
Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 5 –

Neural Network Linearization of Pressure Force

Sensor Transfer Characteristic

Jozef Vojtko, Irena Kováčová, Ladislav Madarász, Dobroslav

Kováč
Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Letná 9, 042 00 Košice, Slovak Republic
Jozef.Vojtko@tuke.sk, Irena.Kovacova@tuke.sk, Ladislav.Madarasz@tuke.sk,
Dobroslav.Kovac@tuke.sk

Abstract: The paper deals with an elastomagnetic sensor of pressure force and neural
network design in order to achieve linear sensor output. There are described basic
properties of such sensor and its equivalent electrical scheme. The feeding and evaluating
circuits were designed in order to obtain the optimal working conditions.

Keywords: measurement, elastomagnetic sensor, neural network, non-linearity, hysteresis

1 Introduction

Elastomagnetic sensors have become more widespread owing to their extensive
use in industrial and civil automation. However, designing low-cost and accurate
sensors still requires great theoretical and experimental efforts to materials
engineers. But this task can be solved by advanced electronic techniques for
automatic calibration, linearization and error compensation.

2 Basic Properties of Elastomagnetic Sensor

The elastomagnetic sensor [EMS] of a pressure force that utilizes the Villary´s
phenomena principle, which consists of the fact that if a ferromagnetic body is
subjected to mechanical stress, its form is changed and consequently its
permeability is changed, too [1]. Villary´s principle is based on equation:

ϑϑ ,, pH
H

w

p

M
⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

 (1)

J. Vojtko et al. Neural Network Linearization of Pressure Force Sensor Transfer Characteristic

 – 6 –

where M is magnetic polarization, p is general pressure, w is relative deformation,
H is intensity of magnetic field, ϑ is ambient temperature.

We can state magnetostriction coefficient in saturation for cubic crystal shown in
Fig. 1 by following equation:

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

= 3

12
3

1

2
1 i

i

is h βαλ ()+++ 23233131212122 ββααββααββααh

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++ ∑

= 3

1

3

22
3

1

4
4 Ah i

i

i βα ()+++ 13
2
23132

2
13221

2
32152 ββαααββαααββαααh

⎟
⎠
⎞

⎜
⎝
⎛ −+

3

1
3 Ah if: 01 <K for example Ni (2)

Ah3+ if: 01 >K for example Fe

where 2
1

2
3

2
3

2
2

2
2

2
1 αααααα ++=A , 1K is first anisotropic constant,

() ()321321 ,,,,, βββααα are cosine functions of angles created by vectors of

magnetic field and magnetostriction in saturation state, 51 hh − are

magnetostriction parameters which were stated experimentally. According to Fig.
1, we can state ii ϕα cos= and ii γβ cos= . Also we are able to simplify the

above mentioned equation by the fact that parameters h1 and h2 have few times
greater values than rest parameters so the rest parameters can be negligible.

Figure 1

Single cubic crystal

The resulting magnetostriction in directions <100> and <111> will be given as:

a

b

1γ

[000]
z

y

x

[111]

c

[xyz]

[1 ½ 0]
[abc]

1ϕ

3ϕ

2ϕ
2γ

3γ

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 7 –

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

= 3

1

2

3 2
3

1

2
100 i

i

is βαλλ ()2323313121211113 ββααββααββααλ ++ (3)

Next relation describes dependency between magnetic induction and magnetic
intensity:

()HB μμ Δ+= (4)

where μΔ represents the increment of permeability caused by acting of external

pressure force. The next relation can be obtained by comparing of increments of
magnetic and elastomagnetic energies:

mH σλ=μΔ 2

2

1
 (5)

where mλ represents a magnetostriction coefficient. It is defined like:

2

2

2

3

s

sm
M

Mλλ = (6)

It generally holds that:

ss B

B

M

M
= (7)

By utilizing of the last two equations we can obtain the final dependence for
permeability increment caused by the acting of external pressure force [2]:

2

2

3
s

s

B

μσλ
μ =Δ (8)

For permeability increment calculation we can utilize software calculator shown
in Fig. 2. Since the permeability determines the magnetic field in a ferromagnetic
body, so the magnetic field is also changed and we could measure its changes by
changes of the induced electric voltage.

On the base of the above mentioned one can see that the pressductor can be
described as a transformer in which the mutual inductance between the primary
and secondary windings is changed proportionally to the acting stress or to the
pressure, but only in the case if magnetizing current Im is constant and output
current Is is negligible.

J. Vojtko et al. Neural Network Linearization of Pressure Force Sensor Transfer Characteristic

 – 8 –

Figure 2

Intelligent calculator

The elastomagnetic sensor equivalent electrical scheme is shown in Fig. 3.

 R1 L 1 Ip I /ps L 2.p2 R 2.p2

U R1 U L1

U p U m L m

I m

U s

U L2 U R2

R m p.

Figure 3

Elastomagnetic sensor equivalent electrical scheme

The change of the output voltage value can be calculated by following equation:

()
⋅⋅⋅

−

−
⋅⋅⋅⋅=Δ

2

2

1

2

12

12 22

ln

2

24
s

spp
ss

B

r

r

rr

hrrIN
NfU

μλ
ππ

π

F
r

r

rB

INfN
F

hr
s

spps ⋅⋅=⋅⋅
1

2

2
2

2

2

ln
8

2

1

π

μλ
 (9)

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 9 –

This equation corresponds with practical manufacturing of elastomagnetic sensor
in Fig. 4 [3]. Properties of the ferromagnetic material have a significant influence

on sensor sensitivity, mainly: saturation magnetostriction coefficient sλ ,

permeability of material μ and saturation intrinsic induction sB (for

elastomagnetic sensor EMS-200kN: 62.15 10sλ
−= ⋅ , 49.55 10 H/mμ −= ⋅ ,

1.28TsB =).

a)

b)

Figure 4

Sketches of elastomagnetic sensor

a) composed sensor EMS-200kN, b) detail of sheet element

J. Vojtko et al. Neural Network Linearization of Pressure Force Sensor Transfer Characteristic

 – 10 –

The described circuit fully corresponds to the transformer. In this case, the relation
between magnetic intensity and magnetic induction is given by nonlinear
hysteresis curve.

The maximum useful signal is obtained if output current Is is reduced to the
minimum and if the influence of primary current Ip effective value is eliminated.
In this case, the magnetizing voltage Um corresponds to the maximum output
voltage Us for given operating point which is depending on the primary current Ip
value and the acting force. Such a way can be reduced the power of the feeding
source.

3 A Design of the Feeding and Evaluating Circuits

The feeding circuit must fulfill basic condition which consists in the current
feeding request, because only in this case, the change of acting pressure force on
the elastomagnetic sensor core will be represented by the change of output
secondary voltage Us [4]. An example of such feeding source realization is shown
in Fig. 5. Such a way is simply possible to secure realization of the harmonic
constant current source by step down line voltage transformer with small output
power.

~

+

-

R

R

+Ucc

-Ucc

OA

Q1

Q2

Elastomagnetic
SensorF

~
Output
Signal

Step
Down

Transformer

Line
Voltage

i

i
ref

pu

i
i

in
out

Figure 5

An example of the optimal feeding source

For second request fulfilling, which is concerning to the secondary winding
current Is minimum value we must to secure as high as possible input impedance
of evaluating circuit. A simple and suitable output evaluating subcircuit can be
realized by OA as it is shown in Fig. 6.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 11 –

Figure 6

An example of output subcircuit connection with high impedance

4 Neural Network Design

The neural network (NN) is expected to eliminate transformer nonlinearity.
However, NN output should be linear and expressed by equation of straight line.
In order to achieve this aim, several NN models were designed. The differences
between linear output and the real sensor output are shown in the Fig. 7. The
characteristics ΔUi is gained from output sensor voltage U2↑ = f(F) (if force F was
increasing from 0 kN to 200 kN – characteristic upward) and characteristics ΔUd
is gained from U2↓ = f(F) (if force F was decreasing from 200 kN to 0 kN –
characteristic downward). It can be expressed by next equation:

lini UUU −=Δ ↑2 (10)

lind UUU −=Δ ↓2 (11)

Figure 7

Differences between the linear and the real sensor outputs

+

+Ucc

-Ucc

 OA

input
output

J. Vojtko et al. Neural Network Linearization of Pressure Force Sensor Transfer Characteristic

 – 12 –

The NN task is to reduce the deviation between U2↑, U2↓ and linear regression of
sensor output Ulin. Finally, the differences ΔUi and ΔUd will be limited. The most
common artificial neural network, called multilayer feed-forward neural network
(FFNN) was used for this purpose [5]. Conception of FFNN with one-unit time
delay is shown in Fig. 8.

Figure 8

The conception of NN

The sensor output is at the same time the NN input. However, in this proposal the
two NN input neurons are used. The both are directly connected to sensor via
ADC converter, but the second one is time delayed. A decreasing of sensor errors
is expected by using this NN connection.

5 Training Process

The topology of NN consists of 10 neurons in hidden layer, which seems to be the
most convenient according to computing speed and accuracy. There were 20 000
training cycles used. Like a learning algorithm the backpropagation was used and
it offers an effective approach to the computation of the gradients [6], in Fig. 9.
The learning parameter α, which specifies the step width of the gradient descent,
was changed in the wide range (see Fig. 10). Here is the SSE (sum of square
errors) dependence on training cycles. As we can see, the training process with
higher learning parameter achieves smaller SSE at the constant number of training
cycles.

If α parameter was more than 1, the sum square error (SSE) of training set was
decreased rapidly (the NN respond to trained data was good), but SSE error of test
set was increased (the NN respond to untrained data was bad) – over-trained NN.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 13 –

Figure 9

The training process

Figure 10

The training process with different α parameter

The output of NN was oscillated at larger α parameter, so the stability of NN was
not guaranteed. Advantages of higher NN learning rate was the decreasing of
training cycles and at the same time the decreasing of SSE error of training set,
but big disadvantages were: over-trained NN, bad generalization, oscillations of
NN and instability of NN.

Conclusions

Such construction of elastomagnetic pressure force sensor is predetermined for
hard field conditions and aggressive corroding media. Its output signal is even
1000 times greater as signal of resistance transducers and this fact enables to
simplify feeding and data evaluation. Such sensors are also less sensitive against
extremist electromagnetic interferences. A general construction of these sensors

J. Vojtko et al. Neural Network Linearization of Pressure Force Sensor Transfer Characteristic

 – 14 –

can be realized with smaller costs and dimensions.

The neural network simulator SNNS v4.1 was used for simulation of designed
NN. The NN should have decreased the sensor error and its output should have
been a linear function. Fig. 11 shows the difference between tested data Utest and
linear regression Ulin (ΔUtest = Utest - Ulin), and difference between NN model data
UNN and Ulin (ΔUNN = UNN - Ulin).

Figure 11

Differences between tested data, NN output and linear regression

The nonlinearity of sensor output was δS = 4,34% (for tested data δS = 2,69%).
The nonlinearity of designed model was δNN = 1,25% in comparison with a
classical FFNN model (without one-unit time delay) where the nonlinearity was
δNN = 1,53%. The finally, the designed model of error correction of elastomagnetic
sensor by using FFNN (with one-unit time delay) achieves quantitatively lower
linearity error in comparison with real sensor output.

Acknowledgement

The authors gratefully acknowledge the contributions of Slovak Grant Agency as
project No.1/0376/2003 and Institutional project No. 4433 of Faculty of Electrical
Engineering and Informatics, Technical University of Košice.

References

[1] M. Mojžiš et al.: Properties of 200 kN Force Sensor. Journal of Electrical
Engineering, Vol. 50, No. 3-4, 1999 pp. 105-108

[2] M. Peťko: Obtainment of Prime Magnetisa-tion Work Values and
Magnetisation Work Values by Using Approximate Functions. In
Proceedings of the II Doctoral conference, TU FEI Košice, 2002, pp. 59-60

[3] M. Mojžiš, M. Orendáč, J. Vojtko: Pressure Force Sensor. In Proceedings
of the II Internal scientific conference, TU FEI Košice, 2001, pp. 19-20

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 15 –

[4] D. Kováč: Feeding and Evaluating Circuits for an Elastomagnetic Sensor.
Journal of Electrical Engineering, Vol. 50, No. 7-8, 1999, pp. 255-256

[5] S. Haykin: Neural Networks (A Comprehensive Foundation). Macmillan
College Publishing Company Inc., ISBN 0-02-352761-7, 1994

[6] M. Kuczmann, A. Ivanyi: A new neural-network-based scalar hysteresis
model. IEEE Transactions on Magnetics, Vol. 38, 2002, pp. 857-860

[7] V. Kvasnička, Ľ. Beňušková, J. Pospíchal, I. Farkaš, P. Tiňo, V. Kráľ:
Introduction to neural networks theory (Úvod do teórie neurónových sietí,
in Slovak), Iris Publisher, Bratislava, 1997

[8] A. Zell et al.: SNNS User Manual, version 4.2. University of Stuttgart,
Institute for Parallel and Distributed High Performance Systems;
University of Tübingen, Since 1989

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 17 –

Torque Ripple Calculation of the Two-phase
Permanent Magnet Synchronous Motor

Supplied by a Triac Converter

Pavel Záskalický

Department of Electrical Drives and Mechatronics, Faculty of Electrical

Engineering and Informatics, e-mail: pavel.zaskalicky@tuke.sk

Mária Záskalická

Department of Applied Mathematics, Faculty of Mechanical Engineering, e-mail:

maria.zaskalicka@tuke.sk

Technical University of Košice, Letná 9, 04120 Košice, Slovakia

Abstract: A synchronous motor with ferrite permanent magnet rotor is a good solution for
small pump applications. It also has some drawbacks. The most important of them seems to
be its inability to start directly on the mains, Permanent magnet motor has to by equipped
with an electronic circuit for direct starting, which increases motor price. Another
drawback is the torque ripple for the non-harmonic supply. This paper shows analytical
calculation of the torque ripple of the small permanent magnet motor, which does a triac
converter supply. The converter forms two-phase supply voltage of 25 Hz frequency, from
one-phase 50Hz mains.

Keyword: torque ripple, synchronous motor, permanent magnet, triac converter

1 Introduction

Small water pump having rated power about 100W have a large application in

automobile industry, central heating and house appliances (washing machines,

dishwasher). They are run either by single-phase ac motor, when operated from

the mains or by a dc motor in the case in an automobile.

Both, motor and pump are often manufactured as a single piece of equipment. A

separated water pump in appliances tends to leak water between the rotating

shaft and casing. In an integral motor pump a stainless-steel cylinder has to be

P. Záskalický et al. Torque Ripple Calculation of the Two-phase Permanent Magnet Synchronous Motor

 Supplied by a Triac Converter

 – 18 –

inserted into the air-gap to protect the stator from water, and the whole rotor body

is inserted into another stainless steel cylinder, to protect the rotor cage and

lamination. The stator and rotor cylinders cause additional losses and significantly

deteriorate motor performance.

Water leakage problems and low efficiency of an induction motor are the main

reasons why another concept of the water pump was developed, in which the

rotor of the motor is immersed into pumping water. In this solution the rotor of the

motor is exposed to chemically aggressive water. A squirrel-cage rotor cannot be

used, but a ferrite permanent magnet rotor seems to be a good choice.

Strontium-ferrite permanent magnets are chemically inert, which make them

suitable for applications in aggressive environments. Strontium-ferrite magnets

have high specific electric resistance, so they do not experience thermal problems

due to eddy-current losses. Their low residual flux density imposes the need for

special machine construction when high air-gap flux density is needed.

2 Motor Configuration

Figure 1 shows the sketch of the construction disposition of a two-phase

synchronous motor having permanent magnets on the rotor. The stator structure is

similar to that of a two-phase salient poles reluctance motor. The stator magnetic

circuit is built from the laminations. The rotor form the two-pole cylinder

permanent magnet. The Stroncium-Ferrite magnet with linear demagnetisation

characteristic and remanence 0.5 T was used.

Figure 1

Two-phase permanent magnet motor

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 19 –

The stator windings are of particularly simple form. Two opposite placed winding

form one phase. The stator windings can be configured to either a serial or parallel

two-phase system. Normally the windings are identical. The windings which

forms one phase of the motor are connected like shown on Fig. 1. Two

diametrically opposite stator poles are of opposite magnetic polarity.

The electromagnetic torque is mainly developed due to the interaction between

stator winding current and rotor permanent magnet flux.

Electromagnetic torque can by calculated with the two corresponding temporal

quantities that are phase current and back electromotive force (emf), or with the

related spatial quantities that are stator magnetomotive force (mmf) and the rotor

induction.

Finite-element analysis was employed for a basic design approach predicting

static performance of the motor. The wave of induced emf in stator coil windings

was numerically calculated from the wave of the flux. The calculation results that

the waveform of the emf can by mathematically substituted by a sinusoidal

function.

3 Mathematical Model

The analytical description of two-phase synchronous motor with permanent

magnet rotor is simpler than that of tree-phase, due to the fact that stator windings

of such two-phase motors are physically orthogonal and thus magnetically

decoupled. The mathematical description bears strong resemblance to its single-

phase counterpart.

Figure 2 shows the per-phase equivalent circuit of the machine.

N

S

R,L

R,L

θ

u2

1u
e1

1u

R L

Figure 2

Equivalent circuit

P. Záskalický et al. Torque Ripple Calculation of the Two-phase Permanent Magnet Synchronous Motor

 Supplied by a Triac Converter

 – 20 –

Let us assume that the reluctance torque is negligible. This one depends on the air-

gap between the poles. In accordance with the stator cross section shown in the

Figure 1, the reluctance torque would exhibit four-maximums and four-minimums

per complete rotation.

Assuming that all windings are identical and the magnetic circuit is symmetrical.

Instantaneous value of electrical input power is determined as [1],[2],[3]:

1 1 2p u i u i= + (1)

It consists of three parts:

j m ep p p p= + + (2)

()2 2

1 2jp R i i= + represents the copper losses in the stator coil;

1 2
1 2

d d

d d
m

i i
p L i i

t t

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 represents the magnetic reactive power;

1 1 2 2ep e i e i= + represents the electrical output-power.

Where: R - is the armature resistance; L - is the synchronous inductance; 1 2,e e -

phase electromotive forces;

The product of the torque and the speed gives the electrical output power of the

machine:

.ep mω= (3)

Where: m - instantaneous value of the torque, ω- speed of the machine.

To determine the waveform of the torque of the machine, it’s necessary to

determine the waveform of the phase currents. These one can by calculated from

the voltage equations [4]

1

1 1 1

2

2 2 2

d

d

d

d

i
u Ri L e

t

i
u Ri L e

t

= + +

= + +
 (4)

Assume that machine speed is constant at steady state, solution will be simplified

by replacing the time by the angle.

1

1 1 1

2

2 2 2

d

d

d

d

i
u Ri L e

i
u Ri L e

ω
θ

ω
θ

= + +

= + +
 (5)

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 21 –

Where: θ is angle of position of the rotor.

The phase-torque is proportional to a product of the phase current and phase emf,

and disproportional to the rotor speed.

1 1

1

2 2

2

i e
m

i e
m

ω

ω

=

=
 (6)

Total motor torque is given by sum of the phase-torque.

1 2m m m= + (7)

The electromotive force induced in the stator coils can by expressed as a sinusoidal

or co- sinusoidal function, which is lagged by the feeding voltage by angle γ.
Angle γ depends from the torque of the machine.

()
()

1

2

.sin

.cos

e E

e E

θ γ

θ γ

= −

= −
 (8)

Where: E -is the maximal value of the induced electromotive force.

4 Converter Configuration

To form two-phase voltage supply system, was used the triac converter. The

converter consists of the double secondary winding supply transformer set by two

triacs on each of the phases. The triacs are controlled by a micro-controller like

that way to constitute two phase voltage on the input motor terminal. The micro-

controller must be on the mains voltage synchronised. The output waveform for

each of the phases is given on the Figure 4.

The converter output voltage can be mathematically expressed by Fourier series as

follows:

()
()

()

()
()

1

1 2
1

2 2
1

8 1
1 sin 2 1

4 2 1

8 1
cos 2 1

4 2 1

k

m

k

m

k

U
u k t

k

U
u k t

k

ω
π

ω
π

+∞

=

∞

=

= − +⎡ ⎤⎣ ⎦− +

= +⎡ ⎤⎣ ⎦− −

∑

∑
 (9)

Where: mU is a maximal value of the mains voltage; k is a positive integer with

1,2,3k = K

P. Záskalický et al. Torque Ripple Calculation of the Two-phase Permanent Magnet Synchronous Motor

 Supplied by a Triac Converter

 – 22 –

Tr T22

T12

T11

T21

Motor

~

Figure 3

Triac converter circuit

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-200

-100

0

100

200

u
1

[V
]
→

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-200

-100

0

100

200

u
2

[V
]
→

t [s] →

Figure 4

The converter output voltages waveform

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 23 –

The angle of rotor position θ is proportional to time t by expression:

tθ ω= (10)

5 Analytical Solution of the Voltage Equation

To predict the phase curents waveform, it’s necessary to solve the voltage

differential equations (5). Substituting (8) and (9) into (5) we obtain:

()
()

()

()
()

1

1

12
1

2

22
1

8 d1
1 sin 2 1 sin()

d4 2 1

8 d1
cos 2 1 sin()

d4 2 1

k

m

k

m

k

U i
k Ri L E

k

U i
k Ri L E

k

θ ω θ γ
π θ

θ ω θ γ
π θ

+∞

=

∞

=

− + = + + −⎡ ⎤⎣ ⎦− +

+ = + + −⎡ ⎤⎣ ⎦− −

∑

∑
 (11)

Presented linear differential equations have an analytical solution of the form:

()
()

()
()

() () ()

()
()

()
()

()
()

()
() () ()

1 2

1 2 22
1

2 22 2

2

2 2 22

18
sin 2 1 2 1 cos 2 1

4 2 1 2 1

cos sin .

8 1
cos 2 1 2 1 sin 2 1

4 2 1 2 1

k

m

k

R

L

m

LU R
i k k k

L Lk R L k

E R E L
C e

R L R L

LU R
i k k k

L Lk R L k

θ
ω

ω
θ θ

πω ωω

ωθ γ θ γ
ω ω

ω
θ θ

πω ωω

+∞

=

−

⎧ ⎫−⎪ ⎪⎡ ⎤= ⋅ − − − − +⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦− − + −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

− + − +
+ +

⎡= ⋅ − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦− − + −⎡ ⎤⎣ ⎦

∑

()
()

()
()

1

2 22 2
sin cos .

k

R

L
E R E L

C e
R L R L

θ
ωωθ γ θ γ

ω ω

∞

=

−

⎧ ⎫⎪ ⎪⎤ −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

− + − +
+ +

∑

 (12)

For steady state: θ →∞ , . 0
R

LC e
θ

ω
−

→ ;

6 Current and Torque Calculation

To calculate the currents and torque waveform, the following parameters were

used:

- terminal supply voltage 110U V= ;

- resistance of the phase coil: 17.1R = Ω ;

- inductance of the phase coil: 0,536L H=

P. Záskalický et al. Torque Ripple Calculation of the Two-phase Permanent Magnet Synchronous Motor

 Supplied by a Triac Converter

 – 24 –

- stator induced voltage: 45e V= for the speed of

157 /rad sω = ;

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2
i 1

[A

]
→

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

i 2

[A
]
→

t [s] →

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50

m
1

[N
c
m

]
→

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50

m
2

[N
c
m

]
→

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-20

0

20

m

[N
c
m

]
→

t [s] →

Figure 5

Plot of the currents and torque for no loaded machine

Figure 5 shows instantaneous values of the phase curents of the machine for

steady state and no loaded machine. The speed of the machine is 157 /rad s .

