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email: ltoth@gamma.ttk.pte.hu

Pentti Haukkanen
Department of Mathematics and
Statistics, FI-33014 University of

Tampere, Finland
email: pentti.haukkanen@uta.fi

Abstract. We give a detailed study of the discrete Fourier transform
(DFT) of r-even arithmetic functions, which form a subspace of the space
of r-periodic arithmetic functions. We consider the DFT of sequences
of r-even functions, their mean values and Dirichlet series. Our results
generalize properties of the Ramanujan sum. We show that some known
properties of r-even functions and of the Ramanujan sum can be obtained
in a simple manner via the DFT.

1 Introduction

The discrete Fourier transform (DFT) of periodic functions is an important
tool in various branches of pure and applied mathematics. For instance, in
number theory, the DFT of a Dirichlet character χ (mod r) is the Gauss sum
(character sum) given by

G(χ, n) =
∑

k (mod r)

χ(k) exp(2πikn/r), (1)

and if χ = χ0 is the principal character (mod r), then (1) reduces to the
Ramanujan sum cr(n).
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For the history, properties and various applications, including signal and
image processing, of the DFT see for example the books of Briggs and Henson
[6], Broughton and Bryan [7], Sundararajan [25], Terras [26]. For recent number
theoretical papers concerning the DFT see [4, 13, 21].

It is the aim of the present paper to give a detailed study of the DFT of
r-even arithmetic functions, to be defined in Section 2, which form a subspace
of the space of r-periodic arithmetic functions.

Some aspects of the DFT of r-even functions were given by Haukkanen [13],
Lucht [15] and were considered also by Samadi, Ahmad and Swamy [20] in the
context of signal processing methods. Schramm [21] investigated the DFT of
certain special r-even functions, without referring to this notion.

Our results generalize and complete those of [13, 15, 20, 21]. Note that the
Ramanujan sum cr(n) is r-even and it is the DFT of χ0, which is also r-even.
Therefore, our results generalize properties of the Ramanujan sum.

The paper is organized as follows. Section 2 presents an overview of the basic
notions and properties needed throughout the paper. In Section 3 we give a
new simple characterization of r-even functions. Section 4 contains properties
of the DFT of r-even functions, while in Sections 5 and 6 we consider sequences
of r-even functions and their DFT, respectively. Mean values and Dirichlet
series of the DFT of r-even functions and their sequences are investigated in
Sections 7 and 8.

We also show that some known properties of r-even functions and of the
Ramanujan sum can be obtained in a simple manner via the DFT.

2 Preliminaries

In this section we recall some known properties of arithmetic functions, peri-
odic arithmetic functions, even functions, Ramanujan sums and the DFT. We
also fix the notations, most of them being those used in the book by Schwarz
and Spilker [22].

2.1 Arithmetic functions

Consider the C-linear space F of arithmetic functions f : N = {1, 2, . . .} → C
with the usual linear operations. It is well known that with the Dirichlet
convolution defined by

(f ∗ g)(n) =
∑

d|n

f(d)g(n/d) (2)
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the space F forms a unital commutative C-algebra. The unity is the function
ε given by ε(1) = 1 and ε(n) = 0 for n > 1. The group of invertible functions
is F∗ = {f ∈ F : f(1) 6= 0}. The Möbius function µ is defined as the inverse of
the function 1 ∈ F∗ (constant 1 function). The divisor function is τ = 1 ∗ 1,
Euler’s function is ϕ = µ ∗ id and σ = 1 ∗ id is the sum-of-divisors function,
where id(n) = n (n ∈ N). A function f ∈ F is called multiplicative if f(1) = 1

and f(mn) = f(m)f(n) for any m, n ∈ N such that gcd(m, n) = 1. The set M
of multiplicative functions is a subgroup of F∗ with respect to the Dirichlet
convolution. Note that 1, id, µ, τ, σ, ϕ ∈ M. For an f ∈ F we will use the
notation f ′ = µ ∗ f.

2.2 Periodic functions

A function f ∈ F is called r-periodic if f(n + r) = f(n) for every n ∈ N, where
r ∈ N is a fixed number (this periodicity extends f to a function defined on
Z). The set Dr of r-periodic functions forms an r-dimensional subspace of F .
A function f ∈ F is called periodic if f ∈

⋃
r∈N

Dr. The functions δk with
1 ≤ k ≤ r given by δk(n) = 1 for n ≡ k (mod r) and δk(n) = 0 for n 6≡ k

(mod r) form a basis of Dr (standard basis).
The functions ek with 1 ≤ k ≤ r defined by ek(n) = exp(2πikn/r) (additive

characters) form another basis of the space Dr. Therefore, every r-periodic
function f has a Fourier expansion of the form

f(n) =
∑

k (mod r)

g(k) exp(2πikn/r) (n ∈ N), (3)

where the Fourier coefficients g(k) are uniquely determined and are given by

g(n) =
1

r

∑

k (mod r)

f(k) exp(−2πikn/r) (n ∈ N) (4)

and the function g is also r-periodic.
For a function f ∈ Dr its discrete (finite) Fourier transform (DFT) is the

function f̂ ∈ F defined by

f̂(n) =
∑

k (mod r)

f(k) exp(−2πikn/r) (n ∈ N), (5)

where by (5) and (4) one has f̂ = rg.
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For any r ∈ N the DFT is an automorphism of Dr satisfying ̂̂f = rf. The
inverse discrete Fourier transform (IDFT) is given by

f(n) =
1

r

∑

k (mod r)

f̂(k) exp(2πikn/r) (n ∈ N). (6)

If f ∈ Dr, then
r∑

n=1

|f̂(n)|2 = r

r∑

n=1

|f(n)|2, (7)

which is a version of Parseval’s formula.
Let f, h ∈ Dr. The Cauchy convolution of f and h is given by

(f ⊗ h)(n) =
∑

a (mod r)

f(a)h(n − a) (n ∈ N), (8)

where (Dr,⊗) is a unital commutative semigroup, the unity being the function

εr given by εr(n) = 1 for r | n and εr(n) = 0 otherwise. Also, f̂ ⊗ h = f̂ ĥ and

f̂ ⊗ ĥ = rf̂h.
For the proofs of the above statements and for further properties of r-

periodic functions and the DFT we refer to the books by Apostol [3, Ch.
8], Montgomery and Vaughan [17, Ch. 4], Schwarz and Spilker [22].

2.3 Even functions

A function f ∈ F is said to be an r-even function if f(gcd(n, r)) = f(n) for
all n ∈ N, where r ∈ N is fixed. The set Br of r-even functions forms a τ(r)

dimensional subspace of Dr, where τ(r) is the number of positive divisors of
r. A function f ∈ F is called even if f ∈

⋃
r∈N

Br. The functions gd with d | r

given by gd(n) = 1 if gcd(n, r) = d and gd(n) = 0 if gcd(n, r) 6= d form a
basis of Br. This basis can be replaced by the following one. The functions cq

with q | r form a basis of the subspace Br, where cq are the Ramanujan sums,
quoted in the Introduction, defined explicitly by

cq(n) =
∑

k (mod q)
gcd(k,q)=1

exp(2πikn/q) (n, q ∈ N). (9)

Consequently, every r-even function f has a (Ramanujan-)Fourier expansion
of the form

f(n) =
∑

d|r

h(d)cd(n) (n ∈ N), (10)
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where the (Ramanujan-)Fourier coefficients h(d) are uniquely determined and
are given by

h(d) =
1

r

∑

e|r

f(e)cr/e(r/d) (d | r) (11)

and the function h is also r-even. Notation: h(d) = αf(d) (d | r). Note that
(Br,⊗) is a subsemigroup of (Dr,⊗) and αf⊗h(d) = rαf(d)αh(d) (d | r), cf.
Application 4.

Recall the following properties of Ramanujan sums cr(n). They can be rep-
resented as

cr(n) =
∑

d|gcd(n,r)

dµ(r/d) (n, r ∈ N), (12)

and as

cr(n) =
µ(m)ϕ(r)

ϕ(m)
, m = r/ gcd(n, r), (n, r ∈ N), (13)

where (13) is Hölder’s identity. It follows that cr(n) = ϕ(r) for r | n and
cr(n) = µ(r) for gcd(n, r) = 1.

Let ηr(n) = r if r | n and ηr(n) = 0 otherwise. For any fixed n ∈ N,
c
.
(n) = µ ∗ η

.
(n) and r 7→ cr(n) is a multiplicative function. On the other

hand, n 7→ cr(n) is multiplicative if and only if µ(r) = 1.
As it was already mentioned, cr(.) is the DFT of the principal character

(mod r) to be denoted in what follows by ρr and given explicitly by ρr(n) = 1

if gcd(n, r) = 1 and ρr(n) = 0 otherwise. Note that ρr = g1 with the notation
of above (for r fixed). Thus

ρ̂r = cr, ĉr = rρr. (14)

The concept of r-even functions originates from Cohen [8] and was further
studied by Cohen in subsequent papers [9, 10, 11]. General accounts of r-even
functions and of Ramanujan sums can be found in the books by McCarthy [16],
Schwarz and Spilker [22], Sivaramakrishnan [23], Montgomery and Vaughan
[17, Ch. 4]. See also the papers [12, 24, 27].

3 Characterization of r-even functions

For an r ∈ N let B ′
r = {f ∈ F : f(n) = 0 for any n ∤ r}. We have

Proposition 1 Let f ∈ F and f ′ = µ ∗ f. Then the following assertions are
equivalent:
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i) f ∈ Br,
ii) f(n) =

∑
d|gcd(n,r) f ′(d) (n ∈ N),

iii) f ′ ∈ B ′
r.

Proof. If f ′ ∈ B ′
r, then for any n ∈ N,

f(n) =
∑

d|n

f ′(d) =
∑

d|n,d|r

f ′(d) =
∑

d|gcd(n,r)

f ′(d)

= (f ′ ∗ 1)(gcd(n, r)) = f(gcd(n, r)).

This shows that iii) ⇒ ii) ⇒ i).
Now we show that i) ⇒ iii). Assume that f ∈ Br and f ′ 6∈ B ′

r, i.e., f ′(n) 6= 0

for some n ∈ N with n ∤ r. Consider the minimal n ∈ N with this property.
Then all proper divisors d of n with f ′(d) 6= 0 divide r so that

f(n) =
∑

d|n

f ′(d) =
∑

d|gcd(n,r)

f ′(d) + f ′(n) = f(gcd(n, r)) + f ′(n) 6= f(gcd(n, r)),

which gives f 6∈ Br. �

Remark 1 Let f ∈ Br. Assume that f(n) =
∑

d|gcd(n,r) g(d) (n ∈ N) for a

function g ∈ F . Then f = gε
.
(r) ∗ 1 and f = f ′ ∗ 1, by Proposition 1. Hence

gε
.
(r) = f ′ and obtain that g(n) = f ′(n) for any n | r.

For f = cr (Ramanujan sum) we have by (12), Proposition 1 and Remark 1
the next identity, which can be shown also directly.

Application 1 For any n, r ∈ N,

∑

d|n

cr(d)µ(n/d) =

{
nµ(r/n), n | r,

0, n ∤ r.
(15)

4 The DFT of r-even functions

We investigate in this section general properties of the DFT of r-even functions.

Proposition 2 For each r ∈ N the DFT is an automorphism of Br. For any
f ∈ Br,

f̂(n) =
∑

d|r

f(d)cr/d(n) (n ∈ N) (16)
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and the IDFT is given by

f(n) =
1

r

∑

d|r

f̂(d)cr/d(n) (n ∈ N). (17)

Proof. By the definition of r-even functions and grouping the terms according
to the values d = gcd(k, r),

f̂(n) =
∑

d|r

f(d)
∑

1≤j≤r/d
gcd(j,r/d)=1

exp(−2πijn/(r/d)) =
∑

d|r

f(d)cr/d(n)

giving (16) and also that f̂ ∈ Br. Now applying (16) for f̂ (instead of f) and

using that ̂̂f = rf we have (17). �

Proposition 2 is given by Lucht [15, Th. 4]. Formulas (16) and (17) are
implicitly given by Haukkanen [13, Th. 3.2 and Eq. (9)], Samadi, Ahmad and
Swamy [20, Eq. (18)] for r-even functions, and by Schramm [21] for functions
n 7→ F(gcd(n, r)), where F ∈ F is arbitrary, without referring to the notion of
even functions.

Remark 2 By Proposition 2, for a function f ∈ Dr one has f ∈ Br if and
only if f̂ ∈ Br. This can be used to show that a given function is r-even, cf.
Application 4. Furthermore, it follows that the Fourier coefficients αf(d) of
f ∈ Br can be represented as

αf(d) =
1

r
f̂(r/d) (d | r). (18)

Corollary 1 Let f ∈ Br. Then

f̂(n) =
∑

d|r

f(d)ϕ(r/d) (r | n), (19)

f̂(n) =
∑

d|r

f(d)µ(r/d) (gcd(n, r) = 1). (20)

Corollary 2 If f is a real (integer) valued r-even function, then f̂ is also real
(integer) valued.

Proof. Use that cr(n) ∈ Z for any n, r ∈ N. �
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Corollary 3 Let f be an r-even function. Then

f̂(n) =
∑

d|gcd(n,r)

d f ′(r/d) (n ∈ N), (21)

and (f̂) ′(n) = nf ′(r/n) for any n | r and (f̂) ′(n) = 0 otherwise.

Proof. Recall that c
.
(n) = µ∗η

.
(n), see (12). We obtain f̂(n) = (f∗c

.
(n))(r)

= (f ∗ µ ∗ η
.
(n))(r) = (f ′ ∗ η

.
(n))(r), and apply Remark 1. �

Note that by (21) the DFT of any f ∈ Br can be written in the following
forms:

f̂(n) = (f ′ ∗ η
.
(n))(r), (22)

and

f̂ = h ∗ 1, (23)

where h(n) = nf ′(r/n) for n | r and h(n) = 0 otherwise.

Proposition 3 Let f be an r-even function. Then

∑

d|n

f̂(d) =
∑

d|gcd(n,r)

d f ′(r/d)τ(n/d) (n ∈ N). (24)

Proof. Using (23),

∑

d|n

f̂(d) = (f̂ ∗ 1)(n) = (h ∗ 1 ∗ 1)(n) = (h ∗ τ)(n) =
∑

d|n

h(d)τ(n/d)

=
∑

d|gcd(n,r)

d f ′(r/d)τ(n/d).

�

In the special case f = ρr we reobtain (cf. [2, Th. 1] – where σ should be
replaced by τ, [16, p. 91]),

∑

d|n

cr(d) =
∑

d|gcd(n,r)

dµ(r/d)τ(n/d) (n ∈ N). (25)

The DFT can be used to obtain short direct proofs of certain known pro-
perties for Ramanujan sums and special r-even functions. We give the following
examples.
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Application 2 By ρ̂r = cr, cf. (14), we obtain ̂̂ρr = rρr. Therefore, by Propo-
sition 2,

∑

d|r

cr(r/d)cd(n) =

{
r, gcd(n, r) = 1,

0, otherwise,
(26)

see [16, p. 94].

Application 3 Let f(n) = (−1)n, which is r-even for any even number r. Its
DFT is

f̂(n) =

r∑

k=1

(−1)k exp(−2πikn/r) =

r∑

k=1

(− exp(−2πin/r))k, (27)

which is r for n = r/2 + mr (m ∈ Z) and 0 otherwise. Using Proposition 2 we
obtain for any even number r,

∑

d|r

(−1)dcr/d(n) =

{
r, n ≡ r/2 (mod r),

0, otherwise,
(28)

cf. [18, Th. IV], [16, p. 90].

Application 4 Let f, h ∈ Br. We show that their Cauchy product f⊗h ∈ Br

and the Fourier coefficients of f ⊗ h are given by αf⊗h(d) = rαf(d)αh(d) for
any d | r, cf. Section 2.3.

To obtain this use that ̂(f ⊗ h)(n) = f̂(n)ĥ(n) (n ∈ N), valid for functions
f, h ∈ Dr, cf. Section 2.2. Hence for any n ∈ N,

̂(f ⊗ h)(gcd(n, r)) = f̂(gcd(n, r))ĥ(gcd(n, r)) = f̂(n)ĥ(n) = ̂(f ⊗ h)(n),

showing that f̂ ⊗ h is r-even. It follows that f⊗h is also r-even. Furthermore,
by (18), for every d | r,

αf⊗h(d) =
1

r
(f̂ ⊗ h)(r/d) =

1

r
f̂(r/d)ĥ(r/d) = rαf(d)αh(d).

Application 5 Let Nr(n, k) denote the number of (incongruent) solutions
(mod r) of the congruence x1 + . . . + xk ≡ n (mod r) with gcd(x1, r) = . . . =

gcd(xk, r) = 1. Then it is immediate from the definitions that

Nr(., k) = ρr ⊗ · · · ⊗ ρr︸ ︷︷ ︸
k

. (29)
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Therefore, N̂r(., k) = (ρ̂r)
k = (cr)

k. Now the IDFT formula (17) gives at
once

Nr(n, k) =
1

r

∑

d|r

((cr(r/d))kcd(n) (n ∈ N), (30)

formula which goes back to the work of H. Rademacher (1925) and A. Brauer
(1926) and has been recovered several times. See [16, Ch. 3], [22, p. 41], [24].

Application 6 We give a new proof of the following inversion formula of
Cohen [9, Th. 3]: If f and g are r-even functions and if f is defined by

f(n) =
∑

d|r

g(d)cd(n) (n ∈ N), (31)

then

g(m) =
1

r

∑

d|r

f(r/d)cd(n), m = r/ gcd(n, r), (n ∈ N). (32)

To show this consider the function G(n) = g(r/ gcd(n, r)) which is also
r-even. By Proposition 2,

Ĝ(n) =
∑

d|r

G(r/d)cd(n) =
∑

d|r

g(d)cd(n) = f(n). (33)

Hence
rg(m) = rG(n) = ̂̂G(n) = f̂(n) =

∑

d|r

f(r/d)cd(n). (34)

Application 7 Anderson and Apostol [1] and Apostol [2] investigated prop-
erties of r-even functions Sg,h given by

Sg,h(n) =
∑

d|gcd(n,r)

g(d)h(r/d) (n ∈ N), (35)

where g, h ∈ F are arbitrary functions.
For f = Sg,h we have according to (21) and Remark 1, f ′(n) = g(n)h(r/n)

(n | r) and obtain at once

Ŝg,h(n) =
∑

d|gcd(n,r)

df ′(r/d) =
∑

d|gcd(n,r)

dg(r/d)h(d), (36)

which is proved in [1, Th. 4] by other arguments.
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Application 8 If f is any r-even function, then

r∑

n=1

|f̂(n)|2 = r
∑

d|r

|f(d)|2ϕ(r/d). (37)

This follows by the Parseval formula (7) and grouping the terms of the right
hand side according to the values gcd(n, r). For f = ρr we reobtain the familiar
formula

r∑

n=1

(cr(n))2 = rϕ(r) (r ∈ N). (38)

5 Sequences of r-even functions

In this section we consider sequences of functions (fr)r∈N such that fr ∈ Br for
any r ∈ N. Note that the sequence (fr)r∈N can be viewed also as a function of
two variables: f : N2 → C, f(n, r) = fr(n).

We recall here the following concept: A function f : N2 → C of two variables
is said to be multiplicative if f(mn, rs) = f(m, r)f(n, s) for every m, n, r, s ∈ N
such that gcd(mr, ns) = 1. For example, the Ramanujan sum c(n, r) = cr(n)

is multiplicative, viewed as a function of two variables.
The next result includes a generalization of this property of the Ramanujan

sum.

Proposition 4 Let (fr)r∈N be a sequence of functions. Assume that
i) fr ∈ Br (r ∈ N),
ii) r 7→ fr(n) is multiplicative (n ∈ N).
Then
1) the function f : N2 → C, f(n, r) = fr(n) is multiplicative as a function of

two variables,
2) fr(m)fr(n) = fr(1)fr(mn) holds for any m, n, r ∈ N with gcd(m, n) = 1,
3) n 7→ fr(n) is multiplicative if and only if fr(1) = 1.

Proof. 1) For any m, n, r, s ∈ N such that gcd(mr, ns) = 1 we have by i) and
ii),

frs(mn) = fr(mn)fs(mn) = fr(gcd(mn, r))fs(gcd(mn), s)

= fr(gcd(m, r))fs(gcd(n, s)) = fr(m)fs(n).

2) By the definition of multiplicative functions of two variables f : N2 → C it
is immediate that f(n, r) =

∏
p f(pa, pb) for n =

∏
p pa, r =

∏
p pb, and the

given quasi-multiplicative property is a direct consequence of this equality.
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3) Follows by 2). �

Part 1) of Proposition 4 is given also in [14] and for parts 2) and 3) cf. [23,
Th. 80, 81].

We say that the sequence (fr)r∈N of functions is completely even if there
exists a function F ∈ F of a single variable such that fr(n) = F(gcd(n, r)) for
any n, r ∈ N. This concept originates from Cohen [9] (for a function of two
integer variables f(n, r) satisfying f(n, r) = F(gcd(n, r)) for any n, r ∈ N he
used the term completely r-even function, which is ambiguous).

If the sequence (fr)r∈N is completely even, then fr ∈ Br for any r ∈ N, but
the converse is not true. For example, the Ramanujan sums cr(n) do not form
a completely even sequence. To see this, assume the contrary and let p be any
prime. Then for n = r = p, F(p) = cp(p) = p − 1 and for n = p, r = p2,
F(p) = cp2(p) = −p, a contradiction.

If (fr)r∈N is completely even, then fr(n) = F(gcd(n, r)) =
∑

d|gcd(n,r) F ′(d)

(n, r ∈ N) and by Remark 1 we have f ′r(n) = F ′(n) for any n | r, where
F ′ = µ ∗ F.

6 The DFT of sequences of r-even functions

First we consider multiplicative properties of the DFT of sequences of r-even
functions.

