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CONSIDERATIONS ON AN ETHICAL CODE  
OF STATISTICS 

DR. GYÖRGY SZILÁGYI1 

The Declaration of Professional Ethics will be twenty years old in the following year. 
There is a general agreement among statisticians that this document is basically appropriate 
for the future; nevertheless a kind of updating seems to be necessary in order to follow the 
development of the society and of information technology, and to facilitate the dissemina-
tion. The article reviews the existing Declaration and puts forward a number of modifications 
and new obligations. 

KEYWORDS: Ethics. 

In 1985 the International Statistical Institute (ISI) adopted its Declaration on Profes-
sional Ethics (published in the International Statistical Review2

  

 and available also on the 
ISI website3). The document is – within and outside ISI – highly appreciated. Neverthe-
less, two questions arose in the last few years: 

 
1. Dissemination. It has been discovered that the document is not well known enough. 

Statisticians, including ISI members ignore its content, or even its existence (e.g. there 
are statistical agencies that drafted own statistical ethical codes, not because they are not 
satisfied with the ISI Code, rather because they are not aware of it). The situation is even 
worse among non-statisticians. 

2. Necessity of updating. New phenomena – e.g. those connected with the revolution-
ary development of information technology, with education etc. – need to be incorporated 
in the Professional Ethics. 

 
The present paper is focusing on the second issue.4 We have to observe, though, that 

the two questions are not independent. One of the obstacles of a more efficient dissemi-

1 The author is Chairman of the Scientific Board of Official Statistics in the Hungarian Statistical Office and Professor of 
the Budapest University of Economic Sciences. 

2 VoL.54. No. 2. p. 227–242. 
3 http://www.cbs.nl/isi/ethics.htm 
4 The first draft of the revision was introduced by the present author and discussed in the framework of an Open Meeting at 

the 54th General Conference of ISI in Berlin, August 2003. Positive and negative views expressed at the meeting are taken into 
account in this article. 
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nation is the relatively large size of the existing Declaration. With this in mind, three 
ways are open  for a revision: 

 
– Reducing the size of the Declaration (the ways of possible reductions are discussed 

later under the heading  ‘A possible size and structure of an updated version’). 
– Keeping the size as it is, and produce a reduced version in order to promote the dis-

semination for a large audience.  
– Adding more details (considerations, explanations, references etc.) to the reduced 

version as an annex. 
 
The advantage of the first way is the easy dissemination, of the second version is that 

it permits to keep a great number of valuable considerations, references etc. The third one 
is a compromise between the two. This article puts forward a reduced version without 
opting between the variants outlined above. 

GENERAL ISSUES 

Whose ethics is it? – I. 

The answer to the above question seems to be obvious: it is the ethics of statistics, or, 
in a more personal sense, of statisticians. Moreover: of all statisticians, i.e. official, aca-
demic, private etc. statisticians (employers or employees) as well as teachers of statistics. 
Towards this end the preamble of the present (1985) Declaration deserves special atten-
tion: ‘Statisticians work within a variety of economic, cultural, legal and political set-
tings, each of which influences the emphasis and focus of statistical inquiry. They also 
work within one of several different branches of their discipline, each involving its own 
techniques and procedures and its own ethical approach.’…‘Thus, no declaration could 
successfully impose a rigid set of rules to which statisticians everywhere should be ex-
pected to adhere…’ 

In other words the declaration should not be authoritarian or prescriptive. The informa-
tive and descriptive nature of the document needs to be maintained. The efficiency of the 
declaration however can be substantially raised if the reader is aware of his/her own duty.  

THE OVERALL STRUCTURE OF THE EXISTING DECLARATION 

The structure of a system like a code of professional ethics is not simply a layout; it is 
part of the objectives and contributes to the efficiency of the document concerned. The 
present structure of the Declaration arranges the various obligations of statisticians in a 
comprehensive manner. The code in fact has a multi-level building. 

 
– At the first level it identifies the broad categories of obligations (4 altogether) as 

‘Obligations to society’, ‘Obligations to founders and employers’ etc. 
– At the next level these obligations are subdivided into specific duties (16), like 

‘Considering conflicts of interests’ or ‘Clarifying obligations and roles’.  
– The various items of these two levels are then followed by more detailed definitions 

and 
– even more detailed comments, explanations and references.  
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As a reminder, the first two levels of the existing Declaration is reproduced below: 
 
1. Obligations to society 
1.1. Considering conflicting interest 
1.2. Widening the scope of statistics 
1.3. Pursuing objectivity 
2. Obligations to funders and employees 
2.1. Clarifying obligations and roles 
2.2. Assessing alternatives impartially 
2.3. Not pre-empting outcomes 
2.4. Guarding privileged information 
3. Obligations to colleagues 
3.1. Maintaining confidence in statistics  
3.2. Exposing and reviewing methods and findings 
3.3. Communicating ethical principles 
4. Obligations to subjects 
4.1. Avoiding untrue invasion 
4.2. Obtaining informed consent 
4.3. Modification to informed consent 
4.4. Protecting the interests of subjects 
4.5. Maintaining confidentiality of records 
4.6. Inhibiting disclosure of identities. 

A POSSIBLE SIZE AND STRUCTURE OF AN UPDATED VERSION 

Taking into account the structure of the 1985 version as outlined above, the reduced 
version might 

 
– keep the first level i.e. the 4 broad categories of obligations; 
– basically keep the second level (specific duties), not necessary exactly with 16 

items, but around this size; some of the present duties might be omitted, substituted by a 
new one (updating), combining two into one etc.; 

– shorten the detailed definitions; 
– omit the detailed comments etc. from the reduced version. 

The four broad categories of obligations 

As mentioned before, the fundamental structure of the 1985 Declaration is constituted 
by four broad categories of obligations: 

 
1. Obligations to society 
2. Obligations to funders and employees 
3. Obligations to colleagues 
4. Obligations to subjects. 
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These groups of obligations, indeed, cover and classify in a logical manner all rele-
vant aspects of an ethical code. Nevertheless, compared with the ethics of many other 
professions, one may feel that obligations to the (own) profession (statistics) is miss-
ing. The prestige of our profession requires such a duty; it is therefore proposed to add 
such a group of obligations. However, instead of increasing the number of the broad 
categories, it is convenient to combine it with the obligations to colleagues, so a new 
item would be ‘Obligations to the profession (statistics) and colleagues’. This slight 
modification may have some consequences, e.g. obligation ‘Widening the scope of sta-
tistics’ (1.2.) belonging now to the ‘Obligations to society’ (1.) becomes closer to the 
now enlarged group regarding profession and colleagues, so it is proposed to transfer it 
to group 3. 

One by one analysis of the groups 

Let us analyse now some details of the four groups of obligations.  
 
1.  Obligations to society. The professional performance of statistics is relevant in 

many aspects to the society. Four factual duties can be defined within this group: 
 
1.1. Contribution to the extension of knowledge of the members of society (new) 
1.2. Consideration of conflicting interests 
1.3. Objectivity, impartiality. 
1.4. When teaching statistics: transmitting ethical principles and values to the stu-

dents. (new)5  
 
As mentioned before, a short definition is proposed to each obligation. E. g. such a 

definition to 1.2. might be: ‘Statisticians should consider the likely consequences of col-
lecting and disseminating various types of data and should guard against predictable mis-
interpretations or misuse.’ 

 
2. Obligations to funders and employees. Statistical work is suited to the needs and 

resources of those who are paying for it. It is necessary that funders and employers un-
derstand the capabilities and limitations of statistics and that the funder’s and employer’s 
information is protected. 

In this group of obligations three duties are proposed: 
 
2.1. Clarification of obligations and roles 
2.2. Respect of ethics of other professions (new) 
2.3. 

  

Not pre-empting outcomes 
 
The proposed new item (2.2.) seems to be necessary in interest of mutual respect be-

tween statisticians and non-statisticians. Consequently, statisticians who carry out their 

5 I am very greatful to the International Association for Statistical Education, personally to Mrs. Carmen Batanero and Mr. 
Chris Wild for their valuable comments made to the first draft of the revision. Most of those comments are reflected in the 
detailed definitions of the individual duties. 
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activity in the environment of a profession which has its own ethical code (e.g. medicine, 
sociology, journalism) are expected to respect those principles to the same extent as the 
ethical code of statistics. 

 
3. Obligations to the profession (statistics) and colleagues. According to the consid-

erations above, this is a (partially) new item. In addition, this is a group of obligations 
that needs two types of extensions: a) new items in connection of obligations to the pro-
fession (e. g.: sharing experiences with colleagues); b) new items in connection of devel-
opment of information technology and development in the society. In such a way, the 
proposed composition of this group of obligations can be the following: 

 
3.1. Widening the scope of statistics (transferred from group 1.) 
3.2. Maintaining confidence in statistics 
3.3. Maximum but correct use of benefits of technical development (new) 
3.4. Participation in lifelong learning (new) 
3.5. Dissemination of this Code of Ethics 
3.6. Sharing experiences with colleagues 
3.7. Respect intellectual ownership (new) 
 
As before, here is  a sample of the short definitions; this time to item 3.3. (Maximum 

but correct use of benefits of technical development): ‘Statisticians should follow the de-
velopment of information and communication technology, apply it to the maximum, but 
mainly in favour of data suppliers and users; without any misuse of the advantages of-
fered by these devices.’ 

 
4. Obligations to subjects and respondents (persons, households, institutions, enter-

prises etc.). This is obviously the most difficult group of obligations. It takes about the 
third of the size of the 1985 Declaration. It contains a considerable number of problem-
atic cases, both from the statisticians and the respondents side.  The basic principle of this 
chapter is that statistical investigations involving the participation of human or institu-
tional subjects should be based on friendly cooperation, consent and protection of sub-
jects and respondents. 

A special kind of extension seems to be necessary vis-á-vis the present Declaration 
where almost the entire text refers to subjects of social statistics (individuals, families) 
and almost nothing is told on subjects of ‘economic statistics’. Businesses, enterprises 
and other economic entities need similar protection as individuals, in addition to special 
measures. 

On the other hand it seems to be possible to combine some items of the 1985 Decla-
ration; e.g. ‘Obtaining informal consent’ and ‘Modification to informal consent’ can be 
combined into ‘Obtaining informed consent (even if direct consent is inhibited)’. Then 
the detailed definition can be e.g. ‘Freely given informed consent by the subjects and 
respondents is useful even if participation is required by the law. Irrespective of the 
compulsory or voluntary character of the inquiry, the subjects should be convinced of 
the value of their contribution. In case if informed consent cannot be obtained directly, 
the subjects’ interests should be safeguarded in one of the numerous indirect ways.’ 
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So the concrete duties of this group of obligations can be: 
 
4.1. Protection of subjects and respondents against excessive risk and excessive im-

position on their time and privacy. 
4.2. Obtaining informed consent (even if direct consent is inhibited). 
4.3. Maintaining confidentiality of records and inhibiting disclosure of identities. 

Whose ethics is it? – II. 

Why put the same question again? Because it has  a facet different from that consid-
ered at the beginning of this writing. Then it was enough to state that the ethical code be-
longs to the statisticians, and all kinds of statisticians. Now the question can be put into in 
a broader context. The position of statistics and statisticians, their respect of the ethical 
code does not depend solely on those persons. There are several reasons to think so: 

 
a) Statistics is a science; it constitutes input for other sciences and other activities; 
b) Statistical data are published and interpreted also by non-statisticians; 
c) Persons outside statistics may limit statisticians to fulfil their duty in the spirit of 

the ethical code.   
 
Non-statisticians in this context are those who have regular contact with statistics. 

e.g. secondary publisher of the product of statisticians. Some typical groups of non-
statisticians whose behaviour is not independent from statistics are: 

 
– Researchers in different sciences (other than statistics) 
– Employers or supervisors of statisticians 
– Teachers (other than teachers of statistics) 
– Politicians 
– Media representatives 
 
It is therefore desirable to formulate a set of ethical principles vis-á-vis this group of 

agents. Toward this end two questions need closer consideration: 
 
I. The status and treatment of these ethical principles 
II. The nature and wording of such principles. 
 
As regards to the status of the ethical principles for non-statisticians, one may ask 

about the competence of ISI concerning non-statisticians. In this respect it should be 
taken into account that the ethical code is not a low or a decree of an authority. It consti-
tutes a set of guidelines of behaviour in connection of a given profession.  With this in 
mind, the following attitudes can be considered: 

 
a) Integrating the ethical principles of these professions into the Declaration of Pro-

fessional Ethics  as a second target group ‘non statisticians’  (the first target group being 
‘statisticians’),  
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b) Without integration into the system, addition of a kind of annex to the Declaration, 
e.g. ‘Advices to (or expectations from) non-statisticians regarding ethical aspects of sta-
tistics’. 

c) Forget about the group of non-statisticians.  
 
This article refrains from choosing among these options. It is however obvious that 

when turning to the above second question (The nature and wording of such principles), 
only items a) and b) remain relevant.  

This set of ethical principles is considerably smaller than the Code discussed so far. In 
comparison with those of statisticians; three types can be distinguished: 

 
A. Obligations which are the same as those set against statisticians: 
1. Consideration of conflicting interest (1.2.) 
2. Objectivity, impartiality (1.3.) 
3. Maintaining confidentiality of records and inhibiting disclosure of identities (4.3.) 
 
B. Obligations having different interpretation for statisticians and non-statisticians: 
4. Clarification of obligations and roles. 
In the case of statisticians the definition reads: ‘Statisticians should clarify in advance 

the respective obligation of both sides; for example the relevant parts of this Code to 
which they adhere’ (2.1.). 

For non-statisticians it goes the other way round:: ‘A non-statistician funder, em-
ployer or supervisor of a statistician is expected to respect the stipulations of the ethical 
code binding the statistician.’ 

5. Not pre-empting outcomes. 
In the case of statisticians the definition reads: ‘Do not accept conditions and obliga-

tions that are contingent upon a particular outcome from a proposed statistical inquiry’ 
(2.3.). 

For non-statisticians: ‘When using and/or publishing official or other statistics, use 
them in the professional context of their actual meaning, rather than for underpinning 
preconception.’ 

 
C. Obligation, special for non-statisticians: 
6. Give true interpretation to statistical data, tables or diagrams; in case of doubt con-

sult the producer.  
 
I hope that considerations of this paper bring closer to an agreement upon an updated 

version of the Declaration on Professional Ethics.  



INCOME OR EXPENDITURE?*  
THEIR COMPETING ROLE TO CHARACTERIZE 

THE LIVING CONDITIONS OF HOUSEHOLDS  
ÖDÖN ÉLTETŐ1 – ÉVA HAVASI2

The individual data bases of the Hungarian Household Budget Surveys are suited to 
examine the relation between the incomes and expenditures of the households, and to 
study which of the two variables characterizes better the living conditions of the house-
holds, can separate better the poor from the not poor and, respectively, the well-off house-
holds from the not well-off ones. In the study the authors try to answer these questions on 
the data bases of the HBS in 2001 and 2002. It is also examined whether there was any 
appreciable change in these topics between the two years considered. Authors conclude 
that, if possible, both variables are to be taken into account in a complex manner, because 
the really poor are those poor in both respects and the really wealthy are well-off both in 
income and expenditure. 

KEYWORDS: Income; Expenditure; Inequality; Poverty. 

Data on living conditions and especially on consumption patterns of households are, 
generally, provided by Household Budget Surveys (HBSs). In many countries HBS data 
on both incomes and expenditures are inquired, while in other countries households are 
asked to report their expenditures only. Hungary belongs to the former group of countries 
and its HBS is a continuous survey covering annually about 10 thousand households se-
lected at random by a two and three stage stratified sampling design. 

Using the individual data base of households co-operating in the 2001 and 2002 
HBS in Hungary, authors investigated whether the income or current expenditures (dis-
regarding investment type expenditures for production and business operational costs) 
are in closer relation with the real living conditions of the households, explain better 
the phenomena characterizing poverty as well as wealth in the Hungarian society to-
day. The paper summarizes the main findings of the research. At this point it must be 
noted, however, that income data of the Hungarian HBS are, generally, less reliable 
than expenditure data and therefore income inequality is very probably somewhat un-
derestimated.  
 

* The study is a modified and extended version of the paper presented by the authors in 2003 at the 54th Session of the In-
ternational Statistical Institute in Berlin. 

1 Retired deputy head of department of the HCSO. 
2 Sociologist of the HCSO. 

Hungarian Statistical Review, Special number 9. 2004. 
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For the measurement of both income and expenditures we used the well-known 
OECD1 equivalence scale (first adult is given 1, further adults 0.7, children 0.5). Poverty 
threshold is defined as usual, i.e. as 60 percent of the median income and expenditure, re-
spectively. At the other end of the distribution are those households considered as income 
or expenditure well-off belonging to the top income or expenditure decile.  

The paper proceeds as follows: The first section presents some findings regarding the 
nature of relation between income and expenditure of households, while inequalities of 
incomes and expenditures, resp. are investigated and compared in the next section. Then 
issues of income and expenditure poverty and wealth, resp. are dealt with. In the follow-
ing section we try to characterize from various aspects the income, expenditure and dou-
ble poor, as well as the well-off households. The last section draws some conclusions. 

RELATION BETWEEN INCOME 
 AND EXPENDITURE 

According to the data of the HBS in 2002 the average equalized yearly income of 
households was about 731 thousand HUF (corresponding to about 2 850 euro at that 
time) and their average equalized expenditures was about 659 thousand HUF (~2 570 
euro) in Hungary, i.e. the former exceeded the latter by about 11 percent indicating that, 
on the average, households had some saving in that year. The difference between the me-
dian income and expenditures of households was somewhat larger, it amounted to almost 
15 percent. One of our most important findings shows that the relationship between in-
come and expenditure is not too strong, the correlation coefficient amounts to 0.68 only. 
We can come to the same conclusion if we range household members into quintiles and 
deciles simultaneously on the basis of their equalized income and expenditures. Only 
43.5 percent of the persons can be found in the same quintile, while the quintile positions 
of more than 17 percent of the persons differ by more than one quintile in the two types 
of ranging (see Table 1). As to the deciles, only 26 percent of the persons belong to the 
same deciles and the decile position of almost 42 percent of the persons differ by more 
than one decile (see Table 2). In both cases the extreme deciles and quintiles in the di-
agonal show higher agreement than do the rest of deciles and quintiles. There was no ap-
preciable change in these figures from 2001 to 2002. 

Table 1 

Share of income and expenditure quintiles of persons, 2002 
Expenditure 

1. 2. 3. 4. 5. Total Income 
(quintiles) 

quintiles 

1. 11.4 4.7 1.9 1.2 0.8 20.0 
2. 5.0 6.6 5.2 2.4 0.8 20.0 
3. 2.4 5.2 6.2 4.8 1.4 20.0 
4. 1.1 2.7 4.8 6.9 4.5 20.0 
5. 0.1 0.8 1.9 4.7 12.5 20.0 

Total 20.0 20.0 20.0 20.0 20.0 100.0 
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Table 2 

Share of income and expenditure deciles of persons, 2002 
Expenditure 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Total 
Income 
(quin-
tiles) 

quintiles 

1. 5.1 2.0 1.1 0.4 0.2 0.3 0.3 0.1 0.3 0.2 10.0 
2. 2.2 2.2 1.9 1.3 0.8 0.6 0.4 0.3 0.3 0.1 10.0 
3. 1.2 2.0 1.7 1.7 1.4 0.6 0.7 0.3 0.1 0.2 10.0 
4. 0.6 1.2 1.6 1.6 1.7 1.4 0.8 0.6 0.4 0.1 10.0 
5. 0.5 1.0 1.4 1.6 1.4 1.5 1.2 0.9 0.4 0.1 10.0 
6. 0.3 0.6 0.9 1.3 1.7 1.5 1.4 1.3 0.7 0.2 10.0 
7. 0.1 0.6 0.8 1.0 1.0 1.6 1.6 1.4 1.2 0.5 10.0 
8. 0.1 0.3 0.4 0.4 1.0 1.1 1.7 2.2 2.0 0.8 10.0 
9. 0.0 0.1 0.2 0.5 0.4 1.0 1.3 1.7 2.7 2.0 10.0 
10. 0.0 0.0 0.0 0.1 0.2 0.4 0.5 1.1 1.9 5.7 10.0 

Total 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 100.0 

INCOME AND EXPENDITURE INEQUALITY 

Theoretical considerations indicate that expenditures should be more equally distrib-
uted than incomes, because many low income households spend above their income by 
drawing down past savings and high income households generally save part of their in-
come and therefore spend less than it. As can be seen from Figure 1 empirical data cor-
roborate this experience: expenditures exceeded income by almost 50 percent in the first 
income decile in 2001 and by about 25 percent in 2002, but reach only 80 percent of in-
come in the top income decile in both years. In the rest of the income deciles the ratio of 
expenditures to income is nearly one. Expenditures exceeded incomes somewhat more in 
2001 than in 2002. 

Figure 1. Ratio of expenditure to income by income deciles 
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Still, data clearly indicate that the inequality of expenditures significantly exceeds 
that of the incomes. This is demonstrated both by the Lorenz curve and the shares of in-
come and expenditure deciles in Figures 2 and 3, as well as by the various inequality 
measures shown in Table 3.  

Figure 2. Share of income and expenditure deciles of persons, 2002 
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Figure 3. Lorenz curve of income and expenditure 
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There is especially significant difference in the shares of the top decile in 2002: share 
amounts to 23.8 percent in case of expenditures, as against the value of 20.9 percent for 
incomes. The inequality measures of expenditures (see Table 3) exceeded those of the in-
comes by 10-13 percent. In 2001 the differences were generally a bit smaller, only the 
coefficient of variation of the expenditures exceeded by more than 17 percent that of in-
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comes. It is remarkable that while S10/S1 and the Gini coefficient indicate a slight de-
cline in the inequality of incomes from 2001 to 2002, the coefficient of variation shows a 
definite increase in that inequality. In the case of expenditures all but one measures indi-
cate a mild increase in the inequality between the two respective years. 

Table 3 

Inequality of income and expenditure 
Income Expenditure 

2001 2002 2001 2002 Indicator 

year 

Share of the 1st decile (S1) 4.17 4.30 4.11 4.20 
Share of the 10th decile (S10) 21.11 20.87 22.72 23.81 
S10/S1 5.07 4.84 5.53 5.49 
Gini coefficient 0.2400 0.2335 0.2616 0.2635 
Éltető-Frigyes measure 2.00 1.96 2.15 2.16 
CV (percent) 50.94 54.08 59.81 61.19 

It is interesting to note that the same phenomenon was found by Ann Harding and 
Harry Greenwell [2002] in connection with income and expenditures inequality of 
households in Australia. 

We made some research to find out why expenditures distribute more unequally than 
incomes. One minor factor may be that the very rich people are, generally, not covered 
by the HBS, because they tend not to co-operate in the survey. But the main underlying 
cause seems to be connected with the nature of the expenditures. Not only the relative 
variance of the expenditures is markedly greater than that of the incomes but also the be-
tween deciles part of the variance of expenditures exceeds considerably that of the in-
comes: this part was 71 percent for expenditures, while it was only 67 percent in the case 
of incomes in 2002. We tried, in addition, to explain the logarithm of the summed 
squared deviations from the mean of both incomes and expenditures by means of a linear 
regression containing the following four explanatory variables: 

1. educational attainment of the household head (measured by the number of classes 
completed) 

2. age of the household head 
3. whether the household belongs to the top decile or not 
4. whether the household lives in Budapest or not. 

It turned out that the above variables explain the logarithmic variability of incomes 
less than that of expenditures (adjusted R2s were 0.09 and 0.22, resp. in 2002) and the de-
termining factor is, in both cases, variable 3; but while the value of the corresponding 
standardized  coefficient was only 0.286 in the case of incomes in 2002, it was much 
higher, 0.487 for the logarithmic variance of the expenditures. 

β

It can be concluded that by simple and easily definable variables the expenditures of 
households can be less explained than that of their incomes. As it was pointed out, earlier 
variability of expenditures are only partially determined by current income. Moreover 
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they seem to be affected to a greater extent by less easily measurable variables (e.g. tradi-
tional attitudes towards saving, accustomed spending patterns, environmental effects, 
etc.) than incomes. In addition, in recent years consumption does not any more restrained 
by lack of supply, people can buy anything they want (frequently what they do not really 
want), if possessing the required financial sources. All these contribute to the greater 
variability and inequality of expenditures than of incomes, at least in today Hungary. 

INCOME AND EXPENDITURE  
POVERTY AND WEALTH 

According to the definition of poverty threshold given in the introductory part, 9.2 
percent of the Hungarian population could be considered as income poor and 11.6 per-
cent as expenditure poor in 2002. However, one of our most important findings shows 
that the income poor and the expenditure poor are not the same sets of households. The 
common part is not a major share: less than 48 percent of those belonging to the income 
poor was at the same time expenditure poor and about 38 percent of the expenditure poor 
was also income poor in 2002. As a consequence, only 5.0 percent of the society – 3.6 
percent of the households – can be considered as poor from both aspects. Similar state-
ments can be made about the well-off households: only 5.7 percent of the population – 
6.4 percent of the households – can be considered as well-off from both aspects. 

Figure 4. Percent of poor and non-poor households and persons, 2001 and 2002 
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Figures 5. Percent of well-off and not well-off households and persons, 2001 and 2002 
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CHARACTERISTICS OF POOR  
AND WELL-OFF HOUSEHOLDS 

A deeper analysis shows that there are significant differences not only in the pro-
portions but also in a number of important characteristics among the three sets of the 
poor (income poor, expenditure poor and the poor from both aspects). Moreover, in re-
spect of certain characteristics considerable changes have occurred between 2001 and 
2002, especially within the income and double poor. Most of the data indicate that ex-
penditure poverty is more stable, while the structure and characteristics of income poor 
households can considerably change from one year to the next one. However, this latter 
phenomenon may follow – at least in part – from the already mentioned fact that in-
come data of the HBS are less reliable then expenditure data. Among the differences in 
characteristics it is worth mentioning that e.g. while the proportion of large families 
with at least three children were 8-9 and 10 percent among the income and expenditure 
poor households in both years, it was more than 22 percent in 2001 and 27 percent in 
2002 among households poor from both aspects (large families amount to 4 percent of 
all households in Hungary). Looking at it from the other side it is remarkable that 
childless families amount to only 30-31 percent of households poor from both aspects, 
while to about 55 percent of expenditure poor households. There was a remarkable 
change in this respect among the income poor households from 2001 to 2002: the pro-
portion of childless households decreased from 60 percent to 44 percent.  

This change is only one symptom of the changes in the structure of the income poor 
households. In a similar manner the proportion of one member households also de-
creased from 34 percent to 23 percent, that of households consisting only of old per-
sons from 33 percent to 17 percent. At the same time the percentage of young house-
holds increased from 5 percent to 8 percent and that of households with unemployed 
member(s) from 14 percent to 23 percent. In this latter aspect the double poor house-
holds are especially at a disadvantage: among them in nearly every second household 
there was at least one unemployed person in 2002. More detailed data can be found in 
Table 4 below. 

It is surprising to see the large difference between the income poor and expenditure 
poor in respect of the proportions of households living in Budapest: only 9 percent of the 
expenditure poor households live in the capital as against the 24 percent of the income 
poor. It seems that the many temptations and possibilities in the capital to spend induce 
the income poor living here to spend over their real financial resources. 

From Table 4 data it can be concluded that double poor households live mostly in 
villages (generally in small ones), their heads are low educated, there are many large 
families among them with more children and, in addition, unemployment is considera-
bly more frequent among them than among other types of households, even among 
households poor only from one aspect. It is worth mentioning, furthermore, the re-
markable difference in the proportion of single person households: 34 percent of in-
come poor households consists of one person as against their 21 percent among the ex-
penditure poor. The difference in the proportion of households living in the capital was 
already discussed. 

 



Table 4 

Characteristics of poor and non-poor households, 2001 and 2002 
Neither income nor 

expenditure poor (NP) Income poor (IP) Expenditure poor (EP) Income and expenditure 
poor (I&EP) 

2001. 2002. 2001. 2002. 2001. 2002. 2001. 2002. Household characteristics 

year 

Average household size 2.6 2.6 2.5 2.9 3.0 3.1 3.6 3.8 

 Percentages 
One member households 24.0 24.8 33.9 22.9 21.0 20.6 14.8 11.3 
5 or more member households 7.8 7.7 11.2 11.0 16.8 18.5 29.6 32.4 
Households with         

no child 60.7 61.0 60.1 44.3 55.4 55.7 29.9 30.8 
3 or more children 3.9 3.8 8.9 7.5 10.0 10.0 22.4 27.2 
unemployed member(s) 5.3 5.2 14.0 23.2 17.2 14.7 41.5 44.5 
adult(s) without job 3.9 3.8 7.2 9.2 8.5 9.1 23.0 19.4 

Households         
living in Budapest 21.1 21.9 23.6 9.7 9.3 11.8 9.0 3.4 
living in villages 30.7 30.1 42.2 43.5 51.1 41.5 52.9 56.0 
consisting only young persons within the household (under 30 years old) 5.7 5.6 5.4 8.2 3.2 5.4 14.5 5.8 
consisting only old persons within the household (over 60 years old) 26.9 26.9 32.7 16.7 32.7 29.6 11.2 7.1 
with head of low level of education 29.1 27.4 43.4 42.7 59.7 58.1 59.9 63.4 
with head of high level of education 14.7 15.2 5.5 6.8 3.4 0.8 0.5 0.3 

Subjective poora) 6.6 8.4 6.2 7.4 42.5 49.4 30.1 28.4 
Consuming poorb) 9.9 10.6 8.0 18.0 18.8 31.7 21.5 44.3 
Housing poorc) 9.8 8.3 21.4 23.5 30.1 28.4 55.6 51.6 
Housing-equipment poord) 7.5 7.3 16.9 18.2 21.6 21.8 38.6 45.5 
Multiple deprivede) 0.7 1.4 11.7 18.7 32.2 36.2 77.7 78.8 

a) We asked the households’ opinion how much money would be needed for them to a low or very low living standard. If the households had more than 20 percent less income as needed 
according to their opinion for this minimum living standard, they were defined subjective poor.  

b) The household is consuming poor if the share of the food expenditure in their total current household expenditure exceeds 45 percent. 
c) The classification is based on the social environment of the dwelling and/or on the substandard quality of the dwelling.  
d) It refers to the provision of the household with consumer durables. Near 20 types of high-value domestic appliances were included. The index, based on standardized values for each 

appliance weighted using their distribution (based on z scores), was used to obtain housing-equipment deciles. Households in the bottom decile are housing-equipment poor. 
e) It is defined by means of 6 different types of poverty and social exclusion dimensions (e.g. income, expenditure, housing equipment, subjective poverty). If the household is poor from at 

least 3 aspects, it is considered multiple deprived.  



 

Table 5 

Characteristics of well-off and not well-off households, 2001 and 2002 
Neither income nor 
expenditure well-off 

(NW) 
Income well-off (IW) Expenditure well-off 

(EW) 
Income and expenditure 

well-off (I&EW) 

2001. 2002. 2001. 2002. 2001. 2002. 2001. 2002. 
Household characteristics 

year 

Average household size  2.7 2.7 2.8 2.6 2.5 2.4 2.4 2.4 

 Percentages 
One member family 24.2 23.7 16.1 18.4 25.9 31.6 24.7 26.5 
5 or more member family 10.0 10.0 6.7 5.4 5.5 4.2 2.8 5.0 
Households with         

no child 58.7 57.6 57.5 67.0 60.1 62.5 65.9 68.3 
3 or more children 5.7 5.6 3.0 2.4 3.1 2.8 2.5 3.8 

Households         
living in Budapest 17.3 17.2 42.7 39.9 27.2 26.3 37.0 40.8 
living in villages 35.4 34.3 19.2 20.0 24.0 23.1 21.2 20.4 
consisting only young persons within the household (under 30 years old) 5.2 4.6 8.9 10.2 7.5 12.3 13.4 12.3 
consisting only old persons within the household (over 60 years old) 30.0 28.6 4.3 12.1 18.5 16.6 6.4 7.0 
with head of low level of education 36.8 35.3 13.1 8.3 12.5 13.4 4.5 4.9 
with head of high level of education 8.3 8.8 38.9 37.5 26.7 28.9 50.3 48.8 

Subjective well off* 1.8 2.6 10.7 13.3 10.0 13.5 21.8 30.1 
Housing-equipment well of** 7.5 7.2 18.5 19.8 19.8 23.4 29.3 30.9 
Holiday abroad 13.7 15.6 12.9 23.3 31.1 31.6 30.7 35.5 

* It is defined by self-categorization. 
** Households in the top decile according to the housing-equipment index, see at Table 4. 
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Further striking figures can be found in the last five rows of Table 4 above. While al-
most half of the expenditure poor households considered themselves poor in 2002, this 
was much less frequent, less than 30 percent among the double poor households. In re-
spects of other dimensions of poverty, on the other hand, the proportions within the dou-
ble poor households exceed markedly those within either only income or expenditure 
poor households. While e.g. the proportion of housing-equipment poor households 
among the income poor was only 18 percent and 22 percent among the expenditure poor 
households, it amounted to nearly 46 percent among the double poor households. How-
ever, perhaps the most important and striking figures are shown in the last row: these in-
dicate that in both years multiple deprived and double poor households coincide to a 
great extent, almost four from every five double poor households are at the same time 
multiple deprived. 

