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Preface 

 

Fuzzy theory and more generally, soft computing technologies have been widely 

used in different applications, as proven by their impeccable track record for the 

past decades. Theoretical and practical developments are increasingly gaining 

ground in scientific publications. One such prominent venue for these 

achievements is the FSTA, the International Conference on Fuzzy Set Theory and 

Applications, which is organized biannually and offers a comprehensive review of 

the significant results in this field of the previous two years. This series of 

conferences is also supported by EUSFLAT (European Society of Fuzzy Logic 

and Technology) whose aim is to promote the cooperation between the European 

fuzzy research centers. The Hungarian Fuzzy Association is an important partner 

in this venture, as it regularly supports international conferences organized in 

Hungary as well as outside the borders of Hungary (SISY, SAMI, SACI, and 

CINTI) where publications on intelligent systems and model based on soft 

computing are featured prominently. 

The present Special Issue of selected papers is of the result the application-

oriented publications presented at the 10th FSTA (Tenth Conference on Fuzzy Set 

Theory and Applications, Liptovský Mikuláš, 2010, 

http://www.math.sk/fsta2010/) and other conferences supported by Hungarian 

Fuzzy Association. 

This selection offers a cross section of soft computing technologies in terms of 

their widespread application. The aim of this publication is to offer scientists and 

researchers an insight into current directions of development and imminent trends 

of research in this field. 

 

 

Márta Takács 

Special Issue Guest Editor 
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Abstract: The modeling of a utility function’s forms is a very interesting part of modern 

decision making theory. We apply a basic concept of the personal utility theory on 

determination of minimal net and maximal gross annual premium in general insurance. We 

introduce specific values of gross annual premium on the basis of a personal utility 

function, which is determined empirically by a short personal interview. Moreover, we 

introduce a new approach to the creation of a personal utility function by a fictive game 

and an aggregation of specific values by mixture operators. 

Keywords: Utility function; Expected utility; Mixture operator; General Insurance 

1 Introduction 

This paper was mainly inspired by the books Modern Actuarial Risk Theory [3] 
and Actuarial models – The Mathematics of Insurance [13]. The authors of the 
above-mentioned books assume utility functions as linear utility ( ) wwu = , 

quadratic utility ( ) ( )2wawu −−= , power utility ( ) c
wwu = , etc. Lapin in [5] 

describes and explains an application of the utility function in decision making in 
a really interesting way. In this book also the generation of the utility function 



J. Špirková et al. Aggregation Functions and Personal Utility Functions in General Insurance 

 – 8 – 

using information extracted from a personal interview is explained. A modern 
theoretical approach to the utility function is also described by Norstad in [8]. 

We can find a very interesting discussion about utility functions in [4]. An 
alternative approach to the determination of a utility function on the basis of the 
aggregation of specific utility values can be found in [18]. 

However, in real life people do not behave according to the theoretical utility 
functions. It is a psychological problem rather than a mathematical one. The 
seriousness and also the uncertainty of a respondent's answers depend on the 
situation, on the form of the asked questions, on the time which the respondents 
have, and on a lot of other psychological and social factors. In our paper we 
introduce the possibility of determining a personal utility function on the basis of a 
personal interview with virtual money. 

Moreover, we recall and apply one type of aggregation operators [2], the so-called 
mixture operators – gM , the generalized mixture operators – gM , and the 

specially ordered generalized mixture operators – ′
gM  on the aggregation of so-

called risk neutral points, see [6-7], [9-11], [14-16]. 

This paper is organized as follows: in Section 2 we recall the basic properties of 
utility functions and their applications in general insurance. In Section 3 we also 
recall mixture operators and their properties, namely the sufficient conditions of 
their non-decreasing-ness. In Section 4 we describe the personal utility function of 
our respondent who took part in our short interview. Using this function we 
calculate the maximal gross premium for a general insurance policy. In this 
section we also describe an alternative approach, where a personal utility function 
is determined through the result of a fictive game and theoretical utility functions. 
The resulting utility function is then used for the computation of the maximal 
gross premium. Moreover, we evaluate the minimal net annual premium by means 
of the theoretical utility function for the insurer. Finally, some conclusions and 
indications as to our next investigation about the mentioned topic are included. 

2 Utility Functions 

Individuals can have very different approaches to risk. A personal utility function 
can be used as a basis for describing them. In general, we can identify three basic 
personalities with respect to risk. The risk-averse individual, who accepts 
favorable gambles only, a risk seeker, or in other words risk-loving individual, 
who pays a premium for the privilege of participation in a gamble, and the risk-
neutral individual, who considers the face value of money to be its true worth. 
Throughout most of their life people are typically risk averse. Only gambles with 
high expected payoff will be attractive to them. The risk-averse individual’s 
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marginal utility diminishes as the benefits increase, so that the risk-averse 
individual’s utility function exhibits a decreasing positive slope as the level of 
monetary payoff becomes higher. Such a function is concave, see Figure 1. 

The behavior of a risk-loving individual is opposite. The risk-loving individual 
prefers some gambles with negative expected monetary payoffs. Their marginal 
utility increases. Each additional euro provides a disproportionately greater sense 
of well-being. Thus, the slope of the risk-loving individual’s utility function 
increases as the monetary change improves. This function is convex (see Fig. 2). 
The utility function for a risk-neutral individual is a straight line. The utility is 
equal to the utility of expected value. Risk-neutral individuals buy no casually 
insurance since the premium charge is greater than the expected loss. Risk-neutral 
behavior is typical for persons who are enormously wealthy. 

Of course, a lot of people may be risk averse and risk loving at the same time, 
depending on the range of monetary values being considered, which can be 
illustrated using the behavior of the personal utility function of our respondent. 

2.1 The Personal Utility Function 

The fundamental proposition of the modern approach to utility is the possibility to 
obtain a numerical expression for individual preferences. As people usually have 
different approaches to risk, two persons faced with an identical decision may 
actually prefer different courses of action. In this section we will discuss utility as 
an alternative expression of payoff that reflects personal approaches. 

Suppose that our respondent owns capital w , and that he values wealth by the 
utility function u . The next Theorem 1, or in other words Jensen`s inequality, 
describes the properties of the utility function and its expected value [3], (see also 
Figure 2). It can be written as follows. 

Theorem 1 [3] (Jensen's inequality) 

If ( )xu  is a convex function and X  is a random variable, then the expected utility 

is greater or equals to a utility value 

( )[ ] [ ]( )XEuXuE ≥  (1) 

with an equality if and only if ( )xu  is linear with respect to X or ( ) 0var =X . 

From Jensen`s inequality and Figure 1 it follows that for a concave utility function 
it holds 

( )[ ] [ ]( ) [ ]( )XEwuXwEuXwuE −=−≤− . (2) 

In this case the decision maker is called risk averse. He prefers to pay a fixed 
amount [ ]XE  instead of a risk amount X . 
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Figure 1 

Concave utility function - risk averse approach 

 

 

Figure 2 

Convex utility function - risk loving approach 

In the next part we illustrate whether to buy insurance or not by evaluating an 
individual's decision. Now suppose that our respondent has two alternatives, to 
buy insurance or not. Assume he is insured against a loss X  for a premium P . 

If he is insured, this means a certain alternative. This decision gives us the utility 
value ( )Pwu − . 

If he is not insured, this means an uncertain alternative. In this case the expected 
utility is ( )[ ]XwuE − . 

From Jensen's inequality (2) we get 

( )[ ] [ ]( ) [ ]( ) ( )PwuXEwuXwEuXwuE −=−=−≤− . (3) 

Since a utility function u is a non-decreasing continuous function, this is 

equivalent to max
PP ≤ , where max

P  denotes the maximum premium to be paid. 
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This so-called zero utility premium is a solution of the following utility 
equilibrium equation 

( )[ ] ( )max
PwuXwuE −=− . (4) 

The difference ( )max
Pw −  is also called the certainty equivalent - CE . In [ ]3  the 

certainty equivalent is defined as follows. 

Definition 1 The certainty equivalent is that payoff amount that the decision 
maker would be willing to receive in exchange for undergoing the actual 
uncertainty, taking into account its benefits and risks. 

Remark 1 We recall that the expected utility is calculated by means of the well-
known formula 

( )[ ] ( ) i

n

i
i pxuXuE ⋅= ∑

=1
, (5) 

where ( )nxxxX ,...,, 21=  is a vector of the possible alternatives and ip , for 

ni ,...,2,1= , are respective probabilities. 

Expected utilities can be calculated as function values of a linear function, which 
is assigned uniquely by points A  and B , where point A  represents the worst 
outcome and B  the best outcome. 

Remark 2 [ ]5  When possible monetary outcomes fall into the decision maker's 

range of risk averse, the following properties hold (see Figure 1): 

1) Expected payoffs [ ]XwEEP −=  are greater than their counterpart certainty 

equivalent max
PwCE −= . 

2) Expected utilities ( )[ ]XwuE −  will be less than the utility of the respective 

expected monetary payoff  ( )max
Pwu − . 

3) Risk premiums CEEPRP −=  are positive. 

If possible monetary outcomes fall into the decision maker's range of risk loving, 
the following properties hold (see Figure 2): 

1) Expected payoffs [ ]XwEEP −=  are less than their counterpart certainty 

equivalent max
PwCE −= . 

2) Expected utilities ( )[ ]XwuE −  will be greater than the utility of the respective 

expected monetary payoff ( )max
Pwu − . 

3) Risk premiums  CEEPRP −=  are negative. 
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The insurer with a utility function U  and capital W , with insurance of loss X  for 
a premium P  must satisfy the inequality 

( )[ ] ( )WUXPWUE ≥−+ , (6) 

and hence for the minimal accepted premium min
P  

( ) ( )[ ]XPWUEWU −+= min . (7) 

2.2 The Risk Aversion Coefficient 

On the basis of equation (3) we can evaluate a risk aversion coefficient. Let μ  

and 2σ  be the mean and variance of loss X . Using the first terms in the Taylor 
expansion of the utility function u in μ−w , we obtain 

( ) ( ) ( ) ( ) ( ) ( )2
2

1
XwuXwuwuXwu −⋅−′′+−⋅−′+−≈− μμμμμ . 

The expected utility from ( )Xwu −  is given by 

( )[ ]

( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −′′⋅−+−′⋅−+−≈

≈−

μμμμμ wuXwuXwuE

XwuE

2

2

1  

After some processing we get 

( )[ ] ( ) ( )μσμ −′′⋅+−≈− wuwuXwuE 2

2

1
. (8) 

The Taylor expansion of the function on the right side of equation (3) is given by 

( ) ( ) ( ) ( )μμμ −′⋅−+−≈− wuPwuPwu
maxmax . (9) 

From the equality of equations (8) and (9) we have 

( ) ( ) ( ) ( ) ( )μμμμσμ −′⋅−+−≈−′′⋅+− wuPwuwuwu
max2

2

1
. (10) 

After some processing we get 

( )
( )μ

μσμ
−′
−′′

−≈
wu

wu
P

2max

2

1
, (11) 

where a risk aversion coefficient ( )wr  of the utility function u  at a wealth μ−w  

is given by 
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( ) ( )
( )μ

μ
−′
−′′

−=
wu

wu
wr . (12) 

( ) 2max

2

1 σμμ ⋅−+≈ wrP . (13) 

From (13) you can see that, if the insured has greater risk aversion coefficient, 
then he is willing to pay greater premium. 

3 Mixture Operators 

In this part we review some mixture operators introduced in [6], [7], [9-11]. 
Suppose that each alternative x is characterized by a score vector x= ( )∈nxx ,...1  

[ ]n1,0 , where  {}1−∈Nn  is the number of applied criteria. A mixture operator can 

be defined as follows: 

Definition 2 A mixture operator [ ] [ ]1,01,0: →n
gM  is the arithmetic mean 

weighted by a continuous weighting function [ ] ] [∞→ ,01,0:g  given by 

( )
( )

( )∑

∑

=

=

⋅
=

n

i

i

n

i

ii

ng

xg

xxg

xxM

1

1
1,..., , (14) 

where ( )nxx ,...,1  is an input vector. 

Observe that due to the continuity of weighting function g , each mixture operator 

gM  is continuous. Evidently, gM  is an idempotent operator, [2], [6], [9-10]. 

Note that sometimes different continuous weighting functions are applied for 
different criteria score, which leads to a generalized mixture operator, see [6], [9-
10]. 

Definition 3 A generalized mixture operator M g:    [ ] [ ]1,01,0 →n  is given by 

( )
( )

( )∑

∑

=

=

⋅
=

n

i

ii

n

i

iii

ng

xg

xxg

xxM

1

1
1,..., , (15) 
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where ( )nxx ,...,1  is an input vector and g ( )ngg ,...,1=  is a vector of continuous 

weighting functions. 

Obviously, generalized mixture operators are continuous and idempotent. A 
generalized mixture operator based on the ordinal approach can be defined as 
follows. 

Definition 4 An ordered generalized mixture operator gM ′ :    [ ] [ ]1,01,0 →n  is 

given by 

( )
( )( ) ( )

( )( )∑

∑

=

=

⋅
=′

n

i

ii

n

i

iii

n

xg

xxg

xxM

1

1
1g ,..., , (16) 

where g ( )ngg ,...,1=  is a vector of continuous weighting functions and 

( ) ( )( )nxx ,...,1  is a non-decreasing permutation of an input vector. 

An ordered generalized mixture operator is a generalization of an OWA  operator 
[19], corresponding to constant weighting functions ii wg = , [ ]1,0∈iw , 

1
1

=∑
=

n

i
iw . 

However, a mixture operator need not be non-decreasing. Marques-Pereira and 
Pasi [6] stated the the first sufficient condition for a weighting function g  in order 

to a mixture operator (8) is to be non-decreasing. It can be written as follows: 

Proposition 1 Let [ ] ] [∞→ ,01,0:g  be a non-decreasing smooth weighting 

function which satisfies the next condition: 

( ) ( )xgxg ≤′≤0  (17) 

for all [ ]1,0∈x . Then [ ] [ ]1,01,0: →n
gM  is an aggregation operator for each 

Nn∈ ,  n >1 . 

We have generalized sufficient condition (17) in our previous work. In the next 
part we recall more general sufficient conditions mentioned in [7], [14-16]. 

From (14) we see that 
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( ) ( )( ) ( ) ( ) ( )

( )
0

2

1
1

1
1

11
1

1111

1
≥

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

′⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅⋅′+

=
∂

∂

∑

∑∑

=

==

n

i

n

i

n

ig

xg

xgxxgxgxxgxg

x

M
 (18) 

if and only if 

( ) ( ) ( ) ( )( ) ,01111
2 ≥−⋅′++ βα xxgxgxg  (19) 

where 

( )∑
=

=
n

i
ixg

2
α  and ( )∑

=
⋅=⋅

n

i
ii xxg

2
βα , and thus necessarily [ ]1,0∈β  and 

( ) ( ) ( ) ( )[ ]11,01 gngn ⋅−⋅−∈α . 

Now it is easy to see that (17) implies (19). However, (19) is satisfied also 
whenever 

( ) ( ) ( ) 0111 ≥−⋅′+ βxxgxg  (20) 

for each [ ]1,01∈x  and each [ ]1,01∈β . 

Because ( ) 01 ≥′ xg , (20) is fulfiled whenever 

( ) ( ) ( )xgxxg ≤−⋅′≤ 10  for all [ ]1,0∈x . 

We have just shown a sufficient condition more general than (17). 

Proposition 2 Let [ ] ] [∞→ ,01,0:g  be a non-decreasing smooth weighting 

function which satisfies the condition: 

( ) ( ) ( )xgxxg ≤−⋅′≤ 10  (21) 

for all [ ]1,0∈x . Then  [ ] [ ]1,01,0: →n
gM  is an aggregation operator for each 

Nn∈ , n >1 . 

Moreover, we have improved sufficient condition (21), but constrained by n . 

Proposition 3 For a fixed Nn∈ , n >1 , let [ ] ] [∞→ ,01,0:g  be a non-decreasing 

smooth weighting function satisfying the condition: 

( )
( ) ( ) ( ) ( ) ( )xxgxg

gn

xg
−⋅′≥+

⋅−
1

11

2
 (22) 
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for all [ ]1,0∈x .Then [ ] [ ]1,01,0: →n
gM  is an aggregation operator. In the next 

proposition we introduce a sufficient condition for the non-decreasing-ness of 
generalized mixture operators. 

Proof.  Minimal value of  ( ) ( ) ( )β−⋅′+ 111 xxgxg  for [ ]1,0∈β is attained for 1=β , 

i. e., it is ( ) ( ) ( )1111 −⋅′+ xxgxg . Therefore, (19) is surely satisfied whenever 

( ) ( ) ( ) ( )111
1

2

1 xxgxg
xg

−⋅′≥+
α

. 

Suppose that (22) holds. Then 

( ) ( ) ( )
( ) ( ) ( ) ( )11

1
2

1
1

2
1

11
xxg

gn

xg
xg

xg
−⋅′≥

⋅−
≥+

α
, 

i. e., (19) is satisfied and thus g  is a fitting weighting function. 

                                                                                                                               □   

In the next proposition we introduce a sufficient condition for the non-decreasing-
ness of generalized mixture operators. 

Proposition 4 For a fixed Nn∈ , n >1 , ni ,...,2,1= , let [ ] ] [∞→ ,01,0:ig  be a 

non-decreasing smooth weighting functions, such that 

( )
( ) ( ) ( ) ( )xxgxg

g

xg
ii

ij
j

i −⋅′≥+
∑
≠

1
1

2

 (23) 

for all [ ]1,0∈x . Then [ ] [ ]1,01,0:g →′ n
M , where g ( )ngg ,...,1= , is an 

aggregation operator. 

4 Maximal Premium Determined by a Personal 
Utility Function 

In practice, the utility function can be determined empirically by a personal 
interview made by a decision maker. In our opinion, there are at least two suitable 
ways to do this. The first one is based on an interview which provides us with 
probabilities estimated by an interviewed subject; the second one on a game with 
known probabilities where the interviewed subject gives us only information 
about a personal breaking point. The personal breaking point is the amount of 
wealth at which our individual is changed from risk averse to a risk seeker, or 
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vice versa. An appropriate curve for a risk averse and risk loving part is then 
selected from the theoretical utility functions. 

4.1 A Personal Utility Function – a Probability-oriented 
Approach 

Following this approach a personal utility function can easily be constructed from 
the information gleaned from a short interview using the classical regression 
analysis. The decision maker can use this function in any personal decision 
analysis in which the payoff falls between 0 and 30000 €. Now we recall the 
interview, which is compiled as follows [4]. 

Let us suppose you are owner of an investment which brings you zero payoff now 
or a loss of 30000 €. However, you have a possibility to step aside from this 
investment under the penalty in the amount of a sequence: A: 1000 €, B: 5000 €, 
C: 10000 €, D: 15000 €, E: 25000 €. Your portfolio manager can provide you 
with information expressing the probability loosing the 30000 €. Think. What 
would be the biggest probability of the loss, so that you retain the above 
mentioned investment? Only a few well-proportioned graphic points are required. 
From our interview we took the respective person's data points ( )1,0 , ( )8.0,1000− , 

( )75.0,5000− , ( )60.0,10000− , ( )60,0,15000− , ( )40.0,25000− , ( )00.0,30000− , 

and created the appropriate utility function of our respondent as shown in Fig. 3. 
This curve has an interesting shape that reflects our respondent’s approach to 
risk. The different personal utility functions for our respondent were created 
using the IBM SPSS 18.0 system for the purpose of comparison. The maximal 

premium max
P  was calculated by 1−

u  inverse function to the utility equilibrium 
equation (4) 

( )[ ]( )XwuEuwP −−= −1max  (24) 

with system Mathematica 5. 
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Figure 3 

A utility function and the expected utility of our respondent (the function 2 from Table 1) 

Utility functions are used to compare investments mutually. For this reason, we 
can scale a utility function by multiplying it by any positive constant and (or) 
transfer it by adding any other constant (positive or negative). This kind of 
transformation is called a positive affine transformation. All our results are the 
same with respect to such a transformation. Quadratic and cubic utility functions 
are written in Table 1. On the basis of statistical parameters (adjusted R square, p-
values) we can assume that the cubic function is the best fitting function. 
Moreover, Table 1 also consists of appropriate expected utilities expressed by 
linear functions. 

Remark 3 Expected utilities (for the utility functions from Table 1) can be 
calculated by means of a linear function which is assigned uniquely by points 

( )( )30000,30000 −− u  and ( )( )0,0 u , or by the formula (8), alternatively. In both 

cases we get the same values for the expected utilities. 

In Figure 3 you can see the personal utility function of our respondent, as well as 
three interesting points that are highlighted (also in Table 3). Maximal premium 

max
aP  represents the area where our respondent is risk averse, and max

sP , where 

he is risk seeking (loving). 

Table 1 

A utility function and the expected utility 

 A utility function and the expected utility 

1 ( )
( )[ ] 904.01002.27

904.010856.110820.2
6

5210

+⋅=

+⋅+⋅−=
−

−−

xxuE

xxxu
 

2 ( )
( )[ ] 971.01023.3

971.010588.710383.510310.1
5

529313

+⋅=

+⋅+⋅+⋅=
−

−−−

xxuE

xxxxu
 

From Table 2 you can see that the insured person is willing to pay more than the 
expected loss to achieve his peace of mind''. 

Table 2 

The expected utility and maximal premium with respect to a quadratic function 

 
p  

Probability 
 

 

[ ]uE  

with respect to 
quadratic function 

 

max
P  

(€) 

 

[ ]XE  

(€) 

min
P  

(€) 
 

0.00 0.904000 0.0 0.0 0 

0.01 0.895894 433.9 300.0 301.69 
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0.05 0.863470 2115.7 1500.0 1508.10 

0.10 0.822940 4110.7 3000.0 3015.34 

0.20 0.741880 7808.5 6000.0 6027.24 

0.30 0.660820 11197.3 9000.0 9035.69 

0.40 0.579760 14336.3 12000.0 12040.70 

0.50 0.498700 17293.4 15000.0 15042.40 

0.60 0.417640 20079.0 18000.0 18040.60 

0.70 0.336580 22725.4 21000.0 21035.50 

0.80 0.255520 25251.4 24000.0 24027.00 

0.90 0.174460 27672.4 27000.0 27015.20 

1.00 0.093400 30000.0 30000.0 30000.00 

Table 3 

The expected utility and maximal premium with respect to a cubic function 

p  

Probability 

[ ]uE  

with respect to 
cubic function  

max
P  

(€) 

[ ]XE  

(€) 

min
P  

(€) 
 

0.00 0.971252 0.0 0.0 0,00 

0.01 0.961575 128.7 300.0 301.69 

0.05 0.922868 669.1 1500.0 1508.10 

0.10 0.874485 1411.9 3000.0 3015.34 

0.20 0.777717 3234.4 6000.0 6027.24 

0.30 0.680950 6021.0 9000.0 9035.69 

0.37 0.613140 11102.2 11102.2 10986.70 

0.40 0.584182 18165.0 12000.0 12040.70 

0.50 0.487415 22797.1 15000.0 15042.40 

0.60 0.390647 25033.0 18000.0 18040.60 

0.70 0.293880 26643.3 21000.0 21035.50 

0.80 0.197112 27938.0 24000.0 24027.00 

0.90 0.100345 29036.7 27000.0 27015.20 

1.00 0.003577 30000.00 30000.0 30000.00 

We determine the minimal premium by means of (7) with respect to the utility 
function for insurer ( ) xxU ln=  with his basic capital 51.2655513=W € and loss 

30000=X €. 

The equation can be rewritten as follows: 

( ) ( ) ( ) ( )minmin 1 PWUpXPWUpWU +⋅−+−+⋅=  (25) 

and hence 

( ) ( )( )pp
PWXPWW

−
+⋅−+=

1minmin . (26) 
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We determined individual minimal premiums with corresponding probability 
with the system Mathematica 5. 

4.2 A Personal Utility Function– a Game-based Approach 

Our expectation that our subject can appropriately estimate probabilities is the 
main drawback of the previous approach. In fact, we can doubt whether 
somebody without appropriate knowledge about probabilities can provide us with 
reliable answers. In order to avoid this problem we can assume a game with 
probabilities which are easy to understand, e.g. games based on coin tossing. Let 
us assume the following game. You have two possibilities: either to toss a coin 
with two possible results, head means you will get 10 €, tail means you will get 
nothing; or to choose 5 € without playing. What is amount of money for which 
you will start (stop) playing? It is easy to see that the expected value is the same 
in both cases and we make our decision about playing with respect to our 
personal utility function. The point at which we give up (stop) playing is the 
above mentioned breaking point. For simplicity we will assume the quadratic 
utility function. This approach allows us to combine easily personal utility 
functions to a group utility function using aggregation operators. The group 
utility function can represent a specific group of customers of our insurance 
company. Let us assume three utility functions based on different breaking, a 
utility function for 29900=x  

( ) ( )
( )⎪⎩

⎪
⎨
⎧

≤≤+−⋅⋅
≤≤+−⋅⋅−= −

−

3000029900for      5.029900105

29900 0for        5.02990010592778604.5
25

210

1
xx

xx
xu , (27) 

a utility function for 29800=x  

( ) ( )
( )⎪⎩

⎪
⎨
⎧

≤≤+−⋅⋅
≤≤+−⋅⋅−= −

−

3000029800for      5.0298001025.1

29800 0for        5.0298001063037701.5
25

210

1
xx

xx
xu , (28) 

A utility function for 29650=x  

( ) ( )
( )⎪⎩

⎪
⎨
⎧

≤≤+−⋅⋅
≤≤+−⋅⋅−= −

−

3000029650for      5.029650104081.0

29650 0for        5.02965010687489514.5
25

210

1
xx

xx
xu . (29) 

To construct the combined utility function we can use for example an ordered 
generalized mixture operator gM ′  with weighting vector g ( )321 ,, ggg= , 

where ( ) 8.02.01 += xxg , ( ) 5.05.02 += xxg and ( ) 25.075.03 += xxg . Let us note 

that the selected weighting functions satisfy the conditions required for of non-
decreasing aggregation operators. 
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Values 29900, 29800, 29650 we transform to the unit interval and aggregate them 
by means of gM ′ . We obtain an aggregated value 0.00575309g =′M , and after 

transformation we have point of division 41.29827=x , where the insured is 
neutral to risk. On the basis of this division point we can create a new combined 
utility function 

( ) ( )
( )⎪⎩

⎪
⎨
⎧

≤≤+−⋅⋅
≤≤+−⋅⋅−= −

−

3000029827,41for      5.041,29827106785.1

41,29827 0for        5.041,2982710620033657.5
25

210

xx

xx
xu (30) 

and appropriate expected utility 

( )
⎪⎩

⎪
⎨
⎧

≤≤⋅
≤≤⋅= −

−

3000029827,41for      10897039.2

41,29827 0for        106763.1
3

5

x

xx
xE  (31) 

Table 4 

The expected utility and maximal premium with respect to a function (28) 

X  Xw−  ( )[ ]XwuE −  max
Pw−  max

P  
min

P  

0 30000,00 1,000000 30000,00 0,00 0 

50 29950,00 0,855148 29972,90 27,10 50 

100 29900,00 0,710296 29939,30 60,70 100 

172,59 29827,41 0,500000 29827,40 172,60 172,59 

200 29800,00 0,499541 28923,70 1076,30 200 

300 29700,00 0,497864 27877,90 2122,10 300 

1500 28500,00 0,477748 23535,00 6465,00 1500 

3000 27000,00 0,452604 20644,10 9355,90 3000 

6000 24000,00 0,402315 16643,50 13356,50 6000 

9000 21000,00 0,352025 13600,90 16399,10 9000 

12000 18000,00 0,301736 11044,90 18955,10 12000 

15000 15000,00 0,251447 8797,37 21202,63 15000 

18000 12000,00 0,201157 6767,79 23232,21 18000 

21000 9000,00 0,150868 4902,97 25097,03 21000 

24000 6000,00 0,100579 3168,28 26831,72 24000 

27000 3000,00 0,050289 1539,73 28460,27 27000 

30000 0,00 0,000000 0,00 30000,00 30000 

The minimal premium we evaluated on the basis of formula (7) with the utility 
function for insurer ( ) ( )1ln += xxU  with the system Mathematica. From Table 4 

and also from the formula (7) you can see that the minimal premium is given by 
the size of the expected loss. A newly-gained utility function would be required 
for evaluating a decision with more extreme payoffs or if our respondent's 
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attitudes change because of a new job or lifestyle change. Moreover, the utility 
function must be revised from the viewpoint of time. 

Conclusions 

We have shown two approaches to creating a personal utility function and we 
have calculated the maximum premium against the loss of 30000 € with respect 
to it. We think that the personal utility function of an insured person would be 
very important for an insurer. On the basis of the personal utility function the 
insurer would know what approaches to risk the customers have and thus, how 
they will behave towards their own wealth. Creating a utility function for the 
insurer is very difficult. Moreover, in our next work we want to investigate the 
insurer's utility function and we want to determine the minimal premium against 
the loss of 30000 € with respect to a concrete real insurer's utility function. 
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Abstract: In this paper we propose a Multilayer Perceptron Neural Network (MLP NN) 

consisting of fuzzy flip-flop neurons based on various fuzzy operations applied in order to 

approximate a real-life application, two input trigonometric functions, and two and six 

dimensional benchmark problems. The Bacterial Memetic Algorithm with Modified 

Operator Execution Order algorithm (BMAM) is proposed for Fuzzy Neural Networks 

(FNN) training. The simulation results showed that various FNN types delivered very good 

function approximation results. 

Keywords: fuzzy flip-flop neurons; Fuzzy Neural Networks; Bacterial Memetic Algorithm 

with Modified Operator Execution Order 

1 Introduction 

Over the last few decades many different approaches to the hybridization of neural 
networks and fuzzy systems have been introduced and studied [9], [11], [22] as 
new neuro-fuzzy structures. Based on this idea, in this paper the concept of the 
fuzzy flip-flop neuron is introduced. The function approximation capability of the 
novel Fuzzy Flip-Flop-based Neural Networks (FNN), as a new type of neural 
networks is studied. A comparison of the effect of applying some selected fuzzy 
operations in the investigation of the fuzzy flip-flop (F3)-based neurons, and the 
Multilayer Perceptrons (MLPs) based on them, are presented. The proposed 
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network is a structure consisting of the same types of F3. The proposed training 
method is a particular combination of evolutionary and gradient based (global and 
local search) algorithms. The effect of fuzzy operations types and fuzzy neurons 
numbers are studied. Illustrative examples are presented in order to demonstrate 
the success of this work in terms of the function approximation capability of the 
proposed FNNs. 

