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Antal Bege
(1962–2012)

Our colleague, friend, editor-in-chief of Acta Universitatis Sapientiae, asso-
ciate professor Antal Bege passed away unexpectedly on March 22, 2012. He
was only 49.

After finishing his studies in Mathematics at Babeş-Bolyai University in Cluj
he became a teacher in his former school in Miercurea Ciuc. After the regime
change in 1989 he joined the Faculty of Mathematics and Computer Science,
at Babeş-Bolyai University. He worked there for almost two decades, then
went over to Sapientia Hungarian University of Transylvania, Department
of Mathematics and Informatics in Târgu-Mureş in 2008. This is where he
became the head of the department and the editor-in-chief of the academic
journal Acta Universitatis Sapientiae. Naturally, he did his best in all these
qualities.

Among his research interests we can mention Number Theory (arithmetical
functions), Nonlinear Analysis and Discrete Mathematics. He published 13
textbooks and monographs both in Hungarian and Romanian, as well as a lot
of scientific papers.

He was extremely evenhanded person, appreciated by all his colleagues and
students, a man of poise and an eternal stayer. With a terrible feeling of pain
and loss, we say goodbye to our friend. We shall treasure his memory.

Editorial Board
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3. A. Bege, Differenciálegyenletek – gyakorlatok és feladatok, (Problems and
exercises in differential equations – in Hungarian), Editura Presa Uni-
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8. A. Bege, Z. Kása, Algoritmikus kombinatorika és számelmélet (Algorith-
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20. J. Sándor, A. Bege, The Möbius function: generalizations and exten-
sions, Adv. Studies in Cont. Math. 6 (2003), 77–128.

21. A. Bege, On multiplicatively bi-unitary perfect numbers, Notes Number
Theory Discrete Math. 8 (2002) 28–36.

22. A. Bege, Fixed point theorems in ordered sets and applications, Seminar
on Fixed Point Theory 3 (2002) 129–136.

23. A. Bege, Fixed points of R-contractions, Studia Univ. Babeş-Bolyai
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Studia Univ. Babeş-Bolyai Math. 41 (1996) 17–21.

30. A. Bege, Two asymptotic formulas related to bi-unitary divisors, Notes
Number Theory Discrete Math. 2 (1996) 7–14.

31. A. Bege, Fixed points of certain divisor function, Notes Number Theory
Discrete Math. 1 (1995) 43–44.

32. A. Bege, Some remarks concerning fixed points in partially ordered sets,
Notes Number Theory Discrete Math. 1 (1995) 142–145.

33. A. Bege, O inegalitate cu media generalizata a lui Stolarsky, Lucr.
Semin. Didact. Mat. 8 (1992) 17–22.

34. A. Bege, Triunitary divisor functions, Studia Univ. Babeş-Bolyai Math.
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theorems with applications), Universitatea Babeş-Bolyai, Cluj-Napoca,
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hyperbolic geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
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Balancing diophantine triples
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Abstract. In this paper, we show that there are no three distinct posi-
tive integers a, b and c such that ab + 1, ac + 1, bc + 1 all are balancing
numbers.

1 Introduction

A diophantine m-tuple is a set {a1, . . . , am} of positive integers such that
aiaj + 1 is square for all 1 ≤ i < j ≤ m. Diophantus investigated first
the problem of finding rational quadruples, and he provided one example:
{1/16, 33/16, 68/16, 105/16}. The first integer quadruple, {1, 3, 8, 120} was found
by Fermat. Infinitely many diophantine quadruples of integers are known and
it is conjectured that there is no integer diophantine quintuple. This was al-
most proved by Dujella [2], who showed that there can be at most finitely
many diophantine quintuples and all of them are, at least in theory, effectively
computable.

2010 Mathematics Subject Classification: 11D09, 11B39
Key words and phrases: diophantine triples, balancing numbers
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The following variant of the diophantine tuples problem was treated by [4].
Let A and B be two nonzero integers such that D = B2 +4A 6= 0. Let (un)∞

n=0

be a binary recursive sequence of integers satisfying the recurrence

un+2 = Aun+1 + Bun for all n ≥ 0.

It is well-known that if we write α and β for the two roots of the characteristic
equation x2 − Ax − B = 0, then there exist constants γ, δ ∈ Q [α] such that

un = γαn + δβn for all n ≥ 0.

Assume further that the sequence (un)∞
n=0 is non-degenerate which means that

γδ 6= 0 and α/β are not root of unity. We shall also make the convention that
|α| ≥ |β| .

A diophantine triple with values in the set U = {un : n ≥ 0} , is a set of three
distinct positive integers {a, b, c} , such that ab + 1, ac + 1, bc + 1 are all in
U. Note that if un = 2n + 1 for all n ≥ 0, then there are infinitely many such
triples (namely, take a, b, c to be any distinct powers of two). The main result
in [4] shows that only similar sequences can possess this property. The precise
result proved there is the following.

Theorem 1 Assume that (un)∞
n=0 is a non-degenerate binary recurrence se-

quence with D > 0, and suppose that there exist infinitely many nonnegative
integers a, b, c with 1 ≤ a < b < c, and x, y, z such that

ab + 1 = ux, ac + 1 = uy, bc + 1 = uz.

Then β ∈ {±1} , δ ∈ {±1} , α, γ ∈ Z. Furthermore, for all but finitely many
of sixtuples (a, b, c; x, y, z) as above one has δβz = δβy = 1 and one of the
followings holds:

(i) δβx = 1. In this case, one of δ or δα is a perfect square;
(ii) δβx = −1. In this case, x ∈ {0, 1}.

No finiteness result was proved for the case when D < 0.
The first definition of balancing numbers is essentially due to Finkelstein

[3], although he called them numerical centers. A positive integer n is called
balancing number if

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r)
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holds for some positive integer r. Then r is called balancer corresponding to
the balancing number n. The nth term of the sequence of balancing numbers
is denoted by Bn. The balancing numbers satisfy the recurrence relation

Bn+2 = 6Bn+1 − Bn,

where the initial conditions are B0 = 0 and B1 = 1. Let α and β denote the
roots of the characteristic polynomial b(x) = x2 − 6x + 1. Then the explicit
formula for the terms Bn is given by

Bn =
αn − βn

α − β
=

(3 + 2
√

2)n − (3 − 2
√

2)n

4
√

2
. (1)

The first few terms of the balancing sequence are

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, . . . .

Let denote the half of the associate sequence of the balancing numbers by
Cn. Clearly, Cn = (αn + βn)/2 satisfies Cn = 6Cn−1 − Cn−2. Note that the
terms Cn are odd positive integers:

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, . . . .

Although Theorem 1 guarantees that there are at most finitely many Fi-
bonacci and Lucas diophantine triples, it does not give a hint to find all of
them. Luca and Szalay described a method to determine diophantine triples
for Fibonacci numbers and Lucas numbers ([6] and [7], respectively). In this
paper, we follow their method, although some new types of problems appeared
when we proved the following theorem.

Theorem 2 There do no exist positive integers a < b < c such that

ab + 1 = Bx, ac + 1 = By, bc + 1 = Bz, (2)

where 0 < x < y < z are natural numbers and (Bn)∞
n=0 is the sequence of

balancing numbers.

The main idea in the proof of Theorem 2 coincides the principal tool of [6],
the details are different since the balancing numbers have less properties have
been known then in case of Fibonacci and Lucas numbers.
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2 Preliminary results

The proof of Theorem 2 uses the next lemma.

Lemma 1 The following identities hold.

1. Bn = 35Bn−2 − 6Bn−3;

2. If n ≥ m then (Bn − Bm) (Bn + Bm) = Bn−mBn+m, especially
(Bn − 1) (Bn + 1) = Bn−1Bn+1;

3. gcd (Bn, Bm) = Bgcd(n,m), especially gcd (Bn, Bn−1) = 1;

4. gcd(Bn, Cn) = 1;

5. Bn+m = BnCm + CnBm;

6. B2n+1 − 1 = 2BnCn+1.

Proof. The first property is a double application of the recurrence relation of
balancing numbers. The second identity is Theorem 2.4.13 in [9], the next one
is a specific case of a general statement described by [5]. The fourth feature
can be found in the proof of Theorem VII in [1], the fifth property is given in
[8]. Finally, the last one is coming easily from the explicit formulae for Bn and
Cn. ¤

Lemma 2 Any integer n ≥ 2 satisfies the relation gcd(Bn−1, Bn−2−1) ≤ 34.

Proof. Using the common tools in evaluating the greatest common divisor,
the recurrence relation of balancing numbers, and Lemma 1 the statement is
implied by the following rows. Put Q1 = gcd(Bn − 1, Bn−2 − 1). Then

Q1 = gcd(Bn − 1, Bn − Bn−2) = gcd(Bn − 1, 6Bn−1 − 2Bn−2) ≤
≤ 2 gcd(Bn − 1, 3Bn−1 − Bn−2) ≤ 2 gcd(Bn−1Bn+1, 3Bn−1 − Bn−2) ≤
≤ 2 gcd(Bn−1, 3Bn−1 − Bn−2) gcd(Bn+1, 3Bn−1 − Bn−2) =

= 2 gcd(Bn−1, Bn−2) gcd(35Bn−1 − 6Bn−2, 3Bn−1 − Bn−2) =

= 2 gcd(−Bn−1 + 6Bn−2, 3Bn−1 − Bn−2) =

= 2 gcd(−Bn−1 + 6Bn−2, 17Bn−2) ≤
≤ 34 gcd(−Bn−1 + 6Bn−2, Bn−2) = 34 gcd(−Bn−1, Bn−2) = 34.

¤
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Lemma 3 For any integer n ≥ 2 we have gcd(B2n−3 − 1, Bn − 1) ≤ 1190.

Proof. Similarly to the previous lemma, put Q2 = gcd(B2n−3 − 1, Bn − 1).
Then

Q2 = gcd(2Bn−2Cn−1, Bn − 1) ≤ 2 gcd(Bn−2, Bn − 1) gcd(Cn−1, Bn − 1) ≤
≤ 2 gcd(Bn−2, Bn−1Bn+1) gcd(Cn−1, Bn−1Bn+1) ≤
≤ 2 gcd(Bn−2, Bn−1) gcd(Bn−2, Bn+1) gcd(Cn−1, Bn−1) gcd(Cn−1, Bn+1) ≤
≤ 2 · 1 · 35 · 1 · 17 = 1190.

For explaining that gcd(Cn−1, Bn+1) ≤ 17, by Lemma 1 we write

gcd(Cn−1, Bn+1) = gcd(Cn−1, Bn−1C2 + Cn−1B2) = gcd(Cn−1, 17Bn−1) ≤ 17.

¤

Remark 1 For our purposes, it is sufficient to have upper bounds given by
Lemma 2 and Lemma 3. Without proof we state that the possible values for
Q1 are only 1, 2 and 34, while Q2 ∈ {1, 2, 5, 34}.

Lemma 4 Let u0 ≥ 3 be a positive integer. Then for all integers u ≥ u0 the
inequalities

αu−0.9831 < Bu < αu−0.983 (3)

hold.

Proof. Let c0 = 4
√

2. Since 0 < β < 1 < α then the inequalities u ≥ u0 ≥ 3

imply

Bu ≥ αu − βu0

c0
= αu

(
1 − βu0

αu

c0

)
≥ αu


1 −

(
β
α

)u0

c0


 ≥ αu−0.9831.

For any non-negative integer u,

Bu ≤ αu

c0
< αu−0.983.

¤

Lemma 5 All positive integer solutions to the system (2) satisfy z ≤ 2y − 1.
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Proof. The last two equations of the system (2) imply

c| gcd (By − 1, Bz − 1) . (4)

Obviously, Bz = bc + 1 < c2, hence
√

Bz < c. This, together with (4) gives√
Bz < By. By (3) we obtain

√
αz−0.9831 <

√
Bz < By < αy−0.983.

It leads to
αz−0.9831 < α2y−1.966,

and then z ≤ 2y − 1. ¤

3 Proof of Theorem 2

Suppose that the integers 0 < a < b < c and 0 < x < y < z satisfy (2). Thus
1 · 2 + 1 ≤ ab + 1 = Bx implies 2 ≤ x. Thus 3 ≤ y. The proof is split into two
parts.

I. z ≤ 449.

In this case, we ran an exhaustive computer search to detect all positive
integer solutions to the system (2). Observe that we have

a =

√
(Bx − 1) (By − 1)

(Bz − 1)
, 2 ≤ x < y < z ≤ 449.

Going through all the eligible values for x, y and z, and checking if the above
number a is an integer, we found no solution to the system (2).

II. z > 449.

Put Q = gcd (Bz − 1, By − 1). From the proof of Lemma 5 we know that√
Bz < Q. Applying now Lemma 1,

Q ≤ gcd (Bz−1Bz+1, By−1By+1)

≤
∏

i,j∈{±1}

gcd (Bz−i, By−j) =
∏

i,j∈{±1}

Bgcd(z−i,y−j). (5)

Let gcd (z − i, y − j) = z−i
kij

. Suppose that kij ≥ 8, for all the four possible
pairs (i, j) in (5). Then Lemma 4, together with the previous two estimates,
provides

α
z−0.9831

2 <
√

Bz < Q ≤ (
B(z−1)/8

)2 (
B(z+1)/8

)2
< α4·( z+1

8
−0.983)
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which leads to a contradiction if one compares the exponents of α.

Assume now that kij ≤ 7 fulfills for some i and j, let denote k this kij.
Suppose further that

z − i

k
=

y − j

l

holds for a suitable positive integer l coprime to k.
If l > k, then according to y < z, the relation z− i < y− j implies z = y+1.

But this is impossible since

Q = gcd(By+1 − 1, By − 1) ≤ gcd(By+2By, By+1By−1) = gcd(By+2, By−1) ≤ B3

follows in the virtue of Lemma 1. Thus

α
z−0.9831

2 <
√

Bz < Q ≤ B3 = 35

leads to a contradiction by z < 5.1.
Suppose now that k = l = 1. Now z − i = y − j can hold only if z = y + 2.

Thus, by Lemma 3, we have

Q = gcd(By+2 − 1, By − 1) ≤ 34 < B3.

Hence, as in the previous part, we arrived at a contradiction.
In the sequel, we assume l < k. First suppose 3 ≤ k. Taking any pair

(i0, j0) 6= (i, j) from the remaining three cases of (−1, −1), (−1, 1), (1,−1) and
(1, 1), we have

y − j0 =
l

k
(z − i) + j − j0 =

lz − li + kj − kj0

k
. (6)

Thus

gcd(z − i0, y − j0) = gcd
(

z − i0,
lz − li + kj − kj0

k

)

≤ gcd(lz − li0, lz − li + kj − kj0)

= gcd(lz − li0, li0 − li + kj − kj0).

Since li0 − li + kj − kj0 does not vanish, it follows that

gcd(lz − li0, li0 − li + kj − kj0) ≤ |li0 − li + kj − kj0| ≤ 2(k + l) ≤ 26.

Indeed, it is easy to see that li0 − li + kj − kj0 = 0, or equivalently l(i0 − i) =

k(j0−j) leads to a contradiction since 2 ≤ k ≤ 7 and 1 ≤ l ≤ k−1 are coprime,
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further i0 − i and j0 − j are in the set {0,±2} meanwhile at least one of them
is non-zero.

Then (5), together with Lemma 4, yields

α
z−0.9831

2 < B z+1
3
· B3

26 < α
z+1

3
−0.983

(
α25.017

)3
.

Consequently, z < 449.4. It contradicts the condition separating Case 2 and
1.

Assume now that k = kij = 2 fulfills for some eligible pair (i, j). Thus l = 1.
First suppose that gcd(z − 1, y − 1) = (z − 1)/2. It yields z = 2y − 1, and we
go back to the system

ab + 1 = Bx,

ac + 1 = By,

bc + 1 = B2y−1.

First we obtain
B2y−1

By
=

bc + 1

ac + 1
<

b

a

since 0 < a < b < c. On the other hand, by Lemma 4,

B2y−1

By
>

α2y−1−0.9831

αy−0.983
= αy−1.001

follows. Consequently,
aαy−1.001 < b,

and
a2αy−1.001 ≤ ab = Bx − 1 < Bx < αx−0.983.

Thus we arrived at a contradiction by

a2 < αx−y+0.018 ≤ α−0.982 < 0.2.

If gcd(z − 1, y + 1) = (z − 1)/2 then z = 2y + 3 contradicting Lemma 5.
Similarly, gcd(z + 1, y + 1) = (z + 1)/2 leads to z = 2y + 1. Finally, gcd(z +

1, y − 1) = (z + 1)/2 gives z = 2y − 3, which is possible. But, in this case, by
Lemma 3 we have

α
z−0.9831

2 <
√

Bz < c ≤ gcd(B2y−3 − 1, By − 1) ≤ 1190,

and it results z ≤ 9 in the virtue of Lemma 4.
The proof of Theorem 2 is completed.
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Abstract. In this study we prove the orthopole theorem for a hyperbolic
triangle.

1 Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an at-
tempt to understand Euclid’s axiomatic basis of geometry. It is also known
as a type of non-euclidean geometry, being in many respects similar to eu-
clidean geometry. Hyperbolic geometry includes similar concepts as distance
and angle. Both these geometries have many results in common but many
are different. Several useful models of hyperbolic geometry are studied in the
literature as, for instance, the Poincaré disc and ball models, the Poincaré half-
plane model, and the Beltrami-Klein disc and ball models [5] etc. Following
[8] and [9] and earlier discoveries, the Beltrami-Klein model is also known as
the Einstein relativistic velocity model. Here, in this study, we give hyperbolic
version of the orthopole theorem in the Poincaré disc model. The well-known
orthopole theorem states that if A′, B′, C′ be the projections of the vertices
A, B,C of a triangle ABC on a straight line d, the perpendiculars from A′ on

2010 Mathematics Subject Classification: 51K05, 51M10
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BC, from B′ on CA, and from C′ on AB are concurrent at a point called the
orthopole of d for the triangle ABC [4]. This result has a simple statement
but it is of great interes. We just mention here few different proofs given by
R. Goormaghtigh [3], J. Neuberg [6], W. Gallaty [2]. We use in this study the
Poincaré disc model.

We begin with the recall of some basic geometric notions and properties in
the Poincaré disc. Let D denote the unit disc in the complex z-plane, i.e.

D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition⊕ in D, allowing the Möbius transformation
of the disc to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the
complex conjugate of z0. Let Aut(D,⊕) be the automorphism group of the
groupoid (D,⊕). If we define

gyr : D×D → Aut(D,⊕)

by the equation

gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then the following properties of ⊕ can be easy verified using algebraic calcu-
lation:

a⊕ b = gyr[a, b](b⊕ a), gyrocommutative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c, left gyroassociative law

(a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c), right gyroassociative law

gyr[a, b] = gyr[a⊕ b, b], left loop property

gyr[a, b] = gyr[a, b⊕ a], right loop property

For more details, please see [7].

Definition 1 The hyperbolic distance function in D is defined by the equation

d(a, b) = |aª b| =

∣∣∣∣
a − b

1 − ab

∣∣∣∣ .

Here, aª b = a⊕ (−b), for a, b ∈ D.
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Theorem 1 (The Möbius Hyperbolic Pythagorean Theorem) Let ABC

be a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗), with vertices A,B, C ∈
Vs, sides a,b, c ∈ Vs and side gyrolenghts a, b, c ∈ (−s, s), a = −B⊕ C,

b = −C⊕A, c = −A⊕B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ and with gyroangles α,β,

and γ at the vertices A,B, and C. If γ = π/2, then

c2

s
=

a2

s
⊕ b2

s

(see [8, p. 290]).
For further details we refer to the recent book of A. Ungar [7].

