities.

Definition 2 We denote by Nk)

(
r, 1

(f−a)

)
the counting function for zeros of

f − a with multiplicity ≤ k, and by Nk)

(
r, 1

(f−a)

)
the corresponding one for
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which multiplicity is not counted. Let N(k

(
r, 1

(f−a)

)
be the counting function

for zeros of f−a with multiplicity at least k and N(k

(
r, 1

(f−a)

)
the correspond-

ing one for which multiplicity is not counted. Set

Nk

(
r,

1

f− a

)
= N

(
r,

1

f− a

)
+N(2

(
r,

1

f− a

)
+ . . .+N(k

(
r,

1

f− a

)
.

Definition 3 For two positive integers n, p we define µp = min{n, p} and
µ∗p = p+ 1− µp. Then it is clear that

Np(r, 0; f
n) ≤ µpNµ∗p(r, 0; f).

Definition 4 [17] Let z0 be a zero of f − a of multiplicity p and a zero of
g−a of multiplicity q. We denote by NL(r, a; f) the counting function of those

a-points of f and g where p > q ≥ 1, by N
1)
E (r, a; f) the counting function

of those a-points of f and g where p = q = 1 and by N
(2
E (r, a; f) the count-

ing function of those a-points of f and g where p = q ≥ 2, each point in
these counting functions is counted only once. In the same way we can define

NL(r, a;g), N
1)
E (r, a;g), N

(2
E (r, a;g).

Definition 5 [18] Let k be a non-negative integer or infinity. For a ∈ C ∪
{∞} we denote by Ek(a; f) the set of all a-points of f, where an a-point of
multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a;g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g
with multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k)
if and only if it is an a-point of g with multiplicity n(> k), where m is not
necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,∞) respectively.

With the notion of weighted sharing of values Lahiri-Sarkar [13] improved
the result of Zhang [14]. In [15] Zhang extended the result of Lahiri-Sarkar
[13] and replaced the concept of value sharing by small function sharing.

In 2008, Zhang and Lü [12] obtained the following result.
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Theorem A Let k, n be the positive integers, f be a non-constant meromor-
phic function, and a( 6≡ 0,∞) be a meromorphic function satisfying T(r, a) =
o(T(r, f)) as r→∞. If fn and f(k) share a IM and

(2k+ 6)Θ(∞, f) + 4Θ(0, f) + 2δ2+k(0, f) > 2k+ 12− n,
or fn and f(k) share a CM and

(k+ 3)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > k+ 6− n,
then fn = f(k).

In the same paper, T. Zhang and W. Lü asked the following question:

Question 1 What will happen if fn and (f(k))m share a meromorphic function
a( 6≡ 0,∞) satisfying T(r, a) = o(T(r, f)) as r→∞?

S. S. Bhoosnurmath and Kabbur [3] proved:

Theorem B Let f be a non-constant meromorphic function and a(6≡ 0,∞) be
a meromorphic function satisfying T(r, a) = o(T(r, f)) as r → ∞. Let P[f] be
a non-constant differential polynomial in f. If f and P[f] share a IM and

(2Q+ 6)Θ(∞, f) + (2+ 3d(P))δ(0, f) > 2Q+ 2d(P) + d(P) + 7,

or if f and P[f] share a CM and

3Θ(∞, f) + (d(P) + 1)δ(0, f) > 4,

then f ≡ P[f].

Banerjee and Majumder [2] considered the weighted sharing of fn and (fm)(k)

and proved the following result:

Theorem C Let f be a non-constant meromorphic function, k, n,m ∈ N and
l be a non negative integer. Suppose a( 6≡ 0,∞) be a meromorphic function
satisfying T(r, a) = o(T(r, f)) as r→∞ such that fn and (fm)(k) share (a, l).
If l ≥ 2 and

(k+ 3)Θ(∞, f) + (k+ 4)Θ(0, f) > 2k+ 7− n,
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or l = 1 and(
k+

7

2

)
Θ(∞, f) + (k+ 9

2

)
Θ(0, f) > 2k+ 8− n,

or l = 0 and

(2k+ 6)Θ(∞, f) + (2k+ 7)Θ(0, f) > 4k+ 13− n,

then f ≡ (fm)(k).

