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Fifteen problems in number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

J. Sándor

A note on logarithmically completely monotonic ratios of certain

mean values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

J. Bukor, F. Filip

Sets with prescribed lower and upper weighted densities . . . . . . . 92

F. Filip, J Šustek
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Abstract. In this paper we study the asymptotic behavior of the solu-

tion of quasilinear parametric variational inequalities posed in a cylinder

with a thin neck, and we obtain the limit problem.

1 Introduction

The aim of the paper is to study the asymptotic behavior of the solution of

quasilinear variational inequalities in a beam with a thin neck. Mathemati-

cally, this notched beam is given by

Ωǫ = {(x1, x
′) ∈ R

3 : −1 < x1 < 1, |x
′| < ǫ if |x1| > tǫ, |x

′| < ǫrǫ if |x1| ≤ tǫ},

where ǫ, rǫ, and tǫ are positive parameters such that
ǫrǫ

tǫ
→ 0.

Previous work on domains of this type was done by Hale & Vegas [7], Jimbo

[8, 9], Cabib, Freddi, Morassi, & Percivale [2], Rubinstein, Schatzman & Stern-

berg [13], Casado-Dı́az, Luna-Laynez & Murat [3, 4] and Kohn & Slastikov

[10].
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The most recent results are of Casado-Dı́az, Luna-Laynez & Murat [4]. They

studied the asymptotic behavior of the solution of a diffusion equation in the

notched beam Ωǫ and obtained at the limit a one-dimensional model.

In the present article the geometrical setting is the same as in [4], but

we consider quasilinear variational inequalities instead of linear variational

equalities.

The paper is organized as follows. In Section 2 the geometrical setting is

described, the studied problem is given, and the assumptions for our results

are formulated. In Section 3 the asymptotic behavior of the solution is stud-

ied. Some results from [11] are recalled which, unfortunately, don’t provide

information about what happening near to the notch. Thus we need to prove

some auxiliary results. In Section 4 the limit problem is obtained. To prove

the results in this section, we combine the ideas from [5] with the adaptation

to variational inequalities of the method used in [4].

2 Setting the problem

Let ǫ > 0 be a parameter, rǫ (rǫ > 0) and tǫ (tǫ > 0) be two sequences of

real numbers, with

rǫ → 0, tǫ → 0, when ǫ → 0.

We assume that

tǫ

r2ǫ
→ µ,

ǫ

rǫ
→ ν, with 0 ≤ µ < +∞, 0 ≤ ν < +∞, when ǫ → 0.

Let S ⊂ R
2

be a bounded domain such that 0 ∈ S, which is sufficiently smooth

to apply the Poincaré-Wirtinger inequality.

Define the following subsets of R
3
:

Ω−
ǫ = (−1,−tǫ) × (ǫS), Ω0

ǫ = [−tǫ, tǫ] × (ǫrǫS), Ω
+
ǫ = (tǫ, 1) × (ǫS),

Ωǫ = Ω−
ǫ ∪Ω0

ǫ ∪Ω+
ǫ , and Ωǫ = Ω−

ǫ ∪Ω+
ǫ .

Ωǫ is a notched beam, the main part of the beam is Ω1
ǫ and the notched part

Ω0
ǫ. A point of Ωǫ

is denoted by x = (x1, x
′) = (x1, x2, x3).

Denote by

Γ−
ǫ = {−1} × (ǫS) and Γ+

ǫ = {1} × (ǫS)

the two bases of the beam, and let

Γǫ = Γ−
ǫ ∪ Γ+

ǫ
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be the union of the two bases.

Denote

Vǫ = {V ∈ H1(Ωǫ), V = 0 on Γǫ}.

We consider the following problem:

Find Uǫ ∈Mǫ such that, for all Vǫ ∈Mǫ,

∫

Ωǫ

[AǫΦǫ(x,Uǫ, Bǫ)∇Uǫ,∇(Vǫ −Uǫ)] dx ≥ 0 (1)

with Aǫ, Bǫ, and Φǫ, given functions, Mǫ a closed, convex, nonempty cone in

Vǫ.

This problem has applications in Physics. Bruno [1] observed that when

a ferromagnet has a thin neck, this will be preferred location for the domain

wall. He also noticed that if the geometry of the neck varies rapidly enough,

it can influence and even dominate the structure of the wall.

Consider problem (1). We impose the following assumptions:

(A1) The matrix Aǫ has the following form

Aǫ(x) = χΩ1
ǫ
(x)A1

(

x1,
x ′

ǫ

)

+ χΩ0
ǫ
(x)A0

(

x1

tǫ
,
x ′

ǫrǫ

)

,

where A1, A0 ∈ L∞((−1, 1) × S)3×3
.

(A2) The matrix Bǫ has the following form

Bǫ(x) = χΩ1
ǫ
(x)B1

(

x1,
x ′

ǫ

)

+ χΩ0
ǫ
(x)B0

(

x1

tǫ
,
x ′

ǫrǫ

)

,

where B1, B0 ∈ L∞((−1, 1) × S)3×3
.

(A3) The functions Φǫ : Ωǫ × R → R
3×3

and Ψǫ : Ωǫ × R → R
3

are

Carathéodory mappings having the following form:

Φǫ(x, η) = χΩ1
ǫ
(x)Φ1

ǫ

(

x1,
x ′

ǫ
, η

)

+ χΩ0
ǫ
(x)Φ0

ǫ

(

x1

tǫ
,
x ′

ǫrǫ
, η

)

;

for a.e. x ∈ Ωǫ, for all η ∈ R;

for all Uǫ ∈ L2(Ωǫ), Wǫ ∈ L2(Ωǫ)3
, Φ1

ǫ(·, Uǫ(·))Wǫ(·), Φ0
ǫ(·, Uǫ(·))Wǫ(·) ∈

L2((−1, 1) × S)3
.
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(A4) Coercivity condition

There exist C1, C2 > 0 and k1 ∈ L∞(Ωǫ) such that for all ξ ∈ R
3
, η ∈ R

[Aǫ(x)Φǫ(x, η)Bǫ(x)ξ, ξ] ≥ C1‖ξ‖
2 + C2|η|

q1 − k1(x) a.e. x ∈ Ωǫ (2)

for some 1 < q1 < 2, for each ǫ > 0.

(A5) Growth condition

There exist C > 0 and α ∈ L∞(Ωǫ) such that for all ξ ∈ R
3
, η ∈ R

‖Aǫ(x)Φǫ(x, η)ξ‖ ≤ C‖ξ‖ + C|η| + α(x) a.e. x ∈ Ωǫ, (3)

for each ǫ > 0.

(A6) Monotonicity condition

For all ξ, τ ∈ R
n
, η ∈ R,

[Aǫ(x)Φǫ(x, η)Bǫ(x)ξ−Aǫ(x)Φǫ(x, η)Bǫ(x)τ, ξ− τ] ≥ 0, a. e. x ∈ Ωǫ,

for each ǫ > 0.

(A7) If uǫ → u and wǫ ⇀ w in L2(Y1), then

Φ1
ǫ(·, uǫ(·))w(·) → Φ1(·, u(·))w(·) strongly in L2(Y1).

If uǫ → u and wǫ ⇀ w in L2(Z), then

Φ0
ǫ(·, uǫ(·))w(·) → Φ0(·, u(·))w(·) strongly in L2(Z).

3 Asymptotic behavior of the solution

To study the asymptotic behavior we use the change of variables y = yǫ(x)

given by

y1 = x1 y ′ =
x ′

ǫ
(4)

which transforms the beam (except the notch) in a cylinder of fixed diameter.

This change of variable is classical in the study of asymptotic behavior of

variational equalities in thin cylinders or beams (see [6], [12], [14]). We denote

by Y−
ǫ , Y0

ǫ, Y+
ǫ , Yǫ, and YS

ǫ the images of Ω−
ǫ , Ω0

ǫ, Ω+
ǫ , Ωǫ, and ΩS

ǫ by the

change of variables y = yǫ(x), i.e.

Y−
ǫ = (−1,−tǫ) × S, Y0

ǫ = [−tǫ, tǫ] × (rǫS), Y
+
ǫ = (tǫ, 1) × S,
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Yǫ = Y−
ǫ ∪ Y0

ǫ ∪ Y+
ǫ , Y

1
ǫ = Y−

ǫ ∪ Y+
ǫ .

Denote by Y−
, Y+

, and Y1
the ”limits”of Y−

ǫ , Y+
ǫ , and Y1

ǫ, i.e.

Y− = (−1, 0) × S, Y+ = (0, 1) × S, Y1 = Y− ∪ Y+.

Note that Y1
ǫ is contained in its limit Y1

.

The two bases of the beam Γ−
ǫ and Γ+

ǫ are transformed to Λ−
and Λ+

,

respectively, where

Λ− = {−1} × S and Λ+ = {1} × S.

Γǫ transforms to Λ = Λ− ∪Λ+
.

Let Uǫ ∈ Mǫ be the solution of the variational inequality (1). Define

uǫ ∈ Kǫ by

uǫ(y) = Uǫ(y−1
ǫ (y)) a.e. y ∈ Yǫ. (5)

Kǫ being the image of Mǫ. Kǫ is a closed, convex, nonempty cone in Dǫ, with

Dǫ = {v ∈ H1(Yǫ) | v = 0 on Λ}. We need the following two assumptions:

(A8) There exists a nonempty, convex cone K in H1(Y1) such that

(i) K ∩H1((−1, 0) ∪ (0, 1)) 6= ∅;
(ii) ǫi → 0, uǫi

∈ Kǫi
, u ∈ H1((−1, 0) ∪ (0, 1)), uǫi

⇀ u (weakly) in

H1(Y1) imply u ∈ K.

(A9) There exists a nonempty, convex cone L in L2((−1, 1);H1(S)) such

that

ǫi → 0, wǫi
∈ Kǫi

, w ∈ L2((−1, 1);H1(S)), wǫi
⇀ w (weakly) in

L2((−1, 1);H1(S)) imply w ∈ L.

By change of variables y = yǫ(x) the operator ∇ transforms to

∇ǫ· =

(

∂·

∂y1

,
1

ǫ

∂·

∂y2

,
1

ǫ

∂·

∂y3

)

.

In the following we recall some results from [11, 4].

Lemma 1 ([11]) Let Uǫ ∈Mǫ be the solution of the inequality (1) and uǫ ∈
Kǫ given by (5). If assumptions (A1) - (A6) are verified then the sequence Uǫ

satisfies

Uǫ ∈Mǫ,
1

|Ωǫ|

∫

Ωǫ

|∇Uǫ|2dx ≤ C. (6)
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Theorem 1 ([11]) Let Uǫ be the solution of the variational inequality (1)

and uǫ ∈ Kǫ defined by

uǫ(y) = Uǫ(y−1
ǫ (y)) a.e. y ∈ Yǫ.

If assumptions (A1)-(A6) and (A8)-(A9) are verified, then there exist three

functions u, w, and σ1 with

u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K, u(−1) = u(1) = 0,

w ∈ L, σ1 ∈ L2(Y1)3,

such that up to extraction of a subsequence

χY1
ǫ
uǫ → u in L2(Y1);

χY−
ǫ

∂uǫ

∂y1

⇀
∂u

∂y1

in L2(Y−);

χY+
ǫ

∂uǫ

∂y1

⇀
∂u

∂y1

in L2(Y+);

χY1
ǫ

1

ǫ
∇y′uǫ ⇀ ∇y′w in L2(Y1)2;

and

χY1
ǫ
σǫ ⇀ σ1 in L2(Y1)3.

Theorem 2 ([11]) Let Uǫ be the solution of the variational inequality (1)

and u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K given in Theorem 1. If assumptions (A1)-

(A6) and (A8) are verified, then there exists a subsequence of solutions Uǫ,

also denoted by Uǫ, such that

lim
ǫ→0

1

|Ωǫ|

∫

Ωǫ

|Uǫ(x) − u(x1)|
2

dx = 0. (7)

Unfortunately, this change of variables doesn’t provide information about

what happening near the notch. Thus we use another change of variables,

which was given in [4]. Consider the case, when

µ < +∞ and ν < +∞.



Asymptotic behavior of the solution of parametric variational inequalities 11

The change of variables z = zǫ(x) is defined as follows

z1 =











1
ǫrǫ

(x1 + tǫ) − tǫ

r2
ǫ
, if −1 ≤ x1 ≤ −tǫ,

x1

r2
ǫ
, if −tǫ ≤ x1 ≤ tǫ, if µ = 0,

1
ǫrǫ

(x1 − tǫ) + tǫ

r2
ǫ
, if tǫ ≤ x1 ≤ 1,






µrǫ

ǫtǫ
(x1 + tǫ) − µ, if −1 ≤ x1 ≤ −tǫ,

µ
tǫ
x1, if −tǫ ≤ x1 ≤ tǫ, if µ > 0,

µrǫ

ǫtǫ
(x1 − tǫ) + µ, if tǫ ≤ x1 ≤ 1

z ′ =
x ′

ǫrǫ
.

(8)

This change of variables transforms the notch in a cylinder of fixed diameter

and length, but transforms the rest of the beam in a very large domain. But

it allows to describe the behavior of the solution Uǫ of inequality (1) when x1

is close to zero.

We denote by Z−
ǫ , Z0

ǫ, Z+
ǫ , Zǫ, and Z1

ǫ the images of Ω−
ǫ , Ω0

ǫ, Ω+
ǫ , Ωǫ, and

Ω1
ǫ by the change of variables z = zǫ(x), i.e.

Z−
ǫ =

(

−
1− tǫ

ǫrǫ
−
tǫ

r2ǫ
,−
tǫ

r2ǫ

)

×

(

1

rǫ
S

)

, Z0
ǫ =

[

−
tǫ

r2ǫ
,
tǫ

r2ǫ

]

× S,

and Z+
ǫ =

(

tǫ

r2ǫ
,
1− tǫ

ǫrǫ
+
tǫ

r2ǫ

)

×

(

1

rǫ
S

)

if µ = 0, and

Z−
ǫ =

(

−
µrǫ(1− tǫ)

ǫtǫ
− µ,−µ

)

×

(

1

rǫ
S

)

, Z0
ǫ = [−µ, µ] × S,

and Z+
ǫ =

(

µ,
µrǫ(1− tǫ)

ǫtǫ
+ µ

)

×

(

1

rǫ
S

)

if µ > 0. We set

Zǫ = Z−
ǫ ∪ Z0

ǫ ∪ Z+
ǫ , Z

1
ǫ = Z−

ǫ ∪ Z+
ǫ .

We denote by Z−
, Z+

, and Z0
the ”limits” of Z−

ǫ , Z+
ǫ , and Z0

ǫ, i.e.

Z− = (−∞,−µ) × R
2, Z+ = (µ,+∞) × R

2, Z0 = [−µ, µ] × S,

and define

Z = Z− ∪ Z0 ∪ Z+, Z1 = Z− ∪ Z+.
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Remark 1 ([4]) In (8) there are two definitions of zǫ corresponding to the

cases µ = 0 and µ > 0. Actually when µ > 0, we could define zǫ by the

definition given for µ = 0 because

µ ∼
tǫ

r2ǫ
,
µrǫ

ǫtǫ
∼
1

ǫrǫ
, and

µ

tǫ
∼
1

r2ǫ
.

The definition (8) which distinguishes the cases µ = 0 and µ > 0 has the

advantage that the image Zǫ of Ωǫ by the change of variables z = zǫ(x) is

contained in its ”limit” Z for every ǫ > 0 and Z0
ǫ is fixed for µ > 0; then a

function defined in Z has a restriction to Zǫ.

Theorem 3 ([4]) Let (Uǫ)ǫ be a sequence which satisfies (6). Define ûǫ ∈
H1(Zǫ) by

ûǫ(z) = Uǫ(z−1
ǫ (z)), a.e. z ∈ Zǫ. (9)

Then there exists a function û, with

û ∈ H1
loc

(Z), û− u(0−) ∈ L6(Z−), û− u(0+) ∈ L6(Z+), ∇û ∈ L2(Z)3,

(where u is defined in Corollary 1), such that for every R > 0, up to extraction

of a subsequence,

χZǫ∩B3(0,R)ûǫ → χB3(0,R)û in L2(Z) strongly,

χZǫ
∇ûǫ ⇀ ∇û in L2(Z)3 weakly,

where B3(0, R) denotes the 3-dimensional ball with center (0, 0, 0) and diam-

eter R. Moreover, if µ = 0, then û only depends on z1 and satisfies

û = u(0−) in Z−, û = u(0+) in Z+.

If ν = µ = 0, then u(0−) = u(0+).

If ν = 0 and µ > 0, then there exists a function ŵ ∈ L2((−µ, µ);H1(S)) such

that up to extraction of a subsequence,

rǫ

ǫ
∇z′ûǫ ⇀ ∇z′ŵ in L2(Z0)2 weakly.

Let K̂ǫ be the image of Mǫ by the change of variables z = zǫ(x). K̂ǫ

is a closed, convex, nonempty cone in H1(Zǫ). We need the following two

assumptions:

(A10) There exists a nonempty subset K̂ of H1
loc

(Z) such that
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ǫi → 0, R > 0, ûǫi
∈ K̂ǫi

, û ∈ H1
loc

(Z),

χZǫ∩B3(0,R)ûǫi
→ χB3(0,R)û (strongly) in L2(Z),

and

χZǫ
∇ûǫi

⇀ ∇û (weakly) in (L2(Z))3,

imply û ∈ K̂.

(A11) There exists a nonempty, convex cone L̂ in L2((−µ, µ);H1(S)) such

that

ǫi → 0, ŵǫi
∈ Kǫi

, ŵ ∈ L2((−µ, µ);H1(S)), ŵǫi
⇀ ŵ (weakly) in

L2((−µ, µ);H1(S)) imply ŵ ∈ L̂.

Theorem 4 Let Uǫ ∈ Mǫ be the solution of the variational inequality (1),

u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K defined in Theorem 1, and ûǫ ∈ K̂ǫ given by

(9). If assumptions (A1)-(A6) and (A8)-(A11) are verified, then there exists

a function û ∈ K̂, with

û− u(0−) ∈ L6(Z−), û− u(0+) ∈ L6(Z+), ∇û ∈ L2(Z)3, (10)

such that for every R > 0, up to extraction of a subsequence,

χZǫ∩B3(0,R)ûǫ → χB3(0,R)û in L2(Z) strongly,

χZǫ
∇ûǫ ⇀ ∇û in L2(Z)3 weakly.

Moreover, if µ = 0, then û only depends on z1 and satisfies

û = u(0−) in Z−, û = u(0+) in Z+.

If ν = µ = 0, then u(0−) = u(0+).

If ν = 0 and µ > 0, then there exists a function ŵ ∈ L̂ such that up to

extraction of a subsequence,

rǫ

ǫ
∇z′ûǫ ⇀ ∇z′ŵ in L2(Z0)2 weakly. (11)

Proof. From Lemma 1 it follows that there exists a subsequence of solutions

Uǫ, also denoted by Uǫ, such that (6) is satisfied. Thus by Theorem 3 we

get that there exists a function û ∈ H1
loc

(Z) such that the statement of the

theorem is true. By assumption (A10) we get that û ∈ K̂.

If ν = 0 and µ > 0 then, by Theorem 3, there exists a function ŵ ∈
L2((−µ, µ);H1(S)) such that up to extraction of a subsequence, (11) holds.

Then by assumption (A11) we get that ŵ ∈ L̂. �
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Lemma 2 Let Uǫ be one solution of the variational inequality (1), ûǫ defined

by (8). Assume that (A1)-(A3) and (A5) hold. Then

∥

∥

∥

∥

A0

(

·

µ
, ·

)

Φ0
ǫ

(

·

µ
, ·, ûǫ(·)

)

B0

(

·

µ
, ·

)

∇ûǫ(·)

∥

∥

∥

∥

L2(Z0)

is bounded.

Proof. Taking the square of the first growth condition from (A5), multiplying

by
1
ǫ2 , and integrating on Ω0

ǫ, we obtain

1

ǫ2

∫

Ω0
ǫ

‖Aǫ(x)Φ(x,Uǫ(x))Bǫ(x)∇Uǫ(x)‖2
dx ≤

≤
1

ǫ2

∫

Ω0
ǫ

‖∇Uǫ(x)‖2
dx+

1

ǫ2

∫

Ω0
ǫ

|Uǫ(x)|2 dx+
|Ω0

ǫ|

ǫ2
‖α‖∞ .

Applying the change of variable zǫ and taking out
1
r2
ǫ

from ∇̂ǫûǫ, we get

∫

Z0

∥

∥

∥

∥

A0

(

z1

µ
, z ′
)

Φ0
ǫ

(

z1

µ
, z ′, ûǫ(z)

)

B0

(

z1

µ
, z ′
)

∇ûǫ(z)

∥

∥

∥

∥

2

dz ≤

≤ C

∫

Z0

∥

∥

∥

∥

(

∂ûǫ(z)

∂z1
,
rǫ

ǫ

∂ûǫ(z)

∂z2
,
rǫ

ǫ

∂ûǫ(z)

∂z3

)∥

∥

∥

∥

2

dz+ r4ǫC

∫

Z0

|ûǫ(z)|2 dz+ ᾱ.

By Theorem 3, ‖∇ûǫ‖L2(Z0)3 and ‖ûǫ‖L2(Z0) are bounded, thus the statement

of the lemma holds. �

Corollary 1 Suppose that the assumptions of Lemma 2 are verified. Then

there exists σ0 ∈ L2(Z0) such that

A0

(

·

µ
, ·

)

Φ0
ǫ

(

·

µ
, ·, ûǫ(·)

)

B0

(

·

µ
, ·

)

∇ûǫ(·) ⇀ σ0 in L2(Z0).

