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On the distribution of q-additive functions

under some conditions III.

Imre Kátai
Eötvös Lóránd University

Department of Computer Algebra
Budapest, Hungary

email: katai@compalg.inf.elte.hu

Abstract. The existence of the limit distribution of a q-additive func-
tion over the set of integers characterized by the sum of digits is investi-
gated.

1 Introduction

Notation

N, R, C, as usual denote the set of natural, real and complex numbers, respec-
tively. Let N0 = N ∪ {0}.

q-additive and q-multiplicative functions

Let q ≥ 2 be an integer, the q-ary expansion of n ∈ N0 is defined as

n =

∞∑

j=0

εj (n)qj, (1)

where the digits εj (n) are taken from Aq = {0, 1, . . . , q − 1}. It is clear that
the right hand side of (1) is finite.

Let Aq be the set of q-additive, and Mq be the set of q-multiplicative
functions.

2010 Mathematics Subject Classification: 11K65, 11P99, 11N37
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116 I. Kátai

f : N0→ R belongs to Aq if f (0) = 0 and

f (n) =

∞∑

j=0

f
(

εj (n)qj
)

(n ∈ N0) . (2)

We say that g : N0→ C belongs to Mq, if g (0) = 1,

g (n) =

∞∏

j=0

g
(

εj (n) qj
)

(n ∈ N0) . (3)

Let M̄q ⊆ Mq be the set of those q-multiplicative functions g, for which
|g (n) | = 1 (n ∈ N0).

Let βh (n) =
∑

εj(n)=h

1 (h = 1, . . . , q − 1) , α (n) =
∞∑

j=0

εj (n). We say that

f ∈ Aq has a limit distribution, if

lim
x→∞

1

x
#{n ≤ x|f (n) < y} (= G (y)) (4)

exists for almost all y, and G is a distribution function, i.e. it is monotonic,
furthermore lim

y→−∞
G (y) = 0, lim

y→∞
G (y) = 1.

H. Delange [1] proved that f ∈ Aq has a limit distribution if and only the
series

∞∑

j=0

∑

a∈Aq

f
(

aqj
)

, (5)

∞∑

j=0

∑

a∈Aq

f2
(

aqj
)

(6)

are convergent. He proved that for some g ∈ M̄q, the limit

lim
x→∞

1

x

∑

n≤x

g (n) = M (g)

exists and M (g) 6= 0, if and only if

mj :=
1

q

∑

c∈Aq

g
(

cqj
)

6= 0 (j = 0, 1, 2, . . .) (7)
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and
∞∑

j=0

(1 − mj) =

∞∑

j=0

1

q





∑

c∈Aq

(

1 − g
(

cqj
))



 (8)

is convergent. Furthermore,

M (g) =

∞∏

j=0

mj, (9)

if (7) holds and (8) is convergent.

Distribution of q-additive functions under the conditions that

βh (n) are fixed.

For some fixed N, let r1, . . . , rq−1 be such nonnegative integers for which r1 +

· · · + rq−1 ≤ N. Let r0 = N − (r1 + · · · + rq−1) , r = (r1, r2, . . . , rq−1).
Let

SN (r) =
{

n < qN|βh (n) = rh, h = 1, . . . , q − 1
}

. (10)

Then

M (N|r) = #SN (r) =
N!

r0!r1! . . . rq−1!
. (11)

In [2] we proved the following

Lemma 1 Let f ∈ Aq, EN =
∑

b∈Aq

rb

N

N−1∑

j=0

f
(

bqj
)

,

∆N (r) =
1

M (N|r)

∑

n∈SN(r)

(f (n) − EN)2
. (12)

Then

∆N (r) < c

N−1∑

j=0

q−1∑

b=0

f2
(

bqj
)

, (13)

c is a constant which may depend only on q.

We shall prove

Theorem 1 Let g ∈ M̄q, assume that

∞∑

j=0

∑

b∈Aq

(

1 − g
(

bqj
))

(14)
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is convergent. Let λ0, λ1, . . . , λq−1 be positive numbers, such that λ0 + · · · +

λq−1 = 1. Let

H (g|λ0, . . . , λq−1) :=

∞∏

j=0





∑

b∈Aq

λjg
(

bqj
)



 . (15)

If r(N) =
(

r
(N)

1 , . . . r
(N)

q−1

)

is such a sequence for which
r
(N)

j

N
→ λj

(j = 1, . . . , q − 1), then

lim
N→∞

1

M
(

N|r(N)
)

∑

n<qN

n∈SN(r(N))

g(n) = H (g|λ0, . . . , λq−1) . (16)

Hence we obtain

Theorem 2 Let f ∈ Aq, assume that (5),(6) are convergent. Let λ0, . . . , λq−1

be positive numbers such that λ0+ · · ·+λq−1 = 1. Let η0, η1 . . . be independent

random variables, P
(

ηl = f
(

bql
))

= λb (b ∈ Aq).

Let

Θ =

∞∑

l=0

ηl, (17)

Fλ (y) := P (Θ < y) , λ = (λ1, . . . , λq−1) . (18)

From the 3 series theorem of Kolmogorov it follows that the sum (17) is con-

vergent with probability 1, thus Fλ (y) exists.

If
r
(N)

j

N
→ λj (j = 0, . . . , q − 1), then

lim
N→∞

1

M
(

N|r(N)
)#
{

n < qN|n ∈ SN

(

r(N)
)

, f (n) < y
}

= Fλ (y) ,

if y is a continuity point of Fλ.

Fλ is continuous, if f
(

bqj
)

6= 0 holds for infinitely many elements of
{
bqj|j =

0, 1, 2, . . . , b ∈ Aq

}
.

In [2] we proved Theorem 1 for λ1 = . . . = λq−1 = 1
q
, and in the case q = 2

for 0 < λ1 < 1.
Furthermore, in [2] we proved the following assertion.
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Theorem A Let f ∈ A2, f
(

2j
)

= O (1) (j ∈ N), ηN = 1
N

N−1∑

j=0

f
(

2j
)

,

B2
N :=

1

4

N−1∑

j=0

(

f
(

2j
)

− ηN

)2

.

Assume that BN→∞. Let ρN→ 0.

Then

lim
N→∞

1
(

N
k

)#

{

n < 2N

∣

∣

∣

∣

f (n) − kηN

BN

< y, α (n) = k

}

= Φ (y)

holds uniformly as N→∞, k = k(N) satisfies
∣

∣

∣

∣

k

N
−

1

2

∣

∣

∣

∣

< ρN.

In [3] we mentioned that we are able to prove that under the conditions of
Theorem A

lim
n→∞

sup
k
N
∈[δ,1−δ]

sup
y∈R

∣

∣

∣

∣

∣

1
(

N
k

)#

{

n < 2N, α (n) = k,
f (n) − kηN

2BN

√

(1 − η) η
< y

}

− Φ (y)

∣

∣

∣

∣

∣

.

This assertion is not true, the correct assertion is

Theorem 3 Let f ∈ A2, f
(

2j
)

= O (1) (j = 0, 1, 2, . . .) . Let mN =
N−1∑

j=0

f
(

2j
)

,

σ2
N =

N−1∑

j=0

(

f
(

2j
)

− mN

N

)2
. Let 0 < λ < 1,

Fr,N (y) =
1
(

N
r

)#

{

n < 2N, α (n) = r,
f (n) − r

N
mN

σN

< y

}

.

Furthermore, let Fλ (y) be the distribution the characteristic function ϕλ (τ) =
∞∑

l=0

αl
(iτ)l

l!
of which is given by the following formulas:

αl = 0, if l is odd, α0 = 1,

α2k =

2k∑

t=1

λt

t!2t

∑

2m≤t

(−1)m

(

t

2m

)

· 22m (2m − 1) !! (k = 1, 2, . . .).
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Since α2k is bounded as k → ∞, therefore the series defining ϕλ (τ) is abso-

lutely convergent in |τ| < 1.

We have

lim
r
N
→λ

N→∞

Fr,N (y) = Fλ (y) .

2 Proof of Theorem 1 and 2

Let us define f
(

bqj
)

as the argument of g
(

bqj
)

, i.e. g
(

bqj
)

= eif(bqj). The
condition (8) implies the convergence of (5) and (6). We can extend f as a
q-additive function. Then g (n) = eif(n).

Let gM (n) =
M−1∏

j=0

g
(

εj (n)qj
)

. Thus gM

(

nqM
)

= 1 (n ∈ N0). Let fM (n) =

M−1∑

j=0

f
(

εj (n) qj
)

; hM (n) =
∑

j≥M

f
(

εj (n) qj
)

.

Let M be fixed, and consider the integers n < qN+M. Let δ > 0 be
an arbitrary (small) number. We shall estimate the number of those n ∈

SN+M

(

r(N+M)
)

for which |g (n) − gM (n) | ≥ δ. If n is such an integer, then
|hM (n) | ≥ δk.

Assume that M is so large that for

E
(N+M)

M :=

M+N−1∑

j=M

∑

b∈Aq

f
(

bqj
)

∣

∣

∣E
(N+M)

M

∣

∣

∣ < δ
4
. We shall apply (12), (13) for hM (n) and E

(N+M)

M . Then, in the

right hand side of (13)
N+M−1∑

j=M

∑

b∈Aq

f2
(

bqj
)

tends to zero as M→∞. Consequently, the following assertion is true.
Let δ > 0, ε > 0 be arbitrary constants. Then there exists such an M for

which

lim sup
N→∞

1

M
(

N + M|r(N+M)
)#

{

n ∈ SN+M

(

r(N+M)
)

∣

∣

∣

∣

|g (n) − gM (n) | > δ

}

< ε.

Now we estimate

1

M
(

N + M|r(N+M)
)

∑

n∈SN+M(r(n+M))

gM (n) .
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Let us subdivide the integers n ∈ SN+M

(

r(N+M)
)

according to the digits

ε0 (n) , . . . , εM−1 (n). Let n = t + m · qM. Then n ∈ SN+M

(

r(N+M)
)

, if and
only if

m ∈ SN

(

r
(N+M)

1 − β1 (t) , . . . , r
(N+M)

q−1 − βq−1 (t)
)

. (19)

For fixed t the number of the m satisfying the condition (19) is

(ΨN (t) :=)
N!

∏q−1
i=0

(

r
(N+M)

i − βi (t)
)

!
,

where β0 (t) is so defined that
q−1∑

i=0

βi (t) = M.

Let
r
(N+M)

b

N+M
→ λb. Then

ΨN (t)

SN+M

(

r(N+M)
) =

1

(N + 1) · · · (N + M)

q−1∏

b=0

r
(N+M)

b !
(

r
(N+M)

b − βb (t)
)

!

=
1

(N + 1) · · · (N + M)

q−1∏

b=0

βb(t)−1∏

l=0

(

r
(N+M)

b − l
)

= (1 + ON (1))

q−1∏

b=0

λ
βb(t)

b ,

and so

lim
N→∞

1

M
(

N + M|r(N+M)
)

∑

n∈SN+M(r(N+M))

gM (n) =

M−1∏

j=0

{
∑

b

λbg
(

bqj
)

}

.

Finally, let us to tend M→∞. Then (16) follows. Theorem 1 is proved.
Theorem 2 is a direct consequence of Theorem 1.

3 Some lemmas

Lemma 2 (Wintner, Frechet-Shohat) Let Fn (z) (n = 1, 2, . . .) be a se-

quence of distribution functions. For each non-negative integer k let

αk = lim
n→∞

∫∞

−∞
zkdFn (z)



122 I. Kátai

exist. Then there is a subsequence Fnj
(z) (n1 < n2 < · · · ) which converges

weakly to a limiting distribution F (z) for which

αk =

∫∞

−∞
zkdF (z) (k = 0, 1, 2, . . .) .

Moreover, if the set of moments αk determine F (z) uniquely, then as n→∞
the distributions Fn (z) converge weakly to F (z).

Lemma 3 In the notations of Lemma 2 let the series

ϕ (τ) =

∞∑

l=0

αl
(iτ)l

l!

converge absolutely in a disc of complex τ values in |τ| < c, c > 0. Then the αk

determine the distribution function F (u) uniquely. Moreover, the characteristic

function ϕ (t) of this distribution had the above representation in the disc

|τ| < t, and can be analytically continued into the strip |Im (t) | < τ.

The proof of Lemma 2 can be found in [5] while the proof of Lemma 3 is
given in [6]. (Vol. I., page 60).

4 Proof of Theorem 3

Let

mN =

N−1∑

j=0

f
(

2j
)

, (20)

F
(

2j
)

= f
(

2j
)

−
mN

N
, (21)

σ2
N (f) =

N−1∑

j=0

F2
(

2j
)

, (22)

G
(

2j
)

=
F
(

2j
)

σN (f)
. (23)

Then

σ2
N (G) =

N−1∑

j=0

G2
(

2j
)

= 1. (24)
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Let

Tk :=
1
(

N
r

)

∑

n<2N

α(n)=r

Gk (n) . (25)

Tk depends on N and on r, also. Let

αk :=
1

k!
lim

N→∞
r
N
→∞

Tk.

We shall prove that αk exists for every k ∈ N, and that the function ϕ (τ) in
Lemma 3 with these αk is regular in a circle |τ| < c, c > 0. It is enough to prove
that αk is bounded. The theorem will follow from Lemma 2, 3 immediately.

It is clear that T1 = 0 and so α1 = 0.
We observe that

∑

l1,...,lt∈{0,1,...,N−1}

G
(

2l1
)j1

. . . G
(

2lt
)jt

κ

(

l1, . . . , lt

j1, . . . , jt

)

(26)

=

{
O (1) , if min jl ≥ 2,

oN (1) , if min jl ≥ 2 and max jl ≥ 3,

if 0 ≤ κ
(

l1,...,lt
j1,...,jt

)

≤ 1.

Since maxl |G
(

2l
)

| ≤ c
σN(f)

→ 0 (N→∞) , σ2
N (G) = 1, this assertion is

clear.
Let DN := {0, 1, . . . , N − 1}.

Let us consider sums of type

Av :=
∑

l1,...,lt
j1,...,jt

u1,...,uv

B

(

l1, . . . , lt

j1, . . . , jt

)

G (2u1) · · ·G (2uv ) (27)

where l1, . . . , lt, u1, . . . , uv run over all possible distinct choices of l1, . . . , lt,

u1, . . . , uv ∈ DN, min
l=1,...,t

jl ≥ 2

B

(

l1, . . . , lt

j1, . . . , jt

)

= G
(

2l1
)j1

· · ·G
(

2lt
)jt

κ

(

l1, . . . , lt

j1, . . . , jt

)

, (28)

0 ≤ κ
(

l1,...,lt
j1,...,jt

)

.
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Assume that v = 1. Let us sum G (2u1) over all possible values, u1 ∈ DN \

{l1, . . . , lt}.
We have

A1 = −

t∑

j=1

∑

l1,...,lt
j1,...,jt

B

(

l1, . . . , lt

j1, . . . , jt

)

G
(

2lj
)

,

and so Av→ 0 (N→∞) follows from (26). Let now v = 2.
We obtain that

∑

u2 /∈{l1,...,lt }

u2 6=u1

G (2u2) = −G
(

2l1
)

− · · · − G
(

2lt
)

− G (2u1)

and so

A2 =
∑

l1,...,lt,u1
j1,...,jt

B

(

l1, . . . , lt

j1, . . . , jt

)

G2 (2u1) + oN (1) .

Let v > 2. For fixed l1, . . . , lt, u1, . . . , uv−1 the variable uv run over DN \

({l1, . . . , lt} ∪ {u1, . . . , uv−1}). Since

∑

uv

G (2uv) = −

t∑

j=1

G
(

2lj
)

− G (2u1) − · · · − G (2uv−1) ,

we have

Av = −
∑

l1,...,lt
j1,...,jt

B

(

l1, . . . , lt

j1, . . . , jt

)

G (2u1) . . . G (2uv−1) (G (2u1) + . . . + G (2uv−1))

+oN (1) ,

and so

Av = − (v − 1)
∑

l1,...,lt,lt+1
j1,...,jt ,2

u1,...,uv−2

B

(

l1, . . . , lt

j1, . . . , jt

)

G2
(

2lt+1

)

G (2u1) . . . G (2uv−2)

+oN (1) .

Thus the sum Av can be substituted by (v − 1) sums of type Av−2, with the
error oN (1).

Let us continue the reduction. We obtain that Av = oN (1), if v is an odd
number, furthermore, Av = oN (1), if max

j=1,...,t
lj ≥ 3.
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We can write

Tk =
1
(

N
r

)

∑

α(n)=r

n<2N

Gk (n) =
1
(

N
r

)

∑

n<2n

α(n)=r






N−1∑

j=0

G
(

εj (n) · 2j
)






k

(29)

=

k∑

t=1

ν (t, N)
∑∗

u1,...,uk

G (2u1) . . . G (2uk ) ,

where ∗ indicates that the summation is over those u1, . . . , uk ∈ DN, for

which the number of distinct element of u1, . . . , uk is t, and ν (t, N) =
r

N
·

r − 1

N − 1
. . .

r − (t − 1)

N − (t − 1)
. Thus ν (t, N) = λt + oN (1).

The sum
∑∗

u1,...,uk

can be rewritten in the form
∑

l1<...<lt
j1,...,jt

, where the multi-

plicity of the occurrence of lh is jh, thus j1 + · · · + jt = k. It is clear that

G
(

2l1
)j1 . . . G

(

2lt
)jt occurs for

(

k

j1

)(

k − j1

j2

)

. . .

(

k − (j1 + · · · + jt−1)

jt

)

=
k!

j1! (k − j1) !
·

(k − j1) !

(k − (j1 + j2)) !j2!
. . .

(k − (j1 + · · · + jt−1)) !

jt!

=
k!

j1!j2! . . . jt!

distinct choices of u1, . . . , uk as G (2u1) . . . G (2uk ). Thus

Tk =
∑k

t=1 ν (t, N)k!
∑

l1<...<lt
j1,...,jt

G(2l1 )
j1

j1!
. . .

G(2lt)
jt

jt!
(30)

= k!
∑k

t=1
ν(t,N)

t!

∑
l1<...<lt
j1,...,jt

G(2l1 )
j1

j1!
. . .

G(2lt)
jt

jt!
.

In the last sum l1, . . . , lt run over all those elements of DN for which lu 6= lv,
if u 6= v.

Let E (j1, . . . , jt) =
∑

l1,...,lt
j1,...,jt

G
(

2l1
)j1 . . . G

(

2lt
)jt . As we have seen earlier,

E (j1, . . . , jt) → 0 if max ju ≥ 3, or if #{u|ju = 1} = odd number. Hence we
obtain that Tk → 0 if k is odd. Thus αk = 0 for odd k. Let us write now 2k

into the place of k.
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Then

T2k = (2k) !

2k∑

t=1

ν (t, N)

t!

∑∗

j1+···+jt=2k

E (j1, . . . , jt)

j1! . . . jt!
+ oN (1)

where ∗ indicates that we have to sum over those j1, . . . , jt for which jν = 1, 2.

It is clear that E (j1, . . . , jt) is symmetric in the variables, i.e. E (jm1
, . . . , jmt) =

E (j1, . . . , jt) if m1, . . . , mt is a permutation of {1, . . . , t}.
Let

σh,m = E

(

h
←−−−→
2, . . . , 2,

m
←−−−→
1, . . . , 1

)

.

If j1 + · · · + jt = 2k, then 2h + m = 2k, t = h + m, thus

T2k = (2k) !

2k∑

t=1

ν (t, N)

t!

∑

h≤t

(

t

h

)

1

2h
σh,t−h + oN (1) . (31)

It is clear that

σh,0 =
∑

l1,...,lh

G
(

2l1
)2

. . . G
(

2lh
)2

=
{∑

G2
(

2l
)}h

= 1 + oN (1) .

Furthermore, as we observed earlier, σh,m→ 0 (N→∞) if m =odd.
Let m = 2. We have

σh,2 =
∑

l1,...,lh,u1,u2

G2
(

2l1
)

. . . G2
(

2lh
)

G (2u1)G (2u2)

= −
∑

l1,...,lh,u1

G2
(

2l1
)

. . . G2
(

2lh
)

G2 (2u1) + oN (1)

= −σh+1,0 + oN (1) = −1 + oN (1) .

Let m = 2ν, ν ≥ 2.

σh,2ν =
∑

l1,...,lh
u1,...,u2ν

G2
(

2l1
)

. . . G2
(

2lh
)

G (2u1) . . . G (2u2ν ) .
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Since G (2u2ν ) should be summed over DN \ {l1, . . . , lh} ∪ {u1 . . . , u2ν−1}, and

so
∑

u2ν

G (2u2ν ) = −
∑

G
(

2li
)

−
2ν−1∑

1

G (2uj), we obtain that

σh,2ν = − (2ν − 1)σh+1,2(ν−1) + oN (1) (ν = 1, 2, . . .) .

Thus we have

σh,0 = 1 + oN (1) , σh,2 = −1 + oN (1) ,

σh,4 = −3 · σh+1,2 = 3 + oN (1) ,

σh,6 = −5 · σh+1,4 = −3 · 5 + oN (1) ,

and in general

σh,2ν = (−1)ν (2ν − 1) !! + oN (1) .

Here (2m − 1) !! = (2m − 1) (2m − 3) . . . · 3 · 1.

Let us write t − h = 2m in (31). Then

(

t

h

)

1

2h
σh,t−h =

(

t

2m

)

22m

2t
σh,2m

= (−1)m

(

t

2m

)

22m

2t
(2m − 1) !! + oN (1) ,

and so

T2k = (2k) !

2k∑

t=1

λt ·
1

t!2t

∑

2m≤t

(−1)m

(

t

2m

)

22m · (2m − 1) !! + oN (1) .

Let us apply Lemma 3. In the notation of Lemma 3 we have

α2k = lim
N→∞

T2k

(2k) !

=

2k∑

t=1

λt

t!2t

∑

2m≤t

(−1)m

(

t

2m

)

22m · (2m − 1) !!.

We shall prove that α2k is bounded as 2k→∞. Indeed

(2m − 1) !!

(2m) !
=

1

2mm!
,

22m

2t
≤ 1,



128 I. Kátai

thus

|α2k| ≤

2k∑

t=1

λt

t!

∑

2m≤t

t! (2m − 1) !!

(2m) ! (t − 2m) !

≤

2k∑

t=1

λt
∑

2m≤t

1

(t − 2m) ! (2mm!)
.

Here m = 0 can be occur, 0! = 1.
We obtain that

|α2k| < cλ

with some c, c may depend on λ.
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[4] I. Kátai, M. V. Subbarao, Distribution of additive and q-additive func-
tions under some conditions II., Publ. Math. Debrecen, 73 (2008), 59–88.

[5] M. Frechet, J. Shohat, A proof of the generalized central limit theorem,
Trans. Amer. Math. Soc., 33 (1931), 533–543

[6] P. D. T. A. Elliott, Probabilistic number theory, Springer Verlag, Berlin,
1979.