The outline of this paper is as follows. In Section II we present the fuzzy J-K and 
D flip-flops in general. The Fuzzy Flip-Flop based Neural Network as a novel 
implementation possibility of multilayer perceptron neural networks is proposed 
in Section III. The FNNs neuron element may be any fuzzy flip-flop derived from 
the original F3 with two additional modifications (feedback and fixed internal 
state) with more or less sigmoid transfer characteristics. After simplifications the 
fuzzy J-K and D flip-flop neurons block diagram for a fix Q value is given. The 
Bacterial Memetic Algorithm with Modified Operator Execution Order (BMAM) 
is carried out in Section IV. We apply this method to demonstrate that the 
proposed FNNs built up from fuzzy J-K and D flip-flops based on algebraic, 
Łukasiewicz, Yager, Dombi and Hamacher operations can be used for learning 
and approximating a battery cell charging characteristics, two dimensional 
trigonometric functions, and two and six dimensional benchmark problems. The 
target activation function is tansig, a MATLAB built-in sigmoid transfer function. 
Finally, the FNNs function approximation performance comparison thought 
simulation results are discussed in Section V, followed by a brief Conclusion and 
References. 

2 Fuzzy J-K and D Flip-Flops 

The concept of fuzzy flip-flop was introduced in the middle of 1980’s by Hirota 
(with his students) [7]. The Hirota Lab recognized the essential importance of the 
concept of a fuzzy extension of a sequential circuit and the notion of fuzzy 
memory. From this point of view they proposed alternatives for “fuzzifying” 
digital flip-flops. The starting elementary digital units were the binary J-K flip-
flops. Their definitive equation was used both in the minimal disjunctive and 
conjunctive forms. As fuzzy connectives do not satisfy all Boolean axioms, the 
fuzzy equivalents of these equations resulted in two non-equivalent definitions, 
“reset and set type” fuzzy flip-flops, using the concepts of fuzzy negation, t-norm 
and t-conorm operations. In [8] Hirota et al. recognized that the reset and set 
equations cannot be easily used as elements of memory module, because of their 
asymmetrical nature. In their paper [19] Ozawa, Hirota and Kóczy proposed a 
unified form of the fuzzy J-K flip-flop characteristic equation, involving the reset 
and set characteristics, based on min-max and algebraic norms. A few years later, 
the hardware implementation of these fuzzy flip-flop circuits in discrete and 
continuous mode was presented in [20]. The next state out

Q  of a fuzzy J-K flip-
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flop is characterized as a function of both the present state Q  and the two present 

inputs J  and K . The unified formula of the fuzzy J-K flip-flop was expressed as 
follows [19]: 

( ) ( ) ( )
out

Q J K J Q K Q= ∨ ∧ ∨ ∧ ∨  (1) 

The over bar denotes the standard negation (e.g. 1K K= − ); furthermore, 
 and∧ ∨  denote fuzzy operations (t-norm and t-conorm, labeled in the next as i 

and u). [ ], , , 0,1
out

J K Q Q ∈ . In [12] a F3 derived from fuzzy J-K flip-flop where 

Q  is fed back to K (K = 1 - Q) is proposed. The characteristic equation of a fuzzy 

J-K flip-flop with feedback is 

( ) ( ) ( )( )1outQ J  u Q  i J  u Q  i Q u Q= −  (2) 

The concept of a novel fuzzy D flip-flop type was introduced in [13]. Connecting 
the inputs of the fuzzy J-K flip-flop in a particular way, namely by applying an 
inverter in the connection of the input J to K, case of K = 1 - J, a fuzzy D flip-flop 

is obtained. Substitute =K J  in equation (1) and let J = D, the fundamental 
equation of fuzzy D flip-flop is 

( ) ( ) ( )( )1outQ D u D  i D u Q  i D u Q= −  (3) 

In our previous papers [13], [14] the unified fuzzy J-K flip-flop based on various 
norms combined with the standard negation was analyzed in order to investigate, 
whether and to what degree they present more or less sigmoid (s-shaped) 

out
J Q→  characteristics in particular cases, when K = 1 - Q (unified fuzzy J-K 

flip-flop with feedback), K = 1 - J (new fuzzy D flip-flop derived from the unified 
fuzzy J-K one) with fixed value of Q. We conducted extensive investigations and 
found that the 

out
J Q→  transfer characteristics of fuzzy J-K flip-flops with 

feedback based on Łukasiewicz, Yager, Dombi and Hamacher norms, as well as 
the 

out
D Q→  characteristics of (new) fuzzy D flip-flops of Łukasiewicz, Yager 

and Hamacher operations, show quasi sigmoid curvature for selected Q values. 
The fuzzy J-K and D F3s based on algebraic norms as well as the fuzzy D F3s 
based on Dombi norms have non-sigmoid behavior. 
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Qout 

1-Qfix 
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Qfix 

3 Fuzzy Neural Networks 

3.1 Fuzzy Flip-Flop Neurons 

We proposed the construction of a neuron unit, a combinational sigmoid generator 

derived from arbitrary fuzzy J-K flip-flop where Q  is fed back to K and (old) Q is 

fixed (Figure 1). In this approach, the output of fuzzy J-K flip-flop neuron 

depends from the value of Qfix and input values of J. Substitute K Q=                 

(1 - K = Q) in the unified formula of the fuzzy J-K flip-flop (equation 1), for a fix 
Q value, the characteristic equation of fuzzy J-K flip-flop neuron is 

( )( )fix fix fix fix( ) ( ) 1outQ J  u Q  i J  u Q  i Q  u Q= −  (4) 

where i and u denotes various t-norms and t-conorms. 
 

 

 

 

 

 

Figure 1 

Fuzzy J-K flip-flop neuron  

The clocked fuzzy J-K flip-flop neuron circuit can be implemented using 
hardware blocks (denoted by i, u and n symbols) to realize various t-norms, t-
conorms and fuzzy negations [24]. Since t-norms and t-conorms are functions 
from the unit square into the unit interval, the fuzzy J-K flip-flop neuron block 
diagram differs from the binary J-K flip-flop structure. The input J is driven by a 
synchronized clock pulse in the sample-and-hold (S/H) circuit (Figure 2) which 
could be a simple D flip-flop used as register. 

We proposed the construction of the fuzzy D flip-flop neuron (Figure 3), which is 
a combinational sigmoid generator. This unit is derived from arbitrary fuzzy J-K 
flip-flop by connecting the inputs of the fuzzy J-K flip-flop in a particular way, 
namely by applying an inverter in the connection of the input J to K. 
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Figure 2 

Fuzzy J-K flip-flop neuron block diagram 

Starting from the fundamental equation of the fuzzy J-K flip-flop and substituting 

K J=  in equation (1) and letting D = J for a fix Q value, the characteristic 
equation of fuzzy D flip-flop neuron is 

( )( )fix fix( ) ( ) 1outQ D u D  i D u Q  i D u Q= −  (5) 

 

 

 

 

 

 

Figure 3 

Fuzzy D flip-flop neuron 

Interconnecting the blocks of fuzzy operations in a different way, the fuzzy D flip-
flop neuron block diagram is obtained (Figure 4). 

The use of four-layered (that have two sigmoid hidden layers) neural network as 
universal approximators of continuous functions have been investigated by 
Funahashi [4] and Hecht-Nielsen [6]. Kurkova [10] studied the function 
approximation capabilities of multilayer feedforward networks with sigmoid 
activation, analyzing also their computational complexity issues. 
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Figure 4 

Fuzzy D flip-flop neuron block diagram 

The neuro-fuzzy system proposed is based on two hidden layers where the 
approximation process becomes more manageable. The first hidden layer neurons 
are used to partition the input space into regions and learn the local features. A 
neuron in the second layer learns the global features for a particular region of the 
input space and outputs zero elsewhere [4]. The FNNs constituted from fuzzy flip-
flop neurons are supervised feedforward network, applied in order to approximate 
various test functions. The functions to be approximated are represented by a set 
of input/output pairs. 

In this approach the weighted input values are connected to input J of the fuzzy 
flip-flop neuron based on a pair of t-norm and t-conorm, having quasi sigmoid 
transfer characteristics. The output signal is then computed as the weighted sum of 
the input signals transformed by the transfer function. Based on previous hardware 
implementation results [19], FNNs with fixed structure can be stated as easily 
implemented in real hardware neural networks. 

The nonlinear characteristics exhibited by fuzzy neurons are represented by quasi 
sigmoid transfer functions given by fuzzy J-K and D flip-flop neurons based on 
algebraic, Łukasiewicz, Yager, Dombi and Hamacher operations. The proposed 
network activation function is the same at each hidden layer, from unit to unit. 
The function approximation goodness is strongly dependent on the number of 
fuzzy neurons in the hidden layers [15], [16]. 
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4 Bacterial Memetic Algorithm with Modified 

Operator Execution Order 

The process of biological evolution has inspired a large amount of optimization 
algorithms. It has been shown that evolutionary algorithms work efficiently for 
solving nonlinear and constrained optimization problems. These methods do not 
use derivatives of the functions, such as the gradient-based training algorithms. 
Similarly to biological recombination, these methods are based on the search for a 
large number of solutions. 

In particular, the Bacterial Memetic Algorithm with Modified Operator Execution 
Order (BMAM) [5] evolutionary approach is proposed for FNNs training. This 
chapter presents how the bacterial evolutionary algorithm [18] can be improved 
with another optimization method, the Levenberg-Marquardt (LM) technique, to 
achieve better results in the function approximation process, developing an 
effective hybrid combination. 

The BMAM is a memetic algorithm which eliminates the imperfection of 
traditional evolutionary and LM algorithm. The evolutionary algorithm is able to 
find the global optimum region but miss the local optimum solution. The LM 
algorithm is fast and efficient for training feedforward neural networks and is able 
to find the local optimum, but is very sensitive to the initial position of the search 
space. 

The learning of the FNNs is formulated as a parameter optimization problem, 
using the mean square error as the fitness evaluation set-up. The algorithm starts 
with a random population of initial solutions to the optimization problem. The 
solutions are coded as an array of floating point or integer values. The basic steps 
embrace the bacterial mutation operation and the LM method. In this application 
the population number was initialized according to the network size. 

During simulations 30 generations of 5 individuals with 5 clones were chosen to 
obtain the best fitting variable values, with the lowest performance. Then the same 
part, or parts, of the chromosome is chosen and mutated randomly. The LM 
method nested into evolutionary algorithm is applied 3 times for each individual. 
The selection of the best clone is made and transfers its mutated parts to the other 
clones. The part choosing-mutation-LM method-selection-transfer cycle is 
repeated until all the parts are mutated, improved and tested. The best individual 
remains in the population and all other clones are deleted. This process is repeated 
until all individuals have gone through the modified bacterial mutation. Then the 
Levenberg-Marquardt method is applied 7 times for each individual executing 
several LM cycles during the bacterial mutation after each mutation step. 

Gene transfer operation is done 3 times for a partial population. The number of the 
gene transfers in a generation is the algorithm parameter; it could be 0. The quasi 
optimal values can be identified at the end of the BMAM training algorithm. 
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5 Numerical Simulation and Results 

The FNNs architecture is predefined, depending on the input function complexity. 
In this approach the choice of an optimal network design for a given problem is a 
guessing process. In particular, the application of a recently improved BMAM 
algorithm is applied for training various FNNs with different structures. This new, 
complex software is able to train all the FNNs parameters, eliminating completely 
the imprecision caused by training them with the LM algorithm. The simulation 
results published in our previous papers obtained under the same conditions could 
turn out to be different because the LM method is very sensitive to the initial 
values of the search space. The FNNs approximate a one-dimensional real-life 
application, two dimensional trigonometric functions, two benchmark problems 
whose dates were selected from the input/output test points of a gas furnace 
benchmark data set, and a six dimensional non-polynomial function. The test 
functions are arranged in the order of complexity. 

A Simple Real - Life Application: Approximation of a Nickel-Metal Hydride 

Battery Cell Charging Characteristics 

In this particular case, the FNNs approximate a Nickel-Metal Hydride (NiMH) 
Battery Cell charging characteristics [2], a one-input real-life application. 

The nickel-metal hydride batteries can be repeatedly charged and discharged for 
more than 500 cycles. The charging process duration can be different, from 15 
minutes to 20 hours. The charge characteristics are affected by current, time and 
temperature. In this experiment it was more than 1 hour. The test function is a 
characteristic between the battery capacity input and the cell voltage. The battery 
type was GP 3.6V, 300 mAH, 3x1.2V NiMH, charged for 1.5 hours with 300 mA 
and 25˚C. 

B The Box-Jenkins’ Gas Furnace Benchmark Data Set 

The gas furnace data set presented by Box and Jenkins in 1970 is a frequently 
used benchmark data set. The set consists of 296 input-output data; a pair is 
sampled at every 9 seconds. The input signal represents the flow rate of the 
methane in a gas furnace, while the output of the model corresponds to the CO2 
concentration in the gas mixture flowing out of the furnace under a steady air 
supply [17]. We used as the most studies [21], [23] the inputs y(k-1) and u(k-4) 
which have the highest correlation with the output y(k). 

C Two - Input Trigonometric Functions  

We used the next two two-dimensional polynomial input functions as test 
functions 

( ) ( )( )5 3

1 1 1 2 2sin cos / 2 0.5y c x c x= ⋅ ⋅ ⋅ +  (6) 
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2

100
2 cos

2

r
r

y e
− ⎛ ⎞= ⋅ ⎜ ⎟

⎝ ⎠
; where 2 2

1 2 ,r x x= +  (7) 

[ ]1, 20,20
2

x  x ∈ −  

D Six Dimensional Non-Polynomial Function 

This widely used target function originates from paper [1] and is given by the 
following expression 

( )5 620.5
3 1 2 3 4 2 x x

y x x x x e
−= + + +  (8) 

where [ ] [ ] [ ]1 2 3 4, 1, 5 , 0, 4 , 0, 0.6 ,x  x   x   x   ∈ ∈ ∈ [ ] [ ]5 60, 1 , 0, 1.2 .x   x  ∈ ∈  

The real-life application (denoted by 1D) is approximated with a 1-2-2-1 FNN 
size, described by a set of 543 input/output samples selected equidistantly from a 
set of 2715 test points. To approximate the gas furnace benchmark data set we 
proposed a 1-2-2-1 FNN (2D-gas) size given by 296 dates. A 1-20-20-1, 
respectively a 1-15-15-1 feedforward neural networks structure based on F3 

neurons were proposed to approximate the two two-input trigonometric functions, 
(equations (6) and (7), labeled as 2D-trig and 2D-hat), represented by 1600 
input/output samples. To approximate the six-dimensional benchmark problem we 
proposed a 1-10-10-1 FNN (6D) size given by 200 samples. 

The number of neurons was chosen after experimenting with different size hidden 
layers. Smaller neuron numbers in the hidden layer result in worse approximation 
properties, while increasing the neuron number in a complex FNN structure 
results in better performance, but longer simulation time. 

In [15] we proposed a method to find the optimal Q and fuzzy operation parameter 
pairs for J-K and D type F3 neurons based on algebraic, Yager, Dombi and 
Hamacher norms by training a 1-8-8-1 FNN with the Bacterial Memetic 
Algorithm. The optimal variable values depend on the fuzzy flip-flop neuron and 
fuzzy operation types. A change of the operations and parameter values in the 
characteristic equations of the fuzzy J-K and D flip-flops leads to the modification 
of the slope of the transfer function, which will affect the learning rate in the 
implementation of neural networks. In the next, the algebraic, Łukasiewicz, 
Yager, Dombi and Hamacher operations and two different fuzzy flip-flop neuron 
types will be compared from the point of view of the respective fuzzy-neural 
networks approximation capability. 

Figures 5 and 6 compare the function approximation performance of J-K and D 
FNNs in case of various test functions. Tables I and II present the 10 runs average 
approximation goodness, by indicating the median MSE (mean squared error) of 
the various FNNs training values. During evaluation we compared the median 
MSE values, considering them as the most important indicators of trainability. The 
median is a robust estimate of the center of a data sample, since outliers have little 
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effect on it. According to the numerical illustrations the average of 10 runs MSE 
values the sequence is almost the same in every test function cases. By extensive 
simulation experiments it is proved that the function approximation goodness of 
FNNs based on fuzzy J-K flip-flop neuron with Dombi and Łukasiewicz norms 
are the best ones. 

The error of approximation of the battery cell and Box-Jenkins’ gas furnace 
benchmark dates characteristics obtained by traditional tansig function is 
irrelevantly less than that obtained in our simulations. As can be seen from Figure 
6, and comparing the simulation results from Table II the function approximation 
by D FNNs may be considered sufficiently good in case of Łukasiewicz and 
Yager type fuzzy operations. 

Conclusions 

In this paper, we found that the fuzzy J-K flip-flop neurons based on Dombi and 
Łukasiewicz as well as the fuzzy D flip-flop neurons based on Łukasiewicz and 
Yager norms are the most suitable ones for constructing FNNs in order to 
approximate various test functions. As these FNN types produced more or less 
low MSE values in all simulation experiments. Thus, we proposed the 
construction of real hardware fuzzy neural networks constructed of the above-
mentioned F3 neuron types. The accuracy of the approximations not only depends 
on the network structures and parameters selected, such as the number of layers, 
and of the hidden units, but is strongly influenced by the fuzzy flip-flop neuron 
and fuzzy operation type. In the future we intend to propose new types of fuzzy 
flip-flop based on pliant inequality [2], and to improve the function approximation 
capability of FNNs. 
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Figure 5 

Function approximation capabilities of J-K FNNs 

 

Table I 

Training Median MSE Values for J-K Type FNNs 

Fuzzy op. 
Bat. cell  
1-2-2-1  

FNN 

2D-gas  
1-2-2-1 
  FNN 

2D-trig 
1-20-20-1 

FNN 

2D-hat 
1-15-15-1 

FNN 

6D 
1-10-10-1 

FNN 

tansig 1.32x10-5 7.71x10-2 9.07x10-7 4.26x10-7 1.12x10-4 

Algebraic  3.32x10-4 1.07x100 4.32x10-2 3.17x10-2 9.69x10-1 

Łukasiewicz  7.11x10-5 7.27x10-2 3.71x10-4 9.46x10-4 5.78x10-1 

Yager  1.47x10-4 8.23x10-1 1.53x10-2 1.49x10-2 5.92x10-1 

Dombi  3.52x10-5 7.30x10-2 8.75x10-6 1.76x10-4 2.98x10-1 

Hamacher  2.59x10-4 8.27x10-1 2.18x10-2 2.86x10-2 7.43x10-1 



R. Lovassy et al. Function Approximation Performance of Fuzzy Neural Networks 

 – 36 – 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6 

Function approximation capabilities of D FNNs 

 

Table II 

Training Median MSE Values for D Type FNNs 

Fuzzy op. 
Bat. cell  
1-2-2-1  
FNN 

2D-gas  
1-2-2-1 
  FNN 

2D-trig 
1-20-20-1 

FNN 

2D-hat 
1-15-15-1 

FNN 

6D 
1-10-10-1 

FNN 

tansig 1.32x10-5 7.71x10-2 9.07x10-7 4.26x10-7 1.12x10-4 

Algebraic  1.38x10-4 1.18x100 2.71x10-2 2.94x10-2 6.56x10-1 

Łukasiewicz 4.95x10-5 7.26x10-2 7.48x10-4 1.52x10-3 7.15x10-1 

Yager  1.09x10-4 7.69x10-2 8.21x10-3 1.86x10-2 1.45x10-1 

Dombi  6.41x10-4 1.25x100 2.93x10-2 3.23x10-2 1.58x100 

Hamacher  1.12x10-4 7.91x10-2 5.25x10-3 1.48x10-2 2.52x10-1 
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We will be focused on the interpolation approach to a computation with fuzzy data. A definition of interpolation of fuzzy

data, which stems from the classical approach, is proposed. We investigate another approach to fuzzy interpolation

(published in [5]) with relaxed interpolation condition. We prove that even if the interpolation condition is relaxed the

related algorithm gives an interpolating fuzzy function which fulfils the interpolation condition in the classical sense.

Keywords: Fuzzy function; fuzzy equivalence, fuzzy space, fuzzy interpolation, fuzzy rule base interpolation

1 Introduction

In the following, we will deal with a problem of a fuzzy interpolation. We will first recall a classical

approach to interpolation, because the problem of fuzzy interpolation closely relates to it.

Let f be a real function of a real argument with a domain M = {xi, i = 1, . . . , n} ⊂ R, and

{(xi, f(xi)), i = 1, . . . , n} ⊆ R be the interpolation data. Let M ⊂ P ⊆ R. An interpolation function

g : P −→ R is a function that fulfils the interpolation condition:

f(xi) = g(xi), i = 1, . . . , n.

In this paper, we will be focused on the interpolation approach to a computation with fuzzy data. A

precise definition of interpolation of fuzzy data will be given below in the subsection 2.4. Freely speaking,

this is a problem of extension of a fuzzy function given on a restricted domain to a fuzzy function given on

a wider domain (similar to the case considered above).

There are other approaches to the problem of fuzzy interpolation. They differ one from the other one

by restrictions on interpolation functions. The following list remembers the most popular approaches :

level cuts interpolation [17, 18], analogy-based interpolation [3, 4, 6], interpolation by convex completion

[8, 23], interpolation by geometric transformations [1], interpolation in a family of interpolating relations

[2], polar cut interpolation [15], interpolation based on closeness relations [5], flank functions interpolation

[13, 14], analytic fuzzy relation-based interpolation [20], and fuzzy interpolation based on fuzzy functions

[11].

The sections below are arranged as follows : basic concepts as well as definition of fuzzy interpolation

will be given in Section 2. In Section 3, we will recall the approach to fuzzy interpolation introduced by

Godo, Esteva, ets. in [5]. The last Section 4 is devoted to a new approach.

-1-
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2 Fuzzy Interpolation and Its Analytic Representation

In this section, we will introduce the problem of fuzzy interpolation as a problem of extension of a partially

given fuzzy function. Moreover, we expect that a solution will be represented analytically with the help of

a structure known as residuated lattice.

First of all, we will recall the notion of residuated lattice, then we will introduce the notion of fuzzy

space and fuzzy function. Finally, we will discuss a certain class of interpolating fuzzy functions and their

analytical representation.

2.1 Residuated Lattice

A residuated lattice is an ordered algebraic structure with two residuated binary operation. We will recall

its definition from [19].

Definition 1

A residuated lattice∗) is an algebra

L = 〈L,∨,∧, ∗,→,0,1〉.

with a support L and four binary operations and two constants such that

• 〈L,∨,∧,0,1〉 is a lattice where the ordering ≤ defined using operations ∨,∧ as usual, and 0,1 are

the least and the greatest elements, respectively;

• 〈L, ∗,1〉 is a commutative monoid, that is, ∗ is a commutative and associative operation with the

identity a ∗1 = a;

• the operation → is a residuation operation with respect to ∗, i.e.,

a ∗ b ≤ c iff a ≤ b → c.

A residuated lattice is complete if its underlying lattice is complete.

The derived operation is biresiduum:

a ↔ b = (a → b) ∧ (b → a).

Our investigation will be based on Łukasiewicz algebra LŁ. It is a residuated lattice with the support

L = [0, 1] where

a ∗ b = 0 ∨ (a+ b− 1),

a → b = 1 ∧ (1− a+ b),

a ↔ b = 1− | a− b | .

The other well known examples of residuated lattice are Boolean algebra, Gödel algebra and product

algebra.

2.2 L-fuzzy Space

Assume that we are given a complete residuated lattice L and a non-empty universal set X ⊆ R where R is

the set of real numbers. An L-valued fuzzy set is a mapping A : X → L. A core of a fuzzy set A is the set

Core(A) = {x ∈ X| A(x) = 1}. We say that a fuzzy set is normal if there exists xA ∈ X : A(xA) = 1.

The class of L-valued fuzzy sets of X will be denoted by LX .

Let A, B ∈ LX be fuzzy sets. A fuzzy equality (A ≡ B) is given by the following formula

(A ≡ B) =
∧

x∈X

(A(x) ↔ B(x))†). (1)

∗)In this paper we assume a residuated lattice to be bounded, commutative and integral.
†)for a general definition of fuzzy equality, e.g., [7, 12, 16]

-2-
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The fuzzy equality determines a degree of coincidence of two fuzzy sets expressed by an element of the

residuated lattice.

It is known that

(A ≡ B) = 1 iff ∀x ∈ X, A(x) = B(x),

In this case we will write A = B instead of A ≡ B.

Definition 2

The pair (LX ,≡) is a fuzzy space on X .

The definition of fuzzy space introduces a basic set of objects together with the basic relation of equal-

ity.

Example 1

Let X = [a, b], L = LŁ. Let us show how the fuzzy equality ≡ is expressed. Assume that A, B ∈

[0, 1][a,b].

A ≡ B =
∧

x∈[a,b]

(A(x) ↔ B(x)) =
∧

x∈[a,b]

(1− | A(x)−B(x) |) =

1−
∨

x∈[a,b]

| A(x)−B(x) | .

Thus the pair ([0, 1][a,b], 1−
∨

x∈[a,b] | A(x)−B(x) |) is a fuzzy space on [a, b] determined by Łukasiewicz

algebra.

In the special case where fuzzy sets on [a, b] are continuous mappings, the fuzzy equality ≡ between

them can be simplified to

1−
∨

x∈[a,b]

| A(x)−B(x) |= 1− max
x∈[a,b]

| A(x)−B(x) |= 1− d(A,B),

where d(A,B) is the distance in the metric space of continuous functions.

2.3 Fuzzy Function

We will use the notion of fuzzy function introduced in [20]. According to [20], a fuzzy function is an

ordinary mapping between two fuzzy spaces. In more details,

Definition 3

Let L be a complete residuated lattice and (LX ,≡), (LY ,≡) fuzzy spaces on X and Y , respectively. A

mapping f : LX −→ LY is a fuzzy function if for every A,B ∈ LX ,

A = B implies f(A) = f(B). (2)

Let us remark that there are other definitions of fuzzy function in [7, 9, 10, 16] where fuzzy function is

defined as a fuzzy set of function or as a special fuzzy relation.

Below, we give an example of a fuzzy function which is reproduced from [21].

Example 2 (Fuzzy functions determined by a fuzzy relation)

Let (LX ,≡), (LY ,≡) be fuzzy spaces on X and Y respectively, R ∈ LX×Y a fuzzy relation. For every

A ∈ LX , we define the ◦-composition of A and R by

(A ◦R)(y) =
∨

x∈X

(A(x) ∗R(x, y)). (3)

Composition (3) determines the fuzzy set A ◦R on Y . The corresponding mapping f◦R : A 7→ A ◦R is a

fuzzy function defined on the whole fuzzy space LX .

-3-



I. Perfilieva et al. Fuzzy Interpolation According to Fuzzy and Classical Conditions

2.4 Fuzzy Interpolation

The problem of fuzzy interpolation includes two subproblems: a choice of a set of interpolation functions

and an extension of an original fuzzy function.

In other words, let {(Ai, Bi), i = 1, . . . , n} be a set of fuzzy data and Ai ∈ LX , i = 1, . . . , n are

pairwise different fuzzy sets with respect to =, Bi ∈ LY , i = 1, . . . , n. Let a fuzzy function f : Ai →
Bi, i = 1, . . . , n have the domain M = {A1, . . . , An}, and P be a domain of an interpolation fuzzy

function g where M ⊂ P ⊆ LX . Let N ⊆ {g | g : P −→ LY } be a chosen subset of a fuzzy function for

the fuzzy interpolation. Our goal is to find an fuzzy function g ∈ N satisfying the interpolation condition

g(Ai) = Bi, i = 1, . . . , n. (4)

The fuzzy function g is called an interpolation fuzzy function for fuzzy data. Also we call the interpolation

fuzzy function g an extension of f on the domain P .

We can also rewrite the interpolation condition (4) as follows:

A = Ai implies g(A) = Bi, i = 1, . . . , n. (5)

2.5 Similarity and Fuzzy Point

A binary fuzzy relation E on X is called a similarity on X if for all x, y, z ∈ X , the following properties

hold:

1. E(x, x) = 1,

2. E(x, y) = E(y, x),

3. E(x, y) ∗ E(y, z) ≤ E(x, z).

Let E be a similarity on X . A fuzzy set Et, t ∈ X , where Et(x) = E(t, x) for all x ∈ X is called an

E-fuzzy point of X .

3 Fuzzy Rule Base Interpolation

In this contribution, we will investigate another approach to fuzzy interpolation, proposed in [5]. It assumes

that an original function is expressed by a set of fuzzy IF-THEN rules

RB = {“If x is Ai then y is Bi”}i=1,...,n (6)

(Ai and Bi are respective fuzzy sets on X and Y ), and the rules are sparse in the sense that Ai ∩ Aj = ∅,

i 6= j. The fuzzy interpolation is proposed to be realized in a form of an algorithm which produces a

consequence B to an antecedence A (A and B are fuzzy sets too). An interpolating algorithm should

respect the following requirement:

“The more the input A is close to Ai

the more the output B must be close to Bi.”
(7)

In [5], a general interpolating algorithm is proposed. Below, we give its essential details that char-

acterize relations of closeness on both universes and describe the way of computing B according to the

requirement (7).
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The closeness relations between two fuzzy sets show how much one is similar or is included into the

other one. Let S = {Sλ; 0 ≤ λ ≤ +∞}, be any nested family of fuzzy similarity relations on R such that

S0 is the crisp equality and S+∞=1. Then

closeλ(E,D) = min(ISλ
(D|E), ISλ

(E|D)), (8)

where

ISλ
(D|E) = infu∈R {E(u) → (Sλ ◦D)(u)} . (9)

According to [5], the value of (algorithmically defined) interpolating function at point A is fuzzy set B

such that

B = InterpolRB(A) = ∩Ri∈K(A) ∩λ≥0 closeλ(A,Ai) → (Sf(λ) ◦Bi), (10)

where K(A) is a subset of fuzzy rules related to A, → is the residuum of a left-continuous t-norm ∗, and ◦
is the max-* composition. Moreover, for each 0 < λ ≤ +∞,

f(λ) = inf {µ | closeλ(A1, A2) ≤ closeµ(B1, B2)} , (11)

where µ is any parameter which satisfies the inequality closeλ(A1, A2) ≤ closeµ(B1, B2). It is proved in

[5] that thus proposed algorithm fulfils the requested requirement (7).

It is seen from the description above, that a specification of the algorithm requires a choice of a para-

metric family of fuzzy similarity relations S and operations from a certain residuated lattice. One partial

specification was proposed in [5] as well. It is based on an arbitrary left-continuous t-norm ∗ and the

parametric family of fuzzy similarity relations on R
2:

Sλ(x, y) = max(1−
| x− y |

λ
, 0). (12)

4 Main Result

Our purpose it to show that the interpolation algorithm presented in [5] and based on the fuzzy prescrip-

tion (7) satisfies the interpolation condition in the sense (4). It means that the interpolation function

InterpolRB(A) (cf. (10)) fulfils the interpolation condition in the form

(∀Ai) InterpolRB(Ai) = Bi, i = 1, . . . , n.

4.1 Assumptions and Preliminaries

The Łukasiewicz algebra is chosen as an underlying residuated lattice. Without lost of generality, we

assume that only two IF-THEN fuzzy rules specify an original function so that the subset of IF-THEN

fuzzy rules connected with A is

K(A) = {A1 → B1, A2 → B2}.