Theorem 2 (Converse of Carnot’s theorem for hyperbolic triangle)
Let ABC be a hyperbolic triangle in the Poincaré disc, whose vertices are the
points A,B and C of the disc and whose sides (directed counterclockwise) are
a = −B ⊕ C, b = −C ⊕ A and c = −A ⊕ B. Let the points A′, B′ and C′ be
located on the sides a, b and c of the hyperbolic triangle ABC, respectively. If
the following holds
∣∣−A⊕ C′

∣∣2ª∣∣−B⊕ C′
∣∣2⊕∣∣−B⊕A′∣∣2ª∣∣−C⊕A′∣∣2⊕∣∣−C⊕ B′

∣∣2ª∣∣−A⊕ B′
∣∣2 = 0,

and two of the three perpendiculars to the sides of the hyperbolic triangle at
the points A′, B′ and C′ are concurrent, then the three perpendiculars are con-
current (See [1]).

2 Main results

In this section, we prove the orthopole theorem for a hyperbolic triangle.

Theorem 3 Let A′, B′, C′ be the projections of the vertices A,B, C of the gy-
rotriangle ABC on a straight gyroline d. If two of the three perpendiculars from
A′ on BC, from B′ on CA, and from C′ on AB are concurrent, then the three
perpendiculars are concurrent.

Proof. Let’s note A′′, B′′, C′′ the projections of the points A′, B′, C′ on BC,CA,

AB, respectively (See Figure 1).
If we use Theorem 1 in the gyrotriangles AA′B′ and AA′C′, we get

∣∣−A⊕ B′
∣∣2 =

∣∣−B′ ⊕A′∣∣2 ⊕ ∣∣−A′ ⊕A
∣∣2 (1)

and ∣∣−C′ ⊕A
∣∣2 =

∣∣−A⊕A′∣∣2 ⊕ ∣∣−A′ ⊕ C′
∣∣2 (2)
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Figure 1: Projections of the points

Because |−A′ ⊕A|
2 = |−A⊕A′|2 , from the relations (1) and (2) we have

∣∣−A⊕ B′
∣∣2 ª ∣∣−B′ ⊕A′∣∣2 =

∣∣−C′ ⊕A
∣∣2 ª ∣∣−A′ ⊕ C′

∣∣2

i.e.

α =
∣∣−A⊕ B′

∣∣2 ª ∣∣−A⊕ C′
∣∣2 =

∣∣−A′ ⊕ B′
∣∣2 ª ∣∣−A′ ⊕ C′

∣∣2 = α′ (3)

Similary we prove that

β =
∣∣−B⊕ C′

∣∣2 ª ∣∣−B⊕A′∣∣2 =
∣∣−B′ ⊕ C′

∣∣2 ª ∣∣−B′ ⊕A′∣∣2 = β′ (4)

respectively

γ =
∣∣−C⊕A′∣∣2 ª ∣∣−C⊕ B′

∣∣2 =
∣∣−C′ ⊕A′∣∣2 ª ∣∣−C′ ⊕ B′

∣∣2 = γ′. (5)

From the relations (3), (4) and (5) result

(α⊕ β)⊕ γ = (α′ ⊕ β′)⊕ γ′.

Since ((−1, 1),⊕) is a commutative group, we immediately obtain
∣∣−A⊕ B′

∣∣2 ª ∣∣−A⊕ C′
∣∣2 ⊕ ∣∣−B⊕ C′

∣∣2 ª ∣∣−B⊕A′∣∣2

⊕ ∣∣−C⊕A′∣∣2 ª ∣∣−C⊕ B′
∣∣2 = 0.

(6)

If we use the Theorem 1 in the gyrotriangles AB′B′′, AC′C′′, BC′C′′, BA′A′′,
CA′A′′ and CB′B′′, we get

∣∣−A⊕ B′
∣∣2 =

∣∣−B′ ⊕ B′′
∣∣2 ⊕ ∣∣−B′′ ⊕A

∣∣2 , (7)
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∣∣−A⊕ C′
∣∣2 =

∣∣−C′ ⊕ C′′
∣∣2 ⊕ ∣∣−C′′ ⊕A

∣∣2 , (8)
∣∣−B⊕ C′

∣∣2 =
∣∣−C′ ⊕ C′′

∣∣2 ⊕ ∣∣−C′′ ⊕ B
∣∣2 , (9)

∣∣−B⊕A′∣∣2 =
∣∣−A′ ⊕A′′∣∣2 ⊕ ∣∣−A′′ ⊕ B

∣∣2 , (10)
∣∣−C⊕A′∣∣2 =

∣∣−A′ ⊕A′′∣∣2 ⊕ ∣∣−A′′ ⊕ C
∣∣2 , (11)

∣∣−C⊕ B′
∣∣2 =

∣∣−B′ ⊕ B′′
∣∣2 ⊕ ∣∣−B′′ ⊕ C

∣∣2 . (12)

Now, from the relations (6) - (12), result

∣∣−A⊕ B′′
∣∣2 ª ∣∣−A⊕ C′′

∣∣2 ⊕ ∣∣−B⊕ C′′
∣∣2 ª ∣∣−B⊕A′′∣∣2 ⊕ ∣∣−C⊕A′′∣∣2

ª ∣∣−C⊕ B′′
∣∣2 = 0,

and by Theorem 2 we obtain that the gyrolines A′A′′, B′B′′, and C′C′′ are
concurrent. ¤

Many of the theorems of Euclidean geometry have relatively similar form in
the Poincare disc model, the orthopole theorem for a hyperbolic triangle is an
example in this respect.
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Abstract. This note contains sufficient conditions for the probabil-
ity density function of an arbitrary continuous univariate distribution,
supported on (0, ∞), such that the corresponding Mills ratio to be re-
ciprocally convex (concave). To illustrate the applications of the main
results, the reciprocal convexity (concavity) of Mills ratio of the gamma
distribution is discussed in details.

1 Introduction

By definition (see [7]) a function f : (0, ∞) → R is said to be (strictly) recip-
rocally convex if x 7→ f(x) is (strictly) concave and x 7→ f(1/x) is (strictly)
convex on (0,∞). Merkle [7] showed that f is reciprocally convex if and only
if for all x, y > 0 we have

f

(
2xy

x + y

)
≤ f(x) + f(y)

2
≤ f

(
x + y

2

)
≤ xf(x) + yf(y)

x + y
. (1)

We note here that in fact the third inequality follows from the fact that the
function x 7→ f(1/x) is convex on (0, ∞) if and only if x 7→ xf(x) is convex on
(0, ∞). In what follows, similarly as in [7], a function g : (0, ∞) → R is said
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to be (strictly) reciprocally concave if and only if −g is (strictly) reciprocally
convex, i.e. if x 7→ g(x) is (strictly) convex and x 7→ g(1/x) is (strictly) concave
on (0, ∞). Observe that if f is differentiable, then x 7→ f(1/x) is (strictly)
convex (concave) on (0, ∞) if and only if x 7→ x2f ′(x) is (strictly) increasing
(decreasing) on (0,∞).

As it was shown by Merkle [7], reciprocally convex functions defined on
(0, ∞) have a number of interesting properties: they are increasing on (0,∞)

or have a constant value on (0,∞), they have a continuous derivative on (0,∞)

and they generate a sequence of quasi-arithmetic means, with the first one
between harmonic and arithmetic mean and others above the arithmetic mean.
Some examples of reciprocally convex functions related to the Euler gamma
function were given in [7].

By definition (see [9]) a function f : (0, ∞) → R is said to be completely
monotonic, if f has derivatives of all orders and satisfies

(−1)nf(n)(x) ≥ 0

for all x > 0 and n ∈ {0, 1, . . . }. Note that strict inequality always holds above
unless f is constant. It is known (Bernstein’s Theorem) that f is completely
monotonic if and only if [9, p. 161]

f(x) =

∫∞

0
e−xtdν(t),

where ν is a nonnegative measure on [0, ∞) such that the integral converges for
all x > 0. An important subclass of completely monotonic functions consists
of the Stieltjes transforms defined as the class of functions g : (0,∞) → R of
the form

g(x) = α +

∫∞

0

dν(t)

x + t
,

where α ≥ 0 and ν is a nonnegative measure on [0,∞) such that the integral
converges for all x > 0.

It was pointed out in [7] that if a function h : (0,∞) → R is a Stieltjes
transform, then −h is reciprocally convex, i.e. h is reciprocally concave. We
note that some known reciprocally concave functions comes from probability
theory. For example, the Mills ratio of the standard normal distribution is a
reciprocally concave function. For this let us see some basics. The probability
density function ϕ : R → (0, ∞), the cumulative distribution function Φ : R →
(0, 1) and the reliability function Φ : R → (0, 1) of the standard normal law,
are defined by

ϕ(x) =
1√
2π

e−x2/2,
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Φ(x) =

∫x

−∞
ϕ(t)dt

and
Φ(x) = 1 − Φ(x) =

∫∞

x
ϕ(t)dt.

The function m : R → (0, ∞), defined by

m(x) =
Φ(x)

ϕ(x)
= ex2/2

∫∞

x
e−t2/2dt =

∫∞

0
e−xte−t2/2dt,

is known in literature as Mills’ ratio [8, Sect. 2.26] of the standard normal
law, while its reciprocal r = 1/m, defined by r(x) = 1/m(x) = ϕ(x)/Φ(x), is
the so-called failure (hazard) rate. For Mills’ ratio of other distributions, like
gamma distribution, we refer to [6] and to the references therein.

It is well-known that Mills’ ratio of the standard normal distribution is con-
vex and strictly decreasing on R, at the origin takes on the value m(0) =

√
π/2.

Moreover, it can be shown (see [2]) that x 7→ m ′(x)/m(x) is strictly increasing
and x 7→ x2m ′(x) is strictly decreasing on (0,∞). With other words, the Mills
ratio of the standard normal law is strictly reciprocally concave on (0,∞).

Some other monotonicity properties and interesting functional inequalities in-
volving the Mills ratio of the standard normal distribution can be found in [2].
The following complements the above mentioned results.

Theorem 1 Let m be the Mills ratio of the standard normal law. Then the
function x 7→ m(

√
x)/

√
x is a Stieltjes transform and consequently it is strictly

completely monotonic and strictly reciprocally concave on (0,∞). In particular,
if x, y > 0, then the following chain of inequalities holds

√
x + y

2xy
m

(√
2xy

x + y

)
≥
√

ym(
√

x) +
√

xm(
√

y)

2
√

xy

≥
√

2

x + y
m

(√
x + y

2

)
≥
√

xm(
√

x) +
√

ym(
√

y)

x + y
.

In each of the above inequalities equality holds if and only if x = y.

Proof. For x > 0 the Mills of the standard normal distribution can be repre-
sented as [5, p. 145]

m(x) =

∫∞

−∞

x

x2 + t2
ϕ(t)dt = 2

∫∞

0

x

x2 + t2
ϕ(t)dt.
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From this we obtain that

m(
√

x)√
x

=
1√
2π

∫∞

0

1

x + s

e−s/2

√
s

ds,

which shows that the function x 7→ m(
√

x)/
√

x is in fact a Stieltjes transform
and owing to Merkle [7, p. 217] this implies that the function x 7→ −m(

√
x)/

√
x

is reciprocally convex on (0, ∞), i.e. the function x 7→ m(
√

x)/
√

x is recipro-
cally concave on (0,∞). The rest of the proof follows easily from (1). We note
that the strictly complete monotonicity of the function x 7→ m(

√
x)/

√
x can be

proved also by using the properties of completely monotonic functions. Mills
ratio m of the standard normal distribution is in fact a Laplace transform and
consequently it is strictly completely monotonic (see [2]). On the other hand,
it is known (see [9]) that if u is strictly completely monotonic and v is non-
negative with a strictly completely monotone derivative, then the composite
function u◦v is also strictly completely monotonic. Now, since the function m

is strictly completely monotonic on (0,∞) and x 7→ 2(
√

x) ′ = 1/
√

x is strictly
completely monotonic on (0,∞), we obtain that x 7→ m(

√
x) is also strictly

completely monotonic on (0,∞). Finally, by using the fact that the product
of completely monotonic functions is also completely monotonic, the function
x 7→ m(

√
x)/

√
x is indeed strictly completely monotonic on (0,∞). ¤

Now, since the Mills ratio of the standard normal distribution is reciprocally
concave a natural question which arises here is the following: under which con-
ditions does the Mills ratio of an arbitrary continuous univariate distribution,
having support (0,∞), will be reciprocally convex (concave)? The goal of this
paper is to find some sufficient conditions for the probability density function of
an arbitrary continuous univariate distribution, supported on the semi-infinite
interval (0, ∞), such that the corresponding Mills ratio to be reciprocally con-
vex (concave). The main result of this paper, namely Theorem 2 in section 2,
is based on some recent results of the author [3] and complement naturally the
results from [2, 3]. To illustrate the application of the main result, the Mills
ratio of the gamma distribution is discussed in details in section 3.

We note that although the reciprocal convexity (concavity) of Mills ratio is
interesting in his own right, the convexity of the Mills ratio of continuous dis-
tributions has important applications in monopoly theory, especially in static
pricing problems. For characterizations of the existence or uniqueness of global
maximizers we refer to [4] and to the references therein. Another application
can be found in [10], where the convexity of Mills ratio is used to show that
the price is a sub-martingale.
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2 Reciprocal convexity (concavity) of Mills ratio

In this section our aim is to find some sufficient conditions for the probability
density function such that the corresponding Mills ratio to be reciprocally con-
vex (concave). As in [3] the proof is based on the monotone form of l’Hospital’s
rule [1, Lemma 2.2].

Theorem 2 Let f : (0,∞) → (0,∞) be a probability density function and let
ω : (0, ∞) → R, defined by ω(x) = f ′(x)/f(x), be the logarithmic derivative
of f. Let also F : (0,∞) → (0, 1), defined by F(x) =

∫∞
x f(t)dt, be the sur-

vival function and m : (0, ∞) → (0, ∞), defined by m(x) = F(x)/f(x), be the
corresponding Mills ratio. Then the following assertions are true:

(a) If f(x)/ω(x) → 0 as x → ∞, ω ′/ω2 is (strictly) decreasing (increasing)
on (0,∞) and the function

x 7→ x3ω ′(x)

xω2(x) − xω ′(x) − 2ω(x)

is (strictly) increasing (decreasing) on (0, ∞), then Mills ratio m is
(strictly) reciprocally convex (concave) on (0, ∞).

(b) If xf(x)/(1−xω(x)) → 0, f(x)/ω(x) → 0 as x → ∞, ω ′/ω2 is (strictly)
decreasing (increasing) on (0,∞) and the function

x 7→ x2ω ′(x) − xω(x) + 2

xω2(x) − xω ′(x) − 2ω(x)

is (strictly) increasing (decreasing) on (0,∞), then Mills ratio m is
(strictly) reciprocally convex (concave) on (0, ∞).

Proof. (a) By definition Mills ratio m is (strictly) reciprocally convex (con-
cave) if m is (strictly) concave (convex) and x 7→ m(1/x) is (strictly) convex
(concave). It is known (see [3, Theorem 2]) that if f(x)/ω(x) tends to zero as x

tends to infinity and the function ω ′/ω2 is (strictly) increasing (decreasing),
then m is (strictly) convex (concave). Thus, we just need to find conditions for
the (strict) convexity (concavity) of the function x 7→ m(1/x). This function is
(strictly) convex (concave) on (0, ∞) if and only if the function x 7→ x2m ′(x)

is (strictly) increasing (decreasing) on (0, ∞). On the other hand, observe that
Mills ratio m satisfies the differential equation

m ′(x) = −ω(x)m(x) − 1.
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Thus, by using the monotone form of l’Hospital’s rule (see [1, Lemma 2.2]) to
prove that the function

x 7→ x2m ′(x) = −

(
F(x) + f(x)/ω(x)

)
− lim

x→∞
(
F(x) + f(x)/ω(x)

)

f(x)/(x2ω(x)) − lim
x→∞ f(x)/(x2ω(x))

= −
F(x) + f(x)/ω(x)

f(x)/(x2ω(x))

is (strictly) increasing (decreasing) on (0,∞) it is enough to show that

x 7→ −

(
F(x) + f(x)/ω(x)

) ′

(f(x)/(x2ω(x)))
′ =

x3ω ′(x)

xω2(x) − xω ′(x) − 2ω(x)

is (strictly) increasing (decreasing) on (0,∞).

(b) Observe that according to [7, Lemma 2.2] the function x 7→ m(1/x)

is (strictly) convex (concave) if and only if x 7→ xm(x) is (strictly) convex
(concave) on (0,∞). Now, by using the monotone form of l’Hospital’s rule
(see [1, Lemma 2.2]) the function

x 7→ (xm(x)) ′ = m(x) − x − xω(x)m(x) =
F(x) − xf(x)/(1 − xω(x))

f(x)/(1 − xω(x))

=

(
F(x) − xf(x)/(1 − xω(x))

)
− lim

x→∞
(
F(x) − xf(x)/(1 − xω(x))

)

(f(x)/(1 − xω(x))) − lim
x→∞ (f(x)/(1 − xω(x)))

is (strictly) increasing (decreasing) on (0,∞) if the function

x 7→
(
F(x) − xf(x)/(1 − xω(x))

) ′
(f(x)/(1 − xω(x))) ′

=
x2ω ′(x) − xω(x) + 2

xω2(x) − xω ′(x) − 2ω(x)

is (strictly) increasing (decreasing) on (0, ∞). Note that we used tacitly the
fact that if xf(x)/(1 − xω(x)) → 0 as x → ∞, then f(x)/(1 − xω(x)) → 0 as
x → ∞. ¤

We note here that the reciprocal concavity of the Mills ratio of the standard
normal distribution can be verified easily by using part (a) or part (b) of
Theorem 2. More precisely, in the case of the standard normal distribution we
have ω(x) = −x, ω ′(x) = −1. Consequently ϕ(x)/ω(x) = −ϕ(x)/x → 0 as
x → ∞, the function x 7→ ω ′(x)/ω2(x) = −1/x2 is strictly increasing and

x 7→ x3ω ′(x)

xω2(x) − xω ′(x) − 2ω(x)
= −

x2

x2 + 3
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is strictly decreasing on (0,∞). This is turn implies that by using part (a)
of Theorem 2 the Mills ratio of the standard normal distribution is strictly
reciprocally concave on (0, ∞).

Similarly, since ϕ(x)/(1 + x2) → 0, xϕ(x)/(1 + x2) → 0, −ϕ(x)/x → 0 as
x → ∞, the function x 7→ ω ′(x)/ω2(x) = −1/x2 is strictly increasing and

x 7→ x2ω ′(x) − xω(x) + 2

xω2(x) − xω ′(x) − 2ω(x)
=

2

x3 + 3x

is strictly decreasing on (0,∞), part (b) of Theorem 2 also implies that the
Mills ratio of the standard normal distribution is strictly reciprocally concave
on (0, ∞).

Thus, Theorem 2 in fact generalizes some of the main results of [2].

