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HEATING BEHAVIOUR OF SMALL PLASTIC GEARS 
 

JÁNOS BIHARI  
University of Miskolc, Department of Machine and Product Design 

3515 Miskolc-Egyetemváros 
machbj@uni-miskolc.hu 

 
Plastic gears are used in many areas of life. Designing and installing these types of gears 
often needs physical post-control due to the deficiency of the relevant standards and work-
helps. In order to have real results by the control, we must use a kind of testing equipment, 
which is able to simulate exactly the stress as well as the typical problems. To be able to 
compile the right tests we must learn the types of these problems. Some of problems will be 
introduced in this paper. 

1. Introduction 

Heating of plastic gears is an important problem because the strength parameters 
deterioration of most base materials to be concerned is faster than that of steel gears. In 
classical design the main reason of heating is the friction between the teeth surfaces. In 
some design method the heating coming from the internal material friction is also taken into 
consideration but they cannot be used or only in a limited matter for small size plastic 
gears. In case of plastic gears it is especially important due to the material deformation 
induced by the friction caused heating. In this paper some characteristic problems are 
shown, which should be expediently taken into regard of design and control of such kind of 
gears. 

Definitions: 
• Small gears:  

Module < 1 mm (precision engineering, DIN 58405)  
Characteristic external dimension < 50 mm  

• Micro gears:  
Module < 0,2 mm (VDI micro gears)  
Characteristic external dimension < 20 mm 

2. Limitations of design methods 

Overviewed the often used design methods for small size plastic gears and the 
problems of those methods (Figure 1–5.) [1.], it can be seen that from the four basic cases 
in three, the acceptable accurate determination of the heat process is not possible as a part 
of the design according to either the complexity and cost demand or there are no methods 
or enough data for doing the calculation. In use of classical design methods the standards 
and offers to be concerned can be applied in larger size ranges however, in case of smaller 
sizes, especially for micro driven-gear there are no documents. So, it is generally true, that 
in case of small size and micro driven-gear equipped drives the heating should be 
controlled by experiments. 
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Practical design methods of SPGs

• Less sizing
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Figure 1. 

 

Practical design methods of SPGs

 
Figure 2. 
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Problems of design methods: 

Classical design 
 

 
Figure 3. 

 

Problems of design methods: 

Parameter based design 

 

Figure 4. 
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Problems of design methods: 

Test based development 

 

Figure 5. 

 
In heating of plastic gears the deformation due to loading and the re-deformation due to 

unloading have an important role. This elastic deformation is always accompanied by 
internal friction. This kind of heating can be almost totally eliminated by determination of 
the strength requirements however, the system elements do not satisfy all the time the 
strength requirements in case of parameter based design, test-based development or design 
of cheap units. In such kind of situation only on base of element tests or knowledge of 
previous test results can be judged whether the strength of the gears is suitable or not.  

3. Critical design positions from point of heating 

The gear deformation can be induced more factors along the non-suitable strength 
property. For instance over-loading, non-optimal linkage of teeth and abnormal contact of 
surfaces, which have not been designed for that. The heating can be reduced in these cases 
as well by well selected lubrication. However, it should be taken into regard, that in the size 
range under investigation the characteristic procedure is the lifespan lubrication and the 
reinforced cooling of the lubricant never can be proceeded in practice. 

3.1. The over-loading 

The small size units involving driving gears often should be built in together with the 
electronic engine, which assures the propulsion. The designing possibilities are reduced due 
to the generally limited assortment of small engines and the power assortment scale is 
increased as much as by 50% steps. In micrometres the scaling is more robust. It can be 
easily happened, that only significantly higher power engine is at service, so the protective 
system for the drive cannot be designed neither at the power in way nor the counter-driven 
gear sides. So the increase of loading on the driven out-side it overloads the drive. In small 
measure the pollution of the moved structure on the driven out-side might be enough. This 
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is an unambiguous situation. The problem can be occurred if not the true conclusions are 
formulated in case of the damaged drive under investigation. 

3.2. Geometrical faults of the gear-drive house and mounting errors 

The cheap drives are generally built into the die casted houses. For reduction of costs 
the houses are generally made from more pieces and for the fastening of the house pieces to 
each other a few screw bonding is applied. Generally snap pits are used. The bearing axles 
and often the axles themselves are manufactured by using the same materials. Additional 
problem, that the assembly timing of such units is generally short. If the tools at service are 
not suitable then the probability of errors is higher. 

 
Figure 6. Bad drives 

 
In Figure 6. there are examples for three typical problems. According to constructional 

reason not rare cross-spaced houses are used. The problem shown in the left side can be 
reason of either a mounting or manufacturing fault. The fault can be seen in the middle is 
an often experienced situation, namely the gear has no axial direction shoulder, they are 
mounted by extrusion to the steel axle and so the force transmission is assured by closed 
fitting. In this case the gear has been slipped on the axle due to assembly failure. On the 
right side the bearings are made with the house by one piece. If the tolerance ranges are 
prescribed badly then the distances of the bearings support can be relevantly different. In all 
of the three cases the loading is transferred on a smaller surface from one gear to the other 
then it would be necessary. 

3.3. Incorrect tolerance determination of axle distances 

In the small and micro ranges there are no standard tolerances [6], [7]. The tolerances 
can be prescribed by extrapolation of the ones valid in the larger ranges. Problems, 
connected with inconvenient selection of tolerances can be seen in Figure 7. 

In situation of drafts 1 and 3 the axle distances are too big. In this case the bending on 
the tooth root is bigger than the allowable, and teeth jumping over might be occurred. In the 
draft 2 the axle distance is too short; one of the addendum circles reaches down into the 
dedendum circle of the other one, following deformation of teeth and gear. 
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1 2

3

1: centre distance + trouble
2: centre distance – trouble
3: vertical tolerance trouble

 
Figure 7. Centre distance troubles 

4. Special design cases 

 
 

Figure 8. Narrow wheel body deformation at parameter based design 
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If the space is limited, so the wideness of the gear is small there might be deformation 
of the wheel body due to over-loading and axle distance failure. In this case the total wheel 
body is over-heated (Figure 8.; Figure 9.). 

 

 

Figure 9. Thin wheel in a drive unit, with fibre-reinforcement reducing the deformation 

 

In case of parameter based design due to geometrical limitations the small diameter 
gears body will be thin (Figure 10.). This kind of gears is generally fixed to the axle by 
cementation but the use of sintered joins is also not rare [5]. If the axle distance is too big, 
then not the tooth root deforms but the ribbon like gear body that is the teeth are diverged. 
If the axle distance is too small, then the head ribbon pushes the small gear teeth interval 
spaces so it is again the gear body that will be deformed. In this case the deformation can be 
occurred due to the over loading too. 

Special loading state can be occurred in small tool machines and purpose oriented 
facilities. In Figure 11. a screw nail is wreathed by machine into chipboard. The hardness 
of the different structures is also different, so during the wreath the loading is also varying. 
For the loading variation an example is given by the diagram. The time of over-loading is 
very short and just only one-two teeth are involved. 
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Figure 10. Deformation of narrow gear body 
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LOAD

 

Figure 10. Momentary over-loading in case of chipboard screwing 



Heating behaviour of small plastic gears 

 

13 

According to the process can be seen in the diagram the drive is protected from the 
over-loading electronically (Figure 10.). Opposite, at over-loading some teeth can be 
deformed strongly, following local heating. Going round in case of badly determined 
tolerance these teeth can be reached down into the dedendum circle of the other gear or due 
to shrinkage they are not fitted between two teeth of the large gear. (Figure 11.) 
 
 

 
Figure 11. Effect of local heating 

 
The same can be happened if a drive in standing position is taken out for a continual 

loading, then being started. This is a frequent situation at air technical equipment for baffle 
moving units. In these facilities the air stream tries to move continuously the baffle, which 
is kept many times in the right position only the propulsion. In this situation the force effect 
coming from the air stream loads only the linking teeth. 

5. Summary 

In determination of the small size plastic gears heating the effect coming from the teeth 
surface contact friction can be exceeded by that of the internal friction. Finding the failures 
is difficult because the small size plastic gears equipped by propulsions might have 
operating capability opposite to critical design, manufacturing and mounting errors. 
Additional problem is that the plastics have good vibration absorber property, so the noise 
of the propulsions does not deviate from the normal case. In consequence, in this size range 
the proceeding of the material and application specific test are absolutely necessary. 
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DETERMINATION OF IDEAL CURVE HAVING CONSTANT WEDGE 
ANGLE FOR ROLLER FREEWHEELS 

 
ZOLTÁN BIHARI–JÓZSEF SZENTE 

Department of Machine and Product Design, University of Miskolc 
H-3515 Miskolc-Egyetemváros 

machbz@uni-miskolc.hu; machszj@uni-miskolc.hu 
 

Abstract. The task of the starter motors is to rotate the combustion engines to the necessary 
rotational speed. An element of the mechanism is a free running clutch. It has two func-
tions. The first one is the torque transmission from the driving member to the driven shaft, 
and to speed up the combustion engine. The9 other function is to disconnect the elements, 
when the combustion engine has been already turned over, and the driven shaft rotates 
faster than the driver. 

In this paper the pressure angle as the most important parameter of operation is investi-
gated. A new curve is developed for inner profile of housing, which operates to constant 
wedge angle. 
 
Keywords: free running clutch, roller freewheel, logarithmic spiral 
 
1. Introduction 

 
 The task of the starter motors is to rotate the combustion engines to the necessary rota-
tional speed. An element of the mechanism is a free running clutch. It has two functions. 
The first one is the torque transmission from the driving member to the driven shaft and to 
speed up the combustion engine. The other function is to disconnect the elements, when the 
combustion engine has already turned over, and the driven shaft rotates faster than the  
driver. 

In a previous paper we have discussed the operation and geometry of the roller free-
wheels, and the effect of load, deformation and wear on the operation of clutches has been 
analysed [4]. In paper [5] we have defined the geometry, which occurs constant wedge 
angle. In this paper the fundamental knowledge is presented and a new method, which 
helps us to determine the inner profile curve at the housing of clutch. This method gives a 
chance to reconstruct roller freewheels having unknown geometry. 
 
2. Elements and operation of roller freewheels 

 
Figure 1 shows a sketch from a roller freewheel having a so called outer star-wheel. It 

has four components: the housing, the hub, the rollers and the springs. 
Figure 2 shows a detail of a roller freewheel, where the roller connects with the housing 

and the hub. The figure contains the necessary dimensions. The shape of the rollers and the 
hub is cylinder, and the housing has a curved surface usually based on logarithmic spiral. 
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Housing

Hub

Roller

Spring

 
 

Figure 1. Roller freewheel assembl 
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Figure 2. The geometry of the contact 

 
For the operating of the roller freewheel it is very important requirement, that the profile 

of the housing and the hub should produce a taper gap. The tangent lines at the contact 
points determine the angle 2α, which defines the dimension of the gap. 2α is called as 
wedge angle. rb is the radius of the hub, and dg is the diameter of the roller in Figure 2. The 
operating of the roller freewheels is shown in Figure 3. 

During the connection, the driving element is the housing, which is rotated by torque M1 
into the shown direction. To generate the equilibrium, the torque Mt on the hub equals M1, 
but the directions of the torques are opposite. M1 means the torque on one roller. When 
uniform load distribution is assumed between rollers, then 

 
z

M
M1 = , (2.1) 

where torque M is the total load on the clutch and z is the number of rollers. The calculated 
tangential force Ft from the torque at the contact point of the roller and the hub is 
 

 
b

1
t r

M
F = . (2.2) 
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Figure 3. The operating principle of the roller freewheels 

 
The tangential force presses the roller into the taper gap, as long as this tangential force 

is smaller than the friction resistance, that is Ft < Fs. The operating condition of the clutches 
is the self-locking. If the inequality is not realized, there is no self-locking and the hub 
slides on the roller. In this case the clutch cannot work. The equilibrium of forces is repre-
sented in Figure 4. From vector triangle we can write the following expression: 
 
 α⋅= tanFF nt . (2.3) 

 

 

 

A

B

F

F

F F

F

α

α

F

FF

α
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A

B
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Figure 4. The equilibrium of forces acting to the roller 

 
The working condition is obtained by simplification from the above relation: 
 
 µ<αtan  and µ<α arctan . (2.4) 
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It is found, that the operation of the roller freewheels is defined by the relation between 
the wedge angle and the friction coefficient, and it does not depend on the magnitude of the 
load. The clutch will slip in that case only, if the inequality (2.4) is unrealized. 
 
3. Profile of housing in accordance with the literature 
 

Roller freewheels with outer star wheel are generally used by automotive industry. They 
have logarithmic spiral profile according to the literature. The logarithmic spiral has a spe-
cial property: there is a constant angle β between the radius and the tangent line in any 
point of the curve. Using this curve as a profile of star wheel the wedge angle 2α has slight 
changes at different contact points. It becomes almost constant. 
The task is to find a new curve, which has constant wedge angle 2α in any arbitrary contact 
point. This is granted when the centre point of the roller having variable radius rg moves on 
a logarithmic spiral path. 
 
4. The equation of the profile having constant wedge angle 

 
During determination of profile the radius of the inner ring (rb), and the wedge angle 

(2α) are considered as constant. In this case we can fit rollers with different radius (rg) on 
any points of the inner ring and the profile of outer star wheel. Therefore, rg can be inter-
preted as a function of θ in the following form: 
 
 g gr r ( )θ= . (4.1) 

 
An illustration from the structure and the used notations are shown in Figure. 5. 
 

X

Y

2K

B

rb

rg

90 -

G

tk

tb

O
 

 
Figure 5. Layout draft of the roller freewheel 
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The coordinates x and y of the point „K” on the curve can be written using auxiliary co-
ordinate system ξ - η as follows: 
 
 KGxx ξ+= , (4.2) 

 KGyy η+= . (4.3) 

 
All the parameters of the above equations are the function of angle θ: 

 
 θcos)( ⋅+= gbG rrx , (4.4) 

 θsin)( ⋅+= gbG rry , (4.5) 

 )2cos( αθξ +⋅= gK r , (4.6) 

 )2sin( αθη +⋅= gK r . (4.7) 

 
Substituting expressions from (4.4) to (4.7) into (4.2) and (4.3) contexts, coordinates x 

and y of the point „K” are obtained as a function of angle θ: 
 

 )2cos(cos)( αθθ +⋅+⋅+= ggb rrrx , (4.8) 

 )2sin(sin)( αθθ +⋅+⋅+= ggb rrry . (4.9) 

 
Derive the coordinates x and y according to θ to determine the slope of the tangent line: 
 

 )2cos()2sin(cossin)( ,,,
αθαθθθ

θ
+⋅++⋅−⋅+⋅+−== ggggb rrrrr

d

dx
x , (4.10) 

 )2sin()2cos(sincos)( ,,,
αθαθθθ

θ
+⋅++⋅+⋅+⋅+== ggggb rrrrr

d

dy
y . (4.11) 

 
The slope of the tangent line (tk) at the point „K” is: 

 

 
θαθθαθθ

θαθθαθθ

sin)]2sin([sin)]2cos([cos

cos)]2cos([cos)]2sin([sin
,

,

⋅−++⋅−++⋅

⋅+++⋅+++⋅
=

bgg

bgg

rrr

rrr

dx

dy
. (4.12) 

 
which can be written as follows (see Figure 5.) 
 

