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Abstract. In the present investigation, we find estimates on the coef-
ficients |a2| and |a3| for functions in the function class SΣ (λ,φ) . The
results presented in this paper improve or generalize the recent work of
Magesh and Yamini [15].

1 Introduction and definitions

Let A denote the class of analytic functions in the unit disk

U = {z ∈ C : |z| < 1}

that have the form

f(z) = z+

∞∑
n=2

anz
n. (1)

Further, by S we shall denote the class of all functions in A which are univalent
in U.

The Koebe one-quarter theorem [8] states that the image of U under ev-
ery function f from S contains a disk of radius 1

4 . Thus every such univalent
function has an inverse f−1 which satisfies

f−1 (f (z)) = z , (z ∈ U)

2010 Mathematics Subject Classification: 30C45, 30C50
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and

f
(
f−1 (w)

)
= w ,

(
|w| < r0 (f) , r0 (f) ≥

1

4

)
,

where

f−1 (w) = w − a2w
2 +

(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · .

A function f (z) ∈ A is said to be bi-univalent in U if both f (z) and f−1 (z)
are univalent in U.

If the functions f and g are analytic in U, then f is said to be subordinate
to g, written as

f (z) ≺ g (z) , (z ∈ U)

if there exists a Schwarz function w (z) , analytic in U, with

w (0) = 0 and |w (z)| < 1 (z ∈ U)

such that

f (z) = g (w (z)) (z ∈ U) .

Let Σ denote the class of bi-univalent functions defined in the unit disk U.
For a brief history and interesting examples in the class Σ, (see [20]).

Lewin [14] studied the class of bi-univalent functions, obtaining the bound
1.51 for modulus of the second coefficient |a2| . Subsequently, Brannan and
Clunie [5] conjectured that |a2| ≤

√
2 for f ∈ Σ. Netanyahu [16] showed that

max |a2| =
4
3 if f (z) ∈ Σ.

Brannan and Taha [4] introduced certain subclasses of the bi-univalent func-
tion class Σ similar to the familiar subclasses. S? (α) and K (α) of starlike and
convex function of order α (0 < α ≤ 1) respectively (see [16]). Thus, following
Brannan and Taha [4], a function f (z) ∈ A is the class S?Σ (α) of strongly
bi-starlike functions of order α (0 < α ≤ 1) if each of the following conditions
is satisfied:

f ∈ Σ,

∣∣∣∣∣arg

(
zf

′
(z)

f (z)

)∣∣∣∣∣ < απ

2
(0 < α ≤ 1, z ∈ U)

and ∣∣∣∣∣arg

(
wg

′
(w)

g (w)

)∣∣∣∣∣ < απ

2
(0 < α ≤ 1, w ∈ U)
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where g is the extension of f−1 to U. The classes S?Σ (α) and KΣ (α) of bi-starlike
functions of order α and bi-convex functions of order α, corresponding to the
function classes S? (α) and K (α) , were also introduced analogously. For each
of the function classes S?Σ (α) and KΣ (α) , they found non-sharp estimates on
the initial coefficients. Recently, many authors investigated bounds for various
subclasses of bi-univalent functions ([1], [3], [7], [9], [13], [15], [20], [21], [22]).

Not much is known about the bounds on the general coefficient |an| for n ≥
4. In the literature, the only a few works determining the general coefficient
bounds |an| for the analytic bi-univalent functions ([2], [6], [10], [11], [12]). The
coefficient estimate problem for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, ...})
is still an open problem.

In this paper, by using the method [17] different from that used by other
authors, we obtain bounds for the coefficients |a2| and |a3| for the subclasses of
bi-univalent functions considered Magesh and Yamini and get more accurate
estimates than that given in [15].

2 Coefficient estimates

In the following, let φ be an analytic function with positive real part in U,
with φ (0) = 1 and φ′ (0) > 0. Also, let φ (U) be starlike with respect to 1
and symmetric with respect to the real axis. Thus, φ has the Taylor series
expansion

φ (z) = 1+ B1z+ B2z
2 + B3z

3 + · · · (B1 > 0) . (2)

Suppose that u (z) and v (w) are analytic in the unit disk U with u (0) =
v (0) = 0, |u (z)| < 1, |v (w)| < 1, and suppose that

u (z) = b1z+

∞∑
n=2

bnz
n, v (w) = c1w+

∞∑
n=2

cnw
n (|z| < 1) . (3)

It is well known that

|b1| ≤ 1, |b2| ≤ 1− |b1|
2 , |c1| ≤ 1, |c2| ≤ 1− |c1|

2 . (4)

Next, the equations (2) and (3) lead to

φ (u (z)) = 1+ B1b1z+
(
B1b2 + B2b

2
1

)
z2 + · · · , |z| < 1 (5)

and
φ (v (w)) = 1+ B1c1w+

(
B1c2 + B2c

2
1

)
w2 + · · · , |w| < 1. (6)



8 Ş. Altınkaya, S. Yalçın

Definition 1 A function f ∈ Σ is said to be SΣ (λ,φ) , 0 ≤ λ ≤ 1, if the
following subordination hold

zf′ (z) +
(
2λ2 − λ

)
z2f′′ (z)

4 (λ− λ2) z+ (2λ2 − λ) zf′ (z) + (2λ2 − 3λ+ 1) f (z)
≺ φ (z)

and

wg′ (w) +
(
2λ2 − λ

)
w2g′′ (w)

4 (λ− λ2)w+ (2λ2 − λ)wg′ (w) + (2λ2 − 3λ+ 1)g (w)
≺ φ (w)

where g (w) = f−1 (w) .

Theorem 1 Let f given by (1) be in the class SΣ (λ,φ) . Then

|a2| ≤
B1
√
B1√∣∣∣(12λ4 − 28λ3 + 15λ2 + 2λ+ 1)B21 − (1+ 3λ− 2λ2)

2
B2

∣∣∣+ (1+ 3λ− 2λ2)
2
B1

(7)

and

|a3| ≤



B1
2(2λ2+1)

; if B1 ≤
(1+3λ−2λ2)

2

2(2λ2+1)

∣∣∣(12λ4−28λ3+15λ2+2λ+1)B21−(1+3λ−2λ2)2B2∣∣∣B1+2(2λ2+1)B31
2(2λ2+1)

[∣∣∣(12λ4−28λ3+15λ2+2λ+1)B21−(1+3λ−2λ2)2B2

∣∣∣+(1+3λ−2λ2)2B1

] ;
if B1 >

(1+3λ−2λ2)
2

2(2λ2+1)
.

(8)

Proof. Let f ∈ SΣ (λ,φ) , 0 ≤ λ ≤ 1. Then there are analytic functions
u, v : U→ U given by (3) such that

zf′ (z) +
(
2λ2 − λ

)
z2f′′ (z)

4 (λ− λ2) z+ (2λ2 − λ) zf′ (z) + (2λ2 − 3λ+ 1) f (z)
= φ (u (z)) (9)

and

wg′ (w) +
(
2λ2 − λ

)
w2g′′ (w)

4 (λ− λ2)w+ (2λ2 − λ)wg′ (w) + (2λ2 − 3λ+ 1)g (w)
= φ (v (w)) (10)

where g (w) = f−1 (w) . Since

zf′ (z) +
(
2λ2 − λ

)
z2f′′ (z)

4 (λ− λ2) z+ (2λ2 − λ) zf′ (z) + (2λ2 − 3λ+ 1) f (z)

= 1+
(
1+ 3λ− 2λ2

)
a2z

+
[(
12λ4 − 28λ3 + 11λ2 + 2λ− 1

)
a22 +

(
4λ2 + 2

)
a3

]
z2 + · · ·
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and

wg′ (w) +
(
2λ2 − λ

)
w2g′′ (w)

4 (λ− λ2)w+ (2λ2 − λ)wg′ (w) + (2λ2 − 3λ+ 1)g (w)

= 1−
(
1+ 3λ− 2λ2

)
a2w

+
[(
12λ4 − 28λ3 + 19λ2 + 2λ+ 3

)
a22 −

(
4λ2 + 2

)
a3

]
w2 + · · · ,

it follows from (5), (6), (9) and (10) that(
1+ 3λ− 2λ2

)
a2 = B1b1, (11)(

12λ4 − 28λ3 + 11λ2 + 2λ− 1
)
a22 +

(
4λ2 + 2

)
a3 = B1b2 + B2b

2
1, (12)

and
−
(
1+ 3λ− 2λ2

)
a2 = B1c1, (13)(

12λ4 − 28λ3 + 19λ2 + 2λ+ 3
)
a22 −

(
4λ2 + 2

)
a3 = B1c2 + B2c

2
1. (14)

From (11) and (13) we obtain

c1 = −b1. (15)

By adding (14) to (12), further computations using (11) to (15) lead to[
2
(
12λ4 − 28λ3 + 15λ2 + 2λ+ 1

)
B21 − 2

(
1+ 3λ− 2λ2

)2
B2

]
a22 = B

3
1 (b2 + c2) .

(16)
(15) and (16), together with (4), give that∣∣∣∣(12λ4 − 28λ3 + 15λ2 + 2λ+ 1)B21 − (1+ 3λ− 2λ2)2 B2∣∣∣∣ |a2|2 ≤ B31 (1− |b1|

2
)
.

(17)
From (11) and (17) we get

|a2| ≤
B1
√
B1√∣∣∣(12λ4 − 28λ3 + 15λ2 + 2λ+ 1)B21 − (1+ 3λ− 2λ2)

2
B2

∣∣∣+ (1+ 3λ− 2λ2)
2
B1

.

Next, in order to find the bound on |a3| , by subtracting (14) from (12), we
obtain

4
(
2λ2 + 1

)
a3 − 4

(
2λ2 + 1

)
a22 = B1 (b2 − c2) + B2

(
b21 − c

2
1

)
. (18)
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Then, in view of (4) and (15) , we have

2
(
2λ2 + 1

)
B1 |a3| ≤

[
2
(
2λ2 + 1

)
B1 −

(
1+ 3λ− 2λ2

)2]
|a2|

2 + B21.

Notice that (7), we get

|a3| ≤



B1
2(2λ2+1)

; if B1 ≤
(1+3λ−2λ2)

2

2(2λ2+1)

∣∣∣(12λ4−28λ3+15λ2+2λ+1)B21−(1+3λ−2λ2)2B2∣∣∣B1+2(2λ2+1)B31
2(2λ2+1)

[∣∣∣(12λ4−28λ3+15λ2+2λ+1)B21−(1+3λ−2λ2)2B2

∣∣∣+(1+3λ−2λ2)2B1

] ;
if B1 >

(1+3λ−2λ2)
2

2(2λ2+1)
.

�

Putting λ = 0 in Theorem 1, we have the following corollary.

Corollary 1 Let f given by (1) be in the class S∗Σ (φ). Then

|a2| ≤
B1
√
B1√∣∣B21 − B2∣∣+ B1

and

|a3| ≤


B1
2
; if B1 ≤

1

2∣∣B21 − B2∣∣B1 + 2B31
2
[∣∣B21 − B2∣∣+ B1] ; if B1 >

1

2
.

The estimates on the coefficients |a2| and |a3| of Corollary 1 are improvement
of the estimates obtained in Corollary 2.1 in [19].

Corollary 2 If let

φ (z) =

(
1+ z

1− z

)α
= 1+ 2αz+ 2α2z2 + ... (0 < α ≤ 1) ,

then inequalities (7) and (8) become

|a2| ≤
2α√

|20λ4 − 44λ3 + 25λ2 − 2λ+ 1|α+ (1+ 3λ− 2λ2)
2

(19)
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and

|a3| ≤


α

2λ2+1
; if 0 < α ≤ (1+3λ−2λ2)

2

4(2λ2+1)

[|20λ4−44λ3+25λ2−2λ+1|+4(2λ2+1)]α2

(2λ2+1)
[
|20λ4−44λ3+25λ2−2λ+1|α+(1+3λ−2λ2)2

] ; if
(1+3λ−2λ2)

2

4(2λ2+1)
< α ≤ 1.

(20)
The bounds on |a2| and |a3| given by (19) and (20) are more accurate than
that given in Theorem 2.1 in [15].

We note that for λ = 0, the class SΣ (λ,φ) reduces to the class of strongly
bi-starlike functions of order α (0 < α ≤ 1) and denoted by S?Σ (α) .

Putting λ = 0 in Corollary 2, we have the following corollary.

Corollary 3 Let f given by (1) be in the class S∗Σ (α) , (0 < α ≤ 1) . Then

|a2| ≤
2α√
α+ 1

(21)

and

|a3| ≤


α; if 0 < α ≤ 1

4

5α2

α+ 1
; if

1

4
< α ≤ 1.

(22)

The bounds on |a3| given by (22) is more accurate than that given by Remark
2.2 in [17] and Theorem 2.1 in [4].

Remark 1 The bounds on |a3| given by (22) is more accurate than that given
in Corollary 2.3 in [18].

Corollary 4 If let

φ (z) =
1+ (1− 2α) z

1− z
= 1+ 2 (1− α) z+ 2 (1− α) z2 + · · · (0 < α ≤ 1) ,

then inequalities (7) and (8) become

|a2| ≤
2 (1− α)√∣∣∣2 (1− α) (12λ4 − 28λ3 + 15λ2 + 2λ+ 1) − (1+ 3λ− 2λ2)

2
∣∣∣+ (1+ 3λ− 2λ2)

2

(23)
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and

|a3| ≤



1−α
2λ2+1

; if
4(2λ2+1)−(1+3λ−2λ2)

2

4(2λ2+1)
≤ α < 1

[∣∣∣2(1−α)(12λ4−28λ3+15λ2+2λ+1)−(1+3λ−2λ2)2∣∣∣+4(1−α)(2λ2+1)](1−α)
(2λ2+1)

[∣∣∣2(1−α)(12λ4−28λ3+15λ2+2λ+1)−(1+3λ−2λ2)2
∣∣∣+(1+3λ−2λ2)2

] ;

if 0 ≤ α < 4(2λ2+1)−(1+3λ−2λ2)
2

4(2λ2+1)
.

(24)
The bounds on |a2| and |a3| given by (23) and (24) are more accurate than
that given in Theorem 3.1 in [15].

Putting λ = 0 in Corollary 4, we have the following corollary.

Corollary 5 Let f given by (1) be in the class S?Σ (α) , (0 ≤ α < 1) . Then

|a2| ≤
2 (1− α)√
1+ |1− 2α|

(25)

and

|a3| ≤


1− α; if

3

4
≤ α < 1

(1− α) |1− 2α|+ 4 (1− α)2

1+ |1− 2α|
; if 0 ≤ α < 3

4
.

(26)

The bounds on |a3| given by (26) is more accurate than that given by Remark
2.2 in [17] and Theorem 3.1 in [4].

Remark 2 The bounds on |a3| given by (26) is more accurate than that given
in Corollary 3.3 in [18].
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Abstract. In this paper we will investigate the growth of solutions of
certain class of nonhomogeneous linear differential equations with entire
coefficients having the same order and type. This work improves and
extends some previous results in [1], [7] and [9].

1 Introduction and main results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution
theory (see [6]). We denote by σ (f) the order of growth of f that defined by

σ (f) = lim sup
r→+∞

log T(r, f)

log r
;

and the type of a meromorphic function f of finite order σ is defined by

τ (f) = lim sup
r→+∞

T(r, f)

rσ
,

2010 Mathematics Subject Classification: Primary 34M10; Secondary 30D35
Key words and phrases: linear differential equations, growth of solutions, entire coeffi-
cients
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where T (r, f) is the Nevanlinna characteristic function of f. We remark that if
f is an entire function then we have

σ (f) = lim sup
r→+∞

log logM(r, f)

log r

and

τM (f) = lim sup
r→+∞

logM(r, f)

rσ

where M (r, f) = max|z|=r |f (z)| .
Consider the linear differential equation

f(k) +Ak−1(z)f
(k−1) + ...+A0(z)f = H (z) , (1)

where A0 6≡ 0,A1, ..., Ak−1, H 6≡ 0 are entire functions. It is well known that
all solutions of (1) are entire functions. The case when the coefficients are
polynomials has been studied by Gundersen, Steinbart and Wang in [5] and
if p is the largest integer such that Ap is transcendental, Frei proved in [3]
that there exist at most p linearely independent finite order solutions of the
corresponding homogeneous equation

f(k) +Ak−1(z)f
(k−1) + ...+A0(z)f = 0. (2)

Several authors studied the case when the coefficients have the same order.
In 2008, Tu and Yi investigated the growth of solutions of the homogeneous
equation (2) when most coefficients have the same order, see [8]. Next, in
2009, Wang and Laine improved this work to nonhomogeneous equation (1)
by proving the following result.

Theorem 1 [9] Suppose that Aj(z) = hj (z) e
Pj(z) (j = 0, ..., k− 1) , where

Pj (z) = ajnz
n + .....+ aj0 are polynomials with degree n ≥ 1, hj (z) are entire

functions of order less than n, not all vanishing, and that H (z) 6≡ 0 is an en-
tire function of order less than n. If ajn (j = 0, ..., k− 1) are distinct complex
numbers, then every solution of (1) is of infinite order.

Now how about the case when ajn (j = 0, ..., k− 1) are equals? we will
answer this question in this paper. For the homogeneous equation case, Huang
and Sun proved the following result.

Theorem 2 [7] Let Aj(z) = Bj (z) e
Pj(z) (j = 0, ..., k− 1) ,where Bj (z) are en-

tire functions, Pj (z) are non constant polynomials with
deg (Pj (z) − Pi (z)) ≥ 1 and max {σ (Bj) , σ (Bi)} < deg (Pj (z) − Pi (z)) (i 6= j).
Then every transcendental solution f of (2) satisfies σ (f) =∞.
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The nonhomogeneous case of this result is improved later in Theorem 4.
Recentely, in [1] the authors investigated the order and hyper-order of solutions
of the linear differential equation

f(k)+
(
Ak−1(z)e

Pk−1(z)eλz
m

+Bk−1(z)
)
f(k−1)+...+

(
A0(z)e

P0(z)eλz
m

+B0(z)
)
f = 0,

where λ ∈ C − {0} , m ≥ 2 is an integer and maxj=0,...,k−1 {deg Pj (z)} <
m, Aj, Bj (j = 0, ..., k− 1) are entire functions of order less than m.

In this paper we will investigate certain class of nonhomogeneous linear
differential equations with entire coefficients having the same order and type.
In fact we will prove the following results.

Theorem 3 Consider the linear differential equation

f(k) + Bk−1 (z) e
Pk−1(z)eλz

m

f(k−1) + ...+ B0 (z) e
P0(z)eλz

m

f = H (z) , (3)

where λ 6= 0 is a complex constant, m ≥ 2 is an integer, Pj (z) = ajnz
n +

...+ aj0 (j = 0, ..., k− 1) be non constant polynomials such that n < m; B0 6≡
0, B1, ..., Bk−1, H 6≡ 0 are entire functions of order smaller than n. If one of
the following occurs:

(1) ajn (j = 0, ..., k− 1) are distinct complex numbers;

(2) there exist s, t ∈ {0, 1, ..., k− 1} such that argasn 6= argatn and for j 6=
s, t ajn = cjasn or ajn = cjatn with 0 < cj < 1, BsBt 6≡ 0;

then every solution of (3) is of infinite order.

Corollary 1 Consider the linear differential equation

f(k) + Bk−1 (z) e
λz3+ak−1z

2+bk−1zf(k−1) + ...+ B0 (z) e
λz3+a0z

2+b0zf = H (z)

where λ ∈ C − {0} , aj are distinct complex numbers (or satisfy the condition
(2) of Theorem 3) and B0 6≡ 0, B1, ..., Bk−1, H 6≡ 0 are entire functions of order
smaller than 2. Then every solution f of this differential equation is of infinite
order.

Theorem 4 Let Aj(z) = Bj (z) e
Pj(z) (j = 0, ..., k− 1) , where Bj (z) are entire

functions, Pj (z) be non constant polynomials with
deg (Pj (z) − Pi (z)) ≥ 1 and max {σ (Bj) , σ (Bi)} < deg (Pj (z) − Pi (z)) (i 6= j) ,
and let H (z) 6≡ 0 be an entire function of order less than 1. Then every solution
of (1) is of infinite order.
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Example 1 Consider the linear differential equation

f(4) +B3 (z) e
z2+zf(3) +B2 (z) e

2z2+zf′′ +B1 (z) e
2z2+izf′ +B0 (z) e

z2+izf = H (z) ,

where B0 6≡ 0, B1, B2, H 6≡ 0 are entire functions of order less than 1. By
Theorem 4, every solution of this differential equation is of infinite order.

Theorem 5 Let Aj (z) = Bj (z)Pj

(
eR(z)

)
+Gj (z)Qj(e

−R(z)) for j = 0, 1, ..., k−

1 where P
j
(z), Qj(z) and R(z) = cdz

d + ...+ c1z+ c0 (d ≥ 1) are polynomials;
and let Bj (z) , Gj (z) , H (z) 6≡ 0 be entire functions of order less than d.
Suppose that B0 (z)P0 (z)+G0 (z)Q0(z) 6≡ 0 and there exists s (0 ≤ s ≤ k− 1)
such that for j 6= s, deg Ps > deg Pj and degQs > degQj. Then every solution
f of (1) is of infinite order.

Example 2 By Theorem 5, every solution of the differential equation

f′′ + sin
(
2z2

)
f′ + cos

(
z2
)
f = sin z

is of infinite order.

2 Preliminaries Lemmas

We need the following lemmas for our proofs.

Lemma 1 [4] Let f(z) be a transcendental meromorphic function of finite
order σ, and let ε > 0 be a given constant. Then there exists a set E ⊂ [0, 2π)
of linear measure zero such that for all z = reiθ with |z| sufficiently large and
θ ∈ [0, 2π) \E, and for all k, j, 0 ≤ j ≤ k, we have∣∣∣∣∣f(k) (z)f(j) (z)

∣∣∣∣∣ ≤ |z|(k−j)(σ−1+ε) .

Lemma 2 [2] Let P (z) = anz
n + ...+ a0, (an = α+ iβ 6= 0) be a polynomial

with degree n ≥ 1 and A (z) ( 6≡ 0) be entire function with σ (A) < n. Set
f (z) = A (z) eP(z), z = reiθ, δ (P, θ) = α cosnθ − β sinnθ. Then for any given
ε > 0, there exists a set E ⊂ [0, 2π) that has linear measure zero, such that
for any θ ∈ [0, 2π) \E ∪H, where H = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set,
there is R > 0 such that for |z| = r > R, we have
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(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1+ ε) δ (P, θ) rn} ,

(ii) if δ (P, θ) < 0, then

exp {(1+ ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1− ε) δ (P, θ) rn} .