In 2015, Kuldeep S. Charak and Banarasi Lal [16] proved the following re-
sult:

Theorem D Let f be a non-constant meromorphic function, n be a positive in-
teger and a( 6≡ 0,∞) be a meromorphic function satisfying T(r, a) = o(T(r, f))
as r→∞. Let P[f] be a non-constant differential polynomial in f. Suppose fn

and P[f] share (a, l) such that any one of the following holds:
(i) when l ≥ 2 and

(Q+ 3)Θ(∞, f) + 2Θ(0, f) + d(P)δ(0, f) > Q+ 5+ 2d(P) − d(P) − n,

(ii) when l = 1 and(
Q+

7

2

)
Θ(∞, f) + 5

2
Θ(0, f) + d(P)δ(0, f) > Q+ 6+ 2d(P) − d(P) − n,

(iii) when l = 0 and

(2Q+ 6)Θ(∞, f) + 4Θ(0, f) + 2d(P)δ(0, f) > 2Q+ 10+ 4d(P) − 2d(P) − n.

Then fn ≡ P[f].

Through the paper we shall assume the following notations. Let

P(ω) = am+nω
m+n + ...+ anω

n + ...+ a0 = an+m

s∏
i=1

(ω−ωpi)
pi

where aj(j = 0, 1, 2, ..., n + m − 1), an+m 6= 0 and ωpi(i = 1, 2, ..., s) are
distinct finite complex numbers and 2 ≤ s ≤ n + m and p1, p2, ..., ps, s ≥
2, n,m and k are all positive integers with

∑s
i=1 pi = n + m. Also let p >

maxp6=pi,i=1,...,r{pi}, r = s− 1, where s and r are two positive integers.
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Let

P(ω1) = an+m

s−1∏
i=1

(ω1 +ωp −ωpi)
pi = bqω

q
1 + bq−1ω

q−1
1 + ...+ b0,

where an+m = bq,ω1 = ω−ωp, q = n+m−p. Therefore, P(ω) = ωp1P(ω1).
Next we assume

P(ω1) = bq

r∏
i=1

(ω1 − αi)
pi ,

where αi = ωpi −ωp, (i = 1, 2, ..., r), be distinct zeros of P(ω1).
In this paper we will prove one theorem which will improve and generalize

Theorem D.

Theorem 1 Let k(≥ 1),n(≥ 1),p(≥ 1) and m(≥ 0) be integers and f and f1 =
f −ωp be two nonconstant meromorphic functions and M[f] be a differential
monomial of degree dM and weight ΓMand k is the highest derivative in M[f].
Let P(z) = am+nz

m+n + ... + anz
n + ... + a0, am+n 6= 0, be a polynomial in

z of degree m+n such that P(f) = f
p
1P(f1). Also let a(z)( 6≡ 0,∞) be a small

function with respect to f. Suppose P(f)−a and M[f] −a share (0, l). If l ≥ 2
and

(3+ 2λ)Θ(∞, f) + µ2δµ∗2(ωp, f) + 2dMδ1+k(0, f) > 2ΓM + 2µ2 + 3− p (1)

or l = 1 and(
7

2
+ 2λ

)
Θ(∞, f) + 1

2
Θ(ωp, f) + µ2δµ∗2(ωp, f) + 2dMδ1+k(0, f) >

2ΓM + µ2 + 4+
(m+ n) − 3p

2

(2)

or l = 0 and

(6+ 3λ)Θ(∞, f) + 2Θ(ωp, f) + µ2δµ∗2(ωp, f) + 3dMδ1+k(0, f)
> 3ΓM + µ2 + 8+ 2(m+ n) − 3p

(3)

then P(f) ≡M[f].

Following example shows that in Theorem 1 a(z) 6≡ 0 is essential.

Example 1 Let us take f(z) = eLz where L 6= 0,±1 and P(f) = f3,M[f] = f(2).
Then P(f) and M[f] share a = 0(or,∞). Here m = 0, p = n = 1,ωp =
0, dM = 1, µ2 = 1, ΓM = 3 and λ = 2. Also Θ(∞; f) = 1 = Θ(0; f) and
δp(0; f) = 1, ∀q ∈ N. Thus we see that the deficiency conditions stated in
Theorem 1 are satisfied but P(f) 6≡M[f].
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The next example shows that the deficiency conditions stated in Theorem
1 are not necessary.

Example 2 Let f(z) = Ccosz+Dsinz, CD 6= 0. Then N(r, f) = S(r, f) and

N(r, 0; f) = N

(
r,
C+ iD

C− iD
; e2iz

)
∼ T(r, f).

Here m = 0, p = n = 1,ωp = 0, dM = 1, µ2 = 1, ΓM = 4k + 1 and λ = 4k.