 
)2

2
cos(

)2
2

sin(
)2

2
(

αθ
π

αθ
π

αθ
π

++

++
=++tg . (4.13) 
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After further modifications based on the trigonometric relationships we have 

 .
)2(sin

)2(cos

)2(sin
2

sin)2(cos
2

cos

)2(sin
2

cos)2(cos
2

sin

))2(
2

cos(

))2(
2

sin(

αθ

αθ

αθ
π

αθ
π

αθ
π

αθ
π

αθ
π

αθ
π

+−
+=

+⋅−+⋅

+⋅++⋅
=

++

++
 (4.14) 

 
The slope of the tangent line using equations (4.12) and (4.14) is described by the fol-

lowing relation: 
 

 
)2(sin

)2(cos

sin)]2sin([sin)]2cos([cos

cos)]2cos([cos)]2sin([sin
,

,

αθ

αθ

θαθθαθθ

θαθθαθθ

+−
+=

⋅−++⋅−++⋅

⋅+++⋅+++⋅

bgg

bgg

rrr

rrr
. (4.15) 

 
Multiplying both sides of the equation with the members of denominator we get the fol-

lowing formula: 
 

 

)2cos(sin)2cos()2sin(

)2cos(sin)2(cos)2cos(cos

)2sin(cos)2sin()2cos(

)2sin(cos)2(sin)2sin(sin

2,

2,

αθθαθαθ

αθθαθαθθ

αθθαθαθ

αθθαθαθθ

+⋅⋅−+⋅+⋅−

++⋅⋅−+⋅′++⋅⋅=

=+⋅⋅−+⋅+⋅−

++⋅⋅−+⋅′−+⋅⋅−

bg

ggg

bg

ggg

rr

rrr

rr

rrr

 (4.16) 

 
Sorting each member of the equation according to the coefficients we obtain the follow-

ing form: 

 ++⋅++⋅+⋅ )]2cos(cos)2sin(sin[,
αθθαθθgr  

 +++++⋅ )]2(cos)2(sin[ 22,
αθαθgr  

 ++⋅−+⋅+⋅ )]2cos(sin)2sin(cos[ αθθαθθgr  

 0)]2cos(sin)2sin(cos[ =+⋅−+⋅+⋅ αθθαθθbr . (4.17) 

 
We can recognize trigonometric identities so the equation would be as follows: 
 

 ++−⋅ )]2(cos[,
αθθgr  

 +⋅1,
gr  

 +−+⋅ ])2sin[( θαθgr  

 0])2sin[( =−+⋅ θαθbr . (4.18) 

After simplifying: 
 

 0)2sin()2sin()2cos( ,, =⋅+⋅++−⋅ ααα bggg rrrr . (4.19) 
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Because of the cosine function is symmetrical ( )cos()cos( xx −= ) therefore 

 

 0)2sin()2sin()2cos( ,, =⋅+⋅++⋅ ααα bggg rrrr  (4.20) 

 

can be prescribed. Expressing ,
gr  from the above equation: 

 

 )(
2cos1

2sin

2cos1

2sin)(,
bg

bg
g rr

rr
r +⋅

+
−=

+
⋅+

−=
α

α

α

α
. (4.21) 

 
Examining the constant coefficient (before the bracket) of the above equation, we have 

a simple formula: 
 

 .
cos2

cossin2

sincos1

cossin2

2cos1

2sin
222

constAtg ==−=
⋅

⋅⋅−=
−+
⋅⋅−=

+
− α

α

αα

αα

αα

α

α
 (4.22) 

 
The result is a first-order, variable-separable differential equation: 

 

 )(,
bgg rrAr +⋅= , (4.23) 

 
namely 

 )( bg
g rrA

d

dr
+⋅=

θ
. (4.24) 

 
After rearranging the equation, it has to be integrated, then both sides have to be in-

volved with "e": 

 ∫⋅=
+

/θdA
rr

dr

bg

g  (4.25) 

 e
bg CArr /)(ln +⋅=+⋅ θ . (4.26) 

 

Organizing the result and introducing a simplification KeC = , we obtain the general 
solution of the first-order, variable-separable differential equation (4.29) 
 

 CACA
bg eeerr ⋅==+ ⋅+⋅ θθ )( , (4.27) 

 θ⋅⋅=+ A
bg eKrr , (4.28) 

 b
tg

b
A

g reKreKr −⋅=−⋅= ⋅−⋅ αθθ . (4.29) 

 
If we suppose that rb = constant and we demand the value of rg = rg0 on the place of θ = 

θ0 , we can calculate the value of „K” as particular solution of the differential equation. 
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 αθαθ

αθ

tg
bg

tg
bgtg

bg errKerr
e

rr
K ⋅⋅

⋅− ⋅+=⇒⋅+=
+

= 0)()( 00 . (4.30) 

 
For the sake of verification we have to replace the result into the original differential 

equation: 

 )(,
bgg rrAr +⋅=  

 bb
A

bb
AA rArAeKArreKAeKA ⋅+⋅−⋅⋅=+−⋅⋅=⋅⋅ ⋅⋅⋅ θθθ ])[(   (4.31) 

 
Because of the equality existing between the two sides of equation, the result is accept-

able. Formula (4.29) is an equation of the curve, at which the angle α (and the wedge angle 
2α) does not change at any possible contact point. 
 
5. The proof of the permanence of the wedge angle 2αααα 

 
Although the calculation presented above clearly shows that the wedge angle 2α is con-

stant in any contact point, let’s consider an other approach. This hypothesis proves clearly 
that the wedge angle 2α is permanent using another condition. A result of the method is 
also the parametrical equation of the ideal curve. 
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Figure 6. Moving of the roller central point 
 

Let’s consider the situation shown in Figure 6. If the red curve is a logarithmic spiral, 
than the parameter of the equation is ε. In this case of logarithmic spiral angle ε is constant. 
Therefore the angle α at apex “C” from right-angled triangle BGC must be also constant. 

So in this case of the curve when constant wedge angle is produced the centre of the 
roller must be run along a logarithmic spiral. The current position of the point G(θ) is de-
scribed as: 

 



 Determination of ideal curve having constant wedge angle for roller freewheels  

 
23 

 ctg
0G R e ,θ ε− ⋅= ⋅  (5.1) 

 
where 

 α
π

ε −=
2

. (5.2) 

 
The value of the inner ring radius (rg) at the place θ = 0 be rg0 and the angle α is a de-

sign parameter of the freewheel, which can be determined using the friction relationships. 
The coordinates of an arbitrary point on the ideal curve can be described using the follow-
ing formula (see Figure 6.): 

 
 )2cos( θα +⋅+= gGK rxx , 

 )2sin( θα +⋅+= gGK ryy , (5.3) 

 
namely 

 )2cos(cos0 θαθεθ +⋅+⋅⋅= ⋅−
g

ctg
K reRx , 

 )2sin(sin0 θαθεθ +⋅+⋅⋅= ⋅−
g

ctg
K reRy . (5.4) 

 
Compared to equations (4.8) and (4.9) we find the following 

 

 gb
ctg rreR +=⋅ ⋅− εθ

0 . (5.5) 

 
Using this equation we can calculate the roller radius rg: 

 

 b
ctg

g reRr −⋅= ⋅− εθ

0 . (5.6) 

 
The general solution of the solved differential equation in (4.29) and the equation (5.6) 

describe the same curve, if the coefficients are identical. 
Substitute the constant K0 (see equation (4.30)) into relation (4.29): 
 

 b
tgtg

bgb
tg

b
A

g reerrreKreKr −⋅⋅+=−⋅=−⋅= ⋅−⋅⋅−⋅ αθαθαθθ 0)( 0 , (5.7) 

 
namely 

 b
tg

bgg rerrr −⋅+= ⋅− αθθ )(
0

0)( . (5.8) 

 
We must prove agreement of the following coefficients while comparing the equations 

(5.6) and (5.8): 
 
 bg rrR += 00  (5.9) 

and 
 α⋅θ−θ=ε⋅θ− tg)(ctg 0 . (5.10) 
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Fulfilment of condition (5.9) is easy to show. In the initial position (when θ0 = 0) the 
value of R0 can be defined as the sum of the constant inner ring radius (rb) and the initial 
roller radius (rg0). In case of condition (5.10), when θ 0 = 0 the equation ctg ε = tan α must 
be satisfied. 
After conversion using formula (5.2) the following equation is indeed satisfied: 

 αα
π

ε tgctgctg =−= )
2

( . (5.11) 

The conclusion is that both methods have reached the same solution. This proves that 
the derivation is correct. It is proved, that if the path of the roller centre is a logarithmic 
spiral, the described ideal curve cannot be a logarithmic spiral because of the changing 
roller radius. The shape of inner ring, the ideal curve and the path of the roller centre are 
shown in Figure 7. 
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Figure 7. The inner ring outline, the ideal curve and the path of roller centre 
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Abstract. In propulsion technique applied in every day practice the load of gears is usually 
one directional or two directional, but the stresses on the tooth sides are not the same de-
gree. Numerous researches verify that departing from standard symmetric toothed wheels, 
the loading capacity of gears can be increased by asymmetric teeth. Effects of deviation 
from standard have numerous consequences, which have to be examined. 
 
Keywords: tooth shape, tooth root curve, tooth root stress, asymmetric teeth 
 

1. Application of gears 
 

Functional units and gear drives, which modify parameters of movement, take a great 
part in energetic chain realized in mechanical products. In gear drives continuous one- 
directional rotation of the toothed element pairs can be ensured by a suitably integrated 
rotation reversing facility. These transmission elements of movement realize either exact 
map of movement or large load transfer. The tooth shape plays a great role in determination 
of transmission parameters. Deviation from symmetric tooth shape generates questions 
about design, manufacturing and certification (proportioning, reliability). [9] The most 
important function of gear drives applied in driving mechanisms is steady transmission of 
movement during working. [1] Considering the single forms of motion, rotation would be 
changed, for example by reduction of revolutions. 

Gearings can essentially be divided into two groups, kinematical and load transfer 
drives. [1] These functions mean different requirements for the teeth. Kinematical drives 
ensure precise angle rotation. These drives are characterized by small pitch. In load transfer 
drives pitch is larger, which helps accommodation to the fluctuation of temperature during 
working respectively inaccuracy of gears. 

In the drive train of mechanical systems there is a usual functional claim, where the en-
ergy in a unit of time, which is the source of power, should be available for any working 
machine. This availability taking the energy components into consideration can be changed 
discreetly or continuously in a range. These functional units are driving mechanisms. 

One element of the system is denoted functionally by the structure element in Figure 
1., which can be examined from inside as if it would be an unknown construction. 

 

 
 

Figure 1. Functional unit describing driving mechanism  
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The input is described by the effect P1(t), with its components in the energy chain that 
are the moment M1(t) and the angular speed ω1(t). This characterizes the source of energy at 
the same time. 

The output is marked by the effect P2(t), which due to construction of the system ele-
ment depends on the system controller information. These are the stage contact (i), which 
can be discreet or time control and it gives the system transmission, and the functional δ, 
which denotes the direction of rotation inside the system. 

Based on the above mentioned it can be written that 
 

1 1 1P (t) M (t) (t)= ⋅ω , (1) 

2 i iP (t) M (t) (t)= ⋅ω , (2) 

1
i

i

(t)
u f (i)

(t)

ω = =
ω

, (3) 

 
together with appropriation the formulas (1), (2), (3). 

 

i i 1 iM (t) M (t) u= η ⋅ ⋅ , (4) 
 

where ηi is the efficiency which belongs to the controlled settings (stages) of the system 
element. Examining the system so that in point ωi(t) regulated rotating movement should be 
mapped as well, from formula (3) it follows that 
 

i i 1(t) u (t)ω = δ⋅ ⋅ω , (5) 
 

where δ is a { –1,0,1 }-value function, which is a further directional input and defines 
the rotation direction character of the input (given direction, stillness, change of direction). 

To the outgoing moment of the system generally it can be written that 
 

2 i 1 iM (t) M (t) u= δ ⋅η ⋅ ⋅ . (6) 
 

Figure 1. can be transformed in view of formula (6) so that it can be seen in Figure 2., 
which shows that one group of the driving mechanism (for example gradual) elements can 
characterised by the unchanging rotation direction movement, while the reversing can be 
solved by insert a functional element. 

This recognition lead the researchers for example at the driving gears of the vehicles or 
wind turbines that the unvaried rotation direction for instance at loading capacity, efficiency 
of gears can result regular working, if deviating from symmetric tooth shape non-symmetric 
tooth form is applied. This motivated rows of researches for the practical application, on the 
one hand to the description of geometry, on the other hand towards the static and the dy-
namic examinations, and the manufacturability as well. 
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Figure 2. Reversing function built in the driving mechanism 

 
2. Damage of gears and modification of loading capacity 
 

Damage forms of gears can be divided into two groups. Tooth breaks caused by fatigue 
or aggressive origin breaks belong to one of the largest group. [1, 2] When it is caused by 
fatigue in connecting point perpendicular to the tooth surface tangential direction compo-
nent of the normal tooth force results in complex stresses (bending and shearing) in the 
tooth root. Through bending stress mainly in the tooth root on the loaded tooth side i.e. on 
the drive side tensile stress wakes, while on the unloaded side i.e. on the coast side pressure 
rises. These pulsating fatigue stresses are responsible for development of cracks, which can 
cause break later. 

Another large part of damages are caused by casualties of the tooth surface. [1, 2] 
Abrasion, pitting, different scratches and scoring, cracking and other tooth surface damages 
belong here. Damage of the tooth surface can be caused by several reasons, but here we 
would like to talk about damages caused by fatigue first of all. During contact of curved 
surfaces because of surface pressure Hertzian-stress is consorted with sharing stresses, 
therefore fatigue of tooth surface occurs above a loading period number (as in case of tooth 
root fatigue). These stresses are pulsating pressure stresses and this process causes pitting 
of the tooth surface.  

The shape of tooth influences remarkably loading capacity of gears, extent of stresses 
in the tooth, which develop in meshing because of loading. Having the tooth manufacturing 
realized by extracting principle in sight by changing the tool basic profile modified teeth 
can be produced. [9] Shaping the tool cutting edge or changing it we can affect the shape of 
tooth root. With increase or decrease the tool basic profile angles we can modify the radius 
of curvature of the tooth evolve profile arcs, thus extent of Hertzian-stresses as well. 
 

3. Concerning standards 
 

The established manufacturing processes and the requirements of application define ba-
sic profile symmetric, which is standard. It is because of economy; integrate of cutting 
tools, changeability of gears, given kinematics of manufacture instruments, standard forms 
of calculating procedures, demand of changes of direction in drives. 

The basic profile determines the exact geometry of gear teeth, which is a fictive rack 
profile. This can mesh with teeth of a given gear-family. [1] On the middle line of the basic 
profile the tooth thickness and the tooth cut width are the same. The acute angle between 
parts of the straight profiles, determine the sidelong edges, and the straights perpendicular 
to the middle line is the basic profile angle (α). Value of the standard basic profile angle is 
usually 20° but in special applications it can be different from this as well. We can express 
the odd sizes of the basic profile with module (m), which is nationally standardized too. 
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The basic profile of the evolve teeth determines the basic profile of the cutting tool, 
which is called tool basic profile. [1] If we put these two kinds of basic profile to each 
other, then their middle lines cover each other. The head line of the tool basic profile corre-
sponds to the foot line of the teeth basic profile. It means that the shape of the tool head 
edge determines the tooth root profile of the gear teeth. In case of little module (smaller 
than 1 mm) the foot line of the tool basic profile agrees with the head line of the teeth basic 
profile. In the other cases the tooth height of the tool basic profile is larger than the tooth 
height of the teeth basic profile. 

In our country the basic profile of cylindrical gears with evolves teeth and its tool basic 
profile to manufacture are described by standards MSZ 433 and MSZ 17154. Standard 
MSZ 310 decrees module series. 
 

4. Increasing the loading capacity and the lifespan as a new possibility 
 

Researches tending to increase loading capacity of gears are in connection with asym-
metric tooth shape mainly. In these studies tooth sides are distinguished. One of them is the 
loaded tooth side (drive side) another is the unloaded side (coast side). The profile angles of 
both sides are different, that causes asymmetry particularly. Various advantageous or dis-
advantageous properties come to the front depending on whether profile angle on the drive 
side or on the coast side is larger. Greater parts of the researchers prefer that case, when the 
profile angle on the drive side is larger. Circumstances and marginal conditions of the re-
searches have to be taken into consideration in each case. 

Kapelevich [3] realizes computer aided simulation of the gear design in his method. 
This way special pair of gears can be solved widely. Increase of loading capacity of gears 
can be reached by application of larger profile angle of the drive side beside size and mass 
reduce. Furthermore he showed decrease of vibration level, which was available by de-
creasing meshing stiffness. 

Working gears at big revolutions per minute dynamic load and vibration cause the main 
problem. Karpat et al. in [5] investigated behaviour of asymmetric gears during dynamic 
load. With enlarging the profile angle on the drive side dynamic factor of the asymmetric 
toothed gears was grown. However this factor reduced remarkably by increase of adden-
dum, item the area on the tooth surface was grown where one pair of tooth meshes with 
each other and extent of static transmission errors reduced at the same time. Design of 
asymmetric teeth can be optimized by decrease of dynamic effects. These results are sig-
nificant mainly in relation with aircraft industry, automotive industry and wind turbines. 

