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1 Introduction

Non-additive set functions, as for example outer measures, semi-variations of
vector measures, appeared naturally earlier in the classical measure theory con-
cerning countable additive set functions or more general finite additive set func-
tions. The pioneer in the theory of non-additive set functions was G.Choquet
[2] from 1953 with his theory of capacities. This theory had influences on many
parts of mathematics and different areas of sciences and technique.

Non-additive set functions are extensively used in the decision theory, math-
ematical economy, social choice problems, with early traces by Aumann and
Shaplay in their monograph [1]. Recently, many authors have investigated
different kinds of non-additive set functions, as subadditive and superadditive
set functions, submeasures, k-triangular set functions, t-conorm and pseudo-
addition decomposable measures, null-additive set functions , and many other
types of set functions. Although in many results the monotonicity of the ob-
served set functions was supposed, there are some results concerning also some
classes of set functions which include also non-monotone set functions (for ex-
ample superadditive set functions, k-triangular set functions).

On the other hand, fuzzy measures as monotone and continuous set func-
tions were investigated by Sugeno [17] in 1974 with the purpose to evaluate
non-additive quantity in systems engineering.This notion of fuzziness is differ-
ent from the one given by Zadeh.Namely, instead of taking membership grades
of a set, we take (in the fuzzy measure approach) the measure that a given
unlocated element belongs to a set. There are many different type of fuzzy
measures which are used . For example belief, possibility, decomposable mea-
sures. Specially in different branches of mathematics there are many types of
non-additive set functions. They appeared in the potential theory, harmonic



analysis, fractal geometry, functional analysis, theory of nonlinear differential
equations, theory of difference equations and optimizations. There are many
different fields in which the interest on non-additive set functions is growing up.
In the theory of the artificial intelligence, belief functions have been applied to
model uncertainty. Belief functions, corresponding plausibility measures and
other kinds of non-additive set functions are used in statistics. Non-additive
expected utility theory has been applied for example in multi-stage decision
and economics. Many aggregation operators are based on integrals related
to non-additive measures [9, 10, 12]. We can compare additive set functions
(which are base for the classical measure theory) and non-additive set func-
tions in the following simple way. For a fixed set A ∈ Σ the classical measure
µ : Σ → [0,+∞] gives that for every set B from Σ such that A∩B = ∅ we have
that µ(A∪B)−µ(B) is always equal to a constant µ(A), i.e., it is independent of
B. In contrast, for non-additive set function m the difference m(A∪B)−m(B)
depends on B and can be interpreted as the effect of A joining B.

In this paper we will correspond to every set function ([1, 2, 13, 14, 15, 17,
18]) special positive set functions with some additional properties. Motivated
by the notion of the variation of the classical measure ([15, 16]) we introduce
axiomatically the notion of the variation of the general set function and prove
that it always exists, but in general case it is not unique. One of them so called
disjoint variation is based on the partition of the set and the other so called
chain variation is based on the chains of sets, see [1, 4, 14]. In this paper we
will prove that these variations have some additional properties with respect
to the starting non-additive set function. Among others that disjoint variation
is superadditive on any family of disjoint sets, see [14].

2 Variations

We start with some results from the classical measure theory. Let Σ be a σ-
algebra of subsets of the given set X. A set function µ : Σ → R is additive
(signed finitely additive measure) if we have

µ(A ∪ B) = µ(A) + µ(B)

for all A,B ∈ Σ with A ∩ B = ∅. A set function µ : Σ → R is σ−additive
(signed measure) if we have

µ

(

∞
⋃

i=1

Ei

)

=

∞
∑

i=1

µ(Ei)

for all pairwise disjoint sequences {Ei} from Σ, i.e., En ∩ Em = ∅ for n 6= m.

For an arbitrary but fixed subset A of X and an additive set function µ its
variation µ is defined by

µ(A) = sup
I

∑

i∈I

| µ(Di) |,



where the supremum is taken over all finite families {Di}i∈I of pairwise disjoint
sets of Σ such that ∪i∈IDi = A. It is well-known that if µ : Σ → R is finitely
(or countable) additive the µ is finitely (countable) additive. If µ is signed
additive set function then µ is countable additive if and only if µ is countable
additive.

We consider now general set functions m, m : D → [−∞, +∞], with
m(∅) = 0 (extended real-valued set function), see [14], where D denote a
family of subsets of a set X with ∅ ∈ D. m is (finite) real-valued set function
if −∞ < m(A) < +∞ for all A ∈ D, and m is monotone if A ⊂ B implies
m(A) ≤ m(B) for every A,B ∈ D. m is non-negative if it is finite and m(A) ≥ 0
for all A ∈ D, and m : D → [0,+∞] is positive.

We introduce for an arbitrary set function axiomatically a generalization of
the variation.

Definition 1 Let m be a set function defined on D with values in R (or
[0,+∞]), with m(∅) = 0. Then variation of m is a set function η : D → [0, +∞]
with the following properties:

(i) For every A ⊂ X we have

0 ≤ η(A) ≤ +∞;

(ii) η(∅) = 0;
(iii) | m(A) |≤ η(A) (A ∈ D);
(iv) η is monotone, i.e., if B ⊂ A, then η(B) ≤ η(A);
(v) η(A) = 0 if and only if m(B) = 0 for every subset B of A from D.

We easily obtain: For every A ⊂ X we have

η(A) ≥ sup{| m(B) |: B ⊂ A, B ∈ D}.

Namely, if B is a arbitrary subset of A which belongs to D we have by the
properties (iv) and (iii)

η(A) ≥ η(B) ≥| m(B) | .

3 The existence of variations

Theorem 1 For every set function m defined on D and with values in R (or
[0,+∞]), with m(∅) = 0, always exists its variation, which in general case is
not uniquely determined.

We introduce two special set functions related to a given set function m which
are base for the proof of the preceding theorem.

Definition 2 For an arbitrary but fixed subset A of X and a set function m

we define the disjoint variation m by

m(A) = sup
I

∑

i∈I

| m(Di) |, (1)



where the supremum is taken over all finite families {Di}i∈I of pairwise disjoint
sets of D such that Di ⊂ A (i ∈ I).

Definition 3 For an arbitrary but fixed A ∈ D and a set function m we define
the chain variation | m | by

| m | (A) = sup{
n

∑

i=1

| m(Ai) − m(Ai−1) |:

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A, Ai ∈ D, i = 1, . . . , n}. (2)

We remark that the supremum in the previous definition is taken over all finite
chains between ∅ and A.

Proof of Theorem 1. Let m : D → R. We prove that m and | m | are
variations.

First we consider m:
(i) Follows by the definition of m.

(ii) Only family is I = {∅}, and so we have

m(∅) = sup Σ | m(∅) |= 0.

(iii) Since one of the families I of disjoint sets of D contained in A is the
family I = {A} we obtain by the definition of m the desired inequality.

(iv) Since for any family {Di}i∈I of disjoint sets of D with property Di ⊂
B (i ∈ I), by B ⊂ A, we have Di ⊂ A, too, we obtain

∑

i∈I

| m(Di) |≤ m(A),

and so m(B) ≤ m(A).
(v) Let us suppose that m(A) = 0 for an arbitrary set A ⊂ X. Then by (v)

we obtain
m(B) = 0 for each B ⊂ A, B ∈ D.

Suppose now that m(B) = 0 for each B ⊂ A, B ∈ D. Then for each finite
family {Di}i∈I of disjoint sets such that Di ⊂ A (i ∈ I) we obtain

∑

i∈I

| m(Di) |= 0.

This implies m(A) = 0.

We consider now | m |:
(i) Follows by (2).
(ii) Every chain connecting ∅ with ∅ consists only of empty set, therefore

| m | (∅) = sup{
∑

| m(Ai) − m(Ai−1) |:

∅ = A0 ⊂ An = ∅} = 0.



(iii) One of the chain which connects ∅ and the set A consists only of ∅

and A, i.e., ∅ = A0 ⊂ An = A, therefore

| m(A) | = sup{| m(A) − m(∅) |:

∅ = A0 ⊂ An = A} ≤ | m | (A).

(iv) Some of chains from ∅ to A contain chains from ∅ to B, (exhaust all
of them), therefore

| m | (B) = sup{
n

∑

i=1

| m(Ai) − m(Ai−1) |:

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = B,Ai ∈ D, i = 1, ..., n}

≤ sup{
s

∑

i=1

| m(Ai) − m(Ai−1) |:

∅ ⊂ A0 ⊂ A1 ⊂ · · · ⊂ As = A,Ai ∈ D, i = 1, ..., s}

=| m | (A).

(v) Suppose | m | (A) = 0. Then for every set B ⊂ A, B ∈ D, we have by
(v) m(B) = 0.

Conversely, if m(B) = 0 for every set B ⊂ A, B ∈ D, then for any chain
∅ = A0 ⊂ A1 ⊂ ... ⊂ An = A we have m(Ai) = 0, i = 1, 2, ..., n, and so

n
∑

i=1

| m(Ai) − m(Ai−1) |= 0.

Hence | m | (A) = 0.

Finally we shall show that generally m 6=| m | . Let X = {a, b}. Define
m : P(X) → R by m({a}) = 2,m({b}) = 3, m({a, b}) = 4. Then m({a, b}) =
5 6= 4 =| m | ({a, b}). ¤

Remark 1 (i) If D is an algebra, then we can take for A ∈ D in (1) the
supremum for all finite families {Di}i∈I of disjoint sets such that

⋃

i∈I

Di = A.

(ii) We note that the variation m given by (1) is defined on P(X).

Let D be a ring. A set function m : D → R is superadditive if for every
A,B ∈ D with A ∩ B = ∅ we have m(A ∪ B) ≥ m(A) + m(B), and it is
subadditive if for every A,B ∈ D with A ∩ B = ∅ we have m(A ∪ B) ≤
m(A) + m(B).

Theorem 2 Let m be a set function defined on Σ with values in R (or [0,+∞]),
with m(∅) = 0. Then the set function m given by (1) is superadditive, i.e.,

∑

i∈I

m(Ei) ≤ m

(

⋃

i∈I

Ei

)

for each family {Ei}i∈I of disjoint sets of X.



Proof. Suppose that m 6= 0. We take two arbitrary but fixed disjoint subset
E1 and E2 of X such that m is different from zero on at least one of them. We
take an arbitrary but fixed real number r such that

m(E1) + m(E2) > r. (3)

Therefore there exist two real numbers r1 and r2 such that r = r1 + r2 and

m(E1) > r1 and m(E2) > r2.

Then there exists a finite family {D1

i }1≤i≤n of disjoint sets from Σ with D1

i ⊂
E1 (i = 1, 2, . . . , n) such that

n
∑

i=1

| m(D1

i ) | > r1, (4)

and a finite family {D2

i }1≤j≤k of disjoint sets from Σ, with D2

j ⊂ E2 (j =
1, 2, . . . , k), such that

k
∑

j=1

| m(D2

j ) | > r2. (5)

The family of sets

{D1

1
, D1

2
, . . . , D1

n, D2

1
, D2

2
, . . . , D2

k}

consists of disjoint sets from Σ which are contained in E1 ∪ E2 and by (1) we
obtain

m(E1 ∪ E2) ≥
n

∑

i=1

| m(D1

i ) | +

k
∑

j=1

| m(D2

j ) | .

Therefore by the inequalities (4) and (5)

m(E1 ∪ E2) > r1 + r2 = r. (6)

Since the number r was arbitrary such that the inequality (3) is satisfied, we
conclude that

m(E1) + m(E2) ≤ m(E1 ∪ E2)

since the opposite inequality is impossible by (6).
The preceding inequality holds by induction for every finite family {Ei}i∈J

of disjoint subsets of X, i.e.,

∑

i∈J

m(Ei) ≤ m

(

⋃

i∈J

Ei

)

.

For an arbitrary family {Ei}i∈I of disjoint subset of X we obtain by the pre-
ceding step that for each finite subset J of I

m

(

⋃

i∈I

Ei

)

≥ m

(

⋃

i∈J

Ei

)

≥
∑

i∈J

m(Ei).



Therefore

m

(

⋃

i∈I

Ei

)

≥
∑

i∈I

m(Ei).

¤

Open problem: Find all variations of a given arbitrary set function m.

We shall give a partial answer on this problem, when we require some
additional properties of the variation.

Theorem 3 Let m be a set function defined on Σ with values in R (or [0,+∞]),
with m(∅) = 0. Then m given by (1) is the smallest variation of m (defined on
P(X)) which is superadditive.

Proof. By Theorem 2 variation m is superadditive. Then theorem follows by
the properties of any superadditive variation η of m taking an arbitrary finite
family {Di}i∈I of disjoint sets from Σ contained in A, i.e.,

η(A) ≥ η

(

⋃

i∈I

Di

)

≥
∑

i∈I

η(Di) ≥
∑

i∈I

| m(Di) | .

Hence η(A) ≥ m(A). ¤

Open problem: Find all variations of a given arbitrary set function m.

We shall give a partial answer on this problem, when we require some
additional properties of the variation.

Theorem 4 Let m be a set function defined on Σ with values in R (or [0,+∞]),
with m(∅) = 0. Then m given by (1) is the smallest variation of m (defined on
P(X)) which is superadditive.

4 Submeasures

For non-negative monotone set function m with an additional topological prop-
erty we can correspond a submeasure ξ (monotone and subadditive set func-
tion) which is closely topologically connected with m, see for more details
[6, 7, 13, 14].

Theorem 5 Let D be a ring and m : D → [0,∞) be monotone. Then there
exists a submeasure ξ on D such that

m(En) → 0 ⇔ ξ(En) → 0,

if and only if m satisfies the following condition:

(ac) m(An) + m(Bn) → 0, then m(An ∪ Bn) → 0.

The work was supported by the grant MNTRS-1866 and the Vojvodina
Academy of Sciences and Arts..
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Abstract: The completeness of an exploration project is of crutial importance for making 

decision to start or to give up a mining investment, or to continue the exploration to get 

complementary information. The authors discuss this problem on the example of the 

Halimba bauxite deposit, Hungary. Resource calculations were carried out in 12 

subsequent stages by fuzzy arithmetic with the aim to quantify the uncertainties of ore 

tonnage and grade. Prior information and prior probabilities were applied to complete the 

exploration data. Ranges of influence for the main variables were calculated by 

variograms. Spatial variability and spatial continuity of the ore bodies were 

mathematically evaluated. The authors found that the main geological, mining and 

economic factors must be evaluated separately and ranked according to their importance. 

Keywords: resource assessment, fuzzy arithmetic, prior information, prior probabilities 

1 Introduction 

Exploration of solid mineral deposits is generally an expensive task. Even more 

expensive and risky is the successive mining investment. It is of paramount 

importance therefore to optimize the exploration expenses and to minimize the 

risks of the mining investment. This double task was considered so far as a purely 
geological and mining- engineering problem, however, in our opinion, the 
application of some new mathematical methods may considerably improve the 

results. The aim of this paper is to show the application of these new methods by a 

case study. The Halimba bauxite deposit in Hungary has been chosen as example. 
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2 Basic Concepts 

The completeness of an exploration campaign is generally expressed by the 

resource assessment (tonnage and grade) and its overall reliability. The spatial 

distribution and spatial variability of ore grade and the spatial continuity of ore 

within the deposit are further important aspects (Henley 2000, Wellmer 1989, 

Yamamoto 1999). However the traditional methods of resource assessment are not 

able to quantify the reliability of the estimation results. The fuzzy set theory has 

been applied by the authors for this purpose on some solid mineral deposits with 

success (Bárdossy, Fodor 2004). Fuzzy sets have been applied for the resource 

assessment of skarn tin deposits by Luo and Dimitrakopoulos (2003). 

A further improvement can be achieved by applying the concept of Bayesian 

probabilities. It is well known that the so called frequentist approach requires 

repeated identical experiments. However, this requirement can be fulfilled only 

rarely at the geologic investigations. The Bayesian approach, on the other hand, is 

able to evaluate unrepeatable phenomena as well. Bayesian probability depends 

only on the state of knowledge about the given problem and it changes with time 

as new pieces of information are acquired (Bárdossy, Fodor 2004). Mineral 

exploration has also this changing character as new pieces of information are 

obtained about the given deposit by drilling new boreholes etc. For this reason,it is 

reasonable to apply also prior information and Bayesian probabilities for the 

evaluation of exploration results and other geoscientific problems (Wood and 

Curtis 2004). 

3 Initial Data 

The bauxite deposit of Halimba, selected for this case study has been explored 

since 1943 and up to the present more than 2600 core boreholes have been 

performed. Underground mining started in 1950 and is still running. Computerised 

relational databases have been established (AutoCad) for the main data obtained 

about the deposit, particularly for the chemical composition of the ore. The sector 

of the test calculations – called Halimba II east – has been intensively explored 

during the last three years. It covers an area of 15 hectars with 237 borehole sites 

and it is situated int he southern part of the deposit (Figure 1). A 10 to 40 m thick 

bed consisting of bauxite, clayey bauxite and bauxitic clay covers the karstified 

surface of Upper Triassic dolomite and limestone. The overburden is of Middle 

Eocene age. The entire deposit is of fluvial origin. The area of the studied sector is 

of flood-plain facies. The bauxite accumulated during short inundation phases, 

forming very irregular ore bodies within a continuous clayey bauxitic layer. 

Underground mining operations started in the western part of the study area in 

2003. They confermed the above outlined deposit model. 
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Figure 1 

The Halimba bauxite deposit, Hungary 

First the spatial variability of the main variables has been evaluated by us applying 

the well known methods of geostatistics (Goovaerts 1997). Ranges of influence 

have been calculated by the Variowin program for the thickness of the bauxitic 

bed, for the bauxite ore and for the Al2O3, SiO2,Fe2O3,CaO and MgO contents of 

the bauxite. 

Our basic idea was to follow the changes that occurred as the exploration 

progressed. For this reason resource assessments were carried out by us after every 

20 new boreholes finished. Thus a growing number of boreholes served as a base 

of the successive resource assessments. Altogether 12 resource assessments have 

been performed. 

The three basic components of any resource assessment of solid mineral deposits 

are the area of the deposit, the thickness of the ore and its bulk density. Fuzzy 

numbers have been constructed for all the three components. The „support” of the 

fuzzy number extends from the minimum to the maximum possible value. In the 

case of the deposit area the minimum value is determined by straight lines 

connecting the extreme productive boreholes. The maximum possible area is 

obtained by connecting the closest improductive boreholes around the productive 
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area. The „core” of the fuzzy number represents the geologically most possible 

area, determined by the deposit model and its contour line. 

This is a relatively simple and unambiguous task in the case of well explored 

deposits. However, in the early stages of exploration the number of boreholes is 

often not sufficient for the above outlined constructions. In that cases we 

extrapolated from the given productive borehole the range of influence of the 

bauxite thickness in all directions, obtaining this way the minimum possible area. 

The maximum possible area was obtained by taking in all directions twice the 

range of influence. In this case an interval has been chosen also for the core of the 

fuzzy number, expressing the larger uncertainty of the deposit area. The 

extrapolated resource boundaries are replaced gradually by straight lines 

connecting the neighbouring boreholes, as new boreholes are drilled. According to 

our experience, exploration should not be finished before replacing all the 

extrapolated boundaries by the connecting straight lines. Thus the trapesoidal 

fuzzy numbers are gradually replaced by triangular ones. As an example the area 

of the resource assessment at the end of the third stage is shown in Figure 2, and 

that at the end of the last (12th) stage in Figure 3. 