Received: August 1, 2011



Acta Univ. Sapientiae, Mathematica, 3, 2 (2011) 129–134

Notes on functions preserving density
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Abstract. Let d(A) denote the asymptotic density of the set of positive
integers. Let AD denote the set of all sets A having asymptotic density,
and let Dδ denote the set of all sets A for which the difference between its
upper and lower density is less than δ. In the paper are studied fuctions
f : N → N (not necessary a one-to-one functions) such that A ∈ AD

implies f(A) ∈ AD and fuctions f : N → N for that A ∈ AD implies
f(A) ∈ Dδ. Our results generalize a theorem in [M. B. Nathanson, R.
Parikh, Density of sets of natural numbers and Lévy group, J. Number
Theory 124 (2007), 151–158.]

1 Introduction

Denote by N the set of all positive integers. For A ⊂ N let A(n) denote the
counting function of the set A. The lower asymptotic density of A is

d(A) = lim inf
n→∞

A(n)

n
,

the upper asymptotic density of A is

d(A) = lim sup
n→∞

A(n)

n
.

If d(A) = d(A), we say that A has an asymptotic density and we denote it by
d(A). For more details on the asymptotic density we refer to the paper [1].
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Let the group L♯ consists of all permutations of positive integers f such that
A ∈ AD if and only if f(A) ∈ AD, and the Lévy group L⋆ consists of all
permutations f ∈ L♯ such that d(f(A)) = d(A) for all A ∈ AD. Nathanson
and Parikh [3] proved that the groups L♯ and L⋆ coincide. Remark, more
complicated result in the same direction was proved in [4], but with different
assumptions on the transformation f. Connection between the Lévy group
and finitely additive measures on integers extending the asymptotic density
was studied in [5].

The mentioned Natanson and Parikh’s result follows from the following
stronger theorem.

Theorem A [2, Theorem 2] Let f : N → N be a one-to-one function such

that if A ∈ AD, then f(A) ∈ AD, that is, if the set A of positive integers

has asymptotic density, then the set f(A) also has asymptotic density. Let

λ = d(f(N)). Then

d(f(A)) = λd(A)

for all A ∈ AD.

We generalize this result showing that the condition for f to be one-to-one
function is not necessary and we will consider the set of functions Dδ instead
of AD.

2 Results

Theorem 1 Let h : N → N be a function (not necessary a one-to-one) such

that if the set A of positive integers has asymptotic density, then the set h(A)

also has asymptotic density. Let λ = d(h(N)). Then

d(h(A)) = λd(A)

for all A ∈ AD.

Proof. Let the symmetric differerence of the sets X and Y be denoted by
X ⊖ Y. We construct a one-to-one function f : N → N such that

d(f(N) ⊖ h(N)) = 0.

Then the assertion follows immediately from the Theorem A.
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First, we construct a function g : N → N for that N r g(N) is infinite and
the density of the symmetric differerence of the sets h(N) and g(N) is zero. It
can be done easily using an infinite set

S = {a1, a2, a3, . . . }

with the property d(S) = 0. Obviously, we may define the set S as the set of
all squares or as the set of all primes,... Let us define

g(n) =

{
a2k, if h(n) = ak

h(n), if h(n) /∈ S
.

Let

B = {a1, a3, a5, . . . , a2k+1, . . . }.

We have B ⊂ N r g(N) and d(B) = 0.
We construct the injective function f and a sequence of sets B1, B2, . . . by

induction.
Let f(1) = g(1) and B1 = B. For n ≥ 1

if g(n + 1) /∈ g(N ∩ [1, n]) let f(n + 1) = g(n + 1) and
Bn+1 = Bn

if g(n + 1) ∈ g(N ∩ [1, n]) let f(n + 1) = minBn and
Bn+1 = Bn r {f(n + 1)}

.

From the above construction follows that for any A ⊂ N the set h(A) has
asymptotic density if and only if f(A) has asymptotic density and moreover
d(f(A)) = d(h(A)) for arbitrary A ∈ AD, so the assertion follows. �

By the above proved theorem the property that A ∈ AD implies f(A) ∈ AD

is strong enough to ensure that in sense of asymptotic density large irregular-
ities in the image set f(N) cannot occur.

The main idea of the paper [3] was to show that if for a function f the density
of the set A implies the density of the set f(A) then the asymptotic density
of f(A) depends only on d(A). Equivalently, if A, B ∈ AD and d(A) = d(B),
then d(f(A)) = d(f(B)).
In what follows we consider the question: Having a function f : N → N such
that A ∈ AD implies f(A) ∈ Df, in the case d(A) = d(B) what can we say
about the upper and lower densities of the image sets f(A) and f(B)?

In our studies the following “intertwinning lemma” will be fundamental.
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Lemma 1 [3] Let A and B be sets of positive integers such that d(A) =

d(B) = γ. Then for a sufficiently fast growing sequence (pi) if

C =

∞
⋃

i=1

A ∩ (p2i−1, p2i] ∪

∞
⋃

i=1

B ∩ (p2i, p2i+1]

then

d(C) = γ.

Theorem 2 Let δ > 0 and let f : N → N be a one-to-one function such that if

A ∈ AD then f(A) ∈ Dδ. Let A, B are arbitrary sets of positive integers with

the property d(A) = d(B) = γ. Then

d(B) − d(A) ≤ δ.

Proof. Let d(A) = α and d(B) = β. Suppose, contrary to our claim that

β > α + δ.

We will construct a set C for that d(C) = γ but the set f(C) /∈ Dδ. We will
define the sequence (pi) by induction and using this define the set C

C =

∞
⋃

i=1

A ∩ (p2i−1, p2i] ∪

∞
⋃

i=1

B ∩ (p2i, p2i+1]. (1)

Induction hypothesis:
Suppose we have constructed sequences p1, . . . , p2k+1, further m1, . . . , m2k

and n2, . . . , n2k+1 such that

|[m2i−1, n2i] ∩ f(A)|

n2i

< α +
1

i
, (2)

|[m2i, n2i+1] ∩ f(B)|

n2i+1

> β −
1

i
(3)

for i = 1, . . . , k and

f(N r [pj, pj+1]) ∩ [mj, nj+1] = ∅, (4)

for j = 1, . . . 2k.
Induction step: Let

m2k+1 = 1 + max f(N ∩ [1, p2k+1]).
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From the fact that d(f(A)) = α we get that for sufficiently large n2k+2 we
have

|[m2k+1, n2k+2] ∩ f(A)|

n2k+2

< α +
1

k + 1

and moreover let n2k+2 > (k + 2).m2k+1.
Define p2k+2 as the least positive integer t satisfying

min f([t,∞) ∩ N) > n2k+2.

From the definition of the numbers m2k+1, n2k+2, p2k+2 follows that

f(N r [p2k+1, p2k+2]) ∩ [m2k+1, n2k+2] = ∅.

Similarly, let

m2k+2 = 1 + max f(N ∩ [1, p2k+2]).

From d(f(B)) = β we have that for sufficiently large n2k+3 we have

|[m2k+2, n2k+3] ∩ f(B)|

n2k+3

> β −
1

k + 1
.

Define p2k+3 as the least positive integer t for that

min f([t,∞) ∩ N) > n2k+3.

Analogously, from the definition of the numbers m2k+2, n2k+3, p2k+3 we have

f(N r [p2k+2, p2k+3]) ∩ [m2k+2, n2k+3] = ∅.

After completing induction the relations (2)-(4) hold for every k ∈ N.
We estimate the upper and lower density of the constructed set C. Using

(1) together with (2) and (4) we have

lim inf
n→∞

f(C)(n)

n
≤ lim inf

k→∞

f(C)(n2k)

n2k

≤ lim inf
k→∞

m2k−1 + |[m2k−1, n2k] ∩ f(A)|

n2k

≤ lim inf
k→∞

(

1

k + 1
+ α +

1

k

)

= α.

On the other hand, by (1), (3) and (4)

lim sup
n→∞

f(C)(n)

n
≥ lim sup

k→∞

f(C)(n2k+1)

n2k+1

≥
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≥ lim sup
k→∞

|[m2k, n2k+1] ∩ f(B)|

n2k+1

≥ lim sup
k→∞

(

β −
1

k

)

= β. (5)

By Lemma 1 the set C ∈ AD but (5) and (5) yield to the fact that

d(f(C)) − d(f(C)) > β − α > δ

and therefore f(C) /∈ Dδ. This contradiction completes the proof. �

Remarks. It is worth pointing out that
∞
⋂

n=1

{
f : N → N ; if A ∈ AD then f(A) ∈ D 1

n

}
=

= {f : N → N ; if A ∈ AD then f(A) ∈ AD} .

In Theorem 2 the condition for the function f to be an injection is not
necessary. It can be shown by the same way as in Theorem 1.

We have proved that for given f : N → N (if A ∈ AD then f(A) ∈ Dδ) the
upper bound for d(f(A)) and the lower bound for d(f(A)) depends only on the
asymptotic density of A. Clearly, for any dense set A and for any θ ∈ [0, 1]

there is a set B ⊂ A such that d(B) = θ.d(A) (see e.g. [2], Proposition 1), but
using this fact we can only deduce, that these bounds are nondecreasing.
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[2] G. Grekos, L. Mǐśık, J. T. Tóth, Density sets of positive integers, J. Number

Theory, 130 (2010), 1399–1407.

[3] M. B. Nathanson, R. Parikh, Density of sets of natural numbers and Lévy
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Abstract. The complex variant of the discrete Malmquist-Takenaka sys-
tem plays an important role in system identification. We introduce the
analogue of these functions on two dyadic local fields using the analogue
of the Blaschke-functions on these fields. This results a generalization of
the discrete Laguerre system. Properties of these systems, Fourier expan-
sion and summability questions are presented.

1 Introduction

The discrete Laguerre functions and their generalizations, the Malmquist-
Takenaka and Kautz systems are often used in control theory to identify

the transfer function. Let us recall, that the discrete Laguerre functions L
(a)
n

(n ∈ N) contain a complex parameter a ∈ D := {z ∈ C : |z| < 1} and can be
expressed by the Blaschke functions

Ba(z) :=
z− a

1− āz
(z ∈ C, a ∈ D).

The discrete Laguerre functions L
(a)
n associated to Ba on C are defined by

L
(a)

k (z) := ma(z)Bk
a(z), where ma(z) :=

√

1− |a|2

1− āz
(z ∈ C, k ∈ Z)

2010 Mathematics Subject Classification: 43A25,43A55,11F85,42C10,33C47

Key words and phrases: abstract harmonic analysis, p-adic theory, local fields, orthogonal

functions, Fourier series, summability

135



136 I. Simon

for a ∈ D. The boundary of D is denoted by T := {z ∈ C : |z| = 1}.

The discrete Malmquist-Takenaka functions Ψ
(p)
n on C are defined by

Ψ
p
0(z) :=

√

1− |a0|2

1− ā0z
, Ψ

(p)
n (z) :=

√

1− |an|2

1− ānz

n−1∏

j=0

Baj
(z), (z ∈ C, k ∈ Z)

for (aj ∈ D, j ∈ N) and p = (a0, a1, a2, . . . ).
The discrete Malmquist-Takenaka system is orthogonal with respect to the

scalar product 〈F,G〉 =
1

2π

∫π

−π

F(eit)G(eit) dt. Note, that using the same

parameters aj = a (j ∈ N), the Ψ
(p)
n functions give the discrete Laguerre

system (L
(a)
n , n ∈ N). For more on these systems see [1].

The analogue of the discrete Laguerre function is constructed in [4] as a
composition of the corresponding characters and the Blaschke functions, in-
spired by the fact, that if a belongs to D, then Ba is a bijection on T, and Ba

can be written in the form (see [1])

Ba(eis) = eiβa(s)(s ∈ R, a ∈ D) (1)

with some bijection βa : [−π, π] → [−π, π]. Obviously L
(0)

k (z) = zk (k ∈ Z)

coincides with the trigonometric system on T. Thus the discrete Laguerre
system except the factor ma can be obtained from the trigonometric system
by an argument transformation T(z) = Ba(z)(z ∈ T).

We will construct the analogue of the discrete Malmquist-Takenaka func-
tions starting from the generator system of the characters of the dyadic and
2-adic group and using an argument transformation. This is a UDMD prod-
uct system, thus also a complete orthonormal system, which gives the discrete
Laguerre system for identical parameters an = a (n ∈ N). Fourier expansion
with respect these systems and summability questions are examined.

2 The Blaschke functions on the 2-series and on the

2-adic field

We use the basic notations, definitions and the description of the algebraic
structure of the handbooks [3] and [2]. Denote by

B :=

{

a = (a(j), j ∈ Z) | a(j) ∈ {0, 1} and lim
j→−∞

a(j) = 0

}
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the set of bytes, and by A := {0, 1} the set of bits. The numbers a(j) are called
the additive digits of a ∈ B. Also use the notion: P := N\{0}. The zero element
of B is θ := (x(j) ∈ Z) where x(j) = 0 for j ∈ Z, that is, θ = (· · · , 0, 0, 0, · · · ).
The order of a byte x ∈ B is defined in the following way: For x 6= θ let
π(x) := n if and only if x(n) = 1, and x(j) = 0 for all j < n, furthermore
set π(θ) = +∞. The norm of a byte x is introduced by the following rule:
‖x‖ := 2−π(x) for x ∈ B \ {θ}, and ‖θ‖ := 0.

The sets In(x) := {y ∈ B : y(k) = x(k) for k < n} are the intervals in B of rank
n ∈ Z and center x ∈ B. Consider In := {x ∈ B : ‖x‖ ≦ 2−n} (n ∈ Z). I := I0

can be identified with the set of sequences I = {a = (a(j), j ∈ N)| a(j) ∈ A} via
the map (. . . , 0, 0, a(0), a(1), . . . ) → (a(0), a(1), . . . ).

The 2-series (or logical) sum a
◦

+ b and product a ◦ b of elements a, b ∈ B

are defined by

a
◦

+ b :=
(

a(n) + b(n) (mod 2), n ∈ Z

)

a ◦ b := (c(n), n ∈ Z), where c(n) :=
∑

k∈Z

a(k)b(n−k) (mod 2) (n ∈ Z).

(B,
◦

+, ◦) is a non-Archimedian normed field, i.e. ‖a
◦

+ b‖ ≦ max{‖a‖, ‖b‖},

|a ◦ b‖ = ‖a‖ ‖b‖ (a, b ∈ B). The multiplicative identity of B is the element
e := (δn0, n ∈ N).

The (logical) Blaschke function with parameter a ∈ I1 is defined in [4] by:

Ba(x) :=
x

◦

+ a

e
◦

+ a ◦ x
(x ∈ I).

Set y = Ba(x) with x ∈ I, a ∈ I1. Then we have y = x
◦

+ a
◦

+ y ◦ a ◦ x and
consequently for the n-th digit of y we get

{
y(n) = 0, for n < 0,

y(n) = x(n) + a(n) + (y ◦ a ◦ x)(n) (mod 2), for n ≧ 0.

This is recursion for the bits of y = Ba(x), since to compute (y ◦ a ◦ x)(n)

we only need y(k)-s with k < n. The bits y(n) = (Ba(x))(n) can be written in
the form

y(n) = x(n) + a(n) + fn(x(0), · · · , x(n−1)) (mod 2) (2)
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where the functions fn : A
n → A (n = 1, 2, · · · ) depend only on the bits of a.

The definition of the logical Blaschke functions and details about the recursion
are considered in [4].

The 2-adic (or arithmetic) sum a
•

+ b of elements a = (a(n), n ∈ Z), b =

(b(n), n ∈ Z) ∈ B is defined by a
•

+ b := (sn, n ∈ Z), where the bits qn, sn ∈

A (n ∈ Z) are obtained recursively as follows: qn = sn = 0 for n < m :=

min{π(a), π(b)}, and

a(n) + b(n) + qn−1 = 2qn + sn for n ≥ m.

The 2-adic (or arithmetic) product of a, b ∈ B is a • b := (pn, n ∈ Z),
where the sequences qn ∈ N and pn ∈ A (n ∈ Z) are defined recursively by
qn = pn = 0 (n < m := π(a) + π(b)) and

∞∑

j=−∞

a(j)b(n−j) + qn−1 = 2qn + pn (n ≥ m).

Note, that π(a • b) = π(a) + π(b) and (B,
•

+, •) is a non-Archimedian normed
field.

For x ∈ I and a ∈ I1 we have that e
•

− a • x 6= θ, thus e
•

− a • x has a mul-
tiplicative inverse in B. The (arithmetical) Blaschke function with parameter
a ∈ I1 is defined in [4] by:

Ba(x) := (x
•

− a) • (e
•

− a • x)−1 =
x

•

− a

e
•

− a • x
(x ∈ I). (3)

The Blaschke function Ba : I → I is a bijection for any a ∈ I1 on I and on S0.
The maps Ba (a ∈ I1) form a commutative group with respect to the function
composition. The byte y = Ba(x) can be given in a recursive form (2) like
on the logical field. The definition of the arithmetical Blaschke functions and
details about the recursion are considered in [4].

Consider the Haar-measure µ on the fields (B,
•

+, •) and (B,
◦

+, ◦). More
details on the algebraic structure can be found in [3].

In the following we will present UDMD systems, which are considered in [3].
Denote with A the σ-algebra generated by the intervals In(a) (a ∈ I, n ∈ N).
Let λ(In(a)) := 2−n be the measure of In(a). Extending this measure to A

we get a probability measure space (I,A, λ). Let An be the sub-σ-algebra of
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A generated by the intervals In(a) (a ∈ I). Let L(An) denote the set of An-
measurable functions on I. The conditional expectation of an f ∈ L1(I) with
respect to An is of the form

(Enf)(x) :=
1

λ(In(x))

∫

In(x)

fdλ.

A sequence of functions (fn, n ∈ N) is called a dyadic martingale if each fn
is An-measurable and

(Enfn+1) = fn (n ∈ N).

The sequence of martingale differences of fn (n ∈ N) is the sequence

φn := fn+1 − fn (n ∈ N).

We notice that every dyadic martingale difference sequence has the form φn =

rngn (n ∈ N) where (gn, n ∈ N) is a sequence of functions such that each gn

is An-measurable and (rn, n ∈ N) denotes the Rademacher system on I:

rn(x) := (−1)x(n)

(n ∈ N).

The martingale difference sequence (φn, n ∈ N) is called a unitary dyadic
martingale difference sequence or a UDMD sequence if |φn(x)| = 1 (n ∈ N).
Thus (φn, n ∈ N) is a UDMD sequence if and only if

φn = rngn, gn ∈ L(An), |gn| = 1 (n ∈ N). (4)

A system ψ = (ψm,m ∈ N) is said to be a UDMD product system if it is a
product system generated by a UDMD system, i.e., there is a UDMD system
(φn, n ∈ N) such that for each m ∈ N, with binary expansion is given by
m =

∑∞
j=0m

(j)2j (m(j) ∈ A, j ∈ N), the function ψm satisfies

ψm =

∞∏

j=0

φm(j)

j (m ∈ N).

The author constructed orthonormal systems in this way inspired by martin-
gales in [4, 5].
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3 The discrete Malmquist-Takenaka functions on

the 2-series and 2-adic field

Let us define the discrete Malmquist-Takenaka functions with parameters p =

(a0, a1, . . .) (ai ∈ I1, i ∈ N) on the 2-series field (I,
◦

+, ◦) in the following way:

the system
(

Ψ
(p)

k , k ∈ N

)

is the product system generated by

(Φn,an := rn ◦ Ban , n ∈ N) (5)

That is, Ψ
(p)

k (x) =
∏∞

j=0

[

rj(Baj
(x))

]k(j)

.

Theorem 1 For every an ∈ I1 (n ∈ N)) the functions Φn,an (x) = rn(Ban (x))

(x ∈ I, n ∈ N) form a UDMD system on (I,
◦

+, ◦).

Proof. Using recursion form (2) of y = Ban (x) we get

Φn,an (x) = (−1)y(n)

= (−1)x(n)

(−1)(an)(n)+fn(x(0),··· ,x(n−1)) = rn(x)gn(x)

where gn(x) := (−1)(an)(n)+fn(x(0),··· ,x(n−1)) is An-measurable, gn ∈ L(An).
Clearly, |gn(x)| = 1 (x ∈ I), thus (Φn,an , n ∈ N) is a UDMD sequence. �

Corollary 1 The logical Malmquist-Takenaka system, that is the product sys-

tem (Ψ
(p)

k , k ∈ N) generated by the system (Φn,an , n ∈ N) is a UDMD product

system, consequently it is a complete orthonormal system on (I,
◦

+, ◦).

We consider ǫ(t) := exp(2πit) (t ∈ R). We will use the functions (v2n (x), n ∈

N):

v2n (x) := ǫ

(

x(n)

2
+
x(n−1)

22
+ · · · +

x(0)

2n+1

)

(x ∈ I, n ∈ N), (6)

known as a generator system of the characters of the group (I,
•

+). Let us
define the arithmetical Malmquist-Takenaka functions with parameters p =

(a0, a1, . . .) (an ∈ I1, n ∈ N) on the 2-adic field (I,
•

+, •) in the following way:

the system
(

Ψ
(p)

k , k ∈ N

)

is now the product system generated by

(Φn,an := v2n ◦ Ban , n ∈ N) (7)

That is, Ψ
(p)
n (x) =

∏∞
j=0

[

v2j(Baj
(x))

]n(j)

.(x ∈ (I,
•

+, •))
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Theorem 2 For every an ∈ I1 (n ∈ N) the functions Φn,an (x) = v2n (Ban (x))

(x ∈ I, n ∈ N) form a UDMD system on (I,
•

+, •).

The proof is similar like on the 2-series field.

Corollary 2 The arithmetical Malmquist-Takenaka functions, the product sys-

tem (Ψ
(p)

k , k ∈ N) generated by the system (Φn,an , n ∈ N) is a UDMD product

system, consequently it is a complete orthonormal system on (I,
•

+, •).

In the following we consider the corresponding Malmquist-Takenaka-systems

on both fields (I,
•

+, •) and (I,
◦

+, ◦).

4 Summability

The Malmquist-Takenaka-Fourier coefficients of an f ∈ Lq(I) (1 ≤ q ≤ ∞) are
defined by

̂f(p)(n) :=

∫

I

f(x)Ψ
(p)
n (x)dµ(x). (n ∈ N)

The n-th partial sums of the Malmquist-Takenaka-Fourier series S(p)f is now

S
(p)
n f :=

n−1∑

k=0

̂f(p)(k)Ψ
(p)

k (n ∈ N
∗).

Furthermore, the Malmquist-Takenaka-Cesaro (or (MT − C, 1)) means of

S(p)f are defined by σ
(p)

0 f := 0 and

σ
(p)
n f :=

1

n

n∑

k=1

S
(p)

k f, (n ∈ N
∗)

for p = (a0, a1, . . . ) with an ∈ I1 (n ∈ N), f ∈ Lq(I).
Properties of UDMD product systems are valid for the Malmquist-Takenaka

system (Ψ
(p)

k , k ∈ N), thus applying the general theorem on convergence pre-
sented in [3], holds the following:

Theorem 3 For any f ∈ Lq(I) (1 ≤ q < ∞) we have

lim
n→∞

‖S
(p)

2n f− f‖q = 0, and

lim
n→∞

‖σ
(p)
n f− f‖q = 0.