Proposition 5 Let (fr)r∈N be a sequence of functions. Assume that
i) fr ∈ Br (r ∈ N),
ii) r 7→ fr(n) is multiplicative (n ∈ N).
Then
1) the function r 7→ f̂r(n) is multiplicative (n ∈ N),
2) the function f̂ : N2 → C, f̂(n, r) = f̂r(n) is multiplicative as a function of

two variables,
3) f̂r(m)f̂r(n) = f ′r(r)f̂r(mn) holds for any m, n, r ∈ N with gcd(m, n) = 1,
4) n 7→ f̂r(n) is multiplicative if and only if f ′r(r) = 1.

Proof. 1) Let r, s ∈ N, gcd(r, s) = 1. Then, for any fixed n ∈ N, by Proposition
2 and using that cr(n) is multiplicative in r,

f̂rs(n) =
∑

d|rs

frs(d)crs/d(n) =
∑

a|r
b|s

frs(ab)c(r/a)(s/b)(n)
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=
∑

a|r
b|s

fr(a)fs(b)cr/a(n)cs/b(n) =
∑

a|r

fr(a)cr/a(n)
∑

b|s

fs(b)cs/b(n)

= f̂r(n)f̂s(n).

2), 3), 4) If fr ∈ Br, then f̂r ∈ Br (r ∈ N) and by 1) we know that the
function r 7→ f̂r(n) is multiplicative (n ∈ N). Now apply Proposition 4 for the
sequence (f̂r)r∈N and use that f̂r(1) = f ′r(r). �

Proposition 6 Let (fr)r∈N be a sequence of functions such that fr ∈ Br (r ∈
N). Then ∑

d|r

f̂d(n) =
∑

d|gcd(n,r)

d fr(r/d) (n, r ∈ N), (39)

which is also r-even (r ∈ N). Furthermore,

∑

d|n

∑

e|r

f̂e(d) =
∑

d|gcd(n,r)

d fr(r/d)τ(n/d) (n, r ∈ N). (40)

Proof. Similar to the proof of Proposition 3. �

In the special case fr = ρr we reobtain the following known identities for
the Ramanujan sum:

∑

d|r

cd(n) =

{
r, r | n,

0, r ∤ n,
(41)

∑

d|n

∑

e|r

ce(d) =

{
r τ(n/r), r | n,

0, r ∤ n,
(42)

(41) being a familiar one and for (42) see [16, p. 91].
Consider in what follows the DFT of completely even sequences, defined in

Section 5. Note that formulae (16) and (17) for the DFT and IDFT, respec-
tively of such sequences (that is, functions with values F(gcd(n, r))) were given
by Schramm [21]. He considered also special cases of F.

Corollary 4 Let (fr)r∈N be a sequence of functions. Assume that
i) (fr)r∈N is completely even with fr(n) = F(gcd(n, r)) (n, r ∈ N),
ii) F is multiplicative.
Then
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1) the function f : N2 → C, f(n, r) = fr(n) is multiplicative in both vari-
ables, with the other variable fixed, and is multiplicative as a function of two
variables,

2) the function r 7→ f̂r(n) is multiplicative (n ∈ N),
3) the function f̂ : N2 → C, f̂(n, r) = f̂r(n) is multiplicative as a function of

two variables.
4) n 7→ f̂r(n) is multiplicative if and only if F ′(r) = 1.

Proof. Follows from the definitions and from Proposition 5. �

The results of Section 4 can be applied for completely even sequences.

Corollary 5 Let (fr)r∈N be a completely even sequence with fr(n) = F(gcd(n, r))

(n, r ∈ N). Then

f̂r(n) =
∑

d|gcd(n,r)

d F ′(r/d) (n, r ∈ N), (43)

∑

d|r

f̂r/d(d) =
∑

e2k=r

e F(k) (r ∈ N). (44)

Proof. Here (43) follows at once by Corollary 3, while (44) is a simple conse-
quence of it. �

In particular, for fr = ρr (44) gives

∑

d|r

cr/d(d) =

{√
r, r is a square,

0, otherwise,
(45)

see [16, p. 91].
It follows from (43) that the DFT of a completely even sequence of functions

is a special case of the functions Sg,h defined by (35), investigated by Anderson
and Apostol [1], Apostol [2].

The example of cr(n) shows that the DFT sequence of a completely even
sequence is, in general, not completely even (cr(n) = ρ̂r(n), where ρr(n) =

ε(gcd(n, r))).
Consider now the completely even sequence fr(n) = τ(gcd(n, r)). Then using

(43),

f̂r(n) =
∑

d|gcd(n,r)

d(µ ∗ τ)(r/d) =
∑

d|gcd(n,r)

d = σ(gcd(n, r)) (46)

is completely even.
Next we characterize the completely even sequences such that their DFT is

also a completely even sequence.
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Proposition 7 Let (fr)r∈N be a completely even sequence of functions with
fr(n) = F(gcd(n, r)). Then the DFT sequence (f̂r)r∈N is completely even if and
only if F = c τ, where c ∈ C. In this case f̂r(n) = c σ(gcd(n, r)).

Proof. Assume that there is a function G ∈ F such that

f̂r(n) =
∑

d|gcd(n,r)

d F ′(r/d) = G(gcd(n, r)).

Then for any n = r ∈ N, G(r) = f̂r(r) =
∑

d|r d F ′(r/d) = (id ∗F ′)(r), hence

G has to be G = id ∗F ′. Now for n = 1 and any r ∈ N, G(1) = f̂r(1) = F ′(r).
Denoting G(1) = c we obtain that F ′ is the constant function c. Therefore,
F = c1 ∗ 1 = c τ.

Conversely, for F = c τ we have F ′ = µ∗c τ = c1 and f̂r(n) = c
∑

d|gcd(n,r) d =

c σ(gcd(n, r)). �

We now give a Hölder-type identity, see (13), for the DFT of completely even
sequences, which is a special case of [1, Th. 2], adopted to our case. We recall
that a function F ∈ F is said to be strongly multiplicative if F is multiplicative
and F(pa) = F(p) for every prime p and every a ∈ N.

Proposition 8 Let (fr)r∈N be a completely even sequence with fr(n) = F(gcd
(n, r)) (n, r ∈ N). Suppose that

i) F is strongly multiplicative,
ii) F(p) 6= 1 − p for any prime p.
Then

f̂r(n) =
(F ∗ µ)(m)(F ∗ ϕ)(r)

(F ∗ ϕ)(m)
, m = r/ gcd(n, r), (n, r ∈ N). (47)

Furthermore, for every prime power pa (a ∈ N),

f̂pa (n) =






pa−1(p + F(p) − 1), pa | n,

pa−1(F(p) − 1), pa−1 || n,

0, pa−1 ∤ n.

(48)

Proof. Here for any prime p, (F ∗ µ)(p) = F(p) − 1, (F ∗ µ)(pa) = 0 for any
a ≥ 2 and (F ∗ ϕ)(pa) = pa−1(F(p) + p − 1) for any a ≥ 1. The function F is
multiplicative, thus f̂r(n) is multiplicative in r, cf. Corollary 4. Therefore, it
is sufficient to verify the given identity for r = pa, a prime power. Consider
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three cases: Case 1) pa | n, where gcd(n, pa) = pa; Case 2) pa || n, where
gcd(n, pa) = pa−1; Case 3) pa | n, where gcd(n, pa) = pδ with δ ≤ a − 2. �

Recall that a function f ∈ F is said to be semi-multiplicative if f(m)f(n) =

f(gcd(m, n))f(lcm[m, n]) for any m, n ∈ N. For example, r 7→ cr(n) is semi-
multiplicative for any n ∈ N. As a generalization of this property we have:

Corollary 6 Let (fr)r∈N be a completely even sequence with fr(n) = F(gcd
(n, r)) (n, r ∈ N) satisfying conditions i) and ii) of Proposition 8. Then r 7→
f̂r(n) is semi-multiplicative for any n ∈ N.

Proof. If g ∈ F is multiplicative, then it is known that for any constant C

and any r ∈ N, the function n 7→ Cg(r/ gcd(n, r)) is semi-multiplicative, cf.
[19], and apply (47). �

7 Mean values of the DFT of r-even functions

The mean value of a function f ∈ F is m(f) = limx→∞
1
x

∑
n≤x f(n) if this

limit exists. It is known that
∑

n≤x cr(n) = O(1) for any r > 1. It follows
from (10) that the mean value of any r-even function f exists and is given
by m(f) = αf(1) = 1

r
f̂(r) = 1

r
(f ∗ ϕ)(r), using (18), (19) (see also [27, Prop.

1]). Therefore, if f is r-even, then the mean value of f̂ exists and is given by

m(f̂) = 1
r
̂̂f(r) = f(r). This follows also by Proposition 2. More exactly, we have

Proposition 9 Let f ∈ Br (with r ∈ N fixed).
i) If x ∈ N and r | x, then

x∑

n=1

f̂(n) = f(r)x. (49)

ii) For any real x ≥ 1,

∑

n≤x

f̂(n) = f(r)x + Tf(x), |Tf(x)| ≤
∑

d|r

d|f ′(r/d)|. (50)

iii) The mean value of the DFT function f̂ is f(r).
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Proof. For any x ≥ 1, by Corollary 3,
∑

n≤x

f̂(n) =
∑

n≤x
d|gcd(n,r)

d f ′(r/d) =
∑

d|r

d f ′(r/d)[x/d] =
∑

d|r

d f ′(r/d)(x/d − {x/d})

= x
∑

d|r

f ′(r/d) −
∑

d|r

d f ′(r/d){x/d} = xf(r) + Tf(x),

where Tf(x) is identically zero for x ∈ N, r | x. Furthermore, Tf(x) = O(1) for
x → ∞. �

Now we generalize Ramanujan’s formula

∞∑

n=1

cr(n)

n
= −Λ(r) (r > 1), (51)

where Λ is the von Mangoldt function.

Proposition 10 Let f be an r-even function (r ∈ N).
i) Then uniformly for x and r,

∑

n≤x

f̂(n)

n
= f(r)(log x+C)−(f∗Λ)(r)+O

(
x−1Vf(x)

)
, Vf(x) =

∑

d|r

d |f ′(r/d)|,

(52)
where C is Euler’s constant.

ii) If f(r) = 0, then
∞∑

n=1

f̂(n)

n
= −(f ∗ Λ)(r). (53)

Proof. i) By Corollary 3,

∑

n≤x

f̂(n)

n
=

∑

n≤x

1

n

∑

d|(n,r)

d f ′(r/d) =
∑

d|r

f ′(r/d)
∑

j≤x/d

1

j

=
∑

d|r

f ′(r/d)
(
log(x/d) + C + O(d/x)

)

= (log x + C)
∑

d|r

f ′(r/d) −
∑

d|r

f ′(r/d) log d + O
(

x−1
∑

d|r

d|f ′(r/d)|

)

= (log x + C)f(r) − (f ∗ µ ∗ log)(r) + O
(

x−1
∑

d|r

d|f ′(r/d)|

)
.
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ii) Part ii) follows from i) with x → ∞. �

Remark 3 There is no simple general formula for
∑

r≤x f̂r(n), where n ∈ N
is fixed and (fr)r∈N is a sequence of r-even functions (for example, cr(0) =

ϕ(r) and cr(1) = µ(r) have different asymptotic behaviors). For asymptotic
formulae concerning special functions of type

∑n
k=1 F(gcd(k, n)) see the recent

papers [5, 28].

8 Dirichlet series of the DFT of sequences of r-even

functions

We consider the Dirichlet series of the DFT of sequences (fr)r∈N such that
fr ∈ Br for any r ∈ N. By f̂r(n) = (η

.
(n) ∗ µ ∗ fr)(r), cf. (22), we have

formally,

∞∑

r=1

f̂r(n)

rs
=

∞∑

r=1

ηr(n)

rs

∞∑

r=1

(fr ∗ µ)(r)

rs
=

σs−1(n)

ns−1

∞∑

r=1

1

rs

∑

kℓ=r

µ(k)fr(ℓ) (54)

=
σs−1(n)

ns−1

∞∑

k=1

µ(k)

ks

∞∑

ℓ=1

fkℓ(ℓ)

ℓs
,

where σk(n) =
∑

d|ndk. This can be written in a simpler form by considering
the DFT of completely even sequences of functions.

Proposition 11 Let (fr)r∈N be a completely even sequence of functions with
fr(n) = F(gcd(n, r)) and let aF denote the absolute convergence abscissa of the
Dirichlet series of F. Then

∞∑

r=1

f̂r(n)

rs
=

σs−1(n)

ns−1ζ(s)

∞∑

r=1

F(r)

rs
(55)

for any n ∈ N, absolutely convergent for Re s > max{1, aF},

∞∑

n=1

f̂r(n)

ns
= ζ(s)(F ∗ φ1−s)(r) (56)

for any r ∈ N, absolutely convergent for Re s > 1, where φk(r) =
∑

d|r dkµ(r/d)

is a generalized Euler function,

∞∑

n=1

∞∑

r=1

f̂r(n)

nsrt
=

ζ(s)ζ(s + t − 1)

ζ(t)

∞∑

n=1

F(n)

nt
(57)
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absolutely convergent for Re s > 1, Re t > max{1, aF}.

Proof. Apply (22) and (23). �

For F = ε we reobtain the known formulae for the Ramanujan sum.
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Acta Math. Acad. Paedagog. Nyházi. (N.S.), electronic, 20 (2004), 233–
238.
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Abstract. In the paper we study the question of possible cardinality of
a family of almost disjoint subsets of positive integers each being large
with respect to a given criterion. For example, it is shown that there
are continuum many almost disjoint subsets of N where each set is large
in both the sense of (R)-density and in the sense of the upper weighted
density. On the other hand, when considering sets with positive lower
weighted density, the result is completely different.

1 Introduction

There is a simple standard fact that any family of disjoint subsets of a given
countable set, e.g. the set of all positive integers, can be at most countable.
On the other hand, slightly relaxing the condition of disjointness so that any
pair of sets in the considered family can overlap in a finite set, the possible
cardinality of such a family is that of continuum. In this paper we will study
the question of maximal possible cardinality of almost disjoint families of sets
of integers, so that each set in the family is large with respect to some criterion.

Denote by N, Q, R, the sets of all positive integers, rational numbers and
real numbers, respectively. Two subsets of N are said to be almost disjoint if
their intersection is finite. A family of subsets of N is said to be an almost
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disjoint family if it consists of pairwise almost disjoint sets. It is well known
that there are almost disjoint families having cardinality of continuum. An
easy way how to construct such a family may be described as follows.

• Map the set N by a one to one mapping b on the set Q.

• For each real number r choose a sequence {s(r)} of rational numbers
converging to r.

Then the family {{b−1(s(r))}}r∈R consists of c almost disjoint sets. Here
c = 2ℵ0 stands for the cardinality of continuum.

In fact, in this example the almost disjoint family is constructed on the set
of rationals and all sets in the family are very small from the natural point of
view the topological density, all they are nowhere dense sets.

A natural question arises: can such a large almost disjoint family consist of
sets which are ”large in some sense” as subsets of N?

In this paper any family F of subsets of N satisfying the condition

If A ∈ F and A ⊂ B then B ∈ F .

will be called a family of large sets in N.
The purpose of this paper is to investigate the largest possible cardinality

of almost disjoint families consisting of sets large in some natural sense.

2 Families of (R)-dense sets

Denote by R(A) =
{a
b

;a ∈ A, b ∈ A
}

the ratio set of A and say that a set

A is (R)-dense if R(A) is (topologically) dense in the set (0,∞). It is manifest
that the class D of all (R)-dense sets forms a family of large sets in N.

Theorem 1 There exists an almost disjoint family of c many (R)-dense sets.

Proof. Let {Jn}
∞
n=1 be a family of open subintervals of the interval (0,∞)

forming a base for the ordinary topology on (0,∞). First, we will construct
by induction a family {Mn}

∞
n=1 of disjoint subsets of N such that each Mn is

(R)-dense set. As a general rule used in the each step of the construction is
the following:

Each element in the choice is different from all elements previously chosen.
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Step 1. Choose p11 ∈ N and q11 ∈ N such that
p11

q11
∈ J1.

Step 2. Choose p12 ∈ N and q12 ∈ N such that
p12

q12
∈ J2. Then choose

successively p21 ∈ N and q21 ∈ N such that
p21

q21
∈ J1 and p22 ∈ N and

q22 ∈ N such that
p22

q22
∈ J2.

Step n. Choose for i = 1, 2, 3, . . . n − 1 successively pin ∈ N and qin ∈ N

such that
pin

qin
∈ Jn. Then choose for j = 1, 2, 3, . . . n successively pnj ∈ N

and qnj ∈ N such that
pnj

qnj
∈ Jj.

For each n ∈ N set Mn = {pn1, qn1, pn2, qn2, pn3, qn3, . . . }. Then, by con-
struction, all sets Mn, n = 1, 2, . . . are pairwise disjoint (R)-dense sets.

Now let D be any fixed almost disjoint family with cardinality of continuum.
Let D = {d1 < d2 < d3 < . . . } ∈ D. Define

ϕ(D) = {pd11, qd11, pd22, qd22, pd33, qd33, . . . }.

We will show that for each D ∈ D the set ϕ(D) is (R)-dense. Let U be an open
set of real numbers. Then there exists a positive integer m such that Jm ⊂ U
and, by Step n,

pdmm

qdmm
∈ Jm ⊂ U. Thus ϕ(D) is an (R)-dense set.

Now let D = {d1 < d2 < d3 < . . . } and E = {e1 < e2 < e3 < . . . } be two sets
in D and suppose that k ∈ ϕ(D) ∩ ϕ(E). Then there are positive integers m
and n such that

k = pdmm = penn (or k = qdmm = qenn),

consequently, by the above construction, we have dm = en. As the sets D
and E are almost disjoint, there are only finitely many such numbers dm =

en, dm ∈ D, en ∈ E. Thus we have shown that {ϕ(D)}D∈D is almost disjoint,
so it is a required family. �
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3 Families of sets with large densities

For the rest of the paper let f : N → (0,∞). Denote by χA the characteristic
function of a set A. For A ⊂ N define

df(A) = lim inf
x→∞

∑

i≤x

f(i)χA(i)

∑

i≤x

f(i)
, df(A) = lim sup

x→∞

∑

i≤x

f(i)χA(i)

∑

i≤x

f(i)

df(A) = lim
x→∞

∑

i≤x

f(i)χA(i)

∑

i≤x

f(i)

the weighted lower f-density, weighted upper f-density, and weighted f-density
(if defined), respectively.

In this paper we will consider only functions f satisfying the condition

∞∑

n=1

f(n) = ∞. (D)

Remark 1 The most important special cases of weighted densities are those
for f(i) ≡ 1, so called asymptotic density and for f(i) = 1

i
, so called logarithmic

density. Also notice that the condition (D) guarantees that sets differing in a
finite number of elements have the same upper and lower f-densities.

Let r ∈ (0, 1]. Then the classes Lf(r) = {A ⊂ N ; df(A) ≥ r} and Uf(r) =

{A ⊂ N ; df(A) ≥ r} form families of large subsets in N.

3.1 Sets with large lower f-densities

We will denote by [x] the integer part of x, i.e. the largest integer less than or
equal to x.

Theorem 2 Let f fulfils the condition (D) and let S be an almost disjoint
family. Then

∑

A∈S

df(A) ≤ 1 for every f : N → (0,∞).

Proof. Suppose there exists an almost disjoint subfamily S of Lf(r) such that∑

A∈S

df(A) > 1. Then it contains a finite subfamily F = {F1, F2, . . . , Fn} with

n∑

j=1

df(Fj) = s > 1. Since F is finite and almost disjoint, there is an integer



30 L. Mǐśık, J. T. Tóth

k0 such that for every pair of distinct integers i ∈ [1, n], j ∈ [1, n] we have
Fi ∩ Fj ∩ [1, k0] = ∅. Let

Gj = Fj ∩ (k0,∞) for each j = 1, 2, . . . n.

Then the sets {Gj}
n
j=1 are pairwise disjoint and

df(Gj) = df(Fj) for each j = 1, 2, . . . n.

Choose a positive number ε such that s−nε > 1. Then there exists a positive
integer m0 such that for every m > m0 and every j = 1, 2, . . . , n we have

∑

i≤m

f(i)χGj(i)

∑

i≤m

f(i)
> d(Gj) − ε

Denote by G =
n⋃
j=1

Gj and calculate

1 ≥

∑

i≤m

f(i)χG(i)

∑

i≤m

f(i)
=

n∑

j=1

∑

i≤m

f(i)χGj(i)

∑

i≤m

f(i)
>

n∑

j=1

(d(Gj) − ε) = s− nε > 1,

a contradiction. �

The following statement is a straightforward corollary to the previous the-
orem.

Corollary 1 Let r ∈ (0, 1]. Then every almost disjoint subfamily of Lf(r)

consists of at most

[
1

r

]
sets.

Theorem 3 Every almost disjoint family consisting of subsets of N with pos-
itive lower f-densities is at most countable.

Proof. Let S be an almost disjoint family of subsets of N and let df(S) > 0

for every S ∈ S. Then S =
∞⋃
n=1

(
S ∩ Lf

(
1
n

))
. By Corollary 1 every set in the

union on the right side is finite, so S is at most countable. �

Remark 2 It is easy to find a countable disjoint family of subsets with pos-
itive lower f-densities. Thus in the class of sets with positive lower f-density
the maximum cardinality of disjoint families is the same as the maximum
cardinality of almost disjoint families.
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3.2 Sets with large upper f-densities

In the case of the upper f-density our considerations will substantially differ
from those in the case of the lower f-density.

Theorem 4 Let f satisfy the condition (D). Then there exists an almost
disjoint family of c many sets each of which has the upper f-density equal
to 1.

Proof. First notice that due to the condition (D) for every p ∈ N and for every

ε > 0 there exists q ∈ N such that

q∑

i=p+1

f(i)

q∑

i=1

f(i)

> 1 − ε. Choose by induction a

sequence {kn}
∞
n=1 of positive integers as follows

Step 1. Put k1 = 1.

