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SAFETY INCREASE WITH MATERIAL REMOVAL 

 

CSISZÁR L. RICHÁRD 
Budapest University Of Technology and Economics,  

Department of Machine and Product Design 

 

 
Abstract: This study is about an optimization of an axial tensioned plate with a central single 

circular hole. The objective is to increase the safety with remove material from the plate. The 

study contains the method of the optimization, topology and shape optimization. 

Keywords: optimization, topology optimization, shape optimization 

 

 

1. INTRODUCTION 

The era of computer simulation the machine design process getting shorter. The 

simulation replaces the expensive and time-consuming physical tests. The structural 

optimization was only privileged by the researches but with commercial software the 

product designers can use these tools easily. 

 

 

Figure 1. Design process with optimization step [3] 



6                                                                 L. Richard Csiszár 
 

 

  

2. TASK PRE-PROCESS 

2.1. Define the problem [2] 

The task is to find a geometry which gives the highest safety, the geometry seen 

below. 

 
Figure 2. Original geometry 

 

The material of the plate is S355 EN 10025:2004 structural steel. Around the hole 

for bolt must be a non-removable material 20 mm outside the hole. The tension force 

is 20 kN. The safety is equal to the maximum von Mises stress divided by the yield 

strength. 

 

2.2. Data and information collecting 

S355 EN 10025:2004 has the following properties: 

 

Table 1. Material properties 

Yield strength 355 MPa 

Young modulus 210 GPa 

Poisson ratio 0.3 

Density 7850 kg/m3 

 

The pre calculations for the structure can see below. This is a stress concentration 

area example [1]. 

 
Figure 3. Parameters of the calculation 
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Structural stress calculation 𝜎𝑛𝑜𝑚  =  
𝑃

[𝑡 ∙(𝐷 − 𝑑)]
= 200 𝑀𝑃𝑎 (1) 

Define Kt factor                   0 ≤  𝑑/𝐷 ≤  1 (2) 

𝐾𝑡  =  3.000 −  3.140 (
𝑑

𝐷
) +  3.667 (

𝑑

𝐷
)

2
 −  1.527 (

𝑑

𝐷
)

3
= 2.11 (3) 

The maximum principal stress 𝜎𝑚𝑎𝑥 =  𝐾𝑡𝜎𝑛𝑜𝑚= 422 MPa (4) 

 
It means that the plate with a hole has the maximum tension stress of 422 MPa. It is 

higher than the yield strength so the safety is lower than acceptable. 

 

2.3. Definition of variables 

The design variables can be seen in Figure 4, which is the green area. The elements 

around the constraints and elements close to the hole must be a non-design space. 

 
Figure 4. Design variables in quarter model 

 

2.4. Objective of the optimization 

The objective is the mass reduction, because the task is to remove material and 

reduce stress too. The algorithm search lighter structure, just the case of mass 

minimizing objective. 

 

2.5. Constraints of the optimization 

The constraint is the yield strength, so none of the elements can reach the 355 MPa 

von Mises stress. 
 

 

3. OPTIMIZATION PROCESS 

3.1. FE model 

The first step is to build up the FE model of the structure. It is an obligatory task, 

because of the comparison with the analytical calculation. This is the input of the 

optimization, so it must be eligible. The analysis and the optimization is making by 

HyperWorks®. The geometry, the loads and the constraints are symmetrical, so 
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symmetrical simplification can be used. The model is calculated in 2D plane stress 

so 2D elements can be used. The constraints can be seen on Figure 5. dX = 0 at the 

lower edge of the model and dY = 0 at the right side of the structure. The loads 

applied on the left side of the structure, the half of the structures has half of the loads 

and it is 10 kN. 

 
Figure 5. FEA model 

 

The result of the analysis can be seen on Figure 6. The differences between the 

analytical (Equation 1–4) and computational results are 3% so it is acceptable. 

 

Figure 6. Result of the FEA 

 

3.2. Parameters of the Optimization 

The parameters in the first iteration are the task defined parameters. The variables 

are topology variables; that mean that the algorithm can change the relative modulus 

of the elements from almost zero to the real value of the rigidity. The total volume 

fraction response function has applied. The non-design space elements also have a 

response and it is the static stress response. The stress in the design space can be 

constrained with maximum von Mises stress as a parameter of the design variable, 

not as a response function. The non-design space is constrained as well, 355 MPa is 

the upper boundary. The objective is to minimize the volume fraction. 

 
3.3. Results of the optimization 

The process of optimization the algorithm reduces the volume and pay attention to 

the responses, stress responses in this case. These steps can be seen on the Figure 7. 

In the graph shows that in the second step the constraint is satisfied, so the stresses 
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are lower than 355 MPa after the third iteration, the volume is dropping monotonous. 

The 19th iteration the constraint is penetrated so the next iteration the volume begins 

to rise but just for a few iterations. The convergence criteria reached after the 40 

iteration so the iteration process stopped. 