(8)

Moreover, (8) holds for q = ∞ when f is continuous on I.
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Clearly, a.e. convergence holds for S
(p)

2n f for any integrable f and for S
(p)
m f,

(m ∈ P) if f ∈ Lq(I) and q > 1. This is a consequence of a general theorem
in [3], pp.101-105 or [2]. This holds for q = 1 with identical parameters an =

a ∈ I1 (n ∈ N), that is, in the case of the discrete Laguerre system L
(a)
n (x).

See [4].
We will see in the next proposition, that the Malmquist-Takenaka system

is a generalization of the discrete Laguerre system on both fields defined in [4]
as follows.

The functions corresponding the trigonometric system mentioned in the
Introduction, are the characters of the corresponding groups. Namely, the
Walsh-Paley functions (wk, k ∈ N) defined by

wk(x) =

∞∏

n=0

rn(x)k(n)

= (−1)
∑+∞

j=0 k(j)x(j)

(x ∈ I, k =

∞∑

j=0

k(j)2j ∈ N (k(j) ∈ A)),

(9)

are the characters of (I,
◦

+). In particular, the Walsh-Paley functions form a
product system generated by the Rademacher system (rn, n ∈ N).

And the functions (vk, k ∈ N) are the characters of (I,
•

+) defined as the
product system generated by the functions (v2n (x), n ∈ N) defined in (6).

The discrete Laguerre functions associated to Ba are defined in the following
way:

L
(a)

k (x) := wk(Ba(x)) (k ∈ N, x ∈ (I,
◦

+))

and

L
(a)

k (x) := vk(Ba(x)) (k ∈ N, x ∈ (I,
•

+))

for any a ∈ I1.

Proposition 1 Using identical parameters an = a ∈ I1 (n ∈ N) the Malmquist-

Takenaka functions Ψ
(p)
n (x) give the discrete Laguerre system L

(a)
n (x) on both

fields (I,
•

+, •) and (I,
◦

+, ◦).

Clearly, with the special identical parameters an = θ (n ∈ N) this method
gives the characters of the corresponding field. Thus the Malmquist-Takenaka
system is also a generalization of the character system of the corresponding
additive group.
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Hadamard product of GCUD matrices
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Abstract. Let f be an arithmetical function. The matrix [f(i, j)∗∗]n×n

given by the value of f in greatest common unitary divisor of (i, j)∗∗,
f
(

(i, j)∗∗
)

as its i, j entry is called the greatest common unitary divi-
sor (GCUD) matrix. We consider the Hadamard product of these ma-
trices and we calculate the Hadamard product and determinant of the
Hadamard product of two GCUD matrices.

1 Introduction

The classical Smith determinant introduced by H. J. Smith [9] is

det[(i, j)]n×n =

∣

∣

∣

∣

∣

∣

∣

∣

(1, 1) (1, 2) · · · (1, n)

(2, 1) (2, 2) · · · (2, n)

· · · · · · · · · · · ·

(n, 1) (n, 2) · · · (n, n)

∣

∣

∣

∣

∣

∣

∣

∣

= ϕ(1) · ϕ(2) · · ·ϕ(n), (1)

where (i, j) is the greatest common divisor of i and j, and ϕ(n) is Euler’s
totient function.
A divisor d of n is said to be a unitary divisor of n if

(

d,
n

d

)

= 1 and we write

d ‖ n. Let (m, n)∗ the greatest divisor of m which is unitary divisor of n (see
E. Cohen [2]).

2010 Mathematics Subject Classification: 11C20, 11A25, 15A36

Key words and phrases: unitary divisor, GCUD determinant, arithmetical function,

Hadamard product
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We denote the greatest common unitary divisor of m and n as (m, n)∗∗.
Let ϕ∗(n) be the unitary analogue of ϕ(n):

ϕ∗(n) =
∑

k ≤ n

(k, n)∗ = 1

1,

and

µ∗(n) = (−1)ω(n)

be the unitary analogue of the Möbius function µ(n).
The GCUD matrix with respect to f is

[f(i, j)∗∗]n×n =









f((1, 1)∗∗) f((1, 2)∗∗) · · · f((1, n)∗∗)

f((2, 1)∗∗) f((2, 2)∗∗) · · · f((2, n)∗∗)

· · · · · · · · · · · ·

f((n, 1)∗∗) f((n, 2)∗∗) · · · f((n, n)∗∗)









If we consider the GCUD matrix [f(i, j)∗∗]n×n where

f(n) =
∑

d‖n

g(d),

H. Jager [5] proved that

[

f
(

(i, j)
)∗∗]

n×n
= C1 diag[g(1), g(2), . . . , g(n)]CT

1, (2)

where C1 = [cij]n×n,

cij =

{
1, ha j ‖ i

0, ha j 6‖ i
.

and

det[f((i, j)∗∗)]n×n = g(1) · g(2) · · ·g(n).

For g(n) = ϕ∗(n)

f
(

(i, j)∗∗
)

=
∑

d‖(i,j)∗∗

ϕ∗(d) = (i, j)∗∗.

and the decomposition of matrix

[(i, j)∗∗]n×n = C1 diag[ϕ∗(1), ϕ∗(2), . . . , ϕ∗(n)]CT
1,
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det[(i, j)∗∗]n×n = ϕ∗(1)ϕ∗(2) · · ·ϕ∗(n).

The unitary convolution of the arithmetical functions f and g is defined as

(f ⊙ g)(n) =
∑

d ‖ n

f(d)g
(n

d

)

.

From this convolution we can write (2) in the following form:

det
[

f
(

(i, j)∗∗
)]

n×n
= (f ⊙ µ∗)(1)(f ⊙ µ∗)(2) · · · (f ⊙ µ∗)(n). (3)

Here we present some examples which are relevant in our study.

Example 1 If

g(n) = β∗(n) =

n∑

i=1

(i, n)∗

the unitary Pillai function then (see L. Tóth, [10, 11]). We have

β∗(n) =
∑

s‖n

dϕ
(n

d
)
)

,

f(n) =
∑

d|n

β∗(n) = nτ∗(n),

where τ∗(n) is the number of unitary divisors. The GCUD matrix and deter-

minant in this case have the following form:

[(i, j)∗∗τ∗((i, j)∗∗)]n×n = C1 diag
(

β∗(1), β∗(2), . . . , β∗(n)
)

CT
1, (4)

det[(i, j)∗∗τ∗((i, j)∗∗)]n×n = β∗(1)β∗(2) · · ·β∗(n). (5)

Example 2 If g(n) =
ϕ∗(n)

n
, then

f(n) =
∑

d‖n

ϕ∗(d)

d
=

β∗(n)

n
,

[

β∗(i, j)

(i, j)

]

n×n

= C1 diag

(

ϕ∗(1)

1
,

ϕ∗(2)

2
, . . . ,

ϕ∗(n)

n

)

CT
1, (6)

det

[

β∗(i, j)

(i, j)

]

n×n

=
ϕ∗(1)ϕ∗(2) · · ·ϕ∗(n)

n!
.
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For other contributions, we mention the papers of P. Haukkanen, J. Wang
and J. Sillanpää [3], A. Nalli, D. Tasci [6], P. Haukkanen, J. Sillanpää [4].
We introduce the concept of Hadamard product (see F. Zhang [12]).

Definition 1 The Hadamard product C = A ◦ B = [cij]n×n of two matrices

A = [aij]n×n and B = [bij]n×n is simply their elementwise product,

cij = aijbij, i, j ∈ {1, 2, . . . , b}.

A. Ocal [8], A. Nalli [7], A. Bege [1] establishes various results concerning clas-
sical GCD matrices and least common multiple (LCM) matrices. In examples
1 and 2 appears Hadamard products of special GCD matrices:

det
[

[τ((i, j)∗∗)]n×n ◦ [(i, j)∗∗]n×n

]

n×n
= β∗(1)β∗(2) · · ·β∗(n),

det
[

[β((i, j)∗∗)]n×n ◦

[

1

(i, j)∗∗

]

n×n

]

n×n
=

ϕ∗(1)ϕ∗(2) · · ·ϕ∗(n)

n!
.

Let f and g be two arithmetical functions. In this paper we calculate the
Hadamard product and the determinant of Hadamard product of [f((i, j)∗∗)]n×n

and [g((i, j)∗∗)]n×n.

2 Main results

Theorem 1 Let h and g be two arithmetical functions and g be multiplicative.

If

f(n) =
∑

d‖n

h(d)g
(n

d

)

, (7)

then

1.

[

[f((i, j)∗∗)]n×n◦

[

1

g((i, j)∗∗)

]

n×n

]

n×n
= C1 diag

(

h(1)

g(1)
,

h(2)

g(2)
, . . . ,

h(n)

g(n)

)

CT
1,

(8)
where C1 = [cij]n×n,

cij =

{
1, if j ‖ i

0, if j 6‖ i
,

2.

det
[

[f((i, j)∗∗)]n×n ◦

[

1

g((i, j)∗∗)

]

n×n

]

n×n
=

h(1)

g(1)

h(2)

g(2)
· · ·

h(n)

g(n)
, (9)



148 A. Bege

3. There exist H(n) and G(n) arithmetical functions, such that

det
[

[f((i, j)∗∗)]n×n ◦

[

1

g((i, j)∗∗)

]

n×n

]

n×n
=

det[H((i, j)∗∗)]

det[G((i, j)∗∗)]
.

Proof.
Let

h(n) =
(

f ⊙ (µ∗g)
)

(n).

We have

g ⊙ (µ∗g) = I,

which means that µ∗g is the inverse respecting to the unitary convolution.
From this

h ⊙ g = f ⊙
(

µ∗g) ⊙ g
)

= f ⊙ I = f.

Because g is a multiplicative function

f(n) =
∑

d‖n

h(d)g
(n

d

)

=
∑

d‖n

h(d)

g(d)
g(d)g

(n

d

)

= g(n)
∑

d‖n

h(d)

g(d)
.

By the definition of the Hadamard product we have

f((i, j)∗∗)

g((i, j)∗∗)
.

Thus
f(n)

g(n)
=

∑

d‖n

h(d)

g(d)
,

and by using (2), we have (8).
If we calculate the determinant of both parts we have (9).
Let

H(n) =
∑

d‖n

h(d)

and

G(n) =
∑

d‖n

g(d).

Using (2) we have

det[H((i, j)∗∗)]n×n = h(1)h(2) · · ·h(n)
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and
det[G((i, j)∗∗)]n×n = g(1)g(2) · · ·g(n).

which means that

det
[

[f((i, j)∗∗)]n×n ◦

[

1

g((i, j)∗∗)

]

n×n

]

n×n
=

det[H((i, j)∗∗)]

det[G((i, j)∗∗)]
.

�

Example 3 If g(n) = n then

f(n) =
∑

d‖n

h(d)
n

d
.

and
[

f((i, j)∗∗)

(i, j)∗∗

]

n×n

=
[

[f((i, j)∗∗)]n×n ◦

[

1

(i, j)∗∗

]

n×n

]

n×n
=

= C1 diag

(

h(1)

1
,
h(2)

2
, . . . ,

h(n)

n

)

CT
1

det

[

f((i, j)∗∗)

(i, j)∗∗

]

n×n

= det
[

[f((i, j)∗∗)]n×n ◦

[

1

(i, j)∗∗

]

n×n

]

n×n
=

=
h(1)h(2) · · ·h(n)

n!
.

Example 4 If g(n) =
1

n
then

f(n) =
∑

d‖n

h(d)
d

n

and

[f((i, j)∗∗(i, j)∗∗]n×n = C1 diag (h(1)1, h(2)2, . . . , h(n)n) CT
1,

det [f((i, j)∗∗)(i, j)∗∗]n×n = det
[

[f((i, j)∗∗]n×n ◦ [(i, j)∗∗]n×n

]

n×n
=

= h(1) · · ·h(n)n!.
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If we want to apply this theorem to a given f and g, using the unitary Möbius
inversion formula we have

h(n) =
∑

d‖n

µ∗(d)g(d)f
(n

d

)

where µ∗(n) is the usual unitary Möbius function and we can formulate the
following result.

Theorem 2 Let f and g be two arithmetical functions and g be multiplicative.

We have

[ f((i, j)∗∗)

g((i, j)∗∗)

]

n×n
=

[

[f((i, j)∗∗)]n×n ◦

[

1

g((i, j)∗∗)

]

n×n

]

n×n
=

= C1 diag











f(1)

g(1)
, . . . ,

∑

d‖n

µ∗(d)g(d)f
(n

d

)

g(n)











CT
1,

and

det
[

[f((i, j)∗∗]n×n ◦

[

1

g((i, j)∗∗)

]

n×n

]

n×n
=

f(1)

g(1)
· · ·

∑
d‖n µ∗(d)g(d)f

(

n
d

)

g(n)
.

Example 5 If f is a multiplicative arithmetical function and g(n) =
1

n

det
[

f((i, j)∗∗)(i, j)∗∗
]

n×n
= 1 · · ·



n
∏

pα‖n

(

f(pα) −
1

pα

)



 .

In particular if f(n) = 1

det
[

(i, j)∗∗
]

n×n
=

n∏

k=1

ϕ∗(k).

Example 6 For a power GCUD matrix and determinant we have

[((i, j)∗∗)s]n×n = C1 diag
(

Js(1), Js(2), . . . , Js(n)
)

CT
1,

det[((i, j)∗∗)s]n×n = Js(1)Js(2) · · · Js(n).

where Js(n) the Jordan totient function.
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Multivalent β−uniformly starlike functions

involving the Hurwitz-Lerch Zeta function
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Abstract. Making use of convolution product, we introduce a novel
subclass of p−valent analytic functions with negative coefficients and
obtain coefficient bounds, extreme points and radius of starlikeness for
functions belonging to the generalized class TP

k,p
b,µ(λ, α, β). We also derive

results for the modified Hadamard products of functions belonging to the
class TP

k,p
b,µ(λ, α, β).

1 Introduction

Denote by Ap the class of functions f normalized by

f(z) = zp +

∞∑

k=1

ap+kzp+k, (p ∈ N = 1, 2, 3, ...) (1)

which are analytic and p−valent in the open disc U = {z : z ∈ C, |z| < 1}.

Denote by Tp a subclass of Ap consisting of functions of the form

f(z) = zp −

∞∑

k=1

ap+kzp+k, (ap+k ≥ 0; p ∈ N = 1, 2, 3, ..., z ∈ U). (2)
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Key words and phrases: analytic, p−valent, starlikeness, convexity, Hadamard product

(convolution product), uniformly convex, uniformly starlike functions
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For functions f ∈ Ap given by(1) and g ∈ Ap given by g(z) = zp+
∞∑

k=1

bp+kzp+k,

we define the Hadamard product (or convolution ) of f and g by

(f ∗ g)(z) = zp +

∞∑

k=1

ap+kbp+kzp+k = (g ∗ f)(z), z ∈ U. (3)

The following we recall a general Hurwitz-Lerch Zeta function Φ(z, s, a)

defined by (see [23])

Φ(z, s, a) :=

∞∑

k=0

zk

(k + a)s
(4)

(a ∈ C \ {Z−
0 }; s ∈ C, R(s) > 1 and |z| = 1)

where, as usual, Z
−
0 := Z\{N} (Z := {0,±1,±2,±3, ...}; N := {1, 2, 3, ...}). Several

interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava [4],
Ferreira and Lopez [5], Garg et al. [7], Lin and Srivastava [10], Lin et al. [11],
and others.

For the class of analytic functions denote by A consisting of functions of the

form f(z) = z +
∞∑

k=2

akzk Srivastava and Attiya [22] (see also Raducanu and

Srivastava [17], and Prajapat and Goyal [14]) introduced and investigated the
linear operator:

Jµ,b : A → A

defined in terms of the Hadamard product (or convolution) by

Jµ,bf(z) = Gb,µ ∗ f(z) (5)

(z ∈ U; b ∈ C \ {Z−
0 }; µ ∈ C; f ∈ A), where, for convenience,

Gµ,b(z) := (1 + b)µ[Φ(z, µ, b) − b−µ] (z ∈ U). (6)

It is easy to observe from (given earlier by [14], [17]) (1), (5) and (6)that

J
µ
b f(z) = z +

∞∑

k=2

(

1 + b

k + b

)µ

akzk. (7)

Motivated essentially by the above-mentioned Srivastava-Attiya operator, we
define the operator

J
n,p
b,µ : Ap → Ap
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which is defined as

J
k,p
b,µf(z) = zp +

∞∑

k=1

C
µ
b(k, p)ap+kzp+k (z ∈ U; f(z) ∈ Ap) (8)

where

C
µ
b(k, p) =

∣

∣

∣

∣

(

p + b

k + p + b

)µ∣
∣

∣

∣

(9)

and (throughout this paper unless otherwise mentioned) the parameters µ, b

are constrained as

b ∈ C \ {Z−
0 }; µ ∈ C and p,∈ N.

1. For µ = 1 and b = ν(ν > −1) generalized Libera Bernardi integral
operators [16]

J
k,p
ν,1 f(z) :=

p + ν

zν

∫z

0

tν−1f(t)dt := z+

∞∑

k=1

(

ν + p

k + p + ν

)

ap+kzp+k := Lp
νf(z).

(10)

2. For µ = σ(σ > 0) and b = 1 Jung-Kim-Srivastava integral operator [12]

J
k,p
1,σ f(z) := z +

∞∑

k=1

(

1 + p

k + p + 1

)σ

ap+kzp+k = Ip
σf(z) (11)

closely related to some multiplier transformatiom studied by Flett[6]. Making
use of the operator J

k,p
b,µ , and motivated by earlier works of [1, 2, 3, 8, 9, 15,

13, 20, 21, 24, 25, 26], we introduced a new subclass of analytic functions with
negative coefficients and discuss some some usual properties of the geometric
function theory of this generalized function class.

For 0 ≤ λ ≤ 1, 0 ≤ α < 1 and β ≥ 0, we let P
k,p
b,µ(λ, α, β) be the subclass of

Ap consisting of functions of the form (1) and satisfying the inequality

Re

{
(1 − λ + λ

p
)z(J

k,p
b,µf(z)) ′ + λ

p
z2(J

k,p
b,µf(z)) ′′

p(1 − λ)J
k,p
b,µf(z) + λz(J

k,p
b,µf(z)) ′

− α

}

> β

∣

∣

∣

∣

∣

(1 − λ + λ
p
)z(J

k,p
b,µf(z)) ′ + λ

p
z2(J

k,p
b,µf(z)) ′′

p(1 − λ)J
k,p
b,µf(z) + λz(J

k,p
b,µf(z)) ′

− 1

∣

∣

∣

∣

∣

(12)
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where z ∈ U, J
k,p
b,µf(z) is given by (8). We further let TP

k,p
b,µ(λ, α, β) = P

k,p
b,µ(λ, α, β)

∩Tp.

In particular, for 0 ≤ λ ≤ 1, the class TP
k,p
b,µ(λ, α, β) provides a transition

from k−uniformly starlike functions to k−uniformly convex functions.

Example 1 If λ = 0, then

TP
k,p
b,µ(0, α, β) ≡TS

k,p
b,µ(α, β) := Re

{
1

p

z(J
k,p
b,µf(z) ′)

J
k,p
b,µf(z)

− α

}

>β

∣

∣

∣

∣

∣

1

p

z(J
k,p
b,µf(z)) ′

J
k,p
b,µf(z)

− 1

∣

∣

∣

∣

∣

, z ∈ U.

(13)

Example 2 If λ = 1, then

TP
k,p
b,µ(1, α, β) ≡UCT

k,p
b,µ(α, β) := Re

{
1

p
[1 +

z(J
k,p
b,µf(z)) ′′

(J
k,p
b,µf(z)) ′

] − α

}

>β

∣

∣

∣

∣

∣

1

p
[1 +

z(J
k,p
b,µf(z)) ′′

(J
k,p
b,µf(z)) ′

] − 1

∣

∣

∣

∣

∣

, z ∈ U.

(14)

Example 3 For µ = 1, b = ν(ν > −1) and f(z)is as defined in (10) is in

L
k,p
ν (λ, α, β) if

Re

(

(1 − λ + λ
p
)z(L

p
νf(z)) ′ + λ

p
z2(L

p
νf(z)) ′′

p(1 − λ)L
p
νf(z) + λz(L

p
νf(z)) ′

− α

)

> β

∣

∣

∣

∣

∣

(1 − λ + λ
p
)z(L

p
νf(z)) ′ + λ

p
z2(L

p
νf(z)) ′′

p(1 − λ)L
p
νf(z) + λz(L

p
νf(z)) ′

− 1

∣

∣

∣

∣

∣

, z ∈ U.

(15)

Also, let L
p
ν(λ, α, β) ∩ Tp = T Lp

ν(λ, α, β).

Example 4 For µ = σ(σ > 0), b = 1 and f(z) is defined in (11), is in

I
p
σ(λ, α, β) if

Re

(

(1 − λ + λ
p
)z(I

p
σf(z)) ′ + λ

p
z2(I

p
σf(z)) ′′

p(1 − λ)I
p
σf(z) + λz(I

p
σf(z)) ′

− α

)

> β

∣

∣

∣

∣

∣

(1 − λ + λ
p
)z(I

p
σf(z)) ′ + λ

p
z2(I

p
σf(z)) ′′

p(1 − λ)I
p
σf(z) + λz(I

p
σf(z)) ′

− 1

∣

∣

∣

∣

∣

, z ∈ U.

(16)

Also, let I
p
σ(λ, α, β) ∩ Tp = T Ip

σ(λ, α, β).
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The main object of this paper is to study the coefficient bounds, extreme
points and radius of starlikeness for functions belong to the generalized class
TP

k,p
b,µ(λ, α, β) empolying the technique of Silverman[18] and also derive re-

sults for the modified Hadamard products of functions belonging to the class
TP

k,p
b,µ(λ, α, β)using the techniques of Schild and Silverman [19]

2 Coefficient Bounds

In this section we obtain a necessary and sufficient condition for functions f(z)

in the classes P
k,p
b,µ(λ, α, β) and TP

k,p
b,µ(λ, α, β).

Theorem 1 A function f(z) of the form (1) is in P
k,p
b,µ(λ, α, β) if

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)||ap+k| ≤ p2(1 − α), (1)

0 ≤ λ ≤ 1, −1 ≤ α < 1, β ≥ 0.