4 The limit variational inequality

In this section we obtain the limit problem in two cases: when 0 < µ < +∞
and ν = 0 respectively when µ = +∞ and 0 < ν < +∞. In these cases

ǫrǫ

tǫ
=
ǫ

rǫ
·
r2ǫ
tǫ

→
ν

µ
= 0,

thus the beam has a thin neck.
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4.1 The case 0 < µ < ∞ and ν = 0

Theorem 5 Let 0 < µ < ∞ and ν = 0.

Assume that (A1)-(A11) are verified and the following four conditions are

satisfied:

(C1) ϕ ∈ K implies χY1
ǫ
ϕ ∈ Kǫ;

(C2) ψ ∈ L implies χY1
ǫ
ψ ∈ Kǫ;

(C3) ϕ̂ ∈ K̂ implies χZ0
ǫ
ϕ̂ ∈ K̂ǫ;

(C4) ψ̂ ∈ L̂ implies χZ0
ǫ
ψ̂ ∈ K̂ǫ.

Then the following three statements hold:

1) There exists a subsequence of the sequence Uǫ of solutions of (1), also

denoted by Uǫ, and a function u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K such that (7) is

satisfied.

2) Let u and w be as given in Theorem 1 and û and ŵ as in Theorem 4.

Then (u,w, û, ŵ) solves the limit variational problem:

find u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K, u(−1) = u(1) = 0, w ∈ L, and û ∈ K̂,

û(−µ) = u(0−), û(µ) = u(0+), ŵ ∈ L̂ such that for all v ∈ H1((−1, 0) ∪
(0, 1))∩K, v(−1) = v(1) = 0, h ∈ L, and v̂ ∈ K̂, v̂(−µ) = v(0−), v̂(µ) = v(0+),

ĥ ∈ L̂,

∫

Y1

[A1(y)Φ1(y, u(y1))B
1(y)∇ ′(u,w)(y),∇ ′(v, h)(y) − ∇ ′(u,w)(y)] (12)

+

∫

Z0

[

A0

(

z1

µ
, z ′
)

Φ0

(

z1

µ
, z ′, û(z)

)

B0

(

z1

µ
, z ′
)

∇ ′(û, ŵ)(z),

∇ ′(v̂, ĥ)(z) − ∇ ′(û, ŵ)(z)
]

dz ≥ 0.

3) Let σ1 be as given in Theorem 1, σ0 as given in Corollary 1. Then

σ1(y) = A1(y)Φ1(y, u(y))B1(y)∇ ′(u,w)(y) for a.e. y ∈ Y1,

σ0(z) = A0

(

z1

µ
, z ′
)

Φ0

(

z1

µ
, z ′, û(z)

)

B0

(

z1

µ
, z ′
)

∇ ′

(

û,
1

ν
û

)

for a.e. z ∈ Z0.

Proof. Statement 1) follows from Theorem 2.
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2) Since ν = 0, from Theorem 4 it follows that û ∈ K̂ only depends on z1
with

û = u(0−) in Z−, û = u(0+) in Z+,

and there exists a function ŵ ∈ L̂ such that up to extraction of a subsequence,

rǫ

ǫ
∇z′ûǫ ⇀ ∇z′ŵ in L2(Z0)2

weakly.

Let ϕ− ∈ H1([−1, 0]) and ϕ+ ∈ H1([0, 1]) and define ϕ ∈ H1((−1, 0) ∪
(0, 1)) ∩ K such that

ϕ(x1) =

{
ϕ−(x1), if x1 ∈ (−1, 0)

ϕ+(x1), if x1 ∈ (0, 1).

Let ψ ∈ L, ϕ̂ ∈ K̂, and ψ̂ ∈ L̂. For ǫ small enough, the sequence Vǫ defined

by

Vǫ(x) = χΩ1
ǫ
(x)

(

ϕ(x1) + ǫψ

(

x1,
x ′

ǫ

))

+

+ χΩ0
ǫ
(x)

(

ϕ̂

(

µx1

tǫ

)

+
ǫ

rǫ
ψ̂

(

µx1

tǫ
,
x ′

ǫrǫ

))

, a.e. x ∈ Ωǫ

belongs to Mǫ.

Putting η = Uǫ(x), ξ = ∇Uǫ(x) and

τ = τǫ(x) = χΩ1
ǫ
(x)(∇ ′(ϕ,ψ) + λf1)(yǫ(x))+

+ χΩ0
ǫ
(x)

1

r2ǫ
(∇ ′(ϕ̂, ψ̂) + λf2)(zǫ(x)), a.e. x ∈ Ωǫ

in the monotonicity condition, we get

0 ≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x) −Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),

∇Uǫ(x) − τǫ(x)] dx =

=
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx−

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x), τǫ(x)] dx+

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx−

+
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x), τǫ(x)] dx =

= Tǫ
1 − Tǫ

2 − Tǫ
3 + Tǫ

4 .
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In the following we study each term separately. The first term

Tǫ
1 =

1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx ≤

≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx

=
1

ǫ2

∫

Ω1
ǫ

[

A1
ǫ(yǫ(x))Φ1

ǫ(yǫ(x), Uǫ(x))B1
ǫ(yǫ(x))∇Uǫ(x),

(

dϕ(x1)

dx1

+ ǫ
∂ψ(yǫ(x))

∂x1

,
∂ψ(yǫ(x))

∂x2

,
∂ψ(yǫ(x))

∂x3

)]

dx+

+
1

ǫ2

∫

Ω0
ǫ

[

A0
ǫ(zǫ(x))Φ0

ǫ(zǫ(x), Uǫ(x))B0
ǫ(zǫ(x))∇Uǫ(x),





µ

tǫ

∂ϕ̂
(

µx1

tǫ

)

∂x1

+
ǫµ

rǫtǫ

∂ψ̂(zǫ(x))

∂x1

,
1

r2ǫ

∂ψ̂(zǫ(x))

∂x2

,
1

r2ǫ

∂ψ̂(zǫ(x))

∂x3







 dx

(using the change of variable y = yǫ(x) in the integral over Ω1
ǫ and the change

of variables z = zǫ(x) in the integral over Ω0
ǫ)

=

∫

Y1
ǫ

[

A1(y)Φ1
ǫ(y, uǫ(y))B1(y)∇ǫuǫ(y),

(

dϕ(y1)

dy1

+ ǫ
∂ψ(y)

∂y1

,
∂ψ(y)

∂y2

,
∂ψ(y)

∂y3

)]

dy+

+
1

µ
tǫr

2
ǫ

∫

Z0

[

A0

(

z1

µ
, z ′
)

Φ0
ǫ

(

z1

µ
, z ′, û(z)

)

B0

(

z1

µ
, z ′
)

·

·

(

µ

tǫ

∂ûǫ(z)

∂z1
,
1

ǫrǫ

∂ûǫ(z)

∂z2
,
1

ǫrǫ

∂ûǫ(z)

∂z3

)

,

(

µ

tǫ

dϕ̂(z1)

dz1
+

ǫ

rǫtǫ

∂ψ̂(z)

∂z1
,
1

r2ǫ

∂ψ̂(z)

∂z2
,
1

r2ǫ

∂ψ̂(z)

∂z3

)]

dz

Taking the limit, we get

Tǫ
1 →

∫

Y1

[

σ1(y),∇ ′(ϕ,ψ)(y)
]

dy+

∫

Z0

[

σ0(z),∇ ′(ϕ̂, ψ̂)(z)
]

dz.
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The second term

Tǫ
2 =

1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x), τǫ(x)] dx →

→

∫

Y1

[

σ1(y), (∇ ′(ϕ,ψ) + λf1)(y)
]

dy+

+

∫

Z0

[

σ0(z), (∇ ′(ϕ̂, ψ̂) + λf2)(z)
]

dz,

when ǫ tends to zero.

The third term

Tǫ
3 =

1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx →

→

∫

Y1

[

A1(y)Φ1(y, u(y))B1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇
′(u,w)(y)

]

dy+

+

∫

Z0

[

A0

(

z1

µ
, z ′
)

Φ0

(

z1

µ
, z ′, û(z)

)

B0

(

z1

µ
, z ′
)

(∇ ′(ϕ̂, ψ̂) + λf2)(z),

∇ ′(û, ŵ)(z),
]

dz,

when ǫ tends to zero.

The last term

Tǫ
4 =

1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x), τǫ(x)] dx →

→

∫

Y1

[

A1(y)Φ1(y, u(y))B1(y)(∇ ′(ϕ,ψ) + λf1)(y),

(∇ ′(ϕ,ψ) + λf1)(y)
]

dy+

+

∫

Z0

[

A0

(

z1

µ
, z ′
)

Φ0

(

z1

µ
, z ′, û(z)

)

B0

(

z1

µ
, z ′
)

(∇ ′(ϕ̂, ψ̂) + λf2)(z),

(∇ ′(ϕ̂, ψ̂) + λf2)(z)
]

dz,

when ǫ tends to zero.

Adding the limits of Tǫ
1 , Tǫ

2 , Tǫ
3 , and Tǫ

4 , we get

−

∫

Y1

[σ1(y), λf1(y)] dy−

∫

Z0

[σ0(z), λf2(z)] dz+ (13)

+

∫

Y1

[A1(y)Φ1(y, u(y1))B
1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇

′(ϕ,ψ)(y)−

− ∇ ′(u,w)(y) + λf1(y)]+
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+

∫

Z0

[

A0

(

z1

µ
, z ′
)

Φ0

(

z1

µ
, z ′, û(z)

)

B0

(

z1

µ
, z ′
)

(∇ ′(ϕ̂, ψ̂) + λf2)(z),

∇ ′(ϕ̂, ψ̂)(z) − ∇ ′(û, ŵ)(z) + λf2(z),
]

dz ≥ 0.

Setting

ϕ− u = θ(v− u), ψ−w = θ(h−w), ϕ̂ = θv̂, and ψ̂ = θĥ,

where θ > 0, dividing by θ, then letting θ → 0, we get the limit variational

inequality.

Putting

(ϕ,u) = (ψ,w) and (ϕ̂, û) = (ψ̂, ŵ),

dividing by λ, and letting λ → 0, we get
∫

Y1

[σ1(y) −A1(y)Φ1(y, u(y1))B
1(y)∇ ′(u,w)(y), f1(y)] dy+

+

∫

Z0

[

σ0(z) −A0

(

z1

µ
, z ′
)

Φ0

(

z1

µ
, z ′, û(z)

)

B0

(

z1

µ
, z ′
)

∇ ′ (û, ŵ) (z),

f2(z)] dz ≥ 0, ∀f1 ∈ H1(Y1),∀f2 ∈ H1(Z).

Then 3) follows. �

4.2 The case µ = +∞ and 0 < ν < +∞

Theorem 6 Let µ = +∞ and 0 < ν < +∞. Assume that (A1)-(A9) are

verified and the following two conditions are satisfied:

(C1) ϕ ∈ K implies χY1
ǫ
ϕ ∈ Kǫ;

(C2) ψ ∈ L implies χY1
ǫ
ψ ∈ Kǫ.

Then the following three statements hold:

1) There exists a subsequence of the sequence Uǫ of solutions of (1), also

denoted by Uǫ, and a function u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K such that (7) is

satisfied.

2) Let u and w be given as in Theorem 1. Then (u,w) solves the limit

variational problem:

find u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K, u(−1) = u(1) = 0 and w ∈ L such that for

all v ∈ H1((−1, 0) ∪ (0, 1)) ∩ K, v(−1) = v(1) = 0 and h ∈ L
∫

Y1

[A1(y)Φ1(y, u(y1))B
1(y)∇ ′(u,w)(y),∇ ′(v, h)(y) − ∇ ′(u,w)(y)] ≥ 0.

(14)
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3) Let σ1 given in Theorem 1. Then

σ1(y) = A1(y)Φ1(y, u(y))B1(y)∇ ′(u,w)(y) for a.e. y ∈ Y1.

Proof. Statement 1) follows from Theorem 2.

To prove statement 2), let ϕ− ∈ H1([−1, 0]) and ϕ+ ∈ H1([0, 1]) and define

ϕ ∈ H1((−1, 0) ∪ (0, 1)) ∩ K such that

ϕ(x1) =

{
ϕ−(x1), if x1 ∈ (−1, 0)

ϕ+(x1), if x1 ∈ (0, 1).

Let ψ ∈ L and γ0 : [0,+∞) → R defined by

γ0(τ) =

{
τ, if 0 ≤ τ ≤ 1

1, if τ ≥ 1.

and

Vǫ(x) = ϕ(x1)γ
0

(

|x1|

tǫ

)

+ ǫψ

(

x1,
x ′

ǫ

)

, a.e ∈ Ωǫ,

which belongs to Mǫ.

For ǫ small enough, by a simple calculation we obtain

1

ǫ2

∫

Ω1
ǫ

∣

∣

∣

∣

∇Vǫ −
dϕ(x1)

dx1

e1 − ∇y′ψ

(

x1,
x ′

ǫ

)∣

∣

∣

∣

dx+
1

ǫ2

∫

Ω0
ǫ

|∇Vǫ| dx ≤

≤ C

(

ǫ2 +
r2ǫ
tǫ

)

which tends to zero since µ = +∞.

Putting η = Uǫ(x), ξ = ∇Uǫ(x) and

τ = τǫ(x) =

{
(∇ ′(ϕ,ψ) + λf1)(yǫ(x)), if x ∈ Ω1

ǫ

0, if x ∈ Ω0
ǫ
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in the monotonicity condition, we get

0 ≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x) −Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),

∇Uǫ(x) − τǫ(x)] dx =

=
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx−

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x), τǫ(x)] dx−

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx+

+
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x), τǫ(x)] dx =

= Tǫ
1 − Tǫ

2 − Tǫ
3 + Tǫ

4 .

In the following we study each term separately. The first term

Tǫ
1 =

1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx ≤

≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx =

=
1

ǫ2

∫

Ω1
ǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx+

+
1

ǫ2

∫

Ω0
ǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx,

where the second term tends to zero. We use the change of variables y = yǫ(x)

in the first term:

Tǫ
1 ≤

∫

Y1
ǫ

[

A1(y)Φ1
ǫ(y, uǫ(y))B1(y)∇ǫuǫ(y),

(

dϕ(y1)

dy1

+ ǫ
∂ψ(y)

∂y1

,
∂ψ(y)

∂y2

,
∂ψ(y)

∂y3

)]

dy+Oǫ =
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=

∫

Y1

[

A1(y)Φ1
ǫ(y, uǫ(y))B1(y)∇ǫuǫ(y),

(

dϕ(y1)

dy1

+ ǫ
∂ψ(y)

∂y1

,
∂ψ(y)

∂y2

,
∂ψ(y)

∂y3

)]

dy+Oǫ.

Taking the limit of both sides, we get

lim
ǫ→0

Tǫ
1 ≤

∫

Y1

[

σ1(y),∇ ′(ϕ,ψ)(y)
]

dy.

The third term

Tǫ
3 =

1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx =

=
1

ǫ2

∫

Ω1
ǫ

[

A1(yǫ(x))Φǫ(yǫ(x), Uǫ(x))B1(yǫ(x))(∇ ′(ϕ,ψ) + λf1)(yǫ(x)),

∇Uǫ(x)] dx,

as the integral on Ω0
ǫ is equal with zero because τǫ = 0 on Ω0

ǫ. Using the

change of variable y = yǫ(x) we get

Tǫ
3 =

∫

Y1
ǫ

[

A1(y)Φǫ(y, uǫ(y))B1(y)(∇ ′(ϕ,ψ) + λf)(y),∇
ǫuǫ(y)

]

dy =

=

∫

Y1

[

A1(y)Φǫ(y, uǫ(y))B1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇
ǫuǫ(y)

]

dy+Oǫ.

Taking the limit when ǫ → 0, we get

Tǫ
3 →

∫

Y1

[

A1(y)Φ(y, u(y1))B
1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇

′(u,w)(y)
]

dy.

Similarly

Tǫ
2 →

∫

Y1

[

σ1(y), (∇ ′(ϕ,ψ) + λf1)(y)
]

dy

and

Tǫ
4 →

∫

Y1

[

A1(y)Φ(y, u(y1))B
1(y)(∇ ′(ϕ,ψ) + λf1)(y),

(∇ ′(ϕ,ψ) + λf1)(y)
]

dy,
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when ǫ → 0.

Adding the limits of Tǫ
1 , Tǫ

2 , Tǫ
3 , and Tǫ

4 , we get

∫

Y1

[A1(y)Φ1(y, u(y1))B
1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇

′(ϕ,ψ)(y)− (15)

− ∇ ′(u,w)(y) + λf1(y)] dz−

∫

Y1

[σ1(y), λf1(y)] dy ≥ 0.

Setting

ϕ− u = θ(v− u), and ψ−w = θ(h−w),

where θ > 0, dividing by θ, then letting θ → 0, we get the limit variational

inequality.

3) Putting

(ϕ,u) = (ψ,w),

dividing by λ, and letting λ → 0, we get

∫

Y1

[σ1(y) −A1(y)Φ1(y, u(y1))B
1(y)∇ ′(u,w)(y), f1(y)] dy ≥ 0

∀f1 ∈ H1(Y1).

Then 3) follows. �
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University of Mostaganem

Department of Mathematics

Laboratory of Pure and Applied Mathematics

B. P. 227 Mostaganem, Algeria

email: belaidi@univ-mosta.dz

Abstract. In this paper, we investigate the relationship between solu-

tions and their derivatives of the differential equation f(k) + A (z) f = 0,

k ≥ 2, where A (z) 6≡ 0 is an analytic function with finite iterated p-

order and analytic functions of finite iterated p-order in the unit disc

∆ = {z ∈ C : |z| < 1}. Instead of looking at the zeros of f(j) (z) − z

(j = 0, .., k) , we proceed to a slight generalization by considering zeros of

f(j) (z) − ϕ (z) (j = 0, .., k), where ϕ is a small analytic function relative

to f such that ϕ(k−j) (z) 6≡ 0 (j = 0, ..., k), while the solution f is of in-

finite iterated p-order. This paper improves some very recent results of

T. B. Cao and G. Zhang, A. Chen.

1 Introduction and statement of results

In this paper, we assume that the reader is familiar with the fundamental

results and the standard notations of the Nevanlinna’s theory on the complex

plane and in the unit disc ∆ = {z ∈ C : |z| < 1} (see [13, 21, 23, 25, 26]). Many

authors have investigated the growth and oscillation of the solutions of complex

linear differential equations in C (see [2, 3, 4, 6, 9, 12, 16, 17, 18, 20, 24]). In the

unit disc, there already exist many results [7, 8, 10, 11, 14, 15, 19, 22, 28], but the
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unit disc
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study is more difficult than that in the complex plane, because the efficient

tool of Wiman-Valiron theory which doesn’t hold in the unit disc.

We need to give some definitions and discussions. Firstly, let us give two

definitions about the degree of small growth order of functions in ∆ as poly-

nomials on the complex plane C. There are many types of definitions of small

growth order of functions in ∆ (i.e., see [10, 11]).

Definition 1 Let f be a meromorphic function in ∆, and

D (f) = lim
r→1−

T (r, f)

−log (1 − r)
= b.

If b < ∞, we say that f is of finite b degree (or is non-admissible); if b = ∞,

we say that f is of infinite degree (or is admissible), both defined by character-

istic function T(r, f).

Definition 2 Let f be an analytic function in ∆, and

DM (f) = lim
r→1−

log
+ M (r, f)

−log (1 − r)
= a < ∞ (or a = ∞) ,

then we say that f is a function of finite a degree (or of infinite degree) defined

by maximum modulus function M (r, f) = max
|z|=r

|f (z)|. Moreover, for F ⊂ [0, 1),

the upper and lower densities of F are defined by

dens∆F = lim
r→1−

m (F ∩ [0, r))

m ([0, r))
, dens∆F = lim

r→1−

m (F ∩ [0, r))

m ([0, r))

respectively, where m (G) =

∫

G

dt

1 − t
for G ⊂ [0, 1).

Now we give the definitions of iterated order and growth index to classify

generally the functions of fast growth in ∆ as those in C (see [5, 16, 17]). Let

us define inductively, for r ∈ [0, 1), exp1 r := er
and expp+1 r := exp

(

expp r
)

,

p ∈ N. We also define for all r sufficiently large in (0, 1) , log1 r := log r and

logp+1 r := log
(

logp r
)

, p ∈ N. Moreover, we denote by exp0 r := r, log0 r := r,

log−1 r := exp1 r and exp−1 r := log1 r.

Definition 3 (see [7, 8, 15]) Let f be a meromorphic function in ∆. Then the

iterated p-order of f is defined by

ρp (f) = lim
r→1−

log+
pT (r, f)

−log (1 − r)
(p ≥ 1 is an integer) ,
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where log
+
1 x = log

+ x = max {log x, 0} , log
+
p+1 x = log

+
log

+
p x. For p = 1, this

notation is called order and for p = 2 hyper-order [14, 19].

Remark 1 If f is analytic in ∆, then the iterated p-order of f is defined by

ρM,p (f) = lim
r→1−

log+
p+1M (r, f)

−log (1 − r)
(p ≥ 1 is an integer) .

Remark 2 It follows by M. Tsuji [23, p. 205] that if f is an analytic function

in ∆, then we have the inequalities

ρ1 (f) 6 ρM,1 (f) 6 ρ1 (f) + 1,

which are the best possible in the sense that there are analytic functions g and

h such that ρM,1 (g) = ρ1 (g) and ρM,1 (h) = ρ1 (h) + 1, see [11]. However, it

follows by Proposition 2.2.2 in [17] that ρM,p (f) = ρp (f) for p ≥ 2.