Results of Pedersen [6] showed that in order to decrease the bending stresses in the 
tooth root it is necessary to apply asymmetric teeth. The greatest effect can be reached by 
this way. Reduction of bending stresses can be reached by two methods: either by thicken-
ing of tooth root or changing the shape of tooth root where the stress density is the largest 
one. 

In Senthil Kumar et al.’s study [4] the asymmetry enlarges the loading capacity of the 
tooth root in contradiction to traditional symmetric gears. The asymmetry means larger 
profile angle on the drive side in this case. 

Researches can be found, in which the authors propose shaping of the cutting tool 
(rack), because the shape affects the gear teeth (evolve profile and tooth root curve). Rack 
profiles proposed by Senthil Kumar et al. [4] have one circle arc on its head edge. In this 
case by application of profile angles differ from each other the radius of tool head edge 
decreases to a lesser degree than in case of symmetric. The positive effect on the bending 
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stresses is in connection with widening of the tooth. In this study at designing of non-
standard tools the authors considered only standard module and standard profile angle on 
the coast side, which makes the process of the tool engineering easier. 

Pedersen [6] proposed new shape of standard rack. He made a difference in between 
the parts of the tool head edge according to which root of the tooth profile side it forms. On 
the coast side of the tool head edge there is circle arc, on the drive side there is ellipse arc. 
He guaranteed the continuity of the tool profile with an initiated factor µ, which modifies 
the width of the tooth at the same time. 

Alipiev [7] generated variations of rack tool profiles in case of different profile angles 
on the drive and on the coast side, while he changed the size of the head edge radius and its 
positions. 

These results are not complete, only a short summary can be read above. 
 
5. Generalization of the tool basic profile 
 

In order to study of effects of asymmetry, one of the first steps is to determine the basic 
profile of the tool, which generates the gear teeth. [10] Later changing possibilities of the 
meshing characteristics can be examined with this. [8] Points of the basic profile are ar-
ranged in an xy orthogonal coordinate-system in such a way that the middle line of the 
basic profile overlaps with the x axis of the coordinate-system, the y axis divides longitudi-
nal the tooth of the basic profile into halves. This arrangement was shown in Figure 3. 

The basic profile is constituted by straights and curves connected to one another, equa-
tions determining them must be described in the xy coordinate-system. The straights con-
struct the edges at the sides, head and at foot line of the basic profile. The curves are the 
rounding between the straight parts. The rounding between the side edge and the head edge 
has a great influence on the shape of the tooth root profile. [1] The equations of the 
straights can be given as a function of x in the xy coordinate-system. These straights are 
marked I. and II. in Figure 3. The straight I. which forms the edge at the side of the tool 
basic profile crosses the point P3 on the x axis in a given direction. The straight I. encloses 
(90°+α) with the x axis, where α means profile angle. The coordinates of the point P3 (7) 
can be read from Figure 3. and by this the equation of straight I. can be written (8). 
 

 
The straight II., which defines the straight part of the tool basic profile, is parallel with 

the x axis, and the distance between them is equal to the sum of clearance and module. The 
equation of the straight II. can be given by formula (9). 
 

IIy (m c) (m c* m) m (1 c*)= − + = − + ⋅ = − ⋅ + . (9) 
 

3 3 3 3

m
P (x ; y ) P ( ;0)

4

π ⋅
= − , (7) 

I

1 m
y (x )

tan 4

π ⋅
= − +

α
. (8) 
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Figure 3. Tool basic profile with ellipse curve [10] 
 

To the rounding of the head edge and the side edge for example an arch of a round or 
an ellipse can be taken. Another curve can be used as well, which is attached to a suitable 
reference point. Another x*y* coordinate-system can be used to write down the equation of 
the curve. The origin of this new coordinate-system overlaps the origin of the xy coordi-
nate-system. As an example, let the rounding of head edge and side edge be an ellipse arc, 
which’s major axis (2a) to the y axis, and minor axis (2b) to the x axis is fitted. From well 
known equation of the ellipse value of y can be expressed (10). 
 

2
2

2

(x*)
y* (1 ) a

b
= − ⋅ . (10) 

 
After tangents of the curve are defined (11.) on the understanding that gradients of the 

tangents be equal with gradients of the straights I. and II. Thus the tangents are parallel with 
the straights I. and II. The tangents on the points P1* and P2* are tangential to the curve 
(12). After differentiation formula (13) is offered. 
 

dy*
(y*) '

dx *
= , (11) 

I,II
1,2 1,2 1,2

dydy *
P *(x *; y *)

dx * dx
= → , (12) 

2

2

2
2 2

2

a
2x *

dy* b(y*) '
dx * a

2 a (x*)
b

− ⋅
= =

⋅ − ⋅

. (13) 
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If the formula (13) equals with gradient of the straight I. and x* is expressed from the 
equation, then formula (15) is given. From the result of the extraction of root the negative 
value is considered. This equals to the coordinate x1* of the usual point P1* later. 

(y*) '
1

tan
= −

α
, (14) 

2
2

2 2

1
x*

1 a
( tan 1)

b b

= −

⋅ α +

. 
(15) 

After this the origin of the ellipse curve is moved (shifting in the direction of x and y) 
in the xy coordinate-system so that the tangents and the straights I. and II. are covered with 
one another. At this time the rounding between the head edge and the side edge which are 
straights, is generated by the arc of the given curve now between the contact points P1 and 
P2 as it can be seen in Figure 3. 

The shifting in the direction y of the ellipse (point P2* is moved to the straight II. → 
point P2 is offered) is given by the difference between the y coordinates of the definite 
tangent and the straight II. The gradient of the straight I. influences the shifting in the direc-
tion x (point P1* is moved to the straight I. → point P1 is offered). Given from geometry the 
coordinates of the point P2* can be read from Figure 3. On the basis of this the correct 
shifting in the y direction of the ellipse can be given by formula (16). 
 

(m c)O' y a+= − +  (16) 

 
 

Figure 4. Tool basic profile with ellipse curve [10] 
 

To the determination of the shift in the x direction through the y1’ coordinate of the 
point P1’ on straight I., which equals to the y1* coordinate of the point P1*, the x1’ coordi-
nate can be written by formula (17). Considering the Figure 4., formula (18) gives the cor-
rect shift in the y direction. By adding the correct shift values under formulas (16) and (18) 
to the corresponding coordinates of the point P1* we get the coordinates of the point P1 on 
straight I. In case of the point P2 it can be done in similar way. 
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I I

m
x y ( tan )

4
' '

π ⋅
= ⋅ − α − , (17) 

1 1O'x x ' x x *= + ∆ + . (18) 
 

By the definition of these straights (head edge, side edge), the optional arc (rounding) 
and the coordinates of the connection points of these curves the half of the tool basic profile 
can be determined. The whole profile can be given exactly by reflection to the y axis the 
profile got this way or by application of a different curve. 

By exact description of the tool basic profile definite teeth can be generated. In the 
course of generalization by changing the parameters of the basic profile for example the 
profile angle, the rounding of the head edge, the combination of the rounding curves, just in 
different way on the two sides of the profile, rows of asymmetric non standard teeth can be 
originated. 
 
6. Determination of the maximum stress location at the tooth root 
 

The international and national standards (DIN, ISO and so on) give precise directives 
to the static examination of cylindrical gear pairs in case of symmetric teeth. At research of 
tooth root fatigue the calculation methods set out always from a base model. These models 
present deviation in each standard (for example account the friction). These differences are 
not significant but they can not be left out of consideration. The models define parameters, 
which depend on the geometry of the model. The established parameters determine factors 
suitably. These factors help describing the maximum of the tooth root stress in a maximum 
stress location supposed and fixed in the model. A base model can be seen in Figure 5. a) 
in case of symmetric tooth shape. 

Base models can usually handle specific geometrical constructions only. That is why 
the designer runs into difficulty of the calculation method immediately, mainly when the 
axial distance is smaller or larger than the elementary axial distance. At this time teeth has 
to be done free from clearance so profile removals has to be applied. Determining of the 
profile removals can be solved by dividing of the common tooth height (hw) when it is 
defined by some kind of principles (equal tooth root fatigue endurance, minimal slip lost 
effect and so on). Because of the differences among tooth heights the static examinations 
supporter software are not able to handle the tooth root stress modifier factors. 

In case of non-symmetric tooth shape [Figure 5. b)] the accuracy of the model itself 
can be questioned because it is not sure that the maximum stress locations take place in the 
contact points on the 30 degrees tangents of the tooth root curve. 

In the tooth root the maximum tension place can be defined by experimental model 
methods beside classical mechanical procedures. These can be the followings. 

− Fatiguing experiment affected on real model, from which after tooth break the po-
sition of the broken piece cross section let conclude the maximum stress location 
but not the effective magnitude of the maximum tension. 

− The examination is possible on CAD virtual model with FEM analysis where the 
maximum stress place and the maximum tension can be calculated. 

− With optical stress analysis where with the help of suitable matter on real model 
near static load the maximum stress location and tension can be defined. 
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a) symmetric shape   b) non-symmetric shape 
 

Figure 5. Geometric base model 
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Figure 6. Shoot of thermo-map 
 

− Thermo-map shoot on real model effect of fatigue load. Essence of the method is 
that the tooth exposed to the fatigue load under effect of the developed stresses be-
cause of the transformation limit formed in the tooth root the loss of energy origi-
nating in the internal friction changes the thermo-map of the tooth. The thermo-
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map gives the critical stress locations thus the maximum stress location, too.  
Figure 6. presents a principled solving on this measuring method. 

Locating the maximum stress position and determination of the maximum tension is 
necessary to give a fast and confirmed proportioning and controlling method to the design-
ers’ hand in case of non-symmetrical tooth shape as well, which method is a nominal stress 
determination of an approximate model and a joint of geometry dependent stress modifying 
parameters. 
 
7. Summary 
 

In propulsion chain of mechanical constructions the toothed element pairs, mainly gear 
pairs with evolve tooth profile play an important role. Constructional solving come to fore-
ground increasingly tending to fulfil the function. Becoming the one directional energy 
transfer (there is no rotation direction change) in the centre of interest proposed the request 
at tooth shapes the deviation from symmetrical form. This study is tending to sum up sev-
eral results that have been achieved so far. It presents the generalization of the deductive 
base profile to mapping the non-symmetrical teeth. At static examinations it calls the atten-
tion to the difficulties caused by the divergence from symmetrical tooth shape, for example 
at applying the standards recommendations. It shows an adoption of thermo-map like new 
method, which can make it easier to create the approximate models. 
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Abstract 
The constraint of the reliable operation of a gear drive is the proper stiffness of the struc-
tural elements, so the stiffness of the gears. One of the variant of the planetary gear drives is 
the harmonic gear drive, which essence is the flexibility of one or both elements of the gear 
pair. The flexible gear body changes its shape due to the structure of wave generator and 
gear pair, and also due to the external loads of the drive. The mesh of the gears is the func-
tion of the degree and nature of deformation. This paper is dealing with the laboratory test 
of a drive produced for experimental purposes. 
 
1. Introduction 
 

Since the foundation of the Department of Machine and Product Design (formerly the 
Department of Machine Elements) at the University of Miskolc there has been research 
works in relations with planetary gear drives. One of the variant of the drive is the harmonic 
gear drive that has been belonging to the area of examined drives since the middle of 1970s. 
One of the constraints of the design and production of the harmonic gear drive (hereinafter 
referred to as harmonic drive) is the knowledge of the meshing and the interaction of the 
rigid and flexible gear pair. In paper [2] the author dealt with the theory and laboratory test 
of the meshing of harmonic drive, in paper [3] the analysis was expanded by the study of 
the waving gear coupling and the calculations of the deflection of flexible gear due to loads. 
In the paper the authors summarize all the knowledge necessary to the interpretation of the 
laboratory test results and the newer results of the analysis of test results. 
 
2. Elastic deflection of bodies 
 

Although the relation between load and the elastic deformation of bodies due to load 
has been widely known there are relatively few mechanisms the operation of which is based 
on this recognition. The majority of mechanisms is based on the rigid body model to the 
present day. Clerence Walton Musser was the inventor who summarized in paper [1] the 
principles that can be the basis of the operation of mechanisms, starting from Robert 
Hooke’s well known formula which states that the elastic deflections of bodies are propor-
tional to the loads. These principles are the arcuation, the integration, the scalloping, the 
differentiation, the interfacial strain, the Poisson’s wedge, the torsion lever and the twisted 
strip. In [5] the authors dealt with the arcuation, the integration and the scalloping in detail, 
keeping the harmonic drive and the waving gear coupling in mind. 
 
3. The arcuation 
 

At Figure 1. the neutral line, k of a prismatic flat curved beam is visible which is trans-
formed to k’ curve, due to load. The neutral line, k is an arc with radius, r. The tangential 
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displacement of one of its arbitrary point having φ coordinate is =w w( )φ  and its curva-

ture is 
 

= = − + 
 
 

2

2 2

1 1 d w
( ) w

( ) r d
κ φ

ρ φ φ
. By increasing the curvature of the beam the chord 

length, AB is decreasing. The increment of the chord length is the function of curvature, i.e. 
− = −1s s f ( ( ) r ).ρ φ  

 
                   a)                                              b) 

 
Figure 1. Arcuation. a) The displacement of an arbitrary point and 

b) the change in chord length 
 
 

 
        a)    b) 
 

 
 

 
 
       c)           d) 

 Figure 2. a) and b) Planetary gear drive, c) and d) Harmonic gear drive 



Results of laboratory tests of harmonic gear drive 

 

 

37 

In Figure 2. a) a planetary gear drive having an internal connection gear pair 1 and 2 
and an eccentric, e connecting them is visible. In Figure 2. c) a harmonic gear drive consist-
ing of an internal connection gear pair 1 and 2 and a wave generator, g deflecting the exter-
nal toothed gear to elliptic shape is visible. The gears 1 and 2 and the eccentric, e of the 
planetary gear drive is regarded as rigid. The circular spline, 2 and the wave generator, g of 
the harmonic drive is also rigid. The external toothed gear (flexspline), 1 of the harmonic 
drive is deflected elastically due to the wave generator, g.  

The angular velocities of the elements of planetary drive relatively to the housing are 

1ω , 2ω  and eω , that of the gear pair relatively to the eccentric are = −1e 1 eω ω ω  and 

= −2g 2 gω ω ω . The ratio of angular velocities 1eω  and e2ω  is defined by the ratio of 

number of teeth, 1z  and 2z , i.e. 
1

2

z

z
u = . If gear 1 drives gear 2 , ( →1 2), the ratio of 

angular velocities relatively to the eccentric, e is 
−

= =
−

1 e
12

2 e
i u.

ω ω
ω ω

 In case of 02 =ω  

and 1e→  the ratio is = =
−

e
e1

1

1
i .

1 u

ω
ω

 To increase the ratio, the number of teeth, 1z  

should be increased and/or the difference of tooth numbers, 2 1z z−  should be decreased. 

The increment of tooth numbers increases the radial dimensions and the decrement of the 
difference of tooth numbers causes interference between root and crest as Figure 2. b) 
shows. 

The external toothed gear, 1 of the harmonic drive is deflected to elliptic shape by the 
wave generator, g and the curvature along its circumference is changing similarly to the 
beam shown in Figure 1. b). The teeth of the flexible spline, 1  can mesh the teeth of circu-
lar spline, 2  in the stage having greater curvature. At this stage the chord lengths among 
the tooth tip edges of the flexible spline are decreased and there is no interference be-
tween the teeth of the gears, as shown in Figure 2. d). The tooth number difference is inte-
gral multiple of the wave number, for symmetry. When the wave number, =N 2, the 

minimum of the tooth number difference, − =2 1z z 2. 

 
4. Harmonic gear drive or gear drive service 
 

The planetary drive shown in Figure 2. a) can be studied in both gear drive and 
planetary gear drive service. In gear drive service the frame of reference is fixed to the 
eccentric, e  and the interaction of the gears turned relatively to the eccentric is analysed. In 
planetary gear drive the frame of reference is fixed, e.g. to the circular spline, 2 and the in-
teraction of external gear, 1 and internal gear 2 is studied in the slewing of the eccentric. 