 

Figure 2 

The area of the resource assessment at the end of the third stage 
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Figure 3 

The area of the resource assessment at the end of the last stage 

The fuzzy numbers representing the ore thickness correspond to the averages of 

the borehole results. Before calculating the averages, the main statistics of ore 

thickness have been calculated by us, applying the 12.0 version of the SPSS 

program. The histograms and the „skewness” values indicated a strong right-

asymmetrical distribution. To eliminate the corresponding bias, „maximum 

likelihood” estimators have been calculated instead of the common averages. 

Tukey’s biweight estimator was found to correspond best to an unbiased average. 

It has been applied in all cases when the skewness statistic exceeded 1,0. The 

minimum and the maximum values of the support of the fuzzy numbers 

correspond to the endpoints of the corresponding confidence interval, at 95% level 

of confidence. The core of the fuzzy number is an interval determined by the 

standard error of the mean. 

The bulk density of the ore has been measured in the laboratory on borehole cores 

and in the mine on large samples, several hundred times. The distribution of the 

results is symmetrical. The mean value is 2,29 tons/m3. The analytical error is less 

than 10 relative percents. The variability of the bulk density is very limited over 

the test area. For this reason the same fuzzy number has been applied for all the 

twelve resource assessments. In the same way as for the ore thickness, the support 

corresponds to the confidence interval at 95% level of confidence and the core to 

the standard error of the mean, plus the analytical error. 

The tonnage of the resource is the product of the above discussed three 

components. Fuzzy multiplication was applied for the three corresponding fuzzy 

numbers. The uncertainty of the resource assessment is expressed in tons by the 
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length of the support and the core. Additionally relative deviations from the 

average values – expressed as percentages – were also calculated. 

The average grade of the ore has been calculated in a similar way constructing 

average fuzzy numbers for all the listed chemical components. To avoid biases 

due to asymmetrical distribution histograms and skewness values were calculated 

and robust M-estimators were applied whenever the skewness exceeded the value 

1,0. As in the case of tonnage, absolute and relative uncertainties have been 

calculated for all the evaluated chemical components. 

As mentioned above, all the above listed calculations have been repeated 12 times, 

adding every time 20 new boreholes. Fuzzy numbers for selected stages are 

presented in Figure 4. 

0 0 0

1 1 1

10 20 30 m2 m kt5 10 15 20 2 4 6 8

0 0 0

1 1 1

10 20 30 m2 m kt5 10 15 20 2 4 6 8

0 0 0

1 1 1

10 20 30 m2 m kt5 10 15 20 2 4 6 8

Area Mean thickness Tonnage

Stage 2

Stage 5

Stage 11

 

Figure 4 

Fuzzy numbers expressing the area, mean thickness, and tonnage for stages 2, 5, 11 

4 Evaluation of the Completeness of the Exploration 

For the starting situation, that is before the drilling of the first bore hole in the 

sector, the following prior probabilities have been assumed, based on the 

experiences of the neighbouring explored and mined sectors: 

• the bauxite – clayey bauxite bed is continuous over the exploration sector 

0.8 probability 

• the bed is not continuous over the exploration sector       0.2 probability 
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Second item of the prior probabilities: 

• - commercial bauxite ore bodies are situated within the above bed         

  0.6 probability 

• - no commercial bauxite ore bodies occur within the bed      0.4 probability 

The end situation – after the 12th stage – confirmed both larger prior probabilities. 

For the first two stages of exploration the number of productive boreholes was not 

sufficient to calculate reliable variograms. For this reason, the already calculated 

ranges of influence of the neighbouring sectors were applied, supposing similar 

values in the study area. At the end of the third stage variograms could be 

calculated for the ore thickness. By applying different „lags” and variogram 

models ranges of influence from 10 to 20 m length were obtained. With growing 

number of boreholes the variograms became more accurate and after the 12th stage 

15 m range of influence was accepted for the entire exploration area. However, 

locally even smaller ranges of influence exist, as confirmed by the latest mining 

operations. As outlined later, these changes significantly influenced the results of 

the successive resource assessments. 

At the end of each exploration stage circles were constructed around each 

borehole, expressing the range of influence. The boreholes were placed in a 

„random-stratified” grid, with the aim to optimize the contouring of the very 

irregularly shaped ore bodies. For this reason „unknown” slices remained between 

some neighbouring boreholes. Prior probabilities have been calculated for these 

slices separately and if they exceeded the 0.5 value, they have been included into 

the resource assessment. This procedure ameliorated considerably the fitting of the 

resource contours to the real boundaries of the ore bodies. 

Different variables have been chosen for the quantitative evaluation of the 

completeness of exploration,first of all the tonnage of the resources. In Figure 5 

the successive changes of the minimum and maximum values of the support are 

represented. The minimum value of the tonnage steeply increases in the first four 

stages of exploration, followed by much smaller increase in the later stages. The 

fluctuation of the diagram reflects the randomness of the results at some stages. 

The possible maximum tonnage also increases steeply in the first stages, but it is 

followed by an unexpected gradual decrease untill the eighth stage. The last stages 

show a slight increase. The peculiar form of this diagram can be explained by the 

higher uncertainty of the maximum tonnage, influenced by the position of the 

closest improductive boreholes and by the extrapolation of the contour line in the 

first stages of exploration. The peak between the third and fourth stages is clearly 

a random effect, that may occur in the first stages of any exploration campaign. As 

exploration progresses, the difference between the two diagrams diminishes, as the 

area between the manimum and maximum contours becomes narrower. 
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Figure 5 

Quantitative evaluation of tonnage: successive changes of the maximum and minimum of 

the support and the core, respectively 

The tonnage expressed by the core of the fuzzy numbers has a much shorter 

uncertainty interval, presented also in Figure 5. The random overestimation of the 

tonnage between the third and fourth stages is clearly visible on both diagrams, 

but it is gradually equalized in the later stages without reaching a constant value. 

Theoretically, the exploration is still not complete, but the changes of the tonnage 

are insignificant. Thus the tonnage of the resources alone is in favour of finishing 

the exploration drilling. 

A further aspect of the evaluation is the relative uncertainty of the tonnage, 

expressed as a percentage of the mean (crisp) tonnage. We calculated it separately 

for the support and for the core of the corresponding fuzzy numbers. The results 

are presented in Figure 6. It is obvious that the uncertainty of the tonnage 

expressed by the support is much larger than that of the core. It decreases in the 

successive stages untill the eighth stage – from ±91% to ±73%. This is followed in 

the later stages by a fluctuation and a final value of ±69%. On the other hand, the 

relative uncertainty of the tonnages expressed by the core are much smaller. The 

starting ±46% relative uncertainty diminishes to ±9%. This indicates a near 

complete exploration result. 
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Figure 6 

Relative uncertainty of the tonnage for the core and the support, respectively 

The tonnage values of the fuzzy numbers and their relative uncertainties are 

presented in Table 1. Let us stress that these data represent a significant 

complement to the single-valued traditional resource estimation results. But even 

these data are insufficient in our opinion to make a reliable decision on the 

completenes of an exploration campaign. The main chemical components have 

been evaluated by us too, in function of the successive exploration stages.The 

resulting main statistics, calculated by the SPSS program are presented in Table 2. 

The Al2O3 content has the smallest relative variance, ±7%. The distribution of this 

component is almost normal, thus the mean value is unbiased. It diminished from 

the second to the latest exploration stage from 52.8 to 51.2%, considered by us as 

a very small change. In the same time, the standard error of the mean diminished 

from ±1.0 to ±0.3%, indicating a high reliability of the results. It can be concluded 

that regarding the alumina content the exploration has been complete since the 

early stages. 

The Fe2O3 content follows with ±14-16% relative variance. The distribution is 

symmetrical and the mean decreased from 25.3 to 24.6% as exploration 

progressed, close to the range of the analytical error. As with the Al2O3, the 

standard error of the mean diminished from ±1.0 to ±0.3%. 



 
Table 1 

Main results of the resource calculations 

Stages Number of Deposit area  Tonnage Length of the Relative uncertainty Length of the Relative uncertainty

  boreholes a b c d  a b c d core interval of the tonnage (%) support interval of the tonnage (%) 

1 15 0 0 0 0  0 0 0 0 0 0 0 0 

2 35 5300 8100 12000 17400  41700 158200 425400 826400 267200 46 784700 90 

3 55 11800 26200 29800 46400  104400 342400 675200 1388400 332800 30 1284000 86 

4 78 12610 29100 30800 47960  126100 391400 710900 1367200 319500 29 1241100 83 

5 98 14090 29300 31000 46600  126600 350000 643000 1200000 293000 30 1073400 81 

6 117 15630 30400 32100 47700  136500 344500 626700 1152500 282200 29 1016000 79 

7 137 14090 29700 30000 45630  106000 279600 472600 929000 193000 26 823000 79 

8 158 16980 30200 30700 44100  130900 281900 473800 843200 191900 25 712300 73 

9 178 16700 32200 32400 47870  126400 303300 499100 917500 195800 24 791100 76 

10 198 18940 35300 35300 52280  135900 329200 548000 1028500 218800 25 892600 77 

11 217 20800 36000 36300 52200  136200 323800 549100 1002700 224100 25 870900 76 

12 238 24300 41600 42000 60300  178800 439000 524200 960000 85200 9 781100 69 

Legend:                         

a: lower bound of the support of trapezoidal fuzzy number [a,b,c,d]       

b: lower bound of the core of trapezoidal fuzzy number [a,b,c,d]  
  

   

c: upper bound of the core of trapezoidal fuzzy number [a,b,c,d]       

d: upper bound of the support of trapezoidal fuzzy number [a,b,c,d]             

 

a

b c

d
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Thus the exploration is considered complete also in this respect. 

The SiO2 content of the ore is more variable, the relative variance ranging from 

±39 to 45%. The distribution is almost symmetrical and the mean remained the 

same within the range of the analytical error. Only the standard error of the mean 

diminished from ±0.7 to ±0.2%, indicating a high reliability of the results. The 

exploration is complete also in this respect. 

The CaO is one of the main contaminants in the bauxite. This is the most variable 

analysed chemical component, the relative variance ranging from ±83 to 114%. 

The distribution is strongly skewed, as indicated by the high positive skewness 

value. For this reason Tukey’s M-estimator has been applied intead of the normal 

mean. It increased gradually from 0.6 to 1.0% to the last stage of the exploration. 

It cannot be predicted whether a further increase would occur with the drilling of 

new boreholes. The reason for this high variability is the presence of CaO in the 

form of secondary calcite precipitations, irregularly distributed within the ore 

bodies.Thus regarding the evaluated chemical components, the exploration can be 

considered as completed, except the CaO content. 

A further aspect influencing the completeness of the exploration is the detection of 

the spatial distribution of the orebodies and the degree of their variability. The 

question is, how much increased the precision of these predictions by the 

exploration and can it be regarded complete after the twelfth stage? To answer 

these questions prior probabilities have been applied. The borehole sites have been 

ordered into five categories and a prior probability has been attached to each 

category, based on the overall exploration experiences of the entire deposit: 

1. the site is within the productive area  0.3 prior probability 

2. the site is on the border of the productive area 0.05 

3. the site is within the possible area   0.2 

4. the site is on the outer border of the possible area 0.05 

5. the site is within the improductive area  0.4 

altogether     1.0 prior probability 

The borehole sites situated beyond the range of influence of bauxite thickness 

have not been categorized. In the next step all existing borehole sites were 

categorized based on the resource assessment maps of the 12 exploration stages 

and the changes of categories were presented in the form of a table. Table 3 shows 

these changes for 20 selected borehole sites, as the limited extent of this paper 

does not allow the presentation of all the 237 borehole sites. (The not categorized 

sites are indicated by question-marks). It is obvious that the number of not 

categorized sites diminishes in the successive exploration stages. Several 

boreholes have been drilled at such sites having no prior information. 
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Table 2 

Main statistics of selected chemical components at the end of exploration stages 

Chemical components Stage 12 Stage 8 Stage 6 Stage 4 Stage 2 

SiO2      

Mean (%) 5.30 5.70 5.70 5.50 5.40 

Standard error of the mean (%) ± 0.20 ± 0.20 ± 0.30 ± 0.30 ± 0.70 

Standard deviation (%) ± 2.10 ± 2.30 ± 2.30 ± 2.2 ± 2.40 

Coefficient of variation (%) 39.00 40.00 41.00 40.00 45.00 

Skewness 0.02 -0.05 -0.03 0.03 -0.16 

Min (%) 1.30 1.30 1.30 1.30 1.30 

Max (%) 9.90 9.50 9.50 9.50 9.40 

      

Al2O3      

Mean (%) 51.20 51.60 51.90 51.90 52.80 

Standard error of the mean (%) ± 0.30 ± 0.40 ± 0.40 ± 0.50 ± 1.00 

Standard deviation (%) ± 3.60 ± 3.70 ± 3.50 ±3.20 ± 3.70 

Coefficient of variation (%) 7.00 7.00 7.00 6.00 7.00 

Skewness 0.24 -0.09 0.45 0.88 -0.89 

Min (%) 38.70 38.70 42.90 44.00 44.00 

Max (%) 64.10 63.10 63.10 63.10 59.50 

      

Fe2O3      

Mean (%) 24.60 24.60 24.30 24.30 25.30 

Standard error of the mean (%) ± 0.30 ± 0.40 ± 0.40 ± 0.60 ± 1.00 

Standard deviation (%) ± 3.80 ± 3.90 ± 3.50 ± 3.80 ± 3.50 

Coefficient of variation (%) 16.00 16.00 15.00 16.00 14.00 

Skewness -0.89 0.65 -0.77 -0.94 0.38 

Min (%) 10.30 11.10 11.10 11.10 20.10 

Max (%) 36.70 36.70 32.60 32.60 32.60 

      

CaO      

Mean (%) 1.00 0.90 0.89 0.76 0.60 

Standard error of the mean (%) ± 0.08 ± 0.09 ± 0.12 ± 0.19 ± 0.27 

Standard deviation (%) ± 0.83 ± 0.81 ± 0.85 ± 0.87 ± 0.55 

Coefficient of variation (%) 83.00 90.00 96.00 114.00 91.00 

Skewness 1.32 1.54 1.74 2.57 1.54 

Min (%) 0.11 0.11 0.11 0.11 0.20 

Max (%) 3.90 3.90 3.90 3.90 1.38 

This „haphazard” approach leaded to some negative results, as illustrated by the 

Table 3. The categories of the borehole sites often changed in positive or negative 
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sense indicating the incompleteness of the exploration. Theoretically, exploration 

should be considered complete if the site-category would not change in the final 

two or three exploration stages, before the drilling of the given borehole. 

Unfortunately, this condition was only partly fulfilled even for the last, twelfth 

stage. Thus, in this respect the exploration cannot be accepted as complete. 

Table 3 

Prior categorization of selected borehole sites 

Borehole Exploration stages 

  1 2 3 4 5 6 7 8 9 10 11 

H-2564 ? 5 3 3 3 3 3 3 3 3 2 

H-2557 5 5 5 5 5 5 5 5 5 5 1 

H-2556 ? ? ? ? ? ? ? ? ? ? 5 

H-2555 ? ? ? ? ? ? ? ? ? ? 5 

H-2554 ? (1) (1) 3 3 3 3 3 3 3 2 

H-2553 ? (2) (1) 3 3 3 3 3 3 3 2 

H-2552 ? (3) 3 3 3 3 3 3 3 3 2 

H-2551 ? (1) (1) 1 1 1 1 1 1 1 3 

H-2550 5 5 3 3 3 3 3 3 3 3 2 

H-2549 ? 5 5 5 5 5 5 3 3 3 4 

H-2548 ? ? ? ? ? ? ? ? ? ? 5 

H-2547 ? 5 3 3 3 3 3 3 3 3 3 

H-2546 ? 5 (1) 1 1 1 1 1 1 1 1 

H-2545 ? 5 (4) (4) (4) (4) (4) (4) 4 4 n.a. 

H-2544 ? ? 5 ? ? ? ? 5 3 2 n.a. 

H-2543 5 5 5 ? ? ? ? ? ? 5 n.a. 

H-2542 5 5 5 ? ? ? ? ? ? 4 n.a. 

H-2541 ? ? ? ? ? ? ? ? 5 2 n.a. 

H-2540 ? ? ? ? ? ? ? ? ? 2 n.a. 

H-2539 ? ? ? ? ? ? ? ? ? 4 n.a. 

Legend:            

1. Site within the productive area.        

2. Site on the border of the productive area      

3. Site within the possible area.       

4. Site on the outer border of the possible area.     

5. Site within improductive area (clayey bauxite and bauxitic clay).  

( ) Site categorized by extrapolation.       

? Not categorized site, outside the ranges of influence.    

Bold numbers: categories after drilling the corresponding borehole site. 

Table 4 

Summary results of the prior categorization of the first seven exploration stages 



Gy. Bárdossy et al. 

 Assessment of the Completeness of Mineral Exploration by the Application of Fuzzy Arithmetic and Prior 
Information 

 – 28 –

Categories Productive Possible Improductive Sum of row 

Productive 20 16 14 50 

Possible 10 17 11 38 

Improductive 0 2 12 14 

Sum of column 30 35 37 102 

A more complete evaluation can be obtained if several exploration stages are 

considered together. Table 4 shows the results of the first seven stages.(Obviously, 

the first stage can not be evaluated). Even more interesting results were obtained, 

when evaluating all stages together, as presented in Table 5. From the 203 prior 

probabilities 92 were confirmed by the drilling of the corresponding bore-holes. 

Even more important is that in 97 cases the prior probabilities were changed 

positively and only in 14 cases negatively. These result underline the effectiveness 

of the exploration campaign. 

Table 5 

Summary results of the prior categorization of all the 12 exploration stages 

Categories Productive Possible Improductive Sum of row 

Productive 28 35 37 100 

Possible 12 32 25 69 

Improductive 0 2 32 34 

Sum of column 40 69 94 203 

A further aspect, important for the planning of a mining investment, is the 

completeness of the contouring of the orebodies. In our case this means that the 

orebodies should be surrounded from all sides by improductive boreholes. The 

evaluation is simple: the exploration is incomplete at all places where the contour 

of the orebody is determined only by extrapolation. In the study area four places 

remained incomplete in this respect after ending the 12th stage. An overall relative 

index can be computed when comparing the length of the completely contoured 

borders with the length of the extrapolated ones. 

A further aspect is the rate of lateral changes in the thickness and altitude of the 

orebodies. This aspect is very important in the case of underground mining, as it 

can be a limiting factor for the choice of the excavation and production systems. 

