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Abstract. We consider the paracomplex version of the notion of mixed
linear spaces introduced by M. Jurchescu in [4] by replacing the complex
unit i with the paracomplex unit j, j2 = 1. The linear algebra of these
spaces is studied with a special view towards their morphisms.

Introduction

It is well-known that up to isomorphisms there are three 2-dimensional real
algebras: C = R[X]/(x* + 1), A = R[X]/(x* — 1), D = R[X]/(x?). The theory
of the first algebra is richer than the other two, a fact corresponding to the
field property of C. Similar to the complex case, the paracomplex algebra A
has the basis {1,j} with j2 = 1; therefore the elements of A are z = x +jy with
x and y real numbers. For historical details about the paracomplex algebra
please see the survey [3].

Similar to the linear complex geometry there exists a paracomplex version
as follows: let V be a real linear space. A paracomplex structure on V is an
involution J : V. — V, J* = 1y, such that the eigenspaces Vi := ker(1y £ J)
have the same dimension. The pair (V,]) is then called a paracomplex linear
space. If the hypothesis regarding the eigenspaces is dropped then we obtain
the notion of almost paracomplex structure. An A-linear map between the
(almost) paracomplex linear spaces (V,]) and (V',]') isalinearmap T: V — V/
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276 M. Crasmareanu

satisfying To] = J' o T. Just like complex vector spaces are vector spaces over
the field C, the almost paracomplex linear spaces are free modules over A.

In a series of papers ([4]-[6]) M. Jurchescu defined and uses the notions of
mized linear space and mized manifold having as (local) model the direct prod-
uct R™ x C". The mixed manifolds as differentiable families of complex spaces
are useful at the cross-road of complex analysis and complex geometry, for
example regarding the smoothly parameterized Cech cohomology of complex
manifolds, [1]. Here, following his ideas and restricted at the linear level we
define the concept of para-mized linear space by replacing C with A. A lot of
properties of algebraic nature are similar to these frameworks and we hope to
use further the notions considered now.

The paper is structured in two sections. The first one is devoted to the
general theory of para-mixed linear spaces including the adapted linear maps
between them and also their subspaces. A special attention is dedicated to the
finite-dimensional case. The second section treats special morphisms between
para-mixed linear spaces and the notion of paracomplexification of such spaces.

1 Para-mixed linear spaces and subspaces

Definition 1 A (almost) para-mized linear space is a triple (E,Ep, P) where
E is a real linear space and B, is a linear subspace of E endowed with an
(almost) paracomplex structure P. Then E, is called the paracomplex part of
E while the quotient real linear space B, = E/E, is the real part of E. The
para-mized space is pure real if Ey, = 0 (i.e. E; = E) and pure paracomplex if
E. =0 (i.e. B, = E). In the following we place always in the “almost” case
and for simplicity we will drop this epithet.

Example 1 i) The fundamental example is E = Ef = R™ x A™ with E, = A"
and B, = R™. Hence, a para-mized linear space can be thought as a (trivial)
vector bundle over E. with paracomplez fibres £y ; also, para-mized linear spaces
can be though as linear families of paracomplex spaces. Let us point out that
vertical bundles endowed with paracomplex structures are recently studied in [2]
and the geometry of polynomial sub-endomorphisms on a pair of distributions
for a given manifold are studied in [7].

ii) The paracomplex linear spaces will be considered as pure paracomplexr
para-mized linear spaces while the real linear spaces will be considered as pure
real para-mized linear spaces. A para-mized linear space E is simultaneous pure
real and pure paracomplez if and only if E = {0}.
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Definition 2 A linear map T € Lg(E,F) := L(E,F) between two para-mized
linear spaces is called a morphism if T(Ep) C F, and the induced map T, =
Tle, : Ep — Fp is an A-linear map. T is called an antimorphism if T(E,) C Fp
and Ty is an A-antilinear map: T(x +jy) = Tx —jTy. T, is the paracomplex
part of T while T, = Tlg, : Ex — Fr is the real part of T. Denotes by Hom(E, F)
the set of all morphisms from E to F and T € Hom(E, F) is called isomorphism
if both T, and T, are bijective maps.

Remark 1 i) If E is a pure real para-mized linear space and T € L(E,F) then
T is both morphism and antimorphism. If F is a pure real para-mixed linear
space and T € L(E,F) then T is a morphism if and only if T, = 0. IfE is a
general para-mized linear space then (1g,,P) € Hom(E,E) by considering the
decomposition E = E, ® Ep, (see also the Corollary 1 below).

ii) The class of para-mized linear spaces with their morphisms defines a
category which contains the category of real linear spaces as well as the category
of paracomplez linear spaces. The consideration of the paracomplex part (for
spaces and morphisms) is a functor from the category of para-mized linear
spaces to the category of paracomplex linear spaces and similar for the consi-
deration of the real part (for spaces and morphisms).

iii) Fix B and F two para-mized linear spaces and Ty, T, € L(E,F) two
(anti)morphisms. Consider also two real numbers «, (3. It follows that xT1+RT,
is also an (anti)morphism with («Ty + BT2)i = («Tq)i + (BT2)i for i€ {p,r}.

iv) The linear map (x,y) € R2 — z = x +jy € A is a bijective morphism
which is not an isomorphism.

v) Hom(E, F) is a para-mized linear space with the paracomplex part
Hom(E,F), ={T € Hom(E, F); T, = 0} and real part Hom(E, F), = Hom(E, F;)
~ Hom(E,, F;). The corresponding paracomplex structure is the map
T € Hom(E,F) — To (1¢,,P) € Hom(E,F).

vi) Fiz T € Hom(E,F) and let H be another para-mized linear space. Let
T, : Hom(H,E) — Hom(H,F) be the composition with T at left and T* :
Hom(F,H) — Hom(E, H) be the composition with T at right. Then T, and T*
are morphisms with respect to the para-mized structure from v).