On the analogy of planetary drive the harmonic drive can be analysed in gear drive or 
harmonic gear drive service. First case, the swivel of pair of gears is analysed in the 
frame of reference fixed to the wave generator, in harmonic gear drive service the weaving 
motion of the external gear is examined in the frame of reference fixed to the circular 
spline. As the investigation of gear pair meshing, the occurrence of interference disturbing 
the meshing and the interaction of the elements of the drive are more clear in gear drive 
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service, the following analyses are made in the frame of reference fixed to the wave 
generator. 

 
5. Reducing and multiplying drive 

The gear drive speeds down when the ratio, =i driving

driven

ω
ω

 is i < 1− , or i > 1+ , and 

seeds up when 1− < i < 1. The harmonic gear drive speeds down when the wave generator, 
g is the driving element and the gear 1 or 2 is driven besides the fixed 2 or 1 gear to the 
frame. In this case the driving direction is 1g →  or →g 2. The harmonic gear drive 

speeds up when the direction of drive is →1 g, or →2 g. The relations are summarized in 

Table 1.  
 

Table 1.  

Gear  
drive 

21→  ui12 =  Gear  
drive 

12 →  
u

1
i21 =  

1g →  
u1

1
i 1g −

=  g1→  u1i g1 −=  

 
 
 

Speeds 
down 

 
Harmonic 

gear  
drive  

2g →  

u

1
1

1
i 2g

−
=  

 
 
 

Speeds  
up 

 
Harmonic 

gear  
drive  

g2 →  
u

1
1i g2 −=  

 
The comparison of mechanical powers gives the feasibility of decision if which 

sence of power flow of the gear drive 1 2→  or 2 1→  is the equivalent of the sence of 
power flow in harmonic gear drive service. The basis of analysis is the equilibrium of the 
drive and the assumption stating that the magnitude and sense of torques andg 1 2M ,M M  

are acting to the elements of g, 1 and 2, respectively, are not dependent on the frame of ref-
erence. 

In the frame of reference fixed to the housing the mechanical power flowing through 
the gears 1 and 2 are =1 1 1P M ω  and =2 2 2P M ω , respectively, and that of the powers in 

the frame of reference fixed to the wave generator = −1g 1 1 gP M ( )ω ω  és 

= −2g 2 2 gP M ( )ω ω . On the basis of Table 2. the sign of power ratios and their conse-

quences are studiable. In case (1) the ratio of powers 1gP flowing on the gear 1 with 

g1g1 ωωω −= angular velocity relative to the wave generator and 1P  flowing on the gear 

1 with 1ω  angular velocity relative to the frame is positive so in the services of both gear 

drive and harmonic gear drive the gear 1 is the driving or the driven element. The senses of 
power flow are →1 2  and →1 g , or →2 1  and →g 1 . 

In case (2) the ratio of powers 2gP flowing on the gear 2 with = −2g 2 gω ω ω angular ve-

locity relative to the wave generator and 2P  flowing on the gear 2 with 2ω  angular veloc-
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ity relative to the frame is negative. In this case the power flow →1 2  suits g2 → , and 

that of →2 1  suits →g 2 . 

Table 2. 

Power flow  
Power ratio 

Harmonic gear 
drive 

Gear drive 

g1→  21→  
(1) 

1u

u

M

)(M

P

P

11

g11

1

g1

−
=

−
=

ω
ωω

> 0  1g →  12 →  

g2 →  21→  
(2) 

u1

1

M

)(M

P

P

22

g22

2

g2

−
=

−
=

ω
ωω

< 0  2g →  12 →  

 
6. The meshing of harmonic gear drive 
 

The paper [4] deals in detail with both the mechanical model used to the analysis of 
meshing of harmonic gear drive and the occurrence of interference disturbing the meshing. 
 
6.1. Tooth profile 

Te applied tooth profile is an involute curve, the base profile angle, = o20α , the ad-

dendum factor, =*
ah 1, the radial clearance factor, *c 0,25.=  In the course of tests the 

flexible gear was manufactured as a cylindrical gear by hobbing and the internal gear 
was generated by pinion cutter. 
 
6.2. Flexible gear, flexspline 
 

The flexible gears are cup shaped. The profile correction factors, 1x  of the flexible 

gears, H21 and H22 were chosen larger than it was recommended (in the range of number 
of teeth, =1z 100...800 =1x 3...4). The Table 2. in paper [7] contains the profile correc-

tion factors both as intended, (1x ) and as determined by measurement over pins, (m1x ). 

The recommended height of the tooth of flexible gear, =1 1,4...1,6h m In case of the gear, 

H21 this tooth height is less than the offered one and in case of the gear, H22 it is bigger. 
The relation between the tooth height and the number of teeth meshing at one time are ex-
amined by the tooth height deviated from the recommended value. The offered value of the 
face width of flexible spline, =1b 0,2...0,4D. The face width was chosen less than offered 

to avoid the interference appeared at the back part of the tooth tip. 
In the course of dimensioning and strength calculations the flexible gear was substi-

tuted by a hollow cylinder having a wall thickness, e1h  and length, e1L  to simplify the 

problem. The neutral surface of the hollow cylinder is a straight cylinder with radius, 

+
= e1

0
D h

r .
4

 The wall thickness underneath the teeth, 
−

= f 1
0

d D
h ,

2
 the equivalent 

thickness considering the effect of the teeth due to flexural rigidity, = +e1 0h h m, where m  
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is the module. The length of the hollow cylinder, 
−

= + 1 1
e1 1

L b
L b

3
 comprises also the 

superficies following the teeth and having the role of a compensating coupling where 1b  is 

the tooth width of the flexible gear. 
 
6.3. The circular spline 
 

The flexible spline and circular spline are meshing in the vicinity of the semi major 
axis, prior to the appearance of the external loads, as shown in Figure 3. Along the semi 
major axis of the wave generator the centre distance, =1 2 wO O a  is equal to the radial 

deflection of the flexible spline, 0w wa = . When the profile correction factor of the circu-

lar spline along the major axis is calculated by the constraints of backlash-free mesh, 
−−

= +wt2 1
2 1

inv invz z
x x

2 tan

α α
α

 is obtained, where the pressure angle,  

−
= 2 1

wt
0

z z m
arccos .

2 w
α  The revealing dimensions of circular splines, G22  and G23 

are collected in Table 4. of paper [7]. 

 
 

                              a)                                           b) 
 

Figure 3. a) Ring substituting the flexspline b) Ring deflected  
by two disks with eccentric bearing support 

 
6.4. Wave generator 
 

The elliptically deformed fleible spline and the rigid circular spline are brought in con-
nection by the wave generator. Two wave eccentric disk wave generator (and elliptical cam 
wave generator, not discussed in present paper) were used. The two wave eccentric disk 
wave generator consists of two eccentric, two disks and commercially available rolling 
bearings. 
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a)  In the course of research the ratio of radial deflection/module, 0w /m wa changed to the 

values of 0.6 , 0.7, 0.8, 1.1, 1.2, 1.3 by altering the flexible spline, the eccentric and the 

disks due to Table 3. [7]. By changing the element of the drive the relation between 
the radial displacement, 0w  the semi arc of contact between the flexspline and 

wave generator disks, β , shown in Figure 3. and the deflection of flexspline, de-
scribed by the radius of curvature, ρ  were inspected.  

 
b) The flexible spline is influenced by the disk which has bearing support with eccentric, 

e , and diameter, td , along an arc of central angle, 2β . The suggested range of β , 

considering the magnitude of the bending stress in the vicinity of the semi major and 

semi minor axes is  = o o20 ...40β . Along the arc of contact the radius of curvature of 

the neutral line, ewrr 00 −+=β  is constant, the radius of disk is = − e1
t

h
r r

2β . The 

relation between the data of 0w , 0r , βr  and β  can be expressed by the formula 

+ −−
=

− − − + +

0 0

0

4
(cos sin ) 2 sin( r r )r

.
4w r sin cos (cos sin ) 2 sin

2

β

β

β β β β
π

π β β β β β β β
π

 

The values of β  computed by given 0w , 0r  and βr  data are collected in Table 3. [7]. 

 
6.5.The mesh of the elastic external teeth gear (flexsline) and the rigid internal teeth gear 
(circular spline) 

 

                                                              a)                                                           b 

Figure 4. a) Deflected flexspline, b) Profile mesh, c) Edge mesh 
 

The deflected elastic gear (flexspline) is shown in Figure 4. a). There are some as-
sumptions around the tooth. Its axis of symmetry,1f  is the normal of neutral line, 1k . The 
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centre of base circle, 1O  belonging to the involute tooth profiles is situated along the axis 

of symmetry, 1f . The momentary centre of rotation of the tooth during the traverse of 

flexspline in relation to the wave generator is p
1O . 

The engage of one pair of tooth of the flexible-rigid pair of gears can be studied in Fig-
ure 4. b). It can be traced back to the engage of an external teeth gear with geometric cen-

tre, 1O  and a shifted centre of rotation p1O , and an internal teeth gear with  coincident 

geometric centre and centre of rotation, 2O . 

 

 
 

                         a)                                                   b)                                                 c) 

Figure 5. The location of meshing teeth in relation to the semi major axis of the wave  

generator as the function of radial deflection, 0w  

 
The location of meshing teeth in relation to the semi major axis of the wave gen-

erator is changing in the function of radial deflection, 0w , as shown in Figure 5. The 

suggested range of 0w  is 1,1...1,2 m, which is reduced due to the elastic deflection of the 

elements and the rearranging of clearances. 
In front of and behind the profile mesh the gap in direction of the normal between the 

tooth profile and the tooth tip edge, is so small in a relatively wide range, that the elastic 
deflection of the elements are meshing edge-like way too. The basis of the investigation 
of the edge mesh is the knowledge of the gap in normal direction and the elastic deflec-
tion due to loading of the drive elements. The papers [2, 3] deal in detail with the compo-
nents of elastic deflection of harmonic gear drive and the edge mesh. 

 
7. The typical data of the elements of test drive 
 

The typical size of the harmonic gear drive is the nominal (N) inner diameter ( ND ), 

which is approximately identical with the actual inner diameter ( D )  of the flexible gear 

drive. The elements of harmonic drive with the nominal diameter of ND 120, 160 and 190 
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are shown in Figure 6. These elements were manufactured in the laboratory of Department 
of Machine Elements, University of Miskolc, and the tests were made on the elements hav-
ing the nominal diameter ND190. The geometry data of drive element were summarized in 
paper [7], Table 2., 3. and 4. 

 
                                     a)                                 b)                                          c) 

Figure 6. Basic elements of the Harmonic drive. 
a) 120ND , b) 160ND , c) 190ND drive elements 

 
 
7.1. The test place building up 
 

The drive box shown in Figure 7. was fixed on a machine base and the circular spline, 
2  was fixed to the drive box =2( 0 )ω . The wave generator, g  was revolved in relation 

to the drive box through a torque measuring shaft. The torque 1M  acting to the flexspline, 

1 was changed by the loading disks, 6 . With regard to the end face of the drive the 1M  

acts counter clockwise as shown in Figure 8. and 9. The wave generator was revolved 
counter clockwise in slow down service →( g 1)  and clockwise in speed up service 

→(1 g ) . 

 
7.2. Recording the test data 
 

The radial displacement of flexspline, the change of its radius of curvature and the load 
acting to the tooth of flexspline was recorded according to Figure 8., as the function of de-

viation, gϕ  in relation to the circular spline. 

 
7.3. Measurement of the radial displacement 

The radial displacement of the fexspline, w  was measured next to the tooth, in a plane 
parallel to the end face of the flexspline. The measuring gauge that consist of feather and 
feeler, wes fixed to the circular spline. The displacement was recorded by strain gauges 
glued to the two sides of the feather, in the function of the wave generator deviation rela-
tively to the circular spline.  The dicplacement of 0w =  was recorded previously to putting 
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the wave generator into the flexspline. The unit of displacement was determined at the tip 

of deformational wave, =g( 0 )φ on the basis of generator geometry 
 

= + − 
 

t
0

d D
w e .

2 2
 

 

 
 

Figure 7. Experimental drive. 1 flexspline, 2 circular spline, 3 wave generator, 
4 coupling, 5 rotating transducer, 6 loading disk 

 

 

                                     a)                                   b) 
Figure 8. The wave generator deviation and the recording 

of measured amounts in harmonic gear drive service. 
a) The harmonic drive slows down, b) speeds up 
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  a)          b) 

Figure 9. Torques acting to the elements of the drive and the angular velocities  
in gear drive service. 

a) The gear drive slows down, b) speeds up 
 
7.4. Measuring the radius of curvature 
 

During the tests the tangential elongation of the cenre layer of the flexspline is sup-

posed to be negligibly small ( ≈0( 0 )φε ). In normal direction, at 
2

h0  distance from the cen-

tre surface of flexspline, parallelly to the end surface of flexspline, the strain g( )φ φε ε φ=  

originated from the bending is measurable by strain gauges. Knowing the strain the radius 

of curvature is 

2

h
)(

r

1
1

0
g

0

ϕε
ρ

ϕ+
= . 

The change of the radius of curvature is measured in a plane, parallel with the end sur-
face of the flexspline, next to the teeth. The strain gauges are glued next to the teeth.  The 
strain complied with the radius of curvature, 0r  is allocated prior to putting the generator 

into the flexspline ( 0φε = ). The change of unit of radius of curvature is determined by a 

measurement at the tip of wave, (=g 0φ , = rβ βρ , in paper [7] Table 3. with a generator 

disk havingknown radius. The radius of curvature is recorded during the deviation of gen-
erator relatively to the circular spline. 
 
7.5. Measuring the force acting to the tooth of circular spline 
 

To determine the load acting to the tooth of tha circular spline, a measuringh tooth was 
shaped on the circular spline, on a way shown in Figure 7. The measuring tooth is sup-
ported by a slender feather, gluing strain gauges on both the sides. The load acting to 
theteeth is recorded in the function of generator deviation relatively to the circular spline. 
The load acting to the teeth is determined knowing the load distribution, the number of 
meshing teeth and the torque acting to the flexspline, 1M . 
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8. The measured amounts and the conclusions 
 

The measured amounts in gear drive service are shown in Figure 10–13. The power 
flow of →2 1  belongs the left hand side and that of →1 2  belongs the right hand side 
column. In the case of the power flow →2 1  the wheels are revolving clockwise relatively 
to the generator, the teeth of flexspline enter into the spaces of the circular spline on the arc 

belongs to the angle range of − ≤ ≤ 0
4

π φ  and come out on the arc belongs to the angle 

range of ≤ ≤0
2

πφ . In the case of the power flow →1 2  the wheels are revolving counter 

clockwise, the teeth of flexspline enter into the spaces of the circular spline on the arc be-

longs to the angle range of ≤ ≤0
2

πφ  and come out along the section − ≤ ≤ 0
4

π φ . 

 The number of teeth of the gears and the inner diameter of the flexspline in the 
inpected cases are =1z 190, =2z 192, and =D 191,7 mm, respectively. In the cases 

shown in Figure 10. a) and c) the torques acting clockwise to the flexspline are 
=1M 0 Nm,200 Nm, 400 Nm, 600 Nm, and that of Figure b) =1M 0Nm,200 Nm, 400 Nm 

és 600 Nm. In Figure d) =1M 0 Nm,200 Nm, 400 Nm, and Figure e) and f) the torque is 

=1M 600 Nm. 

In the function of angle φ , measured from the major axis of the generator, the radial 

displacement, w , measured next to the teeth of flexspline is shown in Figure10. a) and b). 
The radius of curvature, ρ , inspected also next to the teeth of flexspline is shown in Figure 
10. c) and d). In Figure 10. d) and e) the force acting to the tooth of circular spline is 
shown.  
a)  Figure 10. a) and b) show the radial displacement of the flexspline. Applying the load 

on the drive the flexspline is deflected and the gaps are rearranged and as a con-
sequence, the radial displacement of the flexspline decreases.  

b)  Figure 10. c) and d) show the alteration of the radius of curvature. In case of 
=1M 0Nm the flexible spline is fitted to the disk along the arc belongs to 2β  as 

shown in Figure 3. The measured value of the radius of curvature is approximately 
constant.  

c)  In the case of 1M > 0, →2 1  and →1 2  the alteration of the radius of curvature is 

different. In the case of →2 1  the disk acts in two stage to the flexible spline. Be-
tween these two stages the flexspline is bent and become detached from the disk. 

d)  In the case of 1M > 0 and →1 2  three special stages can be observed on the wave.  