 

 

Figure 7. Iteration steps 

 

The rough result can be seen on Figure 8. The explanation of the result is the 

following. The picture a shows the density plots from 0 to 1 value. The red area show 

the element with E0 young modulus so the original one. The blue areas have much 

lower modules and density values almost zero. The real values in the reality can be 

zero or E0 nothing between, so that is why the structure must be interpreted. The b) 

picture shows the stress plot of the rough result. 

 

 

 

Figure 8. Result of optimization 

 

 

a) 

b) 
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4. INTERPRETATION AND VERIFICATION 

4.1. Automatic smooth 

OSSMOOTH® is a build in program, where the results can be interpreted automatic. 

The first step is to delete the elements which are lower, than the input parameter, 

here 0.5 is used. The next step is that the algorithm smoothed the surfaces of this 

rough area and then it could re-mesh the smoothed surface it is on the Figure 9. The 

most useful feature is that the constraints and the loads are reapplied by the program. 

 
Figure 9. Smoothed geometry 

 

4.2. Manual smooth 

The interpreted geometry can be created in a CAD program. The process is easy with 

2D structure. Take the picture of the rough optimization result, paste it into a plane 

and draw it. In 3D the rough surface of the result can be exported to *.stl file format. 

The 2D interpretation can be seen on Figure 10. 

 

 

Figure 10. Manual interpretation 

 
4.3. Usability of the result 

The validation of the interpreted geometry is the next step. The Figure 11 a) part 

shows the non-interpreted result, this is feasible, but if the almost zero rigidity 

elements are disappeared the geometry is unfeasible. The b) shows the automatic 
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interpreted geometry, c) shows the manual interpreted geometry, and none of them 

is feasible. The result needs a small amount of modification.  

 

 

 

 

Figure 11. Validation of the result 

 
4.4. Re-optimizing the result 

The shape optimization is a tool for re-optimize the almost fine structure. The 

method can modify the nodes coordinates Figure 12, and with that local stress 

concentrations can be removed. The loads and constraints are the same, as in the FE 

model. 

 
Figure 12. Design variables of the shape optimization 

 

The task is to reduce stress on hot spots. The objective was the volume reduction but 

now it is reduced, so here the goal is to find the feasible geometry. The software can 

a) 

b) 

c) 
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use minmax objective for stress response, it means that the previous maximum stress 

should be reduce for the next step. The shape optimization should be limited by the 

geometry because it can be larger than the original geometry. The node coordinates 

are limited Y+ directions in the upper side and Y– directions in the lower side. The 

results can be seen on Figure 13. The a) show the starting geometry; in the b) the final 

iteration stress plot can be seen. The c) shows the shape change magnitude in mm. 

 

 

 

 

Figure 13. Minmax stress objective 

 
If the case is to reach the minimum mass than the parameters of the optimization is 

different. The objective is the same as in the topology optimization, this is volume 

minimizing, the stresses constrained for the whole structure. The result of this 

optimization can be seen on Figure 14 a) shows the starting geometry, b) shows the 

final iteration, and the c) shows the change of the shape. 

 

a) 

b) 

c) 
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Figure 14. Minimizing volume 

 

5. SUMMARY 

The refine process the first task objective has to be interpreted, for define the sub 

task objectives. The final geometry can be difficult to manufacture, or can cause 

more problems for the non-constrained areas. The problems can be predicted with 

the detailed task intractable. The real difficulty is to formulate these constraints. The 

time that the optimization process needs the 50% is to refine the input data and not 

the calculations. The software knowledge is a base of the optimization, because it is 

can-not solve every problem. The final geometry can be seen on the Figure 15 ones 

from the built-in ones. Further task is to develop the subassembly-kit and the tip-list. 

 

 

Figure 15. Final geometry stress plot 

a) 

b) 

c) 
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SOLVING MULTIBODY DYNAMICS PROBLEMS USING PYTHON 

 

PAVEL FLORIAN–ROMAN ČERMÁK 
University of West Bohemia, Department of Machine Design 

Univerzitni 8, 306 14 Pilsen 

pflorian@kks.zcu.cz 
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Abstract: The aim of this paper is inform the reader with possibilities of deriving equations 

of motion for arbitrarily complex multibody systems using Python programming language. 

Sympy is a library of functions for Python and a full computer algebra system (CAS) which 

has among others a built-in feature that allows assembling a multibody system and derive 

corresponding equations of motion. 

 

Keywords: multibody dynamics, Python, Sympy, EOM 

 

 

1. INTRODUCTION 

Solving multibody dynamics problems is possible by hand. There are methods such 

as Lagrange equations that allow that. However, this approach is only viable for 

simple systems with limited number of degrees of freedom, as hand-derivation of 

EOMs is a tedious and error-prone process. Sympy provides an alternative that is 

under BSD license which means it is free for both academic and commercial use. 

The initial phase consisting of setting up the environment and gathering required 

libraries is made simple thanks to Python scientific distributions such as Anaconda 

that involve all the necessary features. In this paper it is shown how one can obtain 

equations of motion describing dynamics of a simple four bar mechanism as shown 

in Figure 1. 