Lemma 3 [7] Let n ≥ 2 and Aj (z) = Bj (z) e
Pj(z) (1 ≤ j ≤ n) , where each

Bj (z) is an entire function and Pj (z) is a nonconstant polynomial. Suppose that
deg (Pj (z) − Pi (z)) ≥ 1, max {σ (Bj) , σ (Bi)} < deg (Pj (z) − Pi (z)) for i 6= j.
Then there exists a set H1 ⊂ [0, 2π) that has linear measure zero, such that
for any given constant M > 0 and z = reiθ, θ ∈ [0, 2π) − (H1 ∪H2), we have
some integer s = s (θ) ∈ {1, 2, ..., n} , for j 6= s,∣∣Aj (reiθ)∣∣ |z|M

|As (reiθ)|
→ 0, as r→∞,

where H2 = {θ ∈ [0, 2π) : δ (Pj, θ) = 0 or δ (Pi − Pj, θ) = 0, i 6= j} is a finite
set.

Lemma 4 [9] Let f (z) be an entire function and suppose that

G (z) =
log+

∣∣f(k) (z)∣∣
|z|σ

is unbounded on some ray argz = θ with constant σ > 0. Then there exists an
infinite sequence of points zn = rne

iθ (n = 1, 2, ...) , where rn → ∞, such that
G (zn)→∞ and∣∣f(j) (zn)∣∣∣∣f(k) (zn)∣∣ ≤ 1

(k− j) !
(1+ o (1)) rk−jn , j = 0, 1, ..., k− 1

as n→∞.
Lemma 5 [9] Let f (z) be an entire function with finite order σ (f). Suppose
that there exists a set E ⊂ [0, 2π) which has linear measure zero, such that
log+|f

(
reiθ

)
| ≤Mrσfor any ray arg z = θ ∈ [0, 2π) \E, where M is a positive

constant depending on θ, while σ is a positive constant independent of θ. Then
σ (f) ≤ σ.
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Lemma 6 [10] Suppose that f1 (z) , f2 (z) , ..., fn (z) (n ≥ 2) are linearly inde-
pendent meromorphic functions and g1 (z) , g2 (z) , ..., gn (z) are entire fuctions
satisfying the following conditions

(i)
n∑
j=1

fj (z) e
gj(z) ≡ 0.

(ii) gj (z) − gk (z) are not constants for 1 ≤ j < k ≤ n.
(iii) For 1 ≤ i ≤ n, 1 ≤ j < k ≤ n,

T (r, fj) = o
{
T
(
r, egj(z)−gk(z)

)}
, (r→∞, r /∈ E)

where E is a set with finite linear measure.
Then fj ≡ 0, 1 ≤ j ≤ n.

3 Proof of main results

Proof. [Proof of Theorem 3] We will prove the two cases together. If we
suppose that f is a solution of (3) of finite order σ (f) = σ < ∞, (contrary
to the assertion), then σ ≥ n. Indeed, if σ < n then we get the following
contradiction. From (3), we can write(

Bk−1 (z) e
Pk−1(z)f(k−1) + ...+ B0 (z) e

P0(z)f
)
eλz

m

= H (z) − fk. (4)

Now for the condition (1), if Bk−1 (z) e
Pk−1(z)f(k−1)+ ...+B0 (z) e

P0(z)f ≡ 0, then
by Lemma 6, we have B0 (z) f ≡ 0, and since B0 (z) 6≡ 0, then f ≡ 0, which
implies that H (z) ≡ 0, a contradiction. So

Bk−1 (z) e
Pk−1(z)f(k−1) + ...+ B0 (z) e

P0(z)f 6≡ 0.

Then the order of growth of the left side of (4) is equal m and the order of
the right side is smaller than n, a contradiction. So, we have σ (f) = σ ≥ n.
And for the condition (2), to apply Lemma 6 we may collecte terms of the
same power, and we have at least two terms linearly independents: if

Bs (z) f
(s)ePs(z) + Bt (z) f

(t)ePt(z) +

p∑
u=1

Gue
cjuPs(z) +

q∑
v=1

Lve
civPt(z) ≡ 0

by Lemma 6, Bs (z) f
(s) ≡ 0, and since Bs (z) 6≡ 0, then f(s) ≡ 0 and so f(k) ≡ 0,

which implies that H (z) ≡ 0, a contradiction. So

Bs (z) f
(s)ePs(z) + Bt (z) f

(t)ePt(z) +

p∑
u=1

Gue
cjuPs(z) +

q∑
v=1

Lve
civPt(z) 6≡ 0.
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By similar reasoning as above we get σ (f) = σ ≥ n.
By Lemma 1, for any given ε (0 < ε < 1) , there exists a set E1 ⊂ [0, 2π) that
has linear measure zero , such that if ψ ∈ [0, 2π) \E1, then∣∣f(j) (z)∣∣∣∣f(i) (z)∣∣ ≤ |z|kσ , 0 ≤ i < j ≤ k (5)

as z→∞ along arg z = ψ. Denote E2 = {θ ∈ [0, 2π) : δ (Pj, θ) = 0, 0 ≤ j ≤ k}∪
{θ ∈ [0, 2π) : δ (Pj − Pi, θ) = 0, 0 ≤ i < j ≤ k}∪{θ ∈ [0, 2π) : δ (λzm, θ) = 0}, so
E2 is a finite set. Suppose that Hj ⊂ [0, 2π) is the exceptional set applying
lemma 2 to Aj (z) = Bj (z) e

λzm+Pj(z) (j = 0, ..., k− 1) . Then E3 = ∪k−1j=0Hj has
linear measure zero. Set E = E1 ∪ E2 ∪ E3. Take arg z = ψ ∈ [0, 2π) − E. We
need to treat two principal cases:
Case (i): δ = δ (λzm, ψ) < 0. By lemma 2, for a given 0 < ε < 1, we have

|Aj (z)| ≤ exp {(1− ε) δrm} . (6)

Now we prove that
log+

∣∣f(k) (z)∣∣
|z|σ(H)+ε

is bounded on the ray arg z = ψ0. Sup-

pose that it is not the case. By Lemma 4, there is a sequence of points
zi = rie

iθ (i = 1, 2, ...), such that ri →∞ as i→∞, and that

log+
∣∣f(k) (zi)∣∣

|zi|
σ(H)+ε

→∞ (7)

and ∣∣f(j) (zi)∣∣∣∣f(k) (zi)∣∣ ≤ (1+ o (1)) rt−ji , j = 0, 1, ..., k− 1. (8)

From (7) and the definition of the order σ (H), it is easy to see that∣∣∣∣ H (zi)

f(k) (zi)

∣∣∣∣→ 0 (9)

as zi →∞. From (3), we obtain

1 ≤ |Ak−1 (zi)|

∣∣∣∣∣f(k−1) (zi)f(k) (zi)

∣∣∣∣∣+ ...+ |A0 (zi)|

∣∣∣∣ f (zi)f(k) (zi)

∣∣∣∣+ ∣∣∣∣ H (zi)

f(k) (zi)

∣∣∣∣ . (10)

Using (5)-(9) in (10), we get

1 ≤ rki exp{(1− ε) δrmi }.
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This is impossible since δ < 0. Therefore
log+|f(k) (zi) |

|zi|σ(H)+ε
is bounded on the ray

arg z = ψ. Assume that
log+|f(k) (zi) |

|zi|σ(H)+ε
≤M1 (M1 is a constant) and so

|f(k) (z) | ≤M1 exp{rσ(H)+ε}. (11)

Using the elementary triangle inequality for the well know equality

f (z) = f (0)+f′ (0) z+...+
1

(k− 1) !
f(k−1) (0) zk−1+

z∫
0

...

ξ1∫
0

f(k) (ξ)dξdξ1...dξk−1,

and (11), we obtain

|f (z)| ≤ (1+ o (1)) rk|f(k) (z) | ≤ (1+ o (1))M1r
k exp{rσ(H)+ε} ≤ exp{rσ(H)+2ε},

(12)
on any ray arg z = ψ ∈ [0, 2π) − E.
Case (ii): δ = δ (λzm, ψ) > 0. Now we pass to δj = δ (Pj, ψ) . For the condition
(1), since ajn (j = 0, ..., k− 1) are distinct complex numbers, then there exists
some s ∈ {0, 1, 2..., k− 1} such that δs > δj for all j 6= s. For the condition
(2), set δ′ = max {δs, δt} and without loss of generality we may assume that
δ′ = δs. In both cases, we have∣∣∣∣Aj (z)As (z)

∣∣∣∣ |z|M → 0, and
|z|M

|As (z)|
→ 0, (13)

as |z| → ∞, for any M > 0. Suppose that
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is unbounded on the

ray arg z = ψ. Then by lemma 4 there is a sequence of points zi = rie
iψ, such

that ri →∞, and
log+

∣∣f(s) (zi)∣∣
|zm|

σ(H)+ε
→∞, (14)

and ∣∣f(j) (zi)∣∣∣∣f(s) (zi)∣∣ ≤ (1+ o (1)) rs−ji , j = 0, 1, ..., s− 1. (15)

From (14) and the definition of order, it is easy to see that∣∣∣∣ H (zi)

f(s) (zi)

∣∣∣∣→ 0 (16)
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as ri →∞. From (3), we can write

1 ≤ 1

|As (zi)|

∣∣∣∣∣f(k) (zi)f(s) (zi)

∣∣∣∣∣+
∣∣∣∣∣f(k−1) (zi)f(s) (zi)

∣∣∣∣∣ |Ak−1 (zi)||As (zi)|
+ ... (17)

+

∣∣∣∣∣f(s+1) (zi)f(s) (zi)

∣∣∣∣∣ |As+1 (zi)||As (zi)|
+

∣∣∣∣∣f(s−1) (zi)f(s) (zi)

∣∣∣∣∣ |As−1 (zi)||As (zi)|
+ ...

+

∣∣∣∣ f (zi)f(s) (zi)

∣∣∣∣ |A0 (zi)||As (zi)|
+

1

|As (zi)|

∣∣∣∣ H (zi)

f(s) (zi)

∣∣∣∣ ;
and by using (5), (13), (15) and (16) in (17) a contradiction follows as zi →∞.
Then

log+|f(s) (zi) |

|zi|σ(H)+ε
is bounded and we have |f(s) (z) | ≤ M2 exp{rσ(H)+ε} on

the ray arg z = ψ. This implies, as in Case (i), that

|f (z)| ≤ exp{rσ(H)+2ε}.

We conclude that in all cases we have

|f (z)| ≤ exp{rσ(H)+2ε}

on any ray arg z = ψ ∈ [0, 2π) − E, provided that r is large enough. Then
by Lemma 5, σ (f) ≤ σ (H) + 2ε < n (0 < 2ε < n− σ (H)) , a contradiction.
Hence, every solution of (3) must be of infinite order. �

Proof. [Proof of Theorem 4] We suppose contrary to the assertion that f is
a solution of (1) of finite order σ (f) = σ < ∞. First we prove that σ ≥ 1.
Indeed, if σ < 1 then we will have the following contradiction. From (1), we
can write

Bk−1 (z) e
Pk−1(z)f(k−1) + ...+ B0 (z) e

P0(z)f = H (z) − f(k). (18)

By the same rasoning as in the proof of Theorem 3, we get that the order of
the left side of (18) is greather than or equal to 1 and the order of the right
side of (18) is smaller than 1, a contradiction. Therefore σ ≥ 1.
Take arg z = ψ ∈ [0, 2π) − E where E has linear measure zero and set δj =
δ (Pj, ψ) (j = 0, ..., k− 1) . By Lemma 3, there exists some s ∈ {0, 1, 2..., k− 1}
such that for j 6= s, M > 0, we have∣∣∣∣Aj (z)As (z)

∣∣∣∣ |z|M → 0, as z→∞. (19)
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We need to treat two cases:
Case (i): δs > 0. In this case we have also

1

|As (z)|
|z|M → 0, as z→∞. (20)

We prove that
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded on the ray arg z = ψ. Suppose that

it is not the case. Then by lemma 4 there is a sequence of points zi = rie
iψ0 ,

such that ri →∞, and (14), (15), (16) hold. As in the proof of Theorem 3, by

using (17) we get a contradiction. Therefore,
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded and so

we conclude that

|f (z)| ≤ exp{rσ(H)+2ε}. (21)

Case (ii): δs < 0. Obsiouly in this case δj < 0 for all j and we have

|Aj (z)| ≤ exp
{
(1− ε) δjr

dj
}
,

where dj = deg (Pj) ; which implies that

|Aj (z)| |z|
M → 0, as z→∞.

We use the same reasoning as in Case (i) in the proof of Theorem 3, we prove

that
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded on the ray arg z = ψ and we conclude that

|f (z)| ≤ exp{rσ(H)+2ε}.

Then by Lemma 5, σ (f) ≤ σ (H) + 2ε < 1 (0 < 2ε < 1− σ (H)) , a contradic-
tion. So, every solution of (1) must be of infinite order. �

Proof. [Proof of Theorem 5] Suppose that f is a solution of (1) of finite
order σ (f) = σ < ∞. By the same reasoning as in the proof of Theorem
4 and taking account the assumption that B0 (z)P0 (z) + G0 (z)Q0(z) 6≡ 0

and there exists s (0 ≤ s ≤ k− 1) such that for j 6= s, deg Ps > deg Pj and
degQs > degQj, we can prove that σ ≥ d.
Set δ (R, θ) = Real

(
cdeidθ

)
and

P
j

(
eR(z)

)
= ajmj

emjR(z) + aj(mj−1)e
(mj−1)R(z) + ...+ aj1e

R(z) + aj0,
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Q
j

(
e−R(z)

)
= bjnj

e−njR(z) + bj(nj−1)e
−(nj−1)R(z) + ...+ bj1e

−R(z) + bj0.

By Lemma 2, it is easy to get the following
(i) If δ (R, θ) > 0, then

exp
{
(1− ε)mjδ (R, θ) r

d
}
≤ |Aj (z)| ≤ exp

{
(1+ ε)mjδ (R, θ) r

d
}
, (22)

(ii) if δ (R, θ) < 0, then

exp
{
−(1− ε)njδ (R, θ) r

d
}
≤ |Aj (z)| ≤ exp

{
−(1+ ε)njδ (R, θ) r

d
}
. (23)

Take arg z = ψ ∈ [0, 2π) − E where E has linear measure zero. We prove that

log+
∣∣f(s) (z)∣∣

|z|σ(H)+ε
is bounded on the ray arg z = ψ. Suppose that it is not the case.

Then by lemma 4 there is a sequence of points zi = rie
iψ0 , such that ri →∞,

and (14), (15), (16) hold. From (1) we can write

|As (zi)| ≤

∣∣∣∣∣f(k) (zi)f(s) (zi)

∣∣∣∣∣+ |Ak−1 (zi)|

∣∣∣∣∣f(k−1) (zi)f(s) (zi)

∣∣∣∣∣+ ... (24)

+ |As+1 (zi)|

∣∣∣∣∣f(s+1) (zi)f(s) (zi)

∣∣∣∣∣+ |As−1 (zi)|

∣∣∣∣∣f(s−1) (zi)f(s) (zi)

∣∣∣∣∣+ ...
+ |A0 (zm)|

∣∣∣∣ f (zi)f(s) (zi)

∣∣∣∣+ ∣∣∣∣ H (zi)

f(s) (zi)

∣∣∣∣ .
If δ (R, θ) > 0, then by using (14), (15), (16) and (22) in (24), we obtain

exp
{
(1− ε)msδ (R, θ) r

d
i

}
≤ rMi exp

{
(1+ ε) (ms − 1) δ (R, θ) r

d
i

}
,

where M > 0 is a constant. A contradiction follows by taking 0 < ε < 1
2ms−1

.

Now if δ (R, θ) < 0, by using (23) instead of (22) in (24), we obtain

exp
{
−(1− ε)nsδ (R, θ) r

d
}
≤ rMi exp

{
−(1+ ε) (ns − 1) δ (R, θ) r

d
i

}
,

a contradiction follows by taking 0 < ε < 1
2ns−1

.

Therefore,
log+

∣∣f(s) (z)∣∣
|z|σ(H)+ε

is bounded on any ray arg z = ψ ∈ [0, 2π) − E and so

as the previous reasoning we conclude that

|f (z)| ≤ exp{rσ(H)+2ε}.

Then by Lemma 5, σ (f) ≤ σ (H) + 2ε < d (0 < 2ε < d− σ (H)) , a contradic-
tion. So, every solution of (1) must be of infinite order. �
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linéaire, C. R. Acad. Sci. Paris, 236 (1953), 38–40.

[4] G. G. Gundersen, Estimates for the logarithmic derivative of a meromor-
phic function, plus similar estimates, J. Lond. Math. Soc. 37 (2) (1988),
88–104.

[5] G. G. Gundersen, M. Steinbart, S. Wang, Growth and oscillation theory
of non-homogeneous linear differential equations, Proc. Edinb. Math. Soc.
(2), 43 (2000), 343–359.

[6] W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.

[7] Z. G. Huang, G. R. Sun, Oscillation of higher-order linear differential
equations with entire coefficients, Electron. J. Differential Equations, 81
(2010), pp. 1–11.

[8] J. Tu, C.-F. Yi, On the growth of solutions of a class of higher order linear
differential equations with entire coefficients having the same order, J.
Math. Anal. Appl. 340 (2008), 487–497.

[9] J. Wang, I. Laine, Growth of solutions of nonhomogeneous linear differ-
ential equations, Abstr. Appl. Anal. (2009), ID 363927, 11 pages.

[10] H. X. Yi, C. C. Yang; The uniqueness theory of meromorphic functions,
Science Press, Beijing, 1995.

Received: 20 June 2014



Acta Univ. Sapientiae, Mathematica, 7, 1 (2015) 27–34

DOI: 10.1515/ausm-2015-0003

On the maximal exponent of the prime

power divisor of integers

Imre Kátai
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Eötvös Loránd University
Budapest, Hungary

email: katai@inf.elte.hu

Bui Minh Phong
Faculty of Informatics

Eötvös Loránd University
Budapest, Hungary

email: bui@inf.elte.hu

Abstract. The largest exponent of the prime powers function is inves-
tigated on the set of numbers of form one plus squares of primes.

1 Introduction

1.1. Notation. Let, as usual, P, N be the set of primes, positive integers,
respectively. For a prime divisor p of n let νp(n) be defined by pνp(n)‖n. Then
n =
∏
p|n p

νp(n). Let

H(n) = max
p|n

νp(n) and h(n) = min
p|n

νp(n).

We denote by π(x) the number of primes p ≤ x and by π(x, k, `) the number
of primes p ≤ x, p ≡ ` (mod k).
1.2. Preliminaries. A. Niven proved in [7] that

∑
n≤x

h(n) = x+
ζ(3/2)

ζ(3)

√
x+ o(

√
x) (x→∞) (1)
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and that

1

x

∑
n≤x

H(n)→ B (x→∞), where B = 1+

∞∑
k=2

(1−
1

ζ(k)
). (2)

W. Schwarz and J. Spilker showed in [8] that∑
n≤x

H(n) =M(H)x+O
(
x3/4 exp(−γ

√
log x)

)
(x→∞), (3)

∑
n≤x

1

H(n)
=M

( 1
H

)
x+O(x3/4 exp(−γ

√
log x) (x→∞), (4)

where γ > 0 is a suitable constant, M(H) = B, M
(
1
H

)
are suitable positive

numbers.
D. Suryanayana and Sita Ramachandra Rao [9] proved that the error term

in (3) and (4) can be improved to

O(
√
x exp(−γ(log x)3/5(log log x)−1/5)).

They proved furthermore that∑
n≤x

h(n) = c1x+ c2x
1/2 + c3x

1/3 + c4x
1/4 + c5x

1/5 +O(x1/6), (5)

∑
n≤x

1

h(n)
= d1x+ d2x

1/2 + d3x
1/3 + d4x

1/4 + d5x
1/5 +O(x1/6). (6)

Gu Tongxing and Cao Huizhong announced in [4] that they can improve the
error term in (3) to

O(
√
x exp(−c(log x)3/5(log log x)−1/5)).

I. Kátai and M. V. Subbarao [5] investigated the asymptotic of

Ax(r) := \{n ∈ [x, x+ Y] | H(n) = r}, Y = x
1

2r+1 log x,

and

Bx(r) := \{p ∈ P, p ∈ [x, x+ Y] | H(p+ 1) = r}, Y = x
7
12

+ε

for fixed r ≥ 1.
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Namely, they proved that

Ax(r) = Y
(
η(r+ 1) − η(r)

)
+O

( Y

log x

)
, η(s) =

1

ζ(s)
− 1 (s = 1, 2, · · · )

and

Bx(r) = e(r)
Y

log x
+O

( Y

(log x)2

)
,

where

e(1) =
∏
p∈P

(
1−

1

p(p− 1)

)
,

and for r ≥ 2

e(r) =
∏
p∈P

(
1−

1

(p− 1)pr

)
−
∏
p∈P

(
1−

1

(p− 1)pr−1

)
.

In [6] we can read some results on (5) assuming the Riemann conjecture.
Our main interest now is to give the asymptotic of the number of those

n ≤ x, n ∈ B, for which H(n) = r uniformly as 1 ≤ r ≤ κ(x), where κ(x) is as
large as it is possible. We shall investigate it when B = set of shifted primes.
1.3. Auxiliary results.

Lemma 1 (Brun-Titchmarsh inequality). We have

π(x, k, `) < C
x

ϕ(k) log x
k

.

Lemma 2 (Siegel-Walfisz theorem). We have

π(x, k, `) =
lix

ϕ(k)

(
1+O(e−c

√
log x)

)
uniformly as (k, `) = 1, k ≤ (log x)A. Here A is arbitrary, c > 0 is a fixed
constant.

Lemma 3 ([1]) Let q be an odd prime, D = qn (n = 1, 2, · · · ), ε > 0 be
an arbitrary small, and M be an arbitrary large positive number. Then the
asymptotic law

π(x,D, `) =
lix

ϕ(D)

(
1+O

(
(log x)−M

))
holds for D ≤ x3/8−ε, (`,D) = 1.
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Lemma 4 ([2]) Let a be an integer, a ≥ 2. If A > 0, then there is a B > 0
for which∑
d≤ x1/2

q (log x)−B

(d,q)=1

max
(r,qd)=1

max
y≤x

∣∣∣π(y, qd, r)− lix

ϕ(qd)

∣∣∣� x

ϕ(q)(log x)A
, lix =

∫x
2

du

logu

uniformly for moduli q ≤ x1/3 exp(−(log log x)3) that are powers of a.
While the implicit constant in � may depend upon a, B is a function of A

alone. B = A+ 6 is permissible.

