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Abstract. In this paper we study the convexity and concavity prop-
erties of generalized trigonometric and hyperbolic functions in case of
Logarithmic mean.

1 Introduction

Recently, the study of the generalized trigonometric and generalized hyperbolic
functions has got huge attention of numerous authors, and has appeared the
huge number of papers involving the equalities and inequalities and basis prop-
erties of these function, e.g. see [7, 8, 9, 6, 10, 13, 14, 18, 23] and the references
therein. These generalized trigonometric and generalized hyperbolic functions
p-functions depending on the parameter p > 1 were introduced by Lindqvist
[19] in 1995. These functions coincides with the usual functions for p = 2.
Thereafter Takesheu took one further step and generalized these function for
two parameters p, q > 1, so-called (p, q)-functions. In [8], some convexity and
concavity properties of p-functions were studied. Thereafter those results were
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extended in [5] for two parameters in the sense of Power mean inequality. In
this paper we study the convexity and concavity property of p-function with
respect Logarithmic mean. Before we formulate our main result we will define
generalized trigonometric and hyperbolic functions customarily.

The eigenfunction sinp of the so-called one-dimensional p-Laplacian problem
[12]

−∆pu = −
(
|u ′|p−2u ′

) ′
= λ|u|p−2u, u(0) = u(1) = 0, p > 1,

is the inverse function of F : (0, 1) → (
0,
πp
2

)
, defined as

F(x) = arcsinp(x) =

∫x
0

(1− tp)−
1
pdt,

where

πp = 2arcsinp(1) =
2

p

∫ 1
0

(1− s)−1/ps1/p−1ds =
2

p
B

(
1−

1

p
,
1

p

)
=

2π

p sin
(
π
p

) ,
here B(., .) denotes the classical beta function.

The function arcsinp is called the generalized inverse sine function, and coin-
cides with usual inverse sine function for p = 2. Similarly, the other generalized
inverse trigonometric and hyperbolic functions arccosp : (0, 1) → (0, πp/2) ,
arctanp : (0, 1) → (0, bp), arcsinhp : (0, 1) → (0, cp), arctanhp : (0, 1) → (0,∞),
where

bp =
1

2p

(
ψ

(
1+ p

2p

)
−ψ

(
1

2p

))
= 2−

1
p F

(
1

p
,
1

p
; 1+

1

p
;
1

2

)
,

cp =

(
1

2

) 1
p

F

(
1,
1

p
; 1+

1

p
,
1

2

)
,

are defined as follows

arccosp(x) =

∫ (1−xp) 1p
0

(1− tp)−
1
pdt, arctanp(x) =

∫x
0

(1+ tp)−1dt,

arcsinhp(x) =

∫x
0

(1+ tp)−
1
pdt, arctanhp(x) =

∫x
0

(1− tp)−1dt,

where F(a, b; c; z) is Gaussian hypergeometric function [1].
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The generalized cosine function is defined by

d

dx
sinp(x) = cosp(x), x ∈ [0, πp/2] .

It follows from the definition that

cosp(x) = (1− (sinp(x))
p)1/p ,

and
| cosp(x)|

p + | sinp(x)|
p = 1, x ∈ R. (1)

Clearly we get
d

dx
cosp(x) = − cosp(x)

2−p sinp(x)
p−1.

The generalized tangent function tanp is defined by

tanp(x) =
sinp(x)

cosp(x)
,

and applying (1) we get

d

dx
tanp(x) = 1+ tanp(x)

p.

For x ∈ (0,∞), the inverse of generalized hyperbolic sine function sinhp(x)
is defined by

arcsinhp(x) =

∫x
0

(1+ tp)−1/pdt,

and generalized hyperbolic cosine and tangent functions are defined by

coshp(x) =
d

dx
sinhp(x), tanhp(x) =

sinhp(x)

coshp(x)
,

respectively. It follows from the definitions that

| coshp(x)|
p − | sinhp(x)|

p = 1. (2)

From above definition and (2) we get the following derivative formulas,

d

dx
coshp(x) = coshp(x)

2−p sinhp(x)
p−1,

d

dx
tanhp(x) = 1− | tanhp(x)|

p.

Note that these generalized trigonometric and hyperbolic functions coincide
with usual functions for p = 2.
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For two distinct positive real numbers x and y, the Arithmetic mean, Geo-
metric mean, Logarithmic mean, Harmonic mean and the Power mean of order
p ∈ R are respectively defined by

A(x, y) =
x+ y

2
, G(x, y) =

√
xy,

L(x, y) =
x− y

log(x) − log(y)
, x 6= y,

H(x, y) =
1

A(1/x, 1/y)
,

and

Mt =


(
xt + yt

2

)1/t
, t 6= 0,

√
xy, t = 0 .

Let f : I → (0,∞) be continuous, where I is a sub-interval of (0,∞). Let
M and N be the means defined above, the we call that the function f is MN-
convex (concave) if

f(M(x, y)) ≤ (≥)N(f(x), f(y)) for all x, y ∈ I .

Recently, Generalized convexity/concavity with respect to general mean val-
ues has been studied by Anderson et al. in [2]. We recall one of their results
as follows

Lemma 1 [2, Theorem 2.4] Let I be an open sub-interval of (0,∞) and let
f : I → (0,∞) be differentiable. Then f is HH-convex (concave) on I if and
only if x2f ′(x)/f(x)2 is increasing (decreasing).

In [4], Baricz studied that if the functions f is differentiable, then it is
(a, b)-convex (concave) on I if and only if x1−af ′(x)/f(x)1−b is increasing (de-
creasing).

It is important to mention that (1, 1)-convexity means the AA-convexity,
(1, 0)-convexity means the AG-convexity, and (0, 0)-convexity means GG-
convexity.

Motivated by the results given in [2, 4], we contribute to the topic by giving
the following result.

Theorem 1 Let f : I→ (0,∞) be a continuous and I ⊆ (0,∞), then
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1. L(f(x), f(y)) ≥ (≤)f(L(x, y)),

2. L(f(x), f(y)) ≥ (≤)f(A(x, y)),

if f is increasing and log-convex (concave).

Theorem 2 For x, y ∈ (0, πp/2), the following inequalities

1. L(sinp(x), sinp(y)) ≤ sinp(L(x, y)), p > 1,

2. L(cosp(x), cosp(y)) ≤ cosp(L(x, y)), p ≥ 2.

Theorem 3 For p > 1, we have

1. L(1/ sinp(x), 1/ sinp(y)) ≥ 1/ sinp(A(x, y)), x, y ∈ (0, πp/2),

2. L(1/ cosp(x), 1/ cosp(y)) ≥ 1/ cosp(L(x, y)), x, y ∈ (0, πp/2),

3. L(tanhp(x), tanhp(y)) ≤ tanhp(A(x, y)), x, y ∈ (0,∞),

4. L(arcsinhp(x), arcsinhp(y)) ≤ arcsinhp(A(x, y)), x, y ∈ (0, 1),

5. L(arctanp(x), arctanp(y)) ≤ arctanp(A(x, y)), x, y ∈ (0, 1).

2 Preliminaries and Proofs

We give the following lemmas which will be used in the proof of our main
result.

Lemma 2 [22] Let f, g : [a, b] → R be integrable functions, both increasing
or both decreasing. Furthermore, let p : [a, b] → R be a positive, integrable
function. Then∫b

a

p(x)f(x)dx

∫b
a

p(x)g(x)dx ≤
∫b
a

p(x)dx

∫b
a

p(x)f(x)g(x)dx. (3)

If one of the functions f or g is non-increasing and the other non-decreasing,
then the inequality in (3) is reversed.

Lemma 3 [17] If f(x) is continuous and convex function on [a, b], and ϕ(x)
is continuous on [a, b], then

f

(
1

b− a

∫b
a

ϕ(x)dx

)
≤ 1

b− a

∫b
a

f (ϕ(x))dx. (4)

If function f(x) is continuous and concave on [a, b], then the inequality in (4)
reverses.



124 B. A. Bhayo, L. Yin

Lemma 4 [3] For two distinct positive real numbers a, b, we have L < A.

Lemma 5 For p > 1, the function sinp(x) is HH-concave on (0, πp/2).

Proof. Let f(x) = f1(x)f2(x), x ∈ (0, πp/2), where f1(x) = 1/ sin(x) and
f2(x) = x2 cosp(x)/ sinp(x). Clearly, f1 is decreasing, so it is enough to prove
that f2 is decreasing, then the proof follows from Lemma 1. We get

f ′2(x) =
sinp(x)(cosp(x) − x cosp(x)

2−p sinp(x)
p−1) − x cosp(x)

2

sinp(x)2

=
cosp(x)

2((1− x tanp(x)
p−1) tanp(x) − x)

sinp(x)2
= f3(x)

cosp(x)
2

sinp(x)2
,

where f3(x) = tanp(x) − x tanp(x)
p − 1. Again, one has

f ′3(x) = p tanp(x)
p−1(1+ tanp(x)

p)x < 0.

Thus, f3 is decreasing and g(x) < g(0) = 0. This implies that f ′2 < 0, hence
f2 is strictly decreasing, the product of two decreasing functions is decreasing.
This implies the proof. �

Proof of Theorem 1. We get

L(f(x), f(y)) =

∫f(x)
f(y) 1dt∫f(x)
f(y)

1
tdt

=

∫x
y f

′(u)du∫x
y
f ′(u)
f(u) du

. (5)

It is assumed that the function f(x) is increasing and log f is convex, this

implies that f ′(x)
f(x) is increasing. Letting p(x) = 1, f(x) = f(u) and g(x) =

f ′(u)/f(u) in Lemma 2, we get∫x
y

1du

∫x
y

f ′(u)du ≥
∫x
y

f ′(u)

f(u)
du

∫x
y

f(u)du.

This is equivalent to

L(f(x), f(y)) =

∫x
y f

′(u)du∫x
y
f ′(u)
f(u) du

≥
∫x
y f(u)du∫x
y 1du

.

By Lemmas 3 and 4, and keeping in mind that log-convexity of f implies the
convexity of f, we get

L(f(x), f(y)) ≥ f

(∫x
y udu

x− y

)
= f

(
x+ y

2

)
≥ f (L(x, y)) .
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The proof of converse follows similarly. If we repeat the lines of proof of part
(1), and use the concavity of the function, and Lemmas 3 & 4 then we arrive
at the proof of part (2).

Proof of Theorem 2. It is easy to see that the function sinp(x) is increasing
and log-concave. So the proof of part (1) follows easily from Theorem 1. We
also offer another proof as follows:

It can be observed easily that

L (sinp(x), sinp(y)) =

∫x
y cosp(u)du∫sinp(x)
sinp(y)

1
tdt

=

∫x
y cospudu∫x
y

cospu
sinp(u)

du
,

and

sinp (L (x, y)) = sinp

(
x− y

log x
y

)
= sinp

( ∫x
y 1du∫x
y
1
udu

)
.

Clearly, cosp(u) and sinp(1/u), utilizing Chebyshev inequality, we have∫x
y

cosp(u)du

∫x
y

sinp(1/u)du ≤
∫x
y

1du

∫x
y

cospusinp
1

u
du.

So, we get ∫x
y

cospudu

∫x
y

sinp(1/u)du <

∫x
y

1du

∫x
y

cosp(u)

sinp(u)
du.

Where we apply simple inequality sinp
(
1
u

)
< 1

sinp(u)
. In order to prove inequal-

ity (1), we only prove∫x
y 1du∫x

y sinp(1/u)du
≤ sinp

( ∫x
y 1du∫x

y sinp(1/u)du

)
.

Consider a partition T of the interval [y, x] into n equal length sub-interval
by means of points y = x0 < x1 < · · · < xn = x and ∆xi =

x−y
n . Picking an

arbitrary point ξi ∈ [xi−1, xi] and using Lemma 1, we have

n
n∑
i=1

sinp
1
ξi

≤ sinp

 n
n∑
i=1

1
ξi
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⇔
x− y

lim
n→∞

(
x−y
n

n∑
i=1

sinp
1
ξi

) ≤ sinp

 x− y

lim
n→∞

(
x−y
n

n∑
i=1

1
ξi

)


⇔ ∫x
y 1du∫x

y sinp(1/u)du
≤ sinp

( ∫x
y 1du∫x

y sinp(1/u)du

)
.

This completes the proof.
For (2), clearly cosp(x) is decreasing and tanp(x)

p−1 is increasing. One has

(cosp(x))
′′ = cosp(x) tanp(x)

p−2 (1− p+ (2− p) tanp(x)
p) < 0,

this implies that cosp(x) is concave on (0, πp/2).
Using Tchebyshef inequality, we have∫x

y

1du

∫x
y

cosp(u) tanp(u)
p−1du ≤

∫x
y

cosp(u)du

∫x
y

tanp(u)
p−1du,

which is equivalent to∫x
y cosp(u) tanp(u)

p−1du∫x
y tanp(u)p−1du

≤
∫x
y cosp(u)du∫x

y 1du
. (6)

Substituting t = cosp(u) in (6), we get

L(cosp(x), cosp(y)) =

∫cosp(x)
cosp(y)

1dt∫cosp(x)
cosp(y)

1
tdt

=

∫x
y cosp(u) tanp(u)

p−1du∫x
y tanp(u)p−1du

≤
∫x
y cosp(u)du∫x

y 1du
.

Using Lemma 3 and concavity of cosp(x), we obtain

L(cosp(x), cosp y) ≤ cosp

(∫x
y udu

x− y

)
= cosp

(
x+ y

2

)
≤ cosp (L(x, y)) .

Proof of Theorem 3. Let g1(x) = 1/ cosp(x), x ∈ (0, πp/2) and g2(x) =
tanhp(x), x > 0. We get

(log(g1(x)))
′′ = (p− 1) tanp(x)

p−2(1+ tanp(x)
p) > 0,
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and

(log(g2(x)))
′′ =

1− tanhp(x)
p

tanhp(x)2
((1− p) tanhp(x)

p − 1) < 0.

This implies that g1 and g2 are log-convex, clearly both functions are increas-
ing, and log-convexity implies the convexity, so g1 and g2 are convex functions.
Now the proof follows easily from Theorem 1. The rest of proof follows simi-
larly.

Corollary 1 For p > 1, we have

1. L(tanp(x), tanp(y)) ≥ tanp(L(x, y)), x, y ∈ (sp, πp/2), where sp is the
unique root of the equation tanp(x) = 1/(p− 1)

1/p,

2. L(arctanhp(x), arctanhp(y)) ≥ arctanhp(L(x, y)), x, y ∈ (rp, 1), where
rp is the unique root of the equation xp−1arctanhp(y) = 1/p.

Proof. Write f1(x) = tanp(x). We get(
f ′1(x)

f(x)

)′
=

(
1+ tanpp(x)

tanp(x)

)′
=
1+ tanpp(x)

tan2p(x)

[
(p− 1) tanpp(x) − 1

]
> 0

on
(
sp,

πp
2

)
. This implies that f1 is log-convex, clearly f1 is increasing, and the

proof follows easily from Theorem 1. The proof of part (2) follows similarly. �
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Abstract. In this paper our aim is to find the solutions of time and
space fractional heat differential equations by using new definition of frac-
tional derivative called conformable fractional derivative. Also based on
conformable fractional derivative definition conformable Fourier Trans-
form is defined. Fourier sine and Fourier cosine transform definitions are
given and space fractional heat equation is solved by conformable Fourier
transform.

1 Introduction

Fractional differential equations which are the generalization of differential
equations are successful models of real life events and have many applications
in various fields in science [1]-[8]. So the subject becomes very captivating.
Hence, many researchers have been trying to form a new definition of frac-
tional derivative. Most of these definitions include integral form for fractional
derivatives. Two of these definitions which are most popular:
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1. Riemann-Liouville definition: If n is a positive integer and α ∈ [n− 1, n),
α derivative of f is given by

Dαa(f)(t) =
1

Γ(n− α)

dn

dtn

t∫
a

f(x)

(t− x)α−n+1
dx.

2. Caputo definition: If n is a positive integer and α ∈ [n− 1, n), α deriva-
tive of f is given by

Dαa(f)(t) =
1

Γ(n− α)

t∫
a

f(n)(x)

(t− x)α−n+1
dx.

In [9, 10] R. Khalil and et al. give a new definition of fractional derivative
called “conformable fractional derivative”.

Definition 1 Let f : [0,∞) → R be a function. αth order conformable frac-
tional derivative of f is defined by

Tα(f)(t) = lim
ε→0 f(t+ εt

1−α) − f(t)

ε

for all t > 0, α ∈ (0, 1). If fis α-differentiable in some (0, a), a > 0, and
lim
t→0+ f(α)(t) exists, then define

f(α)(0) = lim
t→0+ f(α)(t).

This new definition satisfies the properties which are given in the following
theorem [9, 10].

Theorem 1 Let α ∈ (0, 1] and f, g be α− differentiable at point t > 0. Then

(a) Tα(cf+ dg) = cTα(f) + dTα(g), for all a, b ∈ R.

(b) Tα(t
p) = ptp−α for all p ∈ R.

(c) Tα(λ) = 0 for all constant functions f(t) = λ.

(d) Tα(fg) = fTα(g) + gTα(f).

(e) Tα

(
f
g

)
= gTα(g)−fTα(f)

g2
.
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(f) If, in addition to f is differentiable, then Tα(f)(t) = t
1−α df

dt .

In Section 2, we will give the solution of fractional heat equation for 0 <
α < 1 with the help of conformable fractional derivative definition. In Section
3, we will give conformable Fourier transform, conformable Fourier sine and
cosine transform definitions and solve the space fractional heat equation with
this transform.

2 Time fractional heat equation

General form for one dimension heat equation is

∂u

∂t
= κ

∂2u

∂x2
.

Heat equation has many fractional forms. In this paper we investigate the
solution of time fractional heat differential equation:

∂αu

∂tα
= κ

∂2u

∂x2
, 0 < x < L, t > 0 (1)

with conditions

u(0, t) = 0, t ≥ 0 (2)

u(L, t) = 0, t ≥ 0 (3)

u(x, 0) = f(x), 0 ≤ x ≤ L (4)

where the derivative is conformable fractional derivative and 0 < α < 1.
Firstly we can mention conformable fractional linear differential equations with
constant coefficients

∂αy

∂tα
± µ2y = 0. (5)

From formula (f) in Theorem 1 we can obtain

∂αy

∂tα
= t1−α

dy

dt
. (6)

By substituting (6) in (5) it becomes following first order linear differential
equation

t1−α
dy

dt
± µ2y = 0. (7)
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One can easily see that the solution of equation (7)

y = ce
±µ2
α
tα . (8)

Now we can use separation of variables method [11] for solution of our time
fractional heat equation (1). Let u = P(x)Q(t). Substituting this equation in
Eq. (1), we have

dαQ(t)

dtα
P(x) = κ

d2P(x)

dx2
Q(t)

from which we obtain

dαQ(t)

dtα
/κQ(t) =

d2P(x)

dx2
/P(x) = ω.

As a result:
dαQ(t)

dtα
−ωκQ(t) = 0

and
d2P(x)

dx2
−ωP(x) = 0.

Now, we think about the equation

d2P(x)

dx2
−ωP(x) = 0.

For this equation, there are three cases for values of ω to be evaluated. ω =
0, ω = −µ2, ω = µ2.
Conditions (2) and (3) give

µ =
nπ

L
and Pn(x) = an sin

nπx

L
. (9)

Equations (5) and (8) give,

Qn(t) = bne
−(nπL )

2 κ
α
tα . (10)

Then, using the equations (9) and (10) the solution of the Cauchy problem
which satisfies two boundary conditions obtained as

u(x, t) =

∞∑
n=1

cn sin
nπx

L
e−(

nπ
L )

2 κ
α
tα . (11)
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With the help of condition (4)

cn =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx. (12)

Substituting (12) in (11) we find the solution as

u(x, t) =

∞∑
n=1

sin
nπx

L
e−(

nπ
L )

2 κ
α
tα

2
L

L∫
0

f(x) sin
(nπx
L

)
dx

.
3 Conformable Fourier transform

In [12] Abdeljawad gave the definition of conformable Laplace transform and in
[13] Negero made a study on application of Fourier transform to partial differ-
ential equations. Now in this section we define conformable Fourier transform,
infinite and finite Fourier sine and cosine transform. We give some properties
of this transforms. At the end we use finite Fourier sine transform to solve
space fractional heat equation.

Definition 2 Let 0 < α ≤ 1 and h(x) is real valued function defined on
(−∞,∞). The conformable Fourier transform of h(x) which is denoted by
Fα {h(t)} (w) is given by

Fα {h(t)} (w) = Hα(w) =
1√
2π

∞∫
−∞

e−iw
tα

α h(t) tα−1 dt.

Theorem 2 Let 0 < α ≤ 1 and h(x) is α− differentiable real valued function
defined on (−∞,∞). Then

Fα {Tα(h)(t)} (w) = iwHα(w).

Proof. The proof followed by Theorem 1 (f) and known integration by parts.
�

Lemma 1 Let f : (−∞,∞) → R be a function which satisfies Fα {h(t), w} =
Hα(w) property. Then,

Fα {h(t)} (w) = F
{
h((αt)

1
α )
}
(w) (13)
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where F {h(t)} (w) = 1√
2π

∞∫
−∞ e−iwt h(t) dt.

Proof. One can prove it easily by setting t = uα

α . �

Lemma 2 Fα {h(t)} (w) Fourier transform is a linear operator.

Fα {af+ bg} = aFα {f}+ bFα {g} .

Theorem 3 (Convolution Theorem). Let g(t) and h(t) be arbitrary func-
tions. Then

Fα {g ∗ h} =
√
2πFα {g} Fα {h}

where g∗h is the convolution of functions g(t) and h(t) defined as

(g ∗ h)(t) =
∞∫

−∞
g(x)h(t− x)dx =

∞∫
−∞

g(t− x)h(x)dx.

Proof. From Lemma 1, by using definition and changing the order of integra-
tion, we get

Fα {(g ∗ h)(t)} = F
{
(g ∗ h)((αt)

1
α )
}
,

=
1√
2π

∞∫
−∞

∞∫
−∞

g((αx)
1
α )h((α(t− x))

1
α )e−iwtdxdt,

=
1√
2π

∞∫
−∞

∞∫
−∞

g((αx)
1
α )h((α(t− x))

1
α )e−iwtdtdx.

By making substitution t− x = v, so t = v+ x,

Fα {(g ∗ h)(t)} =
1√
2π

∞∫
−∞

∞∫
−∞

g((αx)
1
α )h((αv)

1
α )e−iw(v+x)dvdx,

=
1√
2π

∞∫
−∞

g((αx)
1
α )e−iwxdx

∞∫
−∞

h((αv)
1
α )e−iwvdv,

=
√
2πFα {g} Fα {h} .

�
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Conformable Fourier transform of partial derivatives

Lemma 3 For given u(x, t) with −∞ < x <∞ and t > 0, we have

i. Fα
{
δ
δt(u(x, t))

}
(w) = d

dt

_
u(w, t).

ii. Fα
{
δn

δtn (u(x, t))
}
(w) = dn

dtn
_
u(w, t), n = 1, 2, 3, ...

iii. Fα {Tα(u(x, t))} (w) = iw
_
u(w, t).

iv. Fα

Tα... Tα(u(x, t))︸ ︷︷ ︸
n times

 (w) = (iw)n
_
u(w, t), n = 1, 2, 3, ...

Fourier sine and cosine transform

In this subsection we shall discuss the Fourier sine and cosine transforms and
some of their properties. These transforms are convenient for problems over
semi-infinite and some of finite intervals in a spatial variable in which the
function or its derivative is prescribed on the boundary.

Infinite Fourier sine and cosine transform

Definition 3 (Fourier cosine transform). The Fourier cosine Transform
of a function f : [0,∞]→ R which is denoted by Fαc (f(t)) is defined as

Fαc {f(t)} =
_

f (w) = Fαc (w) =

√
2

π

∞∫
0

f(x) cos

(
w
xα

α

)
xα−1dx.

Definition 4 (Fourier sine transform). The Fourier sine Transform of a
function f : [0,∞]→ R is defined as

Fαs {f(t)} =
_

f (w) = Fαs (w) =

√
2

π

∞∫
0

f(x) sin

(
w
xα

α

)
xα−1dx.

Lemma 4 Fαs and Fαc are linear operators, i.e.,

Fαc {af+ bg} = aF
α
c {f}+ bF

α
c {g} ,

Fαs {af+ bg} = aF
α
s {f}+ bF

α
s {g} .

Theorem 4 Let f be a function defined for t > 0 and f(t) → 0 as x → ∞.
Then
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1. Fαc (Tα(f)(t)) = wF
α
s (f(t)) −

√
2
πf(0).

2. Fαs (Tα(f)(t)) = −wFαc (f(t)).

Proof. It can be easily proved by using Theorem 1 (f) and integration by
parts. �

Finite Fourier sine and cosine transform

When the physical problem is defined on a finite domain, it is generally not
suitable to use transformation with an infinite range of integration. In such
cases usage of finite Fourier transform is very advantageous.

Definition 5 The finite Fourier sine transform of f(t), 0 < t < L defined as

Fαs {f(t)} = F
α
s (n) =

L∫
0

f(t) sin

(
nπtα

Lα

)
tα−1dt

where 0 < α < 1.
The inverse Fourier sine transform is defined as follows,

f(x) =
2α

Lα

∞∑
n=1

Fαs (n) sin

(
nπtα

Lα

)
.

Definition 6 The finite Fourier cosine transform of f(t), 0 < t < L defined
as

Fαc {f(t)} = F
α
c (n) =

L∫
0

f(t) cos

(
nπtα

Lα

)
tα−1dt

where 0 < α < 1.
The inverse Fourier cosine transform is defined as follows,

f(x) =
α

Lα
Fαc (0) +

2α

Lα

∞∑
n=1

Fαc (n) cos

(
nπtα

Lα

)
.

In bounded domain, the Fourier sine and cosine transforms are useful to solve
PDE’s. Therefore we can give following calculations.

Fαs

{
δαu

δxα

}
= −

nπα

Lα
Fαc {u(x, t)} ,
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Fαs

{
δα

δxα
δαu

δxα

}
= −

nπα

Lα
Fαc

{
δαu

δxα

}
= −

n2π2α2

L2α
Fαs {u(x, t)}−

nπα

Lα
[u(L, t) cosnπ− u(0, t)] .

(14)

And then,

Fαc
{
δαu
δxα

}
= nπα

Lα F
α
s {u(x, t)}− [u(0, t) − u(L, t) cosnπ] ,

Fαc
{
δα

δxα
δαu
δxα

}
= −n2π2α2

L2α
Fαc {u(x, t)}−

nπα
Lα

[
δαu(0,t)
δxα − δαu(L,t)

δxα cosnπ
]
.

Now, let’s apply this transform to solve space fractional heat equation,

δu

δt
=
δα

δxα
δαu

δxα
, 0 < x < L, t > 0 (15)

with the conditions,

u(L, t) = u(0, t) = 0 (16)

u(x, 0) = f(x) (17)

where 0 < α < 1.
When we apply the Fourier sine transform both sides of the equation, we

have the following equality by using (14) and the conditions (16)

d
_
u(n, t)

dt
= −

n2π2α2

L2α
_
u(n, t).

Solving the above differential equation gives us,

_
u(n, t) = Ce

−n
2π2α2

L2α
t
.

To evaluate C, we apply Fourier sine transform to the condition (17). At the
end we have C as,

C =
_
u(n, 0) =

L∫
0

f(x) sin

(
nπxα

Lα

)
xα−1dx.

Hence we get,

_
u(n, t) =

 L∫
0

f(x) sin

(
nπxα

Lα

)
xα−1dx

 e−n2π2α2L2α
t
.
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At the end applying inverse Fourier sine transform, the solution of Eq. (15)
obtained as

u(x, t) =
2α

Lα

∞∑
n=1

 L∫
0

f(x) sin

(
nπxα

Lα

)
xα−1dx

 e−n2π2α2L2α
t
sin

(
nπxα

Lα

)
.

4 Conclusion

In this paper we discuss about the solution of time and space fractional heat
differential equations. Conformable fractional derivative definition is used for
the solution time fractional heat equation. Conformable Fourier transform
which will have very important role in fractional calculus like conformable
Laplace transform is defined and given an application for space fractional
heat equation. We can say that this definition has many advantages in the
solution procedure of fractional differential equations. Some comparisons with
classical fractional differential equations are given by Khalil and Abdeljawad
before. This paper can help to see the researchers that given definitions are
very helpful under the suitable conditions.
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Abstract. In the paper we establish some new results depending on
the comparative growth properties of composite entire or meromorphic
functions using generalised pL

∗-type with rate pand generalised pL
∗-weak

type with rate p and wronskians generated by one of the factors.

1 Introduction, definitions and notations

Let C be the set of all finite complex numbers and f be a meromorphic function
defined on C. We will not explain the standard notations and definitions in
the theory of entire and meromorphic functions as those are available in [4]

and [9]. In the sequel we use the following notation : log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, .... and log[0] x = x.
The following definitions are well known:
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Definition 1 A meromorphic function a ≡ a (z) is called small with respect
to f if T (r, a) = S (r, f) .

Definition 2 Let a1, a2, ....ak be linearly independent meromorphic functions
and small with respect to f. We denote by L (f) =W (a1, a2, ....ak; f) the Wron-
skian determinant of a1, a2, ...., ak, f i.e.,

L (f) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 . . . ak f

a
′
1 a

′
2 . . . a

′
k f

′

. . . . . . .

. . . . . . .

. . . . . . .

a
(k)
1 a

(k)
2 . . . a

(k)
k f(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Definition 3 If a ∈ C ∪ {∞}, the quantity

δ (a; f) = 1− lim sup
r→∞

N (r, a; f)

T (r, f)

= lim inf
r→∞ m (r, a; f)

T (r, f)

is called the Nevanlinna deficiency of the value ‘a’.