Step n. Suppose that positive integers k1 < k2 < · · · < kn−1 have already
been chosen. Let kn be the smallest positive integer

such that

kn∑

i=kn−1+1

f(i)

kn∑

i=1

f(i)

> 1−
1

n
. (I)

Now for each n ∈ N put In = [kn−1 + 1, kn] ∩ N. Let D be any almost
disjoint family with cardinality of continuum. For every D ∈ D define ψ(D) =⋃
d∈D

Id. To see that F = {ψ(D)}D∈D is an almost disjoint family notice that

the intersection of each pair of sets in F consists of union of finitely many
finite intervals in N, consequently it is finite. Let D = {d1 < d2 < . . . } ∈ D
and calculate

df(ψ(D)) = lim sup
n→∞

n∑

i=1

f(i)χψ(D)(i)

n∑

i=1

f(i)

≥ lim sup
n→∞

kdn∑

i=1

f(i)χψ(D)(i)

kdn∑

i=1

f(i)

≥
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lim sup
n→∞

kdn∑

i=kdn−1+1

f(i)

kdn∑

i=1

f(i)

= 1,

thus F is a required family. �

Remark 3 Putting r = 1 in Corollary 1 for lower f-densities and comparing
its statement to that of Theorem 4 for upper f-densities shows a huge differ-
ence between the lower and upper f-densities relative to the question in our
investigation.

Remark 4 In [1] it is proved that every subset of N with the upper asymp-
totic density equal to 1 is necessary (R)-dense. By this result, Theorem 1 is a
corollary to Theorem 4, even we can say more.

Theorem 5 Let a function f fulfil the condition (D). Then there exists an
almost disjoint family of c many sets each of which is (R)-dense and at the
same time it has the upper f-density equal to 1.

Proof. In the proof of this theorem we will follow the same idea as in the
previous one. The only difference is in the induction step where the condition
(I) should be changed to the stronger one: Let kn be the smallest positive
integer

greater than n(kn−1+ 1) such that

kn∑

i=kn−1+1

f(i)

kn∑

i=1

f(i)

> 1−
1

n
. (II)

Using the previous proof, we need only to prove that each set in the family
F = {ψ(D)}D∈D is (R)-dense. Let D = {d1, d2, . . . } ∈ D and let 1 < a < b
be given real numbers. Choose an integer dl ∈ D so that

b < dl and
1

dl
< b− a. (1)

Condition (II) guarantees kdl > dl(kdl−1+ 1), consequently

kdl
kdl−1+ 1

> dl > b. (2)
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Clearly kdl−1 + 1 ≥ dl, thus we also have

1

kdl−1+ 1
≤ 1

dl
. (3)

As Idl = [kdl−1+ 1, kdl ] ∩ N ⊂ ψ(D), by (1), (2) and (3) the set

{
kdl−1+ 1

kdl−1+ 1
<
kdl−1+ 2

kdl−1+ 1
< · · · < kdl − 1

kdl−1+ 1
<

kdl
kdl−1+ 1

}
⊂ R(ψ(D))

intersects (a, b), thus ψ(D) is (R)-dense. �

Remark 5 In the case when
∞∑

n=1

f(n) < ∞ the statement corresponding to

that in Theorem 4 does not hold. In this case the statement corresponding to
that in Theorem 3 for lower f-densities takes place.
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Abstract. An oriented k-partite graph(multipartite graph) is the result
of assigning a direction to each edge of a simple k-partite graph. Let
D(V1, V2, · · · , Vk) be an oriented k-partite graph, and let d+

vij
and d−

vij

be respectively the outdegree and indegree of a vertex vij in Vi. Define
bvij

(or simply bij as bij = d+
vij

−d−
vij

as the imbalance of the vertex vij.
In this paper, we characterize the imbalances of oriented k-partite graphs
and give a constructive and existence criteria for sequences of integers to
be the imbalances of some oriented k-partite graph. Also, we show the
existence of an oriented k-partite graph with the given imbalance set.

1 Introduction

A digraph without loops and without multi-arcs is called a simple digraph.
Mubayi et al. [1] defined the imbalance of a vertex vi in a digraph as bvi

(or simply bi) = d+
vi

− d−
vi

, where d+
vi

and d−
vi

are respectively the outdegree
and indegree of vi. The imbalance sequence of a simple digraph is formed by

2010 Mathematics Subject Classification: 05C20

Key words and phrases: digaph, imbalance, outdegree, indegree, oriented graph, oriented

multipartite graph, arc

34
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listing the vertex imbalances in non-increasing order. A sequence of integers
F = [f1, f2, · · · , fn] with f1 ≥ f2 ≥ · · · ≥ fn is feasible if it has sum zero and
satisfies

∑k
i=1 fi ≤ k(n − k), for 1 ≤ k < n.

The following result [1] provides a necessary and sufficient condition for a
sequence of integers to be the imbalance sequence of a simple digraph.

Theorem 1 A sequence is realizable as an imbalance sequence if and only if
it is feasible.

The above result is equivalent to saying that a sequence of integers B =

[b1, b2, · · · , bn] with b1 ≥ b2 ≥ · · · ≥ bn is an imbalance sequence of a simple
digraph if and only if for 1 ≤ k < n

k∑

i=1

bi ≤ k(n − k),

with equality when k = n.
On arranging the imbalance sequence in non-decreasing order, we have the

following observation.

Theorem 2 A sequence of integers B = [b1, b2, · · · , bn] with b1 ≤ b2 ≤ · · · ≤
bn is an imbalance sequence of a simple digraph if and only if for 1 ≤ k < n

k∑

i=1

bi ≥ k(n − k),

with equality when k = n.

Various results for imbalances in digraphs and oriented graphs can be found
in [2, 3, 4, 5].

2 Imbalance sequences in oriented multipartite

graphs

An oriented multipartite (k-partite) graph is the result of assigning a direction
to each edge of a simple multipartite (k-partite) graph, k ≥ 2. Throughout this
paper we denote an oriented k-partite graph by k-OG, unless otherwise stated.
Let Vi = {vi1, vi2, · · · , vini

}, 1 ≤ i ≤ k, be k parts of k-OG D(V1, V2, · · · , Vk),
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and let d+
vij

and d−
vij

, 1 ≤ j ≤ ni, be respectively the outdegree and indegree of

a vertex vij in Vi. Define bvij
(or simply bij as bij = d+

vij
−d−

vij
as the imbalance

of the vertex vij. The sequences Bi = [bi1, bi2, · · · , bini
], 1 ≤ i ≤ k, in non-

decreasing order are called the imbalance sequences of D(V1, V2, · · · , Vk).
The k sequences of integers Bi = [bi1, bi2, · · · , bini

], 1 ≤ i ≤ k, in nonde-
creasing order are said to be realizable if there exists an k-OG with imbalance
sequences Bi, 1 ≤ i ≤ k. Various criterions for imbalance sequences in k-OG
can be found in [2].

For any two vertices vij in Vi and vlm in Vl (i 6= l, 1 ≤ i ≤ l ≤ k, 1 ≤
j ≤ ni, 1 ≤ m ≤ nl) of k-OG D(V1, V2, · · · , Vk), we have one of the following
possibilities.
(i). An arc directed from vij to vlm, denoted by vij(1 − 0)vlm.
(ii). An arc directed from vlm to vij, denoted by vij(0 − 1)vlm.
(iii). There is no arc from vij to vlm and there is no arc from vlm to vij and
this is denoted by vij(0 − 0)vlm.

A triple in k-OG is an induced suboriented graph of three vertices with
exactly one vertex from each part. For any three vertices vij, vlm and vpq in
k-OG D, the triples of the form vij(1 − 0)vlm(1 − 0)vpq(1 − 0)vij, or vij(1 −

0)vlm(1−0)vpq(0−0)vij are said to be oriented intransitive, while as the triples
of the form vij(1−0)vlm(1−0)vpq(0−1)vij, or vij(1−0)vlm(0−1)vpq(0−0)vij,
or vij(1 − 0)vlm(0 − 0)vpq(0 − 1)vij, or vij(1 − 0)vlm(0 − 0)vpq(0 − 0)vij, or
vij(0− 0)vlm(0− 0)vpq(0− 0)vij are said to be oriented transitive. An k-OG is
said to be oriented transitive if all its triples are oriented transitive, otherwise
oriented intransitive.

We have the following observation.

Theorem 3 Let D and D′be two k-OG with the same imbalance sequences.
Then D can be transformed to D′ by successively transforming appropriate
triples in one of the following ways. Either (a) by changing a cyclic triple
vij(1−0)vlm(1−0)vpq(1−0)vij to an oriented transitive triple vij(0−0)vlm(0−

0)vpq(0 − 0)vij which has the same imbalance sequences, or vice versa, or (b)
by changing an oriented intransitive triple vij(1 − 0)vlm(1 − 0)vpq(0 − 0)vij

to an oriented transitive triple vij(0 − 0)vlm(0 − 0)vpq(0 − 1)vij which has the
same imbalance sequences, or vice versa.

Proof. Let Bi be the imbalance sequences of k-OG D whose parts are Vi,
1 ≤ i ≤ k and |Vi| = ni. Let D′ be k-OG with parts V ′

i, 1 ≤ i ≤ k. To
prove the result, it is sufficent to show that D′ can be obtained from D by
successively transforming triples in any one of the ways as given in (a), or (b).
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We fix ni, 2 ≤ i ≤ k and use induction on n1. For n1 = 1, the result is
obvious. Assume that the result holds when there are fewer than n1 vertices
in the first part. Let j2, j3, · · · , jk be such that for l2 > j2, l3 > j3, · · · , lk > jk,
1 ≤ j2 < l2 ≤ n2, 1 ≤ j3 < l3 ≤ n3, · · · , 1 ≤ jk < lk ≤ nk, the corresponding
arcs have the same orientations in D and D′. For j2, j3, · · · , jk and 2 ≤ i, p, q ≤
k, p 6= q, we have three cases to consider.

(i). v1n1
(1 − 0)vijp (1 − 0)vijq and v′1n1

(0 − 0)v′ijp (0 − 0)v′ijq , (ii). v1n1
(0 −

0)vijp (0−1)vijq and v′1n1
(1−0)v′ijp(0−0)v′ijq and (iii). v1n1

(1−0)vijp(0−0)vijq

and v′1n1
(0 − 0)v′ijp (0 − 1)v′ijq .

Case (i). Since v1n1
and v′1n1

have equal imbalances, we have v1n1
(0−1)vijq

and v′1n1
(0−0)v′ijq , or v1n1

(0−0)vijq and v′1n1
(1−0)v′ijq . Thus there is a triple

v1n1
(1 − 0)vijp (1 − 0)vijq (1 − 0)v1n1

, or v1n1
(1 − 0)vijp (1 − 0)vijq (0 − 0)v1n1

in D, and corresponding to these v′1n1
(0 − 0)v′ijp (0 − 0)v′ijq (0 − 0)v′1n1

, or

v′1n1
(0 − 0)v′ijp (0 − 0)v′ijq (0 − 1)v′1n1

respectively is a triple in D′.

Case (ii). Since v1n1
and v′1n1

have equal imbalances, we have v1n1
(1−0)vijq

and v′1n1
(0 − 0)v′ijq . Thus there is a triple v1n1

(0 − 0)vijp (0 − 1)vijq (0 − 1)v1n1

in D and corresponding to this v′1n1
(1 − 0)v′ijp (0 − 0)v′ijq (0 − 0)v′1n1

is a triple

in D′.
Case (iii). Since v1n1

and v′1n1
have equal imbalances, therefore we have

v1n1
(0 − 1)vijq and v′1n1

(0 − 0)v′ijq . Thus v1n1
(1 − 0)vijp (0 − 0)vijq (1 − 0)v1n1

is a triple in D, and corresponding to this v′1n1
(0− 0)v′ijp (0− 1)v′ijq (0− 0)v′1n1

is a triple in D′.
Therefore from (i), (ii) and (iii) it follows that there is an k-OG that can

be obtained from D by any one of the transformations (a) or (b) with the
imbalances remaining unchanged. Hence the result follows by induction. �

Corollary 1 Among all k-OG with given imbalance sequences, those with the
fewest arcs are oriented transitive.

A transmitter is a vertex with indegree zero. In a transitive oriented k-OG
with imbalance sequences Bi = [bi1, bi2, · · · , bini

], 1 ≤ i ≤ k, any of the
vertices with imbalances bini

, can act as a transmitter.
The next result provides a useful recursive test of checking whether the

sequences of integers are the imbalance sequences of k-OG.

Theorem 4 Let Bi = [bi1, bi2, · · · , bini
], 1 ≤ i ≤ k, be k sequences of integers

in non-decreasing order with b1n1
> 0 and bjnj

≤
∑k

r=1,r6=j nr, for all j,
2 ≤ i ≤ k. Let B′

1 be obtained from B1 by deleting one entry b1n1
, and let
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B′
2, B

′
3, · · · , B′

k, be obtained from B2, B3, · · · , Bk by increasing b1n1
smallest

entries of B2, B3, · · · , Bk by one each. Then Bi are imbalance sequences of
some k-OG if and only if B′

i are imbalance sequences.

Proof. Suppose B′
i be the imbalance sequences of some k-OG D′ with parts

V ′
i, 1 ≤ i ≤ k. Then k-OG D with imbalance sequences Bi can be obtained by

adding a vertex v1n1
in V ′

1 such that v1n1
(1 − 0)vij for those vertices vij in V ′

i,
i 6= 1 whose imbalances are increased by one in going from Bi to B′

i.
Conversely, let Bi be the imbalance sequences of k-OG D with parts Vi,

1 ≤ i ≤ k. By Corollary 4, any of the vertices vini
in Vi with imbalances

bini
, 1 ≤ i ≤ k can be a transmitter. Assume that the vertex v1n1

in V1

with imbalance b1n1
be a transmitter. Clearly, d+

v1n1
> 0 and d−

v1n1
= 0 so

that b1n1
= d+

v1n1
− d−

v1n1
> 0. Also, d+

vjnj
≤

∑k
r=1,r6=j nr and d−

vjnj
≥ 0 for

2 ≤ i ≤ k so that bjnj
= d+

vjnj
− d−

vjnj
≤

∑k
r=1,r6=j nr.

Let U be the set of v1n1
vertices of smallest imbalances in Vj, 2 ≤ i ≤ k and

let W = V2 ∪ V3 ∪ · · · ∪ Vk − U. Now construct D such that v1n1
(1 − 0)u for

all u in U. Clearly D − {v1n1
} realizes V ′

i, 1 ≤ i ≤ k. �

Theorem 5 provides an algorithm for determining whether or not the se-
quences Bi, 1 ≤ i ≤ k of integers in non-decreasing order are the imbalance
sequences and for constructing a corresponding k-OG.

Suppose Bi = [bi1, bi2, · · · , bini
], 1 ≤ i ≤ k, be imbalance sequences of k-OG

with parts Vi = {vi1, vi2, · · · , vini
}, where b1n1

> 0 and bjnj
≤

∑k
r=1,r6=j nr,

2 ≤ i ≤ k. Deleting b1n1
and increasing b1n1

smallest entries of B2, B3, · · · , Bk

by 1 each to form B′
2, B

′
3, · · · , B′

k. Then arcs are defined by v1n1
(1 − 0)vij,

for which b′
vij

= bvij
+ 1, where i 6= 1. If at least one of the conditions

b1n1
> 0, or bjnj

≤
∑k

r=1,r6=j nr does not hold, then we delete bini
for that

i for which the conditions get satisfied and the same argument is used for
defining arcs. If this method is applied recursively, then (i) it tests whether Bi

are the imbalance sequences, and if Bi are the imbalance sequences (ii) k-OG
△(Bi) with imbalance sequences Bi is constructed.

We illustrate this reduction and resulting construction as follows.
Consider the four sequences B1 = [1, 3, 4], B2 = [−3, 2, 2], B3 = [−4, −3] and

B4 = [−3, 1].
(i) [1, 3, 4], [−3, 2, 2], [−4, −3], [−3, 1]

(ii) [1, 3], [−2, 2, 2], [−3, −2], [−2, 1], v13(1−0)v21, v13(1−0)v31, v13(1−0)v32,
v13(1 − 0)v41

(iii) [1], [−1, 2, 2], [−2, −1], [−2, 1], v12(1−0)v21, v12(1−0)v31, v12(1−0)v32

(iv) ∅, [−1, 2, 2], [−2, −1], [−2, 1], v11(1 − 0)v31
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(v) ∅, [−1, 2], [0, −1], [−1, 1], v23(1−0)v31, v23(1−0)v41 or, ∅, [−1, 2], [−1, 0],
[−1, 1]

(vi)∅, [−1], [0, 0], [0, 1], v22(1 − 0)v32, v22(1 − 0)v41

(vii)∅, [0], [0, 0], [0, 0], v42(1 − 0)v21.
Clearly 4-OG with parts V1 = {v11, v12, v13}, V2 = {v21, v22, v23}, V3 =

{v31, v32} and V4 = {v41, v42} in which v13(1 − 0)v21, v13(1 − 0)v31, v13(1 −

0)v32, v13(1 − 0)v41, v12(1 − 0)v21, v12(1 − 0)v31, v12(1 − 0)v32, v11(1 − 0)v31,
v23(1 − 0)v31, v23(1 − 0)v41, v22(1 − 0)v32, v22(1 − 0)v41, v42(1 − 0)v21 are arcs
has imbalance sequences [1, 3, 4], [−3, 2, 2], [−4, −3] and [−3, −1].

The next result gives a combinatorial criterion for determining whether k

sequences of integers are realizable as imbalances.

Theorem 5 Let Bi = [bi1, bi2, · · · , bini
], 1 ≤ i ≤ k, be k sequences of integers

in non-decreasing order. Then Bi are the imbalance sequences of some k-OG
if and only if

k∑

i=1

mi∑

j=1

bij ≥ 2

k−1∑

i=1

k∑

j=i+1

mimj −

k∑

i=1

ni

k∑

j=1

mj −

k∑

i=1

mini, (1)

for all sets of k integers mi, 0 ≤ mi ≤ ni with equality when mi = ni.

Proof. The necessity of the condition follows from the fact that the k-OG
induced by mi vertices for 1 ≤ i ≤ k, 1 ≤ mi ≤ ni has a sum of imbalances
2

∑k−1
i=1

∑k
j=i+1 mimj −

∑k
i=1 ni

∑k
j=1 mj −

∑k
i=1 mini.

For sufficiency, assume that Bi = [bi1, bi2, · · · , bini
], 1 ≤ i ≤ k be the

sequences of integers in non-decreasing order satisfying conditions (1) but are
not the imbalance sequences of any k-OG. Let these sequences be chosen in
such a way that ni, 1 ≤ i ≤ k are the smallest possible and b11 is the least for
the choice of ni. We consider the following two cases.

Case (i). Suppose equality in (1) holds for some mj ≤ nj, 1 ≤ i ≤ k − 1,
mk ≤ nk, so that

k∑

i=1

mi∑

j=1

bij = 2

k−1∑

i=1

k∑

j=i+1

mimj −

k∑

i=1

ni

k∑

j=1

mj −

k∑

i=1

mini.

By the minimality of ni, 1 ≤ i ≤ k the sequences B′
i = [bi1, bi2, · · · , bimi

]

are the imbalance sequences of some k-OG D′(V ′
1, V

′
2, · · · , V ′

k).
Define B′′

i = [bi(mi+1), bi(mi+2), · · · , bi(ni)], 1 ≤ i ≤ k.
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Consider the sum

k∑

i=1

fi∑

j=1

bi(mi+j) =

k∑

i=1

mi+fi∑

j=1

bij −

k∑

i=1

mi∑

j=1

bij

≥ 2

k−1∑

i=1

k∑

j=i+1

(mi + fi)(mj + fj) −

k∑

i=1

ni

k∑

j=1

(mj + fj)

−

k∑

i=1

(mi + fi)ni − 2

k−1∑

i=1

k∑

j=i+1

mimj +

k∑

i=1

ni

k∑

j=1

mj +

k∑

i=1

mini

= 2

k−1∑

i=1

k∑

j=i+1

mimj + 2

k−1∑

i=1

k∑

j=i+1

(mifj + fimj + fifj) −

k∑

i=1

ni

k∑

j=1

fj

−

k∑

i=1

mini −

k∑

i=1

fini − 2

k−1∑

i=1

k∑

j=i+1

mimj +

k∑

i=1

ni

k∑

j=1

mj+

+

k∑

i=1

mini ≥ 2

k−1∑

i=1

k∑

j=i+1

fifj −

k∑

i=1

ni

k∑

j=1

fj −

k∑

i=1

fini,

for 1 ≤ fi ≤ ni − mi, with equality when fi = ni − mi for all i, 1 ≤ i ≤ k.
So by the minimality of ni, 1 ≤ i ≤ k, the sequences B′′

i form the imbalance
sequence of some k-OG D′′(V ′′

1 , V ′′
2 , · · · , V ′′

k).
Construct a new k-OG D(V1, V2, · · · , Vk) as follows. Let V1 = V ′

1 ∪
V ′′

1 , V2 = V ′
2 ∪ V ′′

2 , · · ·Vk = V ′
k ∪ V ′′

k with V ′
i ∩ V ′′

i = ∅ and the arc set con-
taining those arcs which are among V ′

1, V
′
2, · · · , V ′

k and among V ′′
1 , V ′′

2 , · · · , V ′′
k.

Then D(V1, V2, · · · , Vk) has imbalance sequences Bi, 1 ≤ i ≤ k, which is a
contradiction.