Again Θ(∞, f) = 1 and Θ(0, f) = δp(0, f) = 0. Let m = 0, hence P(f) = f.
Therefore it is clear that M[f] = f(4k), for k ∈ N and P(f) share a(z) and

the deficiency conditions in Theorem 1 are not satisfied, but P(f) ≡M.

2 Lemmas

Lemma 1 [17] For the differential monomial M[f],

Np(r, 0;M[f]) ≤ dMNp+k(r, 0;g) + λN(r,∞, f) + S(r, f).
Lemma 2 [17] Let F and G share (1, l). Then

NL(r, 1; F) ≤
1

l+ 1
N(r,∞; F) +

1

l+ 1
N(r, 0; F) + S(r, F) if l ≥ 1,

and
NL(r, 1; F) ≤ N(r,∞; F) +N(r, 0; F) + S(r, F) if l = 0.

Lemma 3 Let f be a non-constant meromorphic function and a(z) be a small

function of f. Let us define F = P(f)
a =

f
p
1P(f1)

a and G = M[f]
a . Then FG 6≡ 1.

Proof. On contrary suppose FG ≡ 1 i.e

f
p
1P(f1)M[f] = a2.

From above it is clear that the function f can’t have any zero and poles.
Therefore N(r, 0; f) = S(r, f) = N(r,∞; f). So by the First Fundamental The-
orem and Lemma 1, we have

(m+ n+ dM)T(r, f) = T

(
r,

a2

f
p
1P(f1)f

dM

)
+ S(r, f) ≤ T

(
r,
M[f]

fdM

)
+ S(r, f)

≤ m
(
r,
M[f]

fdM

)
+N

(
r,
M[f]

fdM

)
+ S(r, f)

≤ N
(
r,
M[f]

fdM

)
+ S(r, f)
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Then using Lemma 2 and from above inequality, we get

(m+ n+ dM)T(r, f) ≤ dMN(r, 0; f) + λN(r, f) + S(r, f) ≤ S(r, f),

which is not possible.

Lemma 4 [17] Let f be a non-constant meromorphic function and a(z) be a

small function of f. Let F = P(f)
a =

f
p
1P(f1)

a and G = M[f]
a such that F and G

shares (1,∞). Then one of the following cases holds:
1. T(r) ≤ N2(r, 0; F) + N2(r, 0;G) + N(r,∞; F) + N(r,∞;G) + NL(r,∞; F) +
NL(r,∞;G) + S(r),
2. F ≡ G,
3. FG ≡ 1.
where T(r) = max{T(r, F), T(r,G)} and S(r) = o(T(r)), r ∈ I, I is a set of
infinite linear measure of r ∈ {0,∞}.

3 Proof of the Theorem

Proof.

Let F = P(f)
a =

f
p
1P(f1)

a and G = M[f]
a . Then F − 1 =

f
p
1P(f1)−a

a and G − 1 =
M[f]−a
a . Since P(f) and M[f] share (a, l), it follows that F and G share (1, l),

except the zeros and poles of a(z).
Define

ψ =

(
F ′′

F ′
−

2F ′

F− 1

)
−

(
G ′′

G ′
−

2G ′

G− 1

)
. (4)

We consider the following cases:

Case 1. When ψ 6≡ 0. Then from (4), we have m(r, ψ) = S(r, f).
By the second fundamental theorem of Nevanlinna, we have

T(r, F) + T(r,G) ≤ 2N(r, f) +N

(
r,
1

F

)
+N

(
r,

1

F− 1

)
+N

(
r,
1

G

)
+N

(
r,

1

G− 1

)
−N0

(
r,
1

F ′

)
−N0

(
r,
1

G ′

)
+ S(r, f),

(5)

where N0
(
r, 1F ′

)
denotes the counting function of the zeros of F ′ which are not

the zeros of F(F− 1) and N0
(
r, 1G ′

)
denotes the counting function of the zeros
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of G ′ which are not the zeros of G(G− 1).

Subcase 1.1. When l ≥ 1. Then from (4), we have,

N
1)
E

(
r,

1

F− 1

)
≤ N

(
r,
1

ψ

)
+ S(r, f) ≤ T(r, ψ) + S(r, f) = N(r, ψ) + S(r, f)

≤ N(r, F) +N(2

(
r,
1

F

)
+N(2

(
r,
1

G

)
+NL

(
r,

1

F− 1

)
+NL

(
r,

1

G− 1

)
+N0

(
r,
1

F ′

)
+N0

(
r,
1

G ′

)
+ S(r, f),

and so

N

(
r,

1

F− 1

)
+N

(
r,

1

G− 1

)
= N

1)
E

(
r,

1

F− 1

)
+N

(2
E

(
r,

1

F− 1

)
+NL

(
r,

1

F− 1

)
+NL

(
r,

1

G− 1

)
+N

(
r,

1

G− 1

)
+ S(r, f)

≤ N(r, f) +N(2

(
r,
1

F

)
+N(2

(
r,
1

G

)
+ 2NL

(
r,

1

F− 1

)
+ 2NL

(
r,

1

G− 1

)
+N

(2
E

(
r,

1

F− 1

)
+N

(
r,

1

G− 1

)
+N0

(
r,
1

F ′

)
+N0

(
r,
1

G ′

)
+ S(r, f).