From the second fundamental theorem it follows that the set of values of
a ∈ C ∪ {∞} for which δ (a; f) > 0 is countable and

∑
a 6=∞δ (a; f) + δ (∞; f) ≤ 2

(cf [4], p. 43). If in particular,
∑
a 6=∞δ (a; f) + δ (∞; f) = 2, we say that f has the

maximum deficiency sum.

Let L ≡ L (r) be a positive continuous function increasing slowly i.e., L (ar) ∼
L (r) as r→ ∞ for every positive constant a. Singh and Barker [7] defined it
in the following way:

Definition 4 [7] A positive continuous function L (r) is called a slowly chang-
ing function if for ε (> 0) ,

1

kε
≤ L (kr)
L (r)

≤ kε for r ≥ r (ε) and

uniformly for k (≥ 1) .
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Somasundaram and Thamizharasi [8] introduced the notions of L-order and
L-lower order for entire function where L ≡ L (r) is a positive continuous
function increasing slowly i.e., L (ar) ∼ L (r) as r → ∞ for every positive
constant ‘a’. The more generalized concept for L-order and L-lower order for
entire function are L∗-order and L∗-lower order. Their definitions are as follows:

Definition 5 [8] The L∗-order ρL
∗
f and the L∗-lower order λL

∗
f of an entire

function f are defined as

ρL
∗
f = lim sup

r→∞
log[2]M (r, f)

log
[
reL(r)

] and λL
∗
f = lim inf

r→∞ log[2]M (r, f)

log
[
reL(r)

] .

When f is meromorphic, the above definition reduces to

ρL
∗
f = lim sup

r→∞
log T (r, f)

log
[
reL(r)

] and λL
∗
f = lim inf

r→∞ log T (r, f)

log
[
reL(r)

] .
In the line of Somasundaram and Thamizharasi [8], for any two positive

integers m and p, Datta and Biswas [1] introduced the following definition:

Definition 6 [1] The m-th generalized pL
∗-order with rate p denoted by

(m)
(p) ρ

L∗
f

and the m-th generalized pL
∗-lower order with rate p denoted as

(m)
(p) λ

L∗
f of an

entire function f are defined in the following way:

(m)
(p) ρ

L∗
f = lim sup

r→∞
log[m+1]M (r, f)

log
[
r exp[p] L (r)

] and
(m)
(p) λ

L∗
f = lim inf

r→∞ log[m+1]M (r, f)

log
[
r exp[p] L (r)

] ,
where both m and p are positive integers.

When f is meromorphic, it can be easily verified that

(m)
(p) ρ

L∗
f = lim sup

r→∞
log[m] T (r, f)

log
[
r exp[p] L (r)

] and
(m)
(p) λ

L∗
f = lim inf

r→∞ log[m] T (r, f)

log
[
r exp[p] L (r)

] ,
where both m and p are positive integers.

To compare the relative growth of two entire or meromorphic functions hav-
ing same non zero finite generalized pL

∗-order with rate p, one may introduce
the definitions of generalised pL

∗-type with rate p and generalised pL
∗-lower

type with rate p of entire and meromorphic functions having finite positive
generalised pL

∗-order with rate p in the following manner:
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Definition 7 The m-th generalised pL
∗-type with rate p denoted by

(m)
(p) σ

L∗
f and

m-th generalised pL
∗-lower type with rate p of an entire function f denoted by

(m)
(p) σ

L∗
f are respectively defined as follows:

(m)
(p) σ

L∗
f = lim sup

r→∞
log[m]M (r, f)[

r exp[p] L (r)
](m)
(p)

ρL
∗

f

and

(m)
(p) σ

L∗
f = lim inf

r→∞ log[m]M (r, f)[
r exp[p] L (r)

](m)
(p)

ρL
∗

f

, 0 <
(m)
(p) ρ

L∗
f <∞,

where m and p are any two positive integers.
For meromorphic f,

(m)
(p) σ

L∗
f = lim sup

r→∞
log[m−1] T (r, f)[
r exp[p] L (r)

](m)
(p)

ρL
∗

f

and

(m)
(p) σ

L∗
f = lim inf

r→∞ log[m−1] T (r, f)[
r exp[p] L (r)

](m)
(p)

ρL
∗

f

, 0 <
(m)
(p) ρ

L∗
f <∞,

where both m and p are positive integers.

Analogously to determine the relative growth of two entire or meromorphic
functions having same non zero finite generalized pL

∗-lower order with rate p
one may introduce the definition of generalised pL

∗-weak type with rate p of
entire and meromorphic functions having finite positive generalized pL

∗-lower
order with rate p in the following way:

Definition 8 The m-th generalised pL
∗-weak type with rate p denoted by

(m)
(p) τ

L∗
f of an entire function f is defined as follows:

(m)
(p) τ

L∗
f = lim inf

r→∞ log[m]M (r, f)[
r exp[p] L (r)

](m)
(p)

λL
∗

f

, 0 <
(m)
(p) λ

L∗
f <∞,

where both m and p are positive integers.

Also one may define the growth indicator
(m)
(p) τ

L∗
f of an entire function f in

the following manner:

(m)
(p) τ

L∗
f = lim sup

r→∞
log[m]M (r, f)[

r exp[p] L (r)
](m)
(p)

λL
∗

f

, 0 <
(m)
(p) λ

L∗
f <∞,
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where m and p are any two positive integers.
For meromorphic f,

(m)
(p) τ

L∗
f = lim sup

r→∞
log[m−1] T (r, f)[
r exp[p] L (r)

](m)
(p)

λL
∗

f

and

(m)
(p) τ

L∗
f = lim inf

r→∞ log[m−1] T (r, f)[
r exp[p] L (r)

](m)
(p)

λL
∗

f

, 0 <
(m)
(p) λ

L∗
f <∞,

where both m and p are positive integers.

Lakshminarasimhan [5] introduced the idea of the functions of L-bounded
index. Later Lahiri and Bhattacharjee [6] worked on the entire functions of
L-bounded index and of non uniform L-bounded index. Since the natural ex-
tension of a derivative is a differential polynomial, in this paper we prove our
results for a special type of linear differential polynomials viz. the Wronskians.
In the paper we establish some new results depending on the comparative
growth properties of composite entire or meromorphic functions using gener-
alised pL

∗-order with rate p, generalised pL
∗- type with rate p and generalised

pL
∗-weak type with rate p and wronskians generated by one of the factors

which extend some results of [2].

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [3] Let f be a transcendental meromorphic function having the max-
imum deficiency sum. Then

(i) (p)(m)σL
∗

L(f) = {1+ k− kδ (∞; f)} · (p)(m)σL
∗
f for m = 1 and

(p)(m)σL
∗

L(f) =
(m)
(p) σ

L∗
f otherwise

and

(ii) (p)(m)σL
∗

L(f) = {1+ k− kδ (∞; f)} · (p)(m)σL
∗
f for m = 1 and

(p)(m)σL
∗

L(f) =
(m)
(p) σ

L∗
f otherwise.
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Lemma 2 [3] Let f be a transcendental meromorphic function having the max-
imum deficiency sum. Then

(i) (p)(m)τL
∗

L(f) = {1+ k− kδ (∞; f)} · (p)(m)τL
∗
f for m = 1 and

(p)(m)τL
∗

L(f) =
(m)
(p) τ

L∗
f otherwise

and

(ii) (p)(m)τL
∗

L(f) = {1+ k− kδ (∞; f)} · (m)
(p) τ

L∗
f for m = 1 and

(p)(m)τL
∗

L(f) =
(m)
(p) τ

L∗
f otherwise.

3 Theorems

In this section we present the main results of the paper.

Theorem 1 If f be transcendental meromorphic and g be entire such that

0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)σ

L∗
f ≤

(n)
(p)σ

L∗
f < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,

then
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σL∗f
≤ lim inf

r→∞ log[m−1] T (r, f ◦ g)
T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

and
(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1.
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Proof. From the definition of
(n)
(p)σ

L∗

L(f),
(m)
(p) σ

L∗
f◦g and in view of Lemma 1, we

have for arbitrary positive ε and for all sufficiently large values of r that

log[m−1] T (r, f ◦ g) ≥
(
(m)
(p) σ

L∗
f◦g − ε

) [
r exp[p] L (r)

](m)
(p)

ρL
∗

f◦g
, (1)

log[n−1] T (r, L(f)) ≤
(
(n)
(p)σ

L∗

L(f) + ε
) [
r exp[p] L (r)

](n)
(p)
ρL
∗

L(f)

i.e., log[n−1] T (r, L(f)) ≤
(
(n)
(p)σ

L∗
f + ε

) [
r exp[p] L (r)

](n)
(p)
ρL
∗

f
(2)

for n > 1 and

T (r, L(f)) ≤ {1+ k− kδ (∞; f)} ·
(
(p)σ

L∗
f + ε

) [
r exp[p] L (r)

]
(p)ρ

L∗
f
. (3)

Now from (1), (2) and the condition
(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L
f , it follows for all sufficiently

large values of r that,

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

>

(m)
(p) σ

L∗
f◦g − ε

(n)
(p)σ

L∗
f + ε

for n > 1.

As ε (> 0) is arbitrary, we obtain from above that

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
>

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1. (4)

Similarly from (1), (3) and in view of the condition
(m)
(p) ρ

L∗
f◦g = (p)ρ

L
f , we obtain

that

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
>

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

. (5)

Again for a sequence of values of r tending to infinity,

log[m−1] T (r, f ◦ g) ≤
(
(m)
(p) σ

L∗
f◦g + ε

) [
r exp[p] L (r)

](m)
(p)

ρL
∗

f◦g
(6)

and for all sufficiently large values of r,

log[n−1] T (r, L(f)) ≥
(
(n)
(p)σ

L∗

L(f) − ε
) [
r exp[p] L (r)

](n)
(p)
ρL
∗

L(f)

i.e., log[n−1] T (r, L(f)) ≥
(
(n)
(p)σ

L∗
f − ε

) [
r exp[p] L (r)

](n)
(p)
ρL
∗

f
(7)
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for n > 1 and

T (r, L(f)) ≥ {1+ k− kδ (∞; f)} ·
(
(p)σ

L∗
f − ε

) [
r exp[p] L (r)

]
(p)ρ

L∗
f
. (8)

Combining (6) and (7) and the condition
(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L
f , we get for a sequence

of values of r tending to infinity that

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g + ε

(n)
(p)σ

L∗
f − ε

for n > 1.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1. (9)

Likewise from (6) and (8) and in view of the condition
(m)
(p) ρ

L∗
f◦g = (p)ρ

L
f , we

obtain that

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

. (10)

Also for a sequence of values of r tending to infinity it follows that

log[n−1] T (r, L(f)) ≤
(
(n)
(p)σ

L∗

L(f)}+ ε
) [
r exp[p] L (r)

](n)
(p)
ρL
∗

L(f)

i.e., log[n−1] T (r, L(f)) ≤
(
(n)
(p)σ

L∗
f + ε

) [
r exp[p] L (r)

](n)
(p)
ρL
∗

f
(11)

for n > 1 and

T (r, L(f)) ≤ {1+ k− kδ (∞; f)} ·
(
(p)σ

L∗
f + ε

) [
r exp[p] L (r)

]
(p)ρ

L∗
f
. (12)

Now from (1), (11) and the condition
(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L
f , we obtain for a sequence

of values of r tending to infinity that

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≥
(m)
(p) σ

L∗
f◦g − ε

(n)
(p)σ

L∗
f + ε

for n > 1.
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As ε (> 0) is arbitrary, we get from above that

lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≥
(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1. (13)

Analogously from (1), (12) and in view of the condition
(m)
(p) ρ

L∗
f◦g = (p)ρ

L
f , we

get that

lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

≥
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

. (14)

Also for all sufficiently large values of r,

log[m−1] T (r, f ◦ g) ≤
(
(m)
(p) σ

L∗
f◦g + ε

) [
r exp[p] L (r)

](m)
(p)

ρL
∗

f◦g
. (15)

In view of the condition
(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L
f , it follows from (7) and (15) for all

sufficiently large values of r that

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g + ε

(n)
(p)σ

L∗
f − ε

for n > 1.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1. (16)

Similarly from (8) and (15) and in view of the condition
(m)
(p) ρ

L∗
f◦g = (p)ρ

L
f , we

obtain that

lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

. (17)

Thus the theorem follows from (4), (5), (9), (10), (13), (14), (16) and (17). �

The following theorem can be proved in the line of Theorem 1 and so its
proof is omitted.
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Theorem 2 If f be meromorphic and g be transcendental entire with 0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)σ

L∗
g ≤

(n)
(p)σ

L∗
g < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
g and∑

a 6=∞ δ(a;g) + δ(∞;g) = 2 where m, n and p are any three positive integers,

then

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(g))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g

and

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

≤
(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g

for n > 1.

Theorem 3 If f be transcendental meromorphic and g be entire such that 0 <
(m)
(p) σ

L∗
f◦g <∞, 0 <

(n)
(p)σ

L∗
f <∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
f and

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

≤ lim sup
r→∞ lim inf

r→∞ log[m−1] T (r, f ◦ g)
T (r, L(f))

and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))
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for n > 1.

Proof. From the definition of
(n)
(p)σ

L∗

L(f) and in view of Lemma 1, we get for a
sequence of values of r tending to infinity that

log[n−1] T (r, L(f)) ≥
(
(n)
(p)σ

L∗

L(f)}− ε
) [
r exp[p] L (r)

](n)
(p)
ρL
∗

L(f)

i.e., log[n−1] T (r, L(f)) ≥
(
(n)
(p)σ

L∗
f − ε

) [
r exp[p] L (r)

](n)
(p)
ρL
∗

f
(18)

for n > 1 and

T (r, L(f)) ≥ {1+ k− kδ (∞; f)} ·
(
(p)σ

L∗
f − ε

) [
r exp[p] L (r)

]
(p)ρ

L∗
f
. (19)

Now from (15), (18) and the condition
(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
f , it follows for a sequence

of values of r tending to infinity that

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g + ε

(n)
(p)σ

L∗
f − ε

for n > 1 .

As ε (> 0) is arbitrary, we obtain that

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1 . (20)

Similarly from (15), (19) and in view of the condition
(m)
(p) ρ

L∗
f◦g = (p)ρ

L
f , we

obtain that

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

. (21)

Again for a sequence of values of r tending to infinity that

log[m−1] T (r, f ◦ g) >
(
(m)
(p) σ

L∗
f◦g − ε

) [
r exp[p] L (r)

](m)
(p)

ρL
∗

f◦g
. (22)

So combining (2) and (22) and in view of the condition
(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
f , we

get for a sequence of values of r tending to infinity that

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

>

(m)
(p) σ

L∗
f◦g − ε

(n)
(p)σ

L∗
f + ε

for n > 1 .
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Since ε (> 0) is arbitrary, it follows that

lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

>

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1 . (23)

Analogously from (3) and (22) and in view of the condition
(m)
(p) ρ

L∗
f◦g = (p)ρ

L
f we

get that

lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

>

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

. (24)

Thus the theorem follows from (20), (21), (23) and (24). �

The following theorem can be carried out in the line of Theorem 3 and
therefore we omit its proof.

Theorem 4 If f be meromorphic and g be transcendental entire with 0 <
(m)
(p) σ

L∗
f◦g <∞, 0 <

(n)
(p)σ

L∗
g <∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
g and

∑
a 6=∞ δ(a;g) + δ(∞;g) = 2

where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g

≤ lim sup
r→∞ lim inf

r→∞ log[m−1] T (r, f ◦ g)
T (r, L(g))

and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

for n > 1.

The following theorem is a natural consequence of Theorem 1 and Theorem 3.

Theorem 5 If f be transcendental meromorphic and g be entire such that

0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)σ

L∗
f ≤

(n)
(p)σ

L∗
f < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,
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then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤ min


(m)
(p) σ

L∗
f◦g

A · (p)σ
L∗
f

,

(m)
(p) σ

L∗
f◦g

A · (p)σ
L∗
f


≤ max


(m)
(p) σ

L∗
f◦g

A · (p)σ
L∗
f

,

(m)
(p) σ

L∗
f◦g

A · (p)σ
L∗
f


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(f))

where A = {1+ k− kδ (∞; f)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤ min


(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

,

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f


≤ max


(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f

,

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
f


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

for n > 1.

Analogously one may state the following theorem without its proof.

Theorem 6 If f be meromorphic and g be transcendental entire with 0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)σ

L∗
g ≤

(n)
(p)σ

L∗
g < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)ρ

L∗
g and∑

a 6=∞ δ(a;g) + δ(∞;g) = 2 where m, n and p are any three positive integers,

then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤ min


(m)
(p) σ

L∗
f◦g

B · (p)σ
L∗
g

,

(m)
(p) σ

L∗
f◦g

B · (p)σ
L∗
g


≤ max


(m)
(p) σ

L∗
f◦g

B · (p)σ
L∗
g

,

(m)
(p) σ

L∗
f◦g

B · (p)σ
L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(g))
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where B = {1+ k− kδ (∞;g)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤ min


(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g

,

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g


≤ max


(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g

,

(m)
(p) σ

L∗
f◦g

(n)
(p)σ

L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

for n > 1.

Now in the line of Theorem 1, Theorem 3, Theorem 5 and Theorem 2,
Theorem 4, Theorem 6 respectively and with the help of Lemma 2 one can
easily prove the following six theorems using the notion of generalised pL

∗-weak
type with rate p and therefore their proofs are omitted.

Theorem 7 If f be transcendental meromorphic and g be entire such that

0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
f ≤

(n)
(p)τ

L∗
f < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)λ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,

then

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

and

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f
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≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f

for n > 1.

Theorem 8 If f be transcendental meromorphic and g be entire with 0 <
(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
f < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)λ

L∗
f and

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

for n > 1.

Theorem 9 If f be transcendental meromorphic and g be entire such that

0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
f ≤

(n)
(p)τ

L∗
f < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)λ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,

then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤ min


(m)
(p) τ

L∗
f◦g

A · (p)τ
L∗
f

,

(m)
(p) τ

L∗
f◦g

A · (p)τ
L∗
f


≤ max


(m)
(p) τ

L∗
f◦g

A · (p)τ
L∗
f

,

(m)
(p) τ

L∗
f◦g

A · (p)τ
L∗
f


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(f))
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where A = {1+ k− kδ (∞; f)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤ min


(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f

,

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f


≤ max


(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f

,

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
f

 ≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

for n > 1.

Theorem 10 If f be meromorphic and g be transcendental entire with 0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
g ≤

(n)
(p)τ

L∗
g < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)λ

L∗
g and∑

a 6=∞ δ(a;g) + δ(∞;g) = 2 where m, n and p are any three positive integers,

then

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(g))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

and

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

≤
(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g

for n > 1.
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Theorem 11 If f be meromorphic and g be transcendental entire such that

0 <
(m)
(p) τ

L∗
f◦g <∞, 0 <

(n)
(p)τ

L∗
g <∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)λ

L∗
g and

∑
a 6=∞ δ(a;g)+δ(∞;g) =

2 where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(g))

and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

for n > 1.

Theorem 12 If f be meromorphic and g be transcendental entire with 0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
g ≤

(n)
(p)τ

L∗
g < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)λ

L∗
g and∑

a 6=∞ δ(a;g) + δ(∞;g) = 2 where m, n and p are any three positive integers,

then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤ min


(m)
(p) τ

L∗
f◦g

B · (p)τ
L∗
g

,

(m)
(p) τ

L∗
f◦g

B · (p)τ
L∗
g


≤ max


(m)
(p) τ

L∗
f◦g

B · (p)τ
L∗
g

,

(m)
(p) τ

L∗
f◦g

B · (p)τ
L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(g))

where B = {1+ k− kδ (∞;g)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤ min


(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g

,

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g


≤ max


(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g

,

(m)
(p) τ

L∗
f◦g

(n)
(p)τ

L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))
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for n > 1.

We may now state the following theorems without their proofs based on
generalised pL

∗- type with rate p and generalised pL
∗-weak type with rate p.

Theorem 13 If f be transcendental meromorphic and g be entire such that

0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
f ≤

(n)
(p)τ

L∗
f < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)λ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,

then

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

and

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f

for n > 1.

Theorem 14 If f be transcendental meromorphic and g be entire with 0 <
(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
f < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)λ

L∗
f and

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)τ
L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))
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and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

for n > 1.

Theorem 15 Let f be transcendental meromorphic and g be entire such that

0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
f ≤

(n)
(p)τ

L∗
f < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)λ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,

then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤ min


(m)
(p) σ

L∗
f◦g

A · (p)τ
L∗
f

,

(m)
(p) σ

L∗
f◦g

A · (p)τ
L∗
f


≤ max


(m)
(p) σ

L∗
f◦g

A · (p)τ
L∗
f

,

(m)
(p) σ

L∗
f◦g

A · (p)τ
L∗
f


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(f))

where A = {1+ k− kδ (∞; f)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤ min


(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f

,

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f


≤ max


(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f

,

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
f


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

for n > 1.

Theorem 16 If f be transcendental meromorphic and g be entire with 0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)σ

L∗
f ≤

(n)
(p)σ

L∗
f < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)ρ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,
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then

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

and

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

≤
(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f

for n > 1.

Theorem 17 If f be transcendental meromorphic and g be entire such that

0 <
(m)
(p) τ

L∗
f◦g <∞, 0 <

(n)
(p)σ

L∗
f <∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)ρ

L∗
f and

∑
a 6=∞ δ(a; f)+δ(∞; f) =

2 where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞; f)} · (p)σ
L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(f))

and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

for n > 1.
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Theorem 18 If f be transcendental meromorphic and g be entire with 0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)σ

L∗
f ≤

(n)
(p)σ

L∗
f < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)ρ

L∗
f and∑

a 6=∞ δ(a; f) + δ(∞; f) = 2 where m, n and p are any three positive integers,

then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(f))
≤ min


(m)
(p) τ

L∗
f◦g

A · (p)σ
L∗
f

,

(m)
(p) τ

L∗
f◦g

A · (p)σ
L∗
f


≤ max


(m)
(p) τ

L∗
f◦g

A · (p)σ
L∗
f

,

(m)
(p) τ

L∗
f◦g

A · (p)σ
L∗
f


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(f))

where A = {1+ k− kδ (∞; f)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(f))
≤ min


(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f

,

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f


≤ max


(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f

,

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
f


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(f))

for n > 1.

Theorem 19 If f be meromorphic and g be transcendental entire such that

0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
g ≤

(n)
(p)τ

L∗
g < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)λ

L∗
g and∑

a 6=∞ δ(a;g) + δ(∞;g) = 2 where m, n and p are any three positive integers,

then

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))

≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(g))
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≤
(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

and

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

≤
(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g

for n > 1.

Theorem 20 If f be meromorphic and g be transcendental entire with 0 <
(m)
(p) σ

L∗
f◦g <∞, 0 <

(n)
(p)τ

L∗
g <∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)λ

L∗
g and

∑
a 6=∞ δ(a;g) + δ(∞;g) = 2

where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤

(m)
(p) σ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)τ
L∗
g

≤ lim sup
r→∞ lim inf

r→∞ log[m−1] T (r, f ◦ g)
T (r, L(g))

and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

for n > 1.

Theorem 21 If f be meromorphic and g be transcendental entire such that

0 <
(m)
(p) σ

L∗
f◦g ≤

(m)
(p) σ

L∗
f◦g < ∞, 0 <

(n)
(p)τ

L∗
g ≤

(n)
(p)τ

L∗
g < ∞,

(m)
(p) ρ

L∗
f◦g =

(n)
(p)λ

L∗
g and∑

a 6=∞ δ(a;g) + δ(∞;g) = 2 where m, n and p are any three positive integers,
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then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤ min


(m)
(p) σ

L∗
f◦g

B · (p)τ
L∗
g

,

(m)
(p) σ

L∗
f◦g

B · (p)τ
L∗
g


≤ max


(m)
(p) σ

L∗
f◦g

B · (p)τ
L∗
g

,

(m)
(p) σ

L∗
f◦g

B · (p)τ
L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(g))

where B = {1+ k− kδ (∞;g)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤ min


(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g

,

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g


≤ max


(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g

,

(m)
(p) σ

L∗
f◦g

(n)
(p)τ

L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

for n > 1.

Theorem 22 If f be meromorphic and g be transcendental entire with 0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g < ∞, 0 <

(n)
(p)σ

L∗
g ≤

(n)
(p)σ

L∗
g < ∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)ρ

L∗
g and∑

a 6=∞ δ(a;g) + δ(∞;g) = 2 where m, n and p are any three positive integers,

then

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(g))

≤
(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g
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and

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g

≤ lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

≤
(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g

for n > 1.

Theorem 23 If f be meromorphic and g be transcendental entire such that

0 <
(m)
(p) τ

L∗
f◦g <∞, 0 <

(n)
(p)σ

L∗
g <∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)ρ

L∗
g and

∑
a 6=∞ δ(a;g)+δ(∞;g) =

2 where m, n and p are any three positive integers, then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤

(m)
(p) τ

L∗
f◦g

{1+ k− kδ (∞;g)} · (p)σ
L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
T (r, L(g))

and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g

≤ lim sup
r→∞

log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

for n > 1.

Theorem 24 If f be transcendental meromorphic and g be entire with 0 <
(m)
(p) τ

L∗
f◦g ≤

(m)
(p) τ

L∗
f◦g <∞, 0 <

(n)
(p)σ

L∗
g ≤

(n)
(p)σ

L∗
g <∞,

(m)
(p) λ

L∗
f◦g =

(n)
(p)ρ

L∗
g and g has

the maximum deficiency sum where m, n and p are any three positive integers,
then

lim inf
r→∞ log[m−1] T (r, f ◦ g)

T (r, L(g))
≤ min


(m)
(p) τ

L∗
f◦g

B · (p)σ
L∗
g

,

(m)
(p) τ

L∗
f◦g

B · (p)σ
L∗
g


≤ max


(m)
(p) τ

L∗
f◦g

B · (p)σ
L∗
g

,

(m)
(p) τ

L∗
f◦g

B · (p)σ
L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)

T (r, L(g))
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where B = {1+ k− kδ (∞;g)} and

lim inf
r→∞ log[m−1] T (r, f ◦ g)

log[n−1] T (r, L(g))
≤ min


(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g

,

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g


≤ max


(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g

,

(m)
(p) τ

L∗
f◦g

(n)
(p)σ

L∗
g


≤ lim sup

r→∞
log[m−1] T (r, f ◦ g)
log[n−1] T (r, L(g))

for n > 1.
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Abstract. In this article, the time fractional order Burgers equation
has been solved by quadratic B-spline Galerkin method. This method has
been applied to three model problems. The obtained numerical solutions
and error norms L2 and L∞ have been presented in tables. Absolute error
graphics as well as those of exact and numerical solutions have been given.

1 Introduction

The Burgers equation is a nonlinear equation for diffusive waves in fluid dy-
namics. It exists various physical problems such as one-dimensional sound
waves in a viscous medium, waves in fluid filled viscous elastic tubes, shock
waves in a viscous medium and magnetohy-drodynamic waves in a medium
with finite electrical conductivity, turbulence etc. [1]. Numerical solutions of
the Burgers equation in the literature have been obtained using different meth-
ods and techniques [2, 3, 4, 5, 6, 7]. In addition, the fractional order Burgers
equation has been solved by many authors [8, 9, 10, 11, 12, 13, 14].
The main idea underlying the finite element method, finite element nodes

that are related to entire of the equivalent system can discretize the problem

2010 Mathematics Subject Classification: 97N40, 65N30, 65D07,74S05
Key words and phrases: finite element method, Galerkin method, time fractional Burgers
equation, quadratic B-spline
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area and the most appropriate one will be a true physical behavioral model
to choose the most appropriate type of element. Thus with the help of this
method, an equation which is hard to solve can be turned into a few solvable
set of equations. Finite element adjustable yet small enough and large enough
to reduce computation load of the problem in available sizes[15].
Due to its capacity for non-integer order derivatives and integrals of frac-

tional calculus have become an indispensable part of applied mathematics.
Applications of differentiation and integration with non-integer orders can be
traced back to premature in history, so it can be said that it is not new[16].
Many different techniques and methods of dealing with fractional differential
equations resulting analytical and numerical solutions can be found in a wide
variety of studies in the literature [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31].
In this paper, we consider the time fractional Burgers equation for 0 < γ < 1

∂γU(x, t)

∂tγ
+U(x, t)

∂U(x, t)

∂x
− ν

∂2U(x, t)

∂x2
= f(x, t) (1)

with the boundary conditions

U(a, t) = h1(t) , U(b, t) = h2(t), t ≥ 0 (2)

and the initial condition

U(x, 0) = g(x) , a ≤ x ≤ b, (3)

where ν is a viscosity parameter and

∂γU(x, t)

∂tγ
=

1

Γ(1− γ)

∫ t
0

(t− τ)−γ∂U(x, τ)

∂τ
dτ

is the Caputo fractional derivative [32]. In this paper, to achieve a finite ele-
ment layout of the time fractional Burgers equation, Caputo fractional deriva-
tive formulation can be discretizated through L1 formulae [17]:

∂γf(t)

∂tγ
|tm =

(∆t)−γ

Γ(2− γ)

m−1∑
k=0

[
(k+ 1)1−γ − k1−γ

]
[f(tm−k) − f(tm−1−k)] .