Looking now at the opposite end of the income and expenditure distributions there are 
a number of similarities in the characteristics of the income and expenditure well-off 
households. However, significant differences can also be experienced in respect of a few 
characteristics. Thus it is remarkable e.g. that the proportions of single member house-
holds and those consisting of old persons only are considerably higher among expendi-
ture well-off households than among income well-off households.  

The opposite is true in respect of households with highly educated head and those 
living in Budapest. Among double well-off households the proportion of households 
with highly educated head is strikingly high, while that with low level of education is 
insignificant, much lower than among either groups of households well-off from one 
aspect only. As Table 5 data below indicate only 10-13 percent of income or expendi-
ture well-off  households  consider  themselves  being  well-off,  among  double  well-
off households, however, this rate is more than double: it was 22 percent in 2001 and 
30 percent in 2002.  From Table 5 it can be concluded, furthermore, that the proportion 
of households who spend their holiday abroad is, in today Hungarian circumstances, a 
good indicator of being really well-off, almost 36 percent of double well-off house-
holds gave account of such occurrence in 2002, while this proportion is some what 
lower among expenditure well-off households and lower, 13-23 percent among income 
well-off households. 

It is instructive, finally, to investigate and compare the structure of the different types 
of poor and well-off households by the age groups of the household head. First it must be 
noted that households with elderly head generally do not belong to neither poor nor well-
off households. On the other hand, if they are poor or well-off, this relates primarily their 
expenditures. We can differentiate between two types of old households: one part of them 
did not yet get accustomed to the consumer type society, they do not spend all their in-
comes, give preference to save instead. The other type of old households, on the other 
hand, is of spending type, i.e. their expenditures exceed their current income making use 
of their past savings. It is noteworthy, furthermore, in connection with Figure 6 that 
young and middle aged households are over-represented among all types of well-off 
households, as well as among double poor households, but the bulk of well-off house-
holds consist of households where the head is in the second half of his/her economically 
active life. 
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Figure 6. Percent of poor and well-off households by age group of the head, 
 2001 and 2002 
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CONCLUSION 

We deem that the efforts made in connection with our research were not fruitless, in 
fact they were remunerative. To the question: whether income or expenditure is better to 
characterize the welfare, the living conditions of households in Hungary today, a definite 
answer cannot be given, the answer depends on the aim of the investigation. However, 
our results indicate that we can describe the living conditions of the population, the poor 
and the well-off households more precisely if using both measures. Thus it can be con-
cluded that the answer to the question in the title is neither income nor expenditure, but if 
an HBS contains data on both the incomes and the expenditures of the households both 
variables are to be taken into account in a complex manner when investigating the living 
conditions, the poverty and the wealth of the households. Data unequivocally indicate 
that the really, deeply poor are those poor in respect of both income and expenditure and 
the really wealthy are well-off both in income and expenditure. 
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THE RETURN AND RISK PROFILE OF EQUITIES  
AND EQUITY PORTFOLIOS  

AT THE BUDAPEST STOCK EXCHANGE*
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This paper examines the risk and return characteristics of equities listed and traded in 
category ‘A’ at the Budapest Stock Exchange in the time period of 2001–2002. The perform-
ance of two portfolio strategies is also evaluated. It is shown empirically that a systematic 
portfolio allocation has several advantages to stock picking. Indeed, the portfolio strategies 
examined performed well not only on an ex post but also on an ex ante basis.   

KEYWORDS: Risk and return of equities. Equity portfolios. Budapest Stock Exchange. 

In response to the world-wide market downturn since 2000 and because of some unfa-
vourable governmental steps and taxation reasons, the turnover and the capitalisation on the 
equity market of the Budapest Stock Exchange (BSE) has fallen significantly. Particularly, 
in 2001 the market turnover fell by 60 percent and the capitalisation of equities decreased 
by 16 percent as compared to the end of the year 2000 (Statistical Report [2001], p. 6–8). 
The negative trends of the earlier year seemed to take an upward turn in 2002. It is indi-
cated by the fact that both the turnover and capitalisation of the equity market have in-
creased by more than 9 and 3.5 percent, respectively (Statistical Report [2002], p. 3–4). 

The aim of this paper is to study the risk and return characteristics of equities listed in 
category ‘A’ of the BSE over the period 2001–2002. The performance of two portfolio 
strategies is also analysed. We intend to show that a systematic portfolio allocation has 
several advantages over the approach of picking some individual equities to invest in, es-
pecially in times of undesirable market processes. 

The structure of the paper is as follows. The next section provides a description of the 
database used in the analysis and the methodology applied. Empirical results are pre-
sented next, followed by some concluding remarks.   
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DATA AND METHODOLOGY 

The database for the analysis consists of the daily closing prices of the equities listed 
and traded in category ‘A’ at the Budapest Stock Exchange and those of the BUX index 
within the period of 3 January 2001 to 23 December 2002. In 2001, the category system for 
equities at the BSE was revised and equities were grouped into two categories, ‘A’ and ‘B’, 
using a modified set of criteria (Annual Report [2001], p. 21.). The capitalisation of the eq-
uities listed in category ‘A’ represented more than 90 percent of the total equity capitalisa-
tion in both years studied in our current paper (Statistical Report [2001] and [2002], p.14.). 

Firstly, we excluded from our analysis the time series that were not complete, since it 
is not possible to compare securities on the base of different (or in any case, excessively 
different) time series. In particular, we excluded Graboplast and Csopak. The former was 
removed from the trading list in December 2001 and the latter was delisted in January 
2002. Although, Pick was also removed from the trading list on 7 November 2002, in that 
particular case, we had enough data to perform the analysis.  

Therefore, there were altogether 24 securities included in the study: Antenna 
Hungária, BorsodChem, Danubius, DÉMÁSZ, Egis, Fotex, Globus, Graphisoft, Humet, 
Inter-Európa Bank, MATÁV, Mezőgép, MOL, NABI, OTP Bank, Pannonplast, Pick, 
Prímagáz, RÁBA, Richter Gedeon, Synergon, TVK, Zalakerámia and Zwack Unicum. 
We also considered the BUX index. 

Moreover, we had to find and adjust the prices resulting from split and reverse split4:  

– In case of OTP, there was a 10-to-1 split in March 2002. It means that each share-
holder received 10 new shares with the face value of 1/10th of the original for each ‘old’ 
(pre-split) shares held, and the old shares were withdrawn. This type of transaction has 
the direct result that the face value of all shares held remains unchanged. In order to han-
dle the above-mentioned split properly, we multiplied all the after-split values (closing 
prices) in the time series by 10. 

– In case of Humet, a 1-to-10 reverse split was made in September 2002, in which the 
existing stocks were replaced by new ones, for each 10 ‘old’ share a new share was given 
with a face value 10 times higher than the original one. Therefore, we divided the after-
split prices by 10.5

We decided to use weekly returns as the basis for the analysis. In our opinion, to a 
large extent this time unit is not influenced by the events that have but a limited and only 
daily impact on the trading of securities and, at the same time, it has the right sensitivity 
to the changes in the trend of the time series. For this reason, we took the closing prices 
of Wednesdays, as it is a day in the middle of the week and therefore their prices do not 
carry the effect of variables related to the beginning nor the end of the week. In those few 
cases, when Wednesdays were not applicable for ordinary business reasons we took the 
nearest day at our disposal. 
 

4 The announcement on split/reverse split can always be found among the BSE News (Press Releases/Orders) on the 
homepage of the BSE: www.bse.hu.  

5 Throughout the analysis we took the viewpoint of the investor who keeps the security once acquired during the whole pe-
riod studied, i.e. we considered “buy-and-hold” decisions. Doing it otherwise, especially in case of split/reverse split, one can 
easily make a mistake when calculating returns based on unmodified security prices.      
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Based on the Wednesdays’ prices, the weekly rates of return were calculated as follows: 
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where  and  are the price and the rate of return on equity i on the week t, respec-
tively. The weekly return defined above is given in percentage and can be regarded as a 
relative measure of profitability. After this step we had altogether 51 data in each time se-
ries of weekly returns for both years (the only exception was Pick, for which 44 return 
data were available in 2002).  
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From the time series of the weekly returns we calculated6 the following values for 
each equities: 

Average (weekly) return: 
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where T is the number of weeks considered. 
Standard deviation of return7:  
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Covariance of return with that of the BUX:  
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where   is the return on the BUX index on the week t and tBUXR , BUXR  is the average re-
turn on the BUX. 

Risk index beta with respect to the BUX: 
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where  denotes the standard deviation of return of the BUX. BUXσ
Correlation of returns for each pairs of equities: 
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6 Strictly speaking, we estimated the parameters in question relying on the sample, namely on the time series of  weekly re-

turns. 
7 To be more exact, instead of the above formula we used the empirical unbiased estimator for the standard deviation. 
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The risk index beta above is regarded as a measure of  market related risk, often re-
ferred to as systematic risk (Levy–Sarnat [1984], p. 428–451). It can be interpreted and 
estimated as the slope of the linear time-series regression of the security return ( ) on 
the return of the market portfolio, the BUX ( ). In our case: 

tiR ,

tBUXR ,

                                                        titBUXiiti eRR ,,, +β+α=    /7/ 

where  is the error term (the deviation from the regression line) and tie , iα  is the regres-
sion constant (vertical intercept). 

Assuming that the error term is uncorrelated with the return on the market portfolio 
and taking the variance of both sides of Equation /7/ we obtain: 

                                                                /8/ 2222
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At this point we had all the input data to make a portfolio optimisation based on 
Markowitz’s [1999] theory, the Mean-Variance criterion. A portfolio is a combination of 
the different securities selected by the investor. Technically, it is a vector of weights, i.e. 
the percentages of the total capital invested into the different securities. The return on a 
security as well as on the portfolio of securities must be handled as a random variable, 
because it is unknown at the beginning of the investment period when the investment de-
cision making takes place.  

In the Markowitz model the rule upon which the selection between different investment 
options is made is the following: an option F is preferred to an option G if and only if  
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for all values of R (with strict inequality for at least one value of R).8 In /9/  and 

 denote the expected return and variance (the square of the standard deviation) of 
return, respectively. 
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The expected return is taken as an indicator of the investment’s average profitability; 
the variance of return serves as an indicator of its risk. Instead of the variance, the stan-
dard deviation of return can also be regarded and interpreted as a risk measure. As an es-
timator of the expected return, the average return (i.e. the mean) iR  can be used. In this 
context formula /8/ can be referred to as the decomposition of risk, where  is the 

systematic risk component and  is the non-systematic risk component (the former can 
also be called non-diversifiable risk and the latter is cited as diversifiable risk).  
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The return on a portfolio can be formulated as: 
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8 Regarding a more detailed discussion of the above mentioned Mean-Variance Efficiency Criterion and its applications 

see e.g. Markowitz [1999], p. 129–201 or Levy–Sarnat [1984], p. 235–355.   
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where  is the return on security i,  is the weight in security i (i.e. the proportion of 
money invested in it) and N is the number of securities held in the portfolio.  

iR ix

In order to determine the expected return on a portfolio, the weighted average of the 
expected returns of the securities it includes need to be calculated. Therefore, the portfo-
lio’s expected return can be expressed as: 

                                                               ∑
=

=
N

i
iip RxE

1
   /11/ 

where iR  is the average return on security i. 
The variance of a portfolio is influenced both by the variance of the individual securi-

ties within and by the correlation between the various pairs of securities:  
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The portfolios we seek to identify are the efficient portfolios. A portfolio is efficient if 
there is no other portfolio preferred with respect to the conditions in /9/. It means that an 
efficient portfolio is the investment with the highest expected return on a certain level of 
risk or it is the one with the lowest risk on a certain level of expected return. 

In order to determine the combinations of securities that comprise the efficient portfo-
lios one has to solve the optimisation problem as follows:  
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The objective function expresses the aim to identify the portfolio weights ( ) for 

each feasible expected portfolio return ( ) so that the risk of the portfolio ( ) is 
minimised. The expected return, the standard deviation of return of each security and 
the correlation matrix of returns are used as the input parameters estimated from the 
sample. The last constraint in /13/ means that only long positions are allowed, i.e. short 
sales are excluded. It implies that it is not possible to sell securities the investor does 
not own and use the proceeds to invest in other securities. This restriction is in coinci-
dence with the regulation predominant at the BSE where short sales are forbidden.

ix

pE 2
pσ

9  
 

9 A detailed discussion of short sales can be found in Sharpe–Alexander [1990]. 



THE RETURN AND RISK PROFILE OF EQUITIES 27 

To make the optimisation in practice we used the software Invest10, which has been 
developed to accompany ‘Modern Investment Theory’ by Haugen [1997].  

EMPIRICAL RESULTS 

The main figures on risk and return characteristics of the equities are presented in Table 
1 and Table 2, for the year 2001 and 2002, respectively. In addition to the equities, the 
BUX index is also shown in the tables. The BUX index is used as the proxy of the market 
portfolio, namely the benchmark with respect to the beta values are estimated. Beyond the 
average (weekly) return and the standard deviation, we report the performance ratio, de-
fined as the average return per unit of standard deviation. Because the standard deviation is 
considered as a measure of risk, the performance ratio can be regarded as the risk-adjusted 
average return.11 Furthermore, we list the beta, the t-statistic (that shows whether beta is 
significantly different from 0), the R2 (that indicates the explanatory power of the model 
/7/) and also the term labelled by risk ratio. According to our definition, the last one is the 
ratio of the non-systematic (or the so-called diversifiable) and the total risk component (see 
the decomposition of risk given by formula /8/). 

Table 1 

The main risk and return figures of category ‘A’ equities of the BSE in 2001 
Average  
return 

Standard de-
viation Equity 

(percent) 

Performance 
ratio Beta Risk ratio t-value R2

ANTENNA –1.23 6.21 – 0.89 0.82 3.30* 0.18 
BCHEM –0.39 7.16 – 1.56 0.58 6.00* 0.42 
DANUBIUS –0.43 4.36 – 0.15 0.99 0.75 0.01 
DÉMÁSZ –0.60 5.20 – 0.22 0.98 0.90 0.02 
EGIS 0.18 3.89 0.05 0.57 0.81 3.41* 0.19 
FOTEX –0.54 7.53 – 1.06 0.82 3.26* 0.18 
GLOBUS 0.70 6.08 0.11 0.96 0.78 3.73* 0.22 
GRAPHISOFT –1.07 8.53 – 1.32 0.79 3.64* 0.21 
HUMET –0.64 9.15 – 0.38 0.98 0.89 0.02 
IEB 0.28 4.93 0.06 0.60 0.87 2.71* 0.13 
MATÁV –0.11 6.60 – 1.87 0.28 11.16* 0.72 
MEZŐGÉP –0.27 4.72 – 0.56 0.87 2.67* 0.13 
MOL 0.21 4.36 0.05 1.14 0.39 8.75* 0.61 
NABI –0.30 4.75 – 0.79 0.75 4.01* 0.25 
OTP 0.20 3.18 0.06 0.69 0.58 6.00* 0.42 
PICK –0.72 7.09 – 0.78 0.89 2.46* 0.11 
PPLAST –0.92 5.89 – 1.11 0.68 4.76* 0.32 
PRÍMAGÁZ 0.59 8.67 0.07 1.12 0.85 2.94* 0.15 
RÁBA –0.81 5.57 – 0.85 0.79 3.57* 0.21 
RICHTER –0.03 3.14 – 0.44 0.82 3.25* 0.18 
SYNERGON 0.35 12.96 0.03 1.70 0.85 2.98* 0.15 
TVK –0.34 8.48 – 1.65 0.66 5.03* 0.34 
ZALAKERÁMIA –0.59 6.11 – 0.90 0.80 3.46* 0.20 
ZWACK 0.00 3.41 – 0.31 0.93 1.95** 0.07 
BUX –0.05 2.99 – 1.00 – – – 

* β is significantly different from zero at 5 percent level. 
** β is significantly different from zero at 10 percent level. 

 
10 The software was programmed by David Y. Tan, Joe Dada III, Kim Peters and Craig Lewis.  
11 However, one should be cautious in using the performance measure when the average return is negative because its 

value is completely misleading. If we compare two securities with the same negative return, the negative performance ratio is 
higher for the security which is less risky. That is why we simply omitted the values in the case of equities with negative aver-
age return.  
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The first result we got from our research is that the number of stocks with positive 
average return is only 7 in 2001 and 13 in 2002 out of the total pool of 24 equities ana-
lysed (the rows of the tables belonging to the securities with positive returns are high-
lighted). Indeed, the market passed through a crisis for which the main causes are well-
known. The negative trend in security returns was a global phenomenon and therefore we 
consider it to be a ‘systematic’ reaction of the Budapest Stock Exchange to a world-wide 
recession. It is confirmed by a working paper (A csatlakozás előtt álló… [2003], BSE 
Publication, p. 6) that describes the main characteristics of the stock exchanges of the ac-
cession countries of Central and Eastern Europe in the period of  2001-2002. As an indi-
cator of the global downturn in Europe, the study refers to a –35 percent change in the 
value of the FTSE Eurotop 100 index (which consists of  the shares of 100 blue-chip 
companies in the European Union) from 2001 to 2002. 

In 2001 the average weekly return ranged between –1.23 and 0.7 percent and the 
standard deviation of returns altered between 3.14 and 12.96 percent. In 2002, the aver-
age return was within the range of –2.08 and 1.47 percent, while the standard deviation of 
returns was between 2.53 and 12.91 percent. 

The performance ratio seems to be quite low on average: few stocks have a good pay-
out for the risk implicit in the share. In 2001, the highest performance ratio (0.11) was 
registered for the equity with the highest average return (Globus). In 2002 IEB has shown 
the highest performance (0.2) with a relatively big average return (1.12%) and modest 
risk (5.7%). 

Table 2 

The main risk and return figures of category ‘A’ equities of the BSE in 2002 
Average  
return 

Standard de-
viation Equity 

(percent) 

Performance 
ratio Beta Risk ratio t-value R2

ANTENNA -0.16 5.90 – 0.89 0.72 4.41* 0.28 
BCHEM 0.19 3.67 0.05 0.45 0.81 3.36* 0.19 
DANUBIUS 0.41 4.89 0.08 -0.11 0.99 -0.54 0.01 
DÉMÁSZ 0.38 3.45 0.11 0.30 0.91 2.25* 0.09 
EGIS 0.60 5.42 0.11 0.89 0.66 5.02* 0.34 
FOTEX -0.62 5.80 – 0.94 0.67 4.89* 0.33 
GLOBUS 0.16 4.35 0.04 0.37 0.91 2.18* 0.09 
GRAPHISOFT -1.49 5.67 – 0.78 0.76 3.90* 0.24 
HUMET -2.08 12.91 – 0.42 0.99 0.81 0.01 
IEB 1.12 5.70 0.20 0.73 0.80 3.55* 0.20 
MATÁV -0.06 4.61 – 1.06 0.33 9.95* 0.67 
MEZŐGÉP -0.50 5.29 – 0.56 0.86 2.80* 0.14 
MOL 0.24 3.93 0.06 0.85 0.42 8.26* 0.58 
NABI -0.18 3.93 – 0.37 0.89 2.46* 0.11 
OTP 0.75 5.17 0.15 1.33 0.17 15.45* 0.83 
PICK 0.39 4.91 0.08 0.02 1.00 0.11 0.00 
PPLAST -1.43 4.69 – 0.65 0.76 3.97* 0.24 
PRÍMAGÁZ 1.47 12.42 0.12 0.90 0.93 1.85** 0.07 
RÁBA -1.02 3.61 – 0.34 0.89 2.50* 0.11 
RICHTER 0.07 4.81 0.01 1.03 0.43 8.04* 0.57 
SYNERGON -0.45 5.81 – 1.02 0.61 5.57* 0.39 
TVK 0.57 4.42 0.13 0.12 0.99 0.68 0.01 
ZALAKERÁMIA -0.27 4.40 – 0.47 0.86 2.83* 0.14 
ZWACK 0.15 2.53 0.06 -0.01 1.00 -0.05 0.00 
BUX 0.26 3.54 – 1.00 – – – 

* β is significantly different from zero at 5 percent level. 
** β is significantly different from zero at 10 percent level. 
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Based on the figures reported in Table 1 and Table 2, we can observe some improve-
ment throughout the two-year period. The crisis had its worst effects in 2001 and this line 
of reasoning can be  supported by several facts:  

– there were only 7 securities with positive average returns in 2001 against 13 in 
2002.  

– when comparing the values of average return and standard deviation of return (risk) 
for the same security we realise that in 16 cases (out of the 24) the average return was 
higher, and in 16 cases the risk was lower in 2002 than in 2001. 10 equities had a prefer-
able risk and return profile (i.e. the higher return and lower risk at the same time) in 2002 
than in the previous year. Consequently, in 2002 there were only two securities with 
lower average return and higher risk as compared to 2001. 

– the grand mean of the  average  returns was higher in 2002 (–0.07%) than in 2001 
(–0.27%) but it was still negative, and it was accompanied by a lower mean risk (stan-
dard deviation). For the latter the respective values were 5.35 percent (in 2002) and 6.17 
percent (in 2001). 

– by looking at Figure 1, where the values of the BUX index are displayed over the 
period studied, it is easy to recognise that the negative trend of price movements has 
changed to a positive one. This can be confirmed by calculating and comparing the an-
nual returns. In fact, the annual return of the BUX index was –4.91 percent in 2001 and 
10.7 percent in 2002. According to the Annual Report (BSE [2002], p. 4), considering the 
return on the BUX in 2002, the BSE became the fourth best-performing exchange in the 
world. 

Figure 1. The values of the BUX index from January 2001 to December 2002 
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It is worth mentioning that the annualised standard deviations12 fall into the range of  
22.6–93.5 percent in 2001 and 18.2–93.1 percent in 2002, respectively. The annualised 
 

12 The annualised standard deviation can be calculated by multiplying the weekly standard deviation by 52 . 
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mean values of the standard deviation are 44.5 percent (2001) and 38.6 percent (2002). 
These values are high even in the context of emerging markets (for comparison see Bern-
stein [2000], p. 6 and 9-28).   

When looking at the ‘evolution’ of betas it can be observed that in 18 cases out of 24 
the beta of the same equity has decreased over the period studied. The average value of 
beta was 0.9 in 2001 and 0.6 in 2002. In 2001 altogether 9 equities fell into the aggres-
sive category, with a beta higher than 1. In 2002 there were only 4 aggressive equities. 
All in all, the equities seemed to become more defensive in 2002 than they were in 2001. 

With only a few exceptions, the t-statistics support the notion that beta is significantly 
different from zero. However, the explanatory power of  model /8/ which explains the 
changes in equity prices through that of the market (represented by the BUX) is very low 
in general. The equity with the highest R2 value is MATÁV in 2001 and OTP in 2002. 
This can be explained by the fact that these are the equities with the highest capitalisa-
tion, and also with the highest weight in the BUX basket (Statistical Report [2001], p. 10, 
18 and also Statistical Report [2002], p. 5, 14). Consequently, the overall performance of 
the market is highly influenced by price fluctuations of these securities (maybe rather 
than the other way around).  

So far we have not discussed the risk ratio, namely the ratio of the non-systematic and 
the total risk. As shown in Table 1 and Table 2, the risk ratio is very high in general. On 
average, it is almost the same in the two years studied (0.77 in 2001 and 0.76 in 2002).  

It is remarkable that the risk ratio and the value of R2 sum up to 1. It is simply a tech-
nical result, implied by the definition of beta and the derivation of formula /8/ for decom-
position of risk.13   

The results gained from our study on individual securities confirm that the BUX has 
quite a low influence on the equity prices. It follows that the resulting beta values need to 
be interpreted and used with caution. Therefore, we do not suggest to apply beta as a risk 
measure instead of the standard deviation of returns (or equivalently the variance), since 
a fair amount of volatility in security returns is not accounted for14.  

In the construction of portfolios for each year we decided to involve securities with 
positive return only. This way, the number of equities involved in the portfolio optimi-
sation was 7 in 2001 and 13 in 2002. As mentioned before, the input parameters for 
portfolio optimisation are the average returns, the standard deviations of returns (see 
highlighted values in Table 1 and 2) and the correlations between the different pairs of 
security returns. It is clear (see formula /12/) that the lower the correlation terms of the 
different pairs of security returns are, the higher the risk reduction benefit of a portfolio 
can be. 

The correlation terms for the equities with positive average return are reported in Ta-
ble 3 and Table 4. 

In 2001, all the correlation coefficients were positive, with values below 0.5. The 
highest term was experienced between the returns of MOL and Inter-Európa-Bank (0.47). 
The average of the correlation terms is 0.23 (by excluding the ones located in the diago-
nal). 
 

13 A proof of this statement can be found in Levy–Sarnat [1984], p. 436-437. 
14 An overview of the problems related to beta as a risk measure is given in Bugár [1998a]. 
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Table 3 

Correlation matrix of equity returns in 2001 
Equity EGIS GLOBUS IEB MOL OTP PRÍMAGÁZ SYNERGON 

EGIS 1.00 0.32 0.08 0.35 0.20 0.04 0.02 
GLOBUS  1.00 0.30 0.36 0.23 0.22 0.20 
IEB   1.00 0.47 0.03 0.36 0.07 
MOL    1.00 0.31 0.23 0.10 
OTP     1.00 0.28 0.33 
PRÍMAGÁZ      1.00 0.43 
SYNERGON       1.00 

Table 4 

Correlation matrix of equity returns in 2002 
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BCHEM 1.00 –0.04 0.04 0.15 0.27 0.02 0.37 0.45 0.06 0.07 0.26 0.42 –0.08 
DANUBIUS 1.00 0.05 –0.02 –0.15 0.22 –0.03 –0.13 0.09 –0.02 0.07 0.30 –0.05 
DÉMÁSZ  1.00 0.27 0.04 0.33 0.26 0.20 –0.04 –0.03 0.19 0.05 0.24 
EGIS   1.00 0.10 0.27 0.36 0.41 –0.08 0.03 0.57 0.09 0.11 
GLOBUS   1.00 0.12 0.36 0.32 0.11 0.06 0.23 –0.04 0.19 
IEB   1.00 0.29 0.31 –0.12 0.14 0.40 –0.02 0.00 
MOL   1.00 0.64 0.01 0.25 0.37 0.17 0.26 
OTP   1.00 0.05 0.17 0.65 0.08 –0.08 
PICK   1.00 0.07 –0.01 0.01 0.33 
PRÍMAGÁZ   1.00 0.23 0.15 0.09 
RICHTER   1.00 0.07 –0.14 
TVK    1.00 0.02 
ZWACK     1.00 

In 2002, the average is significantly lower, with the value of 0.15. We can also ob-
serve the presence of 17 negative coefficients (out of 78), which amount to about one-
fifth of the terms. The highest correlation registered is 0.65 (for the pair of OTP and 
Richter) and the lowest one is –0.15 (in case of Danubius and Globus).  

With a view to the portfolio optimisation, we made the calculations for each year with 
the help of the software Invest, excluding short sales as they are not applied in practice 
(otherwise, it would be a mere theoretical exercise). 

The results in terms of efficient frontiers are shown in Figure 2 and 3. The continuous 
curve in each figure represents the efficient frontier. The risk and return combination of 
the individual equities involved in portfolio optimisation is given by the discrete points 
(each point is labelled by the name of the equity). In addition, the risk and return combi-
nation for the so-called Naïve Portfolio and that of the BUX is also plotted in the figures. 
The Naïve Portfolio is the equally weighted portfolio, which contains all the securities 
included in the portfolio selection process with equal proportion for each. Clearly, there 
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is a special portfolio denoted by MVP (Minimum-Variance-Portfolio), the efficient port-
folio with the lowest possible risk (variance of return). 

Prior to performing the analysis of the efficient portfolios there is an important issue 
that needs clarification. Technically, we have an infinite number of efficient portfolios 
represented by the different risk-expected return combinations to choose from. As it can 
be seen in Figures 1 and 2, the average return is a strictly (monoton) increasing function 
of the risk (measured by the standard deviation). It means that undertaking a higher risk 
is compensated by a higher level of expected return. The software we applied to conduct 
the research gives an opportunity to choose any portfolio on the efficient frontier by typ-
ing in the required return on the portfolio. However, in reality the investor has to select a 
particular portfolio among the efficient ones, i.e. to follow a specific investment strategy. 
We regard it as a systematic portfolio allocation. In this paper we evaluate the perform-
ance of two portfolios, namely we simulate two investment strategies. The first one cre-
ates the Naïve Portfolio (NP) the second one constitutes the Minimum-Variance-Portfolio 
(MVP). Constructing the NP is probably the simplest way to benefit from diversification 
without requiring any sophisticated method for portfolio optimisation. The advantage of 
the MVP, especially in a risky period with highly volatile equity returns, is that it has the 
highest potential for reducing the risk. In brief, these were the reasons for choosing the 
above mentioned two portfolio allocation strategies.  

Looking at and comparing Figure 2 and 3 it can be realised that the equity with the 
highest average return, as the extreme right point of the curve, is contained in the effi-
cient frontier (in 2001 the equity with the highest return was Globus and Prímagáz in 
2002). It is always the case when short sales are excluded. In general, the portfolio is be-
coming more diversified, i.e. contains more securities as we are “going down” on the ef-
ficient frontier towards the MVP.15  

Figure 2. Risk and Return of Equities and Efficient Portfolios in 2001 
(percent) 
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15 Here we will not report the composition of the efficient portfolios other than the MVP. For readers interested, the results 
are available from the authors upon request.  
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In 2001, the average return and the risk of the efficient portfolios was in the range of 
0.21–0.70 percent and 2.42–6.08 percent, respectively. Looking at Figure 2 it can be ob-
served that all individual equities (except Globus) and the BUX are far from being effi-
cient. In choosing any of them, there is  always an efficient portfolio with dominant risk-
return characteristics, namely one with a higher average return for the same level of risk 
or with a lower risk for the same level of expected return. The above statement is more or 
less true for 2002 as well, with the exception of Prímagáz (which is efficient). But in that 
year there is one more exception: Inter-Európa-Bank, which is ‘nearly efficient’. Need-
less to say, it was the equity with the highest performance. In both years the performance 
of the NP seems to be quite good (below this issue is analysed more in detail). In 2002 
the ranges, in which the average return and the risk of the efficient portfolios fell, were 
wider than those of  2001. The range of the average return was 0.24–1.47 percent and the 
risk fell into the interval of 1.66–12.42 percent. 

It is remarkable that the position of those equities involved in the 2001 and 2002 port-
folio as well has changed greatly on the ‘risk-return map’, referring to a change both in 
their risk-return profile and in their performance from 2001 to 2002. The only exception 
is MOL with a relatively stable risk and average return. However, in five cases out of the 
total six, we can report an improvement in performance. 

Figure 3. Risk and Return of Equities and Efficient portfolios in 2002  
(percent) 
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In Table 5 the composition of the MVP is presented for both years. In 2001, the MVP 

has contained only 3 equities out of the 7 included in the portfolio optimisation. In 2002, 
it was more balanced in this sense, excluding only 4 out of the total pool of 13 securities 
considered. Obviously, each year, the equity with the lowest risk (standard deviation of 
return) had the highest weight in the MVP (see Tables 1 and 2 for comparison). In 2001 
OTP and in 2002 Zwack had the highest proportion, 50.1 percent and 40.4 percent, re-
spectively. It might seem surprising that MOL had no part in the portfolios of the years 
studied, despite the fact that it had lower risk than some of the equities that are included.  
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Table 5  

Composition of the Minimum Variance Portfolio (MVP)  
(percent) 

Equity 2001 2002 

BCHEM – 16.7 
DANUBIUS – 11.4 
DÉMÁSZ – 11.6 
EGIS 28.5 0.0 
GLOBUS 0.0 5.6 
IEB 21.4 1.2 
MOL 0.0 0.0 
OTP 50.1 0.0 
PICK – 2.7 
PRÍMAGÁZ 0.0 0.0 
RICHTER – 7.0 
SYNERGON 0.0 – 
TVK – 3.4 
ZWACK – 40.4 

A likely explanation is that MOL’s return on average has a higher correlation with the 
other security returns involved in portfolio optimisation than the other equities. Accord-
ing to formula /12/, when the risk of the portfolio is being minimised, it is not only the 
risk of the individual equities taken into account but the correlation between the returns 
as well. 