(6)

For l ≥ 2, we have

2NL

(
r,

1

F− 1

)
+ 2NL

(
r,

1

G− 1

)
+N

(2
E

(
r,

1

F− 1

)
+N

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
+ S(r, f).

Thus from (6), we obtain

N

(
r,

1

F− 1

)
+N

(
r,

1

G− 1

)
≤ N(r, f) +N(2

(
r,
1

F

)
+N(2

(
r,
1

G

)
+N

(
r,

1

G− 1

)
+N0

(
r,
1

F ′

)
+N0

(
r,
1

G ′

)
+ S(r, f).

(7)
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Now from Lemma 1, (5) and (7) we obtain

T(r, F) ≤ 3N(r, f) +N

(
r,
1

F

)
+N(2

(
r,
1

F

)
+N

(
r,
1

G

)
+N(2

(
r,
1

G

)
+ S(r, f)

≤ 3N(r, f) + 2N

(
r,
1

F

)
+N

(
r,
1

G

)
+ S(r, f)

≤ 3N(r, f) + µ2Nµ∗2(r,ωp; f) + 2dMN1+k

(
r,
1

f

)
+ 2λN(r, f) + S(r, f)

(n+m)T(r, f) ≤ (3+ 2λ)N(r, f) + µ2Nµ∗2(r,ωp; f) + (m+ n− p)T(r, f)

+2dMN1+k

(
r,
1

f

)
+ S(r, f)

{(3+ 2λ)Θ(∞, f) + µ2δµ∗2(r,ωp; f) + 2dMδ1+k(0, f)}T(r, f)
≤ (3+ 2λ+ 2µ1 +m+ n− 2p+ 2dM)T(r, f) + S(r, f).

{(3+ 2λ)Θ(∞, f) + µ2δµ∗2(0, f) + 2dMδ1+k(0, f) − ε}T(r, f)
≤ (2ΓM + 3+ 2λ+ 2µ2 − p)T(r, f) + S(r, f).

which violates (1).
Next, consider the case when l = 1.
First note that

NL(r,
1

F− 1
) ≤ 1

2
N(r,

1

F ′
|F 6= 0) ≤ 1

2
N(r, F) +

1

2
N(r,

1

F
), (8)

when N
(
r, 1F ′ |F 6= 0

)
denotes the zeros of F ′, that are not the zeros of F.

From (4) and (8), we have

2NL

(
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1

F− 1

)
+ 2NL

(
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1

F− 1

)
+N

(2
E

(
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1

F− 1

)
+N

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
+NL

(
r,

1

F− 1

)
+ S(r, f)

≤ N
(
r,

1

G− 1

)
+
1

2
N(r, F) +

1

2
N

(
r,
1

F

)
+ S(r, f)

(9)



386 H. P. Waghamore, V. Husna

Thus, from (5) and (9) , we have

N

(
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1

F− 1

)
+N

(
r,

1

G− 1

)
≤ N(r, f) +N(2

(
r,
1

F

)
+N(2

(
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1

G
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1

2
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1
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N

(
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1

F

)
+ T(r,G) +N0

(
r,
1

F ′

)
+N0

(
r,
1

G ′

)
+ S(r, f).

(10)

From Lemma 1, (5) and (10) we obtain

T(r, F) ≤ 3N(r, F) +N

(
r,
1

F

)
+N(2

(
r,
1

F

)
+N

(
r,
1

G

)
+N(2

(
r,
1
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1

2
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1

2
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(
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F
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+ S(r, f)

≤ 7
2
N(r, f) + 2N

(
r,
1

F

)
+ 2N

(
r,
1

G

)
+
1

2
N

(
r,
1

F

)
+ S(r, f)