2 Quadratic B-spline finite element Galerkin solu-
tions

In this section, the time fractional Burgers equation has been solved by quadratic
B-spline Galerkin method. For this firstly, Eq. (1) is multiplied with weigh
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function W(x) and then integrated over the region, we get

b∫
a

(
∂γU

∂tγ
+U

∂U

∂x
− ν

∂2U

∂x2

)
Wdx =

b∫
a

Wf(x, t)dx. (4)

In Eq. (4), if we apply partial integration, we have weak form

xm+1∫
xm

(
W

∂γU

∂tγ
+WU

∂U

∂x
+ ν

∂W

∂x

∂U

∂x

)
dx = νW

∂U

∂x

∣∣∣∣xm+1

xm

+

xm+1∫
xm

Wf(x, t)dx.

(5)
which is on only one of the [xm, xm+1] finite element of Eq. (1). To modify the
global coordinate system to the local one we did made use of transformation
ξ = x− xm. So, Eq. (5) turns into the form

h∫
0

(
W

∂γU

∂tγ
+WU

∂U

∂ξ
+ ν

∂W

∂ξ

∂U

∂ξ

)
dξ = ν W

∂U

∂ξ

∣∣∣∣h
0

+

h∫
0

Wf̃(ξ, t)dξ. (6)

We describe quadratic B-spline base functions. Let us consider the interval
[a, b] is partitioned into N finite elements of uniformly equal length by the
knots xm, m = 0, 1, 2, ..., N such that a = x0 < x1 · · · < xN = b and h =
xm+1 − xm. The quadratic B-splines Qm(x) , (m = −1(1)N), at the knots xm
are defined over the interval [a, b] by [33]

Qm(x) =
1
h2


(x− xm−1)

2, x ∈ [xm−1, xm],
(x− xm−1)

2 − 3(x− xm)
2, x ∈ [xm, xm+1],

(x− xm−1)
2 − 3(x− xm)

2 + 3(x− xm+1)
2, x ∈ [xm+1, xm+2],

0, otherwise.
(7)

The set of splines {Q−1(x), Q0(x), . . . , QN(x)} forms a basis for the functions
defined over [a, b]. For this reason, an approximation solution UN(x, t) may
be written in terms of the quadratic B-splines trial functions as:

UN(x, t) =

N∑
m=−1

δm(t)Qm(x) (8)

where δm(t)’s are time dependent parameters. Each quadratic B-spline in-
volves three elements therefore every element of [xm, xm+1] is coated with
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three quadratic B-splines. In this problem, the finite elements are described
on the interval [xm, xm+1] and the elements knots xm, xm+1. Using the nodal
values Um and U

′
m supplied in terms of the parameter δm(t)

UN(xm) = Um = δm−1 + δm,

U ′
N(xm) = U ′

m = 2(−δm−1 + δm)/h

the variation of UN(x, t) over the typical element [xm, xm+1] is presented by

UN(ξ, t) =

m+1∑
j=m−1

δj(t)Qj(ξ).

The Eq. (6) is the element equation for a typical element “e”. Eq. (7) can
be written as follows

Qm−1

Qm

Qm+1

= 1
h2


(h− ξ)2,

h2 + 2hξ− 2ξ2,

ξ2.

(9)

Inserting equations Eqs. (9) into Eq. (6), we have

m+1∑
j=m−1

h∫
0

QiQjdξ

 δ̇+

m+1∑
k=m−1

m+1∑
j=m−1

h∫
0

QiQ
′
kQjdξ

 δ

+ ν

m+1∑
j=m−1

h∫
0

Q ′
iQ

′
jdξ

 δ− ν

m+1∑
j=m−1

[
QiQ

′
j

]
δ

∣∣∣∣∣∣
h

0

=

h∫
0

Qif̃(ξ, t)dξ, i = m− 1,m,m+ 1

(10)

where γ̇ shows γth order fractional derivative with respect to t. If we take

Ae
ij =

h∫
0

QiQjdξ, B
e
ikj =

h∫
0

QiQ
′
kQjdξ,

Ce
ij =

h∫
0

Q ′
iQ

′
jdξ,D

e
ij = QiQ

′
j

∣∣h
0
, Ee

i =

h∫
0

Qif̃(ξ, t)dξ
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Eq. (10) can be written in the matrix form

Aeδ̇e + Beδe + νCeδe − νDeδe = Ee (11)

where δe = (δm−1, δm, δm+1). When the above integrations are calculated by
using quadratic B-spline functions, we have

Ae
ij =

h∫
0

QiQjdξ =
h

30

 6 13 1

13 54 13

1 13 6

 ,

Be
ikj =

h∫
0

QiQ
′
kQjdξ =

1

30

 (−10,−19,−1)δe (8, 12, 0)δe (2, 7, 1)δe

(−19,−54,−7)δe (12, 0,−12)δe (7, 54, 19)δe

(−1,−7,−2)δe (0,−12,−8)δe (1, 19, 10)δe

 ,

Ce
ij =

h∫
0

Q ′
iQ

′
jdξ =

2

3h

 2 −1 −1

−1 2 −1

−1 −1 2

 ,

De
ij = QiQ

′
j

∣∣h
0
=

2

h

 1 −1 0

1 −2 1

0 −1 1

 .

where i, j, k = m−1,m,m+1. By writing the matrices A,B,C,D and E which
are obtained by combining element matrixes in Eq. (11), we have the following
matrix form equation:

Aδ̇+ (B+ νC− νD)δ = E (12)

where δ = (δ−1, δ0, δ1, ..., δN−1, δN). If we write L1 formula

δ̇m =
dγδ

dtγ
=

(∆t)−γ

Γ(2− γ)

n−1∑
k=0

[
(k+ 1)1−γ − k1−γ

] [
δn−k
m − δn−k−1

m

]
,

instead of δ̇ and Crank-Nicolson formula

δm =
1

2
(δnm + δn+1

m )

instead of δ, We have the recurrence correlation between sequential time levels
about the unknown parameters δn+1

m (t)

[A+ (∆t)γΓ(2− γ)(B+ νC− νD)/2] δn+1

= [A− (∆t)γΓ(2− γ)(B+ νC− νD)/2] δn

−A

n∑
k=1

[
(k+ 1)1−γ − k1−γ

] [
δn−k − δn−k−1

]
+ (∆t)γΓ(2− γ)E

(13)
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δ = (δm−2, δm−1, δm, δm+1, δm+2)
T . The system (13) is composed of N+2 linear

equations that include unknown parameters N+2. To achieve unique solution
to these systems, we need two additional restrictions. These are obtained from
the boundary conditions and can be used to eliminate δ−1 and δN from the
systems. For this reason, we achieve a N×N solvable system of equations.

Initial state

The initial vector d0 = (δ−1, δ0, δ1, . . . , δN−2, δN−1, δN)
T is obtained by the

initial and boundary conditions. Therefore, the approximation (8) can be
rewritten for the initial condition as

UN(x, 0) =

N∑
m=−1

δm(0)Qm(x)

where the δm(0)’s are unknown parameters. We need the initial numerical
approximation UN(x, 0) provides the conditions:

UN(x, 0) = U(xm, 0), m = 0(1)N
U′

N(x0, 0) = U′(x0, 0).

So, using these conditions leads to a matrix system of the form

Wd0 = b

where

W =



−2
h

2
h

1 1

1 1

. . .

1 1

1 1


and

b = (U ′(x0, 0), U(x0, 0), U(x1, 0), . . . , U(xN−2, 0), U(xN−1, 0), U(xN, 0))T .

3 Numerical examples and results

In this section, we find the numerical solutions of problems which are ob-
tained by quadratic B-spline Galerkin method. We calculate the accuracy of
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the method by the error norm L2

L2 =
∥∥Uexact −UN

∥∥
2
≃

√√√√b− a

N

N∑
j=0

∣∣∣Uexact
j − (UN)j

∣∣∣2
and the error norm L∞

L∞ =
∥∥Uexact −UN

∥∥∞ ≃ max
j

∣∣∣Uexact
j − (UN)j

∣∣∣ .
Problem 1: Firstly, we consider the Eq. (1) with boundary conditions

U(0, t) = t2 , U(1, t) = et2, t ≥ 0

and the initial condition as

U(x, 0) = 0 , 0 ≤ x ≤ 1.

The f(x, t) is of the form

f(x, t) =
2t2−γex

Γ(3− γ)
+ t4e2x − νt2ex.

The exact solution of the problem is given by

U(x, t) = t2ex.

The numerical solutions and the error norms for Problem 1 are given in Tables
1-3. If the results for γ = 0.50, ∆t = 0.00025, t = 1, ν = 1 and different
number of partitions are examined in Table 1, one can see that when the
number of partitions N are increased, the error norms L2 and L∞ decrease
significantly. The results which are obtained for γ = 0.50, N = 80, t = 1,
ν = 1 and for different ∆t time steps are given in Table 2. From this table it is
clearly seen that when the ∆t time steps decrease, the error norms L2 and L∞
decrease as it is expected. The results for different values of γ, ∆t = 0.00025,
N = 40, t = 1, ν = 1 are given with the error norms L2 and L∞ in Table 3.
The error distributions obtained by quadratic B-spline Galerkin method for
∆t = 0.00025, N = 80, t = 1, ν = 1 and different values of γ are given Fig. 1.



174 A. Esen, O. Tasbozan

Table 1: Error norms and numerical solutions of Problem 1 for γ = 0.50,
∆t = 0.00025, t = 1, ν = 1.

x N = 10 N = 20 N = 40 N = 80 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.105440 1.105287 1.105216 1.105197 1.105171
0.2 1.222203 1.221644 1.221493 1.221455 1.221403
0.3 1.351078 1.350217 1.349992 1.349935 1.349859
0.4 1.493437 1.492287 1.491996 1.491922 1.491825
0.5 1.650663 1.649270 1.648922 1.648838 1.648721
0.6 1.824294 1.822727 1.822342 1.822247 1.822119
0.7 2.016049 2.014378 2.013979 2.013882 2.013753
0.8 2.227650 2.226118 2.225747 2.225661 2.225541
0.9 2.461512 2.460020 2.459745 2.459680 2.459603
1.0 2.718282 2.718282 2.718282 2.718282 2.718282

L2 × 103 1.632995 0.447720 0.161833 0.092624
L∞ × 103 2.296683 0.625018 0.227352 0.133125

Table 2: Error norms and numerical solutions of Problem 1 for γ = 0.50, N = 80,
t = 1, ν = 1.

x ∆t = 0.002 ∆t = 0.001 ∆t = 0.0005 ∆t = 0.00025 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.105356 1.105276 1.105236 1.105216 1.105171
0.2 1.221768 1.221611 1.221533 1.221493 1.221403
0.3 1.350395 1.350164 1.350049 1.349992 1.349859
0.4 1.492516 1.492218 1.492070 1.491996 1.491825
0.5 1.649543 1.649188 1.649011 1.648922 1.648721
0.6 1.823031 1.822636 1.822440 1.822342 1.822119
0.7 2.014687 2.014282 2.014080 2.013979 2.013753
0.8 2.226387 2.226020 2.225837 2.225747 2.225541
0.9 2.460180 2.459931 2.459807 2.459745 2.459603
1.0 2.718282 2.718282 2.718282 2.718282 2.718282

L2 × 103 0.660788 0.375012 0.232768 0.092624
L∞ × 103 0.936619 0.530231 0.328303 0.133125
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Table 3: Error norms and numerical solutions of Problem 1 for ∆t = 0.00025, N = 40,
t = 1, ν = 1.

x γ = 0.10 γ = 0.25 γ = 0.75 γ = 0.90 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.105218 1.105217 1.105216 1.105219 1.105171
0.2 1.221497 1.221495 1.221493 1.221497 1.221403
0.3 1.349997 1.349995 1.349990 1.349996 1.349859
0.4 1.492001 1.492000 1.491993 1.492000 1.491825
0.5 1.648930 1.648928 1.648920 1.648928 1.648721
0.6 1.822351 1.822348 1.822339 1.822347 1.822119
0.7 2.013987 2.013984 2.013977 2.013985 2.013753
0.8 2.225751 2.225750 2.225744 2.225751 2.225541
0.9 2.459747 2.459747 2.459744 2.459749 2.459603
1.0 2.718282 2.718282 2.718282 2.718282 2.718282

L2 × 103 0.167077 0.165443 0.159924 0.166085
L∞ × 103 0.235837 0.232645 0.224523 0.232565
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Figure 1: Error distributions of Problem 1 for ∆t = 0.00025, N = 80, t = 1, ν = 1.
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Problem 2: We secondly consider the Eq. (1), with boundary conditions

U(0, t) = t2 , U(1, t) = −t2, t ≥ 0

and the initial condition as

U(x, 0) = 0 , 0 ≤ x ≤ 1.

The term f(x, t) is of the form

f(x, t) =
2t2−γ cos(πx)

Γ(3− γ)
− πt4 cos(πx) sin(πx) + νπ2t2 cos(πx).

The exact solution of the problem is given by

U(x, t) = t2 cos(πx).

Numerical solutions and the error norms of Problem 2 which are achieved
by the presented method for different values of division numbers, time steps, ν
and γ are given in Tables 4-7, respectively. When the tables are analyzed, it is
easily seen that the numerical solutions converge to exact solution and the error
norms L2 and L∞ decrease considerably by increasing the number of division
number, time step and decreasing the ν. We give the error distributions of this
method for different values of γ, ∆t = 0.00025, N = 80, t = 1, ν = 1 in Fig. 2.

Table 4: Error norms and numerical solutions of Problem 2 for γ = 0.50, ∆t =
0.00025, t = 1, ν = 1.

x N = 10 N = 20 N = 40 N = 80 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.951278 0.950847 0.951005 0.951057 0.951057
0.2 0.808287 0.808744 0.808954 0.809019 0.809017
0.3 0.587257 0.587574 0.587738 0.587788 0.587785
0.4 0.308724 0.308910 0.308993 0.309019 0.309017
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.308724 -0.308909 -0.308996 -0.309020 -0.309017
0.7 -0.587257 -0.587574 -0.587741 -0.587787 -0.587785
0.8 -0.808286 -0.808744 -0.808957 -0.809017 -0.809017
0.9 -0.951277 -0.950847 -0.951008 -0.951060 -0.951057
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000

L2 × 103 0.435334 0.183000 0.041977 0.001982
L∞ × 103 0.731099 0.273318 0.063233 0.004192
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Table 5: Error norms and numerical solutions of Problem 2 for γ = 0.50, N = 80,
t = 1, ν = 1.

x ∆t = 0.002 ∆t = 0.001 ∆t = 0.0005 ∆t = 0.00025 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.951198 0.951117 0.951078 0.951057 0.951057
0.2 0.809192 0.809093 0.809044 0.809019 0.809017
0.3 0.587927 0.587848 0.587808 0.587788 0.587785
0.4 0.309094 0.309051 0.309030 0.309019 0.309017
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.309095 -0.309052 -0.309030 -0.309020 -0.309017
0.7 -0.587926 -0.587847 -0.587807 -0.587787 -0.587785
0.8 -0.809191 -0.809092 -0.809042 -0.809017 -0.809017
0.9 -0.951201 -0.951120 -0.951080 -0.951060 -0.951057
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000

L2 × 103 0.124076 0.054112 0.019282 0.001982
L∞ × 103 0.175640 0.077491 0.028460 0.004192

Table 6: Error norms and numerical solutions of Problem 2 for γ = 0.50, ∆t = 0.0005,
N = 80, t = 0.1.

x ν = 1 ν = 0.5 ν = 0.1 Exact
0.0 0.010000 0.010000 0.010000 0.010000
0.1 0.009517 0.009517 0.009514 0.009511
0.2 0.008099 0.008098 0.008095 0.008090
0.3 0.005886 0.005885 0.005882 0.005878
0.4 0.003095 0.003094 0.003092 0.003090
0.5 0.000000 0.000000 0.000000 0.000000
0.6 -0.003095 -0.003094 -0.003092 -0.003090
0.7 -0.005886 -0.005885 -0.005882 -0.005878
0.8 -0.008099 -0.008098 -0.008095 -0.008090
0.9 -0.009517 -0.009517 -0.009514 -0.009511
1.0 -0.010000 -0.010000 -0.010000 -0.010000

L2 × 103 0.006442 0.005834 0.003115
L∞ × 103 0.009009 0.008167 0.004425
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Table 7: Error norms and numerical solutions of Problem 2 for ∆t = 0.00025, N = 80,
t = 1, ν = 1.

x γ = 0.10 γ = 0.25 γ = 0.75 γ = 0.90 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.951058 0.951058 0.951056 0.951057 0.951057
0.2 0.809021 0.809020 0.809018 0.809019 0.809017
0.3 0.587791 0.587789 0.587787 0.587788 0.587785
0.4 0.309021 0.309020 0.309018 0.309019 0.309017
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.309020 -0.309020 -0.309019 -0.309020 -0.309017
0.7 -0.587788 -0.587788 -0.587786 -0.587787 -0.587785
0.8 -0.809020 -0.809018 -0.809016 -0.809017 -0.809017
0.9 -0.951061 -0.951060 -0.951059 -0.951060 -0.951057
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000

L2 × 103 0.003492 0.002733 0.001520 0.001886
L∞ × 103 0.006455 0.005257 0.003443 0.004065
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Figure 2: Error distributions of Problem 2 for ∆t = 0.00025, N = 80, t = 1, ν = 1.
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Problem 3: Finally, we consider the Eq. (1) with boundary conditions

U(0, t) = 0 , U(1, t) = 0, t ≥ 0

and the initial conditions as

U(x, 0) = 0 , 0 ≤ x ≤ 1.

The term f(x, t) is of the form

f(x, t) =
2t2−γ sin(2πx)

Γ(3− γ)
+ 2πt4 sin(2πx) cos(2πx) + 4νπ2t2 sin(2πx).

The exact solution of the problem is given by

U(x, t) = t2 sin(2πx).

Finally, error norms and numerical solutions for Problem 3 which calculated
to test the accuracy of the solutions are given in Tables 8-11. The error norms
and numerical solutions for different values ofN, γ = 0.50, ∆t = 0.00025, t = 1,
ν = 1 are presented in Table 8. From the table, it is understood that while the
value of N is increasing, the error norms decrease. The results obtained for
γ = 0.50, N = 120, t = 1, ν = 1, different time steps by this method are given
in Table 9. From the table, it canbe seen that as ∆t time steps decrease, error
norms decrease considerably. The tables show us that the numerical solutions
are really close to the exact solutions. For ∆t = 0.0005, N = 120, t = 1, ν = 1

and different values of ν numerical solutions and error norms are given in
Table 10. It shows us that while the value of ν is decreasing, the error norms
decrease substantially. Again, for ∆t = 0.0005, N = 120, t = 1, ν = 1 and
different values of γ, the result obtained by the presented method are given in
Table 11. The error distributions achieved by the quadratic B-spline Galerkin
method for ∆t = 0.0005, N = 120, t = 1, ν = 1 and different values of γ are
presented in Fig. 3.
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Table 8: Error norms and numerical solutions of Problem 3 for γ = 0.50, ∆t =
0.00025, t = 1, ν = 1.

x N = 40 N = 50 N = 80 N = 100 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.585106 0.586153 0.587257 0.587505 0.587785
0.2 0.947079 0.948617 0.950262 0.950638 0.951057
0.3 0.947320 0.948761 0.950310 0.950666 0.951057
0.4 0.585586 0.586434 0.587348 0.587562 0.587785
0.5 0.000001 -0.000002 0.000000 0.000007 0.000000
0.6 -0.585584 -0.586437 -0.587346 -0.587548 -0.587785
0.7 -0.947318 -0.948767 -0.950310 -0.950661 -0.951057
0.8 -0.947078 -0.948621 -0.950260 -0.950631 -0.951057
0.9 -0.585106 -0.586155 -0.587257 -0.587503 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 2.899412 1.774196 0.577143 0.305058
L∞ × 103 4.063808 2.495647 0.813220 0.430014

Table 9: Error norms and numerical solutions of Problem 3 for γ = 0.50, N = 120,
t = 1, ν = 1.

x ∆t = 0.0025 ∆t = 0.002 ∆t = 0.001 ∆t = 0.0005 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.588970 0.588675 0.588083 0.587788 0.587785
0.2 0.952952 0.952484 0.951545 0.951076 0.951057
0.3 0.952914 0.952458 0.951544 0.951086 0.951057
0.4 0.588914 0.588635 0.588087 0.587810 0.587785
0.5 0.000005 0.000005 0.000005 0.000004 0.000000
0.6 -0.588905 -0.588630 -0.588077 -0.587801 -0.587785
0.7 -0.952912 -0.952456 -0.951540 -0.951084 -0.951057
0.8 -0.952949 -0.952479 -0.951540 -0.951070 -0.951057
0.9 -0.588968 -0.588672 -0.588080 -0.587784 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 1.392372 1.048597 0.359489 0.017828
L∞ × 103 1.974356 1.487805 0.512105 0.032162
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Table 10: Error norms and numerical solutions of Problem 3 for γ = 0.50, ∆t =
0.0005, N = 120, t = 0.1.

x ν = 1 ν = 0.5 ν = 0.1 ν = 0.01 ν = 0.005 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.005902 0.005900 0.005890 0.005879 0.005878 0.005878
0.2 0.009550 0.009546 0.009531 0.009512 0.009510 0.009511
0.3 0.009550 0.009546 0.009531 0.009512 0.009510 0.009511
0.4 0.005902 0.005900 0.005890 0.005878 0.005877 0.005878
0.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.005902 -0.005900 -0.005890 -0.005878 -0.005876 -0.005878
0.7 -0.009550 -0.009546 -0.009531 -0.009512 -0.009510 -0.009511
0.8 -0.009550 -0.009546 -0.009531 -0.009512 -0.009510 -0.009511
0.9 -0.005902 -0.005900 -0.005890 -0.005879 -0.005878 -0.005878
1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.029174 0.026666 0.015017 0.001045 0.000758
L∞ × 103 0.041294 0.037739 0.021269 0.002001 0.002341

Table 11: Error norms and numerical solutions of Problem 3 for ∆t = 0.0005, N =
120, t = 1, ν = 1.

x γ = 0.10 γ = 0.25 γ = 0.75 γ = 0.90 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.586505 0.587787 0.587788 0.587791 0.587785
0.2 0.950362 0.951076 0.951078 0.951082 0.951057
0.3 0.950933 0.951088 0.951088 0.951092 0.951057
0.4 0.587791 0.587813 0.587811 0.587814 0.587785
0.5 0.000000 0.000007 0.000005 0.000004 0.000000
0.6 -0.587833 -0.587798 -0.587802 -0.587804 -0.587785
0.7 -0.951333 -0.951080 -0.951085 -0.951089 -0.951057
0.8 -0.952217 -0.951068 -0.951072 -0.951076 -0.951057
0.9 -0.589827 -0.587784 -0.587785 -0.587788 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.879696 0.017780 0.018641 0.021398
L∞ × 103 2.051516 0.034072 0.033291 0.037357
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Figure 3: Error distributions of Problem 3 for ∆t = 0.0005, N = 120, t = 1, ν = 1.

4 Conclusion

In this paper, quadratic B-spline Galerkin method has been applied to ac-
quire the numerical solutions of three problems for the time fractional Burgers
equation. The time fractional derivative operator is made allowance for the
Caputo fractional derivative in these problems. It can be easily viewed from
the numerical solutions and error norms in tables obtained that this is an ex-
tremely good method to achieve numerical solutions of time fractional partial
differential equations arising in physics and engineering.
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Abstract. In this paper, we examine the fractional differential-difference
equation (FDDE) by employing the proposed sensitivity approach (SA)
and Adomian transformation method (ADTM). In SA the nonlinear
differential-difference equation is converted to infinite linear equations
which have a wide criterion to solve for the analytical solution. By ADTM,
the FDDE is converted into ordinary differential-difference equation that
can be solved. We test both the techniques through some test problems
which are arising in nonlinear dynamical systems and found that ADTM
is equivalently appropriate and simpler method to handle than SA.

1 Introduction

A differential-difference equation (DDEs), first studied by Fermi et al. [1]
in the 1950s is of enormous significance in describing physical phenomena of
various fields such as mechanical engineering, biophysics, condensed matter
physics, and in different physical problems like currents flow in electrical net-
works [2], particle vibrations in lattices, and pulses in biological chains [3].
Many forms of DDEs are discovered to analyze the discrete nonlinear system.
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In recent decades fractional derivatives are introduced to deal with non
differentiable functions. The theory of using integrals and derivatives of an
arbitrary order, fractional calculus, discussed about 300 years ago, have appli-
cations in fractional control of engineering systems, acoustics, damping laws,
bioengineering and biomedical applications, electromagnetism, hydrology, sig-
nal processing, and many others [4, 5, 6]. It is used for examining stochastic
processes forced by fractional Brownian processes [7, 8], non-random fractional
phenomena in physics [9, 10, 11], the study of porous systems, and quantum
mechanics [12, 13].

Recently, there have been a number of schemes committed to the solution
of fractional differential equations. The Adomian decomposition method [14],
homotopy perturbation method [15, 16, 17], homotopy analysis method [18,
19], Taylor matrix method [20] and many others have been used to solve the
fractional differential equations.

In the present paper, the sensitivity approach [21, 22, 23] which has been pre-
sented to solve various kinds of optimal control problems and analysis of time
delay systems has used. In this approach, a sensitivity parameter has intro-
duced which transform the original nonlinear fractional differential-difference
equation (FDDE) to a linear sequence of FDDEs. The system of equations
then now consists of a linear term and a nonlinear series terms. Iterations
have been done only for nonlinear series terms, i.e., the result of a sequence of
linear FDDEs leads to nonlinear terms for compensation is extended to solve
FDDEs. Also, the Adomian decomposition method (ADM) has been modified
by a special transformation. The transformation has converted the fractional
order differential-difference equation to ordinary differential-difference equa-
tion which then solved by the Adomian decomposition method.

2 Preliminaries

The modified Riemann-Liouville derivative of order α is defined, for a function
f(x), by

Dαx f(x) =
1

Γ(−α)

∫x
0

(x− η)−1−α(f(η) − f(0))dη; α < 0, (1)

Dαx f(x) =
1

Γ(1− α)

d

dx

∫x
0

(x− η)−α(f(η) − f(0))dη; 0 < α < 1, (2)

Dαx f(x) = (f(n)(x))
(α−n)

dη; n ≤ α ≤ n+ 1, n ≥ 1, (3)
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where f : R → R is a continuous function. Properties of modified Riemann
Liouville derivative are given as

Dαxx
(β) =

Γ(β+ 1)

Γ(β− α+ 1)
xβ−α; β > 0, (4)

dαx(t) = Γ(α+ 1)dx(t); β > 0, (5)

3 Implementation of the methods

Consider the nonlinear FDDEs in the form of:

DαtUn(t) = N (. . . , Un−1(t), Un(t), Un+1(t), . . . ); (6)

with initial conditions

Un(t0) = f(n); (7)

where N is the non linear function,Un(t) is an unknown function, f(n)is the
initial condition and t,n are independent variables. Assuming that a unique
solution exist for Eq. (4). It is difficult to obtain exact solution of nonlinear
FDDE (6). Only in some cases, we can obtain exact solution.

Sensitivity approach (SA)

In this approach, a sensitivity parameter Λ, which varies between zero and
unity, is introduced into nonlinear terms of FDDE. When Λ = 0, the nonlinear
problem is transformed to a simple problem, which can be solved through
analytic method. When Λ = 1, the original nonlinear problem is obtained.
This transformation leads to solving a sequence of linear FDDEs instead of
solving nonlinear FDDEs. Now, we embedded a sensitivity parameter Λ in
Eqs. (6)–(7) and form the following sensitized FDDEs:

DαtUn(t,Λ) = N (..., Un−1(t,Λ), Un(t,Λ), Un+1(t,Λ), . . . ) (8)

with initial conditions

Un(t,Λ)

∣∣∣∣
t=t0

= f(n) (9)

Where 0 ≤ Λ ≤ 1. In the following explanation, we suppose that the solution of
Eq. (6) is distinctively existed and Un(t,Λ) with Λ is infinitely differentiable
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with respect to the Λ in the region of Λ = 0, and its Maclaurin series is
convergent at Λ = 1. Apparently when Λ = 1 Eq. (8) is equivalent to the
original problem Eq. (6). According to the assumption we can write:

Un(t,Λ) =

∞∑
n=1

ΛjU
(j)
n (t) (10)

where (∗)(j) = 1
j!
∂j

∂Λj (∗)
∣∣∣∣
Λ=0

Now, we substitute Eq. (10) into Eq. (8) and

equating terms with the same order of Λ on each side we have:

Λ0 : DαtU
(0)
n (t) = N (U

(0)
n (t)), U

(0)
n (t0) = f(n), (11)

Λ1 : DαtU
(1)
n (t) = N (U

(1)
n (t)) + g

(0)
n (t), U

(1)
n (t0) = 0, (12)

Λj : DαtU
(j)
n (t) = N (U

(j)
n (t)) + g

(j−1)
n (t), U

(j)
n (t0) = 0, (13)

Where, g(j−1)(t) is the coefficient of Λ(j−1) in the expanding of f(n) and can
be resolve in the following manner:

g(j−1)(t) =
1

(j− 1)!