Case (ii). Assume that the strict inequality holds in (1) for some mi 6= ni,
1 ≤ i ≤ k. Let B′

1 = [b11 − 1, b12, · · · , b1n1−1, b1n1
] and let B′

j = [bj1, bj2, · · · ,

bjnj
] for all j, 2 ≤ j ≤ k. Clearly the sequences B′

i, 1 ≤ i ≤ k satisfy conditions
(1). Therefore, by the minimality of b11, the sequences B′

i, 1 ≤ i ≤ k are the
imbalance sequences of some k-OG D′(V ′

1, V
′
2, · · · , V ′

k). Let bv11
= b11−1 and

bv1n1
= b1n1

+ 1. Since bv1n1
> bv11

+ 1, there exists a vertex vij either in Vi,
1 ≤ i ≤ k, 1 ≤ j ≤ ni, such that v1n1

(0 − 0)vij(1 − 0)v11, or v1n1
(1 − 0)vij(0 −

0)v11, or v1n1
(1−0)vij(1−0)v11, or v1n1

(0−0)vij(0−0)v11 in D′(V ′
1, V

′
2, · · · , V ′

k),
and if these are changed to v1n1

(0−1)vij(0−0)v11, or v1n1
(0−0)vij(0−1)v11,

or v1n1
(0−0)vij(0−0)v11, or v1n1

(0−1)vij(0−1)v11 respectively, the result is
k-OG with imbalance sequences Bi, which is a contradiction. This completes
the proof. �
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3 Imbalance sets in oriented multipartite graphs

The set of distinct imbalances of the vertices in k-OG is called its imbalance
set. Now we give the existence of k-OG with a given imbalance set.

Theorem 6 Let S = {s1, s2, · · · , sn} and T = {−t1, −t2, · · · , −tn}, where
s1, s2, · · · , sn, t1, t2, · · · , tn are positive integers with s1 < s2 < · · · < sn and
t1 < t2 < · · · < tn. Then there exists k-OG with imbalance set S ∪ T .

Proof. First assume that k ≥ 2 is even. Construct k-OG D(V1, V2, · · · , Vk) as
follows. Let

V1 = V11 ∪ V12 ∪ · · · ∪ V1n,

V2 = V21 ∪ V22 ∪ · · · ∪ V2n,

. . .

Vk = Vk1 ∪ Vk2 ∪ · · · ∪ Vkn,

with Vij ∩ Vlm = ∅, |Vij| = ti for all odd i, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n and
|Vij| = si for all even i, 2 ≤ i ≤ k, 1 ≤ j ≤ n. Let there be an arc from each
vertex of Vij to every vertex of V(i+1)j for all odd i, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n

so that we obtain k-OG with imbalance of vertices as follows.
For odd i, 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n

bvij
= |V(i+1)j| − 0 = si,

for all vij ∈ Vij; and for even i, 2 ≤ i ≤ k and 1 ≤ j ≤ n

bvij
= 0 − |V(i+1)j| = −ti,

for all vij ∈ Vij

Therefore imbalance set of D(V1, V2, · · · , Vk) is S ∪ T .
Now assume k ≥ 3 is odd. Construct k-OG D(V1, V2, · · · , Vk) as below. Let

V1 = V11 ∪ V ′
11 ∪ V12 ∪ V ′

12 ∪ . . . ∪ V1n ∪ V ′
1n,

V2 = V21 ∪ V22 ∪ . . . ∪ V2n,

. . .

Vk−1 = V(k−1)1 ∪ V(k−1)2 ∪ . . . ∪ V(k−1)n,

Vk = V ′
k1 ∪ V ′

k2 ∪ . . . ∪ V ′
kn,
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with Vij∩Vlm = ∅, V ′
ij∩V ′

lm = ∅, Vij∩V ′
lm = ∅, |Vij| = ti for all i, 1 ≤ i ≤ k−2,

1 ≤ j ≤ n, |Vij| = si for all even i, 2 ≤ i ≤ k − 1, 1 ≤ j ≤ n, |V ′
ij| = ti for

all j, 1 ≤ j ≤ n and |V ′
kj| = sj for all j, 1 ≤ j ≤ n. Let there be an arc from

each vertex of Vij to every vertex of V(i+1)j for all i, 1 ≤ i ≤ k − 2, 1 ≤ j ≤ n

and let there be an arc from each vertex of V ′
1j to every vertex of V ′

kj for all j,
1 ≤ j ≤ n, so that we obtain k-OG with imbalance set S ∪ T , as above. �
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Faculty od Maritime Studies, University

of Rijeka, 51000 Rijeka, Croatia
email: poganj@pfri.hr

Ravi Saxena
Faculty of Engineering, Jai Narain Vyas

University, Jodhpur–342005, India
email: saxravi@yahoo.co.in

Dragana Jankov
Department of Mathematics, University

of Osijek, 31000 Osijek, Croatia
email: djankov@mathos.hr

Abstract. The object of the present paper is to define certain new in-
complete generalized Hurwitz–Lerch Zeta functions and incomplete gen-
eralized Gamma functions. Further, we introduce two new statistical dis-
tributions named as, generalized Hurwitz–Lerch Zeta Beta prime dis-
tribution and generalized Hurwitz–Lerch Zeta Gamma distribution and
investigate their statistical functions, such as moments, distribution and
survivor function, characteristic function, the hazard rate function and
the mean residue life functions. Finally, Moment Method parameter es-
timators are given by means of a statistical sample of size n. The results
obtained provide an elegant extension of the work reported earlier by
Garg et al. [3] and others.

2010 Mathematics Subject Classification: 11M35, 33C05, 60E05, 60E10

Key words and phrases: Riemann zeta function, Lerch zeta function, Hurwitz–Lerch

Zeta function, hazard function, mean residual life function, characteristic function, Planck

distribution, generalized Beta prime distribution, moment method parameter estimation

43



44 R. K. Saxena, T. K. Pogány, R. Saxena, D. Jankov

1 Introduction and preliminaries

A generalized Hurwitz–Lerch Zeta function Φ(z, s, a) is defined [1, p. 27, Eq.
1.11.1] as the power series

Φ(z, s, a) =

∞∑

n=0

zn

(n+ a)s
, (1)

where a ∈ C\Z−
0 ; ℜ{s} > 1 when |z| = 1 and s ∈ C when |z| < 1 and continues

meromorphically to the complex s–plane, except for the simple pole at s = 1,
with its residue equal to 1.

The function Φ(z, s, a) has many special cases such as Riemann Zeta [1],
Hurwitz–Zeta [23] and Lerch Zeta function [27, p. 280, Example 8]. Some
other special cases involve the polylogarithm (or Jonqière’s function) and the
generalized Zeta function [27, p. 280, Example 8], [23, p. 122, Eq. 2.5] discussed
for the first time by Lipschitz and Lerch.

Lin and Srivastava investigated [12, p. 727, Eq. 8] the Hurwitz–Lerch Zeta
function in the following form

Φ
(ρ,σ)
µ,ν (z, s, a) =

∞∑

n=0

(µ)ρn

(ν)σn

zn

(n+ a)s
, (2)

where µ ∈ C ;a, ν ∈ C\Z−
0 ; ρ, σ ∈ R+ ; ρ < σ for s, z ∈ C; ρ = σ for z ∈

C; ρ = σ, s ∈ C for |z| < 1; ρ = σ, ℜ{s − µ + ν} > 1 for |z| = 1. Here
(θ)κn = Γ(θ + κn)/Γ(θ) denotes the generalized Pochhammer symbol, with
the convention (θ)0 = 1.

Recently, Srivastava et al. [24] studied a new family of the Hurwitz–Lerch
Zeta function

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a) =

∞∑

n=0

(λ)ρn(µ)σn

(ν)κn

zn

(n+ a)sn!
, (3)

where λ, µ ∈ C; a, ν ∈ C\Z−
0 ; ρ, σ, κ > 0; for |z| < 1 and ℜ{s + ν − λ − µ} > 1

for |z| = 1. Function (3) is a generalization of Hurwitz–Lerch Zeta function

Φλ,µ,ν(z, s, a) := Φ
(1,1,1)

λ,µ,ν (z, s, a) which has been studied by Garg et al. [2].
Special attention will be given to the special case of (3) (studied earlier by
Goyal and Laddha [4, p. 100, Eq. (1.5)])

Φ∗
µ(z, s, a) := Φ

(1,1,1)

1,µ,1 (z, s, a) =

∞∑

n=1

(µ)n

(n+ a)s

zn

n!
. (4)
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Another case of the Hurwitz–Lerch Zeta function (3), which differs in the
choice of parameters, have been considered in [24] as well. Moreover, the article
[24] contains the integral representation

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a) =
1

Γ(s)

∫∞

0

ts−1e−at
2Ψ

∗
1

[
(λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−t

]
dt, (5)

valid for all a, s ∈ C,ℜ{a} > 0,ℜ{s} > 0, when |z| ≤ 1, z 6= 1; and ℜ{s} > 1 for
z = 1. Here

pΨ
∗
q

[
(a,A)p

(b, B)q

∣∣∣ z
]

=

∞∑

n=0

∏p
j=1(aj)Ajn∏q
j=1(bj)Bjn

zn

n!
(6)

stands for the unified variant of the Fox–Wright generalized hypergeometric
function with p upper and q lower parameters; (a,A)p denotes the parameter
p–tuple (a1, A1), · · · , (ap, Ap) and aj ∈ C, bi ∈ C \ Z−

0 , Ai, Bj > 0 for all
j = 1, p, i = 1, q, while the series converges for suitably bounded values of |z|

when

∆ := 1+

q∑

j=1

Bj −

p∑

j=1

Aj > 0 .

In the case ∆ = 0, the converegence holds in the open disc |z| < β =
∏q

j=1B
Bj

j ·
∏p

j=1A
−Aj

j .

Remark 1 Let us point out that the original definition of the Fox–Wright
function pΨq[z] (consult monographs [1, 11, 15]) contains Gamma functions
instead of the here used generalized Pochhammer symbols. However, these two
functions differ only up to constant multiplying factor, that is

pΨq

[
(a,A)p

(b, B)q

∣∣∣ z
]

=

∏p
j=1 Γ(aj)

∏q
j=1 Γ(bj)

pΨ
∗
q

[
(a,A)p

(b, B)q

∣∣∣ z
]
.

The unification’s motivation is clear - for A1 = · · · = Ap = B1 = · · · = Bq = 1,

pΨ
∗
q[z] one reduces exactly to the generalized hypergeometric function pFq[z],

see recent articles [12, 24].

Finally, we recall the integral expression for function (3), derived by Srivas-
tava et al. [24]:

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a) =
Γ(ν)

Γ(λ)Γ(ν− λ)

∫∞

0

tλ−1

(1+ t)ν
Φ

(σ,κ−ρ)

µ,ν−λ

( ztρ

(1+ t)κ
, s, a

)
dt, (7)
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where ℜ{ν} > ℜ{λ} > 0, κ ≥ ρ > 0, σ > 0, s ∈ C.
Now, we study generalized incomplete functions and the associated statis-

tical distributions based mainly on integral expressions (5) and (7).

2 Families of incomplete ϕ and ξ functions

By virtue of integral (7), we define the lower incomplete generalized Hurwitz–
Lerch Zeta function as

ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x) =
Γ(ν)

Γ(λ)Γ(ν− λ)

∫x

0

tλ−1

(1+ t)ν
Φ

(σ,κ−ρ)

µ,ν−λ

( ztρ

(1+ t)κ
, s, a

)
dt, (8)

and the upper (complementary) generalized Hurwitz–Lerch Zeta function in
the form

ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x) =
Γ(ν)

Γ(λ)Γ(ν− λ)

∫∞

x

tλ−1

(1+ t)ν
Φ

(σ,κ−ρ)

µ,ν−λ

( ztρ

(1+ t)κ
, s, a

)
dt. (9)

In both cases one requires ℜ(ν),ℜ(λ) > 0, κ ≥ ρ > 0; σ > 0, s ∈ C.
From (8) and (9) readily follows that

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a) = lim
x→∞

ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x) = lim
x→0+

ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x) , (10)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a) = ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x) +ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x), x ∈ R+. (11)

In view of the integral expression (5), the lower incomplete generalized Gamma
function and the upper (complementary) incomplete generalized Gamma func-
tion are defined respectively by

ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x) =
bs

Γ(s)

∫x

0

ts−1e−at
2Ψ

∗
1

[
(α, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bt
]
dt (12)

and

ξ
(ρ,σ,κ);x,∞
λ,µ,ν (z, s, a, b|x) =

bs

Γ(s)

∫∞

x

ts−1e−at
2Ψ

∗
1

[
(α, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bt
]
dt,

(13)
where ℜ{a},ℜ{s} > 0, when |z| ≤ 1 (z 6= 1) and ℜ{s} > 1, when z = 1,
provided that each side exists. By virtue of (12) and (13) we easily conclude
the properties:

Φ
(ρ,σ,ρ)

λ,µ,ν (z, s, a) = lim
x→∞

ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x) = lim
x→0+

ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x) , (14)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b) = ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x) + ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x), x ∈ R+.

(15)
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3 Generalized Hurwitz–Lerch Zeta Beta prime

distribution

Special functions and integral transforms are useful in the development of the
theory of probability density functions (PDF). In this connection, one can
refer to the books e.g. by Mathai and Saxena [14, 15] or by Johnson and Kotz
[8, 9]. Hurwitz–Lerch Zeta distributions are studied by many mathematicians
such as Dash, Garg, Gupta, Kalla, Saxena, Srivastava etc. (see e.g. [2, 3, 6,
7, 18, 19, 20, 21, 25]). Due to usefulness and popularity of Hurwitz–Lerch
Zeta distribution in reliability theory, statistical inference etc. the authors
are motivated to define a generalized Hurwitz–Lerch Zeta distribution and to
investigate its important properties.

Let the random variable X be defined on some fixed standard probability
space (Ω,F,P). The r.v. X such that possesses PDF

f(x) =






Γ(ν) xλ−1

Γ(λ)Γ(ν− λ)(1+ x)ν

Φ
(σ,κ−ρ)

µ,ν−λ

( zxρ

(1+ x)κ
, s, a

)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)
x > 0,

0 x ≤ 0,

(16)

we call generalized Hurwitz–Lerch Zeta Beta prime and write X ∼ HLZB ′. Here
µ, λ are shape parameters, and z stands for the scale parameter which satisfy
ℜ{ν} > ℜ{λ} > 0, s ∈ C, κ ≥ ρ > 0, σ > 0.

The behaviour of the PDF f(x) at x = 0 depends on λ in the manner that
f(0) = 0 for λ > 1, while limx→0+ f(x) = ∞ for all 0 < λ < 1.

Now, let us mention some interesting special cases of PDF (16).

(i) For σ = ρ = κ = 1 we get the following Hurwitz–Lerch Zeta Beta prime
distribution discussed by Garg et al. [3]:

f1(x) =






Γ(ν)

Γ(λ)Γ(ν− λ)Φλ,µ,ν(z, s, a)

xλ−1

(1+ x)ν
Φ∗

µ

( zx

1+ x
, s, a

)
x > 0,

0 elsewhere

where a /∈ Z−
0 , ℜ{ν} > ℜ{λ} > 0, x ∈ R, s ∈ C when |z| < 1 and

ℜ{s−µ} > 0, when |z| = 1. Here Φ∗
µ(·, s, a) stands for the Goyal–Laddha

type generalized Hurwitz–Lerch Zeta function described in (4).

(ii) If we set σ = ρ = κ = λ = 1 it gives a new probability distribution
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function, defined by

f2(x) =






ν− 1

(1+ x)νΦ1,µ,ν(z, s, a)
Φ∗

µ

( zx

1+ x
, s, a

)
x > 0,

0 x ≤ 0,
(17)

where a /∈ Z−
0 , ℜ{λ} > 0, x ∈ R, s ∈ C when |z| < 1 and ℜ{s − µ} > 0,

when |z| = 1.

(iii) When σ = ρ = κ = 1 and ν = µ, from (16) it follows

f3(x) =






Γ(µ)

Γ(λ)Γ(µ− λ)Φ∗
λ(z, s, a)

xλ−1

(1+ x)µ
Φ∗

µ

( zx

1+ x
, s, a

)
x > 0,

0 x ≤ 0,
(18)

with a /∈ Z−
0 , ℜ{µ} > ℜ{λ} > 0, x ∈ R, s ∈ C when |z| < 1 and ℜ{s−µ} >

0, when |z| = 1.

(iv) For σ = ρ = κ = 1 and µ = 0, we obtain the Beta prime distribution (or
the Beta distribution of the second kind).

(v) For Fischer’s F–distribution, which is a Beta prime distribution, we set
σ = ρ = κ = 1 and replace x = mx/n, λ = m/2, ν = (m + n)/2, where
m and n are positive integers.

4 Statistical functions for the HLZB ′ distribution

In this section we would introduce some classical statistical functions for the
HLZB ′ distributed random variable having the PDF given with (16). These
characteristics are moments of positive, fractional order mr, r ∈ R, being the
Mellin transform of order r + 1 of the PDF; the generating function GX(t)

which equals to the Laplace transform and the characteristic function (CHF)
φX(t) which coincides with the Fourier transform of the PDF (16).

We point out that all three highly important characteristics of the proba-
bility distributions can be uniquely expressed via the operator of the mathe-
matical expectation E. However, it is well–known that for any Borel function
ψ there holds

Eψ(X) =

∫

R

ψ(x)f(x)dx. (19)
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To obtain explicitely mr, GX(t), φX(t) we also need in the sequel the unified
Hurwitz–Lerch Zeta function, recently introduced by Srivastava et al. [24].
According to [24] we consider nonnegative integer parameters p, q ∈ N0 =

{0, 1, 2, · · · }; λj ∈ C, µk ∈ C \ Z−
0 ; σj, ρk > 0, j = 1, p, k = 1, q. Then the

Unified Hurwitz–Lerch Zeta Function with p + q upper and p + q + 2 lower
parameters, reads as follows

Φ
(ρ;σ)

λ;µ (z, s, a) := Φ
(ρ1,··· ,ρp ;σ1,··· ,σq)

λ1,··· ,λp ;µ1,··· ,µq
(z, s, a) =

∞∑

n=0

∏p
j=1(λj)nρj∏q
j=1(µj)nσj

zn

(n+ a)sn!
,

(20)
where s,ℜ{a} > 0 and the empty product is taken to be unity. The series (20)
converges

1. for all z ∈ C \ {0} if Υ > −1;

2. in the open disc |z| < ∇ if Υ = −1;

3. on the circle |z| = ∇, for Υ = −1, ℜ{Θ} > 1/2,

where

∇ :=

q∏

j=1

σ
σj

j

p∏

j=1

ρ
−ρj

j , Υ :=

q∑

j=1

σj−

p∑

j=1

ρj+s, Θ :=

q∑

j=1

µj−

p∑

j=1

λj+
p− q

2
.

Theorem 1 Let X ∼ HLZB ′ be a r.v. defined on a standard probability space
(Ω,F,P) and let r ∈ R+. Then the rth fractional order moment of X reads as
follows

mr =
(λ)r sinπ(ν− λ)

(1− ν+ λ)r sinπ(ν− λ− r)

Φ
(σ,ρ,κ−ρ;κ,κ−ρ)

µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)
. (21)

Proof. The fractional moment mr of the r.v. X ∼ HLZB ′ is given by

mr = EXr =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∫∞

0

xλ+r−1

(1+ x)κ
Φ

(σ,κ−ρ)

µ,ν−λ

( zxρ

(1+ x)κ
, s, a

)
dx r ∈ R+ ,

where A is the related normalizing constant.
Expressing the Hurwitz–Lerch Zeta function in initial power series form,

and interchanging the order of summation and integration, we find that:

mr =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∞∑

n=0

(µ)σn

(ν− λ)(κ−ρ)n

zn

(n+ a)sn!

∫∞

0

xλ+r+ρn−1

(1+ x)ν+κn
dx

=
AΓ(λ+ r)Γ(ν− λ− r)

Γ(λ)Γ(ν− λ)

∞∑

n=0

(µ)σn(λ+ r)ρn

(ν)κn
·
(ν− λ− r)(κ−ρ)n

(ν− λ)(κ−ρ)n

zn

(n+ a)sn!
.
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By the Euler’s reflection formula we get

mr =
A(λ)r Γ(1− ν+ λ) sinπ(ν− λ)

Γ(1− ν+ λ+ r) sinπ(ν− λ− r)

∞∑

n=0

(µ)σn(λ+ r)ρn(ν− λ− r)(κ−ρ)n z
n

(ν)κn(ν− λ)(κ−ρ)n (n+ a)sn!

=
A(λ)r sinπ(ν− λ)

(1− ν+ λ)r sinπ(ν− λ− r)

∞∑

n=0

(µ)σn(λ+ r)ρn(ν− λ− r)(κ−ρ)n z
n

(ν)κn(ν− λ)(κ−ρ)n(n+ a)sn!
,

which is same as (21). �

We point out that for the integer r ∈ N, the moment (21) it reduces to

mr =
(−1)r(λ)r

(1− ν+ λ)r

Φ
(σ,ρ,κ−ρ;κ,κ−ρ)

µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)
. (22)

Theorem 2 The generating function GX(t) and the CHF φX(t), t ∈ R for
the r.v. X ∼ HLZB ′ are represented in the form

GX(t) = E e−tX =
1

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)

∞∑

r=0

(λ)r

(1+ λ− ν)r

tr

r!
Φ

(ρ,σ,κ)

λ+r,µ,ν(z, s, a), (23)

φX(t) = E eitX =
1

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)

∞∑

r=0

(λ)r

(1+ λ− ν)r

(−it)r

r!
Φ

(ρ,σ,κ)

λ+r,µ,ν(z, s, a) .

(24)

Proof. Setting ψ(X) = e−tX in (19) respectively, then expanding the Laplace
kernel into Maclaurin series, by legitimate interchange the order of summation
and integration we obtain the generating function GX(t) in terms of (22).
Because φX(t) = GX(−it), t ∈ R, the proof is completed. �

The second set of important statistical functions concers the reliability ap-
plications of the newly introduced generalized Hurwitz–Lech Zeta Beta prime
distribution. The functions associated with r.v. X are the cumulative distribu-
tion function (CDF) F, the survivor function S = 1−F, the hazard rate function
h = f/(1−F), and the mean residual life function K(x) = E(X−x|X ≥ x). Their
explicit formulæ are given in terms of lower and upper incomplete (comple-
mentary) ϕ–functions.
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Theorem 3 Let r.v. X ∼ HLZB ′. Then we have:

h(x) =
f(x)

S(x)
=

Γ(ν)

Γ(λ)Γ(ν− λ)

xλ−1

(1+ x)ν

Φ
(σ,κ−ρ)

µ,ν−λ

( zxρ

(1+ x)κ
, s, a

)

ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x)
, (25)

K(x) =
Γ(ν)

Γ(λ)Γ(ν− λ)ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x)

∞∑

n=0

(µ))σn

(ν− λ)(κ−ρ)n

zn

(n+ a)sn!