A first structural result is provided by:

Proposition 1 In the category of para-mized linear spaces a given para-mized
linear space E is isomorphic with the direct product E, X Ey.

Proof. We have the canonical maps: i: E, — E and 7t: E — E;. There exists
the maps q: E — Ep and p: E; — E such that: qoi=1g ,ioq+pomr=1T¢. It
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follows that these maps i, 7, q, p are morphisms of para-mixed linear spaces
and (p,1) : E; x E, — E is an isomorphism. d
It follows directly:

Corollary 1 Let B = E, xEp and F = F; x Fy, be para-mized linear spaces and
T e L(E,F). Then T € Hom(E, F) if and only if it has the expression:

(L 0
T= < [0 6 T] > (1)
where Ty : By — Fp is a A-linear map while T; : By — Fr and «: &y — Fp are

real linear maps. In this decomposition, T is the paracomplex part of T and T,
is the real part of T.

A characterization of isomorphisms is provided by:

Proposition 2 Let E, F and T as above. Then the following statements are
equivalent:

i) T is an isomorphism,

i) T, Ty and T, are all bijective,

iii) two of the maps T, Ty and T, are bijective.

A special study can be performed in finite-dimension:

Definition 3 Let E be a para-mixed linear space and m,n € N. We say that
E is of (m,n)-type if E; is a real linear space of dimension m and E, is a
paracomplex space of dimension n. A frame on E is a set of vectors B =
{e1, sy €my €mt1y ooy €min) With {€m41y ..oy €mint @ basis in By and {[e1], ..., [em]}
a basis in E, where [e] is the class of e € E considered in E,.

A characterization of this notion is:

Proposition 3 Fiz E a para-mized linear space of (m,n)-type and
B ={e1,...,emin} C E with {emi1, ..., emsn} C Ep. Then B is a frame on E if
and only if the map:

T:(x'y ey x™M) e Ef=R™ x A" 5 x =x'e; € E (2)
belongs to Hom(E¢ E).

Definition 4 Let E be para-mized linear space and W a subspace of E. Then
W is called para-mized subspace of & if WNE, is a paracomplex subspace of
Ep, which means that x € W N Ey, implies jx € Ey.
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A para-mixed subspace W will be considered itself as a para-mixed linear
space with W, = W N E. Hence, the inclusion map i: W — E is a morphism
with i, and 1i; injective maps.

Example 2 i) For T € Hom(E,F) the kernel ker T = T~1(0f) is a para-mized
subspace of E.

i) The intersection of an arbitrary family of para-mized subspaces is again
a para-mized subspace.

iii) Let E be a pure real para-mized linear space and W C E a (real) subspace.
Then W is a para-mized subspace. A similar property holds for the paracomplex
case.

2 Monomorphisms and epimorphisms

Definition 5 Let T € Hom(E, F).
i) T is called monomorphism if there exists a para-mized linear space G and
R € Hom(G, F) such that the map (T,R) : E x G — F is an isomorphism.

ii) T is called epimorphism if there exists a para-mized linear space G and
R € Hom(E, G) such that the map (R,T): E — F x G is an isomorphism.

A characterization of these types of morphisms is given by:

Proposition 4 Let T € Hom(E, F) be given.
I) The following statements are equivalent:

a) T is a monomorphism,

b) T and T, are injective maps,

c) T, and T, are injective maps,

d) T have an inverse morphism at left.
IT) Also, the following statements are equivalent:

e) T is an epimorphism,

f) T and T, are surjective maps,

g) Ty and T, are surjective maps,

h) T have an inverse morphism at right.

Proof. a)=b). From hypothesis the maps (T,R) and (T,R), : E; x Gy — F; is
bijective and then T, T, are injective. b)=-c). It is obvious.

c)=d). Consider the decomposition (1) of T. Since T;, is injective it follows the
existence of R; an A-linear map which is inverse at left. Similar, from T, being
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injective it result the existence of R; a R-linear map which is inverse at left.
The map R: F — E given by:

R, 0
R =
< —RpaR: Ry )

is a morphism from F to E with Ro T = Idg.

d)=a). Let R : F — E be the inverse at left of T and consider G = kerR
together with the inclusion 1: G — F. From Ro (1 — T o R) = 0 it results the
existence of w € Hom(F, G) such that ToR+1iow = 1. Then woi = 1g and
woT =0.Let A= (T,1i): Ex G — Fand B = (Ryw) : F —» E x G. With the
equations above it follows that A and B are isomorphisms with B = A",
The equivalences from II are analogous. ([l

Corollary 2 Fiz T € Hom(E,F). Then T is a monomorphism if and only if
T(E) is a para-mized subspace of F and the induced map T' : E — T(E) is an
isomorphism. Also, T is an epimorphism if and only if the co-induced map
T :E/ker T — F is an isomorphism.