We shall use a special consequence of this assertion:
Corollary. Let a be an integer, a ≥ 2, D = an (n = 1, 2, · · · ), D ≤
x1/3 exp(−(log log x)3). Let A > 0 be an arbitrary constant. Then

π(x,D, `) =
lix

ϕ(D)

(
1+O

( 1

(log x)A

))
, (`,D) = 1

Lemma 5 ([3]) Let q = pr, p an odd prime, qx
3
5
+ε ≤ h ≤ x. Then

π(x+ h, q, `) − π(x, q, `) = (1+ ox(1))
h

ϕ(q) log x

as x→∞, (`, q) = 1.
2 Formulation of the theorems

Let (0 <)U,V be coprime integers, and let Q be the smallest prime for which

U(1+ 2m) + V ≡ 0 (mod Q)

has a solution, that is

Q =

{
2 if 2|U+ V

smallest prime for which (Q2U) = 1, if 2 - U+ V.

Let

MU,V(x | k) = \{p ≤ x | H(Up+ V) = k}.
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Theorem 1 Assume that r(x) → ∞ arbitrarily slowly. Then, in the interval
r(x) < k < ( 13 − ε)

log x
logQ , we have

MU,V(x | k) =
lix

ϕ(Qk)

(
1−

1

Q

)
· (1+ ox(1)).

Let P(n) = n2 + 1. Then 4 - P(n), 3 - P(n), 5 | P(2), 5 | P(3). For every

k there exists 1 ≤ `k <
5k

2 , such that P(`k) ≡ 0 (mod 5k). The congruence
P(n) ≡ 0 (mod 5k) has exactly two solutions: `k and 5k − `k. It obvious that
(`k, 5) = 1.

Let

E(x | k) = \{p ≤ x | H(p2 + 1) = k}.

Theorem 2 Assume that r(x) → ∞ arbitrarily slowly. Then, in the interval
r(x) < k < ( 13 − ε)

log x
log 5 , we have

E(x | k) =
2

5k
lix(1+ ox(1)).

3 Proof of Theorem 1.

It is obvious that

MU,V(x | k) ≤
∑
q

∗[
Q(x, qk, rq,k) −Q(x, qk+1, rq,k+1)

]
,

where q runs over all those primes for which U(1+ 2m) +V ≡ 0 (mod q) has
a solution, rq,k ≡ VU−1 (mod qk), rq,k+1 ≡ VU−1 (mod qk+1).

By using Lemma 3 and Lemma 1 we obtain that

MU,V(x | k) ≤
lix

ϕ(Qk)

(
1−

1

Q

)
·
(
1+O

( 1

(log x)M

))
+

+ C
∑
q>Q
q∈P

lix

ϕ(qk)
+ C

∑
Q<q

qk≥
√
x

x

qk
.

It is clear that ∑
q>Q
q∈P

1

ϕ(qk)
=
ox(1)

ϕ(Qk)
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and that ∑
qk≥

√
x

q∈P

1

ϕ(qk)
= O

( 1

x1/4

)
,

thus

MU,V(x | k) ≤
(
1+ ox(1)

) lix
Qk
.

On the other hand

MU,V(x | k) ≥
[
Q(x,Qk, rQ,k) −Q(x,Qk+1, rQ,k+1)

]
−
∑
q>Q
q∈P

Q(x,Qkqk, rQq,k).

The sum on right hand side is less than

C
li x

Qk

∑
(Q<)q

1

qk
+O(x3/4) ≤ ox(1)

lix

Qk
.

From Lemma 3 our theorem follows.

4 Proof of Theorem 2

We have

E(x | k) = S+O(T),

where

S = \{p ≤ x : 5k‖p2 + 1}

and

T =
∑
q∈P
q>5

\{p ≤ x : qk‖p2 + 1}.

Thus, by using Lemma 1 and k ≥ γ(x),

T ≤
∑
q∈P
q>5

2Clix

ϕ(qk)
+
∑
qk>x
q∈P

x

qk
= ox(1)

lix

5k
.

Hence we obtain that

E(x | k) ≤ 2

5k
lix(1+ ox(1)).
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On the other hand

E(x | k) ≥ S−
∑
q∈P
q>5

\{p ≤ x : 5k · qk‖p2 + 1}.

By using Lemma 1, the sum on the right can be overestimated by

Cli x

5k

∑
q>5

1

ϕ(qk)
+
x

5k

∑
qk>
√
x

1

qk
,

which is clearly ox(1)S.
This completes the proof of Theorem 2.

5 Further remarks

By using Lemma 5 we can prove short interval version of Theorem 1 and 2.

Theorem 3 Let 5kx3/5+ε ≤ h ≤ x, k ≥ g(x). Then

E(x+ h | k) − E(x) =
h

5k
1

log x
(1+ ox(1)).

Theorem 4 Let Let U,V be coprime integers, U > 0,U + V=odd, Q be the
smallest prime which is not a divisor of 2U. Let k ≥ g(x), Qkx3/5+ε ≤ h ≤ x.
Then

MU,V(x+ h | k) −MU,V(x) = (1+ ox(1))
h

Qk
1

log x
as x→∞.
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1 Introduction, definitions and results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a
finite complex number. We say that f and g share a CM, provided that f− a
and g − a have same zeros with same multiplicities. Similarly, we say that f
and g share a IM, provided that f − a and g − a have same zeros ignoring
multiplicities. In addition we say that f and g share ∞ CM, if 1/f and 1/g
share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [6]). We
denote by T(r) the maximum of T(r, f) and T(r, g). The notation S(r) denotes
any quantity satisfying S(r) = o(T(r)) as r −→ ∞, outside of a possible
exceptional set of finite linear measure.

A meromorphic function a(z) is called a small function with respect to f,
provided that T(r, a) = S(r, f).

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be
a small function with respect to f(z) and g(z). We say that f(z) and g(z) share

2010 Mathematics Subject Classification: Primary 30D35
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nomials
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a(z) CM (counting multiplicities) if f(z)−a(z) and g(z)−a(z) have same zeros
with same multiplicities and we say that f(z), g(z) share a(z) IM (ignoring
multiplicities) if we do not consider the multiplicities.

Throughout this paper, we need the following definition.

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T(r, f)
,

where a is a value in the extended complex plane.
In 1959, W. K. Hayman (see [6], Corollary of Theorem 9) proved the fol-

lowing theorem.

Theorem A Let f be a transcendental meromorphic function and n (≥ 3) is
an integer. Then fnf ′ = 1 has infinitely many solutions.

Fang and Hua [3], Yang and Hua [16] got a unicity theorem respectively
corresponding Theorem A.

Theorem B Let f and g be two non-constant entire (meromorphic) functions,
n ≥ 6 (≥ 11) be a positive integer. If fnf ′ and gng ′ share 1 CM, then either
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(c1c2)
n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1.

Noting that fn(z)f
′
(z) = 1

n+1(f
n+1(z))

′
, Fang [4] considered the case of k-th

derivative and proved the following results.

Theorem C Let f and g be two non-constant entire functions, and let n, k
be two positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM,
then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (−1)k(c1c2)
n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1.

Theorem D Let f and g be two non-constant entire functions, and let n, k be
two positive integers with n > 2k+ 8. If (fn(z)(f(z) − 1))(k) and (gn(z)(g(z) −
1))(k) share 1 CM, then f(z) ≡ g(z).

In 2008, X. Y. Zhang and W. C. Lin [21] proved the following result.

Theorem E Let f and g be two non-constant entire functions, and let n, m
and k be three positive integers with n > 2k +m + 4. If [fn(f − 1)m](k) and
[gn(g− 1)m](k) share 1 CM, then either f ≡ g or f and g satisfy the algebraic
equation R(f, g) = 0, where R(ω1,ω2) = ω

n
1 (ω1 − 1)

m −ωn2 (ω− 1)m.

In 2001 an idea of gradation of sharing of values was introduced in ([7], [8])
which measures how close a shared value is to being share CM or to being
shared IM. This notion is known as weighted sharing and is defined as follows.
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Definition 1 [7, 8] Let k be a nonnegative integer or infinity. For a ∈ C ∪
{∞} we denote by Ek(a; f) the set of all a-points of f, where an a-point of
multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a;g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z0 is
an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g
with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k)
if and only if it is an a-point of g with multiplicity n (> k), where m is not
necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k), then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,∞) respectively.

If a(z) is a small function with respect to f(z) and g(z), we define that f(z)
and g(z) share a(z) IM or a(z) CM or with weight l according as f(z) − a(z)
and g(z) − a(z) share (0, 0) or (0,∞) or (0, l) respectively.

In 2008, L. Liu [12] proved the following.

Theorem F Let f and g be two non-constant entire functions, and let n, m
and k be three positive integers such that n > 5k + 4m + 9. If E0(1, [f

n(f −
1)m](k)) = E0(1, [g

n(g − 1)m](k)) then either f ≡ g or f and g satisfy the
algebraic equation R(f, g) = 0, where R(ω1,ω2) = ω

n
1 (ω1−1)

m−ωn2 (ω2−1)
m.

Recently P. Sahoo [14] proved the following result.

Theorem G Let f and g be two transcendental meromorphic functions and
n (≥ 1), k (≥ 1), m (≥ 0) and l(≥ 0) be four integers. Let [fn(f− 1)m](k)

and [gn(g− 1)m](k) share (b, l) for a nonzero constant b. Then

(1) when m = 0, if f(z) 6= ∞, g(z) 6= ∞ and l ≥ 2, n > 3k + 8 or l = 1,
n > 5k + 10 or l = 0, n > 9k + 14, then either f ≡ tg, where t is a
constant satisfying tn = 1, or f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2

and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = b2,

(2) when m = 1 and Θ(∞; f) > 2
n then either [fn(f−1)](k)[gn(g−1)](k) ≡ b2,

except for k = 1 or f ≡ g, provided one of l ≥ 2, n > 3k + 11 or l = 1,
n > 5k+ 14 orl = 0, n > 9k+ 20 holds; and

(3) when m ≥ 2, and l ≥ 2, n > 3k+m+ 10 or l = 1, n > 5k+ 2m+ 12 or
l = 0, n > 9k+ 4m+ 16, then either [fn(f− 1)m](k)[gn(g− 1)m](k) ≡ b2
except for k = 1 or f ≡ g or f and g satisfying the algebraic equation
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R(f, g) = 0, where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

It is quite natural to ask the following questions.
Question 1: Can lower bound of n be further reduced in Theorems F, G?
Question 2: Can one remove the condition f 6= ∞, g 6= ∞ when m = 0 in
Theorem G?

In this paper, taking the possible answer of the above questions into back-
ground we obtain the following results which improve and generalize Theorems
F, G.

Theorem 1 Let f and g be two transcendental meromorphic functions and
let p(z) be a nonzero polynomial with deg(p) = l. Suppose [fn(f− 1)m](k) − p

and [gn(g− 1)m](k) − p share (0, k1), where n(≥ 1), k(≥ 1), m(≥ 0) are three
integers. Now when one of the following conditions holds:

(i) k1 ≥ 2 and n > 3k+m+ 8(= s2);

(ii) k1 = 1 and n > 4k+ 3m
2 + 9(= s1);

(iii) k1 = 0 and n > 9k+ 4m+ 14(= s0);

then the following conclusions occur

(1) when m = 0, then either f ≡ tg, where t is a constant satisfying tn = 1,
or if p(z) is not a constant and n > max{si, 2k+ 2l− 1}, i = 0, 1, 2, then
f(z) = c1e

cQ(z), g(z) = c2e
−cQ(z), where Q(z) =

∫z
0 p(z)dz, c1, c2 and c

are constants such that (nc)2(c1c2)
n = −1, if p(z) is a nonzero constant

b, then f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4 and d are constants
such that (−1)k(c3c4)

n(nd)2k = b2;

(2) when m = 1 and Θ(∞; f)+Θ(∞;g) > 4
n , then either [fn(f−1)](k)[gn(g−

1)](k) ≡ p2, except for k = 1 or f ≡ g;

(3) when m ≥ 2, then either [fn(f − 1)m](k)[gn(g − 1)m](k) ≡ p2 except for
k = 1 or f ≡ g or f and g satisfying the algebraic equation R(f, g) = 0,
where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

In addition, when f and g share (∞, 0), then the possibility [fn(f−1)m](k)[gn

(g− 1)m](k) ≡ p2 does not occur for m ≥ 1.
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Remark 1 When f and g share ∞ IM then the conditions (i), (ii) and (iii)
of Theorem 1 will be replaced by respectively l ≥ 2 and n > 3k+m+ 7, l = 1
and n > 4k+ 3m

2 + 8 and l = 0 and n > 9k+ 4m+ 13.

Theorem 2 Let f and g be two transcendental entire functions and let p(z)

be a nonzero polynomial with deg(p) = l. Suppose [fn(f− 1)m](k) − p and

[gn(g− 1)m](k) − p share (0, k1), where n (≥ 1), k (≥ 1), m (≥ 0) are three
integers. Now when one of the following conditions holds:

(i) k1 ≥ 2 and n > 2k+m+ 4(= s2);

(ii) k1 = 1 and n > 5k+3m+9
2 (= s1);

(iii) k1 = 0 and n > 5k+ 4m+ 7(= s0);

then the following conclusions occur

(1) when m = 0, then either f ≡ tg, where t is a constant satisfying tn = 1,
or if p(z) is not a constant and n > max{si, k + 2l}, i = 0, 1, 2, then
f(z) = c1e

cQ(z), g(z) = c2e
−cQ(z), where Q(z) =

∫z
0 p(z)dz, c1, c2 and c

are constants such that (nc)2(c1c2)
n = −1,

if p(z) is a nonzero constant b, then f(z) = c3e
dz, g(z) = c4e

−dz, where
c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k = b2;

(2) when m = 1 then f ≡ g;

(3) when m ≥ 2, then either f ≡ g or f and g satisfying the algebraic
equation R(f, g) = 0, where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

We now explain some definitions and notations which are used in the paper.

Definition 2 [10] Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 3 {11, cf.[18]} For a ∈ C∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).
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Definition 4 Let a, b ∈ C ∪ {∞}. Let p be a positive integer. We denote by
N(r, a; f | ≥ p | g = b) (N(r, a; f | ≥ p | g 6= b)) the reduced counting function
of those a-points of f with multiplicities ≥ p, which are the b-points (not the
b-points) of g.

Definition 5 {cf.[1], 2} Let f and g be two non-constant meromorphic func-
tions such that f and g share the value 1 IM. Let z0 be a 1-point of f with
multiplicity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the

counting function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f)

the counting function of those 1-points of f and g where p = q = 1 and by

N
(2
E (r, 1; f) the counting function of those 1-points of f and g where p = q ≥ 2,

each point in these counting functions is counted only once. In the same way

we can define NL(r, 1;g), N
1)
E (r, 1;g), N

(2
E (r, 1;g).

Definition 6 {cf.[1], 2} Let k be a positive integer. Let f and g be two non-
constant meromorphic functions such that f and g share the value 1 IM. Let
z0 be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We
denote by Nf>k (r, 1;g) the reduced counting function of those 1-points of f
and g such that p > q = k. Ng>k (r, 1; f) is defined analogously.

Definition 7 [7, 8] Let f, g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a;g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a;g).

2 Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We
denote by H the function as follows:

H =

(
F ′′

F ′
−

2F ′

F− 1

)
−

(
G ′′

G ′
−

2G ′

G− 1

)
. (1)

Lemma 1 [15] Let f be a non-constant meromorphic function and let an(z)( 6≡
0), an−1(z), ... , a0(z) be meromorphic functions such that T(r, ai(z)) = S(r, f)
for i = 0, 1, 2, ..., n. Then

T(r, anf
n + an−1f

n−1 + ...+ a1f+ a0) = nT(r, f) + S(r, f).



Certain non-linear differential polynomials ... 41

Lemma 2 [20] Let f be a non-constant meromorphic function, and p, k be
positive integers. Then

Np

(
r, 0; f(k)

)
≤ T

(
r, f(k)

)
− T(r, f) +Np+k(r, 0; f) + S(r, f), (2)

Np

(
r, 0; f(k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (3)

Lemma 3 [9] If N(r, 0; f(k) | f 6= 0) denotes the counting function of those zeros
of f(k) which are not the zeros of f, where a zero of f(k) is counted according
to its multiplicity, then

N(r, 0; f(k) | f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 4 [11] Let f1 and f2 be two non-constant meromorphic functions sat-
isfying N(r, 0; fi) + N(r,∞; fi) = S(r; f1, f2) for i = 1, 2. If fs1f

t
2 − 1 is not

identically zero for arbitrary integers s and t(|s| + |t| > 0), then for any posi-
tive ε, we have

N0(r, 1; f1, f2) ≤ εT(r) + S(r; f1, f2),

where N0(r, 1; f1, f2) denotes the deduced counting function related to the com-
mon 1-points of f1 and f2 and T(r) = T(r, f1) + T(r, f2), S(r; f1, f2) = o(T(r))
as r −→ ∞ possibly outside a set of finite linear measure.

Lemma 5 [6] Suppose that f is a non-constant meromorphic function, k ≥ 2
is an integer. If

N(r,∞, f) +N(r, 0; f) +N(r, 0; f(k)) = S(r,
f
′

f
),

then f(z) = eaz+b, where a 6= 0, b are constants.

Lemma 6 [5] Let f(z) be a non-constant entire function and let k ≥ 2 be
a positive integer. If f(z)f(k)(z) 6= 0, then f(z) = eaz+b, where a 6= 0, b are
constant.

Lemma 7 [19] Let f be a non-constant meromorphic function, and let k be a
positive integer. Suppose that f(k) 6≡ 0, then

N(r, 0; f(k)) ≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).
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Lemma 8 Let f and g be two non-constant meromorphic functions. Let n (≥
1), k (≥ 1) and m (≥ 0) be three integers such that n > 3k + m + 1. If
[fn(f− 1)m](k) ≡ [gn(g− 1)m](k), then fn(f− 1)m ≡ gn(g− 1)m.

Proof. We have [fn(f− 1)m](k) ≡ [gn(g− 1)m](k). Integrating we get

[fn(f− 1)m](k−1) ≡ [gn(g− 1)m](k−1) + ck−1.

If possible suppose ck−1 6= 0. Now in view of Lemma 2 for p = 1 and using
second fundamental theorem we get

(n+m)T(r, f)

≤ T(r, [fn(f− 1)m](k−1)) −N(r, 0; [fn(f− 1)m](k−1)) +Nk(r, 0; f
n(f− 1)m)

+ S(r, f)

≤ N(r, 0; [fn(f− 1)m](k−1)) +N(r,∞; f) +N(r, ck−1; [f
n(f− 1)m](k−1))

−N(r, 0; [fn(f− 1)m](k−1)) +Nk(r, 0; f
n(f− 1)m) + S(r, f)

≤ N(r,∞; f) +N(r, 0; [gn(g− 1)m](k−1)) + kN(r, 0; f) +N(r, 0; (f− 1)m)

+ S(r, f)

≤ (k+ 1+m) T(r, f) + (k− 1)N(r,∞;g) +Nk(r, 0;g
n(g− 1)m) + S(r, f)

≤ (k+ 1+m) T(r, f) + k N(r,∞;g) + k N(r, 0;g) +N(r, 0; (g− 1)m)

+S (r, f)

≤ (k+ 1+m) T(r, f) + (2k+m) T(r, g) + S(r, f) + S(r, g)

≤ (3k+ 2m+ 1) T(r) + S(r).

Similarly we get

(n+m) T(r, g) ≤ (3k+ 2m+ 1) T(r) + S(r).

Combining these we get

(n−m− 3k− 1) T(r) ≤ S(r),

which is a contradiction since n > 3k+m+ 1. Therefore ck−1 = 0 and so

[fn(f− 1)m](k−1) ≡ [gn(g− 1)m](k−1).

Proceeding in this way we obtain

[fn(f− 1)m]
′ ≡ [gn(g− 1)m]

′
.
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Integrating we get

fn(f− 1)m ≡ gn(g− 1)m + c0.

If possible suppose c0 6= 0. Now using second fundamental theorem we get

(n+m)T(r, f)

≤ N(r, 0; fn(f− 1)m) +N(r,∞; fn(f− 1)m) +N(r, c0; f
n(f− 1)m) + S(r, f)

≤ N(r, 0; f) +mT(r, f) +N(r,∞; f) +N(r, 0;gn(g− 1)m) + S(r, f)

≤ (m+ 1) T(r, f) +N(r,∞; f) +N(r, 0;g) +m T(r, g) + S(r, f)

≤ (3+ 2m) T(r) + S(r).

Similarly we get

(n+m) T(r, g) ≤ (3+ 2m) T(r) + S(r).

Combining these we get

(n− 3−m) T(r) ≤ S(r),

which is a contradiction since n > 4+m. Therefore c0 = 0 and so

fn(f− 1)m ≡ gn(g− 1)m.

This proves the Lemma.

Lemma 9 Let f, g be two transcendental meromorphic functions, let n(≥ 1),
m(≥ 0) and k(≥ 1) be three integers with n > k + 2. If [fn(f − 1)m](k) − p
and [gn(g− 1)m](k)−p share (0, 0), where p(z) is a non zero polynomial, then
T(r, f) = O(T(r, g)) and T(r, g) = O(T(r, f)).

Proof. In view of Lemmas 1, 2 for p = 1 and using second fundamental theo-
rem for small function (see [17]) we get

(n+m)T(r, f) = T(r, fn(f− 1)m) +O(1)

≤ T(r, [fn(f− 1)m](k)) −N(r, 0; [fn(f− 1)m](k)) +Nk+1(r, 0; f
n(f− 1)m)

+ S(r, f)

≤ N(r, 0; [fn(f− 1)m](k)) +N(r,∞; f) +N(r, p; [fn(f− 1)m](k))

−N(r, 0; [fn(f− 1)m](k)) +Nk+1(r, 0; f
n(f− 1)m) + (ε+ o(1))T(r, f)

≤ N(r,∞; f) +N(r, p; [fn(f− 1)m](k)) + (k+ 1)N(r, 0; f) +N(r, 0; (f− 1)m)

+(ε+ o(1))T(r, f)

≤ (k+ 2+m) T(r, f) +N(r, p; [gn(g− 1)m](k)) + (ε+ o(1))T(r, f)

≤ (k+ 2+m) T(r, f) + (k+ 1)(n+m) T(r, g) + (ε+ o(1))T(r, f),
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i.e.,

(n− k− 2) T(r, f) ≤ (k+ 1)(n+m) T(r, g) + (ε+ o(1))T(r, f),

for all ε > 0. Take ε < 1. Since n > k + 2, we have T(r, f) = O(T(r, g)).
Similarly we have T(r, g) = O(T(r, f)). This completes the proof.