× B(1+x)−1

(
ν− λ− 1+ (κ− ρ)n, λ+ 1+ ρn

)
− x, (26)

where

Bz(a, b) =

∫z

0

ta−1(1− t)b−1 dt, min
(
ℜ{a},ℜ{b}

)
> 0, |z| < 1

represents the incomplete Beta–function.

Proof. The CDF and the survivor functions of the r.v. X are

F(x) =
ϕ

(ρ,σ,κ)

λ,µ,ν (z, s, a|x)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)
, S(x) =

ϕ
(ρ,σ,κ)

λ,µ,ν (z, s, a|x)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)
x > 0 ,

and vanishes elsewhere. Therefore, being h(x) = f(x)/S(x), (25) is proved.
It is well–known that for the mean residual life function there holds [5]

K(x) =
1

S(x)

∫∞

x

tf(t)dt− x .

The integral will be

J =

∫∞

x

tf(t)dt =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∞∑

n=0

(µ)σn (n+ a)−s zn

(ν− λ)(κ−ρ)nn!

∫∞

x

tλ+ρn

(1+ t)ν+κn
dt ,

where the innermost t–integral reduces to the incomplete Beta function in the
following way:

∫∞

x

tp−1

(1+ t)q
dt =

∫ (1+x)−1

0

tq−p−1tp−1 dt = B(1+x)−1

(
p, q− p

)
.

Therefore we conlude

J =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∞∑

n=0

(µ)σn (n+ a)−s zn

(ν− λ)(κ−ρ)nn!
B(1+x)−1

(
ν−λ−1+(κ−ρ)n, λ+1+ρn

)
.

After some simplification it leads to the stated formula (26). �
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5 Generalized Hurwitz–Lerch Zeta Gamma

distribution

Gamma–type distributions, associated with certain special functions of science
and engineering, are studied by several researchers, such as Stacy [26]. In this
section a new probability density function is introduced, which extends both
the well–known Gamma distribution [21, 28] and Planck distribution [9].

Consider the r.v. X defined on a standard probability space (Ω,F,P) , de-
fined by the PDF

f(x) =






bsxs−1e−ax

Γ(s)

2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bx
]

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b)
x > 0,

0, x ≤ 0 ;

(27)

where a, b are scale parameters and s is shape parameter. Further ℜ{a},ℜ{s} >

0 when |z| ≤ 1 (z 6= 1) and ℜ{s} > 1 when z = 1. Such distribution we call
by convention generalized Hurwitz–Lerch Zeta Gamma distribution and write
X ∼ HLZG. Notice that behavior of f(x) near to the origin depends on s in the
manner that f(0) = 0 for s > 1, and for s = 1 we have

f(0) =

b 2Ψ
∗
1

[
(λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ z
]

Φ
(ρ,σ,κ)

λ,µ,ν (z, 1, a/b)
,

and limx→0+ f(x) = ∞ when 0 < s < 1.
Now, we list some important special cases of the HLZG distribution.

(a) For σ = ρ = κ = 1 we obtain the following PDF discussed by Garg et
al. [3]:

f1(x) =
bsxs−1e−ax

Γ(s)

2F1

[
λ, µ

ν

∣∣∣ ze−bx

]

Φλ,µ,ν(z, s, a/b)
, (28)

where ℜ{a},ℜ{b},ℜ{s} > 0 and |z| < 1 or |z| = 1 with ℜ{ν− λ− µ} > 0.

(b) If we set σ = ρ = κ = 1, b = a, λ = 0, then (27) reduces to the Gamma
distribution [9, p. 32] and

(c) for σ = ρ = κ = 1, µ = ν, λ = 1 it reduces to the generalized Planck dis-
tribution defined by Nadarajah and Kotz [16], which is a generalization
of the Planck distribution [9, p. 273].
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6 Statistical functions for the HLZG distribution

In this section we will derive the statistical functions for the r.v. X ∼ HLZG
distribution associated with PDF (27). For the moments mr of fractional order
r ∈ R+ we derive by definition

mr =

∫∞

0

xrf(x)dx =
(s)r

br

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b)
. (29)

Next we present the Laplace and the Fourier transforms of the probability
density function (27), that is the generating function GY(t) and the related
CHF φY(t):

GX(t) = E e−tY =
Φ

(ρ,σ,κ)

λ,µ,ν (z, s, (a+ t)/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b)
, (30)

φX(t) = GY(−it) = E eitY =
Φ

(ρ,σ,κ)

λ,µ,ν (z, s, (a− it)/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b)
, t ∈ R. (31)

The second set of the statistical functions include the hazard function h and
the mean residual life function K.

Theorem 4 Let X ∼ HLZG. Then we have:

h(x) =
bsxs−1e−ax

Γ(s)

2Ψ
∗
1

[
(λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bx

]

ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b, b|x)
(32)

K(x) =
1

b Γ(s)ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b, b|x)

∞∑

n=0

(λ)ρn(µ)σn

(ν)κn

Γ(s+ 1, (a+ bn)x)

(n+ a/b)s+1

zn

n!
− x .

(33)

Here

Γ(p, z) =

∫∞

z

tp−1e−t dt, ℜ{p} > 0 ,

stands for the upper incomplete Gamma function.
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Proof. From the hazard function formula a simple calculation gives:

K(x) =
bs

Γ(s)ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b, b|x)

∫∞

x

tse−at
2Ψ

∗
1

[
(λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ze−bt
]
dt− x

=
bs

Γ(s)ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b, b|x)

∞∑

n=0

(λ)ρn(µ)σn

(ν)κn

zn

n!

∫∞

x

tse−(a+bn)t dt− x .

Further simplification leads to the asserted formula (33). �

7 Statistical parameter estimation in HLZB
′

and HLZG distribution models

The statistical parameter estimation becomes one of the main tools in random
model identification procedures. In the study of HLZB ′ and HLZG distribu-
tions the PDFs (16) and (27) are built by higher transcendental functions such

as generalized Hurwitz–Lerch Zeta function Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a) and Fox–Wright
generalized hypergeometric function 2Ψ

∗
1[z]. The power series definitions of

these functions does not enable the successful implementation of the popular
and efficient Maximum Likelihood (ML) parameter estimation, only the nu-
merical system solving can reach any result for HLZB ′, while ML cannot be
used for HLZG distribution case, being the extrema of the likelihood function
out of the parameter space.

Therefore, we consider the Moment Method estimators, such that are weakly
consistent (by the Khinchin’s Law of Large Numbers), also strongly consistent
(by the Kolmogorov LLN) and asymptotically unbiased.

7.1 Parameter estimation in HLZB
′ model

Assume that the considered statistical population possesses HLZB ′ distribu-
tion, that is the r.v. X ∼ f(x), (16) generates n independent, identically dis-
tributed replicæ Ξ =

(
Xj

)
j=1,n

which forms a statistical sample of the size n.
We are now interested in estimating the 9-dimensional parameter

θ9 = (a, σ, κ, ρ, λ, µ, ν, z, s)

or some of its coordinates by means of the sample Ξ.
First we consider the PDF (16) for small z → 0. For such values we get

asymptotics

f(x) ∼
Γ(ν) xλ−1

Γ(λ)Γ(ν− λ)(1+ x)ν
x > 0, (34)
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which is the familiar Beta distribution of the second kind (or Beta prime)
B ′(λ, ν). The moment method estimators for the remaining parameters λ >
0, ν > 2 read:

λ̃ =
Xn

(
X2

n + Xn

)

S
2

n

, ν̃ =
X2

n + Xn

S
2

n

(
Xn + 1

)
+ 1 , (35)

where

Xn =
1

n

n∑

j=1

Xj, S
2

n =
1

n

n∑

j=1

(
Xj − Xn

)2

expressing the sample mean and the sample variance respectively. Let us men-
tion that for ν < 2, the variance of a r.v. X ∼ B ′(λ, ν) does not exists, so for
these range of parameters MM is senseless.

The case of full range parameter estimation is highly complicated. The mo-
ment method estimator can be reached by virtue of the positive integer order
moments formula (22) substituting

Xr
n =

1

n

n∑

j=1

Xr
j 7→ mr,

where Xr
n is the rth sample moment. Thus, numerical solution of the system

(−1)r(λ)r

(1− ν+ λ)r

Φ
(σ,ρ,κ−ρ;κ,κ−ρ)

µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a)
= Xr

n r = 1, 9 (36)

which results in the vectorial moment estimator θ̃9 = (ã, σ̃, κ̃, ρ̃, λ̃, µ̃, ν̃, z̃, s̃).

7.2 Parameter estimation in HLZG distribution

To achieve Gamma distribution’s PDF from the density function (27) of HLZG
in a way different then (b) in Section 6, it is enough to consider the PDF (27)
for a = b and small z → 0. Indeed, we have

lim
z→0

f(x) =






bsxs−1e−bx

Γ(s)
x > 0,

0, x ≤ 0 ;

(37)

It is well known that the moment method estimators for parameters b, s are

b̃ =
Xn

S
2

n

, s̃ =

(
Xn

)2

S
2

n

.
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The general case includes the vectorial parameter

θ10 = (a, b, s, λ, ρ, µ, σ, ν, κ, z) .

First we show a kind of recurrence relation for the fractional order moments
between distant neighbours.

Theorem 5 Let 0 ≤ t ≤ r be nonnegative real numbers, and mr denotes the
fractional positive rth order moment of a r.v. X ∼ HLZG. Then it holds true

mr = mr−t · mt. (38)

Proof. It is not difficult to prove

mr =
(s)r

br

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b)

=
Γ(s+ r)

br−t Γ(s+ t)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ t, a/b)

Γ(s+ t)

bt Γ(s)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ t, a/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b)
,

which is equivalent to the assertion of the Theorem. �

Remark 2 Taking the integer order moments (29), that is mr, r ∈ N0, the
recurrence relation (38) becomes a contiguous relation for distant neighbours:

mℓ = mℓ−k · mk =
(s+ ℓ)ℓ−k

bℓ−k

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ ℓ, a/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ k, a/b)
mk (39)

for all 0 ≤ k ≤ ℓ, k, ℓ ∈ N0.

Choosing a system of 10 suitable different equations like (38) in which mr

is substituted with Xr
n 7→ mr, we get

(s+ t)r−t

br−t

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)

λ,µ,ν (z, s+ t, a/b)
=
Xr

n

Xt
n

. (40)

However, the at least complicated case of (38) occurs at the contiguous (39)
with k = 0, ℓ = 1, 10, that is, by virtue of (40) we deduce the system in
unknown θ10:

(s)ℓΦ
(ρ,σ,κ)

λ,µ,ν (z, s+ ℓ, a/b) = bℓΦ
(ρ,σ,κ)

λ,µ,ν (z, s, a/b)Xℓ
n ℓ = 1, 10 . (41)

The numerical solution of system (41) with respect to unknown parameter
vector θ10 we call moment method estimator θ̃10.
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Abstract. A novel power series representation of the generalized Mar-
cum Q-function of positive order involving generalized Laguerre poly-
nomials is presented. The absolute convergence of the proposed power
series expansion is showed, together with a convergence speed analysis
by means of truncation error. A brief review of related studies and some
numerical results are also provided.

1 Introduction

For ν real number let Iν be denotes the modified Bessel function [49, p. 77] of
the first kind of order ν, defined by

Iν(t) =
∑

n≥0

(t/2)2n+ν

n!Γ(ν + n + 1)
, (1)
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and let b 7→ Qν(a, b) be the generalized Marcum Q-function, defined by

Qν(a, b) =
1

aν−1

∫∞

b

tνe−t2+a2

2 Iν−1(at)dt, (2)

where b ≥ 0 and a, ν > 0. Here Γ stands for the well-known Euler gamma
function. When ν = 1, the function

b 7→ Q1(a, b) =

∫∞

b

te−t2+a2

2 I0(at)dt

is known in literature as the (first order) Marcum Q-function. The Marcum
Q-function and its generalization are frequently used in the detection theories
for radar systems [27] and wireless communications [12, 13], and have im-
portant applications in error performance analysis of digital communication
problems dealing with partially coherent, differentially coherent, and non–
coherent detections [38, 40]. Since, the precise computations of the Marcum
Q-function and generalized Marcum Q-function are quite difficult, in the last
few decades several authors worked on precise and stable numerical calcula-
tion algorithms for the functions. See the papers of Dillard [14], Cantrell [7],
Cantrell and Ojha [8], Shnidman [34], Helstrom [17], Temme [46] and the refer-
ences therein. Moreover, many tight lower and upper bounds for the Marcum
Q-function and generalized Marcum Q-function were proposed as simpler al-
ternative evaluating methods or intermediate results for further integrations.
See, for example, the papers of Simon [35], Chiani [10], Simon and Alouini
[37], Annamalai and Tellambura [1], Corazza and Ferrari [11], Li and Kam
[22], Baricz [4], Baricz and Sun [5, 6], Kapinas et al. [19], Sun et al. [41], Li
et al. [23] and the references therein. In this field, the order ν is usually the
number of independent samples of the output of a square–law detector, and
hence in most of the papers the authors deduce lower and upper bounds for
the generalized Marcum Q-function with order ν integer. On the other hand,
based on the papers [8, 27, 34] there are introduced in the Matlab 6.5 soft-
ware the Marcum Q-function and positive integer order generalized Marcum
Q-function1: marcumq(a,b) computes the value of the first order Marcum Q-
function Q1(a, b) and marcumq(a,b,m) computes the value of the mth order
generalized Marcum Q-function Qm(a, b), defined by (2), where m is a pos-
itive integer. However, in some important applications, the order ν > 0 of
the generalized Marcum Q-function is not necessarily an integer number. The

1See http://www.mathworks.com/access/helpdesk/help/toolbox/signal/marcumq.html

for more details.
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generalized Marcum Q-function is the complementary cumulative distribution
function or reliability function of the non–central chi distribution with 2ν

degrees of freedom [18, 39, 41]. Moreover, real order generalized Marcum Q-
function has been used to characterize small–scale channel fading distributions
with line–of–sight channel components [24, 50] or cross–channel correlations
[2, 3, 19, 20, 38, 44, 45].

In this paper, we present a novel generalized Laguerre polynomial series
representation of the generalized Marcum Q-function, which extends the result
of the first order Marcum Q-function in Pent’s paper [32] to the case of the
generalized Marcum Q-function with real order ν > 0. We further show the
absolute convergence of the proposed power series expansion, together with
a convergence speed analysis by means of truncation error. A brief review of
related studies in the literature is provided, which may assist the readers to
get a more complete vision of this area. Finally, some numerical results are
provided as a complementary of these theoretical analysis.

2 The generalized Marcum Q-function via Laguerre

polynomials

2.1 Novel series representation of the generalized Marcum Q-

function

We start with the following well–known formula [43, p. 102]

∑

n≥0

L
(α)
n (x)

L
(α)
n (0)

zn

n!
= Γ(α + 1)ez(xz)−α

2 Jα(2
√

xz), (3)

where x, z ∈ R and α > −1. Here Jα stands for the Bessel function of the first
kind of order α, L

(α)
n is the generalized Laguerre polynomial of degree n and

order α, defined explicitly as

L
(α)
n (x) =

exx−α

n!

(
e−xxn+α

)(n)
=

n∑

k=0

Γ(n + α + 1)

Γ(k + α + 1)Γ(n − k + 1)

(−x)k

k!
.

Changing in (3) z with −z and taking into account Iν(x) = i−νJν(ix) we obtain
that [26]

∑

n≥0

L
(α)
n (x)

L
(α)
n (0)

(−1)nzn

n!
= Γ(α + 1)e−z(xz)−α

2 Iα(2
√

xz). (4)
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Now, if we use

L
(α)
n (0) =

Γ(n + α + 1)

Γ(α + 1)Γ(n + 1)
,

and replace x with a and α with ν − 1, respectively, (4) can be rewritten as

( z

a

)ν−1
2

e−z−aIν−1(2
√

az) = e−a
∑

n≥0

(−1)nL
(ν−1)
n (a)

Γ(ν + n)
zn+ν−1, (5)

which holds for all a, ν > 0 and z ≥ 0.

Now, consider the following formula [46, 47]

Qν(
√

2a,
√

2b) = e−a
∑

n≥0

Γ(ν + n, b)

Γ(ν + n)

an

n!

=

∫∞

b

( z

a

)ν−1
2

e−z−aIν−1(2
√

az)dz, (6)

where a, ν > 0 and b ≥ 0. We note that the function b 7→ Qν(
√

a,
√

b),

defined by

Qν(
√

a,
√

b) =
1

2

∫∞

b

( z

a

)ν−1
2

e−z+a
2 Iν−1(

√
az)dz,

is in fact the survival function (or the complementary of the cumulative distri-
bution function with respect to unity) of the non–central chi–square distribu-
tion with 2ν degrees of freedom and non–centrality parameter a. With other
words, for all a, ν > 0 and b ≥ 0 we have

Qν(
√

a,
√

b) = 1 −
1

2

∫b

0

( z

a

)ν−1
2

e−z+a
2 Iν−1(

√
az)dz. (7)

See [39] for more details. Combining (5) with (7) we obtain

Qν(
√

2a,
√

2b) = 1 −

∫b

0

( z

a

)ν−1
2

e−z−aIν−1(2
√

az)dz

= 1 −

∫b

0

e−a
∑

n≥0

(−1)nL
(ν−1)
n (a)

Γ(ν + n)
zn+ν−1dz

(a)
= 1 − e−a

∑

n≥0

(−1)nL
(ν−1)
n (a)

Γ(ν + n)

∫b

0

zn+ν−1dz

= 1 −
∑

n≥0

(−1)ne−a L
(ν−1)
n (a)

Γ(ν + n + 1)
bn+ν,
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where in (a) the integration and summation can be interchanged, because the
series on the right–hand side of (5) is uniformly convergent for 0 ≤ z ≤ b.
For more details see the last paragraph of Section 2.2. After some simple
manipulation, we obtain a new formula of the generalized Marcum Q-function,
i.e.,

Qν(a, b) = 1 −
∑

n≥0

(−1)ne−a2

2

L
(ν−1)
n

(
a2

2

)

Γ(ν + n + 1)

(
b2

2

)n+ν

, (8)

valid for all a, ν > 0 and b ≥ 0.

In order to simplify the numerical evaluation of the series (8), we consider
the expression

Pν,n(a, b) =
bnL

(ν−1)
n (a)

Γ(ν + n + 1)
,

which satisfies the recurrence relation

Pν,n+1(a, b) =
(2n + ν − a)b

(n + 1)(ν + n + 1)
Pν,n(a, b)

−
(n + ν − 1)b2

(n + 1)(ν + n)(ν + n + 1)
Pν,n−1(a, b)

for all a, ν > 0, b ≥ 0 and n ∈ {1, 2, 3, . . . }, with the initial conditions

Pν,0(a, b) =
1

Γ(ν + 1)
and Pν,1(a, b) =

(ν − a)b

Γ(ν + 2)
.

Here, the recurrence relation for Pν,n(a, b) were obtained from the recurrence
relation [43, p. 101]

(n + 1)L
(α)

n+1(x) = (2n + α + 1 − x)L
(α)
n (x) − (n + α)L

(α)

n−1(x)

and the initial conditions from

L
(α)

0 (x) = 1 and L
(α)

1 (x) = −x + α + 1.

With the help of the expression Pν,n(a, b), (8) can be easily rewritten as

Qν(a, b) = 1 −
∑

n≥0

e−a2

2

(
b2

2

)ν

Pν,n

(
a2

2
, −

b2

2

)
. (9)
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2.2 Convergence analysis of the new series representation

We note that for a > 0, ν ≥ 1 and b ≥ 0 the absolute convergence of the
series in (8) or (9) can be shown easily by using the following inequalities

∣∣∣∣∣∣
∑

n≥0

(−1)ne−a2

2

L
(ν−1)
n

(
a2

2

)

Γ(ν + n + 1)

(
b2

2

)n+ν
∣∣∣∣∣∣

≤ e−a2

2

∑

n≥0

1

Γ(ν + n + 1)

(
b2

2

)n+ν ∣∣∣∣L
(ν−1)
n

(
a2

2

)∣∣∣∣

≤ e−a2

2

∑

n≥0

1

Γ(ν + n + 1)

(
b2

2

)n+ν
Γ(ν + n)

n!Γ(ν)
e

a2

4

≤ e−a2

4
1

Γ(ν)

(
b2

2

)ν−1 ∑

n≥0

1

(n + 1)!

(
b2

2

)n+1

= e−a2

4
1

Γ(ν)

(
b2

2

)ν−1 (
e

b2

2 − 1

)

or

∣∣∣∣∣∣
∑

n≥0

(−1)ne−a2

2

L
(ν−1)
n

(
a2

2

)

Γ(ν + n + 1)

(
b2

2

)n+ν
∣∣∣∣∣∣

≤ e−a2

2

∑

n≥0

1

Γ(ν + n + 1)

(
b2

2

)n+ν ∣∣∣∣L
(ν−1)
n

(
a2

2

)∣∣∣∣

≤ e−a2

2

∑

n≥0

1

Γ(ν + n + 1)

(
b2

2

)n+ν
Γ(ν + n)

n!
e

a2

4

(
a2

4

)1−ν

≤ e−a2

4

(
2b2

a2

)ν−1 ∑

n≥0

1

(n + 1)!

(
b2

2

)n+1

= e−a2

4

(
2b2

a2

)ν−1 (
e

b2

2 − 1

)
,

which contain the known inequalities of Szegő [43] for generalized Laguerre
polynomials

|Lα
n(x)| ≤ Γ(α + n + 1)

n!Γ(α + 1)
e

x
2



66 Sz. András, Á. Baricz, Y. Sun

and of Love [25]

|Lα
n(x)| ≤ Γ(α + n + 1)

n!

