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Preface 

Óbuda University has an intensive research cooperation in engineering high tech 
fields including mechanical, electric and electronic engineering, materials science, 
robotics, optimal control and informatics. All these activities are related to or 
involve applied and industrial mathematics research as well. This volume is a 
selection of 12 papers that contain either new results in applied mathematics or use 
mathematics to solve an important application problem. Most of the papers are 
written by staff members of Óbuda University and/or their research partners from 
all over the world. The topics of presented results vary from graph theory to fuzzy 
decision making. The authors indeed use a wide spectrum of mathematical methods 
for their investigation. The first paper by T. K. Pogány is related to sampling of 
stochastic L2-processes. The paper of J. Abaffy and A. Galántai gives a new method 
for global Lipschitz optimization and related numerical experiments. The third 
paper of this volume is writen by R. Briggs and P. T. Nagy who derive a 
classification of sub-Riemannian manifolds and also give an application to an 
invariant optimal control problem. The paper of A. Baricz and T. K. Pogány 
presents monotonicity and convexity properties for the one dimensional 
regularization of the Coulomb potential and gives Turán type inequalities used in 
some applications. A. Kristály and S. Nagy investigate the existence of Stackelberg 
equilibrium in games defined on manifolds. The paper of J. Abaffy and S. Fodor 
presents a new method for solving mixed-integer problems by applying the ABS 
approach to Gomory’s cutting plane algorithm. 

Authors D. H. Hoang, M. Benes and T. Oberhuber develop a numerical simulation 
of anisotropic mean curvature of graphs in the context of relative geometry. T. Réti 
and D. Dimitrov’s paper compares various irregularity measures for bidegreed 
graphs. The paper of D. L. Debeljovic, S. B. Stojanovic and A. M. Jovanovic gives 
a condition of algebraic character for the finite-time stability of linear time-delay 
systems, while the work of K. R. Hedrig and L. Veljovic gives a new description of 
kinetic pressures on shaft bearings of a rigid body nonlinear dynamics. The paper of 
C. O. Morariu and S-M. Zaharia suggest a new method for reliability testing. The 
work of P. Rezaei, K. Rezaie, S. Nazari-Shirkouhi and M- R- J. Tajabadi gives an 
interesting application of fuzzy decision making to allocate an underground dam to 
improve water management. 
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Abstract: The main aim of this article is to establish sampling series restoration formulae in

for a class of stochastic L2-processes which correlation function possesses integral represen-

tation close to a Hankel-type transform which kernel is either Bessel function of the first and

second kind Jν ,Yν respectively. The results obtained belong to the class of irregular sampling

formulae and present a stochastic setting counterpart of certain older results by Zayed [25]

and of recent results by Knockaert [13] for J–Bessel sampling and of currently established Y –

Bessel sampling results by Jankov Maširević et al. [7]. The approach is twofold, we consider

sampling series expansion approximation in the mean–square (or L2) sense and also in the

almost sure (or with the probability 1) sense. The main derivation tools are the Piranashvili’s

extension of the famous Karhunen–Cramér theorem on the integral representation of the cor-

relation functions and the same fashion integral expression for the initial stochastic process

itself, a set of integral representation formulae for the Bessel functions of the first and second

kind Jν ,Yν and various properties of Bessel and modified Bessel functions which lead to the

so–called Bessel–sampling when the sampling nodes of the initial signal function coincide

with a set of zeros of different cylinder functions.

Keywords: Almost sure convergence, Bessel functions of the first and second kind Jν ,Yν , cor-

relation function, harmonizable stochastic processes, Karhunen–Cramér–Piranashvili theo-

rem, Karhunen processes, Kramer’s sampling theorem, mean–square convergence, sampling

series expansions, sampling series truncation error upper bound, spectral representation of

correlation function, spectral representation of stochastic process.
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1 Introduction

The development and application of sampling theory in technics, engineering but

in parallel in pure mathematical investigations was rapid and continuous since the
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T. K. Pogány Bessel–sampling restoration of stochastic signals

middle of the 20th century [4, 6, 9, 15, 16, 17]. It is one of the most important mathe-

matical techniques used in communication engineering and information theory, and

it is also widely represented in many branches of physics and engineering, such as

signal analysis, image processing, optics, physical chemistry, medicine etc. [9, 25].

In general sampling theory can be used where functions need to be restored from

their discretized–measured–digitalized sampled values, usually from the values of

the functions and/or their derivatives at certain points. Here we are focused to a kind

of Bessel–sampling restoration of finite second order moment stochastic processes

(signals), which correlation function possesses Hankel–transform type integral rep-

resentation. In the Bessel sampling procedure the sampling nodes we take to be the

positive zeros jν ,k,yν ,k of the Bessel functions Jν ,Yν respectively, depending on the

appearing Bessel function in the kernel of the integral expression representing the

correlation function of the considered initial stochastic signal.

The results obtained form a stochastic setting counterpart to recent results by Zayed

[25, 26, 24, 27], Knockaert [13] and Jankov et al. [7].

This paper is organized as follows: in the sequel we give a short account in cor-

relation and spectral theory of stochastic signals, which consists from a necessary

introductionary knowledge about different kind stochastic processes appearing in

the engineering literature together with associated mathematical models. Secondly,

J–Bessel and Y –Bessel deterministic sampling theorems are recalled together with

their ancestor result, that is the Kramer’s sampling theorem. In Section 2 we prove

our main results on the Bessel sampling restoration of stochastic signals in both

mean–square and almost sure manner. Finally, we proceed with restoration er-

ror analysis, presenting associated results in finding the uniform upper bounds for

newly derived truncated sampling series, which is a counterpart of deterministic re-

sults which has been considered in a number of publications in the mathematical

literature, consult for instance [7, 8, 9] and the appropriate references therein. In

Conclusion section we give an overview of the exposed matter together with new

research directions and improvement possibilities. The exhaustive references list

finishes the exposition.

1.1 Brief invitation to correlation theory of stochastic processes

Let (Ω,A,P) a standard fixed probability space and consider the random variables

ξ : T ×Ω 7→ C, T ⊆ R; the double–indexed infinite family of random variables

{ξ (t) ≡ ξ (t,ω) : t ∈ T, ω ∈ Ω} is a stochastic process. Here T is the index set of

the process ξ . Denote L2(Ω,A,P) [abbreviated to L2(Ω) in the sequel] be the space

of all finite second order complex–valued random variables defined on (Ω,A,P),
equipped with the norm

√

E| · |2 := ‖ · ‖2, where E means the expectation opera-

tor. Notice that L2(Ω) is a Hilbert–space with the inner (or scalar) product Eξ η
endowed. However, it is enough to restrict ourselves to the linear mean–square–

closure Ht(ξ ) := {L2{ξ (s) : s≤ t} spanned by all finite linear combinations and/or

their in medio limits generated by the family {ξ (s) : s≤ t}, t ∈ R, which is the lin-

ear subspace of the Hilbert space L2(Ω). It is well-known that H∞(ξ ) ≡H (ξ )
possesses also a Hilbert–space structure, keeping the norm and inner product of
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L2(Ω). We recall that when
⋂

t∈R Ht(ξ ) = /0, then ξ is purely indeterministic1, say;

moreover in the case
⋂

t∈R Ht(ξ ) = H (ξ ), process ξ is purely deterministic2.

The function mξ (t) = Eξ (t) is the expectation function. Let us assume through-

out that the considered stochastic processes are centered, that is mξ (t) ≡ 0, t ∈ R
3.

The function Bξ (t,s) = Eξ (t)ξ (s) is the correlation function (or autocorrelation

function) of the centered process ξ at two ”times values” t,s ∈ T . By the Cauchy–

Buniakovskiy-Schwarz inequality it is straightforward that

|Bξ (t,s)|2 ≤ Bξ (t, t)Bξ (s,s), t,s,∈ T , (1)

being ξ with the finite second order moment rv, with any fixed t ∈ T . The function

Dξ (t) := Bξ (t, t) is the variance of the process ξ 4.

Very wide class of stochastic processes has been introduced by Piranashvili [18].

He has studied the sampling reconstruction of a class of nonstationary processes,

which correlation function (and a fortiori the initial process itself) possess spectral

representations in a form of a double integral. In fact Piranashvili extended the

Karhunen-Cramér theorem for a wider class stochastic processes; see the works of

Karhunen [11] and Cramér [3], also see [29, p. 156].

Theorem A. [Karhunen–Cramér–Piranashvili Theorem] Let a centered stochastic

L2(Ω)–process ξ has correlation function (associated to some domain Λ ⊆ R with

some sigma–algebra σ(Λ)) in the form:

B(t,s) =
∫

Λ

∫

Λ
f (t,λ ) f (s,µ)Fξ (dλ ,dµ), (2)

with analytical exponentially bounded kernel function f (t,λ ), while Fξ is a posi-

tive definite measure on R
2 provided the total variation ‖Fξ‖(Λ,Λ) of the spectral

distribution function Fξ satisfies

‖Fξ‖(Λ,Λ) =
∫

Λ

∫

Λ

∣

∣Fξ (dλ ,dµ)
∣

∣< ∞.

Then, the process ξ (t) has the spectral representation as a Lebesgue integral

ξ (t) =
∫

Λ
f (t,λ )Zξ (dλ ); (3)

in (2) and (3)

Fξ (S1,S2) = EZξ (S1)Zξ (S2), S1,S2 ⊆ σ(Λ),

and vice versa.

1 In the Western terminology; however, according to the Eastern, Soviet/Russian proba-

bilistic terminology this kind process is regular.
2 Singular. It is worth to mention that we deal here with a class of weakly stationary

singular processes.
3 Otherwise we pick up the so–called centered process ξ0(t) = ξ (t)−mξ (t), which ex-

pectation function is obviously zero.
4 By (1) we see, that Dξ (t)≤ supu∈R B2

ξ
(u,u) :=B

2
ξ
< ∞.
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Note that in the case of finite Λ we will talk on processes bandlimited to Λ.

If Fξ of (2) concentrates of diagonal λ = µ , that is Fξ (λ ,µ) = δλ ,µ Fξ (λ ), then the

resulting correlation is called of Karhunen class, and Bξ becomes

Bξ (t,s) =
∫

Λ
f (t,λ ) f (s,λ )Fξ (dλ ).

The spectral representation of the resulting Karhunen process ξ (t) remains of the

form given by (3).

Also, putting f (t,λ ) = eitλ in (2) one gets the Loève-representation:

B(t,s) =
∫

Λ

∫

Λ
ei(tλ−sµ)Fξ (dλ ,dµ).

Then, the Karhunen process with the Fourier kernel f (t,λ ) = eitλ we recognize as

the weakly stationary stochastic process having covariance

B(τ) =
∫

Λ
eiτλ Fξ (dλ ), τ = t− s.

The stochastic processes having correlation function expressible in the form (2) we

call harmonizable. Further reading about different kind harmonizabilities present

the works [10, 20, 21] and the appropriate references therein. Finally, when Λ =
(−w,w) for some finite w > 0 in this considerations, we get the band–limited vari-

ants of the above introduced processes. So, for ξ (t), being weak sense stationary

band–limited to w > 0, there holds the celebrated Whittaker–Kotel’nikov–Shannon

sampling theorem:

ξ (t) = ∑
k∈Z

ξ
(π

w
k
) sin(wt− kπ)

wt− kπ
, (4)

uniformly convergent on all compact t–subsets of R, in both mean–square and al-

most sure sense; the latter has been proved by Belyaev [2].

1.2 Kramer’s theorem and Bessel sampling

Here we recall three theorems which will help us to derive our first set of Bessel

sampling restoration results for a class of harmonizable stochastic processes having

Karhunen representable correlation functions.

Theorem B. [Kramer’s Theorem], [12, 13] Let K(x, t) be in L2[a,b],−∞ < a < b <

∞ a function of x for each real number t and let E = {tk}k∈Z be a countable set of

real numbers such that {K(x, tk)}k∈Z is a complete orthogonal family of functions

in L2[a,b]. If

f (t) =
∫ b

a
g(x)K(x, t)dx,
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for some g ∈ L2[a,b], then f admits the sampling expansion

f (t) = ∑
k∈Z

f (tk)S⋆(t, tk) ,

where

S⋆(t, tk) =

∫ b

a
K(x, t)K(x, tk)dx

∫ b

a
|K(x, tk)|2 dx

.

Remark 1. Annaby reported, that points {tk}k∈Z, which are for practical reasons

preferred to be real, can also be complex, [1, p. 25].

Obviously, the function f , having above integral representation property bandlim-

ited to the region Λ = [a,b].

Now we give the two Bessel–sampling theorems, the J–Bessel derived e.g. by Za-

yed [25, p. 132], but the J–Bessel sampling method was known already by Whit-

takers [22, 23], Helms and Thomas [5] and Yao [30].

Theorem C. It there is some G ∈ L2(0,b) with a finite Hankel–transform

f (λ ) =
2ν Γ(ν +1)

bν+ 1
2 λ ν

∫ b

0
G(x)
√

xJν(xλ )dx , (5)

then there holds

f (t) =
2Jν(bt)

bν z, tν ∑
k≥1

jν+1
ν ,k f (a−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)
,

where the series converges uniformly on any compact subset of the complex t–plane.

Here λk denote the kth zero of Jν(b
√

λ ).

In turn the Y –Bessel sampling theorem has been recently derived by Jankov Maširević

et al. in [7, p. 81, Theorem 4].

Theorem D. Let for some G∈ L2(0,a),a > 0, function f possesses a finite Hankel–

transform

f (t) =
∫ a

0
G(x)
√

xYν(tx)dx , (6)

then, for all t ∈ R, ν ∈ [0,1), the function f admits the sampling expansion

f (t) = 2Yν(at) ∑
k≥1

f (b−1yν ,k)
yν ,k

(y2
ν ,k−a2t2)Yν+1(yν ,k)

,

where yν ,k, k ∈ N are the positive real zeros of the Bessel function Yν(t). Here the

convergence os uniform in all compact t–subsets of C.
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2 Main results

Although formula (4), Theorem C and Theorem D yield an explicit restoration of

bandlimited weakly stationary stochastic process ξ (t) by the WKS sampling theo-

rem, and Hankel-transformable f (t) by either J–Bessel or Y –Bessel sampling pro-

cedures respectively, these results are usually considered to be of theoretical interest

only, because the restoration procedures require computations of infinite sums. In

practice, we truncate the sampling expansion series. The sampling size N is deter-

mined by the relative error accepted in the reconstruction. Thus the error analysis

plays a crucial role in setting up the interpolation formula, and it is of considerable

interest to find sampling series truncation error upper bounds (the exact value of

the truncation error is in general a ”mission impossible”) which vanishes with the

growing sampling size.

Here and in what follows we will concentrate to a class of harmonizable stochastic

processes having spectral representation of the form (3) with the kernel function

f (t,λ ) ∈ L2(0,b), b > 0 ,

with respect to the time–parameter t.

According to these requirements, we introduce the notations for both kind Bessel

sampling procedures:

S
J

N(G; t) :=
2Jν(bt)

bν tν

N

∑
k=1

jν+1
ν ,k G(b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)

S
Y
N (G; t) := 2Yν(bt)

N

∑
k=1

yν ,k G(b−1yν ,k)

(y2
ν ,k−b2t2)Yν+1(yν ,k)

,

for the truncated (partial) Bessel sampling series expansions either of L2(0,b)–
bandlimited signal f , or for the stochastic process ξ , that is G ∈ { f ,ξ}. Next,

we introduce the sampling series restoration truncation error, read as follows

T
J

N (G; t) :=G(t)−S
J

N(G; t) =
2Jν(bt)

bν tν ∑
k≥N+1

jν+1
ν ,k ξ (b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)
(7)

T
Y

N (G; t) :=G(t)−S
Y
N (G; t) = 2Yν(bt) ∑

k≥N+1

yν ,k ξ (b−1yν ,k)

(y2
ν ,k−b2t2)Yν+1(yν ,k)

,

Our main goal in that stage of investigation is to establish as sharp as possible mean

square truncation error upper bounds in both Bessel–sampling procedures, that is

for

∆B

N (ξ ; t) = E
∣

∣ξ (t)−S
B

N (ξ ; t)
∣

∣

2
= E

∣

∣T
B

N (ξ ; t)
∣

∣

2
, B ∈ {J,Y} .

Firstly, we establish the spectral representation formula for S J
N(ξ ; t).
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Theorem 1. Let ξ (t), t ∈ T ⊆ R a harmonizable stochastic process of Piranashvili

class, that is

ξ (t) =
∫

Λ
f (t,λ )Zξ (dλ )

with the kernel function f (t,λ ) ∈ L2(0,b) with respect to t and any fixed λ ∈ Λ.

Then we have

S
B

N (ξ ; t) =
∫

Λ
S

B

N ( f ; t)Zξ (dλ ), B ∈ {J,Y} .

Moreover, there holds true

T
B

N (ξ ; t) =
∫

Λ
T

B

N ( f ; t)Zξ (dλ ), B ∈ {J,Y} ;

both formulae are valid in the mean square sense.

Proof. The sampling series expansion of the kernel function f (t,λ ) which appears

in the representation (3), when truncated to the terms indexed by N becomes S J
N( f ; t).

Now, by (7) we get

S
J

N(ξ ; t) =
2Jν(bt)

bν tν

N

∑
k=1

jν+1
ν ,k ξ (b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)

=
2Jν(bt)

bν tν

N

∑
k=1

jν+1
ν ,k

(b2t2− j2
ν ,k

)J′ν( jν ,k)

∫

Λ
f (a−1 jν ,k,λ )Zξ (λ )

=
∫

Λ

{

2Jν(bt)

bν tν

N

∑
k=1

jν+1
ν ,k

(b2t2− j2
ν ,k

)J′ν( jν ,k)
f (b−1 jν ,k,λ )

}

Zξ (λ );

here all equalities are in the mean square sense used. This is exactly the statement

for B = J. The case of Y –Bessel sampling we handle in the same way.

The second assertion we prove directly:

T
J

N (ξ ; t) = ξ (t)−S
J

N(ξ ; t) =
∫

Λ
f (t,λ )Zξ (dλ )−

∫

Λ
S

J
N( f ; t)Zξ (dλ )

=
∫

Λ

{

f (t,λ )−S
J

N( f ; t)
}

Zξ (dλ )

=
∫

Λ
T

J
N ( f ; t)Zξ (dλ ) .

The equalities are also in the mean square sense used. The rest is clear.

Theorem 2. Let the situation be the same as in Theorem 1. Then we have

∆B

N (ξ ; t) =
∫

Λ

∫

Λ
T

B

N ( f ; t)T B

N ( f ; t)Fξ (dλ ,dµ), B ∈ {J,Y} , (8)

in the mean square sense.
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The proof is a straightforward consequence of the Karhunen–Cramér–Piranshvili

Theorem A and the spectral representation formulae of stochastic process ξ , there-

fore we omit it.

Remark 2. Obviously Theorem 2 is devoted to the case of Piranashvili processes.

For the Karhunen processes this result reduces to

∆B

N (ξ ; t) =
∫

Λ

∣

∣T
B

N ( f ; t)
∣

∣

2
Fξ (dλ ), B ∈ {J,Y} . (9)

Denote L2(Λ;Fξ ) the class of square–integrable on the support domain Λ, complex

functions with respect to the measure Fξ (dλ ), i.e.

L2(Λ;Fξ ) :=

{

ϕ :

∫

Λ
|ϕ|2 Fξ (dλ )< ∞

}

.

This class form also a Hilbert–space and the correspondence ξ (t)←→ f (t,λ ) de-

fines an isomorphism between H (ξ ) and L2(Λ;Fξ ). Therefore by the existing

isometry, we conclude (9).

Next, a special case of the Karhunen process is the weakly stationary stochastic

process5. Choosing Λ = (−w,w), we arrive at

∆B

N (ξ ; t) =
∫ w

−w

∣

∣T
B

N (eitλ )
∣

∣

2
Fξ (dλ ), B ∈ {J,Y} .

Now, we are ready to state our Bessel–sampling series finding for stochastic pro-

cesses.

Theorem 3. Let {ξ (t) : t ∈T⊆R} a Piranashvili process (3) with a kernel function

f (t,λ ) ∈ L2(0,b) which possesses a Hankel–transform representation either of the

form (5) (J–Bessel sampling) or (6) (Y –Bessel sampling). Then we have

ξ (t) = S
J(ξ ; t) =

2Jν(bt)

bν tν ∑
k≥1

jν+1
ν ,k ξ (b−1 jν ,k)

(b2t2− j2
ν ,k

)J′ν( jν ,k)

ξ (t) = S
Y (ξ ; t) = 2Yν(bt) ∑

k≥1

yν ,k ξ (b−1yν ,k)

(y2
ν ,k−b2t2)Yν+1(yν ,k)

,

respectively. Both equalities hold in the mean square sense.

Proof. Having in mind that (8)

∆B

N (ξ ; t) = E|T B

N (ξ : t)|2 =
∫

Λ

∫

Λ
T

B

N ( f ; t)T B

N ( f ; t)Fξ (dλ ,dµ) ,

and T B

N ( f ; t) vanishes pointwise and uniformly [25, p. 132] (J–Bessel sampling),

that is [7, p. 83, Theorem 4] (Y –Bessel sampling) with the growing N, we deduce

lim
N→∞

∆B

N (ξ ; t) = 0, B ∈ {J,Y} ,

which completes the proof.

5 Also known as stationary in the Khintchin sense.
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3 Truncation error bounds for Y –Bessel sampling of
Karhunen processes

In this section we would derive uniform upper bound for the truncation error for the

Y –Bessel sampling expansion of the Karhunen process ξ (t), t ∈ T ⊆ R:

S
Y (ξ ; t) = 2Yν(t)

N

∑
k=1

yν ,k ξ (yν ,k)

(y2
ν ,k− t2)Yν+1(yν ,k)

,

setting for the sake of simplicity b = 1, ν ∈ [0,1) and the function f has a band–

region contained in (0,1). Having in mind (9) exposed in Remark 2, we specify:

∆Y
N(ξ ; t) =

∫

Λ

∣

∣T
Y

N ( f ; t)
∣

∣

2
Fξ (dλ ) . (10)

The truncation error upper bound has been already calculated in under the polyno-

mial decay condition (see e.g. [14])

| f (t)| ≤ A

|t|r+1
, A > 0, r > 0 , t 6= 0. (11)

The corresponding truncation error upper bound [7, p. 83, Theorem 5] for all

ν ∈ [0,1), t ∈ (ν ,yν ,2), min{A,r}> 0, N ≥ 2

reads as follows

T
Y

N ( f ; t)<
2AH(t)MN(ν)

π2 LN+1(ν)
:=UY

N (t) ,

where

H(t) = 1+
2t

π(t2−ν2)

MN(ν) = exp

{

(

N +
1−π +2(ν− yν ,2)

2π

)−1
}

−1

LN+1(ν) =
2√
π

yr
ν ,N+1

{

y2
ν ,N+1− (2ν +3)(2ν +7)

(4yν ,N+1−ν−1)
3
2 +µ∗

}
1
2

and µ∗ = (2ν +3)(2ν +5).

Moreover, for any fixed t ∈ (ν ,yν ,2) and growing N the following the asymptotic

behavior results holds [7, p. 83, Eq. (15)]

T
Y

N ( f ; t) = O

(

N−r− 5
4

)

.

Now, we are ready to formulate our next main result.
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Theorem 4. Let ξ (t), t ∈ R a Karhunen process with the kernel function f satis-

fying polynomial decay condition (11). Then for all ν ∈ [0,1), for all t ∈ (ν ,yν ,2),
min{A,r}> 0 and all N ≥ 2, we have

∆Y
N(ξ ; t)≤

A2 ‖Fξ‖(Λ)(πνt +2)2 [(4yν ,N+1−ν−1)
3
2 +(2ν +3)(2ν +5)]

π5 ν2 t2 y2r
ν ,N+1[y

2
ν ,N+1− (2n+3)(2n+7)]

×
(

exp

{

(

N +
1−π +2(ν− yν ,2)

2π

)−1
}

−1

)2

,

where ‖Fξ‖(Λ) stands for the total variation of the spectral distribution function Fξ .

Moreover, the decay magnitude of the truncation error is

∆Y
N(ξ ; t) = O

(

N−2r− 5
2

)

. (12)

Proof. Because of the spectral representation formula (10) and the functional trun-

cation error upper bound (11) by Jankov Maširević et al. we have

∆Y
N(ξ ; t) =

∫

Λ

∣

∣T
Y

N ( f ; t)
∣

∣

2
Fξ (dλ )≤

∫

Λ

∣

∣UY
N ( f ; t)

∣

∣

2
Fξ (dλ ) .

Now routine calculations lead to the statement. Relation (12) is the immediate con-

sequence of this upper bound result.

Next, we consider the almost sure convergence in the Y –Bessel sampling series

restoration of the Karhunen process.

Theorem 5. Let ξ (t) a Karhunen process with the kernel function f satisfying poly-

nomial decay condition (11). Then for all ν ∈ [0,1), for all t ∈ (ν ,yν ,2), min{A,r}>
0 and all N ≥ 2, we have

P

{

lim
N→∞

S
Y
N (ξ ; t) = ξ (t)

}

= 1 .

Proof. Firstly, for some positive ε we evaluate the probability

PN = P
{∣

∣ξ (t)−S
Y
N (ξ ; t)

∣

∣≥ ε
}

.

Applying the Čebyšev inequality, then Theorem 3 we conclude th estimate

PN ≤ ε−2
E
∣

∣T
Y

N (ξ ; t)
∣

∣

2
= O

(

N−2r− 5
2

)

.

For certain enough large absolute constant C the following bound follows in terms

of the Riemann Zeta function:

∑
N≥2

PN ≤C ∑
N≥2

N−2r− 5
2 =C

[

ζ
(

2r+ 5
2

)

−1
]

,

and the series converges, being r > 0. Now, by the Borel–Cantelli lemma it follows

the a.s. convergence, which completes the proof.
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4 Final remarks

In the footnote 2 it was mentioned that we work throughout with singular, or purely

deterministic processes. Indeed, having in mind that the initial input process of Pi-

ranashvili type ξ (t) possesses spectral representation (3) in which the kernel func-

tion is a Hankel transform of some convenient G ∈ L2(0,b), we deduce

ξ (t) =
∫

Λ
f (t,λ )Zξ (dλ )

=
2ν Γ(ν +1)

bν+ 1
2

∫

Λ

{

1

λ ν

∫ b

0
G(x)
√

xJν(xλ )dx

}

Fξ (dλ )

=
2ν Γ(ν +1)

bν+ 1
2

∫ b

0
G(x)
√

x

{

∫

Λ

Jν(xλ )

λ ν
Fξ (dλ )

}

dx

=
2ν Γ(ν +1)

bν+ 1
2

∫ b

0
G(x)
√

xΨν(x)dx.

Obviously ξ (t) is bandlimited to (0,b). (We mention that the sample function

ξ (t) ≡ ξ (t,ω0) and f (t,λ ) possess the same exponential types [2, Theorem 4],

[18, Theorem 3], and also by the Paley–Wiener theorem we conclude that ξ (t) is

bandlimited to the support set (0,b)).

The Kolmogorov–Krein analytical singularity criterion states that the singular pro-

cesses possesses divergent integral:

∫

R

log d
dλ Fξ (dλ )

1+λ 2
dλ =−∞ ,

which is obviously true, being the Radon–Nikodým derivative (or in other words

spectral density) in the integrand equal to zero on a set of positive Lebesgue mea-

sure.
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[17] A. Y. OLENKO, T. K. POGÁNY, Average sampling reconstruction od har-

monizable processes, Commun. Stat. Theor. Methods 40 (2011) , No. 19-20,

3587-3598.

[18] Z.A. PIRANASHVILI, On the problem of interpolation of random processes,

Teor. Ver. Primenen. XII (1967), No. 4, 708–717. (in Russian)
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Abstract: We develop and analyze a bisection type global optimization algorithm for real

Lipschitz functions. The suggested method combines the branch and bound method with an

always convergent solver of nonlinear equations. The computer implementation and perfor-

mance are investigated in detail.

Keywords: global optimum; nonlinear equation; always convergent method; Newton method;

branch and bound algorithms; Lipschitz functions

1 Introduction

In paper [2] we defined the following branch and bound method to find the global

minimum of the problem

f (z)→ min

l ≤ z ≤ u,

where f : Rn → R is sufficiently smooth and l,u ∈ Rn. Assume that

zout put = alg min( f ,zinput)

is a local minimization algorithm that satisfies f (zout put)≤ f (zinput), for any zinput .

Similarly, assume that

[zsol , i f lag] = equation solve( f ,c)
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denotes a solution algorithm of the single multivariate equation f (z) = c such that

i f lag = 1, if a true solution zsol exists (that is f (zsol) = c), and i f lag = −1, other-

wise.

Let fmin denote the global minimum of f , and let Blower ∈ R is a lower bound of

f such that fmin ≥ Blower. Let z0 ∈ D f be any initial approximation to the global

minimum point ( f (z0) ≥ Blower). The suggested algorithm of [2] then takes the

form:

Algorithm 1

z1 = alg min( f ,z0)

a1 = f (z1), b1 = Blower, i = 1

while ai −bi > tol

ci = (ai +bi)/2

[ξ , i f lag] = equation solve( f ,ci)

if i f lag = 1

zi+1 = alg min( f ,ξ ), ai+1 = f (zi+1), bi+1 = bi

else

zi+1 = zi, ai+1 = ai, bi+1 = ci

end

i = i+1

end

Using the idea of Algorithm 1 we can also determine a lower bound of f , if such

a bound is not known a priori (for details, see [2]). Algorithm 1 shows conceptual

similarities with other multidimensional bisection type algorithms such as those of

Shary [34] and Wood [50], [52].

Theorem 1. Assume that f : Rn → R is continuous and bounded from below by

Blow. Then Algorithm 1 is globally convergent in the sense that f (zi)→ fmin.

Proof. At the start we have z1 and the lower bound b1 such that f (z1)≥ fmin ≥ b1.

Then we take the midpoint of this interval, i.e. c1 = ( f (z1)+b1)/2. If a solution

ξ exists such that f (ξ ) = c1 (i f lag = 1), then c1 ≥ fmin holds. For the output z2

of the local minimizer, the inequality c1 ≥ f (z2) ≥ fmin ≥ b1 holds by the initial

assumptions. If there is no solution of f (ξ ) = c1 (i.e. i f lag =−1), then c1 < fmin.

By continuing this way we always halve the inclusion interval (bi, f (zi)) at the worst

case. So the method is convergent in the sense that f (zi)→ fmin. Note that sequence

{zi} is not necessarily convergent.

– 22 –
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The practical implementation of Algorithm 1 clearly depends on the local mini-

mizer, the equation solver and also on f . Since we have several local minimiz-

ers satisfying the above requirements we must concentrate on the equation solvers.

There are essentially two questions to be dealt with. Namely, the existence of the

solution and the very existence of methods that are always convergent in the sense

that either they give a solution when exists or give a warning sign if no solution

exists.

The existence of solution follows from the Weierstrass theorem, if fmin ≤ c ≤ f (z0).
As for the solvers we may observe that for n> 1, our equation is an underdetermined

nonlinear equation of the form

g(z) = f (z)− c = 0 (g : Rn → R) . (1)

There are several locally convergent methods for such equations (see, e.g. [25], [3],

[45], [26], [27], [28], [47], [48], [12], [13], [14]). In paper [2] we tested Algorithm 1

with a nonlinear Kaczmarz projection algorithm [45], [26], [27], [25], which showed

fast convergence in most of the test cases, but also showed numerical instability in

some cases, when ∇ f (zk) was close to zero.

There also exist always convergent methods for equation (1) (see, e.g. [37], [9], [20],

[22], [21], [43], [44], [1], [31], [46]). For the multivariate case, most methods are

related to subdivision and seem to be quite slow. For univariate equations, however,

the always convergent methods of Szabó [43], [44], Abaffy and Forgó [1], Pietrus

[31] and Várterész [46] are using other principles than subdivision and they are quite

fast.

Here we study Algorithm 1 for one-dimensional real Lipschitz functions. The global

minimization of real Lipschitz functions has a rich literature with many interesting

and useful algorithms. For these, we refer to Hansen, Jaumard, Lu [15], [17], [18]

and Pintér [32].

The outline of paper is the following. We develop and analyze the equation solver

in Section 2. In Section 3 we develop a modified implementation of Algorithm 1

called Algorithm 2 that use this equation solver and double bisection. The final

section contains the principles and results of numerical testing. The comparative

numerical testing indicates that Algorithm 2 can be a very efficient minimizer in

practice.

2 An always convergent solver for real equations

Consider the real equation

g(t) = 0 (g : R→ R, t ∈ [α,β ]) (2)

An iterative solution method of the form xn+1 = F (g;xn) is said to be always con-

vergent, if for any x0 ∈ [α,β ] (g(x0) 6= 0)

(i) the sequence {xn} is monotone,
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(ii) {xn} converges to the zero in [α,β ] that is nearest to x0, if such zero exists,

(iii) if no such zero exists, then {xn} exits the interval [α,β ].

Assuming high order differentiability, Szabó [43], [44] and Várterész [46] devel-

oped some high order always convergent iterative methods. Assuming only contin-

uous differentiability Abaffy and Forgó [1] developed a linearly convergent method,

which was generalized to Lipschitz functions by Pietrus [31] using generalized gra-

dient in the sense of Clarke.

Since we assume only the Lipschitz continuity of g, we select and analyze an always

convergent modification of the Newton method. This method was first investigated

by Szabó [43], [44]) under the condition that g is differentiable and bounded in the

interval [α,β ]. We only assume that g satisfies the Lipschitz condition.

Theorem 2. (a) Assume that |g(t)−g(s)| ≤ M |t − s| holds for all t,s ∈ [α,β ]. If

x0 ∈ (α,β ] and g(x0) 6= 0, then the iteration

xn+1 = xn −
|g(xn)|

M
(n = 0,1, . . .) (3)

either converges to the zero of g that is nearest left to x0 or the sequence {xn} exits

the interval [α,β ]. (b) If y0 ∈ [α,β ) and g(y0) 6= 0, then the iteration

yn+1 = yn +
|g(yn)|

M
(n = 0,1, . . .) (4)

either converges to the zero of g that is nearest right to y0 or the sequence {yn} exits

the interval [α,β ].

Proof. We prove only part (a). The proof of part (b) is similar. It is clear that

xn+1 ≤ xn. If a number γ exists such that α ≤ γ ≤ x0 and xn → γ , then g(γ) = 0.

Otherwise there exists an index j such that x j < α . Assume now that α ≤ γ < x0 is

the nearest zero of g to x0. Also assume that γ ≤ xn (n ≥ 1). We can write

xn+1 − γ = xn − γ − |g(xn)−g(γ)|
M

=

(

1− ξn

M

)

(xn − γ) (ξn ∈ [0,M]) . (5)

Since 0 ≤ 1− ξn

M
≤ 1, we obtain that γ ≤ xn+1 and xn+1 − γ ≤ xn − γ . Hence the

method, if converges, then converges to the nearest zero to x0. Assume that no zero

exists in the interval [α,x0] and let |g|min = minα≤t≤x0
|g(t)|. Then

xn+1 = xn −
|g(xn)|

M
≤ xn −

|g|min

M
≤ x0 − (n+1)

|g|min

M
,

and algorithm (3) leaves the interval in at most
M(x0−α)
|g|min

steps. A similar claim holds

for algorithm (4).

– 24 –



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013

The convergence speed is linear in a sense. Assume that α ≤ γ < x0 is the nearest

zero to x0 and ε > 0 is the requested precision of the approximate zero. Also as-

sume that a number mε > 0 exists such that mε |t − γ| ≤ |g(t)| ≤ M |t − γ| holds

for all γ + ε ≤ t ≤ x0. If g is continuously differentiable in [α,β ], then mε =
mint∈[γ+ε,x0] |g′ (t)|. Having such a number mε we can write (5) in the form

xn − γ ≤
(

1− mε

M

)n

(x0 − γ)≤
(

1− mε

M

)n

(β −α) .