 
Figure 1. Four bar mechanism 
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2. GENERAL PROCEDURE WHEN USING SYMPY 

When using Sympy it is good practice to follow a certain path. In this case we will 

start with defining kinematics of the mechanism, followed by inertia, forces, EOM 

generation and simulation. 

 

2.1. Kinematics 

The first step is to decide how many generalized coordinates will be used to describe 

the mechanism. The four bar mechanism as described here has only one degree of 

freedom and can be unambiguously described by one angular coordinate. However 

in this example three generalized coordinates corresponding to each link will be 

used. Python indexing starts with 0 therefore the same approach will be used when 

naming variables.  

The first three lines in the block of code bellow import all the necessary functions. 

Time-dependant variables are created using dynamicsymbols() command, whereas 

for time-independent constants symbols() is used. 

 

 
Figure 2. Definition of variables 

 

In the second step reference frames are defined. An inertial frame is introduced and 

then three other frames, one for each link, are oriented with respect to the inertial 

frame. The rotations are given by theta angles and their direction is the z-axis of the 

inertial frame. In a similar fashion angular velocities of the reference frames are 

introduced. There is more than one way to define rotation between reference frames. 

For non-planar systems it is easier to use type ‘Body’ since less lines of code are 

needed for the definition as shown in the block of code for bar2_frame. 

from __future__ import print_function, division 
from sympy.physics.mechanics import * 
from sympy.physics.vector import time_derivative 
from sympy import symbols 
from numpy import array, linspace, rad2deg, deg2rad 
from scipy.integrate import odeint 
from pydy.codegen.ode_function_generators import 
generate_ode_function 
  
# number of links in the mechanism 
n = 3 
# generalized speeds and coordinates   
theta = dynamicsymbols('theta:{}'.format(n)) 
theta_d = dynamicsymbols('theta:{}'.format(n), 1)  
omega = dynamicsymbols('omega:{}'.format(n))  
omega_d = dynamicsymbols('omega:{}'.format(n), 1)   
# the extra symbol thanks to n+1 stands for the distance   
# between the grounding joints   
length_bars = symbols('L_B:{}'.format(n+1))   
g = symbols('g') # gravity 
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Figure 3. Orientation and velocity 

 

Once orientation and velocity of frames is set important points of the system such as 

joints and centres of mass can be introduced. X-axis of each frame defines link 

orientation and centres of mass are assumed to be in the middle of each link for 

simplicity. 

 

 
Figure 4. Joint and centre of mass locations 

 

Just like angular velocities were defined separately linear velocities of the points 

need to be defined in a similar way. Velocity of the grounding joints j0 and j3 is set 

to 0 as they are stationary. 

 

 
Figure 5. Velocities of points 

 

# reference frames   

inertial_frame = ReferenceFrame('I')   

bar0_frame = inertial_frame.orientnew('B0', 'Axis', (theta[0],  

                                                    inertial_frame.z))   

bar1_frame = inertial_frame.orientnew('B1', 'Axis', (theta[1], 

                                                    inertial_frame.z))   

bar2_frame = inertial_frame.orientnew('B2', 'Body', [0, 0, theta[2]], 

                                                    'XYZ')   

# angular velocities   

bar0_frame.set_ang_vel(inertial_frame, omega[0]*inertial_frame.z)   

bar1_frame.set_ang_vel(inertial_frame, omega[1]*inertial_frame.z)   

bar2_frame.set_ang_vel(inertial_frame, omega[2]*inertial_frame.z)  

 

 

# joints   

joint0 = Point('j0')   

joint1 = joint0.locatenew('j1', length_bars[0] * bar0_frame.x)   

joint2 = joint1.locatenew('j2', length_bars[1] * bar1_frame.x)   

joint3 = joint2.locatenew('j3', -length_bars[2] * bar2_frame.x)   

# cm positions   

bar0_cm = joint0.locatenew('b0cm', length_bars[0]/2 * bar0_frame.x)   

bar1_cm = joint1.locatenew('b1cm', length_bars[1]/2 * bar1_frame.x)   

bar2_cm = joint3.locatenew('b2cm', length_bars[2]/2 * bar2_frame.x) 

# velocity of the grounding joints is 0   

joint0.set_vel(inertial_frame, 0)   

joint3.set_vel(inertial_frame, 0)   

# velocity if the remaining joints   

joint1.v2pt_theory(joint0, inertial_frame, bar0_frame)   

joint2.v2pt_theory(joint1, inertial_frame, bar1_frame)   

# velocity if centres of mass 

bar0_cm.v2pt_theory(joint0, inertial_frame, bar0_frame)   

bar1_cm.v2pt_theory(joint1, inertial_frame, bar1_frame)   

bar2_cm.v2pt_theory(joint2, inertial_frame, bar2_frame)   
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When defining kinematics of the mechanism the last step is to introduce 

configuration and velocity constraints. As mentioned above the mechanism has only 

one degree of freedom, but three angular coordinates were used to define it. In this 

case we need to implement two configuration constraints, one for each excessive 

coordinate, and two velocity constraints in order to obtain the correct solution. The 

configuration constraints say that the joint j3 is located at distance of length_bars[3] 

from joint j0 on the x-axis of the inertial frame. There are two constraints, one for 

each x and y direction. The velocity constraints simply mean that these two points 

are not moving with respect to each other. The following block of code concludes 

the definition of kinematics. 

