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Abstract. The aim of the present article is to introduce and study new
subclass of Janowski type functions defined using notions of Janowski
functions and (j, k)-symmetrical functions. Certain interesting coefficient
inequalities, sufficiency criteria, distortion theorem, neighborhood prop-
erty are investigated for this class.

1 Introduction and definitions

Let A denote the class of functions of form

f(z) = z+

∞∑
n=2

anz
n, (1)
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which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}, and S
denote the subclass of A consisting of all function which are univalent in U .
For any f ∈ A, ρ-neighborhood of f(z) can be defined as:

Nρ(f) =

{
g ∈ A : g(z) = z+

∞∑
n=2

bnz
n,

∞∑
n=2

n|an − bn| ≤ ρ

}
. (2)

For e(z) = z, we can see that

Nρ(e) =

{
g ∈ A : g(z) = z+

∞∑
n=2

bnz
n,

∞∑
n=2

n|bn| ≤ ρ

}
. (3)

The idea of neighborhoods was first introduced by Goodman [9] which was
further generalized by Ruscheweyh [5]. For f and g be analytic in U , we say
that the function f is subordinate to g in U , if there exists an analytic function
ω in U such that |ω(z)| < 1 and f(z) = g(ω(z)), and we denote this by f ≺ g.
If g is univalent in U , then the subordination is equivalent to f(0) = g(0) and
f(U) ⊂ g(U).

Using the principle of the subordination we define the class P of functions
with positive real parts.

Definition 1 [6] Let P denote the class of analytic functions of the form
p(z) = 1+

∑∞
n=1 pnz

n defined on U and satisfying p(0) = 1, <{p(z)} > 0, z ∈
U .

Any function p in P has the representation p(z) = 1+w(z)
1−w(z) where w ∈ Ω and

Ω = {w ∈ A and w(0) = 0 |w(z)| < 1}.

The class of functions P with positive real part plays a crucial role in geometric
function theory. Its significance can be seen from the fact that simple subclasses
like class of starlike S∗, class of convex functions C, class of starlike functions
with respect to symmetric points S∗s have been defined by using the concept
of class of functions with positive real part.

Definition 2 [1] Let P[A,B], where −1 ≤ B < A ≤ 1, denote the class of

analytic function p defined on U with the representation p(z) = 1+Aw(z)
1+Bw(z) , z ∈

U , w ∈ Ω. p ∈ P[A,B] if and only if p(z) ≺ 1+Az
1+Bz .
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Definition 3 Let k be a positive integer. A domain D is said to be k-fold
symmetric if a rotation of D about the origin through an angle 2π

k carries D
onto itself. A function f is said to be k-fold symmetric in U if for every z in
U

f(e
2πi
k z) = e

2πi
k f(z).

The family of all k-fold symmetric functions is denoted by Sk and for k = 2

we get class of odd univalent functions.

The notion of (j, k)-symmetrical functions (j = 0, 1, 2, . . . , k−1; k = 2, 3, . . .)
is a generalization of the notion of even, odd, k-symmetrical functions and also
generalize the well-known result that each function defined on a symmetrical
subset can be uniquely expressed as the sum of an even function and an odd
function.

The theory of (j, k) symmetrical functions has many interesting applications,
for instance in the investigation of the set of fixed points of mappings, for the
estimation of the absolute value of some integrals, and for obtaining some
results of the type of Cartan’s uniqueness theorem for holomorphic mappings
[10].

Definition 4 Let ε = (e
2πi
k ) and j = 0, 1, 2, . . . , k−1 where k ≥ 2 is a natural

number. A function f : D 7→ C where D is a k-fold symmetric set, is called
(j, k)-symmetrical if

f(εz) = εjf(z), z ∈ U .

We note that the family of all (j, k)-symmetric functions is denoted be S(j,k).
Also, S(0,2), S(1,2) and S(1,k) the classes of even, odd and k-symmetric functions
respectively. We have the following decomposition theorem.

Theorem 1 [10] For every mapping f : D 7→ C, where D is a k-fold symmetric
set, there exists exactly the sequence of (j, k)- symmetrical functions fj,k,

f(z) =

k−1∑
j=0

fj,k(z)

where

fj,k(z) =
1

k

k−1∑
v=0

ε−vjf(εvz), (4)

(f ∈ A; k = 1, 2, . . . ; j = 0, 1, 2, . . . , k− 1)
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From (4) we can get

fj,k(z) =
1

k

k−1∑
v=0

ε−vjf(εvz) =
1

k

k−1∑
v=0

ε−vj

( ∞∑
n=1

an(ε
vz)n

)
,

then

fj,k(z) =

∞∑
n=1

δn,janz
n, a1 = 1, δn,j =

1

k

k−1∑
v=0

ε(n−j)v =


1, n = lk+ j;

0, n 6= lk+ j.
(5)

Alsarari and Latha [4] introduced and studied the classes S(j,k)(A,B) and
K(j,k)(A,B) which are starlike and convex with respect to (j, k)-symmetric
points, respectively.

Definition 5 [4] A function f in A is said to belong to the class S(j,k)(A,B),
(−1 ≤ B < A ≤ 1) if

zf′(z)

fj,k(z)
≺ 1+Az
1+ Bz

, z ∈ U ,

where fj,k(z) defined by (5).

This class is generalizes the classes studied by Ohsang and Yaungjae [7] and
Sakaguchi [8].

We need the following lemma to prove our main results.

Lemma 1 [3] Let p(z) = 1+
∑∞
n=1 pnz

n ∈ P[A,B], then for n ≥ 1,

|pn| ≤ (A− B).

2 Main results

Theorem 2 If f ∈ S(j,k)(A,B), then for n ≥ 2, −1 ≤ B < A ≤ 1.

|an| ≤
n−1∏
m=1

δm,j[(A− B) − 1] +m

m+ 1− δm+1,j
,

where δn,j by (5).
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Proof. By Definition (5) we have

zf′(z)

fj,k(z)
= p(z), p ∈ P[A,B],

then we have

zf′(z) = [1+

∞∑
n=1

pnz
n]fj,k(z)

by (1) and (5), we have

(1− δ1,j)z+

∞∑
n=2

[n− δn,j]anz
n =

[ ∞∑
n=1

pnz
n

][ ∞∑
n=1

δn,janz
n

]
.

Equating coefficients of zn on both sides, we have

an =
1

[n− δn,j]

n−1∑
m=1

pmδn−m,jan−m, δ1,j = 1,

by Lemma 1, we have

|an| ≤
(A− B)

[n− δn,j]

n−1∑
m=1

δm,j|am|.

Now we want to prove that

(A− B)

[n− δn,j]

n−1∑
m=1

δm,j|am| ≤
n−1∏
m=1

δm,j[(A− B) − 1] +m

[m+ 1− δm+1,j]
. (6)

For this, we use the induction method. The result is true for n = 2 and 3.
Let the hypothesis be true for n = m, we have

(A− B)

[m− δm,j]

m−1∑
r=1

δr,j|ar| ≤
m−1∏
r=1

δr,j[(A− B) − 1] + r

[r+ 1− δr+1,j]
.

Multiplying both sides by
δm.j[(A−B)−1]+m
[m+1−δm+1,j]

, we get

m∏
r=1

δr,j[(A− B) − 1] + r

[r+ 1− δr+1,j]
≥
δm.j[(A− B) − 1] +m

[m+ 1− δm+1,j]
· (A− B)

[m− δm,j]

m−1∑
r=1

δr,j|ar|,



200 F. S. M. Al Sarari, B. A. Frasin, T. Al-Hawary, S. Latha

since

δm.j[(A− B) − 1] +m

[m+ 1− δm+1,j]
.
(A− B)

[m− δm,j]

m−1∑
r=1

δr,j|ar|

=
(A− B)

[m+ 1− δm+1,j]
.

[
1+

δm,j(A− B)

[m− δm,j]

]m−1∑
r=1

δr,j|ar|,

≥ (A− B)

[m+ 1− δm+1,j]
.

[
m−1∑
r=1

δr,j|ar|+ δm,j|am|

]
,

=
(A− B)

[m+ 1− δm+1,j]
.

[
m∑
r=1

δr,j|ar|

]
.

That is

|am+1| ≤
(A− B)

[m− δm,j]

m∑
r=1

δr,j|ar| ≤
m∏
r=1

δr,j[(A− B) − 1] + r

[r+ 1− δr+1,j]
,

which shows that inequality (6) is true for n = m + 1. This completes the
proof. �

Theorem 3 Let f(z) = z +
∑∞
n=2 anz

n, be analytic in U ,for (−1 ≤ B < A ≤
1), we have

∞∑
n=2

{(n− δn,j) + |Aδn,j − Bn|} |an| ≤ (A− B).

Then, f(z) ∈ S(j,k)(A,B).

Proof. For the proof of Theorem 3, it suffices to show that the values for
zf′(z)
fj,k(z)

, satisfy ∣∣∣∣ zf′(z) − fj,k(z)

Afj,k(z) − Bzf′(z)

∣∣∣∣ ≤ 1,
we have
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∣∣∣∣ zf′(z) − fj,k(z)

Afj,k(z) − Bzf′(z)

∣∣∣∣ =

∣∣∣∣ ∑∞
n=2(n− δn,j)anz

n−1

(A− B) +
∑∞
n=2 {Aδn,j − Bn}anz

n−1

∣∣∣∣
≤

∑∞
n=2(n− δn,j)|an||z|

n−1

(A− B) −
∑∞
n=2 |Aδn,j − Bn| |an||z|

n−1

≤
∑∞
n=2(n− δn,j)|an|

(A− B) −
∑∞
n=2 |Aδn,j − Bn| |an|

.

This last expression is bounded above by 1 if

∞∑
n=2

{(n− δn,j) + |Aδn,j − Bn|} |an| ≤ (A− B),

hence
∣∣∣ zf′(z)−fj,k(z)
Afj,k(z)−Bzf′(z)

∣∣∣ ≤ 1, and Theorem 3 is proved. �

Theorem 4 Let f(z) ∈ S(j,k)(A,B), for (−1 < B < A ≤ 1), then

|z|−

i∑
n=2

|an||z|
n − τi|z|

i+1 ≤ |f(z)| ≤ |z|+

i∑
n=2

|an||z|
n + τi|z|

i+1,

where

τi =
(A− B) −

∑i
n=2 {(n− δn,j) + |Aδn,j − Bn|} |an|

{(i+ 1)(1− |B|) − [1− |A|]δi+1,j}
.

Proof. From Theorem 3 we have∞∑
n=i+1

{(n− δn,j) + |Aδn,j − Bn|} |an|

≤ (A− B) −

i∑
n=2

{(n− δn,j) + |Aδn,j − Bn|} |an|.

On the other hand

(n− δn,j) + |Aδn,j − Bn| ≥ n(1− |B|) − [1− |A|]δn,j

and hence n(1− |B|) − [1− |A|]δn,j is monotonically increasing with respect to
n. So we can write

{(i+ 1)(1− |B|) − [1− |A|]δi+1,j}

∞∑
n=i+1

|an|
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≤ (A− B) −

i∑
n=2

{(n− δn,j) + |Aδn,j − Bn|} |an|

which implies that ∞∑
n=i+1

|an| ≤ τi,

hence we have

|f(z)| ≤ |z|+

i∑
n=2

|an||z|
n + τi|z|

i+1,

and

|f(z)| ≥ |z|−

i∑
n=2

|an||z|
n − τi|z|

i+1.

This completes the proof of theorem. �

Theorem 5 For (−1 < B < A ≤ 1),

S(j,k)(A,B) ⊆ Nρ(e),

where

ρ =

[
(A− B){2(1− |B|) − (1− |A|)δ2,j + 1}

2(1− |B|) − (1− |A|)δ2,j

]
.

Proof. For function f ∈ S(j,k)(A,B), by Theorem 3, immediately yields

{2(1− |B|) − (1− |A|)δ2,j}

∞∑
n=2

|an| ≤ (A− B),

so, that ∞∑
n=2

|an| ≤
(A− B)

2(1− |B|) − (1− |A|)δ2,j
. (7)

On the other hand, we also find from Theorem 3,

∞∑
n=2

(n− δn,j)|an| ≤ (A− B),

also ∞∑
n=2

(n− 1)|an| ≤ (A− B),
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or ∞∑
n=2

n|an| ≤ (A− B) +

∞∑
n=2

|an|,

that is,

∞∑
n=2

n|an| ≤
[
(A− B){2(1− |B|) − (1− |A|)δ2,j + 1}

2(1− |B|) − (1− |A|)δ2,j

]
= ρ,

which, in view of the definition (3), proves Theorem 5. �

Now we define the neighborhood for each of the class S(j,k)(A,B).
A function f ∈ A is said to be in class S(j,k)(A,B, η) if there exists g ∈
S(j,k)(A,B) such that ∣∣∣∣ f(z)g(z)

− 1

∣∣∣∣ < 1− η.
Theorem 6 Let g ∈ S(j,k)(A,B), and suppose that

η = 1−
ρ{2(1− |B|) − (1− |A|)δ2,j}

2{2(1− |B|) − (1− |A|)δ2,j − (A− B)}
, (8)

then

Nρ(g) ⊆ S(j,k)(A,B, η).

Proof. Suppose that f ∈ Nρ(g). We then find from (2), that

∞∑
n=2

n|an − bn| ≤ ρ,

which readily implies the coefficient inequality

∞∑
n=2

|an − bn| ≤
ρ

2
.

Next, since g ∈ S(j,k)(A,B), from (7), we have

∞∑
n=2

|bn| ≤
(A− B)

2(1− |B|) − (1− |A|)δ2,j
,
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so that ∣∣∣∣ f(z)g(z)
− 1

∣∣∣∣ ≤ ∑∞
n=2 |an − bn|

1−
∑∞
n=2 |bn|

≤
ρ{2(1− |B|) − (1− |A|)δ2,j}

2{2(1− |B|) − (1− |A|)δ2,j|− (A− B)}

= 1− η.

That shows that f ∈ S(j,k)(A,B, α, η) for η given by (8), which completes the
proof. �
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Abstract. In this paper, we establish the property of conditional full
support for two processes: the Ornstein Uhlenbeck and the stochastic
integral in which the Brownian Bridge is the integrator and we build the
absence of arbitrage opportunities without calculating the risk-neutral
probability.

1 Introduction

Stochastic portfolio theory is a section of mathematical finance. It is intro-
duced by Fernholz [1, 2], and then further developed by Fernholz, Karatzas
and Kardaras [3]. It analyses the results of portfolio by a new and different
structure.

The conditional full support (CFS) is a simple condition on asset prices
which specifies that from any time, the asset price path can continue arbitrarily
close to any given path with positive conditional probability. The conditional
full support’s notion is introduced by Guasoni et al. (2008) [16] who proves

2010 Mathematics Subject Classification: 47H10
Key words and phrases: conditional full support, Ornstein Uhlenbeck process, the absence
of arbitrage opportunities

206
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that the fractional Brownian motion with arbitrary Hurst parameter has a
desired property.

This latter is generalized by Cherny (2008) [17] who proves that any Brow-
nian moving average satisfies the conditional full support condition. Then, the
(CSF) property is established for Gaussian processes with stationary incre-
ments by Gasbarra (2011) [18].

Let’s note that, by the main result of Guasoni et al. (2008) [16], the CFS
generates the consistent price systems which admit a martingale measure. In
2014, Attila Herczegh et al. provide a new result on conditional full support
in higher dimensions [19].

By the main result of Guasoni, Résonyi, and Schachermayer [16], the CFS
generates the consistent price systems which admit a martingale measure.

M. S. Pakkanan in 2009 [7] presents conditions that imply the conditional
full support for the process Z := H + K ∗W, where W is a Brownian motion
and H is a continuous process.

This paper is organized as follows. Section 2 presents some basic concepts
from stochastic portfolio theory and some results on consistent price system.
In section 3, we present the conditions that imply the conditional full support
(CFS) property for processes Z := H+K∗W. In section 4, we establish our main
result on the conditional full support for the processes: the Ornstein Uhlenbeck
and the stochastic integral such that the Brownian Bridge is the integrator and
we build the absence of arbitrage opportunities without calculating the risk-
neutral probability in the case of existence of the consistent price systems.
Finnaly we give a conclusion.

2 Reminder

2.1 Markets and portfolios

We shall place ourselves in a model M for a financial market of the form

dB(t) = B(t)r(t)dt, B(0) = 1,

dSi(t) = Si(t)

(
bi(t)dt+

d∑
v=1

σiv(t)dWv(t)

)
,

Si(0) = si > 0; i = 1, . . . , n,

(1)

consisting of a money-market B(.) and of n stocks, whose prices S1(.); . . . ;Sn(.)
are driven by the d-dimensional Brownian motion W(.) = W1(.); . . . ;Wd(.))

′

with d ≥ n.
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The following notations are adopted; The interest-rate process r(.) for the
money-market, the vector-valued process b(.) = (b1(.); . . . ;bn(.))

′
of rates

of return for the various stocks, and the (n*d)-matrix-valued process σ(.) =
(σiv(.))1<i<n,1≤v≤d of stock-price volatilities.

Definition 1 A portfolio π(.) = (π1(.), . . . , πn(.))
′

is an F-progressively mea-
surable process, bounded uniformly in (t,w), with values in the set⋃

k∈N
{(π1, . . . , πn) ∈ Rn|π21 + . . .+ π2n ≤ k2, π1 + . . .+ πn = 1}.

The Market Portfolio

The stock price Si(t) can be interpreted as the capitalization of the ith com-
pany at time t, and the quantities

S(t) = S1(t) + . . .+ Sn(t) and µi(t) =
Si(t)

S(t)
, i = 1, . . . , n (2)

as the total capitalization of the market and the relative capitalizations of the
individual companies, respectively.

Clearly, 0 < µi(t) < 1, ∀ i = 1, . . . , n and
∑n
i=1 µi(t) = 1.

The resulting wealth process Vw,µ(.) satisfies

dVw,µ(t)

Vw,µ(t)
=

n∑
i=1

µi(t)
dSi(t)

Si(t)
=

n∑
i=1

dSi(t)

S(t)
=
dS(t)

S(t)
.

2.2 Conditional full support

Definition 2 Let O ⊂ Rn be an open set and (S(t))t∈[0,T ] be a continuous
adapted process taking values in O. We say that S has conditional full support
in O if for all t ∈ [0, T ] and for all open set G ⊂ C([0, T ],O),

P(S ∈ G|Ft) > 0, a.s. on the event (S|[0,t] ∈ {g|[0,t] : g ∈ G}). (3)

We will also say that S has full support in O, or simply full support when
O = Rn, if (3) holds for t = 0 and for all open subset of C([0, T ],O).

Recall also, the notion of consistent price system.
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Definition 3 Let ε > 0. An ε−consistent price system to S is a pair (S̃,Q),
where Q is a probability measure equivalent to P and S̃ is a Q−martingale
in the filtration F, such that

1

1+ ε
≤ S̃i(t)
Si(t)

≤ 1+ ε, almost surely for all t ∈ [0, T ] and i = 1, . . . , n.

Note that S̃ is a martingale under Q, hence we may asuume that it is càdlàg,
but it is not required in the definition that S̃ is continuous.

Theorem 1 [14] Let O ⊂ (0,∞)n be the open set defined by

O = O(δ) =
{
x ∈ (0,∞)n : max

j

xj

x1 + . . .+ xn
< 1− δ

}
(4)

and assume that the price process takes values and has conditional full support
in O. Then for any ε > 0 there is an ε− consistent price system (S̃,Q) such
that S̃ takes values in O.

To check the condition of Theorem 2.1 we apply the next Theorem. In
comparison to the existing results, we mention that our findings seem to be
new in the sense that we do not assume that our process solves a stochastic
differential equation as it is done in Stroock and Varadhan [11] and it is not
only for one dimensional processes as it is in Pakkanen [7].

Theorem 2 [14] Let X be a n-dimensional Itô proces on [0, T ], such that

dXi(t) = µi(t)dt+

n∑
v=1

σiv(t)dWv(t).

Assume that |µ| is bounded and σ satisfies

ε|ξ|2 ≤ |σ
′
(t)ξ|2 ≤M|ξ|2, a.s. for all t ∈ [0, T ] and ξ ∈ Rn and ε,M > 0.

Then X has conditional full support.

2.3 Consistent Price System and Conditional Full support

Theorem 3 [14] Let O ⊂ Rn be an open set and (S(t))t∈[0,T ] be an O-valued,
continuous adapted process having conditional full support in O.
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Besides, let (εt)t∈[0,T ] be a continuous positive process, that satisfies

|εt − εs| ≤ Ls sups≤u≤t|S(u) − S(s)|, for all 0 ≤ s ≤ t ≤ T,

with some progressively measurable finite valued (Ls)s∈[0,T ].

Then S admits an ε-consistent price system in the sense that, there is an
equivalent probability Q on Ft and a process (S̃(t))t∈[0,T ] taking values in O
such that S̃ is Q martingale, bounded in L2(Q) and finally |S(t) − S̃(t)| ≤ εt
almost surely for all t ∈ [0, T ].

Lemma 1 [14] Under the assumption of theorem 3.1 there is a sequence of
stopping times (τn)n≥1, a sequence of random variables (Xn)n≥0 and an equiv-
alenty Q such that

1. τ0 = 0, (τn) is increasing and
⋃
n{τn = T } has full probability,

2. (Xn)n≥0 is a Q martingale in the discrete time filtration (gn = Fτn)n≥0,
bounded in L2(Q),

3. if τn ≤ t ≤ τn+1 then |St − Xn+1| ≤ εt.

Corollary 1 [14] Assume that the continuous adapted process S evoling in O
has conditional full support in O. Let τ be a stopping time and denote by QS|Fτ

the regular version of the conditional distribution of S given Fτ.

Then the support of the random measure QS|Fτ is

suppQS|Fτ =

{
g ∈ C([0, T ],O) : g|[0,τ] = S|[0,τ]

}
, almost surely.

3 Conditional full support for stochastic integrals

We shall establish the CFS for processes of the form

Zt := Ht +

∫ t
0

ksdWs, t ∈ [0, T ],

where H is a continuous process, the integrator W is a Brownian motion, and
the integrand k satisfies some varying assumptions (to be clarified below). We
focus on three cases, each of which requires a separate treatment (see [7]).

First, we study the case:
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(1) Independent integrands and Brownian integrators

Theorem 4 [7] Let us define

Zt := Ht +

∫ t
0

ksdWs, t ∈ [0, T ]

Suppose that

• (Ht)t∈[0,T ] is a continuous process

• (kt)t∈[0,T ] is a measurable process s.t.
∫T
0 K

2
sds <∞

• (Wt)t∈[0,T ] is a standard Brownian motion independent of H and k.

If we have

meas(t ∈ [0, T ] : kt = 0) = 0 P − a.s

then Z has CFS.

As an application of this result, we show that several popular stochastic
volatility models have the CFS property.