Let A1, A2 be normal and triangular shaped fuzzy sets (inputs) defined on X ⊂ R and B1, B2 be normal

and triangular shaped fuzzy sets (outputs) defined on Y ⊂ R. Obviously, the core of a triangular shaped

fuzzy set consists of one element – the core point. Denote core points of A1, A2 by xA1
and xA2

, and

similarly, core points of B1, B2 by yB1
and yB2

, respectively. Denote (arbitrary) normal and triangular

shaped fuzzy set on X ⊂ R by A, and its core point by xA. Our aim is to prove that the fuzzy set B given

by (10) fulfils (4).

Let Sλ be a similarity on X and λ ≥ 0 a fixed real number. The composition between Sλ and A is

given by

(Sλ ◦A)(x) =
∨

u

(Sλ(x, u) ∗A(u)).

In the following proposition we will show how the similarity relation Sλ affects a fuzzy set.

-5-
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Figure 1: Fuzzy sets on X

Proposition 1

Let A be a normal fuzzy set and xA ∈ X be its core point. Let moreover, Sλ
xA

be the Sλ-fuzzy point

determined by xA, i.e. Sλ
xA

= Sλ(xA, x). Then for all x ∈ X:

1. (Sλ ◦A)(x) ≥ A(x),

2. (Sλ ◦A)(x) ≥ Sλ
xA

(x),

3. there exists λ∗ ≥ 0 such that A(x) ≤ Sλ∗

xA
(x) and then (Sλ∗ ◦A)(x) = Sλ∗

xA
(x).

PROOF: By the assumption, A(xA) = 1. We will use properties of a similarity relation and obtain:

1. (Sλ ◦A)(x) =
∨

u(Sλ(x, u) ∗A(u)) ≥ (Sλ(x, x) ∗A(x)) = A(x).

2. (Sλ ◦A)(x) =
∨

u(Sλ(x, u)∗A(u)) ≥ (Sλ(x, xA)∗A(xA)) = Sλ(x, xA) = Sλ(x, xA) = Sλ
xA

(x).

3. Assume that A(u) ≤ Sλ∗

xA
(u) so that the following holds: (Sλ∗ ◦A)(x) =

∨

u(Sλ∗(x, u) ∗A(u)) ≤
∨

u(Sλ∗(x, u) ∗ Sλ∗(xA, u)) =
∨

u(Sλ∗(x, u) ∗ Sλ∗(u, xA)) = Sλ∗(x, xA) = Sλ∗(xA, x). On the

other side, (Sλ∗ ◦A)(x) ≥ Sλ∗

xA
(x) for λ∗ ≥ 0. Therefore, (Sλ∗ ◦A)(x) = Sλ∗

xA
(x).

✷

By the proposition above, we can rewrite (8) as follows:

closeλ(A1, A2) = min(ISλ∗
(A2|A1), ISλ∗

(A1|A2)) =

=
∧

x

(Sλ∗ ◦A1 ↔ Sλ∗ ◦A2)

where

ISλ
(A2|A1) = infx∈R {A1(u) → (Sλ∗ ◦A2)(u)} =

= infx∈R {Sλ∗(xA1
, x) → Sλ∗(xA2

, x)} ,

-6-
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xA
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and similarly ISλ
(A1|A2).

Let us simplify the expression (10) by applying assumptions that are accepted at the beginning of this

subsection. Moreover, we replace similarities by distances (similar approach has been used in [22]). The

distance between two triangular shaped fuzzy sets is considered as a distance between their core points‡):

d(A,A1) = | xA − xA1
|, d(A,A2) = | xA − xA2

|,

d(A1, A2) = | xA1
− xA2

|

and

d(B1, B2) = | yB1
− yB2

| .

Proposition 2

Let A1, A2 be normal and triangular shaped fuzzy sets with xA1
, xA2

∈ X as respective cores. Let Sλ∗

be given by (12), and λ∗ ≥ 0. Then

∧

x

(Sλ∗ ◦A1 ↔ Sλ∗ ◦A2) = Sλ∗(xA1
, xA2

).

PROOF: We use the following property of the absolute value: | a − b |≥|| a | − | b || or equivalently,

−(|| a | − | b ||) ≥ −(| a | − | b |).

‡)Recall that each triangular shaped fuzzy set has exactly one core point so that our definition of a distance is correct.
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0

1

 

 

S
λ

* ° A

S
λ

*

x
A

A

Figure 3: Property A(x) ≤ Sλ∗

xA
(x), (Sλ∗ ◦A)(x) = Sλ∗

xA
(x)

∧

x

(Sλ∗ ◦A1 ↔ Sλ∗ ◦A2) =
∧

x

(Sλ∗

xA1

(x) ↔ Sλ∗

xA2

(x)) =
∧

x

(1− | Sλ∗(xA1
, x)−

Sλ∗(xA2
, x) |) =

∧

x

(

1−

∣

∣

∣

∣

1−
| xA1

− x |

λ∗
− 1 +

| xA2
− x |

λ∗

∣

∣

∣

∣

)

=

∧

x

(

1−

∣

∣

∣

∣

| xA2
− x |

λ∗
−

| xA1
− x |

λ∗

∣

∣

∣

∣

)

=
∧

x

(

1−
1

λ∗
|| xA2

− x | − | xA1
− x ||

)

= 1−
∨

x

1

λ∗
(|| xA2

− x | − | xA1
− x ||) ≥ 1−

∨

x

1

λ∗
(|xA2

− x− xA1
+ x|) =

1−
∨

x

1

λ∗
(|xA2

− xA1
|) = 1−

1

λ∗
(|xA2

− xA1
|) = Sλ∗(xA1

, xA2
)

Assume that x ≤ xA1
≤ xA2

. Three cases are possible.

1. x ≤ xA1
≤ xA2

. In this case, | xA2
− x |= xA2

− x. Similarly for | xA1
− x |.

1−
∨

x

1

λ∗
(|| xA2

− x | − | xA1
− x ||) = 1−

∨

x

1

λ∗
(|xA2

− x− xA1
+ x|)

= 1−
∨

x

1

λ∗
(|xA2

− xA1
|) = 1−

1

λ∗
(|xA2

− xA1
|) = Sλ∗(xA1

, xA2
)

-8-
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a
1

a
2

a

d(A
1
, A

2
)

AA
1 A

2

B
1

B
2

b
1

b
2

d(B
1
, B

2
)

d(A, A
2
)d(A

1
, A)

Figure 4: Distances between fuzzy sets

2. Assume that xA1
≤ xA2

≤ x so that | xA2
− x |= x− xA2

, and similarly for | xA1
− x |.

1−
∨

x

1

λ∗
(|| xA2

− x | − | xA1
− x ||) = 1−

∨

x

1

λ∗
(|−xA2

+ x+ xA1
− x|)

= 1−
∨

x

1

λ∗
(|xA1

− xA2
|) = 1−

1

λ∗
(|xA2

− xA1
|) = Sλ∗(xA1

, xA2
)

3. Finally, let xA1
≤ x ≤ xA2

so that| xA2
− x | is equal to xA2

− x. The absolute value | xA1
− x | is

equal to | xA1
− x |= x− xA1

. Without lost of generality, let us choose x = xA1
.

∧

x

(

1−
1

λ∗
(|| xA2

− x | − | xA1
− x ||)

)

=

∧

x

(

1−
1

λ∗
(|xA2

− x+ xA1
− x|)

)

≤ 1−
1

λ∗
(|xA2

− xA1
+ xA1

− xA1
|) =

1−
1

λ∗
(|xA2

− xA1
|) = 1−

1

λ∗
(|xA2

− xA1
|) = Sλ∗(xA1

, xA2
)

✷

4.2 The Main Result

The following are assumptions of the main result:

1. Let λ1 ≤ λ2 then Sλ1
≤ Sλ2

,

2. A1, A2 are normal fuzzy sets and xA1
≤ xA2

,

3. ∃λ∗ ≥ 0 : ∀i = 1, 2 Ai ≤ Sλ∗

xAi

,

-9-
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4. Sλ∗

xA1

∧ Sλ∗

xA2

= 0.

We will describe and concretize the other parts of the expression (10) by means of distances.

Let λ∗ ≤ λ ≤ +∞. Let us remind that the same parametric family of fuzzy similarity relations on R
2

is given by (12).

Sλ(x,y)

Figure 5: Similarity relation

The idea is that we extend the fuzzy set A1 by applying to it Sλ where λ∗ ≤ λ ≤ +∞.

Now we rewrite the expression (8) (degree of closeness) using distances. For each 0 < λ ≤ +∞,

closeλ(A1, A2) = min(ISλ
(A2|A1), ISλ

(A1|A2)) =
λ− | xA1

− xA2
|

λ
, (13)

and respectively,

closeλ(A,Ai) =
λ− | xA − xAi

|

λ
, i = 1, 2. (14)

The respective value f(λ) can now be expressed as

f(λ) =
λ | yB1

− yB2
|

| xA1
− xA2

|
. (15)

The expression (15) is equivalent to (11). However, (15) is represented with the help of distances and by

this, its meaning is clearer.
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Figure 6: Extension fuzzy set A1

Finally, we will characterize the fuzzy set B given by (10) with the help of distances too.

B =

2
∧

i=1

∧

λ

(closeλ(A,Ai) → (Sf(λ) ◦Bi)(y)) =

2
∧

i=1

∧

λ

(

1− 1 +
| xA − xAi

|

λ
+ (Sf(λ) ◦Bi)(y)

)

=

2
∧

i=1

∧

λ

(

| xA − xAi
|

λ
+ (Sf(λ) ◦Bi)(y)

)

Now, we can prove that the interpolation condition (5) is fulfilled.

Theorem 1

If A = Ai then B = Bi for i = 1, 2.
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0

1

B
1

B
2

i = 1 i = 2

Figure 7: Construction of output fuzzy set B

PROOF: Conclusion

B =

2
∧

i=1

∧

λ

(closeλ(A,Ai) → (Sf(λ) ◦Bi)(y)) =

2
∧

i=1

∧

λ

(

0 ∨

(

1− 1 +
| xA − xAi

|

λ
+ (Sf(λ) ◦Bi)(y)

))

=

2
∧

i=1

∧

λ

(

0 ∨

(

| xA − xAi
|

λ
+ (Sf(λ) ◦Bi)(y)

))

=

[

∧

λ

(

| xA − xA1
|

λ
+ (Sf(λ) ◦B1)(y)

)

]

∧

[

∧

λ

(

| xA − xA2
|

λ
+ (Sf(λ) ◦B2)(y)

)

]

= B′ ∧B′′

For each i = 1, 2, we will prove that A = Ai ⇒ B = Bi.

-12-
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Let A = A1.

B′ =
∧

λ

(closeλ(A1, A1) → (Sf(λ) ◦B1)(y)) =

∧

λ

(

| xA1
− xA1

|

λ
+ (Sf(λ) ◦B1)(y)

)

=

∧

0<λ≤λ′

(

| xA1
− xA1

|

λ
+ (Sf(λ) ◦B1)(y)

)

∧

∧

λ>λ′

(

| xA1
− xA1

|

λ
+ (Sf(λ) ◦B1)(y)

)

=

∧

0<λ≤λ′

(

0 + (Sf(λ) ◦B1)(y)
)

∧
∧

λ>λ′

(

0 + (Sf(λ) ◦B1)(y)
)

=

B1(y) ∧

[

∧

λ>λ′

(

0 + (Sf(λ) ◦B1)(y)
)

]

= B1(y) ∧

[

∧

λ>λ′

(

(Sf(λ)(yB1
, y)

)

]

= B1

The latter equality follows from
∧

0<λ≤λ′

(

(Sf(λ) ◦B1)(y)
)

= B1 which can be justified by the fol-

lowing chain of inequalities:

f(λ′) ≤| yB1
− y |,

λ′ | yB1
− yB2

|

| xA1
− xA2

|
≤| yB1

− y |,

λ′ | yB1
− yB2

|

| xA1
− xA2

|
≤| yB1

− y |,

λ′ ≤| yB1
− y |

| xA1
− xA2

|

| yB1
− yB2

|
.
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B′′ =
∧

λ

(closeλ(A1, A2) → (Sf(λ) ◦B2)(y)) =

∧

λ

(

| xA1
− xA2

|

λ
+ (Sf(λ) ◦B2)(y)

)

=

∧

λ

(

| xA1
− xA2

|

λ
+ (1−

| yB2
− y |

f(λ)
∨ 0)

)

=

∧

λ

(

1 +
| xA1

− xA2
|

λ
−

| yB2
− y |

f(λ)

)

=

∧

λ

(

1−

(

| yB2
− y |

f(λ)
−

| xA1
− xA2

|

λ

))

=

∧

λ



1−





| yB2
− y |

λ|yB1
−yB2

|

|xA1
−xA2

|

−
| xA1

− xA2
|

λ







 =

∧

λ

(

1−

(

| yB2
− y || xA1

− xA2
|

λ | yB1
− yB2

|
−

| xA1
− xA2

|

λ

))

=

∧

λ

(

1−
1

λ

(

| yB2
− y || xA1

− xA2
|

| yB2
− yB1

|
− | xA1

− xA2
|

))

=

∧

λ

(

1−
1

λ

(∣

∣

∣

∣

(yB2
− y)(xA1

− xA2
)

(yB2
− yB1

)

∣

∣

∣

∣

− | xA1
− xA2

|

))

≥

∧

λ

(

1−
1

λ

(∣

∣

∣

∣

(yB2
− y)(xA1

− xA2
)− ((xA1

− xA2
)(yB2

− yB1
))

(yB2
− yB1

)

∣

∣

∣

∣

))

=

∧

λ

(

1−
1

λ

(∣

∣

∣

∣

−y(xA1
− xA2

) + xA1
yB1

− xA2
yB1

(yB2
− yB1

)

∣

∣

∣

∣

))

=

∧

λ

(

1−
1

λ

(∣

∣

∣

∣

yB1
(xA1

− xA2
)− y(xA1

− xA2
)

(yB2
− yB1

)

∣

∣

∣

∣

))

=

∧

λ

(

1−
1

λ

(∣

∣

∣

∣

(xA1
− xA2

)(yB1
− y)

(yB2
− yB1

)

∣

∣

∣

∣

))

=

∧

λ

(

1−
1

λ

(∣

∣

∣

∣

(xA1
− xA2

)

(yB2
− yB1

)

∣

∣

∣

∣

| yB1
− y |

))

=

∧

λ

(

1−
1

λ

∣

∣

∣

∣

(xA1
− xA2

)

(yB1
− yB2

)

∣

∣

∣

∣

(| yB1
− y |)

)

=

∧

λ

((

1−
1

f(λ)
(| (yB1

− y) |)

)

∨ 0

)

=

∧

λ

(

Sf(λ) ◦B1

)

Finally,

A = A1 ⇒ B = B′ ∧B′′ = B1 ∧B′′ = B1,

where B′′ ≥
∧

λ

(

Sf(λ) ◦B1

)

and
∧

λ

(

Sf(λ) ◦B1

)

= B1.

Similarly for A = A2.
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So it holds

A = Ai ⇒ B = Bi, i = 1, 2.

✷

0

1

A=A
1
 ⇒ B=B

1

 

 

∧
i
 ∧

λ
 (close

λ
(A

1
,A

i
) → (S

f(λ)
° B

i
)(y)) = B

1

B
1

B
2

B
1

B
2

Figure 8: Interpolation condition, A = A1 → B = B1
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Conclusions

We have proposed a definition of interpolation of fuzzy data, which stems from the classical approach based

on rigorous interpolation condition. We investigated another approach to fuzzy interpolation (published in

[5]) with relaxed interpolation condition. We simplified and illustrated in various pictures the interpolation

algorithm that is based on the proposed in [5] approach. We proved that even if the interpolation condition is

relaxed the related algorithm gives an interpolating fuzzy function which fulfils the interpolation condition

in the classical sense. Thus the interpolation algorithm in [5] is in the agreement with the definition of

interpolation of fuzzy data which we proposed.
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Figure 9: Interpolation condition, A = A2 → B = B2

References

[1] P. Baranyi, T. D. Gedeon, Rule interpolation by spatial geometric representation, in: Proc. of

IPMU’96 Conf., Granada, 1996.
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Abstract: In this paper we work with nonparametric methods in modeling and analyzing the 

financial times series. We use the concept of fractal dimension for measuring the 

complexity of time series of observed financial data. The aim of this paper is to distinguish 

between the randomness and determinism of the financial information. We will compare the 

fractal analysis of the selected forward exchange rates. Fractal analysis has been 

introduced into financial time series by Mandelbrot and Peters. Due to the financial crisis 

this theory has gained new momentum. Fractal analysis indicates that conventional 

econometric methods are inadequate for analyzing financial time series. Adequate analysis 

of the financial time series allows us to predict precisely the future values and risks 

connected with portfolios that are influenced. We test for fractional dynamic behavior in a 

1-month forward exchange rate USD into GBP and Gold Price against USD. 

Keywords: fractal analysis; estimation dimension; long memory; financial time series 

1 Introduction 

The purpose of this paper is to show a potential presence of stochastic long 

memory in economic and financial time series. The long term memory property 

describes the high-order correlation structure of a series. The long memory 

existence in financial time series may be caused by investors’ reactions to market 

information. Some investors react to information as it is received, while some 

investors wait for confirmation of the new information and they do not react until 

a trend is clearly established. Classical capital market theory assumes that the 

markets follow a random walk, and this means that the current prices reflect all 

available information and future price changes can be determined only by new 

information. With all prior information already reflected in prices. This means 

each day’s price movement is unrelated to the previous day’s activity. It is 

assumed that all investors immediately react to new information, so that the future 

                                                           
1
  The preliminary version of this contribution was presented at FSTA 2010 in 

Liptovský Ján 
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is unrelated to the past or the present. Thus, all investors react to new information 

with equal probability. This assumption has been necessary for the application of 

the Central Limit Theorem to capital market analysis. But investors really do not 

make their decisions in this manner. Although the reaction of the investors is 

random, they may prefer some information and therefore the probability of their 

decisions is not identical; their decision is biased in some direction. Therefore the 

market may follow a biased random walk. 

Biased random walks were studied by Hurst in 1940s. Hurst was a hydrologist 

studying the discharge rates of the River Nile at Aswan. He detected long memory 

behavior on the River Nile data. Hurst attributed this result to be a consequence of 

the flow rate having serial correlation. The Hurst parameter H displays long range 

dependence. Hurst [5] motivated Mandelbrot and his co–workers (Mandelbrot and 

van Ness [9]) to introduce fractional Gaussian noise to model long memory 

phenomena. 

Long memory or long term dependence is observed in contemporary financial 

time series. There exist a number of studies that have investigated the issue of 

persistence in financial asset returns. Using the Hurst rescaled-range (R/S) 

method, Greene and Fielitz (1977) reported long memory in daily stock returns 

series. This result has been overturned by Lo (1991) via the development and 

implementation of the more appropriate modified R/S method. The absence of 

long memory in stock returns is also reported by Aydogan and Booth (1988), 

Cheung, Lai, and Lai (1993), Cheung and Lai (1995), Crato (1994), and Barkoulas 

and Baum (1996). Booth, Kaen, and Koveos (1982) and Cheung (1993) report 

long-memory evidence in spot exchange rates. Helms, Kaen, and Rosenman 

(1984), Cheung and Lai (1993), Fang, Lai, and Lai (1994), and Barkoulas, Labys, 

and Onochie (1997) report that stochastic long memory may be a feature of some 

spot and futures foreign currency rates and commodity prices. 

The presence of fractal structure in asset returns raises a number of theoretical and 

empirical issues. First, as long memory represents a special form of nonlinear 

dynamics, it calls to question linear modeling and invites the development of 

nonlinear pricing models at the theoretical level to account for long memory 

behavior. 

The rest of this paper is organized as follows. Section two introduces the 

stochastic processes and self–similar stochastic processes. Section three briefly 

describes fractional Brownian motion. Section four describes fractal dimension 

and fuzzy sets. Data and empirical estimates are discussed in section five. The 

paper ends with a summary of our results. 
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2 Stochastic Processes and Self-Similar Stochastic 

Processes 

Given an observed time series, a question which is of interest is whether the data 

were generated by a dynamical system of finite dimension or whether the system 

is stochastic. In many observed time series it is not clear what the fundamental 

underlying process is that drives the system. However, in real processes we 

observe certain aspects that are the evidence of an underlying, more complex 

process. We can observe processes that display power-law scaling and long range 

dependence. The main problem is, if a given time series is related to an underlying 

more substantial process, whether it is possible to determine whether the 

underlying process is driven by a deterministic set of equations or a stochastic 

system, or whether the process is self-similar. This opens the question of what is 

the difference between a deterministic and a stochastic process and whether is it 

possible to make this distinction based on empirical observations. 

Cutler [2] defined what is meant by stochastic and deterministic time series. 

Lamperti [6] introduced the definition of a self-similar stochastic process. 

Mandelbrot [8] introduced Fractional Brownian Motion. We give a brief summary 

in this section. 

Definition 1 

The time series {X(tn): n=1,2,…} is said to be strictly stationary if for any finite 

collection t1,t2, …,tn and for all τ, 

Pr{X(t1)<x1, …, X(tn)<xn}= Pr{X(t1+τ)<x1, …, X(tn+τ)<xn}. 

Definition 2 

A mapping g: χ→ψ, between the metric spaces χ and ψ with metrics ρ1 and ρ2 

respectively, is said to satisfy a Lipschitz condition if, for all x1, x2∈χ, 
ρ2(g(x1),g(x2)) ≤ kρ1(x1, x2), 

where k is a constant. If in addition, g is one to one and g-1 also satisfies a 

Lipschitz condition on its domain, then g is bi-Lipschitz. 

Definition 3 

Let {X(tn): n=1,2,…} be a strictly stationary time series with values in ψ. The 

predictive dimension, denoted by ζ, is defined as the smallest n≥1 such that there 

exists a mapping Ψ: ψn→ψ such that 

X(tn)= Ψ[X(t1),…, X(tn-1)], 

with probability 1. If no function Ψ exists for all n≥1, then ζ=∞. 

Cutler formulated a theorem that says that a strictly stationary process with known 

predictor function Ψ and finite predictive dimension ζ can be predicted as a 
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function of the previous ζ observations. Subsequently this is used for defining a 

stochastic and deterministic time series. 

Theorem 

Let {X(tn): n=1,2,…} be a strictly stationary time series with finite predictive 

dimension ζ and predictor function Ψ. Then, for all integers m≥0, 

Y(tm+1+ζ)=Ψ(Y(tm+1), Y(tm+2), …, Y(tm+ζ)), 

with probability 1. 

Definition 4 

A strictly stationary time series {X(tn): n=1,2,…} is said to be deterministic if ζ<∞ 

and stochastic if ζ=∞, where ζ is the predictive dimension. 

The following discussion will be concerned with Lamperti’s [6] idea of scaling in 

a process X(t). Firstly we introduce the notion of equality of finite dimensional 

distributions. 

Definition 5 

Let X1(t) and X2(t) be two stochastic processes. We will say that these processes 

have the same finite dimensional distributions if, for any n≥1 and t1, t2,…,tn  

(X1(t1), X1(t1), …, X1(tn)) 
d

=  (X2(t1), X2(t1), …, X2(tn)) or (X1(t)) 
d

=  (X2(t)), 

where 
d

=  denotes equality of probability distributions [4]. 

Definition 6 

d–dimensional process X(t) is a semi–stable process, if it obeys a simple 

continuity condition and, for s>0, the relationship 

{X(st)}
d

= {b(s) (X(t)+c(s))} 

holds, where b(s) is a positive function and c(s)∈Rd. 

Lamperti [6] showed that if X(t) is a proper semi-stable process and X(0)=0, then 

c(s)=0 and b(s)=sH where H is a positive constant. That is, 

{X(st)}
d

= {sHX(t)}. (1) 

Definition 7 

The increments of a random function {X(t): –∞<t<∞} are said to be self–similar 

with parameter H if for any s>0 and any τ 

{X( st+τ ) – X( τ )}
d

=  {
Hs (X( t+τ )– X( τ ))}. 
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If the increments of X(t) are self–similar and X(0)=0, then X(t) is also self–similar 

(see equation (1)). If X(t) has self–similar and stationary increments and is mean 

square continuous, then it can be shown that 0≤H<1. 

The covariance structure is derived from scaling law as follows [4]: 

Let X(t) be process with stationary self–similar increments. Then the covariance 

function is 

E[(X(t+τ+1) – X(t+τ))(X(t+1) – X(t))]= { }HHH

H

2222 211
2

1 τττσ −−++ , 

where 
2

Hσ = E[(X(t+1) – X(t))2] for all t. 

The process X(t) is said to be isotropic if 

{X(t)– X(s)}
d

= {X( st − )}. (2) 

3 Fractional Brownian Motion 

A Gaussian process is uniquely determined by its auto covariance function. 

Fractional Brownian Motion is a unique Gaussian self-similar process that we will 

denote as BH(t) [4]. The increments of fractional Brownian motion are referred to 

as fractional Gaussian noise. If BH(0)=0, then the process BH(t) is isotropic (see 

equation (2)). 

When H=0.50, BH(t) is simply Brownian motion. The system is independently 

distributed. When H differed from 0.50, the observations are not independent. 

Each observation carried a “memory” of all the events that preceded it. What 

happens today influences the future. Where we are now is a result of where we 

have been in the past. Time is important. The impact of the present on the future 

can be expressed as a correlation: 

C=2(2H-1)–1,  (3) 

where C is the correlation measure and H is the Hurst exponent. The time series is 

random, and events are random and uncorrelated. The present does not influence 

the future. Its probability density function can be a normal curve, but it does not 

have to be. 

When H>0.50 the autocorrelations are positive and have a power-law decay, 

hence long range dependence. If 0.50≤H<1.00, the time series have a persistent or 

trend–reinforcing character. If the time series was up (down) in the last period, 

then the chances are that it will continue to be positive (negative) in the next 

period. Trend is apparent. The strength of the trend-reinforcing behavior, or 
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persistence, increases as H approaches 1.0. The strength of the bias depends on 

how far H is above 0.50. The closer H is to 0.5, the noisier it will be, and the less 

defined its trends will be. Persistent series are called by Mandelbrot as fractional 

Brownian motion, or biased random walk. 

When H<0.50 the correlation are negative and have a rapid decay. For 0≤H<0.50 

the time series is antipersistent, or ergodic. If the time series was up in the 

previous period, it is more likely to be down in the next period. Conversely, if it 

was down before, it is more likely to be up in the next period. The strength of this 

antipersistent behavior depends on how close H is to zero. The closer it is to zero, 

the closer C in equation (3) moves toward –0.50, or negative correlation. This time 

series is more volatile than a random series. 

The Hurst coefficient H characterizes long-memory dependence. Self-similarity of 

the time series is characterized by fractal dimension. Fractal dimension expresses 

the regularity of series and states how similarity scales up when such a time series 

is observed over a longer time interval. The self-similarity could be also regarded 

as a measure of geometrical complexity of an object under discussion. 

In principle, fractal dimension and Hurst coefficient are independent of each other: 

fractal dimension is a local property, and long-memory dependence is a global 

characteristic. Nevertheless, the two notions are closely linked. For self-affine 

processes, the local properties are reflected in the global ones, resulting in the 

relationship D+H=2 between fractal dimension, D, and Hurst coefficient, H. 

The determination of the fractal dimension is inherently associated with set-based 

constructs. The generic box dimension [8] measures in which way the number of 

occupied boxes (those including the elements of the time series) increases when 

the size of the box decreases. The other common techniques of fractal 

determination uses a so-called correlation dimension in which a count of elements 

concerns a family of spheres constructed around each data point. What is common 

to the existing techniques (in spite of evident technical differences) is that all of 

them exploit sets regarded as information granules that allow us to see only a 

certain part of the phenomenon. The changes in the size of the information 

granules imply how large a part we are taking into consideration. Information 

granulation is an example of abstraction. There are numerous facets of the 

granular information processing, and there are a variety of formal frameworks in 

which such information granulation takes place. These include, for instance, set 

theory, fuzzy sets, random sets, rough sets and many others [7]. 
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4 Fractal Dimension and Fuzzy Sets 

In this section, we review the main constructs of fractal dimension and then 

proceed with their generalization in terms of information granules expressed in the 

language of fuzzy sets [7]. 

Consider a time series {X(tn): n=1,2,…, N}, where X(tn) R∈  and tn denote discrete 

time moments in which the values of this time series are recorded. In this sense, 

we are provided with a collection of two-dimensional elements S={ X(tn): 

n=1,2,…, N}. The structural complexity of S is measured by a fractal dimension 

D̂ defined by the following limit 

)log(

))(log(
limˆ

0 ε
ε

ε

N
D

→
= , (4) 

where N(ε) is a number of boxes of size ε used to cover the object (here the given 

time series). In essence, the above relationship relates to the power law stating 

that
DN
ˆε=  . In practice, the fractal dimension has to be estimated with the use of 

some experimental data. A collection of ‘‘c’’ experiments concerns a 

determination of the number of boxes N(ε) for a given value of the size of the box. 

Then experimental pairs (εj, N(εj)), j= 1, 2, …; c are used to determine parameters 

of the linear model. It can be easily shown (from (3)) that in a double logarithmic 

model of the form 

CDN += )log()(log εε  (5) 

the fractal dimension D appears as a slope of the computed regression line. The 

regression model itself is constructed through a minimization of the well known 

performance index Q treated as a sum of squared errors 

2

1

))log()((log cDNQ k

c

k

k −−=∑
=

εε . (6) 

The most intuitive approach to the determination of the fractal dimension uses the 

box method [8]. Another method uses a sphere of radius ε. Total number of points 

covered by the spheres N(ε) is equal to 

∑∑
=

≠
=

Ω
−

=
N

i

N

ij
j

ij
NN

N
1 1

)(
)1(

1
)( εε  (7) 

where )(εijΩ is a sphere defined as follows 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤−+−=Ω

                               otherwise 0 

  if  1
)(

22 εε jiji
ij

xxtt
. (8) 
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Pedrycz and Bargiela [7] used fuzzy set ( )εijA  to compute of the fractal 

dimension: 

∑∑
=

≠
=

Ω
−

=
N

i

N

ij
j

ijij A
NN

N
1 1

)()(
)1(

1
)( εεε , where (9) 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=

2

2

exp
ε

ε ji

ij

xx
A . (10) 

For the time series we can use: 

( ) ( )∑
=

−=Ω
ε

εε
1i

ii Mx  (11) 

where ( )εiΩ  is cumulative deviation over ε period, Mε is an average xi over 

period of length of ε.  

( ) ( )( ) ( )( )εεε iiN Ω−Ω= minmax . (12) 

This approach is known as R/S analysis ([7, 10, 11]), where usually ( )εN  is 

denoted as R/S and ε as n. 