Next, we examine the performance of the MVP and that of the NP. The BUX index is 
used as a benchmark for evaluation. The results are summarised in Tables 6 and 7. 

Table 6 

The main characteristics of two portfolio strategies and the BUX index in 2001  

Average Return Standard Deviation 
Denomination 

percent 

Performance 
 Ratio Beta Risk 

 Ratio 

MVP 0.21 2.42 0.087 0.64 0.38 
Naïve Portfolio 0.36 3.85 0.094 0.97 0.43 
BUX –0.05 2.99 – 1.00 – 

In drawing a comparison of the risk of the MVP in Table 6 to the risk of the individ-
ual equities involved in the portfolio optimisation (see highlighted rows in Table 1), it 
can be calculated that the standard deviation of the MVP is about 24 percent and  81 per-
cent lower than that of the individual equity with the lowest and the highest standard de-
viation, respectively. Therefore, in 2001 the risk reduction benefit from creating the MVP 
can be regarded as quite good. Further, the risk and return parameters of the MVP as 
compared to those of the NP are quite distinct. The return on the MVP is lower and it is a 
less risky portfolio. In itself, the MVP is designed to reduce the risk, hence its lower ex-
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posure to risk through investment does not come as a surprise. Still, it is remarkable that 
the performance of the NP is superior to that of the MVP. Both portfolio allocation 
strategies show a low performance but still a better one than the individual equities (ex-
cept Globus16). It is also worth mentioning that the NP has a higher beta17 and the higher 
risk ratio as well. Using the BUX index as a benchmark to evaluate the performance of 
the two portfolios, all in all, we can conclude that their performance is not bad compared 
to the general state of the stock market in 2001. 

In 2002, both the performance of the BUX and the two portfolio allocation strategies 
have improved greatly as compared to 2001. It is due to the higher average returns and, in 
case of the two portfolio allocation strategies, to a lower level of risk as well. The per-
formance ratio of the MVP is more than one and a half times higher than it was in 2001.   

Table 7 

The main characteristics of two portfolio strategies and the BUX index in 2002  

Average Return Standard Deviation 
Denomination 

percent 

Performance 
 Ratio Beta Risk 

 Ratio 

MVP 0.24 1.66 0.145 0.20 0.82 
Naïve Portfolio 0.50 2.37 0.211 0.53 0.38 
BUX 0.26 3.54 0.073 1.00 – 

The NP has produced an even greater impovement in terms of performance: its per-
formance ratio is more than two times higher in 2002 than it was in 2001. The betas of 
both portfolios are lower than they were in 2001. The risk ratio of the MVP is high, 
which is due to its low beta, namely its low sensitivity to the market volatility. 

Comparing the results shown in Table 7 to those presented in Table 2 we can con-
clude that both portfolios outperform almost all individual equities. Indeed, for the NP 
we got a higher performance ratio than for any of the equities. The NVP was outper-
formed by IEB and OTP only. It is notable that the NP repeatedly had a better perform-
ance than the MVP in 2002. In a similar research made on blue-chips traded at BSE, 
Bugár [1998b] has also reported on the very good performance of the NP.  

As shown in Figure 3, the NP is located rather close to the efficient frontier. Decid-
edly, the efficient portfolio with the same average return (0.5%) as the NP has a standard 
deviation of 1.93 percent. So, it has a performance ratio of 0.259, which is 23 percent 
higher than that of the NP. The creation of an efficient portfolio is a rather sophisticated 
process, requiring time and effort to estimate the parameters and to implement the portfo-
lio optimisation. Taking this fact into account, we can safely say, it is not necessarily 
worth to carry out the process. 

One can argue that our analysis was performed on an ex post basis. In fact, the prob-
lem of this approach is that it only reveals past the event what should have been done ear-
 

16 An investment into Globus is much more risky than the above-mentioned portfolio selection strategies. Here it should be 
emphasised that portfolio allocation pays in terms of stabilising the return, i.e. reducing the risk but not necessarily in terms of 
increasing the performance.  

17 The beta of a portfolio is a weighted average of the securities’ betas included in it. 
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lier on. Consequently, the benefits detected are potential only so they cannot be realised. 
In order to overcome this difficulty we also examined the performance of the MVP and 
the NP on an ex ante basis, i.e. we determined the returns which would have been real-
ised on average in 2002 on the portfolios set up in 2001 and kept unaltered. 

Based on the information in Table 2 and Table 5, the average (weekly) return in 2002 
on the MVP(2001) is: 

(%).......)( 790501075021401212850602001 ≈⋅+⋅+⋅=MVPR . 

Similarly, the average return can be realised in 2002 on the NP(2001): 

(%).).......()( 56045047175024012116060
7
1

2001 ≈−+++++⋅=NPR . 

As it can be seen the MVP outperformed the NP on an ex ante basis. Comparing these 
results to the average return on individual equities presented in Table 2, it is clear that in 
2002 there are only two equities which performed better than the MVP(2001) and five 
equities which outperformed the NP(2001). In addition, based on the prior information on 
the average returns as well as the optimal portfolio weights in 2001, the average return 
was even higher on the portfolios set up at the end of 2001 than it was in case of the port-
folios produced with the help of the data from 2002 and including the equities with posi-
tive return into the portfolio (see Table 7). It served as a lesson to prove that a systematic 
portfolio allocation by using a ‘buy and hold’ strategy can be more successful than con-
tinuously changing the equities selected and included in the portfolio. To conclude, in the 
long run it might be more profitable to apply the same portfolio strategy on the stable set 
of securities.    

* 

In this paper we studied the risk and return characteristics of equities listed and traded 
in category ‘A’ at the Budapest Stock Exchange over the time period 2001-2002. We also 
made a portfolio optimisation based on Markowitz’s [1999] theory, the Mean-Variance 
criterion. The expected return was taken as an indicator of the investment’s average prof-
itability, and the standard deviation of return served as an indicator of its risk. Further-
more, we estimated the beta values, and tested the explanatory power of the linear regres-
sion model of security return on the return of the BUX index. The performance of two 
portfolio strategies was also evaluated. The major findings of the analysis can be summa-
rised as follows. 

Both the analysis of individual equities and the efficient portfolios supported that the 
stock exchange passed through a crisis which had its worst effects in 2001. Indeed, we 
experienced an increase of the average return and the performance and a decrease of the 
risk from 2001 to 2002. 

It was found that the influence of the BUX on equity prices is quite low. As a conse-
quence, the beta values we got should only be interpreted and used with care. On the ba-
sis of our empirical findings it cannot be recommended to apply beta as a risk measure 
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instead of the standard deviation of returns, because in this case a large part of volatility 
in security returns would not be explained.  

On an ex post basis the Naïve Portfolio had a better performance than the Minimum-
Variance-Portfolio in both years. Considering that to create an efficient portfolio is a so-
phisticated process requiring time and effort to estimate the parameters and to implement 
the portfolio optimisation, it seems that we can be satisfied with the benefits promised by 
the naïve way of diversification. 

On an ex ante basis the Minimum-Variance-Portfolio has shown a better performance 
than the Naïve Portfolio. However, both of them resulted in an even higher average re-
turn than their ex post counterparts. The ex post portfolios have been set up under the 
condition of using the data from 2002 and involving the equities with positive return into 
the portfolio, while their ex ante counterparts have been constructed on the basis of utilis-
ing prior information on the average returns as well as the optimal portfolio weights at 
the end of 2001. Therefore, it has been confirmed that a systematic portfolio allocation by 
using a ‘buy and hold’ strategy can be more successful than continuously changing the 
equities selected and included in the portfolio. 
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DISTANCES AND DIRECTIONS OF INTERNAL  
MIGRATION IN HUNGARY*

SÁNDOR ILLÉS1

The gravity centre is a classic regional analytical method which requires masses. This 
mass can be a multitude of people but also any other absolute quantity. The gravity centres of 
the migration can be considered as one of the variants of the gravity centres of the popula-
tion. Adopting ourselves to the nature of the migration flows we can not grasp the migration 
itself with one but only with two gravity centres: with the gravity centre of out-migration and 
the gravity centre of in-migration. The gravity centre of migration must characterise the re-
gional distribution of the migrate subpopulation directly before and after the event of migra-
tion. Our purpose was to state the average distance and characteristic direction of the internal 
migration flows in Hungary. Used the centrographic approach we got a detailed picture on 
the development of the direction and distance of migration.   

Data used for the research were the data of internal migration by settlements for the years 
1984-2002 and the geographical co-ordinates of the same settlements, both supplied by the 
Hungarian Central Statistical Office. The methods were simple. The gravity centre is the 
weighted arithmetic means – weighted with the migrants – of the co-ordinates of latitude and 
longitude of the settlement centres. After all the gravity centres of migration are nothing else but 
the mean values of the regional distribution of the out-migrants and in-migrants. Various meth-
ods are known for the characterisation of the situation around the gravity centre. One of them, 
Bachi’s ‘d’ standard distance was calculated to prove two kinds of spatial selectivity of migra-
tion in Hungary. In this contribution we chose the whole country as a spatial unit to be studied, 
but regional and county gravity centres were computed during the research. 

The gravity centres of out-migration and in-migration were separated from one another 
and were very near to the gravity centres of the total population. But they were not exactly in 
the same place. Conclusion can be made that there are territorial selectivities: on the one 
hand between the sending and receiving settlements (type 1), on the other hand the spatial 
distribution of the migrate subpopulation is not simply a representative sample of the spatial 
distribution of total population (type 2). In the country as a whole the gravity centres of in-
migration located to the west from the gravity centres of out-migration, thus in the period 
studied the dominant direction of the migrations proceed to west. The average length of the 
way made by the permanent migrants was greater compared to the temporary migrants all of 
the investigated period. The distances between the national gravity centres of migration 
gradually shortened until 1997, after which a slight increase could be observed. 

KEYWORDS: Internal migration; Gravity cenre method; Regional selestivity. 
  

* Preliminary version of the paper was discussed at the European Population Conference, Warsaw, Poland, 26-30 August, 
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The significant social structure changes which had taken place from the 1950’s on-
wards entailed increasing territorial mobility (it is enough to think of the effects of indus-
trialisation and the forced emergence of agricultural co-operatives) (Sárfalvi [1965]; 
Compton [1971]; Kovács [1985]). The end of the 1980’s, however, brought along 
changes in a very different character (Rédei [1986]; Daróczi [1998]; Kovács [2002]). 
Since after international migration came into the limelight at the end of the 1980’s, ex-
aminations of internal migration movements necessarily became sidelined. Besides, in-
ternal migration took an unexpected turn in the period of transformation in Hungary.  

The effect of political, economic and social changes the transformation of the 1980’s 
appeared not in the increasing of levels but precisely in a sharp decline in the volume of 
migration within Hungarian society. The transformation affected individuals and families 
in such a way that they came to discard or postpone their possible plans of move. The 
dominant experience of this period of ‘metamorphosis’ was a feeling of insecurity which, 
however, in most Central and Eastern European countries did not reach the level of utter 
hopelessness required for inducing a mass scale internal and international migration. The 
unpredictability of the near future kept people place-bound and they did not willingly 
make risky plans for migration in the early 1990’s. They drew a greater sense of local se-
curity from having an established home and a network of personal contacts than might 
have been afforded even by a solid job offer at a distant location. The relatively small 
number of people who accepted risky migration in return for considerable advantages 
tried their luck not mainly within their own country but in one of the Western countries 
(Illés [2000]; Trócsányi–Tóth [2002]). 

When in the mid-1990’s the most difficult period of transformation was over, the extent 
of internal migration showed a radical turning point. After a period of low intensity, grow-
ing migration levels indicated the beginning of a new era. This increasing tendency, varying 
with odd waves, showed that Hungarian society was recovering from its previous paralysed 
state. It is hard to predict the end-point of this growing tendency but likely it is going to last 
until the end of the delay period that stops free movement of persons (the period of deroga-
tion lasting for 0 plus 2 plus 3 plus 2 years in EU context) (Lukács–Király [2001]). 

Level of migratory movements  

The use of total migration and residential mobility rates affords a better judgement 
and understanding of the actual levels of spatial mobility than the use of the absolute fig-
ures. From a methodological point of view, total rates are able to remove the distortions 
arising from the changes of population number and age composition. The meaning of 
these rates is easily understood – they show the amount of migration and residential mo-
bility that would occur in the life of one average person if migratory conditions of a par-
ticular period of time were to become fixed as permanent. This indicator shows the same 
changes as the changes of absolute numbers and intensity rates, in other words the 
changes of age composition had no significant influence on the variations in the trends 
(Illés [2002]). 

We may state that from the second half of the 1980’s onwards more people moved 
homes within their own town or village than to other settlements. Previously, only 
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migration was taken into account in judging the level of territorial mobility. This made 
the Hungarian population appear highly immobile. It has been successfully shown that 
besides the low migration level there is a supplementary movement (almost identical in 
number) within the given township. Adding the two forms of mobility together, their sum 
no longer allows us to call the Hungarian population immobile in general within the 
country’s boundaries. 

Figure 1. Total migration rate (TMR) and the total residential mobility rate (TRMR) 
 in Hungary, 1990–2002 
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Figure 2. Total spatial mobility rate (TSMR=TMR+TRMR) in Hungary, 1990–2002  
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Research context 

The questions of the gravity centre have an extensive international and Hungarian 
literature. Here we only mention the calculations regarding Hungary and their subject 
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matters. The method was used first on the epoch of World War II for practical pur-
poses, namely at the preparatory works of the placement of the big railway stations of 
Budapest, and at the planning of the distribution places of essential foodstuff (Bene 
[1961] p. 99.). In these cases the purpose was obviously to indicate the nearest points 
reachable to larger masses of people, thus they tried to minimize the length of the way 
to these points. 

Later the calculations concerning the gravity centre were connected with the total 
population and were made already considering the whole country, or a part of the country 
as a regional unit (Bene [1961]; Bene–Tekse [1966]; Nultsch [1968]; Mészáros [1995]), 
mainly for scientific purposes. It can be stated that with the increase in the size of the ex-
amined area the calculations relating to the gravity centre have a decreasing practical and 
a growing theoretical significance. For calculations of the gravity centre not only the 
multitude of people was used as a mass. Using this method, József Nemes Nagy [1987] 
proved the translocation of the industrial gravity centres of the former Soviet satellite 
states to the east, so finally he could determine the dominant geographical direction of 
the long-term moving of the industrial production. One of the last users was Zoltán 
Sümeghy [1998a]; [1998b] who presented the shift of the gravity centres of persons of 
Hungarian and Slovakian nationalities on the area of recent Western Slovakia. It is al-
ready of the near past that Tamás Ábrahám [2000], József Nemes Nagy [2002] and Zsolt 
Bottlik [2002] also used this method at their research. 

From the outline of the history of this topic in Hungary it can be assumed that the cal-
culation of the gravity centre is a regional analytical method, which requires masses (ab-
solute numbers). This mass can be a multitude of people but also any other absolute 
quantity. The gravity centre of the migration can be considered as one of the variants of 
the gravity centre of the population. Adopting ourselves to the nature of the migration 
flows (bipolar phenomenon) we cannot grasp the migration itself with one but only with 
two gravity centres: with that of out-migration and in-migration, respectively (Compton 
[1971]; Wunsch-Thermote [1978]; Sárfalvi [1991]; Mészáros [1994]; Valkovics [1998]; 
Dusek [2003]). The gravity centre of migration must characterize the regional distribution 
of the migrate subpopulation directly before and after the event of migration. After all the 
gravity centre of migration is nothing else but the mean value of the regional distribution 
of the out-migration and in-migration. Compared to the gravity centre of the population, 
in case of that of migration calculations result the dense indicators of the spatial distribu-
tion of migrate subpopulation. 

Within a regional unit from the location compared to one another of the gravity centre 
of out-migration and in-migration, respectively, and from the distance we can make a di-
rect conclusion regarding the similarities and differences, respectively, of the sending and 
receiving areas compared to one another. If we choose the whole country as a regional 
unit to be studied, then computing the gravity centre of out-migration and also of in-
migration we can quantify a certain ‘average’ length of the migration flows. Forming 
time series from these values we can confirm or deny the hypothesis whether the dis-
tances of migrations shortened in the last decades and if proved so we can also quantify 
to what extent. Thus our purpose is to state the average distance and characteristic direc-
tion of the internal migration flows in Hungary. Using the method we get a detailed pic-
ture on the development of the direction and distance of migration flows for the years of 
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transition, too. It is probable that while there is a significant decrease in the quantity of 
regional mobility and a moderate increase in the flow from urban to rural areas during the 
transformation period, there are also significant modifications in the development of the 
directions and distances of internal migration. 

The method and the data 

The method is simple. The gravity centres are the weighted arithmetic means – 
weighted with the migrants – of the co-ordinates (latitudes and longitudes) of the settle-
ments. The gravity centres of migration are determined with the known methodological 
apparatus of the calculation of the gravity centres of the population (Bene–Tekse [1966] 
p. 65.). For instance, for the year (period) k the co-ordinates of the national (regional, 
county) gravity centres of the permanent out-migrants can be calculated with the follow-
ing equations: 
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Where x  is the geographical line of longitude of the gravity centre of the permanent 
out-migrants, y  is the geographical line of latitude of the gravity centre of the permanent 
out-migrants, mi is the number of persons out-migrated from settlement i, xi is geographi-
cal longitude of the settlement i, and yi is the geographical latitude of the settlement i. The 
figures (i = 1, 2, …n) mean the settlements of the country. Also the national (regional, 
county) gravity centres of the permanent in-migrants and of the temporary migration can 
be calculated with the same method. 

Data used for the research were the data of internal migration by settlements for the 
years 1984–2002 and the geographical co-ordinates of the settlements, both supplied by 
the Hungarian Central Statistical Office.2  

The method of calculation being well known and elaborated, its creators considered 
it as suitable for the analysis of all the vital events – migration included. Migration was 
yet not analysed in Hungary with this method this far. Lajos Bene (1961) calculated the 
gravity centres of net migration for the 1921–1941 period, but this cannot yet be consid-
ered as a pure analysis of the migrations because he did not distinguish the gravity cen-
tres of out-migrations and in-migrations. Therefore the calculation of the gravity centres 
of the net migration does not show the whole migration movement but ‘only’ the centres 
  

2 During the period examined there were significant changes in the settlement stock (in the beginning of 1984 3066 
settlements, at the end of 2002 3145 settlements). There were unifications and disaggregations (Szigeti [1997], [1998]) and 
their effect cannot be let out of consideration. The geometric gravity centres of the settlements of Hungary were in the 
same place in the 1984–1988 and in the 1989–1993 periods. In the 1994–1997 period it moved by 234 metres to the east 
and by 175 metres to the south. Thus we can see that the impact resulting from the modifications in the borders of the 
settlements was practically insignificant. The method itself as well as the theoretical consideration did not request 
homogenization of the settlement series for the beginning or the end of the period investigated. Because of the above 
arguments for each year we worked with the actual topical settlement series of the absolute number of migrants and later 
we sum them up for the appropriate periods. 
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of the changes in the population number resulting from the migration of the area exam-
ined.3  

Following these long introductory chapters we can put the question: for what purpose 
can we use the gravity centres of migration? Responses are as follows: 

 
1. They are very compact mean values, which characterize the regional distribution of 

the migrate subpopulation. 
2. The direction determined by the two gravity centres can be considered as the most 

characteristic among the many directions of migration.  
3. The distance between the two gravity centres as the crow flies (air kilometres, me-

ters) also means a certain average distance of the migration streams in the time interval 
studied. 

National gravity centres of migration 

On Figure 3 the gravity centres of permanent and temporary migration, respectively, are 
indicated for Hungary as a whole, for four periods of time between 1984 and 2002. More-
over, the gravity centres of the total population at the dates of the 1990 and 2001 population 
censuses are shown. The gravity centres of the permanent and of the temporary migration 
are separated from one another. It means that flows and counterflows are not equal, so there 
are main streams of internal migration in Hungary. The gravity centres are very near to the 
1990 and 2001 population gravity centre which can be found on the area of the settlement 
Csévharaszt in Pest county. Yet they are not exactly in the same place, and from these dif-
ferences the conclusion can be made that there are territorial selectivities: on the one hand 
in relation to the sending and receiving settlements (type 1), on the other hand the spatial 
distribution of the migrating subpopulation is not simply a representative sample of the re-
gional distribution of the total population (type 2). The above-mentioned two kinds of se-
lectivity, however, are very small. Their extent decreased uniformly until 1997 because the 
gravity centres of migration were getting closer and closer to one another and at the same 
time to the gravity centres of total Hungarian population. In all of the investigated periods 
the selectivity of first type was bigger for the permanent migration than the temporary one. 
It means that the separation of the sending and receiving settlements were greater for per-
manent migrants than the temporary migrants. In the first ten years of the period examined 
it seemed that a greater regional selectivity of second type could be stated for the temporary 
migrations compared to the permanent ones. After 1994 this characteristic feature changed 
and permanent migrations showed a greater regional selectivity of second type because 
these gravity centres were farther from the gravity centre of the population. 

The gravity centres of the permanent out-migrants are on the administrative area of 
the settlement Csévharaszt, to south-southeast from the gravity centre of the total popula-
tion. The gravity centres of in-migrations can be found near to the village Inárcs. It can 
be stated that the permanent out-migrants are more to the east from the gravity centre of 
the population, the in-migrants however are more to the west, so the dominant flow di-
rected from east to west in the internal migration. The direction observed in the earlier 
  

3 The study of the change in the population number with the method of the gravity centres would be complete if we 
calculated also the gravity centres of the natural and total increase and decrease, respectively, and if we also compared them. 
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period still exists, in fact this is the most characteristic. From Table 1 it can be affirmed 
uniformly that the gravity centres of permanent migrations get nearer and nearer to the 
gravity centre of the population until 1997 which shows the decrease in the extent of the 
territorial selectivity of the second type of the permanent migrations. 

Figure 3. Nationwide gravity centres of migration, 1984–2002 

 
Note: Oi, Ei – temporary migration; Oá, Eá – permanent migration. 

 Table 1 

Distance and direction between the national gravity centre of population 1990  
and the national gravity centres of migration  

(meter) 

Out-migration In-migration 
Year 

gravity centres 

 Permanent 
1984–1988 5700 SE 6700 S–SW 
1989–1993 4500 E–SE 3600 S–SW 
1994–1997 2200 SE 3300 S–SW 
1998–2002 2300 S 3900 S–W 

 Temporary 
1984–1988 9000 E–NE 6900 E–NE 
1989–1993 5400 E–NE 2300 E–NE 
1994–1997 1200 SW 2300 W–SW 
1998–2002 1900 W–NW 3400 W–NW 
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Between 1984 and 1993 the gravity centres of the temporary out-migrants and in-
migrants can be found mostly farther to the east, on the administrative area of 
Csévharaszt, Vasad and Monor. After 1994 their location changed and they were farther 
to the west from the gravity centre of the population. It is not difficult to realise the ten-
dency that also the characteristic sending and receiving areas of the temporary migration 
are shifted farther and farther to the west. Similarly to the permanent migration the dis-
tances of the gravity centres of the temporary migration measured to the gravity centre of 
the total population show a monotonous decrease until 1997 which also refers to the de-
cline in the extent of the spatial selectivity of second type. 

The gravity centres of the permanent and temporary migration moved characteristi-
cally in a different direction compared to one another (see Figure 3). The gravity centres 
of the permanent out- and in-migrations ‘advanced’ to the north and then to the west, 
while the temporary gravity centres of the same type moved characteristically to south-
west. Despite the moving to the north and south, moving to the west can be considered as 
a common feature, especially in the second half of the period studied. 

The gravity centres of the out-migration and in-migration regarding the same period 
moved in similar directions and to similar extents, so it can be foreseen that the distances 
between them could not change radically either. 

Distances 

With indirect estimation it was proved in the literature already that parallel with the 
decrease in volume also the average distance of the spatial movements shortens. The pro-
cess of the regional levelling was one of the most important cause of the decline in dis-
tance before the transition period (Erdősi [1985]; Kovács [1985]; Rédei [1991]; Daróczi 
[1998]; Nemes Nagy [1998]; Horváth-Rechnitzer [2000]; Dobosi [2003]). Calculation of 
the gravity centres of migration of a various degree of spatial aggregation gives direct 
evidence to prove the decrease in the distance of migration and the extent of the decrease. 
It seems that – given that regularities are valid with the transition period still holding on – 
the regional differences becoming more and more marked because of the different pace 
of development will increase the average distances of movement (Cséfalvay [1993];  
Enyedi [1994], [1996]; Rees-Kupiszewski [1999]; Nagy [2002]; Szászi-Hajnal-Reszler 
[2003]). Let us examine whether this hypothesis can be verified. 

The gravity centre of out-migration can be considered as a mean value of the regional 
distribution of the out-migrating subpopulation and the gravity centre of in-migration as a 
mean value of the regional distribution of the in-migrants. If these two points do not co-
incide or are not very near to one another (i.e. more than 100 metres apart) then the dis-
tance between the two points also means a certain average physical distance of the migra-
tions in the regional unit studied (country, region, county) not in absolute but in a relative 
sense. If these two points are near to one another then we have to conclude that the send-
ing and receiving areas are neighbours of one another and presumably there are mutual 
flows and couterflows to a similar extent. With the increase in the average distance the 
migratory relations of the neighbours weaken, the relations of the farther areas strengthen 
and flows by pairs begin to occur in one direction, therefore separation of the sending and 
receiving areas increases. 



SÁNDOR ILLÉS 46 

The distances of the nationwide gravity centres of the permanent migrants were 7500 
m, 5200 m, 3200 m and 3600 m in 1984–1988, 1989–1993, 1994–1997 and 1988–2002, 
resp., which are not really great distances. Even so, however, the average length of the 
way made by the permanent migrants is the multiple, two and three times of that of the 
temporary migrants (2100 m, 3000 m, 1200 m and 1500 m). Consequently, we can say 
that the permanent migrants make a longer way in the physical space. The shorter dis-
tance characteristic of the temporary migrations can be explained by the fact that the 
number of the temporary migrants, whose purpose is often to take a job and who are reg-
istered temporarily, decreased radically as well. The distance of the temporary migrations 
for study and housing purposes was presumably shorter earlier, too (Table 2), with the 
expansion of third level education strengthening this process. 

Table 2 

Distance between the nationwide gravity centres of out-migration and in-migration  
(meter) 

Permanent migration Temporary migration 
Type 

 1984–88 1989–93 1994–97 1998–02  1984–88 1989–93 1994–97 1998–02 

All migration  O
á

O
á OE –  7 500 5 200 3 200  3 600 O

i
O
i OE –  2 100 3 000 1 200   1 500 

Interregional mi-
gration 

ORK
á

ORK
á OE –  23 200 18 500 11 300 13 900 ORK

i
ORK
i OE –  3 500 5 800 3 200  3 700 

Intercounty mi-
gration within 
regions 

RBMK
á

RBMK
á OE –  

 
 

4 800 3 000 3 000 1 600
RBMK

i
RBMK

i OE –
1 500

 
 

2 600 

 
 

1 400 

 
 
– 

For the country as a whole we distinguished three types of moves and we also stated 
the geographical distances between their gravity centres (Table 2). In the first group all 
the migrations were taken into consideration. On basis of Table 2 we can see that the dis-
tances of the migrations crossing the borders of the regions (second type of move) are the 
longest. Here even multiple lengths can be measured compared to the average distance of 
the movements within the regions. The migrants leaving their county but remaining in 
their own regions covered the shortest way. 

Our opening hypothesis regarding the permanent migrations until 1997 cannot be con-
firmed for the country as a whole. The distances of the migrations do not grow in parallel 
with the increasing regional disparities, we measure characteristic diminution instead. The 
permanent migrants covered shorter and shorter distances until 1997. In case of the tempo-
rary migration between 1988 and 1993 increase in the distance can be confirmed for the 
country as a whole, but already as far as between 1994 and 1997 the distances are shorter 
than between 1984 and 1988. The opening hypothesis can be confirmed for both the per-
manent and temporary migration after 1998, i.e. the distances of migration grow up again. 
After 1998 slight increases were measured for all the migratory types. 

Directions 

Following the distance, the other spatial parameter of order, the study of the direction 
is very important when migration to be examined. The gravity centres of the in-migrants 
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in Hungary are to the west from the gravity centres of out-migrations, thus in the period 
studied the prevailing direction of the permanent and temporary migrations proceed to 
the west. We may add that beside the characteristic western direction also a slight south-
ern component can be verified. In case of the permanent migrations we could observe a 
very stable direction to the west and south-west which is ‘worthy of its character’ and did 
not change in the years of the transition (Figure 3 and Table 3). In the period 1994-1997 
the most characteristic direction of the temporary migrations proceeded clearly to the 
west. 

Table 3 

Direction of migration 
Type 1984–1988 1989–1993 1994–1997 1998–2002 

 Permanent migration 

All migration W-SW  W-SW  W-SW  W-SW  

Interregional 
migration W-SW  W-SW  W-SW  W  

 Temporary migration 

All migration 
W-SW 

 W-SW  W  W  

Interregional 
migration W-SW 

 W  W  W  

         
 
Apart from the migrations within the region, taking into consideration only those who 

are migrants between the regions the flow to the west is still prevailing. Between 1994 
and 1997 for the temporary migrations crossing the borders of the regions the western 
vector became stronger. It may be that this modification shows the beginning of the 
change in tendency but we find it more real supposition that in this case we can observe a 
provisional fluctuation and the direction to the west and south west will resume.  

It can also be assumed that for the country as a whole there is no significant differ-
ence in the basic directions of the permanent and temporary migration (though we cannot 
be sure whether the situation was the same in time before the periods covered by our 
study). 

Dispersion  

In general sense there may be various objections (shortcomings) to the use of gravity 
centres. The first one may be that the gravity centres themselves have so compact mean 
values that they do not show anything regarding the regional distribution of the phe-
nomenon examined. Those who have such an opinion are right considering that really it 
is not possible to do much with a gravity centre alone. We can describe its location, 
maybe indicate it on a map but we can hardly get farther. For solution of this problem 
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obviously we have to seek points of comparison. Naturally it is possible to compare to 
the significant cities. Beside this in our case we can compare some gravity centres of mi-
gration to favoured points (e.g. Pusztavacs, the geographical centre of Hungary). Other 
possibilities for comparison are the gravity centre of the population or the geometric cen-
tre of the settlements of Hungary. Beside the description we find two ways for a sophisti-
cated analysis. The first one is the dynamism in time. We may calculate the pair of grav-
ity centre referring to one date, to one period and then also for another date and period, 
i.e. we widen our study in time. Doing so it is possible to make conclusions concerning 
the modifications in the characteristic directions, the changes in the average distances of 
migration. The second way of analysis – which in our case also means a widening of the 
regional details – is to calculate the regional gravity centres, the gravity centres of coun-
ties and even of the smaller regional units.4 Presentation of the two ways of analysis on a 
map gives a synthesis of the partial result.  

The second shortcoming to the gravity centres is that gravity centres are after all 
weighted arithmetical means and, similarly to the statistical means, they themselves do 
not illustrate the situation of the phenomenon studied around the gravity centre, in our 
case the dispersion of the migrating sub-population around the gravity centres. Various 
methods are known for the characterization of the situation around the gravity centre 
(Tekse [1966]). Of them Bachi's d standard distance was calculated (Bene–Tekse [1966]) 
at the study of the gravity centres of the population, and for possibilities of comparison 
we used this method to state the dispersion coefficient (Bachi [1962]). 
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Where d is the standard distance, x is the geographical line of longitude of the gravity 
centre of migration, y  is the geographical line of latitude of the gravity centre of migra-
tion, mi is the number of persons migrated from the settlement i, xi is the geographical 
longitude of settlement i, yi is the geographical latitude of settlement i. The figures 
(i = 1, 2,…n) mean the settlements of the country. The d distance is simply the square root 
of the average – weighted with the population numbers – of the quadratic distances of the 
gravity centre of migrations and of the individual settlements.  

In Hungary the dispersion around the gravity centre of the population indicated with 
the d distance was 132.8 km in 1900, 129.1 km in 1930, 128.3 km in 1949 and 126.6 km 
in 1960. Lajos Bene and Kálmán Tekse [1966] explained the decreasing tendency of the 
more rapid growth in the population of the urban areas. Unfortunately, at the calculation 
of the gravity centre of population made on basis of the data of the 1990 population cen-
sus, dispersion was not calculated. As a consequence of the urbanization process, the 
population of the urban areas grew after 1960 on, so presumably also the tendency of de-
  

4 It should be mentioned that choosing the appropriate regional unit is absolutely necessary to determine our research 
purposes.  
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crease in the d distance continued. If we accept this supposition then the dispersion must 
have most probably declined. According to our estimation the dispersion of the gravity 
centre of the population of 1990 might have been somewhere between 120 and 125 km. 
On the basis of  2001 population census the dispersion of  gravity centre of total popula-
tion was 123.5 km. 