Proof. It suffices to show that

β

∣

∣

∣

∣

∣

(1 − λ + λ
p
)z(J

k,p
b,µf(z)) ′ + λ

p
z2(J

k,p
b,µf(z)) ′′

p(1 − λ)J
k,p
b,µf(z) + λz(J

k,p
b,µf(z)) ′

− 1

∣

∣

∣

∣

∣

− Re

{
(1 − λ + λ

p
)z(J

k,p
b,µf(z)) ′ + λ

p
z2(J

k,p
b,µf(z)) ′′

p(1 − λ)J
k,p
b,µf(z) + λz(J

k,p
b,µf(z)) ′

− 1

}

≤ 1 − α

We have

β

∣

∣

∣

∣

∣

(1 − λ + λ
p
)z(J

k,p
b,µf(z)) ′ + λ

p
z2(J

k,p
b,µf(z)) ′′

p(1 − λ)J
k,p
b,µf(z) + λz(J

k,p
b,µf(z)) ′

− 1

∣

∣

∣

∣

∣

− Re

{
(1 − λ + λ

p
)z(J

k,p
b,µf(z)) ′ + λ

p
z2(J

k,p
b,µf(z)) ′′

p(1 − λ)J
k,p
b,µf(z) + λz(J

k,p
b,µf(z)) ′

− 1

}

≤ (1 + β)

∣

∣

∣

∣

∣

(1 − λ + λ
p
)z(J

k,p
b,µf(z)) ′ + λ

p
z2(J

k,p
b,µf(z)) ′′

p(1 − λ)J
k,p
b,µf(z) + λz(J

k,p
b,µf(z)) ′

− 1

∣

∣

∣

∣

∣

≤

(1 + β)
∞∑

k=1

k[p+kλ
p

]|C
µ
b(k, p)||ap+k|

p −
∞∑

k=1

[p + kλ]|C
µ
b(k, p)||ap+k|

.
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This last expression is bounded above by (1 − α) if

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)] |C
µ
b(k, p)| |ap+k| ≤ p2(1 − α)

and hence the proof is complete. �

Theorem 2 A necessary and sufficient condition for f(z) of the form (2) to

be in the class TP
k,p
b,µ(λ, α, β), −1 ≤ α < 1, 0 ≤ λ ≤ 1, β ≥ 0 is that

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)] |C
µ
b(k, p)|ap+k ≤ p2(1 − α), (2)

Proof. In view of Theorem 1, we need only to prove the necessity. If
f ∈ P

k,p
b,µ(λ, α, β) and z is real then

1 −
∞∑

k=1

(p+k
p

)[p+kλ
p

]|C
µ
b(k, p)|ap+k|z|k

1 −
∞∑

k=1

[p+kλ
p

]|C
µ
b(k, p)|ap+k|z|k

− α ≥ β

∞∑

k=1

k[p+kλ
p

]|C
µ
b(k, p)|ap+k|z|k

1 −
∞∑

k=1

[p+kλ
p

]|C
µ
b(k, p)ap+k|z|k

Letting z → 1 along the real axis, we obtain the desired inequality

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)| ap+k ≤ p2(1 − α).

�

In view of the Examples 1 to 4 in Section 1 and Theorem 2, we have following
corollaries for the classes defined in these examples.

Corollary 1 A necessary and sufficient condition for f(z) of the form (2) to

be in the class TS
k,p
b,µ(α, β), 0 ≤ α < 1, β ≥ 0 is that

∞∑

k=1

[k(1 + β) + p(1 − α)]|C
µ
b(k, p)| ap+k ≤ p(1 − α),

Corollary 2 A necessary and sufficient condition for f(z) of the form (2) to

be in the class UCT
k,p
b,µ(α, β), 0 ≤ α < 1, β ≥ 0 is that

∞∑

k=1

(p + k)[k(1 + β) + p(1 − α)]|C
µ
b(k, p)| ap+k ≤ p2(1 − α),
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Corollary 3 A necessary and sufficient condition for f(z) of the form (2) to

be in the class TL
k,p
ν (λ, α, β), 0 ≤ α < 1, β ≥ 0 is that

∞∑

k=1

(p + kλ)[k(1 + β) + p(1 − α)]

(

p + ν

k + p + ν

)

ap+k ≤ p2(1 − α).

Corollary 4 A necessary and sufficient condition for f(z) of the form (2) to

be in the class T Ip
σ(λ, α, β), 0 ≤ α < 1, β ≥ 0 is that

∞∑

k=1

(p + kλ)[k(1 + β) + p(1 − α)]

(

1 + p

k + p + 1

)σ

ap+k ≤ p2(1 − α).

Corollary 5 If f ∈ TP
k,p
b,µ(λ, α, β), then

ap+k ≤
p2(1 − α)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

, k ≥ 1, (3)

where 0 ≤ λ ≤ 1, −1 ≤ α < 1 and β ≥ 0. Equality in (3) holds for the

function

f(z) = z −
p2(1 − α)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

zp+k (p ∈ N). (4)

It is of interest to note that ,when p = 1 and k = n − 1, the above results
reduces to the results studied in [2, 8, 9, 20, 21] Similarly many known results
can be obtained as particular cases of the following theorems, so we omit
stating the particular cases for the following theorems.

3 Closure Properties

Theorem 1 Let

fp(z) = zp (p ∈ N) and

fp+k(z) = zp −
p2(1 − α)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

zp+k. (1)

Then f ∈ TP
k,p
b,µ(λ, α, β), if and only if it can be expressed in the form

f(z) =

∞∑

k=0

ωp+kfp+k(z), ωp+k ≥ 0,

∞∑

k=0

ωp+k = 1. (2)
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Proof. Let us suppose that f(z) is given by (2),that is by

f(z) = zp −

∞∑

k=1

p2(1 − α)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

ωp+kzp+k.

Then, since

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)| p2(1 − α)

p2(1 − α)[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

ωp+k

=

∞∑

k=1

ωp+k = 1 − ωp ≤ 1.

Thus f ∈ TP
k,p
b,µ(λ, α, β). Conversely, let us have f ∈ TP

k,p
b,µ(λ, α, β). Then by

using (3), we set

ωp+k =
[p + kλ][k(1 + β) + p(1 − α)]|C

µ
b(k, p)|

p2(1 − α)
ap+k, (k ∈ N)

and ωp = 1−
∞∑

k=1

ωp+k,we can readily see that f(z) can be expressed precisely

as in (1).This evidently completes the proof of Theorem 1. �

Theorem 2 The class TP
k,p
b,µ(λ, α, β) is a convex set.

Proof. Let the function

fj(z) = zp −

∞∑

k=1

ap+k,jz
p+k, (ap+k,j ≥ 0, p ∈ N; j = 1, 2...) (3)

be in the class TP
k,p
b,µ(λ, α, β). It sufficient to show that the function h(z) defined

by

h(z) = ηf1(z) + (1 − η)f2(z), 0 ≤ η ≤ 1,

is in the class TP
k,p
b,µ(λ, α, β). Since

h(z) = zp −

∞∑

k=1

[ηap+k,1 + (1 − η)ap+k,2]z
p+k,
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an easy computation with the aid of Theorem 2 gives,

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]η|C
µ
b(k, p)|ap+k,1

+

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)](1 − η)|C
µ
b(k, p)|ap+k,2

≤ p2η(1 − α) + p2(1 − η)(1 − α)

≤ p2(1 − α),

which implies that h ∈ TP
k,p
b,µ(λ, α, β). Hence TP

k,p
b,µ(λ, α, β) is convex. �

Now we provide the radii of p − valently close-to-convexity, starlikeness
and convexity for the class TP

k,p
b,µ(λ, α, β).

Theorem 3 Let the function f(z) defined by (2) be in the class TP
k,p
b,µ(λ, α, β).

Then f(z) is p-valently close-to-convex of order δ (0 ≤ δ < p) in the disc

|z| < r1, where

r1 := inf
k∈N

[

(1 − δ)[k(1 + β) + p(1 − α)][p + kλ]|C
µ
b(k, p)|

p2(p + k)(1 − α)

]

1
k

. (4)

The result is sharp, with extremal function f(z) given by (1).

Proof. Given f ∈ Tp, and f is close-to-convex of order δ, we have
∣

∣

∣

∣

f ′(z)

zp−1
− p

∣

∣

∣

∣

< p − δ. (5)

For the left hand side of (5) we have

∣

∣

∣

∣

f ′(z)

zp−1
− p

∣

∣

∣

∣

≤

∞∑

k=1

(p + k)ap+k|z|k.

The last expression is less than p − δ if

∞∑

k=1

p + k

p − δ
ap+k|z|k < 1.

Using the fact, that f ∈ TP
k,p
b,µ(λ, α, β) if and only if

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)
an ≤ 1,
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We can say (5) is true if

p + k

p − δ
|z|k ≤

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)
an

Or, equivalently,

|z|k =

[

(p − δ)[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(p + k)(1 − α)

]

,

the last inequality leads us immediately to the disc |z| < r1, where r1 given by
(4)and the proof of Theorem 3 is completed. �

Theorem 4 If f ∈ TP
k,p
b,µ(λ, α, β), then

(i) f is p-valently starlike of order δ(0 ≤ δ < p) in the disc |z| < r2; that is,

Re
{

zf′(z)

f(z)

}
> δ, where

r2 = inf
k∈N

[(

p − δ

p + k − δ

)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

]

1
k

. (6)

(ii) f is convex of order δ (0 ≤ δ < p) in the unit disc |z| < r3, that is

Re
{

1 +
zf′′(z)

f′(z)

}
> δ, where

r3 = inf
k∈N

[(

p − δ

(k + p)(p + k − δ)

)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

]

1
k

.

(7)

Each of these results are sharp for the extremal function f(z) given by (1).

Proof.(i) Given f ∈ Tp, and f is starlike of order δ, we have

∣

∣

∣

∣

zf ′(z)

f(z)
− p

∣

∣

∣

∣

< p − δ. (8)

For the left hand side of (8) we have

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤

∞∑

k=1

kap+k |z|k

1 −
∞∑

k=1

ap+k |z|k
.
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The last expression is less than p − δ if

∞∑

k=1

k + p − δ

p − δ
ap+k |z|k < 1.

Using the fact, that f ∈ TP
k,p
b,µ(λ, α, β) if and only if

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]

p2(1 − α)
ap+k|C

µ
b(k, p)| ≤ 1.

We can say (8) is true if

p + k − δ

p − δ
|z|k <

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

Or, equivalently,

|z|k =

[(

p − δ

p + k − δ

)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

]

which yields the starlikeness of the family.

(ii) Using the fact that f is convex if and only if zf ′ is starlike, we can
prove (ii), on lines similar to the proof of (i). �

4 Convolution Results

Let the functions

fj(z) = zp +

∞∑

k=1

aj,p+kzp+k, (p ∈ N = 1, 2, 3, ...)(j = 1, 2) (9)

then the modified Hadamard product of f1(z) and f2(z) is given by

(f1∗f2)(z) = zp−

∞∑

n=2

a1,p+ka2,p+k zp+k = (f2∗f1)(z), (a1,p+k ≥ 0; a2,p+k ≥ 0).

Using the techniques of we prove the following results.
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Theorem 5 For functions fj(z)(j = 1, 2) defined by (9), be in the class

TP
k,p
b,µ (λ, α, β). Then (f1 ∗ f2) ∈ TP

k,p
b,µ(λ, ξ, β) where

ξ == 1 −
p2(1 − α)2(1 + β)

[p + λ][(1 + β) + p(1 − α)]2|C
µ
b(1, p)| − p3(1 − α)2

(10)

where C
µ
b(1, p) is given by (9).

Proof. Employing the technique used earlier by Schild and Silverman[19], we
need to find the largest ξ such that

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − ξ)]|C
µ
b(k, p)|

p2(1 − ξ)
a1,p+ka2,p+k ≤ 1, (0 ≤ ξ < 1)

for fj ∈ TP
k,p
b,µ(λ, α, β)(j = 1, 2) where ξ is defined by (10). On the other hand,

under the hypothesis, it follows from (1) and the Cauchy’s-Schwarz inequality
that

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

√
a1,p+ka2,p+k ≤ 1. (11)

Thus we need to find the largest ξ such that

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − ξ)]|C
µ
b(k, p)|

p2(1 − ξ)
a1,p+k a2,p+k

≤

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

√
a1,p+ka2,p+k

or, equivalently that

√
a1,p+ka2,p+k ≤

(1 − ξ)

(1 − α)

[k(1 + β) + p(1 − α)]

[k(1 + β) + p(1 − ξ)]
, (k ≥ 1).

Hence by making use of the inequality (11), it is sufficient to prove that

p2(1 − α)

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

≤
(1 − ξ)

(1 − α)

[k(1 + β) + p(1 − α)]

[k(1 + β) + p(1 − ξ)]

which yields

ξ = Ψ(k) = 1 −
kp2(1 − α)2(1 + β)

[p + kλ][k(1 + β) + p(1 − α)]2|C
µ
b(k, p)| − p3(1 − α)2

(12)
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for k ≥ 1 is an increasing function of k and letting k = 1 in (12), we have

ξ = Ψ(1) = 1 −
p2(1 − α)2(1 + β)

[p + λ][(1 + β) + p(1 − α)]2|C
µ
b(1, p)| − p3(1 − α)2

where C
µ
b(1, p) is given by (9). �

Theorem 6 Let the function f(z) defined by (2) be in the class TP
k,p
b,µ(λ, α, β).

Also let g(z) = zp−
∞∑

k=1

bp+kzp+k for |bp+k| ≤ 1. Then (f ∗g) ∈ TP
k,p
b,µ(λ, α, β).

Proof. Since

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)| |ap+kbp+k|

≤

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|ap+k|bp+k|

≤

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|ap+k

≤ p2(1 − α)

it follows that (f ∗ g) ∈ TP
k,p
b,µ(λ, α, β), by the view of Theorem 2. �

Theorem 7 Let the functions fj(z)(j = 1, 2) defined by (9) be in the class

TP
k,p
b,µ(λ, α, β). Then the function h(z) defined by

h(z) = zp −

∞∑

n=2

(a2
1,p+k + a2

2,p+k)zp+k

is in the class TP
k,p
b,µ(λ, ξ, β), where

ξ = 1 −
2p2(1 − α)2 (1 + β)

[p + λ][(1 + β) + p(1 − α)]2|C
µ
b(1, p)| − 2p3(1 − α)2

where C
µ
b(1, p) is given by (9).
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Proof. By virtue of Theorem 2, it is sufficient to prove that
∞∑

k=1

[p + kλ][k(1 + β) + p(1 − ξ)]|C
µ
b(k, p)|

p2(1 − ξ)
[a2

1,p+k + a2
2,p+k] ≤ 1 (13)

where fj ∈ TP
k,p
b,µ(λ, α, β) we find from (9) and Theorem 2, that

∞∑

k=1

[

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

]2

a2
j,p+k

≤

[

∞∑

k=1

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)
aj,p+k

]2

(14)

≤ 1, (j = 1, 2) (15)

which would readily yield

∞∑

k=1

1

2

[

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

]2

(a2
1,p+k + a2

2,p+k) ≤ 1.

(16)

By comparing (14) and (16), it is easily seen that the inequality (13) will be
satisfied if

[p + kλ][k(1 + β) + p(1 − ξ)]|C
µ
b(k, p)|

p2(1 − ξ)

≤
1

2

[

[p + kλ][k(1 + β) + p(1 − α)]|C
µ
b(k, p)|

p2(1 − α)

]2

, for k ≥ 1.

That is if

ξ = Ψ(k) = 1 −
2p2(1 − α)2 k(1 + β)

[p + kλ][k(1 + β) + p(1 − α)]2|C
µ
b(k, p)| − 2p3(1 − α)2

(17)

SinceΨ(k) is an increasing function of k (k ≥ 1). Taking k = 1 in (17), we
have,

ξ = Ψ(1) = 1 −
2p2(1 − α)2 (1 + β)

[p + λ][(1 + β) + p(1 − α)]2|C
µ
b(1, p)| − 2p3(1 − α)2

which completes the proof. �

Concluding Remarks: In fact, by appropriately selecting the arbitrary
sequences given in (10) and (11), suitably specializing the values of µ, α, β

and p the results presented in this paper would find further applications for
the class of p-valent functions stated in Examples 1 to 4 in Section 1.
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Abstract. Making use of last derivative approximation and weight func-
tion approach, we construct an eighth-order class of three-step methods,
which are consistent with the optimality conjecture of Kung-Traub for
constructing multi-point methods without memory. Per iteration, any
method of the developed class is totally free from derivative evaluation.
Such classes of schemes are more practical when the calculation of deriva-
tives is hard. Error analysis will also be studied. Finally, numerical com-
parisons are made to reveal the reliability of the proposed class.

1 Introduction

The theoretical thorough study of iterative processes for simple roots goes
back at least to the book of Traub [19]. Among questions and ideas which have
been addressed, the problem of computing simple roots by multi-point without
memory methods emerged. To illustrate further in [4], the authors have given
two classes of n-step methods without memory; one including derivative cal-
culation, also known as derivative-involved methods; and one derivative-free
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derivative-free, optimality

169



170 F. Soleymani

class. As an example, they gave the following family of one-parameter methods





yn = xn + βf(xn),

zn = yn − β
f(xn)f(yn)

f(yn)−f(xn)
,

wn = zn −
f(xn)f(yn)

f(zn)−f(xn)
[ 1
f[yn,xn]

− 1
f[zn,yn]

],

xn+1 = wn −
f(xn)f(yn)f(zn)

f(wn)−f(xn)
[ 1
f(wn)−f(yn)

{ 1
f[wn,zn]

− 1
f[zn,yn]

}

− 1
f(zn)−f(xn)

{ 1
f[zn,yn]

− 1
f[yn,xn]

}],

(1)

wherein β ∈ R − {0}, by using inverse interpolation for annihilating the new-
appeared first derivatives of the function in the Steffensen-Newton-Newton
structure. They also conjectured that a multi-point iteration without memory
can achieve the maximum order of convergence 2(n−1), by consuming n, func-
tional evaluations per full cycle. Therefore, (1)’s order end efficiency index are
optimal.

Different methods of various orders have been introduced and improved by
many authors. A complete review on the published papers in this field for the
works from 2000 to 2010 have been given in the book of Iliev and Kyurkchiev
[2]. In [8], the authors considered weight function approach to give some new
classes of optimal Jarratt-type fourth-order methods. Authors in [13] studied a
combination of last derivative approximation and weight function approach to
furnish optimal eighth-order derivative-involved methods. Discussion on new
multiple zero finders when the multiplicity of the roots is available have been
recently introduced by Sharifi et al. in [5]. Note that Soleymani and Hos-
seinabadi in [9] presented a sixth-order derivative-free method including three
steps. The references [10-12] also contain new derivative-free developments in
this active topic of study. For more information, one may consult [15-18].

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

1.5

2.0

Figure 1. The graph of the function f(x).

Derivative-free methods are important when we deal with complicated func-
tions, such as f(x) = cos(sin(x2

√
x))× cos(x3)×arctan(sin(x5+x−1))+x3+1,
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where its plot is given in Figure 1, or we try to find multiple roots of nonlinear
equations (in the case that multiplicity is unknown), [1].

For this cause, this work is devoted to find an optimal three-step class of
iterations without memory in which any method includes four function eval-
uations per cycle to obtain the eighth order of convergence and possess the
optimal efficiency index 1.682. Toward this end, we make use of weight function
approach alongside an approximation for the first derivative of the function for
the quotients of a Steffensen-Newton-Newton structure. The efficiency of our
class is then compared with those available in the literature to show better or
equal results. Some methods from the suggested class are tested numerically
in Section 3 to support the theoretical results given in Section 2. Section 4
includes a short conclusion of the article.

2 Main contribution

To construct a high-order class of methods for solving nonlinear scalar equa-
tions, we take into account the following three-step Steffensen-Newton-Newton
structure

yn = xn −
βf(xn)2

f(wn) − f(xn)
, zn = yn −

f(yn)

f ′(yn)
, xn+1 = zn −

f(zn)

f ′(zn)
, (2)

wherein f(wn) = f(xn+βf(xn)); that is to say wn = xn+βf(xn), β ∈ R− {0}.
This structure possesses the eighth order of convergence, while it is inefficient.
Because it includes 6 evaluations per step and its efficiency index therefore
will be 1.4142, which is the same as Steffensen’s and Newton’s methods. Thus,
in order to contribute and hit the assigned target, we should eliminate the
existent of the derivative calculations without lowering the order, i.e. obtain-
ing a class (family) of order eight with four evaluations of the function per
full cycle only. There are many ways to do so. Among all, we first consider an
approximation for the new-appeared first derivatives f ′(yn) and f ′(zn), and
second make use of the approach of weight functions.

Let f ′(yn) ≈ (f(wn) − f(xn))/(βf(xn)), that is the same approximation as
Steffensen used in the first step of (2). Then, an estimation of the function
f(t), in the open domain D, is taken into consideration as follows: f(t) ≈

w(t) = a0 + a1(t − yn), which its first derivative is w ′(t) = a1. We suppose
this estimation passes the points yn and zn. By substituting the known values
f(t) |yn= f(yn), f(t) |zn= f(zn), we could easily obtain the unknown parame-
ters. Thus, we have a0 = f(yn) and a1 = (f(yn)−f(zn))/(yn−zn) = f[yn, zn].
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Consequently, we have f ′(zn) ≈ f[yn, zn]. Therefore, we suggest the following
iteration






yn = xn −
f(xn)

f[xn,wn]
, wn = xn + βf(xn), β ∈ R − {0},

zn = yn −
f(yn)

f[xn,wn]
P(t),

xn+1 = zn −
f(zn)

f[yn,zn]

(

G(γ) + H(t) + K(ζ)
)

,

(3)

where t = f(y)/f(w), γ = f(y)/f(x), and ζ = f(z)/f(w). P(t), G(γ), H(t) and
K(ζ) are four real-valued weight functions that should be chosen such that the
order of convergence attains the value eight, this is the role of weight function
approach. Taylor’s series expansion around the solution for the first two steps
of (3) gives us

en+1 = − ((c2(1 + c1β)(−1 + P(0))e2
n)/c1)+

+ 1/c2
1(−c1c3(1 + c1β)(2 + c1β)(−1 + P(0))+

+ c2
2(−2 + 4P(0) + c1β(−2 + 5P(0)+

+ c1β(−1 + 2P(0)) − P ′(0)) − P ′(0)))e3
n + O(e4

n),

(4)

where cj = f(j)(α)/j!, j ≥ 1, α is the solution. This shows that P(0) =

1, P ′(0) = 2 + βf[xn, wn] should be selected in order to attain at fourth-
order convergence. By taking into account this, and similar expansion up to
the seventh term, we obtain for (3) now that G(0) = 1, G ′(0) = H(0) =K(0) =

H ′(0) = H ′′(0) = G(3)(0) = 0, K ′(0) = 2 + βf[xn, wn] and G ′′(0) = 2/(1 +

βf[xn, wn]) should be chosen in order to arrive at seventh-order convergence
as follows

en+1 =
−1

12c6
1

((1 + βc1)c
4
2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1)−

− P ′′(0)))(3(2 + βc1)(6 + 2βc1(3 + βc1)−

− P ′′(0)) + H(3)(0)))e7
n + O(e8

n).

(5)

Obviously, now to gain the optimal order eight with using only four evalua-
tions of the function we should find H(3)(0) in such a way that order goes up
to eight. This is summarized in Theorem 1.