N (..., Un−1(t,Λ), Un(t,Λ), Un+1(t,Λ), . . . )

∂Λ(j− 1)

∣∣∣∣
Λ=0

, (14)

It should be noticed that Eq. (11) gives linear approximate and Eq. (6) gives
correction term to linear approximate solution by keeping in consideration
second order nonlinearity and so on. If the above process caries on, at each
step, a system of non-homogeneous linear FDDEs is obtained in which non-
homogeneous terms are known from the previous step. Hence, solving the
presented sequence is a recursive process. After indentifying Uj(t) for j ≥ 1, it
is obvious that Λ = 1 should be set in Eq. (8) and Eq. (9) so that they deform
to the exact solution of Eq. (6) and so we have:

Un(t, 1) =

∞∑
j=0

U
(j)
n (t) (15)

In this way, the original nonlinear FDDE has been converted into a sequence
of linear FDDEs, which should be solved in a recursive development and this
will overcomes the complexity of working with nonlinear FDDEs. It is clear
from the above procedure, a nonlinear FDDE is transformed into a sequence
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of linear FDDEs. In order to solve the Eq. (8), the following sensitized linear
FDDE can be constructed:

DαtU
(0)
n (t,Λ) = ΛN (. . . , U

(0)
n−1(t,Λ), U

(0)
n (t,Λ), U

(0)
n+1(t,Λ), . . . ) (16)

U
(0)
n (t,Λ) = f(n) (17)

Assuming the solution of Eq. (16) as

Un(t,Λ) =

∞∑
n=1

ΛjU
(0,j)
n (t) (18)

Now by substituting Eq. (18) into Eq. (16) and equating terms with the same
order of Λ on each side we have:

Λ0 : DαtU
(0,0)
n (t) = N (. . . U

(0,0)
n−1 (t,Λ), U

(0,0)
n (t,Λ), U

(0,0)
n+1 (t,Λ), . . . ),(19)

U
(0,0)
n (t0) = f(n),

Λ1 : DαtU
(0,1)
n (t) = N (. . . U

(0,1)
n−1 (t,Λ), U

(0,1)
n (t,Λ), U

(0,1)
n+1 (t,Λ), . . . ),(20)

U
(0,1)
n (t0) = 0,

...

Λj : DαtU
(0,j)
n (t) = N (. . . U

(0,j)
n−1(t,Λ), U

(0,j)
n (t,Λ), U

(0,j)
n+1(t,Λ), . . . ), (21)

U
(0,j)
n (t0) = 0,

...

By taking the inverse operator of Dαt on applying Eqs. (19)–(21), we get the
solution of FDDE as

U0n(t) = U
(0,1)
n (t) =

∞∑
j=0

U
(0,j)
n (t) (22)
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In the same way, Eq. (6) has to be solved for U0n(t) for j ≥ 1. After some
similar calculation we have:

Uj,kn (t) = U
(j,0)
n (t) +U

(j,1)
n (t) +U

(j,2)
n (t) +U

(j,3)
n (t) + . . . (23)

U
(j,0)
n (t) = 0,

...

U
(j,1)
n (t) = −Jα1g

j−1
n (t) (24)

...

U
(j,k)
n (t) = −Jα1N (. . . U

(j,k)
n−1(t), U

(j,k)
n (t), U

(j,k)
n+1(t) . . . )

j.

Since, the steps above are enough to find the analytical solution, however,
only some iteration of sub-problems and the original problem are sufficient
to get a satisfactory accurate solution. We can replace ∞ by any positive
integers S and T in the above mentioned series which may help in obtaining
an approximate closed-form solution

Un(t) =

S∑
j=0

T∑
k=0

U
(j,k)
n (t) (25)

Adomian decomposition transformation method (ADTM)

Fractional complex transforms [24, 25] has now been become a useful tool
to convert fractional differential equations to ordinary differential equations,
which provides a very simple and easy solution approach. In the present
method, the FDDE has transformed into ordinary DDE and then utilizing
the Adomian decomposition method to solve for exact or analytic solutions.
Duan [26, 27] has provided the efficient recurrence one variable formula to
decompose the multivariable Adomian polynomials to solve the non-linear dif-
ferential equation. Recalling the Eq. (6)

DαtUn(t) = N (. . . , Un−1(t), Un(t), Un+1(t), . . . ) (26)

with initial conditions

Un(t0) = f(n); (27)

Let us suppose

T =
tα

Γ(α+ 1)
(28)
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Differentiating Eq. (28) and making use of modified Riemann Liouville deriva-
tive

dαUn(t)

dtα
= U′

n(T) (29)

Putting in Eq. (26), which transform the FDDE into ordinary DDE

U′
n,m(T) = LUn,m(T) = N (. . . , Un−1,m(T), Un,m(T), Un+1,m(T), . . . ) (30)

where L = d
dT and L−1 =

∫T
T0
(∗)dT are the linear operator the inverse operators

respectively. Applying the inverse operator on both sides of the Eq. (26) with
Eq. (27) gives

Un,m+1(T) = f(n) + L−1[N (. . . , Un−1,m(T), Un,m(T), Un+1,m(T), . . . )] (31)

In this section, three examples have presented to demonstrate the applicability
of the suggested methods to solve nonlinear fractional differential-difference
equations.

4 Test problems

Problem 1

Consider the following Volterra equation

DαtUn(t) = Un(t)(Un+1(t) −Un−1(t)) (32)

with initial conditions

Un(0) = n (33)

The exact solution for α = 1 can be written as

Un(t) =
n

(1− 2t)

For solving this equation, the following new equation is constructed with sen-
sitivity parameter:

DαtUn(t,Λ) = ΛUn(t,Λ)(Un+1(t,Λ) −Un−1(t,Λ)) (34)

with initial conditions

Un(0,Λ) = n (35)
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Now assume:

Un(t,Λ) =

∞∑
j=0

ΛjU
(0,j)
n (t) (36)

Un+1(t,Λ) =

∞∑
j=0

ΛjU
(0,j)
n+1(t) (37)

Un−1(t,Λ) =

∞∑
j=0

ΛjU
(0,j)
n−1(t) (38)

Substitute Eq. (36)–(38) in Eq. (34), it has been seen that the nonlinear orig-
inal FDDEs are changed into a set of linear recursive FDDEs by using Eq.
(19)-(21), in which at each step, the non-homogeneous terms are calculated
from the preceding steps and process can be handled very simply which can
solved the equation, we get the following series solution.

Un(t) = n+
2ntα

Γ(α+ 1)
+

8nt2α

Γ(2α+ 1)
+
8nt3α(4Γ(α+ 1)2 + Γ(2α+ 1))

Γ(α+ 1)2Γ(3α+ 1)
+ . . .(39)

By putting α = 1, we recover ref. [24].
Now for the Adomian decomposition transformation method, Let us suppose

η =
1

Γ(α+ 1)
tα (40)

From modified Riemann Liouville derivative, we have

dαUn(t)

dtα
= U′

n(η) (41)

Using Eq. (41) in Eq. (32)

U′
n,m = Un,m(η)[Un+1,m(η) −Un−1,m(η)]

LUn,m = A(Un,m, Un+1,m) − B(Un,m, Un−1,m) (42)

Operating L−1 on both sides gives:

Un,m+1 = Un(0) + L−1(A(Un,m, Un+1,m) − B(Un,m, Un−1,m)) (43)
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Where the nonlinear termsA(Un,m, Un+1,m) and B(Un,m, Un−1,m) can be de-
composed as follows:

An,m =

m−1∑
i=0

Un,iUn+1,m−1−i Bn,m =

m−1∑
i=0

Un,iUn−1,m−1−i (44)

An,1 = Un,0Un+1,0, Bn,1 = Un,0Un−1,0,

An,2 = Un,1Un+1,0 +Un,0Un+1,1, Bn,2 = Un,1Un−1,0 +Un,0Un−1,1,

An,3 = Un,2Un+1,0 +Un,1Un+1,1 +Un,0Un+1,2,

Bn,3 = Un,2Un−1,0 +Un,1Un−1,1 +Un,0Un−1,2,

An,4 = Un,3Un+1,0 +Un,2Un+1,1 +Un,1Un+1,2 +Un,0Un+1,3

Bn,4 = Un,3Un−1,0 +Un,2Un−1,1 +Un,1Un−1,2 +Un,0Un−1,3 (45)

The solution of the transformed problem is

Un = 2nη+ 4nη2 + 8nη3 + 16nη4 + 32nη5 + 64nη6 + . . . (46)

Now, replacing

η =
1

Γ(α+ 1)
tα

in Eq.(46), we get

Un = 2n
tα

Γ(α+ 1)
+ 4n

(
tα

Γ(α+ 1)

)2
+ 8n

(
tα

Γ(α+ 1)

)3
+ 16n

(
tα

Γ(α+ 1)

)4
+ . . .

(47)
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Table 1: Numerical comparison of problem 1 at t = 0.01

n α = 0.5 α = 0.75 α = 1
SA ADTM SA ADTM SA ADTM Exact

-20 -27.1982 -25.8288 -21.5089 -21.4780 -20.4082 -20.4082 -20.4082
-10 -13.5991 -12.9144 -10.7544 -10.7390 -10.2041 -10.2041 -10.2041
10 13.5991 12.9144 10.7544 10.7390 10.2041 10.2041 10.2041
20 27.1982 25.8288 21.5089 21.4780 20.4082 20.4082 20.4082

Problem 2

Let us consider hybrid nonlinear difference equation of the Korteweg-de Vries
(KdV) equations

DαtUn(t) = (1− (Un(t))
2)(Un+1(t) −Un−1(t)) (48)

with initial conditions

Un(0) = tanh(k) tanh(kn) (49)

The exact solution of Eq. (48) for can be written as:

Un(t) = tanh(k) tanh(kn+ 2 tanh(k)t) (50)

Eq. (48) can be simplified as follows:

DαtUn(t) = (Un+1(t) −Un−1(t)) − (Un(t))
2Un+1(t) + (Un(t))

2Un−1(t) (51)

The solution of Eq. (48) by SA is given by

Un(t) = tanh(k) tanh(kn) +
1

Γ(α+ 1)
tα(cosh(2k) + cosh(2kn))

(
1

cosh(kn− k)

)
(

1

(cosh(kn))2

)(
1

cosh(kn+ k)

)
(tanh(k))2)) + . . . (52)

Now, applying the Adomian transformation method the solution of Eq. (48)
with Eq. (49) is

Un = tanh(k) tanh(kn) + η(cosh(2k) + cosh(2kn))

(
1

cosh(kn− k)

)(
1

(cosh(kn))2

)
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1

cosh(kn+ k)

)
(tanh(k))2 . . . (53)

Hence, the solution of the original problem is given by

Un = tanh(k) tanh(kn) +
1

Γ(α+ 1)
tα(cosh(2k) + cosh(2kn))(

1

cosh(kn− k)

)(
1

(cosh(kn))2

)
(

1

cosh(kn+ k)

)
(tanh(k))2 . . .

(54)

Table 2: Numerical comparison of problem 2 for k = 0.1 t = 0.01

n α = 0.5 α = 0.75 α = 1

SA ADTM SA ADTM SA ADTM Exact
-20 -0.291307 -0.291307 -0.291308 -0.291308 -0.291309 -0.291309 -0.291309
-10 -0.289080 -0.289134 -0.289502 -0.289509 -0.289695 -0.289694 -0.289694
0 0.060562 0.059690 0.032840 0.032701 0.016973 0.0169534 0.0169534
10 0.290275 0.290363 0.290150 0.290162 0.290030 0.290030 0.290030
20 0.291310 0.291310 0.291310 0.29131 0.291309 0.291309 0.291309

Problem 3

Consider the following fractional differential-difference problem

DαtUn(t) = (Un(t))
2(Un+1(t) −Un−1(t)) (55)

with initial condition

Un(0) = 1−
1

n2
(56)

The exact solution of Eq. (55) for α = 1 can be written as:

Un(t) = 1−
1

(n+ 2t)2
(57)

By the sensitivity approach and ADTM the solution of the problem are given
by

Un(t) = 1−
1

n2
+

4tα

n3Γ(α+ 1)
−

24t2α

n4Γ(2α+ 1)
+ . . . (58)

Un(t) = 1−
1

n2
+

4tα

n3Γ(α+ 1)
−

12t2α

n4(Γ(α+ 1))2
+ . . . (59)
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Table 3: Numerical comparison of problem 3 at t = 0.3

n α = 0.5 α = 0.75 α = 1
SA ADTM SA ADTM SA ADTM Exact

-20 0.997137 0.99716 0.997259 0.997264 0.997343 0.997343 0.997343
-10 0.986425 0.98698 0.987878 0.987971 0.988683 0.988683 0.988683
10 0.991922 0.992079 0.991510 0.991555 0.988683 0.991100 0.991100
20 0.99777 0.997783 0.997707 0.997707 0.997644 0.997644 0.997644

5 Conclusions

In this study, we extend the sensitivity approach for solving the fractional
differential difference equation and proposed a new Adomian decomposition
transformation method, and obtain the analytical solution of Volterra and
mKDV lattice equations. The solution shows that, both techniques are quite
useful for solving a variety of linear and nonlinear fractional problems, but
ADTM provides an easy and reliable scheme to be implemented on various
problems. The comparison has also been done which is almost approximate
to the exact solution. Numerical examples show that the suggested scheme
is clearly quite efficient and potent technique in finding the solutions of the
proposed equations (see table 1-3).
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Abstract. The focal representation of a generic regular curve γ in Em+1

consists of the centers of the osculating hyperplanes. A k-slant helix γ in
Em+1 is a (generic) regular curve whose unit normal vector Vk makes a

constant angle with a fixed direction
−→
U in Em+1. In the present paper we

proved that if γ is a k-slant helix in Em+1, then the focal representation
Cγ of γ in Em+1 is an (m− k+ 2)-slant helix in Em+1.

1 Introduction

Curves with constant slope, or so-called general helices (inclined curves), are
well-known curves in the classical differential geometry of space curves. They
are defined by the property that the tangent makes a constant angle with a
fixed line (the axis of the general helix) (see, [1], [4], [7] and [8]). In [10], the
definition is more restrictive: the fixed direction makes constant angle with
these all the vectors of the Frenet frame. It is easy to check that the definition

2010 Mathematics Subject Classification: 53A04, 53C42
Key words and phrases: Frenet curve, focal curve, slant helix
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only works in the odd dimensional case. Moreover, in the same reference, it
is proven that the definition is equivalent to the fact the ratios κ2

κ1
, κ4κ3 , . . . ,

κi being the curvatures, are constant. Further, J. Monterde has considered the
Frenet curves in Em which have constant curvature ratios (i.e., κ2κ1 ,

κ3
κ2
, κ4κ3 . . . .

are constant) [14]. The Frenet curves with constant curvature ratios are called
ccr-curves. Obviously, ccr-curves are a subset of generalized helices in the sense
of [10]. It is well known that curves with constant curvatures (W-curves) are
well-known ccr-curves [12], [15].

Recently, Izumiya and Takeuchi have introduced the concept of slant helix
in Euclidean 3-space E3 by requiring that the normal lines make a constant
angle with a fixed direction [11]. Further in [3] Ali and Turgut considered the
generalization of the concept of slant helix to Euclidean n-space En, and gave
some characterizations for a non-degenerate slant helix. As a future work they
remarked that it is possible to define a slant helix of type-k as a curve whose

unit normal vector Vk makes a constant angle with a fixed direction
−→
U [9].

For a smooth curve (a source of light) γ in Em+1, the caustic of γ (defined as
the envelope of the normal lines of γ) is a singular and stratified hypersurface.
The focal curve of γ , Cγ , is defined as the singular stratum of dimension 1 of
the caustic and it consists of the centers of the osculating hyperspheres of γ .
Since the center of any hypersphere tangent to γ at a point lies on the normal
plane to γ at that point, the focal curve of γ may be parametrized using the
Frenet frame (t, n1, n2, dots, nm) of γ as follows:

Cγ(θ) = (γ+ c1n1 + c2n2 + · · ·+ cmnm)(θ),

where the coefficients c1, . . . , cm are smooth functions that are called focal
curvatures of γ [18].

This paper is organized as follows: Section 2 gives some basic concepts of
the Frenet curves in Em+1. Section 3 tells about the focal representation of
a generic curve given with a regular parametrization in Em+1. Further this
section provides some basic properties of focal curves in Em+1 and the structure
of their curvatures. In the final section we consider k-slant helices in Em+1.
We prove that if γ is a k-slant helix in Em+1 then the focal representation Cγ
of γ is an (m− k+ 2)-slant helix in Em+1.

2 Basic concepts

Let γ = γ(s) : I→ Em+1 be a regular curve in Em+1, (i.e., ‖γ′(s)‖ is nowhere
zero) where I is an interval in R. Then γ is called a Frenet curve of osculating
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order d, (2 ≤ d ≤ m + 1) if γ ′(s), γ ′′(s),. . . ,γ(d)(s) are linearly independent
and γ ′(s), γ ′′(s),. . . ,γ(d+1)(s) are no longer linearly independent for all s
in I [18]. In this case, Im(γ) lies in a d-dimensional Euclidean subspace of
Em+1. To each Frenet curve of rank d there can be associated the orthonormal
d-frame {t, n1, . . . , nd−1} along γ, the Frenet r-frame, and d − 1 functions
κ1, κ2, . . . , κd−1:I −→ R, the Frenet curvatures, such that

t
′

n
′
1

n
′
2

. . .

n
′
d−1

 = v


0 κ1 0 . . . 0

−κ1 0 κ2 . . . 0

0 −κ2 0 . . . 0

. . . κd−1
0 0 . . . −κd−1 0




t

n1
n2
. . .

nd−1

 (1)

where, v is the speed of γ. In fact, to obtain t, n1, . . . , nd−1 it is sufficient to ap-
ply the Gram-Schmidt orthonormalization process to γ′(s), γ′′(s),. . . ,γ(d)(s).
Moreover, the functions κ1, κ2, . . . , κd−1 are easily obtained as by-product dur-
ing this calculation. More precisely, t, n1, . . . , nd−1 and κ1, κ2, . . . , κd−1 are
determined by the following formulas:

v1(s) : = γ ′(s) ; t :=
v1(s)

‖v1(s)‖
,

vα(s) : = γ(α)(s) −

α−1∑
i=1

< γ(α)(s), vi(s) >
vi(s)

‖vi(s)‖2
, (2)

κα−1(s) : =
‖vα(s)‖

‖vα−1(s)‖ ‖v1(s)‖
,

nα−1 : =
vα(s)

‖vα(s)‖
,

where α ∈ {2, 3, . . . , d} (see, [8]).
A Frenet curve of rank d for which κ1, κ2, . . . , κd−1 are constant is called

(generalized) screw line or helix [6]. Since these curves are trajectories of the
1-parameter group of the Euclidean transformations, so, F. Klein and S. Lie
called them W-curves [12]. For more details see also [5]. γ is said to have
constant curvature ratios (that is to say, it is a ccr-curve) if all the quotients
κ2
κ1
, κ3κ2 ,

κ4
κ3
, . . . , κi

κi−1
(1 ≤ i ≤ m− 1) are constant [14], [15].

3 The focal representation of a curve in Em+1

The hyperplane normal to γ at a point is the union of all lines normal to γ at
that point. The envelope of all hyperplanes normal to γ is thus a component
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of the focal set that we call the main component (the other component is the
curve γ itself, but we will not consider it) [16].

Definition 1 Given a generic curve (i.e., a Frenet curve of osculating order
m + 1) γ : R→ Em+1, let F : Em+1 × R→ R be the (m + 1)-parameter family
of real functions given by

F(q, θ) =
1

2
‖q− γ(θ)‖2 . (3)

The caustic of the family F is given by the set{
q ∈ Em+1 : ∃θ ∈ R : F′q(θ) = 0 and F′′q(θ) = 0

}
(4)

[16].

Proposition 1 [17] The caustic of the family F(q, θ) = 1
2 ‖q− γ(θ)‖2 coin-

cides with the focal set of the curve γ : R→ Em+1.

Definition 2 The center of the osculating hypersphere of γ at a point lies in
the hyperplane normal to the γ at that point. So we can write

Cγ = γ+ c1n1 + c2n2 + · · ·+ cmnm, (5)

which is called the focal curve of γ, where c1, c2, . . . , cm are smooth functions
of the parameter of the curve γ. We call the function ci the ith focal curvature
of γ. Moreover, the function c1 never vanishes and c1 =

1
κ1

[18].

The focal curvatures of γ, parametrized by arc length s, satisfy the following
“scalar Frenet equations” for cm 6= 0 :

1 = κ1c1

c1 = κ2c2

c2 = −κ2c1 + κ3c3

. . . (6)

cm−1 = −κm−1cm−2 + κmcm

cm −
(R2m)́

2cm
= −κmcm−1

where Rm is the radius of the osculating m-sphere. In particular R2m = ‖Cγ−γ‖2
[18].
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Theorem 1 [16] Let γ : s → γ(s) ∈ Em+1 be a regular generic curve. Write
κ1, κ2, . . . , κm for its Euclidean curvatures and {t, n1, n2, . . . , nm} for its Frenet
Frame. For each non-vertex γ(s) of γ, write ε(s) for the sign of (c′m+cm−1κm)(s)
and δα(s) for the sign of (−1)αε(s)κm(s), α = 1, . . . ,m. Then the following
holds:

a) The Frenet frame {T,N1, N2, . . . , Nm} of Cγ at Cγ(s) is well-defined and
its vectors are given by T = εnm, Nα = δαnm−l, for l = 1, . . . ,m − 1, and
Nm = ±t. The sign in ±t is chosen in order to obtain a positive basis.

b) The Euclidean curvatures K1, K2, . . . , Km of the parametrized focal curve
of γ, Cγ : s→ Cγ(s), are related to those of γ by:

K1
|κm|

=
K2
κm−1

= · · · = |Km|

κ1
=

1

|c′m + cm−1κm|
, (7)

the sign of Km is equal to δm times the sign chosen in ±t.

That is the Frenet formulas of Cγ at Cγ(s) are

T
′

=
1

A
|κm|N1

N
′
1 =

1

A
(− |κm| T + κm−1N2)

N
′
2 =

1

A
(− |κm−1|N1 + κm−2N3) (8)

. . .

N
′
m−1 =

1

A
(−κ2Nm−2∓δmκ1Nm)

N
′
m =

1

A
∓δmκ1Nm−1

where A = |c′m + cm−1κm| .

Corollary 1 Let γ = γ(s) be a regular generic curve in Em+1 and Cγ : s →
Cγ(s) be the focal representation of γ. Then the Frenet frame of Cγ becomes
as follows;

i) If m is even, then

T = nm

N1 = −nm−1

N2 = nm−2

. . . (9)

Nm−1 = −n1

Nm = t
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ii) If m is odd, then

T = nm

N1 = −nm−1

N2 = nm−2

. . . (10)

Nm−1 = n1

Nm = −t.

Proof. By the use of (7) with (8) we get the result. �

4 k-Slant helices

Let γ = γ(s) : I → Em+1 be a regular generic curve given with arclength

parameter. Further, let
−→
U be a unit vector field in Em+1 such that for each

s ∈ I the vector
−→
U is expressed as the linear combinations of the orthogonal

basis {V1(s), V2(s), . . . , Vm+1(s)} with

−→
U =

m+1∑
j=1

aj(s)Vj(s). (11)

where aj(s) are differentiable functions, 1 ≤ j ≤ m+ 1.

Differentiating
−→
U and using the Frenet equations (1), one can get

d
−→
U

ds
=

m+1∑
i=1

Pi(s)Vi(s), (12)

where

P1(s) = a
′
1 − κ1a2, (13)

Pi(s) = a
′
i + κi−1ai−1 − κiai+1, 2 ≤ i ≤ m,

Pm+1(s) = a
′
m+1 + κmam.

If the vector field
−→
U is constant then the following system of ordinary dif-

ferential equations are obtained

0 = a
′
1 − κ1a2,

0 = a
′
2 + κ1a1 − κ2a3, (14)

0 = a
′
i + κi−1ai−1 − κiai+1, 3 ≤ i ≤ m,

0 = a
′
m+1 + κmam.
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Definition 3 Recall that a unit speed generic curve γ = γ(s) : I → Em+1 is
called a k-type slant helix if the vector field Vk (1 ≤ k ≤ m + 1) makes a

constant angle θk with the fixed direction
−→
U in Em+1, that is

<
−→
U,Vk >= cos θk, θk 6=

π

2
. (15)

A 1-type slant helix is known as cylindrical helix [2] or generalized helix
[13], [4]. For the characterization of generalized helices in (n+ 2)-dimensional
Lorentzian space Ln+2 see [19].

We give the following result;

Theorem 2 Let γ = γ(s) be a regular generic curve in Em+1. If Cγ : s →
Cγ(s) is the focal representation of γ then the following statements are valid;

i) If γ is a 1-slant helix then the focal representation Cγ of γ is an (m+ 1)-
slant helix in Em+1.

ii) If γ is an (m + 1)-slant helix then the focal representation Cγ of γ is a
1-slant helix in Em+1.

iii) If γ is a k-slant helix (2 < k < m) then the focal representation Cγ of γ
is an (m− k+ 2)-slant helix in Em+1.

Proof. i) Suppose γ is a 1-slant helix in Em+1. Then by Definition 3 the vector

field V1 makes a constant angle θ1 with the fixed direction
−→
U defined in (11),

that is
<
−→
U,V1 >= cos θ1, θ1 6=

π

2
. (16)

For the focal representation Cγ(s) of γ, we can choose the orthogonal basis

{V1(s) = t, V2(s) = n1, . . . , Vm+1(s) = nm}

such that the equalities (9) or (10) is hold. Hence, we get,

<
−→
U,V1 >=<

−→
U, t >=<

−→
U,±Nm >= cons. (17)

where {T,N1, N2, . . . ,Nm} is the Frenet frame of Cγ at point Cγ(s). From the
equality (17) it is easy to see that Cγ is an (m+1)-slant helix of Em+1.

ii) Suppose γ is an (m + 1)-slant helix in Em+1. Then by Definition 3 the

vector field Vm+1 makes a constant angle θm+1 with the fixed direction
−→
U

defined in (11), that is

<
−→
U,Vm+1 >= cos θm+1, θm+1 6=

π

2
. (18)
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For the focal representation Cγ(s) of γ, one can get

<
−→
U,Vm+1 >=<

−→
U,nm >=<

−→
U, T >= cons. (19)

where {V1 = t, V2 = n1, . . . , Vm+1 = nm} and {T,N1, N2, . . . , Nm} are the Frenet
frame of γ and Cγ, respectively. From the equality (19) it is easy to see that
Cγ is a 1-slant helix of Em+1.

iii) Suppose γ is a k-slant helix in Em+1 (2 ≤ k ≤ m). Then by Definition

3 the vector field Vk makes a constant angle θk with the fixed direction
−→
U

defined in (11), that is

<
−→
U,Vk >= cos θk, θk 6=

π

2
, 2 ≤ k ≤ m. (20)

Let Cγ(s) be the focal representation of γ. Then using the equalities (9) or
(10) we get

<
−→
U,Vk >=<

−→
U,nk−1 >=<

−→
U,Nm−k+1 >= cons., 2 ≤ k ≤ m (21)

where

{V1 = t, V2 = n1, . . . , Vm+1 = nm}

and {
Ṽ1 = T, Ṽ2 = N1, . . . , Ṽm−k+2 = Nm−k+1, . . . , Ṽm+1 = Nm

}
are the Frenet frame of γ and Cγ, respectively. From the equality (21) it is
easy to see that Cγ is an (m− k+ 2)-slant helix of Em+1. �
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Abstract. In this paper, we have obtained upper bound on third Hankel
determinant for the functions belonging to the class of close-to-convex
functions.

1 Introduction

Let H(U) denote the class of functions which are analytic in the open unit disk
U = {z : |z| < 1}. Let A be the class of all functions f ∈ H(U) which are
normalized by f(0) = 0, f ′(0) = 1 and have the following form:

f(z) = z+ a2 z
2 + a3 z

3 + . . . , z ∈ U. (1)

2010 Mathematics Subject Classification: 30C45
Key words and phrases: analytic functions, univalent function, close-to-convex function,
Fekete-Szego functional, Hankel determinant
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We denote by S the subclass of A consisting of all functions in A which are
also univalent in U. Let P be the class of all functions p ∈ H(U) satisfying
p(0) = 1 and <(p(z)) > 0. The function p ∈ P have the following form:

p(z) = 1+ c1z+ c2z
2 + . . . , z ∈ U. (2)

Further, a function f ∈ A is said to belong to the class S∗ of starlike functions
in U, if it satisfies the following inequality:

<

(
zf ′(z)

f(z)

)
> 0, z ∈ U. (3)

Moreover, a function f ∈ A is said to belong to the class C of close-to-convex
functions in U, if there exist a function g ∈ S∗, such that the following in-
equality holds:

<

(
zf ′(z)

g(z)

)
> 0, z ∈ U. (4)

The class of close-to-convex functions was introduced by Kaplan [9]. In [16],
Noonan and Thomas studied the qth Hankel determinants Hq(n) of functions
f ∈ A of the form (1) for q ≥ 1, which is defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 . . . . . .
...

...
...

...
...

an+q−1 . . . . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣
(a1 = 1). (5)

The Hankel determinants Hq(n) have been investigated by several authors to
study its rate of growth as n → ∞ and to determine bounds on it for spe-
cific values of q and n. For example, Pommerenke [22] proved that the Han-

kel determinants of univalent functions satisfy |Hq(n)| < Kn−( 1
2
+β)q+ 3

2 (n =
1, 2, . . . , q = 2, 3, . . . ), where β > 1/4000 and K depends only on q. Later, Hay-
man [8] proved that |H2(n)| < An

1/2 (n = 1, 2, . . . ; A is an absolute constant)
for areally mean univalent functions. Pommerenke [21] investigated the Hankel
determinant of areally mean p-valent functions, univalent functions as well as
of starlike functions. Ehrenborg studied Hankel determinant of the exponential
polynomials [6] and Noor studied Hankel determinant for Bazilevic functions
in [18] and for functions with bounded boundary rotations in [17, 19] also for
close-to-convex functions in [20].