Application to stochastic volatility model:

Let us consider the price process (Pt)t∈[0,T ] in R+ given by :

dPt = Pt(f(t, Vt)dt+ ρg(t, Vt)dBt +
√
1− ρ2g(t, Vt)dWt,

P0 = p0 ∈ R+, where

(a) f, g ∈ C([0, T ]× Rd,R),

(b) (B,W) is a planar Brownian motion,

(c) ρ ∈ (−1, 1),

(d) V is a (measurable) process in Rd s.t. g(t, Vt) 6= 0 a.s. for all t ∈
[0, T ],

(e) (B, V) is independent of W.
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Write using Itô’s formula:

logPt = logP0 +

∫ t
0

(f(s, Vs) −
1

2
g(s, Vs)

2)ds+ ρ

∫ t
0

g(s, Vs)dBs︸ ︷︷ ︸
=Ht

+
√
1− ρ2

∫ t
0

g(s, Vs)dWs︸ ︷︷ ︸
=Ks

.

Since W is independent from B and V, the previous Theorem implies
that logP has CFS, and from the next remark, it follows that P has
CFS.

Remark 1 If I ⊂ R is an open interval and f : R −→ I is a homeo-
morphism, then g 7−→ f ◦ g is a homeomorphism between Cx([0, T ]) and
Cf(x)([0, T ], I).

Hence, for f(X), understood as a process on I, we have

f(X) has F− CFS⇐⇒ X has F− CFS. (5)

Next, we weaken the assumption about independence and consider the
second case:

(2) Progressive integrands and Brownian integrators

Remark 2 In general, the assumption about independence between W
and (H, k) is necessary.

Namely, if e.g.

Ht = 1;kt := e
Wt−

1
2
t; t ∈ [0, T ],

then Z = k = ξ(W), the Dolans exponential of W, which is strictly
positive and thus does not have CFS if the process is considered in R.

Theorem 5 [7] Suppose that

• (Xt)t∈[0,T ] and (Wt)t∈[0,T ] are continuous process,

• h and k are progressive [0, T ]× C([0, T ])2 −→ R,

• ε is a random variable,

• and Ft = σ{ε, Xs,Ws : s ∈ [0, t]}, t ∈ [0, T ]
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If W is an (Ft)t∈[0,T ]-Brownian motion and

• E[eλ
∫T
0
k−2s ds] <∞ for all λ > 0,

• E[e2
∫T
0
k−2s h2sds] <∞ and

•
∫T
0 k

2
sds ≤ K a.s for some constant K ∈ (0,∞),

then the process

Zt = ε+

∫ t
0

hsds+

∫ t
0

ksdws, t ∈ [0, T ]

has CFS.

(3) Independent integrands and general integrators

Since the Brownian motion has CFS, one might wonder if the previous
results can be generalized to the case where the integrator is merely
a continuous process with CFS. While the proofs of these results use
quite heavily methods specific to Brownian motion (martingales, time
changes), so in the case of independent integrands of finite variations,
we are able to prove this conjecture.

Theorem 6 [7] Suppose that

• (Ht)t∈[0,T ] is a continuous process,

• (kt)t∈[0,T ] is a process of finite variation, and

• X = (Xt)t∈[0,T ] is a continuous process independent of H and k.

Let us define

Zt := Ht +

∫ t
0

ksdXs, t ∈ [0, T ].

If X has CFS and

inf
t∈[0,T ]

|kt| > 0 P − a.s.,

then Z has CFS.
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4 Main result

In this part, we will use the following theorem to demonstrate the absence of
arbitration without calculating the risk-neutral probability for the two models
below.

Theorem 7 [4, theorem 1.2] Let (Xt) be an Rd+-valued, continuous adapted
process satisfying (CFS); then X admits an ε-consistent pricing system for all
ε > 0.

4.1 Ornstein-Uhlenbeck process driven by Brownian motion

The (one-dimensional) Gaussian Ornstein-Uhlenbeck process X = (Xt)t ≥ 0
can be defined as the solution to the stochastic differential equation (SDE)

dXt = θ(µ− Xt)dt+ σdWt t > 0.

Where we see

Xt = X0e
−θt + µ(1− e−θt) +

∫ t
0

σeθ(s−t) dWs. t ≥ 0.

It is readily seen that Xt is normally distributed. We have

Xt = X0e
−θt + µ(1− e−θt)︸ ︷︷ ︸

Ht

+

∫ t
0

σeθ(s−t)︸ ︷︷ ︸
Ks

dWs. t ≥ 0. (6)

To establish the property of CFS for this process, the conditions of theorem
3.1 will be applied.

The processes (Hs) and (Ks) in (6) satisfy

1. Process (Hs) is a continuous process,

2. (Ks) is a measurable process such that
∫T
0 K

2
sds <∞, and

3. (Wt) is a standard Brownian motion independent of H and K.

Consequently, the process (Xt) has the property of CFS and there are the
consistent price systems which can be seen as generalization of equivalent
martingale measures.

This shows that this price process doesn’t admit arbitrage opportunities un-
der arbitrary small transaction and using it, we guarantee no-arbitrage without
calculating the risk-neutral probability.
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4.2 Independent integrands and Brownian Bridge integrators.

To state our main result for the application of CFC in which the Brownian
Bridge is the integrator, we need to recall some facts of Brownian bridge.

Let us start with a Brownian motion B = (Bt, t ≥ 0) and its natural filtration

FB. Define a new filtration as G = (Gt, t ≥ 0) with Gt = F (B1)
t = FBt ∨ σ(B1).

In this filtration, the process (Bt, t ≥ 0) is no longer a martingale. It is easy

to be convinced of this by looking at the process (E(B1 | F (B1)
t ), t ≤ 1): this

process is identically equal to B1, not to Bt, hence (Bt; t ≥ 0) is not a G-
martingale. However, (Bt, t ≥ 0) is a G-semi-martingale, as follows from the
next proposition 1.

In general, if H = (Ht, t ≥ 0) is a filtration larger than F = (Ft, t ≥ 0), i.e.,
Ft ⊂ Ht, ∀t ≥ 0 (we shall write F ⊂ H), it is not true that an F-martingale
remains a martingale in the filtration H. It is not even true that F-martingales
remain H-semi-martingales.

Before giving this proposition, we recall the definition of Brownian bridge.

Definition 4 The Brownian bridge (bt; 0 ≤ t ≤ 1) is defined as the condi-
tioned process (Bt; t ≤ 1|B1 = 0).

Note that Bt = (Bt − tB1) + tB1 where, from the Gaussian property, the
process (Bt − tB1; t ≤ 1) and the random variable B1 are independent. Hence

(bt; 0 ≤ t ≤ 1)
law
= (Bt − tB1; 0 ≤ t ≤ 1).

The Brownian bridge process is a Gaussian process, with zero mean and co-
variance function s(1− t); s ≤ t. Moreover, it satisfies b0 = b1 = 0.

Proposition 1 [15] Let F (B1)
t = ∩ε>0Ft+ε ∨ σ(B1). The process

βt = Bt −

∫ t∧1
0

B1 − Bs
1− s

ds

is an F(B1)-martingale, and an F(B1) Brownian motion. In other words,

Bt = βt −

∫ t∧1
0

B1 − Bs
1− s

ds

is the decomposition of B as an F(B1)-semi-martingale.

Example of application: The following example was studied by Monique
Jeanblanc et al. [15], we will later introduce our approach to this application,
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this approach is based on the conditional full support property. M.Jeanblanc et
al. study within the problem occurring in insider trading: existence of arbitrage
using strategies adapted w.r.t. the large filtration.

Our approach is to prove the existence of no arbitrage in the case 0 ≤ t <
1 without calculating the dynamics of wealth and risk neutral probability.

Let
dSt = St(µdt+ σdbt),

where µ and σ are constants and St defines the price of a risky asset. Assume
that the riskless asset has a constant interest rate r.

The wealth of an agent is

dXt = rXtdt+ π̂t(dSt − rStdt) = rXtdt+ πtσXt(dWt + θdt); X0 = x,

where θ = µ−r
σ and π = (π̂St/Xt) assumed to be an FB-adapted process.

Here, π̂ is the number of shares of the risky asset, and π the proportion of
wealth invested in the risky asset. It follows that

ln(Xπ,xT ) = ln x+

∫ T
0

(r−
1

2
π2sσ

2 + θπsσ)ds+

∫ T
0

σπsdWs

Then,

E(ln(Xπ,xT )) = ln x+

∫ T
0

E

(
r−

1

2
π2sσ

2 + θπsσ

)
ds

The solution of maxE(ln(Xπ,xT )) is πs =
θ
σ and

supE(ln(Xπ,xT ) = ln x+ T

(
r+

1

2
θ2
)

Note that, if the coefficients r, µ and σ are F-adapted, the same computation
leads to

supE(ln(Xπ,xT ) = ln x+

∫ T
0

E

(
rt +

1

2
θ2t

)
dt,

where θt =
µt−rt
σt
.

We now enlarge the filtration with S1.
In the enlarged filtration, setting, for t < 1, αt =

B1−Bt
1−t , the dynamics of S

are
dSt = St((µ+ σαt)dt+ σdβt),

and the dynamics of the wealth are

dXt = rXtdt+ πtσXt(dβt + θ̃tdt), X0 = x
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with θ̃t =
µ−r
σ + αt.

The solution of maxE(ln(Xπ,xT )) is πs =
θ̃s
σ .

Then, for T < 1,

ln(Xπ,x,∗T ) = ln x+

∫ T
0

(r+
1

2
θ̃2s)ds+

∫ T
0

σπsdβs

E(ln(Xπ,x,∗T )) = ln x+

∫ T
0

(r+
1

2
(θ2 + E(α2s) + 2θE(αs))ds

= ln x+ (r+
1

2
θ2)T +

1

2

∫ T
0

E(α2s)ds,

where we have used the fact that E(αt) = 0 (if the coefficients r, µ and σ are
F-adapted, α is orthogonal to Ft, hence E(αtθt) = 0).

Let
VF(x) = maxE(ln(Xπ,xT ));π is F admissible
VG(x) = maxE(ln(Xπ,xT ));π is G admissible

Then VG(x) = VF(x) + 1
2E
∫T
0 α

2
sds = V

F(x) − 1
2 ln(1− T).

If T = 1, the value function is infinite: there is an arbitrage opportunity and
there exists no an e.m.m. such that the discounted price process (e−rtSt, t ≤ 1)
is a G-martingale. However, for any ε ∈]0; 1], there exists a uniformly inte-
grable G-martingale L defined as

dLt =
µ− r+ σσt

σ
Ltdβt, t ≤ 1− ε, L0 = 1,

such that, setting dQ |Gt= LtdP |Gt , the process (e−rtSt; t ≤ 1 − ε) is a
(Q,G)-martingale.

This is the main point in the theory of insider trading where the knowledge
of the terminal value of the underlying asset creates an arbitrage opportunity
and this is effective at time 1.

Our approach to this example: We consider the previous example. Let

dSt = St(µdt+ σdbt),

The standard Brownian bridge b(t) is a solution of the following stochastic
equation.

dbt = −
bt

1− t
dt+ dWt; 0 ≤ t < 1

b0 = 0.
(7)
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The solution of the above equation is

bt = (1− t)

∫ t
0

1

1− s
dWs,

We may now verify that S has CFS.

By positivity of S, Itô’s formula yields

logSt = logS0 +

{(
µ−

σ2

2

)
t+ σ

(
1− t

) ∫ t
0

1

1− s
dWs

}
, 0 ≤ t < 1.

We have

logSt = logS0 +

(
µ−

σ2

2

)
t︸ ︷︷ ︸

=:Ht

+

∫ t
0

σ

(
1− t

)
1

1− s︸ ︷︷ ︸
=:Ks

dWs, 0 ≤ t < 1.

1. (Ht) is a continuous process,

2. (Ks) = σ(1− t)
1
1−s is a measurable process s.t.

∫t
0 K

2
sds <∞,

3. (Wt) is a standard Brownian motion independent of H and K,

which clearly satisfy the assumptions of theorem (3.1) and logSt has CFS,
then S has CFS for 0 ≤ t < 1 and there is the consistent price systems and
this is a martingale. Using it, we guarantee no-arbitrage without calculating
the risk-neutral probability.

5 Conclusion

In this paper, we have investigated the conditional full support for two pro-
cesses, the Ornstein Uhlenbeck and the Stochastic integral in which the Brow-
nian Bridge is the integrator, and we have also built the absence of arbitrage
opportunities without calculating the risk-neutral probability in the existence
of the consistent price systems which admit a martingale measure.

Prospects: In mathematical finance, the CoxIngersollRoss model (or CIR
model) describes the evolution of interest rates. It is a type of "one factor
model" (short rate model) as it describes interest rate movements as driven
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by only one source of market risk. The model can be used in the valuation of
interest rate derivatives. It was introduced in 1985 by John C. Cox, Jonathan
E. Ingersoll and Stephen A. Ross as an extension of the Vasicek model. The
CIR model specifies that the instantaneous interest rate follows the stochastic
differential equation, also named the CIR Process:

dXt = θ(µ− Xt)dt+ σ
√
XtdWt t > 0,

where (Wt) is a Wiener process and θ, µ and σ are the parameters. The
parameter θ corresponds to the speed of adjustment, µ to the mean and σ to
volatility. The drift factor θ(µ−Xt) is exactly the same as in the Vasicek model.
It ensures a mean reversion of the interest rate towards the long run value µ,
with speed of adjustment governed by the strictly positive parameter θ.

As prospects, we establish the condition of CFS for the Cox-Ingersoll-Ross
model.
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Abstract. We introduce a new generalization of the q-Bernstein opera-
tors involving (p, q)-integers, and we establish some direct approximation
results. Further, we define the limit (p, q)-Bernstein operator, and we ob-
tain its estimation for the rate of convergence. Finally, we introduce the
(p, q)-Kantorovich type operators, and we give a quantitative estimation.

1 Introduction

The applications of q-calculus in the field of approximation theory have led
to the discovery of new generalizations of the Bernstein operators. The first
generalization involving q-integers was obtained by Lupaş [7] in 1987. Ten
years later Phillips [12] gave another generalization of the Bernstein operators
introducing the so-called q-Bernstein operators. In comparison with Phillips’
generalization, the Lupaş’ generalization gives rational functions rather than
polynomials. Nowadays, q-Bernstein operators form an area of an intensive
research. A survey of the obtained results and references in this area during
the first decade of study can be found in [11]. After that several well-known
positive linear operators and other new operators have been generalized to
their q-variants, and their approximation behavior have been studied (see e.g.
[1] and [3]).
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The (p, q)-calculus is a further new generalization of the q-calculus, its basic
definitions and some properties may be found in the papers [6], [13], [14], [15].
The (p, q)-integers [n]p,q are defined by

[n]p,q =
pn − qn

p− q
,

where n = 0, 1, 2, . . . and 0 < q < p ≤ 1. For p = 1, we recover the well-known
q-integers (see [5]). Obviously

[n]p,q = pn−1[n]q/p. (1)

The (p, q)-factorials [n]p,q! are defined by

[n]p,q! =


[1]p,q[2]p,q . . . [n]p,q, if n ≥ 1

1, if n = 0,

and the (p, q)-binomial coefficients are given by[
n

k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
, 0 ≤ k ≤ n.

Further, we set

(a− b)np,q =


(a− b)(pa− qb) . . . (pn−1a− qn−1b), if n ≥ 1

1, if n = 0.

By simple computations, using (1), we get

[n]p,q! = p
n(n−1)/2[n]q/p!, (2)

[
n

k

]
p,q

= p{n(n−1)−k(k−1)−(n−k)(n−k−1)}/2

[
n

k

]
q/p

(3)

and

(a− b)np,q = pn(n−1)/2(a− b)nq/p, (4)

where

(a− b)nq =


(a− b)(a− qb) . . . (a− qn−1b), if n ≥ 1

1, if n = 0
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in the case when 0 < q < 1.
The goal of the paper is to introduce a new generalization of the q-Bernstein

operators involving (p, q)-integers. These (p, q)-Bernstein operators approxi-
mate each continuous function uniformly on [0, 1], and some direct approxi-
mation results are established with the aid of the modulus of continuity given
by

ω(f; δ) = sup{|f(x) − f(y)| : x, y ∈ [0, 1], |x− y| ≤ δ}, δ > 0, (5)

where f ∈ C[0, 1]. Further, we define the limit (p, q)-Bernstein operator and
we estimate the rate of convergence by the modulus of continuiuty (5). The
concept of limit q-Bernstein operator was introduced by Il’inskii and Ostro-
vska [4], and its rate of convergence was established by Wang and Meng in
[16]. Finally, we define a (p, q)-Kantorovich variant of the (p, q)-Bernstein
operators, and we give a quantitative estimation using (5).

2 (p, q)-Bernstein operators

For 0 < q < p ≤ 1, f ∈ C[0, 1], x ∈ [0, 1] and n = 1, 2, . . . , we define the
(p, q)-Bernstein polynomials as follows:

Bn,p,q(f; x) =

n∑
k=0

p{k(k−1)−n(n−1)}/2
[
n

k

]
p,q

xk(1− x)n−kp,q f

(
pn

[k]p,q
[n]p,q

)
. (6)

For p = 1 and 0 < q < 1, we recover the q-Bernstein polynomials (see [12]):

Bn,q(f; x) =

n∑
k=0

[
n

k

]
q

xk(1− x)n−kq f

(
[k]q
[n]q

)
. (7)

Theorem 1 If the sequences (pn) and (qn) satisfy 0 < qn < pn ≤ 1 for
n = 1, 2, . . . , and pn → 1, qn → 1, pnn → 1 as n→∞, then

|Bn,pn,qn(f; x) − f(x)| ≤ 2ω

(
f;

(
2(1− pnn)x

2 +
x(1− x)

[n]qn/pn

)1/2)

for all f ∈ C[0, 1] and x ∈ [0, 1].

Proof. By (6), (3)-(4) and (1), we have

Bn,p,q(f; x) =

n∑
k=0

[
n

k

]
q/p

xk(1− x)n−k
q/p
f

(
pk

[k]q/p

[n]q/p

)
. (8)
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Hence, in view of [12, (13)], we obtain

Bn,p,q(1; x) = Bn,q/p(1; x) = 1. (9)

By (8) and [12, (14)], we get

pnx = pnBn,q/p(t; x) ≤ Bn,p,q(t; x) =
n∑
k=0

[
n

k

]
q/p

xk(1−x)n−k
q/p
pk

[k]q/p

[n]q/p
. (10)

Analogously, by (8) and [12, (15)], we get

Bn,p,q(t
2; x) =

n∑
k=0

[
n

k

]
q/p

xk(1− x)n−k
q/p
p2k

[k]2q/p

[n]2
q/p

≤ Bn,q/p(t
2; x) = x2 +

x(1− x)

[n]q/p
. (11)

On the other hand, it is known for (5) that

ω(f; λδ) ≤ (1+ λ)ω(f; δ), (12)

where λ ≥ 0 and δ > 0. Then, by (8), [12, (13)], Hölder’s inequality and
(9)-(11), we obtain

|Bn,pn,qn(f; x) − f(x)|

≤
n∑
k=0

[
n

k

]
qn/pn

xk(1− x)n−k
qn/pn

∣∣∣∣∣ f
(
pkn

[k]qn/pn
[n]qn/pn

)
− f(x)

∣∣∣∣∣
≤

n∑
k=0

[
n

k

]
qn/pn

xk(1− x)n−k
qn/pn

ω

(
f;

∣∣∣∣∣ pkn [k]qn/pn[n]qn/pn
− x

∣∣∣∣∣
)

≤ ω(f; δ)

n∑
k=0

[
n

k

]
qn/pn

xk(1− x)n−k
qn/pn

(
1+ δ−1

∣∣∣∣∣ pkn [k]qn/pn[n]qn/pn
− x

∣∣∣∣∣
)

≤ ω(f; δ)

{
1+ δ−1

(
n∑
k=0

[
n

k

]
qn/pn

xk(1− x)n−k
qn/pn

×
(
pkn

[k]qn/pn
[n]qn/pn

− x

)2)1/2
= ω(f; δ)

{
1+ δ−1(Bn,pn,qn(t

2; x) − 2xBn,pn,qn(t; x)

+x2Bn,pn,qn(1; x))
1/2
}
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≤ ω(f; δ)

{
1+ δ−1

(
x2 +

x(1− x)

[n]qn/pn
− 2pnnx

2 + x2
)1/2}

= ω(f; δ)

{
1+ δ−1

(
2(1− pnn)x

2 +
x(1− x)

[n]qn/pn

)1/2}
.

Choosing δ =
(
2(1− pnn)x

2 + x(1−x)
[n]qn/pn

)1/2
, we arrive at the statement of our

theorem. �

Theorem 2 If the sequences (pn) and (qn) satisfy 0 < qn < pn ≤ 1 for
n = 1, 2, . . . , and pn → 1, qn → 1, pnn → 1 as n→∞, then

|Bn,pn,qn(f; x) − Bn,qn/pn(f; x)| ≤ ω(f; 1− pnn)

for all f ∈ C[0, 1] and x ∈ [0, 1].

Proof. Because
∣∣∣ pk [k]q/p

[n]q/p
−

[k]q/p
[n]q/p

∣∣∣≤ 1 − pk ≤ 1 − pn for k = 0, 1, . . . , n, we

find from (8), (7) and [12, (13)], that

|Bn,pn,qn(f; x) − Bn,qn/pn(f; x)|

≤
n∑
k=0

[
n

k

]
qn/pn

xk(1− x)n−k
qn/pn

∣∣∣∣∣ f
(
pkn

[k]qn/pn
[n]qn/pn

)
− f

(
[k]qn/pn
[n]qn/pn

) ∣∣∣∣∣
≤

n∑
k=0

[
n

k

]
qn/pn

xk(1− x)n−k
qn/pn

ω

(
f;

∣∣∣∣∣ pkn [k]qn/pn[n]qn/pn
−

[k]qn/pn
[n]qn/pn

∣∣∣∣∣
)

≤ ω(f; 1− pnn)Bn,qn/pn(1; x) = ω(f; 1− pnn),

which is the required estimation. �

Remark 1 There exist sequences (pn) and (qn) with the properties enumer-
ated in Theorem 1: pn = 1− 1

(n+1)2
and qn = 1− 1

n+1 , n = 1, 2, . . .

We also mention, if 0 < qn < pn ≤ 1 for n = 1, 2, . . . , pn → 1 and qn → 1

as n→∞, then [n]qn/pn →∞ and
[n]qn/pn

[n+1]qn/pn
→ 1 as n→∞.

Remark 2 In [9] and [10] are introduced two different generalizations of the
q-Bernstein polynomials (7) involving (p, q)-integers. The first one does not
preserve even the constant functions, and the second one is a (q/p)-Bernstein
polynomial. Our (p, q)-Bernstein polynomials defined by (6) are different from
the above mentioned generalizations. The advantage of (6) is that it allows us
to introduce the limit (p, q)-Bernstein operator.
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3 Limit (p, q)-Bernstein operator

For q ∈ (0, 1), Il’inskii and Ostrovska proved in [4] that for each f ∈ C[0, 1], the
sequence (Bn,q(f; x)) converges to B∞,q(f; x) as n→∞ uniformly for x ∈ [0, 1],
where

B∞,q(f; x) =


∞∑
k=0

f(1− qk)
xk

(1− q)k[k]q!

∞∏
s=0

(1− qsx), if 0 ≤ x < 1

f(1), if x = 1

is the limit q-Bernstein operator. Wang and Meng [16] proved for all f ∈ C[0, 1]
and x ∈ [0, 1] that

|Bn,q(f; x) − B∞,q(f; x)| ≤
(
2+

4

q(1− q)
ln

1

1− q

)
ω(f;qn).