The generator supports the flexspline only on the left hand side of the wave, at the 
stage of penetration of the teeth of flexspline into the spaces of circular spline. At the 
tip of wave the flexspline separates from the disk and the circular spline will cause the 
radius of curvature of the flexspline to be decreased. Emerging from the engagement 
the radius of curvature of the flexspline is increasing. This stage is followed by another 
one which has an approximately constant radius of curvature. 
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Gear drive service →2 1  Gear drive service →1 2  

=1x 4,555, =2x 4,958, =0w 1,2 mm, =e 3,9 mm, =td 186,3mm = o34,757β  

 

                                                  a)                                                                              b) 

 

                                                c)                                                                              d) 

 

                                               e)                                       f) 

Figure 10. a) and b) Radial displacement of the flexspline, 
b) and d) ρ  is the radius of curvature, e) and 

 f)  F is the force acting to the tooth of the circular spline 
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Gear drive service, →2 1  Gear drive service, →1 2  

=1x 4,555, =2x 4,958, =0w 1,1mm, =e 3,9 mm, =td 186,1mm, = o24,811β  

 

a) b) 

Figure 11. The radius of curvature, in the function of deviation relatively to the major axis 
  

e)  Figure 10. e) and  f) show the forse acting to the teeth of circular spline in case of the 
torque value of =1M 600 Nm. In both power flow the simultaneously engaging 

teeth and the largest tooth force are approximately the same, and the distribution of 
forces acting to the engaging teeth is also similar.  

f)  In the case shown in Figure 11. the disks of the generator were changed from 
=td 186,3 mm to =td 186,1 mm. The radial displacement decreased from  

=0w 1,2 mm to 0w 1,1mm= , the semi arc of contact also decreased from 

= o34,757β to = o24,811 ,β  the effect to the radius of curvature is negligible. 

g)  In the case shown in Figure 12. the disks of generators were changed from 
=td 186,3mm to =td 186,1 mm. The radial displacement decreased 

from =0w 1,2 mmto =0w 1,2 mm, and the semi arc of contact also decreased 

from = o34,757β to = o24,811β . Relatively to the variant shown in Figure 11. the 

circular spline was also changed, instead of =2x 4,958 the profile correction factor al-

tered to =2x 5,098. The increment in the number of simultaneously engaging 

teeth is shown by the alteration of the radius of curvature.  
h)  In the variant visible on Figure 12. the eccentric and the disks were changed, the arc of 

contact between the flexspline and the disks was increased = o( 2 85,06 )β . The ra-

dius of curvature of the flexspline, relatively to the previously mentioned cases, was 
changed slightly in the power flow →2 1 , and in the power flow →1 2  it was 
changed significantly, due to the influence of the disk to the flexspline. 

j) In the cases discussed with the help of Figure 9–12. it is obvious that the shape of 
flexspline diverges depending on the power flow of the drive.  

k)  At the power flow of →1 2  the deflection of flexspline can be limited by increasing 
the disk diameter. 

l)  Increasing the normal gap the limitation of deflection of flexspline is reduced. 
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Gear drive service, →2 1  Gear drive service, →1 2  

=1x 4,555, =2x 5,098, =0w 1,2 mm, =e 3,9 mm, =td 186,3mm, = o34,757β  

 

a) b) 
 

=1x 4,555, =2x 5,098, =0w 1,2 mm, =e 3,9 mm, =td 186,1mm, = o24,811β  

 

c) d) 

Figure 12. The radius of curvature, in the function of deviation relatively to 
 the major axis of the generator. 
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Gear drive service, 2 1→  Gear drive service, 1 2→  

1x 4,555= , 2x 4,958= , 0w 1,2 mm= , e 3,4 mm= , td 186,9 mm= , o42,53β =  

 
a) b) 

1x 4,555= , 2x 5,098= , 0w 1,1mm= , e 3,4 mm= , td 186,9 mm= , o42,53β =  

Gear drive service, 2 1→  Gear drive service, 1 2→  

 

c) d) 

Figure 13. The radius of curvature, in the function  
of deviation relatively to the major axis  

 
 
10. Summary 
 

In the present paper the authors examined the relationship among the geometry and 
load characteristics of a harmonic gear drive containing eccentric disk wave generator. The 
characteristics were the radial displacement measured next to the back surface of the 
flexspline, the radius of curvature, the force acting to the tooth of circular spline, the data of 
geometry and the load of the drive. The conclusions was restricted to the effect of the 
changed driving elements on the curvature of flexspline. 
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This paper summarises the sources and the reasons of developed vibrations in rolling 
bearings. Equations are given to compute the developed vibrations according to the 
professional literature. The behaviour of rolling bearings is analysed detailed in different 
frequency range  
 
1. Introduction 
 

Rolling bearing as a mechanical element or machine element has been used in the 
Ancient Rome. It has a very different shape than it has nowadays, but the principle of the 
operation was the same. It had wooden rolling elements and it was used in the wheels of 
coaches. After the fall of the Roman Empire, many magnificent scientific results were 
forgotten, like bearings in wheels of coaches. [1] 

Leonardo da Vinci the grate scientist of the Middle Ages dealed with shaft mountings, 
that is to say bearings. Unfortunately as with many other ideas of his own, he just made 
sketches about the bearing, there is no known prototype of them. 

In our days the bearing is one of the most often used machine element in machines and 
equipments. Bearings after the patent of Philip Vaughan (1794) have been made significant 
expression to the engineers in the meaning of their different operation circumstances and 
rolling problems. Judging their condition and defining the rest of their lifetime have caused 
a huge headache for the engineers.  

2. Beginning steps 

The first large scale examination to estimate the state of heavy machines and judge their 
running conditions was made by T. C. Rathbone. Scientific vibration diagnostic of our days 
was built upon their work. The scientific level of the modern vibration diagnostic was 
generated by the development of computing equipments and the claims of the industry. 

Rathbone was the chief engineer of Turbine and Machinery Division, for the Fidelity 
and Casualty Company of New York. He started to deal with the measurement and the 
documentation of the machine vibration at the beginning of the 1930’s. He first publicated 
his results in 1939 with the title of „Vibration Tolerance” in the periodica Power Plant 
Engineering. This paper was about the diagnostic of the vibration level rising in case of 
rough operation deriving from unbalancing machines. [2] His results were summarised in a 
chart (Figure 1. Rathbone chart). 

 
The Rathbone chart classifies machines into seven divisions: 
− 1. Sensory perception level, 
− 2. Very smooth, 
− 3. Good, 
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− 4. Fair, 
− 5. Slightly rough 
− 6. Rough – needs correction, 
− 7: Very rough – correct immediately. 

 

Figure 1. Rathbone chart [3] 

Of course his results are not up to date and not proper for our days regulations, but his 
work was very significant milestone in this filed of science.  

The determination of the acceptable vibration level in case of rolling bearings is still in 
use was based on this chart and the measuring results of the engineers working for ENTEK 
IRD. In Europe the chart for rolling bearings was signed as the original Rathbone diagram 
for many years (Figure 2.). 
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1: Very rough 
2: Rough 
3: Slightly rough 
4: Fair 
5: Good 
6: Very good 
7: Smooth 
8: Very smooth 
9: Extremely  
    smooth 

Figure 2. Chart summarising the results of ENTEK IRD [8] 

3. The behaviour of rolling bearing is different frequency range 

The vibrational behaviour of rolling bearings can be divided into several ranges 
according to the frequency. This can be seen in Figure 3. [4] 

 

Figure 3. The vibrational feature of rolling bearing according to the frequency ranges [4] 
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3.1. Non-linear spring 
 
The rolling bearing under 100Hz can be modelled by a nonlinear spring. This model 

consists of 3 masses. A spring element and an absorber element mean the connection 
between the masses. Mechanical model can be seen in Figure 4. 

 

V
ib

ra
ti
o

n

 
 

Figure 4. Mechanical model of rolling bearing 

With the signs of Figure 3.: 
− m4: outer ring 
− m3: rolling elements 
− m2: inner ring 
− k: rigidity of spring element 
− r: the coefficient of absorber element 

 
The connecting surfaces in the rolling bearing are extremely small. In a sense of 

mechanics the connection is a point (in ball bearing), or a line (in roller bearings). Bearing 
can be examined according to the Hertz theory. With the help of this theory the deformation 
can be determined in the connection point or line and around. Of course this theory uses 
simplification, but this is not means such a big difference as we should generate if we 
examine the model as a pure rigid body [4], [5]. 

The Hertz-theory uses a couple of conditions; examinations can be solved according to 
them. 

Conditions: 
− The size of the connecting surfaces is much smaller than the size of the connecting 

elements. 
− The load is perpendicular to the common tangent plane of the connecting elements. 
− The material of the connecting elements is homogeneous and isotropic. 
− Friction between elements is eliminated. 

3.2. Vibration emitter, planetary gear analogy, developed frequencies 
 
On the horizontal axle of Figure 3. the next behavior stage can be seen. In this stage that 

has an interval from approximately 100 Hz to 1kHz, the vibration emitter behavior of 
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rolling bearing is the determinative. This kind of behavior is the consequence of the 
structure the rolling bearings have. To understand the influence, let us see how the bearings 
are working.  

   
 

Figure 5. Seat evolved on one or two rolling body caused by  
the internal clearance of rolling bearings 

It is known that bearings are built in with internal clearance. This means that the 
clearance between the inner ring and the outer ring is bigger than the featuring size of the 
rolling body. In cases like this moments can occur during the operation of the rolling 
bearings, when two rolling bodies prop the inner ring and there are moments as well, when 
only one rolling body provides the shoulder of the inner ring (Figure 5.). This phenomena 
results the ∆ size movement of the inner ring in radial direction, so a kinematic excitation. 
Therefore polygon-frequency arises. Calculation of the polygon-frequency can be solved 
according to equation (1). 

k
p

n
f [ Hz ]

60
=                                                       (1) 

nk is the revolution of the cage in min-1 unit. 
When the internal clearance of the rolling bearing eliminated, then the kinematic 

excitation would be disappeared and the rolling bearing would be a pure rigid body. In 
circumstances like this rolling bearings could not be operated. 

Of course the polygon-frequency is not the only frequency that features rolling bearings. 
In cases of bearings that are ensuring kinematic pure rolling other rolling frequencies can 
be divided into two groups, depending on whether the inner or the outer ring is rolling. [6] 

 
In case of rolling inner ring: 
− The frequency of the inner ring: 

b
2 g

k

2

n cos
f 1 z .

d120
d

α
 
 
 = + ⋅
 
 
 

                                             (2) 
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− Cage-frequency: 

b
k

k

3

n cos
f 1

d120
d

α
 
 
 = −
 
 
 

.                                                    (3) 

− The frequency of the rolling element: 

2
b m

3
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3

n d cos
f

d120 d
d

α
 
 
 = −
 
 
 

.                                            (4) 

 
In case of rolling outer ring: 
 
− The frequency of the outer ring: 

k
4 g

k

3

n cos
f 1 z .

d120
d

α
 
 
 = + ⋅
 
 
 

                                             (5) 

− Cage-frequency: 

k
k

k

3

n cos
f 1 .

d120
d

α
 
 
 = −
 
 
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                                                    (6) 

− The frequency of the rolling element: 

2
k m

3
k3

3

n d cos
f .

d120 d
d

α
 
 
 = −
 
 
 

                                             (7) 

 
Quantities in (2)–(7) equations:  

bn : rev of the inner ring, 

kd : (featuring) diameter of the cage, 

gz : number of the rolling elements, 

md : middle diameter of the rolling bearing, 

gd : diameter of the rolling element, 

α: angle of action (in case of deep groove ball bearings α = 0°), 
Indexes 2, 3, 4 means inner ring, rolling element, outer ring. 
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Solving the computations rev of each elements of the rolling bearing is needed. Rolling 
bearing is able to be substituted by a OI planetary gear. Through this planetary gear analogy 
Kutzbach-construction can be applied for determining the revs (Figure 6.). 

 

 

Figure 6. Rolling bearing substituted by planetary gear for defining revs 

Besides the above mentioned frequencies others are also appears during the operation of 
rolling bearings originated from imbalance and the failures of the geometry. 

3.3. Frequencies deriving from imbalance 
 
In case of each element that has rolling movement vibration deriving from imbalance 

occurs. Sometimes this vibration is higher, sometimes it is lower. Even in case of the most 
perfect manufacturing a few imbalance is still rest in elements. 

 
Evolving frequencies: 
− Shaft frequency generated by forces: 

2
t

n
f

60
= .                                                           (8) 

− Cage frequency generated by forces: 

k
k

n
f

60
= .                                                          (9) 

− Housing frequency generated by forces: 

4
4

n
f

60
= .                                                        (10) 

− Roller frequency generated by forces: 
This frequency usually can be eliminated. Rollers generally compensate the effects they 

have. If it cannot be eliminated computations can be solved according to the equations (11), 
(12). 

From main movements: 

3
g1

n
f .

60
=                                                       (11) 
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From collateral movements: 

s
g2

n
f .

60
=                                                       (12) 

Collateral movements evolving in those bearings that are not able to ensure kinematic 
pure rolling. Bearings like this are e.g.: angular contact ball bearing or deep groove ball 
bearings that are also loaded by axial force 

ωB
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Figure 7. Sketch of an angular contact ball bearing 

ns can be counted according to Figure 7. by the next equation: 

3
s 3

k

r
sin .

r
ω ω α=                                                    (13) 

3.4. Frequencies deriving from the failures of the geometry 
 
The running surfaces of real rolling bearings and the surfaces of the rolling elements are 

not pure true to type surfaces. According to this not perfect elements while rolling down on 
each other generate different sizes of irregularity. 

The failure of running surfaces is usually waviness. This can be originated from the 
production and the circumstances of the assembly. The generated frequencies can be 
counted according to the following equations: 

− Effect of the geometry failure in case of inner rings: 

k2
2 2

n
f i .

60
=                                                         (14) 

− Effect of the geometry failure in case of outer rings: 

k4
4 4

n
f i .

60
=                                                         (15) 

i2 and i4 in equation (14) and (15) are the number of the failures appearing on the given 
elements, in case of waviness i2 and i4 are the number of the waves. nk2 and nk4 are the rev 
of the cage related to the inner ring and outer ring. 
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Failures appearing on the surface of the rolling elements are polygon failure mainly. 
Counting the frequency generated by the polygon failure should be done according to 
equation (16): 

3
3 3

n
f i

30
= .                                                          (16) 

Rev n3 is the rev of the rolling body own shaft. 

3.5. Eigenfrequencies (resonance frequencies) 
 
In case of equipment consist of rotating machine elements eigenfrequencies of these 

elements should be kept in front of the designer’s eyes. Permanent operation of an 
equipment like this on the rev that results an excitation proper for one of the elements’ 
eigenfrequency is forbidden. Calculating eigenfrequencies on paper is to be solved only in 
case of those elements that has a very simple geometry. With the development of the 
computer technology finite element softwares are able to determine the eigenfrequencies 
even in case of difficult geometry as well. Eigenfrequency depends on the material and the 
size of the geometry. In case of rolling bearings eigenfrequencies of the inner and the outer 
ring are important. Frequency images of eigenfrequencies can be seen in Figure 8. 
Determining the eigenshapes was carried out by a FEM program. 
 

 
1. 

 
2. 

 
3. 

 
4. 

Figure 8. Resonance shapes of Eigen frequencies in case of rolling bearing rings (first 4) 

3.6. Damage prognosis 
 
In case of damages other frequencies appear over the above mentioned ones. These 

frequencies can be originated not only from the damage of the rolling bearing but it also 
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can be caused by a false assembly, or an improper construction of the connecting elements 
(housing, shaft). Let us see a very simple example. Rolling bearing is positioned in a bore 
through an interference fit. Unfortunately the bore was made wavy. Because of the 
interference fit the outer ring of the rolling bearing adopts the wavy shape, so the running 
surface of the rolling elements also gets wavy. 