(x

2

)−α

e
x
2 ,

where in both of the inequalities α ≥ 0, x > 0 and n ∈ {0, 1, 2, . . . }.

Moreover, for a > 0, 0 < ν ≤ 1 and b ≥ 0 the absolute convergence of the
series in (8) or (9) can be shown in a similar manner by using the following
inequality

∣∣∣∣∣∣
∑

n≥0

(−1)ne−a2

2

L
(ν−1)
n

(
a2

2

)

Γ(ν + n + 1)

(
b2

2

)n+ν
∣∣∣∣∣∣

≤ e−a2

2

∑

n≥0

1

Γ(ν + n + 1)

(
b2

2

)n+ν ∣∣∣∣L
(ν−1)
n

(
a2

2

)∣∣∣∣

≤ e−a2

2

∑

n≥0

1

Γ(ν + n + 1)

(
b2

2

)n+ν (
2 −

Γ(ν + n)

n!Γ(ν)

)
e

a2

4

= e−a2

4

∑

n≥0

1

ν + n

(
2

Γ(ν + n)
−

1

n!Γ(ν)

)(
b2

2

)n+ν

≤ e−a2

4

∑

n≥0

2

n!

(
b2

2

)n+ν

= 2e−a2

4

(
b2

2

)ν

e
b2

2 ,

which contains the classical inequality of Szegő [43] for generalized Laguerre
polynomials

|Lα
n(x)| ≤

(
2 −

Γ(α + n + 1)

n!Γ(α + 1)

)
e

x
2

where −1 < α ≤ 0, x > 0 and n ∈ {0, 1, 2, . . . }. In addition here we used the
fact that for all fixed n ∈ {1, 2, 3, . . . } the function

ν 7→ 1

ν + n

(
2

Γ(ν + n)
−

1

n!Γ(ν)

)
,

which maps 0 into 2/n!, is decreasing on (0, 1] and consequently for all n ∈
{0, 1, 2, . . . } and 0 < ν ≤ 1 we have

1

ν + n

(
2

Γ(ν + n)
−

1

n!Γ(ν)

)
≤ 2

n!
.
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We note that other uniform bounds for generalized Laguerre polynomials can
be found in the papers of Love [25], Lewandowski and Szynal [21], Michalska
and Szynal [28], Pogány and Srivastava [33]. See also the references therein.

Finally, note that by using the above uniform bounds for the generalized
Laguerre polynomials the uniform convergence of the series on the right-hand
side of (5) can be shown easily for 0 ≤ z ≤ b. This is important because in
order to obtain (8) we have used tacitly that the series on the right–hand side
of (5) is uniformly convergent and then we can interchange the integration
with summation. For example, if we use the above Szegő’s uniform bound,
then for all n ∈ {0, 1, 2, . . . }, a > 0, ν ≥ 1 and 0 ≤ z ≤ b we have

∣∣∣∣∣(−1)nL
(ν−1)
n (a)

Γ(ν + n)
zn

∣∣∣∣∣ ≤
e

a
2

Γ(ν)

bn

n!
.

By the ratio test the series eb =
∑

n≥0 bn/n! is convergent and thus in view
of the Weierstrass M–test the original series on the right–hand side of (5)
converges uniformly for all 0 ≤ z ≤ b.

2.3 Truncation error analysis

For practical evaluations of our power series expansion, we need to approxi-
mate the generalized Marcum Q-function Qν(a, b) by the first n0 ∈ {1, 2, 3, . . . }

terms of (8), i.e.,

Q̂ν(a, b) = 1 −

n0∑

n=0

(−1)ne−a2

2

L
(ν−1)
n

(
a2

2

)

Γ(ν + n + 1)

(
b2

2

)n+ν

.

We note that the absolute value of the truncation error

εt = Qν(a, b) − Q̂ν(a, b) =
∑

n≥n0+1

(−1)n+1e−a2

2

L
(ν−1)
n

(
a2

2

)

Γ(ν + n + 1)

(
b2

2

)n+ν

can be upper bounded by using the upper bounds for the generalized Laguerre
polynomials as in subsection 2.2. More precisely, by using the same argument
as in subsection 2.2 and Sewell’s inequality [29, p. 266]

ex −

n∑

k=0

xk

k!
≤ xex

n
, n ∈ {1, 2, 3, . . . }, x ≥ 0,
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we can deduce the following: if a > 0, b ≥ 0 and ν ≥ 1, then

|εt| ≤ e−a2

4
1

Γ(ν)

(
b2

2

)ν−1
[
e

b2

2 −

n0+1∑

n=0

1

n!

(
b2

2

)n
]
≤ e

b2

2
−a2

4

n0 + 1

1

Γ(ν)

(
b2

2

)ν

or

|εt| ≤ e−a2

4

(
2b2

a2

)ν−1
[
e

b2

2 −

n0+1∑

n=0

1

n!

(
b2

2

)n
]
≤ e

b2

2
−a2

4

n0 + 1

b2

2

(
2b2

a2

)ν−1

.

Similarly, it can be shown that if a > 0, b ≥ 0 and 0 < ν ≤ 1, then the
absolute value of the truncation error is upper bounded as follows

|εt| ≤ 2e−a2

4

(
b2

2

)ν
[
e

b2

2 −

n0∑

n=0

1

n!

(
b2

2

)n
]
≤ 2e

b2

2
−a2

4

n0

(
b2

2

)ν+1

.

Observe that the above upper bounds of the absolute value of the truncation
error converge to zero at a speed of 1/n0. In practice, we can use these upper
bounds to decide the number of terms, i.e. n0, for achieving a pre–determined
accuracy.

2.4 A brief review of related studies

As far as we know the formula (8), or its equivalent form (9), is new. However,
if we choose ν = 1 in (9), then we reobtain the main result of Pent [32]

Q1(a, b) = 1 −
b2

2

∑

n≥0

e−a2

2 Pn

(
a2

2
, −

b2

2

)
,

where

Pn(a, b) = P1,n(a, b) =
bnLn(a)

(n + 1)!
,

which for all a > 0, b ≥ 0 and n ∈ {1, 2, 3, . . . } satisfies the recurrence relation

Pn+1(a, b) =
(2n + 1 − a)b

(n + 1)(n + 2)
Pn(a, b) −

nb2

(n + 1)2(n + 2)
Pn−1(a, b)

with the initial conditions

P0(a, b) = 1 and P1(a, b) =
(1 − a)b

2
.
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Here Ln = L
(0)
n is the classical Laguerre polynomial of degree n.

It should be mentioned here that another type of Laguerre expansions for
the Marcum Q-function was proposed in 1977 by Gideon and Gurland [16],
which involves the lower incomplete gamma function. This type of Laguerre
expansions requires to use a complementary result of (4), i.e.

∑

n≥0

L
(α)
n (z)

L
(α)
n (0)

(−1)nxn

n!
= Γ(α + 1)e−x(xz)−α

2 Iα(2
√

xz). (10)

Now by some simple manipulation we obtain

( z

a

)ν−1
2

e−z−aIν−1(2
√

az) = zν−1e−z
∑

n≥0

(−a)n

Γ(ν + n)
L

(ν−1)
n (z), (11)

which is equivalent to Tiku’s result [48], available also as equation (29.11) in
the book [18]. By integrating (11) in z and by using the differentiation formula
[26]

d

dz

[
zα+1e−zL

(α+1)

n−1 (z)
]

= nzαe−zL
(α)
n (z),

where n ∈ {1, 2, 3, . . . }, α > −1 and z ∈ R, we can obtain another generalized
Laguerre polynomial series expansion of the generalized Marcum Q-function

Qν(
√

2a,
√

2b) = 1 −
1

Γ(ν)
γ(ν, b) −

∑

n≥1

(−1)ne−b
bνL

(ν)

n−1(b)

nΓ(ν + n)
an,

which in turn implies that

Qν(a, b)= 1 −
1

Γ(ν)
γ

(
ν,

b2

2

)
−

∑

n≥1

(−1)ne−b2

2

(
b2

2

)ν L
(ν)

n−1

(
b2

2

)

nΓ(ν + n)

(
a2

2

)n

=
1

Γ(ν)
Γ

(
ν,

b2

2

)
−

∑

n≥1

(−1)ne−b2

2

(
b2

2

)ν L
(ν)

n−1

(
b2

2

)

nΓ(ν + n)

(
a2

2

)n

= lim
a→0

Qν(a, b) −
∑

n≥1

(−1)ne−b2

2

(
b2

2

)ν L
(ν)

n−1

(
b2

2

)

nΓ(ν + n)

(
a2

2

)n

, (12)

where γ(·, ·) is the lower incomplete gamma function, defined by

γ(a, x) =

∫x

0

ta−1e−tdt.
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Here we used that

Γ(a, x) = Γ(a) − γ(a, x), (13)

and

lim
a→0

Qν(a, b) =
1

Γ(ν)
Γ

(
ν,

b2

2

)
.

Some other Laguerre expansions for the Marcum Q-function are provided
in Gideon and Gurland’s paper [16], available also as equation (29.13) of
[18]. Moreover, a new unified Laguerre polynomial–series–based distribution
of small–scale fading envelope and power was proposed recently by Chai and
Tjhung [9], which covers a wide range of small–scale fading distributions
in wireless communications. Many known Laguerre polynomial–series–based
probability density functions and cumulative distribution functions of small–
scale fading distributions are provided, which include the multiple–waves–
plus–diffuse–power fading, non–central chi and chi–square, Nakagami–m, Ri-
cian (Nakagami–n), Nakagami–q (Hoyt), Rayleigh, Weibull, Stacy, gamma,
Erlang and exponential distributions as special cases. See also [42], which con-
tains some corrections of formulas deduced in [9]. In particular, (12) is a special
case of the unified cumulative distribution function given in corrected form in
[42]. We note that the expression of (12) and the unified cumulative distribu-
tion function in [42] are quite different from our main result (8) or (9). This is
because they are based on two different Laguerre polynomial expansions of the
modified Bessel function of the first kind Iν given in (4) and (10). Therefore,
these Laguerre polynomial expansions are expanded over different variables of
the generalized Marcum Q-function. Finally, we note that since Nakagami’s
work [30] the Laguerre polynomial series expansions of various probability
density functions have been derived. We refer to the papers of Esposito and
Wilson [15], Yu et al. [51], Chai and Tjhung [9] and to the references therein.

Finally, by using the infinite series representation of the modified Bessel
function of the first kind (1) and the formula

∫∞

α

tme−t2

2 dt = 2
m−1

2 Γ

(
m + 1

2
,
α2

2

)
,

where Γ(·, ·) is the upper incomplete gamma function, defined by

Γ(a, x) =

∫∞

x

ta−1e−tdt,
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we easily obtain that

Qν(a, b) =
1

aν−1

∫∞

b

tνe−t2+a2

2

∑

n≥0

(at)2n+ν−1

22n+ν−1n!Γ(ν + n)
dt

= e−a2

2

∑

n≥0

a2n

22n+ν−1n!Γ(ν + n)

∫∞

b

e−t2

2 t2n+2ν−1dt

= e−a2

2

∑

n≥0

1

n!

(
a2

2

)n Γ
(
ν + n, b2

2

)

Γ(ν + n)

= 1 −
∑

n≥0

e−a2

2

(
a2

2

)n γ
(
ν + n, b2

2

)

n!Γ(ν + n)
. (14)

We note that (14) is usually called the canonical representation of the νth
order generalized Marcum Q-function. Recently, Annamalai and Tellambura
[2] (see also [3]) claimed that the series representation (14) is new, however it
appears already in 1993 in the paper of Temme [46]. See also Temme’s book
[47] and Patnaik’s [31] result from 1949, which can be found also as equation
(29.2) in the book [18]. Interestingly, our novel series representation (9) for the
generalized Marcum Q-function resembles to the series representation (14).

2.5 Numerical results

We now consider some numerical aspects of our generalized Laguerre poly-
nomial expansions (8) or (9). In practice, we usually need to compute the
detection probability for different values of b with fixed a to decide a proper
detection threshold. Since the generalized Laguerre polynomial in (8) is de-
termined by only a, we can save computation time by storing the values of
the generalized Laguerre polynomials for computing the generalized Marcum
Q-function with different values of b.

The next tables contain some values of the generalized Marcum Q-function
calculated using (9) and using the Matlab marcumq function. For the consid-
ered choices of a and b, the numerical value of (9) is exactly the same with
that of the Matlab marcumq function, if ν ∈ {1, 5} is integer. When ν = 7.7,
the Matlab marcumq function does not work, and the numerical value of (9) is
provided in the tables. Finally, we note that more accurate intermediate terms
are required for larger a and b.
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a = 0.2, b = 0.6 ν = 1 ν = 5 ν = 7.7

(9) 0.838249985438908 0.999998670306184 0.999999999927717

marcumq 0.838249985438908 0.999998670306184 —

a = 1.2, b = 1.6 ν = 1 ν = 5 ν = 7.7

(9) 0.501536568390858 0.994346394491553 0.999944937223540

marcumq 0.501536568390858 0.994346394491553 —

a = 2.2, b = 2.6 ν = 1 ν = 5 ν = 7.7

(9) 0.426794627821735 0.929671935077756 0.993735633182201

marcumq 0.426794627821735 0.929671935077756 —
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Department of Numerical Analysis
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Abstract. The nonnegative biquadratics discussed comes from the
Böttcher-Wenzel inequality. It is for some matrices a sum of squares of
polynomials (SOS), in other cases not, depending on the nonzero pattern
of the matrices at issue. Our aim was to draw a line between them. To
prove the ‘not a SOS’ case we solve a semidefinite programming (SDP)
problem. Subsequently a two-parameter version will be investigated.

1 Introduction

The Böttcher-Wenzel inequality (see [2], [7], [3], [1], [9], [5], [4], [10]) states (in
its stronger form) that for real square matrices X, Y of the same order n

f(X, Y ) ≡ 2 ||X||2||Y ||2 − 2 trace2(XT Y ) − ||XY − Y X||2 ≥ 0, (1)

where the norm used is the Frobenius norm. Since all our attempts to obtain a
representation for f as a sum of polynomial squares (in short: SOS) failed for
n = 3, distinguishing between the ‘good’ and ‘bad’ cases became to a natural
problem.

In case of n = 2 we have for X =

(
x1 x3

x2 x4

)
, Y =

(
y1 y3

y2 y4

)
and with

variables zi,j = xiyj − yixj , 1 ≤ i < j ≤ 4, that

f(X, Y ) = 2 z2
1,4 + (z1,2 − z2,4)

2 + (z1,3 − z3,4)
2

is a sum of squares of quadratics.

2010 Mathematics Subject Classification: 90C22, 15A45, 65F15

Key words and phrases: sum of squares, semidefinite programming, biquadratics
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Our main result is that the nonnegative form (1) is SOS for good matrices
X, Y, whereas it isn’t SOS for general bad matrices, where a matrix of order
n will be called good, if nonzero elements occur only in row 1 and column n,
while it is called bad, if, moreover, nonzero elements occur also in the main
diagonal, as shown e.g. for n = 4 :

good :




∗ ∗ ∗ ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 ∗


 bad :




∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗


 .

Remark 1 For convenience we re-cite the SOS representation [8] for the
good cases in section 2. Section 3 contains the main result: the non-possibility
of an SOS-representation for the bad cases via SDP, while in section 4 we
provide the function f with two parameters and decompose the unit square
into regions with different properties.

2 SOS decomposition for good matrices

Let X, Y be good real n-th order matrices with m = 2n − 1 possible nonzero
elements:

X =




x1 . . . xn−1 xn

0 . . . 0 xn+1
...

. . .
...

0 . . . 0 xm


 , Y =




y1 . . . yn−1 yn

0 . . . 0 yn+1
...

. . .
...

0 . . . 0 ym


 ,

and define an m−th order matrix Z by help of vectors x = (xi)
m
1 and y = (yi)

m
1

as

Z = xyT − yxT = (zi,j)
m
i,j=1, zi,j = xiyj − yixj .

The SOS representation for these good matrices is the following.
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Theorem 1 (Theorem 1, [8])

||Z||2 −
( n∑

i=1

zi,i+n−1

)2
−

n−1∑

i=2

z2
1,i −

m−1∑

i=n+1

z2
i,m (2)

=
n−1∑

i=1

m∑

j=n+1

z2
i,j +

n−2∑

i=2

n−1∑

j=i+1

z2
i,j +

2n−3∑

i=n+1

2n−2∑

j=i+1

z2
i,j

+
n−1∑

i=1

n∑

j=i+1

(
zi,j − zi+n−1,j+n−1

)2
+

n−1∑

i=1

n∑

j=i+1

(
zi,j+n−1 − zj,i+n−1

)2
.

Remark 2 Indeed, (1) and (2) are identical. In particular,

||Z||2 = 2 ||X||2||Y ||2 − 2 trace2(XT Y ),

and
( n∑

i=1

zi,i+n−1

)2
+

n−1∑

i=2

z2
1,i +

2n−1∑

i=n+1

z2
i,m = ||XY − Y X||2

holds, where the first is Lagrange’s identity, the second is straightforward.

3 SOS decomposition impossible for bad matrices

It suffices to prove this negative result for third order matrices. Let

X =




x1 x2 x3

0 x6 x4

0 0 x5


 , Y =




y1 y2 y3

0 y6 y4

0 0 y5


 .

It turns out that the presence of x6 and y6 causes the impossibility of an SOS
representation for (1). Since

XY − Y X =




0 z1,2 + z2,6 z1,3 + z2,4 + z3,5

0 0 z4,5 − z4,6

0 0 0


 ,

the nonnegative form (1) to be discussed assumes the form

2
∑

1≤i<j≤6

z2
i,j − (z1,3 + z2,4 + z3,5)

2 − (z1,2 + z2,6)
2 − (z4,5 − z4,6)

2 (3)

with zi,j = xiyj − xjyi, 1 ≤ i < j ≤ 6.
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Theorem 2 The biquadratic form (3), nonnegative for any real (xi)
6
1, (yi)

6
1,

is not a sum of squares of any quadratics!

We will need a lemma before proving the theorem.

Lemma 1 An sos-representation of f is necessarily a sum of squares of the
zi,j’s. Furthermore, for the variables zi,j the basic identities

zi,j zk,l + zi,l zj,k − zi,k zj,l = 0, 1 ≤ i < j < k < l ≤ 6 (4)

hold, and there are no more (quadratic) relations between them.

Proof. Note that in addition to nonnegativity: f(X, Y ) ≥ 0, we have symme-
try: f(X, Y ) = f(Y, X), and also zero property: f(X, X) = 0.

By virtue of the last property, the coefficients of x1y2 and y1x2 are opposite
in all terms of the representation

f(X, Y ) =
∑

i

(αix1y2 + βiy1x2 + . . . )2,

i.e. βi = −αi for all i. Hence

f(X, Y ) =
∑

i

(αiz1,2 + γix1y3 + δiy1x3 + . . . )2

and the procedure can be continued.
As for the relations between the zi,j-s, assume that there holds a nontrivial

quadratic identity g(Z) = 0 containing the term z2
1,2. Then also x2

1y
2
2 is present,

however, this latter can only occur in z2
1,2, therefore a term −z2

1,2 is needed
to cancel it, which contradicts the non-triviality. In a similar way we see that
there is no term of type z1,2 z1,3 occurring in a non-trivial identity.

Finally, assume we have a non-trivial identity containing the term z1,2 z3,4.
(Its coefficient can be supposed to be unity.) Then x1y2x3y4 is a part of the
(expanded) identity. In contrast to the above cases, this occurs in two ad-
ditional terms: in z1,4 z2,3 and in z1,3 z2,4 to produce the non-trivial identity
z1,2 z3,4 + z1,4 z2,3 − z1,3 z2,4 = 0.

Since x1y2x3y4 occurs only in the expansion of the three above terms, there
are no more non-trivial identities containing it. �

Before proving the theorem, we formulate the standard primal and dual
semidefinite programs:

min {C • X : X ≥ 0, Ai • X = bi, 1 ≤ i ≤ m} (Primal)
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max {bT y : S ≡ C −
m∑

i=1

yiAi ≥ 0} (Dual)

where all matrices are n-th order real symmetric, m is the number of con-
straints, C and (Ai)

m
1 are given, vector b of length m is also given, while

the primal matrix X and the dual matrix S (the so-called ‘slack’ matrix -
sometimes denoted by Z) together with the m-vector y are the output of the
program, • denotes the standard scalar product A • B = trace(AB) for sym-
metric matrices and ≥ stands for the Loewner ordering: A ≥ B iff A − B is
positive semidefinite, in short: psd.

Turning to our case, denote by (Ai)
15
1 the constraint matrices corresponding

to the basic identities (4) mentioned in the Lemma. Since these are homoge-
neous equations, the bi-s are zero. In an interesting way, both the order n =

(
6
2

)

and the number of constraints m =
(
6
4

)
equals 15.

Nevertheless we will need also the identity I as a constraint matrix to get a
sum of squares decomposition, and – to emphasize its speciality – we associate
it with index zero, i.e. we write A0 = I and get the concrete primal-dual pair
of SDP programs:

min {C • X : X ≥ 0, trX = 1, Ai • X = 0, 1 ≤ i ≤ 15} (Primal)

max {y0 : S ≡ C − y0I −
15∑

i=1

yiAi ≥ 0} (Dual)

After this preparation we can prove our theorem.

Proof. To prove Theorem 2, we specify in detail the data for the SDP above
and explain the results obtained. Considering the band-width of matrices C, X
and S, a good order of the zi,j ’s is

(z2,5, z3,4, z1,2, z2,6, z1,4, z2,3, z4,5, z4,6, z1,3, z3,5, z2,4, z1,5, z1,6, z3,6, z5,6).