For 0 < q < p ≤ 1, the limit (p, q)-Bernstein operator B∞,p,q : C[0, 1] →
C[0, 1] is defined as follows:

B∞,p,q(f; x) =


∞∑
k=0

f(pk − qk)
p(k+1)k/2xk

(p− q)k[k]p,q!

∞∏
s=0

ps − qsx

ps
, if x ∈ [0, 1)

f(1), if x = 1.
(13)

Theorem 3 Let p, q ∈ (0, 1) be given such that p2 < q < p. Then, for every
f ∈ C[0, 1], x ∈ [0, 1] and n = 1, 2, . . . , we have

|Bn,p,q(f; x) − B∞,p,q(f; x)| ≤
(
4+

6p2

q(p− q)
ln

p

p− q

)
ω

(
f;

(
q

p

)n)
.

Proof. Due to (13) and (2), we have

B∞,p,q(f; x) =
∞∑
k=0

f(pk − qk)
xk(

1− q
p

)k
[k]q/p!

∞∏
s=0

(
1−

(
q

p

)s
x

)
. (14)

We set

wn,k(q; x) =

[
n

k

]
q

xk(1− x)n−kq and w∞,k(q; x) = xk

(1− q)k[k]q!

∞∏
s=0

(1−qsx).
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Then, in view of (9) and [16, p. 154, (2.3)], we obtain

n∑
k=0

wn,k

(
q

p
; x

)
=

∞∑
k=0

w∞,k
(
q

p
; x

)
= 1. (15)

Using (8), (14) and (15), we find

|Bn,p,q(f; x) − B∞,p,q(f; x)|
=

∣∣∣∣∣
n∑
k=0

wn,k

(
q

p
; x

){
f

(
pk

[k]q/p

[n]q/p

)
− f(pk − qk)

}

+

n∑
k=0

{
wn,k

(
q

p
; x

)
−w∞,k

(
q

p
; x

)}
{f(pk − qk) − f(pn)}

−

∞∑
k=n+1

w∞,k
(
q

p
; x

)
{f(pk − qk) − f(pn)}

∣∣∣∣∣
≤

n∑
k=0

wn,k

(
q

p
; x

) ∣∣∣∣∣ f
(
pk

[k]q/p

[n]q/p

)
− f(pk − qk)

∣∣∣∣∣
+

n∑
k=0

∣∣∣∣∣ wn,k
(
q

p
; x

)
−w∞,k

(
q

p
; x

) ∣∣∣∣∣ |f(pk − qk) − f(pn)|
+

∞∑
k=n+1

w∞,k
(
q

p
; x

)
|f(pk − qk) − f(pn)|

=: I1 + I2 + I3. (16)

The estimation of I1 : by (1), we have

∣∣∣ pk [k]q/p
[n]q/p

− (pk − qk)
∣∣∣= [k]q/p

[n]q/p

∣∣∣ pk − (pk − qk)pk−n
[n]p,q
[k]p,q

∣∣∣
≤

∣∣∣ pk − (pk − qk)pk−n
pn − qn

pk − qk

∣∣∣= pk(q
p

)n
≤
(
q

p

)n
for k = 0, 1, . . . , n. Hence, by (15),

I1 ≤
n∑
k=0

wn,k

(
q

p
; x

)
ω

(
f;
∣∣∣ pk [k]q/p

[n]q/p
− (pk − qk)

∣∣∣) ≤ ω(f;(q
p

)n)
. (17)
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The estimation of I2 : for k = 0, 1, . . . , n, we have |pk − qk − pn| ≤ pk(1 −
pn−k) + qk ≤ pk + qk. Hence, by (12),

|f(pk − qk) − f(pn)| ≤ ω(f; |pk − qk − pn|) ≤ ω(f;pk + qk)

= ω

(
f;
pk + qk

(q/p)n

(
q

p

)n)
≤
(
1+

pk + qk

(q/p)n

)
ω

(
f;

(
q

p

)n)
. (18)

But (
1+

pk + qk

(q/p)n

)(
p

q

)k
=

(
q

p

)−n((
q

p

)n
+ pk + qk

)(
p

q

)k
=

(
q

p

)−n
((

q

p

)n−k
+

(
p2

q

)k
+ pk

)
≤ 3

(
q

p

)−n

,

because p2 < q < p and k = 0, 1, . . . , n. Then, by (18), we obtain

I2 ≤
n∑
k=0

∣∣∣∣∣ wn,k
(
q

p
; x

)
−w∞,k

(
q

p
; x

) ∣∣∣∣∣ 3
(
q

p

)k−n
ω

(
f;

(
q

p

)n)

= 3

(
q

p

)−n

ω

(
f;

(
q

p

)n) n∑
k=0

(
q

p

)k ∣∣∣∣∣ wn,k
(
q

p
; x

)
−w∞,k

(
q

p
; x

) ∣∣∣∣∣ .
Taking into account the estimation

n∑
k=0

qk|wn,k(q; x) −w∞,k(q; x)| ≤ 2qn

q(1− q)
ln

1

1− q
,

where 0 < q < 1 (see [16, p. 156, (2.9)]), we find that

I2 ≤
6p2

q(p− q)
ln

p

p− q
ω

(
f;

(
q

p

)n)
. (19)

The estimation of I3 : for k ≥ n+1, we have |pk−qk−pn| ≤ pn(1−pk−n)+qk ≤
pn + qn. Hence, by (12) and p2 < q < p, we get

|f(pk − qk) − f(pn)| ≤ ω(f; |pk − qk − pn|) ≤ ω(f;pn + qn)

≤
(
1+

pn + qn

(q/p)n

)
ω

(
f;

(
q

p

)n)
=

(
1+

(
p2

q

)n
+ pn

)
ω

(
f;

(
q

p

)n)
≤ 3ω

(
f;

(
q

p

)n)
.
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Then, by (15),

I3 ≤ 3ω
(
f;

(
q

p

)n) ∞∑
k=n+1

w∞,k
(
q

p
; x

)
≤ 3ω

(
f;

(
q

p

)n)
. (20)

Combining (16)-(17) and (19)-(20), we obtain the statement of the theorem.
�

4 (p, q)-Kantorovich operators

Our (p, q)-Kantorovich operators are defined as follows:

Kn,p,q(f; x) =
[n+ 1]p,q
pn

n∑
k=0

p{k(k−1)−n(n−1)}/2
[
n

k

]
p,q

xk(1− x)n−kp,q

×q−k
∫pn [k+1]p,q

[n+1]p,q

pn+1 [k]p,q
[n+1]p,q

f(u)dRq/pu, (21)

where f ∈ C[0, 1], x ∈ [0, 1], n = 1, 2, . . . , and the Riemann type q-integral of
f over the interval [a, b] (0 ≤ a < b; 0 < q < 1) is given by (see [2], [8])∫b

a

f(u)dRqu = (1− q)(b− a)

∞∑
j=0

qjf(a+ (b− a)qj). (22)

Remark 3 In [15] the (p, q)-integral of f over the interval [0, a] is defined as∫a
0

f(u)dp,qu = (p− q)a

∞∑
j=0

qj

pj+1
f

(
a
qj

pj+1

)
,

where 0 < q < p ≤ 1. But 1
pa /∈ [0, a] for 0 < p < 1 (in the sum the case

j = 0), thus the function f is not defined at 1
pa. For this reason we use the

Riemann type (q/p)-integral in (21).

Theorem 4 If the sequences (pn) and (qn) satisfy 0 < qn < pn ≤ 1 for
n = 1, 2, . . . , and pn → 1, qn → 1, pnn → 1 as n→∞, then

|Kn,pn,qn(f; x) − f(x)| ≤ 2ω(f;
√
δn(x))
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for all f ∈ C[0, 1] and x ∈ [0, 1], where

δn(x) =

{
2(1− pnn)

[n]qn/pn
[n+ 1]qn/pn

+

(
1−

[n]qn/pn
[n+ 1]qn/pn

)2
−

[n]qn/pn
[n+ 1]2

qn/pn

}

× x2 + 3
[n]qn/pn

[n+ 1]qn/pn
x+

1

[n+ 1]2
qn/pn

.

Proof. By (21), (3)-(4) and (1), we have

Kn,p,q(f; x) = [n+ 1]q/p

n∑
k=0

[
n

k

]
q/p

xk(1− x)n−k
q/p
q−k
∫pk [k+1]q/p

[n+1]q/p

pk
[k]q/p

[n+1]q/p

f(u) Rq/pu.

(23)
By simple computations, using (22), we obtain∫pk [k+1]q/p

[n+1]q/p

pk
[k]q/p

[n+1]q/p

1 dRq/pu = pk
[k+ 1]q/p − [k]q/p

[n+ 1]q/p
=

qk

[n+ 1]q/p
, (24)

∫pk [k+1]q/p
[n+1]q/p

pk
[k]q/p

[n+1]q/p

udRq/pu =
qk

[n+ 1]q/p

(
pk

[k]q/p

[n+ 1]q/p
+

p

p+ q

qk

[n+ 1]q/p

)
(25)

and∫pk [k+1]q/p
[n+1]q/p

pk
[k]q/p

[n+1]q/p

u2 dRq/pu =
qk

[n+ 1]q/p

(
p2k

[k]2q/p

[n+ 1]2
q/p

+
2p

p+ q
pk

[k]q/p

[n+ 1]q/p

× qk

[n+ 1]q/p
+

p2

p2 + pq+ q2
q2k

[n+ 1]2
q/p

)
. (26)

In what follows, taking into account (23)-(26), the proof is similar to the
proof of Theorem 1, therefore we omit the details. �

References

[1] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-Calculus in Operator
Theory, Springer, New York, 2012.

[2] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl.,
47 (2004), 281–300.



232 Z. Finta

[3] V. Gupta, R. P. Agarwal, Convergence Estimates in Approximation The-
ory, Springer, New York, 2014.

[4] A. Il’inskii, S. Ostrovska, Convergence of generalized Bernstein polyno-
mials, J. Approx. Theory., 116 (1) (2002), 100–112.

[5] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
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Abstract. In this paper we define a bridge between pairings and col-
orings of the hypergraphs by introducing a generalization of pairs called
t-cakes for t ∈ N, t ≥ 2. For t = 2 the 2-cakes are the same as the well-
known pairs of system of distinct representatives, that can be turned
to pairing strategies in Maker-Breaker hypergraph games, see Hales and
Jewett [12]. The two-colorings are the other extremity of t-cakes, in which
the whole ground set of the hypergraph is one big cake that we divide into
two parts (color classes). Starting from the pairings (2-cake placement)
and two-colorings we define the generalized t-cake placements where we
pair p elements by q elements (p, q ∈ N, 1 ≤ p, q < t, p+ q = t).

The method also gives bounds on the condition of winnings in certain
biased Chooser-Picker games, which can be introduced similarly to Beck
[3]. We illustrate these ideas on the k-in-a-row games for different values
of k on the infinite chessboard.

1 Introduction

Pairings and colorings

Let us start by recalling pairings and two-colorings of hypergraphs. Given a
hypergraph H = (V, E), where V = V(H) and E = E(H) ⊆ P(H) = {S : S ⊆ V}
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Key words and phrases: positional games, Chooser-Picker games, k-in-a-row game, pair-
ing strategies, hypergraph colorings
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are the set of vertices and edges, respectively. A bijection ρ : X → Y, where
X, Y ⊂ V(H) and X ∩ Y = ∅ is a pairing on the hypergraph H. An (x, ρ(x))
pair blocks an A ∈ E(H) edge, if A contains both elements of the pair. If the
pairs of ρ block all A ∈ E(H) edges, we say that ρ is a good pairing of H.

Another, somehow related fundamental notion of hypergraphs are the two-
colorings. A two-coloring of the hypergraphH = (V, E) is a partition of V into
two disjoint (color) classes. We can also define blocking in the following way.
A two-coloring of H blocks an A ∈ E edge, if A has a non-empty intersection
with both color classes. A two-coloring is a good two-coloring, if it blocks
all A ∈ E edges. Now, we underline a close relation between pairings and
two-colorings that is important for us.

Figure 1: Pairings and two-colorings

Main connection between pairings and two-colorings

Note that a pairing induces a family of two-coloring of the hypergraph in the
following sense. Instead of coloring all vertices in one step, we only color a
pair in each step, one element by color 1, the other by color 2, until all pairs
are colored (see Figure 1). The colorings of different pairs are independent.
Finally we color unmatched vertices arbitrarily. If the initial pairing is good,
then our coloring procedure is guaranteed to produce a good two-coloring.

From the other side, instead of pairing one vertex by one vertex, we pair a
subset of vertices (color class 1) by another subset of vertices (color class 2).

Our main goal is to extend this relation into larger sets, namely when not
pairs of elements, but pairs of subsets of vertices are given. We will call these
pairs cakes, as these are motivated by the various cake-cutting problems.
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A generalization of pairs and pairings

Let us call a subset of the hypergraphH = (V, E) t-cake if it consists of exactly
t vertices of H, with a previously given bipartition p, q of its elements, where
t ∈ N, t ≥ 2 and 1 ≤ p, q ∈ N, p, q < t, p+ q = t. A t-cake is balanced if the
two parts contain equal number of elements, i. e. p = q.

In case of infinite hypergraphs, for example, where the vertices are the
squares of the infinite chessboard, t can be infinitely large, too.

Definition 1 A t-cake placement T , briefly a t-placement, on the H =
(V, E) hypergraph is a non-overlapping placement of cakes on the hypergraph,
where the size of every cake is at most t. If a t-placement for an even t

contains only balanced t-cakes, we are talking about p-pairing, where p = t/2.

In a t-placement, the different cakes can have different sized parts, so p
depends on the actual cake. However, in most of our examples we deal with
only p-pairings.

Clearly, a pairing is a 1-pairing and also a 2-placement (t = 2, p = 1). In
fact, any pair has a unique way to be viewed as a cake. A two-coloring is also
a special t-placement, where t = |V | and the parts of the cake are the two
color classes. Similarly to pairings and colorings, the concept of blocking is
also crucial for t-placements.

Definition 2 For a hypergraph H = (V, E) a t-cake blocks an A ∈ E, if both
parts of the cake have a non-empty intersection with A. A t-placement T is
a good t-placement of H, if all edges of H are blocked by a cake of T . An
A ∈ E of H is an unblocked edge, if there is no cake in T blocks A.

We see a kind of monotonicity: if there is a good t-placement for a hyper-
graph H, then there is a good (t+ 1)-placement for H, by definition.

Similarly to pairings, t-placements can be considered as a step by step col-
oring, too. Instead of coloring a pair (as by pairings), we color a cake in each
step, one part of the cake by color 1 and the other one by color 2. In the case
of a good t-placement, the step by step coloring produces a good coloring.

Let us recall now some definitions of hypergraph games.

Hypergraph games

We can define several games on a given hypergraph H = (V, E), where V can
be infinite, but an A ∈ E edge is always finite. The first and second players
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take elements of V in turns. In the Maker-Maker (M-M) version of the game,
the player who is first to take all elements of some edge A ∈ E wins the game.
In the Maker-Breaker (M-B) version, Maker wins by taking every element
of some A ∈ E. The other (usually the second) player, Breaker, wins by taking
at least one vertex of every edge in E. Clearly, there is no draw in this game.
The M-M and M-B games are closely related, since if Breaker wins as a second
player, then the M-M game is a draw. On the other hand, if the first player has
a winning strategy for the M-M game, then Maker also wins the M-B version.
For more on these, see Berlekamp, Conway and Guy [5] or Beck [4].

There are biased (p, q) M-B games, where Maker takes p and Breaker takes
q elements in each turn. In Chvátal and Erdős [6], Hefetz et al. [13], Krivelevich
[14] and Pluhár [15] one can find more examples and applications of biased
games.

Beck introduced Picker-Chooser and Chooser-Picker versions of M-B games
in Beck [2], where the two players are Picker and Chooser. Picker selects a
pair of elements, neither of which had been selected previously, and Chooser
keeps one of these elements and gives the other one back to Picker. In the
Chooser-Picker (C-P) version Chooser plays as Maker and Picker plays as
Breaker, while the roles are swapped in the Picker-Chooser (P-C) game.

Similarly to the M-B games, we define a possible version of the biased
Chooser-Picker game. Note that another version is used by Csernenszky [8].

Definition 3 In the biased(t) Chooser-Picker games Picker as Breaker
takes maximum t elements instead of one pair, and divides this set into two
nonempty, disjoint parts. Chooser keeps one of these parts and gives the other
part back to Picker.

Note that the results on the t-placements give winning conditions on the
biased(t) C-P games right away.

Since in our paper the k-in-a-row type games play an important role, we
define Hk, the hypergraph of the k-in-a-row games.

Definition 4 The vertices of the k-in-a-row hypergraph Hk are the squares
of the infinite (chess)board, i. e. the infinite square grid. The edges of the hy-
pergraph Hk are the k-element sets of consecutive squares in a row horizontally,
vertically or diagonally.

Obviously, a good t-placement for Hk is a good t-placement for Hk+1, too.
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2 Some facts about pairings and t-placements

2.1 Pairings

Pairings are one way to show that Breaker has a winning strategy in hyper-
graph games. A good pairing ρ for a hypergraph H can be turned to a winning
pairing strategy for Breaker in the M-B game on H. Following ρ on H in a
M-B game, for every x ∈ X∪Y element chosen by Maker, Breaker chooses ρ(x)
or in case of x ∈ Y vice versa. If x /∈ X∪Y then Breaker can choose an arbitrary
vertex. Hence Breaker can block all edges and wins the game. Since we will
study the Hk hypergraphs, our illustration is the k-in-a-row Maker-Breaker
game.

The best upper bound for the value of k, where Breaker has a winning
strategy in the k-in-a-row game is given by T. G. L. Zetters (alias A. Brouwer)
[11]. He showed that Breaker can win the 8-in-a-row game. The best lower
bound is given by Allis [1], he has shown that Maker wins the 5-in-a-row game
on the boards of sizes 19×19 and 15×15. The following result is due to Hales
and Jewett [5], which yields only a little weaker upper bound:

Theorem 1 Breaker wins the 9-in-a-row M-B game by a pairing strategy, i.
e. there exists a good pairing for the 9-in-a-row.

Proof. Figure 2 is an extension of a pairing of an 8× 8 torus (framed), where
the pairs have a periodicity 8 in every line. Hence, the pairing blocks all 9-in-
a-row edges. �

A pairing is a domino pairing on the square grid, if all pairs consist of
neighboring cells (horizontally, vertically or diagonally). Note that the pairing
on Figure 2 is a domino pairing.

Csernenszky et al. [9] showed that to decide whether there exists a pairing
strategy for an arbitrary hypergraph, is an NP-complete problem. A counting
type proposition showed [9] that there is no good pairing strategy for Hk,
if k < 9. Our main purpose to introduce the notion of t-placement was to
extend the pairing strategy to a wider class of hypergraph games (for example
Hk where k < 9). Since the previous proposition plays an important role in
our discussion, we formulate the exact statement.

For a hypergraphH let d2(H) (briefly d2) be the greatest number, that many
edges can be blocked by two vertices of H, i. e. d2 is the maximal co-degree.

Proposition 1 [9] If there is a good pairing ρ for the hypergraph H = (V, E),
then d2|X|/2 ≥ |G| must hold for all X ⊂ V, where G = {A : A ∈ E,A ⊂ X}.



238 L. Győrffy, A. Pluhár

Figure 2: Hales-Jewett pairing against 9-in-a-row (Berlekamp et al. [5])

Proof. We will refer to X as a subboard. The edges of G can be blocked
only by pairs coming from X. There are at most |X|/2 such pairs of ρ on the
subboard of size |X|. Since a pair blocks maximum d2 edges, |X|/2 pairs can
block maximum d2|X|/2. So, if there are more edges on the subboard, there
can not be a good pairing. �

With the help of Proposition 1 we can conclude that there is no pairing
strategy for Hk if k < 9. In the hypergraph Hk, d2 = k−1, because a pair can
block at most k−1 edges. This can happen if and only if the pair is a domino.
If X is an n×n subboard for sufficiently large n, then |G| = 4n2+O(n) because
from every square four edges start (a vertical, a horizontal and two diagonal,
except of the boarders). By Proposition 1, we have (k− 1)n2/2 ≥ 4n2+O(n);
that is, k ≥ 9+O(1/n).

2.2 t-placements

As pairings can help Breaker in the M-B and Picker in the normal C-P games,
t-cakes can also help Picker in the biased(t) C-P games. If there is a good
t-placement blocking a hypergraph, then for the corresponding biased(t) C-P
hypergraph game Picker as Breaker has a winning strategy by just giving the
cakes to Chooser in any order.

Let us count the number of hypergraph edges can be blocked by a given
cake, that is the blocking number of the cake. In order to generalize the
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co-degree argument, we also have to take into consideration the shape and
bipartition of the cake. For a given t ∈ N let dt be the greatest blocking
number among all t-cakes. A t-cake with blocking number dt is called a best
t-cake. Note that dt is a monotonic function of t, because if a t-cake blocks dt
edges in a hypergraph, then adding any part by a single vertex the obtained
(t + 1)-cake blocks all previously blocked edges, too. However, it is easy to
see that the ratio dt/t — the best average blocking number per vertex — is
not necessarily monotonic in t. Still, a case analysis shows that for the Hk
hypergraph that the ratio dt/t is monotonic in t at least if t ≤ 8, as we will
see later (for t ≥ 9 it is undecided yet). With all these we can spell out the
following generalization of Proposition 1.

Proposition 2 If there is a good t-placement of H = (V, E) such that d2/2 ≤
d3/3 ≤ · · · ≤ dt/t, then dt

t |X| ≥ |G| for every X ⊂ V, where G = {A : A ∈
E,A ⊂ X}.

From now on we assume that V is the set of squares of the infintie square
grid. In this case a t-cake has geometrical shape. In the next section we consider
some possible small t-cakes forHk, and we will list the best t-cakes for all t ≤ 8.

3 Some t-cakes and the maximal blocking numbers

The most interesting and treatable examples are the 4-cakes, we start with
those.

3.1 4-cakes in general

Figure 3: Some 4-cakes

On Figure 3 there are some 4-cakes. The partitions of the cakes are the
white and gray squares. In the first row on Figure 3, all 4-cakes block 4k − 4
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edges of the k-in-a-row. However, the cakes in the second row block fewer than
4k− 4 edges.

For example, 4-cake a blocks in two vertical and two horizontal direc-
tions: along the lines (a1, a3) and (a2, a4) vertically, while along (a1, a2)
and (a3, a4) horizontally. In detail, (a1, a3) blocks k− 1 edges in its direction
as a single domino, because a1 and a3 are neighboring cells and they are in
different parts of the cake a. The same is true for the pairs (a2, a4), (a1, a2)
and (a3, a4). Adding up, the cake a blocks 4(k− 1) edges. The pairs (a1, a4)
and (a2, a3) do not block any k-in-a-row edges because those are in the same
parts of the cake a, hence a does not block any diagonal edges.

Cakes b and c (or their rotated copies) block edges on two diagonal and on
two horizontal (or rotatedly vertical) lines, while d (which does not contain
the central square) blocks in four diagonal directions. Since on each line there
are neighboring cells (dominoes) blocking, those block k − 1 edges per line,
which adds up 4(k− 1).

Cakes e and f block only in three directions, adding up only to 3(k − 1)
edges. The cakes g and h block in four directions, but not only by neighboring
cells. Obviously, cake g blocks 4k− 5 and cake h blocks 4k− 6 edges.