The literature helps the engineers realising the failures of rolling bearings independent 
of the reason of the failure by different spectrum pictures determined by several measures 
and analysis. 

On the field of vibration diagnostic there are a lot of measuring methods developed for 
determining the state of bearings. Figure 9. shows their application according to the 
frequency values. 

 
Figure 9. Suggested measuring methods in different frequency intervals [4] 

4. Conclusion 

The paper introduced how wide the range of frequencies a rolling bearing can perform 
is. It should be noticed that the above introduced calculations are only typical for normal 
operation. Frequencies generated by different failures were only mentioned. Analysing the 
spectrum of a bearing all above mentioned frequencies should be taken into account so the 
failures generated frequencies to be identified, and on this basis arrangements can be made.  
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Abstract 
In this “state- of- the- art” paper the place and role of optimum design in product develop-
ment process is described, based on the definition of products, definition of product quality 
and product qualification levels. Most important product characteristics and parameters are 
listed which can be subjected to optimization or multidisciplinary optimization (MDO) pro-
cedures. Case studies and numerical examples are shown for optimization, quality analysis, 
improvement and shape optimization of several industrial products and products designed 
by Industrial product and art designer students. The examples and case studies were se-
lected from the industrial projects and students design and optimization works and results 
of the Department of Machine and Product Design at University of Miskolc, Hungary.  
 
Keywords: product qualification, optimization methods, MDO, shape optimization of 
products 
 
1. Introduction 

 
In 1996 the Department of Machine Elements at University of Miskolc started the edu-

cation of product development as a new formation course besides of machine elements and 
construction design. This resulted in the flare of the activity palette of the department. The 
education of product development invoked new disciplines as Product and Art Design, In-
tegrated Product Design or Product Simulation. As a result of this new education activity, 
the name of the department changed the new name is: Department of Machine and Product 
Design since 2008.  

During the design process of – not only industrial – products, besides the design of the 
shape, functionality and colours of the product, it is very important to keep the high stan-
dard of efficiency, reliability, economy (low material and manufacturing costs) or high load 
carrying capacity and longer life [1]. These characteristics could increase the added value 
content of the product or could give higher competitiveness. For the development and in-
crease of these parameters of a product, it is unavoidable to apply and use the facilities and 
possibilities offered by multidisciplinary optimization (MDO) [2], the finite element 
method (FEM) [3], [4] and computer aided design (CAD).  

In this paper the integration of these methods is presented into the product development 
process by showing several case studies and numerical optimization examples. Examples 
are shown for optimization, quality analysis, improvement and shape optimization of sev-
eral industrial products and products designed by product engineering students.  

The examples and case studies were selected from the industrial projects and student 
design and optimization works and results of the Department of Machine and Product De-
sign at University of Miskolc, Hungary. 
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2. The place and role of MDO and FEM in the design and development of products 
 

First of all, it would be necessary to repeat the well known definitions of product, prod-
uct lifecycle, quality of product, product design, in order to place easier the FEM and MDO 
methods into this system. (The usage of a three dimensional CAD system is always neces-
sary to create the models for FEM and MDO investigations.) 

Product can be everything which is marketable, consumable, or usable, fulfilling a need, 
demand or request of the customers. As a simple approach, one can discuss three levels of 
the product: 

a. Abstract product; 
b. Manufactured product; 
c. Complementary product. 
The abstract level of product integrates all the advantages, provisions, services, supplies 

which can be associated to the image of the product and these will be the main reason to 
why buy the product (for example in case of food product the enjoyable taste, aroma, fla-
vour, healthy effects, nutrition values, etc. or in case of furniture convenience, aesthetics 
etc.). At the level of abstract product, it is requested by the consumer that the product 
should work well and should carry the loads during the operation and usage. The verifica-
tion of the product against these kinds of effects could be an entering point for FEM and 
MDO results into the product design process. 

The product designer will transmit the abstract product into the manufactured product 
level. The manufactured product has its trade mark, name, form, characteristic colours, 
packing, technical parameters, quality, reliability, load carrying capacity, etc. The last four 
parameters already can be subjects of several finite element and optimization studies and 
improvement processes, the results of which can improve considerably some very impor-
tant characteristics of the products. This is the most important point where the FEM and 
MDO methods could connect into the product design process.  

The third level is the complementary product, which means some more or added ser-
vices, characteristics of the manufactured product for example guarantee, assurance, set in 
operation, or in case of a software product the installation, upgrade, etc. If the manufactured 
product does not contain FEM or MDO results, this point could be also a possible place to 
call in these investigations into the product development process, for example by creating a 
new type of service as “optimized product” or “verified product”. Also it is possible to cre-
ate some analysis, verification, optimization or improvement services for products after 
selling, similarly to the upgrade process, as “developed product”, “economic product” or 
“improved product”.  

More detailed approach can be to define five levels of the product: 
a. Elementary benefit; 
b. Basic product; 
c. Requested product; 
d. Augmented product; 
e. Potential product. 
The “elementary benefit” level of the five level product definition could be associated to 

the abstract product” level of the three level product definition, therefore everything can be 
applied here what was mentioned for the abstract product level, concerning the possible 
entering way of FEM and MDO into the product design process.  
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The basic product incorporates all the advantages, characteristics, what where provi-
sioned in case of the elementary benefit (for example yoghurt incorporates that it is healthy, 
enjoyable taste etc.).  

The requested product contains all the requests, claims and demands of the customer 
concerning the product (for example easy to operate, practical, or in case of food good fla-
vour etc.). This level could be associated to the “manufactured product” level of the three 
level product definitions, so this could be also an important entering point for the FEM and 
MDO methods into the product design process.  

The “augmented product” collects more wishes of the customer above the “requested 
products” (for example more practical packing, more convenient delivery, better 
price/value ratio etc.) and the “potential product” contains all the characteristics and 
“dreams” which say how the product could be or will include future developments. 

On the basis of the above mentioned things one can see that level d. and e. of the five 
level product definitions offer more possible ways for FEM and MDO investigation proce-
dures to enter into the product design process.  

 
2.1. Possible product characteristics which could be subjects of FEM and MDO investiga-
tions and qualification 
 

The product lifecycle starts when the need for the product appears and ends with the end 
of the usage (when the product falls into oblivion). If the product development process re-
sults in newer and newer, better and better versions of the product, the “cycle” name is 
more and more appropriate, since the life process repeats cycle by cycle. In the lifecycle of 
every product one can find the design, experiment, analysis activity which helps the product 
development process from the beginning of the lifecycle until the starting of the manufac-
turing. This part of the lifecycle can be called as “product development”. The most impor-
tant possibilities for the application of FEM and MDO results are in this part of the lifecy-
cle.  

Let us overview the most important parameters or characteristics of products, which can 
be efficiently improved by the application of finite element and optimization results. The 
most important subjects of the machine- and product design could be the followings: 

Drives: 
− Gears, gear drives, gearboxes, conical gear drives, helical gears etc. 
− Worm drives; 
− Bevel gear drives; 
− Belt drives, chain drives, friction drives; 
− Harmonic drives, other special drives. 
Bearings: 
− Ball and rolling bearings, constructions containing bearings; 
− Hydrodynamic, hydrostatic journal- and sliding bearings (axial, radial). 
Shafts, couplings and their assembly elements: 
− Behaviour of shaft- gear- bearing assemblies; 
− Several couplings, having different operation concepts (mechanical, electrical, hy-

drodynamic etc). 
Other important products and elements: 
− Threaded connections; 
− Seals; 



Ferenc János Szabó 

 

 

66 

− Brakes; 
− Springs; 
− Slider- crank mechanisms; 
− Selected special elements for pipelines (pipe joints, valves, supporting structures for 

pipelines); 
− Hand- tools and their elements; 
− Household appliances, food processors; 
− Tools to tinker and hobby; 
− Cars and accessories or elements for cars; 
− Furniture, artistic products; 
− Children’s toys and furniture; 
− Office furniture and accessories; 
− Computers and additional products; 
− Medical tools, implants, accessories 
− Etc. 
Most important disciplines that could be involved and touched during the finite element 

analysis and multidisciplinary optimization of these elements are as follows: 
Static: 
− Linear static; 
− Nonlinear materials;  

– Large deformations. 
Contact: 
− Contact with or without friction; 
− Lubricated contact; 
− Wear and other forms of contact failure. 

Dynamics: 
− Eigenfrequencies, undamped and damped vibrations; 
− Random vibrations, harmonic and random excitations; 
− Transient response, response spectra analysis; 
− Vibration reduction and supporting problems. 
Sound and noise: 
− Operation noise, noise reduction by the design and geometry modifications; 
− Acoustics, handling of noise sources; 
− Noise reduction, isolation problems. 
Fluids, gases: 
− Fluid- structure interaction; 
− Flow of viscous fluids (oil or cooling liquids); 
− Pressure distribution in fluid films; 
− Fluid friction; 
− Lubrication problems; 
− In internal combustion engines: or wheel and tire design: interaction of gas and 
structure. 
Thermodynamics: 
− Heat exchange between elements of a construction; 
− Cooling problems,  
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− Heat conduction and convection, radiation. 
Electromagnetism: 
− Forces acting on elements working in magnetic field; 
− Elements of electric motors, effects of the electromagnetic systems; 
Fabrication and operation conditions: 
− Operation and fabrication interferences; 
− Errors, quality requirements, tolerances; 
− Requirements and constraints that one must fulfil for the good fabrication and opera-

tion. 
A large variety of possible application variations can be provided by the combination of 

the products and applied disciplines for the realistic analysis and optimization of designed 
products. The disciplines can be considered as constraints (in this case the objective func-
tion could be the weight, fabrication costs, load carrying capacity etc. or their combinations 
in multiobjective problems) or they can be taken into consideration as objective function, 
this way it is possible to design noise minimized constructions or moving structures or 
products having minimum power consumption or minimum friction power loss, higher load 
carrying capacity etc.  

The examples and case studies shown in this paper can be found also as a combination 
of products and disciplines.  

The qualification of a product means that all the most important technical parameters 
will be verified, where possible by using FEM studies and at the end of this process the 
product will receive a qualification as “ineligible” or “eligible” or “safely eligible”. This 
qualification can be continued if the economy, efficiency or optimality of an important 
product characteristic is qualified, in this case it could be possible to use quality levels as 
“non- optimized” or “inefficient”, “optimized” or “efficient” and “Pareto- optimized” or 
“multiobjective optimized”. These could be the possible levels of product qualification.  
 
3. Case studies for qualification and optimization of products 
 
3.1. Minimization of strains in electronic panels (improvement of product reliability) 

 
During the testing procedure of electronic panels, the test signal is driven to the attach-

ing points of the panel by using measuring needles. Since the testing program contains sev-
eral input and output signals and measurements, in our days this process is performed by 
industrial robots and up to date programmable NC machines.  

In this unified and robotized process 300–400 measuring needles can press the panel in 
one time, depending on the type of the panel and on the type of the needle. Each needle is 
built with a spring, in order to assure the correct contact with the panel. These springs are 
calibrated so that 3–5 N load is present at the contact point. It is easy to calculate, that in 
case of several hundred needles the panel is loaded with 1000–2000 N .Regarding the panel 
sizes, (160 mm length, 100 mm width and 1.6 mm thickness approximately, the size de-
pends on the panel type) this is a high load. This load sometimes is causing so large defor-
mation and strain values in the panel, that some local failures occur in the electronic ele-
ments assembled onto the panel, therefore a number of supporting pins is applied to de-
crease the deformation and strain (Figure 1.).  
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Figure 1. Supporting pins and the assembly 

 of the panel into the measuring frame 
 
Previous measurements and experiments show that a strain of value greater than a limit 

of 8x10–4 is dangerous for the local failure of the assembled elements. The experiments and 
measurements also show that the strain field in the panel is very sensitive for the arrange-
ment and for the number of supporting pins (Figure 2.).  

 

Figure 2. Strain contours shown on the assembly plan of electronic elements.  
This picture helps to decide which electronic element is in dangerous position 

 
The assembly of the supporting pins sometimes can be very difficult, because electronic 

elements are assembled to the both sides of the panel, therefore one can find only a few 
place to apply supporting pins. This situation needs the optimisation of the number and 
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position of supporting pins used for decreasing the maximum strain on the panel under the 
limit value 8x10–4. In the solution of this task the strain field was determined by using finite 
element calculations and for the optimization the Genetic Algorithm was used. As results in 
the investigated cases, because of the optimal support arrangement the maximum strain 
value was decreased under 6x10–4 with same number of supports as before the investiga-
tion, or in other cases the limit of 8x10–4 is fulfilled with a number of supporting pins 20% 
smaller than before the investigation. These results are useful during the fabrication, be-
cause the smaller number of supporting pins can decrease the fabrication cost, the prepara-
tion time for the measurement can be shorter. Eliminating high strain values in the panel 
can increase the reliability or elongates the fatigue life of the product, and the number of 
waste products and user- complaints can be decreased considerably. 

This case study was an example of improvement product reliability and economy by 
applying the results of a multidisciplinary optimization process (MDO). This study shows 
the advantages of an “optimized product”.  
 
3.2. Verification and qualification of the product 
 

The second case study shows the example of product qualification, based on a finite ele-
ment analysis (FEM).  

In chemical plants, stack gases are eliminated (burnt) in a burner link. When the link is 
started up (lighting), this is an explosion; the inner pressure in this part of the pipeline will 
be very high. It is very important that the igniter should be verified against this pressure 
value if it will bear the strains, stresses and deformations occurring when starting the burner 
link. Figure 3. shows the igniter chamber, stress and deformation contours are in Figure 4.  
 

 
 

Figure 3. The igniter chamber 
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Figure 4. Stress (to the left) and deformation (to the right) contours of the igniter 
 

On the basis of the finite element results, it was possible to draw the conclusion that the 
igniter is “safely eligible” under the operation circumstances during the lighting period. 
These results and some selected parts of the expert report were used by the manufacturer in 
the quality certificate of the product, which must be always part of the product documenta-
tion.  
 
4. Student projects 
 
4.1. Shape optimization of a product (pliers haft) 
  
Figure 5. a) shows the initial three dimensional model of pliers, which has constant cross 
section shape regarding the haft. Shape optimization procedure in ANSYS DesignSpace 
program system shows the proposed material to eliminate (Figure 5. b), in red colour), the 
designer has to redesign the structure, eliminating the unnecessary material and giving a 
new form concept to the product (Figure 6.).  
 

  
 

Figure 5. a) (Initial shape) and Figure 5. b) (materials to eliminate) of pliers model 
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Figure 6. a) (New, improved form) and 

Figure 6. b) (Stress state verification) of the product 
 

As the result of the shape optimization procedure, 32% of the product material was 
spared. Finite element analysis of the new, optimized shape [Figure 6. b)] shows that the 
structure fulfils the operation requirements (in case of 200 N load, 71 Mpa is the maximum 
stress). The maximum deformation in this case is 0.2 mm.  
 
4.2. Finite element analysis of a bar-chair 
 

A new design of a bar- chair can be seen in Figure 7. a), having the shape of DNA spi-
ral. On the basis of several finite element analysis, the modified design is shown in Figure 
8., while stress contours under the load can be found in Figure 7. b). The structural behav-
iour of the DNA shape column invokes a lot of future development and research possibili-
ties, therefore these investigations will be continued in the future, within the frames of Stu-
dent Research Work (TDK).  
 

  

 
Figure 7. a) Original shape of the bar- chair and Figure 7. b) stress contours under the 

load caused by a sitting person 
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Figure 8. Modified design of the bar-chair after FEM analysis 
 
5. Conclusion 

 
On the basis of the definition of products, product quality and product qualification lev-

els, the place and role of optimum design in product development process is described. 
Most important product characteristics and parameters are listed which can be subjected to 
optimization or multidisciplinary optimization (MDO) procedures. Case studies and nu-
merical examples are shown for optimization, quality analysis, improvement and shape 
optimization of several industrial products and products designed by product designer stu-
dents. The case studies and student works shown demonstrate the efficiency and advantages 
of applying FEM and MDO methods during the product design process.  
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Abstract. Gear couplings are used to eliminate the misalignments of the connected shafts. 
Most important components of the gear coupling are the hub and the sleeve. The hub is an 
external gear having crowned teeth. The sleeve is an internal spur gear. Both gears have 
equal number of teeth. In this paper the manufacturing methods are presented for the hub 
and sleeve and mathematical models are investigated for the tooth surfaces of both 
components. 