A classical theorem of Fekete and Szegö [7] considered the second Hankel
determinant H2(1) = a3 − a

2
2 for univalent functions. They made an early



212 J. K. Prajapat, D. Bansal, A. Singh, A. K. Mishra

study for the estimate of well known Fekete-Szegö functional
∣∣a3 − µa22∣∣ when

µ is real. Jenteng [12] investigated the sharp upper bound for second Hankel
determinant |H2(2)| = |a2a4−a

2
3| for univalent functions whose derivative has

positive real part. Recently, Lee et al. [13] have obtained bounds on |H2(2)|
for functions belonging to the subclasses of Ma-Minda starlike and convex
functions. Further Bansal [2] have obtained bounds on |H2(2)| for some new
class of analytic functions. Recently, Babalola [1], Raza and Malik [24] and
Bansal et al. [3] have studied third Hankel determinant H3(1), for various
classes of analytic and univalent functions. In the present paper we investigate
the upper bound on |H3(1)| for the functions belonging to the class of close-
to-convex functions K defined by (4). To derive our results, we shall need the
following Lemmas:

Lemma 1 (Carathéodory’s Lemma [4], see also [5, p. 41]). Let the function
p ∈ P be given by the series then the sharp estimate |cn| ≤ 2, n = 1, 2, · · ·
holds. The inequality is sharp for each n.

Lemma 2 (cf. [14, p. 254], see also [15]). Let the function p ∈ P be given by
(2), then

2c2 = c
2
1 + x(4− c

2
1)

for some x, |x| ≤ 1, and

4c3 = c
3
1 + 2c1(4− c

2
1)x− c1(4− c

2
1)x

2 + 2(4− c21)(1− |x|2)z

for some z, |z| ≤ 1.

Lemma 3 ([5, p. 44]). If f ∈ S∗ be given by (1), then |an| ≤ n (n =
2, 3, . . . ). Strict inequality holds for all n unless f is rotation of the Koebe
function k(z) = z/(1− z)2.

Lemma 4 ([23]). If f ∈ C be given by (1), then |an| ≤ n (n = 2, 3, . . . ).
Equality holds for all n when f is rotation of the Koebe function.

Lemma 5 ([10]). If f ∈ S∗ be given by (1), then for any real number µ, we
have

|a3 − µa
2
2| ≤


3− 4µ, if µ ≤ 1

2

1, if 1
2 ≤ µ ≤ 1

4µ− 3, if µ ≥ 1.

Lemma 6 ([11]). If f ∈ C be given by (1), then |a3 − a
2
2| ≤ 1. There is a

function in C such that equality holds.



Bounds on third Hankel determinant for close-to-convex functions 213

Lemma 7 ([12]). If f ∈ S∗ be given by (1), then |a2a4 − a
2
3| ≤ 1. Equality is

attended for the the Koebe function.

Lemma 8 ([1]). If f ∈ S∗ be given by (1), then |a2a3 − a4| ≤ 2. Equality is
attained by Koebe function.

2 Main results

Our first main result is contained in the following theorem:

Theorem 1 Let the function f ∈ C be given by (1), then

|a2a3 − a4| ≤ 3. (6)

Proof. Let the function f ∈ C be given by (6), then from the definition, we
have

zf ′(z) = g(z)p(z), z ∈ U, (7)

for p(z) ∈ P. The function g(z) in (7) is a starlike function and let it have
the form g(z) = z+b2z

2+b3z
3+ . . . . Substituting the valves of f(z), g(z) and

p(z) and equating the coefficients, we get

2a2 = b2 + c1 (8)

3a3 = b3 + b2c1 + c2 (9)

4a4 = b4 + b3c1 + b2c2 + c3. (10)

Now

|a2a3 − a4| =

∣∣∣∣b2 + c12

b3 + b2c1 + c2
3

−
b4 + b3c1 + b2c2 + c3

4

∣∣∣∣
=

∣∣∣∣14(b2b3 − b4) − c1
12

(b3 − 2b
2
2) −

1

12
b2b3 +

1

6
b2c

2
1

+

(
c1
6

−
b2
12

)
c2 −

c3
4

∣∣∣∣
(11)

Substituting values of c2 and c3 by Lemma 2 in (11), we get

|a2a3 − a4| =

∣∣∣∣14(b2b3 − b4) − c1
12

(b3 − 2b
2
2) −

1

12
b2b3

+
1

6
b2c

2
1 +

(
c1
6

−
b2
12

)
c21 + (4− c21)x

2

−
c31 + 2c1(4− c

2
1)x− c1(4− c

2
1)x

2 + 2(4− c21)(1− |x|2)z

16

∣∣∣∣
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=

∣∣∣∣14(b2b3 − b4) − c1
12

(b3 − 2b
2
2) −

1

12
b2b3 +

1

48
c31 −

1

24
c1(4− c

2
1)x+

1

8
b2c

2
1

−
1

24
b2(4− c

2
1)x+

1

16
c1(4− c

2
1)x

2 −
1

8
(4− c21)(1− |x|2)z

∣∣∣∣
By Lemma 1, we have |c1| ≤ 2. For convenience of notation, we take c1 = c

and we may assume without loss of generality that c ∈ [0, 2]. Applying the
triangle inequality with µ = |x| and using Lemma 3, Lemma 5 and Lemma 8,
we obtain

|a2a3 − a4| ≤
1

4
|b2b3 − b4|+

1

12
c|b3 − 2b

2
2|+

1

12
|b2||b3|+

1

48
c3 +

1

8
|b2|c

2

+
1

24
(4− c2)(c+ |b2|)µ+

c

16
(4− c2)µ2 +

1

8
(4− c2)(1− µ2)

≤ 3
2
+
5

12
c+

1

8
c2 +

1

48
c3 +

1

24
(4− c2)(c+ 2)µ

+
1

16
(4− c2)(c− 2)µ2 = F1(c, µ).

(12)

Differentiating F1(c, µ) partially with respect to c, we have

∂F1
∂c

=
5

12
+
c

4
+
c2

16
+
µ

24
(4− 3c2 − 4c) +

µ2

16
(4− 3c2 + 4c)

=
1

12
(5− µc2) +

c

12
(3− 2µ) +

c2

16
+
µ

24
(4− c2) +

µ2

16
(2− c)(3c+ 2) > 0,

for c ∈ [0, 2] and for any fixed µ with µ ∈ [0, 1]. Therefore F1(c, µ) is an in-
creasing function of c on the closed interval [0, 2], and hence F1(c, µ) attained
its maximum value at c = 2. Thus

max
0≤ c≤ 2

F1(c, µ) = F1(2, µ) = G1(µ) (say). (13)

From (12) and (13), we get G1(µ) = 3, which is independent of µ. Hence, the
sharp upper bound of the functional |a2a3 − a4| can be obtained by setting
c = 2 in (12), therefore

|a2a3 − a4| ≤ 3.

This completes the proof of Theorem 1. �

Theorem 2 Let the function f ∈ C be given by (1), then

H2(2) = |a2a4 − a
2
3| ≤

85

36
. (14)
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Proof. Let f ∈ C of the form (1), then following the proof of Theorem 1, we
get values of a2, a3 and a4 given in (8)-(10). Using these values, we have

|a2a4 − a
2
3| =

∣∣∣∣∣b2 + c12
.
b4 + b3c1 + b2c2 + c3

4
−

(
b3 + b2c1 + c2

3

)2∣∣∣∣∣
=

∣∣∣∣18b2b4 − 7

72
b2b3c1 +

1

8
b22c2 +

1

8
b2c3 +

1

8
b3c

2
1 −

7

72
b2c1c2

+
1

8
b4c1 +

1

8
c1c3 −

1

9
b23 −

1

9
b22c

2
1 −

1

9
c22 −

2

9
b3c2

∣∣∣∣
=

∣∣∣∣18(b4 − b2b3)c1 + 1

8

(
b3 −

8

9
b22

)
c21 +

1

8
(b2b4 − b

2
3)

−
2

9

(
b3 −

9

16
b22

)
c2 +

1

36
b2b3c1

+
1

8
b2c3 −

7

72
b2c1c2 +

1

8
c1c3 +

1

72
b23 −

1

9
c22

∣∣∣∣
Substituting the values of c2 and c3 from Lemma 2 in above equation, we have

|a2a4 − a
2
3| =

∣∣∣∣18(b4 − b2b3)c1 + 1

8
(b3 −

8

9
b22)c

2
1 +

1

8
(b2b4 − b

2
3)

−
1

9
(b3 −

9

16
b22)(c

2
1 + x(4− c

2
1)) +

1

36
b2b3c1 +

1

72
b23

−
7

144
b2c1(c

2
1 + x(4− c

2
1)) −

1

36
(c21 + x(4− c

2
1))

2

+
1

32
(b2 + c1)[c

3
1 + 2c1(4− c

2
1)x− c1(4− c

2
1)x

2

+2(1− |x|2)(4− c21)z]
∣∣∣

=

∣∣∣∣18(b4 − b2b3)c1 + 1

8
(b3 −

8

9
b22)c

2
1 +

1

8
(b2b4 − b

2
3)

−
1

9
(b3 −

9

16
b22)c

2
1 −

1

9
(b3 −

9

16
b22)(4− c

2
1)x+

1

36
b2b3c1

+
1

72
b23 −

5

288
b2c

3
1 +

1

288
c1
4 +

1

72
b2c1(4− c

2
1)x+

1

144
c21x(4− c

2
1)

−
1

36
x2(4− c21)

2 −
1

32
c1b2x

2(4− c21) −
1

32
c21(4− c

2
1)x

2

+
1

16
(b2 + c1)(4− c

2
1)(1− |x|2)z

∣∣∣∣
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By Lemma 1, we have |c1| ≤ 2. For convenience of notation, we take c1 = c

and we may assume without loss of generality that c ∈ [0, 2]. Applying the
triangle inequality in above equation with µ = |x| and using Lemma 3, Lemma
5, Lemma 7 and Lemma 8, we obtain

|a2a4 − a
2
3| ≤

1

8
|b4 − b2b3|c+

1

8
|b3 −

8

9
b22|c

2 +
1

8
|b2b4 − b

2
3|+

1

9
|b3

−
9

16
b22|c

2 +
1

9
|b3 −

9

16
b22|(4− c

2)µ+
1

36
|b2||b3|c+

1

72
|b3|

2

+
5

288
|b2|c

3 +
1

288
c4 +

1

72
|b2|c(4− c

2)µ+
1

144
c2(4− c2)µ

+
1

36
(4− c2)2µ2 +

1

32
|b2|c(4− c

2)µ2 +
1

32
c2µ2(4− c2)

+
1

16
(|b2|+ c)(4− c

2)(1− µ2)

≤ 1
4
c+

1

8
c2 +

1

8
+
1

9
c2 +

1

9
(4− c2)µ+

1

6
c+

1

8
+

5

144
c3

+
1

288
c4 +

1

36
c(4− c2)µ+

1

144
c2(4− c2)µ+

1

36
(4− c2)2µ2

+
1

16
c(4− c2)µ2+

1

32
c2µ2(4− c2)+

1

16
(2+ c)(4− c2)(1− µ2)

=
3

4
+
2

3
c+
1

9
c2−

1

36
c3+

1

288
c4 + µ(4− c2)

(
1

9
+
1

36
c+

1

144
c2
)

+
1

288
(c2 − 4)(4− c2)µ2 = F2(c, µ)

(15)

Differentiating F2(c, µ) in above equation with respect to µ, we get

∂F2
∂µ

=

(
1

9
+
1

36
c+

1

144
c2
)
(4− c2) +

1

144
(c2 − 4)(4− c2)µ

=

(
1

36
(4− µ) +

1

36
c+

1

144
c2 +

1

144
µc2

)
(4− c2) > 0 for 0 ≤ µ ≤ 1.

Therefore F2(c, µ) is an increasing function of µ for 0 ≤ µ ≤ 1 and for any
fixed c with c ∈ [0, 2]. Hence it attains maximum value at µ = 1. Thus

max
0≤µ≤1

F2(c, µ) = F2(c, 1) = G2(c) (say). (16)

Therefore from (15) and (16), we have

G2(c) =
1

144
(164+ 112c+ 8c2 − 8c3 − c4). (17)
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Now

G ′2(c) =
1

36
[28+ 4c− 6c2 − c3]

=
1

36
[4+ (6+ c)(4− c2)] > 0 for c ∈ [0, 2].

This shows that G2(c) is an increasing function of c, hence it will attains
maximum value at c = 2. Therefore

max
0≤c≤2

G2(c) = G2(2) =
85

36
.

Hence the upper bound on |a2a4 − a
2
3| can bee obtained by setting µ = 1 and

c = 2 in (15) or c = 2 in (17), therefore

|a2a4 − a
2
3| ≤

85

36
.

�

Theorem 3 Let the function f ∈ C be given by (1), then

|H3(1)| ≤
289

12
. (18)

Proof. Let f ∈ C of the form (1), then by definition H3(1) is given by

H3(1) =
a1 a2 a3
a2 a3 a4
a3 a4 a5

(19)

= a3(a2a4 − a
2
3) − a4(a4 − a2a3) + a5(a3 − a

2
2).

Using the triangle inequality in (19), we have

|H3(1)| = |a3||a2a4 − a
2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a

2
2|. (20)

Now applying Lemma 4, Lemma 6, Theorem 1 and Theorem 2 in (20), we
finally have the bound on H3(1) as desired. �
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Abstract. The maximum of the conditional hazard function is a param-
eter of great importance in seismicity studies, because it constitutes the
maximum risk of occurrence of an earthquake in a given interval of time.
Using the kernel nonparametric estimates of the first derivative of the
conditional hazard function, we establish uniform convergence properties
and asymptotic normality of an estimate of the maximum in the context
of independence data.

1 Introduction

The statistical analysis of functional data studies the experiments whose re-
sults are generally the curves. Under this supposition, the statistical analysis
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Key words and phrases: almost complete convergence, asymptotic normality, conditional
hazard function, functional data, nonparametric estimation
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focuses on a framework of infinite dimension for the data under study. This
field of modern statistics has received much attention in the last 20 years, and
it has been popularised in the book of Ramsay and Silverman (2005). This
type of data appears in many fields of applied statistics: environmetrics (Da-
mon and Guillas, 2002), chemometrics (Benhenni et al., 2007), meteorological
sciences (Besse et al., 2000), etc.

From a theoretical point of view, a sample of functional data can be involved
in many different statistical problems, such as: classification and principal
components analysis (PCA) (1986, 1991) or longitudinal studies, regression
and prediction (Benhenni et al., 2007; Cardo et al., 1999). The recent mono-
graph by Ferraty and Vieu (2006) summarizes many of their contributions to
the nonparametric estimation with functional data; among other properties,
consistency of the conditional density, conditional distribution and regression
estimates are established in the i.i.d. case under dependence conditions (strong
mixing). Almost complete rates of convergence are also obtained, and differ-
ent techniques are applied to several examples of functional data samples.
Related work can be seen in the paper of Masry (2005), where the asymp-
totic normality of the functional nonparametric regression estimate is proven,
considering strong mixing dependence conditions for the sample data. For au-
tomatic smoothing parameter selection in the regression setting, see Rachdi
and Vieu (2007).

Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest,
especially to inventory theorists, medical researchers, logistics planners, relia-
bility engineers and seismologists. The non-parametric estimation of the haz-
ard function has been extensively discussed in the literature. Beginning with
Watson and Leadbetter (1964), there are many papers on these topics: Ahmad
(1976), Singpurwalla and Wong (1983), etc. We can cite Quintela (2007) for a
survey.

The literature on the estimation of the hazard function is very abundant,
when observations are vectorial. Cite, for instance, Watson and Leadbetter
(1964), Roussas (1989), Lecoutre and Ould-Säıd (1993), Estvez et al. (2002)
and Quintela-del-Rio (2006) for recent references. In all these works the au-
thors consider independent observations or dependent data from time series.
The first results on the nonparametric estimation of this model, in functional
statistics were obtained by Ferraty et al. (2008). They studied the almost
complete convergence of a kernel estimator for hazard function of a real ran-
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dom variable dependent on a functional predictor. Asymptotic normality of
the latter estimator was obtained, in the case of α- mixing, by Quintela-del-
Rio (2008). We refer to Ferraty et al. (2010) and Mahhiddine et al. (2014)
for uniform almost complete convergence of the functional component of this
nonparametric model.

When hazard rate estimation is performed with multiple variables, the re-
sult is an estimate of the conditional hazard rate for the first variable, given
the levels of the remaining variables. Many references, practical examples and
simulations in the case of non-parametric estimation using local linear approx-
imations can be found in Spierdijk (2008).

Our paper presents some asymptotic properties related with the non-para-
metric estimation of the maximum of the conditional hazard function. In a
functional data setting, the conditioning variable is allowed to take its values
in some abstract semi-metric space. In this case, Ferraty et al. (2008) define
non-parametric estimators of the conditional density and the conditional dis-
tribution. They give the rates of convergence (in an almost complete sense)
to the corresponding functions, in a independence and dependence (α-mixing)
context. We extend their results by calculating the maximum of the condi-
tional hazard function of these estimates, and establishing their asymptotic
normality, considering a particular type of kernel for the functional part of
the estimates. Because the hazard function estimator is naturally constructed
using these two last estimators, the same type of properties is easily derived
for it. Our results are valid in a real (one- and multi-dimensional) context.

If X is a random variable associated to a lifetime (ie, a random variable with
values in R+, the hazard rate of X (sometimes called hazard function, failure
or survival rate) is defined at point x as the instantaneous probability that life
ends at time x. Specifically, we have:

h(x) = lim
dx→0 P (X ≤ x+ dx|X ≥ x)

dx
, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is easy
to see that the hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F(x)
, for all x such that F(x) < 1,

where F denotes the distribution function of X and S = 1 − F the survival
function of X.

In many practical situations, we may have an explanatory variable Z and
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the main issue is to estimate the conditional random rate defined as

hZ(x) = lim
dx→0 P (X ≤ x+ dx|X > x, Z)

dx
, for x > 0,

which can be written naturally as follows:

hZ(x) =
fZ(x)

SZ(x)
=

fZ(x)

1− FZ(x)
, once FZ(x) < 1. (1)

Study of functions h and hZ is of obvious interest in many fields of sci-
ence (biology, medicine, reliability , seismology, econometrics, . . . ) and many
authors are interested in construction of nonparametric estimators of h.

In this paper we propose an estimate of the maximum risk, through the
nonparametric estimation of the conditional hazard function.

The layout of the paper is as follows. Section 2 describes the non-parametric
functional setting: the structure of the functional data, the conditional density,
distribution and hazard operators, and the corresponding non-parametric ker-
nel estimators. Section 3 states the almost complete convergence1 (with rates
of convergence2) for nonparametric estimates of the derivative of the condi-
tional hazard and the maximum risk. In Section 4, we calculate the variance of
the conditional density, distribution and hazard estimates, the asymptotic nor-
mality of the three estimators considered is developed in this Section. Finally,
Section 5 includes some proofs of technical Lemmas.

2 Nonparametric estimation with dependent func-
tional data

Let {(Zi, Xi), i = 1, . . . , n} be a sample of n random pairs, each one distributed
as (Z,X), where the variable Z is of functional nature and X is scalar. For-
mally, we will consider that Z is a random variable valued in some semi-metric
functional space F , and we will denote by d(·, ·) the associated semi-metric.
The conditional cumulative distribution of X given Z is defined for any x ∈ R

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely
to some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of

convergence implies both almost sure and in probability convergence (see for instance Bosq
and Lecoutre, (1987)).

2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete
convergence un, if there exists some ε > 0 for which

∑
n P(|Tn| > εun) <∞. This is denoted

by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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and any z ∈ F by
FZ(x) = P(X ≤ x|Z = z),

while the conditional density, denoted by fZ(x) is defined as the density of
this distribution with respect to the Lebesgue measure on R. The conditional
hazard is defined as in the non-infinite case (1).

In a general functional setting, f, F and h are not standard mathematical
objects. Because they are defined on infinite dimensional spaces, the term
operators may be a more adjusted in terminology.

The functional kernel estimates

We assume the sample data (Xi, Zi)1≤i≤n is i.i.d.
Following in Ferraty et al. (2008), the conditional density operator fZ(·) is

defined by using kernel smoothing methods

f̂Z(x) =

n∑
i=1

h−1H K
(
h−1K d(z, Zi)

)
H ′
(
h−1H (x− Xi)

)
n∑
i=1

K
(
h−1K d(z, Zi)

) ,

where k and H ′ are kernel functions and hH and hK are sequences of smoothing
parameters. The conditional distribution operator FZ(·) can be estimated by

F̂Z(x) =

n∑
i=1

K
(
h−1K d(z, Zi)

)
H
(
h−1H (x− Xi)

)
n∑
i=1

K
(
h−1K d(z, Zi)

) ,

with the function H(·) defined by H(x) =
∫x
−∞H ′(t)dt. Consequently, the

conditional hazard operator is defined in a natural way by

ĥZ(x) =
f̂Z(x)

1− F̂Z(x)
.

For z ∈ F , we denote by hZ(·) the conditional hazard function of X1 given
Z1 = z. We assume that hZ(·) is unique maximum and its high risk point is
denoted by θ(z) := θ, which is defined by

hZ(θ(z)) := hZ(θ) = max
x∈S

hZ(x). (2)
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A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which
maximizes a kernel estimator ĥZ(·), that is,

ĥZ(θ̂(z)) := ĥZ(θ̂) = max
x∈S

ĥZ(x), (3)

where hZ and ĥZ are defined above.
Note that the estimate θ̂ is note necessarily unique and our results are valid

for any choice satisfying (3). We point out that we can specify our choice by
taking

θ̂(z) = inf

{
t ∈ S such that ĥZ(t) = max

x∈S
ĥZ(x)

}
.

As in any non-parametric functional data problem, the behavior of the esti-
mates is controlled by the concentration properties of the functional variable
Z.

φz(h) = P(Z ∈ B(z, h)),

where B(z, h) being the ball of center z and radius h, namely B(z, h) =
P (f ∈ F , d(z, f) < h) (for more details, see Ferraty and Vieu (2006), Chap-
ter 6 ).

In the following, z will be a fixed point in F , Nz will denote a fixed neigh-
borhood of z, S will be a fixed compact subset of R+. We will led to the
hypothesis below concerning the function of concentration φz

(H1) ∀h > 0, 0 < P (Z ∈ B(z, h)) = φz(h) and lim
h→0φz(h) = 0

Note that (H1) can be interpreted as a concentration hypothesis acting on
the distribution of the f.r.v. of Z.

Our nonparametric models will be quite general in the sense that we will
just need the following simple assumption for the marginal distribution of Z,
and let us introduce the technical hypothesis necessary for the results to be
presented. The non-parametric model is defined by assuming that

(H2)

{
∀ (x1, x2) ∈ S2, ∀ (z1, z2) ∈ N 2

z , for some b1 > 0, b2 > 0
|Fz1(x1) − F

z2(x2)| ≤ Cz(d(z1, z2)b1 + |x1 − x2|
b2),

(H3)

{
∀ (x1, x2) ∈ S2, ∀ (z1, z2) ∈ N 2

z , for some j = 0, 1, ν > 0, β > 0

|fz1 (j)(x1) − f
z2 (j)(x2)| ≤ Cz(d(z1, z2)ν + |x1 − x2|

β),

(H4) ∃γ <∞, f ′Z(x) ≤ γ, ∀(z, x) ∈ F × S,
(H5) ∃ τ > 0, FZ(x) ≤ 1− τ, ∀(z, x) ∈ F × S.
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(H6) H ′ is twice differentiable such that

(H6a) ∀ (t1, t2) ∈ R2; |H(j)(t1) −H
(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1, 2

and H(j)are bounded for j = 0, 1, 2;

(H6b)

∫
R
t2H ′2(t)dt <∞;

(H6c)

∫
R
|t|β(H ′′(t))2dt <∞.

(H7) The kernel K is positive bounded function supported on [0, 1] and it is
of class C1 on (0, 1) such that ∃C1, C2, −∞ < C1 < K

′(t) < C2 < 0 for
0 < t < 1.

(H8) There exists a function ζz0(·) such that for all t ∈ [0, 1]

lim
hK→0

φz(thK)

φz(hK)
= ζz0(t) and nhHφx(hK)→∞ as n→∞.

(H9) The bandwidth hH and hK and small ball probability φz(h) satisfying
(H9a) lim

n→∞hK = 0, lim
n→∞hH = 0;

(H9b) lim
n→∞ logn

nφx(hK)
= 0;

(H9c) lim
n→∞ logn

nh
2j+1
H φx(hK)

= 0, j = 0, 1.

Remark 1 Assumption (H1) plays an important role in our methodology. It
is known as (for small h) the ”concentration hypothesis acting on the distri-
bution of X” in infi- nite-dimensional spaces. This assumption is not at all
restrictive and overcomes the problem of the non-existence of the probability
density function. In many examples, around zero the small ball probability
φz(h) can be written approximately as the product of two independent func-
tions ψ(z) and ϕ(h) as φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This idea was adopted
by Masry (2005) who reformulated the Gasser et al. (1998) one. The increas-
ing proprety of φz(·) implies that ζzh(·) is bounded and then integrable (all the
more so ζz0(·) is integrable).

Without the differentiability of φz(·), this assumption has been used by many
authors where ψ(·) is interpreted as a probability density, while ϕ(·) may be
interpreted as a volume parameter. In the case of finite-dimensional spaces,
that is S = Rd, it can be seen that φz(h) = C(d)h

dψ(z)+ohd), where C(d) is
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the volume of the unit ball in Rd. Furthermore, in infinite dimensions, there
exist many examples fulfilling the decomposition mentioned above. We quote
the following (which can be found in Ferraty et al. (2007)):

1. φz(h) ≈ ψ(h)hγ for some γ > 0.

2. φz(h) ≈ ψ(h)hγ exp {C/hp} for some γ > 0 and p > 0.

3. φz(h) ≈ ψ(h)/| lnh|.

The function ζzh(·) which intervenes in Assumption (H9) is increasing for all
fixed h. Its pointwise limit ζz0(·) also plays a determinant role. It intervenes in
all asymptotic properties, in particular in the asymptotic variance term. With
simple algebra, it is possible to specify this function (with ζ0(u) := ζz0(u) in
the above examples by:

1. ζ0(u) = u
γ,

2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,

3. ζ0(u) = 1]0,1](u).

Remark 2 Assumptions (H2) and (H3) are the only conditions involving the
conditional probability and the conditional probability density of Z given X. It
means that F(·|·) and f(·|·) and its derivatives satisfy the Hölder condition with
respect to each variable. Therefore, the concentration condition (H1) plays an
important role. Here we point out that our assumptions are very usual in the
estimation problem for functional regressors (see, e.g., Ferraty et al. (2008)).

Remark 3 Assumptions (H6), (H7) and (H9) are classical in functional es-
timation for finite or infinite dimension spaces.

3 Nonparametric estimate of the maximum of the
conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hZ

on S. We will suppose that hZ is sufficiently smooth (at least of class C2) and
verifies that h ′Z(θ) = 0 and h

′′ Z(θ) < 0.
Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and

that θ satisfies the uniqueness condition, that is; for any ε > 0 and µ(z), there
exists ξ > 0 such that |θ(z)−µ(z)| ≥ ε implies that |hZ(θ(z))−hZ(µ(z))| ≥ ξ.
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We can write an estimator of the first derivative of the hazard function
through the first derivative of the estimator. Our maximum estimate is defined
by assuming that there is some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative
of the function hZ on the basis of these ideas. To estimate the conditional
distribution function and the conditional density function in the presence of
functional conditional random variable Z.

The kernel estimator of the derivative of the function conditional random
functional hZ can therefore be constructed as follows:

ĥ ′
Z
(x) =

f̂ ′
Z
(x)

1− F̂Z(x)
+ (ĥZ(x))2, (4)

the estimator of the derivative of the conditional density is given in the fol-
lowing formula:

f̂ ′
Z
(x) =

n∑
i=1

h−2H K(h
−1
K d(Z,Zi))H

′′(h−1H (x− Xi))

n∑
i=1

K(h−1K d(Z,Zi))

. (5)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′,
hH and hK are little restrictive. Indeed, on one hand, they are not specific to
the problem estimate of hZ (but inherent problems of FZ, fZ and f ′Z estima-
tion), and secondly they consist with the assumptions usually made under
functional variables.

We state the almost complete convergence (withe rates of convergence) of
the maximum estimate by the following results:

Theorem 1 Under assumption (H1)-(H7) we have

θ̂− θ→ 0 a.co. (6)

Remark 4 The hypothesis of uniqueness is only established for the sake of
clarity. Following our proofs, if several local estimated maxima exist, the asymp-
totic results remain valid for each of them.

Proof. Because h ′Z(·) is continuous, we have, for all ε > 0. ∃ η(ε) > 0 such
that

|x− θ| > ε⇒ |h ′Z(x) − h ′Z(θ)| > η(ε).



Nonparametric estimation of conditional risk 229

Therefore,

P{|θ̂− θ| ≥ ε} ≤ P{|h ′Z(θ̂) − h ′Z(θ)| ≥ η(ε)}.

We also have

|h ′Z(θ̂)−h ′Z(θ)| ≤ |h ′Z(θ̂)− ĥ ′Z(θ̂)|+ |ĥ ′Z(θ̂)−h ′Z(θ)| ≤ sup
x∈S

|ĥ ′Z(x)−h ′Z(x)|,

(7)
because ĥ ′Z(θ̂) = h ′Z(θ) = 0.

Then, uniform convergence of h ′Z will imply the uniform convergence of θ̂.
That is why, we have the following lemma.

Lemma 1 Under assumptions of Theorem 1, we have

sup
x∈S

|ĥ ′Z(x) − h ′Z(x)|→ 0 a.co. (8)

�

The proof of this lemma will be given in Appendix.