Due to the second type of regional selectivity of the migrants compared to the re-
gional distribution of the total population, the dispersion of the gravity centres of in-
migration and out-migration of the country must be higher than the dispersion around the 
gravity centre of the population (except for the temporary in-migration of 1998–2002 pe-
riod).  

Earlier at the comparison of the distance between the gravity centres of migrations 
and the gravity centres of population we supposed that on a national scale only since 
1994 is the regional selectivity of the permanent migration higher than that of the tempo-
rary migration. In case of higher selectivity it can be expected that also the dispersion 
around the gravity centres of permanent migrations is greater compared to that of the 
temporary migrations.5 Though with time the difference decreases more and more. The 
higher dispersion around the gravity centres of the out-migration refers to the fact that the 
sending settlements are located more unevenly in Hungary. Opposite to this the location 
of the receiving settlements and the areas represented by them is more concentrated.  

Table 4 

Dispersion of nationwide gravity centres of migration, 1984–2002  
(meter) 

Permanent Temporary 
Type 

1984–1988 1989–1993 1994–1997 1998–2002 1984–1988 1989–1993 1994–1997 1998–2002 

 In-migration gravity centre 
All migration 126 941 126 746 125 575 123 059 123 467 123 250 123 973 124 067 
Interregional  

migration 
 

109 317 
 

112 016 
 

112 727 
 

109 992 
 

117 973 
 

113 631 
 

112 700 
 

113 095 
Intercounty migra-

tion within individ-
ual regions*

 
 

39 862 

 
 

40 136 

 
 

40 323 

 
 

50 433 

 
 

42 632 

 
 

40 513 

 
 

41 021 

 
 

49 761 

 Out-migration gravity centre 
All migration 132 900 129 958 127 140 124 974 126 315 126 362 124 810 124 922 
Interregional  

migration 
 

127 921 
 

122 674 
 

118 209 
 

117 110 
 

122 792 
 

120 111 
 

114 921 
 

115 136 
Intercounty migra-

tion within individ-
ual regions*

 
 

41 903 

 
 

41 451 

 
 

40 089 

 
 

49 796 

 
 

43 856 

 
 

43 163 

 
 

40 965 

 
 

49 716 

* Rounded arithmetic means of  the distances of intercounty migration of  the individual regions. 

  
5 With the calculation of dispersion of the gravity centres of migration we could prove that the dispersion of the permanent 

migration was higher than the temporary one until 1997. That means the first type of territorial selectivity of permanent 
migration was higher in degree than that of the temporary one. During the whole investigated period the dispersion around the 
gravity centres of out-migration were higher that of the in-migration one. For that reason the result of migration flows 
strenghtened the concentracion of Hungarian population. In Hungary as a whole the process of suburbanization (Kovács [2002]; 
Izsák [2003]) was not strong enough to counterbalance the process of concentration led by internal migration. 
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Studying the gravity centres of the migration between the regions we can still state 
that the dispersion around the gravity centres of out-migration is higher than the disper-
sion around the gravity centres of in-migrations and the difference decreases in time. It 
must be mentioned that the differences by pairs of the regional gravity centres of out-
migration and in-migrations are much higher than to the total migration.   

* 

The gravity centres of out-migration and in-migration were separated from one an-
other and were very near to the 1990 and the 2001 gravity centre of the total population. 
But they were not exactly in the same place. Conclusion can be made that there are terri-
torial selectivities: on the one hand between the sending and receiving settlements (type 
1), on the other hand the spatial distribution of the migrate subpopulation is not simply a 
representative sample of the spatial distribution of total population (type 2). These two 
kinds of selectivity, however, are very small. Their extent decreased uniformly in the 
course of time because the gravity centres of migration got closer and closer to one an-
other and to the gravity centres of total Hungarian population until 1997. After 1998 a 
small growing up was investigated. Due to the second type of regional selectivity the dis-
persion of the gravity centres of in-migrations and out-migrations of the country are 
mostly higher than the dispersion around the gravity centre of the population. 

The gravity centres of the migration are separated from one another. It means that 
flows and counterflows are not equal, so there are main streams of internal migration in 
Hungary. In the country as a whole the gravity centres of in-migration located to the west 
from the gravity centres of out-migration, thus in the period studied the dominant direc-
tion of the migrations proceed to west.  

The distances between the national gravity centres of migration gradually shortened 
until 1997 (except for the temporary one of the 1989–1993 period and the temporary and 
permanent of 1998–2002). After that slight increase was measured. The length of the way 
made by the permanent migrants was greater compared to the temporary migrants in all 
of the investigated period. On this basis we can say that the permanent migrants make a 
longer way in the physical space. 

Our opening hypothesis (i.e. that increasingly sharp territorial differences would in-
crease the distances involved in migration) cannot be proved on a national level until 
1997. From 1998 onwards, however, people involved in migration started to cover ever 
larger distances in physical space which shows that the hypothesis came to apply. (To 
explain why the appearance of larger distances delayed almost an entire decade presents 
a question for further research.) 

The gravity centre of the population for 2001 is further east than was the gravity cen-
tre of 1990. This fact seemingly contradicts one of the main results covered in the paper, 
whereby internal migrants move dominantly in a western direction. This paradox may be 
explained sufficiently by involving two factors. One is the natural increase characteristic 
of the eastern parts of Hungary because of a higher fertility rate prevailing there. The 
second factor is connected to the territorial distribution of international migrants. The 
majority of immigrants and new citizens settled east of the Danube and in Budapest. 
Thus we may state as conclusion that the sum of the effects arising from fertility and the 
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selective nature of international migration surpassed that of the effect of internal migra-
tion on the spatial distribution of the total population and pushed the population gravity 
centre toward the east. 

REFERENCES 

ÁBRAHÁM T. [2000]: Az USA fekete lakosságának migrációja a XX. században. Demográfia. Vol. 43. No. 1. 161–175. p.   
BACHI, R. [1962]: Standard distance measures and related methods for spatial analysis. Regional Science Association. Zurich 

Congress Papers. Vol. 10. 83–132. p. 
BOTTLIK, ZS. [2002]: A szlovákok etnikai súlypontjának változásai a Dunántúli-középhegység területén a XVIII. századtól nap-

jainkig. Területi Statisztika. Vol. 42. No. 6. 551–561. p. 
BENE, L. [1961]: Magyarország népességi súlypontja. Demográfia. Vol. 4. No. 1. 91–102. p. 
BENE, L.–TEKSE, K. [1966]: Vizsgálatok a népesség területi eloszlásának alakulásáról Magyarországon 1900–1960. KSH Né-

pességtudományi Kutató Csoport Közleményei. 9. köt. Budapest. 65. p. 
COMPTON, P. A. [1971]: Some aspects of the internal migration of population in Hungary since 1957. (Publications of the 

Demographic Research Institute.) Budapest. No. 33.  
CSÉFALVAY, Z. [1993]: Felharmadolt ország. Valóság. No. 7. 1–17. p. 
DARÓCZI, E. [1998]: Residential moves within Hungary, 1985–1996. Espace, Populations, Societes. Vol. 27. No. 3. 381–388. p. 
DOBOSI, E. [2003]: A komplex regionális fejlettség matematikai-statisztikai elemzése. Területi Statisztika. Vol. 43. No. 1. 15–

33. p. 
DUSEK, T. [2003]: A gravitációs modell és a gravitációs törvény összehasonlítása. Tér és Társadalom. Vol. 17. No. 1. 41–58. p.  
ENYEDI, GY. [1994]: Területfejlesztés, regionális átalakulás. Társadalmi Szemle. Vol.49. No. 8–9. 133–139. p. 
ENYEDI, GY. [1996]: Regionális folyamatok Magyarországon az átmenet időszakában. Hilscher Rezső Szociálpolitikai 

Egyesület. Budapest.  
ERDŐSI, F. [1985]: Az ingázás területi-vonzáskörzeti szerkezete Magyarországon. Demográfia. Vol. 28.  No. 4. 489–498. p. 
HORVÁTH, GY.–RECHNITZER J. (ed.) [2000]: Magyarország területi szerkezete és folyamatai az ezredfordulón. MTA Regionális 

Kutatások központja. Pécs.  
ILLÉS, S. [2000]: Changing levels of spatial mobility in Hungary. In: Kovács, Z. (ed.): Hungary towards the 21st cen-

tury.Geographical Research Institute Hungarian Academy of Sciences. Budapest. 137–149. p. 
ILLÉS, S. [2002]: Költözünk vagy vándorlunk? In Ezredforduló – magyar valóság – cenzusok. Magyar Statisztikai Társaság. Bu-

dapest. 37–51. p. 
IZSÁK, É. [2003]: A városfejlődés természeti és társadalmi tényezői. Budapest és környéke. Napvilág Kiadó. Budapest.  
KOVÁCS, T. [1985]: A népesség területi mozgásának főbb jellemzői az elmúlt 30 évben és valószínű jövőbeni vonásai. In: 

Káposztás, F. (ed.) A népesség területi elhelyezkedése és mozgása. KSH Népességtudományi Kutató Intézet Kutatási 
jelentései 25. kötet. Budapest. 19–30. p. 

KOVÁCS, T. [2002]: A területi fejlettségbeli különbségek alakulása Magyarországon. Területi Statisztika. Vol. 42.  No. 6. 506–
517. p.  

KOVÁCS, Z. [2002]: Az urbanizáció jellemzői Kelet-Közép-Európában a posztszocialista átmenet idején. Földrajzi Közlemé-
nyek. Vol. 126. No. 1–4. 57–78. p.  

LANGERNÉ RÉDEI, M. [1986]: A kistérségi népességmozgások. Statisztikai Szemle. Vol. 64. No. 11. 1093–1107. p. 
LUKÁCS, É.–KIRÁLY M. (ed.) [2001]: Migráció és Európai Unió. Szociális és Családügyi Minisztérium. Budapest.  
MÉSZÁROS, Á. [1995]: A népesség területi átrendeződése és települési koncentrációja. Statisztikai Szemle. Vol. 73.  No. 7. 533–

542. p. 
MÉSZÁROS, R. [1994]: A település térbelisége. JATEPress. Szeged. 
NAGY, G. [2002]: Oldódtak-e az öröklött területi különbségek a rendszerváltás éveiben? In: Abonyiné et al. (eds.) A magyar tár-

sadalomföldrajzi kutatás gondolatvilága. Szegedi Tudományegyetem Gazdaság és Társadalomföldrajzi Tanszéke. Szeged. 
211–225. p. 

NEMES NAGY, J. [1987]: A regionális gazdasági fejlődés összehasonlító vizsgálata. Akadémiai Kiadó. Budapest.  
NEMES NAGY, J. [1998]: A tér a társadalomkutatásban. Bevezetés a regionális tudományba. Hilscher Rezső Szociálpolitikai 

Egyesület. Budapest.  
NEMES NAGY, J. [2002]: Spatial gravity centres of the dynamics and the crisis in Hungary. Hungarian Statistical Review. Spe-

cial number 7. 75–85. p. 
NULTSCH, H.-G. [1968]: A népességi súlypontok. Demográfia. Vol. 11.  No. 2. 260–264. p. 
RÉDEI, M. [1991]: Close migration directions under changing propensity. In: Józwiak, J.–Kotowska, I. (eds.) Usefulness of 

demographic modelling. Szkola Glówna Handlova-Instytut Statystyki i Demografii. Warszawa. 159–177. p. 
REES, P.–KUPISZEWSKI, M. [1999]: Internal migration and regional population dynamics in Europe: synthesis. Council of 

Europe  Publishing. (Population studies, No. 32.) Strasbourg.  
SÁRFALVI, B. [1965]: A mezőgazdasági népesség csökkenése Magyarországon. Akadémiai Kiadó. Budapest.  
SÁRFALVI, B. [1991]: Magyarország népességföldrajza. Tankönyvkiadó. Budapest. 
SZÁSZI, F.–HAJNAL B.–RESZLER G. [2003]: Tanulmányok Szabolcs-Szatmár-Bereg megye népességének belső (belföldi) vándor-

lásáról (1869–1995). MTA Szabolcs-Szatmár-Bereg Megyei Tudományos Testületének Közleményei. Stúdium Kiadó. 
Nyíregyháza.  

SZIGETI, E. [1997]: Urbanizáció, városhálózat, várossá nyilvánítás. Területi Statisztika.  Vol. 37. No. 1. 66–79. p. 
SZIGETI, E. [1998]: Új községek – új önkormányzatok. Területi Statisztika. Vol. 38. No. 1. 20–33. p. 



ILLÉS: INTERNAL MIGRATION IN HUNGARY 52 

TEKSE, K. [1966]: A népesség koncentrációjának jellemzéséről. Demográfia. Vol. 9. No. 4. 564–576. p. 
TRÓCSÁNYI, A.–TÓTH J. [2002]: A magyarság kulturális földrajza II. Pannónia Tankönyvek. Pro Pannónia Kiadó Alapítvány. 

Pécs.  
VALKOVICS, E. [1998]: Kísérlet a belföldi vándorlások x éves korban várható átlagos számának becslésére. In: Illés, S.–Tóth, P. 

P. (eds.) Migráció. (Tanulmánygyűjtemény) I. köt KSH Népességtudományi Kutató Intézet. Budapest. 189–216. p. 
WUNSCH, G.–TERMOTE, M. [1978]: Introduction to demographic analysis. Principles and methods. Plenum Press. New York 

and London.  
 



VARIANCE ESTIMATION WITH THE JACKKNIFE 
METHOD IN THE CASE OF CALIBRATED TOTALS 

LÁSZLÓ MIHÁLYFFY1  

Estimating the variance or standard error of survey data with the jackknife method runs 
in considerable difficulties if the sample weights are calibrated. The current methodology 
used in the household surveys of the Hungarian Central Statistical Office is reviewed, some 
possible approaches are compared, and a new strategy of using the jackknife method is rec-
ommended in the paper. 

KEYWORDS: Jackknife method; Raking; Generalised regression estimator. 

Sample surveys – especially household surveys – conducted by the statistical agen-
cies of different countries have in common among other things the following two fea-
tures: 

– the final sample weights are the result of some calibration procedure, 
– the variance or standard error of survey data are estimated by some method based 

on the secondary processing of sample data such as the jackknife and the bootstrap 
method, the method of balanced half-sample replicates, etc. (Wolter [1985]). 

The Hungarian Central Statistical Office (HCSO) has a considerable tradition in con-
ducting household surveys. The beginning of the household budget survey (HBS) dates 
back e.g. to the late forties of the 20th century. The use of an up-to-date two-way calibra-
tion procedure as well as that of the VPLX Software (Fay [

 

1998]) for variance estimation 
were introduced in the HBS and in the Labour Force Survey (LFS) – which started in 
1992 – in the mid-nineties. This has led to the practice that the final sample weights were 
first determined by calibration, and the standard errors for some data were then estimated 
by the VPLX Software. Apart from some modification discussed in what follows, this 
practice has not changed substantially during the last eight years. It should be noted that 
the jackknife variance procedure currently used at the HCSO does not comply with the 
jackknife principle. That is, whenever a new jackknife replicate or pseudo value is cre-
ated, it should be of the same functional form as the original estimate. One could assume, 

1 Statistical advisor of the HCSO. The views in this paper are those of the author and are not necessarily shared by the 
HCSO. When working on the paper, the author also benefited from the comments of Mike Hidiroglou of the ONS, Newport, on 
an earlier version. 

Hungarian Statistical Review, Special number 9. 2004. 
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under favourable conditions, that the bias resulting from this procedure is not significant, 
but, unfortunately, this will not be the case in most practical situations. In a 1996 paper, 
W. Yung and J. N. K. Rao have pointed out the following: 

– if the variance of calibrated estimates is to be estimated with the jackknife method, 
the calibration procedure should be repeated whenever a new jackknife replicate is cre-
ated (the case of correct weighting);  

– if the previous rule, i.e. the jackknife principle is ignored, the variance estimates can 
be seriously biased in the case of calibrated estimates (the case of incorrect weighting); 

– the linearised version of the jackknife formula is practically equivalent to the jack-
knife with correct weighting, yet the computing time is reasonably small as compared to 
the latter. 

In this paper an improved version of the current HCSO technique to estimate the vari-
ance of calibrated LFS estimates will be introduced and compared to the jackknife 
method with correct weighting. We shall see that, though it is a jackknife application 
with incorrect weighting, its results are good approximations of those obtained with a 
version of jackknife with correct weighting. The improved HCSO technique can be re-
garded as a possible alternative to the linearised jackknife method, though the two tech-
niques are not compared in the paper. Our approach will be more empirical than theoreti-
cal, and focuses on the main table of the Hungarian LFS which is – in a somewhat re-
duced form – as follows: 

 Table 1 

Hungarian labour force survey, September 2003 

Age- 
groups Employed Unemployed In labour force Not in labour 

force 
Working age
 population 

Participation 
rate, percent 

Unemployment 
rate, percent 

Total  3 977 107  222 662  4 199 769  3 541 462  7 741 231  54.25 5.30 
15–19  25 045 10 667  35 712 588 930 624 642 5.72  29.87 
20–24  328 174  43 196  371 370  326 455  697 825  53.22  11.63 
25–29  594 679  39 964  634 643  207 619  842 262  75.35  6.30 
30–39  1 062 059  51 759  1 113 818  242 050  1 355 868  82.15  4.65 
40–54  1 594 690  67 067  1 661 757  493 766  2 155 523  77.09  4.04 
55–59  282 837  8 213  291 050  327 773  618 823  47.03  2.82 
60–69  81 614  1 796  83 410  937 141  1 020 551  8.17  2.15 
70–74  8 009  0  8 009  417 728  425 737  1.88  0.00 
Male  2 159 669  125 964  2 285 633  1 403 286  3 688 919  61.96  5.51 
Female  1 817 438  96 698  1 914 136  2 138 176  4 052 312  47.24  5.05 

Jackknife estimates of standard errors for the data in this table have been computed, 
using different versions of incorrect and correct weighting. This paper describes and 
compares these various jackknife procedures. The basis of the comparison is the devia-
tion from the result obtained by correct weighting on the one hand, and the run time used 
for the computation on the other. The conclusions drawn from our numerical results de-
pend, among other things, on the design of the Hungarian LFS as well as on the method 
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of calibration in use; hence the reader should be careful when applying them in a differ-
ent environment. 

The structure of the paper is as follows. Section 2 contains a concise description of 
the sample design of the Hungarian LFS as well as that of the technique of calibration in 
use. The different applications of the jackknife method – called henceforth strategies – 
are described and the corresponding numerical results are presented in Section 3. There-
after a brief paragraph summarises the conclusions of the paper. The Appendix gives an 
insight into the technique of calibration used in the Hungarian LFS. 

SAMPLE DESIGN AND CALIBRATION  
IN THE HUNGARIAN LABOUR FORCE SURVEY 

The sample design of the Hungarian LFS (a quarterly survey interviewing individuals 
in approximately 38 000 non-institutional households) is stratified by locality size, ad-
ministrative categories, and type of residence. A systematic sample of dwellings is then 
selected within these strata. In the old sample (i.e. up to the fourth quarter 2002) each lo-
cality with at least 10 000 inhabitants was self-representative; in the new sample (i.e. 
from the first quarter 2003) the corresponding number is 5 000. For both the new and old 
samples, a stratified non-self-representative sample of localities was selected from the 
rest of the country. For the self-representing localities, primary sampling units (PSUs) 
were census enumeration districts (EDs) in the case of the old sample and dwellings for 
the new one. In contrast, localities were the PSUs in the strata of non-self-representing 
localities for both old and new samples. Given that a locality had been selected, EDs 
were the secondary sampling units for the old sample and dwellings in the new sample. 
The ultimate sampling units were dwellings in all cases. It follows that the new sample 
has one less stage of selection than the old sample. Whenever localities or EDs were the 
sampling units, the method of selection was probability proportional to size (PPS). As 
noted above, dwellings were selected using systematic random sampling. Prior to this, 
the dwellings were sorted within localities by type of residence, giving thereby rise to 
implicit stratification. The old sample had 130 design strata and 753 localities, and the 
new one has 275 strata and 662 localities. The quarterly sample of the LFS is split in 
three statistically equivalent monthly subsamples, each having 1/3 of the size of the quar-
terly sample 

Estimation 

Using the VPLX Software to estimate the standard error for the data in Table 1, it is 
straightforward to choose the ‘stratified jackknife’ option. To this end the user has to 
supply the codes ‘stratum’ and ‘cluster’ on each observation of the input data file of the 
VPLX program. The ‘stratum’ is obviously the code of the design stratum, while both in 
the old and the new sample; the ‘cluster’ was identified as the five-digit standard code of 
the locality in the case of non-self-representing localities. In the self-representing locali-
ties of the old sample, the ‘cluster’ was identified as the code of the enumeration district 
(ED). In the case of self-representing localities of the new sample, there are no pre-
determined clusters, thus it is the user’s task to define them for the correct application of 
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the stratified jackknife option of the VPLX program. In our experience, this can be done 
by distributing the sampled dwellings in those localities with some random method in 
groups containing three or four dwellings. Those triples and quadruples of dwellings are 
then regarded as clusters and a unique identifier code is assigned to each of them. If the 
input data file is prepared in this way, the VPLX program creates as many jackknife rep-
licates as the number of different cluster codes observed on the file. On each occasion, all 
observations belonging to one of the clusters are removed from the sample, and the sam-
ple weights of the remaining observations in the corresponding stratum are properly ad-
justed. 

We next introduce the notation to define generalised regression (GREG) which is a 
special case of calibration (Deville–Särndal [1992]). Let 

– s be a probability sample consisting of the PSU units 1, 2, …, n, 
– wj the design weight associated with sampled unit j, j = 1, 2, …, n, 
– wj

c the corresponding calibrated weight, 
– yj the value of the study variable observed on unit j, 
– xj an m-vector of auxiliary variables measured on unit j of the sample, 
– X the m-vector consisting of the known population totals of the auxiliary variables, 
– = ΣX̂ jwjxj the sample estimate of X, 
– A = Σjwjxjxj’ a nonsingular matrix of order m (the prime denotes transpose). 

Using this notation, the resulting system of calibrated weights  

                                                wj
c = wj(1 + xj’A-1(X – ))  /1/ X̂

is the unique solution of a constrained minimisation problem. It can be stated as: 

                                    minimise the distance function   /2/ ∑
=

−
n

j
jj

c
j www

1

2 /)(

                                   subject to the system of equations  = X ∑
=
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j
j
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The estimator of the unknown population total Y that uses these calibrated weights 
given by  

 Y  ∑
=

=
n

j
j

c
j yw

1

gˆ

is known as the generalised regression estimator.  
In spite of the numerous advantages of the GREG such as the explicit expression /1/ 

for the calibrated weights, calibration in the Hungarian household surveys is mainly car-
ried out using raking. That is it uses the generalised iterative scaling (Darroch–Ratcliff 
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[1972]). The reason for this is twofold. On the one hand, it is very easy to write a code 
based on the raking algorithm; this is illustrated in the Appendix by a segment of the pro-
gram used in the jackknife estimations reported in the paper. On the other hand, the 
experience gained with this method since 1994 has proved satisfactory in every respect, 
including among other things the speed of the computation, too. The calibration proce-
dure can be interpreted as solving a constrained minimisation problem also in the case of 
raking (Darroch–Ratcliff [1972]; Deville–Särndal [1992]): the distance function /2/ is re-
placed in this case by 

                                                     /4/ ∑
=

+−
n

j
j

c
jj

c
j

c
j wwwww

1
))/log((

called the information divergence between wj
c and wj, i.e. the calibrated and the original 

design weights. Similarly to the quadratic distance function /2/, the information diver-
gence is also nonnegative, strictly convex and vanishes if and only if wj

c ≡ wj. 
The monthly as well as the quarterly sample of the Hungarian LFS can be regarded as 

the union of the subsample of the capital city Budapest and the subsamples pertaining to 
the nineteen counties. For each of these geographical units, the calibration of the weights 
of the corresponding subsample is performed independently of the other geographical 
units, and the following controls or benchmarks (i.e. population totals of the auxiliary 
variables) are used: 

– totals of 20 age-sex groups (10 for males and 10 for females), 
– the total population living in major cities (i.e. in cities with a county’s rights), 
– the total number of households. 

The totals of age-sex groups relate to the non-institutional population and are updated 
every month using the demographic components method. The last two controls are de-
rived from the updated population total of the county (or the capital) on the basis of pro-
portions observed in the recent census. 

The number of controls used for the full LFS sample is 20×22 = 440. Calibration is 
usually performed on the basis of monthly data, and the quarterly weights are derived 
from the monthly ones by division by three. It is worth noting that the entries in the col-
umn ‘Working Age Population’ in Table 1 are all aggregates (i.e. totals) of controls.  

JACKKNIFE STRATEGIES TRIED  
FOR THE LABOUR FORCE SURVEY 

The different jackknife strategies we have examined as possible tools of estimating 
the standard error for calibrated estimates (such as the entries in Table 1) include  

– jackknife with incorrect weighting, i.e. using the VPLX with calibrated weights, 
– jackknife combined with GREG or raking for correct weighting, furthermore,  
– two other strategies called in what follows HCSO_1 and HCSO_2.  
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The latter identifiers should refer to the current practice of estimating standard errors 
for LFS data at the Hungarian Central Statistical Office on the one hand and on some im-
provement of that practice on the other. 

The current practice is based on the assumption that standard errors computed with 
the VPLX for calibrated data are acceptable in the case of ratios, and that the estimation 
of the standard error of totals should be reduced to the case of ratios. Given that the sam-
ple weights are calibrated, consider an arbitrary estimated total . For any auxiliary 
variable x the estimate

Ŷ
X̂ is equal to the population total X  and  

                                                      RATŶ  = X̂  ( Ŷ / X̂ ) = RX ˆ   /5/ 

where  and RAT in the subscript refers to ratio estimate. A standard argument 
from sampling theory shows that the equality 

XYR ˆ/ˆˆ =

                                                      Var   /6/ )ˆ(Var)ˆ( RAT RXY 2=

holds for the variances of  and  provided that under the given sampling design, 
calibration would be carried out in the same way for all possible samples. Nevertheless, if 
the variances in /6/ are replaced by their jackknife estimates using incorrect weighting, 
the inequality  

RATŶ R̂

                                                va   /7/ 2
RAT
ˆ ˆr ( ) var ( / )jack jackY X Y> X̂

is obtained in the majority of cases. In the HCSO_1 strategy, the expression on the right-
hand side of /6/ is the basis of estimating standard errors of totals. As we shall see, in this 
way a part of the bias coming from incorrect weighting is removed, since the effect of the 
auxiliary variable x on the study variable y is reflected in the estimates of the variance 
and the standard error.  

The idea of the new strategy HCSO_2 is to modify /5/ in such a way that more auxil-
iary variables may have their impact on the estimated variance (and thus also on the esti-
mated standard error) of Ŷ. Considering the auxiliary variables in the LFS, it is straight-
forward to decompose Ŷ as follows: 

Ŷ  =  = Y , RATŶ RAT,RAT,RAT,
ˆ...ˆˆ
2021 YY +++

where  is the contribution of age-sex group iRAT,îY  to the total , iRATŶ  = 1, 2, ..., 20. Fol-

lowing the pattern of /5/, each RAT,îY  can be written as 

RAT,îY =  , iiiii RXXYX ˆ)ˆ/ˆ(ˆ =
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where Xi is the control for the age-sex group i, i = 1, 2, ..., 20. A straightforward choice 
for a variance estimate for Ŷ is then 

varjack( RATŶ ) = , ∑∑
= =

σ
20

1

20

1i j
jiij XX

where  is the general entry of the 20×20 variance-covariance matrix of the estimated 

ratios , which can be estimated with the VPLX Software. Unlike its predecessor, in 
certain cases the strategy HCSO_2 is suitable to estimate the standard errors of rates, too. 
For instance, if the total of the working age population is an aggregate of controls, then 
participation rate and the total of individuals in the labour force are scalar multiples of 
each other, and the estimated standard error assigned to the latter divided by total work-
ing age population can be used as standard error of the participation rate. 

ijσ

iR̂

The standard errors of the LFS data in Table 1 were estimated with eight different strate-
gies and for three different periods, namely, December 2002, August 2003 and September 
2003. Owing to space considerations, only a part of the numerical results will be presented in 
what follows, namely, the estimates obtained with five strategies using the data of September 
2003. No relevant information will be lost in this way since in some cases two similar strate-
gies have yielded practically the same estimates, though with markedly different run times, 
and the standard error estimates obtained for the different months in consideration show 
rather similar patterns. The original eight strategies are listed in Table 2. 

Table 2 

Jackknife strategies used to estimate the standard error of LFS estimates 

Number Description Run time 
(min : sec) 

1 Incorrect weighting: the use of the VPLX with calibrated weights ≈ 00:04.0 
2 Incorrect weighting, the current strategy of the HCSO (HCSO_1) ≈ 00:04.0 
3 Correct weighting. Calibration method: raking, convergence criterion: ±0.0001  
 At each jackknife replicate, the iteration starts with the original design weights  50:55.92 
4 Correct weighting. Calibration method: raking, convergence criterion: ±0.0001  
 At each replicate, the iteration starts with the recent calibrated weights  18:19.23 
5 Correct weighting. Calibration method: raking, convergence criterion: ±0.001  
 At each replicate, the iteration starts with the recent calibrated weights  6:54.93 
6 Correct weighting. Calibration method: GREG. At each jackknife replicate, the  
 calibrated weights are expressed in terms of the original design weights 16:56.69 
7 Correct weighting. Calibration method: GREG. At each jackknife replicate, the  
 calibrated weights are expressed in terms of the recent calibrated weights 16:20.27 
8 Incorrect weighting, an improvement of the HCSO strategy (HCSO_2) ≈ 00:04.0 

The CPU times given in the Table were recorded for the data set of September 2003. 
The programs were run on a machine with a Pentium III processor having the speed of 
733 Mhz and a memory of 256 Mb. Strategies 1, 2 and 8 are VPLX applications, and the 
corresponding run times are approximate values, since the program does not report them. 
The programs for strategies 3-7 were written by the present author in IML – i.e. Interac-
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tive Matrix Language – of the SAS System, Version 8e. The underlying formulae were 
borrowed from the Yung–Rao paper [1996], first of all the jackknife variance expression 
which reads as follows: 

∑∑
==

θ−θ
−

=θ
hn

j
hj

L

h h

h
jack n

n
1

2

1

1 )ˆˆ()ˆ(var )(  

where L is the number of design strata,  is the number of sampled clusters in stratum 

h, and  are estimates of some total or ratio.  and  are based on the whole 
sample and on the part of the sample that remains after deleting the observations belong-
ing to cluster j

hn

(θ̂

θ̂ )(
ˆ

hjθ θ̂ )(
ˆ

hjθ

 in stratum h; respectively.  has the same functional form as θ . )hj
ˆ

Strategy 3 is based on the jackknife principle recalled in the preceding paragraph. The 
convergence criterion refers to the ratio of the left-hand side of the calibration equation 
/3/ to the right-hand side, i.e. to the given population control. Strategies 4 and 5 are re-
laxed versions of strategy 3. The former departs from the rigorous principle allowing the 
use of weights obtained for the recent replicate as starting point for the next replicate. In 
terms of the distance function /4/, this means that we start closer to our goal, i.e. to the 
system of final weights of the current replicate than in the case of strategy 3. As a conse-
quence, less iteration is required, and this is reflected in the run times 50 min 55.92 sec 
and 18 min 19.23 sec, respectively. Strategy 5 contains some additional relaxation, 
namely, the convergence criterion is set to ± 0.001 instead of ±0.0001, implying a further 
reduction in the run time down to 6 min 54.92 sec. If  is the estimated standard er-)ˆ(Ysi

ror obtained with strategy i (i = 1, 2, ...,8) for some estimated level Ŷ , define the devia-
tions  = 100  −  for 1 ≤ i)ˆ(Ydd ijij =

43d

)  ( ⋅4s

)ˆ((* Ysi

43d

)  ( ⋅

)ˆ(/))ˆ( YsYs jj

53d

, j ≤ 8, i ≠ j. Over a set of 43 es-

timated totals from the LFS in September 2003, we have found that min( ) = –0.22, 
mean( ) =0.8, max( ) = 3.47, min( ) = –0.33, mean( ) = 1.27 and max( d ) = 
5.45 (all data in percentages). In view of these small deviations, the estimated standard 
errors  and  are not displayed, i.e. the results of strategies 4 and 5 will be rep-
resented by those of strategy 3. 