The detailed computations of the fractal dimension are described, for example, in 

[7, 10] and they are realized on the basis of the regression model (5). 

Mandelbrot used R/S analysis which was developed by Hurst [5]. Mandelbrot, 

Taqqu and Wallis demonstrated the superiority of R/S analysis over more 

conventional methods of determining long-range dependence, such as analyzing 

autocorrelations, variance ratios and spectral decompositions, in their several 

papers. In this paper our analysis will be based on the study described in Peters 

[10] or Robinson [11]. In this paper we compute Hurst coeficient H and his 

expected value E(H) using modified R/S analysis2 and we will verify null 

hypothezis: The time series is random walk. 

To verify this hypothesis, we calculate expected value of the adjusted range3 

E(R/Sn) and its variance4 Var(E(R/Sn)). 

                                                           
2
  The R/S statistics is modified so that its statistical behavior is invariant over a general 

class of short memory processes, but deviates for long-memory processes. ([11],       

p. 91) 
3
  This formula was derrived by Anis and Lloyd ([10], p. 71) 

4
  Variance was calculated by Feller ([10], p. 66) 
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π
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nSREVar n ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

26
))/((

2 ππ
. (14) 

Using the results of equation (13) we can generate the expected values of the 

Hurst exponent. The expected Hurst exponent will vary depending on the values 

of n we use to run the regression. Any range will be appropriate as long as the 

system under study and the E(R/Sn) series cover to the same values of n. For 

financial purpose, we will begin with n=10. The final value of n will depend on 

the system under study. 

R/S values are random variables, normally distributed and therefore we would 

expect that the values of H would also be normally distributed ([10], p. 72): 

T
HVar n

1
)( = , (15) 

where T is total number of observations in the sample. Note that the Var(Hn) does 

not depend on n or H, but it depends on the total sample size T. Now t-statistics 

will be used to verify the significance of the null hypothesis. 

If Hurst exponent H is approximately equal to its expected value E(H), it means 

that the time series is independent and random during the analysed period (the 

Hurst exponent is insignificant). If the Hurst exponent H is greater (smaller) than 

its expected value E(H), the time series is persistent (antipersistent) (the Hurst 

exponent is significant). If the series exhibits a persistent character, then the time 

series has long memory and the ratios R/Sn will be increasing. If the ratios R/Sn 

will be decreasing the time series will be antipersistent. The “breaks” may 

signalize a periodic or nonperiodic component in the time series with some finite 

frequency. We calculated the V–statistics to estimate precisely where this break 

occurs [10]: 

nSRV nn )(=  (16) 

5 Data and Empirical Results 

The data set consists of daily forward 1-month exchange rate USD into GBP and 

Gold Price against USD from 02/01/1979 to 04/11/2010 for a total 8050 daily 

observations. These were obtained from Bank of England5. 

                                                           
5
  http://www.bankofengland.co.uk 
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We begin by applying R/S analysis to the 1-month forward exchange rates USD 

into GBP. During the period 02/01/1979–04/11/2010, the Hurst coefficient H of 

the 1-month forward exchange rate USD into GBP is equal to 0.5702. The 

expected Hurst exponent is equal to E(H)=0.5407. The variance of E(H) is 

1/T=1/8050, for Gaussian random variables. The standard deviation of E(H) is 

0.0111. The Hurst exponent for the daily 1-month forward exchange rates USD 

into GBP is 2.6513 standard deviations away from its expected value. This is 

highly significant result at the 95% level. The time series has persistent character. 

Also plotted is E(R/Sn) (dashed line) as a comparison against the null hypothesis 

that the system is an independent process (Figure 1). There is clearly a systematic 

deviation from the expected values. However, breaks in R/S graph (see Figure 1) 

appear. To estimate precisely where this break occurs, we calculated V–statistics 

(Figure 1). V-statistics clearly stops groving at n=50, n=322, n=575 or n=805 

observations. These “breaks” may be signal of a periodic or nonperiodic 

component in the time series. We will run regression to estimate the Hurst 

exponent for R/Sn values in the next subperiods: n<50, 50≤ n ≤4025, 10<n<322, 

322≤ n ≤4025, 10<n<575, 575≤ n ≤4025, 10<n<805 and 805≤ n ≤4025. Table 1 

and Table 2 show the regression results. During periods for n<50, 10<n<322 and 

10<n<575 the time series has random character. The Hurst exponents are 

insignificant. During periods for 50≤ n ≤4025, 322≤ n ≤4025 and 575≤ n ≤4025 

the time series has persistent character. The Hurst exponent is significant. It means 

that ancient history had random character and recent history has a long memory 

effect. During periods for 50≤ n ≤805 the time series has a persistent character, but 

during period 805≤ n ≤4025 the time series has an antipersistent character and the 

Hurst exponent is significant. We have found that 1-month forward exchange rate 

USD into GBP has 4 nonperiodic cycles. The longest is a 805-day cycle, or about 

3 years. The shortest is a 50-day cycle, or about 10 weeks. 
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Figure 1 

R/S analysis and V statistics of the daily log return of USD into GBP, (1979-2010) 

H=0.5702, E(H)= 0.5407 
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Table 1 

Regression results, 1-month forward FX rate USD vs GBP, estimation of the Hurst exponent, 

(1979-2010, daily data) 

1-month forward R/S E(R/S) R/S E(R/S) R/S E(R/S) R/S E(R/S) 

FX rate 

GBPvsUSD 10<n<50 50≤ n ≤4025 10<n<322 322≤ n≤4025 

Intercept -0.236 -0.241 -0.200 0.041 -0.149 -0.152 -0.247 0.093 

Hurst exponent 0.592 0.589 0.574 0.522 0.564 0.561 0.581 0.515 

Standard Error 0.009 0.006 0.048 0.008 0.019 0.016 0.072 0.003 

R squared 0.999 1.000 0.995 1.000 0.999 0.999 0.984 0.999 

Number of obs. 7   12   13   6   

Significance 0.260   4.701   0.323   5.993   

 

Table 2 

Regression results, 1-month forward FX rate USD vs GBP, estimation of the Hurst exponent, 

(1979-2010, daily data) 

1-month forward R/S E(R/S) R/S E(R/S) R/S E(R/S) R/S E(R/S) 

FX rate GBP vs 

USD 
10<n<575 575≤ n≤4025 10<n<805 805≤ n≤4025 

Intercept -0.146 -0.131 -0.235 0.118 0.558 -0.119 0.508 0.126 

Hurst exponent 0.563 0.554 0.580 0.511 -0.126 0.551 0.486 0.510 

Standard Error 0.021 0.019 0.095 0.001 0.025 0.020 0.001 0.001 

R squared 0.999 0.999 0.964 1.000 1.000 0.999 1.000 1.000 

Number of obs. 15   4   16   3   

Significance     6.191   -60.715   -2.153   

 

R/S analysis of Gold Price against USD from 02/01/1979 to 04/11/2010 exhibits 

random behavior. The Hurst coefficient H is equal to 0.547, E(H) = 0.540 and it is 

insignificant (see Figure 2). Table 3 summarizes the regression results. However 

we found 2 breaks on R/S plot (respectively in V-statistics plot, see Figure 2) for 

n=161 and n=322. During periods 10<n<161 and 10≤n≤322 the time series has 

random character, but during periods 161<n<4025 and 322≤ n ≤4025 the time 

series has persistent character. The presence of the persistent value of H confirms 

that Gold prices against USD have fractal structure in recent history. We found 

one periodic cycle with length 161 (or approximately 32 weeks). 
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R/S analysis, Gold price against US$, dailly data
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Figure 2 

R/S analysis and V statistics of the daily log return of Gold prices against USD, (1979-2010) 

H=0.547, E(H) = 0.540 

Table 3 

Regression results, Gold vs GBP, estimation of the Hurst exponent, (1979-2010, daily data) 

Gold versus GBP R/S E(R/S) R/S E(R/S) R/S E(R/S) R/S E(R/S) 

10<n<161 161≤ n ≤4025 10<n<322 322≤ n≤4025 

Intercept -0.2523 -0.2040 0.2446 0.0672 -0.1633 -0.1644 -0.4465 0.0894 

Hurst exponent 0.5854 0.5763 0.5631 0.5181 0.5582 0.5639 0.5910 0.5150 

Standard Error 0.0113 0.0109 0.0482 0.0041 0.0268 0.0146 0.0469 0.0027 

R squared 0.9994 0.9994 0.9941 0.9999 0.9979 0.9934 0.9934 0.9999 

Number of observation 9  10  12  7  

Significance 0.8165  4.0375  -0.5114  6.8189  

Conclusion 

In this paper, we propose a fractal analysis of the selected financial time series. In 

both causes, we found fractal structure. Nonperiodic cycles for forward exchange 

rate affirm evidence that the currency markets may be nonlinear systems. 

Currency markets are characterized by abrupt changes traceable to central bank 

intervention attempts by governments to control the value of each respective 

currency. 

Periodic cycle in the time series Gold prices against USD may be related to the 

economic cycle. The cycle length measures how long it takes for a single period’s 

influence to reduce to immeasurable amounts. In statistical terms, it is the 

decorrelation time of the series. In terms of nonlinear dynamics, memory effect is 

lost when this time expires. 

Information obtained by fractal analysis can be used as the basis for momentum 

analysis and other forms of technical analysis. The second use is in choosing 

periods for model development, particularly for back testing. 
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Abstract: This paper presents an adaptive-network-based fuzzy inference system (ANFIS) 

for long-term natural Electric consumption prediction. Six models are proposed to forecast 

annual Electric demand. 104 ANFIS have been constructed and tested in order to find the 

best ANFIS for Electric consumption. Two parameters have been considered in the 

construction and examination of plausible ANFIS models. The type of membership function 

and the number of linguistic variables are two mentioned parameters. Six different 

membership functions are considered in building ANFIS, as follows: the built-in 

membership function composed of the difference between two sigmoidal membership 

functions (dsig), the Gaussian combination membership function (gauss2), the Gaussian 

curve built-in membership function (gauss), the generalized bell-shaped built-in 

membership function (gbell), the Π-shaped built-in membership function (pi), psig. Also, a 

number for linguistic variables has been considered between 2 and 20. The proposed 

models consist of input variables such as: Gross Domestic Product (GDP) and Population 

(POP). Six distinct models based on different inputs are defined. All of the trained ANFIS 

are then compared with respect to the mean absolute percentage error (MAPE). To meet 

the best performance of the intelligent based approaches, data are pre-processed (scaled) 

and finally our outputs are post-processed (returned to its original scale). The ANFIS 

model is capable of dealing with both complexity and uncertainty in the data set. To show 

the applicability and superiority of the ANFIS, the actual Electric consumption in 

industrialized nations including the Netherlands, Luxembourg, Ireland, and Italy from 1980 

to 2007 are considered. With the aid of an autoregressive model, the GDP and population 

by 2015 is projected and then with yield value and best ANFIS model, Electric consumption 

by 2015 is predicted. 

Keywords: Natural Electric Demand; Long-Term prediction; Adaptive Network-based 

Fuzzy Inference System (ANFIS) 
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1 Introduction 

Energy is a vital input for the social and economic development of any nation. The 

growth in energy consumption is intrinsically linked to the growth in the economy. 

Various models have been applied to describe and forecast the evolution of energy 

demand. Chavez et al. (1999) used Box–Jenkins time-series analyses (ARIMA) 

models to formulate the forecasting model for the prediction of energy production 

and consumption in Asturias, Northern Spain. The trend in current and near future 

energy consumption from a statistical perspective by considering two factors, 

namely, increasing population and economic development, has been discussed by 

Kadoshin et al. [19]. 

Khotanzad et al. (2000) focused on the combination of artificial neural-network 

(ANN) forecasters with application to the prediction of daily natural gas 

consumption needed by gas utilities [20]. Saab et al. (2001) investigated different 

univariate-modeling methodologies for the forecasting of the monthly electric 

energy consumption in Lebanon [25]. Three univariate models were used, namely, 

autoregressive, autoregressive integrated moving average (ARIMA) and a novel 

configuration combining an AR(1) with a high pass filter. 

An oil and gas supply model (OGSM) waa solved and the projections of oil and 

natural gas supply and demand to the year 2020 for Canada were presented in (Jai 

Persaud and Uma Kumar, 2001). Chow (2001) has discussed the sectoral energy 

consumption in Hong Kong for the period 1984-97 with special emphasis on the 

household sector [9].  Ediger and Tatlldil (2002) used a semi-statistical technique 

to formulate the forecasting model to predict the primary energy demand in 

Turkey and analysis of cyclic patterns. Reddy and Balachandra (2003) looked at 

various factors that influence the energy demand in India and developed the 

energy and environmental outlook for the year 2010. This was done by developing 

an integrated mathematical model incorporating various factors such as GDP and 

population growth. 

The model presented in Siemek et al. (2003) estimates natural-gas demand, based 

on the average trend of economic development; the model considered the natural 

production/demand maxima of energy carriers. The prognosis was loaded with an 

error resulting from the use of average data related to yearly increases of the 

national gross product [27]. Gorucu et al. (2004) trained the ANNs to decide the 

optimum parameters to be used in forecasting gas consumption for short-term 

applications [13]. Gorucu and Gumrah (2004) forecasted short term gas 

consumption by multivariable regression analysis for the capital city of Ankara, 

Turkey [14]. 

Gutierrez et al. (2005) examined the application of a Gompertz-type innovation 

diffusion process for stochastic modeling and capturing the growth process of 

natural-gas consumption in Spain [15]. Sanchez-Ubeda and Berzosa (2007) 

Forecasted industrial end-use natural gas consumption in a medium-term horizon 
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(1-3 years) with a very high resolution (days) based on a decomposition approach 

[26]. The forecast was obtained by the combination of three different components: 

one that captures the trend of the time series, a seasonal component and a 

transitory component. Parikh et al. (2007) estimated demand projections of 

petroleum products and natural gas in India [22]. They considered GDP and 

population as inputs of their NG estimation model. 

Azadeh et al. forecasted electrical consumption by the integration of a neural 

network, a time series and ANOVA [1]. They found that ANN had better 

estimated values for total electricity consumption. Azadeh et al. developed an 

integrated artificial neural network and genetic algorithm framework to predict 

electrical energy consumption [2]. Azadeh and Tarverdian proposed an integrated 

approach based on genetic algorithm, computer simulation and design of 

experiments for forecasting electrical energy consumption [3]. Azadeh et al. 

presented an integrated fuzzy system, data mining and a time series framework to 

estimate and predict electricity demand for seasonal and monthly changes in 

electricity consumption in developing countries such as China and Iran [4]. 

Azadeh et al. (2008b) employed an artificial neural network (ANN) approach for 

annual electricity consumption in high energy consumption industrial sectors [5]. 

Azadeh et al. developed an integrated algorithm for forecasting monthly electrical 

energy consumption based on an artificial neural network (ANN), computer 

simulation and a design of experiments using stochastic procedures [6]. Azadeh et 

al. (2009) proposed a new hybrid ANFIS computer simulation for improvement of 

electricity consumption estimation [9]. Yoo et al. estimated households’ demand 

function for natural gas by applying a sample selection model using data from a 

survey of households in Seoul [30]. 

In this study we estimate long-term Electric demand by employing adaptive neuro 

fuzzy inference systems. We present six models to forecast yearly NG demand in 

Iran. The ANFIS is capable of dealing with uncertainty and complexity in the 

given data set and thus provides a better solution and estimation regarding this 

valuable commodity. 

2 Methodology 

Because of the changeable nature of electricity demand, the use of conventional 

methods may not give us accurate results. Thus, we employ adaptive network 

based fuzzy inference systems (ANFIS) to alleviate this problem. The main 

structure of the intelligent approach is explained in the following. 

The algorithm has the following basic steps: 
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Step 1: Determine the inputs of the model. Considering previous studies, the most 

important variables that have considerable impact on gas consumption are 

considered. 

Step 2: Collect a data set in all available previous periods for each of the input 

variables and output variable. In addition, all of inputs and output data are scaled 

and normalized using a normalization method. 

Step 3: Divide the data into two sets, one for estimating the models, called the 

train data set, and the other one for evaluating the validity of the estimated model, 

called the test data set. Usually the train data set contains 70% to 90% of all data 

and the remaining data are used for the test data set [15]. 

Step 4: This step is concerned with running and estimating all of the plausible 

ANFIS models regarding two main parameters. The type of membership the 

function and number of linguistic variables are two mentioned parameters. 

Step 5: The models’ prediction capability is evaluated in this step through MAPE. 

As input data used for the model estimation have different scales, the MAPE 

method is the preferred method to estimate relative errors. Considering the value 

of MAPE, the best ANFIS is selected in each case in order to predict gas 

consumption. 

Step 6: The value of the input variables in the coming periods are predicted by 

using the Auto regressive model. 

Step 7: The yield values are fed to the selected ANFIS that is determined in step 

5. Finally, the value of gas consumption (scaled) in each coming year is calculated 

by selected ANFIS and the values of the input variables that are fed to ANFIS. 

Finally, with post processing, the gas consumption predicted value for each year is 

calculated in its original scale and is suitable for analysis and usage in decision-

making. 

The significance of the proposed ANFIS for long term NG demand prediction is 

five fold. First, it uses pre-processing and post-processing approaches to eliminate 

possible noise. Second, it identifies the best ANFIS model based on minimum 

MAPE. Third, it considers standard input variables of long term Electric demand 

estimation. Fourth, it provides a more accurate solution than previous approaches 

(such as conventional regression) because it uses ANFIS, which uses adaptive 

neural modeling and fuzzy logic. This efficiently handles uncertainty, noise, and 

non-linearity in the given data set and provides the optimum solution. Fifth, it is 

applicable for gas consumption prediction in coming years. Figure 1 depicts the 

steps of the proposed ANFIS approach. 
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Figure 1 

The proposed ANFIS approach for Long-term gas consumption forecasting 

2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Neuro-fuzzy modeling refers to the way of applying various learning techniques 

developed in the neural network literature to fuzzy modeling or a fuzzy inference 

system (FIS) [8, 17]. A neuro-fuzzy system, which combine neural networks and 

fuzzy logic, have recently garnered a lot of interest in research and application. 

The neuro-fuzzy approach has added the advantage of reduced training time, not 

only due to its smaller dimensions but also because the network can be initialized 

with parameters relating to the problem domain. Such results emphasize the 

Step 6 

 

Step 5 

Step 3 

Step 4 

Step1 

Selecting the best ANFIS model through MAPE criteria

Divide data into training and test data sets 

Running and estimating all of the plausible ANFIS

Future projection of input variables using autoregressive 

model in coming years 

Determine the inputs of model

Step2 
Collect data set in all available previous periods 

Scale all of the data using normalization method 

Step 7 

 

Gas consumption prediction using selected ANFIS and 

the results of step 5; Rescaled the value of predicted gas 

consumption using post-processing methods 
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benefits of the fusion of fuzzy and neural network technologies as it facilitates an 

accurate initialization of the network in terms of the parameters of the fuzzy 

reasoning system. Various types of FIS are reported in literature [21, 28, and 29] 

and each is characterized by their consequent parameters only. 

A specific approach in neuro-fuzzy development is the adaptive neuro-fuzzy 

inference system (ANFIS), which has shown significant results in modeling 

nonlinear functions (Jang et al., 1997). ANFIS uses a feed forward network to 

search for fuzzy decision rules that perform well on a given task. Using a given 

input-output data set, ANFIS creates a FIS whose membership function 

parameters are adjusted using a back propagation algorithm alone or a 

combination of a back propagation algorithm with a least squares method. This 

allows the fuzzy systems to learn from the data being modeled. 

Consider a first order Takagi-Sugeno fuzzy model with a two input (x,y), one 

output system having two membership functions for each input. A first-order 

Sugeno fuzzy model has two rules: 

� Rule1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 

� Rule2: If x is A2 and y is B2, then f2 = p2x + q2y + r2 

Layer 1: Then, the functioning of ANFIS is a five-layered feed-forward neural 

structure, and the functionality of the nodes in these layers can be summarized as: 
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Layer 2: Where x or y is the input to the node, Ai or Bi-2 is a fuzzy set associated 

with this node. At the first layer, for each input, the membership grades in the 

corresponding fuzzy sets are estimated. O1,i is the membership grade of a fuzzy set 

(A1,A2,B1,B2). At the second layer, all potential rules between the inputs are 

formulated by applying fuzzy intersection (AND). The product operation is used 

to estimate the firing strength of each rule. 
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Layer 3: The third layer is used for estimation of the ratio of the ith rule's firing 

strength to the sum of all rule's firing strengths. 
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Where iw  is the output of layer 3 and {pi, qi, ri} is the parameter set. Parameters 

in this layer will be referred to as consequent parameters. 

Layer 5: The final layer computes the overall output as the summation of all 

incoming signals from layer 4. 

Overall output =
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Figure 2 

ANFIS structure with two inputs 

 

Figure 2 shows the structure of the explained ANFIS. Optimizing the values of the 

adaptive parameters is of vital importance for the performance of the adaptive 

system. Jang et al. (1997) developed a hybrid learning algorithm for ANFIS which 

is faster than the classical back-propagation method to approximate the precise 

value of the model parameters. The hybrid learning algorithm of ANFIS consists 

of two alternating phases: (1) gradient descend, which computes error signals 

recursively from the output layer backward to the input nodes, and (2) the least 

squares method, which finds a feasible set of consequent parameters. We observe 

that, given fixed values of elements of premise parameters, the overall output can 

be expressed as a linear combination of the consequent parameters. The ANFIS 

architecture is not unique. Some layers can be combined and still produce the 

same output. In this ANFIS architecture, there are two adaptive layers (1, 4). 

Layer 1 has three modifiable parameters (ai, bi and ci) pertaining to the input MFs. 

These parameters are called premise parameters. Layer 4 has also three modifiable 
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parameters (pi, qi and ri) pertaining to the first order polynomial. These parameters 

are called consequent parameters. Figure 3 presents the structure of the proposed 

ANFIS for long term consumption. The reader should note that only two out five 

input layers are illustrated (population and demand of previous year) and because 

of redundancy the remaining three are only stated in the figure. Moreover, their 

operation are the same as the two shown inputs. 

 

Figure 3 

The structure of ANFIS model for long term Electric consumption estimation and forecasting 

3 The Case Study 

The proposed algorithm is applied to 27 set of data which are the annual electricity 

net consumption in industrialized nations which are the Netherlands, Luxembourg, 

Ireland, and Italy from 1980 to 2006. The proposed algorithm is applied to the 

data set as follows. 

3.1 Step 1 

Population and Gross Domestic Product (GDP) are considered as the input 

variables of the ANFIS in the present study. 
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3.2 Step 2 

As regards the input variables (population & GDP) that are determined in step 1 

and the output variable (electricity consumption), the related data are drawn from 

the World Bank Development Indicators, 2008, the World Bank.  The raw data 

with respect to the two independent variables for the Netherlands, Luxembourg, 

Ireland, and Italy are shown in Tables 1 and 2. 

Table 1 

Raw data, Luxembourg, Italy1 

                                                            
1  Source: The data are drawn from World Bank Development Indicators, 2008, World 

Bank. 

Year 

 

Luxemb

ourg 

Populati

on 

(Million

s) 

GDP 

(per 

capita) 

 

Electric 

consumpti

on 

 

Italy 
Population 

(Millions) 

GDP 

(per 

capita) 

 

Electric 

consumption 

 

1980 0.36 10.69 3.709 56,47 1152,10 165,849 

1981 0.37 10.63 3.582 56,52 1161,10 164,273 

1982 0.37 10.75 3.618 56,56 1168,43 166,813 

1983 0.37 11.08 3.721 56,65 1182,87 165,992 

1984 0.37 11.076 3.947 56,72 1215,50 175,4 

1985 0.37 12.10 3.998 56,75 1251,66 179,513 

1986 0.37 13.06 4.034 56,76 1283,27 184,902 

1987 0.37 13.35 4.12 56,75 1321,58 194,685 

1988 0.38 14,73 4.037 56,76 1373,76 187,88 

1989 0.38 16.18 4.365 56,76 1413,21 213,1269 

1990 0.38 16.53 4.433 56,77 1441,11 220,2536 

1991 0.39 17.55 4.702 56,77 1461,14 225,4425 

1992 0.39 18.33 4.477 56,86 1472,26 230,9819 

1993 0.40 19.93 4.588 57,05 1459,25 230,4566 

1994 0.40 20.77 4.968 57,20 1491,46 237,8341 

1995 0.41 21.51 5.329 57,30 1534,02 244,9667 

1996 0.42 22.23 5.47 57,39 1550,78 247,6424 

1997 0.42 24.08 5.47485 57,51 1582,21 254,9867 

1998 0.43 25.74 5.621 57,58 1610,59 262,7742 

1999 0.43 27.75 5.772 57,63 1637,39 269,4803 

2000 0.44 30.26 5.995 57,75 1686,95 281,1846 

2001 

 

0.44 30.73 5.94895 

 

57,87 1716,71 287,0337 

2002 0.45 31.49 5.87395 57,95 1723,29 293,7765 

2003 0.46 32.41 6.168 58,03 1727,67 298,1345 

2004 0.46 33.88 6.4995 58,09 1748,83 294,0081 

2005 0.47 35.25 6.315 58,13 1750,70 309,5107 

2006 0.47 37.43 6.74795 58,16 1782,93 316,2999 
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Table 2 

Raw data for Netherland, Ireland 

3.3 Step 3 

The 28 rows of data are divided into 24 training data (1980-2003) sets and 4 test 

data sets (2004-2006). According to our problem, the extrapolation and prediction 

ability of ANN should be calculated; therefore the data for test use chosen of the 

period which is closer to the last year (2004- 2006). 

Year 

 

Nether-

land 

Population 

(Millions) 

GDP 

(per 

capita) 

 

Electric 

consumption 

 

Ire-

land 

Population 

(Millions) 

GDP 

(per 

capita) 

 

Electric 

consumption 

 

1980 
14.14 348.20 59.889 3.40 53.98 8.640 

1981 
14.25 346.42 59.317 3.44 55.77 8.527 

1982 
14.31 342.39 58.087 3.48 57.05 8.688 

1983 
14.36 348.23 59.24 3.50 56.91 8.626 

1984 
14.42 359.69 61.153 3.53 59.38 8.868 

1985 
14.49 370.77 62.111 3.54 61.22 9.691 

1986 
14.57 380.97 63.044 3.54 60.95 9.957 

1987 
14.67 386.37 65.841 3.54 63.80 10.829 

1988 
14.76 396.50 69.312 3.53 67.13 10.769 

1989 
14.85 415.07 71.512 3.51 71.03 11.523 

1990 
14.95 432.13 72.781 3.51 77.04 12.134 

1991 
15.07 441.93 75.832 3.53 78.53 12.698 

1992 
15.17 450.88 78.05995 3.56 81.15 13.46675 

1993 
15.27 454.32 79.4566 3.58 83.34 13.80225 

1994 
15.38 468.96 82.14895 3.60 88.14 14.39405 

1995 
15.46 482.02 84.2162 3.61 96.86 15.0712 

1996 
15.53 496.67 87.34025 3.64 106.69 16.0523 

1997 
15.60 515.74 89.34798 3. 67 116.30 16.87472 

1998 
15.70 538.17 92.6172 3.71 126.35 17.83555 

1999 
15.80 559.67 94.96385 3.75 140.60 18.899 

2000 
15.91 579.08 99.1732 3.79 155.11 20.377 

2001 
16.02 587.34 101.3283 3.84 164.43 21.031 

2002 
16.12 590.68 102.5648 3.88 174.51 21.94 

2003 
16.22 585.49 103.7684 3.92 180.89 22.5353 

2004 
16.32 593.91 106.7292 4.97 189.70 23.28025 

2005 16.41 603.00 108.1612 4.02 198.53 24.089 

2006 

 

16.49 621.12 109.5509 

 

4.06 209.92 25.674 
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3.4 Step 4 

Two parameters have been considered in the construction and examination of 

plausible ANFIS models. The type of membership function and the number of 

linguistic variables are two mentioned parameters. Six different membership 

functions are considered in building the ANFIS, as follows: a built-in membership 

function composed of the difference between two sigmoidal membership functions 

(dsig), the Gaussian combination membership function (gauss2), the Gaussian 

curve built-in membership function (gauss), The generalized bell-shaped built-in 

membership function (gbell), the Π-shaped built-in membership function (pi), and 

the Trapezoidal-shaped built-in membership function (trap). Also, the number of 

linguistic variables have been considered as between 2 and 20. MATLAB 

software has been used to Running ANFIS in the present study. 

3.5 Step 5 

The architectures which are shown below have minimum MAPE among all of the 

other architectures. The architectures with the minimum of MAPE are shown 

below. Table 3 presents the structures of long-term models. MF stands for 

Membership Function in the ANFIS approach. 

Table 3 

The results of MAPE for the best ANFIS model for each country 

Countries Number of MF's MF Type MAPE (%) 

Italy 2 gaussmf 0.014 

Luxembourg 2 gauss2mf 0.02 

the Netherlands 2 Trapmf 0.007 

Ireland 3 gbell 0.012 

3.6 Step 6 

In order to forecast with the ANFIS, there is a need to forecast the independent 

variables population and GDP. In addition, previous studies used time series to 

forecast the independent variables [1]. The future projection for each independent 

variable is performed by autoregressive model that is one of main models in the 

time series area. 

3.6.1 Data Structure 

AR (1) is considered thetime series model because of the shortage of annual data. 

Therefore the time series model for independent variable Xi is: 

Xi = a Xi-1+b (15) 
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Tables 4 and 5 show coefficients estimation of models for Luxembourg-Italy and 

the Netherlands - Ireland, respectively. 

Table 4 

Models information in Luxembourg, Italy 

 Luxembourg a B Italy A B 

GDP 1.01387 0.646877 0.977829 0.44674 

Population 
 

0.991206 0.006972 
 

0.99747 0.203405 

Table5 

Models information in Netherland, Ireland 

 Netherland A b Ireland A b 

GDP 0.996963 0.20975 0,97  0,04 

Population 
 

0.989339 0.245892 
 

0,92  0,08 

3.7 Step 7: Electric Future Projection 

According to the data structure, the values of the independent variables from 2008 

to 2015 are fed to the selected ANFIS as inputs, and then the output values are 

obtained for the same period. The projections of electricity consumption in the 

Netherlands, Luxembourg, Ireland, and Italy during 2008-2015 are shown in Table 

6 and Figures 4 to 7. 