Lemma 10 Let f, g be two transcendental meromorphic functions and let

F = [fn(f−1)m](k)

p , G = [gn(g−1)m](k)

p , where p(z) is a non zero polynomial and
n(≥ 1), k(≥ 1) and m(≥ 0) are three integers such that n > 3k +m + 3. If
H ≡ 0, then [fn(f− 1)m](k) − p and [gn(g− 1)m](k) − p share (0,∞) as well as
one of the following conclusions occur

(i) [fn(f− 1)m](k)[gn(g− 1)m](k) ≡ p2;
(ii) fn(f− 1)m ≡ gn(g− 1)m.

Proof. Let P(w) = (w− 1)m. Then F = [fnP(f)](k)

p and G = [gnP(g)](k)

p .
Since H ≡ 0, by integration we get

1

F− 1
≡ BG+A− B

G− 1
, (4)

where A,B are constants and A 6= 0. From (4) it is clear that F and G share
(1,∞). We now consider following cases.
Case 1. Let B 6= 0 and A 6= B.
If B = −1, then from (4) we have

F ≡ −A

G−A− 1
.

Therefore

N(r,A+ 1;G) = N(r,∞; F) = N(r,∞; f) +N(r, 0;p).

So in view of Lemmas 1, 2 and the second fundamental theorem we get

(n+m) T(r, g)

≤ T(r,G) +Nk+1(r, 0;g
nP(g)) −N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,A+ 1;G) +Nk+1(r, 0;g
nP(g))

− N(r, 0;G) + S(r, g)

≤ N(r,∞;g) +Nk+1(r, 0;g
nP(g)) +N(r,∞; f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +Nk+1(r, 0;g
n) +Nk+1(r, 0;P(g)) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) + (k+ 1)N(r, 0;g) + T(r, P(g)) + S(r, g)

≤ T(r, f) + (k+ 2+m) T(r, g) + S(r, f) + S(r, g).
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Without loss of generality, we suppose that there exists a set I with infinite
measure such that T(r, f) ≤ T(r, g) for r ∈ I.
So for r ∈ I we have

(n− k− 3) T(r, g) ≤ S(r, g),

which is a contradiction since n > k+ 3.
If B 6= −1, from (4) we obtain that

F− (1+
1

B
) ≡ −A

B2[G+ A−B
B ]

.

So

N(r,
(B−A)

B
;G) = N(r,∞; F) = N(r,∞; f) +N(r, 0;p).

Using Lemmas 1, 2 and the same argument as used in the case when B = −1
we can get a contradiction.
Case 2. Let B 6= 0 and A = B.
If B = −1, then from (4) we have

FG ≡ 1,

i.e.,
[fnP(f)](k)[gnP(g)](k) ≡ p2,

i.e.,

[fn(f− 1)m][gn(g− 1)m] ≡ p2.

If B 6= −1, from (4) we have

1

F
≡ BG

(1+ B)G− 1
.

Therefore

N(r,
1

1+ B
;G) = N(r, 0; F).

So in view of Lemmas 1, 2 and the second fundamental theorem we get

(n+m) T(r, g)

≤ T(r,G) +Nk+1(r, 0;g
nP(g)) −N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1+ B
;G) +Nk+1(r.0;g

nP(g))

− N(r, 0;G) + S(r, g)

≤ N(r,∞;g) + (k+ 1)N(r, 0;g) + T(r, P(g)) +N(r, 0; F) + S(r, g)
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≤ N(r,∞;g) + (k+ 1)N(r, 0;g) + T(r, P(g)) + (k+ 1)N(r, 0; f) + T(r, P(f))

+kN(r,∞; f) + S(r, f) + S(r, g)

≤ (k+ 2+m) T(r, g) + (2k+ 1+m) T(r, f) + S(r, f) + S(r, g).

So for r ∈ I we have

(n− 3k− 3−m) T(r, g) ≤ S(r, g),

which is a contradiction since n > 3k+ 3+m.
Case 3. Let B = 0. From (4) we obtain

F ≡ G+A− 1

A
. (5)

If A 6= 1, then from (5) we obtain

N(r, 1−A;G) = N(r, 0; F).

We can similarly deduce a contradiction as in Case 2. Therefore A = 1 and
from (5) we obtain

F ≡ G,

i.e.,

[fnP(f)](k) ≡ [gnP(g)](k).

Then by Lemma 8 we have

fnP(f) ≡ gnP(g), (6)

i.e.,

fn(f− 1)m ≡ gn(g− 1)m.

Lemma 11 Let f, g be two transcendental meromorphic functions, p(z) be
a non-zero polynomial with deg(p(z)) = l, n, k be two positive integers. Let
[fn](k) − p and [gn](k) − p share (0,∞). Suppose [fn](k)[gn](k) ≡ p2,

(i) if p(z) is not a constant and n > 2k + 2l − 1, then f(z) = c1e
cQ(z),

g(z) = c2e
−cQ(z), where Q(z) =

∫z
0 p(z)dz, c1, c2 and c are constants

such that (nc)2(c1c2)
n = −1,



Certain non-linear differential polynomials ... 47

(ii) if p(z) is a nonzero constant b and n > 2k, then f(z) = c3e
cz, g(z) =

c4e
−cz, where c3, c4 and c are constants such that (−1)k(c3c4)

n(nc)2k =
b2.

Proof. Suppose
[fn](k)[gn](k) ≡ p2. (7)

We consider the following cases.
Case 1: Let deg(p(z)) = l(≥ 1).
Let z0 be a zero of f with multiplicity q. Then z0 be a zero of [fn](k) with
multiplicity nq− k. Now one of the following possibilities holds.
(i) z0 will be neither a zero of [gn](k) nor a pole of g; (ii) z0 will be a zero of
g; (iii) z0 will be a zero of [gn](k) but not a zero of g and (iv) z0 will be a pole
of g.
We now explain only the above two possibilities (i) and (iv) because other two
possibilities follow from these.
For the possibility (i): Note that since n ≥ 2k+ 2l, we must have

nq− k ≥ n− k ≥ k+ 2l. (8)

Thus z0 must be a zero of [fn](k) with multiplicity at least k+ 2l. But we see
from (7) that z0 must be a zero of p2(z) with multiplicity atmost 2l. Hence
we arrive at a contradiction and so f has no zero in this case.
For the possibility (iv): Let z0 be a pole of g with multiplicity q1. Clearly z0
will be pole of [gn](k) with multiplicity nq1 + k. Obviously q > q1, or else z0
is a pole of p(z), which is a contradiction since p(z) is a polynomial. Clearly
nq− k ≥ nq1 + k. Now

nq− k = nq1 + k

implies that
n(q− q1) = 2k. (9)

Since n ≥ 2k+ 2l, we get a contradiction from (9). Hence we must have

nq− k > nq1 + k.

This shows that z0 is a zero of p(z) and we have N(r, 0; f) = O(log r). Similarly
we can prove thatN(r, 0;g) = O(log r). Thus in general we can takeN(r, 0; f)+
N(r, 0;g) = O(log r).
We know that

N(r,∞; [fn](k)) = n N(r,∞; f) + k N(r,∞; f).
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Also by Lemma 7 we have

N(r, 0; [gn](k)) ≤ n N(r, 0;g) + k N(r,∞;g) + S(r, g)

≤ k N(r,∞;g) + O(log r) + S(r, g).

From (7) we get

N(r,∞; [fn](k)) = N(r, 0; [gn](k)),

i.e.,

n N(r,∞; f) + k N(r,∞; f) ≤ k N(r,∞;g) +O(log r) + S(r, g). (10)

Similarly we get

n N(r,∞;g) + k N(r,∞;g) ≤ k N(r,∞; f) +O(log r) + S(r, f). (11)

Since f and g are transcendental, it follows that

S(r, f) +O(log r) = S(r, f), S(r, g) +O(log r) = S(r, g).

Combining (10) and (11) we get

N(r,∞; f) +N(r,∞;g) = S(r, f) + S(r, g).

By Lemma 9 we have S(r, f) = S(r, g) and so we obtain

N(r,∞; f) = S(r, f), N(r,∞;g) = S(r, g). (12)

Let

F1 =
[fn](k)

p
, G1 =

[gn](k)

p
. (13)

Note that T(r, F1) ≤ n(k+ 1)T(r, f) + S(r, f) and so T(r, F1) = O(T(r, f)). Also
by Lemma 2 one can obtain T(r, f) = O(T(r, F1)). Hence S(r, F1) = S(r, f).
Similarly we get S(r,G1) = S(r, g). Also

F1G1 ≡ 1. (14)

If F1 ≡ cG1, where c is a nonzero constant, then F1 is a constant and so f is
a polynomial, which contradicts our assumption. Hence F1 6≡ cG1 and so in
view of (14) we see that F1 and G1 share (−1, 0).
Now by Lemma 7 we have

N(r, 0; F1) ≤ n N(r, 0; f) + k N(r,∞; f) + S(r, f) ≤ S(r, F1).
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Similarly we have

N(r, 0;G1) ≤ n N(r, 0;g) + k N(r,∞;g) + S(r, g) ≤ S(r,G1).

Also we see that

N(r,∞; F1) = S(r, F1), N(r,∞;G1) = S(r,G1).

Here it is clear that T(r, F1) = T(r,G1) +O(1). Let

f1 =
F1
G1
.

and

f2 =
F1 − 1

G1 − 1
.

Clearly f1 is non-constant. If f2 is a nonzero constant then F1 and G1 share
(∞,∞) and so from (14) we conclude that F1 and G1 have no poles. Next we
suppose that f2 is non-constant. Also we see that

F1 =
f1(1− f2)

f1 − f2
, G1 =

1− f2
f1 − f2

.

Clearly

T(r, F1) ≤ 2[T(r, f1) + T(r, f2)] +O(1)

and

T(r, f1) + T(r, f2) ≤ 4T(r, F1) +O(1).

These give S(r, F1) = S(r; f1, f2). Also we see that

N(r, 0; fi) +N(r,∞; fi) = S(r; f1, f2)

for i = 1, 2.
Next we suppose N(r,−1; F1) 6= S(r, F1), otherwise F1 will be a constant. Also
we see that

N(r,−1; F1) ≤ N0(r, 1; f1, f2).

Thus we have

T(r, f1) + T(r, f2) ≤ 4 N0(r, 1; f1, f2) + S(r, F1).
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Then by Lemma 4 there exist two integers s and t(|s|+ |t| > 0) such that

fs1f
t
2 ≡ 1,

i.e., [ F1
G1

]s[ F1 − 1
G1 − 1

]t
≡ 1. (15)

We now consider following cases.
Case (i) Let s = 0 and t 6= 0. Then from (15) we get

(F1 − 1)
t ≡ (G1 − 1)

t.

This shows that F1 and G1 share (∞,∞) and so from (14) we conclude that
F1 and G1 have no poles.
Case (ii) Suppose s 6= 0 and t = 0. Then from (15) we get

Fs1 ≡ Gs1

and so we arrive at a contradiction from (14).
Case (iii): Suppose s > 0 and t = −t1, where t1 > 0. Then we have[ F1

G1

]s
≡
[ F1 − 1
G1 − 1

]t1
. (16)

If possible suppose F1 has a pole. Let zp1 be a pole of F1 of multiplicity p1.
Then from (14) we see that zp1 must be a zero of G1 of multiplicity p1. Now
from (16) we get 2s = t1 and so[ F1

G1

]s
≡
[ F1 − 1
G1 − 1

]2s
.

This implies that

Fs−11 + Fs−21 G1 + F
s−3
1 G21 + . . .+ F1G

s−2
1 +Gs−11 ≡ Gs1

(F1 − 1)
2s − (G1 − 1)

2s

(G1 − 1)2s(F1 −G1)
.(17)

If zp is a zero of F1− 1 with multiplicity p then the Taylor expansion of F1− 1
about zp is

F1 − 1 = ap(z− zp)
p + ap+1(z− zp)

p+1 + . . . . . . , ap 6= 0.

Since F1 − 1 and G1 − 1 share (0,∞),

G1 − 1 = bp(z− zp)
p + bp+1(z− zp)

p+1 + . . . . . . , bp 6= 0.
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Let

Φ1 =
F

′
1

F1
−
G

′
1

G1
and Φ2 =

(F ′
1

F1

)2s
−
(G ′

1

G1

)2s
. (18)

Since F1 6≡ cG1, where c is a nonzero constant, it follows that Φ1 6≡ 0 and
Φ2 6≡ 0. Also

T(r,Φ1) = S(r, F1) and T(r,Φ2) = S(r, F1).

From (18) we find

N(2(r, 1; F1) = N(2(r, 1;G1) ≤ N(r, 0;Φ1) = S(r, F1).

Let p = 1. If a1 = b1, then by an elementary calculation gives that Φ1(z) =
O((z− z1)

k), where k is a positive integer. This proves that z1 is a zero of Φ1.
Next we suppose a1 6= b1, but a2s1 = b2s1 . Then by an elementary calculation
we get Φ2(z) = O((z− z1)

q) where q is a positive integer. This proves that z1
is a zero of Φ2.
Finally we suppose a1 6= b1 and a2s1 6= b2s1 . Therefore from (17) we arrive at a
contradiction. Hence

N1)(r, 1; F1) = N1)(r, 1;G1) = S(r, F1).

But this is impossible as N(r, 1; F1) ∼ T(r, F1) and N(r, 1;G1) ∼ T(r,G1).
Hence F1 has no pole. Similarly we can prove that G1 also has no poles.
Case (iv): Suppose either s > 0 and t > 0 or s < 0 and t < 0. Then from
(15) one can easily prove that F1 and G1 have no poles. Consequently from
(14) we see that F1 and G1 have no zeros. We deduce from (13) that both f
and g have no pole.
Since F1 and G1 have no zeros and poles, we have

F1 ≡ eγ1G1,

i.e.,

[fn](k) ≡ eγ1 [gn](k),

where γ1 is a non-constant entire function. Then from (7) we get

[fn](k) ≡ ce
1
2
γ1p, [gn](k) ≡ ce−

1
2
γ1p, (19)

where c = ±1. Since N(r, 0; f) = O(log r) and N(r, 0;g) = O(log r), so we can
take

f(z) = P1(z)e
α1(z), g(z) = Q1(z)e

β1(z), (20)
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P1, Q1 are nonzero polynomials, α1, β1 are two non-constant entire functions.
If possible suppose that P1(z) is not a constant. Let z1 be a zero of f with
multiplicity t. Then z1 must be a zero of [fn](k) with multiplicity nt− k. Note
that nt − k ≥ n − k ≥ k + 2l, as n ≥ 2k + 2l. Clearly z1 must be a zero of
p2(z) with multiplicity at least k + 2l, which is impossible since z1 can be a
zero of p2(z) with multiplicity at most 2l. Hence P1(z) is a constant. Similarly
we can prove that Q1(z) is a constant. So we can rewrite f and g as follows

f = eα, g = eβ. (21)

We deduce from (7) and (21) that either both α and β are transcendental
entire functions or both α and β are polynomials. We now consider following
cases.
Subcase 1.1: Let k ≥ 2.
First we suppose both α and β are transcendental entire functions.
Note that

S(r, nα) = S(r,
[fn]

′

fn
), S(r, nβ) = S(r,

[gn]
′

gn
).

Moreover we see that

N(r, 0; [fn](k)) ≤ N(r, 0;p2) = O(log r).

N(r, 0; [gn](k)) ≤ N(r, 0;p2) = O(log r).

From these and using (21) we have

N(r,∞; fn) +N(r, 0; fn) +N(r, 0; [fn](k)) = S(r, nα) = S(r,
[fn]

′

fn
) (22)

and

N(r,∞;gn) +N(r, 0;gn) +N(r, 0; [gn](k)) = S(r, nβ) = S(r,
[gn]

′

gn
). (23)

Then from (22), (23) and Lemma 5 we must have

f(z) = eaz+b, g(z) = ecz+d, (24)

where a 6= 0, b, c 6= 0 and d are constants. But these types of f and g do not
agree with the relation (7).



Certain non-linear differential polynomials ... 53

Next we suppose α and β are both polynomials.
Clearly α+β ≡ C and deg(α) = deg(β). Also α

′ ≡ β ′
. If deg(α) = deg(β) =

1, then we again get a contradiction from (7).
Next we suppose deg(α) = deg(β) ≥ 2.
We deduce from (21) that

(fn)
′
= nα

′
enα

(fn)
′′
= [n2(α

′
)2 + nα

′′
]enα

(fn)
′′′
= [n3(α

′
)3 + 3n2α

′
α

′′
+ nα

′′′
]enα

(fn)(iv) = [n4(α
′
)4 + 6n3(α

′
)2α

′′
+ 3n2(α

′′
)2 + 4n2α

′
α

′′′
+ nα(iv)]enα

(fn)(v) = [n5(α
′
)5 + 10n4(α

′
)3α

′′
+ 15n3α

′
(α

′′
)2 + 10n3(α

′
)2

α
′′′
+ 10n2α

′′
α

′′′
+ 5n2α

′
α(iv) + nα(v)]enα

. . . . . . . . . . . . . . . . . . . . .

[fn](k) = [nk(α
′
)k + K(α

′
)k−2α

′′
+ Pk−2(α

′
)]enα,

where K is a suitably positive integer and Pk−2(α
′
) is a differential polynomial

in α
′
.

Similarly we get

[gn](k) = [nk(β
′
)k + K(β

′
)k−2β

′′
+ Pk−2(β

′
)]enβ

= [(−1)knk(α
′
)k − K(−1)k−2(α

′
)k−2α

′′
+ Pk−2(−α

′
)]enβ.

Since deg(α) ≥ 2, we observe that deg((α
′
)k) ≥ k deg(α ′

) and so (α
′
)k−2α

′′

is either a nonzero constant or deg((α
′
)k−2α

′′
) ≥ (k− 1) deg(α

′
)− 1. Also we

see that

deg
(
(α

′
)k
)
> deg

(
(α

′
)k−2α

′′
)
> deg

(
Pk−2(α

′
)
)
(or deg

(
Pk−2(−α

′
)
)
).

From (19), it is clear that the polynomials

nk(α
′
)k + K(α

′
)k−2α

′′
+ Pk−2(α

′
)

and

(−1)knk(α
′
)k − K(−1)k−2(α

′
)k−2α

′′
+ Pk−2(−α

′
)

must be identical but this is impossible for k ≥ 2. Actually the terms nk(α
′
)k+

K(α
′
)k−2α

′′
and (−1)knk(α

′
)k − K(−1)k−2(α

′
)k−2α

′′
can not be identical for
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k ≥ 2.
Subcase 2: Let k = 1. Then from (7) we get

ABα
′
β

′
en(α+β) ≡ p2, (25)

where AB = n2. Let α+β = γ. Suppose that α and β are both transcendental
entire functions. From (25) we know that γ is not a constant since in that case
we get a contradiction. Then from (25) we get

ABα
′
(γ

′
− α

′
)enγ ≡ p2. (26)

We have T(r, γ
′
) = m(r, γ

′
) ≤ m(r, (e

nγ)
′

enγ )+O(1) = S(r, enγ). Thus from (26)
we get

T(r, enγ) ≤ T(r,
p2

α
′(γ ′ − α ′)

) +O(1)

≤ T(r, α
′
) + T(r, γ

′
− α

′
) +O(log r) +O(1)

≤ 2 T(r, α
′
) + S(r, α

′
) + S(r, enγ),

which implies that T(r, enγ) = O(T(r, α
′
)) and so S(r, enγ) can be replaced

by S(r, α
′
). Thus we get T(r, γ

′
) = S(r, α

′
) and so γ

′
is a small function with

respect to α
′
. In view of (26) and by the second fundamental theorem for small

functions we get

T(r, α
′
) ≤ N(r,∞;α

′
) +N(r, 0;α

′
) +N(r, 0;α

′
− γ

′
) + S(r, α

′
)

≤ O(log r) + S(r, α
′
),

which shows that α
′

is a polynomial and so α is a polynomial, which contra-
dicts that α is a transcendental entire function. Next suppose without loss of
generality that α is a polynomial and β is a transcendental entire function.
Thus γ is transcendental. So in view of (26) we can obtain

nT(r, eγ) ≤ T(r,
p2

α
′(γ ′ − α ′)

) +O(1)

≤ T(r, α
′
) + T(r, γ

′
− α

′
) + S(r, eγ)

≤ T(r, γ
′
) + S(r, eγ) = S(r, eγ),

which leads a contradiction. Thus α and β are both polynomials. Also from
(25) we can conclude that α + β ≡ C for a constant C and so α

′
+ β

′ ≡ 0.
Again from (25) we get n2enCα

′
β

′ ≡ p2. By computation we get

α
′
= cp, β

′
= −cp. (27)
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Hence
α = cQ+ b1, β = −cQ+ b2, (28)

where Q(z) =
∫z
0 p(z)dz and b1, b2 are constants. Finally f and g take the

form

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 and c are constants such that (nc)2(c1c2)
n = −1.

Case 2: Let p(z) be a nonzero constant b. Since n > 2k, one can easily prove
that f and g have no zeros. Now proceeding in the same way as done in proof
of Case 1 we get f = eα and g = eβ, where α and β are two non-constant
entire functions.
We now consider following two subcases:
Subcase 2.1: Let k ≥ 2.
We see that fn(z)[fn(z)](k) 6= 0 and gn(z)[gn(z)](k) 6= 0. Then by Lemma 6 we
must have

f(z) = eaz+b, g(z) = ecz+d, (29)

where a 6= 0, b, c 6= 0 and d are constants. But from (7) we see that a+c = 0.
Subcase 2.1: Let k = 1.
Considering Subcase 1.2 one can easily get

f(z) = eaz+b, g(z) = ecz+d, (30)

where a 6= 0, b, c 6= 0 and d are constants. Finally f and g take the form

f(z) = c3e
dz, g(z) = c4e

−dz,

where c3, c4 and d are nonzero constants such that (−1)k(c3c4)
n(nd)2k = b2.

This completes the proof.

Lemma 12 Let f, g be two transcendental meromorphic functions, let n, m
and k be three positive integers such that n > k. If f and g share (∞, 0) then
[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ p2, where p(z) is a non zero polynomial.