3.2 The maximal blocking numbers of t-cakes for 2 ≤ t ≤ 8

The 2-cakes are the pairs. One pair blocks maximum k − 1 edges of the k-
in-a-row. Hence, the edges of Hk can be blocked by pairs only for k ≥ 9, see
Proposition 1.

Figure 4: The best 3-cakes (first row) and the best 5-, 6-, 7- and 8-cakes

It is easy to see that a 3-cake (with a 1+2 bipartition) cannot block more
than 2k−2 edges of Hk. On the first row of Figure 4 we listed all best 3-cakes.
3-cake a blocks (k− 1) + (k− 1) edges in a horizontal and a vertical, d in two
diagonal, b and c in a diagonal and in a vertical (rotatedly in a horizontal)
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direction. Since all other 3-cakes block fewer edges than the previous cakes,
dt = 2k−2. Applying the Proposition 2 on an X = n×n board for sufficiently
large n, we get (2k − 2)n2/3 ≥ 4n2 + O(n), so k ≥ 7 + O(1/n), hence a 3-
placement cannot block H6, but theoretically it can block H7 or H8. However,
it is still an open question if there exists any good 3-placement for 7- or 8-in-
a-row.

In the previous subsection on the first row of Figure 3 we listed 4-cakes
blocking 4k−4 edges. We note that this is the maximum number of edges that
can be blocked by any 4-cake. Actually, the first row of Figure 3 contains the
complete list of the best 4-cakes. Hence, d4 = 4k−4. Applying the Proposition
2 we get (4k−4)n2/4 ≥ 4n2+O(n), so k ≥ 5+O(1/n). Therefore, theoretically
there can exist a good 4-placement for H5 and H6, but these questions are
undecided yet.

In the second row of the Figure 4, there are the best t-cakes for 5 ≤ t ≤ 8,
named C5, C6, C7 and C8. In the following table we summarize the values of
dt, dt/t and the lower bounds of k drawn from Proposition 2, for that a
t-placement can block Hk.

t 2 3 4 5 6 7 8

dt k− 1 2k− 2 4k− 4 5k− 4 7k− 6 9k− 8 11k− 9
dt
t

1
2k−

1
2

2
3k−

2
3 k− 1 k− 4

5
7
6k− 1

9
7k−

8
7

11
8 k−

9
8

k ≥ 9 7 5 4.8 4.29 4 3.73

Hereafter we can spell out results on Hk. Namely, for a given k which is the
smallest value of t for that there exists a good t-placement for Hk.

4 k-in-a-row

At first we list our results in a table. Columns and rows stand for the values of
k and t, respectively. “Yes” designates the existence of a good placement, “No”
means that there is no good placement, while the case of “?” is undecided yet.

Some of the “No’s” are the simple consequences of the previous propositions.
The rest of the paper is devoted to prove the remaining claims which are
summarized in the table. In the rest we will use X and O for the colors (as
usually in the Tic-Tac-Toe game).
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k \ t 2 3 4 5 6 7 8 t ≥ 9 ∞
2 No No No No No No No No No

3 No No No No No No No No Yes

4 No No No No No No No ? Yes

5 No No ? ? ? ? Yes Yes Yes

6 No No ? ? Yes Yes Yes Yes Yes

7 No ? Yes Yes Yes Yes Yes Yes Yes

8 No ? Yes Yes Yes Yes Yes Yes Yes

9 Yes Yes Yes Yes Yes Yes Yes Yes Yes

4.1 The case 2-in-a-row

Remark 1 There exists no good two-coloring of the infinite board, which can
block all H2 edges on the board.

Proof. Assume that we have a good coloring. Let us choose an arbitrary
square having the color say X. If there is an other X among its neighbors, we
can not get a good coloring. But if all of its eight neighbors have color O, then
among the neighbors there are two monochromatic cells next to each other. �

4.2 The case 3-in-a-row

The next theorem is in fact a special case of the Theorem 2 in Dumitrescu
and Radoičić [10]. We give the sketch of their proofs.

Figure 5: Colorings blocking 3- and 4-in-a-row edges

Theorem 2 There is a unique good two-coloring of the board for H3.
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Proof. Following the left hand side of the Figure 5, there are at least two
edge-neighboring cells on the board, which have the same color (colored by
light gray on Figure 5). If not, we would get the infinite chessboard coloring
with arbitrary long monochromatic diagonal lines.

Assume the three X’s with index 1 in our coloring. O2, O3, O4 and X5
are forced if we want to exclude monochromatic 3-in-a-row edges. The square
marked by an “?” gives a contradiction.

This proves that if we take two edge-neighboring X’s (let us say in a row),
then any square right above or under them must contain an O. This ensures
that the global coloring must be the middle coloring of Figure 5. �

Corollary 1 There is no good t-placement with finite t for H3.

Proof. This follows from the uniqueness of the coloring of the Theorem 2.
If there were a good t-placement with a finite t, then the colorings of some
cake-parts could be switched, which would result in infinite many good
colorings. �

4.3 The case 4-in-a-row

Of course by the monotonicity in k the previous coloring of H3 blocks also
H4. For H4 there is an other good two-coloring in the paper of Dumitrescu
and Radoičić [10], see on the right hand side of the Figure 5. Note that this
coloring blocks four consecutive monochromatic squares on all lines, including
every rational slope. One may ask, how many good two-colorings are for H4?

It is also an open question if there is a good t-placement with finite t for
H4. From Proposition 2 we know a lower bound, that there are no good t-
placement for H4 for t ≤ 6. On the other hand, Observation 2 shows that
there are no t-placement for t=7 and 8, too.

Remark 2 There are no good t-placement for t=7 and 8 for H4.

Proof. Consider the following. For t = 7, 8 a good placement must contain
at least one cake C7 and/or C8 of Figure 4. (Any other 7- and 8-cakes block
fewer edges than it would be enough to block H4.) But C7 and C8 contain
three consecutive squares in a vertical row in the same part of the cakes. The
color of the two squares neighboring the three consecutive squares in C7 and
C8 is uncontrolled and results in an unblocked 4-in-a-row. �
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4.4 The cases 9- or more-in-a-row

Theorem 1 shows “Yes” for t = 2, k = 9. Because of monotonicity, it also holds
for every k ≥ 9. Moreover, it follows from Proposition 1, that pairings cannot
block all k-in-a-row edges on the board for k < 9.

4.5 The cases 7-in-a-row and 5-in-a-row

Theorem 3 There is a 6-placement that blocks all 7-in-a-row edges on the
board.

Proof. Let us consider the 6-placement on Figure 6, where the different parts
of the cakes are colored by gray and white. That placement clearly blocks
horizontally three, vertically four and diagonally seven consecutive squares in
every row. �

Figure 6: 6- and 8-cakes blocking 7- and 5-in-a-row

Theorem 4 There is an 8-placement that blocks all 5-in-a-row edges on the
board.

Proof. Modifying the previous 6-cakes by two additional squares, we obtain
the 8-placement on the right of Figure 6. That placement blocks all 5-in-a-
row edges on the board, even more, it blocks every three consecutive squares
horizontally. �

Corollary 2 Theorem 4 implies that Picker as Breaker wins the biased(8)
C-P 5-in-a-row game.
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4.6 The case 7-in-a-row by 4-cakes

Figure 7: 2-pairing blocks 7-in-a-row edges

Theorem 5 There is a good 4-placement for the 7-in-a-row.

Proof. The 4-placement on Figure 7 blocks every 7-in-a-row edges. �

Note that the same placement blocks all 8-in-a-row edges by monotonicity.

Corollary 3 Theorem 5 implies that Picker as Breaker wins the biased(4)
C-P 7-in-a-row game.

Even more, from Csernenszky [7] we know that Picker wins the normal C-P
7-in-a-row game, too.

So far all t-placements we gave were also a t/2-pairing by definition. Our
last example for H6 shows that there are other interesting good t-placements.

4.7 The case 6-in-a-row

Theorem 6 There is a good 6-placement for H6.

Proof. Let us consider the two types of 6-cakes placed alternately in the 6-
placement of Figure 8. That configuration obviously provides the appropriate
blocking. �

Corollary 4 Theorem 6 implies that Picker as Breaker wins the biased(6)
C-P 6-in-a-row game.
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Figure 8: 6-cakes block 6-in-a-row

5 Conclusion and open problems

In this paper we built a bridge between the pairings and the two-colorings of
hypergraphs. We have introduced a new object, the t-cakes, and illustrated
their use in the game k-in-a-row for some k ∈ N.

The 9-in-a-row Maker-Maker game is a draw, even more, Breaker wins the
Maker-Breaker version of it by a pairing strategy. The best result is due to
Brouwer (see T.G.L. Zetters [11]) who proved some 35 years ago that Breaker
can win the 8-in-a-row, while Csernenszky et al. [9] showed that it cannot
be done by a pairing strategy. On the other direction, Allis [1] showed that
the first player wins the Maker-Maker 5-in-a-row game on the boards of sizes
19× 19 and 15× 15. The cases of the infinite board and k = 6 and k = 7 are
still open.

Picker (as Breaker) wins the Chooser-Picker version of the 7-in-a-row game
(Csernenszky [7]); the cases for k ≤ 6 are open. In the biased versions — in
which Picker selects t elements and divides it into two parts, then Chooser
takes one of those parts — Picker wins even if k ≤ 6.

While there are no good pairings for the 7-in-a-row game, there is a good
2-pairing (4-placement) which is a generalization of pairings. Obviously, by
monotonicity, it works for 8-in-a-row, too. In the case of 6-in-a-row, there is a
good 6-placement, that means Picker as Breaker wins the biased(6) 6-in-a-row
game. To win the 5-in-a-row, Picker has a good 4-pairing (8-placement). It is
still open if there are good t-placements for 4 ≤ t ≤ 7.

We think that no finite cakes can block the winning sets of the hypergraph
4-in-row. Still, we can prove this only in the case when the sizes of the cakes
are not larger than eight. There are more than one good two-colorings (∞-
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placements) blocking all 4-in-a-row edges on the board. The number and the
structure of those good colorings are still open questions.

The 3-in-a-row case is very simple, there is a unique good two-coloring. Then
the biased(∞) k-in-a-row game is that Picker divides the infinite square grid
into two parts, neither of those containing three consecutive squares in a row.
Finally, there are no two-colorings blocking all 2-in-a-row edges.
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Abstract. For any given natural number an arrangement of growing size
circles, a packing of the plane will be constructed such that its packing
density coincides – in the asymptotical sense – with that of the ’classical’
hexagonal circle packing!

1 The construction

For a natural n ≥ 3 let us define a special circle packing as follows. First, we
circumscribe the unit circle with n circles of the same radius rn,1 such that
they also touch their both neighbours. Thus we get zone one, Zn,1.

Then we draw n circles of the same radius rn,2 such that they touch two
circles from Zn,1 and also their both neighbours with radius rn,2, getting this
way Zn,2, etc.

Denote by Sn,k the set of circles of the first k zones:

Sn,k = ∪ki=1Zn,i,

and let
Sn = ∪∞k=1Sn,k.

Then Sn is a packing of the plane, an infinite set of circles with pairwise disjoint
interiors, and a natural problem is to find the fraction of the plane filled by
the circles making up this packing.
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Figure 1. The set S8,3, i.e. the first three zones for n = 8.

2 The main theorem

The packing density of the arrangement Sn related to a bounded domain
D ⊂ R2 is the ratio ∑

|C ∩D|

|D|
, C ∈ Sn,

where | · | denotes the area of its argument. It is customary to define (see e.g.
Kuperberg [1]) the packing density in an Euclidean space by means of a limit,
taking e.g. balls Br of radius r centered at the origin:

lim
r→∞

∑
|C ∩ Br|
|Br|

, C ∈ Sn.
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However, in our case taking polygons is more capable. Denote by Pn,k the
regular n−gon with vertices at the centres of circles in Zn,k, and let

δn,k =
|Sn ∩ Pn,k|

|Pn,k|
≡ |Sn,k ∩ Pn,k|

|Pn,k|
.

Then,

δn = lim
k→∞ δn,k

is the packing density of Sn, and

δ∗ = lim
n→∞ δn

is the quantity we are interested in.

Theorem 1 With the notations above we have

δ∗ =
π

2
√
3
.

Remark 1 As is known (see e.g. the survey on the first page in [2], showing
the contributions of Lagrange, A. Thue, L. Fejes Tóth to the subject), the
optimal packing density for circles is just this quantity - a curious coincidence!

Remark 2 The interested reader should also consult [3] and [4] for further
information.

3 The proof

Let n, k ∈ N, n ≥ 3 be given. Assume that the centre of one of the circles
belonging to Zn,1 lies on the x-axis, i.e. at An,1 := (1+ rn,1, 0).

Denote by Bn,1 the point, where the half-line y = tan(πn) x is tangent to the
circle chosen. It suffices to consider the ’basic’ sector Bn,1OAn,1, as is seen on
Figure 2 for the case n = 8, k = 3.

It is easy to see that the centre An,i of the i − th circle in the basic sector
lies on the x-axis for i odd, and on the line y = tan(πn) x for i even, and just
reversely for the B ′n,is. Also note that the angles at the B ′n,is are rectangles.
Introduce now the notations

sn = sin
(π
n

)
, tn = tan

(π
n

)
.
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Figure 2. The basic sector for S8,3

The radius rn,1 can be obtained from the triangle Bn,1OAn,1 :

sn =
rn,1

1+ rn,1
⇒ rn,1 =

sn

1− sn

Since An,1Bn,2An,2Bn,1 and An,2Bn,3An,3Bn,2 are similar quadrilaterals (in
fact, both are inscribed quadrilaterals with two rectangles), it follows that
rn,2/rn,1 = rn,3/rn,2, giving in general

rn,k = rn,1 q
k−1
n , qn =

rn,2
rn,1

.

The area of the polygon Pn,k is 2n times the area of triangle OAn,kBn,k, i.e.

|Pn,k| =
n

tn
r2n,k =

nr2n,1
tn

q2k−2n .

The sum of areas of the circles in Sn,k is

nπ

k∑
i=1

r2n,i = nπr
2
n,1

k∑
i=1

q2k−2n = nπr2n,1
q2kn − 1

q2n − 1
.

However, the contribution of the k−th zone to |Zn,k ∩ Pn,k| is only n−2
2 πr

2
n,k,

instead of nπr2n,k. Consequently we have

|Sn,k ∩ Pn,k| = πr2n,1q2k−2n

( n

q2n − 1
+
n− 2

2

)
−
πnr2n,1
q2n − 1

.
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When calculating the limit of δn,k for k→ ∞, the magnitude of the quotient
qn = rn,2

rn,1
is decisive. Introducing the new variable

t = tan
( π
2n

)
(cf. the standard trigonometric substitution t = tan(x2 ) in calculus) we have

sn =
2t

1+ t2
, tn =

2t

1− t2
,

and also

rn,1 =
2t

(1− t)2
, rn,2 =

2t(u+ 2t
√
v)

(1+ t)2(1− t)4
,

where
u = 1+ 4t2 − t4, v = (3− t2)(1+ t2).

The radius rn,2 can be calculated by considering the triangles An,1Bn,2An,2
and OBn,2An,2. Analysing the function t→ rn,2

rn,1
we see that it is greater than

one for 0 < t < 1, or equivalently, that the relation qn > 1 holds for n ≥ 3.
Therefore, in case of k→ ∞ the second (negative) term in |Sn,k ∩ Pn,k| can be
omitted to get

δn =
πtn

r2n,2 − r
2
n,1

(
r2n,1 +

n− 2

2n
(r2n,2 − r

2
n,1)

)
.

With the notation ω = n−2
2n we obviously have 0 < ω < 1 for n ≥ 3, which

yields in a natural way the lower and upper bounds

δ0n < δn < δ
1
n.

Since the difference of these bounds is simply

δ1n − δ
0
n = πtn = O(t) (t→ 0),

we can replace δn e.g. by its lower bound

δ0n =
πtnr

2
n,1

r2n,2 − r
2
n,1

=
π(1− t2)3

2(2tv+ u
√
v)
.

Having gotten rid of the singularity, we can immediately substitute t = 0

(corresponding to n→ ∞) to get the desired result

δ∗ = lim
n→∞ δn.

�

Considering this surprising coincidence, one puts the question: is there a
more general principle, this conclusion can be drawn from?
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Abstract. In this paper, we study the existence of periodic and non-
negative periodic solutions of the nonlinear neutral differential equation

d

dt
x (t) = −a (t)h (x (t))+

d

dt
Q (t, x (t− τ (t)))+G (t, x (t) , x (t− τ (t))) .

We invert this equation to construct a sum of a completely continuous
map and a large contraction which is suitable for applying the modifica-
tion of Krasnoselskii’s theorem. The Caratheodory condition is used for
the functions Q and G.
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1 Introduction

Theory of functional differential equations with delay has undergone a rapid
development in the previous fifty years. We refer the readers to [1]-[6], [8]-[15]
and references therein for a wealth of reference materials on the subject. More
recently researchers have given special attentions to the study of equations
in which the delay argument occurs in the derivative of the state variable as
well as in the independent variable, so-called neutral differential equations. In
particular, qualitative analysis such as periodicity and positivity of solutions
of neutral differential equations has been studied extensively by many authors.

Recently, in [1], the authors discussed the existence and positivity of periodic
solutions for the first-order delay differential equation

x′ (t) = −a (t)h (x (t)) +G (t, x (t− τ (t))) , (1)

by employing the Krasnoselskii-Burton’s fixed point theorem, the authors ob-
tained existence results for periodic and positive periodic solutions.

In [14], the Krasnoselskii-Burton’s fixed point theorem was used to estab-
lish the existence of periodic solutions for the first-order nonlinear neutral
differential equation

d

dt
x (t) = −a (t)h (x (t)) + c (t) x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) . (2)

In [8], the authors used Krasnoselskii’s fixed point theorem to establish the
existence of periodic solutions for the nonlinear neutral differential equation

d

dt
x (t) = −a (t) x (t) +

d

dt
Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) . (3)

Also, the authors used the contraction mapping principle to show the unique-
ness of periodic solutions and stability of the zero solutions of (3).

In the current paper, we are interested in the analysis of qualitative theory of
periodic and nonnegative periodic solutions of neutral differential equations.
Inspired and motivated by the works mentioned above and the papers [1]-
[6], [8]-[15] and the references therein, we study the existence of periodic and
nonnegative periodic solutions of the nonlinear neutral differential equation

d

dt
x (t) = −a (t)h (x (t)) +

d

dt
Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) ,

(4)
where a is a positive continuous real-valued function. The function h : R→ R
is continuous, Q : R × R → R and G : R × R × R → R satisfying the
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Caratheodory condition. Our purpose here is to use a modification of Kras-
noselskii’s fixed point theorem due to Burton (see [7], Theorem 3) to show
the existence and nonnegativity of periodic solutions for equation (4). Clearly,
the present problem is totally nonlinear so that the variation of parameters
can not be applied directly. Then, we resort to the idea of adding and sub-
tracting a linear term. As noted by Burton in [7], the added term destroys the
contraction but it replaces with a so called large contraction which is suitable
for fixed point theory. During the process we have to transform (4) into an
integral equation written as a sum of two mappings, one is a large contraction
and the other is completely continuous. After that, we use a variant of Kras-
noselskii’s fixed point theorem, to show the existence and nonnegativity of a
periodic solution.

Note that in our consideration the neutral term d
dtQ (t, x (t− τ (t))) of (4)

produces nonlinearity in the derivative term d
dtx (t− τ (t)). The neutral term

d
dtx (t− τ (t)) of (2) in [14] enters linearly. As a consequence, our analysis is
different from that in [14].

The organization of this paper is as follows. In Section 2, we present the
inversion of totally nonlinear neutral differential equation (4), some definitions
and Krasnoselskii-Burton’s fixed point theorem. For details on Krasnoselskii-
Burton’s theorem we refer the reader to [7]. In Sections 3 and 4, we present
our main results on existence of periodic and nonnegative periodic solutions
of (4).

2 Preliminaries

For T > 0 define PT = {φ : φ ∈ C (R,R) , φ (t+ T) = φ (t)} where C (R,R) is
the space of all real valued continuous functions. Then PT is a Banach space
when it is endowed with the supremum norm

‖x‖ = max
t∈[0,T ]

|x (t) |.

In this paper we assume that

a (t− T) = a (t) , τ (t− T) = τ (t) , τ (t) ≥ τ∗ > 0, (5)

with τ continuously and τ∗ is constant, a is positive and

1− e−
∫t
t−T

a(s)ds ≡ 1

η
6= 0. (6)
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The functions Q (t, x) and G (t, x, y) are periodic in t of period T . That is

Q (t− T, x) = Q (t, x) , G (t− T, x, y) = G (t, x, y) . (7)

The following lemma is fundamental to our results.

Lemma 1 Suppose (5)–(7) hold. If x ∈ PT , then x is a solution of equation
(4) if and only if

x (t)

= η

∫ t
t−T

κ (t, u)a (u) [x(u) − h (x (u))]du+Q (t, x (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u, x (u− τ (u))) +G (u, x (u) , x (u− τ (u)))]du,

(8)

where

κ (t, u) = e−
∫t
u
a(s)ds. (9)

Proof. Let x ∈ PT be a solution of (4). Rewrite the equation (4) as

d

dt
[x (t) −Q (t, x (t− τ (t)))] + a (t) [x (t) −Q (t, x (t− τ (t)))]

= a (t) x (t) − a (t)h (x (t)) − a (t)Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t)))

= a (t) [x (t) − h (x (t))] − a (t)Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) .

Multiply both sides of the above equation by e
∫t
0
a(s)ds and then integrate from

t− T to t to obtain∫ t
t−T

[
(x (u) −Q (u, x (u− τ (u)))) e

∫u
0
a(s)ds

]′
du

=

∫ t
t−T

a (u) [x (u) − h (x (u))] e
∫u
0
a(s)dsdu

+

∫ t
t−T

[−a (u)Q (u, x (u− τ (u))) +G (u, x (u) , x (u− τ (u)))] e
∫u
0
a(s)dsdu.
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As a consequence, we arrive at

(x (t) −Q (t, x (t− τ (t)))) e
∫t
0
a(s)ds

− (x (t− T) −Q (t− T, x (t− T − τ (t− T)))) e
∫t−T
0

a(s)ds

=

∫ t
t−T

a (u) [x (u) − h (x (u))] e
∫u
0
a(s)dsdu

+

∫ t
t−T

[G (u, x (u) , x (u− τ (u))) − a (u)Q (u, x (u− τ (u)))] e
∫u
0
a(s)dsdu.

By dividing both sides of the above equation by exp(
∫t
0 a (s)ds) and using the

fact that x (t) = x (t− T), we obtain

x (t) −Q (t, x (t− τ (t)))

= η

∫ t
t−T

a (u) [x (u) − h (x (u))] e−
∫t
u
a(s)dsdu

+ η

∫ t
t−T

[G (u, x (u) , x (u− τ (u))) − a (u)Q (u, x (u− τ (u)))] e
∫u
0
a(s)dsdu.

(10)

The converse implication is easily obtained and the proof is complete. �

Now, we give some definitions which we are going to use in what follows.