This indicates a linear speed achieved in at most

⌈

log ε
β−α

log(1−mε
M )

⌉

steps. We can as-

sume that mε > ε , which gives the bound

⌈

log ε
β−α

log(1− ε
M )

⌉

. Relation log(1+ ε) ≈ ε

yields the approximate expression M

∣

∣

∣
log ε

β−α

∣

∣

∣
ε−1 for the number of required iter-

ations.

For the optimum step number of algorithms in the class of Lipschitz functions, see

Sukharev [42] and Sikorski [35].

Assume now that L > 0 is the smallest Lipschitz constant of g on [α,β ] and M =
L+ c with a positive c. It then follows from (5) that

xn+1 − γ ≥
(

1− L

L+ c

)

(xn − γ) =

(

c

L+ c

)n+1

(x0 − γ) .

This indicates a linear decrease of the approximation error. Note that the method

can be very slow, if c/(L+ c) is close to 1 (if M significantly overestimates L) and

it can be fast, if c/(L+ c) is close to 0 (if M is close to L). Equation (5) also shows

that M can be replaced in the algorithms (3)-(4) by an appropriate Mn that satisfies

the condition 0 ≤ ξn

Mn
≤ 1. For differentiable g, Mn might be close to |g′ (xn)| in

order to increase the speed (case of small c).

A simple geometric interpretation shows that the two algorithms are essentially the

same. The Lipschitz condition implies that ||g(t)|− |g(s)|| ≤ M |t − s| (t,s ∈ [α,β ])
also holds. The resulting inequality

|g(x)|−M |x− t| ≤ |g(t)| ≤ |g(x)|+M |x− t|

gives two linear bounding functions for |g(t)|, namely |g(x)|+ M (x− t) and

|g(x)|+ M (t − x) for a fixed x. If the zero γ is less than xn, then for t ≤ xn,

the linear function |g(xn)|+M (t − xn) will be under |g(t)|. Its zero xn+1 = xn −
|g(xn)|

M
≤ xn is the next approximation to γ and xn+1 ≥ γ clearly holds. Similarly, if

yn < γ , then |g(yn)|+M (yn − t) will be under |g(t)| and for its zero, yn ≤ yn+1 =

yn +
|g(yn)|

M
≤ γ clearly holds. The next figure shows both situations with respect to

an enclosed unique zero γ .
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|g(y)|

xnxn+1 yn yn+1

|g(xn)|+M(xn-y)

|g(xn)|+M(y-xn)
|g(yn)|+M(y-yn)|g(yn)|+M(yn-y)

It also follows that if g(x0)> 0 (g(x0)< 0) then g(t)> 0 (g(t)< 0) for γ < t ≤ x0,

if such a zero γ exists. If not, g(t) keeps the sign of g(x0) in the whole interval

[α,x0]. An analogue result holds for algorithm (4).

Consider the following general situation with arbitrary points u,v ∈ [α,β ] (u <
v).

g(t)

g(v)+M(v-t)

g(v)+M(t-v)

g(u)+M(t-u)

g(u)+M(u-t)

tv

u

A

B

(v,g(v))

(u,g(u))
M(v-u)

The points (u,g(u)) and (v,g(v)) and the related linear bounding functions define a

parallelogram that contains function g over the interval [u,v] with the bounds

g(u)+g(v)

2
+M

u− v

2
≤ g(t)≤ g(u)+g(v)

2
+M

v−u

2
(u ≤ t ≤ v) .
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This property is the basis of Piyavskii’s minimization algorithm and related methods

(see, e.g. [17], [32]). It is also exploited in Sukharev’s modified bisection method

[41], [42].

Function g(t) may have a zero in [u,v] only if

g(u)+g(v)+M (u− v)≤ 0 ≤ g(u)+g(v)+M (v−u) ,

that is if

|g(u)+g(v)| ≤ M (v−u) . (6)

If g(t) has a zero γ ∈ (u,v), then by the proof of Theorem 2.

u+
|g(u)|

M
≤ γ ≤ v− |g(v)|

M
(7)

holds and (6) is clearly satisfied. If u and v are close enough and (u,v) does not

contain a zero of g(t), then (6) does not hold. This happens, if u ≥ v− |g(v)|
M

and

g(u) 6= 0 or v ≤ u+ |g(u)|
M

and g(v) 6= 0.

Note that iterations (3)-(4) satisfy the bounds

g(xn+1)+g(xn)−|g(xn)|
2

≤ g(t)≤ g(xn+1)+g(xn)+ |g(xn)|
2

(8)

for xn+1 ≤ t ≤ xn, and the bounds

g(yn+1)+g(yn)−|g(yn)|
2

≤ g(t)≤ g(yn+1)+g(yn)+ |g(yn)|
2

(9)

for yn ≤ t ≤ yn+1.

Note also that if u and v are distant enough (in a relative sense), then condition (6)

may hold without having a zero in (u,v).

Using the above geometric characterization we can develop practical exit condi-

tions for the nonlinear solver (3)-(4). The most widely used exit conditions are

|xn+1 − xn| < ε and |g(xn)| < ε , which are not fail safe neither individually nor in

the combined form max{|xn+1 − xn| , |g(xn)|} < ε . For a thorough analysis of the

matter, see Delahaye [8], Sikorski and Wozniakowski [36] and Sikorski [35]. An-

other problem arises in the floating precision arithmetic that requires stopping, if ei-

ther |xn+1 − xn|< εmachine or |g(xn)|< εmachine holds. Since |xn+1 − xn|= |g(xn)|
M

, the

tolerance precision ε is viable, if max{1,M}εmachine < ε . By the same argument the

tol parameter of Algorithm 1 must satisfy the lower bound tol ≥ 2εmachine.

If g(t) has a zero γ ∈ [α,x0), the monotone convergence of {xn} implies the relation

|xn+1 − xn| ≤ |xn − γ|. Hence |xn+1 − xn| is a lower estimate of the approximation

error.

There are some possibilities to increase the reliability of the combined exit condi-

tion. The first one uses algorithm (4) in the following form. If interval (xn − ε,xn)
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is suspect to have a zero of g(t) (and g(xn − ε) ,g(xn) 6= 0), then we can apply

condition (6) with u = xn − ε and v = xn in the form

Mε ≥ |g(xn − ε)+g(xn)| . (10)

If Mε < |g(xn − ε)+g(xn)|, then there is no zero in [xn − ε,xn] and we have to

continue the iterations. Even if Mε ≥ |g(xn − ε)+g(xn)| holds, it is not a guarantee

for the existence of a zero in the interval [xn − ε,xn].

In the latter case we can apply algorithm (4) with y0 = xn−ε . If there really exists a

zero γ ∈ (xn − ε,xn), then the sequence {yn} converges to γ and remains less than xn.

If no zero exists in the interval, then m = mint∈[xn−ε,xn] |g(t)|> 0 and the iterations

{yn} satisfy yn ≥ y0 +n m
M

. Hence the sequence {yn} exceeds xn in a finite number

of steps. The same happens at the point xn − ε , if we just continue the iterations

{xn}.

The two sequences {yn} and {xn} exhibit a two-sided approximation to the zero (if

exists) and x j − yk is an upper estimate for the error. This error control procedure is

fail safe, but it may be expensive. We can make it cheaper by fixing the maximum

number of extra iterations at the price of losing absolute certainty. For example, if

we use the first extra iteration xn+1 (xn − ε < xn+1) and set v = xn+1, then condition

(6) changes to

Mε ≥ |g(xn − ε)+g(xn+1)|+ |g(xn)| . (11)

Similar expressions can be easily developed for higher number of iterations as

well.

A second possibility for improving the exit conditions arises if a number m > 0

exists such that m |t − γ| ≤ |g(t)| ≤ M |t − γ| holds for all t ∈ [α,β ]. Then |xn − γ| ≤
1
m
|g(xn)| is an upper bound for the error. Similarly, we have

|xn − γ| ≤ δ +
1

m
|g(xn −δ )|

and by selecting δ = xn − xn+1 we arrive at the bound

|xn − γ| ≤ xn − xn+1 +
1

m
|g(xn+1)| .

This type of a posteriori estimate depends however on the existence and value of

m.

3 The one-dimensional optimization algorithm

We now use algorithms (3)-(4) to implement an Algorithm 1 type method for the

one-dimensional global extremum problem

f (t)→ min (l ≤ t ≤ u, f : R→ R, l,u ∈ R) (12)
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under the assumption that | f (t)− f (s)| ≤ L |t − s| holds for all t,s ∈ [l,u]. Here the

solution of equation f (t) = c is sought on the interval [l,u].

It first seems handy to apply Algorithm 1 directly with solver (3) or (4). It may hap-

pen that equation f (t) = ci has no solution for some i, and this situation is repeated

ad infinitum. Since for min f > ci, the number of iterations is O
(

1
min f−ci

)

, this may

cause severe problems for ci րmin f . Assume that ak = ak+ℓ >min f > ck+ℓ > bk+ℓ

for ℓ ≥ 0. Then ak+ℓ − bk+ℓ = ak − bk+ℓ =
ak−bk

2ℓ
→ 0, which is contradiction to

ak > min f > bk+ℓ (ℓ ≥ 0). Hence the situation can occur infinitely many times, if

by chance ak = f (zk) = min f . However preliminary numerical testing indicated a

very significant increase of computational time in cases, when ci just approached

min f from below with a small enough error. This unexpected phenomenon is due

to the always convergent property of solver, that we want to keep. Since the itera-

tion numbers also depend on the length of computational interval (see the proof of

Theorem 2) we modify Algorithm 1 so that in case ci < min f and ci ≈ min f the

computational interval should decrease.

The basic element of the modified algorithm is the solution of equation g(x) =
f (x)− c = 0 on any subinterval [α,β ] ⊂ [l,u]. Assume that the upper and lower

bounds

a = f (xa)≥ min
x∈[α,β ]

f (x)> b (xa ∈ [α,β ])

are given and c ∈ (a,b). If equation f (x) = c has a solution in [α,β ], then

min
x∈[α,β ]

f (x)≤ c < a,

otherwise

min
x∈[α,β ]

f (x)> c > b.

If f (β ) 6= c, then we compute iterations ξ0 = β and

ξi+1 = ξi −
| f (ξi)− c|

M
(i ≥ 0) . (13)

There are two cases:

(i) There exists x∗ ∈ [α,β ) such that f (x∗) = c.

(ii) There exists a number k such that ξk = α or ξk < α < ξk−1.

In case (i) the sequence {ξk} is monotone decreasing and converges to xc ∈ [α,β ),
which is the nearest zero of f (t) = c to β . It is an essential property that

sign( f (t)− c) = sign( f (β )− c) (t ∈ (xc,β )). (14)

The new upper estimate of the global minimum on [α,β ] is a′ := c, xa′ := xc (b

unchanged). If f (β ) > c, the inclusion interval [α,β ] of the global minimum can

be restricted to the interval [α,xc], because f (t)> c (xc < t ≤ β ). If f (β )< c, the
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inclusion interval remains [α,β ] but the new upper bound a′ = f (β ), xa′ = β , (b

unchanged) is better than c. In such a case we do not solve the equation (and save

computational time).

In case (ii) we have the iterations ξk < ξk−1 < · · ·< ξ1 < ξ0 such that either ξk = α
or ξk < α < ξk−1 holds. If ξk < α , or ξk = α and f (ξk) 6= c, we have no solution

and sign( f (t)− c) =sign( f (β )− c) (t ∈ [α,β )). If f (β ) > c, the new upper

estimate of the global minimum is a′ := aest = min
{

f (α) ,minξi>α f (ξi)
}

, xaest

( f (xaest ) = aest ). In case f (β )< c the best new upper bound is

a := min

{

f (α) ,min
ξi>α

f (ξi)

}

, xa = argmin

{

f (α) ,min
ξi>α

f (ξi)

}

,

if the iterations are computed. If f (β ) < c, we set the new upper bound as a′ =
f (β ), xa′ = β and do not solve the equation.

A few of the possible situations are shown on the next figure.

   

a

b

c

xa

Assume that alg1d is an implementation of algorithm (3) such that

[

α ′,β ′,a′,xa′ ,b
′, i f lag

]

= alg1d (α,β ,a,xa,b;c)

denotes its application to equation f (t) = c with the initial value x0 = β . If f (β ) =
c, then it returns the solution xc = β , immediately. If f (β )> c it computes iteration

(13) and sets the output values according to cases (i) or (ii). If f (β ) < c, then it

returns a′ = f (β ) and xa′ = β . We may also require that

a ≥ a′ = f (xa′)≥ min
x∈[α,β ]

f (x)> b′ ≥ b ∧ xa′ ∈ [α,β ] .

The i f lag variable be defined by

i f lag =







1, if f (β )≥ c∧∃xc ∈ [α,β ] : f (xc) = c

0, if f (β )> c∧∄xc ∈ [α,β ] : f (xc) = c

−1, if f (β )< c
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Hence the output parameters are the following:

(

α ′,β ′,a′,xa′ ,b
′)=







(α,xc,c,xc,b) , i f lag = 1

(α,β ,aest ,xaest ,c) , i f lag = 0

(α,β , f (β ) ,β ,b) , i f lag =−1

Instead of aest = min
{

f (α) ,minξi>α f (ξi)
}

we can take aest = f (β ), f (α) or any

function value at a randomly taken point of [α,β ]. Note that α never changes, a

and xa have no roles in the computations (except for the selection of c), the output

a′ and xa′ are extracted from the computed function values f (ξi).

Next we investigate the case, when we halve the interval [α,β ] and apply alg1d to

both subintervals [α,γ] and [γ,β ] (we assume that γ = (α +β )/2). Consider the

possible situations (for simplicity, we assume that xa ∈ [γ,β ]):

x ∈ [α,γ] x ∈ [γ,β ]
minx∈[α,γ] f (x)> a minx∈[γ,β ] f (x)≥ a

c < minx∈[α,γ] f (x)≤ a c < minx∈[γ,β ] f (x)≤ a

minx∈[α,γ] f (x) = c minx∈[γ,β ] f (x) = c

minx∈[α,γ] f (x)< c minx∈[γ,β ] f (x)< c

There are altogether 16 possible cases. Some possible situations are shown in the

next figure for c = (a+b)/2.

a bg=(a+b)/2

a

b

c=(a+b)/2

a=f(g)

c'

xa

Assume now that (α,β ,a,xa,b) is given (or popped from a stack) and we have an

upper estimate aest (and xaest ) of minx∈[l,u] f (x). Estimate aest is assumed to be the

smallest among the upper estimates contained in the stack.

If aest ≤ b, then we can delete (α,β ,a,xa,b) from the stack. Otherwise b < aest ≤ a
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holds. Then we halve the interval [α,β ] and apply alg1d to both subintervals as

follows.

Algorithm 2

1. Set the estimates aest = f (u) (xaest = u), b, and push (l,u, f (u) ,u,b) onto the

(empty) stack.

2. While stack is nonempty

pop (a,β ,a,xa,b) from the stack

if aest ≤ b delete (a,β ,a,xa,b) from the stack
[

α,γ ′,a′l ,xa′
l
,b′l , i f lag

]

=alg1d

(

α, α+β
2

,a,xa,b;cl

)

if a′l < aest then aest = a
′
l , xaest = xa′

l

push
(

α,γ ′,a′l ,xa′
l
,b′l

)

onto the stack.

[

α+β
2

,β ′,a′r,xa′r ,b
′
r, i f lag

]

=alg1d

(

α+β
2

,β ,a,xa,b;cr

)

if a′r < aest then aest = a
′
r, xaest = xa′r

push
(

α+β
2

,β ′,a′r,xa′r ,b
′
r

)

onto the stack.

endwhile

In the practical implementation of Algorithm 2 we used an additional condition (β −
α < tol and a−b < tol) for dropping a stack element. There are many possibilities

for choosing cl and cr. For simplicity, we selected cl =
(

f
(

α+β
2

)

+b
)

/2 and

cr = ( f (β )+b)/2 in the numerical testing.

Molinaro, Sergeyev [30], Sergeyev [33] and Kvasov, Sergeyev [24] investigated the

following problem. One must check if a point x∗ exists such that

g(x∗) = 0, g(x)> 0, x ∈ [a,x∗)∪ (x∗,b] . (15)

These authors suggested the use of Piyavskii type global minimization algorithms

to solve the problem in case of Lipschitz functions. However a direct application of

algorithms (3)-(4) may also give a satisfactory answer to the problem.

1. Apply algorithm (3) with x0 = b.

2. If a zero ξ of g is found in (a,b), then apply algorithm (4) with y0 = a.

3. If the first zero ζ found by (4) is equal to ξ then the problem is solved. If ζ < ξ ,

the answer is negative.
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4 Numerical experiments

The performance of global Lipschitz optimization clearly depends on the estima-

tion of the unknown Lipschitz constant. Estimates of the Lipschitz constant were

suggested and/or analyzed by Strongin [39], [40] Hansen, Jaumard, Lu [16], Wood,

Zhang [51] and many others (see, e.g. [29], [24]). Preliminary testing indicated that

none of the suggested algorithms performed well, probably due to the local char-

acter of the applied equation solver. Instead we used the following although more

expensive estimate

L ≈ Lest
n = k max

i<n

{ | f (xi +h)− f (xi −h)|
2h

}

+d (h ≈√
εmachine)

with the values K = 8 and d = 1. Here
| f (xi+h)− f (xi−h)|

2h
is a second order estimate of

the first derivative at the point xi, if f is differentiable three times and it is optimal

in the presence of round-off error.

We used the test problem set of Hansen, Jaumard, Lu [18] numbered as 1–20, four

additional functions numbered as 21–24, namely,

f (x) = e−x sin(1/x)
(

x ∈
[

10−5,1
])

,

f (x) = sinx (x ∈ [0,1000]) ,

the Shekel function ([53])

f (x) =−
10

∑
i=1

1

(ki (x−ai))
2 + ci

(x ∈ [0,10])

with parameters

i 1 2 3 4 5 6 7 8 9 10

ai 4 1 8 6 7 9 3 1.5 2 3.6
ci 0.1 0.2 0.1 0.4 0.4 0.6 0.3 0.7 0.5 0.5

and the Griewank function

f (x) = 1+
1

4000
x2 − cosx (x ∈ [−600,600]) .

In addition, we took 22 test problems of Famularo, Sergeyev, Pugliese [10] without

the constraints. This test problems were numbered as 25–46.

All programs were written and tested in Matlab version R2010a (64 bit) on an Intel

Core I5 PC with 64 bit Windows. We measured the achieved precision and the

computational time for three different exit tolerances (10−3, 10−5, 10−7). Algorithm

2 was compared with a Matlab implementation of the GLOBAL method of Csendes

[6], Csendes, Pál, Sendı́n, Banga [7]. The GLOBAL method is a well-established
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and maintained stochastic algorithm for multivariable functions that is based on the

ideas of Boender etal [5]. The GLOBAL program can be downloaded from the web

site

http : //www.inf.u−szeged.hu/˜csendes/index en.html

The following table contains the averages of output errors for different exit or input

tolerances.

Algorithm 2 GLOBAL

1e−3 8.2343e−007 0.0088247

1e−5 3.2244e−008 0.0039257

1e−7 2.8846e−008 0.0020635

The average execution times in [sec] are given in the next table:

Algorithm 2 GLOBAL

1e−3 0.42863 0.0093795

1e−5 2.027 0.010489

1e−7 16.6617 0.020512

It is clear that Algorithm 2 has better precision, while GLOBAL is definitely faster.

The exit tolerance 1e−7 does not give essentially better precision, while the com-

putational time significantly increased in the case of both algorithms.

The following two figures show particular details of the achieved precision and com-

putational time.
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Absolute errors
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The plots are semi-logarithmic. Hence the missing values of the first figure indicate

zero output errors for both algorithms. Considering the obtained precision per CPU

time we obtain the following plot.
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The latter plot indicates that Algorithm 2 has a better precision rate per time unit in

spite of the fact, that GLOBAL is definitely faster. Upon the basis of the presented

numerical testing we conclude that Algorithm 2 might be competitive in univariate

global optimization.
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1 Introduction

Riemannian geometry is concerned with the (higher dimensional theory of) metric

geometry of Euclidean surfaces and in particular the length-minimizing curves on

these surfaces. Sub-Riemannian geometry may be interpreted as a generalization

of Riemannian geometry. The fundamental difference is that for a sub-Riemannian

manifold motion is restricted to certain admissible (or horizontal) directions. Due

to such constraints it may not be possible, in general, to connect any two points by a

(horizontal) curve. Sub-Riemannian geometry has been a full research domain since

the 1980’s; it has motivations and ramifications in several areas of pure and applied

mathematics. Moreover, there is a substantial overlap between sub-Riemannian ge-

ometry ([7, 16]), geometric optimal control ([2, 12, 18]) and nonholonomic mechan-

ics ([5, 8]).
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Among the sub-Riemannian manifolds, the Carnot groups are the most fundamental.

In the words of Montgomery [16] “Carnot groups are to sub-Riemannian geometry

as Euclidean spaces are to Riemannian geometry.” The Heisenberg groups are the

simplest, non-Euclidean Carnot groups. Structures on the Heisenberg groups (and

their generalizations) have been extensively studied in the last few decades (see,

e.g., [4, 9, 14, 15, 19]).

In this paper we shall classify, under isometric Lie group automorphisms, the left-

invariant bracket-generating sub-Riemannian (and Riemannian) structures on the

(2n+1)-dimensional (polarized) Heisenberg group

Hn =





















































1 x1 x2 · · · xn z

0 1 0 0 y1

0 0 1 0 y2

...
. . .

...

0 · · · 1 yn

0 · · · 0 1



















: xi,yi,z ∈ R



































.

Hn is a simply-connected two-step nilpotent Lie group with one-dimensional center;

its Lie algebra

hn =





















































0 x1 x2 · · · xn z

0 0 0 0 y1

0 0 0 0 y2

...
. . .

...

0 · · · 0 yn

0 · · · 0 0



















= zZ +
n

∑
i=1

(xiXi + yiYi) : xi,yi,z ∈ R



































has non-zero commutators [Xi,Yj] = δi jZ. Moreover, any simply-connected two-

step nilpotent Lie group with one-dimensional center is isomorphic to Hn.

Let us fix a sub-Riemannian structure on Hn. A standard computation yields the

automorphism group of Hn, a subgroup of which is a symplectic group. By use

of the automorphisms, we normalize the distributions on Hn. Equivalence class

representatives are then constructed by successively applying automorphisms, that

preserve the normalized distribution, to the metric. (The Riemannian case is treated

similarly.) Central to our argument is Williamson’s theorem, which states that any

positive definite symmetric matrix can be diagonalized, in a certain way, by sym-

plectic matrices. Furthermore, we shall characterize (in coordinate-free form) when

two sub-Riemannian (resp. Riemannian) structures on Hn are equivalent. (This

characterization is based on decomposing hn, as a vector space, into the product of

a symplectic vector space and R.)

To every invariant sub-Riemannian (resp. Riemannian) structure we can naturally

associate an invariant optimal control problem (cf. [18]). Accordingly, a classi-

fication of sub-Riemannian and Riemannian structures may induce a classification

of invariant optimal control problems (or rather, cost-extended systems). In the

last section, we exhibit the corresponding classification of invariant optimal control

problems on Hn.
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1.1 Left-Invariant Sub-Riemannian Structures

By a left-invariant sub-Riemannian manifold, we mean a triplet (G,D ,g), where

G is a (real, finite dimensional) connected Lie group with unit element 1, D is a

smooth left-invariant distribution on G, and g is a left-invariant Riemannian metric

on D . More precisely, D(1) is a linear subspace of the Lie algebra g of G which

is left-translated to the tangent bundle TG via

D(g) = gD(1) for g ∈ G.

The metric g1 is a positive definite symmetric bilinear from on g which is extended

to TG by left translation:

gg(gA,gB) = g1(A,B) for A,B ∈ g, g ∈ G.

Here, by the product gA we mean T1Lg ·A, where Lg : h 7→ gh is a left-translation.

We recover a left-invariant Riemannian manifold if D = TG, i.e., D(1) = g.

Remark. Right-invariant sub-Riemannian structures are defined similarly. Such

structures are isometric to left-invariant ones (via Lie group anti-isomorphisms).

An absolutely continuous curve g(·) : [0,T ] → G is called a horizontal curve if

ġ(t)∈D(g(t)) for almost all t ∈ [0,T ]. We shall assume that D satisfies the bracket

generating condition, i.e., D(1) generates g; this condition is necessary and suffi-

cient for any two points in G to be connected by a horizontal curve. The length of a

horizontal curve g(·) is given by

ℓ(g(·)) =
∫ T

0

√

g(ġ(t), ġ(t))dt.

A sub-Riemannian manifold (G,D ,g) is endowed with a natural metric space struc-

ture, namely the Carnot-Carathéodory distance:

d(g,h) = inf{ℓ(g(·)) : g(·) is a horizontal curve joining g and h}.

A horizontal curve g(·) that realizes the Carnot-Carathéodory distance between two

points is called a minimising geodesic; these geodesics are fundamental objects of

interest in the investigation of sub-Riemannian manifolds. Minimising geodesics

exist between any two points if and only if the metric space (G,d) associated with

Carnot-Carathéodory distance is complete ([16]).

By an isometry between two left-invariant sub-Riemannian (or Riemannian) mani-

folds (G,D ,g) and (G′,D ′,g′) we mean a diffeomorphism φ :G→G′ such that

φ∗D = D ′ and g = φ ∗g′.

Any such isometry preserves the Carnot-Carathéodory distance in the sense that

d(g,h) = d′(φ(g),φ(h)). Isometries establish a one-to-one correspondence between

the minimizing geodesics of (G,D ,g) and (G′,D ′,g′).
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2 Automorphisms

The automorphisms of hn are exactly those linear isomorphisms that preserve the

center z of hn and for which the induced map on hn/z preserves an appropriate

symplectic structure (cf. [11]). More precisely, let Ω be the skew-symmetric bilin-

ear form on hn specified by

[A,B] = Ω(A,B)Z, A,B ∈ hn.

Note that Ω(Xi,Yj) = δi j and that Ω is zero on the remaining pairs of basis vectors.

Accordingly, we get the following characterization of automorphisms.

Lemma 1. A linear isomorphism ψ : hn → hn is a Lie algebra automorphism if and

only if

ψ ·Z = cZ and Ω(ψ ·A,ψ ·B) = cΩ(A,B)

for some c 6= 0.

Proof. Suppose ψ is an automorphism. It preserves the center of hn and therefore

ψ ·Z = cZ for some c 6= 0. For A,B ∈ hn, we have

Ω(ψ ·A,ψ ·B)Z = ψ ·Ω(A,B)Z and so Ω(ψ ·A,ψ ·B) = cΩ(A,B).

Conversely, suppose ψ is a linear isomorphism such that the given conditions hold.

For A,B ∈ hn, we have

[ψ ·A,ψ ·B] = Ω(ψ ·A,ψ ·B)Z = cΩ(A,B)Z = ψ ·Ω(A,B)Z = ψ · [A,B].

Next, we give a matrix representation for the group of automorphisms. We shall

make use of the ordered basis

(Z,X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn).

The bilinear form Ω takes the form

Ω =

[

0 0

0 J

]

, where J =

[

0 In

−In 0

]

.

We denote by ρ the involution

ρ =





−1 0 0

0 0 In

0 In 0





which is clearly an automorphism.

Proposition 1 (cf. [17]). The group of automorphisms Aut(hn) is given by

{[

r2 v

0 rg

]

, ρ

[

r2 v

0 rg

]

: r > 0, v ∈ R
2n, g ∈ Sp(n,R)

}
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where

Sp(n,R) =
{

g ∈ R
2n×2n : g⊤Jg = J

}

is the n(2n+1)-dimensional symplectic group over R.

Proof. It is easy to show (by use of the lemma) that the given maps are automor-

phisms. Suppose ψ is an automorphism. Then ψ · Z = cZ for some c 6= 0. We

assume c > 0. (If c < 0, then ρψ is of the required form.) Thus

ψ =

[

r2 v

0 M

]

for some r > 0, v ∈ R
2n and M ∈ GL(2n,R). It then follows that M⊤JM = r2J.

For g = 1
r
M, we get g⊤ J g = J. Thus

ψ =

[

r2 v

0 rg

]

for some r > 0, v ∈ R
2n and g ∈ Sp(n,R).

Remark. Each automorphism decomposes as a (semidirect) product of

• a translation or inner automorphism

[

1 v

0 I2n

]

, v ∈ R
2n

• a dilation

[

r2 0

0 rI2n

]

, r > 0

• a symplectic transformation

[

1 0

0 g

]

, g ∈ Sp(n,R)

• and possibly the involution ρ .

Indeed, we have the following decomposition as semidirect products:

Aut(hn)∼= R
2n
⋊R⋊Sp(n,R)⋊{1,ρ}.

3 Classification

Diffeomorphisms that are compatible with the Lie group structure (in the sense that

they preserve left-invariant vector fields) are automorphisms. For the purposes of

this paper, we consider only those isometries that are also Lie group automorphisms.

We shall refer to such isometries as L-isometries. For a given left-invariant sub-

Riemannian manifold (G,D ,g) on a Carnot group G, it turns out that the group of

isometries φ : (G,D ,g)→ (G,D ,g) decomposes as a semidirect product of the left

translations (normal) and the L-isometries ([14]). We say that two left-invariant

sub-Riemannian (resp. Riemannian) structures are L-isometric if there exists a

L-isometry between them. We classify, under this equivalence relation, the left-

invariant sub-Riemannian and Riemannian manifolds on Hn. By left invariance, we

have the following simple characterization for L-isometries.
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Proposition 2. Suppose G and G′ are simply connected. (G,D ,g) and (G′,D ′,g′)
are L-isometric if and only if there exists a Lie algebra isomorphism ψ : g → g′

such that ψ ·D(1) = D ′(1) and g1(A,B) = g′1(ψ ·A,ψ ·B).
We consider the sub-Riemannian case first; we start by normalizing the distribu-

tion.

Lemma 2. For any (bracket-generating) left-invariant distribution D there exists

an inner automorphism φ ∈ Aut(Hn) such that φ∗D = D̄ , where D̄ is the left-

invariant distribution specified by D̄(1) = span(X1, . . . ,Xn,Y1, . . . ,Yn).

Proof. It suffices to show that there exists a inner automorphism ψ ∈ Aut(hn)
such that ψ ·D(1) = D̄(1). For any subspace s⊆ hn, we have Lie(s)≤ span(s,Z).
Therefore, if Lie(s) = hn and s 6= hn, then s has codimension one and takes the

form

s= span(X1 + v1Z, . . . ,Xn + vnZ,Y1 + vn+1Z, . . . ,Yn + v2nZ).

Accordingly,

ψ =

[

1 −v

0 I2n

]

, v =
[

v1 v2 · · · v2n

]

is an inner automorphism such that ψ · s= span(X1, . . . ,Xn,Y1, . . . ,Yn).

We now proceed to normalise the sub-Riemannian metric and so obtain a classifica-

tion of the sub-Riemannian structures. We shall make use of Williamson’s theorem,

which states that positive definite matrices are diagonalizable by symplectic ma-

trices (see [10], Chapter 8.3: “Symplectic Spectrum and Williamson’s Theorem”).

More precisely,

Lemma 3. If M is a positive definite 2n×2n matrix, then there exists S ∈ Sp(n,R)
such that

S⊤ M S =

[

Λ 0

0 Λ

]

, Λ = diag(λ1,λ2, . . . ,λn)

where λ1 ≥ λ2 ≥ ·· · ≥ λn > 0.

The array Spec(M) = (λ1, . . . ,λn) is called the symplectic spectrum of M. (The

matrix JM has eigenvalues values ±iλ j.) Spec(M) is a symplectic invariant, i.e.,

Spec(S⊤ M S) = Spec(M) for S ∈ Sp(n,R).

Theorem 1. Any left-invariant sub-Riemannian structure (D ,g) on Hn is L-iso-

metric to exactly one of the structures (D̄ , ḡλ ) specified by











D̄(1) = span(X1, . . . ,Xn,Y1, . . . ,Yn)

ḡλ
1 =

[

Λ 0

0 Λ

]

, Λ = diag(λ1,λ2, . . . ,λn).
(1)

Here 1 = λ1 ≥ λ2 ≥ ·· · ≥ λn > 0 parametrize a family of (non-equivalent) class

representatives.
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Proof. By lemma 2, (D ,g) is L-isometric to (D̄ ,g′) for some left-invariant metric

g′. The automorphisms
[

r2 0

0 rI2n

]

, r > 0 and

[

1 0

0 g

]

, g ∈ Sp(n,R)

preserve the subspace D̄(1), in the sense that ψ ·D̄(1) = D̄(1). Let Q be the matrix

of the inner product g′1 on span(X1, . . . ,Xn,Y1, . . . ,Yn). There exists g ∈ Sp(n,R)
such that

g⊤ Qg =

[

Λ 0

0 Λ

]

where Λ = diag(λ1, . . . ,λn) and (λ1, . . . ,λn) = Spec(Q). Hence

( 1√
λ1

g)⊤ Q( 1√
λ1

g) =

[

Λ′ 0

0 Λ′

]

where Λ′ = diag(1, λ2
λ1
, . . . , λn

λ1
). Therefore

ψ =

[

1 0

0 g

]

[

1
λ1

0

0 1√
λ1

I2n

]

is an automorphism such that g′′1(A,B) = g′1(ψ · A,ψ · B), where g′′1 has matrix
[

Λ′ 0

0 Λ′

]

. Consequently (relabelling λi

λ1
as λi), the result follows by proposition 2.

It remains to be shown that no two class representatives are equivalent. Suppose

(D̄ , ḡλ ) and (D̄ , ḡλ ′
) are L-isometric, i.e., there exists an automorphism

ψ =

[

r2 v

0 rg

]

or ψ = ρ

[

r2 v

0 rg

]

such that ψ · D̄(1) = D̄(1) and ḡλ
1 (A,B) = ḡλ ′

1 (ψ ·A,ψ ·B). The former condition

implies v = 0 and so the latter implies Λ = r2g⊤Λ′g, where Λ = diag(λ1, . . . ,λn)
and Λ′ = diag(λ ′

1, . . . ,λ
′
n). Thus, by symplectic invariance, we have Spec(Λ) =

r2 Spec(Λ′). However for both Spec(Λ) and Spec(Λ′), the dominant value is one;

so r = 1. Consequently Λ = Λ′. That is to say, (D̄ , ḡλ ) and (D̄ , ḡλ ′
) are L-

isometric only if λ = λ ′.

Corollary. Any left-invariant sub-Riemannian structure (D ,g) on Hn is L-isometric

to a structure with

(ν1X1, ν2X2, . . . , νnXn, ν1Y1, ν2Y2, . . . , νnYn)

as orthonormal basis. Here 1 = ν1 ≤ ν2 ≤ . . . ≤ νn parametrize a family of (non-

equivalent) class representatives.

We have the following coordinate-free version of Williamson’s theorem. Let µ
and µ ′ be scalar products on a symplectic vector space (R2n,ω). The symplectic

spectrum of µ (resp. µ ′) is the set of moduli of eigenvalues of the unique linear

transformation κ defined by ω(x,κ · y) = µ(x,y). A symplectic transformation is

a linear isomorphism σ such that ω(σ ·x,σ ·y) = ω(x,y).
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Lemma 4. There exists a symplectic transformation σ such that

µ(x,y) = µ ′(σ ·x,σ ·y)

if and only if the symplectic spectra of µ and µ ′ are identical.

Proof. There exists a basis for R
2n such that ω has matrix J. (A linear map σ is

then a symplectic transformation if and only if its matrix is a symplectic matrix.) Let

K and M be the matrices of κ and µ , respectively. We have K =−JM. Hence the

symplectic spectrum of µ is the same as the symplectic spectrum of M (only, every

value for M is repeated twice for µ). If µ(x,y) = µ ′(σ ·x,σ ·y), then M = S⊤M′S
(here S ∈ Sp(n,R) is the matrix of σ ) and so the symplectic spectra of M and M′

(resp. µ and µ ′ ) match. Conversely, if µ and µ ′ have identical symplectic spectra,

then there exists symplectic matrices S,S′ ∈ Sp(n,R) such that S⊤MS = S′⊤M′S′.
Consequently, M = (S′S−1)⊤M′(S′S−1) and so µ(x,y) = µ ′(σ · x,σ · y) where σ
is the unique symplectic transformation with matrix S′S−1.