 

 
Figure 6. Constraints 

 
2.2. Mass and inertia 

This particular mechanism is only a planar problem therefore the definition of inertia 

is fairly simple. In this case we only introduce rotational inertia related to the xy 

plane of the inertial frame. In Sympy inertia is implemented in terms of dyadic. 

Inertia is defined in a frame that is stationary with respect to a given body. The 

information about mass and inertia is then coupled in a RigidBody object. 

 

 
Figure 7. Mass and inertia 

 

# configuration constraint   

zero = joint3.pos_from(joint0) + length_bars[3] * inertial_frame.x   

f_c = [zero & inertial_frame.x, zero & inertial_frame.y]   

# velocity constraint   

dzero = time_derivative(zero, inertial_frame)   

f_v = [dzero & inertial_frame.x, dzero & inertial_frame.y]   

 

# mass and inertia   
mass_bars = symbols('m_B:{}'.format(n))   
inertia_bars = symbols('I_B:{}'.format(n))   
#     inertia(frame, ixx=0, iyy=0, izz, ixy=0, iyz=0, izx=0)   
bar0_indyad = inertia(bar0_frame, 0, 0, inertia_bars[0])   
bar1_indyad = inertia(bar1_frame, 0, 0, inertia_bars[1])   
bar2_indyad = inertia(bar2_frame, 0, 0, inertia_bars[2])   
bar0_inertia = (bar0_indyad, bar0_cm)   
bar1_inertia = (bar1_indyad, bar1_cm)   
bar2_inertia = (bar2_indyad, bar2_cm)   
# bodies   
bar0 = RigidBody('Bar 0', bar0_cm, bar0_frame, mass_bars[0],  
                 bar0_inertia)   
bar1 = RigidBody('Bar 1', bar1_cm, bar0_frame, mass_bars[1],  
                 bar1_inertia)   
bar2 = RigidBody('Bar 1', bar2_cm, bar0_frame, mass_bars[2],  
                 bar2_inertia) 
bodies = [bar0, bar1, bar2]     
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2.3. Forces 

In this case the only applied forces are the ones due to gravity. In order to introduce for 

example driving torque an extra tuple needs to be created and added to the loads list. 

 

 
Figure 8. Loads 

 
2.4. EOM generation 

Once kinematics, inertia and forces are specified the following step is generation of 

equations of motion. There are two methods available is Sympy. In this paper Kane’s 

method is used [2]; however it is also possible to utilize Lagrange’s method. Firstly 

we need to introduce kinematic differential equations that bind variables for 

coordinates with speeds. After that Kane’s method is initialized. This method has 

many arguments as shown below. Lastly Fr and Fr* need to be calculated as 

described in [2].  

 

 
Figure 9. Kane’s method 

 

After running the code above mass matrix of the system can be finally shown running 

kane.mas_matrix_full command. Unfortunately despite the mechanism being fairly 

simple the output matrix is too large to be included in this paper. In this case the 

shape of the mass matrix is 6 by 6 since we used three coordinates to describe the 

mechanism and it is already converted to a set of first-order differential equations. 

 

2.5. Simulation 

In order to proceed with integration of equations of motion we need generate the 

right hand side. Then numerical integration methods can be used to solve such 

equation: 

# forces   

bar0_force = (bar0_cm, -mass_bars[0] * g * inertial_frame.y)   

bar1_force = (bar1_cm, -mass_bars[1] * g * inertial_frame.y)   

bar2_force = (bar2_cm, -mass_bars[2] * g * inertial_frame.y)   

loads = [bar0_force, bar1_force, bar2_force]   

# kinematic differential equations   

KDE = [theta_d[0] - omega[0], theta_d[1] - omega[1],   

       theta_d[2] - omega[2]]   

# Kanes Method   

kane = KanesMethod(inertial_frame, q_ind=[theta[0]],   

                   u_ind=[omega[0]],   

                   q_dependent=[theta[1],theta[2]],   

                   u_dependent=[omega[1],omega[2]],   

                   configuration_constraints=f_c,   

                   velocity_constraints=f_v,   

                   kd_eqs=KDE)   

fr, frstar = kane.kanes_equations(bodies, loads)   
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𝒈 = 𝑴−1(𝒙, 𝑡)𝒇(𝒙, 𝑡), (1) 

 

where 𝑴−1(𝒙, 𝑡) is the inverted mass matrix and 𝒇(𝒙, 𝑡) stands for the forcing vector. 