Definition 4 ([8]) The growth index of the iterated order of a meromorphic

function f(z) in ∆ is defined by

i (f) =






0, if f is non-admissible,

min {j ∈ N : ρj (f) < +∞} , if f is admissible,

+∞, if ρj(f) = +∞ for all j ∈ N.

For an analytic function f in ∆, we also define

iM (f) =






0, if f is non-admissible,

min, {j ∈ N : ρM,j (f) < +∞} , if f is admissible,

+∞, if ρM,j (f) = +∞ for all j ∈ N.

Remark 3 If ρp(f) < ∞ or i(f) ≤ p, then we say that f is of finite iterated

p-order; if ρp(f) = ∞ or i(f) > p, then we say that f is of infinite iterated

p-order. In particular, we say that f is of finite order if ρ(f) < ∞ or i(f) ≤ 1;

f is of infinite order if ρ(f) = ∞ or i(f) > 1.

Definition 5 ([7, 28]) Let f be a meromorphic function in ∆. Then the it-

erated exponent of convergence of the sequence of zeros of f (z) is defined by

λp (f) = lim
r→1−

log
+
p N

(

r, 1
f

)

−log (1 − r)
, (p ≥ 1 is an integer) ,
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where N
(

r, 1
f

)

is the counting function of zeros of f (z) in {|z| < r}. For p = 1,

this notation is called exponent of convergence of the sequence of zeros and for

p = 2 hyper-exponent of convergence of the sequence of zeros.

Similarly, the iterated exponent of convergence of the sequence of distinct

zeros of f (z) is defined by

λp (f) = lim
r→1−

log
+
p N

(

r, 1
f

)

− log (1 − r)
, (p ≥ 1 is an integer) ,

where N
(

r, 1
f

)

is the counting function of distinct zeros of f (z) in {|z| < r}.

For p = 1, this notation is called exponent of convergence of the sequence of

distinct zeros and for p = 2 hyper-exponent of convergence of the sequence of

distinct zeros.

Definition 6 ([7, 28]) Let f be a meromorphic function in ∆. Then the iter-

ated exponent of convergence of the sequence of fixed points of f (z) is defined

by

τp (f) = λp (f − z) = lim
r→1−

log
+
p N

(

r, 1
f−z

)

− log (1 − r)
(p ≥ 1 is an integer) .

For p = 1, this notation is called exponent of convergence of the sequence of

fixed points and for p = 2 hyper-exponent of convergence of the sequence of

fixed points. Similarly, the iterated exponent of convergence of the sequence of

distinct fixed points of f (z) is defined by

τp (f) = λp (f − z) = lim
r→1−

log
+
p N

(

r, 1
f−z

)

− log (1 − r)
(p ≥ 1 is an integer) .

For p = 1, this notation is called exponent of convergence of the sequence

of distinct fixed points and for p = 2 hyper-exponent of convergence of the

sequence of distinct fixed points. Thus τp (f) = λp (f − z) is an indication of

oscillation of distinct fixed points of f (z) .

For k ≥ 2, we consider the linear differential equation

f(k) + A (z) f = 0, (1)

where A (z) 6≡ 0 is an analytic function in the unit disc of finite iterated

p-order. Many important results have been obtained on the fixed points of

general transcendental meromorphic functions for almost four decades, see

[27]. However, there are few studies on the fixed points of solutions of differ-

ential equations, specially in the unit disc. In [9], Z.-X. Chen firstly studied
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the problem on the fixed points and hyper-order of solutions of second order

linear differential equations with entire coefficients. After that, there were

some results which improve those of Z.-X. Chen, see [3, 4, 18, 20, 24]. In [7],

T. B. Cao firstly investigated the fixed points of solutions of linear complex

differential equations in the unit disc. Very recently in [28] , G. Zhang and A.

Chen extended some results of [7] to the case of higher order linear differential

equations with analytic coefficients and have obtained the following results.

Theorem 1 ([28]) Let H be a set of complex numbers satisfying dens∆{|z| :

z ∈ H ⊆ ∆} > 0, and let A (z) 6≡ 0 be an analytic function in ∆ such that

ρM,p (A) = σ < +∞ and for real number α > 0, we have for all ε > 0

sufficiently small,

|A (z)| ≥ expp

{

α

(

1

1 − |z|

)σ−ε
}

(2)

as |z| → 1− for z ∈ H. Then every solution f 6≡ 0 of equation (1) satisfies

τp

(

f(j)
)

= τp

(

f(j)
)

= ρp (f) = +∞ (j = 0, . . . , k) , (3)

τp+1

(

f(j)
)

= τp+1

(

f(j)
)

= ρp+1 (f) = ρM,p (A) = σ (j = 0, . . . , k) . (4)

Theorem 2 ([28]) Let H be a set of complex numbers satisfying dens∆{|z| :

z ∈ H ⊆ ∆} > 0, and let A (z) 6≡ 0 be an analytic function in ∆ such that

ρp (A) = σ < +∞ and for real number α > 0, we have for all ε > 0 sufficiently

small,

T (r, A (z)) ≥ expp−1

{

α

(

1

1 − |z|

)σ−ε
}

(5)

as |z| → 1− for z ∈ H. Then every solution f 6≡ 0 of equation (1) satisfies

τp

(

f(j)
)

= τp

(

f(j)
)

= ρp (f) = +∞ (j = 0, . . . , k) , (6)

ρM,p (A) ≥ τp+1

(

f(j)
)

= τp+1

(

f(j)
)

= ρp+1 (f) ≥ σ (j = 0, . . . , k) . (7)

In the present paper, we continue to study the oscillation of solutions of

equation (1) in the unit disc. The main purpose of this paper is to study the

relation between solutions and their derivatives of the differential equation (1)

and analytic functions of finite iterated p-order. We obtain an extension of

Theorems 1-2. In fact, we prove the following results:
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Theorem 3 Assume that the assumptions of Theorem 1 hold. If ϕ(z) is an

analytic function in ∆ such that ϕ(k−j) (z) 6≡ 0 (j = 0, ..., k) with finite iterated

p- order ρp (ϕ) < +∞, then every solution f (z) 6≡ 0 of (1), satisfies

λp

(

f(j) − ϕ
)

= λp

(

f(j) − ϕ
)

= ρp (f) = +∞ (j = 0, . . . , k) , (8)

λp+1

(

f(j) − ϕ
)

= λp+1

(

f(j) − ϕ
)

= ρp+1 (f) = ρM,p (A) = σ (j = 0, . . . , k) .

(9)

Theorem 4 Assume that the assumptions of Theorem 2 hold. If ϕ(z) is an

analytic function in ∆ such that ϕ(k−j) (z) 6≡ 0 (j = 0, . . . , k) with finite iterated

p- order ρp (ϕ) < +∞, then every solution f (z) 6≡ 0 of (1), satisfies

λp

(

f(j) − ϕ
)

= λp

(

f(j) − ϕ
)

= ρp (f) = +∞ (j = 0, . . . , k) , (10)

ρM,p (A) ≥ λp+1

(

f(j) − ϕ
)

= λp+1

(

f(j) − ϕ
)

= ρp+1 (f) ≥ σ (j = 0, ..., k) .

(11)

2 Auxiliary lemmas

We need the following lemmas in the proofs of our theorems.

Lemma 1 ([8]) If f and g are meromorphic functions in ∆, p ≥ 1 is an

integer, then we have

(i) ρp (f) = ρp (1/f) , ρp (a.f) = ρp (f) (a ∈ C − {0});

(ii) ρp (f) = ρp

(

f
′

)

;

(iii) max{ρp (f + g) , ρp (fg)} ≤ max{ρp (f) , ρp (g)};

(iv) if ρp (f) < ρp (g), then ρp (f + g) = ρp (g), ρp (fg) = ρp (g) .

Lemma 2 ([14]) Let f be a meromorphic function in the unit disc ∆, and let

k ≥ 1 be an integer. Then

m

(

r,
f(k)

f

)

= S (r, f) , (12)
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where S(r, f) = O
(

log
+ T(r, f)) + log

1
1−r

)

, possibly outside a set E ⊂ [0, 1)

with
∫

E
dr

1−r
< +∞. If f is of finite order (namely, finite iterated 1-order) of

growth, then

m

(

r,
f(k)

f

)

= O

(

log(
1

1 − r
)

)

. (13)

Lemma 3 Let f be a meromorphic function in the unit disc ∆ for which i (f) =

p ≥ 1 and ρp (f) = β < +∞, and let k ≥ 1 be an integer. Then for any ε > 0,

m

(

r,
f(k)

f

)

= O

(

expp−2

{
1

1 − r

}β+ε
)

(14)

holds for all r outside a set E ⊂ [0, 1) with
∫

E
dr

1−r
< +∞.

Proof. First for k = 1. Since ρp (f) = β < +∞, we have for all r → 1−

T (r, f) ≤ expp−1

{
1

1 − r

}β+ε

. (15)

By Lemma 2, we have

m

(

r,
f

f

′
)

= O

(

ln
+ T (r, f) + ln

1

1 − r

)

(16)

holds for all r outside a set E ⊂ [0, 1) with
∫

E
dr

1−r
< +∞. Hence, we have

m

(

r,
f

f

′
)

= O

(

expp−2

{
1

1 − r

}β+ε
)

, r /∈ E. (17)

Next, we assume that we have

m

(

r,
f(k)

f

)

= O

(

expp−2

{
1

1 − r

}β+ε
)

, r /∈ E (18)

for some integer k ≥ 1. Since N
(

r, f(k)
)

≤ (k + 1)N (r, f) , it holds that

T
(

r, f(k)
)

= m
(

r, f(k)
)

+ N
(

r, f(k)
)

≤

≤ m

(

r,
f(k)

f

)

+ m (r, f) + (k + 1)N (r, f)
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≤ O

(

expp−2

{
1

1 − r

}β+ε
)

+ (k + 1) T (r, f) = O

(

expp−1

{
1

1 − r

}β+ε
)

.

(19)

By (16) and (19) we again obtain

m

(

r,
f(k+1)

f(k)

)

= O

(

expp−2

{
1

1 − r

}β+ε
)

, r /∈ E (20)

and hence,

m

(

r,
f(k+1)

f

)

≤ m

(

r,
f(k+1)

f(k)

)

+ m

(

r,
f(k)

f

)

=

= O

(

expp−2

{
1

1 − r

}β+ε
)

, r /∈ E. (21)

�

Lemma 4 ([1]) Let g : (0, 1) → R and h : (0, 1) → R be monotone increasing

functions such that g (r) ≤ h (r) holds outside of an exceptional set E ⊂ [0, 1)

of finite logarithmic measure. Then there exists a d ∈ (0, 1) such if s (r) =

1 − d (1 − r) , then g (r) ≤ h (s (r)) for all r ∈ [0, 1).

Lemma 5 Let A0, A1, ..., Ak−1, F 6≡ 0 be finite iterated p- order analytic

functions in the unit disc ∆. If f is a solution with ρp (f) = +∞ and ρp+1 (f) =

ρ < +∞ of the

f(k) + Ak−1f
(k−1) + ... + A1f

′

+ A0f = F, (22)

then λp (f) = λp (f) = ρp (f) = +∞ and λp+1 (f) = λp+1 (f) = ρp+1 (f) = ρ.

Proof. Since A0, A1, . . . , Ak−1, F 6≡ 0 are analytic in ∆, then all solutions of

(22) are analytic in ∆ (see [14]). By (22), we can write

1

f
=

1

F

(

f(k)

f
+ Ak−1

f(k−1)

f
+ . . . + A1

f
′

f
+ A0

)

. (23)
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If f has a zero at z0 ∈ ∆ of order γ (> k) , then F must have a zero at z0 of

order at least γ − k. Hence,

N

(

r,
1

f

)

≤ k N

(

r,
1

f

)

+ N

(

r,
1

F

)

. (24)

By (23), we have

m

(

r,
1

f

)

≤
k∑

j=1

m

(

r,
f(j)

f

)

+

k−1∑

j=0

m (r, Aj) + m

(

r,
1

F

)

+ O (1) . (25)

Applying the Lemma 3, we have

m

(

r,
f(j)

f

)

= O

(

expp−1

{
1

1 − r

}ρ+ε
)

(j = 1, . . . , k) , (26)

where ρp+1 (f) = ρ < +∞, holds for all r outside a set E ⊂ [0, 1) with
∫

E
dr

1−r
<

+∞. By (24), (25) and (26) we get

T (r, f) = T

(

r,
1

f

)

+ O (1) ≤ kN

(

r,
1

f

)

+

k−1∑

j=0

T (r, Aj) + T (r, F) +

+ O

(

expp−1

{
1

1 − r

}ρ+ε
)

(|z| = r /∈ E) . (27)

Set

µ = max {ρp (Aj) (j = 0, . . . , k − 1) , ρp (F)} .

Then for r → 1−, we have

T (r, A0) + . . . + T (r, Ak−1) + T (r, F) ≤ (k + 1) expp−1

{
1

1 − r

}µ+ε

. (28)

Thus, by (27) and (28), we have for r → 1−

T (r, f) ≤ k N

(

r,
1

f

)

+ (k + 1) expp−1

{
1

1 − r

}µ+ε

+

+O

(

expp−1

{
1

1 − r

}ρ+ε
)

=

= k N

(

r,
1

f

)

+ O

(

expp−1

{
1

1 − r

}η)

, (|z| = r /∈ E) . (29)
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where η < +∞. Hence for any f with ρp (f) = +∞ and ρp+1 (f) = ρ, by

Lemma 4 and (29), we have

λp (f) ≥ λp (f) ≥ ρp (f) = +∞

and λp+1 (f) ≥ λp+1 (f) ≥ ρp+1 (f). Since λp+1 (f) ≤ λp+1 (f) ≤ ρp+1 (f) , we

have λp+1 (f) = λp+1 (f) = ρp+1 (f) = ρ. �

Lemma 6 ([7]) Let H be a set of complex numbers satisfying dens∆{|z| :

z ∈ H ⊆ ∆} > 0, and let A (z) 6≡ 0 be an analytic function in ∆ such that

ρM,p (A) = σ < +∞ and for real number α > 0, we have for all ε > 0

sufficiently small,

|A (z)| ≥ expp

{

α

(

1

1 − |z|

)σ−ε
}

, (30)

as |z| → 1− for z ∈ H. Then every solution f 6≡ 0 of equation (1) satisfies

ρp (f) = +∞ and ρp+1 (f) = ρM,p (A) = σ.

Lemma 7 ([7]) Let H be a set of complex numbers satisfying dens∆{|z| : z ∈
H ⊆ ∆} > 0, and let A (z) 6≡ 0 be an analytic function in ∆ such that ρp (A) =

σ < +∞ and for real number α > 0, we have for all ε > 0 sufficiently small,

T (r, A (z)) ≥ expp−1

{

α

(

1

1 − |z|

)σ−ε
}

, (31)

as |z| → 1− for z ∈ H. Then every solution f 6≡ 0 of equation (1) satisfies

ρp (f) = +∞ and ρM,p (A) ≥ ρp+1 (f) ≥ σ.

3 Proof of Theorem 3

Suppose that f (z) 6≡ 0 is a solution of equation (1). Then by Lemma 6, we have

ρp (f) = +∞ and ρp+1 (f) = ρM,p (A) = σ. Set wj = f(j)−ϕ (j = 0, 1, . . . , k) .

Since ρp (ϕ) < +∞, then by Lemma 1, we have ρp (wj) = ρp (f) = +∞,

ρp+1 (wj) = ρp+1 (f) = ρM,p (A) = σ, λp (wj) = λp

(

f(j) − ϕ
)

, λp (wj) =

λp

(

f(j) − ϕ
)

(j = 0, 1, . . . , k). Differentiating both sides of wj = f(j) − ϕ and

replacing f(k)
with f(k) = −Af, we obtain

w
(k−j)

j = −Af − ϕ(k−j) (j = 0, 1, . . . , k) . (32)
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Then, we have

f = −
w

(k−j)

j + ϕ(k−j)

A
. (33)

Substituting (33) into equation (1), we get





w
(k−j)

j

A





(k)

+ w
(k−j)

j = −





(

ϕ(k−j)

A

)(k)

+ ϕ(k−j)



 . (34)

By (34), we can write

w
(2k−j)

j + Φ2k−j−1w
(2k−j−1)

j + . . . + Φk−jw
(k−j)

j

= −A





(

ϕ(k−j)

A

)(k)

+ A

(

ϕ(k−j)

A

)



 , (35)

where Φk−j (z) , . . . , Φ2k−j−1 (z) (j = 0, 1, . . . , k) are analytic functions with

ρM,p (Φk−j) ≤ σ, . . . , ρM,p (Φ2k−j−1) ≤ σ (j = 0, 1, . . . , k) .

By Lemma 1 we have ρp

(

ϕ(k−j)

A

)

< +∞. Thus, by A 6≡ 0 ϕ9k−j) 6≡ 0, (j =

0, . . . , k) and Lemma 6, we obtain

−A





(

ϕ(k−j)

A

)(k)

+ A

(

ϕ(k−j)

A

)



 6≡ 0. (36)

Hence, by Lemma 5, we have λp (wj) = λp (wj) = ρp (wj) = +∞ and λp+1 (wj) =

λp+1 (wj) = ρp+1 (wj) = ρM,p (A) = σ (j = 0, 1, . . . , k) . Thus

λp

(

f(j) − ϕ
)

= λp

(

f(j) − ϕ
)

= ρp (f) = +∞ (j = 0, 1, . . . , k) ,

λp+1

(

f(j) − ϕ
)

= λp+1

(

f(j) − ϕ
)

= ρp+1 (f) = ρM,p (A) = σ (j = 0, 1, . . . , k) .

4 Proof of Theorem 4

Suppose that f (z) 6≡ 0 is a solution of equation (1). Then by Lemma 7, we

have ρp (f) = +∞ and ρM,p (A) ≥ ρp+1 (f) ≥ σ. By using similar reasoning as

in the proof of Theorem 3, we obtain Theorem 4.
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Eötvös Loránd University,

H-1117 Budapest, Pázmány Péter sétány 1/C,
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Abstract. In this paper a simple mathematical model will be consid-

ered describing transmission dynamics of the human immunodeficiency

virus in a special situation. A unique interior equilibrium is found and

its stability is investigated. Results are verified by computer simulation.

1 Introduction

Acquired immunodeficiency syndrome (AIDS) was firstly recognized in 1981

among men who have sex with men (MSM) in the United States of Amer-

ica (USA), and shortly thereafter in populations such as injective drug users

(IDU), hemophiliacs and blood transfusion recipients and infants of women

with AIDS (cf. [12]). By 1983 the viral cause of AIDS, the human immun-

odeficiency virus (HIV) had been discovered and the basic models of trans-

mission established: sexual transmission, parenteral explosure to blood and

blood products, and perinatal transmission (cf. [7], pp. 3–17). Because HIV

is primarily a sexual transmitted disease (STD), its spread reflects the social

patterning of human sexual relationships. The understanding of the long-time

behaviour of STD-s will help to find whether this epidemics will die out or

stay in the population and to design strategies of fighting them. Various ap-

proaches for studying epidemiology of STD have been developed from time

2010 Mathematics Subject Classification: 34D23 (34C60, 92D30)

Key words and phrases: SIE model, global stability

39



40 S. Kovács

to time. Since the famous Kermack-McKendrick model for a spread of dis-

ease (cf. [9]), differential equations have been widely used to study a disease

transmission, to evaluate the spread of epidemics, and more importantly, to

understand the mechanisms of epidemics in order to prevent them or minimise

the transmission of this disease (cf. [1, 3, 5, 8]).

AIDS is a major public health problem in the USA. The epidemic in Europe

has shown similar trends to those in the USA. Transmission has been the

greatest among MSM and IDUs. More new cases of AIDS are reported each

year among MSM than for any other group. The majority of MSM practice

anal intercourse (cf. [10]) and this activity occurs within a community with

a considerable prevalence of HIV infection (cf. [10, 14]). Within the MSM

community there are high risk sexual zones (such as bathhouses) where MSM

congregate for sexual activity (cf. [15]). Bathhouses are a feature of most

major North American and European metropolitan areas, e.g. in New York

City (NYC), Los Angeles.

Several models have been proposed in this area, e.g. one for treating IDUs

and perinatal transmission in NYC (cf. [2]) and recently one for those with

HIV transmission among MSM in a bathhouse (cf. [4]):






.

Ṡ = f(S, I, E) := π− β
SI

N
− µS

İ = g(S, I, E) := ρ− µI

Ė = h(S, I, E) := σ+ β
SI

N
− µE

, (1)

where the dot means differentiation with respect to time t. The total number

of visitors in the bathhouse at any time, N(t), is subdivided into three parts:

susceptibles (i.e., the uninfecteds), S(t), the HIV-infecteds, I(t), and the HIV-

exposeds E(t). The biological meaning of the parameters in (1) is the following:

π > 0, ρ ≥ 0 and σ ≥ 0 are the inflow rates of susceptibles, infecteds and

exposeds, respectively; the average time spent by individuals in the bathhouse

is 1/µ with µ > 0. The transfer mechanism from the class of susceptibles to

the class of exposeds is guided by the fraction βI/N, where the

β = ciβi (I− ηcψc
i) (1− ηmψm

i ) + crβr (1− ηcψc
r) (1− ηmψm

r )

denotes the probability of HIV transmission. For the detailed meaning of the

parameters in β we refer to the Table 1 in [4]. We note that from the section

explaining the dependence on the parameters, β seems to be I-independent,

while in its definition the I-dependence is present. The scalar β would essen-

tially simplify the system while the linear I-dependence can be considered as



HIV transmission model 41

the fact that the probability of HIV transmission is (linearly) proportional to

the size of the infected population. Thus the scalar case can be considered as

a specialization of this extended version.