Keywords: gear coupling, internal gear, crowning, gear hobbing, gear shaping 
 

1. Introduction 
 
Main components of the gear coupling (Figure 1.) are the sleeve and the hub. The 

sleeve is an internal gear and the hub is an external gear which has crowned teeth. 

 

Figure 1. Gear coupling 

The two toothed components compose a special gear pair, wherein both number of teeth 
are the same. The gear coupling is able to compensate the misalignment of the coupled 
shafts by the tooth crowning and backlash. Using a single hub and sleeve, the effect of 
angular misalignment may be eliminated. In the practice, generally two hub-sleeve pairs are 
built up as it is shown in Fig.1. In this case the compensation of the offset misalignment is 
possible in addition to the angular misalignment. Henceforward the possible manufacturing 
methods of these special gears will be examined. Mathematical models of the tooth surfaces 
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will be set up, which can provide the basis of the further investigation for the operation of 
gear coupling. 

 
2. Manufacturing of the crowned gear 

 
The crowned teeth of the hub are produced by hobbing according to Figure 2. 

 

Figure 2. A conceptual sketch for manufacture of crowned tooth surfaces 

In the hobbing of cylindrical gears the tool and the workpiece rotate permanently and 
the tool has a slow feed parallel to the axis of the workpiece. In the hobbing process the tool 
is called hob. To produce the crowned tooth surfaces the tool moves along a circular path as 
it is shown in Figure 2. The unique structure of the hobbing machine usually does not allow 
this motion of the tool, so the necessary relative movement is obtained by the radial motion 
of the workpiece-table and the axial movement of the tool. During production the centre 
distance varies continually. The maximum value of centre distance is: 

 10max rra += , (1) 

where r0 and r1 are the radii of pitch circle for the hob and the workpiece respectively. 
The circular arc of the relative movement between the tool and the workpiece can be 

characterized by the radius MNA = , depending on the pitch radius of the hob and the 
distance R which is the typical size of tooth crowning (Figure 2): 

 RrA += 0 . (2) 

In addition, the centre distance is determined by the current axial position of the hob 
denoted by B in Figure 2. Consequently, the actual centre distance: 
 

 1
22 rRBAa +−−= . (3) 
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3. The mathematical model of hobbing 
 
The mathematical model of hobbing was presented by Litvin [1, 2] as an envelope with 

two independent parameters. This solution is suitable to describe the ideal tooth surfaces, 
but it includes some approximation, since the two parameters are not independent perfectly. 
Mitome [3] has reported a very expressive method for hobbing of conical involute gears. 
This method in modified form is suitable to determine the real tooth surfaces of cylindrical 
gears [4]. 

A conceptual sketch of the hobbing and the connection between coordinate systems are 
shown in Figure 3. 

 

Figure 3. The sketch of hobbing and the used coordinate systems 

The hob is considered as an involute worm wherein involute helicoid is fitted to the 
cutting edge of the hob. Thread surface of the worm has a virtual translation along the axis 

y0 in coordinate system x0, y0, z0 because of the angular velocity of rotation ω0. 
 
The equations of the resulted surface-series are 
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ω  (4) 

 
where u and v are the parameters of screw surface, t is the time within one revolution of the 
workpiece, p is the parameter of screw and ω0 is the angular velocity of the hob. 

During one revolution of the workpiece the tool generates the tooth space F1. F2, ... Fk+1 
denote from the second to (k+1)-th tooth spaces which are cut during the second to (k+1)-th 
revolution of the workpiece. s is the feed of hob during one revolution of the workpiece. 
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Figure 4. Real tooth surfaces of a cylindrical spur gear 

Let T be the time during one rotation of the workpiece. When the surface Fk+1 is cut the 
position of the origin O0 along the axis z is 

 
 ( )kTtvz s +−=  (5) 

 
where vs is the velocity of feed. The workpiece turns the angle ( )kTt +ω , which 

corresponds to the angle ( )πω kt 2+ . For cutting the surface Fk+1 the equation system has 

the following form: 
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Transform the surface-series given by equations (6) into the coordinate system xyz: 
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The transfer matrix M is as follows: 
 

 ( )s
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An arbitrary surface Fn can be determined by solving Eq. (7) when k = n – 1 is 
substituted and at the same time relationship is produced between the parameters u, v, t. 
One possible way to determine the relation between parameters when the determinant D 
becomes zero: 

 0=
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Expressions (7) and (9) together define any surface element Fn of the tooth surface. 
Examined case of hobbing concerns to the production of cylindrical gears. The 

presented formulas will valid for the manufacture of crowned teeth by the following 
conditions: 

– in addition to the axial feed velocity vs should be considered a radial velocity vr, 
– this motion occurs continuous changing in centre distance. 
The proportion of radial and axial velocities is expressed by the following equation 

based on the prescribed path of tool 

 
22 BA

B

v

v

s

r

−
= . (10) 

 

B = b/2 belongs to the position of tool z = 0 and the relationship 
2

b
zB +=  is valid 

where b is the face width of the gear. The change of centre distance is described by Eq. (3). 
Substituting the relation between B and z 
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is obtained. It describes the change of centre distance, while the cutter passes along a 
prescribed path and the temporary position of the tool is determined by the coordinate z. All 
these indicate that the mathematical model for cylindrical gears is suitable to describe the 
crowned teeth, if the changing of centre distance is considered in the last column of 
transform matrix (8). Substituting (5) into (11) the changing of centre distance as a function 
of the time is: 
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This relationship should be taken into account in calculating the matrix M. 
 
 



 József Szente–László Kelemen 

 

78 

4. Equations of the crowned tooth surfaces 
 
Based on the above-mentioned description, it is found that the resulted tooth surface 

depend on several parameters. Thus it is influenced by the size of the hob (r0) and the feed. 
In fact, it is also true for hobbing of cylindrical gears, that one gear produced by different 
hob or different feed has several tooth surfaces. The cylindrical gears with involute tooth 
surfaces are idealized surfaces. 

The idealized tooth surface for crowned gearing will be derived so that involute tooth 
surfaces having variable profile shifting in parallel transverse planes are assumed. 

 

Figure 5. Crowned tooth surface 

Equations of the tooth surface are: 
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where ry1 is the arbitrary radius along the tooth profile, and θ1 is the tooth angle. To 
calculate it the following expression is used: 
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where s is the tooth thickness along the pitch cylinder, r1 is the pitch radius, α is the 
standard pressure angle, α y1 is the pressure angle at radius ry1. α y1 can be determined by the 
following equation: 

 
1

1
1cos

y

b
y r

r=α . (15) 

 
Here rb1 is the radius of base circle. In Eq. (14) the inv means the involute function, 

which is interpreted as inv α = tan α – α. 
The tooth thickness along the pitch cylinder is 

 

 αtan)(2 2
1

2
0 zRRss −−−= , (16) 

 
where s0 is the tooth thickness in the plane z1 = 0. 

All these indicate that θ1 depend on the radius ry1 and the coordinate z1=t1, i.e. in Eq. 
(13) 

 ( )1111 , yrtxx =  

and  (17) 
 ( )1111 , yrtyy = . 
 

5. Manufacture methods for internal gears 
 
Manufacture methods of the internal gears may be classified into two categories, which 

are the forming and generating procedures. The forming processes include the form milling 
and broaching. 

The form milling is realized by hobbing machine using form milling head and finger 
type or disk type milling cutter. The teeth are formed one by one without generating 
motion. Form milling may be used economically for machining the gears which have large 
diameter and high module. Disk type cutters having carbide bit realize appropriate 
productivity. The disadvantage of the procedure to be less accurate than the generating 
methods and large ring gears can be manufactured only. The tip diameter of gear should be 
many times as large as the milling head. Form milling is not suitable for preparation of 
helical teeth. 

The broaching is the most productive method for manufacture of internal gears, but also 
the most expensive as well. In consideration of the prime and foundation costs of broaching 
machines and the high price of the broach, the broaching should only be used economically 
in quantity production. To produce helical teeth using special machine is possible, but the 
fabrication and sharpening of tool and the guiding of tool along helical path are very 
difficult tasks. 

The generating processes are the gear shaping, gear skiving and gear hobbing. 
The gear shaping was the first generating process which is suitable to produce internal 

gears too. This procedure is still the best known and most widely used method. 
Since the gear shaping has low productivity due to intermittent operation, several 

attempts have been made to develop efficient production methods. Such methods were the 
gear skiving and gear hobbing for internal teeth generation. 
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The gear skiving was created as a special blend of the gear shaping and hobbing. The 
cutter comes from gear shaping while the movements come from gear hobbing. The 
productivity of gear skiving is similar to the gear hobbing of external gear teeth. It can be 
mentioned as an advantage that the helix angle may be set between wide limits, compared 
to other procedures that are either unsuitable for the manufacture of helical teeth, or just 
defined helix angle values can be produced. The special tool holder ("flying cutter") did not 
provide sufficient rigidity, therefore the gear skiving did not come in general use. 

Gear hobbing for internal gears can be done on conventional hobbing machine using 
special tool clamping device. In the course of production barrel-shape hob is used. The 
spread of procedure was obstructed by the cost of complicated hob geometry, the 
convenient solution to a rigid tool holder and the size limit, which arises from the fact that 
the tool holder device must have fit to the internal ring. 

Henceforward we consider the gear shaping because it is the only generating process 
using the manufacture of internal gear, which is widely used, reliable, and has adequate 
precision. 

 
6. Gear shaping 

 
The gear shaper and shaper cutter were developed and patented by Fellows in 1897. The 

position of workpiece and cutter and the characteristic movements of gear shaping are 
illustrated in Figure 6. 

 

Figure 6. Gear shaping of an internal gear 

Axes of workpiece and cutter are parallel to each other. The generation is produced by 
the harmonized rotation between the cutter and gear blank. The relationship between the 
angular velocities can be expressed as the gear ratio: 
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The cutting motion is a vertical (at certain types of machine is horizontal) reciprocating 

movement of the cutting tool. In the machining process there are two type of feed in radial 
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and tangential direction. The radial feed is realized by cam mechanism or threaded spindle. 
The tangential feed is the rotation in mm referred to one stroke and measured on the pitch 
circle of cutter. During cutting neither cutting tool nor workpiece does not rotate. The 
generating movement that is a slight rotation is carried out during the return motion of 
cutter. 

By gear shaping spur and helical gears can be generated too. Spur gears are produced by 
straight-toothed tool and helical gears are manufactured by helical shaper cutter. Since the 
gear couplings contain spur internal gear, hereafter deal with straight teeth only. 

 
7. Equations of the tooth surfaces for internal gear 

 
Theoretical tooth surfaces of the internal gears are involute cylinders. Figure 7. shows 

the tooth profile and the parameters of tooth surface. 

 

Figure 7. Tooth surface of internal gear 

Equations of the tooth surface are: 
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Where ry2 is the arbitrary radius along the tooth profile, and θ2 is the angle of tooth 
space. To calculate this angle the following expression is used: 
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where e is the tooth width of space along the pitch circle, r2 is the pitch radius, α is the 
standard pressure angle, and α y2 is the pressure angle at radius ry2. It can be determined by 
the following equation: 
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Here rb2 is the radius of base circle. In Eq. (20) the inv is the involute function, which is 

interpreted as inv α = tan α – α. 
The tooth surface is described by two independent parameters ry2 and t2: 
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Theoretical basis of a method will be introduced in this paper. With the combination of the 
tools of design methodology this method can be used with great profit during the generation 
process of the optimal product variant, besides it also takes care for costumers’ require-
ments. 

1. Criticising traditional design methodology 

A significant disadvantage of existing methods is that their adaptability to computers is 
limited. Traditional methods suggest several possibilities for the sequential steps realising 
the given logical step that implies their multiple character. Firstly a fix sequential design 
method has to be created instead of traditional methods, though utilizing their positive fea-
tures. 

Keeping physical principles in view is the second great disadvantage of traditional 
methods. It is disadvantageous because the constructor may limit the solution possibilities 
in a very early phase of the design process. This way he may unwittingly eliminate solu-
tions that could be really valuable in the period of selection, because they are novel or abso-
lutely new concepts. This way the second task is to generate the solution variants, without 
paying any attention to physical principles. 

The third –and maybe the greatest– deficiency of existing methods is that they do not 
even try to generate all the possible solutions that could be made on the basis of the given 
functions, because they pay attention to the human capacity and not to the capacity of com-
puters. So it can happen that some –or significantly a great number of – principally correct 
and absolutely new solutions escape the designer’s eyes. That is why the most important 
task is to make it possible to generate and handle all the solutions that can be generated on 
the basis of the given functions. 

2. Computer Aided methodological Concept Building (CACB) 

Analysing other technologies integrated into CAD systems –so the CAxx technologies 
[2] – in connection with the whole design process it can be defined that aiding of the design 
process by computer was developed counter direction to the advancement of it (Figure 1.). 
Computer technologies appear first time in the documentation period of the design process 
that can be taken as the last phase of it, while the computer aid of conceptual design –that 
can be taken as the basis of the design – is not yet solved even today. Designers have to 
keep their eyes on the consumer’s criteria as well, although these criteria can eliminate 
some originally new solutions. This way in this paper a method is suggested that combined 
with the tool system of the design methodology can be used with a great benefit in the pe-
riod of conceptual design that is during the working out of the basis of the optimal product 
variant, and it also pays attention for the consumer’s criteria. 
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CACB 

Task Conceptual 
design 

Engineering 
computations 

Documentation 
by drawings 

The whole design process in case of traditional design 

Development of the computer tool-system ?

 
Figure 1. CACB (Computer Aided methodological Concept Building),  

suggestion for expanding the application of computer tool-system 

 

Design task 

Definition of customer’s requirements Market- and patent analysis 

Ranking customer’s requirements Finding and defining functional 
subassemblies 

functional subassembly-
importance 

Definition of construction requirements

Ranking of construction requirements 
Finding and defining connections 
among functional subassemblies 

connection- 
importance 

Defining evaluating aspects according 
to the construction’s requirements 

Ranking evaluating aspects 

Generating the solution variants 

Choosing the optimal solution variant 

Quality line Quantity line 

 
Figure 2. Logical steps of the suggested computer aided concept building 

Methods that are suitable for computer application and are developed on the basis of the 
advantages of the traditional design methods – that are not directed by any computer appli-
cation – should be created in order to get the conceptual design phase computer aided, and 
to find the optimal concept for the given design task. Logical steps of the suggested Com-
puter Aided methodological Concept Building (or CACB) is shown in Figure 2. Before 
elaborating the design task it should be analysed. The tools for that are the market research 
and the analysis of patented solutions. In parallel with this customer’s requirements should 
be found and defined. These requirements should be evaluated and ranked with the de-
signer’s eyes, because these requirements are the basis of the evaluation at the end of the 
concept building method. All the possible functional subassemblies should be defined dur-
ing the market research and the analysis of patented solutions. Product structures or solu-
tion variants can be generated from these subassemblies. These variants should be evalu-
ated by the designer. The optimal solution that is the result of the concept building is the 
one that fulfilled all the evaluation criteria. 
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2.1. Customers’ requirements 

Customers’ requirements and claims established to the product are usually ready for the 
designer at the beginning of the design process in a shape of a claim-list [1]. According to 
this list criteria can be collected and ranked through the designer’s eyes. The basis of this 
ranking is the fuzzy logic, but it also applies the couple comparison suggested by the tradi-
tional design methodology. 