We evaluated this aspect by calculating the specific rates of lateral changes for the 

bauxite thickness of neighbouring boreholes. An example of this evaluation is 

presented in Figure 7. In the ore bodies of our test sector these specific rates of 

lateral changes are often very strong and they may vary quickly in the different 

directions, making difficulties in the choice of the mining methods. Note that the 

boreholes beyond the range of influence were excluded from this evaluation. The 

entire productive sector has been evaluated in this way. The exploration is 

complete in this respect. 
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Figure 7 

Evaluation of the specific rate of changes for ore thickness in an underground mine around 

a measured central point 

It is mathematically possible to aggregate all the discussed aspects into one fuzzy 

completeness index of the exploration, following the methodology of Luo and 

Dimitrakopoulos (2003) for their fuzzy mineral favourability index. This is a 

useful estimator for the stakeholder, but for the mining engineer, planning and 

starting the mining operations, it is more useful to evaluate and to compare all the 

discussed aspects separately. We recommend therefore the stepwise evaluation of 

each aspect after every exploration stage and making decisions after ranking them 

in both respects of completeness (reliability) and the additional costs of the 

drilling of further boreholes. 

5 Verification of the Exploration Results 

The underground mining operations quickly followed the above outlined 

exploration, offering us a possibility to check the validity of our evaluations. In the 

western part of the deposit boreholes were drilled from the galleries at 5 meter 

intervals vertically up and down and also laterally. The bauxite has been sampled 

and analysed at every one meter interval. The bauxite ore of more than 2 meters 

thickness have been excavated. 
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All these data have been evaluated by us by applying the AutoCAD program and 

the resulting 2 meters contour has been constructed. This line has been compared 

with our last (12th) resource assessment map – for the selected part of the deposit 

(Figure 8). The productive area of our resource assessment is completely 

confirmed by this contour line. It runs generally within the possible area, and at 

some places it even extends beyond it. There is no positive or negative bias (over- 

or under estimation) in this respect. Thus our deposit model, applied to our 

resource assesment has been confirmed by the mining operations. 

 

Figure 8 

Comparison of estimation and reality 

Conclusions 

The completeness of a mineral exploration can be best evaluated by a joint 

application of the fuzzy set theory and Bayesian (prior) probabilities. The 

establishment of appropriate computerized databases is indispensable for these 

tasks. 

The method consists of the stepwise evaluation of successive exploration stages 

(contouring the productive and possible areas and calculating the resources). 

According to our experiences, completeness of exploration is achieved at different 

stages of exploration regarding the different evaluated variables. The criterion for 

completeness should be the decrease or complete equalization of the given 

variable. 

Even in the case of best planned and evaluated exploration random effects (over- 

or under-estimation of the given variable) cannot be excluded, mainly in the early 

stages of the exploration campaign. 
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A reliable deposit model is the precondition of any evaluation in this respect. The 

model can be verified by the evaluation of the successive mining operations. 

This methodology can be applied to other types of solid mineral deposits as well, 

taking into account their specific deposit models. 
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Abstract: In computer vision image point correspondence matching plays an important 

role. With the help of the point correspondence matching algorithms for example some of 

methods concerning the field of stereo vision can be automatized. This paper presents a 

method for quickly and reliably selecting and matching of the most interesting image points 

(feature points). 

Keywords: Feature points, image point correspondence, 3D modeling, noise cancellation, 

edge detection, corner detection, fuzzy reasoning 

1 Introduction 

Feature matching is a key component in many computer vision applications, for 

example in stereo vision, motion tracking, and identification. The most significant 

problem in stereo vision is how to find the corresponding points in two, let us call 

them left and right images, referred to as the correspondence problem. In the field 

of computer vision several applications require to match feature points of images 

taken form different camera positions. Stereo techniques can be distinguished by 

several attributes, e.g., whether they use area-based or feature-based techniques, 

are applied to static or dynamic scenes, use passive or active techniques, or 

produce sparse or dense depth maps. The extremely long computational time 

needed to match stereo images is still the main obstacle on the way to the practical 

application of stereo vision techniques. In applications such as robotics, where the 

environment being modeled is continuously changing, these operations must also 

be fast to allow a continuous update of the matching set, from which 3D 

information is extracted [1] [2]. The correspondence search in stereo images is 

commonly reduced to significant features as computing time is still an important 

criterion in stereo vision. There exist several stereo vision techniques, from which 
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the most popular are the Area-based and the Feature-based stereo techniques. The 

first kind of the mentioned techniques finds corresponding points based on the 

correlation between the corresponding areas in left and right images [3]. First, a 

point of interest is chosen in one of the images. A correlation measure is then 

applied to search for a corresponding point with a matching neighborhood in the 

other image. Area-based techniques have the disadvantage of being sensitive to 

photometric variations during the image acquisition process and are sensitive to 

distortions, which reason in the first place is the changing viewing position. 

Feature-based stereo techniques, on the other hand, match features in the left 

image to those in the right image. Features are selected as the most prominent 

parts in the image, such as, for example, edge points or edge segments, corner 

points etc. Feature-based techniques have the advantage of being less sensitive to 

photometric variations and of being faster than the area-based stereo method, 

because there are fewer candidates for matching corresponding points [4]. If we 

combine the Area-based stereo techniques with the Feature-based stereo 

techniques we can get better results. In this paper a new approach of feature points 

correspondence matching is presented. The paper is organized as follows: In 

Section 2 the preprocessing phase of the input pictures is detailed, Section 3 shows 

how to find edge and corner points, while Section 4 presents the matching 

algorithm of these feature points. In Section 5 experimental results are 

summarized and Section 6 is devoted to the conclusions. 

2 Preprocessing of the Images, Noise Elimination 

A major task in the field of digital processing of measurement signals is to extract 

information from sensor data corrupted by noise [5] [6]. For this purpose we will 

use a special fuzzy system characterized by an IF-THEN-ELSE structure and a 

specific inference mechanism. Different noise statistics can be addressed by 

adopting different combinations of fuzzy sets and rules [5] [6]. Let x(r) be the 

pixel luminance at location r=[r1,r2] in the noisy image where r1 is the horizontal 

and r2 the vertical coordinate of the pixel. Let N be the set of eight neighboring 

pixels (see Fig. 1a). The input variables of the fuzzy filter are the amplitude 

differences defined by: 

8,...,1,0 =−=∆ jxxx jj  (1) 

where the xj, j=1,…,8 values are the neighboring pixels of the actually processed 

pixel x0 (see Fig. 1a). 
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Figure 1a 

The neighboring pixels of the actually processed pixel x0 
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N6 N7 N8 N9
 

Figure 1b 

Pixel patterns NNN ⊆91,...,  
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- +L 1 a b
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Figure 2 

Membership function mLP. Parameters a and b are appropriate constant values 

Let y0 be the luminance of the pixel having the same position as x0 in the output 

signal. This value is determined by the following relationship: 

yxy ∆+= 00  (2) 

where ∆y is calculated thereinafter (see eq. (5)). Let the rule-base deal with the 

pixel patterns NNN ⊆91,...,  (see Fig. 1b). 

The value y0 can be calculated, as follows [7]: 

{ }{ }9,...,1;:)( =∈∆= iNxxmMINMAX ijjLPλ   (3) 
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3a     3b 

 

3c 

Figure 3a represents the image corrupted by impulse noise, 3b shows the image after fuzzy 

filtering and in figure 3c the image after the fuzzy based edge detection can be followed 

{ }{ }9,...,1;:)(* =∈∆= iNxxmMINMAX ijjLNλ  (4) 

yxy

Ly

∆+=
∆−=∆

00

)1( λ
  (5) 

where ∆λ=λ-λ*, mLP and mLN correspond to the membership functions of fuzzy sets 

large positive and large negative and mLP(u)=mLN(-u) (see Fig. 2). The filter is 

recursively applied to the input data. Using this fuzzy filter the impulse noise can 

effectively be eliminated. With the help of the parameters a, b the sensitivity of 

the noise elimination method can be modified, i.e., the shape of the membership 

functions mLN and mLP can be tuned. If after the noise cancellation noisy image 

points will remain in the image, they will also be detected as corner points in the 

next step (see Section 3) and therefore it is very advisable to eliminate them as 

effectively as possible. Otherwise, for example at one hand, at automatic 3D 

reconstruction of a scene these non eliminated noisy pixels will appear in the 3D 

space, as well and on the other hand, the efficiency of the point correspondence 

matching algorithms will brake down with the number of non-eliminated noisy 

pixels. 
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3 Detection of Feature Points 

Edge detection in an image is a very important step for a complete image 

understanding system. In fact, edges correspond to object boundaries and are 

therefore useful inputs for 3D reconstruction algorithms. The proposed fuzzy 

based edge detection [7] can very advantageously be used for this purpose. 

Let xi,j be the pixel luminance at location [i,j] in the input image. Let us consider 

the group of neighboring pixels which belong to a 3x3 window centered on xi,j (see 

Fig. 1a). The output of the edge detector is yielded by the following equation [7]: 

{ }

jiji

jiji

LALAji

xxy

xxy

ymymMAXLz

,1,2

,,11

21, )(),()1(

−=∆

−=∆

∆∆−=

−

−  (6) 

where zi,j is the pixel luminance in the output image and mLA is the used 

membership function (see Fig. 4). Pixels xi-1,j and xi,j-1 are the luminance values of 

the left and the upper neighbors of the pixel at location [i,j]. 

The fuzzy based technique compared to the classical methods provided better 

results with less (very small) processing time. Fig. 3 shows an example for the 

filtering and edge detection results. In Fig. 3a the original photo corrupted by 

noise can be seen, Fig. 3b presents the filtered image of Fig. 3a, while in Fig. 3c 

the result of the edge detection can be followed. 

Corners are also local image features and are very useful at the 3D reconstruction 

of a scene. Using these feature points the processing time of the reconstruction of 

a scene can be reduced. 

0
q

p

L-1

m
LA

1

 

Figure 4 

Membership function mLA. Parameters p and q are appropriate constant values with the help 

of which the membership function mLA can be shaped. Parameter q is for changing the 

curvature of the membership function and p is for setting the sensitivity of the proposed 

edge detector 

Any corner detection algorithm should satisfy the following requirements: 
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• All the true corners should be detected 

• No false corners should be detected 

• Corner points should be well localized 

• Corner detector should be robust with respect to noise 

Förstner determines corners as local maxima of function H(x,y) [8]: 
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where I(x,y) is the intensity function and x, y are the coordinates of the pixels in 

the image. Starting from the algorithm of Förstner a new, improved corner 

detection algorithm can be developed by combining it with fuzzy reasoning. This 

can be used for the characterization of the continuous transition between the 

localized and not localized corner points, as well. The algorithm consists of the 

following steps: First, the picture, in which we have to find the corners, is 

preprocessed. As a result of the preprocessing procedure the noise is eliminated. 

For this purpose we apply the above described fuzzy filter [5] [6]. After noise-

filtering, the first derivatives of the intensity function I(x, y) are calculated in each 

image point. This is solved by using the following convolution masks: 
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Table 1 

Comparison some of corner detectors with fuzzy based one 

 
Correctly 

detected 

corners [%] 

Incorrectly 

detected points 

[%] 

Non detected 

points 

[%] 

Fuzzy based corner detector 84 3,2 16 

SUSAN corner detector 52 4,7 48 

Harris corner detector k=0.001 71 15,3 29 
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For increasing the effectiveness of the corner detection it is proposed to smooth 

the entries Ix
2, Iy

2, IxIy, in eq. (7), (Ix and Iy
 stand for the first partial derivatives of 

the intensity function I(x,y), x,y denote the 2D coordinates of the pixels). This can 

be done by applying a Gaussian 6x6 convolution kernel with σ=1 [8]. As the 

following step, the values H(x,y) are calculated for each image point with the help 

of the previously determined smoothed Ix
2, Iy

2, and IxIy values. If the detected 

corners are neighbors, we should keep only the corner having the largest 

calculated value H(x,y). The others are to be ignored. In most of the cases we can 

not unambiguously determine whether the analyzed image point is a corner or not 

based only on a certain concrete threshold value, therefore we have introduced 

fuzzy techniques in the inference of the proposed corner detection algorithm. As a 

result, the rate of the corner detection has been improved (see Table 1). By the 

score of the membership function of fuzzy set “corners” (see Fig. 5) we can 

determine a weighting factor, which characterizes “the rate of being a corner”. The 

value of the membership function mc is 1 for those image points for which the 

calculated value H equals or is larger than the given threshold value. With the help 

of the parameters p and q (see Fig. 5) the shape of the membership function can be 

modified and so the sensitivity of the described detector can be changed. Finally, 

the output of the proposed corner detector is yielded by the following relation: 

)()1(, HmLC cyx −= , (8) 

0
q

p

threshold

mc

1

H

 
Figure 5 

Membership function of fuzzy set “corners” (mc). Axis H is the axis of the calculated H(x,y) 

values. Parameters p and q are appropriate constant values with the help of which we 

membership function mc can be shaped: parameter q is for changing the curvature of the 

membership function and p is for setting the sensitivity of the proposed corner detector. 

 

Figure 6 

The image after fuzzy based corner detection. The circles indicate the detected corners. 
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where Cx,y represents the gray-level intensity values of the output image, x and y 

are the horizontal and vertical coordinates of the processed image point, L is the 

largest gray level intensity value, and H stands for the calculated H(x,y) values. 

4 Matching the Corresponding Feature Points in 

Stereo Images 

Feature matching is commonly referred to as the correspondence problem. The 

problem is how to automatically match corresponding features from two images, 

while at the same time not assigning matches incorrectly. The common approach 

for corners, is to take a small region of pixels around the detected corner (referred 

to as a correlation window) and compare this with a similar region around each of 

the candidate corners in the other image. Each comparison yields a score, a 

measure of similarity. The match is assigned to the corner with the highest 

matching score. The most popular measure of similarity is the cross-correlation. 

Most matching algorithms include constraints to complement the similarity 

measure. These may take the form of constraints on which corners are selected as 

candidate matches: a maximum disparity, or corners which agree with some 

known relationship between the images (such as the epipolar geometry). 

Constraints such as uniqueness or continuity may also be applied after candidate 

matches have been found. With the help of the epipolar constraint we can reduce 

the number of candidate image points. We have to search only along the epipolar 

line corresponding to the actually chosen image point in the source image. This 

epipolar line can be determined using the so called fundamental matrix [2]. The 

fundamental matrix defines a bilinear constraint between the coordinates of the 

corresponding image points. If for example m2 is the point in the second image 

 

 

  

 

 

 

 

 

Figure 7 

Illustration of the proposed point matching technique. In the left image a chosen corner is 

illustrated, while in the right image the candidate corner points can be seen. 
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corresponding to m1 (see Fig. 7), it must lie on the epipolar line lm1. The epipolar 

constraint can be written as: 

0=12 Fmm
T

 (9) 

Linear Solution for the Fundamental Matrix: 

Each point match gives rise to one linear equation in the unknown entries of 

matrix F. The coefficients of this equation can easily be written in terms of the 

known coordinates of m1 and m2. Specifically, the equation corresponding to a 

pair of points m1 and m2 will be 

03332312322

21131211

=+′+′++′
+′++′+′

ffyfxyffyy

fxyxffyxfxx
 (10) 

where the coordinates of m1 and m2 are (x, y, 1)t and (x',y',1)t, respectively. 

Combining the equations obtained for each match gives a linear system that can be 

written as Aw = 0, where w is a vector containing the 9 coefficients of F (fij) and 

each row of A is built of the coordinates m1 and m2 of a single match. Since F is 

defined only up to an overall scale factor, we can restrict the solution for w to have 

norm 1. We usually have more than the minimum number (8) of points, but these 

are perturbed by noise so we will look for a least squares solution:  

2

1
min Aw
w =

 (11) 

As AwAwAw TT=2
, we have to find the eigenvector associated with the 

smallest eigenvalue of the 9x9 symmetric, positive semidefinite normal matrix 

ATA. However, this formulation does not enforce the rank constraint, so a second 

step must be added to the computation to project the solution F onto the rank 2 

subspace. This can be done by taking the Singular Value Decomposition (SVD) of 

matrix F and setting the smallest singular value to zero. Basically, SVD 

decomposes any real valued matrix F in the form of 

F = Q D R (12) 

where D is diagonal and Q and R are orthogonal matrices. Setting the smallest 

diagonal element of D to 0 and reconstituting gives the desired result. 

As we know, the images in which we have to find the corresponding feature points 

are taken from different camera positions. If the angle of the camera positions is 

relatively small, we have greater chance to match the mentioned feature points, 

because of the small deformation of image pixels between two views. In this case 

the corresponding points can be found with high reliability in each image. Feature 

point mentioned in this section can be either corners or edge points. Matches are 

found by evaluating the similarity between image regions and selecting the match 

of the pair of regions with the highest similarity (see Fig. 7). There are many 
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similarity measure definitions known in the literature [10]. In this paper, we 

introduce a new measure of similarity which is based on the combination of cross-

correlation and a fuzzy measure: 

∑ ∑
∑=

22 ),(),(),(),(

),(),(),(

yxIyxFyxIyxF

yxIyxIyxF
M

RmLm

RLm

s , (13) 

where IL and IR are the intensity functions of the input images (left and right 

image) and Fm stands for the fuzzy measure corresponding to the pixel with 

coordinates x,y. Fm can be calculated, as follows: 

)}(),({),( yxMINyxF BAm µµ= , (14) 

µA and µB are the membership functions in universes X and Y representing the 

closeness of the points in the environment to the analyzed corner point-candidate 

(see Fig. 8). 

A point in the environment 
of the analyzed cornerAnalyzed corner

Membership functions 

Figure 8 

Fuzzy membership functions µA and µB of closeness used in eqs. 13, 14 

5 Experimental Results 

Fig. 9 represents two overlapped images, taken form two different camera 

positions. In the image the point correspondence is illustrated with the help of 

lines joining the corresponding image points. The end points of the lines represent 

the corresponding feature points of the overlapped images. 

µA

µB
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Figure 9 

The two images in overlapped form with the corresponding feature points 

  

   (a)     (b) 

Figure 10 

The epipolar lines and an example of two corresponding feature points 

Fig. 10a and Fig. 10b illustrate two images taken from different camera positions. 

On each of them an epipolar line corresponding to the pointed image pixel can be 

followed. To the image point A corresponds the epipolar line LA and to the image 

point B correspond the epipolar line LB. The corresponding image point of A is the 

image point B and inversely the point which corresponds to B is the image point A. 

Conclusions 

This paper introduces a new fuzzy based method for the matching of 

corresponding feature points in images, which are taken of the same scene from 

different camera positions. The method uses fuzzy based noise elimination and 

feature detection algorithms, with the help of which we can eliminate the non 

interesting points from the images and detect those feature points, which are the 

most interesting from the 3D reconstruction point of view. The method combines 

the area based and the feature based stereo techniques and applies fuzzy reasoning 

for the determination of a similarity measure, with the help of which we can 

decide which feature points can be the best candidates of being the corresponding 

 B

LB LA 
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points. The method introduced in this paper can advantageously be used in many 

other fields, as well, e.g. in robot guiding, medicine, and 3D object reconstruction. 

Acknowledgement 

This work was sponsored by the Hungarian Fund for Scientific Research (OTKA 

T035190 and T049519) and the Hungarian-Portuguese Intergovernmental S&T 

Cooperation Programme (P-24/03). 