Firstly we need to group all constants into a list and pass it into right hand side 

generator function. Then vector of initial conditions needs to be created. After we 

define time step and length of simulation the integration itself might begin.  

 

 
Figure 10. Simulation 

 

 

# list of constants 
constants = [g,   
             mass_bars[0],   
             mass_bars[1],   
             mass_bars[2],   
             length_bars[0],   
             length_bars[1],   
             length_bars[2],   
             length_bars[3],    
             inertia_bars[0],   
             inertia_bars[1],   
             inertia_bars[2]]   
kdd = kane.kindiffdict()   
mass_matrix = kane.mass_matrix_full.subs(kdd)   
forcing_vector = kane.forcing_full.subs(kdd)   
right_hand_side = generate_ode_function(forcing_vector, 
                   theta, omega, constants, mass_matrix=mass_matrix)
# list of numerical values   
numerical_constants = [9.81,   
                       2.0,   
                       5.0,   
                       4.0,     
                       2.0,   
                       5.0,   
                       5.0,   
                       4.0,   
                       1.0,   
                       1.0,   
                       1.0]   
# inital conditions   
x0 = array([deg2rad(135), deg2rad(41.3340), deg2rad(109.3884), 0.0,           
            0.0, 0.0])   
# timeframe   
frames_per_sec = 100   
final_time = 20.0   
t = linspace(0.0, final_time, final_time * frames_per_sec)   
# integration   
y = odeint(right_hand_side, x0, t, 
           args=(dict(zip(constants, numerical_constants)),))   
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3. RESULTS 

In Figure 11 results for angular coordinates are shown. The plots were created using 

matplotlib library but the code itself to do that is not included here. There are many 

examples of usage available on the internet. 

 

 
Figure 11. Results – angular coordinates 

 

From the plot above the reader can see that angle of the first link θ0 oscillates between 

135 and 395 degrees. It means that it never completes a full loop. Angular velocities 

can be plotted in a similar way as shown in Figure 12. 

  

 
Figure 12. Results – angular velocities 

 

Thanks to another Python library PyDy it is possible to create 3D animations based 

on simulation results easily. However the code to do that is not included in this paper. 
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4. CONCLUSION 

This paper showed an automated method that allows assembling an arbitrary 

multibody system and extracting it’s equations of motion. Such functionality is 

possible thanks to Sympy which is a free library for Python. This library is included 

in Anaconda distribution. It actually possible to copy the whole code shown in this 

paper into a Python editor to obtain the same results. The usage of Sympy is rather 

straightforward when dealing with open loop mechanisms and when having same 

number of coordinates as there are degrees of freedom. Closed loop mechanisms 

require introducing constraint equations that need to be correctly defined. The user 

must have a good understanding of the problem. 
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Abstract: This study deals with the RSM by clinch joints especially the clinching of high 

strength steel type DP600. The goal is to find a relationship between the thickness of the 

clinched joints and the undercut or interlock (C-value). The joining procedure was made by 

a round TOX tool. The DP600 steels are dual phase (ferritic-martensitic) types (AHSS – 

advanced high strength steels). For the C-values non-linear finite element simulations were 

performed in the ANSYS system.  

 

Keywords: clinch joint, RSM, FEA 

 

 

1. INTRODUCTION 

The response surface methodology (RSM) is a collection of statistical and 

mathematical techniques useful for different types of processes (improving, 

optimizing, and developing). The RSM also has important applications in the design 

of new products. The most extensive applications of RSM are in the industrial world 

where several parameters potentially affect the results. The characteristic of the 

results is called the response. It is typically measured on a continuous scale. Most 

real world applications of RSM will involve more than one response. The parameters 

(or input variables) are sometimes called independent variables. The graphical 

representation of the fitted surface to the results has led to the term response surface 

methodology. 

These joints are used mostly in automotive, computer and aircraft industries, but 

for instance according to the standards not allowed to use in food industry. This 

article is the first results of this research programme. The goal of the research is to 

determine the optimal parameters of clinched joints of high strength steels and 

aluminium. Furthermore to find a solution for fatigue evaluation and to replace some 

welded joints to clinched joints because of the cost of clinched joints are lower. The 

most difficult goal is to use the lowest number of tests and use the articles and other 

available material and test data to determine the relevant parameters. The clinch 

joints are quite new types of joints, the first patent was accepted in 1989. This joint 

can be done between 2–3 thin sheet plates. The material of the plates can be ferrous 

or non-ferrous, so this joint can realize dissimilar joints without any added material 

(weld material or glue). The joint made by metal plastic forming by a special tool. 

mailto:takacs.agnes@uni-miskolc.hu
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After the patent the increasing industrial needs of this type of joints led the 

researchers to analyse the joint much more deeply. Several studies carried out the 

geometry optimization of the clinching tool to get better joints by different 

optimization methods. Other studies were carried out on the so-called hybrid joints. 