Ranking the criteria can be described by the equation (1) that also can be determined by 
equation (2) that is the K criteria matrix. Criteria should be compared in couples. It should 
be analysed if the criteria in the columns of the matrix are more important than those can be 
find in the rows of the matrix. The kij elements of the matrix according to (1) and (2) can 
get the value 0 and 1. The lower triangular of the matrix is the complement of the upper 
triangular. 
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Important features of the criteria matrix are: 
 the major diagonal of the criteria matrix can contain only zeros,  
 if the elements above the major diagonal is summarised their pairs under the major 

diagonal, the result is always 1 (3). 
According to that it is also enough to have the elements above the major diagonal; the 

value of the elements under the major diagonal can be calculated. So the number of the 
elements that is enough to determine a similar square matrix can be described by a mathe-
matical row according to (4). 
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(4) 

Summarising row-by-row the results of the criteria comparison according to equation 
(5) effects the importance of the criteria. So a (6) kf criteria importance vector arises that 
should be considered when defining criteria. 
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2.2. Generating solution variants 

Functional subassemblies that are important during the generation of new solution vari-
ants and can be found in the known solutions should be disclosed by the patent and market 
analysis. Sometimes new functional subassemblies should be determined by intuition. Gen-
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erating variants can be realised in several way – e.g.: according to binary logic or random 
generation. When the designer would like to perform a preliminary selection with analysing 
the functional subassemblies ranking according to equation (1) and (2) should be repeated 
with the functional subassemblies: 
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                 
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                jiij ff 1  (9) 

 

Summarising the values in each row of the matrix it eventuates the importance of the 
functional subassemblies (10). This can be described by the (11) importance vector of the 
functional subassemblies. 
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Than the rank of each functional subassembly should be given on an open interval, be-

tween 0 and 1, so each of them has a fuzzy value. 
After this the designer also determines the solution level with a value between 0 and 1. 

Determining the solution level means that we should withdraw those subassemblies that has 
a smaller rank than a given value from the set of those functional subassemblies that are 
building up solutions. This way the designer eliminates several solution-possibilities, but 
those functional subassemblies that are the most valuable in technical meaning assist gener-
ating significant solutions. The value of the solution level is the closer to zero, the more 
functional subassembly constitutes the generated solution. So giving a value to each solu-
tion level is not showing the quality of the solutions that can be generated, but results a 
quantity selection. This selection can be shortening the period of the generating. Raising the 
value of the solution level the complexity of the product can be decreased, so the costs of 
the product can be also decreased. But this way it is not sure that the most important cos-
tumers’ criteria will be fulfilled. 

Than the connections between functional subassemblies constituting variants should be 
defined, so it should be controlled which functional subassembly can be connected to which 
one. According to this the C connection matrix (12), (13) can be determined. 
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The components of the matrix can be 0, 1 and x letters. These characters describe if 

there is connection or not between the given functional subassemblies in the structure. If the 
connection is defined by x, than during the generation the program has the right to make a 
decision whether the connection takes part in the structure or not. This way during the gen-
eration each solution has another connection matrix, so each solution can be defined by an 
S structure matrix (14), (15), that has absolutely binary structure, consisting only zeros and 
ones. 
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Each structure can be characterised by a structure graph as well. These graphs define the 

connections among the different functional subassemblies of solution variants. Nodes of the 
graphs mean the functional subassemblies; the edges of the graphs mean the connections 
among the functional subassemblies. Structures can also be defined by structure equations 
that describe the edges of the structure graphs, or those connections that are writing down 
the structure of each solution variant. Synthesis of a structure equation is very simple: it 
contains the connections between functional subassemblies denoted by 1 in the structure 
matrix. For example: 

                              
i j i j n1 2 1F F ,F F ,F F ,F F    .                 (16) 
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Computer Aided 

methodological Concept 
Building 

Generating variants on the basis of varying 
connections among functional subassemblies 

Accidental 
generation 

Binary 
generation 

Solution 5 Solution 6 = 
? ? 

= 

Accidental 
generation 

Binary 
generation 

Solution 3 Solution 4 

Generating variants on the basis of 
varying functional subassemblies 

? 
= 

Generating solution variants on the basis of 
fixed functional subassembly set 

Generating solution variants on the basis of 
flexible functional subassembly set 

Accidental 
generation 

Binary 
generation 

Generating variants on the basis of varying 
connections among functional subassemblies 

Solution 1 Solution 2 = 
? ? 

= 

 
Figure 3. Generating solution variants 

Generating variants can be realised basically in two different ways as it is shown in  
Figure 3.; on the basis of the fixed functional subassembly set, or the flexible functional 
subassembly set. There are cases when giving the importance of the functional subassem-
blies can be eliminated. In this case the set of functional subassemblies is not changing, so 
the generating happens according to the fixed functional subassembly set. When the set of 
functional subassemblies is decreased by giving the importance of functional subassemblies 
and determining the solution level, the size of the functional subassembly set changes, so 
the generating happens according to the flexible functional subassembly set. 

Exploring the optimal field of use and analysing the efficiency of the mentioned meth-
ods needs more examination. In case of some products – e.g.: rear-view mirror of a car– by 
the definition of a low solution level all of the functional subassemblies can take part in the 
product structure, but at a higher solution level only those functional subassemblies are 
missing that has not effect on the basic operation of the product. In case of these products 
the hardness of the solution level does not influence the operation. But there are those kinds 
of products as well – e.g.: solutions variants deriving from the connection of different kinds 
of planetary gears–, where all the functional subassemblies are necessary to generate oper-
able solutions. That is the reason for the generating solution variants according to varying 
connections between the functional subassemblies can be called total combination, because 
if the connections between the functional subassemblies are preliminary not defined, all the 
possible solutions can be generated by binary generation. It is not sure that according to the 
theory of random numbers all the possible solutions can be generated. 

The method worked out basically deals with two different theories: solution variants 
generated by varying the functional subassemblies and solution variants generated by vary-
ing the connections among the functional subassemblies. The research shows two mathe-
matical solutions for both theories: the binary logics, and the generation of random num-
bers. As it is shown in Figure 3., the different generation theories can show different results. 
These methods do not eliminate the possibility that the results can fall in with each other. 
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Number of the variants 

Territory of 
perspicuity 

Number of the program cycles 

Number of all the possible 
solutions 

Generation according to random numbers 

Binary generation 

Border of the 
combinatorial bang 

ibk irk 

 
Figure 4. The maximum number of solution variants according to the binary logics  

and the theory of random numbers 
 
There is no need for defining the connections between the functional subassemblies in 

case of generation according to random numbers, because than the main point is that the 
computer randomly determines solutions from all the possibilities. These solutions should 
be examined by a strict value analysis, if they are operable solutions. According to binary 
generation each functional subassembly can be connected to each of them so it is sure that 
all the possible solution variants can be created. But the user of the program can also fix 
connections, than the generation is resulted less solution. Generating according to different 
theories can bring different solutions. Efficiency-analysis of the methods needs more ex-
aminations. 

Figure 4. shows the expectable number of solutions generated according to binary gen-
eration and the theory of random numbers depending on the number of the generating cy-
cles, besides the computer assistance of the suggested methods. As it can be seen on the 
figure all the possible solution variants can be created by binary generation even besides 
finite cycle number. The curve of the generating according to the theory of random num-
bers only fitting the horizontal line of all the possible solutions in case of endless cycle 
number. Depending on the input data of solution generating it can happen that the border of 
the combinatorial bang realises at a lower number of solutions, than the number of all the 
possible solutions. In that case the set of solutions will be inhomogeneous, because of the 
lack of those solutions that were generated after reaching the border of the combinatorial 
bang. So if it happens it is better to use the generation according to the theory of random 
numbers, because solutions generated up to the borders of the combinatorial bang are from 
the full set of the generation that is why the set of the solutions will be homogeneous. Gen-
erating the same number of solutions irk is always higher than ibk, so in the case of the gen-
eration according to the theory of random numbers more program cycle is needed than ac-
cording to binary generation. 
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2.3. Evaluating step 

In the evaluating step the generated solutions should be evaluated. During this process 
the E value matrix (17) and (18) can be created. This matrix ranks the evaluating aspects 
according to the consumers’ criteria. Summarising row-by-row the result of the comparison 
of the evaluating aspects it eventuates the importance of the evaluating aspect (20). This 
can be described by the (21) importance vector of the evaluating aspects. 
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The ranked evaluating aspects should be characterised by a weighting factor. After that 

using the weighted product characters method a table according to Table 1. should be de-
fined. Each variants should be evaluated with points between 1 and 5 (the worst is 1–means 
pmin, the best is 5- means pmax), than should be multiplied with the given weighting factor. 
Than the weighted values should be summarised in each row, so the rank of the evaluated 
solutions denoted by q vector is resulted. This vector can be found in the last column of the 
table. The qi element of the q vector that has the highest value gives the optimal solution 
(22). 

Table 1.  
The method of weighted product characters 

 A1 A2 A3 … Am Σ q 
V1 pmin÷pmax pmin÷pmax pmin÷pmax  pmin÷pmax  
wV1 w1V1 w2V1 w3V1  wnV1 ΣwV1 

q1 

V2 pmin÷pmax pmin÷pmax pmin÷pmax  pmin÷pmax  
wV2 w1V2 w2V2 w3V2  wnV2 ΣwV2 

q2 

V3 pmin÷pmax pmin÷pmax pmin÷pmax  pmin÷pmax  
wV3 w1V3 w2V3 w3V3  wnV3 ΣwV3 

q3 

…        
Vn pmin÷pmax pmin÷pmax pmin÷pmax  pmin÷pmax  
wVn w1Vn w2Vn w3Vn  wnVn ΣwVn 

qn 

 

                        qVopt max  (22) 
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3. Representing the fuzzy solution-family in three-dimensional space 

The fuzzy solution-family consists of those solutions that were correct solutions of the 
generating according to the flexible subassembly set. In Descartes coordinate-system the 
space determined by the V elements of the solution-family, the F functional subassemblies 
used during the generation and the importance of the functional subassemblies is the Ω 
fuzzy solution space (Figure 5.). The Ω fuzzy solution space can be described by a B prod-
uct complexity matrix and an ff functional subassembly importance vector. 

 

Fuzzy solution-
family Functional 

subassemblies

V1 
V2 

Vl 

F1 F2 

Fm 
Vi Fj 

Importance of functional 
subassembly

δ 

α 

β Ω 

 
Figure 5. The importance of functional subassemblies, the complexity of solutions 

 
mnijbB


:  (23) 























nmnnn

m

m

m

n

m

bbbb

bbbb

bbbb

bbbb

V

V

V

V

FFFF

...

...............

...

...

...

...

...     

321

3333231

2232221

1131211

3

2

1

321

 

(24) 

 
The Ω solution space can be sectioned by 3 excellence planes. Either of the planes par-

allel with the plane determined by the solutions and the functional subassemblies are the α 
fuzzy product complexity planes. It shows which functional subassemblies take part in a 
solution at different level of the importance of functional subassemblies. Those functional 
subassemblies that has a higher importance than the α product complexity level, takes part 
in the solutions. Moving the plane in vertical direction the complexity of products can be 
controlled. Different (α) levels of product complexity can be featured by the product com-
plexity matrix. 

The Ω solution space sectioned by a plane that is perpendicular to the axis of solutions 
the β fuzzy functional subassembly importance plane arisen. This plane shows how impor-
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tant the functional subassemblies that are building up the solutions in certain solutions. The 
Ω solution space sectioned by the β plane shows a “prismatic” nature, because it shows the 
same frame in case of each solution. Differences between the solutions come from the dif-
ferent connections between the functional subassemblies written by the S structure ma-
trixes. The β plane of the functional subassembly importance can be characterised by the 
(11) ff functional subassembly importance vector. 

The Ω solution space sectioned by a plane that is perpendicular to the axis of functional 
subassemblies the δ fuzzy functional subassembly incidence plane is offered. It shows 
whether the certain functional subassemblies are in the set of those elements that are build-
ing up the fuzzy solution family and if it is so, how important they are. The δ plane can be 
featured by any element of the ff functional subassembly importance vector according to 
(11). 

The relationship of the introduced planes can be defined according to the followings: 
 The intersections defined by the planes α and β determine, which functional subas-

semblies are building up a given solution of the solution-family. 
 The intersection can be defined by a vector that has a value-range of 0 and 1. 
 Intersections determined by the planes that are parallel with α–δ planes show the 

importance of those functional subassemblies that are the members of the solutions 
in a solution-family. The intersection-line is a certain element of the ff functional 
subassembly importance vector according to (11). 

 Intersections determined by the planes that are parallel with β–δ planes show the 
incidence of those functional subassemblies that are the members of the solutions 
in a solution-family at a certain level of importance, so at the level of α solution 
level. The intersection-line can be described by a vector with each element the 
same: 0 or 1. 

The point of intersections determined by the above introduced three planes (fuzzy prod-
uct complexity plane, fuzzy functional subassembly importance plane and fuzzy functional 
subassembly incidence plane) is the importance point of a functional subassembly, as it 
defines the importance of the given functional subassembly. The Ω solution space has a 
constant vertical size, and its maximum value is 1. But the size of the Ω solution space can 
be modified in the direction of V and F that can be influenced by the following factors: 

 Modifying the fuzzy product complexity level the number of the functional subas-
semblies taking part in the solution generation can be influenced. This has an ef-
fect on the number of the solution variants. 

 The number of the solution variants also depends on the values of the connection 
matrix. 

4. Adaptability of the suggested methods for computer  

It must be noticed that the introduced methods generating solution variant are able to 
operate effectively only then, when the application of a computer is solved. These methods 
make a suggestion for how to generate the more possible solution built up from the func-
tional subassemblies, determined at beginning of the process. It is only the binary method 
of generating variants on the basis of varying connections among functional subassemblies 
capable for introducing all the possible solution variants. It was interpreted that in case of a 
big amount of variable connections it is better to use the method of accidental generation, 
because this way an overall view of the whole solution-space is given. Binary generation is 
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eligible to use, when the number of all the possible solution probably not overruns the Ter-
ritory of perspicuity. As a summary it can be established that the introduced methods show 
a possibility for an algorithm of the design methodology, beat the human limits, shorten the 
design period, proving the probable quality of the technical plan. 

Acknowledgement 

“This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project with 
support by the European Union, co-financed by the European Social Fund.” 

REFERENCES 

[1]  E. R. Deciu–E. Ostrosi–M. Ferney–M. Gheorghe: Configurable product design using multiple 
fuzzy models. Journal of Engineering Design, Vol. 16., No. 2., Taylor and Francis, 2005. 

[2]  I. Horváth–I. Juhász: Számítógéppel segített gépészeti tervezés. Műszaki Könyvkiadó, Budapest, 
1996. 

 



 

REVIEWING COMMITTEE 
 
K. BÁRCZY Department of English Linguistics and Literature 

University of Miskolc 
H-3515 Miskolc-Egyetemváros, Hungary 
bolklara@uni-miskolc.hu  

 
Á. DÖBRÖCZÖNI Department of Machine- and Product Design 

University of Miskolc 
H-3515 Miskolc-Egyetemváros, Hungary 
machda@uni-miskolc.hu 

 
M. GERGELY Acceleration Bt. 

mihaly_gergely@freemail.hu  
 
K. JÁRMAI Department of Materials Handling and Logistics 

University of Miskolc 
H-3515 Miskolc-Egyetemváros, Hungary 
altjar@uni-miskolc.hu 

 
 
I. KEREKES Department of Mechanics 

University of Miskolc,  
H-3515 Miskolc-Egyetemváros, Hungary 
mechker@uni-miskolc.hu  

 
T. KOLLÁNYI  Rábaparti Kft. 

kollanyi.t@gmail.com  
 
F. J. SZABÓ Department of Machine- and Product Design 

University of Miskolc 
H-3515 Miskolc-Egyetemváros, Hungary 

 machszf@uni-miskolc.hu 
 
A. SZILÁGYI Department of Machine Tools 

Universityof Miskolc 
H-3515 Miskolc-Egyetemváros, Hungary 
szilagyi.attila@uni-miskolc.hu  

 
 



 

 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
University of Miskolc, Department of Research Management and International Relations 
Responsible for publication: Prof. Dr. Mihály Dobróka prorector 
Miskolc-Egyetemváros 
Editor: Dr. Ágnes Takács 
Published by the Miskolc University Press under leadership of Erzsébet Burmeister 
Responsible for duplication: Erzsébet Pásztor, works manager 
Number of copies printed: 50 
Put to the Press on June, 2012 
Number of permission: 237 


	Gepesz_angol_2012_1
	Gepesz_angol_2012_2
	Gepesz_angol_2012_3
	Gepesz_angol_2012_4
	Gepesz_angol_2012_5
	Gepesz_angol_2012_6
	Gepesz_angol_2012_7
	Gepesz_angol_2012_8
	Gepesz_angol_2012_9