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 25 –

There is shown of per-phase and total torque waveforms too. The torque ripple

with amplitude about 15 Ncm is present in plot of total torque.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-4

-2

0

2

4
i 1

[A

]
→

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-4

-2

0

2

4

i 2

[A
]
→

t [s] →

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50

100

m
1

[N
c
m

]
→

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50

100

m
2

[N
c
m

]
→

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

50

100

m

[N
c
m

]
→

t [s] →

Figure 6

Plot of the currents and torque for loaded machine

Figure 6 shows instantaneous values of the phase curents of the machine for

steady state and loaded machine. The machin is loaded by 80 Ncm torque. The

second waveform of the Fig. 6 shows per-phase and total torque waveforms.

P. Záskalický et al. Torque Ripple Calculation of the Two-phase Permanent Magnet Synchronous Motor

 Supplied by a Triac Converter

 – 26 –

Conclusions

Steady-state performance of the permanent magnet synchronous motor, supplied

by triac converter is shown. Equations, which enable to predict steady-state

characteristics were developed. It was shown that the constant torque ripple in

waveform of electromagnetic torque of the machine is present.

Acknowledgement

The financial support of the Science Grant Agency of the Slovakia, research grant

No. 1/2178/05, is acknowledged.

References

[1] V. Hájek, H. Kuchyňková, “Losses Analysis and the Efficiency

Optimization of the Automotive Electric Machines”; in: 14th International

Conference on Electrical Drives and Power Electronics, pp. 133-135, 3-5

October 2001, High Tatras, Slovakia

[2] L. Klug, ”Brushless permanent magnet machine design and simulation”; in:

14th International Conference on Electrical Drives and Power Electronics,

3-5 October 2001, High Tatras, Slovakia

[3] L. Schreier, M. Chomát, I. Doležal, “Effect of machine geometry on higher

harmonics contient in air-gap magnetic field of synchronous reluctance

machine”; in: Scientific letters of Silesian University of Technology, z.176,

pp. 259-266, Gliwice 2001, Poland

[4] P. Záskalický, M. Záskalická, “Behaviour of the Two-phase Permanent

Magnet Synchronous Motor Supplied by Rectangular Voltage”; in: Acta

Technica CSAV 50 (2005), 195-206, Prague, Czech Republic

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 27 –

Time and Memory Profile of a Process

Functional Program

Ján Kollár, Jaroslav Porubän, Peter Václavík

Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

Jan.Kollar@tuke.sk

Abstract: An execution profiling attempts to provide feedback by reporting to the

programmer information about inefficiencies within the program Instead of writing whole

code highly optimized, the programmer can initially write simple maintainable code

without much concern for efficiency. Profiling is an effective tool for finding hot spots in a

program or sections of code that consumes most of the computing time and space. The

paper presents already implemented execution profiler for process functional program.

From the viewpoint of implementation, process functional language is between an impure

eager functional language and a monadic lazy pure functional language. The key problem

of execution profiling is to relate gathered information about an execution of the program

back to the source code in well defined manner. The paper defines language constructs for

monitoring resource utilization during the program execution. In our solution programmer

can associate label with each expression in a program. All resources used during the

evaluation of a labeled expression are mapped to the specified label. The paper is

concerned with formal profiling model. Research results are presented on sample program

illustrating different types of time and space profiles generated by already implemented

profiler for process functional programs.

Keywords. Functional programming, program profiling, process functional language,

formal profiling model

1 Introduction

A purely functional language is concise, composable and extensible. The

reasoning about the pure functional programs defined in terms of expressions and

evaluated without side effects is simpler than the reasoning about the imperative

programs describing the tasteful systems. From the viewpoint of systems design, it

seems more appropriate (at least to most of programmers) to describe the systems

using an imperative language, expressing the state explicitly by variables as

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 28 –

memory cells. Although the reliability of an imperative approach may be

increased using object oriented paradigm, it solves neither the problem of

reasoning about the functional correctness of fine grains of computation, since

they are still affected by subsequent updating the cells in a sequence of

assignments, nor the problem of profiling the program to obtain the execution

satisfying the time requirements of a user.

Using the today compilers, code generators and tools, programmer can define

functionality of a program on a higher abstract level than anytime before. Many

programmers write their programs without knowledge of resource utilization

during the program execution what leads to inefficiencies within the code. Barry

Boehm reports that he has measured that 20 percent of the routines consume 80

percent of the execution time 0. Donald Knuth found that less than 4 percent of a

program usually accounts for more than 50 percent of its run time 0. That is why

the code optimization is so important. An execution profiling attempts to provide

feedback by reporting to the programmer information about inefficiencies within

the program 0. Informations about resource utilization are collected during the

program execution. Instead of writing whole code highly optimized, the

programmer can initially write simple, maintainable code without much concern

for efficiency. Once completed the performance can be profiled, and effort spent

improving the program where it is necessary 0. Profiling 00 is an effective tool for

finding hot spots in a program, the functions or sections of code that consume

most of the computing time. Profiles should be interpreted with care, however.

Given the sophistication of compilers and the complexity of caching and memory

effects, as well as the fact that profiling a program affects its performance, the

statistics in a profile can be only approximate.

Many of ideas for process functional program profiling come out a pure functional

program profiling because of the same functional basis 00,000,0,0. Our previous

work proved that all process functional programs can be easily transformed into

pure functional programs 0 using state transformers and monads. The paper

presents our approach to profiling of process functional program and formal

model of process functional program profiling. It is simple to extend the approach

to both imperative and functional language.

2 Process Functional Language PFL

From the viewpoint of implementation, PFL is between an impure eager

functional language and a monadic lazy pure functional language. The main

difference between a process functional language and a pure functional language

is variable environment which is designed to fulfill the needs of easier state

representation in a functional program 0.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 29 –

Variable environment in PFL is a mapping from variable to its value. The variable

environment are updated and accessed during the runtime implicitly applying the

process to values. The process in the process functional language differs from a

function in a purely functional language only by its type definition. Let us define

process p as an example.

p :: a Int → b Int → Int

p x y = x + y

Applying the process p to arguments, for example p 2 3, expression evaluates to 5,

environment variable a is updated to value 2 and environment variable b is update

to value 3. If the process is applied to a control value (), for example p () 4 than

the process is evaluated using the current value of the environment variable a and

variable b is updated to 4.

3 Execution Profiling

There are two main resources that are utilized in program and systems:

computation time and memory space. Although it would be better to minimize

both time and space, it is well understood that these two requirements are

contradictory and it is impossible to fulfill both at the same time. Before being

able to improve the efficiency of a program, a programmer must be able to 0:

• Identify execution bottlenecks of the program - parts of a program where

much of time and space is used.

• Identify the cause of these bottlenecks

The potential benefits of execution profiling were first highlighted by Knuth 0. A

profiler must conform two main criteria:

• must measure the distribution of the key program resources,

• measurement data must be related to the source code of a program in

understandable manner.

Execution profile describes resource distribution during the program execution.

Informations about resource distribution are gathered during the program

execution. The profiling cycle describes the process of improving the program

efficiency based on the program execution profile. The key problem of execution

profiling is to relate gathered information about an execution of the program back

to the source code in well defined manner. This is difficult when functional

program is profiled since it provides higher level of abstractions than imperative

one. Some features of a functional language, which makes program profiling more

difficult than profiling an imperative program are: program transformation during

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 30 –

compilation, polymorphism, higher-order function, lazy evaluation, a lot of simple

functions within code.

4 Simple Program Profiling

Since our aim is "to compute" resource utilization at any point of computation, we

define special constructs to monitor the resource utilization during the PFL

program execution. In our solution programmer can associate label with each

expression in a program as follows:

label name e

All resources used during the evaluation of an expression e are mapped to the

center specified with label name. Using this construct programmer can concentrate

on a specific part (or parts) of a program. Expression label name e is evaluated to

value of e. Construct label is useful for the profiling purposes only. Of course, it is

necessary to preserve the semantics of the expressions labeling during the

transformation of the program when it is compiled. To be more precise, constructs

for conditional profiling were incorporated into the process functional language.

The first one is as follows.

label name e when ec

If expression ec is evaluated to value True of the Bool type, then all resources used

during the evaluation of e are associated with label name. Otherwise, all used

resources are attributed to the parent center. Of course, evaluation of ec can not

update the variable environment, because it is necessary to evaluate the program

to the same value during the program profiling as during the program execution.

On the other side, variable environment can be accessed during the evaluation of

expression ec. Fulfillment of this is rule checked during the static analysis in the

compiler. Resources used during the evaluation of the conditional expression ec

are attributed to the special label profiling representing profiling overhead costs.

All labeling inside the ec are ignored.

It is clear, that conditional labeling is not the same as

if ec then label name e else e

because of two main reasons:

• expression ec is evaluated only during the profiling not the program

execution,

• all resources used during the evaluation of ec are attributed to the center

with label profiling regardless of labeling in ec.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 31 –

Conditional profiling can enormously extend the time of profiling depending on

the complexity of expressions ec. Using conditional profiling labeled center can be

dynamically activated based on decision during the execution of a program. Next

example presents conditional labeling.

label "test" is_prime n when n > 100

5 Inheritance Profiles

Inheritance profiling can reduce the time spent with program profiling

concentrating on smaller grains (pats of a program) than in simple profiling.

Programmer can profile a part of program/function/expression depending on

arguments and context. The usage of inheritance profile is explained on example.

Usually the cost of function evaluation depends on arguments to which are

function applied. Sometimes it is useful to consider the context of function in

which it is called - parent. That is why the inheritance profiles are created.

On Figure 1 call graph of a simple program is depicted. Function h is called from

function f 10 times with total cost 500 and from function g 20 times with total cost

100. Simple profile for the program is on Figure 2. Figure 3 presents inheritance

profile for the presented call graph and function h. The first one is statistical

profile which is generated from count and simple profile. The second one is

measured accurate inheritance profile.

Figure 1

Call graph example

Function Called Cost

f 1 10

g 4 80

h 30 600

Figure 2

Simple profile

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 32 –

Parent→ Function Called

Total

Cost

Statistical Inheritance

Cost

Accurate Inheritance

f→h 10/30 200 500

g→h 20/30 400 100

Figure 3

Inheritance profile

In our profiler a few constructs for inheritance profile support have been

implemented. The first one construct defined for conditional labeling with regard

to parent context.

label name e when enclosed namec

Using this construction, labeled center can be activated if parent center is same as

specified. This construction can be used to create inheritance profiles. Resources

used during the evaluation of expression e are attributed to the center with label

name only if parent center is namec. Otherwise, resources are attributed to the

parent center. Next example presents usage of conditional enclosed labeling.

f = label "f" h 500

g = label "g" h 100

h n = label "f-h" (label "f-g" (p n)

 when enclosed "f") when enclosed "f"

For more flexible inheritance profiling two other constructions were defined.

label name inherits e

label name inherits e when ec

Parent context are automatically added to the current labeled center. Inheritance

profiling is not limited only to two levels parent/child.

Next example presents labeling for inheritance profiling of a simple process

functional program.

f = label "f" h 500

g = label "g" h 100

h n= label "h" inherits (p n)

Function h can be evaluated from function f or h. Using the inheritance profiling

label "h" is always connected with context of evaluation (function "f" or "g").

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 33 –

6 Formally Based Program Profiling

This section presents formal model of process functional program profiling. Our

approach is presented on subset of PFL with constructs for profiling - simplified

PFL. All PFL constructions are transformed to simplified PFL during the program

compile time. This approach can be extended to all PFL language constructs. The

meta-variables and categories for simplified PFL language are as follows:

Label

rConstructoEnvVarPrimitiveFncName

VExpressionDefinitionProgram

∈
∈∈∈⊕∈

∈∈∈∈

labelname,

Cyf

arxeDefPrg

The meta-variables can be primed or subscripted. The syntactic category Primitive

defines strict primitive operations like elementary arithmetic operations. The

syntactic category Var represents variable identifiers and syntactic category

EnvVar represents environment variable identifiers. The syntactic category

Constructor comprises constructors of algebraic types. Primitive types, such as Int

and Real, are included in the syntactic category Constructor as zero arity

constructors. Syntactic category Label comprises label names. Program in

simplified PFL consists of processes, functions and main expression which are

evaluated during the program execution. Abstract syntax of simplified PFL is as

follows.

{ }

1 2

1 2

1 2

1

:: Variable

| Function

| Primitive

| () Access

| Update

| Constructor

| Aplication

| case of Case

| label Label

| label when CondLabel

| label when enclosed EncLabel

| lab

i

n

i i m i i

c

c

e x

f

e e

y

y e

C e e

e e

e C x x e

name e

name e e

name e name

=

=

⊕

→

K

K

el inherits InhLabel

| label when when InhCondLabelc

name e e

name e e e

The value v of an expression is either a lambda abstraction or a value of an

algebraic type

ex

vvCv n

.|

:: 1

λ
K=

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 34 –

where n≥0.

The runtime state is defined by environments envv, enve. Environment envf is

created during the compilation. Environment envv represents the heap for the

values of lambda variables and enve is a set of memory cells for storing values of

environment variables.

()

f

v

e

v e

Env FncName Expr

Env Var Value

Env EnvVar Value

, State Env Env

f

v

e

v e

env

env

env

env env s

∈ = →

∈ = →

∈ = →

= ∈ = ×

The semantic rules for simplified PFL expressions are defined on Figure 4. Figure

Figure 5 presents semantic rules for label expressions. All rules are named

corresponding to abstract syntax rule names. The predicate matches for pattern

matching and operator extract for extracting i-th item value of the structure

constructed by C v1 ... vi ... vn are defined as follows.

nivivvvCextract

vvvCvxxxCvmatches

ini

nini

≤≤=
=⇔

1 where,1

11

KK

KKKK

The notation

()',,:, svselabelenv f μ→

defines that expression e is evaluated in environment envf considering the state s

and current label label and produces the value v, new state s' and resource

environment μ. Resource environment maps label to resources used during the

evaluation of labeled expression with specified label.

[] []
lll

ll

nil

nn

i

2121

11

i

)(

ResourcesLabelpResourceMa

1 Resources,Label,

μμμμ
ρρμ

μ
ρ

+=∪
→→=

→=∈
≤≤∈∈

K

The costs of elementary operation such as variable access or function application

are defined as follows.

 V cost of variable access

 F cost of closure creation

 P cost of primitive operation evaluation

 Ea cost of environment variable access

 Eu cost of environment variable access

 C cost of constructor creation

 A cost of function application

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 35 –

 D cost of case evaluation

 L cost of lambda abstraction evaluation

7 Implementation

Implemented process functional program profiler nowadays supports five types of

profiles:

1 frequency count profile

2 time profile

3 heap profile

4 maximum requirements heap profile

5 variable access/update profile

Program profile is created during the execution using the sampling method.

Execution is interrupted in specified time intervals (predefined value is 10

milliseconds) and information about used resources are collected and attributed to

the current labeled center. Program profiling increases execution time

approximately from 5 to 10% depending on the concrete program and labeling.

Formal semantics of the execution profiling is out of the scope of this paper and

can be found in 0.

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 36 –

() [] ()()evvlabelevf envenvxenvenvenvxlabelenv ,,,,:, Va→ Variable

()

[] ()',,:,

',,:,

svsflabelenv

svsfenvlabelenv

Flabelf

ff

a∪→

→

μ

μ
 Function

()
()

[] ()22121

2212

111

,,:,

,,:,

,,:,

21

2

1

svvseelabelenv

svselabelenv

svselabelenv

Plabelf

f

f

⊕→⊕

→

→

⊕∪∪ aμμ

μ

μ

 Primitive

() [] ()()evelabelevf envenvyenvenvenvylabelenv
a

,,,(),:, Ea→ Access

() ()()
() [] []()()vyenvenvvenvenveylabelenv

envenvvenvenvelabelenv

evlabelevf

evevf

u
aa ',',,,:,

',',,,:,

E∪→

→

μ

μ
 Update

()

()

()

[] ()nnilabelnif

nnnnf

iiiif

f

svvvCseeeClabelenv

svselabelenv

svselabelenv

svselabelenv

ni

n

i

,,:,

,,:,

,,:,

,,:,

1C1

1

1

111

1

1

KKKK

K

K

aKK ∪∪∪∪∪

−

−

→

→

→

→

μμμ

μ

μ

μ

 Constructor

()
()()

[] []() ()

[] ()'',,:,

'',,,/:,

,,',:,

',.,:,

A21

2

22

1

321

3

2

1

svseelabelenv

svenvvxenvxxelabelenv

envenvvselabelenv

sexselabelenv

labelf

evf

evf

f

a

a

∪∪∪→

→

→

→

μμμ

μ

μ

μ λ

 Application

()()
()

[](
[] ()

{ } [] ()'','',ofcase:,

'','','

1',:,

'

,,',:,

D11

'

1

'

1

''

svsexxCelabelenv

svenvmvextractx

vextractxenvelabelenv

xxCvmatches

envenvvselabelenv

label

n

iimif

ejm

vjf

mj

evf

ji

jj

j

aK

aK

Ka

K

∪∪=
→→

→

→

μμ

μ

μ

 Case

[] ()sexsexlabelenv labelf ,.,.:, L λλ a→ Lambda

Figure 4

The semantics of expressions

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 37 –

()
()',,label:,

',,:,

svsenamelabelenv

svsenameenv

f

f

μ

μ

→

→
 Label

()

()
()',,whenlabel:,

',,:,

,,:profiling,

svseenamelabelenv

svsenameenv

Truevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 CondLabel
tt

()

()
()',,whenlabel:,

',,:,

,,:profiling,

svseenamelabelenv

svselabelenv

Falsevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 CondLabel
ff

()
()',,enclosedwhenlabel:,

',,:,

svsnameenamelabelenv

svsenameenv

labelname

cf

f

c

μ

μ

→

→

=

 EncLabeltt

()
()',,enclosedwhenlabel:,

',,:,

svsnameenamelabelenv

svselabelenv

labelname

cf

f

c

μ

μ

→

→

≠

 EncLabel
ff

()
()',,inheritslabel:,

',,:),(,

svsenamelabelenv

svsenamelabelcontextenv

f

f

μ

μ

→

→
 InhLabel

()

()
()',,wheninheritslabel:,

',,:),(,

,,:profiling,

svseenamelabelenv

svsenamelabelcontextenv

Truevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 InhCondLabel
tt

()

()
()',,wheninheritslabel:,

',,:,

,,:profiling,

svseenamelabelenv

svselabelenv

Falsevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 InhCondLabel
ff

Figure 5

The semantics of label expressions

The next section presents simple example with profiling outputs from the

implemented profiler for process functional language. The problem solved by the

program is to

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 38 –

1 generate prime numbers from 1 to 100 (label prime),

2 sum prime number from 1 to 100 (label sum),

3 calculate dividers of the sum (label dividers),

4 generate list of values from 1 to 1000 (without any label).

PFL program source code for the problem with profile labeling is as follows.

gen_list m n = if m > n then [] else m : gen_list (m + 1) n

can_be_divided n m = (n % m) == 0

is_prime_number n = not (foldl (or) False (map (can_be_divided n)

 (gen_list 2 (n - 1))))

prime_numbers from to = filter (is_prime_number) (gen_list from to)

dividers n = filter (can_be_divided n) (gen_list 1 n)

main = (toUnit (label "dividers" dividers (

 label "sum" sum

 (label "prime" primeNumbers 1 100))))

 `bl` (toUnit (generateIntegerList 1 1000))

Time and memory profile for example program produced by the profiler is on

Figure 6.

Figure 6

Time and memory profile

Conclusions

Using the execution profile of a program a programmer had to answer next two

questions:

• How are resources distributed during the program execution?

• What is the effect of a particular modification of a program?

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 39 –

Our solution to process functional program execution profiling was presented in

this paper. Using our method every expression in the PFL program can be

separately profiled. The definition of profiling grains is up to the programmer.

Suggested formal model can be used for reasoning about program profiling.

This work is based on our previous research of profiling and static evaluation of

process functional programs 0. As a result, the static evaluation method is strongly

associated with the source specification. This may help to a programmer while

program development considering not just the function but also the behavior,

represented by resources used. Combining execution profiling with static analysis

look very promising in gathering information about resource utilization during

program execution.

In the past, we have PFL-to-Java and PFL-to-Haskell generators developed. The

subject of our current research is integrating aspect and process functional

paradigm of programming. Our future plan is to extend profiling tools to object

oriented PFL and to formal specification of a program profiling for parallel

environment.

References

[1] B. W. Boehm: Improving Software Productivity. IEEE Computer 20, Vol.

9, 1987, pp. 43-57

[2] Ch. D. Clack, S. Clayman, D. Parrott: Lexical Profiling: Theory and

Practice. Journal of Functional Programming Vol. 5, No. 2, 1993, pp. 225-

277

[3] D. Hamlet: On subdomains: Testing, profiles, and components, Proceedings

of the International Symposium on Software Testing and Analysis,

Portland, Oregon, United States, August 21-24, 2000, pp.71-76

[4] J. Kollár: Partial Monadic Approach in Process Functional Language. Acta

Electrotechnica et Informatica No. 1, Vol. 3, Košice, Slovak Republic,

2003, pp. 36-42

[5] J. Kollár, J. Porubän, P. Václavík, M. Vidiščák: Lazy State Evaluation of

Process Functional Program. Proceding of 5th International Conference

ISM 2002, Rožnov pod Radhoštem, Czech Republic, April 22-24, 2002

[6] D. E. Knuth: An Empirical Study of FORTRAN Programs. Software -

Practice and Experience 1, 1971, pp. 105-133

[7] J. Porubän: Time and space profiling for process functional language.

Proceeding of the 7th Scientific Conference with International Participation

EMES '03, Felix Spa-Oradea, May 29-31, 2003, pp. 167-172

[8] N. Rojemo: nhc - Nearly a Haskell compiler, in Proceedings of La

Wintermote, Dept of Computer Science, Chlamers University, Sweden,

January 1994

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 40 –

[9] C. Runciman, D. Wakeling: Heap Profiling of Lazy Functional Programs.

Journal of Functional Programming, Vol. 3, No. 2, pp. 217-245, 1993

[10] P. M. Sansom: Execution profiling for non-strict functional languages.

Research Report FP-1994-09, Dept. of Computing Science, University of

Glasgow, September 1994

[11] P. M. Sansom, S. L. Peyton Jones: Profiling lazy functional programs.