43d

53d 53

5s

Strategy 6 is the counterpart of strategy 3 with raking replaced with generalised re-
gression as the method of calibration. Although the GREG procedure is rarely used in 
Hungarian household surveys, it seemed important to compare it with raking in the 
context of the jackknife method and calibrated estimates. It should not be surprising 
that the GREG produces LFS data slightly different from those obtained with raking. 
The estimator based on raking is not identical to the one based on the GREG. Further-
more, one of the calibration equations was dropped, since quasi-multicollinearity was 
detected in the system of equations /3/. The GREG estimates corresponding to the en-
tries of Table 1 are given in Table 3. The differences between the data of Table 1 and 
Table 3 are within the limits of sampling error; in particular, the entries in the column 
‘Working age population’ are, apart from some round-off errors, practically the same 
in both tables. 

 



VARIANCE ESTIMATION WITH THE JACKKNIFE METHOD 61 

Table 3 

Hungarian labour force survey, September 2003, calibration method: generalised regression 
Age- 

groups Employed Unemployed In labour force Not in labour 
force 

Working age 
population 

Participation 
rate, percent 

Unemployment 
rate, percent 

Total 3 968 524  223 331  4 191 855  3 549 395  7 741 250  54.15 5.33 
15–19  25 227  11 118  36 345  588 311  624 656  5.82  30.59 
20–24  327 692  43 197  370 889  326 953  697 842  53.15 11.65 
25–29  595 475  39 236  634 711  207 537  842 248  75.36 6.18 
30–39  1 059 494  52 428  1 111 922  243 983  1 355 906   82.01  4.72 
40–54  1 590 996  67 712  1 658 707  496 798  2 155 505  76.95 4.08 
55–59  281 439  8 018  289 457  329 360  618 817  46.78 2.77 
60–69  80 100  1 622   81 722  938 823  1 020 544  8.01 1.98 
70–74  8 101  0  8 101  417 631  425 732   1.90  0.00 
Male  2 156 439  126 744   2 283 183  1 405 747  3 688 930   61.89 5.55 
Female  1 812 085  96 587  1 908 672  2 143 648  4 052 320   47.10 5.06 

Strategy 7 is a relaxed version of strategy 6. When jackknife replicates are computed, 
the calibration procedure uses the recent calibrated weights belonging to the previous 
replicate rather than the original design weights. Just as in the case of strategies 3-4, the 
input weights resulting from calibration in strategy 7 are closer to the calibration result 
than those resulting from strategy 6: the distance being measured in this case is based on 
/2/. For strategy 7, this does not yield perceptible gains in run time (16 min 20.27 sec vs. 
16 min 56.69 sec.). In terms of the notations introduced above, the comparison of the re-
sults of strategies 6 and 7 yields min( d ) = –0.75, mean( ) = 0.22 and 
max( )=1.14 percent, respectively. Therefore, only the estimated standard errors 

 will appear in the tables, but not 

76 76d
d

  ( ⋅s )  (
76

)6 ⋅7s . 
In what follows standard error estimates obtained with strategies 1, 2, 3, 6 and 8 

will be compared. Note that when generating jackknife replicates for strategy 6 using 
the GREG, some calibrated weights can be negative, and they were not excluded from 
the computations in the current research. Table 4 contains the different standard error 
estimates for the totals of employed, unemployed, individuals in and not in the labour 
force in different breakdowns by sex and age groups. The corresponding standard er-
ror estimates for the rates of participation and unemployment can be found in Table 5. 
Since the entries in the column ‘Working age population’ in Tables 1 and 3 are aggre-
gates of controls; they have no sampling variability over the set of possible samples if 
calibration is performed in the same way for each of them. In other words, the stan-
dard errors associated with these estimates vanish. However, this is not the case if the 
estimates of these standard errors are considered. In the case of correct weighting, 
numerical inaccuracies in inverting matrices or taking limits, result in some small 
positive estimates of the standard error; that is the corresponding estimated coefficient 
of variation never exceeded 5×10-4.  

In contrast to this, the biggest relative bias associated with the application of in-
correct weighting was found just in the case where the estimates agreed with sums of 
some controls: far from being zero, the estimated variance was practically the same as 
that obtained when there was no calibration at all. 
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Table 4  

Standard errors for Hungarian LFS data in September 2003, estimated by different jackknife applications 

Correct weighting 
Denomination Incorrect  

weighting 
Current HCSO 

calibration  
with raking 

calibration 
 with GREG 

Improved 
y 

Employed      
Total  49 597  32 513  21 069  26 416  25 485 
15–19  3 223  3 186  2 676  3 430  3 167 
20–24  12 800  9 142  7 585  9 249  9 188 
25–29  19 756  9 518  7 869  9 375  9 485 
30–39  27 063  10 169  8 519  10 355  10 247 
40–54  30 332  13 795  11 469  14 283  13 765 
55–59  12 481  8 602  7 310  8 756  8 524 
60–69  6 546  6 225  5 297  6 257  6 232 
70–74  2 093  2 086  1 818  2 120  2 080 
Male  30 504  20 289  13 287  16 504  15 859 
Female  28 051  21 477  15 050  18 442  18 234 

Unemployed   
Total  9 436  9 289  7 689  9 907  9 351 
15–19  1 942  1 936  1 501  2 195  1 931 
20–24  4 089  3 908  3 177  4 102  3 944 
25–29  3 907  3 874  3 281  3 918  3 831 
30–39  4 603  4 610  3 763  4 744  4 555 
40–54  4 873  4 742  3 891  4 969  4 817 
55–59  1 733  1 733  1 429  1 732  1 722 
60–69  1 006  1021  884   948  1 007 
70–74   n.a.   n.a.   n.a.   n.a.   n.a. 
Male  7 070  7 009  5 698  7 343  6 993 
Female  5 904  6 078  4 857  6 125  5 887 

In labour force   
Total  50 486  32 513  20 691  25 753  24 731 
15–19  3 745  3 623  3 030  3 997  3 650 
20–24  13 789  9 421  7 873  9 618  9 483 
25–29  20 188  8 928  7 372  8 756  8 813 
30–39  27 531  9 355  7 982  9 715  9 469 
40–54  30 812  13 149  11 054  13 773  13 211 
55–59  12 693  8 725  7 385  8 858  8 606 
60–69  6 595  6 327  5 335  6 303  6 273 
70–74  2 093  2 086  1 818  2120  2 080 
Male  31 000  19 920  12 805  15 788  15 033 
Female  28 375  21 477  14 856  18 143  17 977 

Not on labour force   
Total  39 002  32 513  20 635  25 752  24 731 
15–19  17 232  3 623  3 031  3 998  3 650 
20–24  13 585  9 421  7 878  9 619  9 483 
25–29  10 752  8 928  7 372  8 756  8 813 
30–39  10 493  9 355  7 974  9 715  9 469 
40–54  14 442  13 149  11 037  13 773  13 211 
55–59  12 172  8 725  7 395  8 858  8 606 
60–69  21 619  6 327  5 351  6 303  6 273 
70–74  13 202  2 086  1 822  2 120  2 080 
Male  24 051  19 920  12 774  15 788  15 033 
Female  26 922  21 477  14 840  18 142  17 977 

strategy  HCSO strateg
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Turning to Table 4, note that the estimated standard errors obtained with correct 
weighting and raking are uniformly smaller over the 43 variables in consideration. These 
results are in line with what has been observed in the literature: for example Stukel, Hidi-
roglou and Särndal [1996]. Jackknife variance estimates are generally larger than those 
obtained using the Taylor expansion. The estimates produced by the current HCSO strat-
egy represent considerable improvement to those obtained using the incorrect jackknife 
variance procedure. However, these improved estimates are often far from those resulting 
from correct weighting with raking; examples are total employed (49 597, 32 513, 
21 069), employed male (30 504, 20 289, 13 287), etc. For small totals such as total un-
employed and unemployed aged 20-24 the differences are smaller: the corresponding tri-
ples are 9 436, 9 286, 7 689, and 4 089, 3 908, 3 177, respectively. The correct weighting 
with GREG, which is also supposed to yield practically unbiased estimates, results in 
slightly greater standard error estimates than its counterpart that uses raking. We should 
recall here that the GREG and the raking result in two different estimators; e.g. in the 
case of individuals aged 15–19 in the labour force the two estimates of the total are 
35 712 and 36 343, respectively.  

Table 5 

 Standard errors for Hungarian LFS rates in September 2003,  
estimated by different jackknife applications  

(percent) 

Correct weighting 
Denomination Incorrect 

weighting 
Current HCSO 

calibation with 
raking 

calibration with 
GREG  

Improved 
HCSO strategy 

Participation rate  
Total 0.42 0.42 0.27 0.33 0.32 
15–19 0.58 0.58 0.48 0.64 0.58 
20–24 1.35 1.35 1.13 1.38 1.36 
25–29 1.06 1.06 0.88 1.04 1.05 
30–39 0.69 0.69 0.59 0.72 0.70 
40–54 0.61 0.61 0.51 0.64 0.61 
55–59 1.41 1.41 1.19 1.43 1.39 
60–69 0.62 0.62 0.52 0.62 0.61 
70–74 0.49 0.49 0.43 0.50 0.49 
Male 0.54 0.54 0.35 0.43 0.41 
Female 0.53 0.53 0.37 0.45 0.44 

Unemployment rate  
Total 0.22 0.22 0.18 0.23 0.22 
15–19 4.74 4.74 3.79 5.25 4.74 
20–24 1.02 1.02 0.82 1.06 1.02 
25–29 0.61 0.61 0.52 0.62 0.61 
30–39 0.41 0.41 0.34 0.42 0.41 
40–54 0.29 0.29 0.23 0.30 0.29 
55–59 0.59 0.59 0.49 0.59 0.59 
60–69 1.20 1.20 1.06 1.16 1.20 
70–74 n.a. n.a. n.a. n.a. n.a. 
Male 0.30 0.30 0.25 0.32 0.30 
Female 0.31 0.31 0.25 0.32 0.31 

strategy 
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Finally, the estimates produced with the improved HCSO strategy (HCSO_2) are sur-
prisingly close to those obtained with the correct weighting using GREG. This is remark-
able since HCSO_2 is based on the use of the VPLX Software which uses incorrect 
weighting. Note that VPLX runs in a very short run time (approximately 4 seconds) as 
compared to correct weighting with the GREG (16 minutes 57 seconds). 

In our experience, the bias resulting from incorrect weighting is not significant for es-
timated standard error of ratios not exceeding 12 percent. This is shown in Table 5, espe-
cially in the rows of unemployment rate where the only outlier is the group of individuals 
aged 15–19 having an unemployment rate of about 30 percent. In the case of ratios close 
to 50 percent the biasing effect of incorrect weighting is considerable: this strategy yields 
the standard errors 0.54 and 0.53 for the participation rates of male and female, respec-
tively, in contrast to the corresponding figures 0.35 and 0.37 obtained with correct 
weighting with raking. According to Table 5, the performance of the improved HCSO 
strategy is similar to that of correct weighting using the GREG in the case of standard er-
rors of ratios. 

Repeating the computations with the LFS data sets of August 2003 and December 
2002 has led to the following experience. Using the data of August 2003 has yielded 
practically the same tendencies which can be seen in Tables 4 and 5, the actual differ-
ences in estimates were clearly due to the changes over time in the variables observed. 
This is not surprising since the LFS samples in August and September are statistically 
equivalent, each being one third of the quarterly sample. In addition, the actual changes 
in the variables from August to September were moderate, though the decrease in the 
level of unemployment was actually significant.  

Table 6 

Standard errors for some Hungarian LFS data in December 2002,  
estimated by different jackknife applications 

Correct weighting 
Denomination Incorrect 

 weighting 
Current HCSO 

calibration  
with raking 

calibration 
 with GREG 

Improved  
HCSO strategy 

Employed   
Total  56 505  34 134  22 015  29 562  28 908 
40–54  31 997  15 266  11 686  15 764  15 234 
Male  35 261  21 086  13 795  18 528  17 514 
Female  29 703  22 321  14 994  19 623  19 732 

In labour force      
Total  59 540  34 134  21 408  28 715  28 029 
Male  36 830  20 716  13 050  17 458  16 603 
Female  30 927  22 321  14 906  19 604  19 596 

Participation rate (percent)   
Total 0.44 0.44 0.28 0.37 0.36 
Male 0.56 0.56 0.35 0.47 0.45 
Female 0.55 0.55 0.37 0.48 0.48 

strategy 

Turning to the different standard error estimates obtained for the data of December 
2002, the deviations from those pertaining to September 2003 are greater. These devia-
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tions come from different sources, of which the most important one is probably the dif-
ference between the old and the new sampling design. In particular, the number of clus-
ters – the building blocks of creating jackknife replicates – was 2096 in August 2003 and 
2123 in the next month, but it amounted to 4730 in December 2002. This made correct 
jackknife computation even more time-demanding for the old sample than for the new 
one; with the data of December 2002, correct weighting has used 1 hour 36 min 37.8 sec 
with raking and 42 min 26.49 sec with the GREG. Nevertheless, the main conclusions 
remained the same as in the case of the new sample (i.e. August and September 2003). 
These are as follows: the standard error estimates obtained with correct weighting and 
raking are uniformly less than those obtained with other strategies, and the improved 
HCSO technique results in estimates well approximating those obtained with correct rak-
ing and the GREG. The HCSO_2 strategy yields in this case relatively less gains in pre-
cision than in the case of the new sample; this is best shown by estimates based on the 
whole sample or on large subsamples, see Table 6.  

* 

Different strategies of the jackknife method to estimate the variance of some data of 
the Hungarian Labour Force Survey (LFS) were investigated in the paper. If the jackknife 
method is used in the case of calibrated estimates, the procedure of calibration should be 
repeated whenever a new pseudo value or jackknife replicate is created; otherwise the 
weighting will be incorrect. On the one hand, correct weighting demands unusual long 
run time even on fast modern personal computers – a case is reported in the paper where 
solving a medium size problem needed 51 minutes –, on the other hand, the use of incor-
rect weighting may cause serious bias in the estimated variances and standard errors. It is 
pointed out in the paper that 

– if raking is used to ensure correct weighting, slight modifications can reduce the run 
time of 51 minutes to 18 or even 7 minutes, at the cost of acceptable loss in precision, 
and 

– with suitable algebraic manipulation, the use of available software for the jackknife 
can be organised so that the biasing effect of incorrect weighting may be compensated for 
by the proper use of the controls occurring in the calibration procedure. A new strategy 
labelled HCSO_2 in the paper has produced similar variance (and standard error) esti-
mates as a strategy of correct weighting based on generalised regression estimation. 

The experience described in the paper is based on a series of computations using 
monthly data sets of the Hungarian LFS from different periods as input file: December 
2002, August and September 2003. Our results reveal some promising features of the 
strategy HCSO_2, but obviously, further research is needed to evaluate this method. On 
the one hand, its performance should be compared with that of the linearised jackknife, 
which is widely used and is practically equivalent to jackknife with correct weighting. On 
the other hand, the relationship between jackknife with correct weighting and the 
HCSO_2 strategy ought to be examined to see if there is some theoretical reason explain-
ing why the results obtained with the latter approximate so well those produced by the 
former.  
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APPENDIX 

In what follows a subroutine written in SAS-IML language for performing calibration on the basis of the 
Darroch-Ratcliff procedure (i.e. generalised iterative scaling) is presented. 

 
start scaling; 
    work = w;    /* w is the column vector of design weghts (input) */ 
    eps1=1000.; 
    eps2 = 0; 
    it = 0; 
    do while (it < iter & (eps1 > upper | eps2 < lower));     /* by default, iter (# of iteration steps) =1200,  
upper=1.0001, lower=0.9999 */ 
    it=it+1; 
    u = u / u1;     /* u is the row vector of updating factors */ 
    work = work # u`;     /* updating of the weights; u` is the transpose of u */ 
    do j=1 to n1;     /* n1 = dimension of w (and also of u) */ 
    if work[j] < 90. then work[j] = 90.;     /* lower bound of the weights = 90 */ 
    if work[j] > 1500. then work[j] = 1500.;     /* upper bound of the weights = 1500 */ 
    end; 
    y = q * work;     /* q is the 22*n1 matrix in the calibration equations */ 
    y = y<>ymin;     /* replacing possible zeroes in y by 1 */ 
    r = cc / y`;     /* r and cc are the 22-dimensional row vectors of the scaling factors of the equations and 
the controls, respectively; y` is the transpose of y */ 
    do ji=1 to 22;     /* # of controls = 22 */ 
    if r[ji]=0 then r[ji]=1.0; 
    end; 
    eps1 = r[<>]; 
    eps2 = r[><]; 
    u = r * q;     /* computation of the updating factors */ 
    u1 = q[+,]; 
    end; 
    work = floor(work+0.5); /* rounding the calibrated weights (output) */ 
    free q y r; 
finish scaling; 
 
This subroutine is called in the main program by the ‘call scaling;’ statement. A single call results in cali-

brated weights for the subsample of some of the 20 adminstrative units of the country. With the notations of the 
program, the system of calibration equations can be written as q*w =cc or q*work = cc. The variables w, q, n1, 
‘upper’,‘lower’ and cc described between the parentheses ‘/*’ and ‘*/’ should be set values before calling the 
subroutine. The 22-dimensional column vector ymin as well as the n1-dimensional row vectors u and u1 should 
be initialised before the call in the main program, setting all components equal to 1. The fixed values lower 
bound = 90, upper bound = 1500 and the numbers of controls (22) should be changed if the input data are other 
than those of the Hungarian LFS of some month. The maximal number of iteration steps as well as the tolerance 
limits (‘lower’ = 0.9999, ‘upper’ = 1.0001 and iter = 1200) may be changed optionally. 

Remark. In the Darroch–Ratcliff algorithm, the updating factor uj of the weight wj is the geometric mean of 
the scaling factors r1, r2, ..., etc. weighted by the entries in column j of the matrix q (or, with the notations in /3/, 
by the components of the vector xj). In contrast, the above subroutine uses the corresponding weighted arithme-
tic mean. This causes some slight deviation form the unique solution of the optimisation problem /3/-/4/, which 
is, however, compensated by some technical advantages. 
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DIAGNOSTICS OF THE ERROR FACTOR  
COVARIANCES 

OTTÓ HAJDU1 

In this paper we explore initial simple factor structure by the means of the so-called 
‘EPIC’ factor extraction method and the ‘orthosim’ orthogonal rotational strategy. Then, the 
results are tested by confirmative factor analysis based on iteratively reweighted least squares 
on the one hand and asymptotically distribution free estimation on the other hand. Besides, 
based on multivariate kurtosis measures, multivariate normality is also investigated to see 
whether the use of the IWLS method is appropriate or a robust ADF estimator with relatively 
larger standard error is preferred. Finally, the paper draws attention that confidence intervals 
for the non-centrality based goodness of fit measures are available. 

KEYWORDS: Latent variables; Covariance structural equations; Heteroscedasticity; Goodness of fit. 

A model that relates measured variables to latent factors in covariance structure 
analysis is called a measurement model. These models are mostly factor analysis models 
and it is standard to distinguish between confirmatory and exploratory 

  

approach. In an 
exploratory factor analysis, we may not know how many factors are needed to explain 
the inter-correlations among the indicators. In addition, even if we are sure about the ex-
istence of a particular factor, we may not know which variables are the best indicators of 
the factor. Exploratory factor analysis will give us results: the number of factors, the fac-
tor loadings, and possibly the factor correlations. 

In contrast, if we anticipate these results, we can do a confirmatory factor analysis. In 
this type of factor analysis, we presumably have a hypothesis about the number of fac-
tors, which measured variables are supposedly good indicators of each of the factors, 
which variables are unrelated to a factor and, how strongly or weakly the factors correlate 
to each other. In confirmatory models, variables are presumed to be factorially simple. 
That is, a given indicator is usually expected to be influenced by very few factors, typi-
cally only one. In addition, the covariance structure of the error factors can be arbitrary if 
it is reasonably justified and the model identification permits it. This means that the error 
(unique) factors are not necessarily uncorrelated but their variances may be equal by the 
homogeneity hypothesis.2 Of course, hypothesis may be incorrect hence it must be tested 

1 Associate professor of the Budapest University of Technology and Economic Sciences. 
2 This error covariance structure is analogous to that used in the econometrics literature. 
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by sample information. Nevertheless, the hypothetical simple factor structure could be 
explored by orthogonal or oblique rotation of factor loadings carried out on an initial 
loading matrix produced by some factor extraction method. 

The aim of this paper is twofold. In an explorative step we draw attention to a fac-
tor extraction method named EPIC (Equal Prior Instant Communalities) and an or-
thogonal rotation technique called orthosim. The EPIC method is used in our analysis 
as a compromise between two methods: the principal components method, which is 
computationally simple and the maximum likelihood factor analysis, which frequently 
leads to convergence problems. The ‘orthosim’ solution (proposed by Bentler [1977]) 
does not optimize some simplicity criterion within the loading matrix instead it maxi-
mizes a generalized variance type factor simplicity index corresponding to the loading 
matrix as a whole. 

The core problem is that the initial unrotated EPIC factor solution (named by Kaiser 
[1990]) is based on a method in which the variances of the uncorrelated error factors are 
initially taken as equal, 

),p

permitting the computations to be done explicitly and untroubled 
by linear dependencies among the variables (Anderson [1984] p. 21.). Nevertheless, the 
homogeneity assumption of the equal unique variances, as well as the factor pattern itself 
is merely a hypothesis. Therefore, it must be tested by using a confirmatory factor analy-
sis step. There are two main approaches available to estimate the parameters of a confir-
matory factor model. The first is based on some normality assumptions. However, if the 
normality assumptions are violated, asymptotically distribution free (ADF) approach 
must be used. This article gives a review of multivariate kurtosis measures to help deci-
sion whether the use of ADF method (with relatively larger standard errors) is necessary 
or not. In addition, the paper draws attention to those goodness of fit measures for which 
confidence intervals are available. 

Finally, the paper illustrates the problems investigated based on microeconomic bal-
ance-sheet data. The computations are performed using the statistical programs ‘Statistica 
6.0’ and ‘EQS’. 

THE ROLE OF UNCORRELATEDNESS  
IN THE FACTOR MODEL 

In factor analysis, one assumes that certain observable variables (indicators) correlate 
because there are one or several underlying latent factors that generate the observed x 
data. The parametric form of the factor analysis model is given by 

( ) ( ) (( , ), ,p mp m= +x Λ f u1 1 1/ 1  /

where vector x=[x1, x2,..., xp]T consists of p indicators, vector f=[ f1, f2,..., fm]T consists of m 
common (latent) factors and u=[u1, u2,..., up]T represents the error factors, unique to that 
indicator.3 The so-called ‘pattern matrix’  of order (Λ  p, m) consists of jkλ  factor load-
ings. The higher the value of a loading in absolute magnitude the more important the  
  

3 The ‘error factor’ and ‘unique factor’ terminologies are used synonymously in this paper. 
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factor is. Using /1/ we can express the C covariance matrix of order ( p, p) among the ob-
served indicators based on covariances as follows: 

T T
ff uu fu uf= + + +C ΛC Λ C ΛC C Λ . /2/ 

It is apparent, that C has p( p+1)/2 distinct elements (including the variances on the 
main diagonal as well) but the total number of the unknown parameters in /2/ is 

( ) ( )m m p p
pm mp

+ +
+ + +

1 1
2 2

. /3/ 

The factor model is identified when the number of parameters to be estimated q is less 
than the number of the distinct observed covariances that is: 

( )p pdf q+
= − >

1 0
2

 /4/ 

where df is the degree of freedom. Hence, it is necessary to reduce substantially the num-
ber of parameters to be estimated relative to the number of indicators. This can be 
achieved by imposing hypothetical restrictions on the parameters and by increasing the 
number of indicators. 

Such straightforward assumption is that the unique factors are uncorrelated with the 
common factors, i.e. equation fu uf= =C C in /2/. This restriction yields a de-
composition of the observed covariance matrix in the following form: 

0  holds 

T
ff u= +C ΛC Λ C /5/ u . 

A further reasonable restriction that can be imposed is that the unique factors are un-
correlated with each other as well. This means that the covariance matrix  is diago-
nal. Based on this additional restriction the decomposition of the observed covariance 
matrix takes the form: 

uuC

T
ff= +C ΛC Λ Ψ2  /6/ 

where  is our standard notation for the diagonalΨ2

σ2

 covariance matrix of the unique fac-
tors. In addition, if the unique variances are homogeneous, i.e. all of them are equal to a 
constant , the covariance decomposition is as follows: 

T
ff= + σC ΛC Λ I2 . /7/ 

Using now the conventional notation of ff =C Φ  and concerning orthogonal factors, 
 is diagonal and, further, assuming standardized factors, Φ  equals the identity. A non-

diagonal  indicates ‘oblique’ (i.e. correlated) factors. 
Φ

Φ
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Explorative factor analysis is basically aimed at estimating the ( )Λ,Φ, Ψ2  parame-

ters in /6/ without any presumed knowledge about them except, that the common factors 
are standardized (i.e.  is a correlation matrix). In contrast, in a confirmative analysis 
interpretable parameters are selected to be estimated rather than accepting any computa-
tionally convenient assumptions. Our focus in this paper is mainly on testing the hy-
pothesized structure of . 

Φ

Ψ2

Once a solution is obtained, with any Tm non-singular matrix of order m equation /1/ 
is still satisfied in the following form: 

( )( )−= +x ΛT Tf1 u . /8/ 

Replacing f by f*=Tf and  by Λ * −=Λ ΛT 1

*T
 we perform an oblique rotation which 

results in the covariance matrix =TΦT Φ  of the rotated factors and preserves the re-
produced covariance matrix being unchanged: 

T T∗ ∗ ∗ =Λ Φ Λ ΛΦΛ . 

Specially, an orthogonal rotation is performed when the factors are uncorrelated and 
T is orthonormal: T −=T T 1 . 

Our final goal is to give a pattern of loadings as clear as possible that is factors that 
are clearly marked by high loadings for some variables and low loadings for others. This 
general pattern is referred to as „simple structure’. This can be achieved by a two-step 
approach. First, in the explorative step we estimate the orthogonal loadings and subse-
quently rotate them. Then, in the confirmative step we fix some parameters at some 
(typically zero or equal) hypothetical value, reestimate the free parameters and test the 
goodness of fit. Specially, the adequacy (goodness of fit) of a specific orthogonal or 
oblique factor solution can directly be tested by confirmative factor analysis. 

There are various rotational strategies that have been proposed in the field to explore 
a clear pattern of loadings. The most widely used orthogonal rotational strategy is the so-
called varimax method (Kaiser [1958], Ten Berge [1995]). Despite the popularity of 
varimax, we shall use another method based on a different approach named orthosim 
(Bentler [1977]). 

The so-called ‘orthosim’ orthogonal rotation is based on a factorial simplicity index. 
Let us start with a known loading matrix A and transform it with an orthonormal T into 

=B AT uch that ( ) (( Tdiag= ∗ ∗D B B B agonal matrix and * denotes the 

element-wise (Hadamard) product. Then we seek the rotated pattern matrix which 
maximizes the index of factorial simplicity defined as the generalized variance as fol-
lows: 

, s ))B  is a di

( ) ( )( )( )/ /det maxTGV − −= ∗ ∗D B B B B D1 2 1 2 → . 

This determinant (based on a symmetric, nonnegative definite matrix with unit diago-
nal elements) ranges between zero and one. It equals zero when there are linear depend-
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encies among the columns of ( )∗B B . Such a case when some columns of B are propor-
tional or identical except for sign. The maximum value of one occurs if the matrix in GV 
is the identity. This means that the factor pattern is factorially simple. It must be empha-
sized that provided a diagonal scaling matrix GV is invariant with respect to the column 
rescaling of B. 

The concept of oblique rotations can be used in order to obtain more interpretable 
simple structure that best represents the ‘clusters’ of variables, without the constraint of 
orthogonal factors. One of the recommended widely used methods is the direct quartimin 
method (Jennrich–Sampson [1966]). 

THE ‘EQUAL PRIOR INSTANT COMMUNALITIES’ FACTOR  
EXTRACTION METHOD 

Under the hypothesis of this orthogonal factor model, the unique variances of the co-
variance (correlation) matrix are presumed to be equal. According to the standard or-
thogonality and the Kaiser-normalization requirements the matrix 

–T

m

d
d

d

 
 
 = =
 
 
  

Λ Ψ Λ D

1

22

O
 

is diagonal and the maximum likelihood (ML) equations /9/ and /10/ must hold (Lawley–
Maxwell [1971] p. 27. EQ 4.9; p. 30. EQ 4.19): 

)( Tdiag=Ψ C – Λ2 Λ , /9/ 

– ( )m= +CΨ Λ Λ I D2 , /10/ 

where C is the covariance matrix of the observed indicators. Alternatively, equation /10/ 
can be written as: 

–( – ) =C Ψ Ψ Λ ΛD2 2 . 

It is apparent that the columns of  are the eigenvectors corresponding to the largest 
m eigenvalues of matrices 

Λ
–CΨ 2 , or –( )Ψ Ψ2 2C – . 

Let us suppose, that the uncorrelated unique factors are homogeneous i.e. p= σΨ I2 2 , 

m

and consider the standard spectral decomposition of the covariance matrix C of the indi-
cators. Taking only the first m eigenvalues on the main diagonal of the diagonal matrix 

 then: mU

, T
m m m m m= =CW W U W W I , /11/ 
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where the columns of Wm are the corresponding eigenvectors. After some manipulations 
we can write /11/ equivalently as: 

( )p m m m m m m
−
 

    σ σ − = σ −    σ σ    
 

C I W U I W U I U

1 1
1 2 22

2 2
1 1

m
σ2
1 . 

Clearly, making the 

m m m
 = σ − σ 

Λ W U I

1
2

2
1 , /12/ 

m m= −
σ

D U I2
1 , /13/ 

p= σΨ I2 2  /14/ 

substitutions – provided homogeneous unique factors – our all initial ML requirements 
are met. 

The estimation of variance σ2  happens in the following manner. Given that 
 is the sum of the m communalities. ( T

m mtr Λ Λ )

m( ) ( )var
p

T
j m

j
p x tr

=
σ = −∑2

1
L L  

and based on equations /12/, /13/ and T
m m m=W W I , we obtain 

( ) ( )( )p p
T T

j m m j m m m
j j

p u tr u tr
= =

σ = − σ = − −σ =∑ ∑W DW U W W2 2 2

1 1
 

p m

j j
j j

u u m
= =

 
= − − σ  

 
∑ ∑ 2

1 1
, 

from which 

( )
p

j
j m

p m u
= +

− σ = ∑2

1
. /15/ 

We draw attention that WU1/2 gives the standard principal components loading ma-
trix. 
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There are two reasons why the p= σΨ2 2 ssumption is not as restrictive as it 
seems: first, the unique variances for the covariance matrix are not used in the computa-
tions and are not presumed to be equal when an explorative factor extraction is carried 
out on the correlation matrix as it is the usual case. Rather, the ratio of common factor 
variance to unique variance is hypothesized as equal for all variables under the model. 
Second, the estimated communalities for the correlation matrix, obtained from the solu-
tion, can vary substantially in practice. 

I  a

AN EXPLORATIVE STUDY BASED  
ON MICROECONOMIC FINANCIAL INDICATORS 

Based on balance-sheet data of 2117 Hungarian economic units from the branch with 
NACE code ‘5011’ in 1999, the following indicators have been investigated by EPIC fac-
tor analysis followed by orthosim and direct quartimin rotations: 

 
Profit after taxation / Liabilities: ‘ATPLIAB’ 
Cash-Flow / Liabilities: ‘CFLIAB’ 
Current ratio = Current assets / Short term liabilities: ‘CURRENT’ 
Adjusted Current ratio = (Current assets-Inventories) / Short term liabilities: ‘ACUR-

RENT’ 
Long term liabilities / (Long term liabilities + Owner’s equity): ‘DEBT’ 
Owner’s equity / (Inventories + Invested assets): ‘EQUITYR’ 
 
The cases with observed value smaller than –10 and those with larger than 10 are ex-

cluded from the analysis. The covariance and correlation matrices of these 6 variables are 
given in Table 1. 