Proof. Suppose that T is a monomorphism. Since T, is injective it results
that T(E) N F, = T,(E,) and so, T(E) is a para-mixed subspace in F. It fol-
lows also that T" € Hom(E, T(E)) and its paracomplex part T]; is surjective.
From T=injective we get that T" and T, are bijective maps and then T’ is an
isomorphism. Similar arguments hold for the second part. O

Let us remark that an injective T € Hom(E, F) is not a-priori a monomor-
phism and the example is provided by the inclusion R — A. In order to include
this class we consider:

Definition 6 T € Hom(E,F) is called cartesian monomorphism if it is injec-
tive and for every para-mized linear space G and every map « : G — E we
have that T o & is a morphism if and only if « is a morphism.

This notion is useful for another concept:
Definition 7 A paracomplexification of the para-mized linear space E is a pair
(EP, p) with EP a paracomplex linear space and p € Hom(E, EP) injective and

satisfying p(E) +jp(E) = EP and p(E) Njp(E) = p(Ey).

A characterization of this notion is given by:
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Theorem 1 i) Every para-mized linear space E have a paracomplezification.
ii) The morphism p is a cartesian monomorphism.
iii) A pair (EP,p) is a paracomplezification of E if and only if EP is a para-
complex linear space and the map p* : Hom(EP,F) — Hom(E,F) given in
Remark 1(vi) is bijective for any paracomplez linear space F.

Proof. i) Let E = E, x E; the canonical decomposition of E and consider the
space:
EP = (E, ®r A) x Ey.

It results that EP is a paracomplex linear space. One define the map p : E — EP
by p(x2,x1) = (x2®1,x1) and a straightforward computation gives that (EP, p)
is a paracomplexification of E.
ii) Let G be a para-mixed linear space and « : G — E such that po « €
Hom(G, EP). Fix z € Gy; then:

poa(z) =j(poa)(jz) € p(E) Njp(E) = p(Ep)

and the injectivity of p yields that o(z) € Ep. Also, po «(jz) =j(po «(z)) =
p(ja(z)) and again the injectivity of p gives a(jz) = jo(z). These facts together
with the R-linearity means that « € Hom(G, E).

iii) Fix (EP, p) a paracomplexification of E, F a paracomplex linear space and
u € Hom(E,F). Define then v: EP — F:

vip(x) +ie(y)) ==ulx) +july)

for all x,y € E. Since p(x) +jp(y) = p(x') +jp(y’) if and only if y —y € E,
and x —x’ = j(y’ —y) it results that v is well defined. It follows that v is a
A-linear map and v o p = u. We get also the uniqueness of v with these two
properties. O

Example 3 i) Let E be a real linear space endowed with the paracomplex struc-
ture J. Consider then EP = (E,]J) ® (E,—]) and the diagonal map p : E — EP.
Then (EP, p) is a paracomplezification of E. Indeed, every vector (eq,ez) € EP
has a decomposition (er,ez) = (x + Jy,x — Jy) with x,y € E. More precisely,
x = 1(e1+e) andy = 1(Jer — Jez).

Let now F be a paracomplex linear space and u: E — F a R-linear map. The
unique A-linear map v : EP — F satisfying vop =u is:

1

vien,e2) = 3 (uler) —juler) + 3 (ules) + juea)).
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ii) Let E, F be para-mized linear spaces and fix p : F — FP a paracomplez-
ification of F. Then p, : Hom(E,F) — Hom(E,FP) given in Remark 1(vi)
is a cartesian monomorphism. In general, (Hom(E,FP),p.) is not a para-
complezification of Hom(E, F) since Hom(E, FP) is a paracomplex linear space
satisfying p«(Hom(E,FP)) Njp.(Hom(E,FP)) but generally it do not satisfies
p«(Hom(E, FP)) +jp.(Hom(E, FP)) = (p.(Hom(E, FP)))P.
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Abstract. In this paper we give the best form of a strongly starlikeness
condition. Some consequences of this result are deduced. The basic tool
of the research is the method of differential subordinations.

1 Introduction

Let U={z € C:|z|] < 1} be the open unit disk in the complex plane. Let A be
the class of analytic functions f, which are defined on the unit disk U and have
the properties f(0) = f’(0) — 1 = 0. The subclass of A, consisting of functions
for which the domain f(U) is starlike with respect to 0 is denoted by S*. An
analytic characterization of S* is given by

zf'(z)
f(z)

In connection with the starlike functions has been introduced the following

zf'(z)
f(z)

2010 Mathematics Subject Classification: 11A25
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S*:{fGA:Re >0,Z€U}.

class

SS* () = {f cA: 'arg 3

<oc1[, x € (0,1], ZEU},
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which is the class of strongly starlike functions of order «.
Another subclass of A we deal with is the following

zf"(z)
f'(z)
zf'(z)
f(z)

1+

Gp=<feA: —1l<b, zeU,, (1)

where b > 0.
The authors of [3] proved the following result:

Theorem 1 If the function f belongs to the class Gyp) with

B
VO —B)-B(1 + p)+E’

where 0 < B <1, then f € SS*(B).

b(p) =

Let —1 < B < A < 1. The class S*(A, B) is defined by the equality

. B zf'(z) T+ Az
S(A,B)_{feA. f2) <1+BZ,ZEU}

An other result regarding the class G, is the following theorem published in
[4].