Functional Programming, Glasgow 1992, Springer Verlag, Workshops in

Computing, 1992

[12] P. M. Sansom, S. L. Peyton Jones: Time and space profiling for non-strict,

higher-order functional languages, Proceedings of the 22nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

San Francisco, California, United States, January 23-25, 1995, pp. 355-366

[13] P. M. Sansom , S. L. Peyton Jones: Formally based profiling for higher-

order functional languages, ACM Transactions on Programming Languages

and Systems (TOPLAS), Vol. 19, No. 2, March 1997, pp. 334-385

[14] S. Rubin, R. Bodík , T. Chilimbi: An efficient profile-analysis framework

for data-layout optimizations, Proceedings of the 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, Portland,

Oregon, January 16-18, 2002, pp. 140-153

[15] P. Wadler, P. Thiemann: The marriage of effects and monads. ACM

Transactions on Computational Logic, Volume 4, Issue 1, 2003, pp. 1-32

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 41 –

Embedded Fuzzy Controller for Industrial

Applications

Ferenc Farkas, Sándor Halász

Department of Electric Power Engineering, Budapest University of Technology

and Economics, ferenc.f.farkas@ericsson.com

Abstract: The concept of the fuzzy logic makes feasible the creation of fuzzy controllers
with low cost 16 bit microcontroller having the same performance as of controllers realized
with more expensive Digital Signal Processor (DSP). In this article the implementation of
such a fuzzy controller is proposed for 16 bit microcontroller with fast fuzzyfication-
inference-defuzzyfication algorithm. Because the microcontroller receives information from
the process via Analog-Digital Converter(s) and controls the process with the help of
Digital-Analog Converter(s) the implemented algorithm does not use floating-point
operations, only integer ones. However, for some type of fuzzy controllers, the error made
by this algorithm is not greater than the error of a DSP based floating point algorithm.

Keywords: fuzzy logic, microcontroller, embedded systems

1 Introduction

1.1 Fuzzy Controller and Embedded Systems

The world of embedded control is experiencing a push into the realm of fuzzy

logic. Even household machines are advertised as being intelligent with the help

of the built-in fuzzy logic. The popularity of the fuzzy logic is due to its simplicity

and effectiveness in solving control problems. Conference proceedings and related

periodicals contain myriads of articles presenting the advantages of control

systems using fuzzy logic. Although fuzzy controllers are not able to solve every

control problems, and have some disadvantages as well [7], one of the main

disadvantage of using the fuzzy controller in embedded systems is the great

number of floating point calculations made in real-time. This huge calculation

capacity requires the use of Digital Signal Processor (DSP), which is more

expensive compared to a 16 bit microcontroller (μC).

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 42 –

In the past, manufacturers have contended with the performance versus cost

tradeoffs with no apparent fulfillment of both. Although, in the last decade the

complexity of DSPs has evolved while their price decreased, manufacturers are

always interested in cost reduction due to permanent competition. In this article a

short comparison is presented between a DSP and a microcontroller based fuzzy

controller, pointing out that – depending on the type of the fuzzy controller used

and the precision of the Analog-Digital Converters (ADC) and Digital-Analog

Converters (DAC) built in the system, – in most of the cases the DSP based fuzzy

controller is not able to outperform the microcontroller based counterpart.

1.2 Microcontroller versus DSP

The main features of embedded systems are the compact realization, robustness,

and cheapness. Cheapness can be achieved by using low performance

microcontroller connected to low capacity memory. Naturally, such a system

cannot be compared to a more complex DSP from the calculation capacity point of

view. Thus, microcontrollers can be used in limited applications, where floating-

point calculations are not required, or their use is limited. At first sight,

microcontrollers are not suitable for realizing fuzzy controllers, due to hundreds of

floating-point arithmetic done in real time. This short come might be overcome

with a look-up table, storing the response of the fuzzy controller for different

input/output combinations. However, the memory capacity is a strong limitation,

so the table dimension is. Thus, only a limited number of input(s)/output(s) pairs

are stored in the table, and interpolation is used in between. This solution has two

major drawbacks: 1) the interpolation is not a good approximation for nonlinear

functions, and the table dimension limits the number of useful pairs stored; 2) the

fuzzy controller is rigid, cannot adjust its parameter to the changing environment

as it is proposed in [1]-[2].

The concept of fuzzy logic makes feasible the use of a fuzzy controller built on

low cost 8 or 16 bit microcontroller for some applications. Manufacturers, like

MOTOROLA, have recognized the power of fuzzy logic and have created fuzzy

kernels and support tools for a number of their 8 bit and 16 bit microcontrollers.

However, these support tools lack the generalization and mathematical reasoning.

Although DSP is mostly applied in those applications where huge floating-point

operations are performed in real time, its high price does not help the spreading of

fuzzy controller in mass production. On the other hand a conventional

microcontroller (like the INTEL’s 80186 microcontroller) can be bought for a

very low price. The latter does not support directly the floating-point operations,

but does support the operations of integer type, like addition, subtraction, division

and multiplication. For this reason, one must think about an algorithm, which

incorporates only integer operands.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 43 –

In industrial applications, such as motion control, electrical drives, temperature

and humidity stabilization, the fuzzy controller receives information from the

controlled process via ADC(s) and controls it through DAC(s) as in Figure 1. For

this reason, using a DSP in such cases is not far from the idea of making a fuzzy

controller seeming better, faster and more accurate than it really is. Because the

precision of ADC and DAC is always less than or equal to 16 bits, the use of 16

bit operands seems to be a reasonable compromise between accuracy and speed.

Thus, the value stored in such an operand will be in the range of [0.65535].

Moreover, using appropriate fuzzy operations, the error made by the proposed

algorithm is comparable to the DSP based fuzzy controller.

2 Theoretical Considerations

2.1 Starting from the Basic Idea

Let’s consider two continuous and closed intervals),(ba ,),(FE on which the

Euclidean distances are defined. For arbitrary),(bax∈ , and),(FEX ∈ the

following relation is held:

EF

EX

ab

ax

−
−

=
−
−

. (1)

Let’s define the two intervals as being:

Embedded Fuzzy Controller

M

E

M

16 bit

μC
DAC

ADC
Controlled plant

PC

>Start

Figure 1

The concept of embedded fuzzy controller with ADC and DAC

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 44 –

⎩
⎨
⎧

=≡
≡

65535),,0(),(

)0.1,0.0(),(

MAXINTMAXINTFE

ba
, (2)

that is, the),(ba interval represents the real numbers between 0.0 and 0.1 , while

the),0(MAXINT interval represents the integer numbers from 0 to

162≡MAXINT . Because),(FE interval defined in this way is not continuous,

there is no one-to-one mapping anymore. That is, ()bax ,∈′ being defined closed

enough to ()bax ,∈ in terms of Euclidean distance, x′ will be mapped on the

same ()FEX ,∈ as x . The following notation will be used in the rest of this

article: with lower case real numbers, while with capital letters integer numbers

are denoted.

The following relations are obtained by rearranging relation (1), taking into

account the definitions of the intervals, and replacing x with 'x , or x with y′ ,
Y with X :

MAXINT

X
x =′ , (3)

][MAXINTyY ⋅′= , (4)

where][x represents the integer part of x . These relations show how a real value

can be mapped on an integer one, and vice versa.

It is by no surprise, that the defined)0.1,0.0(),(≡ba interval is the input/output of

the fuzzy controller, while the),0(),(MAXINTFE ≡ interval is the input/output

of the 16 bit AD/DA converters. Mapping of real value to integer and vice versa is

performed by the ADC and DAC, respectively. However, the fuzzy controller

implemented on a DSP requires real number(s) for its input(s), and outputs real

X Y

μC

A

D

C

D

A

C

Xx Y y

Figure 2

Microcontroller versus DSP. Which one is more suitable for an application?

x’ y’

DSP

A

D

C

D

A

C

Xx Y y

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 45 –

number(s), as well. Thus, an algorithm for the DSP must convert the integer

obtained from the ADC before applying to the fuzzy controller. Another algorithm

should also convert the real number obtained from the output of the fuzzy

controller to an integer one before feeding the DAC with the proper value. If it is

so, there are two important questions: 1) what is the gain from using floating-point

operands and operators? 2) can be implemented a fuzzy controller just using

integer operands and operators?

In Figure 2 it is shown the two alternative fuzzy controllers: the upper one

implemented on a microcontroller (μC), while the lower one on a DSP. The x

value obtained from the controlled plant is converted by the ADC to X , which is

directly used by the fuzzy controller implemented on a microcontroller. However,

the DSP needs to convert this X value to another real value x′ using relation (3).

It is obvious, that generally 'xx ≠ , that is, the input value is not equal to the input

of the fuzzy controller. The fuzzy controller implemented on the DSP creates the

output value y′ , which is converted by another algorithm using relation (4) to Y

value. This Y value (obtained directly from the microcontroller based fuzzy

controller) is further converted to a real value y by DAC, and this y serves as a

control signal. Again, it can be stated that generally yy ≠' , that is, the control

signal is not equal to the output of the fuzzy controller. This gives a hint that

floating-point calculation might be useless, because of the presence of AD and DA

converters.

2.2 Error of the Integer Operators

Before diving into the deep water, it should be analyzed the behavior of the

integer multiplication and division. Let’s consider two arbitrary input values
1

X ,

2
X converted by the ADCs, and an output Y supplied by the controller which is

fed to the DAC. The output of the multiplication operation is

])''[(]'[
21

MAXINTxxMAXINTyY ⋅⋅=⋅= , (5)

and using relation (3) the output is obtained in function of the inputs:

⎥⎦
⎤

⎢⎣
⎡ ⋅

=⎥⎦
⎤

⎢⎣
⎡ ⋅⋅=

MAXINT

XX
MAXINT

MAXINT

X

MAXINT

X
Y 2121)(. (6)

Similar result is obtained for the integer division, when the output is

])'/'[(]'[
21

MAXINTxxMAXINTyY ⋅=⋅= , (7)

and using relation (4) the output in function of the inputs is obtained:

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 46 –

⎥
⎦

⎤
⎢
⎣

⎡ ⋅
=⎥⎦

⎤
⎢⎣
⎡ ⋅=

2

121)/(
Y

MAXINTY
MAXINT

MAXINT

Y

MAXINT

Y
Y . (8)

It is important to note, that always the multiplication in the numerator must be

performed firstly, and the obtained 32 operand should be divided by the 16 bit

denominator (these operations are directly supported by the INTEL 80186

microcontroller using the MUL and DIV opcodes). The obtained result consists of

the integer part of the division and the 16 bit remainder. Because only the integer

part of the division must be fed to the DAC, there is no difference between using a

DSP with floating-point operators, or a microcontroller with integer operators.

Similar result is obtained when the weighted average is calculated (combination of

multiplication and division):

⎥⎦

⎤
⎢⎣

⎡ ⋅
+

⋅+⋅
=⋅= MAXINT

ba

xbxa
MAXINTyY

''
]'[21 , (9)

⎥⎦
⎤

⎢⎣
⎡ ⋅

⋅+⋅
⋅⋅+⋅⋅

= MAXINT
MAXINTbMAXINTa

xMAXINTbxMAXINTa
Y

''
21 , (10)

⎥⎦
⎤

⎢⎣
⎡

+
⋅+⋅

=⎥⎦
⎤

⎢⎣
⎡

+
⋅⋅+⋅⋅

=
BA

XBXA

BA

MAXINTxBMAXINTxA
Y 2121

''
. (11)

It can be seen, that only for one multiplication, division or a combination of them

the error of the integer operations is not propagated through the DAC converter. In

the next subchapter, an investigation for the whole fuzzy controller is performed.

2.3 Error Propagation through the Fuzzy Controller

2.3.1 Fuzzyfication

One of the most common used fuzzy controller is the Mamdani type controller,

with MIN-MAX operators, and triangle or trapezoidal membership functions.

Let’s denote },,,{ i

x

i

x

i

x

i

x dcba the parameters of the i th input membership function,

while },,,{ j

y

j

y

j

y

j

y
dcba the parameters of the j th output membership function. In

case of triangle membership function it can be simply considered i

x

i

x cb = or

j

y

j

y
cb = . The simplest fuzzyfication is the singleton one, when the fuzzyfication

function is the identity function, e.g. f(y)=y. That means that input variables are

the singleton fuzzy inputs. The membership value)(xiμ of the input x

corresponding to a membership function defined by the },,,{ i

x

i

x

i

x

i

x
dcba parameters

is obtained by relation (12):

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 47 –

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<<
−
−

≤≤

<
−
−

≥∨≤

=

i

x

i

xi

x

i

x

i

x

i

x

i

x

i

xi

x

i

x

i

x

i

x

i

x

i

dxc
cd

xd

dxb

bx
ab

ax

dxax

x

,

,1

,

,0

)(μ . (12)

Let’s consider an input x , where i

x

i

x bxa << , and calculate the)(xiμ

membership value for both floating-point and integer operators:

⎥
⎦

⎤
⎢
⎣

⎡
⋅

−
−

=⋅== MAXINT
ab

ax
MAXINTxXY

i

x

i

x

i

x])([)(μμ , (13)

⎥
⎦

⎤
⎢
⎣

⎡
−
⋅−

=⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅−⋅
⋅−⋅

==
i

x

i

x

i

x

i

x

i

x

i

x

AB

MAXINTAX
MAXINT

MAXINTaMAXINTb

MAXINTaMAXINTx
XY

)(
)(μ (14)

where]0.1,0.0[, ∈i

x

i

x ba and],0[, MAXINTBA i

x

i

x ∈ represent the real, respective

integer parameters of the i th input membership function. In similar way should

be calculated the)(xiμ membership value for inputs with i

x

i

x
dxc << . It was

assumed in relation (14) that i

x

i

x AMAXINTa =⋅ and i

x

i

x BMAXINTb =⋅ , which is

not always true. In equation (3) the remainder of the division is not zero, that is,

i

RESx

i

xi

x a
MAXINT

A
a ⋅+= , where i

RESxa ⋅ is the remainder. In order to avoid any error,

i

x

i

x
AMAXINTa =⋅ must be held. This might look a restriction at first sight, but

even in case of floating-point operands, the parameters of the membership

functions are chosen to 2-3 places of decimals. Even with this restriction the

parameters of the membership functions can be set for 655361 =+MAXINT

different value, which is enough for most of the applications. In conclusion, the

fuzzyfication and the calculation of the membership value do not cause additional

rounding error.

2.3.2 Inference

When the fuzzy controller has more then one input, generally the rule base is

constructed in such way that AND relation exist between the rules. This AND rule

is performed by the MIN operator in case of Mamdani type controller. That

means, the “firing” degree of the k th rule is given by the following relation:

])}(),({[)(
21

MAXINTxxMINkY ⋅== μμλ , (15)

from where it can be concluded that there is no additional rounding error.

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 48 –

However, there are types of fuzzy controller where the AND relation is performed

by multiplication. In those cases it is not so simple to decide what rounding errors

one might have. Let’s take two inputs, one belonging to the first, the other one

belonging to the second membership function. Then the “firing” degree of the k th

rule is

⎥
⎦

⎤
⎢
⎣

⎡
⋅

−
−

⋅
−
−

=⋅⋅== MAXINT
AB

AX

AB

AX
MAXINTxxkY

xx

x

xx

x

22

2

2

11

1

1

21
])()([)(μμλ , (16)

where both the numerator and the denominator is multiplied by MAXINT . There

are two alternative solutions. An algorithm should be implemented in the first case

which is able to divide a 48 bit number by a 32 bit number:

⎥
⎦

⎤
⎢
⎣

⎡
−⋅−
⋅−⋅−

==
)()(

)()(
)(

2211

2

2

1

1

xxxx

xx

ABAB

MAXINTAXAX
kY λ . (17)

Although, this kind of algorithm has no additional rounding error – the 48 bit is

divided by the 32 bit number, but only the integer part must be considered –, the

running time of the algorithm might be significant for some applications. Another

solution is also presented, which runs faster, but has rounding error. Let’s multiply

in equation (16) both the numerator and denominator with MAXINT :

⎥⎦
⎤

⎢⎣
⎡ ⋅

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅−

==
MAXINT

XX

MAXINT

AB

MAXINTAX

AB

MAXINTAX

kY xx

x

xx

x

)()(

)()(

)(21

22

2

2

11

1

1

μμλ (18)

That means, membership values are calculated individually using relation (12),

then the obtained membership values are multiplied together and the resulted

product is divided by MAXINT . Although, this simplified algorithm is supported

by the MUL and DIV opcodes of the microcontroller, rounding error is

introduced. This is due to the fact, that the two members in the numerator are not

calculated precisely, only the integer part is taken into account (this is equivalent

with one replacing the round brackets with brackets in the numerator). The

rounding error can be estimated if one considers
2121

,,, QQPP arbitrary integer

numbers, and calculates the product of their quotient:

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅+++=⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

+
⋅

+
=⋅

2

2

1

1

1

1

2

2

2

121

2

2

1

1

2

2

2

1

1

1

2

222

1

111

2

2

1

1

P

R

P

R

P

R
N

P

R
NNN

P

Q

P

Q

P

R
N

P

R
N

P

RPN

P

RPN

P

Q

P

Q

, (19)

where
21

, NN are the integer parts of the quotients and
21

, RR are the remainders.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 49 –

It can be concluded from relation (19) that only the
21

NN ⋅ product is considered

in equation (18), the rest three terms are omitted. The following inequality is held

for the last three terms of relation (19):

121)1()1(
2

2

1

1

1

1

2

2

2

1
−⋅=+−+−<⋅+⋅+⋅ MAXINTMAXINTMAXINT

P

R

P

R

P

R
N

P

R
N , (20)

because both
21

, RR are less than MAXINT . From relation (18) it follows that

additional rounding error occurs only if the following condition is held:

MAXINT
P

R

P

R

P

R
N

P

R
NR ≥⋅+⋅+⋅+

2

2

1

1

1

1

2

2

2

1μ , (21)

where MAXINTNXXR ⋅−⋅= μμ μμ)()(
21

 is the remainder of division of the

equation (18). From equation (18) and inequality (20) it can be concluded that the

rounding error is between 0 and 2 bits. 0 bit error occurs when inequality (21) is

not held, that is, when
21

, RR remainders are far less than
21

, PP and μR is also

minor. 2 bit error occurs only and only if equality

MAXINT
P

R

P

R

P

R
N

P

R
NR ⋅=⋅+⋅+⋅+ 2

2

2

1

1

1

1

2

2

2

1μ holds. However, this is a rear

situation. Thus, it can be concluded that the average additional rounding error is 1

bit. Moreover, this 1 bit rounding error can even be absorbed by the imprecision

of the DAC, taking into account that common DACs have only ±½ bit precision at

conversion. Important to note, that since the 2 least significant bits are not passed

to the 14 bit DAC, even the 2 bit error is not present at the output of the DAC.

MIN operator is used for the inference operator, as well, although there are fuzzy

controllers where the multiplication is used instead. In case of MIN operator the

height of the j th output membership function is defined by the minimum of the

“firing” degree of the rules containing the same antecedents:

])}(),({[MAXINTkiMINhY j

y
⋅== λλ , (22)

which does not introduce additional rounding error. However, this is not true

when multiplication is used instead of MIN operator. In case of multiplication the

height of the j th output membership function is defined by the product of the

“firing” degree of the rules containing the same antecedents:

])()([MAXINTkihY j

y ⋅⋅== λλ . (23)

There two possibilities: the)(),(ki λλ ”firing” degrees either have been calculated

with MIN operator using equation (15) or with multiplication operator as in case

of relation (16). In the former case

])}(),({)}(),({[
2121

MAXINTxxMINxxMINhY
kkii

j

y
⋅⋅== μμμμ , (24)

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 50 –

from where, without loosing the generality, it is considered that)()(
21

xx ii μμ <

and)()(
21

xx kk μμ > , from where it is obtained:

])()([
21

MAXINTxxhY
ki

j

y
⋅⋅== μμ . (25)

It is obvious, that equation (25) looks like equation (16), and thus, the same

conclusion can be drawn: the additional rounding error is between 0 and 2 bits,

and the average rounding error is 1 bit.

The situation is much complicated when the overall “firing” degree is calculated

by multiplication. In that case the height of the j th output membership function is

]))()(())()([(
2121

MAXINTxxxxhY kkii

j

y ⋅⋅⋅⋅== μμμμ , (26)

from where it is obtained by substituting the membership values

⎥
⎦

⎤
⎢
⎣

⎡
⋅

−
−

⋅
−
−

⋅
−
−

⋅
−
−

== MAXINT
AB

AX

AB

AX

AB

AX

AB

AX
hY

k

x

k

x

k

x

k

x

k

x

k

x

i

x

i

x

i

x

i

x

i

x

i

xj

y

2121 . (27)

One might construct an algorithm which is able to calculate the 80 bit product of

the numerator, which is divided by the 64 bit product of the denominator, in which

case there is no rounding error. However, such algorithms will slower the

inference of the fuzzy controller, which might not be suitable for some

applications. For this reason, the following solution is proposed:

⎥⎦
⎤

⎢⎣
⎡ ⋅

==
MAXINT

ki
hY j

y

)()(λλ
, (28)

where)(),(ki λλ “firing” degrees are calculated using the equation (18). In this

case additional rounding error exists. In order to find out the magnitude of the

rounding error, let’s consider the worst case when both “firing” degrees have been

calculated with 2 bit error.

That means, the)()(ki λλ ⋅ product should be replaced by

4)(2)(2)()()2)(()2)((+++⋅=+⋅+ kikiki λλλλλλ in order to calculate the

precise value. This gives an additional rounding error if

MAXINTkiR ≥+++ 4)(2)(2 λλλ inequality holds, where

MAXINTNkiR ⋅−⋅= λλ λλ)()(represents the remainder of the division from

relation (28). The largest rounding error occurs when both “firing” degree is equal

to MAXINT , and 4−≥ MAXINTRλ inequality holds. Although this rounding

error of 5 bits seems very large and might not be acceptable, in common

applications never occur. However, 4 bit errors might still persist, and the average

rounding error is around 2 bits, taking into account that the)(),(ki λλ “firing”

degrees are calculated with 1 bit rounding error in average. This 2 bit error might

still bother the designer of a fuzzy controller. However, 14 bit DACs are used in a

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 51 –

large number of applications, in which case even 4 bit rounding error does not

appear at the output of the 14 bit DAC, since the 2 least significant bits are not

passed to the 14 bit DAC.

The aggregation of the output membership functions can be done in several ways

[4]-[6]. The two most popular aggregations are the MAX operator and the

bounded sum. When MAX operator is used for aggregating the output

membership function

⎥
⎦

⎤
⎢
⎣

⎡
= }{ j

y
j

fuzzy
hY MAX (29)

does not contain additional rounding error. So it is, when aggregation is calculated

with the bounded sum operator:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

≤

∑
MAXINTj

j

yfuzzy
hY . (30)

Thus, it can be concluded that the inference does not introduce additional

rounding error if MIN operator is used. When product is used for the inference,

the additional rounding error introduced might be slightly significant only if 16 bit

DAC is used.

2.3.3 Defuzzyfication

Several defuzzyfication methods exists, some of them are more spread than the

others [4]-[6]. One of the most popular defuzzyfication method is the Mean of

Maximum (MOM), when the crisp output value is calculated as the mean of

maximum values of the aggregated output fuzzy set:

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

M

k

k

y

M

h
Y

1

, (31)

where k

y
h denotes the heights of those points where the fuzzy set has one of its

maximum value. As it can be seen, there is no additional rounding error

introduced in this way. Thus, it can be concluded, that Mamdani type fuzzy

controller with MIN-MAX operators and MOM defuzzyfication gives the same

output as a DSP based fuzzy controller, even when 16 bit DAC is used.

Other well-known defuzzyfication methods are the Center of Area (COA) and

Center of Gravity (COG) methods. The only difference between these two

methods is that COA calculates the center of the aggregated fuzzy set, while COG

calculates the center of the gravity of the fuzzy sets taking part in the aggregation.