The aim of our study is to show that the above (extended) model is well

posed and it has a unique equilibrium which is globally asymptotically stable.

2 Equilibria and their stability

We shall present some results, including the positivity and boundedness of

solutions, furthermore the existence and stability of possible equilibria.

First of all, Picard–Lindelöf’s Theorem guarantees that solutions of the

initial value problem for system (1) exist locally and are unique.

Clearly, the interior of the positive octant of the phase space [S, I, E], denoted

by R
3
+, is an invariant region. Indeed, f(0, I, E) ≡ π, g(S, 0, E) ≡ ρ and

h(S, I, 0) = σ+βS/(S+ I), thus the time derivatives of S, I and E are positive

at the boundary – provided as the inflow rates ρ, σ are positive – which implies

nonnegativity. Hence, for the rest of the paper we only focus on system (1)

restricted to R
3
+.

Setting the right hand sides of the three differential equations of (1) equal

to zero, we find that system (1) has only one equilibrium which lies in the

interior of the positive octant of the phase space [S, I, E]:

S∗ :=
πµ(π+ ρ+ σ)

κriµρ+ κiρ2 + µ2(π+ ρ+ σ)
,

I∗ :=
ρ

µ
,

E∗ :=
σ

µ
+

πρ(κriµ+ κiρ)

κriµ2ρ+ κiµρ2 + µ3(π+ ρ+ σ)
,

(2)

where κri := crβr (1− ηcψc
r) (1− ηmψm

r ) − ciβiη
cψc

i(1 − ηmψm
i ) and

κi := ciβi (1− ηmψm
i ) .

Theorem 1 (S∗, I∗, E∗) is a locally asymptotically stable equilibrium of system

(1).

Proof. If we linearize the system at this equilibrium then the characteristic

polynomial turns out to be

p(λ) :≡ λ3 + a2λ
2 + a1λ+ a0, (3)
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where

a0 := µ

(

µ2 +
ρ (κriµ+ κiρ)

π+ ρ+ σ

)

,

a1 := 3µ2 +
2ρ (κriµ+ κiρ)

π+ ρ+ σ
,

a2 := 3µ+
ρ (κriµ+ κiρ)

µ(π+ ρ+ σ)
,

which is stable by Routh-Hurwitz criterion, because it has only positive coef-

ficients and

a2a1 − a0 = 2
[

κriρµ+ κiρ
2 + µ2(π+ ρ+ σ)

]

×
κriρµ+ κiρ

2 + 4µ2(π+ ρ+ σ)

µ(π+ ρ+ σ)2
> 0,

which proves the local stability. �

Calculating the second additive compound matrix (see e.g. [13]) of the

Jacobian of the right hand side of (1), we have

J[2](S, I, E) =





−2µ− a 0 −b

c −2µ− a− b −c

−a 0 −2µ− b



 ,

where the parameters a, b, c are defined for arbitrary (S, I, E) ∈ R
3
+ as follows:

a := a(S, I, E) :=
I(κri + κiI)(I+ E)

(S+ I+ E)2
> 0,

b := b(S, I, E) :=
S(κri(S+ E) + κiI(2S+ I+ 2E))

(S+ I+ E)2
> 0,

c := c(S, I, E) :=
SI(κri + κiI)

(S+ I+ E)2
> 0.

The stability modulus of J[2](S, I, E) is negative: s
(

J[2](S, I, E)
)

= −2µ. Hence,

due to a result in [11] system (1) has no Hopf bifurcation from the equilibrium

point.

Now, we are going to extend our local result about stability of the unique

equilibrium point to a global one. For this first we examine the boundedness



HIV transmission model 43

of the system. Clearly, the positive octant of the [S, I, E] space is positively

invariant for system (1). Therefore we have to show that all solutions with

positive initial conditions stay bounded in t ∈ [0,+∞) and there is no periodic

orbit in the positive octant.

Lemma 1 System (1) is dissipative, i.e. all solutions are bounded.

Proof. We define the function

V(S, I, E) := S+ I+ E.

The time derivative along a solution of (1) is

V̇(S, I, E) = Ṡ+ İ+ Ė = π+ ρ+ σ− µ(S+ I+ E)

= π+ ρ+ σ− µV(S, I, E).

(4)

Thus, for each ǫ ∈ (0, µ) the sum V̇ + ǫV is bounded from above, i.e. there

is a k > 0 such that V̇ + ǫV ≤ k. Solving this Gronwall-type inequality, we

obtain the following estimate

0 ≤ V(S, I, E) ≤
k

ǫ
+ V(S(0), I(0), E(0)) · exp(−ǫt) ≤

k

ǫ
+ V(S(0), I(0), E(0)),

which holds for all t ≥ 0. Hence, as t → +∞ we have 0 ≤ V(S, I, E) ≤
k

ǫ
+ κ

for any κ > 0. Therefore all the trajectories initiated in R
3
+ enter the region

Ω :=

{

(S, I, E) ∈ R
3
+

∣

∣

∣

∣

V(S, I, E) ≤
k

ǫ
+ κ, for any κ > 0

}

.

This completes the proof. �

Lemma 2 System (1) has no nontrivial periodic solutions.

Proof. From (4) we have

V̇(S, I, E) = −µ

(

V(S, I, E) −
π+ ρ+ σ

µ

)

,

which has the consequence that the simplex

Γ :=

{

(S, I, E) ∈ R
3
+ : V(S, I, E) =

π+ ρ+ σ

µ

}
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is positively invariant and all solutions approach to Γ with an exponential rate.

Moreover, it suffices to study the dynamics of (1) on the simplex Γ . Hence,

system (1) can be reduced to a planar system






Ṡ = f(S, I) := π−
µ

π+ ρ+ σ
SI (κiI+ κri) − µS,

İ = g(S, I) := ρ− µI,

(5)

by dropping the third equation and making the substitution

E = (π+ ρ+ σ)/µ− S− I

in the remaining two equations. Due to the Bendixon’s Negative Criterion

(see e.g. [6]) this reduced system has no nontrivial periodic solutions, because

for F := (f, g)

(div F) (S, I) = (∂1f) (S, I) + (∂2g) (S, I)

= −2µ−
µ

π+ ρ+ σ
I (κiI+ κri) < 0 (S > 0, I > 0)

holds. �

Thus, we can summarize our results as follows:

Theorem 2 System (1) has only one steady state (2) which lies in the interior

of the positive octant of the phase space [S, I, E] and is globally asymptotically

stable.

Remark 1 In [4] the situation ρ = σ = 0 (when there are no infected en-

trants) is also mentioned. In this case one has only the disease-free equilib-

rium (S0, I0, E0) = (π/µ, 0, 0) which is because of the stability of the Jacobian

matrix

J(S0, I0, E0) =





−µ −κri 0

0 −µ 0

0 κri −µ





locally asymptotically stable. Its global asymptotical stability can be justified in

the similar way as before.
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Example 1 Set π = 50.10, µ = 0.50, ρ = 0.30 resp. ρ = 0, σ = 0.20 resp.

σ = 0, κi = 0.10 and κri = 0.11. A Mathematica 3D plot shows (cf. Figure

1) that the trajectories of (1) converge to the unique positive resp. boundary

equilibrium (S∗, I∗, E∗) = (100, 0.6, 0.6) resp. (S0, I0, E0) = (100.2, 0, 0).

99.5
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100.25

100.5
S

0.25
0.5

0.75
1I

0.2
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E
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99.75
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100.25S
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0.5
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1I

99.5
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0
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0.5
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1I

0

0.2

0.4

0.6

0.8

E
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100.25S

0
0.25

0.5
0.75

1I

Figure 1: The unique equilibria showing their asymptotic stability.
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Abstract. Let a, b (b ≥ a) and n (n ≥ 2) be nonnegative integers

and let T (a, b, n) be the set of such generalised tournaments, in which

every pair of distinct players is connected at most with b, and at least

with a arcs. In [40] we gave a necessary and sufficient condition to decide

whether a given sequence of nonnegative integers D = (d1, d2, . . . , dn)

can be realized as the out-degree sequence of a T ∈ T (a, b, n). Extending

the results of [40] we show that for any sequence of nonnegative integers

D there exist f and g such that some element T ∈ T (g, f, n) has D as

its out-degree sequence, and for any (a, b, n)-tournament T ′
with the

same out-degree sequence D hold a ≤ g and b ≥ f. We propose a Θ(n)

algorithm to determine f and g and an O(dnn2) algorithm to construct

a corresponding tournament T .

1 Introduction

Let a, b (b ≥ a) and n (n ≥ 2) be nonnegative integers and let T (a, b, n)

be the set of such generalised tournaments, in which every pair of distinct

players is connected at most with b, and at least with a arcs. The elements of

T (a, b, n) are called (a, b, n)-tournaments. The vector D = (d1, d2, . . . , dn)

of the out-degrees of T ∈ T (a, b, n) is called the score vector of T . If the

elements of D are in nondecreasing order, then D is called the score sequence

of T .
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An arbitrary vector D = (d1, d2, . . . , dn) of nonnegative integers is called

graphical vector, iff there exists a loopless multigraph whose degree vector is

D, and D is called digraphical vector (or score vector) iff there exists a loopless

directed multigraph whose out-degree vector is D.

A nondecreasingly ordered graphical vector is called graphical sequence, and

a nondecreasingly ordered digraphical vector is called digraphical sequence (or

score sequence).

The number of arcs of T going from player Pi to player Pj is denoted by

mij (1 ≤ i, j ≤ n), and the matrix M = [1. .n, 1. .n] is called point matrix or

tournament matrix of T .

In the last sixty years many efforts were devoted to the study of both types

of vectors, resp. sequences. E.g. in the papers [8, 16, 18, 19, 20, 21, 26, 30, 32,

34, 36, 45, 68, 84, 85, 88, 90, 98] the graphical sequences, while in the papers

[1, 2, 3, 7, 8, 11, 17, 27, 28, 29, 31, 33, 37, 49, 48, 50, 55, 58, 57, 60, 61, 62,

64, 65, 66, 69, 78, 79, 82, 94, 86, 87, 97, 100, 101] the score sequences were

discussed.

Even in the last two years many authors investigated the conditions, when

D is graphical (e.g. [4, 9, 12, 13, 22, 23, 24, 25, 38, 39, 43, 47, 51, 52, 59, 75,

81, 92, 93, 95, 96, 104]) or digraphical (e.g. [5, 35, 40, 46, 54, 56, 63, 67, 70,

71, 72, 73, 74, 83, 87, 89, 102]).

In this paper we deal only with directed graphs and usually follow the ter-

minology used by K. B. Reid [79, 80]. If in the given context a, b and n

are fixed or non important, then we speak simply on tournaments instead of

generalised or (a, b, n)-tournaments.

We consider the loopless directed multigraphs as generalised tournaments, in

which the number of arcs from vertex/player Pi to vertex/player Pj is denoted

by mij, where mij means the number of points won by player Pi in the match

with player Pj.

The first question: how one can characterise the set of the score sequences

of the (a, b, n)-tournaments. Or, with another words, for which sequences D

of nonnegative integers does exist an (a, b, n)-tournament whose out-degree

sequence is D. The answer is given in Section 2.

If T is an (a, b, n)-tournament with point matrix M = [1. .n, 1. .n], then

let E(T), F(T) and G(T) be defined as follows: E(T) = max1≤i,j≤nmij, F(T) =

max1≤i<j≤n(mij + mji), and g(T) = min1≤i<j≤n(mij + mji). Let ∆(D) denote

the set of all tournaments having D as out-degree sequence, and let e(D), f(D)

and g(D) be defined as follows: e(D) = {min E(T) | T ∈ ∆(D)}, f(D) =

{min F(T) | T ∈ ∆(D)}, and g(D) = {max G(T) | T ∈ ∆(D)}. In the sequel we

use the short notations E, F, G, e, f, g, and ∆.
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Hulett et al. [39, 99], Kapoor et al. [44], and Tripathi et al. [91, 92] inves-

tigated the construction problem of a minimal size graph having a prescribed

degree set [77, 103]. In a similar way we follow a mini-max approach formu-

lating the following questions: given a sequence D of nonnegative integers,

• How to compute e and how to construct a tournament T ∈ ∆ charac-

terised by e? In Section 3 a formula to compute e, and an algorithm to

construct a corresponding tournament are presented.

• How to compute f and g? In Section 4 an algorithm to compute f and

g is described.

• How to construct a tournament T ∈ ∆ characterised by f and g? In

Section 5 an algorithm to construct a corresponding tournament is pre-

sented and analysed.

We describe the proposed algorithms in words, by examples and by the

pseudocode used in [14].

Researchers of these problems often mention different applications, e.g. in

biology [55], chemistry Hakimi [32], and Kim et al. in networks [47].

2 Existence of a tournament with arbitrary degree

sequence

Since the numbers of points mij are not limited, it is easy to construct a

(0, dn, n)-tournament for any D.

Lemma 1 If n ≥ 2, then for any vector of nonnegative integers D = (d1,

d2, . . . , dn) there exists a loopless directed multigraph T with out-degree vector

D so, that E ≤ dn.

Proof. Let mn1 = dn and mi,i+1 = di for i = 1, 2, . . . , n − 1, and let the

remaining mij values be equal to zero. �

Using weighted graphs it would be easy to extend the definition of the

(a, b, n)-tournaments to allow arbitrary real values of a, b, and D. The fol-

lowing algorithm Naive-Construct works without changes also for input

consisting of real numbers.

We remark that Ore in 1956 [66] gave the necessary and sufficient conditions

of the existence of a tournament with prescribed in-degree and out-degree

vectors. Further Ford and Fulkerson [17, Theorem11.1] published in 1962
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necessary and sufficient conditions of the existence of a tournament having

prescribed lower and upper bounds for the in-degree and out-degree of the

vertices. They results also can serve as basis of the existence of a tournament

having arbitrary out-degree sequence.

2.1 Definition of a naive reconstructing algorithm

Sorting of the elements of D is not necessary.

Input. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): arbitrary sequence of nonnegative integer numbers.

Output. M = [1. .n, 1. .n]: the point matrix of the reconstructed tourna-

ment.

Working variables. i, j: cycle variables.

Naive-Construct(n, D)

01 for i← 1 to n

02 for j← 1 to n

03 do mij← 0

04 mn1← dn

05 for i← 1 to n − 1

06 do mi,i+1← di

07 return M

The running time of this algorithm is Θ(n2) in worst case (in best case too).

Since the point matrix M has n2
elements, this algorithm is asymptotically

optimal.

3 Computation of e

This is also an easy question. From here we suppose that D is a nondecreasing

sequence of nonnegative integers, that is 0 ≤ d1 ≤ d2 ≤ . . . ≤ dn. Let

h = ⌈dn/(n − 1)⌉.
Since ∆(D) is a finite set for any finite score vector D, e(D) = min{E(T)|T ∈

∆(D)} exists.

Lemma 2 If n ≥ 2, then for any sequence D = (d1, d2, . . . , dn) there exists

a (0, b, n)-tournament T such that

E ≤ h and b ≤ 2h, (1)
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and h is the smallest upper bound for e, and 2h is the smallest possible upper

bound for b.

Proof. If all players gather their points in a uniform as possible manner, that

is

max
1≤j≤n

mij − min
1≤j≤n, i6=j

mij ≤ 1 for i = 1, 2, . . . , n, (2)

then we get E ≤ h, that is the bound is valid. Since player Pn has to gather

dn points, the pigeonhole principle [6, 15, 42] implies E ≥ h, that is the bound

is not improvable. E ≤ h implies max1≤i<j≤nmij + mji ≤ 2h. The score

sequence D = (d1, d2, . . . , dn) = (2n(n − 1), 2n(n − 1), . . . , 2n(n − 1)) shows,

that the upper bound b ≤ 2h is not improvable. �

Corollary 1 If n ≥ 2, then for any sequence D = (d1, d2, . . . , dn) holds

e(D) = ⌈dn/(n − 1)⌉.

Proof. According to Lemma 2 h = ⌈dn/(n − 1)⌉ is the smallest upper bound

for e. �

3.1 Definition of a construction algorithm

The following algorithm constructs a (0, 2h, n)-tournament T having E ≤ h

for any D.

Input. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): arbitrary sequence of nonnegative integer numbers.

Output. M = [1. .n, 1. .n]: the point matrix of the tournament.

Working variables. i, j, l: cycle variables;

k: the number of the ”larger parts” in the uniform distribution of the points.

Pigeonhole-Construct(n, D)

01 for i← 1 to n

02 do mii← 0

03 k← di − (n − 1)⌊di/(n − 1)⌋
04 for j← 1 to k

05 do l← i + j (mod n)

06 mil← ⌈dn/(n − 1)⌉
07 for j← k + 1 to n − 1

08 do l← i + j (mod n)

09 mil← ⌊dn/(n − 1)⌋
10 return M
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The running time of Pigeonhole-Construct is Θ(n2) in worst case (in

best case too). Since the point matrix M has n2
elements, this algorithm is

asymptotically optimal.

4 Computation of f and g

Let Si (i = 1, 2, . . . , n) be the sum of the first i elements of D, Bi (i =

1, 2, . . . , n) be the binomial coefficient n(n−1)/2. Then the players together

can have Sn points only if fBn ≥ Sn. Since the score of player Pn is dn, the

pigeonhole principle implies f ≥ ⌈dn/(n − 1)⌉.
These observations result the following lower bound for f:

f ≥ max

(⌈

Sn

Bn

⌉

,

⌈

dn

n − 1

⌉)

. (3)

If every player gathers his points in a uniform as possible manner then

f ≤ 2

⌈

dn

n − 1

⌉

. (4)

These observations imply a useful characterisation of f.

Lemma 3 If n ≥ 2, then for arbitrary sequence D = (d1, d2, . . . , dn) there

exists a (g, f, n)-tournament having D as its out-degree sequence and the fol-

lowing bounds for f and g:

max

(⌈

S

Bn

⌉

,

⌈

dn

n − 1

⌉)

≤ f ≤ 2

⌈

dn

n − 1

⌉

, (5)

0 ≤ g ≤ f. (6)

Proof. (5) follows from (3) and (4), (6) follows from the definition of f. �

It is worth to remark, that if dn/(n−1) is integer and the scores are identical,

then the lower and upper bounds in (5) coincide and so Lemma 3 gives the

exact value of F.

In connection with this lemma we consider three examples. If di = dn =

2c(n − 1) (c > 0, i = 1, 2, . . . , n − 1), then dn/(n − 1) = 2c and Sn/Bn = c,

that is Sn/Bn is twice larger than dn/(n−1). In the other extremal case, when

di = 0 (i = 1, 2, . . . , n − 1) and dn = cn(n − 1) > 0, then dn/(n − 1) = cn,

Sn/Bn = 2c, so dn/(n − 1) is n/2 times larger, than Sn/Bn.
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Player/Player P1 P2 P3 P4 P5 P5 Score

P1 — 0 0 0 0 0 0

P2 0 — 0 0 0 0 0

P3 0 0 — 0 0 0 0

P4 10 10 10 — 5 5 40

P5 10 10 10 5 — 5 40

P6 10 10 10 5 5 — 40

Figure 1: Point matrix of a (0, 10, 6)-tournament with f = 10 for D =

(0, 0, 0, 40, 40, 40).

If D = (0, 0, 0, 40, 40, 40), then Lemma 3 gives the bounds 8 ≤ f ≤ 16.

Elementary calculations show that Figure 1 contains the solution with minimal

f, where f = 10.

In [40] we proved the following assertion.

Theorem 1 For n ≥ 2 a nondecreasing sequence D = (d1, d2, . . . , dn) of

nonnegative integers is the score sequence of some (a, b, n)-tournament if and

only if

aBk ≤
k∑

i=1

di ≤ bBn − Lk − (n − k)dk (1 ≤ k ≤ n), (7)

where

L0 = 0, and Lk = max

(

Lk−1, bBk −

k∑

i=1

di

)

(1 ≤ k ≤ n). (8)

The theorem proved by Moon [61], and later by Kemnitz and Dolff [46] for

(a, a, n)-tournaments is the special case a = b of Theorem 1. Theorem 3.1.4

of [22] is the special case a = b = 2. The theorem of Landau [55] is the special

case a = b = 1 of Theorem 1.

4.1 Definition of a testing algorithm

The following algorithm Interval-Test decides whether a given D is a score

sequence of an (a, b, n)-tournament or not. This algorithm is based on Theo-

rem 1 and returns W = True if D is a score sequence, and returns W = False

otherwise.
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Input. a: minimal number of points divided after each match;

b: maximal number of points divided after each match.

Output. W: logical variable (W = True shows that D is an (a, b, n)-

tournament.

Local working variables. i: cycle variable;

L = (L0, L1, . . . , Ln): the sequence of the values of the loss function.

Global working variables. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;

B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;

S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores.

Interval-Test(a, b)

01 for i← 1 to n

02 do Li← max(Li−1, bBn − Si − (n − i)di)

03 if Si < aBi

04 then W ← False

05 return W

06 if Si > bBn − Li − (n − i)di

07 then W ← False

08 return W

09 return W

In worst case Interval-Test runs in Θ(n) time even in the general case

0 < a < b (n the best case the running time of Interval-Test is Θ(n)). It is

worth to mention, that the often referenced Havel–Hakimi algorithm [32, 36]

even in the special case a = b = 1 decides in Θ(n2) time whether a sequence

D is digraphical or not.

4.2 Definition of an algorithm computing f and g

The following algorithm is based on the bounds of f and g given by Lemma

3 and the logarithmic search algorithm described by D. E. Knuth [53, page

410].