3 Reciprocal convexity (concavity) of Mills ratio of
the gamma distribution

The gamma distribution has support (0, ∞), probability density function, cu-
mulative distribution function and survival function as follows

f(x) = f(x;α) =
xα−1e−x

Γ(α)
,

F(x) = F(x; α) =
γ(α, x)

Γ(α)
=

1

Γ(α)

∫x

0
tα−1e−tdt

and

F(x) = F(x;α) =
Γ(α, x)

Γ(α)
=

1

Γ(α)

∫∞

x
tα−1e−tdt,

where Γ is the Euler gamma function, γ(·, ·) and Γ(·, ·) denote the lower and
upper incomplete gamma functions, and α > 0 is the shape parameter. As we
can see below, the Mills ratio of the gamma distribution m : (0, ∞) → (0,∞),

defined by

m(x) = m(x;α) =
Γ(α, x)

xα−1e−x
,

is reciprocally convex on (0,∞) for all 0 < α ≤ 1 and reciprocally concave on
(0, ∞) for all 1 ≤ α ≤ 2. In [3] it was proved that if α ≥ 1, then the Mills
ratio m is decreasing and log-convex, and consequently convex on (0,∞). We
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note that the convexity of Mills ratio of the gamma distribution actually can
be verified directly (see [10]), since

m(x) =

∫∞

x

(
t

x

)α−1

ex−tdt =

∫∞

1
xuα−1e(1−u)xdu

and

m ′(x) =

∫∞

1

(
(α − 1)uα−2

)(
(1 − u)e(1−u)x

)
du

=

∫∞

1
uα−1e(1−u)xdu +

∫∞

1
xuα−1(1 − u)e(1−u)xdu,

where the last equality follows from integration by parts. From this we clearly
have that

m ′′(x) =

∫∞

1
(α − 1)(1 − u)2uα−2e(1−u)xdu

and consequently m is convex on (0, ∞) if α ≥ 1 and is concave on (0,∞) if
0 < α ≤ 1. The concavity of the function m can be verified also by using [3,
Theorem 2]. Namely, if let ω(x) = f ′(x)/f(x) = (α − 1)/x − 1, then f(x)/ω(x)

tends to zero as x tends to infinity and the function x 7→ ω ′(x)/ω2(x) =

(1 − α)/(α − 1 − x)2 is decreasing on (0, ∞) for all 0 < α ≤ 1. Consequently
in view of [3, Theorem 2] m is indeed concave on (0, ∞) for all 0 < α ≤ 1.

Now let us focus on the reciprocal convexity (concavity) of the Mills ratio
of gamma distribution. Since

x3ω ′(x)

xω2(x) − xω ′(x) − 2ω(x)
=

(1 − α)x2

(α − 1 − x)2 + 2x + 1 − α
,

we obtain that
(

x3ω ′(x)

xω2(x) − xω ′(x) − 2ω(x)

) ′
=

2(α − 1)(α − 2)(x2 + (1 − α)x)

((α − 1 − x)2 + 2x + 1 − α)2
.

This last expression is clearly positive if 0 < α ≤ 1 and x > 0, and thus, by
using part (a) of Theorem 2 we conclude that Mills ratio m is reciprocally
convex on (0,∞) for all 0 < α ≤ 1.

Similarly, since

x2ω ′(x) − xω(x) + 2

xω2(x) − xω ′(x) − 2ω(x)
=

x2 + 2(2 − α)x

x2 + 2(2 − α)x + (α − 1)(α − 2)
,
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we get
(

x2ω ′(x) − xω(x) + 2

xω2(x) − xω ′(x) − 2ω(x)

) ′
=

2(α − 1)(α − 2)(x + 2 − α)

(x2 + 2(2 − α)x + (α − 1)(α − 2))2

and this is negative if 1 ≤ α ≤ 2 and x > 0. Consequently, by using part (b)
of Theorem 2 we get that the Mills ratio of the gamma distribution is indeed
reciprocally concave for 1 ≤ α ≤ 2. Here we used that if x tends to ∞, then
the expressions f(x)/ω(x) and xf(x)/(1 − xω(x)) tend to 0.

Finally, we note that the convexity (concavity) of x 7→ m(1/x) can be ver-
ified also by using the integral representation of Mills ratio of the gamma
distribution. More precisely, if we rewrite m(x) as

m(x) =

∫∞

0

(
1 +

u

x

)α−1
e−udu,

then
x2m ′(x) = −

∫∞

0
(α − 1)

(
1 +

u

x

)α−2
ue−udu

and

[x2m ′(x)] ′ =
∫∞

0
(α − 1)(α − 2)

(
1 +

u

x

)α−3 u2

x2
e−udu.

This shows that x 7→ x2m ′(x) is decreasing on (0, ∞) if 1 ≤ α ≤ 2 and
increasing on (0, ∞) if 0 < α ≤ 1 or α ≥ 2. Summarizing, the Mills ratio
of the gamma distribution is reciprocally convex on (0, ∞) if 0 < α ≤ 1 and
reciprocally concave on (0,∞) if 1 ≤ α ≤ 2. When α > 2 the functions
x 7→ m(x) and x 7→ m(1/x) are convex on (0,∞), thus in this case m is nor
reciprocally convex and neither reciprocally concave on its support.
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Abstract. In this paper, with the help of the duality operator and
K. Fan’s lemma, we present existence results for strong vector equilib-
rium problems, under pseudomonotonicity assumptions and without any
pseudomonotonicity assumptions, respectively. Then, as an application,
the main results allow us to state existence theorems for strong vector
variational inequality problems.

1 Introduction and mathematical tools

Let A be a nonempty subset of a topological space E, let C be a nontrivial
pointed convex cone of a real topological linear space Z, and let φ : A×A→ Z

be a given bifunction. In [1], the scalar equilibrium problem was extended to
vector-valued bifunctions in the following way:

find ā ∈ A such that φ(ā, b) /∈ −C \ {0} for all b ∈ A. (VEP)

Throughout this paper we deal with (VEP), which is called the strong vector
equilibrium problem. In the last decade, the study of strong vector equilibrium
problems and their particular cases received a special attention from many
authors, see, for instance: [1, 3, 7, 8, 12, 14, 15, 16, 24, 26].
Most of the existence results for vector equilibrium problems, are given

in the hypothesis of a cone with nonempty interior, but, there are important

2010 Mathematics Subject Classification: 49J52
Key words and phrases: duality operator, C-quasiconvexity, coercivity condition, maximal
pseudomonotonicity, vector variational inequality

36
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ordered topological linear spaces whose ordering cones have an empty interior.
For example, when Z := Lp(T, µ), where (T, µ) is a σ-finite measure space and
p ∈ [1,+∞[, the cone

C := {u ∈ Lp(T, µ) | u(t) ≥ 0 a.e. in [0, T ]}

has an empty interior. Therefore, for optimization problems stated in infinite
dimensional spaces, several generalized interior-point conditions were given in
order to assure strong duality. To this purpose some generalizations of the
classical interior have been introduced (see, for example, [5, 6, 17, 20, 25]).
Another way to overcome this problem is to introduce approximative solu-

tions. H. W. Kuhn and A. W. Tucker [22] observed that some efficient solu-
tions of optimization problems are not satisfactorily characterized by a scalar
minimization problem. To eliminate such anomalous efficient points various
concepts of proper efficiency for optimization problems have been introduced
(see, for instance, [4, 13, 18, 19]).
The aim of this paper is to present new existence results for (VEP) without

any solidness assumption for the cone C.
The paper is organized as follows. In Section 2 with the help of the du-

ality operator, we attach to problem (VEP) a generalized dual strong vector
equilibrium problem. By introducing a new generalization of the maximal g-
pseudomonotonicity due to W. Oettli [24], new existence results for the strong
vector equilibrium problem (VEP) are given. To see which convexity notion sat-
isfies assumption (iv) of Theorem 1, in Corollary 1 this assumption is replaced
by the one in which we demand the C-quasiconvexity of the vector-function
φ(a, ·) for all a ∈ A.
Then, in Section 3, considering two particular cases of the duality operator,

we present existence results for (VEP) under pseudomonotonicity assumptions,
respectively, without any pseudomonotonicity assumptions. The results allow
us to recover already established results from the literature. For example we
recover results from [10] and [24].
Section 4 is devoted to applications. Thus, we give existence results for

strong vector variational inequalities under pseudomonotonicity assumptions,
and without any pseudomonotonicity assumptions, respectively. In Example
1 is showed that the set of operators which satisfies the assumptions of The-
orem 2 is nonempty. Furthermore, from this example we see that there exist
maximal pseudomonotone operators which are not strongly pseudomonotone
in the sense of Definition 5.
In what follows, by using Ky Fan’s lemma we will present new existence

results for (VEP) without any solidness assumption on the cone C.
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Definition 1 Let A be a nonempty subset of a real topological linear space E.
A multifunction T : A → 2A is said to be a KKM-operator if, for every finite
subset {a1, a2, . . . , an} of A, the following inclusion holds:

co {a1, a2, . . . , an} ⊆
n∪
i=1

T(ai).

In finite dimensional spaces the next lemma was given by B. Knaster, C.
Kuratowski, S. Mazurkiewicz in [21], while in infinite dimensional spaces it
was established by Ky Fan.

Lemma 1 ([9]) Let A be a nonempty subset of a real Hausdorff topological
linear space E, and let T : A→ 2A be a KKM-operator satisfying the following
conditions:

(i) T(a) is closed for all a ∈ A;

(ii) there is ā ∈ A such that T(ā) is a compact set.

Then ∩
a∈A

T(a) ̸= ∅.

Now, let us recall the following weakened convexity notion, which can be
found, by example, in [11].

Definition 2 Let E and Z be real topological linear spaces, letA be a nonempty
subset of E, and let C ⊆ Z be a convex cone. A function f : A → Z is said to
be C-quasiconvex if A is convex and, for all a1, a2 ∈ A and all λ ∈ [0, 1], we
have

f(λa1 + (1− λ)a2) ≤C f(a1)

or

f(λa1 + (1− λ)a2) ≤C f(a2).

2 Existence results via Ky Fan’s lemma

From now on, E is considered to be a real Hausdorff topological linear space,
A ⊆ E is a nonempty convex subset, and C is a pointed convex cone of the
real topological linear space Z.
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With the help of an operator, we attach to problem (VEP) a dual problem.
Let D be an operator from F(A,Z) := {ψ | ψ : A × A → Z} into itself,
which is called the duality operator. In fact, D is a set of fixed rules applied
to problem (VEP). By means of D we introduce the following generalized dual
strong vector equilibrium problem:

find ā ∈ A such that D(φ)(ā, b) /∈ −C \ {0} for all b ∈ A. (DVEP)

The following proposition shows that, under a certain hypothesis, the gen-
eralized dual of this dual problem becomes the initial problem. Its proof is
straightforward.

Proposition 1 If

D ◦ D(φ) = φ,

then the generalized dual problem of (DVEP) is problem (VEP).

Let G : A×A→ Z be defined by

G(a, b) := −D(φ)(b, a) for all a, b ∈ A.

In this framework, problem (DVEP) can be written as:

find ā ∈ A such that G(b, ā) /∈ C \ {0} for all b ∈ A. (GVEP)

The next notions are generalizations of the g-monotonicity and maximal
g-monotonicity, respectively, introduced by W. Oettli [24] in the scalar case.

Definition 3 The bifunction φ : A×A→ Z is said to be:

(i) G-pseudomonotone if, for all a, b ∈ A,

φ(a, b) /∈ −C \ {0} implies G(b, a) /∈ C \ {0};

(ii) maximal G-pseudomonotone if it is G-pseudomonotone and, for all a, b ∈
A,

G(x, a) /∈ C \ {0} for all x ∈]a, b] implies φ(a, b) /∈ −C \ {0}.

Proposition 2 If φ : A × A → Z is maximal G-pseudomonotone, then the
sets of solutions of problems (VEP) and (GVEP) coincide.
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Proof. Let ā ∈ A be a solution of problem (VEP), i.e.

φ(ā, b) /∈ −C \ {0} for all b ∈ A.

By the G-pseudomonotonicity of φ we deduce that G(b, ā) /∈ C \ {0} for all
b ∈ A, which assures that ā is a solution of problem (GVEP).
For the converse inclusion, suppose that ā ∈ A is a solution of problem

(GVEP), i.e.

G(b, ā) /∈ C \ {0} for all b ∈ A.

Take b ∈ A. Thus, by the convexity of the set A we have ]ā, b] ⊆ A. Therefore

G(x, ā) /∈ C \ {0} for all x ∈]ā, b].

Since φ is maximal G-pseudomonotone, we get φ(ā, b) /∈ −C\{0}. Taking into
account that b ∈ A was arbitrarily chosen, it results that ā is a solution of
problem (VEP).
Now, let us consider the case when the set of solutions of problem (GVEP)

is empty, i.e. for any a ∈ A there exists ba ∈ A such that

G(ba, a) ∈ C \ {0}.

Due to fact that φ is maximal G-pseudomonotone we have

φ(a, ba) ∈ −C \ {0},

which means that the set of solutions of problem (VEP) is the empty set. Thus,
we proved that the sets of solutions of problems (GVEP) and (VEP) coincide
also for this particular case, and this completes the proof. �
By using the dual formulation (GVEP) of problem (VEP) we obtain the

following existence results for solutions of problem (VEP).

Theorem 1 Suppose that the bifunctions φ : A×A→ Z and G : A×A→ Z

satisfy the following conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) φ is maximal G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) ∈ −C \ {0}} is convex;



Generalized duality for strong vector equilibrium problems 41

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Proof. First, we show that the multifunction T : A→ 2A, defined by

T(b) := cl {a ∈ A | φ(a, b) /∈ −C \ {0}},

is a KKM-operator. In view of assumption (i), it results that the set T(b) is
nonempty for each b ∈ A.
By contradiction, we suppose that T is not a KKM-operator, i.e. there exist

a finite subset {b1, b2, . . . , bn} of A and numbers λ1, . . . , λn ≥ 0 with λ1+ · · ·+
λn = 1 such that

b̄ :=

n∑
i=1

λibi /∈ T(bj) for all j ∈ {1, 2, . . . , n}.

This relation gives

φ(b̄, bj) ∈ −C \ {0} for all j ∈ {1, . . . , n}.

So, bj ∈ W(b̄) for all j ∈ {1, . . . , n}. But, by assumption (iv), the set W(b̄)
is convex. Consequently, it follows that b̄ ∈ W(b̄). This is a contradiction to
assumption (i).
Assumption (v) assures the existence of an element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Thus, T(b̃) ⊆ D. Because D is compact and T(b̃) is closed, it follows that T(b̃)
is a compact set. The assumptions of Lemma 1 are satisfied and, by this we
get the existence of a point ā ∈ D such that ā ∈ T(b) for all b ∈ A. The
G-pseudomonotonicity of φ and the closedness of the set S(b) imply that

T(b) ⊆ S(b) for all b ∈ A.

Therefore, we obtain ā ∈ S(b) for all b ∈ A, i.e. ā is a solution of problem
(GVEP). By Proposition 2, ā is a solution of problem (VEP). �
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Remark 1 It is worth to underline that our result is different from Theorem
1 established in [1]. Assumption (i) of Theorem 1 is stronger than condition
(i) of Theorem 1 from [1] (we just have to take B = A and T to be the identity
operator in condition (i) of Theorem 1 of [1]), while our coercivity condition
is weaker than the compactness assumption for the set A. Further, the part
of the maximal G-pseudomonotonicity which assures the inclusion between
the set of solutions of the dual problem and the set of solution of the initial
problem, is different from the one considered in condition (v) of the Theorem
1 from [1].

Corollary 1 Suppose that the bifunctions φ : A×A→ Z and G : A×A→ Z

satisfy the following conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) φ is maximal G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the function φ(a, ·) : A→ Z is C-quasiconvex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Proof. For the proof of this corollary, we have to show that the assumptions
of Theorem 1 are satisfied. It is obvious that the assumptions (i), (ii), (iii) and
(v) are satisfied. To verify assumption (iv), fix a ∈ A, and let b1, b2 ∈ A and
λ ∈ [0, 1] be such that b1, b2 ∈W(a), i.e.

φ(a, b1) ∈ −C \ {0} and φ(a, b2) ∈ −C \ {0}.

By the C-quasiconvexity of φ(a, ·) there is an index i0 ∈ {1, 2} with the prop-
erty

φ(a, bi0) ∈ φ(a, tb1 + (1− t)b2) + C.

So, there exists c ∈ C such that

φ(a, bi0) = φ(a, tb1 + (1− t)b2) + c. (1)
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Because d := φ(a, bi0) ∈ −C \ {0}, by (1) we get

φ(a, tb1 + (1− t)b2) = −c+ d ∈ −C \ {0}.

Thus, the set W(a) is convex. �

Remark 2 Assumption (iv) in Theorem 1 does not imply assumption (iv)
of Corollary 1. Indeed, let E = Z, let C ⊆ Z be a pointed convex cone such
that the ordering defined by C is not total on A, and let φ : A × A → Z be
defined by

φ(a, b) := b for all a, b ∈ A.

In order to verify assumption (iv) of Theorem 1, fix a ∈ A and take b1, b2 ∈
W(a). Thus b1, b2 ∈ −C \ {0}. Because −C \ {0} is convex, we have

λb1 + (1− λ)b2 ∈ −C \ {0} for every λ ∈ [0, 1].

So, W(a) is a convex set.
Now, let b1, b2 ∈ A and λ ∈ [0, 1]. Suppose that φ(a, ·) : A → Z is C-

quasiconvex. Thus, we obtain

b1 ∈ b2 + C or b2 ∈ b1 + C.

Since b1 and b2 were arbitrarily chosen and the ordering induced by C on A
is not total, it follows that the function φ(a, ·) is not C-quasiconvex.

3 Particular cases of the generalized dual problem

In what follows we consider two particular cases of the operator D. Firstly we
define D : F(A,Z) → F(A,Z) by

D(ψ)(a, b) := −ψ(b, a) for all a, b ∈ A. (2)

So, the generalized dual strong vector equilibrium problem becomes:

find ā ∈ A such that φ(b, ā) /∈ C \ {0} for all b ∈ A. (DVEP1)

Under pseudomonotonicity assumptions we will give an existence result for
the strong vector equilibrium problem (VEP). For this, we recall some mono-
tonicity notions, used in the past for vector-valued bifunctions. Taking into
consideration that the vector-valued bifunction G : A × A → Z, associated
with the operator D : F(A,Z) → F(A,Z) defined by (2), coincides with φ,
Definition 3 yields the following definition.
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Definition 4 The bifunction φ : A×A→ Z is said to be:

(i) pseudomonotone if, for all a, b ∈ A,

φ(a, b) /∈ −C \ {0} implies φ(b, a) /∈ C \ {0};

(ii) maximal pseudomonotone if it is pseudomonotone and, for all a, b ∈ A,

φ(x, a) /∈ C \ {0} for all x ∈]a, b] implies φ(a, b) /∈ −C \ {0}.

Proposition 3 If φ : A×A→ Z is maximal pseudomonotone, then the sets
of solutions of problems (VEP) and (DVEP1) coincide.

Proof. Take
G(b, a) := φ(b, a) for all a, b ∈ A

in Proposition 2. �
Theorem 1 provides the next existence result of solutions of (VEP) under a

pseudomonotonicity assumption.

Corollary 2 Suppose that the bifunction φ : A×A→ Z satisfies the following
conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) φ is maximal pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | φ(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) ∈ −C \ {0}} is convex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Now, if we define D : F(A,Z) → F(A,Z) by D(ψ) := ψ, we obtain an
existence result for problem (VEP) without pseudomonotonicity assumptions.
It is easy to verify that the assumption of φ to be maximal G-pseudomonotone
is fulfilled.
In this case, the generalized dual problem of problem (VEP) is exactly:

find ā ∈ A such that φ(ā, b) /∈ −C \ {0} for all b ∈ A. (VEP)



Generalized duality for strong vector equilibrium problems 45

Corollary 3 Suppose that the bifunction φ : A×A→ Z satisfies the following
conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) for each b ∈ A, the set S(b) := {a ∈ A | φ(a, b) /∈ −C \ {0}} is closed;

(iii) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) ∈ −C \ {0}} is convex;

(iv) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Theorem 1 and Corollary 3 allow us to reobtain Lemma 1 and Theorem 2
established by W. Oettli [24], which are existence results for scalar equilibrium
problems. Indeed, in what follows assume that Z := R and C := R+.

Corollary 4 ([24]) Let the bifunctions φ : A × A → R and G : A × A → R
satisfy the following conditions:

(i) φ(a, a) ≥ 0 for all a ∈ A;

(ii) φ is maximal G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) ≤ 0} is closed;

(iv) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) < 0} is convex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) < 0 for all x ∈ A \D.

Then the scalar equilibrium problem admits a solution.

Corollary 5 ([24]) Suppose that the bifunction φ : A × A → R satisfies the
following conditions:

(i) φ(a, a) ≥ 0 for all a ∈ A;

(ii) for each b ∈ A, the set S(b) := {a ∈ A | φ(a, b) ≥ 0} is closed;
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(iii) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) < 0} is convex;

(iv) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) < 0 for all x ∈ A \D.