References 

[1] Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.-T., “A Robust Technique for 

Matching Two Uncalibrated Images Through the Recovery of the Unknown 

Epipolar Geometry,” Artificial Intelligence, 1995, pp. 87-119 

[2] Rövid, A., A. R. Várkonyi-Kóczy, Várlaki, P., “3D Model Estimation from 

Multiple Images,” IEEE International Conference on Fuzzy Systems, FUZZ-

IEEE’2004, July 25-29, 2004, Budapest, Hungary, pp. 1661-1666 

[3] Faugeras, O., Vieville, T., Theron, E., Vuillemin, J., Hotz, B., Zhang, Z., 

Moll, L., Bertin, P., Mathieu, H., Fua, P., Berry, G., Proy, C., “Real time 

correlation-based stereo: algorithm, implementations and applications,” 

Research Report 2013, INRIA Sophia-Antipolis, France, August 1993, p. 45. 

[4] Lee, C.-Y., Cooper, D. B., and Keren, D., “Computing Correspondence 

Based on Region and Invariants without Feature Extraction and 

Segmentation,” Proc. CVPR´93, New York, USA, 1993, pp. 655-656 

[5] Russo, F., “Fuzzy Filtering of Noisy Sensor Data,” In Proc. of the IEEE 

Instrumentation and Measurement Technology Conference, Brussels, 

Belgium, 4-6 June 1996, pp. 1281-1285 

[6] Russo, F., “Recent Advances in Fuzzy Techniques for Image Enhancement,” 

IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 6, 

Dec. 1998, pp. 1428-1434 

[7] Russo, F., “Edge Detection in Noisy Images Using Fuzzy Reasoning,” IEEE 

Transactions on Instrumentation and Measurement, Vol. 47, No. 5, Oct. 

1998, pp. 1102-1105 

[8] Förstner W., “A feature based correspondence algorithm for image 

matching,” Int. Arch. Photogramm. Remote Sensing, vol. 26, 1986, pp. 150-

166 

[9] Catté, F., Lions, P.-L., Morel, J.-M., Coll, T., “Image selective smoothing 

and edge detection by nonlinear diffusion,” SIAM Journal on Numerical 

Analysis, 32:, 1992, pp. 1895-1909 

[10] Bogdan, G., Meer, P., “Point Matching under Large Image Deformations and 

Illumination Changes,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, VOL. 26, NO. 6, JUNE 2004, pp. 674-688 



Acta Polytechnica Hungarica Vol. 2, No. 1, 2005 

 – 45 –

Approximation of the Continuous Nilpotent 

Operator Class 

József Dombi, Zsolt Gera 

University of Szeged, Institute of Informatics 

E-mail: {dombi | gera}@inf.u-szeged.hu 

Abstract: In this paper we propose an approximation of the class of continuous nilpotent 

operators. The proof is based on one hand the approximation of the cut function, and on the 

other hand the representation theorem of operators with zero divisors. The approximation 

is based on sigmoid functions which are found to be useful in machine intelligence and 

other areas, too. The continuous nilpotent class of operators play an important role in fuzzy 

logic due to their good theoretical properties. Besides them this operator family does not 

have a continuous gradient. The main motivation was to have a simple and continuously 

differentiable approximation which ensures good properties for the operator. 

Keywords: nilpotent operators, sigmoid function, approximation 

1 Introduction 

The nilpotent operator class (see e.g. [1], [2], [3]) is commonly used for various 

purposes. In the following we will consider only the continuous nilpotent 

operators. In this well known operator family the cut function (denoted by [�]) 

plays a central role. We can get the cut function from x by taking the maximum of 

0 and x and then taking the minimum of the result and 1. One can relax the 

restrictions of 0 and 1 to get the concept of the generalized cut function. 

Definition 1 Let the cut function be 
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Let the generalized cut function be 
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where a,b∈ R and a < b. 

Remark. We will use [·] for parentheses, too, e.g. f [x] means f ([x]). 

As it can be seen from the representation theorem of the nilpotent class, which we 

will show later, all nilpotent operators are constructed using the cut function. The 

formulas of the Lukasiewicz conjunction, disjunction, implication and negation 

are the following: 
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Figure 1 

The truth tables of the Lukasiewicz conjunction, disjunction and implication 
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Figure 2 

Two generalized cut functions 

The truth tables of the former three can be seen on figure 1. The Lukasiewicz 

operator family used above has good theoretical properties. These are: the law of 

non-contradiction (that is the conjunction of a variable and its negation is always 

zero) and the law of excluded middle (that is the disjunction of a variable and its 

negation is always one) both hold, and the residual and material implications 

coincide. These properties make these operators to be widely used in fuzzy logic 

and to be the closest one to classic Boolean logic. Besides these good theoretical 

properties this operator family does not have a continuous gradient. So for 

example gradient based optimization techniques are impossible with Lukasiewicz 

operators. The root of this problem is the shape of the cut function itself. 

2 Approximation of the Cut Function 

A solution to above mentioned problem is a continuously differentiable 

approximation of the cut function, which can be seen on figure 3. In this section 

we’ll construct such an approximating function by means of sigmoid functions. 

The reason for choosing the sigmoid function was that this function has a very 

important role in many areas. It is frequently used in artificial neural networks, 

optimization methods, economical and biological models. 
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Figure 3 

The cut function and its approximation 

2.1 The Sigmoid Function 

The sigmoid function (see figure 4) is defined as 

 
)(

)(

1

1
)(

dxd
e

x −−+
= β

βσ  (4) 

where the lower index d is omitted if 0. 
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Figure 4 

The sigmoid function with parameters d=0 and β=4 

 
Figure 5 

The first derivative of the sigmoid function 

Let us examine some of its properties which will be useful later: 

� its derivative can be expressed by itself (see figure 5): 

 ),()(
)( )()(

)(

xx
x

x
dd

d ββ
β

σβσσ −=
∂

∂
 (5) 

� its integral has the following form: 

 ).(ln
1

 )( )()( xdxx dd

ββ σ
β

σ −−=∫  (6) 

Because the sigmoid function is asymptotically 1 as x tends to infinity, the integral 

of the sigmoid function is asymptotically x (see figure 6). 
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Figure 6 

The integral of the sigmoid function, one is shifted by 1 

2.2 The Squashing Function on the Interval [a,b] 

In order to get an approximation of the generalized cut function, let us integrate 

the difference of two sigmoid functions, which are translated by a and b (a < b), 

respectively. 
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After simplification we get the squashing function on the interval [a,b]: 

Definition 2 Let the interval squashing function on [a,b] be 
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The parameters a and b affect the placement of the interval squashing function, 

while the β parameter drives the precision of the approximation. We need to prove 

that )()(

, xS ba

β
 is really an approximation of the generalized cut function. 

Theorem 3 Let a,b∈R, a < b and β∈R
+
. Then 
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and )()(

, xS ba

β
is continuous in x, a, b and β. 

Proof. It is easy to see the continuity because )()(

, xS ba

β
 is a simple composition of 

continuous functions and because the sigmoid function has a range of [0,1] the 

quotient is always positive. 

In proving the limit we separate three cases, depending on the relation between a,b 

and x. 

• Case 1 (x < a < b): Since 0)( <− axβ , so 0)( →−axeβ
 and similarly 

0)( →−bxeβ
. Hence the quotient converges to 1 if ∞→β , and the 

logarithm of one is zero. 

• Case 2 (a ≤ x ≤ b): 
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We transform the nominator so that we can take the 
axe −

out of the limes. In 

the nominator 
)( axe −−β
 remained which converges to 0 as well as 

)( bxe −β
 

in the denominator so the quotient converges to 1 if ∞→β . So as the 

result, the limit of the interval squashing function is )/()( abax −− , 

which by definition equals to the generalized cut function in this case. 
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• Case 3 (a < b <x): 
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We do the same transformations as in the previous case but we take 
bxe −

from the denominator, too. After these transformations the remaining 

quotient converges to 1, so 
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Figure 7 

On the left image: the interval squashing function with an increasing β parameter (a=0 and 

b=2). On the right image: the interval squashing function with a zero and a negative β 

parameter 
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On figure 7 the interval squashing function can be seen with various β parameters. 

The following proposition states some properties of the interval squashing 

function. 

Proposition 4 

 ,2/1)(lim )(

,
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=
→

xS ba

β

β
 (13) 
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, xSxS baba

ββ −=−
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As an another example, the Lukasiewicz conjunction is approximated with the 

interval squashing function on figure 8. 

 

Figure 8 

The approximation of the Lukasiewicz conjunction [x+y-1] with β values 1,2,8 and 32 

For further use, let us introduce an another form of the interval squashing 

function’s formula. Instead of using parameters a and b which were the "bounds" 

on the x axis, from now on we’ll use a and δ, where a gives the center of the 

squashing function and where δ gives its steepness. Together with the new 
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formula we introduce its pliant notation.  

Definition 5 Let the squashing function be  
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where a∈R and δ∈R
+
. 

If the a and δ parameters are both 1/2 we will use the following pliant notation for 

simplicity: 

 ),()(

21,21 xSx β
β
=  (16) 

which is the approximation of the cut function. 

 
Figure 9 

The meaning of 
βδ xa <  

The inequality relation in the pliant notation refers to the fact that the squashing 

function can be interpreted as the truthness of the relation a < x with decision level 

1/2, according to a fuzziness parameter δ and an approximation parameter β (see 

figure 9). 

The derivatives of the squashing function can be expressed by itself and sigmoid 
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functions: 
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2.3 The Error of the Approximation 

The squashing function approximates the cut function with an error. This error can 

be defined in many ways. We have chosen the following definition. 

Definition 6 Let the approximation error of the squashing function be 
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where β > 0. 

Because of the symmetry of the squashing function δε δβ <−= 01 , see 

figure 9. 

The purpose of measuring the approximation error is the following inverse 

problem: we want to get the corresponding β parameter for a desired βε error. We 

state the following lemma on the relationship between βε and β. 

Lemma 7 Let us fix the value of δ. The following holds for e
b
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 (22) 

So the error of the approximation can be upper bounded by 
β
1

⋅c , which means 

that by increasing parameter β, the error decreases by the same order of 

magnitude.  

2.4 The Approximation of the Nilpotent Operator Class 

The following theorems state that any continuous t-norm having zero divisors can 

be representated by the Lukasiewicz t-norm. In other words any nilpotent t-norm 

can be constructed using the Lukasiewicz t-norm and an appropriate 

automorphism of the unit interval. By these theorems the approximation of the cut 

function and the Lukasiewicz t-norm can be extended to the approximation of the 

whole class of continuous nilpotent operators. 

We give the theorems using a different notation as stated in [4], especially for the 

cut function. By using [⋅] in the expressions, both the t-norm and the t-conorm 

case can be notated in the same way. The following lemma is needed for proving 

the theorems. 

Lemma 8 If c is a continuous t-norm such that c(x,n(x)) = 0 holds for all x∈[0,1] 

with a strict negation n then c is Achimedean. 

Proof. Suppose that c is not Archimedean. That is, there exists x∈(0,1) such that 

c(x,x) = x. If x ≤ n(x) then x = c(x,x) ≤ c(x,n(x)) = 0, a contradiction since 

x∈(0,1). If x > n(x) then, since c is a continuous function, there exists y ≤ x such 

that n(x) = c(x,y). Then we have 

0  n(x))c(x,  y))c(x,c(x,  y)x),c(c(x,  y)c(x,  n(x) ===== , 

again a contradiction since x∈(0,1). Thus our proposition is proved.  

Theorem 9 A continuous t-norm c is such that c(x,n(x))=0 holds for all x∈[0,1] 

with a strict negation n if and only if there exists an automorphism f of the unit 

interval such that 

 [ ]1)()(),(
1 −+= −

yfxffyxc  (23) 

and 

 ( ).)(1)( 1 xffxn −≤ −
 (24) 

Proof. (Necessity) According to the previous proposition, c is Archimedean. Thus 
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there exists a generator cf of c such that ( ))()(),(
)1(

yfxffyxc ccc += −
 (where 

)1(−
cf is the pseudoinverse of cf ) with ∞<)0(cf . Define 
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)(
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c

c
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xf
xf −=  (25) 

Thus f is an automorphism of the unit interval. From (25) we have 
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Using the above generator functional form of c(x,y) we can go on as 

( ) [ ]=+=+= −−
)()()()(),( 1)1(

yfxffyfxffyxc ccccc  

 
[ ]
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−= −

)0(

)()0()0()()0()0(
11

c

cccc

f

yfffxfff
f  

 [ ].1)()(1 −+= − yfxff  

On the other hand, c(x,n(x)) = 0 is equivalent to 1))(()( ≤+ xnfxf , whence 

we obtain the inequality ( ))(1)( 1 xffxn −≤ −
. 

Proof of sufficiency is immediate.  

We give the theorem for t-conorms without proof since it is very similar to the 

above mentioned. 

Theorem 10 A continuous t-conorm d satisfies condition d(x,n(x))=1 for all 

x∈[0,1] with a strict negation n if and only if there exists an automorphism g  of 

the unit interval such that 

 [ ])()(),( 1 ygxggyxd += −
 (26) 

and 

 ( ).)(1)( 1 xggxn −≥ −
 (27) 

Using the above theorems we can state the following. 

Theorem 11 Every continuous nilpotent t-norm and t-conorm can be 

approximated by the squashing function in the following way: 
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β

1)()(),( 1 −+= − yfxffyxc  (28) 

 
β

)()(),( 1 ygxggyxd += −
 (29) 

Proof. Because
β

x approximates [x] for all x if ∞→β , the statement of the 

theorem is obvious from Theorem 9 and 10. 

Conclusion 

In this paper first we reviewed the cut function, which is the basis of the well 

known nilpotent operator class. This cut function is piecewise linear, hence it can 

not be continuously differentiated. We have constructed an approximation of the 

cut function (the squashing function) by means of sigmoid functions with good 

analytical properties, for example fast convergence and easy calculation. We have 

shown that all nilpotent operators can be approximated this way. 
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Abstract: In this paper we will summarize some properties of the extended addition

operator on fuzzy numbers, where the interactivity relation between fuzzy numbers is

given by their joint possibility distribution.

1 Introduction

A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex

and continuous membership function of bounded support. Any fuzzy number can be

described with the following membership function,

A(t) =











































L

(

a− t

α

)

if t ∈ [a− α, a]

1 if t ∈ [a, b], a ≤ b,

R

(

t− b

β

)

if t ∈ [b, b + β]

0 otherwise

where [a, b] is the peak of A; a and b are the lower and upper modal values; L and R
are shape functions: [0, 1] → [0, 1], with L(0) = R(0) = 1 and L(1) = R(1) = 0
which are non-increasing, continuous mappings. We shall call these fuzzy numbers

of LR-type and use the notation A = (a, b, α, β)LR. If R(x) = L(x) = 1 − x, we

denote A = (a, b, α, β). The family of fuzzy numbers will be denoted by F . A γ-

level set of a fuzzy number A is defined by [A]γ = {t ∈ R|A(t) ≥ γ}, if γ > 0 and

[A]γ = cl{t ∈ R|A(t) > 0} (the closure of the support of A) if γ = 0.



A triangular fuzzy number A denoted by (a, α, β) is defined as

A(t) =







































1 −
a− t

α
if a− α ≤ t ≤ a

1 if a ≤ t ≤ b

1 −
t− b

β
if a ≤ t ≤ b + β

0 otherwise

where a ∈ R is the centre and α > 0 is the left spread, β > 0 is the right spread of A.

If α = β, then the triangular fuzzy number is called symmetric triangular fuzzy num-

ber and denoted by (a, α).

An n-dimensional possibility distribution C is a fuzzy set in R
n with a normalized

membership function of bounded support. The family of n-dimensional possibility

distribution will be denoted by Fn.

Let us recall the concept and some basic properties of joint possibility distribution

introduced in [30]. If A1, . . . , An ∈ F are fuzzy numbers, then C ∈ Fn is said to be

their joint possibility distribution if Ai(xi) = max{C(x1, . . . , xn) | xj ∈ R, j 
= i},

holds for all xi ∈ R, i = 1, . . . , n. Furthermore, Ai is called the i-th marginal possi-

bility distribution of C. For example, if C denotes the joint possibility distribution of

A1, A2 ∈ F , then C satisfies the relationships

max
y

C(x1, y) = A1(x1), max
y

C(y, x2) = A2(x2),

for all x1, x2 ∈ R. Fuzzy numbers A1, . . . , An are said to be non-interactive if their

joint possibility distribution C satisfies the relationship

C(x1, . . . , xn) = min{A1(x1), . . . , An(xn)},

for all x = (x1, . . . , xn) ∈ R
n.

A function T : [0, 1]× [0, 1] → [0, 1] is said to be a triangular norm (t-norm for short)

iff T is symmetric, associative, non-decreasing in each argument, and T (x, 1) = x
for all x ∈ [0, 1]. Recall that a t-norm T is Archimedean iff T is continuous and

T (x, x) < x for all x ∈]0, 1[. Every Archimedean t-norm T is representable by a

continuous and decreasing function f : [0, 1] → [0,∞] with f(1) = 0 and

T (x, y) = f [−1](f(x) + f(y))

where f [−1] is the pseudo-inverse of f , defined by

f [−1](y) =

{

f−1(y) if y ∈ [0, f(0)]

0 otherwise

The function f is the additive generator of T . Let T1, T2 be t-norms. We say that T1

is weaker than T2 (and write T1 ≤ T2) if T1(x, y) ≤ T2(x, y) for each x, y ∈ [0, 1].



The basic t-norms are (i) the minimum: min(a, b) = min{a, b}; (ii) Łukasiewicz:

TL(a, b) = max{a + b− 1, 0}; (iii) the product: TP (a, b) = ab; (iv) the weak:

TW (a, b) =

{

min{a, b} if max{a, b} = 1

0 otherwise

(v) Hamacher [10]:

Hγ(a, b) =
ab

γ + (1 − γ)(a + b− ab)
, γ ≥ 0

and (vi) Yager

TY
p (a, b) = 1 − min{1, p

√

[(1 − a)p + (1 − b)p]}, p > 0.

Using the concept of joint possibility distribution we introduced the following exten-

sion principle in [3].

Definition 1.1. [3] Let C be the joint possibility distribution of (marginal possibility

distributions) A1, . . . , An ∈ F , and let f : R
n → R be a continuous function. Then

fC(A1, . . . , An) ∈ F ,

will be defined by

fC(A1, . . . , An)(y) = sup
y=f(x1,...,xn)

C(x1, . . . , xn). (1)

We have the following lemma, which can be interpreted as a generalization of Nguyen’s

theorem [28].

Lemma 1. [3] Let A1, A2 ∈ F be fuzzy numbers, let C be their joint possibility

distribution, and let f : R
n → R be a continuous function. Then,

[fC(A1, . . . , An)]γ = f([C]γ),

for all γ ∈ [0, 1]. Furthermore, fC(A1, . . . , An) is always a fuzzy number.

Let C be the joint possibility distribution of (marginal possibility distributions) A1, A2 ∈
F , and let f(x1, x2) = x1 + x2 be the addition operator. Then A1 + A2 is defined by

(A1 + A2)(y) = sup
y=x1+x2

C(x1, x2). (2)

If A1 and A2 are non-interactive, that is, their joint possibility distribution is defined

by

C(x1, x2) = min{A1(x1), A2(x2)},



then (2) turns into the extended addition operator introduced by Zadeh in 1965 [29],

(A1 + A2)(y) = sup
y=x1+x2

min{A1(x1), A2(x2)}.