Definition 1 The map f : [0, T ] × Rn → R is said to satisfy Carathéodory
conditions with respect to L1 [0, T ] if the following conditions hold.
(i) For each z ∈ Rn, the mapping t 7→ f (t, z) is Lebesgue measurable.
(ii) For almost all t ∈ [0, T ], the mapping z 7→ f (t, z) is continuous on Rn.
(iii) For each r > 0, there exists αr ∈ L1 ([0, T ] ,R) such that for almost all

t ∈ [0, T ] and for all z such that |z| < r, we have |f (t, z)| ≤ αr (t).

T. A. Burton observed that Krasnoselskii’s result (see [12]) can be more
attractive in applications with certain changes and formulated Theorem 1
below (see [7] for the proof).

Definition 2 Let (M, d) be a metric space and assume that B : M → M.
B is said to be a large contraction, if for ϕ, ψ ∈ M, with ϕ 6= ψ, we have
d(Bϕ,Bψ) < d(ϕ,ψ), and if ∀ε > 0, ∃δ < 1 such that

[ϕ,ψ ∈M, d (ϕ,ψ) ≥ ε] =⇒ d (Bϕ,Bψ) < δd (ϕ,ψ) .
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It is proved in [7] that a large contraction defined on a closed bounded and
complete metric space has a unique fixed point.

Theorem 1 (Krasnoselskii-Burton) Let M be a closed bounded convex
nonempty subset of a Banach space (B, ‖.‖). Suppose that A and B map M
into M such that
(i) A is completely continuous,
(ii) B is large contraction,
(ii) x, y ∈M, implies Ax+ By ∈M.

Then there exists z ∈M with z = Az+ Bz.

3 Existence of periodic solutions

To apply Theorem 1, we need to define a Banach space B, a closed bounded
convex subset M of B and construct two mappings; one is a completely con-
tinuous and the other is large contraction. So, we let (B, ‖.‖) = (PT , ‖.‖) and

M = {ϕ ∈ PT , ‖ϕ‖ ≤ L} (11)

with L ∈ (0, 1]. For x ∈M, let the mapping H be defined by

H (x) = x− h (x) , (12)

and by (8), define the mapping S : PT → PT by

(Sϕ) (t)

= η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du+Q (t, ϕ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ϕ (u− τ (u))) +G (u,ϕ (u) , ϕ (u− τ (u)))]du.

(13)

Therefore, we express the above equation as

(Sϕ) (t) = (Aϕ) (t) + (Bϕ) (t) ,

where A,B : PT → PT are given by

(Aϕ) (t)

= Q (t, ϕ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ϕ (u− τ (u))) +G (u,ϕ (u) , ϕ (u− τ (u)))]du.

(14)
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and

(Bϕ) (t) = η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du. (15)

We will assume that the following conditions hold.

(H1) a ∈ L1 [0, T ] is bounded.

(H2) Q, G satisfies Carathéodory conditions with respect to L1 [0, T ].

(H3) There exists periodic functions q1, q2 ∈ L1 [0, T ], with period T , such
that

|Q(t, x)| ≤ q1(t)|x|+ q2(t).

(H4) There exists periodic functions g1, g2, g3 ∈ L1 [0, T ], with period T , such
that

|G (t, x, y)| ≤ g1 (t) |x|+ g2 (t) |y|+ g3 (t) .

Now, we need the following assumptions

q1 (t)L+ q2 (t) ≤
γ1
2
L, (16)

g1 (t)L+ g2 (t)L+ g3 (t) ≤ γ2La (t) , (17)

J (γ1 + γ2) ≤ 1, (18)

where γ1, γ2 and J are positive constants with J ≥ 3.

Lemma 2 For A defined in (14), suppose that (5)–(7), (16)–(18) and (H1)–
(H4) hold. Then A :M→M.

Proof. Let A be defined by (14). Obviously, Aϕ is continuous. First by (5)
and (7), a change of variable in (14) shows that (Aϕ) (t+ T) = (Aϕ) (t). That
is, if ϕ ∈ PT then Aϕ is periodic with period T . Next, let ϕ ∈M, by (16)–(18)
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and (H1)–(H4) we have

|(Aϕ) (t)|

≤ |Q (t, ϕ (t− τ (t)))|

+ η

∫ t
t−T

κ (t, u) (a (u) |Q (u,ϕ (u− τ (u)))|+ |G (u,ϕu,ϕ (u− τ (u)))|)du

≤ q1 (t) |ϕ (t− τ (t))|+ q2 (t)

+ η

∫ t
t−T

κ (t, u)a (u) [q1 (u) |ϕ (u− τ (u)) |+ q2 (u)]du

+ η

∫ t
t−T

κ (t, u) [g1 (u) |ϕ (u) |+ g2 (u) |ϕ (u− τ (u)) |+ g3 (u)]du

≤ γ1L+ γ2L ≤
L

J
≤ L.

That is Aϕ ∈M. �

Lemma 3 For A :M→M defined in (14), suppose that (5)–(7), (16)–(18)
and (H1)–(H4) hold. Then A is completely continuous.

Proof. We show that A is continuous in the supremum norm, Let ϕn ∈ M
where n is a positive integer such that ϕn → ϕ as n→∞. Then

|(Aϕn) (t) − (Aϕ) (t)|

≤ |Q (t, ϕn (t− τ (t))) −Q (t, ϕ (t− τ (t)))|

+ η

∫ t
t−T

κ (t, u)a (u) |Q (u,ϕn (u− τ (u))) −Q (u,ϕ (u− τ (u)))|du

+ η

∫ t
t−T

κ (t, u) |G (u,ϕn(u), ϕn (u− τ (u))) −G (u,ϕ (u) , ϕ (u− τ (u)))|du

By the Dominated Convergence Theorem, limn→∞ |(Aϕn) (t) − (Aϕ) (t)| = 0.
Then A is continuous.

We next show that A is completely continuous. Let ϕ ∈M, then, by Lemma
2, we see that

‖Aϕ‖ ≤ L.
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And so the family of functions Aϕ is uniformly bounded. Again, let ϕ ∈ M.
Without loss of generality, we can pick ω < t such that t−ω < T . Then

|(Aϕ) (t) − (Aϕ) (ω)|

≤ |Q (t, ϕ (t− τ (t))) −Q (ω,ϕ (ω− τ (ω)))|

+ η

∣∣∣∣∫ t
t−T

κ (t, u)a (u)Q (u,ϕ (u− τ (u)))du

−

∫ω
ω−T

κ (ω,u)a (u)Q (u,ϕ (u− τ (u)))du

∣∣∣∣
+ η

∣∣∣∣∫ t
t−T

κ (t, u)G (u,ϕ (u) , ϕ (u− τ (u)))du

−

∫ω
ω−T

κ (ω,u)G (u,ϕ (u) , ϕ (u− τ (u)))du

∣∣∣∣
≤ |Q (t, ϕ (t− τ (t))) −Q (ω,ϕ (ω− τ (ω)))|

+ 2ηκ0

∫ t−T
ω−T

[
a (u)qL (u) + g√2L (u)

]
du

+ η

∫ω
ω−T

|κ (t, u) − κ (ω,u)|
[
a (u)qL (u) + g√2L (u)

]
du

≤ |Q (t, ϕ (t− τ (t))) −Q (ω,ϕ (ω− τ (ω)))|

+ 2ηκ0

∫ t
ω

[
a (u)qL (u) + g√2L (u)

]
du

+ η

∫ T
0

|κ (t, u) − κ (ω,u)|
[
a (u)qL (u) + g√2L (u)

]
du,

where κ0 = maxu∈[t−T,t] {κ (t, u)}, then by the Dominated Convergence Theo-
rem |(Aϕ) (t) − (Aϕ) (ω)| → 0 as t −ω → 0 independently of ϕ ∈ M. Thus
(Aϕ) is equicontinuous. Hence by Ascoli-Arzela’s theorem A is completely
continuous. �

Now, we state an important result see [1, Theorem 3.4] and for convenience
we present below its proof, we deduce by this theorem that the following are
sufficient conditions implying that the mapping H given by (12) is a large
contraction on the set M.

(H5) h : R→ R is continuous on [−L, L] and differentiable on (−L, L),

(H6) the function h is strictly increasing on [−L, L],

(H7) supt∈(−L,L) h
′ (t) ≤ 1.
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Theorem 2 Let h : R → R be a function satisfying (H5)–(H7). Then the
mapping H in (12) is a large contraction on the set M.

Proof. Let ϕ,ψ ∈M with ϕ 6= ψ. Then ϕ (t) 6= ψ (t) for some t ∈ R. Let us
denote the set of all such t by D (ϕ,ψ), i.e.,

D (ϕ,ψ) = {t ∈ R : ϕ (t) 6= ψ (t)} .

For all t ∈ D (ϕ,ψ), we have

|(Hϕ) (t) − (Hψ) (t)|

≤ |ϕ (t) −ψ (t) − h (ϕ (t)) + h (ψ (t))|

≤ |ϕ (t) −ψ (t)|

∣∣∣∣1− h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)

∣∣∣∣ . (19)

Since h is a strictly increasing function we have

h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)
> 0 for all t ∈ D (ϕ,ψ) . (20)

For each fixed t ∈ D (ϕ,ψ) define the interval It ⊂ [−L, L] by

It =

{
(ϕ (t) , ψ (t)) if ϕ (t) < ψ (t) ,
(ψ (t) , ϕ (t)) if ψ (t) < ϕ (t) .

The Mean Value Theorem implies that for each fixed t ∈ D (ϕ,ψ) there exists
a real number ct ∈ It such that

h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)
= h′ (ct) .

By (H6) and (H7) we have

0 ≤ inf
u∈(−L,L)

h′ (u) ≤ inf
u∈It

h′ (u) ≤ h′ (ct) ≤ sup
u∈It

h′ (u) ≤ sup
u∈(−L,L)

h′ (u) ≤ 1.

(21)
Hence, by (19)–(21) we obtain

|(Hϕ) (t) − (Hψ) (t)| ≤ |ϕ (t) −ψ (t)|

∣∣∣∣1− inf
u∈(−L,L)

h′ (u)

∣∣∣∣ , (22)

for all t ∈ D (ϕ,ψ). This implies a large contraction in the supremum norm. To
see this, choose a fixed ε ∈ (0, 1) and assume that ϕ and ψ are two functions
in M satisfying

ε ≤ sup
t∈(−L,L)

|ϕ (t) −ψ (t)| = ‖ϕ−ψ‖ .
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If |ϕ (t) −ψ (t)| ≤ ε
2 for some t ∈ D (ϕ,ψ), then we get by (21) and (22) that

|(Hϕ) (t) − (Hψ) (t)| ≤ |ϕ (t) −ψ (t)| ≤ 1
2
‖ϕ−ψ‖ . (23)

Since h is continuous and strictly increasing, the function h
(
u+ ε

2

)
− h (u)

attains its minimum on the closed and bounded interval [−L, L]. Thus, if ε2 ≤
|ϕ (t) −ψ (t)| for some t ∈ D (ϕ,ψ), then by (H6) and (H7) we conclude that

1 ≥ h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)
> λ,

where

λ :=
1

2L
min
{
h
(
u+

ε

2

)
− h (u) : u ∈ [−L, L]

}
> 0.

Hence, (19) implies

|(Hϕ) (t) − (Hψ) (t)| ≤ (1− λ) ‖ϕ−ψ‖ . (24)

Consequently, combining (23) and (24) we obtain

|(Hϕ) (t) − (Hψ) (t)| ≤ δ ‖ϕ−ψ‖ , (25)

where

δ = max

{
1

2
, 1− λ

}
.

The proof is complete. �

The next result shows the relationship between the mappings H and B in
the sense of large contractions. Assume that

max {|H (−L)| , |H (L)|} ≤ 2L
J
. (26)

Lemma 4 Let B be defined by (15), suppose (H5)–(H6) hold. Then B :M→
M is a large contraction.

Proof. Let B be defined by (15). Obviously, Bϕ is continuous and it is easy
to show that (Bϕ)(t+ T) = (Bϕ)(t). Let ϕ ∈M

|(Bϕ) (t)| ≤
∫ t
t−T

κ (t, u)a (u)max {|H (−L)| , |H (L)|}du

≤ 2L
J
< L,
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which implies B :M→M.
By Theorem 2, H is large contraction on M, then for any ϕ,ψ ∈ M, with

ϕ 6= ψ and for any ε > 0, from the proof of that Theorem, we have found a
δ < 1, such that

|(Bϕ) (t) − (Bψ) (t)| =

∣∣∣∣η ∫ t
t−T

κ (t, u)a (u) [H (ϕ (u)) −H (ψ (u))]du

∣∣∣∣
≤ ‖ϕ−ψ‖η

∫ t
t−T

κ (t, u)a (u)du ≤ δ ‖ϕ−ψ‖ .

The proof is complete. �

Theorem 3 Suppose the hypothesis of Lemmas 2, 3 and 4 hold. LetM defined
by (11). Then the equation (4) has a T -periodic solution in M.

Proof. By Lemma 2, 3, A is continuous and A (M) is contained in a compact
set. Also, from Lemma 4, the mapping B is a large contraction. Next, we show
that if ϕ,ψ ∈M, we have ‖Aψ+ Bϕ‖ ≤ L. Let ϕ,ψ ∈M with ‖ϕ‖ , ‖ψ‖ ≤ L.
By (16)–(18)

‖Aψ+ Bϕ‖ ≤ (γ1 + γ2)L+
2

J
L

≤ L

J
+
2L

J
≤ L.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (4). Hence (4) has a T -periodic solution. �

4 Existence of nonnegative periodic solutions

In this section we obtain the existence of a nonnegative periodic solution of
(4). By applying Theorem 1, we need to define a closed, convex, and bounded
subset M of PT . So, let

M = {φ ∈ PT : 0 ≤ φ ≤ K} . (27)

where K is positive constant. To simplify notation, we let

m = min
u∈[t−T,t]

e−
∫t
u
a(s)ds, M = max

u∈[t−T,t]
e−

∫t
u
a(s)ds. (28)
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It is easy to see that for all (t, u) ∈ [0, 2T ]2,

m ≤ κ (t, u) ≤M. (29)

Then we obtain the existence of a nonnegative periodic solution of (4) by
considering the two cases;

(1) Q (t, y) ≥ 0 ∀t ∈ [0, T ] , y ∈M.

(2) Q (t, y) ≤ 0 ∀t ∈ [0, T ] , y ∈M.

In the case one, we assume for all t ∈ [0, T ], x, y ∈ M, that there exist a
positive constant c1 such that

0 ≤ Q (t, y) ≤ c1y, (30)

c1 < 1, (31)

0 ≤ −a (t)Q (t, y) +G (t, x, y) (32)

a (t)H (ϕ (t)) − a (t)Q (t, y) +G (t, x, y) ≤ K (1− c1)

MηT
. (33)

Lemma 5 Let A, B given by (14), (15) respectively, assume (30)–(33) hold.
Then A,B : M→M.

Proof. Let A defined by (15). So, for any ϕ ∈M, we have

0 ≤ (Aϕ) (t) ≤ Q (t, ϕ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ϕ (u− τ (u))) +G (u,ϕ (u) , ϕ (u− τ (u)))]du

≤ η
∫ t
t−T

M
K (1− c1)

MηT
du+ c1K = K,

That is Aϕ ∈M.
Now, let B defined by (15). So, for any ϕ ∈M, we have

0 ≤ (Bϕ) (t) ≤ η
∫ t
t−T

M
K (1− c1)

MηT
du ≤ ηMT K

MηT
= K.

That is Bϕ ∈M. �
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Theorem 4 Suppose the hypothesis of Lemmas 3, 4 and 5 hold. Then equation
(4) has a nonnegative T -periodic solution x in the subset M.

Proof. By Lemma 3, A is completely continuous. Also, from Lemma 4, the
mapping B is a large contraction. By Lemma 5, A,B : M→M. Next, we show
that if ϕ,ψ ∈M, we have 0 ≤ Aψ+Bϕ ≤ K. Let ϕ,ψ ∈M with 0 ≤ ϕ,ψ ≤ K.
By (30)–(33)

(Aψ) (t) + (Bϕ) (t)

= η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du+Q (t, ψ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ψ (u− τ (u))) +G (u,ψ (u) , ψ (u− τ (u)))]du

≤ η
∫ t
t−T

κ (t, u)
K (1− c1)

MηT
du+ c1K

≤ η
∫ t
t−T

M
K (1− c1)

MηT
du+ c1K = K.

On the other hand,

(Aψ) (t) + (Bϕ) (t) ≥ 0.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (4) and the proof is complete. �

In the case two, we substitute conditions (30)–(33) with the following con-
ditions respectively. We assume that there exist a negative constant c2 such
that

c2y ≤ Q (t, y) ≤ 0, (34)

− c2 < 1, (35)

−c2K

MηT
≤ a(t)H (ϕ(t)) − a (t)Q (t, y) +G (t, x, y) . (36)

a(t)H (ϕ(t)) − a (t)Q (t, y) +G (t, x, y) ≤ K

MηT
. (37)

Theorem 5 Suppose (34)–(37) and the hypothesis of Lemmas 2, 3 and 4 hold.
Then equation (4) has a nonnegative T -periodic solution x in the subset M.
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Proof. By Lemma 2, 3, A is completely continuous. Also, from Lemma 4, the
mapping B is a large contraction. To see that, it is easy to show as in Lemma
5 A,B : M→M. Next, we show that if ϕ,ψ ∈M, we have 0 ≤ Aψ+Bϕ ≤ K.
Let ϕ,ψ ∈M with 0 ≤ ϕ,ψ ≤ K. By (34)–(37)

(Aψ) (t) + (Bϕ) (t)

= η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du+Q (t, ψ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ψ (u− τ (u))) +G (u,ψ (u) , ψ (u− τ (u)))]du

≤ η
∫ t
t−T

κ (t, u)
K

MηT
du = η

∫ t
t−T

M
K

MηT
du = K.

On the other hand,

(Aψ) (t) + (Bϕ) (t) ≥ η
∫ t
t−T

M
−c2K

MηT
du+ c2K = 0.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (4) and the proof is complete. �
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Abstract. The purpose of this paper is to study Ricci solitons on QR-
hypersurfaces M of a quaternionic space form Qn such that the shape
operator A with respect to N has one eigenvalue. We prove that Ricci
soliton on QR- hypersurfaces M with eigenvalue zero is steady and for
eigenvalue nonzero is shrinking.

1 Introduction

A Ricci soliton is defined on a Riemannian manifold (M,g) by

1

2
LVg+ Ric− λg = 0 (1)

where LVg is the Lie-derivative of the metric tensor g with respect to V and
λ is a constant on M. The Ricci soliton is a natural generalization of an
Einstein metric. The Ricci soliton is said to be shrinking, steady and expanding
according as λ > 0, λ = 0 and λ < 0, respectively. Compact Ricci solitons are
the fixed points of the Ricci flow:

∂

∂t
g(t) = −2Ric(g(t)) (2)
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Key words and phrases: Ricci soliton, quaternionic space form, QR-hypersurfaces
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projected from the space of metrics onto its quotient modulo diffeomorphisms
and scalings and often arise as blow-up limits for the Ricci flow on compact
manifolds. We denote a Ricci soliton by (M,g, V ; λ) and call the vector field V
the potential vector field of the Ricci soliton. A trivial Ricci soliton is one for
which V is Killing or zero. If its potential vector field V = ∇f such that f is
some smooth function onM then a Ricci soliton (M,g, V ; λ) is called a gradient
Ricci soliton and the smooth function f is called the potential function. It was
proved by Grigory Perelman in [15] that any compact Ricci soliton is the
sum of a gradient of some smooth function f up to the addition of a Killing
field. Thus compact Ricci solitons are gradient Ricci solitons. In particular,
Perelman applied Ricci solitons to solve the long standing Poincare conjecture
posed in 1904.

Hamilton [7] and Ivey [10] proved that a Ricci soliton on a compact manifold
has constant curvature in dimension 2 and 3, respectively. In [11], Ki proved
that there are no real hypersurfaces with parallel Ricci tensor in a complex
space form M̃n(c) with c 6= 0 when n ≥ 3. Kim [12] proved that when n = 2,
this is also true. In particular, these results give that there is not any Einstein
real hypersurfaces in a non-flat complex space form.

In [13], Chen studied important results on Ricci solitons which occur ob-
viously on some Riemannian submanifolds. He presented several recent new
criterions of trivial compact shrinking Ricci solitons.

Cho and Kimura [3] studied on Ricci solitons of real hypersurfaces in a non-
flat complex space form and showed that a real hypersurface M in a non-flat
complex space form M̃n(c 6= 0) does not admit a Ricci soliton such that the
Reeb vector field ξ is potential vector field. They defined so called η-Ricci
soliton, such that satisfies

1

2
LVg+ Ric− λg− µη⊗ η = 0 (3)

where λ, µ are constants. They first proved that a real hypersurface M of a
non-flat complex space form M̃n(c) which accepts an η-Ricci soliton is a Hopf-
hypersurface and classified that η-Ricci soliton real hypersurfaces in a non-flat
complex space form.

We study Ricci solitons onQR-hypersurfacesM of a quaternionic space form
Qn such that the shape operator A with respect to N has one eigenvalues .
We prove that Ricci soliton on QR- hypersurfaces M with eigenvalue zero is
steady and for eigenvalue nonzero is shrinking.
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2 Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kähler manifold. Then,
by definition, there is a 3-dimensional vector bundle V consisting with tensor
fields of type (1, 1) over M satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood U , there is a local basis {F,G,H} of V such
that

F2 = −I, G2 = −I, H2 = −I, (4)

FG = −GF = H, MGH = −HG = F, HF = −FH = G.

(b) There is a Riemannian metric g which is hermite with respect to all of F,G
and H.
(c) For the Riemannian connection ∇ with respect to g ∇F∇G

∇H

 =

 0 r −q
−r 0 p

q −p 0

 F

G

H

 (5)

where p, q and r are local 1-forms defined in U . Such a local basis {F,G,H} is
called a canonical local basis of the bundle V in U [9].

For canonical local basis {F,G,H} and {F ′, G ′, H ′} of V in coordinate neigh-

borhoods of U and U ′
, it follows that in U ∩ U ′ F ′

G ′

H ′

 =
(
sxy

) F

G

H

 (x, y = 1, 2, 3)

where sxy are local differentiable functions with (sxy) ∈ SO(3) as a consequence
of (4). As is well known [9], every quaternionic Kähler manifold is orientable.
Let M be quaternion Kaehler manifold and M be a real submanifold of M.
Then, M is said QR-submanifold if there exists a vector subbundle ν of the
normal bundle such that we have

Fνx = νx, Gνx = νx, Hνx = νx,

Fν⊥x , Gν⊥x , Hν⊥x ⊂ TxM,

for x ∈ M, where ν⊥ is the complementary orthogonal bundle to ν in TM⊥.
We denote by D the complementary orthogonal distribution to D⊥ in TM.
Then D is invariant with respect to the action of {F,G,H} i.e. we have

FDx = Dx, GDx = Dx, HDx = Dx,

FD⊥
x , GD⊥

x , HD⊥
x ⊂ T⊥x M,
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for any x ∈M, where TM = D⊕D⊥ and TM⊥ = ν⊕ν⊥. D is called quaternion
distribution.
Now let M be an n-dimensional QR-submanifold of maximal QR-dimension,
that is, of (p − 1) QR-dimension isometrically immersed in M. Then by defi-
nition there is a unit normal vector field N such that ν⊥x = span{N} at each
point x in M. We set

FN = −U, GN = −V, HN = −W. (6)

Denoting by Dx the maximal quaternionic invariant subspace

TxM ∩ FTxM ∩GTxM ∩HTxM,

of TxM, we have D⊥
x ⊃ Span {U,V,W}, where D⊥

x means the complementary
orthogonal subspace to Dx in TxM. But, using (4), we can prove that D⊥

x =
Span {U,V,W} [13]. Thus we have

TxM = Dx ⊕ Span {U,V,W}, ∀x ∈M,

which together with (4) and (6) imply

FTxM,GTxM,HTxM ⊂ TxM⊕ Span {ξ}.