 Table 1  

Covariances and correlations of the financial microeconomic indicators (N=2117) 
Variable ATPLIAB CFLIAB CURRENT ACURRENT DEBT EQUITYR 

 Covariance matrix 
ATPLIAB 0.513 0.501 0.118 0.155 –0.086 0.193 
CFLIAB 0.501 0.571 0.155 0.181 –0.110 0.223 
CURRENT 0.118 0.155 0.837 0.842 –0.189 0.571 
ACURRENT 0.155 0.181 0.842 1.566 –0.289 0.671 
DEBT –0.086 –0.110 –0.189 –0.289 0.596 –0.934 
EQUITYR 0.193 0.223 0.571 0.671 –0.934 2.721 

 Correlation matrix 
ATPLIAB 1.000 0.927 0.180 0.173 –0.155 0.163 
CFLIAB 0.927 1.000 0.225 0.191 –0.188 0.179 
CURRENT 0.180 0.225 1.000 0.735 –0.268 0.378 
ACURRENT 0.173 0.191 0.735 1.000 –0.299 0.325 
DEBT –0.155 –0.188 –0.268 –0.299 1.000 –0.733 
EQUITYR 0.163 0.179 0.378 0.325 –0.733 1.000 
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The eigenvalues of the correlation matrix constitute the main diagonal of the diagonal 
matrix U=< 2.709, 1.589, 1.101, 0.306, 0.222, 0.072 > where the first three largest roots 
account for a variance explained of 90 percentage. In order to extract 3 unrotated factors 
named F1, F2, F3, the EPIC factor model is used. The estimated variance of the unique 
factors (see equation /15/) is the average omitted eigenvalue: 

0.306+0.222+0.072ˆ .σ = =2 0 2
3

. 

The EPIC loadings based on equation /12/ are shown in Table 2. They are computed 
from the WU1/2 principal components loadings (see also Table 2) according to the fol-
lowing manner: 

ˆ ˆ.
ˆ ˆ

PCA
EPIC u

u
Λ  Λ = = σ − = σ −  σ σ  

W U I

1 1
2 211

11 11 11 11 12 2
1

1 10 601 1 =


 

.. .
..

= −
0 6245 10 2 2 709 1

0 22 709
 

and 

( ). .. .
. .

EPICΛ = − = − −63
0 2 1 1010 4271 0 4722 1

1 101 0 2
. 

Table 2  

Initial, unrotated and rotated EPIC factor loadings 
PCA factor loadings WU1/2 EPIC factor loadings Orthosim solution Direct quartimin solution 

Variable 
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

ATPLIAB 0.624 0.756 –0.036 0.601 0.707 –0.033 0.088 0.921 0.079 –0.013 0.933 0.008 
CFLIAB 0.653 0.731 –0.029 0.629 0.684 –0.026 0.118 0.916 0.100 0.015 0.924 –0.009 
CURRENT 0.705 –0.309 0.526 0.679 –0.289 0.475 0.851 0.107 0.185 0.872 0.012 –0.006 
ACURRENT 0.688 –0.324 0.536 0.662 –0.303 0.485 0.853 0.085 0.175 0.878 –0.009 0.004 
DEBT –0.659 0.358 0.559 –0.634 0.335 0.505 –0.139 –0.088 –0.862 0.047 –0.008 0.893 
EQUITYR 0.698 –0.391 –0.472 0.672 –0.366 –0.427 0.228 0.079 0.842 0.056 –0.008 –0.854 

Since the first three eigenvalues of the correlation matrix account for a large portion 
of the total variance, it is clear, that the principal components and the EPIC loadings dif-
fer just to a slight extent. On the other hand, when some of the subsequent eigenvalues 
tend to be more important this tendency is not necessary. 

The solutions from the orthogonal orthosim and oblique direct quartimin rotations are 
given in Table 2 and are almost identical.  
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According to the rotated loadings the following factors have been explored: 

– F1: liability-based ‘profitability’, 
– F2: current ratio-based ‘liquidity’, 
– F3: long run ‘debtness’. 

After oblique rotation the inter-factor correlations are not negligible because: 
Corr(F1,F2) = –0.233, Corr(F1,F3) = –0.408 and Corr(F2,F3) = –0.21, respectively. As a 
consequence, in the confirmative analysis step these correlations need to be estimated, 
increasing hence the number of free parameters. 

The question arises at this stage is whether the hypothetical restriction  imposed 
on the covariance matrix of the error factors is acceptable or not. Decision on the model 
will be based on ‘goodness of fit’ measures, evaluated first retaining and then relaxing 
the restrictions. Such a method that provides tools for inference via the maximum likeli-
hood theory is the generalized weighted least squares. However, when the sample does 
not come from a multivariate normal distribution, the asymptotically distribution free es-
timator is still available. A detailed overview of it is as follows. 

σ I2

ASYMPTOTICALLY DISTRIBUTION FREE ESTIMATORS 

Based on a sample of size N let S denote the usual unbiased estimator of the popula-
tion covariance matrix  whose elements are functions of a parameter vector θ : ( , )p pΣ

( )=Σ Σ θ . 

The weighted least squares (WLS) quadratic form discrepancy function measures the 
discrepancy between the sample covariance matrix S and the reproduced covariance ma-
trix  evaluated at an estimator (Browne [1974]): ˆˆ ( )=Σ Σ θ

( )( ) ( )( ) ( )( ), mTF −= − − →s σ θ s σ θ W s σ θ1 in , 

where s and σ(θ) are column vectors, formed from the ( )*p p p= +1 2/  non-duplicative 
elements of S and Σ(θ), respectively and W 

)
is a positive definite weight matrix of order 

. It is optimal to choose the weight matrix based on the covariance matrix of the 
sample covariances with typical element: 
( *, *p p

( ), ,( ) cov , ( )jk lt jk lt jk lt jl kt jt kl jklt
Nw N s s N

N
−

= − = − σ = σ σ +σ σ + κ
11 1 , /16/ 

where [ ]jl jlσ = Σ  and 

( )jklt jklt jk lt jl kt jt klκ = σ − σ σ + σ σ + σ σ  
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is a fourth-order cumulant with the fourth-order moment 

( )( )( )( )jklt j j k k l l t tE x x x xσ = −µ −µ −µ −µ . 

Equation /16/ gives the weight matrix for Browne’s Asymptotically Distribution Free 
(ADF) estimator (Browne [1984]). Letting N tend to infinity the ADF weight takes the 
form without specifying any particular distribution: 

,jk lt jklt jk ltw = σ −σ σ  /17/ 

with consistent (but not unbiased) estimators 

( )( )( )( )
N

jklt j j k k l l t t
i

m x x x x x x x x
N =

= − − − −∑
1

1 , 

( )( )
N

jk j j k k
i

m x x x x
N =

= − −∑
1

1 . 

Let us consider the heterogeneous kurtosis theory (Kano–Berkane–Bentler [1990]) 
which defines a general class of multivariate distributions that allows marginal distribu-
tions to have heterogeneous kurtosis parameters. Let /j jjjj jjκ = σ σ2 3 2  represent a measure 
of excess kurtosis of the jth indicator. Then the fourth-order moments have the structure 

j k j l j tl t k t k l
jklt jk lt jl kt jt kl

κ + κ κ + κ κ + κκ + κ κ + κ κ + κ
σ = σ σ + σ σ + σ σ

2 2 2 2 2 2
. 

Under the assumption that all marginal distribution of a multivariate distribution are 
symmetric and have the same relative kurtosis, the elliptical (homogeneous kurtosis) the-
ory estimators and test statistics can be obtained. The common kurtosis parameter of a 
distribution from the elliptical class of distributions with multivariate density4 

( ) ( )| | – –Tc h
− − 

 V x µ V x
1

12 µ  

is 

jjjj

jj

σ
κ = −

σ2 1
3

. 

Then, the fourth-order moments are 

( ) ( )jklt jk lt jl kt jt klσ = κ + σ σ + σ σ + σ σ1 . 

  
4 Here c is a constant, h is a non-negative function and V is a positive definite matrix. 
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Letting again N tend to infinity, substitution into /17/ yields the weight 

( ),jk lt jl kt jt kl jk lt jl kt jt klw = σ σ + σ σ + κ σ σ + σ σ + σ σ = ( )( )jl kt jt kl jk ltκ + σ σ + σ σ + κσ σ1  

Obviously, if , then, multivariate normal distributions are considered and the 
typical element of the weight matrix takes the form 

κ = 0

,jk lt jl kt jt klw = σ σ + σ σ . 

Because the size of W in practice can be very large it is reasonable to perform com-
putations based on an equivalent form of the discrepancy function. Namely, assuming el-
liptical distributions, the quadratic form discrepancy function takes the form: 

( ) ( )– –( – ( )) – ( – ( ))
( ) ( ) ( )EF tr tr

p
κ =  κ +   κ + + κ κ +

S Σ θ V S Σ θ V
21 2

2
1

2 1 4 1 2 1
1  

which reduces to the normal theory discrepancy function when κ = 0 , i.e. the distribu-
tions have no kurtosis: 

( )–( ( ))NF tr  =   
S – Σ θ V

211
2

. /18/ 

When V=I, one obtains the unweighted least squares estimator FULS, the substitution 
V=S yields the generalized least squares estimator FGLS and an iteratively reweighted so-
lution FIWLS is obtained when  is the reproduced covariance matrix generated 

by  in each iterative step. Finally, asymptotically, F

ˆ( )=V Σ θ

θ̂ IWLS leads to maximum likelihood 
estimate FML for exponential families of distributions.5 

If [V]jk is a consistent estimator of [ ] jkjk = σΣ

ŵ

then  will be a consistent estima-

tor of cov(s,s
,ˆ jk ltw

). Further, the unbiased estimator of  is ,jk lt

( )( ),ˆ jk lt
Nw

N N
= ×

− −2 3
 

( )( )– – – –
–jklt jk lt jl kt jt lk jk ltN m m m m m m m m m

N
  × +    

21
1

. 

  
5 The statistical distribution of the elements of a covariance matrix is not the same as that of a correlation matrix. This is 

obvious if you consider the diagonal elements of a covariance matrix, which are the variances of the variables. These are ran-
dom variables – they vary from sample to sample. On the other hand, the diagonal elements of a correlation matrix are not ran-
dom variables – they are always 1. The sampling distribution theory employed for the case of a covariance matrix is not appli-
cable to a correlation matrix, except in special circumstances. It must be emphasized that it is possible (indeed likely) to get 
some incorrect results if we analyze a correlation matrix as if it were a covariance matrix. This has been described in the litera-
ture (see, for example, Cudeck [1989]). In order to analyse of the correlation matrix of the input data correctly, computations 
are based on the constrained estimation theory developed by Browne [1982]. As a result, we give the correct standard errors, 
estimates, and test statistics when a correlation matrix is analyzed directly. 
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If W consists of these unbiased elements, it may not be positive definite, but it would 
be unlikely the case when N is substantially larger than p*. 

As it is apparent, the measures of multivariate kurtosis play a key role from the multi-
variate normality point of view. 

THE MEASURES OF KURTOSIS 

The statistics described subsequently allow us to examine whether the assumptions 
of multivariate normality have been violated. The consistent estimator of the common 
relative multivariate kurtosis parameter κ  is the rescaled Mardia’s sample measure: 

( )
( ) ( )

( )
ˆ

T
N i i

i Np p

−

=

 − − κ + =
+

∑
x x S x x

2
1

1
1

2
. 

This measure should be close to 1 if the distribution is multivariate normal. 
If the sample comes from a multivariate normal distribution, the Mardia-coefficient of 

multivariate kurtosis defined as 

( )ˆMK p p= κ + 2  

should be close to zero.6 Further, the normalized multivariate kurtosis 

( )
ˆ

/
MK

p p N
κ =

+
0

8 2
 

has a distribution that is approximately standard normal at large samples. 
The elliptical distribution family includes the multivariate normal distribution as a 

special case. As mentioned in this distribution family all variables have a common kurto-
sis parameter .κ  This parameter can be used to rescale the Chi-square statistic if the as-
sumption of an elliptical distribution is valid. The Mardia-based kappa 

( )
ˆ MK

p p
κ =

+1 2
 

is an estimate of kappa obtained by rescaling the Mardia's coefficient of multivariate kur-
tosis. This number should be close to zero if the population distribution is multivariate 
normal. 

Distribution theory provides a lower bound for kappa. It must never be less than  
–6/(p+2), where p is the number of variables. The adjusted mean scaled univariate kurto-
  

6 The expected value and variance of ( ) ( )ˆ 1 2p pκ + + ( ) ( ) ( )1 2 /N p p N 1− + + ( ) /8 2p p N+  
respectively. 

 are  and 



OTTÓ HAJDU 80 

sis is an alternate estimate of kappa, which takes into account this requirement and is ob-
tained simply as the average univariate kurtosis: 

–ˆ max – ,
p jjjj

j jj

m
p pm=

   κ =    +  
∑2 2

1

1 63
3 2

, 

where 

jjjj

jj

m

m
−2 3  

is the rescaled (i.e. uncorrected), biased estimate of univariate kurtosis for variable xj. 
The asymptotic variance of this univariate measure is 24/N, which is used to standardize 
the uncorrected kurtosis in order to produce the ‘normalized’ kurtosis. 

The  estimate averages the scaled univariate kurtosis, but adjusts each one that 
falls below the bound to be at the lower bound point. This coefficient should be close to 
zero if the distribution is multivariate normal. 

κ̂2

 Table 3  

Measures of Multivariate Kurtosis 
Measure Value 

Mardia Coefficient of Multivariate Kurtosis 403.085 
Normalized Multivariate Kurtosis 946.437 
Mardia-Based Kappa 8.398 
Mean Scaled Univariate Kurtosis 9.580 
Adjusted Mean Scaled Univariate Kurtosis 9.580 
Relative Multivariate Kurtosis 9.398 

Table 4  

Univariate measures of skewness and kurtosis 
Measures of skewness Measures of kurtosis 

Variable 
Skewness Corrected Normalized Kurtosis Corrected Normalized 

ATPLIAB 0.490 0.490 9.201 46.798 46.912 439.524 
CFLIAB 2.176 2.178 40.876 50.111 50.232 470.636 
CURRENT 4.056 4.059 76.188 22.257 22.313 209.040 
ACURRENT 3.311 3.314 62.203 13.932 13.968 130.850 
DEBT 4.256 4.259 79.940 27.112 27.179 254.632 
EQUITYR –1.387 –1.388 –26.051 11.809 11.840 110.913 

Considering our 6 financial microeconomic indicators, the computed values of the 
measures discussed are presented in Table 3 and Table 4. Results show that the require-
ment of zero kurtosis is violated. Nevertheless, the homogeneous kurtosis hypothesis 
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about a common non-zero kurtosis parameter could still be valid. But as we can see from 
Table 4 the univariate uncorrected kurtosis measures do not justify accepting the case of 
a common kurtosis parameter. 

Finally, if the univariate kurtosis and skewness measures separately reject the as-
sumption of univariate normality, the hypothesis about the multivariate normality must 
also be rejected as a consequence. Therefore, the corrected univariate kurtosis and skew-
ness measures are also useful unbiased estimates for investigation of the assumption of 
normality.7 They are, respectively: 

Corrected univariate kurtosis 

( )
( ) ( – )–

( – )( – )( – ) ( – )( – )( )
jjjj

j
jj

mN N Nb
N N N N Nm

∗
 +
 =
  

2 2

2 2
1 3

1 2 3 2
1

3
. 

Corrected univariate skewness 

( ) ( – )( – ) ( )
jjj

j
jj

mNb
N N m

∗
 
 =
  

2

1 3 21 2
. 

The asymptotic variance of this latter measure is 6/N, 

  

which is used to standardize the 
uncorrected skewness to produce the ‘normalized’ skewness. 

As a consequence of the kurtosis and skewness measures, we prefer the ADF estima-
tor under arbitrary distribution as long as it produces interpretable results. 

Estimates of free parameters and their inference statistics (standard error, T-value) are 
given in Table 5 based on both IWLS and ADF estimators considering both homogene-
ous and heterogeneous error-variance models. The corresponding converged values of 
the discrepancy function are also included. (Each of the four model-estimation converged 
within 10 iteration steps.) The type of the free parameters is indicated by the following 
scheme in the first column of the table: (.) contains latent variable, [.] includes measured 
indicator, the numbered -#-> arrow represents directed relationship and the numbered -#- 
wire represents undirected relationship (i.e. variance, covariance). Finally, the numbered 
name of an error factor is DELTA#. 

As we can see, only the ‘ADF, Homogeneous’ T-values for parameters #11 and #13 are 
not significant with P-values 0.336, 0.454, respectively. All other P-values are practically 
zeros. Obviously, in the case of the ADF estimator (because of the distributional knowledge 
omitted) the estimated standard errors are higher than those computed by IWLS. 

Based on the discrepancy function the results from the ADF method seem to be pre-
ferred. Contrary, based on the Root Mean Square (RMS) standardized residual8, the 
IWLS results exhibit a better fit. The former results are based on the assumption of 
multivariate normality, while the latter is not, producing greater standard errors. Never-
theless our main purpose is to compare the homogeneous model with the heterogene-
ous one. 

7 One can find the uncorrected counterparts closed in the [.] bracket. 
8 Residual is divided by its standard error. 
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Table 5  

Model characteristics from IWLS and ADF estimators 
Iteratively reweighted least squares estimator Asymptotically distribution free estimator 

Heterogeneous variances Homogeneous variances Heterogeneous variances Homogeneous variances Free parameters 

Estimate St.Error T Estimate St.Error T Estimate St.Error T Estimate St.Error T 

(F1)-1->[ATPLIAB] 0.664 0.012 56.444 0.634 0.014 44.706 0.465 0.060 7.773 0.569 0.064 8.885 
(F1)-2->[CFLIAB] 0.756 0.012 65.054 0.673 0.015 46.140 0.530 0.066 8.066 0.585 0.066 8.849 
(F2)-3->[CURRENT] 0.837 0.022 37.855 0.765 0.015 49.839 0.556 0.045 12.334 0.859 0.049 17.515 
(F2)-4->[ACURRENT] 1.005 0.030 33.997 1.159 0.020 56.991 0.990 0.068 14.671 0.875 0.050 17.528 
(F3)-5->[DEBT] -0.590 0.019 -31.016 -0.600 0.013 -44.7 -0.763 0.044 -17.28 -0.298 0.020 -15.27 
(F3)-6->[EQUITYR] 1.581 0.043 36.631 1.589 0.026 60.476 1.203 0.072 16.782 1.297 0.071 18.362 
(DELTA1)-7-(DELTA1) 0.072 0.002 32.527 0.189 0.003 56.338 0.031 0.010 3.191 0.018 0.005 3.667 
(DELTA2)-8-(DELTA2) 0.000 0.000 - 0.189 0.003 56.338 0.000 0.000 - 0.018 0.005 3.667 
(DELTA3)-9-(DELTA3) 0.137 0.027 5.013 0.189 0.003 56.338 0.201 0.033 6.031 0.018 0.005 3.667 
(DELTA4)-10-(DELTA4) 0.555 0.042 13.081 0.189 0.003 56.338 0.273 0.106 2.579 0.018 0.005 3.667 
(DELTA5)-11-(DELTA5) 0.248 0.017 14.668 0.189 0.003 56.338 0.030 0.031 0.962 0.018 0.005 3.667 
(DELTA6)-12-(DELTA6) 0.220 0.108 2.028 0.189 0.003 56.338 0.878 0.128 6.882 0.018 0.005 3.667 
(F2)-13-(F1) 0.244 0.022 11.028 0.238 0.024 9.927 0.047 0.063 0.749 0.212 0.072 2.944 
(F3)-14-(F1) 0.193 0.022 8.778 0.207 0.024 8.651 0.220 0.035 6.300 0.250 0.053 4.701 
(F3)-15-(F2) 0.427 0.022 19.541 0.399 0.020 19.842 0.321 0.026 12.540 0.431 0.034 12.807 
     
Discrepancy Function 0.0441 0.973 0.0301 0.0897   
degree of freedom 6 11 6 11   
RMS Stand. Residual 0.0158 0.0625 0.243 0.285   
Chi-Square Statistic 93.3284 2057.94 63.7372 189.81   
     
Goodness of fit indices Confidence intervals at 90 percent level 
Noncentrality based indices LB PE UB LB PE UB LB PE UB LB PE UB 
Population Noncentrality Index 0.026 0.038 0.055 0.500 0.551 0.606 0.017 0.027 0.041 0.065 0.085 0.107 
Steiger-Lind RMSEA Index 0.066 0.080 0.095 0.213 0.224 0.235 0.053 0.067 0.083 0.077 0.088 0.099 
McDonald Noncentrality Index 0.973 0.981 0.987 0.738 0.759 0.779 0.980 0.986 0.992 0.948 0.959 0.968 
Population Gamma Index 0.982 0.987 0.991 0.832 0.845 0.857    
Adjusted Population Gamma 
Index 0.938 0.956 0.970 0.679 0.704 0.727    

     
Other fit indices     
Joreskog GFI  0.986 0.844 0.832  0.499  
Joreskog AGFI  0.952 0.701 0.412  0.044  
Akaike Information Criterion  0.058 0.982 0.044  0.099  
Schwarz's Bayesian Criterion  0.098 1.009 0.084  0.126  
Browne-Cudeck Cross Valida-
tion  0.058 0.982 0.044  0.099  
Null Model Chi-Square  7989.2 7989.2 291.8  291.8  
Null Model df  15 15 15  15  
Bentler-Bonett Normed Fit In-
dex  0.988 0.742    

Bentler-Bonett Non-Normed 
Fit Index  0.973 0.650    

Bentler Comparative Fit Index  0.989 0.743    
James-Mulaik-Brett Parsimo-
nious Fit Index  0.395 0.544    

Bollen's Rho  0.971 0.649    
Bollen's Delta  0.989 0.743    

Note: Where a baseline model is involved, it is assumed to be the null model, defined as a model without any common fac-
tors. 

var(F1)=var(F2)=var(F3)=1 and the error factors (Delta1-Delta6) are uncorrelated. 
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Once a minimized converged value of the discrepancy function has been reached and 
selected as the best one, the subsequent evaluation of its goodness of fit is necessary. For 
this purpose a wide selection of fit-indices is available. Some of them are hypothesis the-
ory-based, others are heuristic. On the other hand, we can distinguish noncentrality-based 
goodness of fit indices and other indices including incremental type indices as well. In 
the following section we discuss those employed in this paper. 

NONCENTRALITY-BASED  
GOODNESS-OF-FIT INDICES 

Let us consider the null hypothesis that the restricted model ( )Σ θ  holds for the popu-
lation covariance matrix , against the alternative that it does not hold: Σ

( ):H =Σ Σ θ0 , 

( ):H ≠Σ Σ θ1 . 

In other words, the H1 hypothesis states that a significant improvement is expected 
in the discrepancy between the restricted and the unrestricted models due to a simple 
switch from ( )Σ θ  to . Then, the discrepancy between the true and the hypothesized 
model is 

Σ

( )( ) ( )( ) ( )( ), mTF −= − − →σ σ θ σ σ θ W σ σ θ1 in  

which could be minimized with respect to the parameter vector . Let θ ( )( )*F σ,σ θ  de-

note the minimized value at some . Then, asymptotically, *θ ( ) (N F− s,σ θ1 )( )χ =2 is 
distributed as a noncentral Chi-square with 

( )p p
df q

+
= −

1
2

 

degrees of freedom and noncentrality parameter 

( ) ( )( )*N Fτ = − σ,σ θ1  

or 

( )( )*F
N
τ

=
−

σ,σ θ
1
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rescaled noncentrality parameter, where q is the number of parameters to be estimated 
for the model. Obviously, when the model holds, τ = 0  and χ2  is distributed as a central 
Chi-square with df degrees of freedom. 

Hence, the size of  can be considered as a population measure of model misspecifi-
cation, with larger values of  indicating greater misspecification. As it follows from the 
probability theory, the expected value of the noncentral Chi-square statistic is 

τ
τ

( ) ( ) ( )( ){ },E E N F dfχ = − = + τs σ θ2 1 . 

Hence, based on only one observation for χ2 , the estimated value of the noncentrality 
parameter is 

ˆ NCP dfτ = = χ −2 , 

where 

( ) ( )( )ˆ,N Fχ = − s σ θ2 1  

is the estimated measure of distance between the currently investigated model which is 
the target of our hypothesis and the saturated model with ( ) /p p +1 2  free parameters, 
say, s. Therefore, the discrepancy function (named also fitting function) is calculated as 

F
N
χ

=
−

2

1
. 

Note, that NCP can be negative when the estimated Chi-square is less than the df. Di-
viding the noncentrality parameter by (N–1) yields the population noncentrality index 
PNI which is a measure of population badness-of-fit and depends only on the model, and 
the method of estimation: 

–max ,
–
dfPNI

N
 χ =  
  

2
0

1
. 

The population noncentrality index PNI is an unbiased estimate of the rescaled non-
centrality parameter and is relatively unaffected by the sample size. However, PNI fails 
to compensate for model complexity. In general, for a given S, the more complex the 
model the better its fit. A method for assessing population fit which fails to compensate 
for this will inevitably lead to choosing the most complex models, even when simpler 
models fit the data nearly as well. Because PNI fails to compensate for the size or com-
plexity of a model, it has limited utility as a device for comparing models. 

The adjusted root mean square error index, first proposed by Steiger and Lind 
[1980], takes a relatively simplistic approach to solving these problems. Since model 
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complexity is reflected directly in the number of free parameters, and inversely in the 
number of degrees of freedom, the PNI is divided by degrees of freedom, then the 
square root is taken to return the index to the same metric as the original standardized 
parameters. 

PNIRMSEA
df

= . 

The RMSEA index can be thought of roughly as a root mean square standardized re-
sidual. Values above .10 indicate an inadequate fit, values below .05 a very good fit. 
Point estimates below .01 indicate an outstanding fit. The rule of thumb is that, for ‘close 
fit’, RMSEA should be less than c = .05 yields a rule that 

( ) NN c
df
χ −

< + − = +
2

2 11 1 1
400

. 

With this criterion, if N = 401, the ratio of the Chi-square to its degrees of freedom 
should be less than 2. Note that this rule implies a less stringent criterion for the ratio 
χ2/df as sample size increases. 

Rules of thumb that cite a single value for a critical ratio of χ2/df ignore the point 
that the Chi-square statistic has an expected value that is a function of degrees of free-
dom, population badness of fit, and N. Hence, for a fixed level of population badness 
of fit, the expected value of the Chi-square statistic will increase as sample size in-
creases. 

McDonald [1989] proposed an index of noncentrality that represents one approach 
to transforming the population noncentrality index PNI into the range from 0 to 1. The 
index does not compensate for model parsimony, and the rationale for the exponential 
transformation it uses is primarily pragmatic. The index may be expressed as 

PNI
MDNI e

−
=

1
2 . 

Good fit is indicated by values above 0.95. Similarly, the scaled likelihood ratio cri-
terion is 

F
LHR e

−
=

1
2 . 

Further, the weighted population coefficient of determination can also be defined as 

( )( ) ( )( )T

T

−

−

− −
Γ = −

σ σ θ W σ σ θ

σ W σ

1

11 , 

where W is a positive definite weight matrix. Under arbitrary weighted least squares es-
timation, the population gamma index of Tanaka and Huba [1985] is given as a general 
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form for the sample fit index for covariance structure models. It assumes the covariance 
structure model has been fit by minimizing the WLS discrepancy function. Then, the in-
dex is 

( )( ) ( )( )T

T

−

−

− −
γ = −

s σ θ W s σ θ

s W s

1

11 . 

When the distributions have no kurtosis ( κ = 0 ) based on /18/ we can write  as the 
parametric form of the Jöreskog–Sörbom [1984] index of fit: 

γ

( )( )( )
( )

V

tr
JSI

tr

−

−

−
= −

S Σ θ V

SV

21

21

1
21

1
2

. 

If V=I, or V=S, one obtains the Jöreskog–Sörbom (JS) index for the ULS and GLS es-
timators, respectively. Specially, using IWLS, i.e. ˆ=V , gives asymptotically the JSIΣ  in-
dex for the maximum likelihood (ML) estimation with 

( ) ( ) ( )ˆ ˆ ˆ
IWLSF tr tr tr p− − = − = − 

 
SΣ I SΣ SΣ

2 21 11 1 2
2 2

− +1 . 

Hence, 

( )
( )

( )
( )

ˆ ˆ

ˆˆ
IWLS
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tr tr p

F tr ptr

− −

−−

− −
γ = − =

+ −

SΣ I SΣ

SΣSΣ

21 1
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2
1

2 2
. 

In addition, when the 

( )ˆtr p− =SΣ 1  

equation holds, the ,IWLS MLγ  index reduces to the classic JS goodness of fit index: 

( )ˆ IWLS

p pGFI
F ptr −

= =
+SΣ

21 2
. 

As a consequence, GFI can be thought of as the sample equivalent of the index de-
fined in the population as 

( )( ) ( )( ),
p p

F p ptr N
−

Γ = = =
τ+
p

+   −
σ σ θΣ Σ θ

1 21 2 2
1

. 
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Any consistent estimate of τ  will give a consistent estimate for Γ1. This index like 
PNI, fails to compensate for the effect of model complexity. Consider a sequence of 
nested models, where the models with more degrees of freedom are special cases of those 
with less degrees of freedom. For such a nested sequence of models, the more complex 
models (i.e. those with more free parameters and less degrees of freedom) will always 
have Γ1 coefficients as low or lower than those which are less complex. 

The adjusted population gamma index Γ2 attempts to compensate for this tendency: 

( ) ( )p p
df
+

Γ = − −Γ
⋅2 1

11 1
2

 

and its sample counterpart is 

 
( ) ( )p pAGFI GFI

df
+

= − −
⋅

11 1
2

. 

Values of the Joreskog GFI above .95 indicate good fit. This index is a negatively 
biased estimate of the population GFI, so it tends to produce a slightly pessimistic view 
of the quality of population fit. We give this index primarily because of its historical 
popularity.  

The Population Gamma index is a superior realization of the same rationale. The 
values of the Joreskog AGFI above .95 also indicate good fit. This index is, like the 
GFI, a negatively biased estimate of its population equivalent. As with the GFI, the 
Adjusted Population Gamma Index is a superior realization of the same rationale. 

At this stage we have arrived at an important conclusion that the lower and upper 
bounds of an α  level confidence interval of the Chi-square statistic can be inserted 
into any goodness of fit measure that involves the Chi-square statistic. Consistent esti-
mates and confidence intervals for Γ1 may thus be converted into corresponding quanti-
ties for Γ2. 

OTHER INDICES OF FIT 

Rescaled Akaike Information Criterion 

In a number of situations the user must decide among a number of competing 
nested models of different dimensions. This criterion is useful primarily for deciding 
which of several nested models provides the best approximation to the data. The most 
typical example is the choice of the number of factors in common factor analysis. 
Akaike ([1973], [1974], [1983]) proposed a criterion for selecting the dimension of a 
model. Steiger and Lind [1980] presented an extensive Monte Carlo study of the per-
formance of the Akaike criterion. Here the criterion is rescaled (without affecting the 
decisions it indicates) so that it remained more stable across differing sample sizes. 
The rescaled Akaike criterion ( modified by Cudeck and Brown [1983]) is as follows. 
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Let FML,k be the maximum likelihood discrepancy function and qk be the number of 
free parameters for the model Mk. Let N be the sample size.  

When trying to decide between several nested models, choose the one with the small-
est Akaike criterion: 

,
k

k ML k
q

AC F
N

= +
−

2
1

. 

Schwarz’s Bayesian Criterion 

This criterion (Schwarz [1978] also modified by Cudeck and Brown [1983]) is similar 
in use to Akaike’s index, selecting, in a sequence of nested models, the model for which 

,
ln( )k

k ML k
q N

SC F
N

= +
−1

 

is a minimum. 

Browne–Cudeck Single Sample Cross-Validation Index 

Browne and Cudeck [1990] proposed a single sample cross-validation index as a 
follow-up to their earlier (Cudeck–Browne [1983]) paper on cross-validation. Cudeck 
and Browne had proposed a cross-validation index which, for model Mt in a set of 
competing models is of the form FML(Scν,Σt(θ)). In this case, F is the maximum likeli-
hood discrepancy function, Scν is the covariance matrix calculated on a cross-validation 
sample, and Σt(θ) the reproduced covariance matrix obtained by fitting model Mt to the 
original calibration sample. In general, better models will have smaller cross-validation 
indices. 

The drawback of the original procedure is that it requires two samples, i.e. the calibra-
tion sample for fitting the models, and the cross-validation sample. The new measure es-
timates the original cross-validation index from a single sample.  

The measure is 

( , ( ))
– –

t
t ML cv t

q
C F

N p
= +S Σ θ

2
2

. 

Null Model Chi-square and df 

This is the Chi-square goodness-of-fit statistic, and the associated degrees of free-
dom, for the hypothesis that the population covariances are all zero. Under the assump-
tion of multivariate normality, this hypothesis can only be true if the variables are all in-
dependent. The ‘Independence Model’ is used as the ‘Null Model’ in several comparative 
fit indices. 
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Bentler–Bonett Type Fit Indices 

One of the most historically important and original fit indices, the Bentler–Bonett 
[1980] normed index measures the relative decrease in the discrepancy function caused 
by switching from a ‘Baseline Model’ (typically the null model) to a more complex 
model. It is defined as: 

/
b t b t

t b
b b

F F
NFI

F
− χ − χ

≤ = =
χ

2 2

20 1≤ , 

where Fb is the discrepancy function for the ‘baseline model’, Ft is the discrepancy func-
tion for the target (typically the current) model. This index approaches 1 in value as fit 
becomes perfect. However, it does not compensate for model parsimony. 