Then, denoting by z the corresponding column vector, it holds that f(X, Y ) =
zT Cz for C appropriately defined. To this, we describe the common block-
structure of the matrices C, S, X. All these matrices are block-diagonal with
two 4×4 blocks and a 3×3 block, while the remaining 4×4 block is diagonal.
In case of C e.g. these blocks will be denoted by C4, C

′
4, C3 and Cd. Here, C ′

4

is diagonally similar to C4 through diag(1, 1, 1,−1), hence the eigenvalues of
C ′

4 and C4 coincide. The whole matrix is

C = C4 ⊕ C ′
4 ⊕ C3 ⊕ Cd,
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and the same direct sum representation holds for the optimal primal and dual
matrices X and S. As regards C, we have

C4 =




2 0 0 0
0 2 0 0
0 0 1 −1
0 0 −1 1


 , C3 =




1 −1 −1
−1 1 −1
−1 −1 1


 , Cd = 2I4.

Now we can explain the output of our program. The optimal value of the
objective is negative: y0 = −1

7 , indicating that (1) is not a SOS, but the
modified quartics

21
7 ||X||2||Y ||2 − 2 trace2(XT Y ) − ||XY − Y X||2

is a sum of squares, 21
7 being the smallest number with this property. The only

nonzero y-s are y1 = y2 = 5/7, they correspond to the basic relations (4) with
indices (1, 2, 3, 4) and (2, 3, 4, 5).

For the optimal matrix S we have S = S4 ⊕ S′
4 ⊕ S3 ⊕ Sd with

S4 =
1

7




15 −5 0 0
−5 15 −5 0
0 −5 8 −7
0 0 −7 8


 , S3 =

1

7




8 −7 −2
−7 8 −2
−2 −2 8


 , Sd =

15

7
I4,

which yields the wanted sum of squares decomposition. The optimal primal
matrix is X = X4 ⊕ X ′

4 ⊕ X3 ⊕ Xd, where

X4 =
2

735




1 3 8 7
3 9 24 21
8 24 64 56
7 21 56 49


 , X3 =

9

245




4 4 2
4 4 2
2 2 1


 ,

and Xd is the fourth order zero matrix. Using the block-structure, the positive
semidefiniteness of X and S and the complementarity condition XS = 0 can
easily be checked (cf. the Karush-Kuhn-Tucker necessary conditions). Also,
strict complementarity holds, in particular rank(X) = def(S) = 3. �

Notice that in general – unlike linear programming – rational data for a
SDP problem does not necessarily result in rational solution!
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4 On a parametric version

To get more insight into the problem, we insert two parameters α and β to
investigate the SOS representability of the biquadratics

2
∑

1≤i<j≤6

z2
i,j − α(z1,3 + z2,4 + z3,5)

2 − β(z1,2 + z2,6)
2 − β(z4,5 − z4,6)

2. (5)

(The reason for the two β’s is that these terms behave similarly.) It turns out
that only the first two constraints A1 • X = 0 and A2 • X = 0 will be active
with y1 = y2, and yi = 0, i ≥ 3, as in the above special case of α = β = 1.
This means that our problem reduces to finding the optimal y0, y1 for a given
pair (α, β) ∈ [0, 1]2 such that

(2 − y0)f0 − αf1 − βf2 − y1F1 − y2F2 ≥ 0 (6)

and y0 is maximum, where we use the abbreviations

f0 =
6∑

i<j

z2
i,j , f1 = (z1,3 + z2,4 + z3,5)

2, f2 = (z1,2 + z2,6)
2 + (z4,5 − z4,6)

2,

F1 = 2(z1,2 z3,4 + z1,4 z2,3 − z1,3 z2,4), F2 = 2(z2,3 z4,5 + z2,5 z3,4 − z2,4 z3,5)

in connection with the notations

p = 2 − y0, q = y1 = y2, and F = F1 + F2

to write (6) in the simpler form

pf0 − αf1 − βf2 − qF.

Observation. Assume that for some (α, β) ∈ [0, 1]2 we know the optimal
values of y0, y1, i.e. the optimal p and q. Then by multiplying through the
coefficient vector (α, β, p, q) by 2/p we get (α′, β′, p′, q′) with

α′ =
2α

p
, β′ =

2β

p
, p′ = 2, q′ =

2q

p
,

showing that for this new (α′, β′) we have y′0 = 0.

Example. Let us calculate the largest α = β for which (5) is SOS! (Theorem
2 tells us that this α < 1.) For α = β = 1 we know that y0 = −1

7 , thus p = 15
7 ,

and q = y1 = 5
7 . The transformed variables are α′ = β′ = 14

15 and q′ = y′1 = 2
3 .



84 L. László

Table 1: The unit square: optimal values

region name p = 2 − y0 q = y1 def(S) rank(X)

β = 0 2 α α 1 1

β < 0.8 α R1 2 α α 1 1

β = 0.8 α 2 α α 3 1

β ∈ (0.8α, 1.5α) R3 (7) (8) 3 3

β = 1.5 α 2 β 0 3 2

β > 1.5 α R2 2 β 0 2 2

α = 0 2 β 0 2 2

Consequently the polynomial 2f0 − 14
15(f1 + f2) is not only nonnegative but

also SOS (and the point (α, β) = (14
15 , 14

15) lies on the border of the ‘good’ and
‘bad’ cases).

In the next theorem we summarize the results obtained for parameters (α, β)
from the unit square.

Theorem 3 Table 1 gives the optimal values for the parametrized problem
(6).

The optimal p and q for the middle sector R3 are

p = −αβ
2α + 9β +

√
(8α − 9β)2 + 15β2

4α2 − 12αβ + β2
(7)

q =
β(p(60α2 − 4αβ − 9β2) + 15αβ(β − 6α)

4(4α2 − 12αβ + β2)(3β − 2p)
(8)

In addition to this “radial” characterization, the level lines also can be de-
scribed: these are curves, along which the optimal y0 is constant. The case
y0 = 0, i.e. p = 2 can be seen on the figure, cf. also (10). (For another in-
stance, the dotted line starting at α = 0, β = 0.5 and ending at α = 0.5, β = 0
belongs to p = 1.) The indices of region names correspond to the defects of the
optimal dual matrix S. The right upper darkened region within R3 refers to
points (α, β) for which (5), i.e. 2f0 − αf1 − βf2 is not a sum of squares.

Proof. The block-structure of the special case α = β = 1 keeps on holding,
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.8

0.9

1
The unit square

alpha

be
ta

R1

R2 R3

2/3

4/5

and the blocks at issue depend just on one of the parameters α and β :

S3(α) =




p − α −α q − α
−α p − α q − α

q − α q − α p − α


 , S4(β) =




p −q 0 0
−q p −q 0
0 −q p − β −β
0 0 −β p − β


 ,

as it easily follows by considering the polynomial (6).

Let us begin with the case β = 0. Then S4 (and also S4
′) is psd, and our

‘work matrix’ is S3. Its (1,1) entry, p − α ≥ 0, and the nonnegativity of the
left upper 2-minor implies |p − α| ≥ |α|. Since both sides are nonnegative, it
follows that p ≥ 2α. On the other hand, the determinant of S3 equals

|S3| ≡ det(S3) = p {p2 − 2q2 − α(3p − 4q)},

which must vanish at the optimal variables, therefore

(
p − 3

2
α
)2

= 2
(
q − α

)2
+

1

4
α2.

From this we get |p − 3
2α| ≥ |12 |, and, since this holds without absolute value

as well, we conclude that the optimal variables are q = 0 and p = 2α (note
that maximizing y0 is equivalent to minimizing p = 2 − y0).



86 L. László

All this holds for R1, i.e. for β “small” – until we arrive at |S4(β)| = 0.
Before that moment we still have p = 2α, q = α and

S3 = α




1 −1 0
−1 1 0
0 0 1


 ,

giving one rank decrease. As regards S4, for β ≤ (4/5)α we have

S4 ≥




p −α 0 0
−α p −α 0
0 −α p − 4

5α −4
5α

0 0 −4
5α p − 4

5α


 =

α

5




10 −5 0 0
−5 10 −5 0
0 −5 6 −4
0 0 4 6




in the sense of the semidefinite (Loewner) ordering, which easily follows by
(6). Matrix S4 becomes active, if equality is attained: β = (4/5)α. Then S4

becomes a psd matrix with rank 3, therefore S4 and S′
4 yield two further

rank losses. (The situation on the border of R1 and R3 can be understood by
thinking of the continuity of the roots depending on the parameters.)

The cases α = 0 and β > 1.5 α are similar, hence we give only the necessary
formulas. The determinant of S4 is

|S4| = p {p2(p − 2β) − q2(2p − 3β)}.

Inequality p ≥ 2β follows similarly to the case p ≥ 2α. On the other hand,
|S4| = 0 can be rewritten as

p(p − β)2 + 3q2β = p(2q2 + β2),

whence we conclude (p − β)2 ≤ 2q2 + β2, i.e. p(p − 2β) ≤ 2q2, and it follows
that the optimal values (p → min!) are q = 0 and p = 2β. The matrix

S4 = β




2 0 0 0
0 2 0 0
0 0 1 −1
0 0 −1 1




is psd with defect one, giving (together with S4
′) rank loss=2 for the whole

matrix S. As regards S3, for (α, β) ∈ R2 it equals

S3(α) = pI3 − α eeT = α
(

p
α
I3 − eeT

)
, e = (1, 1, 1, 1)T ,
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which is positive definite for p/α > 3, i.e. for β > (3/2)α, and psd (with
rank=2) if equality holds:

S3 = α




2 −1 −1
−1 2 −1
−1 −1 2


 .

In this latter case, i.e. if β = (3/2)α, the defect of S becomes 3, since not only
S4 and S′

4, but also S3 yields a rank loss.
The middle region R3 can be characterized by that the SDP program an-

nihilates both determinants. The equations |S3(α)| = 0 and |S4(β)| = 0 are
equivalent to

p2 − 2q2 = α(3p − 4q) and p(p2 − 2q2) = β(2p2 − 3q2), (9)

from which we can express p and q by means of α and β to get (7) and (8),
and also β by help of α and p :

ϕp(α) = 2p
3 − 2p3

3

(
p2 + 9αp − 12α2 + 6α

√
2(p − α)(p − 2α)

)−1

In the important special case p = 2 we have the function ϕ : [23 , 1] → [45 , 1]
defined by

ϕ(α) ≡ ϕ2(α) = 4
3 − 8

3

(
2 + 9α − 6α2 + 6α

√
(1 − α)(2 − α)

)−1
. (10)

The critical values of ϕ are:

ϕ(2
3) = 1, ϕ′(2

3) = 0, ϕ(1) = 4
5 , ϕ′(1) = −∞.

The set of points in the unit square, for which (5) is a SOS are delimited by
the α and β axes, the horizontal line segment (0, 1) to (2

3 , 1), the graph of ϕ
and the vertical line segment (1, 0) to (1, 4

5). All other curves with different p
(e.g. that with p = 1 dotted on the figure) are proportional to this one, since
equations (9) are homogeneous. �

Remark 3 Consider the ellipse with center in (2
3 , 4

5) and vertices (1, 4
5), (2

3 , 1),
the right upper quarter of which is close to the graph of ϕ. The elementary
equality (14

15 −
2
3)2+(1− 4

5)2 = (1− 2
3)2 shows that the projection of the ‘border

point’ (14
15 , 14

15) onto the longer axis of the ellipse is just its focus (14
15 , 4

5)! As for
their measures, the approximate area of the ‘bad’ (shadowed) region is 0.0121,
while that above the ellipse amounts to 1

15 − π
60 ≈ 0.0143.
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Remark 4 For the interested reader we give some ‘nice’ rational solutions:
in addition to the known quadruples (α, β, p, q) = (1, 1, 15

7 , 5
7) and (14

15 , 14
15 , 2, 2

3)
we have e.g. (α, β, p, q) = (34

35 , 17
19 , 2, 4

5), (17
31 , 68

23 , 6, 1), or (31
16 , 124

50 , 5, 5
8).

Considering the derivatives also is of interest: the slope of ϕp for p = 21
7

at α = 1 equals −3
4 , which can be used to define a new problem with the

same solution! Replace to this the identity A0 = I by two matrices A16 and
A17 associated with the quadratic forms f1 and f2, and set the corresponding
coordinates of b equal to 3 and 4 (coming from the numerator and denominator
of the ratio −3

4 above). The result will coincide with that of Theorem 2.

Remark 5 In [6] the authors write: “Unfortunately, the nature of a para-
metric SDP is far more complicated [than LP] due to regions of nonlinearity
of φ(γ).” (The function φ(γ) = C(γ) •X(γ) is the primal objective depending
on the parameter.) In light of this, present problem seems to be a refreshing
exception: the nonlinearity (cf. the functions ϕp) can be handled by means of
elementary functions.
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[3] A. Böttcher, D. Wenzel, The Frobenius norm and the commutator, Linear
Algebra Appl., 429 (2008), 1864–1885.

[4] Ch-M. Cheng, S-W. Vong, D. Wenzel, Commutators with maximal Frobe-
nius norm, Linear Algebra Appl., 432 (2010), 292–306.

[5] K-S. Fong, Ch-M. Cheng, I-K. Lok, Another unitarily norm attaining the
minimum norm bound for commutators, Linear Algebra Appl., 433, (2010),
1793–1797.

[6] D. Goldfarb, K. Scheinberg, On parametric semidefinite programming,
Appl. Numer. Math., 29 (1999), 361–377.

[7] L. László, Proof of Böttcher and Wenzel’s conjecture on commutator norms
for 3-by-3 matrices, Linear Algebra Appl., 422 (2007), 659–663.



On a structured semidefinite program 89

[8] L. László, On Sum of Squares Decomposition for a Biquadratic Matrix
Function, Ann. Univ. Sci. Budapest. Sect. Comput., 33 (2010), 273–284.
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email: szakacstam@gmail.com

Abstract. In this paper we prove some results on multiplying balancing
and cobalancing numbers and (k, l)-power numerical centers.

1 Introduction

The sequence R = {Ri}
∞
i=0 = R(A, B, R0, R1) is called a second order linear

recurrence sequence if the recurrence relation

Ri = ARi−1 + BRi−2 (i ≥ 2)

holds, where A, B 6= 0, R0, R1 are fixed rational integers and |R0| + |R1| > 0. A
positive integer n is called a balancing number (see [3] and [5]) if

1 + · · · + (n − 1) = (n + 1) + · · · + (n + r)

holds for some positive integer r. The sequence of balancing numbers is denoted
by Bm (m = 1, 2, . . . ). As one can easily check, we have B1 = 6 and B2 = 35.
Note that by a result of Behera and Panda [3], we have

Bm+1 = 6Bm − Bm−1 (m > 1).

In that paper they proved that, there are infinitely many balancing numbers.
In [7] K. Liptai searched for those balancing numbers which are Fibonacci

numbers, too. Using the results of A. Baker and G. Wüstholz [2] he proved
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that there are no Fibonacci balancing numbers. Similarly in [8] he proved that
there are no Lucas balancing numbers. Using an other method L. Szalay [12]
got the same result.

In [9] Liptai, Luca, Pintér and Szalay generalized the concept of balancing
numbers in the following way. Let y, k, l be fixed positive integers with y ≥ 4.
A positive integer x with x ≤ y − 2 is called a (k, l)-power numerical center
for y if

1k + · · · + (x − 1)k = (x + 1)l + · · · + (y − 1)l.

In [9] several effective and ineffective finiteness results were proved for (k, l)-
power numerical centers.

Later G.K. Panda and P.K. Ray (see [10]) slightly modified the definition
of balancing number and introduced the notion of cobalancing number. A
positive integer n is called a cobalancing number if

1 + 2 + · · · + (n − 1) + n = (n + 1) + (n + 2) + · · · + (n + K)

for some K ∈ N. In this case K is called the cobalancer of n.
They also proved that the cobalancing numbers fulfill the following recur-

rence relation

bn+1 = 6bn − bn−1 + 2 (n > 1),

where b0 = 1 and b1 = 6. Moreover they found that every balancer is a
cobalancing number and every cobalancer is a balancing number.

In [11] G. K. Panda gave another possible generalization of balancing num-
bers. Let {am}∞m=0 be a sequence of real numbers. We call an element an of
this sequence a sequence-balancing number if

a1 + a2 + · · · + an−1 = an+1 + an+2 + · · · + an+k

for some k ∈ N. Similarly, one can define the notion of sequence cobalancing
numbers. In [11] it was proved that there does not exist any sequence balancing
number in the Fibonacci sequence.

As a generalization of the notion of a balancing number A. Bérczes, K. Liptai
and I. Pink call a binary recurrence R = R(A, B, R0, R1) a balancing sequence
if

R1 + R2 + . . . + Rn−1 = Rn+1 + Rn+2 + . . . + Rn+k

holds for some k ≥ 1 and n ≥ 2.
In [4] they proved that that any sequence R = R(A, B, 0, R1) with the con-

dition D = A2 + 4B > 0, (A, B) 6= (0, 1) is not a balancing sequence.
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T. Kovács, K. Liptai and P. Olajos in [6] extended the concept of balancing
numbers to arithmetic progressions. Let a > 0 and b ≥ 0 be coprime integers.
If for some positive integers n and r we have

(a + b) + · · · + (a(n − 1) + b) = (a(n + 1) + b) + · · · + (a(n + r) + b)

then we say that an + b is an (a, b)-balancing number. They proved several
effective finiteness and explicit results about them. In the proofs they combined
the Baker’s method, the modular method developed by Wiles and others, the
Chabauty method and the theory of elliptic curves.

In this paper we study a further generalization of balancing numbers. The
idea is due to A. Behera and G. K. Panda. A positive integer n is called a
multiplying balancing number if

1 · 2 · · · (n − 1) = (n + 1)(n + 2) · · · (n + r) (1)

for some positive integer r. The number r is called the balancer corresponding
to the multiplying balancing number n. The cobalancing numbers have a sim-
ilar definition. A positive integer n is called a multiplying cobalancing number
if

1 · 2 · · · (n − 1)n = (n + 1)(n + 2) · · · (n + r) (2)

for some positive integer r. The number r is called the cobalancer corresponding
to the multiplying cobalancing number n.

Using the concept of K. Liptai, F. Luca, . Pintér and L. Szalay ([9] we can
get further generalization. Let m, k, l be fixed positive integers with m ≥ 4. A
positive integer n with n ≤ m−2 is called a (k, l)-power multiplying balancing
number for m if

1k · · · (n − 1)k = (n + 1)l · · · (m − 1)l. (3)

2 The results

Throughout the paper let p the greatest odd prime, which is less than the
multiplying balancing number n, where n ≥ 4. In the first theorem we prove
that only one multiplying balancing number exists.

Theorem 1 The only multiplying balancing number is n = 7 with the balancer
r = 3.

In the proof we use 4 lemmas.
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Lemma 1 There is no prime among the factors of the right side of the equa-
tion

1 · 2 · · · (n − 1) = (n + 1)(n + 2) · · · (n + r)

Proof. Suppose that z is a prime among the factors of the right side. It is
clear that z is not in the prime decomposition of the left side of the equation
(1). Hence the prime decomposition of the right side is not the same as the
left’s. Thus the lemma is proved. �

Let us use the function α2 : N → N, α2(x) :=
∑[log2 x]

k=1

[
x
2k

]
, where x ≥ 2 and

α2(x) shows the index of the prime 2 in x!.

Lemma 2 x − log2 x − 2 < α2(x) < x

Proof.

α2(x) =
[ x

21

]
+

[ x

22

]
+

[ x

23

]
+ · · · +

[ x

2k

]
≤ x

21
+

x

22
+

x

23
+ · · · + x

2k
=

= x

(
1

21
+

1

22
+ · · · + 1

2k

)
= x

(
1 −

1

2k

)
≤ x − 1 < x

α2(x) >
( x

21
− 1

)
+

( x

22
− 1

)
+ · · · +

( x

2k
− 1

)

︸ ︷︷ ︸
[log2 x]

=

= x

(
1 −

1

2k

)
− [log2 x] = x −

x

2k
− [log2 x] > x − log2 x − 2

�

Lemma 3 If n is multiplying balancing number and r is the balancer, further-
more n > 64 then

3(n + 1)

2
< n + r.

Proof. From (1) it follows, that

(n − 1)! · (n)! = (n + r)!.

If (1) is true then

α2(n − 1) + α2(n) = α2(n + r)

Using Lemma 2 we get

n − 2 log2 n − 5 < r
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We can replace log2 n with n
8

if n > 64, that is

2n −
2n

8
− 5 < n + r

If n > 64 we get

3(n + 1)

2
<

3(n + 1)

2
+

2n

8
− 6.5 < n + r.

�

Proof.[Proof of Theorem 1] Using a results of M. El Bachraoui ([1]) we get
that, if n ≥ 2 then exists a p prime satisfying the inequality

n < p <
3(n + 1)

2
.

Hence the right side of (1) contains a prime if n > 64. But Lemma 1 says
there is no prime on the right side of the equation. The conclusion is that, if
n > 64 there is no multiplying balancing numbers. It can be checked easily if
n = 2, . . . , 64 then there is only one number satisfying the equation (1). We
get n = 7, that is the theorem is proved. �

Theorem 2 There is no multiplying cobalancing number.

In the proof we use the following lemma.

Lemma 4 Using our notation the following inequalities are true

p < n < 2p ≤ n + r < 3p.

Proof. Suppose that n ≥ 2p. The interval [p, 2p] always contains a prime, so
there is a prime greater than p and lower than n which is impossible because of
the definition of p. Hence n < 2p. On the left side of the equation (1) the index
of p is 1, consequently on the right side the index of p is also 1 in the prime
decomposition. So we can write the following inequalities 2p ≤ n + r < 3p. �

Proof. [Proof of Theorem 2] Using a result of Csebisev we get that there is
a prime z between p and 2p. Because of Lemma 4 we have to analyse three
cases z = n, z > n and z < n. If z > n then the prime decomposition of the
left and right side is not the same. Now let z < n.This situation contradicts
the fact that p is the greatest odd prime which is less than n. The last case is
z = n. Hence n + r ≥ 2z because of the prime factor z. Thus the left side of
the equation (2) has as many factor as the right side has which is obviously
impossible. First and last there is no cobalancing numbers. �

The following theorem deals with the (k, l)-power numerical centers.
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Theorem 3 If n ≥ 4 then there is only one (k, l)-power numerical centers.
The only solution is n = 7, m = 11 and k = l.