Theorem 1 Let α ∈ D, be a simple zero of sufficiently differentiable function
f : D ⊆ R → R and let cj = f(j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α,
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then, (i): the order of convergence of the solution by the three-step class of
iterations without memory methods defined in (3) is eight, when P(0) = 1,

P ′(0) = 2 + βf[xn, wn], |P ′′(0)| < ∞, |P(3)(0)| < ∞, and





G(0) = 1,G ′(0) = G(3)(0) = 0,G ′′(0) = 2
1+βf[xn,wn]

, and |G(4)(0)| < ∞,

H(0) = H ′(0) = H ′′(0) = 0, and |H(4)(0)| < ∞,

H(3)(0) = −3(2 + βf[xn, wn])(6 + 2βf[xn, wn](3 + βf[xn, wn]) − P ′′(0)),

K(0) = 0, K ′(0) = 2 + βf[xn, wn],

(6)

and (ii): this solution reads the error equation

en+1 =
−1

48c7
1

((1 + βc1)c
2
2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0)))

×(96βc1(1 + βc1)
2c2c3 − 24c2

1(1 + βc1)
2c4 + c3

2(−168 + 48P ′′(0) − 8P(3)(0)

+G(4)(0) + c1β(−4(84 + 3c1β(16 + 2c1β − P ′′(0)) − 12P ′′(0) + P(3)(0))

+(2 + c1β)(2 + c1β(2 + c1β))G(4)(0)) + H(4)(0))))e8
n + O(e9

n). (7)

Proof. We expand any term of (3) around the solution α in the nth iterate
by considering (6). Thus, we write

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n + O(e9

n). (8)

Accordingly, we attain

yn = α + (β +
1

c1

)c2e2
n +

(−(2 + (2 + βc1)βc1)c2
2 + βc1(1 + βc1)(2 + βc1)c3)

c2
1

e3
n

+ . . . + O(e9
n). (9)

Now we should expand f(yn) around the simple root by using (9). We obtain

f(yn) = (1 + βc1)c2e
2
n + (−

(2 + βc1(2 + βc1))c
2
2

c1

+ (1 + βc1)(2 + βc1)c3)e
3
n

+
1

c2
1

(5 + βc1(7 + βc1(4 + βc1)))c
3
2 − c1c2c3(7 + βc1(10 + βc1(7 + 2βc1)))

+c2
1(1 + βc1)(3 + βc1(3 + βc1))c4)e

4
n + . . . + O(e8

n). (10)

Using (10) and the second step of (3), we attain

yn −
f(yn)

f[xn, wn]
= α +

(1 + βc1)(2 + βc1)c
2
2

c2
1

e3
n + . . . + O(e9

n). (11)
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Additionally, we attain that

zn = α +
((1 + βc1)c2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0))))

2c3
1

e4
n

+ . . . + O(e9
n). (12)

Moreover, we obtain now

f(zn) =
(1 + βc1)c2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0)))

2c2
1

e
4
n

−
1

6c3
1

(6c
2
1(1 + βc1)

2
(2 + βc1)c

2
3 + 6c

2
1(1 + βc1)

2
(2 + βc1)c2c4 − 3c1(1 + βc1)c

2
2c3(64

+2βc1(46 + βc1(22 + 3βc1)) − 3(2 + βc1)P
′′
(0)) + c

4
2(6(36 + c1β(80 + 3c1β(22 + βc1(8

+βc1)))) − 3(10 + 3βc1(5 + 2βc1))P
′′(0) + (1 + βc1)P

(3)(0)))e5
n + . . . + O(e9

n).

(13)
Using (9)-(13), we have

zn −
f(zn)

f[yn, zn]
= α

+
((1 + βc1)

2c3
2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0))))e6
n

2c5
1

+ . . . + O(e9
n). (14)

Now we also for the last step have (without considering (6)) xn+1 − α =

− 1
2c3

1

(c2(1+c1β)(−1+G(0)+H(0)+K(0))(−2c1c3(1+c1β)+c2
2(10+2c1β(5+c1β)−

P ′′(0))))e4
n + 1

6c4

1

(6c2
1c2

3(1 + c1β)2(2 + c1β)(−1 + G(0) + H(0) + K(0)) + 6c2
1c2c4(1 +

c1β)2(2+c1β)(−1+G(0)+H(0)+K(0))−3c1c2
2c3(1+c1β)(2(−32+32G(0)+32H(0)+

32K(0)−G ′(0)+c1β(−46+46G(0)+46H(0)+46K(0)+c1β((22+3c1β)(−1+G(0)+

H(0) + K(0)) − G ′(0)) − 2G ′(0) − H ′(0)) − H ′(0)) − 3(2 + c1β)(−1 + G(0) + H(0) +

K(0))P ′′(0))+c4
2(6c4

1β4(3(−1+G(0)+H(0)+K(0))−G ′(0))+6(−36+36G(0)+36H(0)+

36K(0)−5G ′(0)−5H ′(0))+6c3
1β3(−24+24G(0)+24H(0)+24K(0)−7G ′(0)−H ′(0))+

3(10 − 10G(0) − 10H(0) − 10K(0) + G ′(0) + H ′(0))P ′′(0) + 3c2
1β2(4(−33 + 33G(0) +

33H(0)+33K(0)−8G ′(0)−3H ′(0))+ (−6(−1+G(0)+H(0)+K(0))+G ′(0))P ′′(0))+

(−1+G(0)+H(0)+K(0))P(3)(0)+c1β(30(16G(0)+16H(0)+16K(0)−3G ′(0)−2(8+

H ′(0))) + 3(15 − 15G(0) − 15H(0) − 15K(0) + 2G ′(0) + H ′(0))P ′′(0) + (−1 + G(0) +

H(0) + K(0))P(3)(0))))e5
n + · · · + O(e9

n). Therefore, by combining this, (14) and
the terms of (6) in the last step of (3), we have the error equation (7). This
completes the proof and shows that our multi-point class of methods arrives
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at optimal eighth-order convergence by using only four pieces of information
and considering (6). �

Clearly, any method from our class of derivative-free methods reaches the
optimal efficiency index 81/4 ≈ 1.682, which is greater than that of Newton’s
and Steffensen’s 21/2 ≈ 1.414, 61/4 ≈ 1.565 of the sixth-order methods given
in [3, 9], 41/3 ≈ 1.587 of method given in [14], and is equal to that of (1) and
the classes of methods in [6, 7].

To provide the simplest case of our class of methods; by considering (6), we
suggest the following method without memory including three steps






yn = xn −
f(xn)

f[xn,wn]
, wn = xn + f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 + f[xn, wn])

f(yn)

f(wn)
},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 + 1

1+f[xn,wn]
(

f(yn)

f(xn)
)2 − ((2 + f[xn, wn])(3

+f[xn, wn](3 + f[xn, wn])))(
f(yn)

f(wn)
)3 + (2 + f[xn, wn])

f(zn)

f(wn)
},

(15)

where its error equation satisfies

en+1 = (1/(c7
1))(1 + c1)

2c2
2((5 + c1(5 + c1))c

2
2

− c1(1 + c1)c3)((7 + c1(7 + c1))c
3
2 − 4c1(1 + c1)c2c3+

+ c2
1(1 + c1)c4)e

8
n + O(e9

n).

(16)

Remark 1. In order to implement and code the methods from the class (3),
we should be careful that after computing f[xn, wn] in the first step, its value
will be used throughout the iteration step, which in fact does not increase the
computational load of the novel optimal eighth-order derivative-free methods.

A very efficient but complicated optimal three-step method from the pro-
posed class (3) can be





yn = xn −
f(xn)

f[xn,wn]
, wn = xn + f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 + f[xn , wn ])

f(yn)

f(wn)
+ (5 + f[xn , wn ](5

+f[xn , wn ]))
(

f(yn)

f(wn)

)2

},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 + 1

1+f[xn,wn]
(

f(yn)

f(xn)
)2 − ((2 + f[xn , wn ])(3 + f[xn , wn ](3

+f[xn , wn ]) − 5 − f[xn , wn ](5 + f[xn , wn ])))(
f(yn)

f(wn)
)3 − (13 + f[xn , wn ](26

+f[xn , wn ](21 + f[xn , wn ](8 + f[xn , wn ]))))(
f(yn)

f(wn)
)4 + (2 + f[xn , wn ])

f(zn)

f(wn)
},

(17)

where its error equation satisfies

en+1 =
(1 + c1)

4c2
2c3(4c2c3 − c1c4)

c5
1

e8
n + O(e9

n). (18)
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We can easily now observe that the error equation (18) is very small. In fact,
we have obtained the finest error equations for optimal three-step derivative-
free methods without memory by introducing (17).

Note that if we choose very small value for the nonzero parameter β in (3),
the error equations will be mostly refined and the numerical results will be
better, for example we can have





yn = xn −
f(xn)

f[xn,wn]
, wn = xn + 0.01f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 + 0.01f[xn, wn])

f(yn)

f(wn)
},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 + 1

1+0.01f[xn,wn]
(

f(yn)

f(xn)
)2 − ((2 + 0.01f[xn, wn])(3

+0.01f[xn, wn](3 + 0.01f[xn, wn])))(
f(yn)

f(wn)
)3 + (2 + 0.01f[xn, wn])

f(zn)

f(wn)
}.

(19)

Notice that if we use backward finite difference approximation in the first
step of our cycle (2), by changing the weight functions suitably, we can give
another class which is similar to (3), i.e. we can have






yn = xn −
f(xn)

f[xn,wn]
, wn = xn − βf(xn), β ∈ R − {0},

zn = yn −
f(yn)

f[xn,wn]
P(t),

xn+1 = zn −
f(zn)

f[yn,zn]

(

G(γ) + H(t) + K(ζ)
)

,

(20)

where t = f(y)/f(w), γ = f(y)/f(x), and ζ = f(z)/f(w). And P(t), G(γ), H(t)

and K(ζ) are four real-valued weight functions that should be chosen such that
the order of convergence arrives at eight. This is illustrated in Theorem 2.

Theorem 2 Let α ∈ D, be a simple zero of sufficiently differentiable function
f : D ⊆ R → R and let that cj = f(j)(α)/j!, j ≥ 1. If x0 is sufficiently close to
α, then, (i): the local order of convergence of the solution by the three-step
class of without memory methods defined in (20) is eight, when P(0) = 1,

P ′(0) = 2 − βf[xn, wn], |P ′′(0)| < ∞, |P(3)(0)| < ∞, and






G(3)(0) = 0, |G(0)| < ∞, |G ′(0)| < ∞, |G ′′(0)| < ∞, and |G(4)(0)| < ∞,

H(0) = 1 − G(0) − K(0), and H ′(0) = G ′(0)(−1 + βf[xn, wn]),

H ′′(0) = −(−1 + βf[xn, wn])(2 + (−1 + βf[xn, wn])G ′′(0)), |H(4)(0)| < ∞,

H(3)(0) = 3(−2 + βf[xn, wn])(6 + 2βf[xn, wn](−3 + βf[xn, wn]) − P ′′(0)),

K ′(0) = 2 − βf[xn, wn], |K(0)| < ∞,

(21)
and (ii): this solution reads the error equation

en+1 =
1

48c7
1

c2
2(−1 + c1β)(2c1c3(−1 + c1β) + c2

2(10 + 2c1β(−5 + c1β) − P ′′(0)))
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×(96c1c2c3(−1 + c1β)2 − 24c2
1c4(−1 + c1β)2 + c3

2(−168 + 48P ′′(0) − 8P(3)(0)

+G(4)(0) + c1β(4(84 − 12P ′′(0) + 3c1β(−16 + 2c1β + P ′′(0)) + P(3)(0))

+(−2 + c1β)(2 + c1β(−2 + c1β))G(4)(0)) + H(4)(0)))e8
n + O(e9

n). (22)

Proof. The proof of this theorem is similar to the previous one, hence it is
omitted. �

An example from this new class using backward finite difference in this first
step can be





yn = xn −
f(xn)

f[xn,wn]
, wn = xn − f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 − f[xn, wn])

f(yn)

f(wn)
},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 − (−1 + f[xn, wn])(

f(yn)

f(wn)
)2 − ((−2 + f[xn, wn])(3

+f[xn, wn](−3 + f[xn, wn])))(
f(yn)

f(wn)
)3 + (2 − f[xn, wn])

f(zn)

f(wn)
},

(23)

where its error equation satisfies

en+1 = (1/(c7
1))(−1 + c1)

2c2
2((5 + c1(−5 + c1))c

2
2

− c1(−1 + c1)c3)((7 + c1(−7 + c1))c
3
2 + 4c1(−1 + c1)c2c3

− c2
1(−1 + c1)c4)e

8
n + O(e9

n).

(24)

3 Numerical results

We check the effectiveness of the novel derivative-free method (15), (17) and
(19) of our proposed class of iterative methods (3) here. Due to this, we have
compared them with the optimal eighth-order family of Kung and Traub (1),
where β = 1, using the examples given below. The reason that we do not in-
clude other root solvers for comparisons is that, the derivative-involved meth-
ods consists of derivative calculation, which is not mostly easy-to-calculate
for hard test functions as well as the other existing derivative-free methods of
lower orders do not have any dominance to the optimal 8th-order methods for
sufficiently close initial guess.

f1(x) = cos(sin(x2
√

x)) × cos(x3) × arctan(sin(x5 + x−1)) + x3 + 1,

α1 ≈ −0.59 . . . x0 = −0.65,

f2(x) = arccot(x−2) + x2 + x sin(x2) + x3 − 6,

α2 ≈ 1.27 . . . x0 = 1.38.

The results of comparisons are given in Tables 1 and 2 in terms of the
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number significant digits for each test function after the specified number of
iterations, that is, e.g. 0.8e − 3949 shows that the absolute value of the given
nonlinear function f1, after four iterations is zero up to 3949 decimal places.
For numerical comparisons, the stopping criterion is |f(xn)| < 1.E−6000. MAT-

LAB 7.6 has been used in all computations using VPA command. As can be
seen, numerical results are in concordance with the theory developed in this
paper.

In the examples, the new methods improve the corresponding classical meth-
ods. The new methods inherit the merit of the optimal fourth-order two-step
methods with regards to application of divided differences, weight function
and high efficiency index, which is confirmed by the results in Tables 1 and 2.
According to Tables 1 and 2, under a fair comparison structure, our proposed
methods from the optimal class (3) perform well.

We mention that our primary aim was to construct a general class of very
efficient multi-point methods and to check the Kung-Traub conjecture for the
value n = 4, not to show off with thousands of accurate decimal digits. The
achieved accuracy of calculated approximations is certainly exceptional, maybe
provocative. Nonetheless, it may initiate a new challenge for constructing more
efficient methods.

Table 1. Convergence study for the test function f1

Methods |f1(x1)| |f1(x2)| |f1(x3)| |f1(x4)|

(1) 0.1e − 6 0.6e − 56 0.1e − 450 0.1e − 3608

(15) 0.3e − 7 0.3e − 61 0.3e − 493 0.8e − 3949

(17) 0.1e − 6 0.2e − 55 0.3e − 446 0.8e − 3573

(19) 0.2e − 8 0.5e − 71 0.7e − 573 0.5e − 4588

Table 2. Convergence study for the test function f2

Methods |f2(x1)| |f2(x2)| |f2(x3)| |f2(x4)|

(1) 0.7e − 5 0.1e − 49 0.3e − 407 0.4e − 3268

(15) 0.3e − 5 0.1e − 51 0.4e − 422 0.5e − 3387

(17) 0.6e − 5 0.7e − 50 0.3e − 409 0.3e − 3284

(19) 0.1e − 9 0.8e − 91 0.1e − 740 0.8e − 5938

Constructing with memory methods according to the main class (3) in this
paper, by introducing an iteration for the nonzero parameter β can be consid-
ered for future works in this field.
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4 Concluding remarks

In order to approximate the simple roots of uni-variate nonlinear equations, we
have developed a class of four-point three-step methods in which no deriva-
tive evaluations per full iteration is required. Per cycle, any method of our
class, such as (17), needs only four pieces of information to reach the conver-
gence rate eight. Therefore, this class satisfies the conjecture of Kung-Traub
for constructing optimal high-order multi-point without memory methods for
solving nonlinear equations. Numerical examples were considered to reveal the
accuracy of the methods from the class.
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Abstract. In the paper, with the aid of weighted sharing we investigate
the uniqueness problems of meromorphic functions concerning differen-
tial polynomials that share one value and prove three uniqueness results
which rectify, improve and supplement some recent results of [3].

1 Introduction

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [7, 18, 21]. Let E denote
any set of positive real numbers of finite linear measure, not necessarily the
same at each occurrence. For a non-constant meromorphic function f, we de-
note by T(r, f) the Nevanlinna characteristic of f and by S(r, f) any quantity
satisfying S(r, f) = o{T(r, f)}(r → ∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions. We say that f and
g share the value a CM (counting multiplicities), if f − a and g − a have the
same zeros with the same multiplicities. Similarly, we say that f and g share
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the value a IM, provided that f − a and g − a have the same zeros ignoring
multiplicities. Throughout this paper, we need the following definition.

Θ(a, f) = 1 − lim sup
r−→∞

N(r, a; f)

T(r, f)
,

where a is a value in the extended complex plane.
In the recent past a number of authors worked on the uniqueness problem

of meromorphic functions when differential polynomials generated by them
share certain values (cf. [1, 2, 4, 5, 8, 11]). In [8] following question was asked:
What can be said if two nonlinear differential polynomials generated by two
meromorphic functions share 1 CM ?

Since then the progress to investigate the uniqueness of meromorphic func-
tions which are the generating functions of different types of nonlinear differ-
ential polynomials is remarkable and continuous efforts are being put in to
relax the hypothesis of the results. (see [1], [4], [5], [14], [15]). In 1997, Yang
and Hua [17] proved the following result.

Theorem 1 Let f and g be two non-constant meromorphic functions, n(≥ 11)

an integer and a ∈ C− {0}. If fnf ′ and gng ′ share the value a CM, then either

f = tg for some (n+1)th root of unity 1 or f(z) = c1e
cz, g(z) = c2e

−cz, where

c, c1, c2 are constants satisfying (c1c2)
n+1c2 = −a2.

In 2004 Lin-Yi [15] proved the following results.

Theorem 2 Let f and g be two non-constant meromorphic functions satisfy-

ing Θ(∞, f) > 2/(n + 1), n ≥ 12 an integer. If fn(f − 1)f ′ and gn(g − 1)g ′

share the value 1 CM, then f ≡ g.

Theorem 3 Let f and g be two non-constant meromorphic functions, n ≥ 13

an integer. If fn(f − 1)2f ′ and gn(g − 1)2g ′ share the value 1 CM, then f ≡ g.

Also in [4] Fang-Fang proved the following theorem.

Theorem 4 Let f and g be two non-constant meromorphic functions and n(≥

28) be an integer. If fn(f − 1)2f ′ and gn(g − 1)2g ′ share the value 1 IM, then

f ≡ g.

Recently, in [3] Dyavanal proved the following results, which to the knowledge
of the authors probably are the first approach in which in order to consider
the value sharing of two differential polynomials the multiplicities of zeros and
poles of f and g are taken into account.
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Theorem 5 (Theorem 1.1, [3]) Let f and g be two non-constant meromor-

phic functions, whose zeros and poles are of multiplicities at least s, where s

is a positive integer. Let n ≥ 2 be an integer satisfying (n + 1)s ≥ 12. If fnf ′

and gng ′ share the value 1 CM, then either f = dg for some (n+ 1)-th root of

unity 1 or f(z) = c1e
cz, g(z) = c2e

−cz, where c, c1, c2 are constants satisfying

(c1c2)
n+1c2 = −1.

Theorem 6 (Theorem 1.2, [3]) Let f and g be two non-constant meromor-

phic functions, whose zeros and poles are of multiplicities at least s, where s is

a positive integer and Θ(∞, f) > 2/(n + 1). Let n ≥ 4 be an integer satisfying

(n+1)s ≥ 12. If fn(f−1)f ′ and gn(g−1)g ′ share the value 1 CM, then f ≡ g.

Theorem 7 (Theorem 1.3, [3]) Let f and g be two non-constant meromor-

phic functions, whose zeros and poles are of multiplicities at least s, where s

is a positive integer. Let n ≥ 3 be an integer satisfying (n + 1)s ≥ 12. If

fn(f − 1)2f ′ and gn(g − 1)2g ′ share the value 1 CM, then f ≡ g.

The results are new and seems fine. However in page 7, in the proof of Theorem
1.2 [3] there is a serious lacuna when a counting function is being elaborated
and then restricted in terms of Nevanlinna’s characteristic function.

Actually in Page 7, line 8 onwards from bottom should be

N

(

r,
1

F

)

= N

[

r,
1

fn+1(f − n+2
n+1

)

]

≤
1

s(n + 1)
N

(

r,
1

fn+1

)

+N

(

r,
1

f − n+2
n+1

)

6≤
1

s(n + 1)
N

(

r,
1

F

)

,

since nowhere in the paper it has been assumed that the zeros of f−
n + 2

n + 1
are

of multiplicities s(n + 1). Since the counting function just mentioned above
plays a vital role in the proofs of Theorems 1.2, 1.3 and 1.5 in [3], the validity
of the three theorems namely Theorems 1.2, 1.3 and 1.5 in [3] cease to hold.

So it would be quite natural to investigate the accurate forms of the above
theorems and at the same time to combine all the theorems in [3] to a single
one. In this paper we are taking up these problems. In fact, we will not only
rectify the above three theorems but also improve and supplement all the
theorems of [3] by relaxing the nature of sharing the values with the aid of the
notion of weighted sharing of values defined as follows.
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Definition 1 Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we

denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity

m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a;g),

we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is

an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g

with multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k)

if and only if it is an a-point of g with multiplicity n(> k), where m is not

necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.

Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k.

Also we note that f, g share a value a IM or CM if and only if f, g share

(a, 0) or (a,∞) respectively.

We now state the main results of the paper.

Theorem 8 Let f and g be two non-constant meromorphic functions, whose

zeros and poles are of multiplicities at least s, where s is a positive integer.

Let fn(f − 1)mf ′ and gn(g − 1)mg ′ share (b, 2) where m ≥ 0, n > max{m +

1 + 2m/s, m + 1 + 9/s} are integers and b(6= 0) is a constant. Then each of

the following holds:

(i) If m = 0, then either f = tg for some (n + 1)-th root of unity 1 or f(z) =

c1e
cz, g(z) = c2e

−cz, where c, c1, c2 are constants satisfying (c1c2)
n+1c2 =

−b2.

(ii) If m = 1 and Θ(∞, f) + Θ(∞, g) > 4/(n + 1) or m = 2, then f ≡ g.

(iii) If m ≥ 3, then

fn+1

m∑

i=0

mCi
(−1)i

n + m − i + 1
fm−i ≡ gn+1

m∑

i=0

mCi
(−1)i

n + m − i + 1
gm−i.

Remark 1 Putting s = 1 in the above theorem we get the rectified, improved

as well as generalised form of all the theorems in [3].

Theorem 9 Let f and g be two non-constant meromorphic functions, whose

zeros and poles are of multiplicities at least s, where s is a positive integer.

Let fn(f − 1)mf ′ and gn(g − 1)mg ′ share (b, 1) where m ≥ 0, n > max{m +

1 + 2m/s, m + 2 + 21/2s} are integers and b(6= 0) is a constant. Then the

conclusions (i)-(iii) of Theorem 8 hold.

Theorem 10 Let f and g be two non-constant meromorphic functions, whose

zeros and poles are of multiplicities at least s, where s is a positive integer. Let
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fn(f − 1)mf ′ and gn(g − 1)mg ′ share (b, 0) where m ≥ 0, n > max{m + 1 +

2m/s, m+7+18/s} are integers and b(6= 0) is a constant. Then the conclusions

(i)-(iii) of Theorem 8 hold.