Proof. Suppose
[fn(f− 1)m](k)[gn(g− 1)m](k) ≡ p2. (31)

Since f and g share (∞, 0) we have from (31) that f and g are transcendental
entire functions. So we can take

f(z) = h(z)eα(z), (32)
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where h is a nonzero polynomial and α is a non-constant entire function.
We know that (w − 1)m = amw

m + am−1w
m−1 + . . . + a0, where ai =

(−1)m−i mCm−i, i = 0, 1, 2, . . . ,m. Since f = heα, then by induction we get

(aif
n+i)(k) = ti(α

′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k))e(n+i)α, (33)

where ti(α
′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k)) (i = 0, 1, 2, . . . ,m) are differential

polynomials in
α

′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k). Obviously

ti(α
′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k)) 6≡ 0,

for i = 0, 1, 2, . . . ,m and [fn(f−1)m](k) 6≡ 0. Now from (31) and (33) we obtain

N(r, 0; tme
mα(z) + . . .+ t0) ≤ N(r, 0;p2) = S(r, f). (34)

Since α is an entire function, we obtain T(r, α(j)) = S(r, f) for j = 1, 2, . . . , k.
Hence T(r, ti) = S(r, f) for i = 0, 1, 2, . . . ,m. So from (34) and using second
fundamental theorem for small functions (see [17]), we obtain

mT(r, f) = T(r, tme
mα + . . .+ t1e

α) + S(r, f)

≤ N(r, 0; tme
mα + . . .+ t1e

α) +N(r, 0; tme
mα + . . .+ t1e

α + t0)

+ S(r, f)

≤ N(r, 0; tme
(m−1)α + . . .+ t1) + S(r, f)

≤ (m− 1)T(r, f) + S(r, f),

which is a contradiction. This completes the Lemma.

Lemma 13 Let f and g be two non-constant meromorphic functions and α( 6≡
0,∞) be small function of f and g. Let n, m and k be three positive integers
such that n ≥ m+ 3. Then

[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ α2, for k = 1.

Proof. We omit the proof since it can be proved in the line of the proof of
Lemma 3 [14].

Lemma 14 [1] If f, g be two non-constant meromorphic functions such that
they share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1;g) +N
(2
E (r, 1; f) −Nf>2(r, 1;g) ≤ N(r, 1;g) −N(r, 1;g).
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Lemma 15 [2] Let f, g share (1, 1). Then

Nf>2(r, 1;g) ≤
1

2
N(r, 0; f) +

1

2
N(r,∞; f) −

1

2
N0(r, 0; f

′
) + S(r, f),

where N0(r, 0; f
′
) is the counting function of those zeros of f

′
which are not

the zeros of f(f− 1).

Lemma 16 [2] Let f and g be two non-constant meromorphic functions shar-
ing (1, 0). Then

NL(r, 1; f) + 2NL(r, 1;g) +N
(2
E (r, 1; f) −Nf>1(r, 1;g) −Ng>1(r, 1; f)

≤ N(r, 1;g) −N(r, 1;g).

Lemma 17 [2] Let f, g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f)

Lemma 18 [2] Let f, g share (1, 0). Then

(i) Nf>1(r, 1;g) ≤ N(r, 0; f) +N(r,∞; f) −N0(r, 0; f
′
) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0;g) +N(r,∞;g) −N0(r, 0;g
′
) + S(r, g).

3 Proof of the Theorem

Proof of Theorem 1. Let F = [fnP(f)](k)

p and G = [gnP(g)](k)

p , where P(w) =
(w− 1)m. It follows that F and G share (1, k1) except for the zeros of p(z).
Case 1 Let H 6≡ 0.
Subcase 1.1 k1 ≥ 1.
From (1) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities
are different, (iii) poles of F and G, (iv) zeros of F

′
(G

′
) which are not the zeros

of F(F− 1)(G(G− 1)).
Since H has only simple poles we get

N(r,∞;H) ≤ N(r,∞; f) +N(r,∞;g) +N∗(r, 1; F,G) +N(r, 0; F| ≥ 2)

+N(r, 0;G| ≥ 2) +N0(r, 0; F
′
) +N0(r, 0;G

′
),

(35)

where N0(r, 0; F
′
) is the reduced counting function of those zeros of F

′
which

are not the zeros of F(F− 1) and N0(r, 0;G
′
) is similarly defined.
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Let z0 be a simple zero of F − 1 but p(z0) 6= 0 . Then z0 is a simple zero of
G− 1 and a zero of H. So

N(r, 1; F| = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g). (36)

While k1 ≥ 2, using (35) and (36) we get

N(r, 1; F)

≤ N(r, 1; F| = 1) +N(r, 1; F| ≥ 2) ≤ N(r,∞; f)

+ N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1; F,G)

+ N(r, 1; F| ≥ 2) +N0(r, 0; F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g).

(37)

Now in view of Lemma 3 we get

N0(r, 0;G
′
) +N(r, 1; F |≥ 2) +N∗(r, 1; F,G)

≤ N0(r, 0;G
′
) +N(r, 1; F| ≥ 2) +N(r, 1; F| ≥ 3)

= N0(r, 0;G
′
) +N(r, 1;G| ≥ 2) +N(r, 1;G| ≥ 3)

≤ N0(r, 0;G
′
) +N(r, 1;G) −N(r, 1;G)

≤ N(r, 0;G
′
| G 6= 0) ≤ N(r, 0;G) +N(r,∞;g) + S(r, g),

(38)

Hence using (37), (38), Lemmas 1 and 2 we get from second fundamental
theorem that

(n+m)T(r, f)

≤ T(r, F) +Nk+2(r, 0; fnP(f)) −N2(r, 0; F) + S(r, f)
≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) +Nk+2(r, 0; f

nP(f)) −N2(r, 0; F)

−N0(r, 0; F
′
)

≤ 2 N(r,∞, f) +N(r,∞;g) +N(r, 0; F) +Nk+2(r, 0; f
nP(f))

+N(r, 0; F| ≥ 2) + N(r, 0;G| ≥ 2) +N(r, 1; F| ≥ 2) +N∗(r, 1; F,G)

+N0(r, 0;G
′
) −N2(r, 0; F) + S(r, f) + S(r, g)

≤ 2 {N(r,∞; f) +N(r,∞;g)}+Nk+2(r, 0; f
nP(f)) +N2(r, 0;G)

+ S(r, f) + S(r, g)

(39)
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≤ 2 {N(r,∞; f) +N(r,∞;g)}+Nk+2(r, 0; f
nP(f)) + k N(r,∞;g)

+ Nk+2(r, 0;g
nP(g)) + S(r, f) + S(r, g)

≤ 2 {N(r,∞; f) +N(r,∞;g)}+ (k+ 2) N(r, 0; f) + T(r, P(f))

+ (k+ 2) N(r, 0;g) + T(r, P(g)) + k N(r,∞;g) + S(r, f) + S(r, g)

≤ (k+ 4+m) T(r, f) + (2k+ 4+m) T(r, g) + S(r, f) + S(r, g)

≤ (3k+ 8+ 2m) T(r) + S(r).

In a similar way we can obtain

(n+m) T(r, g) ≤ (3k+ 8+ 2m) T(r) + S(r). (40)

Combining (39) and (40) we see that

(n+m) T(r) ≤ (3k+ 8+ 2m) T(r) + S(r),

i.e.,

(n− 3k− 8−m) T(r) ≤ S(r). (41)

Since n > 3k+ 8+m, (41) leads to a contradiction.
While k1 = 1, using Lemmas 3, 14, 15, (35) and (36) we get

N(r, 1; F) (42)

≤ N(r, 1; F| = 1) +NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1; F,G)

+NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F) +N0(r, 0; F

′
) +N0(r, 0;G

′
)

+S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1; F)

+2NL(r, 1;G) +N
(2
E (r, 1; F) +N0(r, 0; F

′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) +NF>2(r, 1;G)
+N(r, 1;G) −N(r, 1;G) +N0(r, 0; F

′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ 3

2
N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) + 1

2
N(r, 0; F) +N(r, 0;G| ≥ 2)

+N(r, 1;G) −N(r, 1;G) +N0(r, 0;G
′
) +N0(r, 0; F

′
) + S(r, f) + S(r, g)

≤ 3

2
N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) + 1

2
N(r, 0; F) +N(r, 0;G| ≥ 2)

+N(r, 0;G
′
|G 6= 0) +N0(r, 0; F

′
) + S(r, f) + S(r, g)

≤ 3

2
N(r,∞; f) + 2N(r,∞;g) +N(r, 0; F| ≥ 2) + 1

2
N(r, 0; F) +N2(r, 0;G)

+N0(r, 0; F
′
) + S(r, f) + S(r, g).
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Hence using (42), Lemmas 1 and 2 we get from second fundamental theorem
that

(n+m)T(r, f)

≤ T(r, F) +Nk+2(r, 0; fnP(f)) −N2(r, 0; F) + S(r, f)
≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) +Nk+2(r, 0; f

nP(f)) −N2(r, 0; F)

−N0(r, 0; F
′
)

≤ 5
2
N(r,∞, f) + 2N(r,∞;g) +N2(r, 0; F) +

1

2
N(r, 0; F)

+Nk+2(r, 0; f
nP(f)) +N2(r, 0;G) −N2(r, 0; F) + S(r, f) + S(r, g)

≤ 5
2
N(r,∞; f) + 2N(r,∞;g) +Nk+2(r, 0; f

nP(f)) +
1

2
N(r, 0; F)

+N2(r, 0;G) + S(r, f) + S(r, g)

≤ 5
2
N(r,∞; f) + 2N(r,∞;g) +Nk+2(r, 0; f

nP(f)) + k N(r,∞;g)

+Nk+2(r, 0;g
nP(g)) +

1

2
{kN(r,∞; f)

+Nk+1(r, 0; f
nP(f))}+ S(r, f) + S(r, g)

≤ 5+ k
2

N(r,∞; f) + (k+ 2)N(r,∞;g) +
3k+ 5

2
N(r, 0; f)

+
3

2
T(r, P(f)) + (k+ 2) N(r, 0;g) + T(r, P(g)) + S(r, f) + S(r, g)

≤
(
2k+ 5+

3m

2

)
T(r, f) + (2k+ 4+m) T(r, g) + S(r, f) + S(r, g)

≤
(
4k+ 9+

5m

2

)
T(r) + S(r).

(43)

In a similar way we can obtain

(n+m) T(r, g) ≤
(
4k+ 9+

5m

2

)
T(r) + S(r). (44)

Combining (43) and (44) we see that(
n− 4k− 9−

3m

2

)
T(r) ≤ S(r). (45)

Since n > 4k+ 9+ 3m
2 , (45) leads to a contradiction.

Subcase 1.2 k1 = 0. Here (36) changes to

N
1)
E (r, 1; F |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F) + S(r,G). (46)
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Using Lemmas 3, 16, 17, 18, (35) and (46) we get

N(r, 1; F)

≤ N1)E (r, 1; F) +NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)

+N∗(r, 1; F,G) +NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F) +N0(r, 0; F

′
)

+N0(r, 0;G
′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)

+ 2NL(r, 1; F) + 2NL(r, 1;G) +N
(2
E (r, 1; F)

+N0(r, 0; F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)
+NF>1(r, 1;G) +NG>1(r, 1; F) +NL(r, 1; F) +N(r, 1;G) −N(r, 1;G)

+N0(r, 0; F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞;g) +N2(r, 0; F) +N(r, 0; F) +N2(r, 0;G)

+N(r, 1;G) −N(r, 1;G) +N0(r, 0;G
′
) +N0(r, 0; F

′
)

+ S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞;g) +N2(r, 0; F) +N(r, 0; F) +N2(r, 0;G)

+N(r, 0;G
′
|G 6= 0) +N0(r, 0; F

′
) + S(r, f) + S(r, g)

≤ 3N(r,∞; f) + 3N(r,∞;g) +N2(r, 0; F) +N(r, 0; F) +N2(r, 0;G)

+N(r, 0;G) +N0(r, 0; F
′
) + S(r, f) + S(r, g).

(47)

Hence using (47), Lemmas 1 and 2 we get from second fundamental theorem
that

(n+m)T(r, f)

≤ T(r, F) +Nk+2(r, 0; fnP(f)) −N2(r, 0; F) + S(r, f)
≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) +Nk+2(r, 0; f

nP(f)) −N2(r, 0; F)

−N0(r, 0; F
′
)

≤ 4N(r,∞, f) + 3N(r,∞;g) +N2(r, 0; F) + 2 N(r, 0; F)

+Nk+2(r, 0; f
nP(f)) +N2(r, 0;G) +N(r, 0;G) −N2(r, 0; F)

+ S(r, f) + S(r, g)

≤ 4N(r,∞; f) + 3N(r,∞;g) +Nk+2(r, 0; f
nP(f)) + 2 N(r, 0; F)
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+N2(r, 0;G) +N(r, 0;G) + S(r, f) + S(r, g)

≤ 4N(r,∞; f) + 3N(r,∞;g) +Nk+2(r, 0; f
nP(f)) + 2kN(r,∞; f)

+ 2 Nk+1(r, 0; f
nP(f)) + k N(r,∞;g) +Nk+2(r, 0;g

nP(g))

+ kN(r,∞;g) +Nk+1(r, 0;g
nP(g)) + S(r, f) + S(r, g)

≤ (2k+ 4) N(r,∞; f) + (2k+ 3)N(r,∞;g) + (3k+ 4)N(r, 0; f)

+ 3T(r, P(f)) + (2k+ 3) N(r, 0;g) + 2T(r, P(g)) + S(r, f) + S(r, g)

≤ (5k+ 8+ 3m) T(r, f) + (4k+ 6+ 2m) T(r, g) + S(r, f) + S(r, g)

≤ (9k+ 14+ 5m) T(r) + S(r).

(48)

In a similar way we can obtain

(n+m) T(r, g) ≤ (9k+ 14+ 5m) T(r) + S(r). (49)

Combining (48) and (49) we see that

(n− 9k− 14− 4m) T(r) ≤ S(r). (50)

Since n > 9k+ 14+ 4m, (50) leads to a contradiction.
Case 2. Let H ≡ 0. Then by Lemma 10 we get either

fn(f− 1)m ≡ gn(g− 1)m (51)

or

[fn(f− 1)m](k)[gn(g− 1)m](k) ≡ p2. (52)

We now consider following two subcases.
Subcase 2.1: Let m = 0.
Now from (51) we get fn ≡ gn and so f ≡ tg, where t is a constant satisfying
tn = 1.
Also from (52) we get

[fn](k)[gn](k) ≡ p2.

Then by Lemma 11 we get the conclusion (1).
Subcase 2.2: Let m ≥ 1.
Applying Lemma 13, from (52) we see that

[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ p2,
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for k = 1.
In addition, when f and g share (∞, 0), then by Lemma 12 we must have

[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ p2.

Next we consider the relation (51) and let h = g
f .

First we suppose that h is non-constant.
For m = 1: Then from (51) we get f ≡ 1−hn

1−hn+1
, i.e.,

f ≡
( hn

1+ h+ h2 + . . .+ hn
− 1
)
.

Hence by Lemma 1 we get

T(r, f) = T(r,

n∑
j=0

1

hj
) +O(1) = n T(r,

1

h
) + S(r, h) = n T(r, h) + S(r, h).

Similarly we have T(r, g) = nT(r, h) + S(r, h). Therefore S(r, f) = S(r, g) =
S(r, h).
Also it is clear that

n∑
j=1

N(r, uj;h) ≤ N(r,∞; f),

where uj = exp(
2jπi
n+1) and j = 1, 2, . . . , n.

Then by the second fundamental theorem we get

(n− 2) T(r, h) ≤
n∑
j=1

N(r, uj;h) + S(r, f) ≤ N(r,∞; f) + S(r, f).

Similarly we have

(n− 2) T(r, h) ≤ N(r,∞;g) + S(r, g).

Adding and simplifying these we get

2(n− 2)T(r, h) ≤ n(2−Θ(∞; f) −Θ(∞;g) + ε)T(r, h) + S(r, h),

where 0 < ε < Θ(∞; f) + Θ(∞;g). This leads to a contradiction as Θ(∞; f) +
Θ(∞;g) > 4

n .
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For m ≥ 2: Then from (51) we can say that f and g satisfying the algebraic
equation R(f, g) = 0, where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

Next we suppose that h is a constant.
Then from (51) we get

fn
m∑
i=0

(−1)i mCm−i f
m−i ≡ gn

m∑
i=0

(−1)i mCm−ig
m−i. (53)

Now substituting g = fh in (53) we get

m∑
i=0

(−1)i mCm−i f
n+m−i(hn+m−i − 1) ≡ 0,

which implies that h = 1. Hence f ≡ g. This completes the proof.
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Abstract. In the present paper we define some classes of double lacunary
sequence spaces over n-normed spaces by means of a Musielak- Orlicz
function. We study some relevant algebraic and topological properties.
Further some inclusion relation among the classes are also examined.

1 Introduction and preliminaries

The initial work on double sequences is found in Bromwich [4]. Out of the
definitions of convergence commonly employed for double series, only that due
to Pringsheim permits a series to converge conditionally. Therefore, in spite of
any disadvantages which it may possess, this definition is better adapted than
others for the study of many problems in double sequences and series. Chief
among the reasons why the theory of double sequences, under the Pringsheim
definition of convergence, presents difficulties not encountered in the theory
of simple sequences is the fact that a double sequence {xij} may converge
without xij being a bounded function of i and j. Thus it is not surprising that
many authors in dealing with the convergence of double sequences should have
restricted themselves to the class of bounded sequences, or in dealing with the
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Key words and phrases: P-convergent, lacunary sequence, Orlicz function, sequence
spaces, paranorm space, n-normed space
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summability of double series, to the class of series for which the function whose
limit is the sum of the series is a bounded function of i and j. Without such
a restriction, peculiar things may sometimes happen; for example, a double
power series may converge with partial sum {Sij} unbounded at a place exterior
to its associated circles of convergence. Nevertheless there are problems in the
theory of double sequences and series where this restriction of boundedness
as it has been applied is considerably more stringent than need be. After
Bromwich, the study of double sequences was initiated by Hardy [11], Moricz
[26], Moricz and Rhoades [19], Tripathy ([35], [36]), Basarir and Sonalcan [2]
and many others. Hardy [11] introduced the notion of regular convergence for
double sequences. Quite recently, Zeltser [38] in her Ph.D thesis has essentially
studied both the theory of topological double sequence spaces and the theory
of summability of double sequences.

In order to extend the notion of convergence of sequences, statistical con-
vergence was introduced by Schoenberg [34] and the idea depends on the
notion of density [31] of subset of N. Mursaleen and Edely [23] have recently
introduced the statistical convergence and Cauchy convergence for double se-
quences and given the relation between statistical convergent and strongly Ce-
saro summable double sequences. Nextly, Mursaleen [21] and Mursaleen and
Edely [24] have defined the almost strong regularity of matrices for double se-
quences and applied these matrices to establish a core theorem and introduced
the M-core for double sequences and determined those four dimensional ma-
trices transforming every bounded double sequences x = (xmn) into one whose
core is a subset of the M-core of x. More recently, Altay and Basar [1] have
defined the spaces BS, BS(t), CSp, CSbp, CSr and BV of double sequences con-
sisting of all double series whose sequence of partial sums are in the spacesMu,
Mu(t), Cp, Cbp, Cr and Lu, respectively and also examined some properties of
these sequence spaces and determined the α-duals of the spaces BS, BV, CSbp
and the β(v)-duals of the spaces CSbp and CSr of double series. Now, recently
Basar and Sever [3] have introduced the Banach space Lq of double sequences
corresponding to the well known space `q of single sequences and examined
some properties of the space Lq. By the convergence of a double sequence we
mean the convergence in the Pringsheim sense i.e. a double sequence x = (xkl)
has Pringsheim limit L (denoted by P − lim x = L) provided that given ε > 0
there exists n ∈ N such that |xkl − L| < ε whenever k, l > n see [27]. We shall
write more briefly as P-convergent. The double sequence x = (xkl) is bounded
if there exists a positive number M such that |xkl| < M for all k and l.
The notion of difference sequence spaces was introduced by Kizmaz [12], who
studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was
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further generalized by Et. and Colak [5] by introducing the spaces l∞(∆n),
c(∆n) and c0(∆

n). Let w be the space of all complex or real sequences x = (xk)
and let m, s be non-negative integers, then for Z = l∞, c, c0 we have sequence
spaces

Z(∆m) = {x = (xk) ∈ w : (∆mxk) ∈ Z},

where ∆mx = (∆mxk) = (∆m−1xk − ∆
m−1xk+1) and ∆0xk = xk for all k ∈ N,

which is equivalent to the following binomial representation

∆mxk =

m∑
v=0

(−1)v
(
m

v

)
xk+v.

Takingm = 1, we get the spaces which were introduced and studied by Kizmaz
[12].
An orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as
x −→∞.
Lindenstrauss and Tzafriri [14] used the idea of Orlicz function to define the
following sequence space,

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|

ρ

)
<∞, for some ρ > 0

}

which is called as an Orlicz sequence space. Also `M is a Banach space with
the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|

ρ

)
≤ 1

}
.

Also, it was shown in [14] that every Orlicz sequence space `M contains a sub-
space isomorphic to `p(p ≥ 1). The ∆2- condition is equivalent to M(Lx) ≤
LM(x), for all L with 0 < L < 1. An Orlicz function M can always be repre-
sented in the following integral form

M(x) =

∫x
0

η(t)dt

where η is known as the kernel of M, is right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t)→∞ as t→∞.
Let X be a linear metric space. A function p : X→ R is called paranorm, if

1. p(x) ≥ 0 for all x ∈ X,
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2. p(−x) = p(x) for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a
sequence of vectors with p(xn−x)→ 0 as n→∞, then p(λnxn−λx)→
0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X, p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [37],
Theorem 10.4.2, pp. 183). For more details about sequence spaces see ([17],
[22], [25], [28], [29], [30], [32], [33]) and reference therein.
Let `∞, c and c0 denotes the sequence spaces of bounded, convergent and null
sequences x = (xk) respectively. A sequence x = (xk) ∈ `∞ is said to be almost
convergent if all Banach limits of x = (xk) coincide. In [13], it was shown that

ĉ =

{
x = (xk) : lim

n→∞ 1

n

n∑
k=1

xk+s exists, uniformly in s

}
.

In ([15], [16]) Maddox defined strongly almost convergent sequences. Recall
that a sequence x = (xk) is strongly almost convergent if there is a number L
such that

lim
n→∞ 1

n

n∑
k=1

|xk+s − L| = 0, uniformly in s.

By a lacunary sequence θ = (ir), r = 0, 1, 2, · · · , where i0 = 0, we shall mean
an increasing sequence of non-negative integers gr = (ir − ir−1) → ∞ (r →∞). The intervals determined by θ are denoted by Ir = (ir−1, ir] and the
ratio ir/ir−1 will be denoted by nr. The space of lacunary strongly convergent
sequences Nθ was defined by Freedman [6] as follows:

Nθ =

{
x = (xk) : lim

r→∞ 1

gr

∑
k∈Ir

|xk − L| = 0 for some L

}
.