Furthermore, if C(x1, x2) = T (A1(x1), A2(x2)), where T is a t-norm then we get

the t-norm-based extension principle,

(A1 + A2)(y) = sup
y=x1+x2

T (A1(x1), A2(x2)). (3)

For example, if A1 and A2 are fuzzy numbers, T is the product t-norm then the sup-

product extended sum of A1 and A2 is defined by

(A1 + A2)(y) = sup
x1+x2=y

A1(x1)A2(x2), (4)

and the sup−Hγ extended addition of A1 and A2 is defined by

(A1 + A2)(y) = sup
x1+x2=y

A1(x1)A2(x2)

γ + (1 − γ)(A1(x1) + A2(x2) −A1(x1)A2(x2))
.

If T is an Archimedean t-norm and ã1, ã2 ∈ F then their T -sum

Ã2 := ã1 + ã2

can be written in the form

Ã2(z) = f [−1](f(ã1(x1)) + f(ã2(x2))), z ∈ R,

where f is the additive generator of T . By the associativity of T , the membership

function of the T -sum Ãn := ã1 + · · · + ãn can be written as

Ãn(z) = sup
x1+···+xn=z

f [−1]

( n
∑

i=1

f(ãi(xi))

)

, z ∈ R.

Since f is continuous and decreasing, f [−1] is also continuous and non-increasing, we

have

Ãn(z) = f [−1]

(

inf
x1+···+xn=z

n
∑

i=1

f(ãi(xi))

)

, z ∈ R.

2 Additions of interactive fuzzy numbers

Dubois and Prade published their seminal paper on additions of interactive fuzzy num-

bers in 1981 [5]. Since then the properties of additions of interactive fuzzy numbers,

when their joint possibility distribution is defined by a t-norm have been extensively

studied in the literature [1-3, 5-26]. In 1991 Fullér [6, 7] extended the results presented

in [5] to product-sum and Hamacher-sum of triangular fuzzy numbers.



Theorem 2.1. [6] Let ãi = (ai, α), i ∈ N be symmetrical triangular fuzzy numbers

and let their addition operator be defined by sup-product convolution (4). If

A :=

∞
∑

i=1

ai

exists and it is finite, then with the notations

Ãn := ã1 + · · · + ãn, An := a1 + · · · + an, n ∈ N,

we have
(

lim
n→∞

Ãn

)

(z) = exp(−|A− z|/α), z ∈ R.

Theorem 2.1 can be interpreted as a central limit theorem for mutually product-related

identically distributed fuzzy variables of symmetric triangular form.

Figure 1: Product-sum of two triangular fuzzy numbers.

Theorem 2.2. [7] Let ãi = (ai, α), i ∈ N and let their addition operator be defined

by sup-H0 convolution. Suppose that A :=
∑∞

i=1 ai exists and it is finite, then with

the notation

Ãn = ã1 + · · · + ãn, An = a1 + · · · + an

we have
(

lim
n→∞

Ãn

)

(z) =
1

1 + |A− z|/α
, z ∈ R.

Theorem 2.3. [7] (Einstein-sum). Let ãi = (ai, α), i ∈ N and let their addition

operator be defined by sup-H2 convolution If A :=
∑∞

i=1 ai exists and it is finite, then

with the notations of Theorem 2.2 we have

(

lim
n→∞

Ãn

)

(z) =
2

1 + exp(−2|A− z|/α)
, z ∈ R.

In 1992 Fullér and Keresztfalvi [8] generalized and extended the results presented

in [5, 6, 7]. Namely, they determined the exact membership function of the t-norm-

based sum of fuzzy intervals, in the case of Archimedean t-norm having strictly convex

additive generator function and fuzzy intervals with concave shape functions. They

proved the following theorem,



Theorem 2.4. [8] Let T be an Archimedean t-norm with additive generator f and

let ãi = (ai, bi, α, β)LR, i = 1, . . . , n, be fuzzy numbers of LR-type. If L and R are

twice differentiable, concave functions, and f is twice differentiable, strictly convex

function then the membership function of the T -sum Ãn = ã1 + · · · + ãn is

Ãn(z) =















































1 if An ≤ z ≤ Bn

f [−1]

(

n× f

(

L

(

An − z

nα

)))

if An − nα ≤ z ≤ An

f [−1]

(

n× f

(

R

(

z −Bn

nβ

)))

if Bn ≤ z ≤ Bn + nβ

0 otherwise

where An = a1 + · · · + an and Bn = b1 + · · · + bn.

We shall illustrate Theorem 2.4 for Yager’s, Dombi’s and Hamacher’s parametrized

t-norm. For simplicity we shall restrict our consideration to the case of symmetric

fuzzy numbers ãi = (ai, ai, α, α)LL, i = 1, . . . , n. Denoting

σn :=
|An − z|

nα

we get the following formulas for the membership function of t-norm-based sum

Ãn = ã1 + · · · + ãn:

(i) Yager’s t-norm with p > 1:

TY
p (x, y) = 1 − min

{

1, p

√

(1 − x)p + (1 − y)p

}

.

This has additive generator

f(x) = (1 − x)p

and then

Ãn(z) =

{

1 − n1/p(1 − L(σn)) if σn < L−1(1 − n−1/p)

0 otherwise.

(ii) Hamacher’s t-norm with p ≤ 2:

Hp(x, y) =
xy

p + (1 − p)(x + y − xy)

having additive generator

f(x) = ln
p + (1 − p)x

x



Then

Ãn(z) =











p
[

(p + (1 − p)L(σn))/L(σn)
]n

− 1 + p
if σn < 1

0 otherwise.

(iii) Dombi’s t-norm with p > 1:

Dp(x, y) =
1

1 + p

√

(1/x− 1)p + (1/y − 1)p

with additive generator

f(x) =

(

1

x
− 1

)p

.

Then

Ãn(z) =

{

[

1 + n1/p(1/L(σn) − 1)
]−1

if σn < 1

0 otherwise.

(iv) Product t-norm (i.e. the Hamacher’s t-norm with p = 1), that is TP (x, y) = xy
having additive generator f(x) = − lnx Then

Ãn(z) = Ln(σn), z ∈ R.

The results of Theorem 2.4 have been extended to wider classes of fuzzy numbers and

shape functions by many authors.

In 1994 Hong and Hwang [11] provided an upper bound for the membership function

of T -sum of LR-fuzzy numbers with different spreads. They proved the following

theorem,

Theorem 2.5. [11] Let T be an Archimedean t-norm with additive generator f and

let ãi = (ai, αi, βi)LR, i = 1, 2, be fuzzy numbers of LR-type. If L and R are concave

functions, and f is a convex function then the membership function of the T -sum

Ã2 = ã1 + ã2 is less than or equal to

A∗
2(z) =

















































































f [−1]

(

2f

(

L

(

1/2 +
(A2 − z) − α∗

(2α∗

)))

if A2 − α1 − α2 ≤ z ≤ A2 − α∗

f [−1]

(

2f

(

L

(

A2 − z

2α∗

)))

if A2 − α∗ ≤ z ≤ A2

f [−1]

(

2f

(

R

(

z −A2

2β∗

)))

if A2 ≤ z ≤ A2 + β∗

f [−1]

(

2f

(

R

(

1/2 +
(z −A2) − β∗

2β∗

)))

if A2 + β∗ ≤ z ≤ A2 + β1 + β2

0 otherwise

where β∗ = max{β1, β2}, β∗ = min{β1, β2}, α∗ = max{α1, α2}, α∗ = min{α1, α2}
and A2 = a1 + a2.

The In 1995 Hong [12] proved that Theorem 2.4 remains valid for concave shape

functions and convex additive t-norm generator. In 1996 Mesiar [25] showed that

Theorem 2.4 remains valid if both L ◦ f and R ◦ f are convex functions.

In 1997 Mesiar [26] generaized Theorem 2.4 to the case of nilpotent t-norms (nilpo-

tent t-norms are non-strict continuous Archimedean t-norms). In 1997 Hong and

Hwang [14] gave upper and lower bounds of T -sums of LR-fuzzy numbers ãi =
(ai, αi, βi)LR, i = 1, . . . , n, with different spreads where T is an Archimedean t-

norm. They proved the following two theorems,

Theorem 2.6. [14] Let T be an Archimedean t-norm with additive generator f and let

ãi = (ai, αi, βi)LR, i = 1, . . . , n, be fuzzy numbers of LR-type. If f ◦L and f ◦R are

concvex functions, then the membership function of their T -sum Ãn = ã1 + · · · + ãn

is less than or equal to

A∗
n(z) =



































f [−1]

(

nf

(

L

(

1

n
IL (An − z)

)))

if An −
∑n

i=1 αi ≤ z ≤ An

f [−1]

(

nf

(

R

(

1

n
IR (z −An)

)))

if An ≤ z ≤ An +
∑n

i=1 βi

0 otherwise,

where

IL(z) = inf

{

x1

α1
+ · · · +

xn

αn

∣

∣

∣

∣

x1 + · · · + xn = z, 0 ≤ xi ≤ αi, i = 1, . . . , n

}

,

and

IR(z) = inf

{

x1

β1
+ · · · +

xn

βn

∣

∣

∣

∣

x1 + · · · + xn = z, 0 ≤ xi ≤ βi, i = 1, . . . , n

}

.



Theorem 2.7. [14] Let T be an Archimedean t-norm with additive generator f and

let ãi = (ai, αi, βi)LR, i = 1, . . . , n, be fuzzy numbers of LR-type. Then

Ãn(z) ≥ A∗∗
n (z) =



































f [−1]

(

nf

(

L

(

An − z

α1 + · · · + αn

)))

if An − (α1 + · · · + αn) ≤ z ≤ An

f [−1]

(

nf

(

R

(

An − z

β1 + · · · + βn

)))

if An ≤ z ≤ An + (β1 + · · · + βn)

0 otherwise,

In 1997, generalizing Theorem 2.4, Hwang and Hong [18] studied the membership

function of the t-norm-based sum of fuzzy numbers on Banach spaces and they pre-

sented the membership function of finite (or infinite) sum (defined by the sup-t-norm

convolution) of fuzzy numbers on Banach spaces, in the case of Archimedean t-norm

having convex additive generator function and fuzzy numbers with concave shape

function. In 1998 Hwang, Hwang and An [19] approximated the strict triangular

norm-based addition of fuzzy intervals of L-R type with any left and right spreadss.

In 2001 Hong [15] showed a simple method of computing T -sum of fuzzy intervals

having the same results as the sum of fuzzy intervals based on the weakest t-norm TW .

2.1 Shape preserving arithmetic operations

Shape preserving arithmetic operations of LR-fuzzy intervals allow one to control the

resulting spread. In practical computation, it is natural to require the preservation of

the shape of fuzzy intervals during addition and multiplication. Hong [16] showed that

TW , the weakest t-norm, is the only t-norm T that induces a shape-preserving mul-

tiplication of LR-fuzzy intervals. In 1995 Kolesarova [22, 23] proved the following

theorem,

Theorem 2.8. (a) Let T be an arbitrary t-norm weaker than or equal to the Łukasiewicz

t-norm TL; T (x, y) ≤ TL(x, y) = max(0, x+ y− 1), x, y ∈ [0, 1]. Then the addition

⊕ based on T coincides on linear fuzzy intervals with the addition ⊕ based on the

weakest t-norm TW ; i.e.,

(a1, b1,α1, β1) ⊕ (a2, b2, α2, β2) =

(a1 + a2, b1 + b2,max(α1, α2),max(β1, β2)).

(b) Let T be a continuous Archimedean t-norm with convex additive generator f .

Then the addition ⊕ based on T preserves the linearity of fuzzy intervals if and only

if the t-norm T is a member of Yager’s family of nilpotent t-norms with parameter

p ∈ [1,∞), T = TY
p , and f(x) = (1 − x)p. Then TY

1 = TL and for p ∈ (0,∞),

(a1, b1,α1, β1) ⊕ (a2, b2, α2, β2) =

(a1 + a2, b1 + b2, (α
q
1 + αq

2)
1/q, (βq

1 + βq
2)1/q),



where 1/p + 1/q = 1, i.e. q = p/(p− 1).

In 1997 Mesiar [27] studied the triangular norm-based additions preserving the LR-

shape of LR-fuzzy intervals and conjectured that the only t-norm-based additions pre-

serving the linearity of fuzzy intervals are those described in Theorem 2.8. He proved

the following theorem,

Theorem 2.9. [27] Let a continuous t-norm T be not weaker than or equal to TL (i.e.,

there are some x, y ∈ [0, 1] so that T (x, y) > x + y − 1 > 0). Let the addition based

on T preserve the linearity of fuzzy intervals. Then either T is the strongest t-norm,

T = TM , or T is a nilpotent t-norm.

In 2002 Hong [17] proved Mesiar’s conjecture.

Theorem 2.10. [17] Let a continuous t-norm T be not weaker than or equal to TL.

Then the addition ⊕ based on T preserves the linearity of fuzzy intervals if and only

if the t-norm T is either TM or a member of Yager’s family of nilpotent t-norms with

parameter p ∈ (1,∞), T = TY
p , and f(x) = (1 − x)p.

2.2 Additions of completely correlated fuzzy numbers

Until now we have summarized some properties of the addition operator on interactive

fuzzy numbers, when their joint possibility distribution is defined by a t-norm. It

is clear that in (3) the joint possibility distribution is defined directly and pointwise

from the membership values of its marginal possibility distributions by an aggregation

operator. However, the interactivity relation between fuzzy numbers may be given by

a more general joint possibility distribution, which can not be directly defined from

the membership values of its marginal possibility distributions by any aggregation

operator.

Drawing heavily on [3] we will now consider some properties of the addition operator

on completely correlated fuzzy numbers, where the interactivity relation is given by

their joint possibility distribution.

Let C be a joint possibility distribution with marginal possibility distributions A and

B, and let

f(x1, x2) = x1 + x2,

the addition operator in R
2. In [3] we introduced the notation,

A +C B = fC(A,B).

Definition 2.1. [9] Fuzzy numbers A and B are said to be completely correlated, if

there exist q, r ∈ R, q 
= 0 such that their joint possibility distribution is defined by

C(x1, x2) = A(x1) · χ{qx1+r=x2}(x1, x2) = B(x2) · χ{qx1+r=x2}(x1, x2), (5)

where χ{qx1+r=x2}, stands for the characteristic function of the line

{(x1, x2) ∈ R
2|qx1 + r = x2}.



In this case we have,

[C]γ =
{

(x, qx + r) ∈ R
2
∣

∣x = (1 − t)a1(γ) + ta2(γ), t ∈ [0, 1]
}

where [A]γ = [a1(γ), a2(γ)]; and [B]γ = q[A]γ + r, for any γ ∈ [0, 1].

We should note here that the interactivity relation between two fuzzy numbers is de-

fined by their joint possibility distribution. Fuzzy numbers A and B with A(x) =
B(x) for all x ∈ R can be non-interactive, positively or negatively correlated depend-

ing on the definition of their joint possibility distribution.

Definition 2.2. [9] Fuzzy numbers A and B are said to be completely positively (neg-

atively) correlated, if q is positive (negative) in (5).

Figure 2: Completely negatively correlated fuzzy numbers with q = −1.

We note that if A,B ∈ F are completely positively correlated then their correlation

coefficient is equal to one, furthermore, if they are completely negatively correlated

then their correlation coefficient is equal to minus one [4, 9]. In the case of complete

positive correlation, if A(u) ≥ γ for some u ∈ R then there exists a unique v ∈ R

that B can take, furthermore, if u is moved to the left (right) then the corresponding

value (that B can take) will also move to the left (right). In case of complete negative

correlation, if A(u) ≥ γ for some u ∈ R then there exists a unique v ∈ R that B can

take, furthermore, if u is moved to the left (right) then the corresponding value (that

B can take) will move to the right (left). It is also clear that in these two cases, given q



and r, the first marginal possibility distribution completely determines the second one,

and vica versa. Finally, if A and B are not completely correlated then if A(u) ≥ γ for

some u ∈ R then there may exist several v ∈ R that B can take (see [9]).

Now let us consider the extended addition of two completely correlated fuzzy numbers

A and B,

(A +C B)(y) = sup
y=x1+x2

C(x1, x2).

That is,

(A +C B)(y) = sup
y=x1+x2

A(x1) · χ{qx1+r=x2}(x1, x2).

Then from (2) and (5) we find,

[A +C B]γ = (q + 1)[A]γ + r, (6)

for all γ ∈ [0, 1]. If A and B are completely negatively correlated with q = −1, that

is, [B]γ = −[A]γ + r, for all γ ∈ [0, 1], then A +C B will be a crisp number. Really,

from (6) we get [A +C B]γ = 0 × [A]γ + r = r, for all γ ∈ [0, 1].

Figure 3: Completely negatively correlated fuzzy numbers with q 
= −1.

That is, the interactive sum, A +C B, of two completely negatively correlated fuzzy

numbers A and B with q = −1 and r = 0, i.e.

A(x) = B(−x),∀x ∈ R,



will be (crisp) zero. On the other hand, a γ-level set of their non-interactive sum,

A + B, can be computed as,

[A + B]γ = [a1(γ) − a2(γ), a2(γ) − a1(γ)],

which is a fuzzy number.

In this case (i.e. when q = −1) any γ-level set of C are included by a certain level set

of the addition operator, namely, the relationship,

[C]γ ⊂ {(x1, x2) ∈ R|x1 + x2 = r},

holds for any γ ∈ [0, 1] (see Fig. 2). On the other hand, if q 
= −1 then the fuzziness

of A +C B is preserved, since

[A +C B]γ = (q + 1)[A]γ + r 
= constant,

for all γ ∈ [0, 1] and y ∈ R. (see Fig. 3).

Really, in this case the set {(x1, x2) ∈ [C]γ |x1 +x2 = y} consists of a single point at

most for any γ ∈ [0, 1] and y ∈ R.

Note 2.1. The interactive sum of two completely negatively correlated fuzzy numbers

A and B with A(x) = B(−x) for all x ∈ R will be (crisp) zero.

3 Summary

In this paper we have summarized some properties of the addition operator on inter-

active fuzzy numbers, when their joint possibility distribution is defined by a t-norm

or by a more general type of joint possibility distribution.
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Abstract: The paper presents development and tuning tehniques and solutions for PI and 

PID controllers, and Takagi-Sugeno fuzzy controllers with PI and PID type dynamics meant 

for applications which can be characterised with low order benchmark type modeles (for 

example electrical and hydraulic driving and positioning systems).Two type of plants and 

two control structures with homogenous and with non-homogenous information processing 

with respect to the inputs are presented, including tuning and optimization aspects. Then 

Takagi-Sugeno fuzzy models dedicated to a class of plants characterized by Two Input-

Single Output linear time-varying systems are presented. It is offered a stability test 

algorithm of the fuzzy control systems involving Takagi-Sugeno fuzzy controllers, to control 

the accepted class of plants. The tuning methods are briefly presented in relation with a 

control solution for a drive system with a variable inertia strip winding system. 

Keywords: Controllers with PI and PID dynamics, Takagi-Sugeno fuzzy models, Takagi-
Sugeno fuzzy controllers, stability analysis, winding system. 