Theorem 2 Under assumption (H1)-(H7) and (H9a) and (H9c), we have

sup
x∈S

|θ̂− θ| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
. (9)

Proof. By using Taylor expansion of the function h ′Z at the point θ̂, we obtain

h ′Z(θ̂) = h ′Z(θ) + (θ̂− θ)h ′′Z(θ∗n), (10)

with θ∗ a point between θ and θ̂. Now, because h ′Z(θ) = ĥ ′Z(θ̂)

|θ̂− θ| ≤ 1

h ′′Z(θ∗n)
sup
x∈S

|ĥ ′Z(x) − h ′Z(x)|. (11)

The proof of Theorem will be completed showing the following lemma.

Lemma 2 Under the assumptions of Theorem 2, we have

sup
x∈S

|ĥ ′Z(x) − h ′Z(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
. (12)

The proof of lemma will be given in the Appendix.
�
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4 Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to
add the following assumptions:

(H6d)

∫
R
(H ′′(t))2dt <∞,

(H10) 0 = ĥ ′
Z
(θ̂) < |ĥ ′

Z
(x)|), ∀x ∈ S, x 6= θ̂

The following result gives the asymptotic normality of the maximum of the
conditional hazard function. Let

A =
{
(z, x) : (z, x) ∈ S × R, ax2FZ(x)

(
1− FZ(x)

)
6= 0
}
.

Theorem 3 Under conditions (H1)-(H10) we have (θ ∈ S/fZ(θ), 1−FZ(θ) >
0) (

nh3Hφz(hK)
)1/2 (

ĥ
′Z(θ) − h

′Z(θ)
)
D→N(0, σ2h ′(θ)

)
where →D denotes the convergence in distribution,

axl = K
l(1) −

∫ 1
0

(
Kl(u)

) ′
ζx0(u)du for l = 1, 2

and

σ2h ′(θ) =
ax2h

Z(θ)(
ax1
)2

(1− FZ(θ))

∫
(H ′′(t))2dt.

Proof. Using again (17), and the fact that(
1− FZ(x)

)
(1− F̂Z(x)) (1− FZ(x))

−→ 1

1− FZ(x)
;

and
f̂ ′Z(x)(

1− F̂Z(x)
)
(1− FZ(x))

−→ f ′Z(x)

(1− FZ(x))
2
.

The asymptotic normality of
(
nh3Hφz(hK)

)1/2 (
ĥ ′
Z
(θ) − h ′Z(θ)

)
can be de-

duced from both following lemmas,
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Lemma 3 Under Assumptions (H1)-(H2) and (H6)-(H8), we have

(nφz(hK))
1/2
(
F̂Z(x) − FZ(x)

)
D→N(0, σ2FZ(x)) , (13)

where

σ2FZ(x) =
ax2F

Z(x)
(
1− FZ(x)

)(
ax1
)2 .

Lemma 4 Under Assumptions (H1)-(H3) and (H5)-(H9), we have

(nhHφz(hK))
1/2
(
ĥZ(x) − hZ(x)

)
D→N(0, σ2hZ(x)) , (14)

where

σ2hZ(x) =
ax2h

Z(x)(
ax1
)2

(1− FZ(x))

∫
R
(H ′(t))2dt.

Lemma 5 Under Assumptions of Theorem 3, we have(
nh3Hφz(hK)

)1/2 (
f̂ ′
Z
(x) − f ′Z(x)

)
D→N(0, σ2f ′Z(x)) ; (15)

where

σ2f ′Z(x) =
ax2f

Z(x)(
ax1
)2 ∫

R
(H ′′(t))2dt.

Lemma 6 Under the hypotheses of Theorem 3, we have

Var
[
f̂ ′
Z

N(x)
]
=

σ2
f ′Z(x)

nh3Hφz(hK)
+ o

(
1

nh3Hφz(hK)

)
,

Var
[
F̂ZN(x)

]
= o

(
1

nhHφz(hK)

)
;

and

Var
[
F̂ZD

]
= o

(
1

nhHφz(hK)

)
.

Lemma 7 Under the hypotheses of Theorem 3, we have

Cov(f̂ ′
Z

N(x), F̂
Z
D) = o

(
1

nh3Hφz(hK)

)
,
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Cov(f̂ ′
Z

N(x), F̂
Z
N(x)) = o

(
1

nh3Hφz(hK)

)
and

Cov(F̂ZD, F̂
Z
N(x)) = o

(
1

nhHφz(hK)

)
.

Remark 5
It is clear that, the results of lemmas, Lemma 6 and Lemma 7 allows to

write

Var
[
F̂ZD − F̂ZN(x)

]
= o

(
1

nhHφz(hK)

)
The proofs of lemmas, Lemma 3 can be seen in Belkhir et al. (2015), Lemma

2-4 and Lemma 3-4 see Rabhi et al. (2015).
�

Finally, by this last result and (10), the following theorem follows:

Theorem 4 Under conditions (H1)-(H10), we have (θ ∈ S/fZ(θ), 1−FZ(θ) >
0) (

nh3Hφz(hK)
)1/2 (

θ̂− θ
)
D→N(0, σ2h ′(θ)

(h ′′Z(θ))2

)
;

with σ2h ′(θ) = hZ(θ)
(
1− FZ(θ)

) ∫
(H ′′(t))2dt.

5 Proofs of technical lemmas

Proof. [Proof of Lemma 1 and Lemma 2] Let

ĥ ′Z(x) =
f̂ ′Z(x)

1− F̂Z(x)
+ (ĥZ(x))2, (16)

with

ĥ ′Z(x) − h ′Z(x) =

{(
ĥZ(x)

)2
−
(
hZ(x)

)2}
︸ ︷︷ ︸

Γ1

+

{
f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)

}
︸ ︷︷ ︸

Γ2

; (17)

for the first term of (17) we can write∣∣∣ (ĥZ(x))2 − (hZ(x))2 ∣∣∣ ≤ ∣∣∣ĥZ(x) − hZ(x)∣∣∣.∣∣∣ĥZ(x) + hZ(x)∣∣∣, (18)
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because the estimator ĥZ(·) converge a.co. to hZ(·) we have

sup
x∈S

∣∣∣ (ĥZ(x))2 − (hZ(x))2 ∣∣∣ ≤ 2∣∣∣hZ(θ)∣∣∣ sup
x∈S

∣∣∣ĥZ(x) − hZ(x)∣∣∣; (19)

for the second term of (17) we have

f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)
=

1

(1− F̂Z(x))(1− FZ(x))

{
f̂ ′Z(x) − f ′Z(x)

}
+

1

(1− F̂Z(x))(1− FZ(x))

{
f ′Z(x)

(
F̂Z(x) − FZ(x)

)}
+

1

(1− F̂Z(x))(1− FZ(x))

{
FZ(x)

(
f̂ ′Z(x) − f ′Z(x)

)}
.

Valid for all x ∈ S. Which for a constant C <∞, this leads

sup
x∈S

∣∣∣ f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)

∣∣∣ ≤

C

{
sup
x∈S

∣∣∣f̂ ′Z(x) − f ′Z(x)∣∣∣+ sup
x∈S

∣∣∣F̂Z(x) − FZ(x)∣∣∣}
inf
x∈S

∣∣∣1− F̂Z(x)∣∣∣ . (20)

Therefore, the conclusion of the lemma follows from the following results:

sup
x∈S

|F̂Z(x) − FZ(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nφz(hK)

)
, (21)

sup
x∈S

|f̂ ′Z(x) − f ′Z(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
, (22)

sup
x∈S

|ĥZ(x) − hZ(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nhHφz(hK)

)
, (23)

∃ δ > 0 such that
∞∑
1

P
{

inf
y∈S

|1− F̂Z(x)| < δ

}
<∞. (24)

The proofs of (21) and (22) appear in Ferraty et al. (2006), and (23) is
proven in Ferraty et al. (2008).
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• Concerning (24) by equation (21), we have the almost complete conver-
gence of F̂Z(x) to FZ(x). Moreover,

∀ε > 0
∞∑
n=1

P
{
|F̂Z(x) − FZ(x)| > ε

}
<∞.

On the other hand, by hypothesis we have FZ < 1, i.e.

1− F̂Z ≥ FZ − F̂Z,

thus,

inf
y∈S

|1−F̂Z(x)| ≤ (1−sup
x∈S

FZ(x))/2⇒ sup
x∈S

|F̂Z(x)−FZ(x)| ≥ (1−sup
x∈S

FZ(x))/2.

In terms of probability is obtained

P
{

inf
x∈S

|1− F̂Z(x)| < (1− sup
x∈S

FZ(x))/2

}
≤ P
{

sup
x∈S

|F̂Z(x) − FZ(x)| ≥ (1− sup
x∈S

FZ(x))/2

}
<∞.

Finally, it suffices to take δ = (1 − sup
x∈S

FZ(x))/2 and apply the results

(21) to finish the proof of this Lemma.

�

Proof. [Proof of Lemma 4] We can write for all x ∈ S

ĥZ(x) − hZ(x) =
f̂Z(x)

1− F̂Z(x)
−

fZ(x)

1− FZ(x)

=
1

D̂Z(x)

{(
f̂Z(x) − fZ(x)

)
+ fZ(x)

(
F̂Z(x) − FZ(x)

)
− FZ(x)

(
f̂Z(x) − fZ(x)

)}
,

=
1

D̂Z(x)

{(
1− FZ(x)

)(
f̂Z(x) − fZ(x)

)
− fZ(x)

(
F̂Z(x) − FZ(x)

)}
;

(25)

with D̂Z(x) =
(
1− FZ(x)

) (
1− F̂Z(x)

)
.
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As a direct consequence of the Lemma 3, the result (26) (see Belkhir et al.
(2015)) and the expression (25), permit us to obtain the asymptotic normality
for the conditional hazard estimator.

(nhHφz(hK))
1/2
(
f̂Z(x) − fZ(x)

)
D→N(0, σ2fZ(x)) ; (26)

where

σ2fZ(x) =
ax2f

Z(x)(
ax1
)2 ∫

R
(H ′(t))2dt.

�

Proof. [Proof of Lemma 5] For i = 1, . . . , n, we consider the quantities Ki =

K
(
h−1K d(z, Zi)

)
, H ′′i (x) = H

′′ (h−1H (x− Xi)
)

and let f̂ ′
Z

N(x) (resp. F̂ZD) be defined
as

f̂ ′
Z

N(x) =
h−2H
nEK1

n∑
i=1

KiH
′′
i (x) (resp. F̂ZD =

1

nEK1

n∑
i=1

Ki).

This proof is based on the following decomposition

f̂ ′
Z
(x) − f ′Z(x) =

1

F̂ZD

{(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)
−
(
f ′Z(x) − Ef̂ ′

Z

N(x)
)}

+
f ′Z(x)

F̂ZD

{
EF̂ZD − F̂ZD

}
,

(27)

and on the following intermediate results.√
nh3Hφz(hK)

(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)
D→N(0, σ2f ′Z(x)) ; (28)

where σ2
f ′Z

(x) is defined as in Lemma 5.

lim
n→∞

√
nh3Hφz(hK)

(
Ef̂ ′

Z

N(x) − f
′Z(x)

)
= 0. (29)

√
nh3Hφz(hK)

(
F̂ZD(x) − 1

)
P→ 0, as n→∞. (30)
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• Concerning (28). By the definition of f̂ ′
Z

N(x), it follows that

Ωn =
√
nh3Hφz(hK)

(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)

=

n∑
i=1

√
φz(hK)√
nhHEK1

(
KiH

′′
i − EKiH ′′i

)
=

n∑
i=1

∆i,

which leads

Var(Ωn) = nh
3
Hφz(hK)Var

(
f̂ ′
Z

N(x) − E
[
f̂ ′
Z

N(x)
])
. (31)

Now, we need to evaluate the variance of f̂ ′
Z

N(x). For this we have for all
1 ≤ i ≤ n, ∆i(z, x) = Ki(z)H

′′
i (x), so we have

Var(f̂ ′
Z

N(x)) =
1(

nh2HE[K1(z)]
)2 n∑

i=1

n∑
j=1

Cov (∆i(z, x), ∆j(z, x))

=
1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x)) .

Therefore

Var (∆1(z, x)) ≤ E
(
H ′′21 (x)K21(z)

)
≤ E

(
K21(z)E

[
H ′′21 (x)|Z1

])
.

Now, by a change of variable in the following integral and by applying
(H4) and (H7), one gets

E
(
H ′′21 (y)|Z1

)
=

∫
R
H ′′2

(
d(x− u)

hH

)
fZ(u)du

≤ hH
∫
R
H ′′2(t)

(
fZ(x− hHt, z) − f

Z(x)
)
dt

+ hHf
Z(x)

∫
R
H ′′2(t)dt

≤ h1+b2H

∫
R
|t|b2H ′′2(t)dt+ hHf

Z(x)

∫
R
H ′′2(t)dt

= hH

(
o(1) + fZ(x)

∫
R
H ′′2(t)dt

)
.

(32)
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By means of (32) and the fact that, as n→∞, E
(
K21(z)

)
−→ ax2φz(hK),

one gets

Var (∆1(z, x)) = a
x
2φz(hK)hH

(
o(1) + fZ(x)

∫
R
H ′′2(t)dt

)
.

So, using (H8), we get

1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x))
=

ax2φz(hK)

n
(
ax1h

2
Hφz(hK)

)2hH(o(1) + fZ(x) ∫
R
H ′′2(t)dt

)
= o

(
1

nh3Hφz(hK)

)
+

ax2f
Z(x)

(ax1)
2nh3Hφz(hK)

∫
R
H ′′2(t)dt.

Thus as n→∞ we obtain

1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x)) −→ ax2f
Z(x)

(ax1)
2nh3Hφz(hK)

∫
R
H ′′2(t)dt. (33)

Indeed

n∑
i=1

E∆2i =
φz(hK)

hHE2K1
EK21(H ′′1 )2 −

φz(hK)

hHE2K1
(
EK1H ′′1

)2
= Π1n − Π2n. (34)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φz(hK)

E2K1
E
{
K21

∫
H ′′2(t)

(
f ′Z(x− thH) − f

′Z(x) + f ′Z(x)
)
dt

}
.

Meanwhile, by (H1), (H3), (H7) and (H8), it follows that:

φz(hK)EK21
E2K1

−→
n→∞ ax2

(ax1)
2
,

which leads

Π1n −→
n→∞ ax2f

Z(x)

(ax1)
2

∫
(H ′′(t))2dt, (35)



238 A. Rabhi, L. Keddani, Y. Hammou

Regarding Π2n, by (H1), (H3) and (H6), we obtain

Π2n −→
n→∞ 0. (36)

This result, combined with (34) and (35), allows us to get

lim
n→∞

n∑
i=1

E∆2i = σ2f ′Z(x) (37)

Therefore, combining (33) and (36)-(37), (28) is valid.

• Concerning (29).

The proof is completed along the same steps as that of Π1n. We omit it
here.

• Concerning (30). The idea is similar to that given by Belkhir et al. (2015).

By definition of F̂ZD(x), we have√
nh3Hφz(hK)(F̂

Z
D(x) − 1) = Ωn − EΩn,

whereΩn =

√
nh3Hφz(hK)

∑n
i=1 Ki

nEK1
. In order to prove (30), similar to Belkhir

et al. (2015), we only need to proov Var Ωn → 0, as n → ∞. In fact,
since

Var Ωn =
nh3Hφz(hK)

nE2K1
(nVarK1)

≤
nh3Hφz(hK)

E2K1
EK21

= Ψ1,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3Hφz(hK)→ 0, as n→∞.
It is clear that, the results of (21), (22), (24) and Lemma 6 permits us

E
(
F̂ZD − F̂ZN(x) − 1+ F

Z(x)
)
−→ 0,

and
Var

(
F̂ZD − F̂ZN(x) − 1+ F

Z(x)
)
−→ 0;
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then
F̂xD − F̂ZN(x) − 1+ F

Z(x)
P−→ 0.

Moreover, the asymptotic variance of F̂ZD − F̂ZN(x) given in Remark 5
allows to obtain

nhHφz(hK)

σ2
FZ
(x)

Var
(
F̂ZD − F̂ZN(x) − 1+ E

(
F̂ZN(x)

))
−→ 0.

By combining result with the fact that

E
(
F̂ZD − F̂ZN(x) − 1+ E

(
F̂ZN(x)

))
= 0,

we obtain the claimed result.

Therefore, the proof of this result is completed.

Therefore, the proof of this Lemma is completed.
�
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Abstract. In this paper the notion of µνg-closed sets and certain char-
acterizations of such sets have been given. As an application of µνg-
closed sets, the notion of (µ, ν)-regular spaces and (µ, ν)-normal spaces
have been introduced and some characterizations of such spaces are also
given.

1 Introduction

For the last one decade or so, a new area of study has emerged and has been
rapidly growing. The area is concerned with the investigations of generalized
topological spaces and several classes of generalized types of open sets. Re-
cently, a significant contribution to the theory of generalized open sets, was
extended by A. Császár [1, 2, 3]. It is observed that a large number of papers
are devoted to the study of generalized open sets, containing the class of open
sets and possessing properties more or less similar to those of open sets.

We recall some notions defined in [2]. Let X be a non-empty set and expX
denote the power set of X. We call a class µ j expX a generalized topology
[2], (briefly, GT) if ∅ ∈ µ and union of elements of µ belong to µ. A set X
with a GT µ on it is called a generalized topological space (briefly, GTS) and
is denoted by (X, µ). For a GTS (X, µ), the elements of µ are called µ-open
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sets and the complements of µ-open sets are called µ-closed sets. For A j X,
we denote by cµ(A) the intersection of all µ-closed sets containing A, i.e., the
smallest µ-closed set containing A; and by iµ(A) the union of all µ-open sets
contained in A, i.e., the largest µ-open set contained in A (see [2, 3]).

It is easy to observe that iµ and cµ are idempotent and monotonic, where the
operator γ : expX→ expX is said to be idempotent if A j X implies γ(γ(A))
= γ(A) and monotonic if A j B j X implies γ(A) j γ(B). It is known from
[3, 1] that if µ is a GT on X, x ∈ X and A j X, then x ∈ cµ(A) iff x ∈M ∈ µ⇒ M ∩ A 6= ∅. It is also well known from [3, 1] that x ∈ iµ(A) if and only if
there exists U ∈ µ with x ∈ U such that x ∈ U j A and cµ(X \A) = X \ iµ(A)
and iµ(X \A) = X \ cµ(A).

2 µνg-closed sets and µνg-open sets

Definition 1 Let µ and ν be two GT’s on a set X. Then A j X is called
µνg-closed [4] if cν(A) j U whenever A j U and U ∈ µ. The complement of
a µνg-closed set is called a µνg-open set.

Proposition 1 Let µ and ν be two GT’s on a set X. Then for A,B j X the
following holds:

(i) If A is ν-closed then A is µνg-closed.

(ii) If A is µνg-closed and µ-open then A is ν-closed.

(iii) If A is µνg-closed and A j B j cν(A), then B is µνg-closed.

Proof. (i) Let A be a ν-closed subset of X and A j U ∈ µ. Then cν(A) =
A j U and thus A is µνg-closed.

(ii) Let A be a µνg-closed, µ-open subset of X. Then cν(A) j A and hence
A is ν-closed.

(iii) Let B j U where U is a µ-open set. Then A j U and hence by µνg-
closedness of A, cν(A) j U. Now cν(A) j cν(B) j cν(cν(A)) = cν(A). Hence
cν(A) = cν(B). Therefore cν(B) j U and hence B is µνg-closed. �

Theorem 1 Let µ and ν be two GT’s on X. Then A j X is µνg-closed if and
only if cν(A) ∩ F = ∅ whenever A ∩ F = ∅ and F is µ-closed.

Proof. Let A be a µνg-closed subset of X and F be µ-closed with A ∩ F = ∅.
Then A j X \ F where X \ F is µ-open. Thus cν(A) j X \ F. Therefore we have
cν(A) ∩ F = ∅.
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Conversely, let A j U and U be µ-open. Then A∩ (X \U) = ∅ where X \U

is µ-closed. Thus by hypothesis, cν(A) ∩ (X \ U) = ∅ and hence cν(A) j U
showing A to be µνg-closed. �

Definition 2 [5] Let (X, µ) be a GTS and A j X. Then the subset
∧
µ(A) is

defined by

∧
µ(A) =

{ ⋂
{G : A j G,G ∈ µ}, if there exists G ∈ µ such that A j G;

X, otherwise.

Theorem 2 Let µ and ν be two GT’s on X. Then A(j X) is µνg-closed if
and only if cν(A) j

∧
µ(A).

Proof. Suppose that A is µνg-closed. Let x 6∈
∧
µ(A). Then there exists a

µ-open set G with x 6∈ G and A j G. Then x 6∈ cν(A) (as A is µνg-closed).
Thus cν(A) j

∧
µ(A).

Conversely, suppose that cν(A) j
∧
µ(A). Let A j U where U is µ-open.

Then cν(A) j
∧
µ(A) j

∧
µ(U) = U. Thus A is µνg-closed. �

Theorem 3 Let µ and ν be two GT’s on X. Then A(j X) is called µνg-closed
if and only if cµ({x}) ∩A 6= ∅ for each x ∈ cν(A).

Proof. Suppose that A is µνg-closed and cµ({x})∩A = ∅ for some x ∈ cν(A).
Then A j X \ cµ({x}) where X \ cµ({x}) is µ-open. Thus cν(A) j X \ cµ({x}) j
X \ {x}. This contradicts the fact that x ∈ cν(A).

Conversely, suppose that A be not µνg-closed. Then cν(A)\U 6= ∅ for some
µ-open set U with A j U. Let x ∈ cν(A) \ U. Then x ∈ cν(A) and x 6∈ U.
Then cµ({x}) ∩ U = ∅ and hence cµ({x}) ∩ A j cµ({x}) ∩ U = ∅. This shows
that cµ({x}) ∩A = ∅ for some x ∈ cν(A). �

Theorem 4 Let µ and ν be two GT’s on X. Then a subset A(j X) is µνg-
open if and only if F j iν(A) whenever F j A and F is µ-closed.

Proof. Suppose that A is µνg-open. Let F j A and F be µ-closed. Then
X \A j X \ F ∈ µ and X \A is µνg-closed. Thus X \ iν(A) = cν(X \A) j X \ F

and hence F j iν(A).
Conversely, let X \ A j U where U is µ-open. Then X \ U j A and X \ U

is µ-closed. Thus by the hypothesis, X \ U j iν(A) and thus cν(X \ A) =
X \ iν(A) j U. Hence A is µνg-open. �
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Definition 3 Let µ and ν be two GT’s on X. Then µ and ν is said to have
the property (∗) if A ∈ µ, B ∈ ν implies that A ∪ B ∈ µ.

Theorem 5 Let µ and ν be two GT’s on X satisfying the property (∗). Then
the following are equivalent:

(1) A is µνg-closed.

(2) cν(A) \A does not contain any non-empty µ-closed set.

(3) cν(A) \A is µνg-open.

Proof. (1) ⇒ (2): Suppose that A is a µνg-closed set. Let F j cν(A) \A and
F be µ-closed. Then A j X \ F where X \ F is µ-open and hence, cν(A) j X \ F.
Therefore, we have F j X \ cν(A) and hence, F j cν(A) ∩ (X \ cν(A)) = ∅.
Thus F = ∅.

(2) ⇒ (3): Let us assume that F j cν(A) \A and F be µ-closed. By (2), we
have F = ∅ and F j iν [cν(A)\A]. Hence by Theorem 4, cν(A)\A is µνg-open.

(3)⇒ (1): Suppose thatA j U andU is µ-open. Then, cν(A)\U j cν(A)\A.
By (3), cν(A)\A is µνg-open. Since µ and ν have the property (∗), cν(A)\U
is µ-closed (as cν(A) is ν-closed and X\U is µ-closed). By Theorem 4, we have
cν(A) \U j iν(cν(A) \A) = ∅. [In fact if iν(cν(A) \A) 6= ∅, then there exists
some x ∈ iν(cν(A)\A). Then, there exists G ∈ ν such that x ∈ G j cν(A)\A.
Since G j X \ A, we have G ∩ A = ∅ and G ∈ ν. Thus G ∩ cν(A) = ∅ and
G j X \ cν(A). Therefore, we obtain G j cν(A)∩ (X \ cν(A)) = ∅.] Therefore,
we have cν(A) j U and hence A is µνg-closed. �

Theorem 6 Let µ and ν be two GT’s on X satisfying the property (∗). A
subset A of X is µνg-open if and only if G = X whenever G is µ-open and
iν(A) ∪ (X \A) j G.

Proof. Let A be a µνg-open set and G be µ-open with iν(A) ∪ (X \A) j G.
Then X \ G j cν(X \ A) \ (X \ A). Since X \ A is µνg-closed and X \ G is
µ-closed, by Theorem 5, X \G = ∅ and hence G = X.

Conversely let us assume that F j A and F be µ-closed. Since µ and ν have
the property (∗), we have iν(A)∪(X\A) j iν(A)∪(X\F) and iν(A)∪(X\F) is
µ-open. Thus by the hypothesis, X = iν(A)∪(X\F). Hence, F = F∩(iν(A)∪(X\
F)) = F∩ iν(A) j iν(A). Thus from Theorem 4 it follows that A is µνg-open.
�

Theorem 7 Let µ and ν be two GT’s on X. For any x ∈ X, {x} is µ-closed or
µνg-open.
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Proof. Suppose that {x} is not µ-closed. Then X\{x} is not µ-open. Then either
there does not exist any µ-open set containing X \ {x} or the only µ-open set
containing X \ {x} is X itself. Therefore, cν(X \ {x}) j X and hence, X \ {x} is
µνg-closed. Thus {x} is µνg-open. �

3 (µ, ν)-regular space and (µ, ν)-normal space

Definition 4 Let µ and ν be two GT’s on X. Then (X, µ, ν) is said to be
(µ, ν)-regular if for each µ-closed set F of X not containing x, there exist dis-
joint ν-open sets U and V such that x ∈ U and F j V.

Theorem 8 Let µ and ν be two GT’s on X. Then the followings are equiva-
lent:

(i) X is (µ, ν)-regular.

(ii) For each x ∈ X and each U ∈ µ containing x there exists V ∈ ν containing
x such that x ∈ V j cν(V) j U.

(iii) For each µ-closed set F of X, ∩{cν(V) : F j V ∈ ν} = F.
(iv) For each subset A of X and each U ∈ µ with A ∩ U 6= ∅, there exists a

V ∈ ν such that A ∩ V 6= ∅ and cν(V) j U.

(v) For each non-empty subset A of X and each µ-closed subset F of X with
A ∩ F = ∅, there exist V,W ∈ ν such that A ∩ V 6= ∅, F j W and
W ∩ V = ∅.

(vi) For each µ-closed set F with x 6∈ F there exists U ∈ µ and a µνg-open set
V such that x ∈ U, F j V and U ∩ V = ∅.

(vii) For each A j X and each µ-closed set F with A∩F = ∅ there exists U ∈ µ
and a µνg-open set V such that A ∩U 6= ∅, F j V and U ∩ V = ∅.

(viii) For each µ-closed set F of X, F = ∩{cν(V) : F j V,V is µνg-open}.

Proof. (i) ⇒ (ii): Let U be a µ-open set containing x. Then x 6∈ X \U, where
X \ U is µ-closed. Then by (i) there exist G,V ∈ ν such that X \ U j G and
x ∈ V and G ∩ V = ∅. Thus V j X \G and so x ∈ V j cν(V) j X \G j U.

(ii)⇒ (iii): Let X\F ∈ µ be such that x 6∈ F. Then by (ii) there exists U ∈ ν
containing x such that x ∈ U j cν(U) j X \ F. So, F j X \ cν(U) = V (say)∈ ν
and U ∩ V = ∅. Thus x 6∈ cν(V). Thus F ⊇ ∩{cν(V) : F j V ∈ ν}.

(iii) ⇒ (iv): Let U ∈ µ with x ∈ U ∩ A. Then x 6∈ X \ U and hence by (iii)
there exists a ν-open set W such that X \ U j W and x 6∈ cν(W). We put
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V = X \ cν(W), which is a ν-open set containing x and hence A ∩ V 6= ∅ (as
x ∈ A ∩ V). Now V j X \W and so cν(V) j X \W j U.

(iv) ⇒ (v): Let F be a µ-closed set as in the hypothesis of (v). Then X \ F is
a µ-open set and (X\F)∩A 6= ∅. Then there exists V ∈ ν such that A∩V 6= ∅
and cν(V) j X \ F. If we put W = X \ cν(V), then F jW and W ∩ V = ∅.

(v) ⇒ (i): Let F be a µ-closed set not containing x. Then by (v), there exist
W,V ∈ ν such that F jW and x ∈ V and W ∩ V = ∅.

(i) ⇒ (vi): Obvious as every ν-open set is µνg-open (by Proposition 1).
(vi) ⇒ (vii): Let F be a µ-closed set such that A ∩ F = ∅ for any subset

A of X. Thus for a ∈ A, a 6∈ F and hence by (vi), there exists U ∈ µ and a
µνg-open set V such that a ∈ U, F j V and U ∩ V = ∅ and A ∩U 6= ∅.

(vii) ⇒ (i): Let x 6∈ F, where F be µ-closed. Since {x}∩ F = ∅, by (vii) there
exist U ∈ µ and a µνg-open set W such that x ∈ U, F jW and U ∩W = ∅.
Now put V = iν(W). Then F j V (by Theorem 4) and U ∩ V = ∅.

(iii) ⇒ (viii): We have F j ∩{cν(V) : F j V and V is µνg-open} j ∩{cν(V) :
F j V and V is ν-open} = F.