The double sequence θr,s = {(kr, ls)} is called double lacunary if there exist
two increasing sequences of integers such that

k0 = 0, gr = kr − kr−1 →∞ as r→∞
and

l0 = 0, gs = ls − ls−1 →∞ as s→∞.
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Let kr,s = krls, gr,s = grgs and θr,s is determined by Ir,s = {(k, l) : kr−1 < k ≤
kr & ls−1 < l ≤ ls}, qr = kr

kr−1
, qs =

ls
ls−1

and qr,s = qrqs.

The concept of 2-normed spaces was initially developed by Gähler [7] in the
mid of 1960’s, while that of n-normed spaces one can see in Misiak [20]. Since
then, many others have studied this concept and obtained various results, see
Gunawan ([8],[9]) and Gunawan and Mashadi [10]. Let n ∈ N and X be a
linear space over the field R of reals of dimension d, where d ≥ n ≥ 2. A real
valued function ||·, · · · , ·|| on Xn satisfying the following four conditions:

1. ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent
in X;

2. ||x1, x2, · · · , xn|| is invariant under permutation;

3. ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ R, and

4. ||x+ x ′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x ′, x2, · · · , xn||

is called a n-norm on X, and the pair (X, ||·, · · · , ·||) is called a n-normed space
over the field R.
For example, we may take X = Rn being equipped with the Euclidean n-norm
||x1, x2, · · · , xn||E = the volume of the n-dimensional parallelopiped spanned
by the vectors x1, x2, · · · , xn which may be given explicitly by the formula

||x1, x2, · · · , xn||E = |det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ||·, · · · , ·||)
be a n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an} be linearly
independent set in X. Then the following function ||·, · · · , ·||∞ on Xn−1 defined
by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.
A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to some
L ∈ X if

lim
k→∞ ||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy if

lim
k,p→∞ ||xk − xp, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.
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If every Cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said
to be n-Banach space.
Let (X, ||·, · · · , ·||) be a real n-normed space and w(n − X) denotes the space
of X-valued sequences. Let p = (pk,l) be any bounded sequence of positive
real numbers, d = (dk,l) be any sequence of strictly positive real numbers and
M = (Mk,l) be a sequence of Orlicz functions. In this paper we define the
following sequence spaces:

[c2,M, p, d, ||·, · · · , ·|| ]θ(∆m) =
{
x = (xk,l) ∈ w(n− X) :

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l = 0,

uniformly in u and v, z1, · · · , zn−1 ∈ X, for some L and ρ > 0
}
,

[c2,M, p, d, ||·, · · · , ·|| ]θ0(∆m) =
{
x = (xk,l) ∈ w(n− X) :

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l = 0,

uniformly in u and v, z1, · · · , zn−1 ∈ X and ρ > 0
}

and

[c2,M, p, d, ||·, · · · , ·|| ]θ∞(∆m) =
{
x = (xk,l) ∈ w(n− X) :

sup
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l <∞,

uniformly in u and v, z1, · · · , zn−1 ∈ X and ρ > 0
}
.

When M(x) = x, we get

[c2, p, d, ||·, · · · , ·|| ]θ(∆m) =
{
x = (xk,l) ∈ w(n− X) :

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)pk,l = 0,

uniformly in u and v, z1, · · · , zn−1 ∈ X for some L and ρ > 0
}
,

[c2, p, d, ||·, · · · , ·|| ]θ0(∆m) =
{
x = (xk,l) ∈ w(n− X) :

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)pk,l = 0,

uniformly in u and v, z1, · · · , zn−1 ∈ X and ρ > 0
}
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and

[c2, p, d, ||·, · · · , ·|| ]θ∞(∆m) =
{
x = (xk,l) ∈ w(n− X) :

sup
r,s

1

gr,s

∑
k,l∈Ir,s

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)pk,l <∞,

uniformly in u and v, z1, · · · , zn−1 ∈ X and ρ > 0
}
.

If we take p = (pk,l) = 1 and d = (dk,l) = 1 for all k, l then we get

[c2,M, ||·, · · · , ·|| ]θ(∆m) =
{
x = (xk,l) ∈ w(n− X) :

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)] = 0,

uniformly in u and v, z1, · · · , zn−1 ∈ X, for some L and ρ > 0
}
,

[c2,M, ||·, · · · , ·|| ]θ0(∆m) =
{
x = (xk,l) ∈ w(n− X) :

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)] = 0,

uniformly in u and v, z1, · · · , zn−1 ∈ X and ρ > 0
}

and

[c2,M, ||·, · · · , ·|| ]θ∞(∆m) =
{
x = (xk,l) ∈ w(n− X) :

sup
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)] <∞,

uniformly in u and v, z1, · · · , zn−1 ∈ X and ρ > 0
}
.

The following inequality will be used throughout the paper. Let p = (pk,l) be
a double sequence of positive real numbers with 0 < pk,l ≤ sup

k,l
pk,l = H and

let K = max{1, 2H−1}. Then for the factorable sequences {ak,l} and {bk,l} in the
complex plane, we have

|ak,l + bk,l|
pk,l ≤ K(|ak,l|pk,l + |bk,l|

pk,l). (1)

The aim of this paper is to introduce some new type of lacunary double se-
quence spaces defined by a sequence of Orlicz function M = (Mk,l) over n-
normed spaces and to establish some topological properties and some inclusion
relation between above defined sequence spaces.
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2 Main results

Theorem 1 Let M = (Mk,l) be a sequence of Orlicz functions, p = (pk,l) be
a bounded sequence of positive real numbers and d = (dk,l) be a sequence of
strictly positive real numbers. Then the sequence spaces [c2,M, p, d, ‖·, · · · , ·‖]θ
(∆m), [c2,M, p, d, ‖·, · · · , ·‖]θ0 (∆m) and [ c2,M, p, d, ||·, · · · , ·|| ]θ∞(∆m) are
linear spaces over the field of real numbers R.

Proof. Let x = (xk,l), y = (yk,l) ∈ [ c2,M, p, d, ||·, · · · , ·|| ]θ0(∆m) and α,β ∈ R.
Then there exist positive numbers ρ1 and ρ2 such that

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l = 0,

uniformly in u and v, and

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆myk+u,l+v
ρ2

, z1, · · · , zn−1
∥∥∥)]pk,l = 0,

uniformly in u and v.
Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M = (Mk,l) is non-decreasing and con-

vex function so by using inequality (1), we have

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆m(αxk+u,l+v + βyk+u,l+v)
ρ3

, z1, · · · , zn−1
∥∥∥)]pk,l

=
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,lα∆m(xk+u,l+v)
ρ3

, z1, · · · , zn−1
∥∥∥

+
∥∥∥dk,lβ∆m(yk+u,l+v)

ρ3
, z1, · · · , zn−1

∥∥∥)]pk,l
≤ K 1

gr,s

∑
k,l∈Ir,s

1

2pk,l

[
Mk,l

(∥∥∥dk,l∆m(xk+u,l+v)
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l

+ K
1

gr,s

∑
k,l∈Ir,s

1

2pk,l

[
Mk,l

(∥∥∥dk,l∆m(yk+u,l+v)
ρ2

, z1, · · · , zn−1
∥∥∥)]pk,l

≤ K 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆m(xk+u,l+v)
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l

+ K
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆m(yk+u,l+v)
ρ2

, z1, · · · , zn−1
∥∥∥)]pk,l
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−→ 0 as r −→∞, s −→∞ uniformly in u and v.
Thus, we have αx + βy ∈ [ c2,M, p, d, ||·, · · · , ·||]θ0(∆m). Hence [c2,M, p, d,

||·, · · · , ·||]θ0(∆m) is a linear space. Similarly, we can prove that [c2,M, p, d,

||·, · · · , ·||]θ(∆m) and [c2,M, p, d, ||·, · · · , ·||]θ∞(∆m) are linear spaces. �

Theorem 2 SupposeM = (Mk,l) is a sequence of Orlicz functions, p = (pk,l)
be a bounded sequence of positive real numbers and d = (dk,l) be a sequence of
strictly positive real numbers, then [c2,M, p, d, ||·, · · · , ·||]θ0(∆m) is a topological
linear space paranormed by

g(x) = inf

ρpr,sH :

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1, r, s ∈ N} ,

where H = max(1, sup
k,l
pk,l) <∞.

Proof. Clearly g(x) ≥ 0 for x = (xk,l) ∈ [c2,M, p, d, ||·, · · · , ·||]θ0(∆m). Since
Mk,l(0) = 0, we get g(0) = 0. Again, if g(x) = 0, then

inf

{
ρ
pr,s
H :

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1, r, s ∈ N
}
= 0.

This implies that for a given ε > 0, there exists some ρε(0 < ρε < ε) such
that (

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρε

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1.

Thus,(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ε

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρε

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1,
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for each r, s, u and v. Suppose that xk,l 6= 0 for each k, l ∈ N. This implies that

dk,l∆
mxk+u,l+v 6= 0, for each k, l, u, v ∈ N. Let ε→ 0, then

∥∥∥dk,l∆mxk+u,l+vε , z1, · · · ,

zn−1

∥∥∥→∞. It follows that(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ε

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H →∞
which is a contradiction. Therefore, dk,l∆

mxk+u,l+v = 0 for each k, l, u and v
and thus xk,l = 0 for each k, l ∈ N. Let ρ1 > 0 and ρ2 > 0 be such that(

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1

and (
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ2

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1

for each r, s, u and v. Let ρ = ρ1 + ρ2. Then, by Minkowski’s inequality, we
have(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆m(xk+u,l+v + yk+u,l+v)
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v + dk,l∆myk+u,l+v
ρ1 + ρ2

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤

( ∑
k,l∈Ir,s

[ ρ1
ρ1 + ρ2

Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ1

, z1, · · · , zn−1
∥∥∥)

+
ρ2

ρ1 + ρ2
Mk,l

(∥∥∥dk,l∆myk+u,l+v
ρ2

, z1, · · · , zn−1
∥∥∥)]pk,l) 1H

≤
( ρ1
ρ1 + ρ2

)( 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

+
( ρ2
ρ1 + ρ2

)( 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆myk+u,l+v
ρ2

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1.
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Since ρ ′s are non-negative, so we have

g(x+ y) = inf
{
ρ
pr,s
H :(

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆m(xk+u,l+v + yk+u,l+v)
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1, r, s, u, v ∈ N
}
,

≤ inf

{
ρ
pr,s
H

1 :

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1, r, s, u, v ∈ N
}

+ inf

{
ρ
pr,s
H

2 :
( 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆myk+u,l+v
ρ2

, z1, · · · , zn−1
∥∥∥)g]pk,l) 1H

≤ 1, r, s, u, v ∈ N
}
.

Therefore,
g(x+ y) ≤ g(x) + g(y).

Finally, we prove that the scalar multiplication is continuous. Let λ be any
complex number. By definition,

g(λx) = inf

{
ρ
pr,s
H :

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mλxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1, r, s, u, v ∈ N
}
.

Then

g(λx) = inf
{
(|λ|t)

pr,s
H :

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
t

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1, r, s, u, v ∈ N
}
,

where t = ρ
|λ|
. Since |λ|pr,s ≤ max(1, |λ|sup pr,s), we have

g(λx) ≤ max(1, |λ|sup pr,s)
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inf

{
t
pr,s
H :

(
1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
t

, z1, · · · , zn−1
∥∥∥)]pk,l) 1

H

≤ 1, r, s, u, v ∈ N
}
.

So, the fact that scalar multiplication is continuous follows from the above
inequality. This completes the proof of the theorem. �

Proposition 1 LetM = (Mk,l) be a sequence of Orlicz functions. If sup
k,l

[Mk,l

(x)]pk,l <∞ for all fixed x > 0, then [ c2,M, p, d, ||·, · · · , ·|| ]θ0(∆m) ⊂ [ c2,M, p,

d, ||·, · · · , ·|| ]θ∞(∆m).

Proof. Let x = (xk,l) ∈ [ c2,M, p, d, ||·, · · · , ·|| ]θ0(∆m), then there exists some
positive ρ1 such that

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l = 0,

uniformly in u and v. Define ρ = 2ρ1. SinceM = (Mk,l) is non-decreasing and
convex, by using inequality (1), we have

sup
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l

= sup
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∣∣∣dk,l∆mxk+u,l+v − L+ L
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l

≤ K sup
r,s

1

gr,s

∑
k,l∈Ir,s

[1
2
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l

+ K sup
r,s

1

gr,s

∑
k,l∈Ir,s

[1
2
Mk,l

(∥∥∥ L
ρ1
, z1, · · · , zn−1

∣∣∣)]pk,l
≤ K sup

r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∣∣∣dk,l∆mxk+u,l+v − L
ρ1

, z1, · · · , zn−1
∥∥∥)]pk,l

+ K sup
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥ L
ρ1
, z1, · · · , zn−1

∥∥∥)]pk,l <∞.
Hence x = (xk,l) ∈ [ c2,M, p, d, ||·, · · · , ·|| ]θ∞. �
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Theorem 3 Let 0 < inf pk,l = h ≤ pk,l ≤ suppk,l = H <∞ andM = (Mk,l),
M ′ = (M ′

k,l) be two sequences of Orlicz functions satisfying ∆2−condition,
then we have
(i) [c2,M ′

, p, d, ||·, · · · , ·||]θ0(∆m) ⊂ [c2,M◦M ′, p, d, ||·, · · · , ·||]θ0(∆m),

(ii) [c2,M ′, p, d, ||·, · · · , ·||]θ(∆m) ⊂ [c2,M◦M ′, p, d, ||·, · · · , ·||]θ(∆m) and

(iii) [c2,M ′, p, d, ||·, · · · , ·||]θ∞(∆m) ⊂ [c,M◦M ′, p, d, ||·, · · · , ·||]θ∞(∆m).

Proof. Let x = (xk,l) ∈ [c2,M ′, p, d, ||·, · · · , ·||]θ0(∆m). Then we have

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
M ′
k,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l = 0,

uniformly in u and v.
Let ε > 0 and choose δ with 0 < δ < 1 such that Mk,l(t) < ε for 0 ≤ t ≤ δ.
Let

yk+u,l+v =M
′
k,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥) for all k, l ∈ N.

We can write

1

gr,s

∑
k,l∈Ir,s

[Mk,l(yk+u,l+v)]
pk,l =

1

gr,s

∑
k,l∈Ir,s,

yk+u,l+v≤δ

[Mk,l(yk+u,l+v)]
pk,l

+
1

gr,s

∑
k,l∈Ir,s,

yk+u,l+v≤δ

[Mk,l(yk+u,l+v)]
pk,l .

Since M = (Mk,l) satisfying ∆2-condition, we have

1

gr,s

∑
k,l∈Ir,s,

yk+u,l+v≤δ

[Mk,l(yk+u,l+v)]
pk,l

≤ [Mk,l(1)]
H 1

gr,s

∑
k,l∈Ir,s,

yk+u,l+v≤δ

[Mk,l(yk+u,l+v)]
pk,l

≤ [Mk,l(2)]
H 1

gr,s

∑
k,l∈Ir,s,

yk+u,l+v≤δ

[Mk,l(yk+u,l+v)]
pk,l .

(2)
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For yk+u,l+v > δ, we have

yk+u,l+v <
yk+u,l+v
δ

< 1+
yk+u,l+v
δ

.

Since M = (Mk,l) is non-decreasing and convex, it follows that

Mk,l(yk+u,l+v) < Mk,l

(
1+

yk+u,l+v
δ

)
<
1

2
Mk,l(2) +

1

2
Mk,l

(2yk+u,l+v
δ

)
.

Since (Mk,l) satisfies ∆2-condition, we can write

Mk,l(yk+u,l+v) <
1

2
T
yk+u,l+v
δ

Mk,l(2) +
1

2
T
yk+u,l+v
δ

Mk,l(2)

= T
yk+u,l+v
δ

Mk,l(2).

Hence,

1

gr,s

∑
k,l∈Ir,s,

yk+u,l+v≤δ

[Mk,l(yk+u,l+v)]
pk,l

≤ max
(
1,
(TMk,l(2)

δ

)H) 1

gr,s

∑
k,l∈Ir,s,

yk+u,l+v≤δ

[(yk+u,l+v)]
pk,l

(3)

from equations (2) and (3), we have

x = (xk,l) ∈ [c2,M◦M ′, p, d, ||·, · · · , ·||]θ0(∆m).

This completes the proof of (i).
Similarly, we can prove that

[ c2,M ′, p, d, ||·, · · · , ·||]θ(∆m) ⊂ [ c2,M◦M ′, p, d, ||·, · · · , ·|| ]θ(∆m)

and

[ c2,M ′, p, d, ||·, · · · , ·|| ]θ∞(∆m) ⊂ [ c2,M◦M ′, p, d, ||·, · · · , ·|| ]θ∞(∆m).

�
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Corollary 1 Let 0 < inf pk,l = h ≤ pk,l ≤ suppk,l = H <∞ and M = (Mk,l)
be a sequence of Orlicz functions satisfying ∆2-condition, then we have

[c2, p, d, ||·, · · · , ·||]θ0(∆m) ⊂ [c2,M, p, d, ||·, · · · , ·||]θ0(∆m)

and
[c2, p, d, ||·, · · · , ·||]θ∞(∆m) ⊂ [c2,M, p, d, ||·, · · · , ·||]θ∞(∆m).

Proof. TakingM ′(x) = x in the above theorem, we get the required result.�

Theorem 4 Let M = (Mk,l) be a sequence of Orlicz functions. Then the fol-
lowing statements are equivalent:
(i) [c2, p, d, ||·, · · · , ·||]θ∞(∆m) ⊂ [c2,M, p, d, ||·, · · · , ·||]θ∞(∆m),

(ii) [c2, p, d, ||·, · · · , ·||]θ0(∆m) ⊂ [c2,M, p, d, ||·, · · · , ·||]θ∞(∆m) and

(iii) sup
r

1

gr,s

∑
k,l∈Ir,s

[Mk,l(
t

ρ
)]pk,l <∞ (t, ρ > 0).

Proof. (i) ⇒ (ii) The proof is obvious in view of the fact that

[ c2, p, d, ||·, · · · , ·|| ]θ0(∆m) ⊂ [c2, p, d, ||·, · · · , ·||]θ∞(∆m).

(ii) ⇒(iii) Let [c2, p, d, ||·, · · · , ·||]θ0(∆m) ⊂ [c2,M, p, d, ||·, · · · , ·||]θ∞(∆m). Sup-
pose that (iii) does not hold. Then for some t, there exists ρ > 0 such that

sup
r,s

1

gr,s

∑
k,l∈Ir,s

[Mk,l(
t

ρ
)]pk,l =∞

and therefore we can find a subinterval Ir,s(j) of the set of interval Ir,s such
that

1

gr,s(j)

∑
k,l∈Ir,s(j)

[
Mk,l

( j−1
ρ

)]pk,l
> j, j = 1, 2. (4)

Define the sequence x = (xk,l) by

dk,l∆
mxk+u,l+v =

{
j−1, k, l ∈ Ir,s(j)
0, k, l 6∈ Ir,s(j)

for all u and v ∈ N.

Then x = (xk,l) ∈ [c2, p, d, ||·, · · · , ·||]θ0(∆m) but by equation (4),
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x = (xk,l) 6∈ [c2,M, p, d, ||·, · · · , ·|| ]θ∞(∆m), which contradicts (ii). Hence (iii)
must hold.

(iii) ⇒ (i) Let (iii) hold and x = (xk,l) ∈ [c2, p, d, ||·, · · · , ·|| ]θ∞(∆m). Suppose
that
x = (xk,l) 6∈ [c2,M, p, d, ||·, · · · , ·|| ]θ∞(∆m).
Then

sup
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(
||
dk,l∆

mxk+u,l+v
ρ

, z1, · · · , zn−1||
)]pk,l

=∞. (5)

Let t = ||dk,l∆
mxk+u,l+v, z1, · · · , zn−1|| for each k, l and fixed u, v, then by

equations (5)

sup
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

( t
ρ

)]
=∞,

which contradicts (iii). Hence (i) must hold. �

Theorem 5 Let 1 ≤ pk,l ≤ suppk,l <∞ and M = (Mk,l) be a sequence of
Orlicz functions. Then the following statements are equivalent:
(i) [c2,M, p, d, ||·, · · · , ·||]θ0(∆m) ⊂ [c2, p, d, ||·, · · · , ·||]θ0(∆m),
(ii) [c2,M, p, d, ||·, · · · , ·||]θ0(∆m) ⊂ [c2, p, d, ||·, · · · , ·||]θ∞(∆m) and

(iii) inf
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

( t
ρ

)]pk,l
> 0 (t, ρ > 0).

Proof. (i) ⇒ (ii) It is trivial.

(ii) ⇒ (iii) Let (ii) hold. Suppose that (iii) does not hold. Then

inf
r,s

1

gr,s

∑
k,l∈Ir,s

[
Mk,l

( t
ρ

)]pk,l
= 0 (t, ρ > 0),

so we can find a subinterval Ir,s(j) of the set of interval Ir,s such that

1

gr,s(j)

∑
k,l∈Ir,s(j)

[
Mk,l

( j
ρ

)]pk,l
< j−1, j = 1, 2, · · · (6)

Define the sequence x = (xk,l) by

dk,l∆
mxk+u,l+v =

{
j, k, l ∈ Ir,s(j)
0, k, l 6∈ Ir,s(j)

for all u and v ∈ N.
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Thus by equation (6), x = (xk,l) ∈ [ c2,M, p, d, ||·, · · · , ·||]θ0(∆m), but x = (xk,l) 6∈
[c2, p, d, ||·, · · · , ·|| ]θ∞(∆m), which contradicts (ii). Hence (iii) must hold.

(iii)⇒ (i) Let (iii) hold and suppose that x = (xk,l) ∈ [ c2,M, p, d, ||·, · · · , ·|| ]θ0
(∆m), i.e,

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l = 0,

uniformly in u and v, for some ρ > 0.

(7)

Again, suppose that x = (xk,l) 6∈ [ c2, p, d, ||·, · · · , ·|| ]θ0(∆m). Then, for some
number ε > 0 and a subinterval Ir,s(j) of the set of interval Ir,s, we have
||dk,l∆

mxk+u,l+v, z1, · · · , zn−1|| ≥ ε for all k ∈ N and some u ≥ u0, v ≥ v0.
Then, from the properties of the Orlicz function, we can write

Mk,l

(∥∥∥dk,l∆mxk+u,l+v
ρ

, z1, · · · , zn−1
∥∥∥)pk,l ≥Mk,l

(ε
ρ

)pk,l
and consequently by (7)

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(ε
ρ

)]pk,l
= 0,

which contradicts (iii). Hence (i) must hold. �

Proposition 2 Let 0 < pk,l ≤ qk,l for all k, l ∈ N and
(
qk,l
pk,l

)
be bounded.