These joints have an adhesive layer between the sheets. These joints have higher 

strength but need much more time because the adhesive layer’s drying is a time-

consuming process [1], [2].  

In this study the interlock was analysed. The analyses carry out on the field of the 

standard sheet plate sizes. FE simulations were performed in ANSYS to determine 

the different interlocks. From the result the size of the interlock will easily calculate 

and it is a basis for further analysis (e.g. prediction of pull out strength). 

 

2. RMS MATHEMATICAL BACKGROUND 

In general, a process involving a response y, that depends on the input parameters 

ξ1, ξ2, … ξn. The relationship can be written as it follows: 
 

 y = f (ξ1, ξ2, … ξn) + ε (1) 
 

where the response function is f and the term of ε is represent other sources of 

variability not accounted for in f (e.g. measurement error, etc. assume that its mean 

is zero): 
 

 E(y) ≡ η = E[f(ξ1, ξ2, … ξn)] + E[ε] = f(ξ1, ξ2, … ξn). (2) 
 

In much work it is a convenient to transform these variable to the so-called coded 

variables x1, x2, … xn. The coded variables are usually dimensionless with mean zero 

and standard deviation. It can be written as 
 

 η = f (x1, x2, … xn). (3) 
 

The f is unknown there an approximation is needed. When the small zone of the 

independent variable space is appropriate a low-order polynomial (first or second 

order is used). For the case of two independent variables the first-order model in 

terms of the coded variables is 
 

 𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2. (4) 
 

If there is an interaction between the parameters, use the main effects model which 

can be written as  
 

 η = β0 + β1x1 + β2x2 + β12x1x2. (5) 
 

Sometimes the second-order model is needed to define the response function. The 

following equation will describe that with interaction between the variables 
 

 η = β0 + β1x1 + β2x2 + β1x1
2 + β2x2

2 + β12x1x2. (6) 



Use of Surface Response Methodology (RSM) in Clinching Process                         25 
 

 

The second-order model has the ability for the easy estimation of the  β values and 

flexible [9].  

 

3. CLINCHING RESULTS 

In this study DP600 type of advanced high strength steel was tested. The clinching 

tool was set up in an MTS servo-hydraulic testing machine. The maximum permitted 

load on the tool is 50kN. The set up can be seen in Figure 1. The specimens were 

pre-drilled for this application. Two holes were drilled which centralized the 

specimens on the one hand and prevented them moving on the other hand.  

 

 

 

Figure 1. Clinching tool (TOX) and the relevant geometrical parameters  

of the joint [8] 

 
After the measurement a microscopic investigation was done. The grinded section 

can be seen in Figure 2. The extended grains can be observed due to the forming 

procedure. The undercut can be also seen on the section. This curve between the 

formed sheets will be used to compare different simulated cases.  

 

 

Figure 2. Microscopic investigation – cross section of the specimen after clinching 
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The FE simulation model was built in ANSYS WB 17.2 [3]. A 2D axisymmetric 

model presented below (Figure 4). The tools were taking account as linear elastic 

materials. The sheets have multilinear isotropic hardening material model. The 

anisotropic behaviour of the sheets was neglected. The material model can be seen 

in Figure 3. The material law is fitted to the measured flow curve. The contact zones 

and the sheets also have a high mesh density. The boundary conditions applied to 

the model can be seen in Figure 4. The tools prescribed in all degrees of freedom on 

their sides and the punching tool is displacement controlled. It has got a –2.8 mm 

displacement in the vertical direction till the end of the simulation. Between the parts 

Augmented Lagrange contact behaviour was applied. The frictional coefficient 

between the sheets is 0.2 and for other contacts 0.01 values were taken into 

consideration. The contact stiffness behaviour was updated in each iteration. 

 

 
Figure 3. DP600 true stress-true plastic strain curve 

 

 
Figure 4. Boundary conditions of the model 
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4. RESULTS 

The results of the simulations can be seen in Figure 8. The figure shows the 

equivalent plastic strain distribution of the sheets. The most affected zones are the 

neck region of the upper sheet where the punching tool is contacted with it and 

between the two sheets. Figure 5 shows the measured and simulated sections of the 

sheets. The results show good agreement; we can say that the FE model is valid. 

With this model further simulations can be made to analyse the behaviour of the 

sheets with different thickness. 

 

 
Figure 5. Comparison of the measured and simulated joints 

 
4.1. Application of the RSM in clinching process 

The variable filed was the standard deviation of the sheet thicknesses for cold rolled 

steel sheets (± 0.07 mm). The interlock was the unknown parameter. The “C” value 

is the difference (see Figure 6) of the maximum and the minimum value of the 

interlock. 

 

 
Figure 6. Simulated interlocks 
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From the simulation the following C values derived (Table 1). 

 

Table 1. Variables 

tupper (X1) tlower (X2) C 

0.9 0.9 0.22 

0.9 1 0.19 

0.9 1.1 0.18 

1 0.9 0.2 

1 1 0.17 

1 1.1 0.15 

1.1 0.9 0.16 

1.1 1 0.14 

1.1 1.1 0.12 

 

The f surface was fitted to the calculated values. The Figure 7 shows the data points 

and the fitted surface. The vertical axle of it is the values of the C parameters; the 

other two axles are the thicknesses. 