(viii) ⇒ (i): Let F be a µ-closed set in X not containing x. Then by (viii)
there exists a µνg-open set W such that F j W and x ∈ X \ cν(W). Since F
is µ-closed and W is µνg-open, F j iν(W) (by Theorem 4). Take V = iν(W).
Then F j V, x ∈ X \ cν(V) = U (say) (as (X \ F) ∩ V = ∅) and U ∩ V = ∅. �

Definition 5 Let µ and ν be two GT’s on a set X. Then (X, µ, ν) is said to
be (µ, ν)-normal if for disjoint µ-closed sets F

1
and F

2
, there exist U

1
, U

2
∈ ν

such that F
1
j U

1
, F
2
j U

2
with U

1
∩U

2
= ∅.

Theorem 9 Let µ and ν be two GT’s on X. Then the following properties are
equivalent:

(i) (X, µ, ν) is (µ, ν)-normal;

(ii) for any two disjoint µ -closed sets F1, F2, there exist µνg-open sets V
1
, V

2

such that F
1
j V

1
, F

2
j V

2
and V

1
∩ V

2
= ∅;

(iii) for any µ-closed set F and any µ-open set U containing F, there exists a
µνg-open set V such that F j V j cν(V) j U;

(iv) for any µ-closed set F and any µ-open set U containing F, there exists a
ν-open set G such that F j G j cν(G) j U;

(v) for any disjoint µ-closed sets F
1
, F
2
, there exists a µνg-open set V such

that F
1
j V and cν(V) ∩ F2 = ∅;

(vi) for any disjoint µ-closed sets F
1
, F
2
, there exists a ν-open set G such that

F
1
j G and cν(G) ∩ F2 = ∅.
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Proof. (i)⇒ (ii): Follows from (i) as, every ν-open set is µνg-open.
(ii) ⇒ (iii): Let F be a µ-closed set and U be any µ-open set containing F.

Then F and X \ U are disjoint µ-closed sets and by (ii) there exist µνg-open
sets V

1
, V

2
such that F j V

1
, X \ U j V

2
with V

1
∩ V

2
= ∅. Since V

2
is µνg-

open, by Theorem 4, X \U j iν(V2). Hence, cν(V1) ∩ iν(V2) = ∅. Therefore,
we obtain F j V

1
j cν(V1) j X \ iν(V2) j U. Put V = V

1
, then we obtain

F j V j cν(V) j U.
(iii) ⇒ (iv): Let F be a µ -closed set and U be any µ-open set containing F.

Then by (iii) there exists a µνg-open set V such that F j V j cν(V) j U. By
Theorem 4, F j iν(V). Put G = iν(V). Then G is a ν-open set. Furthermore,
we obtain F j G j cν(G) j cν(V) j U.

(iv) ⇒ (v): Let F
1
, F
2

be any two disjoint µ-closed sets. Since X \ F
2

is
a µ-open set containing F

1
, by (iv) there exists a ν-open set V such that

F
1
j V j cν(V) j X \ F

2
. By Proposition 1, V is µνg-open. Furthermore, we

have F
1
j V and cν(V) ∩ F2 = ∅.

(v)⇒ (vi): Let F
1
, F
2

be any disjoint µ-closed sets. Then there exists a µνg-
open set V such that F

1
j V and cν(V) ∩ F2 = ∅. By Theorem 4, F

1
j iν(V).

Set G = iν(V). Then G ∈ ν, F
1
j G and cν(G) ∩ F2 = ∅.

(vi) ⇒ (i): Let F
1
, F
2

be any two disjoint µ-closed sets. Then by (vi) there
exists G ∈ ν such that F

1
j G and cν(G) ∩ F2 = ∅. Now, put U

1
= G

and U
2
= X \ cν(G). Then U

1
and U

2
are disjoint ν-open sets, F

1
j U

1
and

F
2
j U

2
. This shows that (X, µ, ν) is (µ, ν)-normal. �

4 Conclusion

Interchanging µ and ν by different weak forms of open sets we can character-
ize different weak forms of generalized open sets and different weak forms of
regular and normal spaces. If µ = ν, then we get the results obtained in [6].
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Abstract. In this paper, a general integral identity involving Riemann-
Liouville fractional integrals is derived. By use this identity, we establish
new some generalized inequalities of the Hermite-Hadamard’s type for
functions whose absolute values of derivatives are convex.

1 Introduction

The following definition for convex functions is well known in the mathematical
literature:

The function f : [a, b] ⊂ R → R, is said to be convex if the following
inequality holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ [a, b] and λ ∈ [0, 1] . We say that f is concave if (−f) is convex.
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integral, convex functions, integral inequalities
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Many inequalities have been established for convex functions but the most
famous inequality is the Hermite-Hadamard’s inequality, due to its rich geo-
metrical significance and applications(see, e.g.,[12, p.137], [6]). These inequali-
ties state that if f : I→ R is a convex function on the interval I of real numbers
and a, b ∈ I with a < b, then

f

(
a+ b

2

)
≤ 1

b− a

∫b
a

f(x)dx ≤ f (a) + f (b)
2

. (1)

Both inequalities hold in the reversed direction if f is concave. We note that
Hadamard’s inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. Hadamard’s inequality
for convex functions has received renewed attention in recent years and a
remarkable variety of refinements and generalizations have been found (see,
for example, [6, 8, 9, 12], [14]-[16], [22], [23]) and the references cited therein.

In [16], Sarikaya et. al. established inequalities for twice differentiable convex
mappings which are connected with Hadamard’s inequality, and they used the
following lemma to prove their results:

Lemma 1 Let f : I◦ ⊂ R→ R be twice differentiable function on I◦, a, b ∈ I◦
with a < b. If f′′ ∈ L1[a, b], then

1
b−a

∫b
a f(x)dx− f

(
a+b
2

)
= (b−a)2

2

∫1
0m (t) [f′′(ta+ (1− t)b) + f′′(tb+ (1− t)a)]dt,

(2)

where

m(t) :=


t2, t ∈ [0, 12)

(1− t)2 , t ∈ [ 12 , 1].

Also, the main inequalities in [16], pointed out as follows:

Theorem 1 Let f : I ⊂ R → R be twice differentiable function on I◦ with
f′′ ∈ L1[a, b]. If |f′′| is convex on [a, b], then∣∣∣ 1

b−a

∫b
a f(x)dx− f(

a+b
2 )
∣∣∣ ≤ (b−a)2

24

[
|f′′(a)|+|f′′(b)|

2

]
. (3)

Theorem 2 Let f : I ⊂ R→ R be twice differentiable function on I◦ such that
f′′ ∈ L1[a, b] where a, b ∈ I, a < b. If |f′′|q is convex on [a, b], q > 1, then∣∣∣ 1

b−a

∫b
a f(x)dx− f(

a+b
2 )
∣∣∣ ≤ (b−a)2

8(2p+1)1/p

[
|f′′(a)|q+|f′′(b)|q

2

]1/q
(4)
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where 1
p +

1
q = 1.

In the following we will give some necessary definitions and mathematical
preliminaries of fractional calculus theory which are used further in this paper.
More details, one can consult [7, 10, 11, 13].

Definition 1 Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f
of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫x
a

(x− t)α−1 f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫b
x

(t− x)α−1 f(t)dt, x < b

respectively. Here, Γ(α) is the Gamma function and J0a+f(x) = J
0
b−f(x) = f(x).

Meanwhile, Sarikaya et al. [19] presented the following important integral
identity including the first-order derivative of f to establish many interest-
ing Hermite-Hadamard type inequalities for convexity functions via Riemann-
Liouville fractional integrals of the order α > 0.

Lemma 2 Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤
a < b. If f′ ∈ L [a, b] , then the following equality for fractional integrals holds:

2α−1Γ(α+ 1)

(b− a)α

[
Jα(a+b2 )+f(b) + J

α

(a+b2 )−f(a)
]
− f

(
a+ b

2

)
=
b− a

4

{∫ 1
0

tαf′
(
t

2
a+

2− t

2
b

)
dt−

∫ 1
0

tαf′
(
2− t

2
a+

t

2
b

)
dt

} (5)

with α > 0.

It is remarkable that Sarikaya et al. [19] first give the following interesting
integral inequalities of Hermite-Hadamard type involving Riemann-Liouville
fractional integrals.

Theorem 3 Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1 [a, b] . If f is a convex function on [a, b], then the following inequalities
for fractional integrals hold:

f

(
a+ b

2

)
≤ 2

α−1Γ(α+ 1)

(b− a)α

[
Jα(a+b2 )+f(b) + J

α

(a+b2 )−f(a)
]
≤ f (a) + f (b)

2
(6)

with α > 0.



254 M. Z. Sarikaya, H. Budak

For some recent results connected with fractional integral inequalities see
([1, 2, 3, 4, 5], [17], [18], [20], [21], [24])

In this paper, we expand the Lemma 2 to the case of including a twice dif-
ferentiable function involving Riemann-Liouville fractional integrals and some
other integral inequalities using the generalized identity is obtained for frac-
tional integrals.

2 Main results

For our results, we give the following important fractional integrtal identity:

Lemma 3 Let f : [a, b] → R be twice differentiable mapping on (a, b) with
0 ≤ a < b. If f′′ ∈ L [a, b] , then the following equality for fractional integrals
holds:

(α+ 1) (1− λ)αλαf(λa+ (1− λ)b)

−
(α+ 1) Γ (α+ 1)

(b− a)
α

[
λα+1Jα(λa+(1−λ)b)−f(a) + (1− λ)α+1Jα(λa+(1−λ)b)+f(b)

]
= −(b− a)

2
(1− λ)α+1λα+1

(1− λ)

1∫
0

tα+1f′′ [t(λa+ (1− λ)b) + (1− t)a]dt

+λ

1∫
0

(1− t)
α+1

f′′ [tb+ (1− t)(λa+ (1− λ)b)]dt



(7)

where λ ∈ (0, 1) and α > 0.

Proof. Integrating by parts

1∫
0

tα+1f′′ [t(λa+ (1− λ)b) + (1− t)a]dt

=
tα+1f′ [t(λa+ (1− λ)b) + (1− t)a]

(1− λ)(b− a)

∣∣∣∣1
0

−
α+ 1

(1− λ)(b− a)

1∫
0

tαf′ [t(λa+ (1− λ)b) + (1− t)a]dt

=
f′ (λa+ (1− λ)b)

(1− λ)(b− a)
−

α+ 1

(1− λ)(b− a)
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×

f (λa+ (1− λ)b)

(1− λ)(b− a)
−

α

(1− λ)(b− a)

1∫
0

tα−1f [t(λa+ (1− λ)b) + (1− t)a]dt


=
f′ (λa+ (1− λ)b)

(1− λ)(b− a)
−

(α+ 1) f (λa+ (1− λ)b)

(1− λ)2(b− a)2

+
(α+ 1)α

(1− λ)α+2(b− a)α+2

λa+(1−λ)b∫
a

(x− a)α−1 f(x)dx

=
f′ (λa+ (1− λ)b)

(1− λ)(b− a)
−

(α+ 1) f (λa+ (1− λ)b)

(1− λ)2(b− a)2

+
(α+ 1) Γ (α+ 1)

(1− λ)α+2(b− a)α+2
Jα
(λa+(1−λ)b)−

f(a)

that is,

−

1∫
0

tα+1f′′ [t(λa+ (1− λ)b) + (1− t)a]dt

= −
f′ (λa+ (1− λ)b)

(1− λ)(b− a)
+

(α+ 1) f (λa+ (1− λ)b)

(1− λ)2(b− a)2

−
(α+ 1) Γ (α+ 1)

(1− λ)α+2(b− a)α+2
Jα
(λa+(1−λ)b)−

f(a)

(8)

and similarly we have

−

1∫
0

(1− t)α+1 f′′ [tb+ (1− t)(λa+ (1− λ)b)]dt

=
f′ (λa+ (1− λ)b)

λ(b− a)
+

(α+ 1) f (λa+ (1− λ)b)

λ2(b− a)2

−
(α+ 1)α

λα+2(b− a)α+2

b∫
λa+(1−λ)b

(b− x)α−1 f(x)dx

=
f′ (λa+ (1− λ)b)

λ(b− a)
+

(α+ 1) f (λa+ (1− λ)b)

λ2(b− a)2

−
(α+ 1) Γ (α+ 1)

λα+2(b− a)α+2
Jα
(λa+(1−λ)b)+

f(b).

(9)

Adding (8) and (9) we have (7). This completes the proof. �
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Corollary 1 Under the assumptions Lemma 3 with λ = 1
2 , then it follows

that

−(b− a)2

8


1∫
0

tα+1f′′
[
t

(
a+ b

2

)
+ (1− t)a

]
dt

+

1∫
0

(1− t)α+1 f′′
[
tb+ (1− t)

a+ b

2

]
dt


= (α+ 1) f

(
a+ b

2

)
−

(α+ 1) Γ (α+ 1)

(b− a)α 21−α

[
Jα
(a+b2 )

−f(a) + Jα
(a+b2 )

+f(b)

]
.

Remark 1 If we choose α = 1 in Corollary 1, we have

f

(
a+ b

2

)
−

1

b− a

b∫
a

f(x)dx

=
−(b− a)2

16


1∫
0

t2f′′
[
t

(
a+ b

2

)
+ (1− t)a

]
dt

+

1∫
0

(1− t)2 f′′
[
tb+ (1− t)

a+ b

2

]
dt

 .
Theorem 4 Let f:[a, b] → R be twice differentiable mapping on (a, b) with
0 ≤ a < b. If |f′′|q , q ≥ 1 is convex on [a, b], then the following inequality for
fractional integrals holds:∣∣∣∣(α+ 1) (1− λ)αλαf(λa+ (1− λ)b) −

(α+ 1) Γ (α+ 1)

(b− a)α

×
[
λα+1Jα(λa+(1−λ)b)−f(a) + (1− λ)α+1Jα(λa+(1−λ)b)+f(b)

]∣∣∣
≤ (b− a)2 (1− λ)α+1λα+1

(α+ 2)1−
1
q

{
(1− λ)

(
(α+ 2) |f′′ (λa+ (1− λ)b)|q + |f′′ (a)|q

α+ 3

) 1
q

+λ

(
(α+ 2) |f′′ (λa+ (1− λ)b)|q + |f′′ (b)|q

α+ 3

) 1
q

}
.

(10)

where λ ∈ (0, 1) and α > 0.
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Proof. Firstly, we suppose that q = 1. Using Lemma 3 and convexity of |f′′|q ,
we find that∣∣∣∣(α+ 1) (1− λ)αλαf(λa+ (1− λ)b) −

(α+ 1) Γ (α+ 1)

(b− a)
α

×
[
λα+1Jα(λa+(1−λ)b)−f(a) + (1− λ)α+1Jα(λa+(1−λ)b)+f(b)

]∣∣∣
≤ (b− a)

2
(1− λ)α+1λα+1

(1− λ)

1∫
0

tα+1 |f′′ [t(λa+ (1− λ)b) + (1− t)a]|dt

+λ

1∫
0

(1− t)
α+1

|f′′ [tb+ (1− t)(λa+ (1− λ)b)]|dt


≤ (b− a)

2
(1− λ)α+1λα+1

(1− λ)

1∫
0

tα+1 [t |f′′ (λa+ (1− λ)b)|+ (1− t) |f′′ (a)|]dt

+λ

1∫
0

(1− t)
α+1

[t |f′′ (b)|+ (1− t) |f′′ (λa+ (1− λ)b)|]dt


=

(b− a)
2
(1− λ)α+1λα+1

α+ 2

{
(1− λ)

(
(α+ 2) |f′′ (λa+ (1− λ)b)|+ |f′′ (a)|

α+ 3

)
+λ

(
(α+ 2) |f′′ (λa+ (1− λ)b)|+ |f′′ (b)|

q

α+ 3

)}
.

Secondly, we suppose that q > 1. Using Lemma 3 and power mean inequality,
we have(1− λ)

1∫
0

tα+1f′′ [t(λa+ (1− λ)b) + (1− t)a]dt

+λ

1∫
0

(1− t)
α+1

f′′ [tb+ (1− t)(λa+ (1− λ)b)]dt


≤ (1− λ)

1∫
0

tα+1

1−
1
q
1∫
0

tα+1 |f′′ [t(λa+ (1− λ)b) + (1− t)a]|
q
dt


1
q

+ λ

1∫
0

(1− t)
α+1

1−
1
q
1∫
0

(1− t)
α+1

|f′′ [tb+ (1− t)(λa+ (1− λ)b)]|
q
dt


1
q

.

(11)
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Hence, using convexity of |f′′|q and (11) we obtain∣∣∣∣(α+ 1) (1− λ)αλαf(λa+ (1− λ)b) −
(α+ 1) Γ (α+ 1)

(b− a)
α

×
[
λα+1Jα(λa+(1−λ)b)−f(a) + (1− λ)α+1Jα(λa+(1−λ)b)+f(b)

]∣∣∣
≤ (b− a)

2
(1− λ)α+1λα+1

(α+ 2)
1− 1

q

(1− λ)
1∫
0

tα+1 [t |f′′ (λa+ (1− λ)b)|+ (1− t) |f′′ (a)|]dt


1
q

+λ

1∫
0

(1− t)
α+1

[t |f′′ (b)|+ (1− t) |f′′ (λa+ (1− λ)b)|]dt


1
q


≤ (b− a)

2
(1− λ)α+1λα+1

(α+ 2)
1− 1

q

{
(1− λ)

(
(α+ 2) |f′′ (λa+ (1− λ)b)|+ |f′′ (a)|

(α+ 2) (α+ 3)

) 1
q

+λ

(
(α+ 2) |f′′ (λa+ (1− λ)b)|+ |f′′ (b)|

q

(α+ 2) (α+ 3)

) 1
q

}
.

This completes the proof. �

Corollary 2 Under assumption Theorem 4 with λ = 1
2 , we obtain∣∣∣∣f(a+ b

2

)
−

Γ (α+ 1)

(b− a)α 21−α

[
Jα
(a+b2 )

−f(a) + Jα
(a+b2 )

+f(b)

]∣∣∣∣
≤ (b− a)2

8 (α+ 1) (α+ 2)1−
1
q


(
(α+ 2)

∣∣f′′ (a+b2 )∣∣q + |f′′ (a)|q

α+ 3

) 1
q

+

(
(α+ 2)

∣∣f′′ (a+b2 )∣∣q + |f′′ (b)|q

α+ 3

) 1
q

 .
Remark 2 If we choose α = 1 in Corollary 2, we have∣∣∣∣∣∣f
(
a+ b

2

)
−

1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ (b− a)2

16× 3
1− 1q


(
3
∣∣f′′ (a+b2 )∣∣q + |f′′ (a)|q

4

)1
q

+

(
3
∣∣f′′ (a+b2 )∣∣q + |f′′ (b)|q

4

)1
q

 .
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Theorem 5 Let f:[a, b] → R be twice differentiable mapping on (a, b) with
0 ≤ a < b. If |f′′|q is convex on [a, b] for same fixed q > 1, then the following
inequality for fractional integrals holds:

∣∣∣∣(α+ 1) (1− λ)αλαf(λa+ (1− λ)b) −
(α+ 1) Γ (α+ 1)

(b− a)α

×
[
λα+1Jα(λa+(1−λ)b)−f(a) + (1− λ)α+1Jα(λa+(1−λ)b)+f(b)

]∣∣∣
≤ (b− a)2 (1− λ)α+1λα+1

(p (α+ 1) + 1)
1
p

{
(1− λ)

(
|f′′ (λa+ (1− λ)b)|q + |f′′ (a)|q

2

) 1
q

+λ

(
|f′′ (λa+ (1− λ)b)|q + |f′′ (b)|q

2

) 1
q

}
.

(12)

where 1
p +

1
q = 1, λ ∈ (0, 1) and α > 0.

Proof. Using Lemma 3, convexity of |f′′|q well-known Hölder’s inequality, we
have∣∣∣∣(α+ 1) (1− λ)αλαf(λa+ (1− λ)b) −

(α+ 1) Γ (α+ 1)

(b− a)
α

×
[
λα+1Jα(λa+(1−λ)b)−f(a) + (1− λ)α+1Jα(λa+(1−λ)b)+f(b)

]∣∣∣
≤ (b− a)

2
(1− λ)α+1λα+1

(1− λ)

1∫
0

tp(α+1)


1
p

1∫
0

|f′′ [t(λa+ (1− λ)b) + (1− t)a]|
q
dt


1
q

+λ

1∫
0

(1− t)
p(α+1)


1
p
1∫
0

|f′′ [tb+ (1− t)(λa+ (1− λ)b)]|
q
dt


1
q


≤ (b− a)

2
(1− λ)α+1λα+1

×

(1− λ)
1

(p (α+ 1) + 1)
1
p

1∫
0

[
t |f′′(λa+ (1− λ)b)|

q
+ (1− t) |f′′ (a)|

q]
dt


1
q
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+λ
1

(p (α+ 1) + 1)
1
p

1∫
0

[
t |f′′ (b)|

q
+ (1− t) |f′′(λa+ (1− λ)b)|

q]
dt


1
q


=

(b− a)
2
(1− λ)α+1λα+1

(p (α+ 1) + 1)
1
p

{
(1− λ)

(
|f′′(λa+ (1− λ)b)|

q
+ |f′′ (a)|

q

2

) 1
q

+λ

(
|f′′(λa+ (1− λ)b)|

q
+ |f′′ (b)|

q

2

) 1
q

}
.

�

Corollary 3 Under assumption Theorem 5 with λ = 1
2 , we obtain∣∣∣∣f(a+ b

2

)
−

Γ (α+ 1)

(b− a)α 21−α

[
Jα
(a+b2 )

−f(a) + Jα
(a+b2 )

+f(b)

]∣∣∣∣
≤ (b− a)2

8 (α+ 1) (p (α+ 1) + 1)
1
p


(∣∣f′′ (a+b2 )∣∣q + |f′′ (a)|q

2

) 1
q

+

(∣∣f′′ (a+b2 )∣∣q + |f′′ (b)|q

2

) 1
q

 .
Remark 3 If we choose α = 1 in Corollary 3, we have∣∣∣∣∣∣f
(
a+ b

2

)
−

1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ (b− a)2

16 (2p+ 1)
1
p


(∣∣f′′ (a+b2 )∣∣q + |f′′ (a)|q

2

)1
q

+

(∣∣f′′ (a+b2 )∣∣q + |f′′ (b)|q

2

)1
q

 .
Theorem 6 Let f:[a, b] → R be twice differentiable mapping on (a, b) with
0 ≤ a < b. If |f′′|q is convex on [a, b] for same fixed q > 1, then the following
inequality for fractional integrals holds:∣∣∣∣(α+ 1) (1− λ)αλαf(λa+ (1− λ)b) −

(α+ 1) Γ (α+ 1)

(b− a)α

×
[
λα+1Jα(λa+(1−λ)b)−f(a) + (1− λ)α+1Jα(λa+(1−λ)b)+f(b)

]∣∣∣
≤ (b− a)2 (1− λ)α+1λα+1
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(1− λ)

(
(q (α+ 1) + 1) |f′′ (λa+ (1− λ)b)|q + |f′′ (a)|q

(q (α+ 1) + 1) (q (α+ 1) + 2)

) 1
q

+λ

(
(q (α+ 1) + 1) |f′′ (λa+ (1− λ)b)|q + |f′′ (b)|q

(q (α+ 1) + 1) (q (α+ 1) + 2)

) 1
q

}
.

(13)

where λ ∈ (0, 1) and α > 0.

Proof. Using Lemma 3, convexity of |f′′|q well-known Hölder’s inequality, we
have∣∣∣∣(α + 1) (1 − λ)αλαf(λa + (1 − λ)b) −

(α + 1) Γ (α + 1)

(b − a)α

×
[
λα+1Jα(λa+(1−λ)b)−f(a) + (1 − λ)α+1Jα(λa+(1−λ)b)+f(b)

]∣∣∣
≤ (b − a)2 (1 − λ)α+1λα+1

(1 − λ)
 1∫
0

1p


1
p
 1∫
0

tq(α+1)
∣∣f′′ [t(λa + (1 − λ)b) + (1 − t)a]

∣∣q dt


1
q

+ λ

 1∫
0

1p


1
p
 1∫
0

(1 − t)q(α+1)
∣∣f′′ [tb + (1 − t)(λa + (1 − λ)b)]

∣∣q dt


1
q


≤ (b − a)2 (1 − λ)α+1λα+1

(1 − λ)
 1∫
0

tq(α+1)
[
t
∣∣f′′(λa + (1 − λ)b)

∣∣q + (1 − t)
∣∣f′′ (a)∣∣q]dt


1
q

+ λ

 1∫
0

(1 − t)q(α+1)
[
t
∣∣f′′ (b)∣∣q + (1 − t)

∣∣f′′(λa + (1 − λ)b)
∣∣q]dt


1
q


= (b − a)2 (1 − λ)α+1λα+1

{
(1 − λ)

(
(q (α + 1) + 1) |f′′ (λa + (1 − λ)b)|

q
+ |f′′ (a)|

q

(q (α + 1) + 1) (q (α + 1) + 2)

) 1
q

+ λ

(
(q (α + 1) + 1) |f′′ (λa + (1 − λ)b)|

q
+ |f′′ (b)|

q

(q (α + 1) + 1) (q (α + 1) + 2)

) 1
q

}
.

�

Corollary 4 Under assumption Theorem 6 with λ = 1
2 , we obtain∣∣∣∣f(a+ b

2

)
−

Γ (α+ 1)

(b− a)α 21−α

[
Jα
(a+b2 )

−f(a) + Jα
(a+b2 )

+f(b)

]∣∣∣∣
≤ (b− a)2

8 (α+ 1)


(
(q (α+ 1) + 1)

∣∣f′′ (a+b2 )∣∣q + |f′′ (a)|q

(q (α+ 1) + 1) (q (α+ 1) + 2)

) 1
q
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+

(
(q (α+ 1) + 1)

∣∣f′′ (a+b2 )∣∣q + |f′′ (b)|q

(q (α+ 1) + 1) (q (α+ 1) + 2)

) 1
q

 .
Remark 4 If we choose α = 1 in Corollary 4, we have∣∣∣∣∣∣f

(
a+ b

2

)
−

1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ (b− a)2

16


(
(2q+ 1)

∣∣f′′ (a+b2 )∣∣q + |f′′ (a)|q

(2q+ 1) (2q+ 2)

) 1
q

+

(
(2q+ 1)

∣∣f′′ (a+b2 )∣∣q + |f′′ (b)|q

(2q+ 1) (2q+ 2)

) 1
q

 .
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Abstract. Upper bounds for σ(n) are provided in terms of other arith-
metic functions as ϕ(n), d(n), ψ(n), P(n), etc. Comparision of older
results are given, too.

1 Introduction

Let n > 1 be written in its canonical form

n = pa11 · · ·p
ar
r (1)

where pi are distinct primes, ai ≥ 1 integers, i = 1, 2, . . . , r.
Then it is well-known the following representations formula for the sum of

divisors function σ(n), and number of divisors function d(n):

σ(n) =

r∏
i=1

(pai+1i − 1

pi − 1

)
, d(n) =

r∏
i=1

(ai + 1) (2)

Similarly, for the Euler’s totient ϕ(n), and Dedekind’s totient ψ(n) one has:

ϕ(n) = n

r∏
i=1

(
1−

1

pi

)
, ψ(n) = n

r∏
i=1

(
1+

1

pi

)
(3)
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Here r = ω(r) usually denotes the number of distinct divisors of n, in contrast
with the total number of prime factors of n, which is a1+a2+· · ·+an = Ω(n).

In what follows, let P(n) denote the greatest prime factor of n. This defini-
tion applies for n > 1, but in (2) and (3) it is obvious the completion for the
case n = 1, namely:

σ(1) = d(1) = ϕ(n) = ψ(1) = 1 (4)

There are many inequalities for these arithmetical functions; for a survey of
results, see the monograph [4], or the recent papers [5], [6], [8], [9], [10], [11].

Partcularly, the following upper bounds for the function σ(n) are known:

σ(n) ≤ n2

ϕ(n)
for n ≥ 1, (5)

σ(n) ≤ ϕ(n)
(
d(n)

)2
for n ≥ 2, (6)

σ(n) ≤ nd(n) −ϕ(n) for n ≥ 2, (7)

σ(n) ≤ ϕ(n) + d(n)
(
n−ϕ(n)

)
for n ≥ 1, (8)

σ(n) ≤
(n+ 1

2

)
d(n) for n ≥ 1. (9)

We note that inequality (5) has been rediscovered many times in the litera-
ture. In a slightly different form it appeared in a paper by O. Meissener from
1907 (see [4], p. 77). Inequality (6) is due to A. Makowski (1974, see [4], p.
11); (7) is due to A. Makowski (1960, see [4], p. 11), while (8) is due to the
first author (1989, see [4], p. 10). Finally, (9) is due to E.S. Langford (1978,
see [4], p. 86).

An improvement of (6) for odd values of n, is due to first author (1988, see
[4], p. 10):

σ(n) ≤ ϕ(n)d(n) for n ≥ 1 odd. (10)

It is easy to see that (10) implies for even values:

σ(n) < 2ϕ(n)d(n) for n ≥ 2 even. (11)

In the same year, K.T. Atanassov (see [4], p. 88) proved the upper bounds:

σ(n) ≤ ϕ(n)P(n) for n odd, (12)

σ(n) < 4ϕ(n)P(n) for n even. (13)

Here, as above, relation (13) is an immediate consequence of (12).
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Remark 1 As d(n) and P(n) are not generally comparable, inequalities (10)
and (11) are independent of each other. For any n = p = prime, one has
d(n) = 2 < P(n), so (10) is better than (12). Also for n = p2, when d(n) =
3 ≤ P(n) for n odd. However, even for prime powers n = pa, when p > a+ 1,
clearly (12) will be stronger than (10).