Then the scalar equilibrium problem admits a solution.

Corollary 5 is a slight generalization of an existence result established in
[10] and recovered by [23]. In the sequel we deduce Fan’s result.

Corollary 6 ([10]) Let A be a compact set, and let φ : A×A→ R satisfy the
following conditions:

(i) φ(a, a) ≥ 0 for all a ∈ A;

(ii) φ(·, b) : A→ R is upper semicontinuous for all b ∈ A;

(iii) φ(a, ·) : A→ R is quasiconvex for all a ∈ A.

Then the scalar equilibrium problem admits a solution.

Proof. Because A is compact and φ(·, b) : A → R is upper semicontinuous
on A for all b ∈ A, the assumptions (ii) and (iv) of Corollary 5 are satisfied.
It remains to show the convexity of the set W(a) for each a ∈ A. So, let

b1, b2 ∈ A and λ ∈ [0, 1]. By the quasiconvexity of φ(a, ·) : A → R and the
inequality

max {φ(a, b1), φ(a, b2)} < 0

we deduce that
φ(a, λb1 + (1− λ)b2) < 0.

Thus, assumption (iii) of Corollary 5 is also satisfied and the proof is com-
pleted. �

4 Applications to strong vector variational
inequalities

Strong vector variational inequality problems are particular cases of the strong
vector equilibrium problem (VEP). Let A be a nonempty convex subset of
a real topological linear space E, and let F : A → L(E,Z) be a mapping,
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where L(E,Z) denotes the set of all continuous linear functions from E to a
real Hausdorff topological linear space Z. Further, let C ⊆ Z be a nontrivial
pointed convex cone. Using these notations, in this section we will study the
following variational inequalities:

find ā ∈ A such that ⟨F(b), b− ā⟩ /∈ −C \ {0} for all b ∈ A; (MVI)

find ā ∈ A such that ⟨F(ā), b− ā⟩ /∈ −C \ {0} for all b ∈ A. (SVI)

As in the previous section, for all a, b ∈ A, ⟨F(b), b− a⟩ denotes the value of
the function F(b) at the point b−a. Problem (MVI) is called the strong Minty
vector variational inequality, while (SVI) is called the strong Stampacchia vec-
tor variational inequality.
Using the generalized duality theory presented in the main section we deduce

that the strong Stampacchia vector variational inequality (SVI) admits as a
generalized dual the strong Minty vector variational inequality (MVI). We
notice that the vice-versa also holds, i.e. the generalized dual problem of (MVI)
is (SVI).
In [12] there is presented an existence result for (SVI) under the following

monotonicity property. The mapping F : A → L(E,Z) is said to be strongly
pseudomonotone if, for all a, b ∈ A,

⟨F(a), b− a⟩ /∈ −C \ {0} implies ⟨F(b), b− a⟩ ∈ C.

In what follows we work with the notion of pseudomonotonicity, which is
weaker than the above one. To see this, we will give an example.

Definition 5 ([12]) The mapping F : A→ L(E,Z) is said to be pseudomono-
tone if, for all a, b ∈ A,

⟨F(a), b− a⟩ /∈ −C \ {0} implies ⟨F(b), b− a⟩ /∈ −C \ {0}.

Example 1 Let E := R2, A := [0, 1] × [0, 1], Z := R2, C := R2+, and define
F : A→ L(R2,R2) by

⟨F(a), x⟩ := (x1+x2)(a1−2, a2+2) for all a := (a1, a2) ∈ A, x := (x1, x2) ∈ R2.

Let a := (a1, a2) and b := (b1, b2) be points from A. Since a1 − 2 < 0 and
a2 + 2 > 0, it follows from

⟨F(a), b− a⟩ = (b1 + b2 − a1 − a2)(a1 − 2, a2 + 2)
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that ⟨F(a), b−a⟩ /∈ −R2+\{0}. Similarly, taking into consideration that b1−2 <
0 and b2 + 2 > 0, we obtain from

⟨F(b), b− a⟩ = (b1 + b2 − a1 − a2)(b1 − 2, b2 + 2) (3)

that ⟨F(b), b − a⟩ /∈ −R2+ \ {0}. Consequently, F is pseudomonotone. On the
other hand, when b1 + b2 − a1 − a2 ̸= 0, then (3) implies that

⟨F(b), b− a⟩ /∈ R2+.

Thus F is not strongly pseudomonotone.

The following notion is a particular case of Definition 3.

Definition 6 The mapping F : A → L(E,Z) is said to be maximal pseu-
domonotone if the following conditions are satisfied:

(i) F is pseudomonotone;

(ii) for all a, b ∈ A the following implication holds: if ⟨F(x), a− x⟩ /∈ C \ {0}

for all x ∈ ]a, b], then ⟨F(a), a− b⟩ /∈ C \ {0}.

The next statement follows by Proposition 3.

Proposition 4 If F is maximal pseudomonotone, then the solution sets of
problems (SVI) and (MVI) coincide.

Using Corollary 2, we obtain the following existence result for (SVI).

Theorem 2 Suppose that the following conditions are satisfied:

(i) F is maximal pseudomonotone;

(ii) the set S(b) := {a ∈ A | ⟨F(b), b− a⟩ /∈ −C \ {0}} is closed for all b ∈ A;

(iii) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

⟨F(x), b̃− x⟩ ∈ −C \ {0} for all x ∈ A \D.

Then the problem (SVI) admits a solution.
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Proof. Let φ : A × A → Z be defined by φ(a, b) := ⟨F(a), b − a⟩. We show
that φ satisfies the assumptions of Corollary 2. Indeed, the assumptions (ii),
(iii) and (v) are satisfied by the hypothesis (i), (ii) and (iii), respectively. It
remains to verify the assumptions (i) and (iv) of Corollary 2. Let a ∈ A. Since
F(a) ∈ L(E,Z), it follows that φ(a, a) = 0 and that the set

W(a) := {b ∈ A | ⟨F(a), b− a⟩ ∈ −C \ {0}}

is convex. So, all the assumptions of Corollary 2 are fulfilled. Hence, there
exists ā ∈ A which is a solution for (SVI). �

Example 2 To show that there exists mappings which satisfy the assump-
tions of Theorem 2, let E := R2, A := [0, 1] × [0, 1], Z := R2, C := R2+, and
define F : [0, 1]× [0, 1] → L(R2,R2) by

⟨F(a), x⟩ := (x1 + x2)(a1 + 1, a2 + 1) (4)

for all a := (a1, a2) ∈ A and all x := (x1, x2) ∈ R2.
Since

(a1 + 1, a2 + 1) ∈ R2+ \ {0} for each a := (a1, a2) ∈ A,

it results from (4) that

∀a ∈ A : {x ∈ R2 | ⟨F(a), x⟩ /∈ R2+ \ {0}} = {(x1, x2) ∈ R2 | x1+2 ≤ 0}. (5)

This inequality implies that

∀a, b ∈ A : {x ∈ R2 | ⟨F(a), x⟩ /∈ R2+ \ {0}} = {x ∈ R2 | ⟨F(b), x⟩ /∈ R2+ \ {0}}.

(6)
Let a := (a1, a2) and b := (b1, b2) be points from A. Suppose that

⟨F(a), b− a⟩ /∈ −R2+ \ {0}.

Then we have ⟨F(a), a− b⟩ /∈ R2+ \ {0}. By virtue of (6) we obtain

⟨F(b), a− b⟩ /∈ R2+ \ {0}, whence ⟨F(b), b− a⟩ /∈ −R2+ \ {0}.

Thus F is a pseudomonotone mapping
Next suppose that

⟨F(x), a− x⟩ /∈ R2+ \ {0} for all x ∈ ]a, b].
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In particular, we have
⟨F(b), a− b⟩ /∈ R2+ \ {0}.

By virtue of (6) we get ⟨F(a), a − b⟩ /∈ R2+ \ {0}. Hence F is a maximal pseu-
domonotone mapping. In other words, condition (i) in Theorem 2 is satisfied.
From (5) it follows that

S(b) = {a ∈ A | ⟨F(b), a− b⟩ /∈ R2+ \ {0}} = {(a1, a2) ∈ A | a1 + a2 ≤ b1 + b2}

for each b := (b1, b2) ∈ A. Consequently, condition (ii) in Theorem 2 is also
satisfied.
Finally, it is obvious that condition (iii) in Theorem 2 is satisfied for D := A.

By Corollary 3 we obtain an existence result for the strong Stampacchia
vector variational inequality without monotonicity assumptions. This new ex-
istence result is a slight generalization of Theorem 2.1 from [12].

Theorem 3 Suppose that the following conditions are satisfied:

(i) for all b ∈ A the set S(b) := {a ∈ A | ⟨F(a), b− a⟩ /∈ −C \ {0}} is closed;

(ii) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

⟨F(x), b̃− x⟩ ∈ −C \ {0} for all x ∈ A \D.

Then problem (SVI) admits a solution.

Proof. Define the bifunction φ : A×A→ Z by

φ(a, b) := ⟨F(a), b− a⟩ for all a, b ∈ A.

Let a ∈ A. Since F(a) ∈ L(E,Z), it follows that φ(a, a) = 0 and that the set

W(a) := {b ∈ A | ⟨F(a), b− a⟩ ∈ −C \ {0}}

is convex. By virtue of this observation, all the assumptions of Corollary 3
are satisfied. So, the strong Stampacchia vector variational inequality admits
a solution. �

Corollary 7 ([12]) Let E be a real Banach space, let A be a compact subset,
let Z be a real Banach space ordered by a nonempty pointed solid convex cone
C. Suppose that F : A → L(E,Z) is a mapping such that for every b ∈ A the
set

{a ∈ A | ⟨F(a), b− a⟩ ∈ −C \ {0}}

is open in A. Then problem (SVI) is solvable.
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Abstract. A bipartite r-digraph is an orientation of a bipartite multi-
graph without loops and contains at most r edges between any pair of
vertices from distinct parts. In this paper, we obtain necessary and suf-
ficient conditions for a pair of sequences of non-negative integers in non-
decreasing order to be a pair of sequences of numbers, called marks (or
r-scores), attached to the vertices of a bipartite r-digraph. One of the
characterizations is combinatorial and the other is recursive. As an appli-
cation, these characterizations provide algorithms to construct a bipartite
r-digraph with given mark sequences.

1 Introduction

An r-digraph is an orientation of a multigraph without loops and contains
at most r edges between any pair of distinct vertices. So, 1-digraph is an
oriented graph, and a complete 1-digraph is a tournament. Let D be an r-
digraph with vertex set V = {v1, v2, . . . , vn}, and let d+

vi
and d−

vi
denote the

outdegree and indegree, respectively, of a vertex vi. Define pvi
(or simply

pi)= r(n − 1) + d+
vi

− d−
vi

as the mark (or r-score) of vi, implying 0 ≤ pvi
≤

2r(n − 1). Then the sequence P = [pi]
n
1 in non-decreasing order is called the

mark sequence of D.
The following criterion for marks in r-digraphs due to Pirzada et al. [8] is

analogous to a result on scores in tournaments given by Landau [6].
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Theorem 1 A sequence P = [pi]
n
1 of non-negative integers in non-decreasing

order is the mark sequence of an r-digraph if and only
t∑

i=1

pi ≥ rt(t − 1),

for 1 ≤ t ≤ n, with equality when t = n.

Many results on marks in digraphs can be seen in [7, 9, 12, 14]. Also results
for scores in oriented graphs can be found in [1, 11], while on tournaments
we refer to [3, 4, 5]. Also it is important to mention here that the concept of
scores has been extended to hypertournaments [15, 16, 17].

A bipartite r-digraph is an orientation of a bipartite multigraph without
loops and contains at most r edges between any pair of vertices from distinct
parts. So bipartite 1-digraph is an oriented bipartite graph and a complete
bipartite 1-digraph is a bipartite tournament. Let D(X, Y,A) be a bipartite r-
digraph with vertex sets X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} and arc
set A with each arc having one end in X and the other end in Y. For any vertex
vi in D(X, Y), let d+

vi
and d−

vi
be the outdegree and indegree, respectively,

of vi. Define pxi
(or simply pi) = rn + d+

xi
− d−

xi
and qyj

(or simply qj)=
rm + d+

yj
− d−

yj
as the marks (or r-scores) of xi in X and yj in Y respectively.

Clearly, 0 ≤ pxi
≤ 2rn and 0 ≤ qyj

≤ 2rm. Then the sequences P = [pi]
m
1 and

Q = [qj]
n
1 in non-decreasing order are called the mark sequences of D(X, Y,A).

A bipartite r-digraph can be interpreted as the result of a competition be-
tween two teams in which each player of one team plays with every player of
the other team at most r times in which ties (draws) are allowed. A player
receives two points for each win, and one point for each tie. With this marking
system, player xi (respectively yj) receives a total of pxi

(respectively qyj
)

points. The sequences P and Q of non-negative integers in non-decreasing or-
der are said to be realizable if there exists a bipartite r-digraph with mark
sequences P and Q.

In a bipartite r-digraph D(X, Y,A), if there are a1 arcs directed from a vertex
x ∈ X to a vertex y ∈ Y and a2 arcs directed from vertex y to vertex x, with
0 ≤ a1, a2 ≤ r and 0 ≤ a1 + a2 ≤ r, we denote it by x(a1 − a2)y. For
example, if there are exactly r arcs directed from x ∈ X to y ∈ Y and no arc
directed from y to x, this is denoted by x(r−0)y, and if there is no arc directed
from x to y and no arc directed from y to x, this is denoted by x(0 − 0)y.

The following characterization of mark sequences in bipartite 2-digraphs [13]
is analogous to a result on scores in bipartite tournaments due to Beineke and
Moon [2].
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Theorem 2 Let P = [pi]
m
1 and Q = [qj]

n
1 be sequences of non-negative in-

tegers in non-decreasing order. Then P and Q are mark sequences of some
bipartite 2-digraph if and only if

f∑

i=1

pi +

g∑

j=1

qj ≥ 4fg,

for 1 ≤ f ≤ m and 1 ≤ g ≤ n with equality when f = m and g = n.

Analogous results for scores in oriented bipartite graphs can be found in [10].

An oriented tetra in a bipartite r-digraph is an induced 1-subdigraph with
two vertices from each part. Define oriented tetras of the form x(1−0)y(1−0)x′

(1 − 0)y′(1 − 0)x and x(1 − 0)y(1 − 0)x′(1 − 0)y′(0 − 0)x to be of α-type and
all other oriented tetras to be of β-type. A bipartite r-digraph is said to be
of α-type or β-type according as all of its oriented tetras are of α-type or β-
type respectively. We assume, without loss of generality, that β-type bipartite
r-digraphs have no pair of symmetric arcs because symmetric arcs x(a − a)y,
where 1 ≤ a ≤ r

2 , can be transformed to x(0 − 0)y with the same marks. A
transmitter is a vertex with indegree zero.

2 Criteria for realizability and construction
algorithms

We start with the following observations.

Lemma 1 Among all bipartite r-digraphs with given mark sequences, those
with the fewest arcs are of β-type.

Proof. Let D(X, Y) be a bipartite r-digraph with mark sequences P and Q.
Assume D(X, Y) is not of β-type. Then D(X, Y) has an oriented tetra of α-type,
that is, x(1−0)y(1−0)x′(1−0)y′(1−0)x or x(1−0)y(1−0)x′(1−0)y′(0−0)x

where x, x′ ∈ X and y, y′ ∈ Y. Since x(1 − 0)y(1 − 0)x′(1 − 0)y′(1 − 0)x can
be transformed to x(0 − 0)y(0 − 0)x′(0 − 0)y′(0 − 0)x with the same mark
sequences and four arcs fewer, and x(1 − 0)y(1 − 0)x′(1 − 0)y′(0 − 0)x can be
transformed to x(0−0)y(0−0)x′(0−0)y′(0−1)x with the same mark sequences
and two arcs fewer, therefore, in both cases we obtain a bipartite r-digraph
having same mark sequences P and Q with fewer arcs. Note that if there are
symmetric arcs between x and y, that is x(a − a)y, where 1 ≤ a ≤ r

2 , then
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these can be transformed to x(0 − 0)y with the same mark sequences and a

arcs fewer. Hence the result follows. ¤

Lemma 2 Let P = [pi]
m
1 and Q = [qj]

n
1 be mark sequences of a β-type bipar-

tite r-digraph. Then either the vertex with mark pm, or the vertex with mark
qn, or both can act as transmitters.

We now have some observations about bipartite r-digraphs, as these will
be required in application of Theorem 2.10. If P = [p1, p2, . . . , pm] and Q =

[q1, q2, . . . , qn] are mark sequences of a bipartite r-digraph, then pi ≤ 2rn

and qj ≤ 2rm, where 1 ≤ i ≤ m and 1 ≤ j ≤ m.

Lemma 3 If P = [p1, p2, . . . , pm−1, pm] and Q = [0, 0, . . . , 0, 0] with each
pi = 2rn are mark sequences of some bipartite r-digraph, then P′ = [p1, p2,

. . . , pm−1] and Q′ = [0, 0, . . . , 0] are also mark sequences of some bipartite
r-digraph.

Proof. Let P and Q as given above be mark sequences of bipartite r-digraph
D with parts X = {x1, x2, . . . , xm−1, xm} and Y = {y1, y2, . . . , yn−1, xn}. Since
mark of each xi is 2rn, so xi(r − 0)yj for each xi and each yj, 1 ≤ i ≤ m and
1 ≤ j ≤ n. Deleting xm will neither change the marks of the vertices xi, for all
1 ≤ i ≤ m − 1 nor will change the marks of the vertices yj, for all 1 ≤ j ≤ n.
Hence P′ = [p1, p2, . . . , pm−1] and Q′ = [0, 0, . . . , 0] are the mark sequences of
the bipartite r-digraph with parts {x1, x2, . . . , xm−1} and {y1, y2, . . . , yn−1, xn},
that is the bipartite r-digraph D − xn. ¤

Lemma 4 If P = [p1, p2, . . . , pm−1, pm] and Q = [0, 0, . . . , 0, qn] with 4n −

pm = 3 and qn ≥ 3 are mark sequences of some bipartite r-digraph, then
P′ = [p1, p2, . . . , pm−1] and Q′ = [0, 0, . . . , 0, qn − 3] are also mark sequences
of some bipartite r-digraph.

Proof. Let P and Q as given above be mark sequences of bipartite r-digraph
D with parts X = {x1, x2, . . . , xm−1, xm} and Y = {y1, y2, . . . , yn−1, xn}. Since
4n − pm = 3 and 3 ≤ qn ≤ 4m, therefore in D necessarily xm(2 − 0)yi, for all
1 ≤ i ≤ n − 1. Also yn(1 − 0)xm, because if yn(0 − 0)xm, or yn(0 − 2)xm,or
yn(0 − 1)xm, then in all these cases pxm ≥ 4(n − 1) + 2, a contradiction
to our assumption. Also yn(2 − 0)xm is not possible because in that case
pxm = 4(n − 1) < 4n − 3.

Now delete xm, obviously this keeps marks of y1,y2, . . . ,yn−1 as zeros and
reduces mark of ym by 3, and we obtain a bipartite r-digraph with mark
sequences P′ = [p1, p2, . . . , pm−1] and Q′ = [0, 0, . . . , 0, qn − 3], as required. ¤
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Lemma 5 If P = [p1, p2, . . . , pm−1, pm] and Q = [0, 0, . . . , 0, qn] with 4n −

pm = 4 and qn ≥ 4 are mark sequences of some bipartite r-digraph, then
P′ = [p1, p2, . . . , pm−1] and Q′ = [0, 0, . . . , 0, qn − 4] are also mark sequences
of some bipartite r-digraph.