Therefore, for any tangent vector field X and for a local orthonormal basis
{Nα}α=1,...,p (N1 := N) of normal vectors to M, we have

FX = ϕX+ u(X)N, GX = ψX+ v(X)N, HX = θX+ω(X)N, (7)

FNα = −Uα + P1Nα, GNα = −Vα + P2Nα,

HNα = −Wα + P3Nα, (α = 1, ..., p). (8)

Then it is easily seen that {ϕ,ψ, θ} and {P1, P2, P3} are skew-symmetric endo-
morphisms acting on TxM and TxM

⊥, respectively.
Moreover, the hermitian property of [F,G,H} implies

g(X,ϕUα) = −u(X)g(N1, P1Nα),

g(X,ψVα) = −v(X)g(N1, P2Nα),

g(X, θWα) = −w(X)g(N1, P3Nα), (α = 1, ..., p). (9)

Also, from the hermitian properties

g(FX,Nα) = −g(X, FNα), g(GX,Nα) = −g(X,GNα),

g(HX,Nα) = −g(X,HNα), (α = 1, ..., p).
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It follows that

g(X,Uα) = u(X)δ1α, g(X,Vα) = v(X)δ1α, g(X,Wα) = w(X)δ1α,

and hence

g(X,U1) = u(X), g(X,V1) = v(X), g(X,W1) = w(X),

Uα = 0, Vα = 0, Wα = 0, (α = 2, ...p). (10)

On the other hand, comparing (6) and (8) with α = 1, we have U1 = U,V1 =
V,W1 =W, which together with (6) and (10) imply

g(X,U) = u(X), g(X,V) = v(X), g(X,W) = w(X),

u(U) = 1, v(V) = 1, w(W) = 1,

FN = −U, GN = −V, HN = −W

FNα=P1Nα , GNα=P2Nα HNα=P3Nα , (α = 2, ..., p).

from which, taking account of the skew-symmetry of P1, P2 and P3 and using
(9), we also have

u(ϕX) = 0, v(ψX) = 0, w(θX) = 0,

ϕU = 0, ψV = 0, θW = 0,

P1N = 0, P2N = 0, P3N = 0, (11)

From the equations of (6), we also have

ψU = −W, v(U) = 0, θU = V, w(U) = 0,

ϕV =W, u(V) = 0, θV = −U, w(V) = 0,

ϕW = −V, u(W) = 0, ψW = U, v(W) = 0. (12)

Now, let ∇ be the Levi-Civita connection onM and ∇⊥ the normal connection
induced from ∇ in the normal bundle TM⊥ of M. The Gauss and Weingarten
formula are given by

∇XY = ∇XY + h(X, Y),

∇XNα = −AαX+∇⊥
XNα, (α = 1, . . . , p), (13)

for any X, Y ∈ χ(M) and Nα ∈ Γ∞(T(M)⊥), (α = 1, . . . , p). h is the second
fundamental form and Aα are shape operator corresponding to Nα.
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Next, differentiating the equations of (6) covariantly and comparing the tan-
gential and normal parts, we have

∇YU = r(Y)V − q(Y)W +ϕA1Y,

∇YV = −r(Y)U+ p(Y)W +ψA1Y,

∇YW = q(Y)U− p(Y)V + θA1Y, (14)

For QR-hypersurfaces M in a quaternionic space form M of quaternionic sec-
tional curvature 4k the Gauss and Codazzi equations are written as follow:

g(R(X, Y)Z,W) = k{g(Y, Z)X− g(X,Z)Y

+ g(ϕY,Z)ϕX− g(ϕX,Z)ϕY − 2g(ϕX, Y)ϕZ

+ g(ψY,Z)ψX− g(ψX,Z)GY − 2g(ψX, Y)ψZ

+ g(θY, Z)θX− g(θX, Z)θY − 2g(θX, Y)θZ}

+ g(AY,Z)AX− g(AX,Z)AY,

(15)

(∇XA)Y − (∇YA)X = k{u(X)ϕY − u(Y)ϕX− 2g(ϕX, Y)U

+ v(X)ψY − v(Y)ψX− 2g(ψX, Y)V

+w(X)θY −w(Y)θX− 2g(θX, Y)W},

(16)

hence the Ricci tensor is obtained as

Ric(X, Y) = k{(4n+ 7)g(X, Y) − 3{u(X)u(Y) + v(X)v(Y) +w(X)w(Y)}}

+ (traceA)g(AX, Y) − g(AX,AY).
(17)

for any tangent vector fields X, Y, Z on M, where R and Ric are the curvature
and Ricci tensors of M, respectively.

3 Ricci soliton on QR hypersurfaces

Let M be a QR-hypersurface of a quaternionic space form M such that the
shape operator A for unit normal vector field N has only one eigenvalue and
let {e1, . . . , e4n−4, U, V,W} be a local orthonormal fram field such that D⊥ =
span {U,V,W} and D = span {e1, . . . , en−1, en = ϕe1, . . . , e2n−2 = ϕen−1, e2n−1
= ψe1, . . . , e3n−3 = ψen−1, e3n−2 = θe1, . . . , e4n−4 = θen−1}.
We first prove

Theorem 1 If the shape operator A with respect to unit normal vector field
N of M has only one eigenvalue, then M is a quaternionic Euclidean space.
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Proof. According to the assumption, it follows that A = 0 or AX = αX for
all X ∈ T(M).
In both cases the Codazzi equation (16), we obtain

(Xα)Y − (Yα)X = k{u(X)ϕY − u(Y)ϕX− 2g(ϕX, Y)U

+ v(X)ψY − v(Y)ψX− 2g(ψX, Y)V

+w(X)θY −w(Y)θX− 2g(θX, Y)W},

(18)

for all X, Y ∈ TM. Putting Y = U, the equation (21) reduces to

(Xα)U− (Uα)X = k{−ϕX+ v(X)W −w(X)V}, (19)

also by putting Y = V and Y =W, we have

(Xα)V − (Vα)X = k{−ψX+w(X)U− u(X)W},

(Xα)W − (Wα)X = k{−θX+ u(X)V − v(X)U}.
(20)

since dim M ≥ 7, we can use X,ϕX,ψX, θX,U, V and W in such a way that
they are linearly independent and thus k = 0. �

Let AX = αX, therefore by the relation (17), we obtain

Ric(ei, ej) = {(4n− 2)α2}δij, (i, j = 1, . . . , 4n− 4),

Ric(U,U) = (4n− 2)α2,

Ric(V,V) = (4n− 2)α2,

Ric(W,W) = (4n− 2)α2,

Ric(U,V) = 0,

Ric(U,W) = 0,

Ric(W,V) = 0,

Ric(ei, U) = 0,

Ric(ei, V) = 0,

Ric(ei,W) = 0, (i = 1, ..., 4n− 4).

(21)

We consider QR-hypersurface M of a quaternionic space form Qn satisfying
Ricci soliton equation

1

2
L
Ṽ
g+ Ric− λg = 0 (22)
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with respect to potential vector field Ṽ on M for constant λ.
First Put

Ṽ := fU, (f :M→ R, f 6= 0) (23)

Then definition of the Lie derivative and the first relation (14) imply

(LfUg)(X, Y) = df(X)u(Y) + df(Y)u(X)
+ f{r(X)v(Y) − q(X)w(Y) + r(Y)v(X) − q(Y)w(X)

+ g((ϕA−Aϕ)Y, X)}

(24)

We compute

(LfUg)(U,U) = 2df(U),
(LfUg)(V,V) = 2fr(V),
(LfUg)(W,W) = −2fq(W),

(LfUg)(U,V) = df(V) + fr(U),
(LfUg)(U,W) = df(W) − fq(U),

(LfUg)(W,V) = f{−q(V) + r(W)},

(LfUg)(U, ei) = df(ei),
(LfUg)(V, ei) = fr(ei),
(LfUg)(W,ei) = −fq(ei), (i = 1, . . . , 4n− 4),

(Lfξg)(ei, ej) = 0 (i, j = 1, . . . , 4n− 4).

(25)

Using relations (21) and (25), Ricci soliton equation (22) is equivalent to

df(U) = λ− (4n− 2)α2,

fr(V) = λ− (4n− 2)α2,

fq(W) = −λ+ (4n− 2)α2,

df(V) = −fr(U),

df(W) = fq(U),

q(V) = r(W),

df(ei) = 0, (i = 1, . . . , 4n− 4),

r(ei) = 0,

q(ei) = 0,

{(4n− 2)α2 − λ}δij = 0, (i, j = 1, . . . , 4n− 4).

(26)
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By the last relation (26), we have λ = (4n − 2)α2 and thus the following
theorem holds:

Theorem 2 Let M be a QR-hypersurface of quternionic space form Qn with
AX = αX. Then a Ricci soliton (M,g, Ṽ, λ) with potential vector field Ṽ := fU
is shrinking Ricci soliton.

Now, let A = 0, using relation (17),it follows that

Ric = 0 (27)

QR-hypersurface M (n ≥ 2) is considered in a quaternionic space form Qn
satisfying Ricci soliton equation.
By relations (27) and (25), Ricci soliton equation (22) is equivalent to

df(U) = λ,

fr(V) = λ,

fq(W) = −λ,

df(V) = −fr(U),

df(W) = fq(U),

q(V) = r(W),

df(ei) = 0, (i = 1, . . . , 4n− 4),

r(ei) = 0,

q(ei) = 0,

λδij = 0, (i, j = 1, . . . , 4n− 4).

(28)

Using the last relation (28), it follows λ = 0 and hence

Theorem 3 Let M be a QR-hypersurface of quaternionic space form Qn with
A = 0. Then a Ricci soliton (M,g, Ṽ, λ) with potential vector field V := fU is
steady Ricci soliton.

hence, similar results were obtained when each structural vector fields {V,W}

of structure quaternionic {U,V,W} be the potential vector field.
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Abstract. In the paper, the authors find several identities, including
a new recurrence relation for the Stirling numbers of the first kind, in-
volving the falling and rising factorials and the Cauchy, Lah, and Stirling
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1 Notation and main results

It is known that, for x ∈ R, the quantities

〈x〉n =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1
1, n = 0

=

n−1∏
`=0

(x− `) =
Γ(x+ 1)

Γ(x− n+ 1)
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and

(x)n =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1
1, n = 0

=

n−1∏
`=0

(x+ `) =
Γ(x+ n)

Γ(x)

are respectively called the falling and rising factorials, where

Γ(z) = lim
n→∞ n!nz∏n

k=0(z+ k)
, z ∈ C \ {0,−1,−2, . . . }

is the classical gamma function, see [1, p. 255, 6.1.2]. For removable singulari-

ties of the ratio Γ(x+m)
Γ(x+n) for x ∈ R and m,n ∈ Z, please read [23, Theorem 1.1]

and closely related references therein.
According to [4, pp. 293–294], there are two kinds of Cauchy numbers which

may be defined respectively by

Cn =

∫ 1
0

〈x〉n d x and cn =

∫ 1
0

(x)n d x. (1)

The Cauchy numbers Cn and cn play important roles in some fields, such
as approximate integrals, the Laplace summation formula, and difference-
differential equations, and are also related to some famous numbers such as
the Stirling, Bernoulli, and harmonic numbers. For recent conclusions on the
Cauchy numbers, please read the papers [17, 18, 21, 30].

It is known that the coefficients expressing rising factorials (x)n in terms of
falling factorials 〈x〉k are called the Lah numbers, denoted by L(n, k). Precisely
speaking,

(x)n =

n∑
k=1

L(n, k)〈x〉k and 〈x〉n =

n∑
k=1

(−1)n−kL(n, k)(x)k. (2)

They can be computed by

L(n, k) =

(
n− 1

k− 1

)
n!

k!

and have an interesting meaning in combinatorics: they count the number of
ways a set of n elements can be partitioned into k nonempty linearly ordered
subsets. For more and recent results on the Lah numbers L(n, k), please refer
to [13, 15, 16].
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The Stirling numbers of the first kind s(n, k) may be generated by

〈x〉n =

n∑
k=0

s(n, k)xk and (x)n =

n∑
k=0

(−1)n−ks(n, k)xk. (3)

The combinatorial meaning of the unsigned Stirling numbers of the first kind
(−1)n−ks(n, k) can be interpreted as the number of permutations of {1, 2, . . . , n}
with k cycles. Recently there are some new results on the Stirling numbers of
the first kind s(n, k) obtained in [17, 20, 21, 22].

An infinitely differentiable function f is said to be completely monotonic
on an interval I if it satisfies (−1)nf(n)(x) ≥ 0 for x ∈ I and n ≥ 0. See [38,
Definition 1.3] and [40, Chapter XII]. An infinitely differentiable function f :
I ⊆ (−∞,∞)→ [0,∞) is called a Bernstein function on I if its derivative f ′(t)
is completely monotonic on I. See [38, Definition 3.1].

The class of completely monotonic functions may be characterized by [40,
Theorem 12b] which reads that a necessary and sufficient condition that f(x)
should be completely monotonic for 0 < x < ∞ is that f(x) =

∫∞
0 e

−xt dα(t),
where α(t) is non-decreasing and the integral converges for 0 < x < ∞. The
Bernstein functions on (0,∞) can be characterized by the assertion that a
function f : (0,∞) → R is a Bernstein function if and only if it admits the
representation

f(x) = a+ bx+

∫∞
0

(
1− e−xt

)
dµ(t), (4)

where a, b ≥ 0 and µ is a Radon measure on (0,∞) satisfying
∫∞
0 min{1, t}dµ(t)

< ∞. See [38, Theorem 3.2]. The triplet (a, b, µ) determines f uniquely and
vice versa. The representing measure µ and the characteristic triplet (a, b, µ)
from the expression (4) are often called the Lévy measure and the Lévy triplet
of the Bernstein function f. The formula (4) is called the Lévy-Khintchine
representation of f.

It was obtained inductively in [32, Lemma 2.1] that the derivatives of the
functions

hα(t) =

(
1+

1

t

)α
, t > 0, α ∈ (−1, 1)

and

Hα(t) =
hα(t)

α
−
hα−1(t)

α− 1

may be computed by

h
(i)
α (t) =

(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

k!

(
i

k

)(
i− 1

k

)
(α)i−kt

k (5)
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and

H
(i)
α (t) =

(−1)i

ti(1+ t)i+1

(
1+

1

t

)α i−1∑
k=0

k!

(
i+ 1

k

)(
i− 1

k

)
(α)i−kt

k,

for i ∈ N. Consequently,

1. if α ∈ (0, 1), the function hα(t) is completely monotonic on (0,∞);

2. if α ∈ (−1, 0), the function hα(t) is a Bernstein function on (0,∞);

3. if α ∈ (0, 1), the function Hα(t) is completely monotonic on (0,∞).

With the help of [32, Lemma 2.1], it was derived in [32, Theorem 1.1] that the
weighted geometric mean

Gx,y;λ(t) = (x+ t)λ(y+ t)1−λ

is a Bernstein function of t > −min{x, y}, where λ ∈ (0, 1) and x, y ∈ R
with x 6= y. For more and detailed information on this topic, please refer
to [2, 12, 22, 26, 32, 33, 34, 35, 36, 42] and closely related references therein.

In combinatorics, the Bell polynomials of the second kind (also called the
partial Bell polynomials) Bn,k(x1, x2, . . . , xn−k+1) are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑
1≤i≤n
`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

for n ≥ k ≥ 0, see [4, p. 134, Theorem A]. The Faà di Bruno formula may be
described in terms of the Bell polynomials of the second kind Bn,k by

dn

d xn
f ◦ g(x) =

n∑
k=0

f(k)(g(x))Bn,k
(
g ′(x), g ′′(x), . . . , g(n−k+1)(x)

)
, (6)

see [4, p. 139, Theorem C].
The aims of this paper are, by virtue of the famous Faà di Bruno formula (6),

to find a new form for derivatives of the function hα(t), and then, by comparing
this new form with (5), to derive some identities involving the falling and rising
factorials and the Cauchy, Lah, and Stirling numbers.

Our main results may be summarized up as the following theorem.
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Theorem 1 For i ∈ N and α ∈ R,

h
(i)
α (t) =

(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

[
i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m

]
tk. (7)

Consequently, the identities

(α)n =
1

k!
(
n+k
k

)(
n+k−1
k

) n∑
m=1

(
n+ k−m

k

)
L(n+ k,m)〈α〉m, (8)

cn =
1

k!
(
n+k
k

)(
n+k−1
k

) n∑
m=1

(
n+ k−m

k

)
L(n+ k,m)Cm, (9)

cn =
1

k!
(
n+k
k

)(
n+k−1
k

) n∑
`=1

n∑
m=`

(−1)m−`

(
n+ k−m

k

)
L(n+ k,m)L(m, `)c`,

(10)

and

s(n, `) =
(−1)n−`

k!
(
n+k
k

)(
n+k−1
k

) n∑
m=`

(
n+ k−m

k

)
L(n+ k,m)s(m, `) (11)

hold for all k, ` ≥ 0 and n ∈ N.

In next section, we will give a proof of Theorem 1. In the final section,
we will list some remarks for explaining and interpreting the significance of
identities obtained in Theorem 1.

2 Proof of Theorem 1

Now we are in a position to prove formulas or identities listed in Theorem 1.
The Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) satisfy

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1) (12)

and

Bn,k(1!, 2!, 3!, . . . , (n− k+ 1)!) = L(n, k), (13)

see [4, p. 135], where a and b are any complex numbers.
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Taking in (6) f(u) = (1 + u)α and u = g(t) = 1
t , employing (12) and (13),

interchanging the order of the double sum, and simplifying yield

h
(i)
α (t) =

i∑
k=1

〈α〉k(1+ u)α−kBi,k
(
−
1

t2
,
2!

t3
, . . . , (−1)i−k+1

(i− k+ 1)!

ti−k+2

)

=

i∑
k=1

〈α〉k
(
1+

1

t

)α−k
1

tk

(
−
1

t

)i
Bi,k(1!, 2!, . . . , (i− k+ 1)!)

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i∑
k=1

L(i, k)〈α〉k(1+ t)i−k

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
m=0

L(i, i−m)〈α〉i−m(1+ t)m

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

L(i, i− k)〈α〉i−k
k∑
j=0

(
k

j

)
tj

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
j=0

i−1∑
k=j

L(i, i− k)〈α〉i−k
(
k

j

)
tj

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

i−1∑
q=k

L(i, i− q)〈α〉i−q
(
q

k

)
tk

=
(−1)i

ti(1+ t)i

(
1+

1

t

)α i−1∑
k=0

i−k∑
m=1

L(i,m)〈α〉m
(
i−m

k

)
tk.

Comparing this with the formula (5) reveals

k!

(
i

k

)(
i− 1

k

)
(α)i−k =

i−k∑
m=1

L(i,m)〈α〉m
(
i−m

k

)
. (14)

From this, the identity (8) follows immediately.
Integrating with respect to α ∈ (0, 1) on both sides of (14) gives

i−k∑
m=1

(
i−m

k

)
L(i,m)

∫ 1
0

〈α〉mdα = k!

(
i

k

)(
i− 1

k

) ∫ 1
0

(α)i−k dα,

that is, by (1),

i−k∑
m=1

(
i−m

k

)
L(i,m)Cm = k!

(
i

k

)(
i− 1

k

)
ci−k.
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This can be rearranged as the identity (9).
Employing the second formula in (2) and the identity (14) acquires

i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m =

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=1

(−1)m−pL(m,p)(α)p,

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=1

(−1)m−pL(m,p)(α)p = k!

(
i

k

)(
i− 1

k

)
(α)i−k,

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
(−1)m−pL(i,m)L(m,p)(α)p = k!

(
i

k

)(
i− 1

k

)
(α)i−k.

Integrating on both sides of the above equality with respect to α ∈ (0, 1) brings
out

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
(−1)m−pL(i,m)L(m,p)

∫ 1
0

(α)p dα

= k!

(
i

k

)(
i− 1

k

) ∫ 1
0

(α)i−k dα,

that is,

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
(−1)m−pL(i,m)L(m,p)cp = k!

(
i

k

)(
i− 1

k

)
ci−k.

This may be rearranged as (10).
Utilizing the formulas in (3) and (14) results in

i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m =

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=0

s(m,p)αp

=

i−k∑
m=1

(
i−m

k

)
L(i,m)

m∑
p=1

s(m,p)αp =

i−k∑
p=1

i−k∑
m=p

(
i−m

k

)
L(i,m)s(m,p)αp
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and

k!

(
i

k

)(
i− 1

k

)
(α)i−k = k!

(
i

k

)(
i− 1

k

) i−k∑
p=0

(−1)i−k−ps(i− k, p)αp

= k!

(
i

k

)(
i− 1

k

) i−k∑
p=1

(−1)i−k−ps(i− k, p)αp

=

i−k∑
p=1

k!

(
i

k

)(
i− 1

k

)
(−1)i−k−ps(i− k, p)αp.

Equating coefficients of αp in the above equations leads to

i−k∑
m=p

(
i−m

k

)
L(i,m)s(m,p) = k!

(
i

k

)(
i− 1

k

)
(−1)i−k−ps(i− k, p)

which may be reformulated as (11). The proof of Theorem 1 is complete.

3 Remarks

For explaining and interpreting the significance of formulas or identities ob-
tained in Theorem 1, we are now list several remarks as follows.

Remark 1 Because the sign of

i−k∑
m=1

(
i−m

k

)
L(i,m)〈α〉m

can not be made clear easily, the formula (7) is much more complicated than
the formula (5). Concretely speaking, by virtue of the formula (7), we can not
obviously see the properties that hα(t) for α ∈ (0, 1) is a completely monotonic
function on (0,∞) and that hα(t) for α ∈ (−1, 0) is a Bernstein function on
(0,∞). This implies that [32, Lemma 2.1] is much more useful and significant.

Remark 2 The recurrence relation (11) is a new “horizontal” recurrence re-
lation for the Stirling numbers of the first kind s(n, k), because it is differ-
ent from those “triangular”, “horizontal”, “vertical”, and “diagonal” recur-
rence relations, listed or obtained in [4, pp. 214–215, Theorems A, B, and C]
and [19, 20], for the Stirling numbers of the first kind s(n, k).
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Remark 3 It is a very interesting phenomenon that the variable k ≥ 0 only
appears in the right hand sides of (8) to (11) and that k can change anyway.

Remark 4 Comparing (2) with (8) reveals

L(n,m) =

(
n+k−m

k

)
k!
(
n+k
k

)(
n+k−1
k

)L(n+ k,m).

Remark 5 When letting α→ −1+, the identity (14) becomes

k!

(
i

k

)(
i− 1

k

)
(−1)i−k =

i−k∑
m=1

(
i−m

k

)
L(i,m)〈−1〉m,

0 =

i−k∑
m=1

(
i−m

k

)
L(i,m)(−1)mm!.