The Lie algebra hn (as a vector space) can be decomposed as the direct sum of a

symplectic vector space (R2n,ω) and R; the Lie bracket of two elements is given

by

[(v,z),(v,z)] = (0,ω(v,v′)) for (v,z),(v′,z) ∈ R
2n ⊕R.

By lemma 2, any sub-Riemannian structure (D ,g) is L-isometric to one for which

D(1) = R
2n. Hence the metric g1 is a scalar product on R

2n. The normalized

symplectic spectrum of a scalar product is the symplectic spectrum normalized by

the dominant value: {1, λ2
λ1
, λ3

λ1
, . . . , λn

λ1
}. Accordingly, by the foregoing considera-

tions, we get the following coordinate-free characterization of the sub-Riemannian

structures.

Theorem 2. Suppose (D ,g) and (D ′,g′) are two left-invariant sub-Riemannian

structures on Hn such that D(1) = D ′(1) = R
2n. Then (D ,g) and (D ′,g′) are L-

isometric if and only if the normalized symplectic spectra of g1 and g′1 are identical.

Next, we consider the Riemannian case; the classification result is similar to the

sub-Riemannian case.

Theorem 3. Any left-invariant Riemannian structure g on Hn is L-isometric to

exactly one of the structures

ḡλ
1 =





1 0 0

0 Λ 0

0 0 Λ



 , Λ = diag(λ1,λ2, . . . ,λn). (2)

Here λ1 ≥ λ2 ≥ ·· · ≥ λn > 0 parametrize a family of (non-equivalent) class repre-

sentatives.

Proof. Let R be the matrix of the inner product g1 on hn. We have

R =

[

1
r4 v

v⊤ Q

]
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for some r > 0, v ∈ R
2n and Q ∈ R

2n×2n. Hence we get

ψ =

[

r2 −r5v

0 rI2n

]

∈ Aut(hn) and ψ⊤ Rψ =

[

1 0

0 Q′

]

for some positive definite matrix Q′. Accordingly, there exists an automorphism

ψ ′ =

[

1 0

0 g

]

, g ∈ Sp(n,R) such that

(ψ ◦ψ ′)⊤ R(ψ ◦ψ ′) =





1 0 0

0 Λ 0

0 0 Λ





where Λ = diag(λ1, . . . ,λn) and (λ1, . . . ,λn) = Spec(Q′). Consequently, the result

follows by proposition 2. As in the sub-Riemannian case, it is a simple matter to

show that none of these structures are L-isometric.

Corollary. Any left-invariant Riemannian structure g on Hn is L-isometric to a

structure with

(Z, ν1X1, ν2X2, . . . , νnXn, ν1Y1, ν2Y2, . . . , νnYn)

as orthonormal basis. Here 0 < ν1 ≤ ν2 ≤ ·· · ≤ νn parametrize a family of (non-

equivalent) class representatives.

Any Riemannian structure on Hn is L-isometric to one for which the scalar product

g1 on (R2n ⊕R) decomposes as

g1((v,z),(v
′,z′)) = µg(v,v

′)+ zz′

where µg is a scalar product on R
2n. Accordingly, we have the following coordinate-

free characterization the Riemannian structures.

Theorem 4. Suppose g and g′ define two left-invariant Riemannian structures on

Hn such that

g1((v,z),(v
′,z′)) = µg(v,v

′)+ zz′ and g1((v,z),(v
′,z′)) = µg′(v,v

′)+ zz′.

Then g and g′ are L-isometric if and only if the symplectic spectra of µg and µg′

are identical.

4 Invariant Optimal Control

Invariant control systems on Lie groups were first considered in 1972 by Brockett

[6] and by Jurdjevic and Sussmann [13]. A left-invariant control affine system on a

(real, finite-dimensional) Lie group G is a collection of left-invariant vector fields

Ξ(·,u) on G, affinely parametrized by controls. In classical notation, a drift-free

system Σ = (G,Ξ) is written as

ġ = gΞ(1,u) = g(u1B1 + · · ·+uℓBℓ) , g ∈ G, u ∈ R
ℓ.
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Here the parametrization map Ξ(1, ·) : Rℓ → g is an injective affine map (i.e.,

B1, . . . ,Bℓ are linearly independent). The “product” gΞ(1,u) is given by gΞ(1,u)=
T1Lg ·Ξ(1,u), where Lg : G→ G, h 7→ gh is the left translation by g. The dynam-

ics Ξ : G×R
ℓ → TG are invariant under left translations, i.e., Ξ(g,u) = gΞ(1,u).

An admissible control is a piecewise continuous map u(·) : [0,T ]→ R
ℓ. A trajec-

tory corresponding to an admissible control u(·) is a absolutely continuous curve

g(·) : [0,T ]→G such that ġ(t) = Ξ(g(t),u(t)) almost everywhere. A system is said

to be controllable if any two states can be joined by a trajectory. For more details

about invariant control systems see, e.g., [13, 18, 2, 12].

An invariant optimal control problem is defined by the specification of (i) a left-

invariant control system, (ii) a positive definite quadratic cost function L : Rℓ →
R and (iii) boundary data, consisting of an initial state g0 ∈ G, a terminal state

g1 ∈ G and a (fixed) terminal time T > 0. Explicitly, we wish to minimize the

functional J =
∫ T

0 L(u(t))dt over trajectory-control pairs, subject to the boundary

data g(0) = g0, g(T ) = g1. We associate to such a problem, the cost-extended

system (Σ,L) consisting of a controllable system Σ and a cost function L. Two

cost-extended systems (Σ = (G,Ξ),L) and (Σ′ = (G′,Ξ′),L′) are cost-equivalent

([3]) if there exist a Lie group isomorphism φ : G→ G′ and a linear isomorphism

ϕ : Rℓ → R
ℓ such that

Tgφ ·Ξ(g,u) = Ξ′(φ(g),ϕ(u)) and rL = L′ ◦ϕ

for some r > 0. The automorphism φ establishes a one-to-one correspondence be-

tween the optimal trajectories (or corresponding minimising geodesics) of (Σ,L)
and (Σ′,L′). By left invariance, we have that (Σ,L) and (Σ′,L′) are cost-equivalent

if and only if there exist a Lie group isomorphism φ : G→ G′ and an affine isomor-

phism ϕ : Rℓ →R
ℓ′ such that T1φ ·Ξ(1,u) = Ξ′(1′,ϕ(u)) and L′ ◦ϕ = rL for some

r > 0.

Analogous to theorems 1 and 3, we get the following classification of cost-extended

systems on Hn.

Theorem 5. Any cost-extended system on Hn is cost-equivalent to exactly one of

the following cost-extended systems:

(Σ2n,L2n
λ ) :



















Ξ2n(1,u) =
n

∑
i=1

(uXi
Xi +uYi

Yi)

L2n
λ (u) =

n

∑
i=1

λi

(

u2
Xi
+u2

Yi

)

(Σ2n+1,L2n+1
λ

) :



















Ξ2n+1(1,u) = uZZ +
n

∑
i=1

(uXi
Xi +uYi

Yi)

L2n+1
λ

(u) = u2
Z +

n

∑
i=1

λi

(

u2
Xi
+u2

Yi

)

.

Here 1 = λ1 ≥ λ2 ≥ ·· · ≥ λn > 0 parametrize families of (non-equivalent) class

representatives.
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Remark. The associated optimal control problems are:































ġ = g
n

∑
i=1

(uXi
Xi +uYi

Yi) , g ∈ Hn,(uX1
, . . . ,uYn) ∈ R

2n

g(0) = g0 g(T ) = g1

∫ T

0

n

∑
i=1

λi

(

uXi
(t)2 +uYi

(t)2
)

dt −→ min































ġ = g
(

uZZ +
n

∑
i=1

(uXi
Xi +uYi

Yi)
)

, g ∈ Hn,(uZ ,uX1
, . . . ,uYn) ∈ R

2n+1

g(0) = g0 g(T ) = g1

∫ T

0

(

uZ(t)
2 +

n

∑
i=1

λi

(

uXi
(t)2 +uYi

(t)2
)

)

dt −→ min .

Solutions of these optimal control problems are minimising geodesics for the corre-

sponding sub-Riemannian (resp. Riemannian) structures.

Conclusions

We have obtained an explicit classification of the sub-Riemannian (and Rieman-

nian) structures on Hn; an analogous classification of cost-extended control sys-

tems was also exhibited. In particular, we found that the Riemannian structures

on Hn can be parametrized (up to an L-isometry) by n parameters, whereas the

sub-Riemannian structures can be parametrized by n−1 parameters. Agrachev and

Barilari [1] classified the invariant sub-Riemannian structures on three-dimensional

Lie groups; in particular, they show that all left-invariant sub-Riemannian structures

on H1 are locally isometric. We have shown that all left-invariant sub-Riemannian

structures on H1 are in fact (globally) isometric. Topics for future research include

the calculation of the isometry groups and geodesics as well as extensions to Finsler

structures.
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1 Introduction

Consider the integral

Vq(x) =
2ex2

Γ(q+1)

∫

∞

x
e−t2

(t2 − x2)qdt,

where q >−1 and x > 0. This integral can be regarded as the one dimensional reg-

ularization of the Coulomb potential, which has applications in the study of atoms

in magnetic fields, see [10] for more details. Recently, Ruskai and Werner [10],

and later Alzer [1] studied intensively the properties of this integral. In [1, 10] the

authors derived a number of monotonicity and convexity properties for the function

Vq, as well as many functional inequalities.
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It is important to mention that Vq in particular when q = 0 becomes

m(x) =
1√
2

V0

(

x√
2

)

= ex2/2
∫

∞

x
e−t2/2dt,

which is the so-called Mills ratio of the standard normal distribution, and appears

frequently in economics and statistics. See for example [3] and the references

therein for more details on this function.

The purpose of the present study is to make a contribution to the subject and to de-

duce some new monotonicity and convexity properties for the function Vq, as well

as some new functional inequalities. The paper is organized as follows. In section

2 we present the convexity results concerning the function Vq together with some

Turán type inequalities. Note that the convexity results are presented in three equiv-

alent formulations. Section 3 is devoted for concluding remarks. In this section we

point out that Vq is in fact a particular case of the Tricomi confluent hypergeometric

function, and we deduce some other functional inequalities for Vq. In this section

we also point out that the Turán type inequalities obtained in section 2 are particular

cases of the recent results obtained by Baricz and Ismail [5] for Tricomi confluent

hypergeometric functions, however, the proofs are different. Finally, in section 3 we

use the Turán type inequalities for the function Vq to derive some new tight upper

bounds for the Mills ratio m of the standard normal distribution.

2 Functional inequalities for the function Vq

The first main result of this paper is the following theorem. Parts a and b of this

theorem are generalizations of parts b and d of [3, Theorem 2.5].

Theorem 1. The next assertions are true:

a. The function x 7→ xV ′
q(x)/Vq(x) is strictly decreasing on (0,∞) for q >−1.

b. The function x 7→ x2V ′
q(x) is strictly decreasing on (0,∞) for q >−1.

c. The function x 7→ x−1V ′
q(x) is strictly increasing on (0,∞) for q ≥ 0.

d. The function x 7→V ′
q(x)/(xVq(x)) is strictly increasing on (0,∞) for q ≥ 0.

Proof. a. Observe that Vq(x) can be rewritten as [1, Lemma 1]

Vq(x) =
xq+1/2

Γ(q+1)

∫

∞

0
e−xs sq

(x+ s)1/2
ds.

By using the change of variable s = ux we obtain

Vq(x) =
x2q+1

Γ(q+1)

∫

∞

0
e−x2u uq

(1+u)1/2
du, (2.1)

and differentiating with respect to x both sides of this relation we get

V ′
q(x) =

(2q+1)x2q

Γ(q+1)

∫

∞

0
e−x2u uq

(1+u)1/2
du− 2x2q+2

Γ(q+1)

∫

∞

0
e−x2u uq+1

(1+u)1/2
du.
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Thus, for q >−1 and x > 0 we obtain the differentiation formula

xV ′
q(x) = (2q+1)Vq(x)−2(q+1)Vq+1(x), (2.2)

which in turn implies that

xV ′
q(x)

Vq(x)
= 2q+1−2(q+1)

Vq+1(x)

Vq(x)
.

Now, recall that [1, Theorem 7] if p > q >−1, then the function x 7→Vp(x)/Vq(x) is

strictly increasing on (0,∞). In particular, the function x 7→Vq+1(x)/Vq(x) is strictly

increasing on (0,∞) for q > −1, and by using the above relation we obtain that

indeed the function x 7→ xV ′
q(x)/Vq(x) is strictly decreasing on (0,∞) for q >−1.

b. According to [1, p. 429] we have

V ′
q(x) =− x

Γ(q+1)

∫

∞

0
e−t tq

(x2 + t)3/2
dt. (2.3)

Observe that for q >−1 and x > 0 we have

[

−Γ(q+1)xV ′
q(x)

]′
=

[

x2
∫

∞

0
e−t tq

(x2 + t)3/2
dt

]′

=
∫

∞

0
e−t xtq

(x2 + t)3/2

(

2− 3x2

x2 + t

)

dt

>−x

∫

∞

0
e−t tq

(x2 + t)3/2
dt = Γ(q+1)V ′

q(x).

In other words, we proved that for x > 0 and q >−1 the differential inequality

−(xV ′
q(x))

′ >V ′
q(x),

that is,

xV ′′
q (x)+2V ′

q(x)< 0

is valid. Consequently

(x2V ′
q(x))

′ = x(2V ′
q(x)+ xV ′′

q (x))< 0

for all x > 0 and q > −1, which means that indeed the function x 7→ x2V ′
q(x) is

strictly decreasing on (0,∞) for q >−1.

c. Recall the following differentiation formula [10, p. 439]

V ′
q(x) = 2x(Vq(x)−Vq−1(x)), (2.4)

which holds for q ≥ 0 and x > 0. Here by convention V−1(x) = 1/x, see [10, p.

435]. On the other hand, it is known [1, Theorem 7] that if p > q > −1, then

x 7→Vp(x)−Vq(x) is strictly increasing on (0,∞). Consequently,

x 7→ x−1V ′
q(x) = 2(Vq(x)−Vq−1(x))
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is strictly increasing on (0,∞) for all q ≥ 0.

d. Using again the fact that [1, Theorem 7] if p > q > −1, then the function x 7→
Vp(x)/Vq(x) is strictly increasing on (0,∞), we get that

x 7→
V ′

q(x)

xVq(x)
= 2

(

1− Vq−1(x)

Vq(x)

)

is strictly increasing on (0,∞) for all q ≥ 0.

Now, we recall the definition of convex functions with respect to Hölder means or

power means. For a ∈ R, α ∈ [0,1] and x,y > 0, the power mean Ha of order a is

defined by

Ha(x,y) =

{

(αxa +(1−α)ya)1/a , a 6= 0

xα y1−α , a = 0
.

We consider the continuous function ϕ : I ⊂ (0,∞) → (0,∞), and let Ha(x,y) and

Hb(x,y) be the power means of order a and b of x > 0 and y > 0. For a,b ∈ R we

say that ϕ is HaHb-convex or just simply (a,b)-convex, if for a,b ∈ R and for all

x,y ∈ I we have

ϕ(Ha(x,y))≤ Hb(ϕ(x),ϕ(y)).

If the above inequality is reversed, then we say that ϕ is HaHb-concave or simply

(a,b)-concave. It is worth to note that (1,1)-convexity means the usual convexity,

(1,0) is the logarithmic convexity and (0,0)-convexity is the geometrical (or multi-

plicative) convexity. Moreover, we mention that if the function f is differentiable,

then (see [4, Lemma 3]) it is (a,b)-convex (concave) if and only if

x 7→ x1−aϕ ′(x)[ϕ(x)]b−1

is increasing (decreasing).

For the sake of completeness we recall here also the definitions of log-convexity and

geometrical convexity. A function f : (0,∞)→ (0,∞) is said to be logarithmically

convex, or simply log-convex, if its natural logarithm ln f is convex, that is, for all

x,y > 0 and λ ∈ [0,1] we have

f (λx+(1−λ )y)≤ [ f (x)]λ [ f (y)]1−λ .

A similar characterization of log-concave functions also holds. By definition, a

function g : (0,∞)→ (0,∞) is said to be geometrically (or multiplicatively) convex

if it is convex with respect to the geometric mean, that is, if for all x,y > 0 and all

λ ∈ [0,1] the inequality

g(xλ y1−λ )≤ [g(x)]λ [g(y)]1−λ

holds. The function g is called geometrically concave if the above inequality is

reversed. Observe that, actually the geometrical convexity of a function g means that

the function lng is a convex function of lnx in the usual sense. We also note that the

differentiable function f is log-convex (log-concave) if and only if x 7→ f ′(x)/ f (x) is
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increasing (decreasing), while the differentiable function g is geometrically convex

(concave) if and only if the function x 7→ xg′(x)/g(x) is increasing (decreasing).

The next result is a reformulation of Theorem 1 in terms of power means.

Theorem 2. The next assertions are true:

a. Vq is strictly (0,0)-concave on (0,∞) for q >−1.

b. Vq is strictly (−1,1)-concave on (0,∞) for q >−1.

c. Vq is strictly (2,1)-convex on (0,∞) for q ≥ 0.

d. Vq is strictly (2,0)-convex on (0,∞) for q ≥ 0.

In particular, for all q ≥ 0 and x,y > 0 the next inequalities

Vq

(
√

x2 + y2

2

)

<
√

Vq(x)Vq(y)<Vq(
√

xy) (2.5)

Vq(x)+Vq(y)

2
<Vq

(

2xy

x+ y

)

(2.6)

are valid. Moreover, the second inequality in (2.5) is valid for all q >−1, as well as

the inequality (2.6). In each of the above inequalities we have equality if and only if

x = y.

Now, we extend some of the results of the above theorem to (a,b)-convexity with

respect to power means. We note that in the proof of the next theorem we used the

corresponding results of Theorem 1. Moreover, it is easy to see that parts a, b, c and

d of Theorem 3 in particular reduce to the corresponding parts of Theorem 1. Thus,

in fact the corresponding parts of Theorem 1 and 3 are equivalent.

Theorem 3. The following assertions are true:

a. Vq is strictly (a,b)-concave on (0,∞) for a,b ≤ 0 and q >−1.

b. Vq is strictly (a,b)-concave on (0,∞) for b ≤ 1 and q >−1 ≥ a.

c. Vq is strictly (a,b)-convex on (0,∞) for a ≥ 2, b ≥ 1 and q ≥ 0.

d. Vq is strictly (a,b)-convex on (0,∞) for a ≥ 2, b ≥ 0 and q ≥ 0.

e. Vq is strictly (a,b)-concave on (0,∞) for a ≤ 1, b ≤−1 and q ≥ 0.

Proof. a. We consider the functions u1,v1,w1 : (0,∞)→ R, which are defined by

u1(x) =
xV ′

q(x)

Vq(x)
, v1(x) = x−a, w1(x) =V b

q (x).

For a,b ≤ 0 and q > −1 the functions v1 and w1 are increasing on (0,∞), and by

using part a of Theorem 1, we obtain that the function

x 7→ Mq(x) = u1(x)v1(x)w1(x) = x1−aV ′
q(x)V

b−1
q (x)
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is strictly decreasing on (0,∞). Here we used that u1(x)< 0 for all x> 0 and q>−1.
According to [4, Lemma 3] we obtain that indeed the function Vq is strictly (a,b)-
concave on (0,∞) for a,b ≤ 0 and q >−1.

b. Similarly, if we consider the functions u2,v2,w2 : (0,∞)→ R, defined by

u2(x) = x−a−1, v2(x) = x2V ′
q(x), w2(x) =V b−1

q (x),

then for a ≤−1 < q and b ≤ 1 the function

x 7→ Mq(x) = u2(x)v2(x)w2(x) = x1−aV ′
q(x)V

b−1
q (x)

is strictly decreasing on (0,∞). Here we used part b of Theorem 1.

c. Analogously, if we consider the functions u3,v3,w3 : (0,∞)→ R, defined by

u3(x) = x2−a, v3(x) = x−1V ′
q(x), w3(x) =V b−1

q (x),

then for a ≥ 2, b ≥ 1 and q ≥ 0 the function

x 7→ Mq(x) = u3(x)v3(x)w3(x) = x1−aV ′
q(x)V

b−1
q (x)

is strictly increasing on (0,∞). Here we used part c of Theorem 1.

d. If we consider the functions u4,v4,w4 : (0,∞)→ R, defined by

u4(x) = x2−a, v4(x) = x−1V ′
q(x)V

−1
q (x), w4(x) =V b

q (x),

then for a ≥ 2, b ≤ 1, q ≥ 0, the function

x 7→ Mq(x) = u4(x)v4(x)w4(x) = x1−aV ′
q(x)V

b−1
q (x)

is strictly increasing on (0,∞). Here we used part d of Theorem 1.

e. If we consider the functions u4,v4,w4 : (0,∞)→ R, defined by

u5(x) = x1−a, v5(x) =V ′
q(x)V

−2
q (x), w5(x) =V b+1

q (x),

then for a ≤ 1, b ≤−1, q ≥ 0, the function

x 7→ Mq(x) = u5(x)v5(x)w5(x) = x1−aV ′
q(x)V

b−1
q (x)

is strictly decreasing on (0,∞). Here we used the fact that for q ≥ 0 the function

1/Vq is strictly convex (see [1, Theorem 2]) on (0,∞), which is equivalent to the

fact that Vq is strictly (1,−1)-concave on (0,∞), or to that the function v5 is strictly

decreasing on (0,∞).

The following theorem presents some Turán type inequalities for the function Vq.

These kind of inequalities are named after the Hungarian mathematician Paul Turán

who proved a similar inequality for Legendre polynomials. For more details on

Turán type inequalities we refer to the papers [2, 5] and to the references therein.
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Theorem 4. For x > 0 the function q 7→ Γ(q+ 1)Vq(x) is strictly log-convex on

(−1,∞), and if q >−1/2 and x > 0, then the next Turán type inequalities hold

(q+2)(2q+1)

(q+1)(2q+3)
Vq(x)Vq+2(x)<V 2

q+1(x)<
q+2

q+1
Vq(x)Vq+2(x). (2.7)

Moreover, the right-hand side of (2.7) is valid for q >−1 and x > 0. The left-hand

side of (2.7) is sharp as x tends to 0.

Proof. We use the notation f (q) = Γ(q+1)Vq(x). Since [1, p. 426]

Vq(x) =
1

Γ(q+1)

∫

∞

0
e−t tq

(x2 + t)1/2
dt

it follows that

f (q) =
∫

∞

0
e−t tq

(x2 + t)1/2
dt.

By using the Hölder-Rogers inequality for integrals we obtain that for all q1,q2 >
−1, q1 6= q2, α ∈ (0,1) and x > 0 we have

f (αq1 +(1−α)q2) =
∫

∞

0
e−t tαq1+(1−α)q2

(x2 + t)1/2
dt

=
∫

∞

0

(

e−t tq1

(x2 + t)1/2

)α (

e−t tq2

(x2 + t)1/2

)1−α

dt

<

(

∫

∞

0
e−t tq1

(x2 + t)1/2
dt

)α (∫ ∞

0
e−t tq2

(x2 + t)1/2
dt

)1−α

= ( f (q1))
α( f (q2))

1−α ,

that is, the function f is strictly log-convex on (−1,∞) for x > 0. Now, choosing

α = 1/2, q1 = q and q2 = q+ 2 in the above inequality we obtain the Turán type

inequality

f 2(q+1)< f (q) f (q+2)

which is equivalent to the inequality

V 2
q+1(x)<

Γ(q+3)Γ(q+1)

Γ2(q+2)
Vq(x)Vq+2(x),

valid for q >−1 and x > 0. After simplifications we get the right-hand side of (2.7).

Now, we focus on the left-hand side of (2.7). First observe that from (2.3) it follows

that V ′
q(x)< 0 for all x > 0 and q >−1. In view of the differentiation formula (2.2)

this implies that for x > 0 and q >−1 we have

(2q+1)Vq(x)< 2(q+1)Vq+1(x). (2.8)

On the other hand, recall that the function x 7→ Vq+1(x)/Vq(x) is strictly increasing

on (0,∞) for q >−1, that is, the inequality

(

Vq+1(x)/Vq(x)
)′
> 0
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is valid for x > 0 and q>−1. By using (2.2) it can be shown that the above assertion

is equivalent to the Turán type inequality

(q+1)V 2
q+1(x)− (q+2)Vq(x)Vq+2(x)>−Vq(x)Vq+1(x), (2.9)

where x > 0 and q > −1. Combining (2.8) with (2.9) for q > −1/2 and x > 0 we

have

(q+1)V 2
q+1(x)− (q+2)Vq(x)Vq+2(x)>−2(q+1)

2q+1
V 2

q+1(x),

which is equivalent to the left-hand side of (2.7).

Finally, since

Vq(0) =
Γ(q+1/2)

Γ(q+1)
,

it follows that
V 2

q+1(0)

Vq(0)Vq+2(0)
=

(q+2)(2q+1)

(q+1)(2q+3)
,

and thus indeed the left-hand side of (2.7) is sharp as x tends to 0.

3 Concluding remarks and further results

3.1 Connection with Tricomi confluent hypergeometric functions
and Turán type inequalities

First consider the Tricomi confluent hypergeometric function, called also sometimes

as the confluent hypergeometric function of the second kind, ψ(a,c, ·), which is a

particular solution of the so-called confluent hypergeometric differential equation

xw′′(x)+(c− x)w′(x)−aw(x) = 0

and its value is defined in terms of the usual Kummer confluent hypergeometric

function Φ(a,c, ·) as

ψ(a,c,x) =
Γ(1− c)

Γ(a− c+1)
Φ(a,c,x)+

Γ(c−1)

Γ(a)
x1−c

Φ(a− c+1,2− c,x).

For a,x > 0 this function possesses the integral representation

ψ(a,c,x) =
1

Γ(a)

∫

∞

0
e−xtta−1(1+ t)c−a−1dt,

and consequently we have

Vq(x) =
x2q+1

Γ(q+1)

∫

∞

0
e−x2u uq

√
1+u

du = x2q+1ψ(q+1,q+3/2,x2) . (3.1)

Thus, the Turán type inequality (2.7) can be rewritten as

(a+1)(2a−1)

a(2a+1)
<

ψ2(a+1,a+3/2,x)

ψ(a,a+1/2,x)ψ(a+2,a+5/2,x)
<

a+1

a
, (3.2)
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where a> 1/2 and x > 0 on the left-hand side, and a> 0 and x > 0 on the right-hand

side. Now, applying the Kummer transformation

ψ(a,c,x) = x1−cψ(1+a− c,2− c,x),

the above Turán type inequality becomes

c(2c−3)

(c−1)(2c−1)
<

ψ2(1/2,c,x)

ψ(1/2,c−1,x)ψ(1/2,c+1,x)
<

2c−3

2c−1
, (3.3)

where x > 0 > c on the left-hand side, and c < 1/2 and x > 0 on the right-hand side.

It is important to mention here that the right-hand side of (3.3) is not sharp when

c < 0. Namely, in [5, Theorem 4] it was proved that the sharp Turán type inequality

ψ2(a,c,x)−ψ(a,c−1,x)ψ(a,c+1,x)< 0

is valid for a > 0 > c and x > 0 or a > c−1 > 0 and x > 0. This implies that

ψ2(1/2,c,x)

ψ(1/2,c−1,x)ψ(1/2,c+1,x)
< 1

holds for c < 0 and x > 0 or c ∈ (1,3/2) and x > 0, and the constant 1 on the right-

hand side of this inequality is the best possible. The above Turán type inequality

clearly improves the right-hand side of (3.3) when c < 0, and this means that for

q >−1 and x > 0 the right-hand side of (2.7) can be improved as follows

V 2
q+1(x)<Vq(x)Vq+2(x). (3.4)

Note also that very recently Baricz and Ismail in [5, Theorem 4] proved the sharp

Turán type inequality

a

c(a− c+1)
ψ2(a,c,x)< ψ2(a,c,x)−ψ(a,c−1,x)ψ(a,c+1,x),

which is valid for a > 0 > c and x > 0. This inequality can be rewritten as

c(a− c+1)

(c−1)(a− c)
<

ψ2(a,c,x)

ψ(a,c−1,x)ψ(a,c+1,x)
,

which for a = 1/2 reduces to the left-hand side of (3.3). It is important to note here

that according to [5, Theorem 4] in the above Turán type inequalities the constants

a(c(a− c+1))−1 and (c(a− c+1))/((c−1)(a− c))−1

are best possible, and so is the constant

c(2c−3)/((c−1)(2c−1))−1

in (3.3).

We also mention that the method of proving (2.7) is completely different than of the

proof of [5, Theorem 4]. Note also that the sharp Turán type inequality (3.4) is in
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fact related to the following open problem [2, p. 87]: is the function q 7→Vq(x) log-

convex on (−1,∞) for x > 0 fixed? If this result were be true then would improve

Alzer’s result [1, Theorem 3], which states that the function q 7→Vq(x) is convex on

(−1,∞) for all x > 0 fixed.

Recently, for x > 0 Simon [11] proved the next Turán type inequalities

ψ(a−1,c−1,x)ψ(a+1,c+1,x)−ψ2(a,c,x)≤ 1

x
ψ2(a,c,x)ψ(a+1,c+1,x),

(3.5)

ψ(a,c−1,x)ψ(a,c+1,x)−ψ2(a,c,x)≤ 1

x
ψ(a,c,x)ψ(a,c−1,x). (3.6)

In (3.5) it is supposed that a > 1 and c < a+1, while in (3.6) it is assumed that a ≥ 1

or a > 0 and c ≤ a+2. By using (3.1) the inequality (3.5) in particular reduces to

Vq(x)Vq+2(x)≤V 2
q+1(x)

(

1+ x−2(q+3)Vq+2(x)
)

,

where q >−1 and x > 0. Now, observe that by using the above mentioned Kummer

transformation in (3.1) we obtain

Vq(x) = ψ(1/2,1/2−q,x2),

and by using this, (3.6) in particular reduces to

Vq(x)Vq+2(x)−V 2
q+1(x)≤

1

x
Vq+1(x)Vq+2(x),

where q >−1 and x > 0. Combining this inequality with (3.4) for q >−1 and x > 0

we obtain

−1

x
Vq+1(x)Vq+2(x)≤V 2

q+1(x)−Vq(x)Vq+2(x)< 0.

3.2 Connection with Mills ratio and some new bounds for this
function

In this subsection we would like to show that the inequalities presented above for

the function Vq can be used to obtain many new results for the Mills ratio m. For

this, first recall that Mills’ ratio m satisfies the differential equation [3, p. 1365]

m′(x) = xm(x)−1 and hence

V ′
0(x) = (

√
2 ·m(x

√
2))′ = 2(

√
2x ·m(x

√
2)−1) = 2(xV0(x)−1). (3.7)

Note that this differentiation formula can be deduced also from (2.4). Observe that

by using (2.2) and (3.7) we get

2V1(x) = (1−2x2)V0(x)+2x, (3.8)

8V2(x) = (4x4 −4x2 +3)V0(x)+2x(3−2x2).
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Now, if q →−1 in (3.4), then we get that the Turán type inequality

V 2
0 (x)<V−1(x)V1(x)

is valid for x > 0, and this is equivalent to

2xV 2
0 (x)+(2x2 −1)V0(x)−2x < 0.

From this we obtain that for x > 0 the inequality

V0(x)<
1−2x2 +

√
4x4 +12x2 +1

4x

is valid, and rewriting in terms of Mills ratio we get

m(x)<
1− x2 +

√
x4 +6x2 +1

4x
.

Similarly, if we take q = 0 in the left-hand side of (2.7), then we get

2V0(x)V2(x)< 3V 2
1 (x),

which can be rewritten as

4x(x2 −1)V 2
0 (x)+(3−10x2)V0(x)+6x > 0.

From this for x > 0 we obtain

V0(x)<
10x2 −3−

√
4x4 +36x2 +9

8x(x2 −1)
,

which in terms of Mills ratio can be rewritten as

m(x)<
5x2 −3−

√
x4 +18x2 +9

4x(x2 −2)
,

where x > 0. As far as we know these upper bounds on Mills ratio m are new. We

note that many other results of this kind can be obtained by using for example (3.4)

for q = 0 or by using the other Turán type inequalities in the previous subsection.

Finally, we mention that if we take in (2.4) the value q = 0 and we take into account

that V0 is strictly decreasing on (0,∞), we get the inequality V0(x) < 1/x, which

in terms of Mills ratio can be rewritten as m(x) < 1/x. This inequality is the well-

known Gordon inequality for Mills’ ratio, see [7] for more details. Note that the

inequality V0(x) < 1/x can be obtained also from (2.8), just choosing q = 0 and

taking into account the relation (3.8) between V0 and V1. It is important to mention

here that Gordon’s inequality m(x)< 1/x is in fact a particular Turán type inequality

for the parabolic cylinder function, see [5, p. 199] for more details.
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3.3 Other results on Mills ratio and their generalizations

It is worth to mention that it is possible to derive other inequalities for Vq and its

particular case m by using the recurrence relations for this function. Namely, from

(2.4) we get that

Vq(x)<Vq−1(x)

for q ≥ 0 and x > 0, and by using (2.2) we obtain

(xVq(x))
′ = 2(q+1)(Vq(x)−Vq+1(x))> 0,

where x > 0 and q >−1. On the other hand, by using (2.4) it follows

(xVq(x))
′ = (2x2 +1)Vq(x)−2x2Vq−1(x),

and from the previous inequality we get the inequality

Vq(x)

Vq−1(x)
>

2x2

2x2 +1
, (3.9)

which holds for all q ≥ 0 and x > 0. Now, if we take q = 0 and q = 1 in (3.9) we

obtain the inequalities

2x

2x2 +1
<V0(x)<

2x(2x2 +1)

4x4 +4x2 −1
,

where x > 0 on the left-hand side, and x
√

2 >
√√

2−1 on the right-hand side. This

inequality in terms of Mills ratio can be rewritten as

x

x2 +1
< m(x)<

x(x2 +1)

x4 +2x2 −1
, (3.10)

where x > 0 on the left-hand side and x >
√√

2−1 on the right-hand side. Observe

that the right-hand side of (3.10) is better than Gordon’s inequality m(x)< 1/x when

x > 1. We also note that the left-hand side of (3.10) is known and it was deduced by

Gordon [7].

Now, let us consider the functions f1, f2, f3, f4, f5 : (0,∞)→ R, defined by

f1(x) =
x

x2 +1
, f2(x) =

1

x
, f3(x) =

x(x2 +1)

x4 +2x2 −1
,

f4(x) =
1− x2 +

√
x4 +6x2 +1

4x
, f5(x) =

5x2 −3−
√

x4 +18x2 +9

4x(x2 −2)
.

Figure 1 shows that the above new upper bounds (for the Mills ratio of the standard

normal distribution) are quite tight.
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Figure 1

The graph of Mills’ ratio m of the standard normal distribution and of the bounds f1, f2, f3, f4 and f5 on

[0.7,3].

3.4 Connection with Gaussian hypergeometric functions

Here we would like to show that Vq can be expressed in terms of Gaussian hyper-

geometric functions. For this, we consider the following integral [9, p. 18, Eq.

2.29]

∫

∞

0

xp−1 dx

(c+bx)ν (a+dx)µ
=

c−ν+p

bpdµ
B(p,µ +ν − p) 2F1

(

µ, p; µ +ν ;1− ac

bd

)

=
d−µ+p

cν ap
B(p,µ +ν − p) 2F1

(

ν , p; µ +ν ;1− bd

ac

)

,

valid in both cases for all 0 < p < µ +ν . Specifying inside

a = c = d = 1, b =
x2

n
, ν = n,µ =

1

2
, p = q+1 ,
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we conclude

Vq(x) =
x2q+1

Γ(q+1)

∫

∞

0
lim
n→∞

(

1+
x2 t

n

)−n
tq dt√
1+ t

=
1

x
lim
n→∞

nq+1 Γ(n+ 1
2
−q)

Γ(n+ 3
2
)

2F1

(

1

2
,q+1;n+

1

2
;1− n

x2

)

=
x2q+1

Γ(q+1)
lim
n→∞

Γ(n+ 1
2
−q)

Γ(n+ 3
2
)

2F1

(

n,q+1;n+
1

2
;1− x2

n

)

.