Proof. Let P and Q as given above be mark sequences of a bipartite r-digraph
D with parts X = {x1, x2, . . . , xm−1, xm} and Y = {y1, y2, . . . , yn−1, xn}. Since
4n − pm = 4 and 4 ≤ qn ≤ 4m, therefore in D necessarily xl(2 − 0)yi, for
all 1 ≤ i ≤ n − 1. Also yn(2 − 0)xl, because if yn(0 − 0)xm, or yn(1 − 0)xm,
or yn(0 − 2)xm,or yn(0 − 1)xm, then in all these cases pxm ≥ 4(n − 1) + 1, a
contradiction to our assumption.

Now delete xm, obviously this keeps marks of y1,y2, . . . ,yn−1 as zeros and
reduces mark of yn by 4, and we obtain a bipartite r-digraph with mark
sequences P′ = [p1, p2, . . . , pm−1] and Q′ = [0, 0, . . . , 0, qn − 4], as required. ¤

Lemma 6 If P = [p1, p2, . . . , pm−1, pm] and Q = [0, 0, . . . , 0, qn] with 4n −

pm = 4 and qn ≥ 3 are mark sequences of some bipartite r-digraph, then
P′ = [p1, p2, . . . , pm−1] and Q′ = [0, 0, . . . , 0, qn − 3] are also mark sequences
of some bipartite r-digraph.

Proof. The proof follows by using the same argument as in Lemma 5. ¤

Lemma 7 If P = [p1, p2, . . . , pm−1, pm] and Q = [0, 0, . . . , 0, 1, 3] with 4n −

pm = 4, are mark sequences of some bipartite r-digraph, then P′ = [p1, p2, . . . ,

pm−1] and Q′ = [0, 0, . . . , 0, 0, 0] are also mark sequences of some bipartite
r-digraph.

Lemma 8 If P = [p1, p2, . . . , pm−1, pm] and Q = [0, 0, . . . , 0, 1, 1, 2] with 4n−

pm = 4, are mark sequences of some bipartite r-digraph, then P′ = [p1, p2, . . . ,

pm−1] and Q′ = [0, 0, . . . , 0, 0, 0] are also mark sequences of some bipartite
r-digraph.

Lemma 9 If P = [p1, p2, . . . , pm−1, pm] and Q = [0, 0, . . . , 0, 1, 1, 1, 1] with
4n − pm = 4, are mark sequences of some bipartite r-digraph, then P′ =

[p1, p2, . . . , pm−1] and Q′ = [0, 0, . . . , 0, 0, 0] are also mark sequences of some
bipartite r-digraph.

Remarks. We note that the sequences of non-negative integers [p1] and
[q1, q2, . . . , qn], with p1 + q1 + q2 + · · · + qn = 2rn, are always mark se-
quences of some bipartite r-digraph. We observe that the bipartite r-digraph
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D(X, Y), with vertex sets X = {x1} and Y = {y1, y2, . . . , yn}, where for qi

even, say 2t, we have x1((r − t) − t)yi and for qi odd, say 2t + 1, we have
x1((r− t− 1)− t)yi, has mark sequences [p1] and [q1, q2, . . . , qn]. Also the se-
quences [0] and [2r, 2r, . . . , 2r] are mark sequences of some bipartite r-digraph.

The next result provides a useful recursive test whether or not a pair of
sequences is realizable.

Theorem 3 Let P = [pi]
m
1 and Q = [qj]

n
1 be sequences of non-negative inte-

gers in non-decreasing order with pm ≥ qn and rn ≤ pm ≤ 2rn.
(A) If qn ≤ 2r(m − 1) + 1, let P′ be obtained from P by deleting one entry
pm, and Q′ be obtained as follows.

For [2r−(i−1)]n ≥ pm ≥ (2r− i)n, 1 ≤ i ≤ r, reducing [2r−(i−1)]n−pm

largest entries of Q by i each, and reducing pm −(2r− i)n next largest entries
by i − 1 each.
(B) In case qn > 2r(m−1)+1, say qn = 2r(m−1)+1+h, where 1 ≤ h ≤ r−1,
then let P′ be obtained from P by deleting one entry pm, and Q′ be obtained
from Q by reducing the entry qn by h + 1.

Then P and Q are the mark sequences of some bipartite r-digraph if and
only if P′ and Q′ (arranged in non-decreasing order) are the mark sequences
of some bipartite r-digraph.

Proof. Let P′ and Q′ be the mark sequences of some bipartite r-digraph
D′(X′, Y′). First suppose Q′ is obtained from Q as in A. Construct a bipartite
r-digraph D(X, Y) as follows. Let X = X′ ∪ x, Y = Y′ with X′ ∩ x = φ. Let
x((r − i) − 0)y for those vertices y of Y′ whose marks are reduced by i in
going from P to P′ and Q to Q′, and x(r− 0)y for those vertices y of Y′ whose
marks are not reduced in going from P to P′ and Q to Q′. Then D(X, Y) is
the bipartite r-digraph with mark sequences P and Q. Now, if Q′ is obtained
from Q as in B, then construct a bipartite r-digraph D(X, Y) as follows. Let
X = X′ ∪ x, Y = Y′ with X′ ∩ x = φ. Let x((r−h− 1)− 0)y for that vertex y of
Y′ whose marks are reduced by h in going from P and Q to P′ and Q′. Then
D(X, Y) is the bipartite r-digraph with mark sequences P and Q.

Conversely, suppose P and Q be the mark sequences of a bipartite r-digraph
D(X, Y). Without loss of generality, we choose D(X, Y) to be of β-type. Then by
Lemma 2.2, any of the vertex x ∈ X or y ∈ Y with mark pm or qn respectively
can be a transmitter. Let the vertex x ∈ X with mark pm be a transmitter.
Clearly, pm ≥ rn and because if pm < rn, then by deleting pm we have to
reduce more than n entries from Q, which is absurd.
(A) Now qn ≤ 2r(m−1)+1 because if qn > 2r(m−1)+1, then on reduction
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q′n = qn − 1 > 2r(m − 1) + 1 − 1 = 2r(m − 1), which is impossible.
Let [2r−(i − 1)]n ≥ pm ≥ (2r − i)n, 1 ≤ i ≤ r, let V be the set of [2r − (i −

1)]n−pm vertices of largest marks in Y, and let W be the set of pm −(2r− i)n

vertices of next largest marks in Y and let Z = Y − {V,W}. Construct D(X, Y)

such that x((r − i) − 0)v for all v ∈ V , x((r − i − 1) − 0)w for all w ∈ W and
x(r − 0)z for all z ∈ Z. Clearly, D(X, Y) − x realizes P′ and Q′ (arranged in
non-decreasing order).
(B) Now in D, let qn > 2r(m−1)+1, say qn = 2r(m−1)+1+h, where 1 ≤ h ≤
r−1. This means ym(r−0)xi, for all 1 ≤ i ≤ m−1. Since xm is a transmitter,
so there cannot be an arc from yn to xm. Therefore xm((r − h − 1) − 0)yn,
since yn needs h + 1 more marks. Now delete xm, it will decrease the mark of
yn by h+ 1, and the resulting bipartite r-digraph will have mark sequences P′

and Q′ as desired. ¤
Theorem 2.10 provides an algorithm of checking whether or not the sequences
P and Q of non-negative integers in non-decreasing order are mark sequences,
and for constructing a corresponding bipartite r-digraph. Let P = [p1, p2,

. . . , pm] and Q = [q1, q2, . . . , qn], where pm ≥ qn, rn ≤ pm ≤ 2rn and
qn ≤ 2r(m− 1)+ 1, be the mark sequences of a bipartite r-digraph with parts
X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} respectively. Deleting pm and
performing A of Theorem 2.10 if [2r − (i − 1)]n ≥ pm ≥ (2r − i)n, 1 ≤ i ≤ r,
we get Q′ = [q′1, q

′
2, . . . , q

′
n]. If the marks of the vertices yj were decreased

by i in this process, then the construction yielded xm((r − i) − 0)yj, if these
were decreased by i − 1, then the construction yielded xm((r − i − 1) − 0)yj.
If we perform B of Theorem 2.10, the mark of yn was decreased by h + 1,
the construction yielded xm((r − h − 1) − 0)yn. For vertices yj whose marks
remained unchanged, the construction yielded xm(r − 0)yj. Note that if the
condition pm ≥ rn does not hold, then we delete qn for which the conditions
get satisfied and the same argument is used for defining arcs. If this procedure
is applied recursively, then it tests whether or not P and Q are the mark
sequences, and if P and Q are the mark sequences, then a bipartite r-digraph
with mark sequences P and Q is constructed.

We illustrate this reduction and the resulting construction with the following
examples.

Example 1. Consider the sequences of non-negative integers P = [14, 14, 15]

and Q = [6, 6, 8, 9]. We check whether or not P and Q are mark sequences of
some bipartite 3-digraph.
1. P = [14, 14, 15], Q = [6, 6, 8, 9].

We delete 15. Clearly [2r−(i−1)]n = [2.3−(3−1)]4 = 16 ≥ 15 ≥ (2r− i)n =
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(2.3−3)4 = 12. So reduce [2r−(i−1)]n−pm = [2.3−(3−1]4−15 = 16−15 = 1

largest entry of Q by i = 3 and pm −(2r− i)n = 15−(2.3− 3)4 = 15− 12 = 3

next largest entries of Q by i − 1 = 3 − 1 = 2 each, we get P1 = [14, 14],
Q1 = [4, 4, 6, 6], and arcs are defined as x3(0 − 0)y4, x3(1 − 0)y3, x3(1 − 0)y2,
x3(1 − 0)y1.
2. P1 = [14, 14], Q1 = [4, 4, 6, 6].

We delete 14. Here [2r − (i − 1)]n = [2.3 − (3 − 1)]4 = 16 ≥ 14 ≥ (2r − i)n =

(2.3−3)4 = 12. Reduce [2r−(i−1)]n−pm = [2.3−(3−1]4−14 = 16−14 = 2

largest entries of Q1 by i = 3 and pm−(2r−i)n = 14−(2.3−3)4 = 14−12 = 2

next largest entries of Q1 by i − 1 = 3 − 1 = 2 each, we get P2 = [14],
Q2 = [2, 2, 3, 3], and arcs are defined as x2(0 − 0)y4, x2(0 − 0)y3, x2(1 − 0)y2,
x2(1 − 0)y1.
3. P2 = [14], Q2 = [2, 2, 3, 3].

We delete 14. Here [2r−(i−1)]n = [2.3−(3−1)]4 = 16 ≥ 14 ≥ (2r−i)n = (2.3−

3)4 = 12. Reduce [2r−(i−1)]n−pm = [2.3−(3−1]4−14 = 16−14 = 2 largest
entries of Q2 by i = 3 and pm −(2r− i)n = 14−(2.3− 3)4 = 14− 12 = 2 next
largest entries of Q2 by i− 1 = 3− 1 = 2 each, we get P3 = φ, Q3 = [0, 0, 0, 0],
and arcs are defined as x1(0 − 0)y4, x1(0 − 0)y3, x1(1 − 0)y2, x1(1 − 0)y1.

The resulting bipartite 3-digraph has mark sequences P = [14, 14, 15] and
Q = [6, 6, 8, 9] with vertex sets X = {x1, x2, x3} and Y = {y1, y2, y3, y4} and arcs
as x3(0 − 0)y4, x3(1 − 0)y3, x3(1 − 0)y2, x3(1 − 0)y1, x2(0 − 0)y4, x2(0 − 0)y3,
x2(1 − 0)y2, x2(1 − 0)y1, x1(0 − 0)y4, x1(0 − 0)y3, x1(1 − 0)y2, x1(1 − 0)y1.

Example 2. Consider the two sequences of non-negative integers given by
P = [13, 16, 22, 24] and Q = [5, 6, 10]. We check whether or not P and Q are
mark sequences of some bipartite 4-digraph.
1. P = [13, 16, 22, 24] and Q = [5, 6, 10].

We delete 24. Here [2r − (i − 1)]n = [2.4 − (1 − 1)]3 = 24, so reduce [2r − (i −

1)]n − pm = [2.4 − (1 − 1]3 − 24 = 24 − 24 = 0 largest entries of Q by i = 1,
and obviously we reduce pm − (2r − i)n = 24 − (2.4 − 1)3 = 24 − 21 = 3 next
largest entries of Q by i − 1 = 1 − 1 = 0 each, we get P1 = [13, 16, 22] and
Q1 = [5, 6, 10], and arcs are x4(4 − 0)y3, x4(4 − 0)y2, x4(4 − 0)y1.
2. P1 = [13, 16, 22] and Q1 = [5, 6, 10].

We delete 22. Here [2r − (i − 1)]n = [2.4 − (1 − 1)]3 = 24 ≥ 22 ≥ (2r − i)n =

(2.4−1)3 = 21. Reduce [2r−(i−1)]n−pm = [2.4−(1−1]3−22 = 24−22 = 2

largest entries of Q1 by i = 1 and pm−(2r−i)n = 22−(2.4−1)3 = 22−21 = 1

next largest entries of Q1 by i − 1 = 1 − 1 = 0 each, we get P2 = [13, 16],
Q2 = [5, 5, 9], and arcs are defined as x3(3 − 0)y3, x3(3 − 0)y2, x3(4 − 0)y1.
3. P2 = [13, 16], Q2 = [5, 5, 9].
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We delete 16. Here [2r − (i − 1)]n = [2.4 − (3 − 1)]3 = 18 ≥ 16 ≥ (2r − i)n =

(2.4−3)3 = 15. Reduce [2r−(i−1)]n−pm = [2.4−(3−1]3−16 = 18−16 = 2

largest entries of Q2 by i = 3 and pm−(2r−i)n = 16−(2.4−3)3 = 16−15 = 1

next largest entry of Q2 by i − 1 = 3 − 1 = 2, we get P3 = [13], Q3 = [3, 2, 6],
and arcs are defined as x2(3 − 0)y3, x2(3 − 0)y2, x2(2 − 0)y1.
4. P3 = [13], Q3 = [3, 2, 6].
Here 13 + 3 + 2 + 6 = 24 which is same as 2rn = 2.4.3 = 24. Thus by the
argument as discussed in the remarks, P3 and Q3 are mark sequences of some
bipartite 4-digraph. Here arcs are x1(1 − 3)y3, x1(3 − 1)y2, x1(2 − 1)y1.

The resulting bipartite 4-digraph with mark sequences P = [13, 16, 22, 24]

and Q = [5, 6, 10] has vertex sets X = {x1, x2, x3, x4} and Y = {y1, y2, y3} and
arcs as x4(4−0)y3, x4(4−0)y2, x4(4−0)y1, x3(3−0)y3, x3(3−0)y2, x3(4−0)y1,
x2(3 − 0)y3, x2(3 − 0)y2, x2(2 − 0)y1, x1(1 − 3)y3, x1(3 − 1)y2, x1(2 − 1)y1.

Now we give a combinatorial criterion for determining whether the sequences
of non-negative integers are realizable as marks. This is analogous to Landau’s
theorem [6] on tournament scores and similar to the result by Beineke and
Moon [2] on bipartite tournament scores.

Theorem 4 Let P = [pi]
m
1 and Q = [qj]

n
1 be the sequences of non-negative

integers in non-decreasing order. Then P and Q are the mark sequences of
some bipartite r-digraph if and only if

f∑

i=1

pi +

g∑

j=1

qj ≥ 2rfg, (1)

for 1 ≤ f ≤ m and 1 ≤ g ≤ n, with equality when f = m and g = n.

Proof. The necessity of the condition follows from the fact that the sub-
bipartite r-digraph induced by f vertices from the first part and g vertices
from the second part has a sum of marks 2rfg.

For sufficiency, assume that P = [pi]
m
1 and Q = [qj]

n
1 are the sequences of

non-negative integers in non-decreasing order satisfying conditions (2.1) but
are not mark sequences of any bipartite r-digraph. Let these sequences be
chosen in such a way that m and n are the smallest possible and p1 is the
least with that choice of m and n. We consider the following two cases.
Case (a). Suppose the equality in (2.1) holds for some f ≤ m and g ≤ n, so
that

f∑

i=1

pi +

g∑

j=1

qj = 2rfg.
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By the minimality of m and n, P1 = [pi]
f
1 and Q1 = [qj]

g
1 are the mark

sequences of some bipartite r-digraph D1(X1, Y1). Let P2 = [pf+1 −2rg, pf+2 −

2rg, . . . , pm − 2rg] and Q2 = [qg+1 − 2rf, qg+2 − 2rf, . . . , qn − 2rf].
Consider the sum

s∑

i=1

(pf+i − 2rg) +

t∑

j=1

(qg+j − 2rf) =

f+s∑

i=1

pi +

g+t∑

j=1

qj −




f∑

i=1

pi +

g∑

j=1

qj




− 2rsg − 2rtf

≥ 2r(f + s)(g + t) − 2rfg − 2rsg − 2rtf

= 2r(fg + ft + sg + st − fg − sg − tf)

= 2rst,

for 1 ≤ s ≤ m − f and 1 ≤ t ≤ n − g, with equality when s = m − f and
t = n−g. Thus, by the minimality of m and n, the sequences P2 and Q2 form
the mark sequences of some bipartite r-digraph D2(X2, Y2). Now construct a
new bipartite r-digraph D(X, Y) as follows.

Let X = X1∪X2, Y = Y1∪Y2 with X1∩X2 = φ, Y1∩Y2 = φ. Let x2(r−0)y1

and y2(r − 0)x1 for all xi ∈ Xi, yi ∈ Yi, where 1 ≤ i ≤ 2, so that we get
the bipartite r-digraph D(X, Y) with mark sequences P and Q, which is a
contradiction.
Case (b). Suppose the strict inequality holds in (2.1) for some f 6= m and
g 6= n. Also, assume that p1 > 0. Let P1 = [p1 − 1, p2, . . . , pm−1, pm + 1] and
Q1 = [q1, q2, . . . , qn]. Clearly, P1 and Q1 satisfy the conditions (2.1). Thus, by
the minimality of p1, the sequences P1 and Q1 are the mark sequences of some
bipartite r-digraph D1(X1 , Y1). Let px1

= p1−1 and pxm = pm+1. Since pxm >

p1 + 1, therefore there exists a vertex y ∈ Y1 such that xm(1 − 0)y(1 − 0)x1,
or xm(0 − 0)y(1 − 0)x1, or xm(1 − 0)y(0 − 0)x1, or xm(0 − 0)y(0 − 0)x1, is
an induced sub-bipartite 1-digraph in D1(X1, Y1), and if these are changed
to xm(0 − 0)y(0 − 0)x1, or xm(0 − 1)y(0 − 0)x1, or xm(0 − 0)y(0 − 1)x1, or
xm(0 − 1)y(0 − 1)x1 respectively, the result is a bipartite r-digraph with mark
sequences P and Q, which is a contradiction. Hence the result follows. ¤
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Abstract. In this paper we give a classification of (κ, µ)-contact metric
manifolds with certain curvature restrictions.

1 Introduction

In 1995, Blair, Koufogiorgos and Papantoniou [3] introduced a type of contact
metric manifolds M(2n+1)(φ, ξ, η, g) whose curvature tensor R satisfies

R(X, Y)ξ = κ{η(Y)X − η(X)Y} + µ{η(Y)hX − η(X)hY}, ∀ X, Y ∈ χ(M).

Here, (κ, µ) are real constants and 2h denotes the Lie-Derivative in the direc-
tion of ξ. In this case we say that the characteristic vector field ξ belongs to
the (κ, µ)-nullity distribution and the class of contact metric manifolds sat-
isfying this condition are called (κ, µ)-contact metric manifolds. In case the
vector field ξ is Killing, this class of manifolds are called Sasakian manifolds.
In 1999, Boeckx [5] proved that a (κ, µ)-contact metric manifolds is either
Sasakian or locally φ-symmetric. Later in 2000, Boeckx [6] gave a full clas-
sification of non-Sasakian (κ, µ)-contact metric manifolds. In 2008, Ghosh [7]
proved that all conformally recurrent (κ, µ)-contact metric manifolds are lo-
cally isometric either to the unit sphere S2n+1 or to En+1 × Sn. In this paper,
we study (κ, µ)-contact metric manifolds with different curvature restrictions
and classify such manifolds.