Table 6 

Projections of Electric consumption during 2008-2015 

 Italy Luxembourg Netherland Ireland 

2009 322.2903 6.9407 112.9254 32.04722 

2010 322.9516 6.9933 112.3662 34.48428 

2011 329.6455 7.1541 114.4998 37.08778 

2012 330.2368 7.1932 114.2775 39.86907 

2013 336.1318 7.3405 116.1477 42.84032 

2014 336.5691 7.3679 115.9514 46.01447 

2015 341.7443 7.495 117.5679 49.4054 
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Figure 4 

Luxembourg annually consumption forecasting with proposed algorithm (2008- 2015) 

 

Figure 5 

Netherland annually consumption forecasting with proposed algorithm (2008- 2015) 
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Figure 6 

Italy annually consumption forecasting with proposed algorithm (2008- 2015) 

 

Figure 7 

Ireland annually consumption forecasting with proposed algorithm (2008- 2015) 
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Figure 8 

ANFIS results versus actual Electric consumption for 2004 to 2006 (Italy) 

 

Figure 9 

ANFIS results versus actual Electric consumption for 2004 to 2006 (Luxembourg) 
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Figure 10 

ANFIS results versus actual Electric consumption for 2004 to 2006 (Ireland) 

 

 

Figure 11 

ANFIS results versus actual Electric consumption for 2004 to 2006 (Netherland) 
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Conclusions 

This study presented an ANFIS approach for long term electricity consumption 

prediction. It presented the ANFIS and AR models for forecasting long-term 

natural gas demand prediction. The result of the ANFIS approach indicates that 

the proposed models are suitable and accurate for predicting electricity demand in 

industrialized nations, which in this case are the Netherlands,  Luxembourg, 

Ireland, and Italy.  In our long-term model we considered explanatory variables 

such as population and GDP. These variables showed a strong explanatory 

capability for estimating the actual electricity demand. Moreover, optimum results 

are obtained when all variables are used in ANFIS models. Figures 8 to 11 present 

the ANFIS results versus actual electricity consumption for 2004 to 2006. As can 

be seen, the ANFIS results are very close to the actual consumption. The approach 

of this study may be used for other cases to estimate and forecast optimum gas 

consumption. 

The ANFIS algorithm is also compared with some of the current studies in the 

estimation of gas estimation. Its features are compared with previous models to 

show its advantages over previous models (Table 7). The ANFIS algorithm of this 

study is capable of dealing with both data complexity and ambiguity due to its 

mechanism. Also, it pre-processes and post-processes the given data to provide 

higher precision. In addition, it dominates all recent studies and is capable of 

dealing with complexity, ambiguity and uncertainty. 

Table 7 

The features of the ANFIS approach versus other methods 

Feature 

 

 

 

Method 

Data 

Complexit

y and Non-

Linearity 

Data 

Uncertainty 

and Non-

Crisp Data 

set 

Intelligent 

Modeling 

and 

Forecasting 

Fuzzy 

Data 

Model

ing 

High 

Precision 

and 

Reliability 

Dealing 

Ambiguity 

Data Pre-

Processing 

and Post-

Processing 

The ANFIS 

approach  
√ √ √ √ √ √ √ 

ANN √  √  √   

Fuzzy 

Regression 
     √  

Linear 

Regression 
√    √   

Nonlinear 

Regression 
√  √  √ √  

Decision 

Tree 
√   √ √ √  

Genetic 

Algorithm 
√   √ √ √  
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Abstract: In this paper a short general review of the main characteristics of risk 

management applications is given, where a hierarchical, multilevel risk management 

method can be applied in a fuzzy decision making environment. The given case study is a 

travel risk-level calculation based on the presented model. In the last section an extended 

model and a preliminary mathematical description is presented, where the pairwise 

comparison matrix of the grouped risk factors expands the previous principles. 

Keywords: risk management; fuzzy multilevel decision making; comparison matrix 

1 Introduction 

The economical crisis situations and the complex environmental and societal 
processes over the past years indicate the need for new mathematical model 
constructions to predict their effects. The health diagnostic as a multi-parameter 
and multi-criteria decision making system is, as well, one of the models where, as 
in the previous examples, a risk model should be managed. 

Haimes in [1] gives an extensive overview of risk modeling, assessment, and 
management. The presented quantitative methods for risk analysis in [2] are based 
on well-known mathematical models of expert systems, quantitative optimum 
calculation models, statistical hypothesis and possibility theory. The case studies 
present applications in the fields of economics and environmental protection. It is 
observable that the statistical-based numerical reasoning methods need long-term 
experiments and that they are time- and computationally demanding. The 
complexity of the systems increases the runtime factor, and the system parameter 
representation is usually not user-friend. The numerical methods and operation 
research models are ready to give acceptable results for some finite dimensional 
problems, but without management of the uncertainties. The complexity and 
uncertainties in those systems raise the necessity of soft computing based models. 
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Nowadays the expert engineer’s experiences are suited for modeling operational 
risks, not only in the engineering sciences, but also for a broad range of 
applications [13]. Wang introduces the term of risk engineering related to the risk 
of costs and schedules on a project in which there is the potential for doing better 
as well as worse than expected [3]. The presented case studies in his book are 
particularly based on long-term engineering experiences, for example on fuzzy 
applications, which offer the promised alternative measuring of operational risks 
and risk management globally. 

The use of fuzzy sets to describe the risk factors and fuzzy-based decision 
techniques to help incorporate inherent imprecision, uncertainties and subjectivity 
of available data, as well as to propagate these attributes throughout the model, 
yield more realistic results. Fuzzy logic modeling techniques can also be used in 
risk management systems to assess risk levels in cases where the experts do not 
have enough reliable data to apply statistical approaches. 

There are even more applications to deal with risk management and based on 
fuzzy environments. Fuzzy-based techniques seem to be particularly suited to 
modeling data which are scarce and where the cause-effect knowledge is 
imprecise and observations and criteria can be expressed in linguistic terms. [4] 

The structural modeling of risk and disaster management is case-specific, but the 
hierarchical model is widely applied. The system characteristics are as follows: it 
is a multi-parametrical, multi-criteria decision process, where the input parameters 
are the measured risk factors, and the multi-criteria rules of the system behaviors 
are included in the decision process. The Analytical Hierarchy Process (AHP) 
expands this complex system with the pairwise comparison of the factors' 
importance and interaction [5]. 

In this paper, after a short general review of the main characteristics of risk 
management applications, a hierarchical, multilevel risk management method will 
be presented in a fuzzy environment. The given case study is a travel risk-level 
calculation based on the presented model. In the last section a preliminary 
mathematical description is presented based on a pairwise comparison matrix and 
AHP expanded principles. 

2 Risk Management 

Risk management is the identification, assessment, and prioritization of risks, 
defined as the effects of uncertainty of objectives, whether positive or negative, 
followed by the coordinated and economical application of resources to minimize, 
monitor, and control the probability and/or impact of unfortunate events [6]. 

The techniques used in risk management have been taken from other areas of 
system management. Information technology, the availability of resources, and 
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other facts have helped to develop the new risk management with the methods to 
identify, measure and manage the risks, thereby reducing the potential for 
unexpected loss or harm [7]. Generally, a risk management process involves the 
following main stages. 

The first step is the identification of risks and potential risks to the system 
operation at all levels. Evaluation, the measure and structural systematization of 
the identified risks, is the next step. Measurement is defined by how serious the 
risks are in terms of consequences and the likelihood of occurrence. It can be a 
qualitative or quantitative description of their effects on the environment. Plan and 
control are the next stages to prepare the risk management system. This can 
include the development of response actions to these risks, and the applied 
decision or reasoning method. Monitoring and review, as the next stage, is 
important if we are to have a system with feedback, and the risk management 
system is open to improvement. This will ensure that the risk management process 
is dynamic and continuous, with correct verification and validity control. The 
review process includes the possibility of new additional risks and new forms of 
risk description. In the future the role of complex risk management will be to try 
to increase the damaging effects of risk factors. 

2.1 Fuzzy Risk Management 

Risk management is a complex, multi-criteria and multi-parametrical system full 
of uncertainties and vagueness. Generally the risk management system in its 
preliminary form contains the identification of the risk factors of the investigated 
process, the representation of the measured risks, and the decision model. The 
system can be enlarged by monitoring and review in order to improve the risk 
measure description and decision system. The models for solving are knowledge-
based models, where linguistically communicated modeling is needed, and 
objective and subjective knowledge (definitional, causal, statistical, and heuristic 
knowledge) is included in the decision process. Considering all these conditions, 
fuzzy set theory helps manage complexity and uncertainties and gives a user-
friendly visualization of the system construction and working model. 

Fuzzy-based risk management models assume that the risk factors are fuzzified 
(because of their uncertainties or linguistic representation); furthermore the risk 
management and risk level calculation statements are represented in the form of if 
premises then conclusion rule forms, and the risk factor calculation or output 
decision (summarized output) is obtained using fuzzy approximate reasoning 
methods. Considering the fuzzy logic and fuzzy set theory results, there are further 
possibilities to extend fuzzy-based risk management models modeling risk factors 
with type-2 fuzzy sets, representing the level of the uncertainties of the 
membership values, or using special, problem-oriented types of operators in the 
fuzzy decision making process. 
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The hierarchical or multilevel construction of the decision process, the grouped 
structural systematization of the factors, with the possibility of gaining some 
subsystems, depending on their importance or other significant environment 
characteristics or on laying emphasis on risk management actors, is a possible way 
to manage the complexity of the system. Carr and Tah describe a common 
hierarchical-risk breakdown structure for developing knowledge-driven risk 
management, which is suitable for the fuzzy approach [8]. 

Starting with a simple definition of the risk as the adverse consequences of an 
event, such events and consequences are full of uncertainty, and inherent 
precautionary principles, such as sufficient certainty, prevention, and desired level 
of protection. All of these can be represented as fuzzy sets. The strategy of the risk 
management may be viewed as a simplified example of a precautionary decision 
process based on the principles of fuzzy logic decision making [9]. 

3 Grouped, Weighted Fuzzy Model 

Based on the main ideas from [8] a risk management system can be built up as a 
hierarchical system of risk factors (inputs), risk management actions (decision 
making system) and direction or directions for the next level of risk situation 
solving algorithm. Actually, those directions are risk factors for the action on the 
next level of the risk management process. To sum this up: risk factors in a 
complex system are grouped to the risk event where they figure. The risk event 
determinates the necessary actions to calculate and/or increase the negative 
effects. Actions are described by ‘if … then’ type rules. 

With the output those components frame one unit in the whole risk management 
system, where the items are attached on the principle of the time-scheduling, 
significance or other criteria (Fig. 1). Input Risk Factors (RF) grouped and 
assigned to the current action are described by the Fuzzy Risk Measure Sets 
(FRMS) such as ‘low’, ‘normal’, ‘high’, and so on. Some of the risk factor groups, 
risk factors or management actions have a different weighted role in the system 
operation. The system parameters are represented with fuzzy sets, and the grouped 
risk factors values give intermitted results [14]. Considering some system input 
parameters, which determine the risk factors’ role in the decision making system, 
intermitted results can be weighted and forwarded to the next level of the 
reasoning process. 
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3.1 Disaster Management - Case Studies 

Disaster event monitoring as one of the steps in risk and crisis management is a 
very complex system with uncertain input parameters. Fuzzified inputs, the fuzzy 
rule base, which is constructed using objective and subjective definitional, causal, 
statistical, and heuristic knowledge, is able to present the problem in a user-
friendly form. The complexity of the system can be managed by the 
hierarchically-structured reasoning model, with a thematically-grouped, and if 
necessary, gained risk factor structure. 

Crisis or disaster event monitoring provides basic information for many decisions 
in today’s social life. The disaster recovery strategies of countries, the financial 
investments plans of investors, or the level of the tourism activities all depend on 
different groups of disaster or crisis factors. A disaster can be defined as an 
unforeseen event that causes great damage, destruction and human suffering, 
evolved from a natural or man-made event that negatively affects life, property, 
livelihood or industry. A disaster is the start of a crisis, and often results in 
permanent changes to human societies, ecosystems and the environment. 

Based on the experts’ observations [11], [12], the risk factors which prejudice 
disaster situation can be classified as follows: 

- natural disasters; 

- man-made disasters (unintended events or willful events). 

Natural disasters arise without direct human involvement, but may often occur, 
because of human actions prior, during or after the disaster itself (for example, a 
hurricane may cause flooding by rain or by a storm surge). 

The natural disasters can also be grouped primarily based on the root cause: 

- hydro-meteorological disasters: floods, storms, and droughts; 

 Risk event  and actions  
(if.. then rules)1 

Risk Factor11  
(the output signal of risk action 

21)

… 
() 

Risk Factor 1n  
 

Risk event  and actions  
(if.. then rules)21 

Risk Factor21/1 

 

Risk Factor21/2 

  

Figure 1 
The hierarchical risk management construction 
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- geophysical disasters: earthquakes, tsunamis and volcanic eruptions; 

- biological disasters: epidemics and insect infestations; 

or they can be structured hierarchically, based on sequential supervention. 

The example, presented in this paper, is constructed based on the first principle, 
with fuzzified inputs and a hierarchically-constructed rule base system (Figure 2). 
The risk or disaster factors, as the inputs of one subsystem of the global fuzzy 
decision making system, give outputs for the next level of decision, where the 
main natural disaster classes result is the total impact of this risk category. 

 

Figure 2 

Hierarchically constructed rule base system 

This approach allows additional possibilities to handle the set of risk factors. 

It is easy to add one factor to a factors-subset; the complexity of the rule base 
system is changed only in the affected subsystem. 

In different seasons, environmental situations etc., some of the risk groups are 
more important for the global conclusion than others, and this can be achieved 
with an importance factor (number from the [0,1]). 

Man-made disasters have an element of human intent or negligence. However, 
some of those events can also occur as the result of a natural disaster. Man-made 
factors and disasters can be structured in a manner similar to the natural risks and 
events. One of the possible classifications of the basic man-made risk factors or 
disaster events (applied in our example) is as follows: 

1. unintended events: 

- Industrial accidents (chemical spills, collapses of industrial 
infrastructures); 

- Transport or telecommunication accidents (by air, rail, road or water 
means of transport); 
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- Economic crises (growth collapse, hyperinflation, and financial crisis); 

2. willful events (violence, terrorism, civil strife, riots, and war). 

In the investigated example, the effects of man-made disasters as inputs in the 
decision making process are represented with their relative frequency, and the 
premises of the related fuzzy rules are very often represented with the membership 
functions: never, rarely, frequently, etc.1 

The input parameters are represented on the unit universe [0,1] with triangular or 
trapezoidal membership functions describing the linguistic variables such as the 
frequency of the floods, for example: "low", "medium" or "high" (Fig. 3). The 
system was built in the Matlab Fuzzy Toolbox and Simulink environment. 

 

Figure 3 

Membership functions of the flood frequencies 

The risk and disaster factors are grouped in two main groups: human- and nature-
based group. The inputs are crisp, but the rule base system is hierarchically 
constructed (Fig. 4), and the decision making is Mamdani type approximate 
reasoning with basic min and max  operators. 

                                                           
1  The Matlab Fuzzy Toolbox and Simulink elements were in the preliminary, partial 

form constructed by Attila Karnis, student of the Óbuda University as the project on 
the course "Fuzzy systems for engineers". 
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Figure 4 

The system construction for the effects of disasters to calculate the travel risk level in a country 

The final conclusion based on both disasters' as risk factors' groups is shown in 
Figure 5. 

 

Figure 5 

The final conclusion based on both disasters' as risk factors' groups 
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4 First Step to the Fuzzy AHP Model for Group-

based Risk Management Model 

Let  nXXX ,...,, 21  be the set of elements in a decision making system. It is a 

natural way to use the framework of a nnA ×  square matrix to represent the 

pairwise comparisons of the dominance and interaction of those elements. 
Analytical Hierarchy Process (AHP) is a method for estimating the preference 
values from the pairwise comparison matrix. APH allows for the consideration of 
both qualitative and quantitative aspects of the decision, expanding the decision 
with the one-to-one comparison of the objectives, criteria, constraints or 
alternatives in the system model. The pairwise comparison in the AHP assume 
that the decision-maker can compare any two elements, for example iX  and jX  

at the same level of the hierarchy in the system and provide a numerical value ija  

for the ratio of their importance. Saaty suggests using scale 1 to 9 to describe the 
preference measures [5], but in different applications there are presented other 
possible scales too [10]. 

Let 1>ija  if the element iX  is preferred to jX , correspondingly, the reciprocal 

property ijji aa 1= for i=1,2,...n, j=1,2,...n. 

Each set of comparisons for a level with n elements requires
( )
2

1−⋅ nn
 judgments, 

which are further used to construct a positive reciprocal matrix nnA ×  of pairwise 

comparisons [10]. 

Let us interpret the comparison matrix nnA ×  as the matrix of the dominance 

measures regarding the set of risk factors in a risk management system. 

If the factors are grouped, and the groups are more or less independent, the 
comparison matrix has the block diagonal matrix form, and this allows us to pare 
down the computation complexity. 

Example. Let  nXXX ,...,, 21  be the set of risk factors grouped in p groups, and let 

it contain the first factors group the factors  321 ,, XXX . The pairwise comparison 

of them is represented with the 3×3 dimensional sub-matrix 11A . The further 

representations are similar to this, so the next to last group contains two factors: 

12 , −− nn XX , with the 2×2 dimensional sub-matrix 1,1 −− ppA , the last group holds 

only one factor. 
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It is natural that the comparison values iia  are units, 1=iia  for all i=1,2,...n. 

Let ( )nxxxx ,...,, 21=  be the actual input vector of the risk factors' vector 

( )nXXXX ,...,, 21= . The influence of the pairwise dominance comparison of the 

factors on the actual input vector can be represented as a transformation described 

with the matrix operation T
xA ⋅ . The goal is to forward a weighted input vector to 

the system, where the weight-multiplier λ  holds up the information about the 
pairwise dominance comparison of the input factors: 

TT
xxA ⋅=⋅ λ . 

The method for computing the λ  multiplier can be the eigenvalue method. On a 
practical score only real eigenvalues can be accepted. If there are not real 
eigenvalues in the set of solutions, the multiplier λ  is a unit one, λ =1. 

If there exists more than one solution with the proposed conditions, the chosen 
one should be the eigenvalue which keep the input vectors in their universe, but 
permits the highest efficiency of the decision. The AHP should be applied before 
the risk level calculation or decision making process. 

The open problems are: 

− to find the best way to create pairwise comparison of the factors, because 
the values are the judgments obtained from an appropriate semantic 
scale. In practice the decision-makers usually give some or all pair-to-
pair comparison values with an uncertainty degree rather than precise 
ratings; 

− to adjust the scale of the comparison values to keep the weighted input 
vector in their universe, but permitting the highest efficiency of the 
decision; 

− to build up a fuzzy AHP model for the preliminary comparison of the risk 
factors in the risk management system. 

Conclusions 

Risk management applications are complex, multi-criteria and usually multilevel 
decision systems, required to manage uncertainties. The fuzzy environment is able 
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to represent the ambiguous risk factors and rules in an acceptable form, where the 
risk factors are grouped based on their roles in the decision-making system. The 
given case study is a travel risk-level calculation based on the presented model. 

The pairwise comparison matrix is the first step in introducing the fuzzy AHP 
model for the multilevel, hierarchically-structured risk management system, with 
further open problems and the possibility for fine tuning in the reasoning process. 
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Abstract: Proposed in this study is a hybrid model for supporting the department selection 

process within Iran Amirkabir University. This research is a two-stage model designed to 

fully rank the organizational departments where each department has multiple inputs and 

outputs. First, the department evaluation problem is formulated by Data Envelopment 

Analysis (DEA) and separately formulates each pair of units. In the second stage, the pair-

wise evaluation matrix generated in the first stage is utilized to fully rank-scale the units via 

the Fuzzy Analytical Network Process (FANP). The FANP method adopted here uses 

triangular fuzzy numbers. ANP equipped with fuzzy logic helps in overcoming the 

impreciseness in the preferences. DEA-FANP ranking does not replace the DEA 

classification model; rather, it furthers the analysis by providing full ranking in the DEA 

context for all departments, efficient and inefficient. 

Keywords: Data Envelopment Analysis (DEA); Fuzzy Analytical Network Process (FANP); 

Performance; Efficiency; Fully Rank 

1 Introduction 

Multi-attribute decision-making (MADM) ranks elements based on single or 

multiple criteria, where each criterion contributes positively to the overall 

evaluations. The decision maker often carries out the evaluations subjectively. 

However, DEA deals with classifying the units into two categories, efficient and 

inefficient, based on two sets of multiple outputs contributing positively to the 

overall evaluation [1]. 

Many researchers (Belton & Vickers, 1993) highlight the relationship between 

DEA and MCDM: “According to them, DEA utilizes a process of allocating 

weights to criteria, just like other approaches to multi criteria and analysis”. 
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Ranking is very common in MCDM literature, especially when we need to 

describe lists of elements or alternatives with single or multiple criteria that we 

wish to evaluate, and then compare or select. Various approaches have been 

proposed in the literature for full- ranking of the element, ranging from the utility 

theory approach to AHP developed by Saaty [2], [3]. 

Throughout the process of reviewing the literature, it appeared that limited 

research has been carried out regarding DEA-FANP methods, and only the DEA-

AHP method in which connections among factors are not considered has been 

addressed. The idea of combining AHP and DEA is not new, and there have been 

several attempts to use them in actual situations. Some of these examples include: 

Bowen [4], Shang and Sueyoshi [5], Zhang and Cui [6], Zilla Sinuany-Stern et al. 

[3], Taho Yang, Chunwei Kuo [7], Takamura and Tone [8], Saen et al. [9], 

Ramanathan [10], and Wang et al. [11]. 

This paper is divided into four sections. In Section 1, the studied problem is 

introduced. Section 2 briefly describes the DEA-FANP method and the stages of 

the proposed model and steps are determined in detail. How the proposed model is 

used in an example in the real world is explained in Section 3. Finally, in Section 

4, conclusions and future research areas are discussed. 

2 The DEA-FUZZY ANP Method 

2.1 Fuzzy Sets and Fuzzy Number 

Zadeh (1965) introduced the Fuzzy Set Theory to deal with the uncertainty due to 

imprecision and vagueness. A major contribution of this theory is its ability to 

represent vague data; it also allows mathematical operators and programming to 

be applied to the fuzzy domain. A fuzzy set is a class of objects with a continuum 

of grades of membership. Such a set is characterized by a membership 

(characteristic) function which assigns to each object a grade of membership 

ranging between zero and one [12]. 

A tilde ‘ ’ will be placed above a symbol if the symbol represents a fuzzy set. A 

triangular fuzzy number (TFN), M  is shown in Fig. 1. A TFN is denoted simply 

as (l/m, m/u) or (l,m,u). The parameters l, m and u (l≤ m≤ u) denote respectively 

the smallest possible value, the most promising value, and the largest possible 

value that describe a fuzzy event. The membership function of triangular fuzzy 

numbers is as follows: 
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    µ M  

 

1.0 

 Ml(y)     Mr(y) 

 

 

0.0  

l  m   u 

Figure 1 

A triangular fuzzy number M  

Each TFN has linear representations on its left and right side, such that its 

membership function can be defined as 

                           0,                   x<l,                  

   µ(x/M)=          (x-l)/(m-1),  l≤x≤m , (1) 

                          (u-x)/(u-m),   m≤x≤u, 

                            0,                 x>u. 

 

A fuzzy number can always be given by its corresponding left and right 

representation of each degree of membership: 

[ ]( ) ( )( , ( ( ) , ( ) ), 0,1l y r yM M M l m l y u m u y y= = + − + − ∈
 (2) 

where l(y) and r(y) denote the left side representation and the right side 

representation of a fuzzy number, respectively. Many ranking methods for fuzzy 

numbers have been developed in literature. These methods may provide different 

ranking results, and most of them are tedious in graphic manipulation, requiring 

complex mathematical calculation [13]. 

2.2 Fuzzy ANP 

ANP, also introduced by Saaty, is a generalization of the analytic hierarchy 

process (AHP). Whereas AHP represents a framework with a uni-directional 

hierarchical AHP relationship, ANP allows for complex interrelationships among 

decision levels and attributes. The ANP feedback approach replaces hierarchies 

with networks in which the relationships between levels are not easily represented 

as higher or lower, dominant or subordinate, direct or indirect. For instance, not 
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only does the importance of the criteria determine the importance of the 

alternatives, as in a hierarchy, but also the importance of the alternatives may 

impact on the importance of the criteria [15]. 

ANP does not require this strictly hierarchical structure; it allows factors to 

`control' and be `controlled' by the varying levels or `clusters' of attributes. Some 

controlling factors are also present at the same level. This interdependency among 

factors and their levels is defined as a systems-with-feedback approach. 

The ANP approach is capable of handing interdependent relationships among 

elements by obtaining composite weights through the development of a 

supermatrix. The supermatrix concept contains parallels to the Markov chain 

process [14-15], where relative importance weights are adjusted by forming a 

supermatrix from the eigenvectors of these relative importance weights. The 

weights are then adjusted by determining the products of the supermatrix. 

The AHP method provides a structured framework for setting priorities on each 

level of the hierarchy using pair-wise comparisons that are quantified using a 1-9 

scale, as demonstrated in Table 1. In contrast, the ANP method allows for more 

complex relationships among decision layers and their properties. 

 

Table 1 

The 1-9 scale for AHP [15] 

Importance 

intensity 

Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 

3 Moderate importance of 

one over another 

Experience and judgment slightly favor one over 

another 

5 Strong importance of 

one over another  

Experience and judgment strongly favor one 

over another 

7 Very strong importance 

of one over another 

Activity is strongly favored and its dominance is 

demonstrated in practice 

9 Extreme importance of 

one over another 

Importance of one over another affirmed on the 

highest possible order 

2,4,6,8 Intermediate values Used to represent compromise between the 

priorities listed above 

 

The inability of ANP to deal with the impression and subjectiveness in the pair-

wise comparison process has been improved in fuzzy ANP. Instead of a crisp 

value, fuzzy ANP applies a range of values to incorporate the decision maker’s 

uncertainly [16]. In this method, the fuzzy conversion scale is as in Table 2. This 

scale will be used in the Mikhailov [17] fuzzy prioritization approach. 
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Table 2 

The 1-9 Fuzzy conversion scale [17] 

Importance 

intensity 

Triangular fuzzy scale 

1 (1,1,1) 

2 (1.6,2.0,2.4) 

3 (2.4,3.0,3.6) 

4 (3.2,4.0,4.8) 

5 (4.0,5.0,6.0) 

6 (4.8,6.0,7,2) 

7 (5.6,7.0,8.4) 

8 (6.4,8.0,9.6) 

9 (7.2,9.0,10.8) 

2.3 Data Envelopment Analysis (DEA) 

DEA has been successfully employed for assessing the relative performance of a 

set of firms, usually called decision-making units (DMU’s), which use a variety of 

identical inputs. The concept of Frontier Analysis, suggested by Farrel (1957), 

forms the basis of DEA, but the recent series of discussions started with an article 

by Charnes et al. [18]. 

DEA is a method for mathematically comparing different DMUs’ productivity 

based on multiple inputs and outputs. The ratio of weighted inputs and outputs 

produces a single measure of productivity called relative efficiency. The DMUs 

which have a ratio of 1 are referred to as ‘efficient’, given the required inputs and 

produced outputs. The units that have a ratio less than 1 are ‘less efficient’ relative 

to the most efficient units. Because the weights for the input and the output 

variables of DMUs are computed to maximize the ratio and are then compared to a 

similar ratio of the best-performing DMUs, the measured productivity is also 

referred to as ‘relative efficiency’. 

2.4 The Proposed DEA- Fuzzy ANP Method 

In this study, fuzzy ANP and DEA for efficiency measurement have advantages 

over other fuzzy ANP approaches. The priorities obtained from the Fuzzy ANP 

method based on DEA are defined as a two-staged approach. In the first stage, the 

pair-wise comparison of the results obtained from the model is based on DEA; in 

the second stage, a whole hierarchy is carried out by the Fuzzy ANP method on 

the results obtained from the first stage. A schematic diagram of the proposed 

model for measurement is shown in Figure 2. 
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Figure 2 

Schematic diagram of the proposed model for measurement 

2.4.1 First Stage of the Method (DEA pair-wise comparisons) 

In the Fuzzy ANP and DEA method, a pair-wise comparison in a decision-making 

unit is carried out. For instance, the DMUs are used for the production of xij (i=1, 

2,…, m) entries and yrj (r=1,2,...,s) outputs. X ( s n× ) and Y ( m n× ) are the 

amounts of the entries and outputs, respectively. In DEA, each unit is compared 

with all units, whereas in the DEA-Fuzzy ANP method, the DMUs are compared 

in a pair-wise method against each other. 

 

Collect Data 

From DEA method 

From Fuzzy ANP method 

Are change input 

necessary? 

Is the result      

satisfactory? 

Final decision and give some 

suggestions 
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Mathematical (Weighted Linear) Representation of the Problem: 

                s 

ek,k′=max∑ury (3) 

                 r=1 

s.t: 

 

m 

∑vixk=1 (4) 

i=1 

 
 

s           m 

∑uryrk-∑vixik ≤ 0 (5) 

r=1         i=1 

 

s              m 

∑uryrk’-∑vixik’ ≤ 0 (6) 

r=1          i=1 

ur ≥0      r=1,2,…..,s      vi≥0   i=1,2,…..,m 

By solving this mathematical model, ek,k’ elements are solved and the pair-wise 

compared E matrix is obtained (k’=1,….,n, k=1,….,n and k≠k’). In the second 

stage of the DEA- Fuzzy ANP method process, a two-level FANP model is given. 

2.4.2 Second Stage of the Method (FANP ranking) 

In the second level, based on the pair-wise comparison matrix E and after the 

hierarchy of FANP has been developed, the next stage creates matrices 

considering the interaction between pair-wise items for the factors and sub factors. 

We modify the selection process to a nine step method procedure, as follows: 

Step 1. The calculation of ak,k’ : The components of the pair-wise comparative 

matrix are obtained via the following formula. 

ak,k’=ek,k’/ek’,k  (7) 

Step 2. The calculation of Triangular Fuzzy Numbers: we setup the Triangular 

Fuzzy Numbers. Each expert makes a pair-wise comparison of the decision 

criteria and gives them relative scores. 