Theorem 2 Assume that —1 < B < A < 1 and b(1 + |A])*> < |A —B|. If
f € Gy, then f € S*(A,B).

The aim of this paper is to prove the sharp version of Theorem 1, and an
improvement of Theorem 2.
In our work we need the following results.

2 Preliminaries

Let f and g be analytic functions in U. The function f is said to be subordinate
to g, written f < g, if there is a function w analytic in U, with w(0) = 0,
w(z)| < 1, z € U and f(z) = g(w(z)), z € U. Recall that if g is univalent,
then f < g if and only if f(0) = g(0) and f(U) C g(U).
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Lemma 1 [1] Let p(z) = a+ Y axz® be analytic in U with p(z) # a, n > 1
k=n
and let q : U — C be an analytic and univalent function with q(0) = a. If p is

not subordinate to q, then there are two points zg € U, |zo| =19 and (o € 0U
and a real number m € [n, 00), so that q is defined in Cy, p(U(0,10)) C q(U),
and:

(i) plzo) = q(Co),

(ii) zop’(z0) = moq’ (o),

zop” (20 ¢oq” (¢o)
(iii) Re (1 += ) ) > mRe (1 T =) >

We note that zop’(zo) is the outward normal to the curve p(0U(0,719)) at the
point p(zo), while dU(0,19) denotes the border of the disc U(0, o).

A basic result we need in our research is the following:

f/
Lemma 2 Iffe€ A b e [0,1), and p(z) = Zf(g), then the inequality
zp'(z)
P b, zeU, P
‘PZ(Z) @)
implies that
(@) < —
PE= T
The result is sharp.
1
Proof. If the subordination p(z) < q(z) = T2 does not holds, then there

are two points zg € U, |zo] = 19 < 1 and {y € 90U and a real number m € [1, c0),
so that q is defined in (y, p(U(0,19)) C q(U), and:

1
p(z0) = q(Co) = 5 bl
b
zop’(z0) = m&oq’(Go) = m(]—IC)OCO)Z'
Thus we get
zop’ (o)

= mb{,. 3
plzo) o ®)

Since [mb{(p| > b, it follows that the equality (3) contradicts (2), and the proof
is done. O
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3 Main results
The following theorem is the sharp version of Theorem 1.

Theorem 3 If o € (0,1), and f € Gy (), where b(x) = sin (oc%), then f €
SS*(a). The result is sharp.

/
Proof. If we denote p(z) = ZQ(S), then the condition f € Gy(4) becomes
zp'(z) ‘
b U 4
and according to Lemma 2 we get
(2) < qlz) =——
P = =7= b(x)z’

The domain D = q(U) is symmetric with respect to the real axis and the
boundary of D is the curve

o 1 o 1—b(«) cos 6
= { X(e) = e T—b(a)et® " 1+b?(o)—2b(x) cos 6’

. 0 € [—m,m.
B 1 . b(o)sin @ )
U(e) =Im 1-b(x)et® — T+bZ(x)—2b(ct) cosO?

The subordination p(z) < q(z) implies that [arg(p(z))| < arctan(M), where
M is the slope of the tangent line to the curve I' trough the origin.
The equation of the tangent line is

x—x(8) _ y—y(®)

x'(8)  y’(8)
This tangent line crosses the origin if and only if
x(8) _ y(o)

and this equation is equivalent to
2b(a) cos? B — (3b%(x) 4+ 1) cos 0 + b(e) (b () + 1) = 0.
After a short calculation we get cos® = b(«) and this implies

M — y’(0) _ y(0) b(a)sin®@ b(a)

x/'(8)  x(0) 1 —b(x)cos® /] be(o().
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Finally if we put b() = sin <oc§>, then it follows that |arg(p(z))]
b(x)
1-b2 (o)

Thus we have proved the implication

< arctan(M) = arctan =uof, z€U.

!
‘prz((zl)) ‘ < sin <oc§) = |arg(p(z))| < arctan(M) = a%‘)
and the proof is done. .

Putting &« = 1 in Theorem 3, we get the following starlikeness condition, which
is the sharp version of Corollary 1 from [3].

Corollary 1 Iff € A and

then f € §*.
1
For o« = 7 We get the sharp version of Corollary 2 from [3].

Corollary 2 If f € A and

- zf"(z)

#l(z) —1i < Q) z e [U’
zf'(z2) 2
f(z)

1
then f € S§* | 5 |.
ente <2>

Theorem 4 If f € Gy and b(1+ A —B +|B|) < A — B, then f € S*(A, B).