2010 Mathematics Subject Classification: 53C15, 53C21, 53C25.
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2 Preliminaries

Let (M2n+1, g) be an almost contact metric manifold with an almost contact
metric structure (φ, ξ, η, g). Then we have

φ2 = −I + η⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, g(X, ξ) = η(X);

(1)

g(φX,φY) = g(X, Y) − η(X)η(Y), g(φX, Y) = dη(X, Y) = −g(X,φY) (2)

for all X, Y ∈ χ(M). The operator h satisfies the following results [2], [3], [4]:

hφ = −φh, η ◦ h = 0, g(hX, Y) = g(X, hY), h2 = (κ − 1)φ2; (3)
hξ = 0, g(X,φhZ) = g(φhX,Z); (4)

∇Xξ = −φX − φhX, (∇
X
η)(Y) = g(X + hX,φY), (5)

where ∇ is the Riemannian connection of g. In a (κ, µ)-contact metric mani-
folds we have the following [3], [4]:

R(ξ, X)Y = κ{g(X, Y)ξ − η(Y)X} + µ{g(hX, Y)ξ − η(Y)hX}; (6)
R(X, Y)ξ = κ{η(Y)X − η(X)Y} + µ{η(Y)hX − η(X)hY}; (7)
S(X, Y) = {2(n − 1) − nµ}g(X, Y) + {2(n − 1) + µ}g(hX, Y) (8)

+ {2(1 − n) + n(2κ + µ)}η(X)η(Y);

S(X, ξ) = 2nκη(X), Qξ = 2nκξ; (9)
r = 2n(2n − 2 + κ − nµ); (10)

and

(∇Xh)(Y) − (∇Yh)(X) = (1 − κ){2g(X,φY)ξ + η(X)φY − η(Y)φX}

+ (1 − µ){η(X)φhY − η(Y)φhX} (11)

for all X, Y ∈ χ(M) where S, r are respectively the Ricci tensor and the scalar
curvature of M.

For (κ, µ)-contact metric manifolds with h = 0, we have κ = 1, and in this
case the manifold reduces to a Sasakian one. The following relations hold in a
Sasakian manifold [2]:

(i) ∇Xξ = −φX, (ii) (∇
X
η)(Y) = g(X, φY), (12)

R(X, Y)ξ = η(Y)X − η(X)Y, (13)
R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (14)
S(X, ξ) = 2nη(X), (15)

S(φX,φY) = S(X, Y) − 2nη(X)η(Y), (16)
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for all X, Y ∈ χ(M). The above formulae will be used in the sequel.

3 On a class of (κ, µ)-contact metric manifolds

A Riemannian manifold (M,g) is called a hyper-generalized recurrent manifold
(for details we refer to [8]) if and only if its curvature tensor R satisfies the
condition

(∇
W

R)(X, Y)Z = A(W)R(X, Y)Z (17)
+ B(W){S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY}

for all X, Y, Z ∈ χ(M); where A and B are two non-zero 1-forms metrically
equivalent to two vector fields σ and ρ, respectively. Moreover, if the the scalar
curvature r is a non-zero constant, then these associated 1-forms are related
by

A + 4nB = 0. (18)

Consequently we have
σ + 4nρ = 0. (19)

Before proceeding for the main theorems of the paper, we are to state the
following lemma [7]:

Lemma 1 For a (κ, µ)-contact metric space, the relation ∇ξh = µhφ holds.

We are now going to prove the main theorems of the paper:
By contracting (17) with respect to W, we obtain

(div R)(X, Y)Z = g(R(X, Y)Z, σ) +
{
S(Y, Z)g(X, ρ) − S(X,Z)g(Y, ρ)

+ g(Y, Z)S(X, ρ) − g(X,Z)S(Y, ρ)
}
.

(20)

Using the result

(div R)(X, Y)Z = (∇XS)(Y, Z) − (∇YS)(X,Z),

in (20), one obtains

(∇XS)(Y, Z) − (∇YS)(X,Z) = g(R(X, Y)Z, σ)+
[
S(Y, Z)g(X, ρ) − S(X,Z)g(Y, ρ)

+ g(Y, Z)S(X, ρ) − g(X, Z)S(Y, ρ)
]
.

(21)
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Setting Z = ξ, yields on using (9)

2nκ
[
g(X + hX,φY) − g(Y + hY,φX)

]

+ S(Y,φX) − S(X,φY) + S(Y,φhX) − S(X,φhY)

= g(R(X, Y)ξ, σ) + 2nκ[η(Y)g(X, ρ) − η(X)g(Y, ρ)]

− [η(Y)S(X, ρ) + η(X)S(Y, ρ)]. (22)

Replacing X by φX and Y by φY and using (1) and (3), we have

2κ + µ + nµ − µκ = 0. (23)

In a (κ, µ)-contact metric manifold, the scalar curvature r is a non-zero con-
stant, therefore using (18) in (17) and thereby contraction over W yields

(∇XS)(Y, Z) − (∇YS)(X,Z) = g(R(X, Y)Z, σ) −
1

4n

[
S(Y, Z)g(X, σ)

− S(X,Z)g(Y, σ) + g(Y, Z)S(X, σ)

− g(X,Z)S(Y, σ)
]
.

(24)

Using (8) and (11) on (24), one obtains

(3µ + 2nκ − nµ − µ2)
(
η(X)g(φhY,Z) − η(Y)g(φhX,Z)

)

= g(R(X, Y)Z, σ) −
1

4n

[
S(Y, Z)g(X, σ) − S(X,Z)g(Y, σ)

+ g(Y, Z)S(X, σ) − g(X,Z)S(Y, σ)
]
.

(25)

Putting X = ξ and setting Z = σ in the above equality, we have by (6)

(3µ + 2nκ − nµ − µ2)g(φhY, σ) = 0. (26)

Two cases arise from above

(i) 3µ + 2nκ − nµ − µ2 = 0, (27)

(ii) φhσ = 0. (28)

From (23) we have
−κ(µ − 2) + (n + 1)µ = 0.

or, κ = (n + 1)
µ

µ − 2
. (29)
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Putting this value of κ in (23) we have

µ(µ − n − 3)(µ + 2n − 2) = 0. (30)

From (29) and (30) we get the following set of corresponding values of µ and
κ:

µ κ

0 0
n + 3 n + 3

2 − 2n n − 1
n

Since, κ < 1 and n > 1, therefore only the case κ = 0 = µ is admissible
and other possibilities will be ignored. For κ = 0 = µ, from (11) we have,
R(X, Y)ξ = 0, for all X, Y. Therefore by [1], a (κ, µ)-contact metric manifold
(M2n+1, g) admitting such a structure is locally isometric to either (i) the unit
sphere S2n+1(1) or (ii) to the product space En+1 × Sn(4).

Next let us consider the case (ii). From (28) we have the following:

φgσ = 0

⇒ φ2hσ = −hσ + η(hσ)ξ

⇒ hσ = 0, by (3)

⇒ h2σ = (κ − 1)φ2σ = 0.

Since, κ < 1, it follows that φ2σ = 0 and consequently σ = η(σ)ξ i.e. for
all vector field W on M, A(W) = η(σ)η(W). Applying (18), we find B(W) =

η(ρ)η(W). Hence putting the values of A and B in (17), one obtains

(∇WR)(X, Y)Z

= η(σ)η(W)R(X, Y)Z

− η(ρ)η(W)
{
S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X, Z)QY

}
. (31)

Placing φ2W in lieu of W and thereby contracting over W in the resulting
equation, we find

(∇XS)(Y, Z) − (∇YS)(X,Z) = g
(
(∇ξR)(X, Y)Z, ξ

)
. (32)

Replacing Y by ξ, the above equation reduces to

(∇XS)(ξ, Z) − (∇ξS)(X,Z) = g
(
(∇ξR)(X, Y)Z, ξ

)
. (33)
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We have,

(∇XS)(ξ, Z) = 2nκ(∇
X
η)(Z) + S(φX, Z) + S(φhX,Z)

= (2nκ + nµ + µ)g(hX, φZ). (34)

Again, from (8) we have

(∇ξS)(X,Z) = (2n − 2 + µ)g((∇
ξ
h)(X), Z)

= µ{2(n − 1) + µ}g(hφX,Z). (35)

Moreover, applying covariant differentiation with respect to the vector field ξ

we obtain

(∇
ξ
R)(X, ξ)Z = −µg((∇

ξ
h)(X), Z)ξ + µ(∇

ξ
η)(Z)hX

= −µg(µ(hφ)(X), Z)ξ + µη(Z)µ(hφ)(X), by Lemma 3.1

= −µ2g(hφX,Z). (36)

Combining the results (33), (34), (35) and (36) we finally obtain

(2nκ + nµ + µ)g(hX,φZ) − µ{2(n − 1) + µ}g(hφX,Z) = µ2g(hφX,Z).

i.e., (2nκ + nµ + µ)g(hφX,Z) = 0.

i.e., (2nκ + nµ + µ) = 0, since g(hφX,Z) 6≡ 0 . (37)

From (37) we get κ = n−3
2n µ. Putting this value of κ in (23) we find

µ{µ(n − 3) − 2(n − 1)(n + 3)} = 0. (38)

So, either µ = 0 or µ =
2(n−1)(n+3)

n−3 . Hence we obtain the following set of values
for κ and µ:

µ κ

0 0
2(n−1)(n+3)

n−3
(n−1)(n+3)

n , unless n = 3

In case n = 3 from (37) we find κ = 0. Hence from (23) we find µ = 0,
whenever n = 3.

By similar argument, as explained earlier, we are to consider κ = 0 = µ.
Hence the same result follows for case (ii). Thus we can state:

Theorem 1 A hyper-generalized recurrent (κ, µ)-contact metric manifold
(M2n+1, g) is locally isometric to either (i) the unit sphere S2n+1(1) or (ii)
to the product space En+1 × Sn(4).
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Recalling Theorem (2.1) (viii) of [8], a hyper-generalized recurrent (κ, µ)-
contact metric manifold is generalized 2-Ricci recurrent. Hence we can state
as follows:

Corollary 1 A generalized 2-Ricci recurrent (κ, µ)-contact metric manifold
is locally isometric to either (i) the unit sphere S2n+1(1) or (ii) to the product
space En+1 × Sn(4).

Again by virtue of Theorem (2.1) (v) of [8], a hyper-generalized recurrent
(κ, µ)-contact metric manifold is generalized conharmonically recurrent. Thus
we have the following:

Corollary 2 A generalized conharmonically recurrent (κ, µ)-contact metric
manifold is locally isometric to either (i) the unit sphere S2n+1(1) or (ii) to
the product space En+1 × Sn(4).

Again, in a (κ, µ)-contact metric manifold, if κ = 1, then it reduces to a
Sasakian manifold. Now we are going to find the consequences of the above
theorem for κ = 1 i.e. for the case of Sasakian manifolds.

Taking X = ξ in (21) gives

(∇ξS)(Y, Z) − (∇YS)(ξ, Z)

= g(R(ξ, Y)Z, σ)

+
[
S(Y, Z)η(ρ) − 2nη(Z)g(Y, ρ) + 2ng(Y, Z)η(ρ) − η(Z)S(Y, ρ)

]
.

Since, for a Sasakian manifold ξ is a Killing vector field, therefore £ξS = 0
and hence ∇ξS = 0. Thereby from the above we obtain

−S(φY,Z) + 2ng(φY,Z)

= g(R(ξ, Y)Z, σ)

+
[
S(Y, Z)η(ρ) − 2nη(Z)g(Y, ρ) + 2ng(Y, Z)η(ρ) − η(Z)S(Y, ρ)

]
. (39)

Replacing Y and Z by φY and φZ respectively and using (1) and (2) yields

S(Y,φZ) − 2ng(Y,φZ)

= η(σ){g(Y, Z) − η(Y)η(Z)}

+ η(ρ)
{
S(Y, Z) + 2ng(Y, Z) − 4nη(Y)η(Z)

}
. (40)

Again replacing φY for Y in (40), we obtain

S(Y, Z) − 2ng(Y, Z) = η(σ)g(φY,Z) + η(ρ)
{
S(φY,Z) + 2ng(φY,Z)

}
. (41)
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Since, S and g are symmetric, the left hand side of (41) is symmetric with
respect to Y and Z. Hence we have

S(Y, Z) = 2ng(Y, Z). (42)

Thus a hyper-generalized recurrent Sasakian manifold is an Einstein man-
ifold with non-vanishing scalar curvature r = 2n(2n + 1). Using (42) in (17)
and thereafter by (18), we acquire

(∇
W

R)(X, Y)Z = −4nB(W)
{
R(X, Y)Z − g(Y, Z)X + g(X,Z)Y

}
. (43)

On cyclic transposition of the last equation twice over X, Y,W and thereafter
summing up these resulting equations we get by virtue of the second Bianchi
identity,

B(W)
{
R(X, Y)Z − g(Y, Z)X + g(X, Z)Y

}

+ B(Y)
{
R(W,X)Z − g(X,Z)W + g(W,Z)X

}

+ B(X)
{
R(Y,W)Z − g(W,Z)Y + g(Y, Z)W

}
= 0. (44)

On contraction with respect to W and using (42), we obtain

R(X, Y)ρ = B(Y)X − B(X)Y. (45)

In a similar fashion, we can also find

R(Z, ρ)X = B(X)Z − g(X,Z)ρ. (46)

Assigning W = ρ in (44) and utilizing (45) and (46) one determines

g(ρ, ρ){R(X, Y)Z − g(Y, Z)X + g(X,Z)Y} = 0.

Since ρ 6= 0, one must have for arbitrary vector fields X, Y and Z on M

R(X, Y)Z = g(Y, Z)X − g(X,Z)Y. (47)

This implies the space under consideration 1 is of constant curvature 1 and
hence locally isometric to the unit sphere. This gives the following theorem:

Theorem 2 A hyper-generalized recurrent Sasakian manifold (M2n+1, g) is
of constant curvature 1 and hence locally isometric to a unit sphere S2n+1(1).

Also by virtue of Theorem (2.1) (v) of [8], a hyper-generalized recurrent
Sasakian manifold is generalized conharmonically recurrent. Hence we state
the following:
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Corollary 3 A generalized conharmonically recurrent Sasakian manifold is
of constant curvature 1 and hence locally isometric to a unit sphere S2n+1(1).

Retrieving the Theorem (2.1) (viii) of [8], a hyper-generalized recurrent Sasakian
manifold is generalized 2-Ricci recurrent. Thus one obtains,

Corollary 4 A generalized 2-Ricci recurrent Sasakian manifold is of constant
curvature 1 and hence locally isometric to a unit sphere S2n+1(1).
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Abstract. Due to widely study of K-uniformly typed of functions, we es-
tablish here the inclusion relations for K-uniformly starlike, K-uniformly
convex, close to convex and quasi-convex functions under the Dλ,m

µ,a op-
erator introduced by the authors [1].

1 Introduction

Let U = {z : z ∈ C |z| < 1} be the open unit disk and A denotes the class of
functions f normalized by

f(z) = z +
∞∑

k=2

akz
k,

which is analytic in the open unit disk U and satisfies the condition f(0) =
f ′(0)−1 = 0. A function f ∈ A is said to be in UST (k, α), the class of k-
uniformly starlike functions of order α, 0 ≤ α < 1 if it satisfies the condition

<
(

zf ′(z)
f(z)

)
− α ≥ k

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ , k ≥ 0, 0 ≤ α < 1.
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formations
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Similarly, a function f ∈ A is said to be in UCV (k, α), the class of k-uniformly
convex functions of order α, 0 ≤ α < 1 if it satisfies the condition

<
(

1 +
zf ′′(z)
f ′(z)

)
− α ≥ k

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ , k ≥ 0, 0 ≤ α < 1.

The classes of uniformly convex and uniformly starlike were introduced by
Goodman [3,4] and later generalized by Kanas and Wisniowska ([14],[15]) (see
also the work of Kanas and Srivastava [16], Ronning ([7],[8]), Ma and Minda
[20] and Gangadharan et al. [2]).

Let F and G be analytic functions in the unit disk U. The function F is
subordinate to G written F ≺ G. If G is univalent, then F (0) = G(0) and
F (U) ⊂ G(U).
In general, given two functions F and G which are analytic in U, the function
F is said to be subordinate to G if there exist a function w analytic in U with

w(0) = 0 and (∀z ∈ U) : |w(z)| < 1,

such that
(∀z ∈ U) : F (z) = G(w(z)).

For arbitrarily chosen k ∈ [0,∞ [ and 0 ≤ α < 1, let Ωk,α denote the domain

Ωk,α = {u + iv, (u− α)2 > k2(u− 1)2 + k2v2}.

This characterization enables us to designate precisely the domain Ωk,α as a
convex domain contain in the right half-plane. Moreover, Ωk,α is an elliptic
region for k > 1, parabolic for k = 1, hyperbolic for 0 < k < 1 and finally Ω0,0

is the whole right half-plane.
Let qk,α(z) : U → Ωk,α denote the conformal mapping of U onto Ωk,α so

that qk,α(0) = 0, qk,α
′(0) > 0. The explicit forms of qk,α(z), were obtained in

[13] as follows:

qk,α(z) =





1+(1−2α)z
1−z for k = 0,

1−α
1−k2 cos

{
2
π arccos(k)i log

(
1+
√

z
1−√z

)}
− k2−α

1−k2 for k ∈ (0, 1)

1 + 2(1−α)
π2

(
log

(
1+
√

z
1−√z

))2
for k = 1,

1−α
k2−1

sin
{

π
2K(x)

∫ u(z)√
x

0
dt√

1−t2
√

1−k2t2

}
+ k2−α

k2−1
for k > 1,

where u(z) = z−√x
1−√xz

, x ∈ (0, 1) and K is such k = cosh πK′(x)
4K(x) .
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Let P denote the class of Caratheodory functions analytic in U e.g.

P = {p : p analytic inU, p(0) = 1, < p(z) > 0}.
The characterization of the classes UST (k, α) and UCV (k, α), can be ex-
pressed in terms of subordination as follows,

f ∈ UST (k, α) ⇔ p(z) =
zf ′(z)
f(z)

≺ qk,α(z), z ∈ U,

and

f ∈ UCV (k, α) ⇔ p(z) =
zf ′′(z)
f ′(z)

+ 1 ≺ qk,α(z), z ∈ U.

So that

< p(z) > < qk,α(z) >
k + α

k + 1
. (1)

Define UCC(k, α, β) to be the family of functions f ∈ A such that

zf ′(z)
g(z)

≺ qk,α(z), z ∈ U,

for some g(z) ∈ UST (k, β). On the other hand, let UQC(k, α, β) be the family
of functions f ∈ A such that

(zf ′(z))′

g′(z)
≺ qk,α(z), z ∈ U,

for some g(z) ∈ UCV (k, β).
We observe that, UCC(0, α, β) is the class of close-to-convex functions of

order α and type β and UQC(0, α, β) is the class of quasi-convex functions of
order α and type β.

We now state the following definition.