Ĝ1=(li, mi, ui) (8) 

Step 3. The calculation of Ĝ1: Establishing the Triangular Fuzzy Numbers, we 

setup the Triangular Fuzzy Numbers using the ANP method based on the Fuzzy 

numbers. Each expert makes a pair-wise comparison of the decision criteria and 

gives them relative scores. 
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Ĝ1=(li,mi,ui)  (9) 

li=(li1        li2           …       lik)
1/k                               i=1,2,…,k (10) 

mi=(mi1          mi2           …..         mik)
1/k              i=1,2,…,k (11) 

ui=(ui1          ui2                 ....            uik)
1/k               i=1,2,…,k (12) 

Step 4. The calculation of ĜT: Establishing the geometric fuzzy mean of the total 

row using: 

         k      k        k 

ĜT=(∑li,∑mi,∑ui) (13) 

        i=1  i=1   i=1                      ~ 

Step 5. The calculation of W: Fuzzy geometric mean of the fuzzy priority value 

calculated with normalization priorities for factors using: 

 ~                                      k       k      k               k            k               k 

W = Ĝi /ĜT=(li ,mi ,ui)/(∑li, ∑mi,∑ui)=(li /∑ui, mi /∑ mi , ui /∑ li) (14) 

                                         i=1   i=1   i=1         i=1         i=1             i=1 

Step 6. The calculation of wiαl: Factors belonging to nine different α-cut values α 

for the calculated, fuzzy priorities are applied for lower and upper limits for each α 

value: 

wiαl =(wilαl , wiuα) i=1,2,…,k l=1,2,…,L (15) 

Step 7. The calculation of Wil,Wiu: Combine the entire upper values and the lower 

values separately, then divide by the total sum of the α value: 

              L                      L 

Wil =    ∑  α (wil)l    /    ∑ α l       i= 1,2,…,k      l= 1,2,…,L (16) 

             l=1                   l=1 

             L                        L 

Wiu =    ∑  α (wiu)l    /    ∑ α l       i= 1,2,…,k      l= 1,2,…,L (17) 

              l=1                   l=1 

Step 8. The calculation of Wid: Use the following formula in order to defuzzify by 

the Combined upper limit value and lower limit value using the optimism index 

(λ) 

                                                                                                     (18) 

Step 9. The calculation of Win: Normalization of defuzzification value priorites 

using 

                   k 

Win =wid /  ∑ wid                  i= 1,…,k (19) 

                  i=1 

[ ](1 ) 0,1 1, 2,...,id iu ilw W W i kλ λ λ= + − ∈ =
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Step 10. The calculation of wk × Win: The final step deals with determining the 

degree of relations among different units by multiplying the matrices, 

 

 

 

 

 

 

         Wk =       

                                   

 

                                         

                      

Figure 3 

Relations among different units (super matrix) [15] 

3 Applying the Sequential Methodology: An 

Illustrative Problem 

The suggested hybrid model is demonstrated via an example of a selected 

department, supported by Iran Amirkabir University. Amirkabir University 

(Tehran Polytechnic) was established in 1958 as the first technical university of 

Iran. Through its rapid educational and research expansion, the university was able 

to gain a high ranking among all other universities and research centers. The 

achievements of this university in the area of research are evident from the many 

publications and the national and international prizes awarded for research 

activities. Thirteen departments have been considered in our evaluation. In our 

study, we employ a six-input evaluation criteria and four-output evaluation 

criteria:Inputs: Number of Professor Doctors, Associated Professors, Assistant 

Professors, and Instructors; Budget of departments; and Number of credits. 

Outputs: Number of alumni (undergraduates and graduate students), Evaluation of 

instructors, Number of academic congeries, and Number of academic papers (SCI-

SSCI-AHCI). 
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Table 3 

The DEA-Fuzzy ANP fully-ranking score 

 

 

 

 

 

 

 

 

 

 

 

The result score is always the-bigger-the-better. As visible in Table 3, department 

5 has the largest score due to its highest efficiency and performance. Department 

11 has the smallest score of the thirteen departments and is ranked in the last 

place. The relevant results can be seen in Table 3. Obviously, the best selection is 

candidate D5. 

Conclusion 

We have presented an effective model for rank scaling of the units with multiple 

inputs and multiple outputs using both DEA and FANP. In this paper, a two-stage 

hybrid methodology is provided where the binary comparison of the results 

obtained from the model is based on DEA. The second stage of the methodology 

assists in fully-ranking of the alternatives based on the results obtained from the 

first stage. The result of the methodology is a rank order of the alternatives, which 

can be used to select an individual project or a portfolio of projects. 

The advantage of the DEA-FANP ranking model is that FANP pair-wise 

comparisons have been derived mathematically from multiple input/output data by 

running pair-wise DEA runs. Thus, there is no subjective evaluation. 

The DEA and the FANP methods are commonly used in practice and, yet, both 

have limitations. The DEA-FANP method combines the best of both models by 

avoiding the pitfalls of each. ANP is designed for subjective evaluation of a set of 

alternatives based on multiple criteria organized in a hierarchical structure. In this 

model, we work with given tangible inputs and outputs of units, and no subjective 

assessment of the decision maker’s evaluation is involved. The Pareto optimum 

limitation of DEA is resolved by the full- ranking performed here by means of the 

FANP. It is important to note that DEA-FANP does not replace DEA, but rather, it 

provides further analysis of DEA to full ranking the units. 

DMU DEA-FANP score 

D1 1.12449 

D2 0.67602 

D3 1.36825 

D4 2.25443 

D5 2.82427 

D6 0.56335 

D7 1.01403 

D8 0.78684 

D9 0.89915 

D10 0.56435 

D11 0.55231 

D12 0.67926 

D13 1.23937 
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The performance measurement model developed here structured the performance 

measurement problem in a hierarchical form, critical areas and performance 

measures. The developed performance measurement model contributes to the 

previous performance measurement models by including and quantifying 

interdependencies that exist between system components. In addition, the 

involvement of fuzzy theory can adequately resolve the inherent uncertainty and 

imprecision associated with the mapping of a decision maker’s perception to exact 

numbers. 
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Abstract: A combining adaptive fuzzy-wavelet control algorithm is proposed for a class of 

continuous time unknown nonlinear systems. An application of wavelet networks to control 

problems of nonlinear systems is investigated in this work. A wavelet network is 

constructed as an alternative to a neural network to approximate a nonlinear system. Based 

on this wavelet network and fuzzy approximation, suitable adaptive control laws and 

appropriate parameter update algorithms for nonlinear uncertain (or unknown) systems 

are developed to achieve tracking performance. The stability analysis for the proposed 

control algorithm is provided. A nonlinear system simulation example is presented to verify 

the effectiveness of the proposed method. 

Keywords: fuzzy control; adaptive control; wavelet approximation; feedback linearization 

1 Introduction 

In recent years, wavelet neural networks which combine the learning ability of 

feed forward neural networks and time-frequency localization properties of 

wavelets have become a popular tool for multiscale analysis and synthesis, time-

frequency signal analysis in signal processing, function approximation, 

approximation in solving partial differential equations, and so on [1]-[8]. 

At present, there are two kinds of wavelet neural network structures. The first one 

is the fixed wavelet basis, where the dilation and translation parameters of wavelet 

basis are fixed, and the output layer weights are adjustable. The second one is the 

variable wavelet basis. The dilation parameters, translation parameters, and the 

output layer weights are adjustable in this type of wavelet neural network. 

On the other hand, considerable study has been performed to integrate the 

excellent learning capability of neural networks with the perfect inference 

mechanism of fuzzy systems, which are called neuro-fuzzy systems [9], to obtain 

the rule-base membership function parameters from the input-output data. These 
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neuro-fuzzy systems have fast and accurate learning and good generalization 

capabilities, and both have the ability to accommodate expert knowledge about the 

problem under consideration. 

Fuzzy logic controllers are generally considered applicable to plants that are 

mathematically poorly understood and where experienced human operators are 

available. However, fuzzy controllers have not been regarded as an exact science 

due to the lack of a guarantee of global stability and acceptable performance. 

Nonetheless, some researchers propose the stability analysis of fuzzy control 

systems (e.g., [10]). The mathematical model of the plant is assumed to be known 

in [10]. Hence, this contradicts the very fundamental premise of fuzzy control 

systems. In fact, if the model of plant is known, then we should give the 

conventional linear or nonlinear control methods high priority. 

The proposed control scheme provides good transient and robust performance. In 

this paper, it is proved that the closed-loop system is globally stable in the 

Lyapunov sense and the system output asymptotically stable with modeling 

uncertainties and disturbances. 

Fuzzy controllers are assumed to work in situations where the plant parameters 

and structures have some uncertainties or unknown variations. The basic objective 

of adaptive control is to maintain the consistent performance of a system in the 

presence of uncertainties. So, advanced fuzzy control or wavelet approximation 

might be adaptive. This work is involved by combining the characteristics of 

wavelet, the technique of feedback linearizations, the adaptive control scheme and 

the fuzzy control to solve the tracking control design problem for nonlinear 

systems with bounded unknown or uncertain parameters and external 

disturbances. 

This paper is organized as follows. First, the problem formulation is presented in 

Section 2. A brief description of a wavelet system is included in Section 3. In 

Section 4, the adaptive fuzzy-wavelet control is proposed. Simulation results for 

the proposed control concept are shown in Section 5. Finally, the paper is 

concluded in Section 6. 

2 Problem Formulation 

Consider an nth order SISO nonlinear system with n 2≥  of the following form 

1 2

n

1

x x

x f (x) g(x)u

y x

=

= +
=

 (1) 
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where 
(n 1) T T n

1 2 nx [x, x, , x ] [x , x , , x ] R−= = ∈  is the state vector, u is 

the control input and y is the output of the system. All the elements of the state 

vector x  are assumed to be available. At the beginning, f (x)  is assumed to be 

smooth and g(x)  is assumed to be smooth and bounded away from zero. 

Differentiating the output y with respect to time for n times we obtain the 

following input/output form 

(n)y f (x) g(x)u= +  (2) 

Note that the above system has a relative degree of n. 

If f (x)  and g(x)  are known, a nonlinear tracking control can be obtained. Let 

ry  be the desired continuous differentiable uniformly bounded trajectory and let 

(n 1) T n

re y y (e,e, ,e ) R−= − = ∈  (3) 

be the tracking error. Then by employing the technique of feedback linearization a 

suitable control law can be derived to achieve the tracking control goal as 

( ) ( ) p

1
u f x u

g x
⎡ ⎤= − + + ν⎣ ⎦  (4) 

where 
pu  is an auxiliary control variable yet to be specified and 

( ) ( ) ( )( ) ( )n n 1 n 1

r 1 r n ry y y y y
− −ν = +α − + +α −  (5) 

Note that the coefficients 1 n, ,α α…  are positive constants to be assigned such 

that the polynomial 
n n 1

1 ns s −+α + +α…  is Hurwitz. As a result, the error 

dynamic of the system has the following input/output form 

( ) ( )n n 1

1 n pe e e u
−+α + +α =…  (6) 

which can be represented in state space form as 

p
e e uA B= +  (7) 

where 
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n n 1 n 2 1

0 1 0 0

0 0 1 0

0 0 0 1

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−α −α −α −α⎣ ⎦

A  (8) 

[ ]T0 0 1B =  (9) 

( ) ( ) T
n 2 n 1

e e e e
− −⎡ ⎤= ⎣ ⎦  (10) 

Note that the above design method is useful only if ( )f x  and ( )g x  are known 

exactly. If ( )f x  and ( )g x  are unknown then adaptive strategies must be 

employed. Let us now discuss a wavelet-network based adaptive algorithm. 

First we employ two wavelet networks 

( ) ( )T T

f f fff x, W c xθ = θ  (11) 

( ) ( )T T

g g ggg x, W c xθ = θ  (12) 

to approximate (or model) the nonlinear functions ( )f x  and ( )g x  of the 

system, respectively. 

3 A Review of Wavelet Networks 

In this section a brief introduction to wavelet networks is given. Several kinds of 

wavelet bases have successfully been developed and widely applied in many 

different areas, such as in time-frequency signal analysis in signal processing, 

function approximation, approximation in solving partial differential equations 

and so on. Further development of new families of wavelet bases continues to 

receive considerable attention from researchers. 

Consider the closed space iU , i Z∀ ∈  with the following properties [11] 

iU  1 0 1U U U−⊂ ⊂ ⊂  (13) 
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{ }i Z iU 0∈∩ =  (14) 

i 1 i iU U W+ = ⊕  i Z∀ ∈  (15) 

( ) ( )i i 1f x U f 2x U +∈ ⇔ ∈  i Z∀ ∈  (16) 

where Z is the set of all integers, ∩  is the intersection operator and ⊕  is the 

direct sum. It is seen that the decomposition of the whole space S can be rewritten 

as follows 

i i i 1 0 1S U W W W W+= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕  (17) 

for some i Z∈ . Let ( )x Sφ ∈  be a basic scaling function such that 

( ){ }i ijU span x= φ  with ( ) ( )
i

i2
ij x 2 2 x jφ = φ − , for all i, j Z∈ ; then, there 

exists a basic function ( )x Sψ ∈  such that ( ){ }i ijW span x= ψ  with 

( ) ( )
i

i2
ij x 2 2 x jψ = ψ − , for all i, j Z∈ . 

Now, consider a function ( )f x  is S. It is obvious that ( )f x  can be rewritten as 

[11], [12] 

( ) ( )ij ij

i j

f x x= θ ψ∑∑  (18) 

where 

( ) ( )∫
∞

∞−

ψ=θ dxxxf ijij  (19) 

with ( ) ( )
i

i2
ij x 2 2 x jψ = ψ − , for all i, j Z∈ . The above expression of ( )f x  

is called a wavelet series expansion of the function ( )f x . 

Based on the wavelet series expansion, a wavelet network of the form [13], [14] 

( ) ( ) ( )
2 2

1 1

M N
T

ij ij

i M j N

f x, x W x
= =

θ = θ ψ = θ∑ ∑  (20) 



M. Kratmüller Combining Fuzzy/Wavelet Adaptive Error Tracking Control Design 

 – 120 – 

can be constructed to approximate a nonlinear function ( )f x  in space S, for 

some integers 1M , 2M , 1N  and 2N  where 

1 1 1 2 2 1 2 2

T

M N M N M N M N
⎡ ⎤θ = θ θ θ θ⎣ ⎦  (21) 

and 

( ) ( ) ( ) ( ) ( )[ ]TNMNMNMNM xxxxxW
22122111

ψψψψ= ………  (22) 

This wavelet network represents an alternative to a neural network approximation. 

If ( ) ( ) ( )1 2 1 2є M ,M , N , N f x f x,= − θ  is the approximation error, then for 

arbitrary constant 0ε ≥  there exist some constants 1 2 1 2M ,M , N , N Z∈  such 

that ( )1 2 1 2 2
є M , M , N , N ≤ ε , for all c in compact set X R⊂ . This means 

that the wavelet network ( )f x,θ  can approximate ( )f x  to any desired 

accuracy. 

In the case of a function ( )f x  defined on 
nX R⊂  with 

T

1 2 nx [x , x , , x ]= , 

the proposed wavelet network ( )f x,θ  cannot be applied directly because 

( )f x,θ  is defined on X R⊂ , not on 
nX R⊂ . We must first make a minor 

modification by replacing the wavelet bases in Eq. (20) by 

( )
n

T

ij ij i i

i 1

c , x c x
=

⎛ ⎞ψ = ψ ⎜ ⎟
⎝ ⎠
∑  with some weighting constants ic . 

Then the modified wavelet network becomes 

( ) ( ) ( )
2 2

1 1

M N
T T T

ij ij

i M j N

f x, c x W c x
= =

θ = θ ψ = θ∑ ∑  (23) 

Note that this modified wavelet network is composed of four layers. The first layer 

is the input layer with available input vector 
T

1 2 nx [x , x , , x ]= . A weighting 

summer 
T

c x  is given in the second layer. The third layer is composed of the 

wavelet bases. The output layer is a weighted combination of the wavelets. 
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4 Adaptive Fuzzy/Wavelet Control 

According to the description in Section 3, guaranteeing x  in a compact region is 

very important when the wavelet networks ( )ff x,θ  and ( )gg x,θ  are used to 

approximate ( )f x  and ( )g x , respectively. In general there is still not an 

efficient way to ensure satisfaction of this requirement. In practical applications 

one may assign a very large compact set to avoid violation of this requirement. 

However, a very large wavelet basis is needed in this situation. This may result in 

a large computational burden. Fortunately, in many physical systems such as 

mechanical systems and electrical systems, an appropriate selection of the pre-

assigned compact set can be obtained via knowledge of some physical limitations. 

Let 

( ) ( )
f

*

f f
x

arg min max f x, f x
θ

θ = θ −  (24) 

( ) ( )
g

*

g g
x

arg min max g x, g x
θ

θ = θ −  (25) 

be the best approximation parameters of fθ  and gθ , respectively. 

System (1) can be rewritten as 

( ) ( ) ( )n

1 1 n 1 nx f x , , x g x , , x u= +… …  (26) 

where 
(n 1) T T n

1 2 nx [x, x, , x ] [x , x , , x ] R−= = ∈  is the state vector and 

the functions ( )f x  and ( )g x  are unknown nonlinear functions of the states and 

time. The objective of the adaptive wavelet error tracking control design is to 

update the controller parameters in such as a way that the system output can 

asymptotically track the desired reference model output ( )r my x t=  in spite of 

function uncertainties. 

The reference model is a linear system in form 

( ) ( )
1 1 1 1

n n 1

m n 1 m 1 m 0 mx a x a x a x br
−

−+ + + + =  (27) 

where 
1 1 1 1 2 n

(n 1) T T n

m m m m m m mx [x , x , , x ] [x , x , , x ] R−= = ∈  is the state 

vector of the reference model. 

To follow the reference model, the controller must be chosen so as to cancel the 

nonlinearities in the nonlinear system and provide pole placement to the system, 

i.e. feedback linearization. For example, the controller is chosen in the form 
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( ) ( ) ( )n 1

n 1 1 1 1 0 1

1
u f x a x a x a x br

g x

−
−

⎡ ⎤= − − − − − + ⎦⎣  (28) 

In this article the set of fuzzy systems is used with a singleton fuzzifier, product 

inference, a centroid defuzzifier, a triangular antecendent membership function 

and a singleton consequent membership function with n inputs of 

[ ]
iiii xxxxi kc,kcx +−∈  for n,,1i …=  and [ ]1,0u∈  as the normalized 

output. The generalized expression of the class of the fuzzy controllers can be 

written as 

∑ ∑
= =

−−=
2

1i

2

1i

1i

n

1i

1ii

1 n

n1

n1
xxNu  (29) 

∏

∑ ∑

=

= =
⎥
⎦

⎤
⎢
⎣

⎡

=
n

1i

x

n

2

1j

2

1j

jjjjjj

ii

i

1 n

n1n1n1

n1

k2

CKR

N  (30) 

( )
( )

( )
( )

1i

x

j

x

j
1i

x

j

x

j

jj

1

n

n

n

n
1

1

1

1

1

n1 c1k

1

c1k

1
C

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

=  (31) 

( )[ ] ( )[ ]
n

n

n1

1

1n1 x

j

xx

j

xjj c1kc1kK −−−−=  (32) 

On the other hand, given the coefficients of the explicit form 
n1 iiN  we can 

reconstruct the rule base from the generalized expression of the class of fuzzy 

systems [15] by using the following theorem. 

Theorem 1 [15]: For a class of fuzzy logic systems (FLS) with a singleton 

fuzzifier, product inference, a centroid defuzzifier, a triangular antecendent 

membership function and a singleton consequent membership function, i.e. given 

the coefficients of the explicit form, i.e. 
n1 iiN , the control function can be 

expressed in terms of fuzzy rules as 

∑ ∑
= =

=
2

1i

2

1i

jjiijj

1 n

n1n1n1
DNR  (33) 

with 

( ) ( )1 n
1 n

1 n 1 1 n n

i 1 i 1
j j

j j x x x xD c 1 k c 1 k
− −

⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦  (34) 
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Proof: The proof is found by directly expanding terms and comparing 

coefficients. For details, please refer to [15]. 

Therefore, one can express an equation in the form of generalized multilinear 

equations, such as polynomials, exactly as a rule base of FLS. Theorem 1 is useful 

in cases where the implementation of an FLS performs inference on a given fuzzy 

rule base but without any numerical computation capability. 

We can express the fuzzy controller in the form of fuzzy IF-THEN rules. 

RULE i: IF r is 
r

1A  and ... and nx  is nx

1A , THEN ip Ru =  

The generalized expression of the class of fuzzy controller with n+1 inputs, i.e. r 

and x  can be written as 

0 1 n

0 1 n

0 n

2 2
i 1 i 1 i 1

p i i i 1 n

i 1 i 1

u N r x x
− − −

= =

=∑ ∑  (35) 

By applying Theorem 1, one can find a set of iR 's  to represent exactly the given 

pole-placement equation as 
( )n 1

p n 1 1 1 1 0 1u a x a x a x br
−

−= − − − − + . 

The controller for pole-placement can be written as 

T

p ppu = θ ω  (36) 

with ( )T T T

b cp 0k ,k ,kθ =  

and ( )T T T

cp r, x , xω =  

with 

0 211 111k 2N= …  

1 121 111k 2N= …  

n 1 111 121k 2N− = …  

n 111 112k 2N= …  

where [ ]Tb 1 nk k , , k= . The composite state vector cx  and the associated 

parameter vector ck  are defined as 

( )T

c 1 2 n 1 2 n 1 n 1 nx rx x x , rx x x , , x x ,1− −= … …  (37) 
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( )
c c

T

c n 1 n 2 n n 1 n nk k ,k , , k , k+ + + − +=  (38) 

with 

n 1 222 222k 2N+ = …  

n 2 222 221k 2N+ = …  

cn n 1 111 122k 2N+ − = …  

cn n 111 111k 2N+ = …  

where ( )n 1

cn 2 n 1+= − +  

Controller can be stated as 

( ) ( )p

1
u u f x

g x
⎡ ⎤= −⎣ ⎦  (39) 

From the nonlinear system (26) we have 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

n

1x f x g x u

f x g x u g x u g x u

f x g x u g x g x u

= +

= + − +

= + + −

 (40) 

By substituting (39) into the previous equation it becomes 

( ) ( ) ( )( ) ( ) ( )( )T Tn

b c1 0x k x k r k f x f x g x g x u= + + + − + −  (41) 

By substracting the closed-loop plant dynamic equation (above) with the reference 

model dynamic (27) we have the following 
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( ) ( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( )

( ) ( )

( )
( ) ( )( ) ( ) ( )( )

1

1

1

T Tn n

b c c1 m 0

n 1
j

j m

j 1

n 1
j j

j 1 m

j 1

n 1
j

j j 1

j 1

T

c c0

x x k x k r k x

ˆ ˆf x f x g x g x u

a x br

a x x

k a x

k b r k x

ˆ ˆf x f x g x g x u

−

=

−

=

−

=

− = + +

+ − + −

+ −

⎡ ⎤= − −⎣ ⎦

⎡ ⎤+ +⎣ ⎦

+ − +

+ − + −

∑

∑

∑

 (42) 

For the time derivative of the signal error vector me x x= −  the following 

equality holds 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

n 1 n 1
n j j

1 j 1 j j 1

j 1 j 1

T

c c0

e a e k a x

ˆk b r k x f x f x

ˆg x g x u

− −

= =

⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦

+ − + + −

+ −

∑ ∑

 (43) 

We can rewrite the error (43) in matrix representation 

T

Ime e b= + φ ωA  (44) 

The error vector e  is defined as 

( ) ( ) ( )

1

1

1

m1 1

m1 1

n 1 n 1 n 1

1 1 m

xe x

xe x
e

e x x
− − −

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= = − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (45) 

The matrix mA  and vector Ib  are defined as 



M. Kratmüller Combining Fuzzy/Wavelet Adaptive Error Tracking Control Design 

 – 126 – 

m

1 2 3 n

0 1 0 0

0 0 1 0

a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
− − − −⎝ ⎠

A  (46) 

I

0

b
0

1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (47) 

with the parameter error vector φ  defined as 

( ) ( )
c

0 1 1 n n

T

n 1 n 2 n n

T T
* *

f f g g

k b k a k a

k k k+ + +

⎧ ⎫
− + +⎪ ⎪

⎪ ⎪φ = ⎨ ⎬
⎪ ⎪
⎪ ⎪θ −θ θ −θ⎩ ⎭

 (48) 

( ) ( )

1 n

T

1 2 n 1 2 n 1

T T

f gf g

r x x

rx x x rx x x 1

W c x W c x

−

⎧ ⎫
⎪ ⎪⎪ ⎪ω = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

… …  (49) 

where ( ) ( )* T

f ffW c x f xθ ≈  and ( ) ( )* T

g ggW c x g xθ ≈ . The system’s error 

(44) consists of a linear part governed by mA  and Ib  plus a nonlinear control 

Tφ ω . In the following we show stable adaptive laws for the system. 

Theorem 2: Consider the error equation given by (43) whose parameters are 

adjusted according to the following adaptive laws. 

1) For the nonlinear-cancellation for ( )f x  the adaptive law is 

( ) ( )T T

f ffp e W c xθ = −γ  

2) For the nonlinear-cancellation for ( )g x  the adaptive law is 

( ) ( )T T

g ggp e W c xθ = −γ  
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Then we have 

1) e  and φ  are uniformly bounded 

2) 
t
lim e 0
→∞

=  

where p  is a vector consisting of the n-th column of positive definite symmetric 

matrix P (see Eq. 45). 

Proof: The choice of the Lyapunov function is normally a quadratic function of 

both the signal error vector e  and the parameter error φ  

T T 1V e e −= + φ φP Γ  (50) 

with the adaptation gain matrix defined as n 1 n 12 2+ +×
= γΓ I , where n 1 n 12 2+ +×

I  is a 

1n1n 22 ++ ×  identity matrix. Since Γ  is positive definite, 
1−Γ  is also positive 

definite. Matrix P must be chosen as a positive definite symmetric matrix and it 

will follow from the adaptive law derivation shown in the following. To obtain an 

asymptotically stable adaptive system, V  must be negative definite. 

Differentiating V yields with 

( )T T T TT 1

Im mV e e 2e b 2 −= + + φ ω+ φ φA P PA P Γ  (51) 

By applying the second method of Lyapunov, positive definite symmetric matrices 

P and Q can be found such that the first part of the equation satisfies 

( )T TT

m me e e e+ = −A P PA Q  (52) 

By putting the last two terms of the equation to zero the adaptive laws emerges 

( )

T T T 1

I

T

I

T

2e b 2 0

e b

p e

−φ ω+ φ φ =

φ = − ω

= − ω

P Γ

Γ P

Γ

 (53) 

The product IbP  is a vector consisting of the n-th column p of P, while the model 

and process parameters are assumed constant. From the definition of φ , it follows 

that 

( )T
p e′θ = ωΓ  (54) 



M. Kratmüller Combining Fuzzy/Wavelet Adaptive Error Tracking Control Design 

 – 128 – 

with 

pnb
′ =

ΓΓ . By partitioning the parameter vectors, we can obtain the adaptive 

laws for the parameters of the two approximators. Since 0V <  from (51) we 

obtain that e  and φ  are uniformly bounded. Because of the boudedness of e , φ  

and ω  we see from (43) that e  is bounded as well. Thus e  is uniformly 

continuous and so is ( )V e,φ . From the fact that 

T T 1V e eP Γ−= + φ φ  (55) 

T
V e eQ= −  (56) 

we have that 

*

t
VVlim =

∞→
 (57) 

exists, with 

T*

0

0

V V e edtQ

∞

− = −∫  (58) 

Since the left-hand side is known to be finite, we know that the term on the right-

hand side must be finite. We known that since 
T

e eQ  is positive, uniformly 

continuous and has a finite integral that 

T

t
lim e e 0Q
→∞

=  (59) 

and thus 

t
lim e 0
→∞

=  (60) 

Notice that the sign of the actual adaptation gain matrix Γ′  is found to depend on 

the sign of pnb  and so to be able to implement the adaptive law with a proper 

sign, the sign of pnb  must be known. This condition appears in all MRAC 

schemes. The equations form the adaptive laws that provide a stable adaptive 

system. The matrix P and so the vector p  can be calculated with Lyapunov’s 

equation starting with a chosen definite symetric matrix Q. Furthermore, the 

product of vectors ( )T

Ib eP  is called the “compensated error“ in adaptive 

control literature. This adaptive law has the same form as the MIT adaptive laws, 
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which use the error e  instead of the compensated error 
T

p e . Since it can be 

shown that using the compensated error in the adaptation laws preserves the 

system stability, the word “compensated“ refers to the compensation of the error 

in order to preserve system stability. 

5 Simulation Example 

Example 1 

The above described adaptive fuzzy/wavelet control algorithm will now be 

evaluated using the inverted pendulum system depicted in Fig. 1. 

l 

1x=θ

 

Figure 1 

The inverted pendulum system 

Let θ=1x  and θ=2x . The dynamic equation of the inverted pendulum is 

given by [16] 

( ) ( )

( )

( )

( )

1

c

c

1

2

c

1

c

1

2

c

11

2

2
1

2

21

xy

du

mm

xcosm

3

4
l

mm

xcos

mm

xcosm

3

4
l

mm

xsinxcosmlx
xsing

x

xx

=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

+
−

=

=

 (61) 
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where g is the acceleration due to gravity, cm  denotes the mass of the cart, m is 

the mass of the pole, l is the half-length of the pole, the force cu  represents the 

control signal and d is the external disturbance. In simulations the following 

parameter values are used: Kg1m c = , Kg1.0m =  and m5.0l = . The 

reference signal is assumed to be ( ) ( ) ( )tsin30/ty r π=  and an external 

disturbance ( ) ( )tsin1.0td = . 

If we require 

6
x

π
≤ , 180u ≤  (62) 

and substitute the functions sin(.) and cos(.) by their bounds, we can determine the 

bounds 

( ) 2

221

M x366.078.15x,xf +=  (63) 

( ) 46.1x,xg 21

M = , ( ) 12.1x,xg 21m =  (64) 

2k1 = , 1k 2 =  and ( )10,10diagQ =  are set. Then the algebraic Riccati 

equation solution is ⎥
⎦

⎤
⎢
⎣

⎡
=

55

515
P  and ( ) 93.2Pmin =λ . To satisfy the 

constraint related to x  we choose 16M f = , 6.1M g =  and 0.48γ = . Five 

Gaussian membership functions for both 1x  and 2x  (i=1,2) are selected to cover 

the whole universe of discourse 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

π−
−=μ

2

i
iF 24

6x
expx1

i

 (65) 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π−

−=μ
2

i
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 (69) 

Using the method of trial and error 50f =γ  and 1g =γ  are chosen. The 

pendulum initial position is chosen as far as possible ( )( )20x0 1 π==θ  to 

emphasize the efficiency of our algorithm. 

The Haar wavelets are chosen to be the basis of the wavelet network. The vectors 

fc  and gc  are both chosen as 
T

f gc c c [1 1]= = = , and the size of our 

network is chosen as 1M 2= − , 2M 2= , 1N 1= −  and 2N 1= . In this 

example, the wavelet bases for ( )f x  and ( )g x  are chosen and are the same. 

Therefore, ( ) ( ) ( )T T T

f gf gW c x W c x W c x= = . 

Two cases have been considered in order to show the influence of the linguistic 

rules incorporation into the control law: 

Case one: the initial values of fθ  and gθ  are chosen arbitrarily. 

Case two: the initial values of fθ  and gθ  are deduced from the fuzzy rules 

describing the system dynamic behavior. For example, if we consider the unforced 

system, i.e. 0u c = , the acceleration is equal to ( )21 x,xf . Thus we can state 

intuitively: 

“The bigger is 1x , the larger is ( )21 x,xf ”. 

Transforming this fuzzy information into a fuzzy rule we obtain 

( )1

fR  : IF  1x  is  
5

1F  and  2x  is  
5

2F , THEN  ( )21 x,xf  is Positive Big 

where “Positive Big” is a fuzzy set whose membership function is ( )iF
xl

i

μ  given 

by (65)-(69). The acceleration is proportional to the gravity, i.e. 