1 Introduction 

Take the class of plants (P) having the transfer functions expressed as: 

)1(
)(

Σ+
=

sTs

k
sH P

P   (a),   
)1)(1(

)(
1 Σ++

=
sTsT

k
sH P

P   (b) (1.1) 
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)1)(1(
)(

1 Σ++
=

sTsTs

k
sH P

P   (a),   
)1)(1)(1(

)(
21 Σ+++

=
sTsTsT

k
sH P

P
  (b). (1.2) 

The parametres kP can be constant or variable, and it is asumed that TΣ < T2 <(<<) 
T1; this class of models characterize well enough electrical and hydraulic driving and 

possitioning systems (control of possition and drive applications as controlled plants) 
[1], [2], [6]. 

The paper’s aim is to develop Takagi-Sugeno (TS) fuzzy controllers (FCs) based on 
classical development methods, meant for position control of electrical and 
hydraulic drives with linear constant or time-varying (LTV) parameters 
characterized by benchmark type models of form (1) and (2). If the parameters are 
continuously varying, the LTV systems may result as linearized nonlinear systems 
in the vicinity of a set of operating points or of an operating trajectory. 

These features determine the wide application area of robust control, adaptive 
control and TS fuzzy models. Regarded to the use of TS fuzzy models, the 
application is based in spite of their drawbacks such as: 

- The behavior of the global TS fuzzy model can significantly divert from the 
expected behavior obtained by the merge of the local models; 

- The stability analysis and testing of fuzzy control systems based on TS fuzzy 
models is relatively difficult, because of the complex aggregation of the local 
models in the inference engine. 

Firstly, the paper presents two classical development procedures for continuously 
and quasi-continuously working PI and PID controllers, based on extensions of the 
widely used Symmetrical Optimum Method (Section 2). Then, a class of TS 
models for Two Input-Single Output (TISO) LTV plants is presented (Section 3). 
In Section 4 there are defined the TS fuzzy controllers meant for controlling the 
TS fuzzy models. Based on these, a stability test algorithm is presented (based on 
Lyapunov’s stability theory) for a class of fuzzy systems with TS fuzzy controllers 
controlling the TISO LTV plants (Section 5). Results concerning the development 
of conventional and fuzzy control solutions for a drive system with two output 
coupled motors, applicable to the rolls of a hot rolling mill and to a variable inertia 
strip winding system, are presented in Section 6. Section 7 is focused on the 
concluding part of the paper. 
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2 Development of Continuously and Quasi-

Continuously Operating PI and PID Control 

Algorithms 

Many control applications prefer structures with typical control algorithms with 
homogenous or non-homogenous information processing on the two input 
channels [1], [3], [4]. Such structures have the general form given in Fig. 2.1-a -b 
and -c presents some particular control laws regarding the inputs. The blocks (1) ... 
(5) can be described by its specific transfer functions (t.f.s); w(t) or r(t) – the 
reference signal (or the filtered refernce signal), y(t) - the measured output, u(t) - 
the control signal (or its components, with index), e(t) - the control error. 

There can be established relations between such controllers and the 2-DOF 
controllers [3]. For example, a block diagram of a 2-DOF control structure is 
presented in figure 2.2. R(z) , S(z) and T(z) are the characteristic blocks of the 2-
DOF controller, P is the plant; v1(t), v2(t) – plant disturbances. 

 

Figure 2.1 

Typical I-DOF controller structures and particularization 

 

Figure 2.2 

Structure of the 2-DOF controller. 

The 2-DOF controller can be restructured in different ways; for the given low 
order plants – from a practical point of view – the presence of a conventional 
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controller (particularly PI or a PID and signal filters) can be highlighted. Two 
types of structures are detailed in figure 2.3. These rearrangements allow: 

- to take over design experience from case of PI and PID controllers; 

- an easy introduction of supplementary blocks specific to PI and PID 
controllers (Anti Windup circuit, bumpless switching and others); 

- the transformation of PI and PID controllers into 2 DOF structures and vice 
versa. 

The controllers in figure 2.3 will be characterized – for example – by continuous 
t.f.s C(s), CF(s), C*(s), CP(s), in which the parallel realisation tuning parameters 
are highlighted{kC, Ti, Td, Tf}; discretizing, the digital control algorithm is 
obtained. Taking the basic controller C(s) of PID type, it can be written: 

- for the basic PID structure in Fig. 2.1 (b) (parallel form): 

; 

)1(
1

)1(

)1(
)1(1

)(

)(
)(, )

1

1
1(

)(

)(
)(

2

2

*

f

di
i

f

di
i

f

d

i

C

sT

sTT
sT

sT

sTT
sT

sr

sr
sF

sT

sT

sT
k

se

su
sC

+
++

+
−

+−+

==
+

++==

β
α

 (2.1) 

 

Figure 2.3 

Two alternatives for rearranging a 2 DOF controller. 

- for the structure (a) in figure 2.3: 
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- for the structure (b) in figure 2.3 (with the notation C(s)=C*(s)): 



Acta Polytechnica Hungarica Vol. 2, No. 1, 2005 

 – 79 –

. )
1

(
)(

)(
)(, ]

1
)1(

1
)1[(

)(

)(
)(

f

d
R

f

P

f

d

i

R
sT

sT
k

sr

su
sC

sT

sT

sT
k

se

su
sC

+
+==

+
−++−==∗ βαβα  (2.3) 

Table 2.1 

Connections between 2 DOF controller and extended 1 DOF controller structure. 

Fig. 2.1 F(s) - F(s)C(s) C(s) Remarks 
Fig. 2.3-a - CF C(s)–CF(s) C(s) - 

Fig. 2.3-b - CP C*(s) C*(s)+CP(s) - 
α β - - (ref. channel) (feedback) - 
0 0 1 0 PID PID 1 DOF 

controller 
0 1 PDL2 DL1 PI PID 
1 0 PD2L2 P PID-L1 PID 
1 1 PL2 PDL2 I PID 

1 DOF with 
non-

homogenous 
behavior 

α β PID controller with pre-filtering (2 DOF controller)  

Remarks: P – proportional, D – derivative, L – lag, I – integrator modules. 

Depending on the values of α and β parameters, for the presented blocks the 
behaviors from in Table 2.1 are obtained.  

The choice of a certain representation of the controller depends on [3]: 

- the structure of the available controller; 

- the adopted algorithmic design method, and the result of this design. 

In the presence of an integral (I) component and a limitation block in the 
controller structure, figure 2.4 (a), the use of the AWR measure (Anti-Windup-
Reset) is recommended. A classical structure for introducing the AWR measure on 
a controller structure with integral component is presented in figure 2.4 (b). The 
AWR measure can be globally implemented with respect to controller output or 
locally, with respect to integral (I) component of the controller. 

 

Figure 2.4 

Classical structure for introducing ARW measure on the controller structure 

The transfer functions of the continuous PI (PID) controllers are written related to 
the design procedure and the implementation (discretization) procedure. For the 
serial form of PI and PID controllers the t.f.s are: 
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PI:    {kc, Tc}     )1()( c
c sT
s

k
sC +=  (2.4) 

PID: {kc, Tc, Tc’} )1)(1()( ,
cc

c sTsT
s

k
sC ++=  (2.5) 

The implementation of a quasi-continuously (QC) operating PID digital control 
algorithm can be based on the informational diagram presented in figure 2.5; the 
appearance of a supplementary state variables xk, is associated to integral (I) 
component and the adding of the AWR measure. The parameter values {Kpid, Ki , 

Kd ,Karw} depends on the continuous parameters {kr, Tr, Tr’} and on the sampling 
time value, Te . 

 

Figure 2.5 

Quasi-continuously operating PID digital control algorithm implementation. 

The implementation of non-homogenous information processing (Fig. 2.1-c) has 
two requirements [3], [4]: 

- an I or PI behavior with respect to the reference channel; 

- a PI or PID behavior with respect to the feedback channel. The non-
homogenous information processing structure respects the following 
informations (Table 2.2). 

Table 2.2 

Transfer functions of blocks in Fig. 2.1-c (parallel form) 

Case Channel Block 3 Block 4 Block 5 Type 

w, (r)  I:  (1/sTi) ---- P:    (kC) I:  (1/sTi) (1) 

y I:    (1/sTi) P:    (1) P:    (kC) PI:  (1+1/sTi) 

w, (r) PI:  (1+1/sTi) ---- P:    (kC) PI: (1+1/sTi) (2) 

y PI:  (1+1/sTi) D:   (sTd) P:    (kC) PID 
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In order to avoid difficulties due to contradictory results obtained from design 
according to reference tracking and disturbance rejection, different optimal - or in 
special cases, optimal-like tuning techniques can be adopted. Two of these 
methods are considered here to be representative: 

- the Modulus Optimum method, (MO-m), [1], 

- the Symmetrical Optimum method (SO-m) [1] and two modified (extended 
versions, the Extended Symmetrical Optimum method (ESO-m) [2] and the 
“extended” (modified version) of the extended Symmetrical Optimum 
method (2E-SO-m)Criterion. The main advantage of this ESO-m and 2E-SO-
m consist in the possibility to increase the control system phase reserve and – 
for specific cases – in a better load disturbance rejection. 

The controller parameters – in its serial form – can be calculated using the 
relations synthetised in Table 2.3. The design parameter β belongs usually to the 
domain 4 ≤ β ≤ 16. 

In the case of implementation, the problem of bump-less transfer from one local 
crisp controller to another is solved in a crisp manner, exemplified here for two 
local controllers of digital PI-type, the “old” one with the parameters {q1, q0}, and 
the “new” one with the parameters {q1

*, q0
*}: 

*
1

*
0

*
111011   , −−−− ++=++= kkkkkkkk eqequueqequu . (2.6) 

It is necessary to compute previously “past values” which are necessary to the new 
controller. As it can be observed in (16), ek-1

* represent these new initial conditions 
(the past values). 

3 A Class of Takagi-Sugeno Fuzzy Models 

The following Takagi-Sugeno fuzzy model to represent a TISO LTV system will 
be used that models the controlled plant [7]: 

Table 2.3 

Tuning relations after [2], [6] 

P(s) 
Contr. 
type  

Tuning relations 

0 1 2 

)1( Σ+ sTs
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(ESO-m.[2]) 
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where: 

u(s), v(s), y(s) – the Laplace transform of the plant input (the control signal) u(t), 
of the disturbance input v(t) and of the controlled output y(t); 

Rl – the lth inference rule, l = 1 … m; m – the number of inference rules; 

zi(t) – the measurable plant variables, i = 1 … n,  and: 

T
n tztztzt )](    )(  )([)( 21 K=z ; (3.2) 

n – the number of measurable plant (system) variables pointing out the time-
variation of the plant; 

Fl – the linguistic terms associated to the measurable variable zi(t) and to the rule 

Rl; )(sPu

l  and )(sPv

l  – the local t.f.s of the plant. 
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The TS fuzzy model (3.1) includes both the inference rules as part of the rule base 
and the local analytic models of the TISO LTV system. The controlled output is 
inferred by taking the weighted average of all local models appearing in (3.1), 
which characterizes the properties of the controlled plant in a local region of the 
input space; so it is referred to as fuzzy dynamic local model [8], [9]. The 
following notation is introduced: 

mltt ll K1  )),(()( =µ=µ z , (3.3) 

for the membership degrees of the normalized membership functions µl of the 
inferred fuzzy set Fl, where: 

mlFF
n

i

l
i

l KI 1  ,
1

==
=

,   (a)   and   1)(
1

=∑ µ
=

m

l
l t .   (b) (3.4) 

By using the product inference method in (3.4) (b) and the weighted average 
method for defuzzification, the TS fuzzy model (3.1) can be expressed in terms of 
the following fuzzy dynamic global model that can be considered as TS fuzzy 
model of the plant: 
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 (3.5) 

The model (3.5) is LTV system because the inferred transfer functions, Pu(s) and 
Pv(s), have time-varying coefficients regarded to local linearised models. 

4 Takagi-Sugeno Fuzzy Controllers. Closed-Loop 

System Models 

The TS fuzzy models (3.1) or (3.5) could be very useful in comparison with other 
conventional techniques in nonlinear control. This is the case of piecewise 
linearization [8], where the plant model is linearized around a nominal operating 
point, and there are applied linear control techniques to the controller 
development. This approach divides the input space into crisp subspaces, and the 
result is in a non-smooth connection of the linear subsystems to build the closed-
loop system model. These models are based on the division of the input space into 
fuzzy subspaces and use linear local models in each subspace. Furthermore, the 
fuzzy sets Fi

l and the inference method permit the smooth connection of the local 
models to build the fuzzy dynamic global model of the closed-loop system. 



S. Preitl et al.  

Development of Conventional and Fuzzy Controllers and Takagi-Sugeno Fuzzy Models Dedicated for Control of 
Low Order Benchmarks with Time Variable Parameters  

 – 84 –

To control the TISO LTV plant (3.5) there is proposed a TS fuzzy controller with 
the following model: 

, 1  ),()()(  THEN      

  is  )(  AND    AND    is  )(  AND    is  )(  IF: 2211

mlsesCsu
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l

l

nn

lll
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where e(s) is the Laplace transform of the control error )()()( tytrte −= ; r(t) is 

the reference input; )(sCl  – the t.f. of the local controllers, l = 1 … m. 

The local controllers in (4.1) are developed for the local analytic (linear) models in 
(3.1) by parallel distributed compensation [10]. By the feedback connection of the 
plant (3.1) and of the fuzzy controller (4.1) in terms of the conventional control 
structure presented in figure 4.1, the closed-loop system can be described by the 
following fuzzy dynamic local model: 
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where )(, sH lr  and )(, sH lv  - the local t.f.s of the closed-loop system, l = 1 … m. 

 

Figure 4.1 

Control system structure. 

In the conditions (3.3) … (3.5), by accepting the same inference method and 
defuzzification method as in the previous Section, the fuzzy dynamic global model 
of the closed-loop system can be expressed in terms of (4.3): 

, )()()(  ,)()()(

),()()()()(

1
,

1
, ∑µ=∑µ=

+=

==

m

l
lvlv

m

l
lrlr

vr

sHtsHsHtsH

svsHsrsHsy

 (4.3) 

where the inferred t.f.s Hr(s) and Hv(s) have time-varying coefficients. It is 
justified to consider the TS fuzzy model (4.3) as TISO LTV system; for its 
analysis there can be applied methods specific to LTV systems [8] … [10] which 
require numerical techniques for the calculation of Hr(s) and Hv(s). 

For the development of the fuzzy controllers it is necessary to perform the stability 
analysis and testing; a stability analysis test algorithm for the closed-loop system 
(4.3) are presented in the next Section. 
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5 Stability Test Algorithm 

To perform the stability analysis of the fuzzy control systems two approaches can 
be employed: 

- the first one, based on the use of the fuzzy dynamic global model (4.3) and, 

- the second one can be developed by starting with the definition of a 
piecewise smooth quadratic Lyapunov function [10], [11] based on the fuzzy 
dynamic local model (4.2). 

In the case of the system (4.2) there can be used several approaches based on 
either transferring the ideas from hybrid systems [10] or by using, since this 
system can be considered as a variable structure one with possible discontinuous 
right-hand side, stability analysis methods dedicated to variable structure systems 
[11]. 

For the stability analysis and testing of the fuzzy control system modeled by the 
fuzzy dynamic global model (4.3) it will be presented as follows the first 
approach, based on the Lyapunov stability theory in terms of the definition of a 
piecewise smooth quadratic Lyapunov function V: 

∑ ==
=

m

l
l

T
lllVqV

1
V  , xPx , (5.1) 

where x – the state vector, dim x = (1, nS), Pl – positive definite symmetric 
matrices, dim Pl = (nS, nS), ql – weighting coefficients ensuring the smoothness of 
the function V, l = 1 … m, nS – system order. 

The matrices Pl are obtained by ensuring the negative definiteness of the 
derivative of the Lyapunov function. This can be ensured by solving the algebraic 
Riccati equations (5.2): 

mlllll
T
l K1  , =−=+ QAPPA , (5.2) 

with Ql – positive definite symmetric matrices, dim Ql = (nS, nS), and Al – the 
system matrices in the systemic realizations corresponding to the closed-loop 

transfer functions )(, sH lr  and )(, sH lv , dim Al = (nS, nS). 

The stability analysis test algorithm consists in four steps, detailed in [13]. 
Resuming: 

- Step 1: based on the knowledge and experience concerning the controlled 
plant operation, determine the number of inference rules m for controlling the 
plant, the partition of the input space in fuzzy regions, assign the linguistic 

terms l
iF  to the measurable plant variables zi(t), i = 1 … n, and define the 

membership functions corresponding to l
iF , l = 1 … m; 



S. Preitl et al.  

Development of Conventional and Fuzzy Controllers and Takagi-Sugeno Fuzzy Models Dedicated for Control of 
Low Order Benchmarks with Time Variable Parameters  

 – 86 –

- Step 2: for each inference rule Rl, l = 1 … m, derive the linear local models of 

the plant, characterized by the transfer functions )(sPu

l  and )(sPv

l ; 

- Step 3: develop a conventional controller with the transfer function HC.l(s) for 
each of the local models of the plant by a linear control development 
technique such that the m closed-loop local systems, with the transfer 

functions )(, sH lr  and )(, sH lv , l = 1 … m, have the required control system 

performance; 

- Step 4: set the values of the positive definite symmetric matrices Ql and solve 
the algebraic Riccati equations (5.2); if the solutions Pl of (5.2) prove to be 
not positive definite, then jump to the step 3; otherwise, the system is stable. 

The solving of the algebraic Riccati equations (5.2) and the required analysis 
requires the largest computational effort. 

6 Application: Winding System Control Solution 

A typical application for electrical drives with variable inertia (Variable Inertia 
Drive System, VIDS) is in the field of rolling mills and of winding mechanisms. 
The control of such systems represents a difficult task due to: 

- the existence of output coupling between several subsystems requires the 
development of control systems with reference input compensation; 

- the presence of possible oscillations due to the elasticity of the shaft; 

- the nonlinearities of the controlled plant including backlash and stick-slip; 

- the modification of the inertia during the plant operation determine time-
varying parameters of the controlled plant. 

The simplified functional diagram and the informational diagram of an electrical 
drive with DC motor variable inertia appearing in applications where a strip is 
winded on a drum are shown in Fig. 6.1-a and -b [12]. In the winding process, the 
reference input must be correlated with the modification of work roll radius. In 
this context, two basic aspects occur at the development of the control structure: 
the modification of the reference input (ω0(t)), and tuning the controller 
parameters. 

For the first one, the condition (6.1) must be fulfilled by the control solution: 

v(t) = const   →   ωo(t) = k/r(t), (6.1) 

where by the measurement of r(t) there can be ensured the continuous modification 
of the reference input ωo(t). 
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(a) (b) 

Figure 6.1 

Functional diagram of VIDS and reference input correction system. 

The problem of controlling the speed of the winding system can be solved in various 
ways: by the use of a cascade control structure with two, current and speed, 
controllers, or by the use of a state feedback control structure. For both versions, the 
variance of the moment of inertia, according to (6.2): 

J(t) = (1/2) ρ  π  l R4(t), (6.2) 

requires much attention in the controller design. In this paper will be presented a 
solutions based on control loops with linear PI and PI-fuzzy controllers with 
parameter adaptation. 