3.5 Lower and upper bounds for the function Vq

It is of considerable interest to find lower and upper bounds for the function x 7→
Vq(x) itself. Therefore remarking the obvious inequality 1 + a ≤ ea, a ∈ R, we

conclude the following. Having in mind the integral expression (2.1), and specifying

a = u, we get

Vq(x) =
x2q+1

Γ(q+1)

∫

∞

0
e−x2u uq

√
1+u

du

≥ x2q+1

Γ(q+1)

∫

∞

0
e−(x2+ 1

2 )u uq du

=
2q+1 x2q+1

(1+2x2)q+1
.

Similarly, transforming the integrand of (2.1) by the arithmetic mean–geometric

mean inequality 1+u ≥ 2
√

u, u ≥ 0, we get

Vq(x)≤
x2q+1

√
2Γ(q+1)

∫

∞

0
e−x2u uq− 1

4 du =
Γ(q+ 3

4
)√

2xΓ(q+1)
.

Finally, choosing a = x2t−1, we get

Vq(x) =
1

Γ(q+1)

∫

∞

0
e−u uq

√
x2 +u

du

≥ 1

Γ(q+1)

∫

∞

0
e−u− x2

2u uq− 1
2 du

=
1

Γ(q+1)
Z

q+ 1
2

1

(

x2

2

)

,

where

Zν
ρ (t) =

∫

∞

0
uν−1e−uρ− t

u du ,

stands for the so-called Krätzel function, see [8], and also [6]. Note that further con-

sequent inequalities have been established for the Krätzel function in [6], compare

[6, Theorem 1].
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1 Introduction

Recently, the second author obtained certain existence and location results for the

Stackelberg equilibria in the Euclidean framework, see [9]. More precisely, the

existence of solutions for the leader-follower game has been obtained via the study

of certain variational inequalities defined on the strategy sets by using the variational

backward induction method.

The purpose of the present study is to extend the analytical results from [9] to games

defined on strategy sets which are embedded in a geodesic convex manner into cer-

tain Riemannian manifolds. Similar studies can be found in the literature, where

certain variational arguments are applied to study equilibrium problems on Rieman-

nian manifolds, see [4], [7], [11], [10] and references therein.

For simplicity, in the present paper we shall consider only two players although our

arguments can be extended to several players as well. Let K1 ⊂ M1 and K2 ⊂ M2

be two sets in the Riemannian manifolds (M1,g1) and (M2,g2), respectively, and let

h1,h2 : M1 ×M2 → R be the payoff functions for the two players. As we already
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know from the backward induction method, the first step (for the follower) is to find

the response set

RSE(x1) = {x2 ∈ K2 : h2(x1,y)−h2(x1,x2)≥ 0, ∀y ∈ K2}

for every fixed x1 ∈ K1. If RSE(x1) 6= /0 for every x1 ∈ K1, the next step (for the

leader) is to minimize the map x 7→ h1(x,r(x)) on K1 where r is a fixed selection

function of the set-valued map x 7→RSE(x); more precisely, the objective of the first

player is to determine the set

SSE = {x1 ∈ K1 : h1(x,r(x))−h1(x1,r(x1))≥ 0, ∀x ∈ K1} .

Since the location of the sets RSE(x1) and SSE is not an easy task, we shall intro-

duce further sets related to them by variational inequalities defined on the Rieman-

nian manifolds. Let us assume that h2 : M1 ×M2 → R is a function of class C1; for

every x1 ∈ K1, we introduce the set

RSV (x1) =

{

x2 ∈ K2 : g2

(

∂h2

∂x2
(x1,x2),exp−1

x2
(y)

)

≥ 0, ∀y ∈ K2

}

.

Here and in the sequel, exp denotes the usual exponential function in Riemannian

geometry. According to [4] and [5], it is more easier to determine the set RSV (x1)
than RSE(x1). Moreover, usually we have that RSE(x1) ⊂ RSV (x1), thus we shall

choose the appropriate Stackelberg equilibrium candidates from the elements of the

latter set. Finally, by imposing further curvature assumptions on the Riemannian

manifolds we are working on, we are able to characterize the elements of the set

RSV (x1) by the fixed points of a suitable set-valued map which involves the metric

projection map into the set K2. In fact, we shall assume that the strategy sets are em-

bedded into non-positively curved Riemannian manifolds where two basic proper-

ties of the metric projection will be deeply exploited; namely, the non-expansiveness

and the so-called Moskovitz-Dines property (see [8]); for further details, see Sec-

tion 2. Having this fixed-point characterization, we will be able to apply various

fixed point theorems on (acyclic) metric spaces in order to find elements of the set

RSV (x1). We emphasize that projection-like methods for Nash equilibria have been

developed in the Euclidean context in [1], [15], [16].

We assume finally that h1 : M1 ×M2 → R is a function of class C1 and for every

x1 ∈ K1 we have that RSV (x1) 6= /0. If we are able to choose a C1-class selection

r : K1 → K1 of the set-valued map RSV , we also introduce the set

SSV =

{

x1 ∈ K1 : g1

(

∂h1

∂x1
(x1,r(x1)),exp−1

x1
(y)

)

≥ 0, ∀y ∈ K1

}

.

In particular, SSV contains the optimal strategies of the leader, i.e., the minimizers

for the map x 7→ h1(x,r(x)) on K1.

Section 2 contains some basic notions and results from Riemannian geometry which

are needed for our investigations: geodesics, curvature, metric projections, Moskovitz-

Dines property, etc. Finally, in Section 3 we present the main results of the paper

concerning the strategy of the follower.
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2 Preliminaries

2.1 Elements from Riemannian manifolds

Let (M,g) be a connected m-dimensional Riemannian manifold, m ≥ 2, and let

T M = ∪p∈M(p,TpM) and T ∗M = ∪p∈M(p,T ∗
p M) be the tangent and cotangent bun-

dles to M. If ξ ∈ T ∗
p M then there exists a unique Wξ ∈ TpM such that

〈ξ ,V 〉g,p = gp(Wξ ,V ) for all V ∈ TpM. (1)

Due to (1), the elements ξ and Wξ are identified. The norms on TpM and T ∗
p M are

defined by

‖ξ‖g = ‖Wξ‖g =
√

g(Wξ ,Wξ ).

It is clear that for every V ∈ TpM and ξ ∈ T ∗
p M,

|〈ξ ,V 〉g| ≤ ‖ξ‖g‖V‖g. (2)

Let h : M → R be a C1 function at p ∈ M; the differential of h at p, denoted by

dh(p), belongs to T ∗
p M and is defined by

〈dh(p),V 〉g = g(gradh(p),V ) for all V ∈ TpM.

Let γ : [0,r] → M be a C1 path, r > 0. The length of γ is defined by Lg(γ) =
∫ r

0 ‖γ̇(t)‖gdt. For any two points p,q ∈ M, let

dg(p,q) = inf{Lg(γ) : γ is a C1 path joining p and q in M}.

The function dg : M×M → R clearly verifies the properties of the metric function.

For every p ∈ M and r > 0, the open ball of center p ∈ M and radius r > 0 is defined

by

Bg(p,r) = {q ∈ M : dg(p,q)< r}.

A C∞ parameterized path γ is a geodesic in (M,g) if its tangent γ̇ is parallel along

itself, i.e., ∇γ̇ γ̇ = 0. Here, ∇ is the Levi-Civita connection. The geodesic segment

γ : [a,b] → M is called minimizing if Lg(γ) = dg(γ(a),γ(b)). From the theory of

ODE we have that for every V ∈ TpM, p ∈ M, there exists an open interval IV ∋ 0

and a unique geodesic γV : IV → M with γV (0) = p and γ̇V (0) = V. On account of

[2, p. 64], we introduce the exponential map expp : TpM → M as expp(V ) = γV (1).
Moreover,

d expp(0) = idTpM.

In particular, for every two points q1,q2 ∈ M which are close enough to each other,

we have

‖exp−1
q1
(q2)‖g = dg(q1,q2). (3)

Let K ⊂ M be a non-empty set. Let

PK(q) = {p ∈ K : dg(q, p) = inf
z∈K

dg(q,z)}
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be the set of metric projections of the point q ∈ M to the set K. According to the

theorem of Hopf-Rinow, if (M,g) is complete, then for any closed set K ⊂ M we

have that card(PK(q))≥ 1 for every q ∈ M. The map PK is non-expansive if

dg(p1, p2)≤ dg(q1,q2) for all q1,q2 ∈ M and p1 ∈ PK(q1), p2 ∈ PK(q2).

In particular, when PK is non-expansive, then K is a Chebishev set, i.e., card(PK(q))=
1 for every q ∈ M.

The set K ⊂ M is geodesic convex if every two points q1,q2 ∈ K can be joined by a

unique minimizing geodesic whose image belongs to K. Clearly, relation (3) holds

for every q1,q2 ∈ K in a geodesic convex set K since exp−1
qi

is well-defined on K,

i ∈ {1,2}. The function f : K → R is convex, if f ◦ γ : [0,1]→ R is convex in the

usual sense for every geodesic γ : [0,1]→ K once K ⊂ M is a geodesic convex set.

A non-empty closed set K ⊂ M verifies the Moskovitz-Dines property if for fixed

q ∈ M and p ∈ K the following two statements are equivalent:

(MD1) p ∈ PK(q);

(MD2) If γ : [0,1]→ M is the unique minimal geodesic from γ(0) = p ∈ K to γ(1) =
q, then for every geodesic σ : [0,δ ]→ K (δ ≥ 0) emanating from the point p,

we have g(γ̇(0), σ̇(0))≤ 0.

A Riemannian manifold (M,g) is a Hadamard manifold if it is complete, simply

connected and its sectional curvature is non-positive. We recall that on a Hadamard

manifold (M,g), if h(p) = d2
g(p, p0), p0 ∈ M is fixed, then

gradh(p) =−2exp−1
p (p0). (4)

It is well-known that on a Hadamard manifold (M,g) every geodesic convex set is

a Chebyshev set. Moreover, we have

Proposition 1. ([3], [13]) Let (M,g) be a finite-dimensional Hadamard manifold,

K ⊂ M be a closed set. The following statements hold true:

(i) If K ⊂ M is geodesic convex, it verifies the Moskovitz-Dines property;

(ii) PK is non-expansive if and only if K ⊂ M is geodesic convex.

2.2 Basic properties of the response sets

In the sequel we shall establish some basic properties of the response sets by using

some elements from the theory of variational inequalities on Riemannian manifolds.

Lemma 1. Let (Mi,gi) be Riemannian manifolds, hi : M1 ×M2 → R be functions

of class C1, and Ki ⊂ Mi closed, geodesic convex sets, i = 1,2. Then the following

assertions hold:

(i) RSE(x1)⊆ RSV (x1) for every x1 ∈ K1;

(ii) RSE(x1) = RSV (x1) when h2(x1, ·) is convex on K2 for some x1 ∈ K1;
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(iii) SSE ⊆SSV when x 7→RSV (x) is a single-valued function which has a C1−extension

to an arbitrary open neighborhood D1 ⊂ M1 of K1.

Proof. (i) Let x2 ∈RSE(x1) be an arbitrarily fixed element, i.e., h2(x1,y)≥ h2(x1,x2)
for all y ∈ K2. By definition, we have that

g2

(

∂h2

∂x2
(x1,x2),exp−1

x2
(y)

)

= lim
t→0+

h2(x1,expx2
(t exp−1

x2
(y))−h2(x1,x2)

t
, ∀y ∈ K2.

Since K2 is geodesic convex, the element expx2
(t exp−1

x2
(y) ∈ K2 for every t ∈ [0,1]

whenever y ∈ K2. By the above expression one has that for every y ∈ K,

g2

(

∂h2

∂x2
(x1,x2),exp−1

x2
(y)

)

≥ 0,

which implies that RSE(x1)⊆ RSV (x1) for all x1 ∈ K1.

(ii) Since the function h2(x1, .) is convex and of class C1, one has

h2(x1,y)−h2(x1,x2)≥ g2

(

∂h2

∂x2
(x1,x2),exp−1

x2
(y)

)

for all y ∈ K2, see [14]. Taking into account that x2 ∈ RSV (x1), one has that

g2

(

∂h2

∂x2
(x1,x2),exp−1

x2
(y)

)

≥ 0

for all y ∈ K2. Thus, one has h2(x1,y)− h2(x1,x2) ≥ 0 for all y ∈ K2, i.e., x2 ∈
RSE(x1).

(iii) The proof is similar to (i). △

In the sequel, we shall prove that the elements of the set RSV (x1) can be obtained

as the fixed points of a carefully choosen map. More precisely, for a fixed x1 ∈ K1

and α > 0, let F
x1
α : K2 → K2 be defined by

F
x1
α (x) = PK2

(

expx

(

−α
∂h2

∂x2
(x1,x)

))

. (5)

Theorem 1. Let (M1,g1) be a Riemannian manifold, and (M2,g2) be a Hadamard

manifold. Let h2 : M1 ×M2 → R be a function of class C1 and Ki ⊂ Mi closed,

geodesic convex sets, i = 1,2. Let x1 ∈ K1. The following statements are equivalent:

(i) x2∈ RSV (x1);

(ii) F
x1
α (x2) = x2 for all α > 0;

(iii) F
x1
α (x2) = x2 for some α > 0.

Proof. Let us fix x2∈ RSV (x1) arbitrarily, where x1 ∈ K1. By definition, we have

that

g2

(

−α
∂h2

∂x2
(x1,x2),exp−1

x2
(y)

)

≤ 0, ∀y ∈ K2,
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A. Kristály and Sz. Nagy Stackelberg Equilibria on Curved Strategy Sets

for all/some α > 0. Let γ,σ : [0,1]→ M2 be the unique minimal geodesics defined

by

γ(t) = expx2
(−tα

∂h2

∂x2
(x1,x2))

and

σ(t) = expx2
(t exp−1

x2
(y))

for any fixed α > 0 and y ∈ K2. Since K2 is geodesic convex in (M2,g2), then

Imσ ⊂ K2 and

g2(γ̇(0), σ̇(0)) = g2

(

−α
∂h2

∂x2
(x1,x2),exp−1

x2
(y)

)

,

i.e., (MD2) holds. By the Moskovitz-Dines property, see Proposition 1, one has that

x2 = γ(0) ∈ PK2
(γ(1)) = PK2

(

expx2

(

−α
∂h2

∂x2
(x1,x2)

))

= F
x1
α (x2).

Since card(F x1
α (x2)) = 1, the proof is complete. △

Remark. Note that for all α > 0,

RSV (x1) =

{

x2 ∈ K2 : PK2

(

expx2

(

−α
∂h2

∂x2
(x1,x2)

))

= x2

}

.

3 Follower strategy: existence of equilibria

3.1 Compact case

Theorem 2. (Compact case) Let (Mi,gi) be Hadamard manifolds, hi : M1×M2 →R

be functions of class C1 and Ki ⊂ Mi compact, geodesic convex sets, i = 1,2. Then

the following statements hold:

(i) RSV (x1) 6= /0 for every x1 ∈ K1;

(ii) SSV 6= /0, whenever RSV (x1) is a singleton for every x1 ∈ K1 and the map

x 7→ RSV (x) has a C1−extension to an arbitrary open neighborhood D1 ⊂ M1

of K1.

Proof. (i) Fix x1 ∈ K1 and α > 0. Since K2 is a Chebishev set and PK2
is globally

Lipschitz, we see that F
x1
α : K2 → K2 is a single-valued continuous function; in par-

ticular, F
x1
α : K2 → K2 has a closed graph. Moreover, since K2 is geodesic convex,

it is contractible, thus an acyclic set. Now, we may apply the fixed point theorem of

Begle on the compact set K2, obtaining that F
x1
α has at least a fixed point x2 ∈ K2.

Due to Theorem 1, x2 ∈ RSV (x1), which concludes the proof of (i).

(ii) For some β > 0, we introduce the map Gβ : K1 → K1 defined by

Gβ (x) = PK1

(

expx

(

−β
∂h1

∂x
(x,RSV (x))

))

.
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Since card(RSV (x)) = 1 for every x ∈ K1 and the map x 7→ RSV (x) has a C1-

extension to an arbitrary D1 ⊂ M1 of K1, the function Gβ is well-defined for every

β > 0. By the hypotheses, the function Gβ is also continuous, thus on account of

the Belge fixed point theorem, there exits at least x1 ∈ K1 such that Gβ (x1) = x1.

Since (M1,g1) is a Hadamard manifold where the Moskovitz-Dines property holds,

an analogous argument as in Theorem 1 shows that Gβ (x1) = x1 is equivalent to

x1 ∈ SSV . The proof is complete. △

3.2 Non-compact case

When the strategy sets are non-compact, certain growth assumptions are needed on
the payoff functions in order to guarantee the existence of Stackelberg equilibria.
We first assume that for some x1 ∈ K1 one has

(Hh2
x1
) There exists x2 ∈ K2 such that

Lx1,x2
= limsup

dg2
(x,x2)→∞, x∈K2

g2

(

∂h2

∂x2
(x1,x),exp−1

x (x2)
)

+g2

(

∂h2

∂x2
(x1,x2),exp−1

x2
(x)
)

dg2
(x,x2)

<

<−

∥

∥

∥

∥

∂h2

∂x2
(x1,x2)

∥

∥

∥

∥

g2

.

Theorem 3. Let (M1,g1) be a Riemannian manifold, and (M2,g2) be a Hadamard

manifold. Let h2 : M1 ×M2 → R be a function of class C1 and Ki ⊂ Mi closed,

geodesic convex sets, i = 1,2. Let x1 ∈ K1 and assume that hypothesis (Hh2
x1
) holds

true. Then RSV (x1) 6= /0.

Proof. Let E0 ∈ R such that

Lx1,x2
<−E0 <−

∥

∥

∥

∥

∂h2

∂x2
(x1,x2)

∥

∥

∥

∥

g2

.

On account of hypothesis(Hh2
x1
) there exists R > 0 large enough such that for every

x ∈ K2 with dg2
(x,x2)≥ R, we have

g2

(

∂h2

∂x2
(x1,x),exp−1

x (x2)

)

+g2

(

∂h2

∂x2
(x1,x2),exp−1

x2
(x)

)

≤−E0dg2
(x,x2).

Clearly, one may assume that K2 ∩Bg2
(x2,R) 6= /0. In particular, from (3) and (2),

for every x ∈ K2 with dg2
(x,x2)≥ R, the above relation yields

g2

(

∂h2

∂x2
(x1,x),exp−1

x (x2)

)

≤ −E0dg2
(x,x2)

+

∥

∥

∥

∥

∂h2

∂x2
(x1,x2)

∥

∥

∥

∥

g2

‖exp−1
x2

(x)‖g2
(6)

=

(

−E0 +

∥

∥

∥

∥

∂h2

∂x2
(x1,x2)

∥

∥

∥

∥

g2

)

dg2
(x,x2)

< 0.
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Let KR = K2 ∩Bg2
(x2,R). It is clear that KR is a geodesic convex, compact subset

of (M2,g2). Due to Theorem 2, we immediately have that there exists x̃2 ∈ KR such

that

g2

(

∂h2

∂x2
(x1, x̃2),exp−1

x̃2
(y)

)

≥ 0 for all y ∈ KR. (7)

Note that dg2
(x̃2,x2) < R. By assuming the contrary, from (6) with x = x̃2 we have

that

g2

(

∂h2

∂x2
(x1, x̃2),exp−1

x̃2
(x2)

)

< 0,

by contradicting relation (7).

Let us choose z ∈ K2 arbitrarily. From the fact that dg2
(x̃2,x2)< R, for ε > 0 small

enough, the element y = expx̃2
(ε exp−1

x̃2
(z)) belongs both to K2 ∩Bg2

(x2,R) = KR.

By replacing y into (7), we obtain that

g2

(

∂h2

∂x2
(x1, x̃2),exp−1

x̃2
(z)

)

≥ 0.

Since z ∈ K2 is arbitrarily fixed, one has that x̃2 ∈ RSV (x1), which ends the proof.

△

In the sequel, we are dealing with another class of functions. For a fixed x1 ∈ K1,

α > 0 and 0 < ρ < 1 we introduce the hypothesis:

(Hα,ρ
x1

) : dg2

(

expx

(

−α
∂h2

∂x2
(x1,x)

)

,expy

(

−α
∂h2

∂x2
(x1,y)

))

≤

≤ (1−ρ)dg2
(x,y) for all x,y ∈ K2.

For fixed x1 ∈ K1 and α > 0, we consider the following two dynamical systems:

(a) let (DDS)x1
be the discrete differential system in the form

{

yn+1 = F
x1
α (PK2

(yn)), n ≥ 0,

y0 ∈ M2;

(b) Let (CDS)x1
be the continuous differential system in the form

{

dy
dt

= exp−1
y(t)

(F x1
α (PK2

(y(t)))),

y(0) = x2 ∈ M2.

The main result of the present section is the following theorem.

Theorem 4 (Non-compact case). Let (M1,g1) be a Riemannian manifold, and (M2,g2)
be a Hadamard manifold. Let h2 : M1 ×M2 → R be a function of class C1 and

Ki ⊂ Mi closed, geodesic convex sets, i = 1,2. Let x1 ∈ K1 and assume that hypoth-

esis (H
α,ρ
x1

) holds true. Then RSV (x1) is a singleton and both dynamical systems,

(DDS)x1
and (CDS)x1

, exponentially converge to the unique element of RSV (x1).

– 76 –



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013

Proof. Since (M2,g2) is a Hadamard manifold, for the geodesic convex set K2 ⊂ M2

we have that PK2
is non-expansive. Therefore, by (H

α,ρ
x1

), one has for every x,y ∈ K2

that

dg2
(F x1

α (x),F x1
α (y))

= dg2

(

PK2

(

expx

(

−α
∂h2

∂x2
(x1,x)

))

,PK2

(

expy

(

−α
∂h2

∂x2
(x1,y)

)))

≤ dg2

(

expx

(

−α
∂h2

∂x2
(x1,x)

)

,expy

(

−α
∂h2

∂x2
(x1,y)

))

≤ (1−ρ)dg2
(x,y).

Consequently, the function F
x1
α is a (1−ρ)−contraction on K2.

(a) The system (DDS)x1
. We shall apply the Banach fixed point theorem to the

function F
x1
α : K2 → K2, by guaranteeing the existence of the unique fixed point of

F
x1
α for every x1 ∈ K1. Moreover, every iterated sequence in the dynamical system

(DDS)x1
converges exponentially to the unique fixed point x2 ∈ K2 of F

x1
α . Due

to Theorem 1 the set RSV (x1) is a singleton with the element x2. Moreover, for all

k ∈ N we have that

dg2
(yk,x2)≤

(1−ρ)k

ρ
dg2

(y1,y0).

(b) The system (CDS)x1
. First of all, standard ODE theory shows that (CDS)x1

has

a (local) solution in [0,T ). We actually prove that T = +∞. To see this fact, we

assume that T <+∞, and we introduce the Lyapunov function which has the form

hx1
(t) =

1

2
dg2

(y(t),x2)
2
.

Note that for a.e. t ∈ [0,T ), we have

d

dt
hx1

(t) = −g2

(

exp−1
y(t)(x2),

dy

dt

)

= −g2

(

exp−1
y(t)(x2),exp−1

y(t)(F
x1
α (PK2

(y(t))))
)

= −g2

(

exp−1
y(t)(x2),exp−1

y(t)(F
x1
α (PK2

(y(t))))− exp−1
y(t)(x2)

)

−g2

(

exp−1
y(t)(x2),exp−1

y(t)(x2))
)

≤ ‖exp−1
y(t)(F

x1
α (PK2

(y(t))))− exp−1
y(t)(x2)‖g2

‖exp−1
y(t)(x2)‖g2

−‖exp−1
y(t)(x2)‖

2
g2
.

By using the fact that (M2,g2) is a Hadamard manifold, a Rauch comparison theo-

rem and further straightforward estimates show that

‖exp−1
y(t)(F

x1
α (PK2

(y(t))))− exp−1
y(t)(x2)‖g2

≤ dg2
(F x1

α (PK2
(y(t))),x2).
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Therefore, by (3) and the non-expansiveness of PK2
, we have

d

dt
hx1

(t) ≤ dg2
(F x1

α (PK2
(y(t))),x2)dg2

(y(t),x2)−dg2
(y(t),x2)

2

= dg2
(F x1

α (PK2
(y(t))),F x1

α (x2))dg2
(y(t),x2)−dg2

(y(t),x2)
2

≤ (1−ρ)dg2
(PK2

(y(t)),x2)dg2
(y(t),x2)−dg2

(y(t),x2)
2

≤ (1−ρ)dg2
(y(t),x2)

2 −dg2
(y(t),x2)

2

= −ρdg2
(y(t),x2)

2

= −2ρhx1
(t), a.e. t ∈ [0,T ).

Therefore, one has

d

dt
[hx1

(t)e2ρt ] =

(

d

dt
hx1

(t)+2ρhx1
(t)

)

e2ρt ≤ 0.

In particular, the function t 7→ hx1
(t)e2ρt is non-increasing; therefore, for all t ∈

[0,T ) one has that hx1
(t)e2ρt ≤ hx1

(0). Consequently, t 7→ y(t) can be extended

beyond T , contradicting our assumption. Therefore, T =+∞.

The above estimate gives that for every t ≥ 0, hx1
(t)≤ hx1

(0)e−2ρt . In particular, it

yields that

dg2
(y(t),x2)≤ dg2

(y0,x2)e
−ρt

.

The proof is concluded. △

Remark. Assume that Mi = Rmi , i = 1,2 and
∂ f2
∂x2

(x1, ·) is an λ−Lipschitz and

σ−strictly monotone function for some x1 ∈ K1, i.e.,

• ‖ ∂ f2
∂x2

(x1,x)−
∂ f2
∂x2

(x1,y)‖ ≤ λ‖x− y‖,

• 〈 ∂ f2
∂x2

(x1,x)−
∂ f2
∂x2

(x1,y),x− y〉 ≥ σ‖x− y‖2, ∀x,y ∈ Rm2 .

In this case, (H
ε,ρ
x1

) holds true with

0 < ε <
σ −

√

(σ2 −λ 2)+
λ 2

and

ρ = 1−
√

1−2εσ + ε2λ 2 ∈ (0,1).

Remark. Very recently, Kristály and Repovs [6] proved that the Moskovitz-Dines

property on a generic Riemannian manifold implies the non-positiveness of the sec-

tional curvature. Consequently, in order to develop the aforementioned results on

’curved’ spaces, the non-positiveness of the sectional curvature seems to be a natural

requirement.

Remark. By following the non-smooth critical point theory of Szulkin [12], it would

be interesting to guarantee not only the existence of Stackelberg equilibrium points

but also some multiplicity results. Here, the indicator function of geodesic convex
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sets as well as the Fréchet subdifferential of the indicator function (as the normal

cone to the geodesic convex set) seem to play crucial roles which will be investigated

in a forthcoming paper.
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Abstract: Solving mixed integer linear programming (MILP) problems is a difficult task 

due to the parallel use of both integer and non-integer values. One of the most widely used 

solution is to solve the problem in the real space and they apply additional iteration steps 

(so-called cutting-plane algorithms or Gomory’s cuts) to narrow down the solution to the 
optimal integer solution. The ABS class of algorithms is a generalized class of algorithms 

which, with appropriate selection of parameters, is suitable for the solution of both integer 

and non-integer linear problems. Here we provide for the first time a complete ABS-based 

algorithm for MILP problems by adaptation of the ABS approach to Gomory’s cutting-

plane algorithm. We also provide a numerical example demonstrating the working 

principle of our algorithm. 

Keywords: linear programming; ABS methods; mixed integer problem; cutting-plane 

methods; Gomory’s cuts 

1 Introduction 

Mixed Integer Linear Programming (MILP) problems are linear programming 
problems in which some but not all elements of the solution vector are integer. 
They can be formulated in the following general form: 

},  ,0,:min{ IjZxxbAxxc j

T   (1) 
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where no assumption related to the structure of the matrix A  is made but the set I 
of the x variables need to be integer. MILP problems arise during everyday life 
whenever continuous and discrete parameters need to be optimized, ranging from 
basic business decisions through traffic control to guiding unmanned aerial 
vehicles. Despite their major importance, there is no perfect solution for MILP 
problems. In particular, because of the integer nature of some elements of the 
solution vector, general MILP algorithms are nondeterministic polynomial time 
(NP) hard algorithms which are not very effective in practice. Therefore, various 
approaches have been developed to solve MILP problems in polynomial or quasi-
polynomial time. 

One of the possible approaches to overcome the NP-hard nature of MILP 
problems is to first solve the same problem in the real space, i. e. without any 
constraints on whether elements of the solution vector need to be integer or not. 
Such modified problems are called the LP relaxation of the original problem and 
can be described in the following general form: 

},0 ,:min{  xbAxxc
T

 (2) 

The advantage of this approach is that (2) can be solved by general linear 
programming (LP) applications in polynomial time which are much more effective 
in practice. However, those solutions contain both integer and non-integer solution 
values which need to be separated (so-called separation problem). Since the 
condition of integer nature has to be met, the optimum solution has to be identified 
in a second step where the optimum solution vector is narrowed down to values 
that meet the integer requirement. This is performed by establishing a new 
condition that is only satisfied if the solution matrix meets the relevant integer 
requirement. With other words, solutions that do not satisfy the integer 
requirements are “cut out” of the resulting solution matrix. Therefore, such 
algorithms called “cutting-plane algorithms”, “cuts” or, according to its first 
description, “Gomory’s cuts”. During a cutting-plane algorithm, several iteration 
steps are used to refine the solution matrix in order to find the optimum integer 
solution (a solution to the separation problem). Cutting planes are inequalities that 
solve the separation problem and. Such cutting planes serve to tighten the so-
called LP relaxation resulting in better approximation of the convex hull of the 
original MILP problem. All current commercial MILP problem solving algorithms 
apply Gomory’s cutting-plane algorithm to find the optimal integer solution. 

Historically, Gomory first described an algorithm that finds the optimal solution in 
finite iteration steps for Integer Linear Programming (IP) in 1958 [1]. Such an 
algorithm solves the separation problem when x

* is an optimal basis of the LP 
relaxation. In 1960, Gomory introduced the Gomory Mixed Integer (GMI) cuts to 
deal with the mixed-integer case [2]. However, he never emphasized the practical 
use of this method, since the cutting plane algorithms converge very slowly to the 
optimum solution and the resulting large number of cuts results in very large LPs 
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with corresponding numerical difficulties. However, a major improvement came 
from Balas et al. [3] who re-analyzed the original Gomory mixed-integer cuts [2] 
and overruled the common belief that these cuts had no practical importance. In 
fact, a series of improvements eventually led the same group to show that Gomory 
‘s cuts are fundamental tools for the solution of 0-1 MILP problems [4]. However, 
given the major importance of MILP problems, additional approaches to solving 
such problems or performing Gomory’s cuts are still actively needed. 

The ABS class of algorithms are generalized algorithms which, with appropriate 
selection of parameters, can be used to solve diverse mathematical problems. They 
were initially developed by Abaffy, Broyden and Spedicato [5-7] to solve linear 
systems of equations over the real space. The class was later generalized (so-
called scaled ABS class) and applied also to the solution of various additional 
linear and nonlinear problems [8]. The ABS algorithm was applied to 
mathematical optimization problems such as LP problems via a certain subclass of 
ABS (called implicit LX) by reformulating the simplex method [9, 10]. However, 
those studies did not address the problem of finding an initial basis and an initial 
feasible solution. 

It is theoretically possible that ABS-based algorithms may also be able to provide 
suitable solutions for MILP problems. If so, then the algorithm could take 
advantage of various unique features of the ABS class. For example, ABS 
algorithms have n inherent capability of finding cutting planes that are linearly 
dependent, which is a major obstacle in the algorithm presented by [4]. However, 
no ABS-based algorithms have yet been reported that are capable of solving an 
entire MILP problem. 

In this paper we present a new method for solving mixed-integer problems by 
applying the ABS approach to Gomory’s cutting plane algorithm. Since no ABS-
based methods to finding the initial basis and initial feasible solution for the 
simplex method have yet been described, we first present an ABS-based solution 
for finding those parameters. In parallel, we construct the projection matrix H of 
the ABS class. Together with the above mentioned LX method for the ABS-based 
reformulation of the simplex method, these results now allow the ABS-based 
solution of LP problems. Next we describe a new method by applying the ABS 
class to Gomory’s cutting plane methods. Those components are placed into a 
frame allowing the solution of MILP problems. Finally, we provide a numerical 
example to illustrate the working principles of our algorithm. 
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2 ABS Algorithm for Solving LP Problems 

Let us consider the following modified system 

0,

}{min




ux

bIuAx

ue
T

 (3) 

where e is the vector of all ones, and b≥0¸ (if not, then we can multiply the 
constraints by -1 to achieve this) and the u are artificial (slack) variables. Define 

 TTT
uxx ~ and  IAA 

~
 so that the constraints of the modified can be 

written as 0~,~~
 xbxA .  

Let B be the indices corresponding to the artificial variables. Then B is a basis, 

since the corresponding columns of A
~

 are I , the identity, and thus linearly 

independent. The corresponding basic feasible solution is 0x , bu  . We use 

this to initialize the necessary parameters (i.e. the projection matrix) for the ABS-
based simplex algorithm. 

Algorithm 1: Finding an initial feasible solution 

(A1) Let 
n

Rx 
1

~  be arbitrary, 0~
1
x , i=1, and IH 1  , where 

nn
RI

,  

unit matrix. 

(B1) Calculate the following vectors 

,~
iii aHs   (4) 

ii

T

ii bxap  ~~ . (5) 

If 0is  , then go to C1. 

If 0is  and 0ip  then ixx
i

~~
1



 , ii HH 1  go to F1. (The ith equation 

linearly depends on the previous ones.) 

(C1) Compute the search vector 

im

T

ii eHp   , where ime   is the m+ith unit vector. 

(D1) Update the approximation of the solution by 

iiii pxx 
~~

1 , where 

i

T

i

i

i
pa

r
~ . 



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013 

 – 85 – 

(E1) Update the Hi  matrix by 

i

T

i

T

ii

ii
ap

ps
HH ~1   

(F1) If i=m, then STOP. 1
~

mx   is a solution of the system. 

If i≠m, then increment the index i by one and go to B1. 

Remark 2.1 The algorithm is well-defined as the conditions 0 i

T

im se and the 

0~ i

T

i pa are trivially true. 

Remark 2.2 The original ABS algorithm contains a case 0is  and 0ir in 

step B1, which means the incompatibility of the system of equations. This never 

happens in our case as our system has the obvious solution  Tb0,0,...,T
x . 

Remark 2.3 The iH  projection matrices, generated by Algorithm 1, are 

Hermitian and they have the following special structure 

,































1..0...

....

1...1...

0...0

..

0...0

 

where * indicates possible non-zero elements. Furthermore, the indexes of the 
zero rows are the basis elements, and the indexes of the non-zero rows are the 
non-basis ones. [10] 

Remark 2.4 In general, finding an initial basis for the standard problem is as 
difficult as finding an optimal solution for the original problem. Please refer to 
Abaffy et al. [11] for finding an initial feasible solution, where the initial bases 
and the H projection matrix are parallely calculated saving a number of 
operations. 

Let’s use the following notation. The indexes of the non-identically zero rows of 
the Hi matrix is Bi and the indexes of the zero rows of Hi is Ni. 

The simplex algorithm performs successive iteration steps (pivot operations) to 
gradually improve the feasible intermediate solution. 
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Once the pivot column has been selected, the choice of pivot row is largely 
determined by the requirement that the resulting solution is feasible. This means 
using the ABS terminology that we need to minimize the expression 

ieHe

ex
Bk

N

T
i

T
k

k
T




|  such that 0>N

T

i

T

k eHe  [10]. 

The ABS formulation of the simplex method is defined by the following 
procedure. 

Algorithm 2: ABS based simplex method (Finding the optimal solution in real 

space) 

(A2) Let 
n

Rx 1  be a feasible solution of problem (2). 1H  is the projection 

matrix for this feasible solution, and i=1. 