Proof. Let q,h: U — C be the functions defined by

1 14+ Az
- 1—bz’ h(z) = 1+Bz

q(z)

< ((z) which is equivalent to

p(U) C q(U). (5)
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We will prove that q(U) C h(U). A simple calculation shows that the domains
q(U) and h(U) are convex.
The border of the domain q(U) is the curve

I: q(eie) = W, 0 e [0,27'[],
and the border of h(U) is the curve
. 1+ Aeln
A h(em) = m, ne [0,27'@

The inequality b(1 + A — B +|B|) < A — B is equivalent to % < Agg.
This inequality implies

—_

- b b A—B A—B .
i0 1
—1|= _ < < — = [h(e™) —1].
a(e™) =11 = e < 7=% <7578 = T+ Bem M)
Thus we get
Iq(e®) — 1| < |h(eM) — 1|, for every 8,7 € [0, 2. (6)

Since 1 € q(U) and 1 € h(U), the inequality (6) implies that the curve T is
inside the curve A.
This means that
q(U) C h(U). (7)
For example if we consider
q(z) = 1 _ 14+0.3z
1—0.6z 1—0.5z
and the inequality b(1 + A — B 4+ |B|) < A — B is satisfied for b = 0.6, A = 0.3
and B = —0.5 then we obtain the following graphics:

and h(z)

wof ol
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which shows that q(U) C h(U). For b = 0.7, A = 0.3 and B = —0.5 the
inequality b(1 + A — B 4+ |B|) < A — B is not satisfied and consequently we
obtain the following image:

LN

!
0o

Y
-0

L L L L L L I
06 08 10 12 14 16 18 20

which shows that q(U) ¢ h(U). Finally (5) and (7) implies p(U) C h(U) and

. . . zf!(z)
since h is univalent we infer ) =7p(z) < h(z), zeU.
This subordination is equivalent to f € S*(A, B). O

If 0 < B < A <1, then we get the following corollary, which improvs the result
of Theorem 2.

Corollary 3 Let 0 < B <A <1 andb € (0,+00) such that b(1+A) < 1+B.
If f € Gy, then f € S*(A,B).
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Abstract. In this paper we analyze the monotony of the function

m, for T > 0. Such functions have been used from different

authors to obtain inequalities concerning the gamma function.

1 Introduction

In [8] the author proved the following double inequality:

X2+ 1 x*+2
<T N< —— 0, 1]. 1
In [12] the authors improved this inequality proving that
2 2(1—y) 2 Y
X"+ 1 x° 41
<T 1< 1]. 2
(H]) _(x+)_<x+]>,xe[0m (2)
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Other improvements of (1) can be found in [9], [10] and [11]. The inequality
(2) is equivalent to

InT(x+1)
In(x2+1) —In(x+ 1)

2(1—vy) > >v, x€(0,1).
The authors of [12] proved inequality (2) using the monotony of the function

‘ _ InT(x+1)
g:(0,00) = R, g(x) = In(x2+1)—In(x+1)°

In connection with this function they formulated the following conjecture:
if T > 0, then the mapping u; : (0,00) — R defined by

InT(x)
We(x) = { WDk X # 1 @
_(1 +T)Y) x =1

is strictly increasing. This conjecture was confirmed for T € (0,1) in [6]. We
found a counterexample regarding this conjecture: if T = 1000, then

InT(11) In 3628800 In 24° In24 InT(5)
ue(11) = In 112 - In 12 <lnM: I 3
011 011 01 1y (%)5 lnG(])ﬂ)S
InT(5
nld) o s).

1025
ln <W)
Numerical results suggest that there is a value t9 € (212,213) such that if

T € (0, 7o) then u, is strictly increasing. We will prove a partial result regarding
this question.

Theorem 1 The function w, is strictly increasing on the interval (0,00) for
allty 0 <t < 25.

2 Preliminaries

In order to prove our main results we need the following lemmas.

Lemma 1 [3] Let h,k : [a,b] — R be two continuous functions which are
differentiable on (a,b). Further let kK'(x) # 0, x € (a,b). If W/ /K’ is strictly
increasing (resp. decreasing) on (a,b), then the functions
h(x) — _

(x) —h(a) N h(x) —h(b)
k(x) —k(a) k(x) —k(b)

are also strictly increasing (resp. decreasing) on (a,b).

X
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Lemma 2 If t > 1, then the function u, : (0,00) — R defined by
InT'(x)
w(x) = | W X7
_(] + T)’Y) x =1

is strictly increasing on the interval (0,x1), where X1 is the positive root of the
equation x* + 2tx — T = 0.

Proof. According to [4] we have P (x) = rr’((xx)) = —% — Y+ o, m It is
. . 2
easily seen that % > X1 = T+\/:‘27+T > zlL If x € (0,%1), then (;f:i)x(xfm > 0,
% +v—3 2 m > 0, I'(x) > 1, and this implies
1,y E x In XHT 4 T—21x—%2 InT(x)
, xTY o n(n+x) X241t T (X2 41)(x+7)
ur(x) = — 3 > 0.
In® (355)
Thus u, is strictly increasing on the interval (0, x1). O

Lemma 3 The unique positive root of the equation \P(x) = —%—Y—i— y Ao =
0isxy=14616.... If T > 1, then the function

: 00
x

X 7’Y+1§1 m+x)n

v:(x1,00) = R, v(x) = Ix _] ) (4>

x24T X+T

is strictly increasing on the interval (x1,x2), where x1 is defined in Lemma 2.