≤ 7
2
N(r, f) + µ2Nµ∗2(r,ωp; f) + (m+ n− p)T(r, f) + 2dMN1+k

(
r,
1

f

)
+ 2λN(r, f) +

1

2
{N(r,ωp; f) + (m+ n− p)T(r, f) + S(r, f)}

(m+ n)T(r, f) ≤
(
7

2
+ 2λ

)
(1−Θ(∞, f)) + µ2(1− δµ∗2(ωp, f)) + 3

2
(m+ n− p)

+ 2dM(1− δ1+k(0, f)) +
1

2
(1−Θ(ωp, f)) + S(r, f).{(

7

2
+ 2λ

)
Θ(∞, f) + µ2δµ∗2(ωp, f)) + 2dMδ1+k(0, f) + 1

2
Θ(ωp; f)

}
≤

(
7

2
+ 2λ+ µ2 +

3

2
(m+ n− p) + 2dM +

1

2
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T(r, f) + S(r, f)

≤ (2ΓM + 4+ µ2 +
1

2
m+

1

2
n−

3

2
p)T(r, f) + S(r, f)

which violates (2).

Subcase 1.2. When l = 0. Then, we have

N
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N
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(
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and also from (4), we have

N
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)
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(
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)
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(
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1

G− 1

)
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(
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1

G− 1

)
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≤ N1)E

(
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1

F− 1

)
+NL

(
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1

F− 1

)
+N

(
r,

1

G− 1

)
+ S(r, f)

≤ N(r, F) +N(2

(
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1

F

)
+N(2

(
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1

G

)
+ 2NL

(
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1

F− 1

)
+NL

(
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1
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)
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(
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1

G− 1

)
+N0

(
r,
1

F ′

)
+N0

(
r,
1

G ′

)
+ S(r, f)

(11)

From Lemma 2, (5) and (9), we obtain

T(r, F) ≤ 3N(r, F) +N

(
r,
1

F

)
+N(2

(
r,
1

F

)
+N

(
r,
1

G

)
+N(2

(
r,
1

G

)
+ 2NL

(
r,

1

F− 1

)
+NL

(
r,

1

G− 1

)
+ S(r, f)

≤ 6N(r, f) + µ2Nµ∗2(r, 0; f) + (m+ n− p)T(r, f) + 3(dMN1+k(r, 0; f)

+ λN(r, f)) + 2{N(r,ωp; f) + (m+ n− p)T(r, f)}+ S(r, f)

(m+ n)T(r, f) ≤ (6+ 3λ)(1−Θ(∞, f)) + µ2(1− δµ∗2(r, f)) + 3(m+ n− p)

+ 3dM(1− δ1+k(0, f)) + 2(1−Θ(ωp, f)) + S(r, f).

{(6+ 3λ)Θ(∞, f) + µ2δµ∗2(r, f) + 3dMδ1+k(0, f) + 2Θ(ωp, f) − ε}T(r, f)
≤ (6+ 3λ+ µ2 + 3m+ 3n− 3p+ 3dM + 2−m− n)T(r, f) + S(r, f)

≤ (3ΓM + µ2 + 2m+ 2n− 3p+ 8− ε)T(r, f) + S(r, f)

which violates (3).

Case 2. Let H ≡ 0.
On Integration we get

1

G− 1
≡ A

F− 1
+ B,

where A( 6= 0), B are complex constants.
It is clear that F and G share (1,∞). Also by construction of F and G we see
that F and G share (∞, 0) also.
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So using Lemma 1 and condition (2), we obtain

N2(r, 0; F) +N2(r, 0;G) +N(r,∞; F) +N(r,∞;G) +NL(r,∞; F)

+NL(r,∞;G) + S(r) ≤ 2N(r, 0; F) + 2N(r, 0;G) + 3N(r,∞; f) + S(r)

≤ 2(N(r,ωp; f) + (m+ n− p)T(r, f)) + 2(dMN1+k

(
r,
1

f

)
+ λN(r, f))

+ 3N(r, f) + S(r) ≤ 2(1−Θ(ωp, f)) + 2dM(1− δ1+k(0, f))

+ (3+ 2λ)(1−Θ(∞, f)) + S(r) + (m+ n− p)T(r, f)

≤ (3+ 2λ+ 2dM + 2+m+ n− p) − (3+ 2λ+ 2dM + 2− p)T(r, f) + S(r)

≤ (m+ n)T(r, f) + S(r) < T(r, F) + S(r).

(12)

Hence inequality (1) of Lemma 4 does not hold. Again in view of Lemma 3,
we get FG 6≡ 1. Therefore F ≡ G i.e., P(f) ≡M[f]. �
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János TÓTH (Selye University, Slovakia)
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Alexandru HORVÁTH (Petru Maior University of Tg. Mureş, Romania)
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