(B2) Compute the search vector pi by 


N

T

ii eHp , where 
N

e  is unit vector, where 

}|min{ ij

T

i

T

N

T

i

T
NjeHceHc  . 

(C2) Update the solution 

iiii pxx 1  , where 

}0>|min{ 


  

N

T

i

T

kieHe

x

eHe

x

i eHeandBk
N

T
i

T
k

k

N

T
i

T

B

B . 

(D2) Update the projection matrix 



 

 
B

T

N

i
T

NBBi

Hee

HeeeH

ii HH
)(

1   

(E2) If 01 
T

i

T
Hc  then STOP. xi+1 is the optimal solution. 

If 
T

i

T
Hc 1  vector has negative element, then the xi+1 solution is not optimal, 

Hi=Hi+1, xi=xi+1and go to step B2. 

Remark 2.5 Computing the pi vector means that we determine the entering 
variable into the basis in step B5 and updating the solution with the selected eB

* 

means that we select the leaving variable from the basis. 

Remark 2.6 The selection of the entering variable in step B2 is taken as the 
column with least relative cost. In the ABS approach it corresponds to the 

minimization of the expression j

T

i

T
eHc . However, the minimization can be 

changed to maximization or other selection strategy. 

Remark 2.7 Residual cost vector is cHr i in every iteration step [10]. 
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There are two conceptually different approaches to solving LP problems in real 
space. The simplex algorithm first finds a basic solution that is feasible (i. e. the 
solution is nonnegative) and the following iteration steps refine this solution 
towards the optimum solution while maintaining feasibility of the intermediate 
solutions throughout the entire procedure. In contrast, the dual simplex algorithm 
first finds a basic solution that is primal infeasible (there are certain negative 
values) but dual feasible and the following iteration steps are similarly feasible in 
the dual but not in the primal case except for the last iteration step in which the 
final solution will be both primal and dual feasible. With other words, the simplex 
algorithm performs the entire iteration procedure in the primal feasible space 
whereas the dual simplex algorithm does so in the dual feasible (but primal 
infeasible) space and only the final step will ensure primal feasibility. 
Nevertheless, both algorithms are able to find the same final (optimal) solution. 

An important feature of the dual simplex algorithm is that it is most suitable to 
solve problems where a dual feasible solution can easily be found, or when 
additional conditions (change of parameters, additional constraints) are set after 
having obtained an initial fasible solution for the original problem. 

As mentioned above, Algorithm 2 finds a feasible optimum solution for problem 
(3) in the real space using the principles of the simplex algorithm. In the following 
section we re-formulate the ABS algorithm to also perform the dual simplex 
method in the real space (Algorithm 3). This algorithm will then be used to re-
optimize the intermediate solution following the introduction of a new integer 
condition in Algorithm 4. 

Algorithm 3: ABS based dual simplex method (Re-optimizing with dual simplex 

method) 

(A3) Let 
n

Rx 1  a dual feasible solution of the problem (2), 1H  is the 

projection matrix for this dual feasible solution, and i=1. 

(B3) (Selection of the leaving variable.) Find an index (N*) with a negative right-
hand-side constant. If more than one value  is negative then select 

} 0<|min{ ijj BjxxN 
. 

(C3) (Determining the entering variable.) Let Ki = (I-Hi), where 
nn

RI
,  unit 

matrix. Find the index B* where 

}0|min{  



N

T

i

T

kieKe

eHc
eKeandNkB

N

T
i

T
k

k
T
i

T

, where 
N

e  and ke  are 

unit vector. 

(D3) (Change the basis.) 

Update the solution 
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iiii pxx 1  , where 





N

T
i

T

B

B

eHe

x

i and 
N

T

ii eHp  

Update the projection matrix 



 

 
B

T

N

i
T

NBBi

Hee

HeeeH

ii HH
)(

1  

(E3) (Feasibility test) 

If all entries, xi+1>0 are nonnegative the solution is primal feasible, so STOP xi+1¸is 
the optimal solution. 

If xi+1 vector has negative element, then the xi+1 solution is not optimal, Hi=Hi+1, 
xi=xi+1and go to step B3. 

Remark 2.7 In step B3, there are several strategies for choosing the index of the 
leaving variable (N*). We select the most negative one, but selecting the first 
negative element has also been proposed. 

3 ABS Algorithm for Solving Integer and Mixed 

Integer Problems 

Here we will present our ABS-based algorithm to solve integer and mixed integer 
LP problems. Our basic idea is to apply Gomory cutting plane methods to add a 
linear constraint to exclude any non-integer optimal solutions. Let an MILP 
problem be formulated as in (2). The method proceeds by first dropping the 
requirement that certain xi be integer and solving the associated linear 
programming problem. If the solution found does not satisfy to the integer 
condition, then we add constraints (cuts) to the already solved LP. While such 
constraints can make the primal solution infeasible, they do not affect feasibility of 
the dual solution. We can therefore simply add the constraint and continue running 
the dual LP algorithm from the current solution until the primal solution again 
becomes feasible. The process is repeated until an integer solution is found. Cut or 
condition generation is a crucial step in the method. Many different strategies are 
known to construct the condition [3]. We implemented the pure Gomory cut to 
illustrate the running principle of our algorithm. 

    i

Bj

ijjiji bbxaas 


)( ,,1 , 

where s1≥0 is a new slack variable, and jia , denotes entry of the optimal tableau in 

the ith row and the jth column. 
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Algorithm 4 Solving Integer and Mixed Integer LP. 

(A4) Initialization: 

Rephrase the mixed or integer LP that we drop the integrity restriction for the 
variable. 

(B4) Find an initial feasible solution for the new problem. (use Algorithm-1) 

(C4) Solve the LP relaxation LP0 problem (use Algorithm-2) 

If the relaxation does not have optimal solution, then STOP. Denote x* is an 
optimal vertex. 

(D4) If x* is integer then STOP, otherwise 

Choose the first (i.e., highest) row ith where the optimal solution (x*) is not 
integral. (Note that this includes the zeroth row.) 

Add the cut to the bottom of the optimal tableau, and add n+1 to the basis B. 

(E4) Use the dual simplex algorithm starting with the previous optimal tableau 
extended by the Gomory cut to find the lexicographically largest feasible 
solution of the relaxation (use Algorithm-3) 

(F4) Set i:= i+ 1. Go to D4 

Remark 3.1 A cut is never based on a previous cut, so i≠n+1 in step D4. 

Remark 3.2 The current algorithm adds just one new line to the system in every 
step, and the new cut uses previous ones. Cuts can also be rewritten. 

Remark 3.3 The Gomory Cutting Plane Algorithm terminates in a finite number 
of steps. The proof strongly utilizes the fact that we choose the first row for the 
new cut in step D4 [1, 2]. 

Remark 3.4 Note that the form the implicit LX algorithm follows he special 
structure of the projection matrix. Therefore the number of the non-zero rows 
remains fix that is it does not increase with the new cuttings. 

4 Numerical Results 

To illustrate the numerical feature of our algorithm, we implemented it in 
MATLAB R2010a on a personal computer running Microsoft Windows 7. In all 
cases our algorithm found the optimal solution. 

Below we show an example to illustrate how our algorithm finds the solution. 
Consider the following integer problem [12] to 

max)2347( 4321  xxxxz  
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subject to  102 321  xxx  (6) 

122 4321  xxxx  

1423 431  xxx , 
Zxxxx 4,321 ,,  

Define the following LP problem 

xc
T

x
min  

subject to bAx  , 0x , where 
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1211

0112

A , 
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12

10

b ,  2347cT   

Introduce the u1, u2, u3 non-negative slack variable to obtain the following 
standard LP problem 
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 0002347 T
d  

 

We apply our Algorithm-1(Finding an initial feasible solution - Phase 1) in three 
steps using e5, e6, e7 unit vectors respectively. We obtain the following projection 
matrix 
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and an initial feasible solution 
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3x . 

We can notice that the H3 matrix is Hermitian and the indexes of basis B3={5, 6, 

7}. Note that the number of the non-zero rows is the number of the elements of the 

bases. As the cost vector  0002347 3Hc
T

 has 

negative elements, our feasible solution is not optimal. 

We apply the ABS based simplex algorithm (Finding the optimal solution). After 
four steps we obtain the optimal solution 
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and our projection matrix is 
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The structure of the H7 matrix clearly shows that the indexes of the basis are 
B7={1, 2, 3}. As the obtained solution is not integer we need to introduce a new 
slack variable s1 and add a new equation (constraint) 
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1
17654  sxxxx  (c1) 

The basic feature of the ABS methods is that by adding a new equation to our 
system the algorithm finds a solution lying at the intersection of the linear 
varieties of the solutions of the original and the new equation within one step. We 
add a new line for our projection matrix 
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and we solve the new equations. 

We obtain that our solution (x8 ) is infeasible. 
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We need to use our Algorithm-3 to move to a feasible solution. The projection 
matrix for our dual simplex method is 
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After two steps we obtain the optimal solution for the modified system. 
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and our projection matrix is 
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A new fractional solution has been found, we need to generate a new constraint, 
which is valid for the integer solution, but not for our current solution. The new 
cutting plane is 
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After solving the new equations, and using Algorithm-3 for re-optimizing the 
solution, we obtain a new solution. 
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and projection matrix is 
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The found solution is not integer, therefore we add the constraint 
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After solving the new equations, and using Algorithm-3, we obtain the solution 
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and projection matrix is 
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Our optimal solution is integer, therefore we found the solution for our problem 

(6) because the 
3Cx is primal feasible and every components is integer. 

Discussion and Conclusions 

In this paper we showed that the Gomory’s original cutting-plane approach can be 
embedded in the ABS class of algorithms. Furthermore, we implemented our new 
algorithm in MATLAB and an example was given to demonstrate the correctness 
of our method. 

Though Zou and Xia described an ABS-based algorithm for solving integer LP 
problems [13], the published method worked only on a special case when the A 
matrix is unimodular, i.e. the determinant of A is 1. The constraints on the A 
matrix and the inability of that algorithm to deal with mixed integer problems 
strongly limited the spectrum of problems that the algorithm was able to solve. 

A cucial step of our algorithm is the generation of Gomory’s cuts. In the current 
version of our algorithm, we used Gomory's original cuts defined in the LP 
optimal tableau. Since a number of additional cutting strategies have also been 
published, we also intend to extend our algorithm t those other types of cuts. We 
are planning to compare them and analyze the numerical feature of them, 
emphasizing the possibilities of the parallelization as the ABS algorithms are 
suitable for parallelization. 

We should mention that every cut adds a new slack variable to the system, which 
means that the number of columns of the projection matrix increases by one in 
every steps (the number of rows remains). Some results were published to avoid 
this problem [14] and we are planning to implement them, too. 

A number of papers were published showing that ABS-based algorithms are 
suitable for solving integer LP and Diophantine linear systems of equations too 
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[15-19]. Therefore some further work should be considered including 
investigations of the implementation of the pure integer algorithm using Gomory’s 
cuts [14, 20]. 
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Abstract: The aim of this paper is the numerical simulation of anisotropic mean curvature 

of graphs in the context of relative geometry, developed in [1]. We extend results in [4] to 

our problem; we prove an existence theorem and energy equality. The numerical scheme is 

based on the method of lines where the spatial derivatives are approximated by finite 

differences [2]. We then solve the resulting ODE system by means of the adaptive Runge-

Kutta-Merson method. To show the stability of the scheme we prove the discrete version of 

the energy equality. Finally, we show experimental order of convergence and results of 

numerical experiments with various anisotropy settings. 

Keywords: anisotropy; mean curvature; Finsler geometry; method of lines; FDM 

1 Introduction 

The paper studies the following motion law for surfaces in    denoted by  :                            (1) 

in a certain sense which is specified below. Both the velocity and the curvature are 
evaluated with respect to the direction given by a vector locally influenced by the 
orientation of the Euclidean normal vector to  . 

One example of the law (1) is represented by the isotropic mean-curvature flow 
given by the equation                 (2) 

in the direction of   which is the Euclidean normal vector to  , while    the 
normal velocity,    the mean curvature, and   the forcing term. The equation (2) 
in the form of the Gibbs-Thompson law is contained in the modified Stefan 
problem. For details, we refer the reader to [9, 16]. 
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One of few anisotropic examples where the analytical solution is known considers 
a ball under the relative geometry which shrinks according to (1) with   . In 
this case we have the initial ball with radius   , normal velocity  ̇, actual curvature 

along the ball of radius   being 
  . The equation (1) reads  ̇       

and has the solution      √        
This law has been intensively studied, see e.g. [4, 5, 13]. 

This paper deals with the motion by anisotropic mean curvature in relative 
geometry associated with the Finsler metric, developed in [1], which reads                      (3) 

Here,      denotes the normal velocity,      is the anisotropic mean curvature of      with respect to the Finsler metric  , and   is the forcing term. 

Deckelnick and Dziuk proved the convergence and gave the optimal error 
estimates using finite element method for graph [4, 7] and parametric case [8]. 
Haußer and Voigt [11] presented a parametric finite element approximation for a 
regularized version. Pozzi studied the anisotropic mean curvature flow in higher 
codimension in [15]. 

2 Anisotropy in Relative Geometry 

In what follows we shall first define anisotropy by means of the Finsler geometry; 
then, we shall transform the motion law (3) into graph formulation. For this 
purpose, we assume that there is a smooth function with non-vanishing gradient          such that      {[   ]    |               }  
We say that a continuous function          is a Finsler metric if it satisfies the 
properties 

1.   𝐶  𝛼   { }   
2.   is strictly convex, 
3.    𝜂  | |  𝜂            𝜂      
4. 𝜆|𝜂| ≤   𝜂 ≤ Λ|𝜂|    𝜂       

for two suitable constants  < 𝜆 ≤ Λ < ∞  
Associated to   we define the unit ball (also so-called Wulff shape) 
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   {𝜂    |  𝜂 ≤  }  
One can prove that a dual function           given by    𝜂      {𝜂  𝜂|𝜂    } 
is also a Finsler metric. 

For simplicity we use 𝜂 instead of 𝜂 . Then the following relations hold [3]      𝜂   | |     𝜂           𝜂   | |      𝜂         { }  
     𝜂      𝜂      |    𝜂|𝜂| 𝜂|     𝜂                     
where the index 𝜂 means the derivative with respect to 𝜂. 

We define the map         as    𝜂  ( ̃  𝜂      𝜂 )     𝜂     𝜂     𝜂              
Then, the  -normal vector,  -mean curvature, and  -normal velocity of   are 
defined as                                     (4) 

                ̃                   (5) 

                    (6) 

By substituting the quantities (4)-(6) into the Eq. (3), we obtain the non-linear 
parabolic partial differential equation              (  ( ̃                 )   )            (7) 

The initial and boundary conditions are given by  |          ̅  (8)                   (9) 

In our numerical experiments we use the Finsler metrics listed below. We denote    | |. The corresponding Wulff shapes are illustrated in Fig. 1. 
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The 4-fold anisotropy reads as   𝜂  |𝜂| (    (               ))  (10) 

The 6-fold anisotropy reads as     𝜂  |𝜂| (    (              )    (                              )) 
(11) 

The 8-fold anisotropy reads as     𝜂  |𝜂|                                                                                                  (12) 

The regularized   -anisotropy reads as 

    𝜂  ∑(𝜂     ∑𝜂   
   ) 

   
    (13) 

 

  

4-fold anisotropy,         6-fold anisotropy,                      

  

8-fold anisotropy,           regularized   -norm,         

 

Figure 1 

Wulff shapes for various anisotropies 
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3 Analytical Properties 

In the following section we shall introduce some analytical results for law (7) in 
the context of relative geometry, which are due to [4, 11, 12]. We shall prove the 
energy equality and give the existence result for our problem. 

 

Theorem 1. For the solution of problem (7)-(9), one has the energy equality ∫   (              )     ∫              
If    , then ∫                  ∫              (14) 

 

Proof. Since     on   , the proof is straightforward    ∫           ∫            [     ]  ∫[     ]                       ∫      ̃                  ∫      ̃                    ∫   (              )   
If    , we obtain the equality (14). 

 

Lemma 1. Let   �̃�     �̃�    ,                       , and           . Then for the 

solution of the problem (7)-(9) with      one has the identity 

   ∑     (        )  
      ∑         

 
    

 ∑                           
         (15) 

 

Proof. We have 

     ̃            ∑   
   

           ∑        
 

      ∑       
 

     



D. H. Hoang et al. Numerical Simulation of Anisotropic Mean Curvature of Graphs in Relative Geometry 

 – 104 – 

Let now compute 

∑        
 

    ∑      
 

   ∑        
    ∑              

      

 ∑     (        ) 
      ∑              

       
Since       ∑          

 
               ∑             

     
we get the identity (15). 

 

Theorem 2. Let    𝐶  𝛼and                . We assume that 

∑                        ≤   
               
Let    𝐶  𝛼  ̅  satisfies the compatibility condition 

∑                      
 

                 
Then (7)-(9) with     has a solution      𝛼       ̅  [   ]  with                    for all  < ∞. 

 

Proof. Similarly as in [4] we are looking for a solution of the initial boundary 
value problem 

   ∑              
 

        

but with the difference      �̃�     �̃�           �̃�      
Since    is a Finsler metric,    𝐶       holds. Moreover, since    𝐶  𝛼   { } , we have     𝐶      . 
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Following standard lines of Theorem 4.1 in [4] and using the previous Lemma 1 
we can show there is a constant   such that for every solution    of 

     ∑                
                                                                            

the estimate           |  |            |   | ≤   

is valid. This means (7)-(9) with     has a solution      𝛼       ̅  [   ] . 
4 Numerical Scheme 

We employed the numerical scheme based on the method of lines. The spatial 
derivatives are discretized and the time variable is left continuous. After 
discretizing the problem by finite differences in space, we solve the resulting ODE 
system by the adaptive Runge-Kutta-Merson method. We consider the 
computational domain                 and introduce the following notation:                    {[       ]|                     }   ̅  {[       ]|                 }         ̅                                                              ̅                    ̅                       [       ]   ̅   [  ̅    ̅ ]       | ̅   
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We define the following expressions 

       ∑ ∑               
   

    
       ‖ ‖           

      ⌋  ∑ ∑                 
   

  
     

      ⌉  ∑ ∑              
   

    
         ]        ⌋        ⌉      ]  ∑∑            

   
  
     

We then propose a semi-discrete scheme [2]         ̅       (   ( ̃   ̅           ̅       )   ) on            |        on ̅         on          (16) 

This is an ODE system and existence and uniqueness of solutions are guaranteed 
by the theory of ordinary differential equations (the Picard–Lindelöf theorem). 

As the stability criterion we use the basic energy equality (14). For this purpose 
we shall now prove the discrete version of Theorem 1. 

Theorem 3. For the solution of problem (16), the following energy equality holds (           ̅         )          ̅         ]     
If    , then (            ̅       )          ̅         ]     (17) 

Proof. Applying the grid version of Green’s formula as in [2], we obtain (           ̅         )  (       ( ̃   ̅           ̅       ))  

 ( ̅      ̃   ̅           ̅       ] 

  ∑ ∑        | ̅    
    
   

  
   

     ̅           ̅       |   
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 ∑ ∑       | ̅    
  
   

    
   

     ̅           ̅       |   

  ∑∑       | ̅    
  
   

  
   

     ̅           ̅       |   

 ∑∑       | ̅    
  
   

  
   

     ̅           ̅       |            ̅         ]  
If    , we get the equality (17). 

5 Computational Results 

We first investigate the convergence of the numerical scheme. Then, we explore 
the long time behaviour of the anisotropic motion law (3).  

Experimental order of convergence. The computations have been performed 
over a range of different grid resolutions which allows quantifying the numerical 
convergence by the experimental order of convergence (EOC). A numerical 
solution computed on the finest grid is used to substitute the analytical solution.  
Given errors        and        for two mesh sizes   ,   , respectively, the     is defined as                                   
The result is shown in the following table. 

Table 1 

Experimental order of convergence of the scheme (16)                                     

50 1/50 0.05924 - 0.01175 - 

100 1/100 0.03676 0.68843 0.00731 1.00000 

150 1/150 0.02689 0.77219 0.00511 1.00000 

200 1/200 0.02058 0.92781 0.00357 1.00000 

 

Morphology evolution. We present the solutions at different times for various 
anisotropies. Figs. 2-6 show surface evolutions under anisotropic mean curvature 
flow without the forcing term (     ). Anisotropy is shown to be crucial in the 
formation of different surface morphologies. The surface is first determined by 
symmetry of anisotropy; it then evolves towards to the flat surface. Finally, the 
effect of the forcing term   on the surface evolution is shown in Fig. 7. 
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Figure 2 

Morphology evolution for    , the 4-fold anisotropy (10) with        ,                            at different times 



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013 

 – 109 – 

              

                 

 

               

Figure 3 

Morphology evolution for    , the 6-fold anisotropy (11) with                     ,                            at different times 
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Figure 4 

Morphology evolution for    , the 8-fold anisotropy (12) with          ,                            at different times 
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Figure 5 

Morphology evolution for    , the regularized    norm (13) with        ,                            at different times 
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Figure 6 

Morphology evolution for    , the regularized    norm (13) with        ,                                                    at different times 
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Figure 7 

Morphology evolution for                      (                                 )         ,  
the regularized    norm (13) with         ,                             at different times 
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Conclusion 

In the paper, we have studied the anisotropic mean curvature flow in relative 
geometry for which a global existence result has been derived. A numerical 
scheme based on the method of lines has been presented and analysed concerning 
its stability. In the numerical experiments, the influence of various anisotropy 
symmetries and the forcing term on the surface evolution has been addressed. 
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Abstract: A graph is regular if all its vertices have the same degree. Otherwise a
graph is irregular. To measure how irregular a graph is, several graph topological
indices were proposed including: the Collatz-Sinogowitz index [8], the variance of

the vertex degrees [7], the irregularity of a graph [4], and recently proposed the
total irregularity of a graph [1]. Here, we compare the above mentioned irregularity
measures for bidegreed graphs.

Keywords: topological graph indices; complete split graph; 2-walk linear graph

1 Introduction

All graphs considered here are simple and undirected. Let G be a graph of
order n = |V (G)| and sizem = |E(G)|. For v ∈ V (G), the degree of v, denoted
by dG(v), is the number of edges incident to v. The adjacency matrix A(G)
of a graph G is a matrix with rows and columns labeled by graph vertices,
with a 1 or a 0 in position (vi, vj) according to whether vertices vi and vj
are adjacent or not. The characteristic polynomial φ(G, t) of G is defined as
characteristic polynomial of A(G): φ(G, λ) = det(λIn − A(G)), where In is
n×n identity matrix. The set of eigenvalues of the adjacent matrix A(G) of a
graph G is called a graph spectrum. The largest eigenvalue of A(G), denoted
by ρ(G), is called the spectral radius of G. An eigenvalue of a graph G is
called main eigenvalue if it has an eigenvector the sum of whose entries is
not equal to zero.

In the sequel, we present the irregularity measures consider in this paper.
Collatz-Sinogowitz [8] introduced the irregularity measure of a graph G as

CS(G) = ρ(G)− 2m

n
. (1)
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An alternative to CS(G) is the variance of the vertex degrees

Var(G) =
1

n

n
∑

i=1

d2G(vi)−
1

n2

(

n
∑

i=1

dG(vi)

)2

. (2)

Bell [7] was first who has compared CS(G) and Var(G) and showed that they
are not always compatible. Albertson [4] defines the imbalance of an edge
e = uv ∈ E as |dG(u)− dG(v)| and the irregularity of G as

irr(G) =
∑

uv∈E

|dG(u)− dG(v)| . (3)

Recently, in [1] a new measure of irregularity of a simple, undirected graph,
so-called the total irregularity, was defined as

irrt(G) =
1

2

∑

u,v∈V (G)

|dG(u)− dG(v)| . (4)

More about the above presented irregularity measures, comparison studies of
them, and other attempts to measure the irregularity of a graph, one can find
in [3,6,10–12]. It is interesting that the above four irregularity measures are
not always compatible for some pairs of graphs. In this paper we study the
relations between the above mentioned irregularity measures for bidegreed
graphs.

A universal vertex is the vertex adjacent to all other vertices. A set of vertices
is said to be independent when the vertices are pairwise non-adjacent. The
vertices from an independent set are independent vertices.

The degree set, denoted by D(G), of a simple graph G is the set consisting of
the distinct degrees of vertices in G.

The distance between two vertices in a graph is the number of edges in a
shortest path connecting them. The eccentricity of a vertex v in a connected
graph G is the maximum graph distance between v and any other vertex
of G. The radius of a graph G, denoted by rad(G), is the minimum graph
eccentricity of any graph vertex of G. The diameter of a graph G, denoted
by diam(G), is the maximal graph eccentricity of any graph vertex of G.

Let mr,s denotes the number of edges in G with end-vertex degrees r and
s, and let nr denotes the numbers of vertices n G with degree r. Numbers
mr,s and nr are referred as the edge-parameters and the vertex-parameters of
G, respectively . The mean degree of a graph G is defined as d(G) = 2m/n.
Graphs G1 and G2 are said to be edge-equivalent if for their corresponding
edge-parameters sets {mr,s(G1) > 0} = {mr,s(G2) > 0} holds. Analogously,
they are called vertex-equivalent if for their vertex-parameters sets {nr(G1) >
0} = {nr(G2) > 0} is fulfilled. It is easy to see that if two graphs are edge-
equivalent, then they are vertex-equivalent, as well.
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For two graphs G1 and G2 with disjoint vertex sets V (G1) and V (G2) and
disjoint edge sets E(G1) and E(G2) the disjoint union of G1 and G2 is the
graph G = G1 ∪ G2 with the vertex set V (G1) ∪ V (G2) and the edge set
E(G1) ∪ E(G2). The join G + H of simple undirected graphs G and H is
the graph with the vertex set V (G + H) = V (G) ∪ V (H) and the edge set
E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. Let Cn denote a
cycle on n vertices. Further, let Kn denote the complete graph on n vertices,
and tK1 denote the graph with t isolated vertices and no edges.

A graph G is a complete k-partite graph if there is a partiton V1 ∪ · · · ∪ Vk =
V (G) of the vertex set, such that uv ∈ E(G) if and only if u and v are in
different parts of the partition. A connected bipartite graphG is semiregular if
every edge of G joins a vertex of degree δ to a vertex of degree ∆. A connected
graphs G is called a balanced irregular graph if the equality irr(G) = irrt(G)
holds.

The rest of the paper is structured as follows. In Section 2 we present some
types of bidegreed graphs and some known results related to the above men-
tioned irregularity measures. In Section 3 we investigate new relations be-
tween irregularity indices of bidegreed graphs. Bidegreed graphs with same
irregularity indices are investigated in Section 4. We conclude with final re-
marks and open problems in Section 5.

2 Some types of bidegreed graphs and known results

A graph G is called bidegreed if its degree set D(G) = {∆, δ} with ∆ > δ ≥ 1.
In the sequel, we present some special types of connected bidegreed graphs
that will be of interest later.

i) A bidegreed graph is called a balanced bidegreed graph if the equality
n∆nδ = m∆,δ holds for it. It should be noted that the complete bipartite
graphs, for which m = m∆,δ = n∆nδ = ∆δ holds, form a subset of balanced
bidegreed graphs.

ii) A balanced bidegreed graph with n vertices is called a complete split graph

if it contains q = n∆ ≥ 1 universal vertices and n−q independent vertices [5].
Thus, a complete split graph, denoted by Gcs(n, q), can be obtained as join
of n− q graphs K1 and the complete graph Kq, i.e., Gcs(n, q) = (n− q)K1 +
Kq. An existing complete split graph Gcs(n, q) is uniquely defined by their
parameters n and q. This implies that two complete split graphs with identical
n, q parameters are isomorphic. For a complete split graph the equalities
m = m∆,δ +m∆,∆ and 2m = (2n− 1)δ − δ2 hold [5].

iii) A balanced bidegreed graph is called a complete split-like graph, denoted
by Gcsl(n, q, δ), if it has q ≥ 1 universal vertices. This implies that for a
complete split-like graph the equality qnδ = m∆,δ holds. The complete split
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graphs represent a subset of complete split-like graphs. It is easy to see that if
G is a complete split-like graph then the equalities rad(G) = 1 and diam(G) =
2 are fulfilled. In Fig. 1 non-isomorphic complete split-like graphs with 5 and
6 vertices are depicted. Note that they are not complete split graphs.

(a) (b)

Fig. 1. Complete split-like graphs (a) Gcsl(5, 1, 2) and (b) Gcsl(6, 2, 3)

Also note that since for a complete split-like graph G qnδ = m∆,δ, it follows
that if G is not a complete bipartite graph, then G is non-bipartite and
contains a triangle.

iv) In a particular case, if q = 1, then a complete split-like graph is called
a generalized windmill graph and is denoted by Gcsl(n, 1, δ). We would like
to recall that the classical windmill graph, denoted by Wd(k, p), can be con-
structed by joining p copies of the complete graph Kk with a common vertex.
For a generalized windmill graph the equality m = m∆,δ +mδ,δ is fulfilled. It
follows that the star graphs Sn with n ≥ 3 vertices, the wheel graphs Wn with
n ≥ 5 vertices, and the classical windmill graphs Wd(k, p) with (k − 1)p+ 1
vertices and pk(k − 1)/2 edges defined for k ≥ 2 and p ≥ 2 positive integers,
form the subsets of generalized windmill graphs. In Fig. 2 two non-isomorphic
generalized windmill graphs are depicted.

Next, we state some known results that will be used afterwords.

Lemma 1 ( [16]). Let G be a connected bidegreed graph with spectral radius

ρ(G). Then

ρ(G) =

√

√

√

√

1

n

∑

u∈V (G)

d2(u) =
√
∆δ,

if and only if G is a semiregular connected bipartite graph.

Lemma 2 ( [15]). Let G be a connected graph with mean degree d(G)] =
2m/n, and just two main eigenvalues, ρ and µ < ρ, where ρ is the spectral
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Fig. 2. Two generalized windmill graphs

radius of G. Then

Var(G) =
1

n

∑

u∈V (G)

d2(u)−
(

2m

n

)2

=

(

ρ− 2m

n

)(

2m

n
− µ

)

.

Lemma 3 ( [15]). Let G be a connected graph with spectral radius ρ. Then
G is a semiregular bipartite graph if and only if the main eigenvalues of G
are ρ and −ρ.

Lemma 4 ( [13]). Let G be a connected graph with spectral radius ρ. Then

ρ(G) ≤ δ − 1 +
√

(δ + 1)2 + 4(2m− δn)

2
.

Equality holds if and only if G is regular or a bidegreed graph in which each

vertex is of degree either δ or n− 1.

3 Relations between irregularity indices - new results

In this section, we present some new results about the relations between
irregularity indices of bidegreed graphs. We start with the following simple
proposition.

Proposition 1. Let G(∆, δ) be a connected bidegreed graph having n∆ and

nδ vertices with degree ∆ and δ, respectively. Then the following relations

hold:

m = m(G(∆, δ)) = m∆,∆ +m∆,δ +mδ,δ ≥ m∆,δ, (5)

irr(G(∆, δ)) = m∆,δ(∆− δ), (6)

irrt(G(∆, δ)) = n∆nδ(∆− δ) = n∆(n− n∆)(∆− δ), (7)

irrt(G(∆, δ)) =
n∆nδ

m∆,δ

irr(G(∆, δ)). (8)
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Proof. It is obvious that for a connected bidegreed graph G(∆, δ) the equality
m = m∆,δ holds if and only if G(∆, δ) is semiregular. The equalities (6), (7)
and (8) follow from the definitions of irregularity indices.

Because the function f(n∆) = n − n∆ has a maximum value for n∆ = n/2,
we have the following corollary.

Corollary 1. For a connected bidegreed graph G(∆, δ) it holds that

irrt(G(∆, δ)) = n∆(n− n∆)(∆− δ) ≤ n2

4
(∆− δ). (9)

Inequality (9) is sharp. There exist bidegreed graphs with n vertices for which
irrt(G(∆, δ)) = n2(∆−δ)/4. Such bidegreed graphs with 8 vertex and deegre
set {3, 4} are shown in Fig. 3(a). These graphs are non edge-equivalent, but
only vertex equivalent, and the equality n3 = n4 = n/2 = 4 holds for them.
Another example of bidegreed graphs that satisfy equality in (9) is given
in Fig. 3(b). Those graphs are with 8 vertices and have deegre set {2, 3}.
They are edge-equivalent, and satisfy the equality n2 = n3 = n/2 = 4. It is
interesting to note that the graphs in Fig. 3(b) are not only edge-equivalent
(m2,3 = 8,m3,3 = 2), but they have identical spectral radius (1 +

√
17)/2, as

well. Consequently, all considered irregularity indices (CS, Var, irr and irrt )
are identical for them.

(a) (b)

Fig. 3. Examples of non-isomorphic bidegreed graphs with 8 vertices with identical
maximum total irregularity indices

Proposition 2. Let G(∆, δ) be a connected bidegreed graph, then

irrt(G(∆, δ)) =
∆− δ

∆δ

(

m2 − (m∆,∆ −mδ,δ)
2
)

≤ ∆− δ

∆δ
m2.

The equality holds if m∆,∆ = mδ,δ.
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Proof. For any bidegreed graph G(∆, δ), it holds that

∆n∆ = m∆,δ + 2m∆,∆, and

δn∆ = m∆,δ + 2mδ,δ.

This together with (7) implies that

irrt(G(∆, δ)) =
∆− δ

∆δ
(m∆,δ + 2m∆,∆)(m∆,δ + 2mδ,δ).

Since m∆,δ = m−m∆,∆ −mδ,δ, it follows that

irrt(G(∆, δ)) =
∆− δ

∆δ

(

m2 − (m∆,∆ −mδ,δ)
2
)

≤ ∆− δ

∆δ
m2. (10)

The equality in (10 ) is obtained when m∆,∆ = mδ,δ. This condition holds for
the bidegreed graphs with 10 vertices and 12 edges in Fig. 4. Consequently
all of them have the same maximum total irregularity index irrt = n2n3 =
6 · 4 = 24.

Ja Jb Jc Jd

Fig. 4. Bidegreed graphs having identical vertex degree set (n3 = 4, n2 = 6) and
identical maximum total irregularity index irrt = 24

Among bidegreed graphs having identical vertex degree set (n∆, nδ), the
semiregular graphs (for which the equality m∆,∆ = mδ,δ=0 holds) possess
the maximal irregularity irr(G), as it is a case with graphs Jc and Jd in
Fig. 4.

4 Bidegreed graphs with same irregularity indices

In the following we will show that there exists a broad class of bidegreed
graphs having “similar irregularity”, or in other words, there exist non-
isomorphic graph pairs for which two (or more than two) irregularity indices
are equal. Moreover, we will show that there are some particular classes of
bidegreed graphs whose irregularity indices are considered algebraically de-
pendent quantities.
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4.1 Balanced bidegreed graphs

From the definition of balanced bidegreed graphs, it follows that

irr(G(∆, δ)) = irrt(G(∆, δ)) = n∆nδ(∆− δ) = m∆,δ(∆− δ).

This implies that the balanced bidegreed graphs form a subset of balanced
irregular graphs.

Proposition 3. Let G(∆, δ) be a balanced bidegreed graph for which m∆,∆ =
0 or mδ,δ = 0 hold. Then

irr(G(∆, δ)) = irrt(G(∆, δ)) = (2m−∆δ)(∆− δ).

Proof. For any bidegreed graph G(∆, δ)

∆n∆ = m∆,δ + 2m∆,∆,

δnδ = m∆,δ + 2mδ,δ.

Consequently, we get

n∆nδ = m∆,δ =
(m∆,δ + 2m∆,∆)(m∆,δ + 2mδ,δ)

∆δ
, and

m2
∆,δ + (2(m∆,∆ +mδ,δ)−∆δ)m∆,δ + 4m∆,∆mδ,δ = 0.

Taking into consideration that m∆,∆ +mδ,δ = m−m∆,δ, we have

m2
∆,δ + (∆δ − 2m)m∆,δ − 4m∆,∆mδ,δ = 0.