2 Main results

I. New inequalities

One of the aims of this paper is to offer an improvement of (12) and (13); as
follows:

Theorem 1 One has

σ(n) <
3

4
ϕ(n)P(n) for n ≥ 3 odd, (14)

and

σ(n) < 3ϕ(n)P(n) for n even. (15)

Proof. The following auxiliary result by R. A. Rankin (1963, see [1], p. 193)
will be used:

Lemma 1 For all n ≥ 1 one has

1 · 3 · 5 · · · (2n− 1))

2 · 4 · 6 · · · 2n
≤
√

3/4

2n+ 1
(16)

Now, as a consequence, we can deduce an upper bound for
(

n
ϕ(n)

)2
=∏

p|n

(
p
p−1

)2 ≤ 32

22
· 52
42
· · · (2m+1)2

(2m)2
, where we have denoted the greatest prime

divisior of n as 2m + 1. Now, remark that by (16) one has 3·5···(2m+1)
2·4···(2m) ≤√

3
4(2m+ 1) =

√
3
4P(n), which implies relation (14), by remarking that by

(5) one has σ(n) <
(

n
ϕ(n)

)2 · ϕ(n) ≤ 3
4ϕ(n)P(n), for n ≥ 3 odd, since in (5)

there is equality only for n = 1. If n = 2kN (k ≥ 1,N odd) is an even integer,
then P(n) = P(N), ϕ(n) = 2k−1ϕ(N) and σ(n) = (2k+1 − 1)σ(N), so (15)
follows from (13) by 2k+1 − 1 < 2k+1 and 4 34 = 3. �
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Remark 2 From the proof of Theorem 1 we can remark that(
n

ϕ(n)

)2
≤ 3
4
P(n) for n ≥ 3 odd, (17)

and (
n

ϕ(n)

)2
≤ 3P(n) for n even, (18)

which improve the classical inequality (see [5])

n

ϕ(n)
≤ P(n) for all n ≥ 2. (19)

This follows by
(

n
ϕ(n)

)2 ≥ n
ϕ(n) . Clearly, (17) improves (19) for all odd n,

while (18) improves (19) for all n 6= 2k (i.e. powers of 2). Indeed, 3P(n) ≤
P2(n) only if P(n) ≥ 3, and for even n this is true for n 6= 2k.

Theorem 2 One has

σ(n) < ψ(n) + σ(n) · 3
8
P(n) for n odd, (20)

and

σ(n) < ψ(n) + σ(n) · 3
2
P(n) for n even. (21)

Proof.
The proof of the following auxiliary result may be found in [5]:

Lemma 2 For all n ≥ 1 one has

2 · ψ(n)
n
≥ 1+ n

ϕ(n)
(22)

Now, by (5) and (22) one can write: σ(n) −ψ(n) < n2

ϕ(n) −
n
2 −

n2

2ϕ(n) , so

σ(n) −ψ(n)

ϕ(n)
<

n

2ϕ(n)
·
( n

ϕ(n)
− 1
)

for n > 1. (23)

Now, (20) and (21) are consequences of (17) and (18) as applications to
(23). �
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Theorem 3 One has

σ(n) < ψ(n) +
k · n2

ϕ(n)
, (24)

where k = 1− 6
π2

= 0.392 . . .
For all odd n ≥ 3 one has

σ(n) < ψ(n) +
3

10
ϕ(n)P(n). (25)

Proof. We shall use the following inequality from [6]:

ψ(n) >
c · n2

ϕ(n)
, n ≥ 1, (26)

where c = 6/π2. Now, by (5) and (26) one has σ(n) − ψ(n) < n2

ϕ(n) −
cn2

ϕ(n) =

(1− c) n2

ϕ(n) =
kn2

ϕ(n) , which proves relation (24). Now, as n2

ϕ(n) = ϕ(n) ·
(

n
ϕ(n)

)2
,

and by (17) we get (18), by remarking that 3
4k = 0.294 · · · < 0.3 = 3

10 . �

Remark 3 Relation (25) improves slightly (20), as 3
10 <

3
8 .

Theorem 4 One has

σ(n) <
π2

6
·ψ(n), n ≥ 1. (27)

For all odd n one has

σ(n) < ψ(n) + a ·ϕ(n) · 2ω(n), (28)

where a = π2/6− 1

Proof. For inequality (27) see paper [6]. For (28) use (27) and the remark

that ψ(n)
ϕ(n) =

∏
p|n

p+1
p−1 ≤ 2

ω(n) since p+1
p−1 ≤ 2 for p ≥ 3 (i.e. n = odd). Therefore,

we can write σ(n) −ψ(n) < a ·ψ(n) = a ·ϕ(n) ·
(ψ(n)
ϕ(n)

)
< aϕ(n) · 2ω(n). �

Remark 4 As 0 < a < 1, from (28) we get also

σ(n) < ψ(n) +ϕ(n) · 2ω(n), n odd. (29)
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When n is squarefull, this improves the following inequality by K.T. Atanassov
(see [12]):

σ(n) < ψ(n) +ϕ(n) · 2Ω(n)−ω(n), n ≥ 1. (30)

Indeed, if n is squarefull (i.e., when in (1) all ai ≥ 2 for i = 1, 2, . . . , r), we
get Ω(n) = a1 + · · · + ar ≥ 2r = 2ω(n), so ω(n) ≤ Ω(n) −ω(n), and (29)
refines (30).

II. Comparison of upper bounds for σ(n)

Many times, there have been published various inequalities containing also
other arithmetic functions, but without comparison to each other. For ex-
ample, it is not remarked in the literature that, inequality (5) is stronger
than (6):

Theorem 5 For all n ≥ 1

σ(n) ≤ n2

ϕ(n)
≤ ϕ(n)

(
d(n)

)2
, (31)

i.e., inequality (5) implies inequality (6).

Proof. The second inequality of (31) may be rewritten as

ϕ(n)d(n) ≥ n, (32)

which is a known inequality of R. Sivaramakrishnan (1967, see [4], p. 10). The
following improvement of (32) is due to the first author (1989, see [4], p. 10):

ϕ(n)d(n) ≥ ϕ(n) + n− 1,n ≥ 1. (33)

�

Inequality (10) improves also (6) for odd values of n. The following result
improves (10):

Theorem 6

σ(n) ≤ ψ(n) · d(n)
2ω(n)

, n ≥ 1. (34)

For odd n, one has

σ(n) ≤ ψ(n) · d(n)
2ω(n)

≤ ϕ(n)d(n). (35)
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Proof. Inequality (34) is due to the first author (1988, see [2]). Now, the

socond inequality of (35) can be written as ψ(n)
ϕ(n) ≤ 2ω(n), n odd, which is

proved earlier (see the proof of Theorem 4). �

Theorem 7 For all n ≥ 1,

σ(n) ≤ n · [ω(n) + 1]. (36)

For n 6= prime one has

σ(n) ≤ n · [ω(n) + 1] ≤ n ·Ω(n). (37)

Proof. Inequality (36) appears in the first author’s paper [3] from 1989,
and it improves the better-known inequality due to R. L. Duncan (1967, see
[4], p. 79):

σ(n) < n · [7ω(n) + 10

6
], n ≥ 1. (38)

Indeed, it is easy to see that, ω(n) + 1 < 7ω(n)+10
6 .

We shall offer here a simple proof of (36). Assume that in the prime factor-
ization (1) one has p1 < · · · < pr. Then p1 ≥ 2, p2 ≥ 3, · · · , pr ≥ r+ 1, so we
get by (3) ϕ(n) ≥ n ·

(
1− 1

2

)
· · ·
(
1− 1

r+1

)
= n · 12 ·

2
3 · · ·

r
r+1 =

n
r+1 , giving:

ϕ(n) ≥ n

ω(n) + 1
, n ≥ 1. (39)

Now, inequality (36) is a consequence of (5) combined with (39). The second
inequality of (37) is true, if Ω(n) − ω(n) ≥ 1. This holds only if in the
prime factorization (1) one has that Ω(n) 6= ω(n), i.e. if n 6= squarefree (i.e.
n = p1 · · ·pr). The inequality

σ(n) ≤ n ·Ω(n), n 6= prime, (40)

is due to first author (1988, see [4], p. 87). In fact, a new proof of (40) will be
offered here, if we prove that, it is true for any n = p1 · p2 · · ·pr (pi distinct
primes), for r ≥ 2. Equivalently,

(p1 + 1) · · · (pr + 1) ≤ p1 · · ·pr · r, r ≥ 2. (41)

As
(
1+ 1

p1

)
· · ·
(
1+ 1

pr

)
≤
(
1+ 1

1

)(
1+ 1

3

)
· · ·
(
1+ 1

r

)
= 3

2 ·
4
3 · · ·

r+1
r = r+2

2 ≤ r
for r ≥ 2, inequality (40) is proved. �
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Remark 5 The above proof shows that in fact

ψ(n)

n
≤ ω(n) + 2

2
, n ≥ 2. (42)

Theorem 8 If ω(n) ≥ 3, then

σ(n) < n[ω(n) + 1] < d(n) ·
(n+ 1

2

)
, (43)

(i.e. (36) is stronger than (9)). If ω(n) = 1 and n = pa (p prime, a ≥ 1),
then for a ≥ 3, (43) is true. If ω(n) = 2 and n not squarefree, then (43) is
again true. If ω(n) = 1 and n = pa with a ∈ {1, 2} or n = squarefree, one has

σ(n) ≤ d(n) ·
(n+ 1

2

)
< n[ω(n) + 1]. (44)

Proof. As d(n) ≥ 2ω(n), it is sufficient to prove that

2ω(n)−1 · (n+ 1) ≥ n[ω(n) + 1]. (45)

The inequality

2k−1 ≥ k+ 1, k ≥ 3, (46)

can be proved immediately by induction. By letting k = ω(n), since n+1 > n,
the proof of (41) is complete. Clearly, all inequalities are strict.

If n = pa (p prime), then d(n) = a+ 1 ≥ 4, for a ≥ 3 and d(n) ≥ 4 > 4n
n+1 ,

so again (41) is true with strict inequality.
If n 6= pq then n = pa · qb, where at least one of a and b ≥ 2. In this case

d(n) = (a + 1)(b + 1) ≥ 2 · 3 = 6. On the other hand, one has 6 > 6n
n+1 , so

again get the strict inequality.

For n = p one has 2 ·
(
p+1
2

)
< p · 2, while for n = p2, 3 ·

(
p2+1
2

)
< p2 · 2 by

3 < p2(p ≥ 2).
Finally, for n = pq, we have 4 ·

(
pq+1
2

)
< 3pq by pq > 2. �

Remark 6 Therefore (43) is true for all n > 1 which are not primes, or
square of primes, or which are not the product of two distinct primes.

As a comparison of (8) and (9), the following holds true:
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Theorem 9 For all n > 2 even numbers one has

σ(n) < d(n) ·
(n+ 1

2

)
< ϕ(n) + d(n)(n−ϕ(n)). (47)

When n is odd, generally (8) and (9) are not comparable.

Proof. The first inequality of (47) is strict as in (9) there is equality only for
n = prime. The second inequality may be written also as

d(n) ·
(2ϕ(n) − n+ 1

2

)
< ϕ(n). (48)

Now, if n is even number, it is well-known (and it easily follows by the first
relation of (2)) that ϕ(n) ≤ n

2 . This implies that

2ϕ(n) − n+ 1 ≤ 1. (49)

Now, if eventually 2ϕ(n) − n + 1 ≤ 0, then (48) is trivially true. Otherwise,
we will use besides (47), the following known inequality (see [4], p. 11):

d(n) < ϕ(n) for n > 30. (50)

Then inequality (48) holds true for all even n > 30. A particular verification
shows that, in fact (48) holds true for all even numbers 4 ≤ n ≤ 30. This
proves the first part of the theorem.

Let n = p2, where p ≥ 5 is prime. As d(p2) = 3 and ϕ(p2) = p2 − p, it is
immediate that the second inequality of (47) holds in reverse order.

The same can be verified for n = 5p, where p ≥ 7 is a prime.
On the other hand, for n = 3p ( p ≥ 5 prime), the inequality holds in

this order. Therefore, there are infinitely many odd values of n for which the
inequality is true in both senses. �

Remark 7 Since (8) may be written also as

σ(n) +ϕ(n) ≤ nd(n) +ϕ(n)(2− d(n)), (51)

by 2 − d(n) ≤ 0, clearly this inequality strongly refines relation (7). Another
refinement of (7), namely

σ(n) +ϕ(n) ≤ n · 2ω(n), (52)

is due to C.A. Nicol (1996, see [4], p. 10).
When n is squarefree (i.e., a product of distinct primes), then, as nd(n) =

2ω(n) and 2 ≤ d(n), clearly (51) is stronger than (52).
It is easy to verify that for n = 2k(k ≥ 1), (52) is stronger than (51).
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An inequality refining (9) for all n, will be provided by

Theorem 10 One has

σ(n) ≤ d(n)σ
∗(n)

2ω(n)
≤ d(n) ·

(n+ 1

2

)
, n ≥ 1, (53)

where σ∗(n) =
r∏
i=1

(paii + 1) (for the prime factorization (1) of n > 1), σ∗(1) =

1, denotes the sum of unitary divisors of n (see [4]).

Proof. The first inequality of (53) is published in first author’s paper [7]
(1994), as an application of an inequality of Klamkin (see also [8])

For the second relation of (53), apply the following auxiliary result:

Lemma 3 For xi ≥ 1 real numbers (i = 1, 2, . . . , r) we have

r∏
i=1

(xi + 1) ≤ 2r−1 ·
( r∏
i=1

xi + 1
)
. (54)

This result is well-known, see e.g. [1].
Apply now (54) for xi = paii , r = ω(n), where n has prime factorization

(1). Then we get

σ∗(n) ≤ 2ω(n)−1 · (n+ 1), n > 1, (55)

which gives the second inequality of (53). �

Remark 8 As ψ(n) =
r∏
i=1

(paii + pai−1i ), clearly σ∗(n) ≤ ψ(n), so the first

inequality of (53) offers a refinement of inequality (34).

It is a natural question if (34) and (53) may be further compared. The
following result answers this question:

Theorem 11 For ω(n) ≥ 2 one has

ψ(n)d(n)

2ω(n)
< d(n) · n+ 1

2
. (56)
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Proof. By inequality (42) it will be sufficient to study

n · ω(n) + 2

2
≤ 2ω(n) · n+ 1

2
. (57)

For ω(n) = 1 this becomes 3n ≤ 2(n+ 1), which is false.
Assume ω(n) ≥ 2. Then, as 2k ≥ k+ 2 for any k ≥ 2, by letting k = ω(n),

and remarking that n+ 1 > n, (57) immediately follows. �

Remark 9 Therefore, one has the following completion to Theorem 10:

σ(n) ≤ d(n) · σ
∗(n)

2ω(n)
≤ d(n) ·ψ(n)

2ω(n)
< d(n) · n+ 1

2
, for ω(n) ≥ 2. (58)

Remark 10 In 2010 the first author (see [9]) proved a refinement of a new
type of inequality (7):

σ(n) ≤ nd(n) −ϕ(n)
ω(n)

, for n ≥ 2 and distinct from 6, (59)

which clearly gives another improvement of (7), related to (58):

σ(n) ≤ nd(n) −ϕ(n)
2

<
nd(n)

2
, for ω(n) ≥ 2 and n distinct from 6. (60)

For inequalities related to the weaker relation of (60), see also [5].

Theorem 12 1) The following improvement of (9) holds true:

σ(n) <
nd(n) −ϕ(n)

2
<
n− 1

2
· d(n) for ω(n) ≥ 2 and n > 30; (61)

2) The inequality

σ(n) ≤ n− 1

2
· d(n), (62)

holds true for i) ω(n) ≥ 2 and n distinct from 6 . There is equality only for
n = 10. ii) if ω(n) = 1, let n = pk (p prime, k ≥ 1). Then (62) is true if:
a) k = 2 and p ≥ 5; b) k ≥ 3 and p ≥ 5; c) k ≥ 3 and p = 3; d) k ≥ 4 and
p = 2.
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Proof. 1) Applying inequality (59) for ω(n) ≥ 2 and n distinct from 6, the
first inequality of (61) follows. The inequality is strict, since in [9] it is proved
that in (59) there is equality only for n = 10. The second inequality follows
by remarking that one can apply relation (50) for n > 30.

2) i) By (61), relation (62) holds true for ω(n) ≥ 2 and n > 30. A simple
verification for n = 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, which are the n with
ω(n) = 2, and n < 30 shows that (62) is not true only for n = 6. Also, it is
true for n = 10, with equality.

ii) For n = pk inequality (62) becomes

pk+1 − 1

p− 1
<
pk − 1

2
· (k+ 1). (63)

This inequality is not true for k = 1 (i.e. n = p=prime). Let k = 2. Then
(63) becomes after a simple transformation: p(p− 2) > 5. This is clearly true
only for p ≥ 5, so case a) is proved.

Apply now the Cauchy mean-value theorem of differential calculus to the
functions f(x) = xk+1 and g(x) = xk on the interval [1, p], by obtaining:
f(p)−f(1)
g(p)−g(1) = f(c)

g(c) , where c is in (1, p). We get in this particular case: p
k+1−1
pk−1

=

(k+1)·ck
k·ck−1 = k+1

k · c < (k+ 1) · pk .

Now, we have that p
k <

p−1
2 for all k ≥ 3 and p ≥ 5, so case b) follows.

For k ≥ 3 clearly we have to consider only the remaining cases p = 2

and p = 3. For p = 2 we have n = 2k, and the inequality can be written
equivalently as 2k · (k − 3) > k. This is true only for k ≥ 4 (mathematical
induction). Let now p = 3. Then we get the inequality 3k · (k − 2) > k, and
this holds only for k ≥ 3. Therefore, cases c) and d) are completely proved. �
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Abstract. In the paper are studied the properties of the image of a
class of analytic functions defined by the Ruscheweyh derivative trough
the Bernardi operator.

1 Introduction

Let A denote the class of functions of the form:

f(z) = z+

∞∑
k=2

akz
k, (1)

which are analytic and univalent in the open unit disc U = {z ∈ C : |z| < 1}.
Let g ∈ A where

g(z) = z+

∞∑
k=2

bkz
k. (2)

The Hadamard product is defined by

(f ∗ g)(z) = z+
∞∑
k=2

akbkz
k = (g ∗ f)(z). (3)

2010 Mathematics Subject Classification: 30C45
Key words and phrases: analytic functions, Hadamard product, Ruscheweyh derivative,
integral operators
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Ruscheweyh [4] defined the derivative Dγ : A→ A by

Dγf(z) =
z

(1− z)γ+1
∗ f(z), (γ ≥ −1). (4)

In the particular case n ∈ N0 = {0, 1, 2 . . .}

Dnf(z) =
z(zn−1f(z))

(n)

n!
. (5)

The symbol Dnf(z)(n ∈ N0) was called the n-th order Ruscheweyh deriva-
tive of f(z) by Al-Amiri [1]. It is easy to see that

D0f(z) = f(z), D1f(z) = zf ′(z)

Dnf(z) = z+

∞∑
k=2

δ(n, k)akz
k (6)

where

δ(n, k) =

(
n+ k− 1

n

)
. (7)

Definition 1 Let f and g be analytic functions in U. We say that the function
f is subordinate to the function g, if there exist a function w, which is analytic
in U and w(0) = 0; |w(z)| < 1; z ∈ U, such that f(z) = g(w(z)); ∀z ∈ U. We
denote by ≺ the subordination relation.

Attiya and Aouf defined in [2] the class Q(n, λ,A, B) this way:

Definition 2 [2], [3] For λ ≥ 0; −1 ≤ A < B ≤ 1; 0 < B ≤ 1;n ∈ N0 let
Q(n, λ,A, B) denote the subclass of A which contain functions f(z) of the form
(1) such that

(1− λ)(Dnf(z)) ′ + λ(Dn+1f(z)) ′ ≺ 1+Az
1+ Bz

. (8)

Definition 3 [5] A function f(z) of the form (1) is said to be in the class
V(θk) if f ∈ A and arg(ak) = θk ,∀k ≥ 2. If ∃δ ∈ R such that
θk+(k−1)δ ≡ π(mod 2π), ∀k ≥ 2 then f(z) is said to be in the class V(θk, δ).
The union of V(θk, δ) taken over all possible sequences {θk} and all possible
real numbers δ is denoted by V. Let VQ(n, λ,A, B) denote the subclass of V
consisting of functions f(z) ∈ Q(n, λ,A, B).
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Theorem 1 [3] Let the function f defined by (1) be in V. Then
f ∈ VQ(n, λ,A, B), if and only if

E(f) =

∞∑
k=2

kδ(n, k)Ck |ak| ≤ (B−A)(n+ 1) (9)

where
Ck = (1+ B)[n+ 1+ λ(k− 1)].

The extremal functions are

fk(z) = z+
(B−A)(n+ 1)

kCkδ(n, k)
eiθkzk, (k ≥ 2).

Main results

Theorem 2 Let

F(z) = Icf(z) =
c+ 1

zc

∫ z
0

f(t)tc−1dt, c ∈ N∗

If f ∈ VQ(n, λ, 2α− 1, B) then F ∈ VQ(n, λ, 2β− 1, B), where

β = β(α) =
B+ 1+ 2α(c+ 1)

2(c+ 2)
≥ α.

The result is sharp.
Remark: The operator Ic is the well-known Bernardi operator.

Proof.
Let f ∈ VQ(n, λ, 2α− 1, B) and suppose it has the form (1). Then

F(z) =
c+ 1

zc

∫ z
0

(
t+

∞∑
k=2

akt
k

)
tc−1dt =

= z+

∞∑
k=2

c+ 1

c+ k
akz

k = z+

∞∑
k=2

bkz
k.

Since f ∈ VQ(n, λ, 2α− 1, B) we have

∞∑
k=2

kδ(n, k)Ck |ak| ≤ [B− (2α− 1)](n+ 1)
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or equivalently

∞∑
k=2

kδ(n, k)Ck |ak|

B− 2α+ 1
≤ n+ 1. (10)

We know from Theorem 1 that F ∈ VQ(n, λ, 2β− 1, B) if and only if

∞∑
k=2

kδ(n, k)Ck |bk| ≤ [B− (2β− 1)](n+ 1)

or

∞∑
k=2

kδ(n, k)Ck
c+1
c+k |ak|

B− 2β+ 1
≤ n+ 1. (11)

We note that the inequalities

kδ(n, k)Ck
c+1
c+k |ak|

B− 2β+ 1
≤ kδ(n, k)Ck |ak|

B− 2α+ 1
, ∀ k ≥ 2 (12)

imply (11). From (12) we have

c+ 1

(c+ k)(B− 2β+ 1)
≤ 1

B− 2α+ 1

(c+ 1)(B− 2α+ 1) ≤ (c+ k)(B− 2β+ 1), ∀ k ≥ 2

β ≤ (k− 1)(B+ 1) + 2α(c+ 1)

2(c+ k)
.

Let us consider the function

E(x) =
(x− 1)(B+ 1) + 2α(c+ 1)

2(c+ x)
,

then its derivative is:

E ′(x) =
1

2

(c+ 1)(B+ 1− 2α)

(c+ x)2
> 0.

E(x) is an increasing function. In our case we need β ≤ E(k) and for this

reason we choose β = β(α) = E(2) =
B+ 1+ 2α(c+ 1)

2(c+ 2)
.

β(α) > α⇔ B+ 1+ 2αc+ 2α > 2αc+ 4α⇔ B+ 1− 2α > 0.
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The result is sharp, because if

f2(z) = z+
(B− 2α+ 1)(n+ 1)

2C2δ(n, 2)
eiθ2z2,

then
F2 = Icf2

belongs to VQ(n, λ, 2β − 1, B) and its coefficients satisfy the corresponding
inequality (9) with equality. Indeed,

F2(z) = z+
(B− 2α+ 1)(n+ 1)

2C2δ(n, 2)

c+ 1

c+ 2
eiθ2z2 = z+

(B− 2β(α) + 1)(n+ 1)

2C2δ(n, 2)
eiθ2z2

and

E(F2) = 2δ(n, 2)C2
(B− 2β(α) + 1)(n+ 1)

2C2δ(n, 2)
= (B− 2β(α) + 1)(n+ 1).

�

Theorem 3 If f ∈ VQ(n, λ,A, B) then F ∈ VQ(n, λ,A∗, B), where

A∗ =
B+A(c+ 1)

c+ 2
> A. The result is sharp.

Proof. Let f ∈ VQ(n, λ,A, B) and suppose it has the form (1). Then

F(z) = z+

∞∑
k=2

c+ 1

c+ k
akz

k = z+

∞∑
k=2

bkz
k.

Since f ∈ VQ(n, λ,A, B) we have
∞∑
k=2

kδ(n, k)Ck |ak| ≤ (B − A)(n + 1) or

equivalently ∞∑
k=2

kδ(n, k)Ck |ak|

B−A
≤ n+ 1.

We know from Theorem 1 that F ∈ VQ(n, λ,A∗, B) if and only if

∞∑
k=2

kδ(n, k)Ck
c+1
c+k |ak|

B−A∗
≤ n+ 1, ∀k. (13)
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We note that
kδ(n, k)Ck

c+1
c+k |ak|

B−A∗
≤ kδ(n, k)Ck |ak|

B−A
(14)

implies (13). From (14) we have

c+ 1

(c+ k)(B−A∗)
≤ 1

B−A

(c+ 1)(B−A) ≤ (c+ k)(B−A∗), ∀ k ≥ 2

A∗ ≤ B(k− 1) +A(c+ 1)
(c+ k)

.

Let us consider the function

E(x) =
B(x− 1) +A(c+ 1)

x+ c
;

its derivative is:

E ′(x) =
(B−A)(c+ 1)

(x+ c)2
> 0.

E(x) is an increasing function.
In our case we need A∗ ≤ E(k), ∀ k ≥ 2 and for this reason we choose

A∗ = E(2) =
B+A(c+ 1)

c+ 2
.

We note that A∗ > A, because

B+A(c+ 1) > A(c+ 2) ⇔ B > A.

The result is sharp, because if

f2(z) = z+
(B−A)(n+ 1)

2C2δ(n, 2)
eiθ2z2,

then
F2 = Icf2

belongs to VQ(n, λ,A∗, B) and its coefficients satisfy the corresponding in-
equality (9) with equality. Indeed,

F2(z) = z+
(B−A)(n+ 1)

2C2δ(n, 2)

c+ 1

c+ 2
eiθ2z2 = z+

(B−A∗)(n+ 1)

2C2δ(n, 2)
eiθ2z2

and

E(F2) = 2δ(n, 2)C2
(B−A∗)(n+ 1)

2C2δ(n, 2)
= (B−A∗)(n+ 1).

�
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Theorem 4 If f ∈ VQ(n, λ,A, B) then F ∈ VQ(n, λ,A, B∗), where

B∗ =
B(c+ 1) +A

c+ 2
< B.

The result is sharp.

Proof. Let f ∈ VQ(n, λ,A, B) and suppose it has the form (1).

Since f ∈ VQ(n, λ,A, B) we have
∞∑
k=2

kδ(n, k)Ck |ak| ≤ (B − A)(n + 1) or

equivalently ∞∑
k=2

kδ(n, k)Ck |ak|

B−A
≤ n+ 1.

We know from Theorem 1 that F ∈ VQ(n, λ,A, B∗) if and only if

∞∑
k=2

kδ(n, k)Ck |bk| ≤ (B∗ −A)(n+ 1)

or ∞∑
k=2

kδ(n, k)Ck
c+1
c+k |ak|

B∗ −A
≤ n+ 1. (15)

We note that
kδ(n, k)Ck

c+1
c+k |ak|

B∗ −A
≤ kδ(n, k)Ck |ak|

B−A
, ∀k (16)

implies (15). From (16) we have

c+ 1

(c+ k)(B∗ −A)
≤ 1

B−A

(c+ 1)(B−A) ≤ (c+ k)(B∗ −A), ∀k ≥ 2
B(c+ 1) +A(k− 1)

c+ k
≤ B∗.

Let

E(x) =
B(c+ 1) +A(x− 1)

x+ c

its derivative is:

E ′(x) =
(c+ 1)(A− B)

(x+ c)2
< 0.
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E(x) is a decreasing function. In our case we need E(k) ≤ B∗ and for this

reason we choose B∗ = E(2) =
A+ B(c+ 1)

c+ 2

B∗ < B⇔ A+ Bc+ B < Bc+ 2B⇔ A < B.

The result is sharp, because if

f2(z) = z+
(B−A)(n+ 1)

2C2δ(n, 2)
eiθ2z2,

then
F2 = Icf2

belongs to VQ(n, λ,A, B∗) and its coefficients satisfy the corresponding in-
equality (9) with equality. Indeed,

F2(z) = z+
(B−A)(n+ 1)

2C2δ(n, 2)

c+ 1

c+ 2
eiθ2z2 = z+

(B∗ −A)(n+ 1)

2C2δ(n, 2)
eiθ2z2

and

E(F2) = 2δ(n, 2)C2
(B∗ −A)(n+ 1)

2C2δ(n, 2)
= (B∗ −A)(n+ 1).

�
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References

[1] H. S. Al-Amiri,On Ruscheweyh derivatives, Ann. Polon. Math., 38 (1980),
87–94.

[2] A. A. Attiya, M. K. Aouf, A study on certain class of analytic functions
defined by Ruscheweyh derivative, Soochow J. Math., 33 (2)(2007), 273–
289.

[3] R. M. El-Ashwah, M. K. Aouf, A. A. Hassan, A. H. Hassan, Certain Class
of Analytic Functions Defined by Ruscheweyh Derivative with Varying
Arguments, Kyungpook Math. J., 54 (3)(2014), 453–461.

[4] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49 (1975), 109–115.

[5] H. Silverman, Univalent functions with varying arguments, Houston J.
Math., 17 (1981), 283–287.

Received: October 27, 2015



Contents

Volume 7, 2015
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