The comparative Bentler–Bonett [1980] non-normed fit index takes into account 
model parsimony. It is defined as 
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or it can be written as 
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where pb/t is the so-called parsimony coefficient. 

Bentler Comparative Fit Index 

The comparative index (Bentler [1990]) estimates the relative decrease in the popula-
tion noncentrality obtained by changing from the ‘Baseline Model’ to the t model. The 
index may be computed as: 

/
t

t b
b

NCP
BCFI

NCP
= −1 , 

where NCPt is the estimated non-centrality parameter for the target model and NCPb is 
that for the base line model. 
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James–Mulaik–Brett Parsimonious Fit Index 

This index was one of the earliest (along with the Steiger–Lind index) to compensate 
for model parsimony. Basically, it operates by rescaling the Bentler–Bonett Normed fit 
index to compensate for model parsimony. The formula for the index is: 

t
t

b

df
PI NFI

df
= , 

where NFI denotes the Bentler–Bonett normed fit index. 

Bollen’s Rho 

This comparative fit index computes the relative reduction in the discrepancy function 
per degree of freedom when moving from the ‘Baseline Model’ to the t model. It is com-
puted as 
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b t

b t b
t b

b t b

b

F F
df df df F

F df F
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−
ρ = = −1 t . 

Comparing with NNFI, we see that, for even moderate N, there is virtually no differ-
ence between Bollen’s Rho and the Bentler–Bonett Non-normed fit index. 

Bollen’s Delta 

This index is also similar in form to the Bentler–Bonett index, but rewards simpler 
models (those with higher degrees of freedom). It is computed as: 

/

–

b t
t b

t
b

F F
dfF

N

−
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−
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. 

EVALUATION OF MODEL FIT 

Based on the results given in Table 5 and discussion of the goodness of fit measures 
presented earlier the following statements can be established: 

Both the IWLS and the ADF estimates exhibit an outstanding goodness of fit. The 
model with more parameters, of course, performs a better fit. Except the population 
gamma and Jöreskog–Sörbom indices, the ADF estimator seems to be preferred against 
the IWLS estimator. 

As a brief summary measure the pseudo R-square defined as 

null-model
R χ

= −
χ

2
2

21  
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are 98.83 and 74.24 percent for the IWLS homogeneous and heterogeneous models, re-
spectively. Hence, switching from one model to the other seems to cause a consider-
able difference. These measures for the ADF estimators are 78.16 and 34.95 percent, 
respectively. 

The null-model goodness of fit Chi-square value (the distance from the saturated 
model with p(p+1)/2 parameters) is substantially smaller in the ADF case. This null 
model Chi-square means the moving range given for the Chi-square to get closer to the 
saturated model (to the sample points). The corresponding R-square values thus must 
be interpreted on this shorter range of improvement for the ADF case. The null model 
chi-square estimated by the ADF method is 291.781, maybe underestimated to a great 
extent. Therefore additional goodness of fit measures based on this distance are not 
published in Table 5. 

Only the James-Mulaik-Brett Parsimonious Index prefers the improvement in the de-
gree of freedom versus worsen in the discrepancy function. 

Considering any model of our interest, because of the large sample size the model 
chi-square statistic is relatively large as compared with the small degree of freedom re-
sulted in from the (6,6) order of the sample covariance matrix. As a consequence, in spite 
of the goodness of fit measures, the chi-square test suggests to reject each of our models 
at any significance level. 

Even a moderately large sample size is given, as it is the present case, it is not pos-
sible to choose between the competing homogeneous and heterogeneous models based 
on chi-square-difference test statistic. Namely, the difference between these chi-square 
statistics 2057.94–93.33=1964.61 and 189.81–63.74=126.07 are still significant at  
(11–6=5) degrees of freedom no matter whether the IWLS or the ADF results are 
considered. 

Nevertheless, hypothesis testing can be avoided if we use some so-called incremental 
goodness of fit index such as the Bentler-type indices. Normed indices that fall into the 
interval of (0,1) are preferred because of their easy interpretation. In our investigation the 
Bentler-type incremental indices are as follows 
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and in the case of the ADF estimation they take the values as follows 
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The smaller the value of an incremental index, the closer the models of interest are 
to one another. Hence, the results from IWLS may suggest that the assumption of the 
homogeneous variances is acceptable but, in contrary, based on the ADF method we 
may conclude that the error factor variances are heterogeneous. Recall here that the use 
of IWLS is questionable because of rejecting the normality and the zero kurtosis 
assumption. 

Finally, the question of our interest is whether the magnitude of improvement in the 
discrepancy function due to involving correlated error (unique) factors is significant or 
not. Enabling cov(DELTA3, DELTA5) to be freely estimated provided heterogeneous er-
ror variances by the ADF method, the discrepancy function reduces to 0.0105 and the 
Chi-Square Statistic becomes 22.3062 with 5 degrees of freedom and P-value of 
0.000458. Parameter estimates are given in Table 6. As compared with the corresponding 
Chi-Square Statistic 63.7372, the difference is (63.7372–22.3062)=41.431 with 1 degree 
of freedom which is significant at any level. 

 Table 6  

Parameter estimation by ADF with heterogeneous but correlated error factors 
Free parameters Estimation Standard error T-value Prob. 

(F1)-1->[ATPLIAB] 0.635 0.058 10.894 0.000 
(F1)-2->[CFLIAB] 0.668 0.061 11.001 0.000 

(F2)-3->[CURRENT] 0.818 0.052 15.869 0.000 
(F2)-4->[ACURRENT] 0.979 0.050 19.647 0.000 

(F3)-5->[DEBT] –0.633 0.040 –15.822 0.000 
(F3)-6->[EQUITYR] 1.463 0.077 18.951 0.000 

(DELTA1)-7-(DELTA1) 0.018 0.009 1.975 0.048 
(DELTA2)-8-(DELTA2) –0.000 0.000  
(DELTA3)-9-(DELTA3) 0.123 0.028 4.373 0.000 
(DELTA4)-10-(DELTA4) 0.557 0.098 5.687 0.000 
(DELTA5)-11-(DELTA5) 0.191 0.032 6.008 0.000 
(DELTA6)-12-(DELTA6) 0.567 0.141 4.027 0.000 

(F2)-13-(F1) 0.284 0.061 4.648 0.000 
(F3)-14-(F1) 0.241 0.032 7.557 0.000 
(F3)-15-(F2) 0.465 0.030 15.671 0.000 

(DELTA3)-16-(DELTA5) 0.061 0.008 7.741 0.000 



DIAGNOSTICS OF THE ERROR FACTOR COVARIANCES 93 

 Table 7  

Goodness of fit confidence intervals for IWLS and ADF measures 
 with heterogeneous but correlated error factors 

90 percent IWLS confidence  
interval 

90 percent  ADF confidence  
interval Noncentrality measures 

Lower Point Upper Lower Point Upper 

Population Noncentrality Index 0.007 0.015 0.025 0.003 0.008 0.017 
Steiger-Lind RMSEA Index 0.038 0.054 0.071 0.024 0.040 0.058 
McDonald Noncentrality Index 0.987 0.993 0.996 0.992 0.996 0.999 
Population Gamma Index 0.992 0.995 0.998    
Adjusted Population Gamma Index 0.965 0.980 0.990    

Finally, we conclude that the σ2I  restriction imposed in our factor model is strongly 
questionable. 
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ROBUST STANDARD ERROR ESTIMATION  
IN FIXED-EFFECTS PANEL MODELS* 

GÁBOR KÉZDI1 

This paper focuses on standard error estimation in Fixed-Effects panel models if there is 
serial correlation in the error process. Applied researchers have often ignored the problem, 
probably because major statistical packages do not estimate robust standard errors in FE 
models. Not surprisingly, this can lead to severe bias in the standard error estimates, both in 
hypothetical and real-life situations. The paper gives a systematic overview of the different 
standard error estimators and the assumptions under which they are consistent (in the usual 
large N, small T asymptotics). One of the possible reasons why the robust estimators are not 
used often is a fear of their bad finite sample properties. The most important results of the 
paper, based on an extensive Monte Carlo study, show that those fears are in general unwar-
ranted. I also present evidence that it is the absolute size of the cross-sectional sample that 
primarily affects the finite-sample behaviour, not the relative size compared to the time-
series dimension. That indicates good small-sample behaviour even when .  
I introduce a simple direct test analogous to that of White [1980] for the restrictive assump-
tions behind the estimators. Its finite sample properties are fine except for low power in very 
small samples. 

TN ≈

KEYWORDS: Panel models; Serial correlation. 

Thi

  

s paper focuses on Fixed-Effects panel models (FE) with exogenous regressors 
on pooled cross sectional and time series data with relatively few within-individual ob-
servations. Empirical studies that estimate this kind of FE models are abundant, and they 
routinely estimate standard errors under the assumption of no serial error correlation 
within individual units. In the past three years, the top three economics journals with a 
focus on applied empirical research published 42 papers that estimated linear FE models 
with time series within individual units.2 Out of the 42, only 6 took serial correlation into  

* My first thanks go to John Bound and Gary Solon for their suggestions and support. Jinyong Hahn, Steven Levitt, 
Shinichi Sakata and Douglas Staiger provided many helpful comments. All remaining errors are mine. Correspondance: 
kezdi@econ.core.hu. 

1 Budapest University of Economics, Institute of Economics, Hungarian Academy of Sciences (IE/HAS) and Central 
European University, Budapest (CEU). 

2 The examined journal issues were the following: American Economic Review, Vol. 88. No. 4. to Vol. 91. No. 3.; Journal 
of Political Economy Vol. 106. No. 4. to Vol. 109. No. 3.; and Quarterly Journal of Economics, Vol. 103. No. 3. to Vol. 106. 
No. 2. Only papers that estimated linear FE models on panel data with time-series  within the individual units were 
considered. 
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account when estimated the standard errors.3 
Serial correlation in the error process affects standard errors in FE models with more 

than two observations per individual unit, unless all right-hand side variables are serially 
uncorrelated. The stronger the correlation and the longer the time horizon is, the larger is 
the effect. Serial correlation consistent standard error estimators for panel models without 
Fixed-Effects are covered by most econometrics textbooks. Same is not true, however for 
FE. Similar estimators were developed explicitly for FE models by Kiefer [1980], Bhar-
gava et al. [1982], and Arellano [1987], but they have been overlooked by practitioners. 
It seems that worries about finite sample properties are responsible for this fact. Major 
statistical computer packages do not allow for any robust standard error estimation in FE 
models.  for example, calculates standard errors that are robust to serial correla-
tion for all linear models but FE (and random effects). It does so for an analogous model 
but it explicitly cautions against using robust methods in samples with long time-series 
within individual units.

TMStata

4 As we will see, however, even this warning is unwarranted. 
In this paper I give a systematic overview of standard error estimation in FE models, 

together with the assumptions under which the estimators are consistent. I also introduce 
a very simple test for the assumptions in question (it is analogous to White's 1980 direct 
test for heteroskedasticity). The asymptotic results consider the case when T is fixed and 

, and they are straightforward applications of White's [1984] general results. The 
novelty in this paper is a thorough examination of the finite-sample properties of the es-
timators and tests. The Monte Carlo study considers various combinations of the time-
series and cross-sectional sample size, and the degree of serial correlation and cross-
sectional heteroskedasticity. 

∞→N

The most important result is that the general robust standard error estimator, known in 
other models as the ‘cluster’ estimator (introduced to FE by Arellano [1987]) is not only 
consistent in general but it behaves well in finite samples. The Monte Carlo experiments 
reveal that the cluster estimator is unbiased in samples of usual size although it is slightly 
biased downward if the cross-sectional sample is very small. The results suggest that it is 
the cross-sectional dimension itself that matters, not its relative size to the time-series di-
mension ( TNN notand )

  

. The variance of the estimator naturally increases as the sam-
ple gets small but stays moderate at usual sample sizes. Kiefer's [1980] estimator is consis-
tent under the assumption of conditional homoskedasticity across individuals. Quite natu-
rally, when consistent, it is superior to the robust estimator in terms of both variance and 
small-sample bias. The bias of the estimators that assume no serial correlation is substantial 
when the assumption is not met, and it is larger than the finite-sample bias of the robust es-
timators at any sample size. The bias is a function of serial correlation both in the right-
hand-side variables and the error term. The test that looks at the restrictive assumptions de-
livers the desirable size and power properties in relatively large samples. Its power, how-
ever, is quite low in small samples unless the serial correlation is very strong. 

Bertrand, Duflo and Mullainathan [2001] have drawn attention to robust standard er-
ror estimation in the context of a special FE model, the ‘Difference-in-Differences’ (DD) 
model. Typically, DD models estimate effects of binary treatments on different individ-

3 Two did that by a parametric specification of the error process, one by using the cluster estimator (see later). The other 
three did not specify the standard error estimator they used. 

4 ‘Why is it dangerous to use the robust cluster ( ) option on areg (areg estimates the same Fixed-Effects model as xtreg, 
fe)?’ http://www.stata.com/support/faqs/stat/aregclust.html. I thank John Bound for this note. 
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ual units by comparing before and after treatment outcomes. Serial correlation in the er-
ror process has especially large effect on standard errors in these models because the 
main right-hand-side variable is highly correlated through time (the binary treatment 
variable changes only once in most cases). The problem is irrelevant if only two points in 
time are compared but it can lead to a severe bias to conventional standard error esti-
mates in longer series. Bertrand et al. report simulation results on frequently used data 
(yearly earnings for US states) that show 45 to 65 percent rejection rates of a t-test on 
‘placebo’ binary treatments instead of the nominal size of 5 percent. This size distortion 
is probably due to downward biased standard errors. Bertrand et al. suggest an intuitively 
appealing simulation-based method to overcome the problem. Apart from being a little 
complicated for applied research, their method is specific to binary treatment effects. The 
alternative solutions I present here are more conventional, easier to implement, and gen-
eral to all FE models. They also behave well in finite samples. 

The asymptotic results are stated in the main text. To keep things simple, I consider a 
data generating process that is i.i.d. in the individual units. This simplification is justified 
because our main concern is about the process within the individual units. The usual T 
fixed,  asymptotics is considered for the results. The proofs are straightforward 
applications of standard i.i.d. results (White [1984], for example). For this reason they are 
not presented in the paper. Exceptions are the simplified versions of the asymptotic co-
variance matrix of the FE estimator under the appropriate assumptions. They are derived 
in the main text because of their importance. 

∞→N

The remainder of the paper is organized as follows. The first section introduces the 
assumptions underlying the data generating process, the model, and the Fixed-Effects es-
timator. The second part presents the sampling covariance matrix of the FE estimator and 
its simplified versions under restrictive assumptions, and it introduces the estimators. The 
third part examines the finite sample properties of the four proposed estimators. The 
fourth part introduces a direct test for the restrictions and examines its finite sample 
properties, and the last part concludes. 

SETUP 

Data generating process 

Assume that a T dimensional random vector  and a iy KT ×  dimensional random ma-
trix  are generated by an independent and identically distributed (i.i.d.ix ) process. More 
formally, we assume that the ( )1+× KT  dimensional random process on 

 is i.i.d., with finite fourth moments. Note that there is no restriction in the time 
series dimension. In particular, nonconstant variance, unit roots, an unequal spells are al-
lowed. We can do so because of the T

{ } Niii xy ∈,  
{ PF , }S ,

 fixed assumption. All asymptotic results will be 
driven by the cross-sectional properties of the process. 

The intuition behind the data generating process (DGP) assumption is that each i is an 
individual observation that is drawn from a population in a random fashion. The assump-
tion implies that there is one [ ]iyE  and one [ ]ixE , which are the population means. The 
goal of the exercise is to reveal the relationship between y and x in the population. 
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Model 

For estimating this relationship, consider a linear panel model with exogenous  
regressors and individual-specific constants (‘Fixed-Effects’).The panel has a cross-
sectional dimension i and a time-series dimension t. 

ititiititit uxxy +β′+α=ε+β′=  /1/ 

or, in vector notation, 

iiii uxy +β+α= 1 ,  /2/ 

where  is [ ′= iTii yyy ,,K1 ] 1×T , [ ] ′′′= iTii xxx ,,K1  is T ,K×   itiit u+α=ε ,  is a  sca-

lar, 

iα

[ ] ′= 1,,1,1 K 1×1  is T , and [ ] ′= iTi uu ,,K1iu  is 1×T , N,,Ki 1= , and t . T,K,1=
For future reference, let  be the ikx 1×T vector of the k-th right-hand side variable so 

that . [ ]iKii xxx ,,1 K=
The intuition behind the model is the following. We would like to uncover something 

about the conditional mean of y given x, which may be different across individuals. /2/ 
models the conditional mean of y given x in a linear fashion. There is an i-specific inter-
cept denoted by . It is interpreted as the conditional mean of given The 
model is restrictive in that apart from the intercept this conditional mean is the same 
across both the i

iα iy .0=ix

 and the t dimension. One interpretation of β  is that it is a population av-
erage of the relationship after accounting for the i-specific intercept. The model does not 
put any restriction on the covariance of  and ix iα , the latter treated as a random variable 
itself. Formally, we assume that all relevant moments exist and that [ ] 0=′iuikxE  for 

. On the other hand, we allow for Kk ,.2,1 K= [ ] 0≠α ii xE . 
We want a consistent estimator for β  and its asymptotic covariance matrix. We can 

take the limit in both the cross-sectional and the time-series dimension, so it is important 
to be explicit what we mean by consistency and an asymptotic distribution. In this paper, 
the , T∞→N  fixed asymptotics will be considered. In that case, it is the limiting distri-
bution of ( )β−β̂N   that we are interested in. 

The ∞→N

(N >

, T 

)

fixed asymptotics is a natural setup for household or individual pan-
els like the PSID (the Panel Study of Income Dynamics of the University of Michigan). It 
is also a natural approximation for country or regional panels if the time series is rela-
tively short . The simulation results suggest, however, that the proposed estima-
tors behave well also in the finite 

T
( )TN <  setup. 

The Fixed-Effects estimator 

OLS with N constants for capturing each of the iα  is a natural candidate for estima-
tion. This estimator is often called the ‘least-squares dummy-variables’ estimator or 
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LSDV in order to distinguish it from OLS with only one constant. For computational rea-
sons, however, it is common to use the Fixed-Effects (FE, also known as Within-) esti-
mator instead. FE is OLS on mean-differenced variables, which are defined as  

[ ] ′−−≡
×

iiTii
T

i yyyyy ,,~
1

1
K ,  [ ] ′−−≡

×
iiTii

KT
i xxxxx ,,~

1 K , and  

[ ] ′−−≡
×

iiTii
T

i uuuuu ,,~
1

1
K   

where  ∑
=

=
T

t
itTi yy

1

1  etc. 

To simplify notation, let TTTTTT
IM 111 ′−=

×
. Note that M is idempotent. Then, 

ii Myy =~ , ii Mxx =~  and iMuiu =~ . The mean-differenced equation to estimate is 

iii xy u~~~ +β= , and the Fixed-Effect estimator for β  is defined as 

xyxx

N

i
ii

N

i
iiFE SSyxxx ~~~~~~ˆ 1

1

1

1

−

=

−

=
=







 ′






 ′≡β ∑∑ . /3/ 

i

N

i
iNxx xxS ~~~

1

1 ∑
=

′≡ , and  i

N

i
iNyx yxS ~~~

1

1 ∑
=

′≡ . A standard result is that FE and the LSDV es-

timator for β on levels are computationally equivalent. 
Recall that we assume that the data generating process is i.i.d. 

)
in the cross-sectional 

dimension, and therefore the ( ii xy ~,~  are  i.i.d., too.  is consistent for  in the 
, T

FEβ̂ β
∞→N  fixed asymptotics without further assumptions about the time-series dimen-

sion. The conditional covariance matrix of iu~  affects the asymptotic covariance of . 

Serial correlation and heteroskedasticity of any kind would also make  inefficient. 

The rest of the paper focuses on consistent estimation of the sampling covariance of . 
Efficient estimation of β  is not addressed here.

FEβ̂

FEβ̂

FEβ̂

5 

ASYMPTOTIC DISTRIBUTION  
OF THE FIXED-EFFECTS ESTIMATOR 

The covariance matrix of  is easy to derive because of cross-sectional independ-
ence and the linearity of the model. 

FEβ̂

  
5 Some of the introduced covariance matrix estimators could be used  for efficient estimation (feasible GLS) of the pa-

rameters. Although that seems like a natural extension of my analysis, it would introduce other problems that should be 
dealt with. It could aggravate bias from measurement error or misspecification of the timing of binary variables or lagged 
effects. 
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( )







+β′







 ′=






 ′






 ′=β ∑∑∑∑
=

−

==

−

=

N

i
iii

N

i
ii

N

i
ii

N

i
iiFE uxxxxyxxx

1

1

11

1

1

~~~~~~~~~ˆ = 








 ′+β= ∑
=

−
N

i
iiNxx uxS

1

11 ~~~
. 

Proposition 1. Suppose that { } Niii xy ∈,  is i.i.d. with finite second moments. Consider 
the Fixed-Effect (FE) panel model /1/ and /2/ and assume that [ ii xxE ]~~′  and 

i

N

i
iNxx xxS ~~~

1

1 ∑
=

′=  are positive definite. The FE estimator defined by /3/ is consistent and 

asymptotically normal with covariance matrix D defined below /5/ and /6/  

β→=β −
yxxxFE SS ~~ˆ 1      prob – P    as    ∞→N ,  and 

( ) ( INND
A

FE ,0ˆ21 ∼β−β− ) ,  where /4/ 

[ ] [ ] 11 ~~~~ −− ′′≡ iiii xxVExxED    and        /5/ 

[ ]iiii xuuxEV ~~~~ ′′≡ . /6/ 

The standard errors of the elements in  are therefore the square root of the diago-
nal elements of D 

FEβ̂
divided by N, or with some abuse of notation, 

( )DN N

A
FE

1,ˆ ββ ∼  

The proof is a straightforward application of Theorems 3.5 and 5.3 in White [1984]. 
Note that the time-series properties of { }iu~  or  { }ix~ are not restricted in any way. Among 
other things, serial correlation and time-series heteroskedasticity of any kind are allowed, 
and so are unit roots and unequal spacing. All asymptotic results follow from the fixed 
length of the time-series and the cross-sectional i.i.d. assumption. 

The next few subsections will consider simplified versions of [ ]iiii xuuxV ~~~~ ′′=  under 
restrictive assumptions. 

Cross-sectional homoskedasticity 

Under conditional homoskedasticity in the cross-sectional dimension but no restric-
tion in the time series dimension, we have that [ ] [ ] Ω≡′=′ iiiii uuExuuE | . Since M is 
nonstochastic, [ ] [ ]MxuuMExuuE iiiiii |~|~~ ′=′ , and so  

[ ] [ ] MMxuuEuuE iiiii Ω=′=′≡Ω ~|~~~~~  
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This implies that 

[ ] [ ][ ] [ ]iiiiiiiiiii xxExxuuExExuuxEV ~~~~~|~~~~~~~ Ω′=′′=′′≡ . 

Here, again, no time-series restrictions are used.6 Notice that   

[ ] [ ] [ ]iiiiiiiiiiii MxuMuxExMMuuMMxExuuxE ′′=′′=′′ ~~~~ . 

Using this fact, we can simplify V further to get [ ] [ iiii xxEMxMxE ]V ~~Ω′=Ω′= . This 
result is not used for the present estimator because we naturally want everything to be a 
function of the mean-differenced variables. The result is important in itself nevertheless. 
It means that using the levels error covariance matrix or mean-differenced error covari-
ance matrix are equivalent. 

No serial correlation 

In the absence of serial correlation in the error process { }itu , we have that 
   [ ] 0=isituuE ts ≠∀ , and therefore [ ] TTitiiii xuuE

×
ω=′≡Ω |  a diagonal matrix, with 

elements [ ]i= it xuE |2
itω . Therefore, 

=V [ ]iiii MxuMuxE ′′  = [ ] =






 ′ω=Ω′ ∑
=

T

i
itititii xxExxE

1

~~~~







 ′∑
=

T

i
ititit xxuE

1

2 ~~ . 

We would like to express this in terms of the conditional variance of the mean-
differenced errors, because we estimate the model on mean-differenced data. One can 

show that [ ] [ itititT
T

ititit xxuExxuE ′=′ − ~~~~~ 212 ]   and therefore 








 ′
−

=






 ′= ∑∑
==

T

t
ititit

T

t
ititit xxuE

T
TxxuEV

1

2

1

2 ~~~
1

~~  

The same result is implied by zero serial correlation in the right-hand-side variables, 
that is if [ ] stxxE isit ≠∀=′ 0 .  Let [ ]iiii xuuE |~~~ ′≡Ω   and write 

=V [ ] [ ][ ] [ ]=Ω′=′′=′′ iiiiiiiiiiii xxExxuuExEMxuMuxE ~|~~  








 ′
−

=






 ′=






 ′ω= ∑∑∑
===

T

t
ititit

T

t
ititit

T

t
ititit xxuE

T
TxxuExxE

1

2

1

2

1 1
~~~~~ , 

  
6 V is basically a seemingly unrelated regressions  (SUR) covariance matrix, with T equations and the  constrained to be 

the same. Kiefer [1980] has introduced this estimator in the FE context. 
β



GÁBOR KÉZDI 102

where we used the fact that [ ] tsxxE isit ≠∀=′ 0  and  , both im-

plied by 

[ ii

T

t
itit xxExxE ′=






 ′∑
=1

]

[ ] 0=′isit xxE . The last equality makes use the fact that [ ] [ ]ii xx′T
T

ii ExxE =′ −1~~ . 
The assumption we use is zero serial correlation in the error process or in (and across) 

the right-hand-side variables. The error process may be heteroskedastic in any dimension. 
This sampling covariance matrix is in fact a 1−T

T -scaled version of the one that is behind 
the original White heteroskedasticity-consistent estimator, applied to the mean-
differenced data. 

Note that it is the error terms or the right-hand-side variables in levels (as opposed to 
mean-differences) that are assumed to be serially uncorrelated. In the fixed T setup we 
focus on, mean-differencing induces serial correlation in the first-differenced errors, be-
cause all itu~ are correlated with itu . Assuming no serial correlation in the mean-

differenced error terms would deliver a similar result without the 1−T
T  factor. We think 

that assumption has no intuitive appeal. The model is set up in levels, while mean-
differencing is only a way to get around the correlation of iα  and . We can already see 
that the unscaled White estimator is going to be inconsistent in the fixed-T framework. 
This is an example of the incidental parameter problem (Lancaster [2000]). The adjust-
ment is analogous to ‘degrees of freedom’ corrections for the 

ix

iα  parameters when the 
model is estimated in levels. 

Homoskedasticity and no serially correlation 

If there is no serial correlation and the conditional variance of  u is the same at every 

t
it

, that is [ ] Tiitit IxuE 22 | σ=Ω=Ω=  we get back the appropriately scaled  i.i.d. OLS es-
timator for V. 

[ ] [ ]iiii xxExxEV ~~~~ 2 ′σ=Ω′=  ,   where   [ ]22
ituE=σ . 

D simplifies in this case to [ ] 12 ~~ −′σ= ii xxED . We would like to have an expression in 
terms of the mean-differenced error term. Analogously to the relationship of the condi-
tional level and mean-differenced variances, we have that [ ] [ ]2

1
22 ~

itT
T

it uEuE −==σ  . 
Homoskedastic errors and serially independent right-hand side variable imply the 

same covariance of . Assume that FEβ̂ [ ] Ω=′ iii xuuE |  with , and 2σ=ϖtt

[ ] tsxxE isit ≠∀=′ 0 . Recall that no serial correlation across and within right-hand side 

variables implies that [ ] [ ]iiT
T xxEE ′= −1

ii xx ′~~ .  Therefore, 

[ ] [ ] [ ]itit

T

t
tt

T

t

T

s
isitstiiii xxExxExxEMxMxEV ′ω=






 ′ω=Ω′=Ω′= ∑∑∑
== = 11 1

~~~
, 
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where the last equality holds because  if 0
1 1

=






 ′∑∑
= =

T

t

T

s
isit xxE ts ≠ . Using 

[ ] 212 σ==ω −
T

T
ittt uE ~~  we get the same result as before. 