Input. No special input (global working variables serve as input).

Output. b: f (the minimal F);

a: g (the maximal G).

Local working variables. i: cycle variable;

l: lower bound of the interval of the possible values of F;

u: upper bound of the interval of the possible values of F.
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Global working variables. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;

B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;

S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores;

W: logical variable (its value is True, when the investigated D is a score

sequence).

MinF-MaxG

01 B0← S0← L0← 0 ⊲ Initialisation

02 for i← 1 to n

03 do Bi← Bi−1 + i − 1

04 Si← Si−1 + di

05 l← max(⌈Sn/Bn⌉, ⌈dn/(n − 1)⌉)
06 u← 2 ⌈dn/(n − 1)⌉
07 W ← True ⊲ Computation of f

08 Interval-Test(0, l)

09 if W = True

10 then b← l

11 go to 21

12 b← ⌈(l + u)/2⌉
13 Interval-Test(0, f)

14 if W = True

15 then go to 17

16 l← b

17 if u = l + 1

18 then b← u

19 go to 21

20 go to 14

21 l← 0 ⊲ Computation of g

22 u← f

23 Interval-Test(b, b)

24 if W = True

25 then a← f

26 go to 37

27 a← ⌈(l + u)/2⌉
28 Interval-Test(0, a)

29 if W = True

30 then l← a

31 go to 33
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32 u← a

33 if u = l + 1

34 then a← l

35 go to 37

36 go to 27

37 return a, b

MinF-MaxG determines f and g.

Lemma 4 Algorithm MinG-MaxG computes the values f and g for arbitrary

sequence D = (d1, d2, . . . , dn) in O(n log(dn/(n)) time.

Proof. According to Lemma 3 F is an element of the interval [⌈dn/(n −

1)⌉, ⌈2dn/(n−1)⌉] and g is an element of the interval [0, f]. Using Theorem B of

[53, page 412] we get that O(log(dn/n)) calls of Interval-Test is sufficient,

so the O(n) run time of Interval-Test implies the required running time of

MinF-MaxG. �

4.3 Computing of f and g in linear time

Analysing Theorem 1 and the work of algorithm MinF-MaxG one can observe

that the maximal value of G and the minimal value of F can be computed

independently by Linear-MinF-MaxG.

Input. No special input (global working variables serve as input).

Output. b: f (the minimal F).

a: g (the maximal G).

Local working variables. i: cycle variable.

Global working variables. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;

B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;

S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores.

Linear-MinF-MaxG

01 B0← S0← L0← 0 ⊲ Initialisation

02 for i← 1 to n

03 do Bi← Bi−1 + i − 1

04 Si← Si−1 + di

05 a← 0

06 b← min 2 ⌈dn/(n − 1)⌉
07 for i← 1 to n ⊲ Computation of g
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08 do ai← ⌈2Si/(n2 − n)⌉
09 if ai > a

10 then a← ai

11 for i← 1 to n ⊲ Computation of f

12 do Li← max(Li−1, bBn − Si − (n − i)di)

13 bi← (Si + (n − i)di + Li)/Bi

14 if bi < b

15 then b← bi

16 return a, b

Lemma 5 Algorithm Linear-MinG-MaxG computes the values f and g for

arbitrary sequence D = (d1, d2, . . . , dn) in Θ(n) time.

Proof. Lines 01–03, 07, and 18 require only constant time, lines 04–06, 09–12,

and 13–17 require Θ(n) time, so the total running time is Θ(n). �

5 Tournament with f and g

The following reconstruction algorithm Score-Slicing2 is based on balancing

between additional points (they are similar to ,,excess”, introduced by Brauer

et al. [10]) and missing points introduced in [40]. The greediness of the

algorithm Havel–Hakimi [32, 36] also characterises this algorithm.

This algorithm is an extended version of the algorithm Score-Slicing pro-

posed in [40].

5.1 Definition of the minimax reconstruction algorithm

The work of the slicing program is managed by the following program Mini-

Max.

Input. No special input (global working variables serve as input).

Output. M = [1 . . n, 1 . . n]: the point matrix of the reconstructed

tournament.

Local working variables. i, j: cycle variables.

Global working variables. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;

p = (p0, p1, . . . , pn): provisional score sequence;

P = (P0, P1, . . . , Pn): the partial sums of the provisional scores;

M[1 . . n, 1 . . n]: matrix of the provisional points.

Mini-Max
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01 MinF-MaxG ⊲ Initialisation

02 p0← 0

03 for i← 1 to n

04 do for j← 1 to i − 1

05 do M[i, j]← b

06 for j← i to n

07 do M[i, j]← 0

08 pi← di

09 if n ≥ 3 ⊲ Score slicing for n ≥ 3 players

10 then for k← n downto 3

11 do Score-Slicing2(k,pk,M)

12 if n = 2 ⊲ Score slicing for 2 players

13 then m1,2← p1

14 m2,1← p2

15 return M

5.2 Definition of the score slicing algorithm

The key part of the reconstruction is the following algorithm Score-Slicing2

[40].

During the reconstruction process we have to take into account the following

bounds:

a ≤ mi,j + mj,i ≤ b (1 ≤ i < j ≤ n); (9)

modified scores have to satisfy (7); (10)

mi,j ≤ pi (1 ≤ i, j ≤ n, i 6= j); (11)

the monotonicity p1 ≤ p2 ≤ . . . ≤ pk has to be saved (1 ≤ k ≤ n) (12)

mii = 0 (1 ≤ i ≤ n). (13)

Input. k: the number of the actually investigated players (k > 2);

pk = (p0, p1, p2, . . . , pk) (k = 3, 4, · · · , n): prefix of the provisional score

sequence p;

M[1 . . n, 1 . . n]: matrix of provisional points.

Output. M[1 . . n, 1 . . n]: matrix of provisional points;

pk = (p0, p1, p2, . . . , pk) (k = 2, 3, 4, · · · , n − 1): prefix of the provisional

score sequence p.

Local working variables. A = (A1, A2, . . . , An): the number of the addi-

tional points;
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M: missing points (the difference of the number of actual points and the num-

ber of maximal possible points of Pk);

d: difference of the maximal decreasable score and the following largest score;

y: minimal number of sliced points per player;

f: frequency of the number of maximal values among the scores p1, p2,

. . . , pk−1;

i, j: cycle variables;

m: maximal amount of sliceable points;

P = (P0, P1, . . . , Pn): the sums of the provisional scores;

x: the maximal index i with i < k and mi,k < b.

Global working variables. n: the number of players (n ≥ 2);

B = (B0, B1, B2, . . . , Bn): the sequence of the binomial coefficients;

a: minimal number of points divided after each match;

b: maximal number of points divided after each match.

Score-Slicing2(k,pk,M)

01 P0← 0 ⊲ Initialisation

02 for i← 1 to k − 1

03 do Pi← Pi−1 + pi

04 Ai← Pi − aBi

05 M← (k − 1)b − pk

06 while M > 0 and Ak−1 > 0 ⊲ There are missing and additional points

07 do x← k − 1

08 while rx,k = b

09 do x← x − 1

10 f← 1

11 while px−f+1 = px−f

12 do f = f + 1

13 d← px−f+1 − px−f

14 m← min(b, d, ⌈Ax/f⌉, ⌈M/f⌉)
15 for i← f downto 1

16 do y← min(b − mx+1−i,k, m, M, Ax+1−i, px+1−i)

17 mx+1−i,k← mx+1−i,k + y

18 px+1−i← px+1−i − y

19 mk,x+1−i← mk,x+1−i − mx+1−i,k

20 M←M − y

21 for j← i downto 1

22 Ax+1−i← Ax+1−i − y

23 while M > 0 and Ak−1 = 0 ⊲ No additional points
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24 do for i← k − 1 downto 1

25 y min(mk,i, M, mk,i+mi,k−a)

26 mki← mk,i − y

27 M←M − y

28 return pk,M

Let’s consider an example. Figure 2 shows the point table of a (2, 10, 6)-

tournament T .

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 1 5 1 1 1 9

P2 1 — 4 2 0 2 9

P3 3 3 — 5 4 4 19

P4 8 2 5 — 2 3 20

P5 9 9 5 7 — 2 32

P6 8 7 5 6 8 — 34

Figure 2: The point table of a (2, 10, 6)-tournament T .

The score sequence of T is D = (9,9,19,20,32,34). In [40] the algorithm

Score-Slicing2 resulted the point table represented in Figure 3.

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 1 1 6 1 0 9

P2 1 — 1 6 1 0 9

P3 1 1 — 6 8 3 19

P4 3 3 3 — 8 3 20

P5 9 9 2 2 — 10 32

P6 10 10 7 7 0 — 34

Figure 3: The point table of T reconstructed by Score-Slicing2.

The algorithm Mini-Max starts with the computation of f. MinF-MaxG

called in line 01 begins with initialisation, including provisional setting of the

elements of M so, that mij = b, if i > j, and mij = 0 otherwise. Then

MinF-MaxG sets the lower bound l = max(9, 7) = 9 of f in line 05 and tests

it in line 08 by Interval-Test. The test shows that l = 9 is large enough so

Mini-Max sets b = 9 in line 12 and jumps to line 21 and begins to compute

g. Interval-Test called in line 23 shows that a = 9 is too large, therefore
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MinF-MaxG continues with the test of a = 5 in line 27. The result is positive,

therefore comes the test of a = 7, then the test of a = 8. Now u = l + 1 in

line 33, so a = 8 is fixed, and the control returns to line 02 of Mini-Max.

Lines 02–08 contain initialisation, and Mini-Max begins the reconstruction

of a (8, 9, 6)-tournament in line 9. The basic idea is that Mini-Max succes-

sively determines the won and lost points of P6, P5, P4 and P3 by repeated

calls of Score-Slicing2 in line 11, and finally it computes directly the result

of the match between P2 and P1 in lines 12–14.

At first Mini-Max computes the results of P6 calling Score-Slicing2 with

parameter k = 6. The number of additional points of the first five players is

A5 = 89−8 ·10 = 9 according to line 04, the number of missing points of P6 is

M = 5 · 9 − 34 = 11 according to line 05. Then Score-Slicing2 determines

the number of maximal numbers among the provisional scores p1, p2, . . . , p5

(f = 1 according to lines 10–12) and computes the difference between p5 and

p4 (d = 12 according to line 13). In line 14 we get, that m = 9 points are

sliceable, and P5 gets these points in the match with P6 in line 17, so the

number of missing points of P6 decreases to M = 11 − 9 = 2 (line 20) and

the number of additional point decreases to A5 = 9 − 9 = 0. Therefore the

computation continues in lines 23–28 and m64 and m63 will be decreased by

1 resulting m64 = 8 and m63 = 8 as the seventh line and seventh column of

Figure 4 show. The returned score sequence is p5 = (9, 9, 19, 20, 23).

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 4 4 1 0 0 9

P2 4 — 4 1 0 0 9

P3 4 4 — 7 4 0 19

P4 7 7 1 — 5 0 20

P5 8 8 4 3 — 9 32

P6 9 9 8 8 0 — 34

Figure 4: The point table of T reconstructed by Mini-Max.

Second time Mini-Max calls Score-Slicing2 with parameter k = 5, and

get A4 = 9 and M = 13. At first P4 gets 1 point, then P3 and P4 get both 4

points, reducing M to 4 and A4 to 0. The computation continues in line 23

and results the further decrease of m54, m53, m52, and m51 by 1, resulting

m54 = 3, m53 = 4, m52 = 8, and m51 = 8 as the sixth row of Figure 4 shows.

The returned score sequence is p4 = (9, 9, 15, 15)
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Third time Mini-Max calls Score-Slicing2 with parameter k = 4, and

get A3 = 11 and M = 11. At first P3 gets 6 points, then P3 further 1 point,

and P2 and P1 also both get 1 point, resulting m34 = 7, m43 = 2, m42 = 8,

m24 = 1, m14 = 1 and m14 = 8, further A3 = 0 and M = 2. The computation

continues in lines 23–28 and results a decrease of m43 by 1 point resulting

m43 = 1, m42 = 7, and m41 = 7, as the fifth row and fifth column of Figure 4

show. The returned score sequence is p3 = (8, 8, 8).

Fourth time Mini-Max calls Score-Slicing2 with parameter k = 3, and

gets A2 = 8 and M = 10. At first P1 and P2 get 4 points, resulting m13 = 4,

and m23 = 4, and M = 2, and A2 = 0. Then Mini-Max sets in lines 23–26

m31 = 4 and m32 = 4. The returned score sequence is p2 = (4, 4).

Finally Mini-Max sets m12 = 4 and m21 = 4 in lines 14–15 and returns the

point matrix represented in Figure 4.

The comparison of Figures 3 and 4 shows a large difference between the

simple reconstruction of Score-Slicing2 and the minimax reconstruction of

Mini-Max: while in the first case the maximal value of mij + mji is 10 and

the minimal value is 2, in the second case the maximum equals to 9 and the

minimum equals to 8, that is the result is more balanced (the given D does

not allow to build a perfectly balanced (k, k, n)-tournament).

5.3 Analysis of the minimax reconstruction algorithm

The main result of this paper is the following assertion.

Theorem 2 If n ≥ 2 is a positive integer and D = (d1, d2, . . . , dn) is a non-

decreasing sequence of nonnegative integers, then there exist positive integers

f and g, and a (g, f, n)-tournament T with point matrix M such, that

f = min(mij + mji) ≤ b, (14)

g = max mij + mji ≥ a (15)

for any (a, b, n)-tournament, and algorithm Linear-MinF-MaxG computes

f and g in Θ(n) time, and algorithm Mini-Max generates a suitable T in

O(dnn2) time.

Proof. The correctness of the algorithms Score-Slicing2, MinF-MaxG

implies the correctness of Mini-Max.

Lines 1–46 of Mini-Max require O(log(dn/n)) uses of MinG-MaxF, and

one search needs O(n) steps for the testing, so the computation of f and g can

be executed in O(n log(dn/n)) times.
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The reconstruction part (lines 47–55) uses algorithm Score-Slicing2, which

runs in O(bn3) time [40]. Mini-Max calls Score-Slicing2 n − 2 times with

f ≤ 2⌈dn/n⌉, so n3dn/n = dnn2
finishes the proof. �

The property of the tournament reconstruction problem that the extremal

values of f and g can be determined independently and so there exists a tourna-

ment T having both extremal features is called linking property. This concept

was introduced by Ford and Fulkerson in 1962 [17] and later extended by A.

Frank in [22].

6 Summary

A nondecreasing sequence of nonnegative integers D = (d1, d2, . . . , dn) is a

score sequence of a (1, 1, 1)-tournament, iff the sum of the elements of D

equals to Bn and the sum of the first i (i = 1, 2, . . . , n − 1) elements of D is

at least Bi [55].

D is a score sequence of a (k, k, n)-tournament, iff the sum of the elements

of D equals to kBn, and the sum of the first i elements of D is at least kBi

[46, 60].

D is a score sequence of an (a, b, n)-tournament, iff (7) holds [40].

In all 3 cases the decision whether D is digraphical requires only linear time.

In this paper the results of [40] are extended proving that for any D there

exists an optimal minimax realization T , that is a tournament having D as its

out-degree sequence, and maximal G, and minimal F in the set of all realiza-

tions of D.

In a continuation [41] of this paper we construct balanced as possible tour-

naments in a similar way if not only the out-degree sequence but the in-degree

sequence is also given.
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2010-003 of Eötvös Loránd University.



64 A. Iványi
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Abstract. In this paper we collected problems, which was either

proposed or follow directly from results in our papers.

1 Introduction

In this paper, which is based on a talk delivered at the Winter School on Ex-

plicit Methods in Number Theory, Debrecen, January 29, 2009 we collected

problems, which we proposed and/or tried to solve. The problems are dealing

with perfect powers in linear recursive sequences, solutions of parametrized

families of Thue equations, patterns in the set of solutions of norm form equa-

tions and generalized radix representations.

In each case we give a short description of the background information, cite

some relevant paper, especially papers, where the problem appeared at the

first time. Sometime we present our feeling about the hardness of the problem

and how one could solve it. The collection is subjective.

2 Powers in linear recursive sequences

To find perfect powers and polynomial values in linear recursive sequences is

one of my favorite topics. A long standing problem was to prove that 0, 1, 8
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Key words and phrases: recursive sequences, Thue equation, norm form equation, shift

radix system
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and 144 are the only powers in the Fibonacci sequence. This was proved finally

by Bugeaud, Mignotte and Siksek in 2006 [9].

In 1996 at The Seventh International Research Conference on Fibonacci

Numbers and Their Applications I proposed the following [17]

Problem 1 The sequence of tribonacci numbers is defined by T0 = T1 =

0, T2 = 1 and Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0. Are the only squares

T0 = T1 = 0, T2 = T3 = 1, T5 = 4, T10 = 81, T16 = 3136 = 562 and T18 =

10609 = 1032 among the numbers Tn?

By using the sieve method from [16] with the moduli 3, 7, 11, 13, 29, 41, 43, 53,

79, 101, 103, 131, 239, 97, 421, 911, 1021 and 1123 one can show that this is true

for n ≤ 2·106, but known methods do not seem to be applicable for its solution.

The problem is still unsolved, although in the edited version of the second

part of that talk [18] combining results of Shorey and Stewart [23] with that

of Corvaja and Zannier [10] I proved

Theorem 1 Let Gn be a third order LRS. For the roots αi, i = 1, 2, 3 of the

characteristic polynomial of Gn assume that |α1| > |α2| ≥ |α3| and non of them

is a root of unity. Then there are only finitely many perfect powers in Gn.

As the characteristic polynomial of the tribonacci sequence x3−x2−x−1 is

irreducible with one dominating real root ≈ 1.839286755 it follows that there

exist finitely many perfect powers in it. Unfortunately the proof of Theorem 1

is only partially effective. We have an effective bound for the exponent of the

possible perfect powers, but no effective bound for the size of a fixed power,

e.g., for squares.

I think that Theorem 1 can be generalized at least in the following form:

Problem 2 Let Gn be an LRS such that its characteristic polynomial is ir-

reducible and has a dominating root, then there is only finitely many perfect

powers in it.

By a result of Shorey and Stewart [23] the exponent of perfect powers can

be bounded effectively. The problem is to handle the powers with bounded

exponent. Combining this with the result of Corvaja and Zannier [10] and

with the combinatorics of the roots, like in Pethő [18], one can probably settle

this conjecture.

Like the Fibonacci sequence, we can continue the tribonacci sequence in

”negative direction”, and get T−n = −T−n+1 − T−n+2 + T−n+3 with initial



74 A. Pethő

terms T0 = 0, T−1 = 1, T−2 = −1. We call this sequence n-tribonacci. One

can ask again, which are the perfect powers in this sequence. After a simple

search we find: T0 = T−3 = T−16 = 0, T−1 = T−6 = −T−2 = 1, T−7 = 22, T−8 =

(−2)3, T−13 = 32, T−29 = 34, T−32 = 562, T−33 = 1032
and T−62 = 68152

. It is

interesting to observe that T10 = T−29, T16 = T−32 and T18 = T−33.

Problem 3 Are all perfect powers of the n-tribonacci sequence listed above?

Are there only finitely many perfect powers in the n-tribonacci sequence?

The answer seems to be very difficult, because the characteristic polynomial

of the n-tribonacci sequence has two conjugate complex roots of the same

absolute value and its real root is less than one. Thus the result of Shorey and

Stewart is not applicable.

Let a, b ∈ Z and δ ∈ {1,−1} such that a2 − 4(b − 2δ) 6= 0, bδ 6= 2 and if

δ = 1 then b 6= 2a − 2. Let further the sequence Gn = Gn(a, b, δ), n ≥ 0

defined by the initial terms G0 = 0, G1 = 1, G2 = a, G3 = a2 − b − δ and by

the recursion

Gn+4 = aGn+3 − bGn+2 + δaGn+1 − Gn, n ≥ 0. (1)

I proved in [19] that these are divisibility sequences, i.e., Gn|Gm, whenever

n|m. More precisely, the roots of the characteristic polynomial of Gn can be

numbered so that they are η, δ
η
, ϑ, δ

ϑ
and

Gn =
ηn − ϑn

η − ϑ

1 −
(

δ
ηϑ

)n

1 − δ
ηϑ

Here we ask again to prove

Problem 4 For fixed a, b there are only finitely many perfect powers in Gn.

We can again bound the exponent by the result of Shorey and Stewart [23],

but can not treat the equation Gn = xq
for fixed q > 1. Especially complicated

seems the case q = 2, because the greatest common divisor of the algebraic

numbers
ηn−ϑn

η−ϑ
and

1−
(

δ
ηϑ

)n

1− δ
ηϑ

can be arbitrary large.
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3 Thue equations

After the work of E. Thomas [24] several paper appeared about the solutions of

parametrized families of Thue equations. With Halter-Koch, Lettl and Tichy

we proved [13] the following:

Theorem 2 Let n ≥ 3, a1 = 0, a2, . . . , an−1 be distinct integers and an = a

an integral parameter. Let α = α(a) be a zero of P(x) =
∏n

i=1(x−ai)−d with

d = ±1 and suppose that the index I of 〈α−a1, . . . , α−an−1〉 in UO, the group

of units of O, is bounded by a constant J = J(a1, . . . , an−1, n) for every a from

some subset Ω ⊂ Z. Assume further that the Lang-Waldschmidt conjecture is

true. Then for all but finitely many values a ∈ Ω the diophantine equation

n∏

i=1

(x − aiy) − dyn = ±1 (2)

only has trivial solutions, except when n = 3 and |a2| = 1, or when n = 4 and

(a2, a3) ∈ {(1,−1), (±1,±2)}, in which cases (2) has exactly one more general

solution.