Thus, COG calculates twice the overlapped areas. In what follows, only the COG

is presented, COA has similar reasoning. The COG defuzzyfication method is

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 52 –

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−⋅

⋅−+−⋅
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ⋅
=

∑
∑

∑
∑

k

i

x

i

x

i

x

i

x

k

k

G

i

x

i

x

i

x

i

x

k

k

k

k

G

k

BCADk

XBCADk

T

XT

Y
)()(

)()(

λ

λ
 (32)

where k

GX represents the center of gravity of the k th modified output

membership function, while)()(i

x

i

x

i

x

i

x

k BCADkT −+−⋅= λ is the area of this

membership function. The use of an algorithm which calculates the 48 bit

numerator and divides it with the 32 bit denominator is recommended in order to

avoid significant rounding error. Analyzing only the division, it can be concluded

that there is no additional rounding error, because anyway only the integer part is

passed to the DAC. However, in the nominator the)(kλ values are not the real

ones, only the integer parts. This leads to an additional rounding error. In order to

try to estimate the error introduced by the COG defuzzyfication method, let’s

consider
2121

,,, QQPP arbitrary integer numbers, and calculate the weighted

average of their quotient:

2

2

1

1

21

2

2

2

1

1

12211

2

2

1

1

2

2

2

1

1

1

)(

)(

P

R

P

R
NN

P

R
X

P

R
XXNXN

P

Q

P

Q

P

Q
X

P

Q
X

+++

+++
=

+

+
. (33)

It can be observed, that in relation (32) only the members of the round brackets

from (33) is taken into account which leads to additional rounding error. However,

it is important to notice, that omitting the terms in the numerator will cause a

negative rounding error, while omitting the terms the denominator will cause a

positive rounding error. Thus, their counter effect will partly extinguish the

rounding error when the terms from both numerator and denominator are omitted.

Because there is no simple way to analytically determine the additional rounding

error caused by the COG calculated with (32), this error was determined

experimentally (for a detailed result see subchapter 4.2). Experimental results

show that the additional rounding error caused by COG is less than 4 bits. Here

again, it can be concluded that using only 14 bit DAC the error introduced by the

COG is extinguished by the DAC.

2.3.4 Sugeno Type Fuzzy Controller

Because the defuzzyfication has a significant calculation demand, another type of

fuzzy controller is also used, the so called Sugeno type fuzzy controller. In this

case the output of the rule is a polynomial function of the inputs, instead of a

fuzzy set. The output of the controller is the weighted average of the output of the

rules, where the weight is equal to the “firing” degree of the given rule. For

simplicity, the most common used Sugeno type controller is the zero order one, in

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 53 –

which case the output of the rule is a crisp value. Using MIN-MAX operators, the

output of the zero order Sugeno type fuzzy controller is given as

⎥
⎦

⎤
⎢
⎣

⎡
⋅

+
⋅+⋅

=⋅= MAXINT
xx

xxxx
MAXINTyY

)()(

)()(
]'[

21

2211

μμ
μμ

, (34)

where – for simplicity – it was considered that there are only two inputs with two

rules and the “firing” degree of the first rule is equal to the membership value of

the first input, while the “firing” degree of the second one is equal to the

membership value of the second input. The output of the first rule is equal to the

first input, while the output of the second one is equal to the second input.

Considering relations (9)-(11), it can be calculated the output of the zero order

Sugeno type fuzzy controller as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

−
−

+
−
−

⋅
−
−

+⋅
−
−

= MAXINT

AB

AX

AB

AX

x
AB

AX
x

AB

AX

Y

j

x

j

x

j

x

i

x

i

x

i

x

j

x

j

x

j

x

i

x

i

x

i

x

21

2

2

1

1

. (35)

After rearranging it

⎥
⎦

⎤
⎢
⎣

⎡
−⋅−+−⋅−

⋅−⋅−+⋅−⋅−
=

)()()()(

)()()()(

21

2211

i

x

i

x

j

x

j

x

j

x

i

x

i

x

i

x

j

x

j

x

j

x

i

x

ABAXABAX

XABAXXABAX
Y . (36)

The rounding error is zero when an algorithm is used which calculates the 48 bit

numerator and divides it with the 32 bit denominator. A simplified and faster way

is to use the MUL and DIV opcodes of the microcontroller. In order to reduce the

error, both the numerator and denominator should be multiplied by MAXINT .

⎥
⎦

⎤
⎢
⎣

⎡
+

⋅+⋅
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
⋅−

+
−
⋅−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
⋅−

+⋅
−
⋅−

=
)()(

)()(

)()(

)()(

21

2211

21

2

2

1

1

XX

XXXX

AB

MAXINTAX

AB

MAXINTAX

X
AB

MAXINTAX
X

AB

MAXINTAX

Y

j

x

j

x

j

x

i

x

i

x

i

x

j

x

j

x

j

x

i

x

i

x

i

x

μμ
μμ (37)

In conclusion, the zero order Sugeno type fuzzy controller calculated in this

simple way (37) has a similar rounding error as the COG defuzzyfication method,

the only difference is, that in this case a 32 bit numerator is divided by 16 bit

denominator. Using only 14 bit DAC, this rounding error does not appear at the

output of the DAC.

An important remark is that the presented error propagation of the fuzzy controller

is true for 8 bit microcontroller as well, when 8 bit ADC and DACs are used. It

can be also concluded that Mamdami type fuzzy controller with MIN-MAX

operator and MOM defuzzyfication has no rounding error compared to the DSP

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 54 –

based one. This is also true for multiplication operator and COG defuzzyfication if

one uses only 14 bit DAC.

3 Implementation of the Embedded Fuzzy Controller

In this chapter an embedded fuzzy controller is presented which has been

implemented in an industrial computer equipped with a 16 bit microcontroller

(INTEL 80186 @ 16 MHz).

3.1 Storing the Parameters of the Membership Functions

Cheapness of an embedded system can be achieved by using low performance

microcontroller connected to low capacity memory. As it was pointed out in

subchapter 2.1, the parameters of the membership functions are stored as 16 bit

integers and so the variables, like inputs/outputs of the controller. Thus, the

memory requirement for storing the parameters and variables of the algorithm are

only half or even less than a quarter of the memory capacity needed for a DSP

based controller. This is due to the fact, that floating point values are usually

stored in 32 bit (“single” float) or 64 bit (“double” float), sometimes even 80 bit

(“extended” float) memory storage.

In the proposed fuzzy controller 3 type of membership functions can be used for

the input (trapezoidal, triangle, and the generalized bell curve) and 3 type for the

output (trapezoidal, triangle, and singleton). Four parameters need to be stored for

the trapezoidal membership function, let’s denote them with A , B , C , and D .

In the same way can be stored the parameters of the triangle membership function

(CB =). The generalized bell curve

()
D

C

BX
Xf

2

1

1

−
+

= (38)

needs 3 parameters to be stored, where D – for the simplicity of the algorithm –

only 4 values can take {0.5; 1; 1.5; 2} coded on 4 different integer values. Finally,

only one value needs to be stored in B for the singleton.

For a general solution every membership function has 4 parameters, as it is shown

in Table 1.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 55 –

Table 1

Parameters of the membership functions

1ST PARAMETER 2ND PARAMETER 3RD PARAMETER 4TH PARAMETER

A B C D

Starting from the assumption that the 1st parameter of the trapezoidal (triangle)

membership function does not reach the MAXINT value, just analyzing the value

of the 1st parameter , it can be decided the type of the membership function stored

in a memory location (If the 1st parameter is equal to MAXINT a singleton is

defined, and can be identified with only one parameter). If parameter A is less

than MAXINT , a trapezoidal (triangle) membership function, otherwise a

generalized bell curve for the input, or singleton for the output is stored. The

number of the input and output membership function can be arbitrary large,

however, for the proposed fuzzy controller it has been limited to 4, respective to 2.

In the same way, the number of membership functions for an input/output can be

arbitrary large, but in the proposed fuzzy controller it has been limited to 8.

Although, the number of membership functions for an input/output is generally

even number, 8 is a power of two, which helps omitting multiplication when

accessing the memory location. Thus, the memory content, which stores the k th

parameter of j th membership function of i th input/output, is addressed in the

following way (C programming style notation):

LHkjiTkjiT addr /236]][][[+<<+<<+<<+= , (39)

where << denotes the left shift operator (which is equivalent with multiplying by

the power of 2), and LH / is set to zero for the lower byte, respective to one for

the higher byte of the integer value. Important remark is, that all indices start from

zero! addrT represents the absolute value of the first byte of the table, the rest

represents the offset of a parameter. The memory is organized in byte form (the

width of the data bus is one byte), and the memory capacity needed to store al the

parameters is 384688 =⋅⋅ bytes. Additional 6 bytes are needed to store the

number of the membership functions used for each input/output (if this value is set

to zero, the given input/output is not used!).

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 56 –

1st par. 2nd par. 3rd par. 4th par.

i index

j index

k index

2nd membership function

3rd membership function

4th membership function

5th membership function

6th membership function

7th membership function

8th membership function

2nd input

2nd output

Taddr

Figure 3

The parameters of the membership functions stored in memory

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 57 –

3.2 Constructing the Algorithm

In this chapter some useful hints are presented to construct the algorithm. See [3]

for a simplified pseudo code of the implemented algorithm.

3.2.1 Fuzzyfication

For each input/output 2 bytes of memory location are used where the current

input/output value of the fuzzy controller can be stored. This needs additional 12

bytes of memory location. The fuzzyfication function used in the implementation

is the identity function, e.g. f(y)=y. That means, that input variables are not

fuzzyfied, instead they are employed in the inference process directly. Although,

the fuzzyfication process means only the fuzzyfication of each input variable, in

what follows the calculation of the degree of consistency between the input value

and the membership functions of the appropriate input is also included.

In case of trapezoidal (triangle) membership function the degree of consistency is

calculated as in (14), which needs one multiplication and one division. In order to

omit the multiplication, the following trick is used:

XXXXFFFFXMAXINT HH −<<=⋅−=⋅=⋅)16()110000(, (40)

thus, subtraction is used instead of multiplication. In the worst case only a division

is needed, otherwise the degree of consistency is either 0 or 1. In case of

generalized bell curve the precision of the division can be increased if both the

numerator and denominator are multiplied by 256 (shifted with one byte to the

left). For example, when 5.0=D the following relation gives an approximate

value:

C

BX

FFFF
X

H

H

8||
100

00
)(

<<−
+

=μ . (41)

Storing the)(Xμ membership value needs two bytes, and current membership

values are stored in similar way as the parameters of the membership functions.

3.2.2 Inference

Compactness and effectiveness has taken with first priority when the codification

of the rules has been implemented. Each rule consists of two parts: one antecedent

part containing one or more antecedent term, and one consequent part having one

consequent term. Each antecedent/consequent term needs one byte for storage as it

can be seen in Figure 4. The end of the rule-base is indicated by a value greater

than 128 (the most significant bit is set to 1).

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 58 –

It should be noted that in the antecedent term the number of the membership

function (set) and the number of input is stored in such way, that the memory

location of the parameter can be calculated by masking the antecedent term, then

shifting to the left by 3 and adding the number of the parameter, as it is in (39). In

the same manner is coded the consequent term. In the antecedent term the AND

operator (MIN - minimum or MUL - multiplication) is also coded. In the

consequent term the implication operator (MIN - minimum or MUL -

multiplication) and the aggregation operator (MAX - maximum or SUM -

bounded sum) are coded. The number of bytes required for storing a single rule is

maximum 5, since to each input one antecedent term corresponds, while the rule

base requires in the worst case 20480 bytes (counted for 4096 rules). However, in

everyday applications the number of rules is limited to around 100.

3.2.3 Defuzzyfication

When singletons are defined at the output (Sugeno type fuzzy controller) the

defuzzyfication is simple and there is no need to describe in details. In case of

COG it has been used the trick, that the division can be avoided if the divider is

equal to MAXINT . This is due to the fact, that having a 32 bit dividend and 16 bit

divider, the latter equal to MAXINT , the result is the high word of the dividend.

Figure 4

Coding the antecedent (a) and consequent (b) term of the rule

0 0

Nr. of set

Nr. of input

AND operator:

(a)

0=MIN, 1=MUL

0 1

Nr. of set

Nr. of output

Aggregation operator:

(b)

0=MAX, 1=SUM

Implication operator:

0=MIN, 1=MUL

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 59 –

4 Results

4.1 Simulation Results

Most fuzzy engines are analyzed for three basic parameters: performance, code

size, and inference time. Performance involves the smoothness of output in

transition areas (i.e. where the input membership functions overlap). Performance

was examined by building two fuzzy controllers in a MATLAB environment, one

using floating point calculation, and the other one using only integer values. Both

fuzzy controllers have 2 inputs and one output, having the following rule base:

1. (In1==NB) & (In2==NB) => (Out=NB)

2. (In1==NB) & (In2==ZR) => (Out=NB)

3. (In1==NB) & (In2==PB) => (Out=ZR)

4. (In1==ZR) & (In2==NB) => (Out=NB)

5. (In1==ZR) & (In2==ZR) => (Out=ZR)

6. (In1==ZR) & (In2==PB) => (Out=PB)

7. (In1==PB) & (In2==NB) => (Out=ZR)

8. (In1==PB) & (In2==ZR) => (Out=PB)

9. (In1==PB) & (In2==PB) => (Out=PB)

The obtained surfaces can be seen in Figure 5-8. In Figure 5 Mamdani type fuzzy

controller is presented with MIN-MAX operator, trapezoidal membership

function, and COG defuzzyfication. There is no visible difference between the

DSP and μC based fuzzy controller, the average difference is only 1-2 bit when

using 16 bit DAC. In Figure 6 Mamdani type fuzzy controller is presented with

MUL-SUM operators, trapezoidal membership function, and COG

defuzzyfication. It can be observed that the surface of the μC based fuzzy

controller around zero is flatter than the surface of the DSP based controller when

16 bit DAC is used. This difference is due to the presence of the rounding error of

the μC based fuzzy controller.

Figure 5

Surface of the Mamdani type fuzzy controller with MIN-MAX operators, trapezoidal membership

functions, and COG defuzzyfication (DSP based on the left, μC based on the right)

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 60 –

Figure 6

Surface of the Mamdani type fuzzy controller with MUL-SUM operators, trapezoidal membership

functions, and COG defuzzyfication (DSP based on the left, μC based on the right)

Figure 7

Surface of the Sugeno type fuzzy controller with MIN-MAX operators, and trapezoidal membership

functions (DSP based on the left, μC based on the right)

Figure 8

Surface of the Mamdani type fuzzy controller with MIN-MAX operators, generalized bell curve

membership functions, and COG defuzzyfication (DSP based on the left, μC based on the right).
In Figure 7 the surfaces of the zero order Sugeno type fuzzy controller with MIN-MAX operators, and

trapezoidal membership functions are presented. As it can be seen there is no visible difference

between the DSP and μC based fuzzy controller, the average difference is only 1-2 bit when using 16

bit DAC. Finally, in Figure 8 the Mamdani type fuzzy controller with MIN-MAX operators,

generalized bell curve membership functions and COG defuzzyfication is shown. In this case, the

rounding error is significant, and is presented only for the sake of completeness, its usefulness might

be questionable for some applications.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 61 –

4.2 Experimental Results

The proposed embedded fuzzy controller was implemented in an industrial

computer (UNI-PLC-100) at Process Control Ltd. This industrial computer is

based on INTEL 80186 microcontroller at 16 MHz, and is equipped with analogue

and digital input/output boards. The front panel of the industrial computer is

presented in Figure 9.

Figure 9

The front panel of the industrial computer. Courtesy of the Process Control Ltd.

There are two possibilities to store the parameters of the membership functions

and the rule base: either entering manually with the help of the keyboard on the

front panel, or downloading through the serial line from a Personal Computer

(PC).

Because the whole fuzzy controller algorithm is implemented in assembler

language, the code size is very compact. The overall code is less than 10 KB. The

inference time is also impressive, taking into account that the microcontroller runs

only at 16 MHz. Some inference time for Mamdani and Sugeno type fuzzy

controller with MIN-MAX operators, trapezoidal membership functions and COG

defuzzyfication (only for the Mamdani) are presented in Table 2. It can be seen

that the total inference time (fuzzyfication+inference+defuzzyfication) is very

impressive for a fuzzy controller with 2 inputs, 3 membership functions (sets) per

input, 9 rules and COG defuzzyfication. It is only 1011 μs, which means that the

fuzzy controller is able almost every 1 ms to update the control signal.

Even though a DSP based fuzzy controller might be able to update the control

signal 100 times more frequently than the microcontroller based one, this is

useless if the controlled process is slow, and its state variables changes so slowly,

that there is no effect on the controlled process if one update the control signal

more frequently.

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 62 –

Table 2

Inference time with MIN-MAX operators

Nr. of

input

Nr. of

set/input

Nr. of

rules

Fuzzification

(trapezoidal) [μs]

Inference

[μs]

Defuzzyfication

Sugeno / COG [μs]

1 3 3 78 50 85 / 641

1 5 5 96 70 94 / 657

1 7 7 115 90 100 / 660

2 3 9 132 169 95 / 710

2 5 25 177 427 96 / 820

2 7 49 222 819 122 / 1070

3 3 27 168 593 127 / 1123

Some inference time for Mamdani and Sugeno type fuzzy controller with MUL-

SUM operators, trapezoidal membership functions and COG defuzzyfication (only

for the Mamdani) are presented in Table 3. The same remark can be mentioned

here, the inference time is small compared to the clock frequency of the

microcontroller.

Table 3

Inference time with MUL-SUM operators

Nr. of

input

Nr. of

set/input

Nr. of

rules

Fuzzification

(trapezoidal) [μs]

Inference

[μs]

Defuzzyfication

Sugeno / COG [μs]

1 3 3 78 53 85 / 910

1 5 5 96 74 94 / 918

1 7 7 115 96 100 / 922

2 3 9 132 197 100 / 1056

2 5 25 177 505 101 / 1348

2 7 49 222 971 122 / 1903

3 3 27 168 736 127 / 1900

Conclusions

In this article the implementation of an embedded fuzzy controller is proposed for

16 bit microcontroller with fast fuzzyfication-inference-defuzzyfication algorithm.

It has been demonstrated that because controllers receive information from the

process via ADCs and controls the process with the help of DACs the use of DSP

based fuzzy controller might not pay the effort for some type of fuzzy controller.

Generally, 16 or only 14 bit DACs are used at the output of a fuzzy controller, in

which case the precision of the floating point operation is lost and a DSP based

fuzzy controller seems better, faster and more accurate than it is in reality,

especially when the state variables of the controlled process change slowly. Thus,

the use of a μC based fuzzy controller with integer operations is a reasonable

compromise between performance and price.

Simulation and experimental results has been also presented which are supporting

the theoretical idea presented in this article.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 63 –

Acknowledgement

This paper was supported by the Hungarian N.Sc. Fund (OTKA No. T 042866)

for which the authors express their sincere gratitude.

References

[1] Ferenc Farkas, Szilárd Varga, Aleksei Zakharov: Investigation of DC servo

drives with fuzzy logic control, Czasopismo Techniczne 4E/1998,

Wydawnictwo Politechniki Krakowskiej, Poland, 1998, pp. 35-45

[2] Ferenc Farkas, Aleksei Zakharov, Szilárd Varga: Speed and position

controller for DC drives using fuzzy logic, Studies in Applied

Electromagnetics and Mechanics (Vol. 16), Applied Electromagnetics and

Computational technology II, Amsterdam, Netherlands, IOS Press, 2000,

pp. 213-220

[3] Ferenc Farkas: Implementation of fuzzy controller on 16 bit

microcontroller, Proceedings of IEEE International Conference on

Intelligent Engineering System (INES’99), Stara Lesna, Slovakia, 1-3

November 1999, pp. 567-572

[4] George J. Klir, Bo Yuan: Fuzzy sets and fuzzy logic - Theory and

applications, Prentice Hall, New Jersey, 1995

[5] Li-Xin Wang: Adaptive fuzzy systems and control - Design and stability

analysis, Prentice Hall, New Jersey, 1994

[6] Retter Gyula: Fuzzy, neurális, genetikus, kaotikus rendszerek – Bevezetés a

„lágy számítás” módszereibe, Invest Marketing Bt., Budapest, 2003

[7] Kai Michels: Fuzzy control of electric drive?, European Conference on

Power Electronics (EPE’97), Trondheim, Norway, 8-10 Sept, 1997, pp.

1.102-1.106

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 65 –

Coping with Security in Programming

Frank Schindler

Department of Applied Computer Science and Engineering

Faculty of Electrical Engineering and Information Technology

Slovak Technical University, Iľkovičová 3, SK-812 19 Bratislava, Slovakia

e-mail: frank.schindler@stuba.sk

Abstract: This article deals with importance of security issues in computer programming.
Secure software can only be designed with security as a primary goal. To achieve that we
would have to redesign our computer systems with security in our mind including entire
computer environment, e.g. hardware, programming languages and, of course, operating
systems. In software development process the quality of resulting computer code should be
the most important aspect during the whole program development process. Simplicity of the
code in computer programs always pays off. Extra options and features can result in
unmanageable complexity. For computer security purposes, program modularisation is of
a paramount importance and seems to be the only way how to properly cope with
complexity. Internal consistency of the whole program should be frequently checked via
assertions. They are the best way to check parameter validity coming from other program
units e.g. modules. Especially each module must distrust everything else coming from other
modules and/or from the user. Frequently used code optimisations are classically leading
to some sort of redundant code options and features and thus indirectly causing a useless
code complexity. Extensive testing of programs is necessary for finding possible bugs in
programs. However it does not locate security holes in the system. Standard software
implementation techniques are completely inadequate in the production of a secure code.
Consequently an introductory programming course as a college course should be taught in
parallel with introductory security of computer systems, since it is too late to teach it as an
elective at the end of computer science curriculum. In general, security of computer
systems and programming should not be separated as two different and separate
disciplines instead of it they should be integrated together.

Keywords: security of computer systems, principle of least privileges, lack of functionality,
module, module's specification, module's implementation

1 Introduction

Standard software development techniques are completely inadequate to create

secure software, since they only deal with correctness of software e.g. with its

specified functionality. If you press the key A, then action B will happen.

F. Schindler Coping with Security in Programming

 – 66 –

Consequently a correct program behaves exactly according to its specification. On

the other hand, secure software relates to a lack of functionality (see [3]). No

matter what the user (attacker) does, he cannot do action X. It is possible to test

the functionality of a program, but there is no known way to test the lack of it.

In real life situations, there are many different ways a computer program can be

made to fail or crash. Often this may be easily achieved when the user (attacker)

provides invalid input either on purpose or by an accident. Deliberate actions on

the side of the user could also include feeding the program with viscous data.

Programs react on such inputs in various ways. Some of them simply fail without

any error messages, others act incorrectly, and yet others crash the whole

operating system. A program that crashes the whole system is unacceptable above

all in the computer security area, because it may be possible leading to some sort

of security breach. Therefore development of secure software is sufficiently

different from programming other software applications. Common program's bugs

(e.g. buffer overflows) are the most serious security problems in today’s computer

systems. To be more specific the biggest problem in computer security is related

to the weakest link property. In old days of computing a programmer received a

task to be performed, went away and developed the whole program alone.