Though we use the standard notations and definitions of the value distribution
theory available in [7], we explain the following definition and notation which
is used in the paper.

Definition 2 [13] Let p be a positive integer or infinity. We denote by Np(r, a; f)

the counting function of a-points of f, where an a-point of multiplicity m is

counted m times if m ≤ p and p times if m > p. Then

Np(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2) + ... + N(r, a; f |≥ p).

2 Lemmas

In this section we present some lemmas which will be needed to prove the
theorem.

Lemma 1 [16] Let f be a non-constant meromorphic function and P(f) =

a0 + a1f + a2f
2 + ... + anfn, where a0, a1, a2, ... , an(6= 0) are constants.

Then

T(r, P(f)) = nT(r, f) + S(r, f).

Lemma 2 [19] Let f be a non-constant meromorphic function. Then

N
(

r, 0; f(k)
)

≤ kN(r, ∞; f) + N(r, 0; f) + S(r, f).

Lemma 3 [22] Let f be a non-constant meromorphic function and p, k be a

positive integers. Then

Np

(

r, 0; f(k)
)

≤ kN(r, ∞; f) + Np+k(r, 0; f) + S(r, f).

Lemma 4 [9] Let f and g be two non-constant meromorphic functions sharing

(1, 2). Then one of the following cases holds:

(i) T(r) ≤ N2(r, 0; f) + N2(r, 0;g) + N2(r, ∞; f) + N2(r, ∞; g) + S(r),

(ii) f ≡ g,

(iii) fg ≡ 1.
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Lemma 5 [1] Let f and g be two non-constant meromorphic functions sharing

(1, m) and

f ′′

f ′
−

2f ′

f − 1
6≡

g ′′

g ′
−

2g ′

g − 1
.

Now the following hold:

(i) if m = 1 then T(r, f) ≤ N2(r, 0; f)+N2(r, 0;g)+N2(r, ∞; f)+N2(r, ∞; g)+
1
2
N(r, 0; f) + 1

2
N(r, ∞; f) + S(r, f) + S(r, g);

(ii) if m = 0 then T(r, f) ≤ N2(r, 0; f)+N2(r, 0;g)+N2(r, ∞; f)+N2(r, ∞; g)+

2N(r, 0; f) + N(r, 0;g) + 2N(r, ∞; f) + N(r, ∞; g) + S(r, f) + S(r, g).

Lemma 6 [20] Let f and g be two non-constant meromorphic functions. If

f ′′

f ′
−

2f ′

f − 1
≡

g ′′

g ′
−

2g ′

g − 1

and

lim sup
r→∞,r6∈E

N(r, 0; f) + N(r, 0;g) + N(r, ∞; f) + N(r, ∞; g)

T(r)
< 1

then either f ≡ g or fg ≡ 1, where T(r) is the maximum of T(r, f) and T(r, g).

Lemma 7 Let f and g be two non-constant meromorphic functions whose

zeros and poles are of multiplicities at least s, where s is a positive integer. Let

n and m are positive integers such that n > m + 1 + 2m/s. Then

fn(f − 1)mf ′gn(g − 1)mg ′ 6≡ b2,

where b is a nonzero constant.

Proof. We suppose that

fn(f − 1)mf ′gn(g − 1)mg ′ ≡ b2. (1)

Let z0 be a zero of f with multiplicity p0(≥ s). Then z0 is a pole of g with
multiplicity q0(≥ s), say. From (1) we obtain

np0 + p0 − 1 = (n + m + 1)q0 + 1

and so

(n + 1)(p0 − q0) = mq0 + 2. (2)
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From (2) we get q0 ≥ n−1
m

and so again from (2) we obtain

p0 ≥ q0 + 1 ≥
n + m − 1

m
.

Let z1 be a zero of f − 1 with multiplicity p1. Then z1 is a pole of g with
multiplicity q1(≥ s), say. So from (1) we get

(m + 1)p1 − 1 = (n + m + 1)q1 + 1

which gives

p1 ≥
(n + m + 1)s + 2

m + 1
.

Since a pole of f is either a zero of gn(g − 1)m or a zero of g ′, we have

N(r, ∞; f) ≤ N(r, 0;g) + N(r, 1;g) + N0(r, 0; g ′)

≤
m

n + m − 1
N(r, 0; g) +

m + 1

(n + m + 1)s + 2
N(r, 1; g)

+N0(r, 0; g ′)

≤

(

m

n + m − 1
+

m + 1

(n + m + 1)s + 2

)

T(r, g) + N0(r, 0; g ′),

where N0(r, 0; g ′) denotes the reduced counting function of those zeros of g ′

which are not the zeros of g(g − 1).
Then by the second fundamental theorem of Nevanlinna we get

T(r, f) ≤ N(r, ∞; f) + N(r, 0; f) + N(r, 1; f) − N0(r, 0; f ′) + S(r, f)

≤

(

m

n + m − 1
+

m + 1

(n + m + 1)s + 2

)

{T(r, f) + T(r, g)}

+N0(r, 0;g ′) − N0(r, 0; f ′) + S(r, f). (3)

Similarly, we get

T(r, g) ≤

(

m

n + m − 1
+

m + 1

(n + m + 1)s + 2

)

{T(r, f) + T(r, g)}

+N0(r, 0; f ′) − N0(r, 0; g ′) + S(r, g). (4)

Adding (3) and (4) we obtain
(

1 −
2m

n + m − 1
−

2(m + 1)

(n + m + 1)s + 2

)

{T(r, f) + T(r, g)} ≤ S(r, f) + S(r, g),

which leads to a contradiction as n > m + 1 + 2m/s. This proves the
lemma. �
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Lemma 8 Let f and g be two non-constant entire functions and n be a positive

integer. If fnf ′gng ′ = b2, where b is a nonzero constant, then f(z) = c1e
cz,

g(z) = c2e
−cz, where c, c1, c2 are constants satisfying (c1c2)

n+1c2 = −b2.

Proof. We omit the proof since it can be proved in the line of the proof of
Theorem 3 in [17]. �

Lemma 9 Let f and g be two non-constant meromorphic functions, whose

zeros and poles are of multiplicities at least s, where s is a positive integer and

F = fn+1

(

m∑

i=0

mCi
(−1)i

n + m − i + 1
fm−i

)

;

G = gn+1

(

m∑

i=0

mCi
(−1)i

n + m − i + 1
gm−i

)

.

Further let F0 = F′

b
and G0 = G′

b
, where b(6= 0) is a constant. Then S(r, F0)

and S(r, G0) are replaceable by S(r, f) and S(r, g) respectively.

Proof. By Lemma 1 we get

T(r, F0) ≤ T(r, F ′) + S(r, f)

≤ 2T(r, F) + S(r, f)

= 2(n + m + 1)T(r, f) + S(r, f)

and similarly

T(r, G0) ≤ 2(n + m + 1)T(r, g) + S(r, g).

This proves the lemma. �

Lemma 10 Let F, G, F0 and G0 be defined as in Lemma 9. We define F =

fn+1F1 and G = gn+1G1 where

F1 =

m∑

i=0

mCi
(−1)i

n + m − i + 1
fm−i and G1 =

m∑

i=0

mCi
(−1)i

n + m − i + 1
gm−i.

Then

(i) T(r, F) ≤ T(r, F0)+N(r, 0; f)+N(r, 0; F1)−mN(r, 1; f)−N(r, 0; f ′)+S(r, f),

(ii) T(r, G) ≤ T(r, G0) + N(r, 0;g) + N(r, 0;G1) − mN(r, 1;g) − N(r, 0;g ′) +

S(r, g).
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Proof. We prove (i) only as the proof of (ii) is similar. By Nevanlinna’s first
fundamental theorem and Lemma 1 we get

T(r, F) = T

(

r,
1

F

)

+ O(1)

= N(r, 0; F) + m

(

r,
1

F

)

+ O(1)

≤ N(r, 0; F) + m

(

r,
F0

F

)

+ m(r, 0; F0) + O(1)

= N(r, 0; F) + T(r, F0) − N(r, 0; F0) + S(r, F)

= T(r, F0) + N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f)

−N(r, 0; f ′) + S(r, f).

This proves the lemma. �

Lemma 11 Let F and G be defined as in Lemma 9, where m(≥ 0) and n(≥

m + 3/s) are positive integers. Then F ′ ≡ G ′ implies F ≡ G.

Proof. Let F ′ ≡ G ′. Then F ≡ G + C, where C is a constant. If possible, we
suppose that C 6= 0. Then by the second fundamental theorem of Nevanlinna
we get

T(r, F) ≤ N(r, 0; F) + N(r, ∞; F) + N(r, C; F) + S(r, F)

≤ N(r, 0; f) + N(r, 0; F1) + N(r, ∞; f) + N(r, 0;g)

+N(r, 0;G1) + S(r, f)

≤
1

s
N(r, 0; f) + N(r, 0; F1) +

1

s
N(r, ∞; f) +

1

s
N(r, 0; g)

+N(r, 0;G1) + S(r, f)

≤ (m + 2/s)T(r, f) + (m + 1/s)T(r, g) + S(r, f),

where F1 and G1 are defined as in Lemma 9. So by Lemma 1 we have

(n + 1 − 2/s)T(r, f) ≤ (m + 1/s)T(r, g) + S(r, f). (5)

Similarly, it can be shown that

(n + 1 − 2/s)T(r, g) ≤ (m + 1/s)T(r, f) + S(r, g). (6)

Adding (5) and (6) we obtain

(n − m + 1 − 3/s){T(r, f) + T(r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction. Therefore C = 0 and the lemma follows. �
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Lemma 12 Let f and g be two non-constant meromorphic functions such that

Θ(∞, f) + Θ(∞, g) >
4

n + 1
,

where n(≥ 2) is an integer. Then

fn+1(af + b) ≡ gn+1(ag + b)

implies f ≡ g, where a, b are two nonzero constants.

Proof. We omit the proof since it can be carried out in the line of Lemma 6
[12]. �

Lemma 13 [6] Let

Q(w) = (n − 1)2(wn − 1)(wn−2 − 1) − n(n − 2)(wn−1 − 1)2,

then

Q(w) = (w − 1)4(w − ν1)(w − ν2)......(w − ν2n−6),

where νj ∈ C \ {0, 1} (j = 1, 2, ..., 2n − 6), which are distinct respectively.

3 Proof of the Theorem

Proof of Theorem 8. Let F, G, F0 and G0 be defined as in Lemma 9. Since
F0 and G0 share (1, 2), one of the possibilities of Lemma 4 holds. We suppose
that

T0(r) ≤ N2(r, 0; F0) + N2(r, 0;G0) + N2(r, ∞; F0) + N2(r, ∞; G0)

+S(r, F0) + S(r, G0), (7)



Uniqueness and weighted value sharing of differential polynomials 191

where T0(r) = max{T(r, F0), T(r, G0)}. Now by Lemma 2, Lemma 9 and Lemma
10 we get from (7)

T(r, F) ≤ T(r, F0) + N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f)

−N(r, 0; f ′) + S(r, f)

≤ N2(r, 0; F0) + N2(r, 0;G0) + N2(r, ∞; F0) + N2(r, ∞; G0)

+N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f) − N(r, 0; f ′)

+S(r, f) + S(r, g)

≤ 2N(r, 0; f) + mN(r, 1; f) + N(r, 0; f ′) + 2N(r, ∞; f)

+2N(r, 0;g) + mN(r, 1;g) + N(r, 0;g ′) + 2N(r, ∞; g)

+N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f) − N(r, 0; f ′)

+S(r, f) + S(r, g)

=
2

s
N(r, 0; f) +

2

s
N(r, ∞; f) + N(r, 0; f) + N(r, 0; F1)

+
2

s
N(r, 0; g) + mN(r, 1;g) + N(r, 0;g ′) +

2

s
N(r, ∞; g)

+S(r, f) + S(r, g)

≤ {m + 1 + 4/s}T(r, f) + {m + 1 + 5/s}T(r, g)

+S(r, f) + S(r, g)

≤ {2m + 2 + 9/s}T(r) + S(r),

where T(r) is defined as in Lemma 6. So by Lemma 1 we obtain

(n + m + 1)T(r, f) ≤ {2m + 2 + 9/s}T(r) + S(r). (8)

Similarly we get

(n + m + 1)T(r, g) ≤ {2m + 2 + 9/s}T(r) + S(r). (9)

From (8) and (9) we see that

[n − m − 1 − 9/s]T(r) ≤ S(r),

which is a contradiction. Hence (7) does not hold. So by Lemma 4 either
F0G0 ≡ 1 or F0 ≡ G0. Suppose that F0G0 ≡ 1. Then

fn(f − 1)mf ′gn(g − 1)mg ′ ≡ b2. (10)

If m ≥ 1, by Lemma 7 we arrive at a contradiction. If m = 0, by (10) we get

fnf ′gng ′ ≡ b2. (11)
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Let z0 be a zero of f with multiplicity p(≥ s). Then z0 is a pole of g with
multiplicity q(≥ s), say. From (11) we obtain

np + p − 1 = nq + q + 1

and so (n + 1)(p − q) = 2, which is impossible as n ≥ 2 and p, q are positive
integers. Therefore, we conclude that f and g are entire functions. Hence using
Lemma 8, we get f(z) = c1e

cz, g(z) = c2e
−cz, where c, c1, c2 are constants

satisfying (c1c2)
n+1c2 = −b2.

Now we assume that F0 ≡ G0. And so by Lemma 11 we get F ≡ G, that is

fn+1

(

m∑

i=0

mCi
(−1)i

n + m − i + 1
fm−i

)

≡ gn+1

(

m∑

i=0

mCi
(−1)i

n + m − i + 1
gm−i

)

. (12)

We now consider following three cases.

Case 1 Let m = 0. Then from (12) we obtain fn+1 = gn+1, which gives f = tg

for some (n + 1) -th root of unity 1.

Case 2 Let m = 1. From (12) we obtain

fn+1

(

1

n + 2
f −

1

n + 1

)

= gn+1

(

1

n + 2
g −

1

n + 1

)

,

which together with

Θ(∞, f) + Θ(∞, g) > 4/(n + 1)

and Lemma 12 gives f ≡ g.

Case 3 Let m = 2. Suppose that h = f
g
. By (12) we get

(n + 2)(n + 1)g2(hn+3 − 1) − 2(n + 3)(n + 1)g(hn+2 − 1)

+(n + 2)(n + 3)(hn+1 − 1) = 0. (13)

By (13) and by Lemma 13, we can conclude that

{(n + 1)(n + 2)(hn+3 − 1)g − (n + 3)(n + 1)(hn+2 − 1)}2

= −(n + 3)(n + 1)Q(h),
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where Q(h) = (h − 1)4(h − ν1)(h − ν2)......(h − ν2n), where νj ∈ C \ {0, 1}

(j = 1, 2, ..., 2n), which are pairwise distinct.

If h is not a constant, this implies that every zero of h−νj (j = 1, 2, ..., 2n),

has a multiplicity of at least 2. By the second fundamental theorem of Nevan-

linna we obtain that n ≤ 2, which is again a contradiction. Therefore, h is a

constant. We have from (13) that hn+1−1 = 0 and hn+2−1 = 0, which imply

h = 1, and hence f ≡ g.

This completes the proof of theorem 8. �

Proof of Theorem 9. We put

H =

(

F ′′
0

F ′
0

−
2F ′

0

F0 − 1

)

−

(

G ′′
0

G ′
0

−
2G ′

0

G0 − 1

)

.

We suppose that H 6≡ 0. Since F0 and G0 share (1, 1), by Lemma 2, Lemma
5(i), Lemma 9 and Lemma 10 we get

T(r, F) ≤ T(r, F0) + N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f)

−N(r, 0; f ′) + S(r, f)

≤ N2(r, 0; F0) + N2(r, 0;G0) + N2(r, ∞; F0) + N2(r, ∞; G0)

+
1

2
N(r, 0; F0) +

1

2
N(r, ∞; F0) + N(r, 0; f) + N(r, 0; F1)

−mN(r, 1; f) − N(r, 0; f ′) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) + mN(r, 1; f) + N(r, 0; f ′) + 2N(r, ∞; f)

+2N(r, 0;g) + mN(r, 1;g) + N(r, 0;g ′) + 2N(r, ∞; g)

+
1

2
N(r, 0; f) +

1

2
N(r, 1; f) +

1

2
N(r, 0; f ′) +

1

2
N(r, ∞; f)

+N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f) − N(r, 0; f ′)

+S(r, f) + S(r, g)

≤ (m + 2 + 11/2s)T(r, f) + (m + 1 + 5/s)T(r, g)

+S(r, f) + S(r, g)

≤ (2m + 3 + 21/2s)T(r) + S(r).

So by Lemma 1 we get

(n + m + 1)T(r, f) ≤ (2m + 3 + 21/2s)T(r) + S(r).

Similarly we get

(n + m + 1)T(r, g) ≤ (2m + 3 + 21/2s)T(r) + S(r).
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Combining the above two inequalities we obtain

(n − m − 2 − 21/2s)T(r) ≤ S(r),

which is a contradiction. Hence H ≡ 0.
Now by Lemma 1 we get

(n + m)T(r, f) = T (r, fn(f − 1)m) + S(r, f)

≤ T(r, F ′) + T(r, f ′) + S(r, f)

≤ T(r, F0) + 2T(r, f) + S(r, f)

and so

T(r, F0) ≥ (n + m − 2)T(r, f) + S(r, f).

Similarly we get

T(r, G0) ≥ (n + m − 2)T(r, g) + S(r, g).

Also from Lemma 2 we have

N(r, 0; F0) + N(r, ∞; F0) + N(r, 0;G0) + N(r, ∞; G0)

≤ N(r, 0; f) + N(r, 1; f) + N(r, 0; f ′) + N(r, ∞; f) + N(r, 0;g)

+N(r, 1;g) + N(r, 0;g ′) + N(r, ∞; g) + S(r, f) + S(r, g)

≤ (2 + 3/s)T(r, f) + (2 + 3/s)T(r, g) + S(r, f) + S(r, g)

≤
4 + 6/s

n + m − 2
T0(r) + S(r),

where S0(r) = o{T0(r)} as r → ∞ possibly outside a set of finite linear measure
and ǫ(> 0) is sufficiently small.
In view of the hypothesis we get from above

lim sup
r→∞,r6∈E

N(r, 0; F0) + N(r, ∞; F0) + N(r, 0;G0) + N(r, ∞; G0)

T0(r)
< 1.

So by Lemma 6 we obtain either F0G0 ≡ 1 or F0 ≡ G0. Now by using Lemma 7,
Lemma 8, Lemma 11 and proceeding in the same way as the proof of Theorem
8, we easily obtain the results of Theorem 9. �

Proof of Theorem 10. Using Lemma 5(ii) the theorem can be proved as the
proof of Theorem 9. �
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Abstract. In this paper, Lyapunov direct method was employed. We
present criteria for all solutions x(t) its first and second derivatives of
the third order nonlinear non autonomous differential equations to con-
verge to zero as t → ∞. Sufficient conditions are also established for
the boundedness and uniform ultimate boundedness of solutions of the
equations considered. Our results revise, improve and generalize existing
results in the literature.

1 Introduction

Nonlinear differential equations of higher order have been extensively studied
with high degree of generality. In particular, boundedness, uniform bounded-
ness, ultimate boundedness, uniform ultimate boundedness and asymptotic
behaviour of solutions have in the past and also recently been discussed by
remarkable authors, see for instance Reissig et al. [18], Rouche et al. [19],
Yoshizawa [26] and [27] where the general results were discussed. Authors
that have worked on the qualitative behaviour of solutions of third order non-
linear differential equations include Ademola et al. [1, 2, 3, 4, 5, 6], Chukwu [7],
Ezeilo [8, 9, 10, 11, 12], Hara [13], Mehri and Shadman [14], Omeike [15, 16],
Qian [17], Swick [20, 21, 22], Tejumola [23] and Tunç [24, 25]. Complete and
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Key words and phrases: asymptotic behaviour, boundedness, uniform ultimate bound-
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incomplete Lyapunov functions were constructed and used by these authors
to establish their results. The nonlinear differential equations considered are
the types where the restoring nonlinear terms do not depend explicitly on the
independent real variable t, except in [1, 2, 4, 13] and [14] where the restoring
nonlinear terms depend or multiplied by functions of t.

Till now, according to our observation from the relevant literature, the prob-
lem of boundedness (where the bounding constant depends on the solutions
in question), uniform ultimate boundedness and asymptotic behaviour of so-
lutions of the nonlinear non autonomous third order differential equation con-
sidered, have so far remained open. In this paper therefore, using Lyapunov
direct method, a complete Lyapunov function was constructed and used to ob-
tain criteria for boundedness, uniform ultimate boundedness and asymptotic
behaviour of solutions of the third order nonlinear differential equation

x ′′′ +ψ(t)f(x, x ′, x ′′)x ′′ + φ(t)g(x, x ′) +ϕ(t)h(x, x ′, x ′′) = p(t, x, x ′, x ′′) (1)

or its equivalent system

x ′ = y, y ′ = z, z ′ = p(t, x, y, z) −ψ(t)f(x, y, z)z− φ(t)g(x, y) +ϕ(t)h(x, y, z)

(2)
in which p ∈ C(R+ × R

3,R); f, h ∈ C(R3,R); g ∈ C(R2,R); φ,ϕ,ψ ∈

C(R+,R); R = (−∞,∞); R
+ = [0,∞); the functions φ,ϕ,ψ, f, g, h and p de-

pend only on the arguments displaced explicitly. The derivatives ∂
∂x
f(x, y, z) =

fx(x, y, z),
∂
∂y
f(x, y, z) = fy(x, y, z), ∂

∂z
f(x, y, z) = fz(x, y, z),

∂
∂x
g(x, y) =

gx(x, y),
∂
∂x
h(x, y, z) = hx(x, y, z),

∂
∂y
h(x, y, z) = hy(x, y, z), ∂

∂z
h(x, y, z) = hz(x, y, z),

d
dt
ψ(t) = ψ ′(t), d

dt
φ(t) = φ ′(t) and d

dt
ϕ(t) = ϕ ′(t) exist and are continuous

for all x, y, z and t. As usual, condition for uniqueness will be assumed and
x ′, x ′′, x ′′′as elsewhere, stand for differentiation with respect to the indepen-
dent variable t. Motivation for this studies comes from the works of Hara [13],
Omeike [15, 16],Tunç [24, 25] and the recent work of Ademola and Arawomo
[4] where conditions for stability and uniform ultimate boundedness of solu-
tions of (1) were proved. Our results revise and improve the results in [4] and
extend the results in [13, 14, 15, 16, 24] and [25].

2 Preliminaries

Consider the system of the form

X ′(t) = F(t, X(t)) (3)
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where F ∈ C(R+ × R
n,Rn) and R

n is the n−dimensional Euclidean space.

Definition 1 A solution X(t; t0, X0) of (3) is bounded, if there exists a β >

0 such that ‖X(t; t0, X0)‖ < β for all t ≥ t0 where β may depend on each

solution.

Definition 2 The solutions X(t; t0, X0) of (3) are uniformly bounded, if for

any α > 0 and t0 ∈ R
+, there exists a β(α) > 0 such that if ‖X0‖ < α

‖X(t; t0, X0)‖ < β for all t ≥ t0.