 
Figure 7. Fitted response surface with design points 
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A better view of the surface can be seen on the Figure 8. The colours show the effect 

of the parameters.  

 
Figure 8. Contour plot of the response surface  

(red squared area is the true size of the acceptable thicknesses) 

 

The fitted surface’s equation is a second order polynomial which can be written as 
 

 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽4𝑥1
2 + 𝛽5𝑥2

2, (7) 
 

where the x1 is the thickness of the lower sheet, x2 is the thickness of the upper sheet. 

The mixed member (β3 – see Table 3) can be neglected due its low value. The values 

of the parameters: 

Table 2. Variables 

β0 β1 β2 β3 β4 β5 

0.67 0.717 –1.217 –3.013∙10–15 –0.5 0.5 

 

In absolute value the β2 is almost the double of the β1. From the Eq. (7) the predicted 

C value for X1 = 0.93 mm and X2 = 1.07 mm is Cprediction = 0.175 mm (white point in 

Figure 8). The simulated value for C is CAnsys = 0.178mm. This can be seen in Figure 

9. In opposite case the (X1 = 1.07 mm and X2 = 0.93 mm) the predicted value is 

Cprediction = 0.165 mm. 
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Figure 9. Undercut line of the re-checking dimensions 

 

5. SUMMARY AND CONCLUSION 

The FE calculations and the prediction model have been developed for thicknesses 

in case of DP600 type of steel. It can be observed that the thickness of the upper 

sheet has a greater effect on the C-value, which leads a higher undercut in the result 

and a higher pull out strength and finally a better joint. 

The results show a very good agreement between the predicted and the calculated 

values. The deviance is ~2% which is acceptable. The RSM method is useful to 

determine unknown variables and to find relationships between distinct parameters.  

Further analyses are needed to find the relationships and the affecters for a better 

joint design. 
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Abstract: Meshing is very important part of finite element analysis, because it determines 

parameters of numerical solution of a physics phenomenon. There are many options as type 

of element, its size, shape or number of nodes. Every physical phenomenon needs different 

discretization corresponding to equation or set of equations. This paper deals with the influ-

ence of mesh settings on results of contact stress of spur gear teeth. 
 

Keywords: spur gears, contact stress, mesh influence, Ansys 
 

 

1. INTRODUCTION 

A geometry of gear teeth was created in NX11 CAD system and exported to .stp 

file. Then the geometry was imported to Ansys Design Modeller. All calculations 

were done only on one pair of mating teeth (not a complete geometry of a gear). 

Contact force, geometry and constrains are the same in all cases.  
 

Gear tooth parameters: 

• Spur gear, tooth profile according CSN 01 4607 [1] 

• Module 6 mm 

• Width 20 mm 

• Number of teeth 20 (gear 1) and 31 (gear 2) 
 

Material of both gears is Structural Steel from Ansys Engineering Data library. 

Contact type is Frictionless with Stabilization Damping Factor Value 1.  

 

 
Figure 1. Geometry of teeth (NX11 CAD system) 
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Meshes with element size lower than 0.5 mm were created on a divided tooth geome-

try (Model 2). The divided tooth geometry was created in SpaceClaim (a part of An-

sys bundle). The aim of divided geometry is to mesh a part of tooth geometry by 

smaller element size. Smaller element size is used only in small space around contact 

line. This procedure was chosen to shorten the calculation time. The geometry is 

preserved, because the nodes of edge elements mate. Mesh connection is set by a 

function Form New Part. A middle geometry is generated as multizone mesh type. 

 
Figure 2. Divided Model 2 geometry in SpaceClaim 

 

Path orientation, boundary conditions and mesh connection are evident from the 

figures bellow. 
 

 
Figure 3. Path-1 orientation (marked by red line) 
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Figure 4. FEM constrains 

 

 
Figure 5. Example of mesh connection of divided volumes (Model 2) 
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2. EXAMPLES 

This part of the paper describes several examples with different mesh settings and 

its parameters. These options are described in tables. If midside node option isn’t 

specified, then midside nodes are used (kept option). 

 

2.1. Hexahedron vs Tetrahedron, element size estimation (Example 1) 

The first calculation was made to determine an optimal size of finite element. Both 

calculations have been made on simple model with different size of element. The 

table below describes element type and its size. 
Table 1 

Example 1 settings 

Result Type of model Element shape Element size 

tetra 2 mm Model 1 Tetra 2 mm 

tetra 0.5 mm Model 1 Tetra 0.5 mm 

hex 2 mm Model 1 Hex 2 mm 

hex 0.5 mm Model 1 Hex 0.5 mm 

 

 

 
Figure 6. Stress result of Example 1 

 

The graph shows contact stress result on the contact line. It is clear that both ele-

ment sizes provide improper results. Stress value of 2 mm elements is probably 

low. It is assumed that smaller elements provide more accurate result. In this case, 

smaller 0.5 mm tetrahedron elements have higher stress, but large range of values. 