In other words, the identity

i−k∑
m=1

(−1)mm!

(
i−m

k

)
L(i,m) = 0,

which may be reformulated as

n∑
m=1

(−1)m
(
n+ k−m

k

)(
n+ k− 1

m− 1

)
= 0,

holds for all i > k+ 1 ≥ 1 and n ∈ N.
Taking α = ± 12 in (14) respectively reveals

i−k∑
m=1

(−1)m+1 (2m− 3)!!

2m

(
i−m

k

)
L(i,m) = k!

(2(i− k) − 1)!!

2i−k

(
i

k

)(
i− 1

k

)
and

i−k∑
m=1

(−1)m+1 (2m− 1)!!

2m

(
i−m

k

)
L(i,m) = k!

(2(i− k) − 3)!!

2i−k

(
i

k

)(
i− 1

k

)
,

which are equivalent to

n∑
m=1

(−1)m
(2m− 3)!!

2m

(
n+ k−m

k

)
L(n+ k,m)

= −
(2n− 1)!!k!

2n

(
n+ k

k

)(
n+ k− 1

k

)
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and

n∑
m=1

(−1)m
(2m− 1)!!

2m

(
n+ k−m

k

)
L(n+ k,m)

= −
(2n− 3)!!k!

2n

(
n+ k

k

)(
n+ k− 1

k

)
,

holds for all i+ 1 > k ≥ 0 and n ∈ N.

Remark 6 Let u = u(x) and v = v(x) 6= 0 be differentiable functions. In [3,
p. 40], the formula

dn

d xn

(
u

v

)
=

(−1)n

vn+1

∣∣∣∣∣∣∣∣∣∣∣∣

u v 0 . . . 0

u ′ v ′ v . . . 0

u ′′ v ′′ 2v ′ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u(n−1) v(n−1)
(
n−1
1

)
v(n−2) . . . v

u(n) v(n)
(
n
1

)
v(n−1) . . .

(
n
n−1

)
v ′

∣∣∣∣∣∣∣∣∣∣∣∣
(15)

for the nth derivative of the ratio u(x)
v(x) was listed. For easy understanding and

convenient availability, we now reformulate the formula (15) as

dn

d xn

(
u

v

)
=

(−1)n

vn+1

∣∣A(n+1)×1 B(n+1)×n
∣∣
(n+1)×(n+1) , (16)

where | · |(n+1)×(n+1) denotes a determinant and the matrices

A(n+1)×1 = (ai,1)0≤i≤n

and
B(n+1)×n = (bi,j)0≤i≤n,0≤j≤n−1

satisfy

ai,1 = u
(i)(x) and bi,j =

(
i

j

)
v(i−j)(x)

under the conventions that v(0)(x) = v(x) and that
(
p
q

)
= 0 and v(p−q)(x) ≡ 0

for p < q. See [39, Lemma 2.1].
Applying u(x) = (1+ t)α and v(x) = tα into (16) yields

ai,1 = [(1+ t)α](i) =
Γ(α+ 1)

Γ(α− i+ 1)
(1+ t)α−i
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and

bi,j =

(
i

j

)
(tα)(i−j) =

(
i

j

)
Γ(α+ 1)

Γ(α− i+ j+ 1)
tα−i+j

for 0 ≤ i ≤ n and 0 ≤ j ≤ n − 1. As a result, a new and alternative form for
derivatives of the functions hα(t) and Hα(t) may be established.

Remark 7 In recent years, the first author and his coauthors obtained some
new properties of the Bell, Bernoulli, Euler, Genocchi, Lah, Stirling numbers
or polynomials in [6, 7, 8, 9, 10, 11, 14, 27, 37, 41].

Remark 8 In recent years, the first author and other mathematicians together
considered the complete monotonicity and the Bernstein function properties
in [5, 12, 24, 25, 28, 29, 31].
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and Applications, de Gruyter Studies in Mathematics 37, De Gruyter,
Berlin, Germany, 2010.

[39] C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers,
J. Inequal. Appl., 2015, 2015:219, 8 pages; Available online at http:

//dx.doi.org/10.1186/s13660-015-0738-9.

[40] D. V. Widder, The Laplace Transform, Princeton Mathematical Series 6,
Princeton University Press, Princeton, 1941.

[41] A.-M. Xu and Z.-D. Cen, Some identities involving exponential func-
tions and Stirling numbers and applications, J. Comput. Appl. Math.,
260 (2014), 201–207; Available online at http://dx.doi.org/10.1016/
j.cam.2013.09.077.

http://dx.doi.org/10.7153/mia-17-53
http://dx.doi.org/10.1016/j.cam.2013.09.077
http://dx.doi.org/10.1007/s00009-013-0311-z
http://dx.doi.org/10.1007/s00009-013-0311-z
http://dx.doi.org/10.1186/s13660-015-0738-9
http://dx.doi.org/10.1007/s10114-013-2547-8
http://dx.doi.org/10.7153/mia-17-53
http://dx.doi.org/10.1016/j.cam.2013.09.077
http://dx.doi.org/10.1007/s40590-016-0085-y
http://dx.doi.org/10.1016/j.amc.2015.02.027
http://dx.doi.org/10.1186/s13660-015-0738-9
http://dx.doi.org/10.1007/s10114-013-2547-8


Identities involving Cauchy, Lah, and Stirling numbers 297

[42] X.-J. Zhang, Integral Representations, Properties, and Applications of
Three Classes of Functions, Thesis supervised by Professor Feng Qi and
submitted for the Master Degree of Science in Mathematics at Tianjin
Polytechnic University in January 2013. (Chinese)

Received: June 12, 2016



Acta Univ. Sapientiae, Mathematica, 8, 2 (2016) 298–311

DOI: 10.1515/ausm-2016-0020

Common fixed point theorems for

contractive mappings satisfying Φ-maps in

S-metric spaces

Shaban Sedghi
Department of Mathematics,

Qaemshahr Branch,
Islamic Azad University, Iran
email: sedghi gh@yahoo.com

Mohammad Mahdi Rezaee
Department of Mathematics,

Qaemshahr Branch,
Islamic Azad University, Iran

email: Rezaee_mohammad.m@gmail.com

Tatjana Došenović
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Department of Mathematics,

University of Novi Pazar, Serbia
email: radens@beotel.rs

Abstract. In this paper we prove the existence of the unique fixed
point for the pair of weakly compatible self-mappings satisfying some
Φ-type contractive conditions in the framework of S-metric spaces. Our
results generalize, extend, unify, complement and enrich recently fixed
point results in existing literature.

1 Introduction and preliminaries

In 1922. Banach [2] proposed a theorem, which is well-known as Banach,s
Fixed Point Theorem (or Banach,s Contraction Principle, BCP for short) to
establish the existence of solutions for nonlinear operator equations and inte-
gral equations. Since then, because of simplicity and usefulness, it has become
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a very popular tool in solving a variety of problems such as control theory,
economic theory, nonlinear analysis and global analysis. Later, a huge amount
of literature is witnessed on applications, generalizations and extensions of
this theorem. They are carried out by several authors in different directions,
e.g., by weakening the hypothesis, using different setups. Considering different
mappings etc. Many mathematic problems require one to find a distance be-
tween two or more objects which is not easy to measure precisely in general.
There exist different approaches to obtaining the appropriate concept of a
metric structure. Due to the need to construct a suitable framework to model
several distinguished problems of practical nature, the study of metric spaces
has attracted and continues to attract the interest of many authors. Over last
few decades, a numbers of generalizations of metric spaces have thus appeared
in several papers, such as 2-metric spaces, G-metric spaces, D∗-metric spaces,
partial metric spaces and cone metric spaces. These generalizations were then
used to extend the scope of the study of fixed point theory. For more dis-
cussions of such generalizations, we refer to [4, 5, 6, 8, 9, 13, 20]. Sedghi et
al [18] have introduced the notion of an S-metric space and proved that this
notion is a generalization of a G-metric space and a D∗-metric space. Also,
they have proved properties of S-metric spaces and some fixed point theorems
for a self-map on an S-metric space.

In this paper, we prove a coupled coincidence fixed point theorem in the
setting of a generalized metric space. First, we present some basic properties
of S-metric spaces.

Following is the definition of generalized metric spaces or S-metric spaces.

Definition 1 [19] Let X be a nonempty set. An S-metric on X is a function S :
X×X×X→ [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(S1) S(x, y, z) ≥ 0,

(S2) S(x, y, z) = 0 if and only if x = y = z,

(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

The pair (X, S) is called an S-metric space.

Some examples of such S-metric spaces are:

(1) Let X = Rn and ||.|| a norm on X, then S(x, y, z) = ||y+ z− 2x||+ ||y− z||
is an S-metric on X.
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(2) Let X = Rn and ||.|| a norm on X, then S(x, y, z) = ||x − z|| + ||y − z|| is
an S-metric on X.

(3) Let X be a nonempty set, d is ordinary metric on X, then S(x, y, z) =
d(x, y) + d(y, z) is an S-metric on X.

Lemma 1 [19], [7] Let (X, S) be an S-metric space. Then

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z) and S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y) for
all x, y, z ∈ X.

Also, S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Definition 2 [19] Let (X, S) be an S-metric space. For r > 0 and x ∈ X we
define the open ball BS(x, r) and closed ball BS [x, r] with center x and radius
r as follows respectively:

Bs(x, r) = {y ∈ X : S(y, y, x) < r},

Bs[x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 1 [19] Let X = R. Denote S (x, y, z) = |y+ z− 2x| + |y− z| for all
x, y, z ∈ R. Thus Bs (1, 2) = {y ∈ R : S (y, y, 1) < 2} = (0, 2) .

Definition 3 [19] Let (X, S) be an S-metric space, and A ⊆ X.
(1) If for every x ∈ A there exists r > 0 such that BS(x, r) ⊆ A, then the

subset A is called open subset of X.
(2) Subset A of X is said to be S-bounded if there exists r > 0 such that

S(x, x, y) < r for all x, y ∈ A.
(3) A sequence {xn} in X converges to x if and only if S(xn, xn, x) → 0 as

n→ ∞. That is for each ε > 0 there exists n0 ∈ N such that S(xn, xn, x) < ε
whenever n ≥ n0 and we denote this lim

n−→∞xn = x.

(4) Sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there
exists n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.

(5) The S-metric spaces (X, S) is said to be complete if every Cauchy se-
quence is convergent.

(6) Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0
such that BS(x, r) ⊂ A. Then τ is a topology on X(induced by the S-metric S).

Definition 4 [1] Let f and g be single-valued self mappings on a set X. If
ω = fx = gx for some x ∈ X, then x is called a coincidence point of f and g,
and ω is called a point of coincidence of f and g.
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Definition 5 [10] Let f and g be a single-valued self mappings on a set X.
Mappings f and g are said to be weakly compatible if fx = gx implies fgx =
gfx, x ∈ X.

Proposition 1 [1] Let f and g be weakly compatible self mappings on a set
X. If f and g have a unique point of coincidence ω = fx = gx, then ω is the
unique common fixed point of f and g.

2 Common fixed point theorems

In 1977, Matkowski [12] introduced the Φ-maps as the following : let Φ be the
set of all functions φ such that φ : [0,∞) → [0,∞) is a nondecreasing function
satisfying lim

n−→∞φn(t) = 0 for all t ∈ (0,∞). If φ ∈ Φ, then φ is called a

Φ−map. Furthermore, if φ is a Φ-map, then

(i) φ(t) < t for all t ∈ (0,∞),

(ii) φ(0) = 0.

From now on, unless otherwise stated, φ is meant the Φ-map.

Lemma 2 [15], [16] Let (X, S) be a S−metric space and let {xn} be a sequence
in it such that

lim
n→∞S (xn+1, xn+1, xn) = 0.

If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences
{mk} and {nk}, nk > mk > k of positive integers such that the following se-
quences tend to ε when k→ ∞ :

S (xmk
, xmk

, xnk
) , S (xmk

, xmk
, xnk+1) , S (xmk−1, xmk−1, xnk

) ,

S (xmk−1, xmk−1, xnk+1) , S (xmk+1, xmk+1, xnk+1) , ....

Proof. Suppose that the sequence {xn} is not a Cauchy. Then, there exists ε >
0 and subsequences {xmk

}, {xnk
}, such that for every k ∈ N and nk > mk > k

the following is satisfied:

S(xmk
, xmk

, xnk
) ≥ ε and S(xmk

, xmk
, xnk−1) < ε.

Then, using Lemma 1 and (S3) we have
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ε ≤ S(xmk
, xmk

, xnk
)

= S(xnk
, xnk

, xmk
)

≤ 2S(xnk
, xnk

, xnk−1) + S(xmk
, xmk

, xnk−1)

< 2S(xnk
, xnk

, xnk−1) + ε,

and

ε ≤ lim
k→∞S(xmk

, xmk
, xnk

) ≤ ε.

Therefore lim
k→∞S(xnk

, xnk
, xmk

) = lim
k→∞S(xmk

, xmk
, xnk

) = ε. Further, as

|S(xnk
, xnk

, xmk
) − S(xnk+1

, xnk+1
, xmk

)| ≤ 2S(xnk+1
, xnk+1

, xnk
)

we obtain that

lim
k→∞S(xnk+1

, xnk+1
, xmk

) = lim
k→∞S(xmk

, xmk
, xnk+1

) = ε.

Analogous, it can be proved that

S (xmk−1, xmk−1, xnk
) , S (xmk−1, xmk−1, xnk+1) , S (xmk+1, xmk+1, xnk+1) , ....

tend to ε. �

Theorem 1 Let (X, S) be a S-metric space. Suppose that the mapping f, g :
X→ X satisfy

S(fx, fy, fz) ≤ φ(max{S(gx, gx, fx), S(gy, gy, fy), S(gz, gz, fz)}), (1)

for all x, y, z ∈ X. If the range of g contains the range of f, and one of f (X) or
g (X) is complete subspace of X, then f and g have a unique point of coincidence
in X. Moreover if f and g are weakly compatible, then f and g have a unique
common fixed point.

Proof. Assume that f and g satisfy the condition (1). Let x0 be an arbitrary
point in X. Since the range of g contains the range of f, there is x1 ∈ X
such that gx1 = fx0. By continuing the process as before, we can construct a
sequence {gxn} such that gxn+1 = fxn for all n ∈ N. If there is n ∈ N such that
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gxn = gxn+1, then f and g have a point of coincidence. Thus we can suppose
that gxn 6= gxn+1 for all n ∈ N. Therefore, for each n ∈ N, we obtain that

S(gxn, gxn, gxn+1) = S(fxn−1, fxn−1, fxn)

≤ φ(max{S(gxn−1, gxn−1, fxn−1), S(gxn−1, gxn−1, fxn−1),

S(gxn, gxn, fxn)} )

≤ φ(max{S(gxn−1, gxn−1, fxn−1), S(gxn, gxn, fxn)} )

= φ(max{S(gxn−1, gxn−1, gxn), S(gxn, gxn, gxn+1)} ).

If max{S(gxn−1, gxn−1, gxn), S(gxn, gxn, gxn+1)} = S(gxn, gxn, gxn+1), then

S(gxn, gxn, gxn+1) ≤ φ(S(gxn, gxn, gxn+1)) < S(gxn, gxn, gxn+1),

which leads to a contradiction. This implies that

S(gxn, gxn, gxn+1) ≤ φ(S(gxn−1, gxn−1, gxn)).

That is, for each n ∈ N, we have

S(gxn, gxn, gxn+1) = S(fxn−1, fxn−1, fxn)

≤ φ(S(gxn−1, gxn−1, gxn))

≤ φ2(S(gxn−2, gxn−2, gxn−1))

...

≤ φn(S(gx0, gx0, gx1)).

So we have lim
n→∞S(gxn, gxn, gxn+1) = 0. If {gxn} = {fxn−1} is not Cauchy

sequence in S−metric space (X, S) , then there exist an ε > 0 and two sequences
{mk} and {nk} , nk > mk > k of positive integers such that the following
sequences tend to ε when k→ ∞ :

S (gxmk+1, gxmk+1, gxnk+1) and S (gxmk
, gxmk

, gxnk
) , (2)

Putting now in (1) x = y = xmk
, z = xnk

we obtain

S(gxmk+1, gxmk+1, gxnk+1)

= S(fxmk
, fxmk

, fxnk
)

≤ φ({max{S(gxmk
, gxmk

, fxmk
), S(gxmk

, gxmk
, fxmk

), S(gxnk
, gxnk

, fxnk
)}})

= φ({max{S(gxmk
, gxmk

, gxmk+1), S(gxnk
, gxnk

, gxnk+1)}}).
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If max{S(gxmk
, gxmk

, gxmk+1), S(gxnk
, gxnk

, gxnk+1)} = S(gxmk
, gxmk

, gxmk+1),
and since S(gxmk

, gxmk
, gxmk+1) > 0 we have

S(gxmk+1, gxmk+1, gxnk+1) ≤ φ(S(gxmk
, gxmk

, gxmk+1))

< S(gxmk
, gxmk

, gxmk+1).

Letting k→ ∞ we obtain

ε ≤ lim
k→∞φ(S(gxmk

, gxmk
, gxmk+1)) ≤ 0.

A contradiction.
Analogous, if max{S(gxmk

, gxmk
, gxmk+1), S(gxnk

, gxnk
, gxnk+1)} = S(gxnk

,

gxnk
, gxnk+1) we got a contradiction.

So, it follows that {gxn} = {fxn−1} is Cauchy sequence. By the completeness
of g(X) (or f(X)), we obtain that {gxn} is convergent to some q ∈ g(X). So
there exists p ∈ X such that gp = q. We will show that gp = fp. Suppose that
gp 6= fp. By (1), we have

S(gxn, gxn, fp) = S(fxn−1, fxn−1, fp)

≤ φ(max{S(gxn−1, gxn−1, gxn), S(gxn−1, gxn−1, gxn),

S(gp, gp, fp)})

= φ(max{S(gxn−1, gxn−1, gxn), S(gp, gp, fp)}).

Case 1.

max{S(gxn−1, gxn−1, gxn), S(gp, gp, fp)} = S(gxn−1, gxn−1, gxn),

we obtain that

S(gxn, gxn, fp) ≤ φ(S(gxn−1, gxn−1, gxn)) < S(gxn−1, gxn−1, gxn).

By taking n→ ∞, we have S(gp, gp, fp) = 0 and so gp = fp.

Case 2.

max{S(gxn−1, gxn−1, gxn), S(gp, gp, fp)} = S(gp, gp, fp),

we obtain that

S(gxn, gxn, fp) ≤ φ(S(gp, gp, fp)).
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By taking n → ∞, we have S(gp, gp, fp) ≤ φ(S(gp, gp, fp)) < S(gp, gp, fp),
which leads to a contradiction. Therefore gp = fp. We now show that f and g
have a unique point of coincidence. Suppose that fl = gl for some l ∈ X. By
applying (1), it follows that

S(gp, gp, gl) = S(fp, fp, fl)

≤ φ(max{S(gp, gp, fp), S(gp, gp, fp), S(gl, gl, fl)})

= 0.

Therefore gp = gl. This implies that f and g have a unique point of coinci-
dence. By Proposition 1, we can conclude that f and g have a unique common
fixed point. �

Corollary 1 Let (X, S) be a S-metric space. Suppose that the mappings f, g :
X→ X satisfy

S(fx, fy, fz) ≤ kmax{S(gx, gx, fx), S(gy, gy, fy), S(gz, gz, fz)},

for all x, y, z ∈ X where 0 ≤ k < 1. If the range of g contains the range of
f and one of f (X) or g (X) is complete subspace of X, then f and g have a
unique point of coincidence in X. Moreover if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. Putting φ (t) = kt, t ≥ 0, 0 ≤ k < 1 in (1), the result follows.
�

Example 2 Let X = [0, 2] and S(x, y, z) = max{|x − y|, |y − z|, |x − z|} and
φ ∈ Φ. Define f, g : X→ X by

fx = 1 and gx = 2− x.

We obtain that f and g satisfy (1) in Theorem 1. Indeed, we have

S(fx, fy, fz) = 0,

φ (max{S(gx, gx, fx), S(gy, gy, fy), S(gz, gz, fz)}) = φ (max{|1− x|, |1− y|, |1− z|}) .

It is obvious that the range of g contains the range of f and g(X) is a complete
subspace of (X, S). Furthermore, f and g are weakly compatible. Thus all as-
sumptions in Theorem 1 are satisfied. This implies that f and g have a unique
common fixed point fixed point which is x = 1.
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Theorem 2 Let (X, S) be a S-metric space. Suppose that the mapping f, g :
X→ X satisfy

S(fx, fy, fz) ≤ max{φ(S(gx, gx, fx)), φ(S(gy, gy, fy)), φ(S(gz, gz, fz))},

for all x, y, z ∈ X. If the range of g contains the range of f, and one of f (X) or
g (X) is complete subspace of X, then f and g have a unique point of coincidence
in X. Moreover if f and g are weakly compatible, then f and g have a unique
common fixed point.

Proof. The proof is very similar to the proof of Theorem 1 so we omitted it.
�

Theorem 3 Let (X, S) be a S-metric space. Suppose that the mapping f, g :
X→ X satisfy

S(fx, fy, fz) ≤ φ(S(gx, gy, gz)), (3)

for all x, y, z ∈ X, where φ satisfies lim
s→t+φ(s) < t for all t > 0. If the range

of g contains the range of f, and one of f (X) or g (X) is complete subspace of
X, then f and g have a unique point of coincidence in X. Moreover if f and g
are weakly compatible, then f and g have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Since the range of g contains the
range of f, there is x1 ∈ X such that gx1 = fx0. By continuing the process
as before, we can construct a sequence {gxn} such that gxn+1 = fxn for all
n ∈ N. If there is n ∈ N such that gxn = gxn+1, then f and g have a point of
coincidence. Thus we can suppose that gxn 6= gxn+1 for all n ∈ N. Therefore,
for each n ∈ N, we obtain that

S(gxn, gxn, gxn+1) = S(fxn−1, fxn−1, fxn)

≤ φ(S(gxn−1, gxn−1, gxn))

≤ φ2(S(gxn−2, gxn−2, gxn−1))

...

≤ φn(S(gx0, gx0, gx1)).

This implies that lim
n→∞S(gxn, gxn, gxn+1) = 0. If {gxn} = {fxn−1} is not Cauchy

sequence in S−metric space (X, S) , then there exist an ε > 0 and two sequences
{mk} and {nk} , nk > mk > k of positive integers such that the following
sequences tend to ε when k→ ∞ :

S (gxmk+1, gxmk+1, gxnk+1) and S (gxmk
, gxmk

, gxnk
) , (4)
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Putting now in (3) x = y = xmk
, z = xnk

, and since S(gxmk
, gxmk

, gxnk
) > 0

we obtain

S(gxmk+1, gxmk+1, gxnk+1) = S(fxmk
, fxmk

, fxnk
)

≤ φ(S(gxmk
, gxmk

, gxnk
)).

Letting k→ ∞ and using the assumption of the mapping φ we obtain

ε ≤ lim
k→∞φ (S (gxmk

, gxmk
, gxnk

)) = lim
S(gxmk

,gxmk
,gxnk)→ε+

φ (S (gxmk
, gxmk

, gxnk
))

= lim
t→ε+

φ (t) < ε.