( ) ( )121 xsinx,xf α≅ , where α  is a constant. As ( )21 x,xf  achieves its 

maximum at 2x1 π= , using (63)-(64) we obtain 16≅α . The resulting set of 

25 fuzzy rules characterizing ( )21 x,xf  is given in Tab. 1. 
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Table 1 

Linguistic rules for ( )21 x,xf  

( )21 x,xf  1x  

 1

1F  
2

1F  
3

1F 4

1F  
5

1F  

 

6

π
−  

12

π
−  

0 

12

π  
6

π  

 1

2F  
6

π
−  

-8 -4 0 4 8 

 2

2F  
12

π
−  -8 -4 0 4 8 

2x  
3

2F  
0 -8 -4 0 4 8 

 4

2F  
12

π  -8 -4 0 4 8 

 5

2F  
6

π  
-8 -4 0 4 8 

Now the following observation is used to determine the fuzzy rules for ( )21 x,xg : 

“The smaller is 1x , the larger is ( )21 x,xg ”. 

Similarly to the case of ( )21 x,xf  and based on the bounds (63)-(64) this 

observation can be quantified into the 25 fuzzy rules summarized in Tab. 2. 

Table 2 

Linguistic rules for ( )21 x,xg  

( )21 x,xg  1x  

 1

1F  
2

1F  
3

1F  
4

1F  
5

1F  

 

6

π
−  

12

π
−  0 

12

π  

6

π  

 1

2F  
6

π
−  1.26 1.36 1.46 1.36 1.26 

 2

2F  
12

π
−

1.26 1.36 1.46 1.36 1.26 

2x  
3

2F  
0 1.26 1.36 1.46 1.36 1.26 

 4

2F  
12

π  1.26 1.36 1.46 1.36 1.26 

 5

2F  

6

π
 

1.26 1.36 1.46 1.36 1.26 
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To obtain the same tracking performances the attenuation level ρ  is equal to 0.2 

in the first case and to 0.8 in the second one. 

The tracking performance of both cases for a sinusoidal trajectory is illustrated in 

Fig. 2. 

0 5 10 15
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15[rad] 

[s] 

 

Figure 2 

The state 1x  in case 1(red dashed line), in case 2 (green dotted line) and desired value ( )ty r  (blue 

solid line) for ( ) ( )T
0,120x π=  

Example 2 

In this example, we apply the adaptive fuzzy/wavelet controller to the system 

0u5.0y7.1y
y25.0

1
y ''' =−+

+
+  (70) 

Define six fuzzy sets over interval <-10, 10> with labels N3, N2, N1, P1, P2, P3. 

The membership functions are 

( )
( )25.0x1N

e

1
x

+
=μ  (71) 

( )
( )25.1x2N

e

1
x

+
=μ  (72) 
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( ) ( )2x53N
e1

1
x ++
=μ  (73) 

( )
( )25.0x1P

e

1
x

−
=μ  (74) 

( )
( )25.1x2P

e

1
x

−
=μ  (75) 

( ) ( )2x53P
e1

1
x −−+
=μ  (76) 

The reference model is assumed to be 

( )
1s2s

1
sM

2 ++
=  (77) 

and the reference signal is the square periodic signal of magnitude 1.5 and 

frequency 0.01 Hz. 

We choose ⎥
⎦

⎤
⎢
⎣

⎡
=

2030

3050
P , 2k1 = , 1k 2 = , and ( ) 52.1Pmin =λ . To satisfy 

the constraint related to x  we choose 25.0V = , 20M f = , 1.2M g =  and 

0.25γ = . 

At the 200th second of simulation the system (64) was switched to another system 

( )
''' '' '

2

1
y 5y 1.7 y y 5u 0

0.25 y

⎡ ⎤
+ + − + − =⎢ ⎥

+⎢ ⎥⎣ ⎦
 (78) 

All initial states have been set to zero ( ) ( ) ( ) ( ) 00y0y0y0y '''''' ==== . 

As can be seen from Fig. 3, the simulation results confirm the good adaptation 

capability of the proposed control system. The system dynamic changes are in 

particular manifested by changes of the control input signal (Fig. 4). 
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Figure 3 

The state 1x (blue dashed line), its desired reference model value ( )tym  (green solid line) and 

reference signal (red solid line) 
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Figure 4 

Control signal 
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Conclusions 

The adaptive control technique has been combined with a wavelet network 

algorithm and a fuzzy approximation method in this study to achieve the desired 

attenuation of disturbance due to the approximation error and external noise in a 

class of nonlinear system under a large uncertainty or unknown variation in plant 

parameter and structure. The major advantage lies in that the accurate 

mathematical model of the system is not required to be known. The proposed 

method can guarantee the global stability of the resulting closed-loop system in 

the sense that all signals involved are uniformly bounded. In addition, the specific 

formula for the bounds is also given. Finally, the indirect adaptive controller has 

been used to control a nonlinear system to the origin. 
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Abstract: Technological progress, responsible for the declining costs of computers, coupled 

with the advancement of computer adaptive software have promoted computer adaptive 

testing (CAT) in higher education, offering alternatives to the conventional paper and 

pencil examinations. The CAT testing process, statistically conducted through Item 

Response Theory, is able to react to the individual examinee, keeping examinees on target 

with test items of an appropriate level of difficulty. The basic goal of adaptive computer 

tests is to ensure the examinee is supplied questions that are challenging enough for them 

but not too difficult, which would lead to frustration and confusion. The paper presents a 

CAT system realized in MATLAB along with its development steps. The application can run 

from a Matlab command window, or it is possible to make a stand-alone application that 

does not require the installation of Matlab. The questions are written in a .txt file. This 

allows the examiner to easily modify and extend the question database, without specific 

knowledge of the syntax of any programming language. The only requirement is for the 

examiner (but it is only required) to follow a pre-determined format of question writing. 

The program enables the testing of student knowledge in C++. 

Keywords: computer adaptive testing; Item Response Theory; e-assessment 
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1 Introduction 

Testing is one of the most common ways of knowledge testing. The main goal of 

testing is to determine the level of a student’s knowledge of one or more subject 

areas in which knowledge is checked. Different methods of knowledge 

evaluations are in use, such as in-class presentations, writing essays, projects, etc. 

However, the most common “tool” that is used to test knowledge is the test and 

oral exam. Since the computer as a teaching tool has been in use more and more in 

recent decades, and since its use has spread to all levels of education, the 

computer-based test has become very popular. 

Out of all testing methods available today, computer adaptive testing provides the 

maximal balance of accuracy and efficiency. Over the past few decades, CAT has 

been used extensively in the areas of education, certification, and licensure [3]. 

This paper presents a computer adaptive test that was realized with the software 

package Matlab. The application was done in Matlab based on the program code 

that can be found at the web address [6]. The original code presents a computer 

adaptive test for GRE (Graduate Record Exam) and enables questions of the 

following types: analogy, antonym, and fill in the blanks. It was modified to allow 

for testing of the basic concepts of C++ in the form of multiple choice questions. 

The remainder of this paper is organized as follows: Section 2 briefly reviews the 

theoretical basis of computerized adaptive tests, along with its benefits and 

drawbacks. Some basic concepts of Item Response Theory are presented in 

Section 3, as this is the theoretical foundation behind CAT. Section 4 gives a 

description of the application. Finally, some future research topics are suggested 

in Section 5. 

2 Theoretical Basis of Computerized Adaptive Tests 

CAT (Computerized Adaptive Testing) is a type of test developed to increase the 

efficiency of estimating the examinee’s knowledge. This is achieved by adjusting 

the questions to the examinee based on his previous answers (therefore often 

referred to as tailored testing) during the test duration. The degree of difficulty of 

the subsequent question is chosen in a way so that the new question is neither too 

hard, nor too easy for the examinee. More precisely, a question is chosen for 

which it is estimated, with a probability of 50% that the examinee would answer 

correctly. Of course, the first question cannot be selected in this way because at 

this point nothing is known about the examinee's capabilities (a question of 

medium difficulty is chosen), but the selection of the second question can be 

better adapted to each examinee. With every following answered question, the 

computer is increasingly better able to evaluate examinee’s knowledge. 
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Some benefits of the CAT are [9] as follows: (a) Tests are given “on demand” and 

scores are available immediately, (b) Neither answer sheets nor trained test 

administrators are needed. Test administrator differences are eliminated as a factor 

in measurement error. (c) Tests are individually paced so that an examinee does 

not have to wait for others to finish before going on to the next section. Self-paced 

administration also offers extra time for examinees that need it, potentially 

reducing one source of test anxiety. (d) Test security may be increased because 

hard copy test booklets are never compromised. (e) Computerized testing offers a 

number of options for timing and formatting. Therefore it has the potential to 

accommodate a wider range of item types. (f) Significantly less time is needed to 

administer CATs than fixed-item tests since fewer items are needed to achieve 

acceptable accuracy. CATs can reduce testing time by more than 50% while 

maintaining the same level of reliability. Shorter testing times also reduce fatigue, 

a factor that can significantly affect an examinee's test results. (g) CATs can 

provide accurate scores over a wide range of abilities while traditional tests are 

usually most accurate for average examinees. 

Despite the above advantages, computer adaptive tests have numerous limitations, 

and they raise several technical and procedural issues [9]: (a) CATs are not 

applicable for all subjects and skills. Most CATs are based on an item-response 

theory model, yet item response theory is not applicable to all skills and item 

types. (b) Hardware limitations may restrict the types of items that can be 

administered by computer. Items involving detailed art work and graphs or 

extensive reading passages, for example, may be hard to present. (c) CATs require 

careful item calibration. The item parameters used in a paper and pencil testing 

may not hold with a computer adaptive test. (d) CATs are only manageable if a 

facility has enough computers for a large number of examinees and the examinees 

are at least partially computer-literate. This can be a great limitation. (e) The test 

administration procedures are different. This may cause problems for some 

examinees. (f) With each examinee receiving a different set of questions, there can 

be perceived inequities. (g) Examinees are not usually permitted to go back and 

change answers. A clever examinee could intentionally miss initial questions. The 

CAT program would then assume low ability and select a series of easy questions. 

The examinee could then go back and change the answers, getting them all right. 

The result could be 100% correct answers which would result in the examinee's 

estimated ability being the highest ability level. 

The CAT algorithm is usually an iterative process with the following steps: 

1 All the items that have not yet been administered are evaluated to 

determine which will be the best one to administer next given the 

currently estimated ability level 

2 The “best” next item is administered and the examinee responds 

3 A new ability estimate is computed based on the responses to all of the 

administered items. 

4 Steps 1 through 3 are repeated until a stopping criterion is met. 
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The flowchart below serves as an illustration of the CAT algorithm. 

Stopping rule 

satisfied?

Initial item presented

Evaluate response

Compute ability estimate

Compute final score

Choose and present next 

item

True

False

 

Figure 1 

Illustration of the CAT algorithm 

Several different methods can be used to compute the statistics needed in each of 

these three steps, one of them is Item Response Theory (IRT). IRT is a family of 

mathematical models that describe how people interact with test items [2]. 

According to the theory of item response, the most important aim of administering 

a test to an examinee is to place the given candidate on the ability scale [5]. If it is 

possible to measure the ability for every student who takes the test, two targets 

have already been met. On the one hand, evaluation of the candidate happens 

based on how much underlying ability they have. On the other hand, it is possible 

to compare examinees for purposes of assigning grades, awarding scholarships, 

etc. 

The test that is implemented to determine the unknown hidden feature will contain 

N items, and they all measure some aspect of the trait. After taking the test, the 

person taking the test responds to all N items, with the scoring happening 

dichotomously. This will bring a score of either a 1 or a 0 for each item in the test. 

Generally, this item score of 1 or 0 is called the examinee’s item response. 

Consequently, the list of 1’s and 0’s for the N items comprises the examinee’s 

item response vector. The item response vector and the known item parameters are 

used to calculate an estimate of the examinee’s unknown ability parameter. 
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According to the item response theory, maximum likelihood procedures are 

applied to make the calculation of the examinee’s estimated ability. Similarly to 

item parameter estimation, the afore-mentioned procedure is iterative in nature. It 

sets out with some a priori value for the ability of the examinee and the known 

values of the item parameters. The next step is implementing these values to 

compute the likelihood of accurate answers to each item for the given person. This 

is followed by an adjustment to the ability estimate that was obtained, which will 

in turn improve the correspondence between the computed probabilities and the 

examinee’s item response vector. The process is repeated until it results in an 

adjustment that is small enough to make the change in the estimated ability 

negligible. The result is an estimate of the examinee’s ability parameter. This 

process is repeated separately for each person taking the test. Nonetheless, it must 

be pointed out that the basis of this process is that the approach considers each 

examinee separately. Thus, the basic problem is how the ability of a single 

examinee can be estimated. 

The estimation equation used is shown below: 
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ˆˆ
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 (1) 

where: sθ̂  is the estimated ability of the examinee within iteration s, ai is the 

discrimination parameter of item i, i = 1, 2,... .N. 

• ui is the response made by the examinee to item i: ui = 1 for a correct 

response, ui = 0 for an incorrect response. 

• Pi( sθ̂ ) is the probability of correct response to item i, under the given item 

characteristic curve model, at ability level θ̂ within iteration s. 

• Qi( sθ̂ )=1 -Pi( sθ̂ ) is the probability of incorrect response to item i, under the 

given item characteristic curve model, at ability level θ̂  within iteration s. 

The CAT problems have been addressed before in the literature [1], [4], [5]. 

3 Computer Adaptive Tests Based on IRT 

For computer adaptive tests which implement IRT (Item Response Theory) a 

relatively large base of questions for a given task is developed and their 

informational functions are defined. A well-formed question bank for CATs 

contains questions that together provide information through a whole range of 
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properties (θ). The examinee starts the test with an initial estimate of theta (θ), 

which may be identical for each examinee, or it may be used as predefined 

information available on the candidate (e.g. results attained in other tests, marks or 

information from the professor). The question is administered on the basis of the 

initial theta estimate and immediately evaluated by the computer that generated 

the test. 

3.1 Question Selection 

With computer adaptive tests (CAT) based on IRT the subsequent question is 

selected on the basis of the examinee’s scored answers to all previously set 

questions. In the initial phase of CATs, though only the first or first two questions 

have been evaluated, the subsequent question is selected based on the rule of 

“step” – if the first question was answered correctly, the examinee’s previous theta 

estimate will be increased by some value (e.g. 0.50); while, if the first given 

answer was incorrect, the original theta estimate will be decreased by the same 

value. As the test continues, an answer sheet is generated which consists of at least 

one correct and one incorrect answer to the question, thus the MLE (Maximum 

Likelihood Estimation) is used to calculate the new theta estimate, which is based 

on all the answers that the examinee has given up to that point in the test [11]. 

After each processed question, the new theta estimate is used for selecting the next 

question. That question is an un-administered question from the question bank that 

provides the most information for the currently estimated theta value. Figures 2, 3, 

and 4 illustrate the “maximum information” questions selected in the computer 

adaptive test. Figure 2 presents information functions for 10 questions, for the 

initial theta estimate for a fictitious examinee (indicated by a vertical line). This 

value is presented at 0.0, which is the mean value of the theta scale. The values of 

information are calculated for all questions for that theta level. Figure 2 shows that 

Question 6 provides the most information of the 10 questions for theta = 0.0. 

Thus, Questions 6 is processed and evaluated [11]. 

 

Figure 2 

Information functions for the 10 questions [11] 
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Based on this score (incorrect answer, in this case), the new theta value is defined 

with a step 1.0, and thus now it is -1.0. Based on the rule of question selection 

with maximum information, Question 4 was selected (Figure 3) because at the 

given theta level it contains the most information, and it is evaluated. Given the 

assumption that the answer to Question 4 is correct, the MLE can be used for the 

new theta estimate. 

 

Figure 3 

Information functions for 9 questions [11] 

The result is theta = -0.50. Again, by selecting the question based on the (Figure 

4). The evaluation, theta estimation and question selection continues until the 

criterion for termination is not met [11]. 

 

Figure 4 

Information functions for 8 questions [11] 
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3.2 Termination of the Computer Adaptive Test 

One of the most important properties of these adaptive tests is the criterion of 

discontinuing the test may vary depending on different goals of the test. Some 

tests are used for selection or classification, e.g. whether the subject has managed 

the acquisition of a certain unit of the learning material, which student will be 

admitted for secondary school or university, or who will be chosen for a job. 

Other tests are used for counseling or clinical purposes. The goal of such tests is 

determine the abilities of the subjects as well as possible. In the context of 

adaptive tests, these two aims are realized by the two different rules of test 

termination. 

The aim of the classification is that the candidate’s results are compared with 

some cutoff value. The aim is to create the most precise classification. In order for 

this to be implemented in the context of computer adaptive tests, the theta estimate 

and its standard error measurement is used. The candidate is classified as above 

the cutoff value (expressed on the theta scale) if the theta estimate as well as its 

95% confidence interval (calculated as ± two standard error measurement) is 

above or beneath the cut score. As CAT can evaluate this decision after every 

processed question, the test can be terminated when this condition is met. The 

result of this test will be the sum of the classification made for the group of 

examinees where all will have a 5% error rate. The error rate can be controlled by 

the size of the SEM confidence interval around the theta estimate. 

When CATs are not used for classification, a different rule is applied for the 

termination of the test. In that case it is advisable to evaluate every examinee to 

the desired level of precision, which is determined in advance by the level of 

standard error measurement. 

This will results in the sum of “equally precise” evaluations, so that all examinees 

will have results which are equally precise, thus defining a new concept, “fair 

test”. In order to implement equally precise evaluation, CAT enables the user to 

specify the level of the SEM desired for every examinee. Assuming that the 

question bank contains enough questions correctly spread along the theta scale and 

it is possible to continue the test long enough for the examinee, this goal will be 

realized if the test is terminated when the given SEM level is achieved [11]. 

3.3 Development of a CAT 

According to [3] the final pool of items should consist of approximately five to ten 

times the number of items that an examinee will eventually see when taking the 

test. Thus, for a 30-item test, an item bank of 150-300 quality items is highly 

recommended. Item writing, in and of itself, is a tedious and rigorous process. 

Developing the initial set of items that will eventually be reduced through the 

analysis process is a major undertaking, as upwards of 400 items may be needed 

in order to get to a final pool of 150-300 items. 
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Once the initial item pool is established, data is collected on each item. IRT 

analyses typically require at least 300 data points for each item, with 500 being 

preferred. Since it is not advisable to attempt to get 300 people to complete all 

items in the initial item pool, often the items have to be split into sub-pools small 

enough to collect accurate data. 

With a sufficient sample size of examinees, the item parameters (discrimination, 

difficulty, and guessing) can be estimated. These parameters are used to determine 

which items will be retained in the final item pool, and which items will be 

revised or discarded. The final pool is then entered into the CAT system, which 

then creates optimal item selection paths for test takers. 

4 Description of the Application 

The program that can be found at the web address [6] presents a computer 

adaptive test and was modified to enable the testing of student knowledge in C++. 

The application can run from a Matlab command window, or it is possible to make 

a stand alone application that does not require the installation of Matlab. The 

MATLAB and Simulink product families are fundamental computational tools at 

the world's educational institutions. Adopted by more than 5000 universities and 

colleges, MathWorks products accelerate the pace of learning, teaching, and 

research in engineering and science. MathWorks products also help prepare 

students for careers in industry, where the tools are widely used for research and 

development [10]. Some examples of implementing Matlab as an educational tool 

can be found in [7], [8]. 

After starting the program the main window is displayed as is the dialog box for 

entering basic data on the student (name, surname and index number). Pressing 

the Enter command button starts the test, as shown in Figure 5. 

 

Figure 5 

Startup screen 
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After pressing the button Pocetak testa (Start), the function pocetak_testa 

(test_start) is called and the visibility of objects that are no longer needed has to be 

set to “off” and the visibility of the edit control (for question displaying), option 

buttons (for showing multiple choices as answers) and patch object is set to “on”. 

Then the function final_test is called, which has two output parameters: an array 

with correct/incorrect answers (in this case 30) and the second parameter is an 

array which contains the time (given in seconds) that has elapsed since the student 

has given the answer for each questions. 

After registering for the test a new window opens with the first question. At all 

times the student can see on the screen which question the student is on, the total 

number of questions, the text of the question with multiple choice answers, as can 

be seen in Figure 6. At the bottom of the screen there is a progress bar which 

illustrates the progress of the student during the test. 

 

Figure 6 

Screenshot of a question 

function [ans_array,time_arr]=final_test         

[a b c t1]=ask_qn(1,1,grupa_pitanja,ones(4,4),1);         

      ans_array = b;  

       time_arr = t1;         

end 

As shown, the next function that is called is the function ask_qn which has five 

input parameters and four output parameters. In the function ask_qn everything is 

handled in one for loop which is repeated as many times as there are questions 

(comm_arr). The first calculation is for the determination of the question’s 

difficulty that needs to be answered. 

The questions are divided based on their difficulty into three groups, easy, 

medium and difficult question (parameter question_set could be 1, 2 or 3). 

deciding_factor=ask_1; 

question_set=normalize_qno(question_set,deciding_factor,1,3); 
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At the beginning, the parameter question_set is 1 and also the parameter ask_1. 

The parameter ask_1 determines by how much to increase or decrease the 

parameter question_set. In this case, the test starts with a question of medium 

difficulty, which is assigned in test the results with number 2. If the student gives 

a correct answer to this question, the algorithm of the test passes to the first 

question in the group of difficult questions (assigned number 3), and if the answer 

given to the first question is incorrect then the group with easy questions is 

selected (assigned number 1). The questions are written in a txt file and they are 

invoked by calling the appropriate function in the program. This allows the 

examiner to easily modify and extend the question database, without knowledge 

of the syntax of any programming language; it is only required to follow a 

determined format of questions writing. 

Also, the type of question that will be selected as the next question is determined. 

In this test there is only one type of questions (MCQ), but it is also possible to set 

some other types of questions (analogy, antonym, fill in the blanks etc.). So, in 

this case the array com_arr(i) consists of only the ones. 

ask_1_char_type=question_type(com_arr(i)); 

ask_1_char_type = 'pitanja' 

function question_str=question_type(number) 

if(number==1) 

    question_str='pitanja'; 

end 

The next parameter that is necessary to obtain is question_status, which contains 

data in form of a matrix (question difficulty and the type of question). In the case 

of questions with a difficulty of level three and only one type of the question, it 

would be a 1-dimensional array initialized with the ones (1,3). After that the 

function ask is called: 

[ask_1 q_time]= 

=ask(ask_1_char_txt,question_status(com_arr(i),question_set))

; 

 

The first parameter of the function gives the information from which .txt file to 

read the questions, and the second parameter question_status 

(com_arr(i),question_set)) obtains the information from which line in the .txt file 

to start reading. The output parameters are placed in variables qn_time and 

ans_array: 

qn_time=[qn_time q_time]; 

ans_array=[ans_array ask_1]; 
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The next step is to start measuring the time that passes before the student selects 

any of the five given options as answer. The elapsed time is recorded in the 

variable q_time=[q_time toc]; there is verification whether the given answer is 

correct (if(taster==num_tline)) and if it is, the related variable is set to 1. 

      q_time=[q_time toc]; 

       if(taster==num_tline) 

             output_check=1; 

            end 

end 

Once the student has given answers to all questions, the program continues to run 

in the function pocetak_testa from the part where the function was called: 

[a b]=final_test; 

where a is the array with answers and b is the array with the time elapsed per each 

question. The final result is calculated with the call of the function totaling with 

the parameter a. 

total_marks=int2str(totaling(a)); 

After answering the last question, the examinee can see their results immediately 

on the screen. If the examinee selects the option to save the test results, the 

appropriate function parameters are called. From the text file can be seen the level 

of the question’s difficulty, whether or not the answer was correct or incorrect, 

and the time needed for answering each question (i.e. until pressing the command 

button Next question/Show results). 

 

Figure 7 

Test results view 
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Conclusions 

Computerized adaptive tests offer many advantages over conventional paper and 

pencil tests: efficiency in the form of reduced testing time; appropriate challenge 

for the individual examinee’s ability level; flexibility in arranging testing time and 

location; the potential for the use of sophisticated dynamic graphics via the 

computer; immediate scoring; the potential for the synchronous collection of data 

during testing and so on [12]. 

This paper reports on the use of a computer adaptive test for examining a student’s 

knowledge in C++. The motivation behind this work was to investigate techniques 

for the improvement of student assessment. Future work will involve the further 

analysis of the test statistics and the improvement of the classification of questions 

based on the student's test results. 
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Abstract: This paper presents the intelligent wheeled mobile robot motion control in 

unstructured environments. The fuzzy control of a wheeled mobile robot motion in 

unstructured environments with obstacles and slopes is proposed. Outputs of the fuzzy 

controller are the angular speed difference between the left and right wheels of the mobile 

robot  and the mobile robot velocity. The simulation results show the effectiveness and the 

validity of the obstacle avoidance behavior in an unstructured environment and the velocity 

control of a wheeled mobile robot motion of the proposed fuzzy control strategy. Wireless 

sensor-based remote control of mobile robots motion in unstructured environments using 

the Sun SPOT technology is proposed. The proposed method has been implemented on the 

miniature mobile robot Khepera that is equipped with sensors. Finally, the effectiveness 

and efficiency of the proposed sensor-based remote control strategy are demonstrated by 

experimental studies and good experimental results. 

Keywords: intelligent wheeled mobile robot; motion control; unknown and unstructured 

environments; obstacles and slopes; fuzzy control strategy; wireless sensor-based remote 

control; Sun SPOT technology; simulation results; experimental studies; mobile robot 

Khepera 

1 Introduction 

In recent years, there has been a growing interest in mobile robot motion control. 
This paper presents intelligent mobile robot motion control in unstructured 
environments. The paper actually is a continuation of a conference paper [1]. The 
paper deals with the fuzzy velocity control of a mobile robot motion in an 
unstructured environment with slopes and obstacles and gives the wireless sensor-
based remote control of mobile robots motion in an unstructured environment with 
obstacles using the Sun SPOT technology. 

The wheeled mobile robot must be capable of sensing its environment. 
Conventionally, mobile robots are equipped by ultrasonic sensors and a stereo-
vision system. It is supposed that the autonomous mobile robot has groups of 
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ultrasonic sensors to detect obstacles in the front, to the right and to the left of the 
vehicle, that the model of the wheeled mobile robot has two driving wheels and 
that the angular velocities of the two wheels are independently controlled. 

When the vehicle is moving towards the target and the sensors detect an obstacle 
or slope, an avoiding strategy is necessary. While the mobile robot is moving it is 
important to compromise between avoiding the obstacles and slopes and moving 
towards the target position. The fuzzy control of a wheeled mobile robot motion in 
unstructured environments with obstacles and slopes is proposed. Outputs of the 
fuzzy controller are the angular speed difference between the left and right wheels 
of the vehicle and the vehicle velocity. The simulation results show the 
effectiveness and the validity of the obstacle avoidance behavior in unstructured 
environments and the velocity control of a wheeled mobile robot motion of the 
proposed fuzzy control strategy. The wireless sensor-based remote control of 
mobile robots motion in unstructured environments using the Sun SPOT 
technology is proposed. 

The proposed method has been implemented on the miniature mobile robot 
Khepera that is equipped with sensors and the free range Spot from the Sun Spot 
technology. 

Finally, the effectiveness and efficiency of the proposed sensor-based remote 
control strategy are demonstrated by experimental studies and good experimental 
results of the obstacle avoidance behavior in unstructured environments. 

The paper is organized as follows: 

- Section 1: Introduction. 

- In Section 2, the strategy of autonomous wheeled mobile robot motion 
control in unstructured environments is proposed. 

- In Section 3, the simulation results are illustrated. 

- In Section 4, the wireless robot-sensor networked systems are illustrated. 

- In Section 5, the Sun-SPOT-based remote control of mobile robots is 
proposed. 

- Conclusions are given in Section 6. 

Currently much research in robotics deals with different problems of the motion of 
wheeled mobile robots and the motion control of wheeled mobile robots in 
unstructured environments. Fuzzy logic approaches to mobile robot navigation 
and obstacle avoidance have been investigated by several researchers. Many 
application works of fuzzy logic in the mobile robot field have given promising 
results. 

[2] has presented a strategy for the autonomous navigation of field mobile robots 
on hazardous natural terrain using a fuzzy logic approach and a novel measure of 
terrain traversability. The navigation strategy is comprised of three simple, 
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independent behaviors: seek-goal, traverse-terrain, and avoid obstacles. This 
navigation strategy requires no a priori information about the environment. 

The sensor-based navigation of a mobile robot in an indoor environment is very 
well presented in [3]. The paper deals with the problem of the navigation of a 
mobile robot either in an unknown indoor environment or in a partially-known 
one. Fuzzy controllers are created for the navigation of the real robot. The good 
results obtained illustrate the robustness of a fuzzy logic approach with regard to 
sensor imperfections. 

The fuzzy reactive control of a mobile robot incorporating a real/virtual target-
switching strategy has been made in [4]. Real-time fuzzy reactive control is 
investigated for automatic navigation of an intelligent mobile robot in unknown 
and changing environments. The reactive rule base governing the robot behavior 
is synthesized corresponding to the various situations defined by instant mobile 
robot motion, environment and target information. 

Paper [5] presents a control method for the formation on nonholomic mobile 
robots. Robots track desired trajectories in the environment with static convex-
shaped obstacles. The algorithm includes collision-avoidance between robots and 
obstacles. 

2 Strategy of Autonomous Wheeled Mobile Robot 

Motion Control in Unstructured Environments 

In this section fuzzy control is applied to the navigation of the autonomous mobile 
robot in unstructured environments with obstacles and slopes [1], [6], [7], [8], [9], 
[10], [11], [12]. It is supposed that: the autonomous mobile robot has two wheels 
driven independently and groups of ultrasonic sensors to detect obstacles in the 
front, to the right and to the left of the vehicle. When the vehicle is moving 
towards the target and the sensors detect an obstacle, an avoiding strategy is 
necessary. While the mobile robot is moving it is important to compromise 
between: 

- avoiding the obstacles and 

- moving towards the target position. 

With obstacles present in the unknown environment, the mobile robot reacts based 
on both the sensed information of the obstacles and the relative position of the 
target [4]. In moving towards the target and avoiding obstacles, the mobile robot 
changes its: 

 - orientation and 

 - velocity. 
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When an obstacle in an unknown environment is very close, the mobile robot 
slows down and rapidly changes its orientation. The navigation strategy has to 
come as near to the target position as possible while avoiding collision with the 
obstacles in an unknown environment. 

The intelligent mobile robot reactive behavior is formulated in fuzzy rules. Fuzzy-
logic-based control is applied to realize a mobile robot motion in an unknown 
environment with obstacles. 