Then,
[c2,M, q, d, ||·, · · · , ·||]θ(∆m) ⊂ [c2,M, p, d, ||·, · · · , ·||]θ(∆m).

Proof. Let x ∈ [c2,M, q, d, ||·, · · · , ·||]θ(∆m). Write

tk,l =
[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)]qk,l

and µk,l =
pk,l
qk,l

for all k, l ∈ N. Then 0 < µk,l ≤ 1 for k, l ∈ N. Take 0 < µ <
µk,l for k, l ∈ N. Define the sequences (ak,l) and (bk,l) as follows: For tk,l ≥ 1,
let ak,l = tk,l and bk,l = 0 and for tk,l < 1, let ak,l = 0 and bk,l = tk,l. Then
clearly for all k, l ∈ N, we have

tk,l = ak,l + bk,l, t
µk,l
k,l = aµk,lk,l + bµk,lk,l .
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Now it follows that aµk,lk,l ≤ ak,l ≤ tk,l and bµk,lk,l ≤ b
µ
k,l. Therefore,

1

gr,s

∑
k,l∈Ir,s

t
µk,l
k,l =

1

gr,s

∑
k,l∈Ir,s

(aµk,lk,l + bµk,lk,l )

≤ 1

gr,s

∑
k,l∈Ir,s

tk,l +
1

gr,s

∑
k,l∈Ir,s

b
µ
k,l.

Now for each k and l,

1

gr,s

∑
k,l∈Ir,s

b
µ
k,l =

∑
k,l∈Ir,s

( 1

gr,s
bk,l

)µ( 1

gr,s

)1−µ
≤

( ∑
k,l∈Ir,s

[( 1

gr,s
bk,l

)µ] 1
µ

)µ( ∑
k,l∈Ir,s

[( 1

gr,s

)1−µ] 1
1−µ

)1−µ

=

(
1

gr,s

∑
k,l∈Ir,s

bk,l

)µ

and so
1

gr,s

∑
k,l∈Ir,s

t
µk,l
k,l ≤

1

gr,s

∑
k,l∈Ir,s

tk,l +

(
1

gr,s

∑
k,l∈Ir,s

bk,l

)µ
.

Hence x = (xk,l) ∈ [ c2,M, p, d, ||·, · · · , ·|| ]θ(∆m). �

Theorem 6 (a) If 0 < inf pk,l ≤ pk,l ≤ 1 for all k, l ∈ N, then

[ c2,M, p, d, ||·, · · · , ·|| ]θ(∆m) ⊂ [ c2,M, d, ||·, · · · , ·|| ]θ(∆m).

(b) If 1 ≤ pk,l ≤ suppk,l <∞, for all k, l ∈ N. Then

[c2,M, d, ||·, · · · , ·||]θ(∆m) ⊂ [c2,M, p, d, ||·, · · · , ·||]θ(∆m).

Proof. (a) Let x = (xk,l) ∈ [ c2,M, p, d, ||·, · · · , ·|| ]θ(∆m), then

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l = 0.
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Since 0 < inf pk,l ≤ pk,l ≤ 1. This implies that

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)]

≤ lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l .

Therefore, lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)] = 0.

This shows that x = (xk,l) ∈ [c2,M, d, ||·, · · · , ·||]θ(∆m)·
Therefore,

[c2,M, p, d, ||·, · · · , ·||]θ(∆m) ⊂ [c2,M, d, ||·, · · · , ·|| ]θ(∆m).

This completes the proof.

(b) Let pk,l ≥ 1 for each k, l and suppk,l <∞. Let x = (xk,l) ∈ [c2,M, d,

||·, · · · , ·||]θ(∆m). Then for each ε > 0 there exists a positive integer N such
that

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∣∣∣)] = 0 < 1.

Since 1 ≤ pk,l ≤ suppk,l <∞, we have

lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∥∥∥)]pk,l

≤ lim
r,s→∞ 1

gr,s

∑
k,l∈Ir,s

[
Mk,l

(∥∥∥dk,l∆mxk+u,l+v − L
ρ

, z1, · · · , zn−1
∣∣∣)]

= 0 < 1.

Therefore x = (xk,l) ∈ [c2,M, p, d, ||·, · · · , ·||]θ(∆m). �
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Abstract. In this paper, we study three-step iteration process for Ciric-
quasi contractive operator and establish strong convergence theorems for
above mentioned operator and schemes in the setting of CAT(0) spaces.
Our result extends and generalizes some previous work from the existing
literature (see, e.g., [4, 30] and some others).

1 Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if every
geodesic triangle in X is at least as ’thin’ as its comparison triangle in the
Euclidean plane. It is well known that any complete, simply connected Rie-
mannian manifold having non-positive sectional curvature is a CAT(0) space.
For a thorough discussion of these spaces and of the fundamental role they
play in geometry, we refer the reader to Bridson and Haefliger [8].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [22,
23]). He showed that every nonexpansive (single-valued) mapping defined on
a bounded closed convex subset of a complete CAT(0) space always has a fixed

2010 Mathematics Subject Classification: 54H25, 54E40.
Key words and phrases: Ciric-quasi contractive operator, three-step iteration scheme,
fixed point, strong convergence, CAT(0) space.
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point. Since, then the fixed point theory for various mappings and iteration
schemes in a CAT(0) space has been rapidly developed and a lot of papers
appeared (see, [3, 11, 13, 14, 20, 21, 24, 25, 27, 31, 32]). It is worth mentioning
that the results in CAT(0) spaces can be applied to any CAT(k) space with
k ≤ 0 since any CAT(k) space is a CAT(k ′) space for every k ′ ≥ k (see,e.g.,
[8]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X
such that c(0) = x, c(l) = y, and let d(c(t), c(t ′)) = |t− t ′| for all t, t ′ ∈ [0, l].
In particular, c is an isometry, and d(x, y) = l. The image α of c is called a
geodesic (or metric) segment joining x and y. We say X is (i) a geodesic space
if any two points of X are joined by a geodesic and (ii) uniquely geodesic if
there is exactly one geodesic joining x and y for each x, y ∈ X, which we will
denoted by [x, y], called the segment joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points in X (the vertices of 4) and a geodesic segment between each
pair of vertices (the edges of 4). A comparison triangle for geodesic triangle
4(x1, x2, x3) in (X, d) is a triangle4(x1, x2, x3) := 4(x1, x2, x3) in R2 such that
dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [8]).

CAT(0) space

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles
of appropriate size satisfy the following CAT(0) comparison axiom.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and
all comparison points x, y ∈ 4,

d(x, y) ≤ dR2(x, y). (1)

Complete CAT(0) spaces are often called Hadamard spaces (see [19]). If x, y1, y2
are points of a CAT(0) space and y0 is the mid point of the segment [y1, y2]
which we will denote by (y1 ⊕ y2)/2, then the CAT(0) inequality implies

d2
(
x,
y1 ⊕ y2
2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2) −

1

4
d2(y1, y2). (2)

The inequality (2) is the (CN) inequality of Bruhat and Tits [9].
Let us recall that a geodesic metric space is a CAT(0) space if and only if

it satisfies the (CN) inequality (see [[8], p.163]). Moreover, if X is a CAT(0)
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metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point
αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y), (3)

for any z ∈ X and [x, y] = {αx⊕ (1− α)y : α ∈ [0, 1]}.
A subset C of a CAT(0) space X is convex if for any x, y ∈ C, we have

[x, y] ⊂ C.

Algorithm 1. The sequence {xn} defined by x1 ∈ C and

xn+1 = anTxn + (1− an)xn, n ≥ 1, (4)

where {an}
∞
n=1 is a sequence in (0,1) is called a Mann iterative sequence (see

[26]).

Algorithm 2. The sequence {xn} defined by x1 ∈ C and

yn = bnTxn + (1− bn)xn,

xn+1 = anTyn + (1− an)xn, n ≥ 1, (5)

where {an}
∞
n=1 and {bn}

∞
n=1 are appropriate sequences in [0,1] is called an

Ishikawa iterative sequence (see [17]).

Algorithm 3. The sequence {xn} defined by x1 ∈ C and

zn = cnTxn + (1− cn)xn,

yn = bnTzn + (1− bn)xn,

xn+1 = anTyn + (1− an)xn, n ≥ 1, (6)

where {an}
∞
n=1, {bn}

∞
n=1, {cn}

∞
n=1 are appropriate sequences in (0,1) is called

Noor iterative sequence (see [28]).

Algorithm 4. The sequence {xn} defined by x1 ∈ C and

yn = bnTxn + (1− bn)xn,

xn+1 = anTyn + (1− an)Txn, n ≥ 1, (7)

where {an}
∞
n=1 and {bn}

∞
n=1 are appropriate sequences in (0,1) is called S-

iterative sequence (see [2]).
Recently, Abbas and Nazir [1] introduced the following iterative process:
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Algorithm 5. The sequence {xn} defined by x1 ∈ C and

xn+1 = (1− an)Tyn + anTzn,

yn = (1− bn)Txn + bnTzn,

zn = (1− cn)xn + cnTxn, n ≥ 1 (8)

where {an}, {bn} and {cn} are sequences in (0, 1). They showed that this process
converges faster than the Agarwal et al. [2].

Very recently, Thakur et al. [33] introduced the following iterative process:

Algorithm 6. The sequence {xn} defined by x1 ∈ C and

xn+1 = (1− an)Txn + anTyn,

yn = (1− bn)zn + bnTzn,

zn = (1− cn)xn + cnTxn, n ≥ 1 (9)

where {an}, {bn} and {cn} are sequences in (0, 1). They showed that this process
converges faster than all of the Picard, the Mann, the Ishikawa, the Noor, the
Agarwal et al. and the Abbas et al. processes for contractions in the sense of
Berinde [5] and in support gave analytic proof by a numerical example.

We now modify (9) in a CAT(0) space as follows.
Let C be a nonempty closed convex subset of a complete CAT(0) space

X and T : C → C be a mapping. Suppose that {xn} is a sequence generated
iteratively by

xn+1 = (1− an)Txn ⊕ anTyn,
yn = (1− bn)zn ⊕ bnTzn,
zn = (1− cn)xn ⊕ cnTxn, n ≥ 1 (10)

where {an}, {bn} and {cn} are sequences in (0, 1).
If we put cn = 0 for all n ≥ 1, then (10) reduces to the following iteration

process

xn+1 = (1− an)Txn ⊕ anTyn,
yn = (1− bn)xn ⊕ bnTxn, (11)

where {an} and {bn} are sequences in (0, 1) is called modified S-iteration pro-
cess.

We recall the following.
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Let (X, d) be a metric space and T : X → X be a mapping. A mapping
T : X→ X is called an a-contraction if

d(Tx, Ty) ≤ ad(x, y), (12)

where a ∈ (0, 1) and for all x, y ∈ X.

The mapping T is called Kannan mapping [18] if there exists b ∈ (0, 12) such
that

d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)], (13)

for all x, y ∈ X.
The mapping T is called Chatterjea mapping [12] if there exists c ∈ (0, 12)

such that

d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)], (14)

for all x, y ∈ X.
In 1972, combining these three definitions, Zamfirescu [34] proved the fol-

lowing important result.

Theorem Z. Let (X, d) be a complete metric space and T : X→ X a mapping
for which there exists the real number a, b and c satisfying a ∈ (0, 1), b, c ∈
(0, 12) such that for any pair x, y ∈ X, at least one of the following conditions
holds:
(z1) d(Tx, Ty) ≤ ad(x, y),

(z2) d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)],

(z3) d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)].

Then T has a unique fixed point p and the Picard iteration {xn}
∞
n=0 defined

by xn+1 = Txn, n = 0, 1, 2, . . . converges to p for any arbitrary but fixed
x0 ∈ X.

The conditions (z1) − (z3) can be written in the following equivalent form

d(Tx, Ty) ≤ h max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,

d(x, Ty) + d(y, Tx)

2

}
(15)
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for all x, y ∈ X and 0 < h < 1, has been obtained by Ciric [10] in 1974.
A mapping satisfying (15) is called Ciric quasi-contraction. It is obvious that

each of the conditions (z1) − (z3) implies (15).
An operator T satisfying the contractive conditions (z1)−(z3) in the theorem

Z is called Z-operator.
In 2000, Berinde [4] introduced a new class of operators on a normed space

E satisfying
‖Tx− Ty‖ ≤ δ‖x− y‖+ L‖Tx− x‖, (∗)

for any x, y ∈ E, 0 ≤ δ < 1 and L ≥ 0.
He proved that this class is wider than the class of Zamfirescu operators

and used the Mann iteration process to approximate fixed points of this class
of operators in a normed space given in the form of following theorem.

Theorem B. Let C be a nonempty closed convex subset of a normed space
E. Let T : C→ C be an operator satisfying (∗). Let {xn}

∞
n=0 be defined by: for

x1 = x ∈ C, the sequence {xn}
∞
n=0 given by (5) where {an} is a sequence in [0,1].

If F(T) 6= ∅ and
∑∞
n=1 an =∞, then {xn}

∞
n=0 converges strongly to the unique

fixed point of T .
In this paper, inspired and motivated by [33, 34], we study an iteration

process (10) and establish strong convergence theorems to approximate the
fixed point for Ciric quasi contractive operator in the framework of CAT(0)
spaces.

We need the following useful lemmas to prove our main result in this paper.

Lemma 1 (See [27]) Let X be a CAT(0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such

that
d(x, z) = t d(x, y) and d(y, z) = (1− t)d(x, y). (A)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (A).
(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Lemma 2 (See [6]) Let {pn}
∞
n=0, {qn}

∞
n=0, {rn}

∞
n=0 be sequences of nonnegative

numbers satisfying the following condition:

pn+1 ≤ (1− sn)pn + qn + rn, ∀n ≥ 0,

where {sn}
∞
n=0 ⊂ [0, 1]. If

∑∞
n=0 sn = ∞, limn→∞ qn = O(sn) and

∑∞
n=0 rn <∞, then limn→∞ pn = 0.
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2 Strong convergence theorems in CAT(0) Space

In this section, we establish strong convergence result of iteration process
(10) to approximate a fixed point for Ciric quasi contractive operator in the
framework of CAT(0) spaces.

Theorem 1 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C → C be an operator satisfying the condition (15). Let
{xn} be defined by the iteration scheme (10). If

∑∞
n=1 anbn = ∞, then {xn}

converges strongly to the unique fixed point of T .

Proof. By Theorem Z, we know that T has a unique fixed point in C, say u.
Consider x, y ∈ C. Since T is a operator satisfying (15), then if

d(Tx, Ty) ≤ h

2
[d(x, Tx) + d(y, Ty)]

≤ h

2
[d(x, Tx) + d(y, x) + d(x, Tx) + d(Tx, Ty)],

implies (
1−

h

2

)
d(Tx, Ty) ≤ h

2
d(x, y) + hd(x, Tx),

which yields (using the fact that 0 < h < 1)

d(Tx, Ty) ≤
( h/2

1− h/2

)
d(x, y) +

( h

1− h/2

)
d(x, Tx). (16)

If

d(Tx, Ty) ≤ h

2
[d(x, Ty) + d(y, Tx)]

≤ h

2
[d(x, Tx) + d(Tx, Ty) + d(y, x) + d(x, Tx)],

implies (
1−

h

2

)
d(Tx, Ty) ≤ h

2
d(x, y) + hd(x, Tx),

which also yields (using the fact that 0 < h < 1)

d(Tx, Ty) ≤
( h/2

1− h/2

)
d(x, y) +

( h

1− h/2

)
d(x, Tx). (17)

Denote

L1 = max
{
h,

h/2

1− h/2

}
= h,
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L2 = max
{ h

1− h/2
,

h

1− h/2

}
=

h

1− h/2
.

Thus, in all cases,

d(Tx, Ty) ≤ L1 d(x, y) + L2 d(x, Tx)

= hd(x, y) +
( h

1− h/2

)
d(x, Tx)

(18)

holds for all x, y ∈ C.
Also from (15) with y = u = Tu, we have

d(Tx, u) ≤ hmax
{
d(x, u),

d(x, Tx)

2
,
d(x, u) + d(u, Tx)

2

}
≤ hmax

{
d(x, u),

d(x, Tx)

2
,
d(x, u) + d(u, Tx)

2

}
≤ hmax

{
d(x, u),

d(x, u) + d(u, Tx)

2
,
d(x, u) + d(u, Tx)

2

}
.

(19)

Since for non-negative real numbers a and b, we have

a+ b

2
≤ max{a, b}. (20)

Using (20) in (19), we have

d(Tx, u) ≤ hd(x, u). (21)

Now (21) gives

d(Txn, u) ≤ hd(xn, u) (22)

d(Tyn, u) ≤ hd(yn, u) (23)

and

d(Tzn, u) ≤ hd(zn, u). (24)

Using (10), (21) and Lemma 1(ii), we have

d(zn, u) = d((1− cn)xn ⊕ cnTxn, u)
≤ (1− cn)d(xn, u) + cnd(Txn, u)

≤ (1− cn)d(xn, u) + cnhd(xn, u)

= [1− (1− h)cn]d(xn, u).

(25)
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Again using (10), (24), (25) and Lemma 1(ii), we have

d(yn, u) = d((1− bn)zn ⊕ bnTzn, u)
≤ (1− bn)d(zn, u) + bnd(Tzn, u)

≤ (1− bn)d(zn, u) + bnhd(zn, u)

= [(1− (1− h)bn)]d(zn, u)

≤ [(1− (1− h)bn)][(1− (1− h)cn)]d(xn, u)

≤ [1− (1− h)bn]d(xn, u).

(26)

Now using (10), (22), (23), (26) and Lemma 1(ii), we have

d(xn+1, u) = d((1− an)Txn ⊕ anTyn, u)
≤ (1− an)d(Txn, u) + and(Tyn, u)

≤ (1− an)hd(xn, u) + anhd(yn, u)

≤ (1− an)hd(xn, u) + anh[1− (1− h)bn]d(xn, u)

= [(1− an)h+ anh(1− (1− h)bn)]d(xn, u)

= h[1− (1− h)anbn]d(xn, u)

≤ [1− (1− h)anbn]d(xn, u)

= (1− gn)d(xn, u)

(27)

where gn = (1 − h)anbn, since 0 < h < 1 and by assumption of the theorem∑∞
n=1 anbn =∞, it follows that

∑∞
n=1 gn =∞, therefore by Lemma 2, we get

that limn→∞ d(xn, u) = 0. Thus {xn} converges strongly to a fixed point of T .

To show uniqueness of the fixed point u, assume that w1, w2 ∈ F(T) and
w1 6= w2.

Applying (15) and using the fact that 0 < h < 1, we obtain

d(w1, w2) = d(Tw1, Tw2)

≤ hmax
{
d(w1, w2),

d(w1, Tw1) + d(w2, Tw2)

2
,

d(w1, Tw2) + d(w2, Tw1)

2

}
= hmax

{
d(w1, w2),

d(w1, w1) + d(w2, w2)

2
,

d(w1, w2) + d(w2, w1)

2

}
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= hmax
{
d(w1, w2), 0, d(w1, w2)

}
≤ hd(w1, w2)

< d(w1, w2), since 0 < h < 1,

which is a contradiction. Therefore w1 = w2. Thus {xn} converges strongly to
the unique fixed point of T . This completes the proof. �

Theorem 2 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C → C be an operator satisfying the condition (15). Let
{xn} be defined by the iteration scheme (11). If

∑∞
n=1 anbn = ∞, then {xn}

converges strongly to the unique fixed point of T .

Proof. The proof of Theorem 2 immediately follows from Theorem 1 by taking
cn = 0 for all n ≥ 1. This completes the proof. �

The contraction condition (12) makes T continuous function on X while this
is not the case with contractive conditions (13), (14) and (18).

The contractive conditions (13) and (14) both included in the class of Zam-
firescu operators and so their convergence theorems for iteration process (10)
are obtained in Theorem 1 in the setting of CAT(0) space.

Remark 1 Our result extends the corresponding result of [30] to the case of
three-step iteration process (10) and from uniformly convex Banach space to
the setting of CAT(0) spaces.

Remark 2 Theorem 1 also extends Theorem B to the case of three-step iter-
ation process (10) and from normed space to the setting of CAT(0) spaces.

3 Application to contraction of integral type

Theorem 3 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ h
∫max

{
d(x,y),

d(x,Tx)+d(y,Ty)
2

,
d(x,Ty)+d(y,Tx)

2

}
0

µ(t)dt (28)

for all x, y ∈ X and 0 < h < 1, where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .
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Proof. The proof of Theorem 3 follows from Theorem 1 by taking µ(t) = 1

over [0,+∞) since the contractive condition of integral type transforms into a
general contractive condition (15) not involving integrals. This completes the
proof. �

Example 1 Let X = {0, 1, 2, 3, 4, 5} and d be the usual metric of reals. Let
T : X→ X be given by {

T(x) = 5, if x = 0

= 3, otherwise.

Again let µ : [0,+∞)→ [0,+∞) be given by µ(t) = 1 for all t ∈ [0,+∞). Then
µ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is summable
(i.e. with finite integral) on each compact subset of [0,+∞), nonnegative, and
such that for each ε > 0,

∫ε
0 µ(t)dt > 0.

Let us take x = 0, y = 1. Then from condition (28), we have

2 =

∫d(Tx,Ty)
0

µ(t)dt ≤ h

∫max

{
d(x,y),

d(x,Tx)+d(y,Ty)
2

,
d(x,Ty)+d(y,Tx)

2

}
0

µ(t)dt

= h max
{
1,
7

2
,
7

2

}
which implies h ≥ 4

7 . Now if we take 0 < h < 1, then condition (28) is satisfied
and 3 is of course a unique fixed point of T .

The following corollaries are special cases of Theorem 3.

Corollary 1 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ h

∫d(x,y)
0

µ(t)dt (29)

for all x, y ∈ X and h ∈ (0, 1), where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .
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Condition (29) is called Branciari [7] contractive condition of integral type.

Putting µ(t) = 1 in the condition (29), we get Banach contraction condition.

Proof. The proof of corollary 1 immediately follows from Theorem 1 by taking
µ(t) = 1 over [0,+∞) and

max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
= d(x, y)

since the contractive condition of integral type transforms into a general con-
tractive condition (12) not involving integrals. This completes the proof. �

Corollary 2 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ b

∫ [d(x,Tx)+d(y,Ty)]
0

µ(t)dt (30)

for all x, y ∈ X and b ∈ (0, 12), where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .

Condition (30) is called Kannan contractive condition [18] of integral type.