Values calculated on hexahedron elements are relatively smooth but there is a big 
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gap in the middle of tooth width. After evaluating of theese results, it is necessary 

to reduce the size of the finite elements around the contact line. 
 

2.2. Hexahedron vs Tetrahedron, suitable element size (Example 2) 

The aim of second calculation is to compare 0.5 mm and 0.2 mm size of finite ele-

ment. Lower element size increases number of total finite element, so it is neces-

sary to optimize the mesh. The mesh optimization is based on the Model 2, which 

consists of three divided volumes. Volumes in contact have 0.2 mm element size.  
  

Table 2 

Example 2 settings 

Result Type of model Element shape Element size 

tetra 0.5 mm Model 1 Tetra 0.5 mm 

hex 0.5 mm Model 1 Hex 0.5 mm 

tetra 0.2 mm Model 2 Tetra 0.2 mm 

hex 0.2 mm Model 2 Hex 0.2 mm 

 

 

 
Figure 7. Stress result of Example 2 

 

The element size of 0.2 mm seems to provide better result than 0.5 mm or 2 mm. 

The difference between higher and lower stress of result of tetrahedron elements is 

smaller than 0.5 mm element size. In the case of 0.2 mm hexahedron element, the 

gap mentioned in previous analysis disappeared. The stress calculated on hexahe-

dron element is evenly distributed, which corresponds to a static load and a precise-

ly made tooth (nominal dimensions without tolerances). Tetrahedron elements have 
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still relative high range of values, but average contact stress as a result from tetra-

hedron mesh could be calculated. 

 

2.3. Influence of midsize nodes (Example 3) 

This calculation explains the influence of midside nodes. Midside nodes have cer-

tain importance in some cases, where use of linear elements requires a much larger 

number of elements to get appropriate result. There is the same element size to 

demonstrate the difference. 
Table 3 

Example 3 settings 

Result Midsize 
Type  

of model 

Element 

shape 
Element size 

tetra 0.2 mm dropped Dropped Model 2 Tetra 0.2 mm 

hex 0.2 mm dropped Dropped Model 2 Hex 0.2 mm 

tetra 0.2 mm Kept Model 2 Tetra 0.2 mm 

hex 0.2 mm Kept Model 2 Hex 0.2 mm 

 

 

 
Figure 8. Stress result  of Example 3 

 

Stress calculated on both linear hexahedron and linear tetrahedron elements is low-

er than values calculated on elements with midside nodes. Average values of con-

tact stress on linear elements are almost identical. But the values of contact stress 

are relatively low, smaller element size of linear elements should be better, but 

lower size increases number of elements and calculation time. For this reason, the 

use of linear elements is not appropriate.  
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2.4. Inflation meshing (Example 4) 

Inflation is a method of meshing based on creation of layers, a layer thickness ob-

viously graduates with growing distance from an influence area. Ansys can create 

inflation based mesh that consists of linear elements (dropped). For comparison, a 

mesh of hexahedron elements with 0.08 mm (Model 2) size was created. 
Table 4 

Example 4 settings 

Result Midsize Type of model Element shape Element size 

hex 0.2 mm Kept Model 2 Hex 0.2 mm 

Inflation Dropped Model 1 Hex 0.2 mm 

Hex 0.08 mm Kept Model 2 Hex 0.08 mm 

 

 

 
Figure 9. Stress result of Example 4 

 

Lowering the size of element to 0.08 mm increases contact stress. This result is 

probably more accurate than the mesh with 0.2 mm element size. But theoretically, 

0.08 mm size mesh has approximately 15 times more elements than 0.2 mm. In this 

case, divided volume (Model 2) decreases total number of elements because 0.08 

mm size elements are only close to the contact line (2,2 million nodes, 520 000 

elements, elapsed time 47 000 seconds). Calculation of inflated mesh was signifi-

cantly faster (elapsed time 5930 s, 730 005 nodes, 172 500 elements). The fastest 

was 0.2 mm hexahedron mesh (elapsed time 1174 s, 244 273 nodes, 64 520 ele-

ments). Elapsed time of all calculations can be different on another computer. In-
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flated mesh seems to be perspective in the case of teeth contact, but further verifi-

cation is needed. 

 

3. Summary 

Results of examples previously described suggest, that too large elements cannot 

provide proper values of contact stress. Smaller elements with size 0.5 mm lead to 

more appropriate values, but the optimum is probably 0.2 mm element size or lo-

wer. These sizes provide higher stress values and lower range of maximal and mi-

nimal contact stress. Calculation with linear elements of the same element size (as 

dropped) is faster than quadratic elements, but the contact stress is too low. The 

results suggest that use of linear elements in the case of inflated mesh could make 

sense, because there is higher stress probably caused by higher number of layers. 
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