The assumption on the index I is technical, the essential assumption is the

Lang-Waldschmidt conjecture. In the cited paper we formulated:

Problem 5 The last theorem is true for all large enough parameter value

without further assumptions.

A weaker version of this conjecture was formulated by E. Thomas [25]. He

assumed that ai = pi(a), i = 2, . . . , n − 1 and 0 < deg p2 < · · · < deg pn−1,

where pi denotes monic polynomial with integer coefficients. This weaker

conjecture was proved by C. Heuberger [14] under some technical conditions

on the degree of the polynomials.

4 Progressions in the set of solutions of norm form

equations

Let K be an algebraic number field of degree k, and let α1, . . . , αn be linearly

independent elements of ZK over Q. Let m be a non-zero integer and consider

the norm form equation

NK/Q(x1α1 + . . . + xnαn) = m (3)
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in integer vectors (x1, . . . , xn). Let H denote the solution set of (3) and |H|

the size of H. Note that if the Z-module generated by α1, . . . , αn contains a

submodule, which is a full module in a subfield of Q(α1, . . . , αn) different from

the imaginary quadratic fields and Q, then equation (3) can have infinitely

many solutions (see e.g. Schmidt [22]).

Arranging the elements of H in an |H|×n array H, one may ask at least two

natural questions about arithmetical progressions appearing in H. The ”hori-

zontal” one: do there exist infinitely many rows of H, which form arithmetic

progressions; and the ”vertical” one: do there exist arbitrary long arithmetic

progressions in some column of H? Note that the first question is meaningful

only if n > 2.

We are now presenting an example. Let K := Q(α) with α5 = 3. Then

NK/Q(x1 + x2α + · · · + x5α4) = 9x5
3 + 81x5

5 + x5
1 + 27x5

4 + 3x5
2 − 135x3

5x4x1 +

+45x5x2
4x2

1 + 135x2x2
4x2

5 − 45x2x3
4x1 + 45x2

5x3x2
1 − 45x2x3

3x4 +

+135x2
3x2

5x4 + 45x1x2
5x2

2 − 45x4x3
2x5 + 45x2

4x2
2x3 + 45x2

4x1x2
3 −

−15x4x3
1x3 + 15x4x2

1x2
2 + 15x2x2

3x2
1 + 45x5x2

2x2
3 − 15x5x3

1x2 −

−135x5x3x3
4 − 135x2x3

5x3 − 45x5x3
3x1 − 15x3

2x3x1 − 45x2x5x3x4x1.

The next table contains a finite portion of the set of solutions of the equation

NK/Q(x1 + x2α + · · · + x5α
4) = 1.

x1 x2 x3 x4 x5

4 -5 4 -2 0

1 2 -1 -1 0

4 2 0 0 1

1 1 0 1 0

1 5 1 2 2

-17 1 -6 3 8

7 6 5 4 3

-2 -1 1 1 0

-11 -5 5 6 0

-2 0 1 -1 1

-8 -8 1 6 2

28 16 4 3 8

10 12 12 4 9

. . . . . . . . . . . . . . .
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The bold face numbers form a five term horizontal AP and a seven terms

vertical AP. The ”horizontal” problem was treated by Bérczes and Pethő [7] by

proving that if αi = αi−1 (i = 1, . . . , n) then in general H contains only finitely

many effectively computable ”horizontal” AP’s and they were able to localize

the possible exceptional cases. The following question remains unanswered:

Problem 6 Does there exist infinitely many quartic algebraic integers α such

that 4α4

α4−1
− α

α−1
is a quadratic algebraic number.

We were able to found only one example with defining polynomial x4+2x3+

5x2 + 4x + 2 such that the corresponding element is a real quadratic number.

It is a root of x2−4x+2. Allowing however α not to be integral we can obtain

a lot of examples.

The investigation of the ”vertical” AP’s is much more difficult. In this

direction Bérczes, Hajdu and Pethő [6] proved

Theorem 3 Let (x
(j)

1 , . . . , x
(j)
n ) (j = 1, . . . , t) be a sequence of distinct elements

in H such that x
(j)

i is a non-zero arithmetic progression for some i ∈ {1, . . . , n}.

Then we have t ≤ c1, where c1 = c1(k, m) is an explicitly computable constant.

It is interesting to note that c1 depends only on the degree of the norm form

and not on its coefficients. One can probably strengthen this result such that

the upper bound for the length of the AP’s depend not on m, but only on the

number of its prime divisors. It is even possible that the bound depends only

on k.

Earlier Pethő and Ziegler [21] as well as Dujella, Pethő and Tadić [11] inves-

tigated the AP’s on Pell equations, which are quadratic norm form equations.

We proved that for all but one non-constant AP of integers of length four

y1, y2, y3, y4 there exist infinitely many integers d, m for which x2
i − dy2

i =

m, i = 1, 2, 3, 4 with some integers xi = xi(d, m, y1, . . . , y4), i = 1, 2, 3, 4. In

contrast, five term AP’s are lying on only finitely many Pell equations.

Problem 7 Prove analogous result for norm form equations over cubic num-

ber fields. More specifically: let y(i), i = 1, . . . , 5 an AP of integers. Then there

exist infinitely many m ∈ Z and Q-independent algebraic integers α1, α2, α3

such that K = Q(α2, α3) has degree three and (3) holds for (x
(i)

1 , x
(i)

2 , y(i)), i =

1, . . . , 5 with some x
(i)

1 , x
(i)

2 ∈ Z. Can 5 be replaced with a larger number?
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In the above mentioned papers we worked out a systematic method to find

Pell equations having long AP’s. For example the AP −7,−5,−3,−1, 1, 3, 5, 7

is lying on the equation x2−570570y2 = 4406791 and −461,−295,−129, 37, 203,

369, 535 on x2 + 1245y2 = 375701326.

Problem 8 Find a systematic method to construct cubic norm form equations

with long AP. Do the same for higher degree norm form equations.

Problem 9 Prove analogous results for geometric progressions.

5 Polynomials

Problem 10 Let K be a algebraically closed field of characteristic zero. Char-

acterize all P(X) ∈ K[X], Q(Y) ∈ K[Y], R(X, Y) ∈ K[X, Y] such that the set of

zeroes of P(X) and Q(Y) coincide, provided R(X, Y) = 0.

The case R(X, Y) = Y − A(X) was solved completely by Fuchs, Pethő and

Tichy [12]. They proved

Theorem 4 Assume that P(X) has k different zeroes. Then there exist a, b, c ∈
K, a, c 6= 0 such that:

if k = 1 then

P(X) = a(X − b)deg P and A(X) = c(X − b)deg A + b;

if k ≥ 2 then either A(X) = X or A(X) = aX + b, a 6= 1 and in this case

P(X) = c

(

X +
b

a − 1

)s r∏

i=1

ℓ−1∏

j=0

(

X − ajxi − b
aj − 1

a − 1

)

,

where x1, . . . , xr are all different and ℓ is the multiplicative order of a.

6 Shift radix systems

For (r1, . . . , rd) = r ∈ R
d

and a = (a1, . . . , ad) ∈ Z
d

let

τr(a) = (a2, . . . , ad, −⌊ra⌋)T
, where ra denotes the scalar product. This

nearly linear mapping was introduced by Akiyama, Borbély, Brunotte,

Thuswaldner and myself [1]. We proved that it can be considered as a common

generalization of canonical number systems (CNS) and β-expansions.
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We also defined the sets

Dd = {r : {τk
r
(a)}∞k=0 is bounded for all a ∈ Z

d},

D0
d = {r : {τk

r
(a)}∞k=0 is ultimately zero for all a ∈ Z

d}

and Ed, which is the set of real monic polynomials, whose roots lie in the

closed unit disc. We proved in the same paper that if r ∈ Dd then R(X) =

Xd+ rdXd−1+ · · ·+ r2X+ r1 ∈ Ed and if R(X) is lying in the interior of Ed then

r ∈ Dd.

We called τr a shift radix system (SRS), if r ∈ D0
d and gave an algorithm,

which decides whether r ∈ Q
d

is a SRS. However this algorithm is exponential,

moreover we are not able to give a polynomial time verification for r /∈ D0
d∩Q

d
.

We found points r ∈ Q
2

such that r /∈ D0
2, but the cycles proving this can

be arbitrary long. Computational experiments, see e.g. [1, 15] support the

following :

Problem 11 Prove that the SRS problem can not be solved by a polynomial

time algorithm. Stronger statement is that it does not belong to the NP com-

plexity class.

The structure of D0
d, especially near to its boundary, is very complicated, see

[2] for d = 2. On the other hand we know [1], that the closure of Dd is Ed. How-

ever the investigation of the boundary points of Ed leads to interesting and hard

problems. The case d = 2 was studied by Akiyama et al. in [2]. They proved

that D2 is equal to the closed triangle with vertices (−1, 0), (1,−2), (1, 2), but

without the points (1,−2), (1, 2), the line segment {(x, −x − 1) : 0 < x < 1}

and, possibly, some points of the line segment {(1, λ) : −2 < λ < 2}. Write

in the last case λ = 2 cos α and ω = cos α + i sin α. It is easy to see, that if

λ = 0,±1 (i.e., α = 0,±π/2) then (1, λ) belongs to D2 and we conjectured in

[2] that this is true for all points of this line segment. In [4] the conjecture

was proved for the golden mean, i.e., for λ = 1+
√

5
2

and in [5] for those ω,

which are quadratic algebraic numbers. The conjecture has the following nice

arithmetical form:

Problem 12 Let |λ| < 2 be a real number. If the sequence of integers {an}

satisfies the relation

0 ≤ an−1 + λan + an+1 < 1

then it is periodic.
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If ω, defined above, is a root of unity then the problem may be easier as in

the general case. On the other hand from the point of view of arithmetic the

cases, when λ is a rational number, e.g., λ = 1
2

seems simpler.

If the point r belongs to the boundary of Ed then either r ∈ Dd or r /∈ Dd.

With other words this means that the sequence {τr(a)} is ultimately periodic

for all a ∈ Z
d

as well as there exists a ∈ Z
d

for which {τr(a)} is divergent.

However we do not know any general method to distinguish between these

cases. Recently I gave an algorithm [20] in the special case, when ±1,±i is a

simple root of Xd + rdXd−1 + · · · + r2X + r1.

Problem 13 Is it algorithmically decidable for r ∈ Ed ∩ Q
d whether r ∈ Dd?

I am not sure that the answer is affirmative. The problem is open even for

d = 2. In this case, by the results of [2], the status only points of the line

segment {(1, y) : −2 < y < 2} is questionable. If the answer to Problem 9 is

affirmative, which I strongly believe, then d = 2 would be completely solved.

A related, probably easier problem is:

Problem 14 Prove that there are no elements of D0
d on the boundary of Ed.

This is true for d = 2 [2], but open for d ≥ 3.

For each d ∈ N, d ≥ 1 define the set

Bd = {(b1, . . . , bd) ∈ Z
d : Xd−b1X

d−1−· · ·−bd is a Pisot or Salem polynomial}.

Further for M ∈ N>0 set

Bd(M) =
{

(b2, . . . , bd) ∈ Z
d−1 : (M, b2, . . . , bd) ∈ Bd

}
. (4)

It is clear that Bd(M) is a finite set. In [3] we proved

Theorem 5 Let d ≥ 2. We have
∣

∣

∣

∣

|Bd(M)|

Md−1
− λd−1(Dd−1)

∣

∣

∣

∣

= O(M−1/(d−1)), (5)

where λd−1 denotes the (d − 1)-dimensional Lebesgue measure.

To fix the coefficient of the term Xd−1
of a d-th degree monic polynomial is

unusual. Generally the height, i.e., the maximum of the absolute values of its

coefficients is used to measure polynomials. Having this in mind we define

B̂d(M) =
{

(b1, b2, . . . , bd) ∈ Z
d ∩ Bd : max{|b1|, |b2|, . . . , |bd|} ≤ M

}
.

and propose our last problem.
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Problem 15 Does there exist a constant c, such that

lim
M→∞

|B̂d(M)|

Md
= c?
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[12] Cl. Fuchs, A. Pethő, R. F. Tichy, On the diophantine equation Gn(x) =

Gm(P(x)): higher order linear recurrences, Trans. Amer. Math. Soc., 355

(2003), 4657–4681.

[13] F. Halter-Koch, G. Lettl, A. Pethő, R. F. Tichy, Thue equations asso-
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Abstract. We offer a new, unitary proof of some generalizations of

results from paper [2]. Our method leads to similar results for other

special means, too.

1 Introduction

A function f : (0,∞) → R is said to be completely monotonic (c.m. for short),

if f has derivatives of all orders and satisfies

(−1)n · f(n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, . . . . (1)

J. Dubourdieu [3] pointed out that, if a non-constant function f is c.m., then

strict inequality holds in (1). It is known (and called as Bernstein theorem)

that f is c.m. iff f can be represented as

f(x) =

∫∞

0

e−xt
dµ(t), (2)

where µ is a nonnegative measure on [0,∞) such that the integral converges

for all x > 0 (see [11]).

Completely monotonic functions appear naturally in many fields, like, for

example, probability theory and potential theory. The main properties of

2010 Mathematics Subject Classification: 26A48, 26D15, 26D99

Key words and phrases: completely monotonic functions, means of two arguments
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these functions are given in [11]. We also refer to [4, 1, 2], where detailed lists

of references can be found.

Let a, b > 0 be two positive real numbers. The power mean of order k ∈
R \ {0} of a and b is defined by

Ak = Ak(a, b) =

(

ak + bk

2

)1/k

.

Denote A = A1(a, b) =
a + b

2
, G = G(a, b) = A0(a, b) = lim

k→∞
Ak(a, b) =

√
ab the arithmetic, resp. geometric means of a and b.

The identric, resp. logarithmic means of a and b are defined by

I = I(a, b) =
1

e

(

bb/aa
)1/(b−a)

for a 6= b; I(a, a) = a;

and

L = L(a, b) =
b − a

log b − log a
for a 6= b; L(a, a) = a.

Consider also the weighted geometric mean S of a and b, the weights being

a/(a + b) and b/(a + b) :

S = S(a, b) = aa/(a+b) · bb/(a+b).

As one has the identity (see [6])

S(a, b) =
I(a2, b2)

I(a, b)
,

the mean S is connected with the identric mean I.

Other means which occur in this paper are

H = H(a, b) = A−1(a, b) =
2ab

a + b
, Q = Q(a, b) = A2(a, b) =

√

a2 + b2

2
,

as well as Seiffert’s mean (see [10], [9])

P = P(a, b) =
a − b

2 arcsin

(

a − b

a + b

) for a 6= b, P(a, a) = a.

In the paper [2] C.–P. Chen and F. Qi have considered the ratios
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a)
A

I
(x, x + 1), b)

A

G
(x, x + 1), c)

A

H
(x, x + 1),

d)
I

G
(x, x + 1), e)

I

H
(x, x + 1), f)

G

H
(x, x + 1),

g)
A

L
(x, x + 1),

where
A

I
(x, x + 1) =

A(x, x + 1)

I(x, x + 1)
etc., and proved that the logarithms of the

ratios a) − f) are c.m., while the ratio from g) is c.m.

In [2] the authors call a function f as logarithmically completely monotonic

(l.c.m. for short) if the function g = log f is c.m. They notice that they proved

earlier (in 2004) that if f is l.c.m., then it is also c.m. We note that this result

has been proved already in paper [4]:

Lemma 1 If f is l.c.m, then it is also c.m.

The following basic property is well-known (see e.g. [4]):

Lemma 2 If a > 0 and f is c.m., then a · f is c.m., too. The sum and the

product of two c.m. functions is c.m., too.

Corollary 1 If k is a positive integer and f is c.m., then the function fk is

c.m., too.

Indeed, it follows by induction from Lemma 2 that, the product of a finite

number of c.m. functions is c.m., too.

Particularly, when there are k equal functions, Corollary 1 follows.

The aim of this note is to offer new proofs for more general results than in

[2], and involving also the means S, P, Q.

2 Main results

First we note that, as one has the identity

H =
G2

A
,

we get immediately

A

H
=

A2

G2
,

G

H
=

A

G
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so that as

log
A

H
= 2 log

A

G
and log

G

H
= log

A

G
,

by Lemma 2 the ratios c) and f) may be reduced to the ratio a).

Similarly, as

I

H
=

A

G
·

I

G
,

the study of ratio e) follows (based again on Lemma 2) from the ratios b) and

d).

As one has
A

G
=

A

I
·

I

G
,

it will be sufficient to consider the ratios a) and d).

Therefore, in Theorem 1 of [2] we should prove only that
A

I
(x, x + 1) and

I

G
(x, x + 1) are l.c.m., and

A

L
(x, x + 1) is c.m.

A more general result is contained in the following:

Theorem 1 For any a > 0 (fixed), the ratios

A

I
(x, x + a) and

I

G
(x, x + a)

are l.c.m., and the ratio
A

L
(x, x + a)

is c.m. function.

Proof. The following series representations are well-known (see e.g. [6, 9]):

log
A

G
(x, y) =

∞∑

k=1

1

2k
·

(

y − x

y + x

)2k

, (3)

log
I

G
(x, y) =

∞∑

k=1

1

2k + 1
·

(

y − x

y + x

)2k

. (4)

By substraction, from (3) and (4) we get

log
A

I
(x, y) =

∞∑

k=1

1

2k(2k + 1)
·

(

y − x

y + x

)2k

, (5)
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where
A

G
(x, y) =

A(x, y)

G(x, y)
, etc.

By letting y = x + a in (4), we get that

log
I

G
(x, x + a) =

∞∑

k=1

a2k

2k + 1
·

(

1

2x + a

)2k

. (6)

As
1

2x + a
is c.m., by Corollary 1, g(x) =

(

1

2x + a

)2k

will be c.m., too.

This means that

(−1)ng(n)(x) ≥ 0 for any x > 0, n ≥ 0,

so by n times differentiation of the series from (6), we get that log
I

G
(x, x+a)

is c.m., thus
I

G
(x, x + a) is l.c.m.

The similar proof for
A

I
(x, x + a) follows from the series representation (5).

Finally, by the known identity (see e.g. [6], [9])

log
I

G
=

A

L
− 1 (7)

we get the last part of Theorem 1. �

Remark 1 It follows from the above that
A

G
(x, x+a),

A

H
(x, x+a),

I

H
(x, x+a),

G

H
(x, x + a) are all l.c.m. functions.

Theorem 2 For any a > 0, the ratios

√
2A2 + G2

I
√

3
(x, x + a),

√
2A2 + G2

G
√

3
(x, x + a) and

Q

G
(x, x + a)

are l.c.m. functions.

Proof. In paper [8] it is proved that

log

√
2A2 + G2

I
√

3
=

∞∑

k=1

1

2k
·

(

1

2k + 1
−

1

3k

)

·

(

y − x

y + x

)2k

, (8)
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while in [9] that

log

√
2A2 + G2

G
√

3
=

∞∑

k=1

1

2k
·

(

1 −
1

3k

)

·

(

y − x

y + x

)2k

. (9)

Letting y = x + a, by the method of proof of Theorem 1, the first part of

Theorem 2 follows. Finally, the identity

log
Q

G
=

∞∑

k=1

1

2k − 1
·

(

y − x

y + x

)4k−2

(10)

appears in [9]. This leads also to the proof of l.c.m. monotonicity of the ratio

Q

G
(x, x + a). �

Theorem 3 For any a > 0, the ratios

L

G
(x, x + a), −

H

L
(x, x + a) and

A

P
(x, x + a)

are c.m. functions.

Proof. In [5] (see also [9] for a new proof) it is shown that

L

G
(x, y) =

∞∑

k=0

1

(2k + 1)!
·

(

log x − log y

2

)2k

. (11)

Letting y = x + a and remarking that the function f(x) = log(x + a) − log x

is c.m., by Corollary 1, and by differentiation of the series from (11), we get

that
L

G
(x, x + a) is c.m.

The identity

log
S

I
= 1 −

H

L
(12)

appears in [9]. Since we have the series representations (see [7], [9])

log
S

G
(x, y) =

∞∑

k=1

1

2k − 1
·

(

y − x

y + x

)2k

(13)

and

log
S

A
(x, y) =

∞∑

k=1

1

2k(2k − 1)
·

(

y − x

y + x

)2k

, (14)



90 J. Sándor

by using relation (4), we get log
S

G
− log

I

G
= log

S

I
, so

log
S

I
(x, y) =

∞∑

k=1

2

4k2 − 1
·

(

y − x

y + x

)2k

, (15)

thus
S

I
(x, x + a) is l.c.m., which by (12) implies that the ratio −

H

L
is l.c.m.

function.

Finally, Seiffert’s identity (see [10], [9])

log
A

P
(x, y) =

∞∑

k=0

1

4k(2k + 1)
·

(

2k

k

)

·

(

y − x

y + x

)2k

, (16)

implies the last part of the theorem. �

Remark 2 By (13), (14) and (15) we get also that
S

G
(x, x + a),

S

A
(x, x + a)

and
S

I
(x, x + a) are l.c.m. functions.
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Abstract. It is known that we can prescribe the lower and upper

asymptotic and logarithmic density of a set of positive integers. The only

limitation is the inequality between asymptotic and logarithmic density.

We generalize this result.