Proof. We have v/(x) = %, where

(=)
T & 1 2x 1
AlX) = <x2+; (n—l—x)Z) <X2+T_X+T>

1 > X —2x% 421 1
+ <x+y_nz_]n(n+x)>< (x2 +1)2 * (x—I—T)Z)'

Since ]g < x1, and the following inequalities hold

(5)

T & 1 T v & 1 1
— - > __ 4t S0 —
x2+Z(n+x)2>x2+x ;n(n+x)> ’XG(S’Xz)’

2x 1 x24+2tx—7

— = >0, xE€(x1,x
x24T x4T (X-I—T)(Xz—i-’t) ) (1) 2))

and
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it follows that

I 1 2x 1
Ale) > (xz+x_;n(n—|—x)><x2+’c_x—l—’t)

T v & 1 —2x3 + 21x X
+ <x2+x_zn(n+x)>< (x2 +1)2 + (X+T)2>

1 > 1 23 +2 —2x3 42
_ *JFX_Z xz—l— T;(_ X+T2+ >§+'2cx+ X .
X n( (x* + 1) (x +1) (x* + 1) (x+ 1)

(1 .y e 1 4tx T
B <xz+x_zn(n—|—x)) ((X2+T)2 B (x+1)2>

(T oy & 1 x3(4 —x) + 6T+ (4x —1)
_T<7<2+X_ZTL(TL+X)>< (x2 +1)2(x + 1)? )

>0, x € (x1,%x2

— 3

and we get v/(x) >0, x € (x1,x2). Thus v is a strictly increasing function on
the interval (x1,x2). O

Lemma 4 Suppose T > 1. The equation Pp(x) =
root x3 = 2.2324.... The function v : (x7,00) —
increasing on the interval (x2,x3).

P'(x) has a unique positive
R defined by (4) is strictly

Proof. We will prove this lemma in two steps. We have x; < %

In the first step we discuss the case (x3, %).

According to the mean value theorem for every x € (xz,%) there are the
values ¢y, dy € (x2,%) such that P(x) = P(x) — P(x2) = P’(cy)(x — x2) and
P'(x2) — P/ (x) = —P”(dy)(x — x2). These two equalities imply

P(x) =P(x) —h(x2) = (cx) (x —x2) < P'(x2) G — Xz> < %w’(m

8 /3\ 8
<mﬂ) <2> Smﬂ) (x).

)
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0

Thus we get 0 < P(x) < %(1 + %)U)’(X) < ﬂ—zlb’(x), x € (x2, %) and conse-
quently

24x 12 2 — 2t 1

X2+T x+7T * (x2+1)2 (x+'r)2>
B(x)

(x2 +1)2(x +1)?’

AK) > wm(

=1(x)

where B(x) = 12x° + (1 4+ 367)x* + 24153 + 41 (x — 1) + vx(26x — 16) +
24x1® — 1413 — 1%, and A is defined by (5). It is easily seen that if x € (xz, %),
then B(x) > 0, and consequently v/(x) > 0, for x € (x2, %)

In the second step suppose x € (2,X3) We have in this case 0 < P(x) < P’(x),

where P (x) = ( . A short calculation leads to
2x 1 2x% — 21 1 C(x)
Ale) > Wix) (xz Tt xtT 2412 (x+ T)z) =i (X2 + 1)%(x + 1)’

where C(x) = x>+ (1431)x* +41x% (x— 1) +12x(4x—5) +12 (23— 1) +13(2x—3) >
0, x¢€ (Z,Xg) Consequently we obtain v/(x) >0, x € (%,X3), and the proof
is completed.

Lemma 5 If x € [2,3), then

7(1HX—%) > InT(x), (6)
and
1 = X
— Y — et x) >1nx—g (7)
If T =25, then
lnf:: 2§<X22:TX1T>, x € [2.23,3]. (®)

Proof. Let vs : [2,3] — R be the function defined by vs(x) = g(lnx — %) —
InT'(x). We have

Vi) = o () = 2y - Z

n+x
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and

6 13 o 1
Vé/(x):—ﬁ_wl(x):—ﬁ—2m<o, X€[2,3].

The monotony of v and the inequalities v&(2) > 0, vi(3) < 0 implies that the
equation vi(x) = 0 has exactly one root x; € (2,3) and vi(x) >0, x € (2,x7),
and vi(x) <0, x € (x1,3).

The monotony of v5 implies

v5(x) = min{vs(2),v5(3)} > 0, x € (2,3),

and thus the inequality (6) holds.
In order to prove (7), we define the function vg : [2,3] — R,

7 1 =X 7
Vé(X)—ll)(X)—lIlX—f—zs—_X_Y‘f’nZ_]M—IHX‘FZS.

We have v/(x) = —% +v’' (x) = —% +3 2 m%)z >0, x € [2,3], and conse-

quently
VG(X) > VG(Z) > O) X € [2) 3]

Thus the inequality (7) holds.
The third inequality can be proved as follows.

Let v : [2.23,00) — R be the function defined by v7(x) = In 2T — g(z—x _

J?) . We have v} (x) = %, where o« = % and D(x) = x>+ (31+30)x*+

(272 + dat)x® 4+ 2(1 + )22 + (272 — (o + DNT)x — 2+ N + at?. A
suitable alignment in the numerator of v; shows that v;(x) >0, x € [2.23,3].
Thus we get

v7(x) >v7(2.23) >0, x € [2.23,3],

and the inequality (8) follows. O
Lemma 6 If x € [3,00), then
1
(X—Z)(lnx—z) > InT(x). (9)

If x € [3,00), then

1 X 1
" y—l—E] ( )>nx 7R x € (3,00) ( )
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If x € [3,00), and T = 25, then

1n"2“z(x—z)<2"—1), x € (3,00). (11)

X+T X+1T x+T

Proof. In order to prove 1nequahty (9) we define the function vg : [3,00) — R
by vg(x) = (x — 2)(Inx — f) InT'(x). We have

1T x—1 ad X
W0 =x— g+ sy =Y

and

It is easily seen that

m<z mrm—T1+x x ©° [3, 00).

n=1 n=1

Thus we have vg(x) > 0, x € [3,00), consequently v{ is strictly increasing
and

Vi(x) > vi(3) =In3+y — 1 _%

This means that vg is strictly increasing too and

>0, x € (3,00).