Because m∆,δ is a positive number it is easy to see that the proper solution
of the equation above is

n∆nδ = m∆,δ =
1

2

(

2m−∆δ +
√

(2m−∆δ)2 + 16m∆,∆mδ,δ

)

.

If as a particular case the equality m∆,∆mδ,δ = 0 holds for graph G(∆, δ),
one obtains

n∆nδ = m∆,δ = 2m−∆δ,

from which the main result follows.

Example 1. We present two infinite sequences of balanced bidegreed graphs
with the property m∆,∆mδ,δ = 0. The first infinite sequence is comprised
of graphs B(k), where k is a positive integer. The case k = 2 is depicted
in Fig. 5(a). A graph B(k) has a vertex degree distribution n3 = 2k and
n2k = 2, and edge number m = 5k, where k ≥ 2 positive integer. It is easy
to see that for graphs B(k), the equality m2k,2k = 0 holds.
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(b)(a) (c)

Fig. 5. Balanced planar bidegreed graphs. (a) Planar graph B(2) and (b), (c) Poly-
hedral graph P (6) of 6-gonal bipyramid

The second infinite sequence is comprised of k-gonal bipyramids. A k-gonal
bipyramid, with integer k ≥ 3, is formed by joining a k-gonal pyramid and
its mirror image base-to-base. It is a polyhedon having 2k triangular faces.
The case k = 6 is depicted in Fig. 5(b) and redrawn in Fig. 5(c) for a better
illustration. The graph P (k) of a k-gonal bipiramid belongs to the family
of balanced bidegreed graphs with degree 4 and k. For these graphs the
equalities n4nk = m4k = 2k,m = 3k and mk,k = 0 hold.

4.2 Complete split graphs and complete split-like graphs

Proposition 4 ( [2]). There exist a complete split graph pairs with n vertices

Gcs(n, q) and Gcs(n, q+1) with certain n and q positive integers, for which the

equality irrt(Gcs(n, q)) = irrt(Gcs(n, q + 1)) = irr(Gcs(n, q)) = irr(Gcs(n, q +
1)) holds.

Example 2. The smallest complete split graph pair with this property is
the star graph on 5 vertices Gcs(5, 1), and the graph Gcs(5, 2) are depicted
in Fig. 6.
For graphsGcs(5, 1) andGcs(5, 2) the following equality holds: irrt(Gcs(5, 1)) =
irrt(Gcs(5, 2)) = irr(Gcs(5, 1)) = irr(Gcs(5, 2)) = 12.

Proposition 5. Let Gcsl(n, q, δ) be a complete split-like graph. Then

irr(Gcsl(n, q, δ)) = irrt(Gcsl(n, q, δ)) = q(n− q)(n− 1− δ).

Proof. Since the complete split-like graphs form a subset of balanced bide-
greed graphs, it is easy to see that

irr(Gcsl(n, q, δ)) = m∆,δ|∆− δ| = n∆nδ|∆− δ| = q(n− q)(n− 1− δ)

= irrt(Gcsl(n, q, δ)).
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(a) (b)

Fig. 6. Complete split graphs (a) Gcs(5, 1) and (b) Gcs(5, 2) with different degree
sets

Proposition 6. There exist complete split-like graph pairs Gcsl(na, qa, δa)
and Gcsl(nb, qb, δb) with different na, nb, qa, qb, δa and δb parameters, for which

the equality

irrt(Gcsl(na, qa, δa)) = irrt(Gcsl(nb, qb, δb)) = irr(Gcs(na, qa, δa))

= irr(Gcs(nb, qb, δb))

holds.

Proof. A complete split-like graph pair with this property is the graph pair
Gcsl(5, 1, 2) and Gcsl(6, 2, 4) depicted in Fig. 7. For these graphs, equality
irrt(Gcsl(5, 1, 2)) = irrt(Gcsl(6, 2, 4)) = irr(Gcs(5, 1, 2)) = irr(Gcs(6, 2, 4)) = 8
holds.

(a) (b)

Fig. 7. Complete split-like graphs (a) Gcsl(5, 1, 2) and (b) Gcsl(6, 2, 4) with equal
irr and irrt measures

There are several ways to construct complete split-like graphs. For example, a
complete split-like graph with n vertices Gcsl(n, q, δ) can be generated using
the following graph operations:

Gcsl(n, q, δ) = Kq +
(

∪J
j=1H(j, R)

)

.

- 126 -



Acta Polytechnica Hungarica Vol. 10, No.7, 2013

In the formula above, Kq is the complete graph on q ≥ 1 vertices, H(j, R)
are R ≥ 1 regular connected graphs for j = 1, 2, . . . , J .

As an example, in Fig. 8 two non-isomorphic edge-equivalent complete split-
like graphs are shown. These complete split-like graphs are defined as
G1

csl(14, 2, 4) = K2 + C12 and G2
csl(14, 2, 4) = K2 + (C3 ∪ C4 ∪ C5), re-

spectively. It is easy to see that irrt(G
1
csl(14, 2, 4)) = irrt(G

2
csl(14, 2, 4)) =

(a)
(b)

y1 y2

x1

x2
x3 x4 x5

x6

x7

x8

x9
x10

x11

x12

y1 y2

x1

x2
x3

x4
x5

x6 x7 x8
x9

x10
x11
x12

Fig. 8. Edge-equivalent complete split-like graphs, (a) G1

csl(14, 2, 4) and
(b) G2

csl(14, 2, 4)

irr(G1
csl(14, 2, 4)) = irr(G2

csl(14, 2, 4)) = 216.

From the previous considerations the following result follows.

Proposition 7. Let G1 and G2 be edge-equivalent complete split-like graphs.

Then the equalities irrt(G1) = irrt(G2) = irr(G1) = irr(G2), Var(G1) =
Var(G2) and CS(G1) = CS(G2) are fulfilled for them.

Proof. Because G1 and G2 are edge-equivalent graphs, this implies that the
equalities irrt(G1) = irrt(G2), irr(G1) = irr(G2) and Var(G1) = Var(G2)
hold. Moreover, because G1 and G2 are complete split-like graphs, in which
each vertex is of degree δ or n−1, it follows from Lemma 4 that their spectral
radii are identical.

For an illustration of Proposition 7, see the complete split-like graph pair
depicted in Fig. 8.

4.3 Semiregular graphs

It is important to note that except the complete bidegreed bipartite graphs,
the semiregular graphs do not belong to the family of balanced bidegreed
graphs.
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Tamás Réti et al. On Irregularities of Bidegreed Graphs

Proposition 8. Let S1(∆1, δ1) and S2(∆2, δ2) be semiregular graphs for which

∆ = ∆1 = ∆2, δ = δ1 = δ2, and m∆,δ = m(S1) = m(S2) hold. Then,

CS(S1) = CS(S2) =
√
∆δ − 2∆δ

∆+ δ
,

and

Var(Si) =

(√
∆δ +

2∆δ

∆+ δ

)

CS(Si),

for i = 1, 2, where CS(G) is the Collatz-Sinogowitz irregularity index of a

graph G.

Proof. It is easy to see that for a semiregular graph S with n vertices

n = n∆ + nδ =
m∆,δ

∆
+

m∆,δ

δ
=

∆+ δ

∆δ
m∆,δ.

This implies that for the mean degrees d we have

d(S1) = d(S2) =
2m∆,δ

n
=

2∆δ

∆+ δ
.

From Lemma 1 one obtains

ρ = ρ(S1) = ρ(S2) =
√
∆δ.

consequently, we have

CS(S1) = CS(S2) = ρ− 2m∆,δ

n
=

√
∆δ − 2∆δ

∆+ δ
.

Moreover, from Lemmas 2 and 3, it follows that for a semiregular graphs S

Var(S) =

(

ρ− 2m

n

)(

2m

n
+ ρ

)

= ρ2 −
(

2m

n

)2

= ∆δ −
(

2∆δ

∆+ δ

)2

=

(√
∆δ +

2∆δ

∆+ δ

)

CS(S).

This implies that

Var(Si) =

(√
∆δ +

2∆δ

∆+ δ

)

CS(Si).

for i = 1, 2.

Proposition 9. Let S1(∆1, δ1) and S2(∆2, δ2) be semiregular graphs for which

∆ = ∆1 = ∆2, δ = δ1 = δ2, and m∆,δ = m(S1) = m(S2) hold. Then, the

equalities irrt(S1) = irrt(S2), irr(S1) = irr(S2) are fulfilled for them.
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Proof. It is obvious that

irr(S1) = irr(S2) = m∆,δ(∆− δ).

Moreover, because for a semiregular graph

n∆nδ =
m2

∆,δ

∆δ
,

we get

irrt(S1) = irrt(S2) = n∆nδ(∆− δ) =
∆− δ

∆δ
m2

∆,δ.

As a consequence of Proposition 8 and 9, we have the following result.

Corollary 2. Let S1(∆1, δ1) and S2(∆2, δ2) be semiregular graphs for which

∆ = ∆1 = ∆2, δ = δ1 = δ2, and m∆,δ = m(S1) = m(S2) hold. Then

the equalities irrt(S1) = irrt(S2), irr(S1) = irr(S2),Var(S1) = Var(S2) and

CS(S1) = CS(S2) are fulfilled for them.

Graphs Jc and Jd depicted in Fig. 4 satisfy Corollary 2. From Proposition 9,
we have the following corollary.

Corollary 3. Let S(∆, δ) be a semiregular graph. Then,

irrt(S(∆, δ)) =
irr2(S(∆, δ))

∆δ(∆− δ)
.

4.4 Bidegreed graphs with identical CS,Var, irr and irrt indices

In Fig. 3(b), Proposition 7 and Corollary 2 examples of pairs of bidegreed
graphs were presented, with the property that both graphs from a given
pair have identical CS,Var, irr and irrt. Next, we present another such pair
of graphs. A 6-vertex graph pair with degree set {2, 3} and with identical
CS,Var, irr and irrt indices is depicted in Fig. 9. These graphs are edge-
equivalent (m2,3 = 4,m3,3 = 4), and they have identical spectral radius
1 +

√
3.

In the sequel, we show that there exists an infinitely large family of pairs of
bidegreed graphs with identical CS,Var, irr and irrt indices . For that purpose,
first we need the following definition:
Let d2(v) denote the sum of the degrees of all vertices adjacent to a vertex v
in a graph G. Then, G is called 2-walk linear (more precisely, 2-walk (a, b)-
linear)) if there exists a unique rational numbers pair (a, b) such that

d2(v) = a · d(v) + b

holds for every vertex v of G.
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Fig. 9. Tricyclic, bidegreed, edge equivalent graph pair with identical spectral ra-
dius 1 +

√

3 [9]

Lemma 5 ( [14]). A graph G has exactly two main eigenvalues if and only

if G is 2-walk linear. Moreover, if G is a 2-walk (a, b)-linear connected graph,

then parameters a and b must be integers, and the spectral radius of G is

ρ =
1

2

(

a+
√

a2 + 4b
)

.

Using the above lemma we will demonstrate by examples that there are
infinitely many bidegreed graph pairs having identical irregularity indices
CS,Var, irr and irrt.

Example 3. Consider the two infinite sequences of bidegreed graphs denoted
by Ga(k) and Gb(k) (an illustration when k = 5 is given in Fig. 10). Both
Ga(k) and Gb(k) are of order 3k, where k ≥ 3. Graphs Ga(k) and Gb(k) are

Ga(k) Gb(k)

k = 5 k = 5

Fig. 10. Bidegreed graph pair Ga(5) and Gb(5)

edge-equivalent, because the identitiesm2,2 = k,m2,4 = 2k,m4,4 = k,m = 4k
are fulfilled. Moreover, Ga(k) and Gb(k) are 2-walk (3, 0) linear graphs. By
Lemma 5, it follows that they have identical spectral radius which is equal
to 3. It is easy to show that for graphs Ga(k) and Gb(k) the following equal-
ities hold: CS(Ga(k)) = CS(Gb(k)) = 1/3, Var(Ga(k)) = Var(Gb(k)) = 8/9,
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irr(Ga(k)) = irr(Gb(k)) = 4k, and irrt(Ga(k)) = irrt(Gb(k)) = 8k2. It is in-
teresting to note that irr(Ga(k))/n = irr(Gb(k))/n = 4/3, and irrt(Ga(k))/n

2

= irrt(Gb(k))/n
2 = 4/9, for any k ≥ 3.

Example 4. Another infinite sequence of bidegreed graph pairs denoted by
Ha(k) and Hb(k) is shown in Fig. 11. Each of them has n = 4k vertices, where
k ≥ 2. Graphs Ha(k) and Hb(k) are edge-equivalent, because the identities

Ha(k)

k1

2 k-1

1 k

2

Hb(k)

k-1

Fig. 11. Bidegreed graph pair Ha(k) and Hb(k)

m2,3 = 4k = n, m3,3 = k, and m = 5k hold. It is easy to see that Ha(k)
and Hb(k) are 2-walk (1, 4) linear graphs. From this it follows that they have
identical spectral radius which is equal to

(

1 +
√
17
)

/2. For graphsHa(k) and

Hb(k) the following equalities hold: CS(Ha(k)) = CS(Hb(k)) = (
√
17− 4)/2,

Var(Ha(k)) = Var(Hb(k)) = 1/4, irr(Ha(k))/n = irr(Hb(k))/n = 1, and
irrt(Ha(k))/n

2 = irrt(Hb(k))/n
2 = 1/4).

Example 5. Semi-regular bidegreed graph pairs denoted by Ja(k) and Jb(k)
are shown in Fig. 12. Both of them are comprised of n = 5k vertices, where
k ≥ 2. Graphs Ja(k) and Jb(k) are edge-equivalent, since the identity m2,3 =
6k is fulfilled. Moreover, these graphs are 2-walk (0, 6) linear. Consequently,
they have identical spectral radius which is equal to

√
6. For graphs Ja(k)

and Jb(k) the following equalities hold: CS(Ja(k)) = CS(Jb(k)) =
√
6−12/5,

Var(Ja(k)) = Var(Jb(k)) = 6/25, irr(Ja(k))/n = irr(Jb(k))/n = 6/5, and
irrt(Ja(k))/n

2 = irrt(Jb(k))/n
2 = 6/25.

4.5 Smallest bidegreed graphs with identical irregularity indices

In this section we present pairs of smallest graphs that have identical two or
more irregularity measures. The results were obtained by computer search.
For two graphs of same order G1 = (V1, E1) and G2 = (V2, E2), we said that
G1 is smaller than G2 if |E1| < |E2|. Consequently, for two pairs of graphs
of same order D1 = (G1, G2) and D2 = (G3, G4), we said that D1 is smaller

than D2 if |E1|+ |E2| < |E3|+ |E4|.

- 131 -
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Ja(k)

k1

2 k-1

1 k

2

Jb(k)

k-1

Fig. 12. Bidegreed graph pair Ja(k) and Jb(k)

First, in Fig. 13(a) the smallest pair of graphs, that have identical all four
irregularity indices CS,Var, irr and irrt, is presented. The graphs G1 and G2

are of order 6 and size 7. Their CS,Var, irr and irrt indices are 0.080880,
0.266667, 4, and 8, respectively. They also have same spectral radius which
is 2.414214. We note that the pair (G1, G2) is at same time the smallest pair
of graphs with equal CS index.

G3

P5

G3 S5

G1 G2

(a) (b)

(c) (d)

G4G3

P5

G5

Fig. 13. Smallest bidegreed graphs with identical irregularity indices
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In Fig. 13(b) the smallest pair of graphs, that have identical Var, irr and irrt
indices is presented. This pair is also the smallest pair with the property
that both graphs have equal Var and irr indices. The graphs G3 and G4 are
of order 5 and sizes 6 and 9, respectively. Their Var, irr and irrt indices are
0.300000, 6, and 6, respectively.

The pair (P5, G3), depicted in Fig. 13(c), is the smallest pair with the property
that both graphs have equal Var and irrt indices. At same time, it is the
smallest pair with both graphs having equal Var index. Also, it is the smallest
pair with both graphs having equal irrt index. Their Var and irrt indices are
0.300000 and 6, respectively.

The pair (S5, G3), depicted in Fig. 13(d), is the smallest pair with the prop-
erty that both graphs have equal irr and irrt indices. It holds that irr(S5) =
irr(G3) = 12 and irrt(S5) = irr(G3) = 12. At same time, together with the
pair (P5, G5), it is the smallest pair with both graphs having equal irr index.

5 Final remarks and open problems

In this paper we focused our investigation to the study of the relations be-
tween the irregularity indices of bidegreed connected graphs. Comparing the
irregularity indices of various graphs, in the majority of cases it was supposed
that the number of vertices or the corresponding degree sets are identical (see
Figures 3, 4, 6, 8, 9, 10, 11, 12, 13(a)). It would be interesting to consider
graphs of same order which have different degree sets, but their corresponding
irregularity indices are identical (as few examples in Fig. 13(b),(c),(d)).

Another interesting problem is to estimate the maximum possible difference
of vertex and edge numbers of graphs having identical irregularity indices
(assuming that such positive finite integer exists.) Both cases, when graphs
are of same or different order, are of interest. In Fig. 14, bidegreed graphs
B(6, 5) and B(3, 2) represent an example concerning this problem. We would

B(6, 5) B(3, 2)

Fig. 14. Bidegreed graphs with identical irrt = 24 and irr = 12 indices

like to note that, the bidegreed polyhedral graph B(6, 5) is the dual of the
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graph of the smallest C24 fullerene which is composed of 12 pentagonal and 2
hexagonal faces, and graph B(3, 2) is a semiregular graph. It is worth noting
that graph B(6, 5) has 14 vertices and 36 edges, while graph B(3, 2) has 10
vertices and 12 edges. It is surprising that there is a large difference between
the corresponding edge-numbers of the two graphs, (36− 12 = 24).
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Abstract: In this paper, the finite-time stability (FTS) of linear continuous time-delay 

systems is studied. By using suitable Lyapunov-like function and Jensen’s and Coppel’s 
inequality, a FTS condition is derived as a set of algebraic inequalities. The comparison of 

this method with some previous one is done and it has been showed that the numerical 

computation is reduced. 
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1 Introduction 

Asymptotic stability, BIBO stability and other classical stability concepts deal 
with systems operating over an infinite time interval. However, in many practical 
cases, larger values of the state variables are not allowable in the specified (finite) 
time interval. Then, instead of asymptotic stability, it is preferable to use the 
stability defined over a finite time interval, i.e. finite-time stability (FTS). A 
system will be FTS if its state does not exceed some previously defined limit, for a 
given time interval. This concept stability dates back to the 1950s [1-3]. In 
references [4-11] some controllers are proposed such that the feedback system is 
FTS. 

Many technical systems, such as pneumatic, hydraulic and electric systems, as 
well as process systems in the chemical industry, possess time-delay. The stability 
analysis of time-delay systems is more complex because the time-delay impairs 
the system stability. Similar to the non-delay systems, we can define FTS for time-



D. LJ. Debeljkovic et al.  Finite-Time Stability of Continuous Time Delay Systems:  
 Lyapunov-like Approach with Jensen’s and Coppel’s Inequality 

 – 136 – 

delay systems. In references [12-18], some basic results on FTS are derived. These 
results are conservative, because they use the inequalities based on the norm of 
state vector. Recently, using new boundary technique based on the vector and 
matrix inequality, integral or no integral type, some less conservative results are 
obtained [19–22]. 

This article considers a novel delay-dependent FTS sufficient condition of linear 
continuous time-delay systems. The combination of Lyapunov-like approach and 
two algebraic inequalities (Jensen’s integral inequality and Coppel’s inequality) is 
used to solve this stability problem. The condition is expressed in the form of a set 
of algebraic inequality. 

Notation. n and n m  denote the n-dimensional Euclidean space and set of all 
n m  real matrices. 0X   means that X is real positive definite symmetric 

matrix; X Y  is equivalent to 0X Y  .   max1 2 ( )T
X X X    is matrix 

measure of matrix X . 

2 Preliminaries and Problem Formulation 

Consider the following linear time-delay system: 

 0 1( ) ( ) ( )x t A x t A x t      (1) 

with a initial conditions: 

 ( ) ( ), [ ,0]x t t t      (2) 

where ( ) n
x t 

 
is the state vector, 0

n n
A

 , 1
n n

A
  and n m

B
  are 

constant matrices and   is time-delay. 

In the process of derivation of the stability condition, following definition and 
three lemmas are used. 

Definition 1. [22] Time-delay system (1) satisfying the given initial condition (2) 
is said to be finite-time stable (FTS) with respect to ( , , )T   if 

 
[ ,0]

sup ( ) ( ) ( ) ( ) , [0, ]T T

t

t t x t x t t T


   
 

      (3) 

Lemma 1. [22] (Jensen’s integral inequality) For any positive symmetric constant 

matrix n n
M

 , scalars a , b  satisfying a b , a vector function 

 : , n
f a b   such that the integrations concerned are well defined, then: 



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013 

 – 137 – 

          
T

b b b
T

a a a

f d M f d b a f M f d      
   

       
   
    (4) 

Lemma 2. [12] (Coppel’s inequality) For any real square matrix n n
M

 and 
scalar variable  t  , the following expression holds: 

    2
max

T M tMt M t
e e e

     (5) 

where ( )M  is matrix measure of the matrix M . 

Lemma 3.  For any symmetric positive definite matrix 0T   , the 
following expressions hold: 

 12 ( ) ( ) ( ) ( ) ( ) ( )T T
u t v t u t u t v t v t

      (6) 

 12 ( ) ( ) ( ) ( ) ( ) ( )T T
u t v t u t u t v t v t

       (7) 

3 Main Result 

In this section Lyapunov-like approach will be used in order to find sufficient 
delay dependent FTS conditions of the time-delay system (1). The following 
lemma, that is necessary for the design of Lyapunov-like function, is developed. 
We note that the new result is based on the result given in [23]. 

Lemma 4. Let a scalar function   V y t  be defined by: 

       T
V y t y t y t  (8) 

where  y t  is vector which is defined by: 

        
0

y t x t Q x t d



      (9) 

( ) n
x t  is the state vector of the system (1),   n n

Q t
  is continuous and 

differentiable matrix function over time interval  0, satisfying the following 

differential matrix equation: 

         0 0 , 0,Q A Q Q       (10) 

with initial condition: 
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   1Q A   (11) 

Then, derivative of   V y t  is given with: 

       T
V y t y t y t   (12) 

where: 

      0 00 0
T

A Q A Q      (13) 

Proof. From (8), follows: 

 

              

           

0 0

0 0

T T T

T T T

d
V y t x t x t Q d x t Q x t d

dt

d
x t x t Q d x t Q x t d

dt

 

 

     

     

   
           
   

   
           
   

 

 

  (14) 

First derivative of the integral term    
0

Q x t d



     can be determined as 

follows. From 

 
             d

Q x t Q x t Q x t
d

     
 


    


 (15) 

      x t x t
t

 

 

   
 

  (16) 

we get: 

 
             d

Q x t Q x t Q x t
d t

     



    


 (17) 

or rearranging: 

              d
Q x t Q x t Q x t

t d
     




    


  (18) 

Using the following identity: 

          d
Q x t Q x t

d t t
   

  


  (19) 

one can finally have: 
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0 0 0

0

0

d d
Q x t d Q x t d Q x t d

d t d

Q x t d Q x t Q x t

  



        


    

    

    

  


  (20) 

Employing (11), we have: 

              1

0 0

0
d

Q x t d Q x t d A x t Q x t
d t

 

               (21) 

Finally, (14) becomes: 

 

  
   

         

     

     

   

         

0 1

1

0

0

0

0 1

1

0

0

0

T T T T

T T T T T T

T T T

V y t

x t A x t A

x t Q d x t A x t Q

x t Q x t d

x t x t Q d

A x t A x t

Q x t d A x t Q x t











   

  

  



   



   
 

  
      
 
 

    
 
 

     
 
   
 

 
      
 









 (22) 

or: 

 

            

     

     

         

0

0

0

0

0

0

0

0

T T T T T T

T T T

V y t x t A x t Q x t Q d

x t Q x t d

x t x t Q d

A x t Q x t Q x t d









  

  

  

  

 
      
 
 

    
 
 

     
 
 

     
 









  (23) 

and, after some simple manipulations, follows: 
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0 0

0

0

0

0

0 0

0 0

0

0

T T T

T T T

T T T T

T T T

V y t x t A Q A Q x t

x t A Q Q Q Q x t d

x t Q A Q Q Q d x t

x t Q Q Q Q x t d d





 

    

    

       

   

   

 
     
 

   





 

  (24) 

By the virtue of (10), one can get: 

 

      

          

          

 
      

      
 

0 0

0

0 0

0

0

0 0 0

0 0

0 0

0

0

T

T T T

T T T T

T T T

T

T

V y t x t x t

x t A Q A Q Q x t d

x t Q A Q A Q d x t

Q A Q Q
x t x t d d

Q A Q Q





 

  

  

 
   

 

 

    

 
      
 

      
   





 

 (25) 

that is: 

 

            

     

        

0

0

0 0

T T

T T

T T

V y t x t x t x t Q x t d

x t Q d x t

x t Q Q x t d d





 

  

  

     

    

 
    
 

   





 

  (26) 

as well as: 

 

          

         

0

0 0

T

T T

V y t x t x t Q x t d

x t Q d x t Q x t d



 

  

     

 
     

 
   

          
   



 
 (27) 

and finally: 
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0

T T T
V y t x t y t x t Q d y t



  
 

      
 
   (28) 

           
0

T T T
V y t x t x t Q d y t



  
 

    
  

   (29) 

       T
V y t y t y t    (30) 

what completes the proof.  

Previously derived result will be used to obtain the following stability condition. 

Theorem 1. The time-delayed system (1)-(2) with is finite-time stable with 

respect to  , , T 
 
if there exists a positive scalar   such that: 

 
       

   0, , 0 , 0,

T T
x t x t q x t x t

q t T

 

 

  

    
  (31) 

     max

1

1 1 1
Tq

e
   




 

      
  (32) 

 

  1 2

1,2

max , 0 , ,

1 1 4
, 4 1

2

q
q






  

 
  

  (33) 

where: 

  0 0R A Q   (34) 

 T
R R    (35) 

     
 

 
22

max

1
0 0

2

R
T e

Q Q
R

 

 



   (36) 

 2 R  being matrix measure of matrix R and  0Q is any solution of the 

following nonlinear transcendental matrix equation: 

    0 0
10

A Q
e Q A

    (37) 

Proof. From (12) follows: 

            max
T

V y t y t y t V y t      (38) 
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Integrating (38) from 0 to t, with  0,t T , we have: 

       max 0
t

V y t e V
      (39) 

From (8) , one can find: 

 

            

       

0

0 0

0 0 0 2 0T T

T

V y x x x Q x d

Q x d Q x d



 

  

     

  

 
    
  



 
  (40) 

Based on the known inequality (6), for I  , one can get: 

 

              

           

0

0 0 0

0 0 0 0 0T T T

T

T

V y x x x Q Q x d

x x d Q x d Q x d



  

  

        

 

 
       

  



  
 (41) 

Using Jensen’s inequality (4), we get: 

 

              

           

0

0 0

0 0 0 0 0T T T

T T T

V y x x x Q Q x d

x x d x Q Q x d



 

  

        

 

     



 
  (42) 

Introducing the general solution of (10), given with: 

        00 , 0, , 0R
Q e Q R A Q

        (43) 

and by substituting (43) into (42), the following inequalities are obtained: 

 

              

           

0

0 0

0 0 0 0 0 0 0

0 0

T

T

T T R T R

T T T R R

V y x x x e Q Q e x d

x x d x Q e e Q x d


 

 
 



      

 

     



 
  (44) 
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max max

0

max

0 0

0 0 0 0 0 0 0

0 0

T

T

T T R R T

T R R T T

V y x x Q Q e e x x d

x x d e e x Q Q x d


 

 
 

  

       

 

     



 
  (45) 

                 
            

max max

0

max max

0 0

0 0 0 0 0 0 0

0 0

T

T

T T T R R

T T R R T

V y x x x x Q Q e e d

x x d Q Q e e x d


 

 
 

  

       

  

    



 
(46) 

Based on Definition 1, one can find: 

 

         
      

max max

0

max max

0

0 0 0

0 0

T

T

T R R

T R R

V y Q Q e e d

Q Q e e d


 


 

    

    

 

 




  (47) 

From Coppell’s inequality, Lemma 2, follows: 

              2
max

0

0 1 1 0 0
RT

V y Q Q e d


             (48) 

or: 

 

         
 

 

      
 

 

2

max

0

2

max

0 1 1 0 0
2

1
1 1 0 0

2

R
T

R
T

e
V y Q Q

R

e
Q Q

R

  



 

  


  






 
   
 
 

 
    

 

  (49) 

or finally: 

      0 1 1V y        (50) 

Based on (8)-(9), we have: 

             
0

2T T
x t x t x t Q x t d V y t



       (51) 

or: 
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0

2T T
x t x t V y t x t Q x t d



       (52) 

Let us find the right second term in inequality (52). By using the inequality (7) for 
0pI   and by virtue of (31) and (43), one can find: 

 

     

           

           

            

0

0 0

0 0

max

0 0

2

1

0 0

0 0

T

T

T

T T T

T R T R T

T T R R T

x t Q x t d

x t Q Q x t d x t x t d

q
x t e Q Q e x t d x t x t d

q
Q Q x t e e x t d x t x t d



 

 
 

 
 

  

     

 

  

  

   


 


 




 

 

 

  (53) 

or: 

   

     

              

              

        
 

     

0

max max

0

2
max

0

2

max

0

2

0 0

0 0

0 0
2

T

T

T T R R T

RT T T

R
T T T

x t Q x t d

q
Q Q x t x t e e d x t x t

q
Q Q x t x t e d x t x t

e q
Q Q x t x t x t x t

R




 


 

  



  

  

 








  

 


 


 







 (54) 

or: 

 

     

    
 

         

   

0

2

max

2

1
0 0

2

T

R
T T T

T

x t Q x t d

e q
Q Q x t x t x t x t

R

q
x t x t



 

  






  


 



     



  (55) 
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Thus, by using (39), (50), (52) and (55), leads to: 

 

          

        

        

max

max

0

1 1

T T

t T

t T

q
x t x t V y t x t x t

q
e V y x t x t

q
e x t x t









   





      
      

        

  (56) 

and: 

 

          max1 1 1 , 0,
tTq

x t x t e t T
     

        
  (57) 

where: 

 
1 0

q  


  (58) 

Obviously, if the condition (33) holds, then the inequality (58) is satisfied. 

Finally, from the above inequality and (32), we get: 

      , 0,T
x t x t t T     (59) 

Remark 1. For the derived stability criteria, an existence of solution of the 
nonlinear algebraic matrix equation (37) is a necessary condition. In other words, 

the equation (37) must have at least one solution with respect to  0Q , in order to 

Theorem 1 can be generally applied. 

4 Numerical Example 

Example 1. Given a system of the form: 

 

     

   
0 1

0 1

0.1

( ) 1 1 1 , 0.1,0

1.7 1.7 0 1.5 1.7 0.1

1.3 1 0.7 , 1.3 1.5 0.3

0.7 1 0.6 0.7 1 0.1

T

x t A x t A x t

t t

A A



  

  

    
          
       

 (60) 
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It is obvious that: 

     3 , ,0T
t t t        

Figures 1-2 show the initial response ( )x t  and the norm of state vector ( ) ( )T
x t x t  

of the system (60). Notice that the system (60) is not asymptotically stable. In 
addition, we determine upper bound of  T  such that the system (60) is FTS with 

respect  , , T  . 

0 0.5 1 1.5 2
0

2

4

6

8

10

Time

x(
t)

 

 

x1(t)

x2(t)

x3(t)

 

Figure 1 
The state response ( )x t  of the system (60) 

Based on the initial response of the system (60), for following value of the 
parameter q   can be adopted so (31) is valid: 0.9q  . 

 

Figure 2 

The norm ( ) ( )T
x t x t  of the state vector of the system (60) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22
0

20

40

60

80

100

120

Time

XT (
t)

x(
t)

Tm  = 0.707 Ta  = 1.945 
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From (34) and (37) one can find: 

1.5279 1.7336 0.0994

1.2328 1.4145 0.2936

0.5249 0.8069 0.1575

(0)Q

 
  




 

 


 

0.1721 0.0336 0.0994

0.0672 0.4145 0.4064

0.1751 1.8069 0.4425

R

 
   




 




, 

0.3442 0.0335 0.2745

0.0335 0.8290 2.2133

0.2745 2.2133 0.8849

 
    
  

 

so: 

    max 0 0 9.8109T
Q Q  ,   1.1789R  , 1.1064  , 

1 0.1014  , 2 0.8025   ,  0.1014, 0.8025 , 

4 0.3983 1q   ,  max 2.3578   . 

Let  100, 2000, 5000   and find upper bound of T , 
m

T , so the system (60) is 

FTS. The results of the stability analysis, for different values of the parameter  , 

are shown in Table 1 using various methods: [17], [18], [21] and Theorem 1 (this 
paper). The actual values of parameter T , aT  , are estimated from the norm of 

state vector and shown in Table 1. Table 1 also lists the corresponding values of 
the parameter  . 

Table 1 

Upper bound of T , 
m

T  

 
100  ,  

1.945aT  , see Fig. 2 

2000  , 

3.525aT   

5000  , 

4.004aT   

[17]  0.585 1.085 1.238 

[18]  0.448 0.842 0.962 

[21]  
[22, without uncertainty] 

1.225 2.517  2.939 

Theorem 1 
0.707, see Fig. 2 

( 0.2865 ) 
1.978 

( 0.2851 ) 
2.367 

( 0.2837 )  

From Table 1, it follows that Theorem 1 gives significantly better results than [17] 
and [18], but slightly poor results than [21] and [22]. However, unlike [21] and 
[22], which use LMI, Theorem 1 is based on algebraic inequalities, which can be 
solved without using appropriate optimization methods. Thus, compared to [21] 
and [22], the computational complexity of the presented stability criterion is 
significantly reduced. 
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Conclusion 

This paper considers FTS of linear continuous time-delay systems. The 
combination of Lyapunov-like approach and two algebraic inequalities (Jensen’s 
and Coppel’s inequality) is used. The new sufficient, delay-dependent FTS 
criterion with algebraic inequality has been derived. The obtained result reduces 
the numerical computation. 
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Abstract: New vector description of kinetic pressures on shaft bearings of a rigid body 

nonlinear dynamics with coupled rotations around no intersecting axes is first main result 

presented in this paper. Mass moment vectors and vector rotators coupled for pole and 

oriented axes, defined by K. Hedrih in 1991, are used for obtaining vector expressions for 

kinetic pressures on the shaft bearings of a rigid body dynamics with coupled rotations 

around no intersecting axes. A complete analysis of obtained vector expressions for kinetic 

pressures on shaft bearings give us a series of the kinematical vectors rotators around both 

directions determined by axes of the rigid body coupled rotations around no intersecting 

axes. As an example of defined dynamics, we take into consideration a heavy gyro-rotor-

disk with one degree of freedom and coupled rotations when one component of rotation is 

programmed by constant angular velocity. For this system with nonlinear dynamics, series 

of graphical presentation transformations in realizations with changes of eccentricity and 

angle of inclination (skew position) of heavy rigid body-disk in relation to self rotation axis  

are presented, as well as in realization with changing orthogonal distance between axes of 

coupled rotations. Angular velocity of  kinetic pressures components in vector form are 

expressed by using angular acceleration and angular velocity of component coupled 

rotations of gyrorotor-disk. 

Keywords: coupled rotation; no intersecting axes; deviational mass moment vector; 

rotator; kinetic pressures; kinetic pressure components; nonlinear dynamics; gyrorotor-

disk; eccentricity; angle of inclination, deviation kinetic couple; fixed point; graphical 

presentations; three parameter analysis 
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1 Introduction 

No precisions and errors in the functions of gyroscopes caused by eccentricity and 

unbalanced gyro rotor body as well distance between axes of rotations are reason 

to investigate determined task as in the title of our paper. 

The classical book [1] by Andonov, Vitt and Haykin contain a classical and very 

important elementary dynamical model of heavy mass particle relative motion 

along circle around vertical axis through it’s center. Nonlinear dynamics and 

singularities lead to primitive model of the simple case of the gyro-rotor, which 

represent an useful dynamical and mathematical model of nonlinear dynamics. 