Proof. First we prove that if n is a (k, l)-power numerical center for m then
k = l. Using Lemma 4 the index of p in the equation (3) is k on the left side
and l on the right side in the prime decomposition. The index of p have to be
equal on the left and right side. So k = l.

So we get that n satisfies (1) if and only if n satisfies (3). So if n ≥ 4 there
is only one (k, l)-power numerical center. It is n = 7, m = 11 and l = k. �

Remark 1 If p = 2 and n = 3 we get the equation

1k · 2k = 4l.

In this case n = 3 (k, l)-power numerical center for m − 5 and there are
infinitely many (k, l) pairs with k = 2l.
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Abstract. In the present paper we introduce some sequence spaces com-
bining lacunary sequence, invariant means in 2-normed spaces defined by
Musielak-Orlicz function M = (Mk). We study some topological prop-
erties and also prove some inclusion results between these spaces.

1 Introduction and preliminaries

The concept of 2-normed space was initially introduced by Gahler [2] as an
interesting linear generalization of a normed linear space which was subse-
quently studied by many others see ([3], [9]). Recently a lot of activities have
started to study sumability, sequence spaces and related topics in these linear
spaces see ([4], [10]).

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm
on X is a function ||., .|| : X × X → R which satisfies

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent

(ii) ‖x, y‖ = ‖y, x‖
(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R

(iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖ for all x, y, z ∈ X.
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The pair (X, ‖., .‖) is then called a 2-normed space see [3]. For example, we
may take X = R2 equipped with the 2-norm defined as ‖x, y‖ = the area of the
parallelogram spanned by the vectors x and y which may be given explicitly
by the formula

||x1, x2||E = abs

(∣∣∣∣
x11 x12

x21 x22

∣∣∣∣
)

.

Then, clearly (X, ‖., .‖) is a 2-normed space. Recall that (X, ‖., .‖) is a 2-Banach
space if every cauchy sequence in X is convergent to some x in X.

Let σ be the mapping of the set of positive integers into itself. A continuous
linear functional ϕ on l∞ ,is said to be an invariant mean or σ-mean if and
only if

(i) ϕ(x) ≥ 0 when the sequence x = (xk) has xk ≥ 0 for all k,

(ii) ϕ(e) = 1, where e = (1, 1, 1, . . . ) and

(iii) ϕ(xσ(k)) = ϕ(x) for all x ∈ l∞ .

If x = (xn), write Tx = Txn = (xσ(n)). It can be shown in [11] that

Vσ =
{

x ∈ l∞ | lim
k

tkn(x) = l, uniformly in n, l = σ − lim x
}

,

where

tkn(x) =
xn + xσ1n + ... + xσkn

k + 1
.

In the case σ is the translation mapping n → n + 1, σ-mean is often called
a Banach limit and Vσ, the set of bounded sequences all of whose invariant
means are equal, is the set of almost convergent sequences see [6].

By a lacunary sequence θ = (kr) where k0 = 0, we shall mean an increasing
sequence of non-negative integers with kr−kr−1 → ∞ as r → ∞. The intervals
determined by θ will be denoted by Ir = (kr−1, kr]. We write hr = kr −

kr−1. The ratio
kr

kr−1

will be denoted by qr. The space of lacunary strongly

convergent sequence was defined in [1].
Let X be a linear metric space. A function p : X → R is called paranorm, if

(i) p(x) ≥ 0, for all x ∈ X

(ii) p(−x) = p(x), for all x ∈ X

(iii) p(x + y) ≤ p(x) + p(y), for all x, y ∈ X

(iv) if (σn) is a sequence of scalars with σn → σ as n → ∞ and (xn) is a
sequence of vectors with p(xn−x) → 0 as n → ∞, then p(σnxn−σx) →
0 as n → ∞.
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A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X, p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [12],
Theorem 10.4.2, P-183).

An orlicz function M : [0, ∞) → [0, ∞) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as
x −→ ∞.

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to define the
following sequence space. Let w be the space of all real or complex sequences
x = (xk), then

lM =

{

x ∈ w |

∞∑

k=1

M

(
|xk|

ρ

)
< ∞

}

which is called a Orlicz sequence space. Also lM is a Banach space with the
norm

‖x‖ = inf

{

ρ > 0 |

∞∑

k=1

M

(
|xk|

ρ

)
≤ 1

}

.

Also, it was shown in [5] that every Orlicz sequence space lM contains
a subspace isomorphic to lp(p ≥ 1). The ∆2− condition is equivalent to
M(Lx) ≤ LM(x), for all L with 0 < L < 1. An Orlicz function M can al-
ways be represented in the following integral form

M(x) =

∫x

0

η(t)dt

where η is known as the kernel of M, is right differentiable for t ≥ 0, η(0) =

0, η(t) > 0, η is non-decreasing and η(t) → ∞ as t → ∞.
A sequence M = (Mk) of Orlicz function is called a Musielak-Orlicz function

see ([7], [8]). A sequence N = (Nk) is called a complementary function of a
Musielak-Orlicz function M

Nk(v) = sup
{
|v|u − Mk | u ≥ 0

}
, k = 1, 2, . . .

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space
tM and its subspace hM are defined as follows

tM =
{

x ∈ w | IM(cx) < ∞, for some c > 0
}

,

hM =
{

x ∈ w | IM(cx) < ∞, for all c > 0
}
,
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where IM is a convex modular defined by

IM(x) =

∞∑

k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

‖x|| = inf
{

k > 0 | IM

(x

k

)
≤ 1

}

or equipped with the Orlicz norm

||x||0 = inf

{
1

k
(1 + IM(kx)) | k > 0

}
.

Let M = (Mk) be a Musielak-Orlicz function, (X, ||., .||) be a 2-normed space
and p = (Pk) be any sequence of strictly positive real numbers. By S(2 − X)

we denote the space of all sequences defined over (X, ||., .||). We now define the
following sequence spaces:

wo
σ [M, p, ‖., .‖]θ=

{

x ∈ S(2 − X) | lim
r→∞

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

= 0,

ρ > 0, uniformly in n
}

,

wσ [M, p, ||., .||]θ=

{

x ∈ S(2 − X) | lim
r→∞

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x − l)

ρ
, z

∥∥∥∥
)]pk

=0,

ρ > 0, uniformly in n
}

, and

w∞
σ [M, p, ||., .||]θ =

{

x ∈ S(2 − X) | sup
r,n

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

< ∞,

for some ρ > 0
}

.

When M(x) = x for all k, the spaces wo
σ

[
M, p, ||., .||

]
θ
, wσ

[
M, p, ||., .||

]
θ

and w∞
σ

[
Mk, p, ||., .||

]
θ

reduces to the spaces wo
σ

[
p, ||., .||

]
θ
, wσ

[
, p, ||., .||

]
θ

and

w∞
σ

[
p, ||., .||

]
θ

respectively.

If pk = 1 for all k, the spaces wo
σ

[
M, p, ||., .||

]
θ
, wσ

[
M, p, ||., .||

]
θ

and

w∞
σ

[
M, p, ||., .||

]
θ

reduces to wo
σ

[
M, ||., .||

]
θ
, wσ

[
M, ||., .||

]
θ

and

w∞
σ

[
M, ||., .||

]
θ

respectively.
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The following inequality will be used throughout the paper. If 0 ≤ pk ≤
sup pk = H, K = max(1, 2H−1) then

|ak + bk|pk ≤ K
{
|ak|pk + |bk|pk

}
(1)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.
In the present paper we study some topological properties of the above

sequence spaces.

2 Main results

Theorem 1 Let M = (Mk) be Musielak-Orlicz function, p = (pk) be a boun-
ded sequence of positive real numbers, then the classes of sequences
wo

σ

[
M, p, ||., .||

]
θ
, wσ

[
M, p, ||., .||

]
θ

and w∞
σ

[
M, p, ||., .||

]
θ

are linear spaces over
the field of complex numbers.

Proof. Let x, y ∈ wo
σ

[
M, p, ||., .||

]
θ

and α, β ∈ C. In order to prove the result
we need to find some ρ3 such that

lim
r→∞

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(αx + βy)

ρ3

, z

∥∥∥∥
)]pk

= 0, uniformly in n.

Since x, y ∈ wo
σ

[
M, p, ||., .||

]
θ
, there exist positive ρ1, ρ2 such that

lim
r→∞

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ1

, z

∥∥∥∥
)]pk

= 0, uniformly in n

and

lim
r→∞

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(y)

ρ2

, z

∣∣∣∣
)]pk

= 0, uniformly in n.

Define ρ3 = max(2|α|ρ1, 2|β|ρ2). Since (Mk) is non-decreasing and convex

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(αx + βy)

ρ3

, z

∥∥∥∥
)]pk

≤
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(αx)

ρ3

, z

∥∥∥∥ +

∥∥∥∥
tkn(βy)

ρ3

, z

∥∥∥∥
)]

≤
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ1

, z

∥∥∥∥ +

∥∥∥∥
tkn(y)

ρ2

, z

∥∥∥∥
)]

≤ K
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ1

, z

∥∥∥∥
)]

+

+ K
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(y)

ρ2

, z

∥∥∥∥
)]

→ 0 as r → ∞, uniformly in n.
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So that αx + βy ∈ wo
σ

[
M, p, ||., .||

]
θ
. This completes the proof. Similarly, we

can prove that wσ

[
M, p, ||., .||

]
θ

and w∞
σ

[
M, p, ||., .||

]
θ

are linear spaces. �

Theorem 2 Let M = (Mk) be Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers. Then wo

σ

[
M, p, ||., .||

]
θ

is a topo-
logical linear spaces paranormed by

g(x) = inf





ρ

pr
H :

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

) 1
H

≤ 1, r = 1, 2, . . . , n = 1, 2, . . .





,

where H = max(1, supk pk < ∞).

Proof. Clearly g(x) ≥ 0 for x = (xk) ∈ wo
σ

[
M, p, ||., .||

]
θ
. Since Mk(0) = 0, we

get g(0) = 0.

Conversely, suppose that g(x) = 0, then

inf





ρ

pr
H :

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

) 1
H

≤ 1, r ≥ 1, n ≥ 1





= 0.

This implies that for a given ǫ > 0, there exists some ρǫ(0 < ρǫ < ǫ) such
that (

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρǫ
, z

∥∥∥∥
)]pk

) 1
H

≤ 1.

Thus

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ǫ
, z

∥∥∥∥
)]pk

) 1
H

≤
(

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρǫ
, z

∥∥∥∥
)]pk

) 1
H

≤ 1,

for each r and n. Suppose that xk 6= 0 for each k ∈ N. This implies that

tkn(x) 6= 0, for each k, n ∈ N. Let ǫ → 0, then
∥∥∥tkn(x)

ǫ
, z
∥∥∥→ ∞. It follows that

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ǫ
, z

∥∥∥∥
)]pk

) 1
H

→ ∞

which is a contradiction.
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Therefore, tkn(x) = 0 for each k and thus xk = 0 for each k ∈ N. Let ρ1 > 0

and ρ2 > 0 be such that

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ1

, z

∥∥∥∥
)]pk

) 1
H

≤ 1

and

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(y)

ρ2

, z

∥∥∥∥
)]pk

) 1
H

≤ 1

for each r . Let ρ = ρ1 + ρ2. Then, we have

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x + y)

ρ
, z

∥∥∥∥
)]pk

) 1
H

≤
(

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x) + tkn(y)

ρ1 + ρ2

, z

∥∥∥∥
)]pk

) 1
H

≤
(

1

hr

∑

k∈Ir

[
ρ1

ρ1 + ρ2

Mk

(∥∥∥∥
tkn(x)

ρ1

, z

∥∥∥∥
)

+
ρ2

ρ1 + ρ2

Mk

(∥∥∥∥
tkn(y)

ρ2

, z

∥∥∥∥
)]pk

) 1
H

≤
(

ρ1

ρ1 + ρ2

)(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ1

, z

∥∥∥∥
)]pk

) 1
H

+

(
ρ2

ρ1 + ρ2

)(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(y)

ρ2

, z

∥∥∥∥
)]pk

) 1
H

≤ 1.

(by Minkowski’s inequality)
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Since ρ ′s are non-negative, so we have

g(x + y) =

= inf





ρ

pr
H |

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x) + tkn(y)

ρ
, z

∥∥∥∥
)]pk

) 1
H

≤ 1, r ≥ 1, n ≥ 1






≤ inf





ρ

pr
H

1 |

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ1

, z

∣∣∣∣
)]pk

) 1
H

≤ 1, r ≥ 1, n ≥ 1





+

+ inf





ρ

pr
H

2 |

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ2

, z

∥∥∥∥
)]pk

) 1
H

≤ 1, r ≥ 1, n ≥ 1





.

Therefore,

g(x + y) ≤ g(x) + g(y).

Finally, we prove that the scalar multiplication is continuous. Let λ be any
complex number. By definition,

g(λx)=inf





ρ

pr
H |

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(λx)

ρ
, z

∥∥∥∥
)]pk

) 1
H

≤ 1, r ≥ 1, n ≥ 1





.

Then

g(λx)= inf





(|λ|t)

pr
H |

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

t
, z

∥∥∥∥
)]pk

) 1
H

≤1, r ≥ 1, n ≥ 1





.

where t =
ρ

|λ|
. Since |λ|pr ≤ max(1, |λ|sup pr), we have

g(λx) ≤ max(1, |λ|sup pr)

inf





t

pr
H |

(
1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

t
, z

∥∥∥∥
)]pk

) 1
H

≤ 1, r ≥ 1, n ≥ 1





.

So, the fact that scalar multiplication is continuous follows from the above
inequality.

This completes the proof of the theorem. �
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Theorem 3 Let M = (Mk) be Musielak-Orlicz function. If

sup
k

[
Mk(t)

]
pk < ∞ for all t > 0,

then
wσ [M, p, ||., .||]θ ⊂ w∞

σ [M, p, ||., .||]θ .

Proof. Let x ∈ wσ

[
M, p, ||., .||

]
θ
. By using inequality (1), we have

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

≤ K

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x − l)

ρ
, z

∥∥∥∥
)]pk

+
K

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
l

ρ
, z

∥∥∥∥
)]pk

.

Since supk

[
Mk(t)

]pk < ∞, we can take that supk

[
Mk(t)

]pk = T . Hence we
get x ∈ w∞

σ

[
M, p, ||., .||

]
θ
. �

Theorem 4 Let M = (Mk) be Musielak-Orlicz function which satisfies ∆2-
condition for all k, then

wσ [p, ||., .||]θ ⊂ wσ [M, p, ||., .||]θ .

Proof. Let x ∈ wσ [p, ||., .||]θ. Then we have

Tr =
1

hr

∑

k∈Ir

||tkn(x−l), z||pk → ∞ as r → ∞ uniformly in n, for some l.

Let ǫ > 0 and choose δ with 0 < δ < 1 such that Mk(t) < ǫ for 0 ≤ t ≤ δ for
all k. So that

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x − l)

ρ
, z

∥∥∥∥
)]pk

=
1

hr

1∑

k ∈ Ir

‖tkn(x − l)z‖ ≤ δ

[
Mk

(∥∥∥∥
tkn(x − l)

ρ
, z

∥∥∥∥
)]pk

+
1

hr

2∑

k ∈ Ir

‖tkn(x − l)z‖ ≤ δ

[
Mk

(∥∥∥∥
tkn(x − l)

ρ
, z

∥∥∥∥
)]pk

.

For the first summation in the right hand side of the above equation, we have
1∑

≤ ǫH by using continuity of Mk for all k. For the second summation, we
write

||tkn(x − l), z|| ≤ 1 + ||
tkn(x − l)

δ
, z||.
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Since Mk is non-decreasing and convex for all k, it follows that

Mk(||tkn(x − l), z||) < Mk

(
1 +

∥∥∥∥
tkn(x − l)

δ
, z

∥∥∥∥
)

≤ 1

2
Mk(2) +

1

2
Mk

(
(2)

∥∥∥∥
tkn(x − l)

δ
, z

∥∥∥∥
)

.

Since Mk satisfies ∆2-condition for all k, we can write

Mk

(
||tkn(x − l), z||

)
≤ 1

2
L

∥∥∥∥
tkn(x − l)

δ
, z

∥∥∥∥Mk(2) +
1

2
L

∥∥∥∥
tkn(x − l)

δ
, z

∥∥∥∥Mk(2)

= L

∥∥∥∥
tkn(x − l)

δ
, z

∥∥∥∥Mk(2).

So we write

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x − l)

ρ
, z

∥∥∥∥
)]pk

≤ ǫH + [max(1, LMk(2))δ]HTr.

Letting r → ∞, it follows that x ∈ wσ

[
M, p, ||., .||

]
θ
.

This completes the proof. �

Theorem 5 Let M = (Mk) be Musielak-Orlicz function. Then the following
statements are equivalent:

(i) w∞
σ

[
p, ||., .||

]
θ
⊂ wo

σ

[
M, p, ||., .||

]
θ
,

(ii) wo
σ

[
p, ||., .||

]
θ
⊂ wo

σ

[
M, p, ||., .||

]
θ
,

(iii) sup
r

1

hr

∑

k∈Ir

[
Mk(t)

]pk < ∞ for all t > 0.

Proof. (i) =⇒ (ii) We have only to show that wo
σ

[
p, ||., .||

]
θ
⊂ w∞

σ

[
p, ||., .||

]
θ
.

Let x ∈ wo
σ

[
p, ||., .||

]
θ
. Then there exists r ≥ ro, for ǫ > 0, such that

1

hr

∑

k∈Ir

∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
pk

< ǫ.

Hence there exists H > 0 such that

sup
r,n

1

hr

∑

k∈Ir

∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
pk

< H
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for all n and r. So we get x ∈ w∞
σ

[
p, ||., .||

]
θ
.

(ii) =⇒ (iii) Suppose that (iii) does not hold. Then for some t > 0

sup
r

1

hr

∑

k∈Ir

[Mk(t)]pk = ∞

and therefore we can find a subinterval Ir(m) of the set of interval Ir such that

1

hr(m)

∑

k∈Ir(m)

[
Mk(

1

m
)

]pk

> m, m = 1, 2, (2)

Let us define x = (xk) as follows, xk = 1
m

if k ∈ Ir(m) and xk = 0 if k 6∈
Ir(m). Then x ∈ wo

σ

[
p, ||., .||

]
θ

but by eqn. (2), x 6∈ w∞
σ

[
M, p, ||., .||

]
θ
. which

contradicts (ii). Hence (iii) must hold. (iii) =⇒ (i) Suppose (i) not holds, then
for x ∈ w∞

σ

[
p, ||., .||

]
θ
, we have

sup
r,n

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

= (3)

Let t =
∥∥∥tkn(x)

ρ
, z
∥∥∥ for each k and fixed n, so that eqn. (3) becomes

sup
r

1

hr

∑

k∈Ir

[Mk(t)]pk = ∞

which contradicts (iii). Hence (i) must hold. �

Theorem 6 Let M = (Mk) be Musielak-Orlicz function. Then the following
statements are equivalent:

(i) wo
σ

[
M, p, ||., .||

]
θ
⊂ wo

σ

[
p, ||., .||

]
θ
,

(ii) wo
σ

[
M, p, ||., .||

]
θ
⊂ w∞

σ

[
p, ||., .||

]
θ
,

(iii) inf
r

∑

k∈Ir

[
Mk(t)

]pk > 0 for all t > 0.

Proof. (i) =⇒ (ii) : It is easy to prove.

(ii) =⇒ (iii) Suppose that (iii) does not hold. Then

inf
r

1

hr

∑

k∈Ir

[Mk(t)]pk = 0 for some t > 0,
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and we can find a subinterval Ir(m) of the set of interval Ir such that

1

hr

∑

k∈Ir(m)

[Mk(m)]pk <
1

m
, m = 1, 2, . . . (4)

Let us define xk = m if k ∈ Ir(m) and xk = 0 if k 6∈ Ir(m). Thus by eqn.(4),
x ∈ wo

σ

[
M, p, ||., .||

]
θ

but x 6∈ w∞
σ

[
p, ||., .||

]
θ

which contradicts (ii). Hence (iii)
must hold.

(iii) =⇒ (i) It is obvious. �

Theorem 7 Let M = (Mk) be Musielak-Orlicz function. Then w∞
σ

[
M, p,

||., .||
]
θ
⊂ wo

σ

[
p, ||., .||

]
θ

if and only if

lim
r→∞

1

hr

∑

k∈Ir

[
Mk(t)

]pk = ∞ (5)

Proof. Let w∞
σ

[
M, p, ||., .||

]
θ
⊂ wo

σ

[
p, ||., .||

]
θ
. Suppose that eqn. (5) does not

hold. Therefore there is a subinterval Ir(m) of the set of interval Ir and a

number to > 0, where to =
∣∣∣tkn(x)

ρ
, z
∣∣∣ for all k and n, such that

1

hr(m)

∑

k∈Ir(m)

[Mk(to)]pk ≤ M < ∞, m = 1, 2, . . . (6)

Let us define xk = to if k ∈ Ir(m) and xk = 0 if k 6∈ Ir(m). Then, by eqn. (6),
x ∈ w∞

σ [Mk, p, ||., .||]θ. But x 6∈ wo
σ [p, ||., .||]θ. Hence eqn. (5) must hold.

Conversely, suppose that eqn. (5) hold and that x ∈ w∞
σ [Mk, p, ||., .||]θ. Then

for each r and n

1

hr

∑

k∈Ir

[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

≤ M < ∞. (7)

Now suppose that x 6∈ wo
σ [p, ||., .||]θ. Then for some number ǫ > 0 and for a

subinterval Iri of the set of interval Ir, there is ko such that ||tkn(x), z||pk > ǫ

for k ≥ ko. From the properties of sequence of Orlicz functions, we obtain
[
Mk

(
ǫ

ρ

)]pk

≤
[
Mk

(∥∥∥∥
tkn(x)

ρ
, z

∥∥∥∥
)]pk

which contradicts eqn.(6), by using eqn. (7). This completes the proof. �
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Kálmán GYŐRY (University of Debrecen, Hungary)
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