The state-space mathematical model of VIDS has the state variables {x1=ia, x2=ωm, 
x3=ft}, and a corresponding informational block diagram given in figure 6.2 [12]. 

    x1’(t)=–(Ra/La)x1(t)–(ke/La)x2(t)+(kch/La)uc(t) , 

    x2’(t)=(km/Je(t))x1(t)–(1/Je(t))mf(x2(t))–(rt(t)/Je(t))x3(t))–(1/Je(t))(Je’(t))rt(t), 

    x3’(t)=cbrt(t)x2(t)–cbvs(t) . (6.3) 

Linearizing the models in some representive functional points, mathematical 
models (benchmark t.f.s) in form of (1.1) and (1.2) can be obtained. 

Concerning the local linearized plant models (1.1), (1.2), the speed controller design 
is based on the tuning methods described in chapter 2, applied in its various, 
dedicated versions [2], [4], [6]. An atractive tuning version, regarding TS fuzzy 
models, TS fuzzy controllers and TS fuzzy closed-loop system models (Sections 3 
and 4), by accepting that the controller parameters ensure a maximum phase reserve 
for each local linearised plant model and the corresponding TISO LTV systems are 
handled as in Sections 3-5. It can be considered equivalent with a re-tuning of the 
controller parameters as function of radius modification. This version permits the 
obtaining of better control system performance. 
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Figure 6.2 

Informational block diagram of VIDS. 

The envisaged control structure contains two loops, the inner regarded to the 
curent and the external regarded to the speed. The inner loop controller is 
calculated based on the Modulus Optimum method with fixed parameter values. 

For the development of the speed control loop, in the development step 1 it can be 
used only one plant variable, rt. For obtaining a bump-less transfer from one local 
controller to another at the same time with ensuring a relatively simple 
implementation, the authors recommend that the membership functions of the 
linguistic terms Fi

l  should have triangular type and m should not exceed 3 or 5. 

Some details regarding the development step 3 dedicated to the development of 
the local controllers are presented as follows. 

For the considered controlled plant, after linearization in the vicinity of some 
significant operating points the model can be brought to a simplified form 
characterized by the following local transfer functions: 

ml
sTs

k
sP

Σ

Pu
l K1  ,

)1(
)( =

+
= , (6.4) 

where the parameters: 

-  TΣ (the small time constant coresponding to the sum of parasitic time 
constants) is a constant value, and 

-  kP (the controlled plant gain) is time-varying due to the time-varying Je; note 
that for the sake of simplicity the index l was omitted. 

There can be used several versions of local transfer functions )(sP v
l  depending 

on the types of disturbance inputs v(t) applied to the controlled plant. 

For the local plants (6.4) the use of PI controllers having the transfer functions: 
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mlsT
s

k
sC c
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l K1  ),1()( =+= , (6.5) 

can ensure very good control system performance when the controllers are tuned 
in terms of the ESO-m [2]; the controller parameters are kc (the controller gain) 
and Tc (the integral time constant) (see table 2.3). By the choice of the parameter β 

= 9 … 14 the control structure ensures a good maximum phase reserve (550 <φr,m 

< 600 ); this phse reserve is changing during the plant operating. The choice of  
such a value ensures good robustnes, so that the stability analysis was not 
performed. 

 

 

 

 

 

 

(a)     (b) 

 

 

 

 

 

 

 (c) 

Figure 6.3 

Simulation results 

The local control system performance can be improved by adding a first- or 
second-order reference filter [2], [6]. This is the way the control structure obtains 
the features specific to control structures with 2 DOF controllers. 

For to test the method, a theoretical application closely connected to practice was 
considered. The non-linear Simulink model of the plant is presented in Appendix 
1. Three PI controllers were calculated and the change of the controllers during the 
plant operating was based on a very simple fuzzy selection rule. The problem of 
bump-less transfer from one local crisp controller to another is solved in a crisp 
manner. 
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Some simulation results are presented in figure 6.3: (a) the change of the linear 
speed, v(t); (b) the change of the radius changing r(t); (c) the change of the angular 
speed, ω(t). 

The results can be accepted as good and confirm the possibilitie of use Takagi-
Sugeno fuzzy models to represent a TISO LTV as models of the controlled plant. 

Conclusions 

The paper presents continuous-time development solutions for electrical drives 
with variable inertia. The tuning relations are deduced for classical but generally 
accepted benchmark type plant models. 

The presented TS fuzzy models dedicated to TISO LTV systems are suitable for 
control structures where the plant mathematical model linearization offers local 
linear models. 

A stability test algorithm for the fuzzy control systems modeled by TS fuzzy 
models based on Lyapunov stability theory is presented. The main limitation of 
the stability analysis algorithm concerns its computational complexity. 

The models and the stability analysis algorithm can be used in the development of 
conventional but also of TS fuzzy controllers based on the parallel distributed 
compensation with several applications. One real-world application can be in the 
area of electrical drives with variable inertia, where the development of the local 
controllers can be performed in terms of the ESO-m or 2E-SO-m. 

The simulated application is regarded to a VIDS where the reference input must be 
correlated with the modification of working roll radius. 
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Appendix 1. The non-linear Simulink model of the plant 
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Abstract: Some difficulties emerging during the construction of fuzzy rule bases are 

inherited from the type of the applied fuzzy reasoning. The fuzzy rule base requested for 

many classical reasoning methods needed to be complete. In case of fetching fuzzy rules 

directly from expert knowledge, the way of building a complete rule base is not always 

straightforward. One simple solution for overcoming the necessity of the complete rule base 

is the application of interpolation-based fuzzy reasoning methods, since interpolation-

based fuzzy reasoning methods can serve usable (interpolated) conclusion even if none of 

the existing rules is hit by the observation. These methods can save the expert from dealing 

with derivable rules and help to concentrate on cardinal actions only. For demonstrating 

the benefits of the interpolation-based fuzzy reasoning methods in construction of fuzzy rule 

bases a simple example will be introduced briefly in this paper too. 

Keywords: Interpolation-based Fuzzy reasoning, rule base construction 

1 Introduction 

Since the classical fuzzy reasoning methods (e.g. compositional rule of inference) 

are demanding complete rule bases, the classical rule base construction claims a 

special care of filling all the possible rules. In case if there are some rules missing, 

there are observations may exist which hit no rule in the rule base and therefore no 

conclusion is obtained. Having no conclusion in a fuzzy control structure is hard 

to explain. E.g. one solution could be to keep the last real conclusion instead of the 

missing one, but applying historical data automatically to fill undeliberately 

missing rules could cause unpredictable side effects. Another solution for the same 

problem is the application of the interpolation-based fuzzy reasoning methods, 

where the derivable rules are deliberately missing. Since the rule base of a fuzzy 

interpolation-based controller, is not necessarily complete, it could contain the 
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most significant fuzzy rules only without risking the chance of having no 

conclusion for some of the observations. In other words, during the construction of 

the fuzzy rule base, it is enough to concentrate on the cardinal actions; the “filling” 

rules (rules could be deduced from the others) can be deliberately omitted. 

In the followings, first an approximate fuzzy reasoning method based on 

interpolation in the vague environment of the fuzzy rule base [4], [5], [6] will be 

introduced. The main benefit of the proposed method is its simplicity, as it could 

be implemented to be simple and quick enough to be applied in practical direct 

fuzzy logic control too. Then its adaptation to fuzzy control structures through a 

simple rule base construction example will be discussed briefly. 

2 Interpolation-based Fuzzy Reasoning 

One way of interpolative fuzzy reasoning is based on the concept of vague 

environment [2]. Applying the idea of the vague environment the linguistic terms 

of the fuzzy partitions can be described by scaling functions [2] and the fuzzy 

reasoning itself can be replaced by classical interpolation. The concept of vague 

environment is based on the similarity or indistinguishability of the elements. Two 

values in the vague environment are ε-distinguishable if their distance is grater 

than ε. The distances in vague environment are weighted distances. The weighting 

factor or function is called scaling function (factor) [2]. Two values in the vague 

environment X are ε-distinguishable if 

( ) ( )∫=
1

2

21,>

x

x

s dxxsxxδε  , 
(1) 

where ( )21, xxsδ  is the vague distance of the values x1, x2 and s(x) is the scaling 

function on X. For finding connections between fuzzy sets and a vague 

environment the membership function )(xAµ  can be introduced as a level of 

similarity a to x, as the degree to which x is indistinguishable to a [2]. The �-cuts 

of the fuzzy set )(xAµ  are the sets which contain the elements those are (1�)-

indistinguishable from a (see fig. 1): 
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dxxsx sA δµ  . 
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Figure 1 

The �-cuts of )(xAµ  contains the elements that are  

(1-�)-indistinguishable from a 

This case (see fig. 1) the vague distance of points a and b ( )b,a(sδ ) is the 

Disconsistency Measure (SD) of the fuzzy sets A and B (where B is a singleton): 

( ) )b,a(sup1 sBA
Xx

D xS δµ =−= ∩
∈

 if [ ]1,0)b,a( ∈sδ  , (3) 

where BA∩  is the min t-norm, ( ) ( ) ( )[ ]xxx BABA µµµ ,min=∩
 ∀ x ∈ X. 

From the viewpoint of fuzzy reasoning and fuzzy rule bases, where an observation 

fuzzy set is needed to be compared to rule antecedents built up member fuzzy sets 

(linguistic terms) of the antecedent fuzzy partitions (2) and (3) means that the 

disconsistency measures between member fuzzy sets of a fuzzy partition and a 

singleton, can be calculated as vague distances of points in the vague environment 

of the fuzzy partition. The main difference between the disconsistency measure 

and the vague distance is, that the vague distance is a value in the range of [0,∞], 

while the disconsistency measure is limited to [0,1].  

Therefore if it is possible to describe all the fuzzy partitions of the primary fuzzy 

sets (the antecedent and consequent universes) of the fuzzy rule base by vague 

environments, and the observation is a singleton, the “extended” disconsistency 

measures of the antecedent primary fuzzy sets of the rule base, and the “extended” 

disconsistency measures of the consequent primary fuzzy sets and the 

consequence can be calculated as vague distances of points in the antecedent and 

consequent vague environments.  

The vague environment is described by its scaling function. For generating a 

vague environment of a fuzzy partition an appropriate scaling function is needed 

to be find, which describes the shapes of all the terms in the fuzzy partition. A 

fuzzy partition can be characterised by a single vague environment if and only if 

the membership functions of the terms fulfil the following requirement [2]: 

dx

d
xxs

µµ == )(')(   exists iff  { } )(')('  0>)(),(min xxxx jiji µµµµ =⇒ , (4) 

Iji ∈∀ , , where s(x) is the vague environment (see e.g. on fig. 2 and fig. 3). 
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Figure 2 

A fuzzy set and its scaling function 
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There is a scaling function s(x) exists, which 

describes all the fuzzy sets 

There is no scaling function, which 

describes both the fuzzy sets 

Figure 3 

A fuzzy partition and its scaling function 

Generally condition (4) is not fulfilling, so the question is how to describe all 

fuzzy sets of the fuzzy partition with one “universal” scaling function. For this 

task the concept of approximate scaling function, as an approximation of the 

scaling functions describes the terms of the fuzzy partition separately is proposed. 

See e.g. a partition built-up triangular fuzzy sets on fig. 4 and the corresponding 

approximate scaling functions on fig. 5 (linear interpolation) and fig. 6 (non-linear 

interpolation). See more detailed the questions of approximate scaling functions in 

[4], [5], [6]. 
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Figure 4 

Fuzzy partitions built-up triangular fuzzy sets can be characterised by triples, by the values 

of the left 
Ls  and the right 

Rs  scaling factors and the cores. 

  

Figure 5 

Linearly interpolated scaling function of the fuzzy partition shown on fig. 4, and the 

partition as the approximate scaling function describes it (A’,B’). 

  

Figure 6 

Approximate scaling function generated by non-linear interpolation [4], [5], [6] of the fuzzy 

partition shown on fig.4., and the partition as the approximate scaling function describes it 

(A’,B’). 

If the vague environment of a fuzzy partition (the scaling function or the 

approximate scaling function) exists, the member sets of the fuzzy partition can be 

characterised by points in the vague environment. (These points are characterising 

the cores of the fuzzy terms, while the membership functions are described by the 

scaling function itself.) If all the vague environments of the antecedent and 

consequent universes of the fuzzy rule base are exist, all the primary fuzzy sets 

(linguistic terms) built-up the fuzzy rule base can be characterised by points in 

their vague environment. Therefore the fuzzy rules (built-up from the primary 
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fuzzy sets) can be characterised by points in the vague environment of the fuzzy 

rule base too. This case the approximate fuzzy reasoning can be handled as a 

classical interpolation task. Applying the concept of vague environment (the 

distances of points are weighted distances), any interpolation, extrapolation, or 

regression methods can be adapted very simply for approximate fuzzy reasoning 

[4], [5], [6]. 

Because of its simple multidimensional applicability, for interpolation-based fuzzy 

reasoning in this paper the adaptation of the Shepard operator based interpolation 

(first introduced in [1]) is suggested. Beside the existing deep application oriented 

investigation of the Shepard operator e.g. [3], it is also successfully applied in the 

Kóczy-Hirota fuzzy interpolation [12]. (The stability and the approximation rate of 

the Shepard operator based Kóczy-Hirota fuzzy interpolation is deeply studied in 

[7] and [8].) The Shepard interpolation method for arbitrarily placed bivariate data 

was introduced as follows [1]: 
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where measurement points xk, yk ( [ ]nk ,0∈ ) are irregularly spaced on the domain 

of ℜ→ℜ∈ 2f , 0>λ , and ( ) ( )[ ] 2122

kkk yyxxd −+−= . This function can be 

typically used when a surface model is required to interpolate scattered spatial 

measurements. 

The adaptation of the Shepard interpolation method for interpolation-based fuzzy 

reasoning in the vague environment of the fuzzy rule base is straightforward by 

substituting the Euclidian distances 
kd  with vague distances 

ksδ ,
: 
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(6) 

where s
iX  is the ith scaling function of the m dimensional antecedent universe, x 

is the m dimensional crisp observation and ak are the cores of the m dimensional 

fuzzy rule antecedents A
k
. 
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Thus in case of singleton rule consequents fuzzy rules Rk 

If x1 = Ak,1  And  x2 = Ak,2 And … And  xm = Ak,m   Then  y = ck (7) 

by substituting (6) to (5) the conclusion of the interpolative fuzzy reasoning can be 

obtained as: 
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(8) 

The interpolative fuzzy reasoning (8) can simply extend to be able to handle fuzzy 

conclusions by introducing the vague environment (scaling function) of the 

consequence universe. This case the fuzzy rules Rk has the following form: 

If x1 = Ak,1  And  x2 = Ak,2 And … And  xm = Ak,m   Then  y = Bk (9) 

By introducing vague distances on the consequence universe: 
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(10) 

where Ys  is the ith scaling function of the one dimensional consequent universe, 

bk are the cores of the one dimensional fuzzy rule consequents B
k
.  

Introducing the first element of the one dimensional consequence universe b0 the 

(Y: b0≤y  ∀ y∈Y), based on (8) and (10) the requested one dimensional 

conclusion ( )xy  can be obtained from the following formula: 
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(11) 

A simple one-dimensional example for the approximate scaling function and the 

Shepard operator based interpolation (11) is introduced on fig. 7-10. 
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Figure 7 

Interpolation of two fuzzy rules (Ri: Ai→Bi) (see fig. 10 for notation) 

 

Figure 8 

Interpolation of two fuzzy rules (Ri: Ai→Bi) (see fig. 10 for notation) 
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Figure 9 

Interpolation of three fuzzy rules (Ri: Ai→Bi) (see fig. 10 for notation) 

 

Figure 10 

Interpolation of three fuzzy rules (Ri: Ai→Bi) in the approximated vague environment of 

the fuzzy rule base, using the Shepard operator based interpolation (11) ( 1=λ ) (Approx.), 

and the min-max. CRI with the centre of gravity defuzzification (CRI), where µ is the 

membership grade, and s is the scaling function. 
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For comparing the crisp conclusions of the interpolation-based fuzzy reasoning 

and the classical methods, the conclusions generated by the max-min 

compositional rule of inference (CRI) and the centre of gravity defuzzification for 

the same rule base is also demonstrated on the example figures (fig. 7-10). More 

detailed description of the proposed approximate fuzzy reasoning method can be 

found in [4], [5], [6]. 

3 Application Example 

The main benefit of the interpolation-based fuzzy reasoning method, introduced in 

the previous chapter, is its simplicity. Applying look-up tables for pre-calculating 

the vague distances, it could be implemented to be simple and quick enough to fit 

the speed requirements of practical real-time direct fuzzy logic control systems 

too. The calculation efforts of many other interpolation-based fuzzy reasoning 

methods “wasted” for determining the exact membership shape of the interpolated 

fuzzy conclusion prohibits their practical application in real-time direct fuzzy 

logic control. The lack of the fuzziness in the conclusion is a disadvantage of the 

proposed method, but it has no influence in common applications where the next 

step after the fuzzy reasoning is the defuzzification. 

For demonstrating the simplicity of defining rule base for interpolation-based 

fuzzy reasoning, as an example, the construction of the state-transition rule base of 

a user adaptive information retrieval system will be introduced briefly in the 

followings. 

In this user adaptive information retrieval system example (introduced in [10] and 

[11] in more details) the user adaptivity is handled by combination of existing 

(off-line collected) human opinions (user models) in the function of their 

approximated similarity to the actual user opinions. The goal of the state-transition 

control is to estimate the “current state”, the actual suitability of the existing user 

models. Based on the observations (inputs) – the conclusion of the user feedback 

(the similarity of the user feedback to the existing user models SSi for all the 

possible models [ ]N,1i∈∀ ) and the previous state Si (estimation) the state-

transition rule base has to estimate the new state values, the next approximation of 

the vector of the suitability of the existing user models. 

The heuristic we would like to implement in our example is very simple. If we 

already found a suitable model (Si) and the user feedback is still supporting it 

(SSi), we have to keep it even if the user feedback began to support some other 

models too. If there were no suitable model, but the user feedback began to 

support one, we have to pick it at once. In case of interpolation-based fuzzy 

reasoning, the above heuristic can be simply implemented by the following state-
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transition rule base [10], [11]. For the ith state variable Si, [ ]N,1i∈ of the state 

vector S: 

If Si=One  And SSi=One  Then Si=One (12.1) 

If Si=Zero  And SSi=Zero  Then Si=Zero (12.2) 

If Si=One  And SSi=Zero 

 And SSk=Zero  Then Si=One  [ ] ik,N,1k ≠∈∀  

(12.3) 

If Si=Zero  And SSi=One 

   And Sk=Zero And SSk=Zero Then Si=One  [ ] ik,N,1k ≠∈∀  

(12.4) 

If Si=Zero  And SSi=One 

   And Sk=One  And SSk=One Then Si=Zero [ ] ik,N,1k ≠∈∃  

(12.5) 

where SSi is the similarity of the user feedback to the ith existing user model 

[ ]N,1i∈∀ ; N is the number of known user models (state variables). The structure 

of the state-transition rules is similar for all the state variables. Zero and One are 

linguistic labels of fuzzy sets (linguistic terms) representing high and low 

similarity. The interpretations of the Zero and One fuzzy sets can be different in 

each Si, SSi universes. 