Definition 3 The solutions of (3) are uniformly ultimately bounded for bound

B if there exists a B > 0 and if corresponding to any α > 0 and t0 ∈ R
+, there

exists a T(α) > 0 such that if ‖X0‖ < α implies that ‖X(t; t0, X0)‖ < B for all

t ≥ t0 + T(α).

Definition 4 (i) A function φ : R
+ → R

+, continuous, strictly increasing

with φ(0) = 0, is said to be a function of class K for such function, we shall

write φ ∈ K.

(ii) If in addition to (i) φ(r) → +∞ as r → ∞, φ is said to be a function of

class K
∗ and we write φ ∈ K

∗.

The following lemmas are very important in the proofs of our results.

Lemma 1 [27] Suppose that there exists a Lyapunov function V(t, X) de-
fined on R

+, ‖X‖ ≥ ρ were ρ > 0 may be large which satisfies the following
conditions:

(i) a(‖X‖) ≤ V(t, X) ≤ b(‖X‖), a ∈ K
∗ and b ∈ K;

(ii) V ′
(3)(t, X) ≤ 0, for all (t, X) ∈ R

+ × R
n.

Then the solutions of (3) are uniformly bounded.

Lemma 2 [27] If in addition to assumption (i) of Lemma 1, V ′
(3)(t, X) ≤

−c(‖X‖), c ∈ K for all (t, X) ∈ R
+×R

n. Then the solutions of (3) are uniformly
ultimately bounded.

Let Q be an open set in R
n and Q∗ ⊂ Q. Consider a system of differential

equation
X ′(t) = F(t, X(t)) +G(t, X(t)) (4)

where F,G are defined and continuous on R
+ ×Q.
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Definition 5 A scalar function W(X) defined for X ∈ Q is said to be positive

definite with respect to a set S, if W(X) = 0 for X ∈ S and if corresponding

to each ǫ > 0 and each compact set Q∗ in Q there exists a positive number

δ(ǫ,Q∗) such that

W(X) ≥ δ(ǫ,Q∗)

for X ∈ Q∗ −N(ǫ, S). N(ǫ, S) is the ǫ neighborhood of S.

Let Ω be a closed set in Q, we have the following lemma

Lemma 3 Suppose that there exist a nonnegative Lyapunov function V(t, X)

defined on R
+ ×Q such that

V ′
(4)(t, X) ≤ −W(X)

where W(X) is positive definite with respect to a closed set Ω in the space R
n.

Moreover suppose that F(t, X) of system (4) is bounded for all t when X belongs

to an arbitrary compact set in Q and that F(t, X) satisfies conditions:

(i) F(t, X) tends to a function H(X) for X ∈ Ω as t → ∞ and on any

compact set in Ω this convergence is uniform;

(ii) Corresponding to each ǫ > 0 and each Y ∈ Ω there exists a δ(ǫ, Y) > 0

and a T(ǫ, Y) > 0 such that if ‖X−Y‖ < δ(ǫ, Y) and t ≥ T(ǫ, Y), we have

‖F(t, X) − F(t, Y)‖ < ǫ.

Then every bounded solution of (4) approaches the largest semi-invariant set

of the system

X ′ = H(X), X ∈ Ω (5)

as t → ∞. In particular, if all solutions of (4) are bounded, every solution of

(4) approaches the largest semi-invariant set of (5) contained in Ω as t → ∞.

3 Statement of Results

We have the following results

Theorem 1 Further to the basic assumptions on the functions f, g, h, φ,ϕ

and ψ appearing in (2), suppose that a, a1, b, b1, c,δ0, ǫ,φ0, φ1, ϕ0,ϕ1, ψ0 and

ψ1, are positive constants such that for all t ≥ 0:



Asymptotic behaviour of solutions 201

(i) a ≤ f(x, y, z) ≤ a1 for all x, y, z;

(ii) b ≤ g(x, y)/y ≤ b1 for all x, y 6= 0;

(iii) ψ0 ≤ ψ(t) ≤ ψ1, φ0 ≤ φ(t) ≤ φ1, ϕ0 ≤ ϕ(t) ≤ ϕ1;

(iv) h(0, 0, 0) = 0, δ0 ≤ h(x, y, z)/x for all x 6= 0, y and z;

(v) sup
t≥0

[|ψ ′(t)| + |φ ′(t)| + |ϕ ′(t)|] < ǫ;

(vi) gx(x, y) ≤ 0, yfx(x, y, z) ≤ 0, hx(x, 0, 0) ≤ c for all x, y and ab > c;

(vii) hy(x, y, 0) ≥ 0, hz(x, 0, z) ≥ 0, yfz(x, y, z) ≥ 0 for all x, y, z;

(viii)
∫∞

0
|p(t, x, y, z)|dt < ∞.

Then the solution (x(t), y(t), z(t)) of (2) is uniformly ultimately bounded.

Theorem 2 In addition to the assumptions of Theorem 1, g(0, 0) = 0, then

every solution (x(t), y(t), z(t)) (2) is uniformly bounded and satisfies

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, lim
t→∞

z(t) = 0 (6)

Theorem 3 Suppose that a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1 and ψ0 are positive con-

stants such that for all t ≥ 0 :

(i) assumptions (iv)-(viii) of Theorem 1 hold;

(ii) a ≤ f(x, y, z) for all x, y, z;

(iii) b ≤ g(x, y)/y for all x and y 6= 0;

(iv) φ0 ≤ φ(t), ϕ0 ≤ ϕ(t) ≤ ϕ1, ψ0 ≤ ψ(t).

Then any solution (x(t), y(t), z(t)) of (2) with initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, (7)

satisfies

|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D, (8)

for all t ≥ 0, where the constant D > 0 depends on a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1, ψ0

as well as on t0, x0, y0, z0 and on the function p appearing in (2).
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If the function p(t, x, y, z) ≡ p(t) 6= 0, (2) reduces to

x ′ = y, y ′ = z, z ′ = p(t) −ψ(t)f(x, y, z)z− φ(t)g(x, y) +ϕ(t)h(x, y, z) (9)

where p ∈ C(R+,R), with the following results:

Corollary 1 If hypotheses (i)-(vii) of Theorem 1 hold true, and in addition∫∞
0

|p(t)|dt < ∞, then the solution (x(t), y(t), z(t)) of (9) is uniformly ulti-

mately bounded.

Corollary 2 If in addition to assumptions of Corollary 1, g(0, 0) = 0, then

every solution (x(t), y(t), z(t)) of (9) is uniformly bounded and satisfies (6).

Corollary 3 Suppose that a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1 and ψ0 are positive con-

stants such that for all t ≥ 0 :

(i) assumptions (iv)-(vii) of Theorem 1 hold;

(ii) assumptions (ii)-(iv) of Theorem 3 hold;

(iii)
∫∞

0
|p(t)|dt < ∞.

Then every solution (x(t), y(t), z(t)) of (9) with initial conditions (7) satisfies

(8) for all t ≥ 0 where D > 0 is a constant depending on a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1,

ψ0 as well as on t0, x0, y0, z0 and on the function p appearing in (9).

Remark 1 (i) The results in [5],[10]-[13] and [21] are special cases of The-

orem 1. Also, if φ(t) = ϕ(t) = ψ(t) ≡ 1, system (2) specializes to that

discussed by Ademola and Arawomo [3] (the generalization of the results

of Omeike [15] and Tunç [24]). Moreover, in [4] Ademola and Arawomo

studied stability and uniform ultimate boundedness of solutions of (2).
Theorem 1 revises Theorem 6 in [4]. In particular, the main tool used

in this investigation weaken the hypothesis on the function p compared

with the result in [4].

(ii) If f(x, y, z) ≡ p(t), g(x, y) ≡ g(y), h(x, y, z) ≡ h(x) and p(t, x, y, z) ≡

0 system (2) specializes to that discussed by Swick [22]. His result in

Theorem 1 is a special case of Theorem 2. Moreover, if f(x, y, z) ≡ a

a > 0 is a constant or p(t), g(x, y) ≡ yg(x) or g(y), p(t, x, y, z) ≡ e(t)

and ϕ(t) = ψ(t) ≡ 1 system (2) reduces to that discussed by Swick

[20]. Moreover, when p(t, x, y, z) ≡ 0 in (2) conditions under which all

solutions x(t), its first and second derivatives converge to zero as t → ∞
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had been discussed by Ademola and Arawomo [4]. Furthermore, whenever

f(x, y, z) ≡ ψ(x, y) or ψ(x, y, z), h(x, y, z) ≡ 0 and p(t, x, y, z) ≡ p(t)

system (2) specializes to that studied by Omeike [16], Qian [17] and Tunç

[24]. Hence, Theorem 2 revises, improves and generalizes the results in

[4, 16, 17, 20] and [24].

(iii) The results of Ademola et al. [5], Mehri and Shadman [14] and Swick

[22] Theorem 5 are all special cases of Theorem 3.

The proofs of our results depend on the function V = V(t, x(t), y(t), z(t))

defined as

V = e−P∗(t)U (10a)

where

P∗(t) =

∫t

0

|p(µ, x, y, z)|dµ (10b)

and the function U ≡ U(t, x(t), y(t), z(t))

2U = 2(α+ aψ(t))ϕ(t)

∫x

0

h(ξ, 0, 0)dξ+ 4ϕ(t)yh(x, 0, 0)

+ 4φ(t)

∫y

0

g(x, τ)dτ+ 2(α+ aψ(t))ψ(t)

∫y

0

τf(x, τ, 0)dτ

+ 2z2 + βy2 + bβφ(t)x2 + 2aβψ(t)xy+ 2βxz+ 2(α+ aψ(t))yz

(10c)

where α and β are positive fixed constants satisfying

ϕ1c

φ0b
< α < ψ0a (10d)

and

0 < β < min

{

bφ0, (abψ0φ0 − cϕ1)η
−1
1 ,

1

2
(aψ0 − α)η−1

2

}

(10e)

where

η1 := 1+aψ1+δ
−1
0 ϕ−1

0 φ2
0

(

g(x, y)

y
−b

)2

and η2 := 1+δ−1
0 ϕ−1

0 ψ2
0[f(x, y, z)−a]2.

Remark 2 If t = 0 in (10b), (10a) coincides with (10c) and the main tool

used in [4].
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Next, we shall show that (10) and its time derivative along a solution of (2)
satisfy some fundamental inequalities as presented in the following lemma.

Lemma 4 If all the hypotheses of Theorem 1 hold true, then for the function

V defined in (10) there exist positive constants D1 > 0, D2 > 0 such that

D1(x
2(t) + y2(t) + z2(t)) ≤ V(t, x, y, z) ≤ D2(x

2(t) + y2(t) + z2(t)) (11a)

and

V(t, x(t), y(t), z(t)) → +∞ as x2(t) + y2(t) + z2(t) → ∞. (11b)

Furthermore, there exists a finite constant D3 > 0 such that along a solution

of (2)

V ′ ≡
d

dt
V(t, x(t), y(t), z(t)) ≤ −D3(x

2(t) + y2(t) + z2(t)). (11c)

Proof. Since h(0, 0, 0) = 0, (10c) can be rearranged in the form

2U =
2ϕ(t)

bφ(t)

∫x

0

[(α+ aψ(t))bφ(t) − 2ϕ(t)hξ(ξ, 0, 0)]h(ξ, 0, 0)dξ

+ 4φ(t)

∫y

0

(

g(x, τ)

τ
− b

)

τdτ+ 2b−1φ−1(t)[ϕ(t)h(x, 0, 0) + bφ(t)y]2

+ 2

∫y

0

[(α+ aψ(t))ψ(t)f(x, τ, 0) − (α2 + a2ψ2(t))]τdτ

+ (αy+ z)2 + (βx+ aψ(t)y+ z)2 + β[bφ(t) − β]x2 + βy2.

In view of the hypotheses of Theorem 1 this equation becomes

U ≥
1

2

{

[(α+ aψ0)bφ0 − 2ϕ1c]b
−1φ−1

0 ϕ0δ0 + β(bφ0 − β)

}

x2

+
1

2

[

α(aψ0 − α) + β

]

y2 + b−1φ−1
0 [δ0ϕ0x+ bφ0y]

2

+
1

2
(αy+ z)2 +

1

2
(βx+ aψ0y+ z)2.

(12)

From (10d) and (10e) αbφ0 > cϕ1, abφ0ψ0 > cϕ1, aψ0 > α and bφ0 > β re-
spectively, so that the quadratic in the right hand side of the inequality (12) is
positive definite, hence there exists a positive constant λ0 = λ0(a, b, c, α, β, δ0,

φ0, ϕ0, ϕ1, ψ0) such that

U ≥ λ0(x
2 + y2 + z2) (13a)
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for all t ≥ 0, x, y and z. From hypothesis (viii) of Theorem 1 and (10b) there
exists a constant P0 > 0 such that

0 ≤ P∗(t) ≤ P0 (13b)

for all t ≥ 0.Now, using (13) in (10a) we obtain

V ≥ δ1(x
2 + y2 + z2) (14a)

for all t ≥ 0, x, y and z, where δ1 := λ0 exp[−P0] > 0. This establishes the
lower inequality in (11a). From (14a), estimate (11b) follows immediately i.e

V(t, x, y, z) → +∞ as x2 + y2 + z2 → ∞. (14b)

Furthermore, h(0, 0, 0) = 0 implies that h(x, 0, 0) ≤ cx for all x 6= 0, using this
estimate, the hypotheses of Theorem 1 and the inequalities 2|xy| ≤ x2 + y2,

2|xz| ≤ x2 + z2 and 2|yz| ≤ y2 + z2, (10c) yields

U ≤ δ2(x
2 + y2 + z2) (15)

for all t ≥ 0, x, y and z, where δ2 := 1
2

max{λ1, λ2, λ3} > 0, λ1 = (2 + α +

aψ1)cϕ1 + (1 + aψ1 + bφ1)β, λ2 = (α + aψ1)(1 + a1ψ1) + (1 + aψ1)β +

2(b1φ1 + cϕ1) and λ3 = 2 + α + β + aψ1. Using estimates (13b) and (15) in
(10a), we obtain

V ≤ δ2(x
2 + y2 + z2) (16)

for all t ≥ 0, x, y and z. Thus by (16), the upper inequality in (11a) is estab-
lished.

Moreover, the derivative of V along a solution (x(t), y(t), z(t)) of (2), with
respect to t is given by

V ′
(2) = −e−P∗(t)

[

U|p(t, x, y, z)| −U ′
(2)

]

, (17)

where P∗(t) and U are the functions defined in (10b) and (10c) respectively
and the derivative of the function U with respect to t, along a solution of (2)
is after simplifying

U ′
(2) =

3∑

i=1

Ui −U4x
2 −U5y

2 −U6z
2 −U7

− βφ(t)

[

g(x, y)

y
− b

]

xy− βψ(t)[f(x, y, z) − a]xz

+ [βx+ [α+ aψ(t)]y+ 2z]p(t, x, y, z),

(18)
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where:

U1 :=

[

2

∫y

0

g(x, τ)dτ+
1

2
bβx2

]

φ ′(t) +

[

[α+ aψ(t)]

∫x

0

h(ξ, 0, 0)dξ

+ 2yh(x, 0, 0) + ayz

]

ϕ ′(t) +

[

aϕ(t)

∫x

0

h(ξ, 0, 0)dξ+ aβxy

+ [α+ 2aψ(t)]

∫y

0

τf(x, τ, 0)dτ

]

ψ ′(t);

U2 := aβψ(t)y2 + 2βyz;

U3 := 2φ(t)y

∫y

0

gx(x, τ)dτ+ [α+ aψ(t)]ψ(t)y

∫y

0

τf(x, τ, 0)dτ;

U4 := βϕ(t)
h(x, y, z)

x
, (x 6= 0);

U5 := [α+ aψ(t)]φ(t)
g(x, y)

y
− 2ϕ(t)hx(x, 0, 0), (y 6= 0);

U6 := 2ψ(t)f(x, y, z) − [α+ aψ(t)]

and
U7 := ϕ(t)[[α+ aψ(t)]y+ 2z][h(x, y, z) − h(x, 0, 0)]

+[α+ aψ(t)]ψ(t)yz[f(x, y, z) − f(x, y, 0)].

In view of the hypotheses of Theorem 1, we have the following estimates for
Ui (i = 1, 2, · · · , 6) :

U1 ≤ ǫλ4(x
2 + y2 + z2)

for all t ≥ 0, x, y and z, where λ4 := max{λ41, λ42, λ43} > 0, λ41 := max{1
2
bβ, b1, 1},

λ42 := 1
2

max{(α + aψ1 + 2)c, a + 2c, a} and λ43 := 1
2

max{a(β + cϕ1), aβ +

(α+ 2aψ1)a1, 1};

U2 ≤ β[(1+ aψ1)y
2 + z2]

for all t ≥ 0, x and y;
U3 ≤ 0

for all t ≥ 0, x and y;
U4 ≥ βδ0ϕ0

for all t ≥ 0, x 6= 0, y and z;

U5 ≥ (α+ aψ0)bφ0 − 2cϕ1

for all t ≥ 0, x and y;
U6 ≥ aψ0 − α
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for all t ≥ 0, x, y and z. Finally by the mean value theorem and the hypotheses
of Theorem 1, we have

U7 = [α+ aψ(t)]ψ(t)yz2fz(x, y, θ1z) + [α+ aψ(t)]ϕ(t)y2hy(x, θ2y, 0)

+2ϕ(t)z2hz(x, 0, θ3z) ≥ 0

for all t ≥ 0, x, y 6= 0 6= z where 0 ≤ θi ≤ 1 (i = 1, 2, 3), but U7 = 0 for
y = 0 = z. Using estimate Ui (i = 1, 2, · · · , 7) in (18), we obtain

U ′
(2) ≤ −

1

2
βδ0ϕ0x

2 − [(α+ aψ0)bφ0 − 2cϕ1 − β(1+ aψ1)]y
2

− (aψ0 − α− β)z2 −
1

4
βδ0ϕ0

[

x+ 2φ0ϕ
−1
0 δ−1

0

(

g(x, y)

y
− b

)

y

]2

+ βφ2
0δ

−1
0 ϕ−1

0

(

g(x, y)

y
− b

)2

y2 + βψ2
0δ

−1
0 ϕ−1

0

(

f(x, y, z) − a

)2

z2

−
1

4
βδ0ϕ0

[

x+ 2ψ0ϕ
−1
0 δ−1

0 (f(x, y, z) − a)z

]2

+ ǫλ4(x
2 + y2 + z2)

+ λ5(|x| + |y| + |z|)|p(t, x, y, z)|,

(19)

where λ5 = max{β,α+ aψ1, 2}. Since, β, δ0, ϕ0 are positive constants,

[x+ 2φ0ϕ
−1
0 δ−1

0

(

g(x,y)
y

−b

)

y]2 ≥ 0 and [x+ 2ψ0ϕ
−1
0 δ−1

0 (f(x, y, z) −a)z]2 ≥ 0

for all t ≥ 0, x, y and z, estimate (19) reduces to

U ′
(2) ≤ −

1

2
βδ0ϕ0x

2 − (αbφ0 − cϕ1)y
2 −

1

2
(aψ0 − α)z2

−

{

abφ0ψ0 − cϕ1 − β

[

1+ aψ1 + φ2
0δ

−1
0 ϕ−1

0

(

g(x, y)

y
− b

)2]}

y2

−

{
1

2
(aψ0 − α) − β

[

1+ψ2
0δ

−1
0 ϕ−1

0

(

f(x, y, z) − a

)2]}

z2

+ ǫλ4(x
2 + y2 + z2) + λ5(|x| + |y| + |z|)|p(t, x, y, z)|.

Applying estimates (10d), (10e) and choosing ǫ < λ−1
4 λ6 where

λ6 := min{1
2
βδ0ϕ0, αbφ0 − cϕ1,

1
2
(aψ0 − α)}, we obtain

U ′
(2) ≤ −λ7(x

2 + y2 + z2) + λ5(|x| + |y| + |z|)|p(t, x, y, z)|, (20)
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for all t ≥ 0, x, y and z, where λ7 := λ6 − ǫλ4 > 0. Now, using estimates (13a)
and (17), we find

V ′
(2) ≤ −e−P∗(t)

{

[λ0(x
2+y2 + z2) − λ5(|x| + |y| + |z|)]|p(t, x, y, z)|

+ λ7(x
2 + y2 + z2)

} (21)

for all t ≥ 0, x, y and z. Using condition (viii) of Theorem 1, noting the fact
that (|x|+|y|+|z|)2 ≤ 3(x2+y2+z2), and choosing (x2+y2+z2)1/2 ≥ 31/2λ−1

0 λ5,

estimate (21) becomes

V ′
(2) ≤ −δ3(x

2 + y2 + z2), (22)

for all t ≥ 0, x, y and z where δ3 = λ7 exp[−P∗(∞)]. (22) establishes estimate
(11c) of the lemma. This completes the proof of the lemma. �

Proof of Theorem 1. Let (x(t), y(t), z(t)) be any solution of (2), in view of
estimates (11) the hypotheses of Lemma 2 hold true. Thus, by Lemma 2, the
solution (x(t), y(t), z(t)) of (2) is uniformly ultimately bounded. �

Proof of Theorem 2. The proof of this theorem depends on the function
V defined in (10). First, by Lemma 4, and the hypotheses of Lemma 1 are
satisfied so that the solution (x(t), y(t), z(t)) of (2) is uniformly bounded.
Furthermore, the continuity and boundedness of the functions f, g, h,φ,ϕ and
ψ imply the boundedness of the function F(t, X) for all t when X belongs to
any compact set in R

3.

Next, from estimate (22), let W(X) := δ3(x
2 + y2 + z2), clearly W(X) ≥ 0, for

all X ∈ R
3. Consider the set

Ω := {X = (x, y, z) ∈ R
3|W(X) = 0}. (23)

The continuity of the functionW(X) implies that the setΩ is closed andW(X)

is positive definite with respect to Ω and

V ′
(2)(t, X) ≤ −W(X)

for all (t, X) ∈ R
+ × R

3. System (2) can be rewritten in the form

X ′ = F(t, X) +G(t, X)

where X = (x, y, z)T, F(t, X) = (y, z,−ψ(t)f(x, y, z)z−φ(t)g(x, y)−ϕ(t)h(x, y, z))T

and G(t, X) = (0, 0, p(t, x, y, z))T. Moreover, from the hypotheses of the theo-
rem we have F(t, X) tends to a function F(X), say, for all X ∈ Ω as t → ∞, and
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by (23) W(X) = 0 on Ω implies that x = y = z = 0. By system (2) and the
fact that h(0, 0, 0) = 0 = g(0, 0), the largest semi invariant set of X ′ = F(X)

X ∈ Ω as t → ∞ is the origin. Thus the hypotheses of Lemma 3 are satisfied
and (6) follows. This completes the proof of the theorem. �

Proof of Theorem 3. Let (x(t), y(t), z(t)) be any solution of (2). Under the
hypotheses of Theorem 3, estimates (14a) and (21) hold. To prove (8), since
λ0(x

2 + y2 + z2)|p(t, x, y, z)| ≥ 0, λ7(x
2 + y2 + z2) ≥ 0 for all t ≥ 0, x, y, z, the

fact that |x| ≤ 1+ x2, |y| ≤ 1+ y2 and |z| ≤ 1+ z2, estimate (21) becomes

V ′
(2) ≤ λ5e

−P∗(t)(3+ x2 + y2 + z2)]|p(t, x, y, z)|

for all t ≥ 0, x, y and z. Now, from estimates (14a) and (13b) this inequality
yields

V ′
(2) − δ−1

1 λ5|p(t, x, y, z)|V ≤ 3λ5|p(t, x, y, z)|.