1
vg(x) >vg(3) =In3 — 7 —In2>0, x€ (3,00).

The inequality (10) can be proved as follows Let the functlon vo:[3,00) 5 R
be defined by ve(x ):—f—y—i-zn 1 nn+x lnx+ . We have

S
N m+x)?2 x
n=0

Since
OOE # > OOE 1 = 1 X € B OO)
TL:O(TH—X)Z nzo(n+x)(n+1+x)_x’ D

it follows that vg(x) > 0, x € [3,00), consequently vg is strictly increasing
and

vo(x) >vo(3) =1 +Z—y—ln3 >0, x € (3,00).
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0

Finally, in order to prove (11), we define the function vio : [3,00) — R by

X;:TT —(x—2) (XzziT — ﬁ), where T = 25. We have

V]o(X) =In

2x2 — 21 1
Viol) = (x = 2) ((x2 +1)?2 (x+T)2>
x* +41x3 + 2(7? = 21)x? — 4P — 203 — 12
(x2 + 1)%(x + 1)?
x4 4 100x3 4 11502 — 2500x — 31875
(x2 +71)2(x +71)2 '

=(x—2)

=(x—2)

The Descartes rule of signs implies that the equation x* + 100x> + 1150x% —
2500x—31875 = 0 has no more than one positive root, thus it is easily seen that
the equation v{,(x) = 0 has exactly one root xo = 5.13.... This means that vio
is stictly decreasing on the interval [3,x¢] and strictly increasing on [xg, c0).
Consequently minyep3 o) Vio(x) = vio(xo) = 0.01... > 0, and this implies

vio(x) > 0, for all x € [3,00).

3 Proof of the main result

In this section we shall prove the main theorems.

Theorem 2 Let the function gup : (0,00) — R be defined by

ln(xz-‘ra)—ln(x-&-(x)
oo X € (0,1)U(1,00)

Go,p(x) z{ hﬁm)fln(;@; ) , (12
T+o? = 1.

If « > B > 0, then the mapping gup s strictly increasing on the interval
(0, 00).

Proof. We will prove the theorem in two steps. Let x] = — P be the
p P 1 piv/B2ip

X

positive root of the equation x* +2Bx — p = 0, and let x; = P be the
positive root of x2 + 2ax — ot = 0.

. 2 N\ _ 2
In the first step let x € (0,1). Since (%) = % >0, x €
(0,%1) U (x2, 1), it follows that the function h: (0,00) — R defined by
(In(x? + o) —In(x + )’ X +B x+B X+ 2ax—«

h(x) = (ln(x2+[3)—ln(x+[3))/ X4 x4+ax x2+2px—p’
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is strictly increasing on the intervals (0,x1) and (x2, 1), (because h is a product
of positive strictly increasing functions). Now Lemma 1 implies that gep is
strictly increasing on (0,%;) and (x2,1) too. On the other hand

D(x)
(In(x* + B) —In(x + p))?’

9&,[3(") =

where

x? + 20x — X2+[3_ X2 +2px— B X2+«
(x2 4+ o) (x + ) nx—i—B (x2+B)(x+B) T

D(x) =

. 2
Since (i‘ziis"(’;Jri In Xx:(s > 0, x € (x1,%2), and inﬁ?&% In "XIO‘:‘ <0, x €

(x1,%2), it follows that D(x) > 0, x € (x1,x2), and consequently g’(x) >
0, x € (x1,%2).

We have deduced that gup is a strictly increasing function on the intervals
(0,x1), (x1,%x2), and (x,1). The continuity of g4 implies that this function
is strictly increasing on (0, 1).

In the second step we prove that g g is strictly increasing on (1, 00). We will
prove that

D(x) >0, x e (1,00). (13)
Let k : (0,00) — R be the function defined by k(1) = w The
x24T x+T
following equivalence chain holds '
Jap(x) >0 & D(x)>0 & k(B)>k(a), (14)

providing that x € (1,00), and o« > B > 0.

Consequently in order to prove that g4 p is strictly increasing we have to show
that if x € (1,00) is a fixed number, then k is strictly decreasing on (0, co).
We have

E(7)

k'(1) = m»

x24T X+T

E(r) = 1 _ 1 2x _ 1 n 2x - 1 lnxz—i—'c
S\ 4T x+1 )\ 4T x4T (x2+1)2 (x4 71)? x4+’

1

It is easily seen that if T € (0,00) and x € (1,00), then x2+T — = <0,
2x x24T
x2+'r_m>o lnx+'t>o

This second case has two sub-cases.
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First suppose that (X2+T) m < 0, for some x € (1,00), T € (0,00). In this
1 1 2 1 +

case we have (X2+T —m) (ij‘rT X+T) < 0and ( X2+T) — oo ) In Xx+1T <0.

Thus it follows E(1) < 0, and so we get k/(T) < 0, and we are done.

Now we suppose (XzZ%)z — (XJ:T)Z > 0.