Please note that rule base (12) is sparse. It contains the main rules for the 

following straightforward goals only: Rule (12.1) simply keeps the previously 

chosen state values in the case if the symptom evaluation also agrees. The rule 

(12.2) has the opposite meaning, if the state values were not chosen, and moreover 

the symptom evaluation is also disagrees the state value should be suppressed. The 

rule (12.3) keeps the already selected state values (previous approximation), even 

if the symptom evaluation disagrees, if it has no better “idea”. Rules (12.4) and 

(12.5) have the task of ensuring the relatively quick convergence of the system to 

the sometimes unstable (changeable) situations, as new state variables which seem 

to be fit, can be chosen in one step, if there is no previously chosen state, which is 

still accepted by the symptom evaluation (12.4). (Rule (12.5) has the task to 

suppress this selection in the case if exists a still acceptable state which has 

already chosen.) The goal of this heuristic is to gain a relatively quick 

convergence for the system to fit the opinions of the actual user, if there is no state 

value high enough to be previously accepted. This quick convergence could be 

very important in many application areas e.g. in case of an on-line user adaptive 

selection system introduced in [10], where the user feed-back information needed 

for the state changes are very limited. 

Some state changes of the state-transition control (fuzzy automaton) in the 

function of the user feedback (SS1, SS2) for the two states case (applying the state-

transition rule base (12)) are visualised on fig. 11 and fig. 12. 



Sz. Kovács Interpolation-based Fuzzy Reasoning as an Application Oriented Approach 

 – 104 –

   

Figure 11 

Do not “pick up” a new state if the previous approximation is still adequate. 

   

Figure 12 

But “pick it up” if it seems better. 

Counting the rules of the classical (e.g. compositional) fuzzy reasoning for the 

same strategy we find, that in the two state case the complete rule base needs 16 

rules (as we have four observation universes (S1, SS1, S2, SS2) each with two terms 

fuzzy partitions (Zero, One) - 24 rules), while the sparse rule base (12) contains 5 

rules only (see table 1 for the state-transition rule base of state S1). Taking into 

account that in the proposed behaviour-based control structure a separate rule base 

is needed for each state variables, the behaviour coordination needs 32 rules, while 

10 is enough in case of applying the proposed interpolation-based fuzzy reasoning 

method. Increasing the number of the state variables the situation became even 

worse. In case of three state variables (S1, S2, S3) the rate become 623 ⋅  ( nn ⋅⋅ 22 , 

where n is the number of the states) and 63 ⋅  ( ( )3+⋅ nn ) up to the interpolation-

based method (see table 2). 
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Table 1 

State-transition rule base of state S1 in case of two state variables (S1,S2) according to rule 

base (12) 

RS1: S1 SS1 S2 SS2 S1  

1., One One   One    (according to (12.1)) 

2., Zero Zero   Zero    (according to (12.2)) 

3., One Zero  Zero One    (according to (12.3)) 

4., Zero One Zero Zero One    (according to (12.4)) 

5., Zero One One One Zero    (according to (12.5)) 

Table 2 

State-transition rule base of state S1 in case of three state variables (S1,S2,S3) according to 

rule base (12) 

RS1: S1 SS1 S2 SS2 S3 SS3 S1  

1., One One     One  (12.1) 

2., Zero Zero     Zero  (12.2) 

3., One Zero  Zero  Zero One  (12.3) 

4., Zero One Zero Zero Zero Zero One  (12.4) 

5., Zero One One One   Zero  (12.5) 

6., Zero One   One One Zero  (12.5) 

The exponential rule number “explosion” in case of increasing the number of the 

input variables makes many heuristic ideas unimplementable and therefore 

useless. E.g. in the case of the original source of the example application of this 

paper (introduced in [10]), the behaviour coordination module applied for user 

adaptive information retrieval system had 4 state variables (one for each emotional 

models), which makes our simple rule base (12) practically unimplementable as a 

complete rule base ( 102424 8 =⋅  rules). While our working demonstrational 

example had only 28 rules thanks to the applied interpolation-based fuzzy 

reasoning method. A downloadable and runable code of the above mentioned 

application example together with the code of other examples and the code of the 

interpolation-based Fuzzy reasoning method introduced in this paper can be found 

at [13]. 

Conclusions 

The goal of this paper was to introduce an interpolation-based fuzzy reasoning 

method, which could be implemented to be simple and quick enough to fit the 
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requirements of real-time direct fuzzy logic control systems. The suggested 

approximate fuzzy reasoning method based on interpolation in the vague 

environment of the fuzzy rule base gives an efficient way for designing direct 

fuzzy logic control applications. The lack of the fuzziness in the conclusion is a 

disadvantage of the proposed method, but it has no influence in common 

applications where the next step after the fuzzy reasoning is the defuzzification. 

To give some guidelines for interpolation-based fuzzy reasoning rule base design, 

some highlights of the state-transition rule base of a user adaptive information 

retrieval system application ([10], [11]) is also introduced in this paper. 

The implementation of interpolation-based fuzzy reasoning methods in fuzzy 

control structures simplifies the task of fuzzy rule base creation. Since the rule 

base of a fuzzy interpolation-based controller is not necessarily complete, it could 

contain the most significant fuzzy rules only without risking the chance of having 

no conclusion for some of the observations. In other words, during the 

construction of the fuzzy rule base, it is enough to concentrate on the cardinal 

actions; the “filling” rules (rules could be deduced from the others) could be 

deliberately omitted. Thus, compared to the classical fuzzy compositional rule of 

inference, the number of the fuzzy rules needed to be handled during the design 

process could be dramatically reduced. 

The necessity of the complete rule base in many classical fuzzy reasoning methods 

(e.g. max-min CRI) and hence the exponential rule number “explosion” in case of 

increasing the number of the input variables makes numerous rule base ideas 

unimplementable and therefore useless. The application of interpolation-based 

fuzzy reasoning methods could provide some implementation chances for many of 

them (see e.g. our simple example in section 3). 
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Abstract: It is difficult for most of us to imagine, but many who are deaf rely on sign 

language as their primary means of communication. They, in essence, hear and talk 

through their hands. This paper proposes a system which is able to recognize the signs 

using a video camera system. The recognized signs are reconstructed by the 3D 

visualization system as well. To accomplish this task a standard personal computer, a video 

camera and a special software system was used. At the moment the software is able to 

recognize several letters from the sign language alphabet with the help of color marks. The 

sign language recognition is a function of an Intelligent Space, which has ubiquitous 

sensory intelligence including various sensors, such as cameras, microphones, haptic 

devices (for physical contact) and actuators with ubiquitous computing background. 

Keywords: sign language, deaf, image processing, marker, CCD, camera, OpenGL, 

WISDOM, recognition, reconstruction, intelligent space 

1 Introduction 
Sign languages are visual languages. They are natural languages which are used 

by many deaf people all over the world, e.g. HSL (Hungarian Sign Language) or 

ASL (American Sign Language). In 1988, the European Parliament passed a 

resolution stating that the sign languages of the European Community should be 

officially recognized by the Member States. To date only Sweden, Greece, 

Portugal and Finland have ratified this resolution into legislation. Nevertheless, 

the sign languages of Europe are living and developing languages. They can be 

characterized by manual (hand shape, hand-orientation, location, motion) and non-

manual (trunk, head, gaze, facial expression, mouth) parameters. Mostly one-

handed and two handed signs are used. Sign languages occupy a 3D signing space 

usually considered to be within the arms reach horizontally and from the top of the 

head to the waist [1]. 
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In sign language the hands convey most of the information. Hence, vision-based 

automatic sign language recognition systems have to extract relevant hand features 

from real life image sequences to allow correct and stable gesture classification. 

Using only the position information of the hands [2] or additionally their 2D 

orientation and some simple 2D shape properties [3] [4], recognition results of up 

to 97.6% for 152 different single gestures have been achieved so far. Nevertheless, 

more detailed information about the hand shape becomes necessary if a general 

recognition system is supposed to be constructed with a significantly larger 

gesture vocabulary and with the aim of distinguishing between so-called minimal 

pairs of signs, which merely differ in hand shape. 

Most recent gesture recognition applications use either low level geometrical 

information [5], 2D models of the contour [6] or appearance models [7] [8] to 

describe the 2D hand image. The resulting parameters are appropriate to 

distinguish between a few clearly separable hand shapes from a fixed viewing 

angle. Although there are only a small number of different hand shapes employed 

during the performance of sign language, these can appear at any posture, creating 

a large amount of different hand images. The problem is that the degree of 

similarity between these 2D appearances does not correspond well to the degree of 

similarity between the corresponding constellations of the real hand. Because of 

this, an improvement of recognition results through direct usage of any extracted 

2D features cannot be expected. 

The most suitable information for gesture classification are the real hand 

parameters which include the finger constellation and the 3D hand posture. 

Several approaches have been published to extract these from images without the 

usage of any aids like marked gloves. In [9] the given image is compared with a 

large database of rendered hand images using a set of similarity criteria. The 

natural hand parameters of each image are included in the database. Another 

approach is to detect relevant points like the finger tips in the image and to adapt a 

simple 3D model to the positions found [10]. Furthermore, different methods have 

been developed to construct a deformable 3D model of the hand and to adapt it to 

the image content. 

The main goals of the proposed system are the following: 

• To recognize some very basic elements of manual sign language, based 

on 2D visual information. 

• To visualize the positions of the fingers with a 3D graphical Hand 

Simulation. 

• To make connection with other users in order to exchange sign language 

data over the Internet. 

This paper is structured as follows: Section 2 gives a general description about our 

system. Section 3 introduces the details of the system. Finaly in Section 4 the 

results are summarized and further plans are explained. 
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2 General Description 

2.1 Intelligent Space 

The main problem is the bandwith of the existing LAN applications. We can 

acquire bigger amout of information than we can transfer through the fastes 

computer network line. To reduce the data transfer the intelligence of the system 

must be distributed. A conceptual figure of the Intelligent Space with ubiquitous 

sensory intelligence is shown in Figure 1. 
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Figure 1 

Intelligent Space Concept 

The Ubiquitous Sensory Intelligence is realised by Distributed Intelligent 

Networked Devices [11], robots, which are physical agents of the Intelligent 

Space, and Human. In the Intelligent Space, DINDs monitor the space, and 

achieved data are shared through the network. Since robots in the Intelligent Space 

are equipped with wireless network devices, DINDs and robots organize a 

network. The Intelligent Space based on Ubiquitous Sensory Intelligence supply 

information to the Human beings and it can help them physically by using robot 

agents. Conventionally, there is a trend to increase the intelligence of a robot 

(agent) operating in a limited area. The Ubiquitous Sensory Intelligence concept is 

the opposite of this trend. The surrounding space has sensors and intelligence 

instead of the robot (agent). A robot without any sensor or own intelligence can 

operate in an Intelligent Space. The difference of the conventional and Intelligent 

Space concept is shown in Figure 2. There is an intelligent space, which can sense 

and track the path of moving objects (human beings) in a limited area. There are 

some mobile robots controlled by the intelligent space, which can guide blind 

persons in this limited area. The Intelligent Space tries to identify the behaviour of 

moving objects (human beings) and tries to predict their movement in the near 

future. 
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Conventional concept Ubiquitous Sensory Intelligence 

concept 

Figure 2 

Comparison of conventional and Ubiquitous Sensory Intelligence concept 

Using this knowledge, the intelligent space can help avoiding the fixed objects and 

moving ones (human beings) in the Intelligent Space. A mobile robot with 

extended functions is introduced as a mobile haptic interface, which is assisted by 

the Intelligent Space. The mobile haptic interface can guide and protect a blind 

person in a crowded environment with the help of the Intelligent Space. The 

Intelligent Space learns the obstacle avoidance method (walking habit) of dynamic 

objects (human beings) by tracing their movements and helps to the blind person 

to avoid the collision. The blind person communicates (sends and receives 

commands) by a tactile sensor. The prototype of the mobile haptic interface and 

simulations of some basic types of obstacle avoidance method (walking habit) are 

presented. Some other Intelligent Space projects can be found in the Internet [12, 

13, 14, 15]. 

2.2 Sign Language Recognition as a Type of DINDs 

We can use as a definition: A space becomes intelligent, when Distributed 

Intelligent Network Devices (DINDs) are installed in it [11]. DIND is very 

fundamental element of the Intelligent Space. It consists of three basic elements. 

The elements are sensor (camera with microphone), processor (computer) and 

communication device (LAN). DIND uses these elements to achieve three 

functions. First, the sensor monitors the dynamic environment, which contains 

people and robots. Second, the processor deals with sensed data and makes 

decisions Third, the DIND communicates with other DINDs or robots through the 

network. Figure 3 hows the basic structure of human decision and DIND. 
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DIND

(Distributed Intelligent Network Device)

SensorCommunication

Processor

Look at space

Transform information

Refer database

Make database

Communicate with 

robots or other DINDs

 

Figure 3 

Fundamental structures of human decision and DIND 

2.3 The Alphabet of the Sign Language  

 

Figure 4 

Alphabet of the Sign Language 

A, B, E, I, U, V and W letters can be recognized without examining the position of 

the thumb (see in Fig. 5-11). 
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Figure 5 

Camera picture of letter A 

Figure 6 

Camera picture of letter B 

  

Figure 7 

Camera picture of letter C 

Figure 8. 

Camera picture of letter I 

  

Figure 9 

Camera picture of letter U 

Figure 10 

Camera picture of letter V 

 

Figure 11 

Camera picture of letter W 
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To recognize all of the letters two or more cameras and a rather complicated 

marking system is needed so we limited our system’s facilities to recognize those 

letters which neglect the use of thumb. 

2.4 Marker Points 

For finding the joints of the fingers on the picture of the camera we had to sign 

them. First we mark the joints with red points but in this case two problems 

appeared: which point belongs to which finger and this point an inner point or an 

outer point. To solve this problem, different colors would have to be used as it 

shown in Figure 12. and 13., but in that case the finding of the joints would be 

more difficult, because there are more colors. 

  

Figure 12 

The inner color points of the prepared glove 
Figure 13 

The outer color points of the prepared glove 

2.5 System Elements 

We designed a system which uses a CCD video camera to recognize the finger 

positions(see in Fig. 14) To help our system we used specially marked gloves as 

described in section 2.4. The image of the observed hand is transferred to a 

standard desktop computer - using a video digitalisator card - where an image is 

analyzed by our image recognition program. If the analyzed hand is recognized as 

a sign for deaf people the corresponding letter is displayed on the screen. While 

displaying a recognized letter the program is able to display the signs using a 3D 

hand visualization software (see in Fig. 15). Multiple hand visualization programs 

can be connected to the recognition software through the Internet. 
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Figure 14 

Block diagram of the sign recognition and sign reconstruction system 

 

Figure 15 

The Hand Simulation software 

3 Detailed Description 
The video camera system produces a standard composite video signal which is 

recognized by a video digitalisator card. The captured image is transferred to the 

image recognition software 10 times per second. 
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The image recognition software scans the image pixel by pixel using the algorithm 

described as follows: 

3.1 Algorithm for Finding the Marker Points 

The problem at finding the marker point is that they are bigger than one pixel. 

That is why after finding for example a red pixel it must be decided whether this 

pixel belongs to an earlier found joint or it belongs to a new one. This problem is 

well known, there exist many so-called edge detection algorithms. But these 

algorithms are quite sophisticated, usually not too fast, and they know much more 

than what we need. This is why we decided to use a self-created algorithm, which 

is worse than any of these edge detection algorithms, but enough for our purposes. 

We are interested only about the en frame rectangle of the joints. So the algorithm 

works in the following way: 

The computer starts to scan the picture, and after it finds a red point the following 

two things can happen: 

• If this point is not further to the middle of a previously found rectangle than a 

given limit, then we suppose, the point belongs to that rectangle. In this case we 

increase the size of that rectangle, so that it encloses this new point too. 

• If it is not enough close to any other rectangles, then we suppose that it is a new 

joint, and we make a new rectangle for it. 

To find the color marks the program gets RGB component of each pixel. Instead 

of looking for a concrete color we are examining a range of colors. We can set this 

range with the help of the scroll bars or edit boxes which can be seen in the left 

bottom quarter of the program screen. (see in Fig. 16) It is important to the 

lighting conditions are to be nearly constant so the RGB components of the color 

points change in narrow range. 

3.2 Evaluation of the Positions of the Points 

First of all a red dot at the lower right corner of the palm of the hand is found; this 

will be the base point of the further analysis. Four different groups of the points 

are created, one for each finger. The points are separated into those groups by 

reading their color code and position according to the base point. Each group 

should contain 4 points. If some points are missing, they are automatically added 

by the program. 

Each group is examined by the algorithm and the angles of the joints’ are calculated. 

These calculated angles are compared to the stored values – angle values for letters A, 

B, E, I, U, V and W – and the result of the comparison will be the recognized letter. 
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Figure 16 

Sign Recognition of letter U and B 
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3.3 The Sign Reconstruction Software 

A 3D hand animation software was developed to give a visual feedback of signs 

[16] (see in Fig. 15). Visual feedback has the aim of giving a quite real 

representation of the environment, and although at the moment this environment is 

far from complete, the program enables the user to wonder in full three-

dimensional space. 

4 Results and Further Plans 

4.1 Performed Tasks 

A Sign Recognition program was written in Delphi 6 which can detect the 

positions of the fingers’ expect the thumb and can recognize the A, B, E, I, U, V 

and W letters. A Hand Simulation Program correctly reconstructs the recognized 

signs. 

A network connection between the sign recognition software and the hand 

simulation software has been established and tested; It was able to transfer the 

recognized signs through the Internet. 

Using this technique the network load was significantly lower than sending the 

whole video stream through the network. 

4.1.1 Performance Test Results 

We used the following system components for testing: 

• Sony EVI D30/D31 Pan/Tilt/Zoom CCD camera 

• Genius Video Wonder Pro III video digitalisator card 

• GeForce4 MX440 video card 

• Intel Pentium II 366 MHz processor 

• 128 Mb RAM 

• Windows 95 OSR2 

The signal produced by the CCD camera is a standard composite video signal; 

This can be digitalised using a video digitalisator card. The video signal contains 

25 frames per second but the digitalisator card was able to digitalise 16-25 frames 

per second. Our algorithm was able to process 10 frames per second (average) at 

100% CPU utilization. 
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4.1.2 Functionality Test Results 

The efficiency of the algorithm was around 90%. We tested the algorithm in ideal 

light conditions and the signs were shown for at least 5 seconds. No mistakes were 

made during the test only few times the program wasn’t able to recognize the sign. 

4.2 Further Plans 

A video recognition system should be extended to handle the thumb and to 

recognize every used sign. Rendundancy of the recognition system should be 

improved to tolerate different light conditions as well. 

The marker system should be simplified or neglected and the recognition system 

should work without any additional help. Later this system can be integrated to 

Intelligent Space systems as a DIND (Distributed Intelligent Network Device). 

Conclusion 

As we know there is a growing need for space monitoring systems all over the 

World but these systems’ need larger and larger operating staff as well; The 

tendency in the World is that salaries are growing and to employ a security staff to 

operate these monitoring systems becomes uneconomical. Contrarily computer 

systems are getting cheaper and cheaper so they might substitute humans in this 

field. 

We think that there is a growing need for cheap intelligent space systems which 

can be easily taught to make difference between usual and unusual situations. 

Intelligent space systems are able to communicate with humans in the monitored 

area, but we have to make them as flexible as possible. The proposed system fits 

into the Intelliget Space because it can be used as the interface between deaf 

people and computers. 
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