Definition 1 ([1]) Let the function f ∈ A, then for µ, m ∈ C, a ∈ C/
{−1,−2, . . . }, and λ > −1, we define the following operator:

Dλ,m
µ,a f(z) = z +

∞∑

k=2

(
k + a

1 + a

)m (λ + 1)k−1

(µ)k−1

akz
k. (2)
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Here (x)k is Pochhammer symbol (or the shifted factorial), defined by

(x)k =
Γ(x + k)

Γ(x)

{
1, k = 0 and x ∈ C\{0};
x(x + 1) . . . (x + k − 1) ifk ∈ N and x ∈ C,

and Γ(x), (x ∈ C) denotes the Gamma function.
It should be noted that the operator Dλ,m

µ,a f(z) is a generalization of many
operators considered earlier. For m ∈ Z , a ≥ 1, µ = 1 andλ = 0 the operator
Dλ,m

µ,a were studied by Cho and Srivastava [6], for m = −1 , µ = 1andλ = 0
the operator is the integral operator studied by Owa and Srivastava [17], for
any negative real number m and µ = 1 , a = 1, λ = 0 the operator Dλ,m

µ,a is the
integral operator studied by Jung et. al [5], for any nonnegative integer number
m and µ = 1 , a = 0, λ = 0 the operator Dλ,m

µ,a is the differential operator
defined by Salagean [9], for m = 0, µ = 1, λ > −1 the operator Dλ,m

µ,a is
the differential operator defined by Ruscheweyh [19], for µ = 1 andλ > −1
the operator Dλ,m

µ,a is the multiplier transformations defined by Al-Shaqsi and
Darus [10] and for Dλ,m

µ,a the operator Dλ,m
µ,a is the derivative operator given

by Al-Shaqsi and Darus [11]. In particular, we note that D0,0
1,a = f(z) and

D0,1
1,0 = zf ′(z).
It is readily verified from (2) that

z(Dλ,m
µ+1,af(z))′ = µDλ,m

µ,a f(z)− (µ− 1)Dλ,m
µ+1,af(z) (3)

z(Dλ,m
µ,a f(z))′ = (λ + 1)Dλ+1,m

µ,a f(z)− λDλ,m
µ,a f(z) (4)

z(Dλ,m
µ,a f(z))′ = (a + 1)Dλ,m+1

µ,a f(z)− aDλ,m
µ,a f(z). (5)

2 Main results

The main object of this paper is to study the inclusion properties of the above-
mentioned classes under the multiplier transformation Dλ,m

µ,a f(z).
We shall need the following lemmas to prove our theorems:

Lemma 1 ([12]) Let σ, ν be complex numbers. Suppose also that m(z) be
convex univalent in U with m(0) = 1 and <[σm(z) + ν] > 0, z ∈ U. If u(z) is
analytic in U with u(0) = 1, then

u(z) +
zu′(z)

σ u(z) + ν
≺ m(z) ⇒ u(z) ≺ m(z) .
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Lemma 2 ([18]) Let h(z) be the convex in the unit disk U and let E ≥ 0.
suppose B(z) is analytic in U with <B(z) > E. If g(z) is analytic in U and
g(0) = h(0). Then

E z2g′′(z) + B(z)zg′(z) + g(z) ≺ h(z) ⇒ g(z) ≺ h(z).

Our first result is the following:

Theorem 1 Let f(z) ∈ A.

If Dλ,m
µ,a f(z) ∈ UST (k, α), and <µ > 1−α

1+k , then Dλ,m
µ+1,af(z) ∈ UST (k, α).

Proof. Let p(z) =
z
(
Dλ,m

µ+1,af(z)
)′

Dλ,m
µ+1,af(z)

. In view of (3), we can write

µDλ,m
µ,a f(z)

Dλ,m
µ+1,af(z)

= p(z) + µ− 1.

Differentiating the above expression yields

z
(
Dλ,m

µ,a f(z)
)′

Dλ,m
µ,a f(z)

= p(z) +
zp′(z)

p(z) + µ− 1
.

From this and argument given in the introduction we may write

p(z) +
zp′(z)

p(z) + µ− 1
≺ qk,α(z).

Therefore, the theorem follows by Lemma 1 and the condition (1) since qk,α(z)
is univalent and convex in U and <(qk,α(z)) > k+α

k+1 . ¤

Theorem 2 Let f(z) ∈ A.

If Dλ,m
µ,a f(z) ∈ UCV (k, α), then Dλ,m

µ+1,af(z) ∈ UCV (k, α).

Proof.

Dλ,m
µ,a f(z) ∈ UCV (k, α) ⇔ z

(
Dλ,m

µ,a f(z)
)′
∈ UST (k, α)

⇔ Dm
µ,a(zf ′(z)) ∈ UST (k, α)

⇔ Dm
µ+1,a(zf ′(z)) ∈ UST (k, α)

⇔ Dm
µ+1,af(z) ∈ UCV (k, α),

and the proof is complete. ¤
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Theorem 3 Let f(z) ∈ A.

If Dλ,m
µ,a f(z) ∈ UCC(k, α, β), and <µ > 1−α

1+k , then Dλ,m
µ+1,af(z) ∈ UCC(k, α, β).

Proof. Since Dλ,m
µ,a f(z) ∈ UCC(k, α, β), by definition, we can write

z
(
Dλ,m

µ,a f(z)
)′

K(z)
≺ qk,α(z),

for some K(z) ∈ UST (k, β). For g(z) such that Dλ,m
µ,a g(z) = K(z), we have

z
(
Dλ,m

µ,a f(z)
)′

Dλ,m
µ,a g(z)

≺ qk,α(z). (6)

Letting r(z) =
z
(
Dλ,m

µ+1,af(z)
)′

Dλ,m
µ+1,ag(z)

and R(z) =
z
(
Dλ,m

µ+1,ag(z)
)′

Dλ,m
µ+1,ag(z)

, we observe that r and

R are analytic in U and r(0) = R(0) = 1. Now, by Theorem 1, Dλ,m
µ+1,ag(z) ∈

UST (k, β) and so <(R(z)) > k+α
k+1 ,also, note that

z
(
Dλ,m

µ+1,af(z)
)′

=
(
Dλ,m

µ+1,ag(z)
)

r(z). (7)

Differentiating both sides of (7) yields

z

(
z

(
Dλ,m

µ+1,af(z)
)′)′

Dλ,m
µ+1,ag(z)

=
z

(
Dλ,m

µ+1,ag(z)
)′

Dλ,m
µ+1,ag(z)

r(z) + zr′(z) = R(z)r(z) + zr′(z).

Now using the identity (3), we obtain

z
(
Dλ,m

µ,a f(z)
)′

Dλ,m
µ,a g(z)

=
Dλ,m

µ,a (zf ′(z))

Dλ,m
µ,a g(z)

=
z(Dλ,m

µ+1,azf ′(z))′ + (µ− 1)Dλ,m
µ+1,a (zf ′(z))

z(Dλ,m
µ+1,ag(z))′ + (µ− 1)Dλ,m

µ+1,ag(z)

=

z(Dλ,m
µ+1,azf ′(z))′

Dλ,m
µ+1,ag(z)

+ (µ− 1)
Dλ,m

µ+1,a(zf ′(z))

Dλ,m
µ+1,ag(z)

z(Dλ,m
µ+1,ag(z))′

Dλ,m
µ+1,ag(z)

+ (µ− 1)
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=

z

(
z
(
Dλ,m

µ+1,af(z)
)′)′

Dλ,m
µ+1,ag(z)

+ (µ− 1)
z
(
Dλ,m

µ+1,af(z)
)′

Dλ,m
µ+1,ag(z)

z(Dλ,m
µ+1,ag(z))′

Dλ,m
µ+1,ag(z)

+ (µ− 1)

=
R(z)r(z) + zr′(z) + (µ− 1)r(z)

R(z) + (µ− 1)

= r(z) +
zr′(z)

R(z) + (µ− 1)
.

(8)

From (6), (7) and (8), we conclude that

r(z) +
zr′(z)

R(z) + (µ− 1)
≺ Qk,α(z).

In order to apply Lemma 2, Let E = 0 and B(z) = 1
R(z)+(µ−1) , we obtain

<(B(z)) =
1

|R(z) + (µ− 1)|2<(R(z) + (µ− 1)) > 0.

Then we conclude that r(z) ≺ qk,α(z) and so the proof is complete. ¤
Using a similar argument in Theorem 2, we can prove

Theorem 4 Let f(z) ∈ A.

If Dλ,m
µ,a f(z) ∈ UQC(k, α, β), then Dλ,m

µ+1,af(z) ∈ UQC(k, α, β).

Now, we examine the closure property of the above classes of functions under
the generalized Bernardi-Libera-Livingston operator Ψc(f) which is defined by

Ψc(z) =
c + 1
zc

z∫

0

tc−1f(t)dt (c > −1), f(z) ∈ A. (9)

Theorem 5 Let c > −(k+α)
k+1 .

If Dλ,m
µ+1,af(z) ∈ UST (k, α), then Dλ,m

µ+1,aΨc(f(z)) ∈ UST (k, α), where Ψc is
the integral operator defined by (9).

Proof. From (3) and (9), we have

z(Dλ,m
µ+1,aΨcf(z))′ = (c + 1)Dλ,m

µ+1,af(z)− cDλ,m
µ+1,aΨcf(z). (10)



Inclusion relations for multiplier transformation 81

Substituting p(z) =
z
(
Dλ,m

µ+1,aΨcf(z)
)′

Dλ,m
µ+1,aΨcf(z)

in (10), we can write

(c + 1)
Dλ,m

µ+1,af(z)

Dλ,m
µ+1,aΨcf(z)

= p(z) + c (11)

Differentiating (11) yields

z
(
Dλ,m

µ+1,af(z)
)′

Dλ,m
µ+1,af(z)

= p(z) +
zp′(z)

p(z) + c

Applying Lemma 1, it follows that p(z) ≺ qk,α(z), that is,

z
(
Dλ,m

µ+1,aΨcf(z)
)′

Dλ,m
µ+1,aΨcf(z)

≺ qk,α(z),

and so

Dλ,m
µ+1,aΨcf(z) ∈ UST (k, α).

¤
A similar argument leads to:

Theorem 6 Let c > −(k+α)
k+1 .

If Dλ,m
µ+1,a f(z) ∈ UCV (k, α), then Dλ,m

µ+1,aΨc(f(z)) ∈ UCV (k, α), where Ψc

is the integral operator defined by (9).

Theorem 7 Let c > −(k+α)
k+1 .

If Dλ,m
µ+1,af(z) ∈ UCC(k, α), then Dλ,m

µ+1,aΨc(f(z)) ∈ UCC(k, α).

Proof. By definition, there exists a function K(z) ∈ UST (k, β) and for g(z)
such that Dλ,m

µ+1,ag(z) = K(z), we have

z
(
Dλ,m

µ+1,af(z)
)′

Dλ,m
µ+1,ag(z)

≺ Qk,α(z). (12)
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Now from (10) we have

z
(
Dλ,m

µ+1,af(z)
)′

Dλ,m
µ+1,ag(z)

=
Dλ,m

µ+1,a (zf ′(z))

Dλ,m
µ+1,ag(z)

=
z(Dλ,m

µ+1,aΨczf ′(z))′ + cDλ,m
µ+1,aΨczf ′(z)

z(Dλ,m
µ+1,aΨcg(z))′ + cDλ,m

µ+1,aΨcg(z)

=
z

(
z

(
Dλ,m

µ+1,aΨcf(z)
)′)′

+ cz
(
Dλ,m

µ+1,aΨcf(z)
)′

z(Dλ,m
µ+1,aΨcg(z))′ + cDλ,m

µ+1,aΨcg(z)

=

z

(
z
(
Dλ,m

µ+1,aΨcf(z)
)′)′

Dλ,m
µ+1,aΨcg(z)

+ c
z
(
Dλ,m

µ+1,aΨcf(z)
)′

Dλ,m
µ+1,aΨcg(z)

z(Dλ,m
µ+1,aΨcg(z))′

Dλ,m
µ+1,aΨcg(z)

+ c.

(13)

Since Dλ,m
µ+1,ag(z) ∈ UST (k, β), by Theorem 6, we have Dλ,m

µ+1,aΨc(g(z)) ∈

UST (k, β). Letting r(z) =
z
(
Dλ,m

µ+1,aΨcf(z)
)′

Dλ,m
µ+1,aΨcg(z)

and R(z) =
z
(
Dλ,m

µ+1,aΨcg(z)
)′

Dλ,m
µ+1,aΨcg(z)

, we

observe that <{R(z)} > k+β
k+1 . Also, note that

z
(
Dλ,m

µ+1,aΨcf(z)
)′

= (Dλ,m
µ+1,aΨcg(z))r(z) (14)

Differentiating both sides of (14) yields

z

(
z

(
Dλ,m

µ+1,aΨcf(z)
)′)′

Dλ,m
µ+1,aΨcg(z)

= z

(
Dλ,m

µ+1,aΨcg(z)
)′

Dλ,m
µ+1,aΨcg(z)

r(z)+zr′(z) = R(z)r(z)+zr′(z).

(15)
Therefore from (13) and (10), we obtain

z
(
Dλ,m

µ+1,af(z)
)′

Dλ,m
µ+1,ag(z)

=
R(z)r(z) + zr′(z) + cr(z)

R(z) + c
= r(z) +

zr′(z)
R(z) + c

.

From (12), (14) and (15), we conclude that

r(z) +
zr′(z)

R(z) + c
≺ qk,α(z).



Inclusion relations for multiplier transformation 83

In order to apply Lemma 2, Let E = 0 and B(z) = 1
R(z)+c , we note that

<{B(z)} > 0 if c > −k + β

k + 1
.

Then we conclude that r(z) ≺ Qk,α(z) and so the proof is complete. A similar
argument yields. ¤

Theorem 8 Let c > −(k+α)
k+1 .

If Dλ,m
µ+1,af(z) ∈ UQC(k, α, β), then Dλ,m

µ+1,aΨc(f(z)) ∈ UQC(k, α, β).

Similarly by using (4) and (5) we obtain the following results. Since the proof
of the results is similar to the proof of Theorems 1-8, it will be omitted.

Theorem 9 Let f(z) ∈ A.

If Dλ+1,m
µ,a f(z) ∈ UST (k, α), then Dλ,m

µ,a f(z) ∈ UST (k, α).

Theorem 10 Let f(z) ∈ A.

If Dλ+1,m
µ,a f(z) ∈ UCV (k, α), then Dλ,m

µ,a f(z) ∈ UCV (k, α).

Theorem 11 Let f(z) ∈ A.

If Dλ+1,m
µ,a f(z) ∈ UCC(k, α, β), then Dλ,m

µ,a f(z) ∈ UCC(k, α, β).

Theorem 12 Let f(z) ∈ A.

If Dλ+1,m
µ,a f(z) ∈ UQC(k, α, β), then Dλ,m

µ,a f(z) ∈ UQC(k, α, β).

Theorem 13 Let f(z) ∈ A.

If Dλ,m+1
µ,a f(z) ∈ UST (k, α), and <{a} −(k+α)

k+1 , then Dλ,m
µ,a f(z) ∈ UST (k, α).

Theorem 14 Let f(z) ∈ A.

If Dλ,m+1
µ,a f(z) ∈ UCV (k, α), then Dλ,m

µ,a f(z) ∈ UCV (k, α).

Theorem 15 Let f(z) ∈ A.

If Dλ,m+1
µ,a f(z) ∈ UCC(k, α, β), and <{a} > −(k+α)

k+1 , then Dλ,m
µ,a f(z) ∈

UCC(k, α, β).

Theorem 16 Let f(z) ∈ A.

If Dλ,m+1
µ,a f(z) ∈ UQC(k, α, β), then Dλ,m

µ,a f(z) ∈ UQC(k, α, β).

Theorem 17 Let c > −(k+α)
k+1 .

If Dλ,m
µ,a f(z) ∈ UST (k, α), then Dλ,m

µ,a Ψc(f(z)) ∈ UST (k, α).
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Theorem 18 Let c > −(k+α)
k+1 .

If Dλ,m
µ,a f(z) ∈ UCV (k, α), then Dλ,m

µ,a Ψc(f(z)) ∈ UCV (k, α).

Theorem 19 Let c > −(k+α)
k+1 .

If Dλ,m
µ,a f(z) ∈ UCC(k, α), then Dλ,m

µ,a Ψc(f(z)) ∈ UCC(k, α).

Theorem 20 Let c > −(k+α)
k+1 .

If Dλ,m
µ,a f(z) ∈ UQC(k, α, β), then Dλ,m

µ,a Ψc(f(z)) ∈ UQC(k, α, β).
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Abstract. Let a and b be integers with 0 ≤ a ≤ b. An (a, b)-graph is
such digraph D in which any two vertices are connected at least a and
at most b arcs. The imbalance a(v) of a vertex v in an (a, b)-graph D is
defined as a(v) = d

+

(v)−d
−

(v), where d
+

(v) is the outdegree and d
−

(v)
is the indegree of v. The imbalance sequence A of D is formed by listing
the imbalances in nondecreasing order. A sequence of integers is (a, b)-
realizable, if there exists an (a, b)-graph D whose imbalance sequence is
A. In this case D is called a realization of A. An (a, b)-realization D of A

is connection minimal if does not exist (a, b ′)-realization of D with b ′ <

b. A digraph D is cycle minimal if it is a connected digraph which is either
acyclic or has exactly one oriented cycle whose removal disconnects D.
In this paper we present algorithms which construct connection minimal
and cycle minimal realizations having a given imbalance sequence A.

1 Introduction

Let a, b and n be nonnegative integers with 0 ≤ a ≤ b and n ≥ 1. An (a, b)-
graph is a digraph D in which any two vertices are connected at least a and
at most b arcs. If d−(v) denotes the outdegree and d+(v) denotes of vertex v

in an (a, b)-graph D then the imbalance [14] of v is defined as

a(v) = d
+
(v) − d

−
(v).

2010 Mathematics Subject Classification: 05C20, 05C07, 60J10, 60J15, 65C05
Key words and phrases: imbalance sequence, arc minimal realization, cycle minimal
realization, connection minimal realization
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Since loops have no influence on the imbalances therefore for the simplicity
we suppose everywhere in this paper that the investigated graphs are loopless.

The imbalance sequence of D is formed by listing its imbalances in nonde-
creasing order (although imbalances can be listed in nonincreasing order as
well). The set of distinct imbalances of a digraph is called its imbalance set.
Mostly the literature on imbalance sequences is concerned with obtaining nec-
essary and sufficient conditions for a sequence of integers to be an imbalance
sequence of different digraphs [9, 10, 11, 14, 18, 19, 20, 21], although there are
papers on the imbalance sets too [15, 16, 17, 19].

If D is an (a, b)-digraph and A is its imbalance sequence then D is a real-
ization of A. If we wish to find a realization of A in any set of directed graphs
then

n∑

i=1

ai = 0 (1)

is a natural necessary condition. If we allow parallel arcs then this simple
condition is sufficient to find a realization. If parallel arcs are not allowed
then the simple examle A = [−3, 3] shows that (1) is not sufficient to find a
realization.

Mubayi et al. [14] characterized imbalance sequences of simple digraphs
(digraphs without loops and parallel arcs [2, 9, 25]) proving the following
necessary and sufficient condition. We remark that simple digraphs are such
(0, 2)-graphs which do not contain loops and parallel arcs.

Theorem 1 (Mubayi, Will, West, 2001 [14]) A nondecreasing sequence A =

[a1, . . . , an] of integers is the imbalance sequence of a simple digraph iff

k∑

i=1

ai ≤ k(n − k) (2)

for 1 ≤ k ≤ n with equality when k = n.

Proof. See [14]. ¤
Mubayi et al. [14] provided a Havel-Hakimi type [3, 4, 7, 8] greedy algorithm

Greedy for constructing a simple realization.
The pseudocode of Greedy follows the conventions used in [1].
The input data of Greedy are n: the number of elements A (n ≥ 2);

A = (a1, . . . , an): a nondecreasing sequence of integers satisfying (2). Its out-
put is M: the n × n sized incidence matrix of a simple directed graph D
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whose imbalance sequence is A. The working variables are the cycle variables
i, j, k, l, x and y.

Greedy(n,A)

01 for i ← 1 to n // line 01–03: initialization of M

02 for j ← 1 to n

03 Mij ← 0

04 i = 1 // line 04–10: computation of M

05 while ai > 0

06 Let k = ai, j1 < · · · < jk, further let aj1 , . . . , ajk be
the k smallest elements among ai+1, . . . , an, where
ax smaller ay means that ax < ay or ax = ay and x < y

07 for l ← 1 to k

08 al ← al + 1

09 Mi,al
← 1

10 i ← i + 1

11 return M // line 11: return of the result

The running time of Greedy is Θ(n2) since the lines 1–3 require Θ(n2) time,
the while cycle executes O(n) times and in the cycle line 06 and line 07 require
O(n) time.