Inputs to the fuzzy controller are: 

- the obstacle distance p, 

- the obstacle orientation θ1 (which is the angle between the robot moving 
direction and the line connecting the robot’s center with the obstacle), 

- the target distance l, 

- the target orientation θ2 (which is the angle between the robot moving 
direction and the line connecting the robot’s center with the target). 

Outputs of the fuzzy controller are: 

- the angular speed difference between the left and right wheels (wheel 
angular speed correction) of the vehicle: Δω= ωr - ωl and 

- the vehicle velocity. 

The obstacle orientation θ1 and the target orientation θ2 are determined by the 
obstacle/target position and the robot position in a world coordinate system, 
respectively. The obstacle orientation θ1 and the target orientation θ2 are defined 
as positive when the obstacle/target is located to the right of the robot’s direction 
of movement; otherwise, the obstacle orientation θ1 and the target orientation θ2 
are negative [1]. 

The block diagram of the fuzzy inference system is presented in Fig. 1. 

 

Figure 1 

The block diagram of the fuzzy inference system 

For the proposed fuzzy controller the input variables for the obstacle distance p 
are simply expressed using two linguistic labels - Gaussian membership functions 
- near and far (p Є [0, 3 m]). The input variables for the obstacle orientation θ1 are 
expressed using two linguistic labels - Gaussian membership functions - left and 
right (θ1Є[-π,π rad]). 
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For the proposed fuzzy controller, the input variables for the terrain slope β is 
simply expressed using three linguistic labels - Gaussian membership functions –
sloped left, flat and sloped right (β Є [-3.14, 3.14 rad]), β is the average slope 
value. The input variables for the target distance l are simply expressed using two 
linguistic labels - Gaussian membership functions - near and far (l Є [0, 3 m]). 
The input variables for the target orientation θ2 are simply expressed using three 
linguistic labels - Gaussian membership functions - left, targetdirection and right 
(θ2 Є [-3.14, 3.14 rad]). 

The fuzzy sets for the output variables of the wheel angular speed correction Δω= 
ωr - ωl (turn-right, zero and turn-left) of the mobile robot are shown in Fig. 2. 

 

Figure 2 

Membership functions of the angular speed difference Δω 

The output variables are normalized between: Δω Є [-20, 20 rad/s]. The other output 
variable of the fuzzy controller is vehicle velocity. The output variables are normalized 
between: Velocity Є [-10, 20 m/s]. The fuzzy sets for the output variables - Velocity 
(low and high) are shown in Fig. 3. 

 

Figure 3 

Membership functions of the velocity of the mobile robot 
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The rule-base for mobile robot fuzzy control are: 

R1: If θ2 is right and β is sloped left then Δω is turn-right 

R2: If θ2 is left and β is sloped right then Δω is turn-left 

R3: If p is near and l is far and θ1 is left and β is sloped left then Δω is turn-right 

R4: If p is near and l is far and θ1 is right and β is sloped right then Δω is turn-
left 

R5: If θ2 is target direction and β is flat then Δω is zero 

R6: If p is far and θ2 is target direction and β is flat then Δω is zero 

R7: If p is near and l is far then velocity is low 

R8: If p is far and l is far then velocity is high 

R9: If p is far and l is near then velocity is low. 

In the present implementation of the fuzzy controller the Center of Area method of 
defuzzification is used. 

3 Simulation Results 

Simulation experiments are commonly used for the initial system analysis and 
control design while the experimental scalable testbed system must be used in the 
final phase of system evaluation and control verification. The obtained results and 
control architecture can afterwards be adapted to the different application of 
mobile robots. Based on this, the important task in system development is the 
accurate and valuable modeling of the observed system. 

In this instance, the author applied the proposed fuzzy controller to the mobile 
robot moving in an unstructured environment with obstacles [14]. A simulation 
example of a wheeled mobile robot is presented in Fig. 4. The corresponding 
fuzzy control is implemented to perform tasks of obstacle and collision avoidance. 
The results of the simulation are shown in Fig. 4. regarding the goal seeking and 
the obstacle avoidance mobile robot paths. 
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Figure 4 

Example of an obstacle avoidance scenario, obstacle avoidance trajectory of mobile robot 

4 Wireless Robot-Sensor Networked Systems 

Wireless Robot-Sensor Networked systems refer to multiple robots operating 
together in coordination or cooperatively with sensors, embedded computers, and 
human users [13], [14]. Cooperation entails more than one entity working toward 
a common goal while coordination implies a relationship between entities that 
ensures efficiency or harmony. 

Communication between entities is fundamental to both cooperation and 
coordination and hence the central role of the networked system. Embedded 
computers and sensors are now ubiquitous in homes and factories, and 
increasingly wireless ad-hoc networks or plug-and-play wired networks are 
becoming commonplace. 

Robots are functioning in environments while performing tasks that require them 
to coordinate with other robots, cooperate with humans, and act on information 
derived from multiple sensors. In many cases, these human users, the robots and 
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sensors are not collocated, and the coordination and communication happens 
through a network. Networked robots allow multiple robots and auxiliary entities 
to perform tasks that are well beyond the abilities of a single robot [13], [14]. 

Robots can automatically couple to perform locomotion and manipulation tasks 
that either a single robot cannot perform or that would require a special-purpose 
larger robot to perform. They can also coordinate to perform search and 
reconnaissance tasks exploiting the efficiency that is inherent in parallelism. 
Further they can perform independent tasks that need to be coordinated. 

Another advantage of networked robots is improved efficiency. Tasks like 
searching or mapping, in principle, are performed faster with an increase in the 
number of robots. A speed-up in manufacturing operations can be achieved by 
deploying multiple robots performing operations in parallel, but in a coordinated 
fashion. 

Perhaps the greatest advantage of using the network to connect robots is the ability 
to connect and harness physically-removed assets. Mobile robots can react to 
information sensed by other mobile robots in the next room. Human users can use 
machines that are remotely located via the network. 

The ability to network robots also enables fault-tolerance in design. If robots can 
in fact dynamically reconfigure themselves using the network, they are more 
tolerant to robot failures. Finally, networked robots have the potential to provide 
great synergy by bringing together components with complementary benefits and 
making the whole greater than the sum of the parts [13], [14]. 

5 Sun SPOT-based Remote Control of Wheeled 

Mobile Robots 

In this paper Sun SPOT-s (Small Programmable Object Technology) have been 
used to creat remote control over a Khepera® mobile robot [15], [16], [17], [18]. 

A Sun SPOT is a small electronic device made by Sun Microsystems. The Sun 
SPOT is designed to be a flexible development platform, capable of hosting 
widely differing application modules. The Sun SPOT connection strategy [19], 
[20], [21], [22], [23], [24], [25], is presented in Fig. 5. 
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Figure 5 

Remote control system 

For this task 2 SunSPOT-s have been used from the development kit (Sun 
Microsystems, Inc. 2007). Sun SPOTs are programmed in a Java programming 
language, with the Java VM run on the hardware itself. It has quite a powerful 
main processor running the Java VM “Squawk” and which serves as an IEEE 
802.15.4 wireless network node. The Sun SPOT's wireless protocol is Zigbee-
based protocol [26], [27], [28], [29], [30], [31], [32], [33]. 

The Sun SPOT is designed to be a flexible development platform, capable of 
hosting widely differing application modules. The Sun SPOT base station is used 
to read the data from the free range SPOT and send its contents to the PC. The PC 
sends via Bluetooth the control signal to the mobile robot Kephera. The miniature 
mobile robot Khepera® is equipped with 9 infrared sensors, 5 ultrasonic sensors 
and an integrated Bluetooth communication module (Fig. 6). 

 

Figure 6 

Khepera mobile robot 
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In the Robotics Laboratory, Department of Informatics, University of Szeged it is 
possible to use the sensor-based remote control system [21]. The user can start 
control experiment of mobile robots in Sun SPOT environment (Fig. 7), [22], [23]. 

 

Figure 7 

Remote control experiment 

Conclusions 

The paper deals with the fuzzy control of mobile robot motion in an unstructured 
environment with slopes and obstacles. Further, it presents the wireless sensor-
based remote control of mobile robots motion in an unstructured environment with 
obstacles using the Sun SPOT technology. When the vehicle moves towards the 
target and the sensors detect an obstacle, an avoiding strategy and velocity control 
are necessary. With obstacles present in the unstructured environment, the mobile 
robot reacts based on both the sensed information of the obstacles and the relative 
position of the target. 

The paper proposed the wireless sensor-based remote control of mobile robots 
motion in unstructured environments with obstacles and a fuzzy reactive 
navigation strategy of collision-free motion and velocity control in unstructured 
environments with slopes and obstacles. 

The proposed method has been implemented on the miniature mobile robot 
Khepera® equipped with sensors. The wireless robot-sensor networked systems 
are illustrated. 

The simulation results show the effectiveness and the validity of the obstacle 
avoidance behavior in unstructured environments and the velocity control of a 
wheeled mobile robot motion of the proposed fuzzy control strategy. 

Finally, the effectiveness and efficiency of the proposed sensor-based remote 
control strategy are demonstrated by experimental studies and good experimental 
results. 
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Abstract: These days, data mining is frequently used as a technology for analysing the huge 

amounts of data collected in sport. Basketball is one of most popular sports. Due to its 

dynamics, a large number of events happen during a single game. Basketball statisticians 

have the task of noting as many of these events as possible, in order to provide for their 

analysis. These data are collected by special software applications. In this paper, we used 

data from the First B basketball league for men in Serbia, for seasons 2005/06, 2006/07, 

2007/08, 2008/09 and 2009/2010. During these five seasons, a total of 890 games were 

played. These data were analyzed using the feedforward technique in neural networks, 

which is the most often used technique in analyzing nonlinear sports data. As a final result, 

we concluded that the most important elements in basketball are two-point shots under the 

hoop and the defensive rebound, i.e. game "in the paint". 

Keywords: neural networks; data mining; basketball 

1 Introduction 

Data mining in sport has seen an abrupt rise in recent years [10]. The developed 

tools and techniques have the aim to measure performances. These methods attract 

the attention of biggest sports associations because large amounts of money are 

involved in modern sports. 
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Before the occurrence of data mining and all its advantages, sports associations 

almost solely used the knowledge and expertise of people responsible for 

scouting. As the amount of data collected began increasing, the aim was to find 

more practical methods to extract knowledge from raw data. In the beginning, this 

led to hiring statisticians who could enable better performance measurements for a 

given organization and therefore more correct decision-making. The next step was 

to find even more practical methods; that is, to start using data mining techniques. 

In order to apply data mining, data are needed. Depending on amount and richness 

of the available data, it is possible to extract the appropriate knowledge. 

Basketball is a complex game between two teams trying to score more points and 

win. During a game, a large number of events occur and influence the game. 

There are shots, offensive and defensive rebounds, turnovers, steals, blocks and 

assists [14], [15]. 

In this paper, data mining has been done using data collected in the Serbian men’s 

First B Basketball league. Data were collected for the games in five seasons: 

2005/06, 2006/07, 2007/08, 2008/09 and 2009/2010. These are official data, 

collected by the statistics team of the Basketball Federation of Serbia. At the end 

of every game, statistician send data to the Federation, and they are accumulated 

in a common database. 

In this paper, several types of analyses were done. In analyzing the influence of 

shooting from different court positions, the court was divided into eleven 

positions: six for two-point and five for three-point score. After that, the influence 

of the basic basketball parameters on winning the game was analyzed. These 

parameters were: one-, two- and three-point shots, defensive and offensive 

rebounds, steals and turnovers, blocks and assists[12]. Data mining analysis is 

done by neural networks [1]. 

The paper is divided in five sections. The first section is the introduction. In 

section two we give some basics about data mining. Section three deals with the 

application of data mining in different sports. Section four contains data analysis 

through all six phases of data mining CRISP-DM process on concrete basketball 

data from First B Basketball league of Serbia. Section five contains conclusions 

about the data mining results. 

2 Data Mining 

Data mining is the analysis of an (mostly large) observed data set in order to find 

positive connections and to sum up data in a new way which will be both 

understandable and useful to the data user [2]. It can also be said that data mining 

is an interdisciplinary branch that encompasses techniques such as machine 

learning, pattern recognition, statistics, databases and visualization, all in order to 

provide answers to obtaining information from large databases [3]. 
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A special intra-industrial standard was developed for data mining, independent 

from industry type, tool and application. The intra-industrial standard process for 

data mining (CRISP-DM) was developed in 1996 by analysts representing 

DaimlerChrysler, SPSS and NCR. The CRISP is a non-profit standard freeware, 

enabling the fitting of data mining to general problem-solving strategies for 

business and research purposes. According to CRISP-DM, a data mining project 

has a life span consisting of six phases. Those phases are: 

• Business/Research Understanding Phase 

• Data Understanding Phase 

• Data Preparation Phase 

• Modeling Phase 

• Evaluation Phase 

• Deployment Phase 

The flow of the changes; i.e. the next phase often depends on output from 

previous phase [4]. 

3 Appliance of Data Mining in Sport 

Sport is full of data. These data may show the individual qualities of a certain 

player, the events that happened during a game, and/or how a team is functioning 

as a whole. It is important to determine which data should be stored and a way to 

maximally use them [5]. By finding the right way to extract sense from these data 

and to transform them into practical knowledge, sports organizations provide 

themselves an advantage in comparison to other teams [6]. 

Different sports associations have different attitudes to data. This approach may 

be divided into five levels [10]: 

• There is no connection between sports data and their use 

• The experts from a given field work on predictions using their instincts 

and hunches 

• The experts from a given field work on predictions using data collected 

• The use of statistics in the decision-making process 

• The use of data mining in the decision-making process. 

The first type of approach is when there is no connection between sports data and 

their use. These sport organizations often obtain certain data about players on their 

games and they ignore these. This is characteristic for amateur sports 

organizations, since their emphasis is on fun or on introducing the sports basics. 
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The next type of approach is based on an expert from a given field who is 

predicting based on his own experience. It used to be a widely accepted notion 

that these experts (coaches, managers, scouts) could efficiently use their insights 

and experience in order to reach the correct decisions. Decisions made from this 

type of approach are usually based on predictions or instincts, and not on real data 

and information. These decisions may include taking certain types of actions or 

making certain player changes because such a decision "looks right". 

The third type of approach is when experts start using collected data. Decisions at 

this level include playing certain players, for whom is has been proven that they 

cooperate well and are taking actions that score points more often. 

The fourth type includes statistics in the decision-making process. These statistical 

measurements may be simple, such as the measurements of the frequency of 

certain events; or complex, which divides the performance of a whole team and 

assigning merits to each player in given game or a league. Statistics is used as a 

tool, helping experts in making correct decisions. 

The fifth type uses data mining techniques. They do have potential to help 

predictions. Statistical techniques are still at the core of data mining, but statistics 

is used to separate a pattern or any other behavior of interest (the tendencies of 

opponent players) from the background noise. Statisticians do not explain 

relations within data, since this is a point of data mining. This type of approach 

has a potential to be used in order to help experts to make appropriate decision or 

to be used independently in order to make decisions without experts. Most sports 

organizations use the third or fourth type of approach between data and their use, 

and only a few use data mining techniques. Although data mining was introduced 

in sport relatively recently, the results of teams who apply these techniques are 

exceptional [7]. 

Although the use of statistics in the decision-making process is certainly a step up 

from decision-making based on instinct, statistics can also lead decisions in a 

wrong direction if there is no deep understanding of a problem. This tendency of 

statistics may be a consequence of imprecise performance measurements or of 

insistence by the sports community on certain characteristics [8]. This we may 

support by the fact that a certain player may have exceptional individual statistics 

but may still have small influence on the team as a whole. 

4 Analysis of Basketball Data 

When data from a basketball game are collected, the next step is to find 

knowledge in this information. A number of different statistical methods may be 

applied to basketball, which is a sport full of action and therefore rich in data. 
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Data analysis and predictions have been the aim for numerous individuals and 

organizations for a long time. This motivation leads to a number of sport-oriented 

developments, such as statistic simulation and machine learning techniques [9]. 

Neural networks are the most dominant system in machine learning used in sports 

[10]. Using neural networks, data sets collected from games are analyzed in order 

to find patterns and tendencies due to competition and financial gain. Other 

techniques are genetic algorithms, ID3, C4.5 and C5.0 decision trees, and a 

regressive variant of the Support Vector Machine (SVM) classificator called the 

Support Vector Regression (SVR). Data analysis, which is a subject of this paper, 

was done according to the CRISP-DM standard, encompassing several phases. 

4.1 Business/Research Understanding Phase 

Basketball is a competition between two teams with the aim to win. A win is 

attained by scoring more points than the other team. Some coaches like to say that 

the aim is to give up less points than the opponent, i.e. that the game is won by 

defense. In both cases, the winner is decided by the number of points scored. 

Shots may be scored in several ways, and they bring a different number of points. 

The hardest to achieve are long-distance shots, so they bring the most points. On 

the floor, there is a line at 625 centimeters from a basket, and shots from outside 

this line bring three points (in some leagues this boundary is moved even further 

from the basket). Within this line, every score brings two points. During a game, it 

happens that a player is irregularly disrupted by opponent players, and this is 

called a foul. If the foul is done during an attempt to score, or if the team 

committing the foul have already exceeded the limit (four fouls committed during 

a period, or quarter), then a player has a chance to score from the free-throw line. 

Every shot scored from this line brings one point. Depending on whether a foul 

was committed while a player was trying to score two or three points, he will have 

opportunity to try two or three free throws, respectively. 

When shooting for two points, three points and when throwing free throws, a 

player may make the shot or miss the shot, i.e. to score or to miss. The relation 

between shots and scores is called shooting percentage. In basketball statistics, 

there are separate percents for one-point shots, two-point shots and three-point 

shots. 

In the Serbian First B basketball league for men, the floor is divided into six zones 

so that measurements of shooting percentage for two points is possible from six 

positions, while three-point scores measurements are possible from five positions 

(there are no three-point shots from a position underneath the basket). When 

shooting for two points, it is not the same if the shot is done underneath the hoop 

or from some distance. In addition, when shooting for a three-point score, it is 

important whether shots are tried from a position in front of a basket (position 2) 

or from court corners (positions 4 and 6) [13]. Figure 1 shows the division of the 

court into zones. 
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Figure 1 

Basketball court 

4.2 Data Understanding Phase 

For keeping statistics in the Serbian First B basketball league of for men, 

Basketball Supervisor (BSV) software is used. This program enables entering all 

relevant data for a basketball game. At the end of every period, statistics recorded 

by this program are printed and distributed to host and guest players, 

commissioners of the game, and to the media. After the end of the game, collected 

data are sent to the Basketball Federation of Serbia where they are stored for 

further analysis. In this paper, statistics are analyzed for all games of the Serbian 

First B basketball league for men in seasons 2005/06, 2006/07, 2007/08, 2008/09 

and 2009/10. 

The database is organized in such a way that data regarding a shot are entered into 

the table game_stat. This table is shown in Figure 2. Here we will discuss fields 

P1OK and P1ALL, representing successful free throws and the total number of 

shots from the free-throw line, respectively. Fields P2xOK and P2xALL 

(x=1,2,3,4,5,6) are successful two-point shots from six different positions on the 

court, and the total number of two-point shots from those positions. Finally, 

P3yOK and P3yALL (y=1,2,3,4,6) are data regarding three-point shots from five 

different positions. These positions are shown in Figure 2. 

The game_stat table encompasses all data regarding shots. It does not contain the 

final results games, nor who won. These data are located in a table called game. 

This table is also shown in Figure 2. The parameters of interest for use in this table 

are RESHOME and RESGUEST, representing the number of points scored by the 

host and the guest team, respectively. 
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Figure 2 

Data organization in the database 

4.3 Data Preparation Phase 

Data within the database are connected to individual players. In the analysis that is 

a subject of this paper, we are interested in comparing the influence of shot 

precision for one-, two- and three-point shots on the wins of the team observed. 

Therefore, we need to summarize the data regarding players in order to obtain data 

for a team as a whole. 

Before summarizing the data, we will merge the tables game_stat and game. The 

merging will be done using the attribute ID_GAME so that in every row observed 

we will have shots from different positions and the result data as well. 
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Since we are interested in the shot percent from certain positions, we will divide 

the values for successful shots from a position to the values representing the total 

number of shots. The appearance of the SQL command that selects the appropriate 

data is as follows: 

select 

 if(sum(p1all) != 0, sum(p1ok)/sum(p1all), 0) p1_percent, 

 if(sum(p21all) != 0, sum(p21ok)/sum(p21all), 0) p21_ percent, 

   if(sum(p22all) != 0, sum(p22ok)/sum(p22all), 0) p22_ percent, 

   if(sum(p23all) != 0, sum(p23ok)/sum(p23all), 0) p23_ percent, 

   if(sum(p24all) != 0, sum(p24ok)/sum(p24all), 0) p24_ percent, 

   if(sum(p25all) != 0, sum(p25ok)/sum(p25all), 0) p25_ percent, 

   if(sum(p26all) != 0, sum(p26ok)/sum(p26all), 0) p26_ percent, 

   if(sum(p31all) != 0, sum(p31ok)/sum(p31all), 0) p31_ percent, 

   if(sum(p32all) != 0, sum(p32ok)/sum(p32all), 0) p32_ percent, 

   if(sum(p33all) != 0, sum(p33ok)/sum(p33all), 0) p33_ percent, 

   if(sum(p34all) != 0, sum(p34ok)/sum(p34all), 0) p34_ percent, 

   if(sum(p36all) != 0, sum(p36ok)/sum(p36all), 0) p36_ percent, 

 if(id_club1=id_club, 

  if(reshome > resguest, 'win', 'loss'), 

  if(reshome < resguest, 'win', 'loss')) result 

from yubadata.game g, yubadata.game_stat gs 

where g.id_game = gs.id_game 

group by g.id_game, gs.id_club; 

After executing the inquiry, we obtain the data as the shot percent for one point, 

the shot percent for two points at six positions, and the shot percent for three 

points from five positions, as well as the information on whether a team won or 

lost the game. The total number of rows obtained is 1780. This means that in five 

seasons, a total of 1780/2=890 games were played, and for each one we have data 

for the host and the guest team. 

4.4 Modeling Phase 

Modeling was done using neural networks. The input parameters for the network 

are p1_percent, p21_percent, p22_percent, p23_percent, p24_percent, 

p25_percent, p26_percent, p31_percent, p32_percent, p33_percent, p34_percent 

and p36_percent. The output parameter is result. Therefore, the network will have 

twelve input nodes and one output node. In addition to these, the network has one 

hidden layer. The neural network used was a feedforward neural network. Every 

layer within the network is fully connected to all nodes in the previous level, as 

well as in the next level of the network. 

Network training is done by the error backward propagation method, based on the 

generalized delta rule. For every record brought to the network during training, 

information goes forward through a network in order to give a prediction in the 

output layer. This prediction is compared to the real output value of the 
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information observed, and the difference between the real and the predicted value 

is returned backwards through the network in order to adjust difficulty factors and 

improve the prediction of the next records [9], [11]. 

During training, the input data set was divided into 75:25 ratios, to data that will 

be used during network training and to data that will be used for testing. This was 

done in order to prevent the network from memorizing inputs and losing its 

robustness. 

After the execution of the network training on input data, we obtain the following 

relation: how a certain parameter influences the final outcome of a game. Table 1 

shows the influence of certain parameters on output. This relation may be shown 

by a histogram as in Figure 3. 

 

Figure 3 

Influence of basketball parameters on result 

In the table, it is visible that the two-point shots from position five, underneath the 

basket, had the highest influence on winning the game. Somewhat lower influence 

was the one-point shots and then the three-point shots. Two-point shots from other 

positions had the least influence. 

Table 1 

Influence of basketball parameters on result 

Variable Influence 

p1_percent 0.121 

p21_percent 0.022 

p22_percent 0.035 

p23_percent 0.037 

p24_percent 0.023 

p25_percent 0.314 

p26_percent 0.027 

p31_percent 0.089 

p32_percent 0.058 

p33_percent 0.113 

p34_percent 0.067 

p36_percent 0.096 
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4.5 Model Evaluation Phase 

Using the data mining model, created by a neural network, we may use the testing 

data set in order to establish model quality in predicting the output variable. If all 

results of games and all predictions are reviewed, we obtain that 1182 from 1780 

outcomes were correct, which is 66.4% from the total number of input data. On 

the other hand, the model did not correctly predict the outcome in 598 cases, or 

33.6%. These results are shown in Table 2. 

Table 2 

Prediction results 

True 1182 66.4% 

False 598 33.6% 

Total 1780  

From 890 wins documented (at every game there is a winner and a loser, so the 

number of wins and losses is identical), the algorithm correctly predicted 651, 

while for 239 wins it predicted losses. Regarding losses, algorithm correctly 

predicted 531 from 890 losses, and for 359 losses, it predicted wins. The 

confidence matrix is shown in Table 3. 

Table 3 

Confidence matrix 

 won lost 

won 651 239 

lost 359 531 

One of the reasons for the 64.4% exactness was that the final outcome is under the 

influence of other parameters as well: mostly offensive and defensive rebounds, 

assists, steals, turnovers and blocks. In order to include these parameters in our 

model, we must return to data preparation stage and gather new data for modeling. 

4.6 Data Preparation Phase 

In the data preparation phase, we included new data in the inquiry. These data will 

be modeled in order to increase the model precision. These data are offensive and 

defensive rebounds, assists, steals, turnovers, and blocks. In addition to 

introducing new data, we also summed up two- and three-point shots. This means 

that all two-point shot percents are now located under a single field (and the same 

goes for three-point shots). 

select 

 if(sum(p1all) != 0, sum(p1ok)/sum(p1all), 0) p1_percent, 

    (sum(p21ok)+sum(p22ok)+sum(p23ok)+ 

                  sum(p24ok)+sum(p25ok)+sum(p26ok))/ 

    (sum(p21all)+sum(p22all)+sum(p23all)+ 
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               sum(p24all)+sum(p25all)+sum(p26all)) p2_percent, 

    (sum(p31ok)+sum(p32ok)+sum(p33ok)+ 

              sum(p34ok)+sum(p36ok))/ 

    (sum(p31all)+sum(p32all)+sum(p33all)+ 

               sum(p34all)+sum(p36all)) p3_percent, 

       sum(def_reb) def_reb, 

       sum(of_reb) of_reb, 

       sum(assist) assist, 

       sum(steal) ukradena, 

       sum(lost1)+sum(lost2)+sum(lost3)+sum(lost4)+sum(lost5) lost, 

       sum(block) block, 

 if(id_club1=id_club, 

     if(reshome > resguest, 'win', 'loss'), 

     if(reshome < resguest, 'win', 'loss')) result 

from yubadata.game ut, yubadata.game_stat gs 

where g.id_game = gs.id_game 

group by g.id_game, gs.id_club; 

4.7 Modeling Phase 

Modeling was done using neural networks. The input parameters are p1_percent, 

p2_percent i p3_percent, of_reb, def_reb, assist, steal, lost (turnover) and block. 

The output parameter is result. Therefore, the network has nine input nodes and 

one output node. In addition to these, the network has one hidden layer. 

During network training, the input data set was divided into 75:25 ratios, to data 

that will be used in the network training and data that will be used for testing. 

After the execution of the network training on input data, we obtain the following 

relation: how a certain parameter influences the final outcome of a game. Table 4 

shows the influence of certain parameters on output. This result may be shown by 

the histogram in Fig. 4. 

Table 4 

Influence of basketball parameters on result 

Variable Influence 

p1_percent 0.0796 

p2_percent 0.1558 

p3_percent 0.1535 

def_reb 0.1588 

of_reb 0.1214 

assist 0.0223 

steal 0.1253 

lost 0.1239 

block 0.0594 
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Figure 4 

Influence of basketball parameters on result 

From the graph it is visible that the defensive rebound has the highest influence on 

wining. The two-point shot has a somewhat lower influence, then the three-point 

shot, and the number of assists has the least influence. 

4.8 Model Evaluation Phase 

In this data mining model, created using a neural network, we may use again the 

same data set in order to see how good the model is in predicting the output 

variable. If all games results and all predictions are reviewed, we obtain that 1441 

from 1780 outcomes were correct, which is 80.96% from the total number of input 

data. On the other hand, the model did not correctly predict the outcome in 339 

cases, or 19.04%. These results are shown in Table 5. 

Table 5 

Prediction results 

True 1441 80.96% 

False 339 19.04% 

Total 1780  

From 890 wins documented, the algorithm correctly predicted 680, while for 210 

wins it predicted losses. Regarding losses, the algorithm correctly predicted 761 

from 890 losses, and for 129 losses it predicted wins. The confidence matrix is 

shown in Table 6. 

Table 6 

Confidence matrix 

 won lost 

won 680 210 

lost 129 761 

The model now including most relevant basketball parameters has relatively high 

prediction correctness for game outcomes based on input parameters. More than 

eighty percent of input data would correctly predict the game outcome. After this, 

the next phase is to apply this model to predict game outcomes. 
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Conclusions 

“Get to know the enemy and get to know yourself; in a hundred battles you may 

never be in danger. If you don't know the enemy but get to know yourself, your 

chances of winning or losing are equal. If you know neither the enemy nor 

yourself, you are undoubtedly in danger in every battle.” 

 Sun Tzu Wu, The Art of War, 450 BC 

Data mining in sports provides serious advantages to its users. It makes it possible 

to apprehend all important elements of a basketball game and to extract 

knowledge from the data collected. In this way, teams get to know themselves, 

because they are able to see what they need in order to win, where they mostly 

make mistakes, which elements of the game call for improvements... Moreover, 

using basketball analysis and data mining as the highest level of analysis, teams 

may know their opponents and prepare tactics for the game. Basketball scouting, 

as well as the analysis of their own and the opponent’s team, has become the 

essential part of preparation for all games in professional leagues. 

Using existing data from Basketball Federation of Serbia for seasons 2005/06, 

2006/07, 2007/08, 2008/09 and 2009/10, we have done the analysis applying 

neural networks as a data mining method, which is often used in analyzing sports 

events. 

The general conclusion of all the analyses is that the game under the hoop is 

crucial for winning the game. In defense, it is important to catch the ball after the 

opponent's shot and preventing them from next offensive attempt, while in offense 

it is most important to be precise under the hoop or to score "points in the paint". 

The data collected are relevant for the First Basketball League of Serbia, and the 

model created may be applied to other leagues of similar quality. It is to be 

expected that some higher-quality leagues (such as the NBA) or lower-quality 

ones (such as municipal leagues), as well as junior leagues, would create 

somewhat different models. 

The flaw in keeping statistics with most of the existing programs is that a large 

number of basketball elements remain undocumented. With those programs, we 

do not know which player guarded which opponent, how much players run in 

offense and defense, which moves they performed and how much the ball was 

passed before being shot. Programs such as BSV are used in real time, during a 

game, so there must be some selection as to which events to include and which 

not. In order to obtain more complete knowledge about the game and to discover 

some new patterns, we need a richer data set and new software solutions so that by 

subsequent appraisal of a game we document all relevant events. 
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