In this case we use the well-known inequality t—1 > Int, t € (0, c0). Putting

t= ’;Zj; we get In Xj;f < szﬂ , for every x € (1, 00), T € (0, 00), and it follows

that

E(T)—( 1 B 1 2x B 1 n 2x B 1
C\xX2 41 x+1/\X+T x+T (x2+1)? (x+1)2
x> +T 1 1 2x 1
In < — —_
X+T +1T x+1/\X4+T x+7T

N < x 1 ) _ x* —x
(x2+1)2 (x+71)?2) x+7

(x—x2)(x*+2tx —1) [ 2x(x + 1)% — (x* + 1) (x* — x)
(x2 +71)2(x + 1)? (x2 +1)? (x + 1)3

(x —x3) (x* —x3 + ™¢2 — 1X)

T T

Consequently, provided that x is fixed, x € (1,00), the inequality k’(t) < 0
holds for every T € (0, 00). According to (14) it follows gf’x’ﬁ(x) >0, x € (1,00),
and the proof is finished. O

Theorem 3 If T = 25, then the mapping W is strictly increasing on the
interval (0,00), where w, is defined by (3).

Proof. Provided that T = 25, Lemma 2 implies that the function wu; is strictly
increasing on the interval (0, x7), where x; is the positive root of the equation
x? +2tx —1=0.

Let x; = 1.4616... be the positive root of the equation P(x) = —l -y +
> o +X =0. If T = 25, then Lemma 3 implies that the function

1 = X
XYt Z (m+x)n
n=1

2x 1 )

x24T x+T

v:i(x1,00) 2 R, v(x) =

is strictly increasing on the interval (xq1,x2).
Let x3 = 2.2324... be the positive root of the equation \(x) = \’(x). Since
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Lemma 4 implies that v is strictly increasing on the interval (x;,x3), it follows
that v is strictly increasing on (x1,x3). Now this result and Lemma 1 imply
that the mapping w; is also strictly increasing on the intervals (x;,1) and
(] ) XS) .

Further we will prove that u; is strictly increasing on (x3,3). We observe that
if x € (x3,3) and T = 25 we can multiply the inequalities (6), (7), (8) and it
follows that

1 > X x24T X2+ 2tx—7
- — | InT 15

x+1  (Z+1)(x+T)

and consequently we obtain

1 2 24 drx—
< Tx Y+ Zio:] n(n),:—x)) In i:: - (;Zj-_’t)rr(fc-ijt) In F(X)
wr(x) = >0, x € (x3,3).

W ()

Summarizing, if T = 25, then we have proved that the function w, is strictly
increasing on the intervals (0, x1), (x1,%3), (x3,3). The continuity of w, implies
that u; is strictly increasing on the interval (0, 3).

We will prove in the followings that if T = 25, then w, is strictly increasing on
(3, 00).

It is easily seen that multiplying the inequalities (?), (10), and (11) the in-
equality (15) follows in case T = 25 and x € (3,00). Thus we have ujs(x) >
0, x € (3,00), and so uys is strictly increasing on (3,00). The continuity of
uys implies that this function is strictly increasing on (0, co). 0

Proof of Theorem 1.: From the equality

Ue(x) = ups(x) - g25(x),

and from the results of Theorem 2. and Theorem 3. we infer that 1w, is strictly
increasing on the interval (0,00) in case of every given T € (0, 25]. O

Other interesting results regarding the I' function can be found in [1], [2],
[5], [6] and [7].
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Abstract. Given an endofunctor F of an arbitrary category, any maxi-
mal element of the lattice of congruence relations on an F-coalgebra (A, a)
is called a coatomic congruence relation on (A, a). Besides, a coatomic
congruence relation K is said to be factor split if the canonical homomor-
phism v: Ax — Ay, splits, where V 5 is the largest congruence relation
on (A, a). Assuming that F is a covarietor which preserves regular monos,
we prove under suitable assumptions on the underlying category that,
every quotient coalgebra can be made extensional by taking the regular
quotient of an F-coalgebra with respect to a coatomic and not factor split
congruence relation or its largest congruence relation.

1 Introduction

The study of coalgebras developed by J.J.M.M. Rutten [15] concerns the
particular case of Set-endofunctors. The author develops the theory of uni-
versal coalgebras with the assumption that the functors preserve weak pull-
backs. This property can see bisimulation equivalences corresponding notions
as of congruence relations in universal algebras. In the same context, the
largest bisimulation on any coalgebra is again the largest congruence on this
coalgebra.

Many theoretical computer science structures, including automata, transi-
tion systems, object oriented systems and lazy data types can be modeled with
a type functor preserving weak pullbacks. However there are viable examples
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of coalgebras (topological spaces, for instance) whose type functors do not
obey such a restriction.

Certainly, the major advantage of coalgebras is that the theory can naturally
deal with nondeterminism and undefinedness, concepts which are hard, or even
impossible, to treat algebraically.

A universal algebra is called simple if it does not have any nontrivial con-
gruence relation. The notion of simple coalgebra is obtained by applying the
same definition. In other words, the largest congruence relation on a simple
coalgebra is its diagonal. An extensional coalgebra is a coalgebra on which the
largest bisimulation is its diagonal. Assuming the type functor preserves weak
pullbacks, every extensional coalgebra is simple (see [4]).

A quotient algebra also called a factor algebra, is obtained by partionning
the elements of a