Nowadays programs for complex tasks are programmed by a team of many

different programmers that can produce millions of lines of code. The level of

output of such a typical programmer involved in the team is on average only 5 or

10 lines of code per day. Large programs require precise design documents

showing what each piece of code does and how it interacts with the rest of the

program. Bug-free code is duty for all developers on the team, therefore they have

to be involved in peer design reviews and peer code reviews. When a programmer

finishes a particular part of code other team members must make a complete walk-

through of the programmer's design and/or code. Basic principles of software

engineering advocate to write small, self-contained program units called modules.

Each module should be isolated from harmful effects of other modules. This can

be achieved via information hiding (encapsulation). Secure programming implies

that each program's (or subprogram's) actions must be contained in the program's

specification. To write safe and sound programs we should stick to three basic

principles: information hiding, defensive (robust) programming, and assuming the

impossible.

2 Information Hiding (Encapsulation)

A module often specifies and implements an abstraction (see [4]). The module’s

specification describes the behavior and properties of the abstraction, and the

module’s implementation contains the concrete realization in the program code.

Effective programming also takes advantage of reusing existing code libraries

and/or off-the-shelf (reusable) components. Each well-designed module should

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 67 –

encapsulate (group and hide) private/public data and the code bodies. Moreover

the module should provide well-defined interfaces through which the program can

access or modify module's data. Any undocumented, unspecified code options,

side effects or function definitions may result in a covert channel or trap door

(back door) through which data could either leak, or be changed or damaged and

thus they could pose a severe security problem. Most of these ideas are a direct

consequence of the "Principle of Least Privilege" and they form the basis for

program code integrity and security. During the whole process of the program

specification, design, implementation, testing and maintenance keep in mind that

simplicity always pays off.

3 Defensive Programming

It is based on the idea that the given program, being executed, should not depend

on anything that is not self-created in the program. Every time when a user

(attacker) is running the program the programmer must suppose that the user may

break it either intentionally or unintentionally by providing flawed input to it.

Therefore, insert into your code as many of assertions as possible to catch

erroneous data flowing from function (module) to the other function (module). By

no means: "garbage-in garbage out". That would be fatal. On the other hand the

programmer should never abuse the features of the given programming language

like pointers. Especially de-allocation of pointers is a very dangerous operation

often leading to dangling pointers. On the other hand, if a pointer is returned by a

function it allows illegal access to program's data (data leakage vulnerability).

Also the same holds for array indices. Another potential weakness may relate to

error codes returned from the functions. When they are left unchecked the values

returned from the function should not be used, because they could act as a

destructive trash when they are used as input for rest of the code. Avoid use of

cryptic code or extra features and options of the programming language that only

very few programmers know and use. Technique of defensive programming is

often referred to as "robust programming" (see [1]).

4 Assuming the Impossible

Module's specification should be used as a document against which the program

should be tested after it has been finished. Without it there is no rigorous way to

describe what has been accomplished in the program. Consequently it has to be

complete and up-to-date. Let me rephrase it. Anything that is not in there does not

have to be implemented in the code. Programmers first write a program and then

they test it to see if it functions correctly. Then, if any bugs are found they fix

F. Schindler Coping with Security in Programming

 – 68 –

them and try it again. This process cannot lead to a completely correct program,

since this way we are unable to show absence of bugs. Such a program usually

works fine in the most typical situations. To verify that a program is correct is way

over our capabilities today. Nevertheless we can try to do our best when we are

testing programs. Generally, two types of tests are needed. The first one should be

generic one made from the module's specification. The second set of tests should

examine module's implementation limits, e.g. buffer management errors. Perhaps,

designing, writing and testing of a secure computer program could be best

compared with driving the car on the busy highway. Programming language, we

are using, should never be misused the same way as the car. Defensive driving is a

counterpart of defensive programming in this case. Some features like pointers

should be used with caution the same way as when we are riding the car we must

anticipate that anytime there could be a cat or some other animal running from

behind the bush into our way. Therefore numerous assertions should be embedded

in the source code in order to improve the quality of code. Anytime in the program

there is a possibilities to check the internal consistency of the system you should

include an assertion. If it fails it can abort the program and report what was going

wrong. This way it is possible to catch up a lot of errors from which some of them

could lead to a serious security breach. Producing wrong answers in the program

can do a lot more harm. Do not allow garbage data to propagate freely through

your program! In order to illustrate some basic concepts, here I provide a few

short and simple examples concerning secure programming. Remember that most

computing errors happen exactly in cases like these.

5 Programming Examples

5.1 Buffer Overflows

int i = 0;

int a[10]; // Here, buffer is allocated as an array made of 10 integers

....

i = 11; // index i is set over the upper bound of the array

a[i] = 1;

....

// Buffer overflows cause about 50% of the security problems on the

// Internet (Ferguson, 2003). Algol 60 solved this problem!

// However C, C++ allow buffer overflows!

// Solution: Avoid any such language for secure applications!

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 69 –

5.2 Missing Initialization of Variables

#include <stddef.h> // for NULL

...

int *ptr; // int *ptr = NULL;

...

free(ptr);

// here a pointer is declared, that has not been allocated, but it is de-allocated. //

This leads to a typical situation in which operating system can crash.

5.3 Cryptic Code

char *p1, *p2;

...

while (*p1++ = *p2++)

 ;

// *p1++ is equivalent to:

// *(p1++) it is a unary operator...right to left

5.4 Program Ignoring Error Messages

const int NO_ERROR = 0;

....

int One_Function(char ch, char *ptr);

int err_Message;

char u, v;

....

err_Message = One_Function('?',&v);

u = v;

// it should be: if (err_Message == NO_ERROR) u = v;

5.5 Missing Null-Condition Restrictions

int a[5]; // stack is represented as an array made of 5 integers

int top = -1; // this condition means the stack is empty

...

F. Schindler Coping with Security in Programming

 – 70 –

i = pop(); // trying to pop the top element from an empty stack

// it always must be:

if (top != -1) // see if the stack is non-empty and then pop

 i = pop();

5.6 Dangling Pointers

#include <stddef.h> // for NULL

...

int *ptr1 = new int;

int *ptr2 = new int;

*ptr2 = 42;

*ptr1 = *ptr2;

delete ptr1; // avoid an inaccessible object

ptr1 = ptr2;

delete ptr2;

// Notice a missing assignment:

ptr1 = NULL; // avoid dangling pointer

5.7 Assertions

#include <assert.h>

// C++ standard library providing executable assertions

.....

double FindAverage (int sumOfScores, int studentCount)

// Precondition:

// sumOfScores is set

// studentCount > 0

// Postcondition:

// average = sumOfScores / studentCount

{

 double average = 0.0;

 assert (studentCount > 0);

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 71 –

 // this function halts the program if the expression is false

 average = sumOfScores / studentCount;

 return average;

}

5.8 Work with Library Functions

It seems to make a perfect sense to ask students to write a program calling some of

the standard input/output library functions in C. Their task is to feed them with

such an input, that will crash the whole operating system. When that happens they

should use debugger to see why the system collapsed.

Example:

char a, b, c, s[10];

int n;

double x;

scanf ("%c%c%c%d%s%lf", &a, &b, &c, &n, s, &x);

As a direct continuation of this assignment students should be asked to write a

robust scanf function in C of the same type.

Examples of this sort could be quite useful during the lab sessions associated with

the corresponding face-to-face lectures!

5.9 Paradoxes – Testing the Impossible (Variant of "Y2K

Bug")

An insurance company offers a life insurance to its clients based on their age. It

uses a program reading from a file a list of people consisting of the name and year

of birth per line. The year of birth is a two-digit item. Assume we are in 20th

century and today we have the first day of January 2000.

Age of the person born in 1925 can be obtained as:

"00" - "25" = -25 years.

Conclusion

Software manufacturers are used to sell their products with many known bugs and

therefore they disclaim any legal liability for using their merchandise in the

corresponding software license. For some applications like computer games this is

not a real problem. However computer programs are more and more used

everywhere in our lives. Standard implementation techniques are completely

inadequate to create robust software. Software security can be guaranteed only if

F. Schindler Coping with Security in Programming

 – 72 –

all program parts do their job. Low-quality code is the most common cause of real

world attacks, and should be avoided. A secure program may just be written by

the sound technique of defensive (robust) programming coupled along with

information hiding provided it has been tested thoroughly. The mission to test

large programs with millions of lines of code is almost impossible. Only

thousands (or millions) of users might test it exhaustively. In college

programming courses the special attention should be paid to the secure design,

implementation and testing of programs systematically. It is not enough when a

program runs satisfactorily for correct data only. Moreover secure programs

should not cause any unnecessary vulnerability such as information damage,

leakage or data diddling by strictly adhering to "Principle of Least Privilege" and

information hiding. Although this approach is not going to solve all security

problems lurking on us in our programs it could lead to programs that are better

structured, better tested, better thought of and at last more secure. The only

imaginable way to make secure software would be to redesign our entire computer

environment, including hardware, programming languages and operating systems

with security as a primary goal in our mind. And, that is time consuming and

costly.

References

[1] M. Bishop, D. Frincke: Teaching Robust Programming, IEEE Security and

Privacy, published by IEEE Computer Society, Vol. 2, No. 2, (2004) pp.

54-57

[2] M. Blaha: A Copper Bullet for Software Quality Management, Computer

published by IEEE Computer Society, Vol. 37, No. 2, (2004) pp. 21-25

[3] N. Ferguson, B. Schneier: Practical Cryptography, Wiley Publishing Inc.

Indianapolis, Indiana, (2003) ISBN 0-471-22357-3

[4] M. R. Headington, D. D. Riley: Data Abstraction and Structures with C++,

D. C. Heath and Company, Lexington, MA, (1994) ISBN 0-669-29220-6

[5] N. R. Mead: Who is Liable for Insecure Systems? COMPUTER published

by IEEE Computer Society, Vol. 37, No. 7, (2004) pp. 27-34

[6] S. Meyers: Effective C++: 50 Specific Ways to Improve Your Programs

and Designs, Addison-Wesley, Reading, Massachusetts (1997)

[7] C. P. Pfleger: Security in Computing, Prentice-Hall International, Inc.,

Upper Saddle River, NJ, (1997) ISBN 0-13-185794-0

[8] F. Schindler: Coping with Safe Programming, Proceedings of Conference

"I & IT 2004", Banská Bystrica, Slovakia, (2004) pp. 142-145, ISBN 80-

8033-017-7

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 73 –

The Statics of the Traditional Hungarian
Composite Reflex Bow

Sándor Horváth, Géza Körtvélyesi, László Legeza

Bánki Donát Faculty of Mechanical Engineering, Budapest Tech
Népszínház u. 8, H-1081 Budapest, Hungary
horvath.sandor@bgk.bmf.hu

Abstract: The operation of the Hungarian bow raises several fascinating mechanical

questions. To answer these questions a good number of experiments and calculations need

to be made, moreover the mechanical model of the bow is needed to be prepared which

appropriately confirm the results of experiments. Teachers in the Bánki Donát Mechanical

Engineering College of Budapest Polytechnic set up a small laboratory in 1997 in order to

study and measure the physical characteristics of traditional bows. The mechanical

analysis of bows is based on the experiments gained in the laboratory and the results of

measurements. The knowledge acquired about the mechanical model of bows facilitates not

only the analysis of the traditional Hungarian bow, but also provides a good foundation for

the comparison from the technical point of view of various composite reflex bows belonging

to different historic ethnic groups.

1 Introduction

In the course of the history of mankind certain peoples and nationalities can
always be traced to have risen and fallen and it is primarily the historians’ task to
research in the circumstances. According to historians, in many cases the
immediate reason for certain peoples’ rise was the ability to set up the best-
organised and most disciplined army of their age, which was equipped with the
most advanced weaponry.

In the history of Hungarians there was a period of at least one and a half centuries
in which Hungarians had by far the most powerful army of their time. There is
written evidence proving that princes or pretenders in western countries often
requested Hungarians still living in Etelköz (i.e. the homeland of nomadic
Hungarians in Asia) to support them with their tribes. Hungarians had a good
reputation worldwide for their modern, well-organised and well-disciplined
warfare, which bore a lot of resemblance to the Huns’ army. Their most efficient
weapon, the composite reflex bow, which was exclusively used by eastern
nomadic tribes, was regarded as crucially decisive for every battle. After the

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 74 –

Hungarian tribes had occupied their new homeland in the Carpathian Basin,
almost the whole of Europe paid taxes to the Hungarian principality’ in return for
the support of their invincible army. The taxes Hungarians imposed on western
civilisations assured peace and quiet for them, on the other hand if they had failed
to pay their taxes, the “roaming” Hungarian tribes soon appeared on the horizon
claiming their share. Legend has it that the inhabitants of medieval Modena had
been found in their church praying to God in the following manner: “...Almighty
God, please save us from the arrows of Hungarians.”

The ancient weapon called the reflex bow had been widely used for hunting and
fighting by nomadic tribes in the steppes. While preserving its basic operational
principal, the different tribes produced their own versions of the original weapon
by developing new geometrical varieties. As a result, the Hungarian bow can be
distinguished fairly easily from the Hun, Avarian, Mongolian, Chinese or Turkish
bows.

In Hungary, the ethnographer Károly Cs. Sebestyén was the first who had
identified the remains of the ancient Hungarian bow with the long flat bone blades
which were similar to knives and had been found arranged in similar patterns in
some of the graves from the time of the Hungarian Conquest of the Carpathian
Basin. They have obviously meant an almost indecipherable riddle for
archeologists. The bone blades covered and decorated the grip areas and their rigid
ends, the horns of bows. Károly Cs. Sebestyén’s articles had focused attention to
the Hungarians’ ancient weapon. It was Kálmán Jakus, a Physical Education
teacher at Lónyai Street Reformist Academic Grammar School, though, who
succeeded in manufacturing the first Hungarian bow. His primary purpose was to
develop an efficient bow for sport. One of the most prominent of the next
generation of developers was Dr. Gyula Fábián (1915-1985), a department head at
the University of Agriculture in Gödöllő (present day Szent István University)
who had carried out scientific research into the evolution of the Hungarian bow,
moreover he had also been able to make a reconstruction of the traditional reflex
bow. His reconstructions were also acknowledged by archeologists specialising in
the given historic period. His attempts have been followed by more or less
successful reconstructions of bows. In the past few decades new bows have
appeared with some metal or fibreglass parts in their construction. They also
contain some plastic, and therefore proved to be much stronger than the traditional
constructions. Manufacturing bows which are exclusively made of natural
materials is more time-consuming, requires more expertise, moreover the
acquisition of special raw materials such as animal sinew, ox horn, special glue or
resin etc. would make the whole process extremely difficult. Although the so-
called “Hungarian Conquest period” bows available for sale these days are based
on the functional and geometrical construction of their traditional Hungarian
counterparts, it must be noted that their flexible bow arms are made of plastic
containing glass fibre or carbon fibre.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 75 –

Among Professor Gyula Fábián’s disciples, Imre Puskás and Csaba Búza were the
most outstanding. Árpád Ambrózy also needs to be remembered since he wrote a
book about hunting archery in 1994. In this field Gábor Szőllősy should also be
referred to as he was the first in Hungary to have done his doctorate in archery,
moreover he has written several scientific articles and given a great number of
lectures to express appreciation for the traditional Hungarian bow which is
regarded as a significant product of ancient Hungarian craftsmanship as well as a
brilliant “technological” achievement. He also puts great emphasis on the
balanced relationship between the forces in humans and the bow. Today several
manufacturers specialise in manufacturing the Hungarian bow, nevertheless Lajos
Kassai’s and Csaba Grózer’s bows are by far the most popular.

The operation of the Hungarian bow along with the special backward shooting
technique, which was so much favoured by our ancestors, raises several
fascinating mechanical questions. To answer these questions a good number of
experiments and calculations need to be made, moreover the mechanical model of
the bow is needed to be prepared which may appropriately confirm the results of
experiments. Teachers in the Bánki Donát Mechanical Engineering College of
Budapest Polytechnic with the professional assistance of Dr. Gábor Szőllősy set
up a small laboratory in 1997 in order to study and measure the physical
characteristics of traditional Hungarian bows. The mechanical analysis of bows is
based on the experiments gained in the laboratory and the results of
measurements.

Our objective was to prepare the mechanical model of the Hungarian bow and
then the preparation of a computer program which can be used for examinations
about the geometrical optimalisation of the bow from the energetic point of view.
The knowledge acquired about the mechanical model of bows facilitates not only
the analysis of the traditional Hungarian bow, but also provides a good foundation
for the comparison from the technical point of view of various composite reflex
bows belonging to different historic ethnic groups.

2 The Mechanical Model of the Bow

Before starting any mechanical calculations, the geometrical features, more
precisely the identifiable characteristic points of the bow need to be
unambiguously defined, thus defining their position and co-ordinates with the
minimum of measuring errors. It is a good idea to begin with the situation of the
characteristic points and examine how they are related to each other. The
measurements are related to each other as they form a measurement chain,
therefore it makes checking easier. Minor mistakes might be made, though, if
distances are measured instead of the characteristic angles, and then the figures

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 76 –

calculated and concluded from the distances of angles are compared with each
other.

The geometry of the drawn Hungarian bow is calculated and concluded as in
Figure 1.

Figure 1

Geometry of the drawn Hungarian bow

in which

2s1 – the length of the grip section (rigid part in the middle) (mm)

s3 – the length of the axis of the rigid horn (mm)

2 L – the length of the string (mm)

A – the biggest distance between the flexible bow (bow arm) and its string
(mm)

B – the length of the geometrical string of the flexible bow (mm)

x0 – the distance between the string and the grip section, the height of the
drawing of the bow (mm)

In order to make the calculations simpler, the following assumptions can be made:

- the bow arm forms a curved line,

- the bow is perfectly symmetrical,

- the cross section of the bow arm is constant,

- the connection between the bow arms and the rigid parts of the bow is like
bracketing,

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 77 –

- the material of the bow arm is homogeneous and flexible,

- the grip and the horn are rigid,

- the effect of the pre-stretching of the bow is fully contained in the
characteristics of the bow.

Later, after the mechanical model has been necessarily adjusted and made more
precise, the assumptions above can be ignored.

The most important geometrical characteristics of the drawn condition of the bow
are shown in Figure 2.

Figure 2

Geometrical characteristics of the drawn condition of the bow

The calculation of the radius of the flexible curved line:

A

BA
r

8

2

2
+= , (1)

then the equation about the central angle of the curved line:

224

4

2
sin

BA

AB

+
=

β
. (2)

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 78 –

With the knowledge of the results of the equations above, the length of the flexible
curved line can be calculated as follows:

βrs =2 . (3)

Considering basic geometry, the horizontal projection of the lenght of the rigid
horn (s3) can be calculated as follows:

21

)2
3

2()21(22

3
b

sabbaab

S
x

+

−⋅+−−
= , (4)

in which
)1(2

22
3

2)1(2
0

sL

BssLx
a

−⋅

−+−+
= , (5)

and
1

0
sL

x
b

−
= . (6)

With the knowledge of xS3, the λ angle between the string of the flexible bow and
the horizontal x axis can be concluded as follows:

B

S
xx 30cos

−
=λ . (7)

This way the α angle is calculated:

22

πλβα −+= . (8)

The flexible bow fixed to the grip section shall be regarded as rigid, therefore the
φ1 angle between them is considered constant. Therefore its calculation:

λβπϕ −−=
22

3
1 . (9)

The coordinates of the characteristic P1, P2, P3 and Pk points as indicated in Figure
2.

01 =x ; 11 sy = , (10)

λcos2 ⋅= Bx ; λsin12 ⋅+= Bsy , (11)

δsin323 ⋅+= sxx ; Ly =3 , (12)

αcos⋅= r
k

x ; αsin1 ⋅+= rs
k

y , (13)

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 79 –

in which the δ angle between the rigid horn and string can be calculated from the
angle function below as follows:

3

2cos
s

yL −
=δ . (14)

Finally, the calculation of the φ2 angle, which is characteristic of the rigid context
of the flexible curved line and the rigid horn, therefore can be regarded as a
constant figure:

πδβαϕ ++−=2 . (15)

In order to check the geometrical figures, it is recommended to also check the
figures of the bow with measuring (by measuring distance and angle), and to draw
and construct a picture of the bow. The mechanical calculations about the bow can
only be made if correct geometrical characteristics are available.

3 The Statics of the Drawn Bow

The basic static figures of the mechanical calculations of the traditional Hungarian
composite reflex bows is the product [Nmm2] of multiplying the Fx drawing force
[N], the flexibility modulus of the material of the bow (I) and the secondary
momentum of the cross-section of the bow (E).

In order to minimize the errors in the calculation due to the above-mentioned
assumptions, a correctional function needs to be applied which modifies the IE
product of multificaton according to the size of the deformation and to what extent
the bow is drawn. The correctional equation shall be defined with the discrepancy
between the results of measurements and calculations.

The transformation of the flexible curve caused by the H and F forces as well as
M momentum can be calculated in the ζ-η system of coordinates with the
application of the basic rules in stress analysis. The curve is regarded as a flat
curve and a braced holder. Based on the theoretical considerations of the above-
mentioned, the transformations, i.e. the change of the Ψ angle and the u, v
movements shall be calculated as follows (based on Muttnyánszky 1981) in
equation 16 a-c.

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 80 –

Figure 3

The theoretical constructed figure of a drawn bow

()

()

(),321

2

,321

2

,321

rHcrFcMc
IE

r
v

rHbrFbMb
IE

r
u

rHarFaMa
IE

r

++=

++=

++=ψ

 (16 a-c)

in which

[]
[]
[]).cos()sin(5,1)(cos5,0

),sin()2)cos(5,1()(sin5,0

),cos(1)sin()cos(5,15,0

,1)cos()sin(

),cos()sin(

,

2
2

2
3

32

13

12

1

ββββ

ββββ

ββββ
βββ
βββ

β

−+=

−++=

−+−==
−+==

−==
=

c

b

cb

ba

ca

a

 (17 a-f)

The transformation of the drawn bow is significant, therefore these
transformations strongly affect the forces, the situation, direction and size of the

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 81 –

momentum of the forces causing deformation. Because of this situation the
geometry and the play of power forces of the bow shall be determined with
iteration, i.e. the method of gradual approach.

The first step of iteration is to modify ζ2 and η2 as interpreted in the ζ-η system of
coordinates and defined as (P2) that is the common point of the x2 and y2
coordinates of the flexible bow arm and the horn, with u, v and ψ transformation
figures, which can most easily be read from a constructed figure. Further on, the
new coordinates are defined with the knowledge of the calculated transformation
during iteration:

.2
*
2

,2
*
2

v

u

−=

+=

ηη

ξξ
 (18 a-b)

The familiar transformation of coordinates is used for the calculations between the
ζ-η system of coordinates which are revolved with x-y and angle α of coordinates.