1 Introduction

Denote by N the set of all positive integers, let A ⊂ N and let f : N → (0,∞)

be a weight function. For A ⊂ N and n ∈ N denote

Sf(A, n) =
∑

a≤n
a∈A

f(a), Sf(n) =
∑

a≤n

f(a)

and define

df(A) = lim inf
n→∞

Sf(A, n)

Sf(n)
and df(A) = lim sup

n→∞

Sf(A, n)

Sf(n)

the lower and upper f-densities of A, respectively. In the case when df(A) =

df(A) we say that A possesses f-density df(A).
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Key words and phrases: asymptotic density, weighted density

92



Sets with prescribed lower and upper weighted densities 93

Notice that the well-known asymptotic density corresponds to f(n) = 1 and

the logarithmic density corresponds to f(n) = 1
n
. The concept of weighted

densities was introduced in [7] and [1]. The continuity of densities given by

the weight function nα
, α ≥ −1, was studied in [3]. Inequalities between upper

and lower weighted densities for different weight functions were proved in [2].

The independence (within admissible bounds) of the asymptotic and log-

arithmic densities was proved in [6] and [5] showing that for any given real

numbers 0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1 there exists a set A ⊂ N such that

d1 = α, d 1
n
(A) = β, d 1

n
(A) = γ, d1(A) = δ.

We generalize this result. We prove that under some assumptions on the

weighted densities an analogous result holds. In [4], generalized asymptotic

and logarithmic densities over an arithmetical semigroup were considered.

We call a weight function f regular if the corresponding weighted density

fulfills the condition that for arbitrary positive integers a, b we have

df(aN + b) =
1

a

(f-density of the terms of arbitrary infinite arithmetical progression with the

same difference are equal). Note that from this condition follows that

∞∑

n=1

f(n) = ∞, lim
n→∞

f(n)

Sf(n)
= 0. (1)

2 Results

The following lemma will be useful

Lemma 1 Let f, g be regular weight functions. Let B be a subset of positive

integers such that

df(B) = 0, df(B) = 1 and dg(B) = 0.

Then for any 0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1, rational numbers there exists a set

E ⊂ N such that

dg(E) = df(E) = γ and df(E) = δ

and a set H ⊂ N with the property

dg(H) = df(H) = β and df(H) = α.
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Proof. Write γ and δ as fractions with a common denominator, let γ =
p

t

and δ =
q

t
. Define

E =
p
∪

i=1
(tN + i) ∪

(

B ∩
( q

∪
i=p+1

(tN + i)
))

.

As dg(B) = 0, therefore

dg(E) = dg

( p
∪

i=1
(tN + i)

)

=
p

t
= γ.

Analogously we get df(E) =
p

t
= γ.

Clearly df(E) ≤ δ =
q

t
. The case df(E) <

q

t
yields a contradiction because

1 = df(B ∩ N) = df

( q
∪

i=1
(B ∩ (tN + i))

)

+ df

( t
∪

i=q+1
(B ∩ (tN + i))

)

≤

≤ df(E) + df

( t
∪

i=q+1
(tN + i)

)

<
q

t
+

t − q

t
= 1.

In analogous way we can prove the existence of the set H with the prescribed

properties. For α =
r

t
and β =

s

t
let

H =
s
∪

i=1
(tN + i) r

(

B ∩
( s

∪
i=r+1

(tN + i)
)

)

.

Note, from the construction of the sets E, H follows H ⊂ E. �

Theorem 1 Let f, g be regular weight functions. Let B be a subset of positive

integers such that

df(B) = 0, df(B) = 1 and dg(B) = 0.

Let 0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1 be given real numbers. Then there exists a set

A ⊂ N such that

df(A) = α, dg(A) = β, dg(A) = γ, df(A) = δ.

Proof. On the contrary, we suppose that there exist rational numbers 0 < α <

β < γ < δ < 1 and ε > 0 such that at least one of the following inequalities

does not hold.

|df(A) − α| < ε, |dg(A) − β| < ε, |dg(A) − γ| < ε, |df(A) − δ| < ε
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Using the sets H, E defined in the previous lemma we construct a set A such

that

H ⊂ A ⊂ E.

Then clearly

df(A) ≥ df(H), dg(A) ≥ dg(H)

and

df(A) ≤ df(E), dg(A) ≤ dg(E).

Define the set A by “intertwinning” the sets E and H

A = H
∞
∪

k=1
[n2k, n2k+1] ∩ E,

where n1 = 1 and for k = 1, 2, . . . let nk be sufficiently large, such that for

some i, j between nk−1 and nk the

∣

∣

∣

Sf(A, i)

Sf(i)
− α

∣

∣

∣ < ε and

∣

∣

∣

Sg(A, j)

Sg(j)
− β

∣

∣

∣ < ε (2)

inequalities hold. Analogously, sufficiently large n2k+1 guarantees the inequal-

ities
∣

∣

∣

Sf(A, m)

Sf(m)
− δ

∣

∣

∣
< ε and

∣

∣

∣

Sg(A, l)

Sg(l)
− γ

∣

∣

∣
< ε (3)

for some m, l. From this we can deduce that (2) and (3) hold for infinitely

many i, j, m, l what is a contradiction to our assumption. �

Roughly speaking, the proved theorem says that under some conditions

to prove the existence of a set A with prescribed upper and lower weighted

densities it is sufficient to consider only one, the “worst” case.

Lemma 2 If the function f : N → (0,∞) satisfies the conditions

∞∑

n=1

f(n) = ∞, (4)

lim
n→∞

f(n)

Sf(n)
= 0, (5)

then for the function g defined as

g(n) =
f(n)
n∑

i=1

f(i)

(6)
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we have
∞∑

n=1

g(n) = ∞ (7)

and

lim
n→∞

g(n)

Sg(n)
= 0. (8)

Proof. We prove only (7), using the fact limn→∞ g(n) = 0 together with (7)

it follows immediately (8).

For arbitrary positive integers m > n we have

m∑

k=n

g(k) =

m∑

k=n

f(k)
∑k

i=1 f(i)
≥

∑m
k=n f(k)

∑m
i=1 f(i)

.

The proof is completed by showing that for given n and sufficiently large m

m∑

k=n

g(k) ≥
1

2
.

From (4) we see that

∞∑

i=1

f(i) = ∞, therefore for arbitrary n ∈ N

lim
m→∞

m∑

k=n

g(k) ≥ lim
m→∞

m∑

k=n

f(k)

m∑

i=1

f(i)

= 1

and the lemma follows. �

Theorem 2 Let the functions f, g : N → (0,∞) satisfy the assumptions (4)–

(6). Then there exists a set B ⊂ N such that

df(B) = 0, df(B) = 1 and dg(B) = 0.

Proof. Consider

B =
∞
∪

k=1
[n2k, n2k+1].

Let n1 = 1. Assume n1, n2, . . . , n2k−1 are given. We are looking for n2k such

that
f(n)

f(1) + f(2) + · · · + f(n)
<

1

k + 1
for arbitrary n ≥ n2k, (9)
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f(1) + f(2) + · · · + f(n2k−1)

f(1) + f(2) + · · · + f(n2k)
<

1

k
, (10)

g(1) + g(2) + · · · + g(n2k−1)

g(1) + g(2) + · · · + g(n2k)
<

1

k
, (11)

g(1) + g(2) + · · · + g(n2k) > k2. (12)

Moreover, let n2k+1 satisfy the inequalities

k − 1

k + 1
<

f(n2k) + f(n2k + 1) + · · · + f(n2k+1)

f(1) + f(2) + · · · + f(n2k+1)
<

k

k + 1
. (13)

Inequalities (10)–(13) follow from the prescribed conditions on the functions

f and g.

By (10) we have df(B) = 0, by (11) we have dg(B) = 0 and taking into

account (13) we get df(B) = 0.

We proceed to show that dg(B) = 0. In virtue of [2], Lemma 2.1 it is

sufficient to consider only the values
Sg(B,nk)

Sg(nk)
. We have

Sg(B, n2k+1)

Sg(n2k+1)
≤

g(1) + g(2) + · · · + g(n2k−1) + g(n2k) + g(n2k + 1) + · · · + g(n2k+1)

g(1) + g(2) + · · · + g(n2k+1)
<

1

k
+

g(n2k) + g(n2k + 1) + · · · + g(n2k+1)

g(1) + g(2) + · · · + g(n2k)
≤

1

k
+

f(n2k)+f(n2k+1)+···+f(n2k+1)

f(1)+f(2)+···+f(n2k−1)

g(1) + g(2) + · · · + g(n2k)
.

Using (13) we can show the inequality

f(n2k) + f(n2k + 1) + · · · + f(n2k+1)

f(1) + f(2) + · · · + f(n2k−1)
< k.

Using this together with (12) we have

Sg(B, n2k+1)

Sg(n2k+1)
<

1

k
+

k

k2
=

2

k

and hence dg(B) = 0 and dg(B) = 0 follows. �

It is not hard to show that if a monotone function f satisfies (4)–(5), then

it is regular (see, e.g. [2], Example 2.1). If the function g defined by (6) is

monotonely decreasing, then it is regular, too. We have
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Corollary 1 Let the monotone function f and monotone decreasing function

g satisfy the assumptions (4)–(6). Let 0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1 be given real

numbers. Then there exists a set A ⊂ N such that

df(A) = α, dg(A) = β, dg(A) = γ, df(A) = δ.
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[5] F. Luca, Š. Porubský, On asymptotic and logarithmic densities, Tatra Mt.

Math. Publ., 31 (2005), 75–86.
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Abstract. A real number is called normal if every block of digits in its

expansion occurs with the same frequency. A famous result of Borel is

that almost every number is normal. Our paper presents an elementary

proof of that fact using properties of a special class of functions.

1 Introduction

The concept of normal number was introduced by Borel. A number is called

normal if in its base b expansion every block of digits occurs with the same

frequency. More exact definition is

Definition 1 A real number x ∈ (0, 1) is called simply normal to base b ≥ 2

if its base b expansion is 0.c1c2c3 . . . and

lim
N→∞

#{n ≤ N | cn = a}

N
=
1

b
for every a ∈ {0, . . . , b− 1} .
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A number is called normal to base b if for every block of digits a1 . . . aL, L ≥ 1

lim
N→∞

#{n ≤ N− L | cn+1 = a1, . . . , cn+L = aL}

N
=
1

bL
.

A number is called absolutely normal if it is normal to every base b ≥ 2.

A famous result of Borel [1] is

Theorem 1 Almost every real number is absolutely normal.

This theorem can be proved in many ways. Some proofs use uniform dis-

tribution [5], combinatorics [7], probability [8] or ergodic theory [2]. There

are also some elementary proofs almost avoiding higher mathematics. Kac [3]

proves the theorem for simply normal numbers to base 2 using Rademacher

functions and Beppo Levi’s Theorem. Nillsen [6] also considers binary case.

He uses series of integrals of step functions and avoids usage of measure theory

in the proof by defining a null set in a different way. Khoshnevisan [4] makes

a survey about known results on normal numbers and their consequences in

diverse areas in mathematics and computer science.

This paper presents another elementary proof of Theorem 1. Our proof is

based on the fact that a bounded monotone function has finite derivative in

almost all points. We also use the fact that a countable union of null sets is a

null set.

Here is a sketch of the proof. We introduce a special class of functions.

In Section 2 we prove elementary properties of the functions F . We prove

boundedness and monotonicity and assuming that the derivative F ′(x) exists

in point x we prove that the product (5) has finite value. We deduce that the

product (5) has finite value for almost every x. In Section 3 we prove that every

non-normal number belongs to some set P. We take a particular function F .

We finish the proof by showing that for elements of P the product (5) does

not have finite value.

For the proof of Theorem 1 it is obviously sufficient to consider only numbers

in the interval (0, 1).

Definition 2 Let b = {bk}∞k=1 be a sequence of integers bk ≥ 2. Let ω =

{ωk}∞k=1 be a sequence of divisions of the interval [0, 1],

ωk = {fk(c)}
bk

c=0 , fk(0) = 0 , fk(c) < fk(c+ 1) , fk(bk) = 1 .

Put

∆k(c) := fk(c+ 1) − fk(c) .
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Function Fb,ω : [0, 1] → [0,∞) corresponding to b and ω is defined as follows.

For x ∈ [0, 1), let

x =

∞∑

n=1

cn∏n
k=1bk

(1)

be its {bk}∞k=1-Cantor series. Then

Fb,ω(x) :=

∞∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) .

We define Fb,ω(1) = 1.

The reason for defining Fb,ω(1) = 1 is that the actual range of Fb,ω is

⊆ [0, 1]. This is proved in Lemma 2.

2 Properties of the function F

In this section we derive some basic properties of a general function Fb,ω.

Lemma 1 allows us to express a particular value F(x) in terms of values of

some other function F .

For N ∈ N define b
(N) := {b

(N)
n }∞n=1, ω

(N) := {ω
(N)
n }∞n=1 and {∆

(N)
n }∞n=1 by

b
(N)
n := bN+n , ω

(N)
n := ωN+n , ∆

(N)
n := ∆N+n .

Moreover, for x =
∑∞

n=1
ck∏n

k=1 bk
∈ (0, 1) define

x(N) :=

∞∑

n=1

cN+n
∏n

k=1b
(N)

k

.

Lemma 1 (Shift property) We have

Fb,ω(x) =

N∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) +

N∏

k=1

∆k(ck) · F
b

(N),ω(N) (x
(N)) .

Proof. An easy computation yields

Fb,ω(x) =

∞∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck)
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=

N∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck)

+

N∏

k=1

∆k(ck)

∞∑

n=1

fN+n(cN+n)

n−1∏

k=1

∆N+k(cN+k)

=

N∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) +

N∏

k=1

∆k(ck) · F
b

(N),ω(N) (x
(N)) .

�

Lemma 2 (Range) For x ∈ [0, 1] the value Fb,ω(x) ∈ [0, 1].

Proof. First we prove that for every b,ω and every x =

N∑

n=1

cn∏n
k=1bk

Fb,ω

(

N∑

n=1

cn∏n
k=1bk

)

=

N∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) ≤ 1 . (2)

We will proceed by induction on N.

For N = 1 we have Fb,ω

(

c1

b1

)

= f1(c1) ≤ 1.
For N+ 1 we use Lemma 1. By the induction assumption we have

F
b

(1),ω(1) (x
(1)) ≤ 1 .

Hence

Fb,ω(x) = f1(c1) +∆1(c1)Fb
(1),ω(1) (x

(1)) ≤ f1(c1) +∆1(c1) = f1(c1 + 1) ≤ 1 .

Now we use (2) and pass to the limit N → ∞. For x =

∞∑

n=1

cn∏n
k=1bk

we

have

Fb,ω(x) = lim
N→∞

N∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) ≤ 1 .

�

Lemma 3 (Monotonicity) The function Fb,ω is nondecreasing.
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Proof. Let 0 ≤ x < y < 1 be two numbers with

x =

∞∑

n=1

cn∏n
k=1bk

and y =

∞∑

n=1

dn∏n
k=1bk

.

We prove that Fb,ω(x) ≤ Fb,ω(y).

Let N be the integer such that cn = dn for n ≤ N− 1 and cN < dN. Then

Lemmas 1 and 2 imply

Fb,ω(x) =

N∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) +

N∏

k=1

∆k(ck) · F
b

(N),ω(N) (x
(N))

≤
N∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) +

N∏

k=1

∆k(ck)

=

N−1∑

n=1

fn(cn)

n−1∏

k=1

∆k(ck) + fN(cN + 1)

N−1∏

k=1

∆k(ck)

≤
N−1∑

n=1

fn(dn)

n−1∏

k=1

∆k(dk) + fN(dN)

N−1∏

k=1

∆k(dk)

≤
∞∑

n=1

fn(dn)

n−1∏

k=1

∆k(dk) = Fb,ω(y) . �

For k ∈ N and c ∈ {0, . . . , bk} define fk(c) := 1 − fk(bk − c). Put ω :=

{{fk(c)}
bk

c=0}
∞
k=1.

Lemma 4 (Symmetry) For every x =

N∑

n=1

cn∏n
k=1bk

we have

Fb,ω(1− x) = 1− Fb,ω(x) . (3)

Proof. We have

∆k(c) = fk(c+ 1) − fk(c) = ∆k(bk − c− 1) .

Now we will proceed by induction.

For N = 1 we have

Fb,ω(1− x) = f1(b1 − c1) = 1− f1(c1) = 1− Fb,ω

( c1

b1

)

= 1− Fb,ω(x) .
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Now suppose that (3) holds for N,

Fb,ω

(

1−

N∑

n=1

en∏n
k=1bk

)

= 1− Fb,ω

( N∑

n=1

en∏n
k=1bk

)

for every possible sequence {en}∞n=1. Then using Lemma 1 we obtain for x =
N+1∑

n=1

cn∏n
k=1bk

that

Fb,ω(1− x)

= Fb,ω

(

b1 − c1 − 1

b1

+
1

b1

(N−1∑

n=1

bn+1 − cn+1 − 1
∏n

k=1bk+1

+
b(N−1)+1 − c(N−1)+1

∏N−1
k=1 bk+1

))

= f1(b1 − c1 − 1) + ∆1(b1 − c1 − 1)F
b

(1),ω(1) (1− x(1))

= f1(b1 − c1 − 1) + ∆1(b1 − c1 − 1)
(

1− F
b

(1),ω(1) (x
(1))

)

= 1− f1(c1 + 1) + ∆1(c1)
(

1− F
b

(1),ω(1) (x
(1))

)

= 1−
(

f1(c1) + ∆1(c1)Fb
(1),ω(1) (x

(1))
)

= 1− Fb,ω(x) .

�

Remark 1 One can prove that if
∞∏

k=1

max
c=0,...,bk−1

∆k(c) = 0 then Fb,ω is con-

tinuous on the interval [0, 1]. One can then extend Lemma 4 for every x ∈
[0, 1].

Lemma 5 (Difference) For every N ∈ N

Fb,ω

(N−1∑

n=1

cn∏n
k=1bk

+
cN + 1

∏N
k=1bk

)

− Fb,ω

( N∑

n=1

cn∏n
k=1bk

)

=

N∏

k=1

∆k(ck) . (4)

Proof. Denote the left-hand side of (4) by LHS. Then if cN ≤ bN − 2 then

LHS =

N−1∏

k=1

∆k(ck) ·

(

F
b

(N−1),ω(N−1)

(cN + 1

bN

)

− F
b

(N−1),ω(N−1)

( cN

bN

)

)

=

N−1∏

k=1

∆k(ck) ·
(

fN(cN + 1) − fN(cN)
)

=

N∏

k=1

∆k(ck) .
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In the case cN = bN − 1 we apply the first case on the function Fb,ω,

LHS =

(

1− Fb,ω

(N−1∑

n=1

bn − cn − 1
∏n

k=1bk

))

−

(

1− Fb,ω

(N−1∑

n=1

bn − cn − 1
∏n

k=1bk

+
1

∏N
k=1bk

))

=

N∏

k=1

∆k(bn − cn − 1) =

N∏

k=1

∆k(ck) .

�

In the following text we will use the symbol

Θk(c) := bk∆k(c) .

Lemma 6 (Derivative) Let x =

∞∑

n=1

cn∏n
k=1bk

∈ (0, 1). Suppose that the

derivative F ′

b,ω(x) exists and is finite. Then

F ′

b,ω(x) =

∞∏

k=1

Θk(ck) . (5)

In particular, this product has a finite value.

Proof. We have

lim
N→∞

Fb,ω

(N−1∑

n=1

cn∏n
k=1bk

+
cN + 1

∏N
k=1bk

)

− Fb,ω

( N∑

n=1

cn∏n
k=1bk

)

(N−1∑

n=1

cn∏n
k=1bk

+
cN + 1

∏N
k=1bk

)

−
( N∑

n=1

cn∏n
k=1bk

)

(6)

= lim
N→∞











N−1∑

n=1

cn∏n
k=1bk

+
cN + 1

∏N
k=1bk

− x

1
∏N

k=1bk

(7)
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·

Fb,ω

(N−1∑

n=1

cn∏n
k=1bk

+
cN + 1

∏N
k=1bk

)

− Fb,ω(x)

N−1∑

n=1

cn∏n
k=1bk

+
cN + 1

∏N
k=1bk

− x

(8)

+

x−
N∑

n=1

cn∏n
k=1bk

1
∏N

k=1bk

·

Fb,ω(x) − Fb,ω

( N∑

n=1

cn∏n
k=1bk

)

x−
N∑

n=1

cn∏n
k=1bk











(9)

= F ′

b,ω(x) lim
N→∞

1
∏N

k=1bk

1
∏N

k=1bk

= F ′

b,ω(x) .

Existence of F ′

b,ω(x) implies that limits of (8) and of the second fraction in (9)

are equal to F ′

b,ω(x). Hence the limit (6) exists and is equal to F ′

b,ω(x). In

the case that x =

N∑

n=1

cn∏n
k=1bk

we obtain that (6) = F ′

b,ω(x) immediately.

On the other hand, Lemma 5 implies that

(6) = lim
N→∞

N∏

k=1

∆k(ck)

1
∏N

k=1bk

=

∞∏

k=1

Θk(ck) .

�

Corollary 1 For almost every x ∈ [0, 1] the derivative F ′

b,ω(x) exists and is

finite. In particular, for almost every x =

∞∑

n=1

cn∏n
k=1bk

the product
∏∞

n=1Θk(ck)

exists and is finite (possibly zero).

Proof. The function Fb,ω is bounded and nondecreasing, hence in almost all

points it has a finite derivative. According to Lemma 6 we obtain that the

product (5) is finite. �

3 Main result

Our main result is a proof of Theorem 1.
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Proof. A number x ∈ (0, 1) is not absolutely normal if there exist b ≥ 2,

L ∈ N and a1, . . . , aL ∈ {0, . . . , b− 1} such that if x =

∞∑

n=1

cn

bn
then

lim inf
n→∞

#{n ≤ N− L | cn+i = ai, i = 1, . . . , L}

N
<
1

bL
.