The asymptotic variance of the Fixed-Effect estimator is the T
T 1− -scaled asymptotic 

variance of the OLS estimator on the mean-differenced data. Just like before, the zero se-
rial correlation is assumed about or  and not their mean-differenced counterparts. 
And again, conventional OLS standard errors based on the FE residuals are going to be 
inconsistent because of the incidental parameter problem, with the same bias as in the 
White estimator. 

itu itx

Estimation 

We have considered four cases for V. Case /0/ the general, /1/ has cross-sectional 
conditional homoskedasticity but no restriction in the time dimension, /2/ no serial corre-
lation, and /3/ has cross-sectional and time-series conditional homoskedasticity and no 
serial correlation. The four asymptotic covariance matrices are, respectively, 

[ ] [ ] [ ] 11
0

~~~~~~~~ −− ′′′′≡ iiiiiiii xxExuuxExxED    /7/ 

[ ] [ ] [ ] 11
1

~~~~~~ −− ′Ω′≡ iiiiii xxExxExxED   /8/ 

[ ] [ ] 1

1

21
2

~~~~~~~
1

−

=

− ′






 ′′
−

≡ ∑ ii

T

t
itititii xxExxuExxE

T
TD    /9/ 

[ ] 12
3

~~ −′σ≡ ii xxED  .   /10/ 

Let u(  denote the FE residuals. By the analogy principle, the proposed estimators for 
 through  are, respectively, 0D 3D

1

11

1

1
0

~~1~~1~~1ˆ
−

==

−

=







 ′



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FEiii xyu β−≡ ˆ~~(  ,    /12/ 

1
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1

1
1

~~1~~1~~1ˆ
−

==

−

=






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
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
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(
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i

N

i
iuu

N
′≡Ω ∑

=

(((

1

1   ,     /14/ 
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1
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=
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1

1
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3

~~1ˆˆ
−

=







 ′σ≡ ∑
N

i
ii xx

N
D ,  where /16/ 

( ) ∑∑
= =−

=σ
N

i

T

t
itu

TN 1 1

22

1
1ˆ ( .   /17/ 

Under our cross-sectional i.i.d. assumption it is straightforward to show that the  

are consistent for the corresponding (j = 0,1,2,3) if T is fixed and 
jD̂

jD ∞→N . The proofs 
are straightforward application of Theorem 5.3 (v) in White [1984]. One should note that 
the estimators don't correct for degrees of freedom decreased by the dimension of  ix~ . 
That is only for keeping things as simple as possible. Not surprisingly, the simulation re-
sults presented in the next section suggest that such corrections would slightly improve 
upon the finite-sample bias of the consistent estimators. 

0D̂  is known as the ‘clustered’ covariance estimator, and was introduced by Arellano 

[1987]. It is always consistent in our setup. , introduced by Kiefer [1980], makes use 

of the covariance matrix of the FE residuals, 
1D̂

Ω
(

. It is consistent under any time-series 
behaviour as long as the error term is homoskedastic in the cross-sectional dimension. 

 is the original heteroskedasticity-consistent estimator of White [1980] scaled by 2D̂ 1−T
T . 

It is consistent if the error term or the right-hand-side variables are serially uncorrelated. 
 is the scaled version of the homoskedasticity-consistent OLS estimator. It is the con-

ventional sampling covariance estimator of β , calculated as the default by all software 
packages. It is consistent only under cross-sectional and time-series homoskedasticity 
and if either the error term or the right-hand-side variables are serially uncorrelated and 
have the same variance. 

3D̂

FE
ˆ

FINITE-SAMPLE PROPERTIES 

In this section Monte Carlo simulation results are presented. To keep things simple, the 
analysis was restricted to a one-dimensional x variable. The data generating process in-
volved the possibility of serial correlation in both  and . In particular, stationary 
AR(1) processes were considered with autoregressive parameters 0, 0.1, 0.3, 0.5, 0.7, and 
0.9 for each process (all 36 combinations were analyzed). Two separate sets were exam-
ined. In one, u  was homoskedastic in the cross-sectional dimension, in the other it was het-
eroskedastic conditional on x

itx itu

. The two data generating processes were the following. 

                    ( ) itxittixit xvxx ,1 +ρ= − ∼ ( )1,0N ,       DGP /1/ 

( ) uittiit vuu +ρ= −1 ,           itu ∼ ( )1,0N  
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Same as DGP /1/, plus 

             itituit h ω=v               itω ∼ ( )1,0Niid   DGP /2/ 

5.0, 10
2

10 ==+= aaxaah itit . 

10,000 Monte Carlo simulations were conducted for each of the 362× parameter set-
tings. I have estimated the sampling distribution of the  and compared its standard 
deviation to the mean of the 10,000 estimated standard error estimates 

(

FEβ̂

∑
=

=
M

m
mjMj SESE

1

1 ,    ). These means were then used to calculate the relative 

bias 

3,2,1,0=j















β

β−

)ˆ(

)ˆ(

SE

SEj

std

stdSE

jSE

. In addition to the relative bias, I also present the standard devia-

tion of the . Several combinations of ( )TN ,  were considered. The ( )10,500  case es-
tablishes large-sample properties while the ( )10,50  case looks at what happens in rela-
tively small N samples. The  case illustrates what happens when in rela-
tively small samples, and the  case is an illustration of what happens in a small-
sample . Finally, a  example illustrates extreme small sample behaviour. 
The results are shown in Tables 1 and 2. 

( 50,50
( ,10

( 10,10

)
)

TN =
50
)TN <

 Table 1.1 

N = 500,  T = 10. Homoskedastic errors 

 xρ  

 0.0 0.3 0.5 0.9 uρ  

 bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.01 0.03 0.00 0.04 –0.01 0.04 –0.01 0.04 
 SE1 –0.01 0.01 0.00 0.02 –0.01 0.02 0.00 0.03 
 SE2 –0.02 0.02 0.00 0.02 0.00 0.02 0.00 0.03 
 SE3 –0.01 0.01 0.00 0.02 –0.01 0.02 0.00 0.02 
          

0.3 SE0 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.04 
 SE1 0.00 0.02 0.01 0.02 0.00 0.02 0.00 0.03 
 SE2 0.00 0.02 –0.06 0.02 –0.10 0.02 –0.16 0.03 
 SE3 0.00 0.02 –0.06 0.02 –0.10 0.02 –0.17 0.02 
          

0.5 SE0 0.01 0.04 –0.01 0.04 0.01 0.04 –0.01 0.05 
 SE1 0.01 0.02 –0.01 0.02 0.01 0.02 –0.01 0.03 
 SE2 0.01 0.02 –0.11 0.02 –0.16 0.02 –0.26 0.03 
 SE3 0.01 0.02 –0.11 0.02 –0.16 0.02 –0.27 0.02 
          

0.9 SE0 0.00 0.049 –0.01 0.049 0.00 0.049 0.00 0.051 
SE1 0.00 0.026 –0.01 0.027 0.00 0.027 0.00 0.030 
SE2 0.00 0.026 –0.17 0.027 –0.25 0.028 –0.39 0.034 
SE3 0.00 0.021 –0.17 0.021 –0.25 0.022 –0.42 0.026 
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Tables 1. contain Relative Bias (‘bias’: mean estimated SE over the standard devia-
tion of the simulated distribution of βFE) and Coefficient of Variation (‘CV’: standard er-
ror of the estimated SE distribution over its mean) of the four different SE estimators. As 
of Homoskedastic errors: In each cell, the first row corresponds to the general estimator 
(SE0), the second row to the Omega-estimator (SE1 consistent under cross-sectional ho-
moskedasticity), the third row to the scaled version of the original White estimator (SE2, 
consistent under no serial correlation), and the fourth row to the scaled version of con-
ventional estimator (SE3 consistent under homoskedasticity and no serial correlation). 
Results are from 10,000 Monte Carlo experiments. 
 Table 1.2 

N = 50,  T = 10. Homoskedastic errors 

xρ  
0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.02 0.12 –0.02 0.12 –0.02 0.12 –0.04 0.14 
 SE1 0.00 0.05 0.00 0.05 0.00 0.06 –0.02 0.08 
 SE2 0.00 0.07 0.00 0.07 –0.01 0.07 –0.02 0.08 
 SE3 0.00 0.05 0.00 0.05 0.00 0.05 –0.01 0.07           

0.3 SE0 –0.02 0.12 –0.02 0.12 –0.02 0.12 –0.01 0.14 
 SE1 0.00 0.05 0.00 0.06 0.00 0.06 0.01 0.08 
 SE2 –0.01 0.07 –0.07 0.07 –0.11 0.07 –0.16 0.08 
 SE3 0.00 0.05 –0.06 0.05 –0.10 0.05 –0.16 0.07           

0.5 SE0 –0.01 0.12 –0.03 0.13 –0.02 0.13 –0.04 0.15 
 SE1 0.01 0.06 –0.01 0.06 0.00 0.07 –0.02 0.09 
 SE2 0.00 0.07 –0.12 0.07 –0.17 0.07 –0.27 0.09 
 SE3 0.01 0.05 –0.11 0.05 –0.17 0.06 –0.27 0.07           

0.9 SE0 –0.02 0.141 –0.02 0.145 0.00 0.147 –0.04 0.159 
 SE1 0.00 0.085 0.00 0.083 0.02 0.085 –0.02 0.097 

SE2 0.00 0.082 –0.17 0.086 –0.24 0.088 –0.40 0.107 
SE3 0.00 0.066 –0.17 0.067 –0.25 0.070 –0.43 0.082 

 Table 1.3 

N = 50,  T = 50. Homoskedastic errors 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.02 0.11 0.00 0.10 –0.01 0.11 –0.01 0.12 
 SE1 –0.01 0.02 0.01 0.02 0.00 0.03 0.00 0.06 
 SE2 –0.01 0.03 0.01 0.03 0.00 0.03 0.01 0.05 
 SE3 –0.01 0.02 0.01 0.02 0.00 0.02 0.01 0.04           

0.3 SE0 –0.01 0.11 0.00 0.11 0.00 0.11 –0.02 0.12 
 SE1 0.01 0.03 0.01 0.03 0.01 0.03 –0.01 0.06 
 SE2 0.01 0.03 –0.07 0.03 –0.13 0.03 –0.23 0.05 
 SE3 0.01 0.02 –0.07 0.02 –0.12 0.02 –0.23 0.04           

0.5 SE0 –0.02 0.11 –0.01 0.11 –0.02 0.11 –0.01 0.12 
 SE1 –0.01 0.03 0.00 0.03 –0.01 0.03 0.00 0.06 
 SE2 –0.01 0.03 –0.13 0.03 –0.22 0.04 –0.36 0.05 
 SE3 –0.01 0.03 –0.13 0.03 –0.22 0.02 –0.36 0.04           

0.9 SE0 –0.02 0.120 –0.01 0.123 –0.02 0.123 –0.03 0.135 
 SE1 –0.01 0.059 0.00 0.059 0.00 0.059 –0.01 0.071 
 SE2 0.00 0.048 –0.23 0.047 –0.37 0.047 –0.63 0.065 
 SE3 0.00 0.041 –0.23 0.041 –0.37 0.040 –0.64 0.054 
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 Table 1.4 

N = 10,  T = 50. Homoskedastic errors 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.08 0.24 –0.08 0.25 –0.07 0.25 –0.09 0.27 
 SE1 –0.01 0.08 –0.01 0.09 0.00 0.09 –0.02 0.14 
 SE2 –0.01 0.06 –0.01 0.06 0.00 0.07 0.00 0.10 
 SE3 0.00 0.04 0.00 0.05 0.01 0.05 0.00 0.09 
          

0.3 SE0 –0.08 0.25 –0.09 0.25 –0.08 0.25 –0.09 0.28 
 SE1 –0.02 0.09 –0.01 0.09 –0.02 0.09 –0.02 0.14 
 SE2 –0.01 0.07 –0.09 0.07 –0.14 0.07 –0.23 0.10 
 SE3 –0.01 0.05 –0.09 0.05 –0.14 0.05 –0.23 0.09 
          

0.5 SE0 –0.08 0.25 –0.08 0.25 –0.08 0.25 –0.10 0.28 
 SE1 –0.01 0.09 –0.01 0.09 –0.01 0.10 –0.02 0.14 
 SE2 –0.01 0.07 –0.14 0.07 –0.22 0.07 –0.37 0.11 
 SE3 0.00 0.05 –0.13 0.05 –0.22 0.06 –0.37 0.10 
          

0.9 SE0 –0.10 0.275 –0.09 0.273 –0.09 0.273 –0.11 0.296 
 SE1 –0.02 0.141 –0.02 0.143 –0.02 0.145 –0.03 0.167 
 SE2 –0.02 0.104 –0.24 0.104 –0.37 0.108 –0.64 0.147 
 SE3 –0.01 0.092 –0.23 0.094 –0.37 0.096 –0.63 0.124 

 Table 1.5  

N = 10,  T = 10. Homoskedastic errors 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.10 0.27 –0.09 0.27 –0.11 0.28 –0.13 0.31 
 SE1 –0.03 0.13 –0.02 0.13 –0.02 0.15 –0.04 0.20 
 SE2 –0.03 0.14 –0.03 0.15 –0.02 0.15 –0.04 0.18 
 SE3 –0.01 0.11 –0.01 0.11 –0.01 0.12 –0.02 0.15 
          

0.3 SE0 –0.08 0.27 –0.11 0.27 –0.10 0.28 –0.13 0.31 
 SE1 –0.01 0.14 –0.03 0.14 –0.03 0.15 –0.04 0.19 
 SE2 –0.02 0.14 –0.10 0.15 –0.13 0.15 –0.19 0.19 
 SE3 0.00 0.11 –0.08 0.11 –0.11 0.12 –0.17 0.15 
          

0.5 SE0 –0.10 0.27 –0.09 0.28 –0.11 0.29 –0.13 0.32 
 SE1 –0.02 0.14 –0.01 0.15 –0.03 0.16 –0.04 0.20 
 SE2 –0.03 0.15 –0.13 0.16 –0.18 0.16 –0.27 0.19 
 SE3 –0.01 0.12 –0.10 0.12 –0.17 0.13 –0.26 0.16 
          

0.9 SE0 –0.09 0.311 –0.11 0.310 –0.11 0.314 –0.14 0.331 
 SE1 –0.02 0.193 –0.04 0.193 –0.03 0.195 –0.05 0.217 
 SE2 –0.02 0.180 –0.19 0.185 –0.28 0.188 –0.42 0.222 
 SE3 0.00 0.150 –0.18 0.154 –0.26 0.155 –0.42 0.185 

 
Tables 2. contain Relative Bias (‘bias’: mean estimated SE over the standard devia-

tion of the simulated distribution of βFE) and Coefficient of Variation (‘CV’: standard er-
ror of the estimated SE distribution over its mean) of the four different SE estimators, and 
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Conditional heteroskedasticity in the cross-sectional dimension. In each cell, the first row 
corresponds to the general estimator (SE0), the second row to the Omega-estimator (SE1 
consistent under cross-sectional homoskedasticity), the third row to the scaled version of 
the original White estimator (SE2, consistent under no serial correlation), and the fourth 
row to the scaled version of conventional estimator (SE3 consistent under homoskedastic-
ity and no serial correlation). Results are from 10,000 Monte Carlo experiments. 

 Table 2.1  

N = 500,  T = 10. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.01 0.04 0.01 0.04 0.00 0.05 –0.02 0.05 
 SE1 –0.28 0.01 –0.25 0.01 –0.24 0.02 –0.13 0.03 
 SE2 –0.03 0.02 –0.01 0.02 –0.02 0.02 –0.02 0.02 
 SE3 –0.28 0.01 –0.25 0.01 –0.24 0.02 –0.13 0.02 
          

0.3 SE0 0.00 0.04 0.00 0.05 0.00 0.05 –0.01 0.06 
 SE1 –0.26 0.01 –0.24 0.02 –0.23 0.02 –0.12 0.03 
 SE2 –0.02 0.02 –0.08 0.02 –0.12 0.02 –0.18 0.02 
 SE3 –0.26 0.01 –0.29 0.02 –0.31 0.02 –0.27 0.02 
          

0.5 SE0 0.00 0.05 0.00 0.04 0.00 0.05 –0.01 0.06 
 SE1 –0.23 0.01 –0.22 0.02 –0.20 0.02 –0.11 0.03 
 SE2 –0.02 0.02 –0.12 0.02 –0.18 0.02 –0.27 0.03 
 SE3 –0.23 0.02 –0.31 0.02 –0.34 0.02 –0.35 0.02 
          

0.9 SE0 –0.02 0.05 –0.02 0.05 0.00 0.06 0.00 0.06 
 SE1 –0.14 0.02 –0.12 0.03 –0.10 0.02 –0.05 0.03 
 SE2 –0.02 0.02 –0.17 0.02 –0.25 0.03 –0.38 0.03 
 SE3 –0.14 0.02 –0.26 0.02 –0.34 0.02 –0.45 0.03 

 Table 2.2 

N = 50,  T = 10. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3  0.5  0.9  uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.02 0.13 –0.03 0.14 –0.03 0.14 –0.03 0.16 
 SE1 –0.27 0.05 –0.26 0.05 –0.24 0.06 –0.11 0.09 
 SE2 –0.03 0.09 –0.04 0.09 –0.03 0.09 –0.01 0.10 
 SE3 –0.27 0.04 –0.26 0.05 –0.24 0.05 –0.11 0.07 
          

0.3 SE0 –0.02 0.14 –0.02 0.14 –0.02 0.15 –0.03 0.16 
 SE1 –0.25 0.05 –0.24 0.06 –0.22 0.06 –0.12 0.09 
 SE2 –0.03 0.09 –0.09 0.09 –0.12 0.09 –0.18 0.10 
 SE3 –0.26 0.05 –0.29 0.05 –0.31 0.05 –0.26 0.07 
          

0.5 SE0 –0.02 0.14 –0.03 0.14 –0.02 0.15 –0.03 0.17 
 SE1 –0.23 0.06 –0.22 0.06 –0.20 0.07 –0.10 0.10 
 SE2 –0.03 0.09 –0.13 0.09 –0.18 0.09 –0.26 0.10 
 SE3 –0.23 0.05 –0.31 0.05 –0.34 0.06 –0.34 0.08 
          

0.9 SE0 –0.02 0.15 –0.03 0.16 –0.03 0.17 –0.05 0.19 
 SE1 –0.12 0.08 –0.11 0.08 –0.10 0.09 –0.07 0.11 
 SE2 –0.01 0.09 –0.17 0.09 –0.26 0.10 –0.40 0.12 
 SE3 –0.12 0.07 –0.26 0.07 –0.34 0.07 –0.46 0.09 
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 Table 2.3 

 N = 50,  T = 50. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.03 0.11 –0.01 0.11 –0.02 0.11 –0.03 0.13 
 SE1 –0.29 0.02 –0.28 0.02 –0.28 0.03 –0.23 0.05 
 SE2 –0.02 0.04 0.00 0.04 –0.01 0.04 –0.01 0.05 
 SE3 –0.30 0.02 –0.28 0.02 –0.28 0.02 –0.23 0.03 
          

0.3 SE0 –0.01 0.11 –0.01 0.11 –0.01 0.11 –0.03 0.14 
 SE1 –0.27 0.02 –0.26 0.03 –0.26 0.03 –0.23 0.05 
 SE2 0.00 0.04 –0.08 0.04 –0.13 0.04 –0.24 0.05 
 SE3 –0.27 0.02 –0.32 0.02 –0.36 0.02 –0.41 0.03 
          

0.5 SE0 –0.01 0.11 –0.02 0.11 –0.03 0.12 –0.03 0.14 
 SE1 –0.23 0.03 –0.24 0.03 –0.24 0.03 –0.22 0.06 
 SE2 0.00 0.04 –0.14 0.04 –0.23 0.05 –0.38 0.05 
 SE3 –0.24 0.02 –0.34 0.03 –0.41 0.02 –0.51 0.04 
          

0.9 SE0 –0.02 0.13 –0.02 0.13 –0.02 0.13 –0.03 0.16 
 SE1 –0.09 0.06 –0.09 0.06 –0.10 0.06 –0.13 0.07 
 SE2 –0.01 0.05 –0.23 0.05 –0.36 0.05 –0.63 0.07 
 SE3 –0.09 0.04 –0.30 0.04 –0.43 0.04 –0.68 0.05 

 Table 2.4 

 N = 10,  T = 50. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.09 0.25 –0.09 0.25 –0.08 0.26 –0.12 0.29 
 SE1 –0.27 0.09 –0.27 0.09 –0.26 0.09 –0.23 0.14 
 SE2 –0.02 0.09 –0.02 0.09 –0.01 0.09 –0.02 0.10 
 SE3 –0.29 0.04 –0.29 0.04 –0.28 0.05 –0.23 0.08 
          

0.3 SE0 –0.08 0.25 –0.09 0.26 –0.09 0.26 –0.10 0.29 
 SE1 –0.25 0.09 –0.25 0.09 –0.25 0.10 –0.21 0.14 
 SE2 –0.02 0.09 –0.10 0.09 –0.15 0.09 –0.23 0.10 
 SE3 –0.27 0.04 –0.33 0.04 –0.37 0.05 –0.39 0.08 
          

0.5 SE0 –0.07 0.26 –0.09 0.26 –0.09 0.26 –0.12 0.30 
 SE1 –0.22 0.09 –0.22 0.10 –0.23 0.10 –0.21 0.15 
 SE2 0.00 0.09 –0.14 0.09 –0.23 0.09 –0.38 0.11 
 SE3 –0.23 0.05 –0.34 0.05 –0.41 0.05 –0.50 0.08 
          

0.9 SE0 –0.10 0.28 –0.10 0.28 –0.11 0.29 –0.12 0.33 
 SE1 –0.11 0.14 –0.10 0.14 –0.11 0.15 –0.13 0.18 
 SE2 –0.02 0.11 –0.24 0.11 –0.37 0.11 –0.63 0.15 
 SE3 –0.10 0.09 –0.30 0.09 –0.43 0.09 –0.67 0.12 
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 Table 2.5 

 N = 10,  T = 10. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.11  0.29 –0.12 0.29 –0.13 0.30 –0.14 0.33 
 SE1 –0.26 0.13 –0.25 0.14 –0.24 0.14 –0.14 0.21 
 SE2 –0.07 0.19 –0.07 0.19 –0.07 0.18 –0.05 0.20 
 SE3 –0.27 0.10 –0.26 0.10 –0.25 0.11 –0.12 0.17 
          

0.3 SE0 –0.11 0.29 –0.13 0.30 –0.13 0.30 –0.14 0.34 
 SE1 –0.24 0.13 –0.25 0.14 –0.23 0.15 –0.13 0.21 
 SE2 –0.06 0.18 –0.14 0.18 –0.16 0.18 –0.20 0.21 
 SE3 –0.26 0.10 –0.30 0.11 –0.31 0.11 –0.25 0.17 
          

0.5 SE0 –0.12 0.30 –0.12 0.30 –0.12 0.31 –0.14 0.34 
 SE1 –0.24 0.14 –0.22 0.15 –0.20 0.16 –0.13 0.22 
 SE2 –0.07 0.18 –0.16 0.19 –0.21 0.19 –0.29 0.21 
 SE3 –0.24 0.11 –0.30 0.11 –0.33 0.12 –0.33 0.17 
          

0.9 SE0 –0.12 0.32 –0.13 0.33 –0.13 0.34 –0.16 0.36 
 SE1 –0.14 0.19 –0.13 0.19 –0.13 0.20 –0.11 0.24 
 SE2 –0.05 0.19 –0.20 0.20 –0.28 0.20 –0.43 0.24 
 SE3 –0.13 0.14 –0.26 0.15 –0.34 0.15 –0.45 0.20 

 
In order to assess the results, note that in the first set (Tables 1),   and  are 

always consistent for the true SE
0SE
=

1SE
, and and  are consistent if 2SE 3SE 0ρρ xu  (either of 

the two is zero). In the second set (Tables 2),  is always consistent for the true SE0SE

3SE
, 

2SE  is consistent if , but  and   are never consistent because of cross-
sectional heteroskedasticity. 

0=ρρ xu 1SE

Tables 1.1 and 2.1 present the large-sample results. Bias of the consistent estimators 
is virtually zero. The bias of the inconsistent estimators here increases as and  in-
crease. Unbiasedness of and ,  when they are consistent, indicates that the un-
scaled White and OLS estimators are biased also in small samples. In the heteroskedastic 
setup, the bias of  and  is dominated by heteroskedasticity in the small- ρ  setups, 
and serial correlation takes over as 

uρ xρ

2SE

SE

3SE

u

1SE 3

ρ and xρ  increase. The variance of the estimators 
behave the predictable way, with the more restrictive ones having smaller variation. 
These differences, however, are very small for practical purposes. 

Smaller- samples (Tables 1.2 and 2.2) basically deliver the large-sample results in 
terms of the bias.  shows a small-sample bias that is larger than other consistent es-
timators but it is still negligible. Differences in the variance are magnified, as expected, 
but they are not extremely large either. Both the small-sample bias and the variance of 
the consistent estimators increase as 

N
0SE

uρ and xρ  increase. This reflects the fact that higher 
serial correlation decreases the variation in the variables if the overall error and RHS 
variance is fixed, as were throughout the simulation. 

Bias due to serial correlation is greater as T increases. Small-sample bias of  
stays small in the  setup but becomes a significant negative 8-16 percent when in 

0SE
( 50,50 )
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the  setups. The results indicate that it is the overall sample size, and especially N10=N

0SE

, 
the size of the cross-sectional sample that determines the small-sample bias. Reluctance 
of using the cluster estimator   when T0SE

( 50,50
 

)
is large is unjustified. The variance disadvan-

tage of  is larger in the  case than the ( )10,50
SE
 case, as expected, but the dif-

ferences remain modest. The small-sample properties of  (the more restrictive serial 
correlation consistent estimator) are significantly better when it is consistent. Its small 
sample bias stays close to zero even in the 

1

( )
,10

10,10  sample, and its standard deviation is 
below 25 percent larger than that of  when 3SE 10== TN

1SE

3SE

3D̂

 and 50 percent when 
.  50N

0D̂

1D̂

1 D

,10 == T

1SE

0SE

( 10,10

1D̂

3D̂

D̂

[ iiii xuuxEV ~~~~ ′′=

∑
=

N

iN 1

1 ′′ iiii xuux ~~ ((≡V0̂

The good small-sample behaviour may seem somewhat surprising. But they may 
simply reflect that the standard error estimators take an average over all observa-
tions. In this light, even the  sample is not small: it consists of 100 observations 
altogether. 

NT
)

The results have the following practical implications. In large samples  is just as 
good for applied work as the restricted estimators even when the latter are also consis-
tent. In smaller samples there is some advantage  (the Omega-estimator) if that is 
consistent for the true SE

0SE

. The conventional estimator  has no substantial advantage 
over , other than computational simplicity. The simulation results suggest that prop-
erties of the estimators don't depend much on the relative size of T and N but rather on 
the total sample size NT and especially N itself. At the same time, an increasing T in-
creases the bias due to serial correlation. Cautioning against using the ‘clustered’ estima-
tor  when the time-series is long is therefore not simply unnecessary but quite mis-
leading. 

A DIRECT TEST FOR HOMOSKEDASTICITY  
AND NO SERIAL CORRELATION 

In this section I propose a direct test for the restrictive assumptions under which the 
alternative (less robust) estimators are consistent.  is easier to compute and has the 

best properties if consistent.  performs significantly better in terms of variance than 

 when both are consistent, especially in smaller samples. Moreover, the properties of 

 match closely those of  if both are consistent. If we can test for the restrictions 

that make ,  or , consistent we can always choose the best consistent estimator. 
In this section I develop such a test. 

2
ˆ

3D̂

Let me introduce the following notation. Recall that the alternative standard error es-
timators differ only in how they estimate ]. The assumptions behind the 
restricted estimators can therefore be tested by comparing the corresponding V estimates 
to one that is always consistent. Define 

    /18/ 
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0V̂

2V̂

 is always consistent for V.  is consistent under cross-sectional homoskedastic-

ity.  is consistent under no serial correlation in the (levels) error or the (levels) right-

hand-side variables.  is consistent if both 

1V̂

3V̂ 1̂V and 2̂V  are consistent and time-series ho-
moskedasticity also holds. A direct way to test whether the more restrictive assumptions 
hold is to check whether V ,VV=1 V=2 , or VV =3 . In order to formulate the linear hy-
potheses, let's use the vech operator that stacks columnwise the diagonal and sub-
diagonal elements of a symmetric matrix.7 

≡jv  vech ( )jV  /22/ 

≡jv̂  vech ( )jV̂ ,        3,2,1,0=j     /23/ 

The hypotheses are 

3,2,1,0: 00 ==− jvvH j  

3,2,1,0: 01 =≠− jvvH j . 

The test I propose is analogous to White's [1980] test for heteroskedasticity. Since  
is always consistent and the   are consistent only under the appropriate , their dis-
tance is an intuitive test statistic. If they are close enough, the restrictions probably hold. 
If they are very far, they probably do not hold. 

0v̂

jv̂ 0H

 
Proposition 2. Suppose that { } Niii xy ∈,  is i.i.d. with finite fourth moments. Consider 

the Fixed-Effect (FE) panel model (1-2) and assume that [ ]ii xxE ~~′  and ∑
=

′≡
N

i
iiNxx xxS

1

1 ~~~  

are positive definite. The test-statistic  defined below using /18-23/ are distributed chi-

squared under .  
jh

0H
  

7 Suppose that 3=K  and A is symmetric: { }ija=A . Then, . See Magnus and 

Neudecker (1988), e.g., for more discussion. 

( ) ( )′= 333222312111 aaaaaavech ,,,,,A
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Their asymptotic power is 1. That is, 

( ) ( )0
1

0 ˆˆˆˆˆ vvCvvNh jjjj −′−≡ −  ∼ ( )
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χ 1

2
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under   and  ( )3,2,10 =jH
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The proof is straightforward provided the simplifications to V derived earlier and the 
consistency of the estimators  for the appropriate V . It is therefore skipped here and 
is available upon request. 

jV̂ j

Finite-sample properties 

Tables 3 and 4 report simulated rejection rates for the three tests in the data generat-
ing processes identical to Tables 1 and 2, respectively, based on 10,000 Monte Carlo tri-
als. Results for the ( )10,500 ( )10,50  setups are presented only but all setups from 
Tables 1-2 were examined. The unpublished results indicate that given N, the size does 
not change but the power increases with T, and the test loses almost all of its power on 
extremely small-N samples. 

 and 

Tables 3. have rejection rates of h1 (H0: V1 = V0), h2 (H0: V2 = V0) and h3 (H0: V3 = V0). 
Nominal size=0.05. As of homoskedastic errors: V1 and V0 are asymptotically equivalent 
always; V2 and V0, and V3 and V0 are asymptotically equivalent if xρ = 0, or . Re-
sults are from 10,000 Monte Carlo experiments. 

0=ρu
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Table 3.1 

N = 500,  T = 10. Homoskedastic errors 

 xρ  
uρ  

 0.0 0.3 0.5 0.9 
      

0.0 1h  0.05 0.05 0.04 0.04 

 2h  0.04 0.06 0.04 0.06 

 3h  0.05 0.05 0.05 0.05 
      

0.3 1h  0.04 0.04 0.04 0.04 

 2h  0.05 0.56 0.92 1.00 

 3h  0.05 0.36 0.79 0.99 
      

0.5 1h  0.04 0.04 0.04 0.04 

 2h  0.06 0.90 1.00 1.00 

 3h  0.05 0.79 0.99 1.00 
      

0.9 1h  0.04 0.04 0.04 0.03 

 2h  0.06 1.00 1.00 1.00 

 3h  0.05 0.99 1.00 1.00 

Table 3.2 

N = 50,  T = 10. Homoskedastic errors 

 xρ  uρ  

 0.0 0.3 0.5 0.9 
  

0.0 1h  0.09 0.08 0.08 0.08 

 2h  0.08 0.08 0.08 0.09 

 3h  0.09 0.09 0.09 0.10 
      

0.3 1h  0.09 0.08 0.08 0.07 

 2h  0.08 0.05 0.07 0.14 

 3h  0.09 0.04 0.04 0.06 
      

0.5 1h  0.08 0.08 0.08 0.07 

 2h  0.08 0.06 0.18 0.46 

 3h  0.09 0.04 0.09 0.26 
      

0.9 1h  0.08 0.07 0.07 0.06 

 2h  0.09 0.14 0.44 0.86 

 3h  0.10 0.08 0.29 0.74 

  
Table 4.1.  

N = 500,  T = 10 
Cross-sectional conditional heteroskedasticity 

 xρ  
uρ  

 0.0 0.3 0.5 0.9 
      

0.0 1h  1.00 1.00 1.00 0.77 
 2h  0.10 0.07 0.06 0.06 

 3h  1.00 1.00 1.00 0.71 
      

0.3 1h  1.00 1.00 1.00 0.53 
 2h  0.08 0.73 0.96 0.99 

 3h  1.00 1.00 1.00 1.00 
      

0.5 1h  1.00 1.00 1.00 0.37 
 2h  0.05 0.96 1.00 1.00 

 3h  1.00 1.00 1.00 1.00 
      

0.9 1h  0.60 0.48 0.34 0.04 
 2h  0.04 0.99 1.00 1.00 

 3h  0.58 1.00 1.00 1.00 

Table 4.2.  

N = 50,  T = 10  
Cross-sectional conditional heteroskedasticity 

 xρ  
uρ  

 0.0 0.3 0.5 0.9 
      

0.0 1h  0.36 0.30 0.19 0.03 
 2h  0.05 0.05 0.05 0.08 

 3h  0.36 0.29 0.18 0.03 
      

0.3 1h  0.28 0.21 0.12 0.03 
 2h  0.05 0.05 0.07 0.11 

 3h  0.28 0.39 0.38 0.15 
      

0.5 1h  0.19 0.14 0.08 0.03 
 2h  0.06 0.07 0.18 0.32 

 3h  0.20 0.40 0.48 0.36 
      

0.9 1h  0.03 0.03 0.03 0.04 
 2h  0.08 0.11 0.35 0.74 

 3h  0.04 0.16 0.36 0.65 



ESTIMATION IN FIXED-EFFECTS PANEL MODELS 115 

The results in general reflect the finite-sample properties of the estimators. The tests 
deliver their asymptotic properties in the 10,500 == TN setup. The notable exceptions 
are and  under conditional homoskedasticity and very weak serial correlation 
(

2h
.0

3h
,3.0,3 <ρx<ρ  Table 3.1), and  under conditional heteroskedasticity and very 

strong serial correlation (Table 4.1). The former are quite natural while the latter reflects 
that strong serial correlation dominates heteroskedasticity in the conditional variance 
(Table 2.1). 

u 1h

Tables 4. have rejection rates of h1 (H0: V1 = V0), h2 (H0: V2 = V0) and h3 (H0: V3 = V0). 
Nominal size=0.05. As of Conditional cross-sectional heteroskedasticity in the errors: V1 
and V0, and V3 and V0 are never asymptotically equivalent; V2 and V0 are asymptotically 
equivalent if = or . Results are from 10,000 Monte Carlo experiments. xρ 0=ρu

The size is about right in moderate size samples. It is slightly biased upward which 
makes the test a little too conservative (the actual size varies between 0.06 and 0.09 com-
pared to a nominal size of 0.05). The power varies considerably with the alternatives. In 
the homoskedastic setup, the power, quite naturally, is a positive function of the serial 
correlation in u and x. The heteroskedastic setup yields the same result except against 1V , 
the heteroskedasticity-inconsistent but serial correlation consistent estimator. 

* 

The paper examined linear FE models with short time series within individual units. 
Serial correlation in the error process and the right-hand-side variables was shown to 
induce severe bias in the conventional standard error estimates. At the same time, the 
paper has shown that well-known robust (‘clustered’) estimator applied to the mean-
differenced data is not only consistent but also behaves well in finite samples. Applied 
researchers should, therefore, routinely estimate the robust estimator in moderate-sized 
and large samples, the same way they already routinely estimate the heteroskedasticity-
consistent estimator in cross-sectional models. The robust estimator does not get biased 
or significantly more disperse as the time-series dimension increases. At the same time, 
however, the serial correlation bias of the inconsistent estimators increases with the 
time-series dimension. Therefore, contrary to the intuition of many applied researchers, 
the advantages of the robust estimator increase as the time-series get longer. It is the 
cross-sectional size of the sample that primarily affects the finite-sample behaviour of 
the estimator. 

In small samples and under cross-sectional homoskedasticity, there is some advan-
tage of using the alternative serial correlation consistent estimator, the ‘Omega’-
estimator. The conventional FE standard error estimator (the scaled version of the con-
ventional OLS estimator on the mean-differenced data) has no significant advantage 
over the Omega-estimator even if both are consistent. In small samples, therefore, the 
Omega-estimator should be used unless there is evidence for cross-sectional heteroske-
dasticity. The paper has also introduced a simple direct test for the assumptions under 
which the restrictive estimators are consistent. The test delivers the appropriate size 
properties. Its power is quite small in small samples but good enough to detect strong 
serial correlation. 
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