Using K. Hedrih’s (See Refs. [2-11]) mass moment vectors and vector rotators, 

some characteristics vector expressions of linear momentum and angular 

momentum and their derivatives for rigid body single rotation, were obtain 

physical and dynamical visible properties of the complex system dynamics and 

their kinetic parameters in vector form for single rotation. There are vector 

components of the shaft bearing kinetic pressures with opposite directions and 

same intensity that present deviational couple effect containing vector rotators, 

whose directions are same as kinetic pressure components on corresponding rotor 

shaft bearings (for detail see Refs. [2] and [5]). 

The definitions of mass moment vectors coupled to the pole and the axis [2-9], 

[12] are introduced in the foundation of this vector method. The main vector is 

  dmn

V

def
O

n  


 ,,
)(

J of the body mass inertia moment at the point  OA   for 

the axis oriented by the unit vector and there is a corresponding vector 
)(O

n


D  of 

the rigid body mass deviational moment for the axis through the point (see 

References [2] and [5-6]). 

This vector approach is very suitable to obtain new view to the properties of 

dynamics of pure classical system dynamics investigated by numerous generations 

of the researchers and serious scientists around the world. We proof this approach 

in our published reference [12]. In Introduction of this paper [12] a short reviews 

of the basis of the subjective selected references about original research results of 

dynamics and stability of gyrostats was given. Then is reason that we didn’t made 

any reviews of the papers about gyroscopes. 

Passing through the content of the numerous published scientific paper, we can 

see that no results concerning behavior of the kinetic pressure directions and 

intensity depending of the nonlinear dynamic regimes. Then, our aim is to 

investigate kinetic pressures and deviation kinetic couple appearing to the shaft 

bearings of the rigid body coupled rotations around two no intersecting axes. Two 

our References [12] from (2008 and 2010) contain short presentation of the kinetic 
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pressure to the gyrorotor self rotation bearings and rotators, as well as presentation 

of the nonlinear dynamics of the heavy gyro-rotor, but not completed. 

This is reason that we take into a large consisderation and investigation three 

parameters analysis of the vector expressions of shaft bearing kinetic presures and 

their cmponents based on our previous results on applications vector method and 

published in our References [12]. This paper contan new rezults based on the 

previous our results. 

Organizations of this paper based on the vector method applications with use of 

the mass moment vectors and vector rotators for describing vector expressions of 

kinetic pressures of the shaft bearings, of the rigid body coupled rotations around 

two no intersecting axes and corresponding kinetic deviation couple appearing by 

opposite kinetic pressures to shaft bearings and shaft bearing reactions. 

Dynamics of a gyro-rotor with one degree of freedom and coupled rotations when 

one component of rotation is programmed by constant angular velocity is 

considered, as an example. For this system of nonlinear dynamics, the series of 

graphical presentation of the kinetic pressures of the shaft bearing of a rigid body 

self rotation are presented. 
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Figure 1 

A rigid body coupled rotations around two no intersecting axes. System is with two degrees of mobility 

and one degrees of freedom, where 1  and 2  are rheonomic and generalized coordinates. Vector 

rotators 01R


, 011R


and 022R


 are presented.ssential connections 
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2 Model of a Rigid Body Rotation Around Two Axes 

without Intersection 

Let us to consider rigid body coupled rotations around two no intersecting axes, 

presented in Figure 1. Ffirst axis is oriented by unit vector 1n


 with fixed position 

and second axis is oriented by unit vector 2n


 which is rotating around fixed axis 

with angular velocity 111 n


  . Axes of rotation are no intersecting axes. Rigid 

body is positioned on the moving rotating axis oriented by unit vector 2n


and 

rotate around self rotating axis with angular velocity 222 n


   and around fixed 

axis oriented by unit vector 1n


 with angular velocity 111 n


  . All geometrical  

parameters are presented in Fgure 1. 

When any of three main central axes of rigid body mass inertia moments is not in 

direction of self rotation axis, then we can see that rigid body is scew positioned to 

the body self rotation axis. The angles of rigid body central main inertia axes 

inclinations acording self-lf rotation axis are i , 2,1i . These angles are angles 

of scew position of rigid body to the body self rotation axis. When center C  of 

the mass of rigid body is not on body self rotation axis of rigid body rotation, we 

can say that rigid body is scew positioned. Eccentricity of body position is normal 

distance between body mass center C  and axis of self rotation and it is defined 

by   22 ,, nne C

  . Here C


 is vector position of mass center C  with origin 

in point O2, and position vector of mass center with fixed origin in point O1 is 

COC rr 


 . 

3 Vector Equations of Dynamic Equlibrium of Rigid 

Body Coupled Rotations around Two No 

Intersecting Axes 

By using theorems of linear momentum and angular momentum with respect to 

time, we can write two equations of dynamic equilibrium of the considered rigid 

body coupled rotations about two no intersecting axes, presented in Figure 1, in 

the following equations (for detail see Ref. [17] and Appendix): 
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 (2)             

where iF


, Pi ...,3,2,1  are active forces and G


 is weight of gyro rotor, 1AF


 and 

1BF


 are reactive forces of fixed axis shaft bearing reactions and 2AF


 and 2BF


 are 

forces of self rotation shaft bearing reactions. From previous obtained vector 

equations, it is not difficult to obtain kinetic pressures to both shaft bearings, 1AF


 

and 1BF


, as well as 2AF


 and 2BF


 on both shafts bearings as well as two 

differential equations along 1  and 2  of the rigid body coupled rotations about 

two no intersecting axes, and to obtain time solutions of unknown generalized 

coordinate 1  and 2 , or if we know these coordinate to find unknown external 

active forces. 

For the case that axes are perpendicular some terms in previous vector expressions 

and vector equations are equal to zero, but these equations are nonlinear along 

angle coordinates 1  and 2 , and coupled by generalized coordinates, 1  and 

2 , and their derivatives, and also, by forces of shaft bearings reactions. 

Two vector equates (1) and (2) are valid for rigid body coupled rotations around 

no intersecting axes, as well for the case intersecting axes as its special case. Also, 

these equations are valid for the system dynamics with two degrees of mobility, 

and for three different cases. 

4 Vector Rotators of Rigid Body Coupled Rotations 

around Two No Intersecting Axes 

We can see that in previous vector equations (1) and (2) terms for derivative of 

linear momentum and angular momentum contain two sets of the vector rotators: 
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First two vector rotators 01R


 and 011R


are orthogonal to the direction of the first 

fixed axis and third vector rotator is orthogonal to the self rotation axis. But, first 

vector rotator 01R


 is coupled for pole 1O  on the fixed axis and second and third 

vector rotators, 011R


and 022R


, are coupled for the pole 2O  on self rotation axis 

and for corresponding direction oriented by directions of component angular 

velocities of coupled rotations. Intensities of two first rotators are equal and are 

expressed by angular velocity and angular acceleration of the first component 

rotation, and intensity of third vector rotators is expressed by angular velocity and 

angular acceleration of the second component rotation, and they are in the 

following forms: 4

1

2

101101   RR  and 4

2

2

2022   R . 

Lets introduce notation 01 , 011  and 022  denote difference between 

corresponding component angles of rotation 1  and 2  of the rigid body 

component rotations and corresponding absolute angles of rotation of pure 

kinematics vector rotators about axes oriented by unit vectors 1n


and 2n


. These 

angular velocities of relative kinematics vectors rotators 
01R


,
011R


and
022R


 

which rotate about corresponding axis in relation to the component angular 

velocities of the rigid body component rotations are: 

      

 
4

1

2

1

1111
01101

2











   and  

 
4

2

2

2

2222
02

2











              (6)  

In Figure 1 Vector rotators 
01R


, 
011R


and 
022R


 are presented. 

We can see that in previous vector expression (2) for derivative of angular 

momentum are introduced vector rotators in the following vector form: 
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Figure 2 

Vector rotators 

1R
  (a*) and 

2R
  (b*) in relations to corresponding mass moment vectors 

)( 2

1

O

n


J

and 

)( 2

2

O

n


J

, and their corresponding deviational components 
)( 2

1

O

n


D

and 
)( 2

2

O

n


D

as well as to corresponding 

deviational planes. (c*) Model of heavy gyro rotor with two component coupled rotations around 

orthogonal axes without intersections 

 

The first 
1R


is orthogonal to the fixed axis oriented by unit vector 1n


 and second 

2R


is orthogonal to the self rotation axis oriented by unit vector 2n


. Intensity of 

first rotator 
1R


 is equal to intensity of previous defined rotator 
01R  and intensity 

of second rotator 
2R


 is equal to intensity of previous defined rotator 
022R  

defined by expressions (7). In Figure 2 vector rotators 
1R


 (in Figure 2 a*) and 
2R


 

(in Figure 2.b*) in relations to corresponding mass moment vectors )( 2

1

O

n


J and 

)( 2

2

O

n


J , and their corresponding deviational components )( 2

1

O

n


D and )( 2

2

O

n


D as well as 

to corresponding deviational planes are presented. Vector rotators 1R


 and 2R


 are 

pure kinematical vectors first presented in reference [18,19] as a function on 

angular velocity and angular accelerationin a form 
0

2
RRR



 wu  . 

Rotators from first set are rotated around through pole 2O  and axis in direction of 

first component rotation angular velocity and depend of angular velocity 1  and 

angular acceleration 1 . There are two vectors of such type and all trees have 

equal intensity. Rotators from second set are rotated around axis in direction of 

second component rotation and depend of angular velocity 2  and angular 

acceleration 2 . There are two vectors of such type and they have equal intensity. 
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Lets introduce notation 1 , and 2  denote difference between corresponding 

component angles of rotation 1  and 2  of the rigid body component rotations 

and corresponding absolute angles of pure kinematics vector rotators about axes 

oriented by unit vectors 1n


and 2n


 through pole 2O . These angular velocity of 

relative kinematics vectors rotators 
1R


 and 
2R


 which rotate about axes in 

corresponding directions in relation to the component angular velocities of the 

rigid body component rotations through pole 2O  are expressed as 

011011     and 022    .

                             

5 Vector Expressions of Kinetic Pressures (Kinetic 

Reactions) on Shaft Bearings of Rigid Body 

Coupled Rotations around Two No Intersecting 

Axes 

Kinetic pressures (bearing reactions with out parts reactions induced by external 

forces) on fixed shaft bearings for the case that spherical bearing is at the pole 1O  

and cylindrical in this fixed axis defined by vector position 111 nBB


   are in the 

following form: 

      2
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  (9) 

It is not difficult, by use system decomposition, to obtain kinetic pressures on 

body self rotation shaft bearings for the case that spherical bearing is at the pole 

2O . 

By analysis vector equations (1) and (2) and corresponding expressions (8) and (9) 

for kinetic pressures on the both shafts bearings, we can conclude that in the 

system to the both shaft bearings appear in the pair of bearings two opposite 

components of kinetic pressures with deviation couple. In fixed shaft bearings 1A  

and 1B  appear the following opposite components: 1BNF


and dev

BN
F

1


 in vector 

relation: dev
BN BN

FF
11


 , but in different points of appearance, bearings 1A  and 1B  

with distance 1B


 and build one couple,    dev
BBNBdev AN

FF
1

,, 1111


 M , 
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known under the name deviation couple, and identified in like our investigated 

system dynamics, for which we obtain the following vector expression: 
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 JDRDRM
             (10) 

Also, it is possible to conclude for two opposite components  of kinetic pressures 

to the self rotation shaft bearings 2BNF


 and dev
F2


 in vector relation: 

dev
BN BN

FF
22


 , but in different points of appearance, bearings 2A and 2B  with 

distance 2B


 and build one couple,    dev
BBNBdev AN

FF
2

,, 2222


 M , known 

under the name deviation couple, and also identified in like our investigated 

system dynamics. 

6 Dynamic of Rigid Body Coupled Rotations around 

Two Orthogonal No Intersecting Axes and with 

One Degree of Freedom 

We are going to take into consideration special case of the considered heavy rigid 

body with coupled rotations about two axes without intersection with one degree 

of freedom, and in the gravitation field. For this case generalized coordinate 2  is 

independent, and coordinate 1  is programmed. In that case, we say that 

coordinate 1  is rheonomic coordinate and system is with kinematical excitation, 

programmed by forced support rotation by constant angular velocity. When the 

angular velocity of shaft support axis is constant, ,11 const  we have that 

rheonomic coordinate is linear function of  time, 1011   t , and angular 

acceleration around fixed axis is equal to zero 01  . Special case is when the 

support shaft axis is vertical and the gyro-rotor shaft axis is horizontal, and all 

time in horizontal plane, and when axes are no intersecting at normal distance a . 

So we are going to consider that example presented in Figure 2c*. The normal 

distance between axes is a . The angle of self rotation around moveable self 

rotation axis oriented by the unit vector 2n


 is 2  and the angular velocity 

is 22   . The angle of rotation around the shaft support axis oriented by the unit 

vector 1n


 is 1  and the angular velocity is constat1 . The angular velocity of 

rotor is 
22112211 nnnn


  . The angle 2 is generalized coordinates in 

case when, we investigate system with one degrees of freedom, but system have 

two degrees of mobility. Also, without loose of generality, we take that rigid body 
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is a disk, eccentrically positioned on the self rotation shaft axis with eccentricity 

e , and that angle of skew inclined position between one of main axes of disk and 

self rotation axis is  , as it is visible in Figure 2c*. 

For that example, differential equation of the heavy gyro rotor-disk self rotation of 

reviewed model in Figure 2 for the case coupled rotations about two orthogonal no 

intersecting axes by using (2), after multiplying scalar by 2n


, and taking into 

account orthogonal between axes of coupled rotations, we can obtain in the 

following form: 

0cossin)cos( 2

2
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2

2                                       (11) 
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Here it is considered an eccentric disc (eccentricity is e ), with mass m  and 

radius r , which is inclined to the axis of its own self rotation by the angle   (see 

Figure 4), so that previous constants (12) in differential equation (11) become the 

following forms: 
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Relative nonlinear dynamics of the heavy gyro-rotor-disk around self rotation 

shaft axis is possible to present by means of phase portrait method. Forms of 

phase trajectories and their transformations by changes of initial conditions, and 

for different cases of disk eccentricity and angle of its skew position, as well as for 

different values of orthogonal distance between axes of component rotations may 

present character of nonlinear oscillations. 

For that reason it is necessary to find first integral of the differential equation (11). 

After integration of the differential equation (26), the non-linear equation of the 

phase trajectories of the heavy gyro rotor disk dynamics with the initial 

conditions ,00 t    1001  t ,   1001   t , we obtain in the following form: 
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          (14) 

The analyzed system is conservative and equation (14) is the energy integral. 
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In considered case for the heavy gyro-rotor-disk nonlinear dynamics in the 

gravitational field with one degree of freedom and with constant angular velocity 

about fixed axis, we have three sets of vector rotators. 

Three of these vector rotators 01R


, 011R


 and 1R


, from first set, are with same 

constant intensity tcons tan2
1101101  RRR


 and rotate with constant 

angular velocity 1  and equal to the angular velocity of rigid body component 

precession rotation about fixed axis, but two of these three vector rotators, 011R


 

and 1R


 are connected to the pole 2O  on the self rotation axis, and are orthogonal 

to the axis parallel direction as direction of the fixed axis. All these three vector 

rotators 01R


, 011R


 and 1R


 are in different directions (see Figures 1 and 3). Two 

of these vector rotators, 022R


 and 2R


, from second set, are with same intensity 

equal to 4

2

2

2022   R , and connecter to the pole 2O  and orthogonal to the 

self rotation axis oriented by unit vector 2n


 and rotate about this axis with relative 

angular velocity 2 defined by expression (6), in respect to the self rotation angular 

velocity 2  (see Figures 2 a*, b* and c*). 

By use expressions (3-5) and (7), we can list following series of vector rotators of 

the gyro-rotor–disk with coupled rotation around orthogonal no intersecting axes 

and with const1 : 
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in which 
~

 is angle between relative vector position C


 of rigid body mass 

center C  and self rotation axis oriented by unit vector 2n


. One of the vectors 

rotators from the third set is 012R


 with intensity 21012 2 R


 and direction: 
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0121012 2 u


R . This vector rotator is connecter to the pole 2O  and 

orthogonal to the axis oriented by unit vector 1n


 and relative rotate about this 

axis. Intensity of this vector rotator expressed by generalized coordinate 2 , angle 

of self rotation of heavy disk, taking into account first integral (29) of the 

differential equation (26) obtain the following form: 
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Intensity 
022R  of two of these vector rotators, 022R


and 2R


, from second set, 

depends on angular velocity 2  and  angular acceleration 2 . For the considered 

system of the heavy gyro-rotor-disk dynamics, for obtaining expressions of 

intensities of vector rotators, 022R


 and 2R


, from second set, in the function of the 

generalized coordinate 2 , angle of self rotation of heavy disk self rotation, we 

take into account a first integral (14) of nonlinear differential equation (11), and 

by using these result and previous expressions (15) of vector rotator we can write: 

*intensities of the vectors rotators, 022R


 and 2R


, connected for the pole 2O  and 

rotate around self rotation axis, in the following form: 
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*vector rotators orthogonal to the self rotation axes are in the following 

vector forms: 
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7 Kinetic Pressures to Shaft Bearings of Rigid Body 

Coupled Rotations around Two Orthogonal No 

Intersecting Axes and with One Degree of Freedom 

By use previous derived vector equations (1) and (2) and approach to obtaining 

vector expressions (8) and (9) for kinetic pressures, 1AF


 and 1BF


, to fixed shaft 

bearings of rigid body coupled rotations around two no intersecting orthogonal 

axes and for system with one degree of freedom, it is easy to obtain vector 

expressions for kinetic pressures 2AF


 and 2BF


(including component reactions of 

the rigid body weight) to self rotation shaft bearings, 2A and 2B , of rigid body 

coupled rotations around two orthogonal no intersecting axes and for considered 

particular example in the following form: 
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where 
)( 2O

J  is matrix of tensor of mass inertia moments for pole 2O . Previous 

expressions contain member which correspond to the bearing reactions of the rotor 

proper weight. After taking into account mass inertia moment vector for inclined 

disk and disk position with eccentricity of mass body center, we can write in 

scalar form components of kinetic pressures, 2AF


 and 2BF


(including component 

reactions of the rigid body weight) to on bearings, 2A and 2B , of the self rotation 

axis in the following form: 







  222

2
12

2
12122 sincos1

2

1
)cossinsincossin(

2

1 


 e
mgeOOemFAu

 

  2
2
121222

2
112 coscossin)cos)(

2

1  OO
e

mJJJJJ vnvnnvu 



       (22)      



Katica R. (Stevanoviċ) Hedrih et al. New Vector Description of Kinetic Pressures on Shaft Bearings  
 of a Rigid Body Nonlinear Dynamics with Coupled Rotations around No Intersecting Axes 

 – 164 – 

  





  1222

2
12

2
121

2
22 coscos1

2

1
sinsinsinsinsin

2

1 


 e
mgeOOemFAv

        

  2
2
121

2
222

2
121 sincoscos)cos)(

2

1  OO
e

mJJJJJ vnvnnvu 



   (23)                   







  222

2
12

2
12122 sincos1

2

1
)cossinsincossin(

2

1 


 e
mgeOOemFBu

 

  12
2
121222

2
112 coscossin)cos)(

2

1  OO
e

mJJJJJ vnvnnvu 



       (24)              

  





  222

2
12

2
121

2
22 coscos1

2

1
sinsinsinsinsin

2

1 


 e
mgeOOemFBv

 

  2
2
121

2
222

2
121 sincoscos)cos)(

2

1  OO
e

mJJJJJ vnvnnvu 



     (25) 

Previous obtained expressions (22)-(25) of the components of kinetic pressures, 

2AF


 and 2BF


 (including component reactions of the rigid body weight) to 

bearings, 2A and 2B , of the self rotation axis in scalar form , is possible present in 

the following vector form: 
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Previous scalar expressions are suitable for analysis on the basis decompositions 

to the separate components with specific properties of intensity, directions, 

influence of some mass and geometrical properties and structure parameters, as 

well as angular velocities and other kinetic parameters of considered special 

example. 
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By introducing the following unit vectors 1w


, 2w


 and 3w


 

22221 cossin  vuw


 , 22222 cossin  vuw


 , 22223 sincos  vuw


                     

pressures 2AgF


 and 2BgF


(reactions of the rigid body weight)  to bearings 2A and 

2B , of the self rotation axis is possible to express in the following vector form: 
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From last forms of the pressures, 2AgF


 and 2BgF


 (reactions of the rigid body 

weight) to bearings, 2A and 2B , of the self rotation axis, we can see that is 

possible to separate component with same intensity, and opposite directions, and 

also component with same angular velocity  in one or in other directions. 

In Figure 3 some of the introduced unit vectors 2u


, 2v


, 1w


, 2w


 and 3w


 for 

analysis kinetic pressures 2BF


(including component reactions of the rigid body 

weight) to bearings, 2A and 2B , of the self rotation axis used in expressions (28) 

schematically are presented with corresponding angular velocity and directions of 

rotations. 

 

1  
2u


 

2v


 

1  

1w


 

3w


 

2w


 

12  

2u


 

2v


 

)0(1w


 

)(1 w


 









2
1


w


 







2

3
1


w


 

     

2u


 

2v


 

1  

1w


 

1  

 

 

2u


 

2v


 

)(2 w


 









2
2


w


 

 02w


 









2

3
2


w


 

  

2u


 

2v


 

2w


 

1  

12  

1  2u


 

2v


 









2
3


w


 

 3w


 









2

3
3


w


 

 03w


 

 
Figure 3 

Schematically presentation of the unit vectors 2u


, 2v


, 1w


, 2w


 and 3w


, and their geometrical and 

kinematical relations with corresponding angular velocity and directions of rotations 
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Components kin

B
F

21
, kin

BF 22 , kin
BF 23  and kin

BF 24  of pure kinetic pressure kin

B
F

2


 to bearing 

2B , of the self rotation axis are in the following forms: 
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From previous expressions for components kin

B
F

21
, kin

BF 22 , kin
BF 23  and kin

BF 24  of pure 

kinetic pressure kin

B
F

2


 to bearing 2B , of the self rotation axis, we can conclude, 

that influence of disk position eccentricity is stronger to the components 
kin

BF 23  of 

pure kinetic pressure kin

B
F

2


, and that intensity of component kin

BF 22  increase, and 

intensity of the component kin

B
F

21
 decrease with increasing of disk eccentricity. 

Intensity of the pure kinetic pressure kin

B
F

2


 increase with increasing of disk 

eccentricity. 
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Figure 4 

Intensity transformation of kinetic pressure component
kin

nA
F

22
 to self rotation shaft spherical bearing 

2A  of rigid body coupled rotations around two orthogonal no intersecting axes and for system with 

one degree of freedom, in direction of the self rotation shaft axis for different disk eccentricity 

8 Graphical Presentation of Kinetic Pressures to Self 

Rotation Shaft Bearings of Rigid Body Coupled 

Rotations 

By use previous listed expressions as well as other no listed heir, and MathCad as 

a software tool, a numerical experiment was followed for analysis properties of 

the kinetic pressures and their corresponding components to the both shaft 

bearings. Selected graphical presentation is done in the Figures 4-10. All graphical 
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presentation are obtained by analytical expressions derived in previous chapters of 

this paper. 

In Figure 4a* and b( graphical presentation of intensity transformation of kinetic 

pressure component kin

nA
F

22
 to self rotation shaft spherical bearing 2A  of rigid body 

coupled rotations around two orthogonal no intersecting axes and for system with 

one degree of freedom, in direction of the self rotation shaft axis and in function 

of self rotation relative angle 2 , for different disk eccentricity, is presented. 

In Figure 5 graphical presentation of intensity transformation of kinetic pressure 

component kin

NA
F

22
 to self rotation shaft spherical bearing 2A  of rigid body coupled 

rotations around two orthogonal no intersecting axes and for system with one 

degree of freedom, in orthogonal direction to the self rotation shaft axis, in 

function of self rotation relative angle 2 , for different disk eccentricity, is 

presented. 
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Figure 5 

a* and b* Intensity of kinetic pressure component
kin

NA
F

22
 to self rotation shaft spherical bearing 2A  

of rigid body coupled rotations around two orthogonal no intersecting axes and for system with one 

degree of freedom, in orthogonal direction to the self rotation shaft axis, for different value of disk 

eccentricity 

 

In Figure 6 (a*), (c*) and (d*) the intensity of kinetic pressure component of 
kin

NB
F

22
 to self 

rotation cylindrical bearing 2B  of rigid body coupled rotations around two orthogonal no 

intersecting axes in direction of 2R


 and for system with one degree of freedom, in 

orthogonal direction to the self rotation shaft axis, for different value of disk angle  skew 

position is presented. In Figure 8 (b*) Intensity of the vector rotator 2R


in function of the 

value of disk angle  skew positions is  presented. 

In Figure 7 graphical presentation of intensity transformation of kinetic pressure component 
kin

NB
F

22
 to self rotation shaft cylindrical bearing 2B  of rigid body coupled rotations around 

two orthogonal no intersecting axes and for system with one degree of freedom, in 

orthogonal direction to the self rotation shaft axis, in function of self rotation relative angle 

2 , for different disk eccentricity, is presented. 
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Figure 6 

(a*), (c*) and (d*) Intensity of kinetic pressure component of 
kin

NB
F

22
 to self rotation cylindrical 

bearing 2B  of rigid body coupled rotations around two orthogonal no intersecting axes in direction of 

2R


 and for system with one degree of freedom, in orthogonal direction to the self rotation shaft axis, 

for different value of disk angle  skew position..(b*) Intensity of the vector rotator 
2R


in function of 

the value of disk angle  skew position 
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Figure 7 

Intensity of kinetic pressure component
kin

NB
F

22
 to self rotation shaft cylindrical bearing 2B  of rigid 

body coupled rotations around two orthogonal no intersecting axes and for system with one degree of 

freedom, in orthogonal direction to the self rotation shaft axis, for different value of disk eccentricity 

 

In Figure 8 graphical presentation of intensity transformation of kinetic pressure 

component kin

NB
F

22
 to self rotation shaft cylindrical bearing 2B  of rigid body 

coupled rotations around two orthogonal no intersecting axes and for system with 

one degree of freedom, in orthogonal direction to the self rotation shaft axis, in 

function of self rotation relative angle 2 , for different disk eccentricity, is 

presented. In Figure 9 intensities of kinetic pressure deviation couple to self 

rotation shaft bearings of rigid body coupled rotations around two orthogonal no 

intersecting axes and for system with one degree of freedom, in orthogonal 

direction to the self rotation shaft axis, for different value of disk eccentricity are 

presented. 



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013 

 – 169 – 

10 5 0 5 10
100

50

0

50

100

F Bu  1 
F Bu1  1 
F Bu2  1 

 1  
10 5 0 5 10

100

50

0

50

100

F Bv  1 
F Bv1  1 
F Bv2  1 

 1  
Figure 8 

Intensity of kinetic pressure component
kin

NB
F

22
 to self rotation shaft cylindrical bearing 2B  of rigid 

body coupled rotations  around two orthogonal axes without intersection and for system with one 

degree of freedom, in orthogonal direction to the self rotation shaft axis, for different value of disk 

eccentricity. 
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Figure 9 

Intensity of kinetic pressure deviation couple to self rotation shaft bearings of rigid body coupled 

rotations around two orthogonal no intersecting axes and for system with one degree of freedom, in 

orthogonal direction to the self rotation shaft axis, for different value of disk eccentricity. 

Concluding remarks 

Complexity of the single rigid body motion with coupled rotations about no 

intersecting axes by vector method based on the mass moment vectors and vector 

rotators coupled for pole on selfrotation axis and component angular velocity axes 

is presented by sampler vector expressions them usually scalar forms in 

professional books in this area. New approach and new composition of this vector 

method open new way for applications to the multi-body system dynamics with 

coupled multi-rotations about nonintersecting axes. New vector expressions for 

linear momentum and angular momentum and their derivatives of the single rigid 

body complex motion by coupled rotations about nonintersecting axes expressed 

by new introduced mass moments vectors and their very elegant form open new 

possibility for generalizations these expressions for describing multi rigid body 

system complex motion by coupled multi-rotations about higher numbers of 

nonintersecting axes large present in many real mechanical engineering systems 

and robotic system dynamics with coupled multi-rotations. 
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Abstract: In this paper, we present a calculation methodology of the testing duration of the 

products’ reliability, using the Weibull distribution, which allows the estimation of the 

mean duration of a censored and/or complete test, as well as of the confidence intervals for 

this duration. By using these values we can improve the adequate planning and allocation 

of material and human resources for the specific testing activities. The proposed 

methodology and the results’ accuracy were verified using the Monte Carlo data 

simulation method. 

Keywords: reliability; test plan; Weibull distribution; Monte Carlo simulation 

1 Introduction 

The reliability theory is a technological discipline closely related to the probability 
theory and mathematical statistics [1, 2, 3]. The data regarding the reliability of 
the products are obtained mainly through the following three methods: following 
the behavior of the products in real operation; during the laboratory tests; by using 
the data simulation through the Monte Carlo method. During the laboratory tests, 
we tried to emulate, as much as possible, the conditions in real operation, by 
reproducing the range of internal stresses, as well as the environmental stresses. 
The most important laboratory tests are the reliability tests [4, 5]. 

1.1 Background on Reliability Test 

The reliability tests have a great importance, aiming either to determine, either to 
check the reliability characteristic of a product, if this is established in a predictive 
way. The reliability tests are extremely necessary and they have a decisive role in 
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improving the technical solutions and in increasing the performances. The 
essential problem of reliability tests is the testing duration, which is generally 
comparable with the product’s useful life time [6, 7, 8, 9]. 

The most used reliability tests are the following [7, 10, 11, 12, 13]: 

 Complete tests (type n out of n) - in these tests n products of the same kind, 
the experiment being considered finished when all of the n products have 
failed. 

 Censored tests (type r out of n) - are commonly used and they consist of 
subjection to testing of n products of the same type, the experiment being 
considered finished after the failure of r<n tested products; obviously, the r 
number is previously determined, usually by technical, economical and 
statistical considerations [2, 14, 15]. 

 Truncated tests (with a fixed testing time) - a n number of products are 
subjected to testing, but the experiment doesn’t stop according to the 
number of failed elements, but according to a tr time, previously set, a 
period during which the testing takes place. 

The testing methodology about to be used has a direct economical impact, because 
in every test the following terms intervene: the cost of the tested product; the total 
cost of the experiment; the time consumed for testing and for the statistical 
processing of the data resulted from testing. Therefore, the selection of a specific 
type of test is a managerial decision that has to be taken by a responsible 
authority. Also, in the follow-up of the results of the statistical processing, we will 
propose certain corrective technical and economical actions, aimed directly at the 
quality and reliability of the product in question [3, 6, 16, 17, 18, 19, 20]. 

In order to realize reliability tests we must take into account the following aspects: 

a. A previously determined n number of products that will be subjected to 
testing. 

b. A testing plan that includes the following aspects: the selection of stress 
parameters, which will determine the failure mechanisms specific to the 
product. 

c. Instructions regarding the adequate type of test and the methods of 
calculation, in order to estimate the reliability parameters. 

d. A test chart where the experimental data are recorded and the statistical 
calculations, as well as the chronological recording of observations and 
interventions, are made. 

e. Testing stands, testing equipment, auxiliary materials and qualified staff in 
order to realize the test. 
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1.2 Nomenclature 

W(t,,) - the Weibull distribution, having the function of distribution: 

 


 










t

etF 1 ; 

 - the shape parameter of Weibull distribution; 

 - the scale parameter of Weibull distribution; 

B(x, n, p) - the binomial distribution, having the function of probability: 

    xnxx

n ppCxX
 1Pr ; 

N - the number of simulations; 

n - the sample volume; 

r - the level of censorship; 

Fn (ti) - the empirical function of distribution correspondent to the 
operation time until failure; 

Tn/n - the duration of a complete test realized on a volume sample n; 

Tr/n - the duration of a censored test al level r, realized on volume n 
sample; 

1-α - confidence level; 

α - significance level; 
Qp, v1, v2 

 

- the p quantile of the Fisher - Snedecor, with v1 and v2 degrees of 
freedom; 

U=1-/2 - the index used to note the superior confidence limit; represents the 
value of the probability corresponding to the estimation of the 
superior limit of the testing duration, [%]; 

L=/2 - the index used to note the inferior confidence limits; represents 
the value of the probability corresponding to the estimation of the 
inferior limit of the testing duration, [%]. 

1.3 Review on the Calculus of the Testing Period 

When using the Weibull distribution in the modeling of the products’ reliability, 
these is estimated, in the majority of situations, on the basis of experimental 
results obtained following their testing on stands, using censored tests or complete 
tests. The organization and the process of reliability tests of the products represent 
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complex activities from an organizational standpoint and also big resources 
consumers. The calculation relations of the duration of a complete or a censored 
reliability test, found in the specialty literature, are based on a series of equations 
which allow the estimation of the empirical distribution function [9]: 

.
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r
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The equation (1) gives mean values of the empirical distribution function. The 
mean values of the empirical distribution function can be obtained using: 
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for n≤20. 

The value of the duration of a reliability test censored at level r is obtained using 
the inverse function of distribution of the considered statistical model [4, 21, 22]: 
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in this case being the Weibull distribution. The equation (5) results from the 
logarithmation of the Weibull distribution function, written as follows: 
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We notice that after a series of algebraic calculations, the equation (7) can be 
written in the form of equation (5). Also, in the equation (5), instead of F(t) we 
used the value determined by using one of the (1)  (4) relations. Thus we 
obtained mean or median values of the duration of testing. For complete test case 
in relations (1)  (4), parameter r is replaced by the value of the sample volume 
used n. Consequently, the objective of this paper is to present an estimation 
modality of the mean duration for censored and/or complete reliability tests, as 
well as of the confidence intervals for this duration. Knowing these values allows 
for the careful planning of the testing activities [4, 23, 24]. 

2 Statistical Calculation Model 

The value obtained for a reliability test doesn’t offer important data regarding the 
real duration of a test, because the time of operation until failure of a tested 
product represents a random variable. 

For this situation, a favorable solution consists is the determination of the 
confidence intervals of the duration of the test. These intervals contain the real 
value of the test, with a 1- α probability [25, 26]: 

  .1Pr /  UnrL  (8) 

The calculation of the confidence intervals is realized in the conditions of a 
Bernoulli extraction (the scheme of the urn with returned balls). Thus, the median 
value of probability at which from n products subjected to testing, a number of r 

products fail, results as a solution to the equation [4, 27, 28]: 
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The difficulties in calculation which can occur solving the equation (9), depending 
on FMe, can be eliminated by using an approximate value: 
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The equation (10) represents the connecting relation that can be established 
between the binomial distribution and the Fisher-Snedecor distribution [4, 11, 26]. 

Using the FMe solution, obtained by solving one of the (9) or (10) equations, along 
with to equation (5), leads to the obtaining of the duration of the reliability test. In 
fact, the equations (1)  (4) are nothing more than regression relations of the 
solutions of equation (9), for different combinations of the parameters n and r. 



C.O. Morariu et al. A New Method for Determining the Reliability Testing Period Using Weibull Distribution 

 – 176 – 

Because, by definition, the distribution function is an ascending function, the 
confidence level of the duration of testing period results by using the solutions of 
the equations: 
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together with (5), namely: 

,
1

1
ln

1























L

L
F

 (13) 

and 

,
1

1
ln

1



























U

U
F

 (14) 

A similar value of the FL and FU probabilities can be obtained by approximating 
the binomial distribution through the Fisher-Snedecor distribution: 
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For the case of the complete tests, in the calculation relations (10) and (15), (16) 
the parameter r is replaced with the value of the used sample volume n. 
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3 Simulation Study 

3.1 Program Description 

To verify the precision of reasoning and of the mathematic model proposed at 
point 2, we used the Monte Carlo simulation method. The method implies, in this 
case, generating a very high number of samples (N>>1000), that belong to a 
completely specified Weibull population, W(t,,). This database is then 
subjected to a statistical analysis that is aimed at the duration of a reliability test 
using a censored plan with the n and r parameters. For the development of this 
study we created a Mathcad calculus programme. The logical chart of this 
programme is presented in Figure 1. The running of the programme implies the 
determination of the following entry data: N, n, r, ,  and . The program 
generates a matrix with n lines and N columns, using the generator of random, 
uniform and continuous numbers within the [0,1] interval. The values of simulated 
failure times are obtained by using the inverse function of distribution of the 
Weibull statistical: 
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Thus, we obtain a matrix with n x N dimensions, in which every column 
represents a reliability test. In order to determine the duration of censored tests at 
level r, the calculation program sets in ascending order the columns of the 
previously generated matrix. 