Then there exists s ∈ {0, . . . , L− 1} such that

lim inf
n→∞

#{n ≤ N− L, n ≡ s (modL) | cn+i = ai, i = 1, . . . , L}

N
<

1

LbL
.

Hence for some rational β < 1
LbL

lim inf
n→∞

#{n ≤ N− L, n ≡ s (modL) | cn+i = ai, i = 1, . . . , L}

N
≤ β . (10)

Denote by Rb,L,a,s,β the set of all x =

∞∑

n=1

cn

bn
satisfying (10). The result of

the previous paragraph is that the set of not absolutely normal numbers is a

subset of
∞
⋃

b=2

∞
⋃

L=1

b−1
⋃

a1,...,aL=0

L−1
⋃

s=0

⋃

β∈(0, 1

LbL )∩Q

Rb,L,a,s,β .

It is sufficient to prove that every set Rb,L,a,s,β has zero measure. Then the

set of not absolutely normal numbers is a subset of a countable union of null

sets, hence it is a null set.

Let b ≥ 2, L ∈ N, a1, . . . , aL ∈ {0, . . . , b − 1}, s ∈ {0, . . . , L − 1} and β ∈
(

0, 1
LbL

)

. Put A = a1b
L−1 + a2b

L−2 + · · · + aL. Let

x =

∞∑

n=1

cn

bn
=

s∑

n=1

dn

bn
+
1

bs

∞∑

n=1

ds+n

bLn
∈ Rb,L,a,s,β .

Then obviously,

#
{
n ≤ N− L, n ≡ s (modL)

∣

∣ cn+i = ai, i = 1, . . . , L
}

= #

{
s < n ≤

[N− s

L

] ∣

∣

∣ dn = A
}
.

Hence

lim inf
M→∞

#{s < n ≤M | dn = A}

M
= lim inf

N→∞

#
{
s < n ≤

[

N−s
L

] ∣

∣ dn = A
}

[

N−s
L

]
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= lim inf
N→∞

N
[

N−s
L

]

#
{
n ≤ N− L, n ≡ s (modL)

∣

∣ cn+i = ai, i = 1, . . . , L
}

N

≤ Lβ .

From this we obtain that Rb,L,a,s,β ⊆ P, where

P =
{
x =

s∑

n=1

dn

bn
+
1

bs

∞∑

n=1

ds+n

bLn

∣

∣

∣ lim inf
N→∞

#{s < n ≤ N | dn = A}

N
≤ Lβ

}
.

Thus it is sufficient to prove that the set P has zero measure.

Let α ∈
(

Lβ, 1
bL

)

. For t ∈ [0, 1] define

ϕα(t) := tα
(bL − t

bL − 1

)1−α

.

The function ϕα is continuous with ϕα(0) = 0, ϕα(1) = 1 and ϕ ′

α(1) =

αbL − 1

bL − 1
< 0. Hence there is T ∈ (0, 1) with ϕα(T) = 1. For u ∈ (0, 1) put

ψ(u) := ϕu(T) = Tu
(bL − T

bL − 1

)1−u

.

The function ψ is continuous and decreasing with ψ(α) = 1.

Consider the function Fb,ω corresponding to b = {bk}∞k=1 with

bk =

{
b, if k ≤ s,

bL, if k > s,

and ω = {ωk}∞k=1 with

∆k(d) =






1
b
, if k ≤ s,

T
bL , if k > s and d = A,

bL−T
bL(bL−1)

, if k > s and d 6= A.

We have

Θk(d) =






1, if k ≤ s ,

T, if k > s and d = A,
bL−T
bL−1

, if k > s and d 6= A.
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Now Corollary 1 implies that for almost every x =

s∑

n=1

dn

bn
+
1

bs

∞∑

n=1

dn+s

bLs
the

following product exists and is finite

∞∏

n=1

Θn(dn) = lim
N→∞

T#{s<n≤N|dn=A}
(bL − T

bL − 1

)N−#{s<n≤N|dn=A}

= lim
N→∞

(

ψ
(

#{s < n ≤ N | dn = A}

N

))N

. (11)

Now suppose that x ∈ P. Then

lim sup

N→∞
ψ

(

#{s < n ≤ N | dn = A}

N

)

= ψ
(

lim inf
N→∞

#{s < n ≤ N | dn = A}

N

)

≥ ψ(Lβ) > ψ(α) = 1,

hence

lim sup

N→∞

(

ψ
(

#{s < n ≤ N | dn = A}

N

))N

= ∞,

contradicting finiteness of (11). Thus the set P has zero measure. �
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Abstract. In this work, first, we give some characterizations of helices

and ccr curves in the Euclidean 4-space. Thereafter, relations among

Frenet-Serret invariants of Bertrand curve of a helix are presented. More-

over, in the same space, some new characterizations of involute of a helix

are presented.

1 Introduction

In the local differential geometry, we think of curves as a geometric set of

points, or locus. Intuitively, we are thinking of a curve as the path traced out

by a particle moving in E
4
. So, investigating position vectors of the curves is

a classical aim to determine behavior of the particle (curve).

Natural scientists have long held a fascination, sometimes bordering on mys-

tical obsession for helical structures in nature. Helices arise in nanosprings,

carbon nanotubes, α−helices, DNA double and collagen triple helix, the dou-

ble helix shape is commonly associated with DNA, since the double helix is
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curves, helix, involute-evolute curve couples, ccr curves.
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structure of DNA [3]. This fact was published for the first time by Watson

and Crick in 1953 [25]. They constructed a molecular model of DNA in which

there were two complementary, antiparallel (side-by-side in opposite direc-

tions) strands of the bases guanine, adenine, thymine and cytosine, covalently

linked through phosphodiesterase bonds. Each strand forms a helix and two

helices are held together through hydrogen bonds, ionic forces, hydrophobic

interactions and van der Waals fores forming a double helix, lipid bilayers,

bacterial flagella in Salmonella and E. coli, aerial hyphae in actinomycete,

bacterial shape in spirochetes, horns, tendrils, vines, screws, springs, helical

staircases and sea shells (helico-spiral structures) [4, 5].

Helix is one of the most fascinating curves in science and nature. Also we

can see the helix curve or helical structures in fractal geometry, for instance

hyperhelices [23]. In the field of computer aided design and computer graphics,

helices can be used for the tool path description, the simulation of kinematic

motion or the design of highways, etc. [26]. From the view of differential

geometry, a helix is a geometric curve with non-vanishing constant curvature

κ and non-vanishing constant torsion τ [2]. The helix may be called a circular

helix or W-curve [12, 17].

It is known that straight line (κ(s) = 0) and circle (τ(s) = 0) are degenerate-

helix examples [13]. In fact, circular helix is the simplest three-dimensional

spirals. One of the most interesting spiral examples are k-Fibonacci spi-

rals. These curves appear naturally from studying the k-Fibonacci numbers

{Fk,n}∞n=0 and the related hyperbolic k-Fibonacci function. Fibonacci numbers

and the related Golden Mean or Golden section appear very often in theoret-

ical physics and physics of the high energy particles [7, 8]. Three-dimensional

k-Fibonacci spirals was studied from a geometric point of view in [9].

Indeed, in Euclidean 3-space E
3
, a helix is a special case of the general helix.

A curve of constant slope or general helix in Euclidean 3-space is defined by

the property that the tangent makes a constant angle with a fixed straight line

called the axis of the general helix. A classical result stated by Lancret in 1802

and first proved by de Saint Venant in 1845 (see [22] for details) says that: A

necessary and sufficient condition that a curve be a general helix is that the

ratio κ
τ

is constant along the curve, where κ and τ denote the curvature and

the torsion, respectively.

The notation of a generalized helix in E
3

can be generalized to higher di-

mensions in the same definition is proposed but in E
n
, i.e., a generalized helix

as a curve ψ : R → E
n

such that its tangent vector forms a constant angle

with a given direction U in E
n

[20].

Two curves which, at any point, have a common principal normal vector
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are called Bertrand curves. The notion of Bertrand curves was discovered

by J. Bertrand in 1850. Bertrand curves have been investigated in E
n

and

many characterizations are given in [10]. Thereafter, by theory of relativity,

investigators extend some of classical differential geometry topics to Lorentzian

manifolds. For instance, one can see, Bertrand curves in E
n
1 [6], in E

3
1 for null

curves [1], and in E
4
1 for space-like curves [27]. In the fourth section of this

paper, we follow the same procedure as in [27].

In this work, first, we aim to give some new characterizations of helices and

ccr curves in terms of recently obtained theorems. Thereafter, we investigate

relations among Frenet-Serret invariants of Bertrand curve couples, when one

of is helix, in the Euclidean 4-space. Moreover, we observe that Bertrand

curve of a helix is also a helix; and cannot be a spherical curve, a general helix

and a 3-type slant helix, respectively. We also express some characterizations

of involute of a helix. We hope these results will be helpful to mathematicians

who are specialized on mathematical modeling.

2 Preliminaries

To meet the requirements in the next sections, here, the basic elements of

the theory of curves in the space E
4

are briefly presented (A more complete

elementary treatment can be found in [11]).

Let α : I ⊂ R → E
4

be an arbitrary curve in the Euclidean space E
4
. Recall

that the curve α is said to be of unit speed (or parameterized by arclength

function s) if 〈α′(s), α′(s)〉 = 1, where 〈., .〉 is the standard scalar (inner)

product of E
4

given by

〈ξ, ζ〉 = ξ1ζ1 + ξ2ζ2 + ξ3ζ3 + ξ4ζ4,

for each ξ = (ξ1, ξ2, ξ3, ξ4), ζ = (ζ1, ζ2, ζ3, ζ4) ∈ E
4
. In particular, the norm

of a vector ξ ∈ E
4

is given by

‖ξ‖ =
√

〈ξ, ξ〉.

Let {T(s), N(s), B(s), E(s)} be the moving frame along the unit speed curve α.

Then the Frenet-Serret formulas are given by [10, 21]









T ′

N′

B′

E′









=









0 κ 0 0

−κ 0 τ 0

0 −τ 0 σ

0 0 −σ 0

















T

N

B

E









. (1)
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Here T,N, B and E are called, respectively, the tangent, the normal, the binor-

mal and the trinormal vector fields of the curve and the functions κ(s), τ(s)

and σ(s) are called, respectively, the first, the second and the third curvature

of a curve in E
4
. Also, the functions H1 = κ

τ
and H2 =

H′

1

σ
are called Har-

monic Curvatures of the curves in E
4
, where κ 6= 0, τ 6= 0 and σ 6= 0. Let

α : I ⊂ R → E
4

be a regular curve. If tangent vector field T of α forms a

constant angle with unit vector U, this curve is called an inclined curve or a

general helix in E
4
. Recall that, A curve ψ = ψ(s) is called a 3-type slant helix

if the trinormal lines of α make a constant angle with a fixed direction in E
4

[24]. Recall that if a regular curve has constant Frenet curvatures ratios, (i.e.,
τ
κ

and
σ
τ

are constants), then it is called a ccr-curve [16]. It is worth noting

that: the W-curve, in Euclidean 4-space E
4
, is a special case of a ccr-curve.

Let α(s) and α∗(s) be regular curves in E
4
. α(s) and α∗(s) are called

Bertrand Curves if for each s0, the principal normal vector to α at s = s0 is

the same as the principal normal vector to α∗(s) at s = s0. We say that α∗(s)

is a Bertrand mate for α(s) if α(s) and α∗(s) are Bertrand Curves.

In [14] Magden defined in the same space, a vector product and gave a

method to establish the Frenet-Serret frame for an arbitrary curve by the fol-

lowing definition and theorem:

Definition 1 Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4)

be vectors in E
4
. The vector product in E

4
is defined by the determinant

a∧ b∧ c =

∣

∣

∣

∣

∣

∣

∣

∣

e1 e2 e3 e4

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣

∣

∣

∣

∣

∣

∣

∣

, (2)

where e1, e2, e3 and e4 are mutually orthogonal vectors (coordinate direction

vectors) satisfying equations

e1 ∧ e2 ∧ e3 = e4, e2 ∧ e3 ∧ e4 = e1, e3 ∧ e4 ∧ e1 = e2, e4 ∧ e1 ∧ e2 = e3.

Theorem 1 Let α = α(t) be an arbitrary regular curve in the Euclidean space

E
4 with above Frenet-Serret equations. The Frenet apparatus of α can be

written as follows:

T =
α′

‖α′‖
,

N =
‖α′‖2

α′′ − 〈α′, α′′〉α′

∥

∥

∥
‖α′‖2

α′′ − 〈α′, α′′〉α′

∥

∥

∥

,
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B = µE∧ T ∧N,

E = µ
T ∧N∧ α′′′

‖T ∧N∧ α′′′‖
,

κ =

∥

∥

∥
‖α′‖2

α′′ − 〈α′, α′′〉α′

∥

∥

∥

‖α′‖4
,

τ =
‖T ∧N∧ α′′′‖ ‖α′‖

∥

∥

∥
‖α′‖2

α′′ − 〈α′, α′′〉α′

∥

∥

∥

,

and

σ =

〈

α(IV), E
〉

‖T ∧N∧ α′′′‖ ‖α′‖
,

where µ is taken −1 or +1 to make +1 the determinant of [T,N, B, E] matrix.

3 Some new results of helices and ccr curves

In this section we state some related theorems and some important results

about helices and ccr curves:

Theorem 2 Let α = α(s) be a regular curve in E
4 parameterized by arclength

with curvatures κ, τ and σ. Then α = α(s) lies on the hypersphere of center

m and radius r ∈ ℜ+ in E
4 if and only if

ρ2 +

(

1

τ

dρ

ds

)2

+
1

σ2

[

ρτ+
d

ds

(

1

τ

dρ

ds

)]2

= r2, (3)

where ρ = 1
κ

[16].

Theorem 3 Let α = α(s) be a regular curve in E
4 parameterized by arclength

with curvatures κ, τ and σ. Then α is a generalized helix if and only if

H ′

2 + σH1 = 0, (4)

where H1 = κ
τ

and H2 = 1
σ
H ′

1 are the Harmonic Curvatures of α [15].

Theorem 4 Let α = α(s) be a regular curve in E
4 parameterized by arclength

with curvatures κ, τ and σ. Then α is a type 3-slant helix (its second binormal

vector E makes a constant angle with a fixed diretion U) if and only if

H̃ ′

2 + σ H̃1 = 0, (5)

where H̃1 = σ
τ

and H̃2 = 1
κ
H̃ ′

1 are the Anti-Harmonic Curvatures of α [18].
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With the aid of the above theorems, one can easily obtain the following im-

portant results:

Theorem 5 Let α = α(s) be a helix in E
4 with non-zero curvatures.

1. α can not be a generalized helix

2. α can not be a 3-type slant helix

3. If α lies on the hypersphere S3, then, the sphere’s radius is equal to
√

τ2+σ2

κσ
.

Theorem 6 Let α = α(s) be a ccr curve in E
4 with non-zero curvatures κ(s),

τ(s) = aκ(s) and σ(s) = bκ(s). Then

1. α can not be a generalized helix

2. α can not be a 3-type slant helix

3. If α lies on the hypersphere S3, then, if and only if, the following equation

is satisfied:

f2 +
f′2

4a2
+

f

4a2b2
(2a2 + f′′)2 = r2, (6)

where the function f = f(s) = ρ2(s) = 1
κ2(s)

.

4 Bertrand curve of a helix

In this section we investigate relations among Frenet-Serret invariants of Bertrand

curve of a helix in the space E
4
.

Theorem 7 Let δ = δ(s) be a helix in E
4. Moreover, ξ be Bertrand mate of

δ. Frenet-Serret apparatus of ξ, {Tξ, Nξ, Bξ, Eξ, κξ, τξ, σξ}, can be formed by

Frenet apparatus of δ {T,N, B, E, κ, τ, σ}.

Proof. Let us consider a helix (W-curve, i.e.) δ = δ(s). We may express

ξ = δ+ λN. (7)

We know that λ = c = constant (cf. [11]). By this way, we can write that

dξ

dsξ

dsξ

ds
= Tξ

dsξ

ds
= (1− λ κ)T + λ τB.

So, one can have

Tξ =
(1− λκ)T + λτB

√

(1− λκ)2 + (λτ)2

, (8)
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and
dsξ

ds
=

∥

∥ξ′
∥

∥ =

√

(1− λκ)2 + (λτ)2. (9)

In order to determine relations, we differentiate:

ξ′′ =
[

κ− λ(κ2 + τ2)
]

N+ (λ τσ)E,

ξ′′′ = κ
[

λ(κ2 + τ2) − κ
]

T + τ[κ− λ(κ2 + τ2 + σ2)]B,

ξ(IV) = l1N+ l2E

(10)

where

l1 = κ3(λ κ− 1) + λ τ2(2κ2 + τ2 + σ2),

and

l2 = τσ[κ− λ(κ2 + τ2 + σ2)].

Using the above equations, we can form

∥

∥ξ′
∥

∥

2
ξ′′ −

〈

ξ′, ξ′′
〉

ξ′ = K2
[

[κ− λ(κ2 + τ2)]N+ (λ τσ)E
]

,

where

K =

√

(1− λκ)2 + (λτ)2.

Therefore, we obtain the principal normal and the first curvature, respectively,

Nξ =
1

L

[

[κ− λ(κ2 + τ2)]N+ (λ τσ)E
]

, (11)

and

κξ =
L

K2
, (12)

where

L =

√

[κ− λ(κ2 + τ2)]2 + (λ τσ)2.

Now, we can compute the vector form Tξ ∧Nξ ∧ ξ′′′ as the following:

Tξ ∧Nξ ∧ ξ′′′ =
1

KL

∣

∣

∣

∣

∣

∣

∣

∣

T N B E

1− λκ 0 λτ 0

0 κ− λ(κ2 + τ2) 0 λτσ

l1 0 l2 0

∣

∣

∣

∣

∣

∣

∣

∣

= − M
KL

[

λ τσN− [κ− λ(κ2 + τ2)]E
]

,

where

M = τ
[

λ(κ2 + τ2 + σ2) − κ(1+ λ2σ2)
]

.
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Since, we have

Eξ = −
1

L

[

λ τσN− [κ− λ(κ2 + τ2)]E
]

. (13)

By this way, we have the third curvature as follows:

τξ =
M

K2L
. (14)

Besides, considering last equation of Theorem 1, one can calculate

σξ =
κσ

L
. (15)

Now, to determine the third vector field of Frenet frame, we write

Eξ ∧ Tξ ∧Nξ = −
1

KL2

∣

∣

∣

∣

∣

∣

∣

∣

T N B E

0 λτσ 0 λ(κ2 + τ2) − κ

1− λκ 0 λτ 0

0 κ− λ(κ2 + τ2) 0 λτσ

∣

∣

∣

∣

∣

∣

∣

∣

.

So we obtain:

Bξ = −
1

K
[λ τ T + (1− λ κ)B] . (16)

It is worth to note that µ = 1. �

Considering obtained equations, we get:

Theorem 8 Let δ = δ(s) be a helix in E
4. Moreover, let ξ be a Bertrand

mate of δ. Then

1. ξ is also a helix.

2. ξ can not be a generalized helix.

3. ξ can not be a 3-type slant helix.

4. If ξ lies on the hypersphere S3, then, the sphere’s radius is equal to
√

τ2
ξ
+σ2

ξ

κξ σξ
=

√
τ2+(1−λκ)2σ2

κσ
.

5 Involute-evolute curve of a helix

In this section, first we correct the computations in the paper [19] and then

we obtain new results:
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Theorem 9 Let ξ = ξ(s) be involute of δ. Let δ be a helix in E
4. The Frenet

apparatus of ξ, {Tξ, Nξ, Bξ, Eξ, κξ, τξ, σξ}, can be formed by Frenet apparatus

of δ {T,N, B, E, κ, τ, σ} and take the following form.

Tξ = N, Nξ =
−κ T + τB
√
κ2 + τ2

, Bξ = −E, Eξ =
τ T + κB
√
κ2 + τ2

, (17)

and

κξ =

√
κ2 + τ2

κ |c− s|
, τξ =

τσ

κ
√
κ2 + τ2 |c− s|

, σξ = −
σ

√
κ2 + τ2 |c− s|

, (18)

where
dsξ

ds
= κ |c− s|. (19)

Proof. The proof of the above theorem is similar as the proof of the previous

theorem. �

Theorem 10 Let ξ and δ be unit speed regular curves in E
4. ξ be involute of

δ. Then

1. ξ cannot be a helix.

2. ξ is a ccr-curve.

3. ξ cannot be a generalized helix.

4. ξ cannot be a 3-type slant helix.

5. ξ cannot be lies on the hypersphere S3.

Proof. The proof of points 1, 2, 3 and 4 are obviously. In the following we

will proof the point 5:

Integrating the equation (19), we have

|c− s| =

√

2sξ

κ
,

which leads to

κξ =
A1
√
sξ
, τξ =

A2
√
sξ
, σξ =

A3
√
sξ
, (20)

where

A1 =

√

κ2 + τ2

2κ
, A2 = −

τσ

2κ(κ2 + τ2)
, A3 = −

σ
√
κ

√

2(κ2 + τ2)
.
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Then if the evolute ξ lies in the hypersphere the equation (6) must be satisfied.

Substituting f =
sξ

A2
1

, κξ = A1√
sξ

, B1 =
τξ

κξ
and B2 =

σξ

κξ
in the equation (6), we

have

sξ (B2
1 + B2

2)

A2
1B

2
2

+
1

4A2
1B

2
1

= r2,

which is contradiction because the radius r of the sphere must be constant

and the coefficient of sξ can not be equal zero. The proof is completed. �
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Sébastien FERENCZI (Institut de Mathématiques de Luminy, France)
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