Figure 4

The equation for the calculation from the x-y system of coordinates to the ζ-η
system:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
y

x

)cos()sin(

)sin()cos(

αα
αα

η
ξ

. (19)

And here is the reverse of the equation, i.e. the calculation is transferred from the
ζ-η system of coordinates to the x-y system:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
η
ξ

αα
αα
)cos()sin(

)sin()cos(

y

x
. (20)

With the knowledge of ζ2
* and η2

*, x2
* and y2

* as the new coordinates of P2 shall be
calculated with the application of the above-mentioned transformation of

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 82 –

coordinates. After all P3 as the new position of the common point of the bow horn
and the string can be calculated as follows:

).2cos(3
*
2)22/3sin(3

*
2

*
3

),2sin(3
*
2)22/3cos(3

*
2

*
3

ψϕβαψϕβαπ

ψϕβαψϕβαπ

−−−⋅−=−−−+⋅+=

−−−⋅+=−−−+⋅+=

sysyy

sxsxx
(21 a-b)

Therefore the half angle of the string:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

L

y*
3arcsinγ , (22)

and then the xF coordinate of the introduction of force of the Fx pulling force:

2*
3

2*
3 yLx

F
x −+= . (23)

The calculation of the pulling force in the string:

)cos(21 γ⋅
= x

F
F . (24)

The same equation in a vector form:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

)sin(
1

)cos(
1

1 γ
γ

F

F
F . (25)

The position vector between the P2 and P3 points:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

*
2

*
3

*
2

*
3

23
yy

xx
r . (26)

The vector of M turning momentum from transferring force F1 from P3 point to
point P2:

k

kji

FrM ⋅+−=

−

==)]cos()sin([
1

0)sin(
1

)cos(
1

0
123

γγ

γγ
y

r
x

rF

FF

y
r

x
rx

 (27)

from which the size of momentum shall be calculated as follows:

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 83 –

)]cos()*
2

*
3()sin()*

2
*
3[(1 γγ yyxxFM −+−= . (28)

The forces loading the braced circularly curved holder:

).cos(1

),sin(1
γαβ

γαβ

−−=

−−=

FF

FH
 (29 a-b)

After all the new figures of the ψ angle change and the u and v movements can be
calculated with the (16 a-c) equations, then with the knowledge of this we can
formulate the new coordinates of the common P2 point of the flexible bow arm and
the horn, while the iteration can be continued until the calculation has reached the
appropriate margin of error.

4 The Energetical Analysis of the Measurements of

the Bow

By means of the model, the parameters of the change of certain geometrical
measurements on the energy accumulated in the bow, as the most typical
characteristic of the application of the bow, can be analysed. When a bow is
drawn, flexible energy accumulates in its structure, which gets mainly transferred
to the arrow during shooting, while causing it to move. The characteristics of the
bow are concluded from the relationship between the extent of the tension and the
force that is necessary for it. See the characteristic equation below:

()xfF = , (30)

in which Fx is the x direction force belonging to x distance (extension). The
flexible energy accumulated in the bow can be calculated as follows:

() x
x

xfE d
0

⋅∫= . (31)

In the following part of this study the consequences of the individual alterations of
each of the four geometrical characteristics of the Hungarian composite reflex
bow shall be discussed. For the sake of better comparison, the maximum of the
pulling force is defined as 200 N in every case, which as a matter of fact results in
a deformation of different extent in the cases of bows of different sizes despite the
fact that the cross section of the flexible bow arm (secondary momentum) and the
material (flexibility modulus) have not changed. Regarding the characteristics of a
real bow as standard, the measures are modified by -40, -20, +20 and +40%, then
the characteristic curves are defined followed by the formulation of the energy of
the bow.

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 84 –

The basic characteristics of the bow which are based on the measurements of the
Hungarian bow known from archeological findings as well as the bow that was
available for our research (these figures are later referred to as „standard”
characteristics of the bow):

 2s1 = 112 mm

 s3 = 226 mm

 2 L = 1260 mm

 A = 93 mm

 B = 367 mm

 x0 = 148 mm

First of all the characteristic curve of the bow is formulated with measuring and
calculations:

Figure 5

Characteristic curve of the bow

The applied equation for correction:

)097,020008,03000001,0/(100 xxxk Δ⋅+Δ⋅+Δ⋅−= , (32)

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 85 –

in which Δx means the proportion of the draw in mm:

0x
F

xx −=Δ . (33)

When the IE product of multiplication is multiplied by the k correctional factor,
the error concluded from the assumptions shall decrease.

The following characteristic curve shown in the next figure is the result if the s1
size of the grip section is changed.

Figure 6

As it can clearly be seen in Figure 6, the alteration of the size of s1 does not
practically affect the static characteristics of the bow.

„A” measurement indicates the longest distance between the geometrical string of
the curved bow arm and the bow arm itself. If „A” is changed, the following
characteristic curves can be drawn as in Figure 7.

It can be seen well in Figure 7 that the characteristics of the bow hardly change if
the curve is increased, however, if the curve is decreased, it results in a substantial
modification of the characteristics. From the energetic point of view, the 20%
decrease in the curve of the bow marked „normal” may result in some
improvement.

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 86 –

Figure 7

Changing the „B” measurements, i.e. the length of the longest string of the
flexible bow arm may result in the following characteristic curves:

Figure 8

It can clearly be established if we look at the curves that the length of the flexible
bow arm makes a substantial impact on the energy stored in the bow, therefore it
influences the quality and the efficiency of the bow.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 87 –

If the length of the so-called horn of the Hungarian bow (s3 measurement) is
modified, the characteristic curve will change according to Figure 9.

It is perhaps surprising what important role the horn plays in storing the energy in
the bow. The horn is rigid and its deformation can be ignored, nevertheless it is a
substantial characteristic element when it comes to the geometry and the
functioning of the bow. The horn is responsible for the increase of the pulling
length of the bow, which increases not only the velocity of the arrow and the
energy that can be transmitted to the arrow, but it has also lead to a smaller size
bow, which is one of the most outstanding features of reflex bows, as it is only the
little size of the bow that makes horsing archery possible, therefore this
characteristic had contributed greatly to the irresistable fighting manner of the
conquering ancient Hungarians.

Figure 9

Change of characteristic curve

Finally Figure 10 summarizes the effect of the four altered geometrical
characteristics of the Hungarian bow on the energy accumulated in the bow when
it is affected by F=200 N force.

S. Horváth et al. The Statics of the Traditional Hungarian Composite Reflex Bow

 – 88 –

Figure 10

Conclusion

Based on the energetical analysis of the bow several conclusions can be drawn. It
may be found surprising what important roles are played by the horns regarding
the energy accumulated in the bow. Although the horn is rigid and its deformation
can practically be ignored, it is still a relevant element in the geometry and the
operation of the bow. Due to the horn the length of the extention of the bow
substantially increases, which increases not only the acceleration path of the arrow
and the transmittable energy but also results in the development of a small bow
which means one of the most ingenious characteristics of reflexive bows since this
small size makes their usage available for horse archery, moreover this
characteristic contributed to the irresistable fighting manner of old Hungarians at
the time of the Hungarian Conquest.

Finally the graph summarising the results of the various calculations shows that
the analysed Hungarian bow has almost ideal measurements, which must have
been the result of our ancestors’ long experiments with the proportions of the bow
throughout several centuries.

References

[1] Pauler Gyula – Szilágyi Sándor (szerk.): A magyar honfoglalás kútfői. A
Magyar Tudományos Akadémia kiadása. Budapest, 1900

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 89 –

[2] Cs. Sebestyén Károly: Rejtélyes csontok népvándorláskori sírokban.
Szeged, 1931

[3] Cs. Sebestyén Károly: A magyarok íja és nyila. Szeged, 1933

[4] Csallány Dezső: Kora-avarkori sírleletek. FA I-II. (1938–39), 121-180

[5] Győrffy György: A magyarok elődeiről és a honfoglalásról. Budapest, 1958

[6] Fábián Gyula: Archaeologia experimentalis. Honfoglaláskori magyar íj
rekonstruálása. Természettudományi Közlöny 9, (1967) 98-101

[7] Fábián Gyula: The Hungarian composite. Journ. of the Soc. of Archer-
Antiquaries 1970, 12-16

[8] U. Kőhalmi Katalin: A steppék nomádja lóháton, fegyverben. Budapest,
1972

[9] Fábián Gyula: Újabb adatok a honfoglaláskori íjászat kérdésköréhez.
SZMMÉ 1980–81/1, 63-76

[10] Muttnyánszky Ádám: Szilárdságtan. Műszaki Könyvkiadó, Budapest, 1981.

[11] Fábián Gyula: A honfoglaláskori magyar íj és készítése. Nimród Fórum (A
Nimród szakmai melléklete.) 1985. ápr. 1-11

[12] Fábián Gyula: Az avar domb kincse. Természet Világa 1985/5. sz. 211-214

[13] Szőllősy Gábor: Újabb adatok a népvándorláskori íjtípusok kérdésköréhez.
JAMÉ 30-32 (1987–1989) 349-374

[14] Moravcsik Gyula: Az Árpád-kori magyar történet bizánci forrásai.
Akadémiai Kiadó, Budapest, 1988

[15] László Gyula: Árpád népe. Helikon Kiadó, Budapest, 1988

[16] Szőllősy Gábor: Különböző íjtípusok mechanikai jellemzőinek kísérleti
vizsgálata. Doktori értekezés. Kézirat. Budapest, 1995

[17] Fodor István – Diószegi György – Legeza László: Őseink nyomában.
Magyar Könyvklub – Helikon Kiadó, Budapest, 1996

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 91 –

Robust Crane Control

Ing. Marek Hičár, Ing. Juraj Ritók, PhD

Department of Electrical Drives And Mechatronics, Department of Design,

Transport and Logistics, Technical University in Košice, Letna 9/B, 042 00

Kosice, Slovak Republic, Tel.: +421-55-6022268, 6022503

E-mail: hicarm@hron.fei.tuke.sk, juraj.ritok@tuke.sk

Abstract: The paper presents robust crane design by asynchronnous motor with frequency
convertor at ensuring system robustness against load weight and rope length variation.
Exact position control and elimination of swinging in the final position are required too.
Firstly were assemblied mathematical models of main crane components: crab, bridge and
uplift by real model of double beamed bridge experimental crane. Was designed robust
control for defined interval variation of weight and rope length for real crane. Load weight
and swinging are determined by estimators. Finally measured results gained on
a laboratory crane are introduced.

Keywords: robust control, crane crab and bridge, uplift, poles region assignment method,
observer, estimator, swinging model

1 Introduction

Control of main system drives control has to ensure the most effective and exact

motion for crane crab, bridge motion and uplift. This control of crane crab and

bridge includes two the most important conditions of exact motion trajectory and

forbidden swinging in the final position. Crane systems using today keep

precisious positioning but not elimination of the load swinging. Conditions have

to be realized for different load weights and lengths of hanging rope. System

robustness against change of load weight was designed by Ackermann’s by

finding suitable feedbacks from robust areas which provides desired properties of

the whole system. Rope length belongs to variable parameters what undertakes

checking of control design for stability. Switching robust structure feedbacks

(areas) for covering total tonnage and all rope lenghts was done by robust subareas

which provide robustness against load weight and rope length variaton. Load

swinging observer in crane crab and bridge direction were designed for reason of

elimination electromechanical load swinging measurement for zero deviation

control. Next, load weight observer identified real load weight on the crane hook

which can vary between minimum (hook with tackle) and maximum crane

M. Hičár et al. Robust Crane Control

 – 92 –

tonnage. All positive solutions of crane drives design are applied for real

experimental bridge crane located at experimental laboratory Department of

Construction, Transport and logistics at Technical University in Kosice. Load

weight estimator was established for identification of real load for robust control.

Our tendency was approaching results from swinging model with measurement

parameters what demostrates application of subsystem models in connection with

real objects.

2 Poles Region Assignment Method

Poles region assignment method has

ambition to get values of robust

controllers (finding of load weight

location in relation to rope lengths) where

load swinging will be damped. Control

design is procedure for finding feedback

vector so that poles of characteristical

polynom should be located in Γ - plane

at parameters variation (load weight and

rope length) (Figure 1). After matrix

multiplying in formula (1) and

comparison with right side will be

expressed pair of robust controllers 1r ,

2r , while α is generalized frequency.

Graphical draw of ()21 rfr = at load

weight changing helps to choose correct

controllers parameters from areas of

figures 3 and 5 [1, 2].

 Figure 1

 Location of Γ - plane

Ackermann’s condition:

() ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

+−+−

−

−

0

0

...3210

...4
4

321

2

322

2

2
2

1

23

2

2
322

2

2
2

21 r,ra

n

n

db
a

b

db
a

b
b

a

b

αααα

αααααα . (1)

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 93 –

Figure 2

Crane crab

Figure 3

Robust controllers design for crab

Figure 4

Crane bridge

Figure 5

Robust controllers design for bridge

Robust crab controllers (36r , 37r) and

bridge (index M) ensure load swinging

control and its speed at all crane

tonnage. Figure 6 represents keeping

poles trajectory of characteristical

polynom in allowed area of stability

and damping at load weight variation

(0,100) kg. It is same for poles

trajectory at rope length change

(0,5;2,5) m [3].

Figure 6

Poles motion at weight change

M. Hičár et al. Robust Crane Control

 – 94 –

3 Crane Crab and Bridge Model

Crane crab and bridge serve for load transport (separately or all at once) with

weight Gm from initial position 1Kx to the final position 2Kx [3].

Figure 7

Crane rab and bridge model

Differential and algebra formulas for description of mechanical crane crab and

bridge part: αsin
..

GKKK FFxm += , αsin
..

GGG Fxm −= , (2)

αcos
..

GGGG Fgmym −= , (3)

αsinlxx KG += , αcoslyG = . (4)

β
σ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
=

1
1

1

1
1

1

12

3

2

212

2

2
2

..

K

mK

G
ym

K

mK

h
K

mr

j

p

Jl

g

m

m
ii

mr

j

p

Jrm

jLp
x

;

β
σ

β

g

l

m

m

x
mr

j

p

J
ii

rm

jLp K

G

K

K

m
ym

K

h
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+
+

−=
1

12

3 ..

2

2

12

2

..

. (5, 6)

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 95 –

Formulas 5 and 6 describe crab (bridge) acceleration Kx
..

 and swinging

acceleration
..

β in its direction where r is transmission radius. α is angle of

swinging and β is transmitted angle to the meters.

Figure 8

Load swinging observer with output

^

6x and its speed

^

7x

Simulations in MATLAB

Simulink on figure 9 and 10

are time respond of observer

load swinging in crane crab

and bridge direction. There

was accepted maximum

overswing in the final position

0.5 cm from practical reason

by low toughness of hanging

rope.

Figure 9

Load swinging in crab direction

M. Hičár et al. Robust Crane Control

 – 96 –

Load swinging control in

simulation model is ensured by

feedback from load swinging

6

^

x (Mx6

^

) [m] and its speed

7

^

x (Mx7

^

) [ms-1]. On Figure

10 is observed zero swinging at

the end of transport.

Figure 10

Load swinging in bridge direction

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 97 –

4 Crane Uplift Model

Figure 11

Crane uplift model

Torque formula and total moment of inertia for crane uplift:

dt

d
JMM mZ

CZGZmZ

ω
=− , (7)

where mZM - motor moment, GZM - load moment, CZJ - total moment inertia,

mZJ - motor moment inertia, CbZJ - drum moment inertia, CGZJ - load moment

inertia.

Simulation of weight observer output provides real weight on the hook and this

information is needed for robust controllers switching by defined subarea.

M. Hičár et al. Robust Crane Control

 – 98 –

Figure 12

Weight observer with load weight output

On the Figure 13 is shown simulation crane bridge motion Mx5 [m] after

sellecting robust controllers according to identified load weight Gm
^

 [kg]. Real

rope length is gained from uplift model for next setting robust controllers.

Figure 13

Crane bridge trajectory and identified weight

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 99 –

5 Measured Processes at Experimental Bridge Crane

Bridge crane was experimentaly indentified by ARX model and was acquired

linearized transfer functions of crab, bridge and uplift. Swinging in crab and

bridge direction was identified by OE model. Robustness of real experimental

crane model was ensured by switching structure of robust controllers for covering

load weight and rope length variations.

Figure 14

Experimental bridge crane

Swinging sensor design consists of two each other perpendiculary rotary rheostats

which measure deviation in crane crab and bridge direction.

Figure 15

Swinging sensor

M. Hičár et al. Robust Crane Control

 – 100 –

On the Figure 16 is shown identification of load weight rGm [kg] by estimator

based on load uplift current. Figure 17 represents matching of real load swinging

in crane crab direction rx6 [m] with swinging model mx6 [m] which realized

actuating signal to the control. Rope length is l = 1.1 m. Measured time responses

on the Figure 18 is time response of contemporary crab rx5 and bridge rMx5

motion at rope length l = 2.3 m. Load swinging is plotted on the Figure 19 at

condition of zero swinging in the final position.

Figure 16 Figure 17

Figure 18 Figure 19

Project Experimental bridge crane was solved in cooperation with Department of

Construction, Transport and Logistics and Department of Cybernetics and

Artificial Intelligence.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 101 –

Conclusions

Robust crane control as system with variable parameters was designed by

Ackermann method of poles region assignment where by defined algorithm were

obtain robust controllers for ensuring stability and damping at load weight and

rope length variation in user range. Correct robust design was confirmed by

measurement with included weight and model load swinging estimator at

disallowed load swinging in the final reference position in crane crab and bridge

direction.

Referencies

[1] Ackermann, J.: Parameter Space Design of Robust Control Systems, IEEE

Trans. On Automatic Control, 1980

[2] Leonhard, W.: Control Of Electrical Drives, Springer Vlg., Berlin, 1985

[3] Hičár, M. : Written work to the academic dissertation exam, Robust crane

crab control, Košice 2001 (in Slovak)

[4] Ritók, J., Bigoš, P.: Automate crane in logistics system, In: International

conference Logistics & Transport, Vysoké Tatry, 2001 (in Slovak)

[5] Y. Sakawa and H. Sano. Nonlinear model and linear robust control of

overhead travelling cranes. Nonlinear Analysis, 30(4):2197{2207, 1997

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 103 –

Level Crossing Probabilities of the Ornstein –
Uhlenbeck Process

Dr. József Dénes

Institute of Informatics and Mathematics, Faculty of Light Industry, Budapes Tech

Department of Science, University of West Hungary

denes.jozsef@nik.bmf.hu

Abstract: The Ornstein Uhlenbeck process is a Gaussian process tX with independent

increments and autocorrelation ()
2

s

stt

e
XXE

−

+ = . First the Laplace transform of the

probability density ()pXxXP t == 0 is computed. Using this, the Laplace transform

of tX first time reaching a given value x is derived. It is proved that these results agree

with the special case derived earlier by Bellman and Harris (Pacific J. Math. 1, 1951).

1 Definitons

The Ornstein Uhlenbeck process is a stationary Gaussian-Markov process

tX such that the joint distribution of tm2t,1t XXX K is a gaussian and is

dependent only on the differences ij tt − where ji < and the autocorelation

function is given by

() t
tss e

2

1
XXE

−
+ =⋅ (1.1)

.
2

1
EX and 0EX 2

tt == (1.2)

Let X be a random vector with normal distribution, then the density of its

probability distribution is:

XX
2

1 1T

e
π2

1
−Σ−

Σ

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 104 –

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Y

X
X and Σ is the correlation matrix:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

ρσ
σρ

with EXYσ,EYρ,EXρ 1
2

2
2

1 === and .σρρ 2
21 −=Σ Clearly

.
σρρ

ρσ
σρ

2
21

1

2

1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

=Σ−

Hence the joint probability density

() () .
σρρ2

yρxyσ2xρ
exp

σρρπ2

1
yY,xXP

2
21

2
1

2
2

2
21

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+−
−

−
===

It follows from here that

()
()

1

ρ2

x

2
21

2
1

2
2

2
21

πρ2

e

σρρ2

yρxyσ2xρ
exp

σρρπ2

1

xXyYP

1

2

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+−
−

−
===

.

ρ
σρρ

2

x
ρ
σ

y

exp

ρ
σρρ

π2

1

1

2
21

2

1

2

1

2
21

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−

=

Applying this to what concerns us, the Ornstein-Uhlembeck process, we can

determine the probability density)pX|xX(P 0t == .

Clearly

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 105 –

2

eσ ,
2

1ρρ
-t

21 === so
t

1

t2

t2

1

2
21 e

ρ
σ

 .e1

2

1

4

e

2

1

2

1
2

ρ
)σρρ(2 −−

−

=−=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=
−

Hence:

()
()
()

.

e1π

e
)pX|xX(P

t2

e1

pex

0t

t2

2t

−

−

−
−

−
===

−

−

 (1.3)

We shall denote this with)x,p,t(P or)x,p(P and call it the fundamental

function. The special cases 0p = and 0x = are important also:

()
()

.

e1π

e
)0X|xX(P

t2

e1

0t

t2

2x

−

−
−

−
===

−

 (1.4)

()
()

.

e1π

e
)pX|0X(P

t2

e1

0t

t2

t2e2p

−

−
−

−
===

−

−

 (1.5)

By simple substitution it is easy to prove that (1.3) satisfies the forward equation:

u
t

u
x

x

u

2

1

t

u
2

2

+
∂
∂

+
∂

∂
=

∂
∂

and the backward equation:

.
p

u
p

p

u

2

1

t

u
2

2

∂
∂

−
∂

∂
=

∂
∂

This also implies that (1.4) satisfies the forward equation and (1.5) satisfies the

backward equation.

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 106 –

2 The Laplace Transforms of the Fundamental

Functions

Since both

()
()
()t2

e1

pex

e1π

e
t2

2t

−

−

−
−

−

−

−

and

()
()t2

e1

e1π

e
t2

2x

−

−
−

−

−

satisfy the xxxt xuuu
2

1
u ++=

forward equation their Laplace transforms must satisfy the

x
xx xUU
2

U
sU ++= second order ordinary differential equation, that is the

equation

0U)s1(2Ux2U =−+′+′′ (2.1)

To find the solutions of (2.1) let us consider the confluent hypergeometric

equation

0ay0y)xc(yx =−′−+=′′ (2.2)

The two solutions of this are the:

() ()
K

!2)1c(c

x1aa

!1

x

c

a
1x;c,aF

2

11 +
+

++=

and ()x;c2,c1aFx 11
c1 −−+−

 Kummer functions. Let us consider the

following transformation of (2.2))kx(yu 2= where k is an arbitrary nonzero

constant.

Clearly:

.yxk4yk2u

ykx2u

)kx(yu

22

2

′′+′=′′

′=′
=

Hence:

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 107 –

22xk4

x

u
u

y

kx2

u
y

uy

′
−′′

=′′

′
=′

=

Substituting these into (2.2) gives:

0au
kx2

u
)kxc(

xk4

x

u
ukx

2

22

2

=−
′

−+
⎟
⎠
⎞

⎜
⎝
⎛ ′

−′′

which in turn, after some simplification becomes:

.0kau4ukx2
x

1c2
u =−′⎟

⎠
⎞

⎜
⎝
⎛ −

−
+′′

Putting
2

1
c gives: .0kau4ukx2u =−′−′′

Let us compare this with (2.1)

0U)s1(2Ux2U =−+′+′′

).s1(2ka4

2k2

−=−
=−

Hence we get for k and for 1ak −= and .
2

s1
a

−
= Therefore the solutions of

(2.1) are ⎟
⎠
⎞

⎜
⎝
⎛ −

−
= 2

1 x;
2

1
,

2

s1
FF and .x;

2

3
,

2

s
1xFF 2

2 ⎟
⎠
⎞

⎜
⎝
⎛ −−−=

Now we are in the position to determine the Laplace transform of

()
().e1π

e
t2

e1

x

t2

2

−

−
−

−

−

Clearly it must be of the form 21 xBFAF + where A and B some constans. To

this end Laplace transform will be evaluated for some special cases. The Laplace

transform of

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

is clearly:

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 108 –

()
()∫

∞ −
−

−
−

−

−

0

st

t2

e1

x

.dte
e1π

e
t2

2

Writing t instead of
te− transforms it into a Mellin type integral:

()∫ −
−

−

−

1

0

1s

2

t1

x

.dtt
t1π

e
2

2

Substituing t instead of t yields

∫
−−

−

−

1

0

1
2

s
t1

x

.dtt
t1

e

π2

1

2

For 0x = this becomes the beta funciton type integral:

.