Also, the r-th line of this matrix is extracted at the end. The N values contained in 
this line represent the simulated durations of the reliability tests (tr,i). The 
calculation of the median and mean durations of the testing duration is made by 
determining the median and the mean of these values: 
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Figure 1 

The logical scheme of the Monte Carlo numerical simulation program 

In the previous equations, we noted t(p) as the p quantile of the t variable. The 
determination of confidence limits for the duration of the tests is realized by 
determining the tL/100 and tU/100 quantiles of the truncation durations for the N 
simulated tests. The calculation method used for the determination of p quantiles 
applies the equation: 
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  .1 Npp tt  (20) 

If the p·(n+1) expression doesn’t generate an integer value, then for the 
determination of the p quantile we recommend the use of linear interpolation. We 
assume that, after the evaluation of the p·(n+1) expression, we find that the value 
of the tp quantile is included in the [t(k), t(k+1) ].. To determine the value of the tp 
quantile, we use the relation: 

       ][]1[ 1 kkkp ttknptt    (21) 

For high volumes of sample (such is the case with the realized application), 
instead of the previous relation we can use equation (22). 

  .1 Npp tt  (22) 

In equation (22), by t[p] we noted the integer part of the value of the expression 
between brackets. 

3.2 Monte Carlo Simulation Data 

To demonstrate the way of using the calculation methodology presented in the 
third point of this paper, we present further several case studies, determined for 
different values of the Weibull distribution parameters  and , as well as for 
different testing schemes n and r. 

The solving of the equations (9), (11) and (12) was made using the specialized 
functions existent in Mathcad 14. The solving accuracy of these equations was 
established at 10-15. In parallel, we presented the values obtained by using the 
approximate relations (10), (15) and (16). 

The obtained FMe, FL și FU probabilities are then used to determine the median 
duration of the reliability test, eq. (5) and the limits of the confidence interval (1-
) for this duration (TL și TU). 

The values for these limits are obtained by using the equations (13) and (14). The 
significance level was established at the value of  =10%. In Table 1 values for 
different combinations of the Weibull distribution’s parameters and different 
censored testing plans, n/r are presented. 

The accuracy of the obtained results, by using the proposed calculation 
methodology, was verified using the Monte Carlo simulation. 

For this purpose we used the MathCAD 14 software, which is described at point 
3.1. The calculus programme was run for the same combinations of values of the 
Weibull distribution’s parameters, as in the previous case. Also, the number of 
simulations was established at the value N=10000 and the confidence interval 1- 

at 90%. 
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Table 1 

The determination of the testing durations related with the reliability tests using the calculation 

relations 

Test plan 
The calculated duration of the reliability test 

Tr/n TL TU 

n r eq. (8) eq. (9) eq. (10) eq. (14) eq. (11) eq. (15) 

β=1.5, η=50 

10 5 35.605 35.605 19.926 19.926 56.218 56.218 

10 10 97.035 97.035 61.118 61.118 151.520 151.520 

20 5 20.417 20.417 11.472 11.472 32.023 32.023 

20 10 37.332 37.332 25.278 25.278 51.936 51.936 

20 15 58.860 58.860 42.591 42.591 78.556 78.556 

20 20 112.601 112.601 78.641 78.641 164.494 164.494 

β=1.5, η=100 

10 5 71.211 71.211 39.854 39.854 112.438 112.438 

10 10 194.069 194.069 122.236 122.236 303.040 303.040 

20 5 40.834 40.834 22.945 22.945 64.045 64.045 

20 10 74.664 74.664 50.556 50.556 103.871 103.871 

20 15 117.720 117.720 85.182 85.182 157.112 157.112 

20 20 225.201 225.201 157.282 157.282 328.989 328.989 

β=2, η=50 

10 5 38.760 38.760 25.080 25.080 54.595 54.595 

10 10 82.213 82.213 58.126 58.126 114.841 114.841 

20 5 25.541 25.541 16.576 16.576 35.796 35.796 

20 10 40.161 40.161 29.978 29.978 51.445 51.445 

20 15 56.508 56.508 44.333 44.333 70.166 70.166 

20 20 91.917 91.917 70.223 70.223 122.139 122.139 

β=2, η=100 

10 5 91.917 91.917 70.223 70.223 122.139 122.139 

10 10 164.425 164.425 116.252 116.252 229.681 229.681 

20 5 51.082 51.082 33.152 33.152 71.592 71.592 

20 10 80.322 80.322 59.956 59.956 102.890 102.890 

20 15 113.015 113.015 88.667 88.667 140.332 140.332 

20 20 183.835 183.835 140.446 140.446 244.279 244.279 

 

Under these conditions, we determined the median values, the mean values and 
the confidence intervals for the testing duration. The results obtained by Monte 
Carlo numerical simulation are presented in Table 2. 
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Table 2 

The determination of the testing durations related to the reliability tests using the Monte Carlo method 

Test plan Values obtained by Monte Carlo simulation 

 Tr/n TL TU Ťr/n 

n r     

β=1.5, η=50 

10 5 35.744 19.998 55.945 36.562 

10 10 96.820 61.412 152.861 100.609 

20 5 20.385 11.680 31.748 20.885 

20 10 37.301 25.362 52.071 37.843 

20 15 58.992 42.416 78.349 59.594 

20 20 112.252 78.947 165.037 115.808 

β=1.5, η=100 

10 5 71.140 39.118 111.946 72.881 

10 10 193.087 121.367 301.877 200.325 

20 5 40.782 22.834 63.778 41.770 

20 10 74.810 50.408 103.875 75.681 

20 15 118.342 85.409 158.009 119.295 

20 20 225.390 157.378 328.730 231.811 

β=2, η=50 

10 5 38.614 25.034 54.654 39.101 

10 10 82.338 58.557 115.534 83.971 

20 5 25.502 16.507 35.797 25.793 

20 10 40.211 29.926 51.526 40.393 

20 15 56.463 44.296 70.287 56.759 

20 20 91.957 70.221 121.616 93.419 

β=2, η=100 

10 5 91.957 70.221 121.616 93.419 

10 10 164.752 116.708 228.715 167.494 

20 5 51.307 33.260 71.201 51.696 

20 10 80.452 59.513 102.790 80.616 

20 15 113.174 88.908 139.999 113.716 

20 20 183.619 140.521 244.166 186.904 

 

The using mode of this method for the estimation of the durations of the complete 
and/or at r level censored reliability tests is presented in Figure 2. 
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Figure 2 

The calculation algorithm for the duration of the reliability tests 

Conclusions 

Based on the results presented in Tables 1 and 2, we will realize several 
comparative studies to show the correctness of the proposed calculus method. In 
Figure 3 the results of the median duration of a censored test at level r are 
presented, realized on a sample of n volume, on a graphical form for the case 
study β=1.5, η=50. The inferior and superior limits of the testing duration for the 
case study in question (β=1.5, η=50) are presented in Figures 4 and 5. 

 

 

Figure 3 
The duration of a censored test level r, realized on sample size n (Tn/r) 

1. The determination of the a priori values of the Weibull 
distribution parameters: , 

2. The determination of  the parameters of the realized test: n,r 

4. The calculation of the median probability of the testing time, eq. 
(10) and of the median value of the testing duration, eq. (5) 

5. The calculation of the FL probability, eq. (15) and of the inferior 

limit if the testing duration, eq. (13) 

6. The calculation of the FU probability, eq. (16) and of the 

superior limit of the testing duration, eq. (14) 

3. The determination of the confidence level: 1- 
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Figure 4 
Limit inferior duration of a censored test level r, realized on sample size n (TL) 

 

  

Figure 5 
Limit superior duration of a censored test level r, realized on sample size n (TU) 

The presented calculation model allows the obtaining of accurate estimated 
values, because the differences towards the simulated values are very small. If the 
number of simulations would grow, the resulting differences would be 
insignificant. The approximate relations (10), (15) and (16) lead to the obtaining 
of some values, which, at the results’ display accuracy of 10-3, don’t differ from 
the real values obtained through the equations (9), (11), (12). Based on the 
presented results we found the significant reductions in time that can be made by 
using the censored testing plans. 

Given the powerful competition on the industrial market, we can no longer 
imagine the realization of a product without a rigorous quality and reliability 
control of the product, based on different types of tests, in all the stages of the 
products’ existence, from the raw materials being used, up to their use. In these 
types of tests, we put special emphasis on the reliability tests. The testing 
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laboratories, that possess modern testing equipment and highly-trained personnel, 
have acquired an ever increasing development. Today, almost every company has 
a reliability test laboratory, adequately equipped to the type of products it realizes. 
The application of censored testing plans, using the Monte Carlo method, 
determines the testing duration of the products in a shorter time and in conditions 
of economic efficiency. 

The proposed method of calculation has applicability in laboratories that are 
specialized in testing the materials or the products from different fields of use. 
These fields are given by the particular versatility of the Weibull distribution’s 
model: 

 the tear resistance, the corrosion resistance, the wear resistance, the fatigue 
resistance and the contact fatigue resistance of textile and metallic 
materials; 

 the modeling of the materials properties: steels, titanium, semi-conductor 
materials, tungsten, ceramic, glass, plastic materials, porcelain, graphite, 
paper, textile fibers, composite materials; 

 the modeling of the durability of mechanical components: bearings, 
engines, motor vehicles’ structures, tools; 

 the modeling of the functioning times of relays, passive electronic 
components (resistors and capacitors) and active electronic components 
(transistors, integrated circuits); 

 the modeling of the life times of subsystems, made of identical component 
elements, in series connected and whose behaviour is described using the 
gamma distribution. 
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Abstract: One crisis which human beings will probably face in the upcoming decades is the 

water crisis. The crisis in arid and semi-arid regions covering a large part of Iran would be 

much more severe. Thus, using novel methods of water collection such as construction of 

underground dam is so important. Decision making and selection of an appropriate option 

in construction of such dams is one basic challenge. The major issue in construction of 

such dams is selecting an appropriate location. Selecting the best location for building 

underground dams is a challenge due to involvement of a wide range of influential factors. 

In this paper, analytic hierarchy process (AHP), one of multi-criteria decision making 

(MCDM) techniques in fuzzy environment is applied to select the optimal alternative for 

construction of an underground dam in a case study. Results show that using AHP in the 

fuzzy environment improves decision making through considering more important factors 

in decision making. 

Keywords: underground dam; multi-criteria decision making; fuzzy theory; AHP 

1 Introduction 

Water shortage in arid and semi-arid regions is one of the problems of policy 
makers. Various solutions have been used to overcome this problem around the 
world. One of such solutions is construction and use of underground dams. In 
recent years, efforts have been made at national level to use dams more because of 
increase in severity, extent, and frequency of droughts. Thus, steps were taken 
quickly so as to facilitate construction of more such dams in the country. Since 
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construction and operations of these dams is a new technique in water resource 
management in Iran, the present paper attempts to compare application of two 
methods of fuzzy analytic hierarchy process and analytic hierarchy process. The 
aim of this comparison is to familiarize experts with these methods and to specify 
the strengths and weaknesses of these two methods. 

Underground dams are built for different purposes such as prevention of saltwater 
and freshwater interference (Garagunis, 1981), avoidance of underground water 
penetration in the mines (Gupta et al., 1987), prevention of seawater into 
freshwater aquifers (Onder and yilmaz, 2000), and holding water for operation 
(Nilsson, 1988). Underground dams are usually constructed in the bed of a water 
stream where signs of underground water is seen. For underground dams to be 
able to extract water, their construction should be justified but considering some 
factors as follows: bedrock depth in the water stream, water stream width, 
impenetrable walls, suitable sediments, the volume of useable water, suitable 
context for using extracted water, social issues, economic justification and so on 
(Nilsson, 1988). Evaluation of factors requires detailed studies to be carried out 
before determining initial appropriate options. Therefore, the first step in 
constructing underground dams is to find suitable options. 

Basically, several factors influence on selection of an alternative for construction 
of underground dams. Taking into account all of these factors makes the decision 
making problem so complex. Thus, multi-criteria decision making (MCDM) 
methods are applied to tackle this problem.. One widely used MCDM method is 
the analytic hierarchy process (AHP) which has been used in various managerial 
areas from hydrogen production methods (Pilavachi et al., 2009) to motor cleaning 
systems and many others. In addition, AHP has been applied for water resource 
management in many studies such as Anagnostopoulos et al. (2005, 2007), 
Srdjevic (2007), and Mei et al. (1989). Mei et al. (1989), in applying multi-criteria 
decision making methods for water resource management in China, stated that 
analytic hierarchy process method specifies not only relative importance of each 
factor, but also it specifies combined weights matched to initial goal. Akpinar et 
al. (2005) believed that multi-criteria decision making methods are useful in 
planning for issues in which many factors are involved. They used this method in 
determining agricultural land-use types in Turkey and approved successfulness of 
analytic hierarchy process method in priority setting in agricultural land-use types. 
Montazar and Behbahani (2007) developed an optimized irrigation system 
selection model using analytic hierarchy process. Their findings indicated that 
results obtained from this model are consistent with those obtained from field 
evaluations. In addition, evaluation of methods showed that results provided by 
this model were more reliable than ordinary weighting methods. Okada et al. 
(2008) applied analytic hierarchy process for improvement of irrigation project. 
They found out that the first priority for irrigation management planners is the 
water delivery. In fact, they considered appropriate water allocation and control as 
the main factor for these planners. Montazar and Zadbagher (2010) used an 
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analytic hierarchy model for assessing global water productivity in irrigation 
networks. They stressed that AHP is a practical and comprehensive tool for 
improving effectiveness of such systems. 

Standard hierarchical analysis process is not effective to solve more complicated 
problems. Therefore, some modifications are necessary for this method. 
Combining fuzzy methods with analytic hierarchy process is one approach for 
solving the complicated problems. Fuzzy analytic hierarchy process (fuzzy AHP) 
has been applied in different problems as follows: in geographical information 
system (GIS) application (Vahidnia et al., 2008), risk evaluation of information 
technology projects (Iranmanesh et al., 2008), water management plans 
assessment (Srdjevic and Medeiros, 2008), and eco-environmental vulnerability 
assessment (Li et al., 2009). Kong and Liu (2005) applied fuzzy analytic 
hierarchical process to evaluate success factors of e-commerce. They stressed that 
fuzzy AHP has qualifications of both subjective and thematic factors in the 
decision making process. Stirn (2006) integrated the fuzzy AHP with dynamic 
programming approach for determining the optimal forest management decisions 
so that he could maximize economic, ecological and social benefits. Results 
indicated that this method can be successful in problems where different criteria 
are involved in decision making. Ascough et al. (2008) stated that decision 
making in natural environment is difficult due to inherent complexity of the 
environment and different interests of decision makers and operators. They 
proposed solutions to overcome this problem which are based on using fuzzy 
systems. They found out combining fuzzy systems with other decision making 
methods useful. Alias et al. (2009) applied fuzzy analytic hierarchy process for 
logical use of Johor River in Malaysia. The considered different dimensions of the 
area and concluded fuzzy method with triangular fuzzy numbers can be successful 
for ambiguous data. Opricovic (2011) applied fuzzy AHP with fuzzy VIKOR for 
water resources planning. Tsiko and Haile (2011) used GIS and fuzzy AHP in 
modeling optimum sites for locating water reservoirs. 

Locating underground dam construction projects is a complex problem due to 
existence of uncertainty in factors influencing on it. Since the real world is full of 
ambiguities and imprecise and vague terms, most decision makers in field of 
underground dam construction know using linguistic terms more practical and 
feasible. Zadeh (1965) introduced fuzzy sets theory as a powerful tool to dominate 
these ambiguities, vagueness and uncertainties when there is a special complexity 
and lack of complete information on experts’ opinions. In the current study, a 
useful and practical methodology is presented for group decision making on the 
location of underground dams construction based on the AHP and fuzzy theory. 

The rest of the paper is structured as follows: Section 2 describes the proposed 
methodology; in Section 3 the proposed methodology is applied to locate the 
underground dam construction as an experiment and results are provided; in 
Section 4, the proposed methodology is tested for the verification and validation 
purposes; finally Section 5 includes conclusions of the present work. 
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2 Proposed Methodology 

In this section, the proposed fuzzy AHP based methodology is presented for 
evaluating and selecting the best location for underground dam construction 
location. The steps of the proposed methodology are illustrated in Figure 1. The 
steps will be implemented in a case study and described in great details. 

2.1 Fuzzy Analytic Hierarchy Process 

AHP is a decision making method for decomposing the hierarchical problem and 
can apply to solve a complex multi-criteria decision problem (Saaty, 1980). In the 
literature, AHP has widely been applied to solve the different MCDM problems. 
Many times decision makers are only able to provide a subjective and uncertain 
answer rather than an exact value (Shaw et al., 2012). Hence, such answers need 
to be quantified. Conventional methods of AHP cannot be used for decision 
making problem in the real world when fuzziness and vagueness is observed in 
data of problems. To handle such uncertainties and vagueness, fuzzy sets theory, 
initially introduced by Zadeh (1965), can be applied. Therefore, incorporation of 
the fuzzy concept with AHP can be more applicable and more effective than the 
conventional AHP in the real world problems. This issue has attracted many 
researchers to apply fuzzy AHP in different fields such as risk and disaster 
management (Takács, 2010), work safety evaluation (Zheng et al., 2012), green 
initiatives in the fashion supply chain (Wang et al., 2012). 

Figure 1 shows the proposed fuzzy AHP based methodology for decision making 
on selection of the best location form underground dam construction. The steps of 
the proposed methodology are as follows: 
Step1: Determining Criteria and Alternatives and Establish hierarchal structure 

The first step of our methodology is to determine the criteria which are going to be 
affected for making a decision about underground dam construction location. 

Step 2: Collecting experts' judgments based on fuzzy scale and establish fuzzy 

pair-wise comparison matrices 

The sample questionnaire by Azadeh et al. (2010, 2011) and Nazari-Shirkouhi et 
al. (2011) can be applied to collect the experts’ judgments based on fuzzy scales. 
In the present paper, the triangular fuzzy numbers (TFNs) for fuzzy membership 
function applied to enable the decision maker to make easier decisions (Kaufmann 
and Gupta, 1988). The membership function of a TFN is shown in Equation (1). 

The TFN is usually shown with A = (l, m, u), where l m u   
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Figure 1 

 The proposed methodology based on fuzzy AHP 
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Where x  ; ( )
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x is a continuous mapping from R to the interval 

[0,1]. For two TFNs A = (l1, m1, u1); B = (l2, m2, u2), some of the main 
mathematical operations can be expressed in equation (2) as bellow: 
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Step 2: Collecting experts' judgments based on fuzzy scale and establish 

fuzzy pair-wise comparison matrices 

Step 3: Defuzzifying the fuzzy pair-wise comparison matrices 

Step 5: is 

C.R. <0.1? 

Step 6: Computing weights for pair-wise comparison matrices, priority weights for each 
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The AHP method uses pair-wise comparisons and related matrix is shown in 
Equation (3). 
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Where, 
1

(1,1,1) : ;  :k k

ij ij k

ij

a i j a i j
a

      . 

k
A is the fuzzy judgment matrix of kth expert,

k

ij
a  is a the fuzzy evaluation 

between criterion i and criterion j of kth expert, ( , , )
k k k

ij ij ij ij
a l m u . 

To aggregate the experts’ judgments, Buckley (1985)’s method is applied here. As 
is shown in equations (4-7) l, m, and u show the minimum possible, most likely 

and the maximum possible value of a fuzzy number, respectively. TFN 
k

A is 
defined as the following: 

: , , , [1/9,9]( , , )ij ij ij ij ij ij ij ij ij ijl m u l m uA l m u     (4) 

min( )ij ijkal   (5) 
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K
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(6) 

max( )ijkij au   (7) 

Which, ijka shows the relative importance of criteria Ci and Cj given by expert k. 

The linguistic scale and underlying TFNs are illustrated in Table 1 based on 
Azadeh et al. (2011) and Nazari-Shirkouhi et al. (2011). 
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Table 1 

 The linguistic scale and underlying TFN 

Fuzzy number Linguistic scales Scale of fuzzy number 

1  Equally important (1, 1, 1) 

3  Weakly important (2, 3, 4) 

5  Essentially important (4, 5, 6) 

7  Very strongly important (6, 7, 8) 

9  Absolutely important (7, 8, 9) 

2,4,6,8  Intermediate values ( x ) (x- 1, x, x+1 ) 

1/ x  
Between two adjacent 
judgments 

(1/( x+ 1), 1/x, 1/ (x- 1)) 

 

Step 3: Defuzzifying the fuzzy pair-wise comparison matrices 

There are various methods to defuzzify fuzzy numbers. In this paper, we applied 

the Liou and Wang (1992) s’ method to defuzzify fuzzy matrix A  into crisp matrix 

,g   : 

, ( ) [ . ( ) (1 ). ( )],  0 , 1ij ij ijg a f l f u            (8) 

, ,( ) 1/ ( ),   0 , 1 :  ij jig a g a i j        
 

(9) 

( ) ( ).ij ij ij ijf l m l l     is the left-hand value cut    for 
ija  and 

( ) ( ).ij ij ij ijf u u u m      is the right-hand value cut   for ija . 

The range of uncertainty can be shown by index. In other words,  index can 
indicate stable or unstable conditions. The larger value of  index indicates the 
lower degree of uncertainties. The   index can be viewed as the degree of 

pessimism of a decision maker for the judgment matrix 
k

A . The larger value of 
  index indicates the lower degree of optimism (decision maker is pessimistic). 

Therefore, the defuzzified pair wise comparison matrix can be expressed as 
equation (10). 

Step 4: Calculating Consistency rate (C.R.) 
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Saaty (1980) suggests a consistency test to verify conformity of the calculation 
results. To calculate of consistency rate (C.R.), eigenvalue ( max ) of the single 

pair-wise comparison matrix , ( )g A  should be determined first. max is 

calculated by equation (11). 

, maxdet( ( ) ) 0 g A     (11) 

After finding max , values of consistency index (C.I.) and C.R. can be obtained 

from equations (12-13): 

max. .
1

n
C I

n

 



 (12) 

. .
. .

. .n

C I
C R

R I
  (13) 

The value of Random index (R.I.) depends on the value of n and is the average 
consistency index for randomly generated entries (Saaty, 1980). 

Step 5: is C.R. <0.1? 

According to Saaty (1980), . . 0.1C R   is acceptable scope; otherwise, for the 

comparison matrix modifications are necessary and new matrix must be solicited. 

Step 6: Computing weights of pair-wise comparison matrices, priority weights 

for each alternative and making a best decision 

The W is the weight of pair-wise comparison matrix , ( )g A  . On the other hand, 

the W is eigenvector of matrix , ( )g A  and can be defined as equation (14). 

, max[ ( ) ]. 0g A W     (14) 

After calculating the weights for all pair-wise comparison matrices of the 
proposed hierarchical structure, in this step the final weight of the alternatives can 
be calculated and then the best decision made. The weights can be sorted 
decreasingly and the best alternative is selected finally. 
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3 Experiment and Results 

In this section, the proposed methodology is implemented on an actual case in one 
of the biggest provinces (Kerman province) in Iran to select the best location for 
construction of an underground dam. Following successive droughts in the 
province and the benefits of underground dams in utilization of unconventional 
waters, the expert team suggested several options for selecting and evaluating the 
best location for building the underground dam Construction in the city of 
Rafsanjan. Figure 2 shows position of selected options over the city of Rafsanjan. 
Selection of the best location should be done based on criteria in such a way that 
all important technical factors are considered. The best location for underground 
dam construction can provide appropriate amount of water for agriculture in this 
region. 

 

Figure 2 

 The position of 8 selected locations over Rafsanjan city and the Kerman province 

The steps of the proposed methodology to select the best location for underground 
dam construction are described as follows: 

Step1: Determining criteria and alternatives and establish hierarchal structure 

The expert team should firstly determine the related criteria to evaluate the 
alternatives. The criteria and alternatives should be able to describe the existing 
difficult decision problem. Thus, considering these criteria and alternatives are 
very important for the decision makers’ team in selecting the best location for 
underground dam construction. 
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The selected criteria according to the methodology of studying the physical 
specifications are as follows: bed width, utilization land area, distance to 
utilization location, bed slope, wall material which are extracted from the 
topographical maps. The, data are evaluated by experts and field studies to ensure 
the precision of data. After final approval, the proposed methodology is used to 
select the best location of project and its priorities. 

Each criterion used for priority setting of a location has optimal values and 
conditions which should be met. For the slope, if it is high, it causes ejection of 
reserved water in the reservoir and thus water accumulation on its surface which, 
in turn, leads to subsequent problems. On the other hand, very low slope causes 
that there is a long distance when the reserved water is transferred and when it is 
transferred from the depth to the bed. Therefore, the best slope for selecting an 
option is about -12% (Nilsson, 1988). The minimum width is the most appropriate 
bed width. Of course, the less this width is, fewer water will be reserved. Thus, 
here it is assumed that bed width does not influence on the upstream reservoir. 
The third important factor is the wall material. The stronger and more 
impenetrable the walls are (and have fewer seams and cracks), the more 
appropriate they are considered. The stratification direction is also important 
which should be perpendicular to the flow. Another criterion is the distance 
between water extraction location and water utilization location. If this distance is 
shorter, construction cost will be lower. The last criterion is the area of 
agricultural lands which need using accumulated water in the dam. If the area of 
lands is large, justification for dam construction will be more logical. Related 
matrixes were built and calculations were performed following converting 
amounts of criteria intro measurable values. 

After reviewing the literature related criteria, the experts’ team considered eight 
candidate locations to evaluate with regard the expert’s judgment who had worked 
in related field. Finally, the eight candidates are Goor choopan (Alternative 1), 
Khezr (Alternative 2), Bayaz (Alternative 3), Tezerj (Alternative 4), Uderj 
(Alternative 5), Joz (Alternative 6), Givdari (Alternative 7), and Dahaneh abolfazl 
(Alternative 8). The position of eight candidates over the city of Rafsanjan and 
Kerman province are shown in Figure 2. 

After determining the criteria and alternatives, decision makers will setup 
hierarchical structure. The hierarchical structure should be able to break the 
existing complex decision problem into manageable components of different 
layers/levels (Nazari-Shirkouhi et al., 2011). The selected criteria can determine 
the levels of hierarchical structure. Level #1 (target level) addresses target 
(selecting the best location for underground dam construction). Level #2 (criterion 
level) addresses different factors impacting on locating decisions for underground 
dam construction. In the present paper, five criteria are considered. Finally, the 
latter level usually consists of alternatives. Different levels of the hierarchy 
structure for locating the underground dam construction are sketched in Figure 3. 
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Figure 3 

Hierarchical structure for underground dam construction 

Step 2: Collecting experts' judgments based on fuzzy scale and establish fuzzy 

pair-wise comparison matrices 

Because the problem of locating underground dam construction can be modeled 
based on expert’s judgment, experts play an important role on the reliability and 
accuracy of evaluating locations of underground dam construction. In this case 
study, the project manager decided to consider the problem of underground dam 
construction depending on the judgments by seven experts.  

The sample questionnaire (see Nazari-Shirkouhi et al., 2011) is applied to find the 
weights of the criteria using experts’ judgments in the form of fuzzy numbers 
shown in Table 1. According to the linguistic scale, underlying TFN in Table 1 
and equations (4-7), the fuzzy decision matrix for criteria with respect to goals are 
achieved from a questionnaire filled by experts. Then, the fuzzy decision matrices 
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are converted to fuzzy numbers in a way explained in Azadeh et al. (2011) and 
Nazari-Shirkouhi et al. (2011). Table 2 shows the aggregated fuzzy decision 
matrix of criteria (level 2). 

Table 2 

 Aggregated fuzzy comparison of criteria (level 2) with respect to goal 

Goal 
Bed 
slope 

Bed width Wall material 
Distance to 
utilization 
location 

Utilization lands 
area 

Bed slope 1 1 1 1 2.884 5 0.167 1.474 9 1 4.121 8 0.167 0.776 8 

Bed width    1 1 1 0.200 1.310 4 1 3.476 8 0.250 1.260 4 

Wall 
material 

      1 1 1 0.167 1.063 4 0.250 0.693 3 

Distance 
to 
utilization 
location 

         1 1 1 0.125 0.189 0.5 

Utilization 
lands area 

            1 1 1 

Step 3: Defuzzifying the fuzzy pair-wise comparison matrices 

After making the fuzzy matrices for all levels, the matrices are defuzzified. Using 
equations (8-9) and setting  and   to 0.5, the final defuzzified matrix (Table 2) 

is shown in Table 3. 

Table 3 

Defuzzified matrix of criteria (level 2) with respect to goal 

Goal 
Bed slope 

Bed 
width 

Wall 
material 

Distance to 
utilization 
location 

Utilization 
lands area 

Bed slope 1 2.942 3.029 4.311 2.4296  

Bed width 0.340 1 1.705 3.988 1.6925  

Wall material 0.330 0.586 1 1.573 1.1592  

Distance to 
utilization 
location 0.232 0.251 0.636 1 0.2510  

Utilization 
lands area 0.412 0.591 0.863 3.984 1 

Step 4: Calculating Consistency rate (C.R.) 

The consistencies of fuzzy judgment matrices are evaluated using equations (12-

13). Equation (11) is used to determine the maximum eigenvalue (
max

 ). After 

solving
max

 equals to 5.1703. 
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Step 5: is C.R. <0.1? 

The results indicate that C.R. is lower than 0.1 and the decision matrix for the 
second level of the hierarchical structure is consistent. The C.R.s of all the 
matrices are below 0.1 which show their consistency. 

Step 6: Computing weights for pair-wise comparison matrices, priority weights 

for each alternative and making a best decision 

After solving equation (14), weights of the five criteria in level 2 (W) are shown in 
Table 4. 

Table 4 
The weights of five criteria of level 2 

Criteria 
Bed 

slope 

Bed 

width 

Wall 

material 

Distance to utilization 

location 

Utilization lands 

area 

Weight 0.4163 0.219 0.1344 0.0667 0.1636 

Table 5 
Summaries of results for level 2 to level 3 

Criteria 
Weights 

for 
level 2 

Weights for level 3 
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Bed slope 0.4163 0.1649 0.2017 0.1264 0.0309 0.1261 0.1006 0.1612 0.0883 

Bed width 0.219 0.1451 0.0755 0.0956 0.2179 0.182 0.1406 0.0259 0.1175 

Wall 
material 

0.1344 0.1968 0.1892 0.0619 0.1597 0.1878 0.0718 0.0891 0.0437 

Distance 
to 

utilization 
location 

0.0667 0.1695 0.1714 0.0202 0.1714 0.0905 0.042 0.1675 0.1675 

Utilization 
lands area 

0.1636 0.1974 0.1898 0.0617 0.1482 0.1885 0.0721 0.0985 0.0438 

Final Weight 0.0132 0.0127 0.0041 0.0099 0.0126 0.0048 0.0066 0.0029 

The local weights of the alternatives are calculated using equation (14). The final 
weights of all alternatives are shown in Table 5. The final weights of the 
alternatives using data of Table 5 are as follows: 0.0132, 0.0127, 0.0041, 0.0099, 
0.0126, 0.0048, 0.0066, and 0.0029 for Al1 to Al8 , respectively. 
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According to results, the first alternative has the highest weight and is the most 
proper location according to the experts’ judgment in the fuzzy environment. 
“Goor Choopan” and “Dahaneh abolfazl” locations are suggested as the first and 
last options, respectively. 

4 Validation and Verification 

For validation and verification of results, the pair-wise comparison matrices are 
run in the crisp state (standard AHP). The local weights of criteria in the second 
hierarchical level (AHP) are shown in Table 6. 

Table 6 

The weights of five criteria of level 2 (AHP) 

Criteria 
Bed 

slope 

Bed 

width 

Wall 

material 

Distance to utilization 

location 

Utilization lands 

area 

Weight 0.42 0.22 0.12 0.06 0.16 

Table 7 

Summaries of results (AHP) 

Criteria 
Weights 

for 
level 2 

Weights for level 3 

A
l1

: 
G

oo
r 

C
ho

op
an

 

A
l2

: 
K

h
ez

r 

A
l3

: 
B

ay
az

 

A
l4

: 
T

ez
er

j 

A
l5

: 
U

d
er

j 

A
l6

: 
Jo

z 

A
l7

: 
G

iv
d

ar
i 

A
l8

: 
D

ah
an

eh
 

ab
o

lf
az

l 

Bed slope 0.42 0.17 0.20 0.13 0.02 0.13 0.09 0.17 0.09 

Bed width 0.22 0.13 0.07 0.09 0.23 0.19 0.15 0.03 0.12 

Wall material 0.12 0.20 0.20 0.06 0.14 0.20 0.07 0.09 0.04 

Distance to 
utilization 
location 

0.06 0.16 0.17 0.02 0.17 0.10 0.04 0.17 0.17 

Utilization lands 
area 

0.16 0.20 0.20 0.06 0.14 0.20 0.07 0.09 0.04 

Final Weight 0.167 0.170 0.092 0.112 0.161 0.094 0.111 0.088 
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As we can see in Table 4 and Table 6), the criterion 1 (Bed slope) and the criterion 
4 (Distance to utilization location) are the most important and least important 
criteria according to their weights in both AHP and Fuzzy AHP methods, 
respectively. The final weights of all alternatives (AHP) are shown in Table 7. 

The results of two runs (fuzzy AHP and AHP) have been compared and shown in 
Table 8. 

Table 8 

Comparison of ranks between AHP and Fuzzy AHP 

Alternatives 
AHP Fuzzy AHP  

Weight         Rank        Weight          Rank 

Al1: Goor Choopan 0.167 2 0.0132 1 

Al2: Khezr 0.17 1 0.0127 2 

Al3: Bayaz 0.092 7 0.0041 7 

Al4: Tezerj 0.112 4 0.0099 4 

Al5: Uderj 0.161 3 0.0126 3 

Al6: Joz 0.094 6 0.0048 6 

Al7: Givdari 0.111 5 0.0066 5 

Al8: Dahaneh abolfazl 0.088 8 0.0029 8 

After ranking the alternatives in two states of AHP and Fuzzy AHP, the only 
difference is in ranks 1 and 2. In AHP method, the fist alternative (Khezr) is the 
best location and in the fuzzy AHP method, the second alternative (Goor 
Choopan) is the best underground dam construction location. As we can observe 
in the Table 8 not only all weights have changed but also the ranks of alternatives 
(locations) have changed. Using fuzzy theory for selecting the best location for 
underground dam construction can reduce vagueness and uncertainty that are 
inherent in problem. 

Conclusion 

In this paper, a holistic fuzzy AHP approach was proposed as a multi criteria 
decision making tool for evaluating and selecting the best location of underground 
dam construction Fuzzy sets theory was applied for selecting the best location of 
underground dam construction to reduce ambiguities and uncertainties inherent in 
the selection criteria. Bed slope, bed width, wall material, distance to utilization 
location, and utilization lands area were considered as the criteria. Eighth different 
alternatives for the location underground dam construction were considered in an 
actual case study. Based on the goal of underground dam construction, the 
proposed hierarchical structure may vary slightly. Finally an experiment and 
actual case has been conducted to apply the proposed methodology in evaluating 
and selecting the best underground dam construction location as a case by using 
judgments of six experts who had worked in the underground dam construction 
field and then the results were represented. As a result of the empirical study, we 
found that the fuzzy AHP is practical and holistic approach for ranking the 
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candidates in terms of their overall performance regarding multiple criteria. In this 
case, fuzzy AHP provides a very useful decision-making tool to rank underground 
dam construction locations. It is expected that the present paper will serve as 
guideline for future studies and applications of locating in underground dam 
construction. Also, the proposed approach can be applied for other regions. 
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