Kleitman and Wang in 1973 [12] proposed a new version of Havel-Hakimi al-
gorithm, where instead of the recursive choosing the largest remaining element
of the investigated degree sequence it is permitted to choose arbitrary element.
Mubayi et al. [14] point out an interesting difference between the directed and
undirected graphs. Let us consider the imbalance sequence A = [−3, 1, 1, 3] of
a transitive tournament. Deleting the element 1 and adding 1 to the small-
est imbalance leaves us trying to realize [−2,−1, 3], which has no realization
among the simple digraphs although it has among the (0, 2)-graphs.

Let α(D) denote the number of edges of D. It is easy to see the following
assertion.

Lemma 1 If a directed graph D is a realization of a sequence A = [a1, . . . , an]

then

α(D) ≥ 1

2

n∑

i=1

|ai|. (3)

Proof. Any realization has to contain at least so many outgoing arcs as the
sum of the positive elements of A. Since S is realizable for the corresponding
set, according to (1) the sum of the absolute values of the negative elements
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of A equals to the sum of the positive elements, therefore we have to divide
the sum in (3) by 2. ¤

A realization D of A is called arc minimal (for a given set of digraphs) if
A has no realization (in the given set) containing less arcs than D. Mubayi et
al. [14] proved the following characterization of Greedy.

Lemma 2 (Mubayi et al., 2001 [14]) If A is realizable for the simple graphs
then the realization generated by Greedy contains the minimal number of
arcs.

Proof. See in [14]. ¤
Lemma 1 and Lemma 2 imply the following assertion.

Theorem 2 If A is realizable for simple digraphs then the realization gen-
erated by Greedy is arc minimal and the number of arcs contained by the
realization is given by the lower bound (3).

Wang [22] gave an asymptotic formula for the number of labeled simple
realizations of an imbalance sequence.

In this paper we deal with the more general problem of (a, b)-graphs. The
following recent paper characterizes the imbalance sequences of (0, b)-graphs.

Theorem 3 (Pirzada, Naikoo, Samee, Iványi, 2010 [19]) A nondecreasing se-
quence A = [a1, . . . , an] of integers is the imbalance sequence of a (0, b)-graph
iff

k∑

i=1

ai ≤ bk(n − k) (4)

for 1 ≤ k ≤ n with equality when k = n.

Proof. See [19]. ¤
We say that a realization D is cycle minimal if D is connected and does

not contain a nonempty set of arcs S such that deleting S keeps the digraph
connected but preserves imbalances of all vertices. Obviously such a set S, if it
exists, must add 0 to the imbalances of vertices incident to it and hence must
be a union of oriented cycles. Thus a cycle minimal digraph is either acyclic
or has exactly one oriented cycle whose removal disconnects the digraph. For
the sake of brevity we shall use the phrase minimal realization to refer a cycle
minimal realization of A. We denote the set of all minimal realizations of A

by M(A).
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A realization D of A is called connection minimal (for a given set of directed
graphs) if the maximal number of arcs γ(D) connecting two different vertices
of D is minimal.

The aim of this paper is to construct a connection and a cycle minimal
digraph D having a prescribed imbalance sequence A. At first we determine
the minimal b which allows to reconstruct the given A. Then we apply a
series of arithmetic operations called contractions to the imbalance sequence
A. This gives us a chain C(A) of imbalance sequences. Then by the recursive
transformations of C(A) we get a required D.

The structure of the paper is as follows. After the introductory Section 1 in
Section 2 we present an algorithm which determines the minimal number of
arcs which are necessary between the neighboring vertices to realize a given
imbalance sequence then in Section 3 we define a contraction operation and
show that the contraction of an imbalance sequence produces another imbal-
ance sequence. Finally in Section 4 we present an algorithm which constructs
a connection minimal realization of an imbalance sequence.

2 Computation of the minimal r

According to (1) the sum of elements of any imbalance sequence equals to zero.
Let us suppose that according to (1) the sum of the elements of a potential
imbalance sequence P = [p1, . . . , pn] is zero and b = max(−a1, an). Then
it is easy to construct such (0, b)-digraph D whose imbalance sequence is
A connecting the vertices having positive imbalance with the vertices having
negative imbalance using the prescribed number of arcs. It is a natural question
the value bmin(P) defined as the minimal value of b sufficient for a potential
imbalance sequence P to be the imbalance sequence of some (0, b)-graph.

bmin(P) has the following natural bounds.

Lemma 3 If A = [a1, . . . , an] is an imbalance sequence, then
⌈

an − a1

n

⌉
≤ bmin ≤ min(−a1, an). (5)

The following algorithm Bmin computes bmin(A) for a sequence A = [a1, . . . ,

an] satisfying (4). Bmin is based on Theorem 3, on the bounds given by Lemma
3 and on the logarithmic search algorithm described by D. E. Knuth [13, page
410] and is similar to algorithm MinF-MaxG [6, Section 4.2].

Input. n: the number of elements A (n ≥ 2);
A = [a1, . . . , an]: a nondecreasing sequence of integers satisfying (4).
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Output. bmin(A): the smallest sufficient value of b.
Working variables. k: cycle variable;

l: current value of the lower bound of bmin(A);
u: current value of the upper bound of bmin(A);
S: the current sum of the first k elements of A.

Bmin(n,A)

01 l ← dan − a1e // line 01–02: initialization of l and u

02 u ← min(an, −ai)

03 while l < u // line 03–14: computation of the minimal necessary b

04 b ← b l+u
2 c

05 S = S ← 0

06 for k ← 1 to n − 1

07 S ← S + ai

08 if S < bk(n − k)

09 l ← r

10 if l == r + 1

11 bmin ← l + 1

12 return b

13 go to 03
14 u ← b

15 bmin ← l // line 15–16: return of the computed minimal b

16 return bmin

The next assertion characterizes Bmin.

Lemma 4 Algorithm Bmin computes bmin for a sequence A = [a1, . . . , an]

satisfying (4) in Θ(n log n) time.

Proof. Bmin computes bmin on the base of Theorem 3 therefore it is correct.
Running time of Bmin is Θ(n log n) since the while cycle executes Θ(log n)

times and the for cycle in it requires Θ(n) time. ¤

3 Contraction of an imbalance sequence

Let D be a digraph having n vertices and m arcs. Throughout we assume
that the vertices of D are labeled v1, . . . , vn according to their imbalances
in nondecreasing order while the arcs of D are labeled e1, . . . , em arbitrarily.
Let A = [a1, . . . , an] = [an1, . . . , ann] be the imbalance sequence of D, where
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ai = ani is the imbalance of vertex vi = vni. We define an arithmetic operation,
called contraction on A as follows.

Let n ≥ 2, an imbalance sequence A = [a1, . . . , an] and an ordered pair
(ai, aj) with 1 ≤ i, j ≤ n and i 6= j be given. Then the contraction of (ai, aj)

means that we delete ai and aj from A, add a new element a ′i = ai + aj and
sort nonincreasingly the received sequence using Counting-Sort [1] so that
the indices of the elements are updated and the updated index of ai + aj is
denoted by ki. The new sequence is denoted by A/(i, j).

Note that j < i is permitted. We refer to A/(i, j) as a minor of A. Our ter-
minology is inspired by the concept of minor and edge contraction from graph
theory [23, 24]. The proof of Theorem 5 explains our choice of terminology.

An imbalance sequence A is a (0, b)-imbalance sequence if at least one of
its realizations is a (0, b)-graph. We also observe that if b ′ > b then a (0, b)-
imbalance sequence is also a (0, b ′)-imbalance sequence.

The next assertion allows us to construct imbalance sequences and their
realizations recursively. It also establishes a relation between the arithmetic
operation of contraction discussed above and the edge contraction operation
of graphs.

Theorem 4 If A is a (0, b)-imbalance sequence, then all its minors are (0, 2b)-
imbalance sequences.

Proof. Let A be the imbalance sequence of a (0, b)-graph. Suppose that B =

A/(p, q) and let ap and aq be both negative with ap ≤ aq. Then bl = ap +aq

so that bl < ap. Thus, for all k ≤ q, we have

k∑

i=1

bi ≥
k∑

i=1

bi + (q − k)aq, (since all these elements are negative)

≥
q∑

i=1

ai, (since A is a nondecreasing sequence).

Therefore
k∑

i=1

bi ≥
q∑

i=1

ai − (q − k)aq

≥
k∑

i=1

ai ≥ bk(k − n), (since A is an imbalance sequence)

≥ (2b)k(k − n + 1) (since n ≥ k + 2),
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For q < k ≤ n − 1, we have

k∑

i=1

bi =

k∑

i=1

ai

≥ bk(k − n), (since A is an imbalance sequence)
≥ (2b)k(k − n + 1)

for n ≥ k = 2 and equality holds when k = n − 1. Thus in either case B is an
imbalance sequence of a (0, 2b)-graph by Theorem 3.

By symmetry, we have that Theorem 4 holds if ap and aq are both positive.
Now suppose that ap ≤ 0 and aq ≥ 0 with |ap| ≥ |aq|. If bl = ap +aq, then

bl ≤ 0. For all k ≤ p, we have

k∑

i=1

bi ≥
k∑

i=1

ai ≥ bk(k − n), (since A is an imbalance sequence)

≥ (2b)k(k − n + 1), (since n ≥ k + 2).

For all p < k ≤ l, we have

k∑

i=1

bi ≥
k∑

i=1

ai − ap ≥
k∑

i=1

ai

≥ bk(k − n), (since A is an imbalance sequence)
≥ (2b)k(k − n + 1), (since n ≥ k + 2).

For all k > l, we have

k∑

i=1

bi ≥
k∑

i=1

ai + aq ≥
k∑

i=1

ai

≥ bk(k − n), (since A is an imbalance sequence)
≥ (2b)k(k − n + 1).

The last inequality holds if n ≥ k = 2, with equality when k = n − 1. Thus
once again B is an imbalance sequence of a (0, b)-graph by Theorem 3. By
symmetry, Theorem 4 holds if |ap| ≤ |aq|. ¤

Suppose that D ′ is a cycle minimal realization of A/(1, n). Then the follow-
ing algorithm algorithm Vertex constructs D ′′, a cycle minimal realization
of A.
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Input parameters of Vertex are n ≥ 2: the number of elements of A; b ≥ 1:
the connection parameter of D ′; A = [a1, . . . , an]: the imbalance sequence;
A ′ = A/(1, n) = [a ′1, . . . , a ′n−1]; k: index of the element a ′1 = a1 + an in the
minor A ′; D ′: a (0, b)-graph, which is a cycle minimal realization of A/(1, n)

(D ′ is given by an (n − 1)× (n − 1) sized incidence matrix X = [xi,j]).
The output of Vertex is D ′′: a (0, q)-graph, which is a cycle minimal

realization of A, where q = max(1, b, an).

Vertex(n,A, k,X )
01 read n // line 01–04: read of the input data
02 for i ← 1 to n − 1

03 for j ← 1 to n − 1

04 read xij

05 for i ← 1 to n − 1 // line 05–08: add an isolated vertex to D ′

06 xin ← 0

07 for i ← 1 to n

08 xni ← 0

09 if a1 = 0 and an = 0 // line 09–12: if all a’s are equal to zero
10 for i ← 1 to n

11 xi,i+1 ← 1 // line 12: i + 1 is taken mod n

12 return X
13 xnk ← an // line 13: if a1 < 0

14 return X // line 14: return the incidence matrix of D ′′

We now show that Vertex gives a cycle minimal realization of A.

Theorem 5 The realization D ′′ obtained by Vertex is a cycle minimal
(0, max(b, 1, an))-graph. The running time of Vertex is Θ(n2).

Proof. If a1 = an = 0, then D ′′ is constructed in lines 09–12 and contains
exactly one cycle and is a 1-digraph. If we remove this cycle then remain
isolated vertices that is a not connected graph.

If a1 < 0, then due to Theorem 3 an > 0. In this case D ′′ is constructed
in line 14 connecting the isolated vertex v ′n with the contracted vertex v ′k.
So D ′′ contains a cycle only if the cycle minimal D ′ contained a cycle, and
removing this cycle changes D ′′ to a not connected graph. In this case D ′′ is
a max r, an-graph.

So D ′′ is a (0, q)-graph, where q = max(b, 1, an).
The double cycle in lines 02–04 requires Θ(n2) time, and the remaining part

of the program requires only O(n) time, so the running time of Vertex is
Θ(n2). ¤
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4 Construction of a cycle minimal realization

A chain of an imbalance sequence A = An = [an1, . . . , ann] is a sequence
of imbalance sequences C(An) = [An, An−1, . . . , A1] with An = A and
Ai−1(A) being a minor of Ai(A) for every 1 ≤ i ≤ n − 1. The simple chain
S(A) of an imbalance sequence A is the sequence of imbalance sequences
[An, An−1, . . . , A1] with An = A and Ai−1 = [ai−1,1, . . . , ai−1,i−1] being the
minor of Ai = [ai,1, . . . , ai,i] received by the contraction of the first and last
element of Ai. It is worth to remark that the simple chain of an imbalance
sequence is unique.

Chain is an algorithm for constructing the simple recursion chain C(A) of
A.

The input data of Chain are n ≥ 2: the length of an imbalance sequence
A = [an1, . . . , ann]; an imbalance sequence A. The output of Chain is C: the
simple chain of A. Working variable is the cycle variable i.

Chain(n,An)

01 read n // line 01–03: read of the input data
02 for i ← 1 to n

03 read ani

04 for i ← n downto 2 // line 04–05: construction of C
05 delete the first and last elements of Ai, add a new element

ai1 + aii, sort nondecreasingly the received sequence and
denote by ki the index of the new element

06 return C and k // line 06: return of the results

Now, since each contraction in Step 05 of Chain reduces the number of
elements of the corresponding imbalance sequence by 1, the last element A1(A)

of the chain contains exactly one element and so the length of the chain is
equal to the number of elements n of the imbalance sequence A. Thus for
all 1 ≤ i ≤ n the sequence Ai(A) contains i elements. To every chain of an
imbalance sequence A of length n we can associate bijectively a chain of n−1

ordered pairs with i element equal to (j, k), where An−i = An−i+1/(j, k). That
is (vj, vk) is contracted to obtain An−i from An−i+1. This bijection allows us
to represent every chain of imbalance sequences by the sequence of pairs (j, k).

We present a simple algorithm Realization for associating a small cycle
minimal realization D ′′ to any imbalance sequence A.

Input values are n ≥ 2: the number of elements of A; A: an imbalance
sequence; D ′: a cycle minimal (0, b)-graph which is a realization of A/(1, n)



96 S. Pirzada, A. Iványi

and is given by its incidence matrix X.
The output of Realization is D ′′, a (0, q)-graph, which is a cycle minimal

realization of A; k = [k1, . . . , kn−1]: the sequence of the updated indices of the
elements received by contraction. D ′′ is represented by its incidence matrix X,
and q = max(b, 1, an). Working variable is i: cyclic variable.

Realization(n,A)

01 read n // line 01–03: read of the input data
02 for i ← 1 to n

03 read aij

04 Chain(n,A) // line 04: construction the simple chain C(A)

05 x11 ← 0 // line 05: construction of D
′′
1

06 for i ← 2 to n // line 06–07: recursive construction of D ′′
n

07 Vertex(i, Ai, k,X i−1)

08 return D ′′
n and k // line 08: return of the constructed minimal digraph

The next assertion shows that Realization is correct and constructs a
cycle minimal realization of an imbalance sequence in polynomial time.

Theorem 6 Let A be a (0, b)-imbalance sequence having n entries and let
C(A) = [(a1, b1) . . . (an, bn)] be a chain of A. Then there exists a cycle mini-
mal digraph D having n vertices such that D is reconstructible from C and D

is a q = max(r, 1, an)-realization of A. Moreover, this reconstruction requires
O(n2)n time.

Proof. By Vertex, the digraph Dn which is the output of Realization,
is assured to be a cycle minimal realization of A. Now, Vertex constructs
Di from Di−1 in O(n) time and there are n − 1 such constructions. Thus
Realization runs in O(n2) time. ¤

The following example illustrate the work of algorithms Vertex, Chain
and Realization.

Example 1 Let A = [−2, −2,−2,−1, 3, 4]. Figure 1 shows a realization of A,
therefore A is an imbalance sequence.

Figure 1 also shows that this realization is a 1-digraph. Since there are
nonzero imbalances therefore all realizations have to contain arcs so this re-
alization is connection minimal. Since all realization of A has to contain at
least

mmin =

∑n
i=1 ai

2
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arcs, and now mmin = 7, so D is also an arc minimal realization.

Vertex/Vertex v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0
v2 0 0 0 0 0 0
v3 0 0 0 0 0 0
v4 0 0 0 0 0 0
v5 1 1 1 0 0 0
v6 1 1 1 1 0 0

Figure 1: Incidence matrix of a realization of A = [−2, −2, −2,−1, 3, 4]

Now we construct a cycle minimal realization of A using Realization.
After the reading of the input data in lines 01–03 Chain constructs the simple
chain S = [A1, . . . , A6] and k = [k1, k2, k3, k4, k5] = [1, 1, 2, 3, 4], where A6 =

A = [−2, −2,−2,−1, 3, 4], A5 = [−2,−2, −1, 2, 3], A4 = [−2,−1, 1, 2], A3 =

[−1, 0, 1], A2 = [0, 0] and A1 = [0].
After the construction of C Realization sets x11 = 0 in Step 5 and so

it defines X 1, the incidence matrix of D1 consisting of an isolated vertex v1.
Then it constructs D2, . . . , D6 in lines 06–07 calling Vertex recursively: at
first k1 = 1 helps to construct D2 having the incidence matrix X2 which is
shown in Figure 2.

Vertex/Vertex v1 v2

v1 0 1
v2 1 0

Figure 2: Incidence matrix of D2 (X2)

Now using k2 = 1 D3 is constructed. The result is the incidence matrix X3

shown in Figure 3.
The next step is the construction of D4 using k3 = 2. Figure 4 shows X4.
The next step is the construction of D5 using k4 = 3. Figure 5 shows X5.
The final step is the construction of D6 using k5 = 4. Figure 6 shows X6.
It is worth to remark that D6 contains 9 arcs while the realization of A

whose incidence matrix is shown in Figure 6 contains only the necessary 7
arcs and is also a cycle minimal realization of A.

The graph D ′
6 whose incidence matrix X ′6 shown in Figure 7 contains only
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Vertex/Vertex v1 v2 v3

v1 0 1 0
v2 1 0 0
v3 1 0 0

Figure 3: Incidence matrix of D3 (X3)

Vertex/Vertex v1 v2 v3 v4

v1 0 1 0 0
v2 1 0 0 0
v3 1 0 0 0
v4 2 0 0 0

Figure 4: Incidence matrix of D4 (X4)

Vertex/Vertex v1 v2 v3 v4 v5

v1 0 1 0 0 0
v2 1 0 0 0 0
v3 1 0 0 0 0
v4 2 0 0 0 0
v5 3 0 0 0 0

Figure 5: Incidence matrix of D5 (X5)

Vertex/Vertex v1 v2 v3 v4 v5 v6

v1 0 1 0 0 0 0
v2 1 0 0 0 0 0
v3 1 0 0 0 0 0
v4 2 0 0 0 0 0
v5 3 0 0 0 0 0
v6 0 0 0 4 0 0

Figure 6: Incidence matrix of D6 (X6)

7 arcs and is also a cycle minimal realization of A.
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Vertex/Vertex v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0
v2 0 0 0 0 0 0
v3 0 0 0 0 0 0
v4 0 0 0 0 0 0
v5 1 1 1 0 0 0
v6 1 1 1 1 0 0

Figure 7: Incidence matrix of D ′
6 (X ′6)
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