Solving this first order differential inequality using integrating factor
exp[−δ−1

1 λ5P∗(t)] and estimate (13b), we have

V(t, x, y, z) ≤ λ8 (24)

for all t ≥ 0, x, y and z, where λ8 := [V(t0, x0, y0, z0)+3λ5P0] exp[δ−1
1 λ5P0] > 0

is a constant. From estimates (14a) and (24), estimate (8) follows for all t ≥ 0,
with D ≡ δ−1

1 λ8. This completes the proof of the theorem. �
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Abstract. The present paper deals with a study of warped product
submanifolds of (LCS)n-manifolds and warped product semi-slant sub-
manifolds of (LCS)n-manifolds. It is shown that there exists no proper
warped product submanifolds of (LCS)n-manifolds. However we obtain
some results for the existence or non-existence of warped product semi-
slant submanifolds of (LCS)n-manifolds.

1 Introduction

The notion of warped product manifolds were introduced by Bishop and
O’Neill [3] and later it was studied by many mathematicians and physicists.
These manifolds are generalization of Riemannian product manifolds. The ex-
istence or non-existence of warped product manifolds plays some important
role in differential geometry as well as physics.

The notion of slant submanifolds in a complex manifold was introduced and
studied by Chen [7], which is a natural generalization of both invariant and
anti-invariant submanifolds. Chen [7] also found examples of slant submani-
folds of complex Euclidean space C2 and C4. Then Lotta [9] has defined and
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Key words and phrases: warped product, slant submanifold, semi-slant submanifold,

(LCS)n-manifold.
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studied of slant immersions of a Riemannian manifold into an almost con-
tact metric manifold and proved some properties of such immersions. Also
Cabrerizo et. al ([5], [6]) studied slant immersions in Sasakian and K-contact
manifolds respectively. Again Gupta et. al [8] studied slant submanifolds of a
Kenmotsu manifolds and obtained a necessary and sufficient condition for a 3-
dimensional submanifold of a 5-dimensional Kenmotsu manifold to be minimal
proper slant submanifold.

In 1994 Papaghuic [13] introduced the notion of semi-slant submanifolds of
almost Hermitian manifolds. Then Cabrerizo et. al [4] defined and investigated
semi-slant submanifolds of Sasakian manifolds. In this connection, it may be
mentioned that Sahin [14] studied warped product semi-slant submanifolds of
Kaehler manifolds. Also in [1], Atceken studied warped product semi-slant sub-
manifolds in locally Riemannian product manifolds. Again Atceken [2] studied
warped product semi-slant submanifolds in Kenmotsu manifolds and he has
shown the non-existence cases of the warped product semi-slant submanifolds
in a Kenmotsu manifold [2].

Recently Shaikh [15] introduced the notion of Lorentzian concircular struc-
ture manifolds (briefly, (LCS)n-manifolds), with an example, which generalizes
the notion of LP-Sasakian manifolds introduced by Matsumoto [10] and also
by Mihai and Rosca [11]. Then Shaikh and Baishya ([17], [18]) investigated the
applications of (LCS)n-manifolds to the general theory of relativity and cos-
mology. The (LCS)n-manifolds is also studied by Sreenivasa et. al [21], Shaikh
[16], Shaikh and Binh [19], Shaikh and Hui [20] and others.

The object of the paper is to study warped product semi-slant submanifolds
of (LCS)n-manifolds. The paper is organized as follows. Section 2 is concerned
with some preliminaries. Section 3 deals with a study of warped product sub-
manifolds of (LCS)n-manifolds. It is shown that there do not exist proper
warped product submanifolds N = N1 ×f N2 of a (LCS)n-manifold M, where
N1 and N2 are submanifolds of M. In section 4, we investigate warped prod-
uct semi-slant submanifolds of (LCS)n-manifolds and obtain many interesting
results.

2 Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0,2) such that for each point p ∈ M, the
tensor gp : TpM × TpM → R is a non-degenerate inner product of signature
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(−,+, · · · ,+), where TpM denotes the tangent vector space of M at p and R

is the real number space. A non-zero vector v ∈ TpM is said to be timelike
(resp., non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp, ≤ 0, =
0, > 0) [12].

Definition 1 [15] In a Lorentzian manifold (M,g) a vector field P defined by

g(X, P) = A(X),

for any X ∈ Γ(TM), is said to be a concircular vector field if

(∇̄XA)(Y) = α{g(X, Y) + ω(X)A(Y)}

where α is a non-zero scalar and ω is a closed 1-form and ∇̄ denotes the

operator of covariant differentiation with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike
concircular vector field ξ, called the characteristic vector field of the manifold.
Then we have

g(ξ, ξ) = −1. (1)

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

g(X, ξ) = η(X), (2)

the equation of the following form holds

(∇̄Xη)(Y) = α{g(X, Y) + η(X)η(Y)} (α 6= 0) (3)

for all vector fields X, Y, where ∇̄ denotes the operator of covariant differ-
entiation with respect to the Lorentzian metric g and α is a non-zero scalar
function satisfies

∇̄Xα = (Xα) = dα(X) = ρη(X), (4)

ρ being a certain scalar function given by ρ = −(ξα). Let us take

φX =
1

α
∇̄Xξ, (5)

then from (3) and (5) we have

φX = X + η(X)ξ, (6)

from which it follows that φ is a symmetric (1,1) tensor and called the structure
tensor of the manifold. Thus the Lorentzian manifold M together with the
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unit timelike concircular vector field ξ, its associated 1-form η and an (1,1)
tensor field φ is said to be a Lorentzian concircular structure manifold (briefly,
(LCS)n-manifold) [15]. Especially, if we take α = 1, then we can obtain the
LP-Sasakian structure of Matsumoto [10]. In a (LCS)n-manifold (n > 2), the
following relations hold [15]:

η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX,φY) = g(X, Y) + η(X)η(Y), (7)

φ2X = X + η(X)ξ, (8)

S(X, ξ) = (n − 1)(α2 − ρ)η(X), (9)

R(X, Y)ξ = (α2 − ρ)[η(Y)X − η(X)Y], (10)

R(ξ, Y)Z = (α2 − ρ)[g(Y,Z)ξ − η(Z)Y], (11)

(∇̄Xφ)(Y) = α{g(X, Y)ξ + 2η(X)η(Y)ξ + η(Y)X}, (12)

(Xρ) = dρ(X) = βη(X), (13)

R(X, Y)Z = φR(X, Y)Z + (α2 − ρ){g(Y,Z)η(X) − g(X,Z)η(Y)}ξ, (14)

for all X, Y, Z ∈ Γ(TM) and β = −(ξρ) is a scalar function, where R is the
curvature tensor and S is the Ricci tensor of the manifold.

Let N be a submanifold of a (LCS)n-manifold M with induced metric g.
Also let ∇ and ∇⊥ are the induced connections on the tangent bundle TN and
the normal bundle T⊥N of N respectively. Then the Gauss and Weingarten
formulae are given by

∇̄XY = ∇XY + h(X, Y) (15)

and

∇̄XV = −AVX + ∇⊥
XV (16)

for all X, Y ∈ Γ(TN) and V ∈ Γ(T⊥N), where h and AV are second fundamental
form and the shape operator (corresponding to the normal vector field V)
respectively for the immersion of N into M. The second fundamental form h

and the shape operator AV are related by [22]

g(h(X, Y), V) = g(AVX, Y) (17)

for any X, Y ∈ Γ(TN) and V ∈ Γ(T⊥N).
For any X ∈ Γ(TN), we may write

φX = EX + FX, (18)



216 S. K. Hui and M. Atceken

where EX is the tangential component and FX is the normal component of φX.
Also for any V ∈ Γ(T⊥N), we have

φV = BV + CV, (19)

where BV and CV are the tangential and normal components of φV respec-
tively. From (18) and (19) we can derive the tensor fields E, F, B and C are
also symmetric. The covariant derivatives of the tensor fields of E and F are
defined as

(∇XE)(Y) = ∇XEY − E(∇XY), (20)

(∇̄XF)(Y) = ∇⊥
XFY − F(∇XY) (21)

for all X, Y ∈ Γ(TN). The canonical structures E and F on a submanifold N

are said to be parallel if ∇E = 0 and ∇̄F = 0 respectively.
Throughout the paper, we consider ξ to be tangent to N. The submanifold

N is said to be invariant if F is identically zero, i.e., φX ∈ Γ(TN) for any
X ∈ Γ(TN). Also N is said to anti-invariant if E is identically zero, that is
φX ∈ Γ(T⊥N) for any X ∈ Γ(TN).

Furthermore for submanifolds tangent to the structure vector field ξ, there
is another class of submanifolds which is called slant submanifold. For each
non-zero vector X tangent to N at x, the angle θ(x), 0 ≤ θ(x) ≤ π

2
between

φX and EX is called the slant angle or wirtinger angle. If the slant angle is
constant, then the submanifold is also called the slant submanifold. Invariant
and anti-invariant submanifolds are particular slant submanifolds with slant
angle θ = 0 and θ = π

2
respectively. A slant submanifold is said to be proper

slant if the slant angle θ lies strictly between 0 and π
2
, i.e., 0 < θ < π

2
[5].

Lemma 1 [5] Let N be a submanifold of a (LCS)n-manifold M such that ξ is

tangent to N. Then N is slant submanifold if and only if there exists a constant

λ ∈ [0, 1] such that

E2 = λ(I + η ⊗ ξ). (22)

Furthermore, if θ is the slant angle of N, then λ = cos2 θ.
Also from (22) we have

g(EX, EY) = cos2 θ[g(X, Y) + η(X)η(Y)], (23)

g(FX, FY) = sin2 θ[g(X, Y) + η(X)η(Y)] (24)

for any X, Y tangent to N.
The study of semi-slant submanifolds of almost Hermitian manifolds was

introduced by Papaghuic [13], which was extended to almost contact manifold
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by Cabrerizo et. al [4]. The submanifold N is called semi-slant submanifold of
M if there exist an orthogonal direct decomposition of TN as

TN = D1 ⊕ D2 ⊕ {ξ},

where D1 is an invariant distribution, i.e., φ(D1) = D1 and D2 is slant with
slant angle θ 6= 0. The orthogonal complement of FD2 in the normal bundle
T⊥N is an invariant subbundle of T⊥N and is denoted by µ. Thus we have

T⊥N = FD2 ⊕ µ.

Similarly N is called anti-slant subbundle of M if D1 is an anti-invariant
distribution of N, i.e., φD1 ⊂ T⊥N and D2 is slant with slant angle θ 6= 0.

3 Warped product submanifolds of (LCS)n-manifolds

The notion of warped product manifolds were introduced by Bishop and
O’Neill [3].

Definition 2 Let (N1, g1) and (N2, g2) be two Riemannian manifolds and f

be a positive definite smooth function on N1. The warped product of N1 and

N2 is the Riemannian manifold N1 ×f N2 = (N1 × N2, g), where

g = g1 + f2g2. (25)

A warped product manifold N1 ×f N2 is said to be trivial if the warping
function f is constant.
More explicitely, if the vector fields X and Y are tangent to N1×f N2 at (x, y)

then
g(X, Y) = g1(π1 ∗ X,π1 ∗ Y) + f2(x)g2(π2 ∗ X,π2 ∗ Y),

where πi (i = 1, 2) are the canonical projections of N1 × N2 onto N1 and N2

respectively and * stands for the derivative map.
Let N = N1 ×f N2 be warped product manifold, which means that N1 and

N2 are totally geodesic and totally umbilical submanifolds of N respectively.
For warped product manifolds, we have [3]

Proposition 1 Let N = N1 ×f N2 be a warped product manifold. Then

(I) ∇XY ∈ TN1 is the lift of ∇XY on N1

(II) ∇UX = ∇XU = (X ln f)U

(III) ∇UV = ∇′
UV − g(U,V)∇ ln f
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for any X, Y ∈ Γ(TN1) and U, V ∈ Γ(TN2), where ∇ and ∇′ denote the

Levi-Civita connections on N1 and N2 respectively.

We now prove the following:

Theorem 1 There exist no proper warped product submanifolds in the form

N = NT ×f N⊥ of a (LCS)n-manifold M such that ξ is tangent to NT, where

NT and N⊥ are invariant and anti-invariant submanifolds of M, respectively.

Proof. We suppose that N = NT ×f N⊥ is a warped product submanifold of
(LCS)n-manifold M. For any X ∈ Γ(TNT) and U,V ∈ Γ(TN⊥), from Proposi-
tion 1 we have

∇UX = ∇XU = (X ln f)U. (26)

On the other hand, by using (12) and (26) we have

(X ln f)g(U,V)= g(∇UX,V) = g(∇̄UX,V) = g(φ∇UX,φV)

= g(∇̄UφX−(∇̄Uφ)X,φV)=g(h(U,φX), φV)−αη(X)g(U,φV)

= g(h(U,φX), φV) = g(∇̄φXU,φV) = g(φ∇̄φXU,V)

= g(∇̄φXφU − (∇̄φXφ)U,V) = g(∇̄φXφU,V)

= −g(AφUφX,V) = −g(h(φX,V), φU) = −g(∇̄VφX,φU)

= −g(∇̄VX,U) = −g(∇VX,U) = −(X ln f)g(U,V).

It follows that X(ln f) = 0. So f is constant on NT. Hence we get our desired
assertion.

4 Warped product semi-slant submanifolds of

(LCS)n-manifolds

Let us suppose that N = N1 ×f N2 be a warped product semi-slant subman-
ifold of a (LCS)n-manifold M. Such submanifolds are always tangent to the
structure vector field ξ. If the manifolds Nθ and NT (respectively N⊥) are slant
and invariant (respectively anti-invariant) submanifolds of a (LCS)n-manifold
M, then their warped product semi-slant submanifolds may be given by one
of the following forms:
(i) NT ×f Nθ (ii) N⊥ ×f Nθ (iii) Nθ ×f NT (iv) Nθ ×f N⊥.

However, the existence or non-existence of a structure on a manifold is very
important. Because the every structure of a manifold may not be admit. In
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this paper, we have researched cases that there exist no warped product semi-
slant submanifolds in a (LCS)n-manifold. Therefore we now study each of the
above four cases and begin the following Theorem:

Theorem 2 There exist no proper warped product semi-slant submanifold in

the form N = NT ×fNθ of a (LCS)n-manifold M such that ξ is tangent to NT,

where NT and Nθ are invariant and slant submanifolds of M, respectively.

Proof. Let us assume that N = NT ×f Nθ is a proper warped product semi-
slant submanifolds of a (LCS)n-manifold M such that ξ is tangent to NT. Then
for any X, ξ ∈ Γ(TNT) and U ∈ Γ(TNθ), from (5) and (15) we have

∇̄Uξ = ∇Uξ + h(U, ξ) = αφU. (27)

From the tangent and normal components of (27), respectively, we obtain

ξ(ln f)U = αEU and h(U, ξ) = αFU. (28)

On the other hand, by using (7) and (12), we have

(∇̄Uφ)ξ = −φ∇̄Uξ

αU = φ(ξ(ln f)U) + φh(U, ξ),

that is,

B(U, ξ) + ξ(ln f)EU = αU and ξ(ln f)FU + Ch(U, ξ) = 0. (29)

Since Γ(µ) and Γ(F(TNθ)) are orthogonal subspaces, we can derive ξ(ln f)FU =

0. So we conclude ξ(ln f) = 0 or FU = 0. Here we have to show that FU for
the proof. For this we assume that FU 6= 0.

Making use of (12), (15), (16) and (18), we obtain

(∇̄Xφ)U = ∇̄XφU − φ∇̄XU

h(X, EU) − AFUX + ∇⊥
XFU = X(ln f)FU + Bh(X,U) + Ch(X,U). (30)

Taking into account that the tangent components of (30) and making the
necessary abbreviations, we get

AFUX = −Bh(X,U). (31)

With similar thoughts, we have

(∇̄Uφ)X = ∇̄UφX − φ∇̄UX

αη(X)U = EX(ln f)U + h(U,EX) − X(ln f)EU − X(ln f)FU

− Bh(X,U) − Ch(X,U). (32)
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From the normal components of (32), we arrive at

X(ln f)FU = h(U,EX) − Ch(U,X). (33)

Thus by using (31) and (33), we conclude

X(ln f)g(FU, FU) = g(h(U,EX), FU) = g(AFUEX,U) = −g(Bh(EX,U), U)

= −g(φh(EX,U), U) = −g(h(U,EX), FU)

= −X(ln f)g(FU, FU).

This tell us that X(ln f) = 0, that is, f is a constant function NT because FU

is a non-null vector field and Nθ is a proper slant submanifold.

Theorem 3 There exist no proper warped product semi-slant submanifolds in

the form N = N⊥ ×f Nθ of a (LCS)n-manifold M such that ξ is tangent to

N, where N⊥ and Nθ are anti-invariant and proper slant submanifolds of M

respectively.

Proof. Let N = N⊥×fNθ be a proper warped product semi-slant submanifold
of a (LCS)n-manifold M such that ξ is tangent to N. If ξ is tangent to Γ(TNθ),
then for any X ∈ Γ(TNθ) and U ∈ Γ(TN⊥), from (5) and (15), we have

∇̄Uξ = ∇Uξ + h(U, ξ) = αφU, (34)

which is equivalent to U(ln f)ξ = 0 because ξ 6= 0. So f is a constant function
on N⊥.

On the other hand, if ξ ∈ Γ(TN⊥), from (5) and (15), we reach

∇̄Xξ = ∇Xξ + h(X, ξ)

αφX = ξ(ln f)X + h(X, ξ),

that is,

αEX = ξ(ln f)X and αFX = h(X, ξ). (35)

Furthermore, since φξ = 0, by direct calculations, we obtain

(∇̄Xφ)ξ = −φ(∇̄Xξ)

αX = ξ(ln f)EX + ξ(ln f)FX + Bh(X, ξ) + Ch(X, ξ).

It follows that

αX = ξ(ln f)EX + Bh(X, ξ) and ξ(ln f)FX = −Ch(X, ξ). (36)
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By virtue of (36), we conclude

ξ(ln f)g(FX, FX) = sin2θξ(ln f)g(X,X) = −g(Ch(X, ξ), FX) = 0,

which follows ξ(ln f) = 0 or sin2θg(X,X) = 0. Here if ξ(ln f) 6= 0 and
sin2θg(X,X) = 0, the proof is obvious. Otherwise, making use of (36), we
conclude that

αg(X,X) = g(Bh(X, ξ), X) = 0.

Consequently, we can easily to see that α = 0. This is a contradiction because
the ambient space M is a (LCS)n-manifold. Thus the proof is complete.

Theorem 4 There exist no proper warped product semi-slant submanifolds in

the form Nθ ×f NT in (LCS)n-manifold M such that ξ tangent to NT, where

Nθ and NT are proper slant and invariant submanifolds of M.

Proof. Let N = Nθ ×f NT be warped product semi-slant submanifolds in a
(LCS)n-manifold M such that ξ is tangent to NT. Then for any ξ,X ∈ Γ(TNT)

and U ∈ Γ(TNθ), taking account of relations (12), (15), (16), (18) and (19)
and Proposition 1, we have

(∇̄Uφ)X = ∇̄UφX − φ∇̄UX

αη(X)U = h(U,EX) − Bh(U,X) − Ch(U,X),

which implies that

αη(X)U = −Bh(U,X) and h(U,EX) = Ch(U,X). (37)

In the same way, we have

(∇̄Xφ)U = ∇̄XφU − φ∇̄XU

−AFUX + ∇⊥
XFU + h(X, EU) = Bh(X,U) + Ch(X,U),

from here

Bh(X,U) = −AFUX + EU(ln f)X − U(ln f)EX (38)

and

∇⊥
XFU = Ch(X,U) − h(X, EU). (39)
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Taking inner product both of sides of (37) with V ∈ Γ(TNθ) and also using
(38), we arrive at

αη(X)g(U,V) = −g(Bh(U,X), V) = −g(φh(U,X), V) = −g(h(U,X), φV)

= −g(h(U,X), FV) = −g(AFVX,U) = g(Bh(X,V), U)

= −αη(X)g(U,V).

Here for X = ξ, we obtain αg(U,V) = 0. Because the ambient space M is a
(LCS)n-manifold and Nθ is a proper slant submanifold, this also tells us the
accuracy of the statement of the theorem.

Theorem 5 There exist no proper warped product semi-slant submanifolds

in the form N = Nθ ×f N⊥ in a (LCS)n-manifold M such that ξ tangent to

Nθ, where Nθ and N⊥ are proper slant and anti-invariant submanifolds of M,

respectively.

Proof. Let us assume that N = Nθ×f N⊥ be a proper warped product semi-
slant submanifold in the (LCS)n-manifold M such that ξ is tangent to Nθ.
Then for X ∈ Γ(TNθ) and U ∈ Γ(TN⊥), we have

(∇̄Xφ)U = ∇̄XφU − φ∇̄XU

−AFUX + ∇⊥
XFU = φ∇XU + φh(X,U),

which follows that

AFUX = −Bh(X,U) and (∇XF)U = Ch(X,U). (40)

In the same way, we have

(∇̄Uφ)X = ∇̄UφX − φ∇̄UX,

which also follow that

αη(X)U = EX(ln f)U − AFXU − Bh(X,U), (41)

∇⊥
UFX = X(ln f)FU + Ch(X,U) − h(U,EX). (42)

From (41), we can derive

g(h(U,X), FX) = g(h(U,X), FU) = 0. (43)

Taking X = ξ in (42), we have ξ(ln f)FU = −Ch(X, ξ), that is, ξ(ln f)FU = 0.
Let X = ξ be in (41), then we get

αU = Bh(U, ξ). (44)
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Taking the inner product of the both sides of (44) by U ∈ Γ(TN⊥), and using
(43) we conclude

αg(U,U) = g(Bh(U, ξ), U) = g(h(U, ξ), FU) = 0, (45)

which implies that α = 0. This is impossible because the ambient space is a
(LCS)n-manifold. Hence the proof is complete.
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Acta Universitatis Sapientiae, Mathematica

Executive Editor
Antal BEGE (Sapientia University, Romania)

abege@ms.sapientia.ro

Editorial Board
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Iványi), mondAt Kiadó, Budapest, 2007, pp. 80–130.

For internet sources:
E. Ferrand, An analogue of the Thue-Morse sequence, Electron. J. Comb., 14
(2007) #R30, http://www.combinatorics.org/.

Illustrations should be given in Encapsulated Postcript (eps) format.

Authors are encouraged to submit papers not exceeding 15 pages, but no more than
10 pages are preferable.

One issue is offered each author. No reprints will be available.

Printed by Gloria Printing House
Director: Péter Nagy
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