2

s1π2

2

s

2

1

2

s
,

2

1
B

π2

1
dt

t1

t

π2

1 1

0

1
2

s

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ⎟

⎠
⎞

⎜
⎝
⎛Γ

=⎟
⎠
⎞

⎜
⎝
⎛=

−∫
−

Hence

.

2

1s
2

2

s

A

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

=

Clearly A is the Laplace transform of

()
().e1π

e
t2

e1

x

t2

2

−

−
−

−

−

To determine the value of

B let us consider the x derivative of the Laplace transform, which is:

∫
−−

−

−

−
1

0

1
2

s

2

3

t1

x

.dtt

)t1(π

xe

2

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 109 –

In the present case we cannot take the 0x → limit by simply substituing

0x → for x because

2

3

t

x

tπ

xe

2

−

−

does not converge uniformly to 0 as 0x → .In

fact it is a “delta function type function”, its integral being

∫ =
−

1

0

2

3

t

x

.1dt

tπ

xe

2

For it is know from theory of the heat equation that, for an arbitrary continous

function)t(f

().tfdr)rt(f

r

e

π
x

 limdr)r(f

)rt(

e

π
x

 lim
t

0

2

3

r

x

0x

t

0

2

3

rt

x

0x

22

∫∫ =−=

−

−

→

−
−

→

Hence in the present case:

,1tdtt

)t1(π

xe
 lim 1t

1

0

1
2

s
1

2

s

2

3

t1

x

0x

2

−==

−

− =
−−−

−

→ ∫

thus .1B −= Therefore the The Laplace transform of

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

 is

.x;
2

3
,

2

s
1xFx;

2

1
,

2

s1
F

2

1s
2

2

s

xFAF 22
21 ⎟

⎠
⎞

⎜
⎝
⎛ −−−⎟

⎠
⎞

⎜
⎝
⎛ −

−

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

=−

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 110 –

Now we compute the The Laplace transform of

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

. It has been shown

that it statisfies the backward equation
2

u
puu

pp

pt +−= . Therefore its Laplace

transform is the solution of the second order linear differential equation

2

U
pUsU

pp

p +−= that is of the equation

0sU2Up2U =+′+′′

Now the solution of 0kau4ukx2u =−′−′′ are ⎟
⎠
⎞

⎜
⎝
⎛ 2kx;

2

1
,aF and

⎟
⎠
⎞

⎜
⎝
⎛ + 2kx;

2

3
,

2

1
axF .

Comparing the two equations we get for k

s2ka4

2k2

=
=

that is 1k = and .
2

s
a = Thus the Laplace transform must be the linear

combination of ⎟
⎠
⎞

⎜
⎝
⎛= 2

1 p;
2

1
,

2

s
FG and ⎟

⎠
⎞

⎜
⎝
⎛ +

= 2
2 p;

2

3
,

2

s1
pFpG . To find the

conficciens of 1G and 2pG let us inspect the Laplace transform itself.

()
()∫

∞ −
−

−
−

−

−

0

st

t2

e1

x

.dte
e1π

e
t2

2

Writing t instead of
te− it transforms again into the Mellin type integral:

()
()∫ −
−

−

−

1

0

1s

2

t1

tp

.dtt
t1π

e
2

22

Substituing t instead of t yields

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 111 –

∫
−−

−

−

1

0

1
2

s
t1

tp

.dtt
t1

e

π2

1

22

Again putting 0p = this becomes:

∫ =
−

1

0

2

s

.Adt
t1

t

π2

1

The coefficient of 2pG can be evaluated the same way as was done for

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

 and it is found to be again –1. Thus the Laplace transform of

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

 is

.p;
2

3
,

2

s1
1pFp;

2

1
,

2

s
AFpGAG 22

21 ⎟
⎠
⎞

⎜
⎝
⎛ +
−−⎟

⎠
⎞

⎜
⎝
⎛=−

The above result can be arrived at directly from the Laplace transform of

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

.

To this end let us inspect

()
()∫

∞ −
−

−
−

−

−

−

0

st

t2

e1

ep

dte
e1π

e
t2

2t2

using

.p
e1

p

e1

ep 2

t2

2

t2

t22

−
−

=
− −−

−

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 112 –

This becomes

()
()∫

∞ −
−

−
−

−

−

0

st

t2

e1

p

p dte
e1π

e
e

t2

2

2

and the integra here is of the same

form as of the Laplace transform of

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

 except we have p instead of

x .

Therfore the Laplace transform of

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

 is

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ −−−⎟

⎠
⎞

⎜
⎝
⎛ −

−

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

22p p;
2

3
,

2

s
1pFp;

2

1
,

2

s1
F

2

1s
2

2

s

e
2

Applying Kummer’s formula)x;c,ac(Fe)x;c,a(F x −= we get for the Laplace

transform of

()
()t2

e1

ep

e1π
e

t2

t22

−

−
−

−

−

−

.p;
2

3
,

2

s1
1pFp;

2

1
,

2

s
F

2

1s
2

2

s

22 ⎟
⎠
⎞

⎜
⎝
⎛ +
−−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 113 –

3 The Laplace Transforms of
()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

We have seen that the

()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

 fundamental function satisfies both the

forward and backward equations, therefore its Laplace transform must satisfy both

of the ordinary differential equations:

0U)s1(2Up2U =−+′+′′
 (3.1)

.0sU2Up2U =−′−′′ (3.2)

Because of (3.1) must be of the form: ,KxFHF 21 + where H and K must be

some linear combinations of 1G and 2pG since it satisfies (3.2) as well. Let us

observe that

()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

is analytic in x for all values p and t except when

0t = and px = , in the latter case it is undefined. Therefore its Laplace transform

is analytic in the px ≤ domain as well. Putting 0x = in

()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

 gives

()
()t2

e1

ep

e1π
e

t2

2t2

−

−
−

−

−

−

and we have seen that its Laplace transform is 21 pGAG − , so

21 pGAGH −= (when px ≤). The determination of K is more involved.

Differentiating the fundamental function by x gives:

()

()
()

()
.

e1π

epe2
e

e1π

epe2

2

3
t2

e1

ep

t
p

2

3
t2

e1

ep

t t2

2t2

2
t2

2t2

−

−
−

−

−

−
−

−

−

=

−

−

−

−

−

 (3.3)

Clearly the coefficient K is the Laplace transform of (3.3). To evaluate it let us

compute the following convolution integral:

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 114 –

()

() ().e1π
1

e1π

epe2
e

t2

2

3
t2

e1

p

t
p

t2

2

2

−
−

−
−

−

−
∗

−

−

 (3.4)

It has been shown that the Laplace transform of the second factor in (3.4) is A , so

the Laplace transform of (3.3) is the Laplace transform of (3.4) divided into A .

Next we evaluate (3.4):

()

() ()∫ =
−

−
−−

−

−
−

− −
t

0)rt(2

2

3
r2

e1

p

r
p dr

e1π
1

e1π

epe2
e

r2

2

2

putting r for
re− yields:

()

() ()∫ =
−

−

−
−

1

T 22

2

3
2

r1

p

p dr
Trπ

1

r1π

pre2
e

2

2

2

where
reT −= . Substituting r for r gives:

()

() ()

()

()

.

)21(π

e

tπ
1

tπ

pe
e

dr
rπ

1

rT1π

pe
e

dr
Trπ

1

r1π

pe
e

t2

)21(

t2ep

T1t3

t

p

p

T1

0

2

3
2

rT1

p

p

1

T 22

2

3

r1

p

p

t2

2

2

2

2

2
2

2

2

2

2

2

−

−

−
−

−=

−
−

− −−
−

−
−

−
=∗⋅=

−−

=

−−

−

∫

∫

Thus we have for the coefficient
A

pGAG
K 21 −= . Hence the Laplace transform

of

()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

 is for px ≤ :

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 115 –

()
.

A

)pGAG(xFAF

A

pGAG
xFF)pGAG(212121

2121

−+
=

−
+−

Next let us consider the case xp ≤ . If the same computation is repeated but

instead of 0x = we look at 0p = , that is we compute the coefficients of 1G and

2pG . Putting 0p = in

()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

 gives

()
()t2

e1

x

e1π
e

t2

2

−

−
−

−

−

. Its Laplace transform

is 21 xFAF − , carrying through similar computation as was done for the

coefficient of 2xF we get for the coefficient for
A

xFAF
pG 21

2

−
. Thus the

Laplace transform of

()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

 when xp ≤ is:

()
.

A

)pGAG(xFAF 2121 −+
 Hence the Laplace transform of

()
()t2

e1

)pex(

e1π
e

t2

2t

−

−

−
−

−

−

−

is:

()
()

()

()⎪
⎩

⎪
⎨

⎧

≤
−+

≤
−+

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

− −

−

−
−

−

−

.pxif
A

)pGAG(xFAF

xpif
A

)pGAG(xFAF

e1π
e

?
2121

2121

t2

e1

)pex(

t2

2t

 (3.5)

4 Level Crossing Probabilites

Let the random variable FC or)x(FC (first crossing) be the smallest possible

value of t such that xX t = given pX0 = . Let)x,p,t(φ be the distribution of

FC , clearly:)x,p,t(P)x,x,t(P)x,p,t(φ =∗ .

That is:

()
()

()
().e1π

e

e1π
e

)x,p,t(φ
t2

e1

)pex(

t2

e1

)pex(

t2

2t

t2

2t

−

−

−
−

−

−

−
−

−
=

−
∗

−

−

−

−

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 116 –

Now the probability that tX stays below x is: ∫−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≤≤

t

0r
tr0

dr)r(φ1XsupP .

Let us denote the Laplace transform of φ by Ψ , then Ψ for xp0 ≤≤ using

(3.5) can be expressed as

() ()() () ()()
() ()() () ()() xxFxAFxxGxAG

xxFxAFppGpAG
ψ

2121

2121

++
++

= (4.1)

21

21

xGAG

pGAG

+
+

= (4.2)

For the special case when 0p = , that is when tX reaches level x subject to the

initial condition 0X0 = is

21 xGAG

Aψ
+

= . (4.3)

For this case Bellman and Harris []1 found the following expression:

.

e

2

s

2

1

ψ

0

dyyy 1sxy22

∫
∞ − −+

⎟
⎠
⎞

⎜
⎝
⎛Γ

= (4.4)

For the case 0xp ≥≥ :

A

)xGAG)(xFAF(
A

)pGAG)(xFAF(

)x,p(ψ
2121

2121

−+

−+

= (4.5)

21

21

xGAG

pGAG

−
−

= (4.6)

For the special case 0p > , 0x = we have:

()
A

pGAG
0,pψ 21 −= . (4.7)

Using (4.7) it is not difficult to show that (4.2) holds for xp ≤ and holds for

xp ≥ as well. Formula (4.7) easily invertable, for

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 117 –

⎟
⎠
⎞

⎜
⎝
⎛ +Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ
=

⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ
=

⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ
=

1
2

s

2

s

2

1s
2

2

s

2

s

2

1s
s

2

s

2

1s
2

A

1
.

Clearly

⎟
⎠
⎞

⎜
⎝
⎛ +Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ

1
2

s

2

1s

is the Laplace transform of

()t2

t

e1π

e
2

−

−

−
⋅ . Hence (4.7) is the

Laplace transform of:

()
() () ()

.

e1

e

π
pe2

dze
π

1

dt

d
2

e1π

e

e1π

e

dt

d
2

2

3
t2

e1

ep

t

e1

pe

z

t2

t

t2

e1

ep

t2

t22

t2

t

2
t2

t22

−

−
−

−∞

−

−

−

−

−

−
−

−

=⋅=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
∗

−
⋅

−

−

−

−

−

−

∫

5 The Equivalence of Bellman-Haris’ and our Result

To show that formulas (4.3) and (4.4) are the same, we have to evaluate the

integral
() () .

dy

ed

!n

x
1eeee

n

yn

0n

n
nxyxx

0

xy2y

2
2222

−∞

=

−−∞ +− ∑∫ −=⋅=

Substituting this into the integral we get:

() () .dyy
dy

ed

!n

x
1edyyeedyye 1s

0n
0 n

ynn
nx1s

0

x1s

0

xy2y

2
22yx22 −

∞

=

∞ −
−∞−∞ +− ∑ ∫∫∫ −=⋅=

−

 (5.1)

Let us observe that the integrals on the right hand side are the Mellin transfroms of

the functions
n

yn

dy

ed
2−

. First we compute the Mellin transform of
2ye− which is:

.
2

s

2

1
dyye

2

1
dyye

1
2

s

0

y1s

0

y2

⎟
⎠
⎞

⎜
⎝
⎛Γ==

−∞ −−∞ − ∫∫

J. Dénes Level Crossing Probabilities of the Ornstein – Uhlenbeck Process

 – 118 –

Let us denote the Mellin transform of a function f by ? or .F It is not difficult to

see that:

() () ()
() ()() ()

() () ()() () ().nsFns2s1s1f

2sF2s1sf

1sF1sf

nn −−−−−=Μ

−−−−=′′Μ
−−−=′Μ

L

K

K

Hence the Mellin transforms of ,e
2y− ,

dy

de
2y−

,
dy

ed
2

2
2y−

K
3

3

dy

ed
2y−

 are

() () ()() () ()()() ()

()()()() () ()()()()() ()
.,

2

5S

2

1s2s3s4s5s
 ,

2

4S

2

1s2s3s4s

 ,
2

3S

2

1s2s3s
 ,

2

2S

2

1s2s
 ,

2

1s

2

1s
 ,

2

s

2

1

L
−

Γ
−−−−−−

Γ
−−−−

−
Γ

−−−−
Γ

−−−
Γ

−
−⎟

⎠
⎞

⎜
⎝
⎛Γ

Substituing these into (5.1) gives:

() ()() ()

()()() () ()()()() ()

()()()()() ()

()() ()

()()()() ()
⎭
⎬
⎫+

−
Γ

−−−−
+

⎪⎩

⎪
⎨
⎧ −

Γ
−−

+⎟
⎠
⎞

⎜
⎝
⎛Γ=

⎭
⎬
⎫+

−
Γ

−−−−−
+

−
Γ

−−−−
+

−
Γ

−−−
+

⎪⎩

⎪
⎨
⎧ −

Γ
−−

+
−

Γ
−

+⎟
⎠
⎞

⎜
⎝
⎛Γ

L

L

2

4s

2

1s2s3s4s

!4

x

2

2s

2

1s2s

!2

x

2

s

2

1
e

2

5s

2

1s2s3s4s5s

!5

x

2

4s

2

1s2s3s4s

!4

x

2

3s

2

1s2s3s

!3

x

2

2s

2

1s2s

!2

x

2

1s

2

1s

!1

x

2

s

2

1
e

4

2
x

5

43

2
x

2

2

() ()()() ()

()()()()() ()

() ()()
⎭
⎬
⎫

+⎟
⎠
⎞

⎜
⎝
⎛Γ−+

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ΓΓ+⎟

⎠
⎞

⎜
⎝
⎛Γ=

⎭
⎬
⎫+

−
Γ

−−−−−
+

−
Γ

−−−
+

⎩
⎨
⎧ −

Γ
−

+

L

L

2

s
1s3-s 2

!4

x

2

s
1-s 2

!2

x

2

s

2

1
e

2

5s

2

1s2s3s4s5s

!5

x

2

3s

2

1s2s3s

!3

x

2

1s

2

1s

!1

x
e

1
4

0
2

x

5

3
x

2

2

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 119 –

()

()()()

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−−

+
−

−⎟
⎠
⎞

⎜
⎝
⎛ +

Γ+

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

−−

+

−

−⎟
⎠
⎞

⎜
⎝
⎛Γ=

⎭
⎬
⎫

+⎟
⎠
⎞

⎜
⎝
⎛ +

Γ−−−+

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ−+⎟
⎠
⎞

⎜
⎝
⎛ +

Γ+

L

L

L

2

5
2

s
2

2

3
2

s
1

!2

x

2

3
2

s
1

!1

x
1x

2

1s
e

2

3
2

s3

2

1
2

s1

!2

x

2

1
2

s1

!1

x
1

2

s

2

1
e

2

1s
1s2s4s2

!5

x

2

1s
2s2

!3

x

2

1s
2

!1

x
e

42
x

42
x

2
5

1
3

0x

2

2

2

.x;
2

3
,

2

s1
xF

2

1s
x;

2

1
,

2

s
F

2

s

2

1

x;
2

3
,

2

s
1xF

2

1s
ex,

2

1
;

2

s1
F

2

s

2

1
e

22

2x2x 22

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ+⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛Γ=

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ +

Γ+⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎟
⎠
⎞

⎜
⎝
⎛Γ=

Hence Bellman and Harrises formula becomes:

.

x;
2

3
,

2

s1
xF

2

1s
x;

2

1
,

2

s
F

2

s

2

1

2

s

2

1

dyye

2

s

2

1

22
0

1sxy2y2

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ+⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

=
⎟
⎠
⎞

⎜
⎝
⎛Γ

∫
∞ −+−

Diving both the numerator and the denominator of the right hand side into

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ
2

1s
gives

21 xGAG

A

+
and this completes the proof.

Reference

[1] Bellman, R., Harris, T.: Recurence times for the Ehrenfest model. Pacific J.

Math. 1. 179-193 (1951)

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 121 –

A Bagging Method using Decision Trees in the

Role of Base Classifiers

Kristína Machová, František Barčák, Peter Bednár

Department of Cybernetics and Artificial Intelligence, Technical University, Letná

9, 04200 Košice, Slovakia

Kristina.Machova@tuke.sk

Frantisek.Barcak@accenture.com

Peter.Bednár@tuke.sk

Abstract: This paper describes a set of experiments with bagging – a method, which can
improve results of classification algorithms. Our use of this method aims at classification
algorithms generating decision trees. Results of performance tests focused on the use of the
bagging method on binary decision trees are presented. The minimum number of decision
trees, which enables an improvement of the classification performed by the bagging method
was found. The tests were carried out using the Reuters 21578 collection of documents as
well as documents from an internet portal of TV broadcasting company Markíza.

Keywords: classification algorithms, bagging, binary decision trees, text categorisation,
recall and precision

1 Introduction

Nowadays, information and data are stored everywhere, mainly on the Internet. To

serve us, information had to be transformed into the form, which people can

understand, i.e. into the form of knowledge. This transformation represents a large

space for various machine learning algorithms, mainly classification ones. The

quality of the transformation heavily depends on the precision of classification

algorithms in use.

The precision of classification depends on many aspects. Two of most important

aspects are the selection of a classification algorithm for a given task and the

selection of a training set. In frame of this paper, we have focused on experiments

with training set samples, with the aim to improve the precision of classification

results. At present, two various approaches are known. The first approach is based

on an idea of making various samples of the training set. A classifier is generated

for each of these training set samples by a selected machine learning algorithm. In

this way, for k variations of the training set we get k particular classifiers. The

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 122 –

result will be given as a combination of individual particular classifiers. This

method is called Bagging in the literature [1]. Another similar method called

Boosting [7] performs experiments over training sets as well. This method works

with weights of training examples. Higher weights are assigned to incorrectly

classified examples. That means, that the importance of these examples is

emphasised. After the weights are updated, a new (base) classifier is generated. A

final classifier is calculated as a combination of base classifiers. The presented

paper focuses on the bagging method in combination with Decision trees in the

role of base classifiers.

2 Bagging

Bagging is a method for improving results of machine learning classification

algorithms. This method was formulated by Leo Breiman and its name was

deduced from the phrase “bootstrap aggregating” [1]. More information about

bagging can be found in [3], [4] and [9].

In case of classification into two possible classes, a classification algorithm

creates a classifier H: D {-1,1} on the base of a training set of example

descriptions (in our case played by a document collection) D. The bagging method

creates a sequence of classifiers Hm, m=1,…,M in respect to modifications of the

training set. These classifiers are combined into a compound classifier. The

prediction of the compound classifier is given as a weighted combination of

individual classifier predictions:

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

M

m
immi dHsigndH

1

)()(α .

The meaning of the above given formula can be interpreted as a voting procedure.

An example di is classified to the class for which the majority of particular

classifiers vote. Articles [2] and [6] describe the theory of classifier voting.

Parameters αm, m=1,…,M are determined in such way that more precise classifiers

have stronger influence on the final prediction than less precise classifiers. The

precision of base classifiers Hm can be only a little bit higher than the precision of

a random classification. That is why these classifiers Hm are called weak

classifiers.

We experimented with the following bagging algorithm [1]:

A bagging algorithm for multiple classification into several classes.

1 Initialisation of the training set D

2 for m = 1, ..., M

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 123 –

2.1 Creation of a new set Dm of the same size D by

random selection of training examples from the set D

(some of examples can be selected repeatedly and some

may mot be selected at all).

2.2 Learning of a particular classifier Hm: Dm → R by a

given machine learning algorithm based on the actual

training set Dm.

3 Compound classifier H is created as the aggregation of particular

classifiers Hm: m = 1, ...,M and an example di is classified to the

class cj in accordance with the number of votes obtained from

particular classifiers Hm.

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

M

m
jimmji cdHsigncdH

1

),(),(α

If it is possible to influence the learning procedure performed by the classifier Hm

directly, classification error can be minimised also by Hm while keeping

parameters αm constant.

The above described algorithm represents an approach called base version of

bagging. There are some other strategies called bagging like strategies which

work with smaller size of the training set of example descriptions. These strategies

use a combination of the bagging method and the cross-validation method. The

cross-validation represents the division of the training set into N subsets of D/N

size. One of these subsets is used as the training set and the other subsets play the

role of test sets.

In “bagging like strategies” the original training set is divided into N subsets of

the same size. Each subset is used to create one classifier – a particular classifier is

learned using this subset. A compound classifier is created as the aggregation of

particular classifiers. The most known methods are: disjoint partitions, small bags,

no replication small bags and disjoint bags. An illustrative example of the subset

selection process to form new training subsets from an original one is presented in

the rest of this section. The original training set containing sixteen examples is

depicted in Figure 1.

A B C D E F G H I J K L M N O P

Figure 1

Original training set D

The method of disjoint partitions uses random selection to select examples. Each

example is selected only once. An example of four new subsets, created from the

original training set in Figure 1, is presented in Figure 2. In general, if N subsets

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 124 –

are created from the original training set, then each of them contains 1/N part from

the original set. Union of particular subsets equals the original training set. For

very large original set, partitions enable parallel learning of base classifiers.

A B C D E F G H I J K L M N O P

Figure 2

Disjoint partitions

Classifier H obtained from the aggregation of particular classifiers Hm learnt on

disjoint partitions, achieves the best results from all „bagging like strategies“.