A contradiction. Therefore, the sequences {gxn} = {fxn−1} is Cauchy sequence.
By the completeness of g(X) (or f(X)), we obtain that {gxn} is convergent to
some q ∈ g(X). So there exists p ∈ X such that gp = q. We will show that
gp = fp. By (3) we have

S(gp, gp, fp) ≤ 2S(gp, gp, gxn+1) + S(gxn+1, gxn+1, fp)

≤ 2S(gp, gp, gxn+1) + φ(S(gxn, gxn, gp))

≤ 2S(gp, gp, gxn+1) + S(gxn, gxn, gp).

By taking n → ∞, we have S(gp, gp, fp) = 0 and so gp = fp. We now show
that f and g have a unique point of coincidence. Suppose that fq = gq for
some q ∈ X. Assume that gp 6= gq. By applying (3), it follows that

S(gp, gp, gq) = S(fp, fp, fq)

≤ φ(S(gp, gp, gq))

< S(gp, gp, gq),

which leads to a contradiction. Therefore gp = gq. This implies that f and g
have a unique point of coincidence. By Proposition 1, we can conclude that f
and g have a unique common fixed point. �

By setting g to be the identity function on X, we immediately have the
following corollary. This result extends and generalizes Boyd-Wong theorem
from the metric spaces to the S-metric spaces. We do not need upper semi-
continuity of the comparison function, we only use φ ∈ Φ with lim

s→t+φ (s) < t,

t > 0.

Corollary 2 Let (X, S) be a complete S-metric space. Suppose that the map-
ping f : X→ X satisfies

S(fx, fy, fz) ≤ φ(S(x, y, z)),

for all x, y, z ∈ X. Then f has a unique fixed point.
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Theorem 4 Let (X, S) be a S-metric space. Suppose that the mapping f, g :
X→ X satisfy

S(fx, fy, fz) ≤ k1φ(S(gx, gx, fx))+k2φ(S(gy, gy, fy))+k3φ(S(gz, gz, fz)) (5)

for all x, y, z ∈ X, k1 + k2 + k3 < 1. If the range of g contains the range of
f, and one of f (X) or g (X) is complete subspace of X, then f and g have a
unique point of coincidence in X. Moreover if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. Assume that f and g satisfy the condition (5). Let x0 be an arbitrary
point in X. Since the range of g contains the range of f, there is x1 ∈ X
such that gx1 = fx0. By continuing the process as before, we can construct a
sequence {gxn} such that gxn+1 = fxn for all n ∈ N. If there is n ∈ N such that
gxn = gxn+1, then f and g have a point of coincidence. Thus we can suppose
that gxn 6= gxn+1 for all n ∈ N. Therefore, for each n ∈ N, we obtain that

S(gxn, gxn, gxn+1) = S(fxn−1, fxn−1, fxn)

≤ k1φ(S(gxn−1, gxn−1, fxn−1)) + k2φ(S(gxn−1, gxn−1, fxn−1))
+ k3φ(S(gxn, gxn, fxn))

= k1φ(S(gxn−1, gxn−1, gxn)) + k2φ(S(gxn−1, gxn−1, gxn))

+ k3φ(S(gxn, gxn, gxn+1))

< (k1 + k2)φ(S(gxn−1, gxn−1, gxn)) + k3S(gxn, gxn, gxn+1).

Now we have,

S(gxn, gxn, gxn+1) <
k1 + k2
1− k3

φ(S(gxn−1, gxn−1, gxn)).

Let r = k1+k2
1−k3

< 1. Then

S(gxn, gxn, gxn+1) < rφ(S(gxn−1, gxn−1, gxn))

< φ(S(gxn−1, gxn−1, gxn)) < · · · < φnS(gx0, gx0, gx1)

This implies that lim
n→∞S(gxn, gxn, gxn+1) = 0. If {gxn} = {fxn−1} is not

Cauchy sequence in S−metric space (X, S) , then there exist an ε > 0 and
two sequences {mk} and {nk} , nk > mk > k of positive integers such that the
following sequences tend to ε when k→ ∞ :

S (gxmk+1, gxmk+1, gxnk+1) and S (gxmk
, gxmk

, gxnk
) . (6)
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Putting now in (3) x = y = xmk
, z = xnk

, and using the fact that S(gxmk
, gxmk

,

gxmk+1) > 0 and S(gxnk
, gxnk

, gxnk+1) > 0 we obtain

S(gxmk+1, gxmk+1, gxnk+1)

= S(fxmk
, fxmk

, fxnk
)

≤ k1φ(S(gxmk
, gxmk

, fxmk
)) + k2φ(S(gxmk

, gxmk
, fxmk

))

+ k3φ(S(gxnk
, gxnk

, fxnk
))

= k1φ(S(gxmk
, gxmk

, gxmk+1)) + k2φ(S(gxmk
, gxmk

, gxmk+1))

+ k3φ(S(gxnk
, gxnk

, gxnk+1))

< k1S(gxmk
, gxmk

, gxmk+1) + k2S(gxmk
, gxmk

, gxmk+1)

+ k3S(gxnk
, gxnk

, gxnk+1)

Letting k→ ∞ we obtain ε ≤ 0.
A contradiction. So, the sequences {gxn} = {fxn−1} is Cauchy sequence. By

the completeness of g(X) (or f(X)), we obtain that {gxn} is convergent to some
q ∈ g(X). So there exists p ∈ X such that gp = q. We will show that gp = fp.
Suppose that gp 6= fp. By (5), we have

S(gxn, gxn, fp) = S(fxn−1, fxn−1, fp)

≤ k1φ(S(gxn−1, gxn−1, gxn)) + k2φ(S(gxn−1, gxn−1, gxn)) + k3φ(S(gp, gp, fp)).

Letting n→ ∞ we have

S(gp, gp, fp) ≤ k3φ(S(gp, gp, fp)) < k3S(gp, gp, fp) < S(gp, gp, fp)

we got a contradiction. So, gp = fp. The proof that f and g have a unique
point of coincidence is as in Theorem 1 so we omitted it. �
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Abstract. In this paper, we introduce the concept of operator AG-
preinvex functions and prove some Hermite-Hadamard type inequalities
for these functions. As application, we obtain some unitarily invariant
norm inequalities for operators.

1 Introduction and preliminaries

The following Hermite-Hadamard inequality holds for any convex function f
defined on R

(b− a)f

(
a+ b

2

)
≤

∫b
a

f(x)dx ≤ (b− a)
f(a) + f(b)

2
, a, b ∈ R. (1)
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Key words and phrases: Hermite-Hadamard inequality, operator AG-preinvex function,
log-convex function, positive linear operator
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It was firstly discovered by Hermite in 1881 in the journal Mathesis (see [8]).
But this result was nowhere mentioned in the mathematical literature and was
not widely known as Hermite’s result [10].

Beckenbach, a leading expert on the history and the theory of convex func-
tions, wrote that this inequality was proven by Hadamard in 1893 [2]. In
1974, Mitrinovič found Hermites note in Mathesis [8]. Since (1) was known
as Hadamards inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality [10].

Definition 1 [13] A continuous function f : I ⊂ R → R+ is said to be an
AG-convex function (arithmetic-geometrically or log-convex function) on the
interval I if

f(λa+ (1− λ)b) ≤ f(a)λf(b)1−λ. (2)

for a, b ∈ I and λ ∈ [0, 1], i.e., log f is convex.

Theorem 1 [13] Let f be an AG-convex function defined on [a, b]. Then, we
have

f

(
a+ b

2

)
≤

√
f

(
3a+ b

4

)
f

(
a+ 3b

4

)
≤ exp

(
1

b− a

∫b
a

log(f(u))du

)
≤

√
f

(
a+ b

2

)
. 4
√
f(a). 4

√
f(b)

≤
√
f(a)f(b), (3)

where u = log t.

Let B(H) stands for the C∗-algebra of all bounded linear operators on a
complex Hilbert space H with inner product 〈·, ·〉. An operator A ∈ B(H) is
positive and write A ≥ 0 if 〈Ax, x〉 ≥ 0 for all x ∈ H. Let B(H)sa stand for the
set of all self-adjoint elements of B(H).

Let A be a self-adjoint operator in B(H). The Gelfand map establishes a
∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous
functions defined on the spectrum of A, denoted by Sp(A), and the C∗-algebra
C∗(A) generated by A and the identity operator 1H on H as follows:

for any f, g ∈ C(Sp(A))) and any α,β ∈ C we have:

• Φ(αf+ βg) = αΦ(f) + βΦ(g);
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• Φ(fg) = Φ(f)Φ(g) and Φ(f̄) = Φ(f)∗;

• ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A) |f(t)|;

• Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp(A).

With this notation we define

f(A) = Φ(f) for all f ∈ C(Sp(A))

and we call it the continuous functional calculus for a self-adjoint operator A.
If A is a self-adjoint operator and f is a real valued continuous function on

Sp(A), then f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, i.e. f(A) is a
positive operator on H. Moreover, if both f and g are real valued functions on
Sp(A) then the following important property holds:

f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A), (4)

in the operator order of B(H), see [14].

Definition 2 A real valued continuous function f on an interval I is said to
be operator convex function if

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B),

in the operator order, for all λ ∈ [0, 1] and self-adjoint operators A and B in
B(H) whose spectra are contained in I.

In [4] Dragomir investigated the operator version of the Hermite-Hadamard
inequality for operator convex functions. Let f : I→ R be an operator convex
function on the interval I then, for any self-adjoint operators A and B with
spectra in I, the following inequalities holds

f

(
A+ B

2

)
≤ 2

∫ 3
4

1
4

f(tA+ (1− t)B)dt

≤ 1

2

[
f

(
3A+ B

4

)
+ f

(
A+ 3B

4

)]
≤

∫ 1
0

f ((1− t)A+ tB)dt

≤ 1

2

[
f

(
A+ B

2

)
+
f(A) + f(B)

2

]
≤ f(A) + f(B)

2
,
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for the first inequality in above, see [12].
In [5], Ghazanfari et al. gave the concept of operator preinvex function and

obtained Hermite-Hadamard type inequality for operator preinvex function.

Definition 3 [5] Let X be a real vector space, a set S ⊆ X is said to be invex
with respect to the map η : S× S→ X, if for every x, y ∈ S and t ∈ [0, 1],

x+ tη(x, y) ∈ S.

It is obvious that every convex set is invex with respect to the map η(x, y) =
x− y, but there exist invex sets which are not convex (see [1]).

Let S ⊆ X be an invex set with respect to η. For every x, y ∈ S. the η-path
Pxv joining the points x and v := x+ η(y, x) is defined as follows

Pxv := {z : z = x+ tη(y, x), t ∈ [0, 1]}.

The mapping η is said to satisfy the condition (C) if for every x, y ∈ S and
t ∈ [0, 1],

η(y, y+ tη(y, x)) = −tη(x, y), η(x, y+ tη(x, y)) = (1− t)η(x, y).

Note that for every x, y ∈ S and every t1, t2 ∈ [0, 1], from conditions in (C),
we have

η(y+ t2η(x, y), y+ t1η(x, y)) = (t2 − t1)η(x, y), (5)

see [9] for details.

Definition 4 Let S ⊆ B(H)sa be an invex set with respect to η : S × S →
B(H)sa. Then, the continuous f : R → R is said to be operator preinvex with
respect to η on S, if for every A,B ∈ S and t ∈ [0, 1],

f(A+ tη(B,A)) ≤ (1− t)f(A) + tf(B), (6)

in the operator order in B(H).

Every operator convex function is operator preinvex with respect to the map
η(A,B) = A− B, but the converse does not hold (see [5]).

Theorem 2 [5] Let S ⊆ B(H)sa be an invex set with respect to η : S × S →
B(H)sa and η satisfies condition (C). If for every A,B ∈ S and V = A+η(B,A)
the function f : I ⊆ R → R is operator preinvex with respect to η on η-path
PAV with spectra of A and spectra of V in the interval I. Then we have the
inequality

f

(
A+ V

2

)
≤

∫ 1
0

f((A+ tη(B,A))dt ≤ f(A) + f(B))
2

.
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Throughout this paper, we introduce the concept of operator AG-preinvex
functions and obtain some Hermite-Hadamard type inequalities for these class
of functions. These results lead us to obtain some inequalities unitarily invari-
ant norm inequalities for operators.

2 Some inequalities for operator AG-preinvex func-
tions

In this section, we prove some Hermite-Hadamard type inequalities for oper-
ator AG-preinvex functions.

Definition 5 [13] A continuous function f : I ⊆ R → R+ is said to be operator
AG-convex (concave) if

f(λA+ (1− λ)B) ≤ (≥) f(A)λf(B)1−λ

for 0 ≤ λ ≤ 1 and self-adjoint operators A and B in B(H) whose spectra are
contained in I.

Example 1 [6, Corollary 7.6.8] Let A and B be to positive definite n × n
complex matrices. For 0 < α < 1, we have

|αA+ (1− α)B| ≥ |A|α|B|1−α (7)

where | · | denotes determinant of a matrix.

Let f be an operator AG-convex function, for commutative positive operators
A,B ∈ B(H) whose spectra are contained in I, then we have

f

(
A+ B

2

)
≤

∫ 1
0

√
f(αA+ (1− α)B)f((1− α)A+ αB)dα

≤
√
f(A)f(B), (8)

(see [13] for more inequalities).

Definition 6 Let S ⊆ B(H)sa be an invex set with respect to η : S × S →
B(H)sa. A continuous function f : I ⊆ R → R+ is called operator AG-preinvex
with respect to η on S if

f(A+ tη(B,A)) ≤ f(A)1−tf(B)t

for t ∈ [0, 1] such that spectra of A and B are contained in I.
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Remark 1 Let f be an operator AG-preinvex function, in a commutative case,
we then get

f(A+ tη(B,A)) ≤ f(A)1−tf(B)t

≤ (1− t)f(A) + tf(B)

≤ max{f(A), f(B)}

It means that f is operator quasi preinvex i.e., f(A+tη(B,A)) ≤ max{f(A), f(B)}.

We need the following lemma for giving Hermite-Hadamard type inequalities
for operator preinvex function.

Lemma 1 Let S ⊆ B(H)sa be an invex set with respect to η : S× S→ B(H)sa
and f : I ⊆ R → R+ be a continuous function on the interval I. Suppose that
η satisfies condition (C). Then for every A,B ∈ S and V = A + η(B,A) and
for some fixed s ∈ (0, 1] the function f is operator AG-preinvex with respect to
η on η-path PAV with spectra of A and V in the interval I if and only if the
function ϕA,B defined by

ϕA,B(t) = f(A+ tη(B,A)) (9)

is a log-convex function on [0, 1].

Proof. Let ϕ be a log-convex function on [0, 1], we should prove that f is
operator AG-preinvex with respect to η.
For every C1 := A + t1η(B,A) ∈ PAV , C2 := A + t2η(B,A) ∈ PAV , fixed
λ ∈ [0, 1], by (9) we have

f(C1 + λη(C2, C1)) = f(A+ t1η(B,A) + λη(A+ t2η(B,A), A+ t1η(B,A)))

= f(A+ t1η(B,A) + λ(t2 − t1)η(B,A))

= f(A+ (t1 + λt2 − λt1)η(B,A))

= f(A+ ((1− λ)t1 + λt2)η(B,A))

= ϕ((1− λ)t1 + λt2)

≤ ϕ(t1)
1−λϕ(t2)

λ

= (f(A+ t1η(B,A)))
1−λ (f(A+ t2η(B,A)))

λ .
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Conversely, let f be operator AG-preinvex, then, by (6)

ϕ((1− λ)t1 + λt2) = f(A+ ((1− λ)t1 + λt2)η(B,A))

= f(A+ t1η(B,A) + λ(t2 − t1)η(B,A))

= f(A+ t1η(B,A) + λη(A+ t2η(B,A), A+ t1η(B,A)))

≤ f(A+ t1η(B,A))
1−λf(A+ t2η(B,A))

λ

= ϕ(t1)
1−λϕ(t2)

λ.

�

Theorem 3 Let S ⊆ B(H)sa be an invex set with respect to η : S×S→ B(H)sa
and f : I ⊆ R → R+ be a continuous function on the interval I. Suppose that
η satisfies condition (C). Then for the operator AG-preinvex function f with
respect to η on η-path PAV such that spectra of A and V are in I, we have

f

(
A+ V

2

)
≤

√
f

(
3A+ V

4

)
f

(
A+ 3V

4

)
≤ exp

(∫ 1
0

log(f(A+ tη(B,A)))dt

)
≤

√
f

(
A+ V

2

)
4
√
f(A) 4

√
f(V)

≤
√
f(A)f(V)

≤ f(A) + f(V)

2

where A,B ∈ S and V = A+ η(B,A) and for some fixed s ∈ (0, 1]

Proof. Since f is an operator AG-preinvex function, so by Lemma 1 we have
ϕ(t) = f(A+ tη(B,A)) is log-convex on [0, 1].

On the other hand, in [11] we obtained the following inequalities for log-
convex function ϕ on [0, 1]:

ϕ

(
1

2

)
≤

√
ϕ

(
1

4

)
ϕ

(
3

4

)
≤ exp

(∫ 1
0

log(ϕ(u))du

)
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≤

√
ϕ

(
1

2

)
. 4
√
ϕ(0). 4

√
ϕ(1)

≤
√
ϕ(0)ϕ(1). (10)

By knowing that

ϕ(0) = f(A)

ϕ

(
1

4

)
= f

(
A+

1

4
η(B,A)

)
= f

(
3A+ V

4

)
ϕ

(
1

2

)
= f

(
A+

1

2
η(B,A)

)
= f

(
A+ V

2

)
ϕ(1) = f(V),

we obtain

f

(
A+ V

2

)
≤

√
f

(
3A+ V

4

)
f

(
A+ 3V

4

)
≤ exp

(∫ 1
0

log(f(A+ tη(B,A)))dt

)
≤

√
f

(
A+ V

2

)
4
√
f(A) 4

√
f(V)

≤
√
f(A)f(V).

�

3 Some unitarily invariant norm inequalities for op-
erator AG-preinvex functions

In this section we prove some unitarily invariant norm inequalities for opera-
tors.

We consider the wide class of unitarily invariant norms ||| · |||. Each of these
norms is defined on an ideal in B(H) and it will be implicitly understood
that when we talk of |||T |||, then the operator T belongs to the norm ideal
associated with ||| · |||. Each unitarily invariant norm ||| · ||| is characterized
by the invariance property |||UTV ||| = |||T ||| for all operators T in the norm
ideal associated with ||| · ||| and for all unitary operators U and V in B(H).
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For 1 ≤ p < ∞, the Schatten p-norm of a compact operator A is defined
by ‖A‖p = (Tr |A|p)1/p, where Tr is the usual trace functional. Note that for
compact operator A we have, ‖A‖ = s1(A), and if A is a Hilbert-Schmidt
operator, then ‖A‖2 = (

∑∞
j=1 s

2
j (A))

1/2. These norms are special examples of
the more general class of the Schatten p-norms which are unitarily invariant
[3].

Remark 2 The author of [7] proved that if A,B, X ∈ B(H) such that A,B are
positive operators, then for 0 ≤ ν ≤ 1 we have

|||AνXB1−ν||| ≤ |||AX|||ν|||XB|||1−ν. (11)

Let X = I in above inequality, we then get

|||AνB1−ν||| ≤ |||A|||ν|||B|||1−ν. (12)

Lemma 2 Let f be an operator AG-preinvex function and η satisfies the con-
dition (C). Then the function ϕA,B : [0, 1] → R defined as follows

ϕ(t) = |||f(A+ tη(B,A))|||

is log-convex.

Proof. Let t1, t2 ∈ [0, 1], we have

ϕ((1− λ)t1 + λt2) = |||f(A+ ((1− λ)t1 + λt2)η(B,A))|||

= |||f (A+ t1η(B,A) + λ(t2 − t1)η(B,A)) |||

= |||f (A+ t1η(B,A) + λη(A+ t2η(B,A), A+ t1η(B,A))) |||

≤ |||f(A+ t1η(B,A))
1−λf(A+ t2η(B,A))

λ|||

≤ |||f(A+ t1η(B,A))|||
1−λ|||f(A+ t2η(B,A))|||

λ by (12)

= ϕ(t1)
1−λϕ(t2)

λ.

�

Theorem 4 Let S ⊆ B(H)sa be an invex set with respect to η : S×S→ B(H)sa
and f : I ⊆ R → R+ be a continuous function on the interval I. Suppose that
η satisfies condition (C). Then for the operator AG-preinvex function f with
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respect to η on η-path PAV such that spectra of A and V are in I, we have

∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤
√∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ V

4

)∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ 3V

4

)∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(∫ 1
0

log(|||f(A+ tη(B,A))|||)dt

)
≤

√∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ 4
√

|||f(A)||| 4
√
|||f(V)|||

≤
√
|||f(A)||| |||f(V)|||

≤ |||f(A)|||+ |||f(V)|||

2
.

where A,B ∈ S and V = A+ η(B,A) and for some fixed s ∈ (0, 1]

Proof. Since f is an operator AG-preinvex function, so by Lemma 2 we have
ϕ(t) = |||f(A+ tη(B,A))||| is log-convex on [0, 1].

On the other hand, in [11] we obtained the following inequalities for log-
convex function ϕ on [0, 1] :

ϕ

(
1

2

)
≤

√
ϕ

(
1

4

)
ϕ

(
3

4

)
≤ exp

(∫ 1
0

log(ϕ(u))du

)
≤

√
ϕ

(
1

2

)
. 4
√
ϕ(0). 4

√
ϕ(1)

≤
√
ϕ(0)ϕ(1). (13)

By knowing that

ϕ(0) = |||f(A)|||

ϕ

(
1

4

)
=

∣∣∣∣∣∣∣∣∣∣∣∣f(A+
1

4
η(B,A)

)∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ V

4

)∣∣∣∣∣∣∣∣∣∣∣∣
ϕ

(
1

2

)
=

∣∣∣∣∣∣∣∣∣∣∣∣f(A+
1

2
η(B,A)

)∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣
ϕ(1) = |||f(V)|||,
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we obtain∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤
√∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ V

4

)∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ 3V

4

)∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(∫ 1
0

log(|||f(A+ tη(B,A))|||)dt

)
≤

√∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ 4
√

|||f(A)||| 4
√
|||f(V)|||

≤
√
|||f(A)||| |||f(V)|||.

�

Let η(B,A) = B − A in the above theorem, then we obtain the following
inequalities:∣∣∣∣∣∣∣∣∣∣∣∣f(A+ B

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤
√∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ B

4

)∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ 3B

4

)∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(∫ 1
0

log(|||f((1− t)A+ tB)|||dt

)
≤

√∣∣∣∣∣∣∣∣∣∣∣∣f(A+ B

2

)∣∣∣∣∣∣∣∣∣∣∣∣ 4
√

|||f(A)||| 4
√

|||f(B)|||

≤
√
|||f(A)||| |||f(B)|||

≤ |||f(A)|||+ |||f(B)|||

2
. (14)
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[8] D. S. Mitrinović, I. B. Lacković, Hermite and convexity, Aequationes
Math., 28 (1985), 229–232.

[9] S. R. Mohan, S. K. Neogy, On invex sets and preinvex function, J. Math.
Anal. Appl., 189 (1995), 901–908.
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Laura NISTOR Emőd VERESS
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Róbert SZÁSZ (Sapientia University, Romania)

Editorial Board
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