Putting µ(t) = 1 in the condition (30), we get Kannan contraction condition.

Proof. The proof of corollary 2 immediately follows from Theorem 1 by taking
µ(t) = 1 over [0,+∞) and

max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
=
d(x, Tx) + d(y, Ty)

2

since the contractive condition of integral type transforms into a general con-
tractive condition (13) not involving integrals. This completes the proof. �

Corollary 3 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ c

∫ [d(x,Ty)+d(y,Tx)]
0

µ(t)dt (31)
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for all x, y ∈ X and c ∈ (0, 12), where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .

Condition (31) is called Chatterjae contractive condition [12] of integral
type.

Putting µ(t) = 1 in the condition (31), we get Chatterjae contraction con-
dition.

Proof. The proof of corollary 3 immediately follows from Theorem 1 by taking
µ(t) = 1 over [0,+∞) and

max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
=
d(x, Ty) + d(y, Tx)

2

since the contractive condition of integral type transforms into a general con-
tractive condition (14) not involving integrals. This completes the proof. �

Now, we give the examples in support of above corollaries.

Example 2 Let X be the real line with the usual metric d and suppose C =
[0, 1]. Define T : C → C by T(x) = x+1

2 for all x ∈ C. Obviously T is self-
mapping with a unique fixed point 1. Again let µ : [0,+∞) → [0,+∞) be
given by µ(t) = 1 for all t ∈ [0,+∞). Then µ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable (i.e. with finite integral) on
each compact subset of [0,+∞), nonnegative, and such that for each ε > 0,∫ε
0 µ(t)dt > 0.

If x, y ∈ [0, 1], then we have

d(Tx, Ty) =
∣∣∣x− y
2

∣∣∣.
Let us take x = 0, y = 1. Then from condition (29), we have

1

2
=

∫d(Tx,Ty)
0

µ(t)dt ≤ h.1 = h

∫d(x,y)
0

µ(t)dt

which implies h ≥ 1
2 . Now if we take 0 < h < 1, then condition (29) is satisfied

and 1 is of course a unique fixed point of T .
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Example 3 Let X be the real line with the usual metric d and suppose C =
[0, 1]. Define T : C → C by T(x) = x

4 for all x ∈ C. Obviously T is self-
mapping with a unique fixed point 0. Again let µ : [0,+∞) → [0,+∞) be
given by µ(t) = 1 for all t ∈ [0,+∞). Then µ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable (i.e. with finite integral) on
each compact subset of [0,+∞), nonnegative, and such that for each ε > 0,∫ε
0 µ(t)dt > 0.

If x, y ∈ [0, 1], then we have

d(Tx, Ty) =
∣∣∣x− y
4

∣∣∣.
Let us take x = 0, y = 1. Then from condition (30), we have

1

4
=

∫d(Tx,Ty)
0

µ(t)dt ≤ b.
3

4
= b

∫ [d(x,Tx)+d(y,Ty)]
0

µ(t)dt

which implies b ≥ 1
3 . Now if we take 0 < b < 1

2 , then condition (30) is satisfied
and 0 is of course a unique fixed point of T .

Example 4 Let X be the real line with the usual metric d and suppose C =
[0, 1]. Define T : C→ C by T(x) = x

4 for all x ∈ C. Obviously T is self-mapping
with a unique fixed point 0. Again let µ : [0,+∞)→ [0,+∞) be given by µ(t) =
1 for all t ∈ [0,+∞). Then µ : [0,+∞) → [0,+∞) is a Lebesgue-integrable
mapping which is summable (i.e. with finite integral) on each compact subset
of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt > 0.

If x, y ∈ [0, 1], then we have

d(Tx, Ty) =
∣∣∣x− y
4

∣∣∣.
Let us take x = 0, y = 1. Then from condition (31), we have

1

4
=

∫d(Tx,Ty)
0

µ(t)dt ≤ c · 5
4
= c

∫ [d(x,Ty)+d(y,Tx)]
0

µ(t)dt

which implies c ≥ 1
5 . Now if we take 0 < c < 1

2 , then condition (31) is satisfied
and 0 is of course a unique fixed point of T .



Convergence of three-step iterations . . . 103

4 Conclusion

The Ciric quasi contractive operator [10] is more general than Banach contrac-
tion, Kannan contraction, Chatterjea contraction and Zamfirescu operators.
Thus the results obtained in this paper are improvement and generalization of
several known results from the existing literature (see, e.g., [4, 30] and some
others).
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Abstract. The purpose of this paper is to determine all maximal
idempotent submonoids and some maximal compatible idempotent sub-
monoids of the monoid of all generalized hypersubstitutions of type τ =
(2).

1 Introduction

In Universal Algebra, identities are used to classify algebras into collections,
called varieties and hyperidentities are use to classify varieties into collections,
called hypervarities. The concept of a hypersubstitution is a tool to study hy-
peridentities and hypervarities. The notion of a hypersubstitution originated
by K. Denecke, D. Lau, R. Pöschel and D. Schweigert [3]. In 2000, S. Leer-
atanavalee and K. Denecke generalized the concepts of a hypersubstitution
and a hyperidentity to the concepts of a generalized hypersubstitution and a
strong hyperidentity, respectively [4]. The set of all generalized hypersubsti-
tutions together with a binary operation and the identity hypersubstitution
forms a monoid. There are several published papers on algebraic properties of
this monoid and its submonoids.
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The concept of regular subsemigroup plays an important role in the the-
ory of semigroup. The concept of an idempotent submonoid is an example
of a regular subsemigroup. In 2013, W. Puninagool and S. Leeratanavalee
studied the natural partial order on the set E(HypG(2)) of all idempotent el-
ements of HypG(2), see [6]. In 2012, the authors studied the natural partial
order on HypG(2), see [7]. In this paper we determine all maximal idempo-
tent submonoids and give some maximal compatible idempotent submonoids
of HypG(2) under this partial order.

2 Generalized hypersubstitutions

Let n ∈ N be a natural number and Xn := {x1, x2, . . . , xn} be an n-element set.
Let {fi | i ∈ I} be a set of ni-ary operation symbols indexed by the set I. We
call the sequence τ = (ni)i∈I of arities of fi, the type. An n-ary term of type τ
is defined inductively by the following.

(i) Every xi ∈ Xn is an n-ary term of type τ.

(ii) If t1, t2, . . . , tni
are n-ary terms of type τ, then fi(t1, t2, . . . , tni

) is an
n-ary term of type τ.

We denote the smallest set which contains x1, . . . , xn and is closed under
finite number of applications of (ii) by Wτ(Xn) and let Wτ(X) :=

⋃∞
n=1Wτ(Xn)

be the set of all terms of type τ.
A mapping σ from {fi | i ∈ I} into Wτ(X) which does not necessarily preserve

the arity is called a generalized hypersubstitution of type τ. The set of all
generalized hypersubstitutions of type τ is denoted by HypG(τ). In general,
to combine two mappings together we use a composition of mappings. But in
this case to combine two generalized hypersubstitutions we need the concept
of a generalized superposition of terms and the extension of a generalized
hypersubstitution which are defined by the following.

Definition 1 A generalized superposition of terms is a mapping
Sm :Wτ(X)

m+1 −→Wτ(X) where

(i) Sm(xj, t1, . . . , tm) := tj, 1 ≤ j ≤ m,

(ii) Sm(xj, t1, . . . , tm) := xj,m < j ∈ N,

(iii) Sm(fi(s1, . . . , sni
), t1, . . . , tm) := fi(S

m(s1, t1, . . . , tm), . . . ,
Sm(sni

, t1, . . . , tm)).
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Definition 2 Let σ ∈ HypG(τ). The extension of σ is a mapping
σ̂ :Wτ(X) −→Wτ(X) where

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary operation
symbol fi where σ̂[tj], 1 ≤ j ≤ ni are already defined.

Proposition 1 ([4]) For arbitrary t, t1, t2, . . . , tn ∈ Wτ(X) and for arbitrary
generalized hypersubstitution σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[S
n(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

The binary operation of two generalized hypersubstitutions σ1, σ2 is defined
by σ1 ◦G σ2 := σ̂1 ◦ σ2 where ◦ denotes the usual composition of mappings. It
turns out that HypG(τ) together with the identity element σid where σid(fi) =
fi(x1, . . . , xni

) is a monoid under ◦G, see [4].

3 All Maximal idempotent submonoids of HypG(2)

We recall first the definition of an idempotent element of a semigroup. Let S
be a semigroup. An element a ∈ S is called idempotent if aa = a. We denote
the set of all idempotent elements of a semigroup S by E(S). Let E(S) 6= ∅.
Define a ≤ b(a, b ∈ E(S)) iff a = ab = ba. Then ≤ is a partial order on
E(S). We call ≤ a natural partial order on E(S). A natural partial order ≤ on
a semigroup S is said to be a compatible if a ≤ b implies ac ≤ bc and ca ≤ cb
for all a, b, c ∈ S. Throughout this paper, let f be a binary operation symbol
of type τ = (2). By σt we denote a generalized hypersubstitution which maps f
to the term t ∈W(2)(X). For t ∈W(2)(X) we introduce the following notation:

(i) leftmost(t) := the first variable (from the left) occurring in t,

(ii) rightmost(t) := the last variable occurring in t,

(iii) var(t) := the set of all variables occurring in t.

Let σt ∈ HypG(2), we denote R1 := {σt | t = f(x1, t
′) where t ′ ∈W(2)(X)

and x2 /∈ var(t ′)}, R2 := {σt | t = f(t ′, x2) where t ′ ∈ W(2)(X) and x1 /∈
var(t ′)}, R3 := {σt | t ∈ {x1, x2, f(x1, x2)}} and R4 := {σt | var(t) ∩ {x1, x2} = ∅}.
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In 2008, W. Puninagool and S. Leeratanavalee [5] proved that:
4⋃
i=1

Ri =

E(HypG(2)).

Example 1 Let σs ∈ R1 and σt ∈ R2 such that s = f(x1, s
′) and t = f(t ′, x2)

where s ′ = f(x4, x1) and t ′ = f(x2, x6). Consider

(σs ◦G σt)(f) = σ̂s[f(f(x2, x6), x2)]

= S2(f(x1, f(x4, x1)), σ̂s[f(x2, x6)], σ̂s[x2])

= S2(f(x1, f(x4, x1), f(x2, f(x4, x2)), x2)

= f(f(x2, f(x4, x2)), f(x4, f(x2, f(x4, x2)))).

So σs ◦G σt /∈
4⋃
i=1

Ri.

By the previous example, we have
4⋃
i=1

Ri is not a subsemigroup of HypG(2).

Let σt ∈ HypG(2), we denote R ′
1 := {σt | t = f(x1, t

′) where t ′ ∈W(2)(X), x2 /∈
var(t ′) and rightmost(t ′) 6= x1} and R ′

2 := {σt | t = f(t ′, x2) where t ′ ∈
W(2)(X), x1 /∈ var(t ′) and leftmost(t ′) 6= x2}.

We denote (MI)HypG(2) = R ′
1 ∪ R ′

2 ∪ R3 ∪ R4, (MI1)HypG(2) = R1 ∪ R3 ∪ R4
and (MI2)HypG(2) = R2 ∪ R3 ∪ R4.

Proposition 2 (MI)HypG(2) is an idempotent submonoid of HypG(2).

Proof. It is clear that (MI)HypG(2) ⊆ HypG(2) and every element in (MI)HypG(2)

is idempotent. Next, we show that (MI)HypG(2) is a submonoid of HypG(2).
Case 1: σt ∈ R ′

1. Then t = f(x1, t
′) where t ′ ∈W(2)(X) such that x2 /∈ var(t ′)

and rightmost(t ′) 6= x1. Let σs ∈ (MI)HypG(2).
Case 1.1: σs ∈ R ′

1. Then s = f(x1, s
′) where x2 /∈ var(s ′) and

rightmost(s ′) 6= x1. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(f(x1, t
′), x1, σ̂t[s

′])

= f(x1, t
′) since x2 /∈ var(t ′).

Then σt ◦G σs ∈ R ′
1 ⊆ (MI)HypG(2).

Case 1.2: σs ∈ R ′
2. Then s = f(s ′, x2) where x1 /∈ var(s ′) and

leftmost(s ′) 6= x2. Consider (σs◦Gσt)(f) = σ̂s[f(x1, t ′)] = S2(f(s ′, x2), x1, σ̂s[t ′])
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= f(S2(s ′, x1, w), S
2(x2, x1, w)), where w = σ̂s[t

′]. Since x2 /∈ var(t ′) and
rightmost(t ′) 6= x1, then x1, x2 /∈ var(w). Since x1 /∈ var(s ′) and x1, x2 /∈
var(w), then x1, x2 /∈ var(S2(s ′, x1, w)). Consider (σt◦Gσs)(f) = σ̂t[f(s ′, x2)] =
S2(f(x1, t

′), σ̂t[s
′], x2) = f(S2(x1, u, x2), S

2(t ′, u, x2, )), where u = σ̂t[s
′]. Since

x1 /∈ var(s ′) and leftmost(s ′) 6= x2, we have x1, x2 /∈ var(u). Since x2 /∈
var(t ′) and x1, x2 /∈ var(u), we have x1, x2 /∈ var(S2(t ′, u, x2)). Then σs ◦G
σt, σt ◦G σs ∈ R ′

4 ⊆ (MI)HypG(2).
Case 1.3: σs ∈ R3. Then s = x1 or s = x2 or s = f(x1, x2).
If s = x1, then (σt◦Gσs)(f) = σ̂t[x1] = x1 and (σs◦Gσt)(f) = σ̂x1 [f(x2, t ′)] =

S2(x1, x2, σ̂x1 [t
′]) = x2.

If s = x2, then (σt◦Gσs)(f) = σ̂t[x2] = x2 and (σs◦Gσt)(f) = σ̂x2 [f(x2, t ′)] =
S2(x2, x2, σ̂x2 [t

′]).
Since x1 /∈ var(t ′) and rightmost(t ′) 6= x2, then S2(x2, x2, σ̂x2 [t

′]) = xi /∈
{x1, x2}.

If s = f(x1, x2), then σs = σid such that σt ◦G σid = σt = σid ◦G σt.
Therefore σs ◦G σt, σs ◦G σt ∈ (MI)HypG(2).
Case 1.4: σs ∈ R4. Then s = f(s1, s2) where x1, x2 /∈ var(s). Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2)] = S2(f(x2, t ′), σ̂t[s1], σ̂t[s2]) = f(S2(x2, w1, w2),
S2(t ′, w1, w2)), where w1 = σ̂t[s1] and w2 = σ̂t[s2]. Then x1, x2 /∈ var(w1) ∪
var(w2). The consequence is x1, x2 /∈ var(S2(t ′, w1, w2)).
Since x1, x2 /∈ var(w2)∪var(S2(t ′, w1, w2)), so that σt◦Gσs ∈ R ′

4 ⊆ (MI)HypG(2).

Consider (σs ◦G σt)(f) = σ̂s[f(x2, t ′)] = S2(f(s1, s2), x2, σ̂s[t ′]) = f(s1, s2) since
x1, x2 /∈ var(s). So that σs ◦G σt ∈ R4 ⊆ (MI)HypG(2).
Case 2: σt ∈ R ′

2 and σs ∈ R ′
2 ∪ R3 ∪ R4. It can be proved similarly as in Case

1. Then we have σt ◦G σs, σs ◦G σt ∈ (MI)HypG(2).
Case 3: σt ∈ R3 and σs ∈ R3 ∪ R4. It can be proved similarly as in Case 1.3.
Then we have σt ◦G σs, σs ◦G σt ∈ (MI)HypG(2).
Case 4: σt ∈ R4 and σs ∈ R4. Then σt ◦G σs = σt ∈ R4 ⊆ (MI)HypG(2).

Therefore (MI)HypG(2) is a submonoid of HypG(2). �

Corollary 1 (MI1)HypG(2) and (MI2)HypG(2) are idempotent submonoids of
HypG(2).

Proposition 3 (MI)HypG(2) is a maximal idempotent submonoid of HypG(2).

Proof. Let K be a proper idempotent submonoid of HypG(2) such that
(MI)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K. Then σt is an idempotent ele-
ment.
Case 1: σt ∈ R1\R ′

1. Then t = f(x1, t
′) where x2 /∈ var(t ′) and rightmost(t ′) =
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x1. Choose σs ∈ R ′
2 ⊆ K, then s = f(s ′, x2) such that x1 /∈ var(s ′) and

leftmost(s ′) 6= x2. Consider (σs◦Gσt)(f) = σ̂s[f(x1, t ′)] = S2(f(s ′, x2), x1, σ̂s[t ′])
= f(S2(s ′, x1, w), S

2(x2, x1, w)) where w = σ̂s[t
′]. Since x2 ∈ var(s) and

rightmost(t ′) = x1, we have x1 ∈ var(w) and S2(s ′, x1, w) ∈ W(2)(X) \ X.
Since x1 ∈ var(w), σs ◦G σt is not idempotent. So σt ∈ R ′

1.
Case 2: σt ∈ R2\R ′

2. Then t = f(t ′, x2) where x1 /∈ var(t ′) and leftmost(t ′) =
x2. Choose σs ∈ R ′

1 ⊆ K, then s = f(x1, s
′) such that x2 /∈ var(s ′) and

rightmost(s ′) 6= x1. Consider (σs◦Gσt)(f) = σ̂s[f(t ′, x2)] = S2(f(x1, s ′), σ̂s[t ′],
x2) = f(S2(x1, w, x2), S

2(s ′, w, x2)), where w = σ̂s[t
′]. Since x1 ∈ var(s) and

leftmost(t ′) = x2, we have x2 ∈ var(w) and S2(s ′, w, x2) ∈W(2)(X) \X. Since
x2 ∈ var(w), σs ◦G σt is not idempotent. So σt ∈ R ′

2. Then σt ∈ (MI)HypG(2).
Therefore K ⊆ (MI)HypG(2) and thus K = (MI)HypG(2). �

Proposition 4 (MI1)HypG(2) is a maximal idempotent submonoid of HypG(2).

Proof. Let K be a proper idempotent submonoid of HypG(2) such that
(MI1)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K. Then σt is an idempotent ele-
ment. If σt ∈ R2. Then t = f(t ′, x2) where x1 /∈ var(t ′). Choose σs ∈ R1 such
that s = f(x1, s

′) where x2 /∈ var(s ′), s ′ ∈W(2)(X)\X and rightmost(s ′) = x1.

Consider (σt ◦Gσs)(f) = σ̂t[f(x1, s ′)] = S2(f(t ′, x2), x1, σ̂t[s ′]) = f(S2(t ′, x1, w),
S2(x2, x1, w)), where w = σ̂t[s

′]. Since x2 ∈ var(t), we have x1 ∈ var(w) and
S2(t ′, x1, w) ∈ W(2)(X) \ X. Since x1 ∈ var(w), σt ◦G σs is not idempotent, so
σt ∈ (MI1)HypG(2). Therefore K = (MI1)HypG(2). �

Proposition 5 (MI2)HypG(2) is a maximal idempotent submonoid of HypG(2).

Proof. The proof is similar to the proof of Proposition 4. �

Corollary 2 {(MI)HypG(2), (MI1)HypG(2), (MI2)HypG(2)} is the set of all maxi-
mal idempotent submonoids of HypG(2).

Proposition 6 ([6]) Let σt be an idempotent element. Then σx1 ≤ σt if and
only if leftmost(t) = x1.

Proposition 7 ([6]) Let σt be an idempotent element. Then σx2 ≤ σt if and
only if rightmost(t) = x2.

Proposition 8 For each t ∈ W(2)(X) where x2 /∈ var(t), {σx1 , σid, σf(x1,t)} is
a maximal compatible idempotent submonoid of HypG(2).
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Proof. By using Proposition 6, σx1 ≤ σf(x1,t). Then σx1 = σx1 ◦G σf(x1,t) =
σf(x1,t) ◦G σx1 and σid is the identity element. We have {σx1 , σid, σf(x1,t)} is an
idempotent submonoid of HypG(2). Since

σf(x1,t) ◦G σx1 = σx1 ◦G σf(x1,t) = σx1 ◦G σx1 = σx1 ≤ σf(x1,t) = σf(x1,t) ◦G σf(x1,t).

We have {σx1 , σid, σf(x1,t)} is a compatible idempotent submonoid of HypG(2).
Let K be a proper compatible idempotent submonoid of HypG(2) such that

{σx1 , σid, σf(x1,t)} ⊆ K ⊂ HypG(2). Let σs ∈ K. Then σs is an idempotent ele-
ment.
Case 1: σs ∈ R1 \ {σx1 , σid, σf(x1,t)}. Then s = f(x1, s

′) where x2 /∈ var(s ′).
Since K is a compatible idempotent submonoid and σf(x1,t) ≤ σid, we have
σf(x1,t) ◦G σf(x1,s ′) = σf(x1,t) ≤ σf(x1,s ′) = σid ◦G σf(x1,s ′) which is a contradic-
tion.
Case 2: σs ∈ R2. Then s = f(s ′, x2) where x1 /∈ var(s ′). Since K is a com-
patible idempotent submonoid and σf(s ′,x2) ≤ σid, we have σx1 ◦G σf(s ′,x2) =
σleftmost(s ′) ≤ σx1 = σx1 ◦G σf(x1,s ′). So leftmost(s ′) = x1 which is a contra-
diction.
Case 3: σs = σx2 . Since K is a compatible idempotent submonoid and σx1 ≤
σid, we have σx2 ◦G σx1 = σx1 ≤ σx2 = σx2 ◦G σid which is a contradiction.
Case 4: σs ∈ R4. Then s = f(s1, s2) ∈ W(2)X \ X where x1, x2 /∈ var(s).
Since K is a compatible idempotent submonoid and σx1 ≤ σid, we have
σs ◦G σx1 = σx1 ≤ σs = σs ◦G σid which is a contradiction.

Therefore K = {σx1 , σid, σf(x1,t)} is a maximal compatible idempotent
submonoid of HypG(2). �

Proposition 9 For each t ∈ W(2)X where x1 /∈ var(t), {σx2 , σid, σf(t,x2)} is a
maximal compatible idempotent submonoid of HypG(2).

Proof. The proof is similar to the proof of Proposition 8. �
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Sébastien FERENCZI (Institut de Mathématiques de Luminy, France)
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A. Hajnal, V. T. Sós, Paul Erdős is seventy, J. Graph Theory, 7 (1983), 391–393.

For books:
D. Stanton, D. White, Constructive combinatorics, Springer, New York, 1986.

For papers in contributed volumes:
Z. Csörnyei, Compilers in Algorithms of informatics, Vol. 1. Foundations (ed. A.
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