In the method of small bags, each subset is generated independently from the

other subsets by random selection of training examples with the possibility to

select an example repeatedly. An example can be located in several subsets and/or

several times in one subset as well. The training sets illustrated in Figure 3 were

obtained from the original set in Figure 1. Union of particular partitions does not

guarantee to provide the original training set. Classifiers using the small bags

reach the worst results from all „bagging like strategies“.

A C H L B P L P D I O H K C F K

Figure 3

Small bags

In the method of no replication small bags, each subset is generated

independently from the other subsets by random selection of training examples

without any replication of examples. An example can occur in one subset, several

subsets, or no subset. If it occurs in a subset, then exactly one copy is included in

the subset. The training sets illustrated in Figure 4 were obtained from the original

set in Figure 1. Union of particular partitions does not guarantee to represent the

original training set.

A C H L O P L N D I O H K C F P

Figure 4

No replication small bags

The last method from the above mentioned ones is the method of disjoint bags. In

this method, size of each subset does not equal |D| but is (slightly) greater. First,

examples which occur in the original training set are distributed into subsets.

Selection of training examples is performed in the same way as in the method of

“disjoint partitions”. Then, one or more examples are randomly selected and

replicated within each subset. The number of replications has to be the same in

each subset. An example of resulting division of training examples is illustrated in

Figure 5. Each example from the original set occurs (once or more times) exactly

in one subset.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 125 –

A B C D C E F G H E I J K L J M N O P O

Figure 5

Disjoint bags

Union of particular partitions does not provide the original training set. Classifiers

using “disjoint bags" are known to reach the same or sometimes better results as

those classifiers using „disjoint partitions“.

3 Text Categorisation

We decided to base our experiments with bagging on the text categorisation task

[8]. The aim is to find an approximation of an unknown function Φ : D × C →

{true, false} where D is a set of documents and C = {c1, ..., c|C|} is a set of

predefined categories. The value of the function Φ for a pair 〈di, cj〉 is true if the

document di belongs to the category cj.. The function Φ̂ : D × C → {true, false}

which approximates Φ is called a classifier. Definition of the text categorisation

task is based on these additional suppositions:

• Categories are only nominal labels and there is no (declarative or

procedural) knowledge about their meaning.

• Categorisation is based solely on knowledge extracted from text of the

documents.

This definition is a general one and does not require availability of other

resources. The constraints may not hold in operational conditions when any kind

of knowledge can be used to make the process of categorisation more effective.

Based on a particular application it may be possible to limit the number of

categories for which the function Φ has the value true for a given document di. If

the document di can be classified exactly into one class cj ∈ C, it is the case of the

classification into one class and C represents the set of disjoint classes. The case

when each document can be classified into an arbitrary number k = 0, ..., |C| of

classes from the set C is called multiple classification and C represents the set of

overlapping classes.

Binary classification represents a special case when a document can be classified

into one of two classes. Classifiers (and algorithms for their creation) for binary

classification can be used for multiple classification as well. If classes are

independent from each other (i.e. for each pair of classes cj, ck, j ≠ k holds that the

value Φ(di, cj) is independent from the value Φ(di, ck)), the problem of multiple

classification can be decomposed into |C| independent binary classification

problems into classes },{ ii cc for i = 0, ..., |C|. In this case a classifier for the

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 126 –

category cj stands for the function jΦ̂ : D → {true, false}, which approximates

the unknown function Φ j : D → {true, false}.

With respect to the above mentioned decomposition, we used binary decision tree

(decision tree performing binary classification) in the role of a base classifier.

4 Classifier Efficiency Evaluation

The evaluation of classifier efficiency can be based on the degree of match

between prediction Φ̂ (di, cj) and actual value Φ(di, cj) calculated over all

documents di ∈ T (or di ∈ V). Quantitatively it is possible to evaluate the

effectiveness in terms of precision and recall (similarly to evaluating methods for

information retrieval).

For classification of documents belonging to the class cj it is possible to define

precision πj as conditional probability Pr(Φ(di, cj) = true | Φ̂ (di, cj) = true).

Similarly, recall ρj can be defined as conditional probability Pr(Φ̂ (di, cj) = true |
Φ(di, cj) = true). Probabilities πj and ρj can be estimated from a contingence table

Table 1 in the following way:

jj

j

j
FPTP

TP

+
=π ,

jj

j

j
FNTP

TP

+
=ρ

where TPj and TNj (FPj and FNj) are the numbers of correctly (incorrectly)

predicted positive and negative examples of the class cj.

Table 1

Contingence table for category cj

 Φ(di, cj) = true Φ(di, cj) = false

Φ̂ (di, cj) = true
TPj FPj

Φ̂ (di, cj) = false
FNj TNj

Overall precision and recall for all classes can be calculated in two ways. Micro

averaging is defined in the following way:

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 127 –

∑
∑

∑
∑

=

=

=

=

+
=

+
=

+
=

+
=

||

1

||

1

||

1

||

1

)(

)(

C

j jj

C

j j

C

j jj

C

j j

FNTP

TP

FNTP

TP

FPTP

TP

FPTP

TP

μ

μ

ρ

π

while macro averaging is given by the following equations:

||||

||

1

||

1

CC

C

j jM

C

j jM ∑∑ == ==
ρ

ρ
π

π

The selection of a particular way of averaging depends on a given task. For

example, micro averaging reflects mainly classification of cases belonging to

frequently occurring classes while macro averaging is more sensitive to

classification of cases from less frequent classes.

Precision and recall can be combined into one measure, for example according to

the following formula:

ρπβ
πρβ

β +
+

=
2

2)1(
F

where β expresses trade off between Fβ and π and ρ. Very often it can be seen the

use of the function F1 combining precision and recall using equal weights.

Lacking training data (when it is not possible to select a sufficiently representative

test set), it is possible to estimate classification efficiency using cross validation

when the set of all examples Ω is divided into k subsets T1, ..., Tk of the same size.

For each subset a classifier Φ̂ i is constructed using Ω - Ti as a training set and Ti

in the role of the test set. Final estimation can be calculated by averaging results of

classifiers Φ̂ i relevant to all subsets.

5 Experiments

A series of experiments was carried out using binary decision trees as base

classifiers. Data from two sources were employed. The first one was the Reuters-
215781 document collection, which comprises Reuter‘s documents from 1987.

1
 Most experiments were carried out using this document collection, if not given otherwise.

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 128 –

The documents were categorised manually. To experiment, we used a XML

version of this collection. The collection consists of 674 categories and contains

24242 terms. The documents were divided into training and test sets – the training

set consists of 7770 documents and 3019 documents form the test set. After

stemming and stop-words removal, the number of terms was reduced to 19864.

The other document collection, used to perform experiments, was formed by

documents from the Internet portal of the Markiza broadcasting company. The

documents were classified into 96 categories according to their location on the

Internet portal www.markiza.sk. The collection consists of 26785 documents in

which 280689 terms can be found. In order to ease experiments, the number of

terms was reduced to 70172. This form of the collection was divided into the

training and test sets using ratio 2:1. The training set is formed by 17790

documents and the test set by 8995 documents. Documents from this collection

are in the Slovak language unlike the first collection, whose documents are written

in English.

In order to create decision trees, the famous C4.5 algorithm was used [5]. This

algorithm is able to form perfect binary trees over training examples for each

decision category. To test the bagging method, weak classifiers (not perfect) are

necessary. Therefore, the trees generated by the C4.5 method were subsequently

pruned.

5.1 Bagging Efficiency Testing

Results achieved by classifiers, based on the bagging algorithm, were compared

with those generated by perfect decision trees. Figure 6 depicts differences

between precision of the bagging-based classifier and the precision of the perfect

decision tree classifier. Data are shown for each classification class separately (the

classes are ordered decreasingly according their frequency).

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 129 –

-0,7000

-0,6000

-0,5000

-0,4000

-0,3000

-0,2000

-0,1000

0,0000

0,1000

0,2000

0,3000

0,4000

1 4 13 38 8 10 45 7 63 86 51 30 6 19 43 54 40 21 14 57 41 59 85 89 35 97 69 53 92 72 88 71 94

Categories ordered according their occurrence frequency

Figure 6

Precision differences between a bagging-based classifier and a perfect decision tree for data from the

Reuter’s collection

The results can be interpreted in such way that the bagging-based method provides

better results than perfect decision trees for more frequent classes. On the other

hand, for less frequent classes the results of the perfect decision tree are better.

5.2 Experiments with Different Number of Classifiers

In order to explore dependence of the efficiency of the bagging-based classifier on

the number of classifiers, additional experiments were carried out. The number of

iterations (i.e. the number of generated binary decision trees) of the bagging

algorithm was limited by 200 classifiers. That means, each category was classified

by a sum of not more than 200 classifiers. Subsequently, the number of used

classifiers was reduced and implications on the classifier efficiency were studied.

In order to enable comparison with non-bagging classifier, the efficiency of a

perfect binary decision tree was represented on the Figure 7 as a black line.

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 130 –

0,84415

0,80295

0,77

0,79

0,81

0,83

0,85

0,87

0,89

0 20 40 60 80 100 120 140 160 180 200

Number of classifiers in the Bagging method

mikro F1

micro recall

micro precision

basic tree

max

Figure 7

Efficiency differences between the bagging-based classifiers and a perfect decision tree for data from

the Reuter’s collection

The Figure 7 illustrates that efficiency of the classifiers based on the bagging

method does not depend on the quality of particular classifiers (represented by the

pruning values), since the values are almost the same for every pruning method.

As far as different parameters are concerned, bagging is superior in respect to

precision for the number of used classifiers greater than 20. Using 20 or more

classifiers, the F1 measure is practically constant. Considering recall, the situation

slightly differs. The value of the recall parameter increases with using bigger

number of classifiers – with the threshold value 40 classifiers approximately.

Similar experiments were carried out using data from the Internet portal of the

Markiza broadcasting company. The results are illustrated on Figure 8. The same

parameter setting was used for both the bagging-based classifier and the decision

tree classifier.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 131 –

0,64466

0,71224

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0 5 10 15 20 25 30

Number of classifiers in the Bagging method

mikro F1

micro recall

micro precision

basic tree

max

Figure 8

Efficiency differences between the bagging-based classifiers and a perfect decision tree for data from

the Markiza collection

The Figure 8 illustrates that as far as different parameters are concerned, the

bagging method is superior for the number of classifiers greater than 10

(approximately).

Conclusion

In order to draw a conclusion from our experiments, several statements can be

formulated. The bagging method is a suitable mean for increasing efficiency of

standard machine learning algorithms.

Considering the same efficiency for a perfect decision tree and bagging-based

classifiers, minimum number of classifiers necessary to achieve this efficiency can

be found.

As far as disadvantages of bagging are concerned, the loss of simplicity and

illustrativeness of this classification scheme can be observed. Increased

computational complexity is a bit discouraging as well.

The work presented in this paper was supported by the Slovak Grant Agency of

Ministry of Education and Academy of Science of the Slovak Republic within the

1/1060/04 project ”Document classification and annotation for the Semantic web”.

References

[1] Breiman, L.: Bagging predictors. Technical Report 421, Department of
Statistics, University of California at Berkeley, 1994

[2] Breiman, L.: Arcing the edge. Technical report 486, at UC Berkeley, 1996.

[3] Friedman, J., Springer, L.:

<http://www-stat.stanford.edu/people/faculty/friedman.html>

K. Machová et al. A Bagging Method using Decision Trees in the Role of Base Classifiers

 – 132 –

[4] Hastie, T.: <http://www-stat.stanford.edu/%7Ehastie/>Robert

[5] Quinlan, J. R.: Bagging, boosting and C4.5. In Proc. of the Fourteenth
National Conference on Artificial Intelligence, 1996

[6] Schapire, R., Freund, Y.: Boosting the margin: A new explanation for the

efectiveness of voting methods. The annals of statistics, 26(5):1651-1686,
1998

[7] Schapire, R. E., Singer, Y.: Improved Boosting Algorithms Using

Confidence-rated Predictions. Machine Learning, 37(3), 1999, 297-336

[8] Schapire, R. E., Singer, Y.: BoostTexter: A Boosting – based System for

Text Categorization. Machine Learning, 39(2/3), 2000, 135-168

[9] Tibshirani, R.: <http://www-stat.stanford.edu/%7Etibs/>Jerome

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 133 –

Developed Physical Detection-Possibilities of
Chemical Agents

Tibor Kovács

Bánki Donát Faculty of Mechanical Engineering, Budapest Tech

Népszínház utca 8, H-1081 Budapest, Hungary

kovacs.tibor@bgk.bmf.hu

Abstract: We can’t preclude the possibility of the use of chemical agents by terrorists - I
can recall the attempt committed with Sarin in the Tokyo-subway in 1995. For that reason
it is necessary to know the chemical situation in the battlefield and in our urban
environment as well, for example in the subway. Actually the possible detection principles
of toxic-agent-detection-devices are chemical (simple detection devices: e. g. paper
detector, detection tubes), biochemical, physical (ion mobility spectroscopy, flame
photometry, photoacoustic spectroscopy, infrared or laser remote sensing detection-
systems). To control the real time chemical situation it is essential to establish, set up an
accurate and rapid reconnaissance. The solution is a monitoring system, which includes
developed toxic-agent-detection-devices.

Keywords: Monitoring, real time chemical situation, toxic-agent-detection, principle of
physical detection, CAM, AP2C, PAS, remote sensing detection

1 Introduction

Unfortunately, nowadays there are a lot of „chess players” all over the world: the

experts suspect that many countries illegally dispose over weapons of mass

destruction. According to official data the former Iraqi Dictator used chemical

weapons (nerve agent and blister) against his own people. And Saddam didn’t

shrink from the use of chemical weapons in the war against Iran in 1988. The

name of the operation was „Blessed Ramadan” and we can follow the events in

Fig 1.

T. Kovács Developed Physical Detection-Possibilities of Chemical Agents

 – 134 –

Figure 1

Operation “Blessed Ramadan” (17-21 April, 1988)

On the map the Iraqi 7th Corps and a Division of the Republican Guard are marked

(the latter is an elite troop). At first the Iraqi artillery struck some mechanized

infantry-troops of the Iranian Armed Forces by nerve agent then the Iraqi troops

got moving and the Air Force twice attacked the enemy forces similarly with

nerve agent. The operation was finished on the 5th day after an amphibious

operation.

As we know during the American attack (2002) Saddam’s weapons of mass

destruction disappeared and the expert-group charged by The United Nations in

Iraq didn’t find them neither. Likewise we can appoint, unfortunately, there is a

real and continuous chemical threat for the Armed Forces and civilian life, as well.

The most important requirements for a developed chemical-detection-device are,

that the instrument must be selective, accordingly be able to detect exactly the

quality of the toxic agent. It is necessary to be capable to detect simultaneously

different toxic agents (e.g. nerve and blister agents together). The concentration

must not exceed the 100 mg/m2 for nerve agents and 10 g/m2 for blisters. The

optimal detection-time is 3-5 s or less. Finally it is very important that the device

must be insensitive for non-toxic agents. Naturally, the instrument has to have an

output to a personal computer.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 135 –

2 Ion Mobility Spectroscopy (IMS)

The well known Ion Mobility Spectrometer is the Chemical Agent Monitor. The

features of the instrument are the following: it is a hand-held, solder operated,

post-attack device for monitoring chemical agents on personnel, equipment or in

the field. It has got a Field Alarm Module (FAM), which can provide remote

alarm tasks and an automatic switching between nerve and blister modes of

operation.

The operational configuration:

- length-width-height: 17-4-7 inches,weight: 1.5 kgs,power supply: single

6 Volts battery (battery life: 6 hrs, continuous use, typical 15 hrs),

- agent concentration sensibility: 0.1 mg/m2,

- unit cost: $ 6.500

Figure 2

The cross-sectional view of the CAM

The function of CAM (see: Fig. 2):

1 The CAM uses a nickel-63 (63Ni) beta-particle radiation source to ionise

airborne agent molecules that have been drawn into the sampling

chamber by a pump. The resulting ions vary in mass and charge.

2 If the potential grid is negative it collects the positive ions close to it.

3 The form of the ion-cloud is very special due to the effect of pump.

4 If we change to positive the charge of the potential grid the ion-clusters

will travel to the detector. The flying time of an ion-cluster depends on

its mass (see: Fig. 3).

T. Kovács Developed Physical Detection-Possibilities of Chemical Agents

 – 136 –

Figure 3

Characteristics of the CAM

5 Flying time data are stored in a ROM, from which the device can

determine the type of agent and its relative concentration.

6 A liquid crystal display presents these data as a series of concentration-

dependent bars.

7 The agent concentration depends on the wind velocity and other

environmental factors, for that reason the numerical display of agent

concentration in typical units is impractical.

8 So, the low agent-concentration is marked by 1 to 3 bars, a high 4 to 6

bars, and a very high 7 to 8 bars on LCD.

3 Flame Photometry

Another important principle is the flame photometry. A flame of hydrogen is

allowed to burn the air-sample after at the colour of the flame is investigated by a

photometer. In this way, the presence of phosphorus and sulphur can be

demonstrated. E.g. the most important of this type of instruments is the French

monitor AP2C (Appareil Portatif pour le Contrôle Chimique). The instrument is

demonstrated in the Fig. 4.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 137 –

Figure 4

The AP2C (flame photometer)

The operational configuration:

- length-width-height: 16-5-6 inches,

- power supply: single 9…32 Volts battery or rechargeable battery,

- weight: 2.0 kgs,

- single handed operation,

- agent concentration sensibility

o nerve toxic: 10-5 mg/dm3,

o blister: 4·10-3 mg/dm3,

- unit cost: $ 9.500,

- response time < 2 seconds,

- start up time < 1 minute,

- detects all types of mixtures and degraded chemicals,

- used to detect toxic industrial materials (TIMs).

4 Photoacoustic Spectroscopy (PAS)

The origins of Photoacoustic Spectroscopy (PAS) date back to the discovery of

the photoacoustic effect by Alexander Graham Bell in 1880.

T. Kovács Developed Physical Detection-Possibilities of Chemical Agents

 – 138 –

Bell found that when light was focused onto thin diaphragms, sound was emitted.

In latter experiments, Bell studied the sounds produced by the irradiation of

various solid samples in a brass cavity sealed with a glass window.

PAS is a non-destructive technique that is applicable to almost all types of

samples. It offers minimal or no sample preparation.

PAS can be used for both qualitative and quantitative analysis. In particular, depth

profiling experiments are also useful for the characterization of surface-coated and

laminar materials and for studies of the diffusion of species into or out of a

material.

The phenomenon known as the photoacoustic effect is the emission of sound by

an enclosed sample on the absorption of chopped light.

Zero technique measurement, non-destructive invasive analysis and easy-to-use

quality are the main performances of the techniques leading today to a large

application of photoacoustic detections.

When a gas is irritated with light, it absorbs some of the incident light energy,

proportional to the concentration of the gas. The absorbed light energy is

immediately released as heat and this causes the pressure to rise. When the

incident light is modulated at a given frequency, the pressure-increase is periodic

at the modulation frequency. Pressure waves, or sound waves, as they commonly

known, are easily measured with a microphone. They are audible if their

frequency is between 20 Hz and 20.000 Hz (see: Fig. 5).

Figure 5

The set-up of the Photoacoustic Spectrometer

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 139 –

The intensity of the sound emitted depends on a number of factors: the nature and

concentration of the substance and the intensity of the incident light.

The selectivity which can be achieved in spectroscopy is due to the fact that

substances absorb light of specific wavelengths which are characteristic of that

substance.

The ability to detect and monitor chemical agents in the event of an attack or after

an industrial chemical accident is vital for the efficient use of military and civil

defence resources. Systems offering such detection capabilities need to be reliable,

accurate and easy-to-use. All principles mentioned are able to fulfil the hardest

conditions of the chemical detection.

5 Infrared or Laser Remote Sensing Detection-

Systems

(M21 Remote Sensing Chemical Agent Alarm)

The need for detecting a chemical agent cloud from a clean area has been evident

for a long time. Advance information of a chemical agent vapour hazard will

allow the commander to chose an alternate route or take protective posture just

before entering the contaminated area.

The research for remotely detecting chemical agent vapours was first initiated in

the late 1950's using infrared technology.

The M21 Automatic Chemical Agent Alarm provides the Army with the first ever

capability of detecting chemical agent vapour clouds at a distance.

The M21 Alarm detects nerve and blister agent vapour clouds at line-of-sight

distances out to 5 km (see: Fig. 6):

T. Kovács Developed Physical Detection-Possibilities of Chemical Agents

 – 140 –

Figure 6

Characteristics of a Remote Sensing Detector

The M21 Alarm operates in the 8-12 micron region of the infrared spectrum. A

Michaelson interferometer, the heart of the M21 Alarm, collects absorption or

emission spectra from the chemical agent cloud and compares it to the background

spectra, so it is a passive infrared device.

The next generation remote detector will provide detection on-the-move and

scanning in 360 degrees.

[Lightweight Standoff Chemical Agent Detector (LSCAD)]

The LSCAD is a small, fully-automatic, standoff chemical agent detector.

It is a passive infrared detection system that detects the presence or absence of

chemical warfare agents in the 800 to 1200 wave number region of the

electromagnetic spectrum by monitoring the ambient background infrared

radiation. The signal processing hardware discriminates between the chemical

targets and the other non-toxic species in a complex battlefield environment.

The unit is capable of on-the-move, real-time detection from either aerial or

surface platforms.

The unit will detect and alarm to a chemical agent cloud up to 5 kms away.

The detector also provides chemical identification information and data for

activation of countermeasures to avoid contamination.

The LSCAD is equipped for visual and audible alarm and can display the agent

class and relative position. This information is available locally and transmission

to battlefield information networks.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 141 –

LSCAD also has the capability to indicate an all-clear condition.

Conclusions

On the basis of the principles of operation and the most important characteristics

of the developed instruments used for the detection of toxic agents we can state:

- the ion mobility spectrometers (and ion mobility spectroscopy) are the

best in the field of the chemical reconnaissance,

- the flame photometers are indispensable during the control of

decontamination,

- the photoacoustic spectrometers are outstanding in monitoring systems

and finally,

- we can use remote sensing detectors if the concentration of toxic agents

are relatively high.

References

[1] R. Pellérdi: The Necessities and Possibilities of the Development of the
Hungarian NBC Monitoring System, Symposium, on the Most Developed
Detection-Possibilities of Toxic Agents, Budapest, Hungary, 1999

[2] T. Kovacs: The Possibilities of Detection of Chemical Agents by the Most
Developed Instruments, Symposium, on the Most Developed Detection-
Possibilities of Toxic Agents, Budapest, Hungary, 1999

[3] F. Enguehard and L. Bertrand: Effects of optical penetration and laser pulse
duration on laser generated longitudinal acoustic waves, J. Appl. Phys.,
Vol. 82, No. 4, August 1997

[4] Hénault, A. Cournoyer, F. Enguehard, L. Bertrand: A study of dynamic
thermal expansion using a laser-generated 1-d-model, Progress in natural
science, Supp. to Vol. 6, December 1996

[5] H. Marchand, A. Cournoyer, F. Enguehard, L. Bertrand: Phase optimization
for quantitative analysis using phase Fourier transform photoacoustic
spectroscopy, Opt. Eng., Vol. 36, No. 2, February 1999

[6] T. Kovacs, L. Bertrand: The Different Possibilities of Detection by
Photoacoustic Techniques, Hungarian Military Science, No. 4, 2003, pp.
103-109

